Blue River Resources, Ltd.

Suite 501-525 Seymour Street Vancouver, B.C. V6B3H7 SEP 0 7 2011 BC Gold Commissioner's Office Vancouver, BC

Geophysical Report

For Mineral Claim 530877

Simikameen Mining Division

British Columbia

92H/9W

49 degrees, 34 min. N, 120 degrees, 27 min. W

By:

Terry Garrow, P. Geo. 8061 Chinook Way Blaine, Wa. 98230 360-305-4013

Co-Author: Tessa Scott, B.A. Geology

Date: Aug. 2, 2011

BC Geological Survey

Assessment Report 32401

GEOLOGICAL SURVEY BRANCH ASSESSMENT REPORT

Tab	le of Contents	<u>Page</u>
1.0	Introduction	2
2.0	Property and Ownership	2
3.0	Location, Climate, Topography	5
4.0	Previous Work	5
5.0	Geological Setting	6
6.0	Property geology	6
6.1	Mineralization	8
7.0	Ground Proton Magnetometer and VLF-EM Survey	8
8.0	Results	10
9 .0	Recommendations	14
10.0	Cost	15
11.0	Signature Page	16
List of	Tables	
Figure	1: Blue River Resources Ltd. Claims	2
Figure	2: Historic Work on the Castle Copper Property	7
Figure	3: Cost Statement	15
List of	f Maps	
Map 1	: Castle Copper Property location map	3
Map 2	: Claim map of the Castle Copper Project	4
Мар З	: Geology of the Castle Copper Property	7
Map 4	: Location of geophysical stations	9
Map 5	: Magnetometer plot	11
Map 6	: VLF-EM wave plot	12
Map 7	: Magnetometer, and VLF-EM with Geology	13
Apper	ndix 1	
List of	data from VLF-EM, Magnetometer, and GPS	-1-

5

/

~

~ ~ ~ ~

·

•

-

, , 1 | Page

1.0 Introduction

In May 2011, a two person field crew completed 5 line kilometers for 3 days of ground magnetometer and VLF-EM survey over a portion of the Castle Copper Property. Historic data over this area has been promising and the results of this survey are also encouraging. Zones of interest are near the Rats showing as well as along a regional fault which runs through the property.

The property is underlain by the Nicola Volcanics and intruded by alkali feldspar granites. The south west end of the property is overlain by sedimentary rocks of the Princeton Group. The property has few outcrops which increases the need for geophysical and geochemical exploration along with trenching and diamond drilling.

Results of the ground geophysics survey have led to three zones of interest as well as recommendations for further exploration on the property.

2.0 Property and Ownership

The Castle Copper property is wholly (100%) owned by Blue River Resources Ltd. The Castle Copper property consists of 13 contiguous claims (Figure 1). The Castle Copper property is located in the Simikameen mirling district approximately 12 kilometers north of Princeton, B.C. (Map 1 and 2).

Claim Name	Tenure Type	Good To Date	Area (ha)	Owner
530877	Mineral	2014/Feb/01	335.3	Blue River Resources Ltd. (100%)
616883	Mineral	2011/Aug/10	523.7	Blue River Resources Ltd. (100%)
616903	Mineral	2011/Aug/10	335.2	Blue River Resources Ltd. (100%)
616923	Mineral	2011/Aug/10	440.1	Blue River Resources Ltd. (100%)
616943	Mineral	2011/Aug/10	335.2	Blue River Resources Ltd. (100%)
651164	Mineral	2011/Jul/23	502.6	Blue River Resources Ltd. (100%)
651203	Mineral	2011/Jul/23	502.6	Blue River Resources Ltd. (100%)
651223	Mineral	2011/Jul/23	502.6	Blue River Resources Ltd. (100%)
651244	Mineral	2011/Jul/23	502.6	Blue River Resources Ltd. (100%)
659303	Mineral	2011/Jul/23	440.2	Blue River Resources Ltd. (100%)
732882	Mineral	2011/Aug/10	62.9	Blue River Resources Ltd. (100%)
810182	Mineral	2011/Jul/06	272.5	Blue River Resources Ltd. (100%)
825002	Mineral	2011/Jul/23	146.8	Blue River Resources Ltd. (100%)

Figure 1: Castle Copper Property Claims

The geophysical work completed for this report is located on claim 530877. The work in this report applies to claim 530877. A total of \$7,500 in work was applied to claim 530877.

<u>Claim Name</u>	<u>Tenure Type</u>	Good To Date	<u>Area (ha)</u>	<u>Assessment</u>
530877	Mineral	2014/Feb/01	335.3	<u>\$7,500</u>
				Total \$7,500/yr

Map 1: Castle Copper Property location map

The Castle Copper property is located 12 kilometers north of Princeton in central southern BC (Map1). The property is approximately 4 hours from Vancouver BC.

