

Ministry of Energy & Mines Energy & Minerals Division Geological Survey Branch

ASSESSMENT REPORT TITLE PAGE AND SUMMARY

	TITLE OF REPORT [type of survey Silt Sampling and Prospect		the Ash Propert	y in 2011	TOTAL COST \$ 85,764.51	
AUTHOR(S)	J.David Williams		SIGNATURE(S)	Danie	Milliano	
NOTICE OF WORK	PERMIT NUMBER(S)/DATE(S)	not appli	cable		YEAR OF WORK	2011
STATEMENT OF W	ORK - CASH PAYMENT EVENT NUI	MBER(S)/DATE(S)	4992372 / 23	August 2011		
PROPERTY NAME	ASH					
CLAIM NAME(S) (or	n which work was done <u>) Tenure: 5</u>	503938				
COMMODITIES SO	иднт <u>Copper, Molybdenur</u>	n, Silver, Gold	, Zinc			
MINERAL INVENTO	PRY MINFILE NUMBER(S), IF KNOW	/N <u>092HSE09</u> 4	<u>1, 092HSE189, (</u>	92HSE190		
MINING DIVISION_	Osoyoos		NTS 092H.009	9, 092H.019		
LATITUDE49	o <u>07</u> , <u>11.3</u> "	LONGITUDE	120°1	9 , 58.4	(at centre of wo	ork)
OWNER(S)						
1) Norm Tribe	е		2)			
MAILING ADDRESS	3					
_2611 Sprin	ngfield Road					
<u>Kelowna, I</u>	BC V1X 1B9					
OPERATOR(S) [who	paid for the work]					
1) Charlotte F	Resources Ltd.		2)			
MAILING ADDRESS	8					
1500-885	Georgia Street					
Vancouver	BC V6C 2T8					
PROPERTY GEOLG	DGY KEYWORDS (lithology, age, stra	atigraphy, structure,	alteration, mineraliza	tion, size and attit	ude):	
Intermontane Be	elt, Triassic, Jurassic, Cretace	ous, Tertiary, Co	oast Plutonic Grou	up, Spences B	ridge Group, Nice	ola Group,
Princeton Group	o, 'red' granodiorite, pink orthod	clase, Cathedra	Stock, eugosyno	linal, granodio	rite, quartz diorite	e, quartz
monzonite, rhyo	lite, lithic tuff, crystal tuff, silicifi	cation, sericitization	n, potassic alteration,	argillic alteration,	dike, stock, diatrem	e, breccia,
clast, chalcocite, cu	prite, malachite, molybdenite, chalco	pyrite, pyrite, hema	atite, copper, molybde	enum, silver, gold,	bismuth	
REFERENCES TO I	PREVIOUS ASSESSMENT WORK A	ND ASSESSMENT	REPORT NUMBERS	<u>02545, 0272</u> 1	I <u>, 03158, 03236, 0</u>	3457, 04377,
05610, 05894, 062	89, 06929, 07549, 07827, 12610, ²	13370, 14671, 177	16, 18415, 21626, 2	1627, 21665, 22	290, 27486, 28527,	29314

TYPE OF WORK IN THIS REPORT	EXTENT OF WORK (IN METRIC UNITS)	ON WHICH CLAIMS	PROJECT COSTS APPORTIONED (incl. support)
GEOLOGICAL (scale, area)			
Ground, mapping			
Photo interpretation			
GEOPHYSICAL (line-kilometres)			
Ground			
Magnetic			
Electromagnetic			
Induced Polarization			
Radiometric			
Seismic			
Other			
Airborne			
GEOCHEMICAL (number of samples analysed for)			
Soil 142 samples,35-eleme	nt ICP-AES & Fire Assay	503938	\$ 50,744.01
Silt 2 samples, 35-eleme	ent ICP-AES & Fire Assay	503938	\$ 714.70
Rock 16 samples, 35-eleme	nt ICP-AES & Fire Assay	503938	\$ 5,717.63
Other			
(total metres; number of holes, size) Core			
Non-core			
RELATED TECHNICAL			
Sampling/assaying			
Petrographic			
Mineralographic			
Metallurgic			
PROSPECTING (scale, area)98	hectares	503938	\$ 28,588.17
PREPARATORY/PHYSICAL			
Line/grid (kilometres)			
Topographic/Photogrammetric (scale, area)			
Legal surveys (scale, area)			
Road, local access (kilometres)/trail			
Trench (metres)			
Underground dev. (metres)			
Other			
		TOTAL COST	\$ 85,764.51

Rock, Soil & Silt Sampling and Prospecting Report on the

ASH PROPERTY

in 2011

Okanagan-Similkameen Regional District, southern British Columbia

BC Geological Survey Assessment Report 32567

Tenure Worked: **503938**Mining Division: **Osoyoos**

NTS: 092H.009, 092H.019
Latitude: 49°07'11.3"N
Longitude: 120°19'58.4"W
Owner & operator: Norm Tribe

Operator: Charlotte Resources Ltd.
Manager: Rich River Exploration Ltd.
Consultant: J.David Williams, P.Eng.

geological consultant

for

Norm Tribe (owner) 2611 Springfield Road

Kelowna BC V1X 1B9

and

Charlotte Resources Ltd. (operator)

1500-885 Georgia Street Vancouver BC V6C 2T8

by

Integrex Engineering

303-1225 Cardero Street Vancouver, BC V6G 2H8 www.integrex.ca

J.David Williams, P.Eng.

06 December 2011

TABLE OF CONTENTS

Summary	1
Introduction	3
Location & Access	4
TOPOGRAPHY, VEGETATION & PHYSIOGRAPHY	5
Infrastructure	5
MINERAL TENURE DISPOSITION	6
Property History	8
GEOLOGICAL SETTING	10
Fieldwork of 2011	13
GEOCHEMICAL SAMPLING (SOIL & SILT SAMPLES) Soil samples Silt samples	13
ROCK SAMPLING	15
SAMPLING METHOD, PREPARATION, ANALYSIS AND QUALITY CONTROL	17
Interpretation and Conclusions	19
RECOMMENDATIONS	20
ITEMIZED COST STATEMENT	21
STATEMENT OF QUALIFICATIONS	23
References & Bibliography	24

TABLE OF CONTENTS (CONT'D)

