

ASSESSMENT REPORT TITLE PAGE AND SUMMARY

TITLE OF REPORT: 2010 Diamond Drilling Assessment Report on the Dansey Project

TOTAL COST: \$175,552.90

AUTHOR(S): Terry David Garrow, P. Geo SIGNATURE(S): Terry David Garrow, P. Geo

NOTICE OF WORK PERMIT NUMBER(S)/DATE(S): MX-4-517 / 9th Sept-08 STATEMENT OF WORK EVENT NUMBER(S)/DATE(S): 4843410, Mar 11, 2011

YEAR OF WORK: 2010

PROPERTY NAME: Dansey

CLAIM NAME(S) (on which work was done): 528848

COMMODITIES SOUGHT: Copper

MINERAL INVENTORY MINFILE NUMBER(S), IF KNOWN: 092I NE034

 MINING DIVISION: Kamloops Mining Division

 NTS / BCGS: 092I/10

 LATITUDE: ______50_____°___30_____'___43____"

 LONGITUDE: ____120_____°___53_____'____17____" (at centre of work)

 UTM Zone: ____10
 EASTING: ____649740

OWNER(S): Logan Copper Inc.

MAILING ADDRESS: 216-7198 Vantage Way, Ladner, BC V4G 1K7

OPERATOR(S) [who paid for the work]: Logan Copper Inc.

MAILING ADDRESS: 216-7198 Vantage Way, Ladner, BC V4G 1K7

REPORT KEYWORDS (lithology, age, stratigraphy, structure, alteration, mineralization, size and attitude. **Do not use abbreviations or codes**) Copper, Molybdenum, Guichon Batholith, Jurrasic, Fault zone, Chlorite-Quartz alteration, hydrothermal-porphyry

REFERENCES TO PREVIOUS ASSESSMENT WORK AND ASSESSMENT REPORT NUMBERS: 711, 1166, 1585, 1787, 1934, 1935, 2024, 2066, 2114, 2282, 3184, 3459, 4983, 4984, 5065, 5851, 10783, 30458, 31466, 31903

TYPE OF WORK IN THIS REPORT	EXTENT OF WORK (in metric units)	ON WHICH CLAIMS	PROJECT COSTS APPORTIONED (incl. support)
GEOLOGICAL (scale, area)			
Ground, mapping			
Photo interpretation			
GEOPHYSICAL (line-kilometres)			
Ground			
Magnetic			
Electromagnetic			
Induced Polarization			
Radiometric			
Seismic			
Other			
Airborne			
GEOCHEMICAL (number of samp	les analysed for)		
Soil			
Silt			
Rock		5000.40	0 0 075 40
Other Core: 287 Samples	assay for gold and 30 Element ICP	528848	\$6,975.40
DRILLING (total metres, number or 934.0 ft, Core warehou	one NQ holes, stored at Merrit	528848	\$168,577.50
Non-core			
RELATED TECHNICAL			
Sampling / Assaying			
Petrographic			
Mineralographic			
Metallurgic			
PROSPECTING (scale/area)			
PREPATORY / PHYSICAL			
Line/grid (km)			
Topo/Photogrammetric (sca	ale, area)		
Legal Surveys (scale, area			
Road, local access (km)/tra			
Trench (number/metres)			
Underground development	(metres)		
Other			
		TOTAL COST	\$175,552.90

2010 DIAMOND DRILLING ASSESSMENT REPORT ON THE DANSEY PROJECT

Logan Lake, British Columbia, Canada Kamloops Mining Division NTS: 092I/10 Claim Number: 528848 Claim Name: Dansey

> Centered at: UTM Zone 10 649740E 5597676N NAD 83

BC Geological Survey Assessment Report 32290

or

Latitude: 50^o30'43" Longitude: 120^o53'17"

Prepared for Logan Copper Inc. 216-7198 Vantage Way Ladner, BC V4G 1K7

Prepared by Terry Garrow, P.Geo

Dated: May 31th, 2011

TABLE OF CONTENT

1.	INTRODUCTION	
2.	PROPERTY DESCRIPTION	
3.	LOCATION	
4.	ACCESS	6
5.	PHYSIOGRAPHY AND CLIMATE	7
6.	HISTORY	9
6.	1. EXPLORATION HISTORY OF THE DANSEY PROJECT	9
6.	2. HISTORICAL DRILLING ON THE DANSEY PROJECT	12
7.	REGIONAL GEOLOGY	13
8.	PROPERTY GEOLOGY	16
9.	MINERALIZATION	18
10.	2008 DRILLING AND RE-ASSAY	18
11.	2009 EXPLORATION	18
12.	2010 DRILLING	19
13.	SAMPLING METHOD AND APPROACH	23
14.	INTERPRETATION AND CONCLUSIONS	25
14	4.1. RECOMMENDATIONS	25
15.	REFERENCES	25
16.	CERTIFICATES	28

APPENDIX I - DRILL-HOLE CORE RECOVERY	29
APPENDIX II - DRILL-HOLE LOGGING	32
APPENDIX III - DRILL HOLE CORE ASSAYS	46
APPENDIX IV – STATEMENT OF EXPENDITURES	70
APPENDIX V – ASSAY CERTIFICATES	72

1. INTRODUCTION

Between September 1st, 2010 and October 15th, 2010 Logan Copper Inc. carried out one NQ diamond drill hole on the Dansey Claim (tenure number 528848).

The Dansey Project is located on the Logan Copper Property within a historically significant and highly productive mining camp. Industry attention was first brought to the Dansey Project area in the mid 60's shortly after the discovery of the Lornex, Valley and Bethlehem pits, which today comprise the Highland Valley Mining complex, located within seven kilometers of the Dansey Project.

Geologically, the Dansey Project area is located on the eastern portion of the Guichon Creek Batholith, a regionally significant Jurassic-age intrusive and the host of 23 developed prospects and past producers including the Lornex and Valley open pits.

2. PROPERTY DESCRIPTION

The entire Logan Copper Property is 100% owned by Logan Copper Inc. There are no encumbrances on the mineral tenures comprising the Logan Copper Property and Dansey Project area other than those normally reserved by the Crown.

The Dansey Project is located on the Logan Coppers Property (Table 2). The registered and 100% beneficial owner of the Logan Copper Property is Logan Copper Inc. The Logan Copper Property consists of 133 contiguous and three noncontiguous, mineral claims, covering approximately 55,012.02 hectares (Table 1, Figure 1). The Dansey Project area is located near the eastern boundary of the Logan Copper Property and consists of five contiguous mineral claims covering 2,485.58 hectares (Table 2, Figure 2).

The Logan Copper Property has been acquired through a combination of staking and cash purchases between May 22nd, 2008 and May 15st, 2011.

	Logan Copper Property Tenure Numbers											
514175	580839	581002	581016	585318	585376	585387	603867	611443	611563	679143	705633	705644
522351	580973	581003	581018	585319	585378	585388	603868	611444	611583	679148	705635	705645
528848	580979	581005	581019	585320	585379	585390	605002	611445	611603	696823	705636	705646
528849	580984	581006	581022	585321	585380	585391	605003	611446	611623	699924	705637	705647
528955	580989	581008	581024	585322	585381	586826	610183	611463	611643	699946	705638	705648
570172	580992	581009	581026	585323	585382	590554	610203	611483	611663	700064	705639	705649
580823	580997	581011	581027	585324	585383	596226	610223	611503	634304	700065	705640	705650
580830	580998	581012	581028	585325	585384	596301	610243	611504	647463	705630	705641	705651
580837	580999	581014	581030	585374	585385	596302	610244	611523	663644	705631	705642	744623
580838	581000	581015	585317	585375	585386	600351	611423	611543	663657	705632	705643	744722
835235	834163	834164	834165	834166	834167							

TABLE 1: LOGAN COPPER PROPERTY TENURES

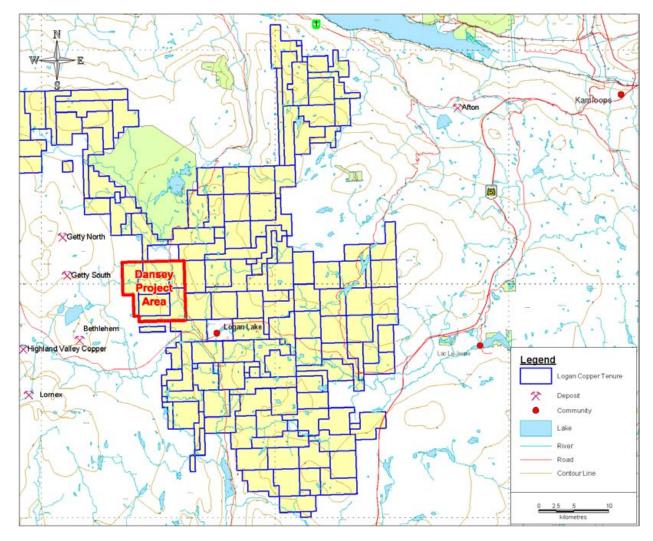


FIGURE 1: LOGAN COPPER PROPERTY TENURE MAP

Dansey Project Area	а			
Tenure Number	Claim Name	Issue Date	Good To Date	Area (ha)
528848	DANSEY	23-Feb-06	27-Mar-13	493.13
528849	DAB	23-Feb-06	27-Mar-13	492.95
580837		9-Apr-08	27-Mar-13	492.94
580838		9-Apr-08	27-Mar-13	513.4
580839		9-Apr-08	27-Mar-13	493.16
			TOTAL	2485.58

TABLE 2: DANSEY PROJECT TENURES

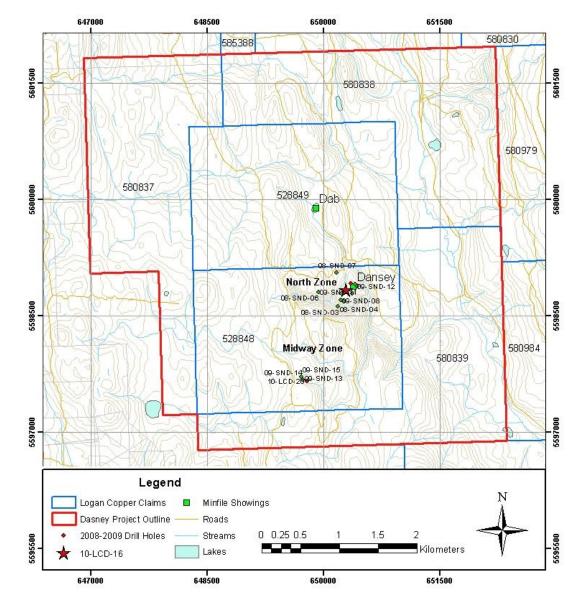


FIGURE 2: DANSEY PROJECT MAP

3. LOCATION

The Logan Copper Property is located in south central British Columbia, Canada (Figure 3). The

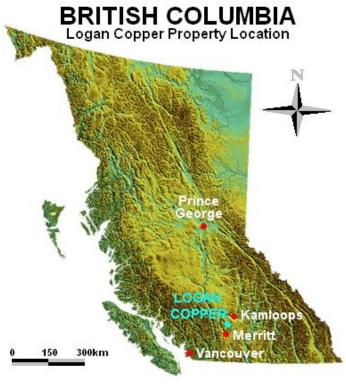


FIGURE 3: LOGAN COPPER LOCATION MAP

Property is centered near the community of Logan Lake. This community is situated approximately 48 km north of Merritt. British Columbia and 59km southwest approximately of Columbia. Kamloops, British The property can be accessed by highway 97C from Merritt or highway 5 south from Kamloops to exit 336 turning west on Meadow Creek Rd to Logan Lake.

The Dansey Project is situated on the eastern edge of the Logan Copper Property and is centered at UTM zone 10 easting 650000 northing 5598300 (NAD 83). The Dansey Project is situated 5.6 km northwest of the community of Logan Lake, and can be accessed using a 4x4 vehicle via paved

road and well maintained forestry access road.

4. ACCESS

Starting from the intersection of Meadow Creek road, highway 97C and Tunkwa Lake road in the Community of Logan Lake, the center of the Dansey Project can be accessed by traveling north on Tunkwa Lake road for 4 km, then travel west for 5 km on a well maintained forestry access road.

Portions of the Dansey Project area, recently worked by Logan Copper, can be accessed from approximately March to late November and year round with minimal snow plowing. Other parts of the Project can be access by a well developed network of unmaintained logging and exploration roads which remain in good condition, and numerous unmaintained roads which require minimal rehabilitation.

5. PHYSIOGRAPHY AND CLIMATE

The property is located in the Thompson Plateau of Southern British Columbia. Topography is generally mild to moderate, with elevations ranging between 1040m to 1380m above sea level within the boundaries five Dansey Project tenures. Photo 1 and Photo 2 exemplify the physiography of Dansey Project area.

Small seasonal creeks flow east draining the area into Guichon Creek, and numerous small swamps and lakes are located throughout the Dansey area tenures. Vegetation comprises of lodgepole pine with sporadic local fir, birch, poplar and spruce surrounding small intermittent open fields and meadows. The general area has been devastated by the

Mountain Pine Beetle infestation and much of the property is littered with dead fall.

PHOTO 1: DANSEY PROJECT ARE LOOKING SOUTHEAST TO LOGAN LAKE The local climate is typical of south central British Columbia. Annual temperatures range

from 35°C to -40°C. Negative temperatures can be typically expected between late October and late March. Annual precipitation ranges around an average of 30 cm.

PHOTO 2: SOUTHERN DANSEY PROJECT AREA LOOKING NORTH

6. HISTORY

Mining and exploration has played a significant role in the Logan Lake area for well over a century. Heightened industry attention in the Dansey Project area coincided with the first production from the Bethlehem Copper Mine and the discovery of the Valley ore body in the early sixties. In the seventies the Town of Logan Lake was established to facilitate the workforce for the Lornex Mine, which today along with the Valley pit comprises the Highland Valley Mining complex.

Blue chip explorers such as Noranda Exploration Company and Cominco Limited along with half a dozen juniors have conducted exploration programs and identified significant geochemical and geophysical anomalies within the boundaries of the current Dansey Project area tenures. Subsequent historic drilling has intersected significant intervals of copper mineralization in a series of shallow drill percussion drill holes not exceeding 110 meters.

6.1. EXPLORATION HISTORY OF THE DANSEY PROJECT

The first recorded assessment work conducted in the area of the Dansey Project was carried out in 1965. A large geochemical survey was conducted on behalf of New Indian Mines Ltd. ("Indian Mines") and Vananda Explorations Ltd. ("Vananda Explorations") on their Eden mineral claims which partly overlapped the southwest corner of the Dansey Project area. 1507 soil samples were collected at 300 by 200 meter intervals roughly half of which were located on ground currently held by Logan Copper. The samples were tested using the qualitative rubeanic acid method in a field laboratory. "Although the soil samples did not show a pattern of anomalous values that could be contoured, the results were sufficiently encouraging to merit additional work in this area." (ARIS 711)

In 1967 Alwin Mining Company Ltd. ("Alwin") flew a magnetometer survey over their HJ and DAB tenure blocks located along the eastern edge of the Dansey Project tenures. The survey measured 4 by 2.5 miles at approximately 1/8 mile line intervals and covered most of the eastern half and much of the southern half of the current Dansey Project area.

The purpose of the survey was to identify bedrock structure. Richard O. Crosby, P. Eng. inferred the high magnetic anomalies, on the western portion of the survey, as disseminated magnetite within the igneous mass and consequently interpreted the contact zone between the Guichon Creek Batholith and Nicola Volcanics. The contact zone was identified running north northwest from the southeast corner of the current Dansey Project area to the RM MINFILE located north and center of the Dansey project area. This contact zone was interpreted as being intersected by three southwest to northeast running faults with the northern most fault being intersected by a minor fault near the Dab MINFILE area. (ARIS 1166)

In 1968 North Pacific Mines Ltd. ("North Pacific") began its exploration program over its property, located adjacent to Alwin's ground. North Pacific flew a large aeromagnetic survey which stretched across the center and beyond the northwest and southeast corners of the current Dansey Project tenures. The survey consisted of 40 lines averaging 3 miles and spaced at about 545 feet. The author identified four anomalies within the surveyed area, three of which are located within the boundaries of the Dansey project area. (ARIS 1585)

In late 1968 Alwin followed up their earlier aeromagnetic survey with geochemical work. 911 soil samples were collected and shipped to Technical Service Laboratories in Vancouver for analysis. The survey indicated a single, >100 ppm, 150 by 1100 foot anomaly trending and open to the northwest. The anomaly is located approximately 800m northeast of the Dab MINFILE. (ARIS 1787)

Following its aeromagnetic survey, North Pacific optioned out the property to Thermochem Industries Ltd. which had a working agreement with Noranda Exploration Company ("Noranda"). That year Noranda conducted a comprehensive geochemical survey covering nearly the entire North Pacific property group. Samples were taken from multiple soil horizons and analyzed for copper and molybdenum. Results are summarized in assessment reports 1934, 1935 and 2066. While molybdenum results were relatively muted the survey identified a large area of geochemical copper anomalies ranging from 100ppm to 1600ppm. An 800m diameter area of >300ppm anomalies ("Noranda's Central Geochemical Anomaly") was identified centered near the Dansey MINFILE showing. Numerous smaller anomalies in the surrounding area were located as far as 3.8km from the Noranda's Central Geochemical Anomaly.

Concurrently, Comet-Krain Mining Corp. ("Comet Mining") carried out its own geochemical survey southeast of North Pacific's ground. This survey indicated low order but discreet geochemical copper anomalies. Results from this survey were similar in magnitude and position to anomalies surrounding Noranda's Central Geochemical Anomaly, identified by Noranda the same year. (ARIS 2024)

In late 1969 large portions of the Dansey project area were subjected to induced polarization ("IP") surveys.

Indian Mines and Vananda Explorations commissioned an IP on its Eden property. North-south cut lines were located 300 feet apart with 200 foot and 400 foot electrode spacing. An area of elevated chargeability was measured approximately 600m west of Logan Copper's "Midway Showing." Jon G. Baird P.Eng., the author of the subject surveys assessment report concluded:

The present induced polarization survey has indicated one area at least 400' in width by 2000' in length which exhibits above normal chargeability responses. These responses are interpreted as being due to disseminations of from 1% to 2% by volume of metallically conducting

mineralization. In the present geological environment it appears that there is a real possibility that the chargeability increases may be due to concentrations of sulfide mineralization. (ARIS 2114)

Noranda also conducted IP surveys on three grids surrounding Noranda's Central Geochemical anomaly. A series of high order anomalies were identified on the eastern grid overlying a lowland swamp along Guichon Creek, on the eastern half of the Dansey project area. The largest consistent anomaly in the area measures 550 feet by 1200 feet with a general anomalies trend running for over 2km north south. It appears that no IP survey was conducted or data was not disclosed on the Noranda's Central Geochemical Anomaly itself. (ARIS 2282)

In the spring of 1971 Comet Mining conducted a ground magnetometer survey on the same points as its earlier geochemical survey. Results were mostly inconclusive. Recommendations included further geophysical and geochemical investigations. (ARIS 3184)

Alwin also conducted a ground magnetometer survey on its property the same year. The southwest portion of the survey returned greater magnetic variation then the northeast portion. The author W. S. Read P.Eng., interpreted this zone of variation as the contact between the Guichon Creek Batholith and the Nicola Volcanics with the embayments along the zone interpreted as a series of northeast trending faults. This is congruent with the conclusions of Alwin's aeromagnetic survey four years earlier. (ARIS 3459)

In 1973 Indian Mines, which changed its name to Azure Resources Ltd. ("Azure") in 1972, also performed a ground magnetometer survey on their Eden and Ezra claim groups. The Ezra claim group was located south of the Eden claim block, off ground currently held Logan Copper. No significant anomalies were encountered indicating no significant changes in bedrock geology or structure. (ARIS 4321)

1973 to 1975 percussion drilling was conducted by North Pacific, Comet Mining and a private operator.

Following 1975 little work was recorded in the area and much of the ground described above was dropped. In 1982 Cominco Ltd. ("Cominco") conducted approximately 29.4km of reconnaissance scale multiseparation, induced polarization survey work on their Forge property. The Forge property was located on the southern portion of today's Dansey Project covering approximately the same ground as Azure's Eden claim block. Cominco's work identified a 400m by 850m anomaly open to the north along its long axis and coincident with Indian Mines 1969 IP anomaly (ARIS 10783). Ground check was recommended however no further work is recorded until the property was acquired by Logan Copper Inc., then SNL Enterprises Ltd.

Logan Copper Inc. carried out a large Mobile Metal Ion ("MMI") Survey in the area of the Dansey Minfile. The survey identified a 1700m by 800m geochemical anomaly centered south of the Dansey Minfile (ARIS 30458). Following the completion of the MMI Survey Logan Copper Inc. carried out a program of reconnaissance prospecting, targeting historically significant geological, geophysical and geochemical anomalies located on the Dansey Project area and within the MMI Central Anomaly identifying many recorded historical showings and numerous unrecorded surface expressions of hydrothermal-porphyry copper mineralization within the Dansey Project area.

6.2. HISTORICAL DRILLING ON THE DANSEY PROJECT

In 1974 North Pacific and Comet Mining carried out a 21 percussion drill-hole program. Drilling was concentrated in three areas. The 21 holes totaled 5230 feet.

Nine of the 21 holes were drilled to a maximum depth of 320 feet along a north south running road 1.5 km northwest of the Dab MINFILE. No significant mineralization was intersected. (ARIS 5065)

Drill-holes R.A.-10 through R.A.-14 were drilled immediately south of the Dansey MINFILE. Hole R.A.-14 was terminated after only 50 feet of drilling with the remaining holes reaching depths between 270 and 350 feet and intersecting significant mineralization. According to the assessment report's cost statement all holes were drilled vertically, however little further information is given. No description of the recovered cuttings is provided and it is uncertain what type of mineralization or lithology was intersected by the drill-holes. (ARIS 4984)

The final seven holes were drilled in the southeast corner of the Dansey project area, approximately 1.2km south-southeast of Logan Copper's southern most drilling on the North Zone and approximately 850m east-southeast of Logan Copper's eastern most Midway zone drilling on the southeastern fringe of the MMI Central Anomaly (see section 10.1 MMI PROGRAM). As with holes R.A.-10 through R.A.-14, aside from a hand drawn field map no drill-hole locations are provided and no description is given regarding the percussion drill-hole cuttings.

Assay results from these holes were on average significantly lower than those drilled immediately south of the Dansey MINFILE. However, hole R.A.-17 located at the northern extent of this drill area returned with "2000+" ppm over 30 feet. (ARIS 4983)

In assessment report 5851 the author Dr. L. E. Ross described a four percussion drill-hole program conducted on ground located east of the Dansey MINFILE and west of Guichon Creek. Drilling was conducted to test sporadic geochemical highs on a slope covered with heavy overburden. Drilling encountered overburden between 40 and 120 feet. No significant

mineralization was encountered. Maximum depth on the four dill-holes was 140 feet with total drill footage being 480 feet.

Numerous other drilling has been referenced in assessment reports however little to no information has been found regarding these drill holes. Prior to 1972 at least four diamond drill-holes were drilled on Alwin's RM claim block located east of their DAB and HJ claim blocks. (ARIS 3459) No locations, results or descriptions of the drilling were disclosed and it is unclear where information on this drilling maybe available.

In 2008 SNL Enterprises drilled 7 diamond drill holes and intersected copper mineralization in all holes, largely located in a series of faults as veinlets and disseminated sulfides. One hole also intersected traces of molybdenum.

7. REGIONAL GEOLOGY

The Logan Copper property is located on the southern Intermontane Belt of British Columbia on the southern extent of the Quesnel Trench. The central geological features of this region are the Late Triassic island-arc volcanic rocks of the Nicola Group, and Late Triassic mudstone, siltstone and shale clastic sedimentary rocks located to the east, and intruded granodioritic rocks of the Late Triassic to early Jurassic. The Nicola Group is a succession of Late Triassic island-arc volcanic rocks. The Nicola Group volcanic rocks form part of a 30km to 60km wide northwest-trending belt extending from southern B.C. into the southern Yukon. This belt is enclosed by older rocks and intruded by batholiths and smaller intrusive rocks. Major batholiths in the area of the Logan Copper Property include the Guichon Creek Batholith to the west, the Wild Horse Batholith to the east, and the Iron Mask Batholith to the north northeast. Figure 4 shows the regional geology. The Guichon Creek Batholith is a large, composite intrusion with a surface area of about 1,000 square kilometers. A cluster of nine major porphyry copper deposits lie within a 15 square kilometer zone in the center of the batholith. The Dansey Project area is situated eastern edge of the Guichon Creek Batholith, just northeast of these deposits.

The Guichon Batholith is a semi-concordant composite intrusive that is elliptical and elongated slightly west of north. A central, steeply plunging root or feeder zone is inferred under Highland Valley, and the major deposits lie around the projection of the feeder zone to the surface. The batholith has intruded and metamorphosed island-arc volcanic and associated sedimentary rocks of the Nicola Group, and a metamorphic halo up to 500 meters wide is developed adjacent to the contact. Rocks along the edge of the batholith are older and more mafic, and successive phases moving inward toward the core are younger and more felsic. Although contacts can be sharp, they are generally gradational and chilled contacts are not common. Variations in the batholith's geochemistry indicate local areas of assimilated country rock in the border zone and roof pendants in the intrusion. Outcrop areas have inclusions of amphibolite and "granitized" metamorphic rocks and compositional variations.

Two younger volcanic-dominated successions are important in the area. First, a northwest trending belt of Cretaceous continental volcanic and sedimentary rocks of the Spences Bridge Group unconformably overlie both the Nicola Group country rock and intrusive rocks along the southwest flank of the batholith. Distribution of the Spences Bridge Group rocks was locally controlled by reactivation of older faults that were important mineralization conduits in the batholith, such as the Lornex fault. Second, continental volcanic and sedimentary rocks of the Tertiary Kamloops Group cover extensive areas of the batholith and also overlie Triassic and Jurassic rocks from north of Highland Valley to the Thompson River. These also form isolated outliers and local intrusive centers south of the Highland Valley.

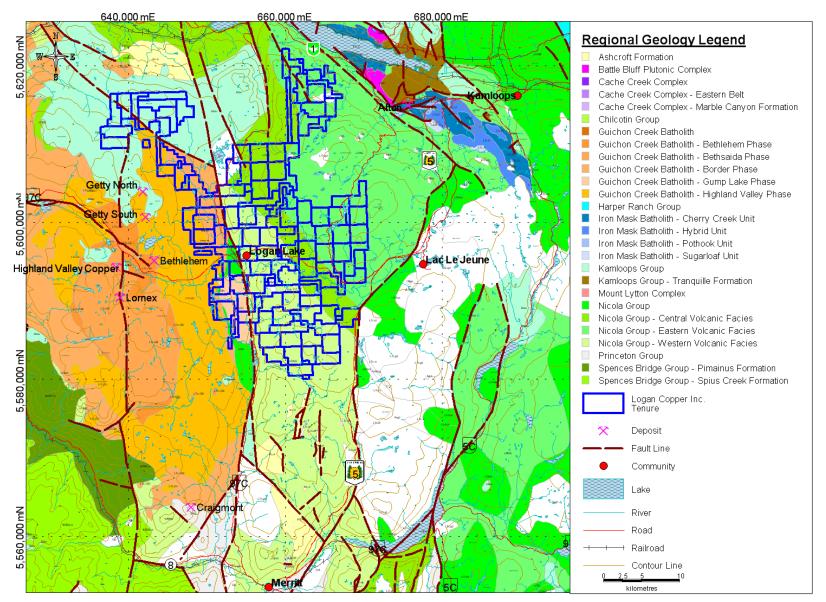


FIGURE 4: REGIONAL GEOLOGY

8. PROPERTY GEOLOGY

The Dansey Project area of the Logan Copper property is situated at the eastern edge of the Guichon Creek batholith and overlies the contact between the Highland Valley Phase and the Border Phase of the Guichon Batholith. Three main rock types are evident and are comprised of diorite, quartz diorite and granodiorite with in two phases of the Guichon Creek Batholith. Figure 5 shows the local geology of the Dansey Project Area.

The North Zone lies within the border phase of the Guichon Creek Batholiths (dioritic intrusive bodies), close to the contact zone between the Guichon Creek Batholith and the Nicola Group Volcanics. The intersected Nicola Volcanic consists mainly of dark to black fine-grained and cryptocrystalline mafic rock.

Most of this zone is covered by overburden. The main types of intrusive rocks seen in the outcrops and in the drill core are diorite and quartz diorite with chlorite-epidote, potassic, quartz, carbonate and hematite alterations. Cataclastic diorite, cataclastics, breccias and fault gouge are seen in this zone.

Surface mapping and surface drilling indicated northeast and northwest-striking faults are welldeveloped in the area.

The Midway Showing lies within the Highland Valley Phase of the Guichon Creek Batholith and is close to the contact between the Highland Valley Phase and the Border phase. Surface mapping indicated that there is a joint of faults, striking northwest, southeast, and southwest, in the intrusive body near this area.

Much of this area is also covered by overburden. The main types of intrusive rocks seen in the outcrops are diorite and quartz diorite with chlorite, potassic, quartz, carbonate and hematite alterations. Northeast striking quartz veins, ranging from several meters to 150 meters in width, are only distributed west of the northeast-striking faults. Cataclastic diorite, cataclastics, breccias and fault gouge are also seen in this area.

FIGURE 5: LOCAL GEOLOGY DANSEY PROJECT AREA

9. MINERALIZATION

Copper mineralization on the Dansey Project area is characterized by hydrothermal-porphyry style mineralization. The main primary minerals on the North and Midway Zones includes chalcopyrite and pyrite, with minor amounts of bornite and molybdenite. Chalcopyrite and pyrite occur mainly as veinlet, stringer, dissemination, blebs, batches, and massive structures in the chlorite-altered diorite, chlorite-epidote altered diorite, and chlorite-quartz altered diorite. Bornite is seen in limited locations on surface and in drill holes. Molybdenite is only seen in drill hole 08-SND-06, drilled in 2008, dissemination in pyrite and chalcopyrite veinlets. The main secondary minerals in this area are malachite and azurite. Malachite is widely distributed in oxide zones or in the fractures, occurring as blebs, splashes and dissemination, and usually accompanied by iron oxides. Azurite occurs as dissemination, massive structures and is distributed along the fractures and in breccias. The copper mineralization intercepted in the North and Midway zones is distributed irregularly in space much of the significant copper mineralization intervals fall within a series of fault zones which are still open to depth with minor sulfide mineralization.

10. 2008 DRILLING

NQ diamond drilling on the Dansey project area commenced on September 27th, 2008 by SNL Enterprises. The drill program targeted MMI copper highs within the MMI Central Anomaly. All seven drill holes drilled in 2008 were located on the North Zone of the Dansey Project.

The most significant copper mineralization intercepted in 2008 includes intervals from drill hole 08-SND-02 and 08-SND-04 and constitutes the strongest mineralization intercepted on the North Zone to date. These intervals include: 91m of 0.16% Cu in drill hole 08-SND-02, and approximate 44m of 0.15% Cu and 40m of 0.14% Cu with local grades greater than 1.00% Cu in drill-hole 08-SND-04.

Half of the drill holes completed on the North Zone remain open at depth to copper mineralization. Fault zones encountered in North Zone drilling, containing minor sulphides also remain open to depth.

11. 2009 DRILLING

Logan Copper Inc. continued with the 2009 Dansey exploration program which consisted of seven NQ diamond drill holes. This included three follow-up drill holes on the North Zone near 2008 drilling and three step-out holes east of 2008 North Zone drilling and three holes on the Midway Zone.

LOGAN COPPER INC

09-SND-14 is the deepest and the most heavily mineralized drill hole drilled during on the Dansey Project as of 2009. This drill hole was abandoned due to drilling difficulties at 285 meters, with visible copper mineralization extending to the end of hole. An intersect of 168 meters beginning at 117 meters and continuing to 285 meters at the end of the holes returned 0.17% copper and included an 85 meter interval grading 0.24% copper, and a 17.9 meter interval grading 0.41% copper.