Access to the property from Princeton is by the north Princeton Summerland road followed by north on Hembrie Mountain road. Hembrie Mountain road is a well maintained gravel road which leads to a network of old gravel roads which provide access to most of the property.

The property is located in BCGS map tile 092H.058 with the northern portion in 092H.068. The center of the property is roughly at UTM Zone 10, 683121E 5494008N.

The climate in the area is generally arid. Temperatures in the summer average 20°C with highs of 30°C. In winter, the temperature can reach -30°C. Precipitation averages 40-50 cm a year with approximately 30% falling as snow.

The property is within the Thompson Plateau and consists of a mix of gentle hills with several steep ravines. Most of the property is grassy ranchlands with aspen and pine forests. Elevations range from 700 meters in ranchlands to 1400 meters on the hills. Streams and lakes are common throughout the property.

4.0 Previous Work

The Castle Copper property has been explored intermittently since the late 1950's. The prominent mineralization in the area appears to be concentrated near the Rats Minfile (092HNE176). Due to few outcrops, geological mapping has been limited and geophysical work has become more important. There have been numerous reports on the property; Figure 2 highlights the notable ones.

Kennco Explorations Limited carried out geological, geochemical, and geophysical surveys which partially covered the eastern portion of the Castle Copper property in 1959. Bulldozer trenching and diamond drilling were also conducted at this time. An airborne magnetometer survey located a zone of high magnetic response on the Castle Copper property. The magnetic high is attributed to magnetite rich volcanic or possibly mafic plutons. It was established that a strongly altered zone with copper mineralization followed the large magnetic high.

From 1969 to 1973, Co-Pex Mining Corporation reportedly worked areas of the Castle Property, though no ARIS reports are available. It was reported that Co-Pex carried out percussion drilling and diamond drilling on their ELK and SLEEPER claims which are partially covered by the Castle Copper property.

The Rats Showing, often referred to as the Trench Zone, has been the focus of the more significant work in the area. Count Fleet Exploration and Co-Pex conducted geochemical sampling, geological mapping, and trenching in the mid 1980's. The trenching was conducted near the Rats Showing.

Report	Үөаг	Company	Author	Work Completed
3364	1971	Nicanex Mines Ltd.	EO. Chisholm, P.Eng	Geochemical
3396	1971	Texas Gulf Sulfur	J.M. Newell, P.Eng	Geological, Geochemical
3607	1971	Canwex Explorations Ltd.	D.W. Smellie, P.Eng.	Geophysical, I.P.
4444	1972	Canwex Explorations Ltd.	D.W. Smellie, P.Eng.	Geophysical, LP.
4555	1973	Titan Polaris Mines Ltd.	G.C. Gutrath, P.Eng.	Ground Magnetometer
8735	1980	Tricor Resources Ltd.	L. Sookochoff, P.Eng.	Prospecting
16135	. 1986	Count Fleet Exploration	R.M. St. Louis	Geology, Trenching and soil survey
19165	1989	Noranda Exploration Ltd.	J.E. Christoffersen, P.Eng.	Mapping and soil survey
20113	1990	Cominco		IP, Magnetometer
30097	2008	L. Sostad		Geology and Mobile Metal Ion Survey (MMI)

Figure 2: Summary of notable Aris reports for the Castle Copper Property

5.0 Geological Setting

The Castle Copper Project Mineral Claims lie within the Quesnel and Post Accretionary Terranes with zones of overlap. Within these terranes lies a major belt of Upper Triassic to Lower Jurassic volcanic rocks, co-magmatic alkaline intrusions, and Cenozoic sediments of the Princeton Group. Previous work on the Castle Copper Claim area indicates the volcanic rocks that have been intruded by numerous plutons ranging in composition from diorite, monzonite and syenite to later granodiorite and granite.

The gold copper mining prospects along this belt such as Cominco's Axe mine and the Copper Mountain Mine relate the mineralization control to the northerly trending Summers Creek fault system, a regional structural break, which also controlled the emplacement of many lobe-like diorite and monzonite satellite stocks with porphyry style mineralization. The property lies within the Intermontane Belt which is host to Afton, Mt. Polley, and Mt. Milligan which are all related to strongly altered alkaline intrusions and related volcanic rocks.

6.0 Property Geology

The southwest corner of the property is underlain by Eccene sedimentary rocks of the Princeton group. The sedimentary rocks consist of sandstone, argillite, conglomerate, and coal. Outcrop is limited throughout the property.

