> | BC Geological Survey |
| :---: |
| Assessment Report |
| 32527 |

2010 REPORT ON THE DRILLING ACTIVITIES FOR ROGERS CREEK PROJECT SOUTH-WESTERN BRITISH COLUMBIA
 LILLOOET Mining District
 UTM Zone 10 Latitude 5,540,000
 Longitude 500,000
 NTS 092J- PEMBERTON

Owner and Operator:

Miocene Metals Limited

310-1281 West Georgia St.,
Vancouver, BC
V6E 3J7

Prepared by:

Jose Sayo Garcia
Vice President for Exploration
Miocene Metals Limited
26 November 2011

CONTENTS

1 SUMMARY 4
2 INTRODUCTION 5
3 LOCATION AND ACCESS
4 CLAIMS AND OWNERSHIP 8
5 EXPLORATION HISTORY 10
6 GEOLOGICAL AND ECONOMIC ASSESSMENT 11
7. EXPLORATION PROGRAM IN 2011 20
Objectives 20
Discussion of Results 24
Cost of the Program 24
8 CONCLUSIONS AND RECOMMENDATIONS 25
Conclusions. 25
Recommendations 25
LIST OF APPENDICES
APPENDIX A: STATEMENT OF Qualification of Jose Sayo Garcia
APPENDIX B: Diamond Drill Logs
APPENDIX A: Drill Sample Assay Certificates
APPENDIX A: STATEMENT OF EXPENDITUTES FOR Rogers Creek
APPENDIX A: Invoices and Receipts

LIST OF FIGURES

Figure 1: Property location... 6
Figure 2: Property Location Details ... 8
Figure 3: Rogers Creek Target Areas. ... 12
Figure 4: The Geology of the Canadian Cordillera............. .. 14
Figure 5: The Cascade magmatic Arc.. 15
Figure 6: Rogers Creek with Respect to the Cascade Magmatic Arc Morphologies 16
Figure 7: Geology of Rogers Creek Area... 17
Figure 8: Tectonic Setting of Porphyry Deposits ... 19
Figure 9: Schematic section for A porphyry Copper System.. 20
Figure 10: Plots of Metals Distribution in MRC-001.. .. 23
Figure 11: Plots of Metals Distribution in MRC-002.. 25

LIST OF TABLES

[^0]
1SUMMARY

This report discusses the results of two bore hole drilling campaign for Miocene Metals Limited Rogers Creek Project sited in the Lillooet Mining District, Southwester British Columbia.

A $1,024.39 \mathrm{~m}$ drill program was carried out in the summer 2010 on the Rogers Creek property.
The program started on July $14^{\text {th }}, 2010$ and ended on July $30^{\text {th }}, 2010$. The company responsible for performing the drilling operation was Blackhawk Drilling from Smithers, BC. Miocene Metals Limited provided a 3-4 person staff for core logging, sampling and logistics. Blackhawk had 4 people on the ground including 2 drillers and 2 helpers working 12 hour shifts. Lizzie Bay Logging of Pemberton, BC supported the maintenance and service on the Rogers Creek Forest Service Road by providing an excavator and a grader including operators.

The cost of the drill program not including sample assaying or labour was $\$ 128,120$. The core was transported from the drill-site to the Miocene Metals Limited core logging site, which was located 4-8 km to the south-west along the Rogers Creek Forest Service Road from the drill-sites. The two drill holes drilled were as follows:

1. MRC-001: 582.32 m length, 315^{0} Azimuth at -600 inclination (E 5430013/N 5546922, elev. 721 m)
2. MRC-002: 442.07 m length, 225° Azimuth at -450 inclination (E $540053 / \mathrm{N} 5544116$, elev. 717 m)

Direct drilling cost amounts to $\$ 126,244.26$ while the appurtenant preparation and analysis of drill core samples amounts to $\$ 13,510.84$.

2 INTRODUCTION

Miocene Metals Limited is a private company focused on exploring for and developing porphyry copper-gold-molybdenum deposits within the Cascade Magmatic Arc of south-western British Columbia.

The company has acquired seven properties covering approximately $1300 \mathrm{~km}^{2}$ in what is considered as a poorly documented belt of prospective Miocene-age intrusive rocks that has seen little modern exploration activity.

This report presents the results of a two hole drilling campaign conducted over one of the seven properties referred to above - the Rogers Creek Project.

The Rogers Creek property lies in an intrusive-dominated region of the Coast Mountain Belt of British Columbia, near Pemberton, BC. It covers $484.93 \mathrm{~km}^{2}$ of land in the Coastal Mountain Belt of British Columbia about 90 km northeast of Vancouver. The property was staked by Mr. Gary Poirier who had observed copper staining in the area.

The Property - consisting of 108 claims - is being explored by Miocene Metals Limited (Miocene) for porphyry style mineralization. On the Property, a number of very recently discovered copper and gold showings occur within the Miocene ($16.7+/-2.7 \mathrm{Ma}$) (Armstrong, unpublished) Rogers Creek intrusive complex; which is exposed on the Property intruding through metamorphosed Jurassic and Cretaceous rocks, that are typical of the Coastal Belt, and into overlying and coeval Miocene volcanic flows and pyroclastic rocks.

[^1]
3 LOCATION AND ACCESS

The property can be accessed by the In-Shuck-Ch Forest Service Road with branches off of highway 99 going from Pemberton, BC towards Lillooet, BC. Following the In-Shuck-Ch forest service road towards south, the Rogers Creek Valley FSR can be accessed at Kilometer 42, turning left from the In-Shuck-ch FSR.

The discovery showing is located on a switch-back of an east/west logging access road that enters the Rogers Creek valley, at kilometre 42 of the In-Shuck-Ch Forest Service road.

Figure 1: Property location

The In-SHUCK-ch Forest Service Road is a maintained gravel road, drivable by car, which provides access to several communities of the In-SHUCK-ch First Nation that are spread out along the Lower Lillooet River. The Rogers Creek Forest Service Road requires the clearance of at least a half-ton pickup truck.

With a 4×4 vehicle, it is possible to drive southward on the In-SHUCK-ch Forest Service Road, alongside Harrison Lake and come out in the Fraser River Valley near Chilliwack.

Helicopter support is based out of Whistler, and there is an airport in Pemberton.

The Village of Pemberton has a population of approximately 2,300; it has train and bus stations, a small airport, a small health unit, an elementary school, a post office and several lodges and motels. It primarily provides services for recreation and does not host any heavy industry. Agriculture and forestry play a minor role in the overall industrial output of the village.

A high tension power line extends through the western side of the Rogers Creek Property following the Lower Lillooet River.

Land uses on the Rogers Creek Property include recreational activities (hunting, fishing and hiking), mineral exploration and forestry. The Property occurs within the traditional territory of the In-SHUCK-ch First Nation, who have logging operations in and around the Property.

Temperatures in the Lillooet River valley average of $2^{\circ} \mathrm{C}$ in the winter and $26^{\circ} \mathrm{C}$ in the summer although temperatures are much colder on surrounding mountain peaks, which reach elevations of close to $2,380 \mathrm{~m}$; most rainfall occurs between October and March. Higher elevations in the Coast Mountains get heavy snowfall in the winter, which makes exploration difficult to impossible throughout the winter. The exploration season usually starts in April or May and ceases by the end of October.

The topography is very rugged with elevations ranging from 200 up to $2,500 \mathrm{~m}$. Slopes can be very steep (more than 35°) restricting access to some parts of the property. Structures seem to have a major influence on topography as they form valleys within the homogenous igneous rocks found on the property. In areas with mafic meta-sedimentary lithologies slopes are generally not as steep as in the intrusive complex. Due to abundant silicification the lithological impact on the topography is minor compared to the structural influence. The valleys are filled with talus as well as fluvial sediments washed out from adjacent ridges. Slopes are often covered by talus and vegetation. At lower elevations, vegetation consists of cedar and fir trees and undergrowth typical of the temperate rainforest in southwest BC. Stunted spruce and pine can be found at higher elevations.

[^2]

Figure 2: Property location detail.

4 CLAIMS AND OWNERSHIP

The Rogers Creek Project comprises the claims listed below and shown in Figure 2 overleaf
TABLE 1: Claims Comprising the Rogers Creek Property

	tenure number	map area (NTS)	area (hectares)
1	562849	092J	518.39
2	562850	092J	518.41
3	562851	092J	518.37
4	562852	092J	518.41
5	562853	092J	497.86
6	562854	092J	497.86
7	562855	092J	497.84
8	562856	092J	518.36
9	562857	092J	518.17
10	562858	092J	497.83
11	562859	092J	518.16
12	562860	092J	518.14
13	562861	092J	456.28
14	562862	092J	518.11
15	562863	092J	517.95
16	562864	092J	517.94
17	562865	092J	518.11
18	562866	092J	497.42
19	562867	092J	497.03
20	562868	092J	455.82
21	562869	092J	517.78
22	562870	092J	248.51
23	563178	092J	517.53
24	563180	092J	517.54
25	563181	092J	517.27
26	563182	092J	517.28
27	563183	092J	372.60
28	563185	092J	518.75
29	563186	092J	518.76
30	563188	092J	518.97
31	563189	092J	518.77
32	563190	092J	518.98

	tenure number	map area (NTS)	area (hectares)
33	563191	092J	518.99
34	563192	092J	519.00
35	563193	092J	518.80
36	563194	092J	518.79
37	563195	092J	518.88
38	563196	092G	436.11
39	563197	092G	519.21
40	563198	092J	519.07
41	563199	092G	519.22
42	563200	092G	477.86
43	563201	092G	228.63
44	563202	092J	517.70
45	563204	092J	414.59
46	563205	092J	517.77
47	563206	092J	497.65
48	563207	092J	497.06
49	563208	092J	518.02
50	563210	092J	41.43
51	563211	092J	20.71
52	563212	092J	269.23
53	577508	092J	498.26
54	577509	092G	519.27
55	577510	092G	519.27
56	577511	092G	519.26
57	577513	092G	519.50
58	577514	092G	519.51
59	577515	092G	519.51
60	577516	092G	519.51
61	577517	092G	187.04
62	577518	092G	478.15
63	577520	092G	498.95
64	577522	092G	498.96

	tenure number		map area (NTS)	area (hectares)
65	577523		092G	519.75
66	577524		092G	498.97
67	577526		092G	374.39
68	577529		092G	519.99
69	577532		092G	519.99
70	577536		092G	332.78
71	577539		092G	83.18
72	577543	FM	092G	478.66
73	577546	FM	092G	395.28
74	577547	FM	092G	499.47
75	577548	FM	092G	478.51
76	577549	FM	092G	416.25
77	577550	FM	092G	478.84
78	577551	FM	092G	478.96
79	577553	FM	092G	458.26
80	577554	FM	092G	521.06
81	577555	FM	092G	500.05
82	577561	FM	092G	208.38
83	577562		092G	520.17
84	577563		092G	312.11
85	577564		092G	457.74
86	577565		092G	520.38

5 EXPLORATION HISTORY

During logging road construction within Rogers Creek Valley in 2007, Mr. Gary Poirier discovered copper mineralization. He staked 52 claims which were optioned to Wallbridge in March of 2008. Prior to signing an option agreement, Wallbridge contracted Clinton Smyth, of Vancouver, to collect 346 soil and 73 rock samples on Poirier's claim group in November 2007. In 2008, after staking an additional 48 claims to cover the southern portion of the Rogers Creek Pluton, a major field program consisting of mapping, prospecting and collection of 307 soil, 670 rock, 150 stream sediment and 73 heavy mineral concentrate samples was completed, with the assistance of Discovery Consultants, from Kelowna, BC. Also in 2008, CMG Ltd. of Rockwood, Ontario was contracted to complete a 1506 line-km airborne magnetic gradiometry and VLF-EM survey over the Property. As a result, three Target areas were defined and are displayed in Figure . .

During 2009, extensive soil, silt and bedrock sampling and mapping were carried out; as well as prospecting within previously unexplored areas of the property. The focus of the 2009 bedrock mapping and prospecting program was: mapping of outcrops along IP-lines to facilitate correlation of near surface IP-results and surface lithology, and the mapping and prospecting of rock units along newly established logging roads along the Lillooet River and the south-western part of the property known as Fire Mountain. Bedrock mapping started in early May and ended by the end August 2009. In total 81 days were worked mapping and sampling in the field and 119 rock samples were collected and submitted for geochemical analysis. Mapping focused mainly on road-cuts and IP-gridlines to identify any signs of alteration and mineralization. The mapping scale varied depending on the complexity of the target, between 1:10,000 and 1:2,000 scale. In total 33.5 km of road banks were mapped as was the entire 41 line-km of IP grid. The balance of work focused on mapping, prospecting, soil sampling, and finally cross-slope and up-slope traverses to investigate potentially gossanous outcrops observed from a distance. During the 2009 season, 166 outcrops, 66 structural features and 18 quaternary features (talus coverage, etc.) were recorded in the project Maplnfo database as well as any newly established access in the project area.

In 2009, 216 soil samples were taken at different targets. Previous soil sampling delineated a possible NWtrending zone of anomalous gold samples crossing the Rogers Creek Valley. It was decided that an increase of soil sample density was necessary to confirm this zone. 40 samples were retrieved and verified the existence of the zone. New showings of molybdenite and copper mineralization were identified in the Fire Mountain area (Target IV) and followed up with an extensive soil sampling program consisting of 160 samples to characterize the extent and orientation of this new target.

Six stream sediment samples were also collected during the summer of 2009, mainly to confirm anomalies found at Target III and to sample previously unsampled streams that tapped into the same source area as the anomalous streams found in 2007 and 2008, to further outline the potential of this gold target.

Figure 3: Target Areas defined by Wallbridge during 2007/2008 program. Pink: Miocene Intrusion (Rogers Creek Pluton), Grey: Mesozoic rocks,

The approach on geophysical surveys in 2009 was three fold and comprised a 2-phase Induced Polarization survey, the collection of magnetic susceptibility data and an inversion of airborne magnetic data. In the beginning of June 2009 an Induced Polarization survey was carried out by ABITIBI Geophysics, of Val d'Or, Quebec, with a six-member crew. The NE/SW-oriented survey grid comprised 5 lines for a total of 41 line-km. The grid covered two magnetic anomalies that coincide with geochemical anomalies particularly over Target I. The reason for this two-fold survey design was to identify potential sheeted vein systems in the north-east part of the grid, as surface mapping identified several high grade gold veins north-east of the magnetic-low, which defines the Target I. The survey concluded on July 26, 2009.

The third component of the geophysical survey included measuring and documenting the magnetic susceptibility of rocks cropping out along roads and parts of the IP-grid. The data was collected to support an inversion of the magnetic data collected by an airborne survey flown in 2008. MIRA Geoscience of Vancouver, BC generated a 3D model of the magnetic rock properties, which were combined with the available 3D data generated by ABITIBI Geophysics' Induced Polarization survey and which will guide future drill programs.

6 GEOLOGICAL AND ECONOMIC ASSSESMENT

The property is located within the Coastal Mountain Belt of British Columbia (Figure 4). The Coast Belt includes the Coast and Cascade Mountains and extends from south of the British Columbia - Washington State border, some 1500 km northward up to the southern border of the Yukon Territory and beyond. The Coastal Mountain Belt is made up mostly of 185 to 50 million year old granitic rocks, plus scattered remnants of older, deformed sedimentary and volcanic rock into which the granitic bodies have intruded. The last 40 million years, however, have been shaped by magmatism related to development of the Cascade Magmatic Arc (Figure 5), formed by subduction of the Juan de Fuca Plate beneath the North American Plate (Monger and Journeay 1994).

Regional Geological Setting

The Coast Belt in southern BC is divided into south-western and south-eastern parts based on the distribution of plutonic rocks, terranes and structures (Crickmay, 1930)

The south-western Coast Mountains feature mainly Middle Jurassic to mid-Cretaceous plutons (ca. 165-91 Ma) which intrude supracrustal sequences of the Middle Triassic to Middle Jurassic Wrangellia and Harrison Lake terranes and the overlapping Jurassic-Cretaceous volcanic and sedimentary rocks. The western boundary is the western limit of Middle Jurassic intrusions that possibly were localized along preand syn-plutonic faults. The eastern boundary is delineated by the high-grade, internal, metamorphic thrust nappes of the Coast Belt Thrust System that are derived in large part from basinal strata (Bridge River terrane) characteristic of the south-eastern Coast Mountains. Rocks (Harrison terrane and Gambier Group) characteristic of the eastern part of south-western Coast Mountains are also internally imbricated along west-directed thrust faults of the external part of the Coast Thrust Belt System, below nappes featuring high-grade metamorphism to the east. Thus, the south-western Coast Mountains occupy a plutonicdominated crustal block that acted as a foreland buttress during early Late Cretaceous ($91-97 \mathrm{Ma}$) westdirected thrusting centred in the south-eastern Coast Mountains (Crickmay, 1930 and Monger and Journeay 1994).

Figure 5: Distribution of Tertiary to recent features formed

The south-eastern Coast Mountains feature mid-Cretaceous through early Tertiary (103-47 Ma) plutonic rocks, emplaced within (mainly) Bridge River, Cadwallader and Methow Terranes. This part of the Coast Mountains was the site of the most intense deformation and highest grade metamorphism in Late Cretaceous-early Tertiary time. All three terranes in the south-eastern Coast Mountains appear to be founded on oceanic crust.

The Rogers Creek Property is centred on the Miocene-aged ($16.7 \pm 2.7 \mathrm{Ma}$; (Armstrong unpublished) Rogers Creek intrusive complex; which is exposed on the Property intruding through the older metamorphosed Jurassic and Cretaceous rocks, that are typical of the Coastal Belt, and into overlying and coeval Miocene Crevasse Crag volcanic flows and pyroclastic rocks (Journeay and Monger 1997). The Rogers Creek intrusive complex and the coeval Crevasse Crag volcanic rocks are phases of recent volcanic and plutonic activity of the Cascade Magmatic Arc.

Figure 5: Rogers Creek Project with respect to morphological belts (Monger and Journeay, 1994)

PROPERTY GEOLOGY

Figure illustrates the general geology of the work area as mapped by the British Columbia Geological Survey (BCGS) on the scale of 1:500,000. Descriptions of these lithologies can be found in Table 1.

Figure 6: Geology of the Rogers Creek project area (from Journeay and Monger 1997). - Map-codes are explained in Table 1.

Table 1: Description of rock units shown in Figure .

Unit	$\begin{gathered} \text { Rock_cla } \\ \text { ss } \end{gathered}$	Rock_type	Tectonic Environment	Comments
eK	plutonic	quartz-diorite, diorite	arc-related plutons	Spatially associated with Upper Jurassic-Lower Cretaceous arc volcanics of the Gambier Group; interpreted as sub-volcanic roots to a west-facing arc; linked to subduction of Farallon Plate along the outboard margin of Wrangellia
ICE		icefield/glacier		
IKG	volcanic / sedimenta ry	crystal tuff, volcaniclastic sandstone, phyllite, lapilli tuff, flow-banded rhyolite, quartz and feldspar-phyric rhyolite, andesite, volcanic breccia	continental arc volcanics and clastics	Valanginian-Hauterivian arc-related volcanics; comprises both lower sub-alkaline and upper calc-alkaline suites; part of a west(?)-facing arc sequence formed in an extensional or transtensional setting; host to important base-metal deposits
IKS	plutonic	hornblende- and biotitehornblende quartz-diorite	arc-related plutons	Post-kinematic plutons; locally contain magmatic epidote; part of a NW-trending, eastward-younging continental arc; related to subduction of the Farallon Plate; deeper level equivalents include foliated metaplutonic suites of the Cascade Metamorphic Cor
M	plutonic	hornblende-biotite granodiorite	arc-related plutons	RODGER'S CREEK PLUTON: calc-alkaline plutons; part of a NWtrending, eastward-younging post-accretionary arc; related to subduction of Farallon Plate; emplacement locally controlled by NEtrending Miocene faults; source to calc-alkaline arc volcanics of the Pemberton Belt
MCC	$\begin{aligned} & \text { metamorp } \\ & \text { hic } \end{aligned}$	pelitic schist, amphibolite, quartzite, phyllite, minor chert, limestone and ultramafic rock	```metamorphos ed accretionary wedge```	Poly-metamorphic core of Coast Belt Thrust System; derived from oceanic rocks of Bridge River Complex and overlying Cayoosh Assemblage; tectonically buried and metamorphosed in early Late Cretaceous($105-90 \mathrm{Ma}$) and Late Cretaceous ($90-84 \mathrm{Ma}$) time
mK	metamorp hic	biotite-hornblende granodiorite gneiss, biotite-hornblende-quartz diorite gneiss	arc-related plutons	Deformed and metamorphosed pre- and syn-orogenic 1-type plutons of the southeastern Coast Belt, intruded during thrust imbrication and eastward underplating of paleocontinental margin; high-pressure phases record $35-40 \mathrm{~km}$ of crustal thickening
mlJ	plutonic	biotite-hornblende quartzdiorite	arc-related plutons	Terrane-stitching calc-alkaline/alkaline l-type plutons; intruded across boundaries of previously amalgamated terranes of the Coast and Intermontane belts; exhumed roots to coeval arc volcanics of the Harrison Lake and Bowen Island groups
MPv	volcanic	basaltic andesite, andesite, dacite flows, volcanic breccia, tuff, plagioclase-phyric flows	continental arc volcanics	CREVASSE CRAG COMPLEX: non-marine calc-alkaline continental arc volcanics; part of Pemberton Volcanic Belt, related to eastward subduction of the Farallon Plate; ascent of magmas and eruption of volcanic centers controlled by NE-trending, Miocene faults
MSL	metamorp hic	mafic-intermediate-felsic meta-volcanic schist and gneiss, pelite, conglomerate	metamorphos ed island arc assemblage	Thrust nappes in imbricate zone of Coast Belt Thrust System; protolith wholly or in part derived from Peninsula and Billhook Creek formations; metamorphosed in early Late Cretaceous ($84-105 \mathrm{Ma}$).
MST	metamorp hic	pelite, garnet-biotite, staurolite, kyanite and sillimanite schist, amphibolite, meta-pillow basalt, siliceous schist, phyllite, meta-sandstone	metamorphos ed accretionary wedge	Poly-metamorphic core of Coast Belt Thrust System; derived from oceanic rocks of Bridge River Complex and overlying Cayoosh Assemblage; tectonically buried and metamorphosed in early Late Cretaceous($105-90 \mathrm{Ma}$) and Late Cretaceous ($90-84 \mathrm{Ma}$) time
PTr	plutonic / metamorp hic	diorite, amphibolite	island arc	Undivided Permian-Triassic plutons and metamorphosed equivalents; spatially associated with (possibly basement to) Late Triassic plutons and volcanics of the Mount Lytton Complex-Nicola arc, and Late Triassic volcanics of the Lillooet Lake Assemblage
Q	$\begin{aligned} & \text { sedimenta } \\ & \text { ry } \end{aligned}$	sand, silt, gravel, till	glacial/fluvial/l acustrine	Undivided surficial deposits including; glacial drift, alluvium, glaciofluvial-lacustrine sediments, till, colluvium, landslide deposits
TrL	volcanic	basalt-andesite flows, breccia, tuff, carbonate	island arc	Island arc tholeiites; green to purple, commonly amygdaloidal, pillowed and massive volcanic flows, flow breccia and tuff, may include lenses of Carboniferous limestone; stratigraphically overlain by Late Triassic clastics; basement to Harrison Lake arc

DEPOSIT TYPES

The Rogers Creek Property is being explored for porphyry style copper-gold-molybdenum mineralization associated with Miocene aged intrusive rocks within the Cascade Magmatic Arc. Sinclair (2007) provides a thorough review of geological settings within which economic porphyry-class deposits, or deposits associated with porphyry-class deposits, may be expected to occur. These are summarized in Figure 7 and Figure 8.

Calc-alkaline volcanic arc island / continental arc
\square Continental crust
\square Oceanic plate

- Bimodal, basalt-rhyolite volcanism

Δ Felsic volcanism (leucogranites)
Rogers Creek setting (with transpression)

Figure 7: Tectonic settings of porphyry deposits (Sinclair, 2007).

Figure 8: Schematic section through a porphyry Cu system and associated mineralization (Sinclair, 2007).

The geology and tectonic setting of the Rogers Creek Property bears a compelling similarity to the continental arc environment presented by Sinclair (2007) for giant porphyry style and associated deposits. Exploration requires identifying alteration and mineralization zonation patterns and syn-magmatic structures that may have controlled emplacement of the intrusive bodies and focussed migration of mineralizing fluids. Porphyry deposits are large low grade deposits characterised by disseminated sulfides within pervasively altered host rock making them an excellent target for IP geophysical surveys.

7 EXPLORATION PROGRAM 2011

DRILLING

A $1,024.39 \mathrm{~m}$ drill program was carried out in the summer 2010 on the Rogers Creek property.
The program started on July $14^{\text {th }}, 2010$ and ended on July $30^{\text {th }}, 2010$. The company responsible for performing the drilling operation was Blackhawk Drilling from Smithers, BC. Miocene Metals Limited provided a 3-4 person staff for core logging, sampling and logistics. Blackhawk had 4 people on the ground including 2 drillers and 2 helpers working 12 hour shifts. Lizzie Bay Logging of Pemberton, BC supported the maintenance and service on the Rogers Creek Forest Service Road by providing an excavator and a grader including operators.. The core was transported from the drill-site to the Miocene Metals Limited core logging site, which was located $4-8 \mathrm{~km}$ to the south-west along the Rogers Creek Forest Service Road from the drill-sites. Here the core was measured, logged and marked for sampling, then cut and bagged; upon completion of each hole the samples were transported to ALS Chemex in Vancouver by Miocene Metals Limited personnel for assaying.

Figure 9: Drill Hole Location Plan

In total, 2 drill holes were drilled:
MRC-001: 582.32m length
MRC-002: 442.07m length

Drill core sampling was controlled by alteration, lithology and mineralization, with a maximum sample length of 2.0 m . All pervasive phyllic-altered rock intervals and parts of propylitic-altered portions were sampled. All drill core samples were split with a diamond saw. Half of the core was submitted to the lab for analysis and the other half was retained as a representative sample or for possible re-sampling. Every effort was taken to ensure that the sample sent to the lab was representative of the entire section of core; however, due to nugget effects it is not guaranteed that an assay could be repeated.

RESULTS

The following section presents details about the holes drilled and associated results:
MRC-001
This hole targeted a deep IP anomaly discovered after doing a 3D inversion on the geophysical data collected in 2009 as well as a zone of potassic alteration with associated copper mineralization found in bedrock mapping in 2009.

The first 300 meters of MRC-001 was apparently barren in Copper, Gold, Molybdenum, Silver, and Lead. Inversely there are heavily elevated Arsenic values through this interval. The hole was collared within a polymict breccia and stayed in it until 45 m depth before transitioning into an andesite. The fault was located within the andesite and was breached at approximately 55 meters and was 3 meters wide. The hole returns back into a breccia from 72 to 244 meters with porphyritic units from 87 to 93 , and 97 to 99 meters and a basaltic andesite sill or dike from 119 to 131 meters, and basalt from 210 to 214 meters. The remainder of the hole from 244 to 582 meters consisted of intercalated breccia and andesite with minor tuffaceous units. There is a heavily clay altered and hydrothermally deteriorated shear zone located from 319.12 to 319.72 meters. This is the approximate location where element enrichments begin to be very apparent. From this point on there is a $200-300 \%$ increase in potassium and Thallium as well as significant increases in Copper, Gold, and Lead. Details of metal distribution are shown in Figure 10.

MRC-001 Au_ppm vs Depth_m						
	0	0.1	0.2	0.3	0.4	0.5
200						
400 納						
0	\%				\bigcirc	
600 - \diamond						

Figure 10: Distribution of $\mathrm{Cu}, \mathrm{Au}, \mathrm{Mo}, \mathrm{As}, \mathrm{Bi}, \mathrm{Pb}, \mathrm{K}$, and Tl with depth of MRC-001.

Figure 11: Distribution of $\mathrm{Cu}, \mathrm{Au}, \mathrm{Mo}, \mathrm{Ag}, \mathrm{Bi}, \mathrm{Pb}, \mathrm{W}$, and Sb with depth of MRC-002.

The hole targeted an open ended gold in soil anomaly associated with a major structure located at Target II. The hole was collared within granodiorite and stayed in it until 56 m depth before transitioning into an andesite and gneiss until 84 meters depth. From 84 to 442 meters the hole stayed within a quartz dioritic unit that was logged and separated into various zones and had small intercalated andesite and porphyritic units throughout. Two major zones were assayed from 150 to 200 meters and 350 to 400 meters. It is a Quartz Diorite from 150 to 200 meters that is somewhat foliated and shows minor mineralization and fractures and lower assayed metal values. On the other hand, the Quartz Diorite assayed from 350 to 388 and 390 to 400 meters had a higher percentage of mineralization that is fracture and vein controlled. There was a carbonate altered porphyritic unit from 388 to 390 meters that showed peaks in metal values during assaying. Details of metal distribution are shown in Figure 11

- Drill hole MRC-001 is mineralized from 300 meters onward along selected intervals with a marked increase down hole up to maximum values of $610 \mathrm{ppm} \mathrm{Cu}, 21.7 \mathrm{ppm} \mathrm{Mo}, 0.4 \mathrm{ppm} \mathrm{Au}, 478 \mathrm{ppm}$ Sb , and $12,550 \mathrm{ppm} \mathrm{Pb}$.
- Drill hole MRC-002 shows marked element enrichments down hole up to maximum values of 309 ppm Cu, 10 ppm Mo , and 0.3 ppm Au .

Cost of the Program

Direct drilling cost amounts to $\$ 126,244.26$ while the appurtenant preparation and analysis of drill core samples amounts to $\$ 13,510.84$.

8 CONCLUSIONS AND RECOMMENDATIONS

Conclusions

Though drilling did not intercept significant mineralization, the geological , structural and alteration and mineralization characteristics disclosed on the drill hole provided a good vectoring tool for follow-up drilling on the succeeding season.

Recommendations

It is recommended the recently obtained drill hole datasets be integrated with previously obtained projectwide datasets in order to locate and define better mineralized target particularly with respect to structural loci of mineralization which could be site of:

- More conducive (hydrous magma-related) intrusive
- Better permeability along intersection of arc-normal and arc parallel structures.

9 REFERENCES

Armstrong, R. L. (unpublished). GSC Open File(3176).
Boyce, R. A. (1984). "Geochemical Report for Assessment Credit: Claoud Claims; Assessment Report No. 12079." Geological Survey of British Columbia.

Camus, F. and J. H. Dilles (2001). "A Special Issue Devoted to Porphyry Copper Deposits in Northern Chile." Economic Geology 96(2): 233-237.

Crickmay, C. H. (1930). "The structural connection between the Coast Range of British Columbia and the Cascade Range of Washington." Geological Magazine 67: 482-491.

Journeay, J. M. and J. W. H. Monger (1997). "Geoscience library for the southern Coast and Intermontane belts, S.W. British Columbia." Geological Survey of Canada Open File 3276.

McDonough, Barry (2010), Technical Report on the Cu-Au-Mo properties, Southwestern British Columbia, Canada - Scott Wilson Roscoe Postle Associates Inc.

Monger, J. W. H. and J. M. Journeay (1994). Basement geology and tectonic evolution of the Vancouver region, Geological Survey of Canada.

Pemberton, V. o. (2009, 09 Dec 2008). "About Pemberton." Retrieved March 16th, 2009, from http://www.pemberton.ca/index.php?option=com_content\&task=view\&id=66\&|temid=318.

Sinclair, W. D., Ed. (2007). Porphyry deposits. Mineral Deposits of Canada: A Synthesis of major deposittypes, District Metallogeny, the Evolution of Geological Provinces, and Exploration Methods, Geological Association of Canada, Mineral Deposits Division, Special Publication.

Wilson, R. G. (1986). "Report on Geology and Geochemistry on the RC1 and RC2 Claims: Assessment Report Number 14119." Geological Survey of British Columbia.

Sunder Raju, P.V. (2008). Role of pathfinder elements in gold exploration in Chitradurga Schist belt. Current Science, Vol. 95, No. 3, 10 August 2008: 323-325.

Watts, A.H. (2002). Discovery of the Ujina Cu deposit, Collahuasi District, Chile. SEG Int'I Exposition and 72nd Annual Meeting * Salt Lake City, Utah * October 6-11, 2002

APPENDIX A: STATEMENT OF QUALIFICATIONS OF JOSE SAYO GARCIA, P. GEO

I, Jose Sayo Garcia, of Unit 213-15380 102 A Avenue, City of Surrey, in the Province of British Columbia, DO HEREBY CERTIFY:

1) THAT I am the Vice President for Exploration of Miocene Metals Limited with office at Suite 3101281 West Georgia St., Vancouver, BC V6E 3J7
2) THAT I am a graduate of the University of the Philippines with a Bachelor of Science degree in Geology in 1978, and a registered geologist in the Philippines with License number 0575 issued by the Philippine professional Regulation Commission.
3) THAT I am a Professional Geologist registered (\#35362) in good standing with the Association of Professional Engineers and Geoscientists of British Columbia;
4) That I conducted the data compilation and review for the 2010 Drilling Program for Miocene Metals Limited Rogers Creek Project which is the subject of this assessment report.
5) THAT this report pertaining Miocene Metals Limited Shulaps properties, excluding sections explicitly noted as extracted from other reports, and excluding the Appendices B-F was written by myself.

DATED at Vancouver, British Columbia, this $26^{\text {th }}$ day of October, 2011

Miocene Metals Limited
B.

APPENDIX B: Diamond Drill Logs

Deviation Tests						
Distance	Azimuth	Dip	Type	Good	Comments	
0.00	315.00	-60.00	C	\boxed{V}		

LITHOLOGY REPORT

- Detailed -

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Hole Number \& MRC-001 \& Project: ROGERS_CREEK \& \& \& \& \& Project Number: \& 677 \& \& \& \\
\hline \begin{tabular}{l}
From \\
(m)
\end{tabular} \& \begin{tabular}{l}
To \\
(m)
\end{tabular} \& Lithology \& Sample \# \& From \& To \& Length \& \begin{tabular}{l}
\(A u\) \\
(g/t)
\end{tabular} \& \[
\begin{gathered}
\text { Pt } \\
(g / t)
\end{gathered}
\] \& \[
\begin{aligned}
\& P d \\
\& (g / t)
\end{aligned}
\] \& \[
\begin{aligned}
\& \mathrm{Ni} \\
\& (\%)
\end{aligned}
\] \& Cu
(\%) \\
\hline 0.00 \& 33.54 \& CAS
CASING
Overburden \& \& \& \& \& \& \& \& \& \\
\hline 33.54 \& 44.88 \& BX Sudbury Breccia : \& J924284 \& 33.54 \& 35.00 \& 1.46 \& - \& - \& - \& - \& - \\
\hline \& \& \begin{tabular}{l}
BRECCIA \\
Polymict Breccia, light grey, granular matrix with granodiorite, quartz diorite and quartzofeldspathic clasts. There are only minor visible sulfides.
\end{tabular} \& J924283

$J 924282$ \& 35.00
36.88 \& 36.88
38.88 \& 1.88
2.00 \& - \& - \& - \& - \& -

\hline \& \& \& J924281 \& 38.88 \& 40.88 \& 2.00 \& - \& - \& - \& - \& -

\hline \& \& \& J924280 \& 40.88 \& 42.88 \& 2.00 \& - \& - \& - \& - \& -

\hline \& \& \& J924279 \& 42.88 \& 44.88 \& 2.00 \& - \& - \& - \& - \& -

\hline 44.88 \& 54.88 \& ANDS Sudbury Breccia : \& J924278 \& 44.88 \& 46.88 \& 2.00 \& - \& - \& - \& - \& -

\hline \& \& | ANDESITE |
| :--- |
| Same as 57.97 to 72.6 meters. There is some hydrothermal carbonate breccia between 51 and 52 meters. | \& J924277 \& 46.88 \& 48.88 \& 2.00 \& - \& - \& - \& - \& -

\hline \& \& Near surface Oxidation beginning to appear in this unit. Up to 0.25% disseminated sulfide throughout and up to \& J924276 \& 48.88 \& 50.88 \& 2.00 \& - \& - \& - \& - \& -

\hline \& \& 0.75\% locally. \& J924275 \& 50.88 \& 52.88 \& 2.00 \& - \& - \& - \& - \& -

\hline \& \& \& J924274 \& 52.88 \& 54.88 \& 2.00 \& - \& - \& - \& - \& -

\hline 54.88 \& 57.97 \& FLT Sudbury Breccia : \& J924273 \& 54.88 \& 57.97 \& 3.09 \& - \& - \& - \& - \& -

\hline \& \& | FAULT |
| :--- |
| A 3.09 m fault run with very little recovery. The rock that is still there is fine grained, bleached, altered and has a lot of secondary pyrite. | \& \& \& \& \& \& \& \& \&

\hline 57.97 \& 72.60 \& ANDS Sudbury Breccia : \& J924272 \& 57.97 \& 60.60 \& 2.63 \& - \& - \& - \& - \& -

\hline \& \& | ANDESITE |
| :--- |
| UNSURE of rock type. Appears to be a broken up andesitic sill or dyke thatis dark grey, fine grained with dark | \& J924271 \& 60.60 \& 62.60 \& 2.00 \& - \& - \& - \& - \& -

\hline \& \& greenish black hornblende/pyroxene? However the unit is slightly to moderately magnetic on a local scale. \& J924270 \& 62.60 \& 64.60 \& 2.00 \& - \& - \& - \& - \& -

\hline \& \& Throughout and is soft and has a lot of carbonate alteration throughout it. There are $\sim 0.25 \%$ pyrite throughout the unit. Upper contact is a fault with a lot of lost core. \& J924269 \& 64.60 \& 66.60 \& 2.00 \& - \& - \& - \& - \& -

\hline \& \& \& J924268 \& 66.60 \& 68.60 \& 2.00 \& - \& - \& - \& - \& -

\hline
\end{tabular}

LITHOLOGY REPORT

- Detailed -

Hole Number	MRC-001	Project: ROGERS_CREEK					Project Number:	677			
From (m)	To (m)	Lithology	Sample \#	From	To	Length	$A u$ (g/t)	$\begin{gathered} \text { Pt } \\ (g / t) \end{gathered}$	$\begin{aligned} & \text { Pd } \\ & (g / t) \end{aligned}$	$\begin{aligned} & \mathrm{Ni} \\ & (\%) \end{aligned}$	Cu (\%)
			J924267	68.60	70.60	2.00	-	-	-	-	-
			J924266	70.60	72.60	2.00	-	-	-	-	-
72.60	78.60	BX Sudbury Breccia :	J924265	72.60	74.60	2.00	-	-	-	-	-
		BRECCIA	J924264	74.60	76.60	2.00	-	-	-	-	-
		sulfides, mainly pyrite with chalcopyrite throughout the unit. The entire upper 3 meters is crumbly and breaks easy.	J924263	76.60	78.60	2.00	-	-	-	-	-
78.60	84.40	CLAY Sudbury Breccia :	J924262	78.60	80.60	2.00	-	-	-	-	-
		CLAY	J924261	80.60	81.40	0.80	-	-	-	-	-
		sulfides throughout probably in the range of $>1 \%$ pyrite. There will most likely be gold hits in this interval as well	J924260	81.40	83.40	2.00	-	-	-	-	-
		as a few meters above and below.	J924259	83.40	85.40	2.00	-	-	-	-	-
84.40	87.40	BX Sudbury Breccia :	J924258	85.40	87.40	2.00	-	-	-	-	-
		BRECCIA Same as 99 to 108.15 meters.									
87.40	93.40	PORP Sudbury Breccia :	J924257	87.40	89.40	2.00	-	-	-	-	-
		PORPHYRY BRECCIATED Intermediate to nearly crowded porphyry. Unsure if this is a megaclast with later minor	J924256	89.40	91.40	2.00	-	-	-	-	-
		brecciation and infiltration or the actual host rock to the breccia? The matrix is fine grained, dark grey and there are $2-3 \mathrm{~mm}$ wide porphyroblasts that have been altered to carbonate. There are minor sulfides, pyrite, but they appear to be rimming clasts and not within the porphyry itself.	J924255	91.40	93.40	2.00	-	-	-	-	-
93.40	97.40	BX Sudbury Breccia :	J924254	93.40	95.40	2.00	-	-	-	-	-
		BRECCIA Same as 99 to 108.15 meters.	J924253	95.40	97.40	2.00	-	-	-	-	-

