

ASSESSMENT REPORT TITLE PAGE AND SUMMARY

TITLE OF REPORT: 2010 Trenching and Rock Geochemistry at Mount Burns

TOTAL COST: \$42,326.12

AUTHOR(S): Angelique Justason SIGNATURE(S): <signed>

NOTICE OF WORK PERMIT NUMBER(S)/DATE(S): MX11-143 STATEMENT OF WORK EVENT NUMBER(S)/DATE(S): 4791987 and 4838185

YEAR OF WORK: 2010 PROPERTY NAME: Burns Claim Group CLAIM NAME(S) (on which work was done): 533317, 506328, 506333, 533053

COMMODITIES SOUGHT: Gold, Silver, Lead

MINERAL INVENTORY MINFILE NUMBER(S), IF KNOWN: 093H056, 93H037

 MINING DIVISION: Cariboo

 NTS / BCGS: 093H/04 :: 093H.002

 LATITUDE: _____53___° ____02__' ___35.6__"

 LONGITUDE: ____121____° ___40__' __39.9____" (at centre of work)

 UTM Zone: 10
 EASTING:588645.8

OWNER(S): Gemco Minerals Inc.

MAILING ADDRESS: 203-20189 56th Avenue Langley, BC V3A 3Y6

OPERATOR(S) [who paid for the work]: Gemco Minerals Inc.

MAILING ADDRESS: 203-20189 56th Avenue Langley, BC V3A 3Y6

REPORT KEYWORDS (lithology, age, stratigraphy, structure, alteration, mineralization, size and attitude. **Do not use abbreviations or codes**) Gold, Barkerville Gold Belt, Nelson-Yanks Gold Belt, Barkerville Terrane, Quarzite, Phyllite, Micaceous, Lode

REFERENCES TO PREVIOUS ASSESSMENT WORK AND ASSESSMENT REPORT NUMBERS: 31465, 8820, 8039


TYPE OF WORK IN THIS REPORT	EXTENT OF WORK (in metric units)	ON WHICH	I CLAIMS	PROJECT COSTS APPORTIONED (incl. support)	
GEOLOGICAL (scale, area)					
Ground, mapping					
Photo interpretation					
GEOPHYSICAL (line-kilometres)					
Ground					
Magnetic					
Electromagnetic					
Induced Polarization					
Radiometric					
Seismic					
Other					
Airborne					
GEOCHEMICAL (number of sample	es analysed for)				
Soil: 1 multielement		506333		30	0.00
Silt					
Rock: 235 multielement + fire/metallic assaay		506333, 533053	533317, 506328,	26349.64	
Other					
DRILLING (total metres, number of	holes, size, storage location)				
Core					
Non-core					
RELATED TECHNICAL					
Sampling / Assaying					
Mineralographic					
Metallurgic					
PROSPECTING (scale/area)					
PREPATORY / PHYSICAL					
Line/grid (km)					
Topo/Photogrammetric (sca	ale, area)				
Road, local access (km)/tra	il				
Trench (number/metres)	12 / 220m total	506333, 506053		8822.65	
Other: admin + contig and				7123.83	
_ report			TOTAL COST	42,326.12	

Technical Report

2010 Trenching and Rock Geochemistry at Mount Burns

BC Geological Survey Assessment Report 32340

Cariboo Mining Division NTS 093H/04 TRIM 093H002 and 093H003 53°02'30" North Latitude, 121°40'37" West Longitude Tenures 506325, 506328, 506333, 506335, 506336, 506337, 533053, 533317, 536356 and 536403

#203-20189 56th Avenue Langley, British Columbia V3A 3Y6

> By Angelique Justason

Tenorex GeoServices 336 Front Street Quesnel, British Columbia V2J 2K3

February 2011

TABLE OF CONTENTS

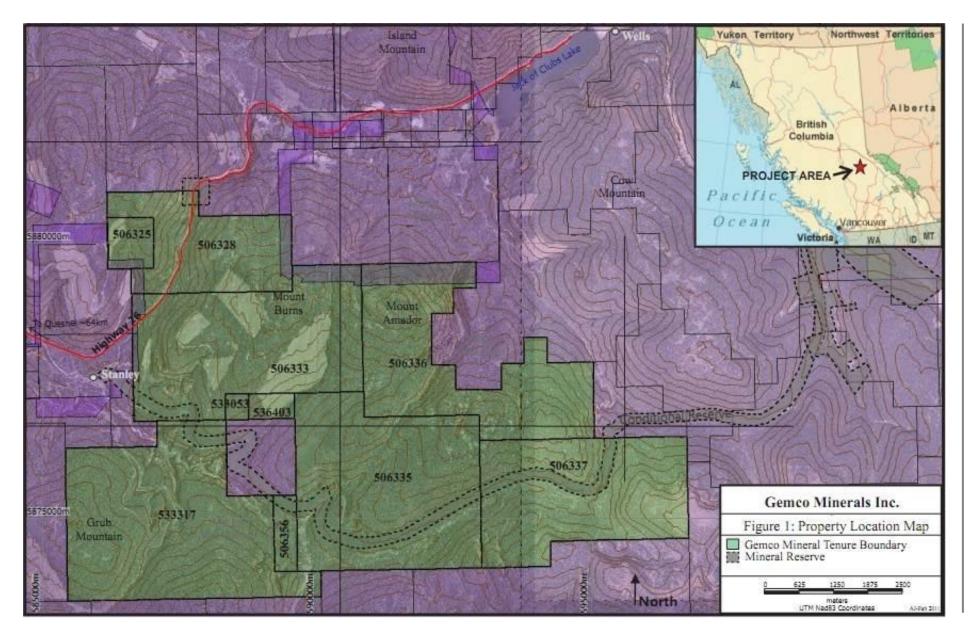
		D
1.0	TITLE PAGE	Page
2.0	TABLE OF CONTENTS	2
3.0	INTRODUCTION	3
4.0	PROPERTY DESCRIPTION AND LOCATION	4
5.0	ACCESSIBILITY, CLIMATE, LOCAL RESOURCES, INFRASTRUCTURE AND PHYSIOGRAPHY	6
6.0	GEOLOGICAL SETTING	7
7.0	DEPOSIT TYPES	12
8.0	HISTORY	14
9.0	EXPLORATION	22
10.0	RESULTS	26
11.0	RECOMMENDATIONS	
12.0	REFERENCES	
13.0	2010 STATMENT OF COSTS	
14.0	STATEMENT OF SOFTWARE USED	34
15.0	STATEMENT OF QUALIFICATIONS	

APPENDIX I: Assay Certificates APPENDIX II: Key Historical Maps APPENDIX III: 2010 Trenching and Sample Location Maps

3.0 INTRODUCTION

Gemco Minerals Inc. 2010 exploration program concentrated on trenching and geochemical sampling of rock exposures on Mount Burns. The purpose of this past season's program was to explore possible extensions of known surface mineralization outlined in 2009, follow up on pre-1940's sampling, locate the source of silver in soil anomalies from 1980's assessment work and to locate new mineralized quartz veins and country rock. Tenorex GeoServices was contracted to do the field work and generate a report. TCH Contracting was hired to excavate and reclaim the trenches.

Gemco Minerals Inc. 2010 season field work at their Mount Burns Claim Group near Wells, BC began August 5, 2010 and ended in October. Work concentrated mainly on the heart of Mount Burns with a part day excursion over to Grub Mountain to determine if the upgraded placer mining access road opened up any rock exposures. The first snowfall this year was one week earlier than last season, but a mild autumn this year could have seen field work continue well into November.


236 rock samples and one soil sample were taken in 2010, of which 37 samples assayed over 1g/t gold. 12 new trenches totaling 220 meters were explored in 2010 and all including 2 trenches from the end of the 2009 season were reclaimed, save the end of one short trench near the Beedy Boarding house location which was left open (but fenced off) as a water source for upcoming work. The highest value of 212.0g/t gold (metallic assay), which re ran at 226.0g/t gold, was obtained from sample 189603, a vuggy quartz vein sample of talus found at the extreme north end of Perkins opencut, about 20 meters north of the 2009 sample which ran 109.0 g/t gold. Two new showings were discovered this season, two previously unreported and economically valued crushed tailings sites were located, and trenching was successful in extending the Perkins set of veins 50 meters to the north of the Perkins opencut workings, with evidence that the veins persist to the north. More details are provided in this report. Continued detailed exploration is highly recommended.

4.0 PROPERTY DESCRIPTION AND LOCATION

The Mount Burns Claim Group, also referred to as the Burns Group, is made up of 225 mineral cells on ten contiguous mineral tenures and encompasses 5134 hectares of land located approximately 7 kilometers southeast of Wells, British Columbia. Gemco Minerals Inc. holds 100% ownership of the 5134 hectares of contiguous mineral tenure cells. The property is located entirely within NTS map sheet 094H/04, is centered at approximately Zone 10U 590700E, 5877000N (NAD 83). A statement of mineral claims is shown in Table 1.

Tenure Number	Claim Name	Area (ha)
506325	-	77.7
506328	-	446.9
506333	-	913.7
506335	-	992.0
506336	-	758.3
506337	-	758.6
533053	SPOT 8	19.4
533317	SPOT	1069.8
536356	GRUB3	58.4
536403	SPOT 9	38.9

Table 1: Statement of mineral claims held by Gemco Minerals Inc.

5.0 ACCESSIBILITY, CLIMATE, LOCAL RESOURCES, INFRASTRUCTURE AND PHYSIOGRAPHY (partly from Reid and Justason, 2007)

The Mount Burns Claim Group of mineral tenures is located some 70 kilometres east of the junction of Highway 97 North and Highway 26 at Quesnel, British Columbia. Access to the property is made by travelling approximately 70 kilometres east from Quesnel along Highway 26, also locally known as the Barkerville Highway. The closest populated community is centred about 10 kilometres further east along Highway 26 and is situated at the north east end of the Jack of Clubs Lake. The highway itself passes through the northwest portion of the claim group for an approximate length of 3.5 kilometers. The Fosters East target area is located to the north of the highway and access is via a small, 4x4 vehicle accessible exploration trail which begins near hydro pole #672 on Highway 26 (Davies, 2006). Access to the remaining majority of the property, located to the southeast of the highway, is made via the partially deactivated 72F forest service road which heads southeast from the Stanley Loop Road. Good access is available as far as the cabin at Milk Ranch Pass Creek, but the southern and eastern most reaches of the Mount Burns Claim group has limited to non-existent vehicular access.

The project area lies in the forested mountain region located southwest of the Jack of Clubs Lake and is situated within the Quesnel Highlands on the eastern margin of the Interior Plateau. Elevations range from 1200 meters in the Stanley - Lightening Creek area to approximately 1680 meters at the mountain tops. Mountain summits are generally rounded, having been glaciated by continental ice sheets during the Pleistocene Epoch. Glacial till is the most widespread surficial deposit in the overall area. Areas of rock exposure are generally limited to fault related bluffs, mountain summits and road cuts. It has been found that, at least locally on Mount Burns, that most overburden exists as a thin veneer (except at major fault zones) at elevations over 1550-1600m. Drainage of the area is mostly within mossy draws which in several places lead into gold bearing placer creeks: these placer bearing creeks have been extensively worked and hydralicked in the past. Less destructive means of placer exploration operations continue today. The area is in a moist climatic belt, subject to heavy snowfall in winter and generally rainy conditions in summer. The District of Wells can see winter accumulations of snow from about eight to over twenty feet. The project area is usually snow free from late May to early November, providing Gemco Minerals Ltd. a four or five month window for an exploration season where the ground can be readily accessed. Also now to consider, is the Wildlife Habitat Areas (WHA) 5-090, 5-092 and 5-100 which have been defined over half of the project area and historical mine workings. An exemption is required to conduct exploration activities within the prescribed zones and operations, once permitted and bonded, can begin after mid-June and have specific conditions attached to the work program. The Wells area is generally well forested; hillside slopes are dominated by spruce, pine, sub-alpine fir, accompanied by alders and other deciduous foliage on lower, wetter slopes flanking river valleys. At the Burns Group mineral claims alone, it is estimated by the author that greater than 80% of the pine trees are presently dead standing due to the destructive nature of the pine beetle on the trees of the area over the past 10 years. The majority of trees now, in 2010, are grey, dead, bare and brittle standing tinder. They are easily windblown and are considered a danger, besides the obvious fire danger, as on any blustery day as the tops and

branches are easily broken off and thrusted to the ground. Prior to 2002, no pine beetle kill was observed in the immediate area.

The community of Wells is home to a population of about 225 permanent residents (pers. comm., Gary Champagne, 2007, District Administrator). The town houses one gas station, one Canada Post postal outlet, two small grocery stores, an elementary school, a public library with publicly accessible high-speed internet computer kiosks, an RCMP detachment, an ambulance station, a volunteer Fire Brigade, one hotel, two motels, several restaurants and several other privately owned businesses. No cell service is available. Although a broad range of amenities can be found here, the City of Quesnel, located about a 55 minute drive away, provides a more complete range of services, such as a hospital, medical clinics, banking services and larger commercial stores. The economy of Wells is mainly supported by summer and winter tourism, followed by mining activities, mineral and placer exploration, forestry and other recreational activities.

A helipad is located next to the Wells RCMP detachment and a small airstrip is located at the junction of Highway 26 and the Bowron Lake Road, approximately 4 kilometers east of Wells. Float planes can access the Jack of Clubs Lake at Wells. A regional airport is also located in Quesnel.

6.0 GEOLOGICAL SETTING

6.1 Regional Geology: Quesnel Highlands

The geology of the Cariboo mining district has been presented in various reports / memoirs and maps presented by geologists such as Bowman (1889, 1895), Dawson (1894), Johnston and Uglow (1926), Hanson (1935), Sutherland Brown (1957), Struik (1988), Levson and Giles (1993) and Schiarizza (2004). Many mineral assessment reports of the area also state the regional geology of the area typically see paraphrasing of the region's geological setting by the above noted geologists.

Struik (1988) describes the northern Quesnel Highlands as underlain by four geological terranes, three of which are fault bounded. The terranes are defined by their unique stratigraphic successions. The easternmost is the Cariboo Terrane consisting of sedimentary rocks in fault contact with the western margin of the Precambrian North American Craton along the Rocky Mountain Trench. The Barkerville Terrane consists of mostly sedimentary rocks and is west of, and in fault contact with, the Cariboo Terrane. The Barkerville and Cariboo Terranes are overthrust by the Slide Mountain Terrane [which is] composed of basic volcanics and intrusives [as well as] generally fine grained clastic rocks. The root zone of the Slide Mountain Terrane is considered to be serpentinite and sheared mafic rocks that exist locally at the western boundary of the Barkerville Terrane. West of that root zone is the Quesnel Terrane composed of volcanic, volcaniclastic and fine grained clastic rocks.

The Mount Burns Claim Group occurs within the mapped boundaries of the Barkerville Terrane.

6.2 Local Geology: Barkerville Terrane

The Barkerville Terrane is dominated by folded and overturned Precambrian and Paleozoic varieties of grit, quartzite, black to green pelite or argillite with lesser amounts of limestone and volcaniclastic rocks (Struik, 1988). The Barkerville Terrane is regionally metamorphosed to low and middle greenschist facies, sometimes making it difficult to define the original fabric of the rock. The intrusive rocks of the Barkerville Terrane occur sporadically as diorite, rhyolite or rhyodacite dykes and sills. Also, fossiliferous units within the Barkerville Terrane are few and are, for the most part, limited to the crinoidal and fossilized algae limestone units, though, to date, none of these units have been mapped at the Mount Burns Claim Group.

Struik (1988) describes the Barkerville Terrane as containing one structural package; defined as a deformed sequence of rock separated from others by an angular unconformity. This package has been named the Snowshoe Group and contains several subunits.

Structures of the Snowshoe Group are divided into three categories: from oldest to youngest they are shear/ductile shortening, brittle shortening and extension (Struik, 1988). The subunits separated by conformable and non-conformable contacts. Common to the Barkerville Terrane are compressional strike faults which parallel the Terrane's northwest-southeast trending stratigraphy which are further cut and displaced by the younger extensional, north and northeast trending, steeply dipping faults. The gold bearing quartz veins of the Barkerville Terrane are generally found to be within the extensional, north and northeast trending faults and are a focus for exploration at the Mount Burns Claim Group.

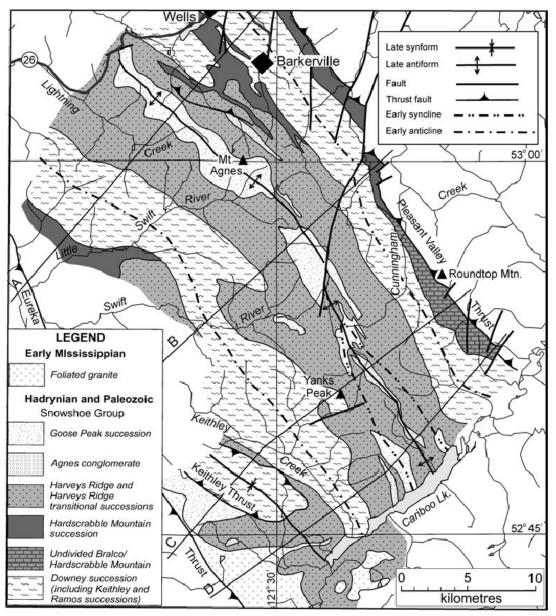


Figure 2. Generalized geology of the Barkerville Terrane (from Schiarizza and Ferri, 2002)

6.3 Property Geology: Mount Burns Claim Group

Gemco Minerals Inc. Burns Group property lies in a package of rocks mapped by Struik as mainly containing the Eaglesnest and Harveys Ridge successions, with a sliver of the Agnes succession occurring on Mount Amador and undifferentiated Snowshoe Group rocks occurring along the southern most boundary of the Mount Burns Claim Group.

The petrology at the Mount Burns Claim Group is somewhat defined, however thorough structural understanding of the property is not yet completely clear. The majority of the

property is covered in glacial drift which limits outcrop exposures to the prominent northsouth trending bluffs, the tops of ridges and divides, the steep slopes of hydraulicked creeks, road cuts and already worked, stripped and/or trenched ground. Some areas of glacial drift are defined in historic placer records as being up to 120 feet thick in places and sporadic with no consistent depth which could be in direct relationship with the ancient kettle topography of the last glacial retreat.

Local to the Mount Burns Claim Group area, the Barkerville Terrane contains two gold bearing belts: The Barkerville Gold Belt and the Hixon Creek-Stanley-Yanks Peak Gold Belt, which Gemco Minerals Inc. geologists have termed the Nelson-Yanks Gold Belt. A third belt is described further south and is named the Likely-Horsefly Belt. In 1932, Galloway introduced the term 'Barkerville Gold Belt' to describe this zone of intermittent mineralization which is defined by Holland (1948) as being less than 1.5 kilometres wide and extending over a distance of 15 kilometres. The Nelson-Yanks Gold Belt parallels the Barkerville Gold Belt. Each belt generally follows the larger northwest-southeast regional structures of the geologic terranes. The two belts contain significant vein systems which are cited in Hedley and Watson's 1945 Bulletin 20 to follow favorable stratigraphy within the Barkerville Gold Belt while the veins of the Nelson-Yanks Gold Belt generally follow close to and slightly east of the axis of the anticlinorium. The Mount Burns Claim Group is located along the Nelson-Yanks Gold Belt of the Barkerville Terrane.

The rocks found at the property, as described by Reid (2005), and agreed by the author, generally consist of foliated, gritty to fine grained quartzites \pm sericite and finely laminated siltstone and phyllite \pm sericite. Alteration of the country rock is spotty and generally chloritic. Silicification of the country rock is apparent in areas usually adjacent to fault structures. Carbonaceous to calcareous siltstones have also been observed. Holland's description of the local area's geology, taken partially out of context, is quoted as follows:

"The Stanley area is underlain by a succession of metamorphosed sedimentary rocks belonging to the Precambrian Richfield formation...The area straddles the regional anticlinal axis which has been mapped previously (Johnston and Uglow, 1926 p. 31) as running between Mount Amador and Mount Nelson". [NOTE: Struik has moved the anticlinal axis slightly to the southwest and has differentiated the main units as the Eaglesnest succession and Harveys Ridge succession within the Paleozoic Snowshoe Group of the Barkerville Terrane]. Several outcrop scale folds were observed in the 2009 trenching. Also noted by the author are several outcrop scale recumbent folds and low angle faults which require a more detailed inspection and perhaps property scale mapping to update the local structural geology map.

"Quartzite, [the most common rock found on the property to date]...displays variations in colour from white and light grey, through medium grey, brown, to black; in granularity from fine quartzite to coarse grits...; in composition through admixture with varying amounts of dark argillaceous material; and in fissility either through variations in amount of mica developed in the rock or through the rock's relation to the axial plane and minor folds. Individual beds, ranging from a fraction of an inch to several tens of feet in thickness, are interbedded with others which may vary in colour, granularity, and general composition."

"Dominantly argillaceous rocks are considerably less common than quartzites. They are present as black slate and dark schistose quartzitic argillite, grey argillaceous schists, and as thin partings and interbeds of dark argillaceous material in a dominantly

quartzitic succession. The grey colours of most quartzites are due to the variable content of dark argillaceous and, in some instances, graphitic material."

"For the most part the rocks are not calcareous. The few thin limestone beds could

not be traced for any great distance and their correlation was not possible. Many of the rocks have a low to moderate amount of carbonate mineral which, when determined, was found

Photo 1. Typical degree of folding located on west side of Mount Burns, adjacent new "Textbook" showing of 2010). (photo by T.Hatton)

to be ankerite." The author has not yet located limestone or otherwise calcareous units on the property.

"Green chloritic schists, some weathering brown and some exceedingly brightly coloured, are also present... In several places pale, greenish-grey quartzite schists are exposed; their green caste evidently is a result of the development of small amounts of chlorite."

"The rocks represent a sedimentary succession that has been subjected to regional metamorphism. Cleavage, in varying degrees of perfection, is developed in all rocks and is the result of the oriented development mainly of sericite and less commonly of chlorite. The perfection of the cleavage depends primarily on the initial composition of the rock and the amount of argillaceous material that was available to form mica. To a lesser extent the position of the rock in relation to the axial plane of a fold contributes to the degree to which the cleaner, more massive quartzites are cleaved."

7.0 **DEPOSIT TYPES**

There are currently three known types of gold bearing hardrock deposits within the Barkerville Terrane of the Cariboo Mining District:

- 1. Quartz pyrite veins
- 2. Pyritic replacement in limestone
- 3. Pyritic replacement in metasedimentary rocks
- 7.1 Quartz-pyrite veins

Quartz-pyrite vein deposits within the Barkerville Terrane are described in detail by Dunne and Ray (2001) and are quoted from their report as follows:

Vein ore typically comprises dominantly massive, white to translucent quartz, lesser dolomite/ankerite, muscovite (as sericite) and pyrite and rarely minor arsenopyrite, galena, sphalerite and/or scheelite (Skerl, 1948). Pyrrhotite and chalcopyrite have been reported as accessory minerals (Skerl, op. cit.; International Wayside Gold Mines Ltd., 2000). Wide veins, such as the BC Vein, can be greater than 15 metres in width and may have sheared graphitic margins. Sericite from quartz veins in the Cariboo Gold Quartz mine, Mosquito Creek Gold mine and Cariboo Hudson mine have been dated using the [potassium-argon] method at 140 Ma (International Wayside Gold Mines Ltd., 2000). Vein textures in the Wells-Barkerville Belt are highly variable. Massive, white to translucent 'bull' quartz veins comprise subhedral to anhedral crystals from less than 0.5 mm to approximately 2 mm in size. Sutured grain boundaries have been noted in some samples. Many of the massive veins are highly fractured and in some cases the abundance of microfractures results in a texture described by Reynolds (1991) as 'wispy quartz'. Reynolds (op. cit.) suggests that this texture is characteristic of deep vein environments (> 4km and possibly > 8km). In contrast, breccia textures indicative of brittle crushing reflecting higher level emplacement are observed in other veins. Skerl (1948) reports that approximately one percent of the veins at the Cariboo Gold Quartz deposit have vugs containing well terminated quartz crystals. These vugs indicate open-space filling late in the vein history... Even fractured and wispy quartz veins have vugs...

Four distinct, structurally-controlled vein orientations occur in the Wells-Barkerville Belt: strike, bedding-parallel veins (NW-SE/45-70NE), northerly (N-S/40-70E), orthogonal (030-040/70SE) and diagonal (070-090/subvertical) (Hanson, 1935; Benedict, 1945; Richards, 1948; Skerl, 1948; Robert and Taylor, 1989). Orthogonal veins are most abundant and these contain the highest concentrations of gold (Benedict, 1945, Robert and Taylor, 1989, International Wayside Gold Mines Ltd., 2000).

In addition, quartz veining within the District has historically been designated as either "A' veins, those being sub-parallel the north westerly trending strata and are usually of greater extent, or "B" veins which are either transverse (right angles to stratigraphy) or oblique, cut stratigraphy and are at right angles to the northerly trending faults. The "B' veins have

been interpreted as tension fracture filling possibly explained geologically by the Riedel shear model. Skerl (1948) states that continued movement along the northerly trending faults opened up both groups of these fractures enabling mineral solutions to invade the broken zones near both the north – south and the "bedded" faults and produce auriferous quartz-pyrite veins. Some mineralization is found within the faults themselves.

7.2 Pyritic replacement in limestone

Dunne and Ray (2001) describe that pyritic replacement orebodies at the Mosquito Creek and Island Mountain Gold Mines as occuring within or adjacent to limestone units and are commonly associated with fold hinges. Stope dimensions for the orebodies in fold hinges are commonly less than 10 metres thick and several hundred meters in the down plunge direction (Benedict, 1945). Pyrite lenses at Mosquito Creek can either be parallel to the strong foliation or parallel to bedding (Robert and Taylor, 1989). Dunne and Ray go on to explain:

Pyrite orebodies at Mosquito Creek typically comprise fine to medium-grained crystalline pyrite forming individual or stacked lenses (Robert and Taylor, 1989). At the Cariboo Gold Quartz mine, massive crystalline pyrite orebodies contain little or no quartz but grey and white carbonates, galena, sphalerite and scheelite are reported around the margins of the ore (Skerl, 1948).

7.3 Pyritic replacement in metasedimentary rocks

The most recent lode gold deposit was discovered on Barkerville Gold Mines Ltd. mineral property (previously known as International Wayside Gold Mines Ltd) at the south facing flank of Barkerville Mountain, approximately 7 kilometers north east of Gemco Minerals Inc Claim Group, and has been named "Bonanza Ledge". Historical documents refer to the historically named Bonanza Ledge as the gold bearing quartz ledge which is now referred to as the BC Vein, but today's named Bonanza Ledge refers to the gold bearing replacement deposit. The Bonanza Ledge deposit occurs within a package of quartzitic and phyllitic rocks of the Lowhee unit. Rhys (2000) describes folded high-grade pyrite mineralization that is discordant to stratigraphy and locally more than 30 metres thick over a strike length of 130 metres. Pyritic ore at Bonanza Ledge comprises veinlets, concordant laminations and massive bands of pyrite, often with trace chalcopyrite and galena, in a gangue of muscovite, dolomite/ankerite and quartz.

At the Burns Group property, the exploration focus is mainly on the north trending faults and proximal quartz veining. The north striking faults are an important control for the gold vein mineralization (Hall, 1999). Favorable stratigraphy for replacement deposits does exist at the Burns Group mineral claims and, though, exploration does focus on proximal veining to faults, Gemco Minerals Inc. is also exploring for replacement type deposits. The main commodities historically found and presently looked for by Gemco Minerals Inc. are gold and silver. Other commodities, to a lesser extent, include lead and zinc.

8.0 HISTORY

To the extent known by the author, a portion of today's Mount Burns Claim Group package was acquired by Douglas W. Merrick of Wells, British Columbia, via ground staking of 4-post mineral claims in 1998. Firstline Recovery Systems Inc. bought the claims in March 1999 and by the end of the year had 1325 hectares of mineral tenure. The 25 hectare JCB5 tenure was later sold to the BC Ministry of Transportation and in 2001 was declared a no staking reserve by the Minister of Energy and Mines, Richard Neufeld, and further named the Devil's Canyon Aggregate Pit. Between the time of original acquisition and 2005, Firstline Recovery Systems Inc. acquired an additional 3025 hectares of contiguous mineral tenure in the area for a total of 4325 hectares of tenure by the end of January 2005.

2005 saw a significant change in how claim acquisition occurred in British Columbia: online staking was the new rule and individuals and companies, alike, had a window of opportunity to convert their ground staked claims, now called legacy claims, into cells. Firstline Recovery Systems Inc. successfully converted their ground staked claims to cells in March 2005. In the end the conversion brought the mineral tenure holding from 4325 hectares to 3947 hectares, a loss of 378 hectares as calculated by the author from Mineral Titles data. In August 2005 Firstline Recovery Systems Inc. transferred all of their mineral title holdings to Gemco Minerals Inc. In the spring 2006, Gemco Minerals Inc. purchased an additional 1129 hectares of mineral tenure and map staked a 58 hectare mineral tenure. To date Gemco Minerals Inc. holds 100% ownership of mineral rights to a total of 5134 hectares of land on ten mineral tenures located at the Mount Burns property.

Geologic and economic interest in the hard rock ground located at and adjacent to the Mount Burns Claim Group dates back to 1878, as documented in the Annual Reports of the Minister of Mines of Canada. A summary of the property's known work history conducted by all known previous owners and operators is outlined below in detail. This time line of historic hard rock exploration activities details only what is known to the author at the time of writing of this report and may not be an absolute history to the hard rock exploration and mining activities which occurred at or near the Mount Burns Claim Group.

8.1 Mineral exploration time line for the summit and southern flank of Mount Burns

1870's The first quartz-vein discoveries were made on Burns Mountain as well as the Oregon Gulch, Foster and Smith Ledges (Holland, 1948).

