BC Geological Survey Assessment Report 32301

GEOCHEMICAL REPORT ON THE GOLD SUMMIT PROJECT 2010

LILLOOET MINING DIVISION BRITISH COLUMBIA

NTS 092J Latitude - 1 1 1 W L ongitude UTM Zone 10, NAD 83 5636000N 535000E

Prepared for:

Owner & Operator: St. Elias Mines

BY

James Thom, M.Sc.

December 11th, 2010

Contents

Contents

1.0 SUMMARY	.4
2.0 INTRODUCTION	.5
2.1 Property Description and Location	.5
2.2 Access, Climate, Local Resources and Physiography	.6
3.0 HISTORY	.8
3.1 Regional Exploration History	.8
3.2 History of Exploration, Gold Summit Claim Group	.8
4.0 GEOLOGY	17
4.1 Regional Geology	17
4.2 Local Geology	17
5.0 2010 EXPLORATION PROGRAM	19
5.1 Summary of exploration work carried out in 2010	19
5.1 SOIL SAMPLING GEOCHEMISTRY	20
5.2 Rock Samples	21
6.0 CONCLUSIONS & RECOMENDATIONS	25
7.0 STATEMENT OF QUALIFICATIONS	26

LIST OF TABLES

TABLE 1: Gold Summit Claim Group	6
TABLE 2: Summary of Gold Summit Exploration History	9
TABLE 3: Gold Summit Mines Drill Intersections	15
TABLE 4: Elements analyzed by ICP	18
TABLE 5: Soil Geochem Statistics	19

LIST OF FIGURES

A1
A1

APPENDIX 1. Figures APPENDIX 2. UTM coordinates for soil stations APPENDIX 3. Analytical Certificates

1.0 SUMMARY

This report describes a program of exploration undertaken during October 2010 on the Gold Summit Property. The Gold Summit property contains two claim groups; 1) the Gold Summit Core: 85% owned by St. Elias Mines Ltd. and 15% owned by Chai Cha Na; 2) Gold Summit Extensions: 100% owned by St Elias Mines Ltd.

The Gold Summit property is located in southwest British Columbia, Canada; approximately 185 kilometres north of Vancouver. The property consists of a single contiguous claim block of eleven mineral claims, covering approximately 3200 hectares or 32 km². It is best accessed by a combination of paved and gravel roads from either Bralorne or Lillooet, about 25 km east or 50 km west of the claims, respectively. The property lies within the Bridge River Mining District, which hosts the prolific Bralorne-Pioneer gold-silver mines. Reported historical production of the Bralorne-Pioneer camp is about 4.15 million ounces of gold and 0.95 million ounces of silver.

The property has been explored intermittently since 1907. Early 20^{°°} century exploration efforts were dominated by physical work; including property access roads, two short adits and some surface trenching. During the early 1980s and early 1990s, two junior exploration companies carried out two separate but detailed exploration campaigns. Collectively, these campaigns included airborne geophysics, property-wide prospecting and grid based soil sampling, geological mapping, ground geophysics, mechanized trenching and, perhaps, up to nine drill holes.

The Gold Summit property hosts a number of roughly east-trending, shear hosted, mesothermal gold-silver ± polymetallic quartz vein occurrences. Historical exploration efforts have identified a lengthy quartz vein/shear (Adit Zone) and several other less extensive quartz veins/shears. In many cases, the veins are masked by overburden or are structurally offset. The Adit Zone hosts the property"s main occurrences of quartz-sulphide vein mineralization. This gold-enriched structure has been traced on surface for a distance of approximately 400 metres, varying in width from 0.25 metres to about 2.0 metres; with dip orientations ranging from 30° to vertical. Historical reports indicate that select high-grade Adit Zone quartz vein samples can yield gold assays of greater than 1.0 opt. However, the gold-enriched vein-shear material typically reports gold values on the order of 0.1 to 0.3 opt gold.

This report summarizes all known information pertaining to the early stage Gold Summit mineral exploration venture. More specifically, the report describes the underlying geology of the project area, summarizes the property's exploration history and describes the exploration program carried out in October of 2010. The report was prepared at the request of St. Elias Mines and was written under the guidelines of Mineral Tenure Act.

The program of exploration for 2010 carried out additional detail soil sampling to further the work carried out by Chai Cha Na in 2008.

2.0 INTRODUCTION

This report has been written in order to satisfy assessment requirements. The report describes the underlying geology of the project area, summarizes the property's exploration history and describes the exploration program carried out between September 28th to October 4th of 2010 on the Gold Summit Claim group, 100% owned and operated by St. Elias Mines.

The 2010 exploration work was carried out by the author of this report with the aid of Gerard Gallissant

All UTM locations given are from the NAD83 ZONE10 projection.

2.1 Property Description and Location

The Gold Summit Property is located in the Lillooet Mining Division, in the Squamish-Lillooet Regional District, of southwestern British Columbia, Canada. The property is within the Bridge River Mining District on the north side of Carpenter Lake. The mineral claims comprising the Gold Summit property are centered roughly at NAD 83 UTM Zone 10, 5636000N. 535000 . 0 2° 38.3° N.Latitude; 122 30° 13.1° W. Longitude), and situated on N.T.S. map sheet 092J (1:250,000), 092J/15 and 092J/16 (1:50,000) and 92J.088 and 92J.098 (1:20,000). The property consists of eleven (11) contiguous MTO Cell Claims covering approximately 3200 hectares. The Gold Summit property contains two claim groups; 1) the Gold Summit Core: 85% owned by St. Elias Mines Ltd. and 15% owned by Chai Cha Na; 2) Gold Summit Extensions: 100% owned by St Elias Mines Ltd. Figures 1 and 2 illustrate project location and infrastructure at two scales.

St. Elias Mines holds a 100% interest in 8 contiguous mineral tenures and 85% interest in 3 contiguous mineral claims that cover a square shaped package of ground located approximately 185 kilometers north of Vancouver, British Columbia. All of the claims which comprise the Gold Summit Property were staked pursuant to the BC Ministry of Energy and Mines MTO system (Mineral Titles Online System). The earliest expiry date of the claim package based on the acceptance of this report is December 15, 2011.

The mineral cell title claim statistics are summarized in Table 1; note that this claim information is not a legal title opinion but is a compilation of claims data based on the author's review of the government of the British Columbia Mineral Rights inquiry website (BC Mineral Titles December 02, 2010). The mineral claims do not have to be legally surveyed; since they are BC Government established mineral cell title claim.

OWNER	OPERATOR	TENURE #	SIZE (Ha)	EXPIRY DATE* M/D/Yr
St. Elias Mines 85%	St. Elias Mines	550299	285.53	2011/dec/15
Chai Cha Na 15% St. Elias Mines 85%				
Chai Cha Na 15%	St. Elias Mines	550300	856.57	2011/dec/15
St. Elias Mines 85% Chai Cha Na 15%	St. Elias Mines	550301	61.16	2011/dec/15
St. Elias Mines 100%	St. Elias Mines	604792	81.56	2011/dec/15
St. Elias Mines 100%	St. Elias Mines	606195	122.41	2011/dec/15
St. Elias Mines 100%	St. Elias Mines	735122	203.84	2011/dec/15
St. Elias Mines 100%	St. Elias Mines	735142	203.82	2011/dec/15
St. Elias Mines 100%	St. Elias Mines	735783	101.89	2011/dec/15
St. Elias Mines 100%	St. Elias Mines	735803	285.25	2011/dec/15
St. Elias Mines 100%	St. Elias Mines	740362	489.44	2011/dec/15
St. Elias Mines 100%	St. Elias Mines	748682	509.82	2011/dec/15
		Total	3201.29	

*Expiry date based on the acceptance of this report.

2.2 Access, Climate, Local Resources and Physiography

The Gold Summit property is located in south coastal British Columbia, Canada, approximately 185 km north of Vancouver. The property is best accessed by a combination of paved and gravel roads from either Bralorne or Lillooet, about 25 km east or 50 km west of the claims, respectively. Paved highway 40 follows the north shore of Carpenter Lake passing through the south end of the property. Access to the north and central portions of the property is first by the Marshall Lake forestry access gravel road and then by a "new" dirt-logging road, which runs south through the claims. All roads are two-wheel drive accessible, but only in ideal weather conditions. A few ancient four-wheel drive access roads criss-cross the property but are now over grown by young vegetation and are infrequently eroded. These roads can be easily rehabilitated with minimal heavy equipment efforts.

The closest full service community, providing extensive infrastructure and skilled manpower is Lillooet, although Bralorne can provide acceptable exploration program necessities. Accommodations available include two hotels in Gold Bridge and Tyax Lodge (north of Gold Bridge). There are many campsites located on lakes and rivers in the vicinity as well. Major electrical power lines cut through the south end of the property, but no exploration related infrastructure is present on or near the claims. The elevated central region of the property has no immediately accessible water to facilitate exploration efforts. Most water will have to be trucked or pumped from either Carpenter Lake or Marshall Creek to accommodate drilling programs in this region.

The claims cover the eastern extent of Marshall Ridge, which is bound to the north by Marshall Creek and to the south by Carpenter Lake. The glacially derived ridge rises from about 654 m (2145 feet) at Carpenter Lake to a high point of 1628 m (5340 feet), on the top of Marshall Ridge. The ridge is moderately steep and is generally accessible by heavy earth moving equipment. The ridge top is largely flat.

The property is covered by thick stands of fir and pine trees. Vegetation can be dense at lower elevations, making walking difficult. Deadfall trees and ground level debris are also abundant. Overburden cover is extensive and commonly shallow at less than one metre, but can be locally greater than five metres. Soils contain a well-developed red-brown coloured B-horizon (Sampson 1988).

The property climate is typical of the south central Coast Mountain region of British Columbia, being generally free of snow from early May through October. The closest which the Government of Canada weather community for website (weatheroffice.ec.gc.ca) reports weather statistics is Whistler. (Note: while the Gold Summit property is only 90 km north of Whistler, but it is at slightly higher elevation; therefore property temperature ranges and total of precipitation may tend to be more extreme). Whistler's average yearly rainfall is about 8 0 mm; the months from October to February experience the most precipitation. Average annual snowfall in the area is about 411cm. An extensive snow pack on the Gold Summit claims will prohibit most winter work, particularly on those portions of the property at higher elevations. Summers are temperate, with average daytime temperatures from 6C to 16C (extreme summer high: ~38C). During the winter, the average daytime temperatures range from 0C to -4C (extreme winter low: -30C).

3.0 HISTORY

Where no specific reference is listed, information has been taken from the British Columbia Minister of Mines Annual reports, Ministry of Energy and Mines Assessment Report Index System or from the BC Geological Survey Branch Mineral Inventory File (MINFILE).

3.1 Regional Exploration History

The Gold Summit project is located within the northern part of the Bridge River mining camp, which is British Columbia"s foremost historical gold producer from low sulphide mesothermal quartz veins. The Bridge River mining camp covers approximately 1500 square kilometres of mountainous terrain and is bounded by the Coast Range on the west and southwest and by the Shulaps Range on the northeast. The camp encompasses more than 60 gold bearing quartz vein mineral occurrences five of which were mines. Bralorne and Pioneer were the two larger producers. Together these two mines produced over 4 million ounces of gold, making them the foremost gold producers in British Columbia"s history.

3.2 History of Exploration, Gold Summit Claim Group

(Adapted from White & Pezzot (1981), White (1981), Landsburg (1981), Sampson (1988), Brewer (1988), Miller-Tait (1990a-c), Miller-Tait & Church (1994) and Moor (2007))

The following is a brief summary of the historical exploration efforts carried out on the Gold Summit property. Figures 3 and 4 are schematic historical exploration compilation reference maps and Table 2 summarizes all public documents recording exploration on the property.

There are 11 assessment reports on the ARIS database recording exploration work on the property and one 43-101 technical review carried out in the Gold Summit area. This current report will make the 12th modern exploration program carried out in this area.

Table 2. Summary			listory		[]
Owner/Area	Geochemistry	Geophysics	Trenching	Drilling	Reference
Quinto Mining Property		Air: Mag and EM			White & Pezzot (1981) ARIS: 9608
Quinto Mining Q1, Q2, Q3, Q4	956 soils	Ground: Mag and EM			White (1981) ARIS: 10453
Quinto Mining Ridge & Creek Adits	66 rocks				Landsberg (1981) ARIS: 10695
Quinto Mining Q2, Q4		Ground: IP			White (1982) ARIS: 11224
Gold Summit Mines North & South Grids	988 soils				Sampson (1988) ARIS: 17958
Gold Summit Mines Property		Air: 166.7 km Mag and EM			Brewer (1988) ARIS: 18440
Gold Summit Mines	319 rock		44 trenches		Miller-Tait (1990a) ARIS: 19936
Gold Summit Mines	36 soils				Miller-Tait (1990b) ARIS: 20432
Gold Summit Mines	611 soils 27 rocks		18 trenches		Miller-Tait (1990c) ARIS: 21159
Gold Summit Mines	178 soils		10 trenches	6 Holes: 984m	Miller-Tait and Church (1994) ARIS: 23627
Madman Mining	10 rocks				Moore (2007) SEDAR
St. Elias Mines Chai Cha Na	500 soils				Thom (2008) ARIS: 30975
St. Elias Mines Chai Cha Na	248 soil 3 rock				This report

Table 2. Summary of Gold Summit Exploration History

1907 to 1912

The earliest report of an original mineral enriched vein discovery comes from the 1907 British Columbia Department of Mines Annual Report. This report indicates that the Gold Summit property was first known as both the Summit and Paymuck. The report states that a galena, gold and silver enriched vein could be traced for 1000 feet (304 metres) on surface. A seventy-foot (21 metres) long adit (Upper Adit?) was driven into the hillside falling short of the vein. In addition, a large north-south trending basic dyke was discovered and was reported to be related to several quartz veins carrying iron, zinc and lead sulphides with appreciable gold and silver values (Lower Adit?). Over next few years, a number of attempts to intercept the quartz vein were made by extending the Upper Adit from an original easterly trend to north and then northeast. The main vein was finally achieved and a hand sorted mineralized vein sample was collected and assayed; reported results are "\$8 gold, 2.2 opt silver and 10% lead". The 1912 British Columbia Department of Mines Annual Report mentions limited work was carried out on the previously identified quartz-sulphide veins related to the basic dike and on another surface quartz-sulphide vein occurrence. Work was halted after it was concluded that identified mineralization was irregular and of limited size.

1944 Bridge River Exploration

The property lied dormant until 1944, when L. J. Russell prospected the property and discovered additional mineralized outcrops on the ridge near the old Summit workings (Upper and Lower adits). At this time, the claims were held by Bridge River Exploration Ltd. who carried out an additional limited program of road construction, adit extension and surface trenching on several quartz vein showings. The claims were later allowed to lapse.

1980 to 1982 Quinto Mining Corporation

The first modern "Marshall Ridge Area" exploration program was initiated by Quinto Mining Corporation (Vancouver BC) in 1980, when the company carried out the physical work of building and upgrading numerous property access roads. In June of 1981, Western Geophysical Aerodata Ltd. completed a 92-kilometre airborne magnetometer and VLF-EM survey over the general area of the Gold Summit property. The survey successfully outlined (a) the major Marshall Creek fault zone and (b) located four areas of coincident VLF-EM and magnetic anomalies. During the years of <u>1</u>981 and 1982, Quinto Mining focussed on four grid areas (Q1 to Q4) covering the four airborne anomalies. The company carried out programs of ground geophysical programs (VLF-EM, magnetometer, IP) geochemical soil sampling, geological mapping and sampling of old workings. Sampson (1988) reports that, Quinto Mining may have drilled at least three holes in the Adit Zone area, for which there are no known reports. The results of drilling are unknown, however work carried out by Sampson has located two old drill pad sites.

Q1 Grid

The Q1 grid was located on the northeast side of Marshall Creek over the confluence of Hog Creek. This grid is located on the far northeast corner of the Gold Summit property (claim 5503001). The grid covered an airborne EM-magnetic anomaly, where the northwest nose of a magnetic high intersected a broad EM conductor. These same features were defined by the ground geophysical surveys. The combined EM data apparently suggested that a northerly trending fault intersects a zone of a magnetite bearing lithologies, perhaps an ultramafic (White 1980)? Geochemical soil sample results identified no copper, silver or zinc anomalies, but did show a two-line gold anomaly down slope from some ancient workings; the B.C.T. 1 to 4 adits. These adits were driven on narrow, vertically dipping, weak fractures that trend about 160°. The dominant host rock is a siliceous schistose argillite, with weakly disseminated pyrite. All rock samples collected from these adits are reported to be sub-anomalous in base and precious metals. Quinto concluded that the source of the gold in-soil values came from an outcropping quartz vein in the north trending lineament.