Along the center of the property runs a band, north westerly, of volcanic rocks of the Princeton and Nicola groups. The Princeton group is made up of andesitic flows and volcanoclastic rocks of the Eocene. The eastern volcanic facies of the Nicola group consists of basaltic volcanic rocks of the Upper Triassic. The basaltic volcanic rocks are mafic breccias, flows, and tuffs containing augite and hornblende phenocrysts. The Rats showing lies within the Nicola Volcanics. The volcanics have been sheared and possibly folded but have only undergone greenschist facies metamorphism.

In the north and east side of the property, two plutons of have intruded the volcanics. The plutons are alkali feldspar granite and granodiorite with minor syenite.

Map 3 shows the large scale geology and structures of the property.

Map 3: Geology of the Castle Copper Property

6.1 Mineralization

Copper mineralization is hosted in folded, sheared and altered basalts of the Nicola Group, adjacent to the southwest margin of a zoned stock comprised of diorite and monzonite. Flow banding indicates some isoclinal folding has taken place, with fold axes plunging north. Shearing is widespread, and appears to occur in four distinct directions. Many of the shears are 1 to 10 meters wide and contain abundant gouge, iron oxide and carbonates, including malachite.

The basalts are generally well altered, and are replaced by epidote, pink orthoclase, clay, carbonate and limonite. Epidote and orthoclase are commonly fracture controlled and associated with magnetite and sulphides. The degree of alteration varies, and in some places is related to shearing.

Multi-directional shearing and fracturing is evident in outcrop and epidote and chlorite are abundant as fracture coatings. Outcrop on the property is restricted to high ridges exposed to the north of Christian Creek.

Malachite, pyrite, chalcopyrite, and bornite are visible in trenches near the Rats showing. Malachite is ubiquitous in several of the trenches.

7.0 Ground Proton Magnetometer and VLF-EM Survey

Terry Garrow, P. Geo was retained to complete a 5 kilometer reconnaissance ground magnetometer and VLF-EM survey on claim 530877 owned by Blue River Resources Ltd. The survey consisted of a two person crew for a total of 3 days in from May 9 to May 12, 2011. The Proton Magnetometer and VLF-EM surveys consisted of two 1 km lines, and two 1.5 km lines. Lines were 200 meters apart; individual recording stations were located along the grid lines at 25 meter spacing.

This three day reconnaissance ground geophysical survey utilized 2 geophysical technicians and a senior geologist, a GEM Systems GSM-19T, and an Ashtech Mobile Mapper GPS. The GSM-19T instrument is a combination proton magnetometer and VLF-EM.

Data for this assessment report was gathered by the author and his technicians on the Castle Copper Property to continue extending the previous reported anomalies from the NI 43-101 prepared by SRK Consulting. This work is a continuation of 2010 fieldwork conducted by Terry Garrow, P. Geo.

GPS grid location control was accomplished with sub-meter accuracy using a handheld Ashtech Magellan Mobile Mapper 6. Recording stations were located at 25 meter spacing along the east-west survey lines; recording stations were flagged every 100 meters for future reference. Map 4 shows the station points for the lines conducted. Both VLF-EM and magnetometer readings were taken at each station.

The VLF-EM readings were amplified in the vertical (Y) direction in order to assist in interpretation. The data reported in Appendix 1 is unaltered. The magnetometer readings were broken inte 10 color grading intervals to establish high and low magnetic trends.

The magnetometer, VLF, and GPS coordinates were recorded in an excel spread sheet (Appendix 1) and plotted on 1:12,000 plans.

Map 4: Location of geophysical stations

8.0 Results

Both the magnetometer data and the VLF-EM data indicate promising targets for further exploration.

The magnetometer data (Map 5) shows an anomaly centrally located on the property, possibly associated with a pluton. This is of importance since the mineralization on the Rats showing may be related mineralization in the regional fault.

The VLF-EM data shows three anomalies on a roughly N-S linear trend worthy of further exploration (Map 6). The VLF responses are in concordance with the magnetic highs and the geology and structures over the survey area (Map 7). The regional shear and the area surrounding the Rats showing is of considerable interest and warrants further exploration.

Map 5: Magnetometer plot

Map 6: VLF-EM wave plot. Waves are amplified by 2 in the vertical direction for easier viewing

Map 7: Map showing the geology, VLF-EM, and magnetic highs overlaid

9.0 Recommendations

It is recommended that further exploration is continued on the Castle Copper property.

The magnetic highs concur with the VLF-EM anomalies over the Rats showing. Ground magnetometer and VLF-EM surveys have proven that they can outline targets of interest and should be continued to infill the grid near the Rats showing and the regional shear. It is also recommended that the ground geophysics continue to the north where anomalies were located from the 2010 ground geophysics survey.

