

Geological Survey Branch

T RECOLUMENT

ASSESSMENT REPORT TITLE PAGE AND SUMMARY

TITLE OF REPORT [type of survey(s)] Geochemistry on the Chuck and Mila Mineral Claims		TOTAL COST \$ 18,300.00
AUTHOR(S)_Christopher O. Naas	SIGNATURE(S)	
NOTICE OF WORK PERMIT NUMBER(S)/DATE(S)		
STATEMENT OF WORK - CASH PAYMENT EVENT NUMBER(S)/DATE(S	3) 4870607	
PROPERTY NAME Chuck / Mila		
CLAIM NAME(S) (on which work was done) 837495, 605841, 605842, 6	605834	
COMMODITIES SOUGHT_Copper, zinc, gold		
MINERAL INVENTORY MINFILE NUMBER(S), IF KNOWN		
MINING DIVISION Kamloops	NTS 082M12	
ATITUDE 51 º 34 · 10 " LONGITUDE	<u>119 º 38</u>	30 " (at centre of work)
DWNER(S)		
1) Christopher O. Naas	. 2)	
MAILING ADDRESS		
2130-21331 Gordon Way		
Richmond BC Canada V6W1J9		
DPERATOR(S) [who paid for the work]		
1) Yellowhead Mining Inc.	2)	
MAILING ADDRESS		
2130-21331 Gordon Way		
Richmond BC Canada V6W1J9		
PROPERTY GEOLOGY KEYWORDS (lithology, age, stratigraphy, structur	e, alteration, minera	alization, size and attitude):
Property is underlain by the Paleozoic Eagle Bay Assemblage. Th	e most common r	ock types on the Property are foliated andesition
tuffs and limestones. Mineralization consists of stratiform zones of	100 CO 10 100	7 7372

REFERENCES TO PREVIOUS ASSESSMENT WORK AND ASSESSMENT REPORT NUMBERS.

Assessment reports: 09959, 12465, 13325, 13557, 14045, 27609, 27610, 28045, 28811, 29214, 29836, 30328, 31652

TYPE OF WORK IN THIS REPORT	EXTENT OF WORK (IN METRIC UNITS)	ON WHICH CLAIMS	PROJECT COSTS APPORTIONED
			(incl. support)
GEOLOGICAL (scale, area)			
Ground, mapping			
Photo interpretation			
GEOPHYSICAL (line-kilometres)			
Ground			
Magnetic			
Electromagnetic			
Induced Polarization			
Radiometric			
Seismic			
Other			
Airborne			8
GEOCHEMICAL			
(number of samples analysed for)			
Soil 274 Au geochem and multi-	element ICP	605834, 605841, 605842, 837495	18,300.00
Silt			
Rock			
Other			
DRILLING			
(total metres; number of holes, size)			
Core			
Non-core			
RELATED TECHNICAL			
Sampling/assaying			
Mineralographic			
Metallurgic			
PREPARATORY/PHYSICAL			
Line/grid (kilometres)			
Topographic/Photogrammetric			
Road, local access (kilometres)/trail	P		
Other			

BC Geological Survey Assessment Report 32413

ASSESSMENT REPORT

GEOCHEMISTRY on the MILA and CHUCK MINERAL CLAIMS (837495, 605841, 605842, 605834) Kamloops Mining Division, British Columbia, Canada

> NTS 82M/12 Latitude: 51°33'N Longitude: 119°38'W Owner: Christopher O. Naas Operator: Christopher O. Naas

by Christopher O. Naas, *P.Geo*.

September 9, 2011

SUMMARY

The soil sampling program tested two areas on the property, the Mila and Chuck areas. The property is undelain by rocks of the Paleozoic Eagle Bay Assemblage.

The Mila area is known to host massive sulphides (Nicanex showing) with significant copper, lead zinc and to a lesser extend gold and silver. Drill results include up to 11.28 metres of 0.30% Cu

Previous soil sampling in the Mila area has identified anomalous copper and zinc values associated with the known mineralized horizon(s). The Chuck area, and Chuck Creek specifically, is the source of several historical gold-in-silt anomalies. Work in this area has been designed to locate the source of the gold.

Field work was undertaken between June 1 and June 9, 2011. Work consisted of collecting soil samples in both areas. Sampling in the Mila area consisted of establishing 5 uncut soil lines to test the western and eastern extensions of the provious work, as well as two in-fill lines near the main soil anomaly. Sampling in the Chuck area consisted of two uncut soil lines roughly parallel to, and on the south side of, Chuck Creek. These lines were designed to bracket a gold-in-soil sample of 110 ppb Au identified in the 2010 exploration program.

TABLE OF CONTENTS

	page
SUMMARY	i
1.0 INTRODUCTION	1
1.1 LOCATION AND ACCESS	1
1.2 TITLE	1
2.0 REGIONAL GEOLOGY	4
3.0 LOCAL GEOLOGY	4
3.1 LITHOLOGY	4
3.2 STRUCTURE	6
4.0 WORK HISTORY	6
5.0 CURRENT WORK	9
5.1 MILA AREA	9
5.2 CHUCK AREA	10
6.0 CONCLUSIONS	11
6.1 MILA AREA	11
6.2 CHUCK AREA	11
7.0 REFERENCES	12
8.0 CERTIFICATE	14
9.0 STATEMENT OF COSTS	15
10.0 LIST OF SOFTWARE USED	16

LIST OF TABLES

	page
Table 1: List of tenures	1

LIST OF FIGURES

		page
1.	Location Map (1:1,000,000)	2
2.	Claim Location Map (1:160,000)	3
3.	Regional Geology Map, Vavenby Area (1:100,000)	5
4.	Geochemical Sample Plan Map, Zinc (ppm), Mila Area (1:7,500)	
5.	Geochemical Sample Plan Map, Gold (ppm), Mila Area (1:7,500)	
~	$\mathbf{C} = 1 + 1 + 0 + 1 + $	000

6. Geochemical Sample Plan Map, Gold (ppb) and Copper (ppm), Chuck Area (1:6,000)

LIST OF APPENDICES

- I. Abbreviations and Conversion Factors
- II. Certificates of Analysis

1.0 INTRODUCTION

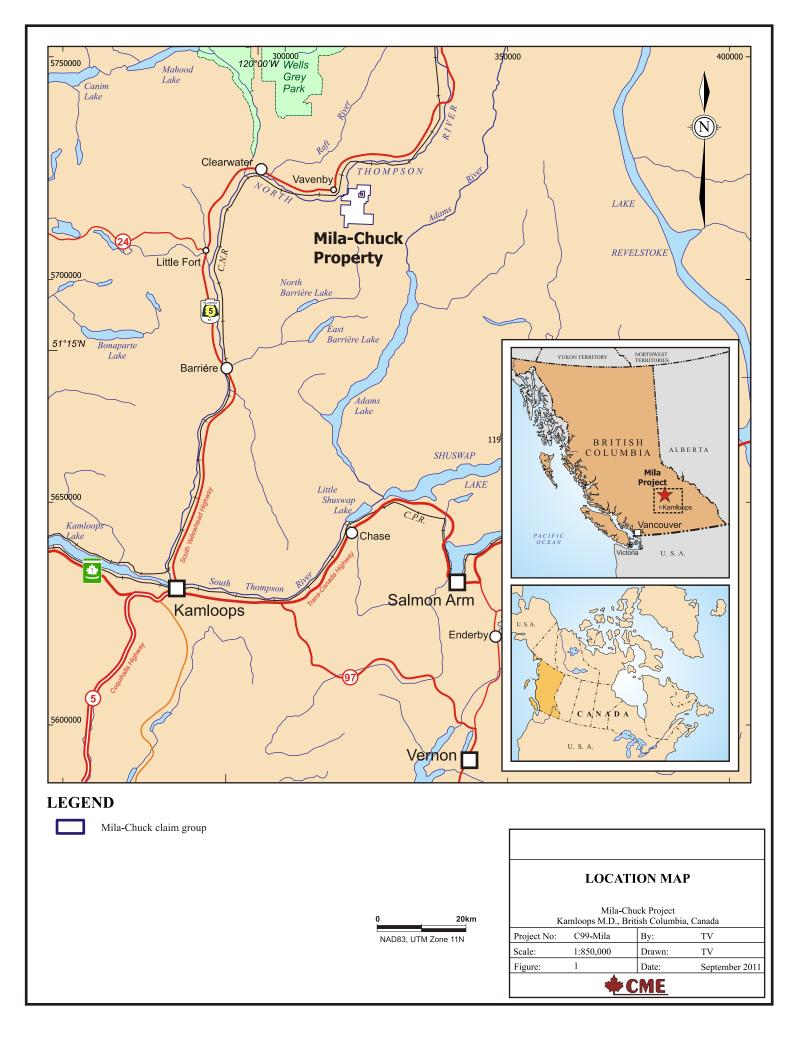
This report details the results of the work program conducted on the mineral claims with tenure numbers 837495 (Mila Claim), 605841, 605842 and 605834 (Chuck Claims). Field work was carried out over six days between June 1 and June 8, 2011.

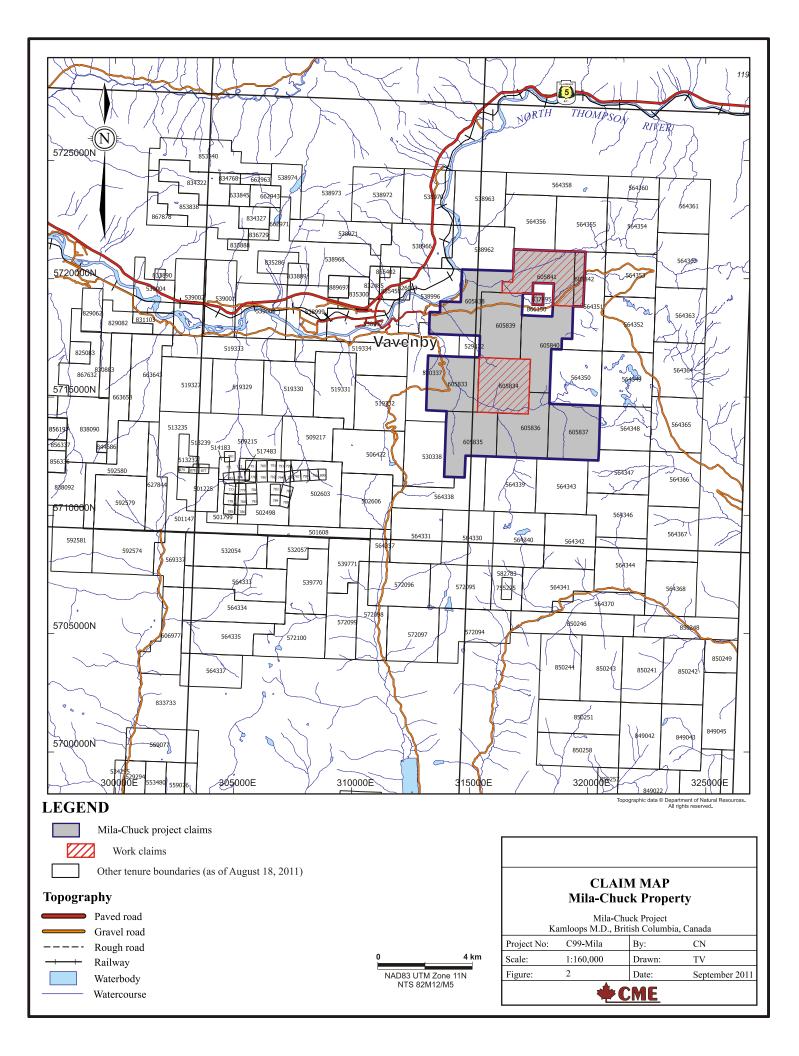
1.1 LOCATION AND ACCESS

The Mila and Chuck mineral claims (collectively the "Property") are located on NTS mapsheets 82M/12 and geographically centred at 51°33'N and 119°38'W.

Road access is gained to claims via the Yellowhead Highway (Highway 5) to the village of Vavenby. The claims are located on the south side of the North Thompson River. Forest service roads offer excellent access to the claims (Figure 1 and 2).

The Canadian National Railway mainline also passes through this area.


Topography is moderate to steep with elevations ranging from 1,300 metres to 1,800 metres. The area is the site of active logging and consists of a thick coniferous forest cover with heavy underbrush to wide open clear cuts. At higher elevations, small marshy alpine meadows occur (Belik, 1973).


1.2 TITLE

The Property consists of eleven MTO cell claims and are 100% owned by Christopher O. Naas. Claim details are listed below and shown on Figure 2.

Tenure Number	Tenure Name	Area	Good To Date
605833	CHUCK 1	502.38	June 11, 2011
605834	CHUCK 2	502.38	June 11, 2011
605835	CHUCK 3	482.50	June 11, 2011
605836	CHUCK 4	482.45	June 11, 2011
605837	CHUCK 5	502.56	June 11, 2011
605838	CHUCK 6	502.04	June 11, 2011
605839	CHUCK 7	482.04	June 11, 2011
605840	CHUCK 8	502.19	June 11, 2011
605841	CHUCK 9	501.91	June 11, 2011
605842	CHUCK 10	100.38	June 11, 2011
867495	MILA	20.08	June 11, 2011

Table	1:	List	of	tenures
-------	----	------	----	---------

2.0 REGIONAL GEOLOGY

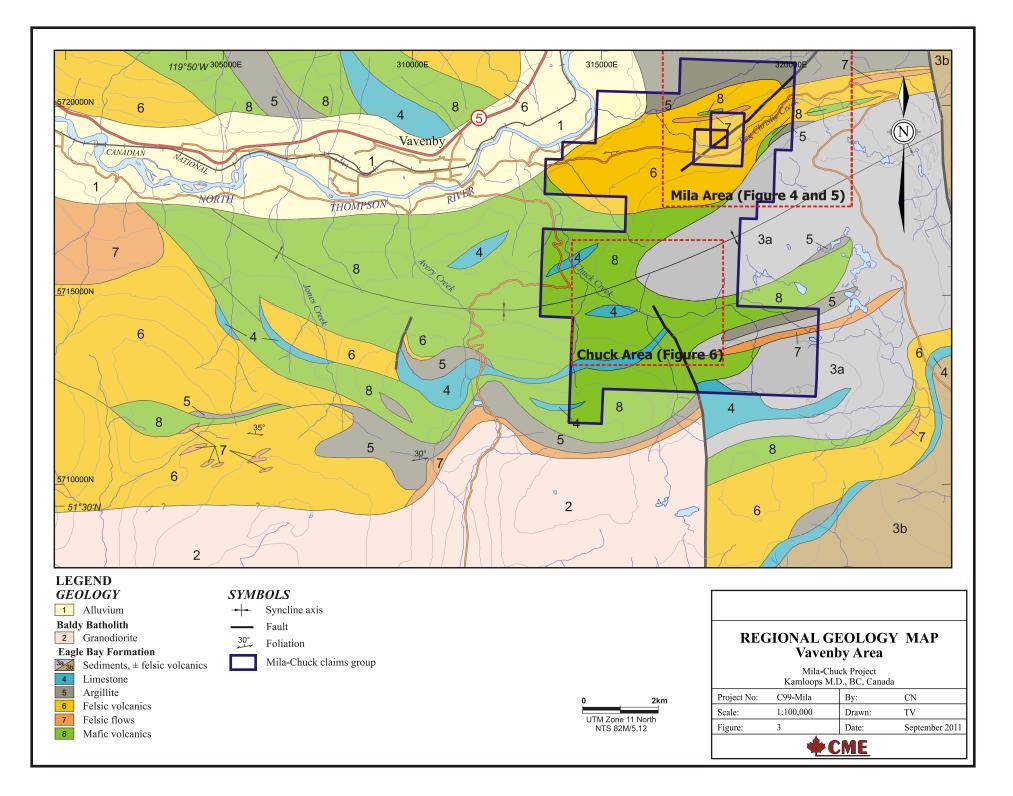
The Vavenby area is underlain by Paleozoic Eagle Bay Assemblage and Fennell Formation rocks, located within the Kootenay Terrane. The Eagle Bay Assemblage has been intruded by Devonian and Cretaceous granitic rocks, and is overlain by Miocene basalts (Naas and Neale, 1991) (Figure 3).

3.0 LOCAL GEOLOGY

3.1 LITHOLOGY

Eagle Bay Assemblage

The Eagle Bay Assemblage comprises four northwest-dipping thrust sheets (Schiarizza and Preto, 1987). Schiarizza (1985) divides the Eagle Bay Assemblage in the Vavenby area into eight units. At the base of the formation is a quartz-dominated succession (Unit 1) of unknown age. This is overlain by a succession of felsic to intermediate metavolcanic rocks (Units 2 and 3), and fine to coarse clastic metasedimentary rocks (Units 4 and 5) of Devonian and Mississippian age. Structurally above these rocks is a mafic metavolcanic-limestone division (Unit 6) of Cambrian age, overlain by intermediate metavolcanics (Unit 7). The carbonate member of Unit 6 is referred to as the Tshinakin limestone. The structurally highest division of the Eagle Bay Formation comprises clastic metasedimentary rocks of Unit 8. These rocks are overturned, however, and Unit 8 may be the oldest unit within the Eagle Bay succession.


Orthogneiss

The Devonian orthogneiss consists of quartzo-feldspathic orthogneiss. It is typically a weakly to moderately foliated rock, consisting of lenses and augen of quartzo-feldspathic material enclosed in "seams" of chlorite-sericite schist. Locally it grades to virtually massive granitic rock or conversely to strongly foliated chlorite-sericite schist containing large quartz augen. Biotite is an important component of the gneiss within the thermal aureole of the Baldy batholith.

Fennell Formation

The Upper Permian-Lower Mississippian Fennell Formation in the Adams Plateau-Clearwater area, has been divided into two units by Schiarizza and Preto (1984). The lower unit is a heterogeneous assemblage of bedded chert, gabbro, diabase, and pillow basalt, which also includes units of sandstone and phyllite, Devonian aged quartz-feldspar porphyry rhyolite, and intraformational conglomerate. The upper unit is a succession of pillow and massive basalt with minor amounts of bedded chert, gabbro, basaltic breccia and tuff.

Schiarizza (1985) does not divide the Fennell Formation into two units in the Vavenby area, rather uses one unit containing rocks as previously described by Schiarizza and Preto (1984).

Granitic Rocks

Cretaceous granite and granodiorite of the Raft and Baldy batholiths intrude Eagle Bay Formation rocks. In contrast to the abrupt northern contact of the Baldy batholith, a broad zone of intermixed metasedimentary and granitic rocks marks the southern margin of the Raft batholith.

