

Ministry of Forests, Mines and Lands BC Geological Survey

ASSESSMENT REPORT TITLE PAGE AND SUMMARY

RECONNAISSANCE ROCK SAMPLING, SILT SAMPLING, SOIL SAMP	LING, AND ORTHOF		IG \$43,569.93
AUTHOR(S) ARND BURGERT	SIGNATURE(S)	and	(Darfi
NOTICE OF WORK PERMIT NUMBER(S)/DATE(S)N.A			YEAR OF WORK2010
STATEMENT OF WORK - CASH PAYMENT EVENT NUMBER(S)/DATE	(S) SOW-M (4829	042) 2011/JAN/2	23
PROPERTY NAMEBANBURY			
CLAIM NAME(S) (on which work was done) 530229, 573380, 604674, 598235, 602882, 60572			
COMMODITIES SOUGHTAu, Cu			
MINERAL INVENTORY MINFILE NUMBER(S), IF KNOWN 092HSE0	64, 092HSE177		
MINING DIVISION Similkameen and Osooyos	NTS92H/8E		
LATITUDE49_01'" LONGITUD	E120 ⁰		" (at centre of work)
OWNER(S)			
1) JENSEN, DAVID B.	2)		
MAILING ADDRESS			
c/o Steven McKoen Blake, Cassels & Graydon 595 Burrard St. PO Box 49314			
3 Bentall Centre Vancouver BC V7X 1L3			
OPERATOR(S) [who paid for the work]			
1)0838331 B.C. LTD.	2)		
MAILING ADDRESS			
c/o Steven McKoen			
Blake, Cassels & Graydon 595 Burrard St. PO Box 49314 3 Bentall Centre Vancouver BC V7X 1L3			
PROPERTY GEOLOGY KEYWORDS (lithology, age, stratigraphy, struct	ure, alteration, mineration	alization, size an	id attitude):
BANBURY, HEDLEY, VEIN, PINE KNOT, MAPLE LEAF HEDLEY INTR			

REFERENCES TO PREVIOUS ASSESSMENT WORK AND ASSESSMENT REPORT NUMBERS 15601, 16746, 17631, 25518

TYPE OF THIS RE	F WORK IN PORT	EXTENT OF WORK (IN METRIC UNITS)	ON WHICH CLAIMS	PROJECT COSTS APPORTIONED
				(incl. support)
GEOLOC	GICAL (scale, area)			
Gro	ound, mapping			
Pho	oto interpretation			
GEOPH	YSICAL (line-kilometres)			
Gro	bund			
Ν	Magnetic			
E	Electromagnetic			
I	nduced Polarization			
F	Radiometric			
5	Seismic			
(Other			
	oorne			
GEOCHE	EMICAL			
(number	of samples analysed for)			
Soil	14 Au,	ICP	573380	435.11
Silt	5 Au, I	CP	573380	155.41
Roc	ck 54 Au,	ICP	573380	2626.02
Oth	er			
DRILLIN	G			
	tres; number of holes, size)			
Cor	e			
Nor	n-core			
RELATE	D TECHNICAL			
San	npling/assaying			14,461.01
Peti	rographic			
Min	eralographic			
Met	allurgic			
PROSPE	ECTING (scale, area)			
PREPAR	RATORY/PHYSICAL			
Line	e/grid (kilometres)			
	oographic/Photogrammetric	1:5,000 12.25 km ²	530229, 573380, 604674, 598235, 602882, 605725, 585563, 604675, 705034, 705032, 705033, 705031	4,108.93
Roa	ad, local access (kilometres)/trail			
Trei	nch (metres)			
Und	derground dev. (metres)			
	er		530229, 573380, 604674, 598235, 602882, 605725, 585563, 604675, 705034, 705032,	21,783.4
			705033, 705031 TOTAL COST	\$43,569.93

ASSESSMENT REPORT

BC Geological Survey Assessment Report 32213

describing

RECONNAISSANCE ROCK SAMPLING, SILT SAMPLING, SOIL SAMPLING, AND ORTHOPHOTO MAPPING ON THE BANBURY PROPERTY

Located in the Hedley Area Similkameen and Osoyoos Mining Divisions NTS 92H/8E; BCGS 92H.040 49° 21' N Latitude; 120° 08' W Longitude

MTO TRANSACTION EVENT NO. 4829042

-prepared for-

Mr. David Jensen, P.Eng

-by-

Arnd Burgert, P.Geo. Arnd Burgert Consulting, Ltd.

Linda Dandy, P.Geo.

March 15, 2011

TABLE OF CONTENTS

1.0 SUMMARY	
2.0 INTRODUCTION	
3.0 PHYSIOGRAPHY	4
4.0 HISTORY	4
5.0 EXPLORATION WORK CARRIED OUT IN 2010	
6.0 CLAIM INFORMATION	
7.0 GEOLOGY	
8.0 GEOCHEMISTRY	
9.0 INTERPRETATIONS AND CONCLUSIONS	
10.0 RECOMMENDATIONS	
11.0 REFERENCES	
12.0 DATE AND SIGNATURE PAGE	
13.0 QUALIFICATIONS	

Tables:

TABLE 1 – CLAIM DATA	19
TABLE 2 – ANALYTICAL CONCENTRATIONS CORRELATING WITH GOLD	
CONCENTRATIONS	25

Figures:

All figures follow p. 33

FIGURE 1	_	BANBURY LOCATION MAP
FIGURE 2	_	2011 TARGET AREAS
FIGURE 3	_	SOIL AND STREAM SAMPLE SITES – 2010 AND HISTORICAL
FIGURE 4	_	ROCK SAMPLE SITES – 2010 AND HISTORICAL
FIGURE 5	_	SOIL AND STREAM SAMPLE LOCATIONS
FIGURE 6	_	MINERAL CLAIM LOCATIONS
FIGURE 7	—	REGIONAL GEOLOGY
FIGURE 8	—	2010 ROCK SAMPLE Au VALUES (ppb)
FIGURE 9	_	2010 ROCK SAMPLE Ag VALUES (ppm)
FIGURE 10	_	BEDROCK CONCENTRATION PROFILES ACROSS MINERALIZED ZONE
FIGURE 11	—	SOIL CONCENTRATION PROFILES ACROSS MINERALIZED ZONE
FIGURE 12	—	ROCK CONCENTRATION CORRELATIONS
FIGURE 13	_	SOIL CONCENTRATION CORRELATIONS

Appendices:

APPENDIX 1 – STATEMENT OF EXPENDITURES APPENDIX 2 – ROCK SAMPLE DESCRIPTIONS APPENDIX 3 – ANALYTICAL CERTIFICATES APPENDIX 4 – ORTHOPHOTO MAP

1.0 SUMMARY

The Banbury Property consists of seventeen contiguous mineral tenures located 30 km east of Princeton in southern British Columbia. 0838331 B.C. Ltd. has acquired a 100% interest in the Property by exercising options with several previous tenure holders.

The Hedley gold skarn camp, situated about 7 km to the northeast on the opposite side of the Similkameen River valley, was one of the largest gold producers in BC history. Near the centre of the Banbury claims, gold-bearing quartz veins were discovered and explored on surface and underground near the beginning of the 20th century.

During November and December, 2010, a reconnaissance silt and rock sampling program was carried out over part of the Banbury Property to assess the potential for the discovery of additional veins or vein extensions. To detect alteration minerals, the rock samples were analysed for a whole rock lithogeochemical analytical suite.

To assist in accurately compiling many years of exploration data, a compilation of historical exploration work was undertaken and an orthophoto map prepared.

2.0 INTRODUCTION

The directors of 0838331 B.C. Ltd. contracted Arnd Burgert Consulting, Ltd. to manage a reconnaissance silt, soil, and rock sampling program the claims. Mr. Burgert, P.Geo. supervised and participated in the field work portion of the program during the period of November 25 to 28, 2010. Work was undertaken by a crew of 2 people working out of the town of Princeton.

The Banbury property lies near Hedley in the Cascade Mountains of southern British Columbia, approximately 30 kilometres east of Princeton. Centred at 49° 21' north latitude and 120° 08' west longitude, it straddles the Similkameen and Osoyoos Mining Divisions. The Property location is shown on Figure 1.

The Banbury property lies within the Quesnel Terrane of the Intermontane belt. In this region, Late Triassic to Early Jurassic dioritic stocks and dyke swarms of the Hedley intrusions were emplaced into sedimentary and volcanic rocks of the Upper Triassic Nicola Group. Seven kilometres east of the Banbury property, the Toronto Stock, a Hedley intrusion, and its associated dyke swarms were emplaced into calcareous siltstones and limestones. This juxtaposition produced the Nickel Plate gold-bearing sulphide skarn deposit, which has produced >2.1 million oz. Au. At the Banbury property, the Banbury Stock, another Hedley intrusion, was emplaced into generally clastic sedimentary rocks and no significant skarn mineralization has been recognized to date. However, several gold-bearing veins have been identified at Banbury, including the Maple Leaf and Pine Knot, within the hornfelsed aureole surrounding the Banbury Stock.

3.0 PHYSIOGRAPHY

The historic workings on the Banbury property lie along the west side of Henri Creek, which forms a steep-sided valley draining northeasterly into the Similkameen River approximately three kilometres west of Hedley. They are reached along the gravel Gold Mountain Road, which follows an abandoned railroad grade for three kilometres along the south side of the Similkameen River from the paved Highway 3. A network of old roads and trails extends up from the old railroad grade, providing access to the historic underground workings and drill sites.

Topography on the property is moderate, with elevations ranging from 530 metres on the Similkameen River to about 1,400 metres at the southern edge of the property. The area is in the Montaine Cordillera ecozone, with hot summers (mean range of 10 to 26°C in July) and cold winters (mean range of -11 to -2°C in January) and only 22 centimetres of annual precipitation. The property can be worked year-round; due to lack of water, drilling would require a water truck.

Vegetation consists predominantly of mature fir up to 50 centimetres in diameter with scattered pine and spruce. Underbrush is generally sparse but can be thick along drainages. Labour, contractors and supplies are readily available in Princeton, located 30 kilometres to the west, which has a long mining history, or in Keremeos, located 30 kilometres to the southeast. A three-phase power line runs along the south side of the Similkameen River, within a few hundred metres of the historic workings.

4.0 HISTORY

The Similkameen River has been known as a source of placer gold since the midnineteenth century, with significant production before 1890. Lode gold occurrences have been widely explored throughout the Hedley area. The Nickel Plate ore-body, located 7 kilometres east of the Banbury property, produced >2.1 million oz. Au between 1904 and 1996.

A history of exploration and development work carried out on ground now covered by the Banbury Property is presented in the remainder of this section. The historical compilation was researched and compiled for 0838331 B.C. Ltd. by Linda Dandy, P.Geo. The information in this section was obtained from historical reports including BC Minister of Mines Annual Reports, Assessment Reports, GSC Memoirs and other BC government publications. Locations of historical exploration work areas are depicted on Figure 2, while a plan showing the location of historical and 2010 soil/silt sample locations is presented as Figure 3 and rock samples as Figure 4.

Two historic workings occur on the Banbury property – the Maple Leaf and the Pine Knot. The mineralization in these workings is found in quartz vein systems containing arsenopyrite and occasional sphalerite, and returning gold and silver values. Section

4.1 describes the history of the Maple Leaf and Pine Knot areas (Figure 6), while Sections 4.2 to 4.7 describe additional areas of interest on the property (Figure 2).

4.1 MAPLE LEAF, PINE KNOT, MARTIN, DAISY

<u>1900</u>

The first documented report of work in the Banbury area is from the 1900 Minister of Mines Annual Report, where the then named Pollock Group was first mentioned with staking and some development work. No details were given.

<u>1901</u>

In 1901, the Maple Leaf workings were first developed on 2 separate veins. The first is a "small lead" (or vein) opened up in a cut measuring 2.4 metres long, 0.9 metres feet wide and 1.2 metres deep. This "lead" consists of an over-turned(?) and much broken quartz vein, the outcropping of which can be traced horizontally for about 61 metres. There is also a 4.6 metre tunnel into broken quartz vein material, and it is suggested that the tunnel stopped short of reaching the quartz in place. Work done is insufficient to show orientation of the mineralization but it is believed to be relatively flat lying and dipping toward the river. The owner claims that the quartz averages 4.35 to 7.15 g/t gold.

12.2 metres above this "small lead" is the second or "big lead" developed by open cuts and stripping. The "big lead" consists of 4.6 to 6.1 metres of crushed quartz, perhaps the broken sub-crop above the true bedrock. No assays of this material are reported. However, a 30 centimetre wide pyrite band on the hanging wall of the quartz assayed from 14.3 g/t to 48.6 g/t gold. An open cut on the "big lead" measuring 4.3 metres by 1.8 metres by 0.9 metres shows a quartz vein of undetermined width dipping at 45° into the hillside. This vein assayed 14.3 g/t gold.

<u>1908</u>

In 1908, considerable development work was completed by Pollock Mines Ltd. on the Pollock Group consisting in part of the Martin, Pine Knot and Maple Leaf claims. Tunnelling work was done on the Martin claim, it being the claim closest to the river (and less far up the steep slopes). The work done on the Martin consisted of:

- No. 1 crosscut tunnel driven 21 metres, cutting the vein on the foot-wall at 17 metres and the hanging-wall at 21 metres, with a drift 5.5 metres along the vein.
- No. 2 tunnel was driven 12 metres in length, passing through the foot-wall at 4.5 metres and striking the hanging-wall at 10 metres, the vein being 4.9 metres wide at this point.
- No. 3 tunnel was driven 11 metres in length, cutting the vein, which is 2.1 metres wide at this point, at 5.5 metres, and a winze 1.8 metres deep was sunk on the vein from floor of tunnel.

- No. 4 tunnel was driven 11 metres in length, cutting the foot-wall at 3.6 metres and passing through the hanging-wall at 10 metres, showing a vein width of fully 5.5 metres.
- No. 5 tunnel is 45 metres in length, striking the vein at 34 metres. There is a drift to the south on the vein 18 metres in length, with a cross-cut at the end of 7 metres, and a drift to the north of 12 metres with 3 metres of cross-cut. The vein thus shown up for 30 metres in this tunnel ranges from 45 to 150 centimetres in width. (Note: this matches up with Pine Knot Level 5 as plotted on current maps.)
- No. 6 tunnel was driven 6 metres towards the vein, through very heavy wash, but was not driven far enough to cut the vein, although an open cut on the hillside above showed the vein to be 7 metres wide at this point.
- Various other surface cuts were also made during the period that work was in progress, and altogether the results from all development was most satisfactory, showing the Martin vein to be persistent both horizontally and vertically, and the values obtained showing in all cases payable ore (although no assay values are reported).

The total amount of work done was 158 metres, of which 152 metres was on the Martin claim and Pine Knot, and 6 metres on the Maple Leaf. No plan or section maps of the Martin workings have been located, but it is believed these are what are now known as the Pine Knot workings. The locations of the 6 tunnels should be visible, more or less trending along the vein at the elevation of the Level 5 tunnel, and heading from north to south (since tunnel 6 reportedly ended in wash therefore being located nearer to the creek valley).

<u>1910</u>

In 1910, Charles Camsell of the Geological Survey of Canada, wrote Memoir 2 titled "Geology and Ore Deposits of Hedley Mining District." This Memoir contains the first relatively descriptive geological report on this area. This geological description is quoted from Camsell:

Geology. – The country rock of the district consists of black limestones and argillites, and some volcanic tuffs and breccia inter-bedded together in thin beds not more than 1 foot in thickness. They belong to a somewhat higher horizon than the rocks of the Hedley district, but are apparently conformable with them. They have been subjected to strong orogenic movements, and now dip at very high angles, and strike about north and south. Fissures have been developed in these rocks in a north and south direction, in a most marked degree, while in directions transverse to this they are traversed by numerous minute fractures.

An irregular body of diorite, apparently identical with the Hedley diorite, is intrusive into the sedimentary rocks. This passes through the claims in an east and west direction, attaining its greatest development in the centre of the group, where it has a width of about 1,400 feet. The contact with the sedimentary rocks is very irregular, and apophyses of the diorite project out into the sedimentary rocks, cutting across the strike of the beds.

Both the diorite and the sedimentary rocks are cut by soft greenish dykes of an andesitic character, which strike north and south about parallel to the strike of the sedimentary rocks. Other dykes, somewhat similar in appearance but of a more siliceous nature, also cut the sedimentary rocks and probably also the diorite.

Character of the Deposits – The deposits of the Henry Creek district are fissure veins lying in the sedimentary rocks in the neighbourhood of the diorite contact. The sedimentary rocks are everywhere traversed by minute fractures which contain some pyrite and arsenopyrite, and which have no definite trend. The fissures, however, on which the work has been done, are strong and well-defined, and have in general a north and south strike.

The main workings of the group **[NOTE: assumed to refer to the Pine Knot or Martin simply judging by elevations given]** lie at an elevation of 900 feet above the Similkameen River, and are located on a well defined fissure, which has been traced for at least 500 feet. The width of this is not constant, but varies from 2 feet up to 12 or 14 feet, with an average of about 5 feet. The gangue which contains the ore minerals is both quartz and calcite, and these cement together fragments of the country rock with which the fissure is full. The ore minerals are largely arsenopyrite with some pyrite, which are found in the quartz and calcite, as well as in the small fracture planes in the country rock. The values here are chiefly in gold, and in the decomposed outcrop of the vein free gold was easily obtained by panning.

The upper workings of this group **[NOTE: assumed to refer to Maple Leaf simply judging by elevations given]** lie at an elevation of 1,400 feet above the Similkameen River. These also are located on quartz veins, which, however, cut the diorite as well as the sedimentary rocks. The most persistent of these veins has been traced on the surface for a distance of 500 feet in a north and south direction, and it has a dip of about 45° to the west. Another vein lies almost flat, but is only a few inches wide. The gangue is white quartz, which carries as ore minerals, arsenopyrite, pyrite and some galena. The values here are also chiefly in gold, with some silver. In places they were found to be high but were not uniform. The best results were located in the lower workings [i.e. Pine Knot].

General Development – Considerable work has been done on this group of claims at different times, but this has now been discontinued. On the upper quartz veins, the work consists largely of a series of open-cut and shallow pits. A tunnel, also, has been run in on the flat lying lead for a distance of over 100 feet. On the lower workings **[i.e. Pine Knot]** there are 2 inclined shafts at the north end near the diorite contact **[NOTE: these are visible in the area where the 2010 panel samples were collected]**. One dips 60° to the west, and is down 60 feet with a cross-cut at the bottom of 30 feet; the other dips 50° to the west, and is down 55 feet. There are also five tunnels running westward into the side of the mountain. The longest of these is 148 feet in length, and at the time of examination had two drifts along the vein to the north and south, the one 30 feet in length, the other 64 feet. Another tunnel above the longer one is 60 feet in length **[current Level 5 workings]**. Besides these there are three shorter tunnels, all cutting the main lead at different points.

<u>1927</u>

Only limited mention of this claim group was made between 1909 and 1927 when activities seem once again to pick up. The 1927 Minister of Mines Annual Report states that the old workings were cleaned out and exploratory work was done on the vein extensions (but it is not stated exactly which workings are being referenced). A quartz vein impregnated with pyrite and arsenopyrite and varying from 1.8 to 3.0 metres in width was developed along a northerly and southerly strike for 183 metres by shafts, tunnels, and open-cuts. The higher grade arsenopyrite ore appears to lie in segregations and narrow veins either on the foot or hanging wall. A sample of this ore averaged 37.7 g/t gold. Average samples across the whole width of the vein run about 9.0 g/t gold. Neither of the shafts could be sampled, and the ore in the bottom, probably 18 metres deep, was not seen. The owners state that other veins have been discovered showing more consistent arsenopyrite contents and consequently higher gold values, up to 52.8 g/t. The author concludes that the "veins on this hill are persistent and worth exploration".

<u>1932</u>

From 1932 to 1937, significant exploration and development programs were carried out on the claim group, primarily on the Maple Leaf workings. In 1932, a great deal of exploratory work was done throughout the season, and several veins striking in a northerly and southerly direction, and apparently converging to the south, were uncovered by open cuts and trenching. On the Maple Leaf claim a sample across 6 metres on open-cut assayed 23.95 g/t gold and 13.4 g/t silver. A sample from the dump of the old lower tunnel assayed 16.8 g/t gold and a grab sample from a 75 centimetre vein above this tunnel assayed 12.4 g/t gold. The gold occurs generally in the arsenopyrite.

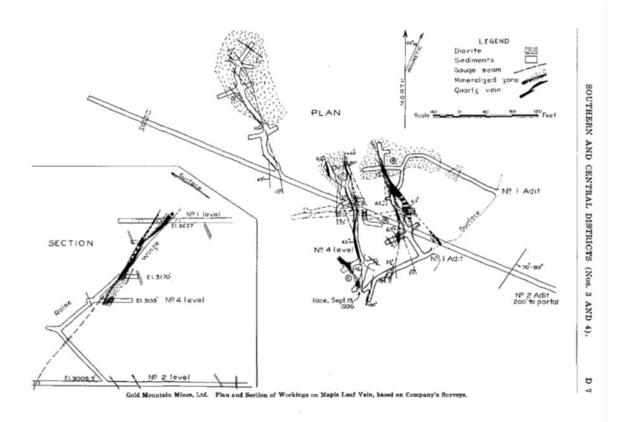
<u>1933</u>

In 1933, the claims were optioned by the Gold Mountain Mines Ltd. Their work that year was all done on the Maple Leaf workings. Development work consisted of a crosscut tunnel driven 46 metres east, then 23 metres south, with an offset 14 metres to the west. Two crosscuts intersected ore and a drift 23 metres long was driven on a north-westerly and south-easterly strike to connect them. Indications of ore were found in a 4.5 metre winze, 17 metres in from the mouth of the main crosscut on the diorite-

argillite contact, and two 1.2 metre samples assayed 4.7 g/t gold and 4.4 g/t gold. Beyond this contact, stringers of quartz, calcite, pyrite, and arsenopyrite striking east and dipping 40° south were found in the diorite. After turning the crosscut to the south, much oxidized gangue-matter over drift-widths containing bands of arsenopyrite was encountered. Samples taken over 0.9 and 1.2 metre widths assayed between 2.5 and 8.7 g/t gold. Drifting for 21 metres on the shear-zone in diorite produced assays varying from 1.2 to 34.8 g/t gold over widths from 0.3 to 1.5 metres, giving an average of slightly over 12.4 g/t gold over 1.2 metre widths. On the surface, about 23 metres above and to the north of the tunnel, the shear-zone, varying from 0.6 to 3.6 metres wide, has been traced by open-cuts for about 213 metres. Advice from the management states that the ore in the north-west face is in the form of a wedge, being 0.9 metres wide at the top of the drift rind and 1.5 metres or more at the bottom, indicating the possibility of a lens widening with depth.

<u>1934</u>

In 1934 on the Maple Leaf workings, 5 holes were diamond drilled to a maximum depth of 7.6 metres below the upper workings and the shear zone continuity was established to that depth. One flat hole was drilled north 65° west to explore the ground in that direction. After this work was done a crosscut adit, 72 metres lower, and 125 metres south 20° east of the upper adit, was driven 288 metres north 65° west, with a branch north 20° west 91 metres long.


The old Pine Knot adit lower down was cleaned out and a winze commenced on the lead. The lower crosscut was driven through dark coloured, highly altered, banded sediments occasionally intruded by tongues of diorite, diabase dykes and a gabbro. Numerous narrow shear zones, filled with quartz, calcite, and lesser amounts of pyrite, arsenopyrite, and containing low values in gold and silver, were intersected. The northwest drift coincided with the downward extension of the ore-body found above, hence the reason for deeper exploration.

<u>1935</u>

In 1935, the property was optioned by Consolidated Mining and Smelting Company and 229 metres of diamond drilling was done from the inner end of the lower crosscut adit in search of the downward continuation of the mineralization developed on the Maple Leaf No. 1 adit. The option was dropped late in 1935 (one could assume the results were less than anticipated) and the owning company Gold Mountain Mining Ltd. deepened the winze in the Maple Leaf adit.

<u> 1936 - 1937</u>

A large amount of development work was completed on the Maple Leaf workings in 1936. A sketch map of the workings, reproduced below, is from the 1936 Minister of Mines Annual Report.

The 1936 Minister of Mines Annual Report contains abundant geological, development and assay information on both the Pine Knot and Maple Leaf workings.

The Maple Leaf vein is an irregular, branching shear-zone striking about north-south and dipping 60° to the west. Numerous gouge-seams occur in the zone and pass into the walls. Much of the mineralization is quartz-filled breccia. The above map shows the nature and extent of the mineralized sections of the zone. The zone varies in width up to about 9 metres and strongly mineralized portions of the zone attain widths up to 3.6 metres. In much of the zone mineralization is associated with quartz only, alteration is not intense, and quartz and wall-rock are sharply distinguished. On No. 4 level at (C) on the map there is strong alteration and some mineralization within the rock gangue. Exploration shows that the strongest mineralization is encountered close to the contact with diorite. Mineralization is not, however, continuous on the dip of the vein in this section.

The workings include two adits. No. 1 adit, elevation 992 metres, explores the shearzone over a length of some 61 metres, but does not give a continuous section for that distance. From this adit-level a winze is sunk 33.5 metres on the most promising section. No. 2 adit, elevation 914 metres, 295 metres in length, passes through the barren shear-zone which is explored by drift across the diorite contact for 61 metres. A raise later was driven to connect with the bottom of the winze from No. 1, and a sublevel, known as No. 4 level, elevation 956 metres, was 62.5 metres long at September 15th, 1936. Since that date, besides further drifting south on No. 4 level, another sublevel, some 12 metres lower, was, driven to tap the shear-zone; at a still later date a crosscut is reported to have encountered mineralization on No. 2 level some 30 metres south of the original crosscut.

Several short diamond drill holes were put down by the company at an early stage of development from a station at (A). Four holes were drilled from (B) by the Consolidated Mining and Smelting Company to cut the shear-zone south of the crosscut, both level with and above No. 2 level; a fourth hole was drilled on line from the face of the crosscut. The results from this drilling are not known.

Distribution of quartz in the various parts of the shear-zone is irregular and gold values are erratic. The list of channel samples below, illustrate this latter fact.

- (1.) Bottom of winze, south side, 107 centimetres horizontal on hanging-wall of zone: Gold, 25.5 g/t; silver, 12.4 g/t.
- (2.) Succeeding 127 centimetres horizontal: Gold, 2.8 g/t; silver, 18.7 g/t.
- (3.) Succeeding 216 centimetres horizontal: Gold, 1.6 g/t; silver, 6.2 g/t.
- (4.) Succeeding 40 centimetres horizontal on extreme foot-wall: Gold, 0.5 g/t; silver, 6.2 g/t.
- (5.) Seam of heavy sulphides, 4 to 8 centimetres wide, in hanging-wall section: Gold, 150.5 g/t; silver, 49.8 g/t.
- (6.) No. 4 level, where zone was first encountered, 122 centimetres cut normal to a flatly-dipping strand of quartz 1.8 metres from hanging-wall: Gold, 0.2 g/t; silver, 6.2 g/t.
- (7.) Same location, 132 centimetres horizontal on hanging-wall section of zone: Gold, 0.9 g/t; silver, 6.2 g/t.
- (8.) No. 4 level, 12 metres south of last point, 56 centimetres: Gold, 24.9 g/t; silver, 15.6 g/t.
- (9.) 4.5 metres south of (8), 86 centimetres: Gold, 9.3 g/t; silver, 71.5 g/t.
- (10.) No. 4 level, face of small drift north of (C), 152 centimetres: Gold, 0.6 g/t; silver, 3.1 g/t; zinc, 0.7%.

These assay results show that it is not a simple task to determine average values over more than limited sections of the shear-zone. Very careful, close-interval sampling is necessary to obtain reliable figures. A weighted average for these 10 samples gives 6.5 g/t gold, 14.0 g/t silver over 104 centimetres width.

No. 4 level is, at the north end, near the bottom of mineralization in this section of the mine. Mineralization on this level is not quite as strong as on No. 1 level, and is very irregular. Development of mineable ore southward and downward from the south end of No. 4 level is important.

Late in 1936, a concentration plant (mill) was built near the river, a tram-line was installed and power was brought in by a short branch line. The mill commenced operation in early 1937 at 60 tons per day. Flotation concentrates were sacked and hauled by truck to Hedley, then on to Tacoma by rail. Production in 1937 from the

Maple Leaf vein was 5897 tonnes with a recovered grade of 5.0 g/t gold, 2.3 g/t silver with minor copper and zinc.

Work done on the Pine Knot vein in 1936 includes sinking of a 15 metre winze from a 9 metre long adit. Channel samples in a short crosscut in the bottom of this winze returned:

- (1.) 152 centimetres horizontal on hanging-wall of vein, quartz and bleached rock and gouge: Gold, 0.6 g/t; silver, 6.2 g/t.
- (2.) 114 centimetres, succeeding waste: Gold, 0.9 g/t; silver, 6.2 g/t.
- (3.) 76 centimetres horizontal on foot-wall, below 147 centimetres of waste: Gold, trace; silver, trace.

