FIELD SEASON 2010

GEOLOGY AND GEOCHEMISTRY

LETAIN PROPERTY, BC

(NTS 104I/07)

 $58^\circ\,33'$ N, $128^\circ\,66'$ W

519,900E, 6,465,500N; Zone 9 (NAD 83)

Liard Mining Division

BC Geological Survey Assessment Report 32341

First Point Minerals Corp.

Suite 906 – 1112 West Pender Street

Vancouver, BC, V6E 2S1

By:

Marie-des-Neiges Gagnon, M.Sc.

Ron Britten, Ph.D., P.Eng.

March 18, 2010

EXECUTIVE SUMMARY

The Letain claims cover a portion of Cache Creek Complex, which consists of obducted ultramafic rocks variably deformed and serpentinized and associated intrusive, volcanic and sedimentary rocks. Through regional reconnaissance mapping and sampling, First Point Minerals Corp discovered several areas containing fine and coarse Ni-Fe alloy grains in the northern part of the property, and smaller grains in the southern part of the claim group.

Follow up fieldwork in 2011 will include fly camp based reconnaissance-level mapping and sampling survey to assess for awaruite mineralization in unexplored parts of the property as well as more detailed mapping and sampling where Ni-Fe alloy occurrences were discovered in 2010.

1.	INTRO	DUCTION	.4
	1.	Background	1
	2.	Location and Access	.4
	1.3	Claim Data	.5
	1.4	History	.6
	1.5	Current Work	6
2.	REGION	NAL GEOLOGY	.7
3.	PROPE	RTY GEOLOGY1	.1
	1.	Units	11
	2.	Structure	12
	3.	Alteration1	3
	4.	Mineralization	13
4.0	GEOCH	EMISTRY1	3
	4.1	Rocks	13
	4.2	Stream Sediments1	.5
5.0	CONCL	USIONS	8
6.0	RECOM	IMENDATIONS FOR FUTURE WORK18	3
7.0	EXPEND	DITURE1	9
REFERE	NCES	2	0
AUTHO	R STAT	EMENT AND QUALIFICATIONS	21
APPEN	DIX I		23
APPEN	DIX II		28
LIST OF	FIGUR	ES	
Figure	1: Locat	ion map of Letain Property in northern BC	.4
Figure	2: Locat	ion of Letain Claims	.5
Figure	3: Distri	bution of Terranes in Dease Lake and Cry Lake areas	8
Figure	4a: Geo	logical map of the Letain property area	9
Figure	4b: Lege	end of the geological map1	.0
Figure	5: Geolo	ogy map of the Letain property1	2
Figure	6: Local	isation of rock samples and distribution of awaruite grain size1	4
Figure	7: Ni val	lues (ppm) for rock samples1	5
Figure	8: Ni val	lues (ppm) for silt samples1	6
Figure S	9: Local TABLES	isation of cobble samples and distribution of awaruite grain size1 S	7
Table 1	: Miner	al Title Claim for Letain Property	5
Table 2	: Expen	ditures1	9
	•		3

TABLE OF CONTENT

INTRODUCTION

1.1 Background

The Letain claim group covers an area of 2292 ha and was staked by First Point Minerals Corp. on February 23rd 2010 to explore and evaluate the potential of Ni-Fe alloys hosted in ultramafic rocks.

1.2 Location and Access

The Letain property is located approximately 80km ESE of Dease Lake in northern BC (Figure 1), within the Cassiar Mountains. The property is located about 18km north of Stikine River National Park, east of Letain Lake. Access to the property is provided by tractor roads and helicopter.

Figure 1: Location map of Letain property in northern BC.

1.3 Claim Data

This assessment report covers 6 claims (listed in Table 1) for a total area of approximately 23 square kilometers. Claims are located in Figure 2, centered on coordinates 58° 33' N, 128° 66' W or 519,900E, 6,465,500N (Zone 9, NAD 83) on NTS map 104I/07.

Tenure Number	Туре	Claim Name	Good Until	Area (ha)
706968	Mineral	LET 1	20130223	425
706969	Mineral	LET 2	20130223	425
706970	Mineral	LET 3	20120223	425
706971	Mineral	LET 4	20130223	425
706973	Mineral	LET 5	20130223	391
706974	Mineral	LET 6	20120223	204
			Total	2295

Table 1: Mineral Title Claims for Letain Property.

Figure 2: Location of Letain Claims with tenure numbers that correlate to Table 1.

1.4 History

Numerous prospectors and companies have investigated the area around and within Letain property for jade (Nephro-Jade Canada, assessment report 5815), asbestos (Cassiar Asbestos, assessment report 6470), placer gold (Bullion Creek Mines, minfile 1041 011) and massive copper mineralization (Noranda Mining, assessment report 6686). The most recent work done near the Letain property was by Noranda Mining in 1977. They conducted exploration and development work southeast of the Letain property, which included prospecting, mapping, geochemical soils and rocks surveys, geophysical surveys and drilling programs.

1.5 Current Work

Geologists Henry Marsden and Marie-des-Neiges Gagnon and field assistants Garth Thomson and Ian Carr explored the Letain claims for 6 days (July 12th - 17th). Initial regional exploration involved silt and rock sampling and basic geological mapping.