Q2 Grid

The centre of the Q2 grid was located approximately 700 metres north of the Upper and Lower adits, covering a weak airborne EM response and a magnetic high anomaly. The ground VLF-EM geophysical survey did not detect any definitive responses. The magnetometer results were erratic, identifying small isolated magnetic highs. Soil sample results showed several isolated single sample gold anomalies and no copper or silver anomalies. An open ended and strong zinc anomaly (high to 505 ppm) trends northward off the northern extent of the grid.

Q3 Grid

The Q3 grid was located on the far southeast end of Marshall Ridge, within the southeast corner of the present day Gold Summit property. The grid covered a weak NNE to SSW trending VLF anomaly. The magnetic response of the Q3 grid area is generally subdued. Soil sampling identified no precious metal anomalies, but did identify a weak zinc pattern, that correlated to the VLF anomaly. Quinto concluded that the co-incident VLF-zinc anomaly is related to a zinc rich phyllite lithology. The company also collected rock samples from the P.S. II and M.C.P. adits located on the north and south parts of the Q3 grid, respectively. The P.S. II adit was driven 30.5 metres on a vertical dipping northwest trending fracture, which cut a pyrite-rich rhyolite unit. All rock samples collected from this showing report sub-anomalous values except for a single grab sample collected from a 6.0 metre wide shear, that cross cut the adit in a easterly direction. This sample yielded 6.5 gpt silver and 4.8 gpt gold. The forty metre long M.C.P. adit was driven on a vertical fracture (trend?) cutting volcanics. Samples collected from this mineral occurrence yielded only trace values of gold, silver, copper, zinc and lead.

Q4 Grid

In 1981, the Q4 grid was located southwest of the peak of Marshall Ridge, approximately 400m south of the main area of historical workings. Later, in 1982, the grid was extended northeast, to cover the main workings of the Adit Zone. Soil samples were collected on the initial 1981 portion of the grid Q4, omitting the main Adit Zone area. Soil sample results for this area defined a generally NE-SW trending, strong and roughly co-incident zinc-copper soil sample anomaly. Zinc values ranged from 75 to 900 ppm, while copper high values were on the order of 60 to 100 ppm. This zinc-copper anomaly is co-incident with a cluster of gold highs (high value of 280 ppb) and erratic silver values. A 200m x 300m sized silver soil anomaly was discovered on the southwest limit of the Q4 grid (a local high value of 15 ppm).

In August 1982, Quinto Mining completed an induced polarization geophysical survey over the Q4 and parts of the Q2 grids. Results of this survey indicated areas of strong chargeability, some eight times background, extending laterally some 800 metres southwesterly from the adits (Q4 Grid). An apparent resistivity-low anomaly trends southwesterly from the adit workings for approximately one kilometre. This resistivity anomaly is attributed to a sheared graphitic argillite horizon. An approximately 250m x 00m "satellite" chargeability anomaly, which trends roughly east-west, was detected about 600-700 metres south of the adits (Q4 grid). This chargeability anomaly is nearly

co-incident with a number of apparent resistivity-low anomalies, which dominantly trend east to west. This area is reportedly underlain by silicified and jasperoidal lithologies (White 1982). A strong chargeability anomaly appears to extend northward towards on to grid Q2, but survey coverage is sparse.

1987 to 1995 Gold Summit Mines Ltd.

1) During the months of December 1987 and January 1988, Columbia Airborne Geophysical conducted a helicopter based airborne magnetometer and VLF-EM survey over Marshall Ridge, for Gold Summit Mines (Vancouver BC). Columbia flew 166.7 kilometres of line following the contours of Marshall Ridge, with an average line spacing of approximately 100 to 200 metres (Brewer 1988). The airborne survey identified:

(1) The major northwest trending Marshall River fault structure.

(2) A pair of northeast trending lineaments at the centre of the present day claims.

(3) A group of four sub-parallel north trending lineations on the south slope of Marshall Ridge.

(4) A single weak north-northwest trending VLF-EM conductive zone on the north slope of Marshall Ridge.

(5) A bulls eye magnetic high over the peak of Marshall Ridge, interpreted to be representative of a buried intrusive plug of basic composition.

2) In July 1987 and August 1988, Gold Summit Mines carried out a comprehensive exploration program including 30.5 kilometres of grid line establishment, collection of 988 geochemical soil samples, geological mapping and prospecting and re-sampling of known showings (adits and trenches) over the southwestern and northeastern slopes of Marshall Ridge - called the South and North grids respectively (Sampson 1988). The geology of the grids was mapped and soil samples were collected on 100 metre spaced lines at 25 metre intervals. The samples were analysed by ICP for silver, arsenic, copper, lead, antimony, zinc and Atomic Absorption for gold. Sampson reports the results of the soil sample survey of the two grids as follows.

South Grid

The South grid was located on the southwest slope of Marshall Ridge, covering the northeast extent of the Q4 Quinto grid. A number of northeast trending soil anomalies were identified flanking the Upper and Lower adit area. A co-incident gold-arsenic-silver-lead-zinc ± copper anomaly was delineated south of the main workings. This anomaly extends for approximately 700 metres down the south-facing slope of Marshall Ridge. Gold values range from 20 ppb to 1,850 ppb. A series of shorter (300-400m long) sub-parallel gold-arsenic-silver-lead-zinc ± copper anomalies are located north of the mains workings area. Two small (<300 m long) roughly northeast trending anomalies were identified on the southwest part of the grid (Lines 14N to 16N). These

soil anomalies report subdued, but co-incident gold-arsenic-silver-lead-zinc ± copper values.

North Grid

The North grid was located on the northeast slope of Marshall Ridge, covering ground between the Q2 and Q1 Quinto grids. Overall, the geochemical soil sample results were sub-anomalous. Only a single narrow (~25m wide) and weak arsenic-gold anomaly was delineated; extending for approximately 400 metres in an easterly direction through the west-centre part of the grid. Numerous rock samples were collected from the preexisting adits and trenches. Three grab samples of sulphide rich quartz vein material, collected from the Lower adit, reported gold values of 0.239, 1.187 and 0.316 opt. Grab samples collected from the Upper adit were collected from an irregular quartz vein with varying amounts of pyrite, arsenopyrite, galena and sphalerite. Gold values of the five samples collected ranged from 0.07 opt to 0.316 opt gold. The samples were analysed for gold exclusively. Sampson recommended a follow-up program of mechanized trenching and diamond drilling of the more significant soil anomalies.

3) During the period from August to October 1989, Gold Summit Mines followed up the anomalous geochemical soil survey results of the previous year by carrying out a mechanical trenching program. The company excavated forty-four trenches (+1000 metres total) and collected 319 rock samples, which were analysed by fire assay for gold only. Principal trenching efforts focused on two areas within the South Grid: (1) "Area 1" the largest and more significant multi-element soil anomaly east of the Upper-Lower adit workings and 2) "Area 2" the smaller and somewhat subdued multi-element anomaly, on the southwest corner of the grid. Several overburden-masked veins were discovered in both areas. Chip sampling of veins, in Area 1, report values of up to 0.816 opt gold. These veins are interpreted to be an extension of the quartz vein/shear mineralization identified in the Upper adit. Trenches in Area 2 uncovered many short lensiodal veins, which are either faulted off or pinched out. Samples collected from the veins report gold values up to 0.75 opt. Trenching efforts in the region between Area 1 and Area 2 failed to achieve bedrock due to extensive overburden. The 1990 Miller-Tait report mentions some trenching was carried out on the North grid, over the narrow and weak arsenic-gold soil anomaly. Trenching efforts uncovered a large feldspar porphyry dike, with pervasive disseminated pyrite, from which rock samples reported low gold values (high value of 1.0 ppm over 1.4 metres). Miller-Tait collected additional rock samples from vein material in the Upper and Lower adits. Vein samples collected from the Upper adit proved more enriched in base and precious metals. The most significant assay result includes 0.32 opt gold, 1.2 opt silver, 0.35% lead and 3.4% zinc over 1.7 metres. Miller-Tait recommended a follow-up program of additional soil sampling, mechanized trenching and diamond drilling, focusing on the regions to the northeast and southwest of the South Grid.

4) In 1990, Gold Summit Mines carried out two exploration programs: 1) a very limited reconnaissance style soil survey (36 soil samples) and prospecting-mapping program on the east side of the Marshall Creek fault, approximately 300 metres off northeastern border of the Gold Summit property & 2) an extensive soil survey (611 soil samples),

follow up trenching (18 trenches) and grid based mapping over the soil survey area. In the very limited soil survey samples were collected at 25 metre intervals on a single north-south running line. These samples reported weak gold and pathfinder elements. Additional prospecting and soil sampling was recommended. In the larger exploration program the soil survey covered an area of 1.0km x 1.5km in between the soil grids established by Sampson (1988). The station spacing was every 25m and the line spacing was 100m. The trenching focused on two areas: 1) extending the vein system starting from the upper adit on the property and striking east across the top of Marshal Ridge, and 2) an area on the northeast side of the ridge identified by three distinct soil anomalies. The highest assay being 0.455 oz/ton gold over a width of 1m in trench 90T-23. Road construction was completed on the northeast side of the ridge so that follow up trenching could be carried out on three distinct soil anomalies. The highest assay from these trenches was 0.779 oz/ton gold from the area of 90T-2.

5) In September 1994, Gold Summit Mines carried out a soil survey, trenching and diamond drill program on the property. The soil survey was situated southeast of the trenches dug in the 1990 exploration program and covered an area of 500m x 200m. Station spacing was 25m with some areas at 12.5m, line spacing was 50m. Previous geochemical surveys had already outlined the area as anomalous so the purpose of the present survey was to narrow down the anomalies. Two subparrallel linear Au-As anomalies occure on this grid running roughly northeast-southwest. Trenches were dug in the areas of anomalous soil geochemistry and extended the strike length of veins exposed by the 1990 trench program. The trench program was successful in extending the strike of the vein system as identified by shearing, however, the gold assays for these extensions were all below 0.1 oz/ton. Five of the six drill holes intersected the vein, with the first hole being shut down before intersection due to technical problems. Visible gold was identified in hole S94-3 and returned an assay of 2.573 oz/ton over 2.5 feet. Principal gold values intersected in the drill holes can be found in Table 3.

	HOLE INTERVAL(FT)	Length (ft)	GOLD OZ/T	ZINC %
S94-2	486.5-488.5	2.0	0.153	5.27%
	488.5-490.0	1.5	0.290	1.81%
	490.0-491.0	1.0	0.113	
	491.0-492.0	1.0	0.043	
s94-3	485.0-487.5	2.5	2.573	0.80%
s94-4	485.0-486.0	1.0	0.070	
	486.0-488.0	2.0	0.099	
	488.0-490.0	2.0	0.053	
	490.0-491.0	1.0	0.230	2.36%
s94-5	200.5-202.0	1.5	0.565	2.50%
S94-6	260.0-265.0	5.0	0.065	

Table 3. Gold Summit Mines Drill Intersections

2008 Chai Cha Na

In 2008 Chai Cha Na carried out a verification soil survey. The soil grid was established to cover areas on the Gold Summit Property that had and had not previously been surveyed. A total of 500 soil samples were collected during the 2008 exploration program. The soil sample stations cover an area of 700m x 800m centered on 533686mE and 5636300mN. Line and station spacing was 100m and 25m, respectively. Samples were taken from the B/C horizon and were taken from depths between 10 and 40 cm with an auger.

Chai Cha Na identified 26 strong Au and 26 weak anomalies of the 500 samples taken from the Gold Summit 2008 grid.

Background concentrations as well as weak and strong anomaly concentration cutoffs were established using box plots. Defining Q1 and Q3 to be the first and third quartile and IQR to be the interquartile range (Q3 – Q1), the background concentration cutoff is defined as: Background < Q3 + (1.5*IQR); A strong anomaly is defined as: Strong anomaly > Q3 + (3*IQR). A weak anomaly is defined as greater than the background but less than a strong anomaly.

The 26 strong Au anomalies ranged from 29 ppb to 392 ppb. The anomalies appear to extend the Au anomalies identified by Sampson (1988) and Miller-Tait (1990c). There appears to be 3 large linear anomalies striking from east-west to northeast-southwest. The soil anomalies are poddier at the ridge top than they are on the southwest slope. This is likely due to the varying depth of the overburden.

4.0 GEOLOGY

4.1 Regional Geology

(Modified after Miller-Tait 1990 & Gaba et al 1989) (see Figure 5)

The Gold Summit property is located in the Bridge River district (Permian (?) to Jurassic age), which includes variably metamorphosed and structurally imbricated chert, mafic extrusive and intrusive rocks, limestone, serpentinite and clastic rocks. This district is at the western margin of the Intermontaine Belt (volcanic and sedimentary rocks), where it abuts against the Coastal Plutonic Complex (plutonic and metamorphic rocks). In the region, Mississippian to Triassic arc volcanics and backarc sediments (Cadwallader Group and Bridge River Complex) are intruded by synvolcanic, intermediate plutons (Bralorne Intrusions) and faulted against Permian aged ophiolitic, ultramafic intrusions (Shuslaps Ultramafic Complex). Jurassic and Cretaceous basin sediments and rift volcanics are sequentially intruded by late Cretaceous to early Tertiary plutons of felsic composition. Relatively flat-lying Eocene intermediate and mafic volcanics unconformably overlie the older lithological sequences. The Bridge River Complex lithologies are structurally interweaved with units of the Cadwallader Group and Shuslaps Ultramafic complex.

Regional structure is dominated by a system of northwest to north trending faults that reflect a complex history of mid-Cretaceous to Tertiary compressional, sinistral strikeslip and extensional deformation. The Marshall Creek fault structure, just north of the Gold Summit claims, defines a steep dipping, dextral strike-slip fault, which is at least in part, Tertiary in age. The Marshall Creek Fault is a prominent northwest trending structural that separates Bridge River schists to the northeast from lower grade Bridge River rocks to the southwest. The fault is regionally persistent, extending from the Fraser fault system (located about 35 kilometres south of Lillooet) about 90 kilometres northwestward to Marshall Lake. The mid-Cretaceous to Tertiary structures, which dominate the region, are superimposed on older structures, which are not well understood. Triassic subduction-related deformation and metamorphism is reflected in a penetrative blueschist-facies deformation of the Bridge River Group.

4.2 Local Geology

(Modified after Miller-Tait 1990, Gaba et al 1989 & Sampson 1988)

The Gold Summit property is dominantly underlain by NW-SE striking Permian (?) to Jurassic aged Bridge River Complex rocks. In the Marshall Ridge areas, rocks of the Bridge River Complex are likely part of a southeast trending axial zone, belonging to a broad complex antiformal structure that plunges to the northwest. Locally, these rocks mainly include prehnite-pumpellyite metamorphic grade chert and greenstone volcanics (andesites and basalts), with interbedded argillite, limestone, tuff, volcaniclastics, pebble conglomerate, diabase and gabbro. The Bridge River Group has been intruded by Eocene light grey feldspar porphyry dacites and breccias. These breccias commonly include fragments of conglomerate, sandstone, shale and lignite. The Eocene intrusives outcrop at higher elevations on the property.

On the Gold Summit claims the most abundant rocks are dark coloured argillites, with lesser dark to light grey weathered cherts and dark cherty argillites. The chert commonly forms lenzoid and nodular layers up to 10 centimetres thick, separated by thin films of dark argillite. Consequently, the rock has been referred to as ribbon chert. Close spaced joints in the argillite and chert induce in a characteristic chunky rubble texture.

Grey to chocolate brown coloured greenstone rocks give the impression of being more abundant than they actually are, because of their high resistance to weathering. Reportedly, most greenstone outcrops are andesite to basalt flows or flow-breccias, which are intensely shattered. Locally these volcanics are amygdaloidal and exhibit pillow structures.

The Marshall Creek regional fault cuts from northwest to southeast through the northeast corner of the property. The 1988 airborne geophysical survey has identified at least three sub-parallel northeast trending fault structures cutting through the centre of the claims. These structures appear to be splays off the major regional Marshall Creek structure. Other structures identified by the 1988 geophysical survey, include (1) a group of four sub-parallel north trending lineations on the south slope of Marshall Ridge and (2) a single weak north-northwest trending VLF-EM conductive zone on the north slope of Marshall Ridge.

An eastward trending shear/fault structure hosts the property"s main quartz-sulphide vein mineralization, often defining a sheared contact between andesites and argillites. The orientation of this shear/vein structure is variable, with trends ranging from 060° to 110° and dips ranging from 30° north to vertical.

