

ASSESSMENT REPORT TITLE PAGE AND SUMMARY

TITLE OF REPORT: DIAMOND DRILLING AND RECLAMATION REPORT ON THE TREADWELL-ALLIES PROPERTY

TOTAL COST:239899.56

AUTHOR(S): *LINDINGER, LEO* SIGNATURE(S): *LEOPLLD J.LINDINGER*

NOTICE OF WORK PERMIT NUMBER(S)/DATE(S): **MX4-575** STATEMENT OF WORK EVENT NUMBER(S)/DATE(S): **4843472, MARCH 11, 2011**

YEAR OF WORK: 2010 PROPERTY NAME: TREADWELL-ALLIES CLAIM NAME(S) (on which work was done): 513217, 541765 (ALLIES WEST)

COMMODITIES SOUGHT: GOLD

MINERAL INVENTORY MINFILE NUMBER(S), IF KNOWN: 092INE044, 092INE167

MINING DIVISION: *KAMLOOPS* NTS / BCGS: *NTS 092I/15E-16W* LATITUDE: *50°51'41*" LONGITUDE: *120°37'33*" (at centre of work) UTM Zone: *10U* EASTING: *66700*

NORTHING: 5637000

OWNER(S): TREADWELL RESOURCES LTD.

MAILING ADDRESS: 910-885 DUNSUIR STREET VANCOUVER, B.C. V6C-1N5

OPERATOR(S) [who paid for the work]: **NEWBRIDGE CAPITAL INC.** MAILING ADDRESS: **910-885 DUNSUIR STREET VANCOUVER, B.C. V6C-1N5**

REPORT KEYWORDS (lithology, age, stratigraphy, structure, alteration, mineralization, size and attitude. *EARLY JURASSIC PICRITE HOST TERTIARY SHEAR ZONE AND FELSIC INTRUSIVE HOSTED MESOTHERMAL GOLD MINERALIZATION*

REFERENCES TO PREVIOUS ASSESSMENT WORK AND ASSESSMENT REPORT NUMBERS: 4212, 4546, 5950, 7085, 11409, 12297, 12412, 13445, 13683, 13897, 14194, 15192, 15807, 17413, 25680, 27813, 28225, 29606

TYPE OF WORK IN THIS REPORT	EXTENT OF WORK (in metric units)	ON WHICH CLAIMS	PROJECT COSTS APPORTIONED (incl. support)
GEOLOGICAL (scale, area)			
Ground, mapping			
Photo interpretation			
GEOPHYSICAL (line-kilometres)			
Ground			
Magnetic			
Electromagnetic			
Induced Polarization			
Radiometric			
Seismic			
Other			
Airborne			
GEOCHEMICAL (number of samples	analysed for)		
Soil			
Silt			
Rock			
Other			
DRILLING (total metres, number of h Core 1129 M, 8 HOLES, STO KAMLOOPS	oles, size, storage location) DRAGE 680 DAIRY ROAD	513217, 541765	215595.23
RELATED TECHNICAL			
Sampling / Assaying		513217	15801.20
Petrographic			
Mineralographic			
Metallurgic			
PROSPECTING (scale/area)			
PREPATORY / PHYSICAL			
Line/grid (km)			
Topo/Photogrammetric (scale	, area)		
Legal Surveys (scale, area)			
Road, local access (km)/trail		513217, 541765	5000
Trench (number/metres)			
Underground development (m	etres)		
Other RECLAMATION		513217, 541765	3503.13
		TOTAL COST	239899.56

> BC Geological Survey Assessment Report 32291

DIAMOND DRILLING and RECLAMATION ASSESSMENT REPORT

on the

Treadwell Allies Property

Tenures 513217, 536261, 541765, 541328, 541104, 532030, 532024, 532027, 835566, 835567, 835568, 835570

Mineral Titles Event No. 4843472

Watching Creek Area

Kamloops Mining Division, B.C.

NTS 092I/15E, 16W

Latitude 50° 51' 41" North

Longitude 120° 37' 33" West

UTM coordinates: Zone 10, 5637000 N, 667000 E

Owner: TREADWELL RESOURCES LTD.

Optionee: NEWBRIDGE CAPITAL INC. 910 – 885 Dunsmuir Street Vancouver, B.C. V6C 1N5

By

Leopold J. Lindinger, P.Geo.

May 17, 2011

Table of Contents

SUMMARY	1
INTRODUCTION AND TERMS OF REFERENCE	5
PROPERTY DESCRIPTION AND LOCATION	5
ACCESSIBILITY, CLIMATE, LOCAL RESOURCES, INFRASTRUCTURE AND PHYSIOGRAPHY	7
HISTORY	10
Recent Property Work	16
GEOLOGICAL SETTING	16
REGIONAL GEOLOGY	16
LOCAL GEOLOGY	
LOCAL GEOLOGY Property Geology	
Allies Area - Detailed Geology	
Darcy Area Geology	
DEPOSIT TYPES	24
Gold Quartz Veins	24
Alkalic (Afton style) Porphyry Copper Gold Deposits	25
INTRUSION ASSOCIATED GOLD	
MINERALIZATION	27
Allies Area Mineralization	
DARCY MINERALIZATION	
2010 EXPLORATION PROGAM	
IP SURVEYING	
DIAMOND DRILLING Geological Discussion – Allies Area	
QAQC AND CHAIN OF CUSTODY PROCEDURES	
SAMPLING METHOD AND APPROACH	34
Core samples	
Sludge Samples	
SAMPLE PREPARATION, ANALYSES AND SECURITY	35
DATA VERIFICATION	36
INTERPRETATION AND CONCLUSIONS	37
Reclamation Summary	38
RECOMMENDATIONS	39
PHASE 1	39
ALLIES Area	
DARCY Area Phase II	
REFERENCES	
CERTIFICATE	
APPENDIX 1- ANALYTICAL RESULTS	
APPENDIX II - ANALYTICAL PROCEDURES USED AND FIELD STANDARD	II
RENAISSANCE GEOSCIENCE SERVICES – Leopold. Lindinger, P.Geo.	
680 Dairy Road, Kamloops, B.C. V2B-8N5	

APPENDIX III - DIAMOND DRILL LOGS	. VIII
APPENDIX IV – FIGURES 6, 7, 8	IX
APPENDIX V – CORE IMAGES, MAGNETIC SUSCEPTIBILITY, ELECTRICAL CONDUCTIVITY FILES CDR	
APPENDIX VI – RECLAMATION IMAGES	I

List of Tables

TABLE 1 - TREADWELL-ALLIES PROPERTY MINERAL TENURE	6
TABLE 2. DETAILS OF TREADWELL/NEWBRIDGE OPTION AGREEMENT	7
TABLE 3 TREADWELL-ALLIES DRILLING SUMMARY	
TABLE 4 - 2010 PROGRAM EXPENDITURES	
TABLE 5 - RECOMENDED PROJECT EXPENDITURES	
TABLE 6 - Cu130 Analytical Summary	VII

List of Figures

8
9
22
23
back pocket
back pocket
back pocket

Summary

The 196 cell, 3998.2 hectares Treadwell-Allies Property is located in south central British Columbia, within the Kamloops Mining District, 15 kilometres northwest of Kamloops on NTS map sheets 092I/15E and 16W. All significant gold exploration targets are readily road accessible. Kamloops is a major transportation and mining hub in central B.C. and all conceivable equipment and services are available to explore and develop the property.

The property covers at least 5 significant gold showings and occurrences discovered between 1920 and 1990. These are; in the Allies area the Allies showing Minfile # 092INE044 and Southwest and Dodd's occurrences; in the Watching Creek area the Darcy occurrence Minfile # 092INE167 and in the Pass Lake area the Pass Lake Gold showing. Exploration of the Pass Lake gold occurrence has been prevented by Agriculture Canada the surface land owner of the area.

The claims comprising the Treadwell-Allies property are held by Treadwell Resources Ltd. (Treadwell). On October 30, 2009 Treadwell entered into an option agreement with Newbridge Capital Inc. (Newbridge) to acquire a 100 percent right, title and interest in the Treadwell-Allies property, subject to a 2% Net Smelter Return interest (NSR). To fulfill the terms of the agreement Newbridge has to make \$250,000 in cash payments, issue 1,050,000 free trading shares and complete \$850,000 in work commitments over a 4-year period. Newbridge has the option to purchase one half (1%) of the NSR for \$1,000,000.

1920's placer miners discovered sulphide and gold mineralized feldspar porphyry float in Cannell Creek. Subsequent exploration activity to 1990 have concentrated on exploring for several porphyry intrusion and picrite hosted shear zone associated gold deposits in the area.

The property overlies a portion of the upper Triassic-lower Jurassic Nicola Group, a part of the island arc provenance Quesnel Terrane. On and around the property are Nicola Group volcanics and sediments that are divided into four lithologic assemblages. They outcrop within the east and northwest parts of the property.

Intruding this package is the northwest-trending coeval alkalic multiphased Iron Mask batholith which in composition and texture range from coarse-grained gabbro to microsyenite. The Batholith outcrops south of the property north and south of Kamloops Lake with the main body being south of the lake. Based on regional aeromagnetic evidence it is interpreted to occur under the southwestern two thirds of the property.

An ultramafic picrite unit that does not appear to be related to the batholith but occurs as usually small pods and lenses adjacent to, near to and within it and often very near copper-gold mineralization. Relatively extensive windows of this unit are exposed at the Allies, Watching Creek and Pass Lake areas.

Eocene continental volcanics, related high level intrusives and sediments of the Kamloops Group cover the southwest three quarters of the claims. It is interpreted that the Kamloops group rocks intrude and overlie the picrite, Iron Mask and associated volcanic Nicola rocks. All significant gold occurrences on the property are hosted by or spatially associated with small siliceous

RENAISSANCE GEOSCIENCE SERVICES – Leopold. Lindinger, P.Geo. 680 Dairy Road, Kamloops, B.C. V2B-8N5

Kamloops Group? feldspar porphyry plugs and shear zone associated dykes and flows? that intrude the picrite.

The northern part of the claims cover the southern edges of the extensive Miocene-Pliocene Chilcotin Group plateau basalt. Several small outliers of Miocene basalt as well as scattered minor Pleistocene and Recent flows occur on and around the property.

The portion of the Iron Mask Batholith that underlies the Kamloops Group sediments and volcanics on parts of the property is prospective for economically attractive Afton style coppergold deposits.

The property also hosts the following gold exploration targets. The Allies Boulder Field that has had grab samples reportedly assaying up to 102.9 grams/tonne (3 oz/ton) gold. Testing here has so far failed to discover a definable bedrock source for the mineralized porphyry. Nearby the Southwest and Dodd's showings host over 1 g/t gold over narrow diamond drilled intervals within and associated with shear zone associated feldspar porphyry dykes hosted by altered and sheared picrite. Further east similar gold mineralization occurs at Pass lake and north Watching Creek. Hornblende porphyry "Intrusion associated" gold mineralization occurs in a small stock within sheared picrite occurs at the Darcy (Watching Creek) Occurrence.

From 2004 to 2010 several IP and resistivity, MMI soils sampling and limited ground magnetometer programs were completed by Geotronics Surveying Ltd. over the northern and western parts of the property surrounding the Allies area as well as an MMI program in the Watching Creek area. The primary focus of the Allies area program was to explore for Afton style gold-copper deposits and the Watching creek area for gold targets. A secondary focus of the Allies area survey was to determine if the Allies area could be defined by IP and MMI surveys. Other than 2 lines directly over the Allies area, no coverage over the remainder of the Allies area was completed. Numerous small MMI anomalies that sometimes correlated with weak to moderate IP-resistivity and ground magnetic anomalies were delineated. Gold however was only very weakly anomalous. Other elements such as silver,, copper zinc and cerium produced more definable anomalies. The Watching Creek area explored was not over the Darcy gold showings.

In 2010 additional IP surveys were completed, extending to the north and west the IP anomalies with its partially outlined weak MMI anomalies. Also in 2010 an 1130 metre diamond drilling program in 8 holes was completed in four areas. Drill testing of geophysical and IP targets NW and north of the Allies area for Afton Style porphyry copper deposits intersected a greater than 250 metre thick sequences of subaerial Kamloops Group vesicular andesites and basalts. The top 24.4 metres of one hole 400 metres north of the Allies area included a fine felsic ash tuff unit with angular up to 2 cm fragments.

Drill testing of the Allies showing, directly under the area hosting the mineralized boulders intersected picrite, a major fault and a unique siliceous and silicified pyrite mineralized feldspar porphyry clast supported breccia that underlies the Allies showing and extends to the north northeast. The breccia however, in spite of hosting strongly silicified and pyrite mineralized fragments was not anomalous for and in fact could be considered depleted for gold and indicator

RENAISSANCE GEOSCIENCE SERVICES – Leopold J. Lindinger, P.Geo. 680 Dairy Road, Kamloops, B.C. V2B-8N5

elements. The breccia was anomalous for chromium and nickel, indicating contamination from the nearby picrite. Southwest of the breccia drilling intersected several weakly sulphide mineralized feldspar and hornblende porphyry dykes very similar to the mineralized boulders hosted by strongly altered and sheared picrite that were also not anomalous for gold or indicator elements. The picrite invariably returned at least 400 ppm chromium and over 1000 ppm nickel.

The felsic breccia appears to be a vent unit or vent proximal tuff that may be the source of the finer grained ash tuff units intersected north of the Allies and as exposures described as occurring directly west of the Allies showing. The fault separating the breccia from picrite may be in part a vent or rift margin. The remaining large variably mineralized "boulders" of the Allies showing appear to be frost fractured and variably displaced subcrop of a single dacitic flow dome or shallow dyke remnant. This unit is probably sourced from the underlying vent breccia intersected directly below the showing during the 2010 drilling. Subsequently additional volcanic cover was added. Later mineralizing fluids percolating up the fault-vent wall area associated with this later intrusive and volcanic activity may have preferentially been deposited in the brittle porphyry unit in a deep epithermal setting. This deposits original form may have been very similar but hopefully larger than the Dodd"s and SW showings. It is conceivable that the Dodd"s showing may be the fault displaced portion of the Allies showing, or at least and very likely (along with the SW showing) part of the same system.

Subsequent tectonic activity at the Allies showing area may have and probably displaced the source system from the showing. Erosion to the level of the showing, subsequent reburying by Miocene basalts and later erosion, preferentially along the Cannell Creek fault and of the thinner weaker less well anchored? rocks overlying the altered picrite occurred.

The information provided by the surficial and subsurface geological evidence allows the author to make the following theory for the origin of the Allies mineralized float mystery.

Catastrophic post glacial or even (more likely?) subglacial flood water events draining and eroding down upper Cannell Creek upon encountering the soft picrite to the southwest and hard mineralized Allies porphyry body and Miocene basalt cap to the northeast gouged out the softer fault gouge and altered picrite immediately southwest of, and undercut the showing to depth of over 25 metres depositing a 5 to 15 metres thick by at least 40 metres wide Miocene basalt boulder dominated basal conglomerate at the bottom the now buried channel. The Allies area was subsequently dammed allowing the deposition of the glacially derived blue clay unit that was deposited into the channel. Later hydraulic activity eroding deeper, dislodged and flushed out mineralized porphyry from the round now buried plunge bowl shaped depression immediately north of the showing, displaced them downstream and deposited them with the altered picrite as isolated exotics within and over the hard blue clay up to 300 meters downstream. Later periodic freshets coming down the creek canyon eroded more deeply into the channel containing the mineralized porphyry and transported more angular mineralized fragments to the west and south on top of the hard clay. Later erosion resulted in Cannell Creek moving into its current channel. Freeze-thaw and hydraulic activity for the last 14,000 years had further disrupted the porphyry. Local post glacial erosion removed the blue clay leaving a veneer of oxidizing mineralized porphyry and altered picrite material that was discovered by the first white explorers.

At the Dodd"s showing 600 metres SSE of the Allies area drill testing and near twinning of hole 86-A-01 intersected very similar grades of gold mineralization to the earlier hole. The mineralization appears to be within a W striking steeply south dipping shear. The hole which was directed 5 deg. west of hole 86-A-01 and 5 deg. deeper intersected several very strong and locally well sulphide mineralized sheared picrite, augite porphyry basalt and several shear associated phases of variably mineralized feldspar porphyry dykes. The highest interval from 107.1 m to 113.45 m reported 0.762 g/t gold along with highly anomalous mercury and moderately anomalous silver and arsenic within a silicified and sheared feldspar porphyry. This intersection was at a small angle to the core axis and the interval"s true width is much less. It also is nearly in the same location of the best mineralized portion of hole 86-A-01. Several additional intersections to a depth of 177 metres returned anomalous copper, iron, molybdenum, and sulphur along with elevated cadmium, potassium, tellurium. Calcium, chromium, nickel and strontium were depleted. Core angles deeper in the hole were at higher core angles.

The SW showing which also has a historic over 1g/t intersection was not tested in this program.

Additional exploration expenditures on the Treadwell-Allies property are warranted and recommended. The property remains prospective for three main types of deposits; Afton style gold-copper alkalic porphyry deposits and Cretaceous to Tertiary felsic intrusive associated and Tertiary aged ultramafic shear zone associated feldspar porphyry hosted gold quartz veins.

The current evidence is that a nearby bedrock source of the Allies float mineralization is sourced a short distance north of the mega-boulder showing from a 15-20 wide metre now filled in plunge bowl. Hole 86-A-03 tested the area a short distance NW of the 2010 drilling. The only window left for any significant deposit being nearby is for a northeast dipping system that all historic and current drilling has so far not intersected. Until additional knowledge of the structural geology of the mineralizing systems of the area is made, additional expenditures, except for additional geophysical testing is perhaps backhoe trenching directly to the west of the porphyry exposures determine if they grade into mineralized bedrock can be recommended. Additional testing at the Dodd's and Southwest zones is warranted and recommended. Prior to additional drill testing a modern IP and resistivity, and ground magnetic survey should be completed over the entire Allies area. MMI soil sampling is also an option. Further drill and perhaps backhoe testing of these targets based on the positive results of the surveys can take place. The Darcy (Watching Creek) gold target also warrants additional exploration and should be considered a priority target.

With regards to Afton style exploration targets the 2010 drilling was at best inconclusive. Deeper more effective geophysical testing capable of defining mineralization at depths of 300 metres or greater is required prior to additional drill testing.

Recommended is a \$200,000, multi-staged phase one exploration program comprising IP and ground magnetic, auger soil, MMI soil and geological mapping surveys of the Allies (\$65,000) and Darcy (\$135,000) areas followed by a \$500,000 Phase 2 trenching and drill testing of the already partially tested targets and new ones outlined by the Phase 1 results.

Introduction and Terms of Reference

This report documents the work, and discusses the results of an October 2010, diamond drilling program on the Treadwell-Allies property. This exploration program was funded by Newbridge Capital Inc.. The conclusions made, and recommendations for future exploration expenditures in this report are those of Leopold J. Lindinger, P.Geo.

Property Description and Location

The Treadwell-Allies Property is located in south-central British Columbia, 15 kilometres northwest of Kamloops, B.C., within the Kamloops Mining Division (Figure 1). The centre of the property sits at NTS 092I/15E, 16W, Latitude 50° 51" 41" North, Longitude 120° 37" 33" West, UTM coordinates: Zone U10 5637000 N, 667000 E (WGS84).

The property consists of twelve MTO mineral claims totalling 196 cells and covering 3998.15 hectares. Table 1 below contains information on the individual claims. The claims are currently 100% owned by Treadwell Resources Ltd. (FMC 209731). No legal survey has been completed on the property.

On October 30, 2009 Treadwell Resources entered into an Option Agreement with Newbridge Capital allowing Newbridge to acquire 100% ownership of the Treadwell-Allies Property. Under the terms of the Option Agreement, Newbridge can acquire a 100% interest in the Property less a 2% NSR, by making option payments totalling \$250,000 and issuing 1,050,000 units at a deemed price of \$0.06 per unit of the Company to Treadwell and incurring aggregate property exploration and development expenditures of at least \$850,000 on the Property. The specific details are depicted in Table 2 below:

The Treadwell-Allies property is not subject to any known environmental liabilities. A portion of the property lies adjacent to an federal agricultural reserve surrounding Pass Lake. The surface rights are owned by the Crown and locally under private ownership near Pass Lake.

The claims cover the Allies, Minfile # 092INE044, Pass Lake and Darcy (Watching Creek) Minfile #092INE167gold occurrences (Figure 4). The property also hosts potential for Afton style alkalic copper-gold porphyry deposits. There are no known mineral resources, or mineral reserves on the property. The Allies area has an unreclaimed shaft, several deep pits and trenches, a several kilometres of unreclaimed exploration and excavated trails. The Pass Lake and Darcy areas have several reclaimed trenches and variably reclaimed exploration trails.

The work program discussed in this report has been filed with the Ministry of Energy, Mines and Petroleum Resources under Statement of Work Event number 4843472. A bond with the Ministry of Energy and Mine (MX-4-575) has been created and maintained.

Tenure Claim		Claim Ownership	Old Good	New Good	Area	
Number	Name		To Date	To date*	in Ha	
513217		Treadwell Resources Ltd. FMC# 209731 100%	2011/Mar/15	2018/Oct/15	693.34	
536261	ALLIES X	Treadwell Resources Ltd. FMC# 209731 100%	2011/Mar/15	2013/Oct/15	306.03	
541765	ALLIES WEST	Treadwell Resources Ltd. FMC# 209731 100%	2011/Mar/15	2013/Oct/15	142.74	
541328	TREADWELL EAST	Treadwell Resources Ltd. FMC# 209731 100%	2011/Mar/15	2015/Oct/15	163.15	
541104	ALLIES 2	Treadwell Resources Ltd. FMC# 209731 100%	2011/Mar/15	2013/Oct/15	203.86	
532030	ALLIES VII	Treadwell Resources Ltd.2011/MaFMC# 209731 100%		2013/Oct/15	101.97	
532024	ALLIES III	Treadwell Resources Ltd. FMC# 209731 100%	2011/Mar/15	2013/Oct/15	203.95	
532027	ALLIES V	Treadwell Resources Ltd. FMC# 209731 100%	2011/Mar/15	2015/Oct/15	305.94	
835566	TREADWELL 1	Treadwell Resources Ltd. FMC# 209731 100%	2011/Oct/11	2015/Oct/15	367.21	
835567	TREADWELL 2	Treadwell Resources Ltd. FMC# 209731 100%	2011/Oct/11	2013/Oct/15	489.64	
835568	TREADWELL 3	Treadwell Resources Ltd. FMC# 209731 100%	2011/Oct/11	2013/Oct/15	510.05	
835570	TREADWELL 4	Treadwell Resources Ltd. FMC# 209731 100%	2011/Oct/11	2013/Oct/15	510.27	
TOTAL A	REA OF CLAIM	S IN HECTARES			3998.15	

Table 1	-Treadwell-	Allies Pro	operty Min	eral Tenure
I abit I	1 I Cuu II Chi		per cy mini	ciul i chui c

* upon acceptance for assessment credit of the work documented in this report under Statement of Work Event number 4843472 date March 11, 2011.

The area is legislated as available for placer tenure acquisition and most of Cannell Creek from the Allies occurrence downstream to Watching Creek and the portion of Watching Creek underlying that part of the Treadwell-Allies property and downstream to the Tranquille River are underlain by placer claims.

Date for Completion	Option	Units*	Exploration and Development
	Payment		Expenditures
Date of Execution of	\$ 25,000	Nil	\$ Nil
the Letter of Intent			
Exchange Approval	\$75,000	250,000	\$ Nil
Date			
1st anniversary of	\$25,000	200,000	\$200,000
Approval Date			
2nd anniversary of	\$30,000	200,000	\$200,000
Approval Date			
3rd anniversary of	\$40,000	200,000	\$200,000
Approval Date			
4th anniversary of	\$55,000	200,000	\$250,000
Approval Date			
TOTAL	\$250,000	1,050,000	\$850,000

 TABLE 2. DETAILS OF TREADWELL/NEWBRIDGE OPTION AGREEMENT

Accessibility, Climate, Local Resources, Infrastructure and Physiography

Access to the Treadwell-Allies property is easily gained by several logging roads that run through the property. From North Kamloops, one travels north along 8th Avenue, which leads into the Batchelor Hills where it becomes the McQueen Lake Forest Service Road. At 19 km one drives up the Sawmill Lake FSR. The Allies mine road departs left at km 25.7. A leftward logging spur at km 27.2 accesses the north central part of the property and finally at KM 31.1 the Sydney Lake FSR access the NW part of the property. It is in the Pass Lake area at about Kilometre 20 that one enters the southeastern corner of the property. A two-wheel drive vehicle is adequate for use on the main roads. However the parts of the property that are accessed by older logging and mining roads necessitate the use of four-wheel drive or ATV vehicles.

The climate in the Kamloops area is semi-arid with precipitation at 25 to 28 centimetres (10 to 11 inches). Temperatures vary from the high extreme in summer of around 40°C to the low in winter of around -30° C, though the usual temperature during the summer days would be 15°C to 25°C and that in winter would be -10° C to -5° C.

The main water sources are Cannell and Watching Creeks and several unnamed streams and many small lakes that occur within the property boundaries. Kamloops is the major supply and service centre for resource industries working in south-central British Columbia. The Canadian National rail line is present south of the property. A well developed system of forestry and logging roads are present over and around the property. Hi tension power lines are found about 16.5 km southwest of the properties" southwestern boundary. A skilled labour force for mining and exploration is available in Kamloops which is a 45 minute drive to the southeast.

The Property is located within the Thompson Plateau portion of the of the Interior Plateau System. The Thompson Plateau consists of gently rolling upland of low relief that is dissected by deep steep walled drainages. On the Treadwell - Allies Property the elevations vary from 900

RENAISSANCE GEOSCIENCE SERVICES – Leopold J. Lindinger, P.Geo. 680 Dairy Road, Kamloops, B.C. V2B-8N5

metres (2950 feet) at the southeastern edge of the property at Watching Creek to 1,600 meters (5,250 feet) at the northwestern edge on tenure #513217. Steep to moderate slopes to gently rolling hills with variable soil-cover blanket much of the property. The steep slopes occur mostly along Watching and Cannell Creeks and their tributaries. Much of the claim area is covered by glacial drift, which can become quite deep in valleys and south facing slopes. Tree cover is open lodgepole pine and interior fir forest, with some grassland in drier south facing slopes. Much of the property has been recently logged to combat Mountain Pine beetle and fir tussock moth infestations.

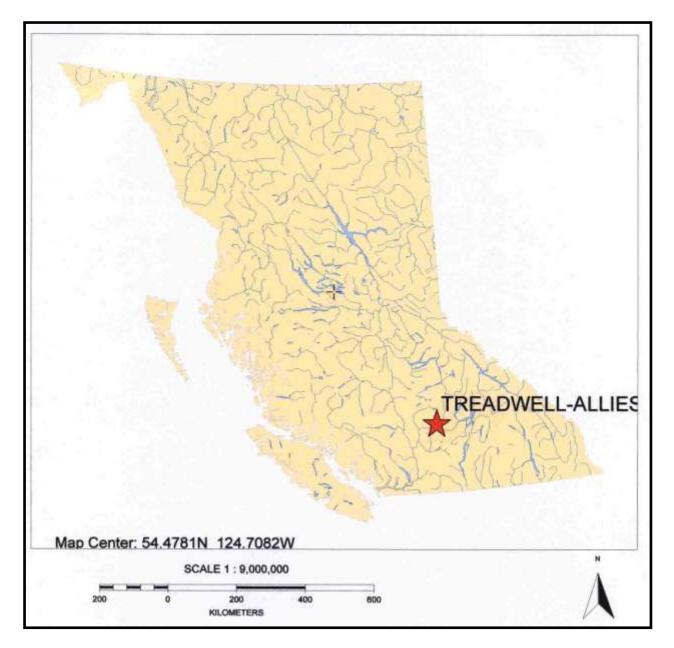


Figure 1 - Property Location Map

RENAISSANCE GEOSCIENCE SERVICES – Leopold J. Lindinger, P.Geo. 680 Dairy Road, Kamloops, B.C. V2B-8N5

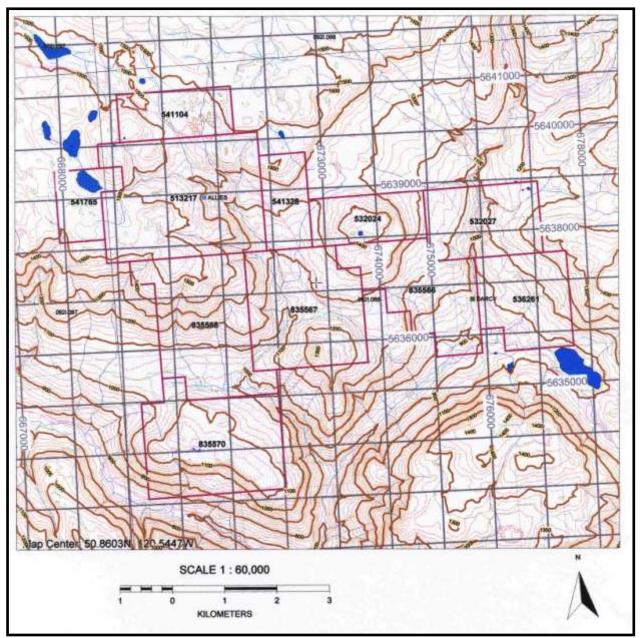


Figure 2 – Mineral Tenure, Topography and Access

History

The following sections are excerpted from Mark 2009 unless otherwise noted.

"Allies" Area

During the 1920s, prospectors were panning for gold up the tributaries of Tranquille River and at the 1280-metre elevation of Cannell Creek they discovered what appeared to be an outcrop of gold-bearing porphyry rock. The Allies group of eight claims was subsequently staked and owned by O.S. Batchelor of Kamloops and the property was then extensively prospected. The porphyry blocks contained considerable small quartz veins and stringers and two samples assayed 48.6 and 45.2 grams per tonne gold, respectively. The extremely large blocks at the original discovery proved to be float; an 11.8-metre shaft (No. 1) with an 11.2 metre drift underneath the blocks intersected boulder clay. The first recorded work on the property was noted in 1924 when considerable prospecting and trenching was undertaken.

An extract from the 1932 B.C. Ministry of Mines Annual Report, P 145 from s revealing for several geological observations.

... "a considerable amount of opencut work has been done close to the creek, but no definite strike or dip found to the Quartz vein mentioned. Very high-grade samples of decomposed oxidized quartz have been taken and free gold panned. Up to the present none of the high-grade ore has been found below the blue clay strata. It appears likely that the whole area in which the flat-lying veins and boulders occur is the result of displacement by glacial action from some point higher in elevation.. Remnants of nearly barren quartz are found in the displaced porphyry, but the matrix of these appears to have a different composition from the high-grade quartz lying above, so that there is probably no genetic connection between the two veins"....

The following is excerpted directly from O"Grady 1932 p 67.

..."A series of open-cuts, starting near the creek-bed of Middle fork, a tributary of Tranquille creek, and reaching up the ridge of the hill for a distance of about 400 feet, exposes more or less similar conditions of mineralization. The principal attraction is in connection with some decomposed heavily iron-stained material from which free gold may he panned. This is found along side broken seems of quartz with a heavy pyrite content and also carrying copper. The notable feature is that in every one of these occurrences, excavations, as far as they have gone, have shown the decomposed material as well as the quartz to merge into seams and layers of blue clay, and in several cases that were examined the quartz, although appearing in vein-like formation, was found to peter out as disintegrated fragments and to be lost in the decomposed clayey material. In the lowest working, near the creek, two or three similar occurrences of quartz and rusty material, mixed with the clay, are found, and there is also a belt of hard rock classified as a silicified porphyry passing through the mineralized zone. The workings on the hill lie in an approximate east.-west direction and the porphyry has an apparent strike of about N. 30" E. although some indications have been found on the eastern side of this intrusive, most of the showings lie to the west, and it is believed that these will be found to be more or less parallel with the intrusion.

RENAISSANCE GEOSCIENCE SERVICES – Leopold J. Lindinger, P.Geo. 680 Dairy Road, Kamloops, B.C. V2B-8N5

Occurrences of a feldspar porphyry higher up the hill and lying to the north of most of the workings, near a short prospecting-tunnel, indicate that the intrusion is not a regular dyke, but will be found probably shot through the whole formation, and this is held to be the explanation of the occurrence. The clay is very evidently an end product of decomposition of the Olivine-basalt, which is the country rock, kidneys of the unaltered basalt being found within masses of the clay, and the probable explanation of the occurrence is that an olivine-basalt formation, in which gold-hearing quartz veins occurred in a more or less definite zone, has been intruded, extremely shattered, and decomposed.

The Occurrence of large boulders in the broken-up surface material makes prospecting difficult and the gentle slope of the hill does not offer much chance for tunnelling. It is, however, recommended that a crosscut tunnel should be started close to the bed of the creek on the eastern side of the porphyry dyke and be driven in a general westerly direction through the dyke and below the open-cut workings, where it is hoped that the boulder conditions of the surface will be got away from and there will be a chance to sample the several quartz occurrences with a view to driving in on any one of them that shows promise of persistence. A picked sample of the decomposed material assayed: Gold, 2.86 oz. to the ton; Silver, 5.40 oz. to the ton."...

Mark continues;

..."During 1933-34, an extensive underground exploration program was carried out in an attempt to find and delineate the source of the gold-bearing porphyry float. The work consisted of: (1) the sinking of three shafts with two drifts; (2) the digging of 33 open cuts/pits; (3) the completion of four adits totalling at least 199 metres with 15 metres of crosscuts west and southwest of the original discovery. Although they tunnelled through several occurrences of porphyry material in place which was similar to that found at the original shaft (No. 1 shaft), the source of the high-grade float material was not found"....

An extract from the 1933 B.C. Ministry of Mines Annual report, P 193 from which the preceding paragraph was derived is revealing for several additional geological observations.

..."a shaft sunk 39 feet in gravel and boulders, <u>probably the old creek-channel</u>*, on the flat, a short distance west of the creek, and near a porphyry outcrop in which some high-grade gold quartz ore was discovered. A 37 foot drift, as well as 6-foot drill-holes in the face, driven east from the bottom of the shaft, proved that the above find was not in place, and only large boulders and angular blocks of porphyry in blue clay were encountered. About half a mile to the southwest and 200 feet higher, a tunnel was driven 175 feet, which intersected 26 feet of serpentine, 100 feet of porphyry, and 20 feet more serpentine. At 145 feet a band, 12 inches wide, of pyritized quartz and porphyry enclosed in serpentine was found carrying low values in gold. The 100 feet of porphyry assayed from a trace to 0.04 oz. in gold per ton. In a 50- foot tunnel, 60 feet higher and about 200 feet south-west, much oxidized quartz assaying: Gold, 0.20 oz. per ton; silver, 0.40 oz. per ton, associated with porphyry, was found. Since the examination was made a new "North-west Tunnel" has been driven 65 feet, and a quarter of a mile directly west uphill from the shaft, and it will be continued in a westerly direction to crosscut the formations in an endeavour to locate the source of the quartz in porphyry found displaced near the creek."...

Mark continues;

... "The property lay dormant until 1967 when a portion of the Allies group was staked as the Bob claims and held by South Oak Mines Ltd. Additional claims were staked adjacent to and surrounding the Bob claims and were known as the Dog group. In 1968, six trenches and six pits were dug and blasted in overburden and bedrock by F. Swiatkevich on the Bob claims.

In 1973, magnetic and VLF-EM surveys were completed over a portion of the Cat Claim group located on Cannell Creek just south of the Allies prospect (Larson, 1973, Assessment Report 4218). The property was held by Grand Prix Resources Ltd. The surveys were successful in gathering information on the structural geology and isolating areas which warrant additional work.

In 1973, Spartan Explorations Ltd. conducted a ground magnetometer survey on the Zeke 11-30 claims between the headwaters of Cannell Creek and Watching Creek, immediately north of the Allies prospect area (Dodge, 1973b (Assessment Report 4407). No significant magnetic anomalies were found. Also in 1973, in the same area, another Zeke group (T & C Management Ltd.) (Cat 25-40, Pam 1, 25 Pam 33-34 and Zeke 1-10, Rat 10, 12-14, 16) had magnetic and VLF-EM surveys conducted, also with no significant results (Mark, 1973a,b, Assessment Report 4307). A soil geochemistry survey consisted of 502 samples but failed to locate any areas of potential economic copper - gold mineralization (Mark, 1973b, Assessment Report 4770).

In 1973, magnetic and VLF-EM surveys were completed for Alberta Petroleum and Resources Ltd over the complete area of the Pam 3-24 claims located on and around Strachan Lake about 4 km northwest of the Allies prospect (Mark, 1973c, Assessment Report 4617). The magnetic results showed a broad high striking northwesterly through the center of the Pam claims flanked by a low on each side. The VLF-EM results were rather discontinuous and low in magnitude.

In 1972 and 1973 Bon-Val Mines Ltd., conducted magnetic, VLF electromagnetic and geochemical sampling surveys, which were centered over the original Allies prospect [Sookochoff, 1973 (Assessment Report 4546); Mark, 1973d (Assessment Report 4212)].

The claims owned by Bon-Val, covering the prospect at this time, were called the Dog 103-132. Bon-Val Mines was subsequently reorganized as Yamoto Industries Ltd. Yamoto conducted a geochemical soil sampling program in 1976 over the Allies prospect area now held as the Cannell claim. They collected 800 samples, which were analyzed for gold and copper. Results showed only a few random gold "highs" presumably because of the heavy, clay-rich overburden (Mark, 1976 (Assessment Report 5950)). In 1978, Yamoto completed three diamond drill holes totalling 162.5 meters that were bored near and to the south of the No.1 shaft around the main showing [i.e. the mineralized boulder field) (Sookochoff, 1978

(Assessment Report 7085)]. Drill logs reported barren serpentine in all holes.

In 1983, airborne magnetic and VLF-EM surveys were carried out over the Dog Claim Group owned by Stryder Explorations in 1983 (Mark, 1983 Assessment Report 11409). The Dog claims of Stryder Explorations covered the area of the old Allies prospect but were apparently not valid due to the ongoing legal dispute with Laramide. Both the VLF-EM and

RENAISSANCE GEOSCIENCE SERVICES – Leopold J. Lindinger, P.Geo. 680 Dairy Road, Kamloops, B.C. V2B-8N5

magnetic surveys revealed lineations within the survey area that are likely caused by fault, shear and/or contact zones. These usually are important indicators of sulphide and native gold mineralization especially where the lineations cross. The VLF-EM survey revealed numerous EM conductors throughout the claims area.

In 1984, Laramide Resources Ltd, was awarded the property after a legal dispute. In 1984, Laramide conducted a geological program consisting of grid layout, prospecting and geological mapping [Dawson, 1984 (Assessment Report 12412)] and a geochemical survey consisting of 177 soil samples, 50 silt samples, 7 pan samples and 20 rock samples [Dawson, J.M. and Leishman, D.A. 1985, Assessment Report 1985]. A total of 23 soil samples yielded values greater than 5 and up to 1130 ppb gold and values of up to 1270 parts ppb gold were found in the stream samples. In 1985, Laramide initiated a detailed exploration program consisting of grid layout, geological mapping, road construction, trenching and soil and silt sampling. The property was optioned to Relay Creek Resources Ltd in 1985, who conducted some induced polarization and excavator trenching [Scott, 1985 (Assessment Report 15270)]. The induced polarization survey indicated the presence of weak and very weak chargeability highs within a very low chargeability background. These weak responses were thought to possibly represent drill targets providing there is supporting geological evidence.

In 1986, operator Relay Creek Resources initiated a drilling program consisting of five NQsized core holes totalling 619.2 meters [Dawson, 1986 (Assessment Report 15807)]. Two holes were drilled under the mineralized boulder field (i.e. the main "Allies showing"), two holes were drilled about 400 meters to the south and one hole was drilled near the southwest showing (500 metres southwest of the main showing). Some holes were not completed due to drilling problems and bad weather. Drilling beneath the Southwest and Dodd's Showings demonstrated significant (10 to 20 meter) widths of quartz and quartz-carbonate stockwork mineralization which is quite similar to that found in the boulder accumulation at the Main Showing. Gold values at both these locations were considered to be only in the anomalous range, up to 1300 ppb. The mineralized zone at the Dodd's showing appears to have been cut off to the east by a northwesterly-trending fault which probably closely follows the valley of Cannell Creek.

Drilling beneath the area of the Main showing was only partly completed. Heavy (deep) overburden and caving prevented the completion of drill hole 86-A-2. Hole 86-A-2 demonstrated that the younger plateau basalt is down-faulted against the picrite north of the (interpreted) mineralized boulder accumulation."... "The zone from which the higher grade mineralized boulders was derived has not yet been located.

Further details of the 1986 Relay Creek drill program, including assay certificates and drill logs can be viewed in Assessment Report 15807 (Dawson, 1986). The relationship between the drill sample length and the true thickness of the mineralization and the orientation of the mineralized zones were not stated.

Although Relay Creek Mines conducted no further work on the property, it held the property in good standing until 1997.

The Dog Claims of Trans-Arctic Exploration Ltd were staked adjacent to the area of the Allies prospect on which exploration was previously carried out for gold in the 1920s and 1930s. In 1985, a VLF-EM survey was carried out over the Dog 2 and Dog 3 claims for Trans-Arctic Exploration Ltd. The VLF-EM survey was reported to have revealed "interesting, rather complex" conductors that are indicative of cross-structure and thus are of exploration interest (Mark, 1985, Assessment Report 13897). A 31.5 line km magnetic survey was carried out in 1986 for Trans-Arctic (Mark, 1986 (Assessment Report 15192)).

In 1987, 40 soil samples were collected on parts of the Dog 2-3 claims that were located adjacent to the area containing the old Allies showings on which exploration was previously carried out for gold in the 1920s and 1930s. Work in 1987 was conducted for owner Trans Arctic Explorations Ltd (Mark, 1987 (Assessment Report 16359)).

No exploration work was reported on the original Allies prospect from 1990 to 1997, when the property came open and (Richard) Simpson acquired it by staking the Treadwell #1 claim in October 1997.

In 1998, Mr. Simpson commissioned Dr. Franco Oboni, PhD to conduct a study of the surficial rock movement around the area of the mineralized boulder field on the Treadwell #1 claim (Simpson and Oboni, 1998 (Assessment Report 25680)). Dr. Oboni determined that the mineralized boulders found on the original showing, would have come from the area to the north and/or northwest of the boulder field. Other than occasional prospecting trips by Mr. Simpson, activity on the property remained dormant from 1996 until 2004.

Paul Larkin became the registered holder of the Treadwell #1 property in May of 2004 when it was acquired through re-staking."...

..."Silvestre Creek Area

In 1991, prospecting was carried out on the K claims which were located in the Tranquille River-Silvestre Creek area, located on the northwest part of the Treadwell property (Assessment Report 22297). The work was conducted by owner/operator George Kachuk. Reported results were obscure.

Watching Creek Area

The Watching Creek drainage area is covered by several claims of the present Treadwell-Allies property near its eastern extension. Some historic work was completed in the area and is described as follows.

In 1973, Spartan Explorations Ltd. conducted a reconnaissance program of prospecting and geological mapping on the T Group of 30 mineral claims (Dodge, 1973a (Assessment Report 4310). Attention was paid to the possible presence of Triassic andesites and younger intrusive rocks, as these are hosts for important copper deposits in the Kamloops area to the south. This

group covered some of the same ground later covered by the northern reaches of the Darcy claim group.

The Darcy Claim Group was staked by Esso Resources Canada Limited in 1984 after a grab sample taken from outcrop near the western edge of Pass Lake returned anomalous gold values. No mining or exploration activity had been recorded previous to the staking of the claims in 1984. During the 1985 season, two separate field programs were conducted (Ditson, 1985 (Assessment Report 14194). The first program of geological, geochemical and geophysical surveys took place in June: the second program of trenching and chip sampling took place in September. In June, two grids designed "A" and "B" were established, consisting of 13.5 and 6.6 line kilometres, respectively.

Geological mapping of detail grids was completed at a scale of 1:2,000 and claim mapping was done at 1:10,000. A total of 308 geochemical soil samples were collected over 8 km of grid lines. Four rock chip samples and nineteen rock grab samples were collected. Magnetometer and VLF-EM16 geophysical surveys were conducted over all grid lines. In September, backhoe trenching on both grids totalled 105 metres. Seven test pits were also dug. Trenches and pits were generally 5-6 m deep. A 500-meter access road was constructed into the Grid B trenching site. Twelve rock chip samples were collected from trenches and surface outcrops. Three occurrences of gold mineralization on the Darcy claim group were found to be spatially associated with the contact of a large, elongate body of picrite which has intruded Triassic Nicola Group volcanic rocks. See (Mineralization) for details.

In 1987 on the Darcy claims, Esso Minerals Canada and partner Pass Lake Resources collected 428 soil samples and 14 sieved silt samples, collected at 250-metre intervals in Watching Creek, for heavy metal concentration analysis. In January 1988, three NQ diamond drill holes totalling 200 metres were completed, two on the west side and one on the east side of Watching Creek"...

The following is derived from Dom 1988.

... "The three drill holes intersected a variable thickness of overburden, two distinct rock types and three probable phases of alteration and quartz veining. Depth of overburden intersected in the three holes was from 10 to greater than 40 metres. Hornblende feldspar porphyry is the dominant rock type within the area drilled. It is a medium to dark green and has porphyritic to intrusive textures. Although a common rock type on the surface of the property, only 13 metres of picrite was intersected near the bottom of hole PL88-01. In drill core, this unit appears as a dark green aphanitic rock with minor 1 to 3mm pyroxene olivine crystals clots near the contact.

Hole PL88 01 from 26.62 to 27.12 metres (0 5 metres) returned 2.0 grams per tonne gold, 6.3 grams per tonne silver and 66 parts per million molybdenum. A mineralized zone that is geochemically anomalous from 26.62 to 28.14 metres hosts two 15 to 20 cm wide quartz veins. Mineralization includes up to 15% semi-massive pyrite and traces of molybdenite."...

The relationship between the drill sample length and the true thickness of the mineralization and the orientation of the mineralized zones were not stated.

RENAISSANCE GEOSCIENCE SERVICES – Leopold J. Lindinger, P.Geo. 15 680 Dairy Road, Kamloops, B.C. V2B-8N5

The following is quoted from Ditson 1984:

"Dairy and Lanes Creeks Area

The Isobel claims were staked in the early 1980s on the basis of gold associated with anomalous quantities of arsenic in heavy mineral samples taken from stream sediments. The property was owned by Minequest Exploration Associates Ltd and private company Goldquest I. A small portion of the work area is covered by the northeast corner of the present Treadwell-Allies claim block. In 1983, 100 soil samples and 73 silt samples identified geochemically anomalous areas that warranted further exploration [Ridley, 1984 (Assessment Report 12297)]. The 1984 program was directed at locating the source of the anomalies outlined by silt sampling. Work consisted of contour soil sampling (about 550 samples), silt sampling (6 samples), rock chip sampling (32 samples), and geological mapping (Gourlay, 1985, Assessment Report 13683). While geochemically anomalous arsenic values are found in fine-grained sedimentary rocks, and a single anomalous gold value in a fine-grained arkosic rock of the Triassic Nicola Group, no further work on the property was done after 1984 though further work was recommended"

Recent Property Work

From 2004 to 2006 various portions of the current property were acquired by parties eventually having an interest in Treadwell Resources Ltd., the current tenure owner. From 2004 to 2010 Geotronics Consulting Ltd. completed several stages of grid work and IP, SP and ground magnetometer surveys and MMI soil surveys around the Allies and in 2009 over the Darcy areas, Several tentative and weak but coincident magnetic, IP and MMI anomalies were outlined.

The Darcy grid is about 1 km north of the Darcy gold occurrence and overlies an area hosting no known gold mineralization. The 2010 IP stations were often not at the same location as the earlier MMI stations varying from less than 5 to over 40 metres away.

Geological Setting

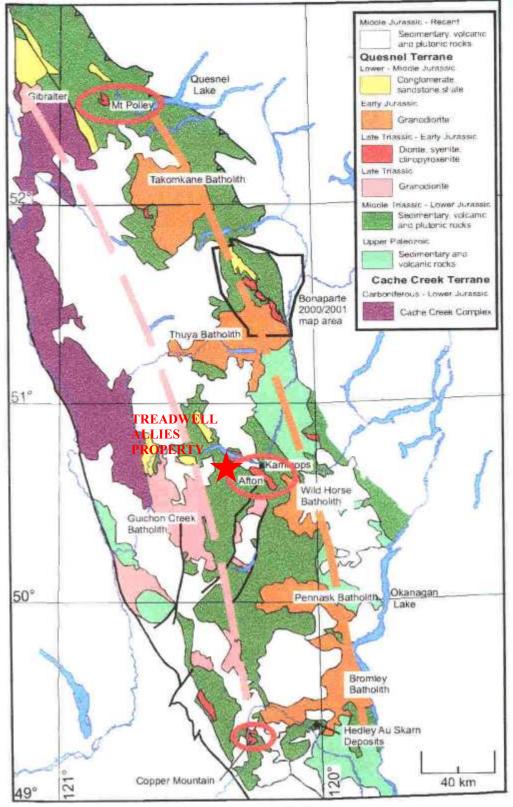
Regional Geology

The following regional geological description is derived in whole or in part from Mark 2009 quoting Owsiacki (2003) with many modifications by the author in light of recent observations and interpretations.

The oldest rocks of the region west of the North Thompson River near Kamloops are Upper Triassic aged Nicola Group subaqueous island arc volcanic and sedimentary rocks. The Nicola Group has been divided into four lithologic assemblages; a steeply dipping, east-facing "western volcanic belt" consisting predominantly of subaqueous felsic, intermediate and mafic volcanics of calcalkalic affinity that grade upward into volcaniclastic rocks; a "central volcanic belt" composed of both subaqueous and subaerial basalt and andesite flows, volcanic breccias and lahars of both alkalic and calcalkalic (both plagioclase and augite phyric) affinities; an overlying, westerly dipping "eastern volcanic belt" composed of predominantly subaqueous and subaerial

alkalic (both augite and hornblende-phyric; shoshonites and ankaramites) intermediate and mafic volcanic flow, fragmental and epiclastic rocks; and an "eastern sedimentary assemblage" that is overlapped by the eastern volcanic belt and is composed predominantly of greywackes, siltites, argillites, alkalic intermediate tuffs and reefal limestones.