1878 Beedy selectively mines veins from surface and processed some ore using a quartz mill at Van Winkle. The veins, oriented 195°-205°/70°W, contained high grade gold in

association with pyrite and galena across of about one foot (Report of the Minister of Mines 1878 Annual Report, pg 374) <author note: Daily Colonist of April 6, 1861 interviewed JC Beedy who trekked to the Cariboo from Victoria to confirm for himself the richness of the Cariboo diggings - this places Beedy in the local area some 17 year prior to his reported lode workings and he moved to the area and set up on several business ventures including road steamer works and a retail partnership>

1878 An exclusive report in the Daily Colonist notes that Beedy recovered \$67.80 worth of gold from just 1.5 tons of rock and it is stated the assay is accompanied by a certificate from Riotte and Inderstroth. The ore assayed \$45.84 and is easily worked. Beedy is so confident of plenty of ore that he will commence putting up a five-stamp mill immediately. Another issue of the Daily Colonist also reports Beedy ordered a stamp mill to ship to his property. Beedy has two hundred tons of ore to haul to the stamp mill (Report of the Minister of Mines 1878 Annual Report, pg 374)

and Inderstroth that it came from less than one and a-half tons of rock, is creating considerable excitement. The ore assayed forty-five dollars and eighty-four cents per ton and is easily worked. Beedy is so confident of plenty of ore that he will commence putting up a five-stamp mill immediately. Now look out for good reports next week from the Wilkinson free gold ledge.

1879 Beedy took a \$1500 gold bar from his property to the Bank of BNA in Victoria in March 1879 (Daily Colonist, March 1879). He has the only hard rock mine operating this year (Johnston and Uglow, Memoir 149, pg 183).

1880 Reid acquired the property after the death of J.C. Beedy (d. Jan.1880); the Reid Adit was driven as a crosscut to intersect the Beedy veins 75 feet below the surface showings. The adit was collared at an elevation of 5062 feet and driven on an azimuth of 108° for a distance of 387 feet. A quartz vein (probably the central vein) about one foot in width, striking 205° and dipping 62°NW was drifted to the north for 20 feet at a distance of 337 feet from the portal. A raise was driven to surface and, probably, some [stoping] was carried out on the vein. A grab sample (95F) of the vein in the adit assayed 0.4 ounces gold per ton and one (99F) of clean pyrite from the Reid Adit dump assayed 1.06 ounces gold per ton (Holland, 1948).

1880 The Cohen veins, 1500 feet northeast of the Perkins veins were mined prior to 1885. Workings, between elevations of 5250 and 5300 feet, consist of several open cuts with associated shafts and mine dumps. C. Fuller indicated that the shaft on the Cohen Incline was 70-90 feet deep. The open cuts were driven into the hillside along strike of veins less than one foot in width and with orientations 065°/75°SE, 205°/65°W and 190° dipping steeply to the west. The veins contain high grade gold mineralization in association with galena, pyrite and sphalerite.

1880 Work on the Galena vein, located at an elevation of 5190 feet and about 700 feet northeast of the Perkins veins, was probably also carried out at about this time. The original workings consisted of a mine dump, an open cut driven northwest for eighty feet and a shallow drift of a vein oriented 230°/55°NW for eighty feet. High grade gold mineralization with Au/Ag of about 1 [sic] is associated with pyrite, galena and sphalerite in a vein less than 1.5 feet in width.

1882 More tunnel work carried out on Mount Burns (Report of the Minister of Mines 1882, pg 357).) <author note, assumed to by the Lucky Cap Tunnel> Fellows of California is running a tunnel into Burns Mountain to intersect the quartz vein. He sunk upon the vein from the surface to a depth of 40 feet, and was so encouraged by the result that he has concluded to run a tunnel 800 feet into the mountain (Daily Colonist, May 20, 1882)

1883 Burns Mountain Gold Quartz Mining Co. [begins work] on tunnel which is to be 600-700 feet when completed (Johnston and Uglow Memoir 149, pg 183). Also noted, is that C.P. O'Neil was awarded the contract for continuing the Lucky Cap Tunnel 600 feet further (Daily Colonist, May 22, 1883) author note, this implies that the tunnel had 200' worked prior to May 1883 and may or may not include drifting>

1883 It is reported that Lee Chin Fan...has purchased an interest in a quartz ledge in Burns Mountain, Cariboo, and that steps will be taken to actively open the ledge. (Daily Colonist, February 13, 1883) <author note, perhaps this is for the Grassroot Tunnel / Galena Vein which no one seems to know who worked it or when exactly>

1883 A private letter from May 12th[1883] states that a miner is at work on the Beedy extension of the Burns Mountain quartz lead making wages by breaking the rock with a sledge, and that he has thousands of tons of similar rock in sight (Daily Colonist, May 19, 1883)

1884 The Burns Mountain Mining Co. is reported to be making good progress on their Lucky Cap Tunnel (Daily Colonist, March 6, 1884) but halt work when they fail to hit the ledges (Johnston and Uglow Memoir 149, pg 184). The company applies for Crown Grants 62, 63 and 64 (BC Archives Survey Map and Daily Colonist, September 1884)

1885 The 1884 season finished with the Burns Mountain Co's Lucky Cap Tunnel at 750 feet total length, 50 feet short of their target but plans are to resume work when the 1885 season advances. Mr Dodd has a piece of gold and quartz taken from the tunnel-a rich and pretty specimen (Daily Colonist, April 12, 1885)

E. Perkins selectively mined the Beedy veins and processed ore using an arrastre for a number of years (Johnston and Uglow Memoir 149, pg 183) author note, this likely includes the set of pits discovered and sampled in 2010>

Mr. Jacques drove [to] 800 feet [on the Lucky Cap Tunnel] with good indications (Johnston and Uglow Memoir 149, pg 184). Surface exploration for lode continues to south and northeast and drifting was conducted at different locations in the main tunnel (Jacques correspondence to the Directors of the Company, 1886)

A number of man are at work on Burns Mountain (Daily Colonist, June 30, 1887)

Gold quartz with values of \$30-\$120 was reported (1889 Geol. Surv. Can Report Vol. 111, pt.C, p.38: Johnston and Uglow Memoir 149, pg 209).

1891 Perkins mines and processes with arrastre.

W.McIntosh, of Quebec, went up...to commence work on the Burns mountain quartz properties, owned by himself and associates (Daily Colonist, September 15, 1896)

C.J. Seymour Baker and A.J.R. Atkins recovered about ten ounces of gold from nine tons of Perkins vein ore treated at the Government Reduction Works near Barkerville (Minfile 093H 037: Report of Minister of Mines 1902 Annual Report, pg 108-9) autor.note, this value similar to sampling conducted in 2009. A number of tons remains stockpiled on the property>

Perkins old dump was assayed at 0.02 ounces per ton (Report of the Minister of Mines 1914, pg k66-67)

Fuller and Hawes acquired the property after the death of E. Perkins (Holland, 1948, pg 13) <Barkerville Archives indicates Edwin Perkins "aka Johnny" died May 2, 1919>

1920 Fuller and Hawes acquire ground at the Foster Ledges (Holland, 1948, pg. 13).

Burns Mountain Gold Quartz Mining Company Ltd acquired the property and extended the Reid Adit fifty feet and drove the Burns Mountain Adit as a crosscut to intersect the Perkins veins 275 feet below the surface showings. This Burns Mountain adit was collared at an elevation of 4844 feet and driven 1743 feet on an azimuth of 327° and 420 feet on an azimuth of 284°. A vein striking 197° and dipping 70°W was intersected 150 feet west of the Perkins showing and on to the north for 127 feet. A 40 foot wide fault zone was also noted [which correlates to 2009 trenching which opened up a significant fault zone] (Holland, 1948).

R.E. MacDougall, W.E. North [and] J.J. Gunn of Wells relocated the ground after the Burns Mountain Quartz Mining Company Ltd allowed the property to lapse (Holland 1948).

1933 A. McLeod drove 1040 feet for Burns Mountain Gold Quartz Mining Co. Ltd. (Report of the Minister of Mines 1933 Annual Report, pg A125).

1933 B.C. Cariboo Gold Fields Ltd. with V. Dolmage as V.P. prospect 19 claims they hold at the head of Burns Creek (Report of the Minister of Mines 1933, pg A125).

1936 Some work done on Mount Burns by Burns Mountain Gold Quartz Mining Co. Ltd. (Report of the Minister of Mines 1936 Annual Report, pg C38).

1946 Cariboo Rainbow Gold Quartz Mines Ltd. completed 3500 feet of stripping and trenching using a bulldozer. The stripping showed that the Perkins area consisted of three narrow veins about fifty feet apart over a composite strike of about 400 feet. Shafts are associated with the west and central veins. The northern 150 feet of the central vein is marked by stopes caved to surface and was probably the source of most ore mined from the property (Holland, 1948).

1979 L&G Resources Ltd contracted C. Ball to conduct one day of field work on the property and submitted a report of his recommendations based on researched literature, a field reconnaissance of the property and six grab samples taken from various tailings dumps. Surface exploration, trenching and diamond drilling were suggested in various phases to thoroughly test the ground with the objective of finding veins averaging 1.0-1.5 feet running 0.3 to 0.5 ounces gold per ton (Ball, 1979).

1980 Perry and McKelvie: trenched, sampled and mapped the Cohen, Galena and Perkins showings at a scale of 1:200; produced a geological map at a scale of 1:5000; completed about 315 meters of diamond drilling in three holes, one on each showing. Drill hole S80-1 intersected a zone of vein quartz and fracturing (core length of seven meters), thought to be the Perkins structure. Gold values were not encountered (Assessment Report 08820) at the main lower, or most easterly vein due to core recovery issues, however economic gold and silver values were present (Assessment Report 08820)

1981 Jack LaFleur carry out a shallow seismic survey in the Dry Up Gulch area on Mount Burns (Assessment Report 8824).

1985 Clifton Resources Ltd. Conducted a geochemical and geological survey over Devils Canyon, Mount Burns and Mount Nelson (Assessment Report 13252a).

1985 Onsun Developments conducted an airborne magnetic and VLF-EM survey over Lightning Creek and Grub Mountain (Assessment Report 13678).

1985 Robert H. Davie carried out a VLF-EM survey over Devils Canyon (Assessment Report 14636).

1987 Billwiller carried out an airborne mag, electromag, VLF survey over Lightning Creek area (Assessment Report 15942).

Lightening Creek Resources carried out an airborne mag, electromag, VLF survey over Lightning Creek and Mount Burns (Assessment Report 16315).

Golden Opportunity Mining Ltd. conducted dipole-dipole resistively work over Lightning Creek, Mount Burns-Amador (Assessment Report 18257).

Billwiller conducted geophysical exploration on Mount Amador and Jack O Clubs Creek (Assessment Report 17268).

Lightening Creek Mines Ltd. carried out Geological, Geophysical, and Geochemical work as well as Drilling (Assessment Report 17671).

1988 Davie carried out diamond drilling near Burns Creek (Assessment Report 16174).

Boulder Gold Mines Ltd. did Seismic Refraction work on Mount Burns (Assessment Report 19538).

Kangeld Resources Ltd. carried out drilling, as well as geochemical, and physical work on Lightning Cr. and Mount Burns-Amador (Assessment Report 18695).

Poshner excavated the main showings. The Perkins area is a trench twenty feet deep and six hundred feet in length. The Galena Vein is now trenched to about three hundred feet in length. The Cohen veins are in a stripped area about 600 by 150 feet in size.

Gold City Mining Corp. conducted a Dighem Airborne survey with report northwest of Mount Burns (Assessment Report 24336a).

Firstline Recovery Systems Inc. acquires Mount Burns ground and conducts geochem, prospecting, and V.L.F./Mag and results published internally

Firstline Recovery Systems Inc. stakes more ground conducts reconnaissance exploration, prospecting, geochem on Oregon Gulch and Foster Ledges (pers. comm. Merrick 2006).

Firstline Recovery Systems Inc. stakes additional ground at Mount Amador.

The Minister of Energy and Mines, Dan Miller, created a 400 hectare conditional reserve (number 377844) protecting the road surface and 100 meter buffer zone along each side of the Cariboo Waggon Road from Stanley to Barkerville.

Firstline Recovery Systems Inc. sampled, crushed and screened mine dumps to test for gold (2001 internal report by T.Hatton, and pers. comm., T.Hatton, 2006).

The Minister of Energy and Mines, Richard Neufeld, established a 25 hectare no staking reserve (number 389352) lying at an aggregate pit at the height of land near Devil's Canyon at Highway 26.

Firstline Recovery Systems Inc. lays out a grid and conducts 7.74 line km of self potential geophysics on Mount Burns. An internal report is made in 2002 and technical data is later published in the 2006 assessment report (pers. comm., A.Justason 2006).

2003 Firstline Recovery Systems Inc. conducts GPS survey of legal corner posts

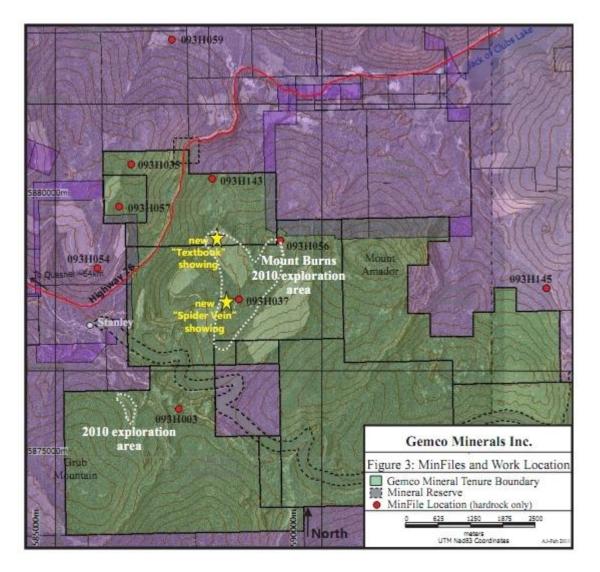
Firstline Recovery Systems Inc. conducts GPS work, grid layout and soil sampling on Oregon Gulch and Foster Ledges and submits report for assessment purposes (Assessment report 27684: pers. comm. Merrick, Hatton 2006).

Firstline Recovery Systems Inc. conducts no work filed this year but does convert claims to cells.

Mel Zeiler conducts soils geochem survey at Oregon Gulch (Assessment Report 28372).

Gemco Minerals Inc. acquires mineral and placer properties from Firstline Recovery Systems Inc. No field work conducted by Gemco Minerals Inc. at the Mount Burns Mineral Claim Group this season.

Trenching, geochemical sampling, SP and dip needle geophysical surveying were comducted at various locations at the Foster's East Grid and on Mount Burns.


Gemco Minerals extends the Burns grid to the south towards Amador Gulch for the purpose of geophysical surveying. The legacy claims at the summit of Mount Burns, over the reverted Crown Granted mineral claims L.62, 63 and 64, expire and, as a result, give full mineral rights to Gemco Minerals as mineral cells were overlying the legacy.

Gemco Minerals conducts SP geophysical survey extending to south of work conducted in 2002. Geochemical analysis of select mine site dumps were also conducted. Upon inspection of the Galena Vein workings on Mount Burns in June 2008, visible gold was located in bedrock. After digitizing and georeferencing an 1880's Bowman map in the late fall of 2008, the 1880's Burns Mountain Gold Mining Co adit (for the Lucky Cap Tunnel) and lay down area was located on the ground and inspected.

Tenorex GeoServices was contracted to conduct a 50Lkm winter beep mat geophysical survey for assessment purposes in March 2009. A trenching program was conducted in the summer and fall of 2009. 297 Rock samples and 2 soil samples were taken, of which 23 rock samples returned excellent values. The highest value of 109.0g/t gold (based on a 120g average metallic assay) was obtained from a vuggy quartz vein sample found at the Perkins opencut. Also to worth highlighting is a sample a pyrite rich phyllite from the Burns Long Crosscut waste dump which metallic assayed 8.95g/t gold.

Two samples of visible gold were located at the Cohen Incline. Legacy claims belonging to another company and located at the southwest corner of the property near Stanley were converted to cells.

2010 Gemco Minerals hired Tenorex GeoServices and TCH Contracting to conduct trenching and surface exploration at Mount Burns. 37 rock samples out of 235 assayed at greater than 1g/t gold with the highest grade of 212.0g/t gold from a select rock talus sample (189603) at the Perkins opencut. The second highest grade was from the Cohen Incline vein came back at 106.0g/t gold. Persistent anomalous assays and visible crystalline gold was found at the new "Spider Vein" showing and the "Textbook" showing as further described in this assessment report.

9.0 EXPLORATION

Tenorex GeoServices and TCH Consulting (equipment operator) were contracted for the 2010 field season to expand on the trenching and geochemistry started on Mount Burns in 2009. A 130 Hyundai excavator was used to create 12 trenches totaling 220 meters. In addition some outcrops and historical workings were visited and sampled. In total, 235 rock samples and one soil sample were sent to EcoTech Laboratory in Kamloops for analysis. 37 rock samples assayed at greater than 1g/t gold with the highest grade of 212.0g/t gold from a select rock talus sample (189603) at the Perkins opencut. The second highest grade was from the Cohen Incline vein came back at 106.0g/t gold. The lab recommended a metallic assay be conducted on some of the samples in an effort to more accurately quantify the gold values within the sample analyzed. EcoTech commented to the author that the metallic assay method is best used where the 'nugget effect' is found. That said, it has been later determined by the author that a follow up of any sample over 500ppb gold may be warranted or more carefully noted in the future as it was observed that the nugget effect was certainly a factor as rare ICP vs fire assay results were variable. For example, ICP of sample 189524 showed 595 ppb gold but it was included for fire assay by the lab and it returned 1.17g/t gold.

All trenches including Trench G and H of 2009 were reclaimed as work progressed. Reseeding and transplanting of spruce and pine seedlings was conducted in October 2010. A subsurface water source for future work was located at the west end of trench 10-3 and the 4-5m length remains open for the time being as it is planned to be utilized in the coming season. It will be covered and a water pump or gravity fed supply line will be installed.

Brief description of field sampling

Sample locations from trenches were mapped on paper by measuring from a GPS'd picket located at one end of the trench or by GPSing the actual sample and noting in the field book. Except as noted on the attached spreadsheet, channel sample coordinates are provided at the center of the interval.

All other sample locations were flagged and labeled. GPS coordinates of most locations were taken while in the field and are provided in UTM Nad83 (Zone 10). All field notes and samples were taken by Angelique Justason while Larry Fourchalk, local prospector, assisted.

All rock samples were placed into a clear poly sample bag along with the corresponding sample tag. Soil samples were placed into small kraft paper soil sample bags. Each bag was sealed tightly with flagging tape and labeled with a permanent marker. Samples were later sorted by sample number and placed in a large white rice bag, labeled and sealed for shipping via VanKam.

Description of analytical procedure (as provided by EcoTech)

Eco Tech Laboratory Ltd. is registered for ISO 9001:2008 by KIWA International (TGA-ZM-13-96-00) for the "provision of assay, geochemical and environmental analytical services". Eco Tech also Participates in the annual Canadian Certified Reference Materials Project (CCRMP) and Geostats Pty bi-annual round robin testing programs. The laboratory operates an extensive quality control/quality assurance program, which covers all stages of the analytical process from sample preparation through to sample digestion and instrumental finish and reporting.

SAMPLE PREPARATION (codes vary)

Samples (minimum sample size 250g) are catalogued and logged into the sample-tracking database. During the logging in process, samples are checked for spillage and general sample integrity. It is verified that samples match the sample shipment requisition provided by the clients. The samples are transferred into a drying oven and dried.

Soils are prepared by sieving through an 80-mesh screen to obtain a minus 80-mesh fraction. Samples unable to produce adequate minus 80-mesh material are screened at a coarser fraction. These samples are flagged with the relevant mesh.

Rock samples are crushed on a Terminator jaw crusher to -10 mesh ensuring that 70% passes through a Tyler 10 mesh screen.

Every 35 samples a re-split is taken using a riffle splitter to be tested to ensure the homogeneity of the crushed material.

A 250 gram sub sample of the crushed material is pulverized on a ring mill pulverizer ensuring that 95% passes through a -150 mesh screen. The sub sample is rolled, homogenized and bagged in a pre-numbered bag.

A barren gravel blank is prepared before each job in the sample prep to be analyzed for trace contamination along with the processed samples.

ICP-AES MULTI-ACID DIGESTION (MA-ES)

A 0.5 gram sample is weighed into teflon tubes. The sample is digested with nitric acid, hydrofluoric and perchloric acids. The sample is taken to dryness using a heating block apparatus. The sample is subsequently re-dissolved with 3ml of a 3:1:2 (HCl:HN03:H20) solution which contains beryllium (Be acts as an internal standard) and the sample is then bulked with DI water. Samples are analyzed on a Thermo IRIS Intrepid II XSP ICP unit.

Certified reference material is used to check the performance of the machine and to ensure that proper digestion occurred in the wet lab. QC samples are run along with the client samples to ensure no machine drift occurred or instrumentation issues occurred during the run procedure. Repeat samples (every batch of 10 or less) and re-splits (every batch of 35 or less) are also run to ensure proper weighing and digestion occurred.

Results are collated by computer and are printed along with accompanying quality control data (repeats and standards). Results are emailed, faxed or mailed to the clients.

Detection Li	(10)				
Element	Unit	LDL	Element	Unit	LDL
Ag	ppm	0.5	Мо	ppm	1
Al	%	0.01	Na	%	0.01
As *	ppm	5	Ni	ppm	1
Ba *	ppm	2	Р	%	0.001
Be	ppm	1	Pb	ppm	3
Bi	ppm	5	Rb	ppm	50
Ca	%	0.01	S	%	0.01
Cd	ppm	1	Sb *	ppm	5
Со	ppm	1	Sc	ppm	1
Cr *	ppm	2	Se	ppm	10
Cu	ppm	2	Sn *	ppm	5
Fe	%	0.01	Sr	ppm	20
Hg *	ppm	1	Ti *	ppm	10
K	%	0.01	U	ppm	5
La	ppm	2	V	ppm	2
Li	ppm	2	W *	ppm	5
Mg	%	0.01	Y	ppm	1
Mn	ppm	5	Zn	ppm	2

Detection Limit	s (ICP-AES):
------------------------	--------------

*Elements marked with an asterisk * may not be totally digested

GOLD AQUA REGIA DIGEST: ICP-MS FINISH (Au1-10,25)

Samples are digested in an aqua regia solution for 45 minutes. They are bulked with deionized water, and an aliquot of this is taken for analysis a Thermo Scientific X series II ICP-MS unit. All synthetic standards are purchased and verified by 3 independent analysts and are used for instrument calibration before each and every ICP-MS run.

A 2-3 point standardization curve is used to check the linearity (high and low). Certified reference material is used to check the performance of the machine and to ensure that proper digestion occurred in the wet lab. QC samples are run along with the client samples to ensure no machine drift or instrumentation issues occurred during the analysis of the sample(s). Repeat samples (every 10 or less) and re-splits (every 35 or less) are also run to ensure proper weighing and digestion occurred. Detection limits for aqua regia digest gold values is 1-1000ppb.

Results are collated by computer and are printed along with accompanying quality control data (re-splits and standards). Results are emailed, faxed, or mailed to the clients.

**** This method is recommended for soil and silt samples only.

GOLD FIRE ASSAY: GEOCHEM (Au2-15,30,50)

A 15/30/50 g sample size is fire assayed along with certified reference materials using appropriate fluxes. The flux used is pre-mixed, purchased from Anachemia which contains Cookson Granular Litharge. (Silver and Gold Free). The ratios are 66% Litharge, 24% Sodium Carbonate, 2.7% Borax, 7.3% Silica. (The charges may be adjusted based on the sample). Flux weight per fusion is 150g. Purified Silver Nitrate or inquarts for the necessary silver addition is used for inquartation. The resultant dore bead is parted and then digested with nitric acid followed by hydrochloric acid solutions and then analyzed on an atomic absorption instrument (Perkin Elmer/Thermo S-Series AA instrument).

Over-range geochem values (Detection limit 5-1000ppb) for rocks are re-analyzed using gold assay methods (see below).

Appropriate certified reference material and repeat/re-split samples (Quality Control Components) accompany the samples on the data sheet for quality control assessment.

Results are collated by computer and are printed along with accompanying quality control data (repeats and standards). Results are emailed, faxed or mailed to the clients.

GOLD FIRE ASSAY: ASSAYS (Au3-15,30,50)

A 15/30/50 g sample size is fire assayed along with certified reference materials using appropriate fluxes. The flux used is pre-mixed, purchased from Anachemia which contains Cookson Granular Litharge. (Silver and Gold Free). The ratios are 66% Litharge, 24% Sodium Carbonate, 2.7% Borax, 7.3% Silica. (The charges may be adjusted based on the sample). Flux weight per fusion is 150g. Purified Silver Nitrate or inquarts for the necessary silver addition is used for inquartation. The resultant dore bead is parted and then digested with nitric acid followed by hydrochloric acid solutions and then analyzed on an atomic absorption instrument (Perkin Elmer/Thermo S-Series AA instrument). Gold detection limit on AA is 0.03-100 g/t. Any gold samples over 100g/t will be run using a gravimetric analysis protocol.

Appropriate certified reference material and repeat/re-split samples (Quality Control Components) accompany the samples on the data sheet for quality control assessment. Results are collated by computer and are printed along with accompanying quality control data (repeats and standards). Results are emailed, faxed or mailed to the clients.

METALLIC SCREEN FIRE ASSAY (Au4-250,500,1000)

Samples are catalogued and dried. Rock samples are crushed to minus 70% passing through 10 mesh, then split to achieve a 250g, 500g or 1000g sub sample. The sample is pulverized to 95% passing through -150 mesh. The entire sample is weighed, then rolled and homogenized and screened through a 150 mesh.

The resulting -150 mesh fraction is homogenized and two sub-sample portions are fire assayed. All of the resulting +150 mesh material is fire assayed. The resultant fire assay beads are digested with a nitric acid followed by hydrochloric acid, and then analyzed on a Perkin Elmer atomic absorption machine using air-acetylene flame to 0.03g/t detection

limit. If the gold values are over an agreed level a gravimetric finish would be performed. (Same process but only nitric acid is used to dissolve the silver away from the gold. The resulting gold bead is weighed on a Mettler Toledo MX5 micro-balance.)

The results for the two -150 values and single +150 mesh value are then calculated based on the original sample weight providing a net gold value.

The entire set of samples is re-assayed if the quality control standard is outside 2 standard deviations or if the blank is greater than 0.015 g/t.

Results are collated by computer and are printed along with accompanying quality control data (re-splits and standards). Results are faxed, emailed or mailed to the client.

10.0 RESULTS

235 rock samples and one soil sample were taken from Mount Burns and Grub Mountain this season. 12 trenches totaling 220 meters were inspected in addition to some historically worked areas. 37 rock samples assayed at greater than 1g/t gold with the highest grade of 212.0g/t gold from a select rock talus sample (189603) at the Perkins opencut. The second highest grade was from the Cohen Incline vein came back at 106.0g/t gold. Visible gold was observed in several locations and the most notable new find was that of the "Spider Vein", likely worked by Beedy in the 1880's and the "Textbook Vein" showing where samples taken consistently returned excellent gold values. The Cohen Incline area also was discovered to have a crushing/processing site adjacent to it. The remaining crushed tailings are gold bearing as based on samples taken this season. Other highlights of the 2010 surface exploration at Mount Burns are noted below and in the sample descriptions provided in the spreadsheet. A sample distribution map is enclosed and each anomalous assay is plotted on the map with the corresponding sample number.

Trenches 10-1 and 10-2 were located approximately 215 meters south of the Beedy Shaft house of the Perkins opencut. The trenches were anticipated to cut across the south extension of the Perkins Vein system at areas previously worked likely pre-1950's. It was not determined with certainty that the veins encountered here were that of the Perkins system as they may also belong to the Galena and QV2 veins. Although sulphides were observed, no significant mineralization was found in these two new trenches. Additional in fill mapping may be beneficial.

Trench 10-3 was located about 50 meters north of the northern end of the Perkins opencut and immediately adjacent the junction of the main access trail and the Galena Vein access trail. The trench was placed on a topographic rise where bits of angular gravel sized quartz was scattered about. The trench was 20m in length with a strike of about 110°. While faulting and folding was apparent, along with several quartz veins of various sizes, no significant mineralization was noted and gold peaked at a mere 25ppb in the samples taken. The vein and fault found here were defined to be a northern extension of the Perkins Vein system and further exploration along strike to the north is highly recommended.

Photo 2: Gold find at the Spider Vein (so named for the cobweb attached to the crystalline gold in this sample). Additional visible gold was located here along strike.

The "Spider Vein" was located at the "10-S" series of trenches and was a definite highlight of the season. This area was discovered when the author was inspecting the perimeter of the Arrastra Tailings. Two 1m deep pits were found adjacent an old cat trail with a thin hand trench running perpendicular between each. The pits were previously hand(?) excavated quartz veins containing weathered pyrite and some galena. Upon my initial inspection, the rocks were broken open and inspected, and after shaking the rotton sulphides from the rock into my hand, I lifted the rock to find a piece of gold hanging from a cobweb from inside the rock. This specimen was taken to the office for display and it was named the 'Spider Vein'. Thick moss on the stockpile suggested some time had passed since the trench was made and it is suggested by me, based on this and my property research, that this may have been one of the pits worked by Beedy and Perkins in the 1800's. The western pit (Pit 2) showed more significant mineralization than that of the most eastern pit (Pit 1). The same locations were noted on a map by Holland in his 1948 report on the area. I continued on to look for the vein of Pit 2 along its measured strike and located an excavated 1mx3m trench densely covered with 5 foot tall willow brush. Each side of the trench contained a stockpile of mineralized quartz which clearly originated from the trench. The 'Spider Vein' appears relatively rich in gold and, to date, has shown to have a strike length of 50 meters. The 8-12" wide auriferous Spider Vein, located precisely 90 meters west of the Beedy Shaft, strikes 190° to 200° and dips steeply to the west. Bedding here is 360/30E and a minimum 12" thick fault (328/40) appears to break up or possibly truncate the vein at the north end of the trench but followup is required.

The **Textbook Vein** is located adjacent a highly foliated and folded outcrop of grey to greenish grey quartzite and phyllite. The folds are so clearly displayed at this outcrop that it's been internally referred to as the 'textbook' fold location. A recent inspection found that the road cut area is lined with mineralized quartz vein float from road work at the outcrop and a 4-6" wide mineralized is in place vein which contains visible gold, massive galena and other sulphides as described in the sample sheet. All five samples taken along this vein were anomalous: one float sample (angular and near in place) peaked at 69.5g/t gold and two grab samples along the vein assayed 23.5g/t gold and 1.17g/t gold respectively. The outcrop itself clearly shows outcrop scale quartz vein filled tension shears and is likely reflected in this area at a regional scale as well. The axial plane of the folds here plunges shallowly towards 138 degrees. Located centrally at what could be called the divide between Burns Creek and Perkins Gulch, the strike of this mineralized vein runs towards each of the drainages and could be one of possibly several lode sources of gold found in these two creeks. Placer gold fineness of 914 is reported at Burns Creek and is one of the highest for the region.