Trenching and diamond drilling is also recommended for several of the anomalies near the Rats showing and along the regional fault. It is advised that historic trenches be cleaned and channel sampled to give an estimate of grade.

10.0 Cost Statement

Figure 3: Cost Statement

~

~

~

-

BLUE RIVER RESOURCES LTD. Castle Copper Project

COST STATEMENT

LABOR COSTS	# DAY <u>S</u>	DAILY RATE	<u>TOTAL</u>
1 Senior Geologist	3 Days	\$550.00	\$1,650.00
1 Geophysical Technician	3 Days	\$200.00	\$ 600.00
1 Intermediate Geologist	3 Days	\$200.00	\$ 600.00
EQUIPMENT COSTS	# DAYS	DAILY RATE	TOTAL
Gem T-19 Proton Mag/ VLF/ GPS System	3 Days	\$160.00	\$ 485.00
LODGING & FOOD COSTS	# DAYS	DAILY RATE	TOTAL
Motel (8+8+2 Man Days) Food (8+8+2 Man Days)	8 Days 8 Days	\$67.00 \$45.00	\$ 530.00 \$ 360.00
OTHER COSTS	# DAYS	DAILY RATE	<u>TOTAL</u>
Gas For Truck 4X4 Pick-up GPS Rental Radio Rental Field Supplies	3 Days 3 Days 3 Days 3 Days 3 Days	\$25.00 \$100.00 \$ 50.00 \$ 50.00	 \$ 75.00 \$ 300.00 \$ 150.00 \$ 150.00 \$ 250.00
TOTAL COST OF FIELD WORK PL	US TRAVEL		\$4,600.00
REPORT COSTS Data Interpretation Maps	3 Days	\$400.00	\$ 1,200.00 \$1,000.00 \$ 150.00

TOTAL

\$7,500.00

11.0 Signature Page

I Terry David Garrow, P. Geo. do hereby certify that:

- I am currently an independent Exploration and Mining Geologist, located at 0061 Chinook Way Biaine, Washington, 98230 Tel: 360-305-4013 E-mail: terrygarrow@comcast.net
- 2. I graduated from the University of Saskatchewan in 1969 with a Bachetor of Science degree Geology.
- 3. I am a registered Professional Geoscientist in the province of British Columbia. Canada (#19443) and a member of the Canadian Institute of Mining and Metallurgy.
- 4. I have worked as a geologist for a total of 40 years since my graduation from university.
- 5 I am responsible for the compilation and supervision of all contributions to the Geophysical Report for Claim 530877

July 18, 2011

Appendix 1

~

r , ,

÷

GPS, Magnetometer, and VLF-EM spreadsheet

Easting	Northing	Elevation	Station	Mag (nT)	In Phase	Out Phase	Lîne
683 05 0.4	5493385.6	1077.3	0	56144.5	0.7	3.4	Rats_12
683073.6	5493388.0	1084.2	25	56286.8	2.0	2.7	Rats_12
683093.9	5493390.4	1086.8	50	56213.9	9.7	0.2	Rats_12
683125.1	5493385.0	1084.0	75	56034.5	2.8	7.1	Rats_12
683145.9	5493395.1	1082.6	100	56300.2	-1.2	5.4	Rats_12
683173.2	5493394.5	1090.5	125	56202.6	3.0	5.8	Rats_12
683199.9	5493397.6	1086.7	150	56012.1	-4.5	-4.8	Rats_12
683229.4	5493388.1	1098.3	175	56059.7	-9.6	-1.7	Rats_12
683243.3	5493394.7	1083.7	200	56052.0	8.0	3.0	Rats_12
683279.2	5493404.2	1075.9	225	55915.2	-0.8	3.7	Rats_12
683298.4	5493394.5	1075.6	250	55841.3	6.5	0.6	Rats_12
683328.3	5493390.9	1078.4	275	55958.6	2.5	7.8	Rats_12
683349.6	5493392.9	1074.9	300	56104.7	18.7	7.3	Rats_12
683375.4	5493397.8	1066.4	325	56347.2	-12.0	2.5	Rats_12
683403.5	5493398.0	1083.7	350	55946.6	5.0	-1.6	Rats_12
683423.4	5493390.6	1094.9	375	56141.8	6.4	-5.2	Rats_12
683451.8	5493397.2	1082.5	400	56106.8	-2.8	0.0	Rats_12
683476.1	5493398.0	1092.4	425	56048.6	1.1	4.4	Rats_12
683498.4	5493405.2	1098.9	450	56051.5	23.9	8.8	Rats_12
683523.4	5493408.3	1104.7	475	56428.7	2.4	0.3	Rats_12
683551.8	5493402.6	1095.9	500	56263.7	10.1	2.2	Rats_12
683575.4	5493408.5	1095.3	525	56034.5	-3.6	5.9	Rats_12
683596.9	5493404.5	1112.5	550	56069.0	9.8	0.8	Rats_12
683624.4	5493407.1	1109.5	S75	\$6092.4	-24.6	10.7	Rats_12
683650.4	5493404.4	1115.1	<u>60</u> 0	56055.0	32.5	5.5	Rats_12
683675.3	5493407.7	1131.4	625	56048.6	-14.2	-0.8	Rats_12
68370 <u>2.8</u>	5493410.1	1139.6	650	56041.8	-21.7	-5.4	Rats_12
683727.4	5493407.5	1135.0	675	55921.0	-20.0	-5.6	Rats_12
683752.2	5493405.6	1146.5	700	56017.5	-16.8	-5.7	Rats_12
683777.3	5493409.5	1165.1	725	55968.7	-25.2	-3.9	Rats_12
683799.4	5493407.0	1156.1	750	55957.4	39.9	11.0	Rats_12
683819.6	5493410.0	11 71.0	775	55880.8	17.5	15.3	Rats_12
683852.8	5493413.4	1176.4	800	55857.7	-20.9	-2.5	Rats_12
683879.6	5493414.6	1187.0	825	55855.2	-7.6	-3.3	Rats_12
683902.3	5493416.5	1181.6	850	55888.3	-15.8	-4.6	Rats_12
							1710