Two small veins, with widths rarely attaining 0.5 metres, lie between the Pine Knot and Maple Leaf.

<u>1979 to 1984</u>

From 1979 to 1984, Banbury Gold Mines Ltd. carried out extensive drilling and drove two adits into the Pine Knot vein, prior to extraction of 6000 tonnes of ore for heap leach testing and 250 tonnes of ore for flotation testing. A grade of 5.1 g/t gold was reported for the 6000 tonne sample. A second 250-tonne bulk sample was milled at the Dankoe mine, producing 112.69 tonnes of flotation concentrate containing 1109 grams Au and 15504 grams Ag (Minfile 092HSE046).

In 1984, Noranda Inc. optioned the Banbury property. Between 1984 and 1987, Noranda drilled holes (5624m), and carried out grid soil geochemistry and 954 metres of mechanical trenching in 11 trenches (Sanford, 1986; Sanford, 1988a). Noranda identified potential for low-grade quartz diorite-hosted gold mineralization at the northern end of the property, reporting broad intersections in holes NB86-06 (38.1 m @ 4.41 g/t) and DDH 87-13 (49.1 m @ 3.12 g/t) related to narrow high-grade quartz-carbonate veins (Sanford, 1988a; Sanford, 1988b).

Although numerous trenching campaigns have been carried out on the Banbury property, the only documented work was the excavation of 11 trenches by Noranda in 1987. These trenches were mainly targeted at gold soil geochemical anomalies (Sanford, 1988b).

<u>1997</u>


In 1997, Teck Corporation optioned the Banbury property and drilled 5 core holes (770m), targeting the extensions to, and connections between, the broad zones of lowgrade gold found by Noranda on the northern part of the property. The best hole intersected 15 m @ 1.27 g/tonne Au, but did not show continuity between the zones (Smith, 1998). Teck filed complete drill logs and analytical results for their 1997 (B97 series) drilling.

4.2 MISSION/FLINT

The first historical mention of the Mission workings (located on tenure 705031, Minfile 092HSE052) is in BC Minister of Mines Annual report for 1936, and is summarized here:

The showings are at elevations of between 4,300 and 4,500 feet on the west side of Jameson Creek, the first stream flowing into the river below Hedley. This is a hilly region a short distance back from the edge of Similkameen Valley; the hillsides are steep but not precipitous and timber cover varies considerably in thickness. The showings are on an open, grass covered slope, separated from rather thick woods on the south-west by an irregular, dry gully.

The showings are in a westerly-projecting tongue of the large body of granodiorite that outcrops both north and south of the river in this locality. The rock here is a biotite granodiorite, brownish-grey in colour, and of medium grain. Surrounding the diorite and rarely as inclusions or roofpendants are sedimentary rocks, predominantly argillaceous in character. One such mass lies immediately south-west of the principal showings. One or two andesite dykes are intrusive into the granodiorite and appear to be older than the mineralization; the geological age of these dykes is not known, but they may be Tertiary. Mineralization, entirely within the granodiorite, has been disclosed in several shear-zones near an irregular, dry gully (see sketch-map below). There are few outcrops, and the finding and tracing of most of these zones has been the result of careful and expert prospecting. There are three principal shear-zones, known as the Barnes, Walker, and Winkler zones, on the first two of which small shafts have been sunk; other zones have not been named. None of the numerous open-cuts are shown on the accompanying sketch-map.

Mission Group. Sketch-plan of Shear-zones in Granodiorite.

There is a strong alteration of the granodiorite in the shear-zones to a whitish granular material in which the original texture can barely be recognized; this is composed of quartz, white mica, a little chlorite, and traces of epidote and calcite. Sulphides occur in this material as bands and masses, sometimes accompanied by dull white guartz, but the latter is never abundant. The distribution and percentage of sulphides is hard to determine, due to a strong oxidation which may, near the surface, obliterate all traces of metallic sulphides. These include pyrite, fine-grained arsenopyrite, dark-brown sphalerite, and a very little tetrahedrite and chalcopyrite, all in varying proportions and amounting, in total, from a trace to 40 per cent of a zone several feet wide. The strongest mineralization is in the Barnes zone, on which a 12-foot shaft has been sunk and which has been exposed by opencuts at close intervals for 250 feet, disclosing promising mineralization; the indicated length of the zone is about 800 feet. The zone is 10 to 15 feet wide and locally 2 or 3 feet wider, although the actual limits are not readily determined. The Walker zone has been trenched at frequent intervals from a 20 foot shaft to its junction with the Barnes zone, a distance of some 300 feet. Sediments show on the west side of the shaft, and fairly strong mineralization is evident in the shaft and several of the trenches. The Winkler zone, discovered in 1936, has not been more than surficially explored; less mineralization is evident, although oxidation has been sufficiently heavy to obliterate much of the sulphides. Other shear-zones are geologically similar, but are weaker structures than the three principal zones. All stop at the dry gully, which must mark the presence of a fault or series of faults.

Sampling has failed to return values as good as might be expected from a study of the mineralization. Those taken by the writer follow:

- (1.) Selected from bottom of Walker shaft, quartz with 20 per cent arsenopyrite and a little pyrite: Gold, 2.5 g/t; silver, 6.2 g/t; copper, nil.
- (2.) Chip sample from bottom of Barnes shaft on south-east side in mineralized altered diorite containing pyrite, some heavy arsenopyrite, and a little sphalerite: Gold, 1.2 g/t; silver, 108.9 g/t.
- (3.) Selected from Barnes shaft-dump, heavy arsenopyrite with less pyrite and sphalerite: Gold, 1.9 g/t; silver, 248.8 g/t.
- (4.) The same, picked to favour sphalerite: Gold, 6.2 g/t; silver, 622 g/t; zinc, 10.8%.

The above report contains valuable information regarding the shear structures and alteration haloes that contain the mineralization and are good reference for future work in this area. Gold assay values appear to generally be low, but some very good silver values have been obtained, related to arsenopyrite and sphalerite.

In 1968, the Minister of Mines Annual Report states that a bulldozer trenching program was conducted on the Mission workings. Work was done northward and eastward from

the Barnes-Walker-Winkler area where limited outcrops show alteration to be more widespread than the original working area. As the alteration appears to be directly related to mineralization the bulldozer trenching program tested the possibility that a large mineable zone of low-grade ore might exist. A picked sample of arsenopyrite and pyrite returned an assay of 96.4 g/t silver and trace gold. No results from this work could be located.

In 1970, Exploration and Mining in BC states that surface work, including 3 miles of road building, geological mapping and collection of 53 soils samples was done on the NEWT claim block (later called the Mission Group) of Austro-Can Explorations Ltd. No results for this work could be located.

In 1972, Austro-Can listed the Mission Group as one of their properties of merit in their listing prospectus. In that same year the company completed assessment work consisting of an 11 line kilometre electromagnetic ("EM") survey and collection of 238 soil samples. This work is recorded in BC Ministry of Mines Assessment Report 03904 (White, 1972). A strong EM conductor and semi-coincident strong arsenic soil anomaly are located on what is termed the Flint claims, which are part of the Mission Group. Although not explicitly stated in the report, it is believed that this work was conducted over a portion of the historic Mission workings (Barnes-Walker-Winkler shear-zones). A strong NNE-SSW trending EM conductor was located and would match up in orientation with the Barnes shear zone, and a weaker NE-SW conductor splaying off the main conductor in the southwest corner of the grid is likely related to either the Walker or Winkler shear zones. An area measuring greater than 300 x 300 metres with high arsenic soil geochemistry is found in the centre of the grid area, and does not relate to an EM conductor, but may be showing strong downhill dispersion masking its true source. Spotty, high silver soil geochemical values are found associated with the high arsenic values. Gold was not analysed.

In 1981, Agio Resources Corporation completed an Induced Polarization ("IP") geophysical survey over the Flint claims (AR 09222B). The IP grid covers a similar area to the 1972 Flint Grid, but has been re-established using a metric grid coordinate system. The IP survey shows three strong chargeability anomalies, the highest of which encompasses much of the southwest portion of the grid. This anomaly trends NE-SW, the same direction as the EM anomaly from the 1972 survey, paralleling the Barnes shear/vein system. The EM conductor appears to represent a fault separating two lobes of this chargeability high. Both lobes correspond with elevated silver and arsenic values obtained from the 1972 soil geochemical survey (White, 1980).

Four short holes diamond drilled in 1981 tested the eastern lobe of the IP chargeability high (Phendler, 1981; AR 09222A). The highest gold assays returned are 1.5 g/t gold over 0.91 metres. However, silver and zinc values ranging up to 65 g/t silver over 0.15 metres and 7.1% zinc over 0.61 metres were obtained. In 1987, three additional diamond drill holes tested the IP anomaly (Kregosky, 1987; AR 16916). One hole was put into the western chargeability high lobe and the other two were scissor drilled south of the four prior holes to test the down dip extension of pyrite, arsenopyrite and

sphalerite stringers located on surface in highly altered diorites. This target represents a southern extension of the mineralization obtained in the earlier holes. The three 1987 drill holes were logged in some detail but no samples were sent for assay, although mineralized intervals were noted in all three holes.

In 1986, Agio Resources Corporation continued their exploration on the Mission claims by completing VLF-EM and soil geochemical surveys and geological mapping (Peto, 1986; AR 15630). Only a small portion of the grid area was soil sampled. The soil samples were analysed for gold only as previous (1972) soil sampling tested for silver and arsenic. The soil values were all low with the exception of one sample collected adjacent to an historic working which returned 1010 ppb gold. The VLF-EM conductors correlate well with the prior IP survey anomalies. The conductive areas are generally underlain by argillites and hornfels and they fade beyond the intrusive contact.

Abundant sulphides in the altered granodiorite, observed around the Mission showing itself, indicate the possibility that an As-Ag-Zn-Au sulphide-bearing hornfels may occur to the southwest in the area of the geophysical anomalies.

4.3 WINDY II AREA

In 1983, a VLF-EM survey was conducted on the Windy II (Minfile 092HSE176) claim group, owned by Western Informational Services Ltd. (Mark, 1983; AR 11855). The purpose of the survey was to locate probable zones of gold or sulphide mineralization either directly or through mapping of host structures. The VLF-EM anomalies have reflected conductors that are probably geological structures such as faults, shears and contacts but could also be sulphide zones. Some of the most interesting parts of the VLF-EM anomalies are those that appear to indicate cross-structures since these are prime areas to look for sulphide and gold mineralization.

Later that same year, follow-up work consisting of soil and bulk sample collection was done on the Windy 2 claim (Mark, 1983; AR 11993). Bulk soils were collected along several long sections of road network. Two shovelfuls of soil were collected every 30 to 60 metres along the road, put in the truck, then sluiced and panned, with the concentrates sent for analyses. The highest gold value returned was 2.1 g/t, but how much material this actually represents is not clear. Also, in this same area, small soil grids were put in along the road in two locations. Both grids had single station gold values, Grid A with 190 ppb gold and Grid B with 175 ppb Au, along with elevated copper and silver. Copper and silver values appear to correlate well, however gold lies adjacent indicating a pattern of zonation. Not enough sampling was done to give meaningful conclusions.

In 1985, Thumper Resource Ltd. conducted a geological mapping project on the Windy II claim (Royer, 1985; AR 13310 – also see AR 11855 for grid coverage for this area). Conclusions state widespread sulphides (up to 3%) are present in Nicola group

sediments, generally consisting only of pyrite but minor galena and chalcopyrite were observed in one outcrop.

Skarn occurs along the southwest edge of this claim and bears resemblance to that at the Nickel Plate Mine with thin bedded stratified Nicola rocks being intruded by granodiorite. Both rock types are heavily silicified and show skarn development near their contact.

4.4 HENRI CREEK GRID AREA

In 1986, Southern Interior Mining Co. acquired a group of two post and fraction claims over ground now situated on the western portion of the Property. The company completed a soil, silt and rock sampling program throughout the property, getting a few elevated gold, silver and arsenic values, although none of them were spectacular (McKnight, 1985; AR 14813). They also did a ground magnetics survey over the central portion of their claim area. A linear north-south trending magnetic high feature was identified which roughly lines up with a mapped limb or dyke of dioritic intrusive rocks. Gold, arsenic and silver mineralization on the Banbury Property is known to be associated with the margins of the diorite unit, however sample results in this grid area did not confirm the presence of these minerals.

4.5 LOUISE AREA

In 1983, an airborne magnetic and VLF-EM survey was conducted on the Louise claim (Mark, 1983; AR 12020). The Louise claim covers the southeast corner of the current claim block. The airborne survey report's author concludes that airborne magnetic features identify the contact between the granodiorite and the Nicola Group volcanic and sedimentary rocks. Also, strong single line VLF-EM conductors are possibly caused by gold +/or sulphide mineralization. Geochemical sampling is required in order to test the validity of this second conclusion.

4.6 BROWN GRID

In 1986 and 1987, a geophysical survey grid was put in on the Brown claims, which overlap the southeast edge of the current claim block (Timmins, 1987; AR 15978). This area was previously covered by the Louise claim. Geophysical surveying was conducted over three grid areas by Seadrift International Exploration Ltd., but only the Brown Grid lies in the vicinity of the current claims.

Several north-south trending VLF-EM anomalies are observed on the grid. This orientation relates well with the regional lithologic trends. These anomalous areas require follow-up by geological mapping and geochemical sampling to determine their source. The magnetic survey appears quite noisy and does not show much in the way

of significant high or low trends, with the exception of a small magnetic high zone near the central claim posts plotted on the grid. Again, additional field work is required to determine the source of this magnetic high feature.

Seadrift also collected silt samples from stream beds throughout the claim block. In the vicinity of the Brown claims, a couple of silt samples returned 120 and 455 ppb gold, but the remainder were very low.

In 1987, Chevron Minerals Inc. completed a trenching, mapping and drilling program on a large claim block (McAllister and McPherson, 1988; AR 17012), a portion of which contains the Brown claims as worked in 1986 and 1987 by Seadrift. The drilling was not done near the current claim boundary and did not intersect any gold values of significance.

4.7 VAN, W AND GH GRIDS

In 2002, Grant Crooker conducted geophysical surveys on the Van, W and GH grids within a large claim holding (Crooker, 2002; AR 27080). The Van grid lies within current tenures 705031 and 705032, while the GH grid lies southwest of the Maple Leaf vein. VLF-EM and magnetic surveys were conducted on the Van grid, and only VLF-EM surveying on the GH grid.

The Van grid results show a prominent linear north-south trending magnetic high feature flanked by magnetic lows. This magnetic high may correspond to a shear structure located between Jameson and Van Creeks. The VLF-EM survey shows a series of sub-parallel northeast-southwest trending conductors lying to the west of the magnetic high feature. This conductive zone likely represents a lithologic unit, such as underlying argillites.

The GH grid, located southwest of the Maple Leaf vein, shows a strong VLF-EM anomaly trending north-northeast through the western side of the grid. This mimics the orientation of the mineralized shears and veins of the Banbury area, and may correspond to a shear-vein system. The W grid lies south of the GH grid, off the current claim area, in the vicinity of the Gold Hill and Snowstorm minfile occurrences. Several north-south trending conductors, one of which has an apparent relation to the Gold Hill workings, can be found in this grid area.

5.0 EXPLORATION WORK CARRIED OUT IN 2010

Exploration carried out during 2010 includes reconnaissance bedrock sampling for whole rock lithogeochemistry analysis, soil sampling, and stream silt sampling. Rock grab, rock chip, and soil samples were selected on a reconnaissance basis from historic trenches and road cuts.

The purpose of the rock and soil sampling program was to identify elements or whole rock signatures that could be used to locate zones of potential gold mineralization in future geochemical prospecting programs.

The study was carried out by collecting series of bedrock samples and soil samples across a zone of known mineralization, and plotting the profile of element concentrations across the mineralized zone. Correlation plots showing concentration correlations were also drawn. The results are discussed in Section 8.

To help overcome the problem arising from compiling data from many generations of old plans and maps, 0838331 B.C. Ltd. commissioned an orthophoto map for the entire Banbury Property. The map, which features 5 m topographic contours, is included as Appendix C.

Bob Plummer of Smart Map Services has captured in digital form, the main components of the available historical information. This involved georeferencing the various local grids referenced by the historical data to the NAD83 TRIM topographic maps and orthophoto. The local road network as recorded on the numerous historical maps was used as spatial control. Differential GPS measurements were recorded for selected historic drill holes identified in the field along with road junction points to further enhance the georeferencing of the historical maps.

6.0 CLAIM INFORMATION

The Banbury	TABLE 1: MTO CLAIM DATA				
property consists	Tenure				
of seventeen	No.	Claim Name	Issue Date	Expiry Date	Area (Ha)
mineral tenures, as	573380	BANBURY PROJECT	2008/jan/09	2020/may/31	315.68
summarized in	598235	HEDLEY ATT 2	2009/jan/30	2016/jan/30	63.12
Table 1, and	602882	HEDLEY TOP	2009/apr/18	2016/sep/18	63.12
illustrated on	604674	HEDLEY MAIN EXTENSION	2009/may/19	2016/may/19	42.08
Figure 6. The	604675	HEDLEY BELOW MAIN	2009/may/19	2016/may/19	63.14
claims cover 2253 hectares. The	530229		2006/mar/18	2021/mar/18	21.04
current expiry	605725		2009/jun/09	2021/jan/28	63.13
dates are listed in	585563	BANBURY EXT 1	2008/jun/01	2016/feb/01	105.21
Table 1.	601252	HEDLEY HIGH GRADE NO	2009/mar/17	2012/apr/17	42.12
	601458	HEDLEY #6	2009/mar/22	2012/apr/22	126.37
The mineral claims	601459	HEDLEY #7	2009/mar/22	2012/apr/22	147.48
are owned by	601481	HEDLEY # 8	2009/mar/23	2012/apr/23	126.36
David Jensen, who	705031	HEDLEY CONECTOR	2010/jan/30	2012/jan/30	252.68
holds the tenures	705032	HEDLY 2	2010/jan/30	2012/jan/30	378.97
on behalf of	705033	HEDLEY 3	2010/jan/30	2012/jan/30	210.52
0838331 B.C. Ltd.	705034	HEDLEY 4	2010/jan/30	2012/jan/30	63.16
after having fulfilled	732282	HEDLEY GOLD	2010/mar/21	2012/mar/21	168.45
				Total	2252.63

the terms of option agreements with previous tenure holders. Davis Mining & Exploration retains a 1.5% NSR which can be purchased for \$300,000.

7.0 GEOLOGY

7.1 Regional Geology

The Banbury property lies within the Quesnel Terrane of the Intermontane belt in the southern part of the Canadian Cordillera. The belt is a mosaic of fault-bounded terranes consisting primarily of lower Paleozoic through Jurassic marine volcanic and sedimentary rocks and comagmatic intrusive rocks deposited in an island-arc or marginal basin setting. One of these, the Quesnel terrane, consists largely of arc-related marine volcanic and sedimentary rocks of the Late Triassic to Early Jurassic Nicola group. The terranes were amalgamated to form the framework of the Intermontane belt by latest Triassic time; the resulting large superterrane was then accreted to the continental margin in the Jurassic.

Approximately 50 kilometres west of the Hedley area, along the main axis of the arc, the Upper Triassic Nicola Group reaches 6,000 metres in thickness (Ray, 1994). It consists predominantly of mafic, subaerial, and submarine volcanics and volcaniclastics that include augite porphyries and shoshonitic, potassium-rich flows; limestone is uncommon in the main arc. Farther east, however, in the Hedley district, the group is thinner (maximum 3,000 m) and the sequence is dominated by sedimentary rocks. Here it comprises a westerly-thickening succession of mafic, waterlain tuff, calcareous siltstone, calcareous argillite, and minor reefoidal limestone. These sediments were deposited close to the eastern margin of the Nicola back-arc basin on a tectonically active, west-dipping paleoslope. They were derived from an easterly source and their deposition on the unstable, west-dipping paleoslope resulted in a number of sedimentary facies that subsequently controlled the development of skarns in the Hedley district (Ettlinger, 1992).

Ray (1994) describes three distinct stratigraphic packages within the Nicola Group in the Hedley district (Figure 7). The oldest (Oregon Claims Formation) is poorly exposed, comprising massive quartz bearing andesitic to basaltic ash tuff and minor chert pebble conglomerate. It is overlain by a 200-2200 metre thick sedimentary unit in which three facies are arranged from east to west. The sequence thickens westward, possibly representing deposition in a tectonically-controlled northwesterly-deepening Late Triassic marine basin. The easternmost and most proximal facies (French Mine Formation), with a maximum thickness of 200 metres, comprises massive to bedded limestone interlayered with thinner units of calcareous siltstone, chert pebble conglomerate, tuff, limestone-boulder conglomerate and limestone breccia. The French Mine Formation hosts the gold-bearing skarns of the French and Goodhope Mines.

Further west, the medial facies (Hedley Formation) consists of 400-800 metres of thinbedded turbiditic calcareous siltstone and units of pure to gritty, massive to bedded limestone with thicknesses up to 75 metres and strike-lengths of several kilometres. The Hedley Formation, which also includes lesser amounts of argillite, conglomerate and bedded tuff, hosts the skarns of the Nickel Plate orebody. The fault-bounded Chuchuwayha Formation is thought to be a thicker (up to 1500m) equivalent of the Hedley Formation, but with only thin (<5m thick), discontinuous limestone units. The western, distal facies (Stemwinder Formation) comprises 800-2200 metres of black, organic, thinly-bedded calcareous argillite and turbiditic siltstone, with minor siliceous finegrained tuff and thin (<3m) beds of dark, impure limestone. The facies are separated by major, long-lived faults that may have originated as syn-sedimentary growth structures.

The sedimentary rocks of the French Mine, Hedley and Stemwinder formations pass stratigraphically upwards into the 700-1200 metre thick Whistle Formation, which is characterized by the absence of limestones and the predominance of andesitic and felsic volcaniclastic material. Its lower portion contains tuffaceous, often turbiditic, siltstone and argillite, but its upper part consists largely of bedded to massive crystal ash to lapilli tuff with minor volcanic breccia. The base of the Whistle Formation is commonly marked by the Copperfield breccia, a <10-200 metre thick limestone-boulder conglomerate which can be traced for >15 kilometres along strike. It varies from clast-to matrix-supported, with abundant pebbles, cobbles and boulders of limestone to 1 metre (rarely 15m) in diameter (Ray, 1994).

Several plutonic episodes have been recognized in the Hedley district. The Upper Triassic to Early Jurassic Hedley intrusions, including the Banbury Stock, are the oldest intrusives and are related to all significant gold mineralization. They form stocks up to 1,500 metres in diameter and swarms of thin sills and dykes up to 200 metres wide and over a kilometre in strike length. The sills and dykes are coarse-grained diorites and quartz diorites, whereas the stocks range from gabbro through diorite and granodiorite to quartz monzonite. The stocks are coarse-grained and equigranular but many of the sills and dykes are porphyritic with coarse phenocrysts of hornblende and zoned feldspar.

Varying degrees of sulphide-bearing calcic skarn alteration are associated with the Hedley intrusions, particularly the sill and dyke swarms. U-Pb radiometric dating and field evidence suggest that the Hedley intrusions were emplaced between 217 and 194 Ma (Ettlinger, 1992).

Ray et al (1988) described a second plutonic suite of coarse-grained biotite-hornblende granodiorite to quartz monzodiorite, which generally forms large bodies, such as the Bromley batholith north of Hedley and the Cahill Creek pluton southeast of the Banbury property. Country rock is hornfelsed up to 1,500 metres from the contacts of the Bromley and Cahill Creek plutons; minor skarn mineralization is also formed near the contacts, but is not sulphide-bearing nor auriferous (Ray, 1988b). Subsequent dating showed the Bromley batholith and the Mount Riordan stock to be ~195 Ma, whereas the Cahill Creek pluton is ~170 Ma, indicating separate magmatic suites (Ettlinger, 1992) (Ray, 1994).

Two structural phases are recognized within the Nicola Group rocks of the Hedley district; both predated intrusion of the Cahill Creek pluton at 170 Ma, but relative ages of the two phases are not apparent (Ray, 1994). One phase produced a major, steeply west-dipping, easterly overturned anticline whose core is occupied by the Cahill Creek pluton 7 kilometres east of the Banbury property. The asymmetric folding was accompanied by several high-angle, easterly directed, northerly trending reverse faults, the most important of which are the Cahill Creek Fracture Zone and the Bradshaw Fault, located 7 and 4 kilometres, respectively east of the Banbury property (Ray, 1988a) and it has been suggested that Henri Creek on the Banbury property marks a third parallel fault (Sanford, 1988a). The other structural phase, apparently coeval with the Hedley intrusions and partially responsible for controlling mineralization, resulted in small-scale, northweststriking, gently plunging folds as well as a series of northwesterly to westerly trending fractures.

By far the most significant mineralization in the Hedley district is the gold-rich Nickel Plate skarn deposit, located 7 kilometres east of Banbury, which has produced >2.1 million ounces of gold. The Nickel Plate orebodies are hosted by west-dipping Hedley Formation calcareous siltstones and limestones near where they are intruded by a swarm of dioritic sills and steeply-dipping dykes related to the nearby Toronto Stock, one of the Hedley intrusions. Pyroxene-garnet skarn is associated with the sill/dyke swarm, covering a 4 square kilometre area with up to 300 metre thickness. The gold-bearing orebodies are hosted within the skarn, generally within 80 metres of the "marble line", the lower boundary between skarn and the underlying marble. Gold was deposited during and after the pyroxene-garnet skarn formation, as native gold and maldonite (Au₂Bi). Sulphide deposition, dominantly arsenopyrite, chalcopyrite and pyrrhotite, accompanied the gold deposition but also pre-dated and post-dated it; total sulphide content is generally <7% (Ettlinger, 1992).

7.2 Property Geology

The Banbury property lies on the contact between the Stemwinder and Whistle Formations of the Nicola Group. These steeply-dipping, north-striking units have been intruded by a dioritic Hedley intrusion known as the Banbury Stock (Figure 7).

The Stemwinder Formation underlies the eastern portion of the property, consisting of thin-bedded, generally calcareous argillite, siltstones and impure limestone interbedded with variably pyritic, black organic argillite. Stratigraphically overlying this is the Copperfield breccia at the base of the Whistle Formation, with a width of 350 metres. Clasts are variable, dominantly fossiliferous limestone, argillite and chert, ranging from pebbles to boulders in size. Particularly near its basal contact, it contains 10-50 metre blocks of argillite and limestone. The matrix is black to buff, and limy to non-calcareous. The Copperfield breccia's upper contact is generally marked by layer(s) of chert pebble conglomerate. The remainder of the Whistle Formation consists of fine- to medium-

grained andesitic and rhyolitic tuffs, with a minor non-calcareous clastic fraction and several thin limestone lenses (Sanford, 1988b).

The Banbury Stock is an east-northeasterly trending stock and associated dyke swarm, measuring 400 x 1500 metres, which cuts rocks of the Stemwinder Formation, the Copperfield breccia and the Whistle Formation. Two major intrusive phases, hornblende diorite and quartz diorite, have been differentiated along with aerially restricted porphyritic diorite dykes. The southern half of the stock is composed of dark green, medium to coarse-grained, equigranular, hornblende diorite with local finely disseminated pyrite, pyrrhotite and magnetite. The northern half of the stock consists of light grey, fine to medium-grained quartz diorite with sparse pyrite and pyrrhotite. Contacts between the phases and with the intruded rock are highly irregular. Porphyritic diorite forms dyke/sill swarms and discrete dykes up to 20 metres wide within 300 metres of the stock contacts. The dykes/sills are green to purple in colour and variably porphyritic, with euhedral hornblende and feldspar phenocrysts and 2-3% finely disseminated pyrrhotite.

Narrow dykes of three types, thought to be related to the younger Bromley/Cahill Creek plutonism, have been recognized on the Banbury property. Felsic dykes up to 10 metres wide are light grey and aphanitic, with up to 3% pyrrhotite. Feldspar porphyry dykes up to 3 metres wide are grey with 20% medium-grained feldspar phenocrysts. Green and spotted andesite dykes are up to 5 metres wide with extensive strike lengths (Sanford, 1988a).

The Nicola Group rocks are weakly to moderately hornfelsed regionally and local slatey cleavage is developed in the argillites. A weak contact metamorphic (hornfels) aureole has developed within 70 metres of the Banbury Stock, characterized by silicification or development of buff marble. Beds and pockets of garnet-pyroxene skarn have been identified locally within 15 metres of the contact (Sanford, 1988a).

7.3 Property Structure

Sanford (1988a) described two phases of deformation on the Banbury property. The first is related to the dominant structure in the district, the major north-northeasterly striking easterly overturned asymmetric anticline. The fault along Henri Creek is thought to be related to a major monoclinal flexure of the western limb of the anticline. Here the bedding dips steeply to moderately east while the top of the stratigraphic pile is to the west. Besides the Henri Creek Fault, several other structures are thought to be related to this deformational axis, including the shear/fault zones occupied by the Pine Knot and Maple Leaf Veins, among others.