The Nicola Group has been intruded by coeval Late Triassic western belt calc-alkalic (Highland Valley) and Early Jurassic eastern belt alkalic (Iron Mask) and slightly later calc-alkalic (Thuya) batholithic intrusions.


The Nicola Group has been broken into three north trending subparallel packages that are separated by two regional sub-parallel faults. The eastern one being partly defined by Cherry Creek and the western one by Guichon Creek - Deadman River fault zones. These tend to divide the central from eastern and western from central volcanic-intrusive packages respectively.

The nearby Iron Mask Batholith consists of four major, successively emplaced units, which are called the Iron Mask Hybrid, Pothook, Sugarloaf, and Cherry Creek units. The composition and texture range from coarse-grained gabbro to microsyenite. In addition, there occurs an older subvolcanic? picrite unit that does not appear to be directly related to the batholith but it is spatially adjacent to it in several localities especially NE and SW of the main intrusive. All the above mentioned phases host some copper mineralization however economic copper-gold-silver-palladium-platinum quantities and grades are confined to the later phases of the batholith.

Unconformably and partially overlying and occasionally intruding the Nicola Group rocks and its associated intrusives are possible Cretaceous intrusives, Eocene sediments, Kamloops Group arc volcanics and related? various mafic to felsic intrusives. Rocks of this group consist of tuffaceous sandstone, siltstone, and shale with minor conglomerate, as well as basaltic to andesitic flows and agglomerate with minor dacite, latite, and trachyte. Thick remnants of the Kamloops Group Mt. Doherty stratovolcano lying to the southwest cover the southwest portions of the Treadwell property.

Extensive Miocene-Pliocene plateau basalts of the Chilcotin Group underlie the northern portions of the property and extend far to the north and northwest. Scattered minor Pleistocene and Recent flows of the Anaheim-well grey volcanic belt also occur.

These lithologies have been broken and variably displaced by innumerable pre and syn Eocene sinistral, reverse and dextral shear and post Eocene block faults.

Figure 3 - Regional Geology

Local Geology

The geology of the claim area is shown on Figure 4. The western area of the Treadwell-Allies claim block is underlain by sediments and overlying volcanics of the Kamloops Group. Ewing 1982 has termed the sediments the Tranquille formation and the volcanics the Dewdrop Flats Formation Parts of the northwest claim area are covered by Miocene aged plateau basalts of the Chilcotin group which in turn appear to be underlain primarily by Kamloops Group rocks. Most of the eastern part of the property is underlain by the Late Triassic to Early Jurassic eastern belt basaltic Nicola volcanics which in turn hosts ultramafic picrite and elsewhere Iron Mask intrusives. A 10-15 km wide belt of eastern Nicola Group sediments occurs further to the northeast. The picrite occurring within the eastern belt Nicola basalts represent an episode of hypabyssal ultramafic intrusion and possible volcanism during later stages of volcanic activity (Snyder and Russell, 1994). These picrite basalts in the Pass Lake-Watching Creek area within the region have a volcanic nature (Snyder and Russell, 1994).

Property Geology

The geology underlying the claims is complex and with ages ranging from Upper Triassic-Lower Jurassic Nicola Group eastern belt basalt and spatially associated picrite, to possible Cretaceous intrusives to/or Eocene Kamloops Group Tranquille Formation sediments, felsic and intermediate feldspar porphyry, Battle Bluff mafic intrusives and extensive subareal Dewdrop Flats formation intermediate to basaltic volcanics of the Mt. Doherty volcanic complex, finally Miocene aged flood basalts, Pliocene glacial drift and later unconsolidated sediments.

The hornblende porphyry intrusive of the Darcy showing dues to its gold-molybdenum affinity may be an unmapped Cretaceous or later aged plug. The Kamloops group sedimentary, volcanic and intrusive rocks underlie parts of and extend south and west of the central and south western part of the property. They overlie, or are in fault contact with the older rocks. Probably coeval feldspar and hornblende porphyry intrusives that are often associated with gold mineralization intrude picrite in the Allies and watching creek areas. Aeromagnetic data suggests that the Kamloops Group in this area may be underlain by Iron Mask intrusives.

Overlying all older lithologies in the northern part of the claims with outliers occupying small mountain tops to the east are Miocene Chilcotin Group flood basalts.

Extensive and locally thick glacial till and glaciofluvial deposits cover lower relief areas.

Allies Area - Detailed Geology

The geology in the Allies showing area is shown in Figure 6. The Allies area is a 600- meter by 400-meter, erosional tectonic window consisting of picrite, Nicola 'greenstones' and felsic feldspar and hornblende porphyry dykes. The northwest part hosts a up to 30 metre thick bed of felsic ash tuff or volcanic greywacke. Dawson (1984) describes this distinctive unit.

" In at least 2 places at the base of the (Miocene) basalt succession there is a poorly stratified sedimentary unit. It weathers to a distinctive light brownish colour and may locally be as much as 30 meters thick. This unit consists of poorly indurated volcanic wacke and conglomerate. Most of the fragments consist of basalt, however minor amounts of greenstone and granitic boulders are also noted".

The south and west parts are covered by poorly mapped Kamloops group volcanics including rhyolite and large masses of basaltic to andesitic flows and related breccias. The northern parts are dominated by Miocene Plateau basalts that cover all older lithologies. Exposures of pre-Cretaceous rocks are minimal and almost exclusively confined to areas of workings.

Picrite is usually a green to dark greenish-black rock composed of subrounded serpentinized olivine grains (two to five millimetres) set in a dark chloritic matrix. Outcrops of picrite are generally deeply weathered and decomposed. The 'greenstones' consists of light green, chloritized and carbonatized, feldspar and augite porphyritic to aphanitic rocks which can be interpreted as either flows and/or tuffs.

Numerous Cretaceous or early Tertiary (Kamloops Group?) felsic, feldspar and hornblende porphyritic dykes are found cutting the older picrite and Nicola volcanics and have been noted in place at the Dodd's and the Southwest Showings. Identical dike rocks occurring as a series of closely spaced large angular blocks have been found in Cannell Creek and in drill core at the Main or Discovery (Allies) Showing and locally form the host for the mineralized quartz-sulphide veins. These are usually grey to buff coloured rocks composed of 20% to 30%, small feldspar (two to five millimetres in dia.) and minor hornblende phenocrysts set in a grey, aphanitic groundmass. Data from surface and drilling indicate that these dykes strike easterly to northeasterly and dip steeply south. At both the Southeast and Dodd's Showings, the dikes occur as a cluster or swarm over a 20- to 30-meter width, with intervening screens of chloritized country rock.

Cockfield (1948) noted light and dark porphyries in his mapping. Dawson (1986) has seen two other outcrop areas at No. 2 and No. 3 adits where "*light porphyry cuts the surrounding, friable picrite*". This dyke rock "*is paler and more siliceous than the previously described "dark*" porphyries and does not contain any quartz veining."

Miocene plateau basalts are black, fine-grained massive to olivine porphyritic, occasionally amygdaloidal, and often columnar jointed. The basalts locally overlie a poorly stratified unit, up to 30 meters thick, composed of volcanic, wacke and conglomerate (Kamloops Group?) on the north side of the Allies window and on the northeast side the picrite and a short distance west of the allies porphyry.

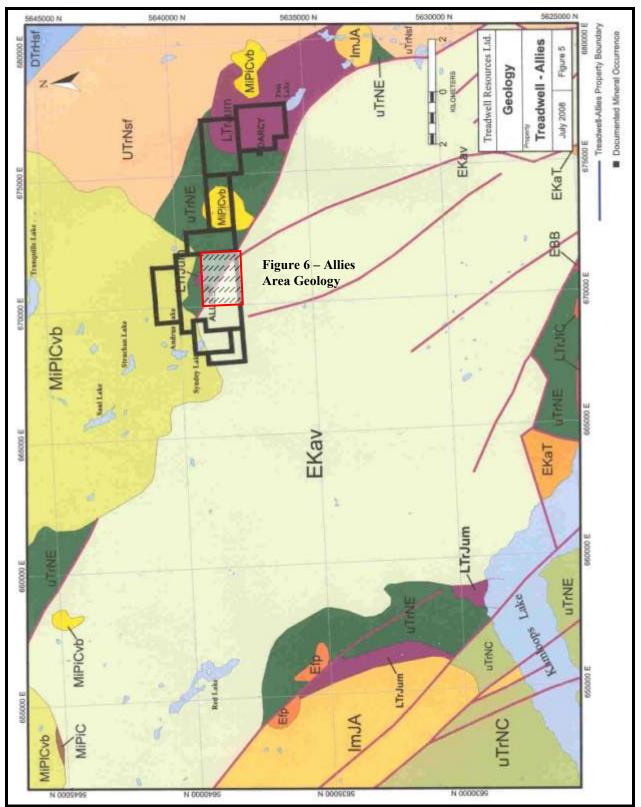
Darcy Area Geology (Sources Ditson, 1985, Snyder and Russell 1994 and Mark 2009)

The Darcy or Watching Creek area is centred within a large ultramafic body of cumulate textured picrite-basalt (Snyder and Russell, 1994). It occurs as a 7x4 km northwesterly trending elongate

RENAISSANCE GEOSCIENCE SERVICES – Leopold J. Lindinger, P.Geo. 20 680 Dairy Road, Kamloops, B.C. V2B-8N5

intrusive mass. The aeromagnetic signature of this intrusion extends another 1.5 km to the southeast, suggesting a shallowly plunging extension in that direction.

The picrite and surrounding north-westerly-trending Nicola rocks are overlain by erosional remnants of Eocene Kamloops Group volcanics in the southwest and to the northwest Miocene-Pliocene Plateau Basalts. Paleozoic and Mesozoic lithologies similar to those of the Nicola Group but of slightly higher metamorphic grade (Harper Ranch Group?) occur beyond the claims to the northeast.


The Nicola Group volcanics comprise green fine to medium-grained tuff, but ash tuff, tuff breccia and fine to medium-grained augite – feldspar porphyry basalts and andesites. Nicola sedimentary rocks occurring to the east include grey, laminated argillite, grey to black siltstone, and conglomerate.

Unusual volcanic rocks of unknown age occur and although they resemble the Kamloops Group (olivine present and amygdaloidal), they appear to be at least spatially associated with picrite and are therefore assumed to be older than (or coeval with?) picrite.

An outcropping zone of "carbonated" picrite near to and southwest of Pass Lake hosts the discovery gold showing. A second zone of hydrothermal carbonate breccia occurs in picrite about four kilometres north northwest in the Watching Creek valley. The showings are located near the south and north borders of the intrusion respectively. Widespread alteration is characterized by serpentine, clay, magnetite, hematite and sericite.

A Cretaceous? or later aged hornblende-feldspar porphyry granodiorite intrusive outcrop in Watching Creek 2 km NW of Pass lake. This porphyry is locally strongly fractured, sheared and altered. In these zones narrow quartz stringers which may or may not contain pyrite host erratic gold mineralization. Ditson concluded that "*The only constraint upon the age of these rocks is that they appear to intrude picrite.*"

Ditson also states "Sedimentary rocks occur in three locations and are tentatively correlated with Coldwater Beds that are believed to be a sedimentary facies equivalent of Kamloops volcanic rocks (Monger, 1982). They were never observed in direct contact with other lithologies."

Diamond Drilling and Reclamation Assessment Report on the Treadwell-Allies Property Newbridge Capital Inc. May 17, 2011

Figure 4 – Local and Property Geology and Index Plan Source Mark 2009, note Tenure out of date (more added to the SW).

Figure 5 Local and Property Geology Legend (from Mark 2009)

RENAISSANCE GEOSCIENCE SERVICES – Leopold J. Lindinger, P.Geo. 680 Dairy Road, Kamloops, B.C. V2B-8N5

Deposit Types

Gold Quartz Veins

The deposit type "gold quartz veins" being most commonly explored for on the Treadwell Allies property are as Bohlke 1989 describes "structurally discordant syn-to post metamorphic gold-bearing quartz veins with low base metal content, formed from through-flowing, high 18 O low salinity CO2-rich aqueous fluids as approximately 150 o to 450 o C and 0.5 to 3+ kilobars."... (Ash 2001, page 108).

Specific to the western cordillera of North America Ash, 2001, page 104 summarizes:

"LATE SYN-OROGENIC GOLD-QUARTZ VEINS"

Many of the gold-quartz vein deposits discussed fall into this category and include; Bra1orne, Carolin. Snowbird, Atlin, Rossland, Alaska-Juneau and most likely those in California. Coincident formation subsequent to post orogenic activity in most instances is indicated by combined magmatic, metamorphic and stratigraphic relationships.

Three of the deposits, Atlin. Snowbird and Rossland are synchronous with regionally-extensive Middle Jurassic orogenic activity. California gold-quartz veins appear to have formed following the Late Jurassic Nevadan orogeny (Landefeld, 1988, Edelman and Sharp, 1989). Younger mid-Late Cretaceous orogenic activity coincides with the timing of vein development at Bralorne and possibly Carolin (G Ray, personal communication, 2000), whereas those at Alaska-Juneau follow Early Eocene orogenic activity.

Most of these late syn-orogenic gold-quartz vein deposits share a close spatial and apparent coeval relationship with high-level felsic intrusions. These intrusive rocks are typically finegrained to porphyritic, occurring as dikes and dike-like masses or small stocks. On the scale of individual camps the mineralogical composition of the dikes is relatively uniform, though textural variability is common. In some cases dikes appear to be finer-grained equivalents of larger coeval plutonic masses, such as at Atlin, Snowbird, Rossland. There can be considerable variability between the individual camps in mineralogical composition of intrusions ranging from quartz diorite and tonalite (Snowbird) to granodiorite (Atlin, Rossland) to granite. At Bralorne, Leitch (1990) describes vein-associated dikes as albitite and hornblende porphyries. Johnston (1940) referred to similar dikes at Grass Valley as leucocratic, aphanitic to quartz-albite porphyritic granite. They are described from the Mother Lode by Knopf (1929) as albitite porphyry dikes and by Lindgren (1928) as albite aplite dikes. Felsic dikes of this type commonly display the following features:

-They lack penetrative fabrics and postdate regional greenschist metamorphism, although they may be deformed or disrupted by subsequent deformation.

-They are hydrothermally altered and replaced to varying degrees by secondary carbonate, sericite and pyrite, often with elevated gold content.

-They often display some degree of structural control and dikes are commonly co-structural with and occupy the same vein-hosting fissure zones (Bralorne, Atlin).

RENAISSANCE GEOSCIENCE SERVICES – Leopold J. Lindinger, P.Geo. 24 680 Dairy Road, Kamloops, B.C. V2B-8N5

Ash (pp 99 -102) further separates this generalized deposit type into "ophiolite hosted gold veins" and "mixed mafic igneous-sedimentary sequence gold veins".

The first type are characterized in British Columbia by the Bralorne, Cassiar and Atlin gold systems. They are hosted by oceanic igneous crustal rocks and are at least spatially associated with listwanite altered ultramafic rocks. Because of these rather unique constraints they are rare, however they have produced the greatest amount of gold in British Columbia and are often very high grade.

The second type is more common and past producing deposits of this style include the Alaska Juneau (Treadwell) Mine, Coquihalla, Minto, and Congress systems. This type is characterized by occurring within tectonically imbricated alternating slices of mafic and ultramafic intrusive-volcanic rocks and oceanic derived sediments. Ash 110 concludes ..."These deposits are typically of lower grade and often associated with vein marginal replacement ore"...

Both however have an intimate association with pre and syn? mineralization felsic feldspar intrusives often in the form of sills and dykes as described above .

Alkalic (Afton style) Porphyry Copper Gold Deposits

Significant mineralization of this deposit type occurs south the Treadwell – Allies property. Airborne magnetic anomalies indicates that the extension of the northwest-trending Iron Mask batholith, known host of such deposit types, may exist below a thick veneer of predominantly Eocene Kamloops Group volcanic rocks, that underlies a significant portion of the Treadwell – Allies property. Alkalic Porphyry copper-gold and/or Porphyry Gold mineral deposit potential occurs under the southwestern part of the property. Reportedly a portion of the batholith outcrops about 1.7 kilometres south of the current claim boundary (Mark 2009).

The Afton deposit, about 20 kilometres south of the Treadwell – Allies property, is an example of alkalic porphyry copper-gold type deposits and is hosted primarily in diorite of the Iron Mask batholith. MINFILE reports historically, that from 1977 to 1991, 40,791,247 tonnes of ore were mined from the Afton from which 232,190,029 kilograms of copper, 14,826,173 grams of gold and 85,786,171 grams of silver were recovered. Recent intense exploration work around and under the Afton mine and Ajax mines has lead to an additional resources being defined.

The following alkalic porphyry copper-gold description is taken in whole from the British Columbia Mineral Deposit Profile website.

"Stockworks, veinlets and disseminations of pyrite, chalcopyrite, barite and magnetite occur in large zones of economically bulk-mineable mineralization in or adjoining porphyritic intrusions of diorite to syenite composition. The mineralization is spatially, temporally and genetically associated with hydrothermal alteration of the intrusive bodies and host rocks.

GEOCHEMICAL SIGNATURE: Alkalic cupriferous systems do not contain economically recoverable Mo (< 100 ppm) but do contain elevated Au (> 0.3 g/t) and Ag (>2 g/t). Cu

RENAISSANCE GEOSCIENCE SERVICES – Leopold J. Lindinger, P.Geo. 25 680 Dairy Road, Kamloops, B.C. V2B-8N5

grades vary widely but commonly exceed 0.5 % and rarely 1 %. Many contain elevated Ti, V, P, F, Ba, Sr, Rb, Nb, Te, Pb, Zn, PGE and have high CO2 content. Leaching and supergene enrichment effects are generally slight and surface outcroppings normally have little of the copper remobilized. Where present, secondary minerals are malachite, azurite, lesser copper oxide and rare sulphate minerals; in some deposits native copper is economically significant (e.g. Afton, Kemess).

GEOPHYSICAL SIGNATURE: Ore zones, particularly those with high Au content, are frequently found in association with magnetite-rich rocks and can be located by magnetic surveys. Pyritic haloes surrounding cupriferous rocks respond well to induced polarization surveys. The more intensely hydrothermally altered rocks produce resistivity lows.

OTHER EXPLORATION GUIDES: Porphyry deposits are marked by large-scale, markedly zoned metal and alteration assemblages. Central parts of mineralized zones appear to have higher Au/Cu ratios than the margins. The alkalic porphyry Cu deposits are found exclusively in Later Triassic and Early Jurassic volcanic arc terranes in which emergent subaerial rocks are present. The presence of hydrothermally altered clasts in coarse pyroclastic deposits can be used to locate mineralized intrusive centres."

Intrusion Associated Gold

The DARCY occurrence has many characteristic of the "INTRUSION ASSOCIATED GOLD DEPOSIT MODEL" which has a gold, arsenic, bismuth, antimony +/- molybdenum metal association (Rhys and Lewis, 2004). The Timbarra deposits, like the Darcy Occurrence have molybdenum as its most dominant non precious metal (Toomey 2011).

Toomey 2011 describes: "Intrusion-related gold systems, or IRGS, are important sources of gold. They are a new classification of gold deposits, though they have been recognized for some time. It has only been in approximately the last 10 years that IRGS deposits have been formally named and characterized. IRGS are an example of an important fact that should be considered when learning about mineral deposits in general: mineral exploration and modeling is still advancing, and when it comes to deposit types and classification scheme, there are a great deal of "gray areas."...

..."In 1999, Thompson et al. introduced a new intrusion-related class of deposits that emphasized intrusion-related gold mineralization in regions lacking in copper, but known for their tungsten and tin. These systems were identified as distinct from intrusion-related gold deposits associated with chalcophile oxidized magmas. In order to differentiate between the two types, Lang et al. (2000) introduced the term intrusion-related gold "systems" (IRGS). "System" was emphasized to highlight the wide range of associated gold deposit styles within this scheme. Intrusion-related gold deposits refer to an incoherent group of deposits with wide-ranging characteristics produced by local-scale fluids derived from a cooling pluton.

IRGS are major, intrusive deposits that most often occur in a continental setting. IRGS are significant sources for gold; however, they also can contain significant amounts of bismuth, tellurium, tungsten, tin, lead, copper, arsenic, and antimony. These intrusive-related deposits are

RENAISSANCE GEOSCIENCE SERVICES – Leopold J. Lindinger, P.Geo. 26 680 Dairy Road, Kamloops, B.C. V2B-8N5

distinct from orogenic deposits. Orogenic deposits form in response to a deformation of the earth's crust as the plates collide, and/or separate. Intrusive deposits are formed when parts of the earth's mantle that is heated cools. Generally, cooling is a result of magma moving towards the earth's surface and thereby encountering lower pressures and temperatures. This distinction is very important, as it makes a big difference in the business of gold mining and exploration. Of particular importance is the fact that cooling of the intrusive material into a pluton results in minerals being deposited in temperature dependent concentrated metal zones. These metal zones are a result of the thermal gradients surrounding cooling plutons. The resulting mineralization is commonly found in several different styles: variably intrusion and country-rock hosted consisting of skarns, replacements, disseminations, stockworks and veins. Gold mineralization is characterized by a wide range of gold grades, with bulk mineable volumes present at the 0.8 to 1.5 gram per tonne level. IRGS can host large volumes of gold, for example, the Fort Knox deposit hosts a contained resource of approximately 4 M oz. of gold, the Pogo approximately 4.8 M oz, the Kidston around 4.5 M oz, and Donlin Creek more than 10 M oz."...

MINERALIZATION

Two areas of significant mineralization are documented on the Treadwell-Allies property. These are the Allies area hosting the Allies, South west and Dodd's occurrences and 4 kilometres to the east, the Darcy prospect.

Allies Area Mineralization (reproduced from Dawson, 1986)

"At the Main or Discovery Showing, boulders of quartz-veined, ", dark" porphyry are found over an area roughly 150 meters (east-west) by about 40 meters (north-south) adjacent to the contact with the overlying (or fault-bounded) sediments and volcanics.

Within this area at least 50 such boulders varying in size from two meters square down to fistsize have been found. These boulders are almost always angular, but seem to decrease in size towards the west. Typically, such boulders are cut by sub-parallel sets of milky and quartz stringers and veins, one to twenty centimeters wide carrying disseminated pyrite, blebs of chalcopyrite and minor galena. Vein density accounts for 10% to 30% of the rock volume. Country rock between quartz veins is strongly silicified and ankeritized. Samples of quartz stringers are reported to have assayed up to 45.2(?) grams/tonne (1.32 ounces/ton) gold over 20 centimeters (Cockfield, 1948). A number of samples from mineralized boulders have been taken over the last several years by the writer and others. These samples varied from 15.1 grams/tonne (0.44 ounces/ton) to trace gold. The average of all grab samples from mineralized boulders (in this area) averaged about 0.1 ounces gold per ton. "... (Simpson had apparently obtained assays of up to 102.9 grams/tonne (3 oz/ton), but these were grab-type samples taken off of the boulders. In other words, they do not represent the entire boulder.]

... "The original Southwest Showing was developed by one main adit and several pits. Here there are series of quartz-veined porphyry dykes in place cutting altered, friable picrite and silicified and opalized (locally) pyritic "grænstone". Theporphyry dykes here are generally more pyritic, more chloritized and less silicified than the collection of float boulders near No. 1

(Discovery) Shaft. Here, low but anomalous (100 to 1000 ppb) gold values are bound in similar quartz-veined, ,,dark'' fddspar porphyry dykes.

Narrow (+1 meter) quartz-veined and carbonatized, east-west trending, feldspar porphyry dykes containing minor disseminated pyrite and chalcopyrite are exposed in a new road cut on line 55 near Cannell Creek (Dodd''sShowing). All porphyry samples collected in 1984 from this locality returned low but anomalous (35 to 1032 ppb) gold values. It should be noted that this showing as well as the Southwest showing is located adjacent to the contact with the overlying plateau basalt"

Darcy Mineralization (reproduced in full from Ditson, 1985)

"Three occurrences of gold mineralization on the Darcy claim group are spatially associated with the contact of a large, elongate body of picrite which has intruded Triassic Nicola Group volcanic rocks along a northwesterly axis. All three showings occur within the perimeter of the picrite body, but are located in areas where other rock types are present either as large inclusions (?) or cross-cutting intrusions.

On Grid A, a small sub-outcrop of picrite/volcanic rock breccia is cut by quartz-sulphide veins grading up to 7 g/t gold which post-date intense carbonate-K-feldspar alteration. Altered picrite extends several hundred metres beyond the showing, but similar breccia was not observed to extend beyond the immediate vicinity of the showing. The showing is located on an Agriculture Canada Research Station, and the agency will not allow further exploration activity on its property. However, the zone of altered picrite extends off the Research Station, and geochemistry in the extension area is similar to that around the discovery showing. The geometry and extent of the mineralized breccia remains unknown.

On Grid B, an area of mixed picrite and volcanic rocks has been invaded by stockwork carbonate and quartz veinlets with attendant carbonate-K-feldspar alteration. Gold is associated with sparse copper-bearing sulphides in veinlets, but does not occur in exceptional quantities. Highest values were obtained where the altered and veined zone comes in contact with unaltered picrite, but even these values do not exceed 225 ppb gold over narrow (30 cm) widths.

In Watching Creek, (Grid C) hornblende-feldspar porphyries intrude picrite. The Watching Creek porphyries contain significant zones of abundant quartz vein stockwork and associated albite-sericite-carbonate-chlorite-epidote-pyrite alteration. Interesting gold values (180 ppb gold) in altered areas occur over 10 metre widths. Although the alteration style is reminiscent of porphyry deposits, copper is not anomalous. There is a potential for high grade zones located, perhaps, along contacts with the picrite body."

Dom 1988, concludes;

"There are three phases of alteration and episodes of veins based on drill core observations

A) Quartz Carbonate and Silicification

RENAISSANCE GEOSCIENCE SERVICES – Leopold J. Lindinger, P.Geo. 28 680 Dairy Road, Kamloops, B.C. V2B-8N5

Quartz carbonate zones are irregularly distributed throughout the drill holes they comprise 15 20% of the section. These zones rarely reach widths greater than 1 5m and are relatively weak in intensity consequently porphyritic textures are preserved. Breccia and vuggy textures are locally present in the more strongly altered areas. Some zones are characterized by diffuse veins and attendant alteration envelopes. Colours range from medium to pale green to buff white. Pyrite ranges from 7 to 10 and occurs in semi massive patches and blebs as disseminated grains and in veins. Molybdenite and possibly arsenopyrite and tetrahedrite occur in trace amounts

B) Quartz Veinlets

The quartz veinlets 1 3mm in width are characterized by alteration envelopes 3 to 10 times the vein width that commonly carry 1 to 2% pyrite as blebs and as disseminated grains. These veinlets are sporadic throughout the holes and comprise less than 1% of the entire section.

C) <u>Quartz Veins</u>

Quartz veins average 5 to 30cm in width and comprise less than 5% of the section. Veins consist of white quartz and 3 to 15% semi massive pyrite. No base metals were present other than traces of molybdenite. This veining stage is probably related to the two previous alteration phases but may be slightly later. The highest Au value 2080 ppb occurs in this vein type.

D) Calcite, Chlorite and Hematite Veins

These later stage veins/veinlets are dominated by calcite, lesser chlorite and rare hematite. All three minerals may be present in a single vein or as separate calcite chlorite and hematite veins. The veins are generally less than 2cm wide with 1-5% pyrite, traces of molybdenite and possibly sphalerite."

The Watching Creek porphyry or Grid C area is now called the Darcy prospect Minfile # 092INE167.

2010 Exploration Progam

This section documents the results of the recently completed diamond drilling program.

IP Surveying

Geotronics personnel completed IP and resistivity on a two lines on the existing 2004-2009 MMI grid. The survey produced several weak anomalies that were sometimes associated with weak MMI anomalies.

Diamond Drilling

The 2010 drilling program comprised of 8 holes totalling 1129.9 metres. Four areas were drill tested during the program. These were Sydney Lake IP and MMI target at the NW part of the claims (one hole), the North Allies IP target (one hole), the Dodd"s gold occurrence (one hole)

TABLE 3 Treadwell-Allies Drilling Summary							
TARGET	HOLE	NORTH	EAST	ELEV	BEARING	DIP	DEPTH
SYDNEY	TA10-01	5638820	668610	1520	45	-62	197.51
NORTH ALLIES	TA10-02	5639951	670470	1400	225	-75	218.85
DODDS	TA10-03	5638364	671431	1250	165	-50	171.02
ALLIES MAIN	TA10-04	5638925	670975	1341	10	-42	110.03
ALLIES MAIN	TA10-05	5638924	670975	1341	10	-75	103.94
ALLIES MAIN	TA10-06	5638924.3	670975.3	1341	20	-65	90.22
ALLIES MAIN	TA10-07	5638925.6	670975.3	1341	20	-55	85.65
ALLIES MAIN	TA10-08	5638900	670970	1341	10	-70	152.71
TOTAL METERAGE							1129.93

and the Allies gold showing (4 holes). The UTM locations, bearing and dip and depth data are detailed below in Table 2. Drill hole logs are presented in Appendix III.

Hole TA10-01 was drilled in the NW part of the property near Sydney Lake at a weak IP chargeability and copper in MMI soil anomaly to test for an "Afton Style" porphyry copper target. To a depth of nearly 200 metres the drill only encountered massive andesitic Kamloops Group flow basalts and uncommon flow top and bottom breccias.

Hole TA10-02 was drilled about 400 metres north of the Allies showing. This was a structural target based on IP geophysical results. Only Kamloops Group volcanics were intersected. The top 26 metres of the hole was a felsic subaqueous? (waterlain) distal ash tuff unit with rare to locally 10% very angular felsic volcanic fragments. This unit has similar characteristics and may be the northern distal extension of the proximal vent material intersected by Holes TA10-04 and 7 at the Allies showing and the similar appearing "sediments" west of the Allies showing. The bottom of the hole to 712 feet intersected Tertiary Kamloops Group vesicular basalt flows and areal breccias.

At the Dodd's showing, 600 metres SSE of the Allies area drill testing and near twinning of hole 86-A-01 by hole TA10-03 intersected very similar grades of gold mineralization to the earlier hole drilling within a west striking steeply south dipping shear. The hole which was directed 5 deg. west of hole 86-A-01 and 5 deg. deeper intersected several very strong and locally well sulphide mineralized sheared picrite, augite porphyry basalt and several shear associated phases of variably mineralized feldspar porphyry dykes. See Figure 7.

Hole 86-A--01 intersected from 109 to 110 metres, 0.85 g/t gold, from 116 to 116.7 m, 0.960 g/t gold and from 123 to 125 metres 1.3 g/t gold. These intervals were within a larger interval from 107 to 128 metres reporting values ranging from trace to 0.55 g/t gold. No other elements were analyzed for.

Hole TA10-03 from 107.1 m to 113.45 m reported 0.762 g/t gold along with highly anomalous mercury and moderately anomalous silver, arsenic and weakly anomalous molybdenum and antimony within a silicified and sheared felsic feldspar porphyry dyke. This intersection was at a small angle to the core axis and the intervals" true width is much less. An average core angle of

15 degrees infers a true thickness for this upper zone of less than one and a half metres. It also is at nearly the same depth as the best mineralized portion of hole 86-A-01. Several additional intersections to a depth of 177 metres including a second lower grade interval from 126.8 to 147.4 m grading reporting trace to 0.4 g/t over greater than 1 metre lengths are present along with locally strongly anomalous arsenic and mercury within an extensive hydrothermally altered, ankeritized and silicified shear complex with sub-parallel grading to over 60 degree to core axis shear fabrics. Also anomalous with gold are copper, iron, molybdenum, and sulphur along with elevated cadmium, potassium, tellurium. Calcium, chromium, nickel and strontium were depleted. The picrite, unless extremely altered invariably reported chromium over 400 ppm and nickel over 1000 ppm and magnesium over 12%. Shear fabrics and dyke contacts deeper in the hole were at higher core angles. The intruding feldspar porphyry dykes also had elevated nickel and chromium inferring some contamination with the picrite. Continuous magnetic susceptibility and conductivity measurements were taken for this hole. Results indicated a pronounced decrease in magnetic susceptibility for the intermediate and felsic intrusives and shear zones, especially ones hosting gold and mercury mineralization. The geological, magnetic susceptibility, gold, arsenic, mercury and silver information are presented in Figure 7.

In conclusion gold values in hole TA10-03 were very similar to the values obtained in hole 86-A-01. Tentatively the geometry of the zone infers a westerly strike and steep southerly dip. The highly anomalous and more widespread arsenic and mercury with weaker antimony values is a very encouraging indication that these holes intersected part of a large and potentially much better gold mineralized structure along strike and more importantly at depth.

The sludge samples taken for hole TA10-03 reported gold and related indicator elements in slightly lower quantities than the core results.

Holes TA10-04 to 08 were drilled under or towards the gold bearing subcrop material at the Main or Allies showing. All previous trenching and drilling has failed to encounter a bedrock source of the mineralized "popphyry". The 2010 drilling indicated that about midway between Cannell Creek and the collar locations of holes TA10-04 to 07 is a major bounding fault between picrite to the west and south and a deep accumulation of felsic angular feldspar porphyry fragmental or breccia unit that directly underlies the Allies boulders and the overlying (to the NE) Miocene basalt (See Figure 8). It is this fault that both holes 86-A-02 and possibly 86-A-03 had difficulties in crossing thru. The most common clasts in the breccia appear compositionally and texturally to be very similar to the porphyry hosting the mineralization less than 40 metres overhead. Also included in the fragmental are innumerable angular shard like pyrite mineralized often strongly silicified felsic feldspar porphyry fragments who's alteration appears to be very similar to the porphyry at the Allies showing. However they do not appear to carry any gold or other indicator elements. This fragmental appears to be compositionally similar to the much finer grained subaqueous appearing tuff found in hole TA10-02 some 400 metres north. The felsic breccia intersected in holes TA10-04 and TA10-07 usually displayed low magnetic susceptibilities, however sections hosting magnetic picrite fragments and possibly the coarse andesite bombs produced locally higher readings. The breccia was also unusually high in chromium and nickel, indicating contamination with the picrite.

RENAISSANCE GEOSCIENCE SERVICES – Leopold J. Lindinger, P.Geo. 31 680 Dairy Road, Kamloops, B.C. V2B-8N5

The picrite-augite porphyry package underlying the southwest side of the creek has been intruded by several Kamloops group? felsic to andesitic feldspar porphyry dykes. Most host some usually weak pyrite mineralization.

The Southwest showing was brushed for drilling. However a very wet and cool September rendered the ground saturated and the drill roads nearly impassable by normal heavy tracked and wheeled vehicles. So this attractive target was not tested and neither was the Darcy prospect area.

Geological Discussion – Allies Area

Drill testing of the Allies showing, directly under the area hosting the mineralized boulders intersected picrite, a major fault and a unique siliceous and silicified pyrite mineralized feldspar porphyry clast supported breccia that underlies the Allies showing and extends to the north northeast. The breccia however, in spite of hosting strongly silicified and pyrite mineralized fragments was not anomalous for and in fact could be considered depleted for gold and indicator elements. It is however geochemically anomalous for chromium reporting over 50 ppm and nickel reporting often over 100 ppm. The presence of trace to locally 5% rounded picrite fragments indicates physical and possible chemical contamination with the picrite.

Southwest of the breccia drilling intersected massive to highly altered and sheared picrite that hosted several usually shear associated weakly sulphide mineralized felsic to dacitic feldspar, feldspar-hornblende and hornblende porphyry dykes. The barren felsic dykes appear very similar to the body hosting the variably mineralized Allies boulders. The picrite invariably returned at least 400 ppm chromium and over 1000 ppm nickel.

The felsic breccia which is distinctly lacking in fine material (less than 2mm dia.) appears to be a vent or vent proximal tuff deposit with the finer grained ash tuff units intersected north of the Allies in hole TA10-02 and as exposures Dawson described directly west of the Allies showing. The fault separating the breccia from picrite may be in part a vent or rift margin.

The mineralized Allies porphyry body directly overlies the southwestern edge of the breccia and is probably nearly coeval with the breccia originally occurring as a flow and/or dyke-sill body which now appears as the sequence of large variably mineralized "boulders" of the Allies showing that now occupy over 50 metres of the southwest side and base of the Cannell creek bed. The two large 3+ m diameter boulders in the stream bed furthest downstream (and southeast) display plastic flow textures indicative of a chilled but active flow or dyke margin and are very fine grained but still feldspar porphyritic and apparently unmineralized.

Therefore what now appears a boulder "train" is actually a frost fractured and variably displaced subcrop of a single dacitic flow dome or shallow dyke remnant. This lithology is probably sourced from the underlying vent breccia intersected directly below the showing during the 2010 drilling. Subsequent additional volcanic cover was added. Later mineralizing fluids percolating up the fault-vent wall area associated with later intrusive and volcanic activity may have preferentially been deposited in the brittle porphyry unit in a deep epithermal setting. This deposits original geometry may have been very similar to the Dodd"s and SW showings which

both host mineralized altered and silicified multiepisodic felsic feldspar porphyry dykes in strongly sheared picrite. (It is conceivable that the Dodd's showing may be the fault displaced portion of thee Allies showing, or at least and very likely (along with the SW showing) part of the same system.)

Subsequent tectonic activity at the Allies showing area may have and probably displaced the source system from the showing.

Erosion to the level of the showings, subsequent reburying by Miocene basalts and later glacial? erosion preferentially along the Cannell Creek fault and the thinner cover overlying the altered picrite occurred.

Pre Pleistocene or earlier catastrophic post glacial or even more likely? subglacial flood water events draining and eroding down upper Cannell Creek northwest of the showing upon encountering the soft picrite and fault gouge to the southwest and hard mineralized porphyry and Miocene basalt cap to the northeast gouged out and undercut the softer rock immediately west of the showing to depth of nearly 30 metres. This event deposited a 5 to 10 metres thick by over 40 metres wide Miocene basalt boulder dominated basal conglomerate that now occupies the bottom the now buried channel. The Allies area was subsequently dammed allowing the deposition of the glacially derived blue clay unit that was deposited into the channel. Later flood events eroding deeper, dislodged and flushed out more? mineralized porphyry from the round now Miocene debris filled buried plunge bowl shaped depression immediately north of the showing, displaced them and deposited them downstream along with altered picrite and basalt fragments on top of the hard blue clay up to 300 meters downstream. Additional freshets flooding down the creek canyon may have eroded more deeply into the bowl containing the mineralized porphyry transporting them each time to the west and south on top of the hard clay. Later less violent erosion washed away the blue clay, easily weathered picrite and weathering mineralized porphyry fragments preferentially along the Miocene basalt wall forming the NE side of the valley allowing Cannell Creek to move into its current channel leaving behind the coarser mineralized porphyry fragments. Erosion further from the creek to the west but increasingly towards it removed more blue clay leaving a resistant veneer of oxidizing mineralized porphyry and altered picrite material resulting in the reverse graded mineralized fragment covered slopes that were discovered by the first white explorers. Freeze-thaw and hydraulic activity in Cannell creek for the last 14,000 years has further disrupted the remnants of the subcropping porphyry body.

Dodds area

The gold results from hole TA10-03 confirmed the gold results from hole 86-A-01. Assuming that both holes have the bearings they have documented, the mineralized shear zone intersected in both holes appears to be striking easterly and dipping southerly. Hole 86-A-05 drilled across the creek intersected a 16 metre shear zone at high core angles at 134 metres. No shear zone associated felsic intrusives were noted by Dawson. The top 2 metres of this interval returned weakly anomalous gold mineralization associated with 2% pyrite. This may be the approximate true width of the zone intersected in holes 86-A-01 and TA10-03. This geometry suggests that the Cannell Creek channel overlies a significant fault at that location. If the weakly mineralized

RENAISSANCE GEOSCIENCE SERVICES – Leopold J. Lindinger, P.Geo. 33 680 Dairy Road, Kamloops, B.C. V2B-8N5

zone intersected in hole 86-A-5 is a part of the one intersected across the creek then a substantial amount of apparent left lateral displacement has occurred.

IP programs completed in the mid 1980's have partially outlined a weak trend between the SW and Dodds showings.

OAOC and Chain of Custody Procedures

All core was pick up and driven by employees of Renaissance Geoscience Services Inc. either from the drill site or from Atlas Drillings Ltd's shop in Kamloops. B.C. directly to Renaissances secure core processing facility at 680 Dairy Road, Kamloops, B.C. The core from holes TA10-03 to 08 geoteched, logged and sampled. Holes TA10-01 and 02 were geologically logged only.

Core geoteching included core washing, reassembly to determine recovery and location of core loss and quality of core handling by the drillers. Additional procedures included metric conversion if required, marking the core at one meter intervals, and imaging using digital cameras, usually 4 boxes at one time. The core images are provided with a CDR accompanying this report as Appendix 4. Also, the core was read for magnetic susceptibility and electrical conductivity with a GDD MPP-EM2S+ multiparameter probe. All geotechnical data was entered into a laptop computer using appropriate programs at the end of each shift. Core logging was completed with rock type, alteration and mineralization recorded. The logged data was entered into a laptop computer using the Excel spreadsheet program on a daily basis.

Sampling Method and Approach

Core samples.

Upon completion of logging of two to four boxes of core, samples if any were deemed appropriate were marked by writing a red line across the core at the beginning and end of the sample with arrows point towards the sample termination using a marker or grease pencil by the geologist. If a section of core had to be cut a certain way a red cut line was drawn on the length of the core in question. Otherwise the geotechnicians were instructed to cut the core so the core angles were best exposed as long as mineralization representativeness was retained. The sample lengths were based on geology to a minimum length of 20 cm and a maximum of 2 metres. The sample books, used had white plastic triplicate tags. Two tags had all pertinent information written on them and one had just the sample number. One information tag and the one number only tags were placed at the end of each sample next to the core.

Sludge Samples

As many sludge samples were collected from holes TA10-03 to TA10-08 as possible by the drilling crew. The samples were picked up at the drill site during core retrieval procedures and taken to the Renaissance facility in Kamloops. There they were dried and the intervals of available samples from sections most prospective for hosting gold mineralization were sent to Ecotech Laboratory Ltd. for analyses.

RENAISSANCE GEOSCIENCE SERVICES – Leopold J. Lindinger, P.Geo. 680 Dairy Road, Kamloops, B.C. V2B-8N5

Sample Preparation, Analyses and Security

Upon completion of all geological and geotechnical procedures especially recovery and core reassembly the sections of core selected for sampling were cut by a 2 HP electric rock saw or split by a manual Longyear core splitter. After cutting or splitting, one half of the sample was placed into a 6 mil thick 20 by 35 cm or 30 by 45 cm plastic sample bag depending on sample size, with the "number only" tag inserted facing out. The sample number was also prewritten on the bag. The second half of the core was placed sequentially in its original order back in the core box. The "information on" sample tag was stapled to the box at the end of each sample. Inserted blanks and duplicates were also added by stapling them at the preceding sample location in the core box. The sample bags were sealed using 10 inch plastic zap straps or wire twist ties. Every sample was placed into a white fabrene sack to a maximum weight of 20 kilograms and then sealed with two 25-35 cm zap straps. The address of the destination laboratory was either pre labelled or written on each sack which were also numbered. Written record sheets were made for all samples and sacks for internal tracking purposes. The samples not shipped directly to the lab at the end of the shift were stored in a locked building prior to shipping to the laboratory.

Blanks comprised of washed cement sand were inserted into the sample stream after the standards and after strongly mineralized samples to test for downstream laboratory contamination. This material provided an extremely cost effective and highly reproducible blank material. A WCM Minerals Ltd. Cu 130 analytical standard was inserted at approximately every 25 samples. The blank and standard samples were made in advance by carefully placing at least 25 grams of material into 5 by 10 cm sealable kraft paper envelope. At the appropriate sample the numbered tag was stapled to the craft envelope and placed into 8 by 13 inch sampled bags which were in turn stapled shut. The blacks and standards were then placed into the sample stream prior to shipping to the lab. The blank or standard information was recorded in the sample book and on the appropriate tag stapled into the core boxes. The batches of prepared samples were transported directly to Ecotech Laboratory Ltd. at 10041 Dallas Drive Kamloops B.C. by employees Adam or Reid Lyons. All samples were analyzed for gold and 45-elements using a standard multi-element ICPMS procedure.

The analytical procedures used are summarized below with additional details provided in Appendix II

Sample Preparation

Samples (minimum sample size 250g) are catalogued and logged into the sample-tracking database. During the logging in process, samples are checked for spillage and general sample integrity. It is verified that samples match the sample shipment requisition provided by the clients. The samples are transferred into a drying oven and dried.

Rock samples are crushed on a Terminator jaw crusher to -10 mesh ensuring that 70% passes through a Tyler 10 mesh screen.

Every 35 samples a re-split is taken using a riffle splitter to be tested to ensure the homogeneity of the crushed material.

A 250 gram sub sample of the crushed material is pulverized on a ring mill pulverizer ensuring that 95% passes through a -150 mesh screen. The sub sample is rolled, homogenized and bagged in a pre-numbered bag.

A barren gravel blank is prepared before each job in the sample prep to be analyzed for trace contamination along with the processed samples.

Gold Geochem Analyses

A 15/30/50 g sample size is fire assayed along with certified reference materials using appropriate fluxes. The resultant dore bead is parted and then digested with nitric acid followed by hydrochloric acid solutions and then analyzed on an atomic absorption instrument.

Multi-Element ICPMS Analysis

Samples are digested in an 90 degree Celsius aqua regia solution for 45 minutes. They are bulked with de-ionized water, and an aliquot of this is taken for analysis. A 2-3 point standardization curve is used to check the linearity (high and low). Certified reference material is used to check the performance of the machine and to ensure that proper digestion occurred in the wet lab. QC samples are run along with the client samples to ensure no machine drift or instrumentation issues occurred during the analysis of the sample(s). Repeat samples (every 10 or less) and resplits (every 35 or less) are also run to ensure proper weighing and digestion occurred.

Results are collated by computer and are printed along with accompanying quality control data (re-splits and standards). After approval by the chief assayer, the results are released for publication and Emailed to the client.

Certificates of Analyses are appended in this report in Appendix I and more detailed descriptions of the analytical procedures, QAQC and instrumentation used in Appendix II.

Data Verification

All samples were collected under the direct supervision of independent geotechnicians, and transported directly to Eco-Tech Laboratories Ltd. in Kamloops, a certified analytical laboratory.

The author arranged to have both the field standard and "blanks" inserted into the core sample sequence by independent employees.

The author has reviewed the blanks and standard results and has found no significant quality control issues. The Cu 130 standard has published values of 930 ppb gold, 36 ppm silver, 0.44% copper and 740 ppm molybdenum. The average values for these elements from Ecotech was 923 ppb gold, insufficient data for silver due to insufficient standard sample size, 0.4246% copper and 778 ppm molybdenum. The one silver results was 37.6 ppm. Additional details are provided in Appendix II Table 6 - CU130 Analytical Summary.

Interpretation and Conclusions

The area drill tested in the north west part of the property by holes TA10-01 and 02 were proven to be covered by a thick over 200 metres layer of subaerial andesitic volcanics of the Kamloops group.

Drill testing of the Allies showing, directly under the area hosting the mineralized boulders intersected from south to north variably sheared and altered picrite with several felsic dykes, a northwest trending steeply NE dipping major fault and a unique siliceous and silicified feldspar porphyry clast supported breccia that begins directly under the Allies showing and extends to the The breccia however, in spite of hosting strongly silicified and pyrite north northeast. mineralized fragments was not anomalous for gold or indicator elements. The several picrite hosted weakly sulphide mineralized feldspar and hornblende porphyry dykes, while very similar to the mineralized boulders were also not anomalous for gold or indicator elements. The felsic breccia appears to be a vent unit or vent proximal tuff with the finer grained ash tuff units intersected north of the Allies and as exposures described as occurring directly west of the Allies showing. The fault separating the breccia from picrite may be in part a vent or rift margin. The variably mineralized "boulders" of the Allies showing appear to be frost fractured and variably displaced subcrop of a single dacitic flow dome or shallow dyke remnant. This unit is probably sourced from the underlying vent breccia intersected directly below the showing during the 2010 drilling. Additional volcanic cover was added. Later mineralizing fluids associated with later intrusive and volcanic activity percolating up the fault-vent wall area may have preferentially been deposited in the brittle porphyry unit in a deep epithermal setting. This deposit may have been very similar to the Dodd's and SW showings. It is conceivable that the Dodd's showing may be the fault displaced portion of thee Allies showing, or at least and very likely (along with the SW showing) part of the same system.

Subsequent tectonic activity at the Allies showing area may have and probably displaced the source system from the showing. Erosion to the level of the showing, subsequent reburying by Miocene basalts and later erosion, preferentially along the Cannell Creek fault and the thinner weaker rocks overlying the altered picrite occurred.