Most of the mineralization lies within fault zones in both the Midway and North Zone.

12. 2010 DRILLING

Logan Copper Inc. continued the Dansey exploration program in 2010. Five NQ diamond drill holes were drilled by Guy Delorme Drilling during the summer and fall of 2010. Ground geophysics, VLF-EM and Magnetometer surveys, were also completed in the Dansey project area to identify anomalies for drilling. Logan Copper is releasing data on 10-LCD-16 and is retaining all other data from the 2010 project.

10-LCD-16 (Figure 6 and Figure 7) was drilled on September, 16th, 2010 in the North Zone. This hole targeted an MMI and geophysical anomaly as well as a large shear zone which hosts the Blue Showing. The hole was drilled at 5598832.77m E, 650291.44m N, 1177.02m Elevation with an azimuth of 140° and a dip of -60° to a depth of 284.68m. The core size was NQ and no dip test was preformed. The hole did not reach the target depth of 300 meters due to poor ground conditions.

The drill hole intercepted magnetite bearing diorite with varying degrees of alteration and a series of shear zones. Alteration consisted primarily of epidote, potassium feldspar, chlorite, hematite, and carbonate. Strong mineralization is concentrated in veins and shear zones. The mineralization appears to be largely epigenetic and structurally controlled. Mineralization consists primarily of chalcopyrite and pyrite in veins, blebs, and disseminations. Occasional malachite was observed in specks and blebs.

Significant mineralized intervals are shown below in Table 3.

Hole ID	From (m)	<u>To (m)</u>	Interval(m)	Interval (ft)	<u>%Cu</u>
10-LCD-16	73.76	84.43	10.67	35.00	0.104
including	83.82	84.43	0.61	2.00	1.175
	105.31	284.68	179.37	588.50	0.101
including	122.38	122.99	0.61	2.00	1.343
including	193.24	193.85	0.61	2.00	0.679
including	269.75	284.68	14.94	49.00	0.477
	284.68	EOH			

Table 3: 10-LCD-16 significant copper mineralization INTERVALS

Copper mineralization continued to the end of the hole. Drilling was terminated in this hole due poor ground conditions. Mineralization is still open at depth.

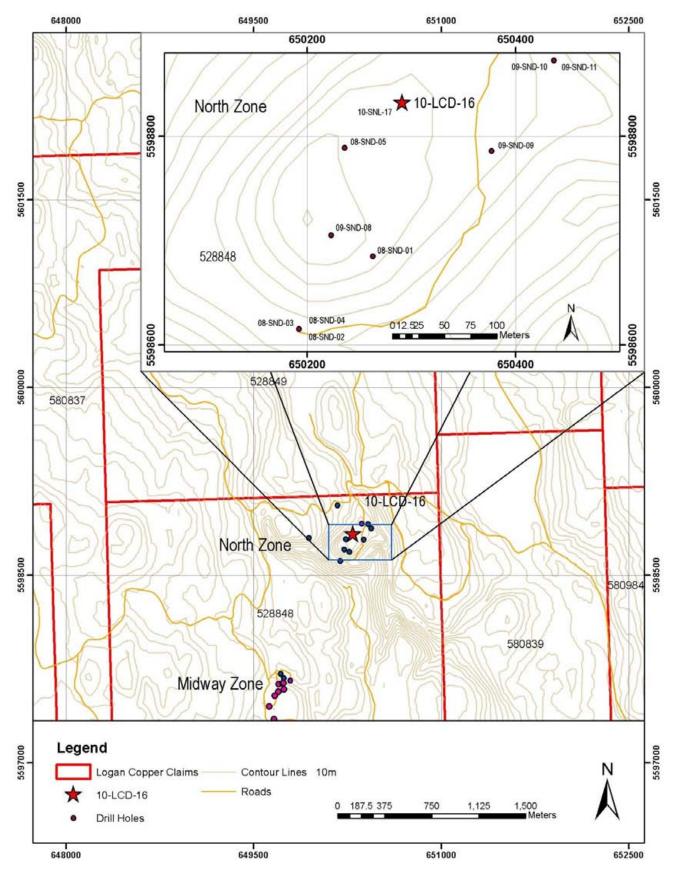


FIGURE 6: LOGAN COPPER DRILL HOLE 10-LCD-16

COPPER INC

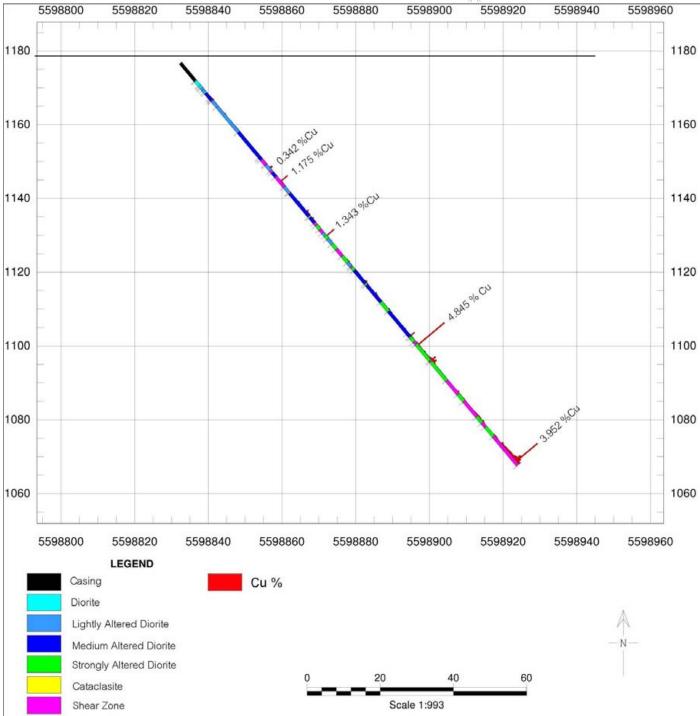


FIGURE 7: LOGAN COPPER DRILL HOLE 10-LCD-16 CROSS-SECTION

13. SAMPLING METHOD AND APPROACH

In 2010, diamond drilling was performed by Guy Delorme Drilling using NQ size core. The drill core was preliminarily quickly logged on site and then was brought from the drill site by truck to a rented storage and core shack in Lower Nicola, west of Merritt, B.C, where the core was logged in detail and photographed before samples were split using an electrical rock saw. Half of the core was archived in the core shack, the other half of the core and a sample tag were placed into 12X20 inch plastic bags, and prepared for transport Pioneer Laboratories Inc. for analysis.

At Pioneer Laboratories samples were lined according to numerical sequence and dried at 60 degrees Celsius. The dried samples were crushed and split with a riffle splitter. For analysis, 250 gram of the split sample was pulverized to -100 mesh (≥90%). The residual crushed sample are retained in the original bag and returned to the client.

Multi-element ICP Analysis - 0.500 gram sample is digested with 3 ml of aqua regia, diluted to 10 ml with water. This leach is partial for B, Ba, Cr, Fe, Mg, Mn, Na, P, S, Sn, Ti and limited for Na, K and Al. Elements in solution are determined by ICP/ES.

Cu, Pb, Zn Analysis: 1.000 gm sample is digested with 50 ml of aqua regia, diluted to 100 ml with water. Cu, Pb and Zn contents are determined by atomic absorption spectrometer.

Au Analysis: 20 gram sample is digested with 60 ml of aqua regia, diluted to 150 ml with water. Gold in solution is concentrated with MIBK. Au content in MIBK is determined by atomic absorption spectrometer or graphite furnace AA.

Logan Copper Inc. implemented a Quality Assurance and Quality Control program for the Dansey drill program. This program consisted of inserting a series of Blanks and Reference Standards into the core sample batches submitted to the Pioneer Lab for analysis.

Reference Standards

Reference standards and blanks used were:

CDN-CGS-22	0.725 ± 0.028 % Cu
	0.64 ± 0.06 g/t Au
CDN-BL-7	<0.01 g/t Au, Pt, Pd
CDN-CGS-21	1.3 ± 0.084 % Cu
	0.99 ± 0.09 g/t Au

Table 4: Standards and Blank Values used for 10-LCD-16

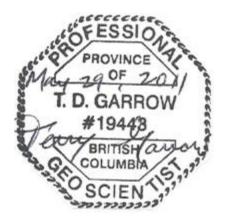
The standards and blanks mentioned above were inserted after approximately every 10 samples in the sample batches. Standards and blanks are inserted alternatively based on the estimated grades of the copper mineralization.

A total of 25 standards and blanks were inserted into 10-LCD-16. Five of these were CDN-CGS-22, ten were CDN-BL-7, and ten were CDN-CGS-21.

14. INTERPRETATION AND CONCLUSIONS

Drill hole 10-LCD-16 on the Dansey Project area contained copper mineralization. This drill hole is located on a geochemical MMI Anomaly, a geophysical anomaly, and a known showing. Additionally the drilling is located near a regionally significant contact on the eastern edge of the Guichon Creek Batholith, a Jurassic-age intrusive hosting numerous significant mineral deposits. 10-LCD-16 has several impressive copper values and remains open at depth.

I believe the Dansey Project area has proven itself to contain significant hydrothermal-porphyry copper mineralization.


14.1. RECOMMENDATIONS

The following are recommendations based on the interpretation of current exploration results on the Dansey Project area:

I would recommend several drill holes to ascertain the depth of copper mineralization below drill hole 10-LCD-16.

I would also recommend several step out holes to delineate the structural orientation and breadth of copper mineralization from 10-LCD-16.

Additionally, geological mapping on the property to define the shearing in the area to determine if the mineralization solely structurally controlled should be undertaken.

REFERENCES

- Hemsworth, Fred J. <u>Geochemical survey of the Eden Claims for New Indian Mines Ltd.</u> <u>Vananda explorations Ltd</u>. Highland Valley, BC. 1966 (**ARIS 711**)
- Crosby, Richard O. <u>Aeromagnetic survey on some HJ and DAS mineral claims Tunkwa Lake</u> <u>area, British Columbia</u>. British Columbia. 1968 (**ARIS 1166**)
- Cochrane, D. R. <u>Aeromagnetic Survey of the AB, Bill, Mike, J.B., Tom and XY Claims, west of</u> <u>Guichon Creek on Bose Hill</u>. Highland Valley, BC. 1968
- Pringle, D. W. <u>Physical work required for present Airborne Magnetometer Survey and future</u> <u>Geological and Geophysical Surveys on Mineral Claims or North Pacific Mines Ltd</u>. Highland Valley, BC. 1968 (**ARIS 1585**)
- Crowhurst, J. J. <u>Geochemical Survey on the R.M. and DAB Claim groups</u>. Highland Valley, BC. 1969 (**ARIS 1787**)
- Knauer, J. D. <u>Geochemical Soil Survey, Mike 1 & 2 Fractions & Mike 1-10, Bill 2-11, JB 20-21</u> <u>Mineral Claims</u>. Kamloops Mining Division, BC. 1969 (**ARIS 1934**)
- Knauer, J. D. <u>Geochemical Soil Survey, JB 1-4, JB 7-10, Tom 3-10, IG #1 Fraction</u>. Kamloops Mining Division, BC. 1969 (**ARIS 1935**)
- Pringle, D. W. <u>Geochemical Survey on X-Y Claims</u>. Highland Valley, BC. 1969 (ARIS 2024)
- Knauer, J. D. <u>Geochemical Soil Survey, Tom 1-2, Tom 9-20, JB 2-17, JB 9-12, JB 20-23, JB</u> <u>25-28 and I.G. #1 Fraction Mineral Claims</u>. Kamloops Mining Division, BC. 1969 (**ARIS 2066**)
- Baird, Jon G. *Induced Polarization Survey on some CL Claims*. Highland Valley, BC. 1969 (*ARIS 2114*)
- Fountain, David K. <u>Induced Polarization and Resistivity Survey on the Dansey property</u>. Highland Valley, BC. 1969 (**ARIS 2282**)
- Pierre, W. H. Magnetometer Survey of the XY Claims, Four way corner area. Highland Valley, BC. 1970 (*ARIS 3184*)
- Read, W. S. <u>Geophysical Report, J.T. 1 Fr., R.M. 1, 2 Fr., R.M. 1-6, R.M. 25-27 Mineral</u> <u>Claims</u>. BC. 1972 (**ARIS 3459**)
- Scott, John W. <u>Percussion Drilling report on the XY group of Mineral Claims of Comet</u> <u>Industries</u>. Kamloops Mining Division, BC. 1973 (**ARIS 4983**)
- Scott, John W. <u>Percussion Drilling report on the Tom group of Mineral Claims of North Pacific</u> <u>Mines Ltd</u>. Kamloops Mining Division, BC. 1973 (**ARIS 4984**)
- Scott, John W. <u>Percussion Drilling report on the #1 BCD group of Mineral Claims of Comet</u> <u>Industries</u>. Kamloops Mining Division, BC. 1973 (**ARIS 5065**)
- Ross, Lorne E. <u>Percussion Drilling report on WA #1 Mineral Claim</u>. Kamloops Mining Division, BC. 1975 (**ARIS 5851**)

Dansey Project Technical Report

LOGAN COPPER INC

- Klein, J. <u>Geophysical Report on Induced Polarization and Resistivity Surveys on Forge</u> <u>Property</u>. Highland Valley, BC. 1982 (**ARIS 10783**)
- Mark, David G. <u>Geochemistry report on MMI soil sampling surveys on the Dansey, Noname,</u> <u>and Last SNL grids within the Logan Lake area</u>. Kamloops mining division, BC. 2008 (**ARIS 30458**)
- Dr Pan, Zhonghua. <u>Drill Report on the Dansey Project</u>. Kamloops mining division, BC, 2010 (**ARIS 31466**)
- Dr Pan, Zhonghua. <u>Diamond Drilling and Re-Assay Report on the Dansey Project</u>. Kamloops mining division, BC, 2011 (**ARIS 31903**)
- Sookochoff, Laurence and Zhonghua Pan. <u>*Dansey Project Technical Report.*</u> 21st July 2010. Ladner: Logan Copper Inc. 2010
- Bergy, William R. <u>Geological Report on the Highland Valley Property</u>. Highland Valley, BC.2009
- Ager, C.A., McMillan, W.J and Ulrych, T.J. <u>*Gravity Magnetics and Geology of the Guichon</u></u> <u><i>Creek Batholith*</u>. British Columbia Department of mines and Petroleum Resources. Bulletin 62. 1972</u>
- Peterson, Nathan T et al. "Provenance of Jurassic sedimentary rocks of south-central Quesnellia, British Columbia: Implications for Paleogeography". *Canadian Journal of Earth Science* 41 (2004): 103-125. NRC Canada.
- Moore, John M. <u>Nicola Horst, Southern British Columbia Window into the pre- Triassic margin</u> <u>of North America</u>. Geological Survey of Canada. Vancouver, 2000
- Dr Anderson, Corby G. <u>Getty Copper Receives a Positive Preliminary Feasibility Study from</u> <u>West Coast Environmental and Engineering on the Getty Project</u>. 22nd July 2009. Getty Copper Inc. 7th April 2010 < <u>http://www.gettycopper.com/index.php?view=article&catid=14%3A2009&id=109%3A200</u> <u>9+Pre-Feasibility+Results&option=com_content&Itemid=18</u>>
- Freberg, Mark. <u>Teck Reviewing Further Mine Life Extension at Highland Valley Copper</u>. 14 May 2009. Teck Highland Valley Copper Corporation. 7th April 2010 < <u>http://www.teck.com/Generic.aspx?PAGE=Operations+Pages%2FCopper+Pages%2FHighland+Valley+Copper&portalName=tc</u>>
- Teck Resources Limited. <u>2008 Annual Report</u>. 7th April 2010 < <u>http://www.teck.com/Generic.aspx?PAGE=Investors%20Pages/Annual%20Financial%2</u> <u>0Report&portalName=tc></u>
- Teck Resources Limited. <u>Annual Information Form March 13.2009</u>. 7th April 2010 < <u>http://www.teck.com/Generic.aspx?PAGE=Investors+Pages%2fPublic+Filings&portalNa</u> <u>me=tc</u>>

15. CERTIFICATES

I, Terry David Garrow, of Blaine in the state of Washington, USA, do hereby certify;

- 1. That I am a consulting Geologist with offices at 8061 Chinook Way, Blaine, Wa., 98230.
- 2. That I am a graduate of Sir Wilfred Laurier University 1966, and the University of Saskatchewan 1969, with an advanced degree in geology.
- 3. That I am registered as a Professional Geoscientist in the Association of Professional Engineers and Geoscientists of British Columbia.
- 4. That my 40 years of continuous geological experience have exposed me to a wide range of supervisory, environmental and geological situation, and have allowed considerable familiarization with the exploration and production of both load and placer deposits.
- 5. That this report is written with the knowledge gained from my association with Logan Copper Inc. as a qualified person on site
- 6. That I have no interest, direct or indirect, in the properties or securities of Logan Copper Inc.

Dated at Ladner, B.C., this __29___ day of __May_ 2011

ann

Terry David Garrow, P. GEO

APPENDIX I - DRILL-HOLE CORE RECOVERY

		10-LCD-16		
From (ft)	To (ft)	lost (ft)	% lost	% recovery
40	50	2	20	80
50	60	0.5	5	95
60	70	0.5	5	95
70	80	0.5	5	95
80	90	1	10	90
90	100	0	0	100
100	110	0	0	100
110	120	0	0	100
120	130	0.5	5	95
130	140	1	10	90
140	150	0	0	100
150	160	0	0	100
160	170	0.5	5	95
170	180	0	0	100
180	190	0.25	2.5	97.5
190	200	0.5	5	95
200	210	0.25	2.5	97.5
210	220	0	0	100
220	230	1	10	90
230	240	0	0	100
240	250	1	10	90
250	260	0	0	100
260	270	0.75	7.5	92.5
270	280	0.25	2.5	97.5
280	290	0	0	100
290	300	1.5	15	85
300	310	0.25	2.5	97.5
310	320	0.25	2.5	97.5
320	330	1	10	90
330	340	0.5	5	95
340	350	0	0	100
350	360	0	0	100
360	370	0	0	100
370	380	0.25	2.5	97.5
380	390	0	0	100

		10-LCD-16		
From (ft)	To (ft)	lost (ft)	% lost	% recovery
390	400	0	0	100
400	412	0	0	100
412	420	0	0	100
420	430	0.25	2.5	97.5
430	440	0	0	100
440	450	0.5	5	95
450	460	0	0	100
460	470	0.25	2.5	97.5
470	480	0	0	100
480	490	0.25	2.5	97.5
490	500	0	0	100
500	505	0.75	15	85
505	515	0	0	100
515	525	0	0	100
525	535	0	0	100
535	545	0.5	5	95
545	555	0	0	100
555	565	0	0	100
565	575	0	0	100
575	585	0	0	100
585	595	0.25	2.5	97.5
595	605	0.25	2.5	97.5
605	615	0	0	100
615	625	0	0	100
625	635	0	0	100
635	645	0	0	100
645	655	0.25	2.5	97.5
655	665	0.5	5	95
665	675	0.5	5	95
675	685	2.5	25	75
685	695	0	0	100
695	705	1	10	90
705	715	0	0	100
715	725	0	0	100
725	735	0	0	100
735	745	1	10	90
745	755	0	0	100

		10-LCD-16					
From (ft)	To (ft)	lost (ft)	% lost	% recovery			
755	765	0.5	5	95			
765	775	0.5	5	95			
775	785	0	0	100			
785	795	1	10	90			
795	805	0	0	100			
805	815	0.5	5	95			
815	825	0.5	5	95			
825	835	0.25	2.5	97.5			
835	845	0	0	100			
845	855	0.75	7.5	92.5			
855	865	1.5	15	85			
865	875	0	0	100			
875	885	0.25	2.5	97.5			
885	895	0	0	100			
895	905	0.25	2.5	97.5			
905	915	0	0	100			
915	925	0	0	100			
925	934	0	0	100			
	Core Recovery						

APPENDIX II - DRILL-HOLE LOGGING

Logan	Copper Inc	Dansey Project			
Drill Hole ID	10-LCD-16				
Collar	5598832.77m E	650291.44m N	1177.02m Elevation		
Azimuth	140°				
Dip	-60°				
Length	284.68m				
Starting date	16-Sep-10				
Ending date	26-Sep-10				
Logged by	TS				
Core	NQ	Dip test? No	Pictures? Yes		

Hole terminated due to ground conditions

Major From (m)	Major To (m)	Major Rock Type	Major Rock Code	Minor From (m)	Minor To (m)	Geological Description	Alteration
0.00	12.50	Casing	CSG			Casing/Overburden	
12.50	12.95	Dio	А			Diorite consisting of medium grained equigranular quartz, feldspar, hornblende and some biotite. Core is 30% mafic minerals. Weathered and crumbly, badly broken with carbonates along the joints and some limonitic staining and magnetic throughout.	Carb, Lim
12.95	15.70	Dio	A			Diorite consisting of medium grained equigranular quartz, feldspar, hornblende and some biotite, about 30% mafic minerals. The mafic minerals are vaguely foliated at 45°. The joints are at 20° and 45° and filled with carbonate and have some limonitic staining and chlorite. Core is magnetic.	Carb, Lim, Chl
15.70	16.31	Dio	A			Core is very badly broken diorite consisting of medium grained equigranular quartz, feldspar, hornblende and some biotite, with 25% mafic minerals. Core is strongly weathered, and has a clay feel to it. The joints are at 20° and 45° and filled with carbonate and have limonitic staining. Core is magnetic.	Carb, Lim
16.31	17.07	Dio	А			Diorite consisting of medium grained equigranular quartz, feldspar, hornblende and some biotite, about 30% mafic minerals. The mafic minerals are vaguely foliated at 45°. The joints are at 20°, and 45° filled with carbonate, and some have a light halo around them. Core is magnetic.	Carb
17.07	17.68	Dio	А			Broken diorite consisting of medium grained equigranular quartz, feldspar, hornblende and some biotite, about 30% mafic minerals. The joints are at 20° and 45° filled with carbonate and have some limonitic staining and chlorite. Core is magnetic.	Carb, Lim, Chl

Glossary of Terms
chl: chlorite
epi: epidote
cpy: chalcopyrite
py: pyrite
sil: silicification
hemi: hemetite
carb: carbonate
kspar: potassic feldspar
lim: limonite
mal: malachite
diss: disseminated

LOGAN COPPER INC

17.88 18.59 LAI Doo B Image: Simple state in the state in	Major From (m)	Major To (m)	Major Rock Type	Major Rock Code	Minor From (m)	Minor To (m)	Geological Description	Alteration
Image: Constraint of the constra	17.68	18.59	L Alt Dio	В			some biotite and chlorite, about 30% mafic minerals. The mafic minerals are vaguely foliated at 45°. The joints	Carb, Lim, Chl
Image: Note of the image: Note of t					17.98	18.25	2.5cm gouge	
18.90 20.27 L Alt Dio B Lighty Attered Diorite. Grey green consisting of medium grained equigranular quartz, feldspar, homblende and some biotite and chlorite, about 30% mafc minerals. The mafc minerals are vaguely follated at 45°. Joints at 45° and 20°. Joints are filled with carbonates and some limonitic staining. Core is magnetic. Carb, Lim 20.27 21.12 Dio A Image: Core is stained and some limonitic staining. Core is magnetic. Carb, Lim 20.27 21.12 Dio A Image: Core is stained and some limonitic staining. Core is magnetic. Carb, Lim 21.12 Dio A Image: Core is stained and some limonitic staining. Core is magnetic. Carb, Lim 21.12 Zin G Image: Core is stained and some limonitic staining. Core is magnetic. Carb, Lim 21.12 Zin G Zin G Zin G Sem gouge Carb, Lim 21.12 Zin G Zin G Sem gouge Carb, Epi, Hemi, Lim, Chl Carb, Epi, Hemi, Lim, Chl 21.12 Zin G Zin G Sem gouge Sem gouge Carb, Lim, Chl Carb, Lim, Chl 21.12 Zin G Carb Sem gouge Carb, Cim, Cim, Chl Carb, Cim, Chl Carb, Cim, Chl Carb, Cim, Chl 21.12 Zin					18.25	18.40	possible fine grained diorite fragmental, 2 cm	
18.90 20.27 L Alt Dio B Image: Some blottle and chlorite, about 30% mafic minerals. The mafic minerals are vaguely foliated at 45°, Joints at the stand some limonitic staining. Core is magnetic. Carb, Lim 20.27 21.12 Dio A Image: Some blottle and chlorite, about 30% mafic minerals. The mafic minerals are vaguely foliated at 45°, Joints at the stand some limonitic staining. Core is magnetic. Carb, Lim 20.27 21.12 Dio A Image: Some blottle and chlorite, about 30% mafic minerals are vaguely foliated at 45°. The joints are at 20°, and 45° filled with about 30% mafic minerals are vaguely foliated at 45°. The joints are at 20°, and 45° filled with about 30% mafic minerals. The mafic minerals are vaguely foliated at 45°. The joints are at 20°, and 45° filled with about 15% mafic minerals. The core is light and green alteration, hematite and epidote. The mafic minerals are vaguely foliated at 45°. Joints are filled with carbonates and some blotte, about 15% mafic minerals. The core is light and green alteration, hematite and epidote. The mafic minerals are vaguely foliated at 45°. Joints are filled with carbonates and some blotte, about 15% mafic minerals. The core is magnetic. Carb, Epi, Hemi, Lin, Chl 21.12 24.69 M Alt Dio C Image: Some blotte, about 520% mafic minerals. The joints are at 20° and 45° filled with carbonate and have Carb, Lim, Chl, Chl 21.12 24.69 M Alt Dio C C Some blotte, about 1520% mafic minerals. The joints are at 20° and 45° filled with carbonate and have					18.59	18.90	Badly broken core. There is an increase in chlorite and limonitic staining throughout.	
20.27 21.12 Dio A	18.90	20.27	L Alt Dio	В			some biotite and chlorite, about 30% mafic minerals. The mafic minerals are vaguely foliated at 45°. Joints at	Carb, Lim
21.1224.69M Alt DioCCMedium altered diorite consisting of medium grained equigranular quartz, feldspar, hornblende with about 15% minerals have a definite foliation at around 45°. Joints at 45° and 20°. Joints are filled with carbonates and some limonitic staining and chlorite. Core is lighter and has a light pink and green alteration, hematite and epidote. The mafic minerals have a definite foliation at around 45°. Joints at 45° and 20°. Joints are filled with carbonates and some limonitic staining and chlorite. Core is magnetic.Carb. Epi, Hemi, Lim, Chl24.6925.60M Alt DioCIBadly broken medium altered diorite consisting of medium grained equigranular quartz, feldspar, hornblende and some biotite, about 15-20% mafic minerals. The joints are at 20° and 45° filled with carbonate and have limonitic staining and chlorite. There are 1-3mm blobs of malachite and Tr-2% Pyrite along joints.Carb, Lim, Chl25.6026.27M Alt DioCIStrongly Altered limonitic diorite consisting of medium grained equigranular quartz, feldspar, hornblende and some biotite, about 15% ormalic minerals. The joints are at 20° and 45° filled with carbonate and have limonitic staining and chlorite. There are 1-3mm blobs of malachite and Tr-2% Pyrite along joints.Carb, Lim, Chl, Py, Mal25.6026.27M Alt DioCIStrongly Altered limonitic cionite consisting of medium grained equigranular quartz, feldspar, hornblende, about 20% mafic minerals. The rock is nearly completely altered to limonite. There are a few specks of malachite and 1-2% Pyrite.Iim, Mal, Py26.2726.82FitFLTIBroken Lightly Altered Diorite consisting of medium grained equigranular quartz, feldspar, hornblen	20.27	21.12	Dio	А			mafic minerals. The mafic minerals are vaguely foliated at 45°. The joints are at 20°, and 45° filled with	Carb, Lim
21.1224.69M Alt DioCImage: Carb Epi, Hemi, Image: The core is lighter and has a light pink and green alteration, hematite and epidote. The mafic Iminerals. The core is lighter and has a light pink and green alteration, hematite and epidote. The mafic Iminerals. The core is lighter and has a light pink and green alteration, hematite and epidote. The mafic Iminerals. The core is lighter and has a light pink and green alteration, hematite and epidote. The mafic Iminerals. The core is magnetic.Carb, Epi, Hemi, Iminerals and epidote. The mafic Iminerals. The core is light pink and green alteration, hematite and epidote. The mafic Iminerals. The core is magnetic.Carb, Epi, Hemi, Iminerals and some biotite. Staining and chlorite. Core is magnetic.Carb, Epi, Hemi, Iminerals. The core is light pink and green alteration. Hematite and epidote. The mafic Iminerals. The core is magnetic.Carb, Epi, Hemi, Iminerals. The core is light pink and green alteration. Hematite and epidote. The mafic Iminerals. The core is magnetic.Carb, Epi, Hemi, Iminerals. The core is magnetic.Carb, Epi, Hemi, Iminerals. The core is magnetic.24.69X.60M Alt DioCX.61Badiy broken medium altered diorite consisting of medium grained equigranular quartz, feldspar, homblende and some biotite, about 15-20% mafic minerals. The joints are at 20° and 45° filled with carbonate and have limoniticCarb, Lim, Chl, Py, Malt Chl, Py Prite.Strongly Altered limontic diorite consisting of medium grained equigranular quartz, feldspar, homblende, about 20% mafic minerals. The points are at 20° and 4					21.03	21.12	Light orange fault breccia. Fragments are very light colored. Felsic?	
24.69 25.60 M Alt Dio C C Badly broken medium altered diorite consisting of medium grained equigranular quartz, feldspar, hornblende and some biotite, about 15-20% mafic minerals. The joints are at 20° and 45° filled with carbonate and have Carb, Lim, Py, Chl 25.60 26.27 M Alt Dio C Image: Construction of the struction of the structi	21.12	24.69	M Alt Dio	С			mafic minerals. The core is lighter and has a light pink and green alteration, hematite and epidote. The mafic minerals have a definite foliation at around 45°. Joints at 45° and 20°. Joints are filled with carbonates and some	
24.69 25.60 M Alt Dio C and some biotite, about 15-20% mafic minerals. The joints are at 20° and 45° filled with carbonate and have Carb, Lim, Py, Chl 25.60 26.27 M Alt Dio C and some biotite, about 15% mafic minerals. The joints are at 20° and 45° filled with carbonate and have Carb, Lim, Py, Chl 25.60 26.27 M Alt Dio C and some biotite, about 15% mafic minerals. The joints are at 20° and 45° filled with carbonate and have limonitic Carb, Lim, Chl, Py, Mal 25.60 26.27 M Alt Dio C and some biotite, about 15% mafic minerals. The joints are at 20° and 45° filled with carbonate and have limonitic Carb, Lim, Chl, Py, Mal 26.27 26.82 Fit Image: Strongly Altered limonitic diorite consisting of medium grained equigranular quartz, feldspar, hornblende, about 1-2% Pyrite. Lim, Mal, Py 26.82 30.94 L Alt Dio B Broken Lightly Altered Diorite consisting of medium grained equigranular quartz, feldspar, hornblende and some biotite, about 20% mafic minerals. The joints are at 20° and 45° filled with carbonate and have limonitic staining Lim, Mal, Py 26.82 30.94 L Alt Dio B Broken Lightly Altered Diorite consisting of medium grained equigranular quartz, feldspar, hornblende and some biotite, about 20% mafic minerals. The joints are at 20° and 45° filled with carbonate and have limonitic staining C					22.86		5cm gouge	
25.60 26.27 M Alt Dio C some biotite, about 15% mafic minerals. The joints are at 20° and 45° filled with carbonate and have limonitic Carb, Lim, Chi, Py, Mal 26.27 M Alt Dio C Strongly Altered limonitic diorite consisting of medium grained equigranular quartz, feldspar, hornblende, about 20% mafic minerals. The rock is nearly completely altered to limonite. There are a few specks of malachite and Some Jointe and some biotite, about 20% mafic minerals. The joints are at 20° and 45° filled with carbonate and have limonitic Lim, Mal, Py 26.82 Strongly L Alt Dio B Broken Lightly Altered Diorite consisting of medium grained equigranular quartz, feldspar, hornblende and some biotite, about 20% mafic minerals. The joints are at 20° and 45° filled with carbonate and have limonitic staining Carb, Lim, Chi, Py 26.82 30.94 L Alt Dio B Broken Lightly Altered Diorite consisting of medium grained equigranular quartz, feldspar, hornblende and some biotite, about 20% mafic minerals. The joints are at 20° and 45° filled with carbonate and have limonitic staining Carb, Lim, Chi, Py 26.82 30.94 L Alt Dio B Broken Lightly Altered Diorite core. Carb, Lim, Chi, Py	24.69	25.60	M Alt Dio	С			and some biotite, about 15-20% mafic minerals. The joints are at 20° and 45° filled with carbonate and have	Carb, Lim, Py, Chl
26.27 26.82 Flt FLT 20% mafic minerals. The rock is nearly completely altered to limonite. There are a few specks of malachite and 1-2% Pyrite. Lim, Mal, Py 26.82 30.94 L Alt Dio B Broken Lightly Altered Diorite consisting of medium grained equigranular quartz, feldspar, hornblende and some biotite, about 20% mafic minerals. The joints are at 20° and 45° filled with carbonate and have limonitic staining Carb, Lim, Chl, Py	25.60	26.27	M Alt Dio	с			some biotite, about 15% mafic minerals. The joints are at 20° and 45° filled with carbonate and have limonitic	
26.27 26.82 Flt FLT 20% mafic minerals. The rock is nearly completely altered to limonite. There are a few specks of malachite and 1-2% Pyrite. Lim, Mal, Py 26.82 30.94 L Alt Dio B Broken Lightly Altered Diorite consisting of medium grained equigranular quartz, feldspar, hornblende and some biotite, about 20% mafic minerals. The joints are at 20° and 45° filled with carbonate and have limonitic staining Carb, Lim, Chl, Py								
26.82 30.94 L Alt Dio B biotite, about 20% mafic minerals. The joints are at 20° and 45° filled with carbonate and have limonitic staining and chlorite. Tr-1% Pyrite. Magnetic core. Carb, Lim, Chl, Py	26.27	26.82	Flt	FLT			20% mafic minerals. The rock is nearly completely altered to limonite. There are a few specks of malachite and	Lim, Mal, Py
29.26 29.81 Several stacked fractures at 45, ever 1-3cm. Fractures have chlorite and show slip. Tr-3% Pyrite on the slips	26.82	30.94	L Alt Dio	В			biotite, about 20% mafic minerals. The joints are at 20° and 45° filled with carbonate and have limonitic staining	Carb, Lim, Chl, Py
					29.26	29.81	Several stacked fractures at 45, ever 1-3cm. Fractures have chlorite and show slip. Tr-3% Pyrite on the slips	