The C1 to C3 trenches were located at the very south end of the Cohen opencut area at an old log sorting yard from 1998. The area was found to be previously opened up by cat work (at a higher elevation {about 5m}) in the 1930's or 40's and mapped in Holland's 1948 report as a location where gold was panned. The cat trench is still visible to date in the otherwise undisturbed areas and Holland's map details are easily retraced on the ground once a person is oriented. Holland's map is included in this report. The Cohen Vein was intercepted in trench C1 and C3 and smaller parallel veins were found in C2. The vein was bright yellow to orange and sheered in association with at least one main parallel fault at the hanging wall of the vein. The hanging wall and fault gouge can be successfully panned for gold. The face of the southwest wall of C1 showed tension fractures which could be a textbook image for a Riedel Shear. It is suggested that this hand sized structural feature is a small replica of the larger Cohen Vein itself. At C3 it was evident that the Cohen Vein takes a more southerly azimuth but might also be another infilled sheer, while the other end of the Cohen Incline some 200m away shows the main Cohen vein taking an obvious swing and apparently pinching out to the north, thus appearing to have the shape of a backwards 's' when in plan. The Cohen Vein, striking here at 220°-226°, may be the northerly extension of the Spider Vein. Many chip, grab and channel samples at the C-series of trenches had heightened values of gold and 2 samples assayed at 1.48 and 1.6g/t gold, while another sample assayed 160g/t silver.

Cohen Incline Tailings was also found to have an established water source via a ditchline from one of the headwaters of the Perkins drainage. The author discovered, upon following said ditch, that a processing site was located 30 metres of the Cohen incline but hidden by sparse underbrush and grasses. The original laydown of the site, likely pre 1880's, is quite evident even though no buildings or equipment remain. A well-defined flat pad clearly outlines where a small stamp mill must have once stood. Course quartz boulder piles remain on one side of the flat pad as last worked with a stream of fine to gravel crush on the other side where the crush was processed for gold. The crush remaining on site is gold bearing and it is estimated that approximately 60 cubic meters of crush remains on site.

Assay	UTM Cooordinates					Au	Ag	Au	Ag Pb				
Certificate	Tag #	TYPE	DATE	East	North	Tenure	Area	Description	Measurement	ppb	ppm		(g/t) (%)
			27112	2401		Tonaro						(3.5)	() () ()
							old camp north of Beedy						
AK40 0745	400054		Aug. 40	500770 0	5070004.0	500000	Boarding house and Roasting			> 1000		44.4*	
AK10-0715	189051	crush	Aug-12	588773.8	5878084.0	506333	site	Fine layer quartz crush on surface ~ 1mx 3m size. < 0.1m deep. Btwn 2 cabin ruins by trail.		>1000		11.4*	
AK10-0715	189052	float	Aug-12	588739.7	5878081.2	506333	near old camp	12"x5" subanglar quartz float in moss covered rounded alluvial + much gy clay at least 6" deep.		65 <5			
AK10-0706 AK10-0715	189053 189054	soil grab	Aug-12 Aug-12	588739.7 588767.0	5878081.2 5877693.3	506333 506333	near old camp near 2009 trench H	gy clay from below qtz cobble (189052) no description		<> <5			
AK10-0715	189054	grab	Aug-12 Aug-12	588767.0	5877693.3	506333	near 2009 trench H	no description		<5			
AI(10-0713	103033	grab	Aug-12	500707.0	3011033.3	500555	hear 2009 trench h			-0			
AK10-0715	189056	grab	Aug-12	588727.1	5877673.7	506333	1930's trench- 700'S location	QV exposed in old trench. Yellow and brn oxides but little sulphides observed. Orientation is approximate	QV 025/22	45			
/	100000	grub	7 tug 12	000727.1	0011010.1	000000		QV 17" wide (0.5m wide). Oxides on fractures, rare blk vugs. Cuts gyish grn phyllite with <0.5% course py		10			
AK10-0715	189057	chip	Aug-16	588734.5	5877673.8	506333	1930's trench- 700'S location	cubes.	QV 242/84N, B 320/14N	<5			
AK10-0715	189058	grab	Aug-16	588741.8	5877674.0	506333	1930's trench- 700'S location	rusty, vuggy QV with orange and blk oxides	-	<5			
AK10-0715	189059	grab	Aug-16	588741.8	5877674.0	506333	1930's trench- 700'S location	sample representing muscovite rich QV +/- rusty vugs (<0.5%)		<5			
AK10-0715	189060	grab	Aug-16	588741.8	5877674.0	506333	1930's trench- 700'S location	QV similar to 189058 but with vf muscovite		<5			
								rep grab of old excavated country rock at W end old trench. Sericitic phyll with oxides on fractures and 0.5%					
AK10-0715	189061	grab	Aug-16	588727.3	5877663.7	506333	1930's trench- 700'S location	cubic py		<5			
AK10-0715	189062	grab	Aug-16	588714.0	5877693.5	506333	1930's trench- 700'S location	QV with orange staining on fractures		<5			
AK10-0715	189063	grab	Aug-16	588714.0	5877693.5	506333	1930's trench- 700'S location	QV with orange and blk oxides and vugs		<5			
AK10-0715	189064	grab	Aug-16	588714.0	5877693.5	506333	1930's trench- 700'S location	QV with highly oxidized vugs and patchy sand-like texture chloritized blebs. Some muscovite.		10			
AK10-0715	189065	grab	Aug-16	588714.0	5877693.5	506333	1930's trench- 700'S location	QV similar to last but not as much oxides. Manganese rich vugs - almost bulbose or oolitic like		20			
AK10-0715	189066	grab	Aug-16	588714.0	5877693.5	506333	1930's trench- 700'S location	QV. Muscovite rich with oxides		<5			
AK10-0715	189067	grab	Aug-16	588712.0	5877693.4	506333	1930's trench- 700'S location	QV. Orange and blk oxide + muscovite rich. Quite vuggy		<5			
AK10-0715	189068	crush	Aug-17	588699.8	5877916.9	506333	Arrastra tailings	gravel size crush at Arrastra QV tailings. 0.3m deep		>1000		4.24*	
AK10-0715	189069	crush	Aug-17	588693.0	5877921.2	506333	Arrastra tailings	gravel-pebble size tailings 0.3m deep		>1000		31.1	
AK10-0715	189070	crush	Aug-17	588689.6	5877923.4	506333	Arrastra tailings	large pebble to sandy tailings 0.2m deep		>1000		15.1*	
AK10-0715	189071	crush	Aug-17	588682.2	5877928.8	506333	Arrastra tailings	pebbly sandy tailings 0.2m deep		>1000		2.86	
AK10-0715	189072	crush	Aug-17	588682.3	5877922.1	506333	Arrastra tailings	pebbly sandy tailings 0.4m deep		>1000		2.82	
								located 5m from 189071 @ 290°. Contains charcoaled wood on immediate S. side fallen wood					
AK10-0715	189073	crush	Aug-17	588680.8	5877927.6	506333	Arrastra tailings	framing. Sandy>pebble tailings 0.5m deep.		>1000		71.2	
AK10-0715	189074	crush	Aug-17	588666.7	5877928.5	506333	Arrastra tailings	0.3m deep sm pebbly-sandy tailings		>1000		6.25	
AK10-0715	189075	crush	Aug-17	588668.0	5877934.1	506333	Arrastra tailings	0.2m deep sm pebbly-sandy tailings		>1000		3.38	
								QV stockpile @ opencut workings immediately N of Arrastra tailings. Blk and orange staining <2% cubic py.					
AK10-0715	189076	grab		588680.0	5877934.3	506333	Beedy decline stockpile	0.5mm sq>10mm sq		35			
								a sheet week OV standar its O successible to a field with both O of American Division. Our to store to size a Varia libration to					
AK10-0715	189077	arah	Aug 10	588649.8	5877901.5	506333	Doody dooling stockpile	select grab QV stockpile @ west hole of old cut just S of Arrastra. Pit is ~ 2m*2m*2m in size. Very likely to be the SW extension at the Beedy decline. Brnt orange weathered sulphides on or near fractures.		<5			
AK 10-07 15	109077	grab	Aug-18	500049.0	5677901.5	506333	Beedy decline stockpile			<>			
								select grab QV stockpile @ west hole of old cut just S of Arrastra. Pit is ~ 2m*2m*2m in size. Very likely to					
AK10-0715	189078	grab	Aug-18	588649.8	5877901.5	506333	Beedy decline stockpile	be the SW extension at the Beedy decline. Brnt orange weathered sulphides on or near fractures.		<5			
	100070	grab	/ tug 10	000040.0	0011001.0	000000	Beedy decline stockplic			-0			
								select grab QV stockpile @ west hole of old cut just S of Arrastra. Pit is ~ 2m*2m*2m in size. Very likely to					
AK10-0715	189079	grab	Aug-18	588649.8	5877901.5	506333	Beedy decline stockpile	be the SW extension at the Beedy decline. Brnt orange weathered sulphides on or near fractures.		<5			
		9.00	,					rep grab of QV samples from a pit ~12m N of last set of samples. Heavy slabs of QV stacked on E side of					
								pit. Much weathered sulphides, vuggy +/- galena VG in this vein. 189080-85 is first set of sampling before					
AK10-0715	189080	grab	Aug-18	588660.3	5877916.1	506333	Old Beedy pit-"Spider Vein"	"S5 Trench" was opened.		<5			
			Ŭ					rep grab of QV samples from a pit ~12m N of last set of samples. Heavy slabs of QV stacked on E side of					
AK10-0715	189081	grab	Aug-18	588660.6	5877917.2	506333	Old Beedy pit-"Spider Vein"	pit. Much weathered sulphides, vuggy +/- galena VG in this vein.		10			
							<u>.</u>	rep grab of QV samples from a pit ~12m N of last set of samples. Heavy slabs of QV stacked on E side of					
AK10-0715	189082	grab	Aug-18	588660.7	5877918.0	506333	Old Beedy pit-"Spider Vein"	pit. Much weathered sulphides, vuggy +/- galena VG in this vein.		15			
								rep grab of QV samples from a pit ~12m N of last set of samples. Heavy slabs of QV stacked on E side of					
AK10-0715	189083	grab	Aug-18	588661.0	5877918.7	506333	Old Beedy pit-"Spider Vein"	pit. Much weathered sulphides, vuggy +/- galena VG in this vein.		35			
			Ι_ Τ										
AK10-0715			Aug-18	588658.2	5877916.7	506333	Old Beedy pit-"Spider Vein"	QV rep sample with blk vuggy oxides		>1000		16.2*	
	189084	grab	Aug-10						1				
										_			
AK10-0715	189085	grab	Aug-18	588658.4	5877917.5	506333	Old Beedy pit-"Spider Vein"	finely lam grnul gy phyll. 2% cubic py		<5			
AK10-0715	189085 189086	grab grab	Aug-18 Aug-19	588658.4 588733.4	5877840.7	506333	Perkins opencut	sugary to massive QV with It yellow to brn oxides		140			
AK10-0715 AK10-0715	189085 189086 189087	grab grab grab	Aug-18 Aug-19 Aug-19	588658.4 588733.4 588733.4	5877840.7 5877840.7	506333 506333	Perkins opencut Perkins opencut	sugary to massive QV with It yellow to brn oxides blk graphitic phyll F zone material		140 210			
AK10-0715	189085 189086	grab grab	Aug-18 Aug-19	588658.4 588733.4 588733.4 588733.4	5877840.7	506333 506333 506333	Perkins opencut Perkins opencut Perkins opencut	sugary to massive QV with It yellow to brn oxides		140			

Certificate	Assay				ordinates				Au	Ag	Au	Ag	Pb	
	Tag #	TYPE	DATE	East	North	Tenure	Area	Description	Measurement	ppb	ppm	(g/t)	(g/t)	(%)
i								1m sample on E side Perkins open cut across shear zone with phyllitic 5% cubic py wallrock on each side of						
AK10-0715	189090	channel	Aug-19	588740.8	5877875.3	506333	Perkins opencut	a blk gf fault zone ~0.3m wide. Easterly dip. 189091 is ~ 4m W of 189090.		5				
AK10-0715	189091	grab	Aug-19	588741.4	5877877.6	506333	Perkins opencut	highly oxidized contoured phyll with ~50% fine cubic py. 091 is ~ 4m W of 090.		5				
AK10-0715	189092	grab	Aug-19	588740.9	5877907.6	506333	Perkins opencut	QV from fallen debris @ old shaft with timbers		30				
AK10-0715	189093	grab	Aug-19	588740.9	5877907.6	506333	Perkins opencut	It gr finely lam phyllitic rock ~ 1% fine cubic with py. Timbers ~4' wide and tunnel here went 100° azimuth		50				
AK10-0715	189094	grab	Aug-19	588749.5	5877911.1	506333	Beedy Shaft	4-6" wide muscovite rich QV with oxides		<5				
AK10-0715	189095	grab	Aug-19	588749.5	5877912.1	506333	Beedy Shaft	4-6" wide muscovite rich QV with oxides		25				
								oxide rich + vuggy QV on same trend as last two samples. Vuggy + oxides, possible fleck VG (no hand						
AK10-0715	189096	grab	Aug-19	588749.1	5877914.8	506333	Beedy Shaft	lense). Located 5m N from last two samples on E wall of Perkins opencut		<5				
AK10-0715	189097	grab	Aug-19	588748.6	5877911.5	506333	Beedy Shaft	gy sericitic phyllite with 1% coarse cubic py		190				
AK10-1042	189098	grab	Sep-29	588683.4	5877936.6	506333	Beedy decline	rep sample of QV from 1m deep pit/short decline a few metres north of the Arrastra site		5				
								sample from short decline on 12-14" wide QV. Elongate oxides in large vuggy area. Heavy! Strong sulphur						
AK10-1042	189099	grab	Sep-29	588683.4	5877936.6	506333	Beedy decline	smell.		5				
AK10-1042	189100	grab	Sep-29	588683.4	5877936.6	506333	Beedy decline	QV from W side stockpile elongate orange + blk oxides. Heavy + much sulphur smell		<5				
AK10-0715	189430	grab	Aug-26	589057.8	5877921.3	506333	QV2 site	white bull qtz but oxided on edge		<5				
AK10-0715	189431	grab	Aug-26	589061.1	5877925.8	506333	QV2 site	cubic py rich country rock dk gy phyllitic rock 10% py		5				
AK10-0715	189432	grab	Aug-26	589061.7	5877930.2	506333	QV2 site	orange oxide rich py rich QV		>1000		8.13		
AK10-0715	189433	grab	Aug-26	589062.9	5877934.7	506333	QV2 site	sheared white QV running 035°. Same QV as 189434		10				
AK10-0715	189434	grab	Aug-26	589061.6	5877933.6	506333	QV2 site	a western edge same QV as 189433 but blk-orange oxides	J 176/76W, B 342/30	575				
AK10-0715	189435	grab	Aug-26	586744.6	5875966.2	506333	Grub Gulch area	angular white ground Qtz + wet soil on side of road		<5				
								HG sample of galena rich QV at waste on NE end opencut. ~40% galena. 5% massive pyrite. Blk						
AK10-1042	189436	waste	Sep-09	589017.7	5877987.3	506333	Galena Vein	staining on fractures		>1000		1.83	82.6	7.35
AK10-1042	189437	waste	Sep-09	589018.5	5877982.8	506333	Galena Vein	HG sample of galena rich QV at waste of NE end opencut. ~20% galena. <5% massive py		>1000		46.5	150	3.45
								rep sample of dk gy highly foliated sericitic phyll. ~ 5% 1-2mm sq cubic py and weathered out nodules from						
AK10-1042	189438	waste	Sep-09	589019.2	5877981.7	506333	Galena Vein	waste pile		40				
AK10-1042	189439	waste	Sep-09	589023.1	5877987.4	506333	Galena Vein	It gnish gy foliated phyllitic to fg qtzite. Rep sample with 5% <1mm sq cubic py from waste pile		460				
								similar to 189438. Rep sample from boulder in waste. Dk gy foliated phyll with 5-10% 3-5mm sq course cubic		1				
AK10-1042	189440	waste	Sep-09	589023.0	5877992.9	506333	Galena Vein	ру		10				
AK10-1042	189441	grab	Sep-09	589056.6	5877917.9	506333	QV2 site	orange weathered QV with blk + orange oxides		475				
AK10-1042	189442	grab	Sep-09	589056.6	5877917.9	506333	QV2 site	orange weathered QV with blk + orange oxides, but more sheared + from between joints		350				
AK10-1042	189443	grab	Sep-09	589053.2	5877920.1	506333	QV2 site	micaceous white QV with 5% massive py		30				
		, j								1				
AK10-1042	189444	grab	Sep-09	588957.1	5877822.6	506333	QV2 south	sample from pile QV from 3m long trench (runs 298°) Minor trace sulphides + chloritic blebs as inclusions.		5				
								sample from pile QV from 3m long trench (runs 298°) Minor tr. Sulphides + chloritic blebs as inclusions. From						
AK10-1042	189445	grab	Sep-09	588957.7	5877822.6	506333	QV2 south	roughly crushed or broken QV. Some orange staining		5				
		, j								1				
AK10-1042	189446	grab	Sep-09	588922.7	5877837.7	506333	QV2 south	from piled and moss covered hand excavated QV. Trace weathered galena in QV with some red oxides.		5				
AK10-1042	189447	grab	Sep-09	588924.6	5877838.7	506333	QV2 south	from same location as 189446. This sample is more common orange oxides with rare vugs		25				
		, j						dk gy foliated sericitic phyll with common 20% 1mm sq cubic py. Approx true thickness here is ~ 9m (3m to S		1				
AK10-1042	189448	grab	Sep-09	589056.4	5877927.9	506333	QV2 site		B 348/32E	5				
AK10-1042	189449	waste	Sep-09	589057.0	5877929.0	506333	QV2 site	blk oxides through and through. Manganese assayed over the detection limit		115				
AK10-1042	189450	waste	Sep-09		5877925.7		QV2 site	orange weathered vuggy QV with common weathered cubic py ~5%		580				
AK10-0715	189451	grab	Aug-20		5877922.3	506333	Trench 10-2		cl 344/46 NE	<5				
AK10-0715	189452	grab		see map for t		506333	Trench 10-2	at 1.4m. Dk gy foliated argillacious phyll with 2% cubic py		<5				
								1m vertical on N wall @ 1.7m from E end. Foliated gnish gy - gy phyll with 3" wide faulted oxidized QV. Rare						
AK10-0715	189453	channel		see map for t		506333	Trench 10-2	0.5mm stringers of py		<5				
AK10-0715	189454	grab	Aug-20	see map for t	rench loc	506333	Trench 10-2	sample oxide rich orange stained QV. Rare py stringers		<5				
AK10-0715	189455	channel		see map for t		506333	Trench 10-2	1m sample . Gy fg qtzitic to phyllitic country rock with 2% course py		<5				
AK10-0715	189456	grab		see map for t		506333	Trench 10-2	QV HW @ 4.5m - belongs to wide blk and yellow oxide vein		5				
AK10-0715	189457	grab		see map for t		506333	Trench 10-2	QV FW		<5				
AK10-0715	189458	grab		see map for t		506333	Trench 10-2	QV (0.2m wide QV) @5.3m		<5				
AK10-0715	189459	channel		see map for t		506333	Trench 10-2	0.4m sample QV yellow + blk, slightly sheared @ 5.5m	QV 018/38E	5				
AK10-0715				see map for t		506333	Trench 10-2	1m sample 0.3m wide QV and sheared country rock @ 6.6m		<5				
AK10-0715	189461	channel	Aug-20	see map for t	rench loc	506333	Trench 10-2	1m sample includes 0.4m wide QV with blk oxides, 0.1m wide QV and grn phyllitic rock @ 8m		<5				
								2m sample across true width gf fault zone with orange oxide pods in places. Channel goes from 8m - ~12m.						
AK10-0715	189462	channel		see map for t		506333	Trench 10-2		cl 338/78E, J 238/85W	<5				
AK10-0715	189463	grab		see map for t		506333	Trench 10-2	2" wide QV. Much oxidation. Strikes 332° dips NE @12.2m		<5				
				-										
AK10-0715	189464	channel	Aug-23	see map for t	rench loc	506333	Trench 10-2	1m channel across sugary sheared and shattered quartz in a shear zone at base of tench. @14.0m		<5				

Assay				UTM Co	ooordinates					Au	Ag	Au	Ag	Pb
ertificate	Tag #	TYPE	DATE	East	North	Tenure	Area	Description	Measurement	ppb	ppm	(g/t)	(g/t)	(%)
10-0715	189465	channel	Δυσ 23	see map for	r trench loc	506333	Trench 10-2	1m channel diagonally across N wall trench. Foliated phyll (lt-dk gy) ≥ gougy. Include 2" QV of 189463	cl 322/56	<5				1
10-0715				see map for		506333	Trench 10-2	2m channel @ western end fault zone	G 322/30	<5		.┼───┼		
0-0715	103400	Channel	Aug-20	See map to	trenen loc	000000	Trench 10-2			-0		<u> </u>		<u> </u>
									F zone ends on N wall of trench at 17.7m and strikes					1
10-0715	189467	grab	Aua-23	see map for	r trench loc	506333	Trench 10-2	yellow-brown oxidized vuggy sheared QV about 4" wide @ 17.3m at W end fault zone	324d with steep dip.	<5				1
10-0715	189468	0		see map for		506333	Trench 10-2	QV. 2-4" wide following bedding. At 20.9m		<5				í
		J • •	- J						B 358/20E located 20m					1
10-0715	189469	channel	Aug-23	see map for	r trench loc	506333	Trench 10-2		from start of trench	5				1
			0					0.5m channel to represent base of last interval. Located @ 25.4m in gy foliated fg quartzite with numerous qs	Common J 008/62E, B					1
10-0715	189470			see map for		506333	Trench 10-2	& 1% cubic pyrite.	230/28N	10				1
10-0715	189471			see map for		506333	Trench 10-2	QV @ 30.8 from 10-2 trench picket	Common J 012/68E	10				1
10-0715	189472	grab	Aug-23	see map for	r trench loc	506333	Trench 10-2	QV @ 30.8 from 10-2 trench picket		5				1
									J 242/74N @42.0m,					1
10-0715	189473	grab		see map for		506333	Trench 10-2		B 012/20E @42.0m	5				I
10-0715	189474			see map for		506333	Trench 10-2	QV @ 30.8 from 10-2 trench picket	B 330/40 @ 46.3	5				I
10-0715	189475	•		see map for		506333	Trench 10-2	from S side wall. Vuggy QV, oxidized @ 30.8m		5		<u> </u>		<u> </u>
10-0715	189476	grab	Aug-23	see map for		506333	Trench 10-2	from S side wall. Vuggy QV, oxidized @ 30m		5				i
10-0715	189477	channel	Δμα 22	see map for	r trench loc	506333	Trench 10-2	1m sample @ 34.6m across N wall foliated gf argillaceous qtzite - fg lam gy qtzite QS + rusty pods highly oxidized fractures		-				1
10-0715	189477			see map for		506333	Trench 10-2	representation of QS rich zone qtzite with oxides & < 0.5% cubic py @ 39.4m		5 10		.╂────┤		
10-07 13	1094/0	yıan	ruy-23	See map 10		000000		at 40.8m. 3" wide persistant vuggy, rusty QV with cubic py on margins. Heavy. Parallel to E dipping bedding.		10		.╂────┤		
(10-0715	189479	grab	Aug-23	see map for	r trench loc	506333	Trench 10-2	Located @ base of 1m drop of trench & ~ 1m structurally below last sample		<5				1
10-0715	189480			see map for		506333	Trench 10-2	dk gy qtzite with 1 % cubic py. On E side 2' wide fault zone		5		. 		
10-0715	189481			see map for		506333	Trench 10-2	fg gy qtzite flagstone veneer. Trace sulphides @ 44.5m		10		<u> </u>		(
10-0715	189482			see map for		506333	Trench 10-2		B 320/36	5				í –
			0			++			B 352/34, common J					1
(10-0715	189483	channel	Aug-25	see map for	r trench loc	506333	Trench 10-1	wide oxidized QV parrallel to bedding plane	190/82	<5				1
(10-0715	189484	grab		see map for		506333	Trench 10-1	at 4.5m. 4" wide silicified fg qtzite with 0.5% fg cubic py parrallel to bedding	J 186/70	5				1
(10-0715	189485			see map for		506333	Trench 10-1	at 5.8m. 4" wide oxidized, vuggy QV located on possible apparent hinge of fold		5				1
(10-0715	189486			see map for		506333	Trench 10-1		J 180/80	<5				1
(10-0715	189487			see map for		506333	Trench 10-1		B 312/40	<5				1
(10-0715	189488	grab	Aug-25			506333	Trench 10-3		QV 071/66	5				
(10-0715	189489		Aug-25			506333	Trench 10-3	very foliated and folded gy-grn qtzite		<5				
(10-0715	189490		Aug-25	588775.1		506333	Trench 10-3		J 196/52@5.8m	<5		<u> </u>		t
(10-0715	189491	grab	Aug-25	588775.1	5878021.8	506333	Trench 10-3	at 6.8m. Orange-brn mottled/brecciated & sericitic QV >3" wide. Both samples QV min 12" thick		<5		<u> </u>		t
<10-0715	189492	arah	Aug-25	588775.4	5878021.7	506333	Trench 10-3	at 6.5m. Blk foliated argillaceous qtzite with min folding + qtz eyes@ base of Tr in S wall (also at base or @E end mottled QV)		F				1
(10-0715	189492		Aug-25 Aug-25			506333	Trench 10-3	at 10.5m. Foliated dk gy>grnish gy lam fg qtzite with 1" oxidized QV		25		<u> </u>		<u> </u>
10 0/ 10	100-00		/ lug-20	550771.9			Trendit 10-5	at 10.7m. On west side of QV prominent vein (Perkins extension). Main vein follows 070 /90. West side of	F 020/25 on HW, QV	20		.╂────╂		í
(10-0715	189494		Aug-25	588771.8	5878023.8	506333	Trench 10-3		trends possible 070/90	15				1
(10-0715	189495		Aug-25				Trench 10-3	at 12m. Same Vein as last but at 12 m from eastern end of trench.		5		.╂────╂		1
			5					at 12.3 m from east end. Sample from N wall in 4" wide QV which is // to bedding. Evidence faulting & or						1
10-0715	189496		Aug-25	588770.4	5878024.6	506333	Trench 10-3	folds		<5				1
10-0715		channel			69 5878024.9			at 13m. 1m vertical channel in N wall of orange + gy gouge at fault 8" wide. F strikes 224°		5				1
								QV grab from center of trench at 3m from east end. Vein could be about 1m wide. <10% sulphides + mottled						1
									B 344/40E @ west end					1
(10-0715	189498	grab	Aug-25				Trench 10-3		trench	<5				
(10-0715	189499		Aug-26				QV2 site	oxidized vuggy QV sample from S side Cat trail		5		<u> </u>		
(10-0715	189500		Aug-26			506333	QV2 site	oxidized vuggy QV from E side trench		135		<u> </u>		t
(10-1042	189501	waste	Sep-09	589052.5	5877922.3	506333	QV2 site	orange and bllk oxidized QV with some vugs		100		↓ ───┤		<u> </u>
(10-1042	189502	grab	Sep-13	588876.5	5878296.2	506333	QV2 site	5 5 5 F	B 360/32	15				1
	(00-00		• ·					Grab QV from blowout area south of 2009 Gibson trench and trail on a flat rounded outcrop. Evidence that		_				1
<10-1042	189503	grab	Sep-17	589445.4	5878967.7	506333	Gibson South	has been sampled in past, but no records located.		<5		┨────┤		
(40,4040	400504	a	0	F00450 0	F070004 -	500000		Grab QV from blowout area south of 2009 Gibson trench and trail on a flat rounded outcrop. Evidence that						1
<10-1042	189504	grab	Sep-17	589450.2	5878964.5	506333	Gibson South	has been sampled in past, but no records located.		<5		┨────┤		<u> </u>
(10-1042	189505	grab	Sep-17	589440.9	5878959.9	506333	Gibson South	Grab QV from blowout area south of 2009 Gibson trench and trail on a flat rounded outcrop. Evidence that has been sampled in past, but no records located.		-				1
		ulau	0CD-11	009440.9	1 2010929.9	000000		nas been sampled in past, but no records located.		5	1			