A north trending basic dike of unknown age has been identified in the Lower Adit zone. This 2.4 metre wide dyke cuts across a series of argillites, quartzites and greenstones. Cutting across the dyke and argillites are a series of short parallel quartz-sulphide stringers. A large feldspar porphyry dike has been uncovered by historical trenching efforts in the northeastern corner of the property. The dyke contains weakly disseminated pyrite and somewhat anomalous gold values.

5.0 2010 EXPLORATION PROGRAM

5.1 Summary of exploration work carried out in 2010

The 2010 exploration program carried out by St. Elias Mines consisted of a soil geochemical survey that was designed to continue the widely spaced geochemical survey carried out by Chai Cha Na and to carry out a detail survey over a gold-in-soil anomalous area found in the 2008 exploration program. In addition some prospecting was carried in conjunction with the soil geochemical survey. The work was carried out from September 28th to October 2nd.

A total of 284 soil samples and 3 rock samples were collected during the 2010 exploration program. The location of each soil and rock sample station was noted, in UTM coordinates (NAD83 zone 10), with the aid of a hand-held GPS (Garmin 60CSx) and are shown in Figures 6, 7 and 8, the soil locations are also listed in Appendix 2.

All samples collected during the 2010 exploration program were submitted to SGS (formerly Assayers Canada), of Vancouver, for analysis. Rock samples were crushed, split, and ring pulverized (250g, > 95% -150 mesh). 30 grams of the -150 mesh (<106 μ m) sieved fraction of the rock sample was fire assayed with an atomic absorption finish for gold and 0.5 grams of the sample was digested with 5 mL 3:1 HCI/HNO3 at 950C for 2 hours and diluted to 25 mL with a 50-element ICP-MS finish. Soil samples were dried and sieved to -80 mesh. 15 grams of the -80 mesh (<180 μ m) sieved fraction of the till sample was fire assayed with an atomic absorption finish for gold. The soils were not analyzed by an ICP element package. The elements analyzed for each rock sample and their detection and upper limits are listed in Table 4.

Element	DL UL								
Ag	0.1 ppm 200 ppm	Со	0.1 ppm 10000 ppm	к	0.01 10	Pb	0.1 ppm 10000 ppm	Те	0.1 ppm 1000 ppm
AI	0.01% 25%	Cr	1 ppm 10000 ppm	La	1 ppm 10000 ppm	Rb	0.1 ppm 1000 ppm	Th	0.1 ppm 1000 ppm
As	0.5 ppm 10000 ppm	Cs	0.1 ppm 1000 ppm	Li	0.1 ppm 10000 ppm	Re	5 ppm 1000 ppm	Ti	0.005 10
Au	0.05 ppm 25 ppm	Cu	0.1 ppm 10000 ppm	Mg	0.01 25	S	0.05 10	ТІ	0.1 ppm 1000 ppm
Ва	1 ppm 10000 ppm	Fe	0.01 50	Mn	1 ppm 10000 ppm	Sb	0.1 ppm 10000 ppm	U	0.1 ppm 1000 ppm
Be	1 ppm 10000 ppm	Ga	1 ppm 1000 ppm	Мо	0.1 ppm 10000 ppm	Sc	0.1 ppm 10000 ppm	V	2 ppm 10000 ppm
Bi	0.1 ppm 10000 ppm	Ge	0.1 ppm 1000 ppm	Na	0.01 10	Se	0.5 ppm 1000 ppm	W	0.1 ppm 10000 ppm

Table 4. Detection Limits and Upper Limits of 50-element ICP-MS

Са	0.01 25	Hf	0.1 ppm 1000 ppm	Nb	0.1 ppm 1000 ppm	Sn	0.1 ppm 1000 ppm	Y	0.1 ppm 10000 ppm
Cd	0.1 ppm 2000 ppm	Hg	0.005 ppm 100 ppm	Ni	0.1 ppm 1000 ppm	Sr	1 ppm 10000 ppm	Zn	1 ppm 10000 ppm
Ce	1 ppm 1000 ppm	In	0.01 ppm 1000 ppm	Ρ	0.001 5	Та	0.1 ppm 1000 ppm	Zr	0.1 ppm 10000 ppm

SGS employs standard QA and QC protocols on all sample analyses including inserting one blank and reference standard analysis in every twenty-second sample analyzed. Based on the fact that the sampling program was designed to follow up previous exploration work completed by Chai Cha Na in 2008 no additional QA and QC procedures were implemented as part of the program. Sample Certificates from the 2010 exploration program are included in Appendix 3.

In the authors opinion the sample security employed by the field personnel involved in the sample collection and the sample preparation and analytical procedures employed by SGS are adequate for the exploration program carried out by St. Elias Mines on the Gold Summit Property.

5.1 SOIL SAMPLING GEOCHEMISTRY

A total of 284 soil samples were collected during the 2010 exploration program. Location of the soil sample stations were determined by GPS and are shown in Figures 6 to 7 and listed in the Appendix 2.

The soil sample stations cover 2 areas: Zone A and Zone B centered on 533350mE - 5636030mN (covering an area of 150m x100m) and 532790mE – 5636870mN (covering an area of 1000m x 1000m), respectively. The station and line spacing was 10m and 25m, respectively, for Zone A. The station and line spacing was 25m and 100m, respectively, for Zone B. Samples were taken from the B/C horizon and were taken from depths between 10 and 40 cm with an auger. All samples collected were put into kraft bags and submitted to SGS Canada, for analysis. The -80 mesh sieved fraction of the soil samples was ground and analyzed for gold by fire assay (Analytical certificates – Appendix 3).

Statistical values for Au are presented in Table 4. Background concentrations as well as weak and strong anomaly concentration cutoffs were established using box plots using the geochemical data from this soil program and that of Thom (2008). Defining Q1 and Q3 to be the first and third quartile and IQR to be the interquartile range (Q3 – Q1), the background concentration cutoff is defined as: Background < Q3 + (1.5*IQR); A strong anomaly is defined as: Strong anomaly > Q3 + (3*IQR). A weak anomaly is defined as greater than the background but less than a strong anomaly.

Table 5. Soil Geochem StatisticsGold SummitAuAu20082010*Min<1</td><1</td>Max392392Background18.514.5

Strong 29 22 Anomaly

*2010 stats are determined using both Thom (2008) result and those from the current study

5.2 Rock Samples

The 2010 prospecting program culminated in the collection of 3 rock samples. Samples were collected from a quartz vein and other mineralized bodies.

Results for Au, Ag, As, Hg, Te, Pb and Zn from the 2010 rock samples are presented in Table 6.

Table 6. Rock Samples with anomalous precious metals

	Au (ppb)	Ag (ppm)	As (ppm)	Hg (ppm)	Te (ppm)	Pb (ppm)	Zn (ppm)
SGR-01	318	246.1	1705.6	1.324	<0.1	1495.8	239
SGR-02	9950	75.9	>10,000	3.679	5.8	2378.8	6389
SGR-03	2807	8.4	1636.6	1.483	9.5	396.7	9311

	East NAD83z10	North NAD83z10	Description
SGR-01	532236	5635706	Oxidized siliceous shear zone; 25cm;
SGR-02	533252	5635796	Oxidized siliceous shear zone; 40cm;
SGR-03	533408	5635592	Oxidized siliceous shear zone; 15cm;

Table 7. Rock samples location and description

The rock sample SGR-03 was taken from an oxidized siliceous shear directly above the portal to the upper Adit in the Adit Zone. The shear zone sampled was 25 cm wide. This sample is identical to the sample MMR9 by Moore (2007) which gave a result of 2170 ppb.

The rock sample SGR-02 was taken from an oxidized siliceous shear 40 cm wide on a road cut 250 northeast of the Upper Adit. Photos 1 and 2 show the scale of the shear zone sampled and gives a good example of the post mineralization faulting on the property. The vein is striking southwest and dipping northwest. There is no previous record of it being sampled.

The rock sample SGR-01 was taken from an oxidized siliceous shear 15 cm wide on a road cut. There is no previous record of it being sampled.

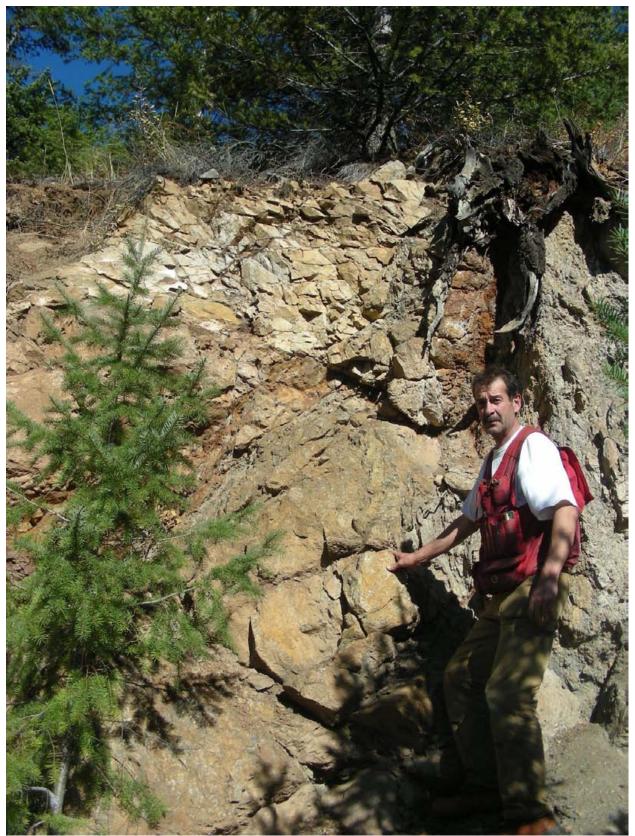


Photo 1. Outcrop showing shear zone sampled by GSR-02.

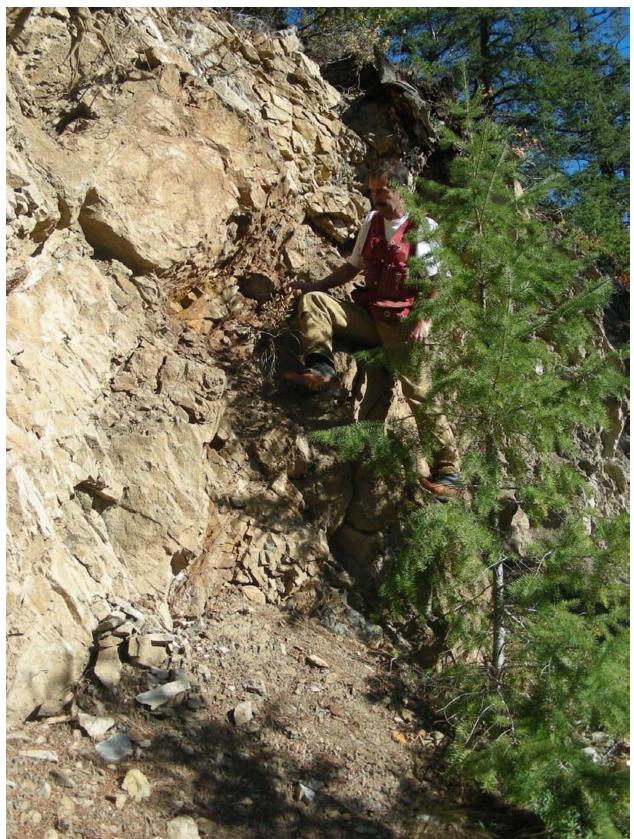


Photo 2. Outcrop showing shear zone sampled by GSR-02

6.0 CONCLUSIONS & RECOMENDATIONS

The findings of the Gold Summit Project 2010 exploration season are as follows.

The Gold Summit Project is an early stage gold/silver exploration venture, located in the prolific Bridge River mining camp. It is situated in the politically stable and mineral exploration affable province of British Columbia, Canada. The property is located in the south-coastal region of the province, where access and logistics are relatively simple and inexpensive.

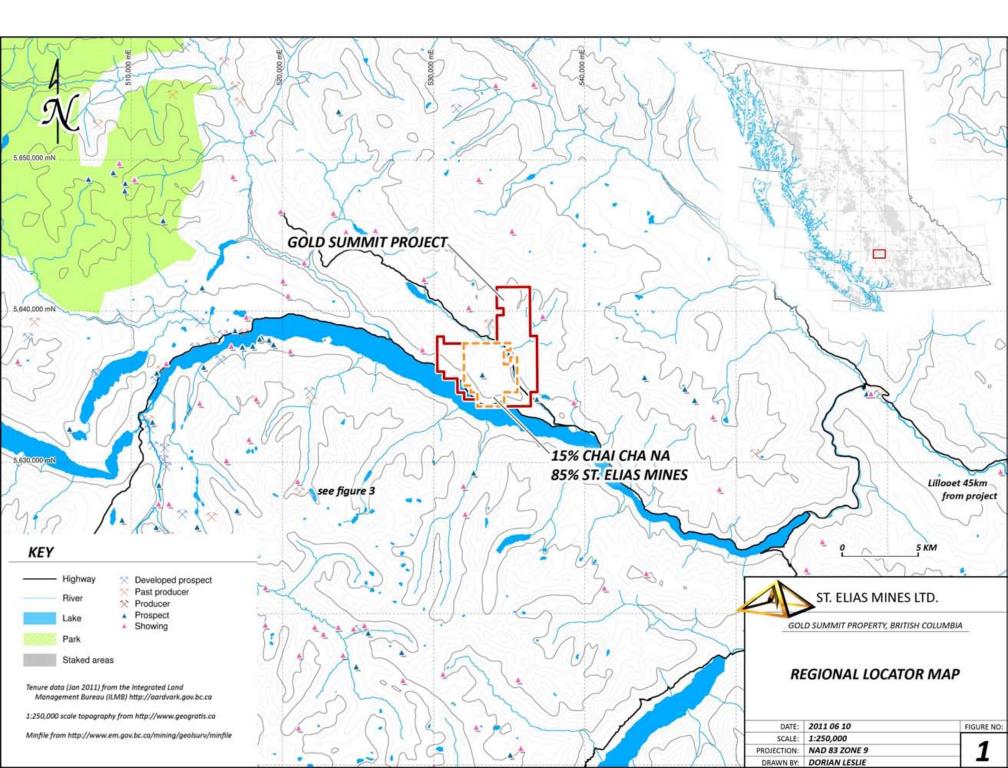
The soil survey has identified statistically significant Au anomalies around the SUMMIT showing. The rock samples indicate that the vein system covering the property is gold and silver rich.

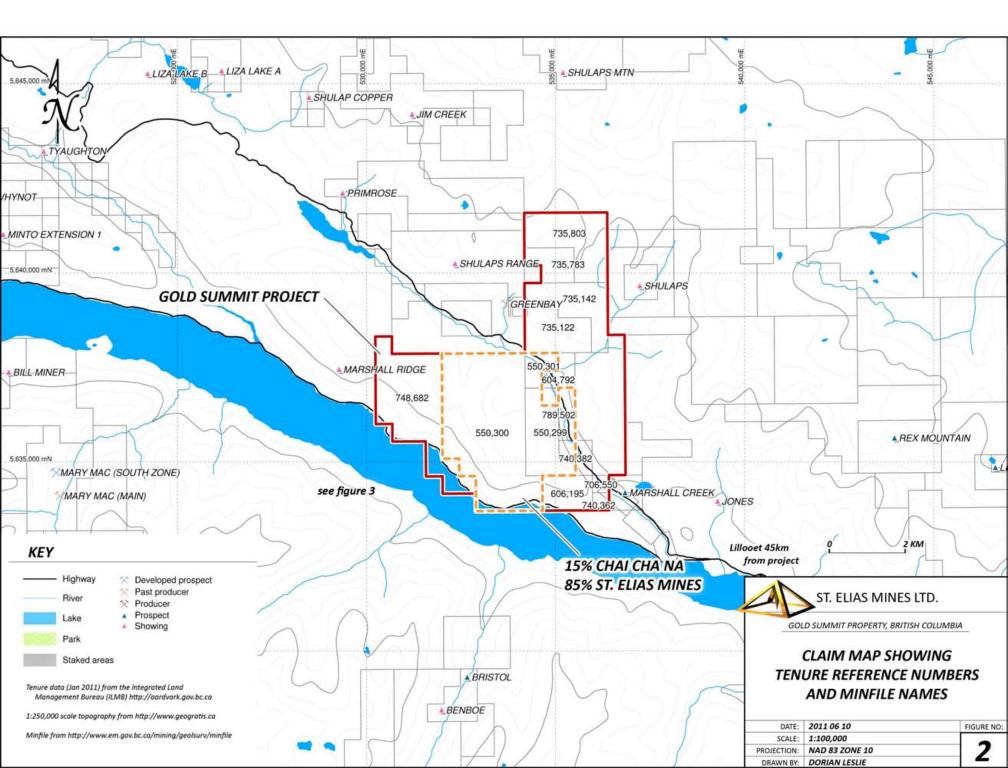
Overall most of the property has been covered by soil surveys. Trenching has revealed that these anomalies overlie a vein system rich in Au and other base metals. Further trenching and drilling at depth is required determine the extent of these mineralized structures. Based upon the property examination and review of past exploration results, it is the authors opinion that this is a property of merit and worthy of further exploration.