Pre Pleistocene or earlier catastrophic post glacial or even more likely? subglacial flood water events draining and eroding down upper Cannell Creek northwest of the showing upon encountering the soft picrite and fault gouge to the southwest and hard mineralized porphyry and Miocene basalt cap to the northeast gouged out and undercut the softer rock immediately west of the showing to depth of nearly 30 metres. This event deposited a 5 to 10 metres thick by over 40 metres wide Miocene basalt boulder dominated basal conglomerate that now occupies the bottom the now buried channel. The Allies area was subsequently dammed allowing the deposition of the glacially derived blue clay unit that was deposited into the channel. Later flood events eroding deeper, dislodged and flushed out more? mineralized porphyry from the round now Miocene debris filled buried plunge bowl shaped depression immediately north of the showing, displaced them and deposited them downstream along with altered picrite and basalt fragments on top of the hard blue clay up to 300 meters downstream. Additional freshets flooding down the creek canyon may have eroded more deeply into the bowl containing the mineralized porphyry transporting them each time to the west and south on top of the hard clay. Later less

violent erosion washed away the blue clay, easily weathered picrite and weathering mineralized porphyry fragments preferentially along the Miocene basalt wall forming the NE side of the valley allowing Cannell Creek to move into its current channel leaving behind the coarser mineralized porphyry fragments. Erosion further from the creek to the west but increasingly towards it removed more blue clay leaving a resistant veneer of oxidizing mineralized porphyry and altered picrite material resulting in the reverse graded mineralized fragment covered slopes that were discovered by the first white explorers. Freeze-thaw and hydraulic activity in Cannell Creek for the last 14,000 years has further disrupted the remnants of the subcropping porphyry body.

Reclamation Summary

At the time of this report the drill sites for holes TA10-01 and TA10-02 have been reclaimed. These sites have been seeded with forest range mix. Additional reclamation of the sites and access trails for holes TA10-03 to 08 will be completed in May or June 2011. Images of the pre placement, drill on and reclaimed sites are in Appendix V.

TABLE 4 - 2010 PROGRAM EXPENDITURES							
EXPENSE ITEM	DETAILS		CHARGE				
2010 EXPLORATION PROGRAM							
Mine Management Consulting Inc. permit application	2 hrs @ \$ 60/hr	\$	120.00				
Ironstone Consulting Ltd. (R simpson) drill site setup	4 days @ \$1156.68/day	\$	4,626.71				
Renaissance Geoscience Services Inc. Project supervision and geological services	25.75 days @ \$ 904.50/day	\$	23,287.99				
Nissan 4X4, Chevy 4x4 (days)	38 vehicle days @ \$100/day	\$	3,800.00				
Atlas Drilling Ltd. 8 holes (1129.93 m) incl mobilization	\$126.51/metre	\$	142,946.52				
Core shack rental	44 days @ \$30 per day	\$	1,320.00				
Senior geotech A Lyons	20 days @ 330.64 per day	\$	6,612.82				
Junior geotech R Lyons	30 days @ \$249.00	\$	7,470.00				
Contractor - J Fellenze site preparation.	80 hrs @ 65/hour	\$	5,200.00				
Danger tree falling	54.25 hrs @ 35.01/ hour	\$	1,898.38				
Black Bear Developments Ltd. danger trees	Per Invoice	\$	4,327.18				
Supplies (sample bags, flagging, hip chain thread analytical stand	lards)	\$	500.00				
Analytical (Eco Tech Laboratories Ltd.) core analyses	85 samples @ \$ 75.84/sample	\$	14,031.20				
Analytical (Eco Tech Laboratories Ltd.) sludge analyses 44	0 samples @ \$44.31/ sample	\$	1,772.50				
NEWBRIDGE CAPITAL INC Management costs ~4%		\$	9,880.00				
Report writing		\$	6,403.13				
Report drafting		\$	2,200.00				
Total 2010 field program		\$ 2	36,396.43				
2010 RECLAMATION sites 1 and 2 only							
Black Bear Developments Ltd. (small back hoe plus transportation	on 20 hrs @ \$100/hr	\$	2,000.00				
labourer - R Ballard site reclamation. 30 hrs	30 hrs @ \$23.44/hr	\$	703.13				
Renaissance Geoscience Services Inc. Supervision	4 hrs @ \$100/hr	\$	400.00				
J.L. Lindinger, P.Geo.	Report portion	\$	300.00				
Nissan 4X4	1 day @ \$100 per day	\$	100.00				
Total Reclamation		\$	3,503.13				
TOTAL FOR 2010 PROGRAM		\$ 2	39,899.56				

RENAISSANCE GEOSCIENCE SERVICES – Leopold J. Lindinger, P.Geo. 680 Dairy Road, Kamloops, B.C. V2B-8N5

Recommendations

The results of the 2010 program although disappointing in three areas tested helped to clarify where additional exploration expenditures are warranted. Much of the area north east and west of the Allies area appears to be underlain by very thick Kamloops group and Miocene volcanics and locating an economic porphyry copper deposit thru a possible 300 plus metre thick pile of post mineralization volcanic material is beyond the current exploration capabilities and well beyond the depth of the IP-resistivity survey and probably MMI soil results. The moderate metal content of the volcanic pile would probably mask any contribution from a deeply buried low grade copper-gold deposit. Unless better resolution of the existing airborne magnetic maps and geophysical and geochemical separation of the also variably magnetic and moderately metallic Kamloops group cover can be made this author has difficulty recommending more expenditures for Afton style targets except adjacent to already exposed picrite bodies where it has been shown further south that a spatial correlation with copper deposits with small picrite bodies exists. The following \$200,000 Phase 1 exploration program, focussed on further developing the gold potential of the property in the Allies and Darcy areas is therefore recommended.

Phase 1

ALLIES Area

A proposed Phase 1 multistaged \$60,000 surficial exploration program includes the establishment of a grid covering the Allies, SW and Dodd's Showings. As the area between the showings is badly decaying beetle killed pine some form of firewood salvage or cut pile and burn operation would be advised prior to initiating additional geophysical exploration. Recommended is a not more than 75 metre line spacing probably UTM oriented grid with not more than 25 metres station spacing. Work on this grid would include, geological mapping, soil samples that are both analyzed by regular analytical gold and multielement techniques and MMI or enzyme leach techniques (due to the sensitivity of MMI to disturbance these surveys may have to be completed prior any salvage logging). Undisturbed areas may have the Ao organic ash laver analyzed as this techniques work very well for vectoring deeply buried copper mineralization at Kwanika. Additional geophysical work would include ground magnetic and IP surveys. Any significant positive IP, magnetic, geology or soil anomalies would then be drill tested in Phase 2. Brief reconnaissance"s of the areas surrounding the Allies area in 2010 and recent drilling results indicate that the geology is much more varied and complex than current mapping indicates. In particular the relationship between the felsic dyke associated gold mineralization seen at Allies, Dodds and SW areas and the nearby at surface and near surface as yet unmapped felsic Kamloops Group volcanics observed SW of the Dodds Area requires a new map to enable 2 and 3D modelling in the ongoing effort of discovering additional gold at Allies.

DARCY Area (Watching Creek Porphyry)

The Pass Lake, "Grid B" and the Darcy occurrence host partially explored subeconomic gold zones. The Pass Lake and Grid B areas are near the southern and northern edges respectively of a large picrite body. The mineralized intrusive of the Darcy occurrence near the centre of the

RENAISSANCE GEOSCIENCE SERVICES – Leopold J. Lindinger, P.Geo. 39 680 Dairy Road, Kamloops, B.C. V2B-8N5

picrite body has been strongly sheared and broken with a tentative NW structural association (Dom, 1988).

At current gold prices these targets all warrant further exploration. The 3 km north by 1 km east area that hosts the Grid B and Darcy (Watching Creek porphyry) areas has had effective surficial exploration hampered by locally deep till and other post glacial deposits. The inconclusive 2005 Watching Creek MMI survey was mid way between the Grid B area and the Darcy areas. Both these areas host anomalous gold from very preliminary and poorly exposed altered picrite (Grid B) and intruding altered hornblende feldspar porphyry (Darcy). The intrusives at the Darcy occurrence appear at first glance to be compositionally similar to some late phases of the Iron Mask batholith or the nearby Thuya batholith to the north or more likely may be a much later body related to Cretaceous or even Tertiary activity.

To effectively explore this area establishment of an extensive detailed grid covering the area of the former Grid B and especially the Darcy Occurrence is recommended. The grid would act as control for detailed ground magnetometer surveys, IP-resistivity surveys, rock, conventional soil, auger soil and MMI or enzyme leach grid soil sampling. Core testing for magnetic susceptibility has proven the felsic intrusives have very low susceptibilities with respect to picrite and the alteration associated with gold mineralization is magnetite destructive. Detailed ground magnetometer surveying with provisions to complete near real time infill of distinctive magnetic lows with associated IP and soil sampling anomalies may assist in targeting deeply surficially buried gold mineralization. Recommended is a grid with line oriented UTM north. These would provide the best coverage to trace the dominant NW and possible EW to NE secondary structural trends. New geological mapping of the exposures by experts in gold system structures and alteration patterns is required.

Recommended is a \$135,000 surface exploration program comprising of the aforementioned phases and as detailed in Table 5 below.

Phase II

Pending successful geophysical and geochemical target development of the SW, Dodds and Darcy showings in relation to past drilling results a \$500,000 program comprised of extending and deepening of these partially explored targets as well as exploring newly defined targets would be recommended. Also recommended is at least HQ diameter core drilling. The Allies area requires backhoe trenching near the largest mineralized boulders to determine if they are actually subcropping material.

If the drill testing is successful then additional expenditures contingent on the successful development of the targets would be recommended.

TABLE 5 - RECOMENDED PHASE 1 EXPLORATION EXPENDITURES									
EXPENSE ITEM	DETAILS	CHARGE							
PROGRAM Preparation		\$ 6,000.00							
ALLIES AREA									
Grid reestablishment 5.5 km \$800 per km		\$ 4,400.00							
IP survey		\$ 10,000.00							
Magnetometer survey		\$ 1,200.00							
Auger soil sampling	120 samples	\$ 12,000.00							
MMI - enzyme leach soil sampling	120 samples	\$ 2,500.00							
supervision and geological mapping - 5 days at \$1000 per day		\$ 5,000.00							
soil analyses 120 samples @ \$30 per sample		\$ 3,600.00							
MMI soil analyses 120 samples at \$40 per samples		\$ 4,800.00							
geological mapping		\$ 5,000.00							
contingency 10%		\$ 5,500.00							
Report portion		\$ 5,000.00							
SUB TOTAL ALLIES AREA RECOMENDED EXPENDITURES		\$ 65,000.00							
DARCY AREA									
Grid reestablishment 13 km \$800 per km		\$ 10,400.00							
IP survey		\$ 25,000.00							
Magnetometer survey		\$ 3,000.00							
Auger and 'normal' soil sampling	100 samples	\$ 8,000.00							
MMI - enzyme leach soil sampling	700 samples	\$ 17,500.00							
supervision and geological mapping - 8 days at \$1000 per day		\$ 8,000.00							
soil analyses 100 samples @\$ 30 per sample		\$ 3,600.00							
MMI soil analyses 700 samples at \$40 per samples		\$ 28,000.00							
Geological mapping		\$ 5,000.00							
contingency 9%		\$ 12,000.00							
Report portion		\$ 8,000.00							
Subtotal DARCY Area Phase 1 Exploration		\$ 128,500.00							
NEWBRIDGE CAPITAL INC Management costs 5%		\$ 6,500.00							
SUB TOTAL DARCY AREA RECOMENDED EXPENDITURES		\$ 135,000.00							
TOTAL PHASE 1 RECOMENDED EXPENDITURES		\$ 200,000.00							
* labour charges include accommodation and board.									

References

- Bridge, D.A. and Howell W. J. 2009: Report on the Drilling, Total Field Magnetics and Fracture Density Analysis of the Crazy Fox Property. BC Ministry of Energy, Mines and Petroleum Resources Assessment Report 30632.
- Dawson, J.M. (1984): Geological Report on the Allies Claim, Laramide Resources Ltd.; BC Ministry of Energy, Mines and Petroleum Resources Assessment Report 12412.
- Dawson, J.M. (1986): Report on Diamond Drilling Program on the Allies Property, for Relay Creek Resources Ltd., BC Ministry of Energy, Mines and Petroleum Resources, Assessment Report 15807.
- Dawson, J.M. and Leishman, D.A. (1985): Geological and Geochemical Report on the Allies Claim, Laramide Resources Ltd.; BC Ministry of Energy, Mines and Petroleum Resources Assessment Report 13445
- Ditson, Gwendolen M. (1985): Report on Geological, Geological, Geophysical and Trenching Studies of the Darcy Claim Group, Esso Resources Canada; BC Ministry of Energy, Mines and Petroleum Resources, Assessment Report 14194.
- Dom, K. (1988): Report on Diamond Drill on the Darcy Claim, for Esso Minerals Canada and Pass Lake Resources Ltd.; BC Ministry of Energy, Mines and Petroleum Resources, Assessment Report 17413.
- Kwong, Y.T.J. (1987): Evolution of the Iron Mask Batholith and Its Associated Copper Mineralization, B.C. Ministry of Energy, Mines and Petroleum Resources, Bulletin 77.
- Logan, J.M. (2002): Iron Mask Project, Kamloops Area; in Geological Fieldwork 2002, B.C. Ministry of Energy and Mines, Paper 2003-1, pages 129-132.
- Logan, J.M., Mihalniuk, M. Ullrich, T. Friedman, (2006): Geology and Mineralization of the Iron Mask Batholith, Geofile 2006-5.
- Gourlay, A.W. (1985): Geology and Geochemistry Report, MineQuest Exploration Associates Ltd., Isobel Claims; BC Ministry of Energy, Mines and Petroleum Resources Assessment Report 13683.
- Mark, David G. (1973d): Geophysical Report on a Ground Magnetic and VLF-EM Survey and the Government Aeromagnetic Survey, Dog Claim Group, for Bon-Val Mines Ltd. by Geotronics Surveys Ltd.; B.C. Ministry of Energy, Mines and Petroleum Resources, Assessment Report 4212.
- Mark, David G. (1976): Geochemical Report on a Soil Geochemistry Survey on the Cannell Claim Group, for Yamoto Industries Ltd by Geotronics Surveys Ltd.; BC Ministry of Energy, Mines and Petroleum Resources, Assessment Report 5950.

- Mark, David G. (1983): Geophysical Report on a Airborne Magnetic and VLF-EM Survey over the Dog Claim Group, for Stryder Explorations by Geotronics Surveys Ltd.; B.C. Ministry of Energy, Mines and Petroleum Resources, Assessment Report 11409.
- Mark, David G. (1985): Geophysical Report on a VLF-EM Survey over a Portion of the Dog Claim Group, for Trans-Arctic Explorations Ltd. by Geotronics Surveys Ltd.; B.C. Ministry of Energy, Mines and Petroleum Resources, Assessment Report 13897.
- Mark, David G. (1986): Geophysical Report on a Ground Magnetic Survey (with some Geological Mapping and Soil Sampling) over the Dog Claim Group, for Trans-Arctic Explorations Ltd. by Geotronics Surveys Ltd.; B.C. Ministry of Energy, Mines and Petroleum Resources, Assessment Report 15192.
- Mark, David G. (2005): Geophysical Report on IP and Resistivity Surveys over a Portion of the Treadwell-Allies Property, Cannell Creek, Tranquille Plateau, Kamloops M.D., B.C., for Treadwell Resources Ltd. by Geotronics Consulting Ltd.; B.C. Ministry of Energy, Mines and Petroleum Resources, Assessment Report 27813.
- Mark, David G. (2006): Geophysical/Geochemical Report on IP and Resistivity Surveys as well as MMI Soil Sampling over a Portion of the Treadwell-Allies Property, Cannell Creek, Tranquille Plateau, Kamloops M.D., B.C., for Treadwell Resources Ltd. by Geotronics Consulting Ltd.; B.C. Ministry of Energy, Mines and Petroleum Resources Assessment Report 28225.
- Mark, D; 2007: Assessment Report On MMI Soil Sampling Surveys Over Two Grids Within The Treadwell/Allies Property. BC MEM Assessment Report # 29606. 18 pages plus attachments.
- Mark, D; 2009: 43-101Technical Report (GEOLOGICAL SUMMARY) on the Treadwell Allies Property. 45 pages plus attachments.
- Rhys and Lewis, 2004: Gold Vein Systems: Turning Geology into Discovery. 190 pages.
- Ridley, S.L. (1984): Isobel and Gold Nose Claims, Geochemistry, MineQuest Exploration Associates Ltd.; BC. Ministry of Energy, Mines and Petroleum Resources, Assessment Report 12297.
- Scott, A. (1985): Report on Induced Polarization Survey on the Allies Property, Relay Creek Resources Ltd.; BC Ministry of Energy, Mines and Petroleum Resources, Assessment Report 15270.
- Simpson, Richard S. and Oboni, Franco (1998): Prospecting Report (Geo Mechanical, Surficial Rock Study on the Treadwell #1 Mineral Claim; BC Ministry of Energy, Mines and Petroleum Resources, Assessment Report 25680.

- Sookochoff, L. (1973): Summary Report on the Cannell Creek Property, for Bon-Val Mines Ltd.; BC Ministry of Energy, Mines and Petroleum Resources, Assessment Report 4546.
- Sookochoff, L. (1978): Diamond Drill Report on the Cannell Creek Property, Yamoto Industries Ltd.; BC Ministry of Energy, Mines and Petroleum Resources, Assessment Report 7085.
- Snyder, Lori D. and Russell, J.K. (1994): Petrology and Stratigraphic Setting of the Kamloops Lake Picritic Basalts; BC Ministry of Energy, Mines and Petroleum Resources, Geological Fieldwork 1993, Paper 1994-1.
- Toovey, L. M. 2011: Intrusion Related Gold Systems: Article in International Business Times website.

CERTIFICATE:

- I, Leopold Joseph Lindinger, do hereby certify that:
 - 1 I am a consulting geologist currently residing at 680 Dairy Road Kamloops, B.C. V2B-8N5.
 - 2 I am a graduate of the University of Waterloo, Ontario with a Bachelor of Sciences (BSc) in Honours Earth Sciences, (1980).
 - 3 I have worked continuously in mineral exploration and mine geology in Canada, the United States and Mexico on a full-time basis since 1980.
 - 4 I am Registered Professional Geoscientist (#19155) of the Association of Professional Engineers and Geoscientists of the Province of British Columbia since 1992.
 - 5 I have read the definition of "qualified person" set out in National Instrument 43-101 (NI-43-101) and certify that by reason of my education, professional affiliation, and past relevant work experience, I fulfill the requirement to be an independent qualified person for the purposes of NI 43-101. Some of this relevant work experience includes 5 years working in epithermal gold mines, and over 10 years experience exploring for gold deposits in B. C. Ontario, Nevada, Mexico and Russia.
 - 6 I am responsible for the preparation, execution and on site completion of the work program described in the report entitled **Diamond Drilling And Reclamation Assessment Report on the Treadwell Allies Property**" dated the 17th day of May, 2011 including the conclusions reached, and the recommendations made.
 - 7 I have visited the subject property which is at an early stage of exploration from July 1 to November 15, 2010.
 - 8 As of the date of the certificate, to the best of the qualified person"s knowledge the information and belief, the technical report contains all scientific and technical information that is required to be disclosed to make the report not misleading.
 - 9 I am independent of the Issuer applying all tests as described in Section 1.4 of NI-43-101.
 - 10 I have read National Instrument 43-101 and Form 43-101 F1, and this report has been prepared in compliance with NI 43-101 and Form 43-101 F1.

Dated, 17 May, 2011.

Leopold J. Lindinger, P.Geo. Leopold J. Lindinger, P.Geo.

Signature of Leopold J. Lindinger, P.Geo.

> Appendix 1 Analytical Results

14-Jan-11

CERTIFICATE OF ANALYSIS AK 2010- 1278

New Bridge Capital Inc c/o 680 Dairy Road Kamloops, BC V2B 8N5

No. of samples received: 77 Sample Type: Sludge **Project: T-Allies** Submitted by: Leo Lindinger

Au ET #. Tag # (ppb) TA10-03 146-151 1 <5 2 TA10-03 151-156 5 3 TA10-08 71-76 10 4 TA10-08 76-81 10 5 TA10-08 81-86 <5 6 TA10-08 86-91 <5 7 TA10-08 91-96 <5 8 TA10-08 96-101 10 9 TA10-08 101-106 <5 10 TA10-08 106-111 <5 11 TA10-08 111-116 <5 12 TA10-08 116-121 <5 13 TA10-08 121-126 <5 14 TA10-08 126-131 <5 15 TA10-08 131-136 <5 16 TA10-08 136-141 5 17 TA10-08 141-146 <5 18 TA10-08 146-151 5 19 TA10-08 151-156 <5 20 TA10-08 156-161 <5 21 TA10-08 161-166 <5 22 TA10-08 166-171 <5 23 TA10-08 171-176 <5 24 TA10-08 201-206 <5 25 TA10-08 206-211 <5 26 TA10-08 211-216 10

New Bridge Capital Inc AK10-1278

14-Jan-11

			Au	
=	ET #.	Tag #	(ppb)	1
	27	TA10-08 216-221	<5	
	28	TA10-08 221-226	<5	
	29	TA10-08 226-231	<5	
	30	TA10-08 231-236	<5	
	31	TA10-08 236-241	<5	
	32	TA10-08 246-251	<5	
	33	TA10-08 251-256	<5	
	34	TA10-08 256-261	<5	
	35	TA10-08 261-266	<5	
	36	TA10-08 266-271	5	
	37	TA10-08 271-276	5	
	38	TA10-08 276-281	10	
	39	TA10-08 281-286	<5	
	40	TA10-08 286-291	<5	
	41	TA10-08 291-296	10	
	42	TA10-08 296-301	15	
	43	TA10-08 301-306	10	
	44	TA10-08 306-311	5	
	45	TA10-08 311-316	<5	
	46	TA10-08 316-321	5	
	47	TA10-08 321-326	5	
	48	TA10-08 326-331	<5	
	49	TA10-08 331-336	<5	
	50	TA10-08 336-341	<5	
	51	TA10-08 341-346	5	
	52	TA10-08 346-351	5	
	53	TA10-08 351-356	<5	
	54	TA10-08 356-361	<5	
	55	TA10-08 361-366	<5	
	56	TA10-08 366-371	10	
	57	TA10-08 371-376	<5	
	58	TA10-08 376-381	<5	
	59	TA10-08 381-386	<5	
	60	TA10-08 386-391	<5	
	61	TA10-08 391-401	5	
	62	TA10-08 401-411	10	
	63	TA10-08 411-416	5	
	64	TA10-08 416-421	5	
	65	TA10-08 421-426	5	

New Bridge Capital Inc AK10-1278

14-Jan-11

<u>ET #.</u>	Tag #	Au (ppb)	
66	TA10-08 426-431	5	
67	TA10-08 431-436	10	
68	TA10-08 436-441	5	
6 9	TA10-08 441-446	5	
70	TA10-08 461-466	5	
71	TA10-08 466-471	<5	
72	TA10-08 471-476	5	
73	TA10-08 476-481	<5	
74	TA10-08 481-486	<5	
75	TA10-08 486-491	5	
76	TA10-08 491-496	<5	
77	TA10-08 496-501	<5	
QC DAT	<u>'A:</u>		
Repeat:	,		
1	TA10-03 146-151	<5	
10	TA10-08 106-111	<5	
19	TA10-08 151-156	<5	
36	TA10-08 266-271	5	
45	TA10-08 311-316	5	
54	TA10-08 356-361	<5	
71	TA10-08 466-471	5	
Resplit:			
1	TA10-03 146-151	<5	
36	TA10-08 266-271	5	
71	TA10-08 466-471	5	
Charles 1	-		
Standar	a:		
OXF65		805	
OXE74		615	
OXF65		815	

FA Geochem/AA Finish

ECO TECH LABORATORY LTD. Norman Monteith B.C. Certified Assayer

NM/ap XLS/10

CERTIFICATE OF ASSAY AK 2010-1279

29-Dec-10

New Bridge Capital Inc c/o 680 Dairy Road Kamloops, BC V2B 8N5

No. of samples received: 33 Sample Type: Core **Project: T-Allies** Submitted by: Leo Lindinger

		Au	Au	
<u>ET #.</u>	Tag #	(g/t)	(oz/t)	
1	905853	<0.03	<0.001	
2	905854	<0.03	<0.001	
3	905855	<0.03	<0.001	
4	905856	<0.03	<0.001	
5	905857	<0.03	<0.001	
6	905858	<0.03	<0.001	
7	905859	<0.03	<0.001	
8	905860	<0.03	<0.001	
9	905861	<0.03	<0.001	
10	905862	<0.03	<0.001	
11	905863	<0.03	<0.001	
12	905864	<0.03	<0.001	
13	905865	<0.03	<0.001	
14	905866	<0.03	<0.001	
15	905867	<0.03	<0.001	
16	905868	<0.03	<0.001	
17	905869	<0.03	<0.001	
18	905870	<0.03	<0.001	
19	905871	<0.03	<0.001	
20	905872	<0.03	<0.001	
21	905873	<0.03	<0.001	
22	905874	<0.03	<0.001	
23	905875	<0.03	<0.001	
24	905876	<0.03	<0.001	
25	905877	<0.03	<0.001	
26	905878	<0.03	<0.001	
27	905879	<0.03	<0.001	
28	905880	<0.03	<0.001	
29	905881	<0.03	<0.001	
30	905882	<0.03	<0.001	

ECO TECH LABORATORY LTD. Norman Monteith B.C. Certified Assayer

New Bridge Capital Inc AK10-1279

		Au	Au	
ET #.	Tag #	(g/t)	(oz/t)	
31	905883	<0.03	<0.001	
32	905884	0.94	0.027	
33	905885	<0.03	<0.001	
	[A:			
Repeat	:			
1	905853	<0.03	<0.001	
10	905862	<0.03	<0.001	
19	905871	<0.03	<0.001	
Resplit				
2	905854	<0.03	<0.001	
Standa	rd:		0.050	
OX167		1.79	0.052	

29-Dec-10

FA/AA Finish

NM/PS XLS/10

200

ECO TECH LABORATORY LTD. Norman Monteith B.C. Certified Assayer

0-0411-11

Stewart Group ECO TECH LABORATORY LTD. 10041 Datas Drive KAMLOOPS, B.C. V2C 6T4

Phone: 250-573-5700 Fax : 250-573-4557

Repeat:

New Bridge Capital Inc c/o 680 Dairy Road Kamloops, BC V2B 8N5

No. of samples received: 33 Sample Type: Core **Project: T-Allies** Submitted by: Leo Lindinger

Values in ppm unless otherwise reported

F • "	T = =	Ag Al		_		Be		Ca		Ce		Cr		Ga			к					Мо		Nb	NI	Р	РЬ	Rb	s	Sb	Sc	Se	Sn	Sr Ta	Te	Th
Et #.	and the second	ppm %					ppm						ppm %									ррт			ppm									ipm ppi		ppm
1	905853	<0.1 1.9					0.02						45.6 4.81												1234.0									15.5 <0.0		
2	905854 905855	<0.1 3.4					0.04						40.3 5.53				3.18								856.6									20.5 <0.0		0.3
4	905856	0.1 1.9					0.08						40.7 4.50		3.0		0.32								766.7									46.0 <0.0		0.1
4 5	905855	<0.1 2.2					0.04						33.5 4.74												494.6									76.5 <0.0		
5	303637	<0.1 Z.0	0 4,	9 20	50.0	1.0	0.02	4.30	0.92	9.13	36.4	188.0	99.4 5.34	8.9	3.7	<5	1.91	4.0	14.1	5.51	1030	1.45	0.125	0.08	246.0	848	10.66	51.9	0.08	0.36	7.4	0.2	0.3 3	29.0 <0.0	5 0.02	0.5
6	905858	<0.1 1.9	4 1	6 3	77 0	z0 1	<0.02	0 03	0.02	3.42	72.2	101 D	44.3 4.59			c	0.75	16	10.0	10 00	700	0.10	0.000		1107.0	600	0.04									
7	905859	<0.1 1.5					<0.02						50.6 3.97		3.2 2.7		0.75								1107.0									87.5 <0.0		
8	905860	<0.1 1.9					<0.02						46.5 4.71		3.3		0.68								1258.0									36.5 <0.0 19.0 <0.0		
9	905861	0.1 3.7					0.02						236.0 4.41												522.6									19.0 <0.0 22.0 <0.0		
10	905862	<0.1 3.9					<0.02						23.4 4.47												343.3									22.0 <0.0 43.5 <0.0		
											+ + • •			0.1	0	-0	0.01	2.0	10.0	0.00		0.10	0.070	-0.04	040.0	514	×0.01	00.1	0.04	0.10	٤.3	<0.1	0.1 4	43.5 <0.1	5 0.04	0.3
11	905863	0.1 3.5	09.	3 190	01.0	<0.1	0.04	1.18	0.04	3.52	53.0	486.5	211.9 4.72	5.9	3.1	<5	2.88	1.5	24.1	8.98	685	0.12	0.537	<0.02	651.8	763	6.75	52.8	0.06	0.64	31	<0.1	-012	18.5 <0.0	5 0.02	03
12	905864	<0.1 3.7					<0.02						62.9 5.33												776.6									77.5 <0.0		
13	905865	<0.1 2.1	46.	2 26	ô 9 .5	<0.1	<0.02	3.71	0.03	2.42	55.5	579.0	47.9 4.47				0.42								754.5									20.0 <0.0		
14	905866	<0.1 2.7					<0.02						92.7 4.12	6.6	2.8	<5	0.47	1.5	14.0	7.51	835	0.34	0.246	<0.02	373.3	556								73.5 <0.0		
15	905867	0.1 3.8	10.	6 53	33.0	0.2	<0.02	6.53	0.07	6.28	41.3	520.5	64.5 5.71	10.3	3.7	<5	1.04	3.0	16.4	7.35	1317	0.29	0.162	<0.02	279.9	648								28.0 <0.0		
16	905868	0.1 1.7					<0.02						62.6 4.08									0.15	0.095	<0.02	503.9	363	0.87	2.9	0.06	0.20	13.3	<0.1	0.1 4	27.5 <0.0	5 0.02	0.1
17	905869	<0.1 2.2					<0.02						71.2 4.07												274.6									41.5 <0.0		
18	905870	<0.1 2.2					<0.02						21.9 4.68						9.6						195.5									37.5 <0.0		
19 20	905871 905872	<0.1 2.5					<0.02						21.4 4.59	7.2	3.2	<5	1.11	2.0	10.0	4.24	639			0.06	232.0									49.5 <0.0		
20	905672	<0.1 2.7	3 1.	3 (ж.U	0.2	<0.02	2.14	0.01	4,94	36.0	233.5	107.9 4.90	7.5	3.5	<5	1.13	2.5	11.2	5.05	676	0.20	0.131	0.04	269.0	1058	<0.01	25.5	0.04	0.24	3.6	0.1	0.1 1	54.0 <0.0	5 <0.02	0.4
21	905873	<0.1 2.3	7 1	2 78	57 0	-01	-0.02	2 46	0.01	5 66	70 C	150.0	27.5 4.99	70	24		1.00	0.5	<u>.</u>	4.00		0.10	0 4 40	0.00	040.0	1000						. .				
22	905874	0.1 2.2											285.1 5.47				0.47		9.4						218.9									65.5 <0.0		
23	905875	0.1 3.8											203.0 5.85											0.08	51.0									15.5 <0.0		
24	905876	<0.1 2.4	4 5.	0 13	39.0	<0.1	<0.02	2.06	0.02	2.64	75.9	108.0	45.4 4.90	5.2	4.0		0.62								430.1									73.5 <0.0		
25	905877	<0.1 3.7											119.2 4.59												521.2									61.0 <0.0		
												- ***		0.0				1.0		7.001	000	V. V K.	0.101	0.02	561.2	000	.0.01	07.0	0.00	0.00	4.Z	×υ. ι	NU. 1	78.5 <0.0	5 <0.02	0.3
26	905878	<0.1 3.6	2 5.	7 15	59 .0	<0.1	<0.02	1.00	<0.01	4.23	45.2	381.5	42.0 4.74	7.5	3.3	<5	3.98	2.0	8.9	7.01	567	0.17	0.108	0.04	485.1	852	<0.01	70.5	0.04	0.06	2.8	c 0 1	<01	53.0 <0.0	5 20.02	6.0
27	905879	<0.1 3.5	3 3.	7 244	47 .0	<0.1	<0.02	1.26	0.02	4.12	44.8	328.0	84.5 4.49	6.9	3.0	<5	3.72	2.0	12.9	6.94	541				496.5									00.0 <0.0		
28	905880	<0.1 1.8	92.	3 3	30.5	<0.1	<0.02	1.18	0.04	2.02	83.6	76.5	54.4 4.73	3.5											1230.0									58.0 <0.0		
29	905881	<0.1 2.4	42.	64	10.0	<0.1	<0.02 3	3.31	0.03	3.00	70.4	361.0	48.6 5.03	4.4	3.1	15	0.73	1.5	14.0	13.35	899	0.16	0.320	<0.02	982.0	500								73.0 <0.0		
30	905882	<0.1 3.9	21.	98	39.0	0.2 ·	<0.02 4	4.07	0.07	6.91	60.7	503.0	56.9 6.45	7.4	4.4	15	3.88	3.0	10.1	10.87	1281	1.03	0.249	0.02	643.3	709								93.5 <0.0		
~ *			. .	. -					_	_																										-
31	905883	0.1 2.2					<0.02 5						26.2 5.00				0.69					0.07	0.639	<0.02	997.2	448								66.0 <0.0		
32 33	905884	>30 0.6			64.0	0.4	31.34	3.77	1.06	10.62	39.8	204.0	4225.0 2.22												18.8									31.5 <0.0	5 3.00	1.0
აკ	905885	<0.1 0.04	3 1.	د	8.5	<0.1	0.02 (0.03	0.01	3.08	0.6	1.5	1.0 0.14	0.4	0.2	<5	<0.01	2.0	0.9	0.02	20	1.49	0.029	0.12	1.5	62	0.48	0.8	0.02	0.06	0.3	<0.1	<0.1	3.5 <0.0	5 0.02	1.0
QC DAT	<u>'A:</u>																																			

1 905853 0.1 2.04 10.3 54.5 <0.1 <0.02 1.95 0.05 2.73 80.9 487.5 45.8 4.88 3.7 3.4 10 0.84 1.5 16.0 17.68 876 0.15 0.112 <0.02 1239.0 518 0.98 25.0 0.08 0.14 7.7 <0.1 0.1 221.0 <0.05 0.04 0.2 10 905862 <0.1 3.87 1.0 1459.0 0.2 <0.02 1.18 0.02 4.38 37.4 330.0 24.5 4.58 6.4 3.0 <5 3.59 2.0 19.7 5.08 500 0.18 0.885 <0.02 349.8 924 <0.01 61.5 0.04 0.18 2.9 <0.1 0.1 145.5 <0.05 <0.02 0.3 19 905871 <0.1 2.45 1.3 73.0 <0.1 <0.02 2.26 0.01 4.11 30.7 152.5 19.0 4.55 6.8 3.0 <5 1.03 2.0 9.3 4.16 619 0.23 0.117 0.04 25.0 1050 <0.01 22.9 0.04 0.38 3.3 <0.1 0.1 141.0 <0.05 0.02 0.3

ECO IEC			D.								ICP C	ÆRTIF#	CATE OF	F ANA	ALYSIS	5 AK 2	2010-	1279												New E	iridge	Capita	l Inc					
Et #.	Tag #	Ag pom				Be	Bi		Cd	Ce	Co	Cr	Cu ppm	Fe «		Gel	-	K ≪		Li	Mg ≪	Mn		Na		Nii	P	Pb	Rb		Sb	Sc			Sr	Ta	Te	
Resplit:	ug #		<u>/* PP</u>	<u>n P</u> I	<u></u>	PPIII	ppin	/5	ppra	Pom	ppm		ppm	<u>/•</u>	ppm	opin p	500	<u>/@</u>	ppin	ppm	~	ppm	ppm	70	ppm	ppm	ррт	ррпі	ppm	78	ppm	ppm	ppm	pom p	<u>ppm</u>	ppm	ррт	opm
2	905854	<0.1 3	1.52 1	3.5 1	15.5	<0.1	0.06	4.20	0.07	4.84	71.5	728.0	474.8	5.75	6.4	3.7	5	3.35	2.5	18.2	13.53	966	1.69	0,155	<0.02	883.8	791	1.08	82.8	0.10	0.46	8.6	0.1	0.2 3	328.5 ·	<0.05	0.04	0.3
Standard	i:																																					
Pb129A		11.9 ().84	5.0 (61.0	0.2	0.46	0.50	56.42	10.16	4.8	10.5	1381.0	1.58	2.4	1.0	75	0.10	4.5	0.5	0.67	361	2.07	0.042	0.28	5.0	415 (5259.00	3.1	0.79	16.28	0.8	0.1	1.1	31.5	<0.05	0.26	0.5

Aqua Regia Digest/ICPMS Finish

ECO TECH LABOBATORY LTD. Norman Monteith B.C. Certified Assayer

NM/PS df/msr1279S XLS/10

14-Jan-11

......

CERTIFICATE OF ANALYSIS AK 2010-1279

New Bridge Capital Inc c/o 680 Dairy Road Kamloops, BC V2B 8N5

No. of samples received: 33 Sample Type: Core **Project: T-Allies** Submitted by: Leo Lindinger

			Au	
_	ET #.	Tag #	(ppb)	
•	1	905853	10	
	2	905854	5	
	3	905855	5	
	4	905856	5	
	5	905857	5	
	6	905858	5	
	7	905859	<5	
	8	905860	<5	
	9	905861	<5	
	10	905862	<5	
	11	905863	5	
	12	905864	5	
	13	905865	<5	
	14	905866	<5	
	15	905867	<5	
	16	905868	5	
	17	905869	<5	
	18	905870	<5	
	19	905871	<5	
	20	905872	<5	
	21	905873	<5	
	22	905874	<5	
	23	905875	<5	
	24	905876	5	
	25	905877	5	
	26	905878	<5	
	27	905879	<5	

....

New Bridge Capital Inc AK10-1279

14-Jan-11

	T = = #	Au	
<u> </u>	Tag #	(ppb)	
28	905880	<5	
29	905881	<5	
30	905882	<5	
31	905883	<5	
32	905884	<5	
33	905885	<5	
QC DAI	A:		
Repeat			
. 1	905853	5	
10	905862	<5	
19	905871	<5	
Resplit.	:		
1	905853	5	
Standa	rd:		
OXF65		815	

FA Geochem/AA Finish

ECO TECH LABORATORY LTD. Norman Monteith B.C. Certified Assayer

NM/ap XLS/10

CERTIFICATE OF ANALYSIS AK 2010-1051

New Bridge Capital Inc c/o 680 Dairy Road Kamloops, BC V2B 8N5

No. of samples received: 37 Sample Type: Sludge **Project: T-Allies** Shipment #: 10-04 Submitted by: Adam Lyons

		Au	
ET #.	Tag #	(ppb)	
1	TA10-06 96-101	5	
2	TA10-06 101-106	<5	
3	TA10-06 106-111	<5	
4	TA10-06 111-116	10	
5	TA10-06 116-121	10	
6	TA10-06 121-126	5	
7	TA10-06 126-131	5	
8	TA10-06 131-136	<5	
9	TA10-06 136-141	5	
10	TA10-06 141-146	<5	
11	TA10-06 146-151	<5	
12	TA10-06 151-156	5	
13	TA10-06 156-161	5	
14	TA10-06 161-166	<5	
15	TA10-06 166-171	<5	
16	TA10-06 171-176	5	
17	TA10-06 176-181	<5	
18	TA10-06 181-186	10	
19	TA10-06 186-191	<5	
20	TA10-06 191-196	<5	
21	TA10-06 206-211	5	
22	TA10-06 211-216	10	
23	TA10-06 216-221	<5	
24	TA10-06 221-226	<5	
25	TA10-06 226-231	5	
26	TA10-06 231-236	<5	
27	TA10-06 236-241	<5	
28	TA10-06 241-246	<5	

All business is undertaken subject to the Company's General Conditions of Business which are available on request. Registered Office: Eco Tech Laboratory Ltd., 2953 Shuswap Road, Kamloops, BC V2H 159 Canada.

29-Nov-10

Eco Tech Laboratory Ltd.

2953 Shuswap Road Kamloops, BC V2H 1S9 Canada Tel + 1 250 573 5700 Fax + 1 250 573 4557 Toll Free + 1 877 573 5755 www.stewartgroupglobal.com

New Bridge Capital Inc AK10-1051

29-Nov-10

New Dr	loge Capital Inc AK	10-1051	29-1104-10
		Au	
ET #.	Tag #	(ppb)	
29	TA10-06 246-251	<5	
30	TA10-06 251-256	<5	
31	TA10-06 256-261	5	
32	TA10-06 261-266	<5	
33	TA10-06 266-271	<5	
34	TA10-06 276-281	<5	
35	TA10-06 281-286	<5	
36	TA10-06 286-291	5	
37	TA10-06 291-296	5	
QC DAT			
Repeat	;		
1	TA10-06 96-101	5	
10	TA10-06 141-146	<5	
19	TA10-06 186-191	<5	
36	TA10-06 286-291	5	
Resplit:	•		
1	TA10-06 96-101	<5	
36	TA10-06 286-291	5	
Standa	rd:		
OXF65		800	
OXE74		610	

FA Geochem/AA Finish

ECO TECH LABORATORY LTD. Norman Monteith B.C. Certified Assayer

NM/nw XLS/10 ICP CERTIFICATE OF ANALYSIS AK 2010-1051

New Bridge Capital Inc c/o 680 Dairy Road Kamloops, BC V2B 8N5

Phone: 250-573-5700 Fax : 250-573-4557

No. of samples received: 37 Sample Type: Sludge Project: T-Ailles Shipment #: 10-04 Submitted by: Adam Lyons

Values in ppm unless otherwise reported

																											_			-	-	_		_	_	_						-
		Ag Al	As	Ba	Be	BI	Ca	Cd	Ce (co Ci	• •	Cu I	Fe	Ga G	e H	lg K	La	LI	Mg	Mn	Mo Na	Nb	N	I P	Pb						n Sr									•	Zn	
Et #.		ppm %	ppm	ppm	ppm	ppm	%	ppm	ppm p	om ppi	m p	pm	%	pm pp	mp	pb %	ppm	ppm	%	ppm	ppm %	ppm	ppi	m ppm	ppm	ppm	76	ppm	pan pp	m pp	2.1 197.0	ppm	ppni j	17.0	70 P	0.06		120 A	62 0 17	ла р . оғ	90.4	9.01
1	TA10-06 96-101	4.7 2.30	5.9	223.5	0.9	0.02	1.72	0.23 4	45.49 4	1.8 23	4.5	64.5	7.42	10.0 2	2.4	30 0.22	21.5	7.3	3.81	1112	6.25 0.21	6 1.64	4 21	3.9 1760							2.5 135.0										90.4 72.9	
2	TA10-06 101-106	8.3 2.11	6.6	186.5	0.5	<0.02	1.44	0.11 2	24.13 6	6.4 54	2.5	85.4	6.73	6.6	1.9	35 0.53	11.5	/.4	9.72	1077	5.02 0.19	3 0.50 A 0.04	0 00	3.1 1203 70 700							0.7 91.0										50.4 1	
3	TA10-06 106-111	2.0 1.97	7.1	255.5	0.3	<0.02	1.15	0.06	10.24 /	6.4 /0-	4.0	52.3	0.50	4.0	0.1	30 0.73	5.0 4 E	0.9	14.40	1002	6.68 0.09 65.22 0.08	0.0 0.0	1 102	21 716							1.8 111.0										84.3	
4	TA10-06 111-116	1.2 1.81	5.8	128.0	0.2	<0.02	1.37	0.09	8.96 8	0.9 00	15 1	30.8 ÷	9.01	4.0 4	2.3	60 0.47	4.5	9.0	9.49	1341	50.11 0.16	1 0.2	6 69	1 9 1086							6.1 154.5											
5	TA10-06 116-121	0.4 1.69	1.1	206.5	0.1	0.02	2.31	0.12	19.30 /	3.0 30	1.0 1	04.5	0.00	0.1 4		00 0.47	0.0	0.7	0.40	1011	00.11 0.10					• • • • • •																
6	TA10-06 121-126	1.4 1.90	10.4	370.0	0.3	0.02	3.46	0.12	14.89 7	4.6 137	8.0	89.3	9.57	5.7	2.2	15 0.46	7.0	9.2	10.34	1325	26.63 0.13	6 0.1	0 73	6.6 901	5.51	1 14.6	0.08	0.56	8.7 C	.2 2	2.4 177.0	<0.05	0.02	0.6 0	.250	0.04	0.2	128 3	23.8 7	.25	75.1 1	13.78
7	TA10-06 126-131	0.6 1.90	6.8	204.0	0.2	<0.02	1.83	0.08	13.13 7	7.4 84	9.0	98.0	9.46	5.4	2.5	25 0.70	6.0	10.0	12.38	1242	48.98 0.12	3 0.0	8 90	6.9 868							3.2 128.0										75.9 1	
8	TA10-06 131-136	9.4 2.11	4.5	196.5	0.6	0.02	1.80	0.13	32.45 4	9.9 41	5.5 1	15.9	7.24	7.6	2.1	40 0.33	15.0	7.8	6.01	1120	9.61 0.22	3 0.7	238	7.8 1479							2.5 160.5										104.2	
9	TA10-06 136-141	0.9 1.86	5.5	304.0	0.3	<0.02	2.20	0.11	15.16 6	9.3 90	9.0	87.3	7.88	5.6	2.2	30 0.50	7.0	10.6	11.13	1161	19.91 0.14	1 0.1	2 76	9.5 965							2.3 143.0										74.1 1	
10	TA10-06 141-146	1.0 2.37	7.0	1089.0	0.4	<0.02	1.53	0.15	8.58 7	6.7 127	1.0	75.2	6.17	5.4	1.7	15 1.10	4.0	9.5	13.77	1034	5.53 0.13	I 3 0.0	6 96	0.7 780	4.11	1 25.3	0.04	0.34	8.1 0	0.1 1	1.3 94.5	<0.05	<0.02	0.4 0	0.138	0.04	0.2	116	18.3 5	5.10	65.1	8.30
											~ -					~ ~ ~	~ -		44.07	1100	10.05 0.10	0.1	A 01	4 5 060	0.10	0 16 0	0.02	0.26	66 (12 1	1.8 115.0	~0.05	<0.02	05.0	183	0.04	0.2	119	100 6	11	62.6 1	12 04
11	TA10-06 146-151	0.1 1.77	5.0	320.0	0.3	<0.02	1.59	0.09	13.20	1.8 121	3.5	/1.8	8.83	5.2	2.2	20 0.53	0.0	9.1	11.00	1220	43.05 0.10 75.60 0.10	NO 0.1	0 70	75 863							3.5 109.0										73.3 1	
12	TA10-06 151-156 TA10-06 156-161	0.1 1.72	6.0	334.0	0.3	<0.02	1.04	0.09	13.02 /	2.0 123	4.0 I 0.0 I	74.4	0.00 0.07	5.0	2.0	25 0.52	5.5	10.8	12 21	1438	24.58 0.09	1 0.0	8 90	6.5 800							5.8 105.0										76.0 1	
13	TA10-06 161-166	0.4 1.77	6.7	214.0	0.3	<0.02	1.47	0.00	940 7	3.3 30 '3.7 73	60.0	78.7	6.75	4.5	1.7	15 0.64	4.5	11.0	12.97	1053	11.09 0.08	31 0.0	6 94	0.8 752	2.06	6 19.3	0.02	0.40	6.0 ().2 1	1.7 90.0	<0.05	<0.02	0.4 0	0.112	0.02	0.2	98	15.2 4	4.75	48.7	8.56
	TA10-06 166-171	0.4 1.79	11.4	309.0	0.3	<0.02	1.25	0.04	7.50	3.4 76	7.0	70.3	6.15	4.3	1.6	15 0.72	3.5	11.8	13.22	1000	7.99 0.07	3 0.0	6 95	7.8 647	4.16	6 20.5	0.02	0.38	6.2 <0). 1 1	1.1 87.5	<0.05	0.02	0.4 0	0.098	0.02	0.2	94	10.4 4	4.15	44.2	7.60
10																																										
16	TA10-06 171-176	0.6 1.82	8.1	328.5	0.1	<0.02	1.33	0.05	9.51	1.2 68	7.5	77.2	6.08	4.6	1.7	15 0.71	4.5	10.7	12.48	976	8.08 0.07	78 0.0	6 88	1.0 739							1.3 95.0										55.1 1	
17	TA10-06 176-181	0.1 1.95	6.4	282.0	0.3	<0.02	1.47	0.07	9.54	5.1 74	5.0	63.8	6.42	4.8	1.8	20 0.68	4.5	13.2	13.70	1045	7.48 0.08	31 0.0	6 95	8.9 740							1.0 108.5										48.6 1	
18	TA10-06 181-186	0.5 2.30	8.4	223.0	0.3	0.02	1.68	0.14	12.55	66 69.7	5.0	63.3	5.81	5.6	1.6	15 0.50	6.0	13.8	13.39	1010	4.73 0.13	33 0.0	2 89	2.5 852	4.47						0.9 128.0 0.6 107.5										61.0 1 53.4	
19	TA10-06 186-191	0.9 2.34	5.3	196.0	<0.1	<0.02	1.54	0.10	10.54	7.7 70	8.5	54.2	5.86	5.4	1.7	25 0.55	5.0	14.5	15.15	1015	3.40 0.10	0.0	4 101	1.6 808							0.6 107.5										53.4 44.1	
20	TA10-06 191-196	0.8 2.45	8.3	160.5	<0.1	<0.02	1.61	0.07	8.26	5.4 74	2.0	53.1	5.68	5.7	1.6	25 0.75	4.0	18.3	14.94	949	4.34 0.10	0.0	2 9/	3.7 755	4.34	4 21.5	0.06	0.30	0.0 (J. I V	0.0 112.0	<0.05	<0.02	0.4 (5.110	0.04	0.2	100	2.4 4	+.01	444.1	7.47
	TA10-06 206-211	00.010	0.4	419.0	• •	-0.02	1.05	0.10	6.29	70.2 75	2.0	62.8	5 95	51	16	15 0.92	3.0	14.0	14 71	1010	4.51 0.08	31 0.0	4 101	4.9 680	6.08	8 25.5	0.04	0.38	8.2 (0.1 (0.4 136.0	< 0.05	<0.02	0.3 0	0.087	0.04	0.2	108	1.1 4	1.54	41.8	5.88
21	TA10-06 206-211 TA10-06 211-216	0.2 2.18	0.1	203.5	0.4	<0.02	2 10	0.10	6 15	781 78	2.5	89.5	6.65	5.3	1.7	15 0.95	3.0	15.2	14.17	1107	7.96 0.08	35 0.0	2 98	3.9 651							1.4 167.0										46.3	6.13
23	TA10-06 216-221	0.1 2.13	9.9	347.0	0.2	<0.02	2.39	0.10	5.70	31.0 99	5.5	92.5	7.46	5.2	2.0	15 0.86	3.0	16.0	14.20	1148	24.51 0.08	33 O.O	2 99	3.9 606	9.47	7 23.1	0.04	0.58	8.3 <(0.1 2	2.0 195.5	< 0.05	0.04	0.3 0	0.089	0.04	0.2	108	8.8 4	4.35	47.1	5.68
24	TA10-06 221-226	0.3 2.06	10.3	356.5	<0.1	< 0.02	2.32	0.16	5.14	77.9 108	1.0	83.4	7.44	4.9	1.7	15 0.81	2.5	16.8	13.69	1118	19.64 0.07	72 <0.0	2 97	5.4 568	6.54	4 21.8	0.04	0.64	8.4 ().1 ·	1.6 208.5	< 0.05	0.02	0.3 0	0.081	0.04	0.1	106	6.8 4	4.16	48.7	5.01
25	TA10-06 226-231	0.8 2.08	10.8	354.0	0.1	<0.02	1.89	0.18	5.47	77.3 101	2.0	89.5	7.63	4.9	2.0	20 0.77	2.5	16.3	13.48	1093	38.20 0.06	67 0.0	2 95	5.2 579	5.26	6 21.0	0.04	0.56	7.6 (0.1 2	2.3 142.5	< 0.05	<0.02	0.3 (0.081	0.04	0.1	104	24.2	4.14	53.9	5.61
																																						400	-			0.04
26	TA10-06 231-236											75.9	7.80	5.9	2.1	20 0.84	3.0	20.7	16.52	1256	18.54 0.08	32 0.0	2 116	67.1 629							1.1 150.5										55.7 43.6	
27	TA10-06 236-241	0.5 2.06																			12.16 0.07										0.7 124.0 0.8 131.5										43.0	
28	TA10-06 241-246	0.8 2.14	6.6	376.5	0.3	<0.02	1.70	0.12	6.49	/5.4 91 744 00	4.5	62.8	6.50 6.05	4.9 E A	1.7	35 0.87	3.0	15.7	13./3	1101	17.14 0.08 23.62 0.09	37 <0.0 31 <0.0	12 90	23 676							0.8 165.0										49.0	
29 30	TA10-06 246-251 TA10-06 251-256	0.9 2.27	8.2	340.0	0.4	<0.02	1.82	0.11	5 70	700 100	10.0 10.0	73.0	0.95	0.44 1/ Q	2.5	10 0.69	25	14.5	12 72	1187	78.32 0.03	72 0.0	2 90	7.8 567	8.08						2.1 112.0										53.5	
30	TATU-00 201-200	0.6 1.99	12.0	200.0	0.2	<0.02	1.40	0.00	5.70	12.3 120	5.0	30.0	0.00	4.5	2.0	10 0.00	2.0	11.0	·		TOTOL OTO				••••																	
31	TA10-06 256-261	0.5 2.03	8.1	304.5	0.3	<0.02	1.60	0.11	5.86	68.5 102	2.0	83.4	7.70	5.1	2.1	10 0.82	3.0	14.6	12.04	1056	41.73 0.00	30 0.0	2 84	2.9 598	1.8	5 21.6	0.02	0.52	7.1 <	D.1	1.4 113.0	< 0.05	< 0.02	0.3 (0.102	0.04	0.2	106	9.6 4	4.43	50.4	6.40
32	TA10-06 261-266	0.3 2.03	8.2	293.0	<0.1	< 0.02	1.66	0.11	5.24	65.4 90	2.5	63.9	6.36	5.3	1.8	15 0.87	2.5	15.8	11.85	970	20.07 0.07	77 0.0	2 81	8.8 562	3.42						1.0 115.0										47.1	
33	TA10-06 266-271	0.5 2.00	7.4	312.0	0.2	<0.02	1.62	0.09	6.04	67.0 87	3.5	62.3	6.32	4.9	1.8	10 0.85	3.0	15.2	12.20	969	19.95 0.00	87 <0.0	2 84	47.9 595	5.3						0.8 118.5										46.2	
34	TA10-06 276-281	1.2 1.79	14.8	131.5	0.2	<0.02	1.97	0.06	3.32	74.0 76	65.0	49.1	5.15	4.0	1.5	20 0.38	1.5	21.4	14.08	1020	3.43 0.0	77 <0.0	2 99	6.2 450							0.3 85.0										36.1	
35	TA10-06 281-286	1.6 1.84	11.3	201.5	<0.1	<0.02	1.96	0.13	4.21	75.2 93	32.0	59.9	5.77	4.2	1.6	15 0.52	2.0	16.6	14.35	1056	8.88 0.0	71 <0.0	2 101	5.8 503	6.3	37 15.9	0.04	0.46	6.3 <	0.1	0.4 100.5	> <0.05	0.04	0.2 (0.076	0.02	0.1	96	4.4	3.31	40.2	4./4
								o 15	0.00				r 05			10 0 10		14.0	10.05	005	E 07 0 0	en		00 400	4 44	9 1/7	0.04	0.49	63	0 1	0.4 109.0	~0.05	0.02	024	0.055	0.02	0.1	84	a a -	3 04	38.1	3.31
36	TA10-06 286-291		8.4	178.0	0.3	< 0.02	1.82	0.15	3.32	/2.6 89	13.5	58.6	5.25	3.4	1.5	10 0.46	1.5	14.8	13.95	985	5.87 0.0	02 <0.0 75 <0.0	12 31	217 5/0																		
37	TA10-06 291-296	0.8 2.17	12.4	344.0	0.2	<0.02	1.79	0.09	4.43	/9.1 105	01.0	09.0	0.57	3.4	1.9	10 0.00	2.0	10.7	14.00	1007	12.01 0.0		na. 100		0.7	,	0.04	0.00	1.1 \		0.7 140.0		. 0.04	0.0	0.070	0.04	0		0.0 -			