Basalt

The flat-lying, undeformed Miocene basalt flows are the easternmost representatives of an extensive mass of Late Miocene to Pliocene plateau lavas which cover much of the area to the west and northwest of Vavenby (Campbell and Tipper, 1971).

3.2 STRUCTURE

Schiarizza (1985) describes the four types of structures that exist in the Vavenby area:

- 1. an early metamorphic foliation, axial planar to very rare small isoclinal folds, which is locally observed to be discordant to and/or folded about the dominant second generation schistosity.
- 2. variably oriented, but most commonly north to east-plunging isoclinal folds; the dominant syn-metamorphic schistosity is axial planar. Throughout most of the area this schistosity is parallel to bedding.
- 3. northwest-trending folds and crenulation with axial planar crenulation cleavage. Axial surfaces generally dip steeply to the northeast or southwest.
- 4. east-west trending upright folds, kinks, and crenulations of probable Tertiary age. The folds are often most prominently developed adjacent to northerly trending faults.

4.0 WORK HISTORY

This area was first staked in 1969 by Nicanex Mines as a result of discovery of copper mineralization during a regional prospecting program. Subsequent geological, geochemical and geophysical surveys during 1970 outlines the copper mineralized zone (Nicanex zone).

In 1975, the ground was restaked by Greenwood Exploration. Greenwood conducted surface geological mapping, but allowed the claims to lapse the following year.

Barrier Reef Resources staked the area again in 1977 and carried out geological mapping and geochemical and geophysical surveys during 1978. As a result, a second zone, the AFR (Nicanex Road Showing) was located, which lies parallel to the Nicanex zone. Drilling was carried out in 1979. Drilling results include 944 ppm Cu over 19.8 metres. Again the claims were allowed to lapse.

Cima Resources restaked the showings and conducted a small prospecting and soil sampling program. A rock sample returned 230 ppm Cu, 360 ppm Pb and 112 ppm Zn (Corvalan, 1984)

In 1980 the After You property was staked by A.T. Syndicate following the discovery of anomalous concentrations of gold found in heavy mineral samples on Chuck Creek, during a regional geochemical program. In 1981, an assessment program entailing geological mapping, VLF-EM surveying, soil sampling, follow-up heavy mineral sampling and rock chip sampling was carried out on behalf of Kangeld Resources Ltd. A major VLF-EM conductor outlined upstream from an anomalous gold-in-heavy-mineral sample was considered to be the potential gold source (Burgess and Troup, 1981).

In 1984 Kangeld Resources Ltd. conducted a one-hole diamond drilling program to test the VLF-EM conductor considered to be the potential gold source on the After You claims. The drill hole AY-84-1, intersected interbedded sandstones, siltstones, mudstones, limestones, andesites and an extensive sheared zone from 113.9 to 144.5 metres. Pyrite and pyrrhotite mineralization was encountered as disseminations and in quartz veins and veinlets. Gold values were found to range from 0.006 to 0.028 oz/ton, and silver values averaged 0.08 oz/ton with a high of 0.18 oz/ton. Although gold values obtained during this program were not deemed economic, they indicated that the hydrothermal fluids which passed through the shear zone were gold bearing. It was recommended that the conductor be tested for gold mineralization where it is strongest as the conductor was not tested at its strongest location in this program (Freeze, 1984).

Exploration for copper in the area continued with Newmont Exploration staking around the Cima Resources copper showings in 1984 and carrying out geological mapping, prospecting, and geophysical surveying during 1985 (Nebocat, 1985 and Limion, 1985).

In 1988, Goldbank Ventures Ltd. staked the JAR and MILA claims over the known showings. During 1989, an airborne geophysical survey was carried out over 492 line-km (Lund, 1989).

In 1990 and 1991, Goldbank conducted a two phase program consisting of 32 line-km of ground magnetics, 28 line-km of MaxMin, 16 line-km of IP, 24 line-km of soil sampling and 1,794 metres of diamond drilling. The most significant drill result was 11.28 metres of 0.34% Cu (Naas and Neale, 1991).

In 2004, in the Mila area, soil samples were collected along two main soil lines, both following the existing road network. Samples were collected at 50 metre intervals along both lines. No significant results were returned from this soil sampling program (Naas, 2005a). To the south, four moss mat samples were collected from Chuck Creek and a tributary of Chuck Creek Road side soils samples were also collected to the south of Chuck Creek (Naas, 2005a).

Exploration in the Mila area in 2005 consisted of a total of three uncut grid lines, at a spacing of 200 metres, for a total of 3 line-km. A total of 122 soil samples were collected from the B horizon, approximately 20-30 centimetres from surface. A weak east-west trend to the copper

values was recognized though the values were relatively low (<100 ppm) and the significance of this anomaly is not known (Naas, 2005b). In the Chuck area further silt and soil sampling was undertaken. A total of 2 silt samples were collected from Chuck Creek and one sample was collected from a north flowing tributary of Chuck Creek. The silt sampling program was successful in extending the 2004 gold-in-silt anomaly 3.4 kilometres downstream within Chuck Creek. A total of four lines totaling 4.5 kilometres of uncut grid was established from which 184 soil samples were collected. Other than a single sample anomaly of 120 ppb Au, located on the eastern bank of Chuck Creek, no significant results were returned (Naas, 2005b).

During 2006, an airborne geophysical survey was carried out over the claims area (Naas, 2007a) as part of a larger survey. It was recommended to incorporate the data from this survey into the 1988 airborne geophysical dataset.

In April 2007 at the Mila area, four soil grid lines were established, at a spacing of 200 metres, for a total of 8 line-km. A total of 317 soil samples were collected. Copper analyses reveals a strong east-west anomaly across all 4 gridlines. The anomaly is approximately 100 metres wide on the two eastern lines, but narrower on the two western lines. The highest copper value encountered (752 ppm) occurs on the westernmost line. This anomaly likely corresponds with the historically known massive sulphide lens (Nicanex showing). There are several subtle geochemical anomalies to the south of the main zone which may represent other mineralized horizons, although the geochemical values are substantially lower than those of the main zone. Zinc results generally mimic the copper response (Naas, 2007a).

In August and October, 2007, four additional soil lines were established east of the previously placed grid lines, also at a spacing of 200 metres, for a total of 8 line-km. A total of 324 soil samples were collected Copper in soil geochemistry extended the previously identified geochemical anomalies to the east. The anomalies appear to follow the topography suggesting nearly flat mineralized horizons. A secondary anomaly to the south of the main anomaly is still poorly defined, but assuming a flat horizon, may be identified on the eastern most line with a soil sample result of 495 ppm Cu. Several subtly parallel geochemical anomalies are also present to the south better defined by the zinc values (Naas, 2008a).

In 2008 further soil sampling was carried out in the western area of the claims. Five soil grid lines were placed at a spacing of 200 metres, for a total of 5 line-km with 194 soil samples collected. Results of this work program revealed subtly anomalous arsenic with higher-thanbackground gold values in the southeastern portion of the current exploration area (Naas, 2008b)

During 2010, a work program tested areas close to and just north of Chuck Creek. A total of 10.65 kilometres of uncut grid was established from which 246 samples were collected. Four lines were oriented north-south, two lines oriented east-west and one line was established parallel to the river, approximately 50 metres from the high water mark. Three samples returned anomalous gold values: two samples of 110 ppb Au, and one at 55 ppb Au. No anomalous silver or base metal results were returned (Naas, 2010).

5.0 CURRENT WORK

Field work was carried out over six days between June 1 and June 8, 2011. Work consisted of the collection of 278 soil samples from 286 sites. Work was conducted in two areas of the property: the Mila area and the Chuck Creek area (Figure 3).

All samples were prepared and analyzed by Eco-Tech Laboratories Ltd. ("Eco-Tech") of Kamloops, BC. Preparation of soil samples consisted of sieving to separate -80 mesh material for analysis. Analysis for multi-elements used a total digestion ICP method. Where a 0.50 gram sample is digested with nitric acid and hydrochloric acid, then hydrofluoric and perchloric acids. The sample is dried and subsequently redissolved with 3ml of a 3:1:2 (HCl, HN0₃:H₂0) which contains beryllium and is then diluted to 10ml with water. The sample is then analyzed on an ICP-AAS instrument and reported in parts per million (ppm) and percent (%). For gold analysis, a 30 gram sample size was fire assayed using appropriate fluxes. The resultant dore bead was parted, digested with aqua regia, and then analyzed on a Perkin Elmer AA instrument for gold and reported in ppb. Certificates of analysis for all samples are presented Appendix II.

5.1 MILA AREA

A total of 5.74 line-km of uncut grid was established, from which 237 samples were collected from 244 stations. Five lines oriented north-south and placed to tie in with previous soil lines (Figures 4 and 5). One line (177+50E) was located on the west side of the historical grid. Two lines (186+50E and 188+50E) were placed as partial infill lines of the historical grid and to test the soil geochemistry to the north of the surveyed. Finally two lines were placed east of the historical grid to test the possible along-contour extension of the known copper-zinc anomalies as defined in the previous girdwork. Samples were taken at 25 metre spacings along the line. Sample stations were surveyed by non-differentially corrected GPS at each station. Soil samples were collected from the B horizon, approximately 20-30 centimetres from surface.

Results

Copper and zinc results were subdued and did not suggest obvious extensions of the existing geochemical anomalies. The western line, L177+50E returned low copper values and a high of 116 ppm Zn at station 90+75N. There is a possibility, assuming a flat-lying horizon, that it may reflect on the soil anomalies on line L183+50E at elevations of 920 metres. The intervening lines L179+50E and L181+50E do not show any correlating geochemical signature, but as both copper and zinc are suppressed this could be a function of overburden depth in this area. It may also be a downslope dispersion. Geophysical surveys of these lines may point to the presence or absence of a structure.

The infill lines, L186+50E and L188+50E, the zinc values suggested a possible correlation with modestly anomalour historical results on L187+50E and L189+50E. Copper values were

uniformly low on these lines and did not further refine or explain the historical copper-in-soil anomaly on L189+50N, 98+50N to 98+75N (up to 339 ppm Cu).

The two lines to the north and west, L195+50E and L197+50E presented only a couple spot values of anomalous copper, 104 ppm Cu (L195+50E, 107+50N) and 270 ppm Cu (L197+50E, 92+50E). The former is associated with 206 ppm Zn and there is a general elevation of zinc in samples on either side of this site.

5.2 CHUCK AREA

A total of 1.03 line-km of uncut grid was established from which 41 samples from 42 stations were collected. Two lines were established on the south side of, and parallel to, Chuck Creek, following the contour (generally east-west) (Figure 6). Samples were taken at 25 metre spacings along the line. Each soil sample station was surveyed by non-differentially corrected GPS. Soil samples were collected from the B horizon, approximately 20-30 centimetres from surface.

Results

Gold analyses of the soil samples yielded no result greater than 10 ppb Au, two samples at 10 ppb and the remainder at or below detection limit.

Examination of base metals reveals no anomalous values in this area

6.0 CONCLUSIONS

6.1 MILA AREA

Copper and zinc results of soil samples collected from the Mila area gridlines did not suggest obvious extensions of the existing geochemical anomalies. Geophysical surveys VLF-EM and/or ground magnetometer surveys are recommended to investigate the presence of any flat-lying structures and test for possible suppression of the geochemical response due to overburden depth.

6.2 CHUCK AREA

Gold-in-soil results from the samples failed to verify and/or explain the presence of the 110 ppb gold anomaly identified in the 2010 work program. This area still remains intriguing because of the significant historical gold values encountered in silt sampling. Further work would include following up on the two other gold-in-soil anomalies identified downstream of the current work area.

Respectfully Submitted,

Christopher O. Naas, *P.Geo.* CME Consultants Inc. September 9, 2011

7.0 REFERENCES

Belik, G.

1973. Geology of the Harper Creek Copper Deposit, unpublished B.Sc. thesis, University of British Columbia, Vancouver, BC, Canada.

Burgess, S. and Troup, A.G.

1981 Assessment Report 9959: Geology, Geophysics and Geochemistry, After You Property, unpublished report for Kangeld Resources Ltd., October, 1981.

Campbell and Tipper,

1971. Geology of the Bonaparte Lake Map-area, British Columbia, Geological Survey of Canada, Memoir 363.

Christopher, P.

1988. Report on the JAR and MILA Claims, unpublished report for Goldbank Ventures Ltd.

Corvalan, I.R.

1984. Assessment Report 12465: Report on Geochemical Survey, unpublished report for Cima Resources Ltd., January 27, 1984

Freeze, J.C., 1984

1984. Assessment Report 13225: Diamond Drilling Report on the After You Property, unpublished report for Kangeld Resources Ltd., November, 1984.

Limion, H.

1985. Assessment Report 14505: Report on Geophysical Cround Surveys on REG 2 and 3 Mineral Claims, Magnetic and Electromagnetic Pulse Surveys, unpublished report for Newmont Exploration of Canada Limited, November 8, 1985.

Lund, K.C.

1989. Assessment Report 19134: Airborne Geophysical Survey, Mila Property, unpublished report for Goldbank Ventures, September 8, 1989.

Naas, C.O.

- 2005a. Assessment Report 27610: Soil and Silt Sampling on the Chuck 1 and 2 Claims, January 27, 2005.
- 2005b. Assessment Report 28045: Soil and Silt Sampling on the REG-MILA Claims, November 29, 2005.
- 2007a. Assessment Report 28811: Airborne Geophysics on the Mila Mineral Claims, January 31, 2007.
- 2007b. Assessment Report 29214: Soil Sampling on the Mila Mineral Claims, July 10, 2007.
- 2008a. Assessment Report 29836 Soil Sampling on the Mila Mineral Claims, January 31, 2008.
- 2008b. Assessment Report 30328 Soil Sampling on the Mila Mineral Claims, October 21, 2008.
- 2010. Assessment Report 31652: Soil Sampling on the Chuck Mineral Claims, September 9, 2010.
- Naas, C.O. and Neale, T.
 - 1991. Report on the 1990/1991 Phase I and II Geological, Geochemical, Geophysical and Diamond Drilling Exploration of the Mila Project, unpublished report for Goldbank Ventures Ltd. (3 volumes).

Nebocat, J.

- 1985. Assessment Report 13557: Geological and Geochemical Report on the REG 1-8 Claims, unpublished report for Newmont Exploration of Canada Limited, March 15, 1985.
- Schiarizza, P.
 - 1985. Geology of the Eagle Bay Formation between the Raft and Baldy Batholiths (82M5, 11, 12); *in*: Geological Fieldwork 1985; Ministry of Energy Mines and Petroleum Resources Paper 1986-1, p. 89-94.

Schiarizza P., and Preto V.A.

- 1987. Geology of the Adams Plateau-Clearwater-Vavenby Area, British Columbia Ministry of Energy Mines and Petroleum Resources Paper 1987-2.
- 1984. Geology of the Adams Plateau-Clearwater Area, British Columbia Ministry of Energy Mines and Petroleum Resources Prelim. Map 56.

8.0 CERTIFICATE

I, Christopher O. Naas, *P.Geo.*, do hereby certify that:

I am a member in good standing of the Association of Professional Engineers and Geoscientists of British Columbia (Registration Number 20082);

I am a graduate in geology of Dalhousie University (*B.Sc.*, 1984); and have practiced in my profession continuously since 1987;

Since 1987, I have been involved in mineral exploration for precious and/or base metals in Canada, United States of America, Chile, Venezuela, Ghana, Mali, Nigeria, and Democratic Republic of the Congo (Zaire); for diamonds in Venezuela; and for rare metals in Nigeria. I have also been involved in the determination of base metal and gold resources for properties in Canada and Ghana, respectively, and the valuation of properties in Canada and Equatorial Guinea.

I am presently a Consulting Geologist and have been so since November 1987; and,

Dated at Richmond, British Columbia, this 9th day of September, 2011.

aas

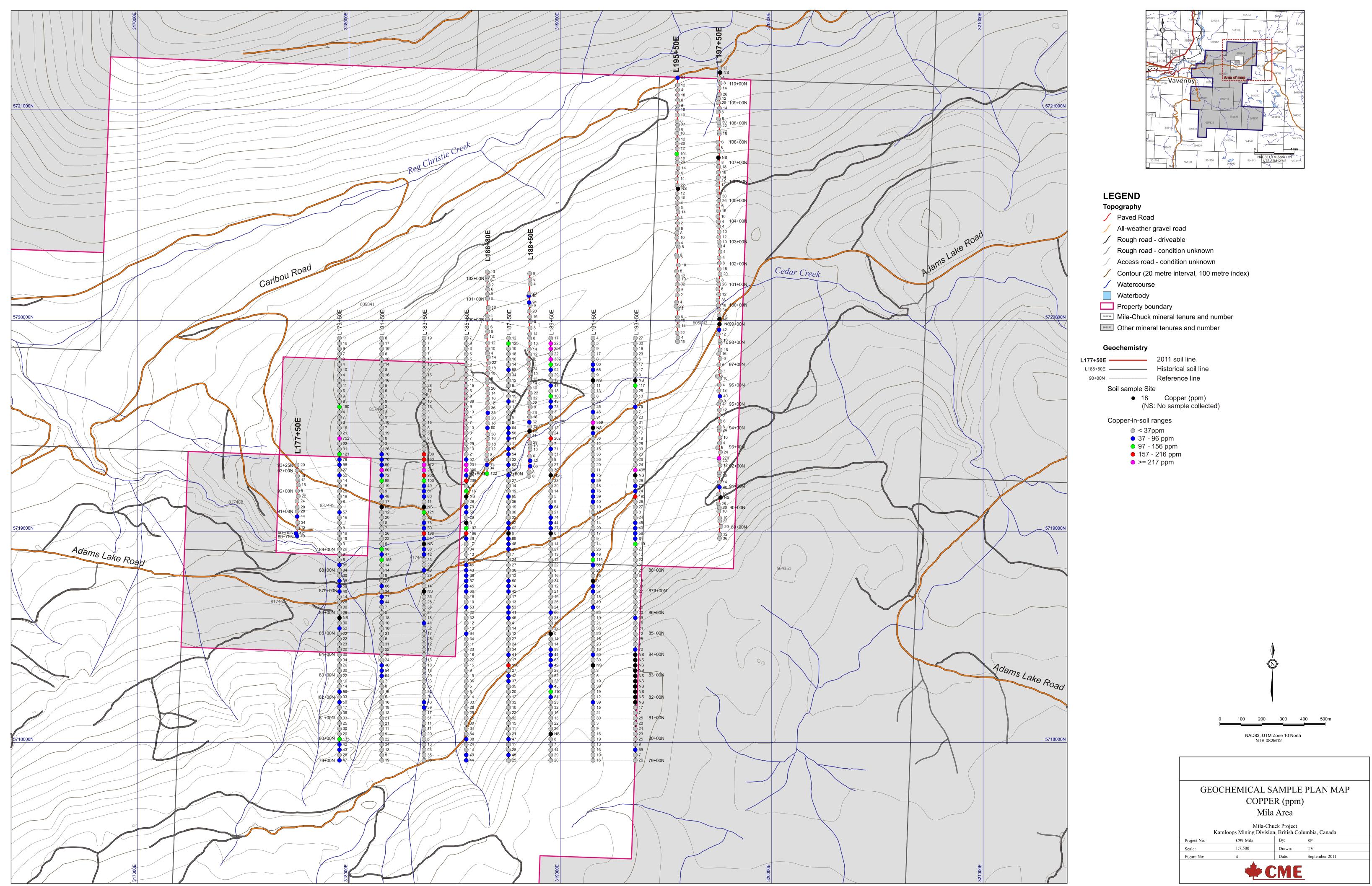
Christopher O. Naas, P.Geo.