TABLES	
TABLE 1: ASH PROPERTY	3
TABLE 2: MINERAL TENURES OF THE ASH PROERTY	6
TABLE 3: SAMPLING OF THE 2011 PROGRAM	13
TABLE 4: SUMMARY OF PROJECT COSTS	22
Figures	
FIGURE 1: LOCATION OF THE ASH PROPERTY IN BC	4
FIGURE 2: LOCATION OF THE ASH PROPERTY IN SOUTHERN BC	6
FIGURE 3: MINERAL TENURE OF THE ASH PROPERTY	7
Figure 4: Generalized regional geology	9
FIGURE 5: LOCAL GEOLOGY OF THE ASH PROPERTY	12
FIGURE 6: SAMPLING AND PROSPECTING AT THE ASH PROPERTY IN 2011	14
FIGURE 7: COMPARATIVE SOIL GEOCHEMICAL RESPONSE	LOWING PAGE 14
FIGURE 8: SAMPLING AT THE FERRICRETE ZONE	16
Photographs	
PHOTO 1: VIEW OF THE ASH PROPERTY	2
PHOTO 2: REMEDIATING ACCESS ROAD TO THE SOUTH OF THE PROPERTY	4
PHOTO 3: MALACHITE STAIN AT THE CU OCCURRENCE	11
PHOTO 4: SAMPLING THE FERRICRETE ZONE	15
APPENDICES	
APPENDIX A – SAMPLE DESCRIPTIONS	6 PAGES
APPENDIX B – ASSAY CERTIFICATES & ASSAYER'S SPECIFICATIONS SHEETS	19 PAGES
Δ DDENIDIY $C = M \wedge DS$	2 спесте

SUMMARY

In 2011, a program of field exploration was completed on the Ash Property consisting of a single mineral tenure wholly owned by Norm Tribe of Kelowna, BC. That 33 day-long program was completed, at intervals, from 21 April to 20 August 2011, by Rich River Exploration Ltd, of Grindrod, BC on behalf of Charlotte Resources Ltd. of Vancouver, BC. Charlotte Resources holds the Property under option from N. Tribe and financed the 2011 field work.

The 1,036-ha Ash Property is located in the Okanagan-Similkameen Regional District of southern BC, about 40 km WSW of the village of Keremeos. Nearly 850 m of relief is expressed by rounded peaks that steepen as they approach the two main drainages on the Property, McBride and Cat creeks. Numerous roads run throughout most of the Property, but some of the main roads are deeply and frequently water-barred which impeded progress for the field crew in 2011.

The Property is centered on its namesake Cu-Mo porphyry deposit, as well as, in the south, a diatreme hosted Cu-Au showing, dubbed the Cu occurrence, and in the north, scattered historical rock samples of the Cool Creek area, which were anomalous in Ag and As.

Porphyry-type mineralization was first discovered on the Ash Property in 1960, with exploration conducted by a variety of interests, principally Prism Resources Ltd. through to 1987. Over that time, other workers conducted exploration on ground to the northeast and south which partly overlapped onto the current configuration of the Ash Property. Since then, intermittent and relatively small-scale activity has been seen on the Property, including mapping done by N.Tribe in recent years.

Northwest trending and shallow southwest dipping rhyolitic flows and felsic tuffs underlie most of the Property, interrupted by dikes and small stocks of quartz porphyry and a small, late-mineral, central stock of quartz monzonite. A somewhat annular arrangement of alteration and a pyrite halo, typical of porphyry deposits, is truncated on the east by a large domain of diatreme breccia. It has been reported that the clasts of the diatreme contain molybdenite of considerably higher grade than is seen in other surficial host rocks.

The Cu occurrence has, over its history, returned favorable Cu values and more recently, favorable Au assays as well. The Cu occurrence consists of a comparatively small diatreme containing gold and copper in the rhyolitic clastic fraction. In the Cool Creek area, small biogeochemical and soil geochemical surveys accompany the original rock samples in returning anomalous values in various elements.

Fieldwork of 2011 consisted principally of soil sampling with rock and silt samples gathered while prospecting, which covered an estimated 98 ha that reached most parts of the Property. A total of 160 samples were gathered; 142 soils, 16 rocks and 2 silt samples. Soil sampling targeted both the Cool Creek and Cu occurrence areas with additional samples taken on kilometer-long road traverses along each of McBride and Cat creeks.

Soil samples of the 2011 field program in the north part of Cat Creek returned a single highly anomalous result in both Cu and Ag which increases the population of scattered anomalies that seem to be characteristic of that area. A string of elevated Mo assays appear to be marking the northwest contact of the diatreme breccia in that same area. A bulge of anomalous Zn assays was found near the center of the road traverse along Cat Creek which is underlain by the diatreme. It is not known what geological feature can be attributed to that pattern.

A series of soil lines were completed that came within 200 m west of the Cu occurrence. An increasing gradient is evident in Zn, and perhaps in Ag, as the Cu occurrence is approached. A rock sample taken at the toe of a talus fan below the Cu occurrence returned 1.15 g/tne Au, which is yet another indication of gold potential hosted by that particular diatreme. Another rock sample taken in the center of the Property returned 1.16% Cu.

The Ash Property holds at least two compelling exploration targets. The Cu occurrence continues to provide indications of favorable gold as well as copper mineralization, and the molybdenite clasts noted in the diatreme breccia in the Cat Creek valley may hold a large and readily accessible resource. Both targets are under-explored especially given current market conditions. An assessment of those targets, and the Ash porphyry itself, would benefit from a multi-parameter airborne survey. All of the recommended activities would be budgeted at \$300,000 or much less, depending on the circumstances. The purpose of that exploration would be to identify drill targets to be pursued in a subsequent field program

Photo 1: View of the Ash Property. Scene looks north across the valley of the easterly flowing McBride Creek to the buff and gossanous rocks of the Ash occurrence. Ashnola River valley dominates the distance in the right of the view.

Photo by Ian Campbell of Rich River Exploration, 13 August 2011.

INTRODUCTION

Since acquiring the single mineral tenure covering the Ash Cu-Mo porphyry occurrence in 2005, Norm Tribe, has contributed to an assessment of the deposit that was discovered in 1960. In 2011, after optioning the Property to Charlotte Resources Ltd., a field exploration program was initiated by Craig Lynes of Rich River Exploration Ltd., acting on behalf of Charlotte Resources.

The field program, initially beset by the late arrival of summer conditions and a vigorous meltwater freshet, and later impeded by road accesses cut by frequent and deep water-bars, was completed, at intervals, over 33 days. That work was carried out over three periods beginning on 21 April and ending on 20 August.

Table 1: ASH PROPERTY Mining Division: Osoyoos NTS: 092H.009, .019 Latitude: 49°07'11.3"N Longitude: 120°19'58.4"W UTM N: 5,444,200 (Zone 10 UTM E: 694,600 NAD83) Claim Area: 1,036 hectares Owner: Norm Tribe [100%] **BC** Minfile Name Minfile ID Ash 092HSE094

092HSE189

092HSE190

Cu

Cool Creek

Fieldwork consisted of rock, soil and silt sampling in two targeted areas and additional sampling conducted while prospecting most of the accessible roads. Soil sampling was conducted in the north of the Property near the Cool Creek Ag occurrence and in the south of the Property, near what is dubbed the Cu occurrence, which hosts Cu-Au-Ag mineralization.

This report describes the fieldwork of 2011 and makes a few recommendations for further work. All sample details including field notes, assayer's certificates, and maps showing sample locations and plots of assay values for a series of selected elements are appended herein.