The second phase of folding occurs along a west-northwesterly axis. A series of steeply north-northwesterly plunging open anticlines extend north and south of the Banbury Stock on the west side of Henri Creek, but do not appear in the sediments east of the creek. The synclines form sharp cusps that are sheared and faulted and are

occupied by steep gullies. The northernmost synclinal axial plane has controlled the emplacement of the Banbury Stock. The wavelength of these folds, two to three hundred metres, is similar to that of the crumples on Nickel Plate Mountain which have been shown to be important structural ore controls. The folding has affected the Copperfield breccia and the Whistle Formation as well as the Stemwinder sediments (Sanford, 1988a).

8.0 GEOCHEMISTRY

The purpose of the geochemical reconnaissance study was to identify elements and/or rock-forming species that may be useful in geochemical prospecting at the Banbury Property. Since the chemical mobility of gold in soil is typically lower than that of many other metals, by prospecting for a surrogate species having greater dispersion, the geochemical target area is larger and hence more easily detected.

During the 2010 exploration program, a total of 19 soil samples, 5 silt samples and 54 rock samples were collected. For the purpose of the geochemical orientation study, it was desirable to collect soil and rock samples over a large area so as to obtain samples from the various lithological zones. Significantly, the study was to include samples from a zone of known gold mineralization as well as (presumably) unmineralized areas. Accordingly, series of bedrock samples and soil samples were collected across a zone of known mineralization at the Pine Knot vein, and unmineralized samples were collected from outlying areas where snow conditions allowed access from the existing road network.

A mattock was used to collect soil samples from the 'B' soil horizon whenever possible. Where no 'B' horizon was visible, 'C' horizon was sampled. Silt samples were collected from the base of stream channels. Sample sites were marked by with aluminum tags inscribed with sample numbers, and stapled to wooden pickets. Soil/silt was placed in correspondingly labelled Kraft soil bags. All soil and silt samples were shipped to ACME Labs Ltd. in Vancouver for analyses. In the laboratory, samples were dried, sieved to –80 mesh and the fine fraction analyzed for 53 elements by the ICP-MS method. This procedure included a gold analysis. ACME Labs Ltd. Certificates of Analyses for the soil geochemical survey can be seen in Appendix 2.

Rock chip samples are collected as continuous rock chips of about golf ball size taken along the outcrop wall of road cuts or historic trenches. When structures such as veins or shears are sampled, the samples are collected across their true widths. Grab samples consist of 2 or 3 fist size rock pieces indicative of a certain lithology or mineralization type. Sample sites were marked by with aluminum tags inscribed with sample numbers, and stapled to wooden pickets. Samples were put into correspondingly labelled plastic bags and shipped to the laboratory for analyses.

Rock samples were shipped from site, directly to ACME Labs Ltd. in Vancouver, BC. All sample preparation was done at the laboratory by their staff. In the laboratory, rock

samples were crushed to –200 mesh, sieved and analysed for 52 elements by the ICP-MS method and whole rock by the XRF method. ACME Labs Certificates of Analyses for the rock samples can be found in Appendix 2.

Figure 4 shows the location where rock chip and grab samples were collected in 2010, and also some historic rock samples for comparison. A description of rock samples is included as Appendix 2. Rock analysis results for gold and silver are plotted on figures 8 and 9.

The geochemical data from the soil and rock samples were analysed by plotting the profile of element concentrations across the mineralized zone to allow visual identification of those elements or rock-forming species having either elevated or depleted concentrations over the known mineralized zone. All elements were plotted, and those plots showing the most meaningful profiles are presented in figures 10 and 11.

Correlation plots showing concentration correlations were also drawn. These plots show the concentrations of individual elements or rock-forming species for all samples plotted against the respective gold concentrations. Elements/rock-forming species having a strong correlation will plot along a line, while those species having a low correlation will plot as a scatter. Those species having a negative correlation will plot along the graph's axes. All elements were plotted, and those plots showing strong correlations are presented in figures 12 and 13.

The reconnaissance rock and soil sampling program carried out in 2010 was successful in identifying elements having concentrations that correlate with known gold mineralization specific to this property. Significant correlations are summarized in Table 2.

The most reliable correlations, which may be useful in geochemical prospecting, are antimony (Sb) and selenium (Se). Strontium (Sr) correlations are enigmatic in that there appears to be a negative correlation with gold in bedrock samples, but a positive correlation in soil samples.

An example of a site at which the new geochemical correlations may have already been useful is reconnaissance soil sample RS-5, the location of which is shown on Figure 5. At that location, the soil concentration of gold (19.7 ppb) is

TABLE 2:
ANALYTICAL CONCENTRATIONS CORRELATING
WITH GOLD CONCENTRATIONS

Positive Correlation	Negative Correlation
Sb	CaO
Se	Sr
	La

Soil Samples

Positive Correlation	Negative Correlation
Sb	
Se	_
Cd	-
Sr	

only weakly anomalous, and easily blends in with the other reconnaissance samples. However, the antimony and selenium concentrations in soil at the RS-5 site are strongly anomalous (18.14 ppm and 7.2 ppm, respectively). Based on these anomalous concentrations of the two surrogate elements, the area surrounding RS-5 might be prioritized for follow-up prospecting.

9.0 INTERPRETATION AND CONCLUSIONS

Follow-up on historical work

MAPLE LEAF

The Maple Leaf workings show some high grade gold shoots within the vein structure. In 1936, chip samples collected along the vein in 10 locations averaged 6.5 g/t gold and 14.0 g/t silver over 104 centimetres. The highest grades relate to a narrow sulphide rich shear. Although it appears that, in general, the Pine Knot vein system contains higher grade gold shoots than the Maple Leaf, it would be prudent at some future point to map and sample the Maple Leaf workings to determine the true grade, width and extent of the higher grade shoots found there.

PINE KNOT

There were 6 original short adits into the Pine Knot vein system, of which the No. 5 appears to correspond to the Level 5 workings that show up on the modern day map. Once ground conditions allow, a prospecting and GPS survey should be done throughout the area surrounding the historic workings in order to locate these historic adits (which are probably collapsed and only marked by small dumps) along with referenced surface trenches and pits. Rock chip samples should be collected wherever possible. An accurate GPS survey will certainly give a good indication of the surface trace of the Pine Knot, Maple Leaf and other vein systems.

Consideration should be given to undertaking a bulk soil sampling program. Soil could be collected in a large poly bag or half filled 20 litre sample pail every 10 metres along or immediately down hill of the projected surface trace of the Pine Knot vein. These samples could then be panned down and examined for visible gold. The logic being that visible gold in soils represents coarser gold in the bedrock which probably relates to higher gold grades. This type of sampling is relatively quick and easy and could be used to determine potential trench locations.

Upon completion of prospecting, soil and chip sampling, an excavator trenching program should be undertaken along the trace of the Pine Knot vein system in areas (shown by historic and current work) where the highest grade gold values (or their surface projections) occur. The purpose of the trenching is to outline an area or areas from which a bulk sample of high grade gold "ore" may be taken. In some instances the

trenching program may in fact require open pitting of the trench location and benching down to reach bedrock and to expose a sufficient area of bedrock. Topography will play significant role in excavation techniques and stockpile locations, with each site requiring an individual excavation plan.

Once bedrock has been exposed, initial sampling should consist of collecting a few grab samples of the best mineralized material. These are to be sent to the lab for "rush" assays in order to determine if the exposure hosts a high grade part of the vein system. This preliminary sampling can then be followed by detailed panel or channel sampling as required.

Additional testing should be carried out to better define the gold grades in the bedrock beneath overburden. Additional panel sampling could be attempted where overburden is deeper. Additionally, consideration could also be given to a drill program to test the Pine Knot vein zone, but the challenge would be siting drill holes to intersect the entire zone at acute angles.

OTHER AREAS

Outside of the Pine-Knot/Maple Leaf area, the area that has seen the most historic exploration work and has returned the best results to date is the Mission target. The best mineralization is structurally controlled, although a broad alteration halo with lower grade mineralization has been noted. Gold values in the shear structures are generally low but grades up to 6 g/t have been reported. Silver values are much more significant and are associated with arsenopyrite and sphalerite, with the highest grades occurring in more sphalerite rich samples.

Geophysics is a good exploration tool as seen in several grid plots from throughout the claim area. EM conductors locate shear structures which may (or may not) be mineralized. Variances in magnetics identify diorite from volcanic or sedimentary rock units, the contacts of which are known to be related to gold mineralization. IP chargeability highs often relate directly to increases in disseminated sulphide content, again known to be related to increased mineralization.

Soil geochemistry has only been done in a systematic manner on the Mission claims (Flint grid) and has shown elevated silver and arsenic values which lie within the IP chargeability highs. Only one high gold sample (1010 ppb) was returned, associated with an old working.

Geochemical Reconnaissance

The reconnaissance rock and soil sampling program was a successful orientation in identifying correlations between gold concentrations and concentrations of other chemical species. The two elements that appear to be the most useful as surrogates for identifying areas prospective for gold mineralization are antimony (Sb) and selenium (Se).

The reconnaissance soil sample site RS-5 has been identified as prospective based on anomalous antimony and selenium concentrations, even though the gold concentration is only weakly anomalous.

10.0 RECOMMENDATIONS

Follow-up on historical work

GENERAL

Historic exploration features should be mapped using GPS to assist in georeferencing historic work with the new orthophoto map. Relevant features to map include roads and trails, topographical features, and old workings.

Available historic data should be compiled in a GIS to present old data in a readily useable format.

MISSION (two to three days)

- locate, prospect and chip sample any mineralized bedrock exposures
- prospect and sample the surface trace of the historic EM conductors, IP chargeability highs and magnetic high-low anomalies
- prospect and sample the high gold, silver and arsenic soil geochemistry anomalies

GH (one day)

• prospect and sample along the trace of the EM conductors in order to determine if they are extensions of the Pine Knot or Maple Leaf or some other shear/veins.

VAN (one day)

- locate, prospect and sample along trend of the prominent magnetic feature, examining both the high and low portions
- prospect along the trace of the EM conductors to identify their source

BROWN (one day)

- prospect and sample EM and magnetic anomalies
- locate and follow-up two high gold silt samples with rock sampling

WINDY II (one day)

- low priority target area
- prospect and sample vicinity of two high gold soil samples (adjacent to road) and surrounding areas

Where follow-up sampling results are favourable, an excavator trenching program is warranted in order to better expose bedrock mineralization for additional systematic sampling.

Geochemical Reconnaissance

The reconnaissance geochemistry program has been successful in identifying elements that may be useful surrogates for gold mineralization in geochemical prospecting. The program warrants follow-up. The area around reconnaissance soil sample RS-5 should be examined for bedrock exposures, and rock samples should collected and analysed to check for any meaningful correlations in metals concentrations. Additional soil samples should be collected in the area and similarly analysed. Any additional rock and soil sample analyses should be plotted in a manner similar to that described in Section 8 to see if the antimony and selenium correlations with gold are supported.

11.0 REFERENCES

- Camsell, C., 1910; Geology and Ore Deposits of the Hedley Mining District: Geological Survey of Canada, Memoir 2.
- Crooker, G.F., 2002; Geophysical Report on the WP, W, John, Van, Paul and GH Mineral Claims: BC Ministry of Mines Assessment Report #27080.
- Ettlinger, A. D., Meinert, L.D., Ray, G.E., 1992, Gold Skarn Mineralization and Fluid Evolution in the Nickel Plate Deposit, British Columbia: Economic Geology v. 87, p. 1541-1565.
- Kregosky, R., 1987; Drilling Report on the Mission Group: BC Ministry of Mines Assessment Report #16916.
- Mark, D.G., 1983; Geophysical Report on Airborne Magnetics and VLF-EM Surveys over the Jan Claim Group and Louise Claim Group: BC Ministry of Mines Assessment Report #12020.
- Mark, D.G., 1983; Geophysical Report on a VLF-EM Survey ove the Skiddoo1 and Windy 2 Claims: BC Ministry of Mines Assessment Report #11855 and 11993.
- McAllister, S.G. and McPherson, M.D., 1988; Geological, Geochemical, Trenching and Diamond Drilling Report on the Similkameen Property: BC Ministry of Mines Assessment Report #17012.
- Ministry of Energy and Mines, Minister of Mines Annual Reports: 1900, 1901, 1904, 1906,1908,1927,1932,1933,1934,1935,1936,1937,1968.
- Peto, P., 1986; Geological, Geophysical and Geochemical Assessment Report on the Mission Group: BC Ministry of Mines Assessment Report #15630.
- Phendler, R.W., 1981; Diamond Drilling Report on the Mission Group: BC Ministry of Mines Assessment Report #09222A.
- Ray, G. E., Dawson, G.L., 1988a, Geology and Mineral Occurrences in the Hedley Gold Camp (1:25,000 map), British Columbia Geological Survey Open File 1988-6.
- Ray, G. E., Dawson, G.L., 1994, Geology and Mineral Deposits of the Hedley Gold Skarn District, Southern British Columbia, British Columbia Geological Survey Bulletin 87, 158 p.
- Ray, G. E., Dawson, G.L., Simpson, R., 1988b, Geology, Geochemistry and Metallogenic Zoning in the Hedley Gold-Skarn Camp, 1987 Geological Fieldwork, British Columbia Ministry of Energy, Mines and Petroleum Resources, p. 59-80.

- Royer, G.A., 1985; Combined Geological Report on the Windy 2 Claim: BC Ministry of Mines Assessment Report #13310.
- Sanford, M. R., 1986, Drilling on the Banbury Claim Group, British Columbia Ministry of Energy, Mines and Petroleum Resources Assessment Report #15,601, p. 24.
- Sanford, M. R., 1988a, Summary Report on 1987 Exploration on the Banbury-1 Group, British Columbia Ministry of Energy, Mines and Petroleum Resources Assessment Report #16746, p. 271.
- Sanford, M. R., 1988b, Summary Report on 1987 Exploration on the Banbury-1 Group, British Columbia Ministry of Energy, Mines and Petroleum Resources Assessment Report #17631, p. 330.
- Smith, S. W., 1998, Geochemistry & Diamond Drilling Report on the 1997 Program -Banbury Property, British Columbia Ministry of Energy, Mines and Petroleum Resources Assessment Report #25518, p. 91.
- Timmins, W.G., 1987; Assessment Report on the Camsell Group, Rice Group, Brown Group; Ministry of Mines Assessment Report #15978.
- White, G.E., 1980; Geophysical Report on an Induced Polarization Survey: BC Ministry of Mines Assessment Report # 09222B.
- White, G.E, 1972; Geochemical and Geophysical Report on the Flint Claim Group: BC Ministry of Mines Assessment Report #03994.

12.0 DATE AND SIGNATURE PAGE

Ind Burger Signature of Autho

Arnd Burgert, P.Geo. Printed Name of Author

Dated this 15th day of March, 2011

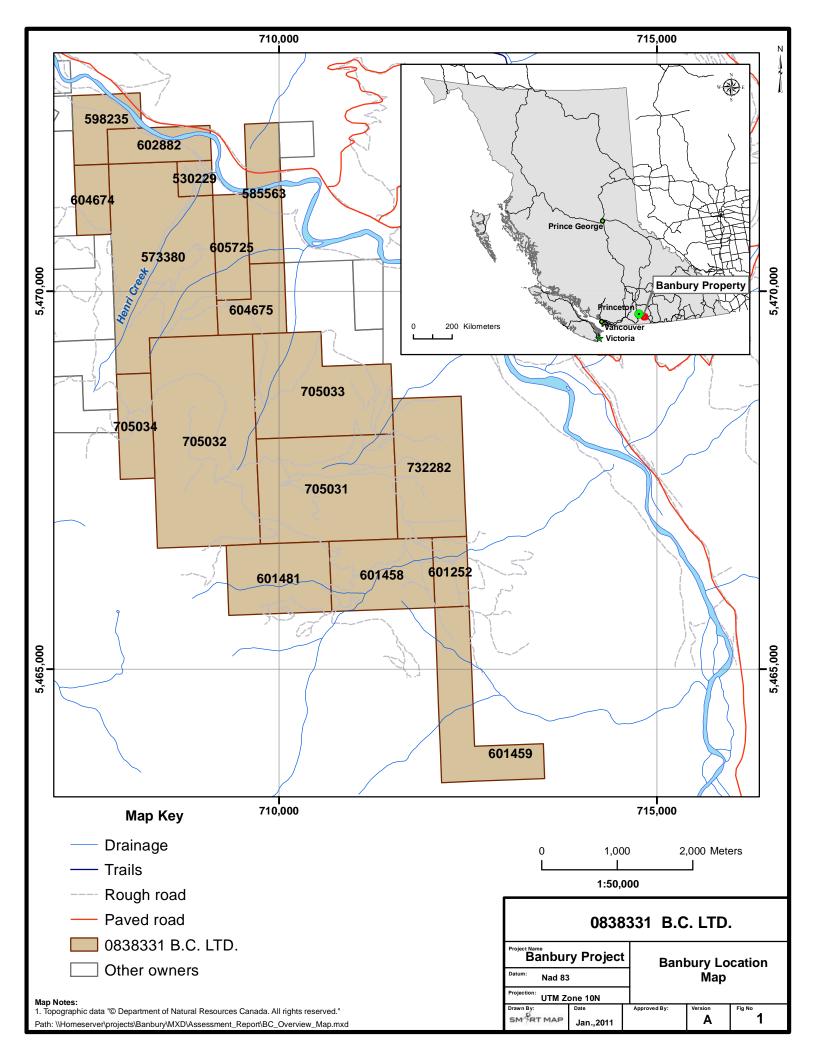
"Linda Dandy"

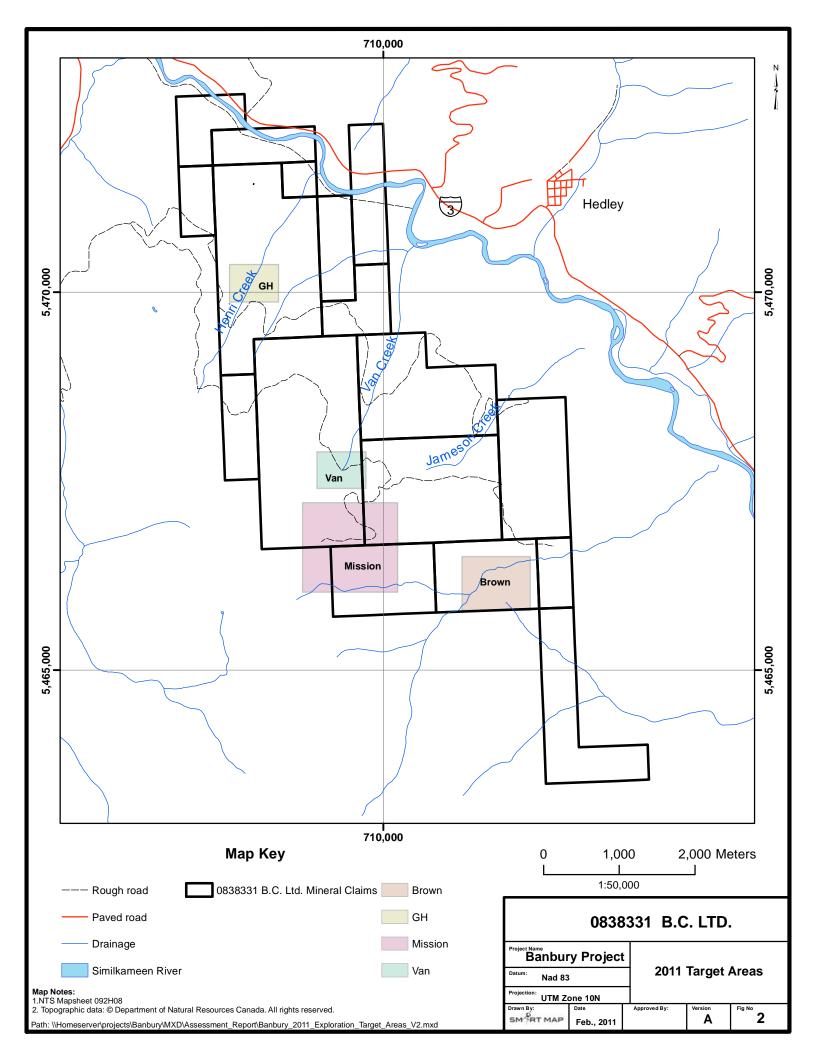
Signature of Author

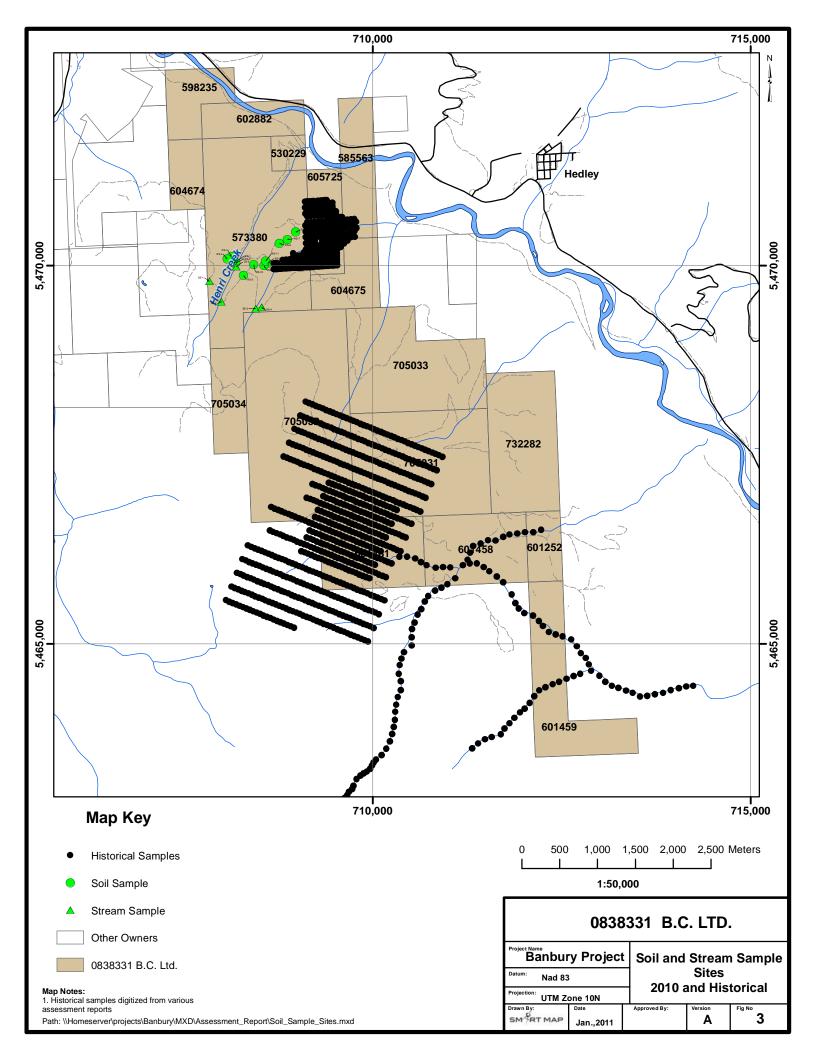
Linda Dandy, P.Geo. Printed Name of Author Dated this 15th day of March, 2011

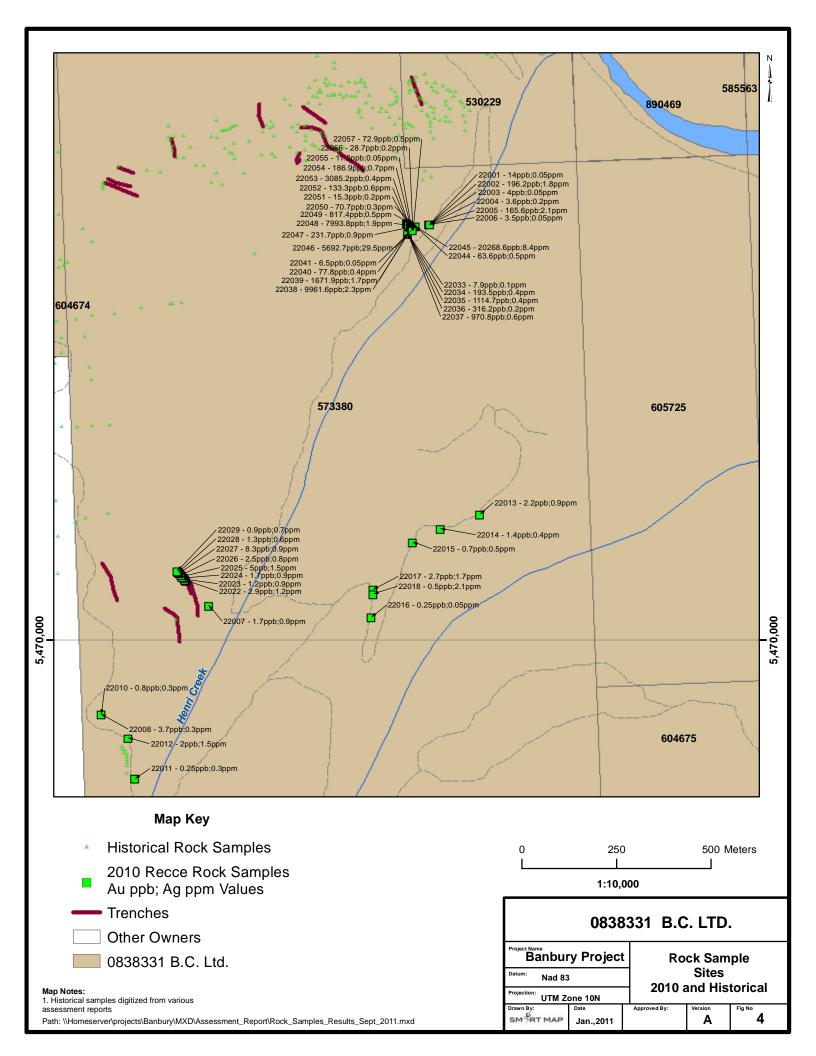
13.0 QUALIFICATIONS OF AUTHOR

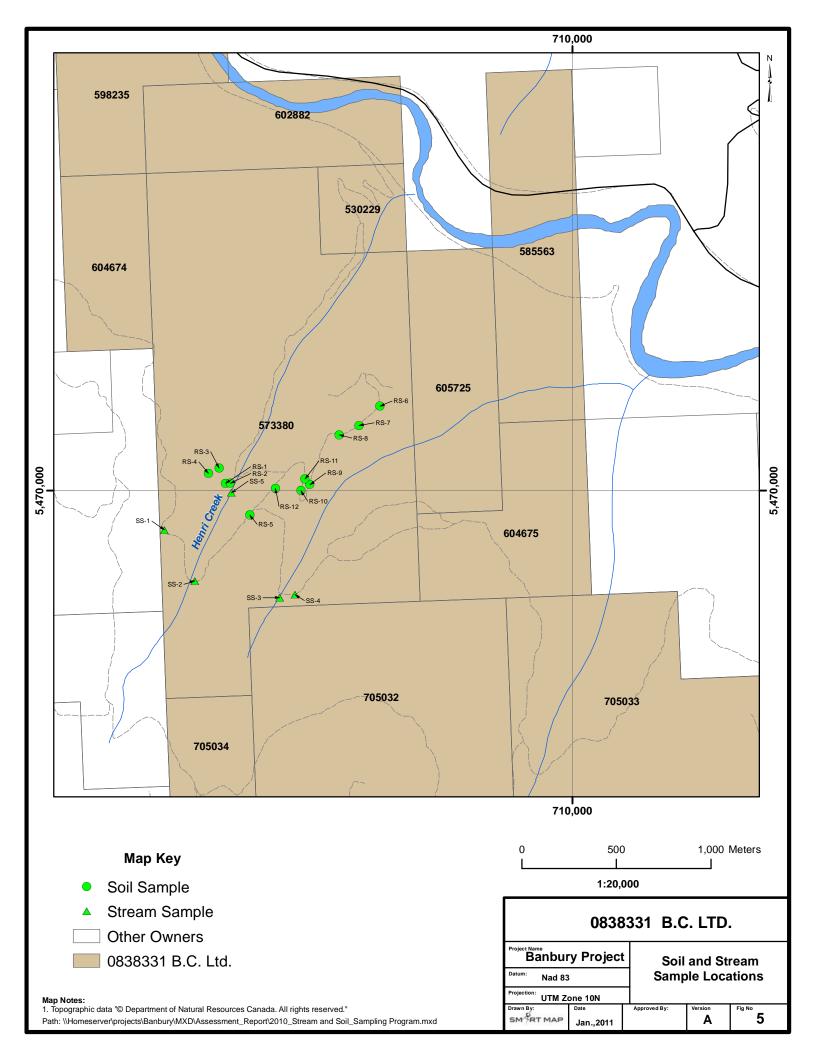
- I, Arnd Burgert, P.Geo., do hereby certify that:
- I am currently employed as a consulting geologist by: Arnd Burgert Consulting, Ltd.
 921 Colonia Drive Ladysmith, British Columbia, Canada V9G 1N9
- 2. I graduated with a B.Sc. degree in Geology from the University of British Columbia in 1995.
- 3. I am a member of the Association of Professional Engineers and Geoscientists of B.C.
- 4. I have worked as a geologist for 16 years since graduating from university.
- 5. I am an author responsible for the preparation of the Assessment Report titled "Assessment Report describing Reconnaissance Rock Sampling, Silt Sampling, and Orthophoto Mapping Banbury Property" for 0838331 B.C. Ltd, dated March 15, 2011. I worked on the Banbury Property during November and December, 2010.
- 6. I have had no prior involvement with the Banbury Property that is the subject of the assessment Report.
- 7. I hold no financial interest and no shares, nor do I expect to receive or acquire any interest or shares in 0838331 B.C. Ltd.
- 8. I am independent of 0838331 B.C. Ltd.