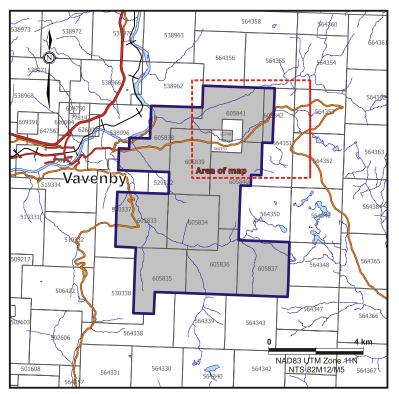
9.0 STATEMENT OF COSTS

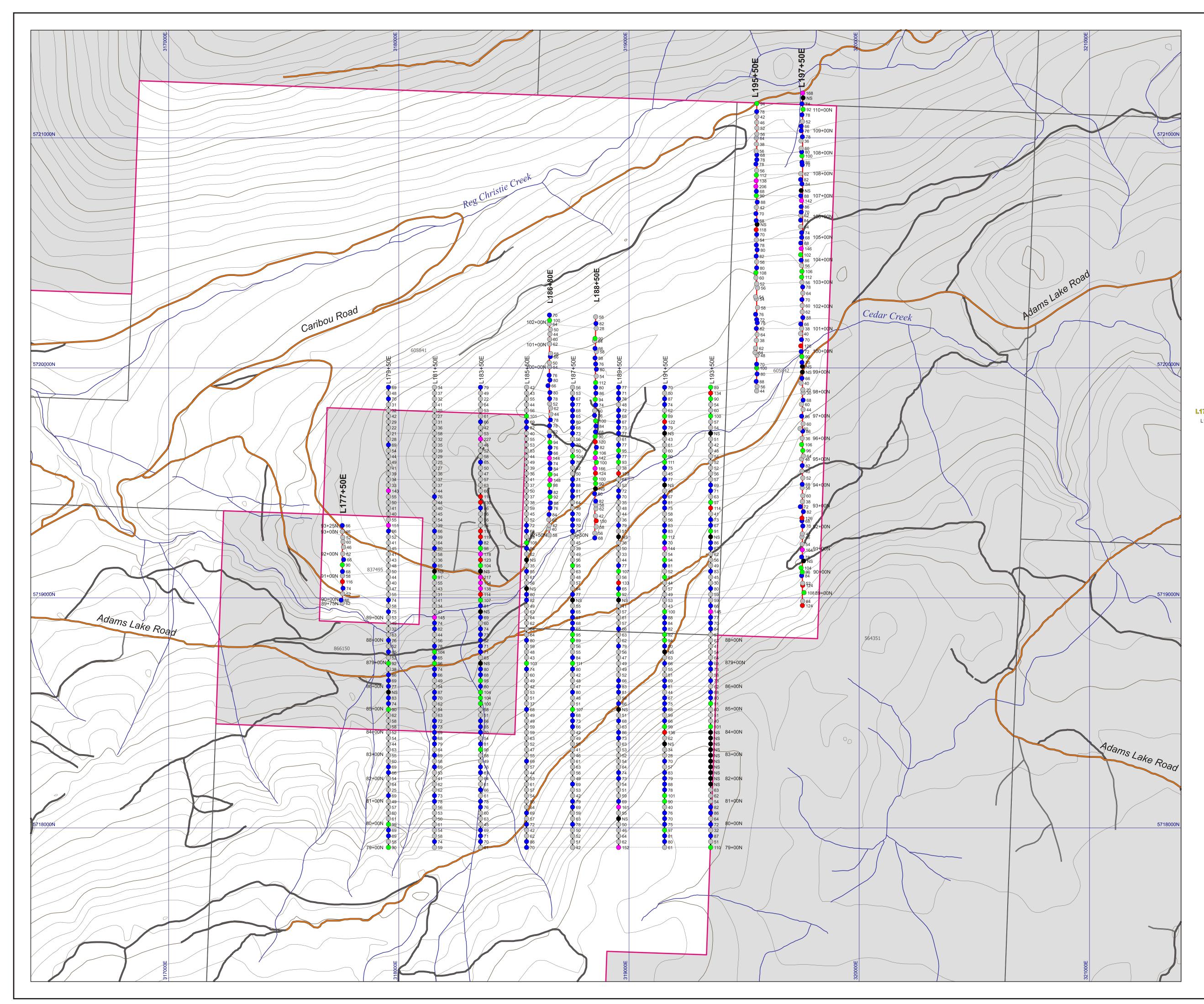
Field

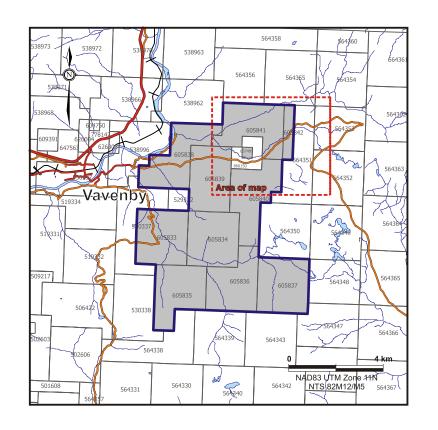
<u>Personnel</u>	Unit	Rate		
Phil Gordon	0.25	600.00	150.00	
Kevan Rexim	6.05	400.00	2,420.00	
Spencer Plugoway	7.25	400.00	2,900.00	
			_	5,470.00
<u>Equipment</u>				
Truck	13.25	125.00	1,656.25	
			_	1,656.25
<u>Disbursements</u>				
Licenses, Fees & Permits			1,834.17	
Field Supplies (sample bags)		_	327.80	
			_	2,161.97
Geochemical Analysis				
Sample Prep: Soils dry and sieve at -80 mesh	278	2.46	683.88	
30g FA AA Finish	278	11.86	3,297.08	
ICPAES Aqua Regia Digestion	278	10.71	2,977.38	
			_	6,958.34
Office (Report Preparation)		. .		
Personnel		Rate	4 000 00	
Ted VanderWart		600.00	1,800.00	
Chris Naas		800.00	200.00	
Christine Swanson	0.25	600.00	150.00	0 000 00
			_	2,000.00
Disbursements			400.40	
Drafting and Report Costs		_	138.13	400.40
			_	138.13

Total 18,384.69

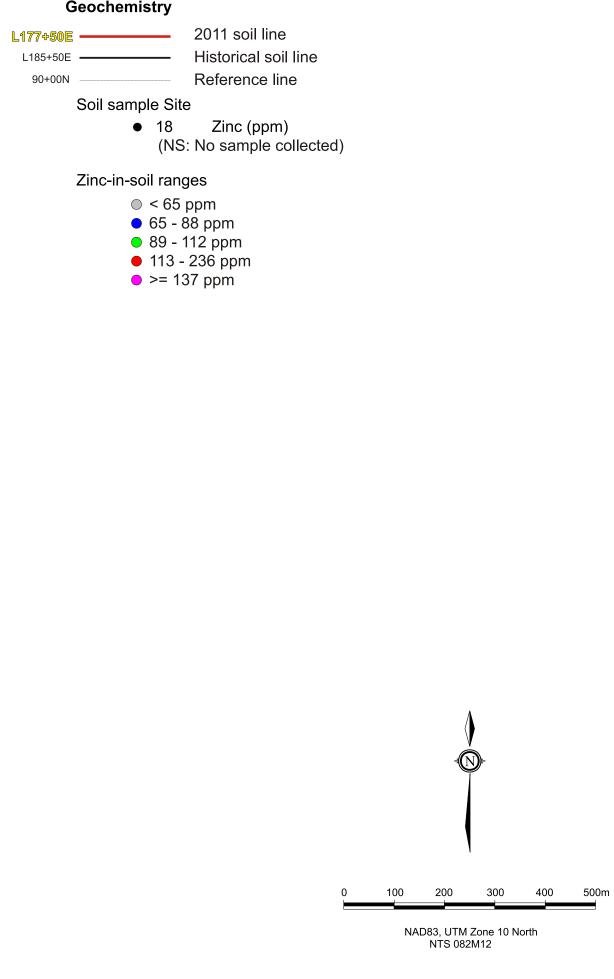



10.0 LIST OF SOFTWARE USED

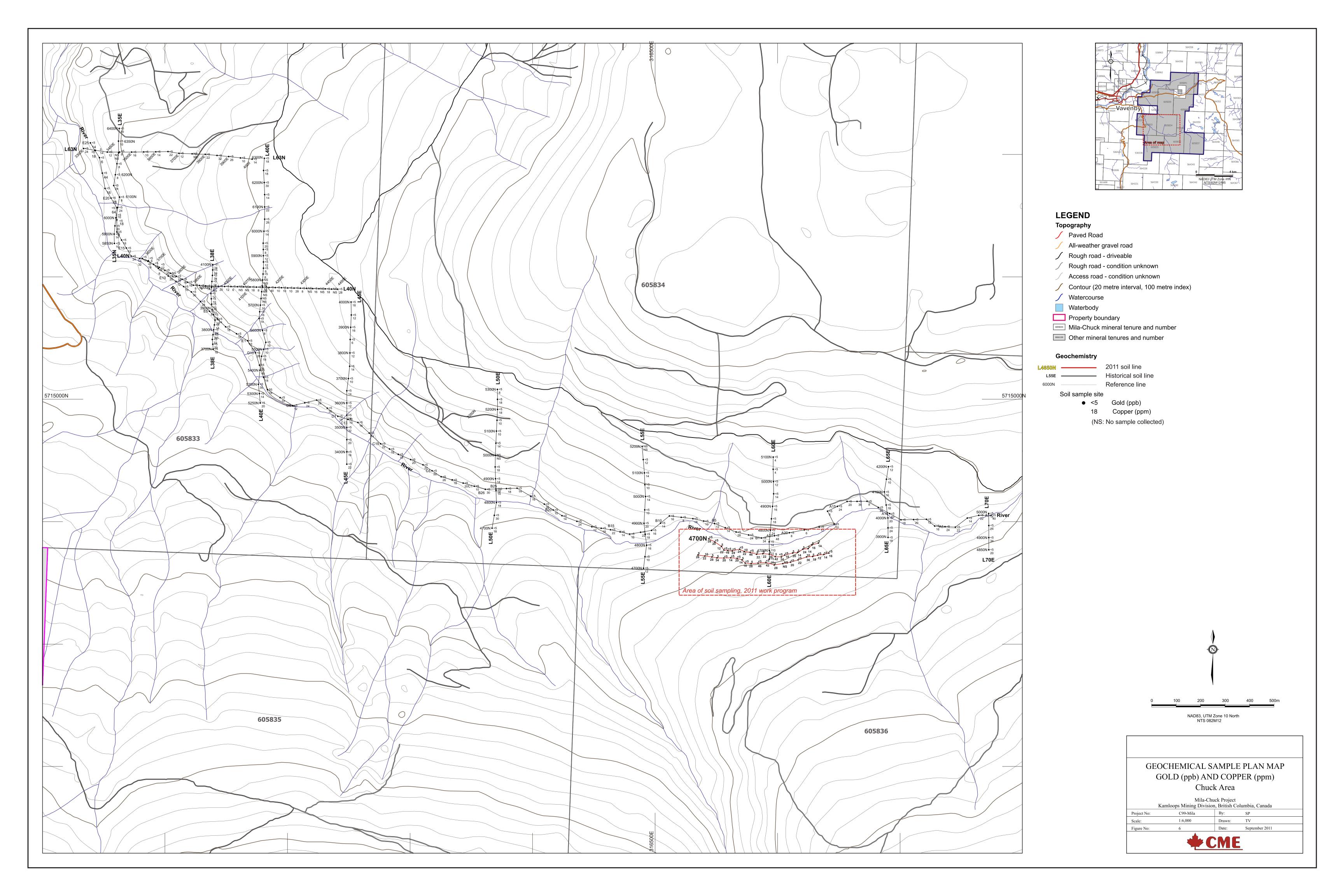

In the preparation of this report the following software was used:


in the propert	alon of this report t
Microsoft	Word 2000
	Excel 2000
Corel	CorelDraw x3
Adobe	Acrobat version 7
Micromine:	Micromine 2010

Intuit: Quickbooks 2010



LEGEND


Topography

- Paved Road
- / All-weather gravel road
- ✓ Rough road driveable
- / Rough road condition unknown
- Access road condition unknown
- ✓ Contour (20 metre interval, 100 metre index)
- / Watercourse
- Waterbody
- Property boundary
- ⁶⁰⁵⁸³⁴ Mila-Chuck mineral tenure and number
- B66150 Other mineral tenures and number

Geochemistry

APPENDIX I

ABBREVIATIONS AND CONVERSION FACTORS

ABBREVIATIONS

Elements		Abbreviations	
Ag	Silver	Az	azimuth
As	Arsenic	CDN\$	Canadian dollars
Au	Gold	ppm	parts per million
Ba	Barium	ppb	parts per billion
Cd	Cadmium	g/t	grams per metric tonne
Cu	Copper	oz/T	troy ounces per ton
Мо	Molybdenum	tpd	metric tonnes per day
Pb	Lead	Eq. Au	Gold equivalent
Sb	Antimony	UTM	Universal Transverse Mercator
Ti	Titanium	NAD83	North American Datum 1983
Zn	Zinc	°/ ' / "	degree/minute/second of arc

CONVERSION FACTORS

	1	1
		25.40 millimetre (mm)
		2.540 centimetres (cm)
		0.3048 metres (m)
0.6214 mile (mi)	1 mile (mi)	1.609 kilometres (km)
0.1550 againshes $(in 2)$	1 so inch(in 2)	6.452 sq. continuations (cm.2)
		6.452 sq. centimetres (cm ²)
		0.0929 sq. metres (m ²)
		0.4047 hectare (ha)
1		640 acres
		259.0 hectare (ha)
0.3861 sq. miles (mi ²)	1 sq. mile (m ²)	2.590 sq. kilometres (km ²)
0.06102 cu inches (in ³)	1 cu inch (in ³)	16.39 cu. centimetres (cm^3)
		0.7646 cu. metres (m ³)
		0.02832 cu. metres (m3)
		3.785 litres (1)
	0	4.546 litres (1)
0.2200 ganons (0. k .)	1 ganon (U.K.)	4.540 nues (1)
0.03215 troy ounce (20dwt)	1 troy ounce (oz)	31.1034 grams (g)
0.6430 pennyweight (dwt)	1 pennyweight (dwt)	1.555 grams (g)
0.03527 oz avoirdupois	1 oz avoirdupois	28.35 grams (g)
2.205 lb avoirdupois	1 lb avoirdupois	0.4535 kilograms (kg)
		0.9072 tonnes (t)
0.9842 long ton	1 long ton (2240 lb)	1.016 tonnes (t)
		7 0.01 ()
		50.81 cm/second
		$0.04382 \text{ m}^3/\text{second}$
		$0.003785 \text{ m}^{3}/\text{minute}$
		0.01602 g/m^3
		40.6817 g/m ³
1		6985 Pascal
0.029216 troy ounce/ short ton (oz/T)		34.2857 grams/tonne (g/t)
0.583 dwt/short ton	1 dwt/short ton	1.714 g/t
0.653 dwt/long ton	1 dwt/long ton	1.531 g/t
0.0001 %		
1 part per million (ppm)		
10,000 part per million (ppm)		
1,000 part per billion (ppb)		
0.001 part per million (ppm)		
	0.6430 pennyweight (dwt) 0.03527 oz avoirdupois 2.205 lb avoirdupois 1.102 tons (T) (short ton) 0.9842 long ton 0.01968 ft/min 22.82 million gal/day 264.2 gal/min 62.43 lb/ cu. ft 0.02458 oz/cu. yd 0.000145 psi 0.029216 troy ounce/ short ton (oz/T) 0.583 dwt/short ton 0.653 dwt/long ton 0.0001 % 1 part per million (ppm) 10,000 part per million (ppb)	0.394 inches(in)11inch (in) 3.281 feet (ft)1foot (ft) 0.6214 mile (mi)1foot (ft) 0.6214 mile (mi)1mile (mi) 0.6214 mile (mi)1sq. mile (mi) 0.76 feet (ft²)1foot (ft) 2.471 acres1sq. mile (m²) 0.003861 sq. miles (m²)1sq. mile (m²) 0.03861 sq. miles (m²)1sq. mile (m²) 0.06102 cu. inches (in³)1cu. inch (in³) 1.308 cu. yards (yd³)1cu. inch (in³) 1.308 cu. yards (yd³)1cu. inch (in³) 0.06102 cu. inches (in³)1cu. inch (in³) 1.308 cu. yards (yd³)1cu. ord (ft³) 0.2200 gallons (U.S.)1gallon (U.S.) 0.2215 troy ounce (20dwt)1troy ounce (oz) 0.6430 pennyweight (dwt)1jennyweight (dwt) 0.03215 troy ounce (20dwt)1troy ounce (oz) 1.102 tons (T) (short ton)1ton (T) (short ton) (2000 lb) 0.03421 bny cu. ft1tom (1) (short ton) (2000 lb) 0.01968 ft/min1ft/min 2.82 million gal/day1gal/min 2.43 lb/ cu. ft1lb/cu. ft³ 0.029216 troy ounce/ short ton (oz/T)1troy ounce/short ton (oz/T) 0.383 dwt/short ton1million (ppm) 0.000145 psi1psi 0.002016 trop million (ppm)1dwt/long ton $0.0001%$ 1pri 1 part p

APPENDIX II

CERTIFICATES OF ANALYSES

23-Jun-11

Stewart Group

ECO TECH LABORATORY LTD.