Software used in the preparation of this Report include technical drawings prepared in AutoCAD Civil 3D versions 2010 & 2011, and illustrations composed with CorelDRAW Graphics Suite versions X4 & X5. This report was written in Microsoft Office 2007, specifically Word and Excel. Generation of the PDF version of this report was done by Adobe Acrobat Pro version X with some of the appended material prepared in FoxIt Phantom PDF version 5.0.

All units of measurement are consistent with the International System of Units [SI] unless specifically noted otherwise. Where values in historical documents are made in some other system of measurement, they are quoted directly with SI equivalents offered in brackets, sometimes rounded for convenience. All maps and drawings containing Universal Transverse Mercator [UTM] coordinates conform to North American Datum 1983 [NAD83] unless specified differently. All monetary figures are in Canadian dollars.

LOCATION & ACCESS

The Ash Property is located near the international border in the Okanagan-Similkameen Regional District of southern BC (figure 1). The Property falls onto map sheet 092H in the Osoyoos Mining Division.

It can be reached by road from a turnoff from Highway 3, about 4 km west of the town of Keremeos (figure 2). That runoff leads to a distinctive orange-colored bridge that crosses the Similkameen River and continues west, on the south side of the River, for 7 km to the Ashnola River. The road continues south along the Ashnola River for another 2.6 km before the pavement terminates at the start of

Figure 1: Location of the Ash Property in British Columbia.

the Ashnola FSR. The FSR continues generally southwest to pass just east of the Property boundary at about kilometer 30.

An alternate, much less direct route from Highway 3, south of Princeton, is also available during the summer months and enters onto the northwest part of the Property.

Roads of variable condition leading to most areas of the Property branch from a spur road running up McBride Creek which begins at a turnoff at about kilometer 31.5 on the Ashnola FSR. To reach the part of the Property south of McBride Creek, a circuitous route near 40 kilometer on the FSR runs northwest to parallel Duruisseau Creek before swinging east onto the Property.

All roads, including the Ashnola FSR are unpaved for which a four wheel drive vehicle is recommended. It is evident that the Ashnola FSR is susceptible to washouts when the River is at a high level, which is what the Rich River crew had to deal with in June. It was with some surprise that the same crew found other roads on the Property that were heavily water barred, sometimes with frequent deep cross-trenches, which required at least four days in all to remediate those roads to a minimally passable condition (photo 2).

Photo 2: Remediating access road to the south part of the Property. Photo by Craig Lynes, Rich River Exploration, 14 August 2011.

TOPOGRAPHY, VEGETATION & PHYSIOGRAPHY

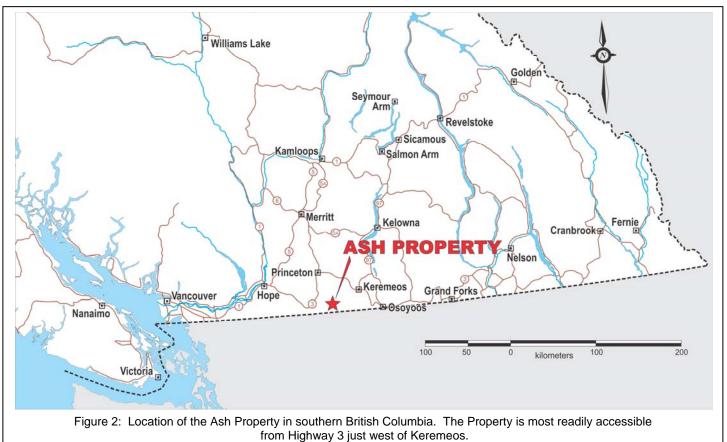
The high rolling hills of the Ash Property are part of the Cascade Mountains of the Okanagan Range. Elevations rise from the Ashnola River Valley at 1,155 m in the southeast corner of the Property to over 2,000 m in places along its western boundary. High, rock cliffs descending into over-steepened talus fans face the Ashnola River valley. Other knobs and bluffs or cliffs are scattered throughout the Property.

Major drainages of the McBride and Cat creeks flow into the Ashnola River and incise the Property terrain to form local steep slopes or local cliffs. There are no significant bodies of standing water, such as lakes or ponds, or swampy ground.

Outcrop dominates local areas of steep terrain or cliffs with larger areas of inclined terrain covered with weathered subcrop or talus. On flatter ground at higher elevations, a thin layer of soil development, sometimes above a thickness of glacial till can predominate. Cochrane (1970, p.8) noted that natural outcrop exposures are extremely sparse in certain areas, making geological mapping sketchy and correlations tentative. Interpretation of soil geochemical assays may need to closely recognize the availability and type of material sampled.

Most of the ground featuring forest cover consists of spruce and fir usually with open understory (photo 1). Forest cover is markedly thinner on south facing slopes over the Ash occurrence and patches of meadows occur on some slopes. Although a large clearcut dominates part of the south slopes of McBride Creek, logging activity appears to be greatest immediately south of the Property and beyond.

High and intermediate elevations of the Property are described as very dry and cold, while lower elevations are described as dry, mild or dry, cool in the bottom of the Ashnola River valley. In 2011, winter conditions persisted well past May as snow fell at higher elevations as late as 24 Jun.


INFRASTRUCTURE

The village of Keremeos (pop. 1,369), about 40 km ENE is the nearest community to the Property, while the slightly larger centers of Princeton (pop. 2,677), about 40 km NNW, and Osoyoos (pop. 5,000), 64 km to the east, would offer most services required by an exploration program not available in Keremeos. Highway 3 passes through all three communities. Princeton is benefitting from the recently reopened Copper Mountain operation located about 15 km south of town.

Apart from logging, and camping facilities along the Ashnola FSR no known development exists in the Property area. According to C.Lynes of Rich River Exploration, the derelict core shack northwest of the Cu occurrence² has, over the last year, been partly refurbished by persons unknown. It is thought that it may be part of a recreation trail. The international border crosses about 10.6 km south of the Property.

¹ BEC Cartographic Zones as shown on iMapBC, http:://webmaps.gov.bc.ca/imfx/imf.jsp?site=imapbc

² Near UTM coordinates 5441887N, 694551E, 1823EL (zone 10).

MINERAL TENURE DISPOSITION

The Ash Property consists of a single MTO³ mineral tenure (table 2, figure 3) that falls within the Osoyoos Mining District. The Property is wholly owned by Norm Tribe (FMC 127236) of Kelowna, BC.

Tenure number 503938 consists of 49 cells covering 1,036 hectares in an arrangement that stretches to more than 5.5 km in the north-south direction and averages about 2 km wide (east-west).

Tenure Number	nber Name		Issue Date	Area [ha]	
503938	unamed	49	2005-Jan-16	2020-Jan-31	1035.86

Table 2: Mineral Tenure of the Ash Property

In a Statement of Work filed with BC Mineral Titles on 23 August 201, the expiry date of tenure 503938 was advanced to 31 January 2020. That expiry date is contingent on acceptance, by BC Mineral Titles, of this Report in support of that Statement of Work (ref. BC Mineral Titles Event Number 4992372).