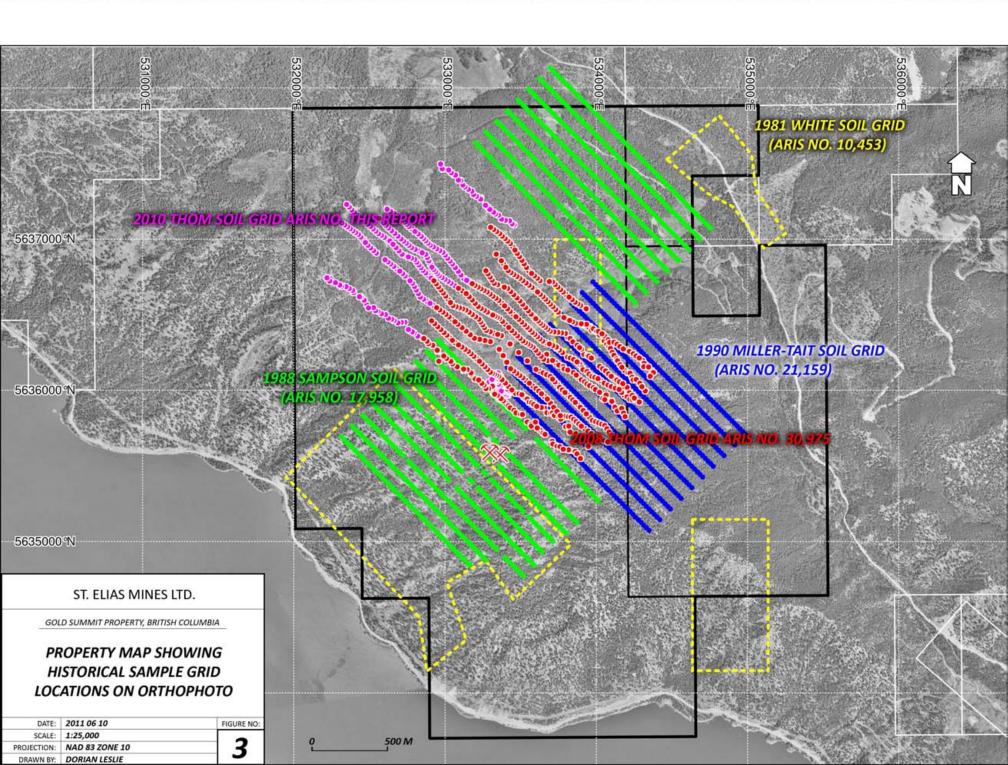
7.0 STATEMENT OF QUALIFICATIONS

I James G.M. Thom certify that:

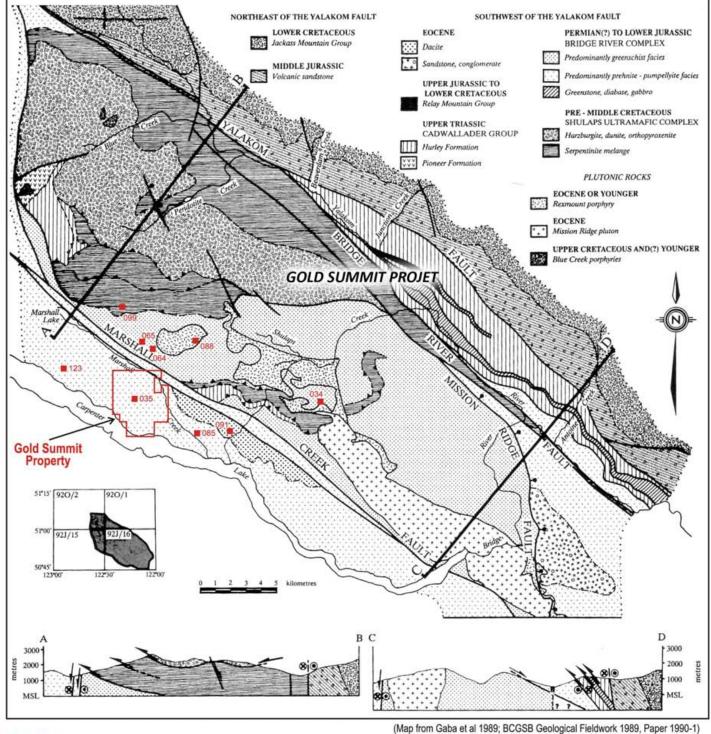
- 1. I am an independent consulting geologist residing at 105 -1290 west 11th ave, Vancouver BC, V6H 1K5 and can be contacted at thomjgm@gmail.com
- I obtained a B.Sc. in Earth and Ocean Sciences at the University of Victoria [2002] and graduated with a M.Sc. in Geology from the University of Toronto [2003].
- 3. I have worked in the mineral exploration industry since 1999
- 4. I have no direct or indirect interest in the property herein or in the securities of Chai Cha Na or St. Elias Mines.
- 5. I have supervised the exploration programs and authored the reports for the work carried out on the Gold Summit property in 2008 and 2010.


James Thom


8.0 STATEMENT OF COSTS

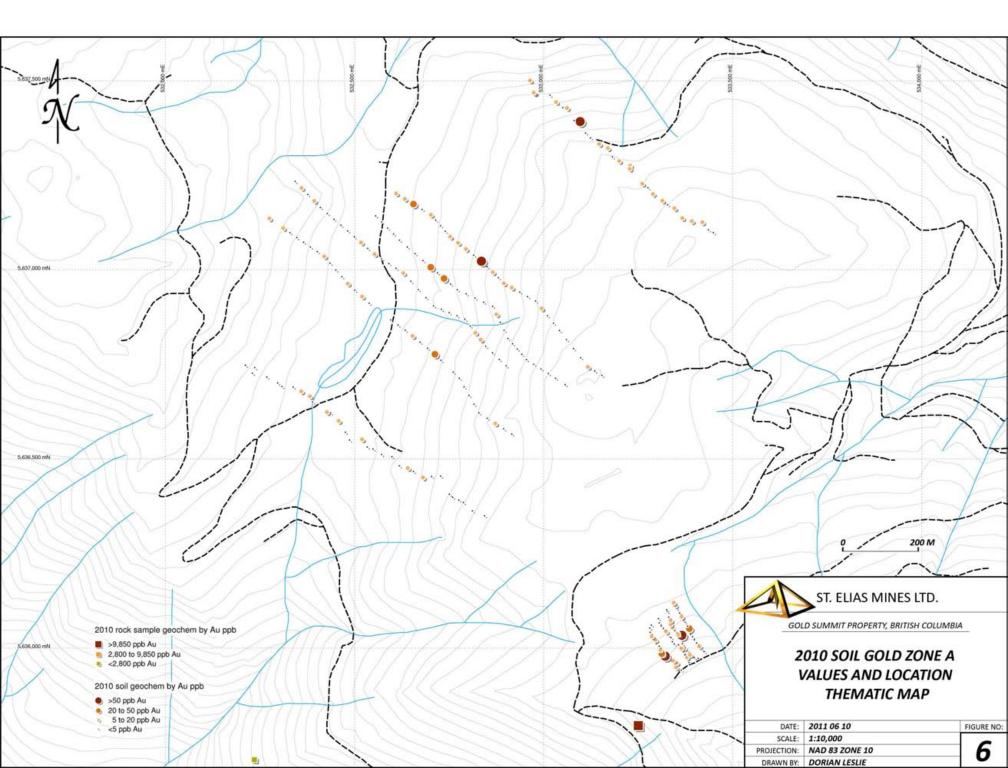

Personnel:		
Project Geologist James Thom, M.Sc.	5 days @ \$600.00	3,000.00
Senior prospector/Geographer Gerard Gallissant	4 days @ \$300.00	1,200.00
Field Costs:		
Field Camp and Supplies	5 / days @ \$85.00/m/d (including camp, GPS, field computer, prospecting and sampling equipment, first aid, generators and chain saws)	850.00
	Sat phone 1wks x \$150/wk	150.00
Camp Consumables	Food, fuels, wood, rope	600.00
Survey Consumables	Rock and soil sample bags, rice bags, survey flagging, pickets, topofil thread etc.	680.00
Transportation:		
	5 days @ \$ 100.00	500.00
Analytical:		
	Au and ICP-MS Analysis	3,731.41
Office & Engineering:		
Assessment Report Writing	based on results of initial portion of Phase I program	1,500.00
GIS/Drafting/Cartography	(including field base map and all final maps detailing geological mapping, sample locations and results, location of old workings and compilation of results from previous work on property)	500.00
Total cost of the 2010 exploration program		12,561.41

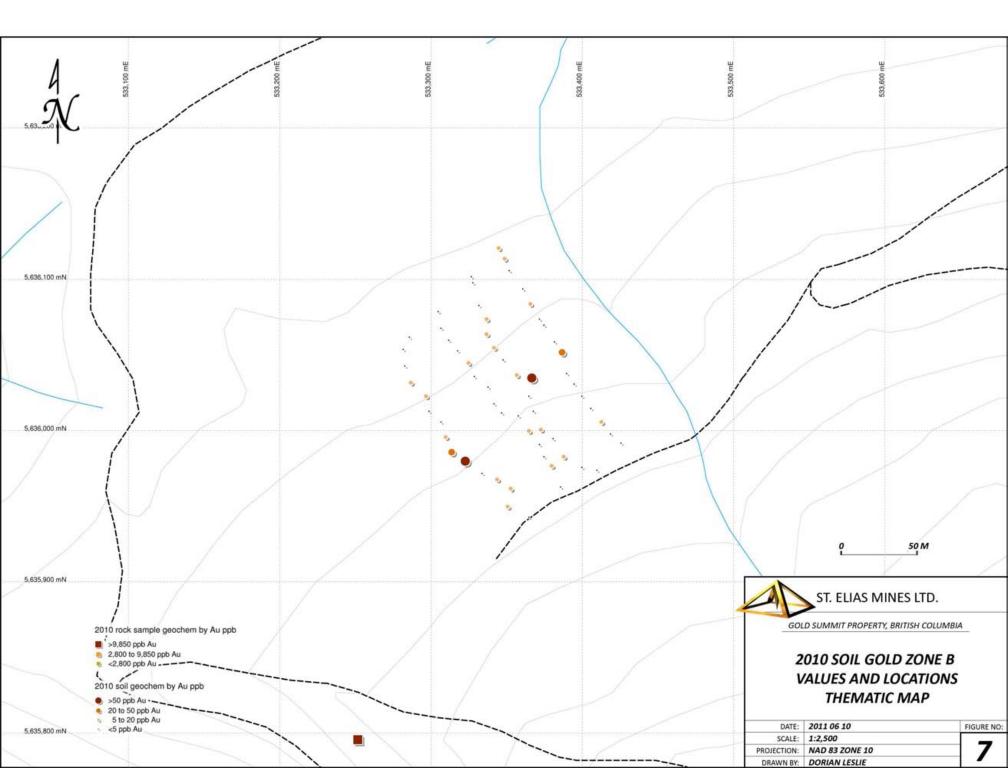
Breakdown of Costs for 2010 Exploration work