10041 Dallas Drive

KAMLOOPS, B.C.

V2C 6T4

Phone: 250-573-5700 Fax : 250-573-4557

Values in ppm unless otherwise reported

ICP CERTIFICATE OF ANALYSIS AK 2011-0759 Total Digest

CME Consultants Inc. #2130-21331 Gordon Way **Richmond, BC** V6W 1J9

No. of samples received: 15 Sample type: Soil **Project Name: Mila Shipment #: C99-Mila-1** Submitted By: Spencer

Et #.	Tag #	Ag Al% As	Ba Be	Bi Ca% Co	Co Cr	Cu Fe%	Hg	K%	La Li	Mg% M	In Mo	Na% Ni	Р	Pb S%	Sb S	Sc Se	Sn Sr Ti%	υv	WΥ	Zn
1	L177+50E S 89+75N	<0.2 1.14 <5	64 <1	<5 0.19 <1	9 18	40 2.32	<5	0.17	18 8	0.37 30	00 1	0.03 20	240	21 0.02	<5	1 <10	<5 16 0.03	<5 20	<5 3	62
2	L177+50E S 90+00N	<0.2 1.14 5	58 <1	<5 0.11 <1	9 22	42 2.64	<5	0.19	28 8	0.45 22	25 1	0.03 21	160	21 < 0.01	<5	2 <10	<5 10 0.02	<5 22	<5 6	66
3	L177+50E S 90+25N	<0.2 1.83 <5	154 <1	<5 0.15 <1	9 16	12 1.94	<5	0.09	8 10	0.25 16	60 1	0.03 20	330	15 < 0.01	<5 •	<1 <10	<5 12 0.07	<5 24	<5 1	52
4	L177+50E S 90+50N	<0.2 1.68 5	124 <1	<5 0.38 <1	8 16	34 2.03	<5	0.12	10 18	0.30 39	0 1	0.03 21	510	15 0.01	<5	1 <10	<5 22 0.05	<5 22	<5 3	74
5	L177+50E S 90+75N	<0.2 1.81 <5	128 <1	<5 0.32 <1	7 16	44 1. 9 5	<5	0.11	8 32	0.23 10	00 1	0.04 25	150	21 0.01	<5	2 <10	<5 24 0.08	<5 26	<5 3	116
6	1177 505 9 01 000	.0.0.1.00	70 1	.F. 0.10 .1	0.10	00 0 00		0.07	10 0	0.00.40			0.10	15 0.04	-					
0 7	L177+50E S 91+00N	<0.2 1.28 <5				28 2.08						0.03 21					<5 10 0.04			
/	L177+50E S 91+25N	<0.2 1.45 <5		<5 0.12 <1	8 14		-			0.23 29		0.03 21				<1 <10	<5 10 0.06	<5 26	<5 2	68
8	L177+50E S 91+50N	<0.2 1.63 <5	92 <1	<5 0.09 <1	9 14	24 2.21	<5	0.06	10 10	0.23 23	35 1	0.03 23	800	21 < 0.01	<5	1 <10	<5 10 0.07	<5 24	<52	90
9	L177+50E S 91+75N	<0.2 1.42 <5	62 <1	<5 0.04 <1	8 18	22 2.14	<5	0.06	12 8	0.29 23	15 1	0.03 20	450	15 < 0.01	<5 <	<1 <10	<5 6 0.04	<5 22	<52	66
10	L177+50E S 92+00N	<0.2 1.93 <5	74 <1	<5 0.20 <1	7 12	8 1.88	<5	0.06	8 10	0.16 18	10 1	0.03 19	760	18 <0.01	<5	1 <10	<5 16 0.09	<5 26	<5 2	62
11	L177+50E S 92+25N	<0.2 1.57 <5	82 <1	<5 0.20 <1	6 14	18 1.94	<5	0.09	10 16	0.23 19)5 <1	0.03 18	250	12 < 0.01	<5	1 <10	<5 18 0.05	<5.24	<5.2	46
12	L177+50E S 92+50N	<0.2 2.24 <5	130 <1	<5 0.11 <1	8 16							2 0.03 23					<5 16 0.09			
13	L177+50E S 92+75N	<0.2 1.69 <5			8 14					0.19 25		0.03 22		15 < 0.01	-		<5 14 0.07			••
14	L177+50E S 93+00N	<0.2 1.21 <5	74 <1	<5 0.13 <1	8 14	24 2.12	<5	0.08	14 8	0.28 27	'5 <1	0.03 18	380	15 < 0.01	<5	1 <10	<5 12 0.04	<5 20	<53	46
15	L177+50E S 93+25N	<0.2 2.15 <5	176 <1	<5 0.30 <1	9 18	20 2.67	<5	0.10	10 20	0.26 59	5 2	2 0.03 31	530	18 < 0.01	<5	1 <10	<5 26 0.08	<5 32	<5 2	66
	[A:																			

Repeat:

1	L177+50E S 89+75N	<0.2 1.13 5 64 <1 <5 0.18 <1	1 9 18 38 2.35 <5 0.16 20 8 0.36 315	1 0.03 20 250 18 <0.01 <5 1 <10 <5 16 0.03 <5 20 <5 3 58
10	L177+50E S 92+00N	<0.2 1.97 <5 76 <1 <5 0.20 <1	1 7 12 8 1.88 <5 0.06 6 12 0.17 175	1 0.03 20 770 18 <0.01 <5 1 <10 <5 16 0.09 <5 26 <5 2 64

Standard:

Till3

1.5 1.12 80 40 <1 <5 0.55 <1 11 62 20 2.03 <5 0.09 14 18 0.57 320 1 0.04 30 470 18 0.01 <5 3 <10 <5 18 0.08 <5 36 <5 9 40

NM/EL DF/1 759S XLS/11

ECO TECH LABORATORY LTD. Norman Monteith B.C. Certified Assayer 22-Jun-11

Stewart Group ECO TECH LABORATORY LTD. 10041 Dallas Drive KAMLOOPS, B.C. V2C 6T4

ICP CERTIFICATE OF ANALYSIS AK 2011-0760 Total Digest CME Consultants Inc. #2130-21331 Gordon Way Richmond, BC V6W 1J9

Phone: 250-573-5700 Fax : 250-573-4557

No. of samples received: 271 Sample type: Soil **Project Name: Mila Shipment #: C99-Mila-2** Submitted By: Spencer

Values in ppm unless otherwise reported

Et #.	Tag #																					S% Sb				Ti%	υν	w	<u>IZ Y</u>
1	L46+50N S 57+50E	<0.2	2.49	10 1	56	<1 <5	0.25	<1	14 40	26	3.92	<5	0.15	14 28	0.55	255	2	0.03	36	1530	21	0.02 <5	3 <	10 <5	20	0.08	<5 46	5	4 82
2	L46+50N S 57+75E																					<0.01 <5							3 8f
3	L46+50N S 58+00E																					<0.01 <5							
4	L46+50N S 58+25E	<0.2	3.16	5 3	308	1 <5	0.24	<1	10 44	34	3.67	<5	0.21	14 32	0.45	440	З	0.04	41	1480	21	0.01 <5	3 <	10 <5	18	0.08	<5 50	5	6 13₄
5	L46+50N S 58+50E	<0.2	1.93	10	98	<1 <5	0.17	<1	16 52	20	4.09	<5	0.18	22 26	0.88	450	2	0.03	35	780	18	0.01 <5	3 <	10 <5	12	0.08	<5 52	5	3 81
6	L46+50N S 58+75E																					0.02 <5							
7	L46+50N S 59+00E								15 38													0.02 <5	-						
8	L46+50N S 59+25E																					0.02 <5							
9	L46+50N S 59+50E							-			-	-										0.01 <5							
10	L46+50N S 59+75E	0.2	2.05	10 1	40	<1 <5	0.31	<1	17 42	28	3.70	<5	0.17	20 32	0.73	765	2	0.04	33	730	18	0.01 <5	3 <	10 <5	20	0.08	<5 48	5	7 7(
11	L46+50N S 60+00E	0.2	3.17	10 2	226	1 <5	0.73	<1	16 40	46	4.26	<5	0.21	16 36	0.66	945	2	0.05	43	840	27	0.03 <5	4 <	10 <5	52	0.09	<5 50	5	8 112
12	L46+50N S 60+25E																					0.03 <5							
13	L46+50N S 60+50E																					0.02 <5							
14	L46+50N S 60+75E N/S												,																
15	L46+50N S 61+00E	<0.2	1.81	10	62	<1 <5	0.15	<1	14 44	20	4.09	<5	0.11	18 20	0.67	325	1	0.03	31	280	18	0.02 <5	2 <	10 <5	14	0.07	<5 48	5	2 64
16	L46+50N S 61+25E																					0.02 <5							6 51
17	L46+50N S 61+50E																					0.02 <5							
18	L46+50N S 61+75E					. –																0.01 <5							
19	L46+50N S 62+00E																					<0.01 <5							
20	L46+50N S 62+25E	<0.2	2.29	51	50	<1 <5	0.31	<1	11 26	14	2.87	<5	0.08	10 22	0.37	575	2	0.04	21	1100	15	0.03 <5	1 <	10 <5	18	0.07	<5 36	<5	3 104
21	L46+50N S 62+50E																					0.02 <5							
22	L47+00N S 57+50E																					0.02 <5							
23	L47+00N S 57+75E																					<0.01 <5							
24	L47+00N S 58+00E																					<0.01 <5							
25	L47+00N S 58+25E	<0.2	1.53	10	78	<1 <5	0.42	<1	12 42	22	3.33	<5	0.15	18 18	0.64	415	1	0.03	30	500	15	0.02 <5	2 <	10 <5	20	0.04	<5 40	5	3 60
26	L47+00N S 58+50E	<0.2	1.55	10	58	<1 <5	0.34	<1	14 40	16	3.20	<5	0.11	22 18	0.71	360	1	0.03	30	590	15	<0.01 <5	2 <	10 <5	20	0.03	<5 34	5	4 54
27	L47+00N S 58+75E																					<0.01 <5							
28	L47+00N S 59+00E	<0.2	1.89	10 1	10	<1 <5	0.49	<1	16 44	24	3.54	<5	0.13	26 22	0.81	590	1	0.03	34	630	18	0.02 <5	3 <	10 <5	24	0.04	<5 40	5	7 6(
29	L47+00N S 59+25E																					<0.01 <5							
30	L47+00N S 59+50E																					0.04 <5							

CERTIFICATE OF ANALYSIS AK 2011-0759

9-Sep-11

CME Consultants Inc. #2130-21331 Gordon Way Richmond, BC V6W 1J9

No. of samples received: 15 Sample type: Soil **Project Name: Mila Shipment #: C99-Mila-1** Submitted By: Spencer

XLS/11

		Au	
ET #.	Tag #	(ppb)	
1	L177+50E S 89+75N	5	
2	L177+50E S 90+00N	5	
3	L177+50E S 90+25N	5	
4	L177+50E S 90+50N	5	
5	L177+50E S 90+75N	5	
6	L177+50E S 91+00N	5	
7	L177+50E S 91+25N	5	
8	L177+50E S 91+50N	5	
9	L177+50E S 91+75N	5	
10	L177+50E S 92+00N	<5	
11	L177+50E S 92+25N	5	
12	L177+50E S 92+50N	10	
13	L177+50E S 92+75N	5	
14	L177+50E S 93+00N	5	
15	L177+50E S 93+25N	5	
<u>QC DAT</u> Repeat:			
8	L177+50E S 91+50N	10	
12	L177+50E S 92+50N	15	
Standar	rd:		/
OXE86		610	dal
FA Geo	chem/AA Finish		1 Carl
N 18 A /F-1			ECO TECH LABORATOR
NM/EL			Norman Monteith

Norman Monteith B.C. Certified Assayer

All business is undertaken subject to the Company's General Conditions of Business which are available on request. Registered Office: Eco Tech Laboratory Ltd., 100041 Dallas Drive, Kamloops, BC V2C 674. Canada.

ICP CERTIFICATE OF ANALYSIS AK 2011-0760

<u>Et #.</u>	Tag #			Ca% Cd Co C								Ni	P Pb	S% Sb	Sc Se Sn Sr	Ti% U V	W Y Zr
31	L47+00N S 59+75E	<0.2 1.86 10	98 <1 <5	0.24 <1 18 5	4 22	4.11 <5	0.16	22 26	0.90	540	1 0.03	39 56	0 18 C	.01 <5	3 <10 <5 16	0.06 <5 48	5 4 78
32	L47+00N S 60+00E	<0.2 1.42 10	56 <1 <5	0.20 <1 12 3	6 22	3.21 <5	0.09	20 18	0.61	310	1 0.03	27 73	0 15 <0	.01 <5	2 <10 <5 14	0.03 <5 30 ·	<5 4 5≀
33	L47+00N S 60+25E			0.49 <1 15 3													
34	L47+00N S 60+50E			0.78 <1 24 5													
35	L47+00N S 60+75E			0.39 <1 21 4													
36	L47+00N S 61+00E	<020835	42 <1 <5	0.17 <1 6 1	8 18	2 15 <5	0.06	10 8	0.27	115 <	1 0.02	15 37	0 9 0	02 <5	<1 <10 <5 12	0.02 <5.24	<5 3 3l
37	L47+00N S 61+25E			0.28 <1 12 2													
38	L47+00N S 61+50E			0.13 <1 5 1											<1 <10 <5 8		
39	L47+00N S 61+75E			0.18 <1 13 3													-
40	L47+00N S 62+00E			0.10 <1 8 1											1 <10 <5 12		
40	L47700N 3 02100E	<0.2 0.00 0	20 (1 ()	0.10 41 8 1	5 14	2.22 ()	0.05	12 10	0.50	105 <	1 0.02	17 37	0 9 40	.01 <5	1 < 10 < 5 0	0.02 <5 20 4	
41	L47+00N S 62+25E	<0.2 0.64 10	18 <1 <5	0.14 <1 5 1	4 16	2.10 <5	0.03	12 6	0.24	105 <	1 0.02	15 65	0 9 <0	.01 <5	<1 <10 <5 8	0.01 <5 14 ·	<5 3 34
42	L47+00N S 62+50E	<0.2 0.64 10	12 <1 <5	0.08 <1 7 1	4 14	2.54 <5	0.03	10 6	0.20	100 <	1 0.02	14 48	0 9 <0	.01 <5	<1 <10 <5 6	0.03 <5 26 ·	<5 2 3(
43	L186+50E S 92+50N	<0.2 1.23 <5	60 <1 <5	0.27 <1 13 1	3 122	2.61 <5	0.09	14 10	0.40	545	1 0.02	22 47	0 15 <0	.01 <5	2 <10 <5 18	0.03 <5 22 ·	<5 3 5≀
44	L186+50E S 92+75N	<0.2 1.08 <5	38 <1 <5	0.04 <1 7 1	2 34	1.68 <5	0.04	88	0.25	100	1 0.02	14 22	0 6 <0	.01 <5	<1 <10 <5 4	0.04 <5 22 ·	<5 1 4(
45	L186+50E S 93+00N	<0.2 1.01 <5	52 <1 <5	0.04 <1 8 1	6 74	2.06 <5	0.06	12 6	0.35	130	1 0.02	16 16	0 9 <0	.01 <5	<1 <10 <5 4	0.03 <5 18 ·	<5 2 4
46	L186+50E S 93+25N	<0.2 1.74 <5	102 <1 <5	0.18 <1 7 1;	2 14	1.82 <5	0.08	8 12	0.18	320	1 0.03	20 65	0 15 <0	.01 <5	1 <10 <5 14	0.09 <5 28 ·	<5 2 62
47	L186+50E S 93+50N	<0.2 2.08 <5	104 <1 <5	0.14 <1 8 10	3 C	1.79 <5	0.07	8 12	0.16	295	1 0.03	28 63	0 15 <0	.01 <5	1 <10 <5 12	0.10 <5 24 ·	<5 3 84
48	L186+50E S 93+75N	<0.2 1.91 <5	136 <1 <5	0.29 <1 8 1) 12	1.80 <5	0.08	6 14	0.21	170	2 0.03	23 60	0 12 <0	.01 <5	<1 <10 <5 20	0.09 <5 24 -	<5 2 71
49	L186+50E S 94+00N	<0.2 2.76 5	80 <1 <5	0.11 <1 9 1	4 18	1.99 <5	0.07	6 14	0.18	175	2 0.04	34 59	0 24 <0	.01 <5	2 <10 <5 12	0.12 <5 22 ·	<5 2 81
50	L186+50E S 94+25N	<0.2 1.84 <5	114 <1 <5	0.22 <1 9 1	2 16	1.86 <5	0.07	6 14	0.20	145	1 0.03	36 27	0 15 <0	.01 <5	<1 <10 <5 20	0.09 <5 26 ·	<5 1 9%
51	L186+50E S 94+50N	<0.2 1.72 <5	94 <1 <5	0.15 <1 9 10	6 30	2.14 <5	0.07	8 12	0.25	185	1 0.03	30 36	0 15 <0	.01 <5	<1 <10 <5 14	0.07 <5 26 ·	<5 1 82
52	L186+50E S 94+75N	<0.2 1.81 <5	134 <1 <5	0.31 <1 10 1	3 60	2.12 <5	0.06	10 12	0.29	585	1 0.03	28 65	0 15 <0	.01 <5	1 <10 <5 20	0.07 <5 28 ·	<5 2 98
53	L186+50E S 95+00N	<0.2 1.91 <5	90 <1 <5	0.11 <1 11 1	5 18	2.10 <5	0.06	8 12	0.25	255	1 0.03	33 37	0 15 <0	.01 <5	1 <10 <5 10	0.07 <5 28 ·	<5 2 148
54	L186+50E S 95+25N	<0.2 2.01 <5	148 <1 <5	0.18 <1 11 10	3 20	2.01 <5	0.08	8 14	0.27	300	1 0.03	36 47	0 18 <0	.01 <5	1 <10 <5 16	0.09 <5 28 ·	<5 2 94
55	L186+50E S 95+50N			0.14 <1 11 1					0.26						1 <10 <5 14		
56	L186+50E S 95+75N	<0.2 2.22 <5	276 <1 <5	0.15 <1 11 1	3 36	2.20 <5	0.08	10 14	0.30	280	2 0.03	45 57	0 18 <0	.01 <5	1 <10 <5 22	0.08 <5 24 ·	<5 2 74
57	L186+50E S 96+00N			0.15 <1 10 10											1 <10 <5 16		
58	L186+50E S 96+25N			0.15 <1 11 1				8 12							<1 <10 <5 16		
59	L186+50E S 96+50N			0.20 <1 9 1													
60	L186+50E S 96+75N			0.32 <1 10 10											1 <10 <5 22		
61	L186+50E S 97+00N	<0.2 1.86 <5	74 <1 <5	0.21 <1 7	R 4	164 <5	0.04	4 10	0.09	360	1 0.03	19 152	0 12 0	01 <5	<1 <10 <5 16	0 11 <5 24	<5 1 7E
62	L186+50E S 97+25N			0.11 <1 8 14													
63	L186+50E S 97+50N			0.17 <1 11 1													
64	L186+50E S 97+75N			0.17 <1 11 1											1 <10 <5 14		
65	L186+50E S 98+00N			0.11 <1 9 20											1 <10 <5 10		
66	L186+50E S 98+25N	-0.2 168 -5	06 -1 -5	0.15 <1 9 1	2 1/	233 -5	0.06	10 12	0.30	320	1 0.03	23 07	0 15 -0	01 ~5	1 ~10 ~5 12	0.07 ~5 28	-5 2 6'
				0.13 <1 8 1													
68 60	L186+50E S 98+75N			0.14 <1 9 14													
69 70	L186+50E S 99+00N			0.29 <1 8 10													
70	L186+50E S 99+25N	<0.2 1.57 <5	90 <1 <5	0.15 <1 8 10	5 12	1.95 <5	0.06	12 12	0.31	200 <	1 0.02	25 /1	0 12 <0	.01 <5	<1 <10 <5 14	0.00 <5 22 4	<5 2 00
71	L186+50E S 99+50N	<0.2 1.01 <5	92 <1 <5	0.28 <1 8 10	8 6	1.76 <5	0.07	8 10	0.24	515 <	1 0.03	22 62	0 12 <0	.01 <5	1 <10 <5 14	0.06 <5 26 •	<5 1 8(
72	L186+50E S 99+75N	<0.2 1.36 <5	72 <1 <5	0.22 <1 8 12	26	1.49 <5	0.08	8 12	0.20	365	0.04	24 122	0 12 <0	.01 <5	1 <10 <5 12	0.09 <5 26 ·	<5 1 7€
73	L186+50E S 100+00N	<0.2 1.87 <5	80 <1 <5	0.28 <1 7	34	1.39 <5	0.05								<1 <10 <5 18		
74	L186+50E S 100+25N	<0.2 0.80 <5	56 <1 <5	0.17 <1 6		1.41 <5		68	0.12	145 <	1 0.03	11 62	0 9 <0	.01 <5	<1 <10 <5 10	0.07 <5 32 ·	<5 1 5(
75	L186+50E S 100+50N	<0.2 1.89 <5	90 <1 <5	0.27 <1 8 10	6 6	1.54 <5	0.05	4 12	0.17	375	0.03	29 76	0 15 <0	.01 <5	1 <10 <5 16	0.11 <5 26 ·	<5 2 66
• •					÷									-		-	