ECO TE	CH LABORATORY	LTD.															I		ERTIF	ICATE		NALY	ISIS A	K 2010)-1051															New B	ridge (Capitai	Inc				
		Ag	AI	As	Ba	Be	BI	Ca	Co	a c	e C	0 C	r (Cu	Fe	Ga	Ge	Hg	ĸ	La	L	Mg	Mn	Мо	Na	Nb	Ni	Ρ	Pb	Rb	S	Sb	Sc	Se S	Sn	Sr	Та	Te	Th	п	Π	U	V	w	Y	Zn	Zr
Et #.	Tag #	ppm	%	ppm	ppm	ppm	ррп	ı %	рри	m pr	ym pp	m pp	m p	pm	%	ppm	ppm	opb	% F	pm	opm	%	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm p	pm	ppm	ppm	ppm	ppm	%	ppm	ррт	ppm	ррт	ppm	ppm	ppm
OC DAT Repeat																																-															
1	TA10-06 96-101	5.6	2.48	4.5	219.0	0.9	<0.0	2 1.7	4 0.	13 44	.18 41	.1 21	3.5	62.2	7.32	9.1	2.3	30	0.20	20.5	6.2	3.80	1105	5.93	0.277	1.32	206.8	1814	2.14	¥ 9.3	<0.02	0.20	6.3	0.5	1.8	194.0	<0.05	<0.02	1.6	0.646	0.06	0.4	126	64.4	15.98	90.1	8.28
10	TA10-06 141-146	1.2	2.29	6.9	1083.0	0.1	<0.0	2 1.4	4 0.	14 8	.47 73	8.8 123	9.0	71.9	5.96	5.2	1.7	10	1.06	4.0	10.3	13.34	986	5.62	0.134	0.02	958.4	760	4.79	24.7	0.04	0.38	7.6	0.1	1.3	91.0	<0.05	<0.02	0.4	0.137	0.04	0.2	112	16.9	4.91	61.6	5 8.48
19	TA10-06 186-191	0.9	2.22	4.9	192.0	0.2	2 0.0	2 1.4	4 0.	10 10	.41 74	.6 68	4.0	52.3	5.73	5.3	1.7	25	0.52	5.0	14.8	14.58	970	3.35	0.100	0.02	983.3	784	2.68	3 16.7	0.04	0.46	8.6	0.1	0.6	103.0	<0.05	<0.02	0.5	0.128	0.04	0.2	106	2.8	5.29	49.8	3 9.02
36	TA10-06 286-291	2.9	1.56	7.7	181.0	0.2	2 <0.0	2 1.7	9 0.	13 3	.00 68	1.3 87	9.0	51.4	5.10	3.0	1.2	10	0.43	1.5	13.6	12.91	978	6.27	0.059	<0.02	967.1	418	0.99	12.3	0.02	0.46	5.5	<0.1	0.4	107.0	<0.05	<0.02	0.2	0.054	0.02	<0.1	76	9.1	2.73	37.5	5 3.35
Resplit	:																																														
1	TA10-06 96-101	7.3	2.43	2.9	222.5	0.8	3 <0.0	2 1.6	90.	13 44	.40 39	9.4 20	5.0	69.5	7.25	8.9	2.4	30	0.19	20.5	8.4	3.77	1090	7.02	0.267	1.42	196.7	1704	2.35	5 8.9	<0.02	0.18	6.0	0.5	2.0	193.0	<0.05	0.04	1.6	0.638	0.06	0.4	124	65.2	15.97	91.7	7 7.70
36	TA10-06 286-291	3.0	1.52	7.9	168.5	<0.1	< 0.0	2 1.7	60.	10 3	.26 67	7.6 83	5.0	53.6	4.96	3.3	1.6	15	0.45	1.5	14.5	12.98	926	5.77	0.054	<0.02	936.3	429	1.35	5 14.0	0.02	0.48	5.7	<0.1	0.4	105.0	<0.05	<0.02	0.2	0.052	0.02	0.1	76	9.2	2.90	35.0	3.15

Standard:			
Pb129a	11.7 0.82 6.9 68.5 < 0.1 0.42 0.51 56.89 10.10 5.	13.5 1472.3 1.63 2.6 0.5 75 0.12 4.5 1.3 0.69 360 2.11 0.043 0.22	5.7 439 6195.65 3.3 0.81 15.24 1.0 0.2 0.7 31.0 <0.05 0.26 0.4 0.054 0.04 <0.1 20 0.2 2.55 >10000 1.81
Pb129a	11.5 0.84 6.0 67.0 0.1 0.44 0.49 56.68 10.48 5.	13.0 1437.7 1.58 2.8 0.6 70 0.12 4.5 1.6 0.71 372 2.06 0.045 0.24	5.1 426 6176.96 3.3 0.84 15.42 1.0 0.2 0.8 30.0 <0.05 0.28 0.4 0.048 0.04 0.1 20 0.2 2.64 9997.9 2.00

Aqua Regla Digest/ICPMS Finish

NM/PS df/msr1070S XLS/10

ECO TECH LABOBATORY LTD.

Norman Monteith B.C. Certified Assayer

29-Nov-10

CERTIFICATE OF ANALYSIS AK 2010-1052

New Bridge Capital Inc c/o 680 Dairy Road Kamloops, BC V2B 8N5

No. of samples received: 13 Sample Type: Sludge **Project: T-Allies Shipment #: 10-04** Submitted by: Adam Lyons

ET #.	Tag #	Au (ppb)	
1	TA-10-07 136-141	5	
2	TA-10-07 141-146	5	
3	TA-10-07 146-151	5	
4	TA-10-07 151-156	5	
5	TA-10-07 156-161	5	
6	TA-10-07 161-166	<5	
7	TA-10-07 166-171	10	
8	TA-10-07 171-176	5	
9	TA-10-07 176-181	5	
10	TA-10-07 181-186	<5	
11	TA-10-07 186-191	<5	
12	TA-10-07 191-196	<5	
13	TA-10-07 196-201	5	
<u>QC DA</u> Repeat:			
1	TA-10-07 136-141	5	
10	TA-10-07 181-186	5	
Resplit:	:		
1	TA-10-07 136-141	5	
Standa OXF65	rd:	800	\mathcal{D}_{-}
FA Geo	chem/AA Finish		

NM/nw

XLLS/ILQ is undertaken subject to the Company's General Conditions of Business which are available on request. Registered Office: Eco Tech Laboratory Ltd., 2953 Shuswap Road, Kamloops, BC V2H 159 Canada.

ECO TECH-LABORATORY LTD.

Norman Monteith B.C. Certified Assayer 23-Nov-10 Stewart Group ECO TECH LABORATORY LTD. 10041 Dallas Drive KAMLOOPS, B.C. V2C 6T4 www.stewartgroupglobal.com

Phone: 250-573-5700 Fax : 250-573-4557 New Bridge Capital Inc c/o 680 Dairy Road Kamloops, BC V2B 8N5

No. of samples received: 13 Sample Type: Sludge **Project: T-Allies Shipment #: 10-04** Submitted by: Adam Lyons

Values in ppm unless otherwise reported

Ag Al As Ba Be Bl Ca Cd Ce Co Cr Cu Fe Ga Ge Hg K La Li Ma Mn Мо Na Nb NI Ρ Pb Rb S Sb Sc Se Sn Sr Ta Te Th Ti Ti U V W Y Zn Zr Et #. Tag # nga mga mga mga % mga mga mga nga ppm ppm % mag mag % mag mag % dag mag mag % % moa maa maa maa ppm ppm TA-10-07 136-141 0.1 1.75 2.7 102.5 0.4 <0.02 1.19 0.10 21.39 55.7 324.0 44.7 6.44 5.2 1.7 <5 0.39 10.0 11.6 10.17 909 6.36 0.128 0.08 715.3 1175 2.28 15.5 <0.02 0.12 5.5 0.3 0.9 106.0 <0.05 <0.02 0.8 0.265 0.02 0.2 102 4.4 8.73 61.8 8.36 2 TA-10-07 141-146 <0.1 1.72 3.4 90.5 0.2 <0.02 1.39 0.09 11.32 68.4 406.0 51.7 6.26 4.6 1.7 <5 0.50 5.5 16.0 12.82 904 6.47 0.077 0.04 1005.5 716 19.1 0.08 0.10 7.0 0.2 0.7 111.5 < 0.05 < 0.02 0.5 0.147 0.02 0.1 104 4.6 5.80 <0.01 46.8 9.67 TA-10-07 146-151 0.4 1.84 3.3 96.0 0.3 <0.02 1.26 0.08 13.17 66.5 410.0 53.3 7.16 4.9 1.9 <5 0.52 6.5 13.8 13.11 966 11.54 0.093 0.02 949.5 847 4.17 3 19.5 <0.02 0.16 6.3 0.2 1.2 105.0 <0.05 <0.02 0.5 0.175 0.02 0.2 104 3.7 6.19 51.0 10.51 TA-10-07 151-156 0.3 1.73 3.8 88.5 0.2 <0.02 1.49 0.09 12.38 66.0 371.5 49.4 6.46 4.3 1.6 <5 0.49 6.0 14.9 12.88 916 9.89 0.081 0.02 949.1 824 4 1.41 18.4 <0.02 0.18 6.4 0.2 0.9 117.0 <0.05 0.02 0.5 0.114 0.02 0.1 96 1.4 6.11 54.8 7.28 5 TA-10-07 156-161 0.1 1.66 4.4 121.5 0.2 <0.02 1.44 0.07 7.99 68.2 424.5 56.9 6.37 4.0 1.6 <5 0.46 4.0 17.4 13.27 886 9.37 0.060 <0.02 990.7 618 0.32 16.9 <0.02 0.18 7.0 0.1 1.0 115.5 <0.05 <0.02 0.3 0.072 0.02 0.1 94 2.1 4.72 38.1 5.71

ICP CERTIFICATE OF ANALYSIS AK 2010-1052

6 TA-10-07 161-166 <0.1 1.71 4.0 487.5 0.1 <0.02 1.05 0.05 5.39 72.1 420.5 58.3 6.02 3.8 1.5 10 0.59 2.5 14.8 14.24 867 7.29 0.050 <0.02 1092.0 514 0.39 18.7 0.04 0.16 6.6 <0.1 0.8 105.5 <0.05 <0.02 0.3 0.049 0.04 0.1 96 4.0 3.69 38.2 4.08 TA-10-07 166-171 <0.1 1.91 4.8 370.5 0.2 <0.02 1.48 0.04 5.03 72.7 512.0 52.5 5.83 4.2 1.6 <5 0.54 2.5 16.4 14.65 836 4.04 0.048 <0.02 1064.7 533 7 17.9 0.02 0.12 8.2 <0.1 0.5 135.0 <0.05 <0.02 0.3 0.053 0.02 0.1 106 1.7 4.05 0.17 37.5 4.07 TA-10-07 171-176 0.5 1.77 4.0 336.0 0.2 <0.02 1.44 0.08 9.87 66.2 455.0 61.3 5.80 4.5 1.6 10 0.45 5.0 15.0 12.24 833 4.64 0.068 <0.02 895.9 711 8 0.19 15.2 0.02 0.14 7.1 0.1 0.8 131.5 < 0.05 < 0.02 0.4 0.107 0.02 0.1 102 12.2 5.35 46.6 7.35 TA-10-07 176-181 0.1 1.61 4.2 269.5 0.2 <0.02 1.25 0.05 6.15 64.4 338.5 54.5 5.18 3.5 1.4 <5 0.51 3.0 13.4 12.84 766 5.70 0.048 <0.02 955.5 566 16.9 0.02 0.16 6.9 0.1 0.5 121.5 < 0.05 < 0.02 0.3 0.031 0.02 0.1 86 2.6 4.13 34.1 3.65 9 2.01 10 TA-10-07 181-186 0.1 1.74 3.8 291.0 <0.1 <0.02 1.10 0.03 5.20 73.6 373.0 56.0 5.69 3.9 1.5 <5 0.58 2.5 14.1 14.32 828 5.03 0.049 <0.02 1080.4 538 1.82 18.9 0.02 0.08 7.3 0.1 0.7 125.0 <0.05 <0.02 0.3 0.040 0.02 0.1 98 3.2 3.77 36.8 2.89

11 TA-10-07 186-191 <0.1 1.62 3.6 247.0 <0.1 <0.02 1.05 0.04 4.90 69.3 342.5 58.9 5.25 3.6 1.3 <5 0.55 2.5 13.8 13.47 767 6.63 0.046 <0.02 1019.2 522 0.77 17.9 0.02 0.12 6.9 <0.1 1.3 120.5 <0.05 <0.02 0.3 0.028 0.02 0.1 90 3.0 3.56 34.3 2.74 12 TA-10-07 191-196 <0.1 1.66 3.8 269.5 0.2 <0.02 1.07 0.04 5.54 69.6 321.0 46.4 5.11 3.6 1.5 <5 0.55 2.5 14.8 13.66 775 3.82 0.047 <0.02 1022.7 545 0.19 18.3 0.02 0.10 6.6 0.1 0.3 122.5 <0.05 <0.02 0.3 0.034 0.02 0.1 92 1.1 3.89 33.4 3.08 13 TA-10-07 196-201 <0.1 1.74 3.9 337.0 <0.1 <0.02 1.09 0.06 5.30 71.9 389.5 53.9 5.98 3.8 1.6 5 0.59 2.5 12.5 14.02 831 8.95 0.047 <0.02 1047.4 558 0.03 19.0 0.02 0.16 7.1 0.1 0.8 127.5 <0.05 <0.02 0.3 0.037 0.02 0.1 98 1.6 3.83 36.0 3.18

QC DATA:

Repeat:

1 TA-10-07 136-141 0.1 1.74 2.7 103.0 <0.1 <0.02 1.20 0.07 21.55 54.7 339.0 45.2 6.50 5.1 1.9 <5 0.39 10.5 11.4 9.92 904 7.41 0.126 0.04 715.5 1148 1.65 15.4 <0.02 0.16 5.3 0.2 1.0 106.5 <0.05 <0.02 0.8 0.264 0.02 0.2 102 4.7 8.80 59.7 9.42 10 TA-10-07 181-186 <0.1 1.73 3.6 296.5 <0.1 <0.02 1.0 10.5 5.0 5.42 69.8 376.5 52.6 5.36 3.7 1.5 5 0.56 2.5 15.6 13.69 794 4.21 0.048 <0.02 1010.7 556 0.14 18.2 0.02 0.12 6.8 <0.1 0.4 126.0 <0.05 <0.02 0.3 0.039 0.02 0.1 96 1.9 3.86 35.0 3.45

Resplit:

1 TA-10-07 136-141 <0.1 1.83 2.5 110.0 0.4 <0.02 1.26 0.09 24.26 55.5 331.0 50.8 6.54 5.8 1.9 <5 0.40 11.5 10.5 9.84 923 5.29 0.142 0.04 708.2 1259 0.41 16.4 <0.02 0.14 5.4 0.3 0.9 116.0 <0.05 <0.02 0.9 0.274 0.04 0.2 106 5.3 9.78 62.3 9.91

Standard:

Pb129a 11.7 0.86 5.6 61.5 <0.1 0.40 0.50 54.43 9.15 4.8 11.5 1389.2 1.56 2.4 0.5 70 0.11 4.0 1.5 0.68 359 2.32 0.047 0.18 4.9 432 6125.98 3.1 0.96 14.90 0.8 0.2 1.1 30.0 <0.05 0.22 0.4 0.045 0.04 <0.1 18 0.1 2.40 9924.0 1.61

Aqua Regia Digest/ICPMS Finish

NM/nw df/msr1053S XLS/10

ECO TECH LABORATORY LTD. Norman Monteith B.C. Certified Assayer

CERTIFICATE OF ASSAY AK 2010-1053

08-Dec-10

New Bridge Capital Inc c/o 680 Dairy Road Kamloops, BC V2B 8N5

No. of samples received: Sample Type: Project: Shipment #: Submitted by:

	ET #.	Tag #	Ag (g/t)	Ag (oz/t)	
-	11	905749	37.6	1.10	
	31	905769	38.3	1.12	
		۸.			

<u>QC DATA:</u>		
Standard:		
GBM908-14	304	8.87

FA/AA Finish

ECO TECH LABORATORY LTD.

Norman Monteith B.C. Certified Assayer

NM/PS XLS/10

CERTIFICATE OF ANALYSIS AK 2010-1053

New Bridge Capital Inc c/o 680 Dairy Road Kamloops, BC V2B 8N5

7-Dec-10

No. of samples received: 32 Sample Type: Core **Project: T-Allies Shipment #: 10-02** Submitted by: Adam Lyons

		Au	
ET #.	Tag #	(ppb)	
1	905739	80	
2	905740	475	
3	905741	125	
4	905742	5	
5	905743	10	
6	905744	65	
7	905745	200	
8	905746	<5	
9	905747	410	
10	905748	155	
11	905749	910	
12	905750	<5	
13	905751	20	
14	905752	5	
15	905753	5	
16	905754	<5	
17	905755	<5	
18	905756	5	
19	905757	5	
20	905758	<5	
21	905759	30	
22	905760	<5	
23	905761	10	
24	905762	30	
25	905763	5	
26	905764	5	
27	905765	<5	
28	905766	<5	
29	905767	15	

All business is undertaken subject to the Company's General Conditions of Business which are available on request. Registered Office: Eco Tech Laboratory Ltd., 2953 Shuswap Road, Kamloops, BC V2H 159 Canada.

New Br	idge Capital Ir	nc AK10-1053	07-Dec-10
		Au	
ET #.	Tag #	(ppb)	
30	905768	<5	
31	905769	900	
32	905770	<5	

QC DATA: Repeat:

lepeat	tr	
1	905739	70
2	905740	500
7	905745	205
9	905747	420
10	905748	165
19	905757	10
28	905766	<5

Resplit:		
1	905739	

Standard:	
OXF65	

815

70

FA Geochem/AA Finish

NM/PS XLS/10

k

ECO TECH LABORATORY LTD. Norman Monteith B.C. Certified Assayer

New Bridge Capital Inc c/o 680 Dairy Road Kamloops, BC V2B 8N5

No. of samples received: 32 Sample Type: Core **Project: T-Allies** Shipment #: 10-02 Submitted by: Adam Lyons

_atte

Phone: 250-573-5700 Fax : 250-573-4557

Values in ppm unless otherwise reported

F * #	Ton #	Ag Al				Bi Ca						=e G						Mg Mr				Ni	Ρ			-				Sr		Te			-	-	w y		Zr
<u> </u>	Tag #					pm %																															opm ppm		ppm
2	905739 905740	0.5 0.48 1.0 0.46				0.10 6.28														.64 0.092																	0.3 6.39		3 2.44
	905740 905741	0.3 0.71				0.12 6.37 0.02 7.63					86.2 3									.75 0.112																	0.3 6.39		
4	905742	0.1 0.75				0.02 7.03														.79 0.113																	0.3 7.36		3 1.53
5	905743	0.1 0.69				0.02 9.00												1.45 128		.30 0.098				1.20	2.1	0.02	1.08 27	.6 0.2	0.1	200.5 <	0.05	<0.02	0.2 0.02	3 <0.02	< 0.1	178	0.2 8.11	40.9	0.73
5	303740	0.1 0.03	7.0 1			0.02 0.21	0.23	5.14	23.3 2	202.0	35.4 0	.04 -	+. 1	1.0 <	.5 0.0	2.0	3.0 4	1.45 120	0 0	.59 0.100	< 0.02	172.4	1230	1.32	2.1	0.02	1.34 28	.0 0.2	0.2	180.5 <	0.05	<0.02	0.2 0.02	4 < 0.02	. <0.1	192	0.2 8.61	44.3	0.71
6	905744	0.9 0.45	16.2 1	54.0	0.3	0.04 9.45	0.37	5.17	28.7 2	242.0	243.0 5	.89 2	2.6	1.2	5 0.14	2.0	1.8.4	1.32 142	25 0	60 0.113	3 0.02	157 1	1143	3 27	38	0.16	2 84 28	1 02	02	248.0 ~	0.05	0.14	02.001	1 -0.03	2 -0 1	156	0.1 7.97	16.4	5 0.96
7	905745	1.5 0.28				0.26 >10														.58 0.091							1.22 23										0.1 7.68		0.50
8	905746	0.1 0.77	19.4	61.5	0.4 <	0.02 8.54	0.26	4.96	29.4 3											.19 0.105							2.32 28										0.1 7.61		
9	905747	1.5 0.33	491.3	49.0	0.4	0.18 >10	0.63	4.30	40.0 1											.69 0.103																	<0.1 6.80		
10	905748	0.5 0.35	2284.8	17.5	0.4	0.08 >10	0.27	2.40	58.6 1	115.5	18.8 5	.78 1	1.6	1.2 100	0.12	2 1.0	1.0 4	1.73 116	67 8	.67 0.123	3 < 0.02	440.2	536	2.74	3.8	4.60	65.70 16	.5 0.3	0.1	324.5 <	0.05	0.30	<0.1 0.00	2 0.84	+ 1.2	92	<0.1 6.15	54 (3 2 16
	905749	>30 0.65	1378.0																				571	67.03	3.3	0.74	78.84 1	.4 3.3	1.3	137.0 <	0.05	2.88	0.8 0.02	3 0.08	3 1.5	18	18.1 4.96	98.7	7 3.40
12	905750	0.0 0.02				0.02 0.01														.03 0.025			47	<0.01								0.10	0.2 0.00	2 <0.02	2 <0.1	<2	<0.1 0.54	2.6	6 0.46
13	905751	0.1 0.61																		.59 0.111				1.91			10.84 22										<0.1 6.54		1 1.35
14		0.4 0.54																		.50 0.162																	<0.1 7.28		
15	905753	0.6 0.35	90.6	26.0	0.2	0.02 8.00	0.18	4.03	34.3 2	215.5	61.8 5	.62 1	1.7	1.2 4	15 0.1	5 1.5	1.9 4	1.02 119	96 0	.47 0.139	9 <0.02	224.5	1230	1.25	6.1	0.60	19.18 26	.0 0.2	0.2	210.0 <	0.05	<0.02	0.1 0.00	0.02 0.02	2 0.1	130	<0.1 6.73	41.	1.70
16	905754	0.0 0.46	100 5	00.0	0 F .	0 00 0 15	0.15	0.75	40.4			~ ~																											
10	905754 905755	0.0 0.46																3.99 11: 3.29 90		.46 0.143																	<0.1 6.85		9 1.89
17	905755 905756	0.1 0.37																1.09 126		.65 0.130 .35 0.130																	<0.1 6.27		4 1.24
19	905757 905757	0.1 0.30																4.09 120 3.84 117		.35 0.130																	<0.1 7.04		3 1.25
20	905758	0.1 0.31																3.97 109		.36 0.12																	<0.1 7.20		
	000,00	0.1 0.01		20.0	0.1 4	0.02 0.12	. 0.10	0.00	20.4	100.0	20.0 0		1.5	1.0	0 0.1	1.5	1.0 0		55 0		J ~0.02	1-4-4.1	1247	1.52	4.4	0.52	3.02 24		0.1	240.0 <	0.05	<0.02	0.2 0.0	2 <0.04	, 0.1	130	<0.1 6.73	26.0	0 1.13
21	905759	0.2 0.49	17.5	50.5 <	<0.1 <	0.02 8.36	0.28	3.98	32.8 3	300.5	59.2 5	.12 1	1.7	1.1	5 0.1	2 1.5	2.1.4	1.41 134	49 0	.45 0.122	< 0.02	260.3	965	3.62	5.0	0 72	3 20 22	6 02	0.1	244 5 ~	0.05	~0.02	01000	6 -0.03	2 0.2	96	<0.1 6.25	24.0	1 01
22	905760	0.0 0.34	725.1	17.0	0.4 <	0.02 9.19	0.19	3.66	79.8 1	163.5	10.6 6	.96 1	1.6							.71 0.134																	<0.1 6.25		9 1.33
23	905761	0.1 0.29	99.3	23.5	0.1 <	0.02 8.79	0.18	3.97	43.4 1	138.0	41.5 5	.90 1	1.5	1.3 8	0.1) 1.5	0.7 3	3.92 135	56 0	.70 0.128	3 < 0.02	250.5	1169														<0.1 6.92		
24	905762	0.3 0.36	758.0	15.5	0.1	0.10 8.89	0.74	3.51	61.5 1	152.0	64.4 7	.14 1	1.7	1.3 46	0.1	1.5	0.9 4	1.32 143	36 17	.85 0.131	< 0.02	420.6	878														<0.1 6.62		
25	905763	0.1 0.32	1206.7	19.0	0.3	0.04 >10	0.59	2.88	71.5 1	143.5	13.4 8	.15 1	1.5	1.7 94	0.0	9 1.0	1.1 5	5.02 134	42 12	.03 0.123	3 <0.02	539.1	776														<0.1 7.29		0 2.21
26		0.3 0.85				0.04 9.50												5.20 185		.54 0.088																	<0.1 6.04		
27	905765	0.2 0.72				0.02 9.13																															<0.1 6.83		
28	905766	0.1 0.65																3.49 152		.92 0.187																	<0.1 8.53		
29	905767 905768	0.1 0.48				0.02 7.45												3.80 134		.33 0.164																	<0.1 8.55		
30	905768	0.1 1.52	29.5	62.5	0.1 <	0.02 9.89	0.10	3.28	58.4 t	551.5	38.7 5	.57 3	3.5	1.2	0 0.5	5 1.5	13.9 8	3.16 135	56 0	.35 0.342	2 <0.02	645.2	612	1.11	18.3	0.06	0.40 8	.6 0.1	<0.1	462.5 <	0.05	0.02	0.2 0.03	31 0.06	, 0.3	82	10.0 5.69	34.0	2.50
31	905769	>30 0.65	1220.0	60.0	013	100 378	0.88	10.20	20.0	102.0 4		10 0		15 25	0 0 1	70	60.0	01 50		14 0.000		10.0	EE 1	C1 47	2.0	0.70	75.90 1			400 F	0.05	0.00							
32		<0.02 0.06				0.02 0.03																															19.0 4.90 <0.1 0.70		
																0.0	0.0 0		2		. 0.04	1.1	00	~0.01	0.7	~0.0Z	0.04 0	. <u>.</u> <0.1	×0.1	J.U <	0.00	0.04	0.5 0.00	na. <0.04	0.1	<2	10.1 0.70	2.4	0.58
QC DA	IA:																																						
Repea	2																																						
	905739	0.6 0.45	7.2	10.5	0.3	0.10 6.23	0.83	4.88	30.1	54.5	111.4 4	.04 2	2.6 ().9 '	0 0.0	2.0	2.9 2	2.81 143	33 8	.41 0.090	<0.02	57.4	1349	2.34	2.3	0.80	0.82 14	.4 0.3	0.1	214.0 <	0.05	0.12	0.4 0.01	3 < 0.02	2 0.2	94	0.2 6.12	79.5	5 2.35
10	905748	05 033	2287 Q	16 5	04	0.08 -10	0.26	2 22	55 6 1	0.90	180 5	71 1	15		6 01	10	064	60 110	76 Q	25 0 101	0.02	100 0	500	0 10	20	4 00	CE 04 40	7 04	0.4	000.0	0.05	0.00				~~			

ECO TECH LABOR	ECO TECH LABORATORY LTD. ICP CERTIFICATE OF ANALYSIS AK 2010- 1053										New Br	ew Bridge Capital Inc																											
Et #. Tag #	Ag Al ppm %				Bi Ca om %					Cu l ppm				-			Mg % p		Mo Na opm %		Ni ppr	P 1 ppm p		Rb ppm		Sb S opm pp		ie S om pp				Th ppm			U ppm_p	•	W Y		Zr n ppm
Resplit: 1 905739	0.5 0.47	6.4	10.5	0.1 0	0.10 6.1	6 0.81	5.06	30.4	57.0	110.9 4	.02	2.6	0.9	10 0.0	07 2.0	0 2.3	2.90 1	1435	9.02 0.0	92 <0.02	2 57.	4 1328	2.19	2.3 (). 82	0.78 14	4.5	0.3 0).1 211	.0 <0.05	0.12	2 0.5	0.014	<0.02	0.2	94	0.2 6.2) 82	.1 2.47
Standard: Pb129a	11.6 0.87	5.6	61.5	<0.1 ().44 0.5	0 54.43	9.15	i 4.8	11.5	1389.2 1	.56	2.4	0.5	70 0.1	11 4.	0 1.5	0.68	359	2.32 0.0	47 0.10	34.	9 422 61	25.98	3.1 (0.81 1	4.90 (0.8	0.2 1	.1 30	0.0 <0.05	0.22	2 0.4	0.035	0.04	<0.1	18	0.1 2.4) 9924	.0 1.91

Aqua Regia Digest/ICPMS Finish

NM/PS dt/msr1053S XLS/10

ECO TECH LABORATORY LTD. Norman Monteith B.C. Certified Assayer

CERTIFICATE OF ASSAY AK 2010-1054

29-Dec-10

New Bridge Capital Inc c/o 680 Dairy Road Kamloops, BC V2B 8N5

No. of samples received: 38 Sample Type: Core **Project: T-Allies Shipment #: 10-01** Submitted by: Adam Lyons

ET #. Tag #	Au (g/t)	Au (oz/t)	
17 905717	1.25	0.036	
<u>QC DATA:</u> <i>Repeat:</i> 17 905717	1.26	0.037	
<i>Standard:</i> OXK79	3.55	0.104	

FA/AA Finish

ECO TECH L'ABORATORY LTD. Norman Monteith B.C. Certified Assayer

NM/PS XLS/10

CERTIFICATE OF ANALYSIS AK 2010-1054

New Bridge Capital Inc c/o 680 Dairy Road Kamloops, BC V2B 8N5

No. of samples received: 38 Sample Type: Core **Project: T-Allies Shipment #: 10-01** Submitted by: Adam Lyons

		Au	
ET #.	Tag #	(ppb)	
1	905701	<5	
2	905702	5	
3	905703	<5	
4	905704	<5	
5	905705	<5	
6	905706	<5	
7	905707	<5	
8	905708	20	
9	905709	5	
10	905710	40	
11	905711	<5	
12	905712	<5	
13	905713	65	
14	905714	5	
15	905715	10	
16	905716	520	
17	905717	>1000	
18	905718	760	
19	905719	550	
20	905720	10	
21	905721	<5	
22	905722	<5	
23	905723	5	
24	905724	5	
25	905725	<5	
26	905726	10	
27	905727	10	
28	905728	895	

All business is undertaken subject to the Company's General Conditions of Business which are available on request. Registered Office: Eco Tech Laboratory Ltd., 2953 Shuswap Road, Kamloops, BC V2H 159 Page 1 of 2

08-Dec-10

08-Dec-10

New Bridge Capital Inc

	• •	Au	
ET #.	Tag #	(ppb)	
29	905729	<5	
30	905730	5	
31	905731	<5	
32	905732	<5	
33	905733	40	
34	905734	250	
35	905735	400	
36	905736	200	
37	905737	95	
38	905738	35	

<u>QC DATA:</u> *Repeat:*

Repeat:		
1	905701	<5
10	905710	30
13	905713	60
16	905716	510
18	905718	770
19	905719	555
34	905734	260
35	905735	375
36	905736	215

Resplit:

1	905701	<5
36	905736	210

Standard:

OXF65	800
OXE74	610

FA Geochem/AA Finish

ECO TECH LABORATORY LTD.

Norman Monteith B.C. Certified Assayer

NM/PS XLS/10

23-Dec-10 Stewart Group ECO TECH LABORATORY LTD. 10041 Dallas Drive KAMLOOPS, B.C. V2C 6T4

Phone: 250-573-5700 Fax : 250-573-4557

ICP CERTIFICATE OF ANALYSIS AK 2010-1054

New Bridge Capital Inc c/o 680 Dairy Road Kamloops, BC V2B 8N5

No. of samples received: 38 Sample Type: Core Project: T-Allies Shipment #: 10-01 Submitted by: Adam Lyons

Values in ppm unless otherwise reported

		Ag Al	As	Ba	Be E		Cd				Cu							g Mn		Nb		P		Rb							Th Ti					Zn Zr
<u>Et #.</u>		ppm %													%	opm p	om १	6 ppm	_ppm %	ppm	ppm	ppm	ppm	ppm	%	opm p	om ppm	ppm p	pm ppm	ppm	ppm %	ppm	ppm p	pm pj	pm ppm	ppm ppm
1	905701	<0.1 1.79	2.4	435.5	0.2 <0	0.02 0.27	0.22	2.70	71.6	280.5	46.9 4	4.44	3.5 2	.2 <	5 1.61	1.5	9.8 14	.22 789	0.16 0.05	91 < 0.02	1134.0										0.2 0.02				0.2 2.47	51.2 1.62
2	905702	0.1 2.63	7.1	1335.0	0.2 <0	0.02 2.73	0.12	3.66	71.4	886.0	50.2 6	6.0 8	6.0 2	.7	5 0.84	1.5 2	1.6 14	.21 915	0.26 0.4	15 <0.02	943.5	553	3.80	28.3	0.06	0.28 1	1.9 0.1	0.3 3	34.5 <0.0	5 0.02	0.2 0.05	3 0.06	0.1	132	0.2 5.04	38.0 2.22
3	905703	0.1 2.59	8.0	723.0	0.2 <0	0.02 3.20	0.12	3.80	69.4	1028.0	48.1 5	5.90	5.7 2	.8 <	5 0.59	1.5 2	1.6 14	.53 1019	0.50 0.42	23 <0.02	947.5	506									0.2 0.08					36.1 2.84
4	905704	0.1 1.78	4.4	482.0	<0.1 <0	0.02 2.77	0.05	3.36	67.4	759.5	38.3 4	4.99	3.8 2	.1	5 0.75	1.5 1	6.9 14	.92 951	0.28 0.34	47 <0.02	1035.0	441	2.56	24.8	0.04	0.88 1	1.7 <0.1	0.2 2	7.0 <0.0	5 0.04	0.2 0.04	6 0.04	<0.1	86	0.1 3.98	29.4 1.86
5	905705	0.1 2.40	8.0	676.0	0.4 <0	0.02 2.95	0.07	3.65	73.2	686.0	36.8 5	5.87	5.3 2	.5 <	5 0.83	1.5 2	8.9 16	.40 941	0.23 0.3	92 <0.02	1052.0	529	2.77	27.0	0.04	0.14 1	3.3 <0.1	0.2 3	33.5 <0.0	5 0.02	0.2 0.04	0.04	<0.1	112	0.1 4.70	35.3 2.08
6	905706	0.1 2.29				0.02 3.32													0.38 0.4																0.1 4.46	31.0 1.77
7	905707	0.1 1.97				0.02 3.88												.57 1033													0.2 0.03				0.1 4.39	30.7 1.90
8	905708	<0.1 2.37				0.02 2.69					44.4 €							.41 854													0.2 0.04				0.1 4.80	33.6 1.90
9	905709	0.1 2.03				0.02 4.86												.70 1120													0.1 0.02			88	0.1 4.38	25.7 1.20
10	905710	0.2 1.10	90.7	53.5	0.3 0).04 7.71	0.23	6.47	45.0	359.0	53.1 3	3.99	3.8 1	.7 10	5 0.59	3.0	5.0 4	.14 1272	1.56 0.29	90 <0.02	431.4	1346	7.82	19.9	0.66	6.44 2	3.6 0.3	3 0.2 2	32.5 <0.0	5 0.04	0.3 0.02	7 0.64	0.2	126	0.1 9.16	41.8 2.59
11	905711	<0.1 1.31	15.1	57.5	0.3 0	.04 3.70	0.11	8.83	29.1	248.0	7.7 5	5.86	5.3 2	.3 <	5 1.46	4.0	2.6 3	.14 978	0.34 0.1	32 < 0.02	235.5	1785	5.55	47.0	0.04 1	14.04 2	1.3 0.3	3 0.3 14	1.5 <0.0	5 0.02	0.4 0.03	9 0.06	0.1	184	0.2 12.14	41.6 2.23
12	905712	<0.1 1.50				0.04 1.29							5.9 2		5 1.63	3.5	2.7 2	.52 675	0.45 0.10	31 <0.02	285.8	1905									0.4 0.03					37.7 3.49
13	905713	0.2 0.40				0.02 4.27					25.8 €				5 0.21	2.0	1.0 2	.16 796	0.65 0.13	34 < 0.02	261.6	1440	5.97	7.7	6.14 1	8.26 1	9.3 0.3	3 0.1 1	52.5 <0.0	5 0.02	0.2 0.00	2 0.36	0.2	74	0.1 9.42	39.9 1.38
14	905714	0.1 0.25				0.02 8.29									0 0.14	2.0	0.7 4	.08 1298	0.45 0.1	07 <0.02	142.5	1306									0.2 0.00					24.4 0.99
15	905715	0.1 0.33	233.8	20.0	<0.1 <0	0.02 5.43	0.19	5.18	23.8	139.5	36.4 4	4.21	1.6 1	.4 10	5 0.17	2.0	0.9 2	.80 910	0.27 0.13	31 <0.02	100.5	1489	6.67	6.0	3.32 1	2.76 2	0.7 0.3	3 <0.1 1	90.5 <0.0	5 0.02	0.2 0.00	3 <0.02	0.1	74	0.1 8.80	27.3 1.12
16	905716	1.3 0.28	4140.0	11.0	<0.1 0	.12 0.35	0.47	6.07	50.5	59.5	106.6 €	6.79	1.8 2	.2 373	5 0.14	2.5	0.6 0	.10 52	3.16 0.1	23 < 0.02	287.4	1265	6.63	4.1	7.44 2	27.40	7.6 0.5	5 0.1 3	38.5 < 0.0	5 0.52	0.4 0.00	2 0.12	0.3	72	02 576	39.5 2.63
17	905717	3.6 0.25	3408.0	11.0	<0.1 0	0.16 0.39	0.45	6.10	37.5	46.5	526.8 6	6.49	1.6 2	.2 1376	0 0.11	2.5	0.4 0	.18 186	8.23 0.1	22 < 0.02	181.2	1350									0.4 0.00				0.2 5.77	51.6 2.93
18	905718	2.3 0.36	1327.0	13.0	<0.1 0	.14 0.44	0.49	7.38	34.2	59.0	491.7 5	5.17	2.5 1	.7 432	5 0.14	3.0	0.9 0	.41 506	6.25 0.1	36 < 0.02	194.4	1371									0.4 0.00					54.9 3.68
19	905719	1.5 0.38	2009.0	14.5	0.2 0	0.08 1.51	0.53	5.36	40.2	81.0	348.9 5	5.35	2.4 1	.7 168	0 0.14	2.0	0.9 0	.95 610	3.30 0.1	30 < 0.02	314.3	1182									0.3 0.00				0.2 7.00	55.8 2.86
20	905720	0.1 0.38	31.5	32.5	0.4 <0).02 >10	0.37	3.95	37.7	268.0	24.0 5	5.73	1.6 1	.8 6	5 0.18	1.5	1.3 6	.13 2336	0.27 0.13	37 < 0.02	388.6	675									<0.1 0.00				0.1 6.58	44.3 0.50
																																			0.00	
21	905721	0.2 0.58	=			0.02 8.65												.92 1723					2.69	4.6	1.16	1.48 2	9.4 0.2	2 < 0.1 2	91.0 <0.0	5 <0.02	0.1 0.00	4 <0.02	<0.1	146	0.1 7.44	39.6 0.95
22	905722	<0.1 0.44														-		.70 1472													0.1 0.00				0.1 7.60	37.8 1.17
23	905723	<0.1 0.76				0.02 6.48												.40 1435					4.64	1.9	0.04	0.44 2	8.3 0.2	2 <0.1 14	45.5 <0.0	5 0.02	0.1 0.01	5 <0.02	<0.1	214	0.1 7.48	36.8 1.05
24	905724	0.1 0.72																.10 1514													<0.1 0.00					44.4 0.85
25	905725	0.2 0.66	20.6	46.0	0.4 <0).02 7.62	0.27	4.20	37.0	226.5	34.2 €	6.56	3.6 1	.9 4	0 0.07	1.5	3.0 4	.83 1257	0.67 0.10	0.02 00	196.3	1336	4.28	2.5	1.10	1.16 2	8.2 0.3	3 <0.1 24	1.0 <0.0	5 0.04	<0.1 0.01	1 <0.02	0.1	168	0.3 7.69	35.6 0.79
26	905726	0.3 0.98	3.0	92.5	0.4 <0	0.02 6.08	0.41	3.46	30.0	284.0	52.4 (6.84	5.2 2	.0 2	0 0.04	1.0	4.0 4	.75 1055	0.52 0.0	35 < 0.02	164.7	1425	2.81	1.1	0.04	0.30 2	7.9 0.2	2 <0.1 1	57.5 <0.0	5 0.08	<0.1 0.01	3 < 0.02	<0.1	208	01 638	35.2 0.58
27	905727	0.1 1.38				0.02 8.94									0.09	1.5	6.5 6	.66 1375	0.34 0.10	0.02	367.4	1218									<0.1 0.00					52.3 0.50
28	905728	>30 0.70	1335.0	61.0	0.1 29	.36 3.66	1.03	10.82	43.2	205.5 4	252.0 2	2.31	2.7 0	.8 23	5 0.12	7.0	7.0 0	.22 617	771.00 0.0	72 0.08	19.2	559									0.7 0.03				9.0 5.02	95.2 3.43
29	905729	0.1 0.04	1.1	6.5	<0.1 <0	0.02 0.02	<0.01	3.15	0.5	1.0	0.8 (0.11	0.4 0	.1 <	5 0.01	2.0	1.0 0	.02 16	2.10 0.0	26 0.06	1.0	50									0.4 0.00					2.7 0.50
30	905730	0.2 1.32	3.8	62.5	0.2 <0	0.02 7.83	0.14	3.82	36.6	305.5	43.8 €	6.65	5.4 1	.9	5 0.06	1.5	5.8 6	.21 1191	0.52 0.0	94 <0.02	271.9	1382									0.1 0.00					46.3 0.58
31	905731	0.1 1.16	32	54 5	04 -0	0.02 8.39	0.19	4.06	38.1	307.0	39.5 6	6 95	52 0	0 -	5 0 04	15	46 6	14 1910	0.71 0.0	76 -0.00	240.2	1000	2 09	1.4	0.04	0.70 0	01 07			- 0.04	0 1 0 01			240		10.0.0.75
32	905732	0.1 0.85				0.02 0.53												.14 1312													0.1 0.01					43.2 0.53
33	905733	0.8 0.62				0.02 0.37												.91 866																	0.2 6.59	49.2 0.72
34	905734	2.3 0.56).12 6.25								••••••					19.82 0.1												0.3 0.02				0.5 4.82	39.0 2.04
35	905735	3.2 0.40				0.24 6.13													62.94 0.1			1324									0.2 0.01				0.5 7.06	36.2 2.76
																																		98	0.4 6.56	30.8 3.16
36	905736	1.6 0.39				.10 7.59													16.37 0.10												0.2 0.00				0.3 6.81	33.3 2.69
37	905737	0.6 1.59				0.02 >10												.72 2029													<0.1 0.00					78.0 0.53
38	905738	0.4 0.83	4.8	14.5	0.2 0	0.02 1.84	0.32	9.82	25.3	57.5	95.3 4	4.61	4.8 1	.6	5 0.12	4.5	5.2 2	.21 623	0.80 0.13	37 <0.02	91.8	1429	2.66	3.7	0.40	1.14 1	4.1 0.3	8 0.1 10	2.0 <0.0	5 0.14	0.5 0.02	0 <0.02	0.2	146	0.4 5.21	50.8 2.31

ECO TECH LABORATORY LTD.	ICP CERTIFICATE OF ANALYSIS AK 2010-1054	New Bridge Capital Inc	
Ag Al As	Ba Be Bi Ca Cd Ce Co Cr Cu Fe Ga Ge Hg K La Li Mg Mn M		TIUVWYZn Zr
	ррт ррт ррт % ррт ррт ррт ррт ррт % ррт ррт	om % ppm ppm ppm ppm ppm % ppm ppm ppm pp	ррт ррт ррт ррт ррт ррт
OC DATA:			

Repeat: 2.90 37.1 0.04 <0.02 3.5 <0.1 <0.1 296.0 <0.05 0.02 0.2 0.020 0.04 0.1 80 <0.1 2.45 50.1 1.64 <5 1.60 1.5 10.3 14.56 785 0.14 0.096 <0.02 1120.0 554 <0.1 1.80 2.3 422.5 <0.1 <0.02 0.25 0.35 2.62 71.1 273.0 46.9 4.41 3.4 1.9 905701 1 7.27 19.2 0.64 6.52 23.3 0.2 0.1 225.0 <0.05 0.04 0.2 0.026 0.62 0.2 124 0.1 8.98 41.1 2.60 0.1 1.05 88.0 51.0 0.2 0.02 7.57 0.21 6.21 44.3 343.5 48.9 3.90 3.6 1.4 125 0.57 3.0 4.8 4.10 1253 1.46 0.288 <0.02 424.7 1306 905710 10 6.45 4.6 4.60 8.76 11.6 0.5 <0.1 87.0 <0.05 0.28 0.3 0.001 0.08 0.3 90 0.1 7.25 1.5 0.39 2079.0 14.5 0.1 0.08 1.58 0.57 5.31 41.8 83.5 361.1 5.60 2.4 1.7 1700 0.15 2.0 0.9 1.00 633 3.43 0.136 <0.02 330.2 1244 58.9 2.98 19 905719 6.35 3.3 0.98 0.56 17.0 0.5 <0.1 238.0 <0.05 0.72 0.2 0.008 <0.02 0.2 90 0.3 6.91 32.7 2.65 1.5 0.41 4.1 22.0 0.3 0.10 7.77 0.78 5.17 34.9 117.0 51.6 4.94 2.3 1.4 20 0.10 2.0 1.2 4.24 1915 16.43 0.112 < 0.02 133.6 1192 36 905736

Resplit:

67.9 1.75 2.89 39.1 0.04 0.02 3.8 <0.1 <0.1 295.0 <0.05 <0.02 0.2 0.024 0.04 0.1 88 <0.1 2.56 5 1.74 1.5 12.3 16.00 814 0.20 0.103 <0.02 1200.0 557 2.7 417.0 0.2 <0.02 0.29 0.20 2.68 76.6 319.0 47.9 4.86 3.8 1.4 1 905701 <0.1 1.90 6.48 2.9 1.12 0.50 16.3 0.5 <0.1 235.0 <0.05 0.98 0.2 0.008 <0.02 0.2 84 0.3 6.74 31.0 2.69 4.2 20.0 0.3 0.12 7.78 0.82 4.96 35.2 106.0 47.0 4.75 2.0 1.5 25 0.09 2.0 1.3 4.27 1897 19.65 0.108 < 0.02 120.3 1185 36 905736 2.2 0.35

Standard:

5.6 67.5 <0.1 0.44 0.53 56.85 9.69 5.2 11.5 1453.0 1.67 2.8 0.6 60 0.11 4.0 1.6 0.71 393 2.01 0.049 0.32 5.3 413 5942.00 3.4 0.84 14.76 0.9 0.2 0.8 28.5 <0.05 0.34 0.4 0.055 0.02 0.1 18 0.2 2.67 >10000 1.78 Pb129a 11.7 0.83 5.9 69.0 0.1 0.44 0.56 59.40 9.94 5.2 12.0 1476.0 1.71 2.9 0.6 65 0.12 4.5 1.8 0.74 372 2.07 0.051 0.34 5.4 413 5890.00 3.3 0.88 15.74 1.1 0.2 0.9 31.0 <0.05 0.30 0.4 0.059 0.02 0.1 20 0.2 2.75 >10000 1.82 12.3 0.87 Pb129a

Aqua Regia Digest/ICPMS Finish

ECO TECH LABORATORY LTD.