17 Page

Easting	Northing	Elevation	Station	Mag (nT)	In Phase	Out Phase	Line
683926.8	5493412.4	1188.0	875	55978.8	-7.1	-4.5	Rats_12
683956.5	5493409.7	1197.5	900	55928.1	19.8	11.2	Rats_12
683976.9	5493412.8	1200.0	925	55900.8	25.2	9.0	Rats_12
684003.6	5493412.6	1205.6	950	55800.8	7.7	3.8	Rats_12
684025.3	5493411.7	1207.6	975	55990.7	-13.6	-6.3	Rats_12
684042.8	5493414.0	1219.9	· 1000	55782.0	-29.0	-9.7	Rats_12
684070.5	5493416.5	1215.1	1025	55719.7	-35.7	-9.1	Rats_12
684108.4	5493416.6	1226.5	1050	55675.8	-7.7	-1.1	Rats_12
684128.8	5493420.4	1222.3	1075	55767.5	-7.4	-2.7	Rats_12
684150.8	5493431.1	1211.9	1100	55892.6	-6.6	1.0	Rats_12
684176.3	5493431.3	1219.4	1125	55890.3	0.0	0.2	Rats_12
684200.7	5493430.7	1218.1	1150	56018.8	6.1	2.1	Rats_12
684227.8	5493429.4	1216.3	1175	55848.8	-2.7	-6.7	Rats_12
684257.2	5493429.3	1225.9	1200	55448.8	-10.7	5.9	Rats_12
684277.4	5493427.6	1223.4	1225	56190.8	3.3	4.9	Rats_12
684302.3	5493428.4	1217.9	1250	55893.7	12.1	6.0	Rats_12
684324.2	5493436.8	1226.8	1275	56268.2	-7.1	0.9	Rats_12
684353. 9	5493434.6	1226.4	1300	56203.8	-10.1	-0.5	Rats_12
684376.9	5493436. 6	1222.7	1325	56156.9	4.4	3.7	Rats_12
684404.5	5493438.1	1226.7	1350	56085.5	0.4	6.1	Rats_12
684432.0	5493428.0	1230.3	1375	55858.0	16.2	7.0	Rats_12
684449.9	5493425.3	1233.9	1400	55948.2	-14.8	-3.0	Rats_12
684477.4	5493432.9	1231.6	1425	56011.2	8.0	6.2	Rats_12
684506.1	5493436.8	1228.3	1450	55704.5	3.0	2.7	Rats_12
684529.6	5493440.1	1244.7	1475	56327.6	8.0	-1.9	Rats_12
684556.9	5493443.4	1239.4	1500	55762.1	-18.1	2.2	Rats_12
684555.2	5493224. 9	1238.1	1000	56026.0	-24.1	:-4.6	Rats_13
684533.3	5493220.0	1218.9	975	55956.6	-4.5	-7.5	Rats_13
684508.5	5493217.7	1203.3	950	55916.8	8.4	-1.6	Rats_13
684482.7	5493225.0	1215.7	925	55745.6	-3.3	5.8	Rats_13
684455.3	5493223.1	1223.7	900	56099.4	-7.9	3.4	Rats_13
684427.8	5493220.1	1224.6	875	56043.6	-10.7	-6.4	Rats_13
684404.î	5493222.0	1224.7	850	56125.1	-12.7	-6.7	Rats_13
684376.8	5493216.7	1221.4	825	56222.4	-18.0	-2.9	Rats_13
684354.Z	5493219.8	1219.8	800	56247.2	-23.0	-14.8	Rats_13.
684328.4	5493220.2	1217.3	775	55632.3	-14.8	-3.0	Rats_13
684305.0	5493216.9	1213.4	750	56000.7	7.7	7.0	Rats_13
684280. <u>0</u>	5493216.3	1220.8	725	56531.7	-20.2	-13.0	Rats_13
684253.5	5493213.4	1219.1	700	56305.9	-16.2	-10.6	Rats_13
684228.4	5493215.5	1226.1	675	56254.6	-14.0	-7.0	Rats_13