ICP CERTIFICATE OF ANALYSIS AK 2011-0760

Et #.	Tag #	A	g	AI%	As	Ba	Be	Bi	Ca%	d Cd	Co Cr	Cu	Fe%	Hg	К%	La l	LI N																	
76	L186+50E S 100+75N	<0	.2	1.68	<5	100	<1	<5	0.14	<1	9 14	10	1.83	<5	0.06						0.03													
77	L186+50E S 101+00N	<0	.2	1.55	<5	82	<1	<5	0.17	/ <1	11 26	6	2.18	<5	0.05	61	4	0.30	290	2	0.03	31	390	15 <	:0.01	<5	1 <1	0 <5	12	0.10	<5 40) <5	1 6	52
78	L186+50E S 101+25N	<0	.2	1.34	<5	70	<1	<5	0.14	<1	10 20	6	1.96	<5	0.05	8 1	0	0.27	220	1	0.03	28	230	12 <	0.01	<5	1 <1	0 <5	10	0.08	<5 38	3 <5	1 6	3(
79	L186+50E S 101+50N	<0	.2 .	1.45	<5	64	<1	<5	0.20) <1	8 16	6	1.56	<5	0.06	61	0	0.21	240	<1	0.03	31	390	12 <	0.01	<5	1 <1	0 <5	12	0.09	<5 28	3 <5	2 4	14
80	L186+50E S 101+75N	<0	.2	1.29	<5	94	<1	<5	0.25	5 <1	68	2	1.17	<5	0.05	41	0	0.10	445	<1	0.03	16	1190	12 <	:0.01	<5	<1 <1	0 <5	14	0.08	<5 20	6 <5	1 {	5(
81	L186+50E S 102+00N	<0	.2	1.73	5	108	<1	<5	0.25	5 <1	11 24	6	2.02	<5	0.07			0.32			0.03													
82	L186+50E S 102+25N										12 22										0.03													
83	L186+50E S 102+50N	<0	.2	1.76	<5	88	<1	<5	0.2	<1	10 24	10	2.01	<5	0.10	12 1	4	0.38	215	1	0.03	32	340	21 <	:0.01	<5	2 <1	0 <5	14	0.07	<5 20	3 <5	2	7(
84	L188+50E S 92+50N										7 10										0.03													
85	L188+50E S 92+75N	<0	.2	1.00	<5	86	<1	<5	0.29) <1	6 10	8	1.60	<5	0.04	6	6	0.11	1135	<1	0.03	13	540	12	0.01	<5	<1 <1	0 <5	16	0.07	<5 21	8 <5	1 (5ŧ
86	L188+50E S 93+00N										11 22																							
87	L188+50E S 93+25N										19 36																							
88	L188+50E S 93+50N										68																<1 <1							
89	L188+50E S 93+75N										86													-			2 <1							
90	L188+50E S 94+00N	<0	.2 '	1.49	<5	66	<1	<5	0.13	3 <1	10 20	10	2.11	<5	0.04	10 1	0	0.25	250	1	0.03	21	330	18 <	:0.01	<5	1 <1	0 <5	8	0.07	<5 30) <5	2 (5ł
91	L188+50E S 94+25N										14 28																							
92	L188+50E S 94+50N	<0	.2 '	1.01	<5	46	<1	<5	0.1	<1	9 28	14	2.37	<5	0.05	12	8	0.42	295	1	0.02	23	600	15 <	:0.01	<5	2 <1	0 <5	6	0.03	<5 30) <5	2 8	3(
93	L188+50E S 94+75N N/S													_								~ ~				-		~ -		.		~ -	~ /	~
94	L188+50E S 95+00N										8 14							0.20			0.03													
95	L188+50E S 95+25N	<0	.2 .	1.45	10	60	<1	<5	0.18	3 <1	11 20	62	3.05	<5	0.05	10 1	0	0.40	315	2	0.02	30	480	21 <	:0.01	<5	1 <1	0 <5	14	0.05	<5 24	4 <5	2 10	Л
96	L188+50E S 95+50N	<0	.2	1.80	<5	116	<1	<5	0.18	3 <1	8 14	18	1.78	<5	0.07			0.20			0.03													
97	L188+50E S 95+75N	0	.2	1.83	<5	126	<1	<5	0.20) <1	8 12	28	2.47	<5	0.09						0.04													
98	L188+50E S 96+00N										7 10					61	0	0.15	230	1	0.03	18	360	18 <	:0.01	<5	1 <1	0 <5	12	0.09	<5 2	8 <5	2 10)(
99	L188+50E S 96+25N										8 16					81	2	0.23			0.03													
100	L188+50E S 96+50N	<0	.2	1.73	5	122	<1	<5	0.29	5 <1	9 14	32	2.49	<5	0.08	61	0	0.24	425	1	0.03	30	540	30	0.01	<5	1 <1	0 <5	16	0.07	<5 20	6 <5	2 10	ж
101	L188+50E S 96+75N	<0	.2	1.61	5	136	<1	<5	0.13	7 <1	10 18	22	2.11	<5	0.06	81	0	0.29	250	1	0.03	28	350	27 <	0.01	<5	1 <1	0 <5	14	0.07	<5 24	8 <5	28	3:
102	L188+50E S 97+00N	<0	.2	1.80	<5	148	<1	<5	0.18	3 <1	10 18	10	1.99	<5	0.09	61	4	0.26			0.03													
103	L188+50E S 97+25N										9 14							0.21			0.03													
104	L188+50E S 97+50N	<0	.2 :	2.28	10	102	<1	<5	0.20) <1	8 12	12	1.65	<5	0.05	81	2	0.16	260	2	0.04	23	1020	18 <	:0.01	<5	2 <1	0 <5	14	0.12	<5 2	2 <5	4 (31
105	L188+50E S 97+75N	<0	.2	1.17	<5	84	<1	<5	0.20) <1	7 12	10	1.77	<5	0.05	6	8	0.17	305	<1	0.03	18	220	21 <	:0.01	<5	1 <1	0 <5	12	0.07	<5 3	0 <5	28	34
106	L188+50E S 98+00N	0	.2	1.74	10	166	<1	<5	0.14	l <1	9 14	24	2.10	<5	0.07	10 1	4	0.29																
107	L188+50E S 98+25N	-			_			-			9 10										0.04													
108	L188+50E S 98+50N										10 12										0.04													
109	L188+50E S 98+75N										10 26																							
110	L188+50E S 99+00N	<0	.2	1.38	<5	84	<1	<5	0.1	<1	10 24	14	2.19	<5	0.05	14 1	2	0.42	520	1	0.02	26	460	15 <	:0.01	<5	1 <1	0 <5	8	0.04	<5 24	4 <5	2 9	€.
	L188+50E S 99+25N	<0	.2	1.45	<5	114	<1	<5	0.08	3 <1	8 18	10	1.77	<5	0.05	81	2	0.29	350	1	0.03	24	630	12 <	:0.01	<5	1 <1	0 <5	8	0.05	<5 2	2 <5	2 8	31
112	L188+50E S 99+50N	<0	.2	1.69	<5	98	<1	<5	0.28	3 <1	8 14	8	1.67	<5	0.04	4 1	2	0.16	830	1	0.03	21	1340	15 <	:0.01	<5	1 <1	0 <5	16	0.10	<5 3	2 <5	1 8	3(
113	L188+50E S 99+75N	<0	.2	1.73	<5	80	<1	<5	0.2	<1	10 20	14	2.14	<5	0.08	14 1	6	0.38	460	1	0.03	28	720	15 <	:0.01	<5	1 <1	0 <5	12	0.05	<5 2	2 <5	2 1	14
114	L188+50E S 100+00N	0	.2	1.91	10	118	<1	<5	0.24	+ <1	7 10	8	1.47	<5	0.05	6	8	0.11	560	1	0.03	18	1780	18	0.01	<5	2 <1	0 <5	14	0.11	<5 1	8 <5	3 5	5-
115	L188+50E S 100+25N	<0	.2	1.11	<5	64	<1	<5	0.18	3 <1	8 16	6	1.63	<5	0.05	41	0	0.17	465	<1	0.03	25	750	12 <	:0.01	<5	1 <1	0 <5	10	0.09	<5 3	8 <5	1 8	3(
116	L188+50E S 100+50N	<0	.2	1.77	<5	96	<1	<5	0.32	2 <1	11 14	16	2.05	<5							0.04													
117	L188+50E S 100+75N	<0	.2	1.47	<5	76	<1	<5	0.24	1 <1	11 26	20	2.50	<5	0.13	16 1	4	0.51	550	1	0.04	29	720	15 <	:0.01	<5	2 <1	0 <5	14	0.06	<5 2	bi <5	38	31
118	L188+50E S 101+00N										68					4	8	0.08	490	1	0.03	14	1450	15	0.01	<5	1 <1	0 <5	20	0.11	<5 2	2 <5	3 5	51 C/
119	L188+50E S 101+25N										68										0.03													
120	L188+50E S 101+50N	<0	.2	1.80	<5	112	<1	<5	0.14	1 <1	11 26	40	2.21	<5	0.06	81	2	0.29	325	1	0.03	31	590	15	0.01	<5	1 <1	0 <5	10	0.09	<5 3	6 <5	2 (Зʻ

ICP CERTIFICATE OF ANALYSIS AK 2011-0760

Et #.	Tag #	Ag Al% As Ba Be Bi	Ca% Cd Co Cr Cu	Fe% Hg K%	La Li Mg% Mn N	lo Na% Ni P Pb S% Sb	Sc SeSn Sr Ti% U V W Y Zr
121	L188+50E S 101+75N	<0.2 2.06 <5 90 <1 <5	0.29 <1 8 18 26	1.75 <5 0.07	8 12 0.25 220	1 0.04 29 1330 18 0.01 <5	1 <10 <5 16 0.10 <5 22 <5 3 90
122	L188+50E S 102+00N	<0.2 1.78 <5 68 <1 <5	0.29 <1 4 10 4	1.30 <5 0.03	4 4 0.06 155	1 0.03 8 2680 15 <0.01 <5	1 <10 <5 16 0.11 <5 22 <5 2 28
123	L188+50E S 102+25N	<0.2 1.96 <5 82 <1 <5	0.31 <1 7 12 6	1.62 <5 0.05	6 12 0.16 290	1 0.04 24 1140 18 <0.01 <5	1 <10 <5 18 0.10 <5 22 <5 2 82
124	L188+50E S 102+50N	<0.2 1.84 <5 78 <1 <5	0.22 <1 7 14 8	1.38 <5 0.04	4 8 0.11 470	1 0.03 16 1340 15 <0.01 <5	2 <10 <5 14 0.11 <5 24 <5 2 58
125	L197+50E S 88+50N					2 0.03 65 630 21 <0.01 <5	4 <10 <5 10 0.07 <5 54 <5 2 124
126	L197+50E S 88+75N						<1 <10 <5 8 0.04 <5 34 <5 1 64
127	L197+50E S 89+00N						2 <10 <5 6 0.08 <5 36 <5 2 108
128	L197+50E S 89+25N	<0.2 1.55 20 108 <1 <5	0.07 <1 13 32 22	3.33 <5 0.04			2 <10 <5 4 0.05 <5 30 <5 3 124
129	L197+50E S 89+50N	<0.2 1.01 <5 86 <1 <5					1 <10 <5 6 0.08 <5 34 <5 2 52
130	L197+50E S 89+75N	0.3 2.48 5 166 <1 <5	0.10 <1 10 34 10	2.33 <5 0.04	6 16 0.33 325	2 0.03 27 3250 18 0.02 <5	1 <10 <5 6 0.12 <5 32 <5 2 84
131	L197+50E S 90+00N						2 <10 <5 14 0.06 <5 40 <5 3 9€
132	L197+50E S 90+25N	0.2 1.46 <5 198 <1 <5	0.42 <1 16 56 28	2.83 <5 0.09	14 16 0.65 430	2 0.03 48 760 18 <0.01 <5	2 <10 <5 14 0.05 <5 38 <5 3 104
	L197+50E S 90+50N N/S						
134	L197+50E S 90+75N						1 <10 <5 8 0.10 <5 28 <5 3 78
135	L197+50E S 91+00N	<0.2 2.90 5 298 <1 <5	0.35 <1 19 66 40	3.95 <5 0.10	14 26 0.73 380	4 0.03 72 1030 27 0.02 <5	3 <10 <5 16 0.08 <5 48 <5 4 164
	L197+50E S 91+25N						1 <10 <5 24 0.05 <5 34 <5 3 54
	L197+50E S 91+50N						1 <10 <5 8 0.07 <5 38 <5 2 4€
	L197+50E S 91+75N						<1 <10 <5 6 0.09 <5 40 <5 1 42
139	L197+50E S 92+00N						1 <10 <5 8 0.05 <5 26 <5 2 7(
140	L197+50E S 92+25N	0.3 2.43 5 148 <1 <5	0.80 <1 8 20 20	2.34 <5 0.08	18 40 0.23 810	3 0.05 41 470 21 0.02 <5	2 <10 <5 36 0.09 <5 30 <5 10 68
	L197+50E S 92+50N						2 <10 <5 12 0.07 <5 42 5 3 126
	L197+50E S 92+75N						2 <10 <5 8 0.06 <5 26 <5 3 82
	L197+50E S 93+00N						1 <10 <5 10 0.06 <5 20 <5 2 72
	L197+50E S 93+25N						<1 <10 <5 6 0.07 <5 26 <5 1 38
145	L197+50E S 93+50N	<0.2 1.84 <5 98 <1 <5	0.11 <1 8 14 10	1.86 <5 0.04	10 10 0.22 455	1 0.02 16 1020 15 <0.01 <5	1 <10 <5 10 0.08 <5 24 <5 2 6(
146	L197+50E S 93+75N	<0.2 1.53 5 68 <1 <5	0.21 <1 10 18 24	2.42 <5 0.08	14 10 0.36 475	1 0.02 22 640 21 0.01 <5	1 <10 <5 14 0.05 <5 24 <5 3 58
147	L197+50E S 94+00N	<0.2 1.49 <5 66 <1 <5	0.08 <1 9 16 8	1.98 <5 0.05	8 12 0.21 240	1 0.02 19 660 12 <0.01 <5	1 <10 <5 8 0.07 <5 28 <5 2 68
148	L197+50E S 94+25N	<0.2 1.32 <5 52 <1 <5	0.15 <1 7 8 6	1.54 <5 0.07	6 8 0.13 455	1 0.03 11 910 12 <0.01 <5	<1 <10 <5 12 0.08 <5 28 <5 1 52
149	L197+50E S 94+50N	<0.2 0.92 <5 54 <1 <5	0.13 <1 6 10 6	1.54 <5 0.04	6 8 0.17 375	<1 0.02 10 530 9 <0.01 <5	<1 <10 <5 10 0.06 <5 30 <5 1 4(
150	L197+50E S 94+75N	<0.2 1.70 <5 78 <1 <5	0.13 <1 10 20 12	2.45 <5 0.06	12 12 0.35 395	1 0.03 20 740 18 <0.01 <5	1 <10 <5 10 0.07 <5 34 <5 2 82
151	L197+50E S 95+00N	<0.2 1.99 <5 34 <1 <5					<1 <10 <5 8 0.14 <5 38 <5 1 4€
152	L197+50E S 95+25N						<1 <10 <5 10 0.09 <5 26 <5 1 64
153	L197+50E S 95+50N	0.6 2.26 5 332 <1 <5	0.83 <1 11 18 40	2.71 <5 0.10	16 36 0.26 2745	4 0.04 46 380 21 0.03 <5	3 <10 <5 48 0.09 <5 36 <5 12 9€
154	L197+50E S 95+75N						2 <10 <5 10 0.07 <5 34 <5 2 106
155	L197+50E S 96+00N	<0.2 1.55 <5 48 <1 <5	0.11 <1 7 6 4	1.48 <5 0.03	4 6 0.05 330	2 0.03 9 1020 12 <0.01 <5	1 <10 <5 10 0.10 <5 30 <5 2 3€
	L197+50E S 96+25N						1 <10 <5 10 0.08 <5 26 <5 2 8€
157	L197+50E S 96+50N						1 <10 <5 10 0.12 <5 38 <5 1 6(
158	L197+50E S 96+75N						<1 <10 <5 16 0.12 <5 20 <5 2 6(
159	L197+50E S 97+00N						1 <10 <5 12 0.09 <5 24 <5 1 8€
160	L197+50E S 97+25N	<0.2 1.22 <5 52 <1 <5	0.10 <1 7 10 6	1.90 <5 0.04	6 6 0.14 495	1 0.02 11 850 9 <0.01 <5	<1 <10 <5 8 0.08 <5 40 <5 1 44
	L197+50E S 97+50N						1 <10 <5 12 0.07 <5 26 <5 2 6(
162	L197+50E S 97+75N	<0.2 1.54 <5 76 <1 <5	0.08 <1 10 22 16	2.77 <5 0.05	14 14 0.39 160	2 0.02 25 650 18 <0.01 <5	1 <10 <5 8 0.05 <5 24 <5 3 68
163	L197+50E S 98+00N						<1 <10 <5 18 0.09 <5 44 <5 2 3(
164	L197+50E S 98+25N						<1 <10 <5 42 0.08 <5 28 <5 3 2(
165	L197+50E S 98+50N	<0.2 1.64 <5 124 <1 <5	0.63 <1 8 16 12	2.37 <5 0.08	12 20 0.31 205	2 0.05 16 250 15 0.02 <5	2 <10 <5 40 0.07 <5 32 <5 4 4(