NM/PS dt/msr1054S XLS/10

Norman Monteith B.C. Certified Assaver

CERTIFICATE OF ANALYSIS AK 2010- 1202

Leo Lindinger 21-Dec-10 680 Dairy Rd Kamloops, BC V2B 8N5 No. of samples received: 2 Sample Type: Soil **Project: Sunrise East** Shipment #: 10-01 Submitted by: Not Indicated Au (ppb) ET #. Tag # SUN-10-02 1 <5 2 SUN-10-03 5

5

5

QC DAT	<u> 4:</u>
Repeat:	
1	SUN-10-02

2

SUN-10-03

Standard: OXF65 795

FA Geochem/AA Finish

NM/ap XLS/10

ECO TECH LABORATORY LTD. Norman Monteith B.C. Certified Assayer

21-Dec-10 Stewart Group ECO TECH LABORATORY LTD. 10041 Dallas Drive KAMLOOPS, B.C. V2C 6T4

Leo Lindinger 680 Dairy Rd Kamloops, BC V2B 8N5

Phone: 250-573-5700 Fax : 250-573-4557

> No. of samples received: 2 Sample Type: Soil **Project: Sunrise East** Submitted by: Not Indicated

Values in ppm unless otherwise reported

Ag Al As Ba Be Bl Ca Cd C	, Co Cr Cu	Fe Ga Ge Hg K L	La Li Mg Mn Mo Na Nb Ni	NI P Pb Rb S	Sb Sc Se Sn Sr Ta Te Th Ti Ti U V W Y Zn Zr
<u>íag#ppm %ppm ppm ppm ppm %ppm pp</u>	n ppm ppm ppm	% ppm ppm ppb % pp	ppm ppm % ppm ppm % ppm ppr	om ppm ppm ppm %	рот рот рот рот рот рот рот % рот рот роторот рот рот рот
N-10-02 0.3 2.64 7.0 154.5 0.7 0.34 0.54 0.30 39.	53 17.4 43.0 36.4 3	3.65 9.4 2.1 25 0.18 18	18.5 26.1 0.72 434 1.28 0.050 2.46 42.	2.5 664 35.36 18.4 0.02 -	0.24 4.6 0.9 0.7 34.0 <0.05 0.08 5.1 0.142 0.12 1.0 64 0.2 9.28 138.3 5.01
N-10-03 0.2 3.74 11.1 157.0 1.2 0.50 0.52 0.70 120	10 49.4 75.5 212.5 €	6.19 12.4 3.0 25 0.17 25	25.0 25.9 1.16 572 1.55 0.045 1.78 134	4.0 1184 36.08 19.8 0.02	0.40 7.8 1.4 0.7 30.0 < 0.05 0.18 18.0 0.138 0.22 4.8 86 0.2 13.09 387.1 8.06

QC DATA:

lepeat:

1 SUN-10-02 0.2 2.59 6.8 149.5 0.6 0.32 0.52 0.27 37.99 16.5 41.0 34.7 3.50 9.0 2.1 20 0.17 18.0 25.6 0.70 414 1.21 0.048 2.46 39.6 642 33.70 18.0 0.02 0.26 4.4 0.9 0.7 33.0 <0.05 0.08 5.0 0.137 0.12 1.0 60 0.2 8.94 134.9 4.90

Standard:

Till-3 1.7 1.05 86.3 41.0 0.4 0.30 0.55 0.11 33.32 11.2 70.0 22.6 2.00 5.0 1.7 105 0.04 15.5 17.7 0.60 316 0.70 0.038 1.06 33.2 455 18.43 9.0 0.04 0.50 3.7 0.7 1.4 10.5 < 0.05 0.04 2.5 0.058 0.06 1.1 38 0.2 6.33 40.1 1.24

Aqua Regia Digest/ICPMS Finish

man

ECO TECH LABORATORY LTD. Norman Monteith B.C. Certified Assayer

NM/ap df/msr1201S XLS/10

22-Dec-10

CERTIFICATE OF ANALYSIS AK 2010- 1203

New Bridge Capital Inc c/o 680 Dairy Road Kamloops, BC V2B 8N5

No. of samples received: 43 Sample Type: Core **Project: T-Allies Shipment #: 10-03** Submitted by: Reid Lyons

	,	Au
ET #.	Tag #	(ppb)
1	905771	<5
2	905772	<5
3	905773	<5
4	905774	<5
5	905775	<5
6	905776	<5
7	905777	<5
8	905778	<5
9	905779	<5
10	905780	940
11	905781	<5
12	905782	<5
13	905783	<5
14	905784	<5
15	905785	<5
16	905786	<5
17	905787	<5
18	905788	<5
19	905789	<5
20	905790	<5
21	905791	5
22	905792	<5
23	905793	5
24	905794	<5
25	905795	<5
26	905796	<5
27	905797	<5
28	905798	<5
29	905799	930
30	905800	<5
31	905801	5
32	905802	to the Company's General Conditions of Business which are available on
request. Reg	istered Office: Eco Tech	h Laboratory Ltd., 2953 Shuswap Road, Kamloops, BC V2H 1S9 Canada. Page 1 of 2

22-Dec-10

New Bridge Capital Inc AK10-1203

Au (ppb) ET #. Tag # 33 905803 <5 34 905804 <5 5 35 905805 36 905806 5 37 905807 <5 38 <5 905808 39 905809 <5 5 40 905810 <5 41 905811 42 905812 <5 <5 43 905813 QC DATA: Repeat: 1 905771 <5 10 <5 905780 19 <5 905789 <5 36 905806 **Resplit:** 905771 <5 1 10 36 905806 Standard:

OXE74	615
OXF65	800

FA Geochem/AA Finish

NM/PS XLS/10

ECO TECH LABORATORY LTD. Norman Monteith B.C. Certified Assayer

ICP CERTIFICATE OF ANALYSIS AK 2010-1203

22-Dec-10 Stewart Group ECO TECH LABORATORY LTD. 10041 Dallas Drive KAMLOOPS, B.C. V2C 6T4

Phone: 250-573-5700 Fax : 250-573-4557 New Bridge Capital Inc c/o 680 Dairy Road Kamioops, BC V2B 8N5

No. of samples received: 43 Sample Type: Core **Project: T-Allies** Shipment #: 10-03 Submitted by: Reid Lyons

Values in ppm unless otherwise reported

		Ag Al																			NI P		Rb S							Th TI					in Zr
Et #.	Tag #	ppm %																			177.8 2358									2,1 0.541					71.2 16.86
1	905771 905772	<0.2 4.75 <0.2 4.50							6.9 112.5 9 3 96 5												187.1 1769									2.0 0.457					71.2 17.12
3	905773	<0.2 4.50							7.1 106.0												176.4 1477									2.4 0.631					70.4 18.22
4	905774	<0.2 3.23																			185.8 1397									2.4 0.548					67.3 21.37
5	905775	<0.2 4.01							9.8 97.0												143.0 1267	2.28	19.2 <0	.02 0.	04 9.6	1.1	1.5 71	4.0 <0.05	0.06	2.8 0.483	0.06	0.6 6	54 <0.1 18	3.69	67.5 21.67
6	905776	<0.2 4.16							2.7 107.5												161.6 1304									2.5 0.564			58 <0.1 16		68.7 25.37
7	905777	<0.2 3.39							4.9 106.5 5.5 109.0												188.0 1368 165.0 1145									2.4 0.571 2.4 0.583					67.6 20.13 66.2 29.03
8 9	905778 905779	<0.2 4.19 <0.2 3.94																			180.3 969									2.4 0.383					66.1 28.58
10	905780																				19.2 567									0.8 0.022					95.4 3.73
	000100																																		
11	905781	<0.2 0.06	1.1	8.0 <	<0.1 <0.0	0.02	0.01 6	6.92	0.5 1.0												1.1 73						-			0.9 0.003					3.0 0.69
12		<0.2 4.15							1.0 116.5												206.0 1115									2.4 0.507					70.2 34.09
13		<0.2 3.48							8.5 128.5						25.0 4 21.5 4						215.4 1233 219.7 1092									2.1 0.474 1.9 0.469					70.2 28.14 63.9 25.95
14 15		<0.2 3.21 <0.2 3.38							7.2 120.5 7.3 113.5			-									176.7 1058									2.2 0.548					70.4 33.32
15	905765	<u.2 0.00<="" th=""><th>1.4</th><th>229.0</th><th>0.7 (0.0</th><th>2 1.00</th><th>0.12 50</th><th>0.71 3</th><th><i>n.</i>o 110.0</th><th>, 00.4</th><th>0.32 1</th><th>11.3 0</th><th>0 \0</th><th>0.20</th><th>20.0 0</th><th>/.a. 0</th><th>-12 1000</th><th>0.40 0</th><th></th><th>0.00</th><th>170.7 1000</th><th>1.70</th><th>10.0 <0</th><th></th><th>0.0</th><th>1.0</th><th>1.7 07</th><th>0.0 <0.00</th><th>0.00</th><th>2.2 0.040</th><th>0.00</th><th>0.0 .</th><th>J4 \0.1 1</th><th></th><th>70.4 00.02</th></u.2>	1.4	229.0	0.7 (0.0	2 1.00	0.12 50	0.71 3	<i>n.</i> o 110.0	, 00.4	0.32 1	11.3 0	0 \0	0.20	20.0 0	/.a. 0	-12 1000	0.40 0		0.00	170.7 1000	1.70	10.0 <0		0.0	1.0	1.7 07	0.0 <0.00	0.00	2.2 0.040	0.00	0.0 .	J4 \0.1 1		70.4 00.02
16	905786	<0.2 3.11	1.7	519.5	1.4 <0.0	02 1.92	0.06 63	3.37 3	7.0 116.5	5 33.0	7.59 1	12.3 4	2 <5	0.36	30.0 5	5.9 2.9	99 1174	0.83 ().204 1	1.42 ·	135.9 1571	1.26	21.0 <0	.02 0.	06 4.4	1.1	2.0 127	4.0 <0.05	0.12	2.5 0.658	0.08	0.9 10	04 <0.1 1	7.53	74.6 13.49
17	905787	<0.2 3.82	1.4	279.5	1.3 <0.0	2 1.89	0.10 58	8.23 3	7.1 105.0	33.1	7.02 1	11.7 3	5 <5	0.31	26.0 3	3.8 3.	31 1296	0.35 (0.121 0	0.5 8 ·	175.8 909	1.27	16.4 <0	.02 0.	04 8.5	1.0	1.8 58	4.0 <0.05	0.06	2.2 0.587	0.16	0.5	84 <0.1 10	5.9 9	70.8 35.55
18		<0.2 3.78							6.6 115.0												196.6 1065									2.1 0.531					67.8 34.14
19		<0.2 3.59							85.8 110.0						26.5 4						181.1 1056									2.2 0.578					69.8 38.34
20	905790	<0.2 3.34	1.4	264.5	1.3 <0.0	02 1.94	0.10 5.	7.94 3	8.1 108.5	5 32.5	7.03	9.8 3	./ <5	0.36	25.0 3	3.0 3.	31 1133	0.40 (J.155 (0.00	173.0 1067	1.75	19.7 <0	.02 0.	04 8.7	1.1	1.7 21	8.0 <0.05	0.02	2.3 0.615	0.08	0.5	50 <0.1 10	0.56	69.9 35.94
21	905791	<0.2 3.30	1.6	276.0	1.0 < 0.0	2 2.10	0.09 58	8.40 3	36.4 121.0	31.8	7.19 1	10.7 3	9 <5	0.31	28.0 4	1.8 3.	67 988	0.47 (0.173 0	0.82	166.9 1357	1.49	17.2 0	.02 0.	06 8.9	1.1	1.7 20	5.5 <0.05	0.04	2.3 0.628	0.08	0.6	94 <0.1 1	8.38	73.5 24.47
22	905792	0.5 4.16							4.8 87.0						25.0 6				0.109 (0.64	134.9 1266	2.83	10.0 <0	.02 0.	04 8.7	1.0	1.8 18	3.5 <0.05	0.04	2.2 0.473	0.04	0.7	92 <0.1 1	6.23	69.0 28.94
23	905793	<0.2 1.91	4.5	94.0	<0.1 <0.0	02 2.34	0.03	3.22 7	5.9 305.5						1.5 22						116.0 476									0.2 0.023					27.4 3.34
24		<0.2 2.26							1.9 653.0						1.5 20						952.7 478									0.2 0.027					27.2 2.23
25	905795	<0.2 1.45	8.0	288.0	<0.1 <0.0)2 1.24	0.02 2	2.53 7	0.0 309.0) 38.2	3.58	2.4 1	.4 10	0.80	1.0 9	9.5 13.	53 781	0.14 (0.053 <0	0.02 10	080.0 454	0.44	22.1 0	0.04 0.	.38 4.6	<0.1	0.2 6	7.5 <0.05	<0.02	0.2 0.014	0.04	0.1	56 <0.1	2.14	18.6 1.48
26	905796	-02 2 12	10.2	129.0	03 -00	2 5 44	0.09	3.24 6	5 2 832 6	5 43 1	5.01	46 1	7 5	0.37	1.5 16	3 11	60 954	0.31 (1075 <0	0.02	820.9 478	1 48	11 1 0	08 0	42 12 8	02	0.3 28	75 <0.05	0.04	0.2 0.018	<0.02	<01 1	00 <01	3 90	23.8 1.35
27	905797	<0.2 1.91							2.4 494.5												028.0 540									0.3 0.021					32.3 1.87
28	905798	<0.2 1.97																	0.070 (0.02	974.7 401	1.84	11.4 0	0.02 0.	.26 7.1	<0.1	0.2 15	0.5 <0.05	<0.02	0.2 0.034	<0.02	<0.1	90 <0.1	3.05	29.4 1.95
29	905799	>30 0.63																			19.3 578									0.9 0.021					99.6 3.82
30	905800	0.6 0.06	0.9	7.0	<0.1 <0.0	02 0.02	0.01	4.15	0.5 1.0	0 1.6	0.16	0.4 0	.3 <5	<0.01	2.0 (0.7 0.	03 15	0.51 (0.025 (0.08	2.1 54	0.87	0.6 <0	0.02 0.	.08 0.2	<0.1 <	:0.1	2.5 <0.05	<0.02	0.9 0.003	<0.02	<0.1	<2 <0.1	0.61	3.0 0.74
31	905801	0.2 3.18	66	945 5	01 -00	12 8 06	0.06	6 45 3	A 5 383 (1 405 8	5 31	84 2	0 <5	1.84	3.0 10	9.1 5	60 1341	0.83	0.058	0.04	196.2 668	2.12	47.1 0	0.06	26 16 3	0.3	0.3 73	8.0 <0.05	0.06	0.3 0.132	0.10	0.1 1	66 <0.1	7.68	51.9 4.81
32	905802	0.5 3.08																			389.5 720									0.3 0.158					55.0 6.51
33		<0.2 1.55																			053.0 393		16.4 0	0.04 0	46 3.8	0.1	0.1 E	1.5 <0.05	0.02	0.2 0.021	<0.02	<0.1	74 <0.1	1.97	24.4 1.55
34	905804	<0.2 3.93							19.7 373.0												528.8 807									0.3 0.099					64.7 4.48
35	905805	<0.2 2.86	1.4	651.0	<0.1 <0.0	02 1.56	0.08	7.42 3	33.1 74.5	5 121.0	5.68	8.6 2	.2 <5	2.00	3.0 12	2.7 3.	09 857	1.31 (0.116 (0.12	61.8 1008	1.60	49.3 0	0.08 0	.40 5.0	0.4	0.4 25	9.0 <0.05	<0.02	0.3 0.267	0.10	0.2 1	44 0.1	9.68	50.2 14.03
36	905806	<0.2 3.74	21	75.0	-01 -01	12 1 26	0.04	3.62	19 0 286 (3 71 1	5 26	71 3	0 -5	3.50	15 10	31 8	51 720	0.31	0.099 0	0.04	541.3 775	1 1 2	88.0 0	08 0	64 41	02	0.3 9	55 -0.05	0.02	0.3 0.105	0 14	02 1	48 -01	3.63	42.2 4.19
36 37	905806	<0.2 3.74							77.1 193.5												980.8 409									0.2 0.028					19.0 2.32
38		<0.2 1.00																			395.1 1164									0.4 0.138					63.3 5.12
39	905809	<0.2 2.83	7.8	88.0	0.1 0.0	02 8.73	0.11	3.12 3	37.1 458.0	253.1	3.77	7.9 1	.5 5	1.14	1.5 12	2.6 7.	57 1011	2.26	0.105 <0	0.02	403.7 449	3.8 8	31.8 0	0.12 0	.98 4.0	0.2	0.2 49	9.5 <0.05	0.06	0.2 0.070	0.06	0.1	92 <0.1	4.02	41.2 3.08
40	905810	<0.2 2.14	4.9	27.0	0.3 <0.0	02 1.09	0.05	3.07 7	73.8 222.0	0 44.9	5.15	4.8 1	.9 <5	0.26	1.5 27	7.6 13.	.63 735	0.34 (0.125 <0	0.02	915.6 446	0.84	10.7 0	0.02 0	.50 8.6	0.1	0.2 13	7.5 <0.05	<0.02	0.2 0.037	<0.02	0.1 1	10 <0.1	3.85	24.4 2.77
<i>,</i> .	005044			005 0			0.00	0 00 T	0 0 001	- 40 -	4.64		0 10	0.00	1 5 10	5 E 14	01 070	0.00	000 -	0.00 4	005 0 454	1 07	10.0 0		16 64	0.1	<u></u>	0 E -0 0E	.0.00	0.2 0.030	0.10	0.1	00 -0.1	0.07	22.0.2.02
41 42		<0.2 2.21 <0.2 4.31																			005.0 451 251.8 954									0.2 0.030					33.2 2.02 65.1 9.37
	905812 905813	<0.2 4.31																			251.8 954 066.0 449									0.2 0.035					24.4 1.92
40	505010	NO.2 2.10	0.0	21.0	J.L \U.(5.00	2.00 /	0.1 0.0.0.	-0.0	1.00			0.00	1.0 20			Puge								0.2					00	5			

ECO TE		ATORY LTD.							1	CP CE	TIFICA	TE OF	ANALY	SIS AP	2010-	1203												New B	ridge C	apital i	Inc													
Et #.	Tag #	Ag Al ppm %	As ppm	Ba ppm	Be ppm		Ca %	Cd ppm	Ce ppm	Co ppm	Cr xpm p		Fe Gi % pp			K %	La ppm	Li ppm	Mg %	Mn ppm			Nb opm	Ni ppm	P ppm	Pb ppm	Rb ppm	s %	Sb ppm	Sc ppm	Se : opm p	Sn pm p	Sr pr p	Ta pm	Te ppm p	Th ' xpm '	п % р	TI ppm	U ppm p	V opm p	W opm	Y ppm	Zn ppm	Zr ppm
<u>QC DA</u> Repeat					· · · ·						-																											•						
1	905771	0.06 4.78		204.5		0.02	0.20			38.9		37.9 6				0.40	27.0	5.2	3.73	1132	0.63 0.			181.5		2.39	14.1	<0.02	0.04	9.3	1.1	1.8	505.0 <	0.05	0.08	2.1 0.	553	0.06	0.8	102 ·	<0.1	17.23	72.7	15.67
12	905782	0.08 4.29		201.0		< 0.02				41.2	18.0	37.0 7					26.5 26.5	5.0	3.72	1155	0.40 0.			207.4				<0.02	0.04	8.9				0.05	0.04	2.3 0.	•••	0.10	0.6	86		16.81		28.84
19 36	905789 905806	0.16 3.53				0.02 <0.02			56.04 4.16		07.5 85.5	38.3 6		.04. 72			20.5	4.2 15.0	3.29 8.48	1251 719	0.36 0.		0.52	180.2 537.1	795	3.21		<0.02	0.02	8.5	1.0				0.06 <0.02	2.3 0.		0.16	0.5 0.2	78 · 154 ·		17.61 4.19	68.8	39.31 4.68
Respit 1 36		0.04 4.72 0.06 3.81	1.6	211.0	0.9	0.02	3.14		57.74	35.6	01.5 98.0	31.6 €	6.75 14	.0 3. .8 2.	9 <5	0.40	25.5 1.5	5.7 16.2		1070 752	0.60 0. 0.34 0.	116	1.20	168.2			13.0	<0.02 0.12	0.04 0.64	8.6 4.9	1.0	1.7	197.0 <	0.05		2.1 0. 0.3 0.	548	0.06 0.16	0.9	90	<0.1		69.9	
Standa Pb129a Pb129a		11.78 0.81 11.60 0.82		00.0	<0.1 <0.1	0.40 0.42		57.15 59.0 9	9.09 9.38	5.0 5.1	11.0 1 11.5 1		1.55 2 1.58 2	.9 1. .7 1.	0 75 1 75	0.11 0.11	4.0 4.0	1.8 1.6	0.71 0.70	386 363			0.34 0.36	5.4 5.0	416 6 430 6	186.00	3.3 3.3	0.86 0.82	16.38 18.32	0.6 0.7	0.3 0.3	1.0 0.9	29.0 < 28.0 <		0.48 0.40	0.4 0. 0.4 0.		0.02 0.02	0.1 0.1			2.14 > 2.19 >		

Aqua Regla Digest/ICPMS Finish

NM/PS df/msr1201S XLS/10

ECO TECH LABORATORY LTD. Norman Monteith B.C. Certified Assayer

Page 2 of 2

CERTIFICATE OF ANALYSIS AK 2010-1204

New Bridge Capital Inc c/o 680 Dairy Road Kamloops, BC V2B 8N5

No. of samples received: 39 Sample Type: Core **Project: T-Allies Shipment #: 10-04** Submitted by: Adam Lyons

Cubinne	<i></i>	Au
ET #.	Tag #	(ppb)
1	905814	5
2	905815	<5
3	905816	5
4	905817	5
5	905818	5
6	905819	5
7	905820	5
8	905821	10
9	905822	5
10	905823	5
11	905824	925
12	905825	5
13	905826	<5
14	905827	10
15	905828	5
16	905829	5
17	905830	5
18	905831	5
19	905832	5
20	905833	5
21	905834	5
22	905835	10
23	905836	5
24	905837	5
25	905838	5
26	905839	5
27	905840	5
28	905841	20
29	905842	<5
30	905843	5
31	905844	5
All bases i	s under taken stolect to I	the Company's General Conditions of Business which a 5 available on
request. Regi	stered Office: Eco Tech Li	aboratory Ltd., 2953 Shuswap Road, Kamloops, BC V2H 159 Canada. Page 1 of 2

22-Dec-10

New Bridge Capital Inc AK10-1204

New Bri	dge Capital Inc	AK10-1204	22-Dec-10
		Au	
ET #.	Tag #	(ppb)	
33	905846	5	
34	905847	<5	
35	905848	5	
36	905849	920	
37	905850	5	
38	905851	<5	
39	905852	5	
QC DAT	A:		
Repeat:	,		
1	905814	5	
10	905823	5	
19	905832	5	
28	905841	20	
38	905851	5	
Resplit:	,		
1	905814	<5	
38	905851	5	
Standal	rd:		
OXF65		795	
OXE74		610	

FA Geochem/AA Finish

NM/PS XLS/10

ECO TECH LABORATORY LTD. Norman Monteith B.C. Certified Assayer

22-Dec-10 Stewart Group ECO TECH LABORATORY LTD. 10041 Dallas Drive KAMLOOPS, B.C. V2C 6T4

Phone: 250-573-5700 Fax : 250-573-4557 ICP CERTIFICATE OF ANALYSIS AK 2010-1204

New Bridge Capital Inc c/o 680 Dairy Road Kamloops, BC V2B 8N5

No. of samples received: 39 Sample Type: Core Project: T-Allies Shipment #: 10-04 Submitted by: Adam Lyons

Values in ppm unless otherwise reported

		Ag Al	As	Ba	Be B	l Ca	Cd	Се	co c	Cr C	u Fe	Ga	Ge Ho	к	La	LI	Ma	Mn	Mo Na	Nb	NI	P	Pb Rb	s	Sb	Sc Se	Sn	Sr Ta	Тө	Th	п	י וד	u v	w	v :	Zn Zr
Et #.	Tag #	ppm %	ppm	ppm p	opm pp	m %	ppm	ppm p	pm pp	pm pp	m %	ppm p	opm pp	b %	ppm	ppm	~~р	opm i	ppm %	ppm	ppm	ppm	ppm ppm	×	ppm	ppm ppn	n ppm	mag mag	ppm	ppm				••		pm ppm
1	905814	<0.2 3.05									8.1 4.81								0.11 0.07									108.5 < 0.0								46.8 2.10
2	905815	<0.2 2.84	17.6	379.0	<0.1 <0	.02 1.07	0.02	4.33	60.1 66	0.5 2	4.4 4.86	7.4	2.8 <	5 2.74	2.0	18.0	10.35	676	0.11 0.07	4 < 0.02	753.3	628						111.5 <0.0								48.1 2.33
3	905816	<0.2 1.44																	0.11 0.05									72.0 <0.0								23.8 1.36
4	905817	<0.2 1.63	4.9	405.5	0.1 <0	.02 1.67	0.04	2.66	77.5 35	59.5 4	4.8 4.93	4.3	2.5 <	5 1.02	2 1.0	16.8	14.14	978	0.11 0.04	7 <0.02	1157.0	414						112.5 < 0.0								32.5 2.29
5	905818	<0.2 1.72	6.4	310.5	0.1 <0	.02 2.44	0.04	2.96	79.2 51	4.0 4	2.4 5.22	4.5	2.6	5 1.05	5 1.5	15.1	13.35	948	0.22 0.05	4 < 0.02	1105.0	429						197.0 < 0.0								31.7 2.38
																									0.00			10110 40.0	-0.0	0.2	0.000	0.00	0.1 00	, 0.0 C		01.7 2.00
6	905819	<0.2 1.69	6.5	245.5	0.2 <0	.02 2.87	0.03	2.77	83.3 79	4.0 4	8.9 5.45	4.4	2.5 1	5 0.58	1.0	18.2	14.36 1	118	0.12 0.05	2 < 0.02	1123.0	388	4.20 21.6	5 0.06	0.44	11.0 <0.	1 0.2	174.5 <0.0	5 0.02	02	0.036	0.04 ~	0 1 92	0.2 4	1 22	34.4 1.95
7	905820	<0.2 1.87									2.4 5.36								0.25 0.05									271.0 < 0.0			0.026					33.5 1.35
8	905821	<0.2 1.73	2.2	518.5	0.1 <0	.02 0.83	0.04	4.19	74.4 43	35.0 3	81.6 4.94	4.5	2.5 1	0 0.59	2.0	15.1	13.99	844	0.16 0.04	9 < 0.02	1049.0	485	10.30 20.9													33.3 1.81
9	905822	0.3 1.51	28.0	51.0	<0.1 0	.02 0.98	0.02	3.22	77.2 59	3.5 3	9.4 4.71	4.1	2.2	5 0.35	5 1.5	21.3	13.46	860	0.12 0.05	5 < 0.02	1092.0	457						83.5 < 0.0								26.6 1.27
10	905823	<0.2 3.29	16.2	73.5	0.1 <0	.02 1.34	0.11	3.35	66.2 71	4.5 3	2.4 4.48	9.8	2.2 <	5 2.16	6 1.5	23.0	11.79		0.13 0.15									170.0 <0.0								41.3 1.62
																													0.01	0.2	0.010	0.00	0.2 00	. 0.1 0	5.20	41.0 1.02
11	905824	>30 0.70	1413.0	61.5	<0.1 31	.60 3.83	1.07	11.56	41.7 20	08.0 424	0.0 2.21	2.9	1.1 26	0 0.11	7.5	11.5	0.26	610 7	85.40 0.07	80.0	22.8	592	70.83 4.1	0.78	80.12	1.5 3.	6 1.4	140.5 <0.0	5 3.10	1.0	0.029	0.08	1.9 18	3 20.1	5 59	99.5 3.65
12	905825	<0.2 0.07	1.2	8.5	<0.1 <0	.02 0.01	<0.01	7.20	0.6	1.0	1.1 0.14	0.5	0.2 <	5 <0.01	3.5	7.5	0.02	16	1.20 0.02	6 0.02	1.3	60						3.0 < 0.0			0.003 <				0.63	3.0 0.63
13	905826	0.5 3.68	1.5 5	5324.0	<0.1 <0	.02 1.94	0.15	6.41	50.5 42	29.0 5	9.3 5.40	9.2	2.4 <	5 3.21	2.5	16.7	7.00	918	0.59 0.21	2 <0.02	401.6	680	11.10 90.4								0.137					74.5 6.40
14	905827	<0.2 3.20	4.6	250.5	0.2 <0	.02 4.73	0.60	5.83	56.0 57	74.0 15	0.6 5.29	8.8	2.3 <	5 2.39	2.5	21.3	8.88 1	1021	2.06 0.14	7 <0.02	573.1	584						606.5 < 0.0			0.176					58.8 6.55
15	905828	<0.2 2.27	7.4	106.5	<0.1 <0	.02 5.18	0.09	3.34	57.3 66	59.0 4	7.8 4.58	8.9	1.7 <	5 1.07	1.5	22.7	8.82	797	0.26 0.16	0 < 0.02	695.3	395						798.0 < 0.0								37.9 2.02
16	000010	<0.2 1.85	10.0	62.0	0.3 <0	.02 6.09	0.05	2.93	65.8 94	19.0 3	4.5 5.08	5.2	2.1 <	5 0.05	5 1.5	30.7	11.05	931	0.27 0.08	9 <0.02	827.0	356	4.51 1.8	3 0.02	0.18	11.7 0.	1 0.3	833.5 < 0.0	5 0.08	0.2	0.065 <	0.02 <	0.1 106	S <0.1 ₄	1.84	32.9 1.52
17	905830	0.2 1.74	3.1	274.5	0.1 <0	.02 0.98	0.03	2.70	71.8 34	18.5 4	6.3 4.39	3.8	2.1 <	5 0.75	5 1.5	15.1	12.63	920	0.31 0.04	8 <0.02	1019.4	401	5.09 22.6	6 < 0.02	0.26	5.2 <0.	1 0.1	82.0 <0.0	5 <0.02	0.2	0.027	0.04	0.1 74	I <0.1 €	3.00	32.8 1.81
18		<0.2 2.08	24.4	111.5	0.2 <0	.02 0.98	0.03	2.80	69.7 38	36.0 4	3.2 4.55	7.3	2.0 <	5 0.76	5 1.0	19.3	11.64	821	1.02 0.05	3 <0.02	926.8	414	3.79 25.9	0.02	0.62	5.7 <0.	1 0.2	88.5 <0.0	5 <0.02	0.2	0.049	0.04	0.1 82	2 0.1 3	3.84	37.2 2.69
19		<0.2 2.89				.02 3.54					7.8 4.90	8.3	2.0 <	5 1.23	3 2.0	24.4	4.94 1	1019	9.02 0.11	6 0.06	190.9	754	4.83 34.3	3 0.04	0.32	7.2 0.	2 0.3	508.5 < 0.0	5 0.08	0.3	0.260	0.08	0.2 128	0.2 9	9.82	59.5 11.82
20	905833	0.4 1.88	20.2	145.0	<0.1 <0	.02 1.26	0.03	2.76	74.4 36	55.0 5	3.5 4.82	4.6	2.1 <	5 0.46	5 1.5	22.4	12.99	872	0.48 0.05	8 <0.02	1026.0	407	5.52 16.9	0.02	0.30	5.2 <0.	1 0.1	88.0 <0.0	5 100.00	0.2	0.040	0.02	0.1 92	2 <0.1 3	3.40	34.1 2.16
21	905834	0.4 2.63				.02 2.22													0.41 0.07									100.0 <0.0								50.1 7.99
22		<0.2 2.53				.02 2.75					51.5 4.86								0.20 0.08									161.5 <0.0								54.1 7.67
23						.02 1.27					37.5 4.79								0.77 0.05									86.0 <0.0			0.032 <	0.02 <	0.1 92	2 <0.1 2	2.91	25.4 2.30
24		0.4 1.44				.02 1.30					9.0 5.23								0.14 0.04									110.5 <0.0			0.036			6 0.7 3	3.76	35.4 3.01
25	905838	<0.2 1.46	5.1	549.0	0.2 <0	.02 1.27	0.03	2.88	78.6 27	76.5 3	6.1 5.05	3.8	2.0 <	5 0.46	6 1.5	19.8	15.66	870	0.08 0.03	9 <0.02	1186.9	401	5.11 25.3	3 0.04	0.20	7.3 <0.	1 0.2	127.0 <0.0	5 <0.02	0.2	0.024	0.04 <	0.1 86	o <0.1 3	3.50	32.2 2.47
26	905839	0.0.1.05		150.0		~~ ~ ~~	0.05	0.70																												
20	905839 905840	<0.2 1.85				.02 2.77					89.9 5.39								0.43 0.04									197.0 <0.0			0.040					33.1 2.34
27	905840 905841	<0.2 2.09				.02 2.69					8.7 5.43								0.27 0.04									211.0 < 0.0			0.041					37.6 2.34
28	905842	<0.2 2.15 <0.2 1.59				.02 1.62					0.5 5.66								0.32 0.04									220.5 < 0.0			0.048					44.3 2.98
29 30		<0.2 1.59				.02 0.52					12.5 4.77 11.7 4.17								0.20 0.04		=							110.0 <0.0								35.3 2.01
30	505045	0.4 1.44	2.1	030.0	0.1 <0	.02 0.40	0.03	3.47	70.4 20	02.0 4	1.7 4.17	3.4	1.0 <	5 0.80	5 2.0	10.7	11.83	698	0.15 0.04	6 <0.02	1035.8	498	3.55 25.4	0.02	0.10	2.6 <0.	1 0.2	112.5 <0.0	5 0.02	0.3	0.017	0.02	0.2 76	S <0.1 2	2.27	29.8 1.52
31	905844	0.5 1.92	20	406 5	-01-0	.02 1.18	0.04	3.83	722 27	700 5	37 4 74	18	21	5 1 03	7 20	14 1	12.24	917	0.17 0.06	0 -0 00	1016 #	520	ane or o		0.00	.	4 0 4	170.0			0.007		~~			
32	905845	0.3 1.89				.02 3.52													0.17 0.06									170.0 < 0.0								36.0 2.54
33		<0.2 2.07				.02 3.32					5.3 5.31								0.29 0.06									255.0 <0.0			0.047					33.2 2.93
34		<0.2 2.99				.02 1.84					9.6 6.66								0.22 0.08									136.5 <0.0			0.061					40.0 8.00
35		<0.2 2.99									0.5 6.20								0.22 0.13									372.0 <0.0			0.461					70.2 25.32
	000010	S.L 1.50		. 02.0	5.7 <0		0.70	00.00	07.0 H	0.0 0		10.2	0.4	0.40	, 21.0	0.2	0.47	330	0.23 0.10	1 0.30	103.5	0/3	4.00 25.4	* <0.02	0.04	10.1 0.	o 1.4	727.5 <0.0	5 0.12	2.8	0.421	0.16	0.6 76	0 < 0.1 19	9.75	69.4 28.76
36	905849	>30 0.64	1405.9	66.5	0.2 31	40 3.81	1.08	11.26	44.7 20	6.5 429	4.5 2.18	27	10 25	5 0 11	75	10.0	0.22	605 7	82.45 0.07	0 0 10	21.0	586	67.72 3.9	1 0.80	80.06	15 2	7 1 2	141.5 20.0	5 0.06	10	0.000	0.00	1.8 18	100	0	97.7 3.81
37	905850	<0.2 0.06				.02 0.02													1.27 0.03			90	3.18 0.8								0.028			8 19.0 8 2 <0.1 0		
38	905851	<0.2 2.77																	0.82 0.18									303.5 <0.0			0.002 <					3.6 0.86 71.2 33.75
39		<0.2 2.64	1.3	186.0	0.9 <0	.02 1.94	0.12	50.32	36.0 12	27.5 3	5.0 6.29	9.5	3.3 <	5 0.34	23.5	8.4	3.56	710	0.54 0.17	7 0.58	203 1	918	5.68 18.8	3 <0.02	0.10	92 0	8 1.4	281 0 -0.0	5 0.04	2.0	0.007	0.10	10 00 10 1AC	0.120 2 -01 4-	7.40 7.60	65.5 31.71
																	2.00			. 0.00		5.0	5.00 10.0	0.0E	0.10	J.L U.	0 1.4	201.0 20.03		2.0	0.4/4	0.00	1.3 1440	o <∪.i [/	.00	05.5 31.71

ECO TECH LABO	RATORY LTD.									ICP CE	RTIFICA	TE OF	ANAL	YSIS	AK 201	0-1204												New E	Bridge	Capit	al Inc												
Et#. Tag#	Ag Al ppm %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cd ppm	Ce ppm	Co ppm	Cr ppm	Cu ppm	-	Ga (pm p	Gee H pm p		La ppr	LI n ppn	Mi n %	g Mn ppn			Nb ppm	NI ppm	P ppm	Pb ppm	Rb ppm	s %	Sb ppm	Sc ppm	Se ppm	Sn ppm	Sr ppn	Ta 1 ppm	Te ppm	Th ppm	11 %	TI ppm	U ppm	V ppm	W ppm	Y ppm	Zn ppm	Zr ppm
<u>QC DATA:</u> Repeat:																																											
1 905814 10 905823 19 905832 38 905851	<0.2 3.02 <0.2 3.19 <0.2 2.99 <0.2 2.75	16.0 3.3	70.5	<0.1		1.34 3.68	0.04 0.17 0.06 0.67	3.28 5.93	65.3 39.3	694.0 729.5 192.0 136.0	31.1 198.4	4.45 4.99	9.5 8.4	2.4 2.2 2.1 3.5	<5 3.1 <5 2.1 <5 1.1 <5 0.1	28 1. 11 1. 27 2. 34 26.	5 23 5 24	.3 11.	53 73 12 104	30 09	0.09 0.079 0.16 0.151 0.45 0.120 0.50 0.180	<0.02 0.04	769.7 928.1 196.9 184.9	393 790	4.03 4.73	2 89.9 3 67.4 3 35.1 9 20.1	0.02 0.02 0.04 <0.02	1.32 0.34	5.1 7.3	<0.1 0.2	0.2 0.3	2 167. 3 518.	5 <0.05 0 <0.05 0 <0.05 5 <0.05	0.02 0.04 0.06 0.06	0.2 0.3	0.068 0.050 0.266 0.555	0.08 0.08 0.08 0.10	0.2 0.1 0.2 0.6	66 132	0.1	3.80 3.24 10.08 20.02	41.3 59.2	2.05 1.61 12.04 31.11
Resplit: 1 905814 38 905851	<0.2 3.07 <0.2 2.80	26.7 1.3			<0.02 <0.02		0.03 0.67			690.0 140.5	50.5 29.8				<5 3.: <5 0.:			.39. .03.			0.10 0.078 0.46 0.189		756.5 193.8) 93.3 5 20.6							5 <0.05 0 <0.05	0.02 0.04		0.070 0.561	0.10 0.10			<0.1 <0.1	5.05 19.15		2.80 28.07
Standard: Pb129A Pb129A	11.9 0.82 11.8 0.82		64.5 66.0				57.10 57.54				1424.8 1432.2				75 0. 70 0.			.80. .30.	68 36 67 37		2.06 0.046 2.19 0.048		5.8 5.9		6159.70 6195.70			17.16 16.34					0 <0.05 5 <0.05	0.28 0.32		0.054 0.054	0.04 0.04		18 18) 2.29) 2.49

Aqua Regia Digest/ICPMS Finish

ECO TECH LABORATORY LTD. Norman Monteith B.C. Certified Assayer

NM/PS df/msr1204S XLS/10

CERTIFICATE OF ASSAY AK 2010-1278

New Bridge Capital Inc c/o 680 Dairy Road Kamloops, BC V2B 8N5

No. of samples received: 77 Sample Type: Sludge **Project: T-Allies** Submitted by: Leo Lindinger

			Au	Au	
	ET #.	Tag #	(g/t)	(oz/t)	
-	1	TA10-03 146-151	<0.03	<0.001	
	2	TA10-03 151-156	<0.03	<0.001	
	3	TA10-08 71-76	<0.03	<0.001	
	4	TA10-08 76-81	<0.03	<0.001	
	5	TA10-08 81-86	<0.03	<0.001	
	6	TA10-08 86-91	<0.03	<0.001	
	7	TA10-08 91-96	<0.03	<0.001	
	8	TA10-08 96-101	<0.03	<0.001	
	9	TA10-08 101-106	<0.03	<0.001	
	10	TA10-08 106-111	<0.03	<0.001	
	11	TA10-08 111-116	<0.03	<0.001	
	12	TA10-08 116-121	<0.03	<0.001	
	13	TA10-08 121-126	<0.03	<0.001	
	14	TA10-08 126-131	<0.03	<0.001	
	15	TA10-08 131-136	<0.03	<0.001	
	16	TA10-08 136-141	<0.03	<0.001	
	17	TA10-08 141-146	<0.03	<0.001	
	18	TA10-08 146-151	<0.03	<0.001	
	19	TA10-08 151-156	<0.03	<0.001	
	20	TA10-08 156-161	<0.03	<0.001	
	21	TA10-08 161-166	<0.03	<0.001	
	22	TA10-08 166-171	<0.03	<0.001	
	23	TA10-08 171-176	<0.03	<0.001	
	24	TA10-08 201-206	<0.03	<0.001	
	25	TA10-08 206-211	<0.03	<0.001	
	26	TA10-08 211-216	<0.03	<0.001	
	27	TA10-08 216-221	<0.03	<0.001	
	28	TA10-08 221-226	<0.03	<0.001	
	29	TA10-08 226-231	<0.03	<0.001	
	30	TA10-08 231-236	<0.03	<0.001	
	31	TA10-08 236-241	<0.03	<0.001	

Norman Monteith B.C. Certified Assayer

31-Dec-10

New Bridge Capital Inc AK10-1278

lew Dri	age capital life AK10-1270	A.,	۸.,	-
ET #.	Tag #	Au (g/t)	Au (oz/t)	
32	TA10-08 246-251	< 0.03	<0.001	<u></u>
33	TA10-08 251-256	<0.03	<0.001	
34	TA10-08 256-261	<0.03	<0.001	
35	TA10-08 261-266	<0.03	<0.001	
36	TA10-08 266-271	< 0.03	<0.001	
37	TA10-08 271-276	<0.03	<0.001	
38	TA10-08 276-281	<0.03	<0.001	
39	TA10-08 281-286	<0.03	<0.001	
40	TA10-08 286-291	<0.03	<0.001	
41	TA10-08 291-296	< 0.03	<0.001	
42	TA10-08 296-301	<0.03	<0.001	
43	TA10-08 301-306	<0.03	<0.001	
44	TA10-08 306-311	<0.03	<0.001	
45	TA10-08 311-316	<0.03	<0.001	
46	TA10-08 316-321	< 0.03	<0.001	
47	TA10-08 321-326	<0.03	<0.001	
48	TA10-08 326-331	<0.03	<0.001	
49	TA10-08 331-336	< 0.03	<0.001	
50	TA10-08 336-341	<0.03	<0.001	
51	TA10-08 341-346	<0.03	<0.001	
52	TA10-08 346-351	< 0.03	<0.001	
53	TA10-08 351-356	<0.03	<0.001	
54	TA10-08 356-361	<0.03	<0.001	
55	TA10-08 361-366	<0.03	<0.001	
56	TA10-08 366-371	<0.03	<0.001	
57	TA10-08 371-376	<0.03	<0.001	
58	TA10-08 376-381	<0.03	<0.001	
59	TA10-08 381-386	<0.03	<0.001	
60	TA10-08 386-391	<0.03	<0.001	
61	TA10-08 391-401	<0.03	<0.001	
62	TA10-08 401-411	<0.03	<0.001	
63	TA10-08 411-416	<0.03	<0.001	
64	TA10-08 416-421	<0.03	<0.001	
65	TA10-08 421-426	<0.03	<0.001	
66	TA10-08 426-431	<0.03	<0.001	
67	TA10-08 431-436	<0.03	<0.001	
68	TA10-08 436-441	<0.03	<0.001	
69	TA10-08 441-446	<0.03	<0.001	
70	TA10-08 461-466	<0.03	<0.001	
71	TA10-08 466-471	<0.03	<0.001	
72	TA10-08 471-476	<0.03	<0.001	
73	TA10-08 476-481	<0.03	<0.001	
74	TA10-08 481-486	<0.03	<0.001	
75	TA10-08 486-491	<0.03	<0.001	E
76	TA10-08 491-496	<0.03	<0.001	Ν
77	TA10-08 496-501	< 0.03	<0.001	E

31-Dec-10

CO TECH LABORATORY LTD.