~

Easting	Northing	Elevation	Station	Mag (nT)	In Phase	Out Phase	Line
684201.6	5493211.3	1229.4	650	56315.8	-14.4	2.0	Rats_13
684178.5	5493209.3	1233.3	625	56473.6	-20.2	-6.6	Rats_13
684155.7	5493211.0	1225.9	600	56422.0	3.3	1.3	Rats_13
684129.7	5493213.5	1231.8	575	56224.4	-17.8	-4.8	Rats_13
684100.8	5493206.1	1229.0	550	56560.6	-4.2	-7.6	Rats_13
684076.9	5493213.7	1230.2	525	56444.2	-20.9	-7.5	Rats_13
684051.9	5493213.8	1227.0	500	56745.5	-17.3	0.3	Rats_13
684027.0	5493206.0	1221.0	475	56806.7	-25.6	-1.7	Rats_13
684002.5	5493204.6	1214.7	450	56927.9	29.6	2.3	Rats_13
683976.5	5493203.9	1215.3	425	56590.6	-48.2	-21.0	Rats_13
683955.6	5493204.7	1202.9	400	56417.6	-45.2	-15.0	Rats_13
68 <u>39</u> 30.1	5493202.3	1 194 .1	375	56443.1	-30.0	-11.1	Ra <u>ts_</u> 13
683903.0	5493207.0	1187.0	350	56413.1	-34.7	-11.8	Rats_13
683879.3	5493202.3	1182.5	325	56662.3	-40.6	-14.0	Rats_13
683858.0	5493206.8	1173.0	300	56695.5	-35.2	-14.9	Rats_13
683826.7	5493197.9	1164.9	275	56313,4	-36.4	-16.9	Rats_13
683803.4	5493193.7	1159.3	250	56327.7	-39.5	-13.3	Rats_13
683775.8	5493197.8	1157.1	225	56234.4	-31.8	-6.1	Rats_13
683749.4	5493200.7	1152.5	200	56461.6	32.2	8.8	_Rats_13
683726.0	5493198.5	1145.8	175	56528.0	-34.6	-15.7	Rats_13
683703.4	5493200.6	1123.3	150	56370.4	-30.4	-17.0	Rats_13
683674.6	5493193.2	1111.7	125	56329.6	-34.3	-19.1	Rats_13
683656.2	5493197.3	_1098.6	100	56321.3	-27.2	-10.8	Rats_13
683624.3	5493198.0	1099.0	75	55969.6	-21.5	-3.8	Rats_13
683603.7	5493186.9	1092.0	50	56253.9	6.9	-0.4	Rats_13
683576.4	5493195.6	1096.1	25	56179.6	-21.0	-3.0	Rats_13
683554.4	5493200.4	1096.1	0	56138.5	-5.9	-8.5	Rats_13
683554.2	5492985.8	1079.3	.0	57000.2	<u> </u>	13.1	Rats_14
683584.7	5492986.3	1083.7	25	56829.7	-68.1	13.4	Rats_14
683603.6	5492989.6	1096.5	50	56797.9	-44.1	-11.0	Rats_14
683630.5	5492988.2	1107.7	75	56817.1	37.7	-12.6	Rats_14
683652.9	5492988.3	1096.4	100	56399. 6	-29.1	-13.6	Rats_14
683679.9	5492987.7	1114.0	125	56493.3	7.3	4.3	Rats_14
683706.3	5492986.2	1135.4	150	57512.6	13.2	2.4	Rats_14
683730.8	5492996.7	1139.1	175	57050.7	8.9	-0.9	Rats_14
683758.7	5492982.3	1157.4	200	56146.7	-7.4	-1.1	Rats_14
683776.2	5492996.4	1157.5	225	56805.5	5.5	0.7	Rats_14
683804.8	5492993.5	1161.5	250	5707 6 .0	-16.0	-3.5	Rats_14
683831.6	5492993.4	1159.2	275	56887.2	10.2	4.6	Rats_14
683854.4	5492 9 95.1	1186.9	300	57038.3	-16.7	6.5	Rats_14