LITHOLOGY REPORT

- Detailed -

Hole Number	MRC-001	Project: ROGERS_CREEK					Project Number:	677			
From (m)	To (m)	Lithology	Sample \#	From	то	Length	$A u$ (g/t)	$\begin{gathered} \text { Pt } \\ (g / t) \end{gathered}$	$\begin{aligned} & P d \\ & (g / t) \end{aligned}$	$\begin{gathered} \mathrm{Ni} \\ \text { (\%) } \end{gathered}$	Cu (\%)
97.40	99.00	PORP Sudbury Breccia : PORPHYRY UNSURE. It may be a large raft of partially brecciated, intermediately crowded porphyry? Dark grey, fine grained matrix with equigranular grains approximately $2-3 \mathrm{~mm}$ in size which are now carbonate. The carbonitization would brobably explain why the crystals are not euhedral. There appears to be a fine dusting of sulfides throughout but am unsure, it is very difficult to tell.	J924252	97.40	99.00	1.60	-	-	-	-	-
99.00	108.15	BX Sudbury Breccia : BRECCIA Monomict, in-situ jigsaw breccia with pale milky green clasts up to 30 cm in size that appear to possibly be porphyritic. The matrix is reddish brown and is probably hematite overprinting. There are sulfides throughout. Up to 0.75% pyrite with minor chalcopyrite? The matrix may be dark as well because of fine sulfides throughout it and rimming the clasts. The lower contact to the other breccia unit is completely destroyed and crumbly hosting a lot of clays for at least 1 meter into it.	J924251 J924250 J924249 J924248 J924247	99.00 100.15 102.15 104.15 106.15	$\begin{aligned} & 100.15 \\ & 102.15 \\ & 104.15 \\ & 106.15 \\ & 108.15 \end{aligned}$	$\begin{aligned} & 1.15 \\ & 2.00 \\ & 2.00 \\ & 2.00 \\ & 2.00 \end{aligned}$	- - - - -	- - - - -	- - - - -	- - - - -	- - - - -
108.15	119.00	BRECCIA Same breccia as 131.40 to 139.40 meters. There is heavy clay alteration between 115 and 121 meters as well as near the contact to the upper monomict breccia from ~ 108 to 110 meters.	J924246 J924245 J924244 J924243 J924242	108.15 111.00 113.00 115.00 117.00	$\begin{aligned} & 111.00 \\ & 113.00 \\ & 115.00 \\ & 117.00 \\ & 119.00 \end{aligned}$	$\begin{aligned} & 2.85 \\ & 2.00 \\ & 2.00 \\ & 2.00 \\ & 2.00 \end{aligned}$	-	- - - - -	- - - - -	-	- - - - -
119.00	131.40	BASAND Sudbury Breccia : BASALTIC ANDESITE Dyke or Sill, with a -60 dip on DDH and a 50dtca orientation of contact and no oriented core, it could be either or?? Fine grained, dark brownish black, soft with $1-2 \mathrm{~mm}$ carbonate nodules throughout up to 7% of the unit. No visible sulfides. The lower contact is at ~ 50 dtca.	$\begin{gathered} \mathrm{J} 924241 \\ \mathrm{~J} 924240 \\ \mathrm{~J} 924239 \\ \hline \mathrm{~J} 924238 \\ \mathrm{~J} 924237 \\ \mathrm{~J} 924236 \end{gathered}$	119.00 121.00 123.00 125.00 127.00 129.00	$\begin{aligned} & 121.00 \\ & 123.00 \\ & 125.00 \\ & 127.00 \\ & 129.00 \\ & 131.40 \end{aligned}$	$\begin{aligned} & 2.00 \\ & 2.00 \\ & 2.00 \\ & 2.00 \\ & 2.00 \\ & 2.40 \end{aligned}$	-	-	- - - - - -	-	- - - - - -

LITHOLOGY REPORT

- Detailed -

Hole Number	MRC-001	Project: ROGERS_CREEK					Project Number:	677			
From (m)	$\begin{aligned} & \text { To } \\ & \text { (} m \text {) } \end{aligned}$	Lithology	Sample \#	From	To	Length	$A u$ (g / t)	$\begin{gathered} P t \\ (g / t) \end{gathered}$	$\begin{aligned} & P d \\ & (g / t) \end{aligned}$	$\begin{aligned} & \mathrm{Ni} \\ & (\%) \end{aligned}$	Cu (\%)
131.40	139.40	BX Sudbury Breccia :	J924235	131.40	133.40	2.00	-	-	-	-	-
		BRECCIA Dark steel grey breccia, definite change from the pale milky green breccia below. Sharp increase in mineralization as well from the breccia below. There is disseminated and fracture controlled pyrite+/chalcopyrite up to 0.5% locally and probably about 0.2 to 0.3% overall. There are a high number of fracture filling veinlets of various types and orientations. There are veinlets of quartz, anhydrite/gypsum, and a dark black coloroed veinlet. Some have alteration halos and some don't. There is fracture filling pyrite+chalcopyrite as well as disseminations throughout. There are also a couple spots with a milky white matrix that looks late stage hydrothermal, in-situ brecciation, secondary after initial brecciation. The clast composition is mainly smaller clasts of quartz diorite and granodiorite with a couple larger clasts up to 8 cm in size. This breccia is most likely the same breccia as below but it has been completely cooked up and altered by the dyke above and late stage fluids dropped out sulfides. The upper contact is approximately 50 dtca.	J924234	133.40	135.40	2.00	-	-	-	-	-
			J924233	135.40	137.40	2.00	-	-	-	-	-
			J924232	137.40	139.40	2.00	-	-	-	-	-
139.40	210.00	BX Sudbury Breccia : BRECCIA Same breccia as below basalt sill/dyke but not as altered. There are a couple anhydrite? And carbonate fragments approximately $3-6 \mathrm{~cm}$ in length and 2 cm in width at 206 meters, pictures were taken. There is varying degrees of dark red hematite overprinting throughout as well as a few large clasts of the same dull green porphyry clasts as below. Only minor sulfides were observed. It is moderately to heavily broken and clay altered from 174 to 188 meters. There are a lot of greenish porphyry clasts throughout the unit. Only minor sulfides have been observed. There is a hematite+Anhydrite/gypsum? Zone of alteration from 148.20 to 148.70 meters with small blebs and minor disseminations of pyrite surrounding it within 3-4 meters of either side. Hematite from 151 to 154 meters. The upper contact to the altered and mineralized breccia is crumb	J924231	139.40	142.00	2.60	-	-	-	-	-
			J924230	142.00	144.00	2.00	-	-	-	-	-
			J924229	144.00	146.00	2.00	-	-	-	-	-
			J924228	146.00	148.00	2.00	-	-	-	-	-
			J924227	148.00	150.00	2.00	-	-	-	-	-
			J924226	150.00	152.00	2.00	-	-	-	-	-
			J924225	152.00	154.00	2.00	-	-	-	-	-
			J924224	154.00	156.00	2.00	-	-	-	-	-
			J924223	156.00	158.00	2.00	-	-	-	-	-
			J924222	158.00	160.00	2.00	-	-	-	-	-
			J924221	160.00	162.00	2.00	-	-	-	-	-
			J924220	162.00	164.00	2.00	-	-	-	-	-
			J924219	164.00	166.00	2.00	-	-	-	-	-
			J924218	166.00	168.00	2.00	-	-	-	-	-
			J924217	168.00	170.00	2.00	-	-	-	-	-
			J924216	170.00	172.00	2.00	-	-	-	-	-

LITHOLOGY REPORT

- Detailed -

LITHOLOGY REPORT

- Detailed -

Hole Number	MRC-001	Project: ROGERS_CREEK					Project Number:	677			
From (m)	To (m)	Lithology	Sample \#	From	To	Length	$A u$ (g/t)	$\begin{gathered} \text { Pt } \\ (g / t) \end{gathered}$	$\begin{aligned} & P d \\ & (g / t) \end{aligned}$	$\begin{aligned} & \mathrm{Ni} \\ & (\%) \end{aligned}$	Cu (\%)
214.40	243.70	BX Sudbury Breccia :	J924194	214.40	216.70	2.30	-	-	-	-	-
		BRECCIA Typical breccia that has been seen below the ANDS unit below. There are large clasts and hematite alteration of the breccia matrix from 235.20 to 236.20 meters. From 232.80 to 235.20 the breccia is finer grained with less that 5% clasts over 1 cm and no visible sulfides or alteration. The breccia from 214.40 to 232.80 is $85-90 \%$ large clasts with the matrix being small grunular clasts as well. This zone is heavily altered by hematite and the clasts are stained a dull green to varying degrees throughout the unit. The clasts are stained dull green or bleached by a mily cream colored green especially where hematite alteration is most intense. Most of the clasts are granodiorite, quartz diorite and porphyry. The upper contact is at 50 dtca .	J924193	216.70	218.70	2.00	-	-	-	-	-
			J924192	218.70	220.70	2.00	-	-	-	-	-
			J924191	220.70	222.70	2.00	-	-	-	-	-
			J924190	222.70	224.70	2.00	-	-	-	-	-
			J924189	224.70	226.70	2.00	-	-	-	-	-
			J924188	226.70	228.70	2.00	-	-	-	-	-
			J924187	228.70	230.70	2.00	-	-	-	-	-
			J924186	230.70	232.70	2.00	-	-	-	-	-
			J924185	232.70	233.70	1.00	-	-	-	-	-
			J924184	233.70	235.70	2.00	-	-	-	-	-
			J924183	235.70	237.70	2.00	-	-	-	-	-
			J924182	237.70	239.70	2.00	-	-	-	-	-
			J924181	239.70	241.70	2.00	-	-	-	-	-
			J924180	241.70	243.70	2.00	-	-	-	-	-
243.70	245.70	ANDS Sudbury Breccia :	J924179	243.70	245.70	2.00	-	-	-	-	-
		ANDESITE Same unit as below at 249 to 266 meters.									
245.70	249.00	BX Sudbury Breccia :	J924178	245.70	247.70	2.00	-	-	-	-	-
		BRECCIA This is a small altered unit of breccia between 2 andesitic? Sills or dykes. The clasts in it are mostly porphyritic and are pervasively tinted green. Some clasts have a milky whitish pink halo around them and minor sulfides. Pictures of some of these clasts were taken. The upper contact is at 50 dtca while the lower is at 40 dtca and are quite distinct with the nearby breccia matrix appearing to be infiltrated by the andesite. This may be caused by intrusion of the andesite syn- or early post formation of the breccia. This breccia unit is probably a large block that broke off the roof of the sill and sat in the middle or was moved from another spot.	J924177	247.70	249.00	1.30	-	-	-	-	-

LITHOLOGY REPORT

- Detailed -

Hole Number	MRC-001	Project: ROGERS_CREEK					Project Number:	677			
From (m)	To (m)	Lithology	Sample \#	From	To	Length	$A u$ (g/t)	$\begin{gathered} \text { Pt } \\ (g / t) \end{gathered}$	Pd (g / t)	$\begin{aligned} & \mathrm{Ni} \\ & (\%) \end{aligned}$	$\underset{(0)}{\mathrm{Cu}}$
249.00	266.06	ANDS Sudbury Breccia :	J924176	249.00	250.06	1.06	-	-	-	-	-
		ANDESITE UNSURE OF ROCKTYPE!! If I saw this in Sudbury, I would think it was fine grained QD with only minor clasts. It is fg, granular and grey to dark grey in color. It has a minor amount of small clasts in it that were probably ripped from the brecciated wallrock. There are also large fragments of the surrounding breccia in it with porphyritic clasts. Most of the smaller 1 mm to 1 cm sized clasts are quartz or granitoid. The fragments only make up approximately $3-5 \%$ of the unit.	J924175	250.06	252.06	2.00	-	-	-	-	-
			J924174	252.06	254.06	2.00	-	-	-	-	-
			J924173	254.06	256.06	2.00	-	-	-	-	-
			J924172	256.06	258.06	2.00	-	-	-	-	-
			J924171	258.06	260.06	2.00	-	-	-	-	-
			J924170	260.06	262.06	2.00	-	-	-	-	-
			J924169	262.06	264.06	2.00	-	-	-	-	-
			J924168	264.06	266.06	2.00	-	-	-	-	-
266.06	273.22	BX Sudbury Breccia :	$J 924167$	266.06	267.22	1.16	-	-	-	-	-
		BRECCIA Same breccia as 275 meters. Has a lot of porphyritic clasts up to 25 cm in size and probably constituting 40% of the clasts. The porphyry clasts matrix appear to be all pervasively tinted green.	J924166	267.22	269.22	2.00	-	-	-	-	-
			J924165	269.22	271.22	2.00	-	-	-	-	-
			J924164	271.22	273.22	2.00	-	-	-	-	-
273.22	273.72	BASAND Sudbury Breccia :	J924163	273.22	273.72	0.50	-	-	-	-	-
		BASALTIC ANDESITE Dark grey to black, very fine grained with carbonate 1-2mm nodules throughout. Probably a thin sill or dyke that cooked up and altered the surrounding breccia. The lower contact is indistinguishable for getting an orientation but the upper contact is separated from the overlying breccia by an anhydrite veinltet at approximately 20 dtca.									
273.72	319.12	BX Sudbury Breccia : BRECCIA Appears to be the same breccia as below the shear with the same clast compositions including milky green colored/bleached porphyry clasts up to 60 cm in size with an intermediate crowding texture. There are zones of hematite alteration from 301 to 302 meters. There is some minor mineralization up to $0.1 \% \mathrm{py}+/$-cpy throughout most of the unit, however there is $\sim 3-4 \%$ blebby and remobilized chalcopyrite and pyrite within the outer rim of a 40 sm clast and some disseminations in the surrounding matrix from 290.90 to 291.40 meters. The mineralized clast has a dark brown, very fine grained siliceous? Core and a lighter greyish green 2 cm outer rim. There are numerous crosscutting milky white 1 mm wide veinlets of possibly anhydrite? They do not effervesce and they vary in orientation from 35 to 75 dtca .	J924162	273.72	276.12	2.40	-	-	-	-	-
			J924161	276.12	278.12	2.00	-	-	-	-	-
			J924160	278.12	280.12	2.00	-	-	-	-	-
			J924159	280.12	282.12	2.00	-	-	-	-	-
			J924158	282.12	284.12	2.00	-	-	-	-	-
			J924157	284.12	286.12	2.00	-	-	-	-	-
			J924156	286.12	288.12	2.00	-	-	-	-	-

LITHOLOGY REPORT

- Detailed -

Hole Number	MRC-001	Project: ROGERS_CREEK					Project Number:	677			
From (m)	$\begin{aligned} & \text { To } \\ & \text { (m) } \end{aligned}$	Lithology	Sample \#	From	To	Length	$A u$ (g/t)	$\begin{gathered} P t \\ (g / t) \end{gathered}$	$\begin{aligned} & \text { Pd } \\ & (g / t) \end{aligned}$	$\begin{aligned} & \mathrm{Ni} \\ & (\%) \end{aligned}$	$\begin{aligned} & \mathrm{Cu} \\ & (\%) \end{aligned}$
			J924155	288.12	290.12	2.00	-	-	-	-	-
			J924154	290.12	292.12	2.00	-	-	-	-	-
			J924153	292.12	294.12	2.00	-	-	-	-	-
			J924152	294.12	296.12	2.00	-	-	-	-	-
			J924151	296.12	298.12	2.00	-	-	-	-	-
			J924150	298.12	300.12	2.00	-	-	-	-	-
			J924149	300.12	302.12	2.00	-	-	-	-	-
			J924148	302.12	304.12	2.00	-	-	-	-	-
			J924147	304.12	306.12	2.00	-	-	-	-	-
			J924146	306.12	308.12	2.00	-	-	-	-	-
			J924145	308.12	310.12	2.00	-	-	-	-	-
			J924144	310.12	312.12	2.00	-	-	-	-	-
			J924143	312.12	314.12	2.00	-	-	-	-	-
			J924142	314.12	316.12	2.00	-	-	-	-	-
			J924141	316.12	318.12	2.00	-	-	-	-	-
			J924140	318.12	319.12	1.00	-	-	-	-	-
319.12	319.72	SHEAR Sudbury Breccia :	J924139	319.12	319.72	0.60	-	-	-	-	-
		SHEAR Unsure if if is just a small dyke but it is heavily altered with clasy and is very soft and appears somewhat foliated and has a few boudined carbonate lenses in it. The competent part of it is very fine grained and jet black with minor carbonate nodules. Contact orientations can not be determined. The breccia on either side of it is extremely clay altered and hydrothermally deteriorated.									
319.72	341.72	BX Sudbury Breccia :	J924138	319.72	321.72	2.00	-	-	-	-	-
		BRECCIA Same breccia as interval from 364 to 395 meters. There are patches of heavy clay alteration of the breccia	J924137	321.72	323.72	2.00	-	-	-	-	-
		matrix from 339.50 to 341.72 and from 319.72 to 320.72 with weaker clay alteration from approximately 330 to	J924136	323.72	325.72	2.00	-	-	-	-	-
		339.5 meters. Several Plag Porphyry megaclasts up to 20 cm in size near upper contact.	J924135	325.72	327.72	2.00	-	-	-	-	-
			J924134	327.72	329.72	2.00	-	-	-	-	-
			J924133	329.72	331.72	2.00	-	-	-	-	-

Hole Number	MRC-001	Project: ROGERS_CREEK					Project Number:	677			
From (m)	To (m)	Lithology	Sample \#	From	To	Length	$A u$ (g / t)	$\begin{gathered} \text { Pt } \\ (g / t) \end{gathered}$	$\begin{aligned} & P d \\ & (g / t) \end{aligned}$	$\begin{aligned} & \mathrm{Ni} \\ & (\%) \end{aligned}$	$\begin{aligned} & \mathrm{Cu} \\ & (\%) \end{aligned}$
			J924132	331.72	333.72	2.00	-	-	-	-	-
			J924131	333.72	335.72	2.00	-	-	-	-	-
			J924130	335.72	337.72	2.00	-	-	-	-	-
			J924129	337.72	339.72	2.00	-	-	-	-	-
			J924128	339.72	341.72	2.00	-	-	-	-	-
341.72	344.10	ANDS Sudbury Breccia :	J924127	341.72	343.10	1.38	-	-	-	-	-
		ANDESITE Fg, greyish green volcanic I think. Could possibly be a lamprophyre dyke but unsure. It is mafic either way. Has approximately $7-8 \%$ small, $1-2 \mathrm{~mm}$, white granules throughout it that appear to be a carbonate of some sort. The lower contact is at 20 dtca while theupper is 30 dtca . There are no visible sulfides.	J924126	343.10	344.10	1.00	-	-	-	-	-
344.10	363.10	BX Sudbury Breccia :	J924125	344.10	345.10	1.00	-	-	-	-	-
		BRECCIA	J924124	345.10	347.10	2.00	-	-	-	-	-
		what appears to be a slight potassic alteration zone at 361 meters. There are only minor disseminated sulfides	J924123	347.10	349.10	2.00	-	-	-	-	-
		in this unit. Heavy hematite infill alteration of the breccia matrix from 347 to 357 meters with some greenish bleaching of porphyritic clasts in this zone. Minor sulfides through the hematite altered zone as well with a few	J924122	349.10	351.10	2.00	-	-	-	-	-
		small alteration veinlets crosscutting with minor pyrite and chalcopyrite.	J924121	351.10	353.10	2.00	-	-	-	-	-
			J924120	353.10	355.10	2.00	-	-	-	-	-
			J924119	355.10	357.10	2.00	-	-	-	-	-
			J924118	357.10	359.10	2.00	-	-	-	-	-
			J924117	359.10	361.10	2.00	-	-	-	-	-
			J924116	361.10	363.10	2.00	-	-	-	-	-
363.10	364.75	ANDS Sudbury Breccia :	J924115	363.10	364.75	1.65	-	-	-	-	-
		ANDESITE Fg, greyish green volcanic I think. Could possibly be a lamprophyre dyke but unsure. It is mafic either way. Has approximately 5% small, $1-2 \mathrm{~mm}$, white granules throughout it that appear to be a carbonate of some sort. The lower contact is at 25 dtca while theupper is irregular and broken and cannot be determined. There are minor disseminated sulfides throughout which are probably just pyrite.									

LITHOLOGY REPORT

- Detailed -

Hole Number	MRC-001	Project: ROGERS_CREEK					Project Number:	677			
From (m)	To (m)	Lithology	Sample \#	From	To	Length	$A u$ (g/t)	$\begin{gathered} \text { Pt } \\ (g / t) \end{gathered}$	$\begin{aligned} & P d \\ & (g / t) \end{aligned}$	$\begin{aligned} & \mathrm{Ni} \\ & (\%) \end{aligned}$	$\begin{aligned} & C u \\ & (\%) \end{aligned}$
364.75	395.80	BX Sudbury Breccia :	J924114	364.75	366.40	1.65	-	-	-	-	-
		BRECCIA Greyish green breccia with quartz diorite, granodiorite, quartzofeldspathic and porphyritic clasts. The porphyritic clasts appear to be the largest again up to 10 cm in size with all the rest being between 0.5 to 8 cm in size. The contact to the lower andesite is altered and looks possibly cooked up a bit? There are very little sulfides throughout and what is there appears to be pyrite. The breccia has all the common alterations of the other breccias in the hole including bleaching and possibly epidote overprinting with minor zones of weak hematitic matrix overprinting. However, there are very minor late stage alteration veins that hosted the mineralization farther down the hole. There is however a very large alteration vein that has a potassic? Core and a sodic/anhydrite? Halo and pyrite rimming between 378.95 and 379.20 meters at $\sim 15-20$ dtca. Sulfides in that vein interval are $\sim 0.5 \%$ pyrite. At 373 meters there is a molybdenite veinlet approximately $0.25-0.50 \mathrm{~cm}$ in width and at 25-30 dtca with an anhydrite and k -spar alteration halo.	$J 924113$	366.40	368.40	2.00	-	-	-	-	-
			J924112	368.40	370.40	2.00	-	-	-	-	-
			J924111	370.40	372.40	2.00	-	-	-	-	-
			J924110	372.40	374.40	2.00	-	-	-	-	-
			J924109	374.40	376.40	2.00	-	-	-	-	-
			J924108	376.40	378.40	2.00	-	-	-	-	-
			J924107	378.40	379.40	1.00	-	-	-	-	-
			J924106	379.40	380.60	1.20	-	-	-	-	-
			J924105	380.60	381.80	1.20	-	-	-	-	-
			J924104	381.80	383.80	2.00	-	-	-	-	-
			J924103	383.80	385.80	2.00	-	-	-	-	-
			J924102	385.80	387.80	2.00	-	-	-	-	-
			J924101	387.80	389.80	2.00	-	-	-	-	-
			J924100	389.80	391.80	2.00	-	-	-	-	-
			J924099	391.80	393.80	2.00	-	-	-	-	-
			J924098	393.80	395.80	2.00	-	-	-	-	-
395.80	397.50	ANDS Sudbury Breccia :	J924097	395.80	397.50	1.70	-	-	-	-	-
		ANDESITE Fg, greyish green volcanic I think. Could possibly be a lamprophyre dyke but unsure. It is mafic either way. Has approximately 5% small, $1-2 \mathrm{~mm}$, white granules throughout it that appear to be a carbonate of some sort. The upper contact is at 35 dtca while the lower is irregular and broken and cannot be determined. There are minor disseminated sulfides throughout which are probably just pyrite.									
397.50	398.50	TUFF Sudbury Breccia :	J924096	397.50	398.50	1.00	-	-	-	-	-
		TUFF Some type of volcaniclastic deposit with quartz eyes and possibly pyroxene or amphibole grains as well. The matrix is light greyish green and very fine grained. There are no visible sulfides in it.									

LITHOLOGY REPORT

- Detailed -

Hole Number	MRC-001	Project: ROGERS_CREEK					Project Number:	677			
From (m)	To (m)	Lithology	Sample \#	From	To	Length	$A u$ (g / t)	$\begin{gathered} \text { Pt } \\ (g / t) \end{gathered}$	$\begin{aligned} & P d \\ & (g / t) \end{aligned}$	$\begin{aligned} & \mathrm{Ni} \\ & (\%) \end{aligned}$	$\begin{aligned} & C u \\ & (\%) \end{aligned}$
398.50	402.00	ANDS Sudbury Breccia :	J924095	398.50	400.00	1.50	-	-	-	-	-
		ANDESITE Fg, greyish green volcanic I think. Could possibly be a lamprophyre dyke but unsure. It is mafic either way. Has approximately 5% small, $1-2 \mathrm{~mm}$, white granules throughout it that appear to be a carbonate of some sort. The upper contact is at 50 dtca while the lower is at 20 dtca . There are minor disseminated sulfides throughout which are probably just pyrite.	J924094	400.00	402.00	2.00	-	-	-	-	-
402.00	441.82	BX Polymict breccia with granodiorite, quartz diorite, andesitic and quartzofeldspathic clasts ranging from 2 mm to 5 cm in size. Thjerer are large megaclasts of altered plagioclase intermediately crowded porphyry from 432 meters to 440 meters. Parts of the breccia look like they may almost be a conglomerate or metasedimentary deposit in appearance since the clasts are all $2-3 \mathrm{~mm}$ in size, are sub-rounded and it is clats supported but also appears to become finer grained as you travel up the hole - This may actually be a large crowded porphyry clast that is ~ 2.5 meters in size?? There are several areas of creamy whitish green bleaching as well as several crosscutting late stage alteration $c=$ veinlets up to 1 cm wide and between 35 and 50 dtca . There is bleaching from 426.8 to 427.5 meters as well as 425.30 to 425.70 meters and several other smaller zones throughout the unit. There is disseminated pyrite and chalcopyrite throughout the unit as well as several moly $+/$ - chalcopyrite veinlets associated with the late stage alteration veins of quartz and k -spar as well as what could possibly be sphalerite veinlets (Clinton?) associated with some moly. There is hematitic breccia matrix alteration throughout the higher concentrations of mineralization. The mineralization is probably 0.5% to 0.75% overall in this unit with a higher concentration between 410 and 420 meters where it may be up to 1.5% moly and 0.5% chalcopyrite $+/$ - sphalerite. The upper portion of the unit from 402 to 412 meters also appears to be slightly bleached but it is tinged green so it may be a pervasive epidote alteration caused by the intrusion of the Lamprophyre dyke above? The moly veinlets are at: 1 mm at 408.2 m and $60 \mathrm{dtca}, 3-4 \mathrm{~mm}$ at 414.41 m at 50 dtca , bodinaged 1 mm through a 1 cm alteration vein at 418.68 m and 50 dtca , and a 1 cm wide moly veinlet at 421.0 and 50 dtca. The upper contact to the mafic dyke is irregular and broken and I can't get an orientation from it.	J924093	402.00	404.00	2.00	-	-	-	-	-
			J924092	404.00	406.00	2.00	-	-	-	-	-
			J924091	406.00	408.00	2.00	-	-	-	-	-
			J924090	408.00	410.00	2.00	-	-	-	-	-
			J924089	410.00	412.00	2.00	-	-	-	-	-
			J924088	412.00	413.00	1.00	-	-	-	-	-
			J924087	413.00	414.00	1.00	-	-	-	-	-
			J924086	414.00	415.00	1.00	-	-	-	-	-
			J924085	415.00	417.00	2.00	-	-	-	-	-
			J924084	417.00	419.00	2.00	-	-	-	-	-
			J924083	419.00	420.78	1.78	-	-	-	-	-
			J924082	420.78	421.78	1.00	-	-	-	-	-
			J924081	421.78	423.78	2.00	-	-	-	-	-
			J924080	423.78	425.78	2.00	-	-	-	-	-
			J924079	425.78	427.82	2.04	-	-	-	-	-
			J924078	427.82	429.82	2.00	-	-	-	-	-
			J924077	429.82	431.82	2.00	-	-	-	-	-
			J924076	431.82	433.82	2.00	-	-	-	-	-
			J924075	433.82	435.82	2.00	-	-	-	-	-
			J924074	435.82	437.82	2.00	-	-	-	-	-
			J924073	437.82	439.82	2.00	-	-	-	-	-
			J924072	439.82	441.82	2.00	-	-	-	-	-

LITHOLOGY REPORT

- Detailed -

LITHOLOGY REPORT

- Detailed -

Hole Number	MRC-001	Project: ROGERS_CREEK					Project Number:	677			
From (m)	To (m)	Lithology	Sample \#	From	To	Length	Au (g/t)	$\begin{gathered} P t \\ (g / t) \end{gathered}$	$\begin{aligned} & P d \\ & (g / t) \end{aligned}$	$\begin{aligned} & \mathrm{Ni} \\ & (\%) \end{aligned}$	$\begin{aligned} & \mathrm{Cu} \\ & (\%) \end{aligned}$
489.90	545.00	BX Sudbury Breccia: 2B2	J924046	489.90	491.90	2.00	-	-	-	-	-
		BRECCIA Polymict, light beige green which is probably an altered version of the Breccia below this interval. There are	J924045	491.90	493.90	2.00	-	-	-	-	-
		varying degrees of hematite matrix infill from ~ 528 to 536 meters. Deepest visible moly disseminations occur	J924044	493.90	496.12	2.22	-	-	-	-	-
		at ~ 532 meters depth in the hole. Approximately 531 meters is the deepest occurrence of the late stage alteration veinlets that host the moly copy mineralization. The alteralation veinlets appear to be associated with	J924043	496.12	498.12	2.00	-	-	-	-	-
		the overall bleaching and hematite alteration of the core. At 524.80 m is the deepest occurrence of moly and	J924042	498.12	500.12	2.00	-	-	-	-	-
		chalcopyrite as fracture filling with quartz+K-spar+gypsum +carbonate veins and is $\sim 1-2 \mathrm{~mm}$ in width. The largest of the veinlets in this interval is $\sim 510.52 \mathrm{~m}$ and is ~ 0.25 to 0.5 cm in width. At $\sim 505.8 \mathrm{~m}$, there are 3,1-	J924041	500.12	502.12	2.00	-	-	-	-	-
		2 mm wide crosscutting moly+cpy veins at varying angles of 40,50 , and 80 dtca. There is disseminated and	J924040	502.12	504.12	2.00	-	-	-	-	-
		small blebby moly throughout this interval. Sulfide content is highly variable based on veinlet quantity and size but is probably up to 1% (80% moly and 20% chalcopyrite).	J924039	504.12	506.12	2.00	-	-	-	-	-
			J924038	506.12	508.12	2.00	-	-	-	-	-
			J924037	508.12	510.12	2.00	-	-	-	-	-
			J924036	510.12	510.62	0.50	-	-	-	-	-
			J924035	510.62	512.62	2.00	-	-	-	-	-
			J924034	512.62	514.62	2.00	-	-	-	-	-
			J924033	514.62	516.62	2.00	-	-	-	-	-
			J924032	516.62	518.62	2.00	-	-	-	-	-
			J924031	518.62	520.62	2.00	-	-	-	-	-
			J924030	520.62	522.62	2.00	-	-	-	-	-
			J924029	522.62	524.62	2.00	-	-	-	-	-
			J924028	524.62	525.12	0.50	-	-	-	-	-
			J924027	525.12	527.12	2.00	-	-	-	-	-
			J924026	527.12	529.12	2.00	-	-	-	-	-
			J924025	529.12	531.12	2.00	-	-	-	-	-
			J924024	531.12	533.12	2.00	-	-	-	-	-
			J924023	533.12	535.12	2.00	-	-	-	-	-
			J924022	535.12	537.12	2.00	-	-	-	-	-
			J924021	537.12	539.12	2.00	-	-	-	-	-
			J924020	539.12	541.12	2.00	-	-	-	-	-

LITHOLOGY REPORT

- Detailed -

Hole Number	MRC-001	Project: ROGERS_CREEK					Project Number:	677			
From (m)	To (m)	Lithology	Sample \#	From	To	Length	$A u$ (g / t)	$\begin{gathered} P t \\ (g / t) \end{gathered}$	$\begin{aligned} & P d \\ & (g / t) \end{aligned}$	$\begin{aligned} & \mathrm{Ni} \\ & (\%) \end{aligned}$	Cu (\%)
			J924019	541.12	543.12	2.00	-	-	-	-	-
			J924018	543.12	545.12	2.00	-	-	-	-	-
545.00	575.40	BX Sudbury Breccia :	J924017	545.12	547.40	2.28	-	-	-	-	-
		BRECCIA Greyish green polymict breccia. It has numerous clast types and sizes. It appears to be nearly at the clast supported stage with most of the matrix appearing to be made up of small quartzofeldspathic clasts. There are clasts of granodiorite, intermediately crowded plagioclase porphyry, small mafic clasts, feldspar clasts, and quartz clasts. Some clasts also have sulfides within them as disseminations and small veinlets of pyrite. Most clasts are semi-rounded to semi-angular. There is heavy hematite alteration but it appears to be localized to two large 30 cm clasts at $\sim 546.5 \mathrm{~m}$ and 570 m . Between 551 and 554 meters, there are several $10-20 \mathrm{~cm}$ sized intermediately crowded plagioclase porphyry clasts as well as at 545 m and 564 m . Beginning to see small veinlets that are fracture filling with quartz-carbonate-pyrite at approximately 558 meters and above. Overall, there is approximately 0.5% sulfides in this unit consisting of 90% pyrite and 10% chalcopyrite.	J924016	547.40	549.40	2.00	-	-	-	-	-
			J924015	549.40	551.40	2.00	-	-	-	-	-
			J924014	551.40	553.40	2.00	-	-	-	-	-
			J924013	553.40	555.40	2.00	-	-	-	-	-
			J924012	555.40	557.40	2.00	-	-	-	-	-
			J924011	557.40	559.40	2.00	-	-	-	-	-
			J924010	559.40	561.40	2.00	-	-	-	-	-
			J924009	561.40	563.40	2.00	-	-	-	-	-
			J924008	563.40	565.40	2.00	-	-	-	-	-
			J924047	565.40	567.40	2.00	-	-	-	-	-
			J924007	567.40	569.40	2.00	-	-	-	-	-
			J924006	569.40	571.40	2.00	-	-	-	-	-
			J924005	571.40	573.40	2.00	-	-	-	-	-
			J924004	573.40	575.40	2.00	-	-	-	-	-
575.40	582.32	MTV Sudbury Breccia :	J924003	575.40	577.40	2.00	-	-	-	-	-
		METAVOLCANIC Kind of unknown rocktype, possibly a Intermediate Volcanic. It is light grey with some areas of possible plagioclase porphyroblasts. Appears to be very altered, partially by clay and sericite+/-quartz? There is disseminated pyrite throughout, and fracture fillings. There is large coarse grained euhedral pyrite at ~ 580 meters, at least $3-4 \mathrm{~cm}$ in size and being terminated against a joint. Contact to upper breccia is irregular and at a low angle of $\sim 25-30 \mathrm{dtca}$ with pyrite $+/$-chalcopyrite rimming the contact. There is probably about 0.2% pyrite throughout with up to 2-5\% locally over a 10 cm interval.	J924002	577.40	579.40	2.00	-	-	-	-	-
			J924001	579.40	580.32	0.92	-	-	-	-	-
			J924000	580.32	582.32	2.00	-	-	-	-	-

LITHOLOGY REPORT

- Detailed -

Hole Number	MRC-001		Project:	ROGERS_CREEK					Project Number:	677			
From (m)	$\begin{aligned} & \text { To } \\ & \text { (m) } \end{aligned}$	Lithology			Sample \#	From	To	Length	$A u$ (g / t)	$\begin{gathered} P t \\ (g / t) \end{gathered}$	Pd (g / t)	$\begin{aligned} & \mathrm{Ni} \\ & (\%) \end{aligned}$	Cu (\%)

Deviation Tests						
Distance	Azimuth	Dip	Type	Good	Comments	
0.00	225.00	-45.00	C	\checkmark		

LITHOLOGY REPORT

- Detailed -

Hole Number	MRC-002	Project: ROGERS_CREEK					Project Number:	677			
From (m)	$\begin{aligned} & \text { To } \\ & \text { (m) } \end{aligned}$	Lithology	Sample \#	From	To	Length	$A u$ (g / t)	$\begin{gathered} P t \\ (g / t) \end{gathered}$	$\begin{aligned} & P d \\ & (g / t) \end{aligned}$	$\begin{aligned} & \mathrm{Ni} \\ & (\%) \end{aligned}$	$\begin{aligned} & \mathrm{Cu} \\ & (\%) \end{aligned}$
0.00	21.34	CAS Sudbury Breccia : CASING									
21.34	56.52	GRDR Sudbury Breccia : GRANODIORITE Cg , milky white with a very slight pinkish hue in some places, quartz, feldspar, biotite, and magnetite with minor sulfides throughout. It is very magnetic. Very competent rock with very little fracturing, veining, or jointing. There are a couple small $10-20 \mathrm{~cm}$ zones of finer grained material. Some appear to be fine grained versions of the host and some appear to be finer grained quartz diorite. This unit is quite consistent and is non-foliated. From 48 to 56 meters, there is an increase of mafics in the rock up to ~ 40 instead of the 20% through the upper portion of the unit. From $\sim 53.5 \mathrm{~m}$ to the lower contact, there is a high degree of alteration and metamorphism from the andesitic dyke cutting through. There are potassic alteration veins crosscutting in several directions and the core is highly fractured.									
56.52	60.72	ANDS Sudbury Breccia : ANDESITE Fine grained, dark grey, andesitic dyke. It is soft and has small sub-millimeter veinlets and nudules that are not carbonates. The upper and lower contacts are sharp and between 50 and 60 dtca . There is also a light chocolate brown band of alteration? At each contact. There are no visible sulfides throughout. Highly magnetic.									
60.72	84.00	IGN Sudbury Breccia : INTERMEDIATE GNEISS Medium grained, mily whitish pink to dark steel grey banding. This core is highly foliated and metamorphosed. It has a large amount of magnetite and is highly magnetic. There is minor pyrite+/-pyrrhotite? Throughout. There are numerous qtz-epidote-feldspar filled fractures crosscutting throughout. There is a lot higher amount of mafic banding from 73 to 84 meters where it then appears to grade into a highly foliated mafic to intermediate intrusive quartz diorite.									
84.00	202.50	QD Sudbury Breccia : QUARTZ DIORITE Medium grained, dark grey and milky pinkish white, highly foliated. May be just a highly foliated version of the granodiorite at the top of the hole but I am unsure. Most of the foliated magnetite+biotite+/- amphibole bands are oriented at ~ 60 dtca. There are several zones throughout that are more mafic and finer grained and have									

LITHOLOGY REPORT

- Detailed -

Hole Number	MRC-002	Project: ROGERS_CREEK					Project Number:	677			
From (m)	$\begin{aligned} & \text { To } \\ & \text { (m) } \end{aligned}$	Lithology	Sample \#	From	To	Length	$A u$ (g/t)	$\begin{gathered} P t \\ (g / t) \end{gathered}$	$\begin{aligned} & P d \\ & (g / t) \end{aligned}$	$\begin{gathered} \mathrm{Ni} \\ (\%) \end{gathered}$	$\begin{aligned} & \mathrm{Cu} \\ & (\%) \end{aligned}$
		quartzofeldspathic veinlets crosscutting along with large blebs of and veinlets of magnetite from 102 to 118 meters. This unit is very hard, (greater than 6.5) and may be silicified. The finer grained portions are also the same hardness. There are large, 1-4 meter wide zones of finer grained portions all throughout from ~ 143 meters onward down the hole. These zones appear to be associated with mineralization and late stage stockworking with associated quartz-epidote veins that contain pyrite, chalcopyrite, and molybdenite to varying degrees within the veinlets as well as disseminated throughout the host rock. There is an increase in the number and frequency of the quartz-feldspar-epidote veins with bleached halos from ~ 190 meters to 236 Meters, afterwards veining dies off. These veinlets appear to be stockworkings and can number up to 15 per 1 meter section. There are also dark black stockworks throughout as well that are highly magnetic and appear to be magnetite. There appears to be patchy sericite and silicification throughout mainly associated with higher densities of alteration stockwork veining. The percent of mineralization through this large zone is not overly high but is probably up to 0.25% overall and 0.75% locally within areas of high veining. At approximately 202.50 meters the Quartz Diorite loses its foliation and becomes normal, it also appears to be a slightly more metallic blue color and a bit finer grained. This may be a separate pulse of the same magma that caused the first pulse to become foliated when the new one was intruded beside it. (Possibly break out into a new unit???). The apparent contact between the 2 intrusions is approximately 30 dtca and is separated by a band of quartz $+/-$ sericite and a bleached halo.									
202.50	321.08	QD Sudbury Breccia : QUARTZ DIORITE Take data from above. From ~289 meters to ???? Meters, there is an increase in mineralization, both in frequency and percentage. It also appears to be at least partially, pyrrhotite with pyrite and some chalcopyrite. It also appears to be controlled by late stage alteration veinlets of quartz-carbonate and epidote that are oriented in various directions and angles thropughout and have a bleaching halo around them but the mineralization also occurs as disseminations in the host rock and as fracture controlled veinlets. There is an increase in alteration veinlets starting from 253 meters downwards.									
321.08	322.17	BASAND Sudbury Breccia : BASALTIC ANDESITE Very fine grained, dark greyish black, moderately hard but can still be scratched. Mafic dyke or sill, most li8kely a sill based on the high angle of 65 dtca for the contacts and the hole dipping at -60 degrees. It has small submillimeter whitish specs throughout it but they do not effervesce. There are a few fragments of the surrounding quartz diorite wallrock within the sill, a smaller $5-7 \mathrm{~cm}$ long clast at 321.40 meters and a larger raft from 321.66 to 321.86 meters.									
322.17	388.40	QD Sudbury Breccia : QUARTZ DIORITE									

C.