ICP CERTIFICATE OF ANALYSIS AK 2011-0760

Et #.	Tag #																					Sc Se Sr				
166	L197+50E S 98+75N	<0.2	1.44 -	<5 7	78 <1	<5	0.13 <	10 20	42	2.76	<5	0.08	18 10	0.44	250	2	0.02	23	380	18 < 0.0	1 <5	2 <10 <5	58	0.03 <5	22 <5	4 61
167	L197+50E S 99+00N N/S																									
168	L197+50E S 99+25N N/S																									
169	L197+50E S 99+50N	<0.2	1.57	<5 6	58 <1	<5	0.59 <	11 22	26	2.50	<5	0.05	10 8	0.33	655	2	0.02	20	520	18 0.0	3 <5	2 <10 <5	5 34	0.05 <5	28 <5	4 7(
170	L197+50E S 99+75N																					1 <10 <5				
	L197+50E S 100+00N																					1 <10 <5				
172	L197+50E S 100+25N	<0.2	1.84	10 12	26 <1	<5	0.17 <	17 42	36	4.75	<5	0.05	14 16	0.53	245	2	0.02	47	1500	33 < 0.0	1 <5	2 <10 <5	5 12	0.04 <5	38 5	3 12(
173	L197+50E S 100+50N																					1 <10 <5				
174	L197+50E S 100+75N	0.6	4.35	5 5	56 1	<5	0.08 <	8 10	6	1.86	<5	0.04	46	0.06	210	3	0.03	8 2	2200	21 0.0	2 <5	2 <10 <5	5 10	0.14 <5	- 28 <5	2 4(
175	L197+50E S 101+00N	<0.2	2.29 -	<5 10)8 <1	<5	0.17 <	6 18	26	2.23	<5	0.09	8 26	0.27	275	2	0.03	32	230	21 <0.0	1 <5	2 <10 <5	5 18	0.06 <5	26 <5	3 38
176	L197+50E S 101+25N	<0.2	2.01 •	<5 €	62 <1	<5	0.06 <	7 12	8	1.85	<5	0.04	6 10	0.13	215	2	0.03	17	1160	18 <0.0	1 <5	1 <10 <5	56	0.11 <5	28 <5	1 66
177	L197+50E S 101+50N	<0.2	1.87 -	<5 9	94 <1	<5	0.14 <	10 16	20	2.21	<5	0.06	10 12	0.29	205	1	0.02	28	770	15 < 0.0	1 <5	1 <10 <5	5 12	0.06 <5	22 <5	2 88
178	L197+50E S 101+75N	<0.2	1.66 -	<5 5	58 <1	<5	0.04 <	11 30	18	2.85	<5	0.06	16 14	0.54	220	2	0.02	34	260	18 < 0.0	1 <5	2 <10 <5	56	0.04 <5	26 <5	2 64
179	L197+50E S 102+00N	<0.2	2.47 -	<5 10)6 <1	<5	0.20 <	10 12	8	1.87	<5	0.08	6 18	0.21	265	2	0.03	41	540	18 < 0.0	1 <5	1 <10 <5	5 16	0.10 <5	24 <5	2 6(
180	L197+50E S 102+25N						0.17 <															1 <10 <5				
181	L197+50E S 102+50N	<0.2	1.24 •	<5 9	96 <1	<5	0.21 <	6 10	4	1.37	<5	0.04	48	0.10	815	<1	0.02	15	7 9 0	12 0.0	1 <5	<1 <10 <5	5 16	0.07 <5	28 <5	1 64
182	L197+50E S 102+75N	<0.2	1.29 -	<5 8	86 <1	<5	0.32 <	68	4	1.23	<5	0.04	6 10	0.11	705	<1	0.02	17	700	12 < 0.0	1 <5	<1 <10 <5	5 18	0.07 <5	24 <5	1 78
183	L197+50E S 103+00N	0.4	2.85	5 10)4 <1	<5	0.11 <	88	10	1.61	<5	0.05	10 12	0.10	230	2	0.03	29 -	1130	18 < 0.0	1 <5	2 <10 <5	5 12	0.12 <5	20 <5	4 5t
184	L197+50E S 103+25N	<0.2	2.49	<5 13	80 <1	<5	0.13 <1	11 20	12	2.55	<5	0.07	10 16	0.31	260	2	0.03	46	940	21 < 0.0	1 <5	2 <10 <5	5 12	0.10 <5	30 <5	3 112
185	L197+50E S 103+50N	0.2	1.98 -	<5 15	54 <1	<5	0.24 <	10 18	10	1.96	<5	0.07	10 14	0.30	590	2	0.03	29 -	1600	18 <0.0	1 <5	1 <10 <5	5 18	0.08 <5	24 <5	2 10€
186	L197+50E S 103+75N	<0.2	2.22 •	<5 10)2 <1	<5	0.11 <1	76	4	1.40	<5	0.03	68	0.06	865	2	0.03	15 2	2130	15 <0.0	1 <5	1 <10 <5	5 10	0.11 <5	24 <5	2 56
187	L197+50E S 104+00N	<0.2	2.21 -	<5 13	80 <1	<5	0.14 <1	6 10	4	1.52	<5	0.04	6 10	0.11	725	2	0.03	20 -	1310	18 < 0.0	1 <5	1 <10 <5	5 12	0.10 <5	22 <5	2 8f
188	L197+50E S 104+25N	<0.2	2.00 •	<5 24	2 <1	<5	0.15 <1	12 16	16	2.21	<5	0.07	12 12	0.29	570	2	0.03	35	350	18 < 0.0	1 <5	1 <10 <5	5 20	0.07 <5	28 <5	2 102
189	L197+50E S 104+50N																					1 <10 <5				
190	L197+50E S 104+75N																					<1 <10 <5				
191	L197+50E S 105+00N	<0.2	1.77 •	<5 7	′8 <1	<5	0.10 <1	12 22	26	2.58	<5	0.11	16 14	0.52	270	2	0.02	28	450	18 <0.0	1 <5	2 <10 <5	5 10	0.06 <5	26 <5	4 68
192	L197+50E S 105+25N	<0.2	1.67	5 9	2 <1	<5	0.14 <1	12 26	30	2.82	<5	0.19	16 16	0.55	335	2	0.03	32	640	21 0.0	1 <5	2 <10 <5	5 12	0.07 <5	30 <5	4 74
193	L197+50E S 105+50N	0.2	2.17 -	<5 9	0 <1	<5	0.14 <1	9 14	14	1.99	<5	0.08	10 14	0.27	235	2	0.02	24	890	15 < 0.0	1 <5	1 <10 <5	5 12	0.09 <5	24 <5	3 64
194	L197+50E S 105+75N	<0.2	1.83 -	<5 10	8 <1	<5	0.18 <1	11 18	12	2.07	<5	0.08	8 16	0.29	400	2	0.03	34	440	18 < 0.0	1 <5	1 <10 <5	5 14	0.07 <5	28 <5	2 84
195	L197+50E S 106+00N	<0.2	2.44 <	<5 8	86 <1	<5	0.17 <1	10 14	12	2.02	<5	0.07	12 14	0.26	245	2	0.03	25	770	18 <0.0	1 <5	2 <10 <5	5 10	0.10 <5	24 <5	4 62
196	L197+50E S 106+25N																					1 <10 <5				
197	L197+50E S 106+50N	<0.2	1.40 -	<5 10	2 <1	<5	0.11 <1	11 16	18	2.50	<5	0.07	12 12	0.28	255	1	0.02	26	470	15 < 0.0	1 <5	1 <10 <5	5 10	0.05 <5	32 <5	2 86
198	L197+50E S 106+75N	<0.2	2.05	5 30	8 <1	<5	0.15 <1	11 16	18	2.52	<5	0.09	10 26	0.26	560	2	0.03	26 2	2940	21 < 0.0	1 <5	2 <10 <5	5 14	0.09 <5	32 <5	2 142
199	L197+50E S 107+00N	<0.2	2.60 -	<5 15	58 <1	<5	0.55 <1	9 12	8	1.93	<5	0.10	6 12	0.21	380	2	0.03	22 1	1610	18 < 0.0	1 <5	1 <10 <5	5 36	0.10 <5	26 <5	2 88
200	L197+50E S 107+25N N/S																									
	L197+50E S 107+50N																					<1 <10 <5				
202	L197+50E S 107+75N	<0.2	2.10 <	<5 14	6 <1	<5	0.13 <1	8 10	6	1.52	<5	0.05	6 14	0.15	440	1	0.03	25 1	1320	15 < 0.0	1 <5	1 <10 <5	5 14	0.09 <5	22 <5	2 82
203	L197+50E S 108+00N	<0.2	1.88 •	<5 14	2 <1	<5	0.20 <1	8 10	6	1.41	<5	0.07	8 14	0.18	250	1	0.03	27	310	15 < 0.0	1 <5	1 <10 <5	5 18	0.09 <5	24 <5	2 62
204	L197+50E S 108+25N	<0.2	1.48 -	<5 9	2 <1	<5	0.11 <1	10 16	18	2.09	<5	0.07	10 12	0.32	285	2	0.02	27	220	15 < 0.0	1 <5	1 <10 <5	5 12	0.06 <5	26 <5	2 7(
205	L197+50E S 108+50N																					1 <10 <5				
206	L197+50E S 108+75N	<0.2	1.88 •	<5 10	0 <1	<5	0.11 <1	19 16	22	2.17	<5	0.08	16 24	0.29	405	1	0.03	50	210	18 <0.0	1 <5	1 <10 <5	5 12	0.07 <5	32 <5	3 10(
207	L197+50E S 109+00N	<0.2	1.97	5 13	8 <1	<5	0.25 <1	13 30	30	3.09	<5	0.20	16 26	0.59	255	2	0.03	33	570	21 0.0	2 <5	3 <10 <5	5 24	0.08 <5	38 <5	3 8(
208	L197+50E S 109+25N	<0.2	1.35 -	<5 11	2 <1	<5	0.08 <1	9 10	8	1.64	<5	0.05	6 10	0.14	345	1	0.02	19	320	12 <0.0	1 <5	<1 <10 <5	5 10	0.08 <5	38 <5	2 6(
209	L197+50E S 109+50N	<0.2	2.61 •	<5 7	4 <1	<5	0.13 <1	96	6	1.29	<5	0.04	8 10	0.07	350	2	0.03	21	820	15 <0.0	1 <5	2 <10 <5	5 12	0.11 <5	22 <5	3 3f
210	L197+50E S 109+75N																					2 <10 <5				

ICP CERTIFICATE OF ANALYSIS AK 2011-0760

Et #.	Tag #	Ag	A I%	. As	Ba	Be Bi	Ca%	Cd	Co Cr	Cu	Fe%	Hg	К%	La Li	Mg%	Mn	Мо	Na%	Ni	Ρ	Pb S%	Sb	Sc Se Si	n Sr	Ti% L	l v w	Y	Zr
211	L197+50E S 110+00N	<0.2	2.54	+ <5	120	<1 <5	0.07	<1	16 20	20	2.42	<5	0.09	14 22	0.35	170	2	0.03	36	460	18 < 0.01	<5	2 <10 <	5 10	0.08 <5	32 <5	, 3	76
212	L197+50E S 110+25N	<0.2	1.72	2 <5	106	<1 <5	0.11	<1	10 14	12	2.12	<5	0.07	12 14	0.27	400	2	0.03	23	530	15 <0.01	<5	1 <10 <	5 14	0.08 <8	; 26 <5	, 2	6ŧ
213	L197+50E S 110+50N	<0.2	1.58	3 <5	80	<1 <5	0.15	<1	9 20	26	2.26	<5	0.11	26 24	0.39	145	2	0.03	35	140	15 < 0.01	<5	2 <10 <	5 18	0.06 <5	i 28 <5	, 6	52
214	L197+50E S 110+75N	0.2	1.85	i <5	128	<1 <5	0.18	<1	8 12	14	1.70	<5	0.12	12 18	0.21	335	1	0.03	23	380	12 < 0.01	<5	2 <10 <	5 20	0.07 <5	5 28 <5	, 3	78
215	L197+50E S 111+00N	<0.2	1.93	-5	136	<1 <5	0.08	<1	7 10	8	1.52	<5	0.08	10 14	0.18	555	2	0.03	16	1240	12 <0.01	<5	2 <10 <	5 10	0.09 <8	; 22 <5	3	92
216	L197+50E S 111+25N	<0.2	1.76	i <5	86	<1 <5	0.07	<1	76	6	1.30	<5	0.04	68	0.07	420	1	0.03	15	1120	12 <0.01	<5	1 <10 <	58	0.09 <5	5 26 <£	> 2	74
217	L197+50E S 111+50N N/S																											
218	L197+50E S 111+75N																						1 <10 <					
219	L195+50E S 98+25N																						1 <10 <					
220	L195+50E S 98+50N	<0.2	1.85	i <5	74	<1 <5	0.08	<1	68	4	1.45	<5	0.03	48	0.11	555	1	0.03	11	970	12 <0.01	<5	<1 <10 <	58	0.07 <5	; 24 <5	, 1	5(
221	L195+50E S 98+75N																						2 <10 <					
	L195+50E S 99+00N																						1 <10 <					
223	L195+50E S 99+25N								11 22														1 <10 <					
224	L195+50E S 99+50N								7 14														1 <10 <					
225	L195+50E S 99+75N	<0.2	2.00) 5	62	<1 <5	0.08	<1	68	4	1.50	<5	0.02	4 6	0.06	3 9 5	2	0.02	5 3	3020	15 0.01	<5	<1 <10 <	58	0.11 <5) 26 <5	1	48
226	L195+50E S 100+00N								10 14														2 <10 <					
227	L195+50E S 100+25N								7 10														<1 <10 <					
228	L195+50E S 100+50N								56														<1 <10 <					
229	L195+50E S 100+75N								7 12	-		-											1 <10 <					
230	L195+50E S 101+00N	<0.2	1.76	; 20	76	<1 <5	0.11	<1	25 32	32	3.01	<5	0.08	18 14	0.63	290	2	0.02	32	480	18 <0.01	<5	2 <10 <	5 12	0.04 <8	3 28 <5	3	82
	L195+50E S 101+25N								9 16							375							1 <10 <					
	L195+50E S 101+50N								10 20														1 <10 <					
233	L195+50E S 101+75N			-		. –			9 10	-	-	-					-						<1 <10 <					
234	L195+50E S 102+00N								7 10													-	1 <10 <					
235	L195+50E S 102+25N	<0.2	1.70) <5	70	<1 <5	0.14	<1	7 10	6	1.58	<5	0.06	4 12	0.14	320	1	0.03	23	460	12 <0.01	<5	1 <10 <	5 12	0.10 <8	→ 30 <5	2	54
236	L195+50E S 102+50N	< 0.2	2.15	i <5	72	<1 <5	0.24	<1	78	6	1.45	<5	0.06	4 12	0.11	305	2	0.03	20	700	15 < 0.01	<5	<1 <10 <	5 18	0.10 <	j 22 <€	5 2	54
	L195+50E S 102+75N								8 12														1 <10 <					
	L195+50E S 103+00N								6 8														<1 <10 <					
239	L195+50E S 103+25N								7 10														1 <10 <					
	L195+50E S 103+50N								8 12														1 <10 <					
241	L195+50E S 103+75N	0.2	3.00) 5	88	<1 <5	0.13	<1	9 14	8	2.05	<5	0.05	8 12	0.19	325	2	0.03	24	2070	33 <0.01	<5	1 <10 <	5 10	0.12 <8	5 28 <5	; 3	8(
242	L195+50E S 104+00N	<0.2	0.67	′<5	78	<1 <5	0.08	<1	68	2	1.44	<5	0.03	66	0.11	1105	<1	0.02	9	500	9 <0.01	<5	<1 <10 <	56	0.06 <5	×40 <₹	, <1	5€
243	L195+50E S 104+25N	0.2	2.28	5	104	<1 <5	0.20	<1	76	8	1.39	<5	0.04	4 10	0.10	230	2	0.03	23 2	2220	15 <0.01	<5	<1 <10 <	5 16	0.09 <5	o 20 <5	, 2	82
244	L195+50E S 104+50N	<0.2	1.79) <5	112	<1 <5	0.15	<1	9 16	14	1.77	<5	0.06	12 12	0.31	420	2	0.03	37	590	15 < 0.01	<5	1 <10 <	5 14	0.06 <8	j 24 <€	, 3	8(
245	L195+50E S 104+75N	<0.2	1.98	· <5	128	<1 <5	0.10	<1	8 12	6	1.69	<5	0.05	8 14	0.21	610	2	0.02	25	1320	15 <0.01	<5	1 <10 <	5 10	0.10 <5	; 28 <5	, 2	78
	L195+50E S 105+00N																						<1 <10 <					
247	L195+50E S 105+25N	<0.2	1.71	<5	114	<1 <5	0.17	<1	8 14	10	2.09	<5	0.07	10 10	0.23	460	1	0.03	14	1100	18 < 0.01	<5	1 <10 <	5 12	0.06 <5	; 28 <£	, 2	7(
	L195+50E S 105+50N																						2 <10 <					
249	L195+50E S 105+75N N/S																											
250	L195+50E S 106+00N	<0.2	1.91	<5	84	<1 <5	0.28	<1	9 18	22	2.19	<5	0.13	20 16	0.30	415	2	0.03	27	710	18 <0.01	<5	2 <10 <	5 26	0.09 <5	; 32 <5	8	68
251	L195+50E S 106+25N																						2 <10 <					
252	L195+50E S 106+50N																						<1 <10 <					
253	L195+50E S 106+75N	<0.2	1.75	<i>,</i> <5	116	<1 <5	0.15	<1	12 16	14	2.35	<5	0.09	12 16	0.34	290	2	0.03	30	260	18 <0.01	<5	1 <10 <	5 14	0.08 <5	i 32 <₹	, 2	88
254	L195+50E S 107+00N	<0.2	2.38	; <5	138	<1 <5	0.21	<1	16 18	20	2.76	<5	0.09	12 18	0.35	320	2	0.03	53	450	21 < 0.01	<5	1 <10 <	5 18	0.08 <8	, 34 <5	, 2	9(
255	L195+50E S 107+25N	<0.2	1.93	5> 5	66	<1 <5	0.18	<1	78	18	1.57	<5	0.07	20 10	0.14	310	2	0.04	27	590	15 <0.01	<5	2 <10 <	5 16	0.09 <8	5 24 <5	, 10	68
		-	-																									

ICP CERTIFICATE OF ANALYSIS AK 2011-0760

CME Consultants Inc.