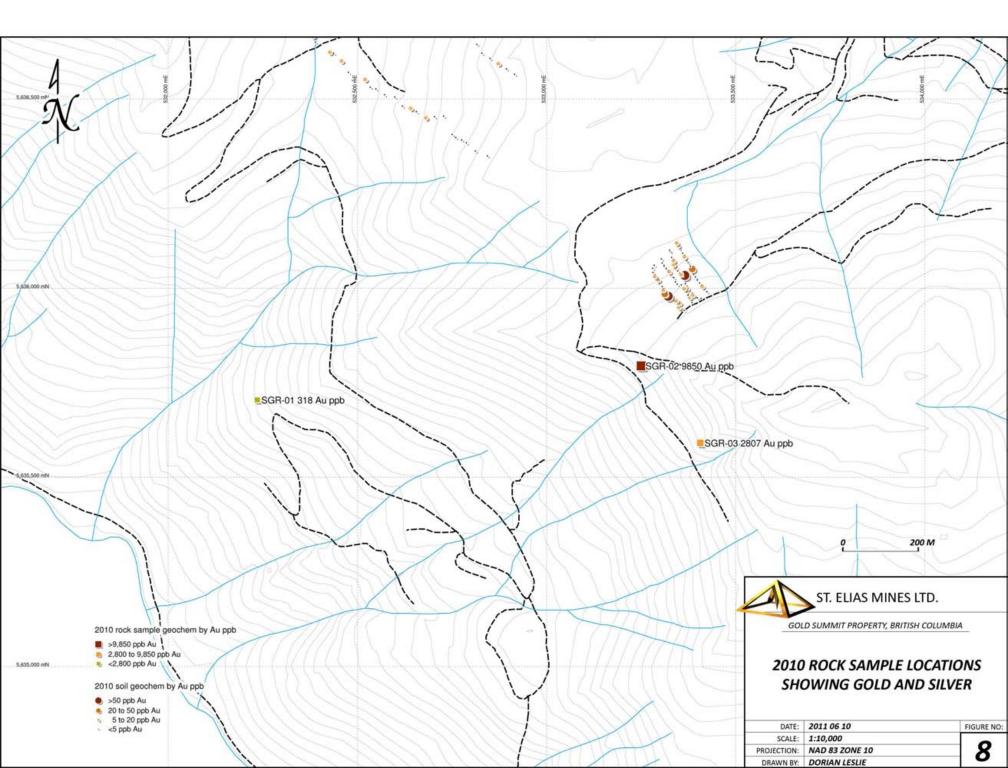

APPENDIX 1 -FIGURES-

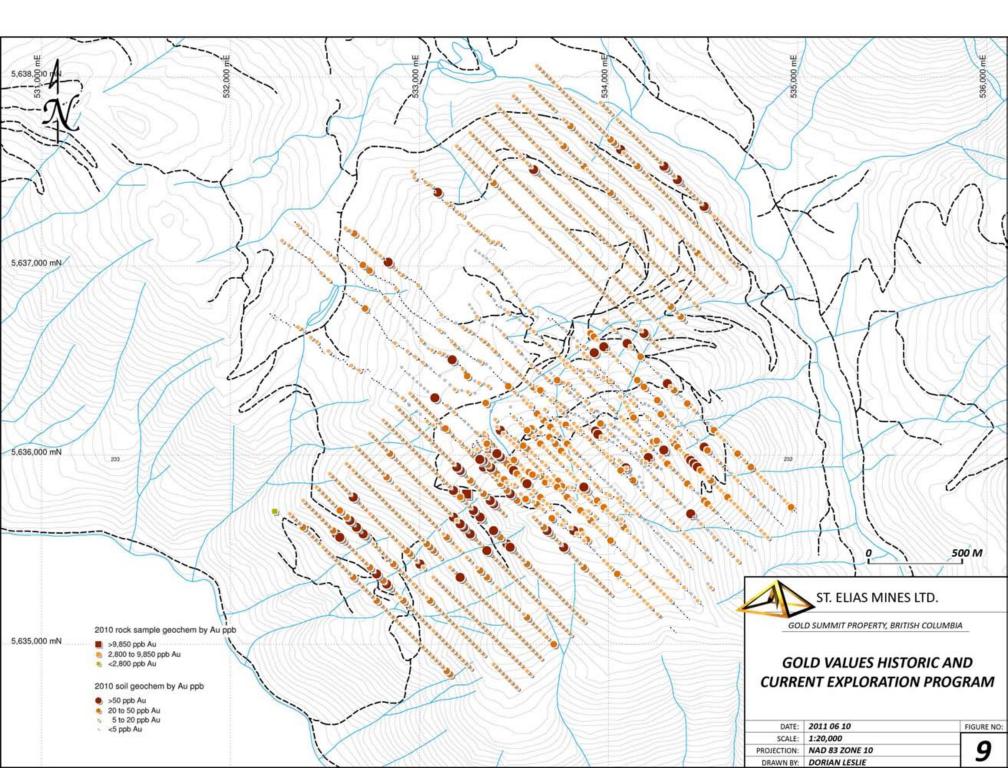
BCI

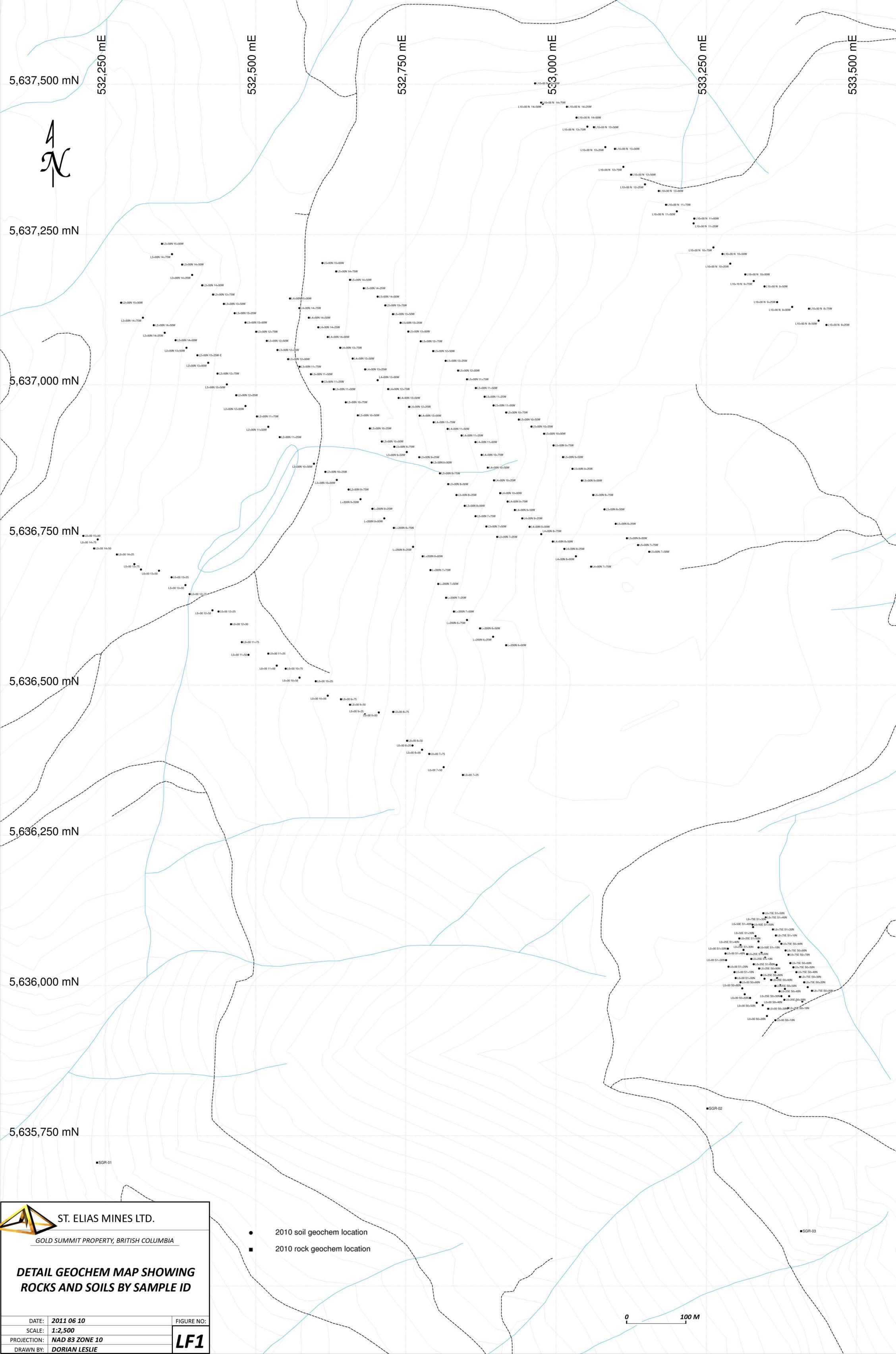
BC Minfile Occurrences (immediate property area only)

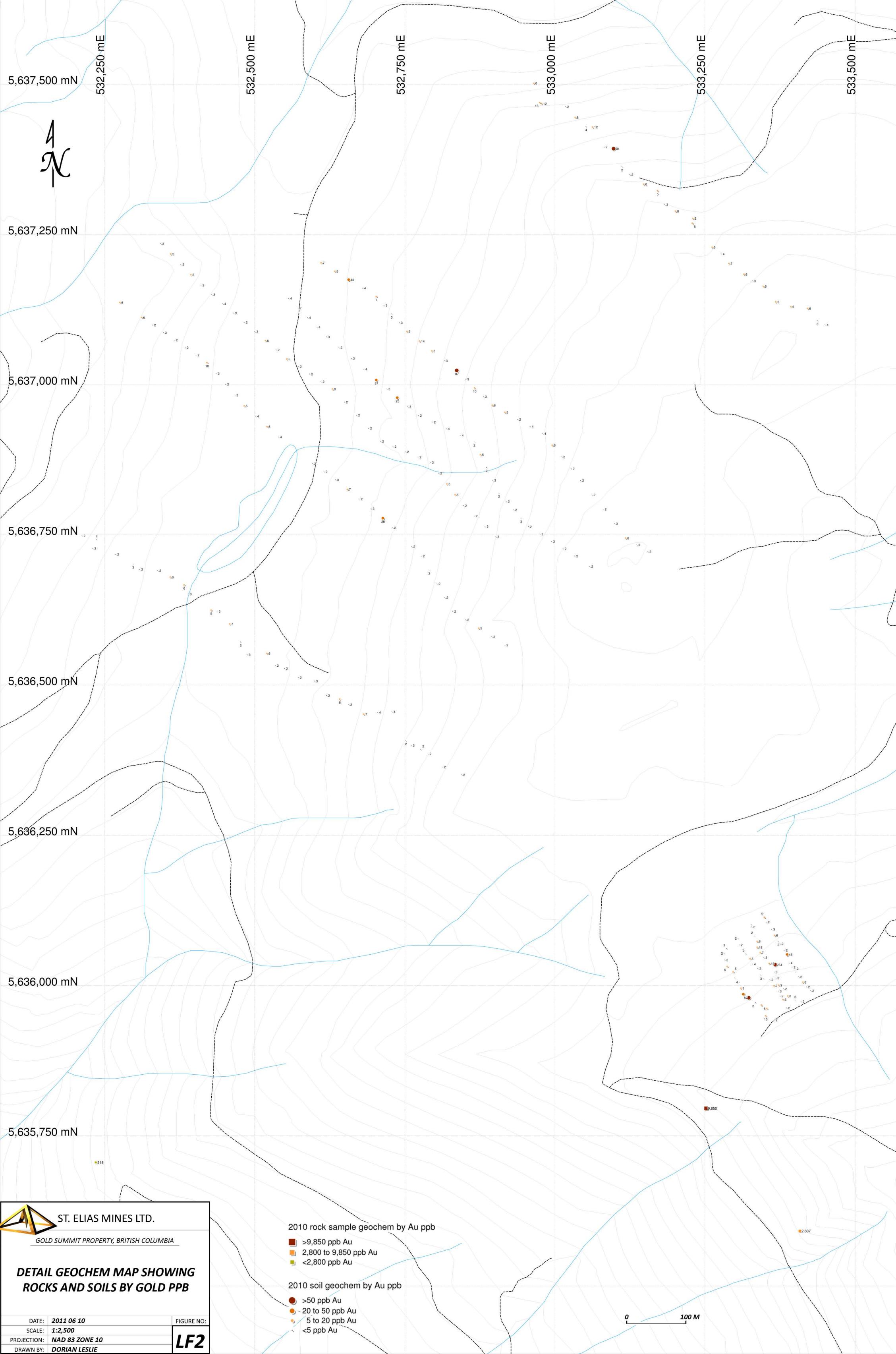

Minfile #	Name	Commodities	Mineralization Type
092JNE034	Rex Mountain	Gold, Silver, Copper, Bismuth, Tungsten	Intrusion-related Au pyrrhotite veins
092JNE035	Summit	Gold, Silver, Zinc, Lead, Copper, Antimony	Polymetallic veins Ag-Pb-Zn ± Au
092JNE064	4-Ton	Jade/Nephrite Gemstones	Jade
092JNE065	Greenbay	Jade/Nephrite Gemstones	Jade
092JNE085	Marshall Creek	Gold, Silver, Zinc, Lead, Copper, Antimony	Polymetallic veins Ag-Pb-Zn ± Au
092JNE088	Shulaps	Gold, Silver, Copper	Au-quartz veins
092JNE091	Jones	Coal	Lignite
092JNE099	Shulaps Range	Chromium	Podiform chromite
092JNE123	Marshall Ridge	Limestone	Limestone


ST. ELIAS MINES LTD.


GOLD SUMMIT PROPERTY, BRITISH COLUMBIA


REGIONAL GEOLOGY MAP LOCATION OF THE GOLD SUMMIT CLAIM GROUP


DATE:	2011 06 10	FIGURE NO:
SCALE:	AS SHOWN	
PROJECTION:	NAD 83 ZONE 10	5
DRAWN BY:	DORIAN LESLIE	3



APPENDIX 2 -SOIL STATION LOCATIONS-

Sample_ID	Line	Station	East_NAD83_Z10 Nor	th_NAD83_Z10
GSS001	L0+00	7+25	532845	 5636351
GSS002	L0+00	7+50	532813	5636364
GSS003	L0+00	7+75	532789	5636386
GSS004	L0+00	8+00	532777	5636393
GSS005	L0+00	8+25	532761	5636400
GSS006	L0+00	8+50	532752	5636408
GSS007	L0+00	8+75	532729	5636456
GSS008	L0+00	9+00	532705	5636455
GSS009	L0+00	9+25	532682	5636452
GSS010	L0+00	9+50	532657	5636468
GSS011	L0+00	9+75	532642	5636477
GSS012	L0+00	10+00	532620	5636483
GSS013	L0+00	10+25	532600	5636507
GSS014	L0+00	10+50	532573	5636513
GSS015	L0+00	10+75	532550	5636528
GSS016	L0+00	11+00	532535	5636533
GSS017	L0+00	11+25	532521	5636553
GSS018	L0+00	11+50	532488	5636551
GSS019	L0+00	11+75	532477	5636572
GSS020	L0+00	12+00	532459	5636602
GSS021	L0+00	12+25	532438	5636623
GSS022	L0+00	12+50	532428	5636625
GSS023	L0+00	12+75	532390	5636652
GSS024	L0+00	13+00	532383	5636667
GSS025	L0+00	13+25	532360	5636680
GSS026	L0+00	13+50	532339	5636691
GSS027	L0+00	13+75	532309	5636693
GSS028	L0+00	14+00	532298	5636702
GSS029	L0+00	14+25	532269	5636718
GSS030	L0+00	14+50	532231	5636728
GSS031	L0+00	14+75	532237	5636743
GSS032	L0+00	15+00	532213	5636749
GSS033	L+200N	6+00W	532917	5636567
GSS034	L+200N	6+25W	532895.25	5636581
GSS035	L+200N	6+50W	532873.5	5636595
GSS036	L+200N	6+75W	532851.75	5636609
GSS037	L+200N	7+00W	532830	5636623
GSS038	L+200N	7+25W	532817	5636646
GSS039	L+200N	7+50W	532804	5636669
GSS040	L+200N	7+75W	532791	5636692
GSS041	L+200N L+200N	8+00W 8+25W	532778	5636715 5636730.75
GSS042 GSS043	L+200N L+200N	8+25W 8+75W	532762	5636762.25
GSS043 GSS044	L+200N L+200N	8+75W 9+00W	532730 532714	5636762.25
GSS044 GSS045	L+200N L+200N	9+00W 9+25W	532694.25	5636794
GSS045 GSS046	L+200N L+200N	9+25W 9+50W	532674.5	5636810
4033040	LTZUUN	970000	532074.5	0180600

