COLUMBIA	T COLORED T
Ministry of Energy & Mines	
Energy & Minerals Division	ASSESSMENT REPORT
Geological Survey Branch	TITLE PAGE AND SUMMARY
TITLE OF REPORT [type of survey(s)] GEOLOGICAL, GEOCHEMICAL, PROSP	TOTAL COST DECTING 90,000
AUTHOR(S) LINDINGER LEO J. SIGNATURE(S)	Mari.
AUTHOR(S)	
NOTICE OF WORK PERMIT NUMBER(S)/DATE(S)	YEAR OF WORK 2010
	812 1 2011/JAN/18
STATEMENT OF WORK - CASH PAYMENT EVENT NUMBER(S)/DATE(S) 4826	ore front print o
PROPERTY NAME BLACK HORN	
CLAIM NAME(S) (on which work was done) 597755, 59780	8,704023,
CLAIM NAME(S) (on which work was done) 597755, 597800 705/6/, 705/62, 705/63	, ,
COMMODITIES SOUGHT	
MINERAL INVENTORY MINFILE NUMBER(S), IF KNOWN	
MINING DIVISION CLINTON NTS	
LATITUDE 5/ 043 00 · LONGITUDE 124 0 44	0 standards
LATITUDE 45 LONGITUDE 22	(at centre of work)
1) CAZADOR RESOURCES LTD.2)	
1) KAUUK REJUURCES FIU.2)	
MAILING ADDRESS	
262-2300 CARRINGTON	
ROAD, WKELOWNA B.C. VATING	
OPERATOR(S) [who paid for the work]	
1) AURION RESOURCES LTD. 2)	
MAILING ADDRESS	
835 TOPSALL RD, SULTE 206	
MT. PEARL, NEDLO AIN 316	
	along and ability dates
PROPERTY GEOLOGY KEYWORDS (lithology, age, stratigraphy, structure, alteration, mineralization, GOLD QUARTZ VEINS OF MESOTHERMAL TO	
HOSTED BY THRUSTED ROCKS OF THE NIU	
INTRUSIVE ACTIVITY AND MINERAHIZATION	RE MIDCRETACEOUS TO
EARLY TERTIARY IN AGE,	14400 10 00 10 005
REFERENCES TO PREVIOUS ASSESSMENT WORK AND ASSESSMENT REPORT NUMBERS	6688, 18,022, 19355
21861, 9575, 17858, 18250, 17392, 12691, 31381, 31382	10654, 13150, 25551
0.501/01000	

TYPE OF WORK IN THIS REPORT	EXTENT OF WORK (IN METRIC UNITS)	ON WHICH CLAIMS	PROJECT COSTS APPORTIONED (incl. support)
GEOLOGICAL (scale, area)		597755, 597808, 704023	
Ground, mapping		705161, 705162, 705163	5000
Photo interpretation		,	
GEOPHYSICAL (line-kilometres)			
Ground			
Magnetic			
Electromagnetic			
Induced Polarization			
Radiometric			
Seismic			
Other			
Airborne			
GEOCHEMICAL (number of samples analysed for)			
Number of samples analysed for) Soil	: 98	SEE ABOVE	10,000
Silt	4	11	50
Silt		H	14750
Other MOSS MATT	4	<i>H</i>	IAE
(total metres; number of holes, size) Core Non-core			
RELATED TECHNICAL			
Sampling/assaying		SEE ABOVE	10,055
Petrographic			,
Mineralographic			
Metallurgic			
PROSPECTING (scale, area)			50,000
PREPARATORY/PHYSICAL			
Line/grid (kilometres)			
Topographic/Photogrammetric (scale, area)			
Legal surveys (scale, area)			
Road, local access (kilometres)/trail			
Trench (metres)			
Underground dev. (metres)			
Other		A. 5 Hard	
			90,000

BC Geological Survey Assessment Report 32152

GEOLOGICAL, GEOCHEMICAL AND PROSPECTING ASSESSMENT

REPORT ON

THE BLACKHORN GOLD PROPERTY

TATLA LAKE AREA, CLINTON MINING DIVISION

BRITISH COLUMBIA, MAPSHEET 92N 056, 057, 066, 067

Lat. 51" 43' N Long. 124" 44' W

UTM Zone 10 NAD 83 5715000 N, 379000 E.

FOR

AURION RESOURCES LTD

by

LEOPOLD J. LINDINGER, P.GEO.

FEBRUARY 24, 2011

SUMMARY	4
INTRODUCTION	6
ACCESSIBILITY, CLIMATE, LOCAL RESOURCES, INFRASTRUCTURE AND PHYSIOGRA	APHY 7
PROPERTY	8
HISTORY AND PREVIOUS WORK	
Pre 43-101 Implementation Property History and Exploration Post NI43-101 Implementation History	
REGIONAL GEOLOGY	
LOCAL GEOLOGY	_
PROPERTY GEOLOGY	21
LOCAL AND PROPERTY DEPOSIT TYPES AND MINERALIZATION	
MINERALIZED AREAS	27
BLACKHORN TREND	
Blackhorn (Homathko) Vein	
Galena Showing:	
Milk Can Showing:	
Homestake Zone:	
HW Occurrence	
Unnamed Vein Occurrences Along the Blackhorn Trend:	
FEENEY AREA Champagne Vein	
Three Ounce Valley	
Griz Cirque	
Lori Showing - "A Zone"	
B3 Cirque, Valley, Upper Razor Creek	
407 PPB Valley	
Other Areas	33
2010 WORK PROGRAM	
GENERAL GEOLOGICAL OBSERVATIONS	
GENERAL GEOCHEMICAL OBSERVATIONS	
DETAILED AREA REPORTS	
407 ppb VALLEY and NE OTTARASKO VALLEY	
SW GRIZ VALLEY	37
3 OZ VALLEY	37
B3 VALLEY	
NE BLACKHORN MOUNTAIN	38
CONCLUSIONS	39
RECOMENDATIONS	40
REFERENCES	
REFERENCES	
CERTIFICATE	45

LIST OF FIGURES

FIGURE 1 – BLACKHORN PROPERTY LOCATION PLAN	6
FIGURE 2 – MINERAL TENURE AND MINFILE OCCURENCES PLAN	.10
FIGURE 3: REGIONAL GEOLOGY	.17
FIGURE 4 – LOCAL GEOLOGY	.20
FIGURE 5 – SIMPLIFIED PROPERTY GEOLOGY	.23
FIGURE 5A - LEGEND	.24
FIGURE 6 – MINERAL DEPOSIT ENVIRONMENT ON THE BLACKHORN PROPERTY	.25
FIGURE 7 – MINERAL TENURE, PHYSIOGRAPHY AND INDEX MAP	.35
FIGURE 8A – 407 PPB VALLEY - 2010 ROCK SAMPLE ID'S	.57
FIGURE 8B – 407 PPB VALLEY - PPB GOLD IN ROCKS	
FIGURE 8C – 407 PPB VALLEY - PPM ARSENIC IN ROCKS	.57
FIGURE 8D – 407 PPB VALLEY - PPM SILVER IN ROCKS	.57
FIGURE 8E - 407 PPB VALLEY - 2010 SEDIMANT SAMPLE ID'S	.57
FIGURE 8F – 407 PPB VALLEY - PPB GOLD IN SEDIMENTS	.57
FIGURE 8G 407 PPB VALLEY - PPM ARSENIC IN SEDIMENTS	.57
FIGURE 9A – LOWER GRIZ VALLEY - 2010 ROCK SAMPLE ID'S	.57
FIGURE 9B – LOWER GRIZ VALLEY - PPB GOLD IN ROCKS	.57
FIGURE 9C – LOWER GRIZ VALLEY – PPM ARSENIC IN ROCKS	.57
FIGURE 9D – LOWER GRIZ VALLEY - PPM SILVER IN ROCKS	.57
FIGURE 9E – LOWER GRIZ VALLEY – 2010 SEDIMENT SAMPLE ID'S	.57
FIGURE 9F – LOWER GRIZ VALLEY – PPB GOLD IN SEDIMENTS	.57
FIGURE 9G – LOWER GRIZ VALLEY – PPM ARSENIC IN SEDIMENTS	.57
FIGURE 10A – B3-30Z VALLEYS – 2010 ROCK SAMPLE ID'S	.57
FIGURE 10B – B3-3OZ VALLEYS – PPB GOLD IN ROCK	.57
FIGURE 10C – B3-3OZ VALLEYS – PPM ARSENIC IN ROCKS	.57
FIGURE 10D – B3-30Z VALLEYS – PPM SILVER IN ROCKS	.57
FIGURE 10E – B3-3OZ VALLEYS – 2010 SEDIMENT SAMPLE ID'S	.57
FIGURE 10F – B3-3OZ VALLEYS – PPB GOLD IN SEDIMENTS	.57
FIGURE 10G – B303OZ VALLEYS – PPM ARSENIC IN SEDIMENTS	.57
FIGURE 11A – NORTH EAST BLACKHORN AREA – 2010 ROCK SAMPLE ID'S	.57
FIGURE 11B – NORTH EAST BLACKHORN AREA – PPB GOLD IN ROCKS	.57
FIGURE 11C – NORTH EAST BLACKHORN AREA – PPM ARSENIC IN ROCKS	.57
FIGURE 11D – NORTH EAST BLACKHORN AREA – PPM SILVER IN ROCKS	.57
FIGURE 11E – NORTH EAST BLACKHORN AREA – 2010 SEDIMENT SAMPLE ID'S	.57
FIGURE 11F – NORTHEAST BLACKHORN AREA – PPB GOLD IN SEDIMENTS	.57
FIGURE 11G – NORTH EAST BLACKHORN AREA – PPM ARSENIC IN SEDIMENTS	.57

LIST OF TABLES

TABLE 1 – MINERAL TENURE DETAILS	8
TABLE 2 – 2010 BLACKHORN PROJECT STATEMENT OF EXPENDITURES	
TABLE 3 - RECOMMENDED EXPENDITURES BLACKHORN PROPERTY PHASE I1	42

LIST OF APPENDICES

APPENDIX I - ANALYTICAL RESULTS	.46
APPENDIX II – ROCK AND SOIL SAMPLE DESCRIPTIONS	.47
APPENDIX III – FIGURES 8, 9, 10, 11 – SAMPLE ID'S, GOLD, ARSENIC AND SILVER RESULTS	.57

Summary

The early stage Blackhorn Gold Property totalling seventeen mineral claims covering 5645.12 hectares is located on the eastern margins of the Pacific Ranges of the Coast Mountains of west-central British Columbia, approximately 40 km south-southwest of the settlement of Tatla Lake and 180 kilometres west of Williams Lake. The claims are currently owned by Cazador Resources Ltd. a Private company wholly owned by Adam Travis of Kelowna, B.C.

Aurion Resources Ltd. by way of an Option Agreement dated July 10, 2010 has a 4 year option to acquire the Blackhorn Property by making staged cash payments totalling \$200,000 and staged share issuances totalling 700,000 shares. Cazador retains a 3% NSR of which 2% may be purchasable for \$US 4 million. Additionally upon completion of the Option advance royalty payments of \$50,000 per year are payable.

The Blackhorn Gold Property lies within the transition zone of the mid to late Mesozoic aged intrusive dominated Coast Plutonic Complex and older pre intrusive island arc provenance rocks assigned to the Triassic Stikine Terrane and later contemporaneous sediments. Mid to latest Cretaceous syntectonic left transpression then orthogonal compression then right lateral transpression deformed and displaced the pre-existing rock packages into a complex series of imbricated thrust slices. Several pulses of intrusive and extrusive activity with coeval sedimentary deposition were added to the deforming rock package. Mid to shallow crustal level gold bearing quartz vein and replacement deposits were deposited at the ductile-brittle transition zone in several areas over at least a 200 by 40 kilometre belt ranging from the Carolyn gold belt at the south to the Perkins Peak area in the north. The southern half of this zone hosts mostly orogenic gold deposits including the world class Bralorne gold mine. The northern half of the belt appears to be dominated by many intrusion hosted and associated gold deposits such as the Pellaire, Blackhorn Mountain and Perkins Peak.

The Blackhorn Property is situated within the central portion of the Niut Thrust Belt and the Niut Range, an isolated circular rugged portion of the eastern Coast Mountain range.

Regional geochemical surveys and industry driven exploration and prospecting programs indicate that the property appears to cover a source area of very high gold- arsenic- antimony, copper and high silver values hosted by mineralized quartz and quartz sulphide vein and replacement deposits.

The more important mineral occurrences found on the property to date include narrow, barren to high-grade gold-bearing quartz-carbonate veins associated with arsenopyrite and massive sulphide replacement and/or vein deposits from. These often gold-bearing occurrences are hosted by greenschist grade metamorphic rocks that to date appear to be localized along thrust faults and associated secondary normal structures at many locations on the property. They also appear to be contemporaneous with, but postdating all but the latest intrusive activity.

The several known mineralized areas lie within the Blackhorn Trend and the Feeney Area.

The Blackhorn Trend consists of several fault-hosted gold and copper bearing quartz to quartzcarbonate and/or calcite veins and within schistose volcanics or sediments found along a 4.5 km long north south strike. Of these, the Blackhorn Vein, centrally located within the trend has been considered the most important and has been the focus of the greatest amount of exploration. Most of the development work on the Blackhorn Vein was completed between 1936 and 1939 by Homathko Gold Mines Limited. This work included the underground drifting, trenching, and 640 metres of diamond drilling over several holes. A small local mill was constructed which processed 3.18 tonnes of hand cobbed high- grade ore from the Blackhorn vein. This resulted in the recovery, by amalgamation, of 275 dollars of gold (at \$21 per ounce), from an average grade of milled ore of approximately 79 grams per tonne gold.

The Blackhorn vein varies from less than 0.3 to over 1.0 metre in thickness and occurs at the intersection of northeast-southwest striking shallow sub horizontal and deeper near vertical structures. This vein appears to be truncated at the surface by a barren north-south striking vein, however it true limits have not been defined. Repeated sampling of the vein within underground workings (51.7 m long) returned uncut averages ranging from 3.7 to 71.70 g/t gold over an average width of about 0.45 metres. The gold is apparently free. Microscopic and rarely visible gold occurs as fine grains on fracture surfaces, suggesting that it may have been introduced later than the other minerals. One selected sample assayed 653 grams per tonne gold and 148 grams per tonne silver.

A gossanous oxidized conglomerate bed outcropping below the Blackhorn Prospect was drill tested in 1988 with minor gold results, with all values reporting less than 300 ppb gold.

Also on the Blackhorn trend are, from south to north the HW, Homestake, Galena, and Milk Can showings. All except the Homestake Showing host multigram gold from repeated prospecting programs.

The HW area was discovered in 1987 and in 2007 one sample grading 101 and another grading 226 g/t gold were taken in areas that reported high grade mineralization from earlier programs. The area of the 226 g/t gold sample is near where gossanous altered outcrop hosting "subhorizontal sheeted veins" from which very limited samples returned multigram gold analyses and assays.

The Feeney Area covers an over 4 kilometre by up to 800 metre area hosting sub to multigram gold values from float and bedrock samples. The area strikes from the upper Ottarasko Creek valley northwest towards the Blackhorn, Galena, and Milk Can showings. These areas were initially discovered during regional stream sediment surveys by the BC government in the mid 1970" sthat reported highly anomalous arsenic and by Homestake Minerals Ltd. employees in 1983. Since 1983 the Lori intrusion hosted gold vein (seven kilometres southeast of the Blackhorn vein), 3 Ounce Valley and B3 Valley targets, among others have been discovered. Interest was assisted in part by reanalyses of the RGS samples for additional elements including gold, resulting in several new anomalies being defined. The B3 valley, about midway between the Blackhorn and Lori areas was discovered in 2007 hosts the densest population of mineralized quartz carbonate vein float samples returning over 10 g/t on the entire property. Several samples returning over 20 g/t gold were taken.

Recommended is a phase two \$215,000 program consisting of more intensive stream silt sampling of all drainages on the property, and where appropriate soil, talus fines and seep sediment sampling. To better quantify the gold in glaciated and moraine covered areas soil sampling should be attempted especially in the 3 oz and D3 valleys. Detailed rock channel sampling of the several zones of incompletely sampled bedrock in particular in the HW area to determine their bulk tonnage potential is recommended. Property scale and detailed lithological, alteration, mineralization and structural mapping is also recommended. Contingent of development of (with the exception of the Blackhorn Vein) additional targets, a second phase \$500,000 diamond drilling program would be recommended.

INTRODUCTION

This report documents events and results of a September 2010 surficial geological, geochemical sampling and prospecting exploration program on the Blackhorn Gold property near Tatla Lake, in west central B.C. paid for by optionee Aurion Resources Ltd., and makes recommendations for future work to develop the property.

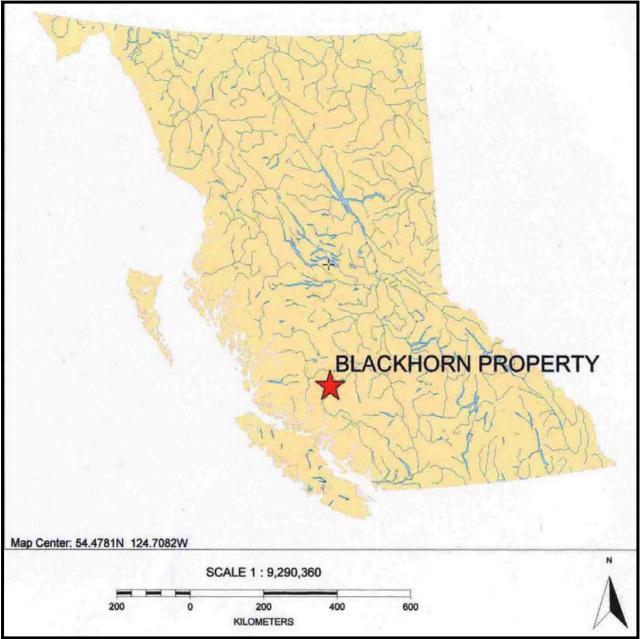


FIGURE 1 – BLACKHORN PROPERTY LOCATION PLAN

ACCESSIBILITY, CLIMATE, LOCAL RESOURCES, INFRASTRUCTURE AND PHYSIOGRAPHY

The Blackhorn property is accessible by paved highway from Williams Lake to the Bluff Lake turnoff (travel time approximately 3 hours) located a few kilometres east of Tatla Lake, and then by a good gravel road south via Bluff Lake to logging clear cuts located on the south side of Mosley Creek, approximately 10 km north of the northern boundary of the property. From this point further access is by pack trail or helicopter (local helicopter services are based at the private airstrip on the south end of Bluff Lake). There are no roads to or on the claims, however there are pack trails to Blackhorn lake.

The nearest major supply center is Williams Lake, 180 kilometres east of the claims.

The climate of the region considering the high elevations is relatively moderate due to its proximity to coastal inlets and. Year round snowfall can be expected with snow beginning to accumulate in early October and may remaining as late as mid to late July in the higher elevations. North facing high elevation areas are usually glaciated.

Local resources include abundant water in high relief drainages for possible exploration development and micro hydro power possibilities. Marginally merchantable trees (balsam) occur mostly off the property in the valley bottoms. Possible hi quality limestone and gravel deposits occur in the area.

The property overlies the central portion of the Niut Range, an isolated lobe on the east side of the Coast Range separated from it by the Mosely Creek Valley which arcs around the north and west sides, and the Homathko River the east and south sides of the Niut Range. The terrain on the property due to its maximum elevations at over 3000 metres is rugged having being sculpted by past and ongoing glacial activity. Sharp peaks and castellated ridges are separated by deep linear "U" shaped valleys with over steepened slopes and broad moderately to gently inclined valley floors. Glaciers, small ice fields and snow patches located in the hanging valleys or on northern exposures, cover at least 10% of the claims. The reverse "J" shape of the property roughly follows the height of land around the north facing drainage of Razor Creek which drains into Mosely creek north of the property. The highest points on the claims are Blackhorn Mountain in the northwest property boundary at 3052 metres, Mullen Mountain located in the southern part of the claims at 2994 metres and an unnamed mountain at 2903 metres located in the south east property boundary. Razorback Mountain at 3183 metres is only 350 metres north of the east Property boundary (Figure 2).

Outcrop exposure is excellent along the steep ridges but is commonly inaccessible. Elsewhere, bedrock is generally masked by talus or moraine and/or glacial till along the gentler slopes and valley bottoms. Several glaciers on the property have receded significantly in the past few decades. Most of the property, except for the valleys along Razor and Ottarasko Creeks are located above tree line at approximately 1850 metres elevation. Stunted balsam is the most common tree species.

PROPERTY

The Blackhorn Property overlies the central portion of the Niut Range, which is situated in the east margin of the Pacific Ranges of the Coast Mountains of west-central British Columbia, approximately 40 km south-southwest of the settlement of Tatla Lake and 185 km west of Williams Lake. The Property is comprised of seventeen mineral claims covering an area of 5645.1 hectares. The claims are located on Crown land in the Clinton Mining Division on BCGS map sheets 092N/056, 057, 066, 067. The Property is centered on 51" 43" north 124" 44" west and UTM Zone 10 NAD 83 5715000 N, 379000 E.

The configuration of the various mineral claims is illustrated in Figure 2 and the claim information is as set out in Table 1 below.

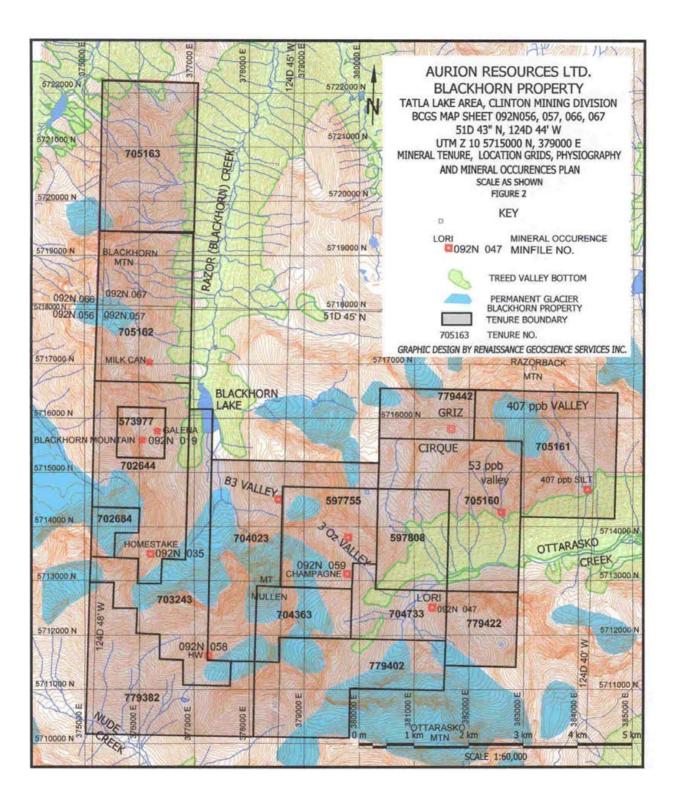
Tenure Number	Claim Name	Owner	Issue Date	Good To Date*	Area (ha)
573977	BH 1	201078 (100%)	2008/Jan/18	2018/Oct/18	80.3374
597755	BLACKHORN EAST	201078 (100%)	2009/Jan/17	2014/Sep/07	301.376
597808	LORI	201078 (100%)	2009/Jan/19	2014/Sep/07	241.1075
702644	BLACKHORN	201078 (100%)	2010/Jan/20	2014/Sep/07	441.9214
702684	CROOKS	201078 (100%)	2010/Jan/20	2014/Sep/07	60.2736
703243	BLACKHORN 2	201078 (100%)	2010/Jan/21	2014/Sep/07	421.9853
704023	BLACKHORN 3	201078 (100%)	2010/Jan/22	2014/Sep/07	502.2992
704363	BLACKHORN 4	201078 (100%)	2010/Jan/23	2014/Sep/07	180.8774
704733	BLACKHORN 5	201078 (100%)	2010/Jan/25	2014/Sep/07	180.8757
705160	NEW BLACKHORN 1	201078 (100%)	2010/Feb./01	2014/Sep/07	482.1567
705161	NEW BLACKHORN 2	201078 (100%)	2010/Feb./01	2014/Sep/07	482.0703
705162	NEW BLACKHORN 3	201078 (100%)	2010/Feb./01	2014/Sep/07	481.8132
705163	NEW BLACKHORN 4	201078 (100%)	2010/Feb./01	2014/Sep/07	481.5522
779382	LOUISVILLE 1	201078 (100%)	2010/may/26	2014/Sep/07	502.5564
779402	LOUISVILLE 2	201078 (100%)	2010/may/26	2014/Sep/07	462.3507
779422	LORI 1	201078 (100%)	2010/may/26	2014/Sep/07	180.8898
779442	GRIZ 1	201078 (100%)	2010/may/26	2014/Sep/07	160.6687
	TO	ΓAL AREA	•		5645.12

TABLE 1 – MINERAL TENURE DETAILS

*pending acceptance of the exploration expenditures recorded in event # 4826812 on 2011/Jan/18.

The claims comprising the Property were staked by, or acquired by Mr. Adam Travis of Kelowna, British Columbia at various dates and at several times between 2007 and 2010. The claims are currently held by Cazador Resources Ltd. (Cazador), a private company wholly-owned by Adam Travis with its corporate office in west Kelowna. On January 17, 2009 Tenure 573977 was purchased by Skeena Resources Ltd. for Cazador from Richard Billingsley. There are no known encumbrances on this tenure. On February 4, 2010 Tenures 702644, 703243, 704023, and 704363 were purchased by Cazador for \$5000.00 from North Bay Resources Ltd. (North Bay). North Bay retains a 2% NSR which can be purchased for \$2 million.

By agreement dated July 10, 2010, Cazador granted Aurion Resources Ltd. (Aurion) an option to acquire 100% of the Blackhorn Property by Aurion making staged cash payments totalling \$200,000 and issuing a total of 700,000 common shares over four years, including \$30,000 and 50,000 shares on signing. The schedule of payments are outlined below.


	CDN Cash	Aurion common shares
On signing (June 6, 2010)	\$ 30,000	50,000
July 20, 2011	\$ 30,000	50,000
July 20, 2012	\$ 30,000	100,000
July 20, 2013	\$ 40,000	200,000
July 20, 2014	\$ 70,000	300,000
Totals	\$200,000	700,000

Cazador shall retain a 3-per-cent net smelter returns royalty on the Blackhorn property, with Aurion having an irrevocable option to purchase (buy down) 2 per cent of the net smelter royalty for \$US 4 million. Additionally upon completion of the option, Aurion is required to pay an advance royalty of \$50,000 per year beginning on the fifth anniversary of the Agreement (July 20, 2015).

Exploration work involving mechanical disturbance on mineral properties in British Columbia requires the filing of a Notice of Work and Reclamation with the Ministry of Energy, Mines and Petroleum Resources. The issuance of a permit facilitating such work may involve the posting of a reclamation bond. As of the date of this report, no such notice or reclamation bond has been applied for, or posted by or on behalf of Aurion.

Mineral claims in British Columbia may be kept in good standing by incurring assessment work or by paying cash-in-lieu of assessment work in the amount of \$4 per hectare per year during the first three years following the location of the mineral claim. This amount increases to \$8 per hectare in the fourth and succeeding years. These requirements are due to change later this year or in 2012. There is an anticipated marked increase in acquisition fees and assessment requirements with the elimination of filing fees.

The author is not aware of any specific environmental liabilities to which the mineral claims are subject.

HISTORY AND PREVIOUS WORK

Pre 43-101 Implementation Property History and Exploration

Gold was discovered in the Blackhorn Mountain area in 1936, and as excerpted from O"Grady, 1938, Page 5;

... "The discoveries were made in the summer of 1936 by N. Pohlman and claims were staked by him and three partners, L. Butler, C. Mackill, and W. Pohlman. After some preliminary exploration, which revealed ore containing free gold, the owners installed a Gibson prospector's mill, driven by a water-wheel, on Wolverine Creek at a point about 1,500 feet downstream from the camp.

Since the summer of 1936, approximately 3.5 tons is stated to have been milled from which gold, recovered by amalgamation, returned a value of about \$275. Milling was then discontinued and about 5.5 tons of similar ore, containing numerous specimens showing native gold, remains at the mill-site. Up to the time of the writer's examination, development including a 45 foot adit, was very limited."...

Homathko Gold Mines Limited, was formed to develop the vein. The adit and crosscut mentioned above were completed in 1938 (Sargent, 1938, page 31).

The following account is excerpted from Kasper 1998, pages 3-4.

..."Underground exploration included the driving of a 32 m adit and drifting along the vein for 51.7 m. An average uncut grade of 0.93 oz/t Au (31.85 g/t Au) over 22 inches (0.56 m) was computed by Dirom (1939) for a 65 ft (19.81 m) section of vein exposed in the drift. This work was initially started by Homathko Gold Mines Ltd., owner of the property, and later completed by N. A. Timmins Ltd. who optioned the property. In 1939, N. A. Timmins Ltd. completed 2,144 ft (653.49 m) of diamond drilling in 10 holes (Dirom, 1939). Of these holes, six intersected the vein over widths of 2.5 to 20 inches (0.06 to 0.51 m) along a strike length of 260 feet (79.25 m). Gold results ranged from a trace to 0.46 oz/t Au (15.75 g/t Au) over 4 inches (10 cm), averaging 0.30 oz/t Au (10.27 g/t Au). The only production from the Blackhorn Vein during this period was reported by O'Grady (1938). Approximately 3.5 tons of high-grade ore from the open-cut was processed in a Gibson prospector's mill installed on Razor Creek.. He reports ... "gold, recovered by amalgamation, returned a value of about \$275"... This implies a grade of approximately 2.24 oz/t Au (76.88 g/t Au) when using a value of \$35/oz."...

One selected sample assayed 653 grams per tonne gold and 148 grams per tonne silver (Assessment Report 10654).

... "From 1939 to 1979, when the area around the Blackhorn Vein was re-staked as the McDuck et al. claims, only a little surface work was carried out in 1946 (Stevenson, 1947 as referenced in Peatfield, 1996).

From 1980 to 1984, work revolved around prospecting, mapping, and sampling of the old workings along the Blackhorn trend (Copeland, 1981; McConnell, 1982 and Jones, 1984). No new showings were found and the claims were allowed to lapse in 1987.

In the summer of 1983, a prospecting team from Homestake Mineral Development Company located in-situ gold-bearing arsenopyrite mineralization in the Feeney area located near the headwaters of Ottarasko Creek approximately 5 kilometres east of the Black horn trend"... (and near the southern portion of the current Blackhorn East claims)

... "The Lori 1-4 claims were staked in late August of the same year to cover these occurrences. Prospecting and detailed stream sample sampling in 1983 outlined a number of gold anomalies in the area of the present day Champagne Vein. Samples of quartz float from this area assayed up to 89,000 ppb gold and 1,534 ppm arsenic (sample H-670G, Ronning, 1984). A stream sediment sample (sample H-840G) collected from this same area was highly anomalous in gold (385 ppb) and anomalous in arsenic (65 ppm). The source of these anomalies was not located during these programs."

In May of 1987, "... the area originally outlined by Homestake ... "was restaked in part as the Loot l-2 claims. Equinox Resources Ltd. and Canada Orient Resources then carried out prospecting and stream sediment sampling programs over the next two summers (Culbert, 1988 and Culbert et al, 1988). Their work confirmed Homestake's results and the presence of gold-bearing float down slope from the Champagne vein, but again, the source of the anomalies was not located.

In the fall of 1987, the core area around the Blackhorn Vein was later re-staked as the J.J. #1 and #2 claims"...

In the summer of 1988 a shallow diamond drill and percussion blast hole program (total individual hole depth 3.3 metres) was carried out on the JJ claims to test the gold potential of an 1500 metres strike by 400 metres width portion of a rusty weathering chloritic conglomerate bed below the Blackhorn vein (Copeland, 1988). Copeland was following up historic information from 1936 that reported gold bearing conglomerate in the vicinity of the Blackhorn Vein. Lithological studies of the conglomerate revealed weak apparently post mineralization disseminated and iron stringer sulphide mineralization. Several diamond holes produced weakly anomalous gold results between 60 and 274 ppb gold. Bulk sample results from the percussion drilling did not indicate any gold. Copeland himself prepared and transported the samples prior to shipping to the laboratory thus not following current chain of custody procedures.

Kasper, page 5 continues;

..."From 1987 to 1994, Mr. (Louis) Berniolles conducted several prospecting campaigns, through Blackhorn Gold Mines predecessor organizations. These campaigns were successful in uncovering a number of new mineral occurrences including: copper-nickel sulphides related to mafic intrusives in the Atwood area (south of the current claims); numerous areas of copper-rich quartz float; and auriferous quartz veining of "The Stack" in the HW area, the Milk Can

Showing on the Blackhorn trend and the Champagne Vein in the Feeney area (Figure 3; Berniolles, 1987, 1988, 1989, 1990, 1991a, 1991b, 1991c, 1994a, 1994b).