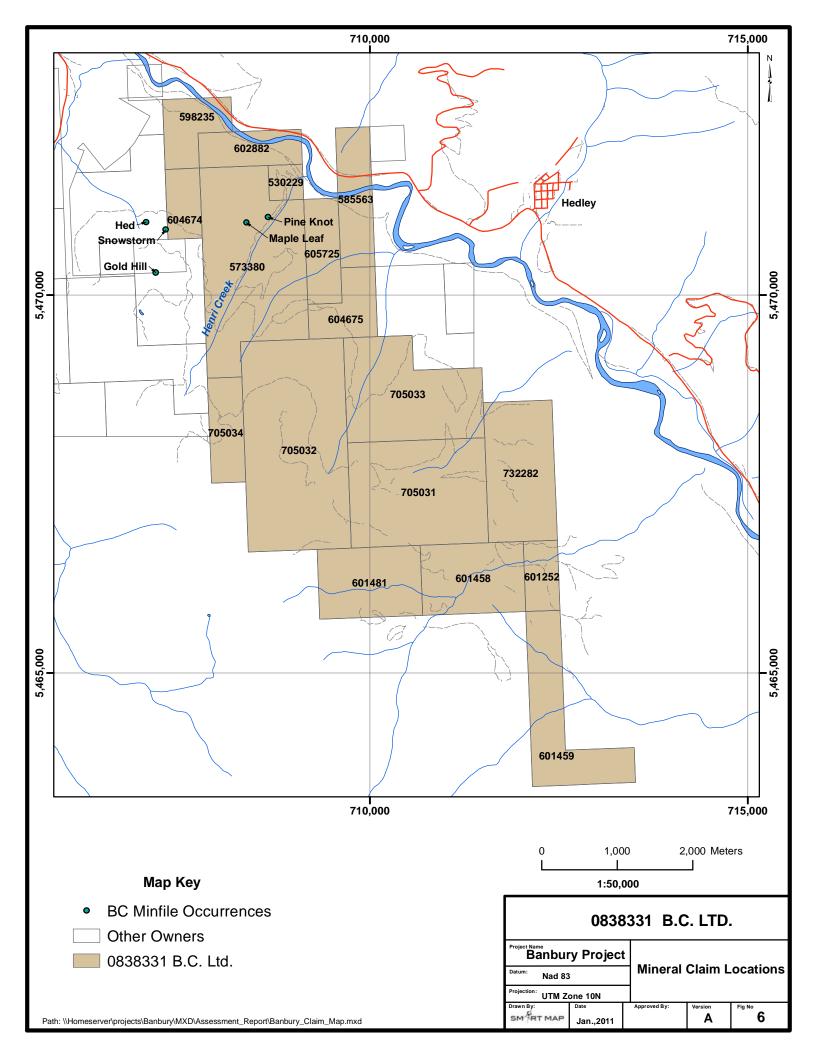

Dated this 15th day of March, 2011.

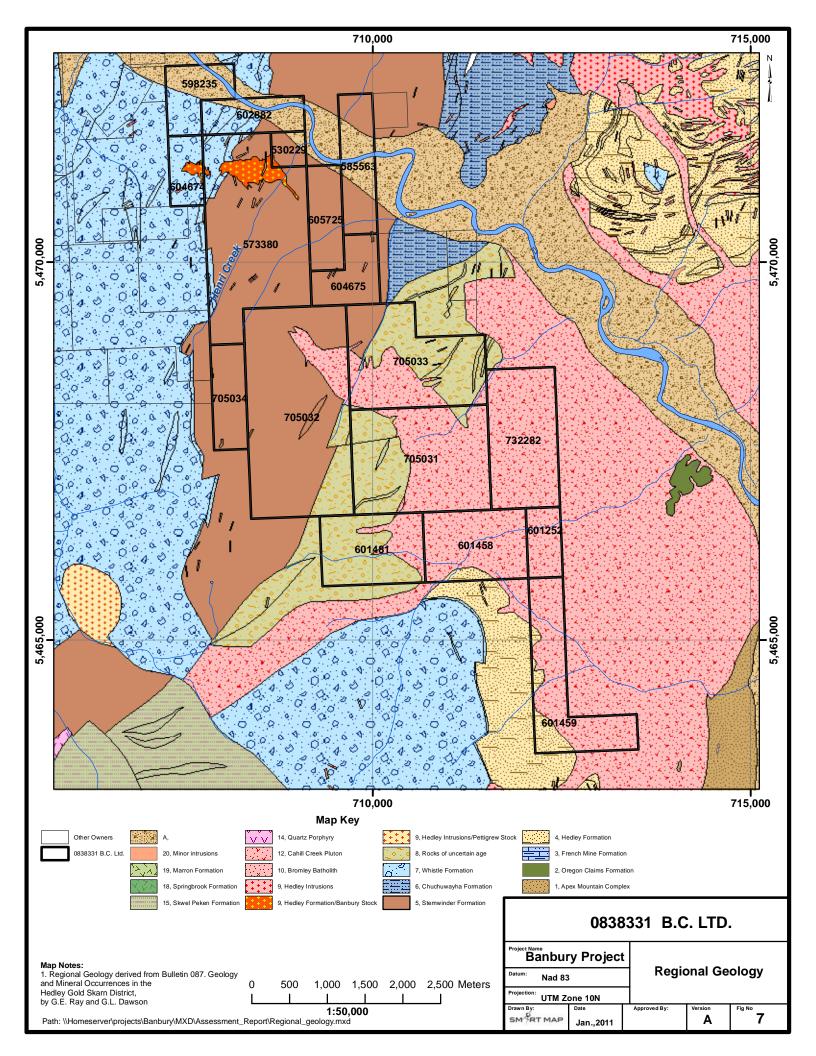

Signature of Author

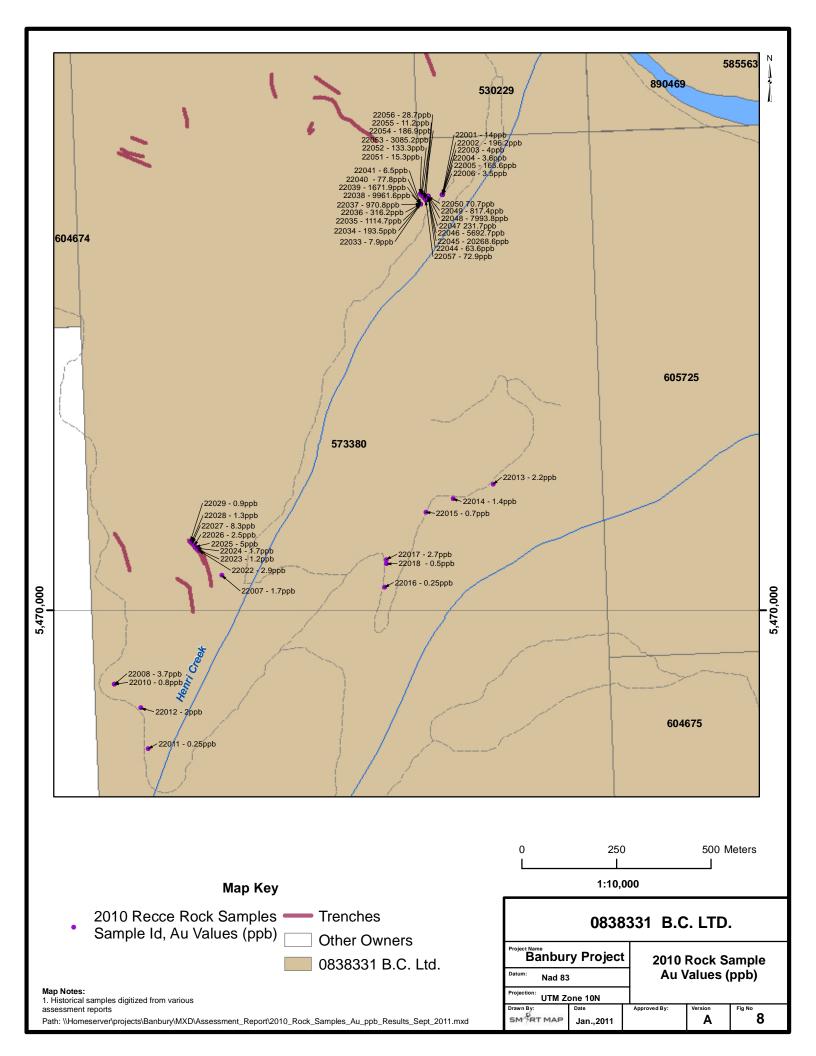

Arnd Burgert, P.Geo. Printed name of Author

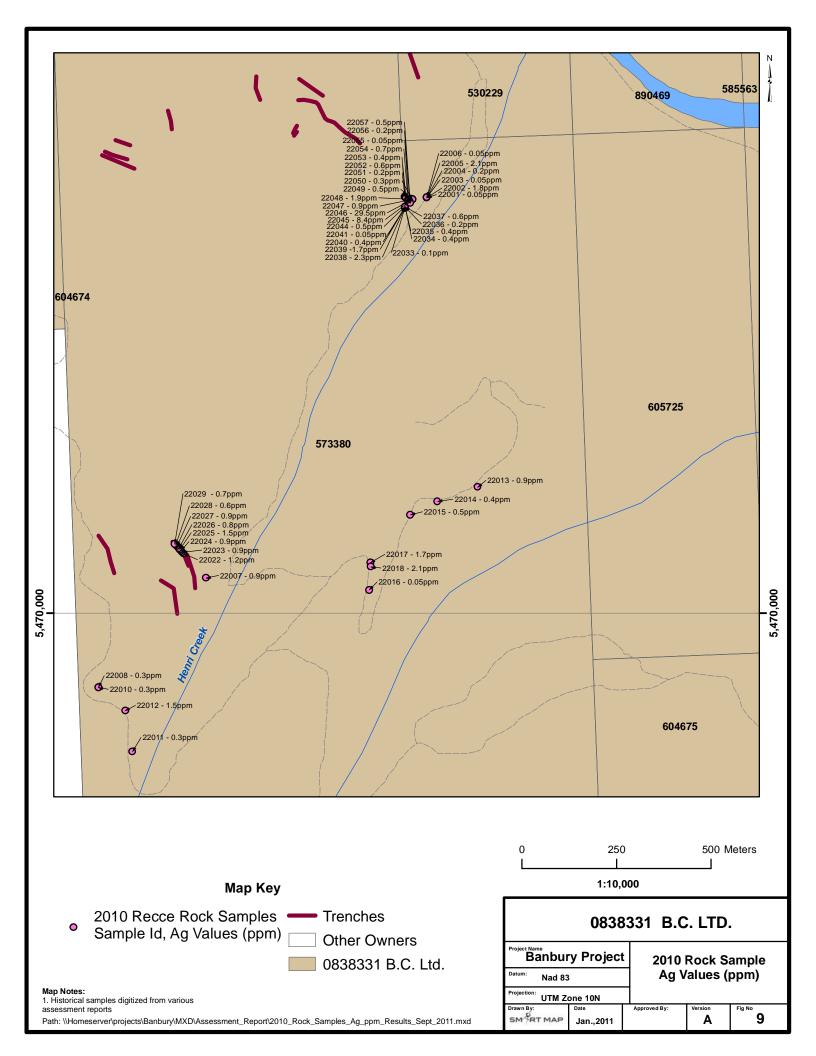



FIGURES









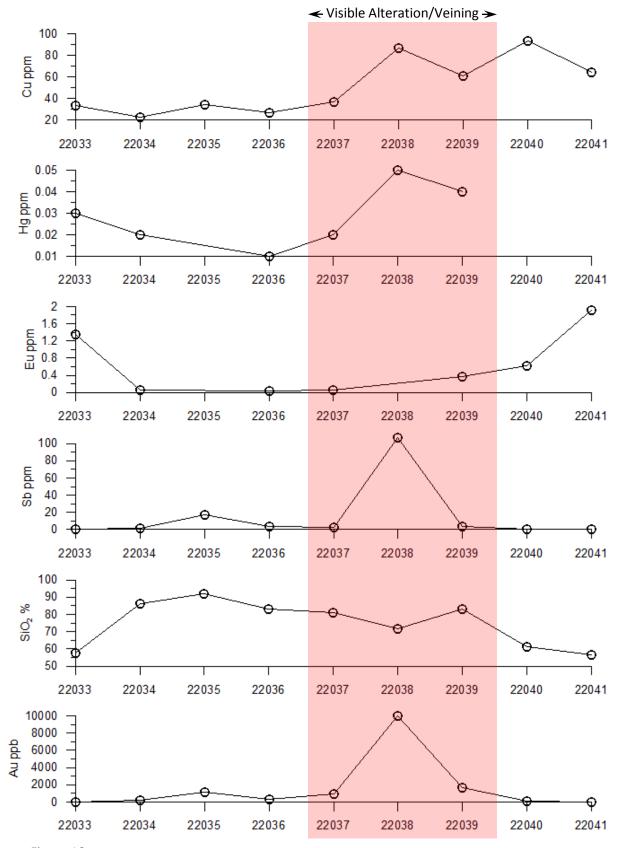
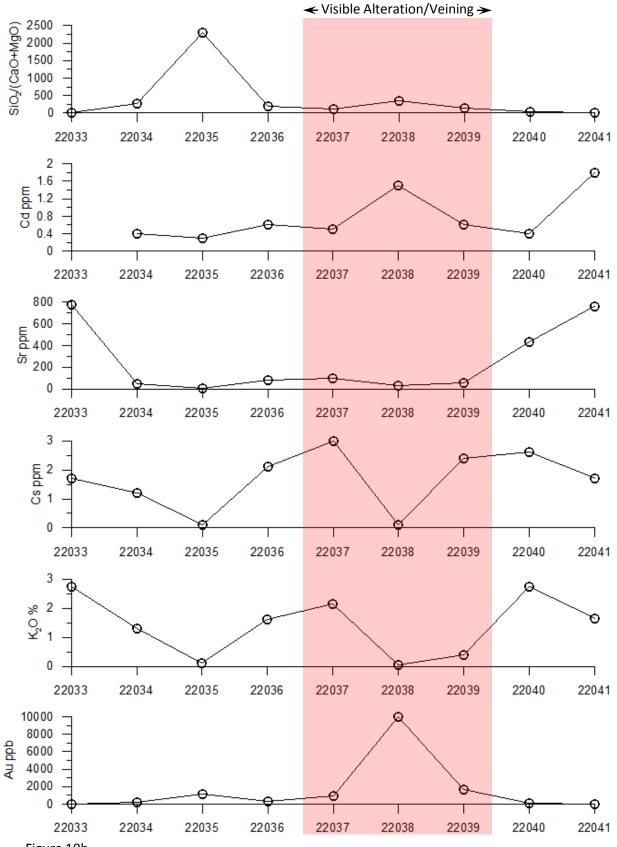


Figure 10a Bedrock Concentration Profiles Across Mineralized Zone



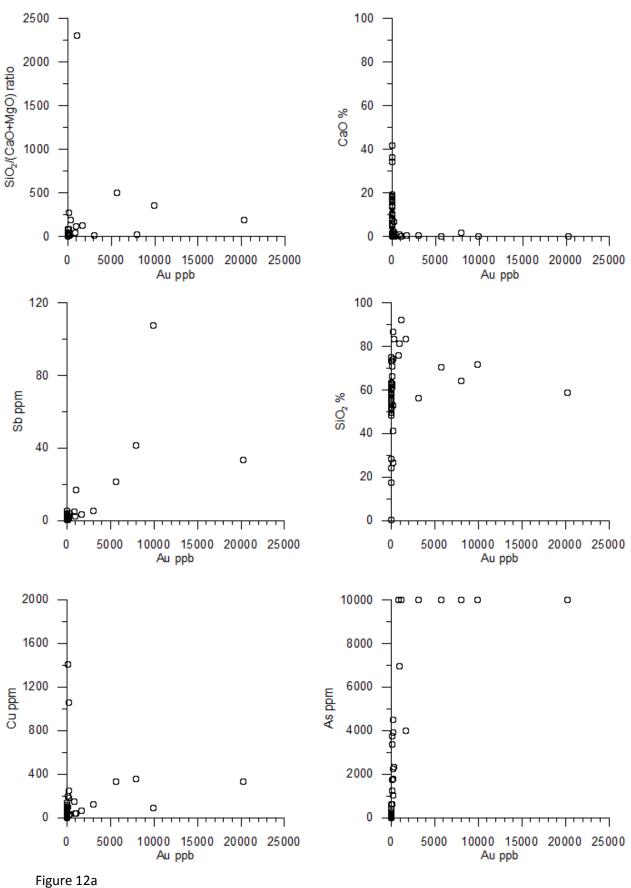


Figure 10b Bedrock Concentration Profiles Across Mineralized Zone

Soil Concentration Profiles Across Mineralized Zone

Rock Concentration Correlations

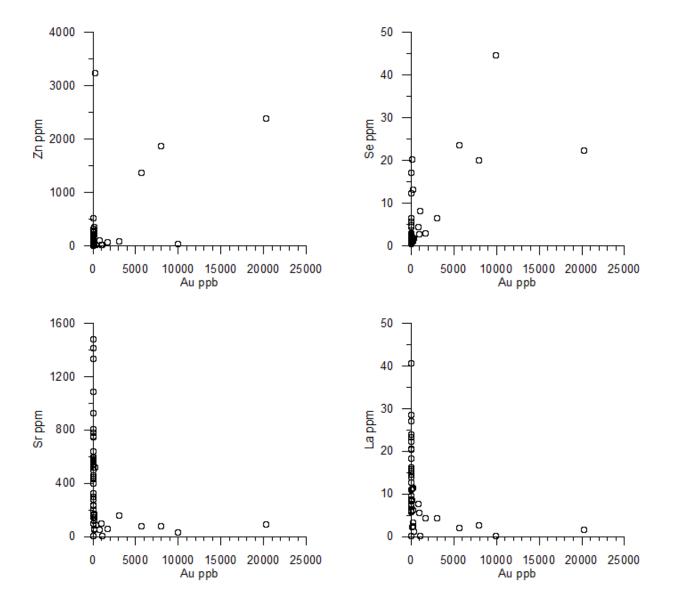


Figure 12b Rock Concentration Correlations

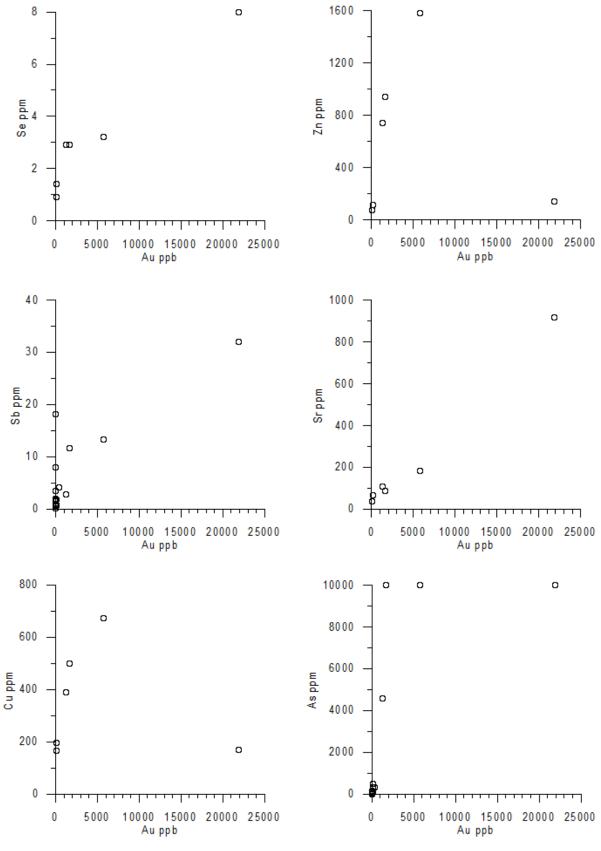


Figure 13 Soil Concentration Correlations

APPENDICES

STATEMENT OF EXPENDITURES

APPENDIX 1

Fees A. Burgert, Geolog	gist					
	6	days at	\$	850.00		\$ 5,100.00
Fees R. Plummer, Geolo	ogist					
	11.4	days at	\$	700.00		\$ 7,946.20
Fees L. Dandy, Geologi	st					
	8.5	days at	\$	1,000.00		\$ 8,500.00
Field Equipment						
ATV rental (2 units)	6	days at	\$	255.11	\$ 1,530.66	
consumables, tools					\$ 685.85	
						\$ 2,216.51
Vehicle Rental: 4x4 Pic	kup Tr	uck				
time	6	days at	\$	70.92	\$ 425.51	
insurance	6	days at	\$	24.95	\$ 149.70	
vehicle lic. rec. fee	6	days at	\$	1.80	\$ 10.80	
cleaning					\$ 100.00	
						\$ 686.01
Gasoline						\$ 200.81
Meals						
for two people	6	days at	\$	101.04		\$ 606.26
Accommodation						
	5	nights at	\$	130.00		\$ 650.00
Analyses Rock						
prep, XRF, Au	54	samples at	\$	48.63		\$ 2,626.02
Analyses Soil/Silt						
prep, ICP, Au	19	samples at	\$	31.08		\$ 590.52
Report Preparation: Arr	d Bur	gert, P.Geo.				
	5.37	days at	\$	850.00		\$ 4,563.67
GIS Compilation: Smart	Map S	Services				
	55	hours at	\$	105.00		\$ 5,775.00
Orthophoto Preparatior	n: Eagl	e Mapping Ser	vice	5		\$ 4,108.93
TOTAL						\$ 43,569.93

STATEMENT OF EXPENDITURES

APPENDIX 2

ROCK SAMPLE DESCRIPTIONS

									1				Mineral-	Primary	Secondary	Tertiary				
Sample		UTM	UTM	Type of	Outcrop	Surface	Weathered	Fresh Surface	Primary Rock	Secondary Rock			ization	Mineral-	Mineral-	Mineral-				
	Sample Type	Easting	Northing		Туре	Coating	Surface Colour	Colour	Texture	Texture	Bedrock Type	Notes	Texture	ization	ization	ization	Other Mineralization	Alteration	Ag ppm	Au ppb
					Cliff face			dark medium				intensely								
22001	Grab	708737	5471100	Wallrock	road cut	Fe oxide	pale rusty brown	grey	medium grained		crystal tuff	hornfelsed, very hard		none	none	none	Fe stain on rockface	Hornfels	0.05	14
						Fo ovido		grou white			on stal tuff	strike 020 die 00EW(intense as			
22002	Crah	700727	F 471100) (ain ah ann	Cliff face	Fe oxide, calcite		grey, white, black	fine encined		crystal tuff, hornfelsed	strike 020, dip 005W; 20cm wide vein					mineralization surrounded by quartz	Carlassata	1.0	100.2
22002	Grab	708737	5471100	vein snear	road cut Cliff face	calcite	Rusty brown	DIACK	fine grained	medium grained	crystal tuff,	very hard hornfelsed	massive	as	ру	none	surrounded by quartz	Carbonate	1.8	196.2
22003	Grab	708738	5471100	Wallrock	road cut	Fe oxide	pale rusty brown	medium grey	medium grained	fine grained	hornfelsed	tuff						Hornfels	0.05	4
22005	Grub	/00/30	5471100	Walliock	Cliff face	i e oxíde	pule rusty brown	inculain grey	inculain granica		crystal tuff,	very hard hornfelsed						Hornicis	0.05	
22004	Grab	708738	5471100	Wallrock	road cut	Fe oxide	pale rusty brown	medium grey	medium grained	fine grained	hornfelsed	tuff							0.2	3.6
							p	0.1	0	- 0										
					Cliff face	Fe oxide,											intense arsenopyrite			
22005	Grab	708738	5471100	Vein shear	road cut	calcite	dark red brown	black, reddish	fine grained	medium grained	crystal tuff	20 cm wide vein	vein	as	ср	ру	veining	calcite	2.1	165.6
					Cliff face						crystal tuff,	very hard hornfelsed								
22006	Grab	708738	5471100	Wallrock	road cut	Fe oxide	pale rusty brown	dark grey	medium grained	fine grained	hornfelsed	tuff							0.05	3.5
																	It 1mm discrete specks			
22007	Grab	708154	5470093	Mallrook	steep	Fe oxide	dark grey	black	fine grained		argillite	not hornfelsed	disseminat				of pyrite, randomly distributed	2020	0.9	1.7
22007	Grab	706154	5470095	WallfOCK	slope steep	re oxide	uark grey	DIACK	fine grained		arginite	3mm-12mm wide	ed	ру			carbonate coating on	none carbonate in	0.9	1.7
22008	Grab	707869	5469804	Wallrock	slope	calcite	white,pale grey	white	medium grained		argillite	guartz vein					fractures	veins	0.3	3.7
22000	Giub	101005	5105001	Walliock	510 pc	cultite	Wince,puic Brey	White	inculain granica		unginite	sample at base of	disseminat					Venio	0.5	5.7
22010	Grab	707869	5469804	Shear	cliff	Fe oxide	dark grey brown	black	fine grained		argillite	outcrop	ed	ру	as			none	0.3	0.8
											Ŭ									
																	It 1mm discrete specks			
													disseminat				of pyrite, randomly	white		
22011	Grab	707959	5469634	Wallrock	cliff	Fe oxide	grey	dark grey	fine grained		argillite, tuff	road cut	ed	ру			distributed	precipitate	0.3	0.25
												limonite stained								
							rusty stain, yellow					fractures, white	disseminat					white		
22012	Grab	707940	5469742	Wallrock	cliff	Fe oxide	orange	dark grey	fine grained	-	argillite, tuff	precipitation	ed	ру	-			precipitate	1.5	2
												edge of road cut, splotchy limonite								
					gentle		grov orango					staining, 20cm wide								
22013	Grab	708872	5470334	Wallrock	slope	Fe oxide	grey,orange brown	dark grey	fine grained		argillite	vein							0.9	2.2
22015	Grab	700072	5470554	Walliock	зюрс		brown	uark grey			arginice	VCIII							0.5	2.2
					gentle												limonite staining of			
22014	Grab	708766	5470296	Wallrock	slope	Limonite	pale brown	medium grey	fine grained		argillite	road cut					fracture surfaces	none	0.4	1.4
						pale white,					-							calcite in		
22015	Grab	708694	5470260	Wallrock	road cut	orange	light grey	dark grey	fine grained		argillite	not hornfelsed						stringers	0.5	0.7
												massive white colored								
												carbonate vein, grey								
22016			F 470064	., .			grey, splotchy	1.5				very finegrained micro	disseminat				occassional 1-2 mm		0.05	0.05
22016	Grab	708585	5470061	vein	cliff face	grey	white	white	very coarse graine	d	argillite	fractures	ed	ру			size py grains	carbonate	0.05	0.25
											interbedded						10 cm wide heavily	staining,		
							orange tan,					hornfelsed in places,	disseminat				weathered zones	coating on		
22017	Grab	708589	5470134	Wallrock	road cut	Fe oxide	-	no color	fine grained		ne,shale	strike 045, dip 60 E	ed	ру			within sediments	fractures	1.7	2.7
							,				interbedded					1				
											argillite,siltsto		disseminat							
22018		708590	5470123	Wallrock	road cut		orange brown	black	fine grained		ne, shale	locally hornfelsed	ed	ру				none	2.1	0.5
	Discontin-					Carbonate,	l										abundant Fe staining			
22022		708094	5470158	Wallrock	trench	limonite Carbonata	dark brown	medium grey	fine grained	medium grained	tuff, argillite	Trench 1, 24m-29m		ļ			on fracs		1.2	2.9
22022	Discontin-	700004	F 4704 C4	\A/alluli	tuon ch	Carbonate,	deuls haavee		fine main of		4ff!!!!	Trench 1, 2011, 2411					abundant Fe staining		0.0	1.2
22023	uous chip Discontin-	708091	5470161	wailrock	trench	limonite Carbonate,	dark brown	medium grey	fine grained		tuff, argillite	Trench 1, 29m-34m					on fracs abundant Fe staining		0.9	1.2
22024		708088	5470165	Wallrock	trench	limonite	dark brown	medium grey	fine grained		tuff, argillite	Trench 1,34m-39m					on fracs		0.9	1.7
22024	Discontin-	100000	24/0102	vvaili UCK		Carbonate,		ineuluin grey	nine granneu		iun, arginite	11-CHUH 1,34111-39111					abundant Fe staining		0.9	1./
22025		708084	5470169	Wallrock	trench		dark brown	medium grey	fine grained		tuff, argillite	Trench 1, 39-44m					on fracs		1.5	5
	acas crip		2.70105	31 0.11 O CK					0.01100		tan) a Builte		1	I	1	1	1	1	1.5	<u> </u>