³ MTO: Mineral Tenure Online, a computerized claim staking system instituted by the Province of British Columbia in January 2005. Tenures are composed of one or more 'cells' of pre-defined size and location. The boundaries of the cells are defined by latitude and longitude coordinates and vary in size with changing latitude.

As of this writing, no exploration permit as a 'Notice of Work' is active nor has one been submitted to the permit office of the BC Inspector of Mines. No private land is bounded within the Ash Property, obviating the requirement for Land Owner Notifications to be issued in advance of any exploration activity. No other permits or exemptions connected with the Property are in force and none have been applied for.

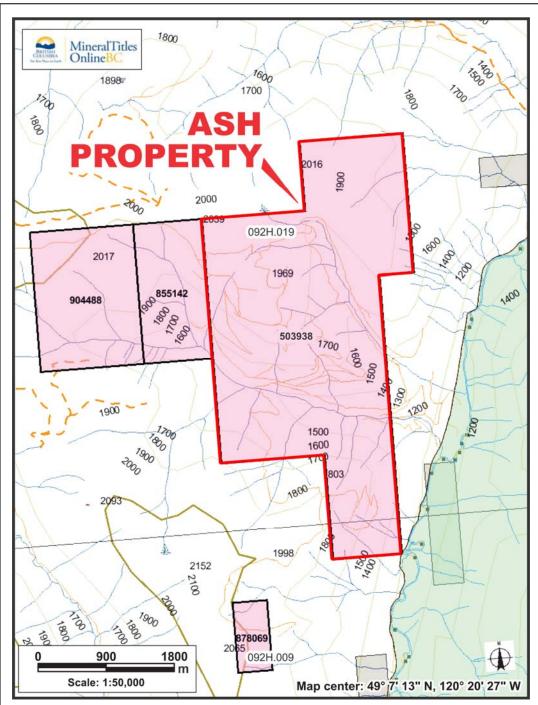
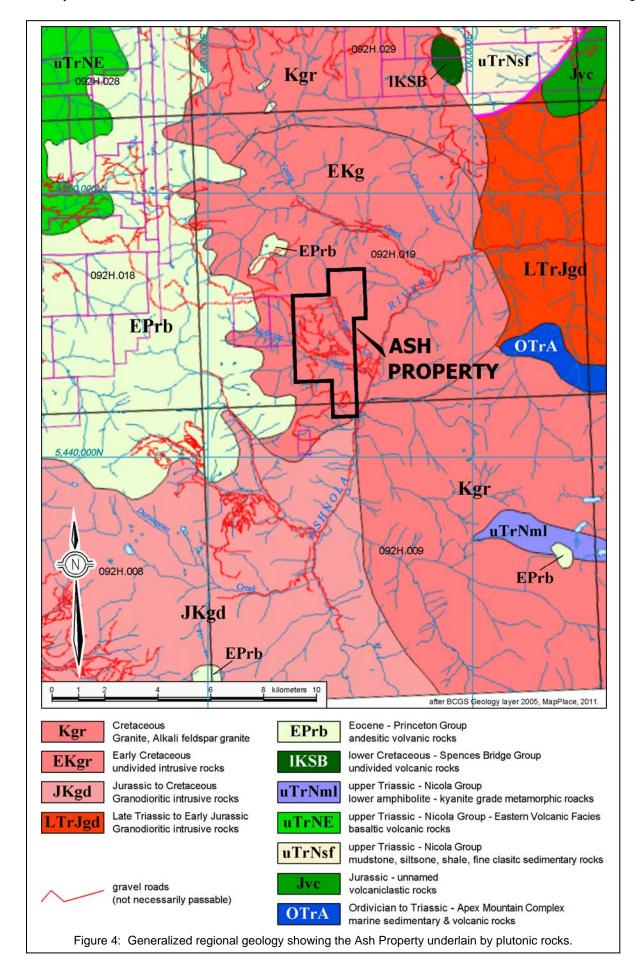


Figure 3: Mineral tenure of the Ash Property. A single tenure covering 1,036 hectares straddles part of the McBride Creek and Cat Creek drainages which flow into the north-flowing Ashnola River.

Source: after Mineral Titles, 30 November 2011.

PROPERTY HISTORY

The history of the Ash occurrence opens in 1960 with its discovery Kennco Explorations Ltd. after following up the results of a regional geochemical survey. Kennco conducted a program of geological mapping, soil geochemical and geophysical surveying, culminating a 3,000-foot (914-m), 9-hole drill program. Meridian Exploration Syndicate restaked the occurrence in 1968 and completed geological, geochemical and geophysical work as well as 3,100 feet (944 m) of trenching and 700-feet (213-meter) of drilling. In 1968, Quintana Minerals optioned the Property to complete a program of geological mapping and six holes of drilling amounting to 2951 feet (899 m). As far as is known, none of that earliest work is in the public record.


Perhaps the most comprehensive exploration was completed by Prism Resources Ltd. after acquiring the Property in 1970 and continued its assessment into 1978. Prism Resources optioned the Property to Getty Mines in 1972, Craigmont Mines in 1973, and in 1978, to E&B Explorations who drilled 3 holes totaling 1,567 feet (478 m).

In 1991, exploration activity resumed in the Ash area, on ground owned by Messrs. Renning & Baldys, with a small biogeochemical and soil geochemical survey extending along the north bank of Cat Creek. Scattered anomalous values in Cu, Mo, Pb and Zn made this area of interest to the 2011 field program (Baldys, 1991, Church, et al, 1991 & Renning, 1991)

Norm Tribe, as owner of the currently configured Ash Property, conducted a multi-year mapping project of the limonite characteristics in outcrops adjacent to roads and trails that cross through the Ash occurrence (Tribe, 2004, 2006 & 2007).

The first documented work at the Cu showing was by Mineral Mountain Mining Co. Ltd. and named it the No. 2 Breccia Zone (Phendler, 1972). In 1979, Ashnola Mining Ltd. completed geological mapping and a soil geochemical survey on claims that mostly fell south of the Property but included the Cu showing. A single 406-foot (124 m) drill hole was drilled and a further 1,463 feet (446 m) of unreported drilling was mentioned (Montgomery, 1980). Additional work was completed by Murtec Resources Ltd., in 1987, on its Lucky and Bill claims that also extended south of the Property but fully embraced the Cu showing. Murtec's work included resampling of Ashnola Mining's drill core which returned anomalous values in gold (Stevenson, 1988). In 1991, with the Lucky and Bill claims owned by Messrs. Renning & Baldys, that drill hole was again resampled resulting in anomalous copper and gold values being returned from several samples of quartered core (Renning, 1991).

Anomalous gold and arsenic in stream sediments prompted MineQuest Exploration Associates Ltd., in 1983, to stake ground in the Cool Creek area—a swath of ground east and north of the Property but overlapping onto the northeast part of it in its current configuration. Geological mapping, soil and rock sampling by MineQuest, in the years from 1983 to 1985, located scattered returns of anomalous arsenic and silver in the area of the Cool Creek occurrence (Hadley, et al, 1984).