In 1988, the entire Niut Range was proposed as a Wilderness Area under the Forest Act (Berniolles, 1995). This resulted in a number of investigations, including regional stream sediment and water geochemical surveys for the map sheet 92N in 1991 (MEMPR BC RGS 34) and an airborne magnetic residual total field survey flown in 1992 (GSC Open File 2785). A number of geochemical anomalies were delineated for the creeks draining the Blackhorn property. In 1994, the proposed designation to protected area was turned down by the sitting government.

During September of 1997, Blackhorn Gold Mines Ltd. carried out a small detailed exploration program whose purpose was to determine the significance of the main mineral prospects outlined in"... (a technical report authored by G. R Peatfield, P. Eng) ... "The exploration program consisted of geological mapping, prospecting and rock sampling. General mapping and prospecting was carried out at a scale of 1:10,000 for the whole region. Detailed mapping and sampling was conducted at scales ranging from 1: 100 to 1: 1,000 for the Blackhorn Vein, Champagne Vein and Galena and Milk Can Showings. When possible, showings were surveyed in using a compass, inclinometer and hip- chain from known points whose UTM coordinates were determined using the helicopter's GPS unit. A total of 163 rock samples were collected and sent to Bondar Clegg Laboratories in North Vancouver for testing. All rock samples were analyzed geochemically for gold and 34 elements by ICP."...

Kasper"s report was the first to document the presence of at least three styles of mineralization on the property (Kasper, 1998, p 17).

..."At least three different styles of mineralization have being recognized on the Niut Range Property: gold + arsenic quartz-carbonate veining in which arsenopyrite + pyrite are the main sulphides present; copper-rich quartz veins in which copper sulphides predominate and arsenopyrite is lacking; and copper-nickel sulphides related to mafic intrusives. Examples of the gold + arsenic-bearing veins include the Blackhorn Trend and the Champagne Vein. Occurrences of copper-rich quartz veins are confined to either float samples or narrow vein occurrences associated with the volcanic rocks. Copper-nickel sulphides are confined to the mafic intrusives exposed in the Atwood area of the property. (the Atwood area is not part of the current property) ..." Of the three different styles of mineralization, the gold +/- arsenic veining is the most significant mineralization discovered on the property to date. All auriferous samples collected during the 1997 exploration program were determined to belong to this category of mineralization. The most significant gold showings and occurrences of this style of mineralization occurs along the Blackhorn Trend located on the western side of the valley at the headwaters of Razor Creek."...

Cautionary Statement. The aforementioned sample results, while indicating the presence of gold and gold indicator elements were taken by various individuals prior to the implementation of CIM Best Practices Guidelines and NI 43-101 requirements for disclosure on mineral properties and therefore are of a historical nature and cannot be relied upon.

Post NI43-101 Implementation History

In 2003 Skeena Resources Limited (Skeena) optioned the Blackhorn property from Adam Travis which covered all the previously mentioned mineral occurrences in the area, however it was not until 2007 that they completed any field work which included a \$90,000 reconnaissance prospecting and sampling program in the area.

Skeena reported on November 5, 2007 the results of all samples exceeding 10000 ppb (10 g/t gold) from the 163 samples taken.

					Rep	eat
<i>Tag</i> #	Area	Туре	(Au g/t	(Au oz/t)	Au (g/t)	Au (opt)
BH2007-AT-R0	9 Blackhorn Valley	float	16.10	0.470	14.60	0.426
BH2007-AT-RI	3 Blackhorn Valley	float	29.00	0.846	34.90	1.102
BH2007-AT-RI	4 Blackhorn Valley	float	10.30	0.300	8.6	0.253
BH2007-AT-RI	6 Blackhorn Valley	float	10.00	0.548	18.80	0.548
BH2007-AT-R2	1 Blackhorn Valley	float	28.00	0.817	82.60	2.409
BH2007-AT-R3	9 B3 Valley	float	15.40	0.449	16.80	0.490
BH2007-AT-R4	1 B3 Valle	float	24.50	0.714	21.40	0.624
BH2007-AT-R5	2 B3 Valley	float	26.00	0.758	25.40	0.741
BH2007-AT-R5	3 B3 Valley	float	14.80	0.432		
BH2007-AT-R5	4 B3 Valley	float	12.10	0.353		
BH2007-DC-47	71 Louisville	float	101.00	2.945	89.90	2.622
BH2007-PS-61	6 Louisville	float	21.00	0.612	23.20	0.677
BH2007-PS-61	7 Louisville	float	226.00	6.591	218.00	6.358
BH2007-PS-62	8 3 Ounce Valley	float	11.00	0.32	10.20	0.297
BH2007-PS-62	9 3 Ounce Valley	float	52.00	1.516	51.30	1.496
BH2007-PS-63	0 3 Ounce Valley	float	26.00	0.758"		

..."Blackhorn Fall 2007 Overlimit Assays

The "Louisville" area is near to and partially overlaps the HW and "stack" area discovered by Berniolles in 1993. The B3 Valley is 1 km west of 3 Ounce valley and is a new area. 3 ounce Valley is where Homestake (1984) sampled the 89,000 ppb gold sample and also hosts the Champagne vein as currently known.

The Skeena work was not filed for Assessment and other than the one press release all sources of data from this program have been from Travis.

Since 2007 several changes in tenure occurred with Travis under Cazador Resources Ltd. eventually reacquiring ownership of the mineral rights to all key showings and exploration areas.

In 2009 Travis completed a prospecting style rock sampling program of the Blackhorn vein. This program was due to inclement weather restricted to resampling of some of the sample

locations taken in 1997 in the Homathko adit as well as two surface chips of the "glory hole from which the material from the historic production was reported from.

Travis 2009 a, p 11 concluded:"The 2009 sampling program at the Blackhorn adit and area confirmed the high grade nature of gold within the vein system. Gold values are variable due to the high grade nature and chip sampling which averaged 26.4 g/t Au in 2009 and 31.9 g/t Au in 1939 are significantly lower than the reported 3.5 tons of material mined in 1936 which averaged 79 g/t Au. The vein is exposed in the face at both ends of the adit indicating that it continues further both east and west beyond the approximate 50 metres of underground development. Drilling in 1939 along the Blackhorn system apparently encountered vein material for close to 90 metres of strike. As such both strike and dip potential need to be tested at the Blackhorn vein."...

The average grade results derived by the Travis are somewhat different due to his using grade times true (or if not reported) sampled width rather than just averaging the grade and width. Also other than Kasper in 1997, no other party (including Travis) who sampled the Blackhorn Vein bracketed the vein samples. The bracket sampling revealed that some low grade gold occurs in the wallrock.

Also in 2009 Travis explored the "Blackhorn East" claims about 4-5 kilometres east of the Blackhorn property at the Lori showing, Champagne vein and surrounding area. (Travis 2009 b, p 20) concluded ... "The 2009 sampling program on the Blackhorn East Property in the "B3 Valley" area confirmed the 2007 un-reported float samples. The 2009 sampling, when compared with previous sampling indicates that high grade gold float samples are probably originating somewhere near the central portion of the Blackhorn East (597755) claim. These results are especially significant when one compares them with previous sampling over the mountain and into "Three Ounce Valley" where significant gold in float samples have also been reported."...

Cautionary Statement: The aforementioned sample results taken since implementation of NI-43-101 in 2001 while indicating the presence of gold and gold indicator elements are considered high grade float and bedrock samples, and while taken by individuals that the author considers as qualified are not to be relied upon as an indicator of potentially economic mineralization. Skeena did not insert field standards into the sample stream and one of the technicians while a geologist with many years of experience had taken many of the samples and was a shareholder in Skeena Resources Ltd.

REGIONAL GEOLOGY

The discussion on regional geology is excerpted from Kasper 1998, page 5. (Figure 5)

... "V. Domage of the Geological Survey of Canada conducted the earliest geological mapping in the area in 1924 and 1925. Domage reconnoitred parts of the area to define the contact of the Coast Plutonic rocks and to investigate the volcanic and sedimentary sequence (Tipper, 1969). Tipper (1969) mapped the eastern part of the Mount Waddington map sheet in 1967 at a scale of

1:126,720. Roddick and Tipper revised the geology of this area in 1985 when they produced new maps of the area at a scale of 1:125,000 (Roddick and Tipper, 1985)."...

This area covers a portion of the Coast Range Plutonic Complex (CPC) and the Intermontane Superterrane (IS) to the northeast. The oldest rocks in the region are fault bound remnants of the upper Triassic-lower Jurassic Stuhini Group, Ladner and Hazelton Group portions of the island arc provenanced Stikine Assemblage (map units uTRS, ImJLd and ImJHz respectively). These rocks survived obduction with oceanic Cache Creek, related Nicola and north America during a protracted sinistral transpressional collision during the Jurassic. Related to these volcanics are coeval and slightly later intrusives represented by unit J. and JK that outcrop sporadically through younger cover east of the Coast Mountains within the core of Stikine assemblage rocks.

Younger post collisional lower Cretaceous thrust faulted remnants of subareal volcanics and coeval sediments deposited to the east are assigned to the Spences Bridge Group (IKSb) to the southeast, and Ottarasko Volcanics portion of the Gambier Group (IKGa) over most of the region. Due to post accretion tectonics related in part to the emplacement of the Coast Plutonic Complex (CPC) and regional sinistral transpression they and slices of older terrenes now occupy several different strike slip and thrust faulted stratigraphic positions adjacent to the older and at times overlying younger formations. Intrusives of similar and possibly coeval age are assigned to unit EK. This event has been termed the southeastern Coast-north Cascades orogen (Schiarizza, 1997 page 174).

Ongoing volcanism and coeval intrusive activity related to the orogen and ongoing development of the CPC and coeval sediments to the east reflect the changing tectonics of the region as sinistral changed to dextral transpression from the mid to late Cretaceous. Large strike slip faults such as the Yalakom, Tchaikazan and Chita Creek Faults (Figure 6) developed by earlier sinistral movement were reactivated, and they and subsidiary structures reversed their movements or were crosscut by new structures. Part of this activity included thrust faulting of several panels of early Cretaceous volcanics and sediments over the Jurassic and older lithologies over a 100 kilometre belt now centered on the Niut Range (Figure 5-6) and referred to as the eastern Waddington or Niut thrust belt (Schiarizza, 1997, p 168).

Contemporaneously in this tectonic scenario within the core areas of the deformed belts east of the CPC were the development and emplacement of numerous mid Cretaceous to early Tertiary structurally hosted or "orogenic" and "intrusion related " gold vein camps. These include from north to south the orogenic Carolyn Gold belt and world class Gold Bridge Camps, and the more northerly intrusion related Taylor–Windfall, Pellaire, Blackhorn and Perkins Peak camps.

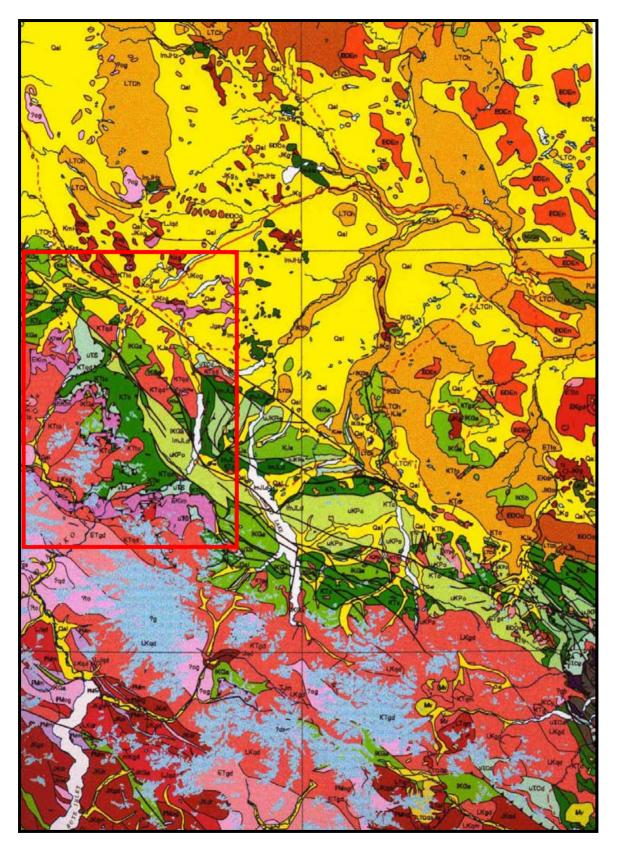


FIGURE 3: REGIONAL GEOLOGY (Red frame is area covered by Fig 4. Local Geology) For Legend see Figure 5a

LOCAL GEOLOGY

The local geology is dominated by the East Waddington thrust belt centered over the Niut Range (Figure 4)

The following description has been excerpted from Kasper, 1998 pp 5-7. NOTE: Kasper's Niut Range Property roughly covered the west half of the current claims and extended to the south to cover the western slopes of Ottarasko Mountain.

..."The Geological Survey of Canada through Rusmore and Woodsworth, remapped the Razor Mountain and the Mount Queen Bess map sheets (NTS 92N/10 and 92N/7, respectively) at a scale of 1:20,000 from 1986 to 1989 and compiled the data at a scale of 1:50,000 (Rusmore and Woodsworth, 1993). It is based on this mapping that the following regional geology of the area is derived from and shown in Figure 3.

The Niut Range area straddles the boundary between the Intermontane Superterrane on the east and the Coast Plutonic Complex on the west. In this area, Upper Triassic and Lower to Upper Cretaceous sedimentary and volcanic strata have been deformed by eastvergent thrusting to form the "Eastern Waddington Thrust Belt" on the eastern margin of the Coast Plutonic Complex (Rusmore and Woodsworth, 1991b). Rusmore and Woodsworth (1991b) indicate that the thrust belt, as currently mapped, "strikes roughly northwest for at least 100 km and is more than 35 km wide".

Rusmore and Woodsworth (1988) divided the Upper Triassic Rocks into four informal units of which three occur in the area of the Niut Range Property. The oldest rocks identified in the area were assigned to the Upper Carnian and (?) Lower Norian "Mt. Moore" formation (uTrS(v)). These rocks consist largely of augite-phyric basaltic to andesitic breccias with lesser volcanogenic sandstones and massive greenstone. This rock unit forms the upper flanks of Ottarasko Mountain"... (southeast of the current property, and a small occurrence west of Razorback Mtn.)

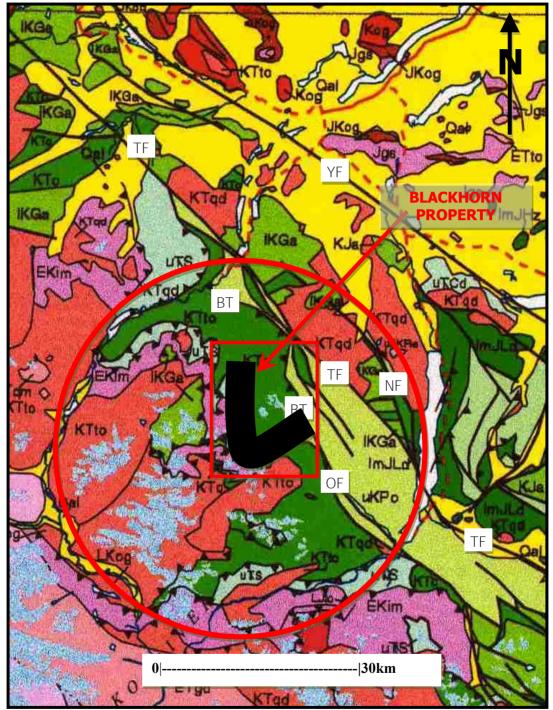
... "Two unnamed units of Upper Triassic age are overlain or thrusted between the "Mt. Moore" volcanics. These units consist of limestone to limy shales and maroon and green tuffaceous shales to lapilli tuffs. The same units are thrusted over each other and form the lower slopes along Razor Creek in the northern part of the property. (These have been assigned to the Stuhini Group units uTrS(lm)

Rusmore and Woodsworth (1988) indicate that these sedimentary rocks may be correlated with and a facies of the "Mt. Moore" Formation. Tipper et al (1981) initially interpreted these Upper Triassic rocks as being part of the Wrangellia Terrane, which represents a rift basin in a back-arc setting. Rusmore and Woodsworth (1991a) infer from basalt chemistry supported by field relations and rock types, that the Upper Triassic rocks formed in an island-arc setting and therefore, are actually correlative with the Upper Triassic Stikinia Terrane found further to the north.

Upper Jurassic to Lower Cretaceous volcanic and sedimentary rocks of the informally called "Ottarasko" and "Cloud Drifter" Formations (IKCd) are thought to

stratigraphically overlie the Upper Triassic units. Rusmore and Woodsworth (1988) state that the volcanic rocks of the "Ottarasko" Formation are the structurally highest rocks on Blackhorn and Ottarasko mountains, forming the peaks and ridges. These volcanic rocks are described as consisting of poorly stratified, unsorted to poorly sorted, dacitic to andesitic volcanic breccias with few recognizable flows. In places, basalt and rhyolitic volcanics may be locally abundant. Minor interbeds of siltstone and shale occur within these volcanics.

Sedimentary rocks of the "Cloud Drifter" Formation mainly outcrop to the east of Nude Creek in the property area Rusmore and Woodsworth (1988) describe these rocks as being "dominantly fine grained sandstone, siltstone and shale, but well stratified and locally crossbedded conglomerate is present". They believe that this unit formed in a shallow marine to deltaic setting. Ammonites found by them and Tipper (1969) indicates that the unit is Hauterivian in age.


A unit of black shale and siltstone of unknown age has being mapped by Rusmore and Woodsworth (1993) as being structurally interwoven with the Hauterivian and older strata. This unit occurs along the eastern flank of Blackhorn Mountain and along the ridgeline separating Nude and Ottarasko Creeks.

As mentioned above, northeasterly verging thrust faults and recumbent folds deformed the Upper Triassic and Lower Cretaceous sedimentary and volcanic strata. Rusmore and Woodsworth (1991b) state "radiometric dating . . . indicates that thrusts were active between 87 and 68 Ma and that deformation probably occurred in the earliest part of this period". They also note that "where exposed, the thrusts are marked by zones of highly strained phyllite, limestone, sandstone or conglomerate" Russmore and Woodsworth, 1988).

Through rough restoration of folds and thrusts in this area, Rusmore and Woodsworth (1991b) estimated that about 40% shortening occurred. Along the head waters of Ottarasko and Nude Creeks, these thrust faults form thick imbricate zones of structurally interweaved slices of Upper Triassic and Lower Cretaceous age strata. The Blackhorn claims cover part of this area.

In the southwestern part of the area, a tonalitic orthogneiss (LKog) is exposed along Nude Creek. This tonalitic orthogneiss is part of the Central Gneiss Complex described by Roddick and Tipper (1985) and which is part of the Coast Plutonic Complex located west of the property. Rusmore and Woodsworth (1991b) describe this rock as being the youngest involved in the thrusting and that the "orthogneiss is a prekinematic to synkinematic pluton". Roddick and Tipper (1985) suggest that the Central Gneiss Complex may be the parental material for the post tectonic plutons.

The youngest rocks in the area are Late Cretaceous to Early Tertiary post tectonic intrusives. These intrusives vary in composition from tonalite to quartz diorite to granodiorite. Radiometric dating of the pluton underlying the Atwood area in the

southeastern part of the Niut Range property, gave a concordant U-Pb date of 68 2 0.3 Ma and K-Ar date of 7 1.3 k 1.6 Ma (Rusmore and Woodsworth, 1993)."...

Figure 4 – LOCAL GEOLOGY – Source From Geology of British Columbia. Geoscience Map 2005-3 South Sheet (Red frame - area covered by (Figure 5 – Property Geology) YF – Yalakom Fault, TF - Tchaikazan Fault, OF - Ottarasko Fault, BT – Blackhorn Thrust, Large red circle Niut Range boundary

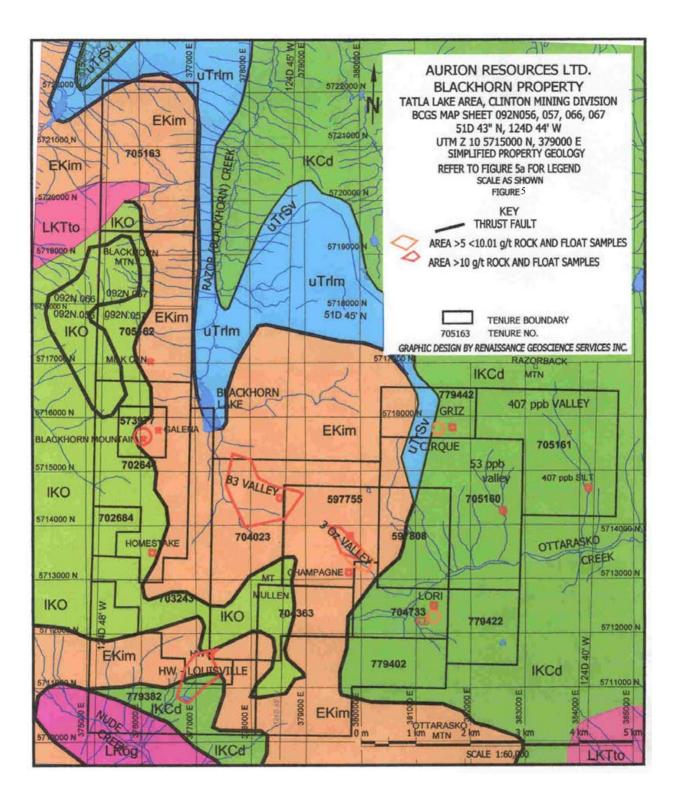
PROPERTY GEOLOGY

The following description is excerpted from Travis 2009a, which was largely excerpted from Kasper 1998.

... "Thrusted sheets of Upper Triassic to Lower Cretaceous sedimentary and volcanic strata and Late Cretaceous orthogneiss largely underlie the area of the Blackhorn Property"... ...".Green schist metamorphism is pervasive throughout these rocks. Late stage to post tectonic intrusives varying from a gabbro-diorite pluton to feldspar porphyry dykes intrude the thrust sheets throughout the area. Upper Triassic limestones to limy shales and maroon and green tuffaceous shales form imbricated thrust sheets immediately north east of the property. In the Blackhorn area, Rusmore and Woodsworth (1993) mapped these two units as forming imbricate thrust sheets separating the Upper Jurassic to Lower Cretaceous "Ottarasko" and "Cloud Drifter" formations along the lower slopes of Razor Creek.

Dacitic to andesitic volcanics and volcaniclastics of the "Ottarasko" Formation form the ridge tops and peaks of the mountains within the Blackhorn Property."... ..."during the 1997 fieldwork where it was further divided into 3 subunits consisting of: andesitic crystalline tuff, interbedded siliceous sediments and shales and chloritic phyllites. The fine- to medium-grained andesitic crystalline tuff displays a weak foliation and is poorly sorted and layered. This rock unit is mainly exposed in the Milk Can Showing where it forms highly resistant exposures. The interbedded siliceous sediments and shales consist of interbeds of thinly bedded fine-grained sandstones to shales. These siliceous sediments form the lower part of the "Ottarasko" formation exposed north of the Hunting Lodge Showing in the southern portion of the property. Chloritic phyllite also forms narrow interbeds within the andesitic volcaniclastics at the Milk Can Showing.

Phyllites to schists varying in composition from chlorite-quartz to muscovite-biotite-chloritequartz are found throughout the Blackhorn area. For the purpose of mapping during the 1997 fieldwork, they have been identified as part of the rock unit in which they are found, of the "Ottarasko" and "Cloud Drifter" Formations, respectively. These phyllites and schists are believed to be metamorphosed, fine-grained volcaniclastics and sediments, which were altered during the period of thrust faulting. The main gold occurrences of the Blackhorn trend (and remainder of the property?) are either hosted in or closely associated with the phyllites and schists.


Numerous dykes of probable Tertiary age crosscut rocks of all the above units. The width of these dykes vary considerably from 20 to 30 cm for a diabase dyke crosscutting the intrusive in the Atwood area to 220 m for andesitic dykes in the Homestake Zone (LORI showing) south of the Blackhorn property. The dykes postdate the thrust event as they cross cut the phyllitic units along the Blackhorn Trend and they do not exhibit any signs of greenschist metamorphism. Dykes with a north-south to northwest-southeast orientation are believed to have intruded along structures emplaced during a younger deformation event. The dykes display either a porphyritic or fine-grained texture. The porphyritic dykes vary from a hornblende porphyry diorite to feldspar porphyry andesite to felsite; while the fine-grained ones are either diorite or diabase.

At least two deformational events are recognized on the Blackhorn property. The first event is related to Late Cretaceous age thrust faulting while the second is related to younger, normal strike- slip faults. The younger faults are possibly related to the northwest trending Tchaikazan and Yalakom faults, which pass approximately 15 and 40 km to the northeast (respectively).

Thrust faults of Late Cretaceous age form the major structures throughout the Blackhorn Property. The thrust faults, which are generally marked by the chloritic phyllites to schists noted above, separate the Triassic and Lower Cretaceous rocks into thin north-south oriented, thrust sheets which have been stacked one on top of the other. Cleavage in phyllites has a northerly strike (358" to 031") and gentle westerly dip (14" to 38").

Normal strike-slip faults have been mapped cross cutting and offsetting all rock units including the thrust faults. They form recessive features infilled with a fault gouge and discontinuous, centimetre wide quartz + carbonate\calcite veining. At least two sets of faults were noted; the first, a prominent set, oriented southeast-northwest and the second, a minor set, oriented northeast-southwest. Faults or fractures related to the first set strike between 128" to 158" and dip steeply to the east or west. These faults form gullies or rock chutes in the Blackhorn Vein and Feeney areas, offsetting the Blackhorn and Champagne veins. The second set of faults and fractures generally occurring in the Blackhorn area, strike 030" to 064" and dip moderately to the northwest. Fractures of the second set are usually truncated and/or offset by those of the first set."...

Preliminary observations from various sources suggest that quartz vein mineralization and alteration in the Feeney area appear to parallel a north-northwest to northwest structural trend, whereas in the western portions of the property most veins are documented as northeast to north striking. It is possible that the different thrust sheets behaved somewhat differently during the onset of plate tectonically induced continental dextral transpression that coincided with ongoing intrusive activity in the region, or veining occupied different pre-existing fracture sets in different thrust sheets or post mineralization rotation of different thrust sheets occurred.

	Volcanic and Sedimentary Rocks CENOZOIC Neogene and Quaternary	IKSb	Spences Bridge Group: Andesite and dacite flows and breccias; minor basalt and rhyolite; chert and volcanic- clast conglomerates; sandstone, siltstone and mudstone.
Qal	Quaternary Cover: Alluvium, glaciofluvial gravels and sand, till.		Jurassic Lower to middle Jurassic
Mv	Miocene volcanics including Masset and Coquihalla formations: Basalt and andesite flows, related breccia and tuff; minor dacite and rhyolite, conglomerate and siltstone	ImJHz	Hazelton Group; Griffith Creek and Hotnarko Volcanics: Calcalkaline basalt, to rhyolite pyroclastics and flows, derived volcaniclastic conglomerate. breccia, sandstone, siltstone. shale, minor limestone and marl.
LTCh	Chilcotin Group:: Vesicular jounted columnar basalt, olivine basalt; minor andesite, rhyolite breccias, obsidian, tuff, breccias, conglomerate, sandstone, siltstone, shale, diatomite.	lmJLd	Ladner Group; Last Creek, Huckleberry Mountain and Spider Peak Formations; and unnamed equivalents: Sandstone, arkose, siltstom argillite, slate, conglomerate, andesitic flows, mafie and intermediate volcanic breecia, tuff, minor
	Paleogene		limestone.
EO, En	Ootsa and Endako Groups undifferentiated. Undifferentiated subaerial intermediate, felsic and mafic volcanics with locally interbedded sediments.	uTrS (v),	Stuhini Group; Mosley and Mount Moore Formations, and unnamed equivalents: Mafic to intermediate lapilli tuff, ash, breccia and tuffite;
EKim	Kamloops Group: Sandstone, conglomerate, shale, argillite, coal; basalt, andesite, dacite, trachyte, rhyolite, related tuffs and breccias.	(lm)	massive, aphyric or plagioclase and augite- phyric flows and sills (v); felsic tuff, tuffaceous siltstone, wacke, argillite, polymict conglomerate, limestone
	MESOZOIC		(Im), shale; graphitic shale, rare black chert, ribbor
KJa	Cretaceous Jackass Mountain Group; Fish Lake Creek Succession: Sandstone, arkose, siltstone, argillite, black shale, pebble to boulder conglome-rate; andesite, tuff sandstone; minor rhyolite, tuff.	uTrCd	Cadwallader Group; Grouse Creek Siltstone an equivalents: Sandstone, calcarenite, siltstone, shale polymict conglomerate, pebbly mudstone, limesto- ne- greenstone breccia, micritic limestone, coquina pillowed to massive greenstone, mafic volcanic breccia, mafic tuff, minor rhyolite breccia and tuff.
KTe	Taylor Creek Group and unnamed equivalents: Sandstone, chert- rich sandstone, siltstone and shale; polymict pebble conglomerate. calcareous sandstone		Intrusive Rocks CENOZOIC
IKCd)	and shale; intermediate to felsic volcanic flows, tuff and crystal tuffs; volcanic breccia and conglomerate.	ETgd	Early Tertiary: Granodiorite.
IV.D.	Relay Mountain Group, Thunder Lake Sequence and unnamed equivalents: Shale, siltstone. phyllite, semischist, sandstone, calcareous.		MESOZOIC
uJKRe	sandstone. arkose, coquina, conglomerate; minor andesitic breccia and tuff, tuffaceous sandstone and silty limestone.	(l)KTgd, qd, to	Cretaceous or Tertiary: Granodiorite, quartz diorite, tonalite
uKPo	Powell Creek Formation: Andesitic volcanic breccia, lapilli tuff and ash tuff; mafic to intermediate volcanic flows; volcanic sandstone and	LKgd, qd, og	Lower Cretaceous: Granodiorite, quartz diorite, orthogneiss (deformed)
	conglomerate, siltstone and shale.		Early Cretaceous: Quartz monzonite.
	Gambier Group; Monarch Volcanics, Ottarasko Formation (IKO); and equivalents including the	EKqm	
IKGa	Cerulean Lake Unit: Conglomerate, siltstone, shale, argillite, limestone; basaltic ande-site to rhyolite flows, crystal and lapilli tuff, tuffaceous	JKgd, g	Jurassie and Cretaceous: Granodiorite, granite
	sandstone, volcanic conglomerate and breccia; schist, graphitic schist.	Jqd, s, g	Jurassic: Quartz diorite, syenite, granite

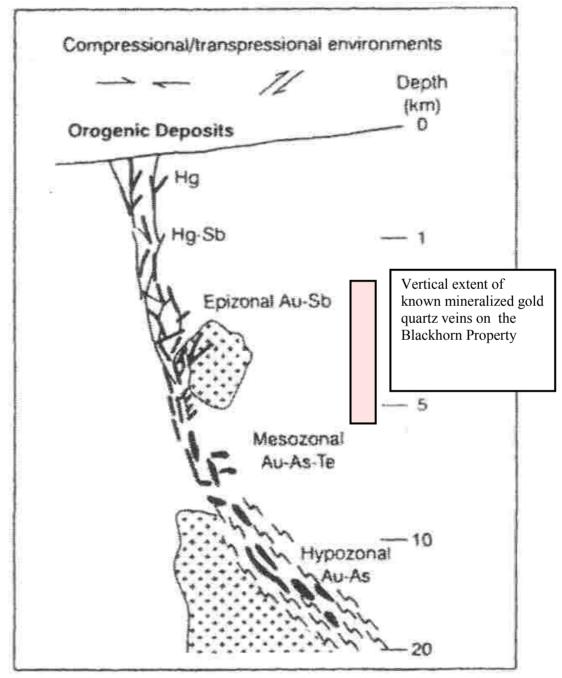

Source - Geology of British Columbia. Geoscience Map 2005-3

FIGURE 5A - LEGEND

LOCAL AND PROPERTY DEPOSIT TYPES AND MINERALIZATION

The Deposit type that best encompasses the variety of gold and copper vein mineralization styles and host rocks observed on the Blackhorn Property are "intrusion-related gold vein systems". This deposit type is very well described by Lewis and Rhys 2004, page 88.