Major From (m)	Major To (m)	Major Rock Type	Major Rock Code	Minor From (m)	Minor To (m)	Geological Description	Alteration
30.94	48.92	L Alt Dio	В			Lightly altered zone of light and dark grey diorite consisting of medium grained equigranular quartz, feldspar, hornblende and some biotite, 15-30% mafic minerals. The mafic minerals are vaguely foliated at 45°. Core is magnetic. The lighter zones appear to be centralized around veinlets and joints and include light epidote, hematitic, and chlorite alteration. There is a distinct increase in 1-10mm carbonate veinlets at 20°, 45° and 10°. There are also occasional 1-3cm dark grey fine grained fragments, 50% mafics. Magnetic core.	Carb, Hemi, Epi, Chl, Py
				33.22		7.5cm clay gouge	
				36.42	36.73	1% Pyrite along fracture at 45° with chlorite fragments and a green halo	
				38.10	39.17	carbonate veinlet at 5° and slip perpendicular to core.	
				40.39	40.84	10° vuggy fracture with euhedral carbonate.	
				41.15	41.76	broken core with strong chlorite, hematite and carbonate alteration, Tr-1% fine grained disseminated pyrite.	
				42.21	42.52	Large 50% mafic, black and white, fine grained rounded fragment with green halo and 1-2% pyrite along rim.	
				42.21	50.29	Fine grained disseminated pyrite and locally along fractures. Tr-2%	
				45.72		7.5cm fault gouge	
				42.98		fine grained fragment with 50% mafic minerals, white and black crystals	
				46.63	46.94	vuggy carbonate filled fractures with 1% pyrite locally.	
				47.09	48.77	broken, weathered, crumbly core with 1% pyrite.	
				48.77	48.92	Strong epidote alteration, talc feel	
48.92	66.75	M Alt Dio	с			Medium Alt Diorite mottled grey green with 30% mafic minerals. Diorite consists of medium grained equigranular quartz, feldspar, hornblende and some biotite and chlorite. Joints are at 20° and 45° and some have carbonate. Very few veinlets in this section, 1-2mm, with increased green alt. Some veinlets have light halo. Tr-1% pyrite disseminated and locally along joints. Magnetic.	Epi, Kspar, Hema, Chl, Carb, Py
				52.73	52.88	gouge	
				57.45	57.76	broken core with calcite and chlorite and possible very fine grained pyrite	
				58.06		15cm sheared, weathered, crumbly light colored (15% mafics) diorite with carbonate and chlorite	
				58.52	59.28	badly broken core with joint nearly parallel to core. Carbonate, chlorite, and Tr-1% pyrite	
				59.74	59.89	sheared with 7.5cm fault gouge with chlorite and carbonate	
				60.35		carbonate veinlet with 2% pyrite in vein	
				52.43	60.96	Pyritized zone with Tr-2% disseminated and locally along veins and joints	
				62.48	62.64	broken core with 1% pyrite on fractures	

Major From (m)	Major To (m)	Major Rock Type	Major Rock Code	Minor From (m)	Minor To (m)	Geological Description	Alteration
66.75	67.45	M Alt Dio, Frag	с			Medium Altered Diorite consisting of medium grained equigranular quartz and feldspar. Hornblende crystals approach porphyritic at 2-3mm and overall about 40% mafic minerals. There is a slight green tint from chlorite and some of the hornblende crystals appear chloritized and possibly zoned. Distinct upper contact, wavy, at 66.8 at 45°. Very vague lower contact at 45°. Possible xenolith? Dyke? No chill. Magnetic.	Epi, Kspar, Hema, Chl, Carb
67.45	68.43	M Alt Dio	с			Medium altered mottled Diorite grey green with 30% mafic minerals. Diorite consists of medium grained equigranular quartz, feldspar, hornblende and some biotite and chlorite. Joints are at 45° and some have carbonate and have green epidote alteration halos. Magnetic.	Epi, Kspar, Hema, Chl, Carb
				67.97	68.28	Fragment. Mg light and dark crystals. Increased mafic minerals (50%)	
68.43	71.55	Shr Zone	к			Sheared zone. Core is fine grained grey green cataclasite and mottled strongly altered diorite with epidote, hematite, and chlorite alteration. Veinlets have been brecciated and appear stretched.	Epi, Kspar, Hema, Chl, Carb
				68.73		10 cm clay gouge	
				68.43	69.04	Dark green badly broken core, rubble and fault breccia. Joints show slip planes.	
				69.11		2.5cm clay gouge	
				69.34		15cm clay gouge	
				69.49	69.72	stretched brecciated veinlet with some hematitic alteration.	
				69.80	70.10	relict diorite with mafics altered to grey green	
				71.17		5cm core showing slip with hematite and chlorite	
71.55	72.24	Shr Zone /M Alt Dio	K-C			Medium alteration. Vague phasing zone of dark grey green cataclasite grey green alt diorite. Cataclasite is dark grey green and very fine grained and mottled. Diorite consists of medium grained equigranular quartz, feldspar, hornblende and some biotite and chlorite with 30% mafic minerals.	Epi, Kspar, Hema, Chl, Carb
72.24	76.20	L Alt Dio	В			Lightly Alt Diorite grey green with 30% mafic minerals. Diorite consists of medium grained equigranular quartz, feldspar, hornblende and some biotite and chlorite. Joints are at 45° and some have carbonate. Very few veinlets in this section, 1-2mm. Magnetic.	Epi, Kspar, Hema, Chl, Carb
				73.00	76.20	very broken core, feels slick	
				76.20		12cm badly broken breccia	
76.20	77.42	Shr Zone	к			Sheared zone with fragments of grey green cataclasite with some white 1mm minerals visible and zones of relict diorite. There is chlorite and hematite alteration. Veins at 30° and 45°.	Epi, Kspar, Chl, Hema, Carb
				76.20	76.50	rubble and breccia, hematite and chlorite alteration. Feels slick and like clay	
				76.66		2.5cm clay gouge	

Major From (m)	Major To (m)	Major Rock Type	Major Rock Code	Minor From (m)	Minor To (m)	Geological Description	Alteration
				76.81		2.5cm clay gouge	
				76.96	77.42	relict grey green altered diorite	
77.42	80.47	M Alt Dio	с			Medium Alt Diorite grey green with 30% mafic minerals. Diorite consists of medium grained equigranular quartz, feldspar, hornblende and some biotite and chlorite and some hematite and epidote alteration. There is an increase in veinlets in this section, 1-2mm at 45° and 20°. Magnetic.	Epi, Kspar, Chl, Carb
				77.88	78.18	badly broken core with epidote and hematite alteration	
				79.40	80.47	Hornblende crystals approach porphyritic texture at 2-3mm.	
80.47	87.63	Shr Zone	к			Shear Zone, disturbed, mixed zone. Grey-green to black and pink, strongly altered diorite, cataclasite, and breccia and gouge and broken core. Kspar, epidote, chlorite, hematite alteration. Joints and shearing @ at 45° and 20°.	Epi, Kspar, Chl, Hema
				80.47	80.77	broken core, mix of alt dio and cata	
				80.77	80.92	fault breccia with hematitic alteration	
				80.92	81.99	badly broken alt dio with hematitic alteration and a clay feel	
				81.99	82.30	clay gouge, grey green	
				82.30	82.75	healed gouge/breccia with hematite and epidote alteration	
				82.75	83.06	Cataclasite	
				83.06	83.36	Fault breccia, fine grained to clay. Grey green with hematitic fragments. 1mm-3cm fragments	
				83.36	83.82	badly broken relict alt dio	
				83.82	0.00	10cm clay gouge	
				83.91	84.28	badly broken alt dio with some epidote alteration	
				84.28	84.43	strong epidote alteration with 2-3% pyrite and possible quartz flooding	
				84.43	84.73	mottled relict alt dio verging on cataclasite	
				84.73		12cm fault breccia with hematite and epidote alteration	
				84.89	85.19	badly broken alt dio	
				85.19	85.65	alt dio with hematitic alteration	
				85.65	86.26	badly broken grey green cataclasite	
				85.65		10cm gouge	
				86.11		15cm gouge	

Major From (m)	Major To (m)	Major Rock Type	Major Rock Code	Minor From (m)	Minor To (m)	Geological Description	Alteration
				86.26	86.56	healed gouge at 45° with 2 2cm bands of hematite	
				86.56	87.02	alt dio, mottled and grey green	
				87.02	87.63	cataclasite with relict alt dio with hematitic alteration	
				87.17	87.63	gouge	
87.63	91.44	L Alt Dio	в			Lightly Alt Diorite grey green with 30% mafic minerals. Diorite consists of medium grained equigranular quartz, feldspar, hornblende and some biotite and chlorite, carbonate, and some hematite alteration. Joints at 45° and 20°. Magnetic.	Chl, Carb, Hema, Epi, Kspar
91.44	91.90	Cata	E/ E Brx?			Mottled grey green fine grained cataclasite. Disturbed, possibly brecciated.	Chl, Epi, Kspar, Hema
				91.59		10cm fault breccia, light grey green with some hematitic alteration.	
91.90	108.51	M Alt Dio	с			Medium altered diorite, mottled grey green with 30% mafic minerals. Diorite consists of medium grained equigranular quartz, feldspar, hornblende and some biotite. Epidote, kspar, chlorite, and some hematite alteration The mafic minerals are foliated at 45°. There are bands of epidote along joints at 45°, 20°, and parallel to the core. Magnetic. Tr-1% pyrite.	Chl, Hema, Epi, Kspar, Py, Cpy
				94.49	99.67	occasional hematite and epidote alteration along joints	
				97.84		8cm altered zone around 2mm veinlet. Hematite and chlorite alteration	
				99.06		8cm strong epidote alteration with 1% pyrite and badly broken core	
				99.67	99.97	Strongly altered epidote zone with 1% pyrite and badly broken core	
				99.97	100.89	Zone of broken lightly Alt Diorite grey green.	
				100.89		8cm gouge	
				103.33	104.24	Strong epidote alteration with strong hematite alteration and chlorite. No visible pyrite	
				105.16	105.46	Strong green epidote alteration with 1 cm massive chalcopyrite	
				108.20		2.5cm gouge breccia	
108.51	109.12	Cata	E/ E Brx?			Mottled grey green cataclasite with healed fault brx/gouge. Epidote, kspar, hematite, and chlorite alteration.	Chl, Hema, Epi, Kspar
				108.81		8cm healed gouge	
109.12	113.08	M Alt Dio	с			Medium Altered Diorite. Grey green consisting of medium grained equigranular quartz, feldspar, hornblende and some biotite and chlorite, about 30% mafic minerals. Some epidote and hematite alteration zones throughout. The mafic minerals are vaguely foliated at 45°. Joints at 45° and 20°. Core is magnetic.	Chl, Hema, Epi, Kspar
113.08	114.76	Shr	к			Shear. Dark grey green to black cataclasite with some relict crystals. There is healed gouge and hematite and chlorite alteration	Chl, Hema

Major From (m)	Major To (m)	Major Rock Type	Major Rock Code	Minor From (m)	Minor To (m)	Geological Description	Alteration
				114.00		10cm gouge	
114.76	117.65	S Alt Dio	D			Strongly Altered Diorite. Grey green consisting of medium grained equigranular quartz, feldspar, hornblende and some biotite and chlorite, about 30% mafic minerals. Strong epidote, kspar, chlorite, and hematite alteration along most joints. Joints at 45° and 20°.	Chl, Hema, Epi, Kspar
117.65	120.09	Shr Zone	к			Shear Zone. Disturbed zone, mixed. Grey green mottled cataclasite and strongly altered diorite with broken core and fault breccia. Epidote, kspar, hematite and chlorite alteration.	Chl, Hema, Epi, Kspar
				117.81		8cm fault breccia	
				117.96		12cm fault breccia	
				118.26	120.09	less severe shearing, mottled	
				119.18		possible tremolite crystals. Pale green splinters	
				119.63		8cm flowing white quartz carbonate veins with green angular fragments.	
120.09	122.22	L Alt Dio	В			Lightly Altered Diorite. Grey green consisting of medium grained equigranular quartz, feldspar, hornblende and some biotite and chlorite, about 30% mafic minerals. Little epidote and hematite alteration along most joints. The mafic minerals are vaguely foliated at 45°. Joints at 45°. Core is magnetic.	Chl, Hema, Epi, Kspar
122.22	124.36	S Alt Dio	D			Strongly Altered Diorite. Grey green consisting of medium grained equigranular quartz, feldspar, hornblende and some biotite and chlorite, about 30% mafic minerals. Joints at 45° and 20°. Strong epidote and hematite alteration. Tr-1% disseminated.	Chl, Hema, Epi, Kspar, Py
				122.22	122.53	5% pyrite through the epidote.	
124.36	128.02	L Alt Dio	В			Lightly Altered Diorite. Light grey green consisting of medium grained equigranular quartz, feldspar, hornblende and some biotite and chlorite, about 30% mafic minerals. Some epidote and hematite alteration. The mafic minerals are vaguely foliated at 45°. Joints at 45° and 20°. Core is magnetic.	Chl, Hema, Epi, Kspar
				125.58	128.02	Hornblende crystals approach porphyritic texture at 2-3mm	
128.02	131.67	S Alt Dio	D			Strongly Altered Diorite. Grey green consisting of medium grained equigranular quartz, feldspar, hornblende and some biotite and chlorite, about 30% mafic minerals. Epidote, hematite, and carbonate alteration. Joints at 45°. Core is magnetic.	Chl, Hema, Epi, Kspar
131.67	136.55	Shr Zone	к			Shear Zone, Disturbed and mixed. Grey green fine grained cataclasite, strongly altered diorite, broken core, fault breccia, and clay gouge. Epidote, kspar, hematite and chlorite alteration. Veins at 20° and 45°, though irregular and crosscutting in places.	Chl, Hema, Epi, Kspar
				131.83		veinlet with chlorite and hematite alteration zone at 45°	
				132.89	134.26	Dark grey green fault breccia with chloritic and hematitic alteration and clay to 2cm fragments of quartz and diorite.	
				134.26	136.55	Dark grey green fine grained mottled cataclasite There is hematite alteration.	

Major From (m)	Major To (m)	Major Rock Type	Major Rock Code	Minor From (m)	Minor To (m)	Geological Description	Alteration
136.55	141.12	S Alt Dio	D			Strongly Altered Diorite. Mottled grey green consisting of medium grained equigranular quartz, feldspar, hornblende and some biotite and chlorite, about 30% mafic minerals. Strong epidote, kspar, chlorite, and hematite alteration.	Chl, Hema, Epi, Kspar
				138.68	140.67	Medium altered diorite	
				140.67	141.12	Strong epidote alteration.	Epi
141.12	143.87	L Alt Dio	в			Lightly altered Diorite light grey, consisting of medium grained equigranular quartz and feldspar. Hornblende crystals approach porphyritic at 2-3mm and overall about 30% mafic minerals. There is some hematite and epidote alteration along the joints at 45° and 20°. Core is magnetic.	Chl, Hema, Epi
				142.04	142.49	strong epidote alteration and badly broken core	
				143.26	143.87	dark black vein with 60% mafic medium grained crystals. 1cm-2cm thick with no chill contact. Some alteration with black and green. White veinlets at 20°.	
143.87	144.63	Shear	к			Sheared zone with grey green fine grained mottled cataclasite. There is chlorite and hematite alteration a banding/flow. Core is broken	Chl, Hema
144.63	146.61	S Alt Dio	D			Strongly Altered Diorite. Grey green consisting of medium grained equigranular quartz, feldspar, hornblende and some biotite and chlorite, about 30% mafic minerals. Epidote, kspar, hematite alteration. Joints at 45° and 20°. Core is magnetic.	Chl, Hema, Epi, Kspar
146.61	156.06	M Alt Dio	с			Medium Altered Diorite. Grey green consisting of medium grained equigranular quartz, feldspar, hornblende and some biotite and chlorite, about 30% mafic minerals vaguely foliated at 45°. occasional strong epidote, kspar, and chlorite alteration along joints. Some hematite alteration. Joints at 45° and 20°. Core is magnetic.	Chl, Hema, Epi, Kspar Carb, Py
				148.59	149.66	badly broken core with slip and strong chlorite, epidote, kspar, and hematite alteration	
				149.66		8cm black fine grained fragment. Softer than knife. No chill.	
				150.57	150.88	badly broken core, slip with chlorite, carbonate, hematite and epidote	
				151.03		2mm veinlet with epidote alteration and 5% pyrite	
				153.16		5cm badly broken core with chlorite and hematite	
				155.30	156.06	darker diorite with 40% mafic minerals and 2% disseminated pyrite	
156.06	156.97	S Alt Dio	D			Strongly Altered Diorite tan, pinkish grey consisting of medium grained equigranular quartz, feldspar, hornblende and some biotite and chlorite, about 20% mafic minerals vaguely foliated at 45°. Strong epidote and hematite alteration. Veining with epidote alteration and 5% pyrite as well as Tr-1% disseminated pyrite.	Chl, Hema, Epi, Kspar, Py
				156.51		1 cm veinlet with black and white angular fragments	
156.97	169.16	M Alt Dio	С			Medium Altered Diorite. Light grey green consisting of medium grained equigranular quartz, feldspar, hornblende and some biotite and chlorite, about 30% mafic minerals. Bands of strong epidote and hematite alteration generally at 45°. Joints at 45°. Tr-2% pyrite along joints and disseminated. Magnetic.	Chl, Hema, Epi, Kspar, Py

Major From (m)	Major To (m)	Major Rock Type	Major Rock Code	Minor From (m)	Minor To (m)	Geological Description	Alteration
				159.72	160.48	badly broken core with strong hematite alt and some epidote and kspar and chlorite mottling	
				160.32		5cm clay gouge	
				165.81	166.88	zone of light pink grey dio, mottled with 25% mafic minerals and Tr-1% in veinlets	
				167.34	167.49	strong hematite alteration	
				167.94	169.16	zone of light pink grey dio, mottled with 25% mafic minerals and Tr-1% in veinlets	
169.16	175.56	S Alt Dio	D			Strongly Altered Diorite. Grey green consisting of medium grained equigranular quartz, feldspar, hornblende and some biotite and chlorite, about 30% mafic minerals. Epidote, kspar, and hematite alteration and some less grey zones. Joints at 45° and 20°. Tr-2% pyrite along joints and disseminated.	Chl, Hema, Epi, Kspar, Py
				171.75	171.91	Strong epidote and kspar with some hematite alteration and 3% pyrite in veins	
				172.76	172.82	Strong green glassy fragment. Hard	
				173.13	173.74	Very strong epidote alteration with 2% pyrite	
				174.04	174.19	Very strong epidote alteration with 3% pyrite	
				174.50	174.80	Very strong epidote alteration with 5% pyrite and carbonate and hematite alteration	
175.56	191.41	M Alt Dio	с			Medium Altered Diorite. Grey green consisting of medium grained equigranular quartz, feldspar, hornblende and some biotite and chlorite, 20-30% mafic minerals. Some epidote, kspar, and hematite alteration throughout. Joints at 45° and 20° and veinlets 1-4mm. Tr-5% pyrite in veins and disseminated. Magnetic	Chl, Hema, Epi, Kspar, Py
				177.09	177.39	strong epidote and hematite alteration	
				178.92		3mm veinlet with 100% py at 45°	
				179.07	179.22	black chlorite and hematite with strong epidote alteration halo	
				180.59		5mm veinlet with 100% pyrite at 45°	
				182.12	182.27	Sheared broken core with healed fractures	
				182.58		5cm breccia with altered diorite fragments	
				183.95	184.40	badly broken core with pervasive carbonate	
				188.67		irregular 2-4mm crosscutting epidote and pyrite veinlets with 80-100% pyrite	
				189.89		4mm epidote veinlets with 1% pyrite	
191.41	193.24	M Alt Dio	с			Medium Altered Diorite. Dark grey/black green consisting of medium grained equigranular quartz, feldspar, hornblende and some biotite and chlorite, 40-50% mafic minerals. Some epidote, kspar banding and hematite alteration throughout. Tr-1% disseminated pyrite. Magnetic. Bottom contact is abrupt at 20°.	Chl, Hema, Epi, Kspar, Py

Major From (m)	Major To (m)	Major Rock Type	Major Rock Code	Minor From (m)	Minor To (m)	Geological Description	Alteration
				193.24	193.70	Strongly epidotized zone, olive green throughout. Some hematite and chlorite alteration as well. Coarse grained to fine grained pyrite along joints at 45° and 20°.	
				193.55	193.70	epidote with 1mm blobs of pyrite, 2% locally	
193.70	194.46	S Alt Dio	D			Strongly Altered Diorite. Grey green consisting of medium grained equigranular quartz, feldspar, hornblende and some biotite and chlorite, 30% mafic minerals. Strong epidote and hematite alteration vague bands at 45°. Joints at 45° and 20°. Tr-1% disseminated pyrite.	Chl, Hema, Epi, Kspar, Py
194.46	197.21	S Alt Dio	D		Strongly Altered Diorite. Dark grey/black green consisting of medium grained equigranular quartz, feldspar, hornblende and some biotite and chlorite, 40-50% mafic minerals. Strong epidote and hematite alteration throughout. Joints at 45° and 20°.		Chl, Hema, Epi, Kspar, Py
				195.99		3mm pyrite vein with 5% pyrite at 45°	
		196.75 5mm carbonate quartz veinlet with black angular fragments					
197.21	199.03	Shr Zone	к			Chl, Hema, Epi, Kspar, Py	
				197.26		quartz carb veinlet with 3mm dark angular fragments	
				197.51	197.82	Chlorite fault breccia with 1mm-2cm alt dio fragments and hematite and epidote alteration	
199.03	210.62	S Alt Dio	D			Strongly Altered Diorite. Grey green consisting of medium grained equigranular quartz, feldspar, hornblende and some biotite and chlorite, 30% mafic minerals. Strong epidote, kspar, and hematite alteration throughout and in bands at 45°. Joints at 45° and 20°. Tr-2% disseminated fine grained pyrite and blobs.	Chl, Hema, Epi, Kspar, Py
				199.64		4mm veinlet with 90% pyrite at 45°	
				199.80	200.10	1mm-2cm veinlets (bands) of pyrite at 45°. About 30% pyrite overall.	
				207.42		5cm badly broken core with strong black chlorite and red hematite alteration and 1% pyrite	
				208.03		broken core with 8cm many <1mm veinlets with 1% pyrite and strong chlorite, hematite, and carbonate alteration at 45°	
						broken cataclasite, mottled, grey green and fine grained with strong epidote and hematite alt.	
				208.79		2cm qtz carb flooding at 45°	
				208.88		3cm clay gouge	
				208.97		3cm clay gouge	
				210.46	210.62	quartz carbonate veinlets 2-4mm	
210.62	211.32	Shr	к			Sheared zone. Black-grey green fine grained cataclasite with strong hematite, epidote, kspar, and chlorite alteration. Top contact is at 45°. Joints at 45°. 5% pyrite near joints.	Chl, Hema, Epi, Kspar, Py
				210.77		8cm green chlorite gouge	

Major From (m)	Major To (m)	Major Rock Type	Major Rock Code	Minor From (m)	Minor To (m)	Geological Description	Alteration
				210.85		badly broken core with chlorite slips on joints	
211.32	224.64	S Alt Dio	D			Strongly Altered Diorite. Grey green consisting of medium grained equigranular quartz, feldspar, hornblende and some biotite and chlorite, 30% mafic minerals. Strong epidote, chlorite, and hematite alteration throughout with some small zones nearly completely epidotized. Joints at 45° and 20°. Tr-1% pyrite in blobs and disseminated.	Chl, Hema, Epi, Kspar, Py
				212.14	212.90	Very strong epidote alteration along veins with 10-20% pyrite	
				216.87		3cm strong epidote alt along vein	
				218.54	219.00	Strong hematite altered zone with some epidote	
224.64	234.39	Shear	к	Sheared zone, disturbed and mixed, grey green to pink. With fg mottled cataclasite, strongly altered mottled diorite, and fault breccia and gouge. Strong epidote, kspar, hematite, and chlorite alteration.		Chl, Hema, Epi, Kspar	
				224.64	225.25	Cataclasite, strongly altered and mottled. erratic 1-3mm cross cutting quartz carbonate veinlets.	
		225.25 226.62 Cataclasite, strongly altered					
		226.62 5cm fault gouge					
				226.71	227.02	healed fault breccia with clay-6cm green and white fragments.	
				227.08	228.60	Alt Dio	
				228.75	228.90	grey green fault breccia with 1-6mm qtz carb fragments	
				229.97		5cm of 1-6mm qtz carb veinlets, pink white and green	
				230.12	230.43	dark green chlorite cataclasite	
				230.43	231.80	fault breccia with 2mm-1cm white and pink qtz carb fragments	
				231.80	232.11	Broken core with qtz carb flooding	
				232.11	232.71	green grey fault breccia with some clay. 1mm-3cm qtz carb fragments.	
				233.17	233.48	cataclasite with strong hematite alteration	
				233.78	233.93	cataclasite with strong hematite alteration	
				233.93	234.09	multiple 3-4cm qtz carb veinlets with strong epidote and hematite alteration at 45°	
234.39	239.27	9.27 S Alt Dio D Strongly Altered Diorite. Grey green consisting of medium grained equigranular quartz, feldspar, hornblende and some biotite and chlorite, 30% mafic minerals. Medium epidote, kspar, chlorite, and hematite alteration throughout with some small zones of stronger epidote and kspar alteration. Joints at 45° and 20°. Tr-1% fine grained disseminated pyrite.		Chl, Hema, Epi, Kspar, Py			
				234.85	235.31	pervasive light pink hematite and some epidote alteration	
				237.13		2cm vuggy quartz carbonate vein	

Major From (m)	Major To (m)	Major Rock Type	Major Rock Code	Minor From (m)	Minor To (m)	Geological Description	Alteration
				237.44	238.05	zone of very strong epidote and hematite alteration with erratic 1mm qtz carb chl veinlets at 45°	
239.27	250.24	Shear	к			Sheared zone, disturbed and mixed. Cataclasite, mottled grey green and pink, fine grained and fault breccia and gouge. Strongly altered with epidote, kspar, hematite, and chlorite alteration. Joints at 45° and 20°.	Chl, Hema, Epi, Kspar, Py
				239.42		5cm fault breccia with 3mm qtz carb fragments	
				240.64		10cm clay gouge	
				240.79		8cm clay gouge	
				240.94	241.10	black chlorite veinlet 1-5cm	
				241.40		10cm hematite and chlorite gouge	
				241.71	242.32	qtz carb veinlets	
				242.32	245.67	partially healed grey green fault breccia with clay-2cm fragments. Chlorite, epidote, and hematite alteration. erratic qtz carb veinlets	
				242.93		8cm white and pink qtz flooding	
				237.90		15cm white and pink qtz flooding	
				245.06		10cm white and pink qtz flooding	
				245.97	246.74	fault breccia with clay-3cm white and pink fragments	
				246.89	249.02	fault breccia and clay gouge with clay-4cm white, green, and pink fragments	
				247.95	248.26	slip with fault breccia and solid cataclasite. Solid rock and fault breccia meet at about 10° with 2 crosscutting faults. Strong hematite and epidote alteration.	
				249.94		8cm clay gouge	
250.24	254.51	S Alt Dio	D			Strongly Altered Diorite. Grey green consisting of medium grained equigranular quartz, feldspar, hornblende and some biotite and chlorite, 30% mafic minerals. Medium epidote, kspar, chlorite, and hematite alteration throughout with some small zones of stronger epidote and hematite alteration. Joints at 45° and 20°. Tr-1% fine grained disseminated pyrite.	Chl, Hema, Epi, Kspar, Py
				254.20	254.51	broken core with strong alteration with erratic qtz carb veinlets and 2% pyrite	
254.51	257.56	Shear	к			Sheared zone with cataclasite, mottled grey-black green, fine grained and fault breccia. Epidote, kspar, hematite, and chlorite alteration. Joints at 45° and 20°. Tr-1% disseminated pyrite.	Chl, Hema, Epi, Kspar
				256.03	257.25	red and green fault breccia with clay-2cm fragments	

Major From (m)	Major To (m)	Major Rock Type	Major Rock Code	Minor From (m)	Minor To (m)	Geological Description	Alteration
257.56	264.26	S Alt Dio	D			Strongly Altered Diorite. Grey green and pink consisting of medium grained equigranular quartz, feldspar, hornblende and some biotite and chlorite, 30% mafic minerals. Medium epidote, kspar, chlorite, and hematite alteration throughout with some small zones of stronger epidote and hematite alteration. Joints at 45° and 20° and 10°. Broken core, crumbly in some spots, few solid pieces	Chl, Hema, Epi, Kspar, Py
				260.60		8cm clay gouge	
264.26	284.68	Shear	к			Shear zone with grey green cataclasite fine grained. Tr-3% pyrite in blobs, generally associated with or near veinlets. Joints at 45° and 20°. Multiple fault breccias, clay gouge, and irregular qtz veining, and zones of silicification. Shearing occurs at 45° and there is strong to moderate Kspar, epidote, chlorite, hematite and carbonate alteration. Tr-3% Py disseminated and in blobs.	Chl, Hema, Epi, Kspar, Py
				265.48		8cm clay gouge	
				266.40	267.16	clay gouge with strong kspar and epidote alteration	
				267.16	267.46	fault breccia with pink and green 1cm qtz carb fragments	
				267.92	268.38	broken core	
				268.68	269.44	badly broken core	
				268.99		5cm clay gouge	
				266.85	267.16	silicified zone	
				269.44	269.90	qtz flooding or silicification	
				270.36	270.51	healed fault breccia, looks twisted	
				270.51	271.88	zone with increased irregular 1mm-2cm white to pinkish qtz carb veinlets. About 10 veinlets per 0.3m. Tr-5% pyrite in some veinlets	
				270.97		3cm gouge	
				271.88	273.56	broken core and fault breccia with white and grey green clay-4cm fragments. Tr-2% pyrite	
				274.17	274.47	fault breccia with grey and green 1cm fragments	
						zone with increased irregular 1mm-1cm white to pinkish qtz carb veinlets. About 8 veinlets per 0.3m. Tr-2% pyrite in some veinlets	
				276.15		5cm fault breccia with clay to 5mm fragments	
				276.61		5cm clay gouge	
				277.22		3cm fault breccia	
				277.67		10cm broken core with qtz flooding	
				277.98	278.13	healed fault breccia with possible qtz flooding	
				279.65	280.42	fault breccia with red, green, grey, and white clay-4cm fragments.	