GEOLOGICAL SETTING

Regional Geology

The Ash Property area lies at the southern end of the Intermontane Belt of the Western Cordillera (Watt, 1989, p.4). The Intermontane Belt is characterized by Triassic and Jurassic eugeosynclinal volcanic and sedimentary rocks (Campbell, 1984, p.6). Intruding the supracrustal rocks are Late Triassic to Cretaceous batholith-scale granites and granodiorites of the Coast Plutonic Complex (figure 4). Unconformably overlying the intrusives are lower Cretaceous rhyolite to andesite flows and pyroclastics of the Spences Bridge Group (Stevenson, 1988). The youngest rocks are of the felsic volcanics of the Princeton Group are dominant west of the Property. Further north, volcanic and sedimentary rocks of the upper Triassic Nicola Group are widespread.

Two distinct phases of the Coast Intrusions are evident on either side of the Ashnola River. On the east side of the River, 'red' granodiorite known as the Cathedral Body, consists of pink orthoclase in a fine grained and light colored groundmass. West of the Ashnola River grey granodiorite predominates, ranging in composition from medium grained quartz diorite to granodiorite (Phendler, 1972, p.8)

Property Geology & Mineralization⁴

The majority of the Property is underlain by brown, buff, purple-green, pale green and white colored, porphyritic rhyolite flows, lithic tuff and crystal tuff, oriented northwest, with a shallow southwest dip. The Ash occurrence is marked by small dikes and stocks of quartz porphyry as well as a small late-mineral central stock of quartz monzonite porphyry from which dike-like apophyses emanate (figure 5).

Alteration extends for 2 km outward from the central intrusive, characterized by variable silicification and sericitization surrounding a core of potassic alteration. An outer phyllic-propylitic halo contains up to 1% pyrite. Zones of argillic alteration accompany many dikes and intense hematitic zones occur south of the central intrusive.

Mineralization at the Ash occurrence consists of blebs of chalcopyrite in the intrusive, while molybdenite occurs as fracture fillings in the rhyolite host. Copper oxides, chalcocite and cuprite are ubiquitous in surface cuts and to depths of about 20 m in drill core. Pyrite in the halo occurs as disseminations or bound in fractures within rhyolite.

The pyrite halo is interrupted on its east side by a large diatreme, possibly of latemineral age. Minor dikes of fine grained, medium grey dacite cut the diatreme. The clastic fraction ranges from an average of 1 cm to as large as 10 cm across in a porous fine grained matrix that grades to a more igneous matrix proximal to medium green-grey quartz porphyry dikes.

Most clasts are mineralized and to a greater degree than the matrix. Disseminated pyrite occurs in the matrix while the clasts also contain both chalcopyrite and

⁴ This section is largely derived from Watt, 1989, pp. 4-5 and Christie, 1977, pp. 5-7.

molybdenite as disseminations and along fractures. The clasts contain a considerably higher grade of molybdenum than that in other surficial rocks.

The Cu occurrence is located on a steep slope overlooking the Ashnola River to the east. The diatreme consists of rounded to angular dacite porphyry or rhyolite clasts ranging from a few centimeters to more than a meter across. The matrix consists of moderately silicified flour. Copper mineralization occurs as malachite and chrysocolla coating (photo 3), staining the clasts and impregnating the matrix (from Betmanis, 1990, p.2).

At the Cu occurrence, a sample taken by Phendler (1972. p. 11) across 50 feet (15 m) of the strongest malachite stain returned 0.19% Cu. Hole 79-1 drilled by Ashnola Mining Co. Ltd. intersected diatreme breccia over its entire 406-foot (123.8m) length. The core was mineralized with malachite and trace amounts of chalcocite, cuprite and native copper contained in the matrix and in fractures in rhyolite clasts. Sampling the core in 3 m intervals returned assays ranging from 0.04% to 0.37% Cu (Montgomery, 1980, p.12). Resampling the best copper mineralized core in 1987 by Murtec Resources Ltd. returned

Photo 3: Malachite stain at the Cu occurrence. The fragmental diatreme-like aspect to the light colored dacitic or rhyolitic clasts is also evident.

Photo by Ian Campbell of Rich River Exploration, 17 August 2011.

gold values to 1,220 ppb Au and 10.3 ppm Ag (Stevenson, 1988, p.1). It was noted that the highest gold assays did not correspond with the copper grades, suggesting that greater gold values may be contained in sections of core not resampled. A second resampling program of the core completed by Renning in 1990, averaged 646 ppb Au and 1,565 ppm Cu (Betmanis, 1990, p.2). Samples from surface mineralization by Teck Explorations Ltd. in 1990, showed a strong bismuth-gold association (ibid, p.3).

The part of the Cool Creek claims owned by MineQuest Exploration Associates Ltd. that covered what is now the northeast part of the present-day Ash Property is where a three rock samples, taken in 1984, were located. Those samples, taken roughly half a kilometer apart, were notable for the highly anomalous arsenic value of 36 ppm and 65 ppm for As in separate samples, and strongly anomalous 12 ppm in Ag from the other. In the same area, anomalous soil geochemistry documented by Prism Resources in 1970 (Cochrane, et al, 1970), and from a small biogeochemical and soil geochemical survey by Renning (1991 & Church, 1991), was evidence to target that part of the Property for the 2011 field program.

⁵ Location of those samples are determined to be 5446294N, 695286E for the 36 ppm As result, 5445729N, 695159E for the 65 ppm As value, and 5446100N, 695819E for the Ag sample. Accuracy of those locations should not be considered to be better than 100 m.

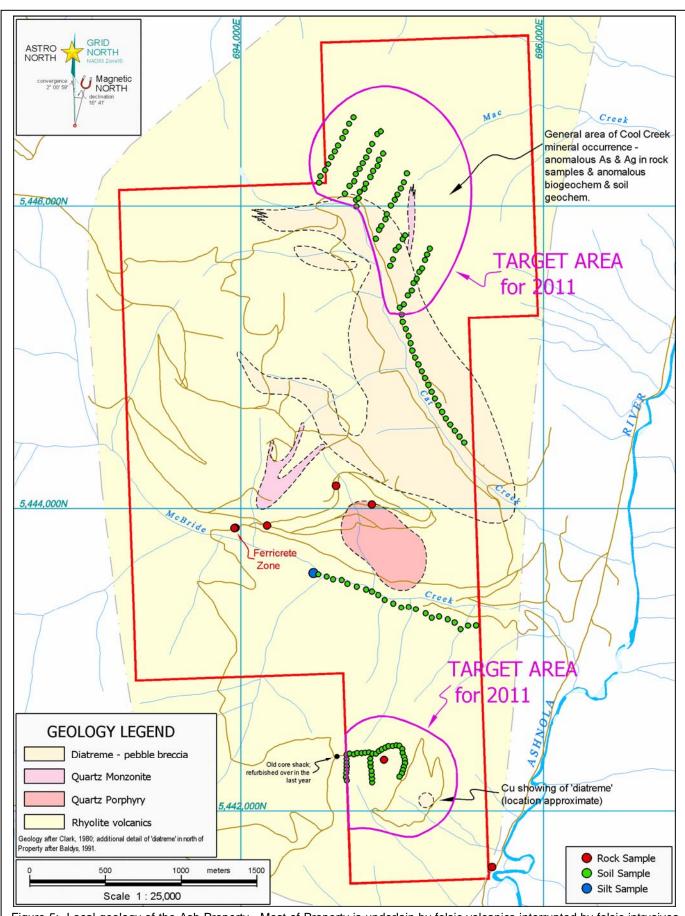


Figure 5: Local geology of the Ash Property. Most of Property is underlain by felsic volcanics interrupted by felsic intrusives and a predominant zone of diatreme in the eastern part of the Property and another smaller instance at the Cu showing.