Assay Certificate	Tag #	TYPE	DATE	UTM Coo East	ordinates North	Tenure	Area	Description Measur	ement	Au ppb	Ag ppm	Au (g/t)	Ag (g/t)	Pb (%)
AK10-1042	189507	grab		see map for le		506333	C1	QV ~4" thick orange weatherd + ~20% vuggy (sm) some bright orange vugs.	ement	5	66	(9,4)	(9,4)	(70)
AK10-1042 AK10-1042	189507	channel		see map for lo		506333	C1	at 2m. 0.5m sample across 189507 and interbedded qtzite>> phyll. B 028/20		5				
	100000	onannor	000 11			000000		at 7m. 1m sample across interbedded fg gy qtzite and blk-dk gy sericidic phyll. Overall ~ 1% cubic py F 218/40@8m	slicken 68d.					
AK10-1042	189509	channel	Sep-17	see map for le	oc	506333	C1	(<<3mm cube) B 022/24	,	5				
AK10-1042	189510	grab	Sep-17	see map for le	oc	506333	C1	at 8.3m. Foliated dk gy-gn phyll with orange weathering & ~ 1% cubic py		5				
AK10-1042	189511	grab		see map for le		506333	C1	at 8.3m. 2' below 189510 on East wall. Sample dk gy-blk phyll with 2% 3mm sq cubic py		5				
AK10-1042	189512	grab	Sep-17	see map for le	00	506333	C1	at 8m. Orange fg qtzite and sheared vuggy qtz on S side fault or sheer		15				
								at 9m. 1m sample across interbedded orange striated fg qtzites & dk gy-blk sericitic phyll with slight						
AK10-1042	189513	channel		see map for le		506333	C1	chloritization		5				
AK10-1042	189514	channel	Sep-17	see map for le	00	506333	C1	at 10m. 1m sample across same location as last sample 189513		10				
AK10-1042	189515	channal	Son 17	see map for le	20	506333	C1	at 10.5m. Same as sample 189514, but includes intermittent gouge and mineral QV of unspecified orientation		20				
AK 10-1042	109515	channel	Sep-17	see map for it		506333	CI	at 12m, 1m vertical sample across sheared qtzite, phyll<<< QV +/- gouge. QV orange & mottled brn. Fissile		20				
AK10-1042	189516	channel	Sen-17	see map for le		506333	C1	and sheared.		10				
AK10-1042	189517	grab		see map for le		506333	C1	sheared QV from same location as 189516. 11.4-12m is shear zone		20				
AK10-1042	189518	grab		see map for le		506333	C1	sheared QV from same location as 189516		5				
AK10-1042	189519	grab		see map for le		506333	C1	1st of Cohen set veins. 2-3" wide orange + brn weathered vuggy QV. At 10.6m QV 210/54		10				
AK10-1042	189520	grab		see map for le		506333	C1	at 12.4m. Blk + rusty brn ox wall of QV and gtzite from 1 of 2 (1-2" wide) QV here. QV 204/70		60				
		U • •	•				-	QV in NW edge of road bed. May not be in place but very close to source. Rusty, oxidized QV with				1		+
AK10-1042	189521	grab	Sep-21	588363.2	5879047.9	506333	Textbook	black to rusty orange fractures. 5-10% py stringers< <massive galena<="" td=""><td></td><td>>1000</td><td></td><td>23.5</td><td></td><td></td></massive>		>1000		23.5		
AK10-1042	189522	float	Sep-21	588361.1	5879048.9	506333	Textbook	QV same as 189521, but found 2m W of 189521 and on low shoulder of road bed.		>1000		27.4		
AK10-1042	189523	float	Sep-21	588382.3	5879061.6	506333	Textbook	QV on E side of road. 2% cubic py >>galena		>1000		69.5		
			•					in place mineralized QV at least 4-6" wide. Need to trench here to open up in road bed. Located 3m						
AK10-1042	189524	grab	Sep-21	588363.4	5879032.3	506333	Textbook	below textbook folded o/c QV 184/70-80	w	595		1.17		
		J • •	•					VG!!! Small QV boulder in talus area of barrow pit on E side of road. Local to here! Heavy. Rusty and						
AK10-1042	189525	float	Sep-21	588368.7	5879035.7	506333	Textbook	blk stringer. 5-10% in stringers +rare cubes		>1000		10.0		
			•											
								muscovite rich QV at base of o/c in foliated gtzite, 5" wide with ox liniations // to bedding. Vein is apparently //						
AK10-1042	189526	grab	Sep-21	588354.7	5878998.7	506333	72F FSR	to bedding as well. This sample area is slumped. No orientation but nearby bedding is ~ 004/44E B 004/44		60				
								same location as 189526. Grnish gy fg qtzite with 20% weathered diss cubic sulphides NOTE: many J 174/68N (mu	ch folding					
AK10-1042	189527	grab	Sep-21	588354.7	5878998.7	506333	72F FSR	stringers and silicified zones here here as well)	-	5				
								QV 1.5m wide. Cuts bedding, but not well exposed. Vein has orangey-brn oxides but no fresh sulphides						
AK10-1042	189528	grab	Sep-21	588445.0	5878792.3	506333	72F FSR	observed. Heavy. QV 242/80 NW	/	5				
AK10-1042	189529	grab	Sep-21	588445.0	5878792.8	506333	72F FSR	Same vein as 189528		<5				
AK10-1042	189530	grab	Sep-21	588445.0	5878793.3	506333	72F FSR	Same vein as 189528		<5				
								QV 1-2 ft wide strike vein (pinches and swells). Patchy oxidized mineralization. Musc ~ 0.5%. Fg gy fol qtzite						
AK10-1042	189531	grab	Sep-21	588522.1	5878682.5	506333	72F FSR	with interbedded dk gy sericitic argillite. QV 012/30E		5				
	400500		0 04	500500 4	50700074			<1' QV. Likely a S extension of last QV @ 189531. ~5% musc weathered oxides, rare fresh trace cubic		. 1000		4.00		
AK10-1042	189532	grab	Sep-21	588532.4	5878667.1	506333	72F FSR	py		>1000		1.02		
AK10-1042	189533	grab	Sep-21	588644.6	5877892.5	506333	S2	orange ox phyll with 2x1 cm wide quartz stringers and weathered oxides		5				
AK10 1042	100524	arab	Son 21	E99644 1	E977902 6	506222	60	come leastion as 190522 but folds as esticitie abyll with 10% aubie by as evidited adules. No freeb surface		10				
AK10-1042	189534	grab	Sep-21	588644.1	5877893.6	506333	S2	same location as 189533 but fol dk gy sericitic phyll with 10% cubic py as oxidized nodules. No fresh surface. QV in adjacent (to 189534) 3m long trench. QV 6" wide with blk and orange oxides. Some xtls and vuggy.		10				
AK10-1042	189535	grab	Sep-21	588648.5	5877898.1	506333	S1	Cuts sericitic phyll-schist. Sample located on S wall of trench. QV 109/68		5				
AK10-1042 AK10-1042	189536	grab	Sep-21 Sep-21	588649.2	5877897.0		S1	same as last QV (189535) but in N wall with more blk oxides than previous		-5 -5				
	100000	grab	00p 21	000040.2	0011091.0	000000	01			-5				
AK10-1042	189537	grab	Sep-21	588649.9	5877895.9	506333	S1	same QV as last (189536) but from center trench. 25% orange and blk mottled oxides. Rare fresh py		<5				
		3						QV lense/pod possible actual strike vein exposed at W base of 5m long trench. Located at 4m from E end of		5				
AK10-1042	189538	grab	Sep-21	588651.6	5877910.3	506333	S4	trench in highly fol sericitic phyll> schist rusty + blk oxides. Rare vugs. 1-3" thick QV lense/pod	340/26	5				
		<u> </u>					-	at 3.5m. 1m vertical sample across It gn - gy phyll to med gr gy qtzite. 5% weathered nodules & cubic py. N	-					
AK10-1042	189539	channel	Sep-21	588652.3	5877910.1	506333	S4	wall.		100				
								at 1.5m. 1m vertical sample across It gn - gy phyll to med gr gy qtzite. 5% weathered nodules & cubic py. N						
AK10-1042	189540	channel	Sep-21	588652.6	5877910.0	506333	S4	wall.		10				
AK10-1042	189541	grab	Sep-21	see map for le	oc	506333	S4	Spider vein' location. 8" wide rep sample at 3.1m from top of 1m trench in N wall. Blk oxides > orange. QV 200/74W		15				
								HG sample of same QV (189541) about 0.3m above base trench in N wall. Large cubic blk oxides.						
AK10-1042	189542	grab	Sep-21	see map for le	oc	506333	S4	Rare fresh sm cubic py		>1000		1.15		
								Rep sample same QV (189541) but at base of trench at N wall. Blk & orange oxides on fractures. NOTE: ~						
AK10-1042	189543	grab	Sep-21	588657.8	5877901.6	506333	S4	2" wide dirty brn gouge on E side vein -more prominent in S wall		80				
	100-11		0 -				<u>.</u>	0.5 m vertical sample diagonally across. 5 -6" wide khaki to blk gouge zone on E side QV. Some orange J 190/60W, B	340/30NE					
AK10-1042	189544	channel	Sep-21	see map for le	DC	506333	S4	oxides + rare blk & white pods faulted rock at 2.4m on S side trench. @ 1.5m		40				

Assay				UTM Coo	ordinates					Au	Ag	Au	Ag	Pb
ertificate	Tag #	TYPE	DATE	East	North	Tenure	Area	Description	Measurement	ppb	ppm	(g/t)	(g/t)	(%)
	.ug "		27112			renare	7		QV 190/46, B 360/30E in E		<u>⊢−−</u> ∦	(3.4)	(3.7)	
10-1042	189545	grab	Sep-21	588656.9	5877913.8	506333	S5	8-12" wide QV of 'Spider Vein" at 3m from start point of trench	wall	50	i			i
	100010	grub	000 21	000000.0	0011010.0	000000		oxidized QV with much oxidized bxwks + rare cubic py. VG! Heavy sample. Rep VG in rock sample	Wall	00	i – H			
(10-1042	189546	grab	Sep-21	588671.9	5877977.5	506333	S5	& VG from other half of same sample taken to office for reference		>1000	i	46.0		i
10-1042	189547	grab	Sep-21	588672.5	5877980.9	506333	S5	same as 189546 but with less oxidized bxwks. Heavy		>1000	 	33.4		i
	100041	grub	000 21	000072.0	0011000.0	000000		9m from south end of trench. Same vein of quartz as last but with oxidized fractures and minor		1000	iH			í
10-1042	189548	grab	Sep-21	588673.1	5877980.9	506333	S5	bxwks. Rare fresh py~5%		>1000	i	24.9		i
10-1042	189549	channel	Sep-21 Sep-21	588673.1	5877983.1	506333	S5	1m channel across silcified qtzite dk gy-blk gf fault zone	F 328/40	30	┢────╂	24.5		·
10-1042	189550	grab	Sep-21 Sep-21	588673.7	5877986.5	500555		dk gy sericitic phyll - schist with 10% cubic py	1 320/40	20				
0-1042	109000	yrab	Sep-21	566075.7	5677960.5			Rep sample QV chips over large area of dump belonging to #1 Cohen incline shaft. Dump is ~ 20m x 4m in		20	┝───╂			
10-1042	189551	chip	Sep-30	588900.8	5878360.1	506333	Cohen Incline	size		15	i			i
0-1042	189552	omp	Sep-30	588943.5	5878409.9	506333	Cohen Incline	Rep chips of QV on about 25m length on E side 25m length incline		>1000	 	2.16		i
0-1042	189553	grab	Sep-30	588934.4	5878393.0	506333	Cohen Incline	HG QV sample from E side incline ~ 10% weathered sulphides		<5	iH			í
0-1042	189554	chip	Sep-30	588952.7	5878420.0	506333	Cohen Incline	Rep sample of QV chips from last shaft to end #3 workings (over ~20m)		>1000	┢────╂	106		·
0-1042	189555		-	588960.6	5878426.9	506333	Cohen Incline	HG sample from E side of Cohen N. Overall ~ 5% brn oxides		>1000	⊢−−− ₩	12.1		
0-1042	109000	grab	Sep-30	900960.6	56/ 6426.9	506333	Conen Incline			>1000	⊢−−− ₩	12.1		
10 10 10	400550	a la lua	0.000	500054.4	5070405 0	500000	Caban Ingling		B 326/24 @N end workings	700	i			i
10-1042 10-1042	189556 189557	chip	Sep-30	588954.4 see map for lo	5878435.6	506333 506333	Cohen Incline Cohen crush tailings	possible excavated main vein is parallel 8" (is deeper though) deep rough gravel. Deep red-brn color	@ Cohen	780 315	┌────╂			
0-1042	189557	crush crush		see map for lo		506333	Cohen crush tailings	6" (Is deeper though) deep rough gravel. Deep red-brn color 6" deep gravel at head of tailings. Deep red-brn color.		315 190	┌───╂	—		í
0-1042 0-1042	189558	crush	Oct-09	588908.3	5878430.3	506333	Cohen crush tailings	8" deep. Deep red-brn color gravel.		>1000	┢────╂	1.2		·
0-1042	109009	GUSII	001-09	500300.3	3010430.3	500333	oonen crush tallings			~1000	<u> </u>	1.2		(
10-1042	189560	orush	Oct 00	ooo mon for la		506222	Cohen crush tailings	8" deep sand> gravel. Took 8"x6"x6" sample to pan and weigh for interests sake. Deep red-brn color.		500* hac	ed on 120a	a		1
10-1042	103200	crush	000-09	see map for lo		506333	Conen crush tallings	10" deep. Sand >> gravel below and to the side of large 3' diameter stump. Stump is point where		ogo pase		3		
	400504		0.4.00			500000	O han analytical			. 4000	i			i
10-1042	189561	crush		see map for lo		506333	Cohen crush tailings	elevation is less slope to East and more slope to West at base. Deep red-brn color.		>1000	⊢−−− ₩	1.4		,
0-1042	189562	crush		see map for lo		506333	Cohen crush tailings	3" deep. Pebble> gravel. Deep red-brn color.		>1000	⊢−−− ₩	1.98		i
0-1042	189563	crush		see map for lo		506333	Cohen crush tailings	4" deep. Pebble>gravel.Deep red-brn color.		>1000	└─── ┃	5.65		I
0-1042	189564	float	Oct-09		5878346.6	506333	Cohen area	QV. Trace mineralization + vuggy. S of Cohen Incline on S side of road.		>1000	└───┤	13.2		ł
10-1042	189565	float	Oct-09	see map for lo	DC	506333	Cohen area	QV. Trace mineralization + vuggy. S of Cohen Incline on S side of road.		700	└─── ┃			I
								rep sample QV from stockpile qtz. Parallel elongate orangey blk oxides & vugs. Taken at old very short						i
10-1042	189601	grab	Sep-29	588683.4	5877936.6	506333	Beedy decline	decline on a QV		20	↓			I
10-1042	189602		Sep-29	588683.4	5877936.6	506333	Beedy decline	qtzite + sericitic schist wide orange red oxide vein parallel to bedding (strike view) sample of talus <20% overall massive py >>arsenopy and galena from NE side	B 342/32E B 348/22	<5	⊢−−− ₩			i
10-1042	189603	grab	Sep-29	588756.0	5877960.2	506333	Perkins opencut		B 346/22	>1000	⊢−−− ₩	212		i
10.4040	400004		0 00			500000	21	4" wide oxidized + vuggy (with xtls) at 10.5m (probably a duplicate) QV pinches and swells. Sheared, yellow	01/ 000 1/7014/	10	i			i
10-1042	189604	grab	Sep-30	see map for lo	DC .	506333	C1		QV 220d/70W	40	┝────┤			i
10 10 10	400005		0 00			500000	21	1.3m vertical sample across interbedded qtzite>phyll with bottom half sample blk gf argillite. ~20% qtz	F 144/56. Gouge and shear	000	i			i
10-1042				see map for lo		506333	<u>C1</u>	U (1	6" wide.	200	⊢−−− ₩			
0-1042	189606			see map for lo		506333	C1		QV 226/80 QV 200/72W	5 20				r
10-1042	189607	channel	Sep-30	see map for lo		506333	C1		QV 200/72VV	20	⊢−−− ₩			
10 1040	100600	obonnal	Son 20	ooo mon for l		506222	<u>C1</u>	at 15-16.2 (not true thickness) is face of yellow gouge + foliated phyll on N side of ~ 3' wide QV. 1m		75	i II			1
10-1042	189608	channel	Sep-30	see map for lo	JC	506333	C1	horizontal sample taken across face of this. rep sample from main cohen vein. True thickness ~ 3ft. Also pinches and swells +/-, possible swarming on S	Nicido OV 226/82/ML Cicida	75	┢────╂	—		
10-1042	189609	chip	Sen 20	see map for lo		506333	C1		N SIDE QV 226/82W, S SIDE QV 212/76	430	i II			i
10-1042	109009	criib	3eh-20	See map ior io		500333	01	on W side of trench is same QV as main Cohen but here is only 0.2m swelling to 0.5m wide with	QV ZIZIIU	430	┌───╂	——		í
10-1042	190610	arab	Son 20	588870.2	5878292.7	506333	C1	lenticular QV filled fractures up to 1" wide on S side of the vein		>1000	i	1.48		i
10-1042	189610	grab	Sep-30	500070.2	50/0292./	506333	CI			/1000	⊢−−− ₩	1.40		r
40 40 40	400044	au na la	0	5000704	5070000 4	500000	64	QV immediately adjacent (South) to last QV sample in a swelled area of same QV as last (189610)		> 1000	i	4.0		i
10-1042	189611	grab	Sep-30	588870.1	5878292.4	506333	C1	Trace galena.		>1000	↓	1.6		
	100010						<i></i>	Sheer zone + gouge immediately adjacent vein. Sample to south of last (189611). 2% brn cubic oxides.						i
0-1042	189612	grab	Sep-30	see map for lo	00	506333	C1	Panned VG from this sheer/gouge.		235	↓			
														i
0 40 45	4000		0	- ·			24	1m vertical sample across interbedded sericitic qtzite and blk phyll with qtz stringers parallel bedding and	5.040/00		i II			1
10-1042	189613	channel	Sep-30	see map for lo	00	506333	C1		B 018/30	50	↓			
10 10 1-	4000		0	- ·			24	at 19.3m. 3m vertical sample across interbedded qtzite>phyll with 0.3-0.5m wide strike vein. Yellow oxides			i II			1
10-1042	189614	channel	Sep-30	see map for lo	DC 00	506333	C1	throughout, slightly chloritized.		5	↓			
			a				c :	at 20m. Sample on 1m length of strike vein. Trace pods weathered sulphides. Vein pinches & swells parallel		_	i II			
40 40 40	189615	chip	Sep-30	see map for lo	DC	506333	C1	bedding 0.3 - 0.5m wide		<5	└─── ┃			ı —
10-1042								at 21.7m. Rep sample over 1m sq area of QV swarm in qtzite blk gf argillite ~ 5-10% sulphides overall.		_	i II			i
		a la lua	Son 20	see map for lo	C	506333	C1	Sample includes country rock		265	r 11			
10-1042 10-1042	189616	chip												
10-1042 10-1042	189617	grab	Sep-30	see map for lo	DC OC	506333	C3		QV 200/72W	<5				۱
0-1042			Sep-30 Sep-30			506333 506333 506333	C3 C3 C3	at 0m on S side QV of sericitic qtzite with ~10% cubic py 1mm sq	QV 200/72W QV ~ 222/70	<5 <5 420				<u> </u>

Assay				UTM Cod	oordinates					Au	Ag	Au	Ag	Pb
Certificate	Tag #	TYPE	DATE	East	North	Tenure	Area	Description	Measurement	ppb	ppm	(g/t)		(%)
AK10-1042	189620	grab	Sep-30	see map for	loc	506333	C3	at 3m. Orange oxides. Probably same as 1st West Cohen vein @189604	QV ~ 222/70	180				<u> </u>
		0						,	B 346/24, common J					
AK10-1042	189621	grab	Sep-30	see map for	loc	506333	C3	at 5m. Sericitic qtzite with <1% cubic py 1mm sq sugary texture on some broken surfaces	244/84	45				
AK10-1042	189622	grab	Sep-30	see map for	loc	506333	C3	at 7.5m. Sericitic qtzite with 5% 1-5mm sq cubic py. Courser py makes up about 1% of sulphide content		<5				
AK10-1042	189623	grab		see map for		506333	C3	at 9.5m. 1" wide gouged qtz vein in joint	QV 242/82	405			160	
AK10-1042	189624	grab	Sep-30	see map for	loc	506333	C3	at 10.6m. Gy sericitic qtzite with 5-10% weathered sulphides (2mm sq py)		10				
AK10-1042	189625	grab	Sep-30	see map for	loc	506333	C3	at 10.6m. Dk gy-blk foliated argillite with 1<5mm cubic py from base of last sample (189624)		25				
AK10-1042	189626	channel	Sep-30	see map for	loc	506333	C2	at 6.3m. 0.3m vertical sample/rep of QV pod in blk gf argillite and shear (?) zone orange oxides		5				
									F 175/80W west side, B					
AK10-1042	189627	channel		see map for		506333	C2	at 7.4m. 1m horizontal sample across fault zone +/- QV. Interval ends at 7.4m. 5.9 - 7.4m fault zone +/- QV	355/24 in qtzite @ 9m	5				
AK10-1042	189628	chip		see map for		533053	Amador Trench	at 1m. Rep sample of interbedded vfg blue-gy qtzite→ blue/gy slate	B 002/20E, J 194/66W	<5				
AK10-1042	189629	channel	Oct-01	see map for	loc	533053	Amador Trench	at 7m. 0.5 sample across 6" wide QV + slatey schist trace sulphides		5				
								at 7.6m. QV from S wall (same QV as in last sample 189629). Seen in N & S wall. Vein has a smokey gy-						
AK10-1042	189630	grab		see map for		533053	Amador Trench	blue hue. Trace py cubes <2mm sq and inclusions of chloritic wall rock	QV 322/40E	<5				
AK10-1042	189631			see map for		533053	Amador Trench	at 7 m. Same QV but sample from N wall. Less apparent sulphides but more manganese (~5%)		<5				
AK10-1042	189632	float		see map for		533053	Amador Trench	at 14.7m. QV ~10% brnish orange blocky oxides. Subrounded 1' sq boulder at base OB		<5				
AK10-1042	189633	grab		see map for		533053	Amador Trench	at 20.2m. Gy fg qtzite	B 006/32E	<5				
AK10-1042	189634	grab		see map for		533053	Amador Trench	at 24.4m. Vfg gy-blue slatey foliated qtzite. Trace diss py. Rare cubes <0.5mm sq	01/070//0	<5				
AK10-1042	189635	grab	Oct-01	588426.4	5877101.8	533053	Amador Road	3" wide QV in road bed in gy, vfg qtzite	QV 350/48	<5				
	400000		0 1 0 1					QV on W side qtzite + qtzite ledge undetermined QV orientation. QV has 5% brn oxides but no fresh		_				
AK10-1042	189636	grab	Oct-01	588503.2	5877267.9	506333	Cariboo Rainbow ledge	minerals seen		5				
AK10-1042	189637	grab		588503.2	5877267.9	506333	Cariboo Rainbow ledge	QV grab from same location as last		<5				
AK40 4040	100000	a wa h	0-1-01	500400.0	5077000 0	500000	Caribaa Daiabaw ladaa	HG QV sample from along same ledge as 189636-7. No orientation. General area has various shallow pits +						
AK10-1042	189638 189639	grab float	Oct-01 Oct-01	588496.0 588499.7	5877280.0 5877277.8	506333 506333	Cariboo Rainbow ledge Cariboo Rainbow ledge	hand trenches (Rare oxides <1%) from same ledge as 189638. Trace sulphides	B 002/26 vfg lam qtzite	<5				
AK10-1042	199039	noat	OCI-01	566499.7	56/12/1.6	506333	Caliboo Rainbow ledge			c				
AK10-1042	189640	grab	Oct-01	588499.0	5877278.9	506333	Cariboo Rainbow ledge	Rep sample of Quartz workings from old hand trenched area, perhaps 1930's. Younger trees on workings, lush ~ 50-60yrs old		<5				
AK 10-1042	109040	grab	OCI-01	566499.0	50//2/0.9	500333	Caliboo Railibow ledge			~ 5				
								High graded grab of honeycombed QV stockpile from 1.5m deep x 1m deep x 3m long trench/pit.						
								Heavy oxides and rare sugary fresh py on margins. ~1m wide QV. Sharp contact on West side.						
								Sheared and blk oxides on East. True sulphides and vugs throughout not just on edges as seen						
AK40 4042	490644	avab	0-1-04	590547 O	5970404.0	500220		upon closer inspection. Vein was worked at depth in 1800's by Jacques crew and 'G Vein' was chosen as it correlates to Bowman's map.	QV 204/80	>1000		0 4 5		
AK10-1042	189641	grab	Oct-01	589547.0	5879194.0	506328	G Vein		QV 204/80	>1000		8.15		
AK10 1042	190642	floot 2	Oct 07	599020 1	5878464.3	506222	Cohon Cuthlook	QV in cutblock @ ~ 40-50m N of Cohen. White Qtz with patchy to linear oxides. Tr. Muscovite vein is		5				
AK10-1042	189642	float ?	Oct-07	588939.1	5676404.3	506333	Cohen Cutblock	minimum 10" wide 2-4" wide red oxide QV with general strike to 320 and moderate NE dip. Possibly rotated slightly by forestry		c				
AK10-1042	189643	arab	Oct-07	588955.5	5878484.6	506333	Cohen Cutblock	work		10				
	189643	grab grab	Oct-07 Oct-07		5878489.2	506333	Cohen Cutblock	from 2m long ledge with 1' wide white QV with trace oxides. I feel it's most likely strike vein		10 <5				
AK10-1042 AK10-1042	189645	float	Oct-07	588900.2	5878503.6	506333	Cohen Cutblock	3" wide x 8-12"-/< angular QV with 2% galena as large blebs. Minor vugs.		>1000		1.64		
AK10-1042	189646	float	Oct-07	588900.1	5878507.0	506333	Cohen Cutblock	3 Wide x 5-12 - 3 angular av with 27 galeria as large bless. With Vugs. 3m NW of 189645. Similar size angular float QV with tr galena. Orange + blk oxides + vugs		790		1.04		
AN 10-1042	103040	nual	001-07	300900.1	5070507.0	000000		on two or togotto. Similar size angular noal wy with tryateria. Oranye + bik oxides + vuys		790		+		
AK10-1042	189647	grab	Oct-07	588900.1	5878509.2	506333	Cohen Cutblock	4-6" wide QV with much oxides + tr fresh py. Some bx works. Arrastra ditchline is near here!		>1000		1.85		
AK10-1042 AK10-1042	189648	-	Oct-07 Oct-07	588883.9	5878478.9	506333	Cohen Cutblock	rough crush tailings of QV + qtzite rock at end of Arrastra ditchline spur		<5		1.03		
AK10-1042 AK10-1042	189649	grab float	Oct-07 Oct-07	588881.8	5878481.0	506333	Cohen Cutblock	oxidized angular QV, new in place		<5 <5				
AN 10-1042	109049	nuai	001-07	300001.0	5070401.0	500355	Conen Culbiock	QV from previously worked ground near to along contour hand ditch with sluffed 1m sq pit, possible shaft.		~5				
AK10-1042	189650	float?	Oct-07	588011.0	5878463.8	506333	Cohen Cutblock	Possibly on a vein? OR possibly water hole for placer, mineral OR forestry		5				
/11/10-1042	103030	noati	000-07	000911.0	5070405.0	500555				1 5				

The **Amador Trench** was placed along the road access to the Long Cross Cut overlooking Amador Gulch. The purpose of the trench was to determine the source, along trend, to heightened values of silver in soils from previous exploration. No mineralization was located in the trench.

Cariboo Rainbow Ledge was named for the series of northerly striking ledges discovered while on a traverse between the Perkins area and the Amador trench. It is located in proximity to but east of an old cat trench originally placed by Cariboo Rainbow Gold Mines a number of years ago, and so I picked this name. Several small exploratory pits were located on the vein(s) near the top of a set of two parallel and linear ridges. Although sulphides were encountered, no significant assays are reported this season. The steeply dipping vein is on trend with the Perkins set of veins located about 700m to the north-north east and may be a source of weak soil anomalies to the south.

QV2 is located 70m to the south east of the Galena Vein opencut. Visible gold was found here and panned from the bedrock. An excavated opencut and large pad was created here in the 1980's and or 90's. The previously excavated veins were sampled in place and from the rubble pile long since left behind. Sample 189432 from a quartz vein in situ ran 8.13g/t gold.

The "G Vein" is located near the summit of Mount Burns adjacent the vein of the Standard Shaft. Bowman's 1880's map of the area has noted 4 drifts in the Burns Mountain Mining Company's Tunnel (aka. Lucky Cap Tunnel) and are called the e, f,g and h drifts on his map. Jacques was hired by the Burns Mountain Mining Company to explore and drift in the tunnel and his correspondence to the Company in 1887 briefly describe the drifts direction, lengths, fractures, veins and mineralization encountered. It is my opinion that the mineralized vein intercepted and sampled at surface in 2010 is the same vein drifted on in the 'g' drift. The vein was traced on surface by me for approximately 100 meters and had an orientation of about 204-210/80W. It is parallel to the Standard Shaft Vein exposed 22 metres to the south east. The surface exposure of the 'f' drift was also located about 50 metres to the north west of the G Vein and about 22 metres from the south-east legal corner of reverted Crown Granted Lot 62. A high grade grab sample (189641) from the G Vein assayed at 8.15g/t gold

Note: MinFile reports show only one single coordinate/location for several different showings found on the property. Below is a summary of the actual coordinates, in UTM Nad83, for each of the specific showings currently known for most of Mount Burns. The Cohen Incline and Galena are completely separate sets of workings from the Perkins/Beedy workings and should perhaps be considered for a new MinFile location and related description.

Galena (or Grassroot Tunnel): 093H037	588996.681E, 5877965.189N
Perkins/ Reid (near Beedy Shaft): 093H037	588755.536E, 5877950.198N
Beedy Shaft (near Perkins Shaft): 093H037	588746.291E, 5877905.481N
Standard Shaft (aka. Lucky Cap): 093H056	589526.043E, 5879138.382N
Cohen Incline: 093H037	588923.239E, 5878381.660N

Known Showings with current MinFile number and ground-truthed UTM coordinate:

While gold was discovered at several new locations this past season, two of the most significant locations are noted below as new showings and plotted in Figure 3:

New Showings:

Spider	588649.797E, 5877901.476N
Textbook	588368.739E, 5879035.726N

11.0 RECOMMENDATIONS

The author has concluded the following based on the presented technical data, field work and field notes:

- Exploration is highly recommended to continue along the Spider Vein and Textbook Vein areas, perhaps trenching and sampling at regular intervals. These two veins along with other parallel series of veins are a likely source of the placer gold found in Perkins Gulch and Burns Creek.
- After surveying, the auriferous crushed tailings sites should be considered for reprocessing and ultimately reclaimed.
- An SP geophysical survey is recommended to be completed between Perkins and the Amador Road/Long Cross Cut. Recent findings also warrant a minimum three test lines be conducted across the strike of the regional bedding and auriferous veins between the Cohen Incline and the Textbook showing.
- Infill mapping is recommended along strike north and south of the Cariboo Rainbow Ledge and along strike of the veins located near the Standard Shaft to establish their continuity and relationship to other mineralized areas.
- Infill mapping should occur between the Perkins open cut and the 10-1 trench to better determine the southern extent of the Perkins Vein system and its relationship there to a major northeast trending fault outlined in 2009.
- A multielement geochemistry of soil over a large grid may be advantageous as bedrock is close to surface but caution to sample spacing and the nugget effect must be considered.
- Biogeochemistry of the willow may be advantageous. A test line is recommended.
- Exploration is also recommended at Mount Amador to test the veins as seen in airphotos and old survey maps, Spruce Point and Butchers Bench areas, as well as other producing placer creeks on the property where bedrock may be located. New logging activities and road cuts up the Jack of Clubs Creek should be investigated.
- A surface drill hole exploration program is recommended on Mount Burns to test the continuity of the known mineralized showings at depth. An internal plan and budget has been submitted to Gemco Minerals Inc

12.0 REFERENCES

Ash, C.H. (2001). Chapter 6: Relationship Between Ophiolites and Gold-Quartz Veins in the North American Cordillera. British Columbia Geological Survey Bulletin 108

Ball, C.W. (1979). Geological Report: Gold Showings: Monty Claim Groups: Perkins Creek – Stanley Area. Assessment Report #8039 - Part 2 of 2.