Data from the Garmin GPS 60 unit (projection NAD 83 zone 9) was downloaded using Garmin MapSource software and copied into an excel spreadsheet. The sample ID and location were later matched with technical data corresponding to the rock and silt samples location and mineralogy (Appendix I and II). The data was imported into MapInfo for spacial plotting. All other technical outcrop, structural and interpretation were compiled in MapInfo.

2. REGIONAL GEOLOGY

The Letain property covers part of the Cache Creek Terrane within the tectonic belt of the Intermontane. It represents a tectonically emplaced ophiolite and island arc sequence dating from Devonian to Early Jurassic. It is separated from the volcanic and sedimentary rocks of the Quesnellia Terrane by the Thibert fault to the north and the Kutcho Fault to the west (Figure 3). The transition between the Cache Creek Terrane and the southern sediments and volcanics of Stikinia Terrane is marked by the King Salmon Fault.

The ophiolitic sequence of Cache Creek Terrane is named Cache Creek Complex (Figure 4) and ranges between Mississipian and Triassic in age. The ultramafic units represent the basal sequence (upper mantle, lower crust) of the ophiolite. They are composed of variably serpentinized peridotite and dunite, recognized by their tan orange color, and gabbros. The upper and younger part of this ophiolite is composed of volcanics and sediments. The contact between the different units is commonly faulted.

Partially serpentinized peridotite is the most abundant lithology within the ultramafic units. It exhibits a dark green to black color, 10-20% orthopyroxenes, minor augite and traces of chrome spinel. Weathered surfaces are orange/brown. Locally, pyroxenes can have a creamy alteration. Some outcrops contain numerous asbestos veins or veinlets. Contact with volcanic rocks is marked by orange weathered dunite, while contact between ultramafics and sediments is characterized by the presence of listwanite. Numerous jade occurrences have been found within the ultramafics, as well as some rodingites (Gabrielse, 1998).

Mafic intrusive rocks and volcanics are associated with ultramafics. Intrusive rocks include gabbro, hornblende-rich gabbro and diorite, and exhibit medium to coarse grained and pegmatitic textures. Layered gabbros show mafic-rich and felsic-rich layers. Mafic minerals are often completely altered to actinolite and feldspar to albite. Mafic volcanics are characterized by very fine grained or vesicular texture and dark green weathering (Gabrielse, 1998).

Sediments composing the Cache Creek Complex include phyllite, limestone and chert. They are thinly bedded, show dark/grey weathering and are sometimes stained with iron oxides. Muscovite could be an important constituent of the phyllites, giving the rocks a particular silver shine. Limestone, dolomitic limestone and dolostone form discontinuous bodies within the ultramafics (Gabrielse, 1998).

Figure 3: Distribution of Terranes in Dease Lake map (104J) and Cry Lake map (104I) areas (Gabrielse, 1998).

Figure 4a: Geological map of the Letain area (after Gabrielse, 1998), and FPM contour claims in black.

CACHE CREEK TERRANE

```
JURASSIC
    LOVER JURASSIC
      INKLIN FORMATION: penetratively cleaved phyllitic slate,
greyvacke, pebble and cobble conglomerate; J<sub>Id</sub>, diamictite,
possibly part of Kutcho Formation
 JE
TRIASSIC
    UPPER TRIASSIC
       SINVA FORMATION: limestone, commonly argillaceous and fetid
TS
       KUTCEO FORMATION: basaltic to rhyolitic schist (flows, breccia,
TK
      crystal tuff); fine grained volcanic sediments, basic schist,
conglomerate (may be basal Inklin Formation, in part)
MISSISSIPPIAN TO TRIASSIC
         CACHE CREEK COMPLEX (HTK, PT, PPR, MPH, MPc, MPv,
         MPg, MPu)
MIK KEDAEDA FORMATION: chert, cherty argillite; minor argillite,
siltstone and volcanic sandstone; minor volcanic rocks and
metamorphosed equivalents; MIK<sub>SV</sub>, sediments and volcanics,
undivided; MIKg, greyvacke, slate, chert; may
be entirely of Late Triassic age 7
    PERHIAN
        TESLIN FORMATION: massive limestone, minor mafic volcanics
 PT
        FRENCE RANGE FORMATION: basalt, tuff, agglomerate
 PFR
    UPPER HISSISSIPPIAN TO PERMIAN
       BORSEFEED FORMATION: limestone, dolomitic limestone
 MPH
        Limestone, age unknown
 MPc
        Mafic volcanics, greenstone, age unknown
 MPV
MPg Coarse grained to pegmatitic gabbro, diorite; MPgv, fine grained, foliated gabbro, greenstone; may include small serpentinite bodies
        Peridotite, dunite, pyroxenite, generally serpentinized;
MPu locally includes pods of nephrite jade and small bodies of
        listvanite, rodingite and talc
```

Figure 4b: Legend of the geological map (Gabrielse, 1998).

3. PROPERTY GEOLOGY

3.1 Units

Figure 5 displays geology from 2010 fieldwork and data compiled from Gabrielse (1998).

The main ultramafic body of the Letain property measures approximately 3.5km from east to west, and 1km from north to south. The main units that compose this body are peridotite and dunite.