Major From (m)	Major To (m)	Major Rock Type	Major Rock Code	Minor From (m)	Minor To (m)	Geological Description	Alteration	
	281.33 281.94 healed and silicified fault breccia zone with clay-5cm qtz carb fragments. 1-3% pyrite							
				281.94	282.85	fault breccia with grey green clay-6cm fragments. Sheared at 45°		
				282.55	282.85	3% pyrite. fault breccia with white and grey clay to 5cm fragments.		
				284.38	284.53	fault breccia with qtz flooding and clay-1cm white and grey fragments		
				282.85	283.77	Silicified cataclasite with 2% py in blobs		
		EOH	284.68 m					

APPENDIX III - DRILL HOLE CORE ASSAYS

Tables presented in this appendix have been modified from the original to include sample intervals, maintain sample interval order and include fire assays results for Cu samples over 10,000ppm.

10-LCD-16

								10-L0	CD-16									
Sample	From	То	Interval	Ag	Al	As	В	Ва	Bi	Ca	Cd	Co	Cr	Cu	Fe	к	Mg	Mn
No.	(m)	(m)	(m)	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%	%	%	ppm
288639	103.48	104.39	0.91	.3	2.08	<5	<5	23	<10	3.51	<1	16	28	185	3.62	.03	2.14	993
288640		Standard C		4.7	1.36	19	<5	102	<10	.88	3	11	41	13160	3.34	.15	.78	422
288551	24.38	25.30	0.91	.3	1.71	15	<5	68	<10	2.25	<1	14	37	156	3.59	.08	.97	349
288552	25.30	25.91	0.61	.3	1.63	20	<5	389	<10	2.43	<1	13	23	476	3.51	.05	1.01	371
288553	25.91	26.37	0.46	.2	1.62	<5	<5	121	<10	2.21	<1	18	28	948	2.96	.08	1.43	452
288554	26.37	26.97	0.61	.2	1.67	22	<5	481	<10	1.29	<1	22	23	777	4.68	.07	1.23	313
288555	26.97	27.74	0.76	.2	1.49	10	<5	565	<10	2.39	<1	15	23	199	3.39	.06	.95	351
288556	27.74	28.35	0.61	.2	1.14	14	<5	64	<10	1.27	<1	14	24	142	3.65	.05	.87	289
288557	28.35	28.96	0.61	.2	1.12	<5	<5	68	<10	1.59	<1	13	25	157	3.40	.05	.83	264
288559	29.72	30.18	0.46	.2	1.12	16	<5	92	<10	1.37	<1	12	24	136	3.20	.07	.70	180
288560	35.81	36.42	0.61	.3	2.80	<5	<5	56	<10	3.38	<1	19	25	203	3.99	.06	1.39	546
288561	36.42	37.03	0.61	.2	1.42	11	<5	362	<10	1.80	<1	15	29	900	4.08	.07	.95	322
288562	37.03	37.64	0.61	.3	2.00	12	<5	83	<10	2.60	<1	14	27	260	3.92	.07	.92	368
288563	41.15	41.76	0.61	.7	1.64	37	<5	76	<10	2.14	<1	12	22	185	4.20	.07	.88	344
288564	41.76	42.21	0.46	.4	2.17	8	<5	42	<10	2.78	<1	22	15	238	3.51	.06	.89	302
288565	42.21	42.67	0.46	.2	1.44	<5	<5	41	<10	1.69	<1	11	23	322	3.66	.07	.80	289
288566	42.67	43.28	0.61	.2	1.87	21	<5	19	<10	2.36	<1	24	53	150	5.36	.05	1.35	413
288567	43.28	43.74	0.46	.2	1.31	<5	<5	286	<10	1.48	<1	10	43	64	3.77	.07	.92	252
288568	43.74	44.20	0.46	.3	1.36	5	<5	82	<10	2.12	<1	13	27	36	3.52	.05	.70	228
288569	44.20	44.81	0.61	.3	1.87	32	<5	64	<10	2.30	<1	14	23	347	3.71	.06	.84	301
288570	44.81	45.42	0.61	.2	.97	6	<5	127	<10	1.39	<1	13	30	190	3.38	.05	.64	189
288571	45.42	46.02	0.61	.3	1.23	<5	<5	128	<10	1.65	<1	17	23	611	3.52	.05	.75	237
288572	46.02	46.63	0.61	.2	1.16	14	<5	332	<10	1.62	<1	12	22	144	3.43	.05	.70	205
288573	46.63	47.24	0.61	.3	1.96	<5	<5	90	<10	2.59	<1	13	19	227	3.08	.05	.87	319
288574	47.24	47.85	0.61	.2	1.33	26	<5	42	<10	1.66	<1	14	34	334	3.93	.05	.86	241
288575	47.85	48.46	0.61	.2	1.59	<5	<5	326	<10	2.44	<1	16	29	355	4.00	.07	.87	288

								10-LC	CD-16					77 AL				
Sample	From	То	Interval	Ag	Al	As	В	Ва	Bi	Ca	Cd	Co	Cr	Cu	Fe	к	Mg	Mn
No.	(m)	(m)	(m)	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%	%	%	ppm
288576	48.46	49.07	0.61	.3	1.67	<5	<5	102	<10	2.61	<1	15	27	103	3.82	.07	1.00	346
288577	49.07	49.53	0.46	.3	1.08	<5	<5	60	<10	1.44	<1	12	31	186	3.79	.06	.72	232
288578	49.53	49.99	0.46	.2	1.05	14	<5	64	<10	1.50	<1	13	41	202	3.77	.05	.60	219
288579	49.99	51.36	1.37	.2	1.03	4	<5	68	<10	1.25	<1	14	33	274	3.28	.07	.74	228
288580	28.96	29.72	0.76	.3	1.12	7	<5	217	<10	1.54	<1	15	25	158	3.16	.07	.79	229
288581		Standard B		.2	1.16	10	<5	149	<10	.83	<1	11	48	25	1.99	.10	.63	417
288582	51.82	52.43	0.61	.2	.95	14	<5	126	<10	1.15	<1	14	120	262	3.49	.07	.81	233
288583	52.43	53.04	0.61	.2	1.40	18	<5	137	<10	2.02	<1	15	33	235	3.54	.06	.80	265
288584	В			.3	1.15	7	<5	145	<10	.83	<1	12	47	25	1.94	.11	.62	413
288585	53.04	53.49	0.46	.2	.96	4	<5	40	<10	1.18	<1	11	36	217	3.61	.05	.77	220
288586	53.95	54.41	0.46	.3	1.28	10	<5	42	<10	1.47	<1	13	34	156	3.67	.06	.81	265
288587	53.49	53.95	0.46	.2	1.11	<5	<5	56	<10	1.49	<1	16	37	203	4.19	.05	.72	240
288588		Standbard C	;	5.1	1.36	20	<5	96	10	.82	3	10	43	13250	3.70	.15	.78	431
288589	54.41	54.86	0.46	.3	1.43	30	<5	45	<10	1.63	<1	13	39	233	4.33	.07	.83	265
288590	54.86	55.47	0.61	.2	1.07	21	<5	182	<10	1.25	<1	12	46	180	4.05	.08	.82	243
288591	55.47	56.08	0.61	.2	.97	18	<5	59	<10	1.20	<1	10	40	229	4.08	.07	.71	224
288592	56.08	56.69	0.61	.4	.84	12	<5	68	<10	1.00	<1	11	50	210	4.00	.09	.76	202
288593	56.69	57.30	0.61	.3	1.31	8	<5	101	<10	1.58	<1	14	48	192	4.60	.07	.88	342
288594	57.30	57.91	0.61	.2	1.09	18	<5	113	<10	1.48	<1	12	35	228	4.29	.05	.72	274
288595	57.91	58.52	0.61	.2	1.08	21	<5	176	<10	1.76	<1	17	30	171	4.28	.05	.73	273
288596	58.52	59.13	0.61	.3	1.40	<5	<5	33	<10	2.42	<1	14	29	158	4.44	.06	1.00	477
288597	59.13	59.74	0.61	.2	1.08	<5	<5	189	<10	1.44	<1	13	31	162	4.14	.07	.82	322
288598	59.74	60.35	0.61	.3	1.41	20	<5	39	<10	1.82	<1	14	33	270	4.55	.07	1.11	401
288599		Standard B		.2	1.18	7	<5	142	<10	.84	<1	10	51	26	1.95	.11	.64	436
288600	60.35	60.81	0.46	.3	1.58	<5	<5	51	<10	1.99	<1	13	40	258	4.83	.07	1.11	417
288601	60.81	61.26	0.46	.2	1.25	13	<5	34	<10	1.74	<1	12	41	222	4.84	.07	.87	356
288602	62.03	62.48	0.46	.3	1.22	15	<5	594	<10	2.05	<1	13	42	165	4.51	.07	.83	389
288603	62.48	63.09	0.61	.2	1.20	6	<5	331	<10	1.72	<1	12	33	231	4.11	.06	.79	277

								10-L0	CD-16									
Sample	From	То	Interval	Ag	Al	As	В	Ва	Bi	Ca	Cd	Co	Cr	Cu	Fe	К	Mg	Mn
No.	(m)	(m)	(m)	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%	%	%	ppm
288604	63.09	63.70	0.61	.3	1.26	8	<5	259	<10	1.62	<1	14	41	328	4.23	.05	.77	240
288605	63.70	64.31	0.61	.2	1.16	15	<5	74	<10	1.91	<1	45	29	411	3.71	.06	.73	231
288606	64.31	64.92	0.61	.2	1.13	25	<5	101	<10	1.74	<1	11	36	203	3.83	.05	.88	297
288607	64.92	65.53	0.61	.3	1.21	12	<5	1036	<10	1.71	<1	10	43	167	4.25	.06	.80	278
288608	65.53	66.14	0.61	.2	1.13	17	<5	87	<10	1.55	<1	9	49	151	4.27	.07	.84	287
288609	66.14	66.75	0.61	.2	1.04	22	<5	62	<10	1.85	<1	10	37	226	4.16	.06	.80	318
288610	66.75	67.67	0.91	.2	.98	18	<5	86	<10	1.81	<1	16	93	272	6.61	.08	1.00	341
288611	67.67	68.28	0.61	.3	1.52	21	<5	186	<10	2.00	<1	18	56	120	4.56	.06	.86	309
288612	68.28	69.19	0.91	.3	2.11	15	<5	40	<10	6.67	2	22	22	153	4.33	.11	1.12	782
288613	79.71	80.31	0.61	.2	2.36	23	<5	51	<10	6.75	<1	36	98	365	8.33	.10	2.65	2220
288614	69.19	69.80	0.61	.2	.96	35	<5	31	<10	10.49	<1	14	15	229	3.20	.10	.76	1232
288616	74.37	75.29	0.91	.6	2.03	<5	<5	41	<10	2.44	<1	38	28	3417	4.83	.07	1.35	668
288617	75.29	75.90	0.61	.3	2.33	11	<5	42	<10	2.66	<1	18	26	167	4.79	.08	1.38	663
288618	73.76	74.37	0.61	.3	2.45	<5	<5	62	<10	3.82	<1	15	31	230	4.55	.08	1.44	777
288619		Standard C		5.0	1.40	24	<5	101	20	.87	3	11	43	13205	3.94	.14	.80	445
288620	79.25	79.71	0.46	.3	2.12	6	<5	29	<10	3.52	<1	24	51	227	6.01	.10	2.28	1196
288621	80.31	80.77	0.46	.3	2.01	38	<5	53	<10	5.00	<1	26	37	417	5.45	.24	1.55	1371
288622		Standard C		5.1	1.32	22	<5	97	14	.83	3	12	42	13356	3.75	.15	.77	429
288623	83.21	83.82	0.61	.2	1.65	<5	<5	26	<10	3.89	<1	14	22	130	3.67	.17	1.01	967
288624	83.82	84.43	0.61	4.6	1.84	11	<5	15	11	2.63	<1	65	34	11745	6.58	.07	1.63	1014
288625	84.43	85.34	0.91	.3	2.03	12	<5	416	<10	3.51	<1	20	28	539	4.49	.09	1.85	1125
288626	85.34	85.95	0.61	.2	1.87	32	<5	1388	<10	4.16	<1	24	36	329	4.50	.22	1.43	1226
288627	85.95	86.41	0.46	3.2	1.49	6	<5	41	<10	7.52	3	23	27	371	4.69	.41	.87	1896
288628	86.41	87.02	0.61	.2	1.67	<5	<5	34	<10	5.86	<1	21	35	145	5.65	.25	1.31	1624
288629	98.30	98.91	0.61	.3	1.25	18	<5	33	<10	1.85	<1	10	35	619	3.40	.09	1.14	532
288630	87.02	87.78	0.76	2.1	1.17	<5	<5	47	<10	6.78	2	17	32	301	3.52	.35	.74	1483
288631		Standard B		.2	1.11	11	<5	139	<10	.82	<1	10	45	28	1.91	.10	.61	395
288632	98.91	99.52	0.61	.3	1.85	<5	<5	85	<10	2.76	<1	15	28	771	3.94	.10	1.68	964

								10-L0	CD-16					77 - M				
Sample	From	То	Interval	Ag	Al	As	В	Ва	Bi	Ca	Cd	Co	Cr	Cu	Fe	К	Mg	Mn
No.	(m)	(m)	(m)	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%	%	%	ppm
288633	99.52	100.28	0.76	.2	1.37	10	<5	108	<10	2.79	<1	13	35	295	2.53	.05	1.57	850
288634	100.28	100.89	0.61	.2	1.33	20	<5	603	<10	1.87	<1	12	28	398	3.65	.11	1.07	595
288635	100.89	101.50	0.61	.3	1.58	5	<5	144	<10	2.96	<1	16	32	219	4.15	.12	1.46	957
288636	101.50	102.11	0.61	.2	1.60	<5	<5	36	<10	2.30	<1	14	30	162	3.88	.09	1.36	681
288637	102.11	102.72	0.61	.3	2.03	6	<5	39	<10	2.68	<1	13	36	331	3.23	.09	1.44	492
288638	102.72	103.48	0.76	.2	1.73	10	<5	112	<10	2.43	<1	12	32	206	3.94	.08	1.22	470
288641	43.74	44.35	0.61	.3	2.54	7	<5	83	<10	4.30	2	19	28	266	4.08	.10	1.85	901
288642	105.31	105.92	0.61	.2	1.38	<5	<5	208	<10	2.84	<1	13	27	3102	2.91	.08	1.57	799
288643	105.92	106.68	0.76	.2	1.11	20	<5	311	<10	1.85	<1	8	29	1115	3.43	.08	.90	378
288644	106.68	107.14	0.46	.2	1.07	<5	<5	31	<10	1.46	<1	9	54	764	3.30	.08	1.07	418
288645	107.14	107.75	0.61	.3	1.18	<5	<5	23	<10	1.71	<1	10	24	725	3.00	.06	1.41	523
288646	107.75	108.36	0.61	1.5	1.41	10	<5	197	<10	5.26	2	24	22	866	3.36	.20	1.42	1237
288647	108.36	109.12	0.76	.3	1.43	20	<5	658	<10	4.54	<1	14	27	152	4.39	.24	1.24	1317
288648	109.12	109.73	0.61	.2	1.13	24	<5	616	<10	2.00	<1	13	32	50	3.76	.15	1.41	603
288649	109.73	110.34	0.61	.3	1.56	40	<5	273	<10	3.52	<1	58	29	255	3.96	.09	2.13	986
288650	110.34	110.95	0.61	.2	1.44	13	<5	683	<10	2.11	<1	14	30	1649	2.84	.11	1.69	658
288651	110.95	111.56	0.61	.2	1.03	7	<5	528	<10	1.35	<1	11	28	157	3.44	.07	1.30	530
288652	111.56	112.01	0.46	.3	1.12	29	<5	110	<10	1.58	<1	12	32	155	3.88	.08	1.43	653
288653		Standard B		.2	1.06	10	<5	138	<10	.79	<1	9	44	28	2.02	.09	.59	388
288654	112.01	112.62	0.61	.2	1.12	25	<5	171	<10	1.92	<1	14	27	528	3.49	.08	1.51	692
288655	112.62	113.23	0.61	.3	1.28	15	<5	2400	<10	2.24	<1	18	32	323	4.08	.08	1.43	769
288656	116.13	116.74	0.61	.2	1.41	17	<5	268	<10	2.64	<1	14	26	314	3.99	.11	1.66	955
288657	115.52	116.13	0.61	.2	1.40	10	<5	61	<10	2.27	<1	17	36	362	4.18	.11	1.83	1008
288658	116.74	117.35	0.61	.3	1.67	14	<5	158	<10	3.71	<1	16	29	234	4.79	.17	1.91	1349
288659	121.77	122.38	0.61	.3	1.48	6	<5	42	<10	3.01	<1	14	30	57	3.47	.11	1.66	993
288660	122.38	122.99	0.61	6.6	1.11	38	<5	70	26	3.29	8	142	25	13433	7.05	.08	1.26	1050
288661	122.99	123.75	0.76	.2	1.10	8	<5	367	<10	2.44	<1	15	27	236	3.60	.10	1.25	842
288662	123.75	124.36	0.61	.3	1.40	6	<5	83	<10	2.98	<1	16	32	323	4.13	.11	1.74	1130

								10-L0	CD-16					<i>11</i> ()				
Sample	From	То	Interval	Ag	Al	As	В	Ва	Bi	Ca	Cd	Co	Cr	Cu	Fe	К	Mg	Mn
No.	(m)	(m)	(m)	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%	%	%	ppm
288663	125.43	126.03	0.61	.2	1.12	31	<5	200	<10	2.26	<1	12	33	101	3.94	.08	1.00	579
288664		Standard A		2.4	1.39	10	<5	110	<10	.91	1	9	41	7535	3.14	.15	.78	445
288665	126.03	126.64	0.61	.3	1.22	<5	<5	40	<10	2.47	<1	13	28	486	3.31	.09	1.32	703
288666	126.64	127.25	0.61	.2	1.06	17	<5	113	<10	1.68	<1	10	33	118	3.65	.08	.82	394
288667	61.26	62.03	0.76	.2	1.02	18	<5	55	<10	1.88	<1	12	41	225	3.92	.08	.74	362
288668	139.60	140.21	0.61	.3	1.58	<5	<5	125	<10	3.21	<1	18	37	602	4.42	.13	2.02	1459
288669	69.80	70.41	0.61	.2	1.08	10	<5	22	<10	7.65	<1	17	14	134	2.85	.17	.60	797
288670	70.41	71.02	0.61	.3	2.07	6	<5	32	<10	3.80	<1	19	14	73	4.70	.14	1.14	503
288671	71.02	71.63	0.61	.2	1.80	<5	<5	42	<10	3.00	<1	21	21	270	4.31	.13	1.11	483
288672	71.63	72.24	0.61	.3	1.94	25	<5	30	<10	5.57	<1	18	22	143	4.15	.12	1.30	833
288673	72.24	72.85	0.61	.3	1.69	16	<5	48	<10	3.03	<1	14	27	91	4.29	.11	1.08	547
288674	140.21	140.82	0.61	.2	1.60	14	<5	92	<10	3.11	<1	18	29	360	4.08	.13	2.00	1338
288675		Standard C	1	4.7	1.46	35	30	109	16	.89	3	12	44	13010	3.75	.17	.84	441
288676	140.82	141.43	0.61	.3	1.57	<5	<5	78	<10	2.56	<1	26	36	1251	2.68	.13	1.72	1149
288677	141.43	142.04	0.61	.2	1.26	<5	<5	794	<10	2.27	<1	14	26	291	3.40	.12	1.38	814
288678	142.04	142.65	0.61	.3	2.08	<5	<5	47	<10	2.84	<1	22	36	253	4.44	.08	2.56	1569
288679	142.65	143.26	0.61	.3	1.29	10	<5	144	<10	2.43	<1	13	31	395	3.52	.13	1.31	752
288680	143.26	143.87	0.61	.2	1.06	16	<5	286	<10	1.73	<1	12	46	349	4.02	.10	.81	425
288681	146.30	147.22	0.91	.3	1.32	15	<5	86	<10	2.22	<1	14	31	204	4.08	.12	1.18	654
288682	147.22	147.83	0.61	.2	1.42	<5	<5	470	<10	2.75	<1	14	44	530	4.01	.13	1.50	966
288683	147.83	148.29	0.46	.3	2.15	28	<5	29	<10	3.83	<1	20	37	297	4.65	.14	2.22	1464
288684	148.29	149.35	1.07	.3	2.18	31	<5	227	<10	4.58	<1	23	49	295	4.77	.10	2.51	1868
288685	149.35	149.96	0.61	.2	1.98	<5	<5	215	<10	2.69	<1	22	47	410	4.24	.10	1.96	1149
288686	149.96	150.57	0.61	.3	1.77	9	<5	215	<10	2.35	<1	20	38	251	4.15	.08	1.80	888
288687	150.57	151.18	0.61	.2	1.70	27	<5	344	<10	2.53	<1	18	32	272	4.39	.10	1.51	812
288688		Standard C		4.5	1.38	33	<5	107	10	.86	2	11	42	13509	3.52	.17	.80	425
288689	151.18	151.79	0.61	.3	1.34	13	<5	78	<10	1.76	<1	18	31	223	3.82	.10	1.09	530
288690	151.79	152.40	0.61	.2	1.27	15	<5	54	<10	1.61	<1	12	47	94	3.83	.11	.89	408

								10-L0	CD-16					II AL				
Sample	From	То	Interval	Ag	AI	As	В	Ва	Bi	Ca	Cd	Co	Cr	Cu	Fe	К	Mg	Mn
No.	(m)	(m)	(m)	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%	%	%	ppm
288691	154.23	154.84	0.61	.3	1.47	12	<5	839	<10	2.43	<1	16	38	219	3.84	.12	1.25	646
288692	154.84	155.45	0.61	.2	1.39	39	<5	197	<10	1.92	<1	15	40	1927	3.96	.11	1.05	542
288693	155.45	156.06	0.61	.2	1.25	28	<5	41	<10	2.04	<1	18	44	1639	3.72	.11	1.23	601
288694	156.06	156.67	0.61	.2	1.21	37	<5	23	<10	2.93	<1	31	24	222	2.15	.06	1.55	899
288695	156.67	157.28	0.61	.3	1.12	22	<5	107	<10	2.24	<1	38	19	818	2.24	.06	1.07	555
288696	157.28	157.89	0.61	.2	1.19	10	<5	74	<10	2.29	<1	37	30	227	3.13	.08	1.40	928
288697	157.89	158.50	0.61	.2	1.15	<5	<5	34	<10	1.85	<1	23	42	245	3.29	.12	1.01	531
288698	158.50	159.11	0.61	.2	.93	<5	<5	40	<10	1.61	<1	34	46	224	2.58	.10	.78	417
288699	159.11	159.72	0.61	.3	1.31	31	<5	23	<10	2.81	<1	16	56	135	3.05	.11	1.47	891
288700		Standard B		.2	1.01	7	<5	136	<10	.69	<1	10	46	25	1.84	.12	.58	373
288701	159.72	160.32	0.61	.3	1.73	36	<5	29	<10	3.58	<1	20	36	185	4.08	.10	2.10	1545
288702	160.32	160.93	0.61	.2	1.38	47	<5	26	<10	3.62	<1	19	25	203	3.75	.10	1.43	1185
288703	160.93	161.54	0.61	.2	1.01	9	<5	113	<10	1.40	<1	16	27	251	2.55	.11	.89	373
288704	161.54	162.15	0.61	.3	1.20	8	<5	47	<10	1.81	<1	13	23	373	2.38	.08	.77	290
288705	162.15	162.76	0.61	.2	1.03	<5	<5	278	<10	1.38	<1	12	29	194	2.84	.07	.69	239
288706	162.76	163.37	0.61	.2	1.09	<5	<5	26	<10	2.12	<1	14	23	164	3.17	.12	1.21	761
288707	163.37	163.98	0.61	.3	1.12	<5	<5	30	<10	1.89	<1	74	25	2107	2.68	.10	.70	348
288708	163.98	164.74	0.76	.2	.88	29	<5	38	<10	1.64	<1	25	20	650	2.34	.13	.69	458
288709	164.74	165.51	0.76	.2	.95	33	<5	40	<10	1.73	<1	27	24	788	2.56	.13	.76	507
288710	165.51	166.12	0.61	.3	1.07	22	<5	78	<10	1.95	<1	58	23	195	3.10	.13	1.11	755
288711		Standard C		4.7	1.30	16	<5	95	12	.79	2	12	32	13400	3.43	.17	.71	397
288712	166.12	167.03	0.91	.3	1.43	35	<5	12	<10	3.51	<1	73	20	101	3.28	.07	1.81	1503
288713	167.03	167.64	0.61	.2	.99	32	<5	33	<10	1.83	<1	20	19	258	2.70	.13	1.02	685
288714	167.64	168.25	0.61	.3	1.11	45	<5	28	<10	1.88	<1	17	20	441	2.71	.12	.75	474
288715	168.25	169.16	0.91	.6	1.25	11	<5	50	<10	2.33	3	172	26	338	4.27	.10	1.34	871
288716	169.16	169.77	0.61	.3	1.10	<5	<5	68	<10	1.80	1	25	23	232	3.06	.14	.79	464
288717	169.77	170.38	0.61	.2	.98	6	<5	32	<10	1.47	<1	19	22	227	2.92	.13	.67	404
288718	170.38	170.99	0.61	.3	1.25	<5	<5	31	<10	1.86	<1	50	32	245	3.43	.10	.96	583

								10-L0	CD-16					11 13				
Sample	From	То	Interval	Ag	AI	As	В	Ba	Bi	Ca	Cd	Co	Cr	Cu	Fe	К	Mg	Mn
No.	(m)	(m)	(m)	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%	%	%	ppm
288719	170.99	171.60	0.61	.3	1.15	<5	<5	47	<10	1.65	<1	12	20	299	3.07	.13	.85	495
288720	171.60	172.21	0.61	.3	1.14	<5	<5	36	<10	1.66	<1	60	43	308	3.09	.13	1.02	659
288721	172.21	172.67	0.46	.2	.94	6	<5	326	<10	1.32	<1	11	45	151	2.78	.12	.71	424
288722	172.67	173.13	0.46	.3	1.08	29	<5	21	<10	2.04	<1	34	37	321	2.27	.13	1.08	808
288723	173.13	173.74	0.61	.2	.82	19	<5	12	<10	2.45	<1	31	37	11	1.33	.01	.77	534
288724	173.74	174.35	0.61	.2	1.18	29	<5	123	<10	2.39	<1	70	33	242	2.44	.08	1.21	771
288725	174.35	174.96	0.61	2.0	1.17	14	<5	55	<10	3.70	3	400	32	1299	4.33	.05	1.19	750
288726	174.96	175.87	0.91	.2	.92	48	<5	124	<10	1.75	<1	105	26	1061	2.21	.10	.86	442
288727		Standard A		2.5	1.37	11	<5	99	<10	.72	<1	9	33	7304	2.94	.14	.74	419
288728	175.87	176.78	0.91	.3	1.33	23	<5	283	<10	2.02	<1	14	43	132	3.20	.11	.90	521
288729	176.78	177.70	0.91	.2	1.29	20	<5	41	<10	2.43	<1	24	35	580	2.89	.11	1.21	946
288730	177.70	178.61	0.91	.2	1.00	<5	<5	24	<10	1.50	<1	28	44	140	2.82	.12	.89	574
288731	178.61	179.53	0.91	.3	1.29	17	<5	23	<10	2.41	<1	26	53	147	3.56	.11	1.20	908
288732	179.53	180.44	0.91	.2	1.19	22	<5	69	<10	2.45	<1	17	57	156	3.27	.16	1.35	1036
288733	180.44	181.36	0.91	1.4	1.12	<5	<5	28	<10	1.84	<1	96	51	270	3.63	.13	1.18	803
288734	181.36	181.97	0.61	.2	1.19	17	<5	34	<10	1.71	<1	15	58	133	3.70	.13	1.03	614
288735	181.97	182.88	0.91	.3	1.44	<5	<5	215	<10	3.08	<1	18	31	142	4.02	.11	1.19	1028
288736		Standard B		.2	1.09	8	<5	135	<10	.77	<1	11	40	28	1.97	.13	.59	402
288737	182.88	183.79	0.91	.3	1.32	6	<5	52	<10	2.21	<1	15	38	126	3.58	.13	1.10	780
288738	183.79	184.40	0.61	.2	1.20	<5	<5	86	<10	1.76	<1	13	40	158	3.36	.12	1.04	589
288739	184.40	185.01	0.61	.3	1.34	8	<5	72	<10	2.10	<1	16	43	146	3.69	.14	1.46	940
288740	185.01	185.93	0.91	.2	1.25	26	<5	31	<10	1.70	<1	15	29	121	3.88	.13	1.44	1058
288741	185.93	186.84	0.91	.2	1.01	5	<5	45	<10	1.53	<1	18	25	130	3.48	.12	.86	487
288742	186.84	187.45	0.61	.3	1.20	18	<5	110	<10	2.11	<1	17	33	303	4.31	.13	1.34	1077
288743	187.45	188.37	0.91	.2	1.01	8	<5	48	<10	2.25	<1	20	18	203	2.54	.14	1.11	959
288744	188.37	188.98	0.61	.2	.86	22	<5	47	<10	2.40	<1	34	19	795	2.18	.11	.92	787
288745	188.98	189.59	0.61	.3	1.50	10	<5	20	<10	3.12	<1	19	45	387	4.86	.08	1.73	1491
288746	189.59	190.50	0.91	.2	.98	10	<5	39	<10	2.02	<1	15	25	137	3.60	.18	1.02	869