Borovic, I. (1981). Progress Report on the 1980-81 Exploration Program of the Beau Group of Mineral Claims, Burns Mtn. Cariboo M.D. Assessment Report #8820

Borovic, I. (1988). Report on the Mineral Exploration of the Mt. Nelson Project. Assessment Report #18011.

Bowman, A. (1888). Report on the Geology of the Mining District of Cariboo, British Columbia. Geological and Natural History Survey of Canada.

Brown, A.S. (1957). Geology of the Antler Creek Area, Cariboo District, British Columbia. British Columbia Department of Mines Bulletin 38.

Brown, A.S and Ash, C.H. (2009). Great Mining Camps of Canada 3. The History and Geology of the Cariboo Goldfields, Barkerville and Wells, BC. Geoscience Canada: Volume 36, Number 1.

Burr, S.V. (1982). A Guide to Prospecting by the Self-Potential Method. Ontario Geological Survey Miscellaneous Paper 99: pp. 4, 10-11.

De Carle, R.J. (1987). Report on Combined Helicopter Borne Magnetic, Electromagnetic and VLF Survey: Barkerville Property, Mount Nelson Area. Assessment Report #15947.

Davies, B. (2006). Foster East and Perkins Gulch: Reconnaissance. Assessment Report for Gemco Minerals Inc.

Davies, B. (2006). Mount Burns Claim Group: Foster East Trenching Program (first phase). Assessment Report for Gemco Minerals Inc.

Galloway, J.D. (1931). Placer-Mining in British Columbia. British Columbia Department of Mines Bulletin No. 1-1931.

Galloway, J.D. (1932). Lode Gold Deposits of British Columbia. British Columbia Department of Mines Bulletin 1932-1.

Hedley, M.S. and Watson K. (1945). Part III: Lode-gold Deposits, Central-southern British Columbia. British Columbia Geological Survey Bulletin 20

Holland, S.S. (1944). Part VI: Lode-Gold Deposits British Columbia, North-eastern British Columbia and Cariboo and Hobson Creek Areas. British Columbia Department of Mines Bulletin No. 20

Holland, S.S. (1948). Report on the Stanley Area: Cariboo Mining Division. British Columbia Department of Mines Bulletin 26.

Holland, S.S. (1950). Placer Gold Production of British Columbia. Ministry of Energy, Mines and Petroleum Resources Bulletin 28.

Johnston, W. and Uglow, W. (1926). Placer and Vein Gold Deposits of Barkerville, Cariboo District, British Columbia. Geological Survey of Canada, Memoir 149.

Justason, A. (2006). Self Potential Geophysical Surveys on the Mount Burns Claim Group. Assessment Report for Gemco Minerals Inc.

Levson, V.M. and Giles, T.R. (1993). Geology of Tertiary and Quaternary Gold-Bearing Placers in the Cariboo Region, British Columbia (93A, B, G, H). Mineral Resources Division Geological Survey Branch Bulletin 89.

Lowrie, W. (1997). Fundamentals of Geophysics. Cambridge University Press, United Kingdom: pp. 209-212.

Mason, E. and Guiguet, M (1979). Report on the Burns Mountain Property: Beau Group, Cariboo Mining Division.

Olfert, E.G. (1984). Report on a Geochemical and Geological Survey of the Devils Canyon Claim Group. Assessment Report #13252

Plenderleith, D. (1983). Preliminary Geophysical Report: Ground Magnetometer Survey: Foster Group of Mineral Claims. Assessment Report #11886.

Reid, R.E. (2005). Mount Burns Claim Group 2004 Exploration Program: Target Selection and Geochemical Surveys. Assessment Report # 27684

Reid, R. and Justason, A. (2006). Summary of Mineral Exploration Activities at the Mount Burns Claim Group. NI43-101 Compliant Technical Report

Rhys, D. and Ross, K. (2001). Evaluation of the Geology and Exploration Potential of the Bonanza Ledge Zone, and Adjacent Areas Between Wells and Barkerville, East Central British Columbia. Panterra Geoservices Inc., Report for International Wayside Gold Mines Ltd.

Schiarizza, P. and Ferri, F. (2003). Barkerville Terrane, Cariboo Lake to Wells: A New Look at Stratigraphy, Structure and Regional Correlations of the Snowshoe Group. British Columbia Geological Survey.

Struik, L.C. (1988). Structural Geology of the Cariboo Gold Mining District, East-Central British Columbia. Geological Survey of Canada, Memoir 421.

Internal or Unpublished Reports

Hall, R.D. (2000). Burns Mountain Gold Property near Wells B.C. Internal Memo to Firstline Recovery Systems Inc.

Merrick D.W. (1998-2002). Catalogued notes, sketches, maps and progress reports.

13.0 2010 STATEMENT OF COSTS

For the period August 5, 2010 to October 09, 2010

Tenorex GeoServices(as invoiced: total 39.5 man days in field @ 287.66/day)	11,362.40
Research related to 2010 project	313.60
Permitting	1200.15
Truck rental (30.5 days @ \$50/day + 224km @ \$0.50/km as invoiced)	1637.00
Fuel costs	1136.60
Equipment (TCH Consulting) 130 Hyundai Excavator (57 hours @ \$140/hour) Mob/demob of excavator and insurance	7980.00 568.92
Geochemistry Sample Prep EcoTech Lab (as invoiced for 236 rock samples, 1 soil) Van Kam Freightways shipping	201.60 8076.26 370.23
Supplies (sample bags)	65.80
1 bag Tolko Seed mix	122.53
Reclamation labour (October 9, 2010: 3 hours @ 50.40/hr)	151.20
Data Entry	2016.00
Technical report (GIS and report)	3276.00

SUBTOTAL \$38,478.29

10% administration and contingencies <u>3,847.83</u>

TOTAL technical value available to use towards assessment					
Total credits applied	\$42,222.27				
<i>Total amount to be credited to Gemco Minerals Inc PAC account = \$103.85</i>	. ,				

14.0 STATEMENT OF SOFTWARE USED

I, Angelique Justason, of Quesnel, British Columbia certify that the following is, to the best of my knowledge, a complete list of the software programs used in the support of the exploration and development of the Gemco Minerals Inc. tenures as well as in the preparation of the related report.

- CorelDraw 10
- Global Mapper v12.02
- OziExplorer version 3.95.4q
- NitroPDF Professional
- Internet Explorer
- MS Excel
- MS Word

Signed, Angelique Justason

15.0 STATEMENT OF QUALIFICATIONS

I, Angelique Justason of Quesnel, British Columbia certify the following:

- I am owner of Tenorex GeoServices, a Cariboo based mineral exploration support services company.
- I personally conducted the mapping and sampling of trenches, rock exposures and historical workings which are the subject of this report
- I am a member of the Geological Association of Canada and the Association for Mineral Exploration British Columbia.
- I have attended geology courses at Camosun College and the University of Victoria.
- I have successfully completed and received certificates for the Advanced Prospecting Course (1992) and Petrology for Prospectors Course (1993).
- I have 4 seasons work experience with the BC Geological Survey and the Geological Survey of Canada.
- I was employed in the Cariboo Region as a geotechnican and mine surveyor for over 9 years and have held a supervisory position, in that capacity, for over 6 years.
- I have been an avid prospector for over 20 years and have spent 11 years conducting mineral exploration in the Wells/Barkerville area.
- I hold 50,000 common shares in Gemco Minerals Inc.

Signed,

Angelique Justason February 15, 2011

APPENDIX I

Assay Certificates

CERTIFICATE OF ANALYSIS AK 2010- 0706

Gemco Minerals Inc.	
PO Box 111	
Wells, BC	
V0K 2R0	

No. of samples received: 1 Sample Type: Soil **Project: Burns 2010** Submitted by: A Justason

ET #.	Tag #	Au (ppb)	
1	189053	<5	
<u>QC DATA</u> Repeat: 1	189053	F	
1	189023	5	
Standard : OXE74		600	

FA Geochem/AA Finish

14-Sep-10

ECO TECH LABORATORY LTD. Norman Monteith B.C. Certified Assayer

NM/nw XLS/10 14-Sep-10 Stewart Group ECO TECH LABORATORY LTD. 10041 Dallas Drive KAMLOOPS, B.C. V2C 6T4 www.stewartgroupglobal.com

ICP CERTIFICATE OF ANALYSIS AK 2010-0706

Gemco Minerals Inc. PO Box 111 Wells, BC V0K 2R0

Phone: 250-573-5700 Fax : 250-573-4557

> No. of samples received: 1 Sample Type: Soil **Project: Burns 2010** Submitted by: A Justason

Values in ppm unless otherwise reported

<u> </u>	Tag #	Ag Al% As	Ba	Be	Bi Ca%	Cd	Со	Cr	Cu Fe%	Hg K	% La	Li Mg%	Mn	Mo Na%	Ni	Ρ	Pb	S%	Sb	Sc	Se	Sn	Sr	Tl%	U	v	w	Y	Zn
1	189053	0.2 0.66 <5	24	<1	<5 0.08	<1	3	10	8 1.10	<5 0.0	3 12	12 0.21	70	<1 0.01	10	450	30	0.02	<5	<1	<10	<5	6	<0.01	<5	6	<5	2	30
<u>QC DATA:</u> Repeat: 1	189053	0.2 0.61 <5	22	<1	<5 0.07	<1	3	8	6 1.06	<5 0.0	3 12	12 0.20	65	<1 0.01	9	420	27	0.02	<5	<1	<10	<5	6	<0.01	<5	4	<5	2	28
<i>Standard:</i> Till-3 ICP: Aqua R	egia Diges	1.5 1.04 80 t / ICP- AES Fini	38 sh.	1	<5 0.52	<1	14	62	20 1.90	<5 0.0	5 12	16 0.57	315	1 0.03	31	440	21	0.01	<5	3	<10	<5	14	0.06	<5 (38	<5	5	38

NM/nw df/1_637S XLS/10

CO TECH-LABORATORY LTD. Norman Monteith B.C. Certified Assayer

CERTIFICATE OF ASSAY AK 2010-0715

Gemco Minerals Inc.

28-Sep-10

V0K 2R0 No. of samples received: 102 Sample Type: Rock Project: Burns 2010

PO Box 111 Wells, BC

Submitted by: A. Justason

			Au	Au	
ET #.	Tag #		(g/t)	(oz/t)	
1	E189051	**	12.5	0.365	· · · · · · · · · · · · · · · · · · ·
17	E189068	**	3.48	0.101	
18	E189069	*	31.1	0.907	
19	E189070	**	8.23	0.240	
20	E189071		2.86	0.083	
21	E189072		2.82	0.082	
22	E189073	*	71.2	2.076	
23	E189074		6.25	0.182	
24	E189075		3.38	0.099	
33	E189084	**	10.8	0.315	
49	E189432		8.13	0.237	
QC DAT	A:				
Repeat:	_				
23	E189074		5.98	0.174	
49	E189432		8.07	0.235	
Standar	d:				
OXI67			1.79	0.052	
OXK79			3.57	0.104	
t Crowin	atria Einiah				

* Gravimetric Finish

** Based on 120g (Metallic Assay Reccommended)

NM/nw XLS/10

ECO TECH LABORATORY LTD. Norman Monteith B.C. Certified Assayer

CERTIFICATE OF ANALYSIS AK 2010-0715

Gemco Minerals Inc. PO Box 111 Wells, BC **V0K 2R0**

No. of samples received: 102 Sample Type: Rock Project: Burns 2010 Submitted by: A. Justason

		Au
ET #.	Tag #	(ppb)
1	E189051	>1000
2 3	E189052	65
3	E189054	<5
4	E189055	<5
5	E189056	45
6	E189057	<5
7	E189058	<5
8	E189059	<5
9	E189060	<5
10	E189061	<5
11	E189062	<5
12	E189063	<5
13	E189064	10
14	E189065	20
15	E189066	<5
16	E189067	<5
17	E189068	>1000
18	E189069	>1000
19	E189070	>1000
20	E189071	>1000
21	E189072	>1000
22	E189073	>1000
23	E189074	>1000
24	E189075	>1000
25	E189076	35
26	E189077	<5
27	E189078	<5
28	E189079	<5

All business is undertaken subject to the Company's General Conditions of Business which are available on All business is undertaken subject to the Company's General Conditions of Dusiness which are strained of the request Registered Office: Eco Tech Laboratory Ltd., 2953 Shuswap Road, Kamboops, BC V2H 159 Galada. 1 of 4 27-Sep-10

Gemco Minerals Inc. AK2010-0715

27-Sep-10

		Au	
ET #.	Tag #	(ppb)	
29	E189080	<5	
30	E189081	10	
31	E189082	15	
32	E189083	35	
33	E189084	>1000	
34	E189085	<5	
35	E189086	140	
36	E189087	210	
37	E189088	70	
38	E189089	10	
3 9	E189090	5	
40	E189091	5	
41	E189092	30	
42	E189093	50	
43	E189094	<5	
44	E189095	25	
45	E189096	<5	
46	E189097	190	
47	E189430	<5	
48	E189431	5	
49	E189432	>1000	
50	E189433	10	
51	E189434	575	
52	E189435	<5	
53	E189451	<5	
54	E189452	<5	
55	E189453	<5	
56	E189454	<5	
57	E189455	<5	
58	E189456	5	
59	E189457	<5	
60	E189458	<5	
61	E189459	5	
62	E189460	<5	
63	E189461	<5	
64	E189462	<5	
65 66	E189463	<5	
66 67	E189464	<5	
67 60	E189465	<5	
68 60	E189466	<5	
69 70	E189467	<5	
70	E189468	<5	
71	E189469	5	

All business is undertaken subject to the Company's General Conditions of Business which are available on request. Registered Office: Eco Tech Laboratory Ltd , 2953 Shuswap Road, Kamloops, BC V2H 159 Page 2 of 4

Gemco Minerals Inc. AK2010-0715

27-Sep-10

		Au	
ET #.	Tag #	(ppb)	
72	E189470	10	
73	E189471	10	
74	E189472	5	
75	E189473	5	
76	E189474	5	
77	E189475	5	
78	E189476	5	
79	E189477	5	
80	E189478	10	
81	E189479	<5	
82	E189480	5	
83	E189481	10	
84	E189482	5	
85	E189483	<5	
86	E189484	5	
87	E189485	5	
88	E189486	<5	
89	E189487	<5	
90	E189488	5	
91	E189489	<5	
92	E189490	<5	
93	E189491	<5	
94	E189492	5	
95	E189493	25	
96	E189494	15	
97	E189495	5	
98	E189496	<5	
99	E189497	5	
100	E189498	<5	
101	E189499	5	
102	E189500	135	
QC DAT	A:		
Repeat:			
, 1	E189051	>1000	
10	E189061	<5	
19	E189070	>1000	
35	E189086	120	
36	E189087	180	
45	E189096	<5	
46	E189097	215	
51	E189434	570	
54	E189452	<5	

All business is undertaken subject to the Company's General Conditions of Business which are available on request. Registered Office: Eco Tech Laboratory Ltd., 2953 Shuswap Road, Kamloops, BC V2H 159 Ganada Page 3 of 4

Gemco Minerals Inc. AK2010-0715

27-Sep-10

		Au	
_ET #.	Tag #	(ppb)	
71	E189469	5	
80	E189478	5	
89	E189487	<5	
98	E189496	5	
102	E189500	140	
Resplit:			
1	E189051	>1000	
36	E189087	235	
71	E189469	5	
Standard	d:		
OXE74		610	
OXF65		815	

FA Geochem/AA Finish

NM/kk XLS/10

ECO_TECH LABORATORY LTD. Norman Monteith B.C. Certified Assayer

CERTIFICATE OF ASSAY AK 2010-0715

3-Dec-10

Gemco Minerals Inc. PO Box 111 Wells, BC **V0K 2R0**

No. of samples received: 102 Sample Type: Rock Project: Burns 2010 Submitted by: A. Justason

		Metallic A	ssay	
		Au	Au	
ET #.	Tag #	(g/t)	(oz/t)	
1	E189051	11.4	0.332	
17	E189068	4.24	0.124	
19	E189070	15.1	0.442	
33	E189084	16.2	0.472	

Standard:		
OXI67	1.86	0.054

ECO TECH LABORATORY LTD. Norman Monteith B.C. Certified Assayer

NM/PS XLS/10

All business is undertaken subject to the Company's General Conditions or Business without are granuated and request. Registered Office: Eco Tech Laboratory Etd., 2953 Shuswap Road, Kamloops, BC V2H 159. Canada.

23-Sep-10

Stewart Group

ECO TECH LABORATORY LTD.

10041 Dallas Drive **KAMLOOPS, B.C.** V2C 6T4 <u>www.stewartgroupglobal.com</u>

Phone: 250-573-5700 Fax : 250-573-4557

Values in ppm unless otherwise reported

Gemco Minerals Inc. PO Box 111 Wells, BC V0K 2R0

No. of samples received: 102 Sample Type: Rock **Project: Burns 2010** Submitted by: A. Justason

Et #.	Tag #	Ag	AI%	As	Ва	Be	Bi Ca%	Cd Co	Cr	Cu	Fe%	Hg K%	La	Li Mg% N	<i>l</i> n	Mo Na%	Ni P	Pb	S%	Sb	Sc	Se	Sn	Sr Ti%	U	۷	W Y	Zn
1	E189051	1.2	0.01	<5	2	<1	<5 <0.01	3 1 2	206	10	0.79	<5 <0.01	<2	<2 <0.01	50	<1 0.01	7 60	432	0.16	<5	<1	<10	<5	<2 <0.01	<5	<2	<5 <1	390
2	E189052	<0.2	0.36	<5	12	<1	<5 0.01	<1 3	192	6	1.36	<5 0.03	8	6 0.17 1	60	<1 0.04	9 100	24	<0.01	<5	<1	<10	<5	2 <0.01	<5	4	<5 <1	22
3	E189054		1.10	<5			<5 <0.01			32	3.91	<5 0.10	16		30	3 0.04	12 210	51	0.23	<5	1	<10	<5	6 <0.01	<5	10	<5 2	68
4	E189055	<0.2	1.31	<5			5 0.01			38	5.61	<5 0.07	14	30 0.68 5	50	1 0.04	39 260	30	0.36	<5	2	<10	<5	6 <0.01	<5	10	<5 2	118
5	E189056						<5 <0.01						<2	<2 0.01		<1 0.01	6 60	3						<2 <0.01				
•					-								-					-		-							-	-
6	E189057	<0.2	0.05	<5	2	<1	<5 0.01	<1 1 2	236	8	0.51	<5 <0.01	<2	<2 <0.01	65	<1 0.01	790	3	0.01	<5	<1	<10	<5	<2 <0.01	<5	<2	<5 <1	6
7	E189058		0.22	<5			<5 0.44					<5 <0.01	<2	<2 0.01 3	55	<1 0.01	20 2320	72						30 <0.01				18
8	E189059		0.15				<5 0.01			8		<5 0.03	4		65	<1 0.01	7 50	9						2 < 0.01				6
9	E189060		0.06	<5			<5 0.01			6		<5 <0.01	<2	<2 <0.01 3		<1 0.01	12 50	9						<2 <0.01				10
10	E189061		1.34	<5			<5 <0.01						14	26 0.70 1		<1 0.03	10 230	21						8 < 0.01				
11	E189062	<0.2	0.09	<5	<2	<1	<5 0.17	<1 1 2	234	8	1.25	<5 <0.01	<2	<2 0.03	80	<1 0.01	8 850	6	0.09	<5	<1	<10	<5	12 <0.01	<5	2	<5 3	12
12	E189063	<0.2	0.05	<5	<2	<1	<5 0.16	<1 2	192	18	2.82	<5 <0.01	<2	<2 <0.01 1	95	<1 0.02	8 1050	18	<0.01	<5	1	<10	<5	10 <0.01	<5	<2	<5 3	26
13	E189064	<0.2	0.96	<5	24	<1	5 0.58	<1 4 2	200	44	4.12	<5 0.07	8	16 0.43 1	20	1 0.03	20 3420	57	0.02	<5	3	<10	<5	46 < 0.01	<5	8	<5 12	84
14	E189065	<0.2	0.14	<5	4	<1	<5 0.13	<1 2 2	216	18	2.50	<5 <0.01	<2	<2 <0.01	80	<1 0.02	16 890	24	0.17	<5	1	<10	<5	10 <0.01	<5	<2	<5 4	22
15	E189066		0.03	<5			<5 0.02					<5 <0.01	<2	<2 <0.01	30	<1<0.01	9 130	<3						2 <0.01				
16	E189067	<0.2	0.11	<5	4	<1	<5 <0.01	<1 1 2	216	12	1.67	<5 0.01	<2	<2 0.03	55	<1 0.01	8 240	6	<0.01	<5	<1	<10	<5	<2 <0.01	<5	<2	<5 1	24
17	E189068	3.8	0.13	<5	14	<1	10 <0.01	<1 2 2	246	8	1.04	<5 0.04	4	<2 0.02	80	<1 0.02	9 70	1182	0.03	<5	<1	<10	<5	2 <0.01	<5	4	<5 <1	60
18	E189069	12.9	0.33	25	32	<1	10 <0.01	<1 16 2	220	24	3.78	10 0.10	8	<2 0.03 1	50	1 0.03	20 210	1419	0.09	<5	<1	<10	<5	4 <0.01	<5	6	<5 <1	114
19	E189070	15.7	0.23	25	24	<1	25 <0.01	1 10	198	18	3.37	<5 0.08	6	<2 0.03 2	10	<1 0.03	18 200	3837	0.13	5	<1	<10	<5	4 <0.01	<5	4	<5 <1	142
20	E189071	12.5	0.18	25	20	<1	25 0.01	2 11 2	240	14	4.25	<5 0.07	4	<2 0.04 1	70	1 0.03	23 210	2424	0.09	5	<1	<10	<5	4 <0.01	<5	4	<5 <1	292
21	E189072	6.4	0.39	20	26	<1	15 <0.01	28	192	24	2.98	<5 0.08	8	2 0.06 1	45	<1 0.02	16 240	1680	0.06	<5	<1	<10	<5	4 <0.01	<5	4	<5 <1	200
22	E189073	16.4	0.34	30	34	<1	15 <0.01	<1 10 2	202	32	4.09	<5 0.11	8	<2 0.03 1	60	<1 0.03	19 250	1521	0.03	<5	<1	<10	<5	6 <0.01	<5	6	<5 <1	60
23	E189074	6.5	0.25	20	24	<1	15 <0.01	2 9 2	244	18	3.26	<5 0.08	6	<2 0.03 1	35	1 0.03	18 200	1755	0.04	5	<1	<10	<5	4 <0.01	<5	4	<5 <1	278
24	E189075	5.8	0.23	15	24	<1	15 <0.01	1 8 2	230	16	2.93	<5 0.08	8	<2 0.03 1	55	<1 0.02	16 170	2280	0.03	5	<1	<10	<5	4 <0.01	<5	4	<5 <1	128
25	E189076	<0.2	0.03	<5	2	<1	<5 0.10	<1 6 2	238	16	1.85	<5 <0.01	<2	<2 <0.01 2	15	<1 0.02	14 610	63	0.21	<5	<1	<10	<5	6 <0.01	<5	<2	<5 2	14
26	E189077	<0.2	0.01	<5	6	<1	<5 <0.01	<1 8 2	206	4	2.23	<5 <0.01	<2	<2 <0.01 7	15	<1 0.01	11 20	6	<0.01	<5	<1	<10	<5	<2 <0.01	<5	<2	<5 <1	22
27	E189078	<0.2	0.01	<5	<2	<1	<5 <0.01	<1 4 2	238	6	2.27	<5 <0.01	<2	<2 <0.01 2	70	<1 0.01	10 30	6	<0.01	<5	<1	<10	<5	<2 <0.01	<5	<2	<5 <1	22
28	E189079	<0.2	0.01	<5	2	<1	<5 <0.01	<1 7	196	6	3.01	<5 <0.01	<2	<2 <0.01 4	60	<1 0.02	11 20	12	<0.01	<5	<1	<10	<5	<2 <0.01	<5	<2	<5 <1	28
29	E189080	<0.2	<0.01	<5	<2	<1	<5 <0.01	<1 <1 2	224	4	0.52	<5 <0.01	<2	<2 <0.01	35	<1 <0.01	6 10	<3	<0.01	<5	<1	<10	<5	<2 <0.01	<5	<2	<5 <1	2
30	E189081	<0.2	0.05	15	18	<1	15 <0.01	<1 11 1	164	16	>10	<5 <0.01	<2	<2 0.02 11	20	<1 0.04	30 90	9	<0.01	5	1	<10	<5	<2 <0.01	<5	<2	<5 2	84
31	E189082	<0.2	0.01	<5	4	<1	<5 <0.01	<1 5 2	208	8	3.68	<5 <0.01	<2	<2 <0.01 6	65	<1 0.02	13 20	9	<0.01	<5	<1	<10	<5	<2 <0.01	<5	<2	<5 <1	32
32	E189083	<0.2	0.03	15	24	<1	<5 <0.01	<1 15 2	204	18	3.84	<5 <0.01	<2	2 <0.01 12	20	<1 0.02	30 60	12	<0.01	<5	<1	<10	<5	2 <0.01	<5	<2	<5 <1	38
33	E189084	0.5	0.03	25	6	<1	<5 <0.01	<1 6 2	200	10	3.61	<5 <0.01	<2	<2 <0.01 4	70	<1 0.02	20 50	9	0.06	<5	<1	<10	<5	<2 <0.01	<5	<2	<5 <1	30
34	E189085	<0.2	0.69	<5	20	<1	<5 <0.01	<1 3	110	8	1.12	<5 0.05	16	4 0.08	70	<1 0.02	14 120	15	<0.01	<5	<1	<10	<5	2 <0.01	<5	2	<5 1	26
35	E189086		0.09	5			5 < 0.01			-		<5 <0.01	<2	<2 <0.01 1	30	<1 0.02	25 310	15	0.02	<5	<1	<10	<5	<2 <0.01	<5	<2	<5 1	102
	2.00000		2.00	-		••							_				-											

ICP CERTIFICATE OF ANALYSIS AK 2010- 0715

Gemco Minerals Inc.