Norman Monteith B.C. Certified Assayer

New Bridge Capital Inc AK10-1278

31-Dec-10

	loge Capital Inc AK 10-12/0			
	•	Au	Au	
ET #.	Tag #	(g/t)	(oz/t)	
QC DAT	[A:			
Repeat	:			
.1	TA10-03 146-151	<0.03	<0.001	
10	TA10-08 106-111	<0.03	<0.001	
19	TA10-08 151-156	<0.03	<0.001	
36	TA10-08 266-271	<0.03	<0.001	
45	TA10-08 311-316	<0.03	<0.001	
54	TA10-08 356-361	<0.03	<0.001	
71	TA10-08 466-471	<0.03	<0.001	
Resplit			0.001	
1	TA10-03 146-151	<0.03	<0.001	
36	TA10-08 266-271	<0.03	<0.001	
71	TA10-08 466-471	<0.03	<0.001	
.				
Standa	ra:	1.85	0.054	
OX167				
OXK7		3.55	0.104	
OXI67		1.86	0.054	

FA/AA Finish

ECÔ TECH LABORATORY LTD. Norman Monteith B.C. Certified Assayer

NM/PS XLS/10 04-Jan-11

Stewart Group ECO TECH LABORATORY LTD. 10041 Dallas Drive KAMLOOPS, B.C. V2C 6T4

Phone: 250-573-5700 Fax : 250-573-4557 ICP CERTIFICATE OF ANALYSIS AK 2010-1278

New Bridge Capital Inc c/o 680 Dairy Road Kamłoops, BC V2B 8N5

No. of samples received: 77 Sample Type: Sludge **Project: T-Allies** Submitted by: Leo Lindinger

Values in ppm unless otherwise reported

		Ag Al	As	Ва	Be	BI Ca	Cd	Се	Co Cr	Cu Fe	Ga	Ge	Ho K	La	LI M	a Mn	Mo Na	Nh	Ni	Р	Pb	Rh	۰ د	th Sc	Sa	5n 6r	та	То	Th Ti	TI 11		W	-
Et #.	Tag #	ppm %	, ppm	ı ppm r	ppm	ppm %	ppm	ppm	ppm ppm	ppm %	ppm	ppm p	npb %	ppm p	opm %	6 ppm	ppm %	pom	ppm		nom i	no	% pr	,	u nomi i		1a 00m	nnm r	0000 % r	0 00	v n nnm	W Y	Zn Zr ppm ppm
1	TA10-03 146-151	0.3 2.1	3 1.6	6 576.5	0.1 •	<0.02 0.71	0.06	4.33	80.3 542.0	80.8 6.14	4.6	2.5	5 1.30	2.0	19.7 16.	.14 955	6.37 0.065	< 0.02	1207.0	603	5.13	36.3	0.02 0	12 10.0) 01	0.8 222 5	<0.05	0.04	0.3 0.050	0.10 0	1 129	5.2 4.14	60.3 4.40
2	TA10-03 151-156	0.2 2.2	.3 1.5	582.0 ز	0.2	<0.02 0.66	0.04 ز	3.68	81.9 487.0	76.0 6.02	2 4.6	2.2	5 1.30	1.5	19.3 16.	.17 1016	7.16 0.065	< 0.02	1269.0	589	4.63	36.1	0.02 0	.14 10.	< 0.1	0.7 219.5	<0.05	0.02	0.2 0.038	0.10 0.	1 120	30 385	54.5 3.62
3	TA10-08 71-76	0.1 1.7	5 6.4	4 145.0	0.3 •	<0.02 2.54	4 0.11	15.37	59.0 463.0	54.0 5.49	5.0	2.1	30 0.30	7.0	11.5 8.	.51 860	4.38 0.125	0.08	670.6	912	3.38	9.9	0.04 0	.24 4.0	3 0.2	0.7 242.0	<0.05	0.04	0.6 0.194	0.06 0.	2 98	38 7 07	51.9 11.19
4	TA10-08 76-81	0.1 1.8	2 6.5	i 191.0	0.3	<0.02 2.58	0.10	17.22	51.9 478.5	57.6 5.39	5.3	2.2	90 0.28	7.5	10.8 7.	.72 904	3.58 0.115	0.14	609.3	884	4.48	10.2	0.04 0	.28 5.	7 0.2	0.7 248.5	<0.05	< 0.02	0.7 0.210	0.06 0.	3 100	54 761	55.2 11.17
5	TA10-08 81-86	0.1 1.8	7 6.1	185.5	0.4	<0.02 2.58	1 0.10	18.34	53.9 490.5	61.9 5.94	5.4	2.2	85 0.29	8.0	10.3 7.	.80 923	2.94 0.120	0.10	603.7	974	3.89	9.9	0.04 0	.28 5.	0.3	0.7 229.5	< 0.05	<0.02	0.8 0.248	0.06 0.	2 106	5.9 7.78	58.2 13.91
																																0.0 1.10	00.L 10.01
-	TA10-08 86-91	0.1 1.7	5 5.7	154.0	0.2	5.00 2.37	0.08	12.87	56.7 493.5	72.6 5.92	2 4.8	2.0	25 0.37	5.5	10.5 8	.64 882	5.35 0.097	0.06	681.9	801	4.71	11.5	0.04 0	.30 4.9	0.2	1.1 208.0	<0.05	0.02	0.5 0.186	0.06 0.	2 98	3.8 6.31	48.9 10.71
7	TA10-08 91-96								55.1 454.5	68.8 5.64	5.0	2.0	215 0.36	6.5	10.6 8	.38 880	3.38 0.105	0.10	661.3	829	282.10	12.0	0.04 0	.56 5.2	2 0.2	1.8 194.5	<0.05	<0.02	0.7 0.199	0.06 0.	2 98	4.1 6.75	57.0 12.17
8 9	TA10-08 96-101								55.1 425.0								1.90 0.090				3.33	12.4	0.02 0	.22 4.	6 0. 1	0.5 200.0	<0.05	0.02	0.4 0.144	0.04 0.	2 92	1.8 5.60	41.0 9.21
-	TA10-08 101-106										3 4.6	2.0	10 0.40	5.0	10.1 9.	.72 833	4.71 0.095	0.04	759.1	764	3.15	12.2	0.02 0	.22 5.0	0.2	0.5 193.0	<0.05	0.02	0.5 0.159	0.04 0.	2 98	1.4 5.98	46.1 10.07
10	TA10-08 106-111	0.1 1.0	0 4.4	, 99.5	0.2	<0.02 2.08	, 0.05	11.96	59.7 437.5	52.2 5.81	4.8	2.0	15 0.42	5.5	10.6 10	.15 821	4.36 0.094	0.06	801.8	743	3.18	13.1	0.02 0	.20 5.	0.1	0.5 193.0	<0.05	<0.02	0.5 0.154	0.04 0.	2 102	1.8 5.98	46.8 9.50
11	TA10-08 111-116	0116	a 50	a 91 n	0.2	~0.02.2.08	3 0 10	7 83	72 5 607 5	59.0 6 11		20	10 0 47	25	160 10	40 040	2.75 0.076		1000.0		0.00												
	TA10-08 116-121										2 4 8	2.0	10 0.47	4.0	17 4 14	50 10/1	4 66 0.090	0.02	1175.0	5/4 640	3.96	14.7	0.02 0	.22 7.1	> <0.1	0.5 214.5	<0.05	<0.02	0.3 0.102	0.04 0.	1 98	1.9 4.72	48.1 6.67
13	TA10-08 121-126	0.2 1.6	5 5.0) 118.5	0.1	<0.02 1.52	2 0.07	6.50	69.9 417.5	55 1 5 27	7 36	18	10 0.34	3.0	13.4 12	83 823	4.53 0.073				3.32	20.0	0.02 0	20 8.	0.1	0.4 235.5	<0.05	0.02	0.4 0.116 0.3 0.059	0.04 0.	2 110	2.5 5.30	48.7 7.35
14	TA10-08 126-131	0.1 1.7	2 5.5	5 234.5	0.1	<0.02 1.51	0.06	5.65	71.6 489.0	51.4 5.41	3.7	1.8	10 0.73	2.5	12.0 13	46 848	5.17 0.074				207	20.0 <	0.02 0	20 0.	0 < 0.1	0.0 160.0	<0.05	<0.02	0.3 0.059	0.04 0.	1 88	3.1 3.89	42.1 4.64
15	TA10-08 131-136	0.1 1.7	2 5.8	3 142.5	0.1	<0.02 1.77	0.06	7.22	68.8 531.0	53.9 5.78	4.0	1.9	10 0.59	3.0	13.2 12	.53 871	7.90 0.083	0.02	1014.0	559									0.2 0.057				40.7 4.18 40.8 5.35
																							0.02 0			0.0 107.0	NO.00	0.02	0.0 0.075	0.04 0.	1 92	3.4 4.42	40.8 5.35
16	TA10-08 136-141	<0.1 1.7	2 5.6	i 112.0	0.2	<0.02 1.79	0.06	7.37	66.5 617.0	51.0 6.06	5 4.2	1.9	10 0.49	3.0	12.1 11.	.95 877	9.19 0.086	0.02	963.3	540	2.56	14.4	0.02 0	.20 5.9	€ <0.1	0.6 189.0	< 0.05	<0.02	0.3 0.097	0.04 0	1 96	24 454	44.0 5.87
17	TA10-08 141-146	0.1 1.6	3 5.9	9 120.0	0.2 ·	<0.02 2.39	9 0.07	7.48	61.4 610.5	49.2 5.53	8 4.0	1.7	10 0.45	3.5	12.3 10.	.80 857	3.38 0.088	0.02	868.1	548	2.52	13.2	0.04 0	.24 6.3	3 < 0.1	0.4 210.5	< 0.05	<0.02	0.3 0.108	0.04 0.	1 94	23 4 62	43.6 6.88
18	TA10-08 146-151	0.1 1.8	7 5.5	5 137.0	0.2	<0.02 2.31	0.07	9.81	65.8 508.5	53.8 5.84	4.8	1.8	10 0.62	4.5	13.7 11.	.04 914	4.47 0.104	0.02	872.7	716	2.81	17.7	0.04 0	.24 7.2	2 0.1	0.5 211.5	< 0.05	0.02	0.4 0.151	0.04 0.	2 106	66 601	48.4 9.22
19	TA10-08 151-156	0.1 2.0	8 5.3	3 621.0	<0.1	<0.02 2.64	0.10	8.8 9	61.5 638.5	61.9 6.35	5 5.5	1.9	15 0.82	4.0	13.9 10.	.79 993	7.77 0.103	0.04	815.0	657	4.25	21.9	0.04 0	.32 6.8	3 <0.1	0.6 260.5	< 0.05	<0.02	0.4 0.147	0.06 0.	2 112	14.3 6.30	57.6 9.23
20	TA10-08 156-161	<0.1 1.9	9 4.8	J 558.5 ·	<0.1	<0.02 2.17	0.08	7.22	65.4 625.0	58.1 6.02	2 4.7	1.7	10 0.76	3.0	12.5 11.	.94 922	5.88 0.090	< 0.02	887.8	613	4.23	19.6	0.04 0	.24 6.4	<0.1	0.4 232.5	<0.05	<0.02	0.3 0.111	0.04 0.	2 106	7.2 5.08	50.8 7.08
01	TA10.00 101 100	0 4 4 0		0.005.0	~ ~	0.00.0.46																											
21 22	TA10-08 161-166 TA10-08 166-171	<0.1 1.0	5 4.3	3 235.0	0.3	<0.02 2.10	0.11	8.93	63.4 496.0	57.5 5.59	4.5	1.7	10 0.57	4.0	12.0 11.	.57 865					2.95	15.2	0.02 0	.24 6.2	2 0.2	0.5 207.5	<0.05	<0.02	0.4 0.106	0.04 0.1	2 98	4.6 5.00	48.8 7.50
23	TA10-08 171-176	<0.1 1.0	0 3.9	297.0	0.2 •	<0.02 1.00	> 0.07	5.72 E E 0	03.7 433.0 70 F 444 F	53.0 5.04	3.6	1.6	10 0.66	2.5	11.7 11.	.76 769	2.06 0.067	<0.02	895.3	522	3.43	17.0	0.02 0	.16 5.	5 <0.1	0.4 191.0	<0.05	<0.02	0.3 0.062	0.04 0.	1 90	3.8 3.64	41.7 4.39
24	TA10-08 201-206	0119	5 52	23665	0.2	~0.02 1.50	3 0.00	6.97	70.5 444.5 69.4 567.5	607591	4.0	1.0	10 0.72	2.5	13.5 13.	.24 845	2.85 0.068	< 0.02	1018.0	537	3.13	18.9	0.02 0	.18 5.9	€ <0.1	0.4 218.0	<0.05	<0.02	0.3 0.054	0.04 0.	1 96	6.9 3.81	44.8 4.09
25	TA10-08 206-211	<0.1 1.7	9 5 2	3 343 5	0.1	<0.02 2.01	0.00	6.38	60.8 497.0	574 5 20	4.5	1.0	10 0.00	3.0	110 11	10 802	3.00 0.080	<0.02	900.0	000	3.73	18.1	0.04 0	.24 6.3	3 <0.1	0.5 215.5	<0.05	<0.02	0.3 0.090	0.04 0.1	2 102	3.9 4.52	47.9 5.93
			0.0	0.010	0.1	-0.02 2.01	0.00	0.00	00.0 407.0	07.4 0.20		1.0	10 0.33	5.0	11.3 11.	.10 002	2.00 0.070	<0.02	042.0	313	3.00	15.9	0.02 0	.22 5.0	> <0.1	0.5 194.5	<0.05	<0.02	0.3 0.082	0.04 0.	1 92	5.2 4.29	43.5 5.53
26	TA10-08 211-216	<0.1 1.8	5 5.5	5 374.0	0.2	<0.02 2.07	0.10	6.01	63.3 546.5	62.6 5.42	4.1	1.6	10 0.65	2.5	12.3 11.	.67 827	2.56 0.080	<0.02	892.0	514	4 35	174	0.02 0	22 50	-01	0 / 199 5	~0.05	-0.02	0.3 0.079	0.04 0	1 00	0.5 4 17	43.6 5.06
27	TA10-08 216-221	0.1 1.8	2 5.3	3 444.0	0.2 •	<0.02 2.10	0.09	5.56	63.2 464.0	55.4 5.02	4.0	1.5	5 0.70	2.5	13.2 11.	.29 803	1.27 0.091				3.25	18.0	0.04 0	20 5.6	3 <0.1	0.2 205.0	<0.05	<0.02	0.3 0.079	0.04 0. 0.04 0.	1 90	3.5 4.17	43.6 5.06 37.2 4.67
28	TA10-08 221-226	<0.1 1.6	7 4.4	452.0	0.1	<0.02 1.78	0.11	4.72	57.2 508.5	51.9 5.12	3.7	1.5	15 0.59	2.0	11.0 10.	.26 754	6.70 0.072				3.21	14.6	0.04 0	.30 4.8	3 < 0.1	0.5 171.0	<0.05	<0.02	0.2 0.076	0.04 0. 0.02 n	1 82	50 367	39.4 4.64
29	TA10-08 226-231	0.1 1.9	9 5.0) 350.0	0.1	<0.02 2.04	, 0.15	5.03	70.1 558.5	61.6 6.18	4.5	1.8	15 0.66	2.5	14.1 13.	.36 923	8.19 0.076	<0.02	1025.0	484	3.89	16.5	0.02 0	.30 5.9	€ <0.1	0.5 199.0	<0.05	<0.02	0.3 0.075	0.04 0.	1 96	29 399	42.6 4.20
30	TA10-08 231-236	0.1 1.9	4 4.9) 252.0	0.1	<0.02 1.97	0.16	5.18	71.7 557.0	82.3 6.06	6 4.4	1.7	20 0.58	2.5	13.4 13.	.27 910	6.64 0.073	<0.02	1035.0	488	5.73	14.9	0.02 0	.30 6.1	<0.1	0.9 193.5	< 0.05	<0.02	0.3 0.081	0.04 0.	1 96	19.1 3.98	55.5 4.69
0.4	TA10 00 000 044					0.00 4.74		4.05																									
31 32	TA10-08 236-241 TA10-08 246-251	<0.1 1.6	∠ 4.2 ⊛ c.1	245.5	0.1	<0.02 1.70	0.24	4.30	60.5 608.5	66.3 5.44	3.6	1.6	15 0.52	2.0	10.9 11.	23 802	5.92 0.076	<0.02	877.1	440	3.62	12.9	0.02 0	.28 5.5	5 <0.1	0.7 169.5	<0.05	<0.02	0.2 0.079	0.02 0.	1 86	9.7 3.47	47.9 4.37
33	TA10-08 246-251 TA10-08 251-256																5.03 0.083				4.21	14.2	0.38 0	.32 5.7	<0.1	0.6 219.0	<0.05	<0.02	0.3 0.102	0.02 0.	1 102	6.6 4.56	53.5 6.38
34	TA10-08 256-261									58.7 5.69 89.8 5.22							1.06 0.100				2.65	15.5	0.06 0	.16 6.3	3 0.1	0.3 228.5	<0.05	0.02	0.4 0.117	0.02 0.3	2 102	0.3 5.62	46.2 4.80
35	TA10-08 261-266																4.63 0.089				3.10	13.1	0.04 0	.26 4.9	0.1	0.9 170.0	<0.05	<0.02	0.2 0.087	0.02 0.	1 86	22.9 3.88	51.9 4.84
	11110 00 201 200	NO.1 1.0	5 4.0	201.0		-0.02 1.03	0.03	4.07	30.0 403.5	30.2 4.71	3.3	1.5	10 0.44	2.0	10.3 9.	.04 708	6.49 0.070	<0.02	683.4	410	3.23	11.0 <	0.02 0	.26 4.1	<0.1	0.7 152.0	<0.05	<0.02	0.2 0.072	0.02 0.	1 72	9.2 3.25	38.0 4.21
36	TA10-08 266-271	0.1 1.8	8 4.4	291.5	0.2	<0.02 2.33	0.05	4.53	58.7 451.0	58.9 4.95	3.7	1.4	15 0 57	20	12.3 10	81 784	2 18 0 080	0.02	887.2	108	3.54	122	0.04 0	20 F	-0.1	0.4.010.0	-0 AF	.0.00	0.0.0075				
37	TA10-08 271-276	0.1 1.7	2 4.4	228.0	0.2	<0.02 2.50	0.08	8.87	60.6 373.5	49,1 4,99	4.3	1.4	5 0.45	4.0	10.9 9	.90 811	2.10 0.003	0.02	767.2	450	2.35	123 1	0.04 0	.22 D.0	0.1	0.4 212.0	<0.05	<0.02	0.2 0.075 (0.4 0.136 (J.02 0.1	1 84	2.8 3.72	45.4 4.11
38	TA10-08 276-281	1.6 1.6	9 5.0	268.0	0.2 -	<0.02 2.55	5 0.09	7.21	59.1 454.5	71.0 5.77	4.1	1.6	15 0.46	3.0	10.8 9.	68 903	9.84 0.114	<0.02	741.7	627	2.83	12.1	0.04 0	36 56	-01	10.200.0	<0.05	0.02 ∽0.02	0.3 0.136	0.02 0.1	∠ 88 1 00	0.3 5.45	41.3 8.46
39	TA10-08 281-286	0.1 1.9	2 4.9	9 246.0	0.2 -	<0.02 2.94	80.0	9.94	63.1 436.0	67.0 5.60	5.0	1.6	10 0.46	4.5	11.4 10.	30 897	3.88 0.133	<0.02	783.8	771	2.89	12.3 (0.04 0	.30 5 9	0.1	04 230 0	~0.03	0.02	0.3 0.124 (0.02 0. 0.02 0.	2 100	3.2 4.93	40.7 7.31 49.1 9.67
40	TA10-08 286-291	0.4 1.6	6 4.7	264.0	0.2 ·	<0.02 2.29	0.08	7.19	53.6 527.5	82.3 6.33	4.4	1.7	10 0.46	3.0	10.3 8.	30 875	12.87 0.106	< 0.02	616.9	653	3.17	11.9	0.04 0	.50 5.3	<0.1	1.3 179.0	<0.05	<0.02	0.3 0.134	102 0.	1 04	2.3 0.13	49.1 9.67
																	e 1 of 3										-0.00	10.0L	0.0 0.104		: 34	10.0 4.00	4/./ /.08

ECO TE	CH LABORATORY							CATE OF AN												Ne	w Bridg	je Cap	ital Inc										
		Ag Al	As Ba	Be Bi Ca	Cd	Ce C	>o Cr	Cu Fe	Ga	Gee ⊢	lg K	La	Li Mg	Mn	Mo Na	Nb	Ni		Pb I	Rb	s s	b Se	c Se	Sn Sr	Та	Te	Th Ti	TI	υV	/ w	Y	Zn	Zr
<u> </u>	Tag #	ppm %	ppm ppm	ppm ppm %	ppm	ppm p	pm ppm	ppm %	ppm p	xpm p	pb %	ppm p	pm %	ppm	ppm %	ppm	ppm j	ppm	ppm p	pm '	% pp	m pp	m ppm	ppm ppn	n ppm	ppm	ppm %	ppm (opm pp	m ppm	n ppm	ppm r	ipm (
	TA10-08 291-296	3.7 1.81	5.3 360.0	0.3 < 0.02 2.04	3 0.10	10.65 5	2.5 519.0	70.6 5.30	4.6	1.5 1	00 0.44	4.5 1	2.0 8.80	832	2.71 0.10	5 0.06	662.7	702	4.00 1	12.6 (0.04 0.	.32 5	.9 0.1	0.7 179	.5 <0.05	<0.02	0.5 0.155	0.04	0.2	98 5.	1 5.70	50.7	
	TA10-08 296-301														3.57 0.10	5 0.04	701.7	733	6.75 1	12.6 (0.04 0.	.44 5	.7 0.1	1.0 183	.5 <0.05	<0.02	0.5 0.162	2 0.04	0.2	98 4.2	2 5.86	51.1 1	0.14
	TA10-08 301-306																		4.95 1	11.7 0	0.04 0.	.32 6	.0 0.2	1.0 187	.0 <0.05	<0.02	0.8 0.207	0.04	0.3 1	04 11.8	8 7.28	57.1 1	2.79
44	TA10-08 306-311														6.91 0.10	0.04	621.8	687									0.5 0.165					68.9	9.89
45	TA10-08 311-316	0.1 1.77	5.3 394.5	0.3 <0.02 2.3	1 0.12	10.36 5	1.4 656.5	110.3 6.00	4.7	1.7	85 0.45	4.5 1	0.5 8.17	869	5.43 0.10	8 0.04	612.8	702	3.82 1	12.2 (0.04 0.	.36 6	.2 0.1	0.9 192	.5 <0.05	<0.02	0.5 0.168	0.04	0.2 1	08 10.3	7 5.90	58.6 1	1.05
																																	/
46	TA10-08 316-321																										0.4 0.132					53.6	
47 48	TA10-08 321-326																										0.3 0.122		÷			58.9	
	TA10-08 326-331																										0.3 0.098					54.4	
49 50	TA10-08 331-336																										0.3 0.085					52.4	
50	TA10-08 336-341	0.2 1.65	6.1 326.0	0.2 <0.02 2.5	5 0.07	6.07 6	7.4 812.0	94.5 6.67	4.5	1.7	80 0.53	2.5	14.0 11.75	960	11.16 0.09	97 <0.02	901.3	533	3.54 1	14.1 (0.04 0.	.32 6	5.9 <0.1	0.9 232	.5 <0.05	<0.02	0.3 0.096	0.02	0.1 1	06 14.	5 4.43	54.6	5.6 3
51	TA10-08 341-346	<0.1 1.90	6.3 315.5	0.1 < 0.02 2.4	6 0 06	6467	1 0 589 5	58.0 5.59	44	15	10 0 64	30 1	4 9 12 76	908	2.29 0.12	20 20 02	081 0	583	296 1	166 (0.04 0	7 90	0 -01	03 220	0 -0.05	~0.02	0.3 0.093	2 0 04	01 1	02 01	0 4 57	44.8	E E 1
52	TA10-08 346-351	0.1 1.84	5.5 332.0	<0.1 <0.02 2.4	5 0.05	6.57 6	6.6 595.5	57.9 5.65	4.1	1.5	20 0.62	3.0	13.6 12.14	892													0.3 0.093					44.8 45.5	
53	TA10-08 351-356																										0.3 0.068					45.5	
54	TA10-08 356-361																										0.2 0.066					46.7	
55	TA10-08 361-366																										0.4 0.107					46.6	
																										40.02	0.1 0.107	0.01	0.1 1		. 4.01	40.0	1.00
56	TA10-08 366-371	0.1 1.85	5.1 173.5	0.4 <0.02 1.9	7 0.10	4.50 6	3.9 731.0	67.5 6.03	4.2	1.6	15 0.54	2.0 1	14.6 12.69	887	7.20 0.09	4 <0.02	957.6	476	3.00 1	13.8 (0.02 0	.34 6	6.6 <0.1	0.9 215	.0 <0.05	<0.02	0.2 0.067	/ 0.02	0.1	98 11.	1 3.54	52.4	3.81
57	TA10-08 371-376														8.03 0.10	0.02 <0.02	925.7	470	3.31 1	15.6 (0.02 0	.32 6	6.7 <0.1	0.6 228	.0 <0.05	<0.02	0.2 0.067	/ 0.04	0.1	96 8.	0 3.65	50.0	
58	TA10-08 376-381														5.57 0.09	97 <0.02	970.9	431									0.2 0.060					50.5	3.18
59	TA10-08 381-386														6.27 0.09	97 <0.02	1000.0	445	2.83 1	13.8 (0.02 0	.24 6	6.7 <0.1	0.8 219	.0 <0.05	< 0.02	0.2 0.061	0.02	0.1 1	00 9.1	7 3.53	49.4	3.30
60	TA10-08 386-391	0.1 1.75	5.0 194.5	0.1 <0.02 2.2	4 0.11	4.37 6	63.7 637.0	53.7 5.22	3.8	1.5	10 0.55	2.0	14.7 12.47	840	3.84 0.08	39 <0.02	942.6	439									0.2 0.058					42.5	3.51
																																	/
61	TA10-08 391-401																										0.3 0.079					43.7	4.69
62 63	TA10-08 401-411																		4.00 1	17.4 (0.06 0	.26 6	5.6 <0.1	0.6 244	.0 <0.05	< 0.02	0.3 0.084	0.02	0.1 1	02 5.0	6 4.18	47.7	4.86
63 64	TA10-08 411-416																										0.3 0.077					43.1	
65	TA10-08 416-421																										0.4 0.099					54.4	
05	TA10-08 421-426	0.5 1.63	6.4 317.0	0.3 <0.02 2.2	/ 0.12	8.70 6	01.1 714.0	69.9 5.78	4.4	1.6 1	55 0.47	4.0	14.4 10.83	914	6.89 0.09	95 0.02	821.7	572	3.83 1	13.3 (0.04 0	.32 6	5.8 <0.1	0.6 209	.5 <0.05	0.02	0.4 0.109	0.04	0.2	98 3.	3 4.88	52.8	3.77
66	TA10-08 426-431	0.1 1.78	6.1 300.0	0.1 <0.02 24	1 0.08	8 07 5	98 716 5	678 562	44	15 1	15 0 47	35	126 11 07	892	4 92 0 00	24 -0.02	835.4	582	4 13 1	132 (0.04 0	29 6	5 -0 1	0 4 212	0 -0.05	-0.02	0.4 0.101	1 0.04	0.0	<u>.</u>	7 4 70	51.1	0.00
67	TA10-08 431-436	<0.1 1.85	4.5 272.5	0.1 < 0.02 1.9	8 0.06	4.05 6	6.8 769.5	55.8 5.48	4.1	14	35 0 53	20	13.6 13.43	902	3 07 0 07	72 20.02	1002.0	423									0.2 0.057					51.1 44.6	
68	TA10-08 436-441	0.1 1.90	5.1 296.5	0.2 < 0.02 2.1	2 0.05	3.64 6	7.2 764.5	61 2 5 69	42	14	15 0.55	1.5	14.4 13.67	884	4.38 0.07												0.2 0.053					44.6 43.2	
69	TA10-08 441-446														3.57 0.06				2.84 1	14.3 <	0.02 0	16 6	3 <01	0.3 185	0 <0.05		0.2 0.030	3 0.02	0.1 1	02 1.	9 3 04	43.2	
70	TA10-08 461-466	0.1 1.97	7.4 203.0	0.1 <0.02 2.4	8 0.05	4.42 6	6.6 769.0								7.37 0.11				3.49	16.0 (0.02 0	.26 7	.6 <0.1	0.9 237	5 <0.05	<0.02	0.2 0.040	1 0.02	0.1 1	04 6	2 3 74	48.8	
																								0.0 207			0.2 0.001	0.04	0.1 ,	04 0.	2 0.74	40.0	1.50
	TA10-08 466-471	0.1 1.81	6.4 242.5	0.1 <0.02 2.3	6 0.04	4.64 6	4.6 643.0	55.9 5.51	4.0	1.5	10 0.60	2.0	15.8 12.37	873	3.43 0.11	11 0.02	932.4	471	3.12	16.5 (0.04 0	.32 6	5.8 <0.1	0.4 229	.5 <0.05	< 0.02	0.2 0.054	1 0.02	0.1	96 2.	1 3.66	41.4	3.83
72	TA10-08 471-476														2.79 0.12	23 < 0.02	1011.0	532	3.88	19.1 (0.06 0	.30 7	7.5 <0.1	0.2 272	.0 <0.05	< 0.02	0.3 0.062	2 0.04	0.1 1	02 1.4	4 4.11	42.3	4.16
73	TA10-08 476-481														2.76 0.11				4.75 1	16.9 (0.06 0	.32 6	6.5 <0.1	0.2 243	.5 <0.05	< 0.02	0.2 0.059	9 0.04	0.1	92 0.1	7 3.72	40.3	3.99
	TA10-08 481-486															28 <0.02	977.5	504	3.91 1	17.9 (0.06 0	.40 €	5.8 <0.1	0.3 262	.5 <0.05	<0.02	0.3 0.058	3 0.04	0.1	96 1.4	4 3.92	42.8	3.9
75	TA10-08 486-491	<0.1 1.83	6.2 307.0	0.1 <0.02 2.6	0 0.08	4.55 6	69.1 626.5	53.9 5.36	3.9	1.4	10 0.66	2.0	15.1 12.52	904	3.56 0.12	23 <0.02	945.0	477									0.2 0.059					41.7	3.9
76	TA10-08 491-496	-01191	57 171 0	0.2 -0.02 2 1	1 0.07	4 55 G	E 6 761 0	54 5 6 04	4.0	16	10.050	<u> </u>	EE 11 70	0.07	10.44 0.45		005.0	440	0.05					. .									I
	TA10-08 496-501																										0.2 0.066					47.5	
					- 0.00			0.10			.0 0.04	2.0		010	10.04 0.10	.0.02	373 .V	וסד	0.00	1-1.0 (0.20 0	.20 /	.u <u.1< th=""><th>0.0 223</th><th> <0.05</th><th><0.02</th><th>0.3 0.067</th><th>0.00</th><th>0.1 1</th><th>∪∠ 7.1</th><th>≤ 3.54</th><th>52.0</th><th>r.4Z</th></u.1<>	0.0 223	<0.05	<0.02	0.3 0.067	0.00	0.1 1	∪∠ 7.1	≤ 3.54	52.0	r.4Z
OC DAT																																	

Repeat:

1 TA10-03 146-151 0.4 2.13 1.4 566.5 0.3 <0.02 0.70 0.05 4.22 76.3 537.0 78.5 6.10 4.3 2.0 10 1.25 2.0 20.0 15.76 947 6.97 0.063 <0.02 1191.0 591 4.99 33.6 0.02 0.10 9.3 <0.1 0.6 224.5 <0.05 <0.02 0.2 0.046 0.06 0.1 122 5.1 3.99 59.4 4.34 10 TA10-08 106-111 <0.1 1.77 4.3 97.5 0.2 <0.02 2.03 0.07 10.93 56.1 429.0 49.2 5.75 4.4 1.7 10 0.39 5.0 9.9 9.69 792 3.77 0.089 0.04 791.2 718 2.94 12.0 0.02 0.18 4.8 0.1 0.4 186.5 <0.05 <0.02 0.4 0.149 0.04 0.2 - 98 1.0 5.55 45.8 9.31 19 TA10-08 151-156 0.1 2.05 4.8 604.5 0.2 <0.02 2.55 0.07 8.59 60.8 635.5 66.0 6.35 5.3 1.8 15 0.80 3.93 20.9 0.04 0.32 6.7 0.1 0.7 252.5 <0.05 0.02 0.4 0.150 0.06 0.2 110 13.5 6.20 3.5 14.0 10.58 983 7.64 0.102 <0.02 791.6 641 58.1 9.33 36 TA10-08 266-271 <0.1 1.84 4.9 290.0 0.2 <0.02 2.24 0.20 4.64 61.8 447.5 55.7 5.05 4.1 1.3 20 0.55 2.0 12.4 11.98 810 2.34 0.092 <0.02 879.5 496 4.08 14.0 0.02 0.22 5.7 <0.1 0.3 206.0 <0.05 <0.02 0.2 0.077 0.02 0.1 88 2.4 4.04 47.0 4.08 45 TA10-08 311-316 0.1 1.74 5.3 391.0 0.3 <0.02 2.27 0.09 10.37 52.1 636.5 111.5 5.92 4.6 1.7 80 0.44 4.5 11.1 8.14 866 6.09 0.109 0.04 610.8 698 4.00 12.0 0.04 0.36 6.1 <0.1 0.7 192.5 <0.05 <0.02 0.5 0.164 0.04 0.2 104 10.7 5.81 57.7 11.25 TA10-08 356-361 0.1 1.87 5.3 290.5 0.1 <0.02 2.31 0.05 4.39 68.2 735.5 61.0 5.75 4.0 1.5 30 0.58 2.0 15.0 13.20 892 4.84 0.085 <0.02 997.8 461 54 3.06 15.6 0.02 0.22 6.5 <0.1 0.3 218.5 <0.05 <0.02 0.2 0.062 0.02 0.1 100 2.7 3.54 45.5 3.45 71 TA10-08 466-471 0.1 1.78 6.2 239.5 0.1 <0.02 2.34 0.04 4.45 61.9 645.0 52.6 5.30 3.8 1.4 10 0.58 2.0 15.8 12.11 857 3.35 0.109 <0.02 924.8 460 3.86 15.9 0.04 0.26 6.6 < 0.1 0.3 226.5 < 0.05 < 0.02 0.2 0.052 0.02 0.1 92 1.8 3.59 40.5 3.47

Resplit:

 1
 TA10-03 146-151
 0.5
 2.08
 1.4
 554.5
 0.2
 0.02
 0.70
 0.04
 4.20
 76.9
 534.0
 81.5
 6.12
 4.3
 1.8
 10
 1.24
 2.0
 19.5
 15.66
 969
 6.53
 0.070
 <0.02</th>
 0.10
 9.3
 <0.1</th>
 0.8
 215.0
 <0.02</th>
 0.02
 0.04
 0.1
 122
 5.7
 3.85
 61.8
 4.36

 36
 TA10-08
 266-271
 <0.1</td>
 1.93
 4.7
 311.0
 0.2
 <0.02</td>
 2.40
 0.05
 4.3
 4.4
 1.4
 10
 0.59
 2.0
 13.7
 12.07
 859
 2.76
 0.094
 <0.02</td>
 906.5
 514
 3.73
 15.1
 0.02
 0.4
 6.0
 <0.1</td>
 0.3
 221.0
 <0.05</td>
 <0.02</td>
 0.1
 90
 2.8
 4.14
 44.9
 4.99
 4.29

 7.1
 1.82
 6.8
 246.5
 0.1
 <0.02</td>
 0.24
 6.0
 <0.1</td>
 0.3
 221.0
 <0.05</td>
 <0.02</td>
 0.1
 90
 2.8
 4.14
 44.9</t

ECO TECH L	ABORATOP	RY LTD.							ICP	CERTIFIC	CATE OF	ANALY	SIS AI	K 2010-12	78									1	lew Bri	dge Ca	pital II	ĸ											
			Al A																Mo Na														TI TI					Zn	Zr
Et #.	Tag #	ppm	% рр	n ppm	<u>ו ppm</u>	ppm	% p	pm pj	om ppn	n ppm	ppm	% ppr	n ppm	ppb %	ppm	ppm	%р	xpm p	ppm %	ppm	ppm	ppm	ppm	ррт	%	opm p	pm p	om ppn	ppm	ppm	ppm /	ppm	% pp/	m ppm	n ppm	ppm r	ypm r	ppm	ppm
Standard:																																							
Pb129A		11.6 ().87 5	.4 67.	5 <0.1	0.42	0.47 5	3. 98 9	.75 4.	7 11.0	1422.0 1	.51 2.	4 0.7	70 0.	0 4.0	1.4	0.70	359	1.92 0.048	0.26	5.0	427 6	5149.00	2.8	0.80 1	3.76	0.9	0.2 0.1	30.5	<0.05	0.32	0.4 0	.039 0.()4 0.1	1 18	0.2	2.31 >	10000	1.99
Pb129A		11.7 ().84 5	.5 66.	0 <0.1	0.48	0.50 5	2.53 9	.90 5.	1 11.5	1439.0 1	.61 2.	6 0.8	3 70 0.	1 4.5	1.5	0.70	387	2.01 0.047	0.32	5.4	411 6	5239.00	3.1	0.86 1	13.94	1.0	0.2 0.4	30.5	<0.05	0.30	0.5 0	.035 0.0	J6 0.1	1 18	0.2 :	2.35 9	992.0	2.08
Pb129A		11.5 (.86 4	.9 61.	5 <0.1	0.46	0.46 5	5.55 9	.58 4.	6 11.5	1361.0 1	.55 2.	3 0.7	75 0.	0 4.0	1.5	0.68	348	1.95 0.040	0.30	4.8	430 6	6154.00	2.8	0.80 1	4.36	0.8	0.2 1.	31.0	<0.05	0.34	0.4 0	.037 0.0)2 0.1	1 16	0.2 ;	2.36 >	10000	2.03

Aqua Regia Digest/ICPMS Finish

ECO TECH LABORATORY LTD. Norman Monteith B.C. Certified Assayer

NM/PS dt/msr1278S XLS/10

Appendix II - Analytical procedures used and field standard details

Π

Eco Tech Laboratory Limited 10041 Dallas Drive Kamloops, British Columbia V2C 6T4 Tel + 250 573 5700 Tel + 1 877 573 5755 Fax + 250 573 4557 www.stewartgroupglobal.com

Eco Tech Laboratory Ltd. is registered for ISO 9001:2008 by KIWA International (TGA-ZM-13-96-00) for the "provision of assay, geochemical and environmental analytical services". Eco Tech also Participates in the annual Canadian Certified Reference Materials Project (CCRMP) and Geostats Pty bi-annual round robin testing programs. The laboratory operates an extensive quality control/quality assurance program, which covers all stages of the analytical process from sample preparation through to sample digestion and instrumental finish and reporting.

Samples (minimum sample size 250g) are catalogued and logged into the sample-tracking database. During the logging in process, samples are checked for spillage and general sample integrity. It is verified that samples match the sample shipment requisition provided by the clients. The samples are transferred into a drying oven and dried.

Soils are prepared by sieving through an 80-mesh screen to obtain a minus 80-mesh fraction. Samples unable to produce adequate minus 80-mesh material are screened at a coarser fraction. These samples are flagged with the relevant mesh.

Rock samples are crushed on a Terminator jaw crusher to -10 mesh ensuring that 70% passes through a Tyler 10 mesh screen.

Every 35 samples a re-split is taken using a riffle splitter to be tested to ensure the homogeneity of the crushed material.

A 250 gram sub sample of the crushed material is pulverized on a ring mill pulverizer ensuring that 95% passes through a -150 mesh screen. The sub sample is rolled, homogenized and bagged in a pre-numbered bag.

A barren gravel blank is prepared before each job in the sample prep to be analyzed for trace contamination along with the processed samples.

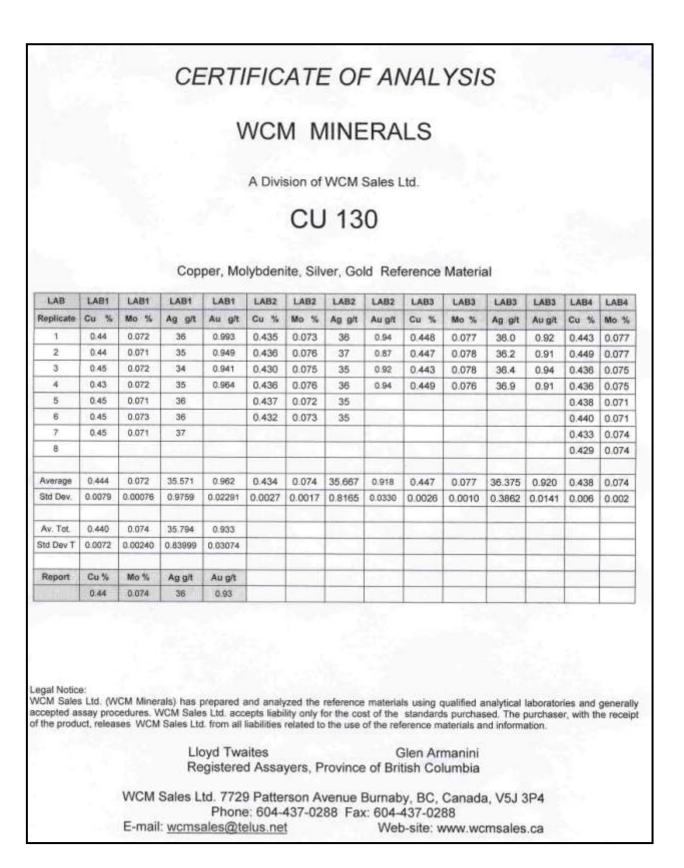
III

A 15/30/50 g sample size is fire assayed along with certified reference materials using appropriate fluxes. The flux used is pre-mixed, purchased from Anachemia which contains Cookson Granular Litharge. (Silver and Gold Free). The ratios are 66% Litharge, 24% Sodium Carbonate, 2.7% Borax, 7.3% Silica. (The charges may be adjusted based on the sample). Flux weight per fusion is 150g. Purified Silver Nitrate or inquarts for the necessary silver addition is used for inquartation. The resultant dore bead is parted and then digested with nitric acid followed by hydrochloric acid solutions and then analyzed on an atomic absorption instrument (Perkin Elmer/Thermo S-Series AA instrument).

Over-range geochem values (Detection limit 5-1000ppb) for rocks are re-analyzed using gold assay methods (see below).

Appropriate certified reference material and repeat/re-split samples (Quality Control Components) accompany the samples on the data sheet for quality control assessment. Results are collated by computer and are printed along with accompanying quality control data (repeats and standards). Results are emailed, faxed or mailed to the clients.

Samples are digested in a 90 Degree Celsius aqua regia solution for 45 minutes. The samples are then bulked with de-ionized water, and an aliquot of this is taken for analysis on a Thermo Scientific X series II ICP-MS unit. All synthetic standards are purchased and verified by 3 independent analysts and are used for instrument calibration before each and every ICP-MS run. A 2-3 point standardization curve is used to check the linearity (high and low). Certified reference material is used to check the performance of the machine and to ensure that proper digestion occurred in the wet lab. QC samples are run along with the client samples to ensure no machine drift or instrumentation issues occurred during the analysis of the sample(s). Repeat samples (every 10 or less) and re-splits (every 35 or less) are also run to ensure proper weighing and digestion occurred.


Results are collated by computer and are printed along with accompanying quality control data (re-splits and standards). Results are emailed faxed and or mailed to the client.

****Gold (DL: 5-1000ppb) can be added to this package, for method see Au1-10,25.

		Detectio	on Limits:		
Element	Unit	LDL	Element	Unit	LDL
Ag	ppm	0.01	Nb *	ppm	0.05
AI *	%	0.01	Ni	ppm	0.2
As	ppm	0.1	Р	ppm	10
Ba *	ppm	0.5	Pb	ppm	0.2
Be *	ppm	0.1	Rb *	ppm	0.1
Bi	ppm	0.02	S *	%	0.01
Ca *	%	0.01	Sb *	ppm	0.05
Cd	ppm	0.01	Sc *	ppm	0.1
Ce *	ppm	0.1	Se	ppm	0.2
Со	ppm	0.1	Sn *	ppm	0.2
Cr *	ppm	2	Sr *	ppm	2
Cu	ppm	2	Ta *	ppm	0.01
Fe *	%	0.01	Te *	ppm	0.02
Ga *	ppm	0.1	Th *	ppm	0.1
Ge	ppm	0.1	Ti *	%	0.01
Hg	ppm	0.005	TI *	ppm	0.02
K *	%	0.01	U	ppm	0.1
La	ppm	0.5	V	ppm	2
Li *	ppm	2	W *	ppm	0.1
Mg *	%	0.01	Y *	ppm	0.05
Mn	ppm	5	Zn	ppm	2
Мо	ppm	0.05	Zr *	ppm	1
Na *	%	0.01			

*Elements marked with an asterick * may not be totally digested

V

RENAISSANCE GEOSCIENCE SERVICES – Leopold J. Lindinger, P.Geo. 680 Dairy Road, Kamloops, B.C. V2B-8N5 VI

Diamond Drilling and Reclamation Assessment Report on the Treadwell-Allies Property Newbridge Capital Inc. May 17, 2011

								TA	TABLE 6 -	CU13	O ANA	LYTICA	CU130 ANALYTICAL SUMMARY	IARY									
	Au	Ag	AI	As	Ba	Be	8	Ca	Cd	Ce	S	ບັ	Cu	Fe	Ga	Ge	Hg	×	La	٦	BW	Mn	Mo
Tag #	(qdd)	mdd	%	mdd	mdd	bpm	bpm	%	mdd	mdq	ppm	bpm	bpm	%	mdd	mdd	dqq	%	ppm	ppm	%	mdd	bpm
905728	895	>30	0.7	1335.0	61.0	0.1	29.4	3.7	1.0	10.8	43.2	205.5	4252.0	2.3	2.7	0.8	235.0	0.1	7.0	7.0	0.2	617.0	771.
905749	910	37.6	0.6	1378.0	61.0	<0.1	32.1	3.8	0.9	10.6	42.2	198.5	4203.3	2.2	2.4	0.5	255.0	0.1	7.0	6.6	0.2	607.0	781.5
905780	940	>30	0.6	1358.0	64.5	<0.1	32.1	3.7	0.9	10.0	41.9	192.0	4230.0	2.1	2.6	1.0	255.0	0.1	6.5	6.3	0.2	618.0	775.6
905799	930	>30	0.6	1331.0	66.5	0.2	32.2	3.7	0.9	9.9	41.0	192.0	4278.0	2.1	2.4	1.0	250.0	0.1	6.5	7.0	0.2	623.0	783.8
905824	925	>30	0.7	1413.0	61.5	<0.1	31.6	3.8	7	11.6	41.7	208.0	4240.0	2.2	2.9	1.1	260.0	0.1	7.5	11.5	0.3	610.0	785.4
905849	920	>30	0.6	1405.9	66.5	0.2	31.4	3.8	1.1	11.3	44.7	206.5	4294.5	2.2	2.7	1.0	255.0	0.1	7.5	10.0	0.2	605.0	782.5
905884	940	>30	0.7	1295.0	64.0	0.4	31.3	3.8	11	10.6	39.8	204.0	4225.0	22	2.3	1.3	230.0	0.1	7.0	6.5	0.2	601.0	768.4
AVG	923	NS	0.7	1359	54	0.2	31.4	3.8	1.0	10.7	42.1	201	4246	2.2	2.6	1.0	249	0.1	7.0	7.8	0.2	612	778
WCM 130	930	36											4400										740
	No.	ALLA	N.	0	á	20	o	40	0	50	50	ð	To	L.	÷	F	F	=	>	M	>	70	7.
Tank	01			-			0 10	-	3	-	-	5		-		10		-	-		-		
# 6e I	2	mdd	bpm	bpm	bpm	bpm	2	mdd	bpm	bpm	bpm	bpm	undd	bput	bpm	20	bpm	undq		unded	under	undel	indd
905728	0.1	0.1	19.2	559.0	64.5	3.5	0.8	77.3	1.5	3.3	1.3	135.5	<0.05	3.0	0.7	0.0	0.1	1.5	18.0	19.0	5.0	95.2	3.4
905749	0.1	0.0	18.9	571.0	67.0	3.3	0.7	78.8	1.4	3.3	1.3	137.0	<0.05	2.9	0.8	0.0	0.1	1.5	18.0	18,1	5.0	98.7	3.4
905780	0.1	0.1	19.2	567.0	69.4	3.3	0.7	77.1	1.3	3.5	1.2	134.0	<0.05	3.2	0.8	0.0	0.1	1.6	16.0	15.8	4.4	95,4	3.7
905799	0.1	0.1	19.3	578.0	67.3	3.4	0.8	76.9	1.3	3.5	1.3	136.0	<0.05	3.3	0.9	0.0	0.1	1.8	16.0	17.1	4.4	99.6	3.8
905824	0.1	0.1	22.8	592.0	70.8	4.1	0.8	80.1	2	3.6	1.4	140.5	<0.05	3.1	1.0	0.0	0.1	1.9	18.0	20.1	5.6	5.66	3.7
905849	0.1	0.1	21.0	586.0	67.7	3.9	0.8	80.1	1.5	3.7	1.3	141.5	<0.05	3.4	1.0	0.0	0.1	1.8	18.0	19.0	5.6	1.79	3.8
905884	0.1	0.1	18.8	554.0	66.9	3.5	0.7	80.9	1.3	3.1	1.5	131.5	<0.05	3.0	1.0	0.0	0.1	1.6	16.0	18.7	5.0	94.2	3.5
AVG	0	0	20	572	68	3.6	0.8	79	1.4	3.4	1.3	137	<0.05	3.1	0.9	0.0	0.1	1.7	17.1	18.3	5.0	97	3.6
WCM 130																							

RENAISSANCE GEOSCIENCE SERVICES – Leopold J. Lindinger, P.Geo. 680 Dairy Road, Kamloops, B.C. V2B-8N5

> Appendix III Diamond Drill Logs

NEWBR	DGE CA	PITAL INC	.	TREADWELL	ALLIES PROPERTY	DIAMOND DRILL HOLE TA1	0-001	DOW	N HOL	E TEST	S (UNCO	RRECT	ED)
			LOCAT	TION AND ORIENTATION DAT.	A (UTM)			DEPTH	STR	DIP	DEPTH	STR	DIP
Ν	Е	ELEV	BRG	DIP AT COLLAR	DEPTH	CORE SIZE							
5638820	668610	1520	45	-62	197.51	NQ							
				HOLE TARGET:	SYDNEY LAKE TARGET			SAMPL	E AND A	ASSAY I	NFORM	ATION	
FROM	ТО	GEOCODE	STRUCTUR	EGEOLOGICAL DESCRIPTION	ALTERATION AND VEINING	MINERALIZATION	SAMP#	FROM	ТО	WIDTH	Au ppb	As ppm	Sb ppm
0.00	6.10	CASG		CASING									
6.10	197.51	Tana		ANDESITIC FLOW AND	Local weak to moderate clay alteration	None noted. Moderately to							
				BRECCIA Kamloops Group (Mt	related to cooling of the volcanic pile.	weakly magnetic throughout.							
				Doherty volcanics) dark to	Locally amygdalar with zeolite and								
				medium brown and grey	calcite.								
				andesitic to basaltic volcanic									
				flow. Local flow top? breccia									
				zones. Increasingly vesicular									
				down hole									
197.51				END OF HOLE									

NEWBRI	DGE CA	PITAL IN			ALLIES PROPERTY	DIAMOND DRILL HOLE TAI	0-002	DOV	VN HOL	E TEST	S (UNCO	RRECT	ED)
			LOCAT	ION AND ORIENTATION DAT	A (UTM)			DEPTH	STR	DIP	DEPTH	STR	DIP
Ν	Е	ELEV	BRG	DIP AT COLLAR	DEPTH	CORE SIZE							
5639950	670470	1480	225	-75	218.85	NQ							
				HOLE TARGET:	NORTH ALLIES TARGET						INFORM		
FROM	TO		ESTRUCTURI	GEOLOGICAL DESCRIPTION	ALTERATION AND VEINING	MINERALIZATION	SAMP#	FROM	ТО	WIDTH	Au ppb	As ppm	Sb ppm
0.00	6.10	CASG		CASING									
6.10	24.20	Tftf		FELSIC ASH FALL TUFF	Weak to moderate weathering	None noted.							
				BRECCIA. Kamloops Group	associated clay alteration.								
				Volcanics (Doherty Volcanics)									
				Pale tan sand matrix ash fall tuff									
				with local volcanic breccia									
				fragments. Dominantly airfall									
				and locally fluvially reworked									
				textures. Less than 5 to									
				uncommonly 50% angular									
				fragments over 30 cm are									
				heterogeneous with dominantly									
				dacite-andesite rock and lesser									
				glassy matrix feldspar porphyry									
				fragments ranging from 5 to 20									
24.20	69.50	Tafb	Fabric ~70	ANDESITIC to DACITIC FLOW	Local weak to moderate pale pistachio	None noted.							
			deg. To C.A.	AND BRECCIA Kamloops	clay alteration with zeolites in fractures								
			_	Group Volcanics (Doherty	related to cooling of the volcanic pile.								
				Volcanics) Dark orange and grey	Locally amygdalar with zeolite and								
				andesitic occasionally feldspar	calcite.								
				porphyritic flow. Sections									
				massive to flow laminated and									
60.50	75.50			highly vacioular	1 · 1 ·								
69.50	75.50	Tabx		ANDESITIC BRECCIA Dark red	weak oxidation	None noted.							
				to black clast supported									
				heterolithic breccia. Angular non									
				vesicular fragments 2 to 8 cm dia.									
75.50	89.00	Tafb		ANDESITIC to DACITIC FLOW	Local weak to moderate pale pistachio	None noted.							
10.00	07.00	1410		AND BRECCIA Kamloops	clay alteration with zeolites in fractures								
				Group Volcanics (Doherty	related to cooling of the volcanic pile.								
				Volcanics) Dark orange and grey	Locally amygdalar with zeolite and								
				andesitic occasionally feldspar	calcite.								
				porphyritic flow. Sections									
				massive to flow laminated and									
			ļ	highly vesicular									
89.00	93.00	Tabx		ANDESITIC BRECCIA Dark red	weak oxidation	None noted.							
				to black clast supported									
				heterolithic breccia. Angular non									
				vesicular fragments 2 to 8 cm dia.									
93.00	94.50	Tanf		ANDESITE-BASALT FLOW	weak oxidation	None noted.							
				Dark grey massive dense fine									
				grained and non porphyritic.									