								10-L0	CD-16					<i>11</i> - 13				
Sample	From	То	Interval	Ag	Al	As	В	Ва	Bi	Ca	Cd	Co	Cr	Cu	Fe	К	Mg	Mn
No.	(m)	(m)	(m)	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%	%	%	ppm
288747		Standard A		2.4	1.31	17	<5	100	<10	.81	<1	9	33	7252	2.88	.17	.75	429
288748	190.50	191.41	0.91	.3	1.06	13	<5	68	<10	1.90	<1	15	21	136	3.55	.12	1.17	956
288749	191.41	192.02	0.61	.2	.89	<5	<5	23	<10	1.28	<1	17	58	250	4.84	.10	.95	484
288750	192.02	192.63	0.61	.2	1.07	34	<5	114	<10	1.91	<1	18	54	303	5.09	.12	1.25	769
288751	192.63	193.24	0.61	.3	1.20	29	<5	174	<10	2.00	<1	20	52	251	5.63	.07	1.51	1103
288752	120.70	121.77	1.07	.2	1.10	17	<5	199	<10	1.79	<1	14	25	103	3.53	.10	1.26	690
288753	193.24	193.85	0.61	.9	1.83	<5	<5	24	<10	2.88	<1	37	31	6792	4.15	.04	2.07	1473
288754	193.85	194.46	0.61	.5	1.56	39	<5	28	<10	2.50	<1	20	39	433	4.34	.09	1.70	1292
288755	194.46	195.38	0.91	.3	1.20	<5	<5	100	<10	1.68	<1	19	57	476	5.51	.09	1.33	832
288756	195.38	195.99	0.61	.5	1.48	<5	<5	343	<10	2.82	<1	21	39	278	4.52	.13	1.63	1219
288757	195.99	196.60	0.61	.5	1.79	<5	<5	125	<10	2.92	<1	20	30	267	4.09	.16	1.88	1405
288758	196.60	197.21	0.61	.5	1.45	19	<5	283	<10	2.52	<1	19	34	202	4.33	.15	1.50	1055
288759	197.21	198.12	0.91	.3	1.08	<5	<5	48	<10	12.22	<1	11	19	129	2.69	.33	.59	3751
288760	198.12	199.03	0.91	1.7	1.91	<5	<5	84	<10	7.92	<1	21	15	880	3.90	.37	1.15	2279
288761	199.03	199.64	0.61	.5	1.43	<5	<5	935	<10	5.29	<1	20	28	996	3.18	.23	1.21	1508
288762	199.64	200.25	0.61	12.8	1.45	<5	<5	38	46	5.20	<1	230	20	48447	6.05	.22	1.36	1331
288763		Standard A		2.8	1.56	20	<5	109	<10	.94	<1	9	41	7280	3.19	.14	.73	444
288764	200.25	201.17	0.91	.3	1.25	<5	<5	474	<10	3.65	<1	19	22	942	3.56	.12	1.32	1083
288765	201.17	202.08	0.91	.5	1.74	5	<5	177	<10	3.96	<1	23	20	533	4.37	.15	1.78	1359
288766	202.08	203.00	0.91	.5	1.76	25	<5	357	<10	3.10	<1	21	19	329	4.07	.10	1.82	1229
288767	203.00	203.91	0.91	.3	1.67	<5	<5	98	<10	2.77	<1	20	20	406	3.91	.10	1.84	1210
288768	203.91	204.83	0.91	.3	1.69	13	<5	69	<10	3.00	<1	21	18	335	3.67	.07	2.13	1356
288769	204.83	205.74	0.91	.5	1.87	<5	<5	113	<10	4.25	<1	22	22	1168	3.72	.08	2.17	1516
288770	205.74	206.81	1.07	.3	1.66	12	<5	40	<10	6.29	<1	17	15	315	2.82	.23	1.55	1694
288771	206.81	207.87	1.07	.5	1.87	6	<5	337	<10	4.90	<1	20	16	593	3.49	.14	1.95	1739
288772	207.87	208.48	0.61	.3	1.64	<5	<5	118	<10	4.96	<1	21	17	801	3.54	.21	1.49	1396
288773		Standard C		5.4	1.41	26	<5	101	15	.79	2	11	38	13234	3.53	.14	.68	402
288774	124.36	125.43	1.07	.3	1.17	<5	<5	143	<10	1.90	<1	10	22	168	3.13	.07	.95	493

								10-L0	CD-16					II AL				
Sample	From	То	Interval	Ag	AI	As	В	Ва	Bi	Ca	Cd	Co	Cr	Cu	Fe	К	Mg	Mn
No.	(m)	(m)	(m)	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%	%	%	ppm
288775		Standard B		.3	1.12	7	<5	130	<10	.73	<1	10	44	32	1.94	.10	.52	374
288776	208.48	209.25	0.76	2.0	1.17	26	<5	49	<10	8.09	4	14	11	744	2.34	.34	.75	2294
288777	209.25	210.01	0.76	.5	1.76	15	<5	225	<10	6.20	<1	23	16	1880	3.67	.21	1.52	1846
288778	210.01	210.62	0.61	.3	1.55	18	<5	93	<10	6.08	1	24	17	2649	3.23	.18	1.46	1459
288779	210.62	211.32	0.70	3.6	1.79	23	<5	41	20	6.07	2	32	10	7354	4.36	.37	1.13	1906
288780	211.32	212.14	0.82	.5	1.78	<5	<5	120	<10	5.20	<1	21	13	3198	3.50	.23	1.53	1555
288781	212.14	213.06	0.91	.5	1.81	14	<5	52	<10	4.32	<1	20	15	5224	3.13	.11	1.83	1251
288782		Standard C		4.9	1.41	17	<5	100	16	.80	2	12	39	13208	3.49	.14	.68	398
288783	213.06	213.97	0.91	.3	1.58	16	<5	283	<10	4.71	<1	16	14	1089	2.47	.07	1.76	1312
288784	213.97	215.19	1.22	.5	1.85	12	<5	85	<10	4.66	<1	22	20	170	4.46	.11	2.12	1701
288785	215.19	216.10	0.91	.5	1.54	47	<5	300	<10	3.87	<1	19	22	201	4.07	.08	1.63	1237
288786	216.10	216.87	0.76	.3	1.52	<5	<5	16	<10	3.08	<1	20	25	316	4.45	.06	1.57	1166
288787	216.87	217.93	1.07	.3	1.28	12	<5	45	<10	2.92	<1	16	17	321	3.83	.09	1.50	975
288788	217.93	219.46	1.52	.3	1.36	12	<5	40	<10	3.05	<1	17	19	249	3.95	.09	1.51	1172
288789	219.46	220.98	1.52	.5	1.52	12	<5	43	<10	3.51	<1	19	17	187	4.02	.09	1.77	1222
288790	220.98	221.59	0.61	.3	1.55	<5	<5	233	<10	3.23	<1	20	18	324	3.91	.10	1.74	1071
288791	221.59	222.20	0.61	.5	1.58	5	<5	99	<10	3.19	<1	20	17	138	4.58	.10	1.86	1121
288792	222.20	222.81	0.61	.5	1.43	<5	<5	38	<10	3.77	<1	20	21	322	4.14	.10	1.64	1217
288793	222.81	224.03	1.22	.3	1.36	15	<5	107	<10	2.78	<1	19	20	174	3.80	.09	1.40	914
288794	231.95	232.87	0.91	.3	.87	9	<5	54	<10	12.28	<1	9	15	196	1.85	.38	.52	3439
288795		Standard B		.3	1.08	8	<5	131	<10	.68	<1	12	46	29	1.97	.10	.58	380
288796	232.87	233.63	0.76	.8	1.82	<5	<5	25	<10	6.47	<1	23	18	1956	3.76	.31	1.63	1982
288797	233.63	234.39	0.76	.3	.85	<5	<5	37	<10	6.87	<1	8	9	188	1.26	.55	.41	1721
288798	236.22	237.13	0.91	.5	1.17	<5	<5	59	<10	2.23	<1	17	25	113	3.76	.07	1.56	785
288799	237.13	238.05	0.91	.3	1.12	23	<5	1051	<10	7.73	<1	20	22	437	3.43	.17	2.60	2128
288800	238.05	239.27	1.22	.5	1.57	<5	<5	213	<10	4.08	<1	18	25	466	3.12	.12	2.07	1240
288801	249.33	250.24	0.91	.5	2.16	<5	<5	40	10	5.08	<1	20	17	550	3.28	.19	2.13	1257
288802	250.24	251.16	0.91	7.7	2.33	<5	<5	120	<10	4.69	<1	21	19	1214	3.49	.20	2.35	1312

								10-L0	CD-16					<i>11</i> - 13				
Sample	From	То	Interval	Ag	AI	As	В	Ba	Bi	Ca	Cd	Co	Cr	Cu	Fe	К	Mg	Mn
No.	(m)	(m)	(m)	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%	%	%	ppm
288803	251.16	252.68	1.52	.5	2.24	6	<5	49	<10	4.27	<1	22	16	909	3.44	.14	2.53	1313
288804	252.68	253.90	1.22	.3	2.30	<5	<5	51	<10	4.70	<1	21	17	231	3.72	.16	2.62	1326
288805	253.90	254.81	0.91	.5	2.28	37	<5	86	<10	5.32	<1	20	23	1706	3.41	.22	2.28	1341
288806	239.27	240.49	1.22	.3	1.88	24	<5	26	<10	5.90	<1	19	15	174	3.59	.31	1.82	1553
288807	240.49	242.32	1.83	.5	2.18	22	<5	150	<10	5.55	<1	23	14	176	3.97	.33	1.99	1648
288808	242.32	243.84	1.52	.3	1.28	<5	<5	54	<10	7.90	<1	14	13	232	2.26	.43	.80	2018
288809	243.84	245.36	1.52	.3	1.23	<5	<5	789	<10	8.58	<1	13	12	81	2.05	.43	.70	2191
288810	245.36	246.89	1.52	.5	1.68	<5	<5	718	<10	6.56	<1	22	16	137	3.49	.30	1.31	1610
288811	246.89	248.41	1.52	.3	1.63	<5	<5	720	<10	6.96	<1	21	15	367	3.55	.27	1.53	1683
288812	248.41	249.33	0.91	1.0	1.87	<5	<5	391	<10	5.78	<1	22	16	918	3.18	.27	1.65	1374
288813		Standard A		2.7	1.46	10	<5	112	<10	.83	<1	10	43	7290	3.20	.14	.80	448
288814	234.39	236.22	1.83	.3	1.66	24	<5	542	<10	4.68	<1	20	25	310	3.47	.21	1.79	1529
288815	254.81	256.03	1.22	.5	2.43	<5	<5	67	<10	5.81	<1	24	22	526	3.78	.26	2.26	1515
288816	263.35	264.26	0.91	.5	2.61	<5	<5	289	<10	5.46	<1	23	21	753	4.02	.16	2.63	1906
288817	264.26	265.48	1.22	.3	1.52	5	<5	281	<10	8.44	<1	17	18	1076	2.83	.21	1.19	2197
288818	265.48	266.85	1.37	.5	2.51	14	<5	722	<10	8.54	<1	31	34	816	4.62	.19	1.93	2353
288819	266.85	268.22	1.37	.3	.47	6	<5	24	<10	5.79	1	10	50	177	1.81	.18	.37	2263
288820	268.22	269.75	1.52	1.9	.34	31	<5	7	<10	5.32	2	12	48	222	2.46	.16	.64	2709
288821	269.75	270.66	0.91	20.0	.35	120	<5	16	<10	5.21	8	13	41	2680	2.82	.19	.95	2904
288822	271.58	272.80	1.22	20.8	.36	149	<5	15	10	4.64	9	11	37	1352	2.26	.27	.89	2650
288823	272.80	273.71	0.91	25.6	.35	204	<5	12	<10	6.77	11	14	58	2247	2.62	.24	1.36	4277
288824	273.71	274.93	1.22	8.3	1.27	101	<5	26	<10	4.59	5	19	41	2105	3.53	.34	1.23	2702
288825	274.93	275.84	0.91	2.2	.98	41	<5	37	14	5.33	<1	16	34	2402	3.41	.34	1.13	3184
288826	275.84	276.45	0.61	7.4	1.02	77	<5	31	<10	4.57	4	17	38	2586	3.32	.37	1.02	2802
288827	276.45	277.06	0.61	1.9	1.19	<5	<5	25	11	6.23	<1	18	37	2918	3.65	.31	1.19	3597
288828	277.06	277.98	0.91	4.6	1.00	35	<5	47	13	6.21	3	17	36	2741	3.47	.32	1.46	3740
288829		Standard C		5.2	1.39	20	<5	106	14	.79	2	13	40	13318	3.60	.15	.77	414
288830	277.98	278.89	0.91	6.2	1.00	64	<5	97	<10	5.26	4	18	43	2360	3.70	.30	1.34	3316

														///// \\\\``				
								10-L0	CD-16									
Sample	From	То	Interval	Ag	AI	As	В	Ba	Bi	Са	Cd	Co	Cr	Cu	Fe	κ	Mg	Mn
No.	(m)	(m)	(m)	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%	%	%	ppm
288831	278.89	279.50	0.61	10.7	.55	126	<5	78	<10	4.52	6	15	39	3143	3.05	.31	1.05	2952
288832	279.50	280.26	0.76	18.6	.43	204	<5	605	<10	4.67	9	20	50	3719	4.08	.30	1.03	3339
288833	280.26	281.33	1.07	13.6	.42	133	<5	33	<10	4.02	7	18	30	4901	3.94	.30	.87	2600
288834	281.33	282.24	0.91	22.9	.35	301	<5	20	37	2.96	17	17	40	9633	3.55	.27	.76	2320
288835	282.24	282.85	0.61	28.0	.37	356	<5	18	78	1.69	26	19	39	39518	4.97	.25	.34	1216
288836		Standard B		.5	1.13	14	<5	140	<10	.76	<1	12	48	38	2.03	.11	.61	397
288837	282.85	283.62	0.76	21.4	.37	166	<5	26	17	3.59	9	11	47	6545	2.38	.32	.44	1765
288838	283.62	284.68	1.07	16.0	.35	211	<5	190	<10	7.57	12	14	34	2678	3.41	.24	1.61	4067
288839	270.66	271.58	0.91	19.5	.39	200	<5	15	<10	6.26	12	12	38	1731	2.65	.28	1.24	3361

10-LCD-16

								10-L0	D-16									
Sample	From	То	Interval	Мо	Na	Ni	Ρ	Pb	S	Sb	Sn	Sr	Те	Ti	TI	v	Zn	Au
No.	(m)	(m)	(m)	ppm	%	ppm	%	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppb
288639	103.48	104.39	0.91	3	.07	26	.25	35	.04	<2	<2	192	<5	.10	<5	98	124	2
288640		Standard C		251	.11	32	.14	40	2.06	18	<2	39	<5	.13	<5	53	138	920
288551	24.38	25.30	0.91	1	.09	18	.14	25	.03	4	<2	67	<5	.11	<5	154	29	45
288552	25.30	25.91	0.61	1	.08	15	.17	16	.04	<2	<2	92	<5	.10	<5	147	28	2
288553	25.91	26.37	0.46	1	.08	20	.13	24	.50	6	<2	56	<5	.11	<5	121	39	3
288554	26.37	26.97	0.61	24	.07	17	.17	26	.50	<2	<2	40	<5	.09	<5	126	35	2
288555	26.97	27.74	0.76	2	.08	16	.12	21	.01	<2	<2	55	<5	.08	<5	143	28	32
288556	27.74	28.35	0.61	1	.09	17	.21	14	.01	<2	<2	39	<5	.11	<5	160	34	10
288557	28.35	28.96	0.61	1	.08	14	.18	17	.02	<2	<2	44	<5	.09	<5	148	28	70
288559	29.72	30.18	0.46	1	.08	15	.20	13	.03	<2	<2	68	<5	.08	<5	145	24	17
288560	35.81	36.42	0.61	1	.08	22	.27	34	.02	6	<2	88	<5	.11	<5	156	68	2
288561	36.42	37.03	0.61	2	.09	17	.26	22	.11	<2	<2	56	<5	.12	<5	161	27	7
288562	37.03	37.64	0.61	1	.09	14	.28	26	.03	4	<2	63	<5	.10	<5	162	28	5
288563	41.15	41.76	0.61	2	.10	15	.27	23	.03	<2	<2	84	<5	.11	<5	155	26	11
288564	41.76	42.21	0.46	1	.08	13	.16	35	1.57	6	<2	83	<5	.08	<5	98	27	6
288565	42.21	42.67	0.46	1	.13	11	.25	22	.11	7	<2	61	<5	.09	<5	143	26	29
288566	42.67	43.28	0.61	1	.08	25	.28	30	.21	4	<2	44	<5	.16	<5	222	40	28
288567	43.28	43.74	0.46	1	.11	17	.30	22	.01	<2	<2	57	<5	.13	<5	160	21	2
288568	43.74	44.20	0.46	2	.10	11	.34	20	.73	6	<2	68	<5	.11	<5	143	17	3
288569	44.20	44.81	0.61	1	.10	14	.40	27	.05	8	<2	68	<5	.12	<5	145	53	2
288570	44.81	45.42	0.61	1	.10	13	.35	15	.03	<2	<2	48	<5	.10	<5	135	29	10
288571	45.42	46.02	0.61	1	.10	12	.29	18	.34	<2	<2	64	<5	.09	<5	137	25	6
288572	46.02	46.63	0.61	1	.10	6	.30	13	.10	3	<2	70	<5	.08	<5	129	22	2
288573	46.63	47.24	0.61	1	.12	11	.24	24	.12	<2	<2	98	<5	.07	<5	114	26	3
288574	47.24	47.85	0.61	1	.11	14	.28	16	.09	4	<2	48	<5	.12	<5	161	28	19
288575	47.85	48.46	0.61	1	.12	15	.29	20	.10	<2	<2	109	<5	.11	<5	170	24	42
288576	48.46	49.07	0.61	1	.11	14	.30	21	.04	<2	<2	104	<5	.10	<5	153	28	3
288577	49.07	49.53	0.46	1	.11	15	.39	13	.03	3	<2	48	<5	.12	<5	161	25	2
288578	49.53	49.99	0.46	1	.13	13	.44	19	.04	<2	<2	59	<5	.10	<5	181	26	3

								10-LC	CD-16									
Sample	From	То	Interval	Мо	Na	Ni	Р	Pb	S	Sb	Sn	Sr	Те	Ti	ТІ	v	Zn	Au
No.	(m)	(m)	(m)	ppm	%	ppm	%	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppb
288579	49.99	51.36	1.37	1	.10	12	.34	12	.05	<2	<2	45	<5	.09	<5	140	34	2
288580	28.96	29.72	0.76	1	.09	14	.28	19	.05	<2	<2	82	<5	.08	<5	143	25	3
288581		Standard B		2	.13	35	.13	21	.05	<2	<2	37	<5	.12	<5	52	45	5
288582	51.82	52.43	0.61	2	.13	19	.29	14	.03	4	<2	81	<5	.11	<5	153	34	7
288583	52.43	53.04	0.61	1	.11	15	.30	18	.17	<2	<2	79	<5	.08	<5	158	23	5
288584	В			1	.13	34	.10	19	.05	<2	<2	38	<5	.13	<5	52	42	6
288585	53.04	53.49	0.46	1	.13	14	.31	9	.02	<2	<2	40	<5	.11	<5	162	29	9
288586	53.95	54.41	0.46	1	.12	15	.32	17	.04	7	<2	52	<5	.12	<5	167	30	5
288587	53.49	53.95	0.46	1	.11	15	.26	17	.36	<2	<2	53	<5	.11	<5	146	33	3
288588		Standbard C		227	.13	30	.15	50	2.08	23	<2	37	<5	.12	<5	51	140	1025
288589	54.41	54.86	0.46	2	.12	14	.29	18	.05	10	<2	52	<5	.11	<5	149	29	13
288590	54.86	55.47	0.61	1	.12	13	.25	14	.03	<2	<2	81	<5	.12	<5	140	33	6
288591	55.47	56.08	0.61	1	.11	11	.22	12	.03	<2	<2	45	<5	.11	<5	143	30	8
288592	56.08	56.69	0.61	2	.12	12	.23	10	.03	3	<2	39	<5	.10	<5	145	33	31
288593	56.69	57.30	0.61	1	.11	16	.26	18	.05	<2	<2	91	<5	.12	<5	164	41	10
288594	57.30	57.91	0.61	1	.10	11	.26	15	.06	3	<2	76	<5	.11	<5	156	32	7
288595	57.91	58.52	0.61	1	.11	13	.26	16	.19	3	<2	105	<5	.12	<5	154	33	3
288596	58.52	59.13	0.61	1	.10	15	.28	17	.03	<2	<2	60	<5	.11	<5	153	47	2
288597	59.13	59.74	0.61	1	.10	11	.34	15	.03	<2	<2	59	<5	.12	<5	144	32	5
288598	59.74	60.35	0.61	1	.11	14	.26	17	.18	6	<2	55	<5	.14	<5	156	30	3
288599		Standard B		1	.13	34	.11	18	.06	<2	<2	38	<5	.13	<5	50	43	8
288600	60.35	60.81	0.46	1	.13	16	.25	19	.03	3	<2	71	<5	.14	<5	167	31	7
288601	60.81	61.26	0.46	1	.11	15	.27	18	.03	<2	<2	47	<5	.11	<5	179	26	5
288602	62.03	62.48	0.46	1	.13	14	.22	14	.03	<2	<2	91	<5	.12	<5	162	29	10
288603	62.48	63.09	0.61	1	.11	13	.25	15	.49	4	<2	86	<5	.11	<5	142	22	8
288604	63.09	63.70	0.61	2	.12	14	.27	20	.23	6	<2	82	<5	.11	<5	152	36	4
288605	63.70	64.31	0.61	22	.11	17	.34	22	1.37	<2	<2	46	<5	.10	<5	107	71	2
288606	64.31	64.92	0.61	1	.11	11	.31	14	.13	5	<2	78	<5	.11	<5	136	27	6
288607	64.92	65.53	0.61	1	.13	12	.28	17	.10	2	<2	98	<5	.12	<5	155	26	4
288608	65.53	66.14	0.61	1	.12	11	.23	16	.06	3	<2	71	<5	.10	<5	161	33	3

								10-LC	D-16					77 - X3				
Sample	From	То	Interval	Мо	Na	Ni	Р	Pb	S	Sb	Sn	Sr	Те	Ti	TI	v	Zn	Au
No.	(m)	(m)	(m)	ppm	%	ppm	%	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppb
288609	66.14	66.75	0.61	1	.11	12	.26	12	.14	<2	<2	55	<5	.11	<5	140	28	2
288610	66.75	67.67	0.91	1	.10	28	.30	9	.08	4	<2	57	<5	.17	<5	262	42	5
288611	67.67	68.28	0.61	1	.14	17	.22	17	.30	<2	<2	129	<5	.09	<5	157	27	3
288612	68.28	69.19	0.91	1	.12	19	.23	30	.46	<2	<2	151	<5	.04	<5	112	92	3
288613	79.71	80.31	0.61	1	.07	53	.34	35	.03	7	<2	84	<5	.07	<5	273	173	2
288614	69.19	69.80	0.61	7	.07	11	.23	13	.09	4	<2	156	<5	.01	<5	102	49	5
288616	74.37	75.29	0.91	1	.10	17	.31	26	.93	<2	<2	106	<5	.07	<5	136	66	11
288617	75.29	75.90	0.61	1	.11	16	.28	32	.08	3	<2	111	<5	.09	<5	148	42	9
288618	73.76	74.37	0.61	1	.12	19	.26	33	.03	3	<2	141	<5	.10	<5	149	77	2
288619		Standard C		243	.13	30	.14	50	2.03	22	<2	39	<5	.13	<5	53	149	950
288620	79.25	79.71	0.46	1	.09	31	.25	30	.02	5	<2	94	<5	.14	<5	196	82	4
288621	80.31	80.77	0.46	1	.07	29	.22	26	.05	<2	<2	84	<5	.01	<5	96	181	2
288622		Standard C		227	.13	31	.09	42	2.05	20	<2	37	<5	.12	<5	52	151	1010
288623	83.21	83.82	0.61	1	.10	21	.26	21	.02	<2	<2	136	<5	.03	<5	91	105	2
288624	83.82	84.43	0.61	11	.07	23	.32	27	5.52	<2	<2	134	<5	.06	<5	64	67	13
288625	84.43	85.34	0.91	1	.10	22	.26	26	.11	6	<2	105	<5	.05	<5	132	57	3
288626	85.34	85.95	0.61	1	.11	21	.26	38	.17	3	<2	102	<5	.04	<5	121	92	2
288627	85.95	86.41	0.46	1	.07	12	.30	26	.22	53	<2	118	<5	.02	<5	109	151	3
288628	86.41	87.02	0.61	3	.08	22	.29	25	.08	8	<2	97	<5	.01	<5	168	116	2
288629	98.30	98.91	0.61	3	.10	17	.28	16	.07	8	<2	76	<5	.14	<5	140	44	3
288630	87.02	87.78	0.76	1	.06	14	.29	18	.23	26	<2	98	<5	.01	<5	108	96	1
288631		Standard B		1	.10	34	.14	16	.05	<2	<2	36	<5	.12	<5	49	46	6
288632	98.91	99.52	0.61	6	.08	21	.42	29	.09	2	<2	83	<5	.13	<5	141	101	3
288633	99.52	100.28	0.76	2	.06	23	.34	22	.04	5	<2	125	<5	.08	<5	84	75	3
288634	100.28	100.89	0.61	1	.10	14	.35	20	.05	<2	<2	105	<5	.09	<5	147	52	4
288635	100.89	101.50	0.61	1	.09	20	.39	22	.02	6	<2	94	<5	.12	<5	159	100	58
288636	101.50	102.11	0.61	1	.09	17	.31	18	.02	<2	<2	64	<5	.13	<5	154	54	2
288637	102.11	102.72	0.61	1	.09	22	.24	25	.04	5	<2	81	<5	.16	<5	128	37	10
288638	102.72	103.48	0.76	1	.09	16	.30	19	.02	6	<2	72	<5	.12	<5	159	38	9
288641	43.74	44.35	0.61	3	.08	24	.36	142	.04	4	<2	108	<5	.09	<5	158	326	2

								10-LC	D-16					<i>A</i> 3.				
Sample	From	То	Interval	Мо	Na	Ni	Р	Pb	S	Sb	Sn	Sr	Те	Ti	ТІ	v	Zn	Au
No.	(m)	(m)	(m)	ppm	%	ppm	%	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppb
288642	105.31	105.92	0.61	2	.08	20	.43	25	.38	2	<2	74	<5	.08	<5	88	81	3
288643	105.92	106.68	0.76	1	.09	10	.46	14	.16	3	<2	66	<5	.10	<5	127	32	2
288644	106.68	107.14	0.46	1	.09	13	.41	13	.11	2	<2	51	<5	.09	<5	113	33	6
288645	107.14	107.75	0.61	1	.08	14	.41	15	.15	7	<2	50	<5	.11	<5	104	43	4
288646	107.75	108.36	0.61	5	.06	19	.35	54	.58	57	<2	108	<5	.06	<5	87	94	3
288647	108.36	109.12	0.76	1	.07	16	.35	20	.04	6	<2	88	<5	.03	<5	129	83	2
288648	109.12	109.73	0.61	5	.10	14	.32	11	.01	2	<2	71	<5	.10	<5	134	42	5
288649	109.73	110.34	0.61	7	.08	25	.38	21	.95	3	<2	84	<5	.11	<5	120	62	2
288650	110.34	110.95	0.61	1	.10	17	.28	524	.29	3	<2	73	<5	.10	<5	92	41	4
288651	110.95	111.56	0.61	1	.09	13	.43	13	.02	<2	<2	65	<5	.09	<5	122	40	3
288652	111.56	112.01	0.46	1	.10	15	.42	22	.02	4	<2	55	<5	.11	<5	136	46	3
288653		Standard B		1	.10	34	.20	14	.06	<2	<2	35	<5	.12	<5	48	45	1
288654	112.01	112.62	0.61	37	.08	15	.39	17	.11	3	<2	56	<5	.10	<5	124	36	3
288655	112.62	113.23	0.61	1	.10	16	.38	15	.04	4	<2	74	<5	.09	<5	136	43	4
288656	116.13	116.74	0.61	1	.08	15	.33	20	.04	6	<2	70	<5	.08	<5	122	46	3
288657	115.52	116.13	0.61	1	.07	18	.34	18	.04	<2	<2	48	<5	.10	<5	134	78	4
288658	116.74	117.35	0.61	1	.07	22	.40	23	.03	9	<2	67	<5	.06	<5	140	104	3
288659	121.77	122.38	0.61	1	.08	18	.41	20	.01	2	<2	89	<5	.10	<5	116	76	2
288660	122.38	122.99	0.61	8	.06	51	.31	148	7.25	7	<2	73	<5	.07	<5	95	830	10
288661	122.99	123.75	0.76	19	.09	19	.40	18	.15	2	<2	68	<5	.12	<5	139	64	8
288662	123.75	124.36	0.61	2	.06	20	.34	20	.04	4	<2	54	<5	.09	<5	146	114	6
288663	125.43	126.03	0.61	2	.08	14	.42	11	.02	3	<2	57	<5	.10	<5	144	38	56
288664		Standard A		64	.11	28	.11	20	.96	3	<2	40	<5	.14	<5	56	63	610
288665	126.03	126.64	0.61	1	.07	18	.39	22	.11	<2	<2	58	<5	.11	<5	113	86	3
288666	126.64	127.25	0.61	1	.08	13	.30	15	.02	4	<2	43	<5	.10	<5	128	34	2
288667	61.26	62.03	0.76	1	.10	12	.29	14	.03	<2	<2	55	<5	.11	<5	150	41	39
288668	139.60	140.21	0.61	1	.07	28	.34	24	.07	4	<2	54	<5	.13	<5	158	125	3
288669	69.80	70.41	0.61	2	.06	15	.33	12	.16	5	<2	145	<5	.01	<5	115	42	2
288670	70.41	71.02	0.61	1	.10	17	.43	29	.02	2	<2	145	<5	.02	<5	120	47	10
288671	71.02	71.63	0.61	2	.10	16	.42	24	.25	3	<2	109	<5	.05	<5	136	41	8

								10-LC	D-16					11 - 11				
Sample	From	То	Interval	Мо	Na	Ni	Р	Pb	S	Sb	Sn	Sr	Те	Ti	TI	v	Zn	Au
No.	(m)	(m)	(m)	ppm	%	ppm	%	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppb
288672	71.63	72.24	0.61	2	.09	23	.43	25	.02	8	<2	147	<5	.02	<5	150	43	2
288673	72.24	72.85	0.61	1	.09	15	.39	26	.04	7	<2	92	<5	.09	<5	158	44	3
288674	140.21	140.82	0.61	1	.06	22	.35	30	.08	9	<2	63	<5	.11	<5	149	124	2
288675		Standard C		222	.11	32	.13	52	1.95	23	<2	41	<5	.12	<5	59	145	950
288676	140.82	141.43	0.61	3	.05	23	.26	24	.69	<2	<2	111	<5	.08	<5	65	124	3
288677	141.43	142.04	0.61	1	.07	18	.35	20	.04	6	<2	61	<5	.09	<5	127	96	2
288678	142.04	142.65	0.61	1	.06	25	.43	33	.02	<2	<2	77	<5	.10	<5	145	149	4
288679	142.65	143.26	0.61	3	.08	18	.42	15	.07	<2	<2	61	<5	.10	<5	144	47	3
288680	143.26	143.87	0.61	2	.08	16	.45	19	.05	<2	<2	47	<5	.11	<5	173	29	2
288681	146.30	147.22	0.91	1	.08	17	.44	14	.03	5	<2	50	<5	.12	<5	149	55	4
288682	147.22	147.83	0.61	1	.08	20	.35	26	.07	<2	<2	77	<5	.10	<5	152	79	3
288683	147.83	148.29	0.46	2	.08	28	.44	36	.04	14	<2	94	<5	.13	<5	179	129	5
288684	148.29	149.35	1.07	1	.07	30	.35	57	.04	9	<2	105	<5	.10	<5	164	211	3
288685	149.35	149.96	0.61	2	.09	38	.27	29	.05	12	<2	73	<5	.11	<5	137	95	6
288686	149.96	150.57	0.61	1	.07	21	.38	25	.03	12	<2	65	<5	.12	<5	145	66	4
288687	150.57	151.18	0.61	1	.09	19	.49	26	.05	<2	<2	86	<5	.11	<5	141	70	4
288688		Standard C		227	.10	34	.19	52	2.10	23	<2	40	<5	.12	<5	56	148	980
288689	151.18	151.79	0.61	3	.08	15	.45	20	.18	3	<2	51	<5	.11	<5	145	45	2
288690	151.79	152.40	0.61	2	.09	14	.40	19	.01	3	<2	59	<5	.12	<5	144	37	3
288691	154.23	154.84	0.61	1	.09	18	.33	24	.03	4	<2	83	<5	.10	<5	149	50	2
288692	154.84	155.45	0.61	1	.09	19	.29	19	.24	4	<2	59	<5	.12	<5	156	75	6
288693	155.45	156.06	0.61	3	.07	18	.32	41	.25	3	<2	57	<5	.10	<5	144	89	2
288694	156.06	156.67	0.61	2	.06	16	.36	35	.86	6	<2	76	<5	.08	<5	61	127	3
288695	156.67	157.28	0.61	1	.06	15	.39	26	.94	<2	<2	55	<5	.07	<5	64	51	5
288696	157.28	157.89	0.61	3	.06	16	.43	39	.48	7	<2	50	<5	.09	<5	104	114	3
288697	157.89	158.50	0.61	3	.07	17	.39	30	.23	5	<2	40	<5	.08	<5	126	83	7
288698	158.50	159.11	0.61	3	.07	16	.35	15	.45	8	<2	39	<5	.07	<5	86	37	85
288699	159.11	159.72	0.61	1	.06	20	.26	26	.02	10	<2	58	<5	.08	<5	106	79	7
288700		Standard B		1	.10	30	.15	20	.05	8	<2	32	<5	.09	<5	45	40	5
288701	159.72	160.32	0.61	1	.06	24	.33	30	.03	5	<2	70	<5	.06	<5	125	164	4