1 / 1 / 1 / 1 / 1

·--

- 20 - | Page

Easting	Northing	Elevation	Station	Mag (nT)	In Phase	Out Phase	Line
683880.6	5492998.4	1204.2	325	57462.2	-17.2	-7.7	Rats_14
683905.5	5492994.2	1195.8	350	57174.3	-8.2	5.3	Rats_14
683929.2	5493000.2	1193.9	375	55577.2	-9.3	5.7	Rats_14
683954.6	5493001.4	<u>11</u> 97.9	400	55947.3	-27.5	-2.4	Rats_14
683979.3	5493004.1	1214.9	425	57084.3	-7.4	-5.7	Rats_14
684006.1	5493001.0	1219.3	450	57263.3	10.2	-1.8	Rats_14
684030.2	5493000.1	1227.3	475	57516.7	-24.7	-6.6	Rats_14
684055.3	5492999 .5	1228.2	500	57592.0	-17.0	-3.1	Rats_14
684081.0	5493000.8	1230.7	525	57392.1	-2.2	1.3	Rats_14
684106.2	5493004.9	1233.3	550	57341.8	5.7	-1.5	Rats_14
684132.0	5493007.1	1234.3	575	57140.5	16.2	3.3	Rats_14
684155.4	5493009.5	1233.9	600	57082.9	10.6	12.3	Rats_14
684181.6	5493009.3	1232.3	625	57240.2	-2.3	-0.9	Rats_14
684206.1	5493012.7	1237.4	650	57302.8	2.2	2.9	Rats_14
684231.7	5493013.1	1238.4	675	57317.1	-9.5	-6.0	Rats_14
684256.2	5493013.1	1234.9	700	57058.4	-5.3	-2.0	Rats_14
684281.4	5493014.7	1222.2	725	56792.5	-23.8	-5.3	Rats_14
684306.1	54 <u>93009</u> .4	1224.6	750	56794.5	-34.9	10.4	Rats_14
684331.5	5493013.4	1216.4	775	56582.2	-5.6	-2.1	Rats_14
684356.3	5493017.5	1217.9	800	56462.1	-7.5	-3.1	Rats_14
684382.5	5493012.0	1201.9	825	56147.4	-14.7	-8.8	Rats_14
684404.8	5493015.1	1204.1	850	56065.0	-7.5	-9.3	Rats_14
684430.9	5493020.0	1199.2	875	55995.7	7.0	3.8	Rats_14
684457.3	5493022.9	1217.9	900	55897.4	-13.9	-2.4	Rats_14
684481.8	5493024.3	1207.1	925	56199.8	-18.5		Rats_14
684507.1	5493024.0	1211.3	<u>950</u>	56270.0	-20.3	-4.4	Rats_14
684529.6	5493019.9	1215.6	975	56323.8	6.8	1.7	Rats_14
684560.6	5493023.8	1218.5	1000	56281.2	-2.5	-3.4	Rats_14
684571.9	5492849.0	1208.4	0	56576.6	-4.9	3.1	Rats_15
684543.7	5492849.5	1203.4	25	56498.8	-7.7	5.3	Rats_15
684523.2	5492846.4	1195.5	SO	56650.1	-14.9	0.2	Rats_15
684492.8	5492846.1	1206.5	75	56606.5	2.9	8.8	Rats_15
684466.0	5492841.6	1192.8	100	56491.8	-9.2	2.4	Rats_15
684438.2	5492840.6	1185.5	125	56106.9	-23.9	0.5	Rats_15
684417.6	5492844.1	1189.4	150	56189.7	-0.5	10.0	Rats_15
684398.6	5492846.2	1182.8	175	56604.3	-8.7	-2.5	Rats_15
684367.6	5492838.2	1201.4	200	56609.4	-25.4	-6.9	Rats_15.
684350.3	5492848.8	1199.4	225	56433.9	21.0	11.7	Rats_15
684322.1	5402839.4	1201.2	250	56861.4	15.5	15.0	Rats_15
684297.7	5492835.9	1208.7	275	56984.6	14.1	14.5	Rats_15

-

.