GSS047L2+00N9+75W532654.755636826GSS048L2+00N10+00W5326355636842GSS050L2+00N10+25W5325975636869GSS051L2+00N11+25W5325405636913.25GSS052L2+00N11+50W5325215636930.5GSS053L2+00N11+75W532647.75GSS054L2+0N12+00W5324835636983GSS055L2+0N12+25W532467.55636983GSS056L2+0N12+25W532467.55637011GSS057L2+0N12+75W532436.55637019GSS058L2+0N13+25W-E532402.8755637049.5GSS050L2+0N13+50W532348.55637049.5GSS061L2+0N13+50W532348.55637047.5GSS062L2+0N13+50W532342.255637047.5GSS063L2+0N14+50W532348.55637087GSS064L2+0N14+75W532312.255637112GSS065L2+0N14+75W532286563781.75GSS066L3+0N7+25W5328485636781.75GSS067L3+0N7+50W5328485636781.75GSS073L3+0N8+25W532842.55636817GSS073L3+0N8+25W532842.55636817GSS073L3+0N8+25W53284.255636817GSS074L3+0N8+25W532846.755636831GSS075L3+0N8+25W532812.5
GSS049L2+00N10+25W5326165636855.5GSS050L2+00N10+50W5325975636869GSS051L2+00N11+25W5325405636930.5GSS052L2+00N11+75W5325025636947.75GSS053L2+00N12+00W5324835636983GSS054L2+00N12+25W532467.55636983GSS055L2+00N12+25W532435.55637019GSS057L2+00N12+75W532436.55637019GSS058L2+00N13+25W-E532402.8755637049.5GSS059L2+00N13+25W-E532402.8755637049.5GSS061L2+00N13+25W-E53230.3755637087GSS062L2+00N13+50W532384.755637087GSS063L2+00N14+25W532312.255637112GSS064L2+00N14+75W532312.255637112GSS065L2+00N14+75W5322465637137GSS064L2+0N14+75W532312.255637112GSS065L2+0N15+0W5322825636781.75GSS064L3+0N7+25W5328245636764.5GSS071L3+0N8+00W532834.25563883GSS071L3+0N8+25W5327055636833GSS072L3+0N8+75W5327655636871GSS074L3+0N9+25W532772.255636871GSS074L3+0N9+25W532730.755636897.25GSS074L3+0N <td< td=""></td<>
GSS050L2+00N10+50W5325975636869GSS051L2+00N11+25W5325405636913.25GSS052L2+00N11+75W5325025636947.75GSS053L2+00N12+00W5324835636965GSS054L2+00N12+25W532467.55636983GSS055L2+00N12+25W532467.55637019GSS056L2+00N12+75W532436.55637019GSS057L2+00N12+75W532402.8755637049.5GSS059L2+00N13+20W532384.755637049.5GSS061L2+00N13+25W-E53230.3755637087GSS062L2+00N13+50W532384.55637087GSS063L2+00N14+25W532312.255637112GSS064L2+00N14+75W532312.255637112GSS065L2+00N14+75W53228665636747.25GSS066L3+00N7+25W5328485636764.5GSS067L3+00N7+75W5328485636764.5GSS070L3+00N8+00W5328485636799GSS071L3+00N8+25W532834.25563883GSS072L3+00N8+50W5327935636871GSS073L3+00N9+00W5327935636871GSS074L3+00N9+25W532772.255636897.5GSS074L3+00N9+50W532731.55636887.5GSS074L3+00N9+50W532731.55636897.25GSS074L3+00N
GSS051L2+00N11+25W5325405636913.25GSS052L2+00N11+50W5325215636930.5GSS053L2+00N11+75W5325025636947.75GSS054L2+00N12+20W5324835636965GSS055L2+00N12+25W532467.55636983GSS056L2+00N12+50W532465.55637011GSS057L2+00N12+75W532436.55637019GSS058L2+00N13+00W5324215637037GSS059L2+0N13+25W-E532402.8755637049.5GSS060L2+0N13+50W532366.6255637074.5GSS061L2+0N14+25W532348.55637087GSS062L2+0N14+25W532312.255637112GSS063L2+0N14+25W532312.255637112GSS064L2+0N14+75W5322365636741.75GSS065L2+0N14+75W532284563674.5GSS064L2+0N7+75W5328845636799GSS07L3+0N8+00W5328435636799GSS07L3+0N8+25W532834.255636817GSS071L3+0N8+25W53280.755636833GSS073L3+0N8+75W5327035636873GSS074L3+0N9+25W532772.55636879.75GSS075L3+0N9+50W532751.55636883.5GSS075L3+0N9+75W532730.755636897.25GSS076L3+0N9+75W<
GSS052L2+00N11+50W5325215636930.5GSS053L2+00N11+75W5325025636947.75GSS054L2+00N12+00W5324835636965GSS055L2+00N12+25W532467.55636983GSS056L2+00N12+50W532436.55637019GSS057L2+00N12+75W532402.8755637049.5GSS059L2+00N13+25W-E532402.8755637049.5GSS050L2+00N13+50W532384.755637049.5GSS061L2+00N14+25W532384.755637087GSS062L2+00N14+25W532330.3755637099.5GSS063L2+00N14+25W532312.255637112GSS064L2+00N14+75W5322765637137GSS065L2+00N15+00W532284563674.5GSS064L3+00N7+25W532842563674.5GSS065L2+00N15+00W5328445636764.5GSS066L3+00N7+75W532842.55636817GSS070L3+00N8+25W532834.255636817GSS071L3+00N8+25W53280.755636835GSS072L3+00N8+75W53280.755636837GSS073L3+00N9+00W5327935636871GSS075L3+00N9+25W532772.255636879.75GSS075L3+00N9+25W532730.755636897.25GSS075L3+00N9+75W532730.755636897.25GSS075 <t< td=""></t<>
GSS053L2+00N11+75W5325025636947.75GSS054L2+00N12+00W5324835636965GSS055L2+00N12+25W532467.55636983GSS056L2+00N12+75W532436.55637019GSS057L2+00N12+75W532436.55637049.5GSS058L2+00N13+00W5324215637049.5GSS059L2+00N13+25W-E532402.8755637049.5GSS060L2+00N13+50W532384.755637062GSS061L2+00N14+00W532366.6255637074.5GSS062L2+00N14+25W532330.3755637099.5GSS063L2+00N14+75W532312.255637112GSS064L2+00N14+75W5322765637137GSS065L2+00N15+00W5322845636764.5GSS066L3+00N7+75W5328485636764.5GSS067L3+00N7+75W53280.55563881.75GSS069L3+00N8+25W532281.25563681.75GSS070L3+00N8+25W53280.755636835GSS071L3+00N8+75W53280.755636835GSS073L3+00N9+00W53273.55636883.5GSS074L3+00N9+50W532751.55636888.5GSS075L3+00N9+75W532730.755636897.25GSS076L3+00N9+75W532730.755636897.25GSS076L3+00N9+75W532730.755636897.25GSS0
GSS054L2+00N12+00W5324835636965GSS055L2+00N12+25W532467.55636983GSS056L2+00N12+50W5324525637019GSS057L2+00N12+75W532436.55637037GSS058L2+00N13+00W5324215637037GSS059L2+00N13+25W-E532402.8755637049.5GSS060L2+00N13+50W532366.6255637074.5GSS061L2+00N14+00W532366.6255637087GSS062L2+00N14+25W532330.3755637099.5GSS063L2+00N14+50W532330.3755637099.5GSS064L2+00N14+75W532312.255637112GSS065L2+0N15+00W5322765637137GSS066L3+00N7+25W532802563674.25GSS067L3+00N7+75W5328485636764.5GSS070L3+00N8+25W53280.555636817GSS071L3+00N8+25W53280.755636835GSS071L3+00N8+75W53280.755636835GSS073L3+00N9+25W532772.255636873GSS074L3+00N9+50W532730.75563688.5GSS075L3+00N9+75W532730.755636888.5GSS076L3+00N9+75W532730.755636897.25GSS076L3+00N9+75W532730.755636897.25GSS076L3+00N9+75W532730.755636897.25GSS076
GSS055L2+00N12+25W532467.55636983GSS056L2+00N12+50W532436.55637019GSS057L2+00N12+75W532436.55637037GSS058L2+00N13+00W5324215637049.5GSS059L2+00N13+25W-E532402.8755637049.5GSS060L2+00N13+50W532384.755637062GSS061L2+00N14+00W532366.6255637074.5GSS062L2+00N14+25W532312.255637087GSS063L2+00N14+75W532312.255637112GSS064L2+00N14+75W532230.3755637099.5GSS065L2+00N15+00W5322765637137GSS066L3+00N7+25W5329025636747.25GSS067L3+0N7+50W5328845636764.5GSS068L3+00N7+75W532820.55636817GSS070L3+0N8+00W532834.255636817GSS071L3+0N8+50W532806.755636835GSS072L3+0N8+75W532806.755636835GSS073L3+0N9+00W5327935636871GSS074L3+0N9+25W532772.255636879.75GSS075L3+0N9+50W532730.755636887.25GSS076L3+0N9+75W532730.755636897.25GSS077L3+0N10+00W5327105636906GSS078L3+0N9+75W532730.755636897.25GSS076L3+0
GSS056L2+00N12+50W5324525637001GSS057L2+00N12+75W532436.55637019GSS058L2+00N13+00W5324215637037GSS059L2+00N13+25W-E532402.8755637049.5GSS060L2+00N13+50W532384.755637062GSS061L2+00N14+00W532366.6255637074.5GSS062L2+00N14+25W532348.55637087GSS063L2+00N14+25W532310.3755637099.5GSS064L2+0N14+75W532312.255637112GSS065L2+0N15+00W5322765637137GSS066L3+0N7+25W5328425636747.25GSS067L3+0N7+50W5328485636764.5GSS068L3+0N7+75W532842.55636817GSS070L3+0N8+25W53284.255636835GSS071L3+0N8+50W53280.555636835GSS072L3+0N9+00W5327935636873GSS073L3+0N9+25W532772.255636879.75GSS075L3+0N9+50W532751.55636887.25GSS075L3+0N9+75W532730.755636897.25GSS076L3+0N9+75W532730.755636897.25GSS077L3+0N10+00W5327105636906GSS078L3+0N10+25W532730.755636997.75
GSS057L2+00N12+75W532436.55637019GSS058L2+00N13+00W5324215637037GSS059L2+00N13+25W-E532402.8755637049.5GSS060L2+00N13+50W532384.755637062GSS061L2+00N14+00W532366.6255637074.5GSS062L2+00N14+25W532330.3755637099.5GSS063L2+00N14+50W532330.3755637099.5GSS064L2+00N14+75W532312.255637112GSS065L2+00N15+00W5322865636747.25GSS066L3+00N7+25W5328845636764.5GSS067L3+00N7+50W5328485636781.75GSS068L3+00N7+75W532834.255636817GSS069L3+0N8+00W53284.255636835GSS070L3+0N8+25W532834.255636835GSS071L3+0N8+50W532806.755636835GSS073L3+0N9+00W5327935636871GSS074L3+0N9+25W532772.255636879.75GSS075L3+0N9+50W532751.55636887.75GSS076L3+0N9+75W532730.755636897.25GSS076L3+0N9+75W532730.755636897.25GSS077L3+0N10+00W5327105636906GSS078L3+0N9+75W532730.755636897.25GSS076L3+0N9+75W532730.755636897.25GSS076
GSS058L2+00N13+00W5324215637037GSS059L2+00N13+25W-E532402.8755637049.5GSS060L2+00N13+50W532384.755637062GSS061L2+00N14+00W532366.6255637074.5GSS062L2+00N14+25W532348.55637087GSS063L2+00N14+50W532310.3755637099.5GSS064L2+00N14+75W532312.255637112GSS065L2+00N15+00W532276563747.25GSS066L3+00N7+25W5329025636747.25GSS067L3+00N7+75W5328465636781.75GSS068L3+0N7+75W5328485636799GSS070L3+0N8+25W532820.55636835GSS071L3+0N8+50W532820.55636835GSS073L3+0N9+00W5327935636873GSS074L3+0N9+25W532772.255636879.75GSS075L3+0N9+50W532751.55636887.75GSS075L3+0N9+75W532730.755636887.75GSS076L3+0N9+75W532730.755636897.25GSS075L3+0N9+75W532730.755636897.25GSS076L3+0N9+75W532730.755636897.25GSS076L3+0N9+75W532730.755636897.25GSS076L3+0N9+75W532730.755636897.25GSS076L3+0N9+75W532730.755636897.25GSS076
GSS058L2+00N13+00W5324215637037GSS059L2+00N13+25W-E532402.8755637049.5GSS060L2+00N13+50W532384.755637062GSS061L2+00N14+00W532366.6255637074.5GSS062L2+00N14+25W532348.55637087GSS063L2+00N14+50W532310.3755637099.5GSS064L2+00N14+75W532312.255637112GSS065L2+00N15+00W532276563747.25GSS066L3+00N7+25W5329025636747.25GSS067L3+00N7+75W5328465636781.75GSS068L3+0N7+75W5328485636799GSS070L3+0N8+25W532820.55636835GSS071L3+0N8+50W532820.55636835GSS073L3+0N9+00W5327935636873GSS074L3+0N9+25W532772.255636879.75GSS075L3+0N9+50W532751.55636887.75GSS075L3+0N9+75W532730.755636887.75GSS076L3+0N9+75W532730.755636897.25GSS075L3+0N9+75W532730.755636897.25GSS076L3+0N9+75W532730.755636897.25GSS076L3+0N9+75W532730.755636897.25GSS076L3+0N9+75W532730.755636897.25GSS076L3+0N9+75W532730.755636897.25GSS076
GSS059L2+00N13+25W-E532402.8755637049.5GSS060L2+00N13+50W532384.755637062GSS061L2+00N14+00W532366.6255637087GSS062L2+00N14+25W532348.55637087GSS063L2+00N14+50W532330.3755637099.5GSS064L2+00N14+75W532312.255637112GSS065L2+00N15+00W5322765637137GSS066L3+00N7+25W5329025636747.25GSS067L3+00N7+50W5328845636764.5GSS068L3+00N7+75W5328485636799GSS070L3+00N8+00W5328485636799GSS071L3+00N8+50W532806.755636835GSS072L3+00N8+50W532806.755636871GSS074L3+00N9+00W5327935636871GSS075L3+00N9+50W532772.255636879.75GSS076L3+00N9+50W532772.55636889.75GSS075L3+00N9+75W532730.755636897.25GSS076L3+00N9+75W532730.755636897.25GSS077L3+00N10+00W5327105636907.25GSS077L3+00N9+75W532730.755636897.25GSS077L3+00N9+75W532730.755636897.25GSS078L3+00N9+75W532730.755636906GSS078L3+00N10+25W5326905636927.75
GSS060L2+00N13+50W532384.755637062GSS061L2+00N14+00W532366.6255637074.5GSS062L2+00N14+25W532348.55637087GSS063L2+00N14+50W532330.3755637099.5GSS064L2+00N14+75W532312.255637112GSS065L2+00N15+00W5322765637137GSS066L3+00N7+25W5329025636747.25GSS067L3+00N7+50W5328845636764.5GSS068L3+00N7+75W5328485636799GSS070L3+00N8+00W532834.255636817GSS071L3+00N8+50W532806.755636835GSS072L3+00N8+50W532806.755636871GSS074L3+00N9+00W5327935636871GSS075L3+00N9+25W532772.255636879.75GSS075L3+00N9+50W532730.755636887.75GSS076L3+00N9+75W532730.755636897.25GSS077L3+00N9+75W532730.755636897.25GSS077L3+00N9+75W532730.755636897.25GSS077L3+00N10+25W532730.755636997.25GSS078L3+00N9+75W532730.755636997.25GSS078L3+00N10+25W5326905636927.75
GSS061L2+00N14+00W532366.6255637074.5GSS062L2+00N14+25W532348.55637087GSS063L2+00N14+50W532330.3755637099.5GSS064L2+00N14+75W532312.255637112GSS065L2+00N15+00W5322765637137GSS066L3+00N7+25W5329025636747.25GSS067L3+00N7+50W5328445636764.5GSS068L3+00N7+75W5328485636799GSS069L3+00N8+00W5328485636799GSS070L3+00N8+25W532834.255636817GSS071L3+00N8+50W532806.755636835GSS072L3+00N8+75W532806.755636853GSS073L3+00N9+00W5327935636871GSS074L3+00N9+25W532772.255636879.75GSS075L3+00N9+50W532730.755636897.25GSS076L3+00N9+75W532730.755636897.25GSS077L3+00N10+00W5327105636906GSS078L3+00N10+25W5326905636927.75
GSS062L2+00N14+25W532348.55637087GSS063L2+00N14+50W532330.3755637099.5GSS064L2+00N14+75W532312.255637112GSS065L2+00N15+00W5322765637137GSS066L3+00N7+25W5329025636747.25GSS067L3+00N7+50W5328845636764.5GSS068L3+00N7+75W5328485636799GSS069L3+00N8+00W5328485636799GSS070L3+00N8+25W532834.255636817GSS071L3+00N8+50W532806.755636835GSS072L3+00N8+75W532806.755636833GSS073L3+00N9+00W5327935636871GSS074L3+00N9+25W532772.255636879.75GSS075L3+00N9+50W532730.755636897.25GSS076L3+00N9+75W532730.755636897.25GSS077L3+00N10+00W5327105636906GSS078L3+00N10+25W532730.755636897.25
GSS063L2+00N14+50W532330.3755637099.5GSS064L2+00N14+75W532312.255637112GSS065L2+00N15+00W5322765637137GSS066L3+00N7+25W5329025636747.25GSS067L3+00N7+50W5328845636764.5GSS068L3+00N7+75W5328485636799GSS070L3+00N8+00W5328485636799GSS071L3+00N8+25W532834.255636817GSS072L3+00N8+50W532806.755636835GSS073L3+00N8+75W532806.755636853GSS074L3+00N9+00W5327935636871GSS075L3+00N9+25W532772.255636887.15GSS075L3+00N9+50W532730.755636888.5GSS076L3+00N9+75W532730.755636897.25GSS077L3+00N10+00W5327105636906GSS078L3+00N10+25W5326905636927.75
GSS064L2+00N14+75W532312.255637112GSS065L2+00N15+00W5322765637137GSS066L3+00N7+25W5329025636747.25GSS067L3+00N7+50W5328845636764.5GSS068L3+00N7+75W5328665636781.75GSS069L3+00N8+00W532834.255636817GSS070L3+00N8+25W532834.255636835GSS071L3+00N8+50W532820.55636835GSS072L3+00N8+75W532806.755636853GSS073L3+00N9+00W5327935636871GSS074L3+00N9+25W532772.255636879.75GSS075L3+00N9+50W532730.755636888.5GSS076L3+00N9+75W532730.755636897.25GSS077L3+00N10+00W5327105636906GSS078L3+00N10+25W5326905636927.75
GSS065L2+00N15+00W5322765637137GSS066L3+00N7+25W5329025636747.25GSS067L3+00N7+50W5328845636764.5GSS068L3+00N7+75W5328665636781.75GSS069L3+00N8+00W5328485636799GSS070L3+00N8+25W532834.255636817GSS071L3+00N8+50W532820.55636835GSS072L3+00N8+75W532806.755636853GSS073L3+00N9+00W5327935636871GSS074L3+00N9+25W532772.255636879.75GSS075L3+00N9+50W532730.755636888.5GSS076L3+00N9+75W532730.755636897.25GSS077L3+00N10+00W5327105636906GSS078L3+00N10+25W5326905636927.75
GSS066L3+00N7+25W5329025636747.25GSS067L3+00N7+50W5328845636764.5GSS068L3+00N7+75W5328665636781.75GSS069L3+00N8+00W5328485636799GSS070L3+00N8+25W532834.255636817GSS071L3+00N8+50W532820.55636835GSS072L3+00N8+75W532806.755636853GSS073L3+00N9+00W5327935636871GSS074L3+00N9+25W532772.255636879.75GSS075L3+00N9+50W532730.755636888.5GSS076L3+00N9+75W532730.755636897.25GSS077L3+00N10+00W5327105636906GSS078L3+00N10+25W5326905636927.75
GSS067L3+00N7+50W5328845636764.5GSS068L3+00N7+75W5328665636781.75GSS069L3+00N8+00W5328485636799GSS070L3+00N8+25W532834.255636817GSS071L3+00N8+50W532820.55636835GSS072L3+00N8+75W532806.755636853GSS073L3+00N9+00W5327935636871GSS074L3+00N9+25W532772.255636879.75GSS075L3+00N9+50W532730.755636888.5GSS076L3+00N9+75W5327105636997.25GSS077L3+00N10+00W5327105636997.25GSS078L3+00N10+25W5326905636927.75
GSS068L3+00N7+75W5328665636781.75GSS069L3+00N8+00W5328485636799GSS070L3+00N8+25W532834.255636817GSS071L3+00N8+50W532820.55636835GSS072L3+00N8+75W532806.755636853GSS073L3+00N9+00W5327935636871GSS074L3+00N9+25W532772.2556368879.75GSS075L3+00N9+50W532751.55636888.5GSS076L3+00N9+75W532730.755636897.25GSS077L3+00N10+00W5327105636906GSS078L3+00N10+25W5326905636927.75
GSS069L3+00N8+00W5328485636799GSS070L3+00N8+25W532834.255636817GSS071L3+00N8+50W532820.55636835GSS072L3+00N8+75W532806.755636853GSS073L3+00N9+00W5327935636871GSS074L3+00N9+25W532772.2556368879.75GSS075L3+00N9+50W532751.55636888.5GSS076L3+00N9+75W532730.755636897.25GSS077L3+00N10+00W5327105636906GSS078L3+00N10+25W5326905636927.75
GSS070L3+00N8+25W532834.255636817GSS071L3+00N8+50W532820.55636835GSS072L3+00N8+75W532806.755636853GSS073L3+00N9+00W5327935636871GSS074L3+00N9+25W532772.2556368879.75GSS075L3+00N9+50W532751.55636888.5GSS076L3+00N9+75W532730.755636897.25GSS077L3+00N10+00W5327105636906GSS078L3+00N10+25W5326905636927.75
GSS071L3+00N8+50W532820.55636835GSS072L3+00N8+75W532806.755636853GSS073L3+00N9+00W5327935636871GSS074L3+00N9+25W532772.255636879.75GSS075L3+00N9+50W532751.55636888.5GSS076L3+00N9+75W532730.755636897.25GSS077L3+00N10+00W5327105636906GSS078L3+00N10+25W5326905636927.75
GSS072L3+00N8+75W532806.755636853GSS073L3+00N9+00W5327935636871GSS074L3+00N9+25W532772.255636879.75GSS075L3+00N9+50W532751.55636888.5GSS076L3+00N9+75W532730.755636897.25GSS077L3+00N10+00W5327105636906GSS078L3+00N10+25W5326905636927.75
GSS073L3+00N9+00W5327935636871GSS074L3+00N9+25W532772.255636879.75GSS075L3+00N9+50W532751.55636888.5GSS076L3+00N9+75W532730.755636897.25GSS077L3+00N10+00W5327105636906GSS078L3+00N10+25W5326905636927.75
GSS074L3+00N9+25W532772.255636879.75GSS075L3+00N9+50W532751.55636888.5GSS076L3+00N9+75W532730.755636897.25GSS077L3+00N10+00W5327105636906GSS078L3+00N10+25W5326905636927.75
GSS075L3+00N9+50W532751.55636888.5GSS076L3+00N9+75W532730.755636897.25GSS077L3+00N10+00W5327105636906GSS078L3+00N10+25W5326905636927.75
GSS076L3+00N9+75W532730.755636897.25GSS077L3+00N10+00W5327105636906GSS078L3+00N10+25W5326905636927.75
GSS077L3+00N10+00W5327105636906GSS078L3+00N10+25W5326905636927.75
GSS078 L3+00N 10+25W 532690 5636927.75
GSS079 L3+00N 10+50W 532670 5636949.5
GSS081 L3+00N 11+00W 532630 5636993
GSS082 L3+00N 11+25W 532611 5637005.5
GSS083 L3+00N 11+50W 532592 5637018
GSS084 L3+00N 11+75W 532573 5637030.5
GSS085 L3+00N 12+00W 532554 5637043
GSS086 L3+00N 12+25W 532536.25 5637058.25
GSS087 L3+00N 12+50W 532518.5 5637073.5
GSS088 L3+00N 12+75W 532500.75 5637088.75
GSS089 L3+00N 13+00W 532483 5637104
GSS090 L3+00N 13+25W 532465 5637119.5
GSS090L3+00N13+25W5324655637119.5GSS091L3+00N13+50W5324475637135
GSS090 L3+00N 13+25W 532465 5637119.5