Peridotite, the most common rock type of the property, exhibits varying degrees of serpentinization. Fine to medium grained olivines compose 65-90% of this rock type, while the abundance of fine to coarse grained pyroxenes range from 10-35%. Orthopyroxenes are the most common pyroxenes encountered. They are characterized by rusted alteration and a tabular shape, and their pale tan color makes them easily distinguishable from the darker orange/brown color of dunite. Peridotites are slightly to strongly magnetic. Occurrences of tectonized peridotite have also been observed. They exhibit moderately foliated textures caused by ductile deformation, where pyroxenes are elongated in the foliation.

Dunite lenses have been encountered within the Letain claims. Weathered surfaces are typically orange/brown. They contain less than 5% pyroxenes, and chromite sometimes occur as an accessory mineral. Serpentine alteration varies from moderate to strong. Dunites are generally massive and less magnetic than peridotites.

Two main bodies of intrusive rocks have been observed on the Letain property: one in the north and one in the south. The southern occurrence is a leucogabbro, composed of variable amounts of pyroxene phenocrysts and local decimetric to metric pyroxenite layers. The contact between this leucogabbro and the ultramafic body located to the west is strongly sheared. It is also gradual, going from ultramafic dunite to clinopyroxenite and cpx-rich leucogabbro. Clinopyroxenes show a characteristic dark green alteration. The intrusive body in the northern part of the property is a fine grained melanogabbro. Smaller mafic volcanic occurrences have also been encountered in this area.

Sedimentary rocks form a large panel in the middle of the property. Lithologies include limestone and phyllite. The presence of micas in the phyllite exhibits a shiny grey luster. Limestone bedding is parallel to the foliation.

Figure 5: Geology map of the Letain property after Gabrielse (1998) and fieldwork 2010.

3.2 Structure

Microfractures in hand samples indicate that the ultramafics underwent multiple breakage and brecciation events prior to and during serpentinization. Asbestos showings within the Letain property area indicate that breakage of the rocks also occurred in a continental environment during the final stage of obduction on the continental margin. Post alteration fault and shear zones are marked by slickensides, gouge and breccia textures. Bedding of limestone is parallel to the main foliation, which is approximately W-E. Contacts between the different units are faulted.

3.3 Alteration

Two types of alteration are dominant within the Letain property: serpentinization and Fe-Carbonate/silicification. Normally moderate to strong serpentinization alters peridotite and dunite. Fe-Carbonate and silicification have been observed at a local scale, and often occur together. Some dunite samples show only moderate to strong silicification.

3.4 Mineralization

Awaruite mineralization occurs in 2 different habits: fine Ni-Fe alloys or larger composite grains. Fine awaruite grains (10-100 μ m) are disseminated in the serpentine matrix. Ni-Fe alloys have a highly reflective white/silver color. Larger composite grains (100-300 μ m) are a mixture of Ni-Fe alloys and Ni-Fe sulphides, with up to 3 different phases in a single grain.

4. GEOCHEMISTRY

4.1 Rocks

Of the 45 rock samples collected from outcrop during the 2010 field season, 22 were sent to Acme for detailed analyses. (Rock samples in Figure 6 correspond to descriptions in Appendix I). The analytical technique used by Acme to analyze the rock samples consists of a strong multi-acid digestion of most minerals using an ICP-ES analysis (package 1E).

Samples from the north-east and north-west parts of the property have awaruite grains of up to 200 microns in size, and strong Ni values ranging between 2100 and 3000ppm (Figure 7). Most of the samples collected in the southern part of the property contain no or very fine grained awaruite, and Ni values below 2100ppm. Geochemical analyses conducted on selected samples are presented in Appendix I.

Figure 6: Locations of rock samples and distribution of awaruite grain size of the samples collected within the Letain property.

Figure 7: Total Ni values (ppm) of rock samples collected within the Letain property.

4.2 Stream Sediments

Six stream sediments collected during the 2010 field work sent to Acme Laboratory in Vancouver, where samples were sieved to -80 mesh and analyzed using a strong 4-acid digestion using ICP-ES analysis or package 1E. Results are listed in Appendix II.

Samples collected in the property's northern section recorded strong anomalous Ni values (971, 1133, 1150 ppm). All samples in the southern part of the claim group had values below 700 ppm (Figure 8).

Figure 8: Silt sample locations within the Letain property.

Figure 9: Total Ni values (ppm) of the silt samples collected within the Letain property.

5. CONCLUSIONS

The Letain property covers part of the Cache Creek Complex, which is an obducted ophiolitic sequence. The different units observed within the claims are ultramafics (peridotite, dunite), sedimentary rocks (phyllite, limestone), intrusive rocks (gabbro) and mafic volcanics. Early exploration work demonstrates that ultramafics host natural occurring Ni-Fe alloys And that fine to medium awaruite grains are disseminated in the serpentinized host rock.

6. **RECOMMENDATIONS FOR FUTURE WORK**

Field work in 2011 will include reconnaissance-level mapping and stream sediments sampling in unexplored areas of the property, and detailed mapping and sampling in awaruite known occurrences in the northern part of the property. This work will require fly camps and helicopter support.