APPENDIX C: Drill Sample Assay Certificates

minerals

CERTIFICATE VA10104913

Project: 677

P.O. No.: 677100005

This report is for 48 Drill Core samples submitted to our lab in Vancouver, 8C, Canada on 3-AUG-2010.
The following have access to data associated with this certificate:

PEETER ANDERSEN	bRUCE JAGO	ACCOUNTS PAYABLE
CINTON SMYTH		

To: WALLBRIDGE MINING COMPANY LTD. ATTN: PETER ANDERSEN
129 FIELDING RD
LIVELY ON P3Y 1 L7

Signature:

Colin Ramshaw, Vancouver Laboratory Manager

ALS Canada Ltd
To: WALLBRIDGE MINING COMPANY LTD.
129 FIELDING RD
LIVELY ON P3Y $1 L 7$
Page: 2 - A
2103 Dollarton Hwy
Nancolver BC V7H OA7
Phone: 6049840221 Fax: 6049840218 www.alsglobal.com
Total \# Pages: 3 ($\mathrm{A}-\mathrm{D}$)
Plus Appendix Pages Finalized Date: 26-AUG-2010 Account: RLH

Project: 677

Sample Description	Method Analyte Units LOR	WEEF-21 Recva Wt. kg 0.02	$\begin{gathered} \mathrm{Au}-\mathrm{ICP21} \\ \mathrm{Au} \\ \mathrm{pprn} \\ \mathrm{O} .001 \end{gathered}$	$\begin{gathered} \text { ME-MSE1 } \\ \text { Ag } \\ \text { ppm } \\ 0.01 \end{gathered}$	$\begin{gathered} \text { ME-M561 } \\ \text { Al } \\ \% \\ 0.01 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { As } \\ \text { ppm } \\ 0.2 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \mathrm{Ba} \\ \mathrm{PPm} \\ 10 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { Be } \\ \text { Ppm } \\ 0.05 \end{gathered}$	$\begin{gathered} M E-M S 61 \\ \mathrm{Bi} \\ \mathrm{ppm} \\ 0.01 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ C a \\ \% \\ 0.01 \end{gathered}$	$\begin{gathered} \text { ME-MSG1 } \\ \text { Cd } \\ \mathrm{ppm} \\ 0.02 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { Ce } \\ \text { Ppm } \\ 0.01 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { Co } \\ \text { ppm } \\ 0.1 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { Cr } \\ \text { pPm } \\ 1 \end{gathered}$	ME-MS61 Cs pprr 0.05	$\begin{gathered} \text { ME-MS61 } \\ \text { Cu } \\ \text { ppm } \\ 0.2 \end{gathered}$
J924000		4.06	0.023	1.98	8.37	7.9	690	1.28	2.21	0.57	1.43	30.7	16.9	37	10.10	11.7
1924001		2.14	0.021	2.81	7.28	9.7	550	1.13	3.40	1.63	1.99	31.8	16.8	28	8.35	24.4
1924002		3.58	0.015	1.79	8.17	14.7	690	1.27	2.22	1.13	1.57	31.0	14.6	31	7.64	32.8
1924003		4.38	0.076	2.35	8.25	20.3	670	0.99	1.31	0.82	0.16	30.3	16.0	38	8.25	12.4
1924004		4.42	0.013	1.87	7.94	7.9	610	0.97	0.68	2.81	1.58	27.4	13.8	36	8.91	68.3
1924005		4.66	0,011	0.60	8.03	12.6	660	0.98	0.73	2.09	0.25	28.0	10.9	41	9.78	50.5
J924006		4.60	0.009	0.60	7.63	12.5	910	0,83	0.76	2.20	0.25	23.4	10.9	34	7.07	89.4
1924007		4.82	0.012	1.04	8. 25	22.7	550	0.91	1.16	2.27	0.53	25.0	14.2	43	8.61	66.4
J924008		4.52	0.012	0.80	7.93	17.2	590	0.83	0.85	2.62	0.23	25.1	11.6	38	7.82	75.2
1924005		4.32	0.007	0.51	8.25	14.1	560	0.80	0.49	2.67	0.27	23.0	14.0	42	7.45	36.5
J924010		4.70	0.008	0.65	8.08	14.6	520	0.87	0.55	2.67	0.29	23.4	13.2	47	8.47	24.6
1924011		4.46	$0.0+1$	0.68	8.75	12.4	550	1.04	0.54	2.27	0.30	27.5	14.0	39	8.71	47.6
1924012		4.52	0.011	0.58	8.23	17.0	4 BO	0.93	0.52	2.30	0.73	25.3	12.3	52	8.39	24.8
1924013		4.62	0.011	0.86	8.03	14.7	530	0.88	0.58	2.59	1.11	21.9	12.1	45	8.01	44.5
1924014		4.68	0.012	0.90	8.10	11.9	520	0,84	0.40	2.50	0.86	20.5	12.4	41	8.30	36.9
1924015		2.92	0.013	0.84	7.80	12.5	520	0.93	0.53	2.91	1.62	21.3	12.0	37	9.02	29.1
1924016		4.64	0.012	0.75	7.87	9.7	520	0,86	0.77	2.36	0.91	22.3	12.2	40	8.19	43.1
1924017		6.22	0.025	1.12	7.50	11.4	710	0.78	0.83	2.70	0.67	25.0	10.6	24	8.81	46.5
1924018		4.64	0.010	1.00	7.95	10.5	550	0,88	0.77	2.70	1.30	24.5	10.5	29	6.52	65.2
1924019		4.54	0.009	1.29	7.83	7.8	800	0.98	0.79	2.78	1.89	22.6	10.5	33	6.98	71.0
1924020		4.46	0.006	0.71	7.70	5.8	690	1.09	0.46	2.74	1.03	26.2	10.0	34	6.81	39.1
1924021		4.42	0.009	0.93	7.53	7.8	620	0.93	0.71	2.57	1.11	22.0	6.5	28	6.82	46.4
1924022		4.34	0.008	0.79	7.80	8.2	840	1.00	0.56	2.71	2.24	27.2	11.2	24	9.06	98.2
1924023		3.84	0.002	0.77	7.47	4.7	620	0.76	0.19	3.43	2.88	26.5	10.7	19	6.84	31.9
1924024		4.26	0.001	0.44	7.80	4.0	600	0.81	0.19	3.15	2.60	27.8	8.1	18	7.14	10.1
1924025		4.72	40.001	0.19	7.60	3.2	610	0.79	0.09	3,16	2.15	26.2	5.7	17	6.81	12.3
J924026		4.76	0.029	1.16	8.00	7.1	570	0.92	0.21	2.75	1.63	28.1	12.5	19	8.11	38.3
1924027		4.34	0.010	0.35	7.49	5.0	570	0.83	0.19	3.24	2.79	26.3	8.5	22	7.70	28.5
1924028		1.74	0.400	1.09	7.55	5.0	600	0.78	0.22	3.09	1.77	26.7	7.5	28	6.97	151.0
1924029		4.50	0.020	0.74	7.36	11.4	570	0.87	0.27	3.24	2.95	24.7	10.2	20	7.58	51.2
1924030		4.56	<0.001	0.29	7.22	3.3	570	0.76	0.19	3.15	2.70	23.1	9,0	20	6.82	37.7
1924031		4.44	<0.001	0.27	7.90	1.8	600	0.82	0.16	3.13	3.39	28.6	9.6	18	7.62	33.0
1924032		4.52	<0.001	0.20	7.69	1.8	520	0.72	0.05	3.23	3.52	30.1	9.2	18	7.03	5.0
1924033		4.30	0.007	1.15	7.37	2.1	650	0.77	0.08	3.24	3.02	26.8	8.8	16	6.98	22.2
1924034		3.54	0.006	1.68	7.81	2.3	600	0.77	0.10	2.98	4.31	27.5	8.5	15	8.06	93.9
J924035		4.28	<0.001	1.73	7.37	3.3	710	0.74	0.10	3.15	3.72	26.4	8.4	15	8.02	35.5
1924036		1.08	0.003	5.60	7.14	3.0	460	0.75	0.08	3.09	2.43	28.1	7.5	15	8.26	367
1924037		4.54	<0.001	2.70	6.75	3.1	440	0.70	0.66	3.20	4.23	24.5	8.2	15	6.57	49.7
1924038		4.44	0.013	11.65	7.58	9.9	470	0.71	0.74	2.73	3.47	31.7	7.6	15	7.70	203
J924038		3.96	0.008	3.28	7.11	1.4	580	0.66	0.36	3.10	4.57	26.0	8.9	14	7.54	72.8

Project: 677
minerals

Sample Description	Method Analyte Units LOR	$\begin{gathered} \text { ME-MS61 } \\ \text { Fe } \\ \% \\ 0.01 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { Ga } \\ \text { Ppm } \\ 0.05 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { Ge } \\ \text { ppm } \\ 0.05 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { Hf } \\ \text { PPm } \\ 0.1 \end{gathered}$	$\begin{gathered} \text { ME-MSE1 } \\ \text { in } \\ \text { ppm } \\ 0.005 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ K \\ \% \\ 0.01 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { La } \\ \text { ppmi } \\ 0.5 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \mathrm{Li} \\ \mathrm{ppm} \\ 0.2 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ M g \\ \% \\ 0.01 \end{gathered}$	$\begin{gathered} \text { ME-MSE1 } \\ \text { Mn } \\ \text { Ppm } \\ 5 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { M } \odot \\ \text { Ppm } \\ 0.05 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \mathrm{Na} \\ \% \\ 0.01 \end{gathered}$	$\begin{gathered} \text { ME-MSE1 } \\ \text { Nb } \\ \text { ppm } \\ 0.1 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \mathrm{Ni} \\ \mathrm{\rho Pm} \\ \mathrm{O} .2 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { P } \\ \text { Ppm } \\ 10 \end{gathered}$
1924000		3.91	19.40	0.15	0.3	0.083	3.01	14.5	38.9	1.58	774	0.58	0.11	1.6	23.8	530
1924001		3.86	17.50	0.18	0.4	0.114	3.07	15.4	19.4	0.89	851	10.40	0.10	0.8	25.7	510
1924002		3.52	19.10	0.14	0.6	0.082	3.29	15.1	28.8	1.40	1760	2.90	0.17	1.5	21.6	580
1924003		3.93	19.55	0.16	0.4	0.115	2.50	14.1	48.2	2.33	1730	2.80	0.75	3.1	24.6	630
1924004		3.30	20.4	0.21	0.9	0.087	2.38	12.3	45.9	1.57	1300	2.76	1.39	3.5	21.1	590
1924005		2.81	18.10	0.15	1.1	0.080	2.41	13.4	32.2	1.21	984	3.81	1.39	3.3	21.9	560
1924006		3.03	17.90	0.15	1.0	0.085	2.11	10.8	30.5	1.32	1110	3.02	1.64	3.0	19.2	580
1924007		3.58	18.65	0,16	0.7	0.121	2.08	12.0	41.6	1.78	1180	3.93	1.68	3.2	25.3	630
1924008		3.25	18.05	0.15	1.0	0.088	2.05	11.8	35.7	1.46	1140	3.96	1.64	3.1	22.3	600
1924009		3.45	18.70	0.17	1.0	0.074	1.98	10.6	43.4	1.49	1220	1.78	2.01	3.2	24.6	630
1924010		3.51	18.25	0,16	1.0	0.066	2.02	10.7	45.6	1,49	1250	2.25	1.78	2.9	27.6	630
1924011		3.63	19.55	0.18	0.9	0.073	2.49	13.6	51.7	1.59	1220	3.17	1.20	3.0	26.1	600
1924012		3.42	18.10	0.17	0.9	0.069	2.40	12.2	41.8	1.48	1620	2.33	1.24	2.9	30.5	600
1924013		3.25	19.30	0.15	1.0	0.074	2.40	9.9	36.1	1.46	1430	2.41	1.53	2.9	26.1	620
1924014		3.24	17.95	0.14	1.2	0.070	2.39	9.4	32.9	1.40	1460	2.80	1.70	3.1	22.1	600
1924015		3.21	18.05	0.16	1.0	0.065	2,39	9.4	33.1	1.40	1480	3.12	1.48	3.1	23.4	600
1924016		3.27	17.90	0.17	0.9	0.072	2.59	10.3	29.2	1.39	1760	4.05	1.23	3.2	25.6	590
1924017		2.52	17.50	0.16	1.1	0.091	3.25	12.2	10.9	0,92	2840	5.98	0.49	3.2	14.9	480
1924018		2.98	18.35	0.17	1.1	0.063	2.70	11.6	15.7	1.17	2180	4.97	1.41	3.3	19.3	550
1924019		2.81	18.85	0.16	0.9	0,065	2.80	10.4	18.9	1.14	1600	3.93	1.31	3.2	21.7	550
1924020		2.58	17.20	0.17	1.1	0.064	2.96	12.3	16.9	0.98	1320	3.10	0.96	3.4	19.7	570
1924021		2.45	17.50	0.15	1,2	0.080	3.01	10.1	11.3	0.92	1420	4.51	1.08	3.3	15.6	520
1924022		2.74	18.95	0.16	1.6	0.047	3.17	12.6	17.2	0.96	2520	2.68	0.89	3.3	17.1	650
1924023		2.92	18.25	0.16	1.9	0.036	3.56	12.5	11.8	1.02	4790	1.25	0.33	3.0	16.2	670
1924024		2.87	18.75	0.17	1.9	0.044	3.74	13.1	11.2	0.95	5160	0.98	0.20	3.2	14.5	700
1924025		2.91	17.80	0.17	1.8	0.029	3.66	12.2	11.8	0.92	3740	0.41	0.33	3.1	14.4	710
1924026		3.04	19.20	0.18	1.8	0.050	3.78	13.0	10.8	0.85	4430	3.00	0.46	3.4	15.7	720
1924027		2.84	19.35	0.17	1.7	0.042	3.59	12.2	9.7	0.94	2850	4.88	0.53	3.4	15.8	680
1924028		2.75	18.90	0.17	1.8	0.049	3.60	12.3	8.6	0.92	4810	2.22	0.44	3.2	15.0	670
1924029		2.81	17.75	0.17	1.9	0.034	3.35	11.1	10.0	0.93	2250	1.59	0.86	3.4	15.1	680
1924030		2.73	18.50	0.16	2.3	0.033	3.24	10.2	9.3	0.94	1790	1.83	0.97	3.5	14.5	690
1924031		2.87	17.80	0.17	2.2	0.033	3.69	14.3	10.5	1.10	1700	0.71	0.28	3.2	14.1	710
1924032		2.74	17.75	0.19	2.2	0.027	3.72	14.3	6.3	1.08	3050	0.50	0.10	3.1	14.5	680
1924033		2.69	18.65	0.17	2.1	0.031	3.75	12.3	7.3	1.00	5270	0.21	0.10	3.1	13.7	720
1924034		2.69	19.75	0.18	2.1	0.057	3.88	12.6	8.7	0.93	6060	0.34	0.10	3.2	12.9	730
1924035		2.63	18.35	0.17	2.2	0.046	3.78	12.4	8,5	0.97	5860	0.97	0.10	3.2	12.9	660
1924036		2.75	18.05	0.15	2.0	0.114	3.87	13.4	9.5	0.90	10250	1.57	0.09	3.0	13.1	640
1924037		2.72	17.05	0.17	1.9	0,046	3.74	11.5	8.9	0.94	6850	2.45	0.07	3.0	14.5	640
1924038		2.71	17.30	0.18	1.9	0.062	3.75	18.5	9.7	0.98	8060	21.7	0.06	2.9	13.1	630
1924039		2.72	17.50	0.17	1.9	0.042	3.72	12.5	11.7	0.97	6140	5.82	0.08	3.0	13.6	660

Total \# Pages: 3 (A - D)
Plus Appendix Pages Finalized Date: 26-AUG-2010

Project: 677

CERTIFICATE OF ANALYSIS VA10104913

Sample Description	Method Analyte Units LOR	$\begin{gathered} \text { ME-MSB1 } \\ \text { Pb } \\ \mathrm{ppm} \\ 0.5 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { Rb } \\ \text { Ppm } \\ 0.1 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { Rc } \\ \text { ppm } \\ 0.002 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { S } \\ \% \\ 0.01 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { St } \\ \text { pptil } \\ 0.05 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { Sc } \\ \text { Ppm } \\ 0.1 \end{gathered}$	$\begin{gathered} \text { ME-MS81 } \\ \text { Se } \\ \text { PPm } \\ 1 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { Sn } \\ \text { Ppm } \\ 0.2 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { Sr } \\ \text { Pprn } \\ 0.2 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { Ta } \\ \text { ppm } \\ 0.05 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \mathrm{Te} \\ \text { Ppm } \\ 0.05 \end{gathered}$	$\begin{gathered} \text { ME-MSE1 } \\ \text { Th } \\ \text { ppm } \\ 0.2 \end{gathered}$	$\begin{gathered} \text { ME-MSG1 } \\ \text { TI } \\ \% \\ 0.005 \end{gathered}$	$\begin{gathered} \text { ME-MS6 } \dagger \\ \text { TI } \\ \text { Ppm } \\ 0.02 \end{gathered}$	$\begin{gathered} \text { ME-MSE1 } \\ \text { U } \\ \text { Pprn } \\ 0.1 \end{gathered}$
1924000		519	98.8	<0.002	2.99	4.65	14.7	6	0.8	66.5	0.15	0.92	4.8	0.280	2.60	1.3
1924001		1290	111.5	D. 005	3.88	4.27	12.7	5	1.1	141.5	0.09	0.93	4.4	0.088	2.64	1.1
1924002		470	125.0	0.005	2.08	6.78	13.3	4	0.8	38.6	0.15	0.52	6.6	0.145	2.65	2.2
1924003		389	77.8	0.002	1.31	3.60	15.1	3	1.0	46.8	0.27	0.98	4.1	0.286	2.24	1.4
1924004		111.5	78.3	0.004	0.93	8.96	15.3	3	1.2	181.5	0.29	0.24	4.1	0.276	1.66	1.6
1924005		61.6	79,1	0.004	1.25	3.70	11.6	2	1.0	180.0	0.25	0.24	4.8	0.238	1.55	2.2
1924006		53.0	61.9	0.004	1.22	7.26	11.5	2	1.2	228	0.22	0.21	4.7	0.245	1.44	1.9
1924007		159.5	62.0	0.008	2.01	11.25	14.7	2	1.1	234	0.23	0.36	3.6	0.312	1.86	1.3
1924008		74.7	68.2	0.004	1.37	8. 14	12.9	2	1.1	211	0.23	0.27	4.8	0.263	1.55	2.1
1924009		37.7	65,6	0.002	1.01	4.36	13.8	1	0.0	212	0.23	0.16	3.7	0.295	1.28	1.7
1924010		62.2	64.3	0.003	1.15	4.21	13.5	2	1.0	218	0.23	0.19	3.7	0.275	1.32	1.7
1924011		79.1	93.5	0.004	1.40	4.55	14.3	2	1.0	224	0.24	0.20	4.7	0.275	1.60	2.0
1924012		117.5	88.8	0.006	1.17	4.30	14.1	2	0.9	135.0	0.21	0.18	4.0	0.280	1.58	1.7
1924013		101.5	71.2	0.003	1.24	6.60	13.2	2	1.0	223	0.22	0.20	3.6	0.255	1.53	1.7
1924014		84.1	77.0	0.003	0.81	7.31	12.5	1	1.0	172.0	0.25	0.15	4.4	0.260	1.58	2.1
J924015		89.0	70,8	0.003	1.20	5.67	12.5	2	1.1	300	0.22	0.16	3.6	0.260	1.61	1.7
1924016		139.5	86.7	0.006	1.07	4.70	13.4	2	1.2	132.5	0.24	0.18	4.4	0.274	1.63	2.0
1924017		214	118.5	0.005	0.89	7.25	8.9	1	1.2	76.1	0.27	0.13	6,2	0.195	1.94	3.4
1924018		258	96.3	0.004	0,81	6.64	10.5	1	1.2	126.0	0.27	0.11	5.9	0.222	1.56	2.8
1924019		85.2	94,1	0.004	1.01	7.12	11.1	1	1.2	168.0	0.26	0.10	5.6	0.226	1.58	2.8
1924020		76.7	98.1	0.003	1.11	3.79	10.6	1	1.1	159.5	0.27	0.07	5.7	0.228	1.63	2.6
1924021		94.3	102.0	0.005	0,81	4,59	9.4	1	1.1	86.3	0.28	0.09	5.6	0.209	1.70	3.0
1924022		258	117.0	0.003	0.42	4.96	10.0	1	1.0	90.1	0.28	0.05	6.8	0.228	1.76	3.3
1924023		640	127.0	<0.002	0.21	5.16	9.8	1	0.8	49.6	0.25	<0.05	8.6	0.232	1.86	3.3
1924024		544	138.0	<0,002	0.13	3.89	9.8	1	0.8	44.6	0.27	<0.05	6.9	0.251	2.08	3.4
1924025		110.0	128.5	<0.002	0.08	3.15	9.6	1	0.7	51.2	0.27	<0.05	6.5	0.252	2.01	3.1
1924026		378	155.5	<0.002	0.68	5.00	10.4	1	0.8	59.3	0.28	0.13	7.1	0.258	2.09	3.8
1924027		152.0	119.0	<0.002	0.28	3.37	10.2	1	0.0	75.0	0.29	<0.05	6.2	0.259	2.02	3.2
1924028		2120	128.5	<0.002	0.28	8.01	10.3	1	0.8	62.8	0.28	<0.05	6.4	0.256	2.07	3.1
1924029		255	109.5	<0.002	0.31	5.18	9.8	1	0.8	82.7	0.28	0.14	6.4	0.280	2.00	3.2
1924030		216	100.5	<0.002	0.11	3.18	9.5	1	0.8	95.8	0.29	<0.05	6.4	0.260	1.76	3.3
J924031		195.0	133.5	<0.002	0.04	3.06	10.2	1	0, 8	53.9	0.28	<0.05	7.1	0.267	1.84	3.5
1924032		260	150.0	<0.002	0.03	3.50	9.3	1	0.7	48.5	0.27	<0.05	7.4	0.245	1.83	3.5
1924033		932	128.5	<0.002	0.03	10.50	9.6	1	0.7	56.2	0.28	<0.05	8.3	0.249	1.91	3.3
1924034		778	137.0	<0,002	0.05	7.72	9.7	1	0.8	35.0	0.27	<0.05	8.6	0.254	2.12	3.4
J924035		577	137.0	$<0,002$	0.04	17.60	8.6	1	0.8	80.7	0.29	$<0,05$	6.6	0.249	1.99	3.5
J 924036		9360	131.5	<0.002	0.28	19.10	8.4	1	0.8	64.2	0.26	<0.05	6.4	0.239	1.92	3.0
J 924037		754	111.0	<0,002	0.10	19.75	8.8	1	0.8	40.2	0.26	<0.05	8.1	0.235	1.91	3.1
1924038		1445	157.5	0.002	0.10	68.2	9.1	1	0.8	45.8	0.26	0.06	7.5	0.237	1.92	3.2
1924039		1415	121.0	<0,002	0.17	5.71	8.7	1	0.7	48.3	0.26	<0.05	6.1	0.246	1.89	3.0

***** See Appendix Page for comments regarding this certificate *****

Project: 677
minerals

Sample Description	Method Analyte Units LOR	$\begin{gathered} \text { ME-MSG1 } \\ \text { V } \\ \text { Ppn } \\ 1 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { W } \\ \text { ppm } \\ 0.1 \end{gathered}$	$\begin{gathered} \text { ME-M561 } \\ Y \\ \text { ppm } \\ 0.1 \end{gathered}$	$\begin{gathered} M E-M 5 E 1 \\ \mathrm{Zn} \\ \mathrm{ppm} \\ 2 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { Zr } \\ \text { ppm } \\ 0.5 \end{gathered}$
J924000		106	1.0	6.3	210	11.4
1924001		92	1.3	5.8	168	10.7
1924002		97	1.6	9.9	185	19.5
J924003		110	2.5	8.9	250	13,8
J824004		102	1.8	13.7	304	29.1
J924005		93	1.4	11,4	195	32.6
1924006		93	1.5	10.4	185	29.9
1924007		114	1.5	10.8	279	20.2
J924008		98	1.3	11.9	214	27.4
1924009		111	1.2	11.9	255	29.4
1924010		107	1.1	11.7	267	28.0
J924017		113	1.6	12.0	265	23.5
1924012		108	1.7	11.2	288	25.9
1924013		105	1.2	11.4	285	29.0
1924014		101	1.2	11.4	240	32.3
1924015		98	1.2	11.9	322	27.8
1924016		99	2.0	11.0	248	27.1
1924017		71	2.8	10.3	93	31.9
1924018		B3	2.0	11.0	213	31.3
1924019		88	2.3	10.4	275	26.6
1924020		83	2.2	9.3	196	33.0
1924021		74	2.0	8.7	158	33.7
1924022		81	2.2	10.4	274	48.0
1924023		77	2.0	10.4	314	61.1
1924024		79	2.2	10.5	298	59.6
1924025		73	2.1	10.2	263	54.9
1924026		81	5.9	10.8	194	55.4
1924027		83	1.9	10.0	306	51.2
1924028		80	2.4	10.5	195	51.3
1924029		78	1.8	10.1	316	59.9
1924030		77	1.6	9.6	292	72.6
1924031		81	1.8	10.3	374	68.3
1924032		73	1.9	9.3	361	69.7
1924033		76	2.3	9.7	301	66.6
1924034		78	2.5	9.7	380	67.3
1924035		75	3.5	9.8	338	66.3
1924036		73	4.0	8.4	197	69.8
1924037		71	2.9	9.1	383	67,5
1924038		75	3.9	9.7	247	85.3
1924039		74	3.3	8.3	385	69.1

Project: 677

Project: 677

Sample Description	Method Analyte Units LOR	$\begin{gathered} \text { ME-MS61 } \\ \text { Pb } \\ \text { PPm } \\ 0.5 \end{gathered}$	$\begin{gathered} \text { ME-MSG1 } \\ \text { Rb } \\ \text { ppm } \\ 0.1 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { Re } \\ \text { ppm } \\ 0.002 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ s \\ \& \\ 0.01 \end{gathered}$	$\begin{gathered} \text { ME-MSG1 } \\ \text { Sb } \\ \text { ppm } \\ 0.06 \end{gathered}$	$\begin{gathered} \text { ME-MSE1 } \\ \text { Sc } \\ \text { ppm } \\ 0.1 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { Se } \\ \text { Pptn } \\ 1 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { Sn } \\ \text { Ppm } \\ 0.2 \end{gathered}$	$\begin{gathered} \text { ME-MS67 } \\ \text { Sr } \\ \text { ppm } \\ 0,2 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \mathrm{Ta} \\ \text { ppm } \\ 0,05 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { Te } \\ \text { ppm } \\ 0.05 \end{gathered}$	$\begin{gathered} \text { ME-MS6? } \\ \text { Th } \\ \text { Ppm } \\ 0.2 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \mathrm{T} 1 \\ \% \\ 0.005 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \mathrm{T} \mid \\ \text { ppm } \\ 0.02 \end{gathered}$	$\begin{gathered} \text { ME-MS67 } \\ u \\ \text { ppm } \\ 0.1 \end{gathered}$
J924040		555	124,0	<0.002	0.08	3.04	8.9	1	0,8	44.5	0.26	<0.05	6.3	0.254	1.95	2.9
1924041		947	135.0	<0.002	0.07	4.05	9.2	1	0.8	35.7	0.25	<0.05	6.7	0.241	1.97	2.8
J924042		340	148.5	<0,002	0.06	2.75	9.7	1	0.8	31.6	0.26	<0.05	7.2	0.247	2.04	3.1
J924043		2430	169.0	<0.002	0.10	11.45	9.5	2	0.8	61.9	0.26	0.05	8.1	0.242	2.01	3.3
1924044		413	123.5	<0.002	0.16	3.63	8.6	1	0.6	33.0	0.27	<0.05	6.5	0.236	2.06	3.0
J924045		1015	152.5	<0.002	0.20	4.27	9.8	1	0.7	164.5	0.26	<0.05	7.2	0.242	2.00	3.0
J 924046		377	133.5	<0,002	0.07	3.65	9.1	1	0.8	33.2	0.27	<0.05	6.6	0.234	1,95	2.9
J924047		136.5	51.9	0,003	1.54	7.98	12.8	2	1.0	244	0.21	0.37	3.6	0.276	1.59	1.4

2103 Dollarton Hwy
North Vancouver BC V7H OA7
Phone: 6049840221 Fax: 6049840218 www.aisglobal.com

TO WALLBRIDGE MINING COMPANY LTD.

129 FIELDING RD

IVELY ON P3Y 1L

Page: 3 - D
Total \# Pages: 3 (A - D) Plus Appendix Pages Finalized Date: 26-AUG-2010 Account: RLH

Project: 677
CERTIFICATE OF ANALYSIS VA10104913

Sample Description	Method Analyte Units LOR	$\begin{gathered} \text { ME-MS61 } \\ V \\ \text { ppm } \\ \mathrm{T} \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { W } \\ \text { ppm } \\ 0.1 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ Y \\ \text { ppm } \\ 0.1 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { Zn } \\ \text { PPm } \\ 2 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { Zr } \\ \text { Ppm } \\ 0.5 \end{gathered}$
1924040		77	3.7	9.6	319	69.8
1924041		76	3.2	9.4	254	67.1
1924042		78	2.8	10.3	385	73.0
1924043		77	3.8	10.4	187	65.7
J924044		74	2.7	8.9	578	59.1
1924045		75	3.1	10.2	212	55.3
1924046		73	2.8	9.1	252	58.7
1924047		102	1.4	8,9	222	19.8

2103 Dollarton Hwy
North Vancouver BC V7H OAT
Phone: 6049840221 Fax: 6049840218 www.alsglobal.com
O. WALLBRIDGE MINING COMPANY LTD.

Page: Appendix 1 Total \# Appendix Pages: 1 Finalized Date: 26-AUG-2010 Account: RLH

Project: 677
CERTIFICATE OF ANALYSIS VA10104913

Method	CERTIFICATE COMMENTS
ME-MS61	REE's may not be totally soluble in this method.

CERTIFICATE VA10105033

Project: 677

P.O. No.: 677100006

This report is for 137 Drill Core samples submitted to our lab in Vancouver, BC, Canada on 3-AUG-2010.
The following have access to data associated with this certificate:

PETER ANDERSEN CLINTON SMYTH	BRUCE JAGO	ACCOUNTS PAYABLE

SAMPLE PREPARATION			
ALS CODE	DESCRIPTION		
WEI-21	Received Sample Weight		
LOG-22	Sample login - Rcd w/o BarCode		
CRU-31	Fine crusting $-70 \%<2 \mathrm{~mm}$		
SPL-21	Split sample - riffle splitter		
PUL-32	Pulverize 1000 g to $85 \%<75$ um		
BAG-01	日ulk Master for Storage		
CRU-QC	Crushing QC Test		
PUL-QC	Pulverizing QC Test		
	ANALYTICAL PROCEDURES		
ALS CODE	DESCRIPTION		
Au-ICP21	AL 30g FA ICP-AES Finish		
ME-OG62	Ore Grade Elements - Four Acid		
ME-MS61	48 element Four acid ICP-MS		
Ag-OG62	Ore Grade Ag - Four Acid		
Pb-OG62	Ore Grade Pb - Four Acid		

To: WALLBRIDGE MINING COMPANY LTD.
ATTN: PETER ANDERSEN
129 FIELDING RD
LIVELY ON P3Y 1.7

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

Signature:
Colin Ramshaw, Vancouver Laboratory Manager

Total \# Pages: 5 ($\mathrm{A}-\mathrm{D}$)

Project: 677
minerals
CERTIFICATE OF ANALYSIS VA10105033

Sample Description	Methad Analyte Units LOR	WFF-21 Recud Wt. kg 0.02	$\begin{gathered} \mathrm{Au}-\mid \mathrm{CP} 21 \\ \mathrm{Au} \\ \mathrm{ppm} \\ \mathrm{opm} \\ 0.001 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { Ag } \\ \text { ppm } \\ 0.01 \end{gathered}$	$\begin{gathered} \text { ME-MSG1 } \\ \text { A! } \\ \% \\ 0.01 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { AS } \\ \text { Ppin } \\ 0.2 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { Ba } \\ \text { ppm } \\ 10 \end{gathered}$	$\begin{gathered} \text { ME-MSS1 } \\ \text { Be } \\ \text { PPm } \\ 0.05 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { B1 } \\ \text { ppm } \\ 0.01 \end{gathered}$	$\begin{gathered} \text { ME-MSS1 } \\ \text { C } \\ \text { \% } \\ 0.01 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { Cd } \\ \text { ppm } \\ 0.02 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { Ce } \\ \text { ppm } \\ 0.01 \end{gathered}$	ME-MS61 Co ppm 0.1	ME-MS61 Cr pprn 1	ME-MS61 Cs ppm 0.05	$\begin{gathered} \text { ME-MS61 } \\ \mathrm{Cu} \\ \text { Ppm } \\ 0.2 \end{gathered}$
J924048		6.00	0.002	0.10	7.69	1.4	480	1.14	0.04	3.51	2.16	30.6	10.2	17	7.76	6.3
1924049		4.06	0.007	0.56	7.01	3.7	520	1.00	0.60	2.85	1.78	23.8	9.3	26	7.32	54.6
1924050		4.70	0.051	2.47	7.77	7.9	570	0,97	0.46	2.74	2.72	29.2	12.9	34	8.38	62.2
J82405 \dagger		4.46	0.022	1.12	7.13	9.9	540	0.91	0.40	2.83	2.41	23.5	11.8	34	7.79	28.5
J924052		4.32	0.011	0.80	7.26	8.3	560	0.89	0.63	2.57	1.53	25.7	10.7	37	7.90	46.7
J924053		4.48	0.012	0.99	7.20	10.2	740	1.09	0.43	2.62	2.17	25.0	13.0	45	9.65	39.5
1924054		5.14	0.005	0.74	7.28	8.6	530	1.00	0.47	2.28	1.43	23.0	11.0	39	6.99	35,0
J924055		3.74	0.006	0.60	7.19	10.8	490	0.94	0.50	2.63	1.18	18.95	10.9	44	6.72	27.2
J924056		4.84	0.004	0.52	7.50	8.2	600	0.91	0.39	2.75	0.86	23.1	11.4	41	6.90	18.9
1924057		4.30	0.004	0.57	7.48	6.4	420	0.95	0.43	2.81	0.67	21.8	13.3	39	7.06	43.3
1924058		4.06	0.012	0.81	7.03	9.6	800	0.97	0.42	2.53	1.26	20.6	12.2	36	7.05	35.9
1924059		4.32	0.009	0.78	7.72	8.3	530	0.83	0.67	2.78	1.19	20.1	14.3	44	7.31	20.5
1924060		4.38	0.011	0.61	7.33	10.3	580	0.65	0.37	3.00	0.59	18.00	13.5	41	7.87	46.0
1924061		4.52	0.011	0.65	7.72	11.6	740	0.64	0.37	3.00	0.91	19.00	13.3	45	8,36	40.4
1924062		4.60	0.015	0.83	7.85	9.4	490	0.94	0.57	2.35	0.66	23.0	13.1	48	11.05	36.2
J924063		4.34	0.012	0.84	7.69	9.9	560	1.04	0.55	2.04	1.41	23.2	13.0	43	10.80	64.3
1924064		4.56	0.010	0.83	8.04	11.4	530	1.02	0.49	2.08	1.49	25.8	13.2	48	11.90	41.1
1924065		4.32	0.007	0.76	7.41	10.6	560	0.87	0.51	2.22	1.68	21.7	10.0	35	9.12	54.4
J 924066		4.16	0.003	0.59	7.11	$\theta .6$	560	0.74	0.48	2.70	0.86	23.6	9.7	30	8.53	97.9
1924067		3.68	0.010	4.13	6.98	7.1	170	1.09	0.58	4.00	1.16	23.9	15.5	49	12.05	51.1
1924068		4.50	0.013	1.59	7.74	10.B	330	0.63	0.45	3.36	0.76	22.7	20.2	103	9,84	29.3
1924069		3.14	0.003	1.22	7.04	B. 2	170	0.56	0.74	4.14	0.03	19.15	17.7	50	8.29	13.6
1924070		4.52	0.003	1.18	7.88	8.5	190	0.67	0.78	4.19	0.06	27.5	16.4	75	12.95	14.8
1924071		3.16	0.005	0,94	8.83	11.5	200	0.63	0.81	4.02	0.02	17.55	17.7	48	11.90	22.3
1924072		3.42	0.003	0.58	8.01	7.4	570	0.81	0.50	1.94	0.33	26.9	14.2	54	9.92	25.6
J924073		3.58	0.002	0.49	8.30	7.8	290	0.84	0.27	2.81	0.66	21.9	17.1	88	9.79	20.7
1924074		3.42	0.001	0.61	7.80	6.1	400	0.74	0.15	2.59	0.57	20.3	15.8	74	8.42	32.5
1924075		3.30	0.004	1.34	7.68	7.6	580	0,89	0.17	2.43	0.54	25.0	13.9	54	11.35	22.9
1924076		4.06	0.009	1.64	7.75	12.4	600	0.88	0.59	2.50	1.28	23.2	14.8	57	10,15	28.8
J 924077		4.24	0.003	0.68	7.72	17.7	630	0.89	0.51	1.04	0.27	26.5	15.0	44	10.40	17.3
1924078		3.92	0.006	0.61	8.02	12.5	580	0.87	0.18	1.21	0.40	30.6	14.8	39	12.80	9.6
J 924079		3.92	0.018	1.07	7.73	14.5	490	0.89	0.67	1.75	0.40	23.9	13.6	53	11.35	21.8
J924080		4.36	0.036	1.50	7.88	8.9	380	0.61	0.35	2.81	1.31	25.2	11.0	44	8.80	23.4
1924081		4.84	0.013	3.23	7.38	11.2	400	0.74	0.39	3.28	0.79	24.9	11.5	38	7.97	43.5
1924082		2.04	0.079	52.6	7.43	36.6	410	0.77	4.58	2.42	4.71	26.6	11.6	35	8.07	501
J924083		3.36	0.018	1.92	7.94	10.5	460	0.76	0,41	2.92	0.50	26.0	10.9	3 B	8.31	18.4
1924084		4.42	0.015	2.79	7.95	7.3	400	0.94	0.32	2.81	0.75	27.1	11.6	50	8.29	29.7
1924085		4.44	0.016	>100	8.20	33.5	540	1.04	0.32	2.81	7.70	33.1	11.9	48	9.53	610
J924086		1.82	0.007	22.4	7.60	16.3	570	0.94	0.28	2.09	3.15	31.2	7.9	50	8.22	261
1924087		1.86	<0.001	0.91	7.60	3.2	390	0.86	0.23	2.99	4.44	26.6	12.3	51	7.42	7.8