TREADWELL-ALLIES PROPERTY - MAIN ZONE

DIAMOND DRILL HOLE TA10-004

FROM	ТО	GEOCODE	STRUCTURE GEOLOGICAL DESCRIPTION	ALTERATION AND VEINING	MINERALIZATION	SAMP#	FROM	ТО	WIDTH	Au ppb	As ppm	Sb ppm
94.50	218.85	Tafb	ANDESITIC FLOW AND	Local weak to moderate clay alteration	None noted. Moderately to							
			BRECCIA Dark to medium	related to cooling of the volcanic pile.	weakly magnetic throughout.							
			brown and grey andesitic to	Locally amygdalar with zeolite and								
			basaltic volcanic flow. Local	calcite.								
			flow top? Breccia zones.									
			Increasingly vesicular down hole.									
			This unit appears very similar to									
			hole 1 ~3 km NW									
218.85			END OF HOLE									

EW BRID	GE CAPI	TAL INC.		TREADWELL ALLIES	DODD'S ZONE	DIAMOND DRILL HOLE TA	10-003						ORREC	
				ION AND ORIENTATION DAT					DEPTH		DIP	DEPTH	STR	DIP
Ν	Е	ELEV	BRG	DIP AT COLLAR	DEPTH	CORE SIZE			164.6	143.4				
5638364	671431	1250	165	-50	171.02	HQ								
		1		HOLE TARGET:	DODD'S ZONE - Twin of 86-A-01	1				ND ASS				1
FROM	TO		STRUCTURI	GEOLOGICAL DESCRIPTION	ALTERATION AND VEINING	MINERALIZATION	SAMP#	FROM	TO	WIDTH	Au ppb	As ppm	Hg ppb	Sb pp
0.00	9.14	CASG		CASING NO RECOVERY										
9.14	13.80	RUB		basalt boulder rubble and										
				subcrop. Minor picrite boulders										
				near bottom										
13.80	104.45	TrNP		PICRITE Greenish-black fine	As detailed below	As detailed below								
				grained feldspar? porphyritic										
				rock.										
			Shears 10-30		13.8 - 26.0 Picrite, extensively clay	Uncommon late hairline hematite								
			deg. to C. A.		altered. Associated with shearing and	shear coatings ~15 deg. to C. A.								
					syn tectonic hydrobrecciation. Fine									
					grained disseminated yellow epidote or									
					translucent yellow olivine? common.									
					5									
					16-34 Alteration shearing and	Moderately magnetic.								
					brecciation decreasing.									
					43.8 - Increasing clay alteration.									
				44.6 Remnant piece of highly	44.4 - 45.4 Very strong clay alteration.	No sulphides noted								
				altered feldspar porphyry, <5 cm	80% core loss.	_								
				dia.										
					46.4 - 47 Intense chloritic clay	No sulphides noted								
					alteration. 75% core loss.	_								
					47-100 Gradually decreasing and then	Magnetic.								
					increasing alteration and shearing.									
					Alteration common as pseudobreccia									
					texture. Strongest pseudobreccia									
					textures usually bracket hematite									
					coated moderately to intensely clay									
					altered shears 20-80 deg. to C. A.									
					55 - 80 Moderate increase in intensity	Magnetic.								
					of clay alteration in shears with	_								
					corresponding reduction in									
					pseudobreccia texture.									
					79.5 - 85 Massive serpentine like rock	Magnetic.								
					common. Noticeable decrease in clay									
					alteration and shearing.									
					Cross cutting weak talc stockwork	Weak to moderately magnetic	905701	87.17	88.70	1.53	<5	2.4	<5	0.0
					veining.									
				88.6-90.7 Fault zone with clayey			905702	88.70	90.22	1.52	5	7.1	5.0	0.2
				gouge and picrite fragments -										
				75% core loss. Sludge sample										
				required.										
							905703	90.22	91.74	1.52	<5	8.0	<5	0.3

RENAISSANCE GEOSCIENCE SERVICES INC.

TREADWELL-ALLIES PROPERTY

DIAMOND DRILL HOLE TA10-003

FROM	то	GEOCODI	<u>STRUCTURE</u>	GEOLOGICAL DESCRIPTION	ALTERATION AND VEINING	MINERALIZATION	SAMP#	FROM	TO	WIDTH	Au ppb	As ppm	Hg ppb	Sb pp
				90.7 - 101.25 Shear-fault-zone - ~45 deg. to C. A. Gouge orientation varies from 20-60 deg. to C. A.	Weak to locally moderate clay alteration and bleaching. Grey clay bleaching increasing downhole.	Moderate magnetism throughout, except where calcite-clay and intense clay alteration occurs.	905704	91.74	93.37	1.63	<5	4.4	5.0	0.88
							905705	93.37	94.79	1.42	<5	8.0	<5	0.14
							905706	94.79	96.31	1.52	<5	8.4	5.0	0.1
							905707	96.31	97.34	1.03	<5	9.3	10.0	0.1
					98.3-104.4 Increasing bleaching and hardening of picrite. Probable carbonate flooding. Definite increasing shear and stockwork dolomite-calcite veining.	Moderate magnetism throughout, except where calcite-clay and intense clay alteration occurs.	905708	97.34	99.36	2.02	20	7.7	<5	0.1
				101.15-101.3 Pale green and white dolomitic-talcy shear - 40 deg. to C. A.	Strong dolomitic alteration.	101.15 Abrupt decrease in magnetic response.	905709	99.36	100.89	1.53	5	5.2	<5	0.2
				101.3 - 102 Possible augite porphyry basalt. Non magnetic.			905710	100.89	101.90	1.01	40	90.7	105.0	6.4
			Shears, 45 deg. to C. A.	102 - 104.45 Bleached picrite?	Moderately bleached - dolomite alteration. minor late hematitic shears.	Non magnetic	905711	101.90	103.94	2.04	<5	15.1	<5	14.
				103.95 - 104.45 Strong to intense shearing 35-40 deg. to C.			905712	103.94	104.45	0.51	<5	138.9	55.0	38.
					104.45 - 107.2 Strongly dolomitized and locally silicified picrite. Strong stockwork veining.		905713	104.45	105.46	1.01	65	1201.0	225.0	18.
104.45	107.30	TBAA		104.45-107.3 Amygdular basalt. Grey green colour. High variable appearance and hardness due to variable alteration.	Moderate white late syntectonic	Strong trace to 5% very fine grained brown to brown-grey pyrite as quartz vein borders and globular and amoeboid silicified masses.	905714	105.46	106.70	1.24	5	28.8	20.0	7.9
				107.25 Sheared intrusive contact ~45 deg. to C. A.			905715	106.70	107.10	0.40	10	233.8	105.0	12.
107.25	113.40	TFPY		Fine to medium grained feldspar porphyry. Very intensely altered. Protolith virtually destroyed. May have been a fine grained massive basalt.	veined and zoned. Very late stage pale green talcy slip planes at usually low	Strongly sulphidic. Rock hosts at least 5% very fined grained dark brown pyrite. With another 3-5% dark vein quartz vein-zone margin pyrite and latest bright brassy planar pyrite.	905716	107.10	108.51	1.41	520	4140.0	3735.0	27.
				Sheared contact, 15 deg. to C. A.		orassy planar pyrite.	905717	108.51	110.03	1.52	1250	3408.0	13760.0	28.
							905718	110.03	111.56	1.53	760	1327.0	4325.0	12
							905719	111.56	113.45	1.89	550	2009.0	1680.0	8.

RENAISSANCE GEOSCIENCE SERVICES INC.

TREADWELL-ALLIES PROPERTY

DIAMOND DRILL HOLE TA10-003

		1		I READ WELE-ALLIES							-	-	1
FROM	то		TRUCTURE GEOLOGICAL DESCRIPTION		MINERALIZATION		FROM				As ppm		
113.40	114.70	ТВАА	Pale green talcy zone. Protolith appears to be very strongly altered amygdular basalt. Top 1/2 of interval is intensely sheared 10-15 deg. to C. A. 114.7 Sheared sulphidic contact .~30 deg. to C. A. Amygdular basalt. Dark greyish maroon basalt. Kamloops group? 5-10% 1 to 8 mm ovoid white	Silicified and brecciated with strong dolomite-stockwork veining a low core angles. Late greenish overprint may be high magnesium carbonate flooding. Weak carbonate alteration with weak carbonate stockwork veining,		905720 905721 905722	113.45 114.61 116.55	114.61 116.55 117.80	1.16 1.94 1.25	10 <5 <5	31.5 21.9 13.4	65.0 30.0 20.0	1.92 1.48 1.14
			quartz-carbonate amygdules. 114.8 - 114.85 Sulphidic shear, 15 deg. to C. A	Strongly silicified.	15% fine grained multiepisodic sulphides.	905723	117.80	119.70	1.90	5	4.9	15.0	0.44
114.85	127.20	THBY	Amygdular hornblende? porphyry basalt. Dark greyish maroon basalt. Kamloops group? 5- 10% 1 to 8 mm ovoid white quartz-carbonate amygdules. Unit is generally quite brittle behaving with the bulk of displacement occurring in shears 10-25 deg to C A	Weakly to locally intense carbonate +/- clay alteration with weak carbonate stockwork veining,	Supplies. Strong trace bright brassy pyrite, possible some chalcopyrite. Sequence interrupted by irregularly spaced (0.5 to 2 metre) ~15-20 deg. to C. A. brecciated quartz vein pyrite zones with up to locally 15% fine grained pyrite. Commonly moderately magnetic	905724	119.70	120.70	1.00	5	27.0	25.0	1.08
				121 - 127.2 Significant decrease in intensity of alteration and sulphidic shearing.	типерает талана	905725	120.70	121.20	0.50	<5	20.6	40.0	1.16
						905726	121.20	122.00	0.80	10	3.0	20.0	0.30
						905727	122.00	123.40	1.40	10	4.2	10.0	0.42
						905728	ST	TD CU13	0	895	1335.0	235.0	77.28
						905729		BLANK		<5	1.1	<5	0.04
						905730	123.40	124.00	0.60	5	3.8	5.0	0.44
						905731	124.00	125.27	1.27	<5	3.2	<5	0.70
			Thin curviplanar fault contact			905732	125.27	126.80	1.53	<5	4.5	10.0	0.52
127.20	128.30	TrNB	Massive fine grained basalt	Weak to locally very strong quartz breccia veining. Syntectonic. Later carbonate vein overprint.	Sulphides in two forms <1% finely and widely disseminated bright brassy pyrite and a latest massive hairline to 2 mm thick shear and lesser tension veins.	905733	126.80	128.20	1.40	40	7.1	15.0	0.60
			Gradational contact			905734	128.20	129.84	1.64	250	5.6	30.0	0.82

TREADWELL-ALLIES PROPERTY

DIAMOND DRILL HOLE TA10-003

FROM	ТО	GEOCODESTRU	UCTUREGEOLOGICAL DESCRIPTION	ALTERATION AND VEINING	MINERALIZATION	SAMP#	FROM	ТО	WIDTH	Au ppb	As ppm	Hg ppb	Sb ppn
128.30	132.15	SZ	Quartz brecciated shear zone. 0 - 15 deg. to C. A.	Moderate to intense dominantly tensional quartz flooding in weakly silicified basalt.	Weak to strong dominantly shear hosted semi massive to massive pyrite veining. Locally over 5% pyrite as brassy disseminated and dark VFG shares.	905735	129.84	131.37	1.53	400	7.7	50.0	0.98
			Sheared sulphidic contact, ~30 deg. to C. A.			905736	131.37	132.10	0.73	200	4.1	20.0	0.58
132.15	133.92	TrNP		Strong to intense dolomite shear- tension veins comprise at time nearly 70% averaging 50 % of interval.	None noted visually. Less altered and veins section weakly magnetic.	905737	132.10	133.90	1.80	95	1.7	5.0	0.50
			Ragged planar contact, 50 deg. to C. A.	7070 averaging 50 70 or mervar.		905738	133.90	134.92	1.02	35	4.8	5.0	1.14
133.92	135.60	TrNB	Massive fine grained basalt	Weak to locally very strong quartz breccia veining. Syntectonic. Most veins broken and arcuate. Late multiorientational multiepisodic carbonate vein overprint.	Sulphides in two forms <1% finely and widely disseminated bright brassy pyrite and a latest massive hairline to 2 mm thick shear and lesser tension veins.	905739	134.92	135.64	0.72	80	7.1	5.0	0.82
			135.60 Ragged planar contact, 30 deg. to C. A.		shour and resser tension venis.	905740	135.64	137.47	1.83	475	5.4	15.0	0.64
135.60	137.30	SQBX	zone. Protolith hard to determine due to intense silicification.	Strong to intense silicification with many subsequent episodes of quartz flooding veining and tectonic rebrecciation. Most intense silica flood vein zones host open voids with	~1-2% fine grained disseminated brassy pyrite. Strong trace in silica flooding and more common in late unhealed clayey gouge zones.	905741	137.47	139.1	1.63	125	6.8	10.0	1.58
			Indistinct contact zone, decreasing veining.	occasional in grained pyrite.		905742	139.1	140.51	1.41	5	5.5	<5	1.08
137.30	143.25	TBAA		Moderate to intense shear induced weakly hematitic maroon clay alteration adjacent to shear hosted quartz-dolomite veining. Veining variably tectonized.	Weak late planar hematite slip veins.	905743	140.51	142	1.49	10	7.6	<5	1.34
			143.25 Dark sulphide veined contact, ~40 deg. to C. A.			905744	142	143.2	1.20	65	16.2	15.0	2.84
143.25	143.75	SQBX	Quartz flood and brecciated clayey shear zone, 50-55 deg. to C. A.	Dark grey maroon vesicular basalt is altered to pale grey green, to off white where quartz flooded.	Late clayey shears host 15% sulphides. Weak trace fine grained brassy pyrite in faces of quartz grains in flood-breccia zones.	905745	143.2	143.8	0.60	200	5.1	60.0	1.22
			143.75 Dark sulphide veined contact ~60 deg. to C. A.			905746	143.8	144.7	0.90	<5	19.4	10.0	2.32
143.75	144.75	TBAA	Vesicular Basalt. Highly variable quantity and size of white quartz amygdules. Sequence is highly tectonized. 0-25 deg. to C. A.	Moderate to intense shear induced weakly hematitic maroon clay alteration adjacent to shear hosted quartz-dolomite veining. Veining variably tectonized.	Weak late planar hematite slip veins.	905747	144.7	146	1.30	410	491.3	255.0	19.18
			144.75 Dark sulphide veined contact. 35-40 deg. to C. A.			905748	146	147.4	1.40	155	2284.8	1000.0	65.70

RENAISSANCE GEOSCIENCE SERVICES INC.

TREADWELL-ALLIES PROPERTY

DIAMOND DRILL HOLE TA10-003

FROM	то	GEOCODE	STRUCTUREGEOLOGICAL DESCRIPTION	ALTERATION AND VEINING	MINERALIZATION	SAMP#	FROM	то	WIDTH	Au ppb	As ppm	Hg ppb	Sb ppm
144.75	147.40	SQBX	Quartz flood and brecciated clayey shear zone, 0-15 deg. to C. A.	Top 1/3 of sequences hosts strongly altered silicified basalt however lower 2/3 appears to be comprised of very multiepisodic shear-hydrothermal quartz breccia zones. Most sulphides occur a late clayey slips and massive up to 8 mm thick coherent shear veins.	Late clayey sub core axis parallel anastomozing shears host 50% sulphides. Weak trace fine grained brassy pyrite in faces if quartz grains in flood-breccia	905749		STD CU13		910	1378.0	255.0	78.84
			147.4 Ragged contact. Upper is silicified rock, lower is pale green clay mush. 65 deg. to C. A.			905750		BLANK		<5	1.4	<5	0.06
147.40	147.65	SZ	Basalt protolith. Sulphidic clay mush zone.	Intense clay alteration with relict quartz zones.	2-4% dark grey and disseminated brassy pyrite.	905751	147.4	149	1.60	20	338.1	80.0	10.84
			147.65 Dark sulphide veined shear contact. 40-50 deg. to C. A.			905752	149	150.5	1.50	5	2503.1	100.0	95.54
147.65	150.75	ТВАА	Vesicular Basalt. Highly variable quantity and size of white quartz amygdules. Sequence is highly tectonized. 0-25 deg. to C. A. Decreasing alteration and mineralization down hole.	Moderate to intense shear induced wide spread weakly hematitic maroon clay alteration adjacent to shear hosted quartz-dolomite veining. Veining variably tectonized.	Weak late planar hematite slip veins. Moderate dark grey pyritic shear veins ~45 deg. to C. A. with occasional pyrite lined quartz breccia shear vein zones. Occasional disseminated brassy pyrite in quartz zones. At least 4% overall pyrite content. Trace very fine grained chalcopyrite as latest sulphide (and tectonic) event in cores of massive pyrite shear-tension veins.	905753	150.5	151.55	1.05	5	90.6	45.0	19.18
			Clay altered and shear contact, 30- 50 deg. to C. A.			905754	151.55	152.5	0.95	<5	186.5	175.0	8.12
150.75	154.10	TrNB	Massive fine grained augite porphyry basalt.	Moderate to strong greenish clay alteration. Weak to locally very strong quartz breccia veining. Syntectonic most veins broken and arcuate late multiorientational multiepisodic carbonate vein overprint.	Sulphides in two forms <1% finely and widely disseminated bright brassy pyrite and a latest massive hairline to 15 mm thick shear and lesser tension veins.	905755	152.5	153.6	1.10	<5	1893.1	120.0	24.80
					152.8 - 153.05 Sulphidic tension vein zone with quartz shear vein center of zone. Brown late, very fine grained sulphides may host marcasite or very fine grained chalcopyrite. or cubanite	905756	153.6	155	1.40	5	52.3	155.0	8.04
				154.05-154.25 Clay matrix shear zone with sand to grit sized quartz fragments. ~60 deg. (45-70) to C. A.		905757	155	156.4	1.4	5	119.3	110.0	8.06

TREADWELL-ALLIES PROPERTY

DIAMOND DRILL HOLE TA10-003

FROM	TO	GEOCODE	STRUCTURE	GEOLOGICAL DESCRIPTION	ALTERATION AND VEINING	MINERALIZATION	SAMP#	FROM	TO	WIDTH	Au ppb	As ppm	Hg ppb	Sb ppr
154.25	158.70	TBAA		Vesicular Basalt. Highly variable quantity and size of white quartz amygdules. Sequence is highly tectonized. 0-25 deg. to C. A.	Moderate to intense shear induced wide spread weakly hematitic maroon clay alteration adjacent to shear hosted quartz-dolomite veining. Veining variably tectonized. Interval is much less tectonized and shear clay altered.	Weak late planar hematite slip veins. Moderate dark grey pyritic shear veins, ~45 deg. to C. A. with occasional pyrite lined quartz breccia shear vein zones. Occasional disseminated brassy pyrite in quartz zones. 1.5% overall pyrite content	905758	156.4	158	1.6	<5	12.7	10.0	3.82
					156.4 - 158.0 Swelling clay (montmorillanite) zone. Core exploded.		905759	158	159.6	1.6	30	17.5	15.0	3.20
158.70	160.90	TrNB	Dominant shear angle ~25 deg. to C. A.	Massive Fine Grained Augite Porphyry Basalt.	Moderate to strong greenish clay alteration. Weak to locally very strong quartz breccia veining. Syntectonic. Most veins broken and arcuate. Late multiorientational multiepisodic carbonate vein overprint.	Sulphides in two forms <1% finely and widely disseminated bright brassy pyrite and a latest massive hairline to 15 mm thick shear and lesser tension veins.	905760	159.6	159.9	0.3	<5	725.1	210.0	37.28
						159.65 - 159.85 Quartz sulphide veined shear zone interval. 40% vein, 15% sulphides. ~25 deg. to C. A.	905761	159.9	161	1.1	10	99.3	80.0	13.78
				Clay altered sheared contact. 35			905762	161	161.6	0.6	30	758.0	460.0	37.16
160.90	162.00	SQBX		deg. to C. A. Quartz-Sulphide Shear Vein Zone. Multiepisodic quartz veining (early) followed by several generations of syn vein and post vein shear associated sulphide veining.	Early quartz veining at high core angles.	~7% fine grained brown multiepisodic mineralization. Possible sulphide associated gold mineralization at 168.75-168.82 m. Latest mineralization at shallowest core angles.	905763	161.6	162	0.4	5	1206.7	940.0	55.70
				Clay altered sheared contact, 25 deg. to C. A.			905764	162	163.37	1.37	5	7.9	20.0	1.26
162.00	166.70	TrNB	Dominant shear angle ~25 deg. to C. A.	Massive fine grained augite porphyry basalt.	Moderate to strong greenish clay alteration. Weak to locally very strong quartz breccia veining. Syntectonic. Most veins broken and arcuate. Late multiorientational multiepisodic carbonate vein overprint.	Sulphides in two forms <1% finely and widely disseminated bright brassy pyrite and a latest massive hairline to 15 mm thick shear and lesser tension veins.	905765	163.37	164.9	1.53	<5	7.6	85.0	1.88
				Clay altered sheared contact, 50 deg. to C. A.			905766	164.9	166	1.1	<5	15.5	495.0	5.42
166.70	167.60	TBAA		Vesicular Basalt. Highly variable quantity and size of white quartz amygdules. Sequence is highly tectonized. 0-25 deg. to C. A.	Moderate to intense shear induced wide spread weakly hematitic maroon clay alteration adjacent to shear hosted quartz-dolomite veining. Veining variably tectonized. Interval is much less tectonized and shear clay altered.	Weak late planar hematite slip veins. Moderate dark grey pyritic shear veins, ~45 deg. to C. A. with occasional pyrite lined quartz breccia shear vein zones. Occasional disseminated brassy pyrite in quartz zones. 1.5% overall pyrite content	905767	166	167.5	1.5	15	9.7	20.0	4.08
				Clay altered sheared contact, 70			905768	167.5	169.47	1.97	<5	29.5	10.0	0.40

RENAISSANCE GEOSCIENCE SERVICES INC.

TREADWELL-ALLIES PROPERTY

FROM	ТО	GEOCODE	STRUCTURE GEOLOGICAL DESCRIPTION	ALTERATION AND VEINING	MINERALIZATION	SAMP#	FROM 7	FO WI	IDTH Au ppb	As ppm	Hg ppb	Sb ppm
167.60	171.20	TrNP		Cross cutting weak talc stockwork veining.	Weak to moderately magnetic	905769	STD	CU130	900	1339.9	250.0	75.90
171.20			END OF HOLE			905770	BL	ANK	<5	1.1	<5	0.04

NEWBRI	DGE CA	PITAL INC		TREADWELL	ALLIES PROPERTY	DIAMOND DRILL HOLE AT	<u>1</u> 0-004	DOV	VN HOL	E TEST	S (UNCC	RRECT	ED)
			LOCAT	TION AND ORIENTATION DAT.				DEPTH	STR	DIP	DEPTH	STR	DIP
Ν	Е	ELEV	BRG	DIP AT COLLAR	DEPTH	CORE SIZE							
5638925	670975	1341	10	-42	110.03	HQ							
				HOLE TARGET:	MAIN ZONE				E AND		INFORM		
FROM			STRUCTURE	EGEOLOGICAL DESCRIPTION	ALTERATION AND VEINING	MINERALIZATION	SAMP#	FROM	ТО	WIDTI	I Au ppb	Cr ppm	Ni ppm
0.00	36.50	CASG		CASING									
22.00	36.00	RUB		Basalt boulder rubble and									
				subcrop. Minor feldspar porphyry									
				cobbles and boulders. Sequence is									
				basal stream deposit below clay									
				hed									
				31-36 Clasts appear to be dense									
				porphyritic andesites (non									
		DID		vesicular)									
27.00	20.50	RIB		Gravel rubble at contact			005771	26.00	27.55	1.55	-5	110.5	177.0
37.00	39.50	Tfbx		Heterolithic felsic volcanic	At least 30% of felsic feldspar porphyry	1 1 1 5 5	905771	36.00	37.55	1.55	<5	112.5	177.8
				breccia. Brown and white clast	fragments are altered with hornblende	fragments usually host trace fine							
				supported angular fragment	destructive alteration to chlorite and	grained pyrite.							
				breccia. Brown hue to oxidized	often sericite. These fragments appear								
					also silicified. Zoned feldspars appear								
				post depositional or both is	unaltered. Vesicular flow fragments								
				unknown. Fragments <2 to 80	may host zeolite filled amygdales. The								
				mm averaging ~ 15 mm.	clasts are locally partially infilled by a								
				Fragments are dominantly felsic	white siliceous coating. The breccia is								
				volcanic and fine grained	locally moderately to intensely clay								
				intrusives dominantly brown and	altered and sheared and locally								
				white and grey fragments. Also	hydrobrecciated with open quartz								
				present are Nicola andesite	crystal line tectonically and /or								
				appearing fragments ~20%), and	hydrothermally generated cavities.								
				uncommon large variably	White wrench veining, 35 deg. to C. A.								
				vesicular and scoriaceous felsic									
				volcanic flow fragments									
				Occupying trace to locally 15% of									
				the sequence are distinctive									
				"white" feldspar porphyry									
				fragments that host zoned 2 to 8									
				mm subhedral feldspar (plag									
				cored orthoclase rimmed? (20%									
				by volume), 10% prismatic									
				hornblende needles up to 8 mm									
				long in a sub vitreous silica rich									
				groundmass averaging 65-75% of									
				the unit. For alteration and									
39.50	39.90	Tbaa		mineralization see appropriate Weakly amygdaloidal basalt			905772	37.55	38.41	0.86	<5	96.5	187.1
57.50	57.70	1000		boulder? Amygdales aligned ~10			105772	57.55	50.41	0.00		,0.5	10,.1
				deg. to C. A.									

TREADWELL-ALLIES PROPERTY - MAIN ZONE

DIAMOND DRILL HOLE TA10-004

FROM	ТО	GEOCODE	STRUCTURE	GEOLOGICAL DESCRIPTION	ALTERATION AND VEINING	MINERALIZATION	SAMP#	FROM	ТО	WIDTH	Au ppb	Cr ppm	Ni ppm
39.90	58.30	Tfbx			At least 30% of felsic feldspar porphyry	Altered feldspar porphyry	905773	38.41	39.93	1.52	<5	106	176.4
				breccia. brown and white clast	fragments are altered with hornblende	fragments usually host trace fine							
				supported angular fragment	destructive alteration to chlorite and	grained pyrite. Minute pyrite also							
				breccia. Brown hue to oxidized	often sericite. These fragments appear	probably present in open fractures							
					also silicified. Zoned feldspars appear	with quartz and zeolites. Gold							
					unaltered. Vesicular flow fragments	coloured flake at 44.0 m within							
				unknown. Fragments <2 to 80	may host zeolite filled amygdales. the	quartz crystals.							
				mm averaging ~ 15 mm.	clasts are locally partially infilled by a								
				Fragments are dominantly felsic	white siliceous coating. The breccias is								
					locally moderately to intensely clay								
				intrusives dominantly brown and	altered and sheared and locally								
					hydrobrecciated with open quartz								
				present are Nicola andesite	crystal line tectonically and /or								
				appearing fragments ~20%), and	hydrothermally generated cavities.								
					manganese coatings common in very								
					late brittle open shear fractures. These								
				volcanic flow fragments	cross cut all forms of earlier alteration								
					and veining. White wrench veining, 35								
				the sequence are distinctive	deg. to C. A. increasing to 57 m.								
				"white" feldspar porphyry	0								
				fragments that host zoned 2 to 8									
				mm subhedral feldspar (plag									
				cored orthoclase rimmed? (20%									
				by volume), 10% prismatic									
				hornblende needles up to 8 mm									
				long in a sub vitreous silica rich									
				groundmass averaging 65-75% of									
				the unit. For alteration and									
				mineralization see appropriate									
				Lost core at contact			905774	39.93	42.98	3.05	<5	110	185.8
58.30	110.03	Tfbx		Heterolithic felsic volcanic	Appears less weakly altered and veined		905775	42.98	45.00	2.02	<5	97	143
				breccia. Compositionally	that overlying unit. Minor late stage	fragments usually host trace fine							
				identical to above except much	hydrobrecciation.	grained pyrite. Minute pyrite also							
				larger clast size averaging 25 mm		probably present in open fractures							
				and up to 8 cm. Hosts distinctive		with quartz and zeolites.							
				crowded more feldspathic less									
				siliceous/silicified feldspar									
				porphyry fragments. Only locally									
				are fragment matrices silica filled.									
				Textures indicate some welding									
				of rock with grey microcrystalline									
				fragments displaying possible									
				annealed surfaces with older lithic									
				(including picrite and siliceous									
1				feldspar porphyry fragments.									
1				r r r y y									
1													

RENAISSANCE GEOSCIENCE SERVICES INC.

TREADWELL-ALLIES PROPERTY - MAIN ZONE

FROM	ТО	GEOCODESTRUCTURE	GEOLOGICAL DESCRIPTION	ALTERATION AND VEINING	MINERALIZATION	SAMP#	FROM	ТО	WIDTH	Au ppb	Cr ppm	Ni ppm
			Feldspar porphyry fragment at			905776	45.00	47.45	2.45	<5	107.5	161.6
			58.8 m displays feldspathic core									
			with silicification of perimeter									
			and internal tongue.									
			Gradational contact			905777	47.45	50.60	3.15	<5	106.5	188
				Minimal fracture veining as compared	Altered feldspar porphyry	905778	50.60	52.12	1.52	<5	109	165
				to interval preceding 58.3 m.	fragments usually host trace fine							
			Compositionally and texturally		grained pyrite. Minute pyrite also							
			identical to unit overlying 58.3 m.		probably present in open fractures							
					with quartz and zeolites.							
			62.6-62.7 Green clay-silt seam			905779	52.12	54.00	1.88	<5	110	180.3
			65 deg. to C. A.			,00111	02.12	51.00	1.00	.0	110	
			64.25 - 65.15 Dense welded tuff-			905780		STD		940	192	19.2
			flow interval with feldspar					CU130				
			porphyry and rhyolite fragments									
			in it.									
			65.15 - 69 Increase vesicular			905781		BLANK		<5	1	1.1
			and welded sections. Feldspar									
			porphyry fragments > 10% of									
			interval, compared to less than									
			5% above and below									
			69-78.8 Identical to main		Rare very fine grained pyrite in	905782	54.00	58.22	4.22	<5	116.5	206
			sequence except much less late		silicified porphyry fragments.							
			stage veining and silica fracture									
			coatings. White quartz									
			hornblende porphyry feldspathic									
			intrusive fragments becoming									
			70.0, 70.4 m 5-10 mm thick			905783	58.22	60.00	1.78	<5	128.5	215.4
			brown talcy fracture fillings.			903783	36.22	00.00	1.70	~5	120.5	215.4
			Ouartz-carbonate tension veins									
			postdate fillings. 10-15 deg. to C.									
			Contact ~25 deg. to C. A.			905784	60.00	62.00	2.00	<5	120.5	219.7
			78.8 - 82.5 Melanocratic picrite			905785	62.00	64.20	2.20	<5	113.5	176.7
			clast dominated breccia. 80%									
			picrite fragments usually less than									
			1 cm dia. 15% tan volcanic frags									
			5% very angular white feldspar-									
			hornblende porphyry fragments.									
						0.0576.5	64.00	65.00	1.00		116-	125.0
			Contact, 35 deg. to C. A.			905786	64.20	65.20	1.00	<5	116.5	135.9

TREADWELL-ALLIES PROPERTY - MAIN ZONE

FROM	то	GEOCODESTRUCTUR	EGEOLOGICAL DESCRIPTION	ALTERATION AND VEINING	MINERALIZATION	SAMP#	FROM	то	WIDTH	Au ppb	Cr ppm	Ni ppm
				Feldspar porphyry fragments are more	Possible trace pyrite in andesitic	905787	65.20	67.00	1.80	<5	105	175.8
			breccia as before 78.8 m. Largest	feldspar (orthoclase?) altered than	bombs.							
			fragments are white siliceous	silicified. Voids occasionally quartz								
			F F F J J B	lined.								
			averaging 2 cm dia., while fine									
			grained volcanics average less									
			than 1 cm dia. Uncommon large									
			vesicular and massive grey dacite-									
			andesite bombs? Clast supported									
			with many open sections, or									
			partially filled with zeolites.									
				103 - 110.03 Moderate increase in fine		905788	67.00	69.00	2.00	<5	115	196.6
				cockscomb quartz in voids and								
				fractures								
				105.2 Several 1-2 mm quartz		905789	69.00	71.00	2.00	<5	110	181.1
				carbonate fracture veins 35 deg. to C.								
				A Various orientations								
			105.5 - 108.8 Picrite fragment			905790	71.00	73.00	2.00	<5	108.5	173
			dominated breccia with 20%									
			small volcanic and 5% much									
			larger feldspar porphyry									
			fragments. Bottom 30 cm is a									
			grey welded vesicular bomb or									
			thin flow 40 deg to C A Sharp flow contact			905791	73.00	76.00	3.00	5	121	166.9
				Occasional zeolite filled fragments		905791	76.00	78.00	2.00	<5	87	134.9
				voids.		903792	/0.00	/ 8.00	2.00	~0	0/	1.54.9
			including much smaller quartz	volus.		1						
			matrix feldspar porphyry									
			fragments. Porphyry fragments									
			probably previously silicified									
			prior to brecciation. 15% 5 to 10			1						
			cm dia grey vesicular volcanic			1						
			bombs									
110.03			END OF HOLE									

NEWBRI	DGE CA	PITAL IN			ALLIES PROPERTY	DIAMOND DRILL HOLE TA	<u>A1</u> 0-005						
	-			FION AND ORIENTATION DAT									
N 5638924	E	ELEV 1341	<u>BRG</u> 10	DIP AT COLLAR	DEPTH 103.94	CORE SIZE							
5638924	6/09/5	1341	10	-75 HOLE TARGET:		HQ		CAMPI	E AND	100 AN	NEODI		
FDOM	то	CEOCOD	ESTDUCTUD	HOLE TARGET: EGEOLOGICAL DESCRIPTION	Intersect the Main zone gold zone at on ALTERATION AND VEINING	MINERALIZATION	SAMP#		E AND	ASSAY	INFORM Au ppb	ATION	CI.
FROM 0.00	TO 27.50	CASG	FEIRUCIUR	CASING	ALTERATION AND VEINING	MINERALIZATION	SAMP#	FROM	10	WIDT	1 Au ppb	As ppm	So ppr
15.24	27.30	RUB		Massive amygdular andesite?									
10.21	27.10	ROD		boulder rubble. Uncommon									
				Nicola augite porphyry and									
				rhyolite fragment breccia and									
				other exotic fragments. Preserved									
				sections below 18 m of									
				unconsolidated matrix suggests									
				clay matrix glacial till. Fabric									
				indicate subhorizontal bedding									
27.46	55.40	TrNp		PICRITE - greenish-black fine	As detailed below	Usually moderately magnetic,	905793	33.00	34.30	1.30	5	4.5	0.22
				grained feldspar? porphyritic		unless highly clay altered.							
				rock. Soft. Moderately magnetic.									
					28.3 - 48 Tectonized zone with		905794	34.30	34.90	0.60	<5	10.4	0.46
					pseudobreccia textures with variable								
					clay altered fractures and stockwork.								
					Dominant alteration is chloritic. At								
					least three generations of alteration								
					noted each with distinctive veining and								
					intensity of shear associated clay								
					$\sim 30, 34.3 - 34.85, 35.8 - 35.4 \text{ m}.$		905795	34.90	35.70	0.80	<5	8	0.38
					Grey clayey shears, 70-90 deg. to C. A.								
					Late dolomite veining at high core								
					angles. Talc fragments in shears.								
					49.0 Small disseminated muscovite		905796	35.70	36.40	0.70	<5	10.2	0.42
					flakes present.								
			Shear ~15	52.2 - 52.5 15 cm thick shear			905797	36.40	37.40	1.00	<5	1.8	0.32
			deg. to C. A.										
				Sheared and brecciated, very irregular chloritically clay altered									
55.40	57.50	TrNb	+	contact. Dark green medium grained	Strong chloritic alteration.	None noted							
22.10	57.55	11110		augite porphyry basalt. Distinctly									
				non magnetic as compared to									
				picrite. Interval is interrupted by									
				several shear emplaced picrite									
				zones									
				Sheared and brecciated very									
				irregular chloritically clay altered									
				contact. >80 deg. to C. A.									

TREADWELL-ALLIES PROPERTY - MAIN ZONE

DIAMOND DRILL HOLE TA10-005

FROM	ТО		STRUCTURE	GEOLOGICAL DESCRIPTION		MINERALIZATION	SAMP#	FROM	ТО	WIDTH	Au ppb	As ppm	Sb ppm
57.50	61.40	TrNp		PICRITE - greenish-black fine grained feldspar? porphyritic rock. Soft. Moderately magnetic.	As detailed below	Usually moderately magnetic, unless highly clay altered.							
			Shearing ~55- 60 deg. to C.	Clay altered zone. Lost core at contact.									
61.40	62.30	TrNb			Strong chloritic alteration Minor deformed tensional dolomite veining at high core angles.	None noted							
				40 cm thick rubbly shear zone - very strong chlorite- montmorillanite clay altered ~55- 60 deg. to C. A.									
62.3 -	63.95	TrNp		PICRITE - greenish-black fine grained feldspar? porphyritic rock. Soft. Moderately magnetic.	Strong clay and chlorite pseudobreccia texture with dolomite vein fragments.	Usually moderately magnetic unless highly clay altered.	905798	62.76	63.90	1.14	<5	4.4	0.26
				Dolomite veined clay altered zone lost core at contact. Shearing ~75- 80 deg. to C. A.			905799		STD CU 130		930	1331	76.9
63.95	67.00	Tfpy		Tectonically emplaced? GREY FELDSPAR PORPHYRITIC DACITE and AUGITE PORPHYRY BASALT. Medium	Feldspar porphyry dacite may have been previously silicified but later chloritic alteration of surrounding ultramafic units has masked the earlier alteration.	Faint trace, very fine grained pyrite.	905800		BLANK		<5	0.9	0.08
				Lost and ground core at contact. Many 10's of cms lost.			905801	63.90	66.00	2.10	5	6.6	0.26
67.00	7.00 74.60	TrNp		PICRITE - greenish-black fine grained feldspar? porphyritic rock. Soft. Moderately magnetic.	Strong clay and chlorite pseudobreccia texture with dolomite vein fragments.	Usually moderately magnetic unless highly clay altered.	905802	66.00	67.36	1.36	5	11	0.5
				Planar sheared contact, 40 deg. to C. A. Clavey.			905803	67.36	68.89	1.53	<5	2.8	0.46
74.60	76.00	TrNb		AUGITE PORPHYRY TRACHYBASALT	Strongly chloritically altered green clay common on fractures.	None noted. Non magnetic.	905804	74.98	75.96	0.98	<5	1.1	0.7
76.00	77.50	Tfpy		Chloritically altered contact. FELDSPAR PORPHYRY DACITE (Dark porphyry?) similar texture to dark porphyry at surface but coarser grained.	Weak pervasive chloritic alteration. Thin quartz-calcite stockwork veining throughout.	Strong trace very finely disseminated pyrite and rare chalcopyrite? throughout. Quartz fracture veinlets host trace pyrite and trace to 2% chalcopyrite.	<u>905805</u> 905806	75.96 77.50	77.50 79.40	1.54 1.90	5	1.4	0.4

RENAISSANCE GEOSCIENCE SERVICES INC.

TREADWELL-ALLIES PROPERTY - MAIN ZONE

FROM	ТО	GEOCODESTRUCTUR	EGEOLOGICAL DESCRIPTION	ALTERATION AND VEINING	MINERALIZATION	SAMP#				Au ppb		
			Ground core at contact.			905807	79.40	81.20	1.80	<5	5.7	0.6
77.50	79.35	TrNb	AUGITE PORPHYRY	Strongly chloritically altered green clay	Rare trace very finely							
			TRACHYBASALT	common on fractures.	disseminated pyrite.							
			Gougy, chloritic core at contact.									
79.35	81.25	Tfpy	PICRITE - greenish-black fine	Strong clay and chlorite pseudobreccia	Usually moderately magnetic							
			grained feldspar? porphyritic	texture with dolomite vein fragments.	unless highly clay altered.							
			rock. Soft. Moderately magnetic.									
			Curviplanar flow laminated									
			conformable appearing contact.									
81.25	83.50	TrNb	AUGITE PORPHYRY	Strongly chloritically altered green clay		905808	81.20	83.40	2.20	<5	1.6	1.1
			TRACHYBASALT	common on fractures.	disseminated pyrite. Possible rare trace chalcopyrite.							
			Sheared contact. 15 deg. to C. A.									
83.50	83,85	SZ	Multilithic shear zone. Top 1/4	Strong to intense clay alteration and	Strong trace very finely	905809	83.40	84.13	0.73	<5	7.8	0.9
			sheared feldspar porphyry, middle	local late shear parallel tension	disseminated pyrite, especially in							
			1/4, sheared picrite, dolomite	dolomite veins.	sheared "porphyry". Also a							
			veins and clay, bottom 1/2,		minute "gold" grain observed.							
			sheared augite porphyry.									
			Clay altered, sheared contact. 15									
			deg. to C. A									
83.85	84.10	TrNb	AUGITE PORPHYRY BASALT.	Three generations of quartz-carbonate	1-2% finely disseminated pyrite							
			Pale grey Weakly magnetic.	veining.	throughout.							
			Bleached.	· · · · · · · · · · · · · · · · · · ·								
			Sheared dolomite veined contact.									
			20 deg. to C. A.									
84.10	89.60	TrNp	PICRITE - greenish-black fine	Highly cross fractured with talcy slips.	Weakly to moderately magnetic	905810	84.13	85.20	1.07	5	4.9	0.5
01.10	07.00	mp	grained feldspar? porphyritic	Differences described separately below	throughout.	202010	01.15	00.20	1.07	Ū		
			rock. Soft. Moderately magnetic.	Differences described separately below	unougnout.							
				85,85 - 86.4 Hard dense melanocratic	Strong trace very fine grained							
				zone. Possible basalt? Finely	pyrite. Weakly to moderately							
				disseminated muscovite throughout.	magnetic.							
				86.4 - 89.6 Harder than "normal"	Weakly magnetic							
				picrite. May be basalt.	, , ,							
				86,65 7 cm Carbonate-talc shear vein,	Rare trace very finely							
				60 deg. to C. A.	disseminated pyrite and possible							
				00 uo g. 10 0.11.	chalcopyrite.							
				86.5 - 89-5 Many 2 to 15 mm	Weakly magnetic except for							1
				carbonate-talc veins at various core	veins.							
				angles.	V01113.							
			Planar sheared contact. 65 deg. to	angles.								