<u> </u>										1		1	NAta ana l	In the second		Transform.	1			
Sample		υтм	UTM	Type of	Outcrop	Surface	Weathered	Fresh Surface	Primary Rock	Secondary Rock			Mineral- ization	Primary Mineral-	Secondary Mineral-	Tertiary Mineral-				
	Sample Type			Feature	Туре	Coating	Surface Colour	Colour	Texture	Texture	Bedrock Type	Notes	Texture	ization	ization	ization	Other Mineralization	Alteration	Ag ppm	Au ppb
	Discontin-					Carbonate,											abundant Fe staining			
22026	uous chip	708081	5470172	Wallrock	trench	limonite	dark brown	medium grey	fine grained		tuff, argillite	Trench 1, 44-49m					on fracs		0.8	2.5
22027	Discontin- uous chip	708076	5470177	Wallrock	trench	Carbonate, limonite	dark brown	medium grey	fine grained		tuff, argillite	Trench 1, 49-54m					abundant Fe staining on fracs		0.9	8.3
								U 7	5		, ,	, ,					abundant Fe staining			
	Discontin-					Carbonate,											on fracts, some qtz			
22028	uous chip	708073	5470180	Wallrock	trench	limonite Carbonate,	dark brown	medium grey	fine grained		tuff, argillite	Trench 1, 54-59m					veining		0.6	1.3
22029	Discontin- uous chip	708071	5470183	Wallrock	trench	limonite	dark brown	medium grey	fine grained		tuff, argillite	Trench 1, 59-62m							0.7	0.9
	uous criip	/000/1	5170105	Wantock	trenen			incutan grey	inte grunteu			Line F- panel 7 - bottom							0.7	0.5
22033	Grab	708680	5471075		trench	Limonite	dark brown	dark grey green	fine grained		altered argillite								0.1	7.9
22034	Grab	708680	5471075	Vein	trench	Fe oxide	pale yellow	light grey	medium grained		quartz vein	Line F	dissem	as					0.4	193.5
22035	Grab	708680	5471075	Voin	trench	pale yellow		white, green	medium grained		mineralized	Line F	stringers					clay alteration	0.4	1114.7
22055	Grab	708080		Altered	trenth	pale yellow		white, green	ineuluin graineu		zone		stringers	as				alleration	0.4	1114.7
				zone in							mineralized									
22036	Grab	708680	5471075	Vein	trench	Fe oxide	pale orange	pale orange	fine grained		zone	Line F							0.2	316.2
22027	Curch	700000	F 47407F) / - t	ture a ch				fin a succia a d		massive shear	Line F						clay, cherty	0.6	070.0
22037	Grab	708680	5471075	vein	trench			grey pale orange	fine grained		zone mineralized	Line F	veins	as				looking	0.6	970.8
22038	Grab	708680	5471075	Vein	trench	Fe oxide	red brown	brown	coarse grained		zone	Line F, topmost vein	massive	as					2.3	9961.6
				Altered					5											
				zone in				pale grey to			clay altered	Line F, clay altered								
22039	Grab	708680	5471075	Vein	trench	Fe oxide		white	fine grained		andesite	zone							1.7	1671.9
											altered spotted							weakly		
22040	Grab	708680	5471075	Wallrock	trench	Fe oxide	grey green	green	fine grained		andesite	Line F, wall rock						altered	0.4	77.8
	0.00		0112070			i e chiae	pale orange, grey	-	inte Branica		spotted								0.11	
22041	Grab	708680	5471075	Wallrock	trench	Fe oxide	green	green grey	medium grained	fine grained	andesite	Line F, wall rock							0.05	6.5
				Mineralized			pale orange				altered	Vent Raise 1, bottom of								
22044	Grab	708700	5471095	zone	cliff face	Fe oxide	brown	pale orange, tan	fine grained	cherty	andesite?	outcrop							0.5	63.6
																	boxwork Fe cavities,			
																	f.g to m.g. as xls ,			
22045	Grab	708700	5471095	Vein	cliff face	Fe oxide	reddish brown	yellow grey	fine grained		quartz vein	Vent Raise 1	vein	as	ру		stringers, blebs		8.4	20268.6
									a											
22046	Grab	708700	5471095	Vein	cliff face	Fe oxide	dark red brown	white	fine grained	boxwork Fe	quartz vein spotted	Vent Raise 1	vein	as	ga		specks, blebs, stringers		29.5	5692.7
22047	Grab	708700	5471095	Vein	cliff face	Fe oxide	dark grey brown	pale grey green	medium grained	coarse grained	andesite	Vent Raise 1							0.9	231.7
	Grab	100/00	5171055	Veni		i e oxíde		pale yellow	incularin grained	course granica							massive blebs,		0.5	231.7
22048	Grab	708700	5471095	Vein	cliff face	Fe oxide	dark red brown	green	medium grained	coarse grained	quartz vein	Vent Raise 1	as	ру			stringers		1.9	7993.8
22049	Grab	709700	5471095	Voin	cliff face	Fo ovido	mottled red	medium grey	fine grained	cugon/	quartz voin	Vent Raise 1	massive	26	D 1/		as forms grey bands, py is disseminated		0.5	817.4
22049	Grab	708700	5471095	Vein		reoxide	brown	inedium grey	ine granieu	sugary	quartz vein		disseminat	as	ру		py is dissertinated		0.5	017.4
22050	Grab	708700	5471095	Wallrock	cliff face	Fe oxide	grey green	grey	fine grained	sugary	argillite?	Vent raise 1	ed	ру					0.3	70.7
22051	Grab	708679	5471102	Wallrock	trench	Fe Oxide	brown	grey green	medium grained		mafic diorite	Hand dug trench							0.2	15.3
											mafic diorite							us a devetable		
	Grab	708681	5471100	Wallrock	trench	Fe oxide	brown	white	medium grained	medium grained	with quartz vein	Hand dug trench						moderately altered	0.6	133.3
22052		, 50001	5.71100			. e onide						Hand dug trench,							0.0	133.3
22052	GIAD			1	1							cobble of qzv with as in								
22052	Grab											1	1		-					
22053	Grab	708683	5471098		trench	Fe oxide	grey green	grey green	fine grained	medium grained	mafic diorite	trench wall							0.4	3085.2
22053 22054	Grab Grab	708688	5471093	Wallrock	trench	Fe oxide	dk orange brn	unknown	medium grained	medium grained	unknown	Hand dug trench	unknown	py?					0.7	186.9
22053	Grab			Wallrock						medium grained										
22053 22054	Grab Grab	708688	5471093	Wallrock Wallrock	trench	Fe oxide	dk orange brn	unknown	medium grained	medium grained	unknown	Hand dug trench	unknown disseminat ed						0.7	186.9

APPENDIX 3

CERTIFICATES OF ANALYSIS

Client: 838331 BC Ltd.

1020 Cordova St. East Vancouver BC V6A 4A3 Canada

www.acmelab.com

ADDITIONAL COMMENTS

Submitted By: David Jensen Receiving Lab: Canada-Vancouver Received: December 20, 2010 Report Date: January 20, 2011 Page: 1 of 3

CERTIFICATE OF ANALYSIS

Banbury

VAN10007045.1

CLIENT JOB INFORMATION

SAMPLE PREPARATION AN	D ANALYTICAL	PROCEDURES
-----------------------	--------------	------------

Method Code	Number of Samples	Code Description	Test Wgt (g)	Report Status	Lab
R200-1000	52	Crush, split and pulverize 1kg rock to 200 mesh			VAN
4X4B	52	XRF Whole Rock & ICP-MS Trace Elements		Completed	VAN

SAMPLE DISPOSAL

Project:

Shipment ID:

P.O. Number

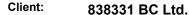
Number of Samples:

STOR-PLP	Store After 90 days Invoice for Storage
STOR-RJT	Store After 90 days Invoice for Storage

54

Acme does not accept responsibility for samples left at the laboratory after 90 days without prior written instructions for sample storage or return.

838331 BC Ltd. Invoice To:


CC:

Arnd Burgert

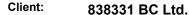
This report supersedes all previous preliminary and final reports with this file number dated prior to the date on this certificate. Signature indicates final approval; preliminary reports are unsigned and should be used for reference only. All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of analysis only.

"*" asterisk indicates that an analytical result could not be provided due to unusually high levels of interference from other elements.

Project:	Banbury
Report Date:	January 20, 2011

Page:

1020 Cordova St. East Vancouver BC V6A 4A3 Canada Phone (604) 253-3158 Fax (604) 253-1716


www.acmelab.com

2 of 3 Part 1

VAN10007045.1

CERTIFICATE OF ANALYSIS

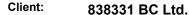
	Method	WGHT	4X	4X 2	2A Leco	2A Leco	4B	4B	4B	4B											
	Analyte	Wgt	SiO2	AI2O3	Fe2O3	CaO	MgO	Na2O	K2O	MnO	TiO2	P2O5	Ва	LOI	SUM	TOT/C	TOT/S	Ва	Be	Co	Cs
	Unit	kg	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	ppm	ppm	ppm	ppm
	MDL	0.01	0.1	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	-5.11	0.01	0.02	0.02	1	1	0.2	0.1
22001 Rock		0.74	53.3	17.54	7.58	8.53	3.50	3.33	0.90	0.15	0.68	0.19	0.07	3.31	99.05	0.64	0.43	730	<1	17.4	1.1
22002 Rock		1.69	41.1	4.59	27.00	6.83	1.01	0.30	0.73	0.17	0.18	0.05	0.03	11.37	93.36	1.57	11.38	274	<1	18.6	0.9
22003 Rock		1.37	52.2	18.57	9.01	9.63	4.12	2.62	0.89	0.18	0.79	0.21	0.07	1.67	99.92	0.13	0.58	696	<1	21.9	1.1
22004 Rock		0.87	51.8	17.90	9.99	8.13	3.78	2.78	1.01	0.17	0.75	0.22	0.05	2.94	99.52	0.40	0.35	573	<1	21.3	1.0
22005 Rock		1.97	26.6	3.49	44.15	2.52	0.57	0.17	0.70	0.08	0.16	0.04	0.03	18.33	96.82	0.81	19.41	343	<1	20.0	0.5
22006 Rock		0.77	63.2	17.41	3.84	5.28	1.54	3.87	0.96	0.04	0.42	0.13	0.07	2.29	99.07	0.22	0.14	797	<1	9.4	0.5
22007 Rock		1.40	73.3	10.14	3.46	1.20	2.90	1.59	2.07	0.02	0.58	0.18	0.14	3.74	99.34	0.61	0.66	1430	1	10.2	2.6
22008 Rock		0.22	17.2	2.65	3.46	41.70	0.71	0.26	0.41	0.33	0.17	0.09	0.05	32.14	99.19	9.23	0.05	504	<1	12.2	1.9
22009 Rock		1.03	59.6	10.90	5.18	7.17	2.46	1.31	2.16	0.07	0.57	0.26	0.16	7.78	97.65	1.72	0.77	1650	<1	16.7	2.1
22010 Rock		1.76	62.9	10.49	4.98	5.97	2.90	0.80	1.99	0.08	0.75	0.17	0.15	6.22	97.42	1.34	0.09	1516	<1	14.0	2.5
22011 Rock		1.19	66.6	10.39	5.58	3.99	3.00	1.69	1.50	0.05	0.59	0.22	0.13	4.81	98.54	1.18	0.52	1354	<1	14.4	1.4
22012 Rock		1.35	73.3	9.81	4.09	1.19	2.42	1.21	2.00	0.02	0.55	0.28	0.16	4.36	99.43	0.61	0.13	1599	<1	6.1	3.2
22013 Rock		1.04	51.1	8.48	3.61	16.35	1.62	1.87	1.49	0.08	0.53	0.53	0.11	13.14	98.88	3.63	0.05	1246	<1	11.0	1.6
22014 Rock		1.43	28.3	3.10	2.01	34.09	1.66	0.62	0.33	0.22	0.19	0.28	0.04	26.05	96.89	7.89	0.04	424	<1	5.1	0.3
22015 Rock		1.84	24.1	2.75	2.27	36.17	4.66	0.06	0.15	0.14	0.18	0.14	<0.01	26.67	97.28	8.06	0.18	106	<1	3.1	1.4
22016 Rock		1.85	0.5	0.16	0.52	55.90	0.38	<0.01	<0.01	0.46	0.01	<0.01	<0.01	39.89	97.87	12.13	<0.02	23	<1	<0.2	<0.1
22017 Rock		2.20	50.7	5.43	3.38	18.43	1.06	0.74	0.79	0.06	0.37	0.21	0.04	15.31	96.56	4.27	0.07	545	<1	11.4	1.2
22018 Rock		0.94	48.2	9.16	8.19	10.67	1.69	0.87	2.07	0.07	0.53	0.21	0.15	12.70	94.50	2.26	4.18	1582	<1	11.4	2.2
22019 Rock		1.73	57.6	10.11	4.62	9.97	2.82	1.56	1.85	0.07	0.62	0.24	0.19	8.25	97.92	2.35	0.08	1966	<1	14.5	2.3
22020 Rock		2.08	52.9	9.85	4.81	12.79	3.36	1.32	1.87	0.08	0.54	0.24	0.19	10.66	98.65	2.76	0.18	1968	<1	10.6	2.7
22021 Rock		L.N.R.	L.N.R.	L.N.R.	L.N.R.	L.N.R.	L.N.R.														
22022 Rock		3.20	58.7	8.31	3.65	10.13	2.79	0.60	2.00	0.07	0.56	0.26	0.12	11.14	98.38	2.86	0.11	1291	1	12.1	3.7
22023 Rock		4.06	62.2	8.08	3.41	7.95	3.01	0.49	2.04	0.06	0.48	0.29	0.12	9.98	98.14	2.54	0.12	1214	<1	10.3	3.9
22024 Rock		2.25	56.5	6.69	2.79	13.58	2.50	0.26	1.53	0.10	0.37	0.26	0.13	12.88	97.56	3.53	0.11	1277	<1	9.1	2.5
22025 Rock		3.32	57.9	6.30	2.93	13.71	1.60	0.40	1.42	0.08	0.39	0.38	0.11	11.65	96.84	3.25	0.09	1205	1	9.8	2.8
22026 Rock		2.19	51.9	4.09	2.16	19.29	1.53	0.34	0.90	0.06	0.25	0.24	0.05	16.80	97.65	4.81	0.11	574	<1	5.7	1.7
22027 Rock		2.80	58.1	6.77	2.85	13.72	1.29	0.39	1.34	0.05	0.41	0.29	0.08	12.64	97.94	3.47	0.11	893	<1	8.5	2.6
22028 Rock		2.34	49.3	7.58	2.71	17.88	1.15	0.33	1.57	0.06	0.33	0.21	0.12	15.95	97.22	4.53	0.08	1245	1	7.3	2.9
22029 Rock		2.83	54.2	5.19	2.47	17.14	1.32	0.11	1.02	0.08	0.25	0.27	0.07	14.54	96.67	4.19	0.14	755	<1	6.5	1.9
22030 Rock		L.N.R.	L.N.R.	L.N.R.	L.N.R.	L.N.R.	L.N.R.														

Project:	Banbury
Report Date:	January 2

Page:

20, 2011

1020 Cordova St. East Vancouver BC V6A 4A3 Canada Phone (604) 253-3158 Fax (604) 253-1716


www.acmelab.com

2 of 3 Part 2

VAN10007045.1

CERTIFICATE OF ANALYSIS

	Method	4B																			
	Analyte	Ga	Hf	Nb	Rb	Sn	Sr	Та	Th	U	v	w	Zr	Y	La	Ce	Pr	Nd	Sm	Eu	Gd
	Unit	ppm																			
	MDL	0.5	0.1	0.1	0.1	1	0.5	0.1	0.2	0.1	8	0.5	0.1	0.1	0.1	0.1	0.02	0.3	0.05	0.02	0.05
22001 Rock	k	17.4	1.4	2.1	25.5	<1	546.7	0.1	1.6	0.9	231	1.0	50.0	13.9	7.4	16.0	2.23	9.9	2.35	0.78	2.48
22002 Rock	k	5.1	0.8	0.7	25.3	<1	144.9	<0.1	0.5	0.4	73	1.8	30.9	8.8	3.3	6.7	0.96	4.5	1.09	0.60	1.27
22003 Rock	k	18.5	1.4	1.8	30.3	<1	445.5	0.1	1.8	0.9	271	<0.5	47.1	16.2	7.6	16.5	2.25	10.0	2.56	0.83	2.76
22004 Roci	k	17.3	1.8	2.0	29.8	<1	498.9	0.1	2.3	1.1	264	<0.5	62.9	16.8	8.2	17.3	2.37	10.8	2.54	0.87	2.81
22005 Roci	k	4.5	0.3	0.4	21.0	<1	55.0	<0.1	0.4	0.3	54	2.1	16.8	5.3	2.2	4.1	0.59	2.5	0.67	0.32	0.77
22006 Roci	k	17.9	1.7	1.6	29.5	<1	594.2	0.1	1.6	0.8	83	0.6	63.5	5.4	5.9	11.3	1.38	5.3	1.06	0.40	1.03
22007 Rock	k	13.2	3.3	7.2	65.8	1	296.3	0.4	5.9	2.3	132	1.1	130.3	26.5	20.4	33.4	5.41	22.7	4.57	1.01	4.57
22008 Rock	k	2.9	0.8	1.3	14.6	<1	742.1	<0.1	1.0	1.1	52	<0.5	29.0	24.8	16.3	19.3	3.02	13.1	2.59	1.17	3.09
22009 Roci	k	11.8	2.3	4.2	55.3	<1	317.6	0.3	2.9	2.7	180	<0.5	78.2	23.2	13.8	23.1	3.61	15.1	3.37	0.85	3.56
22010 Roci	k	13.4	2.8	8.7	52.6	1	197.0	0.5	4.2	2.0	166	0.8	112.6	18.4	14.0	26.9	3.75	15.1	3.14	0.70	3.08
22011 Rock	k	11.3	2.1	3.8	30.0	<1	234.6	0.2	2.7	2.8	251	<0.5	73.9	21.9	12.5	23.8	3.42	15.1	3.33	0.76	3.55
22012 Roc	k	12.6	2.7	6.0	59.0	1	237.4	0.4	5.1	3.6	264	0.7	113.1	27.6	23.4	34.8	5.68	21.8	4.19	0.91	4.04
22013 Roc	k	8.7	2.6	3.8	35.7	1	1336	0.2	2.8	4.3	152	0.5	101.1	47.7	27.0	34.5	6.23	26.7	5.62	1.24	6.49
22014 Roci	k	3.6	0.9	1.3	7.9	<1	1411	<0.1	0.9	2.2	61	<0.5	40.4	21.5	11.1	13.3	2.31	9.3	2.06	0.69	2.40
22015 Rock	k	3.2	0.6	1.6	8.5	<1	1484	<0.1	0.8	1.4	59	<0.5	26.0	11.0	5.9	8.5	1.37	5.4	1.23	0.49	1.33
22016 Roci	k	<0.5	<0.1	0.1	0.7	<1	1634	<0.1	<0.2	0.1	<8	<0.5	4.6	23.1	36.4	36.2	4.73	16.6	2.88	2.60	2.93
22017 Roci	k	7.3	1.6	3.7	23.7	<1	638.9	0.2	2.9	3.7	146	0.5	73.5	25.4	14.5	20.1	3.75	15.4	3.11	0.75	3.35
22018 Rock	k	12.8	3.7	4.3	59.0	1	803.3	0.3	3.0	2.7	151	0.7	134.8	22.0	12.6	21.9	3.56	15.4	3.45	0.70	3.50
22019 Roci	k	12.1	2.5	6.5	45.8	1	547.2	0.4	3.2	2.5	177	0.6	93.4	16.7	12.6	23.3	3.29	13.8	2.82	0.81	2.88
22020 Roci	k	11.6	1.9	4.0	48.3	<1	477.7	0.3	2.3	2.4	181	0.5	70.9	17.0	11.3	17.9	2.79	11.9	2.60	0.63	2.74
22021 Roci	k	L.N.R.																			
22022 Roci	k	11.0	2.8	6.8	63.0	1	460.8	0.4	5.1	4.1	288	0.9	115.4	28.1	23.9	36.9	5.66	22.0	4.28	0.92	4.21
22023 Roci	k	10.5	3.1	6.9	62.5	1	396.4	0.5	5.0	3.6	198	0.8	117.5	26.3	22.2	36.2	5.42	22.0	4.15	0.90	4.24
22024 Roc	k	8.3	2.3	4.6	46.0	<1	569.7	0.3	3.7	2.8	177	0.7	87.4	23.5	18.4	27.1	4.34	17.6	3.60	0.80	3.54
22025 Rock	k	8.1	2.0	4.4	42.6	<1	601.1	0.3	3.2	3.7	209	0.7	73.9	27.9	20.5	25.6	4.66	19.0	3.74	0.89	4.14
22026 Roci	k	5.1	1.2	2.4	27.3	<1	925.0	0.2	2.0	3.1	140	<0.5	56.6	21.7	14.0	17.2	3.29	13.8	2.78	0.77	3.08
22027 Roc	k	8.1	2.3	3.7	39.5	<1	562.4	0.3	3.3	3.5	185	0.5	86.3	24.2	18.3	24.1	4.33	17.8	3.64	0.79	3.79
22028 Rock	k	9.8	2.1	3.1	47.6	<1	1087	0.2	2.9	2.6	85	0.8	84.7	19.8	14.5	20.8	3.56	14.1	2.90	0.86	2.87
22029 Rock	k	6.9	1.7	2.9	32.6	<1	579.1	0.2	2.4	2.5	84	0.5	68.5	21.4	15.7	19.9	3.66	15.5	2.94	0.82	3.00
22030 Rock	k	L.N.R.																			

Project:	Banbury
Report Date:	January

Page:

20, 2011

1020 Cordova St. East Vancouver BC V6A 4A3 Canada Phone (604) 253-3158 Fax (604) 253-1716

www.acmelab.com

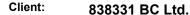
2 of 3 Part 3

CERTIFICATE OF ANALYSIS VAN10007045.1																					
	Method	4B	1DX																		
	Analyte	Tb	Dy	Но	Er	Tm	Yb	Lu	Мо	Cu	Pb	Zn	Ni	As	Cd	Sb	Bi	Ag	Au	Hg	т
	Unit	ppm	ppb	ppm	ppm																
	MDL	0.01	0.05	0.02	0.03	0.01	0.05	0.01	0.1	0.1	0.1	1	0.1	0.5	0.1	0.1	0.1	0.1	0.5	0.01	0.1
22001 Rock		0.41	2.38	0.51	1.52	0.22	1.47	0.22	2.1	56.5	0.9	53	9.1	70.7	<0.1	0.1	<0.1	<0.1	14.0	<0.01	<0.1
22002 Rock		0.22	1.35	0.28	0.83	0.12	0.79	0.11	5.8	1052	1.9	204	6.0	3894	7.7	2.2	0.2	1.8	196.2	0.02	<0.1
22003 Rock		0.47	2.81	0.56	1.64	0.25	1.65	0.25	0.6	45.4	0.8	38	8.9	32.9	<0.1	<0.1	<0.1	<0.1	4.0	<0.01	<0.1
22004 Rock		0.47	2.88	0.61	1.81	0.26	1.71	0.27	2.2	115.7	1.0	51	9.5	69.3	<0.1	0.2	<0.1	0.2	3.6	<0.01	<0.1
22005 Rock		0.14	0.85	0.18	0.57	0.07	0.47	0.07	4.7	1404	1.7	22	7.6	4480	0.5	1.5	0.3	2.1	165.6	0.01	<0.1
22006 Rock		0.16	0.86	0.19	0.51	0.08	0.56	0.09	1.9	79.4	0.8	30	4.2	205.0	<0.1	0.2	<0.1	<0.1	3.5	<0.01	<0.1
22007 Rock		0.76	4.49	0.94	2.65	0.37	2.65	0.39	0.6	112.7	8.6	116	48.2	5.7	0.3	0.8	0.2	0.9	1.7	0.02	0.1
22008 Rock		0.51	3.05	0.64	1.82	0.24	1.37	0.21	6.6	33.7	3.2	72	33.9	29.8	1.1	1.4	<0.1	0.3	3.7	0.03	<0.1
22009 Rock		0.60	3.63	0.74	2.20	0.33	2.30	0.34	5.0	99.0	5.6	88	47.5	3.1	1.1	0.6	<0.1	0.4	<0.5	<0.01	<0.1
22010 Rock		0.52	2.93	0.65	1.96	0.29	2.05	0.33	2.3	44.7	3.5	98	40.5	11.7	0.7	0.5	<0.1	0.3	0.8	0.01	<0.1
22011 Rock		0.61	3.70	0.74	2.13	0.31	2.14	0.32	8.3	53.0	5.5	65	22.8	13.3	0.3	0.9	0.1	0.3	<0.5	<0.01	0.2
22012 Rock		0.67	3.96	0.83	2.48	0.36	2.53	0.36	15.9	85.3	13.3	172	28.9	24.5	2.0	2.9	0.2	1.5	2.0	0.04	0.3
22013 Rock		1.08	6.75	1.39	4.09	0.59	4.21	0.62	1.8	64.9	5.8	112	50.4	13.3	1.3	1.2	0.2	0.9	2.2	0.02	0.1
22014 Rock		0.42	2.65	0.59	1.83	0.27	1.97	0.30	2.2	37.6	5.2	71	28.6	24.2	1.1	1.0	<0.1	0.4	1.4	<0.01	<0.1
22015 Rock		0.24	1.46	0.31	0.97	0.14	1.01	0.16	3.2	9.9	8.5	25	14.1	17.2	0.2	1.8	<0.1	0.5	0.7	<0.01	<0.1
22016 Rock		0.48	2.94	0.56	1.46	0.20	1.33	0.17	0.3	3.5	0.6	2	0.6	3.7	<0.1	0.1	<0.1	<0.1	<0.5	<0.01	<0.1
22017 Rock		0.56	3.31	0.73	2.16	0.29	2.06	0.32	6.9	87.5	10.4	273	118.2	18.1	5.5	3.0	0.2	1.7	2.7	0.05	0.1
22018 Rock		0.59	3.56	0.74	2.12	0.32	2.28	0.33	14.0	47.2	12.6	126	59.1	165.9	2.8	2.9	0.3	2.1	0.5	0.02	0.3
22019 Rock		0.48	2.81	0.57	1.71	0.24	1.67	0.28	1.3	69.6	4.0	84	34.3	10.6	0.5	0.4	<0.1	0.4	0.6	<0.01	0.1
22020 Rock		0.44	2.61	0.54	1.65	0.25	1.72	0.24	2.9	50.7	4.3	77	23.9	12.8	0.3	0.3	<0.1	0.3	<0.5	0.01	0.2
22021 Rock		L.N.R.																			
22022 Rock		0.69	4.25	0.86	2.45	0.36	2.48	0.37	25.0	76.6	9.7	142	61.9	12.0	1.4	1.7	0.2	1.2	2.9	0.05	0.5
22023 Rock		0.68	3.92	0.82	2.46	0.36	2.34	0.36	9.5	71.7	8.7	111	45.6	11.4	0.8	1.3	0.2	0.9	1.2	0.06	0.4
22024 Rock		0.54	3.41	0.67	1.94	0.29	1.96	0.29	7.3	64.2	7.2	148	59.5	21.3	1.6	2.1	0.1	0.9	1.7	0.04	0.4
22025 Rock		0.66	3.87	0.79	2.41	0.34	2.16	0.35	9.5	79.8	8.7	127	52.3	16.7	1.6	3.1	0.1	1.5	5.0	0.07	0.5
22026 Rock		0.50	3.17	0.63	1.79	0.26	1.74	0.26	17.2	48.4	6.4	79	31.0	20.8	1.6	3.8	<0.1	0.8	2.5	0.09	0.5
22027 Rock		0.60	3.48	0.72	2.18	0.31	2.05	0.31	28.5	71.8	7.3	214	46.9	23.2	2.8	5.1	0.1	0.9	8.3	0.10	0.8
22028 Rock		0.47	2.97	0.56	1.61	0.23	1.59	0.23	7.2	52.1	5.4	107	33.9	19.3	0.4	2.5	<0.1	0.6	1.3	0.03	0.3
22029 Rock		0.49	2.97	0.61	1.81	0.26	1.68	0.26	4.4	48.9	6.2	121	30.7	14.7	0.3	3.4	<0.1	0.7	0.9	0.04	0.2
22030 Rock		L.N.R.																			