								10-LC	D-16					77 - X3				
Sample	From	То	Interval	Мо	Na	Ni	Р	Pb	S	Sb	Sn	Sr	Те	Ti	ТІ	v	Zn	Au
No.	(m)	(m)	(m)	ppm	%	ppm	%	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppb
288702	160.32	160.93	0.61	2	.06	18	.37	21	.03	12	<2	75	<5	.07	<5	126	100	8
288703	160.93	161.54	0.61	1	.07	14	.36	21	.06	<2	<2	44	<5	.06	<5	94	51	6
288704	161.54	162.15	0.61	4	.07	15	.38	20	.08	3	<2	59	<5	.05	<5	92	47	2
288705	162.15	162.76	0.61	4	.08	16	.39	13	.03	3	<2	44	<5	.07	<5	112	24	12
288706	162.76	163.37	0.61	2	.06	13	.40	22	.03	3	<2	43	<5	.08	<5	117	70	6
288707	163.37	163.98	0.61	1	.07	15	.44	52	.89	8	<2	52	<5	.07	<5	94	47	160
288708	163.98	164.74	0.76	3	.07	10	.38	21	.38	4	<2	47	<5	.06	<5	89	55	5
288709	164.74	165.51	0.76	1	.07	12	.37	27	.32	7	<2	40	<5	.07	<5	98	90	20
288710	165.51	166.12	0.61	1	.07	16	.36	37	.29	<2	<2	44	<5	.09	<5	114	81	1
288711		Standard C		226	.10	28	.10	52	1.87	25	<2	33	<5	.09	<5	50	146	1050
288712	166.12	167.03	0.91	1	.06	20	.20	34	1.04	8	<2	45	<5	.07	<5	86	205	10
288713	167.03	167.64	0.61	1	.06	10	.21	26	.14	<2	<2	42	<5	.08	<5	97	67	9
288714	167.64	168.25	0.61	1	.07	11	.25	23	.26	4	<2	48	<5	.06	<5	98	48	3
288715	168.25	169.16	0.91	1	.06	20	.21	95	3.43	5	<2	65	<5	.09	<5	73	336	4
288716	169.16	169.77	0.61	1	.07	12	.27	31	.37	<2	<2	59	<5	.08	<5	111	178	2
288717	169.77	170.38	0.61	1	.07	11	.25	33	.35	9	<2	40	<5	.09	<5	108	63	1
288718	170.38	170.99	0.61	1	.07	14	.19	36	1.68	2	<2	56	<5	.07	<5	85	98	2
288719	170.99	171.60	0.61	1	.07	13	.19	23	.06	4	<2	50	<5	.06	<5	114	51	14
288720	171.60	172.21	0.61	3	.07	16	.22	34	.44	2	<2	36	<5	.07	<5	101	87	5
288721	172.21	172.67	0.46	1	.08	13	.19	18	.03	<2	<2	62	<5	.06	<5	105	42	56
288722	172.67	173.13	0.46	2	.06	18	.20	38	.26	5	<2	41	<5	.07	<5	74	115	24
288723	173.13	173.74	0.61	1	.06	17	.22	15	.31	2	<2	128	<5	.08	<5	41	86	16
288724	173.74	174.35	0.61	1	.06	20	.24	25	.49	8	<2	59	<5	.07	<5	78	67	18
288725	174.35	174.96	0.61	5	.06	30	.22	129	4.69	4	<2	106	<5	.06	<5	58	346	9
288726	174.96	175.87	0.91	15	.08	17	.28	33	1.05	7	<2	55	<5	.07	<5	66	73	15
288727		Standard A		65	.10	28	.14	27	.99	9	<2	33	<5	.09	<5	52	70	660
288728	175.87	176.78	0.91	1	.08	15	.25	25	.03	12	<2	53	<5	.08	<5	119	49	2
288729	176.78	177.70	0.91	1	.07	20	.25	28	.32	10	<2	54	<5	.09	<5	103	117	1
288730	177.70	178.61	0.91	1	.07	27	.27	33	.28	4	<2	35	<5	.07	<5	104	116	260
288731	178.61	179.53	0.91	1	.07	22	.26	32	.16	7	<2	42	<5	.12	<5	125	89	8

								10-LC	D-16					77 - X3				
Sample	From	То	Interval	Мо	Na	Ni	Р	Pb	S	Sb	Sn	Sr	Те	Ti	ТІ	v	Zn	Au
No.	(m)	(m)	(m)	ppm	%	ppm	%	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppb
288732	179.53	180.44	0.91	1	.08	19	.27	41	.04	5	<2	48	<5	.11	<5	126	112	4
288733	180.44	181.36	0.91	1	.08	20	.22	54	1.18	3	<2	42	<5	.12	<5	111	121	2
288734	181.36	181.97	0.61	1	.09	18	.26	20	.02	6	<2	43	<5	.14	<5	127	52	6
288735	181.97	182.88	0.91	1	.07	19	.32	24	.05	4	<2	54	<5	.13	<5	143	98	5
288736		Standard B		1	.11	31	.12	23	.06	<2	<2	36	<5	.11	<5	45	46	8
288737	182.88	183.79	0.91	1	.08	19	.30	27	.02	5	<2	47	<5	.13	<5	142	112	1
288738	183.79	184.40	0.61	1	.08	18	.29	26	.04	6	<2	54	<5	.11	<5	133	52	2
288739	184.40	185.01	0.61	2	.08	22	.29	25	.03	8	<2	51	<5	.16	<5	143	97	1
288740	185.01	185.93	0.91	1	.07	17	.29	29	.02	<2	<2	41	<5	.14	<5	146	157	3
288741	185.93	186.84	0.91	1	.08	14	.34	42	.23	6	<2	51	<5	.13	<5	137	85	2
288742	186.84	187.45	0.61	1	.08	18	.34	36	.04	10	<2	38	<5	.14	<5	171	112	25
288743	187.45	188.37	0.91	4	.07	12	.30	44	.14	<2	<2	53	<5	.12	<5	108	98	11
288744	188.37	188.98	0.61	1	.07	13	.32	42	.39	<2	<2	69	<5	.11	<5	84	128	27
288745	188.98	189.59	0.61	1	.07	21	.37	41	.06	14	<2	64	<5	.13	<5	191	181	3
288746	189.59	190.50	0.91	6	.08	14	.36	36	.07	6	<2	46	<5	.12	<5	145	85	12
288747		Standard A		65	.11	25	.15	30	.97	9	<2	36	<5	.10	<5	56	70	625
288748	190.50	191.41	0.91	1	.07	15	.34	34	.02	<2	<2	50	<5	.11	<5	140	108	2
288749	191.41	192.02	0.61	1	.08	17	.34	17	.03	5	<2	36	<5	.12	<5	222	50	3
288750	192.02	192.63	0.61	1	.09	21	.41	22	.04	3	<2	60	<5	.13	<5	226	58	2
288751	192.63	193.24	0.61	2	.07	22	.49	21	.04	3	<2	61	<5	.15	<5	245	94	3
288752	120.70	121.77	1.07	1	.08	13	.39	23	.01	5	<2	57	<5	.09	<5	135	44	4
288753	193.24	193.85	0.61	1	.07	29	.37	58	.86	3	<2	215	<5	.14	<5	103	157	2
288754	193.85	194.46	0.61	1	.07	20	.41	48	.08	4	<2	72	<5	.11	<5	150	130	3
288755	194.46	195.38	0.91	1	.08	23	.49	29	.07	6	<2	42	<5	.13	<5	241	76	21
288756	195.38	195.99	0.61	1	.08	20	.41	39	.12	5	<2	53	<5	.11	<5	163	110	2
288757	195.99	196.60	0.61	1	.07	19	.34	32	.03	7	<2	72	<5	.06	<5	120	123	9
288758	196.60	197.21	0.61	1	.09	22	.36	29	.03	9	<2	53	<5	.09	<5	144	77	3
288759	197.21	198.12	0.91	1	.06	9	.27	20	.06	5	<2	120	<5	.01	<5	44	91	2
288760	198.12	199.03	0.91	3	.06	17	.50	32	.13	11	<2	115	<5	.02	<5	83	146	3
288761	199.03	199.64	0.61	1	.07	20	.41	24	.34	9	<2	92	<5	.04	<5	90	98	3

								10-L0	CD-16					<i>0</i> 0				
Sample	From	То	Interval	Мо	Na	Ni	Р	Pb	S	Sb	Sn	Sr	Те	Ti	ТІ	v	Zn	Au
No.	(m)	(m)	(m)	ppm	%	ppm	%	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppb
288762	199.64	200.25	0.61	6	.06	45	.39	75	5.45	11	<2	72	<5	.03	<5	73	156	10
288763		Standard A		63	.11	30	.18	34	.99	8	<2	36	<5	.12	<5	57	70	610
288764	200.25	201.17	0.91	1	.07	20	.43	40	.21	9	<2	65	<5	.05	<5	122	109	2
288765	201.17	202.08	0.91	1	.07	22	.43	31	.16	5	<2	68	<5	.07	<5	134	107	3
288766	202.08	203.00	0.91	1	.07	21	.42	30	.05	8	<2	73	<5	.09	<5	132	85	2
288767	203.00	203.91	0.91	1	.06	27	.43	25	.05	5	<2	59	<5	.06	<5	112	91	15
288768	203.91	204.83	0.91	1	.06	20	.45	38	.04	8	<2	61	<5	.08	<5	113	103	2
288769	204.83	205.74	0.91	2	.06	23	.53	39	.14	7	<2	78	<5	.06	<5	112	146	23
288770	205.74	206.81	1.07	1	.06	18	.37	25	.03	14	<2	97	<5	.01	<5	75	124	6
288771	206.81	207.87	1.07	1	.06	21	.40	34	.08	5	<2	91	<5	.05	<5	104	111	31
288772	207.87	208.48	0.61	1	.06	20	.43	32	.10	5	<2	76	<5	.02	<5	100	106	3
288773		Standard C		226	.10	28	.17	50	2.04	18	<2	32	<5	.09	<5	51	150	960
288774	124.36	125.43	1.07	2	.07	14	.41	19	.03	<2	<2	49	<5	.07	<5	105	43	2
288775		Standard B		1	.10	36	.15	16	.06	9	<2	28	<5	.09	<5	43	52	1
288776	208.48	209.25	0.76	1	.05	11	.46	21	.08	68	<2	100	<5	.01	<5	41	119	6
288777	209.25	210.01	0.76	1	.06	18	.46	29	.30	7	<2	84	<5	.02	<5	82	147	7
288778	210.01	210.62	0.61	1	.06	21	.48	52	.37	14	<2	88	<5	.03	<5	92	131	5
288779	210.62	211.32	0.70	1	.06	18	.42	59	1.04	55	<2	80	<5	.01	<5	58	220	4
288780	211.32	212.14	0.82	1	.06	20	.57	24	.35	4	<2	78	<5	.02	<5	77	158	2
288781	212.14	213.06	0.91	1	.06	17	.50	42	.60	9	<2	111	<5	.04	<5	80	111	1
288782		Standard C		223	.10	26	.19	55	2.05	23	<2	32	<5	.10	<5	51	132	950
288783	213.06	213.97	0.91	1	.06	17	.52	29	.14	7	<2	84	<5	.06	<5	75	98	5
288784	213.97	215.19	1.22	1	.06	19	.48	36	.03	5	<2	65	<5	.04	<5	130	149	3
288785	215.19	216.10	0.91	1	.06	19	.46	23	.03	6	<2	67	<5	.06	<5	120	96	2
288786	216.10	216.87	0.76	2	.06	18	.65	27	.04	7	<2	77	<5	.07	<5	130	103	3
288787	216.87	217.93	1.07	1	.07	14	.45	24	.04	5	<2	61	<5	.06	<5	128	62	3
288788	217.93	219.46	1.52	1	.07	17	.39	27	.03	3	<2	62	<5	.08	<5	130	88	2
288789	219.46	220.98	1.52	1	.07	16	.46	33	.03	6	<2	65	<5	.07	<5	127	83	3
288790	220.98	221.59	0.61	1	.08	14	.50	23	.04	8	<2	76	<5	.08	<5	126	80	2
288791	221.59	222.20	0.61	2	.08	16	.56	20	.02	14	<2	65	<5	.06	<5	145	79	4

								10-LC	D-16					// - X				
Sample	From	То	Interval	Мо	Na	Ni	Р	Pb	S	Sb	Sn	Sr	Те	Ti	ТІ	v	Zn	Au
No.	(m)	(m)	(m)	ppm	%	ppm	%	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppb
288792	222.20	222.81	0.61	1	.07	19	.51	16	.04	10	<2	66	<5	.06	<5	136	78	3
288793	222.81	224.03	1.22	1	.07	16	.40	17	.02	8	<2	71	<5	.05	<5	125	56	2
288794	231.95	232.87	0.91	1	.05	11	.33	14	.03	4	<2	109	<5	.01	<5	31	92	1
288795		Standard B		2	.10	33	.15	23	.06	3	<2	32	<5	.08	<5	44	44	1
288796	232.87	233.63	0.76	1	.06	22	.32	27	.20	14	<2	94	<5	.02	<5	84	144	2
288797	233.63	234.39	0.76	34	.06	6	.23	14	.03	<2	<2	102	<5	.01	<5	30	53	24
288798	236.22	237.13	0.91	1	.09	16	.38	19	.01	7	<2	57	<5	.05	<5	133	43	4
288799	237.13	238.05	0.91	8	.06	19	.25	22	.07	16	<2	152	<5	.01	<5	83	87	2
288800	238.05	239.27	1.22	1	.06	22	.31	30	.07	8	<2	91	<5	.03	<5	99	82	3
288801	249.33	250.24	0.91	1	.06	20	.37	38	.06	14	<2	125	<5	.01	<5	80	84	4
288802	250.24	251.16	0.91	1	.06	22	.38	37	.14	<2	<2	123	<5	.02	<5	88	87	2
288803	251.16	252.68	1.52	1	.06	18	.33	32	.09	7	<2	94	<5	.01	<5	84	93	3
288804	252.68	253.90	1.22	1	.06	19	.35	33	.02	6	<2	105	<5	.03	<5	98	60	15
288805	253.90	254.81	0.91	5	.06	21	.28	40	.22	3	<2	138	<5	.02	<5	99	73	5
288806	239.27	240.49	1.22	1	.06	17	.35	31	.02	6	<2	117	<5	.01	<5	78	99	6
288807	240.49	242.32	1.83	1	.06	15	.41	30	.02	13	<2	101	<5	.02	<5	73	117	48
288808	242.32	243.84	1.52	1	.06	14	.44	22	.03	14	<2	122	<5	.01	<5	39	100	3
288809	243.84	245.36	1.52	7	.06	9	.40	21	.05	<2	<2	144	<5	.01	<5	34	94	13
288810	245.36	246.89	1.52	1	.06	16	.41	27	.04	6	<2	157	<5	.02	<5	60	114	4
288811	246.89	248.41	1.52	1	.07	39	.43	33	.06	<2	<2	174	<5	.01	<5	70	156	2
288812	248.41	249.33	0.91	1	.06	22	.34	29	.08	7	<2	119	<5	.01	<5	52	132	42
288813		Standard A		63	.11	29	.15	27	1.02	8	<2	37	<5	.10	<5	55	73	590
288814	234.39	236.22	1.83	1	.07	18	.40	31	.04	15	<2	87	<5	.02	<5	101	115	90
288815	254.81	256.03	1.22	1	.06	20	.31	41	.06	13	<2	150	<5	.01	<5	89	79	12
288816	263.35	264.26	0.91	1	.06	24	.32	32	.09	8	<2	114	<5	.02	<5	107	140	3
288817	264.26	265.48	1.22	1	.07	22	.29	34	.10	<2	<2	182	<5	.01	<5	95	103	180
288818	265.48	266.85	1.37	1	.06	37	.31	52	.10	16	<2	193	<5	.02	<5	113	222	145
288819	266.85	268.22	1.37	2	.04	8	.07	22	.06	30	<2	69	<5	.01	<5	27	190	210
288820	268.22	269.75	1.52	1	.04	7	.09	7	.10	66	<2	54	<5	.01	<5	26	214	13
288821	269.75	270.66	0.91	2	.05	12	.10	11	.27	370	<2	63	<5	.01	<5	29	415	3

								10-LC	D-16					/ // W <				
Sample	From	То	Interval	Мо	Na	Ni	Р	Pb	S	Sb	Sn	Sr	Те	Ti	ТІ	v	Zn	Au
No.	(m)	(m)	(m)	ppm	%	ppm	%	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppb
288822	271.58	272.80	1.22	1	.06	8	.14	38	.13	373	<2	78	<5	.01	<5	21	408	2
288823	272.80	273.71	0.91	3	.05	7	.07	86	.22	517	<2	79	<5	.01	<5	19	537	10
288824	273.71	274.93	1.22	2	.06	13	.16	50	.20	176	<2	69	<5	.01	<5	32	358	9
288825	274.93	275.84	0.91	2	.06	12	.22	30	.24	38	<2	83	<5	.01	<5	28	245	3
288826	275.84	276.45	0.61	3	.06	9	.20	53	.25	106	<2	80	<5	.01	<5	29	306	7
288827	276.45	277.06	0.61	1	.06	12	.18	34	.26	17	<2	79	<5	.01	<5	30	246	5
288828	277.06	277.98	0.91	2	.05	12	.20	32	.23	103	<2	76	<5	.01	<5	30	315	3
288829		Standard C	L	235	.11	29	.14	50	2.05	24	<2	36	<5	.10	<5	52	141	980
288830	277.98	278.89	0.91	3	.06	12	.14	43	.27	146	<2	75	<5	.01	<5	33	340	2
288831	278.89	279.50	0.61	2	.05	11	.13	33	.35	262	<2	65	<5	.01	<5	25	372	3
288832	279.50	280.26	0.76	2	.06	12	.17	53	.34	350	<2	76	<5	.01	<5	33	470	53
288833	280.26	281.33	1.07	3	.06	13	.19	26	.41	241	<2	73	<5	.01	<5	29	449	22
288834	281.33	282.24	0.91	5	.05	9	.12	122	1.06	764	<2	53	<5	.01	<5	28	657	13
288835	282.24	282.85	0.61	8	.05	12	.13	428	3.33	1287	<2	40	7	.01	<5	26	900	14
288836		Standard B		1	.11	32	.14	19	.06	3	<2	34	<5	.09	<5	46	45	6
288837	282.85	283.62	0.76	18	.05	7	.10	23	1.15	386	<2	52	<5	.01	<5	17	322	8
288838	283.62	284.68	1.07	3	.06	11	.20	65	.31	520	<2	83	<5	.02	<5	27	556	9
288839	270.66	271.58	0.91	5	.06	8	.24	130	.28	610	<2	73	<5	.01	<5	23	480	3

Standard	Check
----------	-------

Standard Symbol	Standard Type
	CDN-CGS-22
Α	0.725 ± 0.028 % Cu
	0.64 ± 0.06 g/t Au
В	CDN-BL-7
	<0.01 g/t Au, Pt, Pd
	CDN-CGS-21
С	1.3 ± 0.084 % Cu
	0.99 ± 0.09 g/t Au

DDH 10-16		Standards						Cu	Cu	*Au	Au	Cu	Cu	Au	Au	Cu	Cu	Cu
Sample No.	Standard	Cu %	Cu High	Cu Low	Au g/t	Au High	Au Low	ppm	%	ppb	g/t	less than high	greater than low	less than high	greater than low	Change High	Change Low	% off standard
288664	А	0.725	0.753	0.697	0.64	0.7	0.58	7535	0.7535	610	0.6100	FALSE	TRUE	TRUE	TRUE	0.0005		0.0717
288727	А	0.725	0.753	0.697	0.64	0.7	0.58	7304	0.7304	660	0.6600	TRUE	TRUE	TRUE	TRUE			
288747	А	0.725	0.753	0.697	0.64	0.7	0.58	7252	0.7252	625	0.6250	TRUE	TRUE	TRUE	TRUE			
288763	А	0.725	0.753	0.697	0.64	0.7	0.58	7280	0.7280	610	0.6100	TRUE	TRUE	TRUE	TRUE			
288813	А	0.725	0.753	0.697	0.64	0.7	0.58	7290	0.7290	590	0.5900	TRUE	TRUE	TRUE	TRUE			
288581	В				<0.01			25	0.0025	5	0.0050							
288584	В				<0.01			25	0.0025	6	0.0060							
288599	В				<0.01			26	0.0026	8	0.0080							
288631	В				<0.01			28	0.0028	6	0.0060							
288653	В				<0.01			28	0.0028	1	0.0010							
288700	В				<0.01			25	0.0025	5	0.0050							
288736	В				<0.01			28	0.0028	8	0.0080							
288775	В				<0.01			32	0.0032	1	0.0010							
288795	В				<0.01			29	0.0029	1	0.0010							
288836	В				<0.01			38	0.0038	6	0.0060							
288588	С	1.3	1.384	1.216	0.99	1.08	0.9	13250	1.3250	1025	1.0250	TRUE	TRUE	TRUE	TRUE			

DDH 10-16		Standards						Cu	Cu	*Au	Au	Cu	Cu	Au	Au	Cu	Cu	Cu
Sample No.	Standard	Cu %	Cu High	Cu Low	Au g/t	Au High	Au Low	ppm	%	ppb	g/t	less than high	greater than low	less than high	greater than low	Change High	Change Low	% off standard
288619	С	1.3	1.384	1.216	0.99	1.08	0.9	13205	1.3205	950	0.9500	TRUE	TRUE	TRUE	TRUE			
288622	С	1.3	1.384	1.216	0.99	1.08	0.9	13356	1.3356	1010	1.0100	TRUE	TRUE	TRUE	TRUE			
288640	С	1.3	1.384	1.216	0.99	1.08	0.9	13160	1.3160	920	0.9200	TRUE	TRUE	TRUE	TRUE			
288675	С	1.3	1.384	1.216	0.99	1.08	0.9	13010	1.3010	950	0.9500	TRUE	TRUE	TRUE	TRUE			
288688	С	1.3	1.384	1.216	0.99	1.08	0.9	13509	1.3509	980	0.9800	TRUE	TRUE	TRUE	TRUE			
288711	С	1.3	1.384	1.216	0.99	1.08	0.9	13400	1.3400	1050	1.0500	TRUE	TRUE	TRUE	TRUE			
288773	С	1.3	1.384	1.216	0.99	1.08	0.9	13234	1.3234	960	0.9600	TRUE	TRUE	TRUE	TRUE			
288782	С	1.3	1.384	1.216	0.99	1.08	0.9	13208	1.3208	950	0.9500	TRUE	TRUE	TRUE	TRUE			
288829	С	1.3	1.384	1.216	0.99	1.08	0.9	13318	1.3318	980	0.9800	TRUE	TRUE	TRUE	TRUE			

APPENDIX IV – STATEMENT OF EXPENDITURES

Exploration Work type	Dates		Comment					_
Personnel Name (Position)	From	То	Field Days	Units			Rate	Subto
Terry Garrow, P.Geo (Geologist)	14-Sep-10	8-Oct-10		16	Days	\$	1,000.00	\$ 16,000.
Tessa Scott (Geologist)	14-Sep-10	8-Oct-10		19	Days	\$	500.00	\$ 9,500.
Core Cutter	27-Sep-10	8-Oct-10		8	Days	\$	200.00	\$ 1,600.
Mike Sakawsky (General Manager)	14-Sep-10	8-Oct-10		15	Days	\$	400.00	\$ 6,000.
								\$ 33,100.
Office Studies	From	То	Office Days	Units				
Consultation								
/like Sakawsky (General Manager)	14-Sep-10	1-Nov-10		8	Days	\$	300.00	\$ 2,400
Ferry Garrow, P.Geo (Geologist)	1-Jul-10	1-Nov-10		14.0	Days	\$	1,000.00	\$ 14,000
Report preparation & Database compilation								
Terry Garrow P.Geo (Geologist)	1-Feb-11	11-Mar-11			AR	RIS Report		\$ 2,000
								\$ 18,400.
Geochemical Analysis			Procedure	No.		Rate		Subto
Pioneer Laboratories			Au Analysis 20 gm	287	Samples	\$	8.50	\$ 2,439.
			ICP Analysis	287	Samples	\$	8.50	\$ 2,439.
			Core Sample Preparation	262	Samples	\$	6.95	\$ 1,820.
			Standard	1	Units	\$	90.00	\$ 90.
			Rice Sacks	10	Units	\$	0.95	\$ 9.
			Assay Tag Books	7	Units	\$	7.00	\$ 49.
			Ties	1000	Units	\$	0.04	\$ 35
			6ml 12" X 20" sample bags	400	Units	\$	0.23	\$ 92
								\$ 6,975

	•		× // W <			
Dates Description	Comment	No.	Rate		S	Subtot
Super 38 long	ear, one holes, NQ Core	934.0	Feet \$	62.00	\$ 57	7,908.0
		1.0	\$	637.50	\$	637.5
		1.0	\$	288.00	\$	288.0
		1.0	\$ 17,2	44.00	\$ 17	7,244.0
					\$ 76	6,077.5
From	То	No.	Rate		S	Subtota
1-Sep-10	15-Oct-10	1.50	Months \$	3,300.00	\$ 4	4,950.0
1-Sep-10	15-Oct-10	1.50	Months \$	3,300.00	\$ 4	4,950.0
1-Sep-10	15-Oct-10	1.50	Months \$3	3,300.00	\$ 4	4,950.0
1-Sep-10	15-Oct-10	1.50	Months \$	3,300.00	\$ 4	4,950.0
1-Sep-10	30-Sep-10	1.00	Months \$1	1,000.00	\$ 11	1,000.0
					\$ 30	0,800.0
		No.	Rate		S	Subtot
14-Sep-10	8-Oct-10	42.00	Days \$	100.00	\$ 4	4,200.0
14-Sep-10	28-Sep-10	14.00	Days \$	100.00	\$ 1	1,400.0
14-Sep-10	28-Sep-10	27.00	Man Days \$	50.00	\$ 1	1,350.0
14-3ep-10						
14-Sep-10	8-Oct-10	50.00	Man Days \$	50.00	\$2	2,500.0
			Man Days \$	50.00		
			Man Days \$ Rate	50.00	\$9	2,500.0 9,450.0 Subtot
		50.00		50.00	\$ 9 S	9,450.0
	Super 38 longy From 1-Sep-10 1-Sep-10 1-Sep-10 1-Sep-10 1-Sep-10 1-Sep-10 1-Sep-10 1-Sep-10	Super 38 longyear, one holes, NQ Core From To 1-Sep-10 15-Oct-10 1-Sep-10 15-Oct-10 1-Sep-10 15-Oct-10 1-Sep-10 15-Oct-10 1-Sep-10 15-Oct-10 1-Sep-10 30-Sep-10 14-Sep-10 8-Oct-10 14-Sep-10 28-Sep-10	Super 38 longyear, one holes, NQ Core 934.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.2ep-10 15-Oct-10 1-Sep-10 15-Oct-10 1-Sep-10 15-Oct-10 1-Sep-10 15-Oct-10 1-Sep-10 30-Sep-10 100 1.00	Super 38 longyear, one holes, NQ Core 934.0 Feet \$ 1.0 \$ 1.0 \$ 1.0 \$ 1.0 \$ 1.0 \$ 1.0 \$ 1.0 \$ \$ 1.0 \$ 1.0 \$ \$ 1.0 \$ 1.0 \$ \$ 1.0 \$ 1.0 \$ \$ 1.0 \$ 1.2 \$ \$ 1.0 \$ 1.2 \$ \$ \$ \$ 1.2 \$ \$ \$ \$ 1.2 \$ \$ \$ \$ 1.2 \$ \$ \$ \$ 1.2 \$ \$ \$ \$ 1.2 \$ \$ \$ \$ 1.2 \$ \$ \$ \$ 1.2 \$ \$ \$ \$ 1.2 \$ \$ \$ \$ 1.2 \$ \$ \$ \$ 1.2	Super 38 longyear, one holes, NQ Core 934.0 Feet \$ 62.00 1.0 \$ 637.50 1.0 \$ 288.00 1.0 \$ 17,244.00 \$ 17,244.00 1-Sep-10 15-Oct-10 1.50 Months \$ 3,300.00 1-Sep-10 30-Sep-10 15-Oct-10 1.50 Months \$ 3,300.00 1-Sep-10 30-Sep-10 15-Oct-10 1.50 Months \$ 3,300.00 1-Sep-10 30-Sep-10 15-Oct-10 1.50 Months \$ 11,000.00	Super 38 longyear, one holes, NQ Core 934.0 Feet \$ 62.00 \$ 57 1.0 \$ 637.50 \$ 1.0 \$ 17,244.00 \$ 17 From To No. Rate \$ 76 1-Sep-10 15-Oct-10 1.50 Months \$ 3,300.00 \$ 4 1-Sep-10 30-Sep-10 1.00 Months \$ 11,000.00 \$ 11 1-Sep-10 30-Sep-10 1.00 Months \$ 11,000.00 \$ 11 1-Sep-10 3-Sep-10 1.00 Months \$ 10,00 \$ 12 14-Sep-10 8-O