FIELDWORK OF 2011

The 33-day field program of 2011at the Ash Property consisted predominantly of sampling. Of the 160 samples gathered over that time (table 3, figure 6) the majority were soil samples, principally gathered from two target areas. Rock and silt samples were gathered from locations of interest encountered while prospecting. An estimated 98 hectares of ground was prospected, along roads, on traverses and while gathering soil samples.

Sample Type	Number of samples							
Rock	16							
Soil	142							
Silt – stream sediment	2							
TOTAL 2011 field samples	160							

Table 3: Sampling of the 2011 Field Program

All available details of each sample, including location coordinates, and relevant descriptions, along with assays for selected elements, are tabulated in Appendix A. All assayer's certificates relating to those samples are appended in Appendix B. Maps showing the location of the samples and assay results are contained in Appendix C.

GEOCHEMICAL SAMPLING (SOIL & SILT SAMPLES)

Soil samples

Most of the collection of 160 soil samples gathered in 2011 was from two targeted areas spanning the Property – in the north, along the northeast flank of Cat Creek and in the south, just west of the Cu occurrence. Each of these areas was intended to follow up on favorable results documented by earlier workers on ground perceived to be underexplored. In both locations, the survey coverage was less than intended partly due to snow conditions early in the season and the poor condition of the road access.

In the Cat Creek area, six sample lines oriented 030°Az, usually spaced 200 m apart were extended from the road above the creek with samples dug at 50 m intervals. The sample lines were headed towards MineQuest's anomalous samples of 1984 (Hadley, et al, 1984). The 2011 survey was also intended to corroborate a similar but smaller survey for M.Renning that yielded anomalous values in Cu, Mo, Pb and Zn (Church, et al, 1991).

In the Cu occurrence area, a series of north-south lines, partly oriented on roads were represented with samples taken at 25 m intervals. It was intended to both corroborate and build upon work by Murtec Resources Ltd. (Stevenson, 1988) who, in their soil geochemical survey, obtained a broad Zn anomaly in that area along with more localized Cu anomalies. It was also hoped that, as the Cu occurrence was approached, a response in Au would be evident. As it turned out, the survey did not come within 200 m of the occurrence.

In addition to the soil sampling at the targeted areas, a line of samples was collected along a section of road above each of McBride and Cat creeks. The samples were collected at 50 m intervals over a length of a kilometer or more.

The highest Cu assay obtained in any of the soil sample was obtained at the south end of Line 4 in the Cat Creek area (figure 7). That assay, at 398 ppm Cu, is clearly anomalous against a background of that rarely exceeds 30 ppm. Furthermore, that sample also contained 18.0 ppm Ag, the highest value of that element in the 2011 population.

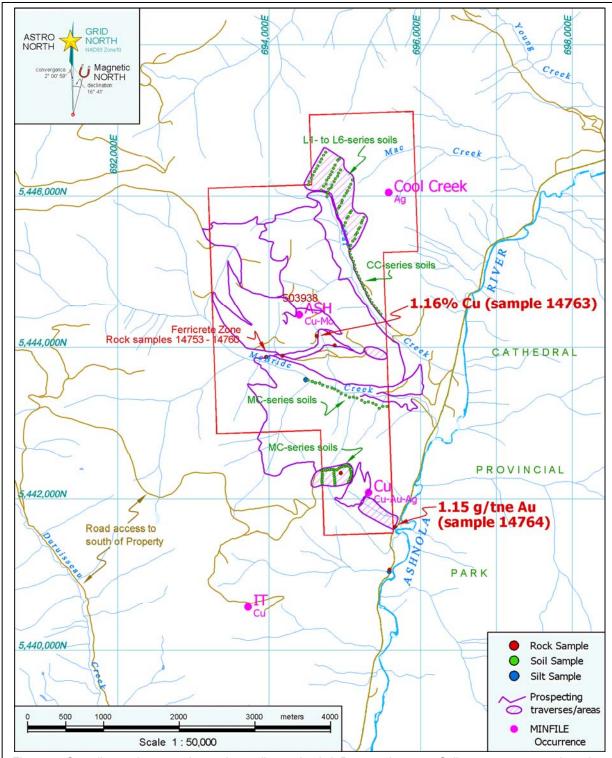
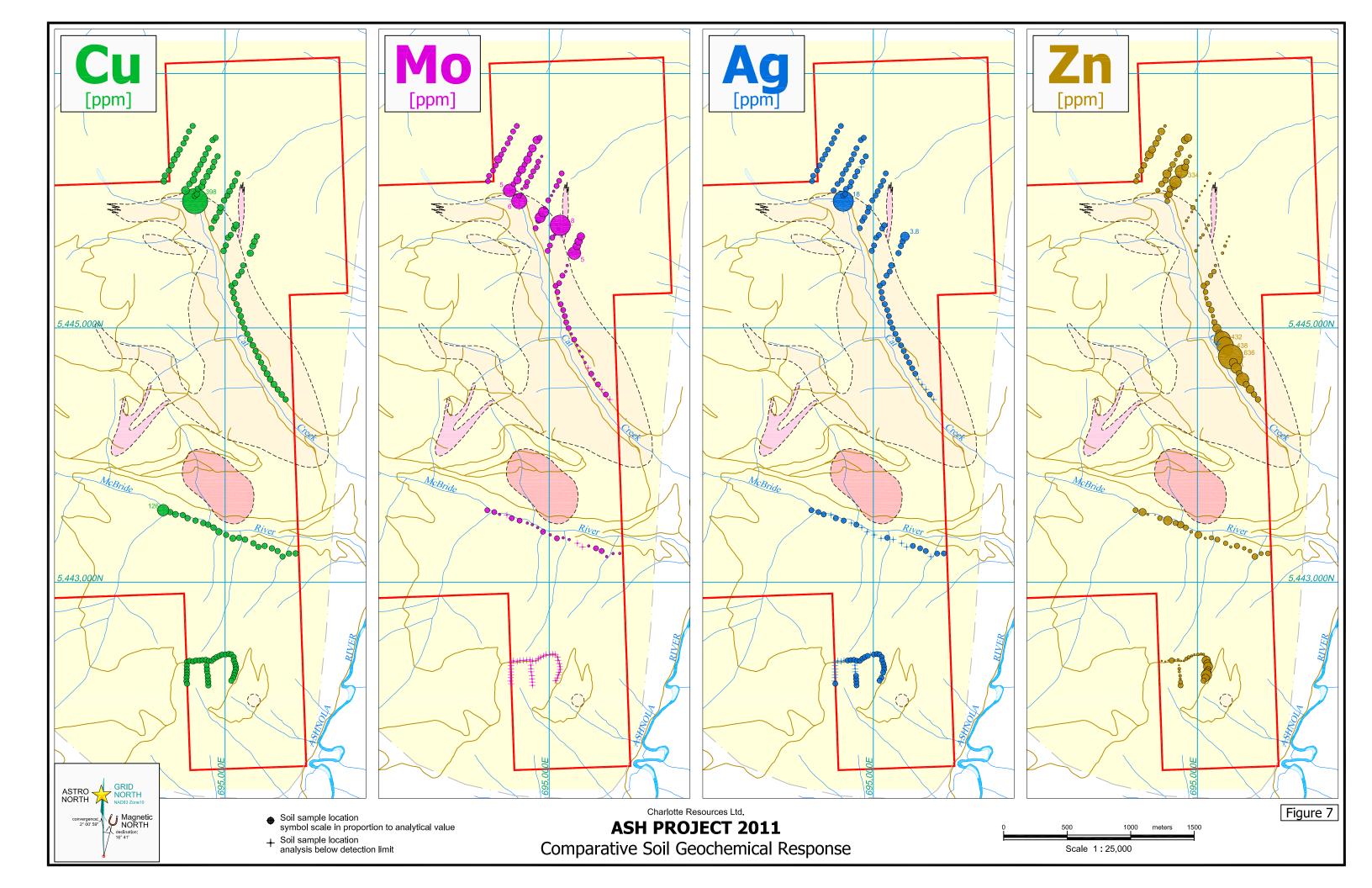