Et #.	Tag #	Ag	<u>Al%</u>	As	Ba E	le Bi	Ca%	Cd	Co Cr	Cu	Fe%	Hg	К%	La Li	Mg%	Mn	Мо	Na%	Ni	Ρ	Pb S%	Sb S	Sc S	e Sn Sr	Ti%	υν	W	Y Zr
256	L195+50E S 107+50N	0.6	4.01	10 2	02	2 <5	0.76	<1	21 30	104	4.31	<5	0.29	116 68	0.54	925	4	0.04	121	290	48 0.01	<5	6 <1	0 <5 62	0.11	<5 40	5	41 20f
257	L195+50E S 107+75N	<0.2	1.73	<5 1	00 <	:1 <5	0.11	<1	15 16	12	2.24	<5	0.08	14 14	0.29	300	1	0.02	24	190	15 <0.01	<5	1 <1	0 <5 12	0.06	<5 32	<5	2 131
258	L195+50E S 108+00N	<0.2	2.00	<5 1	26 <	:1 <5	0.07	<1	13 20	20	2.54	<5	0.08	14 16	0.37	440	2	0.02	28	510	18 <0.01	<5	2 <1	0 <5 10	0.06	<5 36	<5	2 112
259	L195+50E S 108+25N	<0.2	1.26	<5	76 <	:1 <5	0.17	<1	13 8	12	1.97	<5	0.04	10 6	0.08	375	1	0.02	13	460	12 < 0.01	<5 <	<1 <1	0 <5 14	0.05	<5 34	<5	2 5(
260	L195+50E S 108+50N	<0.2	1.46	<5 1	36 <	:1 <5	0.15	<1	10 16	10	2.08	<5	0.09	14 12	0.32	690	1	0.02	22	560	12 <0.01	<5	1 <1	0 <5 18	0.04	<5 24	<5	2 71
261	L195+50E S 108+75N	<0.2	1.90	<5 1	80 <	1 <5	0.20	<1	11 12	8	1.62	<5	0.06	10 12	0.20	820	1	0.02	28	1000	15 <0.01	<5 <	<1 <1	0 <5 18	0.07	<5 22	<5	2 78
262	L195+50E S 109+00N	<0.2	1.85	<5 1	02 <	1 <5	0.11	<1	12 20	22	2.87	<5	0.08	16 16	0.44	275	2	0.02	24	450	18 <0.01	<5	2 <1	0 <5 12	0.04	<5 28	<5	2 61
263	L195+50E S 109+25N	<0.2	1.77	<5 1	36 <	1 <5	0.11	<1	88	6	1.57	<5	0.05	88	0.14	510	1	0.02	20	1250	12 < 0.01	<5 <	<1 <1	0 <5 12	0.07	<5 22	<5	2 5€
264	L195+50E S 109+50N	<0.2	1.93	<5 1	00 <	1 <5	0.08	<1	8 10	10	1.94	<5	0.05	10 12	0.19	260	2	0.02	26	680	15 <0.01	<5	1 <1	0 <5 10	0.07	<5 20	<5	3 38
265	L195+50E S 109+75N	<0.2	1.56	<5	94 <	1 <5	0.21	<1	8 20	18	2.87	<5	0.11	20 16	0.53	240	1	0.02	16	570	12 <0.01	<5	2 <1	0 <5 20	0.05	<5 22	<5	2 64
266	L195+50E S 110+00N	<0.2	1.34	<5 1	02 <	1 <5	0.11	<1	9 12	6	1.78	<5	0.07	10 14	0.21	275	1	0.02	21	790	12 <0.01	<5	1 <1	0 <5 12	0.06	<5 30	<5	1 5 (
267	L195+50E S 110+25N	<0.2	2.30	<5 1	22 <	1 <5	0.18	<1	13 12	8	1.71	<5	0.05	10 14	0.17	230	2	0.03	34	1280	15 < 0.01	<5	1 <1	0 <5 18	0.09	<5 24	<5	3 54
268	L195+50E S 110+50N	<0.2	1.21	<5 13	32 <	1 <5	0.08	<1	10 18	18	2.28	<5	0.10	18 10	0.46	175	1	0.02	24	240	12 < 0.01	<5	1 <1	0 <5 16	0.05	<5 26	<5	3 4€
269	L195+50E S 110+75N	<0.2	2.47	<5 (68 <	1 <5	0.13	<1	76	4	1.52	<5	0.04	68	0.08	280	2	0.03	18	1240	18 < 0.01	<5 <	<1 <1	0 <5 14	0.11	<5 26	<5	2 42
270	L195+50E S 111+00N	<0.2	1.86	<5 1	28 <	1 <5	0.15	<1	9 12	12	1.75	<5	0.08	12 16	0.27	270	1	0.03	26	510	12 <0.01	<5	1 <1	0 <5 16	0.07	<5 22	<5	3 71
271	L195+50E S 111+25N	0.2	1.74	<5	68 <	1 <5	0.06	<1	6 10	94	2.43	<5	0.05	12 8	0.30	220	2	0.02	13	390	150 <0.01	<5	1 <1	0<58	0.05	<5 22	<5	2 94

<u>QC DATA:</u> Repeat:

пөреац																								
1	L46+50N S 57+50E	<0.2	2.54 1/	0 160	<1 <5	0.25 <1	14 40	28	4.03	<5	0.15	14 28	0.56	260	2 0.0	3 37	1600	21 0.02	<5	3 <10 <5 20	0.08 ·	<5 48	5 4	4 82
10	L46+50N S 59+75E	<0.2	2.08 10	0 138	<1 <5	0.31 <1	17 38	28	3.56	<5	0.17	18 28	0.74	745	2 0.0	4 32	750	18 0.02	<5	3 <10 <5 20	0.08	<5 46	56	6 68
19	L46+50N S 62+00E	<0.2	0.70 \$	5 68	<1 <5	0.17 <1	6 16	12	1.96	<5	0.05	88	0.26	545 <	0.0	2 13	550	9 <0.01	<5 <	<1 <10 <5 10	0.03 -	<5 20 •	<5 7	2 46
28	L47+00N S 59+00E	<0.2	1.83 10	0 106	<1 <5	0.48 <1	16 44	24	3.53	<5	0.12	24 22	0.79	570	0.0	3 34	620	18 0.01	<5	3 <10 <5 24	0.04	<5 40	5 7	7 66
36	L47+00N S 61+00E	<0.2	0.79	5 42	<1 <5	0.17 <1	6 18	18	2.13	<5	0.05	88	0.25	120 <	0.0	2 14	360	9 0.02	<5 <	<1 <10 <5 12	0.02 -	<5 22 •	<5 2	2 42
45	L186+50E S 93+00N	<0.2	0.97 <	5 52	<1 <5	0.04 <1	8 16	72	1.92	<5	0.06	12 6	0.35	125	0.0	2 16	150	9 <0.01	<5 <	<1 <10 <5 4	0.03	<5 16 -	<5 2	2 42
54	L186+50E S 95+25N	<0.2	1.96 </td <td>5 148</td> <td><1 <5</td> <td>0.18 <1</td> <td>11 16</td> <td>20</td> <td>2.04</td> <td><5</td> <td>0.08</td> <td>8 14</td> <td>0.26</td> <td>310</td> <td>0.0</td> <td>3 36</td> <td>490</td> <td>18 <0.01</td> <td><5</td> <td>1 <10 <5 16</td> <td>0.08</td> <td><5 26 4</td> <td><5 2</td> <td>2 94</td>	5 148	<1 <5	0.18 <1	11 16	20	2.04	<5	0.08	8 14	0.26	310	0.0	3 36	490	18 <0.01	<5	1 <10 <5 16	0.08	<5 26 4	<5 2	2 94
63	L186+50E S 97+50N	<0.2	1.60 <	5 120	<1 <5	0.18 <1	10 18	18	2.22	<5	0.07	10 12	0.31	575	0.0	3 29	920	15 0.01	<5	1 <10 <5 14	0.07	<5 26 •	<5 3	3 78
71	L186+50E S 99+50N	<0.2	1.01 <	5 94	<1 <5	0.28 <1	8 16	8	1.69	<5	0.07	8 10	0.24	525 <	0.0	3 21	630	9 <0.01	<5	1 <10 <5 16	0.06	<5 24 •	<5 1	1 76
80	L186+50E S 101+75N	<0.2	1.29 <	5 100	<1 <5	0.27 <1	68	2	1.10	<5	0.05	2 10	0.10	450 <	0.0	3 17	1260	12 <0.01	<5 <	<1 <10 <5 14	0.08 -	<5 24 •	<5 1	1 5(
89	L188+50E S 93+75N	<0.2	1.64 <	5 102	<1 <5	0.11 <1	86	10	1.68	<5	0.03	4 10	0.11	110	0.0	4 25	230	9 <0.01	<5	2 <10 <5 10	0.06 -	<5 18 •	<5 2	2 62
98	L188+50E S 96+00N	<0.2	1.50 <	5 96	<1 <5	0.14 <1	7 10	6	1.47	<5	0.04	6 10	0.14	210	0.0	3 18	360	18 <0.01	<5 <	<1 <10 <5 10	0.08 -	<5 26 <	<5 2	2 9€
106	L188+50E S 98+00N	<0.2	1.69 10	0 168	<1 <5	0.14 <1	9 16	20	2.16	<5	0.07	8 14	0.30	305 3	2 0.0	3 28	410	18 <0.01	<5	2 <10 <5 12	0.09 ·	<5 26 •	<5 2	2 96
115	L188+50E S 100+25N	<0.2	1.12 <	5 68	<1 <5	0.18 <1	8 16	4	1.55	<5	0.05	4 10	0.18	475 <	0.0	3 26	780	15 <0.01	<5 <	<1 <10 <5 12	0.08	<5 36 <	<5 <1	1 78
124	L188+50E S 102+50N		1.76 <		<1 <5	0.22 <1	7 14	6			0.04	46	0.10	480	0.0		1320	15 <0.01	-	1 <10 <5 12	0.10 •	<5 24 <	<5 2	2 56
134	L197+50E S 90+75N			5 102		0.15 <1		10			0.05	8 16	0.21	260			1700	27 0.02		1 <10 <5 8		<5 28 <	<5 3	3 74
141	L197+50E S 92+50N	<0.2			<1 <5	0.10 <1			4.25		0.06	12 28	0.53		3 0.0			21 0.02		2 <10 <5 12				3 122
150	L197+50E S 94+75N		1.67 <		<1 <5	0.13 <1		12			0.06	12 12	0.35		2 0.0					2 <10 <5 10		<5 34 <		2 80
159	L197+50E S 97+00N		1.67 <		<1 <5	0.15 <1	8 12	6	1.95		0.05	8 14	0.21	230	0.0		1150		-	1 <10 <5 12				2 8€
169	L197+50E S 99+50N	<0.2			<1 <5	0.60 <1		26		· 	0.05	10 10	0.36	625	2 0.0		000	18 0.03	-	2 <10 <5 34		<5 28 <		4 68
176	L197+50E S 101+25N				<1 <5	0.06 <1	7 10	8			0.03	4 10	0.12		2 0.0		1120	18 < 0.01		1 <10 <5 6		<5 30 •		64
185 194	L197+50E S 103+50N L197+50E S 105+75N		2.01 <			0.24 <1		10		-		10 14	0.30	590	2 0.0				~0	1 <10 <5 18	÷ · · · ·	<5 22 •		2 102
203	L197+50E S 105+75N		1.91 <5			0.18 <1	9 10	12 6			0.08	10 16 8 14	0.30 0.19	410 2 255	2 0.0			18 <0.01 15 <0.01	-	1 <10 <5 14		<5 28 < <5 24 <		2 8£ 2 64
203	L197+50E S 100+00N		2.59 <5			0.20 <1		20		· · ·	****	14 22	0.19		2 0.0			18 < 0.01		2 <10 <5 20		<pre><3 24 < <5 32 <</pre>		
220	L195+50E S 98+50N	<0.2			<1 <5	0.07 <1	6 8	4			0.03	4 8	0.35	555	0.0		990	12 < 0.01		<1 <10 <5 8		<5 24 <		5 76
229	L195+50E S 100+75N		2.04 <			0.18 <1	7 12	6		-	0.07	8 10	0.17	540	2 0.0		2480	15 < 0.01	. –	1 <10 <5 24		<5 24 <		26^{2}
238	L195+50E S 103+00N		1.84 <			0.06 <1	6 8	4			0.04	4 10	0.10	425	2 0.0		1080		-	<1 <10 <5 24		<5 24 <		52
246	L195+50E S 105+00N	<0.2		5 100		0.13 <1	76	4		-	0.03	6 8	0.09	460	0.0					<1 <10 <5 14		<5 26 <		
255	L195+50E S 107+25N	<0.2	1.97 <		<1 <5	0.18 <1	78	18			0.07	22 10	0.14	320	2 0.0		550		-	2 <10 <5 16		<5 22 <		72
264	L195+50E S 109+50N	~0.2	1.92 <		<1 <5	0.08 <1		10				12 12	0.14	250	2 0.0			18 < 0.01	-	1 <10 <5 10		<5 20 <		3 36
204	C190+00C 0 109+00M	\U.Z	1.52 <	7 90	<1 <0	0.00 1	0 10	10	1.09	~ 5	0.00	12 12	0.10	200 1	. 0.0	20	050	10 20.01	~0		0.07	~~ 20 ×		, ,,

ICP CERTIFICATE OF ANALYSIS AK 2011-0760

CME Consultants Inc.

Et #.	Tag #	Ag	Al% As	<u>, B</u> a	Be B'	<u> </u>	Cd	Co Cr	Cu	Fe%'	Hg	<u>K%</u>	La Li	Mg%	Mn	Mo	Na%	Ni	<u>P</u>	Pb	<u> </u>	<u></u> 5	<u>3c 8</u>	je Sn	Sr	Ti%	U	<u>v w</u>	<u>Y</u>	Zr
											<i></i>					-						41000								-
Standard:																														, r
Till3		1.4	1.15 80	7 38	5> 1> د	0.56	<1	13 60	24	1.95	<5	0.09	12 18	0.57	305	1	0.02	30	440	18	0.01	<5	3 <1	10 <5	, 14	0.07	<5 ?	36 <5	10	4(
Till3		1.5	1.13 80	J 36	s <1 <5 د	, 0.55	<1	13 62	22	2.01	<5	0.08	12 16	0.57	310	1	0.02	29	450	21	0.01	<5	3 <1	10 <5	, 12	0.07	<5 ₫	40 <5	10	44
Till3		1.4	1.07 75	38 ر	s <1 <5 د	, 0.57	<1	13 64	20	1.93	<5	0.08	10 16	0.60	315	<1	0.02	31	430	18	<0.01	<5	3 <1	10 <5	, 14	0.07	<5 ?	38 <5	9	4:
Till3		1.6	1.04 80	40 ر	J <1 <f< td=""><td>0.60</td><td><1</td><td>14 68</td><td>22</td><td>2.08</td><td><5</td><td>0.08</td><td>12 16</td><td>0.58</td><td>335</td><td>1</td><td>0.02</td><td>33</td><td>450</td><td>18</td><td>0.01</td><td><5</td><td>3 <1</td><td>10 <5</td><td>, 14</td><td>0.08</td><td><5 ?</td><td>36 <5</td><td>10</td><td>4(</td></f<>	0.60	<1	14 68	22	2.08	<5	0.08	12 16	0.58	335	1	0.02	33	450	18	0.01	<5	3 <1	10 <5	, 14	0.08	<5 ?	36 <5	10	4(
Till3		1.4	1.13 80) 38	t <f td="" د<=""><td>, 0.57</td><td><1</td><td>13 60</td><td>22</td><td>2.04</td><td><5</td><td>0.08</td><td>12 16</td><td>0.55</td><td>305</td><td><1</td><td>0.02</td><td>31</td><td>440</td><td>21</td><td>0.01</td><td><5</td><td>3 <1</td><td>10 <5</td><td>, 14</td><td>0.07</td><td><5 🤇</td><td>38 <5</td><td>10</td><td>38</td></f>	, 0.57	<1	13 60	22	2.04	<5	0.08	12 16	0.55	305	<1	0.02	31	440	21	0.01	<5	3 <1	10 <5	, 14	0.07	<5 🤇	38 <5	10	38
Till3		1.4	1.10 80	J 38	ج> 1> د	, 0.56	<1	13 58	24	1.99	<5	0.08	12 16	0.58	305	<1	0.02	31	430	18	0.02	<5	3 <1	10 <5	, 14	0.07	<5 ?	36 <5	11	4:
Till3		1.4	1.08 75	38 ر	s <1 <f< td=""><td>0.55</td><td>/ <1</td><td>13 58</td><td>22</td><td>1.97</td><td><5</td><td>0.08</td><td>12 16</td><td>0.56</td><td>305</td><td>1</td><td>0.02</td><td>30</td><td>450</td><td>21</td><td>0.01</td><td><5</td><td>3 <1</td><td>10 <5</td><td>, 14</td><td>0.07</td><td><5 ?</td><td>38 <5</td><td>10</td><td>44</td></f<>	0.55	/ <1	13 58	22	1.97	<5	0.08	12 16	0.56	305	1	0.02	30	450	21	0.01	<5	3 <1	10 <5	, 14	0.07	<5 ?	38 <5	10	44
Till3		1.6	1.19 85	5 38	s <1 <f< td=""><td>0.55</td><td><1</td><td>13 58</td><td>24</td><td>1.95</td><td><5</td><td>0.08</td><td>12 16</td><td>0.59</td><td>305</td><td><1</td><td>0.02</td><td>30</td><td>460</td><td>21</td><td><0.01</td><td><5</td><td>3 <1</td><td>10 <5</td><td>, 14</td><td>0.07</td><td><5 ľ</td><td>40 <5</td><td>10</td><td>4:</td></f<>	0.55	<1	13 58	24	1.95	<5	0.08	12 16	0.59	305	<1	0.02	30	460	21	<0.01	<5	3 <1	10 <5	, 14	0.07	<5 ľ	40 <5	10	4:

200

ECO TECH LABORATORY LTD. Norman Monteith B.C. Certified Assayer

NM/cr/el DF/1_759S/1_760BS/1_760CS XLS/11

Page 8 of 8

CERTIFICATE OF ANALYSIS AK 2011-0760

9-Sep-11

CME Consultants Inc. #2130-21331 Gordon Way Richmond, BC V6W 1J9

No. of samples received: 271 Sample type: Soil **Project Name: Mila Shipment #: C99-Mila-2** Submitted By: Spencer

	Au	
#. Tag #	(ppb)	
L46+50N S 57+50E	5	
L46+50N S 57+75E	10	
L46+50N S 58+00E	5	
L46+50N S 58+25E	5	
L46+50N S 58+50E	<5	
L46+50N S 58+75E	<5	
L46+50N S 59+00E	<5	
L46+50N S 59+25E		
L46+50N S 59+50E	<5	
L46+50N S 59+75E		
L46+50N S 60+00E		
L46+50N S 60+25E		
L46+50N S 60+50E	5	
L46+50N S 60+75E N	/S	
L46+50N S 61+00E	<5	
L46+50N S 61+25E	<5	
L46+50N S 61+50E		
L46+50N S 61+75E		
L46+50N S 62+00E		
L46+50N S 62+25E		
L46+50N S 62+50E	<5	
L47+00N S 57+50E	<5	
L47+00N S 57+75E		
L47+00N S 58+00E	5	
L47+00N S 58+25E	<5	
L47+00N S 58+50E	<5	
L47+00N S 58+75E	<5	
L47+00N S 59+00E	<5	
	L46+50N S 57+50E L46+50N S 57+75E L46+50N S 58+00E L46+50N S 58+25E L46+50N S 58+25E L46+50N S 58+75E L46+50N S 59+00E L46+50N S 59+25E L46+50N S 59+25E L46+50N S 60+25E L46+50N S 61+25E L46+50N S 61+25E L46+50N S 61+25E L46+50N S 61+25E L46+50N S 61+25E L46+50N S 61+25E L46+50N S 62+25E L46+50N S 62+25E L46+50N S 62+25E L46+50N S 62+25E L47+00N S 57+75E L47+00N S 57+75E L47+00N S 58+25E L47+00N S 58+25E L47+00N S 58+25E L47+00N S 58+75E	#.Tag #(ppb) $L46+50N \ S \ 57+50E$ 5 $L46+50N \ S \ 57+75E$ 10 $L46+50N \ S \ 58+00E$ 5 $L46+50N \ S \ 58+25E$ 5 $L46+50N \ S \ 58+50E$ <5

All business is undertaken subject to the Company's General Conditions of Business which are available on request. Registered Office: Eco Tech Laboratory Etd., 100041 Dailas Drive, Kamloops, BC: V2C 6T4: Canada.

ET #.

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52 53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

L186+50E S 98+75N

L186+50E S 99+00N

L186+50E S 99+25N

L186+50E S 99+50N

9-Sep-11

CME Consultants Inc. AK11-0760

Au (ppb) Tag # L47+00N S 59+25E 10 L47+00N S 59+50E <5 5 L47+00N S 59+75E 5 L47+00N S 60+00E L47+00N S 60+25E 5 5 L47+00N S 60+50E <5 L47+00N S 60+75E <5 L47+00N S 61+00E 5 L47+00N S 61+25E 5 L47+00N S 61+50E 5 L47+00N S 61+75E 5 L47+00N S 62+00E 5 L47+00N S 62+25E 5 L47+00N S 62+50E 15 L186+50E S 92+50N 5 L186+50E S 92+75N L186+50E S 93+00N <5 5 L186+50E S 93+25N 5 L186+50E S 93+50N L186+50E S 93+75N 10 5 L186+50E S 94+00N L186+50E S 94+25N <5 L186+50E S 94+50N 5 <5 L186+50E S 94+75N L186+50E S 95+00N <5 L186+50E S 95+25N 5 5 L186+50E S 95+50N <5 L186+50E S 95+75N L186+50E S 96+00N <5 5 L186+50E S 96+25N 5 L186+50E S 96+50N L186+50E S 96+75N <5 5 L186+50E S 97+00N <5 L186+50E S 97+25N 5 L186+50E S 97+50N L186+50E S 97+75N <5 5 L186+50E S 98+00N 5 L186+50E S 98+25N <5 L186+50E S 98+50N <5

All business is undertaken subject to the Company's General Conditions of Business which are available on request. Registered Office: Eco Tech Laboratory Ltd., 100041 Dallas Drive, Kamloops, BC V2C 6T4 Canada.

5

5

10

CME Consultants Inc. AK11-0760

9-Sep-11

_

CME C	onsultants Inc. AK	11-0760	9-Sep-1
		Au	
ET #.	Tag #	(ppb)	
72	L186+50E S 99+75N	5	
73	L186+50E S 100+00N	<5	
74	L186+50E S 100+25N	I 5	
75	L186+50E S 100+50N	1 5	
76	L186+50E S 100+75N	N 5	
77	L186+50E S 101+00N	v <5	
78	L186+50E S 101+25N	N <5	
79	L186+50E S 101+50N	N <5	
80	L186+50E S 101+75N	N <5	
81	L186+50E S 102+00N		
82	L186+50E S 102+25N		
83	L186+50E S 102+50N	I 5	
84	L188+50E S 92+50N	<5	
85	L188+50E S 92+75N	<5	
86	L188+50E S 93+00N	5	
87	L188+50E S 93+25N	10	
88	L188+50E S 93+50N	5	
89	L188+50E S 93+75N	<5	
90	L188+50E S 94+00N	<5	
91	L188+50E S 94+25N	<5	
92	L188+50E S 94+50N	<5	
93	L188+50E S 94+75N	N/S	
94	L188+50E S 95+00N	<5	
95	L188+50E S 95+25N	<5	
96	L188+50E S 95+50N	<5	
97	L188+50E S 95+75N	<5	
98	L188+50E S 96+00N	5	
99	L188+50E S 96+25N	<5	
100	L188+50E S 96+50N	5	
101	L188+50E S 96+75N	<5	
102	L188+50E S 97+00N	<5	
103	L188+50E S 97+25N	<5	
104	L188+50E S 97+50N	<5	
105	L188+50E S 97+75N	<5	
106	L188+50E S 98+00N	<5	
107	L188+50E S 98+25N	<5	
108	L188+50E S 98+50N	<5	
109	L188+50E S 98+75N	<5	
110	L188+50E S 99+00N	<5	
111	L188+50E S 99+25N	<5	
112	L188+50E S 99+50N	<5	
113	L188+50E S 99+75N	<5	
114	L188+50E S 100+00N	1 5	

All business is undertaken subject to the Company's General Conditions of Business which are available on request. Registered Office: Eco Tech Laboratory Ltd., 100041 Dallas Drive, Kamloops, BC V2C 6T4 Canada.

CME Consultants Inc AK11-0760

9-Sep-11

CME C	onsultants Inc. AK1 [*]	1-0760	9-Sep-11
		Au	
ET #.	Tag #	(ppb)	
115	L188+50E S 100+25N	<5	
116	L188+50E S 100+50N	5	
117	L188+50E S 100+75N	<5	
118	L188+50E S 101+00N	5	
119	L188+50E S 101+25N	<5	
120	L188+50E S 101+50N	<5	
121	L188+50E S 101+75N	10	
122	L188+50E S 102+00N	<5	
123	L188+50E S 102+25N	5	
124	L188+50E S 102+50N	10	
125	L197+50E S 88+50N	5	
126	L197+50E S 88+75N	5	
127	L197+50E S 89+00N	5	
128	L197+50E S 89+25N	5	
129	L197+50E S 89+50N	5	
130	L197+50E S 89+75N	5	
131	L197+50E S 90+00N	5	
132	L197+50E S 90+25N	5	
133	L197+50E S 90+50N N	'S	
134	L197+50E S 90+75N	20	
135	L197+50E S 91+00N	5	
136	L197+50E S 91+25N	5	
137	L197+50E S 91+50N	5	
138	L197+50E S 91+75N	<5	
139	L197+50E S 92+00N	5	
140	L197+50E S 92+25N	5	
141	L197+50E S 92+50N	5	
142	L197+50E S 92+75N	5	
143	L197+50E S 93+00N	5	
144	L197+50E S 93+25N	<5	
145	L197+50E S 93+50N	<5	
146	L197+50E S 93+75N	<5	
147	L197+50E S 94+00N	<5	
148	L197+50E S 94+25N	<5	
149	L197+50E S 94+50N	<5	
150	L197+50E S 94+75N	<5	
151	L197+50E S 95+00N	<5	
152	L197+50E S 95+25N	<5	
153	L197+50E S 95+50N	5	
154	L197+50E S 95+75N	<5	
155	L197+50E S 96+00N	<5	
156	L197+50E S 96+25N	<5	
157	L197+50E S 96+50N	<5	

All business is undertaken subject to the Company's General Conditions of Business which are available on request. Registered Office: Eco Tech Euboratory Etd., 100041 Dallas Drive, Kamioops, BC, V2C 6T4, Canada.

CME Consultants Inc. AK11-0760

9-Sep-11

CME C	onsultants Inc. AK	11-0760	9-Sep-11
		Au	
ET #.	Tag #	(ppb)	
158	L197+50E S 96+75N	<5	
159	L197+50E S 97+00N	<5	
160	L197+50E S 97+25N	<5	
161	L197+50E S 97+50N	<5	
162	L197+50E S 97+75N	<5	
163	L197+50E S 98+00N	5	
164	L197+50E S 98+25N	<5	
165	L197+50E S 98+50N	<5	
166	L197+50E S 98+75N	<5	
167	L197+50E S 99+00N	N/S	
168	L197+50E S 99+25N	N/S	
169	L197+50E S 99+50N	<5	
170	L197+50E S 99+75N	<5	
171	L197+50E S 100+00N	l <5	
172	L197+50E S 100+25N	<5	
173	L197+50E S 100+50N	\ <5	
174	L197+50E S 100+75N	<5	
175	L197+50E S 101+00N	l <5	
176	L197+50E S 101+25N	<5	
177	L197+50E S 101+50N	↓ <5	
178	L197+50E S 101+75N	↓ <5	
179	L197+50E S 102+00N	<5	
180	L197+50E S 102+25N	<5	
181	L197+50E S 102+50N		
182	L197+50E S 102+75N		
183	L197+50E S 103+00N		
184	L197+50E S 103+25N		
185	L197+50E S 103+50N		
186	L197+50E S 103+75N		
187	L197+50E S 104+00N		
188	L197+50E S 104+25N		
189	L197+50E S 104+50N		
190	L197+50E S 104+75N		
191	L197+50E S 105+00N	l <5	
192	L197+50E S 105+25N	· –	
193	L197+50E S 105+50N		
194	L197+50E S 105+75N	· _	
195	L197+50E S 106+00N	I 5	
196	L197+50E S 106+25N	I 10	
197	L197+50E S 106+50N	<5	
198	L197+50E S 106+75N		
199	L197+50E S 107+00N	<5	
200	L197+50E S 107+25N	I N/S	

All business is undertaken subject to the Company's General Conditions of Business which are available on request. Registered Office: Eco Tech Laboratory Ltd., 100041 Dallas Drive, Kaniloops, BC V2C 614 Canada.

CME Consultants Inc. AK11-0760

9-Sep-11

CME C	onsultants Inc. AK1	1-0760	9-Sep-11
		Au	
ET #.	Tag #	(ppb)	
201	L197+50E S 107+50N	<5	
202	L197+50E S 107+75N	<5	
203	L197+50E S 108+00N	<5	
204	L197+50E S 108+25N	<5	
205	L197+50E S 108+50N	<5	
206	L197+50E S 108+75N	<5	
207	L197+50E S 109+00N	<5	
208	L197+50E S 109+25N	<5	
209	L197+50E S 109+50N	<5	
210	L197+50E S 109+75N	<5	
211	L197+50E S 110+00N	5	
212	L197+50E S 110+25N	<5	
213	L197+50E S 110+50N	<5	
214	L197+50E S 110+75N	<5	
215	L197+50E S 111+00N	<5	
216	L197+50E S 111+25N	<5	
217	L197+50E S 111+50N I	N/S	
218	L197+50E S 111+75N	<5	
219	L195+50E S 98+25N	<5	
220	L195+50E S 98+50N	<5	
221	L195+50E S 98+75N	<5	
222	L195+50E S 99+00N	<5	
223	L195+50E S 99+25N	<5	
224	L195+50E S 99+50N	<5	
225	L195+50E S 99+75N	5	
226	L195+50E S 100+00N	<5	
227	L195+50E S 100+25N	<5	
228	L195+50E S 100+50N	<5	
229	L195+50E S 100+75N	5	
230	L195+50E S 101+00N	<5	
231	L195+50E S 101+25N	<5	
232	L195+50E S 101+50N	<5	
233	L195+50E S 101+75N	<5	
234	L195+50E S 102+00N	5	
235	L195+50E S 102+25N	5	
236	L195+50E S 102+50N	<5	
237	L195+50E S 102+75N	<5	
238	L195+50E S 103+00N	5	
239	L195+50E S 103+25N	<5	
240	L195+50E S 103+50N	<5	
241	L195+50E S 103+75N	<5	
242	L195+50E S 104+00N	<5	
243	L195+50E S 104+25N	<5	

All business is undertaken subject to the Company's General Conditions of Business which are available on request. Registered Office: Eco Tech Laboratory Ltd., 100041 Dailas Drive, Kamloops, BC, V2C 6T4, Canada.

CME Consultants Inc. AK11-0760

9-Sep-11

_

IVIE C	Unsultants inc. ANTI-UTUU		3-0eh
		Au	
ET #.	Tag #	(ppb)	
244	L195+50E S 104+50N	<5	
245	L195+50E S 104+75N	<5	
246	L195+50E S 105+00N	<5	
247	L195+50E S 105+25N	<5	
248	L195+50E S 105+50N	<5	
249	L195+50E S 105+75N N/S		
250	L195+50E S 106+00N	5	
251	L195+50E S 106+25N	<5	
252	L195+50E S 106+50N	5	
253	L195+50E S 106+75N	<5	
254	L195+50E S 107+00N	<5	
255	L195+50E S 107+25N	<5	
256	L195+50E S 107+50N	<5	
257	L195+50E S 107+75N	<5	
258	L195+50E S 108+00N	<5	
259	L195+50E S 108+25N	<5	
260	L195+50E S 108+50N	5	
261	L195+50E S 108+75N	<5	
262	L195+50E S 109+00N	<5	
263	L195+50E S 109+25N	<5	
264	L195+50E S 109+50N	<5	
265	L195+50E S 109+75N	<5	
266	L195+50E S 110+00N	<5	
267	L195+50E S 110+25N	<5	
268	L195+50E S 110+50N	<5	
269	L195+50E S 110+75N	<5	
270	L195+50E S 111+00N	<5	
271	L195+50E S 111+25N	5	

QC DATA:

Repeat:

4	L46+50N S 58+25E	10
10	L46+50N S 59+75E	10
21	L46+50N S 62+50E	<5
32	L47+00N S 60+00E	5
38	L47+00N S 61+50E	<5
59	L186+50E S 96+50N	5
65	L186+50E S 98+00N	5
71	L186+50E S 99+50N	15
81	L186+50E S 102+00N	5
91	L188+50E S 94+25N	5
102	L188+50E S 97+00N	<5

All business is undertaken subject to the Company's General Conditions of Business which are available on request. Registered Office: Ecollech Laboratory Etd., 100041 Dallas Drive, Kamloops, BC, V2C 6T4, Canada,

CME Consultants Inc. AK11-0760

9-Sep-11

	••••••		
		Au	
ET	#. Tag #	(ppb)	
100	6 L188+50E S 98+00N	<5	
12	1 L188+50E S 101+75N	10	
124	4 L188+50E S 102+50N	5	
139	9 L197+50E S 92+00N	5	
14:	3 L197+50E S 93+00N	10	
156	6 L197+50E S 96+25N	<5	
163	3 L197+50E S 98+00N	5	
17:	2 L197+50E S 100+25N	5	
179	9 L197+50E S 102+00N	5	
191	1 L197+50E S 105+00N	<5	
19	5 L197+50E S 106+00N	5	
203	3 L197+50E S 108+00N	<5	
21	1 L197+50E S 110+00N	<5	
22	1 L195+50E S 98+75N	5	
229	9 L195+50E S 100+75N	5	
238	8 L195+50E S 103+00N	10	
252	2 L195+50E S 106+50N	5	
260	0 L195+50E S 108+50N	5	
268	8 L195+50E S 110+50N	<5	

Standard:	
OXE86	610
OXG84	935
OXE86	630
OXG84	940
OXE86	630
OXG84	930
OXE86	620
OXG84	920

FA Geochem/AA Finish

NM/EL XLS/11

ÉCO TECH LABORATORY LTD.

Norman Monteith B.C. Certified Assayer