TOTAL Expenditures

\$175,552.90

APPENDIX V – ASSAY CERTIFICATES

PIONEER L	ABORA	FORIES	S INC.					#103-	2691 \	/ISCOU	INT WA	Y RI	снмо	ND, B	C CAI	NADA	V6V	2R5							г	ELEP	HONE (504) 231	-8165
LOGAN CO Project: Sample Typ		C.						Multi-e to 10 and lir	elemen ml with mited fo	iwater. ⊳rNa, ł	nalysis This le	A N A - 0.500 g ach is p I. *Au A ned by A	gram s artial f nalysis	ample i or B, B s- 20 gr	is diges a, Cr, am san	ted with Fe,⇒Mg ıple is d	i3mlo I.Mn.	Na. P	regia, (. S. S	n. Ti					F	Report	t <u>PS</u> No. 2102 October 2	769	
ELEMENT	Ag	Al		В	Ba	Bi	Ca	Cd	Co	Cr	Cu	Fe	<u>- к</u>	Mg	Mn	Мо	Na	Ni	P	Pb	s	Sb	Sn	Sr	Те	Ti	TIV	70	*
SAMPLE	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%	%	%	ppm	ppm	%		%	ppm		ppm		ppm			opm ppm	Zn ppm	
288551	.3	1.71	15	~5	60	-10	0.05	.4																					
288552	.3	1.63	20	<5 <5	68 389	<10 <10	2.25	<1	14	37	156	3.59	.08	.97	349	1	.09	18	.14	25	.03	4	<2	67	<5	.11	<5 154	29	45
288553	.2	1.62	20 <5	~5 <5	121	<10	2.43 2.21	<1 -1	13	23	476	3.51	.05	1.01	371	1	.08	15	.17	16	.04	<2	<2	92	<5	.10	<5 147	28	2
288554	.2	1.67	22	<5	481	<10	1.29	<1 <1	18	28	948	2.96	.08	1.43	452	1	.08	20	.13	24	.50	6	<2	56	<5	.11	<5 121	39	3
288555	.2		10	<5	565	<10	2.39	<1	22	23	777	4.68	.07	1.23	313	24	.07	17	.17	26	.50	<2	<2	40	<5	.09	<5 126	35	2
200000		1.43	10	~5	000	<10	2.39	~1	15	23	199	3.39	.06	.95	351	2	.08	16	.12	21	.01	<2	<2	55	<5	.08	<5 143	28	32
288556	.2	1.14	14	<5	64	<10	1.27	<1	14	24	142	3.65	05	07	200														
288557	.2	1.12	<5	<5	68	<10	1.59	<1	13	24	142	3.65 3.40	.05 .05	.87 .83	289	1	.09	17	.21	14	.01	<2	<2	39	<5	.11	<5 160	34	10
288559	.2	1.12	16	<5	92	<10	1.37	<1	12	24	136	3.40	.05	.03 .70	264	1	.08	14	.18	17	.02	<2	<2	44	<5	.09	<5 148	28	70
288560	.3	2.80	<5	<5	56	<10	3.38	<1	19	25	203	3.20	.07	1.39	180	1	.08	15	.20	13	.03	<2	<2	68	<5	.08	<5 145	24	17
288561	.2	1.42	11	<5	362	<10	1.80	<1	15	29	900	4.08	.08 .07	.95	546 322	1 2	.08 09.	22 17	.27 .26	34 22	.02 .11	6 <2	<2 <2	88 56	<5 <5	.11 .12	<5 156 <5 161	68 27	2 7
288562	.3	2.00	12	<5	83	<10	2.60	<1	14	27	260	3.92	.07	.92	368	1	00	14	20	00									,
288563	.7	1.64	37	<5	76	<10	2.14	<1	12	22	185	4.20	.07	.92	300 344	2	.09 .10	14	.28	26	.03	4	<2	63	<5	.10	<5 162	28	5
288564	.4	2.17	8	<5	42	<10	2.78	<1	22	15	238	3.51	.07	.89	302	2 1	.10	15	.27	23	.03	<2	<2	84	<5	.11	<5 155	26	11
288565	.2	1.44	<5	<5	41	<10	1.69	<1	11	23	322	3.66	.00	.80	289	1	.08	13	.16	35	1.57	6	<2	83	<5	.08	<5 98	27	6
288566	.2	1.87	21	<5	19	<10	2.36	<1	24	53	150	5.36	.05	1.35	209 413	1	.08	11 25	.25 .28	22 30	.11 .21	7 4	<2 <2	61 44	<5 <5	.09 .16	<5 143 <5 222	26 40	29 28
288567	.2	1.31	<5	<5	286	<10	1.48	<1	10	43	64	3.77	.07	.92	252	1	.11	17	.30	22	.01	~0	~0						
288568	.3	1.36	5	<5	82	<10	2.12	<1	13	27	36	3.52	.05	.70	228	2	.10	11	.30	22	.73	<2 6	<2	57	<5	.13	<5 160	21	2
288569	.3	1.87	32	<5	64	<10	2.30	<1	14	23	347	3.71	.06	.84	301	1	.10	14	.40	20	.75	8	<2	68	<5	.11	<5 143	17	3
288570	.2	.97	6	<5	127	<10	1.39	<1	13	30	190	3.38	.05	.64	189	1	.10	13	.35	15	.03	~2	<2	68	<5	.12	<5 145	53	2
288571	.3	1.23	<5	<5	128	<10	1.65	<1	17	23	611	3.52	.05	.75	237	1	.10	12	.29	18	.03 .34	~2 <2	<2 <2	48 64	<5 <5	.10 .09	<5 135 <5 137	29 25	10 6
288572	.2	1.16	14	<5	332	<10	1.62	<1	12	22	144	3.43	.05	.70	205	1	.10	6	.30	13	.10	3	<2	70	<5	00	<f 100<="" td=""><td></td><td>•</td></f>		•
288573	.3	1.96	<5	<5	90	<10	2.59	<1	13	19	227	3.08	.05	.87	319	1	.12	11	.24	24	.12	<2	<2	98	~5 <5	.08 .07	<5 129 <5 114	22	2
288574	.2	1.33	26	<5	42	<10	1.66	<1	14	34	334	3.93	.05	.86	241	1	.11	14	.28	16	.09	4	<2	48	<5	.12	<5 161	26	3
288575	.2	1.59	<5	<5	326	<10	2.44	<1	16	29	355	4.00	.07	.87	288	1	.12	15	.29	20	.10	<2	<2	109	<5	.12	<5 101	28 24	19 42
288576	.3	1.67	<5	<5	102	<10	2.61	<1	15	27	103	3.82	.07	1.00	346	1	.11	14	.30	21	.04	<2	<2	103	<5	.10	<5 153	24 28	42 3
288577	.3	1.08	<5	<5	60	<10	1.44	<1	12	31	186	3.79	.06	.72	232	1	.11	15	.39	13	02	2	~?	40	-5	40		<u>~-</u>	
288578	.2	1.05	14	<5	64	<10	1.50	<1	13	41	202	3.77	.00	.60	219	1	.13	13	.39 .44		.03	3	<2	48	<5		<5 161	25	2
288579	.2	1.03	4	<5	68		1.25	<1	14	33	274		.03	.00	219	1	.13	13	.44 .34	19	.04	<2	<2	59	<5		<5 181	26	3
288580	.3	1.12	7	<5	217	<10	1.54	<1	15	25		3.16	.07	.79	229	1	.09	14		12	.05	<2	<2	45	<5		<5 140	34	2
288581		1.16	10	<5	149	<10	.83	<1	11	48		1.99	.10	.63	417	2	.09	35	.28 .13	19 21	.05 .05	<2 <2	<2 <2	82 37	<5 <5	.08 .12	<5 143 <5 52	25 45	3 5
288582	.2	.95	14	<5	126	<10	1.15	<1	14	120	262	3.49	.07	.81	233	2	.13	19	.29	14	.03	4	~?	81	~F	11	ZE 450		-
288583 🍐	.2	1.40	18	<5	137	<10	2.02	<1	15	33		3.54	.06	.80	265	1	.11	15	.20	18	.03	-4 -2	<2 <2	79	<5 <5		<5 153	34	(F
288584	.3	1.15	7	<5	145	<10	.83	<1	12	47		1.94	.11	.62	413	1	.13	34	.10	19	.05	~2 <2	<2 <2	79 38	<5 <5		<5 158	23	5
288585	.2	.96	4	<5	40	<10	1.18	<1	11	36	217	3.61	.05	.77	220	1	.13	14	.31	9	.05	~2 <2	<2	30 40	<5 <5		<5 52	42	6
288586 -	.3	1.28	10	<5	42	<10	1.47	<1	13	34	156	3.67	.06	.81	265	1	.12	15	.32	17	.02	7	~2 <2	40 52	<5		<5 162 <5 167	29 30	9 5
																-						'	-4	52	-0	. 14	-0 107	30	5

· _

Report 2102769

ררכוווריו

ELEMENT	Ag	AI	As	В	Ва	Bi	Са	Cd	<u> </u>																			
SAMPLE	ppm	%	ppm	ppm	ppm	ppm		ppm	Со ррт	Cr ppm	Cu ppm	Fe %	K %	Mg %	Mn	Mo	Na	Ni	P	Pb	S		Sn	Sr Te	Ti	TI V	Zn	*Au
	<u>PP···</u>		ppin	ppiii	ppin	ppm		ppin	ppin	ppin	ppin		/0		ppm	ppm	%	ppm	%	ppm	%	ppm pp	<u>m p</u>	opm ppm	% p	рт ррт	ppm	ppb
000507	_		-	_																								
288587 288588	.2	1.11	<5	<5	56	<10	1.49	<1	16	37	203	4.19	.05	.72	240	1	.11	15	.26	17	.36	<2 <	<2	53 <5	.11	<5 146	33	3
288589	5.1	1.36 1.43	20	<5	96	10	.82	3	10	43	13250	3.70	.15	.78	431	227	.13	30	.15	50	2.08		<2	37 <5	.12	<5 51	140 ⁻	1025
288590	.3 .2	1.43	30 21	<5 ~5	45	<10	1.63	<1	13	39	233	4.33	.07	.83	265	2	.12	14	.29	18	.05		<2	52 <5	.11	<5 149	29	13
288591	.2	.97	18	<5 <5	182 59	<10 <10	1.25 1.20	<1 <1	12 10	46 40	180 229	4.05 4.08	.08 .07	.82 .71	243	1	.12	13	.25	14	.03		<2	81 <5	.12	<5 140	33	6
200001		.01	10	-0	00	10	1.20		10	40	229	4.00	.07	.71	224	1	.11	11	.22	12	.03	<2 <	<2	45 <5	.11	<5 143	30	8
288592	.4	.84	12	<5	68	<10	1.00	<1	11	50	210	4.00	.09	.76	202	2	.12	12	.23	10	.03	3 <	<2	39 <5	.10	<5 145	22	24
288593	.3	1.31	8	<5	101	<10	1.58	<1	14	48	192	4.60	.07	.88	342	1	.11	16	.26	18	.05		<2	91 <5	.10	<5 164	33 41	31 10
288594	.2	1.09	18	<5	113	<10	1.48	<1	12	35	228	4.29	.05	.72	274	1	.10	11	.26	15	.06		<2	76 <5	.12	<5 156	32	
288595	.2	1.08	21	<5	176	<10	1.76	<1	17	30	171	4.28	.05	.73	273	1	.11	13	.26	16	.19			105 <5	.12	<5 150	33	7 3
288596	.3	1.40	<5	<5	33	<10	2.42	<1	14	29	158	4.44	.06	1.00	477	1	.10	15	.28	17	.03		<2	60 <5	.11	<5 154	47	2
288597	.2	1.08	<5	<5	189	<10	1.44	<1	13	31	162	4 1 4	07	00	200	4	40			4 -			_					
288598	.3	1.41	20	<5	39	<10	1.82	<1	14	33	270	4.14	.07 .07	.82	322 401	1 1	.10	11	.34	15	.03		<2	59 <5	.12	<5 144	32	5
288599	.2	1.18	7	<5	142	<10	.84	<1	10	51	270	4.55 1.95	.07	1.11 .64	401	1	.11	14	.26	17	.18		<2	55 <5	.14	<5 156	30	3
288600	.3	1.58	<5	<5	51	<10	1.99	<1	13	40	258	4.83	.07	1.11	430	1	.13 .13	34 16	.11	18	.06		<2	38 <5	.13	<5 50	43	8
288601	.2	1.25	13	<5	34	<10	1.74	<1	12	41	222	4.84	.07	.87	356	1	.13	15	.25 .27	19 18	.03 .03		<2 <2	71 <5 47 <5	.14	<5 167	31	7
														.01	000	•		10	. 21	10	.00	-2	~2	47 \0	.11	<5 179	26	5
288602	.3	1.22	15	<5	594	<10	2.05	<1	13	42	165	4.51	.07	.83	389	1	.13	14	.22	14	.03	<2 <	<2	91 <5	.12	<5 162	29	10
288603	.2	1.20	6	<5	331	<10	1.72	<1	12	33	231	4.11	.06	.79	277	1	.11	13	.25	15	.49		<2	86 <5	.11	<5 142	22	8
288604	.3	1.26	8	<5	259	<10	1.62	<1	14	41	328	4.23	.05	.77	240	2	.12	14	.27	20	.23		<2	82 <5	.11	<5 152	36	4
288605	.2	1.16	15	<5	74	<10	1.91	<1	45	29	411	3.71	.06	.73	231	22	.11	17	.34	22	1.37	<2 <	<2	46 <5	.10	<5 107	71	2
288606	.2	1.13	25	<5	101	<10	1.74	<1	11	36	203	3.83	.05	.88	297	1	.11	11	.31	14	.13	5 <	<2	78 <5	.11	<5 136	27	6
288607	.3	1.21	12	<5	1036	<10	1.71	<1	10	43	167	4.25	.06	.80	278	1	.13	10	20	17	10	^	-0	00 45	40			
288608	.2	1.13	17	<5	87	<10	1.55	<1	9	49	151	4.27	.00	.80	278	1	.13	12 11	.28 .23	17	.10		<2	98 <5		<5 155	26	4
288609	.2	1.04	22	<5	62	<10	1.85	<1	10	37	226	4.16	.06	.80	318	1	.12	12	.23	16 12	.06		<2	71 <5	.10	<5 161	33	3
288610	.2	.98	18	<5	86	<10	1.81	<1	16	93	272	6.61	.00	1.00	341	1	.10	28	.20	9	.14 .08		<2 <2	55 <5 57 <5	.11	<5 140	28	2
288611	.3	1.52	21	<5	186	<10	2.00	<1	18	56	120	4.56	.06	.86	309	1	.14	17	.22	17	.30			57 <5 129 <5	.17 .09	<5 262 <5 157	42 27	5 3
288612	2	2 1 1	45	~E	40	-10	0.07	~			450	4.00															_,	•
288613	.3 .2	2.11 2.36	15 23	<5 <5	40 51	<10	6.67 6.75	2	22	22	153	4.33	.11	1.12	782	1	.12	19	.23	30	.46			151 <5		<5 112	92	3
288614	.2	2.30 .96	35	~5 <5	31	<10	6.75 10.49	<1 <1	36	98 15	365	8.33	.10	2.65	2220	1	.07	53	.34	35	.03		-2	84 <5		<5 273	173	2
288616	.6	2.03	<5	~5 <5	41	<10	2.44	<1	14 38	28	229 3417	3.20 4.83	.10 .07	.76 1.35	1232 668	7	.07	11	.23	13	.09			156 <5	.01	<5 102	49	5
288617	.3	2.33	11	<5	42	<10	2.66	<1	18	26	167	4.83	.07	1.35	663	1 1	.10 .11	17 16	.31 .28	26 32	.93 .08			106 <5		<5 136	66	11
		2.00					2.00		10	20	107	4.75	.00	1.50	005	1		10	.20	32	.00	ۍ د ۱	:2 ·	111 <5	.09	<5 148	42	9
288618	.3	2.45	<5	<5	62	<10	3.82	<1	15	31	230	4.55	.08	1.44	777	1	.12	19	.26	33	.03	3 <	2 1	141 <5	.10	<5 149	77	2
288619	5.0	1.40	24	<5	101	20	.87	3	11	43	13205	3.94	.14	.80	445	243	.13	30	.14	50	2.03		2	39 <5		<5 53		2 950
288620	.3	2.12	6	<5	29	<10	3.52	<1	24	51	227	6.01	.10	2.28	1196	1	.09	31	.25	30	.02		2	94 <5		<5 196	82	4
288621	.3	2.01	38	<5	53	<10	5.00	<1	26	37	417	5.45	.24	1.55	1371	1	.07	29	.22	26		<2 <		84 <5	.01		181	2
288622	5.1	1.32	22	<5	97	14	.83	3	12	42	13356	3.75	.15	.77	429	227	.13	31	.09		2.05			37 <5	.12		151 1	
288623	2	1.65	<5	<5	26	<10	3.89	<1	14	22	120	3.67	17	1.01	067	4	10	04	20	04	00	.0		100 5	0.5			-
288624		1.84	11	<5	15		2.63	<1	65	34	11745			1.01 1.63	967 1014	1	.10	21	.26	21				136 <5	.03		105	2
288625		2.03	12	<5	416		3.51	<1	20	28		0.58 4.49		1.85		11 1	.07 10	23 22	.32		5.52			134 <5		<5 64	67	13
288626		1.87	32		1388		4.16	<1	24	36		4.50		1.43		1	.10 .11	22 21	.26 .26	26 38	.11 17			105 <5		<5 132	57	3
288627		1.49	6	<5	41		7.52	3	23	27		4.69	.41		1896	1	.07	12	.20 .30	30 26	.17 .22			102 <5 118 <5		<5 121 <5 109	92 151	2
:								-			2							14	.00	20	.44	55 1	• ~	10 5	.02	-0 109	151	3
•••																												

• •

<u>.</u>								_																	
ELEMENT	Ag	AI	As	В	Ba	Bi	Ca	Cd	Co	Cr	Cu	Fe	К	Mg	Mn	Мо	Na	Ni	Р	Pb	S S	b Sn	Sr Te	Ti TI V	Zn *Au
SAMPLE	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%	%	%	ppm	ppm	%	ppm	%	ppm	% pp	m ppm	ppm ppm	% ppm ppm	ppm ppb
288628	.2	1.67	<5	<5	34	<10	5.86	<1	21	35	145	5.65	.25	1.31	1624	3	.08	22	20	25	00	0 - 0	07 .5	04 .5 400	
288629	.2	1.25	18	<5	33	<10	1.85	<1	10	35	619	3.40	.25	1.14	532	3	.00	22 17	.29 .28	25 16	.08 .07	8 <2 8 <2	97 <5 76 <5	.01 <5 168	116 2
288630	2.1	1.17	<5	<5	47	<10	6.78	2	17	32	301	3.52	.35	.74	1483	1	.06	14	.20	18		8 <2 26 <2	76 <5 98 <5	.14 <5 140 .01 <5 108	44 3
288631	.2	1.11	11	<5	139	<10	.82	<1	10	45	28	1.91	.10	.61	395	1	.10	34	.14	16		:2 <2	36 <5	.01 <5 108 .12 <5 49	96 1 46 6
288632	.3	1.85	<5	<5	85	<10	2.76	<1	15	28	771	3.94	.10	1.68	964	6	.08	21	.42	29	.09	2 <2	83 <5	.13 <5 141	101 3
																							00 0	.10 .0 .141	101 3
288633	.2	1.37	10	<5	108	<10	2.79	<1	13	35	295	2.53	.05	1.57	850	2	.06	23	.34	22	.04	5 <2	125 <5	.08 <5 84	75 3
288634	.2	1.33	20	<5	603	<10	1.87	<1	12	28	398	3.65	.11	1.07	595	1	.10	14	.35	20	.05 <	:2 <2	105 <5	.09 <5 147	52 4
288635	.3	1.58	5	<5	144	<10	2.96	<1	16	32	219	4.15	.12	1.46	957	1	.09	20	.39	22	.02	6 <2	94 <5	.12 <5 159	100 58
288636	.2	1.60	<5	<5	36	<10	2.30	<1	14	30	162	3.88	.09	1.36	681	1	.09	17	.31	18	.02 <	:2 <2	64 <5	.13 <5 154	54 2
288637	.3	2.03	6	<5	39	<10	2.68	<1	13	36	331	3.23	.09	1.44	492	1	.09	22	.24	25	.04	5 <2	81 <5	.16 <5 128	37 10
288638	.2	1.73	10	<5	112	<10	2.43	<1	12	32	206	3.94	.08	1 22	470	4	00	40	20	40		• •			
288539	.2	2.08	<5	<5	23	<10	3.51	<1	16	28	185	3.62	.08	1.22 2.14	470 993	1 3	.09 .07	16 26	.30	19	.02	6 <2	72 <5	.12 <5 159	38 9
288540	.0 4.7	1.36	19	<5	102	<10	.88	3	11	41	13160	3.34	.03	.78	422	251	.07	20 32	.25	35		2 <2	192 <5	.10 <5 98	124 2
288641	.3	2.54	7	<5	83	<10	4.30	2	19	28	266	4.08	.10	1.85	901	231	.08	32 24	.14 .36	40 142	2.06 1 .04	8 <2 4 <2	39 <5	.13 <5 53	138 920
288642	.2	1.38	<5	<5	208	<10	2.84	<1	13	27	3102	2.91	.08	1.57	799	2	.00 .08	24	.30 .43	25	.04 .38	4 <2 2 <2	108 <5 74 <5	.09 <5 158 .08 <5 88	326 2
			-								0.02	2.01	.00	1.01	100	2	.00	20	.40	20	.50	2 -2	74 \0	.00 \5 00	81 3
288643	.2	1.11	20	<5	311	<10	1.85	<1	8	29	1115	3.43	.08	.90	378	1	.09	10	.46	14	.16	3 <2	66 <5	.10 <5 127	32 2
288644	.2	1.07	<5	<5	31	<10	1.46	<1	9	54	764	3.30	.08	1.07	418	1	.09	13	.41	13	.11	2 <2	51 <5	.09 <5 113	33 6
288645	.3	1.18	<5	<5	23	<10	1.71	<1	10	24	725	3.00	.06	1.41	523	1	.08	14	.41	15	.15	7 <2	50 <5	.11 <5 104	43 4
288646	1.5	1.41	10	<5	197	<10	5.26	2	24	· 22	866	3.36	.20	1.42	1237	5	.06	19	.35	54	.58 5	57 <2	108 <5	.06 <5 87	94 3
288647	.3	1.43	20	<5	658	<10	4.54	<1	14	27	152	4.39	.24	1.24	1317	1	.07	16	.35	20	.04	6 <2	88 <5	.03 <5 129	83 2
000040				_																					
288648	.2	1.13	24	<5	616	<10	2.00	<1	13	32	50	3.76	.15	1.41	603	5	.10	14	.32	11	.01	2 <2	71 <5	.10 <5 134	42 5
288649	.3	1.56	40	<5	273	<10	3.52	<1	58	29	255	3.96	.09	2.13	986	7	.08	25	.38	21	.95	3 <2	84 <5	.11 <5 120	62 2
288650 288651	.2	1.44	13 7	<5	683	<10	2.11	<1	14	30	1649	2.84	.11	1.69	658	1	.10	17	.28	524	.29	3 <2	73 <5	.10 <5 92	41 4
288652	.2 .3	1.03 1.12	29	<5 <5	528 110	<10 <10	1.35 1.58	<1 <1	11 12	28 32	157 155	3.44	.07	1.30	530	1	.09	13	.43	13		:2 <2	65 <5	.09 <5 122	40 3
200032	.5	1.12	23	-0	110	10	1.50		12	52	100	3.88	.08	1.43	653		.10	15	.42	22	.02	4 <2	55 <5	.11 <5 136	46 3
288653	.2	1.06	10	<5	138	<10	.79	<1	9	44	28	2.02	.09	.59	388	1	.10	34	.20	14	.06 <	:2 <2	35 <5	.12 <5 48	4 5 1
288654	.2	1.12	25	<5	171	<10	1.92	<1	14	27	528	3.49	.08	1.51	692	37	.08	15	.39	17	.11	3 <2	56 <5	.10 <5 124	36 3
288655	.3	1.28	15	<5	2400	<10	2.24	<1	18	32	323	4.08	.08	1.43	769	1	.10	16	.38	15	.04	4 <2	74 <5	.09 <5 136	43 4
288656	.2	1.41	17	<5	268	<10	2.64	<1	14	26	314	3.99	.11	1.66	955	1	.08	15	.33	20	.04	6 <2	70 <5	.08 <5 122	46 3
288657	.2	1.40	10	<5	61	<10	2.27	<1	17	36	362	4.18	.11	1.83	1008	1	.07	18	.34	18		2 <2	48 <5	.10 <5 134	78 4
288658	.3	1.67	14	<5	158	<10	3.71	<1	16	29	234	4.79	.17	1.91	1349	1	.07	22	.40	23	.03	9 <2	67 <5	.06 <5 140	104 3
288659	.3	1.48	6	<5	42	<10	3.01	<1	14	30	57	3.47	.11	1.66	993	1	.08	18	.41	20	.01	2 <2	89 <5	.10 <5 116	76 2
288660	6.6	1.11	38	<5	70	26	3.29	8	142	25	13433	7.05	.08	1.26	1050	8	.06	51	.31	148	7.25	7 <2	73 <5 ⁻	.07 <5 95	830 10
288661		1.10	8	<5				<1	15	27		3.60		1.25	842	19	.09	19	.40	18	.15	2 <2	68 <5	.12 <5 139	64 8
288662	.3	1.40	6	<5	83	<10	2.98	<1	16	32	323	4.13	.11	1.74	1130	2	.06	20	.34	20	.04	4 <2	54 <5	.09 <5 146	114 6
288663	.2	1. 12	31	<5	200	<10	2.26	<1	12	33	101	3.94	.08	1.00	579	2	.08	14	.42	11	.02	3 <2	57 <5	10 <5 144	29 56
288664		1.39	10	<5	110	<10		1		41	7535		.15	.78	445	64	.00	28	.11	20		3 <2	57 <5 40 <5	.10 <5 144 .14 <5 56	38 56 63 610
288665		1.22	<5	<5	40		2.47	<1	13	28		3.31	.09	1.32	703	1	.07	18	.39	20		3 ~2 2 <2	40 <5 58 <5	.14 <5 56	
288666		1.06	17	<5	113		1.68	<1	10	33		3.65	.08	.82	394	1	.08	13	.30	15		4 <2	43 <5	.10 <5 128	86 3 34 2
288667		1.02	18	<5	55		1.88	<1	12	41		3.92	.08	.74	362	1	.10	12	.29	14		2 <2	43 <5 55 <5	.10 <5 128	34 2 41 39
i,											-					•				••		_ ~	00 -0		-1 JJ
* +																									

. ,

	NT	Ag	Al	As	В	Ва	·Bi	Ca	Cd	Co	Cr	Cu	Fe	ĸ	Mg	Mn	Мо	Na	Ni	P	Pb	s	Sb	Sn	Sr	Те	Ti	TI V	Zn	*Au
	AMPLE	ppm		ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%	%	%	ppm	ppm	%	ppm	%	ppm		ppm	ppm	ppm p		% pr	om ppm	ppm	ppb
in a start	·																<u> </u>									•••••				
	288668	.3	1.58	<5	<5	125	<10	3.21	<1	18	37	602	4.42	.13	2.02	1459	1	.07	28	.34	24	.07	4	<2	54	<5	.13	<5 158	125	3
	288669	.2		10	<5	22	<10	7.65	<1	17	14	134	2.85	.17	.60	797	2	.06	15	.33	12	.16	5	<2	145	<5		<5 115	42	2
	288670	.3		6	<5	32	<10	3.80	<1	19	14	73	4.70	.14	1.14	503	1	.10	17	.43	29	.02	2	<2	145	<5		<5 120	47	10
	288671	.2		<5	<5	42	<10	3.00	<1	21	21	270	4.31	.13	1.11	483	2	.10	16	.42	24	.25	3	<2	109	<5		<5 136	41	8
	288672	.3	1.94	25	<5	30	<10	5.57	<1	18	22	143	4.15	.12	1.30	833	2	.09	23	.43	25	.02	8	<2	147	<5	.02	<5 150	43	2
		-	4.00	10		40		0.00			~-				4					•••	~~	• •	_	~	~~	-				•
	288673	.3		16	<5	48	<10	3.03	<1	14	27	91	4.29	.11	1.08	547	1	.09	15	.39	26	.04	7	<2	92	<5		<5 158	44	3
	288674	.2		14	<5	92	<10	3.11	<1	18	29	360	4.08	.13	2.00	1338	1	.06	22	.35	30	.08	9	<2	63	<5		<5 149	124	2
	288675	4.7		35	30	109	16	.89	3	12	44	13010	3.75	.17	.84	441	222	.11	32	.13	52	1.95	23	<2	41	<5		<5 59	145	950
	288676	.3		<5	<5	78	<10	2.56	<1	26	36	1251	2.68	.13	1.72	1149	3	.05	23	.26	24	.69	<2	<2	111	<5		<5 65	124	3
	288677	.2	1.26	<5	<5	794	<10	2.27	<1	14	26	291	3.40	.12	1.38	814	1	.07	18	.35	20	.04	6	<2	61	<5	.09	<5 127	96	2
	200670	2	2 00	~5	~5	47	<10	2.84	-1	22	36	252	4.44	00	2 56	1569	1	06	25	42	22	02	-2	~?	77	~=	10	~E 14E	140	4
	288678 288679	.3 .3		<5 10	<5 <5	47 144	<10	2.04	<1 <1	13	30 31	253 395	4.44 3.52	.08 .13	2.56 1.31	752	3	.06 80.	25 18	.43 .42	33 15	.02 .07	<2 <2	<2 <2	77 61	<5 <5		<5 145 <5 144	149 47	4 3
	288680	.2		16	~5 <5	286	<10	1.73	<1	12	46	349	4.02	.10	.81	425	2	.08	16	.42 .45	19	.07	~2 <2	<2	47	~5 <5		<5 173	29	2
	288681	.2		15	<5	86	<10	2.22	<1	14	31	204	4.02	.10	1.18	654	1	.08	17	.43	14	.03	5	<2	50	~5 <5		<5 149	55	4
	288682	.2		<5	<5	470	<10	2.75	<1	14	44	530	4.00	.12	1.50	966	1	.08	20	.35	26	.03	<2	<2	77	~5 <5		<5 149	79	3
	200002	.2	1.42	-5	-0	4/0	10	2.15		14	44	550	4.01	.10	1.50	300	1	.00	20	.55	20	.07	~2	~2	. 11	~5	.10	~J 1JZ	15	3
	288683	.3	2.15	28	<5	29	<10	3.83	<1	20	37	297	4.65	.14	2.22	1464	2	.08	28	.44	36	.04	14	<2	94	<5	.13	<5 179	129	5
	288684	.3		31	<5	227	<10	4.58	<1	23	49	295	4.77	.10	2.51	1868	1	.00	30	.35	57	.04	9	<2	105	<5		<5 164	211	3
	288685	.2		<5	<5	215	<10	2.69	<1	22	47	410	4.24	.10	1.96	1149	2	.09	38	.27	29	.05	12	<2	73	<5		<5 137	95	6
	288686	.3		9	<5	215	<10	2.35	<1	20	38	251	4.15	.08	1.80	888	1	.07	21	.38	25	.03	12	<2	65	~5 <5		<5 145	66	4
	288687	.0		27	<5	344	<10	2.53	<1	18	32	272	4.39	.10	1.51	812	, 1	.09	19	.49	26	.05	<2	<2	86	<5		<5 141	70	4
	200007		1.70	21		011		2.00		.0	01		4.00	.10	1.01	012	•	.00	10	.40	20	.00	-2) ~~	00	~			10	-
	288688	4.5	1.38	33	<5	107	10	.86	2	11	42	13509	3.52	.17	.80	425	227	.10	34	.19	52	2.10	23	<2	40	<5	.12	<5 56	148	980
	288689	.3		13	<5	78	<10	1.76	<1	18	31	223	3.82	.10	1.09	530	3	.08	15	.45	20	.18	3	<2	51	<5		<5 145	45	2
	288690	.2		15	<5	54	<10	1.61	<1	12	47	94	3.83	.11	.89	408	2	.09	14	.40	19	.01	3	<2	59	<5		<5 144	37	3
	288691	.3		12	<5	839	<10	2.43	<1	16	38	219	3.84	.12	1.25	646	1	.09	18	.33	24	.03	4	<2	83	<5		<5 149	50	2
	288692	.2		39	<5	197	<10	1.92	<1	15	40	1927	3.96	.11	1.05	542	1	.09	19	.29	19	.24	4	<2	59	<5		<5 156	75	6
					-												-							_		•		• •••		-
	288693	.2	1.25	28	<5	[^] 41	<10	2.04	<1	18	44	1639	3.72	.11	1.23	601	3	.07	18	.32	41	.25	3	<2	57	<5	.10	<5 144	89	2
	288694	.2	1.21	37	<5	23	<10	2.93	<1	31	24	222	2.15	.06	1.55	899	2	.06	16	.36	35	.86	6	<2	76	<5	.08	<5 61	127	3
	288695	.3	1.12	22	<5	107	<10	2.24	<1	38	19	818	2.24	.06	1.07	555	1	.06	15	.39	26	.94	<2	<2	55	<5	.07	<5 64	51	5
	288696	.2	1.19	10	<5	74	<10	2.29	<1	37	30	227	3.13	.08	1.40	928	3	.06	16	.43	39	.48	7	<2	50	<5	.09	<5 104	114	3
	288697	.2	1.15	<5	<5	34	<10	1.85	<1	23	42	245	3.29	.12	1.01	531	3	.07	17	.39	30	.23	5	<2	40	<5	.08	<5 126	83	7
	288698	.2	.93	<5	<5	40	<10	1.61	<1	34	46	224	2.58	.10	.78	417	3	.07	16	.35	15	.45	8	<2	39	<5	.07	<5 86	37	85
	288699	.3	1.31	31	<5	23	<10	2.81	<1	16	56	135	3.05	.11	1.47	891	1	.06	20	.26	26	.02	10	<2	58	<5	.08	<5 106	79	7
	288700	.2	1.01	7	<5	136	<10	.69	<1	10	46	25	1.84	.12	.58	373	1	.10	30	.15	20	.05	8	<2	32	<5	.09	<5 45	40	5
	288701	.3	1.73	36	<5	29	<10	3.58	<1	20	36	185	4.08	.10	2.10	1545	1	.06	24	.33	30	.03	5	<2	70	<5	.06	<5 125	164	4
	288702	.2	1.38	47	<5	26	<10	3.62	<1	19	25	203	3.75	.10	1.43	1185	2	.06	18	.37	21	.03	12	<2	75	<5	.07	<5 126	100	8
	288703		1.01	9	<5	113		1.40	<1	16	27	251	2.55	.11	.89	373	1	.07	14	.36	21	.06	<2	<2	44	<5	.06	<5 94	51	6
	288704	.3	1.20	8	<5	47		1.81	<1	13	23	373	2.38	.08	.77	290	4	.07	15	.38	20	.08	3	<2	59	<5	.05	<5 92	47	2
	288705	.2	1.03	<5	<5	278	<10	1.38	<1	12	29	194	2.84	.07	.69	239	4	.08	16	.39	13	.03	3	<2	44	<5	.07	<5 112	24	12
	288706	.2	1.09	<5	<5	26	<10	2.12	<1	14	23	164	3.17	.12	1.21	761	2	.06	13	.40	22	.03	3	<2	43	<5	.08	<5 117	70	6
	288707	.3	1.12	<5	<5	30	<10	1.89	<1	74	25	2107	2.68	.10	.70	348	1	.07	15	.44	52	.89	8	<2	52	<5	.07	<5 94	47	160
	ن ب																													

Report 2102769

Page 4 of 8

. .