	Client:	838331 BC Ltd.
Acme Analytical Laboratories (Vancouver) Ltd.	Project:	Banbury
1020 Cordova St. East Vancouver BC V6A 4A3 Canada	Report Date:	January 20, 2011
Phone (604) 253-3158 Fax (604) 253-1716		

www.acmelab.com

2011


Page:

2 of 3 Part 4

CERTIFICATE OF ANALYSIS

	Method Analyte Unit	1DX Se
	MDL	0.8
22001	Rock	0.8
22002	Rock	13.1
22003	Rock	<0.5
22004	Rock	0.9
22005	Rock	20.3
22006	Rock	<0.5
22007	Rock	4.7
22008	Rock	12.4
22009	Rock	3.4
22010	Rock	2.0
22011	Rock	2.1
22012	Rock	6.4
22013	Rock	4.3
22014	Rock	2.0
22015	Rock	1.4
22016	Rock	1.1
22017	Rock	4.8
22018	Rock	17.1
22019	Rock	2.3
22020	Rock	2.5
22021	Rock	L.N.R
22022	Rock	2.9
22023	Rock	1.6
22024	Rock	2.0
22025	Rock	2.4
22026	Rock	2.2
22027	Rock	4.8
22028	Rock	1.7
22029	Rock	2.3
22030	Rock	L.N.R

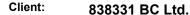
VAN10007045.1

www.acmelab.com

Project:	Banbury
Report Date:	January 20, 2011

1020 Cordova St. East Vancouver BC V6A 4A3 Canada Phone (604) 253-3158 Fax (604) 253-1716

Page:


Part 1

VAN10007045.1

3 of 3

CERTIFICATE OF ANALYSIS

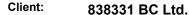
	Method	WGHT	4X	4X	4X	4X	4X	4X	4X	4X	4X	4X	4X	4X	47.2	A Leco 2		4B	4B	4B	4B
	Analyte	Wat	SiO2	4A	+A Fe2O3	4A CaO	MgO	Na2O	4A K2O	۰۰۰ MnO	TiO2	4A P2O5	Ba	LOI	SUM	TOT/C	TOT/S	Ba	Be	4B Co	4D Cs
	Unit	kg	%	%	%	%	<u>9</u> 0 %	%	%	%	%	%	%	%	%	%	%	ppm	ppm	ppm	ppm
	MDL	0.01	0.1	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	-5.11	0.01	0.02	0.02	1	1	0.2	0.1
22032 Rock		2.75	74.8	12.65	2.45	0.33	0.61	0.17	2.72	0.01	0.82	0.09	0.18	4.00	98.91	0.58	0.04	1934	<1	1.8	4.1
22033 Rock		1.97	57.5	16.57	9.16	1.16	1.74	3.74	2.75	0.12	0.89	0.39	0.15	5.30	99.52	0.02	<0.02	1449	1	28.4	1.7
22034 Rock		2.09	86.5	6.71	1.47	0.09	0.23	0.77	1.31	<0.01	0.32	0.01	0.04	1.77	99.26	0.15	0.10	490	<1	1.5	1.2
22035 Rock		1.72	92.1	0.36	3.16	0.02	0.02	<0.01	0.10	0.01	0.07	<0.01	<0.01	2.83	98.70	<0.02	0.67	43	<1	3.4	0.1
22036 Rock		1.32	83.2	6.20	4.10	0.11	0.33	0.26	1.61	0.01	0.21	0.02	0.03	2.70	98.79	0.03	0.22	435	<1	1.2	2.1
22037 Rock		2.21	81.1	8.25	2.02	0.24	0.47	0.47	2.14	0.01	0.47	0.06	0.07	2.19	97.50	0.04	0.04	824	<1	2.3	3.0
22038 Rock		2.22	71.5	0.25	12.19	0.17	0.03	<0.01	0.04	<0.01	0.02	0.01	<0.01	14.32	98.55	<0.02	3.49	40	<1	8.4	0.1
22039 Rock		1.99	83.2	5.41	4.24	0.37	0.28	0.14	0.40	<0.01	0.36	0.03	0.03	3.88	98.31	0.09	0.12	386	<1	3.2	2.4
22040 Rock		2.00	61.0	15.86	8.09	0.75	1.98	2.62	2.73	0.07	0.81	0.22	0.17	5.27	99.55	0.03	<0.02	1837	<1	4.5	2.6
22041 Rock		1.94	56.4	16.60	6.94	4.71	3.27	3.36	1.64	0.13	0.90	0.38	0.07	5.10	99.54	0.08	0.04	774	1	29.6	1.7
22044 Rock		0.81	62.7	8.54	15.52	0.10	0.68	0.96	2.44	0.03	0.40	0.09	0.09	7.16	98.71	0.09	0.94	1052	<1	1.4	1.8
22045 Rock		0.83	58.7	1.14	23.19	0.12	0.19	0.08	0.33	0.05	0.07	0.02	0.01	8.79	92.72	0.07	1.01	170	<1	2.5	0.2
22046 Rock		2.29	70.5	2.00	16.40	0.02	0.12	0.09	0.59	0.02	0.08	0.02	0.03	5.79	95.70	0.07	0.73	313	<1	2.6	0.4
22047 Rock		1.30	52.8	16.59	10.79	2.21	2.30	3.77	1.84	0.18	0.74	0.26	0.13	6.72	98.31	0.35	0.35	1455	<1	26.3	2.1
22048 Rock		2.13	64.0	2.74	13.55	1.92	0.62	<0.01	0.64	0.16	0.10	0.03	0.03	10.25	94.04	0.49	1.71	285	<1	18.8	0.4
22049 Rock		2.44	75.6	8.04	5.41	0.84	1.03	0.58	1.96	0.07	0.41	0.11	0.07	2.77	96.86	0.19	0.67	754	<1	8.3	1.0
22050 Rock		2.20	70.9	13.47	4.65	0.46	1.30	3.08	2.12	0.05	0.56	0.12	0.09	2.65	99.48	0.08	0.12	924	<1	4.4	1.0
22051 Rock		2.48	54.9	18.69	8.84	1.92	4.63	3.55	1.17	0.13	0.76	0.24	0.08	5.08	99.96	0.05	<0.02	900	<1	28.0	2.9
22052 Rock		1.25	66.0	12.99	7.73	0.33	2.11	0.23	3.27	0.07	0.50	0.18	0.13	4.86	98.37	0.06	0.23	1414	<1	20.4	3.2
22053 Rock		1.57	56.3	15.58	9.14	0.62	3.46	0.53	2.81	0.07	0.63	0.15	0.12	6.77	96.24	0.10	0.11	1231	<1	11.7	3.5
22054 Rock		2.54	74.0	10.57	5.78	0.39	0.46	0.80	2.14	0.13	0.52	0.17	0.10	3.62	98.73	0.12	0.05	984	<1	15.9	2.8
22055 Rock		2.91	60.0	16.33	1.89	5.82	1.46	2.63	3.65	0.10	0.38	0.13	0.12	6.45	99.00	1.14	<0.02	1360	<1	3.9	2.4
22056 Rock		4.50	56.7	8.71	2.46	14.19	1.05	0.91	2.08	0.18	0.32	0.12	0.07	12.46	99.30	3.08	0.08	796	<1	7.7	1.1
22057 Rock		1.95	73.3	11.10	4.79	0.35	1.51	1.99	2.03	0.07	0.51	0.11	0.07	2.60	98.42	0.07	0.37	867	<1	8.1	1.1

Project:	Banbury
Report Date:	January 2

Page:

20, 2011

1020 Cordova St. East Vancouver BC V6A 4A3 Canada Phone (604) 253-3158 Fax (604) 253-1716


www.acmelab.com

3 of 3 Part 2

VAN10007045.1

CERTIFICATE OF ANALYSIS

	Metho	d 4B	4B	4B	4B	4B	4B	4B	4B	4B	4B	4B	4B	4B	4B	4B	4B	4B	4B	4B	4B
	Analyt	e Ga	Hf	Nb	Rb	Sn	Sr	Та	Th	U	v	w	Zr	Y	La	Ce	Pr	Nd	Sm	Eu	Gd
	Un	it ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
	MD	L 0.5	0.1	0.1	0.1	1	0.5	0.1	0.2	0.1	8	0.5	0.1	0.1	0.1	0.1	0.02	0.3	0.05	0.02	0.05
22032	Rock	15.7	3.4	5.8	84.8	2	228.5	0.4	2.9	2.8	149	4.3	138.8	24.6	15.3	24.1	3.73	15.2	2.98	0.55	3.00
22033	Rock	19.4	4.5	12.8	65.0	1	775.8	0.7	6.0	2.1	168	5.1	194.0	29.9	28.6	60.7	7.45	31.5	5.78	1.36	5.50
22034	Rock	7.1	2.2	1.7	37.5	<1	50.3	0.1	0.6	0.7	60	3.2	82.3	6.2	2.4	4.0	0.56	2.3	0.50	0.06	0.59
22035	Rock	0.7	0.2	0.2	3.2	<1	6.3	<0.1	<0.2	<0.1	<8	<0.5	8.4	0.2	0.2	0.3	0.03	<0.3	<0.05	<0.02	<0.05
22036	Rock	6.7	0.8	0.8	48.1	<1	81.2	<0.1	0.5	0.4	53	2.9	32.0	1.2	1.2	1.6	0.21	1.0	0.17	0.04	0.15
22037	Rock	10.1	2.6	4.1	60.2	<1	100.6	0.3	1.4	1.2	107	6.8	93.8	8.4	5.6	8.8	1.20	4.5	0.94	0.05	0.92
22038	Rock	<0.5	<0.1	0.2	1.0	<1	28.5	<0.1	<0.2	0.2	11	<0.5	3.0	0.3	0.2	0.3	0.05	<0.3	<0.05	<0.02	<0.05
22039	Rock	14.0	1.3	2.5	10.0	6	59.2	0.2	0.7	2.7	190	17.3	52.0	14.6	4.3	7.4	1.18	4.9	1.18	0.36	1.46
22040	Rock	19.0	2.9	4.1	72.5	2	431.3	0.2	2.9	4.4	348	28.3	109.2	20.0	11.2	21.0	3.14	13.1	2.93	0.62	2.94
22041	Rock	19.9	4.6	13.7	37.2	1	753.7	0.8	7.4	1.9	179	4.7	200.3	35.2	40.6	77.7	9.66	38.2	7.51	1.91	7.13
22044	Rock	11.4	3.5	2.7	55.6	1	164.2	0.3	2.3	1.5	127	9.4	134.7	16.7	6.2	10.6	1.29	5.1	1.30	0.18	1.77
22045	Rock	2.0	0.4	0.7	7.0	<1	89.0	<0.1	0.3	0.3	28	3.2	22.4	5.4	1.7	3.5	0.49	2.4	0.60	0.33	0.71
22046	Rock	3.4	0.5	0.8	13.1	<1	79.1	<0.1	0.6	0.4	40	3.1	24.4	2.4	2.0	3.7	0.50	2.2	0.50	0.19	0.46
22047	Rock	18.3	1.8	2.2	41.1	<1	516.9	0.1	0.9	0.5	190	7.6	54.1	14.3	6.2	14.6	2.22	10.6	2.53	0.76	2.74
22048	Rock	3.6	0.7	0.8	13.3	<1	78.9	<0.1	0.5	0.4	36	4.1	29.5	7.8	2.6	5.3	0.79	3.8	0.89	0.53	1.06
22049	Rock	9.5	2.3	2.8	46.1	1	53.2	0.2	1.9	1.3	101	11.0	93.7	20.0	7.7	15.3	2.23	11.2	2.48	0.32	2.91
22050	Rock	12.8	4.1	3.5	48.7	1	142.6	0.2	2.4	1.9	94	9.7	144.9	30.5	8.7	18.8	2.83	13.1	3.25	0.34	3.85
22051	Rock	18.7	1.6	1.5	28.6	<1	519.6	<0.1	1.8	1.0	279	7.3	51.3	11.7	7.2	15.5	2.05	9.7	2.15	0.72	2.35
22052	Rock	13.9	1.1	1.5	67.2	1	171.7	0.1	1.2	1.6	194	12.3	42.7	10.9	8.5	14.8	1.99	9.2	1.98	0.48	2.07
22053	Rock	16.2	1.0	1.3	72.7	<1	157.0	0.1	1.4	1.0	237	9.3	44.8	7.1	4.3	9.1	1.18	5.4	1.31	0.34	1.29
22054	Rock	11.7	3.0	3.6	50.3	1	117.7	0.3	3.0	1.8	116	13.2	104.0	26.6	11.5	22.2	3.20	15.4	3.46	0.65	4.10
22055	Rock	14.9	1.6	1.3	89.4	<1	275.0	0.1	1.4	0.9	80	6.1	55.5	7.4	5.7	11.3	1.46	6.8	1.32	0.39	1.35
22056	Rock	9.0	1.4	1.8	58.9	<1	322.9	0.2	1.2	1.0	72	3.5	59.1	14.3	8.4	15.1	2.08	8.9	2.04	0.85	2.21
22057	Rock	12.6	3.1	3.4	44.9	1	96.8	0.3	2.6	1.5	127	7.0	122.9	26.5	9.5	20.0	2.92	13.4	3.27	0.29	3.72

ERTIFICATE OF ANALYSIS

Acme Analytical Laboratories (Vancouver) Ltd.

Project:	Banbury
Report Date:	January 2

Page:

1020 Cordova St. East Vancouver BC V6A 4A3 Canada Phone (604) 253-3158 Fax (604) 253-1716

20, 2011

www.acmelab.com

3 of 3 Part 3

\/ / \

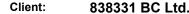
N10007045

																• / •		001	0-0		
	Method	4B	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX						
	Analyte	Tb	Dy	Но	Er	Tm	Yb	Lu	Мо	Cu	Pb	Zn	Ni	As	Cd	Sb	Bi	Ag	Au	Hg	ті
	Unit	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppb	ppm	ppm						
	MDL	0.01	0.05	0.02	0.03	0.01	0.05	0.01	0.1	0.1	0.1	1	0.1	0.5	0.1	0.1	0.1	0.1	0.5	0.01	0.1
22032 Rock		0.54	3.76	0.78	2.41	0.40	2.90	0.42	3.7	14.1	11.2	32	3.7	109.3	<0.1	1.3	0.3	0.7	9.1	0.39	0.2
22033 Rock		0.84	4.88	0.96	2.90	0.42	2.61	0.40	3.2	33.8	6.9	520	59.3	591.2	9.0	0.9	<0.1	0.1	7.9	0.03	<0.1
22034 Rock		0.12	0.92	0.21	0.66	0.11	0.90	0.14	2.8	23.1	2.7	13	1.1	1039	0.4	1.5	0.2	0.4	193.5	0.02	<0.1
22035 Rock		<0.01	<0.05	<0.02	<0.03	<0.01	<0.05	<0.01	0.8	34.1	1.3	9	2.3	>10000	0.3	16.9	0.4	0.4	1115	<0.01	<0.1
22036 Rock		0.03	0.17	0.04	0.13	0.02	0.19	0.03	4.2	26.7	1.1	19	2.7	2320	0.6	3.8	<0.1	0.2	316.2	0.01	<0.1
22037 Rock		0.18	1.14	0.26	0.88	0.16	1.14	0.19	2.2	36.9	4.0	22	2.2	6955	0.5	2.1	0.4	0.6	970.8	0.02	<0.1
22038 Rock		<0.01	0.05	<0.02	0.04	<0.01	<0.05	<0.01	1.4	86.9	8.2	24	<0.1	>10000	1.5	107.3	3.2	2.3	9962	0.05	<0.1
22039 Rock		0.28	1.95	0.43	1.39	0.21	1.33	0.19	14.3	61.1	11.3	59	2.6	3996	0.6	3.3	0.6	1.7	1672	0.04	0.1
22040 Rock		0.50	3.20	0.68	2.06	0.33	2.20	0.34	7.6	93.5	4.7	66	17.4	1252	0.4	0.5	0.1	0.4	77.8	<0.01	<0.1
22041 Rock		1.04	5.85	1.14	3.02	0.44	2.70	0.41	1.1	64.6	4.8	160	84.3	142.9	1.8	0.4	<0.1	<0.1	6.5	<0.01	<0.1
22044 Rock		0.34	2.34	0.53	1.72	0.29	1.96	0.33	7.2	137.3	4.9	312	1.7	3375	3.4	1.8	0.2	0.5	63.6	0.06	<0.1
22045 Rock		0.12	0.71	0.16	0.49	0.08	0.46	0.07	3.1	332.2	100.0	2387	2.7	>10000	34.1	33.3	2.1	8.4	20269	1.17	<0.1
22046 Rock		0.07	0.44	0.08	0.24	0.04	0.28	0.05	13.1	330.9	6911	1367	2.2	>10000	10.1	21.3	30.1	29.5	5693	2.17	<0.1
22047 Rock		0.41	2.43	0.49	1.39	0.22	1.41	0.21	1.7	242.7	35.3	3244	13.3	1780	67.2	1.1	<0.1	0.9	231.7	0.05	<0.1
22048 Rock		0.19	1.19	0.26	0.76	0.12	0.76	0.12	7.6	350.9	13.4	1865	13.7	>10000	65.5	41.1	1.5	1.9	7994	0.20	<0.1
22049 Rock		0.51	3.30	0.71	2.11	0.34	2.19	0.35	3.2	146.0	3.1	99	32.7	9999	2.8	4.6	0.5	0.5	817.4	<0.01	<0.1
22050 Rock		0.73	4.90	1.04	3.21	0.50	3.35	0.52	4.8	79.2	2.8	42	17.5	612.0	0.3	0.6	<0.1	0.3	70.7	<0.01	<0.1
22051 Rock		0.40	2.31	0.46	1.32	0.20	1.30	0.19	2.7	134.3	1.4	68	9.7	92.1	0.2	0.1	<0.1	0.2	15.3	<0.01	<0.1
22052 Rock		0.33	2.03	0.40	1.19	0.18	1.10	0.16	14.4	194.2	2.4	260	6.8	3730	11.4	1.0	<0.1	0.6	133.3	0.02	<0.1
22053 Rock		0.22	1.34	0.27	0.85	0.13	0.85	0.14	5.0	120.2	3.8	77	3.8	>10000	1.5	5.3	0.5	0.4	3085	<0.01	<0.1
22054 Rock		0.72	4.48	0.93	2.85	0.43	2.93	0.46	18.6	178.4	3.9	353	42.6	2258	13.2	1.7	0.1	0.7	186.9	0.10	<0.1
22055 Rock		0.21	1.20	0.25	0.72	0.12	0.74	0.13	0.8	7.7	1.2	45	5.3	284.5	0.7	0.2	<0.1	<0.1	11.2	<0.01	<0.1
22056 Rock		0.37	2.19	0.47	1.44	0.21	1.43	0.23	4.2	55.2	7.2	67	16.1	391.9	2.1	0.2	0.2	0.2	28.7	<0.01	<0.1
22057 Rock		0.66	4.32	0.96	2.86	0.44	3.08	0.49	5.0	137.1	2.3	77	24.4	1744	2.4	0.5	<0.1	0.5	72.9	<0.01	<0.1

	Client:	838331 BC Ltd.
Acme Analytical Laboratories (Vancouver) Ltd. 1020 Cordova St. East Vancouver BC V6A 4A3 Canada	Project: Report Date:	Banbury
Phone (604) 253-3158 Fax (604) 253-1716	Report Date.	January 20, 2011

www.acmelab.com

uary 20, 2011


Page:

3 of 3 Part 4

CERTIFICATE OF ANALYSIS

	Method Analyte	1DX Se
	Unit	ppm
	MDL	0.5
22032	Rock	1.9
22033	Rock	1.4
22034	Rock	1.1
22035	Rock	8.2
22036	Rock	1.6
22037	Rock	2.8
22038	Rock	44.7
22039	Rock	3.0
22040	Rock	1.7
22041	Rock	1.0
22044	Rock	5.6
22045	Rock	22.3
22046	Rock	23.6
22047	Rock	1.5
22048	Rock	20.0
22049	Rock	4.4
22050	Rock	2.6
22051	Rock	1.5
22052	Rock	1.7
22053	Rock	6.5
22054	Rock	1.9
22055	Rock	0.6
22056	Rock	1.3
22057	Rock	2.4

VAN10007045.1

Project:	Banbury
Report Date:	January 20, 2011

Page:

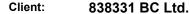
1020 Cordova St. East Vancouver BC V6A 4A3 Canada Phone (604) 253-3158 Fax (604) 253-1716

www.acmelab.com

1 of 3 Part 1

QUALITY CONTROL REPORT VAN10007045.1 Method WGHT 4B 4X 2A Leco 2A Leco 4B 4B 4B Analvte SiO2 Al2O3 Fe2O3 CaO MgO K20 MnO TiO2 P2O5 LOI Cs Wgt Na2O Ва SUM TOT/C TOT/S Ba Be Co Unit % % % kg % % % % % % % % % % % % ppm ppm ppm ppm MDL 0.01 0.1 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 -5.11 0.01 0.02 0.02 0.2 0.1 1 1 Pulp Duplicates Rock 1.69 41.1 4.59 27.00 0.30 0.73 0.17 0.18 0.05 0.03 11.37 93.36 1.57 11.38 274 18.6 0.9 22002 6.83 1.01 <1 REP 22002 QC 1.55 11.30 22016 Rock 1.85 0.5 0.52 55.90 0.38 < 0.01 < 0.01 0.46 < 0.01 < 0.01 39.89 97.87 12.13 < 0.02 23 <1 <0.2 <0.1 0.16 0.01 REP 22016 QC 0.5 0.55 0.38 < 0.01 < 0.01 < 0.01 42.17 0.16 55.57 0.46 0.01 < 0.01 99.80 22025 Rock 3.32 57.9 6.30 2.93 13.71 1.60 0.40 1.42 0.08 0.39 0.38 0.11 11.65 96.84 3.25 0.09 1205 1 9.8 2.8 2.8 RFP 22025 OC 1185 1 9.2 22050 Rock 2.20 70.9 13.47 4.65 0.46 1.30 3.08 2.12 0.05 0.56 0.12 0.09 2.65 99.48 0.08 0.12 924 <1 4.4 1.0 1.0 REP 22050 QC 934 <1 4.6 3.5 22053 Rock 1.57 56.3 15.58 9.14 0.62 3.46 0.53 2.81 0.07 0.63 0.15 0.12 6.77 96.24 0.10 0.11 1231 <1 11.7 REP 22053 QC 56.4 15.55 9.10 0.61 3.45 0.53 2.80 0.07 0.63 0.14 0.12 6.79 96.24 1219 <1 13.3 3.7 2.8 22054 Rock 2.54 74.0 10.57 5.78 0.39 0.46 0.80 2.14 0.13 0.52 0.17 0.10 3.62 98.73 0.12 0.05 984 <1 15.9 REP 22054 QC 0.05 0.13 Core Reject Duplicates 2.26 22018 Rock 0.94 48.2 9.16 8.19 10.67 1.69 0.87 2.07 0.07 0.53 0.21 0.15 12.70 94.50 4.18 1582 <1 11.4 2.2 DUP 22018 OC 49.1 8.82 8.20 10.99 1.63 0.87 1.94 0.08 0.49 0.21 0.15 12.48 94.99 2.28 4.46 1476 <1 11.1 2.1 22056 Rock 4.50 56.7 8.71 2.46 14.19 1.05 0.91 2.08 0.18 0.32 0.12 0.07 12.46 99.30 3.08 0.08 796 <1 7.7 1.1 DUP 22056 QC 56.4 8.76 2.63 13.88 1.08 0.89 2.09 0.19 0.29 0.12 0.07 11.42 97.81 3.04 0.08 811 <1 7.7 1.2 **Reference Materials** STD CSC Standard 2.88 4.55 STD CSC Standard 2 91 4.16 STD DS8 Standard STD DS8 Standard STD DS8 Standard STD DS8 Standard STD OREAS45PA Standard STD OREAS45PA Standard STD OREAS76A Standard 0.17 17.66 STD OREAS76A Standard 0.15 17.46

www.acmelab.com


Project:	Banbury
Report Date:	January 20, 2011

1020 Cordova St. East Vancouver BC V6A 4A3 Canada Phone (604) 253-3158 Fax (604) 253-1716

Page:

1 of 3 Part 2

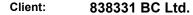
QUALITY CC	NTROL	REP	OR1	Γ								- ager				VA	N10	0070)45.	1	
	Method Analyte Unit	4B Ga	4B Hf	4B Nb	4B Rb	4B Sn	4B Sr	4B Ta	4B Th	4B U	4B V	4B W	4B Zr	4B Y	4B La	4B Ce	4B Pr	4B Nd	4B Sm	4B Eu	4B Gd
	MDL	ppm 0.5	ррт 0.1	ppm 0.1	ррт 0.1	ppm 1	ppm 0.5	ррт 0.1	ppm 0.2	ppm 0.1	ppm 8	ppm 0.5	ppm 0.1	ppm 0.1	ррт 0.1	ppm 0.1	ppm 0.02	ppm 0.3	ppm 0.05	ppm 0.02	ppm 0.05
Pulp Duplicates																					
22002	Rock	5.1	0.8	0.7	25.3	<1	144.9	<0.1	0.5	0.4	73	1.8	30.9	8.8	3.3	6.7	0.96	4.5	1.09	0.60	1.27
REP 22002	QC																				
22016	Rock	<0.5	<0.1	0.1	0.7	<1	1634	<0.1	<0.2	0.1	<8	<0.5	4.6	23.1	36.4	36.2	4.73	16.6	2.88	2.60	2.93
REP 22016	QC																				
22025	Rock	8.1	2.0	4.4	42.6	<1	601.1	0.3	3.2	3.7	209	0.7	73.9	27.9	20.5	25.6	4.66	19.0	3.74	0.89	4.14
REP 22025	QC	7.5	2.1	4.3	42.2	<1	605.0	0.3	3.4	3.6	206	0.7	75.5	26.7	19.9	25.7	4.63	18.5	3.85	0.85	4.01
22050	Rock	12.8	4.1	3.5	48.7	1	142.6	0.2	2.4	1.9	94	9.7	144.9	30.5	8.7	18.8	2.83	13.1	3.25	0.34	3.85
REP 22050	QC	12.9	4.4	3.6	47.3	1	140.8	0.3	2.4	2.0	92	9.7	161.6	29.7	8.8	18.6	2.88	13.4	3.29	0.32	3.97
22053	Rock	16.2	1.0	1.3	72.7	<1	157.0	0.1	1.4	1.0	237	9.3	44.8	7.1	4.3	9.1	1.18	5.4	1.31	0.34	1.29
REP 22053	QC	16.6	1.1	1.5	77.0	<1	163.3	<0.1	1.4	0.9	254	10.0	44.3	7.4	4.4	9.5	1.25	5.4	1.23	0.33	1.30
22054	Rock	11.7	3.0	3.6	50.3	1	117.7	0.3	3.0	1.8	116	13.2	104.0	26.6	11.5	22.2	3.20	15.4	3.46	0.65	4.10
REP 22054	QC																				
Core Reject Duplicates																					
22018	Rock	12.8	3.7	4.3	59.0	1	803.3	0.3	3.0	2.7	151	0.7	134.8	22.0	12.6	21.9	3.56	15.4	3.45	0.70	3.50
DUP 22018	QC	12.6	3.4	4.0	54.5	1	824.7	0.2	3.0	2.8	151	0.7	132.0	21.7	13.0	22.5	3.74	16.0	3.48	0.75	3.53
22056	Rock	9.0	1.4	1.8	58.9	<1	322.9	0.2	1.2	1.0	72	3.5	59.1	14.3	8.4	15.1	2.08	8.9	2.04	0.85	2.21
DUP 22056	QC	9.5	1.4	1.9	61.5	<1	333.2	0.2	1.3	1.0	72	3.4	61.3	14.6	8.8	15.5	2.17	8.9	2.13	0.91	2.36
Reference Materials																					
STD CSC	Standard																				
STD CSC	Standard																				
STD DS8	Standard																				
STD DS8	Standard																				
STD DS8	Standard																				
STD DS8	Standard																				
STD OREAS45PA	Standard																				
STD OREAS45PA	Standard																				
STD OREAS76A	Standard																				
STD OREAS76A	Standard																				

Acme Analytical Laboratories (Vancouver) Ltd.