FIGURE 6 – MINERAL DEPOSIT ENVIRONMENT ON THE BLACKHORN PROPERTY

The known mineralization of Blackhorn property occurs as five probably interrelated types of epigenetic vein and replacement vein occurrences. These subtypes may form a continuum where one subtype is more common in any one area due to the current level of exposure within the partially exposed systems. Also the host rock type, including both its physical and geochemical characteristics would affect the upward and laterally migrating acidic occasionally deposit forming auriferous fluids and the deposits they formed.

The first type occurs over several areas throughout the property as bedrock and float hosted banded to massive to vuggy quartz and quartz-carbonate sulphide veins within a phyllitic to schistose host usually located within the imbricated lower Cretaceous "Cloud Drifter" (IKCd), and late Cretaceous-early Tertiary Kamloops Group (EKim) formation metasediments that underlies the also lower Cretaceous aged volcanic "Ottarasko" Formation. The vein hosted sulphide mineralization consists of variable amounts of disseminated to banded weak to semi massive arsenopyrite and pyrite, with up to 5% galena and sphalerite and up to 2% localized chalcopyrite. Microscopic free gold was reportedly found in a float sample at the test pit of the Blackhorn Vein (see below). The veins are generally confined to northeast-southwest trending structures or along structures, which sub parallel but underlie and postdate the thrust faults. The vein occurrences along the Blackhorn Trend and the Champagne Vein in the Feeney Area are bedrock examples of this style of mineralization.

The second type are quartz chalcopyrite veins that are usually only weakly auriferous. Although often occurring near to and sometimes within or adjacent to the gold bearing quartz-carbonate-sulphide veins their very different mineralogy may indicate they were formed during a different and possibly later? event.

A third type of mineralization not noted prior to Travis"s work in 2007 and 2009 are highly to non auriferous massive and semi massive sulphide float occurrences that are usually spatially associated with auriferous quartz vein float occurrences in the eastern portions of the property south and west of Razor Peak. This type of mineralization has been seen in 3Oz valley.

Large gossanous areas (tuffs) noted in the Blackhorn and Ottarasko areas hosting finely disseminated sulphide mineralization are usually barren. Similar areas at the HW area host undetermined gold values.

A fourth style of gold mineralization explored for (Copeland 1988) are rusty volcanic conglomerates hosting very weakly auriferous sulphides in the Blackhorn area. These directly underlie the Blackhorn Vein and may be related to that mineralizing event.

A fifth style of mineralization discovered by Travis in 2007 are weakly auriferous haematite bearing massive carbonate veins that also host highly anomalous stibnite and arsenopyrite. These veins may be distal representatives of deeper more auriferous gold bearing quartz-carbonate veins and/or replacement deposits.

Each of these areas and their style(s) of mineralization are discussed in detail below. Much of the following is derived from BC Ministry of Mines Annual Report 1938, and 1939, Ronning 1984, Culbert, et al, 1988, Berniolles 1989, 1990, 1991, Kasper, 1998 and Travis 2009 a, b.

MINERALIZED AREAS

BLACKHORN TREND

Work carried out in the late 1930's and confirmed in part by recent exploration programs are the numerous gold + arsenic to gold-silver-arsenic-base metal rich vein occurrences hosted within schistose rocks along a 4.5 km trend, the "Blackhorn Trend" that runs up the western side of the claims to the west of Razor Creek along the eastern flank of Blackhorn Mountain"s southern ridge. The Blackhorn Trend hosts thrust fault-associated but brittle fracture hosted quartz to quartz-carbonate and/or calcite veins within variably silicified and sericitized schistose volcanics or sediments occurring along the trend. The most important known occurrences within this trend include from south to north over a 4.5 kilometre strike within the trend: the HW area, the Homestake Zone; the Hunting Lodge; Blackhorn Vein; the Galena and Milk Can Showings.

Sargent, 1938 pages F31-33 made the following observations: That in his opinion the "greenstone" hosting most of the vein mineralization of the Blackhorn trend appeared to be a better, more brittle host than the underlying metasediments; the mineralized quartz vein parallels and crosscuts the west dipping bedding/foliation; the sulphide mineralization in more strongly mineralized quartz-carbonate veins also are disseminated into the usually silicified wallrock, although mineralized wallrock rarely host any gold; visible free gold is seen in both oxidized and freshly exposed vein material; some sulphide mineralization also crosscuts the later carbonate veining; the erratic nature of the gold mineralization with respect to the sulphide mineralization suggests that the gold as O'Grady states (see below) was emplaced as an essentially separate phase (usually with "appreciable" sulphides; that arsenopyrite appeared to be the most reliable indicator of possible gold mineralization and that the intrusives he observed crosscut most quartz veins.

Blackhorn (Homathko) Vein

The Blackhorn Vein is centrally located within the Blackhorn Trend and is the most important known and best developed gold occurrence on the property. The vein is located at approximately 2,160 m elevation within a cirque wall and centred on the UTM coordinates 5715410 N, 376200 E. The mineralized vein occurs along a near vertical structure oriented northeast-southwest which appears to be truncated by a barren quartz vein which strikes 186 to 219 and dips 34 to 38 deg. to the west. The mineralized vein can be traced for over 17 m on the surface, even though it is poorly exposed, and for 51.7 m in the underground drift. It is hosted within and cross cuts phyllitic to schistose sediments which are interbedded within a massive greywacke. The barren quartz vein sub-parallels the cleavage in the phyllitic outcrop on the surface. Sampling of the mineralized vein within the underground workings (51.7 m long) by Kasper returned an uncut average of 34.70 g/t gold over an average width of 0.43 m.

Excellent and detailed description of the mineralization and tenure of the vein are described in O'Grady 1937, and Kaspar 1997.

The Blackhorn Vein truncates vertically or transforms into a flat lying to gently westward dipping quartz vein on the surface in the area of the "Cut". Rock samples collected in 2007 along this vein and its southern trend were all auriferous, assaying 54.190, 4.660, and 11.270 g/t gold. The samples also contained anomalous levels of arsenic (up to >10,000 ppm) and silver (up to 12.3 ppm), but lower base metal values when compared to the underground Blackhorn Vein samples (Travis, 2007).

Galena Showing:

O'Grady (1938) commented on the newly discovered galena showing.

... "About 1,000 feet, estimated, north-easterly from point A, and at 7,300 feet elevation, there is an open-cut, partly caved when examined, in a rock-slide sloping steeply to the east. Here there are lenticular quartz-showings, over a length of 12 feet, conforming to the 45 degree westerly dip of the schistose greenstone. This is known as the "galenashowing", this mineral being present in places with pyrite and sphalerite in the quartz which, at the northern end, is 24 inches wide and 20 inches wide at the southern end. A grab sample from a pile of about 1 ton of mineralized quartz extracted from this cut assayed: Gold, 0.805 oz. per ton; silver, 1.2 oz. per ton; lead, trace; zinc, 2 per cent. Between this working and the open-cut at A there are poorly-exposed outcrops of ironstained quartz in places, indicating the possibility of other lenses or vein-sections along the strike."...

Kasper (1998) continues for the Galena Vein

... "The Galena Showing is located 300 m to the north-northeast of the Blackhorn Vein and centred on the UTM coordinates N 5715715, E 376295 (Figure 5). It consists of nine pits located on discontinuous veins over a distance of 100 metres and along a trend of 040" to 060" (Figure 8). The quartz-carbonate veins vary in width from 1 to 40 cm, are of indeterminate length and are hosted within phyllitic to schistose sediments. Sulphides consisting of pyrite, arsenopyrite and galena occur as fracture fillings and vary in quantity from trace amounts to 5%. Sericite in fractures and chloritized rock fragments are also present in the veins. Where measured, vein orientation ranges between strike 040", dip 79" northwest to strike 093", dip vertical.

Six rock samples were collected in 1997 and three returned gold values ranging from 0.429 to 5.37 g/mt. Anomalous arsenic results up to 8,749 ppm, correspond to the gold results. One sample also returned highly anomalous in silver (13.5 ppm) and lead (6,879 ppm). The anomalous values closely correlate to the high sulphide content with the exception of one strongly oxidized sample. All three gold-bearing rock samples were taken from quartz- calcite veins or fracture fillings within the pits."...

The Galena showing is roughly on strike with the Blackhorn Vein and its different mineralogy may indicate zoning (more distal) when compared to the Blackhorn Vein

Milk Can Showing:

Kasper (1998) continues for the Mike Can showing

... "The Milk Can Showing is located on the ridge above the Galena Showing, approximately 600 metres to the north of the Blackhorn Vein and centred on the UTM coordinates N 5716990, E 376160 (Figure 5). It is exposed over 7.0 m within talus on a steep, southwesterly facing slope, approximately 30 m down slope from the ridge line. The showing consists of a 0.75 m wide, steeply dipping, northerly striking (025") quartz vein which truncates and then subparallels numerous discontinuous, stacked quartz veins 1 to 10 cm in width (Figure 9). The stacked quartz veins are oriented approximately east-west (082" to 090") and dip moderately to the north (30" to 40"). The veins are hosted within massive andesitic volcaniclastics with thin interbeds of chloritic phyllites. Limonitic spots and a trace to ~1% disseminated pyrite are found along fragments of chloritic phyllite within the vein.

A total of 10 rock samples were collected from this area during the 1997 program. Of these, six returned anomalous gold results (>100 ppb) with the two strongest gold values, 3.03 and 0.95 g/mt respectively), not being from the main occurrence. The first sample was from a 15 to 60 cm wide quartz-calcite vein 22 m to the northeast of the Milk Can Showing. This vein has a pyritic-chloritic selvage and similar orientation as the principal quartz vein in the main showing. The second result was from a grab across weakly limonitic quartz-chlorite boulders located 6 m to the west of the main vein occurrence. Of the four samples collected from the Milk Can Showing itself reported only weakly anomalous gold values ranging from 0.111 to 0.437 g/mt. Weakly anomalous arsenic values varying from 152 to 342 ppm corresponded with the gold values. No samples returned anomalous in silver or base metal values."...

Skeena (Travis, 2007) in 2007 had one float sample taken at the Milk Can showing. It returned 1.56 g/t gold.

Homestake Zone:

Kasper (1998) also commented on the Homestake zone

... "The Homestake Zone occurs at the southern known extent of the Blackhorn Trend and is located on the western slopes above the glacier at the head of Razor Creek, approximately 2.0 km south of the Blackhorn Vein and centred on the UTM coordinates N 5713100, E 376350. The area is underlain by met conglomerate overlying a chloritic phyllite and intruded by diabase and feldspar porphyry andesite dykes. Quartz and/or calcite to carbonate veins occurs as centimetre size bourdons and tension gashes within faults and along contacts with the chloritic phyllites. Numerous "cuts" were excavated along the veins in the late 1930's. Reports of these veins note the presence of chalcopyrite, arsenopyrite, pyrite and sphalerite, the only sulphide mineralization found during the 1997 program was pyrrhotite (up to 5%, either as fine disseminations or as blebs) along with traces of pyrite. Reports from the late 1930's noted gold and silver values up to 1.47 o/st (50.34 g/mt) and 1.10 oz/st (37.67 g/mt), respectively, from samples in the same general area. Eleven rock samples were collected from the "Homestake" Zone during the 1997 program. None returned any elevated amounts of gold or arsenic. Only one sample returned anomalous amounts of silver, returning 2.5 ppm."...

In spite of the historic report of "1.47 o/t" for the Homestake zone all documented samples by individuals attempting to confirm these results has persistently produced very weak gold results. (O"Grady, 1937, Sargent, 1938, Kasper, 1998)

HW Occurrence

The HW occurrence (MINFILE 092H-058) located 1.78 kilometres south-southeast of the Homestake zone and northeast of Nude Creek was reportedly discovered in 1988 by prospector Louis Berniolles. Assay results from samples at the zone by Berniolles averaged 21 grams per tonne gold. Several gossanous areas were sampled by Berniolles and all returned at least 1 g/t gold. His sampling was very limited and not representative of the mineralized area, or of the many additional quartz veins noted.

Skeena Resources revisited the area in 2007 (Travis 2007). Assay results of float samples returned between 10 ppb and 226 g/t gold. The 226 g/t sample was taken in an area that Berniolles had previously sampled with positive results for low grade gold. A 101 g/t sample had been previously sampled in that location but the number was not legible by Travis and positive confirmation could not be made. However it is very close to two samples taken by Berniolles that returned 20 and 47 g/t gold. The 47 g/t sample also returned 86 g/t silver. Travis''s sample returned 156 g/t silver. All high grade gold samples were from float in moraine deposits, or as Berniolles described outwash from foot of glacier.

Unnamed Vein Occurrences Along the Blackhorn Trend:

Two other vein occurrences containing anomalous amounts of gold and arsenic, were found along the Blackhorn Trend during the 1997 program (Kasper, 1998). Samples collected from two separate "flat lying" quartz veins located approximately 2.0 km north of the Blackhorn vein, returned gold assays of 2.640 and 0.345 g/mt, respectively). The first sample also reported 5,646 ppm arsenic, while the second reported 4638 ppm zinc. The veins vary from 15 to 20 cm in width, are hosted within phyllites and siliceous sediments and are mineralized with disseminations and blebs of pyrrhotite +/- arsenopyrite. This location would be some 500 metres north of the Milk Can Showing.

A rusty weathering boulder discovered in 1997 and located just to the south of the southwest extension of the Blackhorn vein was sampled and returned 0.206 g/mt gold and 652 ppm arsenic.

Three float samples taken at the same time 400 metres SSW of the Milk Can showing returned between 1 and 4 g/t gold with very highly anomalous arsenic. These samples were of shattered quartz vein in sheared silicified wallrock.

FEENEY AREA

The Feeney Area is a large 7 km east west by 3 km north-south area centered over lower "Griz" creek and located some 4 kilometres east of the southern part of the Blackhorn trend and mostly covered by tenures 597755 and 597808. The area covers the ground southeast of Razor Creek and to the east into upper Ottarasko Creek. The area is host to many silt, float and bedrock gold occurrences. Among these are the Champagne Vein, the Lori showings, 3 Oz Valley, B3 cirque, Griz cirque and 407 ppb Valley.

Champagne Vein

The Champagne vein (Minfile# 092N 059) is located in the Feeney area was discovered by Louis Berniolles in 1991. Berniolles described it as "... a sub-horizontal quartz vein with a width of 30 cm to 1 metre outcropping intermittently for over 100 metres".... The vein is said to contain "locally abundant arsenopyrite and sphalerite". Previous sampling along this occurrence returned gold and arsenic values up to 2,613 ppb and >2,000 ppm respectively.

An attempt was made to locate and sample this vein during Kasper's 1997 field program. The following excerpt is from Kasper 1998, page 15.

... "The possible locality of the vein was indicated by Mr. Berniolles while flying by in a helicopter. The vein investigated by Kasper is located approximately on the UTM coordinates N 5713100, E 379670. It consists of centimetre sized calcite-quartz sweats to quartz lenses hosted within or at the contact of thinly bedded to laminated sandy siltstone to shale and thinly to thickly bedded greywacke. Quartz lenses or boudins are located near southeast-northwest trending faults which appear to offset both the host strata and veining. These lenses are discontinuous and vary from 0.10 to >1.0 metre in width. Small amounts of pyrite (0.1 to 1%) as fine disseminations are associated with the veining. A 3 to >10 metre wide, orange weathering, calcite-ankerite alteration halo marks the vein outcrop. Veining and alteration can be followed along strike for approximately 120 metres where the system disappears under the talus to the north. Prospecting did not locate the vein's southern or western extension.

A total of 12 chip samples were collected along the trend of the vein. All returned low levels of gold and arsenic (maximum 0.030 g/mt and 44 ppm, respectively) in marked contrast to samples collected by Berniolles in 1991. Limited prospecting in the surrounding area also failed to locate any arsenopyrite-quartz vein mineralization."...

In the authors opinion it is unlikely that the veins discovered by Berniolles and evaluated by Kasper are the same.

Three Ounce Valley

The term three ounce valley was first named by Culbert 1988a for the 89000 ppb (about 3 troy ounces) gold result from a sample from a pyrite-arsenopyrite mineralized sugary quartz vein boulder taken by Homestake employees in 1984. The valley originates at headwaters of Ottarasko Creek at over 2500 metres and drains almost due east for 2 km into Ottarasko Creek. The 3 ounce sample site is about 1000 metres due north of the Champagne vein as Homestake has located it. The physical description of the float sample is similar to epithermal style quartz veins described elsewhere in the literature. Silt samples taken during the RGS program in the

1970's and by Homestake in 1984 returned between 25 and 385 ppb gold with the highest one possibly sampled below the Champagne Vein.

Several followup programs followed in efforts to rediscover the "3 oz" gold sample and better yet the source vein. A 1987 and 1988 program by Beatty Geological Ltd. on the Loot claims which covered the now expired Lori claims in the upper Ottarasko valley basically confirmed the presence of multigram gold and multipercent arsenic in the 3 Oz Valley and south and east of the Lori showing (Culbert, 1988a, 1988b). The anomalous samples in 3 Oz Valley were within 100 metres of the 2150 m elevation near the central stream. One rock or float sample taken (conflicting sample information) there returned 7.4% copper and 55 g/t silver. This sample only reported 3% iron so the copper must have been at least occurring as chalcocite. Culbert concluded that gold content cannot be predicted on vein appearance and sulphide content alone suggesting that it appears to be a separate mineralizing event. He also noted that "barren" quartz veins were numerous in the area.

Followup sampling in 2007 by Skeena confirmed the presence of quartz-carbonate veining hosting very high gold content. Four over 1 g/t samples mostly take at least 200 metres down slope from the presumed location of the 3 oz gold sample returned between 1.1 and 52 g/t gold (and very near to where Culbert's team took their samples). The sample that returned 52 g/t was interesting described as "highly magnetic with pyrrhotite" and its description is quite different than the 3 oz sample. A sample take at nearly the same location returning 11 g/t gold was describe as hosting arsenopyrite, but arsenic was not very anomalous, whereas a third sample of a 50 cm quartz vein hosting euhedral pyrite returned 26 g/t gold and .>10,000 ppm arsenic.

Gold mineralization in 3 Oz valley appears to be dominated by quartz-carbonate veins, however gold is also noted in silicified replacement rocks. High grade copper +/- silver appear to be although spatially close to but a probably separate event than the gold mineralization event.

Griz Cirque

Griz Cirque is in the second drainage east of 3 oz valley on the north side of Ottarasko Creek. It hosts a historic RGS gold (13 ppb), 15 ppm arsenic, 33 ppm copper. In spite of these low numbers several weakly mineralized quartz vein float samples taken over 1 km north of the silt sample site by Skeena contractors returned between 1.7 and 5/6 g/.t gold.

Lori Showing - "A Zone"

The Lori Showing (Minfile# 092N 047) is located south of the Ottarasko River and centered at 5712250 N, 381252 E about 2 kilometres southeast of the "Champagne vein" in the southeast corner of tenure 704733. The showing was discovered by employees of Homestake Mineral Development Company (Homestake) in 1984 while following up anomalous steam sediment samples. The showing hosts east trending quartz sulphide veins covering a 200 east-west by 100 metre north-south area within a ..."quartz monzonite sill, hornfelsed metasediments and a basic dyke". Representative chip sampling by Homestake of the "A zone" returned trace to 0.3 g/t gold. However grab samples of similar to more heavily mineralized quartz vein "boulders" taken above and below the grid returned up to 4.7 and 20.35 g/t gold respectively.

Equinox Resources in 1987 and 1988 took more representative samples resulting in generally less spectacular gold results. However one sample taken some 200 metres west of the "A zone" including one of "*pyritized sediments, altered greenstone and quartz-mica vein*" material

returned 4.3 g/t gold (Culbert, 1988a). Another nearby sample returned 1.8 g/t gold (Culbert, 1988b). Several "grabs" of quartz sulphide (pyrite+arsenopyrite) veins sampled in 2007 by Skeena contractors returned between 5 and 5700 ppb gold with corresponding anomalous arsenic and copper (Travis 2007).

B3 Cirque, Valley, Upper Razor Creek.

Prospectors contracted by Skeena in 2007 discovered, in a small west facing valley due west of the headwall of 3 Oz Valley numerous highly mineralized quartz-carbonate-sulphide, massive sulphide and massive carbonate vein float samples over a 1.3 kilometre east-west by 800 metres north-south area centered at UTM 378200 E, 5714300 N. Here over 5 samples grading between 5 and 10 g/t and at least 12 variably mineralized quartz-carbonate and massive pyrite vein samples returned between 10 and 29 g/t gold. The source of these samples is probably at least in part from under a small glacier near the east headwall of the valley returned 4.8 g/t gold.

407 PPB Valley

The next large drainage east of Griz cirque is host to a very strong RGS gold, and arsenic anomaly. The silt sample returned 407 ppb gold and 55 ppm arsenic. There is no available written evidence that the valley was ever examined. One reason is that the RGS silt sample was not reanalyzed for gold until the mid to late 1990's. Homestake employees may have visited the valley as part of their regional program in 1983, however if they have the information is not public. Skeena contractors erroneously sampled the next valley west "53 ppb valley" and assumed it was 407 ppb valley. 53 ppb valley is a small drainage between Griz cirque and 407 ppb valley. 53 ppb valley also returned 420 ppm arsenic from the same RGS sample. Mineralized rock samples taken by Skeena contractors returned some 50 metres above this silt sample location up to 2.9 g/t gold.

Other Areas

One of the stream samples taken by Homestake employees during their reconnaissance program in the Ottarasko River assumedly a short distance from 407 ppb valley returned 220 ppb gold.

The next valley south of 3 oz valley was examined by Skeena contractors. Two chip samples taken 200 metres apart returned 2.8 g/t gold. They were 12 and 30 cm long. One nearby sample reporting galena returned 0.1% lead and 11.3 g/t silver.

Rock samples taken by Skeena contractors in 2007, 400 metres south of the Milk Can showing returned between 1 and 4 g/t gold.

2010 WORK PROGRAM

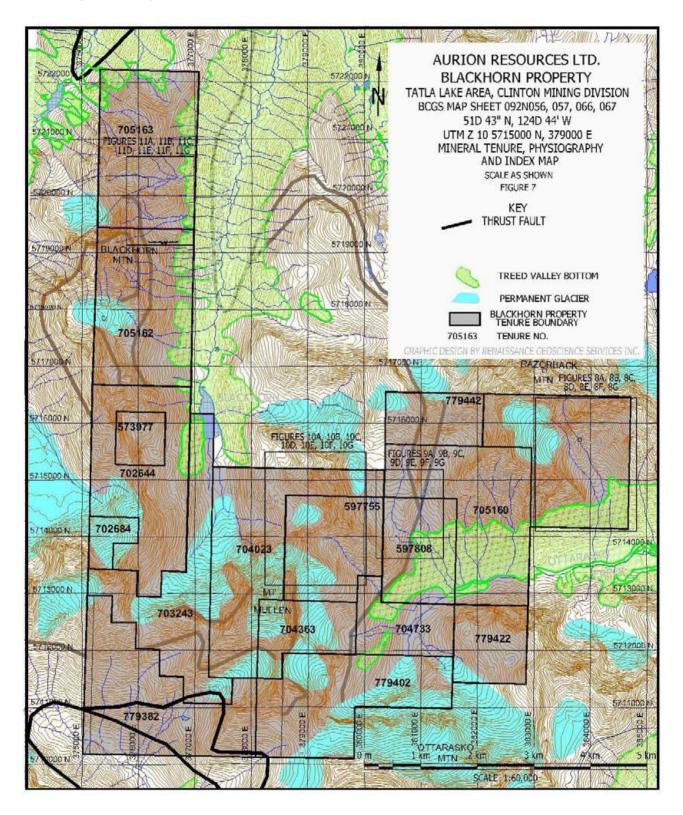
The 2010 prospecting and sampling program was completed between September 17 and 28, 2010. Of the 12 available days to work 5.5 were unused due to exceptionally bad weather

including blizzard conditions on Sept 19-20, an unprecedented rain event from September 25-26, and storm conditions Sept 27. Accordingly many areas scheduled to be tested were not. The observations made in this section are summarized from personal, written and verbal observations of the field crew and supported by the appended data and figures showing sample locations with for rocks ppb gold, ppm silver and ppm arsenic and for sediments sample locations, ppb gold, and ppm arsenic values. The 407 ppb valley and the B3-3 Oz valley plans are at about 1:10,000 scale and Griz Valley and NE Blackhorn area plans are at about 1:7500 scale. In all cases UTM north is up. (see Figure 7 Index Plan, and Figures 8, 9, 10 and 11). A total of 107 sediment samples (talus fines, silts, till, soils and moss mats) were taken. A total of 119 rock samples were taken with about 114 sent for analyses.

The samples were delivered to Ecotech Laboratory Ltd. for analyses. All samples were analyzed for geochemical gold and 33 element total digestion ICPMS analyses. Blanks (WCM Cu 130) and standards were inserted into the sample stream about every 23 samples.

GENERAL GEOLOGICAL OBSERVATIONS

As mapped by prior operators and government geologists, the geology of the area is a series of imbricated north striking west dipping thrust panels. These units and thrusts were where generally as mapped.


The areas examined during the 2010 program appear to be both variably hornfelsed and discreetly hydrothermally altered with the following characteristics. The rock mass of the areas examined appear to have been hardened and rendered more brittle by hornfelsing either by burial or thermal (or both?) than the surrounding rocks to the north and east. Part of this pattern may also be due to the original rock type. However the relatively close proximity of the intrusives exposed at the Lori, north Blackhorn and abundantly to the west (off of the property) as well as many felsic sills suggests that contact metamorphism is very likely and that subsequent glacial and fluvial erosion has resulted in massive planar cliffs and impressive turreted ridges.

The resulting brittle fractures host or are variably lined with quartz and calcite veinlets, occasionally multiepisodic and often sulphide mineralized. Pyrite is the most common noted sulphide, with chalcopyrite second although from analytical results arsenopyrite is a common and galena are rare accessory. A dominant NNW fault set is commonly sheeted with spacing from 0.3 to 10 metres with local concentrations. This pattern was most commonly seen in the south facing headwalls of 407 ppb and B3 Valleys (and larger members of this set can be seen from Google earth). This may be partially due to lack of prospecting elsewhere than any real local situation. Mineralized sulphidic quartz shear and tension veins appear to prefer more competent brittle siliceous ignimbrite and mafic volcanic flow units over less competent sediments.

More detailed geological observations if evident are presented below.

GENERAL GEOCHEMICAL OBSERVATIONS.

Generally the limited amount of talus fines and other sediment samples worked well to locate uphill sources of gold-arsenic mineralization. The standard used was very close to the data on the standard provided by WCM.

DETAILED AREA REPORTS

407 ppb VALLEY and NE OTTARASKO VALLEY

407 ppb Valley and a small nearby portion of the Ottarasko Valley were visited on September 17, 18 and by one crew on Sept 22. The rocks within 407 ppb valley are a moderately west dipping interbedded sequence of greywackes and highly fossiliferous ripple marked mudstone with pieces of carbonatized logs, reeds and even fronds and leaf imprints implying a tidal lagoonal depositional setting. Interbedded are several extensive 1 to 20 metre thick sill like felsic devitrified glassy matrix feldspar porphyry bodies that are most likely welded tuff deposits but may in part be post depositional sills. The overall sequence appears to be thrust faulted subparrallel to original bedding with the igneous units and brittle are locally buckled and ramped over from the west to east. The subvertical multiorientational planar fracturing often accompanied by occasionally mineralized hairline to 15 cm thick quartz +/- sulphide +/- carbonate veins appear distinctly later than the thrusting event.

The first day landing location was a flat outcrop of bleached, silicified and quartz sulphide sheet and stockwork veined felsic tuff or arkose. A selective float sample of this material (sample 905601) returned 1.9 g/t gold, 14.2 g/t silver, 105 ppm arsenic, 366 ppm cadmium, 394 ppm copper, 4.7 % iron, 1.4% lead, 2.7% sulphur, and 0.6% zinc. The sample was also very weakly anomalous for bismuth and antimony. Two additional quartz sulphide vein samples (905653 and 905655) 150 and 300 metres northeast respectively northeast of the first sample returned 1.95 g/t and 1.06 g/t gold. Both also returned high iron and the second 1955 ppm arsenic. The bedrock source of this mineralized material appears to be just beginning to be exposed in the central valley floor. The first sample has similar multielement geochemical characteristics to the Blackhorn vein.

Additional prospecting further to the northeast near the east property boundary into altered and weakly iron stained sediments and tuffs returned weakly anomalous gold and occasionally silver in rock and soils. This area is directly up dip of the mineralized rock strata sampled earlier.

Most of the anomalous rocks and soils in 407 ppb valley occur within (near the base of ?) a highly sulphidic tuff? unit, and below that a grey siliceous greywacke that appears from the west out of the bottom of Ottarasko valley near the Lori Showings and crosses thru the lower part of 407 ppb Valley.

A silt and a moss mat sample (BLL-013 and 014 respectively) were taken near where the reported 407 ppb RGS silt sample was taken. Both reported similar very weakly anomalous gold, arsenic, copper, lead and zinc values.

In conclusion, the best gold, silver and arsenic and base metal values were from the poorly exposed rocks in the south central part of the valley. The values appear to coincide with, or more probably underlie an altered gossanous tuff unit that crosses thru the cirque. The samples with the highest values also occur down strike from a large NNW trending fault seen in the valley head wall depicted in Figure 8). This fault hosts, further up the valley many large barren carbonate veins that may be distal expressions of a deeper, possibly auriferous hydrothermal

system. This structure parallels NNW trending seep sheeted veins commonly seen in the headwall and elsewhere on the property. No samples taken from the gossanous tuff unit in the Ottarasko Valley returned any anomalous values.

SW GRIZ VALLEY

A small area on the southwest part of "GRIZ CIRQUE" valley was prospected on 21 September. The west side of the valley reportedly hosts a large thrust fault. On a ridge separating lower Griz valley from next valley to the southwest several weakly mineralized quartz veins were found and sampled. However no rock samples returned anomalous precious or base metal values. Several talus fines and moss matt samples returned weakly anomalous gold and most returned weakly anomalous arsenic and very weakly anomalous copper and lead. These were taken directly below occurrences of weakly gossanous hydrothermally altered rocks usually occurring as selvages alongside shears and faults. All samples were taken in the lower plate of a thrust fault in the area.

3 OZ VALLEY

On September 26, 3 oz Valley was visited. It was the last site visited of the 2010 program. 3 oz Valley is a short steep walled southeast facing valley that overlooks the Lori Showing in the Ottarasko Valley. The uppermost portions of this valley host the same rocks as found in B3 Valley immediately to the west.

The upper western part of 3 Oz valley was prospected above and to the west of where most historic sampling took place. Several spectacularly mineralized sulphidic quartz veined boulders were located and sampled. None returned anomalous precious metal values. Only one (905687) taken at the lowest location reported any gold (12.6 g/t). Interestingly this sample does not report any anomalous silver or arsenic, and was below average in copper, iron, lead and zinc values. Only three other rocks returned weakly anomalous gold values. Only one rock returned weakly anomalous arsenic from an area of highly altered sediments adjacent to a gossanous felsic dykes. All sediment samples returned weakly to moderately anomalous gold and weakly anomalous arsenic results.

Combined with the results from earlier programs this valley remains the most prospective in the Feeney area for hosting gold mineralization.

B3 VALLEY

The dominant rock type in B3 Valley which is immediately west of 3 OZ Valley appears to be a mafic to intermediate volcanic package portion of the Unit EKim (Kamloops Group) that has been hornfelsed and brittley fractured. The commonly veined and occasionally mineralized 5 to 50 mm thick fractures appear to be both shear and tensional. Dominant orientations are north to NW and easterly. There is also a shallow NW dipping often mineralized shear fracture set. Where these fractures intersect sulphide mineralized quartz blowouts are common. The NNW set is commonly sheeted with spacing from 0.3 to 10 metres.

B3 Valley has recently produced the largest number of highly gold mineralized float samples. Rock sample 905636 returned 26.7 g/t gold and similar to the high grade sample from 3 oz valley. This sample, other than weakly anomalous in silver and copper was, distinctly not anomalous for any other elements and uniquely very weakly mineralized in iron and sulphur. This sample was taken according to GPS readings some 100 metres north of samples JBR 07 to10 and some 200-300 metres NW of the ATR – samples, all of which returned multigram gold. The ATR samples taken at the edge of the snow sheet in 2009 were not exposed in 2010. One of these samples was located by the 2010 team, however the tag was missing. Additional rock and soil samples in the immediate area of the JBR samples did not return more than very weakly anomalous gold, silver and arsenic results.

Compared to the other areas sampled B3 returned the largest amount of anomalous copper values in rocks.

Sediment sample results were not encouraging with the exception of BAL-033 at the extreme NE end of the sampling. This sample near rock sample 905520 returned 2.41 g/t gold 11.8 g/t silver, 662 ppm copper and 85 ppm antimony. The material sampled was directly below a highly altered southeast striking subvertical dyke. Nearby sample 905520 returned very weakly anomalous gold and lead results.