7. EXPENDITURE

Exploration Work type	Comment	Days			Totals
Personnel (Name)*/Position	Field Days (list actual days)	Days	Rate	Subtotal*	
Marie des Neiges/Geologist	July 11-16	6	\$300,00	\$1 800,00	
Henry Marsden/Geologist Consult	July 11-16	6	\$550,00	\$3 300,00	
Ian Carr/Field Assistant	July 11-16	6	\$200,00	\$1 200,00	
Garth Thompson/Field Assistant	July 11-16	6	\$175,00	\$1 050,00	
				\$7 350,00	\$7 350,00
Office Studies	List Personnel				
Rock/PTS exam, data input, inter	Marie des Neiges	1	\$300,00	\$300,00	
Rock sawing, data input	Garth Thompson	1	\$175,00	\$175,00	
Report preparation	Marie des Neiges	2	\$300,00	\$600,00	
				\$1 075,00	\$1 075,00
Ground Exploration Surveys	Area in Hectares/List Personnel				
Geological mapping	1500 hectares/Marie des Neiges & Henry Marsden				
Geochemical Surveying	Number of Samples	No.	Rate	Subtotal	
Stream sediment		6	\$20.00	\$120.00	
Rock		22	\$20,00	\$440.00	
		22	\$0.00	\$0.00	
			\$0,00	\$560.00	\$560.00
Other Operations	Clarify	No	Rate	Subtotal	<i>4000,00</i>
Polished Thin Sections (PTS)	cium y		\$0.00	\$0.00	
Other (specify)			\$0,00	\$0,00	
other (specify)			\$0,00	\$0.00	\$0.00
Transportation		No.	Rate	Subtotal	1 - 7
Airfare	Vancouver to Prince George	3	\$450,00	\$1 350.00	
Truck rental		5	\$110,00	\$550.00	
Freight			,	\$0.00	
Helicopter (hours)		0.7	\$1,022,68	\$715.88	
Helicopter fuel		0,1	¢1 022,00	\$676.50	
Truck fuel				\$500.00	
		1 1		\$3 792 38	\$3 792 38
Accommodation & Food	Rates per day	No	Rate	Subtotal	<i>\$3752,3</i> 0
Hotel		4	\$80.00	\$320.00	
Camp		- -	\$80,00	\$0.00	
Camp Breakfast Dinner		6	\$25,00	\$150.00	
Crocorios/Comsumables		2	\$20,00	\$600.00	
Glocenes/Combultables		5	\$200,00	\$000,00	¢1 070 00
Miscellaneous		No	Pate	Subtotal	φ1 07 0 _/ 00
Field Caar/Supplies		NU.	Rate	\$300.00	
	Catabana	1	¢75.00	\$300,00	
Dedies	A hand hald radios	1	\$75,00	\$75,00	
			\$100,00	\$100,00	¢175 00
Equipment Destals		Nie	Data	\$475,00 Subtotol	₽ 475,00
		. OM	¢1E0.00	Sublocal	
		0	\$150,00	\$0,00	
KI-Kappameter meter		0	\$12,00	\$0,00	+0.00
				\$0,00	\$U,UU
TOTAL Expenditures				i	\$14 322,38

8. **REFERENCES**

British Columbia Geological Survey. Bullion Creek, *BC Ministry of Energy, Mines and Petroleum resources,* Minfile 104I 011.

Gabrielse, H. (1998). Geology of Cry Lake and Dease Lake map areas, North-Central Bristish Columbia, *Geological Survey of Canada*, bulletin 504, 147p.

McArthur, M.G. and Bradish, L. (1978). Geochemical and geophysical report Kutcho 1 to 6 mineral claim, Liard Mining Division, *BC Ministry of Energy, Mines and Petroleum resources,* Assessment report 6686.

Price, B.J. (1976). Drilling report on "Jade 1-6" claims, Liard Mining Division, *BC Ministry* of Energy, Mines and Petroleum resources, Assessment Report 5815.

Waugh, D.H. (1977). Drilling report on the Kutcho Creek Asbestos prospect, Liard Mining Division, *BC Ministry of Energy, Mines and Petroleum resources*, Assessment Report 6470.

AUTHOR STATEMENT AND QUALIFICATIONS

I, Marie-des-Neiges Gagnon, M.Sc. certifies that:

- 1. I reside at 860 DeNemours #302, Charlesbourg, Quebec, Canada.
- 2. I have degrees from the University of Quebec in Montreal, Quebec B.Sc. 2007 and M.Sc. 2010.
- 3. I have supervised all aspects of the field work done on the Letain property.
- 4. I have spent 6 field days on the Letain property and have supervised all aspects of the field work.
- 5. I have been an employee of First Point Minerals Corp. since 2010 and hold stock options in First Point Minerals Corp.
- 6. I consent to the filing and any publication of this Assessment Report.

This report March 18, 2011

Marie-des-Neiges Gagnon, M.Sc.

AUTHOR STATEMENT AND QUALIFICATIONS

I, Ronald M Britten, Ph.D., P.Eng. certifies that:

- 1. I reside at 3525 West 26th Street, Vancouver, British Columbia, Canada.
- I have degrees from the University of British Columbia B.Ap.Sc. 1974 and a Ph.D.
 1982 from the Australian National University, Canberra, Australia.
- 3. I am a registered member of the Association of Professional Engineers and Geoscientists of British Columbia (license #109865).
- 4. I have worked as an exploration geologist for more than 35 years in numerous countries, exclusively in the mining and mineral exploration industry.
- 5. I have supervised work done on the Letain property.
- 6. I have been an officer (VP Exploration) of First Point Minerals Corp. since 1996 and hold stock and stock options in First Point Minerals Corp.
- 7. I have read the definition of "qualified person" set out in National Instrument 43-101 and certify that by reason of my education, affiliation with a professional association and past relevant work experience, I fulfill the requirements to be a Qualified Person.
- 8. I consent to the filing and any publication of this Assessment Report.