Project:	Banbury
Report Date:	January 20, 2011

Page:

1020 Cordova St. East Vancouver BC V6A 4A3 Canada Phone (604) 253-3158 Fax (604) 253-1716


. .

www.acmelab.com

1 of 3 Part 3

VAN110007045

QUALITY CC	NIROL	_ REPORT VAN10007045.1																			
	Method	4B	4B	4B	4B	4B	4B	4B	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX
	Analyte	Tb	Dy	Но	Er	Tm	Yb	Lu	Мо	Cu	Pb	Zn	Ni	As	Cd	Sb	Bi	Ag	Au	Hg	Т
	Unit	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppb	ppm	ppm
	MDL	0.01	0.05	0.02	0.03	0.01	0.05	0.01	0.1	0.1	0.1	1	0.1	0.5	0.1	0.1	0.1	0.1	0.5	0.01	0.1
Pulp Duplicates																					
22002	Rock	0.22	1.35	0.28	0.83	0.12	0.79	0.11	5.8	1052	1.9	204	6.0	3894	7.7	2.2	0.2	1.8	196.2	0.02	<0.1
REP 22002	QC								5.4	1058	1.8	199	5.8	3941	7.8	2.1	0.2	1.7	238.0	0.01	<0.1
22016	Rock	0.48	2.94	0.56	1.46	0.20	1.33	0.17	0.3	3.5	0.6	2	0.6	3.7	<0.1	0.1	<0.1	<0.1	<0.5	<0.01	<0.1
REP 22016	QC																				
22025	Rock	0.66	3.87	0.79	2.41	0.34	2.16	0.35	9.5	79.8	8.7	127	52.3	16.7	1.6	3.1	0.1	1.5	5.0	0.07	0.5
REP 22025	QC	0.63	3.87	0.78	2.25	0.33	2.32	0.32													
22050	Rock	0.73	4.90	1.04	3.21	0.50	3.35	0.52	4.8	79.2	2.8	42	17.5	612.0	0.3	0.6	<0.1	0.3	70.7	<0.01	<0.1
REP 22050	QC	0.74	4.84	1.03	3.28	0.50	3.31	0.52													
22053	Rock	0.22	1.34	0.27	0.85	0.13	0.85	0.14	5.0	120.2	3.8	77	3.8	>10000	1.5	5.3	0.5	0.4	3085	<0.01	<0.1
REP 22053	QC	0.22	1.34	0.27	0.85	0.13	0.87	0.14													
22054	Rock	0.72	4.48	0.93	2.85	0.43	2.93	0.46	18.6	178.4	3.9	353	42.6	2258	13.2	1.7	0.1	0.7	186.9	0.10	<0.1
REP 22054	QC																				
Core Reject Duplicates																					
22018	Rock	0.59	3.56	0.74	2.12	0.32	2.28	0.33	14.0	47.2	12.6	126	59.1	165.9	2.8	2.9	0.3	2.1	0.5	0.02	0.3
DUP 22018	QC	0.60	3.72	0.73	2.13	0.32	2.29	0.34	14.5	44.8	12.0	125	56.7	174.1	2.0	2.9	0.3	2.0	1.2	0.02	0.3
22056	Rock	0.37	2.19	0.47	1.44	0.21	1.43	0.23	4.2	55.2	7.2	67	16.1	391.9	2.1	0.2	0.2	0.2	28.7	<0.01	<0.1
DUP 22056	QC	0.39	2.24	0.49	1.39	0.24	1.54	0.25	4.3	56.6	8.7	67	18.1	391.1	1.9	0.4	0.2	0.2	87.7	<0.01	<0.1
Reference Materials																					
STD CSC	Standard																				
STD CSC	Standard																				
STD DS8	Standard								14.6	111.1	124.3	315	38.4	26.7	2.3	5.1	6.9	1.7	94.7	0.17	5.9
STD DS8	Standard								13.9	107.6	117.9	312	38.4	26.1	2.5	5.5	6.4	2.0	128.8	0.17	5.6
STD DS8	Standard								13.3	115.2	134.4	323	40.1	28.4	2.5	4.1	7.1	1.9	104.9	0.19	5.6
STD DS8	Standard								13.1	118.1	129.7	321	41.7	29.4	2.4	4.0	6.5	1.8	93.0	0.19	5.5
STD OREAS45PA	Standard								1.2	645.1	19.0	118	316.3	5.0	0.1	0.2	0.2	0.3	45.2	0.02	<0.1
STD OREAS45PA	Standard								1.0	650.4	20.3	120	324.6	4.2	<0.1	<0.1	0.2	0.3	48.5	0.03	<0.1
STD OREAS76A	Standard																				
STD OREAS76A	Standard																				

Project:	Banbury
Report Date:	January 20, 2011

Page:

1020 Cordova St. East Vancouver BC V6A 4A3 Canada Phone (604) 253-3158 Fax (604) 253-1716

www.acmelab.com

1 of 3 Part 4

VAN10007045.1

QUALITY CONTROL REPORT

	Method Analyte Unit	1DX Se ppm
	MDL	0.5
Pulp Duplicates		
22002	Rock	13.1
REP 22002	QC	14.1
22016	Rock	1.1
REP 22016	QC	
22025	Rock	2.4
REP 22025	QC	
22050	Rock	2.6
REP 22050	QC	
22053	Rock	6.5
REP 22053	QC	
22054	Rock	1.9
REP 22054	QC	
Core Reject Duplicates		
22018	Rock	17.1
DUP 22018	QC	17.2
22056	Rock	1.3
DUP 22056	QC	1.8
Reference Materials		
STD CSC	Standard	
STD CSC	Standard	
STD DS8	Standard	5.6
STD DS8	Standard	5.1
STD DS8	Standard	6.0
STD DS8	Standard	5.2
STD OREAS45PA	Standard	1.3
STD OREAS45PA	Standard	<0.5
STD OREAS76A	Standard	
STD OREAS76A	Standard	

Project:	Banbury
Report Date:	January 20, 2011

Page:

1020 Cordova St. East Vancouver BC V6A 4A3 Canada Phone (604) 253-3158 Fax (604) 253-1716

ITY CONTROL REPORT

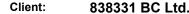
www.acmelab.com

2 of 3 Part 1

QUALITICU		KEFÜRI VAN10007045.1														l I					
		WGHT	4X	4X :	2A Leco	2A Leco	o 4B	4B	4B	4B											
		Wgt	SiO2	AI2O3	Fe2O3	CaO	MgO	Na2O	K2O	MnO	TiO2	P2O5	Ва	LOI	SUM	TOT/C	TOT/S	Ва	Be	Co	Cs
		kg	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	ppm	ppm	ppm	ppm
		0.01	0.1	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	-5.11	0.01	0.02	0.02	1	1	0.2	0.1
STD SO-18	Standard		58.2	14.04	7.62	6.40	3.39	3.81	2.19	0.40	0.73	0.83	0.05	1.74	99.43						
STD SO-18	Standard																	523	<1	29.8	7.4
STD SO-18	Standard																	517	1	28.8	7.2
STD SO-18	Standard		57.2	13.83	7.42	6.25	3.35	3.74	2.14	0.38	0.74	0.81	0.05	1.55	97.46						
STD SO-18	Standard		57.8	13.96	7.57	6.33	3.37	3.75	2.17	0.40	0.70	0.80	0.05	1.69	98.64						
STD SO-18	Standard																	567	<1	30.2	7.9
STD SO-18	Standard																	537	<1	29.1	7.7
STD SO-18	Standard																	535	<1	29.4	7.4
STD SO-18	Standard																	533	<1	29.0	7.4
STD SY-4(D)	Standard		50.0	20.81	6.30	8.14	0.53	7.25	1.63	0.11	0.27	0.12	0.05	4.56	99.83						
STD SY-4(D)	Standard		50.1	20.77	6.28	8.17	0.54	7.25	1.62	0.11	0.27	0.13	0.04	4.56	99.80						
STD SY-4(D)	Standard		50.0	20.71	6.28	8.12	0.53	7.25	1.62	0.10	0.27	0.13	0.05	4.56	99.62						
STD CSC Expected																2.94	4.25				
STD OREAS76A Expected																0.16	18				
STD OREAS45PA Expected																					
STD DS8 Expected																					
STD SY-4(D) Expected			49.9	20.69	6.21	8.05	0.54	7.1	1.66	0.108	0.287	0.131	0.034	4.56							
STD SO-18 Expected			58.47		7.67	6.42	3.35	3.71	2.17	0.39	0.69	0.83						514	1	26.2	7.1
BLK	Blank															<0.02	<0.02				
BLK	Blank															<0.02	<0.02				
BLK	Blank																				
BLK	Blank																				
BLK	Blank		<0.1	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01								
BLK	Blank																	<1	<1	<0.2	<0.1
BLK	Blank		<0.1	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01								
BLK	Blank		<0.1	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01								
BLK	Blank																	<1	<1	<0.2	<0.1
Prep Wash																					
G1	Prep Blank	<0.01	67.1	15.47	3.70	3.51	1.18	3.62	3.65	0.10	0.40	0.18	0.10	0.58	99.65	<0.02	<0.02	1024	2	4.6	4.2

Project:	Banbury
Report Date:	January 20, 20

Page:


1020 Cordova St. East Vancouver BC V6A 4A3 Canada Phone (604) 253-3158 Fax (604) 253-1716

2011

www.acmelab.com

2 of 3 Part 2

QUALITY CO	NTROL	REP	OR1													VA	N10	007	045.	1	
		4B	4B	4B	4B	4B	4B	4B	4B	4B	4B	4B	4B	4B	4B	4B	4B	4B	4B	4B	4B
		Ga	Hf	Nb	Rb	Sn	Sr	Та	Th	U	v	w	Zr	Y	La	Ce	Pr	Nd	Sm	Eu	Gd
		ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
		0.5	0.1	0.1	0.1	1	0.5	0.1	0.2	0.1	8	0.5	0.1	0.1	0.1	0.1	0.02	0.3	0.05	0.02	0.05
STD SO-18	Standard																				
STD SO-18	Standard	17.5	9.5	20.5	30.0	16	403.0	6.9	10.2	16.2	226	14.4	299.0	31.4	12.7	26.9	3.46	14.3	2.87	0.84	2.92
STD SO-18	Standard	18.0	9.2	20.6	29.7	16	400.0	6.7	10.6	16.9	226	14.3	302.9	31.5	12.3	26.7	3.42	14.0	2.85	0.86	2.94
STD SO-18	Standard																				
STD SO-18	Standard																				
STD SO-18	Standard	18.3	9.9	21.6	31.4	18	443.1	7.5	13.0	17.7	235	14.9	304.9	32.6	13.4	29.8	3.54	14.5	2.97	0.87	3.08
STD SO-18	Standard	17.5	9.4	21.5	29.7	16	430.7	7.3	11.0	17.1	223	14.8	298.2	31.4	12.8	28.3	3.44	14.0	2.84	0.86	2.93
STD SO-18	Standard	18.0	9.7	21.3	30.5	16	440.1	7.2	10.8	17.2	232	14.5	315.3	32.3	12.6	28.1	3.47	13.6	2.83	0.83	2.89
STD SO-18	Standard	17.9	9.7	21.0	30.5	16	438.1	7.3	10.9	17.0	224	14.8	304.7	31.8	12.5	28.3	3.37	14.0	2.81	0.82	2.88
STD SY-4(D)	Standard																				
STD SY-4(D)	Standard																				
STD SY-4(D)	Standard																				
STD CSC Expected																					
STD OREAS76A Expected																					
STD OREAS45PA Expected																					
STD DS8 Expected																					
STD SY-4(D) Expected																					
STD SO-18 Expected		17.6	9.8	21.3	28.7	15	407.4	7.4	9.9	16.4	200	14.8	280	31	12.3	27.1	3.45	14	3	0.89	2.93
BLK	Blank																				
BLK	Blank																				
BLK	Blank																				
BLK	Blank																				
BLK	Blank																				
BLK	Blank	<0.5	<0.1	<0.1	<0.1	<1	<0.5	<0.1	<0.2	<0.1	<8	<0.5	3.1	<0.1	<0.1	<0.1	<0.02	<0.3	<0.05	<0.02	<0.05
BLK	Blank																				
BLK	Blank																				
BLK	Blank	<0.5	<0.1	<0.1	<0.1	<1	<0.5	<0.1	<0.2	<0.1	<8	<0.5	4.6	<0.1	<0.1	<0.1	<0.02	<0.3	<0.05	<0.02	<0.05
Prep Wash																					
G1	Prep Blank	18.6	3.9	22.0	135.2	1	727.9	1.4	9.3	3.8	57	<0.5	138.6	16.9	31.9	61.7	6.99	25.5	4.33	1.06	3.35

Project: Banbury

1020 Cordova St. East Vancouver BC V6A 4A3 Canada Phone (604) 253-3158 Fax (604) 253-1716


Report Date: January 20, 2011

Page:

www.acmelab.com

2 of 3 Part 3

QUALITY CONTROL REPORT VAN10007045.1 1DX 1DX 4B 4B 4B 4B 4B 4B 4B 1DX Yb Tb Dy Но Er Tm Lu Мо Cu Pb Zn Ni As Cd Sb Bi Ag Au Hg TI ppm ppb ppm ppm 0.01 0.05 0.02 0.03 0.01 0.05 0.01 0.1 0.1 0.1 0.5 0.1 0.1 0.1 0.1 0.5 0.01 0.1 1 0.1 STD SO-18 Standard STD SO-18 Standard 0.49 2.95 0.60 1.77 0.26 1.75 0.27 STD SO-18 Standard 0.49 2.95 0.61 1.81 0.26 1.80 0.27 STD SO-18 Standard STD SO-18 Standard 2.97 STD SO-18 Standard 0.51 0.63 1.83 0.29 1.79 0.28 STD SO-18 Standard 0.49 2.95 0.62 1.78 0.27 1.78 0.27 STD SO-18 Standard 0.48 2.85 0.60 1.73 0.27 1.75 0.26 STD SO-18 Standard 0.48 2.94 0.58 1.73 0.27 1.76 0.26 STD SY-4(D) Standard STD SY-4(D) Standard STD SY-4(D) Standard STD CSC Expected STD OREAS76A Expected STD OREAS45PA Expected 0.9 600 19 119 281 4.2 0.09 0.13 0.18 0.3 43 0.03 0.07 STD DS8 Expected 13.44 110 123 312 38.1 26 2.38 4.8 6.67 1.69 107 0.192 5.4 STD SY-4(D) Expected STD SO-18 Expected 0.53 3 0.62 1.84 0.27 1.79 0.27 BLK Blank BLK Blank BI K Blank <0.1 < 0.1 < 0.1 < 0.1 < 0.5 < 0.1 <0.1 < 0.1 < 0.1 < 0.5 < 0.01 < 0.1 <1 BLK Blank < 0.1 < 0.1 < 0.1 <0.1 < 0.1 < 0.1 <1 < 0.5 < 0.1 < 0.1 < 0.1 < 0.5 < 0.01 BLK Blank BLK Blank < 0.01 < 0.05 < 0.02 < 0.03 < 0.01 < 0.05 < 0.01 BLK Blank BLK Blank BLK Blank < 0.01 < 0.05 < 0.02 < 0.03 < 0.01 < 0.05 < 0.01 Prep Wash G1 0.51 2.83 0.58 1.73 1.96 0.31 0.3 3.2 3.0 48 < 0.1 < 0.1 < 0.1 1.2 < 0.01 0.3 Prep Blank 0.26 4.4 1.1 < 0.1

Project:	Banbury
Report Date:	January 20, 2011

Page:

1020 Cordova St. East Vancouver BC V6A 4A3 Canada Phone (604) 253-3158 Fax (604) 253-1716

www.acmelab.com

2 of 3 Part 4 VAN10007045.1

QUALITY CONTROL REPORT

		1DX Se ppm 0.5
STD SO-18	Standard	
STD SY-4(D)	Standard	
STD SY-4(D)	Standard	
STD SY-4(D)	Standard	
STD CSC Expected		
STD OREAS76A Expected		
STD OREAS45PA Expected		0.54
STD DS8 Expected		5.23
STD SY-4(D) Expected		
STD SO-18 Expected		
BLK	Blank	
BLK	Blank	
BLK	Blank	<0.5
BLK	Blank	<0.5
BLK	Blank	
Prep Wash		
G1	Prep Blank	<0.5

												Client	:	8383	31 BC	C Ltd.					
										Project: Report I	Date:	Banbur Januar	ry y 20, 207	11							
						ww	w.acm	elab.co	m												
												Page:		3 of 3	Pa	art 1					
QL	JALITY CONTROL	REP	OR ⁻	Г												VA	N10	0070)45.	1	
		WGHT	4X	4X	4X	4X	4X	4X	4X	4X	4X	4X	4X	4X	4X 2	2A Leco 2	A Leco	4B	4B	4B	4B
		Wgt	SiO2	AI2O3	Fe2O3	CaO	MgO	Na2O	K2O	MnO	TiO2	P2O5	Ва	LOI	SUM	TOT/C	TOT/S	Ва	Be	Co	Cs
		kg	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	ppm	ppm	ppm	ppm
		0.01	0.1	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	-5.11	0.01	0.02	0.02	1	1	0.2	0.1

3.66

3.70

0.10

0.41

0.19

0.10

0.60

100.3

<0.02 <0.02

986

3

4.1

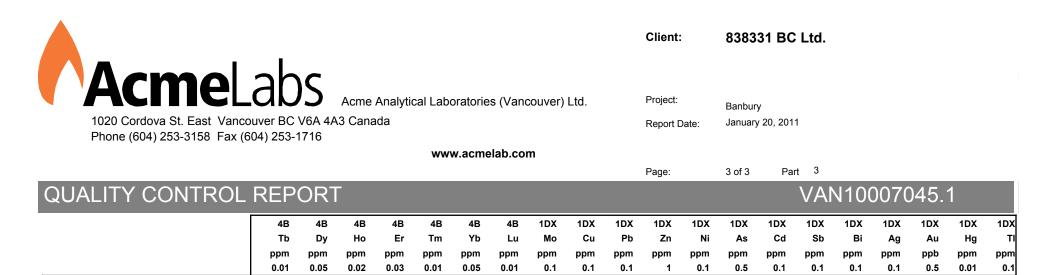
4.4

G1

Prep Blank

<0.01

67.6 15.59


3.58

3.50

1.16

		Ga	Hf	Nb	Rb	Sn	Sr	Та	Th	U	v	w	Zr	Y	La	Ce	Pr	Nd	Sm	Eu	Gd
		ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
		0.5	0.1	0.1	0.1	1	0.5	0.1	0.2	0.1	8	0.5	0.1	0.1	0.1	0.1	0.02	0.3	0.05	0.02	0.05
G1	Prep Blank	18.3	4.7	23.1	136.4	1	739.7	1.4	10.1	3.9	58	<0.5	152.3	17.4	28.1	55.1	6.60	24.2	4.05	1.09	3.26

0.3

G1

Prep Blank

0.50

2.80

0.58

1.81

0.28

1.95

0.32

0.2

2.6

3.0

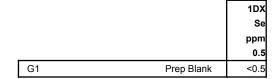
49

3.7

1.6

<0.1

<0.1


<0.1

< 0.1

0.9

<0.01

	Client:	838331 BC Ltd.
Acme Analytical Laboratories (Vancouver) Ltd. 1020 Cordova St. East Vancouver BC V6A 4A3 Canada Phone (604) 253-3158 Fax (604) 253-1716	Project: Report Date:	Banbury January 20, 2011
www.acmelab.com		
	Page:	3 of 3 Part 4
QUALITY CONTROL REPORT		VAN10007045.1

CERTIFICATE OF ANALYSIS

Acme Analytical Laboratories (Vancouver) Ltd.

Client: 838331 BC Ltd.

1020 Cordova St. East Vancouver BC V6A 4A3 Canada

Submitted By: David Jensen Receiving Lab: Canada-Vancouver Received: December 20, 2010 Report Date: January 18, 2011 Page: 1 of 2

www.acmelab.com

1F06

RJSV

VAN10006965.1

1:1:1 Aqua Regia digestion Ultratrace ICP-MS analysis

SAMPLE PREPARATION AND ANALYTICAL PROCEDURES

Dry at 60C

Code Description

Dry at 60C sieve 100g to -80 mesh

Saving all or part of Soil Reject

Number of

Samples

19

19

19

19

ADDITIONAL COMMENTS

CLIENT JOB INFORMATION

Project:	Banbury	Method
Shipment ID:		Code
P.O. Number		SS80
Number of Samples:	19	Dry at 60C

SAMPLE DISPOSAL

STOR-PLP	Store After 90 days Invoice for Storage
STOR-RJT	Store After 90 days Invoice for Storage

Acme does not accept responsibility for samples left at the laboratory after 90 days without prior written instructions for sample storage or return.

838331 BC Ltd. Invoice To:

CC:

Arnd Burgert

CLARENCE LEONG GENERAL MANAGER

Test

30

Wgt (g)

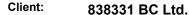
Report

Status

Completed

Lab

VAN


VAN

VAN

VAN

This report supersedes all previous preliminary and final reports with this file number dated prior to the date on this certificate. Signature indicates final approval; preliminary reports are unsigned and should be used for reference only. All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of analysis only.

"*" asterisk indicates that an analytical result could not be provided due to unusually high levels of interference from other elements.

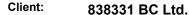
Project:	Banbury
Report Date:	January

Page:

18, 2011

2 of 2

1020 Cordova St. East Vancouver BC V6A 4A3 Canada Phone (604) 253-3158 Fax (604) 253-1716


www.acmelab.com

Part 1

VAN10006965.1

CERTIFICATE OF ANALYSIS

	Method	1F30	1F30	1F30	1F30	1F30	1F30	1F30	1F30	1F30	1F30	1F30	1F30	1F30	1F30	1F30	1F30	1F30	1F30	1F30	1F30
	Analyte	Мо	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	U	Au	Th	Sr	Cd	Sb	Bi	V	Ca	Р
	Unit	ppm	ppm	ppm	ppm	ppb	ppm	ppm	ppm	%	ppm	ppm	ppb	ppm	ppm	ppm	ppm	ppm	ppm	%	%
	MDL	0.01	0.01	0.01	0.1	2	0.1	0.1	1	0.01	0.1	0.1	0.2	0.1	0.5	0.01	0.02	0.02	2	0.01	0.001
RS-1 Soil		5.43	94.82	8.38	105.3	1500	43.0	12.4	634	2.66	30.7	0.6	19.4	1.4	236.4	0.71	1.55	0.18	75	6.96	0.099
RS-2 Soil		2.51	124.0	10.57	203.5	2206	86.9	17.6	401	3.12	16.9	0.5	19.8	2.4	63.3	0.69	1.46	0.22	52	0.51	0.049
RS-3 Soil		51.54	116.4	13.58	238.2	2517	73.0	13.2	296	3.59	71.7	0.5	20.8	3.3	114.7	3.63	7.90	0.21	40	1.79	0.094
RS-4 Soil		7.38	123.6	9.50	120.4	6099	38.9	11.9	435	3.20	89.3	0.3	38.4	1.6	78.0	0.97	3.37	0.15	55	2.92	0.084
RS-5 Soil		11.82	324.7	26.37	435.1	1719	82.6	41.2	436	15.54	133.6	1.0	19.7	1.2	43.7	2.77	18.14	0.42	71	0.56	0.091
RS-6 Soil		1.50	72.38	5.66	73.5	317	27.0	10.1	325	3.07	105.1	0.8	94.4	1.5	64.8	0.25	0.74	0.14	69	0.44	0.044
RS-7 Soil		0.96	64.32	6.28	101.1	450	21.6	9.5	495	3.27	82.5	0.4	80.5	1.6	85.1	0.39	0.60	0.15	59	0.59	0.048
RS-8 Soil		1.36	60.84	6.61	101.5	327	24.1	8.8	449	2.94	61.5	0.5	19.7	1.7	59.9	0.33	0.68	0.16	58	0.52	0.038
RS-9 Soil		1.10	43.70	7.43	134.0	394	30.6	8.7	509	2.80	20.2	0.4	3.5	1.9	87.9	0.40	0.83	0.15	47	0.55	0.044
RS-10 Soil		1.20	37.52	7.05	130.8	284	26.6	8.0	850	2.58	21.2	0.4	3.9	1.6	74.1	0.52	0.89	0.17	50	0.52	0.046
RS-11 Soil		4.07	94.75	7.80	119.3	1302	66.8	13.0	868	3.72	57.6	0.7	32.1	1.5	212.6	0.56	1.99	0.14	96	2.99	0.112
RS-12 Soil		2.73	108.3	9.19	98.1	658	39.6	15.5	685	3.48	95.3	0.5	46.9	1.5	58.3	0.63	1.70	0.16	83	0.44	0.062
RS-13 Soil		7.28	38.83	34.39	59.9	827	12.1	6.8	299	3.44	314.7	0.3	360.6	2.0	183.7	0.24	4.01	0.44	47	0.24	0.057
RS-14 Soil		9.50	193.9	3.30	115.9	681	21.3	27.8	966	6.65	324.5	0.6	125.9	1.5	64.6	0.45	0.63	0.15	189	0.72	0.067
RS-15 Soil		36.11	164.6	2.60	76.6	719	11.7	24.4	831	6.45	483.0	0.3	71.8	1.1	36.0	0.35	0.73	0.06	259	0.74	0.143
RS-16 Soil		11.53	169.0	13.36	138.4	3390	5.4	34.8	556	14.97	>10000	1.6	21912	0.8	918.1	8.93	31.97	4.58	73	1.93	0.155
RS-17 Soil		39.69	500.3	10.22	938.7	2863	91.0	33.9	2081	11.59	>10000	1.6	1665	2.5	85.4	41.96	11.68	0.39	77	0.71	0.104
RS-18 Soil		15.21	673.5	11.50	1584	5109	63.0	155.4	4626	10.06	>10000	1.0	5776	1.5	181.2	67.05	13.28	1.92	82	1.34	0.106
RS-19 Soil		14.77	389.2	7.78	739.3	1241	41.8	37.9	1309	8.43	4569	0.9	1279	1.7	107.4	20.03	2.75	0.45	147	0.52	0.143

CERTIFICATE OF ANALYSIS

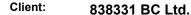
Acme Analytical Laboratories (Vancouver) Ltd.