By far the best results are from the mineralized quartz vein fragments from the glacial end moraine at the western toe of the "B3" ice sheet. This suggests that the material is derived from a currently buried highly mineralized vein or vein system outcropping under the ice sheet to the east. The presence of gold bearing rocks and samples north and south of the area mid way up the ice sheet may represent on strike end members of these veins. Preliminary till fines sampling at the toe of the ice sheet returned very weakly anomalous gold results. The area of and around the JBR and ATR samples was not sediment sampled.

Combined with Blackhorn Vein and 3 Oz Valley areas, the B3 Valley which lies between these targets has consistently produced the highest gold values in float on the property. Frustratingly, with the exception of the Blackhorn Vein, no other high grade bedrock vein has been located here.

NE BLACKHORN MOUNTAIN

Due to extremely strong SW winds on September 23 access to the property was limited to the north east lee side of Blackhorn Mountain. The teams were split into the two valleys NE of Blackhorn Mtn. Due to earlier heavy snowfall only the lowest portions of the valleys could be accessed. The rock examined were below the Blackhorn thrust fault and within unit EKIM the same as at B3 and 3OZ valley however here these were much (in the northern valley) lower metamorphic grade sediments including massive grey limestone and argillite.?

The trace of the Blackhorn Thrust fault could be seen at the headwall of the southern valley. This trace was ochreous in colour. The area was not accessed.

The intrusive in the northern valley depicted on the accompanying maps outcrops at least 500 metres east of its mapped location. The contacts in the core of the valley are hornfelsed for at least 50 to 100 metres and are locally strongly pyritized. The northern intrusive contact is a reverse/thrust fault with north side up. Displacement is quite large as the hanginwall sediments rock containing no trace of hornfelsing although they are in direct contact with the intrusive. The sedimentary package within the valley bottom contains massive grey marble and black graphitic argillite. The argillite is strongly sheared with a possible north-south displacement fabric. The marble is stretched and boudined. All units dip to the west.

The best gold in rock was 405 ppb gold and 705 ppm arsenic from sample 905628 at the extreme south end of the area sampled. The sample was also weakly anomalous for chromium. Two other nearby samples returned weakly anomalous gold and arsenic values. No anomalous rock samples were taken on the northern valley. Conversely the sediment samples in the northern valley returned slightly higher gold and arsenic values than the south valley. This may be due to a sample medium factor due to the sampler being more selective in the material being sampled.

Table 2 – 2010 BLACKHORN PROJECT STA	rement	OF EXF	PENDI	TURES
Cost Item	Units	Price		Cost
Preparation			\$	4,000
Geologist L. Lindinger - 14 days @ \$800 per day	14	800	\$	11,200
Prospectors 17 days @500 per day times 2	34	500	\$	17,000
Adam Lyons - Field Assistant - geotech	14	300	\$	4,200
Lodging - 13 nights times 2 and 15 times 2 @ 125 per				
day	56	125	\$	7,000
Airfare Newfoundland to Kamloops B.C.			\$	3,200
4x4 truck 16 days @ \$80 per day	14	80	\$	3,200
White Saddle Helicopters			\$	15,280
Misc food			\$	140
Ecotech Laboratory Ltd. Analyses			\$	10,055
Supplies			\$	300
Aurion Management 10%			\$	9,000
Report			\$	5,425
GRANT TOTAL			\$	90,000
AMOUNT RECORDED IN SOW EVENT# 4826812			\$	90,000

CONCLUSIONS

Even though the 2010 program was severely hampered by bad weather the preliminary rock and soil sampling of selected areas of the Blackhorn gold property was successful in expanding the previously known areas hosting gold mineralized quartz veins, or less commonly confirming historic results. To date however, no significant bedrock source of gold mineralization has yet been located outside of the Blackhorn vein system. In many instances the best gold mineralized

samples came from rock either sourced from under ice sheets, or in the case of 407 ppb Valley barely outcropping out of the scree and till sheets.

While locally the amount of gold mineralized float is common, it is not high in the areas tested. Also the successful sediment sampling program was fragmented and incomplete. The highest weakly to moderately anomalous values were commonly derived from fines below areas hosting visibly altered and mineralized bedrock. These areas such as at NE Blackhorn, B3, south Griz and 407 ppb Valleys often returned gold and arsenic values exceeding those from nearby rock samples. The best gold values often appear to be sourced from the more deeply eroded central portions of the valleys examined.

Due to the limited extent of the program due to inclement weather further conclusions cannot be made. The writer noted many areas hosting highly mineralized veins and shears that do not appear to have been as yet prospected in helicopter fly over"s and even then are readily visible only in direct sunlight. Many of these are in very remote and steep areas in the 3Oz and Griz Valley areas.

Scree, till and ice sheets cover at least 70% of the area with most of the rock exposures virtually inaccessible leaving less than 15% of the staked area directly exposed for prospecting activity.

RECOMENDATIONS

The many gold bearing and gossanous areas on the Blackhorn Property indicate that many bedrock sources of high grade vein and possibly bulk tonnage hosted gold deposits remain to be discovered. The variations in style of mineralization indicates that several areas hosting weakly anomalous gold in bedrock or float, including carbonate vein float that also hosts highly anomalous antimony and arsenic that may indicate that these areas are from the upper portions of partially exhumed otherwise unexposed higher grade auriferous quartz-carbonate vein systems. Additionally, glaciers, especially ones hosting high grade vein float within their moraines may be preferentially located in softer hydrothermally altered, more easily eroded bedrock, thus hiding more intense and larger hydrothermal systems. Similarly such recessive areas, eroded from prehistoric glaciation would be covered in rock fall debris from the adjacent ridges. Seeps from the base of these deposits may host anomalous gold and indicator elements in the fine grained sediments that are in part geochemically transported for sources deeper in the unconsolidated deposits.

The pattern of gold occurrences on the Blackhorn property can be characterized as a; bedrock quartz carbonate vein and gossanous exposures, b; proximal to bedrock mineralized float, often as frost fractured and gravity remobilized material (subcrop) down slope debris in scree slopes, within various moraine deposits and finally fluvially remobilized mineralized float from any of the aforementioned sources. All indicate a bedrock source above the sample site.

To effectively develop the many exploration targets on the Blackhorn property beyond the continued recent prospecting programs for mineralized float and less common bedrock gold occurrences the following \$215,000 phase II program is recommended. Recommended is a continuation of and more systematic stream sediment, seep, soil, talus fines and moraine

sampling program successfully started in 2010. These would originate in the known target areas and would eventually include all the exposures and drainages on and surrounding the property.

Due to the extreme terrain that limits ground mobility and the very short exploration season four 2 person teams are recommended. These would make up two 4 man helicopter loads. The crew would be based at the lodge at Bluff Lake and /or in self contained accommodations (tents and trailers) near the helibase.

Stream sediment sampling. All drainages that reported anomalous gold from the historic RGS and other sampling programs should be sampled from bottom to top at 100 to 200 metre spacing. Additionally all side streams, even ephemeral ones are to be sampled with similar spacing. Attention should be paid to sampling the bases of waterfalls and chutes, as gold is preferentially concentrated at these locations. The samples would be silt, and/or heavy mineral concentrate and if possible moss matt material.

Moraine and till sheet soil sampling. All moraines hosting mineralized float are to be systematically soil sampled with a maximum 100 metre spacing. Any anomalies derived from this program may be useful in vectoring to a hidden bedrock source. Soil sampling of till sheets may be problematic, however if a suitable till deposit lies with an area producing other anomalies it may undergo initial testing. Due to the assumed lack of substantial vegetation from which an Ah horizon (decayed organic matter layer directly above the B horizon) can be developed in this climate, these samples may be tested by MMI or enzyme leach methods. Other sites to be soil sampled would be marmot and ground hog burrow dumps (including examination of all remobilized rock).

Contour and/or top of scree sampling. The 2010 sampling program has proven this method to be an effective tool for sourcing uphill mineralization. Contour or side hill scree sampling of talus fines and soils at the base of otherwise very difficult to nearly impossible to access cliffs is a proven relatively safe geochemical targeting method to test for proximal uphill mineralization. Also seep and side stream sampling would be part of this process possibly generating targets from more distal sources. Sample spacing at most 100 metres and preferably 50 metres.

Detailed rock channel sampling of the several zones of incompletely sampled bedrock in particular in the HW area to determine their bulk tonnage potential. The often contradictory results between anomalous sediment and nearby barren quartz vein/altered bedrock/float samples remains problematic.

Property scale and detailed lithological, alteration, mineralization and structural mapping is also recommended.

Contingent of development of (with the exception of the Blackhorn Vein) additional targets a \$500,000 third phase program of additional target definition followed by diamond drilling testing of the Blackhorn, HW, B3, 3Oz and 407 ppb valleys and other suitable areas would be recommended.

TABLE 3 - RECOMMENDED EXPENDITURES BLACKHORN PROPERTY	Y PHASE I1
PREPARATORY WORK	
General preparatory work.	\$4,000
Creating base maps	\$2,000
FIELD PROGRAM	
Mobilization to Tatla Lake. 8 personnel	\$10,000
Helicopter	\$60,000
Target silt sampling - 20 man days @ \$500 per man-day	\$10,000
Target Scree, seep and soil sampling 24 man days @ \$ 500 per man day	\$12,000
Property silt sampling - 24 man days @ \$500 per man day	\$12,000
Property scree and seep sampling 24 man days @ \$500 per man day	\$12,000
Bedrock chip sampling HW, Blackhorn Zones 20 man days @ \$500 per man day	\$10,000
Bedrock mapping 16 man days @ 1200 per man day	\$19,200
Sample transportation	\$2,000
Demobilization	\$8,000
Analytical charges	
250 silt samples @30 per sample	\$7,500
150 soil and seep samples @ \$30 per sample	\$4,500
100 rock samples at \$50 per sample	\$5,000
Supplies	\$1,500
CONTINGENCY ~6.5%	\$13,300
REPORT AND POST PROJECT COSTS	\$12,000
CORPORATE MANAGEMENT COSTS ~5%	\$10,000
TOTAL PHASE II	\$215,000

REFERENCES

- Ash, Chris (2001): Relationship Between Ophiolite and Gold-Quartz Veins in the North America Cordillera. B.C. Ministry of Energy and Mines, Bulletin 108. 140 pages.
- Berniolles, L. (1987): Prospecting Report, AT2 Claim, Clinton Mining Division; British Columbia Ministry of Energy and Mines Geological Survey Branch Assessment Report #16,688.
- Berniolles, L. (1988): Prospecting Report, AT3, AT4 Claims, Clinton Mining Division; British Columbia Ministry of Energy and Mines Geological Survey Branch Assessment Report #18,022.
- Berniolles, L. (1989): Prospecting Report, HWl, HW4, HW5 Claims, Clinton Mining Division; British Columbia Ministry of Energy and Mines Geological Survey Branch Assessment Report #19,355.
- Berniolles, L. (1991): Prospecting Report HW9 Claim, Clinton Mining Division; British Columbia Ministry of Energy and Mines Geological Survey Branch Assessment Report #21,861.
- Berniolles, L. (1994a): Statement of Work with Summary of Work Done and analytical results for the HW5 Claim, Clinton Mining District; Work filed for assessment.
- Berniolles, L. (1994b): Statement of Work with Summary of Work Done and analytical results for the Blackhorn and BLK 1 Claims, Clinton Mining District; Work filed for assessment.
- Copeland, J.J. (1981): Prospecting Report On McCope, McDon and McMul Claims; British Columbia Ministry of Energy and Mines Geological Survey Branch Assessment Report #9,575.
- Copeland, J.J. (1988): Diamond Drill Sampling On The J.J.#l, Rec:2422 & J.J.#2, Rec2423; British Columbia Ministry of Energy and Mines Geological Survey Branch Assessment Report #17,858.
- Culbert, R. (1988): Geochemical, and Prospecting Report On The Loot 1 And Loot 2 Claims; British Columbia Ministry of Energy and Mines Geological Survey Branch Assessment Report #18,250.
- Culbert, R., Heberlein, K. and Lammle, C.A.R. (1988): Geochemical, Prospecting And Air Photo Study Report For Assessment Purposes On The Loot I-2 Claims; British Columbia Ministry of Energy and Mines Geological Survey Branch Assessment Report #17,392.

Gabrielse, H. And Yorath, C. J. 1992: Geology of the Cordilleran Orogen in Canada. 844 pages.

- Jones, H.M. (1984): Assessment Report Geological Report McDuck, McCope, McDow, McMul No. 1 and McMul No. 2 Claims; British Columbia Ministry of Energy and Mines Geological Survey Branch Assessment Report #12,691
- Kasper, 1998: 1997 Geological and Geochemical Report on the Niut Range Property. British Columbia Ministry of Energy and Mines Geological Survey Branch Assessment Report #25,551.
- Lewis, P. and Rhys, D. (2004): Gold vein deposits: Turning Geology into Discovery. 189 pages.
- McConnell, G. (1982): Geological Report McDuck, McDon, McCope and McMul Claim Group; British Columbia Ministry of Energy and Mines Geological Survey Branch Assessment Report #10,654.
- O'Grady, B. T. (1938): British Columbia Ministry of Mines Annual Report, 1937; pages. F3-F6.
- Ronning, P.A. (1984): Preliminary Geology And Geochemistry Of The Lori 1,2,3 And 4 Claims; British Columbia Ministry of Energy and Mines Geological Survey Branch Assessment Report #13,150.
- Sargent, H. (1939): British Columbia Ministry of Mines Annual Report, 1938; pages. F29-F38.
- Schiarizza, P., et al. 1997: Geology and Mineral Occurrences of the Taseko-Bridge River Area. Ministry of Employment and Investment, Energy and Minerals Division, Bulletin 100. 291 pages.
- Travis, A. (2007): Unpublished field notes and files from Skeena Resources Ltd field program.
- Travis, A. (2009 a): Geological, Geochemical And Prospecting Assessment Report On The Blackhorn Mineral Property. British Columbia Ministry of Energy, Mines and Petroleum Resources Geological Survey Branch assessment report 31381.
- Travis, A, (2009 b): Geological, Geochemical And Prospecting Assessment Report On The Blackhorn East Mineral Property. British Columbia Ministry of Energy, Mines and Petroleum Resources Geological Survey Branch assessment report 31382.

Travis, A. (2009 c): Unpublished field notes and files from Cazador Resources Ltd. field program.

CERTIFICATE:

I, Leopold Joseph Lindinger, do hereby certify that:

- 1 I am a consulting geologist currently residing at 680 Dairy Road Kamloops, B.C. V2B-8N5.
- 2 I am a graduate of the University of Waterloo, Ontario with a Bachelor of Sciences (BSc) in Honours Earth Sciences, (1980).
- 3 I have worked continuously in mineral exploration and mine geology in Canada, the United States and Mexico on a full-time basis since 1980.
- 4 I am Registered Professional Geoscientist (#19155) of the Association of Professional Engineers and Geoscientists of the Province of British Columbia since 1992.
- 5 I have read the definition of "qualified person" set out in National Instrument 43-101 (NI-43-101) and certify that by reason of my education, professional affiliation, and past relevant work experience, I fulfill the requirement to be an independent qualified person for the purposes of NI 43-101. Some of this relevant work experience includes 5 years working in epithermal gold mines, and over 10 years experience exploring for gold deposits in B. C. Ontario, Nevada, Mexico and Russia.
- 6 I am responsible for the preparation, execution and on site completion of the work program described in the report entitled **Geological, Geochemical And Prospecting Assessment Report On The Blackhorn Mineral Property**" dated the 24th day of February, 2011 including the conclusions reached, and the recommendations made.
- 7 I have visited the subject property which is at an early stage of exploration from September 15 to 28 2010..
- 8 As of the date of the certificate, to the best of the qualified person's knowledge, information and belief, the technical report contains all scientific and technical information that is required to be disclosed to make the report not misleading.
- 9 I am independent of the Issuer applying all tests as described in Section 1.4 of NI-43-101.
- 10 I have read National Instrument 43-101 and Form 43-101 F1, and this report has been prepared in compliance with NI 43-101 and Form 43-101 F1.

Dated, 24 February, 2011. Leopold J. Lindinger, P. Geo.

Signature of Leopold J. Lindinger, P.Geo.

APPENDIX I - ANALYTICAL RESULTS

Eco Tech Laboratory Ltd. 2953 Shuswap Road Kamloops, BC V2H 1S9 Canada Tel + 1 250 573 5700 Fax + 1 250 573 4557 Toll Free + 1 877 573 5755 www.stewartgroupglobal.com

CERTIFICATE OF ASSAY AK 2010-0843

Aurion Resources 600 Dairy Rd Kamloops, BC V2B 8N5

No. of samples received: 44 Sample Type:Soil Project: Blackhorn Shipment #:1-OCT

Aq Ag ET #. Tag # (g/t) (oz/t) 22 BAL-22 36.9 1.08 QC DATA: Standard: GBM908-14 307 8.95

FA/AA Finish

NM/nw XLS/10

ECO TECH LABORATORY LTD. Norman Monteith B.C. Certified Assayer

29-Oct-10

CERTIFICATE OF ANALYSIS AK 2010-0843

Aurion Resources 600 Dairy Rd Kamloops, BC V2B 8N5

No. of samples received: 44 Sample Type:Soil **Project: Blackhorn** Shipment #:1-OCT

		Au	
ET #.	Tag #	(ppb)	
1	BAL-1	<5	
2	BAL-2	5	
3	BAL-3	<5	
4	BAL-4	<5	
5	BAL-5	<5	
6	BAL-6	25	
7	BAL-7	10	
8	BAL-8	50	
9	BAL-9	125	
10	BAL-10	30	
11	BAL-11	5	
12	BAL-12	5	
13	BAL-13	<5	
14	BAL-14	<5	
15	BAL-15	5	
16	BAL-16	<5	
17	BAL-17	<5	
18	BAL-18	5	
19	BAL-19	<5	
20	BAL-20	<5	
21	BAL-21	<5	
22	BAL-22 STD	945	
23	BAL-23 STD	<5	
24	BLL-1	10	
25	BLL-2	<5	
26	BLL-3	30	

All business is undertaken subject to the Company's General Conditions of Business which are available on request. Registered Office: Eco Tech Laboratory Ltd., 2953 Shuswap Road, Kamloops, BC V2H 159 Page 1 of 2

18-Oct-10

Eco Tech Laboratory Ltd. 2953 Shuswap Road Kamloops, BC V2H 1S9 Canada Tel + 1 250 573 5700 Fax + 1 250 573 4557 Toll Free + 1 877 573 5755 www.stewartgroupglobal.com

Aurion Resources AK10-0843

18-Oct-10

		Au	
<u>ET #.</u>	Tag #	(ppb)	
27	BLL-4	10	
28	BLL-5	10	
29	BBT-1	5	
30	BBT-2	10	
31	BBT-3	<5	
32	BBT-4	5	
33	BBT-5	15	
34	BBT-6	<5	
35	BBT-7	<5	
36	BBT-8	10	
37	BBT-9	<5	
38	BBT-10	<5	
39	BBT-11	140	
40	BBT-12	10	
41	BBT-13	5	
42	BBT-14	5	
43	BBT-15	<5	
44	BBT-16	<5	
QC DATA			
Repeat:	—		
1	BAL-1	<5	
8	BAL-8	55	
9	BAL-9	130	
10	BAL-10	30	
19	BAL-19	10	
36	BBT-8	5	
39	BBT-11	140	
Resplit:			
1	BAL-1	<5	
Standard	:		
OXE74		625	
OXF65		805	
		000	

FA Geochem/AA Finish

NM/ap XLS/10

ECO TECHLABORATORY LTD. Norman Monteith B.C. Certified Assayer

All business is undertaken subject to the Company's General Conditions of Business which are available on request. Registered Office: Eco Tech Laboratory Ltd., 2953 Shuswap Road, Kamloops, BC V2H 159 CPage 2 of 2

10-Oct-19

Stewart Group ECO TECH LABORATORY LTD. 10041 Dallas Drive KAMLOOPS, B.C. V2C 6T4 www.stewartgroupglobal.com

ICP CERTIFICATE OF ANALYSIS AK 2010- 0843

Total Digest

Aurion Resources 600 Dairy Rd Kamloops, BC V2B 8N5

Phone: 250-573-5700 Fax : 250-573-4557

> No. of samples received: 44 Sample Type:Soil **Project: Blackhorn** Shipment #:1-OCT

Values in ppm unless otherwise reported

Et #.	Tag #	Ag Al% As	Ba	Be Bi Ca%	Cd	Co	Cr	Си	Fe%	Hg K	⁄a La		Li Mg% Mı	n Mo Na%	Ni P	Pb	C %	Sh	So So		T 10/ 11 1/ 14	/
1	BAL-1	<0.2 8.91 45		1 <5 3.57		25	26	24100		<5 1.0			30 1.59 87				3/0	30	30 36	511 51	<u>Ti% U V W</u>	<u> </u>
2	BAL-2	<0.2 7.88 55		2 <5 3.56		20	24			<5 1.0			28 1.21 76								0.43 <5 102 <5	
3	BAL-3	<0.2 9.04 70				43				<5 0.8			38 2.05 138		-	48	<0.01	<5	10 <10	<5 362	0.40 <5 98 <5	5 9 74
4	BAL-4	<0.2 >10 150		1 <5 3.82		44				<5 0.8			32 2.47 132		44 1510	00	0.01	5	13 <10	<5 2/2	0.52 <5 148 <5	5 9 126
5	BAL-5	0.2 9.94 80		2 <5 1.90		56				<5 1.4			52 2.47 1320								0.51 <5 158 <5	
				2 10 1.00		50		102	3.04	NO 1.4	0 10	/ 0	0 1.65 155	5 6 1.95	75 1810	12	0.07	5	14 <10	<5 206	0.47 <5 142 <5	5 8 142
6	BAL-6	<0.2 8.60 455	504	2 <5 1 59	-1	136	56	236	0 10	<5 1.0	8 10) 5	50 1.85 2560	0 5 1 01	140 1000	~~	0.40	-				
7	BAL-7	0.3 >10 295			<1			268		<5 1.0			6 2.20 2150		148 1900						0.48 <5 148 <5	
8	BAL-8	0.4 >10 505				95				<5 1.0			4 1.77 1875		101 2340						0.42 <5 140 <5	
9	BAL-9	0.5 >10 1440				99				<5 1.2			8 2.01 268			-	0.13	5	15 <10	<5 292	0.45 <5 140 <5	13 186
10	BAL-10	0.4 9.89 130				74		258		<5 1.2			8 1.04 1495				0.13	10	16 <10	<5 302	0.44 <5 140 <5	15 240
			0.0	L 10 1110		74	04	200	210	~ J 1.2	1 20	0	6 1.04 1495	5 13 1.72	08 1200	72	0.10	10	12 <10	<5 198	0.49 <5 146 <5	14 154
11	BAL-11	<0.2 6.86 90	604	2 <5 1.90	<1	44	54	146	4 59	<5 0.9	1 14	2	4 1.59 1178	5 4 2.24	50 1200	40	0.00		10 .10	.E 074	0 55 5 404 5	
12	BAL-12	0.2 8.48 70		2 <5 1.84		68				<5 0.9			2 1.32 1590		70 2000	40	0.02	<5	10 <10	<5 274	0.55 <5 124 <5	9 114
13	BAL-13	<0.2 9.74 35		2 <5 4.22		32				<5 1.0			0 1.52 1275		70 2080	03	0.16	<5	12 <10	<5 258	0.39 <5 116 <5	9 130
14	BAL-14			2 <5 8.83		27				<5 1.19			2 1.10 8440		30 1280	60	<0.01	<5 .F	13 <10	<5 408	0.47 <5 114 <5	11 92
15	BAL-15	<0.2 9.44 50		2 <5 3.86	<1	86				<5 1.0			8 1.72 1920		101 1510	09	<0.01	<5	14 <10	<5 444	0.54 <5 142 <5	13 106
						00	01	,00	0.47	<0 1.00	5 10	-	0 1.72 1920	0 2.07	101 1510	03	0.02	<5	12 <10	<5 370	0.44 <5 122 <5	13 148
16	BAL-16	0.4 8.43 30	892	2 <5 3.06	<1	51	32	154	5.82	<5 1.14	1 8	3	0 1.87 960) 7 2.12	60 1130	60	0.09	-5	10 -10	-5 004	0.45 <5 148 <5	10 100
17	BAL-17	<0.2 8.09 25	638	2 <5 2.26	<1	45				<5 1.32			8 1.19 1295		57 1440							
18	BAL-18	0.2 8.49 180			<1	52				<5 1.25			4 1.26 1925		62 1570		0.00	40	11 <10	<5 290	0.44 <5 130 <5	10 122
19	BAL-19	0.2 9.10 35	528		<1	35				<5 1.39			2 1.07 825		40 1120		0.03	10	14 <10 15 -10	<5 270	0.45 <5 132 <5	13 144
20	BAL-20	0.2 9.59 55	560	2 <5 2.57	<1	35				<5 1.09			2 1.84 1000		42 1150		0.00	<0	15 <10	<5 240	0.61 <5 224 <5 0.55 <5 156 <5	7 102
									00			0.	E 1.04 1000	0 2.00	42 1150	00	0.02	<5	14 <10	<0 204	0.55 <5 156 <5	11 118
21	BAL-21	0.2 9.18 35	586	2 <5 1.46	<1	43	58	110	5.53	<5 1.16	6 14	3	8 1.26 1150	5 2.33	42 1210	63	0.01	~5	13 -10	~5 302	0.65 <5 178 <5	10 100
22	BAL-22	>30 4.66 780	536	<1 35 8.02	<1					<5 1.34			4 1.08 1595		27 680		0.60	90	5 <10	<5 228	0.14 <5 56 <5	0 120
23	BAL-23	<0.2 6.49 10	430	1 <5 4.04	<1	15				<5 0.91			0 1.10 640				<0.00	~5	10 -10	<5 284	0.35 <5 98 <5	9 130
24	BLL-1	0.3 8.09 65	584	2 <5 2.39	<1	93	36	166	>10	<5 0.86			8 1.28 2495		102 2900	60	0.15	<5	11 ~10	<5 322	0.42 <5 128 <5	15 166
25	BLL-2	0.4 6.26 65	434	2 <5 1.80	<1	27				<5 0.85			2 1.02 850								0.36 <5 106 <5	
																•	0.10	Ŭ	0 10	10 204	0.00 <0 100 <0	0 90
26	BLL-3	0.4 7.84 200	798	2 <5 1.98	<1	69	36	166	7.81	<5 1.53	12	4(0 1.32 1685	8 2.14	64 1480	63	0.04	10	11 <10	<5 264	0.52 <5 150 <5	13 166
27	BLL-4	0.2 7.23 245	582	2 <5 1.53	<1	44	40	88	7.09	<5 1.24	10	118	8 1.00 1660	4 2.39	51 1530						0.49 <5 136 <5	
28	BLL-5	0.3 6.86 290	598	2 <5 1.58	<1	54	40			<5 1.30		130	0 1.10 1890		60 1610		0.04	20	12 <10	<5 220	0.49 <5 138 <5	13 158
29	BBT-1	0.3 7.67 40	534	2 <5 2.34	<1	59	46			<5 0.70			0 1.77 1385		64 1660						0.46 <5 144 <5	
30	BBT-2	0.2 8.91 45	598	2 <5 3.03	<1	66				<5 0.90			2 1.92 1910		78 1820						0.49 <5 160 <5	
											•••	5.		0 2.00	,0 1020	00	0.04	~0		<0 004	0.43 <0 100 <0	14 100

ECO TECH LABORATORY LTD.

ICP CERTIFICATE OF ANALYSIS AK 2010- 0843

Aurion Resources

Et #.	Tag #	Ag Al% As	Ba	Be Bi Ca%	Cd	Co	Cr	Cu	Fe% Hg K%	La	Li Mg% M	Mn	Mo Na%	NI P	Pb	S%	Sh	Sc Se	Sn Sr	Ti%	II V	w	Y Zn
31	BBT-3	<0.2 6.62 35	458	2 <5 2.17	<1	39		64	5.03 <5 0.64		30 1.52 9		4 2.42	46 1120									
32	BBT-4	<0.2 7.61 30	474	2 <5 2.53	<1	29	40	46	5.04 <5 0.53		28 1.55 9		4 2.45						<5 240				
33	BBT-5	0.4 6.76 55		2 <5 1.91		47			5.03 <5 0.69				·· •	37 1930	-				<5 274				
34	BBT-6	<0.2 9.60 80		2 <5 5.08		••			6.72 <5 0.73		30 1.51 7	. –	4 2.28	53 1260	• •				<5 242				
35	BBT-7	0.2 8.75 50									28 1.82 15		7 3.14	60 1870			<5	14 <10	<5 410	0.44 •	<5 122	<5 1	3 124
00	001-7	0.2 0.75 50	510	2 <5 4.28	<1	43	32	90	6.84 <5 0.81	10	28 1.61 14	95	6 2.84	45 1570	60	0.07	<5	13 <10	<5 372	0.42 <	<5 120	<5 1	2 118
36	BBT-8	0.0.074.05		.																			
30		0.2 8.71 35		2 <5 4.63			34	46	5.16 <5 0.81	8	28 1.55 11	35	6 3.30	37 1220	57	< 0.01	<5	12 <10	<5 454	0.45 <	5 122	<5.1	1 104
37	BBT-9	0.3 7.74 65	568	2 <5 2.37	<1	67	42	116	7.94 <5 1.02	8	46 1.66 19	10	6 2.56	67 2140					<5 270				
38	BBT-10	0.2 7.01 75	518	2 <5 2.46	<1	53	28	112	9.61 <5 0.92		40 1.14 12		5 2.33	60 1850									
39	BBT-11	0.4 8.34 3020							>10 <5 1.20		104 1.72 34								<5 256				
40	BBT-12			2 <5 3.38									6 1.92	104 1780					<5 238				
		0.12 0.10 00	452	2 <0 0.00	<1	44	32	02	6.12 <5 1.26	8	166 1.45 19	65	5 2.47	46 1170	63	0.05	10	12 <10	<5 278	0.42 <	:5 134	<5 1	2 120
41	BBT-13	<0.2 9.42 40	500	0 5 4 4 4																			
40	BBT-14			2 <5 4.14		45		66	5.95 <5 1.10	8	44 1.85 159	95	5 3.00	47 1150	69	<0.01	<5	14 <10	<5 378	0.50 <	:5 142	<5 1	2 120
42				2 <5 4.72		45	38	66	5.94 <5 0.92	10	30 2.00 144	40	5 2.90						<5 478				
43	BBT-15	<0.2 9.53 20	508	2 <5 5.30	<1	36	32	52	5.10 <5 0.96	10	28 1.59 14	55	5 3.15	40 1240					<5 416				
44	BBT-16	0.7 >10 15	608	2 <5 4.94	<1	42	28	56	5.48 <5 0.66		24 1.72 17		6 3.28		81								
						_			0.00		67 1.7 2 170	00	0 0.20	40 1390	01	0.02	<0	13 <10	<5 480	0.45 <	5 112	<5 1	3 116

QC DATA:

Repeat:

1 BAL-1 <0.2 9.11 45 554 2 <5 3.63 25 <1 28 40 3.63 <5 1.04 33 1140 60 <0.01 <5 13 <10 <5 384 0.44 <5 108 <5 10 88 10 30 1.69 910 4 3.55 10 **BAL-10** 0.6 9.78 130 560 2 <5 1.15 <1 77 38 256 >10 <5 1.19 20 36 1.00 1540 13 1.74 68 1250 72 0.10 10 13 <10 <5 204 0.50 <5 150 <5 14 160 19 **BAL-19** 0.2 8.73 30 478 2 <5 0.96 <1 33 62 104 5.59 <5 1.31 6 40 0.98 785 4 2.14 35 1060 60 0.05 <5 10 <10 <5 242 0.60 <5 230 <5 5 98 28 BLL-5 0.3 6.71 275 586 2 <5 1.49 52 <1 40 94 7.63 <5 1.21 8 128 1.06 1810 4 2.09 56 1590 57 0.04 20 8 <10 <5 216 0.47 <5 136 <5 10 150 36 BBT-8 0.2 9.10 35 600 2 <5 4.84 <1 33 32 46 5.31 <5 0.75 12 28 1.70 1210 40 1300 78 <0.01 <5 14 <10 <5 478 0.45 <5 122 <5 12 104 7 3.36

Standard:

OREAS43P 0.8 4.96 110 494 4 5 0.36 80 1074 452 >10 <5 1.75 <1 26 26 0.57 650 130 0.59 506 370 156 0.02 20 9 <10 5 40 0.18 <5 70 15 11 456

ICP: 4 Acid Digest / ICP- AES Finish.