This report March 18, 2011

Ron M Britten, Ph.D., P.Eng.

APPENDIX I - ROCK SAMPLE DATA

Minerals	awa mag serp sul-s	r-awaruite -magnetite -serpentine sulphide
Awaruite Size	1	<.00502
(millimeters)	2	0.02 – 0.05
	3	.05 – 0.10
	4	.12
	5	.24
	0	none
Percentage	r-rar tr-tr	re ace
	C-CO	mmon
	n-nc	one
Other	HS-h vlets vn-v	nand sample s-veinlets ein
Serpentinization	W-W	eak
	m-m	noderate
	s-str	ong

Sample	Date	Easting Northing Rock Type	Serp	Mag	Mag texture	Aw size	Aw range	Aw %	Sulphide Comment
10GCT027	2010-07-14 12:05	518087 6464224 dunite	2,5	3	agg	0	0	0	0
10GCT028	2010-07-14 13:28	517597 6464530 dunite	2,5	2	agg, vlets	1	1	tr	0
10HWM03	14-JUL-10 3:49:06PM	520182 6465495 peridotite	3,5	3	agg	1	1	r	0
10HWM04	14-JUL-10 4:20:24PM	519974 6465635 peridotite	4	2,5	agg	0	0	0	0
10HWM05	14-JUL-10 4:35:38PM	519962 6465689 peridotite	3,5	3	agg, vlets	0	0	0	0
10HWM06	14-JUL-10 4:52:21PM	519855 6465788 peridotite	3,5	3	vlets	0	0	0	0
10HWM07	14-JUL-10 5:11:57PM	519553 6465724 peridotite	3,5	3	agg	1	1	r	0
10HWM08	15-JUL-10 3:31:33PM	518979 6465893 peridotite	3	2,5	vlets	2	1 to 2	С	0
10HWM09	15-JUL-10 3:45:25PM	519098 6465992 peridotite	4	3	agg	1	1	tr	0
10HWM10	15-JUL-10 4:04:02PM	519261 6466139 peridotite	4	2,5	agg, vlets	0	0	0	r
10HWM11	15-JUL-10 4:25:22PM	519461 6466396 peridotite	3	2,5	agg, vlets	2	1 to 3	С	0
10HWM12	15-JUL-10 4:41:38PM	519632 6466632 peridotite	2	3	agg	0	0	0	r
10HWM14	15-JUL-10 5:27:07PM	518738 6466591 peridotite	2	2,5	agg	0	0	0	0
10HWM15	15-JUL-10 5:41:14PM	518586 6466284 peridotite	4	3	agg	0	0	0	0
10HWM17	16-JUL-10 10:55:35AM	520554 6466482 peridotite	3,5	2,5	agg	0	0	0	tr
10HWM18	16-JUL-10 12:03:45PM	520541 6466381 peridotite	4	3	agg	0	0	0	tr
10HWM19	16-JUL-10 12:24:19PM	520477 6466258 peridotite	2	3	agg	0	0	0	r
10HWM20	16-JUL-10 12:40:39PM	520386 6466097 peridotite	2,5	3	agg	0	0	0	0
10HWM21	16-JUL-10 1:05:05PM	520245 6465884 peridotite	3,5	2	agg	0	0	0	tr
10HWM22	16-JUL-10 1:25:39PM	520118 6466221 peridotite	3	3	agg	0	0	0	tr
10HWM23	16-JUL-10 1:44:41PM	519976 6466138 peridotite	3,5	3	agg, vlets	1	1	tr	0
10HWM24	16-JUL-10 2:05:45PM	520057 6466210 peridotite	3	3	agg	0	0	0	0