E+ #	Tog #	A - A 10/	4.0	80	Pa		04.00	· ·	E-9/	Lin 1/0/	1.0	1.6		NE D	D L	C 9/	Ch C.	6 e . 6 .	D. T10/		1/ 14		7-
<u>Et #.</u>	Tag #	Ag Al%		Ba		BI Ca%						Li Mg% Mi			Pb				Sr TI%			8-2-2-2-	
36	E189087	<0.2 0.21				<5 <0.01						<2 <0.01 3						<10 <5			2 <5		36
37	E189088	<0.2 0.09				<5 <0.01				<5 0.02		<2 <0.01 8							6 <2 <0.01				72
38	E189089	<0.2 0.40		36		<5 <0.01			4.46			<2 <0.01 5						<10 <5			4 <5		66
39	E189090	<0.2 0.25		20		<5 0.01						<2 0.03 69						<10 <5		-	2 <5		76
40	E189091	0.4 0.29	5	10	<1	30 <0.01	<1 29 2	2 84	>10	<5 0.05	6	<2 0.01 680	0 1 0.12	113 2840	39	0.01	10 1	<10 <5	6 < 0.01	<5	<2 <5	52	400
41	E189092	0.3 0.04	10	4	<1	<5 <0.01	<1 1 2	04 8	1.86	<5 <0.01	<2	<2 <0.01 30	<1 0.01	10 150	204	0.13	<5 <1	<10 <5	5 <2 <0.01	<5	2 <5	5 <1	34
42	E189093	1.1 0.25	15	22	<1	<5 <0.01	<1 5 8	6 8	1.13	<5 0.08	8	<2 <0.01 10	<1 0.02	9 60	252	0.66	<5 <1	<10 <5	5 4 < 0.01	<5	<2 <5	5 <1	14
43	E189094	<0.2 0.04		4	<1	<5 <0.01			0.5 9	<5 0.01	<2	<2 <0.01 3	<1 0.01	6 40	48	<0.01	<5 <1	<10 <5	5 <2 <0.01	<5	<2 <5	5 <1	20
44	E189095	0.2 0.04				<5 0.03						<2 <0.01 35			132				6 4 < 0.01				14
45	E189096	<0.2 0.04	<5		<1				4.03			<2 <0.01 180							5 <2 <0.01		2 <5		282
46	E189097	1.0 0.26	45	26	<1	<5 <0.01	<1 5 1	28 10	2.50	<5 0.12	28	<2 <0.01 2	<1 0.03	11 110	219	1.07	<5 <1	<10 <5	5 4 < 0.01	<5	2 <5	5 <1	28
47	E189430	<0.2 <0.01	<5	<2	<1	<5 <0.01	<1 1 2	52 6	1.06	<5 <0.01	<2	<2 <0.01 250) <1<0.01	6 <10	6	<0.01	<5 <1	<10 <5	5 <2 <0.01	<5	<2 <5	5 <1	8
48	E189431	0.3 0.40	55	36	<1	<5 0.01	<1 12 1	12 28	3.83	<5 0.12	20	<2 0.03 205	<1 0.03	31 240	15	0.05	<5 1	<10 <5	5 4 <0.01	<5	2 <5	52	70
49	E189432	3.3 <0.01	190	<2	<1	<5 <0.01	352	50 4	2.21	<5 <0.01	<2	<2 <0.01 35	<1 0.01	17 <10	120	0.19	5 <1	<10 <5	5 <2 <0.01	<5	<2 <5	5 <1	2
50	E189433	<0.2 <0.01	<5	2	<1	<5 <0.01	<1 1 2	76 4	0.35	<5 <0.01	<2	<2 <0.01 280	<1<0.01	8 <10	<3	<0.01	<5 <1	<10 <5	5 <2 <0.01	<5	<2 <5	5 <1	<2
51	E189434	0.4 0.17	235	68	<1	15 0.02	3 20 1	48 58	>10	<5 0.03	4	<2 0.05 723	i <1 0.0€	48 110	27	0.30	10 2	<10 <5	5 14 <0.01	<5	2 <5	53	108
52	E189435	<0.2 0.30			<1	<5 0.02	<1 9 2		1.97			4 0.04 720						<10 <5			4 <5	5 1	36
53	E189451	<0.2 1.39				<5 <0.01			4.05			26 0.66 235						<10 <5			10 <5	5 2	76
54	E189452	<0.2 1.93				5 0.01				<5 0.10		38 1.01 140						<10 <5			16 <5		72
55	E189453	<0.2 1.27				<5 <0.01						24 0.61 135						<10 <5			12 <5		64
				•																			
56	E189454	0.2 0.42				<5 0.01			2.13			6 0.13 420						<10 <5			4 <5		28
57	E189455	<0.2 1.50	<5	32	<1	<5 <0.01	<1 8 1		4.51			26 0.69 170				0.07		<10 <5					76
58	E189456	<0.2 0.51	<5	10	<1	<5 <0.01	<1 11 2	36 30	2.17	<5 0.03	8	4 0.07 380	<1 0.02	29 120	27	0.04	<5 1	<10 <5	5 2 <0.01	<5	4 <5	51	38
59	E189457	<0.2 0.43	<5			<5 0.01			1.55			2 0.05 240	<1 0.02	31 130	21	0.04	<5 <1	<10 <5	6 4 < 0.01	<5	4 <5	5 1	34
60	E189458	<0.2 0.16	<5	6	<1	<5 0.36	<1 4 2	32 12	1.25	<5 0.02	2 4	<2 0.11 112	<1 0.02	14 120	15	<0.01	<5 4	<10 <5	5 8 <0.01	<5	<2 <5	53	16
61	E189459	<0.2 0.34	<5	12	<1	<5 0.01	<1 11 2	58 14	1.31	<5 0.03	10	2 0.04 615	<1 0.02	26 120	12	0.02	<5 <1	<10 <5	5 4 <0.01	<5	4 <5	5 1	30
62	E189460	<0.2 0.62	<5	16	<1						14	8 0.18 270	<1 0.02	19 130	21	0.02	<5 1	<10 <5	6 4 < 0.01	<5	6 <5	5 1	34
63	E189461	<0.2 0.45				<5 <0.01				<5 0.04		4 0.06 1210				0.02		<10 <5			4 <5	53	58
64	E189462	<0.2 1.30		24		<5 <0.01				<5 0.07		22 0.58 155						<10 <5			12 <5		70
65	E189463	<0.2 0.72				<5 <0.01			2.25			12 0.31 75						<10 <5				5 <1	28
	E 100 101		-			F 0.04			0.00					0.040		0.04		10		F	40 5		~~
66 67	E189464	<0.2 0.91		22		<5 <0.01			2.92			14 0.34 70						<10 <5			10 <5		38
67	E189465	<0.2 1.33	<5	24	<1					<5 0.07		22 0.60 95				< 0.01		<10 <5			10 <5		54
68	E189466	<0.2 1.72				<5 <0.01						34 0.90 140						<10 <5			14 <5		72
69	E189467	<0.2 0.41				<5 <0.01						4 0.08 45						<10 <5			4 <5		14
70	E189468	0.2 0.51	<5	14	<1	<5 <0.01	<1 3 2	52 16	1.84	<5 0.04	8	8 0.21 68	<1 0.02	12 120	39	0.02	<5 <1	<10 <5	5 2 <0.01	<5	6 <5	> <1	30
71	E189469	<0.2 1.31	<5	34	<1	5 <0.01	<1 7 1	76 70	5.51	<5 0.07	' 14	16 0.40 105	2 0.03	47 640	48	0.02	<5 1	<10 <5	6 <0.01	<5	10 <5	52	78
72	E189470	<0.2 0.97	<5	30	<1	<5 <0.01	<1 2 1	94 42	3.67	<5 0.09	18	16 0.41 60	1 0.03	10 170	33	0.02	<5 1	<10 <5	6 4 < 0.01	<5	10 <5	51	40
73	E189471	<0.2 0.11	<5	6	<1	<5 0.03	<1 <1 2	44 6	0.50	<5 0.01	2	<2 <0.01 30	<1 0.02	11 210	12	<0.01	<5 <1	<10 <5	6 4 <0.01	<5	2 <5	5 <1	<2
74	E189472	<0.2 0.32	<5	14	<1	<5 <0.01	<1 <1 2	48 10	0.88	<5 0.02	8	<2 0.03 30	<1 0.05	18 190	18	<0.01	<5 <1	<10 <5	5 2 <0.01	<5	2 <5	5 <1	6
75		<0.2 0.28										4 0.09 35							6 4 <0.01		4 <5	5 <1	12
76	E189474	<0.2 0.43	-5	10	<1	<5 0.01	<1 1 2	14 R	1 19	<5 <0.01	2	6 0.14 40	<1 0.04	18 220	24	<0.01	<5 <1	<10 <5	6 4 <0.01	<5	6 <5	5 <1	16
77	E189475					<5 0.05						<2 0.04 35						<10 <5			4 <5		6
78	E189476	<0.2 0.42										4 0.08 40						<10 <5					
79	E189477	<0.2 0.97										10 0.19 55						<10 <5					
80		<0.2 0.95										14 0.32 80		16 190					4 < 0.01				
00	21007/0	0.30																					

ICP CERTIFICATE OF ANALYSIS AK 2010- 0715

Gemco Minerals Inc.

Et #.	Tag #	Ag	AI%	As	Ba	Be	Bi (Ca%	Cd	Co Cr	Cu	Fe%	Hg	К%	La	Li Mg%	Mn	Mo Na%	Ni	Ρ	Pb	S%	Sb	Sc	Se	Sn	Sr Ti%	U	v	w y	Zn
81	E189479	<0.2	0.51	<5	16	<1	<5 <	0.01	<1	4 222	20	2.06	<5	0.04	8	4 0.12	60	<1 0.02	20 1	80	39			<1			4 < 0.01		4	<5 <1	36
82	E189480		1.32	<5	28	<1				3 200		4.16	<5	0.09	14	26 0.65	120	2 0.03	10 1		27		<5	1			6 < 0.01		14	<5 1	
83	E189481	<0.2		5	40	<1	<5 <			4 46	16	3.70	<5	0.09	14	34 0.79	135	<1 0.03	8 2		24	0.04	<5		<10		8 < 0.01		18	<5 2	
84	E189482		1.12	<5	16	<1	<5 <			2 200	32	3.31	<5	0.04	10	26 0.62	135	1 0.02		30	12				<10		2 < 0.01		10	<5 <1	
85	E189483	<0.2		~5 <5	26	<1				4 174		3.46	<5	0.04	16	20 0.02	75	1 0.02	9 1		24	0.01	-	1		-	4 < 0.01	-	12		
00	E 109403	<0.Z	1.20	<0	20	<1	<0 <	0.01	<1	4 1/4	20	3.40	<0	0.00	10	22 0.00	75	1 0.03	9 1	00	24	0.01	<0	'	<10	<0	4 <0.01	<0	12	<0 1	04
86	E189484	<0.2	0.68	<5	14	<1	<5 <	0.01	<1	3 236	28	2.49	<5	0.04	10	10 0.22	65	1 0.03	13 1	60	15	0.03	<5	<1	<10	<5	2 <0.01	<5	6	<5 <1	46
87	E189485	<0.2	0.15	<5	4	<1	<5 <	0.01	<1	2 246	20	1.51	<5	<0.01	<2	<2 0.01	50	<1 0.01	8 1	60	12	<0.01	<5	<1	<10	<5	<2 <0.01	<5	2	<5 <1	20
88	E189486	<0.2	1.15	<5	30	<1	<5 <	0.01	<1	7 162	26	3.64	<5	0.10	18	20 0.52	65	2 0.03	19	230	24	0.01	<5	1	<10	<5	6 <0.01	<5	12	<5 2	88
89	E189487	<0.2	0.84	<5	22	<1	<5 <	0.01	<1	13 138	28	2.67	<5	0.07	14	10 0.24	210	<1 0.03	46	190	21	0.08	<5	<1	<10	<5	6 <0.01	<5	6	<5 2	80
90	E189488	<0.2	0.70	<5	24	<1	<5 <	0.01	<1	7 178	16	2.27	<5	0.06	8	12 0.28	170	<1 0.03	20	80	33	<0.01	<5	<1	<10	<5	<2 <0.01	<5	6	<5 1	52
91	E189489	<0.2	0.58	<5	26	<1	<5 <	0.01	-1	4 122	16	1.45	<5	0.06	14	8 0.20	120	<1 0.02	11	60	15	<0.01	~5	-1	~10	~5	<2 <0.01	-5	4	<5 <1	34
92	E189490		0.16	<5	14	<1	<5 <			3 190	6	0.88	<5	0.03	4	<2 0.02	435	<1 0.02			21	< 0.01					<2 <0.01		2	<5 <1	12
93	E189491		0.32	<5	16	<1	<5 <			4 164	14	1.40	<5	0.03	4	4 0.02	485	<1 0.02	11		24	< 0.01									
93 94	E189492	<0.2		15	44	<1	<5 <			8 78	52	4.59	<5 <5	0.03	24	26 0.67	405 95										<2 <0.01		2		20
95	E189492		0.71	15	40		<5 <			6 92	52 34	3.83			24 24			1 0.03	23 2		45	< 0.01		1			2 < 0.01		8	<5 2	
95	E 109493	<0.2	0.71	15	40	<1	<0 <	0.01	<1	0 92	34	3.83	<5	0.13	24	10 0.25	55	<1 0.02	19 1	70	45	<0.01	<5	<1	<10	<5	2 <0.01	<5	4	<5 2	64
96	E189494	<0.2	0.15	<5	16	<1	<5 <	0.01	<1	16 234	28	1.41	<5	0.03	4	2 0.03	630	1 0.01	23	90	12	<0.01	<5	<1	<10	<5	2 <0.01	<5	2	<5 <1	16
97	E189495	<0.2	0.06	<5	8	<1	<5 <	0.01	<1	6 210	10	1.01	<5	0.01	<2	<2 <0.01	365	<1 0.01	11	40	6	<0.01	<5	<1	<10	<5	<2 <0.01	<5	<2	<5 <1	10
98	E189496	<0.2	80.0	<5	4	<1	<5 <6	0.01	<1	1 232	4	0.44	<5	<0.01	<2	<2 <0.01	90	<1 0.02	6 3	20	15	<0.01	<5	<1	<10	<5	<2 <0.01	<5	<2	<5 <1	6
99	E189497	<0.2	0.76	10	26	<1	<5 (0.07	<1	4 154	8	1.43	<5	0.04	14	4 0.16	140	<1 0.01	91	10	30	<0.01	<5	<1	<10	<5	6 <0.01	<5	2	<5 2	24
100	E189498	<0.2	0.12	<5	16	<1	<5 (0.01	<1	3 242	8	0.90	<5	0.03	2	<2 <0.01	375	<1 0.02	10 1	30	33	<0.01	<5	<1	<10	<5	<2 <0.01	<5	2	<5 <1	8
101	E189499	<0.2	0.01	<5	<2	<1	<5 <	0.01	<1	2 204	8	0.85	<5	<0.01	<2	<2 0.01	65	<1<0.01	6 <	10	30	<0.01	-5	-1	~10	-5	<2 <0.01	<5	~2	<5 <1	8
102	E189500	<0.2		25	6	<1				9 138	8		-	<0.01	<2	<2 0.03		<1 0.05	26		9	0.11	5	3			4 < 0.01	<5	2		
																					-		-	-		-		-			
QC DA																															
Repeat		4.0	0.04	-	•				~	4 004	40	0.70	-	0.04	•		50		-			o 17	~			-		-			
1	E189051		0.01	<5	2	<1	<5 <			1 204	10	0.79	-	<0.01	<2	<2 <0.01	50	<1 0.01	7 (432	0.17		<1			<2 <0.01		<2		390
10	E189061	<0.2		<5	24	<1	<5 <		<1	3 110		4.20		0.07	14	26 0.70	100	<1 0.03	10 2		21			1			8 < 0.01			<5 1	
19	E189070	15.5		25	24	<1	25 <			10 200	18	3.37	<5	0.08	6	<2 0.03	210	<1 0.03	18 2			0.13		<1			4 <0.01	-	4	<5 <1	138
36	E189087	<0.2		60	22	<1	<5 <0			2 54	10	2.43	<5	0.07	56	<2 <0.01	35	4 0.02	10 2		24			<1			4 <0.01		2	<5 3	36
45	E189096	<0.2		<5	2	<1	<5 <0			3 266	16	4.05	<5	0.01	<2	<2 <0.01	180	<1 0.02	16 1					<1			<2 <0.01		2	<5 <1	282
54	E189452	<0.2		<5	32	<1	5 (<1	6 50	32	5.11	<5	0.10	18	38 0.99	140	1 0.03	83		27		<5		<10		6 <0.01	<5	16	<5 2	
71	E189469	<0.2		<5	32	<1		0.01		6 166	68	5.49	<5	0.07	14	16 0.38	100	2 0.03	45 6		48		<5	1	<10	<5	6 <0.01	<5	10	<5 2	76
80	E189478	<0.2		<5	24	<1	<5 <0				18	2.51	<5	0.06	18	14 0.33	80	1 0.03	17 1		21	0.02	<5	<1	<10	<5	4 <0.01	<5	8	<5 1	40
89	E189487	<0.2	0.85	<5	22	<1	<5 <6	0.01	<1	13 136	28	2.70	<5	0.07	14	10 0.24	210	<1 0.03	46 2	00	21	0.08	<5	<1	<10	<5	6 <0.01	<5	6	<5 2	80
Resplit	t:																														
1	E189051	1.2	0.01	<5	4	<1	<5 <0	0.01	з	2 224	14	0.80	<5	<0.01	<2	<2 0.03	70	1 0.01	8 (60 ·	450	0.18	<5	<1	<10	<5	<2 <0.01	<5	<2	<5 <1	378
36	E189087	<0.2	0.23	60	26	<1	<5 <0	0.01	<1	2 48	10	2.41	<5	0.10	56	<2 <0.01	35	4 0.03	11 2	20	24	<0.01	<5	<1	<10	<5	4 <0.01	<5	4	<5 3	34
71	E189469	<0.2	1.22	<5	30	<1	5 <(0.01	<1	6 172	62	5.36	<5	0.07	16	16 0.42	100	2 0.03	38 5	80	42	0.02	<5	1	<10	<5	4 <0.01	<5	10	<5 2	72
Standa	ord-																														
Pb129a		110	0.64	5	69	21	~F (3 47	60	6 10	1/60	1 50	_E	0.07	4	~0 0 70	265	2 0.04	£ 4	20 6	2016	0 00	1 E	-1	-10	~F	30 0.05	, E	10	-5 0	~ 10000
		11.8		5 5	68 66	<1	<5 (6 10		1.59	<5	0.07		<2 0.70		2 0.04		20 6		0.80					30 0.05	<5	18		>10000
Pb129a		11.8		-	66 66	<1	<5 (6 10		1.61	<5	0.07	4	<2 0.70		2 0.04	-	30 6		0.84	-	<1			30 0.05		18		9916
Pb129a	ι	12.0	U.84	5	66	<1	<5 (J.40	01	6 10	1400	1.00	<5	0.07	4	<2 0.69	380	2 0.04	54	20 6	01/5	0.82	15	<1	<10	<0	32 0.05	<5	16	<5 2	9990

ICP: Aqua Regia Digest / ICP- AES Finish.

NM/nw df/2_704S XLS/10

EGO TECH LABORATORY LTD. Norman Monteith B.C. Certified Assayer

CERTIFICATE OF ASSAY AK 2010-1042

Gemco Minerals Inc. PO Box 111 Wells, BC **V0K 2R0**

No. of samples received: 103 Sample Type: Rock Project: Burns 2010 Submitted by:A. Justason

		Au	Au	Ag	Ag	Pb
ET #.	Tag #	(g/t)	(oz/t)	(g/t)	(oz/t)	(%)
4	E189436	1.83	0.053	82.6	2.41	7.35
5	E189437	46.5	1.356	150	4.37	3.45
39	E189521	23.5	0.685			1.65
40	E189522	27.4	0.799			
41	E189523	69.5	2.027			
42	E189524	1.17	0.034			
43	E189525	10.0	0.292			
50	E189532	1.02	0.030			
60	E189542	1.15	0.034			
64	E189546	46.0	1.341			
65	E189547	33.4	0.974			
66	E189548	24.9	0.726			
70	E189552	2.16	0.063			
72	E189554	106	3.091			
73	E189555	12.1	0.353			
77	E189559	1.20	0.035			
79	E189561	1.40	0.041			
80	E189562	1.98	0.058			
81	E189563	* 5.65	0.165			
82	E189564	13.2	0.386			
83	E189565	1.67	0.049			
86	E189603	212	6.183			
93	E189610	1.48	0.043			
94	E189611	1.60	0.047			
106	E189623			160	4.67	
124	E189641	8.15	0.238			
128	E189645	1.64	0.048			A
130	E189647	* 1.85	0.054		-	
						ECOTECU

* Gravimetric Recommended

All business is undertaken subject to the Company's General Conditions of Business which are available on request. Registered Office: Eco Tech Laboratory Ltd., 2953 Shuswap Road, Kamloops, BC V2H 1S9 Canada. Page 1 of 2

ECO TECH LABORATORY LTD. Norman Monteith B.C. Certified Assayer

19-Nov-10

Gemco	Minerals	Inc. AK10-1042			1	9-Nov-10
······································	-	Au	Au	Ag	Ag	Pb
<u>ET #.</u>	Tag #	(g/t)	(oz/t)	(g/t)	(oz/t)	(%)
QC DAT	<u>A:</u>					
Repeat:						
4	E189436	1.69	0.049	82.2	2.40	7.40
5	E189437	49.5	1.444			
39	E189521	26.1	0.761			
40	E189522	27.8	0.811			
41	E189523	66.5	1.939			
43	E189525	10.2	0.297			
60	E189542	1.04	0.030			
65	E189547	29.6	0.863			
66	E189548	25.5	0.744			
70	E189552	2.37	0.069			
73	E189555	14.0	0.408			
83	E189565	1.67	0.049			
86	E189603	226	6.591			
124	E189641	8.35	0.244			
Standard	d:					
OXK79		3.49	0.102			
GBM908	-14			306	8.92	3.32

NM/nw XLS/10

ECO TECH LABORATORY LTD. Norman Monteith B.C. Certified Assayer

16-Nov-10

CERTIFICATE OF ANALYSIS AK 2010-1042

Gemco Minerals Inc. PO Box 111 Wells, BC **V0K 2R0**

No. of samples received: 103 Sample Type: Rock Project: Burns 2010 Submitted by:A. Justason

		Au
ET #.	Tag #	(ppb)
1	E189098	5
2	E189099	5
3	E189100	<5
4	E189436	>1000
5	E189437	>1000
6	E189438	40
7	E189439	460
8	E189440	10
9	E189441	475
10	E189442	350
11	E189443	30
12	E189444	5
13	E189445	5
14	E189446	5
15	E189447	25
16	E189448	5
17	E189449	115
18	E189450	580
19	E189501	100
20	E189502	15
21	E189503	<5
22	E189504	<5
23	E189505	5
24	E189506	5
25	E189507	5
26	E189508	5
27	E189509	5
28	E189510	5
29	E189511	5
30	E189512	15
All business is	E189513	e Company's General Conditions of Business which are available on
request, Regis	tered Office: Eco Tech Lab	poratory Ltd., 2953 Shuswap Road, Kamloops, BC-V2H-1S9-Canada.
		Page 1 of 5

Gemco Minerals Inc. AK10-1042 16-Nov-10 Au ET #. Tag # (ppb) 32 E189514 10 33 E189515 20 34 E189516 10 35 E189517 20 36 E189518 5 37 10 E189519 38 60 E189520 39 E189521 >1000 40 E189522 >1000 41 >1000 E189523 42 E189524 595 43 E189525 >1000 44 E189526 60 45 E189527 5 46 E189528 5 47 E189529 <5 48 E189530 <5 49 E189531 5 50 E189532 >1000 51 E189533 5 52 E189534 10 53 E189535 5 54 E189536 <5 <5 55 E189537 56 E189538 5 57 E189539 100 58 E189540 10 59 E189541 15 60 E189542 >1000 80 61 E189543 62 E189544 40 63 E189545 50 64 E189546 >1000 >1000 65 E189547 66 E189548 >1000 67 E189549 30 68 E189550 20 69 E189551 15 70 E189552 >1000 71 <5 E189553 72 E189554 >1000 73 E189555 >1000 74 E189556 780 75 E189557 315 76 E189558 190

All bushess is under 189559 the Company's General Conditions of Business With are available on

request. Registered Office: Eco Tech Laboratory Ltd., 2953 Shuswap Road, Kamloops, BC V2H 1S9 Canada.

ET #.

78

79

80

81

82

83

84

85

86

87

88

16-Nov-10

Gemco Minerals Inc. AK10-1042

Tag #

E189560

E189561

E189562

E189563

E189564

E189565

E189601

E189602

E189603

E189604

E189605

* 690 >1000 >1000 >1000 >1000 700 20 <5 >1000 40 200

Au

(ppb)

89	E189606	5
90	E189607	20
91	E189608	75
92	E189609	430
93	E189610	>1000
94	E189611	>1000
95	E189612	235
96	E189613	50
97	E189614	5
98	E189615	<5
99	E189616	265
100	E189617	<5
101	E189618	<5
102	E189619	420
103	E189620	180
104	E189621	45
105	E189622	<5
106	E189623	405
107	E189624	10
108	E189625	25
109	E189626	5
110	E189627	5
111	E189628	<5
112	E189629	5
113	E189630	<5
114	E189631	<5
115	E189632	<5
116	E189633	<5
117	E189634	<5
118	E189635	<5
119	E189636	5
120	E189637	<5

* Based on 120g

All business is undertaken subject to the Company's General Conditions of Business which are available on request. Registered Office: Eco Tech Laboratory Ltd., 2953 Shuswap Road, Kamloops, BC V2H 159 Canada.

Gemco	Minerals Inc.		16-Nov-10
ET #.	Tag #	Au (ppb)	
121	E189638	<5	
122	E189639	5	
123	E189640	<5	
124	E189641	>1000	
125	E189642	5	
126	E189643	10	
127	E189644	<5	
128	E189645	>1000	
129	E189646	790	
130	E189647	>1000	
131	E189648	<5	
132	E189649	<5	
133	E189650	5	
QC DAT	A:		
Repeat:			
1	E189098	10	
9	E189441	450	
10	E189442	380	
18	E189450	550	
19	E189501	110	
36	E189518	10	
45	E189527	10	
54	E189536	<5	
57	E189539	90	
71	E189553	5	
74	E189556	830	
80	E189562	>1000	
88	E189605	230	
89	E189606	10	
95	E189612	210	
99	E189616	280	
102	E189619	420	
106	E189623	430	
115	E189632	<5	
124	E189641	>1000	
133	E189650	<5	
Resplit:			
1	E189098	5	
36	E189518	10	
71	E189553	<5	
106	E189623	455	

All business is undertaken subject to the Company's General Conditions of Business which are available on request. Registered Office: Eco Tech Laboratory Ltd., 2953 Shuswap Road, Kamloops, BC V2H 159 Canada. Page 4 of 5

Gemco Minerals Inc. AK10-1042

16-Nov-10

	Au	
Tag #	(ppb)	
	800	
	810	
	610	
	605	
		Tag # (ppb) 800 810 610 610

FA Geochem/AA Finish

NM/PS XLS/10

ECO TECH LABORATORY LTD. Norman Monteith B.C. Certified Assayer

17-Nov-10

Stewart Group

ECO TECH LABORATORY LTD.

10041 Dallas Drive KAMLOOPS, B.C. V2C 6T4 www.stewartgroupglobal.com

Phone: 250-573-5700 Fax : 250-573-4557 ICP CERTIFICATE OF ANALYSIS AK 2010- 1042

Gemco Minerals Inc. PO Box 111 Wells, BC VOK 2R0

No. of samples received: 133 Sample Type: Rock **Project: Burns 2010** Submitted by:A. Justason

Values in ppm unless otherwise reported

Et #.	Tag #	Ag	AI%	As	Ba Be	Bi	Ca%	Cd	Co Cr	Cu	Fe%	Hg	K%	La	Li I	Mg%	Mn	Мо	Na%	Ni	Ρ	Pb	S%	Sb	Sc	Se	e Sn	i Si	r Ti%	U	V V	N Y	Zn
1	E189098	<0.2	0.06	<5	4 <1	<5	<0.01	<1	5 304	8	0.75	<5	0.01	<2 ·	<2 <	< 0.01	325	<1	<0.01	9	30	6	<0.01	<5	<1	<1() <5	5 2	2 < 0.01	<5	2 <	5 <1	26
2	E189099	<0.2	0.02	<5	<2 <1	<5	<0.01	<1	3 268	10	2.06	<5	<0.01	<2 •	<2 <	<0.01	180	<1	<0.01	10	90	18	<0.01	<5	<1	<1() <5	5 <2	2 <0.01	<5	2 <	5 <1	14
3	E189100	<0.2	0.01	<5	<2 <1	<5	<0.01	<1	3 274	10	1.63	<5	<0.01	<2 •	<2 <	<0.01	215	<1	<0.01	9	40	<3	<0.01	<5	<1	<1() <5	i <2	2 <0.01	<5	2 <	5 <1	18
4	E189436	>30	<0.01	5	<2 <1	105	<0.01	10	5 316	10	1.73	<5	<0.01	<2 •	<2	0.02	1010	<1	<0.01	8	<10	>10000	1.46	30	<1	20) <5	i E	6 <0.01	<5	2 <	5 <1	76
5	E189437	>30	0.03	15	2 <1	250	<0.01	4	5 254	126	2.66	<5	<0.01	<2 •	<2 <	0.01	675	<1	<0.01	14	<10	>10000	1.16	10	<1	<1() <5) <2	2 <0.01	<5	<2 <	:5 <1	48
6	E189438	0.6	0.07	00	00 .4	r	0.04	.4	10 100	50	r co		0.17	10	~	0.00	F4F	~	0.03	00	040	050	0 70	.r		.1/	٦.E	. 47) <0.01	.5	1.	E 0	38
7	E189438 E189439								18 136								515	-											$\delta < 0.01$				36 96
8	E189439 E189440								18 62								1470		0.02			120											90 76
9	E189440 E189441								16 102								605		0.03			18							2 < 0.01				104
9 10	E189441 E189442								13 144								1855		0.02			45		-					2 < 0.01				104 48
10	E109442	<0.2	0.11	20	0 <1	<5	<0.01	<1	6 292	18	1.92	<5	0.03	4 <	<2 <	0.01	270	<1	<0.01	14	120	18	0.01	<5	<1	<10) <5	. 2	2 <0.01	<0	2 <	5 < I	40
11	E189443	0.3	0.12	15	14 <1	<5	<0.01	<1	9 220	14	3.57	<5	0.05	<2 <	<2	0.01	1135	<1	<0.01	17	70	21	0.02	<5	<1	<1() <5	5 2	2 <0.01	<5	2 <	5 <1	50
12	E189444	<0.2	0.10	<5	8 <1	<5	0.01	<1	2 318	8	0.76	<5	0.02	26 <	<2	0.02	95	<1	<0.01	7	100	6	<0.01	<5	<1	<1() <5	5 <2	2 < 0.01	<5	2 <	5 1	6
13	E189445	<0.2	0.10	<5	10 <1	<5	<0.01	<1	2 294	6	0.90	<5	0.03	10 •	<2	0.01	130	<1	<0.01	8	60	6	<0.01	<5	<1	<10) <5	; <2	2 < 0.01	<5	4 <	5 <1	10
14	E189446	<0.2	0.03	<5	2 <1	<5	0.01	<1	1 338	6	0.50	<5	<0.01	<2 <	<2 <	:0.01	75	<1	<0.01	7	70	<3	<0.01	<5	<1	<1() <5	; <2	2 <0.01	<5	2 <	5 <1	2
15	E189447	<0.2	0.03	10	2 <1	<5	<0.01	<1	1 278	10	0.66	<5	<0.01	<2 <	<2 <	:0.01	60	<1	<0.01	7	30	3	<0.01	<5	<1	<10) <5	; <2	2 <0.01	<5	2 <	5 <1	4
16	E189448	<0.2	0.54	30	54 <1	<5	<0.01	<1	20 98	46	4.78	<5	0.21	22 <	<2	0.05	800	1	0.04	30	230	12	0.05	<5	2	<1() <5	; e	6 <0.01	<5	4 <	53	92
17	E189449	1.7	0.11	55	30 <1	25	0.01	<1	38 22	54	>10	<5	0.01	8 <	<2	0.13 :	>10000	1	0.08	72	60	42	0.24	10	7	<1() <5	, 20) <0.01	<5	4 <	5 10	306
18	E189450	0.9	<0.01	10	<2 <1	<5	<0.01	<1	1 284	6	1.05	<5	<0.01	<2 <	<2 <	0.01	135	<1	<0.01	6	<10	6	0.09	<5	<1	<1() <5	, <2	? <0.01	<5	2 <	5 <1	6
19	E189501	0.5	0.05	45	6 <1	10	<0.01	<1	12 182	36	>10	<5	0.01	2 <	<2	0.02	3350	1	0.02	36	40	18	0.22	5	3	<10) <5	, 4	< 0.01	<5	4 <	52	116
20	E189502	<0.2	0.33	15	32 <1	<5	0.02	<1	6 160	12	1.93	<5	0.11	8 <	<2	0.07	295	<1	0.01	14	80	141	0.44	<5	<1	<10) <5	, e	õ <0.01	<5	2 <	52	66
21	E189503		0.03						<1 228								40	<1	<0.01	4	20	6		-					2 <0.01				8
22	E189504	<0.2	0.07	<5	10 <1	<5	<0.01	<1	4 398	10	0.99	<5	0.02	4 <	<2 <	:0.01	255	1	<0.01		40	18	<0.01	5	<1	<10) <5	<2	2 <0.01	<5	4 <	5 <1	12
23	E189505		0.06						1 298								45		<0.01		30	6		-					2 <0.01				6
24	E189506	0.2	0.74	15	42 <1	<5	0.04	<1	15 136	30	3.02	<5	0.14	24	4	0.12	580	<1	0.03	35	240	42	<0.01	<5	2	<1() <5	, 8	3 <0.01	<5	4 <	53	106
25	E189507	0.3	0.31	<5	12 <1	<5	0.03	<1	4 348	10	1.38	<5	0.04	6 <	<2	0.06	260	1	0.01	15	100	192	<0.01	<5	<1	<1() <5	- 4	<0.01	<5	4 <	51	20
26	E189508	<0.2	0.66	10	40 -1	<u>~</u> 5	0.03	-1	12 170	26	3.04	~5	0 15	18	6	0 14	335	1	0.03	23	190	33	0.02	~5	1	<10) ~5	; F	3 <0.01	<5	4 ~	53	76
27	E189509								15 72								490				220	33			-				5 <0.01	-			106
28	E189510								13 100								215		0.00			36							< 0.01				
29	E189511								18 38								380		0.04			18							5 < 0.01				
30	E189512								8 176								305		0.03			48							< 0.01				
		0.0	0.01	10	50 11	~0	0.00	~ '	0 170		0.02	~0	0.00	.0	т	0.00	000	~ '	0.02	20		τv	0.02	-0	'		~~0	0	0.01				

ICP CERTIFICATE OF ANALYSIS AK 2010- 1042

Gemco Minerals Inc.