	Ag	Al	As	В	Ba	Bi	Ca	Cd	Co	Cr	Cu	Fe	K	Mg	Mn	Мо	Na	Ni	Р	Pb	S	Sb	Sn	Sr Te	TI TI V	Zn *Au
SAMPLE	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%	%	%	ppm	_ppm	%	ppm	%	ppm	%	ppm p	opm	ppm ppm	% ppm ppn	
288708	.2	.88	29	<5	38	<10	1 64	-1	25	20	050	0.04		~~			_									
288709	.2	.00	33	<5 <5	30 40	<10	1.64 1.73	<1	25	20	650	2.34	.13	.69	458	3	.07	10	.38	21	.38	4	<2	47 <5	.06 <5 8	9 55 5
288710	.2	1.07	22	<5	78	<10	1.95	<1 <1	27 58	24	788	2.56	.13	.76	507	1	.07	12	.37	27	.32	7	<2	40 <5	.07 <5 98	3 90 20
288711	4.7	1.30	16	<5	95	12	.79	2		23	195	3.10	.13	1.11	755	1	.07	16	.36	37	.29	<2	<2	44 <5	.09 <5 11	4 81 1
288712	.3	1.43	35	<5	12	<10	3.51	2 <1	12 73	32 20	13400	3.43	.17	.71	397	226	.10	28	.10	52	1.87	25	<2	33 <5	.09 <5 5	0 146 1050
	.0	1.40	00	~0	12	10	5.51		73	20	101	3.28	.07	1.81	1503	1	.06	20	.20	34	1.04	8	<2	45 <5	.07 <5 8	6 205 10
288713	.2	.99	32	<5	33	<10	1.83	<1	20	19	258	2.70	.13	1 02	60F		~~	10	~ ~			-				
288714	.3	1.11	45	<5	28	<10	1.88	<1	17	20	441	2.70	.13	1.02 .75	685 474	1	.06	10	.21	26	.14	<2	<2	42 <5	.08 <5 9	7 67 9
288715	.6	1.25	11	<5	50	<10	2.33	3	172	26	338	4.27	.12			1	.07	11	.25	23	.26	4	<2	48 <5	.06 <5 98	
288716	.3	1.10	<5	<5	68	<10	1.80	1	25	23	232	3.06	.10	1.34 .79	871	1	.06	20	.21	95	3.43	5	<2	65 <5	.09 <5 73	3 336 4
288717	.2	.98	6	<5	32	<10	1.47	-1	19	22	227	2.92	.14	.79	464 404	1 1	.07	12	.27	31	.37	<2	<2	59 <5	.08 <5 11	
			-	•					10	~~		2.52	.15	.07	404	1	.07	11	.25	33	.35	9	<2	40 <5	.09 <5 108	3 63 1
288718	.3	1.25	<5	<5	31	<10	1.86	<1	50	32	245	3.43	.10	.96	583	1	.07	1.4	10	20	1.00	~	-0	F0 -		
288719	.3	1.15	<5	<5	47	<10	1.65	<1	12	20	299	3.07	.13	.85	495	1	.07	14 13	.19 .19	36	1.68 .06	2	<2	56 <5	.07 <5 8	
288720	.3	1.14	<5	<5	36	<10	1.66	<1	60	43	308	3.09	.13	1.02	659	3	.07	16	.19	23		4	<2	50 <5	.06 <5 114	
288721	.2	.94	6	<5	326	<10	1.32	<1	11	45	151	2.78	.12	.71	424	1	.07	13	.19	34 19	.44	2	<2	36 <5	.07 <5 10	
288722	.3	1.08	29	<5	21	<10	2.04	<1	34	37	321	2.27	.13	1.08	808	2	.00	18	.20	18 38	.03 .26	<2 5	<2 <2	62 <5	.06 <5 10	
															000	-	.00	10	.20	50	.20	5	~2	41 <5	.07 <5 74	115 24
288723	.2	.82	19	<5	12	<10	2.45	<1	31	37	11	1.33	.01	.77	534	1	.06	17	.22	15	.31	2	<2	128 <5	09 -5 4	00 40
288724	.2	1.18	29	<5	123	<10	2.39	<1	70	33	242	2.44	.08	1.21	771	1	.06	20	.24	25	.49	8	<2	128 <5 59 <5	.08 <5 4 .07 <5 78	
288725	2.0	1.17	14	<5	55	<10	3.70	3	400	32	1299	4.33	.05	1.19	750	5	.06	30	.22	129	4.69	4	<2	106 <5		
288726	.2	.92	48	<5	124	<10	1.75	<1	105	26	1061	2.21	.10	.86	442	15	.08	17	.28	33	1.05	7	<2	55 <5	.06 <5 58 .07 <5 66	
288727	2.5	1.37	11	<5	99	<10	.72	<1	9	33	7304	2.94	.14	.74	419	65	.10	28	.14	27	.99	9	<2	33 <5	.07 <5 60	
000700				_																		•	-	00 0	.00 -0 02	. 70 000
288728	.3	1.33	23	<5	283	<10	2.02	<1	14	43	132	3.20	.11	.90	521	1	.08	15	.25	25	.03	12	<2	53 <5	.08 <5 119	49 2
288729	.2	1.29	20	<5	41	<10	2.43	<1	24	35	580	2.89	.11	1.21	946	1	.07	20	.25	28	.32	10	<2	54 <5	.09 <5 103	
288730	.2	1.00	<5	<5	24	<10	1.50	<1	28	44	140	2.82	.12	.89	574	1	.07	27	.27	33	.28	4	<2	35 <5	.07 <5 104	
288731	.3	1.29	17	<5	23	<10	2.41	<1	26	53	147	3.56	.11	1.20	908	1	.07	22	.26	32	.16	7	<2	42 <5	.12 <5 125	
288732	.2	1.19	22	<5	69	<10	2.45	<1	17	57	156	3.27	.16	1.35	1036	1	.08	19	.27	41	.04	5	<2	48 <5	.11 <5 126	
288733	1.4	1.12	<5	<5	28	~10	1 04	-1	00	F 4	070															
288734	.2	1.12	17	<5	20 34	<10 <10	1.84 1.71	<1 -1	96	51	270	3.63	.13	1.18	803	1	.08	20	.22	54	1.18	3	<2	42 <5	.12 <5 111	121 2
288735	.3	1.44	<5	<5	215	<10	3.08	<1 <1	15	58	133	3.70	.13	1.03	614	1	.09	18	.26	20	.02	6	<2	43 <5	.14 <5 127	52 6
288736	.2	1.09	8	<5	135	<10	.77	<1	18 11	31 40	142	4.02	.11	1.19	1028	1	.07	19	.32	24	.05	4	<2	54 <5	.13 <5 143	98 5
288737	.3	1.32	6	<5	52	<10	2.21	<1	15	38	28 126	1.97	.13	.59	402	1	.11	31	.12	23	.06	<2	<2	36 <5	.11 <5 45	46 8
			Ŭ	.0	52	10	2.21	~1	15	30	120	3.58	.13	1.10	780	1	.08	19	.30	27	.02	5	<2	47 <5	.13 <5 142	112 1
288738	.2	1.20	<5	<5	86	<10	1.76	<1	13	40	158	3.36	10	1.04	500	4	00	40	~~	~~		-	_			
288739	.3	1.34	8	<5	72	<10	2.10	<1	16	43	146	3.69	.12 .14	1.04 1.46	589 940	1 2	.08	18	.29	26	.04	6	<2	54 <5	.11 <5 133	
288740	.2	1.25	26	<5	31	<10	1.70	<1	15	29	121	3.88	.13	1.40	940 1058	2	.08	22	.29	25	.03	8	<2	51 <5	.16 <5 143	
288741	.2	1.01	5	<5		<10		<1	18	25	130		.13	.86		•	.07	17	.29	29	.02	<2	<2	41 <5	.14 <5 146	
288742		1.20	18	<5		<10		<1	17	33	303			1.34	487 1077	1 1	.08	14	.34	42	.23		<2	51 <5	.13 <5 137	
				-				•			000	Ŧ. U T	. 10	1.04	10/7	I.	.08	18	.34	36	.04	10	<2	38 <5	.14 <5 171	112 25
288743	.2	1.01	8	<5	48	<10	2.25	<1	20	18	203	2.54	.14	1.11	959	4	.07	12	30	44	14	~2	-2	E0 /E	40	60 47
288744	.2	.86	22	<5	47		2.40		34	19	795		.11	.92	787	1	.07	13	.30 .32	44 42	.14 .39		<2 ~2	53 <5	.12 <5 108	
288745	.3	1.50	10	<5	20		3.12		19	45	387				1491	1	.07	21	.32 .37	42 41	.39 .06		<2	69 <5	.11 <5 84	
288746 🌷	.2	.98	10	<5	39	<10	2.02	<1	15	25	137			1.02	869	6	.08	14	.36	36	.00		<2	64 <5 46 <5	.13 <5 191	
288747	2.4	1.31	17	<5	100		.81		9	33	7252		.17	.75	429	65	.00	25	.30 .15	30	.07 .97		<2 <2	46 <5 36 <5	.12 <5 145 .10 <5 56	
,														-				_0		00	.57	3	~2	JU \J	.10 5 56	70 625
, ,																										

د د

1011) 1

	Ag	Al	As	В	Ba	Bi	Ca	Cd	Co	Сг	Cu	Fe	K	Mg	Mn	Mo	Na	Ni	Р	Pb	S	Sb	Sn	Sr	Те	Ti	TI V	Zn
	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%	%	%	ppm	ppm	%	ppm	%	ppm	%	ppm	ppm	ppm p	opm	<u>% p</u>	pm ppm	ppm
88748	.3	1.06	13	<5	68	<10	1.90	<1	15	21	136	3.55	.12	1.17	956	1	.07	15	.34	34	.02	<2	<2	50	<5	.11	<5 140	108
88749	.2	.89	<5	<5	23	<10	1.28	<1	17	58	250	4.84	.10	.95	484	1	.08	17	.34	17	.03	5	<2	36	<5	.12	<5 222	50
88750	.2	1.07	34	<5	114	<10	1.91	<1	18	54	303	5.09	.12	1.25	769	1	.09	21	.41	22	.04	3	<2	60	<5	.12	<5 226	58
88751	.3	1.20	29	<5	174	<10	2.00	<1	20	52	251	5.63	.07	1.51	1103	2	.07	22	.49	21	.04	3	<2	61	<5	.15	<5 245	
88752	.2	1.10	17	<5	199	<10	1.79	<1	14	25	103	3.53	.10	1.26	690	1	.08	13	.39	23	.04	5	<2	57	<5	.15	<5 135	94 44
8753	.9	1.83	<5	<5	24	<10	2.88	<1	37	31	6792	4 15	04	2.07	4470		07					_	_					
88754	.5	1.56	39	<5	28	<10	2.50	<1	20	39	433	4.15	.04	2.07	1473	1	.07	29	.37	58	.86	3	<2	215	<5	.14	<5 103	157
8755	.3	1.20	<5	<5	100	<10	1.68	<1	20 19			4.34	.09	1.70	1292	1	.07	20	.41	48	.08	4	<2	72	<5	.11	<5 150	130
8756	.5	1.48	<5	<5	343	<10				57	476	5.51	.09	1.33	832	1	.08	23	.49	29	.07	6	<2	42	<5	.13	<5 241	76
8757	.5	1.79	<5				2.82	<1	21	39	278	4.52	.13	1.63	1219	1	.08	20	.41	39	.12	5	<2	53	<5	.11	<5 163	110
0151	.5	1.79	<0	<5	125	<10	2.92	<1	20	30	267	4.09	.16	1.88	1405	1	.07	19	.34	32	.03	7	<2	72	<5	.06	<5 120	123
8758	.5	1.45	19	<5	283	<10	2.52	<1	19	34	202	4.33	.15	1.50	1055	1	.09	22	.36	29	.03	9	<2	53	<5	.09	<5 144	77
8759	.3	1.08	<5	<5	48	<10	12.22	<1	11	19	129	2.69	.33	.59	3751	1	.06	9	.27	20	.06	5	<2	120	<5 <5	.03	<5 44	91
8760	1.7	1.91	<5	<5	84	<10	7.92	<1	21	15	880	3.90	.37	1.15	2279	3	.06	17	.50	32	.13	11	<2	115	<5	.02		
8761	.5	1.43	<5	<5	935	<10	5.29	<1	20	28	996	3.18	.23	1.21	1508	1	.07	20	.00	24	.13	9	<2	92	<5 <5			146
8762	12.8	1.45	<5	<5	38	46	5.20	<1	230	20	48447	6.05	.22	1.36	1331	6	.06	45	.39	75	.3 4 5.45	11	<2	92 72	<5 <5		<5 90 <5 73	98 156
3763	2.8	1.56	20	<5	109	<10	.94	<1	9	41	7000	2 40		70														
3764	.3	1.25	<5	<5	474	<10	.94 3.65	-	-	41	7280	3.19	.14	.73	444	63	.11	30	.18	34	.99	8	<2	36	<5	.12	<5 57	70
8765	.5	1.74	-5	<5	177			<1	19	22	942	3.56	.12	1.32	1083	1	.07	20	.43	40	.21	9	<2	65	<5	.05	<5 122	109
B766	-		25			<10	3.96	<1	23	20	533	4.37	.15	1.78	1359	1	.07	22	.43	31	.16	5	<2	68	<5	.07	<5 134	107
8767	.5	1.76 1.67		<5	357	<10	3.10	<1	21	19	329	4.07	.10	1.82	1229	1	.07	21	.42	30	.05	8	<2	73	<5	.09	<5 132	85
0/0/	.3	1.07	<5	<5	98	<10	2.77	<1	20	20	406	3.91	.10	1.84	1210	1	.06	27	.43	25	.05	5	<2	59	<5	.06	<5 112	91
8768	.3	1.69	13	<5	69	<10	3.00	<1	21	18	335	3.67	.07	2.13	1356	1	.06	20	.45	38	.04	8	<2	61	<5	.08	<5 113	103
8769	.5	1.87	<5	<5	113	<10	4.25	<1	22	22	1168	3.72	.08	2.17	1516	2	.06	23	.53	39	.14	7	<2	78	<5		<5 112	146
8770	.3	1.66	12	<5	40	<10	6.29	<1	17	15	315	2.82	.23	1.55	1694	1	.06	18	.37	25	.03	14	<2	97	<5		<5 75	124
8771	.5	1.87	6	<5	337	<10	4.90	<1	20	16	593	3.49	.14	1.95	1739	1	.06	21	.40	34	.08	5	<2	91	<5			
8772	.3	1.64	<5	<5	118	<10	4.96	<1	21	17	801	3.54	.21	1.49	1396	1	.06	20	.43	32	.10	5	<2	76	<5		<5 104 <5 100	111 106
8773	5.4	1.41	26	<5	101	15	.79	2	11	38	13234	3.53	.14	.68	402	226	40	20	47	50		40			_			
8774	.3	1.17	<5	<5	143	<10	1.90	<1	10	22	168	3.13	.07	.00	493		.10	28	.17		2.04	18	<2	32	<5		<5 51	150
3775	.3	1.12	7	<5	130	<10	.73	<1	10	44	32	1.94	.10	.95 .52		2 1	.07	14	.41	19	.03	<2	<2	49	<5		<5 105	43
8776	2.0	1.17	26	<5	49	<10	8.09	4	14	11	744	2.34	.10	.52	374	•	.10	36	.15	16	.06	9	<2	28	<5		<5 43	52
3777	.5	1.76	15	<5	225	<10	6.20	<1	23	16	1880	3.67	.34	.75 1.52	2294 1846	1 1	.05 .06	11 18	.46 .46	21 29	.08 .30	68 7	<2 <2	100 84	<5 <5		<5 41 <5 82	119 147
779	2	1 55	40		00		0.00		<u>.</u>	<i>.</i> –										10		•	· 4	04		.02	.0 02	147
8778 9770	.3	1.55	18	<5	93	<10	6.08	1	24	17	2649	3.23	.18	1.46	1459	1	.06	21	.48	52	.37	14	<2	88	<5	.03	<5 92	131
8779	3.6	1.79	23	<5	41	20	6.07	2	32	10	7354	4.36	.37	1.13	1906	1	.06	18	.42	59	1.04	55	<2	80	<5	.01	<5 58	220
8780	.5	1.78	<5	<5	120	<10	5.20	<1	21	13	3198	3.50	.23	1.53	1555	1	.06	20	.57	24	.35	4	<2	78	<5	.02	<5 77	158
8781		1.81	14	<5	52		4.32	<1	20	15	5224			1.83	1251	1	.06	17	.50	42	.60	9	<2	111	<5		<5 80	111
8782	4.9	1.41	17	<5	100	16	.80	2	12	39	13208	3.49	.14	.68	398	223	.10	26	.19	55	2.05	23	<2	32	<5	.10		132
3783	.3	1.58	16	<5	283	<10	4.71	<1	16	14	1089	2.47	.07	1.76	1312	1	.06	17	.52	29	.14	7	<2	84	<u>ح</u> ۲	06	<5 7E	00
8784		1.85	12	<5	85	<10		<1	22	20		4.46		2.12		1	.06	19	.48	36	.03	5			<5 <5		<5 75	98
8785		1.54	47	<5	300		3.87	<1	19	22	201			1.63	1237	1	.00	19	.40 .46				<2		<5 ~5		<5 130	149
8786 [÷]		1.52	<5	<5	16	<10		<1	20	25				1.57	1166	2	.06			23 27	.03	6	<2		<5		<5 120	96
8787		1.28	12	<5	45	<10		<1	16	17	321			1.50	975	1	.00	18 14	.65 .45	27 24	.04 .04	7 5	<2 <2		<5 <5		<5 130 <5 128	103 62

 د د

LEMENT AMPLE	Ag ppm	Al %	As ppm	B ppm	Ba ppm	Bi	Ca %	Cd ppm	Co	Cr	Cu	Fe	K	Mg	Mn	Мо	Na	Ni	P	Pb	S	Sb	Sn	Sr	Те	Ti	TI V	Z	Zn
		70	_ppm	ppm	ppin	ppm	70	ppm	ppm	ppm	ppm	%	%	%	ppm	ppm	%	ppm	%	ppm	%	ppm	ppm	ppm p	opm	% p	pm ppn	n ppr	m
38788	.3	1.36	12	<5	40	<10	3.05	<1	17	19	249	3.95	.09	1.51	1172	1	.07	17	20	07		•			_				
38789	.5	1.52	12	<5	43	<10	3.51	<1	19	17	187	4.02	.00	1.77	1222	1	.07		.39	27	.03	3	<2	62	<5	.08	<5 130		38
38790	.3	1.55	<5	<5	233	<10	3.23	<1	20	18	324	3.91	.10	1.74	1071	1		16	.46	33	.03	6	<2	65	<5	.07	<5 12	-	33
8791	.5	1.58	5	<5	- 99	<10	3.19	<1	20	17	138	4.58	.10	1.86		•	.08	14	.50	23	.04	8	<2	76	<5		<5 126		30
8792	.5	1.43	<5	<5	38	<10	3.77	<1	20	21	322	4.38 4.14	.10	1.64	1121 1217	2 1	.08 .07	16 19	.56 .51	20 16	.02 .04	14 10	<2 <2	65 66	<5 <5	.06 .06	<5 148		79 78
8793	.3	1.36	15	<5	107	<10	2.78	<1	19	20	174	3.80	.09	1.40	914	1	.07	16	.40	17	00	•	-0	74					
8794	.3	.87	9	<5	54	<10	12.28	<1	9	15	196	1.85	.38	.52	3439	1	.05	11	.33	14	.02	8	<2	71	<5	.05	<5 12	-	56
8795	.3	1.08	8	<5	131	<10	.68	<1	12	46	29	1.97	.10	.58	380	2	.10	33	.33 .15		.03	4	<2	109	<5	.01	<5 3		92
8796	.8	1.82	<5	<5	25	<10	6.47	<1	23	18	1956	3.76	.31	1.63	1982	1	.06	22	.32	23	.06	3	<2	32	<5	.08	<5 44	-	4
8797	.3	.85	<5	<5	37	<10	6.87	<1	8	9	188	1.26	.55	.41	1721	34	.06	6	.23	27 14	.20 .03	14 <2	<2 <2	94 102	<5 <5	.02 .01	<5 84 <5 30		14 53
8798	.5	1.17	<5	<5	59	<10	2.23	<1	17	25	113	3.76	.07	1.56	785	1	.09	16	.38	19	.01	7	<2	57	<5	.05	~5 123	A.	2
8799	.3	1.12	23	<5	1051	<10	7.73	<1	20	22	437	3.43	.17	2.60	2128	8	.06	19	.25	22	.07	16	<2	152	<5 <5	.05 .01	<5 133		3
8800	.5	1.57	<5	<5	213	<10	4.08	<1	18	25	466	3.12	.12	2.07	1240	1	.06	22	.31	30	.07	8	~2 <2	91	<5 <5	.01	<5 83 <5 99		
8801	.5	2.16	<5	<5	40	10	5.08	<1	20	17	550	3.28	.19	2.13	1257	1	.06	20	.37	38	.06	14	<2	125	~5 <5	.03			2
8802	7.7	2.33	<5	<5	120	<10	4.69	<1	21	19	1214	3.49	.20	2.35	1312	1	.06	22	.38	37	.14	<2	<2	123	<5		<5 80 <5 88		4 17
8803	.5	2.24	6	<5	49	<10	4.27	<1	22	16	909	3.44	.14	2.53	1313	1	.06	18	.33	32	.09	7	<2	94	<5	.01	<5 84	0,	3
8804	.3	2.30	<5	<5	51	<10	4.70	<1	21	17	231	3.72	.16	2.62	1326	1	.06	19	.35	33	.02	6	<2	105	<5		<5 98		
8805	.5	2.28	37	<5	86	<10	5.32	<1	20	23	1706	3.41	.22	2.28	1341	5	.06	21	.28	40	.22	3	<2	138	<5		<5 99		
8806	.3	1.88	24	<5	26	<10	5.90	<1	19	15	174	3.59	.31	1.82	1553	1	.06	17	.35	31	.02	6	<2	117	<5				
8807	.5	2.18	22	<5	150	<10	5.55	<1	23	14	176	3.97	.33	1.99	1648	1	.06	15	.41	30	.02	13	<2	101	<5		<5 78 <5 73	99 117	
8808	.3	1.28	<5	<5	54	<10	7.90	<1	14	13	232	2.26	.43	.80	2018	1	.06	14	.44	22	.03	14	<2	122	<5	.01	<5 39	100	n
8809	.3	1.23	<5	<5	789	<10	8.58	<1	13	12	81	2.05	.43	.70	2191	7	.06	9	.40	21	.05	<2	<2	144	<5		<5 34	94	
8810	.5	1.68	<5	<5	718	<10	6.56	<1	22	16	137	3.49	.30	1.31	1610	1	.06	16	.41	27	.04	6	<2	157	<5		<5 60	114	
8811	.3	1.63	<5	<5	720	<10	6.96	<1	21	15	367	3.55	.27	1.53	1683	- 1	.07	39	.43	33	.06	<2	<2	174	<5		<5 70	150	
8812	1.0	1.87	<5	<5	391	<10	5.78	<1	22	16	918	3.18	.27	1.65	1374	1	.06	22	.34	29	.08	7	<2	119	<5		<5 52	132	
8813	2.7	1.46	10	<5	112	<10	.83	<1	10	43	7290	3.20	.14	.80	448	63	.11	29	.15	27	1.02	8	<2	37	<5	.10	<5 55	73	3
3814	.3	1.66	24	<5	542	<10	4.68	<1	20	25	310	3.47	.21	1.79	1529	1	.07	18	.40	31	.04	15	<2	87	<5		<5 101	115	
8815	.5	2.43	<5	<5	67	<10	5.81	<1	24	22	526	3.78	.26	2.26	1515	1	.06	20	.31	41	.06	13	<2	150	<5	.01	<5 89	79	
3816	.5	2.61	<5	<5	289	<10	5.46	<1	23	21	753	4.02	.16	2.63	1906	1	.06	24	.32	32	.09	8	<2	114	<5	.02	<5 107	140	
3817	.3	1.52	5	<5	281	<10	8.44	<1	17	18	1076	2.83	.21	1.19	2197	1	.07	22	.29	34	.10	<2	<2	182	<5		<5 95	103	
3818	.5	2.51	14	<5	722	<10	8.54	<1	31	34	816	4.62	.19	1.93	2353	1	.06	37	.31	52	.10	16	~?	102	~E	00	~E 440	000	~
8819	.3	.47	6	<5	24	<10	5.79	1	10	50	177	1.81	.18	.37	2263	2	.00	8	.07	22	.10	30	<2 <2	193 69	<5 <5		<5 113	222	
8820	1.9	.34	31	<5	7	<10	5.32	2	12	48	222	2.46	.16	.64	2709	1	.04	7	.07	7	.10		<2 <2		<5 <5		<527	190	
3821	20.0	.35	120	<5	16	<10		8	13	41	2680		.19	.95	2904	2	.04 .05	, 12	.10	11					<5 <5		<5 26	214	
3822	20.8	.36	149	<5	15		4.64	9	11	37	1352		.27		2650	1	.06	8	.14	38	.13		<2 <2		<5 <5		<5 29 <5 21	415 408	
823	25.6	.35	204	<5	12	<10		11	14	58	2247	2.62	.24	1.36	4277	3	.05	7	.07	86	.22	517	<2	79	<5	.01	<5 10	527	7
8824	8.3	1.27	101	<5	26	<10	4.59	5	19	41	2105			1.23		2	.06	13	.16	50	.20		<2		~5 <5			537	
3825	2.2	.98	41	<5	37		5.33	<1	16	34	2402			1.13		2	.06	12	.22	30			<2		~5 <5		<5 32	358	
3826 [©]	7.4	1.02	77	<5	31	<10		4	17	38	2586			1.02		3	.06	9	.20	53	.24		~2 <2	80			<528	245	
8827	1.9	1.19	<5	<5	25		6.23	<1	18	37	2918			1.19		1	.06	12	.18	34			~2 <2	80 79		.01 ·	<5 29 <5 30	306 246	

` o

ELEMENT	Ag	Al	As	B	Ba	Bi	Са	Cd	Co	Cr	Cu	Fe	ĸ	Mg	Mn	Мо	Na	Ni	P	Pb	S S	o Sn	Sr	Te		Ti	V		***-
SAMPLE	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%	%	%	ppm	ppm	%		%	ppm	%_ppn		-		%		•	Zn	*Au
																					<u></u>		ppin	ppin	70	ppm	phin	ppm	ppb
288828	4.6	1.00	35	<5	47	13	6.21	3	17	36	2741	3.47	.32	1.46	3740	2	.05	12	.20	32	.23 10	3 <2	76	<5	01	-5	20	045	•
288829	5.2	1.39	20	<5	106	14	.79	2	13	40	13318	3.60	.15	77	414	235	.00	29	.14	50	2.05 2			-	.01	<5	30	315	3
288830	6.2	1.00	64	<5	97	<10	5.26	4	18	43	2360	3.70	.30	1.34	3316	3	.06	12	.14	43	.27 14		36	<5	.10	_	52	141	980
288831	10.7	.55	126	<5	78	<10	4.52	6	15	39	3143	3.05	.31	1.05	2952	2	.00	11	.14	33	.35 26		75	<5	.01	<5	33	340	2
288832	18.6	.43	204	<5	605	<10	4.67	9	20	50	3719	4.08	.30	1.03	3339	2	.05	10					65	<5	.01	<5	25	372	3
								•		00	0110	4.00	.00	1.00	0009	2	.00	12	.17	53	.34 35) <2	76	<5	.01	<5	33	470	53
288833	13.6	.42	133	<5	33	<10	4.02	7	18	30	4901	3.94	.30	.87	2600	3	.06	13	.19	26	.41 24	1 <2	73	<5	.01	<5	29	449	22
288834	22.9	.35	301	<5	20	37	2.96	17	17	40	9633	3.55	.27	.76	2320	5	.05	9	.12	122	1.06 76		53	<5	.01	~5 <5	28	657	13
288835	28.0	.37	356	<5	18	78	1.69	26	19	39	39518	4.97	.25	.34	1216	8	.05	12	.13	428	3.33 128	. –	40	-3	.01	-	26	900	
288836	.5	1.13	14	<5	140	<10	.76	<1	12	48	38	2.03	.11	.61	397	1	.00	32	.14	19		3 <2	34	<5	.01	<5			14
288837	21.4	.37	166	<5	26	17	3.59	9	11	47	6545	2.38	.32	.44	1765	18	.05	7	.10	23	1.15 38			-		<5	46	45	6
																10	.00	'	.10	20	1.10 30	5 <2	52	<5	.01	<5	17	322	8
288838	16.0	.35	211	<5	190	<10	7.57	12	14	34	2678	3.41	.24	1.61	4067	3	.06	11	.20	65	.31 520) <2	02	Æ	00	-5	07		~
288839	19.5	.39	200	<5	15	<10	6.26	12	12	38	1731	2.65	.28	1.24	3361	5	.00	8	.20	130	.31 52	_	83	<5	.02	<5	27	556	9
												2.00	.20	1.67	0001	J	.00	0	.24	130	.20 01) <2	73	<5	.01	<5	23	480	3

ê

Å e