Total \# Pages: 5 (A - D)
Plus Appendix Pages Finalized Date: 31-AUG-2010

Account: RLH
Project: 677
minerals

North Vancouver BC V7H DA7
Phone: 6049840221 Fax: 6049840218 www.alsglobal.com

Sample Description	Method Analyte Units LOR	$\begin{gathered} \text { ME-MS61 } \\ \text { Fe } \\ \% \\ 0.01 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { Ga } \\ \text { ppm } \\ 0.05 \end{gathered}$	$\begin{gathered} \text { ME-MSD1 } \\ \text { Ge } \\ \text { PPm } \\ 0,05 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { Hf } \\ \text { PPTm } \\ 0.1 \end{gathered}$	$\begin{gathered} \text { ME-MS6 } 1 \\ \text { In } \\ \text { ppm } \\ 0.005 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ K \\ \% \\ 0.01 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { La } \\ \text { ppm } \\ 0.5 \end{gathered}$	$\begin{gathered} \text { ME-MSE1 } \\ \text { Li } \\ \text { Ppm } \\ 0.2 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { Mg } \\ \% \\ 0.01 \end{gathered}$	$\begin{gathered} \text { ME-MSB1 } \\ \text { Mn } \\ \text { Ppm } \\ 5 \end{gathered}$	$\begin{gathered} \text { ME-MSS } 1 \\ \text { Mo } \\ \text { PPrn } \\ \text { D.05 } \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \mathrm{Na} \\ \% \\ 0.01 \end{gathered}$	$\begin{gathered} \text { ME-MSB1 } \\ \text { Nb } \\ \text { Ppm } \\ 0.1 \end{gathered}$	$\begin{gathered} \text { ME-MSE1 } \\ \mathrm{Nl} \\ \mathrm{ppm} \\ 0.2 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \rho \\ \text { pprn } \\ 10 \end{gathered}$
1924048		3.22	18.00	0.11	2.2	0.030	3,44	14.2	19.9	1.18	2110	0.57	0.78	3.3	14.2	750
1924049		2.85	16.45	0.10	1.4	0.056	3.17	10.2	11.6	1.01	1660	3.50	1.02	3.2	16.2	570
1924050		3.31	17.45	0.12	1.5	0.066	3.51	14.2	20.4	1.16	4300	2.99	0.51	3.3	19.7	590
1924051		2.99	16.95	0.10	1.4	0.054	3.21	10.5	18.0	1.23	1800	7.32	0.79	3.2	20.4	570
1924052		3.16	16.10	0.10	1.2	0.063	2.76	12.3	18.6	1.24	1100	2.86	1.29	3.2	19.6	530
1924053		3.23	18.05	0.10	1.3	0.088	2.65	11.1	29.0	1.34	1060	2.27	1.48	3.5	24.8	570
1924054		3.19	16.75	0.12	1.4	0.052	2.57	10.2	29.6	1.22	933	2.25	1.67	3.3	21.7	560
1824055		3.33	16.70	0.09	1.2	0.058	2.44	8.1	50.3	1.37	1270	7.38	1.66	3.1	25.0	570
1924056		3.43	17.55	0.11	1.2	0.078	2.55	10.3	40.3	1.43	1220	3.07	1.61	3.3	21.8	570
1924057		3.39	17.80	0.12	1.1	0.102	2.18	9.8	89.8	1.84	1300	1.24	1.52	3.2	28.9	820
J824058		3.28	17.30	0.10	1.2	0.065	2.50	8.9	39.3	1.41	1270	3.03	1.51	3.3	21.9	560
1924059		3.63	18.45	0.20	1.1	0.082	2.48	8.8	61.6	1.55	1330	2.75	1.78	3.3	29.0	610
1924060		3.43	19,00	0.21	1.0	0.060	2.92	7.8	34.2	1.32	2180	3.17	1.34	3.5	26.4	570
1924061		3.63	19.35	0.20	1.0	0.070	3.16	8.4	30.8	1.44	3720	2.38	1.22	3.3	24.0	580
1924062		3.62	18.40	0.22	1.0	0.067	3.11	10.9	82.8	1.33	3490	4.48	0.85	3.1	32.3	570
1924063		3.14	17.70	0.19	1.2	0.057	2.66	10.4	31.8	1.24	1060	4.21	1.73	3.6	24.5	580
J924064		3.53	17,85	0.21	1.1	0.068	2.51	11.3	40.5	1.53	1020	3.81	7.61	3.5	28.8	550
1924065		2.87	17.85	0.20	1.2	0.067	2.65	9.8	28.8	1.35	1020	6.34	1.36	3.4	21.5	510
J924066		2.94	17.05	0.21	0.9	0.059	2.70	10.6	19.6	1.31	1180	9.52	1.19	3.4	16.9	470
1924087		3.58	16.70	0.16	0.7	0.038	2.62	10.9	29.1	0.78	663	7.02	0.45	3.6	27.8	540
J824068		4.40	16.35	0.18	0.8	0.040	2.25	10.3	74.2	2,38	1140	3.87	1.05	3.3	84.7	620
J924069		3.73	19.25	0.21	0.5	0.021	2.94	7.9	17.2	0.32	124	3.14	0.20	3.3	24.0	580
J924070		4.03	19.10	0.22	0.6	0.032	2.73	12.0	41.6	0.82	217	2.05	0.27	3.4	40.9	640
1924071		3.54	17.10	0.21	0.4	0.045	2.88	7.8	12.9	0.22	896	4.54	0.21	3.0	19.9	560
1924072		3.85	19.15	0.20	0.7	0.074	2.64	12.9	66.0	1.98	2020	2.38	1.09	3.7	22.3	600
J924073		4.21	19.10	0.20	0.9	0.056	1.88	9.6	93.3	2.52	1490	1.50	2.05	3.8	29.0	560
1924074		4.05	18.35	0.20	0.8	0.051	2.02	8.7	99.5	2.24	1060	1.21	1.84	3.7	20.9	570
1924075		3.47	18.75	0.21	1.3	0.044	2.50	11.0	57.4	1.76	975	1.66	1.26	4.0	34.5	670
J924076		3.59	19.10	0.22	1.2	0.078	2.82	10.2	58.5	1.59	1040	5.33	1.20	4.1	33.7	690
J 924077		3.88	19.35	0.19	0.6	0.063	3.02	11.3	67.1	1.22	800	2.34	0.89	4.1	23.7	670
J924078		4.03	18.85	0.21	0.4	0.051	3.02	13.7	95.9	1.33	1340	1.18	0.92	4.7	22.5	730
1924079		3.47	18.05	0.19	1.1	0.045	3.44	10.6	92.0	1.14	3840	5.67	0.18	3.4	35.3	600
J924080		3.54	19.50	0.20	1.3	0.057	3.81	11.3	14.9	1.41	7830	2.65	0.14	3.5	30.0	580
1924081		3.11	18.75	0.21	1.2	0.055	3.71	11.1	15.2	1.32	4380	3.36	0.13	3.2	24.9	550
1924082		3.44	19.00	0.19	1.6	0.106	3.55	12.6	18.0	1.08	12150	4,60	0.11	3.1	22.9	510
J 924083		2.87	20.4	0.19	1.3	0.061	3.99	11.4	13.8	1.10	6470	5.11	0.12	3.4	23.3	570
1924084		3.28	19.20	0.19	1.6	0.046	3.85	12.1	16.6	1.21	6690	2.47	0.15	3.6	32.3	590
1924085		3.28	20.3	0.20	1.6	0.045	3.91	15.7	14.1	1.25	6050	5.97	0.13	3.4	29.5	590
J924086		3.14	19.10	0.18	1.6	0.048	3.82	15.6	14.9	1.04	8370	0.63	0.12	3.6	26.5	540
1924087		2.67	18.35	0.20	1.9	0.025	3.72	11.8	12.0	1.13	4360	0.18	0.18	3.8	40.1	570

Total \# Pages: 5 (A - D)

Project: 677
minerals

CERTIFICATE OF ANALYSIS VA10105033

Sample Description	Method Analyte Units LOR	$\begin{gathered} \text { ME-MS61 } \\ \text { Pb } \\ \text { Ppm } \\ 0.5 \end{gathered}$	$\begin{gathered} \text { ME-MSG } 1 \\ \text { Rb } \\ \text { ppm } \\ 0.1 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ R e \\ \mathrm{Ppm} \\ 0.002 \end{gathered}$	$\begin{gathered} \text { ME-M561 } \\ 5 \\ \% \\ 0.01 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { Sb } \\ \text { Ppm } \\ 0.05 \end{gathered}$	$\begin{gathered} \text { ME-MS69 } \\ \text { Sc } \\ \text { Ppm } \\ 0.1 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { Se } \\ \text { p甲m } \\ 1 \end{gathered}$	$\begin{gathered} \text { ME-MSS1 } \\ \text { Sn } \\ \text { ppm } \\ 0.2 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { ST } \\ \text { Ppm } \\ 0.2 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { Ta } \\ \text { Ppm } \\ 0.05 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { Te } \\ \text { Ppm } \\ 0.05 \end{gathered}$	$\begin{gathered} \text { ME-MSE1 } \\ \text { Th } \\ \text { Ppm } \\ 0.2 \end{gathered}$	$\begin{gathered} \text { MF.-MSE1 } \\ \text { TI } \\ \% \\ 0.005 \end{gathered}$	$\begin{gathered} \text { ME-MS } 61 \\ \quad! \\ \text { PPm } \\ 0.02 \end{gathered}$	$\begin{gathered} \text { ME-MS6 } \uparrow \\ u \\ \text { ppm } \\ 0.1 \end{gathered}$
J924048		106,0	125.0	<0.002	0.04	2.45	9.8	1	0.7	109.5	0.28	<0.05	7.1	0.289	1.80	3.3
1924049		94.4	102.5	0.002	0.38	2.30	9.5	2	1.0	83.1	0.27	0.07	5.7	0.243	1.52	3.0
1924050		1095	116.5	<0.002	0.66	4.64	10.8	2	1.0	65.4	0.27	0.14	5.7	0,257	1.73	2.6
J 924051		204	105.0	0.002	0.57	4.34	10.8	2	0.9	115.0	0.27	0.09	4.8	0.263	1.80	2.3
1924052		95.8	101.5	0.002	0.68	3.30	10.7	2	1.1	129.0	0.26	0.15	6.0	0.253	1.37	2.8
1924053		107.5	88.8	0.002	0.86	5.32	12.8	2	1.0	777	0.28	0.16	4.4	0,282	1.44	2.1
1924054		92.2	80.4	$<0,002$	0.63	4.90	11,0	2	1.0	127.5	0.28	0.13	4.9	0,266	1,38	2.2
1924055		79.5	68.1	0.002	0.48	4.07	11.8	1	0.8	118.0	0.25	0.11	3.7	0.266	1,33	1.9
1924056		56.3	78.7	0.004	0.58	4.91	12.0	2	0.9	160.5	0.28	0.12	4.3	0.269	1.30	2.2
J924057		120.5	67.9	<0.002	0,52	6.78	13.3	2	0.8	186.5	0.23	0.08	3.3	0.310	1.10	1.6
1924058		110.5	69.4	0.002	0.58	4.62	11.8	2	1.0	121.5	0.26	0.13	4.0	0,268	1.32	2.1
1924059		82.7	87.8	<0.002	0.72	5.35	13.2	2	0.9	176.0	0.27	0.16	2.9	0.314	1.41	1.4
1924060		117.0	79.5	0.003	0.89	5.82	11.8	2	1.1	182.0	0.27	0.16	2.8	0.297	1.68	1.5
J924061		331	90.4	0.002	0.90	4.76	12.4	2	0.9	163.0	0.25	0.15	3.0	0.293	1.76	1.5
1924062		223	114.0	0.004	0.83	4.01	12.7	2	1.0	83.0	0.25	0.18	3.8	0.291	1.87	1.8
J924063		148.0	81.9	0.004	1.05	3.95	11.6	3	1.0	154.0	0.31	0.20	4.9	0.275	1.59	2.4
1924064		133.5	82.2	0.005	1.03	3,36	12.4	2	1.1	181.5	0.30	0.21	5.1	0.271	1.62	2.3
1924065		100,0	77.6	0.003	0.71	3.74	9.8	2	0.8	122,0	0.30	0.15	5.1	0.230	1.68	2.5
1924066		31.3	82.1	0.005	0.88	4.19	8.6	2	1.2	171.0	0.30	0.11	6.8	0.210	1,58	3.1
1924067		145.0	72.0	0.005	5.54	3.62	11.2	5	1.0	277	0.24	0.85	3.0	0.285	1.43	1.4
1924068		134.0	61.9	0.005	3.43	3.45	14.2	4	0.9	302	0.22	0.29	2.4	0.335	1.22	1.0
1924069		53.8	50.4	0.004	6,87	2.13	12.0	6	0.9	316	0.23	0.31	2.3	0.270	1.33	0.8
1924070		54.6	61.6	0.004	6.41	2.38	13.0	5	1.0	311	0,24	0.79	2.5	0.304	1.30	1.0
1924071		32.1	62.0	0.010	6.52	2.00	11.5	5	1.1	469	0.21	0.79	2.3	0.263	1.43	1.0
1924072		46.2	95.7	0.002	1,36	2.85	15.1	2	1.1	139.0	0.27	0.18	3.3	0.336	1.51	1.3
J924073		63.9	67.3	<0.002	0.55	3.67	19.4	2	0.9	238	0.25	0.09	1.9	0.382	1.29	0.8
J924074		37.3	60.6	0.002	0.43	3.27	16.8	2	1.0	205	0.25	<0.05	2.0	0.377	1.23	0.7
1924075		58.8	78.9	<0.002	1.50	3.66	12.5	2	0.7	135.5	0.27	0.13	2.4	0.316	1.40	1.1
J924076		172.5	87.1	0.012	1.83	6.04	13.0	2	1.2	134.5	0.26	0.18	2.3	0.324	1.79	1.0
1924077		74.2	103.5	0.008	2.63	3.28	14.5	3	1.0	64.9	0.28	0.49	3.2	0.346	1.82	1.2
J924078		32.5	108.5	0.005	2.32	2.25	15.0	2	0.9	67.7	0.30	0.23	2.7	0.395	1.73	0.9
1924079		44.8	124.5	0.016	1.87	5.23	11.9	2	1.1	110.0	0.28	0.26	4.4	0.269	2.15	1.9
1924080		331	155.5	0.004	0.84	10.25	12.0	2	1.1	75.5	0.27	0.12	5.1	0.267	2.20	2.2
1924081		281	127.0	0.004	0.94	15.80	10.5	2	1.1	102.5	0.26	0.12	4.2	0.247	2.14	2.0
1924082		>10000	159.5	0.009	1.12	247	11.1	2	1.3	76.3	0.25	0.12	5.4	0,246	2.06	2.5
1924083		226	136.5	0.004	0.78	7.39	10.7	2	1.1	101.5	0.28	0.14	4.8	0.252	2.29	2.6
1924084		769	151.5	0.008	0.86	12.75	11.5	3	1.4	52.4	0.30	0.14	5.3	0.252	2.31	2.6
1924085		1810	171.5	0.005	0.63	478	12.7	2	1.2	45.9	0.28	0.12	5.6	0.262	2.26	2.5
1924086		5130	169.5	<0.002	0.21	138.0	10.0	2	0.9	41.6	0.30	<0.05	5.4	0.235	2.29	2.3
1924087		405	132.0	<0.002	0.07	7.22	10.2	1	0.7	57.1	0.32	<0.05	4.7	0.237	2.17	2.5

Page: 2 - D
Total \# Pages: 5 (A - D)
Plus Appendix Pages

Project: 677
CERTIFICATE OF ANALYSIS VA10105033

Sample Description	Method Analyte Units LOR	$\begin{gathered} \text { ME-MSB1 } \\ \mathrm{V} \\ \text { PPm } \\ 1 \end{gathered}$	$\begin{gathered} \text { ME-MS67 } \\ W \\ \text { Ppm } \\ 0.1 \end{gathered}$	$\begin{gathered} \text { ME-MSS1 } \\ Y \\ \text { Ppm } \\ 0.1 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { Zn } \\ \text { ppm } \\ 2 \end{gathered}$	$\begin{gathered} \text { ME-MSE1 } \\ Z_{r} \\ \text { PPm } \\ 0.5 \end{gathered}$	$\begin{gathered} \mathrm{Ag}-\mathrm{OG} 62 \\ \mathrm{Ag} \\ \mathrm{PPm} \\ 1 \end{gathered}$	$\begin{gathered} \text { Pb-0G62 } \\ \text { Pb } \\ \% \\ 0.001 \end{gathered}$
1924048		80	1.9	11.2	372	71.7		
3924049		74	2.2	10.4	236	45.8		
\$924050		85	2.6	10.8	264	46.9		
3924051		84	1.9	10.3	286	44.6		
1924052		83	1.8	11.6	241	36.1		
J924053		94	1.6	11.5	327	40.1		
1924054		85	1.4	10.6	283	42.0		
1924055		86	1.5	9.8	277	36.7		
1924056		90	1.4	11.0	250	37.3		
1924057		104	2.0	10.4	275	35.2		
192405		88	1.6	10.6	313	36.3		
1924059		112	1.9	9.8	325	29.0		
1924060		99	2.4	9.5	180	30.5		
1924061		105	2.7	9.3	184	26.7		
1924062		101	3.1	10.3	168	26.2		
1924063		92	1.9	9.6	264	35.9		
1924064		95	1.8	11.0	318	30.9		
1924065		79	1.5	10.4	290	33.0		
J924066		71	1.6	10.0	158	25.1		
J924067		98	25.4	7.1	125	20.9		
J924068		122	1.1	9.2	262	26.8		
1924069		120	0.6	6.B	26	14.0		
1924070		123	0.9	7.1	76	18.9		
1924071		112	1.2	6.4	15	12.1		
1924072		120	1.3	9.8	220	18.9		
1924073		138	0.8	13.0	319	26.2		
1924074		135	0.6	11.7	259	22.2		
1924075		100	0.7	11.7	180	39.7		
1924076		106	0.7	10.8	237	36.9		
1924077		115	0.9	8.2	124	15.7		
J924078		128	1.2	8.4	140	9.5		
1924079		99	2.4	8.4	89	33.9		
j924080		94	3.3	9.6	146	42.2		
J924081		92	3.5	9.7	94	36,4		
1924082		89	4.9	9.9	158	51.3		1,255
1924083		94	4.3	9.4	71	38.6		
1924084		90	3.4	9.8	89	52.2		
1924085		97	3.5	11.0	231	60.9	130	
1924086		82	2.0	9.0	172	52.9		
1924087		72	2.8	10.7	406	62.8		

***** See Appendix Page for comments regarding this certificate *****

ALS Canada Ltd.
2103 Dollarton Hwy
North Vancouver BC V7H OA7
Phone: 604 984 0221 Fax: 604 9B4 0218 Www.alsglobal.com

To: WALLBRIDGE MINING COMPANY LTD.
129 FIELDING RD
LIVELY ON P3Y 1L7

Project: 677
minerals
CERTIFICATE OF ANALYSIS VA10105033

Sample Description	Method Analyte Units LOR	WEI-21 kecved Wt. kg 0.02	$\begin{gathered} \text { AL-ICP21 } \\ \text { Au } \\ \text { ppm } \\ 0.001 \end{gathered}$	ME-MS61 Ag Ppm 0.01	ME-MS61 AI \% 0.01	$\begin{gathered} \text { ME-MS61 } \\ \text { As } \\ \text { Ppm } \\ 0.2 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \mathrm{Ba} \\ \text { Pprn } \\ 10 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { Be } \\ \text { ppm } \\ 0.05 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { Bi } \\ \text { Ppm } \\ \text { D.01 } \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { Ca } \\ \& \\ 0.01 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { Cd } \\ \text { ppm } \\ 0.02 \end{gathered}$	$\begin{gathered} \text { ME-MS6T } \\ \text { Ce } \\ \text { ppm } \\ 0,01 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { Co } \\ \text { Ppm } \\ 0.1 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { Cr } \\ \text { pprm } \\ 1 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { CS } \\ \text { PPI } \\ 0.05 \end{gathered}$	$\begin{gathered} \text { ME-MSB1 } \\ \text { Cu } \\ \text { ppm } \\ 0.2 \end{gathered}$
J92408B		2.06	0.004	3.04	7.02	6.8	850	0.88	0.14	2.67	2.93	30.4	8.8	36	7.62	43.7
J924089		4.44	0,005	1.04	7.00	5.4	470	0.85	0.29	2.98	2.59	23.2	10.1	39	7.80	15.9
1924090		4.14	0.008	3.23	7.52	7.3	590	0.88	0.19	2.90	4.15	26.6	9.4	47	8.10	34.3
1924097		3.16	0.005	2.10	7.45	7.7	690	0.93	0.15	3.03	3.56	28.4	10.1	43	7.70	41.7
1924092		4.54	0.006	0.58	7.13	6.8	870	0.90	0.20	2.85	3.00	20.9	9.3	44	6.54	21.1
1924093		4.46	0.007	0.55	7.48	7.4	680	0.80	0.18	2.84	4.11	22.3	9.3	49	6,66	26.0
1924094		4.08	0.004	0.13	8.75	4.1	300	1.02	0.03	5.91	0.12	29.4	30.8	161	2.02	42.7
J924095		2.98	<0.001	0.12	8.12	2.7	330	0.78	0.10	5.06	0.11	29.9	31.7	167	1.82	42.0
1924096		2.18	0.001	0.19	6.68	4.2	440	0.59	0.15	2.06	2.93	26.3	7.2	63	5.42	6.9
1924097		3.52	<0.001	0.12	7.54	2.3	300	0.86	0.04	3.42	0,09	30.0	27.2	167	5.27	38.9
1924098		4.70	0.005	0.73	6.96	14.3	660	0.77	0.40	2.59	1.91	25.7	12.5	52	7.96	42.4
1924099		4.70	0.010	0,82	7.10	10.5	670	0.55	0.43	2.81	1.94	21.0	10.7	48	5.39	46.1
1924100		4.56	0.013	0,87	6.98	10.0	810	0.66	0.48	2.91	2.27	23.1	13.2	42	5.35	42.6
1924101		3.64	0.022	0,69	6.94	10.9	680	0.69	0.54	2.98	2.08	23.3	11.9	41	5.64	33.2
1924102		4.52	0.012	0.85	7.14	11.1	570	0.93	0.53	2.84	1.57	25.7	12.9	42	6.76	39.5
1924103		4.36	0.012	0,53	6.78	7.4	590	0.81	0.31	2.88	1,59	22.5	11.0	47	5.99	22.5
1924104		4.28	0.010	0.49	6.75	6.0	570	0.73	0.26	2.85	1.90	23.9	11.3	46	5.84	18.4
1924705		3,00	0.010	0.98	6.97	7.4	590	0.78	0.20	2.59	2.47	25.9	9.6	45	6.10	30.8
1924106		2.68	0.011	0.78	8.98	5.0	840	0.79	0.29	2.63	2.16	25.8	12.8	48	6.66	14.2
1924107		2.08	0.012	1.43	6.63	8.9	540	0.72	0.30	3.73	2.68	31.9	19.1	35	6.84	34.5
J924108		4.66	0.011	1.04	6.74	7.1	570	0.88	0.22	2.97	3.66	23.6	10.4	50	6.42	22.8
1924109		4.16	0.010	1.74	7.01	7.2	780	0.89	0.37	2.80	2.29	27.1	10.5	45	7.33	27.4
1924710		4.42	0.013	31.3	7.20	20.5	2020	0.84	0.29	2.70	3.15	28,3	9.8	44	7.35	231
J924711		4.14	0.022	3.84	7.52	9.6	1070	0.92	0.47	2,37	1.00	29.1	14.1	38	8.69	33.7
1924712		4.30	0.017	4.84	7.24	9.0	730	0.86	0.54	2.79	2.26	28.3	11.2	38	7.61	43.9
1924113		4.76	0.017	2.84	7.19	9.6	640	0.80	0.63	2.95	3.92	27.9	12.1	38	7.85	41.5
1924114		3.54	0.014	3.49	7.44	18.4	710	0.78	0.62	2.88	3.53	27.2	11.9	37	7.89	43.9
J 244115		3.42	0.003	0.30	7.78	7.1	370	0.90	0.08	4.69	0.11	28.0	27.1	139	9.06	38.7
J924116		4.48	0.009	4.23	7.72	12.0	1090	0.76	0.81	2.85	1.47	27.3	11.9	37	7.63	48.7
J 241117		4.28	0.005	0.71	7.16	1.2	770	0,80	0.45	2.99	4.03	25.7	11.3	39	7.13	11.0
J924118		4.42	0.004	0.54	7.78	0.8	740	0.78	0.32	2.93	4.03	30.6	12.6	42	7.73	4.6
1924119		4.10	0.089	7.37	7.99	3.4	640	1.15	2.79	1.85	1.74	36.8	7.6	49	11.10	34.8
1924120		4.16	0.048	6.14	7.42	4.8	640	0.97	1.63	1.94	15.75	35.2	9.1	39	8.15	93.2
1924121		4.24	0.029	5.26	7.34	4.3	680	0.93	1.86	1.84	1.72	35.2	10.0	41	8.08	40.0
1924122		4.16	0.013	1.90	7.55	2.8	720	0.94	1.19	2.41	2.84	35.0	10.6	38	7.76	6.5
J 924123		4.60	0.003	0.76	7.15	1.3	730	$0 . \mathrm{BO}$	0.64	2.68	2.77	28.4	11.1	37	6.69	7.0
9924124		4.06	0.005	1.95	6.87	6.0	780	0.81	0.45	2.97	5.00	23.9	12.6	46	7.57	20.1
1924125		2.20	0.007	2.36	7.47	17.3	1090	0.86	0.35	2.30	0.95	27.2	10.1	40	8.50	18.0
1924126		2.22	<0.001	0.29	7.86	0.2	220	1.00	0.02	3.95	0.13	30.3	25.5	117	8.35	36.7
1924127		2.50	<0.001	0.44	8.12	1.1	220	0.99	0.03	4.30	0.15	32.1	26.3	119	8.97	40.9

ALS Canada Led.
.
129 FIELDING RD
2103 Dollarton Hwy
2103 Dollarton HWY V7H OA7
Phone: 6049840221 Fax; 6049840218 www.alsglobal.com
LIVELY ON P3Y $1 L 7$
Page: 3 - B
Total \# Pages: 5 (A - D)
Plus Appendix Pages Finalized Date: 31-AUG-2010 Account: RLH
minerals
Project: 677

Sample Description	Method Analyte Units LOR	$\begin{gathered} \text { ME-MS61 } \\ \mathrm{Fe} \\ \% \\ 0.01 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { Ga } \\ \text { PPm } \\ 0.05 \end{gathered}$	$\begin{gathered} \text { ME-M561 } \\ \text { Ge } \\ \text { PpIII } \\ 0.05 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { IIf } \\ \text { ppIn } \\ 0.1 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { In } \\ \text { ppm } \\ 0.005 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ K \\ \% \\ 0.01 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { La } \\ \text { ppm } \\ 0.5 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { LI } \\ \mathrm{ppm} \\ 0.2 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { Mg } \\ x \\ 0.01 \end{gathered}$	$\begin{gathered} M E-M S S 1 \\ M n \\ \mathrm{Ppm} \\ 5 \end{gathered}$	$\begin{gathered} \text { ME-MSG7 } \\ \text { Mo } \\ \text { ppm } \\ 0.05 \end{gathered}$	$\begin{gathered} \text { ME-MS67 } \\ \mathrm{Na} \\ \% \\ 0.01 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { Nb } \\ \text { ppm } \\ 0.1 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \mathrm{Ni} \\ \text { ppm } \\ 0.2 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { P } \\ \text { ppm } \\ 10 \end{gathered}$
1924088		2.41	18.55	0.20	1.5	0.031	3.45	14.6	11.5	0.96	3290	2.28	0.12	3.7	16.3	520
1924089		2.69	17.25	0.19	1.7	0.032	3.28	10.2	17.9	1.16	2780	2.33	0.47	3.5	25.5	500
3924090		3.07	16.95	0.20	1.6	0.031	3.49	12.5	19.4	1.30	3630	1.57	0.23	3.4	32.7	510
1924091		2.83	18.15	0.19	2.0	0.037	3.46	13.1	14.3	4.32	3240	1.13	0.38	3.6	29.1	510
1924092		2.93	16.90	0.18	1.5	0.034	3.12	9.4	15.4	1.19	2840	1.71	0.85	3.5	27.3	530
5924093		2.77	17.80	0.19	1.6	0.035	3.04	10.1	16.5	1.28	2230	1.32	1.05	3.6	29.9	550
1924094		5.69	19.95	0.18	3.0	0.054	0.77	12.8	70.0	3,60	1540	0.98	2.49	4.1	129.0	1210
1924095		5.58	18.60	0.15	3.0	0.053	0.80	12.4	55.3	3,84	1460	0.85	2.56	4.2	124.0	1200
1924096		2.53	14.90	0.14	1.8	0.027	2.37	11.4	39.4	1.42	1170	0.75	1.62	3.9	30.6	550
1924097		5.23	17.65	0.20	2.9	0.053	1.21	12.4	107.5	3.72	1190	0.77	2.84	4.1	119.0	1200
1924098		3.02	17.55	0.17	1.3	0.050	2.91	11.5	33.3	1.40	1100	2.47	0,90	3.6	27.1	530
J924099		3.06	14.35	0.14	1.3	0.042	2.94	9.4	13.8	1.35	1080	2.53	1.08	3.1	24.6	520
1924100		3.18	16.75	0.17	1.3	0.051	2.76	10.1	13.8	1.34	1100	3.06	1.29	3.5	28.1	520
1924101		3.13	18.65	0.17	1.4	0.052	2.76	10.5	14.9	1.22	1080	3.56	1.16	3.4	26.8	500
1924102		3.47	17.60	0.19	1.1	0.055	2.72	11.3	20.8	1.22	1080	4.68	1.28	3.6	30.4	550
J924103		3.01	15.65	0.15	1.5	0.043	2.76	9.6	19,5	1.23	1300	2.47	1,20	3.5	26.7	520
J 924104		2.78	16.30	0.17	1.6	0.045	2.93	10.6	14.9	1.19	1400	1.46	0.92	3.7	28.4	500
1924105		2.82	14.95	0.15	1.6	0.043	3.07	11.9	12.6	1.18	1490	1.70	0.89	3.6	25.9	530
J924106		2.82	16.60	0.17	1.7	0.085	3.05	11.6	15.8	1.16	1840	2.52	0.97	3.9	29.6	520
1924107		5.67	14.80	0.19	1.6	0.119	3.04	16.1	12.2	2.19	4050	2.30	0.32	3.1	50.0	440
1924108		3.04	16.40	0.17	1.6	0.044	3.20	10.4	16.2	1.28	2090	2.07	0.78	3.9	31.1	530
1924109		2.91	16.30	0.17	1.8	0,041	3.42	12.5	19.6	1.17	2360	2.21	0.31	3.7	30,0	520
1924110		3.03	15.60	0.17	1.5	0.050	3.52	13.5	20.9	1.16	6820	1.42	0.13	3.5	29.5	510
1924117		3.47	17.10	0.16	1.5	0.057	3.75	13.9	14.4	1.10	8180	3.39	0.11	3.7	26.8	530
1824112		2.95	16.00	0.15	1.6	0.046	3,64	13.2	16.3	1.18	3210	4.46	0.12	3.7	26.4	520
J924113		3.00	16.45	0.18	1.3	0.057	3.45	12.8	19.0	1.22	2230	5.55	0.15	3.3	25.8	510
J924114		3.27	16.20	0.18	1.3	0.060	3.41	12.9	24.8	1.31	2090	4.08	0.26	3.3	26.6	550
J924115		5.25	17.45	0.19	2.5	0.052	1.26	11.3	102.5	3.29	2360	0.87	2.30	3.6	108.0	1070
1924116		3.29	17.40	0.17	1.4	0.088	3,60	12.9	21.7	1.35	2970	3.44	0.17	3.2	25.2	550
J924117		3.19	16.70	0.17	1.7	0. 048	3.68	11.7	12.9	1.34	2240	1.25	0.11	3.5	26.1	550
1924118		3.53	17.15	0.19	1.7	0.055	3,87	14.4	13.7	1.41	2940	0.33	0.12	3.4	28.7	560
J924119		2.60	19.25	0.17	1.4	0.033	4.14	17.1	13.1	0.83	2020	0.52	0.12	3.7	23.4	570
J924120		2.96	16.95	0.18	1.6	0.055	3.80	17.0	14.2	0.93	5090	0.29	0.10	3.8	27.8	560
1924121		2.77	16.70	0.17	1.6	0.027	3.59	17.2	14.9	0.87	2980	0.22	0.10	3.9	29.4	580
1924122		2.92	17.45	0.18	1.9	0.029	3.84	16.8	14.1	1.04	2260	0.33	0.11	4.0	27.2	570
1924723		2.83	16.15	0.17	1.8	0.035	3.53	13.6	15.5	1.10	1570	1.53	0.13	3.7	26.1	510
J924124		3.04	16.70	0.17	1.7	0.043	3.58	10.6	18.6	1.26	2010	5.22	0.13	3.6	29.7	540
1924125		3.13	16.00	0.16	1.8	0.043	3.37	13.2	29.5	1.33	3320	3.96	0.15	3.5	26.7	530
1924126		5.33	18.15	0.21	3.0	0.050	1.10	12.1	109.0	3.15	2090	0.83	2.71	4.4	91.5	1320
J924127		5.42	18.70	0.20	3.1	0.049	1.01	13.1	109.5	3.15	2330	0.92	2.64	4.5	95.0	1330

Project: 677

Sample Description	Method Analyte Units LOR	$\begin{gathered} \text { ME-MS61 } \\ \text { Pb } \\ \text { PPm } \\ 0.5 \end{gathered}$	$\begin{gathered} \text { ME-MS5? } \\ \text { Rb } \\ \text { Ppm } \\ 0.1 \end{gathered}$	$\begin{gathered} \text { ME-MSE1 } \\ \operatorname{Re} \\ \text { ppm } \\ 0.002 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \mathrm{S} \\ \% \\ 0.01 \end{gathered}$	$\begin{gathered} \text { ME-MSE1 } \\ \text { Sb } \\ \text { ppm } \\ 0.05 \end{gathered}$	ME-MSE1 Sc PPm 0.1	$\begin{gathered} \text { ME-MS61 } \\ \text { Se } \\ \text { Ppm } \\ 1 \end{gathered}$	$\begin{gathered} \text { ME-MSE1 } \\ \text { Sn } \\ \text { ppm } \\ 0.2 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { Sr } \\ \text { ppm } \\ 0.2 \end{gathered}$	$\begin{gathered} M E-M S 61 \\ T a \\ \text { Pprn } \\ 0.05 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { Te } \\ \text { ppm } \\ 0.05 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { Th } \\ \text { Ppm } \\ 0.2 \end{gathered}$	$\begin{gathered} \text { ME-MS6 } \\ \mathrm{Ti} \\ \% \\ 0.005 \end{gathered}$	$\begin{gathered} \text { ME-MS67 } \\ \text { II } \\ \text { ppm } \\ 0.02 \end{gathered}$	$\begin{gathered} \text { ME-MSG1 } \\ U \\ \text { Ppm } \\ 0.1 \end{gathered}$
J924088		435	139.5	0.002	0.36	23.6	B. 7	2	0.9	89.6	0.31	0.06	5.6	0.226	1.98	2.5
1924089		233	102.5	0.002	0.35	9.78	B, 5	2	0.8	88.9	0.32	0.09	5.6	0.213	1,94	3.0
1924090		473	137.0	0.002	0.39	23.4	10.0	2	0.8	83.9	0.29	0.07	5.7	0.216	1.82	2.8
1924097		519	122.5	<0.002	0.33	16.45	10.0	2	0.8	89,6	0.33	0.06	6.4	0.226	1.87	3.4
1924092		219	89.0	0.002	0.48	8.36	9.1	2	0.9	168.0	0.29	0.07	5.0	0.222	1.72	2.6
1924093		150.5	94.2	0.002	0.39	7.65	10.1	2	0.8	144.5	0.31	0.05	4.8	0,234	1.72	2.4
1924094		16.4	10.0	<0.002	0.05	9.33	21.6	2	0.9	657	0.21	<0.05	1.6	0.574	0.16	0.8
1924095		20.2	8.1	<0.002	0.04	7.14	18.8	2	1.3	558	0.22	<0.05	1,3	0.565	0.17	0.8
1924096		80.2	80.9	$<0,002$	0.16	2.90	10.3	2	1.1	97.7	0.33	<0.05	5.8	0.233	1.18	2.7
1924097		16.9	23.1	$<0,002$	0.09	5.18	16.4	2	1.1	287	0.22	<0.05	1.3	0.517	0.43	0.8
1924098		88.6	95.5	<0.002	0.68	5.07	12.8	2	1.4	146.5	0.28	0.11	4.8	0.271	1.50	2.4
1924099		60.1	89.1	0.002	0.79	5.74	9.4	2	1.0	130.0	0.27	0.09	5.2	0.239	1.34	2.6
1924100		82.6	91.7	0.002	0.83	5.36	12.1	2	1.1	165.0	0.29	0.12	5.0	0.248	1.39	2.5
1924101		59.9	89.9	0.002	0.99	4.20	11.1	2	1.1	169.0	0.27	0.14	5.1	0.239	1.37	2.5
1924102		65.8	92.6	<0.002	1.06	5.22	12.4	2	1.3	169.5	0.26	0.15	4.6	0.268	1.37	2.2
1924103		85.2	82.3	0.003	0,58	5.36	10.8	2	1.0	119.0	0.29	0.09	4.4	0. 251	1.40	2.3
1924104		105.0	97.8	$<0,002$	0.53	4.83	11.2	2	1.0	93.8	0.29	0.08	5.4	0.242	1.51	2.9
1924105		162.5	99.7	<0.002	0.45	7.23	10.5	2	0.8	80.5	0.30	0.08	5,8	0.244	1.50	2.7
J924106		250	103.0	<0,002	0.69	3.86	11.7	2	1.0	138.5	0.32	0.10	5,8	0.245	1.58	3.1
J924107		819	126.0	0.002	2.24	13.35	10.3	2	0.9	79.1	0.25	0.13	5.5	0.213	1.54	2.6
J924108		258	91.9	<0.002	0.44	8.58	10.0	2	1.0	76.1	0.31	0.07	5.0	0.237	1.56	2.7
J924109		229	115.5	<0.002	0.71	11.50	11.3	2	1.1	95.7	0.30	0.10	6.1	0.231	1.67	3.1
1924110		2120	136.5	$<0,002$	0.62	155.5	11.2	2	0.9	138.0	0.29	0.10	5.9	0.227	1.62	2.9
1924111		747	146,0	0.002	0.92	18.40	12.1	2	1.1	68.9	0.30	0.17	6.1	0.251	1.64	2.9
1924112		517	131.0	0.003	0.74	22.4	11.4	2	1.0	67.9	0.30	0.12	6.2	0.240	1.70	3.1
1924113		148.5	123.0	0.004	0.86	15.20	12.0	2	1.1	30.6	0.27	0.15	5.5	0.238	1.63	2.6
1924114		231	126.0	0.003	0.87	18.20	12.3	2	1.2	174.0	0.27	0.19	5.6	0.247	1.60	2.5
1924115		61.4	29.2	<0,002	0.21	25.0	20.5	2	0.6	402	0.20	$<0,05$	1.4	0.488	0.46	0.9
J924116		878	130.5	0.003	0.75	23.2	12.4	2	1.1	309	0.27	0.14	5.7	0.245	1.63	2.6
1924117		128.5	115.0	<0.002	0.24	4.78	11.8	2	0.9	71.5	0.30	0.07	5.5	0.251	1.72	2.7
3924118		143,5	142.5	$<0,002$	0.13	3.80	13.6	2	0.9	49.0	0,27	0,08	5.9	0.274	1.73	2.7
1924119		424	180.0	<0.002	0.29	17.75	12.2	3	1.1	74.3	0.30	1.34	5.8	0.225	1.98	2.3
1924120		1360	157.0	$<0,002$	0,39	25.2	11.1	2	0.9	106.0	0.31	0.51	6.4	0.220	1.88	2.6
\$924121		646	154.0	<0.002	0.27	20.5	11.0	2	0.8	84.1	0.32	0.79	6.5	0.226	1,86	2.7
1924122		239	142.5	<0,002	0.18	5.85	11.2	2	0.9	63.1	0,33	0.33	6.6	0.234	1.97	3.1
1924123		171.5	118.5	<0.002	0.20	4.56	11.1	2	0.9	61.4	0.32	0,13	6.8	0.222	1.79	3.4
5924124		233	100.0	0.014	0.57	12.45	11.4	2	1.0	110.0	0.31	0.14	5.1	0.245	1.72	2.7
1924125		1230	128.0	0.002	0.45	17.10	11.4	2	1.0	127.0	0.30	0.10	8.5	0.238	1.59	3.2
1924126		24.7	21.6	<0.002	0.03	18.45	19.8	2	0.8	312	0.23	<0.05	1.2	0.538	0.39	0.8
1924127		36.6	20.1	<0,002	0.03	19.45	20.0	2	0,9	318	0.24	<0.05	1.4	0.545	0.37	0.9

[^3]ALS Canada Ltd.
2103 Dollarton Hwy
North Vancouver BC V7H OA7
Phone: 6049840221 Fax: 6049840218 www.alsglobai.com
To: WALLBRIDGE MINING COMPANY LTD.
129 FIELDING RD
LIVELY ON P3Y 1L7
Page: 3-D
Total \# Pages: 5 (A - D) Plus Appendix Pages Finalized Date: 31-AUG-2010 Account: RLH