Et #.	Tag #	Aq	Al%	As	Ba Be	e Bi	Ca%	Cd	Co Cr	Си	Fe% I	Ha	К%	La Li	Ma%	Mn	Мо	Na%	Ni	Р	Pb	S%	Sb	Sc S	ie Sr	n Sr	TI%	U	v w	Y :	Zn
31	E189513							- Malacian Contra	15 84					and the second second second	and the second se	410	<1			وتنافأ أرتصا جراج	126								4 <5		22
32	E189514								15 130							640		0.02			171								4 <5		86
33	E189515								20 254							675		0.02			231								4 <5		18
34	E189516	<0.2	0.28						10 182							390		0.01			135								4 <5		46
35	E189517								7 272							320		< 0.01			105								2 <5 <		26
36	E189518								3 282									<0.01			60								4 <5 <		18
37	E189519		0.10						5 214							400		<0.01			78								2 <5		42
38	E189520	0.6	0.14						15 208	-		-						0.02			471		-						4 <5		86
39	E189521	24.6	0.03						7 204							915					>10000								<2 <5 <		490
40	E189522	1.2	0.05	40	6 <1	5	<0.01	3	5 184	14	3.89	<5	0.02	<2 <2	<0.01	665	<1	<0.01	10	20	4862	0.40	5	<1 <1	0 <5	> <2	<0.01	<5	<2 <5 <	1 6	686
41	E189523	15.5	0.01	140	<2 <1	10	<0.01	<1	13 220	4	5.13	<5 <	:0.0 1	<2 <2	<0.01	55	<1	<0.01	22	10	2910	3.47	5	<1 <1	0 <{	5 <2	<0.01	<5	<2 <5 <	:1 1	30
42	E189524	<0.2	0.06	10	6 <1	<5	<0.01	<1	6 186	4	3.28	<5	0.01	2 <2	0.01	600	<1	<0.01	13	40	18	0.09	<5	<1 <1	0 <f< td=""><td>5 <2</td><td><0.01</td><td><5</td><td><2 <5 <</td><td>1 2</td><td>26</td></f<>	5 <2	<0.01	<5	<2 <5 <	1 2	26
43	E189525	2.2	0.02	90	<2 <1	<5	<0.01	<1	11 230	4	3.64	<5 <	:0.01	<2 <2	<0.01	85	<1	<0.01	15	<10	81	1.83	<5	<1 <1	0 <5	5 <2	<0.01	<5 ·	<2 <5 <	1 9	98
44	E189526	0.2	0.08	<5	8 <1	<5	0.02	<1	2 242	6	1.03	<5	0.03	4 <2	<0.01	445	<1	<0.01	7	120	96	<0.01	<5	<1 <1	0 <5	54	<0.01	<5	2 <5 <	:1	8
45	E189527	<0.2	0.44	<5	30 <1	<5	0.02	<1	11 210	30	3.75	<5	0.08	14 4	0.11	1225	<1	0.04	27	190	12	0.03	<5	2 <1	0 <5	56	<0.01	<5	6 <5	28	80
46	E189528	<0.2	0.07	-5	2 <1	~5	0.01	-1	1 274	л	0.66	-5 -	0.01	-0 -0	<0.01	180	-1	0.02	7	70	9	-0.01	-5	-1 -1	0 -1	: 0	-0.01	-5	<2 <5 <	1	6
47	E189529		0.07	-	6 <1	-			3 368							465	1				6								4 <5		12
48	E189530		0.40		10 <1	-			5 312	-	2.04	-				470	1				18								4 <5		18
49	E189531		0.10						2 350							625	<1		9		12								4 <5		10
50	E189532								4 318							595		< 0.01		50	2274								2 < 5 <		08
00	2,00002	£.,£	0.00		10 11	10	\U.U 1	~1	4 010	0	2.20	<u></u>	0.00	~~ ~~	CO.01	555	~1	NO.01	3	50	2214	0.11	5	~ ~ ~	0 -0	~~	CO.01	~0	2 10 1		00
51	E189533	<0.2	0.36	<5	22 <1	<5	<0.01	<1	5 274	30	5.07	<5	0.10	18 <2	0.01	150	1	0.02	18	280	24	<0.01	<5	1 <1	0 <5	54	<0.01	<5	4 <5	2 6	60
52	E189534	<0.2	0.34	5	30 <1	<5	<0.01	<1	15 110	32	3.91	<5	0.12	34 <2	0.01	330	<1	0.03	19	330	15	<0.01	<5	2 <1	0 <5	56	<0.01	<5	4 <5	з (66
53	E189535	<0.2	0.06	<5	14 <1	<5	<0.01	<1	21 236	8	2.84	<5 <	0.01	<2 4	<0.01	1430	<1	<0.01	21	40	3	<0.01	<5	<1 <1	0 <5	5 <2	<0.01	<5	2 <5 <	1 2	28
54	E189536	<0.2	0.10	5	16 <1	<5	<0.01	<1	29 188	12	3.44	<5 <	0.01	<2 4	<0.01	1865	<1	<0.01	23	70	12	<0.01	<5	<1 <1	0 <5	õ <2	<0.01	<5	2 <5 <	1 3	34
55	E189537	<0.2	0.04	<5	6 <1	<5	<0.01	<1	6 222	10	3.27	<5	0.01	<2 <2	<0.01	380	1	<0.01	10	50	6	0.03	<5	<1 <1	0 <5	ō <2	<0.01	<5	2 <5	1 (30
56	E189538	<0.2	0.09	<5	8 <1	<5	<0.01	<1	8 212	8	1.20	<5	0.03	4 -2	<0.01	175	-1	<0.01	11	80	6	<0.01	<5	-1 -1	0 <	5 <2	<0.01	<5	2 <5	1	16
57	E189539								8 226							215		0.02			15								4 <5		50
58	E189540								10 188							290		0.02			15								4 <5		60
59	E189541								30 196							2375	1			100	9								2 <5		54 54
60	E189542								13 118											40	978								2 <5		52
	E100510	~ ~										_					_						_					_			
61	E189543								56 86									0.04			39								2 <5		62
62 62	E189544				160 <1	-			475 106									0.02			195								6 <5		82
63	E189545	0.1							24 226									< 0.01			15								2 <5		42
64 05	E189546	7.5	0.06						6 236									<0.01			1737								<2 <5 <		38
65	E189547	2.0	0.07	55	4 <1	<5	<0.01	<]	6 220	14	1.55	<5 <	0.01	<2 <2	<0.01	290	<1	<0.01	14	40	9	0.04	<5 ·	<1 <1	0 <5	> <2	<0.01	<5 •	<2 <5 <	1 1	12
66	E189548	12.2	0.08						4 454								2	<0.01	16	40	27	0.03	5	<1 <1	0 <5	i <2	<0.01	<5	4 <5 <	1 1	14
67	E189549	<0.2	0.45	10	36 <1	<5	<0.01	<1	14 178	48	5.26	<5	0.10	30 2	0.01	1030	2	0.02	31	290	18	<0.01	<5	1 <1	0 <5	6	<0.01	<5	4 <5	3 5	56
68	E189550	<0.2	0.34	15	28 <1	<5	<0.01	<1	9 134	52	5.00	<5	0.12	24 <2	0.01	165	3	0.03	23	250	18	0.03	<5	1 <1	0 <5	5 4	<0.01	<5	4 <5	з 5	58
69	E189551								2 414									<0.01				<0.01	5 ·	<1 <1	0 <5	5 4	<0.01	<5	4 <5 <	1	8
70	E189552	0.9	0.02	<5	<2 <1	<5	0.02	<1	2 464	8	1.13	<5 <	0.01	<2 <2	0.01	205	1	<0.01	7	<10	213	0.04	5 ·	<1 <1	0 <5	i <2	<0.01	<5	4 <5 <	1 3	34
71	E189553	<0.2	0.02	10	<2 <1	<5	0 10	<1	3 262	8	193.	c5 -	0.01	-2 -2	0 12	545	<i>-</i> 1	<0.01	7	10	63	0.06	<5	1 -1	0 ~ 5	4	<0.01	<5 -	<2 <5 <	1 4	42
72	E189554								1 228									<0.01											<2 <5 <		50
73	E189555								2 216									<0.01											<2 <5 <		
74	E189556								<1 272									< 0.01			33								<2 <5 <		
75	E189557								3 210											80									4 <5 <		
					1	-0					2				0.10	00	~ •	0.04	,		· · · · · ·	0.01			0	Ŭ					

_

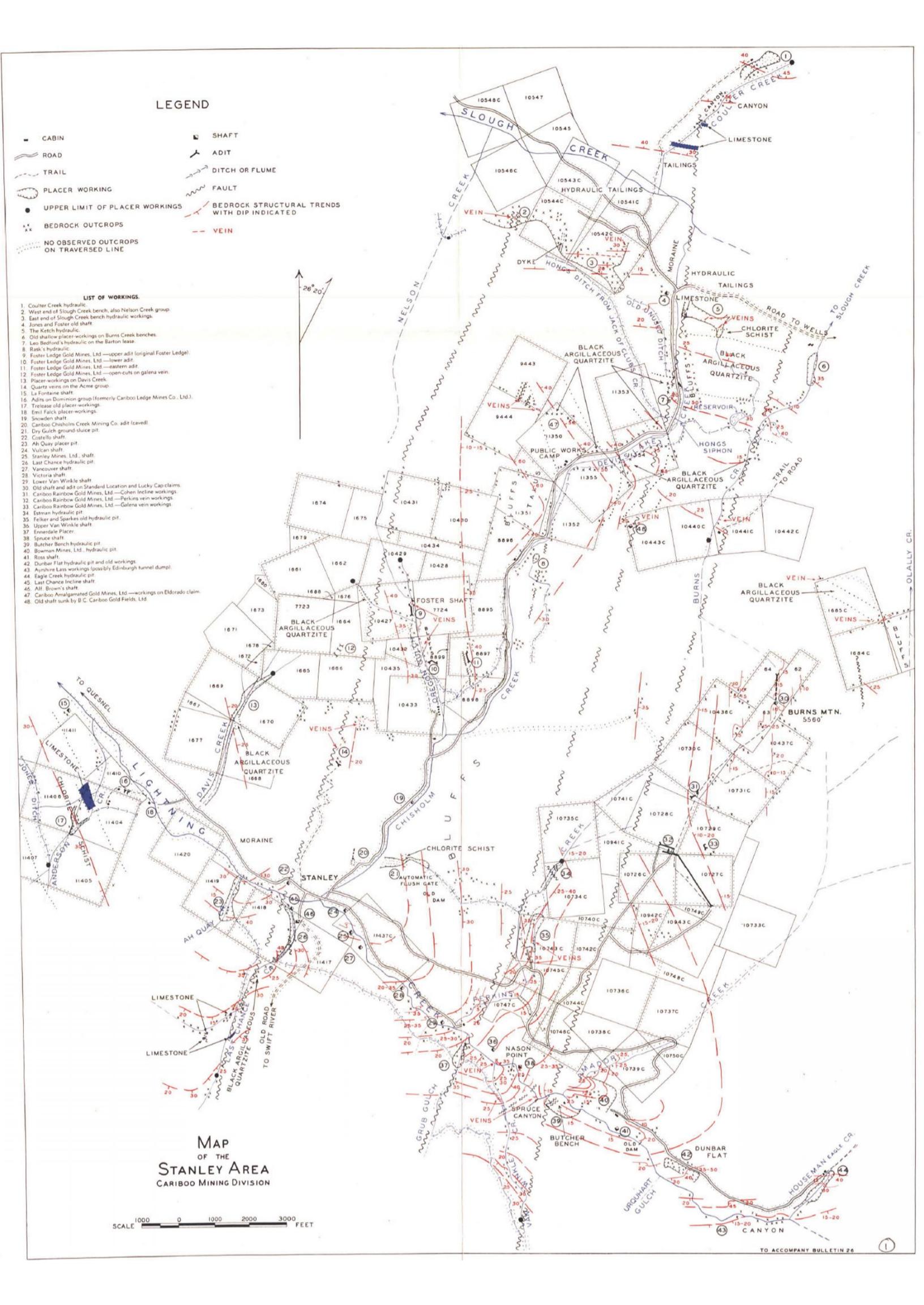
ICP CERTIFICATE OF ANALYSIS AK 2010- 1042

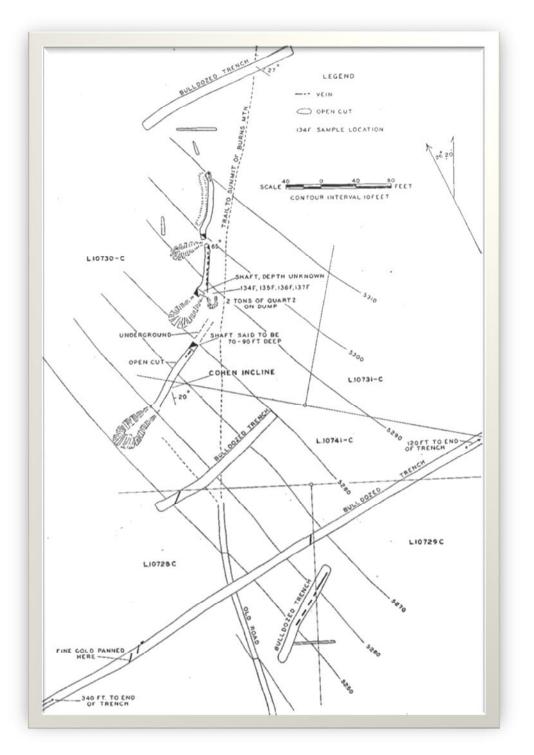
Gemco Minerals Inc.

Et #.	Tag #	Aa	A I%	As	Ba F	3e I	Bi Ca	% Cd	Co Cr	Cu	Fo% H	a 4	% I.a	Li Mas	6 Mn	Мо	Na%	Ni I	P Pb	6% Sh	50 50	Sn	Sr T1%		v w y	Zn
76	E189558						5 0.0				2.26 <															
77	E189559						<pre>5 0.0</pre>									1		9 14		0.02 <5					4 < 5 1	80
78	E189560										1.86 <						0.03	7 10							4 <5 <1	82
78 79							<5 0.0				3.06 <							12 23		<0.01 <5						80
	E189561	3.7					0.0				3.27 <														6 <5 1	184
80	E189562	7.3	0.29	30	38 <	<1 2	25 0.0	4 <1	12 112	22	3.79 <	50.	11 8	<2 0.1	5 1255	1	0.02	12 15) 2385	0.03 <5	<1 <10	<5	8 <0.01	<5	4 <5 1	226
81	E189563	8.3	0.42	35	48 <	-1 3	35 0.0	5 <1	12 212	24	4.37 <	5 0.	16 10	<2 01	7 1370	1	0.03	15 16	2808	0.05 5	<1 <10	<5	10 <0.01	<5	6 < 5 2	262
82	E189564		0.03						<1 260								< 0.01	4 20							<2 <5 <1	204
83	E189565								<1 234								<0.01	4 <10							<2 <5 <1	78
84	E189601								3 240								< 0.01	9 60		<0.02 <5						14
85	E189602								7 264											<0.01 <5						
00	2100002	10.2	0.10	<0	10 \$		5 (0.0		7 204	20	1.47 <	5 0.	JZ 4	4 0.0	2 2230	1	0.01	10 80	9 40	<0.01 <5	<1 <10	<0	10 <0.01	<0	2 <0 <1	28
86	E189603	27.1	0.01	225	<2 <	:1 1	5 <0.0	1 2	15 214	14	8.53 <	5 <0.	01 <2	<2 <0.0	255	<1	0.02	12 10	2208	5.28 5	<1 <10	<5 ·	<2 <0.01	<5	<2 <5 <1	78
87	E189604	<0.2	0.07	15	4 <	<1 <	:5 0.0	2 <1	4 270	8	2.01 <	5 0.	02 <2	<2 <0.0	295	1	<0.01	16 120) 87	0.02 <5	<1 <10	<5	2 < 0.01	<5	2 < 5 1	26
88	E189605	0.4	0.29	15	30 <	<1 <	5 0.0	4 <1	15 204	20	2.80 <	50.	11 12	<2 0.0	2 425	<1	0.02	19 280) 153	0.01 <5	2 <10	<5	6 < 0.01	<5	4 < 5 3	68
89	E189606	0.4	0.08	<5	8 <	<1 <	5 <0.0	1 <1	7 334	10	0.94 <	5 0.	02 2	<2 <0.0	205	1	<0.01	13 30) 70	<0.01 <5	<1 <10	<5 •	<2 <0.01	<5	2 <5 <1	14
90	E189607	<0.2	0.21	15	32 <	:1 <	5 0.0	3 <1	5 222	12	2.09 <	50.	12 14	<2 0.0	2 455	<1	0.01	13 240) 189	0.02 <5	<1 <10	<5	4 < 0.01	<5	2 <5 2	62
91	E189608	07	0.53	15	10	.1	5 00	6 -1	10 000	06	0.45	= 0	N4 0	.0 04			-0.04	00 454		.0.01 5			0 .0.01		0.5	000
92	E189609		0.53						12 206									23 150		<0.01 <5						200
93	E189610						20 <0.0				2.14 <						<0.01								<2 <5 <1	162
93 94			0.10				20 < 0.0		3 244		2.40 <						<0.01			0.05 10						240
94 95	E189611						5 < 0.0				1.55 <						0.01	7 40							2 <5 <1	156
90	E189612	1.2	0.18	15	18 <	<1 <	5 0.0	1 <1	3 224	10	1.38 <	5 0.0	07 6	<2 0.0	2 150	1	<0.01	7 50) 414	0.03 <5	<1 <10	<5	2 <0.01	<5	2 <5 <1	134
96	E189613	0.2	0.40	30	32 <	:1 <	5 0.0	2 1	5 178	16	2.47 <	5 0.1	10 16	<2 0.0	5 280	1	0.01	15 180	219	<0.01 <5	<1 <10	<5	4 <0.01	<5	2 < 5 2	182
97	E189614	<0.2	0.27	10	32 <	:1 <	5 0.0	3 <1	8 220	22	2.10 <	5 0.1	10 10 -	<2 0.0	3 335	1	0.02	18 160	135	0.08 <5						100
98	E189615	<0.2	0.28	15	18 <	:1 <	5 0.1	0 <1								<1		20 450							2 < 5 2	92
99	E189616	0.8	0.15	105	10 <	1 1	0 0.0	1 2	10 154									26 130		0.05 <5		-				882
100	E189617								10 142									18 150							4 < 5 3	108
101	E189618	-0.2	0.00	F	00		E 0.0		0 100	10	1.07	- 0/										-				
101			0.23		28 <			7 <1			1.87 <					1		15 400		0.02 <5						64
	E189619		0.20					1 2			9.53 <					1		25 590		0.03 5						438
103	E189620		80.0					1 <1	7 234		3.06 <					1		11 80		0.04 <5						
104	E189621		0.25					2 <1			1.96 <					<1		11 110		0.18 <5					2 <5 2	76
105	E189622	<0.2	0.37	<5	30 <	:1 <	5 0.0	1 <1	11 162	32	2.82 <	5 0.1	1 12 •	<2 0.0	530	1	0.02	18 110	108	0.08 <5	<1 <10	<5	4 <0.01	<5	2 <5 2	68
106	E189623	>30	0.45	85	24 <	1 36	0 0.0	8 <1	38 118	420	>10 <{	5 0.0)9 8 -	<2 0.0	1075	3	0.04	84 680	3903	0.14 40	2 <10	<5 1	16 < 0.01	<5	6 <5 12	274
107	E189624		0.34						7 168		2.75 <					<1		16 90		0.13 <5						46
108	E189625								10 56								0.02	22 180		0.02 <5						82
109	E189626	0.8	0.35		22 <				9 216							1		19 170		<0.01 <5						58
110	E189627		0.49						12 130							1		27 270		0.04 <5					2 < 5 4	76
	E100000	0.0																								
111	E189628						5 <0.01				3.51 <5							12 160		0.01 <5	1 <10	<5	6 <0.01	<5	12 <5 2	64
112	E189629	<0.2	1.11	<5	32 <	1 <	5 0.02	2 <1	8 232	44	3.52 <5	5 0.1	0 14 2	24 0.4	230	2	0.01	16 250	54	0.01 <5	1 <10	<5 1	2 <0.01	<5 1	12 <5 3	54
113	E189630	<0.2	0.25	<5	8 <	1 <	5 0.03	3 <1	3 274	10	1.29 <8	5 0.0)2 <2	4 0.09	105	1	0.02	11 210	15	0.05 <5 ·	<1 <10	<5	8 <0.01	<5	4 <5 <1	16
114	E189631	<0.2	0.19	<5	8 <	1 <	5 < 0.01	1 <1	2 250	12	1.00 <5	5 0.0	3 4	2 0.0	70	<1	<0.01	10 90	12	<0.01 <5	<1 <10	<5	2 <0.01	<5	4 <5 <1	12
115	E189632	<0.2	0.12	<5	12 <	1 <	5 0.03	3 <1	3 270	6	1.50 <5	5 <0.0)1 <2 <	<2 0.03	1270	1	0.02	10 200	3	<0.01 <5	2 <10	<5	6 <0.01	<5	4 <5 3	14
116	E189633	<0.2	1.51	<5	26 ~	1 -	5 <0.01	1 -1	5 176	32	411 -		0, 1/1	ഹ ഹഹ	265	2	0.01	10 160	21	0.01 <5	1 -10	~6 9	10 -0.01	~F 1	14 -5 0	76
117	E189634								4 160									9 160		<0.01 <5						
118	E189635	<0.2	0.45	<5	10 -	· ~	5 0.01	1 21	3 260	12	1.50 -5	, 0.1 , nr	2 10 2		100			10 110		<0.01 <5 0.02 <5 ·						
119	E189636	<0.2	0.12	~5	14 -	1 -	5 0.01 5 0.01	2 21	2 332	6	1.00 <0	, U.U. , A.A.		2 0.1	100	1										
120	E189637	<0.2	0.16	~5	24 -	1 /	5 20.02	1	2 332	e	0.00 <0		19 4 4 19 10	2 0.00	205	1		7 160		<0.01 <5 <						6
	_,00007	.U.L	0.10	~0	L7 (U.U.		L LJL	U	0.32 <0	, U.U	010 <	Z 0.00	200	<1	0.02	7 80	6	<0.01 <5 ·	<i <10<="" td=""><td><0</td><td>2 <0.01</td><td><0</td><td>4 <0 <1</td><td>8</td></i>	<0	2 <0.01	<0	4 <0 <1	8

ICP CERTIFICATE OF ANALYSIS AK 2010- 1042

Gemco Minerals Inc.


Et #.	Tag #	Ag	Al%	As	Ba E	Be B	i Ca%	Cd	Co Cr	Cu	Fe%	Hg	К%	La L	.i Mg%	Mn	Мо	Na%	Ni	P	Pb	S%	Sb Se	c Se	Sn	Sr Ti	6 υ	vv	/ Y	Zn
121	E189638	<0.2	0.04	<5	4 <	< <u>1 <</u>	5 0.14	<1	1 322	6	0.99	<5	< 0.01	<2 <	2 0.03	240	1	0.03	8	90	3	< 0.01	<5 <	1 <10	<5	10 < 0.0	1 <5	2 <	5 1	6
122	E189639	<0.2	0.05	<5	4 <	:1 <5	5 0.01	<1	<1 306	4					2 < 0.01	55	<1	0.01			3					2 < 0.0		2 <	5 <1	<2
123	E189640	<0.2	0.02	<5		:1 <5			1 314						2 < 0.01	55		< 0.01	5 1							4 < 0.0		<2 <		<2
124	E189641		0.08	75			5 <0.01		3 342						2 < 0.01	190		<0.01			18					2 < 0.0		2 <		20
125	E189642		0.02						<1 350						2 < 0.01	315		< 0.01								<2 <0.0		2 <		6
, 20	LIGGOIL	-0.2	0.0	~0			<0.01	~ '	<1 000	10	0.70	<0	<0.01	2 \	2 \0.01	515	,	NO.01	0.	20	< 5	<0.01			<5	~~ ~0.0	1 - 5	2 \		U
126	E189643	<0.2	0.25	<5	24 <	:1 <5	5 0.03	<1	5 320	18	1.83	<5	0.08	6	2 0.04	140	1	0.02	11 18	30 .	21	0.07	5 <	<10	<5	6 < 0.0	1 <5	4 <	5 <1	16
127	E189644	<0.2	0.08	<5	4 <	:1 <5	5 0.01	<1	1 314	10	0.70	<5	<0.01	<2 <	2 0.01	295	1	0.03	6 10	00	21	<0.01	<5 <	<10	<5	2 < 0.0	1 <5	2 <	5 <1	10
128	E189645	2.2	0.02	<5	<2 <	:1 <5	s <0.01	10	<1 330	14	0.75	<5	<0.01	<2 <	2 < 0.01	85	<1	< 0.01	5 3		2661	0.12	5 <	<10	<5	<2 <0.0	<5	2 <	5 <1	1166
129	E189646	8.0	0.09	20	4 <				3 278							760		0.01	13 3		266					2 < 0.0				306
130	E189647		0.11			:1 <5			2 264		4.46		0.01			605		< 0.01	8 6		147					6 < 0.0				596
					•		0.00	-		,0			0.01		L 0.0L	000	'	-0.01	0 0.			0.07	~ ~		-0	0 .0.0			~ ~	000
131	E189648	<0.2	0.16	20	18 <	<1 <5	0.01	<1	2 344	14	1.25	<5	0.07	10 <	2 0.01	100	1	<0.01	7 1	10	39	<0.01	5 <	<10	<5	4 <0.0	<5	4 <	5 <1	12
132	E189649		0.07	30	6 <		5 <0.01		6 200				0.02	2 <		720		0.01	12 23		12	0.03				<2 <0.0				48
133	E189650								2 220						2 < 0.01	530		<0.01			6					<2 <0.0				14
								~ '	L 110	•	£. 10	~0	20.01		2 \0.01	000	~ '	20.01	0.	_0	U	0.00	-0 -1	10	~0	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~		~~ ~	, .,	
<u>QC DATA:</u> Poncati																														
Repeat:	E100000	0.0	0.00	-					F 000			-											_		_		_			• •
1	E189098			<5	4 <		< 0.01		5 300		0.76				2 < 0.01	330		<0.01				<0.01				2 <0.0			5 <1	24
10	E189442		0.13				< 0.01		6 300		1.99		0.04		2 0.02	290			14 14		21					4 <0.0			5 <1	56
19	E189501			45	6 <		< 0.01				>10		0.01	2 <	2 0.02	3370	<1	0.02	37 5	50 3	21	0.22	5 3	3 <10	<5	6 <0.0	<5	4 <	52	122
36	E189518		0.09	<5	10 <				3 282	-	1.21		0.04	4 <		210	<1	<0.01			60	<0.01	<5 <1	<10	<5	2 <0.0	<5	2 <	i <1	18
45	E189527		0.45	<5	30 <	:1 <5	0.02	<1	11 212	30	3.78	<5	0.09	14	4 0.11	1250	1	0.04	27 19	90	12	0.04	<5 2	2 <10	<5	8 <0.0	<5	6 <5	52	82
54	E189536	0.2	0.10	<5	16 <	:1 <5	<0.01	<1	29 192						4 <0.01	1865	<1	<0.01	23 6	50 ·	12	<0.01	<5 <1	<10	<5	<2 <0.0	<5	<2 <	5 <1	32
71	E189553	<0.2	0.02	10	<2 <	:1 <5	0.10	<1	3 266	8	1.96	<5	<0.01	<2 <2	2 0.12	535	1	<0.01	6 -	0	63	0.06	<5 <1	<10	<5	4 < 0.0	<5	<2 <5	i <1	42
80	E189562	6.8	0.29	30	38 <	1 25	0.04	<1	12 112	22	3.87	<5	0.12	8 <	2 0.15	1270	1	0.02	12 15	50 24	436	0.02	<5 <1	<10	<5	8 < 0.0	<5	4 <	5 1	222
89	E189606	0.2	80.0	<5	8 <	:1 <5	<0.01	<1	7 336	10	0.93	<5	0.02	2 <	2 <0.01	200	1	<0.01	12 3	30 (66	<0.01	<5 <1	<10	<5	<2 <0.0	<5	2 <	i <1	14
106	E189623	>30	0.44	85	22 <	1 355	0.08	<1	38 116	418	>10	<5	0.09	8 <2	2 0.08	1070	3	0.03	82 67	70 39	909	0.14	40 2	2 <10	<5	14 < 0.0	<5	6 <5	5 12	276
115	E189632	<0.2	0.12	<5	12 <	:1 <5	0.03	<1	3 262	6	1.46	<5	<0.01	<2 <4	2 0.03	1245	1	0.02	10 20	ю	3	<0.01	<5 2	? <10	<5	6 < 0.0	<5	4 <	3	14
124	E189641	2.4	0.08	75	8 <	1 <5	<0.01	<1	2 338		1.78				2 < 0.01	180	2	< 0.01			18					2 < 0.0				18
Resplit:																														
1	E189098	<0.2	0.07	<5	4 <	1 <5	<0.01	<1	6 288	6	0.76	<5	0.01	<2 <2	2 <0.01	345	<1	<0.01	94	10	3	<0.01	<5 <1	<10	<5	<2 <0.0	<5	2 <5	<1	22
36	E189518	<0.2	0.11	<5	10 <	1 <5	0.02	<1	3 276	6	1.29	<5	0.04	4 <2	2 0.02	230	<1	<0.01	14 5	50 (63	<0.01	<5 <1	<10	<5	2 < 0.0	<5	2 <5	<1	18
71	E189553	<0.2	0.01	10	<2 <	1 <5	0.09	<1	2 252		1.86		<0.01			500		<0.01	6 <1	0	57					4 < 0.0				36
106	E189623	>30	0.44	85	22 <	1 360	0.07	<1	39 128	394	>10	<5	0.09	8 <2	2 0.08	1100	3	0.03			876					14 < 0.0				264
Cton day 1																														
Standard:		46.1	0.01	_																										
Pb129a		12.1	0.84	5	60 <				5 12				0.08			360		0.03		0 6						32 0.04				10000
Pb129a		12.1	0.82	5	66 <				5 12					4 <2		385		0.03	8 41		291					32 0.04				10000
Pb129a		12.2			66 <				6 10				0.10	4 <2	2 0.68	375	3	0.03	5 42	20 62	258	0.81	15 <1	<10	<5	32 0.05	5 <5	18 5	2 >	10000
Pb129a		11.7	0.81	5	64 <	1 <5	0.45	55	6 10	1418	1.65	<5	0.09	4 <2	2 0.67	370	3	0.02	5 41	0 6	189	0.79	15 <1	<10	<5	32 0.05	5 <5	18 5	2	9974
ICP: Aqua R	legia Digest	/ ICP-	AES Fi	nish.																C	\geq	2		1						


NM/PS df/1_1001AS XLS/10

ECO TECH LABORATORY LTD. Norman Monteith B.C. Certified Assayer

APPENDIX II

Key Historical Maps

Cohen Incline area (from Holland, 1948)

Note: The bottom left of the map where Holland labeled "fine gold panned here" is the location of the 2010 season C1 to C3 trenches. This is the location where, at a lower elevation (due to cut and fill of road work) Angelique Justason also panned gold and obtained good assays in from the main Cohen Vein. Parallel narrower veins also exist in the vicinity.