Sample	Date	Easting	Northing	Rock Type	Serp	Mag	Mag texture	Aw size	Aw range	Aw %	Sulphide	Comment
10HWM25	16-JUL-10 2:17:49PM	520007	6466507	peridotite	2	3	agg	0	0	0	0	
10HWM26	16-JUL-10 3:12:46PM	519981	6466335	peridotite	3	3	agg, vlets	0	0	0	tr	
10HWM27	16-JUL-10 3:23:42PM	519977	6466263	peridotite	2,5	2	agg, vlets	2	1 to 3	С	tr	
10HWM28	16-JUL-10 3:52:56PM	519927	6465936	peridotite	4	3	agg	0	0	0	tr	
10MDN073	2010-07-14 12:44	517993	6464327	dunite	4	3	vlets	2	1 to 2	r	yes	composite
10MDN074	2010-07-14 13:46	517664	6464719	peridotite	3,5	1,5	agg	0	0	0	0	
10MDN075	2010-07-15 12:10	517564	6464157	peridotite	4	2	agg	0	0	0	0	silicified
10MDN076	2010-07-15 12:52	517744	6464106	peridotite	3	2	vlets	1	1to 2	r	0	
10MDN077	2010-07-15 13:11	517888	6464053	dunite	3	1,5	vlets	0	0	0	0	
10MDN078	2010-07-15 13:27	518053	6464021	dunite	2	3	vlets	0	0	0	yes	
10MDN079	2010-07-15 14:29	518013	6463730	dunite	2	3	vlets	1	1	tr-r	no	
10MDN080	2010-07-15 15:56	517031	6463954	peridotite	3	0	0	0	0	0	0	silicified
10MDN083	2010-07-16 09:06	518731	6466562	dunite	3,5	3	vlets	3	3	tr	yes	composites
10MDN084	2010-07-16 09:20	518744	6466579	harz	3	2,5	agg, vlets	2	1 to 3	r	yes	composite grains
10MDN085	2010-07-16 09:45	518778	6466761	harz	2,5	2,5	agg, vlets	1	1	tr	0	
10MDN086	2010-07-16 11:32	518517	6466746	harz	4	3	agg, vlets	0	0	0	0	
10MDN087	2010-07-16 11:52	518445	6466669	harz	4	3,5	agg	3	2 to 3	С	0	
10MDN088	2010-07-16 12:28	518326	6466571	harz	2,5	3	agg, vlets	2	2	r-c	yes	composite grains
10MDN089	2010-07-16 12:45	518211	6466442	harz	4	3	agg, vlets	1	1	r	no	
10MDN090	2010-07-16 13:03	518150	6466183	dunite	3,5	2	vlets	0	0	0	0	
10MDN091	2010-07-16 13:21	518120	6466031	peridotite	4	3	agg, vlets	0	0	0	yes	possible composite grains
10MDN092	2010-07-16 14:00	517915	6465968	harz	4	3,5	agg	0	0	0	no	

Client:

First Point Minerals Corporation 906 - 1112 W. Pender St. Vancouver BC V6E 281 Canada

Part 1

Project: 601a Report Date:

Page:

August 13, 2010

Phone (604) 253-3158 Fax (604) 253-1716

www.acmelab.com

2 of 2

CERTIFICATE OF ANALYSIS

SMI10000311.1

	Method	WOHT	1E	1E	1E	1E	1E	1E	1E	1E	1E	1E	1E	1E	1E	1E	1E	1E	1E	1E	1E
	Analyte	Wgt	Mo	Cu	Pb	Zn	Ag	N	Co	Mn	Fe	As	U	Au	Th	8r	Cd	Sb	BI	v	Ca
	Unit	kg	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%
	MDL	0.01	2	2	5	2	0.5	2	2	5	0.01	5	20	4	2	2	0.4	6	5	2	0.01
10HWN-03 Rock	k	0.59	<2	11	~	31	<0.5	2407	104	1159	4.85	<5	<20	<4	<2	3	0.9	8	<5	25	0.37
10HWN-07 Rock	k	0.54	<2	9	<	26	<0.5	2527	138	1619	6.60	<5	<20	<4	<2	<2	0.9	12	<5	19	0.19
10HWN-08 Roci		0.68	<2	4	Å	29	⊲0.5	2484	117	1198	5.19	\$	<20	<4	Å	Ŷ	0.8	12	<5	21	0.07
10HWN-10 Roci	t.	0.92	<2	17	Ŷ	35	⊲0.5	2567	109	888	5.46	<	<20	<4	Ŷ	6	0.8	13	<5	36	0.42
10HWN-11 Rock	k	0.52	<2	8	~	22	<0.5	2060	101	923	5.41	<	<20	<4	4	4	0.4	10	<5	21	0.05
10HWN-12 Rock	t	0.58	<2	<2	~	23	<0.5	2174	102	883	5.20	<	<20	<4	4	4	0.7	9	<5	29	0.42
10HWN-18 Rock	k i	0.96	<2	<2	~	25	<0.5	2540	95	849	3.71	8	<20	<4	<2	<2	<0.4	7	<5	23	0.01
10HWN-19 Rock	k	0.84	<2	3	<	18	<0.5	2401	98	886	4,44	<5	<20	<4	<2	<2	0.5	9	<5	27	0.31
10HWN-20 Roci		0.59	<2	3	Å	41	⊲0.5	2314	119	1353	5.45	\$	<20	-4	٨	٨	0.7	10	<5	28	0.50
10HWN-21 Rock		0.71	<2	8	Å.	23	⊲0.5	2360	111	984	5.33	\$	<20	<4	ð	Ŷ	0.4	8	<5	26	0.25
10HWN-22 Rock	k	0.41	<2	7	~	30	<0.5	2423	96	919	4.15	~5	<20	<4	4	4	0.4	10	<5	30	0.02
10HWN-23 Rock	t	0.80	<2	11	~	43	<0.5	2306	120	1195	5.94	<5	<20	<4	<2	<2	0.6	11	<5	29	0.51
10HWN-24 Rock	t	0.90	<2	5	<	28	<0.5	2163	100	943	4.16	<5	<20	<4	<2 I	<2	0.5	9	<5	30	1.03
10HWN-26 Rock	t	0.78	<2	7	<5	24	<0.5	2302	107	1061	4.54	<5	<20	<4	<2	<2	0.5	11	<5	27	1.16
10HWN-27 Rock	r.	0.37	<2	6	Ŷ	40	⊲0.5	2476	105	1159	3.57	\$	<20	<4	Ŷ	Ŷ	0.4	10	<5	22	0.59
10HWN-28 Roci		0.70	<2	4	Å	18	⊲0.5	2420	111	1029	5.62	\$	<20	-4	٨	٨	0.5	10	<5	27	0.09
10HMDN-76 Roci		0.63	<2	7	Ŷ	28	⊲0.5	1595	121	750	6.83	6	<20	<4	Ŷ	2	0.6	10	<5	20	0.11
10HMDN-84 Rock	k 👘	0.40	<2	2	~	42	<0.5	2291	85	857	3.28	5	<20	<4	<2	<2	<0.4	9	<5	22	0.06
10HMDN-86 Rock	t	0.36	<2	<2	~	31	<0.5	2432	97	957	3.93	82	<20	<4	<2	<2	<0.4	14	<5	23	0.24
10HMDN-87 Roci	t	0.67	<2	<2	<5	10	<0.5	2803	87	679	2.89	<5	<20	<4	<2	<2	<0.4	10	<5	21	0.01
10HMDN-88 Roci	t	0.87	<2	<2	<	22	<0.5	2251	104	1088	4.68	6	<20	<4	4	2	<0.4	8	<5	26	0.43
10HMDN-92 Rock	t	0.54	<2	117	<	30	<0.5	1994	125	890	7.76	<	<20	<4	<2	<2	0.8	9	<5	37	0.16