NM/sa df/843S XLS/10

ECO TECH LABORATORY LTD. Norman Monteith B.C. Certified Assayer

CERTIFICATE OF ASSAY AK 2010-0844

Aurion Resources 600 Dairy Rd Kamloops, BC V2B 8N5

No. of samples received: 62 Sample Type: Soils Project: Blackhorn Shipment #: 2 Submitted by: Adam Lyons

<u>ET #.</u>	Tag #	Au (g/t)	Au (oz/t)	Ag (g/t)	Ag (oz/t)
8	BBT-24			37.8	1.10
36	BAL-033	2.41	0.070		
58	BLL-024			36.9	1.08
61	BLL-036	1.29	0.038		
QC DAT Standard OXI67 GBM908	d:	1.85	0.054	307	8.95
00111000	14			307	0.95

FA/AA Finish

NM/nw XLS/10

25-Oct-10

ECO TECH LABORATORY LTD. Norman Monteith B.C. Certified Assayer

CERTIFICATE OF ANALYSIS AK 2010-0844

Aurion Resources 600 Dairy Rd Kamloops, BC V2B 8N5

No. of samples received: 62 Sample Type: Soils Project: Blackhorn Shipment #: 2 Submitted by: Adam Lyons

		Au	
ET #.	Tag #	(ppb)	
1	BBT-17	40	
2	BBT-18	50	
3	BBT-19	15	
4	BBT-20	5	
5	BBT-21	10	
6	BBT-22	5	
7	BBT-23	5	
8	BBT-24	910	
9	BBT-25	5	
10	BBT-26	5	
11	BBT-27	<5	
12	BBT-28	10	
13	BBT-29	45	
14	BBT-30	<5	
15	BBT-31	10	
16	BBT-32	10	
17	BBT-33	15	
18	BBT-34	10	
19	BBT-35	25	
20	BBT-36	10	
21	BBT-37	15	
22	BBT-38	15	
23	BBT-39	10	
24	BBT-40	<5	
25	BBT-41	805	
26	BBT-42	25	
27	BBT-43	80	
28	BBT-44	240	
29	BAL-024	15	

All business is undertaken subject to the Company's General Conditions of Business which are available on request. Registered Office: Eco Tech Laboratory Ltd., 2953 Shuswap Road, Kamloops, BC V2H 159 Canada, Page 1 of 3

22-Oct-10

Eco Tech Laboratory Ltd. 2953 Shuswap Road Kamloops, BC V2H 1S9 Canada Tel + 1 250 573 5700 Fax + 1 250 573 4557 Toll Free + 1 877 573 5755 www.stewartgroupglobal.com

Aurion Resources AK10-0844

22-Oct-10

Tag # BAL-025 BAL-026 BAL-027 BAL-028 BAL-030 BAL-032 BAL-033 BAL-034 BAL-052 BAL-053 BAL-054 BAL-055 BAL-057 BL-007 BLL-010 BLL-010	Au (ppb) 35 55 20 5 5 80 >1000 15 95 35 45 20 55 55 55 35 55 35	
BAL-025 BAL-026 BAL-027 BAL-028 BAL-030 BAL-032 BAL-033 BAL-033 BAL-052 BAL-055 BAL-055 BAL-055 BAL-055 BAL-057 BLL-007 BLL-009 BLL-010	35 55 20 5 5 80 >1000 15 95 35 45 20 55 55 35	
BAL-026 BAL-027 BAL-028 BAL-030 BAL-032 BAL-033 BAL-034 BAL-052 BAL-055 BAL-055 BAL-055 BAL-055 BAL-057 BLL-007 BLL-009 BLL-010	55 20 5 5 80 >1000 15 95 35 45 20 55 55 35	
BAL-027 BAL-028 BAL-030 BAL-032 BAL-033 BAL-034 BAL-052 BAL-053 BAL-055 BAL-055 BAL-056 BAL-057 BLL-007 BLL-009 BLL-010	20 5 5 80 >1000 15 95 35 45 20 55 55 35	
BAL-028 BAL-030 BAL-032 BAL-033 BAL-034 BAL-052 BAL-053 BAL-055 BAL-055 BAL-056 BAL-057 BLL-007 BLL-009 BLL-010	5 5 80 >1000 15 95 35 45 20 55 55 35	
BAL-030 BAL-032 BAL-033 BAL-054 BAL-053 BAL-055 BAL-055 BAL-056 BAL-057 BLL-007 BLL-009 BLL-010	5 80 >1000 15 95 35 45 20 55 55 35	
BAL-032 BAL-033 BAL-034 BAL-052 BAL-053 BAL-054 BAL-055 BAL-056 BAL-057 BLL-007 BLL-009 BLL-010	80 >1000 15 95 35 45 20 55 55 35	
BAL-033 BAL-034 BAL-052 BAL-053 BAL-054 BAL-055 BAL-056 BAL-057 BLL-007 BLL-009 BLL-010	>1000 15 95 35 45 20 55 55 35	
BAL-034 BAL-052 BAL-053 BAL-054 BAL-055 BAL-056 BAL-057 BLL-007 BLL-009 BLL-010	15 95 35 45 20 55 55 35	
BAL-052 BAL-053 BAL-054 BAL-055 BAL-056 BAL-057 BLL-007 BLL-009 BLL-010	95 35 45 20 55 55 35	
BAL-053 BAL-054 BAL-055 BAL-056 BAL-057 BLL-007 BLL-009 BLL-010	35 45 20 55 55 35	
BAL-054 BAL-055 BAL-056 BAL-057 BLL-007 BLL-009 BLL-010	45 20 55 55 35	
BAL-055 BAL-056 BAL-057 BLL-007 BLL-009 BLL-010	20 55 55 35	
BAL-056 BAL-057 BLL-007 BLL-009 BLL-010	55 55 35	
BAL-057 BLL-007 BLL-009 BLL-010	55 35	
BLL-007 BLL-009 BLL-010	35	
BLL-009 BLL-010		
BLL-010	50	
BLL-011		
BLL-017	5	
BLL-019	45	
BLL-020	65	
BLL-021	55	
BLL-022	10	
BLL-023	5	
BLL-024	930	
BLL-025		
BLL-035		
BLL-038	10	
BBT-17	35	
PAL-USS lertaken subject to the Company's Ger	neral Conditions of Business which are available on	
3 Unice: Eco. lech Laboratory Ltd., 295	3 Shuswap Road, Kamloops, BC V2H 1S9 Canada.	3
	BLL-011 BLL-012 BLL-013 BLL-015 BLL-016 BLL-017 BLL-020 BLL-020 BLL-021 BLL-022 BLL-023 BLL-023 BLL-023 BLL-025 BLL-035 BLL-035 BLL-035 BLL-036 BLL-037 BLL-038 BBT-17 BBT-26 BBT-28 BBT-29 BBT-29 BBT-35 BBT-41 BBT-44 BAL-024 BAL-033	BLL-011 10 BLL-012 5 BLL-013 25 BLL-015 <5

Aurion Resources AK10-0844

22-Oct-10

_ET #.	Tag #	Au (ppb)	
38	BAL-052	85	
45	BLL-009	60	
46	BLL-010	15	
54	BLL-020	100	
<i>Standard</i> OXE74 OXF65	d:	610 815	

FA Geochem/AA Finish

NM/nw XLS/10

ECO TECH LABORATORY LTD. Norman Monteith B.C. Certified Assayer

22-Oct-10

Stewart Group

ECO TECH LABORATORY LTD.

10041 Dallas Drive

KAMLOOPS, B.C.

V2C 6T4

www.stewartgroupglobal.com

Phone: 250-573-5700 Fax : 250-573-4557 ICP CERTIFICATE OF ANALYSIS AK 2010-0844

Total Digest

Aurion Resources 600 Dairy Rd Kamloops, BC V2B 8N5

No. of samples received: 62 Sample Type: Soils **Project: Blackhorn Shipment #: 2** Submitted by: Adam Lyons

Values in ppm unless otherwise reported

<u>Et #.</u>	Tag #	Ag Al%	As	Ва	Be	Bi Ca%	Cd	Co	Cr	Cu	Fe%	Hg K%	La	Li	Mg% Mn	Мо	Na%	NI P	РЬ	C %	Sh	60	60	Sn Sr	T 10/		/ w	v	7-
1	BBT-17	<0.2 9.89	105	520	1							<5 0.86			1.52 1600			44 1570		0.07						and a second second second second			Zn
2	BBT-18	<0.2 >10	80	324	2	<5 1.04	↓ <1	84				<5 0.75			0.94 1795			55 1120			<5			<5 318			3 <5		116
3	BBT-19	<0.2 9.82	60	730		<5 1.63		54				<5 0.64			1.48 2295	7	2.45	56 2630	-	0.02 0.05	<5 <5			<5 446			3 <5		118
4	BBT-20	<0.2 >10	65	584	1	<5 1.11		81				<5 0.93			1.35 1835		1.64	68 2760		0.05	<5			<5 312			2 <5		150
5	BBT-21	<0.2 9.34	40	394	1	<5 1.82		38				<5 0.62			1.93 1650		1.95	43 1370		0.16	<5 <5			<5 244			2 <5		140
												10 0.0L	10	00	1.50 1050	0	1.55	40 10/0	34	0.04	<0	21	<10	<5 302	0.44 <	5 1/2	2 <5	21	106
6	BBT-22	<0.2 9.95	35	470	1	<5 1.74	<1	44	30	124	7.08	<5 0.61	14	34	1.98 2455	7	1 75	50 1360	54	0.02	-5	10	-10	<5 258	0.40	- 100	3 <5	47	100
7	BBT-23	<0.2 9.26				<5 1.94		30				<5 0.55			1.80 1510		2.06	39 1370		0.02	<5 <5			<5 258			> <5 ? <5		128
8	BBT-24	>30 4.53	795	576	<1	35 7.55	8	47				<5 1.17			0.98 1595	-		26 660		0.63	<5 95			<5 220				15	106
9	BBT-25	<0.2 7.55	15	538	1	<5 3.10	<1	15				<5 0.91			1.02 655		3.18	27 690		<0.00	-5 -5			<5 220			-	. •	130
10	BBT-26	<0.2 9.25	45	386	<1	<5 2.17	· <1	28				<5 0.58			2.16 1315		2.26	37 1120		0.02	<5			<5 492 <5 336			o <p o <5</p 	11	58
														20	2.10 1010	'	2.20	57 1120	51	0.02	<0	21	<10	<0.000	0.47 <	90 190	<5	10	96
11	BBT-27	0.2 9.17	20	356	1	<5 1.53	<1	27	30	106	5.59	<5 0.58	12	24	1.82 1665	5	1 75	37 1130	48	0.02	~5	10	~10	<5 272	0 42 -4	: 154	<5	16	86
12	BBT-28	0.6 9.64	60	424	1	<5 2.78	2	35				<5 0.61			1.93 1275		2.45	61 990		0.02	<5			<5 430			<5		180
13	BBT-29	0.6 9.50	235	494	1	<5 1.88	3	76				<5 0.93			2.86 4820	-		42 1240		0.05	<5			<5 190			<5		126
14	BBT-30	0.4 8.87	145	352	1	<5 0.66	2	52				<5 1.00			3.59 3200		1.87	39 860		0.02	<5			<5 144			<5		120
15	BBT-31	0.2 8.90	45	410	1	<5 2.74	1	33				<5 0.79			1.60 1185		2.57	52 1110	÷.	<0.02	~5 <5			<5 428			· <5		100
																Ŭ	2.07	52 1110	51	NO.01	\ J	25	<10	NJ 420	0.50 <	204	<0	22	140
16	BBT-32							38	22	86	7.32	<5 0.65	6	20	2.60 1365	5	2.60	38 670	51	<0.01	<5	27	<10	<5 352	0.56 ~	262	<5	17	80
17		<0.2 9.88						42	24	102	7.75	<5 0.69			2.76 1510		2.55		51	<0.01	<5			<5 326			<5		96
18	BBT-34							39				<5 0.62	6	22	2.63 1505	6	2.64		51	0.01	<5			<5 358			<5		30 82
19	BBT-35	<0.2 >10						42	26	112	7.99	<5 0.68	6	26	2.76 1570	6	2.37		51	<0.01	<5			<5 302			<5		122
20	BBT-36	<0.2 8.91	445	378	1	<5 2.31	5	35	22	106	7.06	<5 0.92			1.05 1435			37 1040		0.09	35			<5 340			<5		122
																								10 0 10	0.10 .0		10	. 4	1 6
21	BBT-37	0.2 9.31						38	28	152	8.25	<5 0.91	12	374	1.49 1835	11	2.01	42 1120	63	0.09	20	23	<10	<5 382	0.46 <5	218	<5	19	168
22	BBT-38	<0.2 >10						39	24	132	7.84	<5 0.95	12	542	1.37 2070	14	1.96	44 890	66	0.08				<5 294			<5		126
23	BBT-39	<0.2 8.56						51	10	126	5.94	<5 1.07	8	52	2.77 1705	6	2.27	33 450	51	< 0.01	<5			<5 346			<5		116
24	BBT-40	0.3 9.23				<5 2.22		52	68	114	7.72	<5 0.73	18	56	1.69 1535	6	2.00	82 1600	63	0.04	<5			<5 364			<5		208
25	BBT-41	<0.2 >10	55	324	<1	<5 2.60	<1	47	34	202	8.75	<5 0.72	8	28	2.65 2080	6	2.11	47 720	54	< 0.01	<5			<5 256			<5		106
																									0.00 40	0	-0	20	100
26	BBT-42	<0.2 9.70				<5 3.90		42	36	182	7.69	<5 0.66	8	34	2.24 2220	6	2.32	43 770	51	0.06	<5	24	<10	<5 336	0.57 <5	264	<5	19	102
27	BBT-43	0.5 8.88				<5 1.15		49	94	146	>10	<5 0.79			1.76 3865		2.90	75 1000	63		30			<5 424			<5		200
28	BBT-44	0.4 9.50				<5 2.33		41			8.28	<5 0.73	8	34	2.24 2070	6	2.15	46 770	57	0.01	<5			<5 276			<5		90
29	BAL-024	0.2 7.95				<5 1.25		25	52	94	5.41	<5 0.58	16	58	1.19 770	5	2.13	38 710	48	0.02				<5 296					88
30	BAL-025	<0.2 8.98	20	368	<1	<5 2.48	<1	34	52	166	6.44	<5 0.55	12	26	1.98 1205	6	2.15	44 840	48					<5 300			<5		96
																												. 🕹	~~

ECO TECH LABORATORY LTD.

NM/nw

XLS/10

df/1_TD844RS

ICP CERTIFICATE OF ANALYSIS AK 2010- 0844

Aurion Resources

C + 4	Et #. Tag # Ag Al% As Ba Be Bi Ca% Cd Co Cr Cu Fe% Hg K% La Li Mg% Mn Mo Na% Ni P Pb S% Sb Sc Se Sn Sr Ti% U V W Y Zn																																		
		Ag	AI%	As	s Ba	a Be	E	i Ca%	Cd	Co	C	<u>Cu</u>	Fe%	Hg	К%	La	L	i Mg%	Mn	Mo	Nas	6 1	Ni P	Pb	S%	Sb	Sc	: Se	Sn S	r Ti	% II	v	/ w	v	Zn
31	BAL-026	<0.2	9.18	20	390	51	<	5 3.24	<1	- 35	52	2 144	6.64	<5 (0.63	16		2 2.00					16 920	51) <5 368				<5		98
32	BAL-027				5 336	8 <1	<	5 3.53	3 <1	40			7.43			10		2 2.51					18 800) <5 304						90 106
33	BAL-028			15	5 326	6 <1	<	5 3.75	<1	41	46	160	7.79	<5 (0.59	10	20	2.62	1840	6	2.4		7 780) <5 308) <5		100
34	BAL-030			10) 33() <1	<	5 4.03	<1	43	30	120	8.29	<5 (0.66	6	20	3.08	1620	6			3 520			-			<5 284				-		
35	BAL-032	0.3	>10	15	476	5 <1	</td <td>5 3.05</td> <td><1</td> <td>52</td> <td>18</td> <td>286</td> <td>9.36</td> <td><5 (</td> <td>0.71</td> <td></td> <td></td> <td>3.31</td> <td></td> <td></td> <td></td> <td></td> <td>7 810</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td><pre>> <5 2.0- > <5 194</pre></td> <td></td> <td></td> <td></td> <td>? <5 <5</td> <td></td> <td>96 119</td>	5 3.05	<1	52	18	286	9.36	<5 (0.71			3.31					7 810						<pre>> <5 2.0- > <5 194</pre>				? <5 <5		96 119
00																								0,	-0.01	~0	01	~10	1 10 10-	0.0	0 <5	524	<0	19	118
36 37	BAL-033				384	4 <1	<	5 3.31	<1				9.70			8	24	2.41	2090	14	2.1	05	2 800	69	0.02	85	30	<10	<5 480	0.5	6 -5	300) <5	17	122
	BAL-034	0.4	9.51	30	342	2 <1	<	5 3.25	<1				7.54			6	40	2.10	1445	5	2.4	54	1 660		< 0.01				<5 300			284			94
38	BAL-052	1.2	7.70	310	316	5 <1	<	5 6.52	5		110	318	9.70	<5 ().69	10	42	1.76	1065	15	2.4		3 1210		0.21				<5 536				i <5		226
39 40	BAL-053	0.6	8.48	350	306	s <1	<:	5 4.91	5		116	104	8.72	<5 C).76	10	50	1.93	1380	13	2.8) 9	1 1010) 54	0.07				<5 464				<5		206
40	BAL-054	0.8	7.54	190	312	2 <1	<5	5 8.44	5	38	120	98	7.66	<5 C	0.60	10	40	1.82	935	16	2.2	5 10	1 1200) 48	0.08		22	<10	<5 534	0.3	3 < 5	224	<5		200
41	BAL-055	0.9	7.01	295	220	\ . 4	-	- 7.00	-																	•			-0 001	0.0	5 .0	£	~0	10	224
42	BAL-056	0.9	9.63	4200	230	1 <1	<5	0 7.22	5	42	122	116	8.21	<5 0).54	10	46	1.77	955	16	2.3	9 10	7 1200) 51	0.07	10	23	<10	<5 524	0.3	6 <5	226	<5	18	232
43	BAL-057		0.16	130	304	+ < +	<5	2.82	2				8.11			10	64	3.09	1370	6	3.04	10	3 1190	54	0.03	5			<5 636				<5		154
40	BLL-007		7.64					2.65					8.21			10	172	2.00	1725	7	3.17	6	9 1120	54	0.10	20			<5 454				<5		158
45	BLL-009				404		<5	1.24	<1	- 38			6.34			8	24	1.25	4240	5	2.37	73	1 920	51	0.06	<5			<5 216				<5		84
-10	DLL 003	NU.2	0.04	30	354	· I	<5	3.52	<1	31	18	136	4.10	<5 0	0.70	4	24	0.83	1395	4	2.18	3 2	9 710	45	0.07	<5			<5 176				<5		50
46	BLL-010	-0.2	9 60	40	400		~																												
47	BLL-011				326			1.84					6.64					1.29			2.06	3-3-	4 910	51	0.05	<5	25	<10	<5 276	0.42	2 <5	208	<5	29	100
48	BLL-012					•		1.86				140	6.11	<5 0	.63			1.36			2.20) 33	3 830	54	0.02	<5			<5 222			196		-	88
49	BLL-012				372	- I	<5	1.41	<1	31			5.96					2.00			1.82	2 33	3 1180	42	0.04	<5			<5 254				<5		94
50	BLL-015				544			3.03					4.48			14	34	1.12	900	5	3.15	5 4 [.]	1 1000	51	0.03	<5			<5 606				<5		82
00	000-010	<0.Z	0.00	40	664	1	<5	2.01	<1	42	50	84	6.70	<5 0	.62	14	36	1.50	1285	6	2.48	65	5 1400	51	0.05	<5			<5 424				<5		122
51	BLL-016	-02	6 13	35	626	2		1 00		40																									
52	BLL-017	0.6			684			1.89			64	130	7.39	<5 0				1.53					3 960	60	0.06	<5	17	<10	<5 416	0.54	4 <5	196	<5	12	126
53	BLL-019					1	<0	8.52 4.62	9				7.22					1.81					2 1300	45	0.18	<5	22	<10	<5 942	0.34	↓ <5		<5		448
54	BLL-020	10	8.32	120	444	1	<0	4.02	8	39	136	238	8.05	<5 0				1.95					3 1550	66	0.06	5			<5 588			326			584
55	BLL-021	1.0	8 00	160	434	4	<5	3.05 2.85	3		88	256	8.62	<5 0.				2.01) 1290	57	0.03	<5			<5 368			298	-		380
		1.0	0.30	100	404		<0	2.85	4	43	90	292	8.99	<5 0.	.69	12	44	2.11	1805	19	1.93	74	1390	57	0.03	<5	24	<10	<5 364	0.47	′ <5		<5		360
56	BLL-022	03	8 65	145	362	0	-5	2.00	0	110	40																						-		
57	BLL-023	0.2	7 04	40	3002	يم 1	<0	1.90	2	110			>10					2.17			2.47	73	3 1250	60	0.05	<5	27	<10	<5 278	0.48	J <5	262	<5	35	206
58	BLL-024	>30	4 50	770	588	-1	25	7.41	<1	34	00	112	6.38 3.51	<5 0.				1.52			2.31		3 1100	45	0.01	<5	16	<10	<5 278	0.54	<5	234	<5	14	136
59		<0.2	7.37	15	460	1	- 55	2.07	9	49	316	4180	3.51	<5 1.				0.96			0.88	30	630	69	0.66	95	5	<10	<5 226	0.14	<5	62	5	10	134
60	BLL-035	0.4	9.16	260	274	-1	~5	0.21	<1	10	20	20	3.79 8.61	<5 0.	.86			1.02	670	5	3.21	32	2 710	45	<0.01	<5	14	<10	<5 478	0.34	<5	136	<5	12	60
				200		~ '	~5	2.04	3	44	102	134	8.01	<5 0.	80	8	54	1.98	1705	8	3.56	82	2 670	57	0.31	15	32	<10	<5 370	0.43	<5	220	<5	20	122
61	BLL-036	0.4 8	3.12	275	338	-1	~5	3.80	2	26	60	104	0.74	F 0	~~																				
62	BLL-037	<0.2	9.47	65	272	~1	~5	2.06	~1	20			6.71 8.55					1.38			2.72		800	57	0.18	25	21	<10	<5 388	0.33	<5	166	<5	15	132
63	BLL-038	0.3 §	9.62	275	228	<1	<5	2.00	3	43	100	100	6.55 7 <i>.</i> 56	<5 0.	/5	8	92	1.94 2	2445	6	2.58		800	54	0.01	5			<5 306			292	<5	23	110
						~ '	~0	2.00	0	40	100	102	1.00	<5 0.	//	10	70	1.86	1710	8	3.01	70	640	54	0.19	15	33	<10	<5 318	0.41	<5	212	<5	20	110
QC DA	TA:																																		
Repeat	:																																		
1	BBT-17	<0.2 9	9.65	115	526	1	<5	1.39	1	37	34	156	9.85	<5 0	an	19	24	1.49	640	10	1.04		1500	00	a	_			_						
10	BBT-26	<0.2 9	9.04	40	376	<1	<5	2.14	<1	28	32	72	5.87	<5 0.4		12	24	2.13	1040	10 6	1.94		1590		0.07				<5 322			180			118
19	BBT-35	<0.2	>10	55	296	<1	<5	4 94	1	41			7.82					2.13					1100		0.02	<5	21	<10	<5 334	0.47	<5	194	<5	16	96
28	BBT-44	0.2 9	9.36	30	346	<1	<5	2.33	<1				8.35								2.31		650				25	<10	<5 296	0.53	<5				118
36	BAL-033	12.1 9	9.36	40	372	<1	<5	3.21	<1		36	656	9.65	<5 0	79 79	6	24	207 0	0050	14	2.13	4/		60		<5			<5 280				<5		94
45	BLL-009	<0.2 7	.92	35	362	1	<5	3.57	<1	32			4.19			6	24	2.27 2 0.84 1	415	14	2.08		800		0.02	80			<5 450				<5		118
54	BLL-020	0.9 8	.31	120	426	1	<5	2.95	3	39	84	248	8.49	<5 0.0		12	24	1.94 1	+10	4 17	2.21		750		0.08					0.57			<5 1		58
							-		-		~ '	0	3.43	-0 0.0		12	90	1.94]	570	17	1.93	69	1240	54	0.03	<5	23	<10	<5 360	0.48	<5	294	<5 2	22	366
Standa																																			
OREAS		0.8 5	.10 1	15	492	4	5	0.39	<1	76 1	098	450	>10	<5 1.7	78 34	6 3	26 /	0.63	850	122	0 16	610	240	165	0.00	10	10	10	<5 40	o 4=	-	-			
OREAS	43P	0.7 4	.91 1	15	486	4	<5	0.36	1	76 1	104	468	>10	<5 1.7	73 34	4 2	24 1	0.58	630 ·	125	0.10	507	340	100	0.02	10	13	<10	<5 40 <5 36	0.17	<5	70	20 1		446
105												-					- · ·			.20	0.10	507	300	100	0.02	15	10	<10	<5 36	0.15	<5	70	20 1	8	458
ICP: 4 /	Acid Digest	/ ICP-	AES F	Finisl	h.																							6	20		/	,			
																													1 1 1	NY1	1 1				

ECO TECH LABORATORY LTD. Norman Monteith B.C. Certified Assaver

CERTIFICATE OF ANALYSIS AK 2010-0845

Aurion Resources 600 Dairy Rd Kamloops, BC V2B 8N5

26-Oct-10

No. of samples received: 5 Sample Type: Moss Mats Project: Blackhorn Shipment #: 2 Submitted by: Adam Lyons

ET #.	Tag #	Au (ppb)	
1	BLL-008	15	
2	BLL-014	10	
3	BLL-017	5	
4	BAL-029	10	
5	BAL-031	60	
QC DATA Repeat: 2	BLL-014	10	
<i>Standard</i> OXF65	:	800	

FA Geochem/AA Finish

NM/PS XLS/10

ECO TECH LABORATORY LTD. Norman Monteith B.C. Certified Assayer

All business is undertaken subject to the Company's General Conditions of Business which are available on All business is undertaken subject to the Company's General Conductors on Dusiness Million 8. V2H 1S9 Canada, request. Registered Office: Eco Tech Laboratory Ltd., 2953 Shuswap Road, Kamloops, BC V2H 1S9 Canada. 26-Oct-10 Stewart Group ECO TECH LABORATORY LTD. 10041 Dallas Drive KAMLOOPS, B.C. V2C 6T4 www.stewartgroupglobal.com

Values in ppm unless otherwise reported

ICP CERTIFICATE OF ANALYSIS AK 2010-0845

Total Digest

Aurion Resources 600 Dairy Rd Kamloops, BC V2B 8N5

Phone: 250-573-5700 Fax : 250-573-4557

> No. of samples received: 5 Sample Type: Moss Mats **Project: Blackhorn Shipment #: 2** Submitted by: Adam Lyons

<u>Et #.</u>	Tag #	Ag Al%	As	Ba	Be	Bi Ca%	Cd	Co	Cr	Cu Fe%	Hg K%	La	LiMg% Mn	Mo Na%	Ni P	Pb S%	Sb	90	Se	Sn	Sr	Ti%		v	W Y Zn
1	BLL-008	<0.2 8.94	50	320	<1	<5 2.33			-	130 3.38	<5 1.00		22 2.29 1945											V	
2	BLL-014	<0.2 9.49	55	508	1	<5 3.15						-			15 1210	57 0.08	<5	18	<10	<5	150	0.32	<5	94	5 20 70
3	BLL-017	<0.2 9.39		468	4						<5 1.02					66 0.01	5	13	<10	<5	386	0.40	<5	100	<5 10 70
4						<5 3.72			30		<5 0.69	12	28 2.24 1250	6 2.42	51 1640	66 0.07	<5	14	<10	<5	374	0.41	<5	110	5 13 124
4						<5 2.77	<1	39	30	166 5.28	<5 0.80	6	20 3.80 1495	4 1.97	28 1310	69 0.03	<5	20	<10	<5	194	0.42	<5	148	5 12 98
5	BAL-031	<0.2 >10	15	342	1	<5 3.85	<1	38	26	148 5.19	<5 0.83	8	18 3.20 1345		24 1030	72<0.01			<10	<5		0.52	<5	176	5 15 90
<u>QC DA</u> Repea 1		<0.2 9.59	55	336	<1	<5 2.41	<1	31	42	140 3.56	<5 1.08	8	24 2.35 1925	10 2.01	16 1270	60 0.08	5	18	<10	<5	146	0.31	<5	96	5 20 78

Standard:

_

OREAS43P 0.8 4.88 115 494 3 5 0.40 <1 81 1096 442 >10 <5 1.75 36 22 0.62 640 127 0.44 516 410 156 0.01 30 12 <10 5 34 0.21 <5 72 15 14 450

ICP: 4 Acid Digest / ICP- AES Finish.

NM/PS df/2_TD875S XLS/10

ECO TECH LABOBATORY LTD. Norman Monteith B.C. Certified Assayer

CERTIFICATE OF ASSAY AK 2010-0875

Aurion Resources 600 Dairy Rd Kamloops, BC V2B 8N5

No. of samples received: 32 Sample Type: Rock Project: Blackhorn Shipment #: 10-01

	-	Au	Au	Ag	Ag	Cu	Pb
<u>ET #.</u>	Tag #	<u>(g/t)</u>	(oz/t)	(g/t)	(oz/t)	(%)	(%)
3	905503					1.54	
8	905653	1.95	0.057				
10	905655	1.05	0.031				
21	905666			37.8	1.10		
23	905601	1.98	0.058				1.40
QC DATA	<u>\:</u>						
Repeat: 10	905655	1.04	0.030				
Standard OXI67 GBM908- MP2		1.79	0.052	301	8.78	2.38	3.3

FA/AA Finish

NM/nw XLS/10

ECO TECH LABORATORY LTD. Norman Monteith **B.C. Certified Assayer**

All business is undertaken subject to the Company's General Conditions of Business which are available on request. Registered Office: Eco Tech Laboratory Ltd., 2953 Shuswap Road, Kamloops, BC V2H 1S9 Canada.