TREADWELL-ALLIES PROPERTY - MAIN ZONE

FROM	то	GEOCODE	STRUCTURE GEOLOGICAL DESCRIPTION	ALTERATION AND VEINING	MINERALIZATION	SAMP#	FROM	ТО	WIDTH	Au ppb	As ppm	Sb ppm
89.60	90.60	SZ	SHEAR ZONE Picrite dominant.	Top 1/2 hosts moderate to very strong	Weakly magnetic except for non							
				carbonate flooding including feldspar	magnetic veins.							
				replacement and net textured and shear								
				subparrallel calcite-dolomite veinlets.								
				Bottom half dominated by post vein								
				shearing centred on 10 cm								
				hydrothermal clay zone, ~80+ deg. to								
				C A at 00.15 m								
			Ragged sheared contact, 70 deg. to C. A.									
90.60	103.94	TrNp	PICRITE - greenish-black fine	Less altered and hydrobrecciated than	Weakly to moderately magnetic							
70.00	105.74	mp		previous units over last 30 metres.	throughout.							
			rock. Soft. Moderately magnetic.	previous units over last 50 metres.	unoughout.							
			ibek. bon. Woderatery magnetie.									
				93.1 - 93.15 White dolomite vein, 90								
				deg. to C. A Smaller veinlets on								
				lower side.								
			Clay altered slip. 60 deg. to C. A.			905811	98.20	99.20	1.00	<5	1.6	
			99.2 - 99.35 FELDSPAR	Possibly silicified with chloritic	Feldspars altered with trace pyrite	905812	99.20	99.50	0.30	<5	4.1	
			PORPHYRY DACITE. Fault	overprint.	and possible chalcopyrite as							
			incorporated sliver. Original size	1.	partial replacements or crustal							
			and orientation unknown. 15 cm		associate. Wallrock disseminated							
			lost. Clay core at lower contact.		pyrite also observed.							L
			10 cm clayey talcy contact, 60			905813	99.50	100.5	1.00	<5	3.3	
			deg. to C. A.			202012	//.00		1.00	.0		
				Very weak pseudobrecciation and	Magnetic							
				markedly decreased tensional carbonate								
				talc vein fragments. Occasional ~1.5 m								
				spaced clay zones at high core angles.								
103.94			END OF HOLE									

NEWBRID	GE CAPI	TAL INC.			ALLIES PROPERTY	DIAMOND DRILL HOLE AT	10-006				S (UNCO		
				TION AND ORIENTATION DAT	· · · · · · · · · · · · · · · · · · ·			DEPTH			DEPTH	STR	DIP
N	E	ELEV	BRG	DIP AT COLLAR	DEPTH	CORE SIZE	_	45.7	8	-66.2			
5638924.3	670975.3	1341	30	-65	90.22	HQ	-	76.5	13.5	-67			
			J		Intersect the Main zone gold zone at						INFORM		
FROM	TO		STRUCTUR	EGEOLOGICAL DESCRIPTION	ALTERATION AND VEINING	MINERALIZATION	SAMP#	FROM	то	WIDTH	Au ppb	As ppm	Sb ppi
0.00	27.50	CASG		CASING			005015	26.00	27.00	1.00	_	4.0	0.00
15.24	33.50	RUB		massive amygdular andesite? boulder rubble. Uncommon Nicola augite porphyry and rhyolite fragment breccia and			905817	36.88	37.90	1.02	5	4.9	0.26
22.50	50.00			other exotic fragments		XX 11 1 . 1	005010	27.00	20.65	0.75	_	6.4	0.56
33.50	50.90	TrNp		PICRITE Greenish-black fine grained feldspar? porphyritic rock. Soft. Moderately magnetic.	As detailed below.	Usually moderately magnetic unless highly clay altered. Locally weak traces of very fine grained pyrite.	905818	37.90	38.65	0.75	5	6.4	0.56
					33.5 - 43.2 Tectonized zone with pseudobreccia textures with variable clay altered fractures and stockwork. Dominant alteration is chloritic. At least three generations of alteration noted, each with distinctive veining and intensity of shear associated clay		905819	38.65	39.10	0.45	5	6.5	0.44
					 alteration ~ 34, 37.9-40.2 Clayey shear zones. Numerous fragments of dolomite veining comprise 5% of interval. Shearing 45 deg. to C. A. 		905820	39.10	40.10	1.00	5	14	0.38
				Sheared and brecciated very irregular chloritically clay altered contact. ~45 deg. to C. A. Augite ppy bleached and clay altered	Shearing 4.5 deg. 10 C. A.	None noted	905821	40.10	41.45	1.35	10	2.2	0.2
50.90	51.95	TrNb		Dark green medium grained AUGITE PORPHYRY BASALT. Distinctly non magnetic as compared to picrite. Interval is interrupted by several shear	Strong chloritic alteration.	Weak trace very fine grained pyrite.	905814	50.90	51.80	0.90	5	26.2	0.54
				emplaced nicrite zones	bottom 15 cm hosts bleached augite porphyry or altered feldspar porphyry fragments in a ~60 deg. to C. A. shear.		905815	51.80	52.00	0.20	<5	17.6	0.52
				competent planar contact, 70 deg. to C. A.			905816	52.00	53.00	1.00	5	3.2	0.18
51.95	57.85	TrNp		PICRITE Greenish-black fine grained feldspar? porphyritic rock. Soft. Moderately magnetic.	As detailed below.	Usually moderately magnetic unless highly clay altered. Locally weak traces of very fine erained pyrite.							
57.85	58.20	Tfpy		FELDSPAR HORNBLENDE PORPHYRY DACITE Sheared.	Very strong retrograde? chloritic clay alteration. Rock is soft.	None noted. Non magnetic.	905822	61.50	62.50	1.00	5	28	0.2

TREADWELL-ALLIES PROPERTY - MAIN ZONE

DIAMOND DRILL HOLE TA10-006

FROM	ТО	1 1	STRUCTUREGEOLOGICAL DESCRIPTION		MINERALIZATION	SAMP#	-		WIDTH			
58.20	62.60	TrNp	PICRITE Greenish-black fine grained feldspar? porphyritic rock. Soft. Moderately magnetic.	As detailed below.	Usually moderately magnetic unless highly clay altered. Locally weak traces of very fine grained pvrite.	905823	62.50	63.03	0.53	5	16.2	1.16
			Sheared and brecciated very irregular chloritically clay altered contact. ~10 deg. to C. A. Augite ppy bleached and clay altered			905824	S	TD CU13	30	925	1413	80.12
62.60	63.10	TrNb	Sheared dark green medium grained AUGITE PORPHYRY BASALT. Distinctly non magnetic as compared to picrite. Interval is interrupted by several shear emplaced picrite zones	Strong chloritic and moderate clay alteration. Minor deformed tensional dolomite veining at high core angles.	None noted. Non magnetic.	905825		BLANK		5	1.2	0.08
			Indistinct sheared contact. 50 deg. to C. A.			905826	63.03	63.60	0.57	<5	1.5	0.38
63.10	63.60	Tfpy	FELDSPAR HORNBLENDE PORPHYRY DACITE	Highly clay altered.	Trace disseminated very fine grained pyrite.	905827	63.60	64.50	0.90	10	4.6	0.88
			Sheared clay altered contact ~50 deg. to C. A.			905828	64.50	65.30	0.80	5	7.4	0.34
63.6	65.3	SZ	SHEAR ZONE Top half augite porphyry dominant. Bottom half picrite dominant. 20-35 deg. to C. A.	Irregular chloritic with clay overprint.	Weak trace very fine grained pyrite.	905829	65.30	67.36	2.06	5	10	0.18
65.30	74.40	TrNp	PICRITE Greenish-black fine grained feldspar? porphyritic rock. Soft. Moderately magnetic.	Strong clay and chlorite pseudobreccia texture with dolomite vein fragments.	Usually moderately magnetic, unless highly clay altered.	905830	71.93	72.90	0.97	5	3.1	0.26
			Dolomite veined clay altered zone at contact. Shearing ~30 deg. to C. A			905831	72.90	74.35	1.45	5	24.4	0.62
74.40	75.55	Tfpy	FELDSPAR PORPHYRY DACITE (Dark porphyry?) Similar texture to dark porphyry at surface, but coarser grained.	Feldspar porphyry dacite may have been previously silicified but later chloritic alteration of surrounding ultramafic units has masked the earlier alteration. Weak brittle tensional quartz stockwork veining throughout out. Very similar pattern to that seen on surface	Weak trace very fine grained pyrite.	905832	74.35	75.60	1.25	5	3	0.32
			Clayey contact, 60 deg. to C. A.			905833	75.60	76.80	1.20	5	20.2	0.3
75.55	76.90	TrNp	PICRITE Greenish-black fine grained feldspar? porphyritic rock. Soft. Moderately magnetic.	Strong clay and chlorite pseudobreccia texture with dolomite vein fragments.	Usually moderately magnetic, unless highly clay altered.							
			Ragged chloritically altered contact - 30 deg. to C. A. Appears to have 5 cm of sheared augite porphyry along it.									

RENAISSANCE GEOSCIENCE SERVICES INC.

TREADWELL-ALLIES PROPERTY - MAIN ZONE

FROM	то	GEOCODE	STRUCTUR	EGEOLOGICAL DESCRIPTION	ALTERATION AND VEINING	MINERALIZATION	SAMP#	FROM	ТО	WIDTH	Au ppb	As ppm	Sb ppm
76.90	77.50	Thpa		HORNBLENDE PORPHYRY	Strong pervasive chloritic alteration.	Strong trace very finely	905834	76.80	78.80	2.00	5		0.9
				ANDESITE. Grey porphyritic	Epidote porphyroblasts common	disseminated pyrite.							
				intermediate volcanic . Dark	(replacing feldspars?). Weak								
				green chlorite porphyry after	dismembered and deformed tensional								
				hornblende or feldspars	carbonate veinlets							1.3	
				Planar sheared contact, 48 deg. to	Strong chloritic alteration.		905835	78.80	80.80	2.00	10		0.3
				C. A.								1.7	
77.5	90.22	TrNp		PICRITE Greenish-black fine	Pseudobrecciation decreasing down	Magnetic.	905836	80.80	82	1.20	5	11.5	0.36
				grained feldspar? porphyritic	hole. Last 2 metres very weak								
				rock. Soft. Moderately	alteration. Behaving brittley.								
				magnetic.									
					88.8 10 cm brittle carbonate breccia								
					zone with angular picrite shards and								
					open fractures								
90.22				END OF HOLE									

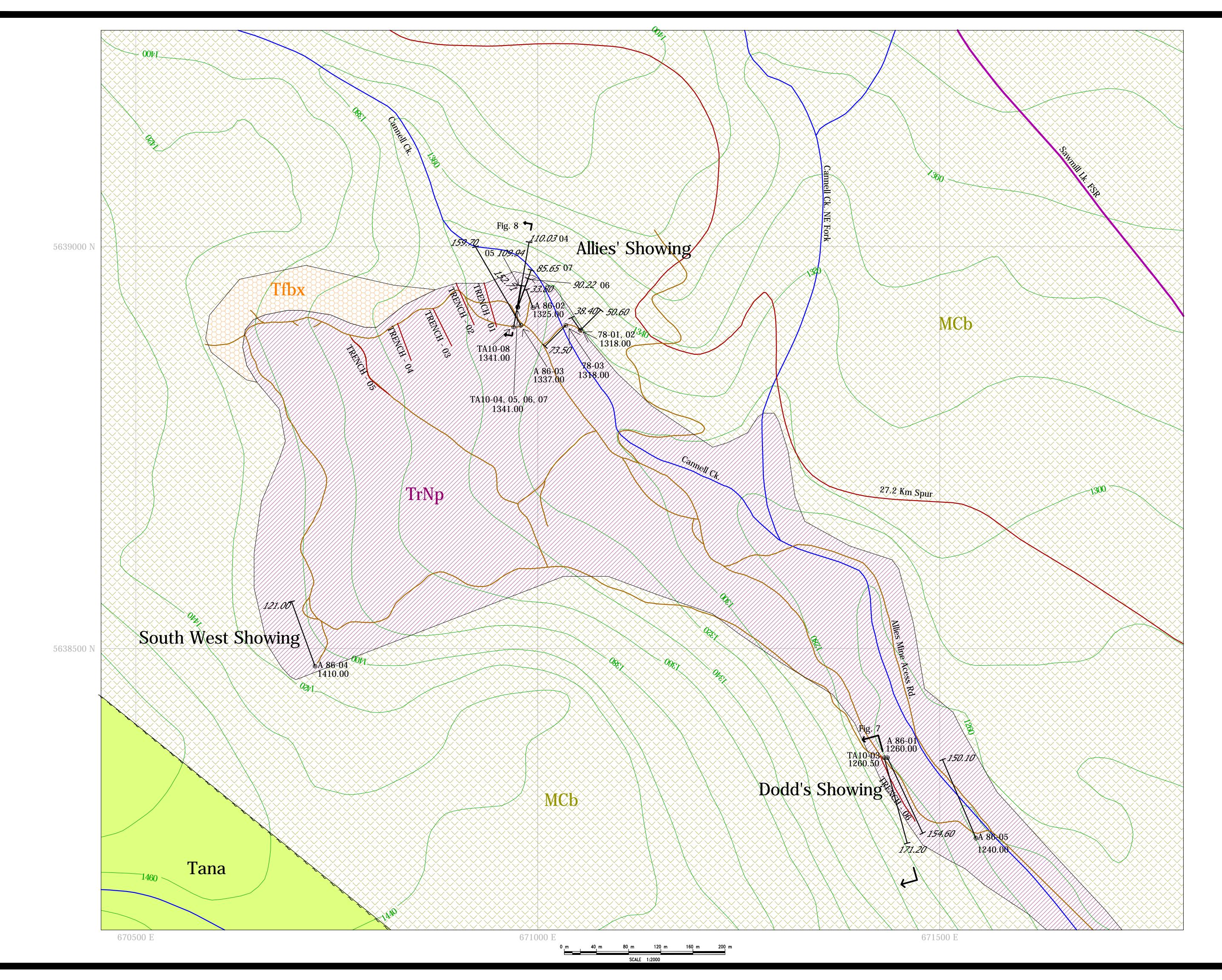
NEWBRIDO	GE CAPIT	TAL INC.		TREADWELL	ALLIES PROPERTY	DIAMOND DRILL HOLE TA	10-007	DOV	VN HOL	E TEST	S (UNCC	DRRECT	ED)
			LOCAT	ION AND ORIENTATION DAT	A (UTM)			DEPTH	STR	DIP	DEPTH	STR	DIP
Ν	Е	ELEV	BRG	DIP AT COLLAR	DEPTH (m)	CORE SIZE		45.7	350.9	-56.7			
5638925.6	670975.3	1341	20	-55	85.65	HQ		76.2	350.4				
		1	1	HOLE TARGET:	Intersect the Main zone gold zone at			SAMPL	E AND	ASSAY I	INFORM	IATION	
FROM	то		STRUCTURI	GEOLOGICAL DESCRIPTION	ALTERATION AND VEINING	MINERALIZATION	SAMP#	FROM	то	WIDTH	Au ppb	As ppm	Sb ppm
0.00	27.50	CASG		CASING									
15.24	41.45	RUB		Massive amygdular andesite? boulder rubble. Uncommon Nicola augite porphyry and rhyolite fragment breccia and other exotic fragments. Preserved			905837	41.45	42.98	1.53	5	3.2	0.16
41.45	46.03	TrNp		sections of unconsolidated matrix suggests clay matrix glacial till. PICRITE Greenish-black fine grained feldspar? porphyritic	As detailed below	Usually moderately magnetic unless highly clay altered.	905838	42.98	44.50	1.52	5	5.1	0.2
				rock. Soft. Moderately		Locally weak traces of very fine							
				magnetic.	41.45 - 46.03 Tectonized zone with pseudobreccia textures and variably clay altered fractures and stockwork. Dominant alteration is chloritic. At least three generations of alteration noted east with distinctive veining and intensity of shear associated clay alteration	grained pyrite.	905839	46.03	47.00	0.97	5	5.9	0.34
46.03	49.07	SZ	0	46.03 - 49.07 Clayey shear zone. Strong to intense clay alteration. Numerous fragments of dolomite veining comprise 2% of interval.			905840	47.00	49.07	2.07	5	6.1	0.28
				Sheared and brecciated very irregular chloritically clay altered contact. Significant lost core.		None noted	905841	49.07	50.60	1.53	20	3.8	0.24
49.07	50.60	TrNp		PICRITE Greenish-black fine grained feldspar? porphyritic rock. Soft. Moderately magnetic.	Strongly chloritically and moderately clay altered.	Usually moderately magnetic unless highly clay altered. Locally weak traces of very fine grained pyrite.	905842	50.60	51.90	1.30	<5	2.3	0.12
			ļ	Clay contact			905843	51.90	53.11	1.21	5	2.7	0.1
50.60	51.90	SZ		of interval lost.	Intense chloritic alteration, weak magnetic response may indicate augite porphyry protolith.		905844	58.22	60.40	2.18	5	2	0.26
51.90	59.74	TrNp		PICRITE Greenish-black fine grained feldspar? porphyritic rock. Hard. Relatively unaltered.		unless highly clay altered. Locally weak traces of very fine grained pyrite.	905845	60.40	62.00	1.60	<5	9.8	0.42
59.74	62.30	SZp	Shearing 30- 50 deg. to C. A.	Clayey shear zone. Ground picrite. Strong to intense clay alteration. Shearing and clay alteration increasing to lower contact.	Moderate, grading to intense chlorite alteration. Clay alteration begins at about 61 metres.	Moderately magnetic - although intensely altered and bleached. Magnetism indicates picrite dominant protolith.	905846	62.00	63.20	1.20	5	4.4	0.12

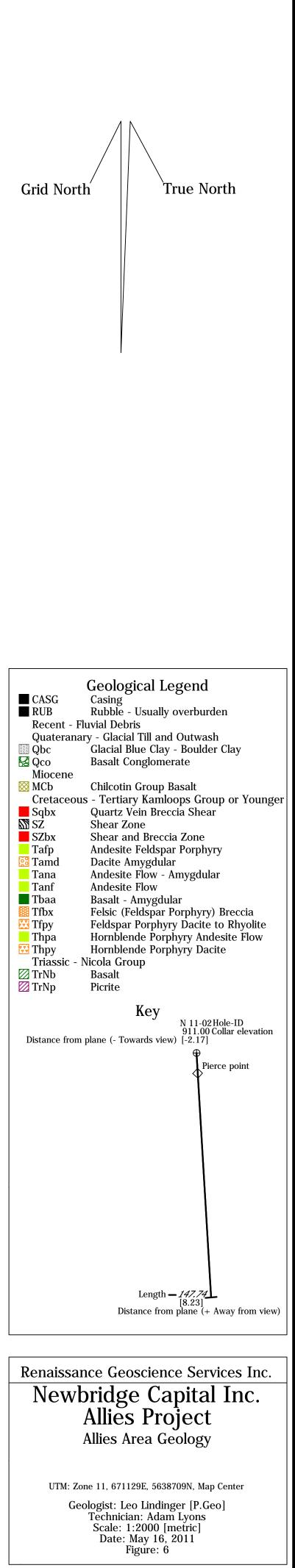
TREADWELL-ALLIES PROPERTY - MAIN ZONE

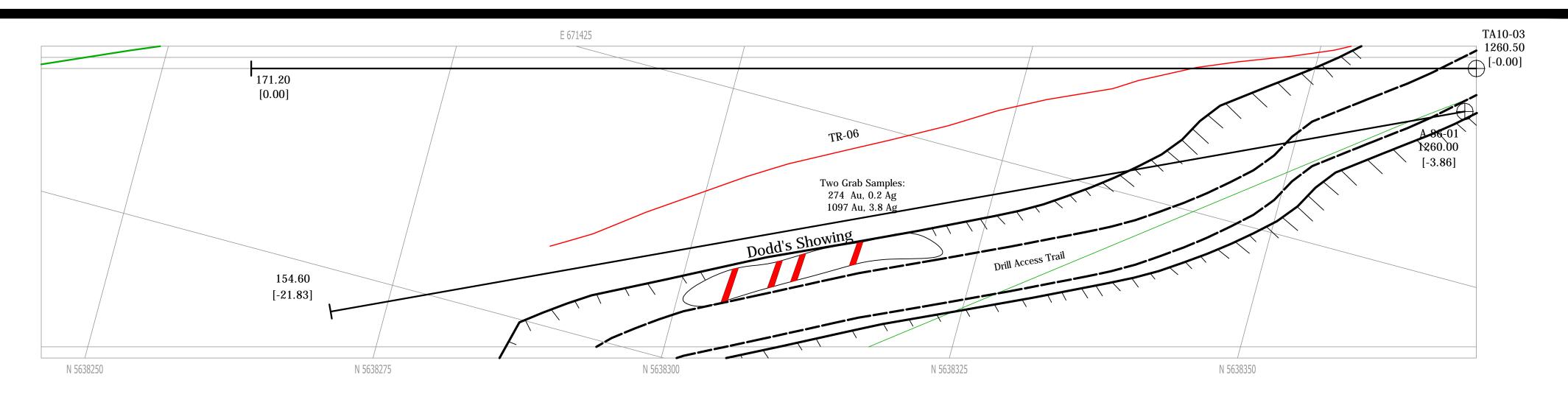
FROM	ТО	GEOCODE	STRUCTURI	GEOLOGICAL DESCRIPTION	ALTERATION AND VEINING	MINERALIZATION	SAMP#	FROM	ТО	WIDTH	Au ppb	As ppm	Sb ppm
				Intensely clay altered shear, ~40			905847	63.20	64.31	1.11	<5	1	0.06
				deg. to C. A									
62.30	63.50	SZbx	Shearing 30-	Clayey shear zone. Sheared felsic	Moderate grading to intense chlorite	Weakly to moderately magnetic -	905848	64.31	65.84	1.53	5	1.2	0.04
			50 deg. to C.	breccia. Strong to intense clay	alteration.	although intensely altered and							1
			Α.	alteration. Shearing and clay		bleached. Magnetism indicates							
				alteration decreasing to lower		picrite dominant protolith.							
				contact. Felsic volcanic breccia									
				dominant									
					Intense Clay alteration and shearing		905849	STD CU130		920	1405.9	80.06	
					grading to solid rock by 64.5 m.								
63.50	85.65	Tfbx		HETEROLITHIC FELSIC	weak to moderate clay alteration.	none noted, except trace pyrite in	905850		BLANK		5	1.3	0.1
				VOLCANIC BRECCIA. Same		uncommon silicified siliceous							
				unit as in Hole TA10-004 except		feldspar porphyry fragments.							
				less feldspar porphyry fragments,									
				and more picrite fragments.									
				·									
							905851	65.84	68.00	2.16	<5	1.3	0.08
85.65				EOH			905852	68.00	69.00	1.00	5	1.3	0.1

NEWBRI	DGE CA	PITAL IN			ALLIES PROPERTY	DIAMOND DRILL HOLE TA	<u>1</u> 0-008	DOWN HOLE TESTS (UNCORRECTEI						
				ION AND ORIENTATION DAT			4	DEPTH	STR		DEPTH		DIP	
N	E	ELEV	BRG	DIP AT COLLAR	DEPTH	CORE SIZE	_	45.7	6.5	-70.4	106.7	11.3	-71.5	
5638900	670970	1341	10	-70 HOLE TADOET	T / // X · 11 /	HQ	-	76.2	7.5	-71 ASSAY	137.2		-71.4	
FDOM	то	CEOCODI	STDUCTUDI	HOLE TARGET: GEOLOGICAL DESCRIPTION	Intersect the Main zone gold zone at on ALTERATION AND VEINING	MINERALIZATION	SAMD#	FROM				As ppm	Ch	
FROM 0.00	TO 17.07	CASG		CASING	ALTERATION AND VEINING	MINERALIZATION	SAMP#	FROM	10	WIDTE	AU PPD	As ppm	So ppm	
12.00	17.07	RUB		RUBBLE Miocene basalt and										
				brown dirt.										
17.07	19.95	TrNp		PICRITE Greenish-black fine grained feldspar? porphyritic rock. Soft. Moderately magnetic.	As detailed below	Usually moderately magnetic unless highly clay altered.								
			Shearing 60- 90 deg. to C. A.		17.07 - 18.05 Intensely clay altered picrite. Random carbonate veins.	Non magnetic								
17.95	18.30	Tanf		of flow with top 10 cm as pepperite.	18.3 - 18.59 Clay gouge at shallow core angles.	Non magnetic								
18.30	40.55			PICRITE Greenish-black fine grained feldspar? porphyritic rock. Soft. Moderately magnetic.	As detailed below	Usually moderately magnetic unless highly clay altered.								
					20.0-21.1 Black shear and grey clayey shears, 70-90 deg. to C. A. Late dolomite veining at high core angles. Talc fragments in shears. 23.25 - 40.5 Tectonized zone rock									
					varies from intensely pseudobrecciated to shear rubble with weak chloritic alteration.									
				Planar clay shear contact, 40 deg. to C. A.			905853	39.00	40.50	1.50	10	10.0	0.16	
40.55	40.80	SZ		Tectonized felsic volcanic zone. May be feldspar porphyry dacite but shearing destroyed porphyritic textures.	Weak chloritic alteration grading to strong grey clay alteration at bottom contact.	Weak trace very fine grained pyrite.	905854	40.50	41.50	1.00	5	12.6	0.42	
				Planar clay shear contact, 45 deg. to C. A.			905855	41.50	42.98	1.48	5	8.9	0.24	
40.80	43.75	SZ		SHEAR ZONE Picrite dominant. ~45 deg. to C. A. Picrite hosts late stage deformed stockwork slivers of felsic intrusive possibly feldspar porphyry and uncommon magnetic andesite	Strong to very strong clay alteration. 10% of interval is grey clay.	Strong trace to over 1% disseminated pyrite and stronger pyrite in slivers of feldspar porphyry and/or quartz-calcite veins and grey clay.								
				magnetic andesite. Clay contact ragged and sulphidic										

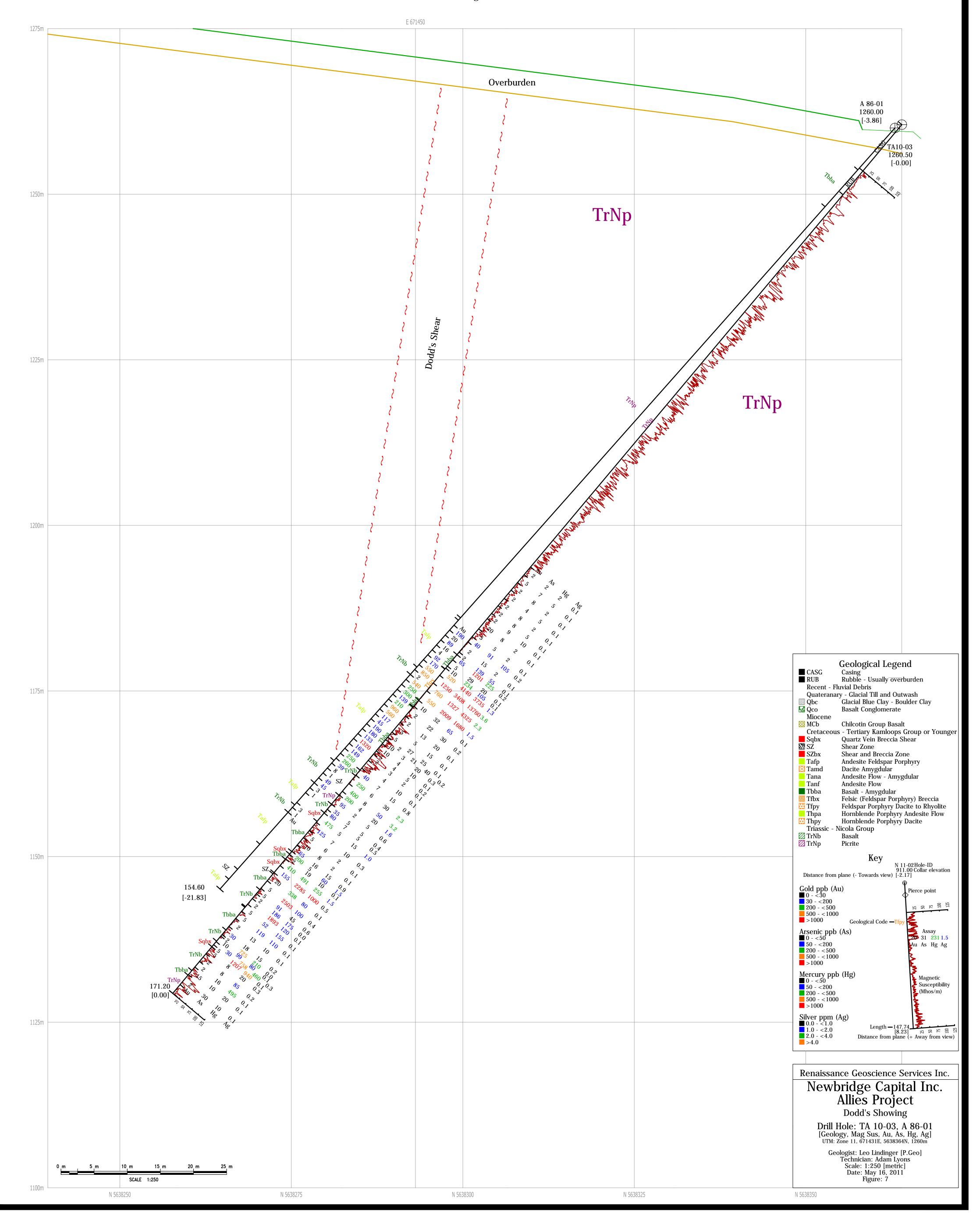
	JEOCODISTR	UCTUREGEOLOGICAL DESCRIPTION		MINERALIZATION	SAMP#				Au ppo		Sb ppn
44.15	Tanf	Strongly magnetic. Relatively	C. A. Weak carbonate alteration. Possible silicified upper and bottom	Unit is strongly magnetic. Top and bottom contact host fracture associate medium grained pyrite possibly coated with chalcopyrite	905856	42.98	44.20	1.22	5	5.2	0.46
		Clay contact. Ragged and	contacts.								
46.40	Tfpy	HORNBLENDE? or FELDSPAR PORPHYRY DACITE (Dark	Thin quartz-calcite stockwork veining	Strong trace very finely disseminated pyrite throughout. Weak planar quartz-chlorite veinlets host trace pyrite in the chlorite. Sulphide content increasing down hole.	905857	44.20	46.30	2.10	5	4.9	0.36
		Clay altered sheared contact -									
59.20	TrNp	PICRITE Greenish-black fine grained feldspar? porphyritic rock. Soft. Moderately magnetic.	As detailed below	Usually moderately magnetic unless highly clay altered.							
			46.4 - 47.5 Carbonate-hematitic planar slips host trace fine grained pyrite. Moderate pseudobreccia texture.	Trace fine grained pyrite in hematitic-carbonate slips.	905858	46.30	47.55	1.25	5	1.6	0.4
			47.5 - 58.4 Relatively unaltered. Wrench fractures with pale green to white calcite-zeolite? coatings.		905859	47.55	49.07	1.52	<5	1.1	0.14
			58.4 - 59.2 Sections of clay alteration and chloritic gouge and shearing.		905860	57.02	59.50	2.48	<5	2.8	0.12
		Clay altered zone. Lost core at contact. Shearing ~55-60 deg. to C. A.									
63.50	Тру	PORPHYRY DACITE (Dark porphyry?) similar to interval at 44.15 m. but more olive green colour and smaller and more common dark green altered phenocrysts of replaced hornblende or feldspar. Unit only hosts shearing at contacts. internally minor en echelon shear tension veins with normal to them pure carbonate tension veins. brittle chlorite-calcite lined open	Weak pervasive chloritic alteration. Thin quartz-calcite stockwork veining throughout. Interval appear weakly silicified.	Strong trace very finely disseminated pyrite throughout. Weak planar quartz-chlorite veinlets host trace pyrite in the chlorite. Sulphide content increasing down hole. Distinctly non magnetic.	905861	59.50	61.00	1.50	<>	4.9	0.3
	46.40	46.40 Tfpy 46.40 Tfpy 59.20 TrNp 59.20 IrNp 1 1 1 1 1 1 1 1	very fine grained amygdular flow. Strongly magnetic. Relatively undeformed. 46.40 Tfpy HORNBLENDE? or FELDSPAR PORPHYRY DACITE (Dark porphyry?) similar texture to dark porphyry?) similar texture to dark sporphyry?) similar texture to dark sport with 7% 2-6 mm ovoid dark spots that may be remnant hornblende or chloritized feldspar. 2 Clay altered sheared contact - significant core loss. 59.20 TrNp PICRITE Greenish-black fine grained feldspar? porphyritic rock. Soft. Moderately magnetic. 3 Clay altered zone. Lost core at contact. Shearing ~55-60 deg. to C. A. 63.50 Tfpy HORNBLENDE? or FELDSPAR PORPHYRY DACITE (Dark porphyr?) similar to interval at 44.15 m. but more olive green colour and smaller and more common dark green altered phenocrysts of replaced hornblende or chelon shear tension veins with normal to them pure carbonate tension veins.	46.40 Trfpy Clay contact. Ragged and sulphidic. carbonate alteration. Possible silicified upper and bottom contacts. 46.40 Trfpy HORNBLENDE? or FELDSPAR PORPHYRY DACITE (Dark porphyry) similar texture to dark porphyry? similar texture to dark porphyry? Weak pervasive chloritic alteration. Thin quatz-calcite stockwork veining throughout. Interval appear weakly silicified. 46.40 Trfpy PORPHYRY DACITE (Dark porphyry?) similar texture to dark porphyry? Weak pervasive chloritic alteration. Thin quatz-calcite stockwork veining throughout. Interval appear weakly silicified. 46.40 Trfpy PICRITE Greenish-black frine grained feldspar? porphyritic rock. Soft. Moderately magnetic. As detailed below 59.20 TrNp PICRITE Greenish-black frine grained feldspar? porphyritic rock. Soft. Moderately magnetic. As detailed below 46.4 - 47.5 Carbonate-hematitic planar slips host trace fine grained pyrite. Moderate pseudobreccia texture. Moderate pseudobreccia texture. Moderat	46.40 Tfpy Clay contact. Ragged and supphylic. c. A. Weak carbonate alteration. Possible silicified upper and bottom contacts. associate medium grained pyrite associate medium grained pyrite possibly coated with chaloopyrite (ver. vellow). 46.40 Tfpy LORYDBLEXDE? or FELDSPAR PORPHYRY DACITE (Dark porphyry?) similar texture to the porphyry?) similar texture to the significant core loss. Strong trace very finely disseminated pyrite throughout. Weak pervasive chloritic stockvork veining. 59.20 TrNp PICRITE Greenish-black fine grained fieldspar? porphyrite rock. Soft. Moderately magnetic. Noderately magnetic. As detailed below Usually moderately magnetic unless highly clay altered. 59.20 TrNp PICRITE Greenish-black fine grained fieldspar? porphyrite rock. Soft. Moderately magnetic. As detailed below Usually moderately magnetic unless highly clay altered. 59.20 TrNp PICRITE Greenish-black fine grained fieldspar? porphyrite rock. Soft. Moderately magnetic. Trace fine grained pyrite in hombiende or Clay altered once. Lost	Image: Strong magnic selectively undeformed.c. A. Weak carbonate tension versis -10-15 deg. to c. A. Weak carbonate tension versis -10-15 deg. to associate medium grained host fracture associate medium grained host of possible silicified upper and bottom contacts.and bottom contact host fracture associate medium grained host host contact.46.40TfpyClay contact. Ragged and subphide.Weak pervasive chloritic alteration. PORPHYRY DACITE (Dark porphyry) similar texture to dark porphyry) similar texture to dark porphyry) similar texture to dark porphyry) similar texture to dark porthyry at surface but (fner grained. Rock is a grey green with 7% 2-6 mm oxid dark spots that may be remnant hombiendeMeak pervasive chloritic alteration. Introughout. Interval appear weakly isilified.Strong trace very finely discention. Weak planar quatrz-chlorite weakly silified.Strong trace very finely discention. Trace fine grained pyrite in hematitic-carbonate slips.Strong trace very finely discention. Weak planar quatrz-chlorite weakly is bost trace fine grained pyrite increasing down hole.90585959.20TrNpPCRHTE Greensib-black fine grained foldspar? pophyritic rock. Soft. Moderately magnetic.A 64 - 47.5 Carbonate-hematitic planar slips host trace fine grained pyrite increas slips.Meas slips.90585963.50Clay altered zone. Lost core at c. A.Clay altered zone. Lost core at c. A.St	Image: Strong wing wing with construction with with construction with construction with with construction with construction with with construction with with construction with construction with with with construction with with with with with with with with	Image: Strong mage: Strong mage: Relatively undeformed.carbonate tension veins -10-15 Ge. to associate medium grained pyrite possible silicified upper and bottom contact. Relatively possible silicified upper and bottom (vert velow)carbonate alteration possible silicified upper and bottom possible silicified upper and bottom (vert velow)carbonate alteration possible silicified upper and bottom possible silicified upper and bottom (vert velow)carbonate alteration possible silicified upper and bottom possible silicified upper and bottom (vert velow)from grane and possible possible silicified upper and bottom possible silicified upper and bottom (vert velow)from grane and possible discussionfrom grane possible silicified upper and bottom possible silicified upper and bottom discussion discussionfrom grane and possible discussionfrom grane possible silicified upper and bottom possible silicified upper and bottom discussionfrom grane and possible discussion discussionfrom grane possible silicified upper and bottom possible silicified upper and bottom discussion discussionfrom grane and possible discussion discussion discussionfrom grane and possible discussion discussion discussion discussion discussionfrom grane and possible discussion discussion discussion discussion discussionfrom grane and possible discussion discussion discussion discussion discussionfrom grane and possible discussion discussion discussionfrom grane and possible discussion discussion discussionfrom grane and possible discussion discussion discussionfrom grane and possible discussion discussionfrom grane discus	Image: Series of the series	Image: Serie of the series of t	Image: series of the series

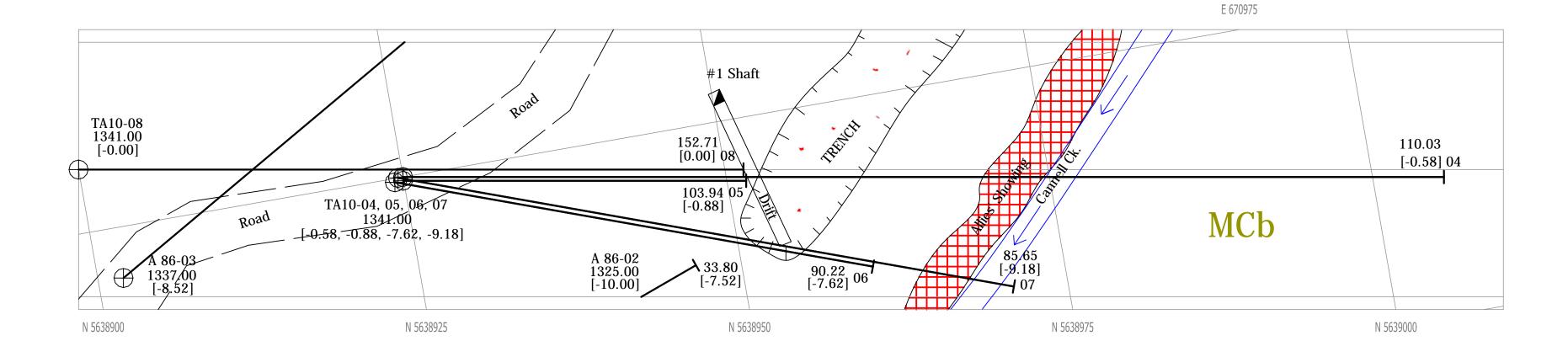

FROM	ТО	GEOCODESTRUCTUR	EGEOLOGICAL DESCRIPTION	ALTERATION AND VEINING	MINERALIZATION		FROM		WIDTH			
			40 cm thick rubbly shear zone - very strong chlorite- montmorillanite clay altered. ~55- 60 deg. to C. A.			905862		62.50	1.50	<5	0.9	0.18
63.50	79.40	TrNp	PICRITE Greenish-black fine grained feldspar? porphyritic rock. Soft. Moderately magnetic.	Strong clay alteration and chlorite pseudobreccia texture with dolomite vein fragments.	Usually moderately magnetic unless highly clay altered.	905863	62.50	64.31	1.81	5	9.3	0.64
			Dolomite veined clay altered zone. Lost core at contact. Shearing ~50 deg. to C. A.	Strong grey clay alteration		905864	64.31	65.84	1.53	5	4.0	0.54
79.40	79.80	Tanf	GREY FINE GRAINED ANDESITIC FELDSPAR PORPHYRY.	Intensely clay altered and probably bleached. Rock has hardness of 0. Relict feldspar phenocrysts still evident.	Faint trace very fine grained pyrite.	905865	78.40	79.30	0.90	<5	6.2	0.28
79.80	80.00		Picrite dominant shear zone. Shearing, ~60 deg. to C. A. Strong dolomitic shear veins.			905866	79.30	79.90	0.60	<5	0.8	0.08
80.00	80.75	Тһру	HORNBLENDE PORPHYRY DACITE (Dark porphyry?) Similar texture to dark porphyry at surface.	Weak pervasive chloritic alteration. Thin quartz-calcite stockwork veining throughout. Hornblende altered to chlorite or still 'fresh"	Distinctly non magnetic. Weak trace very finely disseminated pyrite and rare chalcopyrite at upper contact. Carbonate +/- quartz fracture veinlets host trace pyrite and trace to 2% chalcopyrite.	905867	79.90	80.90	1.00	<5	0.6	0.2
			Grey clay alteration. Sheared, lost and ground core at contact. Shearing ~50 deg. to C. A. Late dolomitic shear veins.									
80.75	85.25	TrNp	PICRITE Greenish-black fine grained feldspar? porphyritic rock. Soft. Moderately magnetic.	Weak to moderate talc and dolomitic alteration. Local clay altered slips.	Strongly magnetic	905868	80.90	82.00	1.10	5	1.1	0.2
			Weakly clay altered contact. Minor bleaching. ~85 deg. to C. A.			905869	85.00	86.10	1.10	<5	1.4	0.54
85.25	93.27	TrNb	AUGITE PORPHYRY TRACHYBASALT Buff green with dark chloritically altered hornblende.	Strongly chloritically altered green clay common on fractures. 'speckled" white dolomite spots and veinlets. Locally intense chlorite-clay alteration destroved rock fabric.	Common trace very finely disseminated pyrite. Possible rare trace chalcopyrite. Also moderately magnetic.	905870	86.10	88.00	1.90	<5	1.4	0.46
			Lost core at contact.			905871	88.00	89.88	1.88	<5	1.4	0.42
93.27	94.90	Tfpy	FELDSPAR PORPHYRY DACITE. 10% large pale feldspars in a buff green very fine grained groundmass.			905872	89.88	92.00	2.12	<5	1.3	0.24
			Clay altered sheared? Contact, 70 deg. to C. A.			905873	92.00	93.27	1.27	<5	1.2	0.38

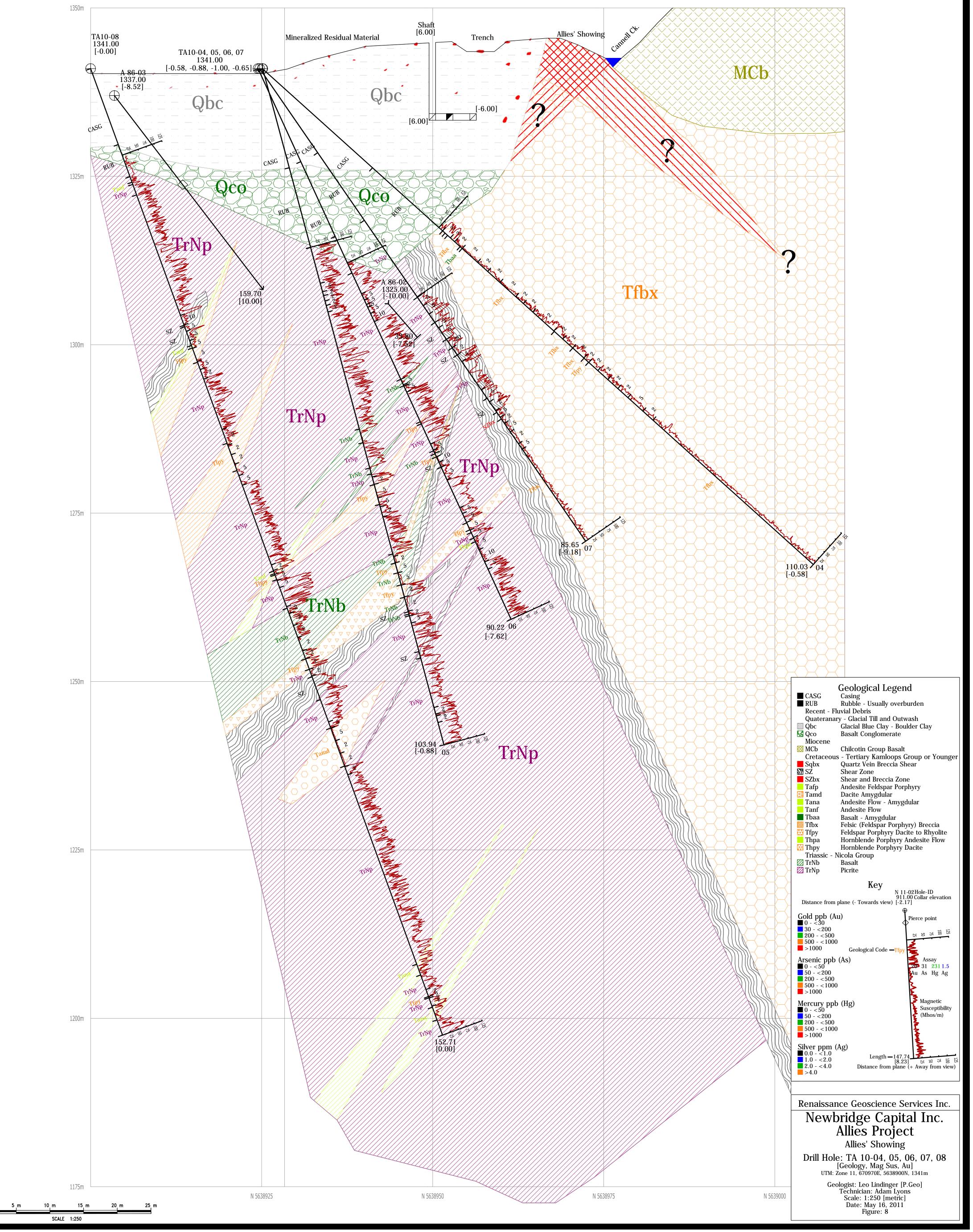

			SIRCCICRI	GEOLOGICAL DESCRIPTION		MINERALIZATION	SAMP#						Sb pp
94.90	96.10	TrNp		OLIVINE? PORPHYRY PICRITE. Dark olive green. (has	Bleached. Weakly carbonate veined. Locally strongly clay altered.	1-2% finely disseminated pyrite throughout. Weakly magnetic.	905874	93.27	94.90	1.63	<5	1.0	0.4
				appearance of augite porphyry)	, , , , ,								
				Sheared dolomite veined contact,			905875	94.90	96.00	1.10	<5	1.0	0.3
				80 deg. to C. A.									
96.10	99.70	SZ	Weak to	SHEAR ZONE picrite and	Strong to moderate chloritic alteration.	Moderately magnetic except for							
			usually	augite porphyry dominant.	Interval is comprised of 10% variably	veins.							
			intensely		deformed (stockwork in unsheared								
			sheared ~70-		intervals and vein shear subparrallel								
			90 deg. to C.		fragments in sheared zones.								
			A.										
				Ragged sheared contact, 70 deg.									
				to C. A.									
99.70	104.20	TrNp		OLIVINE? PORPHYRY	Moderate carbonate stockwork veining.	1-2% finely disseminated pyrite							
				PICRITE. Dark olive green.	Moderately chloritically altered.	throughout.							
				Weakly magnetic bleached rock.									
					99.37 small grey clay gouge zone. No		905876	103.20	104.20	1.00	5	5.0	0.1
				deg. to C.a.	sulphides observed.								
104.20	110.20	Tamd		AMYGDULAR DACITE. Olive	Strong chloritic alteration give this rock		905877	104.20	106.2	2.00	5	9.5	0.0
				green massive fine grained	a dark green colour.	grained pyrite throughout unit.							
				groundmass with 15% variable									
				sized flow aligned zeolite filled									
				amvgdules.									
				Indistinct undulating intrusive			905878	106.2	108.20	2.00	<5	5.7	0.0
				contact ~90 deg. to C. A.				400.00		• • •	-		
110.20	141.50	TrNp		PICRITE Greenish-black fine	Moderate to strong chloritic alteration.	Magnetic.	905879	108.20	110.30	2.10	<5	3.7	0.0
				grained feldspar? porphyritic	Weak to locally moderate carbonate								
				rock. Soft. Moderately magnetic.	stockwork veining. Local intense								
					chlorite-grey clay alteration and gouge.								
					132 Increasing chloritic alteration.	134.8 Hematitic coated shear	905880	110.30	111.56	1.26	<5	2.3	0.0
				136.4 - 136.7 Shear zone - 60 deg.									
				to C. A.									
					Moderate pervasive chloritic alteration.	Strongly magnetic							
				picrite?	Ĩ								
				141.5 Ragged sheared intrusive									
				contact									
141.50	143.20	Tana	Flow fabric	GREY AMYGDALOIDAL	Weak pervasive clay alteration	Rare trace very fine grained							
			45 deg. to C.	ANDESITE - Kamloops group?		pyrite. Interval is moderately							
			Α.	Massive fresh looking rock with 1		magnetic.							
				to 6 mm elongate ovoid calcite									
				amvgdales.									
Ţ	Т			Strongly sheared picrite contact	`								
				~undulating. 60 deg. to C. A.									
143.20	146.61	TrNp		PICRITE - greenish-black fine	Moderate to strong chloritic alteration.	Moderately magnetic.							
45.20				grained olivine? porphyritic rock.	Weak to locally moderate carbonate								
	1												
				Soft to medium hard.	stockwork veining. Local intense								


FROM	ТО	GEOCODI	STRUCTURE	GEOLOGICAL DESCRIPTION	ALTERATION AND VEINING	MINERALIZATION	SAMP#	FROM	TO	WIDTH	Au ppb	As ppm	Sb ppm
				Clay altered slip. 60 deg. to C. A.			905881	145.50	146.61	1.11	<5	2.6	0.1
146.61	146.81	Tfpy		FELDSPAR PORPHYRY DACITE. Very indistinct due to strong chloritic alteration. Faint	Possibly silicified with chloritic overprint.	None noted. Distinctly non magnetic.	905882	146.61	146.85	0.24	<5	1.9	0.08
				pale olive green feldspar phenocrysts in a fine grained intermediate (andesitic?)									
				groundmass. Clayey talcy contact. 75 deg. to C. A.			905883	146.85	148.13	1.28	<5	4.3	0.08
146.81	148.30	TrNp		PICRITE - greenish-black fine grained feldspar? porphyritic rock. Soft. Moderately magnetic.	Moderate pseudobrecciation. Locally strong tensional carbonate-talc vein stockwork and fragments in sheared zones.	Magnetic	905884	SI	TD CU13	0	<5	1295.0	80.86
				Sheared chloritic contact. 50 deg. to C. A.	zones.		905885		BLANK		<5	1.3	0.06
148.30	150.30	Tana	Flow fabric 40 deg. to C. A.	GREY AMYGDALOIDAL ANDESITE Kamloops group?	Weak pervasive clay alteration. About 6 cm spaced crosscutting calcite fracture veinlets. 40-75 deg. to C. A.	Rare trace very fine grained pyrite. Interval is moderately magnetic.							
				Sheared chloritic contact 50 deg. to C. A.									
150.30	152.71	TrNp		PICRITE Greenish-black fine grained feldspar? porphyritic rock. Soft. Moderately magnetic.	Moderate pseudobrecciation. Locally strong tensional carbonate-talc vein stockwork and fragments in sheared zones.	Magnetic							
152.71				END OF HOLE	20105.								

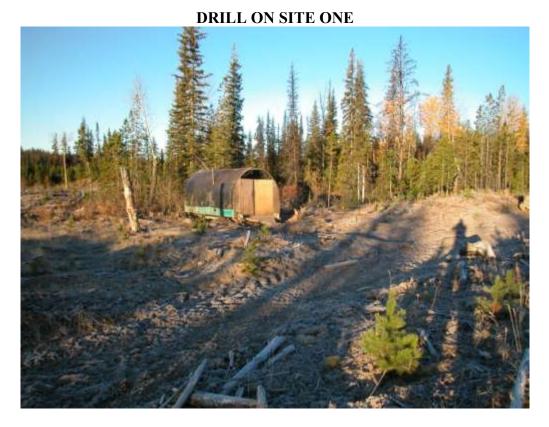
Diamond Drilling and Reclamation Assessment Report on the Treadwell-Allies Property Newbridge Capital Inc. May 17, 2011


Appendix IV – Figures 6, 7, 8





Facing 195



Diamond Drilling and Reclamation Assessment Report on the Treadwell-Allies Property Newbridge Capital Inc. May 17, 2011

Appendix V – Reclamation Images

Х

Diamond Drilling and Reclamation Assessment Report on the Treadwell-Allies Property Newbridge Capital Inc. May 17, 2011

DRILL ON SITE TWO

RENAISSANCE GEOSCIENCE SERVICES – Leopold. Lindinger, P.Geo. 680 Dairy Road, Kamloops, B.C. V2B-8N5