Project: 677
minerals
CERTIFICATE OF ANALYSIS VA10105033

Sample Description	Method Analyte Units LDR	$\begin{gathered} \text { ME-MS61 } \\ V \\ \text { PPrT1 } \\ \uparrow \end{gathered}$	$\begin{gathered} \text { ME-MSS } 1 \\ w \\ \text { ppm } \\ 0.1 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ Y \\ \text { Ppm } \\ 0.1 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { Zn } \\ \text { ppm } \\ 2 \end{gathered}$	$\begin{gathered} \text { ME-MSB1 } \\ \text { Zr } \\ \text { Ppm } \\ 0.5 \end{gathered}$	$\begin{gathered} \text { Ag-OG62 } \\ \text { Ag } \\ \text { PPm } \\ 1 \end{gathered}$	$\begin{gathered} \text { Pb-OG62 } \\ \text { Pb } \\ \text { \% } \\ 0,001 \end{gathered}$
J92408日		76	1.9	8.5	246	48.7		
1924089		75	2.3	9.2	270	53.9		
1924090		73	2.0	10.0	385	52.6		
1924091		78	1.8	9.9	353	62.8		
1924092		75	1.4	8.5	317	47.4		
1924093		77	1.4	9.0	421	48.1		
1924094		130	0.2	19.3	85	116.5		
J924095		166	0.2	17.2	95	115.0		
J924096		70	1.1	9.3	311	57.2		
1924097		157	0.3	15.9	97	111.0		
1924098		92	1.5	9.8	239	42.4		
1924098		83	1.2	7.5	276	42.5		
1924100		85	1.8	8.9	309	40.7		
1924101		82	1.6	8.5	295	43.7		
1924102		92	1.8	8.5	259	35,6		
J924103		83	1.3	8.9	258	47.0		
1924104		78	1.4	9.1	255	53.6		
1924105		75	1.6	9.0	314	54.3		
1924106		83	1.9	9.7	260	55.2		
1924107		76	1.9	8.3	333	49.5		
1924108		78	1.5	8.8	380	53.8		
1924109		77	1.8	10.0	232	52.8		
1924110		74	2.2	10.0	158	48.8		
1924117		86	2.6	10.0	112	46.3		
1924112		76	2.2	10.1	208	50,7		
3924113		87	2.2	10.1	371	39.0		
J924114		85	2.3	10.4	343	41.7		
1924115		157	0.7	15.5	97	83.8		
J924116		93	2,8	10.0	170	40.1		
1924117		88	2.2	9.9	379	51.9		
J924118		93	2.6	10.8	394	55.0		
1924179		B7	2.1	10.3	166	45.7		
1924120		69	1.9	9.8	1120	53.8		
1924121		64	1.7	9.7	158	55.7		
1924122		74	1.7	10.3	242	64.7		
J924123		73	2.4	10.8	251	61.5		
J 24124		87	1.8	9.3	443	54.0		
J 24125		78	2.0	10.2	124	57.6		
1924128		153	0.6	16.0	101	116.5		
1924127		155	0.9	17.1	115	118.5		

[^4]ALS Canada Ltd.
To: WALLBRIDGE MINING COMPANY LTD.
129 FIELDING RD
LIVELY ON P3Y 1L7
Page: 4 - A
Total \# Pages: 5 (A - D)
Plus Appendix Pages Finalized Date: 31-AUG-2010 Account: RLH

Project; 677
CERTIFICATE OF ANALYSIS VA10105033

Sample Description	Method Analyte Units LOR	WEE-21 Recvd Wt. kg 0.02	$\begin{gathered} \text { AU-ICP21 } \\ \text { Au } \\ \text { ppm } \\ 0,001 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { Ag } \\ \text { PPm } \\ 0.01 \end{gathered}$	$\begin{gathered} \text { ME-MSE1 } \\ \text { AL } \\ \text { \& } \\ 0.01 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { AS } \\ \text { PPrn } \\ 0.2 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { Ba } \\ \text { ppm } \\ 10 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { Be } \\ \text { Ppm } \\ 0.05 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { Bi } \\ \text { ppm } \\ 0.01 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { Ca } \\ \% \\ 0.01 \end{gathered}$	$\begin{gathered} \text { ME-MSG1 } \\ \text { Cd } \\ \text { ppm } \\ 0.02 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { Ce } \\ \mathrm{ppm} \\ 0.01 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { Co } \\ \text { PPm } \\ 0.1 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \mathrm{Cr} \\ \mathrm{PPm} \\ 1 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { Cs } \\ \text { ppm } \\ 0.05 \end{gathered}$	ME-MSB1 Cu Ppın 0.2
1924128		4.54	0.009	6,45	7.16	37.5	770	0.76	0.49	2.60	3.46	27.4	9.8	31	8.48	70.9
1924729		4.32	0.004	1.11	7.36	11.2	780	0.81	0.56	2.71	8.52	26.6	13.5	44	8.18	25.3
1924130		4.50	0.003	1.24	7.24	12.9	600	0, 87	0.56	2.70	5.86	24.5	12.1	49	7.33	34.4
1924131		4.14	0.005	0.93	7.47	15.0	690	0.78	0.52	2.76	2.12	22.8	11.8	44	7.46	53.7
1924132		4.16	0.004	0.96	7.29	14.3	740	0.74	0.64	2.34	4.12	21.4	12.5	41	7.34	36.5
1924133		4.66	0,002	0.94	7.47	13.8	600	0.77	0.61	2.47	4.78	22.9	12.7	45	7.28	33.1
1924134		4.36	0,003	0.58	7.44	13.0	660	0.73	0.53	2.48	3.14	23.3	12.3	44	7.77	38.1
1924135		4,10	0.002	0.90	7.57	15.5	580	0.70	0.47	2.51	2.88	22.7	12.1	46	6.74	55.2
1924136		4,38	0.003	0.57	7.88	11.9	590	0.97	0.55	2.52	2.10	25.8	14.7	45	11.70	33.8
J924137		4.46	0.001	0.54	7.47	9.3	590	0.83	0.45	2.44	2.86	24.2	13,0	48	8.90	32.3
1924138		3.98	0.001	0.42	7.22	10.5	590	0.74	0.30	2.98	1.60	20.5	10.6	41	7.40	20.1
1924139		0.92	<0.001	0.15	8.18	6.8	280	1.18	0.09	4.40	0.30	30.5	18.2	43	26.8	32.4
1924140		2.52	0.003	0.82	7.67	15.2	600	0.75	0.53	2.80	2.07	24.6	13.3	45	11.30	38.8
1924141		3.72	0.001	0.59	7.78	9.3	640	0.79	0.43	3.23	2.07	25.8	11.5	34	9.64	41.1
1924142		4.80	0.004	0.80	7.81	13.8	550	0.71	0.62	2.94	2.33	24.1	13.3	41	6.68	50.9
J924143		4.76	0.007	0.92	7.84	18.1	540	0.75	0.87	2.81	1.26	24.2	13.7	34	8.01	195.0
㗢24144		4.10	0.005	1.00	7.72	16.2	570	0.76	1.01	2.74	1.18	23.8	14.6	40	9.45	79.0
㗢 24145		4.68	0.030	1.34	7.65	13.6	680	0,82	0.99	2.69	3.02	24.9	12.9	35	11.55	80.1
J924146		4.44	0.002	1.39	7.58	11.6	590	0.81	0.70	2.91	3.63	22.5	12.7	47 52	8.99 5.99	80.6 26.4
J924147		4.22	0.001	0.49	7.28	5.7	570	0.73	0.21	2.98	1.28	25.2	10.8	52	5.99	26,4
J924148		4.44	0.003	1.19	7.78	13.9	610	0.85	0.44	2.89	1.32	26.1	13.8	44	10.40	38.9
1924149		4.36	0.003	0.89	7.97	13.3	550	0.82	0.43	2.21	0.89	25.8	13.3	49	10.30	26.4
J924150		4.40	0.013	1.08	7.59	14.2	480	0.91	0.63	2.13	1.03	24.7	14.1	48	10.15	31.0
1924151		4.26	0.012	0.70	7.71	12.4	610	0.94	0.55	2.30	0.95	21.5	12.7	49	10.25	36,3
1924152		4.80	0.021	0.92	7.99	18.8	580	0.95	0.63	2.66	0.95	24.0	14.2	50	9.83	26.6
1924153		4.38	0.018	0.78	7.82	12.9	630	0.97	0.65	2.61	1.35	25.7	13.3	46	8.51	37.4
1924154		3.98	0.025	0.93	7.68	13.7	560	0.90	0.74	2.44	1.41	25.6	15.6	43	12.45	50,6
1924155		4.72	0.019	0.64	8.33	16.6	550	1.08	0.41	2.16	1.02	21.1	13.4	20	11.50	63.6
J924156		4.18	0.008	0.33	8,38	12.9	570	0.96	0.19	2.26	0.41	22.6	13.7	32	9.33	15.5
J924157		4.74	0.017	1.01	7.78	17.8	640	0.96	0.85	2.92	0.92	27.5	15.0	38	8.17	64.6
J924158		4.36	0.012	0.85	7.75	13.2	660	0.90	0.58	2.69	0.97	24.2	12.1	35	8.04	54.9
1924159		4.80	0.006	0.92	6.94	11.3	650	0.90	0.58	2.87	0.90	19.00	11.2	34	7.03	52.8
1924160		4.32	0.005	1,04	7.61	13.7	620	0.85	0.73	2.93	0.87	22.8	11.2	47	6.33	67.2
1924161		4.14	0.008	1.20	7.10	15.0	580	0.85	0.71	2.84	0.73	20.5	12.4	33	6.27	84.2
1924162		5.26	0.003	0.76	7.41	12.0	460	0.91	0.57	2.48	0.89	18.00	12.1	45	9, 19	36.7
1924163		1.28	<0.001	0.13	8.39	2.7	250	1.49	0.08	4.90	0,09	31.1	16.4	45	14.45	34.3
J924164		4.80	0.005	0.72	7.29	12.0	550	0.89	0.57	3.16	0.85	21.4	11.4	33	8.03	34.7
1924165		4.60	0.005	0.84	7.79	12.3	610	0.84	0.66	2.86	0.78	24.8	12.5	34	7.09	82.3
1924166		4.58	0.005	1.31	7.22	15.1	590	0.93	0.85	2.69	0.67	18.70	14.4	39	7.09	107.0
1924167		2.22	0.010	1.72	7.67	25.7	500	1.19	1.16	2.21	1.30	22.2	14.7	52	10,20	37.2

***** See Appendix Page for comments reqerding this certificate *****

ALS Canada LId.
2103 Dollarton Hwy
2103 Dollarton ${ }^{2} W \mathrm{C}$
North Vancouver BC V7H OA
Phone: 6049840221 Fax: 604984 021B www.alsglobal.com

To: WALLBRIDGE MINING COMPANY LTD.
129 FIELDING RD
LIVELY ON P3Y 1 L7

Page: $4-B$
Total \# Pages: 5 (A - D) Plus Appendix Pages Finalized Date: 31-AUG-2010 Account: RLH

Project: 677
minerals

Sample Description	Method Analyte Units LOR	$\begin{gathered} \text { ME-MS61 } \\ \text { Fe } \\ \text { \% } \\ 0.01 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { Ga } \\ \text { ppm } \\ 0.05 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { Ge } \\ \text { ppm } \\ 0.05 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { Hf } \\ \text { Ppm } \\ 0.1 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { In } \\ \text { ppm } \\ 0.005 \end{gathered}$	$\begin{gathered} \text { ME-MSS1 } \\ K \\ \% \\ 0.01 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { La } \\ \text { ppm } \\ 0.5 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { Li } \\ \text { ppm } \\ 0.2 \end{gathered}$	$\begin{gathered} \text { ME-MSE1 } \\ \text { Mg } \\ \% \\ 0.01 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { Mn } \\ \text { PPm } \\ 5 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { M0 } \\ \text { Ppm } \\ 0,05 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \mathrm{Na} \\ \% \\ \mathrm{D} .01 \end{gathered}$	$\begin{gathered} \text { ME-MSE1 } \\ \mathrm{Nb} \\ \text { ppm } \\ 0.1 \end{gathered}$	$\begin{gathered} \text { ME-MSE1 } \\ \mathrm{Ni} \\ \mathrm{ppm} \\ 0.2 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \mathrm{P} \\ \text { ppirt } \\ 10 \end{gathered}$
192412 l		2.85	16.60	0.17	1.5	0.053	3.39	13.0	26.7	1.25	2980	5.08	0.13	3.8	22.6	470
J 924129		3.30	17.15	0.18	1.2	0.055	3.21	12.1	18.2	1.29	1580	3.08	0.57	3.8	27.8	540
J 924130		3.06	16.00	0.17	1.4	0.051	3.06	11.1	20.1	1.29	1360	4.78	0.85	3.5	26.9	540
1924131		3.06	16.10	<0.05	1.3	0.049	3.00	10.5	17.1	1.42	1560	1.80	1.13	3.2	25.0	570
1924132		3.21	16.30	<0.05	1.1	0.060	3.01	10.0	10.7	1.35	1260	2.77	1.00	3.0	20.5	540
1924133		3.18	16.10	$<0,05$	1.3	0.065	2.83	10.6	19.3	1.36	1140	2.13	1.25	3.1	24.6	560
1924134		3.12	16.60	<0.05	1.3	0.052	2.94	10.6	15.0	1.36	1120	1,87	1.28	3.3	22,6	560
1924135		3.48	16.45	<0.05	1.2	0.052	2.61	10.5	40.0	1.48	1240	1.72	1.69	3.3	28.7	580
1924136		3.46	17.60	0.05	0.9	0.056	2.97	11.9	37.8	1.41	1130	2.80	1.18	3.3	24.0	590
1924137		3.30	16.40	<0.05	1.3	0.054	2.57	11.2	84.7	1.36	1090	2.70	1.45	3.3	25.4	560
1924138		3.06	16.10	<0.05	1.6	0.053	2.56	9.0	64.8	1.37	1430	1,50	1.45	3.5	23.2	550
1924139		4.83	18.90	0.08	3.4	0.045	0.58	13.1	75.0	2.15	825	1.49	1.59	4.1	34.4	1160
1924140		3.12	17.05	<0.05	1.2	0.054	2.59	11.5	49.6	1.31	1180	2.32	1.47	3.1	23.7	570
1924141		3.36	16.30	0.08	1.1	0.055	2.54	12.4	55.9	1.48	1360	2.84	1.65	3.0	21.4	570
5924142		3.45	16.50	0.05	1.0	0.063	2.47	11.5	46.1	1.44	1280	3.25	1.79	3.0	24.8	590
1924143		3,81	16.95	0.05	0.7	0.090	2.56	11.5	40.7	1.45	1680	6.85	1.70	2.9	21.7	600
1924144		3.69	17.95	0.06	0.9	0.075	2,42	11.0	35.0	1.53	1440	3.98	1.90	2.9	25.4	600
5924145		3.0 B	17.80	<0.05	1.1	0.065	2.70	11.9	27.3	1.16	1020	5.41	1.37	3.2	17.7	510
1924146		3.31	17.05	0.05	1.2	0.061	2.22	10.1	126.5	1.55	1280	4.45	1.86	3.3	26.3	560
1924147		3.24	15.45	0.05	1.6	0.042	1.74	11.9	151.0	1.64	1260	1.34	2.18	3.6	32.6	540
J924148		3.44	17.60	0.08	1.1	0.066	2.14	11.8	114.5	1.66	1210	1.75	1.B2	3.0	26.0	590
1924149		3.48	17.00	0.05	1.1	0.054	1.98	12.2	100.5	1.58	1050	1.60	1.98	3.2	24.4	600
1924150		3.53	16.50	0.07	0.9	0.059	2.01	11.7	63.8	1.54	954	2.79	1.65	3.3	30.3	570
J 824151		3.23	17.00	<0.05	1.1	0.062	2.29	9,6	107.0	1.31	1020	2.84	1.68	3.4	20.9	580
1924152		3.59	17.55	0.06	1.1	0.067	2.33	11.2	88.6	1.46	1220	2.00	1.73	3.3	26.5	580
J924153		3.46	18.00	0.06	1.1	0.061	2.27	12.0	101.5	1.41	1220	2.94	1.80	3.2	28.1	570
1824154		3.5B	16.80	0.06	0.0	0.056	2.20	12.2	51.9	1.14	901	4.20	1.98	2.8	25.2	590
JP24155		3.75	17.95	0.06	0.9	0.062	2.20	9.3	94.2	1.34	1100	4.30	2.04	3.2	18.2	730
J924156		4.07	18.05	0.06	1.0	0.047	1.84	10.1	78.4	1.69	1160	2.04	2.42	3.3	26.5	760
1924157		3.31	18.15	0.06	1.1	0.061	2.00	12.9	66.6	1.32	1030	4.10	2.22	3.2	29.4	580
J924158		3.24	17.50	0.06	1.1	0.056	2.13	11.3	68.3	1.23	987	3.16	2.13	3.0	20.7	570
1924159		3.15	17.30	0.07	1.0	0.060	2.14	8.2	87.7	1.18	1040	2.96	1.96	3.1	22.6	530
1924160		3.09	16.60	<0.05	1.1	0.053	1.166	10.7	77.5	1.29	1000	3.01	2.10	2.9	24.5	570
1924161		3.07	16.15	0.05	0.9	0.056	1.98	9.3	98.0	1.18	1000	8.27	1.99	2.8	24.0	520
1924162		3.40	16.85	0.05	0.9	0.057	1.93	7.8	57.7	1.29	897	4.13	1.63	3.0	22.7	640
1924163		4.87	20.4	0.10	3.9	0.048	0.25	13.0	69.2	2.16	927	4.17	1.84	4.5	38.4	1250
1924164		3.30	17.00	0.07	1.2	0.117	2.09	9.4	36.3	1.45	1420	3.88	1.85	3.2	22.4	550
1924165		3.61	17.00	<0.05	1.1	0,072	1.98	11.6	56.0	1.44	1200	2.70	2.07	3.2	22.4	580
1924166		3.58	17.85	0.05	1.0	0.084	1.92	7.7	64.6	1.41	1060	3.60	2.24	3.3	25.1	610
1924167		3,83	17.45	0.15	1.1	0.091	1.90	9.2	52.3	1.50	971	5.18	1.84	3.2	27.7	640

ALS Canada Ltd.
2103 Dollarton Hwy
North Vancouver BC V7H OA7
Phone: 6049840221 Fax: 6049840218 www.alsglobal.com
To: WALLBRIDGE MINING COMPANY LTD.
129 FIELDING RD
LIVELY ON P3Y 1L7
Page: 4-C
Total \# Pages: 5 (A - D)
Plus Appendix Pages
Finalized Date: 31-AUG-2010
Account: RLH
Project: 677

Sample Description	Method Analyte Units LOR	$\begin{gathered} \text { ME-MSE1 } \\ \text { Pb } \\ \text { Ppm } \\ 0.5 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { Rb } \\ \text { ppm } \\ 0.1 \end{gathered}$	$\begin{gathered} \text { ME-M561 } \\ \text { Re } \\ \text { Ppm } \\ 0.002 \end{gathered}$	$\begin{gathered} \text { ME-MSE1 } \\ \text { s } \\ \times \\ 0.01 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { Sb } \\ \text { ppm } \\ 0.05 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { Sc } \\ \text { Ppm } \\ 0.1 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { Se } \\ \text { Ppm } \\ 1 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { Sn } \\ \text { Ppm } \\ 0.2 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \mathrm{Sr} \\ \mathrm{PPm} \\ 0.2 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \mathrm{ra} \\ \mathrm{ppm} \\ 0.05 \end{gathered}$	$\begin{gathered} \text { ME-M561 } \\ \text { Te } \\ \text { ppm } \\ 0.05 \end{gathered}$	$\begin{gathered} \text { ME-MSE1 } \\ \text { Th } \\ \text { ppm } \\ 0.2 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { T1 } \\ \% \\ \text { B.005 } \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { II } \\ \text { ppm } \\ 0.02 \end{gathered}$	ME-MS61 u ppm 0.1
1924128		684	125.5	0.005	0.48	34.9	10.1	2	1.1	77.4	0.30	0.11	7.2	0.205	1.60	3.7
1924129		226	114.5	0.003	0.78	14.10	13.3	2	1.1	100.5	0.28	0.12	4.8	0.270	1.62	2.3
1924130		210	100.5	0.005	0.52	18.20	12.5	2	1.0	69.2	0.29	0.12	4.8	0.255	1.54	2.4
1924131		80.6	99.0	0.003	0.57	21.2	10.9	1	1.0	99.2	0.27	0.12	4.5	0.244	1.52	1.9
1924132		139.0	97.2	0.003	0.85	13.05	10.2	2	1.1	80.6	0.25	0.14	4.6	0.235	1.52	1.9
1924133		173.0	98.1	0.003	0.76	11.70	11.7	2	1.0	179.5	0.27	0.13	4.7	0.255	1.53	2.1
1924134		119.5	98.3	0.003	0.78	9.87	11.2	2	1.1	114.5	0.27	0.12	4.2	0.264	1.59	1.9
1924135		97.9	89.6	0.002	0.65	13.80	11.0	1	1.1	132.0	0.28	0,10	4.3	0.244	1.36	1.7
J924136		129.0	104.5	0.004	1.13	5.42	12.7	3	1.3	141.0	0.26	0.19	4.0	0.267	1.56	1.6
1924137		106.5	86.2	0.003	0.72	6,59	11.9	2	1.0	127.0	0.28	0.14	4.5	0.258	1.45	1.9
5924138		71.8	75.6	0.002	0.47	5.90	10.9	2	1.0	116.5	0.31	0.08	4.6	0.256	1.53	2.1
1924139		14.0	10.7	<0.002	0.08	7.29	13.7	2	0.8	809	0.26	<0.05	2.3	0.441	0.28	1.0
1924140		102.0	93.2	0.003	0.74	7.83	12.5	2	1.1	202	0.25	0.13	4.4	0.262	1.49	1.8
1924147		57.4	96.4	0.003	0.68	6.80	11.2	2	1.1	170.0	0.25	0.09	5.3	0.236	1.44	2.2
1924142		84.9	83.9	0.004	0.90	10.60	12.1	2	1.1	169.5	0.25	0.14	4.3	0.249	1.37	1.8
1924143		86.6	90.2	0.009	1.47	6.67	11.9	2	1.6	172.0	0.23	0.14	5.0	0.246	1.45	2,0
1924144		75.5	77.1	0.007	1.20	5.44	12.9	2	1.3	152.5	0.23	0.17	4.2	0.240	1.44	1.7
1924145		176.5	85.5	0,005	1,56	8.53	10.4	3	1.2	156.0	0.28	0.16	6.0	0.227	1.53	2.6
J924146		174.5	64.7	0.004	0.76	9.71	11.6	2	1.0	189.0	0.28	0.10	4.4	0.241	1.36	2.1
1924147		45.7	55.6	0.002	0.51	6.48	10.7	1	0.9	219	0.31	0.06	5.2	0.239	1.04	2.4
J924148		91.2	67.4	0.005	1.06	4.97	13.4	3	1.1	229	0.25	0.15	4.2	0.251	1.38	1.7
J 924149		83,5	68.5	0.003	0.98	4.73	14.1	2	1.0	182.5	0.26	0.19	4.1	0.282	1.29	1.7
1924150		246	66.7	0.005	1.35	4.13	12.7	2	1.1	165.5	0.25	0.21	3.8	0.283	1.28	1.6
J924151		80.0	84.2	0.005	1.12	3.40	12.1	2	1.1	180.5	0.27	0.16	3,9	0.268	1.47	1.7
J 24152		98.8	71.4	0.005	1.16	3.68	13.2	2	1.1	163.5	0.26	0.20	4.3	0.267	1.50	1.8
1924153		77.3	72.3	0.004	0.90	3.56	13.3	2	1.2	143.5	0.25	0.15	4.6	0.258	1.39	1.9
J924154		87.4	70.5	0.005	2.10	2.88	11.3	4	1.7	195.0	0.22	0.25	4.7	0.230	1.14	1.7
1924155		54.0	72.3	0.002	0.94	3.02	14.6	2	1.1	168.5	0.22	0.22	2.7	0.341	1.28	1.5
1924156		25.5	58.9	<0.002	0.51	2.63	14.5	2	1.0	188.0	0.22	0.23	2.2	0.342	1.05	1.1
1924157		69.3	86.0	0.003	0.87	5.32	13.0	2	1.2	170.0	0.26	0.16	5.0	0.258	1.21	2.3
1924158		55.7	60.7	0.003	0.73	4.71	11.6	2	1.1	144.5	0.25	0.13	5.5	0.242	1.21	2.7
1924159		44.0	52.1	0.002	0.68	7.11	10.4	2	1.1	133.5	0.25	0.10	3.8	0.237	1.22	1.8
1924160		58.2	56.3	0.003	0.68	8.52	12.0	1	1.0	171.0	0.23	0.10	4.3	0.247	1.10	2.0
1924161		54.0	51.8	0.007	0.84	8.34	10.6	2	1.0	152.5	0.24	0.14	4.3	0.230	1.14	2.0
1924162		108.5	46.8	0.008	1.55	3.17	12.4	2	1.4	159.0	0.22	0.20	3.2	0.279	1.06	1.3
1924763		7.8	2.3	<0.002	0.13	4.73	13.8	1	0.9	677	0.27	<0.05	2.2	0.470	0.10	0.9
J924764		53.4	57.2	0.004	0.99	3.36	11.0	2	1.1	189.5	0.28	0.14	4.4	0.237	1.25	2.0
1924165		47.5	59.0	0.004	0.94	3.67	12.0	2	1.1	179.0	0.26	0.15	4.9	0.260	1.17	2.0
1924166		57.7	38.0	0.003	1.28	7.35	11.7	2	1.2	203	0.28	0.18	3.4	0.274	1.14	1.7
1924167		113.5	55.9	0.003	1.47	4.04	14.6	2	1.1	185.5	0.24	0.40	3.2	0.325	1.10	1.3

2103 Dollarton Hwy
North Vantouver BC V7H 0A7
Phone: 6049840221 Fax: 6049840218 www.alsglobal.com

To: WALLBRIDGE MINING COMPANY LTD.
129 FIELDING RD
LIVELY ON P3Y 1 LT

Page: 4 - D
Total \# Pages: 5 (A - D) Plus Appendix Pages Finalized Date: 31-AUG-2010 Account: RLH

Project: 677
CERTIFICATE OF ANALYSIS VA10105033

Sample Description	Method Analyte Units LOR	$\begin{gathered} \text { ME-MS61 } \\ V \\ \text { Ppm } \\ 1 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ W \\ \text { Ppm } \\ 0.1 \end{gathered}$	$\begin{gathered} \text { ME-MS67 } \\ y \\ \text { Ppm } \\ 0.1 \end{gathered}$	$\begin{gathered} \text { ME-MSf1 } \\ \text { Zn } \\ \mathrm{ppm} \\ 2 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { Zr } \\ \text { ppm } \\ 0.5 \end{gathered}$	$\begin{gathered} \text { Ag-OG62 } \\ \text { Ag } \\ \text { ppm } \\ 1 \end{gathered}$	$\begin{gathered} \text { Pb-OGE2 } \\ \mathrm{Pb} \\ \% \\ 0.001 \end{gathered}$
1924128		67	1.9	9.7	263	46.1		
1924129		83	2.2	10.4	772	37.7		
J924130		88	1.9	9.7	559	43.1		
J924131		84	1.7	9.7	231	42.7		
1924132		93	1.7	9.0	441	34.9		
1924133		93	1.6	10.0	506	42.0		
1924134		96	1.6	9.5	343	39.7		
1924135		90	1.5	9.4	342	38.7		
1924136		106	1.5	11.6	256	31.0		
1924137		82	1.3	11.0	358	39.9		
1924138		87	1.6	11.0	215	51.0		
1924139		128	1.0	14.1	115	137.5		
1924140		97	1.6	10.7	252	40.0		
1924141		91	1.5	11.8	248	33.8		
1924142		97	1.8	10.4	287	33.7		
J 924143		99	3.5	11.3	203	23.7		
1924144		103	2.1	11.7	237	28.6		
J924145		89	1.5	11.0	350	35.5		
1924146		90	1.4	11.8	476	39.4		
1924147		78	1.0	11.9	303	54.0		
J924148		106	1.1	12.8	316	34.3		
1924149		104	1.3	11.6	300	34.1		
1924150		100	1.6	10.5	329	29.5		
1924151		97	1.7	10.6	272	36.6		
1924152		103	1.8	12.1	286	34.8		
1924153		96	2.1	11.6	326	35.0		
1924154		101	2.1	10.4	328	31.4		
1924155		113	2.6	13.3	335	25.7		
9924156		112	1.9	12.3	345	31.5		
\$924157		94	2.1	12.2	267	35.8		
1924158		92	1.8	11.2	260	33.7		
1924159		87	1.8	9.8	217	31.9		
1924160		89	1.8	10.8	237	35.1		
1924161		87	1.8	10.3	202	30.3		
1924362		102	1.7	9.5	269	26.7		
1924163		137	2.1	14.6	110	155.0		
1924164		87	2.0	11.0	226	38.8		
J 924165		96	2.1	11.9	249	33.3		
J924166		102	2.4	10.3	241	31.8		
J924167		115	1.7	12.0	353	30.0		

***** See Appendix Page for comments regarding this certificate *****

TO: WALLBRIDGE MINING COMPANY LTD.

Project: 677

Sample Description	Method Analyte Units LOR	WEI-21 Recvd Wt. kg $0,02$	$\begin{gathered} \mathrm{Au}-[C P Z 7 \\ \mathrm{Au} \\ \mathrm{ppm} \\ 0.001 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { Ag } \\ \text { PPm } \\ 0.01 \end{gathered}$	$\begin{gathered} \text { ME-MSE1 } \\ \mathrm{Al} \\ \neq \\ 0.01 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { AS } \\ \text { PPm } \\ 0.2 \end{gathered}$	$\begin{gathered} \text { ME-MSE1 } \\ \text { Ba } \\ \text { Ppm } \\ 10 \end{gathered}$	$\begin{gathered} \text { ME-MS6\} } \\ \text { He } \\ \text { ppm } \\ 0.05 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \mathrm{Bi} \\ \mathrm{PPm} \\ 0.01 \end{gathered}$	$\begin{gathered} \text { ME-MS67 } \\ \text { Ca } \\ \% \\ 0.01 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { Cd } \\ \text { ppm } \\ 0.02 \end{gathered}$	$\begin{gathered} \text { ME-M561 } \\ \mathrm{Ce} \\ \mathrm{ppm} \\ 0.01 \end{gathered}$	ME-MS61 Co ppm 0.1	ME-MS6 \uparrow Cr ppm 1	$\begin{gathered} \text { ME-MS61 } \\ \text { Cs } \\ \text { Ppm } \\ 0.05 \end{gathered}$	$\begin{gathered} \text { ME-MSE1 } \\ \text { Cu } \\ \text { ppm } \\ 0.2 \end{gathered}$
1924168		4.56	0.011	1.98	7.00	32.0	560	1.15	1.00	2.20	1.07	20.1	13.7	43	8.83	57.9
1924169		3.92	0.012	2.10	7.67	40.0	500	1.27	1.39	2.18	1.25	21.8	14.2	38	11.20	73.3
1924170		4.72	0.007	1.54	7.34	25.1	530	1.10	1.34	2.38	1.31	24.0	11.3	35	8.99	99.5
1924171		4.38	0.008	1.87	8.99	36.0	500	1.04	1.27	2.16	1.61	21.9	11.8	34	8.72	78.4
1924172		5.08	0.007	1.54	7.04	33.5	480	0.84	1.05	2.13	1.42	17.40	10.0	31	7.14	60.4
1924173		4.34	0.006	1.75	7.22	39.1	540	1.00	1,28	2.46	1.74	22.6	11.7	33	8.77	74.6
1924174		4.42	0.007	1,58	7.23	39,2	520	1.11	1.38	2.48	1.87	20.8	12.4	34	8.52	75.5
1924175		4,58	0.008	1.67	7.49	39.8	460	1,05	1,30	2.41	1.22	24.9	12.3	32	10.35	72.4
1924176		2.30	0.012	1.87	7.30	41.6	500	1.22	1.39	2.09	0.81	24.0	14.3	32	11.80	73.8
1924177		2.84	0.007	1.41	7.32	28.7	590	1.03	1.09	2.42	0.43	22.9	13.4	39	8.99	58.5
1924178		4.38	0.001	0.59	6.86	9.2	580	1.02	0.49	2.74	0.31	18.75	11.3	45	7.80	47.9
1924179		4.22	0.010	2.19	7.80	45.5	570	1.27	1.29	2.01	1.43	25.5	15.1	32	12.65	77.9
1924180		4.46	0.003	0.79	7.24	14.4	540	1.02	0.65	2.61	0.42	20.5	11.7	43	8.24	46.3
1924181		4.50	0.004	1.02	7.02	15.1	540	0.87	0.83	2.51	0.48	19.95	12.3	41	6.46	44.2
1924182		4.32	0.002	2.19	7.35	10.5	490	0.96	0.65	2.78	0.45	21.1	13.4	46	5.67	39.2
1924183		4.18	0.002	0.95	7.48	9.8	530	0.87	0.84	2.48	0.39	22.1	12.4	50	6.12	68.6
1924184		4.40	0.003	1.14	6.94	11.5	590	0.83	0.81	2.88	0.43	20.9	12.1	42	7.07	41.6

To: WALLBRIDGE MINING COMPANY LTD. 129 FIELDING RD LIVELY ON P3Y 1L7

Page: 5-B
2103 Dollarton Hwy
North Vancouver BC V7H OA7
Total \# Pages: 5 (A - D)
Plus Appendix Pages Finalized Date: 31 -AUG-2010 Account: RLH

Project: 677
minerals

Sample Description	Method Analyte Units L.OR	$\begin{gathered} \text { ME-MSE1 } \\ F e \\ \% \\ 0.01 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { Ga } \\ \text { ppm } \\ 0.05 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { Ge } \\ \text { Ppm } \\ \mathbf{0 . 0 5} \end{gathered}$	$\begin{gathered} \text { ME-MSG1 } \\ \text { Hf } \\ \text { ppm } \\ 0.1 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { In } \\ \text { Ppmm } \\ 0.005 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ K \\ \% \\ 0.01 \end{gathered}$	$\begin{gathered} \text { ME-MS } \mathrm{M} \text { 1 } \\ \text { La } \\ \text { ppm } \\ 0.5 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { Li } \\ \text { ppm } \\ 0.2 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ M_{g} \\ \% \\ 0.01 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { Mn } \\ \text { Ppm } \\ 5 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { MO } \\ \text { Ppm } \\ 0,05 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { Na } \\ \varnothing \\ 0,01 \end{gathered}$	$\begin{gathered} \text { ME-MSE1 } \\ \text { Nb } \\ \text { ppm } \\ 0.1 \end{gathered}$	$\begin{gathered} \text { ME-MS67 } \\ \mathrm{Ni} \\ \text { Ppm } \\ \mathrm{D} .2 \end{gathered}$	$\begin{gathered} M E-M S 6 \uparrow \\ P \\ \mathrm{PPm} \\ 10 \end{gathered}$
1924168		3.69	15.85	0.16	1.0	0.095	1.74	8.2	40.8	1.37	927	4.39	2.08	3.1	26.8	620
1924169		3.72	16,55	0.16	0.9	0.111	1.96	9.3	36.0	1.35	867	4.82	1.99	2.9	24.7	610
J924170		3,27	15.95	0.19	0.8	0.083	1.82	10.4	50.3	1.18	858	11.10	1.97	2.9	19.7	550
1924171		3.28	15,30	0.17	0.9	0.112	1.76	9.3	23.8	1.09	736	6.88	2.07	3.1	19.4	540
1924172		3.13	12.95	0.11	0.8	0.099	1.72	7.4	20.2	1.04	681	4.11	2.14	2.5	16.4	510
1924173		3.32	+5,80	0.16	0.9	0.119	1.76	9.8	39.0	1.11	756	4,59	2.24	3.0	18.5	540
J924174		3.47	16,10	0.17	0.9	0.125	1.79	8.9	32.0	1.05	741	5.22	2.25	3.1	20.4	550
1924175		3.29	15.85	0.17	0.8	0.116	1.72	11.2	28.9	1.08	736	4.96	2.12	2.9	19.8	550
1924176		3.30	16.15	0.15	0.8	0.122	1.72	10.4	36.8	1.07	674	7.09	2.13	2.9	22.1	540
1924177		3.45	15.80	0.16	1.0	0.087	1.72	9.8	60.9	1.19	832	4.23	2.14	3.0	24.4	550
1924178		3.16	15.60	0.16	1.1	0,062	1.67	7.7	67.8	1,26	875	2.40	2,07	3.0	23.2	520
1924179		3.13	16.50	0.16	0.8	0.109	1.88	11.4	24.7	1.01	623	7.19	2.26	2.9	20.3	570
1924180		3.50	15.50	0.18	1.1	0.071	1.64	8.6	105.5	1.38	963	2.76	2.14	3.1	23.6	580
1924181		3.25	15.75	0.17	1.1	0.088	1.58	8.3	63.6	1.27	907	5.75	2.28	3.0	24.2	570
1924182		3.88	16.00	0.17	1.2	0.068	1.42	8.5	79.3	1.58	1060	2.41	2.54	3.3	27.2	650
1924183		3.47	16.35	0.19	1.2	0.065	1.56	9.3	66.9	1.34	881	1.89	2.45	3.4	27.1	630
1924784		3.22	15.05	0.18	1.1	0.058	1.59	8.5	132.0	1.24	962	2.66	2.22	2.9	25.5	570

ALS Canada Led.
2103 Dollarton Hwy
North Vancouver BC V7H OA7
Phone: 6049840221 Fax: 6049840218 WWw.alsglobal.com

To: WALLBRIDGE MINING COMPANY LTD. 129 FIELDING RD
LIVELY ON P3Y 1L7

Page: 5-C
Total \# Pages: 5 ($A-D$) Plus Appendix Pages Finalized Date: 31-AUG-2010 Account: RLH

Project: 677
minerals
CERTIFICATE OF ANALYSIS VA10105033

Sample Description	Method Analyte Units LOR	$\begin{gathered} \text { ME-MS61 } \\ \text { Pb } \\ \text { ppm } \\ 0.5 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { Rb } \\ \text { ppm } \\ 0.1 \end{gathered}$	$\begin{gathered} \text { ME-MS51 } \\ R e \\ \text { Ppm } \\ 0,002 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \mathrm{S} \\ \% \\ 0.01 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { Sb } \\ \text { PpIm } \\ 0.05 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { Sc } \\ \text { Ppm } \\ 0.1 \end{gathered}$	$\begin{gathered} \text { ME-MSE1 } \\ \text { Se } \\ \text { Ppm } \\ 1 \end{gathered}$	$\begin{gathered} \text { ME-M561 } \\ \text { Sn } \\ \text { Ppm } \\ \text { D. } 2 \end{gathered}$	$\begin{gathered} \text { ME.-MS61 } \\ \text { Sr } \\ \text { Ppril } \\ 0.2 \end{gathered}$	ME-MS61 Ta ppm 0.05	ME-MS61 Te ppm 0.05	$\begin{gathered} \text { ME-MS61 } \\ \text { Th } \\ \text { ppm } \\ 0.2 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ T i \\ \% \\ 0.005 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { TI } \\ \text { ppm } \\ 0.02 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { U } \\ \text { ppm } \\ 0.1 \end{gathered}$
1924168		88.6	46.7	0.006	1.62	4.80	11.8	2	1.2	231	0.24	0.32	3.2	0.280	1.02	1.3
1924169		134.0	51.7	0.007	1.89	5.14	12.0	2	1.3	216	0.24	0.40	3.7	0.266	1.16	1.6
1924170		118.5	56.6	0.009	1.48	4.18	11.4	2	1.4	226	0.24	0.31	5.1	0.230	1.08	1.9
1924171		98.2	51.1	0.010	1.67	4.34	10.5	2	1.4	209	0.25	0.34	4.4	0.239	1.03	1.8
1924172		100,5	39.4	0.006	1.79	4.16	8.8	2	1.1	219	0.20	0.31	3.3	0.240	0.85	1.5
J924173		88.3	53.1	0.007	1.91	4.58	10.9	2	1.4	237	0.26	0,37	4.5	0.249	1.06	1.8
J924174		10 B .5	48.0	0.007	2.05	4.76	10.8	3	1.5	244	0.25	0.40	4.5	0.245	1.07	1.7
1924175		106.5	55.6	0.007	1.88	4.67	11,1	3	1.3	249	0.23	0.41	5.1	0.237	1.02	2.0
1924176		83.1	48.1	0.007	1.84	4.71	11.3	2	1.3	252	0.24	0.42	4.5	0.231	1.09	2.1
1924177		51.4	46.9	0.005	1,34	4,62	11.5	2	1.3	227	0.24	0.27	4.4	0. 243	1.00	1.6
J924178		44.7	38.5	0.002	1.29	3.01	11.3	2	1.0	235	0.25	0.15	3.4	0.248	0.95	1.4
1924179		123.0	56.9	0.010	1.77	6.47	11.2	3	1.4	308	0.24	0.41	4.9	0.230	1.15	2.9
1924180		53.7	39.4	0.002	1.05	4.42	11.9	2	1.1	231	0.24	0.18	3.3	0.270	1.00	1.3
1924181		66.9	37.3	0.003	1.11	5.79	11.1	2	1.1	215	0.24	0.24	3.2	0.251	1.01	1.3
1924182		47.5	36.6	0.004	0.96	6.37	12.7	2	1.1	280	0.27	0.19	3.2	0.289	0.80	1.2
J 924183		83.4	39.8	0.004	0.91	6,00	12.5	2	1.2	247	0.27	0.24	3.7	0.284	0.87	1,5
1924184		31.9	41.1	0.002	0.90	7.72	11.3	2	1.0	224	0.24	0.24	3.7	0.246	0.87	1.5

[^5]2103 Dollarton Hwy
North Vancouver BC V7H OAT
Phone: 6049840221 fax: 6049840218 WWw.alsglobal.com

To: WALLBRIDGE MINING COMPANY LTD.