Client:

Page:

First Point Minerals Corporation 906 - 1112 W. Pender St. Vancouver BC V6E 251 Canada

Project 601a Report Date: August 13, 2010

1020 Cordova St. East Vancouver BC V6A 4A3 Canada Phone (604) 253-3158 Fax (604) 253-1716

www.acmelab.com

2 of 2 Part 2

CERTIFICATE OF ANALYSIS

SMI10000311.1

		Analyte Unit MDL	P	La	1E Cr	Mg	1E Ba	1E TI	AI	1E Na	K	1E W	1E Zr	1E Sn	1E Y	1E Nb	1E Be	1E Sc	1E S
			0.002	ppm 2	ppm 2	0.01	ppm 1	0.01	0.01	0.01	0.01	ppm 4	ppm 2	ppm 2	ppm 2	ppm 2	ppm 1	ppm 1	0.1
10HWN-03	Rock		<0.002	4	1054	26.90	14	<0.01	0.18	<0.01	0.01	-4	2	4	<2	3	<1	8	<0.1
10HWN-07	Rock		<0.002	4	1395	27.37	6	<0.01	0.12	<0.01	<0.01	-4	2	~2	<2	4	<1	11	<0.1
10HWN-08	Rock		<0.002	4	1299	27.43	3	<0.01	0.14	<0.01	<0.01	~4	2	<2	<2	4	<1	9	<0.1
10HWN-10	Rock		<0.002	5	2100	26.19	34	<0.01	0.31	0.01	0.02	~4	4	<2	<2	7	<1	9	<0.1
10HWN-11	Rock		<0.002	4	1559	26.26	5	<0.01	0.16	<0.01	<0.01	-4	3	<2	<2	5	<1	8	<0.1
10HWN-12	Rock		<0.002	3	1320	25.69	5	<0.01	0.27	-0.01	<0.01	<4	2	<2	<2	4	<1	8	-0.1
10HWN-18	Rock		<0.002	4	1047	25.98	1	<0.01	0.31	<0.01	<0.01	-4	<2	<2	<2	4	<1	7	<0.1
10HWN-19	Rock		<0.002	4	1401	27.27	8	+0.01	0.30	-0.01	<0.01	-4	2	~2	<2	4	<1	7	<0.1
10HWN-20	Rock		<0.002	4	1499	26.86	7	<0.01	0.23	<0.01	<0.01	<4	3	<2	<2	5	<1	11	<0.1
10HWN-21	Rock		<0.002	4	1321	27.12	5	<0.01	0.21	<0.01	<0.01	-4	2	<2	<2	4	<1	9	<0.1
10HWN-22	Rock		<0.002	4	1562	26.44	8	<0.01	0.27	<0.01	<0.01	-4	3	<2	<2	5	<1	8	<0.1
10HWN-23	Rock		<0.002	4	1587	26.85	16	<0.01	0.24	<0.01	<0.01	-4	3	-2	<2	5	<1	10	<0.1
10HWN-24	Rock		*0.002	3	1335	26.36	33	<0.01	0.28	0.01	<0.01	-4	2	-2	<2	4	<1	12	<0.1
10HWN-26	Rock		<0.002	4	1432	26.35	7	<0.01	0.23	<0.01	<0.01	<4	2	2	~2	4	<1	10	<0,1
10HWN-27	Rock		<0.002	3	1311	26.55	15	<0.01	0.24	<0.01	<0.01	-4	2	<2	<2	4	<1	9	<0.1
10HWN-28	Rock		<0.002	4	1474	26.12	3	<0.01	0.21	-0.01	<0.01	~4	2	<2	<2	4	<1	9	<0.1
10HMDN-76	Rock		<0.002	3	1546	24.29	3	<0.01	0.24	<0.01	<0.01	~4	3	<2	<2	5	<1	4	0.4
10HMDN-84	Rock		<0.002	4	1240	25.48	7	<0.01	0.25	<0.01	<0.01	<4	2	<2	<2	4	<1	8	<0.1
10HMDN-86	Rock		<0.002	4	1053	26.66	4	<0.01	0.23	<0.01	<0.01	<4	<2	<2	<2	3	<1	7	<0.1
10HMDN-87	Rock		<0.002	4	1214	27.41	2	<0.01	0.24	-0.01	<0.01	~4	<2	<2	<2	4	<1	4	<0.1
10HMDN-88	Rock		+0.002	3	1207	25.27	9	<0.01	0.28	<0.01	<0.01	-4	3	~2	<2	4	<1	9	<0.1
10HMDN-92	Rock		<0.002	4	1523	24.58	6	-0.01	0.27	<0.01	<0.01	-4	2	2	<2	5	<1	6	-0.1