29-Oct-10

CERTIFICATE OF ANALYSIS AK 2010-0875

Aurion Resources 600 Dairy Rd Kamloops, BC V2B 8N5

No. of samples received: 32 Sample Type: Rock Project: Blackhorn Shipment #: 1-Oct

ET #.	Tag #	Au (ppb)
1	905501	5
2	905502	5
3	905503	140
4	905504	5
5	905505	<5
6	905651	<5
7	905652	5
8	905653	>1000
9	905654	<5
10	905655	>1000
11	905656	5
12	905657	<5
13	905658	10
14	905659	20
15	905660	15
16	905661	5
17	905662	<5
18	905663	5
19	905664	15
20	905665	<5
21	905666	930
22	905667	<5
23	905601	>1000
24	905602	5
25	905603	<5
26	905604	10
27	905605	<5
28	905606	5
29	905607	<5
30	905608	5
request. Registe	and Office: Eco Tech La	he Company's General Conditions of Business which are available on aboratory Ltd., 2953 Shuswap Road, Kamloops, BC V2H 159 Canada Page 1 of 2

26-Oct-10

Aurion	Resources AK10	-0875	26-Oct-10
ET #.	Tag #	Au (ppb)	
31	905610	<5	
32	905611	5	
<u>QC DAT</u> Repeat:	A:		
1	905501	<5	
10	905655	>1000	
19	905664	20	
28	905606	<5	
Resplit:			
1	905501	<5	
Standard OXF65	l:	810	

FA Geochem/AA Finish

ECO TECH LABORATORY LTD. Norman Monteith B.C. Certified Assayer

NM/PS XLS/10 26-Oct-10

Stewart Group ECO TECH LABORATORY LTD. 10041 Dallas Drive KAMLOOPS, B.C. V2C 6T4 www.stewartgroupglobal.com

Phone: 250-573-5700 Fax : 250-573-4557 ICP CERTIFICATE OF ANALYSIS AK 2010- 0875

Total Digest

Aurion Resources 600 Dairy Rd Kamloops, BC V2B 8N5

No. of samples received: 32 Sample Type: Rock **Project: Blackhorn** Shipment #: 10-01

Values in ppm unless otherwise reported

Et #.	Tag #	Ag Al%	As	Ba	Be	Bi Ci	a% (d (o Ci	Cu	Fe%	Hg K%	La	Li Mg%	6 Min	Mo Na%	Ni P	Pb	S%	Sb	Sc Se	s Sn	Sr	· Ti%	IJ	v	147 V	-
1	905501	<0.2 7.36	25	342	<1	<5 4	.74	<1	4 124	102	2.55	<5 0.84	4	10 1.4		4 1.11	22 590		0.03	5							W Y	Zn
2	905502	<0.2 9.98	<5	708	1	<5 5.	.31 -	<1	26 86	92	3.51	<5 0.65	12	12 2.3		4 2.37	35 2580		0.03	5 <5		-			<5	108	<5 4	42
3	905503	17.0 4.13	10	434	<1	53.	25	11	24 164		0 3.57	<5 0.69	2	10 0.70		4 0.56	16 190				13 <10				<5	146	<5 10	90
4	905504	<0.2 7.37	55	1790	1	<5 4.	02 -	<1	36 54		1.53	<5 1.05	6	14 0.99		6 3.53	27 1190		1.44 <0.01	5 5	2 <10				<5	80	51	518
5	905505	0.2 >10	<5	130	1	<5 5.	63 •		88 80		6.04	<5 0.26	8	10 2.9		6 1.60	33 1650		2.07		6 <10	-			<5	90	<5 4	58
														10 2.0	1 1145	0 1.00	35 1050	75	2.07	<5	16 <1() <5	266	0.46	<5	166	5 10	82
6	905651	0.3 6.69	60	528	<1	<5 2.	91 .	-1	6 50	74	2.58	<5 1.40	4	32 0.90	540	3 3.33	7 1160	42	0.57	<5	4 <10				-			
7	905652	<0.2 1.42	45	150	<1	<5 >	10 •	:1	1 116	<2	1.88	<5 0.48	4	14 0.29		1 0.08	3 430		< 0.01	<0 5					<5	44	<5 5	56
8	905653	0.9 5.43	<5	290	<1	<5 4.	71 .	:1 :	9 148	200	3.90	<5 0.64	4	14 0.93		2 0.93	15 360		1.46	-5 -5					<5	14	<5 8	4
9	905654	<0.2 8.48	<5	518	1	<5 3.	77 •	:1	2 160	38	4.17	<5 1.21	10	26 1.89		6 2.26	36 690		0.53	<5 <5	5 <10 17 <10		208		<5	88	<5 4	30
10	905655	0.3 5.59	1955	394	<1	<5 9.	81 2	21	7 96		5.33	<5 1.44	8	26 1.77		3 0.43	20 350		2.23	<5 350			308		<5	110	5 13	94
													·	20	1010	0 0.40	20 000	42	2.23	350	11 <10	<5	268	0.32	<5	74	<5 10	60
11	905656	<0.2 4.39	85	224	<1	<5 >	10 <	:1	0 40	14	5.00	<5 1.13	4	10 6.37	7 1380	2 0.40	15 640	39	<0.01	10	8 <10	<5	452	0.01	-	~~		
12	905657	<0.2 0.22	10	18	<1	<5 1.	87 -	:1	2 194	14	0.67	<5 0.05	<2	6 0.19		<1 0.01	4 50		0.02	<5	<1 <10		452		<5 <5	60	58	20
13	905658	0.2 >10	35	530	1	<5 3.	81 <	:1 (5 94	46	4.22	<5 1.06	6	26 1.64		7 2.80	39 1450		1.32	5	14 <10		438			10	<5 <1	4
14	905659	0.4 >10	290	326	1	<5 2.	67	з 2	4 72	72	5.57	<5 0.98	10	30 1.15		9 2.65	26 1940	72	0.13	10	9 <10	-	436 382		<5	148	55	80
15	905660	1.1 9.71	<5	116	1	<5 7.	63 <	1 11	5 82	796	>10	<5 0.39	18	6 1.98		5 0.85	60 1600		5.18	5	12 <10	-	326		<5	96	10 7	124
													-			0 0.00	00 1000		0.10	5		5	320	0.49	<5	152	15 14	32
16	905661	<0.2 >10	<5	756	2	<5 9.9	95 <	1 2	8 102	56	4.22	<5 0.88	14	22 2.14	1055	5 2.53	33 3150	90	0.54	<5	13 <10	<5	608	0.53	.=	100	5 14	100
17	905662	<0.2 9.08	<5	390	<1	<5 7.	72 <	1 1	3 152	16	2.62	<5 0.78	6	8 1.37		4 0.97	19 600	57	0.15	10	7 <10		448		<5	120		106
18	905663	<0.2 6.63	10	566	<1	<5 3.6	64 <	1 2	9 148	60	3.72	<5 0.97	6	32 1.75		3 1.50	21 490	42	0.69	5	9 <10	-	262		<5 <5	104 102	< 55	30
19	905664	0.4 >10	55	490	1	<5 6.0)5 <	1 2	7 66	170	3.30	<5 0.71	12	12 1.75		4 3.42	32 1730	66	0.04	5	14 <10		570	0.20	<5 <5	148	< 5 5	52
20	905665	0.3 9.41	15	524	1	<5 3.5	55 <	1 2	9 142	48	4.88	<5 0.74	12	38 2.46		5 3.22	34 1050	66	0.39	<5	20 <10		370		<5 <5	148	<5 11	80
																		•••	0.00	~0	20 10	~0	570	0.50	<0	140	5 13	92
21	905666	>30 4.65		560	<1	35 7.7	75	94	6 282	4172	3.47	<5 1.23	18	12 1.10	1550	791 0.86	22 690	60	0.60	95	5 <10	<5	214	0.15	<5	52	<59	122
22	905667	<0.2 7.44		434	1	<5 3.6	62 <	1 1	5 18	20	2.42	<5 0.99	8	18 1.27	485	3 2.96	13 740	45	< 0.01	<5	11 <10	<5	300	0.35	<5	84	<59 <59	48
23	905601	14.2 0.08		<2	<1	20 0.1	13 36	6	6 180	394	4.70	<5 0.01	<2	4 0.03	55	2 0.04	3 <10		2.69	15	<1 <10	<5		<0.00	<5	4	20 <1 5	-
24	905602	<0.2 3.10		358	<1	<5 1.5	56 <	1	9 188	18	1.59	<5 0.72	4	20 0.80	250	2 0.88	11 610	24	0.24	<5	5 <10	<5	94	0.21	<5	54	<5 3	30
25	905603	<0.2 8.98	5	662	1	<5 4.9	99 <	1 1	9 124	24	3.03	<5 1.06	10	16 1.97	620	5 3.57	18 1180	96	0.68	<5	10 <10	<5	364	0.41	<5	96	<5 9	30 76
00	005004		_																	-			201	0.11	~0	50	~ 5 5	10
26	905604	<0.2 3.99		150	<1	<5 >1			5 118	20	1.11	<5 0.98	12	16 0.34	1135	2 0.19	9 220	21	<0.01	<5	2 <10	<5	268	0.06	<5	26	<5 5	20
27	905605	<0.2 3.71		306	<1	<5 2.6				12	1.42	<5 0.49	4	24 0.83	485	2 0.43	12 420	24	0.07	<5	4 <10	<5	130	0.19	<5	48	<5 4	26
28	905606	<0.2 5.21	<5		<1	<5 5.1			3 196	4	1.24	<5 0.45	<2	16 0.26	355	2 0.35	10 160	36	0.02	5	1 <10	<5	160	0.05	<5	66	<5 <1	8
29 30	905607	<0.2 6.96		302	<1	<5 4.7				20	2.47	<5 0.90	4	38 1.13	435	4 0.59	24 390	51	0.25	<5	5 <10	<5	162	0.18	<5	80	<5 4	36
30	905608	<0.2 5.58	<5	596	<1	<5 5.4	5 <	1	5 194	10	1.20	<5 1.19	8	8 0.21	325	9 0.51	12 190	39	0.04	<5	3 <10	<5	186	0.15	<5	42	<5 5	10
31	005010	0.0.1.00	00	000																							~0 0	10
32	905610	<0.2 1.88		226	<1	<5 >1				6	3.03	<5 0.65	4	44 3.24	2100	5 0.10	9 260	54	< 0.01	10	3 <10	<5	342	0.10	<5	30	<57	72
32	905611	<0.2 8.12	5	216	<1	<5 >1	0 <	1	168	4	1.33	<5 0.58	6	6 0.58	520	3 1.07	17 480	51	<0.01	5	5 <10	<5	256	0.18	<5	76	<5 4	22
<u>QC DATA:</u> Repeat:																												
. 1	905501	<0.2 7.16	25	342	<1	<5 4.7	7 <	1	122	102	2.59	<5 0.80	٨	0 1 40	E + E	0.1.00	00 570			_	-							
10	905655	0.5 5.51 1		382	<1	<5 9.6				32	5.32	<5 0.80 <5 1.42	4 8	8 1.43		3 1.09	22 570	45	0.03	<5	6 <10	<5	346	0.23	<5	108	<5 4	40
19	905664	0.2 >10		486	1	<5 6.0				172	3.13			26 1.74		2 0.42	20 350	42		345	10 <10	<5	262	0.31	<5	74	<5 10	60
					•	-0 0.0		. 2	50	172	3.13	<5 0.73	10	14 1.74	670	5 3.47	32 1770	69	0.04	5	12 <10	<5	558	0.51	<5	142	<5 9	80

ECO TECH LABORATORY LTD.

ICP CERTIFICATE OF ANALYSIS AK 2010- 0875

Aurion Resources

Et #. Tag #	Ag Al% As Ba Be	BiCa% Cd Co C	r Cu Fe%	Ha K% La	LiMg% Mn	MoNa%NiP	Pb S%	Sb Sc Se S	- 0	
Resplit:							FU 3/0	30 30 3e 3	n Sr Ti%	
1 905501	<0.2 7.28 20 362 <1	<5 4.98 <1 9 12	8 112 2.46	<5 0.90 <2	6 1.37 475	3 0.99 20 530	45 0.03	5 3 <10 -	5 328 0.21	<5 106 <5 2 36
<i>Standard:</i> OREAS43P	0.8 4.98 115 494 3	5 0.40 <1 81 109	5 442 >10	<5 1.75 36	22 0.60 640	127 0.14 516 410	157 0.01	20 12 <10	5 34 0.21	<5 72 10 14 450
ICP: 4 Acid Digest / ICF	P- AFS Finish									

ICP: 4 Acid Digest / ICP- AES Finish.

NM/PS df/2_TD875S XLS/10

ECO TECH LABORATORY LTD. Norman Monteith B.C. Certified Assayer

23-Nov-10

CERTIFICATE OF ASSAY AK 2010-0974

Aurion Resources 600 Dairy Rd Kamloops, BC V2B 8N5

No. of samples received: 86 Sample Type:Rock **Project: Blackhorn Shipment #:2** Submitted by: Adam Lyons

ET #.	Tag #	Au (g/t)	Au (oz/t)	Ag (g/t)	Ag (oz/t)	
19	905524			37.9	1.11	
40	905624			38.1	1.11	
52	905636	26.7	0.779			
65	905649			37.3	1.09	
86	905687	12.6	0.367			
QC DATA Standard OXQ75 GBM908-	<i>t:</i>	50.0	1.458	301	8.78	

FA/AA Finish

NM/nw XLS/10

ECO TECH LABORATORY LTD.

Norman Monteith B.C. Certified Assayer

CERTIFICATE OF ANALYSIS AK 2010-0974

Aurion Resources 600 Dairy Rd Kamloops, BC V2B 8N5

No. of samples received: 86 Sample Type:Rock Project: Blackhorn Shipment #:2 Submitted by: Adam Lyons

		Au	
<u>ET #.</u>	Tag #	(ppb)	
1	905506	5	
2	905507	<5	
3	905508	5	
4	905509	5	
5	905510	10	
6	905511	10	
7	905512	5	
8	905513	5	
9	905514	5	
10	905515	5	
11	905516	85	
12	905517	5	
13	905518	10	
14	905519	140	
15	905520	25	
16	905521	5	
17	905522	10	
18	905523	5	
19	905524	945	
20	905525	<5	
21	905526	25	
22	905527	20	
23	905528	10	
24	905529	70	
25	905530	5	
26	905551	5	
27	905552	110	Am 1
28	905612	5	X Man
29	905613	5	ECO TECH LABORAT
30	905614	<5	Norman Monteith
31 All business is a	905615 Indertakon subject to the	5 Company's General Conditions of Business which are available on	B.C. Certified Assayer

22-Nov-10

CHLABORATORY LTD. Monteith

All business is undertaken subject to the Company's General Conditions of Business which are available on request Registered Office. Eco Tech Laboratory Ltd., 2953 Shuswap Road, Kamloops, BC V2H 159 Canada. Page 1 of 3

Eco Tech Laboratory Ltd. 2953 Shuswap Road Kamloops, BC V2H 1S9 Canada Tel + 1 250 573 5700 Fax + 1 250 573 4557 Toll Free + 1 877 573 5755 www.stewartgroupglobal.com

Aurion Resources AK10-0974

Aurion	Resources	AK10-0974	22-Nov-10
ET #.	Tag #	Au	
32	905616	(ppb) 5	
33	905617	5	
34	905618	10	
35	905619		
36	905620	10	
37	905621	<5 5	
38	905622	65	
39	905623	5	
40	905624	955	
41	905625	<5	
42	905626	5	
43	905627	<5	
40	905628	415	
45	905629	<5	
46	905630	35	
47	905631	30	
48	905632	<5	
49	905633	50	
50	905634	5	
51	905635	<5	
52	905636	>1000	
53	905637	70	
54	905638	5	
55	905639	30	
56	905640	20	
57	905641	5	
58	905642	10	
59	905643	5	
60	905644	5	
61	905645	265	
62	905646	15	
63	905647	10	
64	905648	15	
65	905649	940	
66	905650	<5	
67	905668	<5	
68	905669	5	
69	905670	15	
70	905671	10	
71	905672	15	
72	905673	10	
73	905674	25	Ωn
74	905675	20	(LII)
75	905676	15	ÉCO TECHI
76	905677	5	Norman Mon
77	905678	20	D.C. Contificat

O TECH LABORATORY LTD.

man Monteith B.C. Certified Assayer

77 905678 20 All business is undertaken subject to the Company's General Conditions of Business which are available on request Registered Office. Eco Tech Laboratory Ltd., 2953 Shuswap Road, Kamloops, BC V2H 159 Ganada. Page 2 of 3

Eco Tech Laboratory Ltd. 2953 Shuswap Road Kamloops, BC V2H 1S9 Canada Tel + 1 250 573 5700 Fax + 1 250 573 4557 Toll Free + 1 877 573 5755 www.stewartgroupglobal.com

22-Nov-10

Aurion Resources AK10-0974

FA Geochem/AA Finish

ECO TECH LABORATORY LTD. Norman Monteith B.C. Certified Assayer

NM/PS XLS/10 16-Nov-10

Stewart Group ECO TECH LABORATORY LTD. 10041 Dallas Drive

KAMLOOPS, B.C. V2C 6T4 www.stewartgroupglobal.com

Phone: 250-573-5700 Fax : 250-573-4557 ICP CERTIFICATE OF ANALYSIS AK 2010- 0974 Total Digest

Aurion Resources 600 Dairy Rd Kamloops, BC V2B 8N5

No. of samples received: 86 Sample Type:Rock **Project: Blackhorn Shipment #:2** Submitted by: Adam Lyons

Values in ppm unless otherwise reported

<u>Et</u> #.	Tag #	Ag Al%	As	Ва	Be	Bi Ca%	. Cd	Co	Cr	Cu	Fe%	Hg	К%	La	LI	Mg% Mn	Мо	Na%	Ni P	Pb	S%	Sb	Sc Se	Sn	Sr	Ti%	U	v	w	Y	Zn
1	905506	<0.2 7.27				<5 4.82				30			1.21			1.52 740	5	2.59	20 1170	48	0.48		11 <10				<5 1	120	<5		
2	905507	<0.2 7.29		606		<5 4.44			134		4.34			8		1.48 675	3	2.68	20 1120	45		~5 5	11 <10				<5 1		<5	9	
3	905508	<0.2 6.50	<5	570					156		3.33		0.91	8		1.12 610	2	2.46	15 890	39	0.62	-	8 <10			0.30			<5	8	
4	905509	<0.2 6.62	<5	538	1	<5 4.39	<1	21	158	30	3.61			8		1.20 630	2	2.16	19 1020	39		<5	9 <10				<5 1			9	
5	905510	<0.2 8.68	10	714	1	<5 6.92	<1	22	200	46	4.74			8		1.71 840	6	2.33	38 700	45	0.51	-	21 <10				<5 1		<5	-	
												-		-			Ū	2.00	00 100		0.01	~0	21 10	~0	400	0.07	-0 I	1 1 2	~0	.,	100
6	905511	0.6 5.11	<5	426	1	15 >10	2	16	226	236	3.71	<5	0.72	6	20	1.06 830	53	1.10	60 1080	36	0.61	<5	12 20	<5	666	0.20	<5 2	260	85	18 2	258
7	905512	<0.2 7.64	15	312	<1	<5 6.41	<1	26	116	50						0.83 615	3	0.57	15 480	42	2.00	-	15 <10		72		<5 1			10	
8	905513	<0.2 5.83	<5	182	1	<5 2.16	<1	25	82	64	5.32	<5	1.21	<2	24	1.71 1690	2	5.43	9 610	33		<5	11 <10	-	180		<5 1			9	
9	905514	<0.2 8.23	<5	192	<1	<5 5.82	<1	18	112	30	5.96	<5	0.56	2	20	1.58 1080	3	1.28	14 630	42	0.02		16 <10	_	92		<5 1		5	8	
10	905515	<0.2 3.74	5	398	<1	<5 1.20	<1	15	164	28	2.74	<5	1.06	<2	26	0.47 650	2	2.74	11 490	24	0.07		5 <10			0.25				2	
																	_		11 100		0.07	~0	0 10	~~	, ,0	0.20	~0		~0	L .	02
11	905516	6.3 8.21	<5	228	<1	<5 4.55	<1	39	124	4654	6.19	<5	0.42	4	28	2.14 1005	2	2.77	28 750	21	0.13	5	24 <10	<5	222	0.55	<5 1	94	10	12	70
12	905517	<0.2 8.91	5	150	<1	<5 5.87	<1	45	170	50	7.80	<5	0.39	4	18	1.65 1140	5	2.17	32 750	45	0.84	-	28 <10	-			<5 2		10		
13	905518	<0.2 9.34	5	242	<1	<5 5.63	<1	38	130	56	8.44	<5	0.93	4	20	1.87 735	5	2.49	26 900	51		5	26 <10				<5 1		10		
14	905519	10.0 4.64	<5	78	<1	<5 4.78	<1	14	232	7120	3.68	<5	0.16	2	8	0.72 560	2	0.51	9 400	<3	0.19		12 <10				<5 1			10	
15	905520	<0.2 8.59	5	256	<1	<5 >10	<1	40	72	130	6.03	<5	0.36	2		1.96 825	6	2.24	14 550	42	1.60	-	23 <10	-			<5 2		-	14	
																										0.10			Ũ		
16	905521	<0.2 4.58	<5	94	<1	<5 4.74	<1	18	260	70	3.95	<5	0.36	<2	22	1.34 375	5	1.85	12 230	27	0.02	<5	12 <10	<5	434	0.18	<5 1	04	<5	5	50
17	905522	<0.2 4.37	35	204	<1	<5 2.61	<1	14	100	32	3.68	<5	0.94	<2	60	0.91 975	2	3.75	12 1090	27	0.39		4 <10	-		0.21			-	5 1	
18	905523	<0.2 6.16	10	142	<1	<5 3.99	<1	12	86	16	3.99	<5	0.94	2	34	1.32 1480	4	3.53	10 1420	39	0.34	<5	5 <10	<5	208	0.21			-	11 1	
19	905524	>30 4.48	770	578	<1	35 7.58	9	46	324	4152	3.42	<5	1.20	18	12	0.96 1615	808	0.91	23 660	66	0.66	90	5 <10	<5	226	0.13	<5	64	5	9 1	28
20	905525	<0.2 7.61	10	540	1	<5 3.21	<1	16	22	26	3.51	<5	0.94	6	24	0.98 640	2	3.03	19 670	42	<0.01	<5	9 <10	<5	462	0.30	<5 1	14	<5	7 !	50
21	905526	0.5 2.52	-			<5 2.65			88	468	1.93	<5	1.47	<2	22	0.52 390	<1	2.87	11 770	18	0.02	<5	1 <10	<5	186	0.20	<5	68	<5	1 (54
22	905527	0.3 2.81					1	7	264	20	2.83	<5	0.90	2	56	0.27 1030	4	0.76	10 380	21	0.29	10	5 <10	<5	84	0.04	<5	38	<5	4 3	36
23	905528	0.3 4.04						11	146	32	2.06	<5	1.37	2 .	14	0.28 325	5	2.06	8 1140	42	0.44	25	3 <10	<5	222	0.14	<5	46	<5	4	72
24	905529	0.6 2.11	50			<5 1.61		10	234	44	3.55	<5	0.18	<2	10	0.30 1130	3	1.74	4 480	15	1.88	<5	1 <10	<5	98	0.02	<5	8	<5	3 2	24
25	905530	<0.2 >10	<5	60	<1	<5 9.08	<1	38	102	50	6.28	<5	0.37	2	22	2.36 1105	3	1.47	16 430	51	1.07	<5	26 <10	<5	122	0.52	<5 23	30	5 1	14 క	56
26	905551	0.3 0.12				<5 0.05			188		0. 38 ·	<5	0.03	<2	2	0.03 50	<1	0.02	5 20	3	<0.01	<5	<1 <10	<5	2	<0.01	<5	4	<5 <	<1 •	<2
27	905552	0.8 1.74				<5 3.01			296		1.97			<2		0.30 645	1	0.21	11 200	12	0.04	<5	4 <10	<5	62	0.03	<5	36	<5	3	12
28	905612	<0.2 >10				<5 5.10		24		38	5.74 ·		0.89	6	22	1.72 1420	2	3.70	12 1530	54	0.42	<5	9 <10	<5	488	0.45	<5 10	08	<5 1	17 8	36
29	905613	0.2 5.83				<5 3.60			130		1.50		1.65		22	0.39 515	1	3.21	10 320	39	<0.01	<5	4 <10	<5	168	0.16	<5 (48 ·	<5	4 4	\$2
30	905614	0.3 1.20	<5	166	<1	<5 0.28	<1	3	316	8	0.88 •	<5	0.48	<2	4	0.15 290	1	0.16	5 70	9	0.02	<5	2 <10	<5	24	0.04	<5 2	28 -	<5 <	<1	4

ECO .	FECH LAB	ORATORY	LTD.						ICP (CERTI				YSIS	AK	2010- 097	4								Aurio	on Re	esou	rces					
Et #.	Tag #	Ag Al%	As	Ba E	Зе	Bi Ca%	Cd	Co	Cr	Cu		ıl Dig Ha		la	11	Mg% M	n Ma	Na%	Ni	Р	Dh	C 0/	Sh	60	60	6	e.	T10 /			14/	v	7
31	905615	0.3 0.71	<5			<5 0.33			262				0.13		4		i chian a	0.09	5		Pb 6	0.04	Sb <5	2	Se			TI%		<u></u>			Zn
32	905616	0.2 0.17	<5			<5 1.36			230				0.02		4				4		3	0.04		∡ <1	<10 <10	<5 <5	22 24	0.02 <0.01		16 6		<1	4
33	905617	<0.2 6.44	<5			<5 5.66		13			2.80		0.60			1.02 64		1.85		370	36	0.61	<5 <5	10	<10		24 154			62	<5 <5	2 10	<2 34
34	905618	0.2 4.02				<5 1.69		6	204	50	2.97	<5	0.85			0.72 50		1.68		230	24	0.03		3	<10		138	0.10		52	<5	5	30
35	905619	<0.2 4.30	<5	144 <	<1	<5 3.57	<1	13	168	20	3.08	<5	0.74		10	0.65 138		0.99		430	24	0.03		8	<10		156	0.10	<5	60	-	15	48
36	905620	0.2 3.30	<5	280 <	<1	<5 1.40	<1	6	190	8	1.69	<5	0.66	4	14	0.53 30	51	1.32	٥	320	24	<0.01	<5	5	<10	<5	160	0.11	. E	E 4	. =	6	28
37	905621	0.2 2.18	100	14 <		<5 0.47		8				<5	0.06		16	0.55 34		0.37	10		15	< 0.01			<10 <10	<5 <5	60	0.11		54 42	<5 <5	6 5	28 44
38	905622	0.7 3.18	120	432 <	<1	15 0.15	<1	13	178	346	>10	<5	1.04	2	14	0.59 46		0.77	5		24				<10	<5	58			7 2 54	10	4	32
39	905623	0.2 1.04				<5 0.10		2	234	4	0.71	<5	0.24	<2	4	0.18 28	51	0.17	5		6	<0.01	<5		<10	<5	26	< 0.01	<5	12	<5	1	8
40	905624	>30 4.54	785	580 <	<1	40 7.48	10	46	334	4174	3.52	<5	1.26	16	16	0.94 163	85 800	0.88	23	660	66	0.66	95	4	<10		228	0.13	<5	60	<5	-	128
41	905625	<0.2 7.85	10	560	1	<5 3.28	<1	15	20	24	3.43	<5	1.01	8	24	1.08 63	0 2	3.09	13	680	45	<0.01	<5	11	<10	<5	450	0.29	<5	120	<5	9	52
42	905626	0.4 7.67	<5	10 <	:1 -	<5 >10	<1	11		102		<5	0.17		6	0.13 131		0.52	8		45	0.36	<5	3	<10		400 532		<5 <5		<5 <5	-	52 18
43	905627	<0.2 8.43	<5	38 <	1	<5 5.87	<1	34	102	74	7.29	<5	0.22	6	18	1.90 127		1.96	12		42	0.29	<5	29	<10		214	0.59		212		18	88
44	905628		705	4 <	:1 -	<5 0.59	9	3	320	12	0.98	<5	0.04	<2	4	0.14 19	0 <1	0.04	6		3	0.14	-	1	<10		10	< 0.01	<5	10		<1	6
45	905629	0.2 3.94	<5	10 <	:1	<5 4.40	<1	6	190	24	1.61	<5	0.13	<2	6	0.36 49	0 1	0.21	6	270	24	<0.01	<5	4	<10	<5	158	0.07			<5		18
46	905630	0.7 1.13	95	34 <	:1 -	<5 5.73	2	4	286	148	2.07	<5	0.17	<2	10	0.47 131	0 1	0.06	5	90	18	0.02	<5	3	<10	<5	112	0.02	<5	28	<5	5	32
47	905631	0.2 1.21	<5	64 <	:1 •	<5 1.50	<1	4	258	6	1.23	<5	0.22	<2	4	0.22 45	5 1	0.40	5	90		< 0.01			<10	<5	48		<5	30	<5	3	12
48	905632	0.2 1.23	<5			<5 4.20		6	256	26	2.36		0.23	<2		0.68 105		0.16	5	120	9	<0.01	<5		<10		118		<5	34	<5	4	24
49 50	905633	4.0 1.30	95			<5 0.98	_	20		550	2.84		0.45	<2	8	0.28 330) 3	0.05	6	140	15	0.27	5	3	<10	<5	20	0.04	<5	30	<5	2	40
50	905634	<0.2 6.50	<5	176 <	1 •	<5 3.49	<1	29	40	38	5.77	<5	1.42	<2	22	1.18 101	58	4.25	12	430	42	1.78	<5	10	<10	<5	134	0.39	<5	154	<5	9	76
51	905635	<0.2 9.50	<5			<5 9.24		36		144	6.32	<5	0.92	2	14	1.88 768	54	2.38	15	960	51	2.65	<5	21	<10	<5	120	0.48	<5 2	200	5	14	56
52	905636	0.8 0.03	<5			<5 0.05		2	280	270	0.42	<5	0.01	<2	<2 ·	<0.01 40	<1	0.01	5	<10	<3	0.02	<5		<10		<2		<5	2	-	<1	<2
53	905637	0.3 4.52				<5 4.93			150		2.83					0.98 830		0.83	10	310	27	0.26	<5	7	<10	<5	190	0.12	<5	68	<5	5	92
54 55	905638	1.3 >10				<5 8.70				3410	5.31		0.81			1.87 118		1.00	20	640	42	0.04	<5	23	<10	<5	1002	0.41	<5 2	230	5	16	50
	905639	0.2 8.72	5	1/4 <	1 <	<5 >10	<1	29	42	42	4.68	<5	0.62	<2	10	1.84 735	53	2.11	19	480	45	2.28	<5	16	<10	<5	88	0.34	<5 1	140	<5	9	46
56	905640	0.9 0.69	<5			<5 0.52		4	274	442	1.02	<5	80.0	<2	4	0.25 150) 2	0.11	5	50	3	0.03	<5	1	<10	<5	10	0.01	<5	20	<5	<1	12
57	905641	0.2 6.17				<5 5.05		9	58	10	2.64	<5	1.69	4	14	0.62 121	02	3.93	5	770	39	0.17	<5		<10	<5		0.17		26			74
58 59	905642	<0.2 7.42				<5 >10		18	16	62	2.97		1.00	4		2.89 155		3.10	12	960	45	0.03	<5	15	<10	<5	338	0.23	<5 1	106	<5	15	46
60	905643 905644	<0.2 3.05 <0.2 7.73				<5 4.92		4	202				0.88	2		0.54 805		1.02	5	430	18	0.01	<5	2	<10	<5	160	0.07	<5	28	<5	7	62
			10	156 <	<	<5 >10	<1	19	110	36	4.33	<5	0.72	4	8	1.19 635	5 2	1.21	16	710	39	0.08	<5	14	<10	<5	278	0.27	<5	68	<5	11	66
61	905645	<0.2 2.31	<5			<5 7.24			214	32	1.53	<5	0.28	<2	4	0.34 255	i <1	0.46	8	290	15	<0.01	<5	3	<10	<5	184	0.07	<5	30	<5	3	22
62	905646	0.2 6.54				<5 1.99		16	50	70		<5	2.07	4	16	0.68 530) 3	3.81	7 .	1430	45	0.02	<5	2	<10	<5	324	0.30	<5	62	<5	8	58
63 64	905647 905648	0.2 5.55 0.2 0.92	<5	64 <			-	7	70	10			0.21	<2		0.39 375		0.67	7	120	30	<0.01	<5	4	<10	<5	80	0.11	<5	66	<5	3	10
65	905648 905649		<5 750	32 <			<1		218	42	1.14			<2		0.19 115		0.25	5	90	6	0.12	<5	2	<10	<5	36	0.05	<5	22	<5	2	8
						35 7.47					3.54					0.98 159		0.89		670	69	0.64	90	4	<10	<5	230	0.13	<5	62	<5	8	126
66	905650	<0.2 7.67	10	546 <	1 <	:5 3.16	<1	15	20	24	3.35	<5	0.98	6	24	1.12 650	2	3.04	14	700	45	<0.01	<5	10	<10	<5	464	0.29	<5 1	116	<5	8	50
67	902000	<0.2 7.76	<5	182 <	1 <	:5 3.43	<1	20	100	42	4.41	<5	0.38	2	12	1.54 455	5	3.05	11			1.00	_	15		<5		0.36			<5		54
68 60	905669	0.4 8.22	<5	206 <	1 <	5 6.99	<1	26	32		5.24	<5	1.10	4	14	1.37 845	2	1.67	14	600	51	0.05		17		<5		0.27			<5		
69 70	905670 905671	0.2 4.21	10	186 <	1 <	:5 >10	<1	21	92	18	7.75	<5	0.77	2	10	2.32 144() 2	0.85	11	180		0.14	<5		<10	<5 2		0.10			5		
70	905671	<0.2 7.44				5 2.37					5.18	<5	0.27	2	20	1.58 770	2	3.99	12	320	42	0.52	<5	17	<10	<5	196	0.47	<5 1	54	<5	10	62
71	905672	<0.2 9.06	<5	632 <1	1 <	5 4.71	<1				3.73	<5	0.83	8	30	1.55 580	3	3.26	14 1	1090	57	0.35	<5	11	<10	<5 \$	590	0.38	<5	98	<5	9	48
72	905673	<0.2 2.58	<5	298 <1	<	5 2.07	<1	7	240		1.24	<5	0.39	4	8	0.45 450	1	0.67		300		0.05				<5		0.11				3	
73	905674	0.2 7.35				5 >10			186	8	1.07	<5	0.18	<2	6	0.12 885	2	0.50		210		<0.01			<10	<5		0.04				3	
74 75	905675 905676	0.3 7.78	<5	392 <1 210 -	<	5 3.22	<1	22	114		5.41	<5	1.25	2	26	1.37 470	2	2.55		640	51	0.41	<5	19	<10	<5 2		0.44					86
10	000070	0.3 7.25	IV I	210 <1	<	5 6.57	<1	10	192	80	9.14	<5	0.75	6	14	1.29 1475	52	1.06	12	350	39	0.35	5	15	<10	<5 2	230	0.23	<5 1	16	10 1	10	72