Page: Appendix 1
Total \# Appendix Pages: 1 Finalized Date: 31-AUG-2010 Account: RLH

Project: 677
CERTIFICATE OF ANALYSIS VA10105033

ME-MS6	CERTIFICATE COMMENTS
REE's may not be totally soluble in this method.	

ALS Canada Ltd.
To: WALLBRIDGE MINING COMPANY LTD.

CERTIFICATE VA10105034

Project: 677
 P.O. No.: 677100006

This report is for 100 Drill Core samples submitted to our lab in Vancouver, BC,
Canada on 3-AUG-2010.
The following have access to data associated with this certificate:

PETER ANDERSEN		
CLINTON SMYTH	BRUCE JAGO	ACCOUNTS PAYABLE

SAMPLE PREPARATION			
ALS CODE	DESCRIPTION		
WEl-21	Received Sample Weight		
LOG-22	Sample login - Rcd w/o BarCode		
CRU-31	Fine crushing $-70 \%<2 \mathrm{~mm}$		
SPL-21	Split sample - riffle splitter		
PUL-32	Pulverize 1000 g to $85 \%<75 \mathrm{um}$		
BAG-01	Bulk Master for Storage		
CRU-QC	Crushing QC Test		
PUL-QC	Puiverizing QC Test		
	ANALYTICAL PROCEDURES		
ALS CODE	DESCRIPTION		
Au-ICP21	Au 30g FA ICP-AES Finish	INSTRUMENT	
ME-MS61	4B element four acid ICP-MS	ICP-AES	

To: WALLBRIDGE MINING COMPANY LTD.
ATTN: PETER ANDERSEN
129 FIELDING RD
LIVELY ON P3Y 1L7

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

Signature:

Colin Ramshaw, Vancouver Laboratory Manager

Total \# Pages: 4 (A - D)
Plus Appendix Pages Finalized Date: 30-AUG-2010 Account: RLH

Project: 677
minerals

Sample Description	Method Analyte Units LOR	WEI-21 Recud Wt. kg 0.02	$\begin{gathered} \mathrm{Au}-\mathrm{CCP} 21 \\ \mathrm{Au} \\ \text { ppm } \\ 0.001 \end{gathered}$	$\begin{gathered} \text { ME-M561 } \\ \text { A.g } \\ \text { ppm } \\ \text { 0.01 } \end{gathered}$	$\begin{gathered} \text { ME-MS67 } \\ A 1 \\ \phi \\ 0.01 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { As } \\ \text { Ppm } \\ 0.2 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ 8 \mathrm{a} \\ \text { Ppm } \\ 10 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { Be } \\ \text { Ppit } \\ 0.05 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ B i \\ \text { pPm } \\ 0.01 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { Ca } \\ \% \\ 0.01 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { Cd } \\ \text { Ppm } \\ 0,02 \end{gathered}$	$\begin{gathered} \text { ME-MSG1 } \\ \text { Ce } \\ \text { ppm } \\ 0.01 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { Co } \\ \text { PPm } \\ 0.1 \end{gathered}$	$\begin{gathered} \text { ME-MSG1 } \\ \text { Cr } \\ \text { ppm } \\ 1 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { Cs } \\ \text { PPm } \\ 0.05 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \mathrm{Cu} \\ \text { Ppm } \\ 0.2 \end{gathered}$
J924185		1.84	0,005	1.00	6.93	14.9	570	0.91	0.87	2.86	0.45	18.65	12.6	40	10.85	64.4
1924186		4.40	0.008	0.78	7.29	4.7	800	1.02	0.62	2.57	0.36	23.3	11.7	52	7.96	21.9
J924187		4.50	<0.001	0.61	6.68	3.7	1030	1.00	0.47	2.80	0.46	20.4	8.5	47	7.18	34.5
J924188		4.42	0.002	0.49	7.25	8.2	660	1.05	0.63	2.65	0.49	24.0	12.3	42	11.20	48.1
1924189		4.14	0.003	0.59	7.03	13.1	590	0.95	0.63	2.76	0.64	21.4	12.7	42	13.90	44.1
1924190		4.86	0.006	0.75	7.24	17.6	630	1.03	0.78	2.85	0.84	22.0	14.1	40	12.20	36.7
1924191		3.76	0.009	0.62	7.15	12.0	580	1.07	0.78	2.79	0.87	21.3	13,8	44	11.00	19.6
1924192		4,34	0.009	0.54	6,77	9.8	570	1.00	0,64	2.80	0.61	18.40	12.4	42	11.20	23.3
1924193		4.10	0.006	0.41	6.88	6.9	540	0.88	0.85	2.95	0.52	19.30	13.0	50	8.09	27.0
J924194		4.90	0.011	0.58	7.48	18.0	550	1.07	0.63	2.68	0.57	21.5	13.9	42	13.95	38.1
1924195		4.16	<0.001	0.10	8.80	0.3	350	0.95	0.03	6.06	0.10	28.3	28.1	131	2.10	41.3
1924196		6.06	0.002	0.11	8.58	1.1	300	0.96	0.03	5.98	0.11	25.4	29.0	135	1.84	3.0
1924197		4.24	0.004	0.49	7.81	22.8	510	1.14	0.53	2.84	0.24	21.8	15.3	69	8.84	30.3
\$924198		3.92	0.003	0.37	7.36	9.8	410	0.96	0.47	2.92	0.21	20.4	14.4	54	7.52	20.4
1924199		4.66	0.004	0.50	7.43	14.0	440	0.97	0.60	2.67	0.27	19.40	15.6	52	7.44	26.7
1924200		4.66	0,004	0.70	7.51	10.1	620	0.92	0.58	3.09	0.28	24.4	12.4	39	7.01	46.6
1924201		3.30	0,007	1.03	7.39	11.3	570	1.04	0.68	2.78	0.33	25.6	13.7	43	6.65	50.0
1924202		3.60	0.005	0.78	7.05	9.9	640	1.01	0.78	2.31	0.15	23.3	12.3	47	6.81	40.3
1924203		3.98	0.001	0.53	7.39	6.8	600	1.01	0,58	2.78	0.16	24.5	13.1	51	6.44	34.0
1924204		4.52	0.002	0.47	7.27	8.5	530	0.90	0.57	2.81	0.16	24.9	12.8	45	6.24	24.5
J924205		4.86	0.003	0.53	7.00	6.3	530	1.06	0.68	2.51	0.13	26.1	12.2	42	6.03	56.5
1924206		4.12	0.002	0.57	7.05	7.9	510	1.06	0.63	2.43	0.19	25.2	13.0	48	6.35	35.2
1924207		4.60	0.003	0.86	7.01	10.1	500	1.02	0.81	2.21	0.26	23.1	13.3	46	8.13	57.7
192420日		4.16	0.003	0.82	7.99	14.2	520	1.23	0.52	1.30	0.37	24.8	19.2	65	17.30	29.5
1924209		3,82	0.001	1.08	7.66	10.5	630	1.34	1.02	1.57	0.33	28.6	16.6	86	13.55	30.4
1924210		4.76	<0.001	0.25	7.20	2.7	590	1.26	0.31	2.16	0.19	23.4	11.0	59	8.63	15.1
1924211		4.60	0.003	0.49	7.48	7.6	670	1.03	0.56	2.13	0.25	24.1	12.5	50	8.39	41.8
1924212		4.50	0.001	0.28	7.04	3.6	940	1.01	0.35	2.52	0.31	25.3	10.5	41	7.36	27.3
1924213		4.34	0.002	0.41	7.12	3.8	580	1.01	0.51	2.24	0.27	25.2	11.8	50	7.64	35.3
1924214		4.56	0.003	0.57	7.43	7.1	610	1.11	0.59	2.02	0.19	25.2	14.5	54	8.82	34.6
1924215		4,38	0.001	0.60	7.37	11.5	560	1.08	1.10	1.96	0.40	28.0	13.6	50	9.19	57.0
J924216		4.42	0.001	0.39	7.15	6.1	900	0.97	0.78	2.42	0.22	20.9	11.4	38	7.50	63.1
1924217		4.62	0.001	0.30	7.18	8.6	550	1.27	0.48	2.59	0.28	26.5	12.2	48	6.20	33.5
1924218		3.94	0.001	0.37	7.03	8.8	570	1.11	0.83	2.49	0.22	25.7	13.4	54	6.00	36.8
1924219		5.06	<0.001	0.10	7.09	4.4	680	1.14	0.29	2.58	0.22	25.0	11.3	48	4.48	27.9
1924220		4.36	0.001	0.93	7.27	13.0	670	1.14	1.81	1.94	0.98	26.1	13.4	46	10.35	37.7
1924221		4.30	0.002	0.58	7.69	15.0	660	1.14	1.19	1.81	0.40	27.5	13.6	46	11.80	42.5
1924222		4.52	0.001	0.39	7.25	7.2	860	1.20	0.41	2,92	0.32	22.8	13.7	52	6.88	29.8
J924223		4.22	<0.001	0.23	7.15	11.2	740	1.21	0.23	3.07	0.39	23.3	12.3	68	5.51	42.4
1924224		4.18	<0.001	0.38	7.10	9,5	670	1.13	0.33	2.44	0.22	22.2	12.4	51	6.63	44.7

***** See Appendix Page for comments regarding this certificate *****

Total \# Pages: 4 ($\mathrm{A}-\mathrm{D}$)

Project: 677
minerals

Sample Description	Method Analyte Unîts LOR	$\begin{gathered} \text { ME-MS61 } \\ \text { Fe } \\ \% \\ 0.01 \end{gathered}$	$\begin{gathered} \text { MF--MS61 } \\ \text { Ga } \\ \text { ppin } \\ 0.05 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { Ge } \\ \text { ppm } \\ 0.05 \end{gathered}$	$\begin{gathered} \text { ME-MS67 } \\ H F \\ \text { ppm } \\ 0.1 \end{gathered}$	$\begin{gathered} \text { ME-MSG1 } \\ \text { In } \\ \text { Ppm } \\ 0.005 \end{gathered}$	$\begin{gathered} \text { ME-MSE1 } \\ K \\ \% \\ 0.01 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { La } \\ \text { Ppm } \\ 0.5 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { Li } \\ \text { Ppm } \\ 0.2 \end{gathered}$	$\begin{gathered} \text { ME-MSE1 } \\ \mathrm{Mg} \\ \% \\ 0.01 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { Mn } \\ \text { PPTm } \\ \mathbf{5} \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { Mo } \\ \text { ppm } \\ 0.05 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { Na } \\ \neq \\ 0.01 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { Nb } \\ \text { ppm } \\ 0.1 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \mathrm{Ni} \\ \text { ppm } \\ 0.2 \end{gathered}$	$\begin{gathered} \text { ME-MSE1 } \\ \mathbf{P} \\ \mathrm{ppm} \\ 10 \end{gathered}$
J224185		3.26	15.95	0.18	1.1	0.069	1.80	7.8	166.5	1.11	898	3.57	2.18	3.0	22.8	550
j924186		3.23	16.40	0.17	1.7	0.049	1.95	9.8	161.5	1.23	852	1.26	1.98	3.7	35.8	600
1924187		2.62	18.40	0.16	1.9	0.035	2.10	8.7	172.0	1.05	797	0.39	1.81	3.7	24.5	560
1924188		3.02	16.05	0.18	1.4	0.054	2.01	10.4	146.0	1.19	808	2.21	1.83	3.3	26.4	570
1924189		3.24	15.90	0.18	1.2	0.060	2.09	8.9	187.0	1.27	948	2.88	1.85	3.1	24.9	580
1924190		3.31	15.70	0.16	1.2	0.077	2.45	9.1	227	1.21	1360	2.91	1.20	3.2	25.6	580
1924191		3.48	16,10	0.18	1.1	0.119	2.44	8.7	253	1.23	1740	2.68	1.20	3.2	26.6	600
1924192		3.11	15.60	0.17	1.3	0.088	2,36	7.7	217	1.19	1400	3.14	1.20	3.3	25.4	570
1924193		3.36	15.25	0.16	1.2	0.052	1.88	7.7	135.0	1.33	1080	2.03	1.73	3.0	33.7	560
1924194		3.43	16.10	0.18	1.0	0.069	1.92	8.8	94.3	1.37	1060	2.90	2.06	3.1	26.7	B30
1924195		5.16	16.45	0.23	2.8	0.051	0,60	12.0	21.6	3.15	1010	0.74	2.41	4.0	97.5	1130
1924196		5.25	16.65	0.22	2.6	0.055	0.58	10.6	18.7	3.39	975	0.75	2.41	4.0	102.0	1110
1924187		3.85	16.20	0.17	1.2	0.077	1.52	8.7	48.3	1.88	1080	1.30	2.35	3.4	33.3	740
J924198		3.79	15.40	0.19	1.0	0.061	1.33	8.0	40.2	1.63	1220	1.17	2.44	3.2	25.4	890
1924199		4,07	16.05	0.19	0.9	0.060	1.44	7.6	53.5	1.71	1140	2,67	2.30	3.0	24.0	730
J924200		3.37	16.20	0,19	1.2	0.060	1.62	10.3	38.4	1.35	999	2.15	2,22	3.2	23.3	650
1924201		3.57	18.15	0.14	1.2	0.058	1.46	11.0	72.4	1.57	917	2.37	2.29	3.4	23.5	650
1924202		3.11	17.40	0.10	1.3	0.052	1.55	9.9	43.7	1.32	707	2.92	2.23	3.5	26.0	590
1924203		3.46	17.75	0.13	1.4	0.051	1.49	10.5	58.3	1.51	844	2.13	2.31	3.6	26.1	630
1924204		3.52	17.20	0.14	1.1	0.081	1.35	11.1	52.8	1.54	871	2.71	2.39	3.4	22.5	650
1924205		3.25	17.25	0.14	1.4	0.056	1,38	11.4	62.2	1.44	767	1.88	2.21	3.6	22.4	610
1924206		3.34	17.55	0.14	1.4	0.055	1.37	10.9	76.5	1.55	830	2,67	2.28	3.6	25.1	610
J924207		3.30	17.45	0.14	1.3	0.054	1.40	9.8	78.0	1.58	818	4.24	2.15	3.5	24.0	590
1924208		4.38	18.65	0.16	1.6	0.075	2.05	11.3	89.2	1.98	884	3,55	0.98	3.8	30.1	820
1924209		3.57	19,10	0.15	1.4	0.059	1.85	12.7	82.9	1.59	758	4.63	1.48	4.1	31.5	650
J924210		2.99	18.45	0.11	1.3	0.039	$\uparrow .71$	9.6	93.1	1.64	780	2.05	1.22	3.5	33.7	600
1924211		3.05	17.30	0.13	1.5	0.042	1.63	10.5	171.5	9.30	745	7.35	1.74	3.6	28.1	570
J924212		3.05	17.60	0.18	2.1	0.033	1.65	10.8	140.0	1.51	906	3.18	1.74	3.8	26.2	520
1924213		2.99	17.60	0.15	2.0	0.028	1.55	10.9	213	1.40	790	3.75	1.83	3.8	27.6	550
J924214		3.28	17.75	0.14	1.9	0.037	1,52	10.8	110.0	1.45	725	3.65	2.02	4.7	30,8	690
J924215		3.26	18.15	0.14	1.6	0.054	1.60	12.9	59.5	1.32	749	4.55	2.17	4.0	27.0	580
1924216		3.00	17.45	0.14	1.4	0.059	1.82	8.8	$68 . \mathrm{D}$	1.27	801	3.41	2.01	3.7	20.0	530
1924217		3.05	18.25	0.16	$\uparrow .8$	0.048	1.33	11.7	72.9	1.41	862	1.84	2.23	4.0	26.4	570
J924218		3.26	17.65	0.14	1.4	0,057	1.34	11.3	101.5	1.67	930	2.95	2.16	3.7	27.4	590
1924219		3.05	17.50	0.16	1.8	0.039	1.26	11.0	101.5	1.51	913	5.01	2.42	3.7	28.4	660
J924220		3.24	18.45	0.14	1.5	0,176	1.76	11.2	46.6	1.47	931	6.49	1.93	4.2	25.5	610
1924221		3.50	18.95	0.16	1.4	0.122	1.82	11.9	39.6	1.57	1020	5.24	1.83	4.1	24.9	630
J924222		3.14	17.60	0.15	1.8	0.037	1.37	9.9	46.2	1.42	1130	3.50	2.21	3.8	29,1	570
1924223		3.24	17.10	0.15	1.8	0.044	1.17	10.2	122.0	1.61	1120	0.81	2.29	3.8	37.6	550
1924224		3.05	17.20	0.15	1.9	0.046	1.41	9.9	74.1	1,37	881	1.49	2.23	3.8	30.7	580

Total \# Pages: 4 ($\mathrm{A}-\mathrm{D}$)
Plus Appendix Pages Finalized Date: 30-AUG-2010

Project: 677
minerals

									CERTIFICATE OF ANALYSIS					VA10105034		
Sample Description	Method Analyte Units LOR	$\begin{gathered} \text { ME-MS61 } \\ \text { Pb } \\ \text { Ppm } \\ 0.5 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { Rb } \\ \text { ppm } \\ 0.1 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \operatorname{Re} \\ \mathrm{ppm} \\ 0.002 \end{gathered}$	$\begin{gathered} \text { ME-MSE1 } \\ \mathrm{S} \\ \% \\ 0.01 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { Sb } \\ \text { ppm } \\ 0.05 \end{gathered}$	$\begin{gathered} \text { ME-MSE1 } \\ \text { Sc } \\ \text { ppm } \\ 0.1 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { Se } \\ \text { ppm } \\ 1 \end{gathered}$	$\begin{gathered} \text { ME-MSB1 } \\ \text { Sn } \\ \text { Pprn } \\ 0.2 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { Sr } \\ \text { Ppm } \\ 0.2 \end{gathered}$	$\begin{gathered} \text { ME-MSG1 } \\ \mathrm{Ta} \\ \text { ppm } \\ \text { D. } 05 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { Te } \\ \text { Ppm } \\ 0.05 \end{gathered}$	$\begin{gathered} \text { ME-MSG1 } \\ \text { Th } \\ \text { ppm } \\ 0.2 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \mathrm{Ti} \\ \% \\ 0.005 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { TI } \\ \text { ppm } \\ 0.02 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \vdots \\ \text { ppm } \\ 0.1 \end{gathered}$
J924185		32.3	45.1	0.004	1.14	5.56	11.1	2	1.2	225	0.25	0.28	3.6	0.258	0.99	1.4
J924186		35.2	53.6	0.002	0.55	3.11	11.5	2	1.0	244	0.30	0.29	5.6	0.264	1.08	2.0
1924187		26.9	46.0	<0,002	0.25	5.66	9.6	1	0.9	285	0.33	0.11	4.2	0.233	1.22	2.0
1924188		25.8	55.3	0.003	0.77	4.73	11.6	2	1.0	210	0.27	0.18	4.6	0.244	1.13	1.8
1924189		20.3	53.4	0.003	0.81	5.59	11.7	2	1.1	186.0	0.25	0.19	3.4	0.261	1,22	1.4
5924190		23.3	63.4	0.003	0.98	10.20	12.1	2	t. 1	166.5	0.26	0.21	3.7	0.268	1.36	1.6
1924191		26.6	62.6	0,003	0.98	5.33	13.1	2	1.1	116.0	0.26	0.20	3.3	0,276	1.44	1.4
1624192		23.4	56.3	0.003	0.87	4.99	11.5	2	1.0	126.5	0.27	0.17	3,3	0.266	1.37	1.5
1924193		21.7	41.8	0.002	0.70	4.47	11.4	2	0.8	186.0	0.25	0.13	3.4	0.245	1.10 1.15	1.4
1924194		30.2	45.3	0.004	0.70	4.55	12.4	2	1.0	189.0	0.24	0.19	3.4	0.273	1.15	1.3
J924195		6.1	6.6	40.002	0.03	1.95	21.4	2	0.8	769	0.22	<0.05	1.3	0.565	0.05	0.6
1924196		7.4	4.0	<0.002	0.03	1.86	20.8	2	0.8	786	0.23	<0.05	1.1	0.569	0.06	0.5
1924197		45.0	39.9	0.002	0.59	3.75	14.5	2	1.0	309	0.25	0.16	2.7	0.343	0.84	1.1
J924198		37.0	37.2	0.002	0,87	2.81	14.4	2	0.9	235	0.23	0.19	2.1	0.317	0.79	0.8
J924199		27.8	37.5	0.002	0.99	3.17	15.0	2	0.9	216	0.21	0.19	2.0	0.336	0.87	0.8
1924200		39.6	48.8	0.004	0.93	4.41	13.0	2	1.1	285	0.25	0.18	3.8	0.280	0.89	1.5
1924201		30.0	42.7	0.003	0.80	9.88	14.0	2	1.1	231	0.24	0.20	3.8	0.301	0.87	1.5
1924202		44.0	38.3	0.005	0.85	3.92	12.0	2	1.1	353	0.26	0.21	3.9	0.267	0.62	1.6
1924203		22.6	41.1	0.002	0.77	3.53	13.3	2	1.0	275	0.26	0.15	4.2	0.304	0.85	1.6
1924204		14.0	41.3	0.003	0.92	3.34	13.6	2	1.1	276	0.23	0.21	3.6	0.311	0.77	1.4
1924205		22.1	39.3	0.002	0.90	3.42	12.4	2	1.1	329	0.26	0.21	4.5	0.291	0.78	1.9
J924206		20.1	38.5	0.003	0.90	4.11	12.8	2	1.1	282	0.25	0.22	4.3	0.294	0.74	1.8
1924207		35.4	36.0	0.003	1.04	5.95	12.8	3	1.1	263	0.25	0.24	3.8	0.298	0.78	1.7
1924208		124.0	56.4	0.004	2.85	2.78	17.8	3	1.0	174.5	0.26	0.57	2.6	0.408	1.10	1.2
1924209		65.2	53.1	0.012	1.48	3.80	14.6	4	1.3	223	0.29	0,53	3.7	0.323	1.19	1.7
1924210		18.3	34.4	0.002	0.71	3.37	11.8	2	1.5	247	0.27	0.07	4.0	0.274	1.03	1.7
1924211		21.1	38.0	0.178	1.16	2.64	11.6	3	1.5	322	0.28	0.17	4.8	0.283	1.01	2.2
1924212		13.4	35.4	0.016	0.58	2.62	10.8	2	1.3	283	0.33	0.13	6.1	0.246	1.17	2.7
1924213		18.7	35.4	0.012	0.75	2.22	11.5	2	1.3	261	0.31	0.17	5.2	0.271	1.29	2.3
1924214		32.9	35.2	0.015	0.97	2.96	12.2	3	1.4	365	0.35	0.18	4.8	0.329	0.94	2.1
1924215		53.0	48.2	0.010	1.36	3.17	12.1	3	1.3	333	0.31	0.24	5.8	0.284	1.05	2.6
1924216		20.1	40.9	0.005	0.98	3.03	10.5	2	1.2	278	0.29	0.19	4.5	0.258	1.01	2.1
1924217		21.2	32.6	0.002	0.71	3.67	11.4	2	1.1	331	0.31	0.15	5.4	0.268	0.71	2.5
1924218		35.0	33.3	0.003	0.82	3.45	13.1	2	1.0	305	0.27	0.15	4.5	0.300	0.72	2.0
J924219		12.3	29.9	0.002	0.43	3.69	11.4	2	0.9	302	0.29	0.09	5.6	0.260	0.56	2.6
J924220		116.5	40.8	0.002	1.08	2.49	12.0	2	1.4	252	0.31	0.28	4.3	0.300	1.38	1.9
1924221		113.5	47.6	0.003	1.37	2.40	12.9	3	1.1	270	0.29	0.32	4.3	0.307	1.40	1.8
J924222		37.5	29.5	0.002	0.75	3.48	12.4	2	1.0	320	0.29	0.13	4.6	0.273	0.68	2.1
1924223		26.3	27.5	<0.002	0.54	6.05	12.1	1	1.0	433	0.32	0.08	4.8	0.264	0,80	2.4
1924224		47.6	33.6	0.002	0.83	4.14	10.4	1	1.2	309	0.33	0.17	4.8	0.253	0.71	2.4

**** See Appendix Page for comments regarding this certificate *****

ALS Canada Ltd.
2103 Dollarton Hwy
North Vancouver BC V7H OA7
Phone: 6049840221 Fax: 6049840218 www.alsglobal.com

To: WALLBRIDGE MINING COMPANY LTD.

Page: 2 - D
Total \# Pages: 4 ($A-D$) Plus Appendix Pages Finalized Date: 30-AUG-2010

Project: 677
CERTIFICATE OF ANALYSIS VA10105034

Sample Description	Method Analyte Units LOR	$\begin{gathered} \text { ME-MS61 } \\ V \\ \text { Ppm } \\ 1 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ w \\ \text { ppm } \\ 0.1 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ Y \\ \text { ppm } \\ 0.1 \end{gathered}$	$\begin{gathered} \text { ME-MSE1 } \\ \mathrm{ZH} \\ \mathrm{Ppm} \\ 2 \end{gathered}$	ME-MS67 2r Ppm 0.5
1924185		92	1.4	10.0	161	33.1
1924186		89	1.1	10.4	187	55.1
1924187		80	1.0	8.3	147	60.1
1924188		92	1.3	10.3	170	44.0
1924189		95	1.8	9.9	170	35.6
1924190		96	2.3	10.3	152	33.6
J924191		102	2.5	10.4	154	32.2
1924192		94	1.7	10.0	160	39.8
1924193		94	1.2	9.1	212	36.3
1924194		103	1.4	10.4	232	29.3
J924195		173	0.2	17.2	77	98.5
1924196		176	0.2	16.1	81	96.0
1924197		124	1.2	11.3	218	38.7
J924198		115	1.2	11.1	255	27.3
J924199		122	1.3	10.6	248	23,8
1924200		102	1.0	11.3	216	34.9
1924201		103	1.3	12.4	200	35.7
J924202		95	1.0	10.2	183	41.0
1924203		99	1.1	12.3	195	43.2
J924204		103	1.3	12.2	177	34.1
J924205		97	1.2	11.8	167	40.6
1924206		101	1.3	12.1	173	43.4
1924207		102	1.2	10.9	166	39.0
1924208		144	1.0	11.8	196	50,1
1924209		114	1.0	12.1	173	42.9
1924210		101	1.2	9.7	171	41.4
1924211		93	0.9	11.2	132	48.0
1924212		89	0.8	12.3	134	85.7
1924213		93	1.1	11.4	130	60.1
1924214		101	1.0	11.4	145	62.1
1924215		94	1.3	12,1	165	49.0
1924216		88	1.5	10.3	134	40.0
1924217		88	1.3	12.3	477	58.2
J924218		99	1.2	11.8	187	44.1
J924219		87	1.2	12.1	174	54.7
1924220		97	1.5	10.0	195	48.1
1924221		100	1.5	10.9	198	42.9
1924222		91	1.0	17.7	206	55.3
1924223		90	1.0	11.1	213	57.0
1924224		67	1.0	10.1	189	58.8

${ }^{* * * * *}$ See Appendix Page for comments regarding this certificate *****

ALS Cbnacia Ltd.
To: WALLBRIDGE MINING COMPANY LTD.
129 FIELDING RD
LIVELY ON P3Y 1L7

Project: 677
minerals
North Vancouver BC V7H OA7
Phone: 6049840221 Fax: 6049840218 www.alsglobal.com

Sample Description	Method Analyte Units LOR	WEI-21 Recvd Wt. kg 0,02	$\begin{gathered} \text { Au-ICP21 } \\ \text { Au } \\ \text { Pprm } \\ \text { D,007 } \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { Ag } \\ \text { ppm } \\ 0.01 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { AI } \\ \varnothing \\ 0.01 \end{gathered}$	ME-MS61 As ppm 0.2	$\begin{gathered} \text { ME-MS61 } \\ \text { Ba } \\ \text { Pptn } \\ 10 \end{gathered}$	$\begin{gathered} \text { ME-MS6T } \\ \text { Be } \\ \text { ppm } \\ 0.05 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { Bi } \\ \text { Pptn } \\ 0.01 \end{gathered}$	$\begin{gathered} \text { ME-MSE1 } \\ \text { Ca } \\ \% \\ 0.01 \end{gathered}$	ME-MS61 Cd ppm 0.02	$\begin{gathered} \text { ME-MS61 } \\ \text { Ce } \\ \text { ppm } \\ \text { 0.01 } \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { Co } \\ \text { PPTn } \\ 0.1 \end{gathered}$	ME-MS6 1 Cr ppm 1	$\begin{gathered} \text { ME-MS61 } \\ \text { Cs } \\ \text { Ppm } \\ 0.05 \end{gathered}$	$\begin{gathered} \text { ME-MSG1 } \\ \text { Cu } \\ \text { ppm } \\ 0.2 \end{gathered}$
1924225		4.54	<0.001	0.32	6.81	6.2	870	1.08	0.31	2.65	0.25	20.8	10.3	46	5.69	56.4
1924226		4.36	0.001	0.21	7.06	5.4	710	1.00	0.26	3.19	0.23	21.7	10.8	52	5.16	30.6
1924227		4.76	0.002	0.21	6.97	11.1	840	0.92	0.28	3.43	0.14	23.1	9.2	45	5.50	19.3
1924228		5.02	0.002	0.39	7.41	13.6	790	0.94	0.32	2.75	0.27	24.1	12.1	44	6.85	30.0
1924229		5.00	0.003	0,35	6,87	7.7	540	0.93	0.32	2.38	0.39	21.8	11.8	53	4.87	19,3
1924230		3.42	0.003	0.28	6.94	8.1	430	0.74	0.18	2.57	0.17	19.70	9.8	54	3.90	14.0
1924231		4.30	0.011	0.54	7.15	16,5	510	0.81	0.37	2.91	0,37	23.2	13.6	57	7.03	29.2
1924232		4,54	0.013	0.44	7,37	59.2	540	0,86	0.33	2.91	0.99	21.8	18.9	52	17.10	28.4
1924233		4.76	0.014	1.34	7.40	49.6	520	0.96	1.14	2.72	2.44	19.40	18.6	57	22.5	64.0
1924234		4.00	0.030	1,B5	7.41	63.8	500	1.02	1.82	2.26	3.69	24.2	16.4	61	14.70	52.1
1924235		3.92	0.027	2.23	7.57	85.8	500	1.17	2.54	2.23	3.93	23.1	17.0	65	15.65	58.3
1924236		4.54	0.005	0.41	7.81	20.9	460	1.15	0.50	2.62	0.13	23.6	15.4	44	13.40	38.8
1924237		4.18	0.004	0.23	B. 43	24.7	350	1.28	0.22	4.11	0.25	30.5	23.8	23	10.40	35.7
1924238		4.42	0.001	0.24	7.19	12.8	460	0.72	0.38	2.68	0.14	21.7	13.5	52	9,69	23.6
1924239		4,00	0.002	0.21	7.31	10.7	520	0.76	0.39	2.81	0.18	22.5	13.9	33	11.30	27.4
1924240		4.20	0.003	0,14	7.43	7.0	520	0.74	0.19	2.95	0.17	23.7	13.9	27	10.65	21.3
1924241		4.46	0.002	0.46	7.33	32.9	410	0.88	0.39	2.74	0.42	28.0	17.4	98	17.50	30.7
1024242		4.26	0.008	0.44	7.23	10.9	710	0,89	0.85	2.74	0.26	23.5	11,0	35	15.90	45.0
1924243		3,58	0.006	0.58	7.75	14.1	700	1.18	0.37	1,33	0.23	29.2	17,3	91	22.4	52.5
1924244		3.52	0.004	0.77	7.51	8.6	670	1.12	1.68	2.21	0.23	29.1	14.9	81	16.45	29.7
1924245		4.30	0.004	0.86	7.36	12.4	550	1.09	1.31	2.54	0.31	26.1	18.8	74	14.75	33.8
J924246		5.26	0.003	0.84	7.16	16,3	540	1.22	0,91	2.14	0.36	25.3	17.5	68	15.10	38.9
1924247		4.22	<0.001	0.40	7.32	15.3	640	1.31	0.54	1.82	0.33	27.5	11.1	29	14.40	25.3
1924248		4.72	0,001	0.29	7.44	18.1	810	1.34	0,36	1.50	0.15	29.4	9.9	25	13.65	1 B .5
1924249		4.00	<0.001	0.21	7.25	15.5	700	1.14	0.26	1.79	0.16	26.4	9.6	25	10.70	18.7
1924250		3.94	0.001	0.18	7.74	15.9	800	1.08	0.44	2.07	0.14	27.2	11.0	26	11.05	24.0
1924251		2.52	0.001	0.14	6.84	8.2	820	0.00	0.30	3.15	0.24	21.8	9.7	27	6.23	13.4
J924252		4.46	$<0,001$	0.11	7.18	6.2	820	0.99	0.21	2.90	0.25	27.3	9.9	28	7.24	20.5
J924253		4.20	0.001	0.20	7.09	8.1	830	0.80	0.25	2.70	0.33	26.3	10.7	23	5.95	18.0
J924254		3.32	<0.001	0.15	7.07	10.4	870	0.80	0.16	2.49	0.22	27.6	9.5	25	6.71	20.3
J924255		4.98	0.001	0,28	7.03	22.5	640	1.14	0.18	2.71	0.24	24.1	9.3	25	14.80	43.7
J924256		4.48	0.001	0.30	7.28	19.9	600	1.05	0.07	2.40	0.29	28.1	8.7	23	17.65	22.5
1924257		4.22	<0.001	0.22	7.23	19.0	590	1.18	0.03	3.16	0.39	27.2	8.8	21	20.7	15.0
J924258		4.80	0.003	0.29	7.53	13.8	660	0.95	0,32	3.08	0.34	26.0	11.6	34	14.80	19.9
1924259		2.02	0.001	0.62	7.49	20.8	640	0,88	0.70	3.38	0.57	26.0	13.2	23	11.50	25.3
1924260		5.08	0.001	2.63	7.34	56.9	480	0.89	4.91	2.08	4.30	20.5	16.7	26	21.3	34.1
1924261		3.10	0.002	1.72	7.11	53.3	150	0.61	3.38	3.20	13.95	20.4	15.2	9	15.60	18.5
1924262		4.82	0.001	0.55	6.92	43.2	260	0.46	1.58	3.91	0.32	7.27	11.7	11	16.55	9.4
1924263		3.56	<0.001	0.47	8.46	32.3	440	0.68	0.52	0.73	0.14	25.9	16.5	25	15.55	25.3
1924264		4.02	<0.001	0.20	7.73	10.8	540	0.65	0.42	2.26	0.10	20,6	15.2	17	8.45	19.8

Project: 677

Sample Description	Method Analyte Units LOR	ME-MS61 Fe \% 0.01	$\begin{gathered} \text { ME-MS61 } \\ \text { Ga } \\ \text { PPm } \\ 0.05 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { Ge } \\ \text { ppm } \\ 0.0 \mathrm{~s} \end{gathered}$	$\begin{gathered} \text { ME-MSG1 } \\ \text { HF } \\ \text { Ppm } \\ 0 . \uparrow \end{gathered}$	$\begin{gathered} \text { ME-MSG1 } \\ \text { In } \\ \text { ppm } \\ 0.005 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ K \\ \% \\ 0.01 \end{gathered}$	$\begin{gathered} \text { ME-MSE1 } \\ \text { Le } \\ \text { Ppm } \\ 0.5 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { LI } \\ \text { ppm } \\ 0.2 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { Mg } \\ \% \\ 0,01 \end{gathered}$	$\begin{gathered} \text { ME-MSG1 } \\ \text { Mn } \\ \text { ppm } \\ 5 \end{gathered}$	$\begin{gathered} \text { ME-MSG1 } \\ \text { Mo } \\ \text { PPm } \\ 0,05 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \mathrm{Na} \\ \% \\ 0.01 \end{gathered}$	ME-MSE1 Nb ppm 0.1	$\begin{gathered} \text { ME-MS61 } \\ \mathrm{Ni} \\ \text { PPm } \\ 0.2 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { P } \\ \text { Ppm } \\ 10 \end{gathered}$
1924225		2.61	18.85	0.15	1.9	0.037	1.40	8.6	85.2	1.12	881	1.80	2.29	3.7	24.8	520
1924226		2.97	16.25	0.16	1.7	0.042	1.24	9.2	185.5	1.47	1090	1.77	2.30	3.6	26.6	540
3924227		2.38	13.75	0.14	1.6	0.035	1.23	11.1	226	1.06	657	7.29	1.91	3.3	22.2	560
1924228		2.96	16.85	0.15	1.7	0.048	1.56	10.9	82.8	1.36	949	2.53	2.19	3.6	26.7	530
1924229		3.04	16.15	0.16	2.0	0.034	1.12	9,5	57.2	1.50	1000	1.91	2.76	3.7	30.7	550
1924230		3.00	14.30	0.14	1.8	0.030	1.01	8.3	69.6	1.51	1150	0.79	2.65	3.5	30,3	550
1924231		3.19	16.30	0.14	1.7	0.051	1.58	10.6	65.0	1.49	1320	2.09	1.97	3.7	33.6	540
J924232		4.06	17.20	0.17	0.7	0.047	1.68	9.6	72.8	2.13	1380	1.33	1.61	2.7	36.0	580
1924233		4.06	17.35	0.16	0.6	0.091	1.62	8.3	87.0	2.23	1700	1.79	1.53	2.9 3.4	37.4	600
1924234		3.78	17.35	0.16	0.8	0.148	1.51	11.0	64.0	1.92	2110	2.39	1.70	3.4	38.3	610
J924235		3.99	17.95	0.16	0.8	0.150	1.51	9.6	75.4	1.97	2000	1.94	1.68	3.3	40.1	610
1924236		3.93	17.40	0.15	1.8	0.089	1.33	9.8	88.1	1.91	1000	1.75	2.08	5.6	23.5	890
1924237		5.32	18.75	0.15	3.7	0.062	1.11	13.3	75.5	2.56	1180	1.53	2.45	12.2	29.5	1670
1924238		3.47	17.05	0.15	1.4	0.063	1,26	9.6	59.5	1.53	1040	1.06	2.11	3.4	24.8	600
1924239		3.44	17.55	0.16	1.4	0.068	1,39	9.8	69.4	1.41	997	1.57	2,22	3.5		
J924240		3.57	18.10	0.19	1.5	0,052	1.25	10.7	119.5	1.54	974	0.93	2.15	3.4	16.6	640
1924241		3.71	17.95	0.19	1.8	0.067	1.13	11.8	124.0	2.02	1110	1.75	1.85	4.1	40.7	640
1924242		2.75	16.85	0.15	1,6	0.074	1.87	10.8	46.5	0.98	1080	3.98	1.63	3.5	19.7	530
1924243		3.59	18.95	0.18	0.7	0.047	2.21	13.8	42.0	1.27	590	2.69	1.18	4.0	38.0	610
1924244		3.63	19.20	0.20	0.8	D. 052	2.17	13.1	42.8	1.45	776	5.66	1.18	4.1	33.2	620
1924245		4.69	18.80	0.19	0.5	0.078	2.02	11.5	39.2	1.31	699	7.59	1.47	3.8	30.9	650
1924246		4.09	18.05	0.18	0.7	0.052	1.90	11.5	39.1	1.20	613	5.15	1,50	3.8	31.3	560
J924247		2.27	18.70	0.15	1.8	0.054	2.04	13.0	32.7	0.80	455	3.13	1.66	3.1	21.0	530
1924248		2.12	18.40	0.14	2.0	0.035	2.12	14.5	26.7	0.70	372	2.80	1.64	2.8	18.4	530
1924249		2.41	17.80	0.19	1.9	0.034	1.85	12.8	27.6	0.66	500	3.68	2.17	2.9	17.6	540
1924250		2.55	18.80	0.19	1.8	0.039	2.01	13.1	30.7	0.79	623	4.84	2.10	3.1	18.8	560
1924251		2.65	16.95	0.20	2.0	0.042	1.58	9.7	58.3	0.94	1040	3.46	2.25	3.5	16.4	520
1924252		2.59	17.45	0.19	1.9	0.041	1.58	13.3	57.1	1.00	919	4.07	2.03	3.7	21.5	540
1924253		2.73	16.85	0.20	1.9	0.048	1.41	12.3	34.8	0.87	077	2.93	2.62	3.3	16.8	480
1924254		2.56	17.10	0.22	2.1	0.039	1.49	13.2	41.8	0.83	970	4.67	2.46	3.3	17.2	510
1924255		2.61	17.95	0.18	1.7	0.047	1,83	11.0	49.2	1.14	1120	3.04	1.52	3.5	16.7	500
3924256		2.68	17.20	0.20	1.7	0.037	1.96	13.6	34.0	1.05	1450	2.73	1.48	3.2	16.0	510
j924257		2.65	17,85	0.18	1.8	0.033	2.05	13.1	34.5	1.02	1620	1.48	1.28	3.6	15.1	520
1924258		2.97	18.45	0.20	1.6	0.061	1.86	12.1	40.9	1.22	1560	1.69	1.85	3.4	22.3	570
1924259		2.85	17.95	0.20	1.9	0.085	1.95	12.3	29.8	0.98	1600	3.22	1.70	3.4	17.2	530
1924260		4.71	19.70	0.18	0.7	0.320	1.90	9.4	43.0	1.80	2140	1.07	0.64	2.9	28.8	630
1924261		4.93	17.75	0.23	0.3	0.514	2.18	8.9	26.1	0.68	705	0.70	0.17	2.6	6.6	500
1924262		4.10	15.15	0.20	0.3	0.163	1.63	3.2	12.9	0.33	92	0.89	0.36	2.5	6.0	520
1924263		4.95	18.75	0.18	0.3	0.129	1.40	11.7	40.4	1.59	1880	0.42	1.47	3.3	13.9	880
1924264		4.80	18.65	0.19	0.3	0.081	0,94	8.4	43.2	1.89	2140	0.58	2,44	3.4	8.5	930