Figure 6: Sampling and prospecting and sampling at the Ash Property in 2011. Soil surveys were conducted over targeted areas in the north and south of the Property and on roads above McBride & Cat creeks. Rock and silt samples were gathered while prospecting. Two notable rock sample assays are highlighted.

A much more subdued but broadly distributed response in Mo roughly marks the northeast contact of the diatreme in that area. The magnitude of the Mo assays is quite low, with a maximum value of 8 ppm competing against background values of 3 ppm or less.

Slightly elevated Zn values in the Cat Creek area may begin to corroborate a persistent Zn halo first evident in the extensive soil survey by Prism Resources Ltd. in 1970 (Cochrane, et al, 1970). Prism's survey showed scattered anomalous Zn values in the same area, and to the west, straddling the Property boundary at it is now configured. Soil surveys by Ashnola Mining Co. Ltd. in 1979 (Montgomery, 1980) and Murtech Resources Ltd. (Stevenson, 1988), extended that trend to the southwest and south, inside and just outside the Property boundary. A pattern of distinctly elevated or anomalous Zn in soils prevails in all surveys that encompass or approach the Ash prospect. That Zn halo may mark the ultimate extent of the mineralized system of the Ash Cu-Mo porphyry.

The bulge in Zn values near the middle of the traverse along the Cat Creek road is unexplained, being entirely contained by the large domain of diatreme. Soil values in the Cu occurrence area are comparatively low but a weak gradient in both Zn and perhaps Ag can be detected as the occurrence is approached.

Silt samples

Two silt samples were gathered in 2011 (figure 6), one near the end of the series of soil samples taken along the road south of McBride Creek and in the south-center of the Property. The other silt sample was from a drainage crossing the Ashnola FSR about half a kilometer south of the Property. Results of the former sample overshadowed those of the latter, especially in Cu and Zn. That former sample returned higher values for those elements than any of the soil samples gathered along that McBride Creek road.

ROCK SAMPLING

Of the 16 rock samples taken in 2011 at the Ash Property, half of them were scooped out of a shallow trench of deeply gossanous talus made while sampling (photo 4). That feature, dubbed the Ferricrete Zone, by Craig Lynes of Rich River Exploration is located on the north side of McBride Creek in rather steep but thinly forested terrain.

All but two of the samples from the Ferricrete Zone returned assays in excess

Photo 4: Sampling the Ferricrete Zone. View looking west of the rusty weathering talus and the series of eight 1m-long samples cut through it.

Photo by Craig Lynes, Rich River Exploration, 02 July 2011.

of 1,000 ppm Cu, and one was substantially higher in molybdenum that the others (figure 8). However, none of the assays are of economic significance.

The best results were from a pair of grab samples taken in the center of the Property and below the Cu occurrence. The first of those samples, with an assay of 1.16% Cu, was from rhyolitic material containing minor disseminated chalcopyrite and pyrite.

The second notable result was taken just meters off the extreme southeast corner of the Property from the toe of a talus slope, evidently derived from the diatreme of the Cu occurrence. An assay of 1.15 g/tne Au is further testament of significant gold contained in the diatreme. Consistent with the observation noted by Betmanis (1990, p.2), this highest gold result is accompanied by the highest Bi value (730 ppm) of the 2011 sampling.

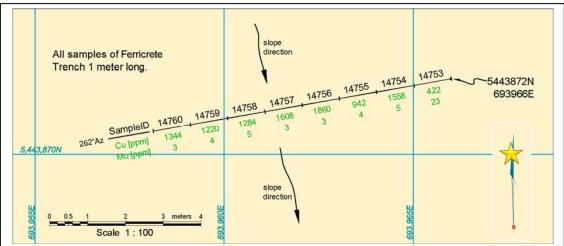


Figure 8: Sampling the Ferricrete Zone. A transect of 8 1m-long samples were collected from a shallow trench crossing a gossanous talus slope.

SAMPLING METHOD, PREPARATION, ANALYSIS AND QUALITY CONTROL

All 160 samples gathered during the 2011 field program on the Ash Property were collected and handled in a manner that was intended to meet or exceed acceptable standards of practice. Rock sampling was guided by characteristics of interest observed while prospecting. Except for sampling of the Ferricrete Trench, whose samples were meant to be representative of the available material, the sampled material was selected to maximize the mineralized content in an effort to obtain an upper limit to the contained enrichment. The pair of silt samples was also collected on an ad hoc or opportunistic basis. Soil samples in the targeted Cat Creek area and west of the Cu occurrence were arrayed in a pattern designed to represent bedrock mineralization.

Sampling Methods, Rock, Soil & Silt Samples

Rock samples weighing between about one to three kilograms were collected in oversize plastic bags, gathered by Craig Lynes or by the author. A uniquely numbered tag was added to each bag before being sealed by a nylon zap strap. A description of the sample and its location coordinates, with reference to a GPS, were recorded in the corresponding receipt portion in the book of sample tags or in a fieldbook.