ECO 1	FECH LAB	ORATORY	LTD.							ICP (ERTI				YSIS	AK	2010-	0974								Au	rio	n Re	esoui	rces					
Et #.	Tag #	Ag Al%	As	B	a Be	в	i Ca%	Cd	Co	Cr	Cu	Tota Fe%		Jest K%	1.2		Ma%	Mo	Мо	Na%	Ni	P P	b s					6 -	6 -	Tio/		v		v	7-
76	905677	<0.2 >10	-				5 2.95		72	50		>10		1.83				1315		2.06	17 369			<u>3%</u>			6 0	Sn <5		<u> </u>	<u>U</u>	V	W	Y	Zn
77	905678	0.5 9.02	-	704			5 6.90		21	250	70		<5	1.17		12			13	2.00	54 171						0	-	592 772	1.70 0.35	-		5 <5	43 27	260 142
78	905679	0.2 3.63	<5		 2 <1		5 5.55		10			2.62	<5	0.38	<2	8			2	0.58	8 28					.o. 8 <1	-		178	0.35		118	<5 <5	27 5	142 36
79	905680	<0.2 9.78	5		8 <1		5 6.32		33	98	34	5.59	<5	0.66	4	-		1160	2	2.66	23 73				-	0 <1	-		106	0.13	-	188	<5	12	30 78
80	905681	0.9 1.96	35	70	6 <1		5 0.10		35				<5	0.43		16			2	0.92	9 30			10		1 <1	-		32	0.05	<5 <5	6	5		18
81	905682	0.3 3.62	<5	24() <1	<5	5 >10	<1	12	94	8	2.45	<5	0.46	2	10	0.74	510	2	1.62	16 43	0 3	24 0.	53 <	5	9 <1	^	<5	124	0.12	<5	48	.6	8	26
82	905683	<0.2 8.19	10				5 6.34		27	166	50		<5	0.24	4			1040		2.49	41 55			34 <		9 <1 2 <1			158			40 140	<5 <5	0 13	20 62
83	905684	0.9 2.12	100	30) <1				53	194	828			0.40	<2	20	0.33		2	2.59	11 50				0 <				48	0.29		140	10	<1	46
84	905685	<0.2 5.06	25	170) <1	<5			10	118	12	3.53		0.65	2	38	0.92		4	4.08	8 131			25 <	-	3 <1		-	996	0.00	<5	40	<5	8	40 60
85	905686	0.7 2.80	10	38	3 <1	15	5 1.25	<1	84	158	102		<5	0.33	4	14	0.46		2	1.51	13 44			18 1	-	2 <1	-		432	0.05	<5	16	25	6	30
86	905687	0.6 0.61	5	22	2 <1	<5	5 1.04	<1	5	250	74	1.44	<5	0.17	<2	<2	0.12	195	3	0.05	63	0	60.	40 <	5	2 <1	0	<5	18	0.02	<5	18	<5	<1	8
<u>QC D/</u> Repea																																			
i	905506	<0.2 7.43	10	580) 1	<5	5 4.86	<1	18	144	28	3.81	<5	1.29	8	26	1.59	720	5	2.56	18 114	<i>ه</i> ۵	5 0.	45 <	F 1	0 <1	^	<5	514	0.39	<5	118	<5	9	74
10	905515	<0.2 3.76	5	408	3 <1		1.16		15	166	28		<5	1.02	<2	26	0.49		2	2.80	12 51			-07 × 08 <		5 <1	-	-	150	0.35	<5	92	<5	2	74 54
21	905526	0.7 3.48	<5	252	2 <1	<5	2.71	<1	12		474			1.52	4	24			1	2.96	14 80			02 <	-	3 <1			190	0.20	<5	72	~5 <5	2	58
36	905620	<0.2 3.25	<5	274	<1	<5	1.31	<1	6	174	8	1.60	<5	0.66	4				1	1.25	9 31		4 <0.			5 <1			158	0.11	<5	50	<5	5	28
45	905629	0.2 3.96	<5	10) <1	<5	4.41	<1	6	198	24	1.61	<5	0.13	<2	4	0.36		1	0.21	6 27		7 <0.		-	4 <1		<5		0.07	-	102	<5	4	16
54	905638	1.3 >10	<5	314	<1	<5	8.58	<1	27	120	3376	5.24	<5	0.82	4	14	1.83	1180	2	0.96	20 62	0 3	9 0.	03 <	52				988		-	224	<5	15	48
71	905672	0.2 8.98	<5	628	3 <1	<5	4.68	<1	14	122	26	3.67	<5	0.82	6	28	1.52	560	3	3.21	15 106	05	4 0.	35 <	5 1	0 <1	0	<5	588		<5	98	<5	8	46
80	905681	0.7 2.03	35	72	2 <1	<5	0.11	<1	36	272	746	6.78	<5	0.46	2	16	0.19	240	2	0.91	9 28	0 1	2 4.	05	5 <	1 <1	0	<5	36	0.05	<5	8	10	2	18
Respli	t:																																		
1	905506	<0.2 7.62	<5	606	5 1	<5	4.90	<1	19	140	26	3.89	<5	1.34	10	28	1.54	725	4	2.79	20 120	0 5	0 0.	43 <	5 1	2 <1	n	<5	536	0.40	~5	122	<5	11	74
36	905620	<0.2 3.23	<5	282	? <1	<5	1.36	<1	6	184	6		<5	0.64	4		0.50	-	<1	1.28	9 30					4 <1			156		<5	50	<5	5	26
71	905672	<0.2 8.97	<5	640) <1	<5	4.79	<1	14	116	26		<5	0.85	8	30	1.60		3	3.33	15 103				-		-	<5		0.36	<5	98	<5	9	48
Standa	ard:																																		
OREAS		0.6 4.98	110	488	3	10	0.35	<1	81	1082	450	>10	<5	1.74	32	28	0.59	650	128	0.18	511 350) 15	3 0.0	02 2	0	9 <1	h	<5	38	0.24	<5	72	15	16	450
OREAS	S43P	0.7 5.02					0.36			1072		>10	-		34	26			125		501 370				-	-			30 36		<5 <5	72 76			450 446
OREAS	543P	0.7 4.89	115	492			0.38			1116		>10			34		0.59		123		509 360					9 <10			38		<5 <5	70		15	

ICP: 4 Acid Digest / ICP- AES Finish.

Man

ECO TECH LABORATORY LTD. Norman Monteith B.C. Certified Assayer

NM/nw df/2_TD974S XLS/10 **APPENDIX II – ROCK AND SOIL SAMPLE DESCRIPTIONS**

183817 183894 183885 183943	5715079 5715051 5714776	1970 1970	407 ppb valley 407 ppb valley	705161	905601	30cm by 10cm by 10cm qtz angular float, 2-3% patchy pyrrhotite,>1% patchy pyr., trace galena (HELICOPTER SHOWING OR NEWFIE SHOWING) outcrop we landed on had mineralized veins all over the place. 1 let our energetic eastern prospectors have at it.	1980	14.2	1105	394	14000	599
83894 83885 83943	5714776	atrot.	407 ppb valley									
83885 83943				705161	905602	20cm by 10cm by 10cm angular qtz float,1-2% patchy pyrrohotite, trace pyr.	5	<0.2	10	18	24	30
83943		1970	407 ppb valley	705161	905603	strongly silicified volcanic 2-3% diss. To stringer pyr taken from approx. 70m by 40m rusty o/c.	<5	<0.2	5	24	96	76
		1955	407 ppb valley	705161	905651	QV BX IMAGES 475-477	<5	0.3	60	74	42	56
02400	5715100	1951	407 ppb valley	705161	905652	SUCROSIC CARB BX POSS SULPHIDES	5	<0.2	45	<2	6	4
83400	5715200	1960	407 ppb valley	705161	905653	Float sample. quartz breccia vein. tr to 5% pyrrhotite and pyrite as fine disseminations. IMAGES 487-496	1950	0.9	<5	200	33	30
84038	5715220	1964	407 ppb valley	705161	905654	SULPHIDIC BLACK GRAPHITIC HEELS	<5	<0.2	<5	28	54	94
84082	5715327	2021	407 ppb valley	705161	905655							60
		2022	407 ppb valley	705161	905656			_				20
84122	5715349	2023	407 ppb valley	705161	905657				_			4
84453	5715352	2059		705161	905658							80
84500	5715281	2140		705161	905659							124
84385	5715155	2032										32
		1975	407 ppb valley	705161	BLL-001 R	HAND SAMPLE QUARTZ SULPHIDE BRECCIA STOCKWORK IN FELDSPAR PORPHYRY	10	1,1	~	780	12	32
84115	5715991	2345	407 ppb valley	705161	905501	O/C quartz tension-shear vein. str. 300-360 dip -90 5-15 cm thick wider at cross cutting bedding planes=fractures. 0- locally 10% uncommon sulphides.	5	<0.2	25	102	48	42
84381	5716022	2410	407 ppb valley	705161	905502	composite float samples. greywacke host with closely spaced sheeted and cross cutting 1-15 mm planar quartz tension veins. Late crosscutting surviplanar subparrallel carb	5	<0.2	<5	92	63	90
		2382	407 ppb valley	705161	905503	Boulder 2-7 cm + thick multiepisodic quartz pyrite- chalcopyrite vein.	140	17.0	10	15400	<3	518
		2380	407 ppb valley	705161	905504	rusty alteration adjacent of 2 cm carb vein,	5	<0.2	55	22	45	58
		2414	407 ppb valley	705161	905505	Composite float sample. Fe stained hairline and knots in large tuff unit. unit forms entire scree sloe from NE of sample site.	<5	0.2	<5	68	75	82
83975	5715893	2280	407 ppb valley	705161	905604	50cm by 15cm angular float-fine grained grey rock hosting 10-15cm qtz-carbonate vein crosscut with multiple FE carbonate veinlets-1% patchy pyr., trace pyrrhotite	10	<0.2	<5	20	21	20
83938	5716026	2363	407 pob valley	705161	905605	10cm by 10cm atz float-1% natchy pur	15	<0.2	15	12	24	26
		2460	407 ppb valley	705161	905606	15cm wide qtz vein striking approx. 290, dipping approx 20 cm, part of stockwork appearing system 5m E of local fault	5	<0.2	<5	4	36	8
8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	4082 4100 4122 4453 4500 4385 4037 4115 4381 4381 4381 4381 4380 4380 4472 8975	4038 5715220 4082 5715327 4100 5715340 4122 5715340 4122 5715349 4453 5715327 4105 5715381 4385 5715155 4037 5715244 4115 5715991 4381 5716022 4381 5716022 4385 5715945 4380 5715935 4472 5715980 39975 5715893 39938 5716026 3914 5716126	4082 \$715327 2021 4100 \$715340 2022 4100 \$715340 2022 4122 \$715349 2023 4453 \$715352 2059 4500 \$715281 2140 4385 \$715155 2032 4037 \$715244 1975 4115 \$715991 2345 4381 \$716022 2410 4385 \$715945 2382 4380 \$715935 2380 4472 \$715980 2414 3975 \$715893 2280 3938 \$716026 2363	4082 5715327 2021 407 ppb valley 4100 5715340 2022 407 ppb valley 4100 5715340 2022 407 ppb valley 4122 5715349 2023 407 ppb valley 4125 5715349 2023 407 ppb valley 4453 5715352 2059 407 ppb valley 4385 5715155 2032 407 ppb valley 4385 5715281 2140 407 ppb valley 4037 5715244 1975 407 ppb valley 4115 5715991 2345 407 ppb valley 41381 5716022 2410 407 ppb valley 4380 5715935 2380 407 ppb valley 4380 5715935 2380 407 ppb valley 43975 5715893 2280 407 ppb valley 49975 5715893 2280 407 ppb valley 3938 5716026 2363 407 ppb valley	4082 5715327 2021 407 ppb valley 705161 4100 5715340 2022 407 ppb valley 705161 4122 5715349 2023 407 ppb valley 705161 4453 5715349 2023 407 ppb valley 705161 4453 5715352 2059 407 ppb valley 705161 4453 57153281 2140 407 ppb valley 705161 4385 5715155 2032 407 ppb valley 705161 4385 5715244 1975 407 ppb valley 705161 4115 5715991 2345 407 ppb valley 705161 4115 5715991 2345 407 ppb valley 705161 4381 5716022 2410 407 ppb valley 705161 4380 5715935 2380 407 ppb valley 705161 4472 5715980 2414 407 ppb valley 705161 4975 5715893 2280 407 ppb valley 705161 39938<	4082 5715327 2021 407 ppb valley 705161 905655 4100 5715340 2022 407 ppb valley 705161 905656 4122 5715349 2023 407 ppb valley 705161 905656 4453 5715328 2059 407 ppb valley 705161 905657 4453 5715328 2140 407 ppb valley 705161 905659 4385 5715155 2032 407 ppb valley 705161 905660 4037 5715241 1975 407 ppb valley 705161 905660 4037 5715244 1975 407 ppb valley 705161 BLL-001 R 4115 5715991 2345 407 ppb valley 705161 905502 4381 5716022 2410 407 ppb valley 705161 905503 4380 5715945 2382 407 ppb valley 705161 905504 4472 5715980 2414 407 ppb valley 705161 905505 5975	Pyrite as fine disseminations. IMAGES 487-496 4038 5715220 1964 407 ppb valley 705161 905654 SULPHIDIC BLACK GRAPHITIC HFELS 4082 5715327 2021 407 ppb valley 705161 905655 MOSAIC BRECCIA IMAGES 499-501 4100 5715340 2022 407 ppb valley 705161 905657 Q BX 2% PY IMAGE 502 4101 5715342 2023 407 ppb valley 705161 905657 Q BX 2% PY IMAGE 507 4453 5715352 2039 407 ppb valley 705161 905656 GROTTY ROCK 4500 5715352 2032 407 ppb valley 705161 905660 SULPHIDIC BX UN SU IN SULFIFIED SEDIMENT 4037 5715241 1975 407 ppb valley 705161 905501 O/C quartz tension-shear vein. str. 300-360 dip -90 5-15 cm 4115 5715991 2345 407 ppb valley 705161 905502 composite float samples. greywacke host with closely spaced sheeted and cross cutting bedraing planes refactures. 0-locally 10% uncommon sulphides. 4381 5716022 2410 407 ppb valley	4038 5715220 1964 407 ppb valley 705161 905654 SULPHIDIC BLACK GRAPHITIC HFELS <5 4032 5715327 2021 407 ppb valley 705161 905655 MOSAIC BRACCIA IMAGES 499-501 1050 4035 5715327 2022 407 ppb valley 705161 905656 CARB BX IMAGES 502 5 4122 5715352 2059 407 ppb valley 705161 905657 Q RX 2% PY IMAGE 507 <5	Pyrite as fine disseminations. IMAGES 487-496 4038 5715220 1964 407 ppb valley 705161 905654 SULPHIDIC BLACK GRAPHITIC HFELS <5 <0.2 10482 5715327 2021 407 ppb valley 705161 905655 MOSAIC BRECOLA IMAGES 499-501 1050 0.3 1005 5715340 2022 407 ppb valley 705161 905655 CARB BX IMAGE 502 6 <0.2	by the ast fine disseminations. IMAGES 487-496 pyrite as fine disseminations. IMAGES 487-496 4038 5715220 1964 407 ppb valley 705161 905655 MOSAIC RECCIA IMAGES 499-501 1050 0.3 1985 1000 5715327 2021 407 ppb valley 705161 905655 MOSAIC RECCIA IMAGES 499-501 1050 0.3 1985 1015 5715349 2023 407 ppb valley 705161 905657 Q BX 2% PY IMAGE 507 <5	bit pyrite as fine disseminations. IMAGES 487-496 bit bit 6038 \$715220 1964 407 ppb valley 705161 905653 MICA SALC SRACHHITIC HFELS <5	unit pyrite as fine disseminations. IMAGES 487-496 unit unit< u

DATE D/M/Y	UTM E	UTM N	ELEVATION	TARGET	TENURE NO.	ROCK SAMP#	OBSERVATIONS	As PPB	Ag	As	Cu	Pb	Zn
18/09/2010	383915	5716126	2460	407 ppb valley	705161	905607	pervasive silica altered host rock directly adjacent to sample 905606 containing 1 or 2 3-5 cm. qtz veins with >1% diss. Pyr,>1% diss. Pyrrhotite	<5	<0.2	10	20	51	36
18/09/2010	383925	5716123	2460	407 ppb valley	705161	905608	10-15cm boudinaging qtz vein striking approx. 240, dip near flat, approx. 5m E of previous samples, 1% diss. Pyr., 1% diss pyrrhotite	5	<0.2	<5	10	39	10
18/09/2010	383906	5716123	2462	407 ppb valley	705161	905609	mod. pervasive silica altered hostrock containing 5-8cm boudinaging qtz vein in fault zone(?), taken approx. 3m W of sample 905607->1% diss. py.						
18/09/2010	383902	5716130	2462	407 ppb valley	705161	905610	10cm. Wide qtz vein striking approx. 310 pervasive Fe carbonate alteration, weakly diss.>1% pyr	5	<0.2	20	6	54	72
18/09/2010	383670	5715961	2339	407 ppb valley	705161	905611	10-15 cm boudinaging qtz vein striking approx. 300,1-2% diss. py.	<5	<0.2	5	4	51	22
18/09/2010	383453	5715740	2203	407 ppb valley	705161	905661	SULPHIDIC QUARTZ breccia -tension vein	5	<0.2	<5	56	90	10
18/09/2010		5715860	2270	407 ppb valley	705161	905662	SULPHIDIC QUARTZ breccia -tension vein	<5	<0.2	<5	16	57	30
18/09/2010		5715910		407 ppb valley	705161	905663	Heavily sulphidic (oxidized) up to 10 cm quartz vein. wallrock strongly pyritized and hfelzed.	5	<0.2	10	60	42	52
18/09/2010	384375	5715960	2390	407 ppb valley	705161	905664	Sulphidic quartz breccia vein. Float sample. IMAGED 559- 560		0.4	55	170	66	80
18/09/2010	383950	5715525	2230	407 ppb valley	705161	905665	Float sample. weakly sulphidic quartz veins below helipad. IMAGED 584-587	<5	0.3	15	48	66	92
						905666	STD CU130	930	37.8	800	4172	60	12
						905667	BLANK cement sand	<5	<0.2	10	20	45	48
18/09/2010	384290	5716005	2387	407 ppb valley	705161	*2*	Small float sample. 205 cm quartz carb bx vein in strong Fe carb + fe ox altered sediment wallrock.						
21/09/2010	380899	5714294	2010	Griz Cirque	597808	905612	50cm by 40cm by 40 cm fine to medium dark grey float, moderate silicification, qtz. amygdules-1-2% diss. py.	5	<0.2	20	38	54	86
21/09/2010	380837	5714375	2058	Griz Cirque	597808	905613	fine grained grey rock, moderately silicified containing 2cm qtz. Vein-trace pyr.	5	0.2	<5	14	39	42
21/09/2010	380740	5714600	2143	Griz Cirque	597808	905614	10-12cm wide qtz vein striking approx. 340, dipping approx. 80, 1% diss. Euhedral pyr, trace galena, trace cpy.	<5	0.3	<5	8	9	4
21/09/2010	380738	5714613	2147	Griz Cirque	597808	905615	7-8cm qtz vein striking 320, dip unknown, near vertical, approx. 1.5m E of previous vein sampled(905615)->1% diss. py, trace cpy.	5	0.3	<5	10	6	4
21/09/2010	380735	5714616	2149	Griz Cirque	597808	905616	17-18cm wide qtz. vein striking approx. 335, dipping 79,- >1% diss. Pyr-same vein as previous sample, approx. 15m N.	5	0.2	<5	50	3	V
21/09/2010	380644	5714762	2198	Griz Cirque	597808	905617	fine grained o/c, pervasive silica/carbonate alteration, 20- 25% fine grained diss. Pyr.	5	<0.2	<5	36	36	34
21/09/2010	380670	5714563	2161	Griz Cirque	597808	905618	30cm by 15cm by 10cm angular qtz float, 1% patchy pyr.	10	0.2	<5	50	24	30
21/09/2010	380670	5714517	2157	Griz Cirque	597808	905619	fine to medium grained greyish blue rock, strong pervasive silica containing some 1-2mm. qtz veinlets->1% pyr.	10	<0.2	<5	20	24	4
21/09/2010	380994	5714490	2030	Griz Cirque	597808	905668		<5	<0.2		42	42	5
21/09/2010		5714810	the second s	Griz Cirque	597808	905669	representative continuous chip (green #'s)	5	0.4	<5	88	51	7
21/09/2010		5714810		Griz Cirque	597808	905670	(black #'s)	15	0.2	10	18	30	7

DATE D/M/Y	UTM E	UTM N	ELEVATION	TARGET	TENURE NO.	ROCK SAMP#	OBSERVATIONS	Au PPB	Ag	As	Cu	Pb	Zn
21/09/2010	380841	5714643	2106	Griz Cirque	597808	905671	50cm representative chip	10	<0.2	<5	66	42	62
21/09/2010	380900	5714795	2142	Griz Cirque	597808		FeOx cored gulley str 340/70 "ragged" brittle shear. peripheral veins form weak anastomozing stwk. mostly carb veining with chlor-epidoe-manganses alt selvages. veins str 300-320 /50-90						
21/09/2010	380956	5714885	2160	Griz Cirque	597808		At BLL009 15-20 cm carb veins 300/65 Black pyrolucite veinlets common.						
21/09/2010	380835	5714610	2095	Griz Cirque	597808		leucocratic Fe fracture stained sausseritized feldspar ppy sill ~up to 1 m thick // to bedding? Fe staining into HW <2 m total and 25 m up dip. FW1 appears much less spatial alteration.						
22/09/2010	383622	5714420	1865	NE Ottarasko	705161	905506	~20m discontinuous-chip pyritic sediment with variable stwk. Str 130/dip 30. veining 300/60+/-20	5	<0.2	10	30	48	78
22/09/2010	383630	5714400	1850	NE Ottarasko	705161	905507	-20m discontinuous-chip pyritic sediment with variable stwk. Str 130/dip 30. veining 300/60+/-20	<5	<0.2	<5	30	45	70
22/09/2010	383638	5714380	1835	NE Ottarasko	705161	905508	~20m discontinuous-chip pyritic sediment with variable stwk. Str 130/dip 30. veining 300/60+/-20	5	<0.2	<5	24	39	56
22/09/2010	383645	5714360	1818	NE Ottarasko	705161	905509	-20m discontinuous-chip pyritic sediment with variable stwk. Str 130/dip 30. veining 300/60+/-20	5	<0.2	<5	30	39	64
22/09/2010	383746	5714555	1941	NE Ottarasko	705161	905672	STOCKWORK PYRITIC FELSITE	15	<0.2	<5	26	57	48
22/09/2010		5714345		NE Ottarasko	705161	905673		10	<0.2	<5	8	18	22
23/09/2010		5720300		NE Ottarasko	705161	905510	Hornfelsed sed or volc. highly pyritic and weak qpy stwk.	10	<0.2	10	46	45	106
23/09/2010	376410	5720314	2014	NE Ottarasko	705161	905511	FeOx shear very grotty. 180/10-30. 5 ME of BLL 19	10	0.6	<5	236	36	258
23/09/2010		5720265	1956	NE Ottarasko	705161	905512	Bleached and altered mafic volcanic, 2% diss volc.	5	<0.2	15	50	42	46
23/09/2010		5720472	1980	NE Ottarasko	705161	905513	Intr contact quartz pyrite stwk breccia zone % m wide.	5	<0.2	<5	64	33	80
23/09/2010	376631	5720521	2015	N Blackhorn	705163	905514	Float. Sheared bleached silicified quartz stwk py vein swarm.	5	<0.2	<5	30	42	56
23/09/2010	-			N Blackhorn	705163	905624	STANDARD	955	>30	785	4174	66	128
23/09/2010				N Blackhorn	705163	905625	BLANK	<5	<0.2	10	24	45	52
23/09/2010	376703	5719571	1930	N Blackhorn	705163	905626	15-20cm qtz carbonate vein hosted in 2m by 1m by 1m conglomerate boulder, weakly Fe carbonate altered, 1% diss. Py, 1% diss. Pyrrhotite, trace chalcopyrite, trace bornite- taken, as well as next 3 samples from boulder field at bottom of hanging valley	5	0.4	<5	102	45	18
23/09/2010	376686	5719585	1930	N Blackhorn	705163	905627	50cm by 10cm by 10 cm qtz float, 1% diss. Pyr., trace	<5	<0.2	<5	74	42	88
23/09/2010	376637	5719566	1929	N Blackhorn	705163	905628	100cm by 50cm by 20cm qtz float, mod. Pervasive Fe carbonate alteration, 1% diss. Py., locally stronger in clots and stringers	415	0.3	705	12	3	6
23/09/2010	376705	5719544	1918	N Blackhorn	705163	905629	2m by 2m by 2m qtz schist, locally rusty,<1% clotty pyr, trace chalcopyrite	<5	0.2	<5	24	24	18
23/09/2010	376611	5719720	1988	N Blackhorn	705163	905630	10-12cm wide boudinaging qtz vein striking 300, dipping 70, mod. Pervasive Fe carbonation, <1% pyr., this and next sample takea in 10m square stock like area with multiple veins of 2-20cm.	35	0.7	95	148	18	32

DATE D/M/Y	UTM E	UTM N	ELEVATION	TARGET	TENURE NO.	ROCK SAMP#	OBSERVATIONS	Au PPB	Ag	As	Cu	Pb	Zn
23/09/2010	376616	5719720	1973	N Blackhorn	705163	905631	chip sample of 4 qtz veins averaging 3-4cm width in 1m area of vertical face approx 2m E of previous sample 905631, pervasive Fe carbonate alteration, % pyr</td <td>30</td> <td>0.2</td> <td><5</td> <td>6</td> <td>9</td> <td>12</td>	30	0.2	<5	6	9	12
23/09/2010	376605	5719709	2002	N Blackhorn	705163	905632	2 3-4 cm qtz veins and medium grained greenish chloritic host rock, minor pervasive Fe carbonate alteration, trace pyr.	<5	0.2	<5	26	9	24
23/09/2010	376551	5719722	2018	N Blackhorn	705163	905633	10 cm wide qtz schist striking 315, mod. pervasive Fe carbonate alteration, 1% patchy chalcopyrite,<1% diss. Pyr., trace malachite	50	4.0	95	550	15	40
23/09/2010	376572	5719743	2028	N Blackhorn	705163	905634	fine to medium grained grey rock, mod. To strong pervasive silica alteration, 20-25% diss. Pyr.	5	<0.2	<5	38	42	76
23/09/2010	376282	5720315	2009	N Blackhorn	705163	905674		25	0.2	<5	8	42	18
23/09/2010		5720315		N Blackhorn	705163	905675		20	0.3	<5	48	51	86
23/09/2010		5720314		N Blackhorn	705163	905676	IMAGED 650-651	15	0.3	10	80	39	72
23/09/2010		5720360		N Blackhorn	705163	905677	FLOAT IMAGED 652-653	5	<0.2	<5	122	66	26
23/09/2010		5720219		N Blackhorn	705163	905678		20	0.5	<5	70	57	14
23/09/2010		5720219		N Blackhorn	705163	905679		15	0.2	<5	38	24	36
26/09/2010		5714688		B3 Valley	704023	905515	Bleached and altered mafic volcanic. 2% diss pyrite. associated with pink weathering trachyte. sill/dyke?	5	<0.2	5	28	24	52
26/09/2010	578464	5714690	2104	B3 Valley	704023	905516	Float sample Sheared and bleached (carb alteration) mafic volcanic with disseminated pyrite and fracture hosted chalcopyrite.	85	6.3	<5	4654	21	70
26/09/2010	378660	5714668	2142	B3 Valley	704023	905517	Float sample. sulphidic carb altered shear and stockwork vein.	5	<0.2	5	50	45	64
26/09/2010	378900	5714672	2236	B3 Valley	597755	905518	OC knotted and stockworked erratically sulphidic quartz and carbonated vein within shallowly east dipping tensional shear-buckle zone.	10	<0.2	5	56	51	76
26/09/2010	378938	5714654	2225	B3 Valley	597755	905519	Small quartz vein strong malachite- azurite stain. ~1% medium grained widely disseminated CPY in quartz. Vein host adjacent to very late feldspar porphyry trachyte dyke 1270+/20-90	140	10.0	<5	7120	<3	26
26/09/2010	379184	5714488	2261	B3 Valley	597755	905520	quartz shear vein STR 280+/-10/75 Multiepisodic, ~3% disseminated pyrite. AL image 655?	25	<0.2	5	130	42	5
26/09/2010	378496	5714671	2093	B3 Valley	704023	905635	40cm by 20cm by 10cm qtz chloritic schist-20-25% diss and locally banded pyr.	<5	<0.2	<5	144	51	5
26/09/2010	378506	5714615	2083	B3 Valley	704023	905636	20cm by 10 cm by 10 cm angular qtz float, rusty-mod. Pervasive malachite ,1% patchy chalcopyrite	26700	0.8	<5	270	<3	<
26/09/2010	378530	5714458	3 2095	B3 Valley	704023	905637	60cm by 20cm by 20cm silica altered purplish fine grained float with 10-12cm qtz vein running thru it, both qtz and host in sample-1-2% diss. Qtz, trace chalcopyrite	70	0.3	5	48	27	9
26/09/2010	378569	5714407	7 2090	B3 Valley	704023	905638	30cm by 10cm by 10cm fine grained grey float, strong pervasive silica alteration, minor sericite-2-3% malachite Jocally on fractures, 10% fine grained sulphides(?)(indistinguishable)	5	1.3	<5	3410	42	5
26/09/2010	378568	571438	8 2092	B3 Valley	704023	905639	100cm by 50cm by 15cm fine grained grey rock qtz schist-25 30% diss. Pyr, trace chalcopyrite	- 30	0.2	5	42	45	4

DATE D/M/Y	UTM E	UTM N	ELEVATION	TARGET	TENURE NO.	ROCK SAMP#	OBSERVATIONS	As PPB	Ag	As	Cu	Pb	Zn
26/09/2010	378714	5714206	2123	B3 Valley	597755	905640	50cm by 50cm angular qtz float-4-5% malachite, trace chalcopyrite, trace pyrite	20	0.9	<5	442	3	12
26/09/2010	378884	5714200	2190	B3 Valley	597755	905641	taken from 2m wide silica altered rusty zone striking SE-1% diss. Pyr.	5	0.2	<5	10	39	74
26/09/2010	378856	5714157	2230	B3 Valley	597755	905642	fine grained grey o/c in rusty zone-2-3% fine grained pyrite	10	<0.2	10	62	45	46
26/09/2010	378864	5714159	2222	B3 Valley	597755	905643	10-12cm qtz vein striking 70 ,dip unknown but near horizontal, on vertical face approx. 3m NE of previous sample 905642-mod. Fe Carbonate alteration, mod. To strong sericite/limonite alteration-1% fine grained pyrite,-no rep for sample as sample is small as could hardly reach it.	5	<0.2	10	12	18	62
26/09/2010	378457	5714691	2107	B3 Valley	597755	905680	IMAGED 673-674	5	<0.2	5	34	57	78
28/09/2010		5714008		upper 3 oz valley	597755	905551	10 cm wide qtz vein striking 320, dipping 60, locally smoky grey in colour with some "red wine" staining-locally 2-3% muscovite mica, trace pyr.	5	0.3	<5	8	3	<2
28/09/2010	379568	5714042	2403	upper 3 oz valley	597755	905552	20cm wide qtz vein striking 150, dipping 80, mod. Pervasive Fe carbonate alteration, <1% pyr, trace chalcopyrite, trace malachite	110	0.8	<5	10	12	12
28/09/2010	378274	5716734	2017	upper 3 oz valley	597755	905644	qtz/carbonate altered chloritic green rock above suspected old adit-<1% pyr.	5	<0.2	10	36	39	66
28/09/2010	378271	5716738	2038	upper 3 oz valley	597755	905645	10-15 cm boudinaging qtz vein striking 320, 1m N of suspected old adit-1-2% malachite	265	<0.2	<5	32	15	22
28/09/2010	378275	5716753	2022	upper 3 oz valley	597755	905646	70 cm chip of silica altered chloritic fine grained rock and 12 cm qtz vein 1m S of suspected old adit-<1% pyr.	15	0.2	<5	70	45	58
28/09/2010	379381	5714015	2385	upper 3 oz valley	597755	905647	20 cm wide qtz/carbonate vein striking 80, 2m exposure on near vertical face, locally creamy pink in colour-trace diss. Pyr, fachsite(?)	10	0.2	<5	10	30	10
28/09/2010	379235	5713985	2405	upper 3 oz valley	597755	905648	15-20 cm. qtz vein striking 55, dip 20, locally rusty orange in colour, locally 9-10% muscovite mica,-trace pyr., trace galena, trace arsenopyrite	15	0.2	<5	42	6	8
28/09/2010				upper 3 oz valley	597755	905649	STANDARD	940	>30	750	4176	69	126
28/09/2010				upper 3 oz valley	597755	905650	BLANK	<5	<0.2	10	24	45	50
28/09/2010	379364	5713783	2362	upper 3 oz valley	597755	905681	IMAGE 725-732. Rusty angular quartz boulder, about 1m square. With about 5-10% py and trace of ch-py.	65	0.9	35	750	15	18
28/09/2010	379165	5713746	2496	upper 3 oz valley	597755	905682	FINE GRAINED ALTERED MAFIC VOLCANIC, WITH QUARTZ AND IRON CARBONATE, 1-2% PYRITE STRIKE 20 N	5	0.3	<5	8	24	26
28/09/2010	379211	5713701	2473	upper 3 oz valley	597755	905683	IMAGE 739-740. FINE GRAIN ALTERED MAFIC VOLCANIC OUTCROP, WITH SILICA AND RUSTY QUARTZ THROUGHOUT, STRIKING NORTH.	<5	<0.2	10	50	48	62