_

Easting	Northing	Elevation	Station	Mag (nT)	In Phase	Out Phase	Line
684272.1	5492842.0	1209.4	300	57501.0	21.3	7.4	Rats_15
684246.9	5492841.5	1212.1	325	57080.0	0.3	3.1	Rats_15
684223.5	5492839.8	1212.3	350	57419.1	-14.5	-4.8	Rats_15
684197.4	5492843.0	1214.9	375	57417.0	-8.8	-5.4	Rats_15
684170.7	S492838.8	1214.6	400	57558.3	-13.2	-1.6	Rats_15
684147.7	5492837. <u>2</u>	1215:2	425	57730.8	-5.1	3.1	Rats_15
684119.8	5492830.8	1210.3	450	57610.0	0.1	-5.7	Rats_15
684095.3	5492830.3	1207.3	475	57469.5	-4.9	-3.2	Rats_15
684070.2	5492829.1	1202.3	500	57124.3	4.4	-0.9	Rats_15
684044.5	5492827.4	1195:3	525	56990.5	-12.2	-3.0	Rats_15
684018.9	5492823.5	1193.0	550	57256.7	-22.3	-6.1	Rats_15
683994.0	5492820.5	1191.7 .	575	57456.6	-31.0	-12.1	Rats_15
683970.6	5492824.9	1184.4	600	57095.5	24.0	10.3	Rats_15
683943.4	5492836.1	1175:0	625	56639.2	18.7	12.8	Rats_15
683923.6	5492828.3	1160.5	650	56516.5	18.3	14.7	Rats_15
683896.3	5492837.3	1150.4	675	56727.8	1.1	12.5	Rats_15
683867.9	5492842.7	1152.3	700	56819.6	-3.9	11.5	Rats_15
683847.8	5492830.8	1113.4	725	56763.5	-4.7	3.6	Rats_15
683816.4	5492823.1	1135.1	750	56631.0	-1.4	-5.9	Rats_15
683796.2	5492839.4	1120.5	775	56333.6	-20.4	-15.7	Rats_15
683773.6	5492835.9	1128.7	800	56539.9	-19.5	-18.0	Rats_15
683744.5	5492831.4	1132.4	825	56859.0	-4.9	-2.8	Rats_15
683719.7	5492830.3	1126.5	850	56708.2	5.4	6.6	Rats_15
683694.7	5492829.9	1113.8	875	56648.0	18.2	16.2	Rats_15
683669.1	5492828.4	10 99 .9	900	56679.7	7.8	9.8	Rats_15
683646.1	5492829.5	1090.1	925	56740.0	1.5	7.4	Rats_15
683619.5	5492826.5	1080.8	950	56649.2	-5.5	-2.5	Rats_15
683589.5	5492827.9	1072.5	975	56593.4	5.2	12.3	Rats_15
683568.0	5492826.1	1067.6	1000	56701.5	-7.4	7.9	Rats_15
683539.5	5492816.3	1067.3	1025	56629.7	-12.5	-2.9	Rats_15
683519.1	5492822.9	1072.1	1050	56975.8	-8.5	1.2	Rats_15
683490.1	5492820.2	1054.0	1075	56774.6	-5.1	10.9	Rats_15
683467.2	5492819.9	1050.9	1100	56756.3	0.8	11.7	Rats_15
683443.5	5492819.6	1042.8	1125	57027.1	0.4	7.7	Rats_15
683419.2	5492816.8	1032.3	1150	56826.3	8.4	16.1	Rats_15
683390.Q	5492816.6	1022.6	1175	56611.1	9.5	10.4	Rats_15
683368.4	54928 13.8	1026.6	1200	56700.0	-9.1	1.7	Rats_15
683340.0	5492813.1	1025.6	1225	56631.4	-22.3	-4.7	Rats_15
683316.2	5492815.0	1023.3	1250	56524.3	-1.8	-4.2	Rats_15
683290.5	5492809.3	1021.2	1275	56601.5	-21.3	-1.7	Rats_15

.

.

Easting	Northing	Elevation	Station	Mag (nT)	In Phase	Out Phase	Line
683268.0	5492812.5	1020.9	1300	56457.7	1.7	3.3	Rats_15
683242.6	5492811.4	1023.1	1325	56387.0	-4.6	0.1	Rats_15
683216.2	5492807.6	1025.1	1350	56294.9	-7.5	-1.3	Rats_15
683187.7	5492808.2	1029.7	1375	56398.8	3.5	-5.9	Rats_15
683164.9	5492804.2	1031.3	1400	56457.1	-5.8	4.5	Rats_15
683141.8	5492805.6	1027.7	1425	56373.3	-16.3	-3.5	Rats_15
683115.5	5492805.5	1030.9	1450	56345.3	-19.9	-1.4	Rats_15
683084.9	5492805.0	1038.7	1475	56226.3	-14.8	0.2	Rats_15
683066.4	5492806.7	1036.6	1500	56146.0	-12.3	-0.9	Rats_15

-23-|Page

~

-