GSS094	L3+00N	14+25W	532394.25	5637183.25
GSS095	L3+00N	14+50W	532377.5	5637200.5
GSS096	L3+00N	14+75W	532360.75	5637217.75
GSS097	L3+00N	15+00W	532344	5637235
GSS098	L4+00N	7+75W	533058.25	5636697.75
GSS099	L4+00N	8+00W	533033	5636715
GSS100	L4+00N	8+25W	533013.75	5636727.25
GSS101	L4+00N	8+50W	532994.5	5636739.5
GSS102	L4+00N	8+75W	532975.25	5636751.75
GSS103	L4+00N	9+00W	532956	5636764
GSS104	L4+00N	9+25W	532943.75	5636778
GSS101	L4+00N	9+50W	532931.5	5636792
GSS106	L4+00N	9+75W	532919.25	5636806
GSS100	L4+00N	10+00W	532907	5636820
GSS107	L4+00N	10+25W	532896.75	5636841.25
GSS100	L4+00N	10+50W	532886.5	5636862.5
GSS105	L4+00N	10+75W	532876.25	5636883.75
GSS110 GSS111	L4+00N	11+00W	532866	5636905
GSS111 GSS112	L4+00N	11+25W	532842.75	5636916
GSS112 GSS113	L4+00N	11+50W	532819.5	5636927
GSS113 GSS114	L4+00N	11+75W	532796.25	5636938
GSS114 GSS115	L4+00N	12+00W	532773	5636949
GSS115 GSS116	L4+00N	12+00W	532775	5636963.75
GSS110 GSS117	L4+00N	12+50W	532733	5636978.5
GSS117 GSS118	L4+00N	12+75W	532720.5	5636993.25
GSS118 GSS119	L4+00N	13+00W	532720.5	5637008
GSS119 GSS120	L4+00N	13+00W 13+25W	532682.25	5637026
GSS120 GSS121	L4+00N	13+50W	532661.5	5637044
GSS121 GSS122	L4+00N	13+30W 13+75W	532640.75	5637062
GSS122 GSS123	L4+00N	14+00W	532620	5637080
GSS123 GSS124	L4+00N	14+25W	532604.25	5637096
GSS124 GSS125	L4+00N	14+50W	532588.5	5637112
GSS125 GSS126	L4+00N	14+75W	532572.75	5637128
GSS120 GSS127	L4+00N	15+00W	532572.75	5637144
GSS127 GSS128	L5+00N	7+50W	533155	5636722.5
GSS128 GSS129	L5+00N	7+75W	533136.5	5636733.75
GSS129 GSS130	L5+00N	8+00W	533130.5	5636745
GSS130 GSS131	L5+00N	8+00W 8+25W	533099.25	5636769
GSS131 GSS132	L5+00N	8+25W 8+50W	533080.5	5636793
GSS132 GSS133	L5+00N	8+30W 8+75W	533061.75	5636817
GSS133 GSS134	L5+00N		533043	
		9+00W		5636841
GSS135	L5+00N	9+25W	533027.25	5636860.5
GSS136	L5+00N	9+50W	533011.5	5636880
GSS137	L5+00N	9+75W	532995.75	5636899.5
GSS138	L5+00N	10+00W	532980	5636919
GSS139	L5+00N	10+25W	532959	5636930.75
GSS140	L5+00N	10+50W	532938	5636942.5

GSS141	L5+00N	10+75W	532917	5636954.25	
GSS142	L5+00N	11+00W	532896	5636966	
GSS143	L5+00N	11+25W	532881.25	5636980.5	
GSS144	L5+00N	11+50W	532866.5	5636995	
GSS145	L5+00N	11+75W	532851.75	5637009.5	
GSS146	L5+00N	12+00W	532837	5637024	
GSS147	L5+00N	12+25W	532816.25	5637040.25	
GSS148	L5+00N	12+50W	532795.5	5637056.5	
GSS140 GSS149	L5+00N	12+75W	532774.75	5637072.75	
GSS145 GSS150	L5+00N	13+00W	532774.75	5637089	
GSS151	L5+00N	13+25W	532741.25	5637103.5	
GSS152	L5+00N	13+50W	532728.5	5637118	
GSS153	L5+00N	13+75W	532715.75	5637132.5	
GSS154	L5+00N	14+00W	532703	5637147	
GSS155	L5+00N	14+25W	532680	5637161	
GSS156	L5+00N	14+50W	532657	5637175	
GSS157	L5+00N	14+75W	532634	5637189	
GSS158	L5+00N	15+00W	532611	5637203	
GSS159	L10+00	N 8+25W	533450	5637100	
GSS160	L10+00	N 8+50W	533437	5637107	
GSS161	L10+00	N 8+75W	533421	5637127	
GSS162	L10+00	N 9+00W	533393	5637130	
GSS163	L10+00	N 9+25W	533368	5637138	
GSS164	L10+00	N 9+50W	533347	5637164	
GSS165	L10+10	N 9+75W	533329	5637173	
GSS166	L10+00	N 10+00W	533315	5637184	
GSS160 GSS167	L10+00	N 10+25W	533290	5637202	
GSS167 GSS168	L10+00	N 10+50W	533277	5637218	
GSS168 GSS169	L10+00	N 10+75W	533262	5637229	
GSS109 GSS170	L10+00	N 10+75W	533202	5637277	
GSS171	L10+00	N 11+25W	533229	5637269	
GSS172	L10+00	N 11+50W	533201	5637289	
GSS173	L10+00	N 11+75W	533183	5637300	
GSS174	L10+00	N 12+00W	533171	5637323	
GSS175	L10+00	N 12+25W	533148	5637334	
GSS176	L10+00	N 12+50W	533125	5637350	
GSS177	L10+00	N 12+75W	533112	5637363	
GSS178	L10+00	N 13+00W	533098	5637393	
GSS179	L10+00	N 13+25W	533082	5637396	
GSS180	L10+00	N 13+50W	533063	5637429	
GSS181	L10+00	N 13+75W	533052	5637430	
GSS182	L10+00	N 14+00W	533034	5637445	
GSS183	L10+00	N 14+25W	533018	5637463	
GSS184	L10+00	N 14+50W	532978	5637468	
GSS185	L10+00	N 14+75W	532975	5637470	
GSS185	L10+00	N 15+00W	532965	5637502	
GSS180 GSS187	L0+00	S0+10N	533365	5635943	
000101			22202	5055545	

GSS188	L0+00	S0+20N	533351	5635950
GSS189	L0+00	S0+30N	533353	5635962
GSS190	L0+00	S0+40N	533344	5635968
GSS191	L0+00	S0+50N	533334	5635972
GSS191 GSS192	L0+00	S0+60N	533323	5635980
GSS193	L0+00	S0+70N	533314	5635986
GSS194	L0+00	S0+80N	533310	5635996
GSS195	L0+00	S0+90N	533307	5636006
GSS196	L0+00	S1+00N	533299	5636013
GSS197	L0+00	S1+10N	533297	5636023
GSS198	L0+00	S1+20N	533287	5636032
GSS199	L0+00	S1+30N	533283	5636043
GSS200	L0+00	S1+40N	533282	5636054
GSS201	L0+00	S1+50N	533286	5636062
GSS202	L0+25E	S0+10N	533386	5635963
GSS203	L0+25E	S0+20N	533380	5635977
GSS204	L0+25E	S0+30N	533375	5635983
GSS205	L0+25E	S0+40N	533372	5635991
GSS205 GSS206	L0+25E	S0+50N	533365	5636000
GSS200 GSS207	L0+25E	S0+50N	533358	5636010
GSS208	L0+25E	S0+70N	533347	5636012
GSS209	L0+25E	S0+80N	533342	5636018
GSS210	L0+25E	S0+90N	533338	5636029
GSS211	L0+25E	S1+00N	533329	5636036
GSS212	L0+25E	S1+10N	533325	5636045
GSS213	L0+25E	S1+20N	533318	5636053
GSS214	L0+25E	S1+30N	533312	5636060
GSS215	L0+25E	S1+40N	533307	5636068
GSS216	L0+25E	S1+50N	533305	5636079
GSS217	L0+50E	S0+00N	533410	5635974
GSS218	L0+50E	S0+10N	533400	5635976
GSS219	L0+50E	S0+20N	533388	5635983
GSS220	L0+50E	S0+30N	533381	5635995
GSS221	L0+50E	S0+40N	533373	5636001
GSS222	L0+50E	S0+50N	533368	5636013
GSS223	L0+50E	S0+60N	533365	5636023
GSS224	L0+50E	S0+70N	533367	5636035
GSS224 GSS225	L0+50E	S0+80N	533357	5636037
GSS225 GSS226	L0+50E	S0+90N	533348	5636047
GSS227	L0+50E	S1+00N	533342	5636055
GSS228	L0+50E	S1+10N	533337	5636064
GSS229	L0+50E	S1+20N	533337	5636074
GSS230	L0+50E	S1+30N	533332	5636083
GSS231	L0+50E	S1+40N	533328	5636098
GSS232	L0+50E	S1+50N	533327	5636102
GSS233	L0+75E	S0+00N	533426	5635992
GSS234	L0+75E	S0+10N	533419	5635998

GSS235	L0+75E	S0+20N	533413	5636006
GSS236	L0+75E	S0+30N	533406	5636015
GSS237	L0+75E	S0+40N	533400	5636023
GSS238	L0+75E	S0+50N	533395	5636031
GSS239	L0+75E	S0+60N	533390	5636038
GSS240	L0+75E	S0+70N	533387	5636052
GSS241	L0+75E	S0+80N	533382	5636059
GSS242	L0+75E	S0+90N	533375	5636070
GSS243	L0+75E	S1+00N	533372	5636074
GSS244	L0+75E	S1+10N	533366	5636084
GSS245	L0+75E	S1+20N	533361	5636094
GSS246	L0+75E	S1+30N	533352	5636106
GSS247	L0+75E	S1+40N	533349	5636114
GSS248	L0+75E	S1+50N	533345	5636121

APPENDIX 3 -ANALYTICAL CERTIFICATES-

 SGS Canada Inc.

 8282 Sherbrooke Street

 Vancouver, British Columbia V5X 4R6

 T: (604) 327-3436

 F: (604) 327-3423

CERTIFICATE OF ANALYSIS

0V-1745-SG1

Nov-22-10

Company:	St. Elias Mines
Project:	Gold Summit
Attn:	James Thom

We *hereby certify* the following geochemical analysis of 22 soil samples submitted Oct-07-10

Sample		Au	
Name		քթե	
L0+00	7+25	<2	
L0+00	7+50	<2	
L0+00	7+75	2 <2	
L0+00	8+00	<2	
L0+00	8+25	<2	
L0 + 00	8+50	<2	
L0+00	8+75	4	
L0+00	9+00	4	
L0+00	9+25	7	
L0+00	9+50	2	
L0+00	9+75	8	
L0+00	10+00	<2	
L0+00	10+25	3	
L0+00	10+50	<2	
L0+00	10+75	<2	
L0+00	11+00	<2	
L0+00	11+25	6	
L0+00	11+50	3	
L0+00	11+75	2	
L0+00	12+00	7	
L0+00	12+25	3	
L0+00	12+50	5	
*OXF65		734	
*BLANK		<2	
	···	· · · · · · · · · · · · · · · · ·	

CERTIFICATE OF ANALYSIS

0V-1745-SG2

Nov-22-10

Company:	St. Elias Mines
Project:	Gold Summit
Attn:	James Thom

We *hereby certify* the following geochemical analysis of 22 soil samples submitted Oct-07-10

Sample		Au	
Name		ppb	
L0+00	12+75	3	
L0+00	13+00	6	
L0+00	13+25	8	
L0+00	13+50	<2	
L0+00	13+75	2	
L0+00	14+00	3	
L0+00	14+25	<2	
L0+00	14+50	<2	
L0+00	14+75	<2	
L0+00	15+00	<2	
L+200N	6+00W	2	
L+200N		<2	
L+200N		5	
L+200N		<2	
L+200N	7+00W	<2	
L+200N	7+25W	<2	
L+200N		<2	
L+200N		<2	
L+200N		<2	
L+200N	8+25W	2	
L+200N	8+75₩	2	
L+200N	9+00W	28	
*OXF65		758	
*BLANK		<2	
			· · · · · · · · · · · · · · · · · · ·

Certified by______

CERTIFICATE OF ANALYSIS

0V-1745-SG3

Nov-22-10

Company:	St. Elias Mines
Project:	Gold Summit
Attn:	James Thom

We *hereby certify* the following geochemical analysis of 22 soil samples submitted Oct-07-10

Sample		Au			
Name		ppb			
L+200N	9+25W	3	 	 	
L+200N	9+50W	<2			
L2+00N	9+75₩	7			
L2+00N	10+00W	3			
L2+00N	10+25W	<2			
L2+00N	10+50W	2		 	
L2+00N	11+25W	4			
L2+00N	11+50W	6			
L2+00N	11+75W	4			
L2+00N	12+00W	5			
L2+00N	12+25W	2	 	 	
L2+00N	12+50W	2			
L2+00N	12+75W	2			
L2+00N	13+00W	18			
L2+00N	13+25W-E	2			
L2+00N	13+50W	2		 	
L2+00N	13+75W-NR				
L2+00N	14+00W	<2			
L2+00N	14+25W	3			
L2+00N	<u>14+50W</u>	2			
L2+00N	14+75W	6		 	
L2+00N	15+00W	6			
*OXF65		766			
*BLANK		<2			
	· · · · · · · · · · · · · · · · ·		 	 	

A

CERTIFICATE OF ANALYSIS

0V-1745-SG4

Nov-22-10

Company:	St. Elias Mines
Project:	Gold Summit
Attn:	James Thom

We *hereby certify* the following geochemical analysis of 22 soil samples submitted Oct-07-10

Sample		Au	
Name		թթե	
L3+00N	7+25W	3	··· ········ ·························
L3+00N	7+50W	3	
L3+00N	7+75W	2	
L3+00N	8+00W	2	
L3+00N	8+25W	5	
L3+00N	8+50W	5	
L3+00N	8+75₩	2	
L3+00N	9+00W	3	
L3+00N	9+25W	<2	
L3+00N	9+50W	2	
L3+00N	9+75W	<2	
L3+00N	10+00W	<2	
L3+00N	10+25W	<2	
L3+00N	10+50W	2	
L3+00N	10+75W	2	
L3+00N	11+00W	8	
L3+00N	11+25W	2	
L3+00N	11+50W	2	
L3+00N	11+75W	2	
L3+00N	12+00W	5	
L3+00N	12+25W	2	
L3+00N	12+50W	6	
*OXF65		735	
*BLANK		<2	

 SGS Canada Inc.