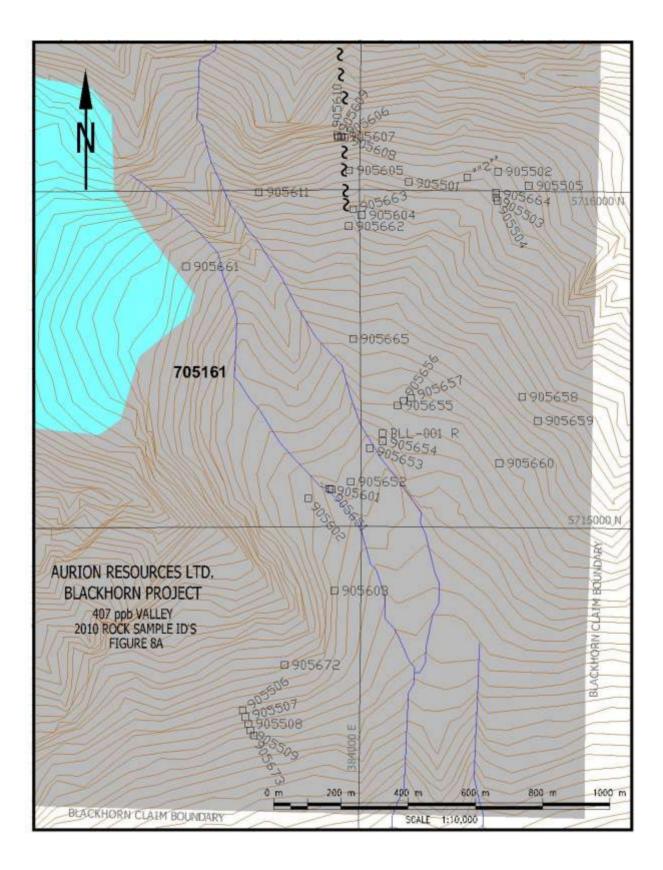
DATE D/M/Y	UTM E	UTM N	ELEVATION	TARGET	TENURE NO.	ROCK SAMP#	OBSERVATIONS	Au PPB	Ag	As	Cu	Pb	Zn
28/09/2010	379293	5713753	2398	upper 3 oz valley	597755	905684	RUSTY VUGGY QUARTZ FLOAT ABOUT 1M X 50CM, 3-5% PYRITE & TRACE OF CHALCO-PYRITE. TAKEN ABOUT 50 METERS UP FROM (SW) SAMPLE # 905681 , AND ABOUT 50 METERS DOWN (NE) FROM POSSIBLE SOURCE OF BOULDERS.	<5	0.9	100	828	18	46
28/09/2010	379439	5713718	2333	upper 3 oz valley	597755	905685	FINE GRAINED ALTERED MAFIC VOLCANIC OUTCROP, WITH QUARTZ AND IRON CARBONATE, WITH TRACE OF PY AND PO. ALTERATION ZONE IS IN INTO BLACK SHALE. STRIKING SE.	<5	<0.2	25	12	33	60
28/09/2010	379452	5713703	2030	upper 3 oz valley	597755	905686	FINE GRAINED ALTERED MAFIC VOLCANIC, WITH QUARTZ AND IRON CARBONATE, WITH 1-2% PY AND MASSIVE PO VEINS. alteration ZONE IS TAKEN IN BLACK SHALE, STRIKING SE.	<5	0.7	10	102	30	30
28/09/2010	379484	5713696	2306	upper 3 oz valley	597755	905687	RUSTY ANGULAR QUARTZ FLOAT, 50CM x 50CM PATCHES OF PYRITE, TRACE OF CHALCO-PYRITE. NO IMAGE.	12600	0.6	5	74	6	8
28/09/2010	380707	5714495	2143	upper 3 oz valley	597755	905620	30cm by 15cm by 15cm angular qtz float in fine grained grey schist, locally abundant muscovite mica,<1% pyr	<5	0.2	<5	8	24	28
28/09/2010	380752	5714483	2123	upper 3 oz valley	597755	905621	rusty shale o/c with discontinuous qtz veins-<1% fine diss. Рут.	5	0.2	100	92	15	44
28/09/2010	380639	5714321	2116	upper 3 oz valley	597755	905622	20cm rusty zone striking 100 with a 3-4 cm qtz vein running thru it, qtz and host rock sampled-weathered sample	65	0.7	120	346	24	32
28/09/2010	380643	5714336	2120	upper 3 oz valley	597755	905623	6-7cm qtz vein striking approx. 100, locally smoky and rusty but no sulphides observed, taken from 10m area o/c containing 4-5 qtz veins-all appeared barren	5	0.2	<5	4	6	8
28/09/2010	379840	5719004	2386	East ridge (off property)	597755	905521	Quartz stockwork veining in altered mafic volcanics.	5	<0.2	<5	70	27	50
28/09/2010	379160	5713866	2455	upper 3 oz valley	597755	905522	float - quartz pyrite stockwork in bleached volcanics and fine grained feldspar porphyry	10	<0.2		32	27	82
28/09/2010	379127	5713908	2493	upper 3 oz valley	597755	905523	float - ankerite altered and bleached with later carb veining quartz-pyrite stockwork veinlets.	5	<0.2		16	39	86
28/09/2010						905524	STD CU130	945	>30		4152	66	128
28/09/2010	-					905525	BLANK	<5	<0.2		26	42	50
28/09/2010		5713908		upper 3 oz valley	597755	905526	float Tan feldspar porphyry intrusive - bleached with strong malachite staining.	25	0.5	<5	468	18	54
28/09/2010	379086	5713879	2525	upper 3 oz valley	597755	905527	quartz carbonate vein in altered feldspar porphyry dyke. Vein >12 cm thick.	20	0.3	105	20	21	36
28/09/2010	379110	5713875	2504	upper 3 oz valley	597755	905528	quartz carbonate stockwork in altered feldspar porphyry dyke.	10	0.3	195	32	42	72
28/09/2010	379110	5713875	2504	upper 3 oz valley	597755	905529	Float quartz breccia vein with pyrite and chalcopyrite	70	0.6	50	44	15	24
28/09/2010	379562	5714043	2427	upper 3 oz valley	597755	905530	OC quartz breccia vein pod 1 m representative chip.	5	<0.2	<5	50	51	56

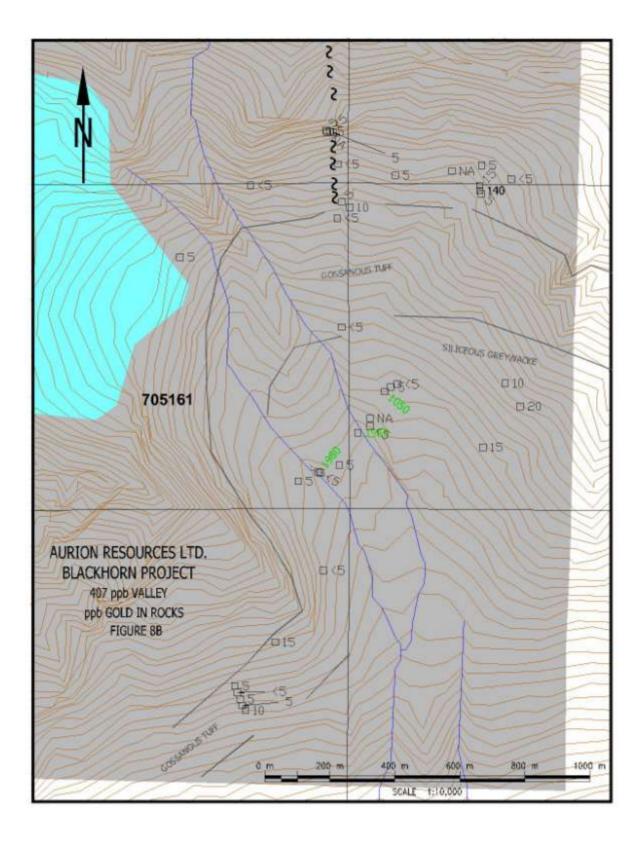
2010 BLACKHORN SEDIMENT SAMPLE DATABASE

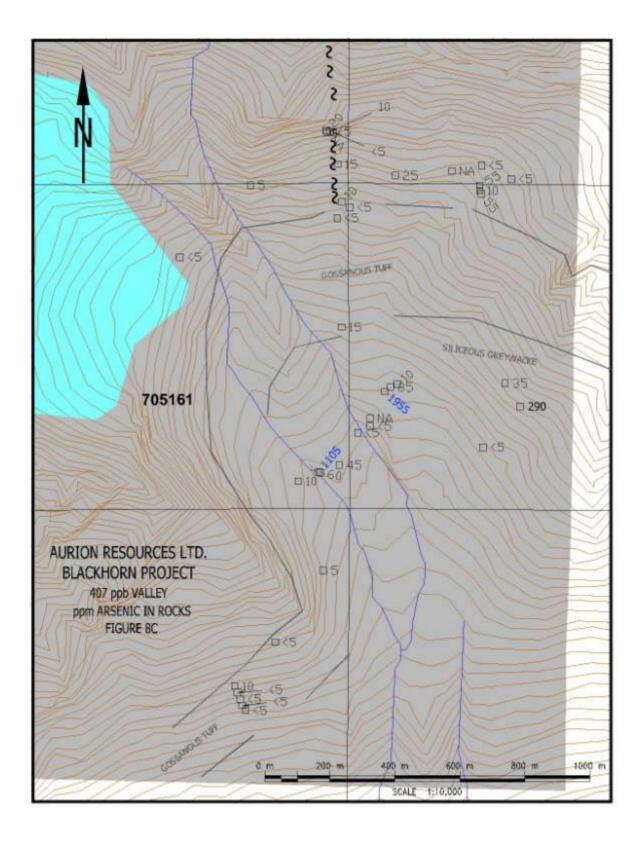
DATE D/M/Y	UTM E	UTM N	ELEVATION	TARGET	CLAIM NO.	SEDIMENT	OBSERVATIONS: T-TILL TF-TALUS FINES L-SILT S-SOIL, M-MOSS MATT	Au	Ag	As	Cu	Fe%	Zn
						SAMP#	1=TILL IF=TALUS FINES L=SILT S=SUL, M=MUSS MATT	ppb	ppm	ppm	ppm		1
17/09/2010	383875	5715079	1959	407 ppb valley	705161		T	<5	<0.2	45	40	3.53	86
17/09/2010	383925	5715095	1942	407 ppb valley	705161		L	5	<0.2	55	32	3.23	74
17/09/2010	384307	5715283	1995	407 ppb valley	705161	BAL-003	T	<5	<0.2	70		5.33	
17/09/2010	384215	5715359	2053	407 ppb valley	705161	BAL-004	Т	<5	<0.2	150	78	5.49	
17/09/2010	384325	5715355	2058	407 ppb valley	705161	BAL-005	TF	<5	0.2	80		9.34	
17/09/2010	384384	5715350	2070	407 ppb valley	705161	BAL-006	TF	25	<0.2	455	236	9.10	
17/09/2010	384420	5715335	2090	407 ppb valley	705161	BAL-007	TF	10	0.3	295	268	>10	-
17/09/2010	384440	5715325	2110	407 ppb valley	705161	BAL-008	TF	50	0.4	505	244		
17/09/2010	384451	5715310	2120	407 ppb valley	705161	BAL-009	TF	125	0.5	1440	244	>10	
17/09/2010	384480	5715300	2125	407 ppb valley	705161	BAL-010	TF	30	0.4	130	258	>10	1
17/09/2010	384550	5715175	2093	407 ppb valley	705161	BAL-011	TF	5	<0.2	90	146	4.59	-
17/09/2010	383864	5714833	2100	407 ppb valley	705161	BBT-01	TF	5	0.3	40	184	6.08	
17/09/2010		5714711	2100	407 ppb valley	705161	BBT-02	TF	10	0.2	45	200	7.10	
17/09/2010		5714647	2100	407 ppb valley	705161	BBT-03	TF	<5	<0.2	35	64	5.03	
17/09/2010		5714559	2100	407 ppb valley	705161	BBT-04	TF	5	<0.2	30	46	5.04	
17/09/2010		5714906		407 ppb valley	705161	BBT-05	TF	15	0.4	55	132	5.03	
17/09/2010		5715041	2100	407 ppb valley	705161	BBT-06	TF	<5	<0.2	80	84	6.72	
17/09/2010	1	5715157		407 ppb valley	705161	BBT-07	TF	<5	0.2	50	90	6.84	
17/09/2010		5715209		407 ppb valley	705161	BBT-08	TF	10	0.2	35	46	5.16	
18/09/2010		5715975		407 ppb valley	705161	BAL-012	TF	5	0.2	70	142	>10	
18/09/2010		5716000		407 ppb valley	705161	BAL-013	L	<5	<0.2	35	54	4.77	
18/09/2010	-	5716050		407 ppb valley	705161		TF	<5	<0.2	15	52	4.29	1
18/09/2010		5716108		407 ppb valley	705161	BAL-015	TF	5	<0.2	50	166	6.47	1
18/09/2010		5716016		407 ppb valley	705161	BAL-016	TF	<5	0.4	30	154	5.82	1
18/09/2010		5715998		407 ppb valley	705161	BAL-017	TF	<5	<0.2	25	104	6.92	1
		5716005		407 ppb valley	705161	BAL-018	S	5	0.2	180	106	7.61	1
18/09/2010		5715890		407 ppb valley	705161	BAL-019	T	<5	0.2	35	114	5.67	1
18/09/2010				407 ppb valley	705161	BAL-020	T	<5	0.2	55	72	6.15	5 1
18/09/2010		5715880		407 ppb valley	705161	BAL-020	TF	<5	0.2	35	110	5.53	3 1
18/09/2010	3844/0	5715895	2410	407 ppo valicy	705161	BAL-022	STANDARD	945	36.9	780	4160	3.60) 1
18/09/2010	-	-			705161	BAL-022	BLANK	<5			22	3.06	
18/09/2010	2020/2		0004	402 mak wellow	705161	BRT-023	TF	<5	0.3	65	116	7.94	
18/09/2010		5715957		407 ppb valley	705161	BBT-10	TF	<5	0.2	75	112	9.61	
18/09/2010		5716002		407 ppb valley	705161	BB1-10 BBT-11	TF	140		3020			
18/09/2010		5716057		407 ppb valley		BBT-12	TF	10	0.2	95	62	6.12	
18/09/2010		5716103		407 ppb valley	705161	BB1-12 BBT-13		5	<0.2	-	66	5.95	
18/09/2010		5715957		407 ppb valley	705161		TF	5	0.2	25	66	5.94	
18/09/2010		5716026	and the second se	407 ppb valley	705161	BBT-14	TF	<5		-	52	5.10	
18/09/2010		5716001	the second se	407 ppb valley	705161	BBT-15	TF	<5		15	56	5.48	
18/09/2010		5715924		407 ppb valley	705161	BBT-16	TF	10		65	166		-
18/09/2010		5716040		407 ppb valley	705161	BLL-001	TF	<5	-	65	148		
18/09/2010	_	5715963		407 ppb valley	705161	BLL-002	TF		-	-		-	
18/09/2010		571602		407 ppb valley	705161	BLL-003	S	30				7.09	
18/09/2010		571600		407 ppb valley	705161	BLL-004	T	10				7.81	
18/09/2010		5715710		407 ppb valley	705161	BLL-005	T	10		290	_		
21/09/2010	38089	5 571480	2140	Griz Cirque	597808	BLL-007	S	35			220	-	
21/09/2010	38092	571488	5 2150	Griz Cirque	597808	BLL-008	M	15	<0.2	50	130	3.38	5

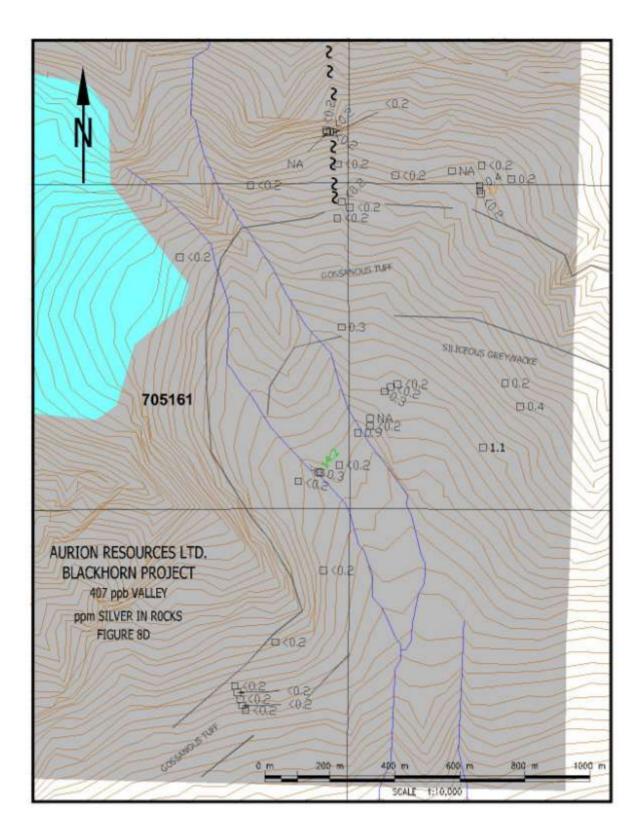
2010 BLACKHORN SEDIMENT SAMPLE DATABASE

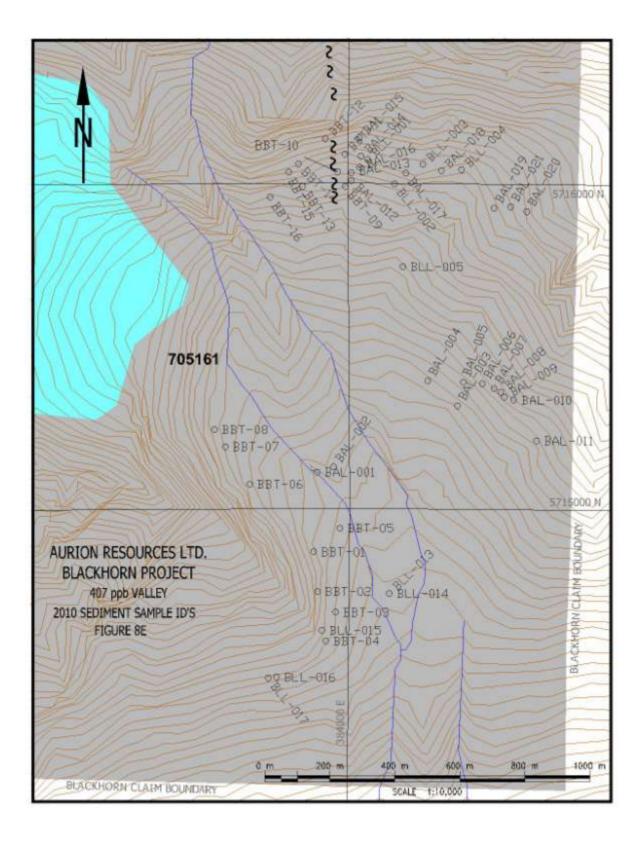
DATE D/M/Y	UTM E	UTM N	ELEVATION	TARGET	CLAIM NO.	SEDIMENT SAMP#	OBSERVATIONS: T=TILL TF=TALUS FINES L-SILT S=SOIL, M=MOSS MATT	Au ppb	Ag ppm	As ppm	Cu ppm	Fe%	Zn ppm
							S Sampled material from feox stained brittle shear gulley, carb	50	<0.2	30	136	4.10	50
21/09/2010	380956	5714885	2160	Griz Cirque	597808	BLL-009	and rare weak mineralized quartz veins.			(in the second			-
21/09/2010	380875	5714710	2135	Griz Cirque	597808	BLL-010	TF Sampled material from feox stained brittle shear gulley. carb and rare weak mineralized quartz veins. Ankeritic alteration haloes more common with more distal chlor-epidote- mangnaese fracture staining with muscovite-chlor-mang open fracture with carb and quartz? veinlets.	15	<0.2	40	184	6.64	100
							TF small Fe blowout vein within Fe stained zone. also large	10	<0.2	65	140	6.11	88
21/09/2010	380855	5714672	2115	Griz Cirque	597808	BLL-011	planar 15-25 cm thick carb shear vein ~180/70.						
21/09/2010	380715	5714555	2110	Griz Cirque	597808	BLL-012	TF	5	<0.2	30	126	5.96	94
22/09/2010	380711	5714497	2138	Griz Cirque	597808	BBT-17	TF	40	<0.2	105	162	9.24	
22/09/2010	380744	5714490	2120	Griz Cirque	597808	BBT-18	TF	50	<0.2	80	126	5.36	
22/09/2010	380744	5714456	2103	Griz Cirque	597808	BBT-19	TF	15	<0.2	60	132	7.56	
22/09/2010		5714398	2099	Griz Cirque	597808	BBT-20	TF	5	<0.2	65	222	>10	140
22/09/2010		5714341	2114	Griz Cirque	597808	BBT-21	TF	10	<0.2	40	110	7.30	
22/09/2010	380813	5714280	2063	Griz Cirque	597808	BBT-22	TF	5	<0.2	35	124	7.08	
22/09/2010	380764	5714259	2083	Griz Cirque	597808	BBT-23	TF	5	<0.2	30	70	6.03	
22/09/2010					597808	BBT-24	STANDARD	910	>30	795	4226	3.48	130
22/09/2010	-	-			597808	BBT-25	BLANK	5	<0.2	15	24	3.61	58
22/09/2010	380650	5714332	2107	Griz Cirque	597808	BBT-26	TF	5	<0.2	45	72	6.04	96
22/09/2010		5714685	2177	Griz Cirque	597808	BBT-27	TF	<5	0.2	20	106	5.59	86
22/09/2010		5714705	1855	NE Ottarasko	705161	BLL-013	L	25	<0.2	60	38	4.48	82
22/09/2010		5714705	1855	NE Ottarasko	705161	BLL-014	M	10	<0.2	55	30	3.04	70
22/09/2010		5714592	1925	NE Ottarasko	705161	BLL-015	TF	<5	<0.2	40	84	6.70	122
22/09/2010		5714448	1955	NE Ottarasko	705161	BLL-016	TF	<5	<0.2	35	130	7.39	126
22/09/2010		5714445	1950	NE Ottarasko	705161	BLL-017	M	5	<0.2	35	50	4.52	124
23/09/2010		5719652	1925	N Blackhorn	705163	BBT-28	TF	10	0.6	60	104	7.31	180
23/09/2010		5719704	1976	N Blackhorn	705163	BBT-29	TF	45	0.6	235	272	7.57	
23/09/2010		5719707	1958	N Blackhorn	705163	BBT-30	TF	<5	0.4	145	218	7.54	106
23/09/2010		5719717	2013	N Blackhorn	705163	BBT-31	TF	10	0.2	45	86	6.76	148
23/09/2010		5720326		N Blackhorn	705163	BLL-018	TF LABELLED BBL-017	5	0.6	10	144	7.22	448
23/09/2010		5720314	2075	N Blackhorn	705163	BLL-019	T near rock 905512	45	1.1	105	238	8.05	584
23/09/2010	1.0.0.0.00	5720357	2017	N Blackhorn	705163	BLL-020	T	65	1.0	130	256	8.62	380
23/09/2010		5720336		N Blackhorn	705163	BLL-021	T	55	1.0	160	292	8.99	360
23/09/2010		5740780		N Blackhorn	705163	BLL-022	TF Near rock 905512	10	0.3	145	346	>10	20
23/09/2010		5720521	2015	N Blackhorn	705163	BLL-023	T LABLELLED BBL-015 AT ROCK 905513	5	0.2	40	112	6.38	13
23/09/2010	510051	Draven.		11 01000000	705163	BLL-024	STANDARD	930	37.8	770	4180	3.51	13
23/09/2010					705163	BLL-025	BLANK	<5	<0.2	15	26	3.79	
26/09/2010	378441	5714688	2101	B3 Valley	704023	BAL-024	T	15	0.2	35	94	5.41	88
26/09/2010		5714690		B3 Valley	704023	BAL-025	T	35	<0.2	20	166	6.44	96
26/09/2010		5714694		B3 Valley	704023	BAL-026	TF	55	<0.2	20	144	6.64	98
26/09/2010		5714665		B3 Valley	704023	BAL-027	TF	20	<0.2	15	150	7.43	10
26/09/2010		5714669		B3 Valley	704023	BAL-028	TF	5	<0.2	15	160	7.79	10
26/09/2010		5714670		NE B3 Valley	597755	BAL-029	M	10	<0.2	10	166	5.28	-
26/09/2010		5714656		NE B3 Valley	597755	BAL-030	TF	5	<0.2	10	120		


PAGE 2 OF 3


2010 BLACKHORN SEDIMENT SAMPLE DATABASE


DATE D/M/Y	UTM E	UTM N	ELEVATION	TARGET	CLAIM NO.	SEDIMENT SAMP#	OBSERVATIONS: T-TILL TF-TALUS FINES L-SILT S-SOIL, M-MOSS MATT	Au ppb	Ag ppm	As ppm	Cu ppm	Fe%	Zn ppm
26/09/2010	379020	5714650	2242	NE B3 Valley	597755	BAL-031	M	60	<0.2	15	148	5.19	90
26/09/2010	379175	5714495	2265	NE B3 Valley	597755	BAL-032	TF	80	0.3	15	286	9.36	118
26/09/2010	379222	5714468	2280	NE B3 Valley	597755	BAL-033	TF	2410	11.8	40	662	9.70	122
26/09/2010	379278	5714457	2325	NE B3 Valley	597755	BAL-034	TF	15	0.4	30	132	7.54	94
26/09/2010	378519	5714569	2084	B3 Valley	704023	BBT-32	TF Moraine	10	<0.2	15	86	7.32	80
26/09/2010	378447	5714570	2081	B3 Valley	704023	BBT-33	TF Moraine	15	<0.2	20	102	7.75	96
26/09/2010	378492	5714529	2108	B3 Valley	704023	BBT-34	TF Moraine	10	<0.2	15	100	7.92	82
26/09/2010	378524	5714476	2087	SE B3 Valley	704023	BBT-35	TF Moraine	25	<0.2	55	112	7.99	122
26/09/2010	378638	5714178	2102	SE B3 Valley	704023	BBT-36	TF	10	<0.2	445	106	7.06	122
26/09/2010	378684	5714150	2163	SE B3 Valley	704023	BBT-37	TF	15	0.2	510	152	8.25	168
26/09/2010	378766	5714162	2185	SE B3 Valley	597755	BBT-38	TF	15	<0.2	360	132	7.84	126
26/09/2010	378858	5714168	2231	SE B3 Valley	597755	BBT-39	TF	10	<0.2	760	126	5.94	116
28/09/2010	379362	5713783	2360	upper 3 oz valley	597755	BAL 052	TF	95	1.2	310	318	9.70	226
28/09/2010	379203	5713734	2472	upper 3 oz valley	597755	BAL 053	TF	35	0.6	350	104	8.72	206
28/09/2010	379175	5713745	2485	upper 3 oz valley	597755	BAL 054	TF	45	0.8	190	98	7.66	224
28/09/2010	379155	5713754	2506	upper 3 oz valley	597755	BAL 055	TF	20	0.9	285	116	8.21	232
28/09/2010	379464	5713688	2339	upper 3 oz valley	597755	BAL 056	TF	55	0.2	130	118	8.11	154
28/09/2010	379472	5713665	2326	upper 3 oz valley	597755	BAL 057	Silt, taken in a brook, small sample.	55	0.3	425	134	8.21	158
28/09/2010	378271	5716738	2038	upper 3 oz valley	597755	BBT-40	TF	<5	0.3	65	114	7.72	208
28/09/2010	379371	5714019	2400	upper 3 oz valley	597755	BBT-41	TF	805	<0.2	55	202	8.75	106
28/09/2010	379204	5713994	2403	upper 3 oz valley	597755	BBT-42	TF	25	<0.2	60	182	7.69	102
28/09/2010	379488	5713877	2343	upper 3 oz valley	597755	BBT-43	TF	80	0.5	660	146	>10	200
28/09/2010	379546	5713978	2410	upper 3 oz valley	597755	BBT-44	TF	240	0.4	30	178	8.28	90
28/09/2010	379182	5713844	2452	upper 3 oz valley	597755	BLL-035	TF	10	0.4	260	134	8.61	122
28/09/2010	379160	5713666	2455	upper 3 oz valley	597755	BLL-036	TF same location as 905522	1290	0.4	275	134	6.71	132
28/09/2010	379099	5713929	2507	upper 3 oz valley	597755	BLL-037	TF	35	<0.2	65	194	8.55	110
28/09/2010	379096	5713847	2520	upper 3 oz valley	597755	BLL-038	TF	10	0.3	275		7.56	


APPENDIX III – FIGURES 8, 9, 10, 11 – SAMPLE ID'S, GOLD, ARSENIC AND SILVER RESULTS


FIGURE 8A – 407 ppb VALLEY - 2010 ROCK SAMPLE ID'S FIGURE 8B – 407 ppb VALLEY - ppb GOLD IN ROCKS FIGURE 8C – 407 ppb VALLEY - ppm ARSENIC IN ROCKS FIGURE 8D – 407 ppb VALLEY - ppm SILVER IN ROCKS FIGURE 8E - 407 ppb VALLEY - 2010 SEDIMANT SAMPLE ID'S FIGURE 8F – 407 ppb VALLEY - ppb GOLD IN SEDIMENTS FIGURE 8G 407 ppb VALLEY - ppm ARSENIC IN SEDIMENTS FIGURE 9A - LOWER GRIZ VALLEY - 2010 ROCK SAMPLE ID'S FIGURE 9B – LOWER GRIZ VALLEY - ppb GOLD IN ROCKS FIGURE 9C - LOWER GRIZ VALLEY - ppm ARSENIC IN ROCKS FIGURE 9D - LOWER GRIZ VALLEY - ppm SILVER IN ROCKS FIGURE 9E - LOWER GRIZ VALLEY - 2010 SEDIMENT SAMPLE ID'S FIGURE 9F - LOWER GRIZ VALLEY - ppb GOLD IN SEDIMENTS FIGURE 9G – LOWER GRIZ VALLEY – ppm ARSENIC IN SEDIMENTS FIGURE 10A - B3-3Oz VALLEYS - 2010 ROCK SAMPLE ID'S FIGURE 10B – B3-3Oz VALLEYS – ppb GOLD IN ROCK FIGURE 10C – B3-3Oz VALLEYS – ppm ARSENIC IN ROCKS FIGURE 10D - B3-3Oz VALLEYS - ppm SILVER IN ROCKS FIGURE 10E - B3-3Oz VALLEYS - 2010 SEDIMENT SAMPLE ID'S FIGURE 10F – B3-3Oz VALLEYS – ppb GOLD IN SEDIMENTS FIGURE 10G - B303Oz VALLEYS - ppm ARSENIC IN SEDIMENTS FIGURE 11A - NORTH EAST BLACKHORN AREA - 2010 ROCK SAMPLE ID'S FIGURE 11B - NORTH EAST BLACKHORN AREA - ppb GOLD IN ROCKS FIGURE 11C – NORTH EAST BLACKHORN AREA – ppm ARSENIC IN ROCKS FIGURE 11D – NORTH EAST BLACKHORN AREA – ppm SILVER IN ROCKS FIGURE 11E - NORTH EAST BLACKHORN AREA - 2010 SEDIMENT SAMPLE ID'S FIGURE 11F – NORTHEAST BLACKHORN AREA – ppb GOLD IN SEDIMENTS FIGURE 11G – NORTH EAST BLACKHORN AREA – ppm ARSENIC IN SEDIMENTS