		Location/Identi	fication	
MINFILE Number:	093H 037	National	Mineral Inventory Nu	mber: 093H4 Au5
Name(s):	PERKINS			
	BURNS MOUNTAIN	N, CARIBOO RAINBOW GOLD MINES	S, COHEN, GALENA, I	BEAU
Status:	Past Producer		Mining Division:	Cariboo
Mining Method	Underground		Electoral District:	Cariboo North
Regions:	British Columbia		Forest District:	Quesnel Forest District
BCGS Map:	093H002			
NTS Map:	093H04E		UTM Zone:	10 (NAD 83)
Latitude:	53 02 40 N		Northing:	5878035
Longitude:	121 40 32 W		Easting:	588790
Elevation:	1585 metres		Lusting.	200770
Location Accuracy:	Within 500M			
Comments:	Perkins adit.			
		Mineral Occur	rence	
			<i>cncc</i>	
Commodities:	Gold, Silver, Lead, Zinc			
Minerals	Significant:	Gold, Galena, Pyrite		
	Associated:	Quartz, Ankerite		
	Mineralization Age:	Unknown		
Deposit	Character:	Vein		
	Classification:	Hydrothermal, Epigenetic		
	Туре:	I01: Au-quartz veins		
		Strike/Dip:	020/70W	
	Comments:	One fracture set hosting veins strikes		s 70 degrees west.
		Host Roc	k	
Dominant Host Roo	k: Metasedimenta	ıry		
Stratigraphic Age Proterozoic-Paleoz.	Group Snowshoe	Formation Undefined Formation	Igno 	eous/Metamorphic/Other
Isotopic Age		Dating Method	Material Dated	
	artzite, Argillaceous Quartz			
Comments: Th	e Snowshoe Group is (?)Ha	adrynian to Paleozoic in age.		
		Geological Se		
Tectonic Belt:	Omineca	Physiographic Are	ea: Quesnel H	ighland
Terrane:	Barkerville			
			~	
Metamorphic Type	: Regional	Relationship:	Syn-mineralization	

Inventory

No inventory data

		Summary Production		
		Metric	Imperial	
	Mined:	9 tonnes	9 tons	
	Milled:	0 tonnes	0 tons	
Recovery	Gold	311 grams	10 ounces	

Capsule Geology

The Perkins vein occurs within the Barkerville Terrane of the Omineca Belt. The Barkerville Terrane is in thrust contact with Triassic Quesnellia Terrane rocks to the west and Hadrynian to Lower Paleozoic Cariboo Terrane rocks to the east. The Barkerville Terrane in this region is underlain by the dominantly metasedimentary rocks of the Hadrynian to Lower Paleozoic Snowshoe Group. In this area the Snowshoe Group comprises limestone, phyllite and quartzite. These rocks have been regionally metamorphosed to greenschist facies.

The area is underlain by silver-grey sericitic quartzite, fissile grey quartzite and thinly laminated argillaceous quartzite. These strike 155 to 160 degrees and dip 15 to 40 degrees to the east. Quartz veins occupy two fracture sets, one strikes 15 to 25 degrees and dips 70 degrees west and the other strikes 50 to 60 degrees. The veins carry ankerite, pyrite, galena and free gold. Higher gold values appear to be related to abundant pyrite. The veins vary in width up to about 60 centimetres. In 1902 recorded production was 311 grams of gold. Trenching on the Perkins vein in 1981 resulted in a high assay of 45.5924 grams per tonne gold, 68.903 grams per tonne silver, 2.78 per cent lead, 0.97 per cent zinc (Assessment Report 8820).

HISTORY

In 1870, the discovery of auriferous quartz veins occurred

In 1878, J.C. Beedy selectively mines veins from surface and processed some ore using a quartz mill at Van Winkle. The veins contained high grade gold in association with pyrite and galena across of about 30 centimetres.

In 1880, J. Reid acquired the property after the death of J.C. Beedy: The Reid Adit was driven as a crosscut to intersect the Beedy veins 75 feet below the surface showings The adit was collared at an elevation of 5062 feet and driven on an azimuth of 108 degrees for a distance of 118 metres. A quartz vein (probably the central vein) about 30 cm in width, striking 205 degrees and dipping 62 degrees NW was drifted to the north for 6 metres at distance of 103 metres from the portal. A raise was driven to surface and probably some stoping was carried out on the vein. A grab sample of the vein in the adit assayed 13.7 grams per tonne gold and one of clean pyrite from the Reid Adit dump assayed 36.34 grams per tonne gold (Holland, 1948 (Bulletin 26)).

The Cohen veins, 457 metres northeast of the Perkins veins were mined prior to 1885. Workings, between elevations of 1600 and 1615 metres consist of several open cuts with associated shafts and mine dumps. Reports indicate that the shaft on the Cohen Incline was 21 to 27.5 metres deep. The open cuts were driven into the hillside along strike of veins less than 30 centimetres in width and with orientations 065 degrees/75 degrees southeast, 205 degrees/65 degrees west arid 190 degrees dipping steeply to the west. The veins contain high grade gold mmeralization in association with galena, pyrite and sphalerite.

Work on the Galena vein. Located at an elevation of 1580 metres and about 200 metres northeast of the Perkins veins, was probably also carried out at about his time. The original workings consisted of a mine dump an open cut driven northwest for 24 metres and a shallow drift of a vein oriented 230 degrees/55 degrees northwest for 24 metres. High grade gold mineralization with gold and silver was reported in association with pyrite. galena and sphalerite in a vein less than 45 centimetres in width.

It was reported that by 1895, E. Perkins had selectively mined the Beedy veins and processed ore using an arrastre for a number of years.

In 1902, C.J. Seymour Baker arid A.J.R. Atkins recovered about ten ounces of gold from ten tons of ore treated at the Government Reduction Works near Barkerville

In 1919, C.J. Fuller and D. Hawes acquired the property after the death of E Perkins.

In 1932, Burns Mountain Gold Quartz Mining Company Ltd acquired the property and extended the Reid Adit 15 metres and drove the Burns Mountain Adit as a crosscut to intersect the Perkins veins 84 metres below the surface showings. This adit was collared at an elevation of 1476 metres and driven 521 metres on an azimuth of 327 degrees and 120 metres on an azimuth of 284 degrees. A vein striking 197 degrees and dipping 70 degrees west was intersected 46 metres west of the Perkins showing and on to the north for 38.7 mettres.

Sometime after 1932 (and before 1946), R.E. MacDougall, W.E. North and J.J. Gunn of Wells relocated the ground after the Burns Mountain Quartz Mining Company Ltd allowed the property to lapse.

In 1946, Cariboo Rainbow Gold Quartz Mines Ltd completed 1066 metres of stripping and trenching using a bulldozer. The stripping showed that the Perkins area consisted of three narrow veins about 15 metres apart over a composite strike of about 120 metres. Shafts are associated with the west and central veins. The northern 46 metres of the central vein is marked by stopes caved to surface and was probably the source of most ore mined from the property

In 1979, L&G Resources Ltd contracted C. Ball to conduct one day of field work on the property and submitted a report of his recommendations.

In 1980, Spectrum Industrial Resources Limited trenched, sampled and mapped the Cohen, Galena and Perkins showings at a scale of 1:200; completed about 315 meters of diamond drilling in three holes; one on each showing. Drill hole S80-1 intersected a zone of vein quartz and fracturing (core length of seven meters) thought to be the Perkins structure about twenty meters above the Bums Mountain Adit but no gold values were obtained.

About 1990, M. Poshner excavated the main showings. The Perkins area is marked by a trench 6 metres deep and 180 metres in length- The Galena vein is trenched for about 90 metres. The Cohen veins are in a stripped area about 180 by 45 metres.

Firstline Recovery Systems Inc. purchased the Burns I mineral claim from Doug Merrick of Wells in 1998 and staked more property in 1999. The company carried out some surface prospecting, completed an orientation — type soil geochemistry survey of about 150 samples covering the area between the Perkins, Cohen and Galena showings and ran several magnetometer and VLF geophysical survey lines across the Perkins and Galena showings. Vein structures show a distinct VLF signature. Gold values of 100-200 ppb in soils mark mineralized structures. In 2000, Firstline Recovery Systems Inc increased its property land holding by staking. In 2002, 734 line kilometers of existing grid was surveyed for self potential geophysical signatures in the vicinity of the historical Cohen, Beedy and Galena showings.

In 2006, Gemco Minerals Inc acquired Mount Burns claim group from Firstline Recovery Systems Inc in 2006. An aggressive trenching and prospecting program followed up with geophysics was conducted on the western parts of the large property.

	Bibliography											
EMPR AR 1878-3	EMPR AR 1878-374; 1880-425; 1886-236; 1914-66; 1922-117; 1932-91; 1933-125											
EMPR ASS RPT 8	EMPR ASS RPT 8039, *8820, 13252, 15947, 27684, *28776, 30716, 31465											
EMPR BC META	EMPR BC METAL MM00453											
EMPR BULL 1, p	EMPR BULL 1, p. 63; *26, pp. 43-49											
EMPR EXPL 198	MPR EXPL 1980-327											
EMPR FIELDWO	RK 2000, pp. 169-190											
EMPR OF 2004-1	EMPR OF 2004-12											
EMPR PF (Suther	land Brown, A., Holland	l, S.S., (1956) The Stru	cture of the Northeast Cariboo District, in	93H General Property File)								
GSC MAP 1424A												
GSC MEM 149, p	p. 183,209; 181, p. 34											
GSC SUM RPT 19	932A, p. 54; 1933A, p. 4	2										
GCNL #16,#114,#	175,#220, 1980											
N MINER Apr.9,	N MINER Apr.9, 1981											
Date Coded:	1985/07/24	Coded By:	BC Geological Survey (BCGS)	Field Check:	Ν							
Date Revised:	2010/12/06	Revised By:	Sarah Meredith-Jones(SMJ)	Field Check:	Ν							

MINFILE Detail Report BC Geological Survey Ministry of Energy, Mines & Petroleum Resources

		Location/Identi	fication	
MINFILE Number:	093H 056			
Name(s):	STANDARD LOCA	<u>FION</u>		
	LUCKY CAP, SIDE	LOCATION		
Status:	Showing		Mining Division:	Cariboo
status:	Showing		Electoral District:	Cariboo North
Regions:	British Columbia		Forest District:	Quesnel Forest District
BCGS Map:	093H002		Forest District.	<pre></pre>
NTS Map:	093H04E		UTM Zone:	10 (NAD 83)
Latitude:	53 03 17 N		Northing:	5879193
Longitude:	121 39 48 W		Easting:	589588
Elevation:	1687 metres			
Location Accuracy:	Within 500M			
Comments:	Location of shaft-nor	theast end of Lot 63.		
		Mineral Occur	rence	
o re	Gold			
Commodities:	Solu			
Minerals	Significant:	Gold, Galena, Pyrite		
	Associated:	Quartz		
	Mineralization Age:	Unknown		
	8			
Deposit	Character:	Vein		
	Classification:	Hydrothermal, Epigenetic		
		Strike/Dip:	030/75W	
	Comments:	Veins up to 1.5 metres wide strike 30	to 35 degrees and dip 75	5 degrees west.
		Host Roc	ek	
Dominant Host Roo	ck: Metasedimenta	ry		
Stratigraphic Age	Group	Formation	Ign	eous/Metamorphic/Other
Proterozoic-Paleoz.	. Snowshoe	Undefined Formation		
T		D-G M-4h-d		
Isotopic Age		Dating Method	Material Dated	
Lithology: Qu	artzite, Argillaceous Schist			
Comments: Sn	owshoe Group is (?)Hadryn	ian to Paleozoic in age.		
	1 () 5	Geological S	otting	
Tectonic Belt:	Omineca	Physiographic Ar		ighland
Terrane:	Barkerville	i nysiographic Ar		- <u>D</u>
1.11.4117.	Durker ville			
Metamorphic Type	: Regional	Relationship:	Syn-mineralization	
Grade:	Greenschist	P		
		Inventor		

Capsule Geology

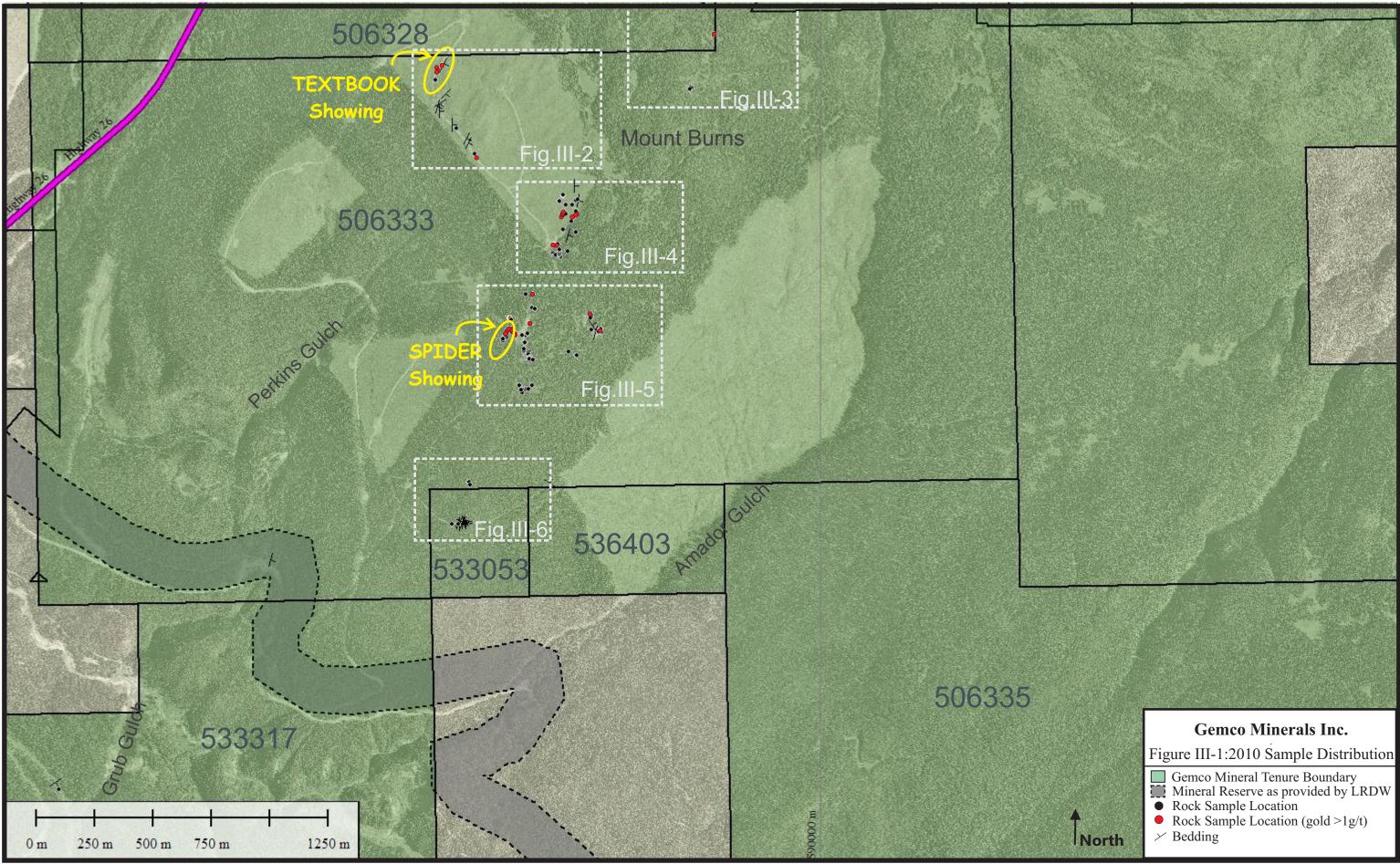
The Standard Location showing lies within the Barkerville Terrane of the Omineca Belt. The Barkerville Terrane is in thrust contact with Triassic Quesnellia Terrane rocks to the west and Hadrynian to Lower Paleozoic Cariboo Terrane rocks to the east. The Barkerville Terrane in this region is underlain by the dominantly metasedimentary rocks of the Hadrynian to Lower Paleozoic Snowshoe Group. In this area the Snowshoe Group comprises limestone, phyllite and quartzite. These rocks have been regionally metamorphosed to greenschist facies.

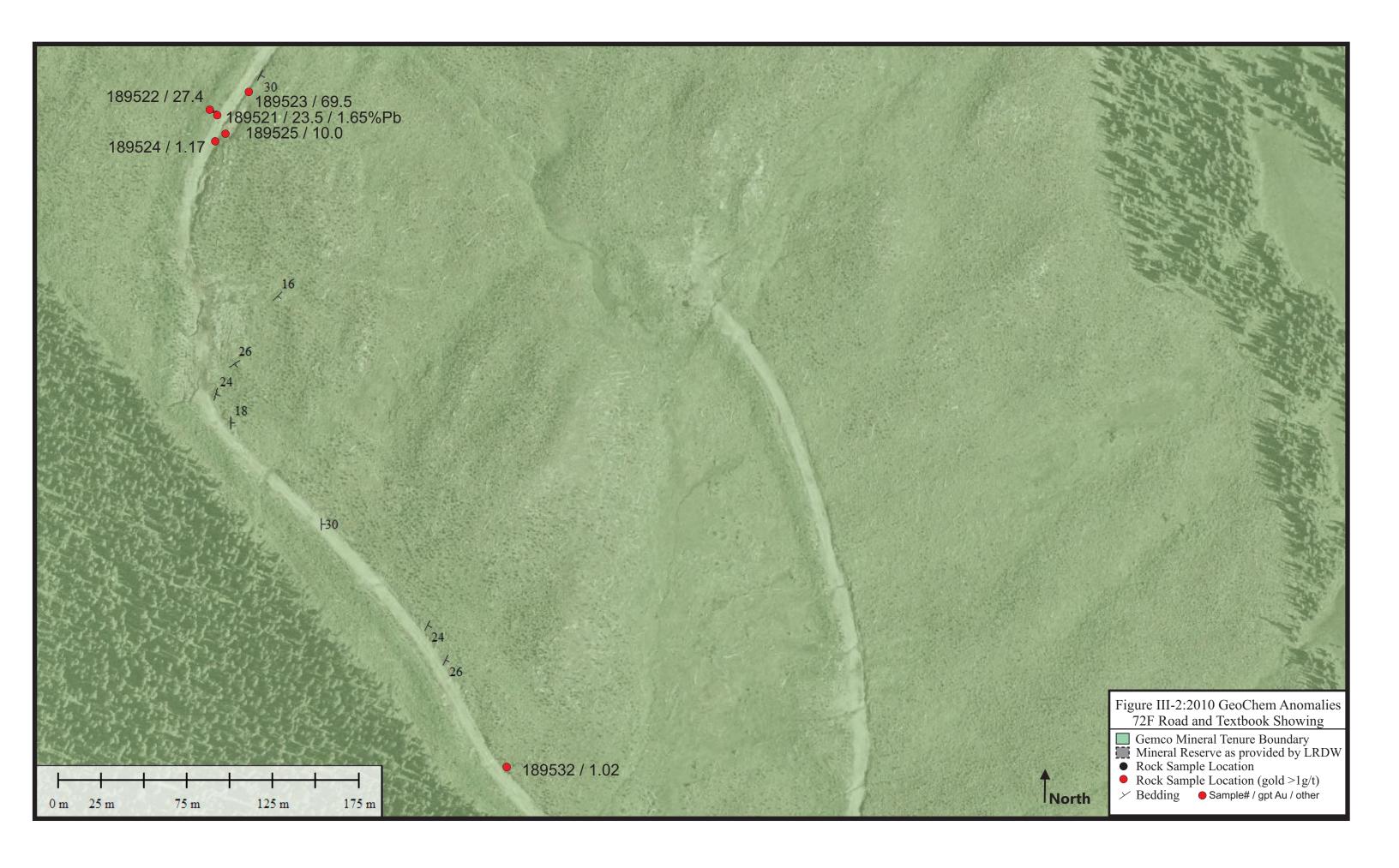
Quartzites with some interbedded thin layers of argillaceous schist underlie the claims. Cutting these rocks are three approxi- mately parallel quartz veins which strike at 030 to 035 degrees and dip 75 degrees west with widths up to about 1.5 metres. Early reports indicate the presence of pyrite, galena and visible gold in some of the quartz veins. However, later investigations report only pyrite mineralization with trace amounts of gold and silver.

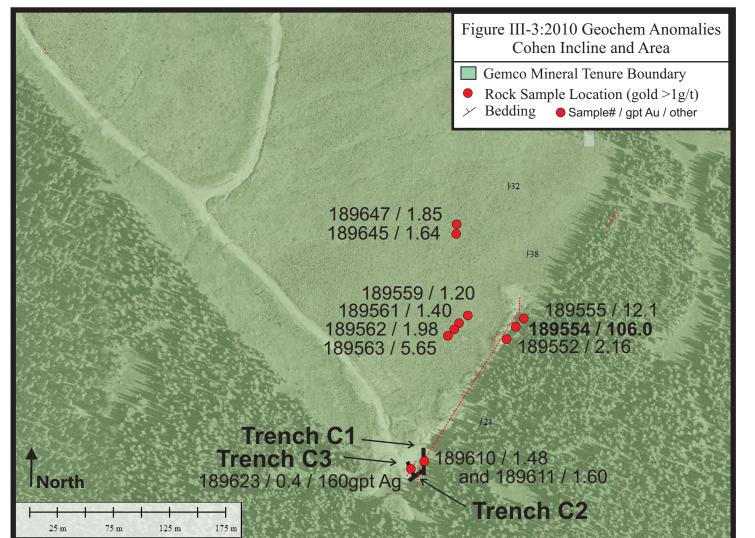
Bibliography

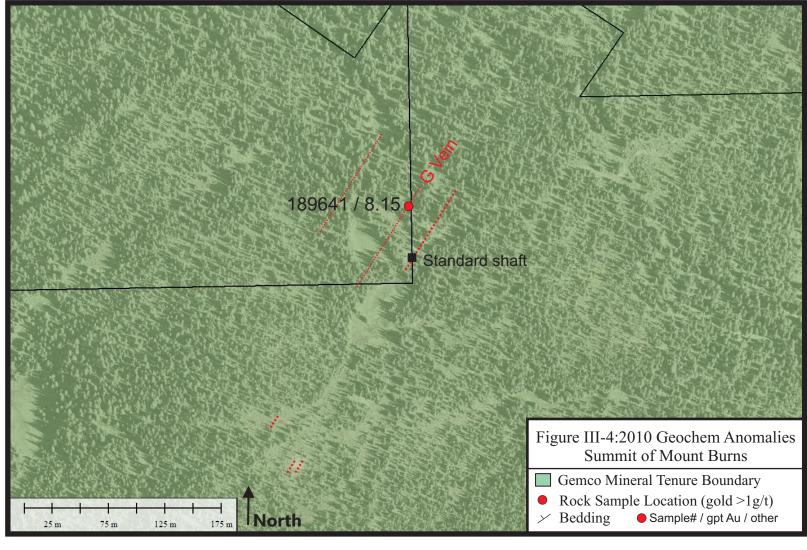
EMPR AR 1883-403; 1884-418; 1886-198,222,236; 1887-257; 1896-556 EMPR BULL *26, pp. 49,50 EMPR OF 2004-12 EMPR PF (Sutherland Brown, A., Holland, S.S., (1956) The Structure of the Northeast Cariboo District, in 93H General Property File) GSC ANN RPT v. III, part C, 1889 p. 38 GSC MAP 1424A GSC MEM 149 1985/07/24 BC Geological Survey (BCGS) Ν **Date Coded:** Field Check: Coded By: David G. Bailey(DGB) **Date Revised:** 1989/02/23 **Revised By:** Field Check: Ν

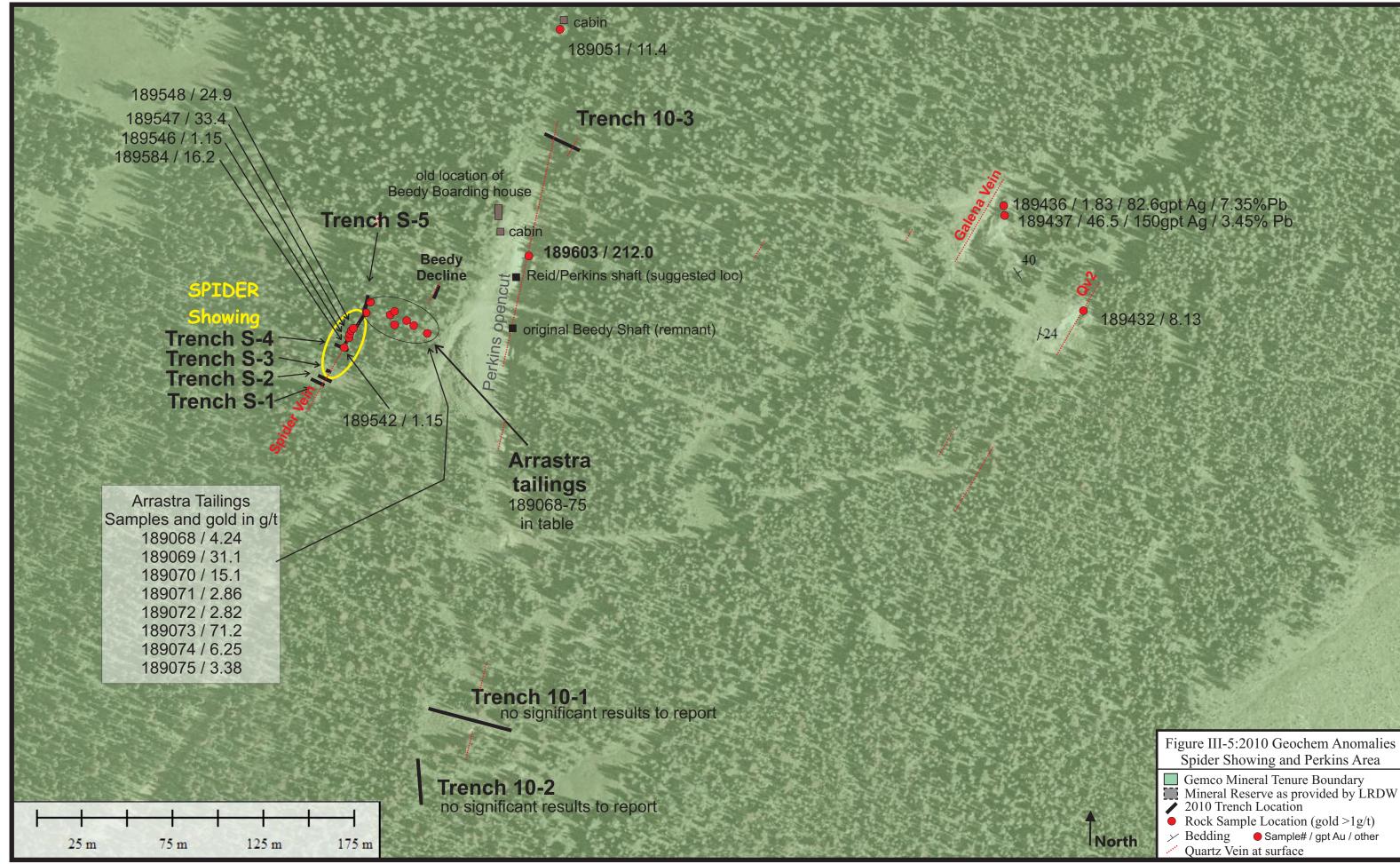
APPENDIX III


2010 Trenching and Sample Location Maps


2010 Summary of Trenching


(locations plotted in the attached maps)


NAME	LENGTH (metres)	GENERAL LOCATION	NOTES
Amador	61	Road to Long X-Cut	adjacent road: follow up on silver in soils
C1	21	Lower Cohen on large flat pad	no new disturbance. Panned gold from rock and gouge
C2	11	Lower Cohen on large flat pad	no new disturbance
C3	10	Lower Cohen on large flat pad	no new disturbance
S1	5	100m west of Perkins open cut	Spider Vein showing
S2	5	100m west of Perkins open cut	Spider Vein showing
S3	1	100m west of Perkins open cut	no samples taken here
S4	5	100m west of Perkins open cut	Spider Vein showing: Visible gold
S5	19	100m west of Perkins open cut	Spider Vein showing: Visible gold
10-1	13	South of Perkins open cut	no significant mineralization
10-2	49	South of Perkins open cut	no significant mineralization
10-3	20	50m North of Perkins opencut	north extension of Perkins set of veins
	000		


220 TOTAL TRENCHING in 2010