 8282 Sherbrooke Street

 Vancouver, British Columbia V5X 4R6

 T: (604) 327-3436

 F: (604) 327-3423

CERTIFICATE OF ANALYSIS

0V-1745-SG5

Nov-22-10

Company:St. Elias MinesProject:Gold SummitAttn:James Thom

We *hereby certify* the following geochemical analysis of 22 soil samples submitted Oct-07-10

Sample		Au	
Name		թթԵ	
L3+00N	12+75W	3	
L3+00N	13+00W	<2	
L3+00N	13+25W	3	
L3+00N	13+50W	4	
L3+00N	13+75W	3	
L3+00N	14+00W	2	
L3+00N	14+25W	5	
L3+00N	14+50W	<2	
L3+00N	14+75W	5	
L3+00N	15+00W	3	
L4+00N	7+75W	<2	· · · · · · · · · · · · · · · · · · ·
L4+00N	8+00W	<2	
L4+00N	8+25W	<2	
L4+00N	8+50W	3	
L4+00N	8+75W	<2	
L4+00N	9+00W	<2	
L4+00N	9+25W	3	
L4+00N	9+50W	<2	
L4+00N	9+75W	<2	
L4+00N	10+00W	<2	
L4+00N	10+25W	3	
L4 + 00N	10+50W	<2	
*OXF65		786	
*BLANK		<2	
			· _· · · · · · · · · · · · · · · · ·

Certified by_

CERTIFICATE OF ANALYSIS

0V-1745-SG6

Nov-22-10

Company:	St. Elias Mines
Project:	Gold Summit
Attn:	James Thom

We *hereby certify* the following geochemical analysis of 22 soil samples submitted Oct-07-10

Sample Name		Au ppb			
L4+00N	10+75W	5			
L4+00N	11+00W	2			
L4+00N	11+25W	4			
L4+00N	11+50W	4			
L4+00N	11+75W	<2			
L4+00N	12+00W	2	 	 	
L4+00N	12+25W	3			
L4+00N	12+50W	25			
L4+00N	12+75W	3			
L4+00N	13+00W	37			
L4+00N	13+25W	4	 	 	 ••
L4 + 00N	13+50W	3			
L4+00N	13+75W	2			
L4+00N	14+00W	3			
L4+00N	14+25W	4			
L4+00N	14+50W	4	 	 	
L4+00N	14+75W	<2			
L4+00N	15+00W	4			
L5+00N	7+50W	2			
L5+00N	7+75W	3			
L5+00N	8+00W	6	 • • • • •	 	
L5+00N	8+25W	3			
*OXF65		752			
*BLANK		<2	-		

Au 15g F.A. AA finish

Λ

.

CERTIFICATE OF ANALYSIS

0V-1745-SG7

Nov-22-10

Company:	St. Elias Mines
Project:	Gold Summit
Attn:	James Thom

We *hereby certify* the following geochemical analysis of 22 soil samples submitted Oct-07-10

Sample		Au	
Name		ppb	
L5+00N	8+50W	2	· · · · · · · · · · · · · · · · · · ·
L5+00N	8+75W	2	
L5+00N	9+00W	<2	
L5+00N	9+25₩	<2	
L5+00N	9+50W	2	
L5+00N	9+75W	6	
L5+00N	10+00W	4	
L5+00N	10+25W	4	
L5+00N	10+50W	<2	
L5+00N	10+75W	5	
L5+00N	11+00W	6	
L5+00N	11+25W	3	
L5+00N	11+50W	10	
L5+00N	11+75W	3	
L5+00N	12+00W	87	
L5+00N	12+25W	3	
L5+00N	12+50W	5	
L5+00N	12+75W	14	
L5+00N	13+00W	5	
L5+00N	13+25W	3	
L5+00N	13+50W	3	
L5+00N	13+75W	3	
*OXF65		769	
*BLANK		<2	

Ar

CERTIFICATE OF ANALYSIS

0V-1745-SG8

Nov-22-10

Company:	St. Elias Mines
Project:	Gold Summit
Attn:	James Thom

We *hereby certify* the following geochemical analysis of 22 soil samples submitted Oct-07-10

Sample	Au	
Name	թթե	
L5+00N 14+00W	7	
L5+00N 14+25W	4	
L5+00N 14+50W	44	
L5+00N 14+75W	5	
L5+00N 15+00W	7	
L10+00N 8+25W	4	
L10+00N 8+50W	3	
L10+00N 8+75W	6	
L10+00N 9+00W	6	
L10+00N 9+25W	5	
L10+00N 9+50W	6	
L10+10N 9+75W	3	
L10+00N 10+00W	6	
L10+00N 10+25W	7	
L10+00N 10+50W	4	
L10+00N 10+75W	5	
L10+00N 11+00W	5	
L10+00N 11+25W	5	
L10+00N 11+50W	8	
L10+00N 11+75W	3	
L10+00N 12+00W	5	
L10+00N 12+25W	6	
*OXF65	749	
*BLANK	<2	

AL Certified by____

CERTIFICATE OF ANALYSIS

0V-1745-SG9

Nov-22-10

Company:	St. Elias Mines
Project:	Gold Summit
Attn:	James Thom

We *hereby certify* the following geochemical analysis of 22 soil samples submitted Oct-07-10

Sample Name		Au ppb	
L10+00N L10+00N	12+50W	2	······································
L10+00N L10+00N	12+75W 13+00W	<2 50	
L10+00N	13+25W	2	
L10+00N	13+50W	12	······
L10+00N L10+00N	13+75W 14+00W	4	
L10+00N L10+00N	14+00W 14+25W	5 <2	
L10+00N	14+50W	12	
L10+00N	14+75W	18	
L10+00N GSS-01	15+00W	6 3	
GSS-01 GSS-02		3	
GSS-03		9	
GSS-04		<2	·····
GSS-05 GSS-06		<2 2	
GSS-07		3	
GSS-08		<2	
GSS-09 GSS-10		2	······································
GSS-11 GSS-11		<2	
*OXF65		784	
*BLANK		<2	
		· · · · · · · · · · · · · · · · · · ·	

Certified by_

£1

CERTIFICATE OF ANALYSIS

0V-1745-SG10

Nov-22-10

Company:	St. Elias Mines
Project:	Gold Summit
Attn:	James Thom

We *hereby certify* the following geochemical analysis of 22 soil samples submitted Oct-07-10

Sample	Au	
Name	ppb	
GSS-12	<2	
GSS-13	3	
GSS-14	4	
L0+00 S0+10N	<2	
L0+00 S0+20N	13	
L0+00 S0+30N	6	
L0+00 S0+40N	8	
L0+00 S0+50N	<2	
L0+00 S0+60N	87	
L0+00 S0+70N	46	
L0+00 S0+80N	8	
L0+00 S0+90N	4	
L0+00 S1+00N	<2	
L0+00 S1+10N	5	
L0+00 S1+20N	6	
L0+00 S1+30N	2	
L0+00 S1+40N	<2	
L0+00 S1+50N	<2	
L0+25E S0+10N		
L0+25E S0+20N		
L0+25E S0+30N		
L0+25E S0+40N		
*OXF65	806	
*BLANK	<2	
···· ·······		

CERTIFICATE OF ANALYSIS

0V-1745-SG11

Nov-22-10

Company:	St. Elias Mines
Project:	Gold Summit
Attn:	James Thom

We *hereby certify* the following geochemical analysis of 22 soil samples submitted Oct-07-10

Sample Name		Au ppb	
L0+25E	S0+50N	PP ~7	······································
L0+25E	S0+50N S0+60N	<2	
L0+25E	S0+70N	3	
L0+25E	S0+80N	3 <2	
L0+25E	S0+90N	<2	
L0+25E	S1+00N	4	· · · · · · · · · · · · · · · · · · ·
L0+25E	S1+10N	5	
L0+25E	S1+20N	<2	
L0+25E	S1+30N	3	
L0+25E	S1+40N	<2 3 <2	
L0+25E	S1+50N	<2	······································
L0+50E	S0+00N	<2	
L0+50E	S0+10N	<2	
L0+50E	S0+20N	8	
L0+50E	S0+30N	<2	
L0+50E	S0+40N	9	
L0+50E	S0+50N	2	
L0+50E	S0+60N	3	
L0+50E	S0+70N	264	
L0+50E	S0+80N	15	
L0+50E	S0+90N	3	
L0+50E	S1+00N	7	
*OXF65		791	
*BLANK		<2	

Certified by____

CERTIFICATE OF ANALYSIS

0V-1745-SG12

Nov-22-10

Company:	St. Elias Mines
Project:	Gold Summit
Attn:	James Thom

We *hereby certify* the following geochemical analysis of 22 soil samples submitted Oct-07-10

Sample Name		Au ppb		
L0+50E	S1+10N	18	···· • · · · ·	 ···· · · · · · · · · · · · · · · · · ·
L0+50E	S1+20N	8		
L0+50E	S1+30N	<2		
L0+50E	S1+40N	<2		
L0+50E	S1+50N	2		
L0+75E	S0+00N	<2		
L0+75E	S0+10N	<2		
L0+75E	S0+20N	б		
L0+75E	S0+30N	<2		
L0+75E	S0+40N	2		
L0+75E	S0+50N	<2		
L0+75E	S0+60N	4		
L0+75E	S0+70N	43		
L0+75E	S0+80N	<2		
L0+75E	S0+90N	<2		
L0+75E	S1+00N	2		
L0+75E	S1+10N	6		
L0+75E	S1+20N	3		
L0+75E	S1+30N	<2		
L0+75E	S1+40N	5		
L0+75E	S1+50N	5		
*OXF65		774		
*BLANK		<2		

Tr Certified by_

 SGS Canada Inc.

 8282 Sherbrooke Street

 Vancouver, British Columbia V5X 4R6

 T: (604) 327-3436

 F: (604) 327-3423

CERTIFICATE OF ANALYSIS

0V-1745-RG1

Nov-22-10

Company:St. Elias MinesProject:Gold SummitAttn:James Thom

We *hereby certify* the following geochemical analysis of 3 rock samples submitted Oct-07-10

Sample	Au A	Ag	
Name	ppb	ppb	g/tonne
SGR-01	318	· · · ·	246.1
SGR-02	9850	9950	
SGR-03	2807		
*SG40	921		
*AC0501			237.1
*BLANK	<2		<0.1

Au 15g F.A. AA finish

Å Certified by

.....

SGS Canada Inc.

8282 Sherbrooke Street, Vancouver, British Columbia, V5X 4R6

T: (604) 327-3436 F: (604) 327-3423

Report No : 0V1745RX

Date : Nov-22-10

Sample type : ROCK

St. Elias Mines

Project : Gold Summit

Attention : James Thom

ICP-MS Report

Aqua Regia Digestion

Sample	Au	Ag	A1	As	Ba	Be	Bi	Ca	Cd	Ce	Co	Cr	Cs	Cu	Fe	Ga	Ge	Hf	Hg	In
Number	ppm	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm
SGR-01	0.23	>200.0	0.11	1705.6	93	<1	<0.1	4.22	0.9	6	3.7	83	0.2	57.7	2.52	4	<0.1	<0.1	1.324	0.03
SGR-02	5.83	75.9	0.02	>10000.0	102	<1	175.6	4.57	84.4	1	1.4	31	0.1	466.9	14.15	2	0.3	<0.1	3.679	2.54
SGR-03	1.48	8.4	0.24	1636.6	90	<1	44.6	6.24	168.6	12	14.4	24	0.3	443.7	11.51	3	0.1	<0.1	1.483	11.36
Duplicates: *DUP SGR-01	0.23	>200.0	0.10	1636.3	88	<1	<0.1	4.11	0.9	5	3.5	81	0.2	55.6	2.45	4	<0.1	<0.1	1.249	0.04
Standards: BLANK CH-4	<0.05 0.36	0.1 2.1	<0.01 1.66	<0.5 10.9	<1 233	<1 <1	<0.1 0.5	<0.01 0.50	<0.1 1.0	<1 24	0.3 19.7	<1 89	<0.1 2.1	<0.1 1981.8	<0.01 4.53	<1 8	<0.1 <0.1	<0.1 0.2	0.015 <0.005	<0.01 0.09

A .5 gm sample is digested with 5 ml 3:1 HCI/HNO3 at 95°C for 90 min and diluted to 25 ml.

Signed: _

SGS Canada Inc.

8282 Sherbrooke Street, Vancouver, British Columbia, V5X 4R6

Report No : 0V1745RX

T: (604) 327-3436 F: (604) 327-3423

Signed: _

Date : Nov-22-10

Sample type : ROCK

St. Elias Mines

Project : Gold Summit

Attention : James Thom

ICP-MS Report

Aqua Regia Digestion

Sample Number	K %	La ppm	Li ppm	Mg %	Mn ppm	Mo ppm	Na %	Nb ppm	Ni ppm	P %	Рb ppm	Rb ppm	Re ppb	S %	Sb ppm	Sc ppm	Se ppm	Sn ppm	Sr ppm	Ta ppm
SGR-01	0.07	Э	0.7	0.87	>10000	2.0	0.01	<0.1	14.2	0.019	1495.8	1.7	<5	<0.05	47.0	2.7	< 0.5	0.7	187	<0.1
SGR-02	0.02	1	0.5	0.02	487	1.9	0.01	0.1	4.1	0.022	2378.8	0.4	<5	2.34	40.9	0.2	21.0	0.3	120	< 0.1
SGR-03	0.07	5	2.2	0.85	2617	4.4	0.01	<0.1	24.1	0.042	396.7	2.7	<5	0.18	6.1	2.2	5.0	1.0	108	<0.1
Duplicates:																				
*DUP SGR-01	0.07	3	0.7	0.84	>10000	1.8	0.01	<0.1	13.6	0.017	1478.9	1.7	<5	<0.05	45.3	2.5	<0.5	0.7	184	<0.1
Standards:																				
BLANK	<0.01	<1	<0.1	<0.01	<1	0.1	<0.01	<0.1	< 0.1	<0.001	<0.1	< 0.1	<5	< 0.05	< 0.1	< 0.1	< 0.5	< 0.1	<1	<0.1
CH-4	1.39	11	11.8	0.91	293	2.9	0.04	<0.1	42.5	0.052	12.0	59.6	< 5	0.60	0.5	6.0	0.6	0.5	7	<0.1

A .5 gm sample is digested with 5 ml 3:1 HCl/HNO3 at 95°C for 90 min and diluted to 25 ml.

SGS Canada Inc.

8282 Sherbrooke Street, Vancouver, British Columbia, V5X 4R6

T: (604) 327-3436 F: (604) 327-3423

Report No: 0V1745RXDate: Nov-22-10

Sample type : ROCK

St. Elias Mines

Project : Gold Summit

Attention : James Thom

ICP-MS Report

Aqua Regia Digestion

Sample Number	Te ppm	Th ppm	Ті %	Ti ppm	U ppm	V ppm	W ppm	Y ppm	Zn ppm	Zr ppm
SGR-01	<0.1	0.5	0.005	0.1	0.1	16	0.3	7.4	239	0.9
SGR-02	5.8	<0.1	0.007	0.4	0.1	<2	0.3	2.4	6389	0.9
SGR-03	9.5	0.3	0.009	0.8	0.1	31	2.7	7.2	9311	1.0
Duplicates:										
*DUP SGR-01	<0.1	0.5	0.005	<0.1	0.1	15	0.3	7.5	232	0.9
Standards:										
BLANK	<0.1	< 0.1	< 0.005	<0.1	<0.1	<2	0.1	<0.1	<1	0.1
CH-4	0.4	1.8	0.163	0.4	0.2	71	2.1	4.1	224	6.4

A .5 gm sample is digested with 5 ml 3:1 HCl/HNO3 at 95°C for 90 min and diluted to 25 ml.

Signed: ____