APPENDIX II – STREAM SEDIMENT DATA

Sample	Date	Easting	Northing
10HWM01S	14-JUL-10 12:51:52PM	518884	6464852
10HWM02S	14-JUL-10 1:58:18PM	520030	6464722
10HWM13S		519021	6467951
10HWM16S	16-JUL-10 10:55:35AM	520489	6467306
10MDN081S	2010-07-15 16:29	516873	6463912
10MDN082S	2010-07-16 08:43	519049	6466435

Client:

First Point Minerals Corporation

906 - 1112 W. Pender St. Vancouver BC V6E 2S1 Canada

1020 Cordova St. East Vancouver BC V6A 4A3 Canada Phone (604) 253-3158 Fax (604) 253-1716

Acme Analytical Laboratories (Vancouver) Ltd.	

Project:	601a
Report Date:	Augu

Page:

eport	Date:	August	13,	2010

www.acmelab.com

Part 1 2 of 2

CERTIFICATE OF ANALYSIS

SMI10000312.1

	Method Analyte		1E Cu	1E Pb	1E Zn	1E Ag	1E Ni	1E Co	1E Mn	1E Fe	1E As	1E U	1E Au	1E Th	1E Sr	1E Cd	1E Sb	1E Bi	1E V	1E Ca	1E P
	Unit	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	%
	MDL	2	2	5	2	0.5	2	2	5	0.01	5	20	4	2	2	0.4	5	5	2	0.01	0.002
10HWM01S	Sediment	<2	51	<5	91	<0.5	401	38	1255	5.52	10	<20	<4	<2	80	0.8	<5	<5	202	4.16	0.041
10HWM02S	Sediment	<2	43	<5	47	<0.5	475	42	1197	5.91	<5	<20	<4	<2	70	<0.4	<5	<5	231	4.85	0.024
10HWM13S	Sediment	<2	30	<5	79	<0.5	1133	64	951	5.66	19	<20	<4	<2	50	0.7	<5	<5	120	1.60	0.033
10HWM16S	Sediment	<2	61	<5	73	<0.5	971	63	958	6.48	<5	<20	<4	<2	57	<0.4	<5	<5	143	2.07	0.023
10MDN81S	Sediment	<2	32	7	76	<0.5	684	49	1038	6.44	<5	<20	<4	<2	63	<0.4	<5	<5	150	3.72	0.047
10MDN82S	Sediment	<2	33	<5	81	<0.5	1150	59	895	5.13	20	<20	<4	<2	42	<0.4	<5	<5	116	1.75	0.037

Client:

Page:

First Point Minerals Corporation 906 - 1112 W. Pender St. Vancouver BC V6E 251 Canada

Project 601a Report Date: August 13, 2010

1020 Cordova St. East Vancouver BC V6A 4A3 Canada Phone (604) 253-3158 Fax (604) 253-1716

www.acmelab.com

Acme Analytical Laboratories (Vancouver) Ltd.

2 of 2 Part 2

CERTIFICATE OF ANALYSIS

SMI10000312.1

	Method	1E	1E	1E	1E	1E	1E	1E	1E	1E	1E	1E	1E	1E	1E	1E	1E
	Analyte	La	Cr	Mg	Ba	п	AI	Na	K	w	Zr	Sn	Y	ND	Be	Sc	S
	Unit	ppm	ppm	%	ppm	%	%	%	%	ppm	%						
	MDL	2	2	0.01	1	0.01	0.01	0.01	0.01	4	2	2	2	2	1	1	0.1
10HWM01S	Sediment	10	829	6.61	1020	0.26	6.04	1.59	0.54	-64	36	<2	16	4	<1	34	<0.1
10HWM02S	Sediment	4	920	8.04	136	0.22	5.81	1.77	0.21	-4	18	<2	14	<2	<1	40	<0.1
10HWM135	Sediment	7	1040	11.18	1025	0.19	3.80	0.88	0.67	<4	40	<2	11	5	<1	17	<0.1
10HWM16S	Sediment	5	1272	11.03	625	0.22	4.13	0.93	0.45	-4	25	<2	10	3	<1	21	<0.1
10MDN81S	Sediment	7	1292	8.75	402	0.21	4,47	0.88	0.38	-4	41	<2	11	7	<1	28	<0.1
10MDN82S	Sediment	8	881	12.04	1169	0.19	3.66	0,79	0.60	-4	42	<2	11	6	<1	17	<0.1