ALS Canada I.td.
2103 Dollarton Hwy
North Vancouver BC V7H OA7
Phone: 6049840221 Fax: 6049840218 www.alsglobal.com

To: WALLBRIDGE MINING COMPANY LTD.
129 FIELDING RD
LIVELY ON P3Y 1L7

Page: $3-C$
Total \# Pages: 4 ($A-D$) Plus Appendix Pages Finalized Date: 30-AUG-2010 Account: RLH

Project: 677
minerals
CERTIFICATE OF ANALYSIS VA10105034

ME-MS61
ME-MS61
TI
ME-MS

Sample Description	Methad Analyte Units LOR	ME-MS61 Hb ppm	ME-MS61 Rb ppm	$\begin{gathered} \text { ME-MS61 } \\ \operatorname{Re} \\ \rho \mathrm{ppm} \\ 0,002 \end{gathered}$	$\begin{gathered} \text { ME-MSE1 } \\ \mathrm{s} \\ \% \\ 0.01 \end{gathered}$	$\begin{gathered} \text { ME-MSE1 } \\ \text { Sb } \\ \text { ppm } \\ 0.05 \end{gathered}$	$\begin{gathered} \text { ME-MS51 } \\ \text { Sc } \\ \text { Ppin } \\ 0.1 \end{gathered}$	ME-MSE1 Se ppm 1	$\begin{gathered} \text { ME-MSE1 } \\ \text { Sn } \\ \text { ppm } \\ 0.2 \end{gathered}$	ME-MS61 Sr PPm 0.2	ME-MS61 Ta ppm 0.05	ME-MS61 re PPm 0.05	$\begin{gathered} \text { ME-MS61 } \\ \text { Th } \\ \text { ppm } \\ 0.2 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \mathrm{Ti} \\ \% \\ 0.005 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { TI } \\ \text { ppm } \\ 0.02 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ U \\ \text { PPm } \\ 0.1 \end{gathered}$
1924225		33.9	28.4	0.002	0.52	3.31	9.9	2	1.0	309	0.31	0.10	4.6	0.243	0,70	2.1
1924226		26.4	26.5	0.003	0.61	2.83	11.5	2	0.9	284	0.28	0.10	4.6	0.259	0.61	2.1
1924227		25.4	31.3	0.002	1.94	2.58	8.6	1	1.5	682	0.27	0.12	4.6	0.236	0.61	2.1
1924228		38.6	41.3	0.002	0.84	5.22	11.0	2	1.2	270	0.29	0.15	4.7	0.248	0.86	2.4
1924229		39.3	29.7	<0.002	0.71	3.29	10.5	2	1.0	298	0.25	0.12	5.5	0.250	0.67	2.6
1924230		27.5	24.0	<0.002	0.48	3.97	9.5	2	2,3	341	0.28	0.08	5.1	0.242	0.60	2.2
1924231		77.9	43.0	0.009	0.95	6.73	11.3	1	1.1	247	0.30	0.77	5.0	0.255	1.10	2.6
1924232		107.5	48.1	<0.002	3.14	7.35	16.5	4	1.8	348	0.20	0.31	3.0	0.295	1.78	1.2
1924233		155.0	45.6	0.002	2.71	12.40	15.8	2	1.3	304	0.20	0.51	2.1	0.337	1.95	0.9
1924234		192.5	47.1	<0.002	1.79	10.90	14,6	2	1.3	245	0.23	0.82	2,4	0.329	2.15	1.1
J924235		228	36.7	0.002	1.97	10.10	14.8	3	3.1	248	0.22	0.91	2.2	0.329	2.32	1.0
1924236		25.2	28.4	0.002	0.57	3.85	12.8	2	3.5	338	0.34	0.18	2.7	0.440	0.87	1.2
J924237		25.4	15.8	<0.002	0.18	4.68	14.7	1	1.2	578	0.79	<0.05	2.3	0.740	0.57	0.8
J924238		20.0	40.8	<0.002	0.60	4.16	13.9	1	0.9	251	0.27	0.17	3.7	0.309	0.93	1.6
1924239		15.6	40.5	0.002	0.56	3.50	14.3	1	0.9	267	0.27	0.19	3.7	0,322	0.91	1.7
1924240		15.3	39.2	<0.002	0.31	3.37	14.7	1	0.9	273	0.25	0.09	3.6	0.335	0,80	1.6
1924241		49.8	34.0	0.002	0.81	5.73	17.0	1	1.0	336	0.31	0.18	2.9	0.381	0.89	1.4
1924242		39.6	54.0	0.008	0.75	5.05	10,3	1	1.0	236	0.30	0.21	5.8	0.243	1.18	2.8
1924243		103.5	69.3	0.005	1.56	5.36	16.5	2	1.7	189.0	0.28	0.36	3.8	0.349	1.38	1.5
1924244		149.5	61.4	0.005	1.79	5.57	16.6	5	1.7	174.0	0.31	0.29	3.7	0.347	1.31	1.4
1924245		192.0	58.1	0.002	3.48	5.03	16.7	5	1.5	193.5	0.27	0.68	3.0	0.339	1.19	1.1
1924246		114.0	55.2	0.002	2.92	9.24	15.1	3	1.6	186.0	0.28	0.39	3.1	0.326	1.13	1.2
1924247		106.0	57.4	<0.002	1,36	3.09	10.4	1	0.7	206	0.28	0.11	6.6	0.195	1.09	2.7
1924248		26.1	63.3	<0.002	1.16	2.55	9,9	1	0.6	221	0.27	0.15	7.6	0.174	1.14	3.5
1924249		9.9	64.7	0.002	1.20	2.98	10.0	1	0.7	238	0.25	0.14	7.0	0.178	0.95	3.4
1924250		16.0	60.2	0.003	0.99	3.11	11.0	1	0.8	252	0.28	0.19	6.9	0.208	1.09	3.1
1924251		17.0	39.0	0.005	0.42	3.03	9.6	1	0.8	309	0.34	<0.05	5.7	0.218	1.01	2.7
1924252		18,1	50.6	0.007	0.26	2.54	10.3	1	0.8	303	0.33	<0.05	6.8	0.230	1.02	3.3
1924253		9.6	45.7	0.002	0.63	4.50	9.8	1	0.7	316	0.32	0.09	6.7	0.199	0.92	3.1
1924254		8.5	51.3	0.009	0.58	7.82	9.8	1	0.7	304	0.32	0.10	6.9	0.200	1.00	3.2
1924255		89.4	49.5	0.002	0.50	6.76	9.6	1	0.7	218	0.34	0.05	6.1	0.213	1.26	2.8
1924256		72.2	68.9	$<0,002$	0.20	5.66	9.7	1	0.7	171.0	0.29	<0.05	7.1	0.203	1.57	3.3
1924257		34.6	60.2	<0.002	0.16	5.03	9.5	1	0.7	185.5	0.34	<0.05	7.1	0.211	1.80	3.5
1924258		23.8	60,5	0.002	0.37	5.87	11.5	1	0.8	209	0.31	0.12	5.8	0.242	1.45	2.6
1924259		50.7	65.3	0.003	1.02	7.60	10.7	2	0.8	203	0.32	0.48	6.7	0.217	1.49	3.1
1924260		447	60.8	<0,002	3.83	12.60	16.4	5	1.1	151.5	0.19	0.89	1.8	0.355	1.62	0.7
1924261		243	55.0	<0.002	7.33	5.00	15.9	12	0.9	166.5	0.17	1.92	1.4	0.343	1.16	0.4
1924262		40,5	47.9	<0,002	7.14	2.56	13.7	16	0.9	394	0.16	1.66	1.2	0.334	1.25	0.5
1924263		266	53.0	0.002	2.22	5.62	19.6	4	1.0	170.5	0.20	0.61	1.8	0.462	1.49	0.6
1924264		23.9	25.6	0.003	0.52	4.58	17.2	2	0.9	199.5	0.20	0.13	1.3	0.467	0.90	0.4

***** See Appendix Page for comments regarding this certificate *****

ALS Canada Ltd.
2103 Dollarton Hwy
North Vancouver BC V7H DA7
Phone: 6043840221 Fax: 6049840218 www.alsglobal.com

To: WALLBRIDGE MINING COMPANY LTD.
129 FIELDING RD
LIVELY ON P3Y $1 \mathrm{L7}$

Page: 3 - D
Total \# Pages: 4 (A - D)
Plus Appendix Pages Finalized Date: 30-AUG-2010 Account: RLH

Project: 677

Sample Description	Method Analyte Units LOR	$\begin{gathered} \text { ME-MSG1 } \\ V \\ \text { Ppmi } \\ 1 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { W } \\ \text { ppm } \\ 0.1 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ Y \\ \text { ppm } \\ 0.1 \end{gathered}$	$\begin{gathered} M E-M S 61 \\ \mathrm{Zn} \\ \mathrm{Ppml} \\ 2 \end{gathered}$	$\begin{gathered} M E-M S 61 \\ \mathrm{Zr} \\ \text { ppm } \\ 0.5 \end{gathered}$
J924225		77	1.0	10.9	170	57.9
J924226		84	1.0	12.6	188	53.0
1924227		77	0.8	9.1	142	49.8
5924228		87	0.9	10.8	171	51.9
3924229		78	0.8	11.4	225	64.7
1924230		73	0.6	10.5	225	59.3
1924231		85	0.9	11.0	231	55.6
1924232		119	1.8	9.6	223	20.3
J924233		127	1.2	9.7	352	17.8
J924234		110	1.5	11.6	457	24.0
J924235		114	1.6	11.9	465	21.0
1924236		114	0.9	13.2	17 a	64.3
1924237		127	0.4	17.4	92	155.0
J924238		97	0.9	12.4	191	44.9
1924239		100	0.9	14.4	173	44.3
1924240		105	0.9	14.8	196	45.6
1924241		114	0.8	14.4	286	61.0
1924242		75	1.1	10.9	176	53.1
1924243		117	1.3	11.7	186	22,8
1924244		116	1.3	13.0	190	24.7
1924245		117	1.4	11.4	168	15,7
1924246		108	1.7	10.7	138	22,0
1924247		70	1.0	11.8	87	60.3
1924248		66	0.9	12.1	68	63.8
1924249		64	0.9	11.4	71	63.6
1924250		72	1.3	11.9	95	61.4
1924251		64	1.2	11.4	143	63.6
1924252		68	1.1	12.3	164	59.8
1924253		62	0.9	12.0	139	63.2
1924254		61	0.8	11.7	142	66.2
1924255		66	0.9	11.6	199	52.5
J924256		64	0.8	11.7	223	48.3
1924257		63	1.0	12.0	225	49.9
1924258		78	0.8	12.4	225	51.3
J 924259		70	0.7	12.4	162	57.6
1924260		118	0.6	7.7	471	20.4
1924261		111	0.3	6.6	1480	8.9
1924262		108	0.4	7.4	51	8.4
1924263		141	0.6	6.9	225	7.0
1924264		137	0.6	10.5	223	6.2

***** See Appendix Page for comments regarding this certificate *****

AIS Canada Ltd.
2103 Dollarton Hwy
North Vancouver BC V7H OA7
Phone: 5049840221 Fax: 604984 0218 Www.alsglobal.com
To: WALLBRIDGE MINING COMPANY LTD.
129 FIELDING RD
LIVELY ON P3Y 1L7
Page: 4 - A
Total \# Pages: 4 (A - D)
Plus Appendix Pages Finalized Date: 30-AUG-2010 Account: RLH

Project: 677
minerals

Sample Description	Method Analyte Units LOR	WEE-21 Recyd Wt. kg 0,02	$\begin{gathered} \text { Au-ICP21 } \\ \text { Au } \\ \text { Ppm } \\ 0.001 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { Ag } \\ \text { ppm } \\ 0.01 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { Ai } \\ \% \\ 0,01 \end{gathered}$	ME-MS61 As Ppm 0.2	$\begin{gathered} \text { ME-MS61 } \\ \text { Ba } \\ \text { Ppm } \\ 10 \end{gathered}$	$\begin{gathered} \text { ME-MSG1 } \\ \text { Be } \\ \text { ppm } \\ 0.05 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \mathrm{Bi} \\ \mathrm{PPm} \\ 0.01 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { Ca } \\ \% \\ 0.01 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { Cd } \\ \text { ppm } \\ 0.02 \end{gathered}$	$\begin{gathered} \text { ME-MSB1 } \\ \text { Co } \\ \text { pprn } \\ 0.01 \end{gathered}$	ME-MSE1 Co ppm 0.1	ME-MS67 Cr ppm 1	$\begin{gathered} \text { ME-MSE1 } \\ \text { Cs } \\ \text { ppm } \\ 0.05 \end{gathered}$	$\begin{gathered} \text { ME-MSE61 } \\ \mathrm{Cu} \\ \text { Ppm } \\ \mathrm{D.2} \end{gathered}$
J924265		3.76	<0.001	0.35	7.87	14.1	640	0,92	0.42	3.09	0.17	20.9	13.8	17	21.7	22.8
1924266		4.74	<0.001	0.02	7.92	7.6	490	0.80	0.13	4.00	0.12	20.8	15.7	17	15.85	3.1
J924267		3.78	<0.001	0.03	7.87	7.8	490	0.80	0.13	4.34	0.13	20.8	16.6	17	9.52	6.0
1924268		5.20	<0.001	0.04	8.01	8.0	400	0.73	0.10	4.11	0.10	20.7	16.8	18	9.68	13.7
1924269		3.12	0.002	0.07	7.84	6.9	430	0.79	0.44	3.68	0.10	21.1	16.9	1 B	8.17	15.2
1924270		3.32	<0.001	0.24	7.60	9.9	580	0.81	0.71	2.66	0.07	18.50	15.9	19	15.60	29,1
1924271		4.04	<0.001	0.06	8.08	8.0	500	0.75	0.38	4.10	0.14	21.4	17.2	18	11.50	5.7
1924272		4.90	0.003	0.13	8.53	8.9	520	0.85	0.41	4.11	0.15	23.2	18.1	23	12.60	12.3
J924273		1.28	0.002	0.61	8.12	13.8	430	0.61	1.13	2.39	0.18	20.2	35.8	19	6,38	15.8
1924274		3.64	0.002	0.20	8.51	20.5	500	0.76	0.61	3.79	0.12	21.5	16.6	18	12.25	17.3
J 24275		3.56	0.003	0.56	8.24	26.4	450	0.84	0.95	2.86	0.61	23.0	15.3	21	10.50	31.9
J924276		3.94	0.001	0,26	B. 64	29.1	450	0.80	0.33	3.68	0.37	24.5	17.2	19	14.25	18.9
1924277		4.10	<0.001	0.18	B. 44	20.1	480	0.74	0.19	3.96	0.17	21.9	16.7	18	13.50	16.6
1924278		4.02	0.003	0.54	8.38	18.4	470	0.80	0.55	3.31	0.25	25.6	15.7	28	12.40	39.3
1924279		3.88	0.003	0.40	8.32	11.8	460	0.78	0.54	3.28	0.22	23.5	15.8	31	10.70	25.2
J924280		4.16	0.006	0.45	7.82	12.5	500	0.78	0.72	2.96	0.27	24.6	14.6	42	9,04	32.2
1924281		4.18	0.005	0.44	7.86	12.8	530	0.77	0.63	3.05	0.27	23.8	15.1	37	10.45	35.9
1924282		4.02	0.009	0.57	8,22	13.8	600	0.78	0.77	2.92	0.29	26.5	13.5	34	9.95	19.3
5924283		3.56	0.000	0.57	8.21	13.8	590	0.85	0.72	2,99	0.33	27.2	14.6	37	10.55	34.8
1924284		2.86	0.005	0.61	8.23	12.1	610	0.93	0.70	2.96	0.42	27.5	15.0	44	10.60	35.9

***** See Appendix Page for comments regarding this certificate *****

Project: 677
minerals

Sample Description	Method Analyte Units LOR	$\begin{gathered} \text { ME-MS61 } \\ \mathrm{Fe} \\ \neq \\ 0.01 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { Ga } \\ \text { Ppm } \\ 0.05 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { Ge } \\ \text { ppm } \\ 0,05 \end{gathered}$	$\begin{gathered} \text { ME-MS51 } \\ H f \\ \text { Ppm } \\ 0.1 \end{gathered}$	$\begin{gathered} \text { ME-MS } 61 \\ \text { In } \\ \text { ppm } \\ 0.005 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ K \\ \% \\ 0.01 \end{gathered}$	$\begin{gathered} \text { ME:-MS61 } \\ \text { La } \\ \text { Ppin } \\ 0.5 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \mathrm{Li} \\ \text { ppm } \\ 0.2 \end{gathered}$	$\begin{gathered} \text { ME-MSB1 } \\ \mathrm{Mg} \\ \% \\ 0.01 \end{gathered}$	$\begin{gathered} \text { ME-MSG1 } \\ \text { Mn } \\ \text { PPm } \\ 5 \end{gathered}$	$\begin{gathered} \text { ME-MSG1 } \\ \text { Mo } \\ \text { Ppm } \\ 0.05 \end{gathered}$	$\begin{gathered} \text { ME-MS81 } \\ N_{B} \\ \% \\ 0.01 \end{gathered}$	$\begin{gathered} \text { ME-MSE1 } \\ \text { Nb } \\ \text { ppm } \\ 0.1 \end{gathered}$	$\begin{gathered} \text { ME-MSB1 } \\ \mathrm{Ni} \\ \text { Ppm } \\ 0.2 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { P } \\ 9 p m 1 \\ 10 \end{gathered}$
1924265		4.63	18.60	0.20	0.4	0.119	0.93	8.9	60.1	1.79	2460	0.56	1.75	3.3	7.1	920
J92426G		4.69	19.40	0.20	0.5	0.083	0.82	8.3	78.7	1.64	1800	0.40	2.25	3.5	7.5	940
1924287		4.81	18.65	0.19	0.7	0.065	0.69	8.4	91.2	1.58	1440	0.51	2.34	3.5	7.5	920
1924268		4.87	18.20	0.21	0.7	0.059	0.58	8.7	101.0	1.64	1400	0.53	2.71	3.3	7.5	930
1924269		4.79	18.55	0.21	0.7	0.065	0.67	B. 8	108.0	1.64	1320	1.05	2.64	3.4	7.8	930
1924270		4.56	19.25	0.21	0.5	0.075	1.10	7.2	104.5	1.70	1060	3.14	2.17	3.4	8.5	950
1924271		4.80	19.00	0.22	0.6	0.080	0.86	8.7	125.0	1.66	1480	0.59	2.45	3.5	8.2	960
J924272		5.15	20.9	0.23	0.7	0.075	1.11	9.5	84.9	1.74	1810	1.02	2.54	3.9	10.5	1020
1924273		5.48	17.35	0.09	0.4	0.064	1.08	8.3	39.4	1.54	1480	3.78	3.40	3.7	10.5	980
1924274		5.15	17.25	0.10	0.6	0.090	1.10	8.8	59.5	1.71	2190	1.27	2.29	3,3	8.7	980
1924275		4.65	17.40	0.12	0.7	0.088	1.18	9.8	108.0	1,62	1700	2.57	2.47	3.5	10.8	910
3924276		5.03	17.80	0.13	0.9	0.067	0.91	10.7	75.5	1.55	1930	2.10	2.41	3.4	9.5	990
9924277		5.09	17.35	0.11	1.0	0.060	0.87	8.8	76.0	1.70	1830	1.02	2.58	3.4	9.1	980
J924278		4.57	17.35	0.12	1.0	0.069	1.20	11.6	91.5	1.66	1440	3.76	2.52	3.4	13.8	880
1924279		4.64	16.75	0.11	0.9	0.063	1.24	10.4	86.3	1.75	1400	2.84	2.53	3.3	14.9	880
1924280		4.08	16.70	0.11	1.1	0.076	1.42	11.0	84.5	1.63	1320	3.97	2.21	3.3	19.0	750
1924281		4.16	16.95	0.12	0.9	0.075	1.49	10.4	73.3	1.64	1460	3.07	2.09	3.3	19.6	730
J924282		4.01	16.85	0.11	1.0	0.080	1.57	12.2	37.0	1.61	1630	4.28	2.40	3.3	18.4	740
1924283		4.15	16.95	0.10	1.0	0.071	1.63	12.7	32.9	1.68	1590	3.41	2.31	3.4	20,6	760
1924284		4.05	17.45	0.12	1.0	0.074	1.70	12.9	37.5	1.68	1670	2.56	2.10	3.3	23.6	710

[^6]To; WALLBRIDGE MINING COMPANY LTD.
129 FIELDING RD
LIVELY ON P3Y 1L7
Total \# Pages: 4 ($\mathrm{A}-\mathrm{D}$)
Plus Appendix Pages Finalized Date: 30-AUG-2010 Account: RLH

Project: 677
minerals

ALS Canada Ltd.
2103 Dollarton Hwy
2103 Dollarton HWy V7H 0A7
North Vancouver BC V7H
Phone: 6049840221 Fax: 6049840218 www.alsglobal.com

To: WALLBRIDGE MINING COMPANY LTD.

Page: 4 - D
Total \# Pages: $4(A-D)$
Plus Appendix Pages Finalized Date: 30-AUG-2010 Account: RLH

Project: 677

***** See Appendix Page for comments regarding this certificate *****

minerals

CERTIFICATE VA10124453

```
Project: 677
```

P.O. No.: 677100010

This report is for 3 Drill Core samples submitted to our lab in Vancouver, BC, Canada on 1-SEP-2010.
The following have access to data associated with this certificate:
PETER ANDERSEN
CLINTON SMYTH

To: miocene metals limited
ATTN: PETER ANDERSEN
129 FIELDING RD
LIVELY ON P3Y 1 LT

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

Signature:
Colin Ramshaw, Vancouver Laboratory Manager

2103 Dellarton Hwy
North Vancouver BC V7H OA7
Phone: 6049840221 Fax; 6049840218 www.alsglobal.com

To: MIOCENE METALS LIMITED

Project: 677
minerals

ALS Canada Ltd.
2103 Dollarton Hwy
103 Dallarton Hwy 7 H OA7
Phone: 604 9840221 Fax: 6049840218 WWW.alsglobal.com

To: MIOCENE METALS LIMITED

Project: 677
minerals

Sample Description	Method Analyte Units LOR	$\begin{gathered} \text { ME-MS51 } \\ \text { Fe } \\ \% \\ 0.01 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { Ga } \\ \text { PPm } \\ 0.05 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { Ge } \\ \text { ppin } \\ 0.05 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { Hf } \\ \text { ppm } \\ 0.1 \end{gathered}$	$\begin{gathered} \text { ME-MSE1 } \\ \text { In } \\ \text { ppm } \\ 0.005 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ K \\ \% \\ 0.01 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { Ls } \\ \text { Ppm } \\ 0.5 \\ \hline \end{gathered}$	$\begin{gathered} \text { ME-MSG1 } \\ \mathrm{LI} \\ \text { ppm } \\ 0.2 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { Mg } \\ \% \\ 0.01 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { Mn } \\ \text { ppn } \\ 5 \\ \hline \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { Mo } \\ \text { PPm } \\ 0,05 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \mathrm{Na} \\ \% \\ 0.01 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { Nb } \\ \text { Ppm } \\ 0.1 \end{gathered}$	$\begin{gathered} \text { ME-M561 } \\ \mathrm{Ni} \\ \mathrm{Ppm} \\ 0.2 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \mathrm{P} \\ \text { ppm } \\ 10 \end{gathered}$
1924300		3.08	18.05	0.08	0.3	0.042	1.72	11.5	16.4	1.11	586	0.30			8.8	540
1924301		4.34	20.2	0.09	0.3	0.051	1.09	5.5	16.7	1.58	811	0.80	2.67	3.2	10.2	780
J924316		4.06	18,55	0.11	0.3	0.049	1.40	8.1	11.8	1.38	875	1.04	2.45	4.0	12.3	600

ALS Canada Lto.
2103 Dollarton Hwy
North Vancouver BC V7H OAT
Phone: 6049840221 Fax: 6049840218 www.alsgiobal.com

To: MIOCENE METALS LIMITED
LIVELY ON P3Y 1L7

Project: 677

[^7]ALS Canada L.td
2103 Dollarton Hwy
North Vancouver BC V7H OA7
Phone: 6049840221 Fax: 6049840218 www.alsglobal.com

Sample Description	Method Analyte Units LOR	$\begin{gathered} \text { ME-MSE1 } \\ V \\ \text { ppm } \\ 1 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ W \\ \text { Ppm } \\ 0.1 \end{gathered}$	$\begin{gathered} \text { ME-M561 } \\ Y \\ \text { Ppm } \\ 0.1 \end{gathered}$	$\begin{gathered} \text { ME-MSE1 } \\ \text { Zn } \\ \text { PPm } \\ 2 \end{gathered}$	ME-MS61 Zr Ppm 0.5
1924300		95	0.3	19.7	53	4.2
J924301		181	0.2	13.0	73	5.3
J924316		146	0.3	18.6	57	4.4

***** See Appendix Page for comments regarding this certificate ****

2103 Dollarton Hwy
North Vancouver BC V7H OA7
Phone: 6049840221 Fax: 6049840218 www.alsglobal.com

Project: 677

CERTIFICATE OF ANALYSIS VA10124453

Method	CERTIFICATE COMMENTS
ME-MS61	REE's may not be totally soluble in this method.

CERTIFICATE
 VA10126957

Project: 677

P.O. No.: 677100010

This report is for 3 Drill Core samples submitted to our lab in Vancouver, BC, Canada on 7-SEP-2010.
The following have access to data associated with this certificate:

To: MIOCENE METALS LIMITED
ATTN: PETER ANDERSEN
129 FIELDING RD
LIVELY ON P3Y 1L7

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

Signature:
Colin Ramshaw, Vancouver Laboratory Manager

Project: 677

Sample Description	Method Analyte Units LOR	$\begin{gathered} \text { ME-ICPO6 } \\ \text { SiO2 } \\ x \\ \text { p,01 } \end{gathered}$	ME-ICPOK $\mathrm{N}_{2} \mathrm{O} 3$ \%	ME-ICPOB Fe203 $\%$ 0.01	$\begin{gathered} \text { ME-ICPP6 } \\ \text { Coa } \\ \% \\ 0.01 \end{gathered}$	ME-ICPOE MgO ${ }_{0}^{*}$	$\begin{gathered} \text { ME-fCPOG } \\ \text { Na2O } \\ \% \\ 0.01 \end{gathered}$	$\begin{gathered} \text { ME-ICPO6 } \\ \text { K20 } \\ \varnothing \\ 0.01 \end{gathered}$	$\begin{gathered} \text { ME-LCPO6 } \\ \text { Cr203 } \\ \phi \\ 0.01 \end{gathered}$	$\begin{gathered} \text { ME--ICPOG } \\ \text { TOO2 } \\ \% \\ 0.01 \end{gathered}$	$\begin{gathered} \text { Me- -ICPO6 } \\ \text { Mo } \\ \% \\ 0.01 \end{gathered}$	$\begin{gathered} \text { ME-ICPO5 } \\ \text { P205 } \\ \varnothing \\ 0.01 \end{gathered}$	ME-ICPO6 Sro χ 0.01	ME-ICPO5 BBO \varnothing 0.01	OA-GRAO5 L.01 $\%$ 0.01	TOT-ICPO6 Total $\%$ 0.01
1924300		64.3	15.85	4.63	4.63	2.07	3.74	2.25	<0.01	0.54	0.08	0.11	0.04	0.08	1.30	99.6
1924301		54.1	19.30	6.82	8.24	3.09	3.71	1.47	<0.01	0.79	0.11	0.18	0.07	0.05	0.70	98.6
1924316		61.0	16,60	6.31	6.14	2.72	3.44	1.90	<0.01	0.75	0.13	0.13	0.04	0.07	1.50	100.5

To: MIOCENE METALS LIMITED

Project: 677
minerals

Sample Description	Method Analyte Units LOR	ME-MS81 Ag Ppm 1	$\begin{gathered} \text { ME-MS81 } \\ \text { Ba } \\ \text { Ppm } \\ 0.5 \end{gathered}$	$\begin{gathered} \text { ME-MSB } \\ \mathrm{Ce} \\ \mathrm{ppm} \\ 0.5 \end{gathered}$	$\begin{gathered} \text { ME-MS81 } \\ \text { Co } \\ \text { ppm } \\ 0.5 \end{gathered}$	$\begin{gathered} \text { ME-MS81 } \\ \text { Cr } \\ \text { ppm } \\ 10 \end{gathered}$	$\begin{gathered} \text { ME-MS81 } \\ \text { Cs } \\ \text { ppm } \\ \text { 0.01 } \end{gathered}$	$\begin{gathered} \text { ME-MS81 } \\ \text { Cu } \\ \text { Ppm } \\ 5 \end{gathered}$	$\begin{gathered} \text { ME-MS81 } \\ \text { Dy } \\ \text { Ppm } \\ 0.05 \end{gathered}$	$\begin{gathered} \text { ME-MS81 } \\ \text { Er } \\ \text { Ppm } \\ 0,03 \end{gathered}$	$\begin{gathered} \text { ME-MSB1 } \\ \text { E } u \\ \text { ppm } \\ 0.03 \end{gathered}$	ME-MSB1 Ga ppin 0.1	$\begin{gathered} \text { ME-MS81 } \\ \text { Gd } \\ \text { PPm } \\ 0.05 \end{gathered}$	$\begin{gathered} \text { ME-MS81 } \\ \text { Hf } \\ \text { ppm } \\ 0.2 \end{gathered}$	$\begin{gathered} \text { ME-MS81 } \\ \text { Ho } \\ \text { ppm } \\ 0.01 \end{gathered}$	$\begin{gathered} \text { ME-MSB1 } \\ \text { La } \\ \mathrm{ppm} \\ 0.5 \end{gathered}$
J924300		<1	777	36.4	10.2	20	1.84	5	3.81	2.48	0.98	17.0	3.92	4.9	0.79	17.6
1924301		<1	456	22.7	17.3	30	1.78	29	3.18	1.94	1.04	20.1	3.23	2.8	0.66	10.5
J924316		<1	665	29,7	16.4	30	2.19	19	4.31	2.65	1.04	18.0	4.20	4.3	0,88	. 2

CERTIFICATE VA10124452

Project: 677

P.O. No.: 677100011

This report is for 24 Drill Core samples submitted to our lab in Vancouver, BC, Canada on 1-SEP-2010.
The following have access to data associated with this certificate:

	SANIPLE PREPARATION
ALS CODE	DESCRIPTION
WEI-21	Received Sample Weight
LOG-22	Sample login - Red w/o BarCode
CRU-31	Fine crushing $-70 \%<2 \mathrm{~mm}$
SPL-21	Split sample - riffle splitter
PUL-32	Pulverize 1000 g to $85 \%<75 \mathrm{um}$
BAG-01	Bulk Master for Storage
PUL-QC	Pulverizing QC Test

	ANALYTICAL PROCEDURES	
ALS CODE	DESCRIPTION	INSTRUMENT
Au-ICP21	Au 30g FA ICP-AES Finish	ICP-AES
ME-MS61	48 element four acid ICP-MS	

To: MIOCENE METALS LIMITED ATTN: PETER ANDERSEN 129 FIELDING RD
LIVELY ON P3Y 1 L7

This is the Final Report and supersedes any preliminary report with this certificate number, Results apply to samples as submitted. All pages of this report have been checked and approved for release.

Colin Ramshaw, Vancouver Laboratory Manager

Project: 677

CERTIFICATE OF ANALYSIS VA10124452

Sample Description	Method Analyte Units LOR	WEI-21 Recvd Wt. kg 0.02	$\begin{gathered} \mathrm{Au-\mid CP21} \\ \mathrm{Au} \\ \mathrm{ppm} \\ 0.001 \end{gathered}$	ME-MS61 Ag PPm 0.01	$\begin{gathered} \text { ME-M56 } \\ \text { Al } \\ \% \\ 0.01 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { As } \\ \text { PPm } \\ 0.2 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { Ba } \\ \text { ppm } \\ 10 \end{gathered}$	$\begin{gathered} \text { ME-MSB1 } \\ \text { Be } \\ \text { ppm } \\ 0.05 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { Bi } \\ \text { Ppm } \\ 0.01 \end{gathered}$	$\begin{gathered} \text { ME-MSS1 } \\ \text { Ca } \\ \% \\ 0.01 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { Cd } \\ \text { Ppm } \\ 0.02 \end{gathered}$	$\begin{gathered} \text { ME-MSE7 } \\ \text { Ce } \\ \text { ppm } \\ 0.01 \end{gathered}$	$\begin{gathered} \text { ME-MSG1 } \\ \text { Co } \\ \mathrm{ppm} \\ 0.1 \end{gathered}$	ME-MS6. 1 Cr ppm 1	$\begin{gathered} \text { ME-MSG1 } \\ \text { Cs } \\ \text { ppm } \\ 0.05 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { Cu } \\ \text { Ppm } \\ 0,2 \end{gathered}$
J924302		3.68	0.002	0.07	7.81	2.8	700	0.82	0.02	4.08	0.12	19.20	18.4	24	1.02	60.4
1924303		4.28	0.009	0.17	8.60	3.8	350	1.05	0.06	4.44	0.13	29.2	21.3	6	0.48	76.5
J924304		3,42	0.007	0.12	8.27	3.8	400	1.02	0.06	4.29	0.09	25.3	16.4	2	0.64	53.7
1924305		4.14	0.041	0.17	8.31	5.5	740	0.84	0.09	4.29	0.10	25.3	20.2	16	1.15	74.1
1924306		4.86	0.008	0.19	8.39	2, ${ }^{\text {b }}$	550	0.95	0.08	4.46	0.18	24.1	20.4	29	0.78	117.5
1924307		4.86	0.018	0.39	8.93	5.2	270	0,99	0.11	5.20	0.21	30.8	22.2	10	0.36	121.0
1924308		4.28	0.085	0.33	7.91	4.9	610	0,83	0.53	4.18	0.15	21.4	15.5	25	1.02	71.7
1924309		4.28	0.056	0.30	7.99	4.2	1020	1.03	0.18	2.83	0.20	25.9	9.6	11	1.32	${ }_{70} 13$
J924310		4,52	0.021	0.32	8.18	4.8	570	0.87	0.10	4.23	0.23	24.1	16.0	26	0.99	45.4
1924311		5.40	0.008	0.11	7.80	4.1	280	0.84	0.06	4.08	0.14	21.8	15.0	26		
1924312		3.12	0.019	0.07	7.71	4.5	650	0.87	0.14	3.44	0.09	22.8	15.5	12	1.02	
1924313		4.90	0.006	0.40	7.94	5.3	570	0.83	0.41	3.44	1.48	21.1	15.2	18	0.89	95.9
1924314		3.28	0.010	0.22	8.05	9.4	360	0.81	0.12	4.11	0.33	23.4	24.3	27	1.17	84.5
1924315		3.96	0.003	0.13	8.27	3.9	320	0.72	0.07	5.10	0.13	16.50	18.1	32	1.90	
1924317		4.20	0.002	0.11	8.17	2.7	790	1.07	0.13	3.54	0.15	27.4	18.0	32		
1924318		4.40	0.022	0.34	7.52	1.5	660	0.95	0.12	3.46	0.11	26.3	15.0	23	1.57	92.7
1924319		6.70	0.002	0.11	7.53	1.2	700	1.02	0.16	3.46	0.16	24.5	14.3	18	1.11	33.1
1924320		6.92	0.002	0.10	7.37	0.9	680	0,80	0.14	3.62	0.18	22.9	14.1	17	1.36	36.7
1924321		7.36	0.002	0.19	7.49	1.2	720	0.98	0.20	3.53	0.21	25.5	13.9	16		
1924322		5.98	0.298	0.55	7.33	2.7	710	0.90	0.78	3.70	0.70	23.4	19.1	16	1.10	
1924323		7.42	0.006	0.41	7.71	1.5	710	0.97	0.18	3.65	0.44	24.5	14.7	16	1.13	217
1924324		6.84	0.002	0.68	7.53	2.5	700	0.97	0.20	3.81	0.19	23.5	17.7	19	1.23	309
1924325		6.62	0.003	0.18	7.83	2.9	730	0.91	0.24	3.82	0.16	25.6	15.0	23	1,55	81.0
1924326		6.64	0.002	0,38	7.69	1.3	680	0.97	0.13	3.90	0.54	24.6	14.5	19	1.44	150.0