Project:	Banbury
Report Date:	January

Page:

1020 Cordova St. East Vancouver BC V6A 4A3 Canada Phone (604) 253-3158 Fax (604) 253-1716

January 18, 2011


www.acmelab.com

2 of 2 Part 2

 Λ

N10006965 1

			010													V		0000	000	• •	
	Method	1F30	1F30	1F30	1F30	1F30	1F30	1F30	1F30	1F30	1F30	1F30	1F30	1F30	1F30	1F30	1F30	1F30	1F30	1F30	1F30
	Analyte	La	Cr	Mg	Ва	Ti	в	AI	Na	к	w	Sc	ті	S	Hg	Se	Те	Ga	Cs	Ge	Hf
	Unit	ppm	ppm	%	ppm	%	ppm	%	%	%	ppm	ppm	ppm	%	ppb	ppm	ppm	ppm	ppm	ppm	ppm
	MDL	0.5	0.5	0.01	0.5	0.001	1	0.01	0.001	0.01	0.1	0.1	0.02	0.02	5	0.1	0.02	0.1	0.02	0.1	0.02
RS-1 So	bil	9.3	39.7	1.28	118.4	0.049	4	2.20	0.047	0.26	<0.1	4.9	0.21	<0.02	55	1.7	0.10	6.7	1.57	0.1	0.08
RS-2 So	oil	15.4	46.7	1.18	144.2	0.054	3	2.48	0.027	0.17	<0.1	4.4	0.24	0.02	32	1.6	0.10	6.4	1.64	<0.1	0.32
RS-3 So	oil	15.7	16.0	0.25	133.3	0.027	4	1.17	0.012	0.13	0.1	4.0	0.44	<0.02	99	5.7	0.14	3.1	1.07	<0.1	0.13
RS-4 So	oil	11.2	22.0	0.69	89.9	0.039	4	1.44	0.029	0.16	0.1	4.5	0.18	<0.02	155	1.8	0.07	4.3	1.15	<0.1	0.08
RS-5 So	bil	13.8	28.4	1.16	148.3	0.003	<1	2.10	0.005	0.10	<0.1	5.6	0.09	<0.02	38	7.2	0.34	6.9	2.20	0.1	0.06
RS-6 So	bil	10.7	25.6	0.72	121.3	0.065	2	2.45	0.037	0.15	0.2	5.9	0.11	<0.02	19	1.2	0.13	6.5	1.26	<0.1	0.16
RS-7 So	pil	8.6	22.1	0.61	147.6	0.073	7	2.64	0.034	0.41	0.2	5.4	0.08	<0.02	23	1.0	0.07	7.2	1.30	0.1	0.32
RS-8 So	oil	9.1	21.8	0.52	107.7	0.067	3	2.14	0.029	0.27	0.2	4.7	0.10	<0.02	18	0.9	0.07	5.9	1.20	<0.1	0.29
RS-9 So	bil	8.7	24.7	0.63	156.1	0.082	4	2.59	0.037	0.26	0.1	5.4	0.14	<0.02	17	0.8	0.07	7.0	1.45	<0.1	0.39
RS-10 So	oil	8.2	25.6	0.55	156.0	0.071	4	2.34	0.029	0.31	<0.1	4.8	0.13	<0.02	25	0.7	0.06	6.3	1.37	<0.1	0.20
RS-11 So	oil	9.3	54.3	1.72	167.9	0.083	4	2.85	0.034	0.63	0.2	8.0	0.32	<0.02	37	1.9	0.10	8.5	3.00	0.1	0.14
RS-12 So	bil	10.9	37.2	1.15	146.5	0.059	2	2.42	0.038	0.13	0.2	6.8	0.14	<0.02	32	2.1	0.13	6.8	1.44	<0.1	0.07
RS-13 Sc	bil	11.9	15.8	0.28	378.8	0.012	2	0.69	0.012	0.19	0.2	3.6	0.50	0.35	1085	2.1	0.33	2.9	3.10	<0.1	0.12
RS-14 So	bil	9.6	11.7	1.72	364.2	0.080	4	3.61	0.016	0.80	0.1	16.4	0.16	0.05	22	1.4	0.10	11.1	3.28	0.1	0.14
RS-15 Sc	bil	8.0	7.7	2.52	292.3	0.067	2	3.55	0.006	0.85	<0.1	16.5	0.09	<0.02	16	0.9	0.12	11.5	3.61	0.1	0.04
RS-16 Sc	bil	10.1	4.3	0.96	845.9	0.022	2	1.47	0.020	0.27	0.1	4.7	0.13	0.16	45	8.0	12.20	4.5	2.55	0.2	0.03
RS-17 Sc	oil	26.5	19.0	0.33	285.5	0.005	3	1.11	0.006	0.16	0.5	9.6	0.15	0.03	309	2.9	1.16	3.3	2.67	0.1	0.07
RS-18 Sc	oil	26.6	10.7	0.87	210.3	0.018	5	3.12	0.012	0.35	0.6	10.0	0.15	0.11	144	3.2	9.23	6.9	2.65	<0.1	0.14
RS-19 So	bil	17.0	16.2	1.41	282.0	0.039	2	3.86	0.020	0.61	0.3	13.2	0.13	0.25	74	2.9	1.04	9.7	2.94	<0.1	0.11

Project:	Banbury
Report Date:	January 18, 2011

Page:

1020 Cordova St. East Vancouver BC V6A 4A3 Canada Phone (604) 253-3158 Fax (604) 253-1716

www.acmelab.com


Part 3

2 of 2

CERTIFICATE OF ANALYSIS

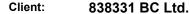
	Method	1F30	1F30	1F30	1F30	1F30	1F30	1F30	1F30	1F30	1F30	1F30	1F30	1F30
	Analyte	Nb	Rb	Sn	Та	Zr	Y	Ce	In	Re	Be	Li	Pd	Pt
	Unit	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppb	ppm	ppm	ppb	ppb
	MDL	0.02	0.1	0.1	0.05	0.1	0.01	0.1	0.02	1	0.1	0.1	10	2
RS-1 Soil		0.26	14.2	0.3	<0.05	4.1	12.28	15.8	0.04	<1	0.5	22.3	<10	<2
RS-2 Soil		0.28	13.9	0.4	<0.05	17.1	17.79	25.5	0.04	<1	0.8	26.8	<10	<2
RS-3 Soil		0.26	5.7	0.2	<0.05	9.0	21.68	27.9	0.04	<1	0.4	7.0	23	<2
RS-4 Soil		0.26	9.1	0.2	<0.05	4.5	19.76	20.6	0.04	<1	0.3	12.7	<10	<2
RS-5 Soil		0.04	7.7	0.2	<0.05	3.9	36.84	26.7	0.10	2	1.1	32.1	<10	<2
RS-6 Soil		0.34	10.1	0.3	<0.05	10.5	16.46	17.5	0.03	<1	0.5	13.8	<10	2
RS-7 Soil		0.38	13.7	0.3	<0.05	15.1	12.30	17.5	0.03	<1	0.6	15.5	<10	<2
RS-8 Soil		0.44	13.0	0.4	<0.05	14.3	12.68	15.5	0.03	<1	0.3	13.5	<10	<2
RS-9 Soil		0.32	18.0	0.5	<0.05	20.8	12.34	21.0	0.03	<1	0.6	17.2	<10	<2
RS-10 Soil		0.72	21.0	0.4	<0.05	11.2	10.28	17.2	0.02	<1	0.6	15.7	<10	<2
RS-11 Soil		0.36	30.9	0.5	<0.05	9.2	16.74	16.5	0.04	1	0.6	33.3	11	<2
RS-12 Soil		0.20	11.4	0.3	<0.05	4.9	19.27	19.7	0.03	<1	0.4	18.4	<10	<2
RS-13 Soil		0.03	10.7	0.3	<0.05	5.9	5.26	23.3	0.04	1	<0.1	10.4	<10	<2
RS-14 Soil		0.14	25.2	0.4	<0.05	6.2	20.40	21.9	0.05	1	0.4	23.7	<10	<2
RS-15 Soil		0.04	20.1	0.2	<0.05	1.3	17.47	15.9	0.05	<1	0.2	30.4	<10	<2
RS-16 Soil		0.12	11.1	<0.1	<0.05	1.7	12.59	23.2	0.17	2	0.2	12.8	28	<2
RS-17 Soil		0.06	5.8	0.3	<0.05	3.8	76.57	53.1	0.09	1	0.8	7.2	50	<2
RS-18 Soil		0.16	9.4	0.3	<0.05	4.8	61.96	48.6	0.42	3	0.6	24.2	*	<2
RS-19 Soil		0.14	16.9	0.3	<0.05	4.7	29.12	36.1	0.27	2	0.4	25.4	43	<2

VAN10006965.1

Project: Banbury January 18, 2011 Report Date:

1020 Cordova St. East Vancouver BC V6A 4A3 Canada Phone (604) 253-3158 Fax (604) 253-1716

Page:


www.acmelab.com

1 of 1 Part 1

VAN10006965.1

ALITY CONTROL REPORT

	Method	1F30	1F30	1F30	1F30	1F30	1F30	1F30	1F30	1F30	1F30	1F30	1F30	1F30	1F30	1F30	1F30	1F30	1F30	1F30	1F30
	Analyte	Мо	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	U	Au	Th	Sr	Cd	Sb	Bi	v	Ca	Р
	Unit	ppm	ppm	ppm	ppm	ppb	ppm	ppm	ppm	%	ppm	ppm	ppb	ppm	ppm	ppm	ppm	ppm	ppm	%	%
	MDL	0.01	0.01	0.01	0.1	2	0.1	0.1	1	0.01	0.1	0.1	0.2	0.1	0.5	0.01	0.02	0.02	2	0.01	0.001
Pulp Duplicates																					
RS-3	Soil	51.54	116.4	13.58	238.2	2517	73.0	13.2	296	3.59	71.7	0.5	20.8	3.3	114.7	3.63	7.90	0.21	40	1.79	0.094
REP RS-3	QC	51.00	115.2	12.79	236.7	2445	72.5	13.3	295	3.56	71.6	0.5	23.4	3.2	115.9	3.46	7.91	0.20	40	1.78	0.091
Reference Materials																					
STD DS8	Standard	13.02	98.80	122.1	298.6	1653	38.3	7.9	616	2.42	22.0	2.4	102.0	5.9	61.8	2.19	4.72	6.08	39	0.67	0.072
STD DS8	Standard	13.31	100.1	121.8	301.0	1593	38.5	7.9	626	2.44	22.3	2.4	101.3	6.1	64.1	2.21	4.90	6.08	39	0.70	0.072
STD DS8 Expected		13.44	110	123	312	1690	38.1	7.5	615	2.46	26	2.8	107	6.89	67.7	2.38	5.7	6.67	41.1	0.7	0.08
BLK	Blank	<0.01	<0.01	<0.01	<0.1	<2	<0.1	<0.1	<1	<0.01	1.7	<0.1	1.0	<0.1	<0.5	<0.01	<0.02	<0.02	<2	<0.01	<0.001

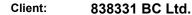
Project: Banbury Report Date: January 18, 2011

1020 Cordova St. East Vancouver BC V6A 4A3 Canada Phone (604) 253-3158 Fax (604) 253-1716

Report Date: Jani

Page:

www.acmelab.com


Part 2

VAN10006965.1

1 of 1

QUALITY CONTROL REPORT

	Mathad																				
	Method	1F30	1F30	1F30	1F30	1F30	1F30	1F30	1F30	1F30	1F30	1F30	1F30	1F30	1F30	1F30	1F30	1F30	1F30	1F30	1F30
	Analyte	La	Cr	Mg	Ва	Ti	в	AI	Na	K	w	Sc	TI	S	Hg	Se	Те	Ga	Cs	Ge	Hf
	Unit	ppm	ppm	%	ppm	%	ppm	%	%	%	ppm	ppm	ppm	%	ppb	ppm	ppm	ppm	ppm	ppm	ppm
	MDL	0.5	0.5	0.01	0.5	0.001	1	0.01	0.001	0.01	0.1	0.1	0.02	0.02	5	0.1	0.02	0.1	0.02	0.1	0.02
Pulp Duplicates																					
RS-3	Soil	15.7	16.0	0.25	133.3	0.027	4	1.17	0.012	0.13	0.1	4.0	0.44	<0.02	99	5.7	0.14	3.1	1.07	<0.1	0.13
REP RS-3	QC	15.2	15.3	0.24	130.9	0.026	4	1.13	0.011	0.13	0.1	3.8	0.44	<0.02	103	5.4	0.15	3.1	1.03	<0.1	0.11
Reference Materials																					
STD DS8	Standard	12.4	118.9	0.60	238.8	0.096	3	0.92	0.088	0.41	2.8	2.3	5.43	0.16	191	5.3	5.08	4.8	2.50	<0.1	0.09
STD DS8	Standard	13.8	125.9	0.61	248.2	0.101	4	0.92	0.089	0.42	2.8	2.3	5.35	0.16	175	5.3	5.09	4.7	2.55	0.1	0.09
STD DS8 Expected		14.6	115	0.6045	279	0.113	2.6	0.93	0.0883	0.41	3	2.3	5.4	0.1679	192	5.23	5	4.7	2.48	0.13	0.08
BLK	Blank	<0.5	<0.5	<0.01	<0.5	<0.001	<1	<0.01	<0.001	<0.01	<0.1	<0.1	<0.02	<0.02	<5	<0.1	<0.02	<0.1	<0.02	<0.1	<0.02

Project:	Banbury
Report Date:	January 18, 2011

Page:

1020 Cordova St. East Vancouver BC V6A 4A3 Canada Phone (604) 253-3158 Fax (604) 253-1716

www.acmelab.com

1 of 1 Part 3

QUALITY CONTROL REPORT

	Method	1F30	1F30	1F30	1F30	1F30	1F30	1F30	1F30	1F30	1F30	1F30	1F30	1F30
	Analyte	Nb	Rb	Sn	Та	Zr	Y	Ce	In	Re	Be	Li	Pd	Pt
	Unit	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppb	ppm	ppm	ppb	ppb
	MDL	0.02	0.1	0.1	0.05	0.1	0.01	0.1	0.02	1	0.1	0.1	10	2
Pulp Duplicates														
RS-3	Soil	0.26	5.7	0.2	<0.05	9.0	21.68	27.9	0.04	<1	0.4	7.0	23	<2
REP RS-3	QC	0.25	5.7	0.2	<0.05	8.9	21.78	26.4	0.02	<1	0.5	7.1	19	<2
Reference Materials														
STD DS8	Standard	1.20	33.9	5.7	<0.05	2.2	5.53	26.1	1.88	58	5.4	27.2	111	331
STD DS8	Standard	1.40	33.4	5.9	<0.05	2.2	5.80	29.0	1.99	54	5.6	27.7	116	322
STD DS8 Expected		1.65	39	6.7	0.003	2.3	6.1	29.8	2.19	55	5.2	26.34	110	339
BLK	Blank	<0.02	<0.1	<0.1	<0.05	<0.1	<0.01	<0.1	<0.02	<1	<0.1	<0.1	<10	<2

VAN10006965.1

1020 Cordova St. East Vancouver BC V6A 4A3 Canada

Submitted By: David Jensen

Received: Report Date:

Client:

Page:

www.acmelab.com

Receiving Lab: Canada-Vancouver January 25, 2011 February 02, 2011 1 of 2

838331 BC Ltd.

CERTIFICATE OF ANALYSIS

Banbury

5

CLIENT JOB INFORMATION

Project:

Shipment ID:

P.O. Number

STOR-PLP

STOR-RJT

Number of Samples:

SAMPLE DISPOSAL

Method Code	Number of Samples	Code Description	Test Wgt (g)	Report Status	Lab
SS80	5	Dry at 60C sieve 100g to -80 mesh			VAN
Dry at 60C	5	Dry at 60C			VAN
1F06	5	1:1:1 Aqua Regia digestion Ultratrace ICP-MS analysis	30	Completed	VAN
RJSV	5	Saving all or part of Soil Reject			VAN

ADDITIONAL COMMENTS

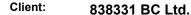
Acme does not accept responsibility for samples left at the laboratory after 90 days without prior written instructions for sample storage or return.

Store After 90 days Invoice for Storage

Store After 90 days Invoice for Storage

838331 BC Ltd. Invoice To:

CC:


Arnd Burgert

VAN10006965A.1

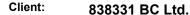
This report supersedes all previous preliminary and final reports with this file number dated prior to the date on this certificate. Signature indicates final approval; preliminary reports are unsigned and should be used for reference only. All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of analysis only.

"*" asterisk indicates that an analytical result could not be provided due to unusually high levels of interference from other elements.

Project: Banbury Report Date: February 0

Page:

1020 Cordova St. East Vancouver BC V6A 4A3 Canada Phone (604) 253-3158 Fax (604) 253-1716 ort Date: February 02, 2011


www.acmelab.com

2 of 2 Part 1

VAN10006965A.1

CERTIFICATE OF ANALYSIS

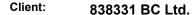
		Method	1F30	1F30	1F30	1F30	1F30	1F30	1F30	1F30	1F30	1F30	1F30	1F30	1F30	1F30	1F30	1F30	1F30	1F30	1F30	1F30
		Analyte	Мо	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	U	Au	Th	Sr	Cd	Sb	Bi	v	Ca	Р
		Unit	ppm	ppm	ppm	ppm	ppb	ppm	ppm	ppm	%	ppm	ppm	ppb	ppm	ppm	ppm	ppm	ppm	ppm	%	%
		MDL	0.01	0.01	0.01	0.1	2	0.1	0.1	1	0.01	0.1	0.1	0.2	0.1	0.5	0.01	0.02	0.02	2	0.01	0.001
SS-1	Soil		2.28	65.76	11.90	99.1	209	23.2	16.3	1053	3.26	28.8	0.3	32.7	1.2	44.3	0.92	1.02	0.21	67	0.82	0.080
SS-2	Soil		0.96	22.10	4.79	49.9	145	11.5	5.8	422	1.74	11.2	0.4	11.4	0.5	100.8	0.49	0.66	0.08	46	5.36	0.066
SS-3	Soil		2.02	72.64	8.03	127.9	688	28.1	10.4	849	2.77	23.3	0.4	52.9	1.0	136.8	0.98	1.66	0.16	56	1.82	0.138
SS-4	Soil		2.25	64.25	8.62	76.5	223	23.4	10.0	554	2.87	40.6	0.4	16.7	1.2	78.0	0.31	1.25	0.15	63	0.49	0.056
SS-5	Soil		1.08	21.24	2.03	26.0	144	4.8	1.3	189	0.32	2.1	0.8	2.2	<0.1	261.4	0.84	0.60	0.05	10	22.31	0.072

Project: Banbury Report Date:

Page:

February 02, 2011

1020 Cordova St. East Vancouver BC V6A 4A3 Canada Phone (604) 253-3158 Fax (604) 253-1716


www.acmelab.com

2 of 2 Part 2

VAN10006965A.1

CERTIFICATE OF ANALYSIS

		thod	1F30	1F30	1F30	1F30	1F30	1F30	1F30	1F30	1F30	1F30	1F30	1F30	1F30	1F30	1F30	1F30	1F30	1F30	1F30	1F30
		alyte	La	Cr	Mg	Ba	Ti	В	AI	Na	K	w	Sc	TI	S	Hg	Se	Те	Ga	Cs	Ge	Hf
		Unit	ppm	ppm	%	ppm	%	ppm	%	%	%	ppm	ppm	ppm	%	ppb	ppm	ppm	ppm	ppm	ppm	ppm
	N	MDL	0.5	0.5	0.01	0.5	0.001	1	0.01	0.001	0.01	0.1	0.1	0.02	0.02	5	0.1	0.02	0.1	0.02	0.1	0.02
SS-1	Soil		8.1	22.1	0.92	89.7	0.043	6	1.72	0.020	0.19	0.3	3.8	0.11	0.02	22	1.5	0.07	5.2	0.81	<0.1	0.12
SS-2	Soil		3.7	14.9	0.53	81.4	0.039	5	0.95	0.026	0.06	0.2	2.1	0.13	0.07	6	2.7	0.09	3.1	0.58	<0.1	0.05
SS-3	Soil		9.1	22.6	0.71	197.6	0.040	4	1.72	0.026	0.27	0.1	4.4	0.10	0.03	33	1.5	0.07	5.1	1.05	<0.1	0.09
SS-4	Soil		7.7	22.8	0.73	130.2	0.048	2	1.66	0.023	0.17	0.2	4.2	0.13	<0.02	18	1.5	0.08	5.1	0.95	<0.1	0.09
SS-5	Soil		1.4	7.6	0.15	56.7	0.006	7	0.25	0.015	0.02	<0.1	0.4	0.06	0.25	18	10.6	0.18	0.9	0.17	<0.1	0.02

Project:	Banbury
Report Date:	February 02, 2011

Page:

1020 Cordova St. East Vancouver BC V6A 4A3 Canada Phone (604) 253-3158 Fax (604) 253-1716


www.acmelab.com

2 of 2 Part 3

CERTIFICATE OF ANALYSIS

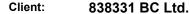
	I	Method	1F30	1F30	1F30	1F30	1F30	1F30	1F30	1F30	1F30	1F30	1F30	1F30	1F30
		Analyte	Nb	Rb	Sn	Та	Zr	Y	Ce	In	Re	Be	Li	Pd	Pt
		Unit	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppb	ppm	ppm	ppb	ppb
		MDL	0.02	0.1	0.1	0.05	0.1	0.01	0.1	0.02	1	0.1	0.1	10	2
SS-1	Soil		0.42	8.4	0.2	<0.05	4.5	10.35	18.0	0.03	<1	0.3	22.3	<10	<2
SS-2	Soil		0.22	4.5	0.2	<0.05	1.5	3.99	7.0	<0.02	6	0.1	14.7	<10	2
SS-3	Soil		0.35	11.9	0.2	<0.05	3.4	14.21	16.2	0.03	<1	0.3	15.9	<10	<2
SS-4	Soil		0.38	13.0	0.2	<0.05	3.7	9.01	14.7	0.03	<1	0.3	15.6	<10	<2
SS-5	Soil		0.10	1.3	<0.1	<0.05	1.0	2.91	2.2	<0.02	2	<0.1	2.6	<10	<2

VAN10006965A.1

Project: Banbury Report Date: February 02, 2011

Page:

1020 Cordova St. East Vancouver BC V6A 4A3 Canada Phone (604) 253-3158 Fax (604) 253-1716


www.acmelab.com	

1 of 1 Part 1

VAN10006965A.1

QUALITY CONTROL REPORT

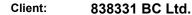
	Method	1F30	1F30	1F30	1F30	1F30	1F30	1F30	1F30	1F30	1F30	1F30	1F30	1F30	1F30	1F30	1F30	1F30	1F30	1F30	1F30
	Analyte	Mo	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	U	Au	Th	Sr	Cd	Sb	Bi	v	Ca	P
	Unit	ppm	ppm	ppm	ppm	ppb	ppm	ppm	ppm	%	ppm	ppm	ppb	ppm	ppm	ppm	ppm	ppm	ppm	%	%
	MDL	0.01	0.01	0.01	0.1	2	0.1	0.1	1	0.01	0.1	0.1	0.2	0.1	0.5	0.01	0.02	0.02	2	0.01	0.001
Pulp Duplicates																					
SS-2	Soil	0.96	22.10	4.79	49.9	145	11.5	5.8	422	1.74	11.2	0.4	11.4	0.5	100.8	0.49	0.66	0.08	46	5.36	0.066
REP SS-2	QC	0.91	23.60	4.52	48.8	170	10.7	5.7	425	1.77	10.6	0.4	71.3	0.5	104.5	0.45	0.64	0.07	46	5.53	0.064
Reference Materials																					
STD DS8	Standard	10.50	100.3	117.4	293.8	1513	34.5	7.4	571	2.32	24.3	2.5	105.0	5.8	53.9	2.33	5.12	6.65	38	0.63	0.073
STD DS8	Standard	10.58	104.6	116.5	283.6	1572	36.3	7.1	579	2.34	25.0	2.5	101.2	6.2	57.0	2.50	5.22	6.79	38	0.63	0.073
STD DS8 Expected		13.44	110	123	312	1690	38.1	7.5	615	2.46	26	2.8	107	6.89	67.7	2.38	5.7	6.67	41.1	0.7	0.08
BLK	Blank	<0.01	<0.01	<0.01	<0.1	<2	<0.1	<0.1	<1	<0.01	<0.1	<0.1	<0.2	<0.1	<0.5	<0.01	<0.02	<0.02	<2	<0.01	<0.001

Project:	Banbury
Report Date:	February 02, 2011

1020 Cordova St. East Vancouver BC V6A 4A3 Canada Phone (604) 253-3158 Fax (604) 253-1716

Page:

Part 2


VAN10006965A.1

1 of 1

www.acmelab.com

ALITY CONTROL REPORT

	Method	1F30	1F30	1F30	1F30	1F30	1F30	1F30	1F30	1F30	1F30	1F30	1F30	1F30	1F30	1F30	1F30	1F30	1F30	1F30	1F30
	Analyte	La	Cr	Mg	Ва	Ti	в	AI	Na	κ	w	Sc	ті	S	Hg	Se	Те	Ga	Cs	Ge	Hf
	Unit	ppm	ppm	%	ppm	%	ppm	%	%	%	ppm	ppm	ppm	%	ppb	ppm	ppm	ppm	ppm	ppm	ppm
	MDL	0.5	0.5	0.01	0.5	0.001	1	0.01	0.001	0.01	0.1	0.1	0.02	0.02	5	0.1	0.02	0.1	0.02	0.1	0.02
Pulp Duplicates																					
SS-2	Soil	3.7	14.9	0.53	81.4	0.039	5	0.95	0.026	0.06	0.2	2.1	0.13	0.07	6	2.7	0.09	3.1	0.58	<0.1	0.05
REP SS-2	QC	3.4	15.2	0.54	79.1	0.038	4	0.97	0.026	0.06	0.2	1.7	0.13	0.07	9	2.5	0.10	3.2	0.55	<0.1	0.04
Reference Materials																					
STD DS8	Standard	10.6	105.3	0.58	261.3	0.096	3	0.80	0.066	0.39	3.1	2.0	5.55	0.16	181	5.2	4.88	4.4	2.31	<0.1	0.08
STD DS8	Standard	11.3	109.4	0.58	249.5	0.095	2	0.80	0.066	0.39	3.1	2.0	5.32	0.16	189	4.9	4.73	4.3	2.45	<0.1	0.10
STD DS8 Expected		14.6	115	0.6045	279	0.113	2.6	0.93	0.0883	0.41	3	2.3	5.4	0.1679	192	5.23	5	4.7	2.48	0.13	0.08
BLK	Blank	<0.5	<0.5	<0.01	<0.5	<0.001	<1	<0.01	<0.001	<0.01	<0.1	<0.1	<0.02	<0.02	<5	<0.1	<0.02	<0.1	<0.02	<0.1	<0.02

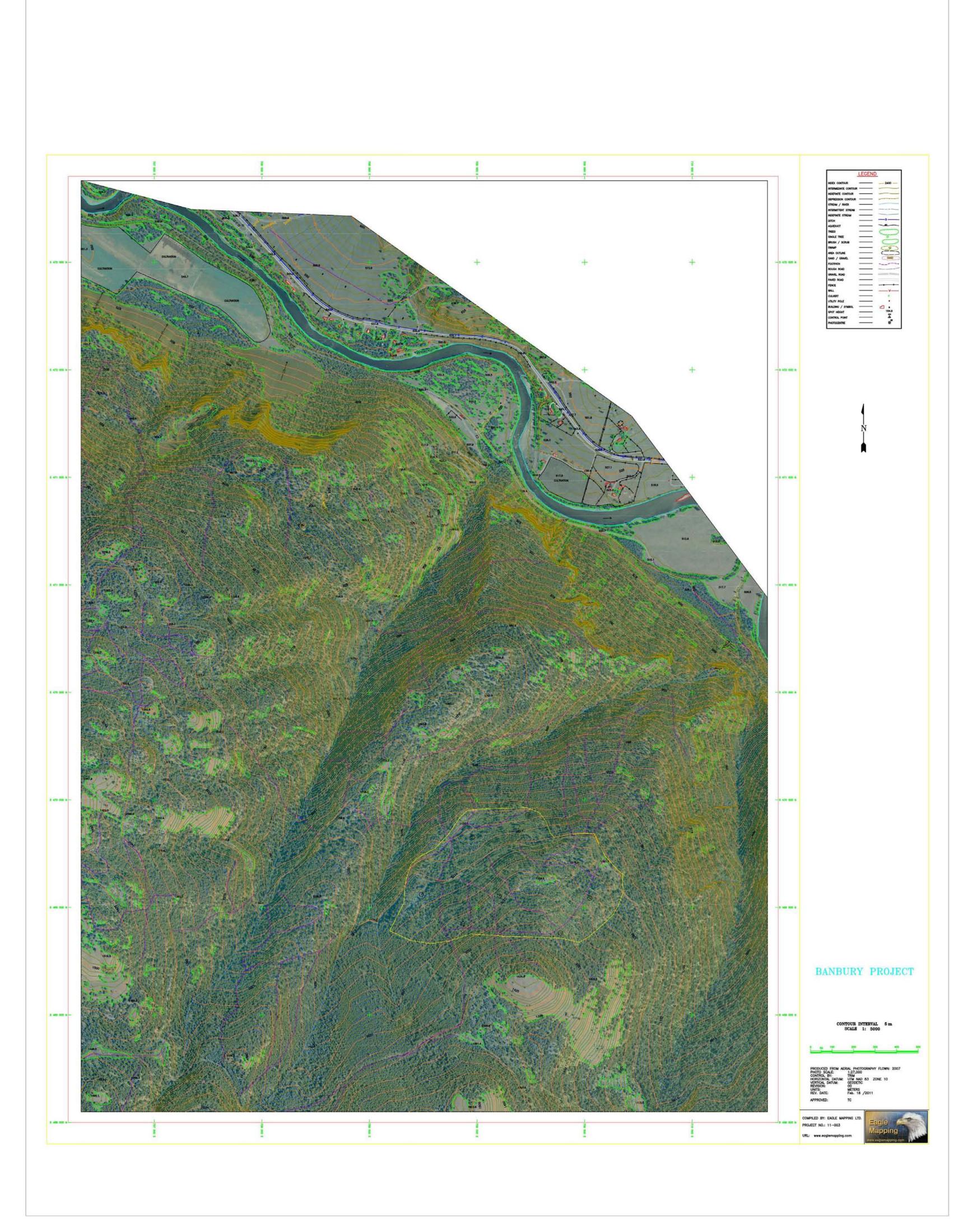
Project:	Banbury
Report Date:	February 02, 2011

Page:

1020 Cordova St. East Vancouver BC V6A 4A3 Canada Phone (604) 253-3158 Fax (604) 253-1716

www.acmelab.com

1 of 1 Part 3


QUALITY CONTROL REPORT

	Method	1F30	1F30	1F30	1F30	1F30	1F30	1F30	1F30	1F30	1F30	1F30	1F30	1F30
	Analyte	Nb	Rb	Sn	Та	Zr	Y	Ce	In	Re	Be	Li	Pd	Pt
	Unit	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppb	ppm	ppm	ppb	ppb
	MDL	0.02	0.1	0.1	0.05	0.1	0.01	0.1	0.02	1	0.1	0.1	10	2
Pulp Duplicates														
SS-2	Soil	0.22	4.5	0.2	<0.05	1.5	3.99	7.0	<0.02	6	0.1	14.7	<10	2
REP SS-2	QC	0.23	4.4	0.1	<0.05	1.5	4.04	6.4	<0.02	2	0.2	13.5	<10	<2
Reference Materials														
STD DS8	Standard	1.05	36.2	6.1	<0.05	1.8	4.75	21.9	2.22	57	5.7	29.4	101	322
STD DS8	Standard	1.05	35.4	6.5	<0.05	1.8	4.64	21.5	2.11	56	5.2	28.0	98	333
STD DS8 Expected		1.65	39	6.7	0.003	2.3	6.1	29.8	2.19	55	5.2	26.34	110	339
BLK	Blank	<0.02	<0.1	<0.1	<0.05	<0.1	<0.01	<0.1	<0.02	<1	<0.1	<0.1	<10	<2

VAN10006965A.1

APPENDIX 4

ORTHOPHOTO MAP