Total \# Pages: 2 (A - D)
Plus Appendix Pages

Project: 677
minerals

Sample Description	Method Analyte Units LOR	$\begin{gathered} \text { ME-MS61 } \\ \text { Fe } \\ \% \\ 0.01 \end{gathered}$	ME-MS61 Ga PPm 0.05	$\begin{gathered} \text { ME-MSG1 } \\ \text { Ge } \\ \text { Ppm } \\ 0.05 \end{gathered}$	$\begin{gathered} \text { ME-MSE1 } \\ \text { Hf } \\ \text { ppm } \\ 0.1 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { In } \\ \text { Ppmı } \\ 0.005 \end{gathered}$	$\begin{gathered} \text { ME-MS\&1 } \\ \text { K } \\ \% \\ 0.01 \end{gathered}$	$\begin{gathered} \text { ME-MSE1 } \\ \text { La } \\ \text { ppm } \\ 0.5 \end{gathered}$	$\begin{gathered} \text { ME.-MS61 } \\ \text { Li } \\ \text { ppm } \\ 0.2 \end{gathered}$	$\begin{gathered} \text { ME-MSB1 } \\ \text { Mg } \\ \text { \& } \\ 0.01 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \mathrm{Mn} \\ \mathrm{ppm} \\ 5 \\ \hline \end{gathered}$	ME-MS61 Mo Ppm 0.05	$\begin{gathered} \text { ME-MS61 } \\ \mathrm{Na} \\ \% \\ 0.01 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \mathrm{Nb} \\ \mathrm{Ppm} \\ 0.1 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \mathrm{Ni} \\ \text { PPm } \\ 0.2 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { P } \\ \text { ppm } \\ 10 \end{gathered}$
1924302		4.58	20.3	0.16	0.4	0.066	1.28	7.4	16.8	1.76	892	0.71	2.88	3.3	18.5	800
1924303		5.80	22.5	0.19	0.4	0.073	0.69	11.2	8.8	1.61	1220	0.71	3.36	4.0	4.8	1820
1924304		5.58	21.0	0.18	0.3	0.065	0.75	9.7	9.6	1.64	1140	0.45	3.20	3.8	2.3	1790
1924305		5.23	20.8	0.17	0.4	0.071	1.12	10.0	12.6	1.90	1080	1.07	2.87	3.1	15.0	1050
1924306		4.97	20.5	0.18	0.4	0.070	1.02	9.7	9.9	1.89	1150	0.97	2.97	3.1	12.6	980
1924307		6.25	22.2	0.19	0.6	0.108	0.56	12.6	9.4	2.24	1760	1.03	3.32	3,3	8.6	1560
1924308		4.48	20.5	0.17	0.3	0.072	1.00	8.3	13.7	1.67	1100	1.14	2.86	3.4	18.0	800
1924309		3.00	19.60	0.20	0.1	0.024	1.59	11.3	12.7	0.88	476	1.23	3.00	3.7	5.0	710
1924310		4.27	20.5	0.19	0.3	0.088	1.19	10.0	14.3	1.57	951	1.09	2.89	3.4	12.7	720
1924311		3.93	20.2	0.17	0.3	0.071	0.95	8.3	12.4	1.72	885	0.67	2.93	3.3	18.3	720
1924312		2.99	20.1	0.19	0.2	0.038	1.13	9.7	11.3	1.14	692	0.29	2.78	3.8	9.2	700
1924313		3,39	20.8	0.16	0.2	0.040	1.14	8.9	16.1	1.35	834	0.94	2.91	3.6	12.5	620
1924314		4.58	20.1	0.20	0.4	0.062	0.93	9.3	14.6	1.84	988	1.65	2.83	3.3	20.2	740
1924315		4.81	20.5	0.16	0.4	0,068	1.00	6.5	11.1	1.92	1170	1.40	2.74	3.0	8.6	850
1924317		4.15	19.85	0.20	0.9	0.052	1.67	11.5	17.4	1.82	818	1.94	2.75	3.6	23.7	790
J924318		3.77	18.90	0.19	0.6	0.049	1.51	11.3	18.1	1.40	739	1.62	2.58	3.7	14.8	650
J924319		3.64	18.95	0.20	0.4	0.049	1.54	10.4	9.7	1.22	794	1.80	2.62	3.9	11.0	570
1924320		3.76	18.60	0.19	0.4	0.049	1.52	9.4	9.4	1.23	768	1.83	2.54	3.8	10.5	580
1924321		3.66	18.50	0.20	0.4	0.047	1.65	10.9	10.5	1.20	885	2.18	2.48	3, ${ }^{\text {8 }}$	10.6	570
1924322		3,93	17.65	0.20	0.3	0.055	1.51	9.8	14.4	1.21	1100	1.98	2.15	3.8	11.1	570
1924323		3.73	19.35	0.18	0.3	0.058	1.62	10.2	10.4	1.23	834	3.71	2.63	4.0	10.5	580
1924324		3.93	20.2	0.18	0.4	0.058	1.48	9.8	15.0	1.31	1000	2.05	2.54	4.0	13.1	630
1924325		3.95	18.15	0.11	0.6	0.052	1.65	10.0	10.1	1.35	886	9.98	2.64	4.1	14.4	640
J924326		3.95	18.35	0.12	0.5	0.052	1.67	9.9	7.6	1.27	838	2.14	2.68	4.3	11.7	

Total \# Pages: 2 ($A-D$) Plus Appendix Pages Finalized Date: 22-SEP-2010 Account: MIOMIN
Project: 677
minerals

Sample Description	Method Analyte Units LOR	$\begin{gathered} \text { ME-MS67 } \\ \text { Pb } \\ \text { Ppm } \\ 0.5 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { Rb } \\ \text { PPm } \\ 0.1 \end{gathered}$	$\begin{gathered} \text { ME-MSG1 } \\ \text { Re } \\ \text { ppmi } \\ 0.002 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \mathrm{S} \\ \% \\ 0.01 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { Sb } \\ \text { ppm } \\ 0.05 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { Sc } \\ \text { ppm } \\ 0.1 \end{gathered}$	$\begin{gathered} \text { ME-MSE1 } \\ \text { Se } \\ \text { Ppm } \\ 1 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { Sn } \\ \text { ppm } \\ \text { D.2 } \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \text { Sr } \\ \text { ppm } \\ 0.2 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ \mathrm{Ta} \\ \text { Ppm } \\ 0.05 \end{gathered}$	ME-MS61 Te ppm 0.05	ME-MS61 Th pprn 0.2	$\begin{gathered} \text { ME-MS61 } \\ \mathrm{T}+ \\ \% \\ 0.005 \end{gathered}$	$\begin{gathered} \text { ME-M561 } \\ \text { TI } \\ \text { Ppm } \\ 0.02 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ U \\ \text { ppm } \\ 0.1 \end{gathered}$
1924302		10.2	17.1	<0.002	0.03	1.09	17.0	2	0.9	525	0.22	0.08	2.6	0.438	0.28	1.2
1924303		9.9	9.5	<0.002	0.33	1.01	24.7	3	1.3	483	0.27	0.24	1.2	0.775	0.15	0.6
J924304		7.8	11.2	<0.002	0.30	0.91	23.1	2	1.0	480	0.26	0.19	1.3	0.759	0.20	0.5
J924305		9.0	17.1	0.002	0.41	0.82	22.6	2	1.0	523	0.22	0.36	3.1	0.545	0.29	1.3
1924306		10.6	18.1	<0.002	0.39	0.81	24.7	2	1.0	549	0.21	0.23	2.5	0.565	0.20	0.8
J924307		17.4	10.9	0.002	0.52	1.01	34.3	3	1.3	608	0.21	0.55	1.2	0.809	0.11	0.7
J924308		9.9	14.8	<0.002	0.36	1.13	17.4	2	1.0	488	0.22	1.51	2.7	0.439	0.29	1.2
1924309		11.8	33.5	<0.002	0.68	1.01	9.8	2	0.7	409	0.28	0.62	4.1	0.313	0.41	1.6
1924310		13.1	22.1	<0.002	0.38	1.69	17.2	2	1.0	492	0.23	0.37	3.7	0.428	0.34	1.7
1924311		11.4	15.9	<0.002	0.10	1.48	18.1	2	2.1	541	0.24	0.15	2.8	0.417	0.38	1.1
J924312		10.2	26.5	<0.002	0.13	1.51	13.8	2	1.9	529	0.26	0.18	2.2	0.353	0.43	0.7
J924313		39.7	23.6	<0.002	0.15	1.42	14.6	2	1.5	538	0.26	0.34	2.7	0.344	0.41	1.0
J 924314		17.3	15.8	<0.002	0.27	1.16	19.2	2	1.2	502	0.23	0.28	3.0	0.432	0.35	1.2
J924315		12.1	12.1	<0.002	0.11	1.25	17.9	2	1.1	521	0.19	0.11	1.3	0.462	0.38	0.6
1924317		10.2	49.0	0.002	0.34	0.65	19.9	3	1.4	403	0.29	0.06	4.0	0.431	0.80	1.5
J924318		10.5	35.4	0.005	0.18	0.61	17.9	2	1.5	379	0.30	<0.05	3.9	0.382	0.40	1.5
J 924319		12.5	30.6	0.002	0.05	0.65	18.1	2	1.5	326	0.31	<0.05	4.2	0.368	0.38	1.5
1924320		11.0	32.0	<0,002	0.04	0.66	18.0	2	1.5	324	0.31	0.05	3.7	0.374	0.41	1.5
1924321		13.6	39.3	0.002	0.05	0.72	1B. 5	2	1.4	314	0.31	0.06	4.5	0.369	0.43	1.6
1924322		38.4	33.2	<0,002	0.35	1.19	47.9	2	1.4	325	0.28	0.56	4.1	0.368	0.46	1.6
J924323		17.4	31.7	0.002	0.12	0.61	18.0	2	1.5	316	0.32	0.07	4.0	0.379	0.44	1.6
1924324		12.8	29.2	<0.002	0.09	0.97	19.5	2	1.5	349	0.32	0.07	3.7	0.388	0.42	1.4
1924325		15.1	34.4	0.006	0.07	1.17	18.4	2	1.5	355	0.39	0.08	4.1	0.402	0.42	1.4
1924326		20.0	32.7	<0.002	0.08	0. 06	17.8	2	1.5	320	0.41	0.05	4.1	0.400	0.43	1.4

Project: 677

Sample Description	Method Analyte Units LOR	$\begin{gathered} \text { ME-MS } 61 \\ V \\ \text { Ppm } \\ 1 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ w \\ \text { PPT } \\ 0.1 \end{gathered}$	$\begin{gathered} \text { ME.-MSS61 } \\ Y \\ \text { pprn } \\ 0.1 \end{gathered}$	$\begin{gathered} \text { ME-MSE] } \\ \text { Zn } \\ \text { Ppm } \\ 2 \end{gathered}$	$\begin{gathered} \text { ME-MS61 } \\ 7 . r \\ \text { PPm } \\ 0.5 \end{gathered}$
1924302		160	0.2	14.0	87	5.0
1924303		203	0.4	26.7	88	6.3
1924304		198	0.3	24.5	81	6.0
1924305		190	0.4	19.7	87	5.9
1924306		190	0.5	21.8	96	7.5
J924307		265	0.7	29.1	135	13.7
J924308		159	0.4	15.3	106	5.3
J924309		79	0.2	14.6	71	3.6
1924310		143	0.4	16.4	95	4.9
1924311		152	0.4	15.4	83	4.3
1924312		110	0.5	12.7	68	3.8
1924313		120	0.7	11.9	257	3.1
1924314		158	0.5	15.9	112	4.8
1924315		174	0.4	15,6	103	6.8
1924317		153	0.6	20.5	68	28.5
J924318		140	0.6	19.8	62	15.9
1924319		133	0.6	19.9	68	5.2
1924320		134	0.4	19.7	70	4.9
1924321		137	0.7	20.5	79	4.9
1924322		135	0.8	19.0	126	4.1
1924323		135	0.4	20.0	87	4.2
1924324		142	0.7	19.6	92	8.6
1924325		143	0.8	21.3	77	12.2
5924326		148	1.2	20.5	98	6.6

Method	CERTIFICATE COMMENTS	
ME-MS61		

D. APPENDIX D: Rogers Creek Expenditure Statements

Summary of Expenditures for Rogers Creek 2010	
Category	Total Cost CAD \$
01 Personnel	
1a_Geology Consulting	99,768.82
1b_Geology Wages	45,803.54
02_Office Studies	
03_Airborne Explo Survey	-
04 Remote Sensing	-
05_Ground Exploration Survey	-
06_Ground Geophysics	-
07_Geochemical (Drill Cores, Rocks, Silts \& Soils)	70,125.73
07a_Rock, Soil \& Silts	
07b (Drill Cores Only)	13,510.84
08_Drilling	126,244.26
09_Other Operations (Trenchin/Bulk Sampling, UG Development)	-
10_Reclamation	-
11_Transportation	15,762.91
12_Accomodation And Food	41,513.13
13_Miscelleneous (Phones-Comms)	13,585.87
14_Equipment Rentals	21,472.65
15_Freight (Rock Samples)	
TOTAL	447,787.75

Expenditure 1a_Geology Consulting Services for Rogers Crrek 2010

Company	Acct	Sub-acct	date	Jmı	reference	description	Amount	jiml \#	Month	Account	Sub-account	Category
Wallbridge	677	660	20100531	PJ	Inv\#201001	Joshua Lindgren	939.11	PJ2210	May	Roger's Creek	Consulting Services-Geological	1 a
Wallbridge	677	660	20100630	GJ	invoices	Strain Exploration-consultants	5,999.00	GJ9T03	June	Roger's Creek	Consulting Services-Geological	1 a
Wallbridge	677	660	20100630	GJ	inv\#201002	J. Lindgren s/b consultants	4,521.78	GJ9T02	June	Roger's Creek	Consulting Services-Geological	1a
Wallbridge	677	660	20100630	PJ	Inv\#110076	GeoReference Online Ltd.	2,100.00	PJ2249	June	Roger's Creek	Consulting Services-Geological	1 a
Wallbridge	677	660	20100630	PJ	Inv\#100630	Miocene Metals Limited	1,069.29	PJ2275	June	Roger's Creek	Consulting Services-Geological	1 a
Wallbridge	677	660	20100630	GJ	inv\#201004	J. Lindgren s/b consultants	600.00	GJ9T02	June	Roger's Creek	Consulting Services-Geological	1 a
Miocene	677	660	20100630	GJ	not FT exp	May \& June time re projects	593.00	GJ0048	June	Roger's Creek	Consulting Services-Geological	1a
Wallbridge	677	660	20100630	GJ	inv\#201003	J. Lindgren s/b consultants	300.00	GJ9T02	June	Roger's Creek	Consulting Services-Geological	1a
Miocene	677	660	20100701	GJ	A.Soever	May \& June time	348.00	GJ0017	July	Roger's Creek	Consulting Services-Geological	1a
Miocene	677	660	20100701	GJ	J.Bailey	May time	245.00	GJ0017	July	Roger's Creek	Consulting Services-Geological	1 a
Miocene	677	660	20100701	GJ	not FT exp	May \& June time re projects	593.00	GJ0048	July	Roger's Creek	Consulting Services-Geological	1a
Wallbridge	677	660	20100723	PJ	Inv\#201005	Joshua Lindgren	1,760.97	PJ2279	July	Roger's Creek	Consulting Services-Geological	1a
Wallbridge	677	660	20100723	PJ	Inv2107015	Strain Exploration Services Lt	1,750.00	PJ2279	July	Roger's Creek	Consulting Services-Geological	1 a
Wallbridge	677	660	20100731	PJ	WM20100731	Strain Exploration Services Lt	5,600.00	PJ2298	July	Roger's Creek	Consulting Services-Geological	1 a
Miocene	677	660	20100731	GJ	711/2010	GeoReference Online Inc.	4,976.33	GJ0018	July	Roger's Creek	Consulting Services-Geological	1a
Wallbridge	677	660	20100731	PJ	Inv2010006	Joshua Lindgren	3,900.00	PJ2294	July	Roger's Creek	Consulting Services-Geological	1 a
Miocene	677	660	20100815	PJ	In20100815	Strain Exploration Services Lt	3,150.00	PJ0039	August	Roger's Creek	Consulting Services-Geological	1a
Miocene	677	660	20100816	PJ	110090A	GeoReference Online Ltd.	1,381.94	PJ0051	August	Roger's Creek	Consulting Services-Geological	1 a
Miocene	677	660	20100818	PJ	2010MM-12	Wallbridge Mining Company Limi	17,071.25	PJ0078	August	Roger's Creek	Consulting Services-Geological	1 a
Miocene	677	660	20100818	PJ	Inv2010007	Joshua Lindgren	3,300.00	PJ0045	August	Roger's Creek	Consulting Services-Geological	1 a
Miocene	677	660	20100818	PJ	2010MM-15	Wallbridge Mining Company Limi	2,100.00	PJ0078	August	Roger's Creek	Consulting Services-Geological	1 a
Miocene	677	660	20100818	PJ	20100815A	Strain Exploration Services Lt	1,050.00	PJ0066	August	Roger's Creek	Consulting Services-Geological	1 a
Miocene	677	660	20100818	PJ	Inv2010008	Joshua Lindgren	900.00	PJ0045	August	Roger's Creek	Consulting Services-Geological	1a
Miocene	677	660	20100818	PJ	2010MM12A	Wallbridge Mining Company Limi	565.25	PJ0087	August	Roger's Creek	Consulting Services-Geological	1 a
Miocene	677	660	20100831	PJ	2010MM-13	Wallbridge Mining Company Limi	7,637.85	PJ0077	August	Roger's Creek	Consulting Services-Geological	1 a
Miocene	677	660	20100831	PJ	20100815B	Strain Exploration Services Lt	4,200.00	PJ0067	August	Roger's Creek	Consulting Services-Geological	1 a
Miocene	677	660	20100831	PJ	2010008	Joshua Lindgren	3,600.00	PJ0046	August	Roger's Creek	Consulting Services-Geological	1 a
Miocene	677	660	20100831	PJ	110090B	GeoReference Online Ltd.	1,381.94	PJ0052	August	Roger's Creek	Consulting Services-Geological	1a
Miocene	677	660	20100831	PJ	2010-004	Bruce C. Frank	600.00	PJ0065	August	Roger's Creek	Consulting Services-Geological	1 a
Miocene	677	660	20100831	PJ	2010MM13A	Wallbridge Mining Company Limi	234.50	PJ0088	August	Roger's Creek	Consulting Services-Geological	1 a
Miocene	677	660	20100915	PJ	2010MM-17	Wallbridge Mining Company Limi	3,153.60	PJ0089	September	Roger's Creek	Consulting Services-Geological	1 a
Miocene	677	660	20100915	PJ	2010-005	Bruce C. Frank	900.00	PJ0090	September	Roger's Creek	Consulting Services-Geological	1a
Miocene	677	660	20100923	PJ	Inv2010009	Joshua Lindgren	600.00	PJ0086	September	Roger's Creek	Consulting Services-Geological	1 a
Miocene	677	660	20100930	PJ	Inv\#453740	Robin M. Trethewey	7,500.00	PJ0105	September	Roger's Creek	Consulting Services-Geological	1a
Miocene	677	660	20100930	GJ	July 16-31	GeoReference Online	2,390.59	GJ0079	September	Roger's Creek	Consulting Services-Geological	1 a
Miocene	677	660	20100930	PJ	2010MM-20	Wallbridge Mining Company Limi	962.50	PJ0099	September	Roger's Creek	Consulting Services-Geological	1a
Miocene	677	660	20100930	GJ	Aug. 16-31	GeoReference Online	589.83	GJ0079	September	Roger's Creek	Consulting Services-Geological	1 a
Miocene	677	660	20100930	GJ	WCB BC	owing on contractors	480.06	GJ0071	September	Roger's Creek	Consulting Services-Geological	1a
Miocene	677	660	20100930	GJ	July 1-15	GeoReference Online	423.76	GJ0079	September	Roger's Creek	Consulting Services-Geological	1 a
Miocene	677	660	20100930	PJ	SEPT1510	Strain Exploration Services Lt	350.00	PJ0100	September	Roger's Creek	Consulting Services-Geological	1a
Miocene	677	660	20100930	PJ	Inv\#110096	GeoReference Online Ltd.	134.40	PJ0092	September	Roger's Creek	Consulting Services-Geological	1a
Miocene	677	660	20100930	PJ	Inv\#110097	GeoReference Online Ltd.	45.29	PJ0096	September	Roger's Creek	Consulting Services-Geological	1a
Miocene	677	660	20100930	GJ	Sept 1-15	GeoReference Online	28.68	GJ0079	September	Roger's Creek	Consulting Services-Geological	1a
Miocene	677	660	20100930	GJ	Sept 16-30	GeoReference Online	26.13	GJ0079	September	Roger's Creek	Consulting Services-Geological	1 a
Miocene	677	660	20100930	GJ	June 1-15	GeoReference Online	13.68	GJ0079	September	Roger's Creek	Consulting Services-Geological	1 a
Miocene	677	660	20100930	GJ	June 16-30	GeoReference Online	5.48	GJ0079	September	Roger's Creek	Consulting Services-Geological	1 a
Miocene	677	660	20100930	GJ	Aug. 1-15	GeoReference Online	584.08	GJ0079	September	Roger's Creek	Consulting Services-Geological	1a
Miocene	677	660	20101001	GJ	WCB BC	owing on contractors	480.06	GJ0071	October	Roger's Creek	Consulting Services-Geological	1a
Miocene	677	660	20101031	PJ	10/1/3110	Joshua Lindgren	300.00	PJ0120	October	Roger's Creek	Consulting Services-Geological	1a
Miocene	677	660	20101031	GJ	estimate	accrue P.Andersen time	93.75	GJ0098	October	Roger's Creek	Consulting Services-Geological	1a
Miocene	677	660	20101031	PJ	2010MM-24	Wallbridge Mining Company Limi	93.75	PJ0129	October	Roger's Creek	Consulting Services-Geological	1a
Miocene	677	660	20101031	PJ	2010MM-25	Wallbridge Mining Company Limi	93.75	PJ0129	October	Roger's Creek	Consulting Services-Geological	1 a
Miocene	677	660	20101031	GJ	rev.GJ98	invoices received	93.75	GJ0107	October	Roger's Creek	Consulting Services-Geological	1 a
Miocene	677	660	20101111	PJ	2010MM-27	Wallbridge Mining Company Limi	428.75	PJ0149	November	Roger's Creek	Consulting Services-Geological	1 a
Miocene	677	660	20101130	PJ	2010MM-28	Wallbridge Mining Company Limi	570.00	PJ0148	November	Roger's Creek	Consulting Services-Geological	1a
Miocene	677	660	20101215	PJ	lnv\#110106	GeoReference Online Ltd.	60.35	PJ0169	December	Roger's Creek	Consulting Services-Geological	1a
Miocene	677	660	20101231	PJ	Inv\#110109	GeoReference Online Ltd.	243.61	PJ0171	December	Roger's Creek	Consulting Services-Geological	1a
Miocene	677	660	20101231	PJ	2010MM-32	Wallbridge Mining Company Limi	167.50	PJ0176	December	Roger's Creek	Consulting Services-Geological	1a
						TOTAL	99,768.82					

Expenditure 1b_Wages for Rogers Creek

Company	Acct	Sub-acct	date		nl reference	description		Amount	jrnl \#	Month	Account	Sub-account	Category
Wallbridge	677	500	20100515	PR	R P/R: May15	2 Pay May15, 2010		1,872.33	PR1284	May	Roger's Creek	Wages - Geology	1 b
Wallbridge	677	505	20100515	PR	R P/R: May15	2 Pay May15, 2010		1,305.40	PR1284	May	Roger's Creek	Wages - Casual Labour	1 b
Wallbridge	677	505	20100531	PR	P/R: May31	2 Pay May31, 2010		5,276.53	PR1285	May	Roger's Creek	Wages - Casual Labour	1b
Wallbridge	677	500	20100531	PJ	J In20100531	Strain Exploration Services Lt		4,900.00	PJ2227	May	Roger's Creek	Wages - Geology	1b
Wallbridge	677	505	20100531		J Inv\#201002	Joshua Lindgren		4,521.78	PJ2223	May	Roger's Creek	Wages - Casual Labour	1 b
Wallbridge	677	500	20100531		R P/R: May31	2 Pay May31, 2010		4,357.37	PR1285	May	Roger's Creek	Wages - Geology	1b
Wallbridge	677	500	20100531		J In20100515	Strain Exploration Services Lt		749.00	PJ2227	May	Roger's Creek	Wages - Geology	1b
Wallbridge	677	500	20100615	PR	R P/R: Jun15	2 Pay Jun15, 2010		1,423.81	PR1286	June	Roger's Creek	Wages - Geology	1b
Wallbridge	677	503	20100615	PR	P P/R: Jun15	2 Pay Jun15, 2010		232.39	PR1286	June	Roger's Creek	Wages - Data Management	1 b
Wallbridge	677	505	20100615	PR	R P/R: Jun15	2 Pay Jun15, 2010		174.02	PR1286	June	Roger's Creek	Wages - Casual Labour	1 b
Wallbridge	677	504	20100615	PR	P P/R: Jun15	2 Pay Jun15, 2010		66.39	PR1286	June	Roger's Creek	Wages - Geochemical	1b
Wallbridge	677	500	20100621	PJ	J In20100615	Strain Exploration Services Lt		350.00	PJ2232	June	Roger's Creek	Wages - Geology	1b
Wallbridge	677	500	20100622		Inv\#201003	Joshua Lindgren		300.00	PJ2239	June	Roger's Creek	Wages - Geology	1b
Wallbridge	677	500	20100630	PR	R P/R: Jun30	2 Pay Jun30, 2010		907.04	PR1287	June	Roger's Creek	Wages - Geology	1b
Wallbridge	677	505	20100630	PJ	J Inv2010004	Joshua Lindgren		600.00	PJ2257	June	Roger's Creek	Wages - Casual Labour	1b
Wallbridge	677	505	20100630	PR	P/R: Jun30	2 Pay Jun30, 2010		480.44	PR1287	June	Roger's Creek	Wages - Casual Labour	1b
Wallbridge	677	500	20100630		J May1-15	P.Andersen prep time BC		379.40	GJ9T08	June	Roger's Creek	Wages - Geology	1b
Wallbridge	677	503	20100630	PR	R P/R: Jun30	2 Pay Jun30, 2010		298.79	PR1287	June	Roger's Creek	Wages - Data Management	1b
Wallbridge	677	500	20100630	GJ	J May1-15	M. Clark travel \& base camp		257.75	GJ9T08	June	Roger's Creek	Wages - Geology	1b
Wallbridge	677	504	20100630	PR	P/R: Jun30	2 Pay Jun30, 2010		232.39	PR1287	June	Roger's Creek	Wages - Geochemical	1b
Wallbridge	677	505	20100630	GJ	J May1-15	Alan Soever travel time		124.08	GJ9T08	June	Roger's Creek	Wages - Casual Labour	1 b
Wallbridge	677	500	20100630	GJ	J June1-30	P.Andersen airphotos		63.11	GJ9T08	June	Roger's Creek	Wages - Geology	1b
Wallbridge	677	500	20100630	GJ	inv\#201003	J. Lindgren s/b consultants		300.00	GJ9T02	June	Roger's Creek	Wages - Geology	1b
Wallbridge	677	500	20100630		J invoices	Strain Exploration-consultants		350.00	GJ9T03	June	Roger's Creek	Wages - Geology	1b
Wallbridge	677	500	20100630	GJ	WCB BC	adj for rate (Jun16-Jun30)		457.59	GJ9T22	June	Roger's Creek	Wages - Geology	1b
Wallbridge	677	500	20100630		J WCB BC	adj for rate (May16-Jun15)		466.25	GJ9T22	June	Roger's Creek	Wages - Geology	1b
Wallbridge	677	505	20100630	GJ	Jinv\#201004	J. Lindgren s/b consultants		600.00	GJ9T02	June	Roger's Creek	Wages - Casual Labour	1b
Wallbridge	677	500	20100630		invoices	Strain Exploration-consultants		749.00	GJ9T03	June	Roger's Creek	Wages - Geology	1 b
Wallbridge	677	505	20100630	GJ	Inv\#201002	J. Lindgren s/b consultants		4,521.78	GJ9T02	June	Roger's Creek	Wages - Casual Labour	1b
Wallbridge	677	500	20100630	GJ	Invoices	Strain Exploration-consultants		4,900.00	GJ9T03	June	Roger's Creek	Wages - Geology	1b
Wallbridge	677	500	20100715	PR	R P/R: Jul15	2 Pay Jul15, 2010		2,412.97	PR1288	July	Roger's Creek	Wages - Geology	1b
Wallbridge	677	505	20100715	PR	R P/R: Jul15	2 Pay Jul15, 2010		1,919.92	PR1288	July	Roger's Creek	Wages - Casual Labour	1b
Wallbridge	677	506	20100715	PR	R P/R: Jul15	2 Pay Jul15, 2010		1,277.05	PR1288	July	Roger's Creek	Wages - Surveyor	1b
Wallbridge	677	504	20100715	PR	R P/R: Jul15	2 Pay Jul15, 2010		232.39	PR1288	July	Roger's Creek	Wages - Geochemical	1 b
Wallbridge	677	500	20100731	PR	R P/R: Jul31	2 Pay Jul31, 2010		7,331.36	PR1289	July	Roger's Creek	Wages - Geology	1b
Wallbridge	677	505	20100731	PR	R P/R: Jul31	2 Pay Jul31, 2010		4,221.92	PR1289	July	Roger's Creek	Wages - Casual Labour	1b
Wallbridge	677	506	20100731	PR	R P/R: Jul31	2 Pay Jul31, 2010		3,649.96	PR1289	July	Roger's Creek	Wages - Surveyor	1b
Miocene	677	514	20100731	GJ	J July 1-15	allocate B.Jago salary		2,631.40	GJ0018	July	Roger's Creek	Wages-Supervisory	1 b
Wallbridge	677	505	20100731	PJ	J 2010-002	Bruce C. Frank		2,400.00	PJ2291	July	Roger's Creek	Wages - Casual Labour	1b
Wallbridge	677	506	20100731	GJ	J T.Johnson	banked days(Jul17,18,24,25,31)		1,718.60	GJ9T82	July	Roger's Creek	Wages - Surveyor	1b
Wallbridge	677	503	20100731	PR	R P/R: Jul31	2 Pay Jul31, 2010		164.87	PR1289	July	Roger's Creek	Wages - Data Management	1b
Miocene	677	505	20100815	PJ	J 2010-003	Bruce C. Frank		1,800.00	PJ0034	August	Roger's Creek	Wages - Casual Labour	1b
Miocene	677	514	20100831	PR	R P/R:Aug31	2 Pay Aug31, 2010		1,315.70	PR1006	August	Roger's Creek	Wages-Supervisory	1 b
Miocene	677	505	20100831	PJ	J 2010-003	Bruce C. Frank	-	1,800.00	PJ0040	August	Roger's Creek	Wages - Casual Labour	1 b

Preparation and Analysis of Drill Core Samples

Company	Acct	Sub-acct	date	Jmi	reference	description	Amount	jimi \#	Month	Account	Sub-account
Miocene	677	630	20100929	PJ	Inv2120279	ALS Canada	4,292.34	PJ0091	September	Roger's Creek	GeoChemical
Miocene	677	630	20100929	PJ	Inv2120287	ALS Canada	5,894.14	PJ0091	September	Roger's Creek	GeoChemical
Miocene	677	630	20100930	PJ	Inv2119822	ALS Canada	2,063.50	PJ0096	September	Roger's Creek	GeoChemical
Miocene	677	630	20100930	PJ	Inv2139594	ALS Canada	1,044.62	PJ0096	September	Roger's Creek	GeoChemical
Miocene	677	630	20100930	PJ	Inv2139595	ALS Canada	121.92	PJ0096	September	Roger's Creek	GeoChemical
Miocene	677	630	20100930	PJ	Inv2140319	ALS Canada	94.32	PJ0096	September	Roger's Creek	GeoChemical
13,510.84											

08_Drilling Expenditures for Roger's Creek

Company	Acct	Sub-acct	date	Jrnl	reference	description	Amount	jrml \#	Month	Account	Sub-account	Category
Miocene	677	635	20100731	PJ	WB-001	Black Hawk Drilling	$81,244.26$	PJ0025	July	Roger's Creek	Drilling	8
Wallbridge	677	635	20100731	PJ	WB001	Black Hawk Driling	$25,000.00$	PJ2296	July	Roger's Creek	Drilling	8
Miocene	677	635	20100831	PJ	WB-002	Black Hawk Driling	$20,000.00$	PJ0047	August	Roger's Creek	Drilling	8

E.

APPENDIX E: Invoices \& Receipts

2103 Dollarton Hwy
Phone: $604984022 \uparrow$ Fax: 6049840218 www.alsglobal.com

minerals

o: WALLLBRIDGE MINING COMPANY L.TD.
ATTN: PETER ANDERSEN
TOTAL. PAYABL.E (CAD) \qquad
129 FIELDING RD
LIVELY ON P3Y 1.7

Please Remit Payments To

ALS Canada Ltd.
Payment may be made by: Cheque or Bank Transfer

Beneficiary Name:	ALS Canada Ltd.
Bank:	Royal Bank of Canada
SWIFT:	ROYCCAT2
Address:	Vancouver, BC, CAN
Account:	$003-00010-1001098$

2103 Dollarton Hwy
North Vancouver BC V7H OA7
minerals

129 FIELDING RD

Payment may be made by: Cheque or Bank Transfer

Beneficiary Name:	ALS Canada Lid.
Bank:	Royal Bank of Canada
SWIFT:	ROYCCAT2
Address:	Vancouver, BC, CAN
Account:	$003-00010-1001098$

ALS Canada Ltd.
Addess
ancouver, BC, CAN

North Vancouver BC V7H OA

INVOICE NUMBER 2120279				
QUANTITY CODE ANALYSED FOR			UNIT	
			PRICE	TOTAL
100	PREP-318	Crush, Split, Pulverize 1 kg	7.90	790.00
415,90	PREP-31B	Weight Charge (kg) - Crush, Split, Pulverize 1 kg	0.65	270.34
100	Au-ICP21	Au 30g FA ICP-AES Finish	12.12	1,212,00
100	ME-MS61	48 element four acid ICP-MS	15.72	1,572.00
100	GEO-4A01	Four Acid Dig - ME-MS61	4.48	448.00
		SUBTOTAL (CAD)	\$	4,292.34
		R100938885 HST ON	\$	558.00
		TOTAL PAYABLE (CAD)	\$	4,850.34

ATTN: PETER ANDERSEN
TOTAL PAYABLE (CAD)
129 FIELDING RD
LIVELY ON P3Y 1L7

Payment may be made by: Cheque or Bank Transfer

Beneficiary Name:	ALS Canada Lid.
Bank:	Royal Bank of Canada
SWIFT:	ROYCCAT2
Address:	Vancouver, BC, CAN
Account:	$003-00010-1001098$

ALS Canada Ltd.
2103 Dollarton Hwy
North Vancouver BC V7H OA7

Als Canala
To: MIOCENE METALS LIMITED
Page 1 of 1

2103 Dollarton Hevy

North Vancouver BC V7H OAT
Phane: 6049840221 Fax: 6049840218 www.alsglobal.com

俍
ATTN: PETER ANDERSEN
TOTAL PAYABLE (CAD)
LIVELY ON P3Y 117

Payment may be made by: Cheque or Bank Transfer
Beneficiary Name: ALS Canada Ltd.
Bank: Royal Bank of Canada
SWIFT
SWIFT:
Adaress
ROYCCAT2
Please Remit Payments To:
ALS Canada Ltd.
Account:

Vancouver, BC, CAN
003-00010-1001098

2103 Dollarton Hwy
North Vancouver BC V7H OA7

2103 Dollarton Hwy
BC V7H 0A7
Phone: 6049840221

129 FIELDING RD
LIVELY ON P3Y 1L7

Please Remit Payments To :

ALS Canada Ltd.

2103 Dollarton Hwy
North Vancouver BC V7H OA7
Payment may be made by: Cheque or Bank Transfer

Beneficlary Name:	ALS Canada Ltd.
Bank:	Royal Bank of Canada
SWIFT:	ROYCCAT2
Address:	Vancouver, BC, CAN
Account:	$003-00010-1001098$

ALS Canada Ltd.
To: MIOCENE METALS LIMITED
Page 1 of 1
2103 Dollarton Hwy
Phone: 6049840221 Fax: 6049840218 www.alsglobal.com
minerals

ATTN: PETER ANDERSEN
129 FIELDING RD
LIVELY ON P3Y 1L7

Please Remit Payments To :
ALS Canada Ltd.
2103 Dollarton Hwy
North Vancouver BC V7H OA7
Payment may be made by: Cheque or Bark Transfer

Beneficiary Name:	ALS Canada Ltd.
Bank:	Royal Bank of Canada
SWIFT:	ROYCCAT2
Address:	Vancouver, BC, CAN
Account:	$003-00010-1001098$

Box 2828
Smithers, British Columbia VOJ 2 N 0
Telephone: $\quad 250-877-7729$
Fax: $\quad 250-877-7580$
blackhawkdrilling@telus net

Drilling Invoice

(BLACKHAKK (

Drilling Details

Core Drilling

Hole \#	Unit	Depth Meters	Hourly Rate	Unit Price	Total	Drilling Total		
MRC-001	NW	0.00	12.20	$\$$	71.25	\mathbf{S}	869.25	
	NQ	12.20	300.00	$\$$	72.50	\mathbf{S}	$20,865.50$	
	NQ	300.00	582.32	\mathbf{S}	78.75	\mathbf{S}	$22,232.70$	
MRC-002	NW	0.00	21.34	\mathbf{S}	71.25	\mathbf{S}	$1,520.48$	
	NQ	21.34	300.00	$\$$	72.50	\mathbf{S}	20.202 .85	
	NQ	300.00	414.63	\mathbf{S}	78.75	\mathbf{S}	$9,027.11$	

Page
\#3
Invoice \# WB-001

Customer Time

Customer Time Total
Page *4

Invoice \# WB-00I

Chargeable Materials

Date	Hole \#	Description	Quanity		Price		
	17-Jul MRC-001	550 Polymer	1	\$	217.03	\$	217.03
	18-Jul	550 Polymer	1	\$	217.03	S	217.03
	19-Jul	Rod Grease	1	\$	143.44	S	143.44
	20-Jul	Bio Bon Polymer	1	S	193.46	5	193.46
		Lift Polymer	1	S	205.97	\$	205.97
	25-Jul	10f Casing NQ	11	S	235.20	5	2,587.20
		Casing Plug	1	\$	58.50	S	58.50

Misc. Opertions

Date	Description		Rate		Total	
	July Mob In of Drill		1.00	\$5,500.00	\$	5,500.00
	Travel Expenses from Crew	Hotels, Meals,Fuel	1.00	\$ 3,236.74	S	3,236.74

Drilling Details

Core Drilling

Customer Time

Date	Operation	Drill Hours	Man Hours	Price		Total	
OCT 162010	Pad building Pad builder	1.00		\$	850.00	\$	850.00
	Standby for day light	1.50		5	125.00	S	187.50
	Testing	1.30		\$	125.00	\$	187.50
	Reaming	0.50		5	125.00	\$	62.50
	Hole Stabilizing	1.50		5	125.00	\$	187.50
OCT 172010	Pad building Pad builder	1.00		5	850.00	\$	850,00
	Testing	1.00		S	125.00	\$	125.00
	Hole Stabilizing	1.50		S	125.00	\$	187.50
	Reaming	1.00		S	125.00	\$	125.00
	Standby for day light	1.50		5	125.00	\$	187.50
OCT 182010	Pad building Pad builder	1.00		S	850.00	S	850.00
	Hole Stabilizing	0.50		S	125.00	\$	62.50
	Reaming	1.00		5	125.00	\$	125.00
	Standly	13.50		S	125.00	\$	1,687,50
OCT 192010	Pad building Pad builder	1.00		\$	850.00	\$	850.00
	Reaming	1.50		5	125.00	S	187.50
	Hole Stabilizing	1.50		5	125.00	S	187.50
	Testing	0.50		S	125.00	\$	62.50
	Stanby	4.50		\$	125.00	\$	362.50
	Travel	1.50		S	125.00	\$	187.50
OCT 202010	Pad building Pad builder travel out		16.00	\$	45.00	\$	720.00
	Hole Stabilizing	2.00		S	125.00	\$	250.00
	Testing	1.00		\$	125.00	\$	125.00
	Standly for day light	1.50		S	125.00	\$	187.50
OCT 212010	Hole Stabilizing	2.00		S	125.00	\$	250.00
	Reaming	1.00		S	125.00	\$	250.00
	Testing	0.50		\$	125.00	\$	62.50
	Standby	2.00		S	125.00	S	250.00
OCT 222010	Standly	1.50		\$	125.00	\$	187.50
	Testing	1.50		S	125.00	\$	187.50
	Hole Stabilizing	2.00		S	125.00	\$	250.00
	Reaming	0.50		5	125.00	\$	62.50
OCT 232010	Standly	5.00		S	125.00	\$	625.00
	Testing	0.50		5	125.00	\$	62.50
	Hole Stabilizing	0.50		S	125.00	\$	62.50
	Reaming	1.00		S	125.00	S	125.00
	Tear down	4.00		S	125.00	\$	500.00
	Waterline		8.00	S	45.00	S	360,00
OCT 242010	Standby	24.00		S	125.00	S	3,000,00
OCT 252010	Standby	24.00		S	125.00	S	$3,000.00$

Customer Time

Misc. Opertions

Date	Description	Unit	Rate	Total	
OCT 292010	Sccond supply pump	15,00	$\$$	100,00	$\$$

[^0]: Table 1: Claims comprising the Rogers Creek Property.
 9
 Table 2: Description of Rock Units in Figure 718

[^1]: ${ }^{1}$ Text in this section is extracted from previous ARIS report authored by Bruce Jago Ph. D. President of Miocene Metals Limited.

[^2]: ${ }^{2}$ Text in this section is extracted from previous ARIS report authored by Bruce Jago Ph. D. President of Miocene Metals Limited.

[^3]: **** See Appendix Page for comments regarding this certificate *****

[^4]: **** See Appendix Page for comments regarding this certificate *****

[^5]: ***** See Appendix Page for comments regarding this certificate *****

[^6]: ***** See Appendix Page for comments regarding this certificate ${ }^{* * * * *}$

[^7]: ${ }^{* * * * *}$ See Appendix Page for comments regarding this certificate ${ }^{* * * *}$