Soil samples were collected from below the A-horizon at depths that varied between 5 and 35 cm. For roadside samples, similar material was taken from exposed but otherwise undisturbed soil on the upslope bank. Sample material, usually collected with a GeoTul, was collected to comfortably fill a kraft sample bag which was loosely packed for transport in the field, then stored at camp in open air to dry. A unique sample number was written on the kraft bag before being filled. Field notes, detailing location, soil characteristics and topographic conditions were usually recorded at the sample site.

Silt samples were gathered from one or more nearby deposits of the finest fluvially transported sediment available. A sample of a kilogram or more was scooped into porous woven sample bags intended for that purpose. The sample was transported and stored in a manner that allowed it to naturally dewater. An identification number was written on the bag or on a small tag stitched into its seam. As with each soil sample, relevant details describing the location and setting were noted before departing the sample site.

Sample Preparation, Analysis & Quality Control

Of the 160 samples gathered during the 2011 field program, all but two were delivered by Craig Lynes to Eco Tech Laboratory ["Eco Tech"] in Kamloops, BC for analysis. Eco Tech is an ISO 9001:2008 accredited facility. All of Eco Tech's assay certificates are appended herein, in their original format, as well as an 'Analytical Assessment Report' detailing the procedures employed.

After a suitable period in a drying oven, all rock samples were crushed before a riffled 250-gram subsample was pulverized to a pulp in a ring mill to a fineness of 95%

⁶ Eco Tech Laboratory Ltd., formerly part of Stewart Holdings Group Ltd., England, has recently been acquired by ALS Group, a subsidiary of Campbell Brothers Ltd., Queensland, Australia.

less than -150 mesh [-100 μ m]. Oven-dried soil and silt samples were sieved for their -80 mesh [-177 μ m] fraction.

All samples received by Eco Tech were digested in a hydrochloric-sulfuric acid aqua regia solution and analyzed for 35 elements by ICP-AES on a half-gram subsample. Every sample was assayed for gold, which was performed by fire assay on a subsample, of pulp or sieved material. Once the resulting gold bead was dissolved in a solution of nitric acid, the gold analysis was made by AA. Determinations for gold exceeding the upper detection limit of 1,000 ppb, were rerun by a similar higher-grade procedure having an upper detection limit of 100 ppm.

Two rock samples from the 2011 field program were delivered by the author to Acme Analytical Laboratories Ltd. ["Acme Labs"] of Vancouver, BC, also an ISO 9001:2008 accredited facility. The assayer's certificate is appended herein as is a 'Method Specifications' sheet, as released by Acme Labs, that detail the procedures used in the analyses of the samples.

The rock samples were dried at 60°C and crushed to 70% -10 mesh [2mm] with a 250 gm riffled portion pulverized to 95% -150 mesh pulp in a ring and puck mill. Analysis for a suite of 36 elements was made by ICP-MS (Acme Group 1DX2) on a 15 g subsample of pulp digested in hot aqua regia for an hour then, after cooling, was diluted to 10ml with a 5% solution of HCl.

No quality control measures, in the form of blank or standard samples inserted into the sample stream, were instituted in the field during 2011. In addition to reference material to assure proper performance from their analytical instrumentation, Eco Tech places repeat samples and re-split samples in the sample stream to assess the quality of their analytical procedure.

Acme Labs imposes its own quality control protocol: A preparation blank is inserted into every run as its first sample. One or more pulp duplicates are inserted into each batch of as many as 35 samples to monitor analytical precision, and one or more -10 mesh reject duplicates are inserted into the same batch to monitor sub-sample precision. Acme Labs inserts it own reagent blanks and reference standards into the job stream as well.

INTERPRETATION AND CONCLUSIONS

The fieldwork of 2011 at the Ash Property had a measure of success from the results of the soil geochemical surveys and with the few rock samples that were collected.

The single anomalous Cu-Ag oil sample from the Cat Creek area, along with the results by earlier workers, suggests that a larger target may be lurking in that part of the Property. Although it is not clear what geological feature may control the distribution of mineralization, the elevated to anomalous array of Mo soil assays suggests that the large domain of diatreme breccia may play a role. A much more extensive soil survey may be useful as a mapping tool in outlining the margins of the diatreme and the intensity of mineralization within it.

Even though the soil survey in the area of the Cu occurrence did not quite reach the diatreme of that showing, the apparent gradient in Zn and perhaps Ag may be useful vectors to mineralization. The single rock sample from that area, grading 1.15 g/tne Au, taken at the toe of a talus slope shed from the diatreme, joins the numerous historical indications of gold enrichment contained in that showing. Geologically, the Cu occurrence is not well understood and an evaluation of its economic potential remains largely untested.

The notion that, at surface, the Ash porphyry is too deep in the system to ever become a copper porphyry, or that it may sit so high in the system that a deep-seated molybdenum deposit could be discovered, as outlined by Christie (1977, p.9) among others, is a debate that the 2011 fieldwork did not address. Christie (ibid, p.8) also concludes that, based on his observations of the geology that no near-surface target worthy of exploration is present. The single composite grab sample by Rich River Exploration that retuned 1.16% Cu raises the question of whether, given current market conditions nearly 35 years on, a renewed appraisal of those deposit models could be justified.

RECOMMENDATIONS

A thorough assessment of a porphyry deposit can be a prolonged and expensive endeavor. There are a few activities that could add value to the economic potential of the Ash Property that would be approachable to an interest of relatively modest financial resources.

Among the conclusions that have become evident in working with the historical data in advance of the 2011 fieldwork at the Property, and reinforced by the fieldwork itself, is the potential for gold at the Cu occurrence. A two to four week mapping and rock sampling program, perhaps coupled by a closely spaced soil geochemical survey, would be directed towards outlining drill targets. That initial program, by a crew of two or three, working through the mid to late summer season would require a budget of about \$75,000.

The observation by Christie (1977, p.5) of molybdenite in clasts of the large domain of diatreme breccia along the Cat Creek drainage and elsewhere, suggests a renewed evaluation of that material is warranted. Christie mentions that the molybdenite mineralization in the diatreme considerably exceeds any exposed at surface. The large footprint of that diatreme, readily at hand for mining and given current market conditions, qualifies it as a worthy exploration target. Perhaps that same crew working at the Cu occurrence could spend several weeks to a month mapping and sampling the diatreme while extending the soil geochemical survey of 2011 to cover that unit entirely. That program would be budgeted at about \$125,000.

It may be worth conducting a helicopter-borne multi-parameter airborne geophysical survey— something that has never been done on the Property. A system equipped with a magnetometer, time-domain EM, and preferably a radiometric detector on flightlines at 200m spacings would amount to a survey size of 50 to 70 line-kilometers. That small a survey may cost less than \$100,000, perhaps much less depending on the availability of a contractor working in the area.

Respectfully submitted,

J.David Williams, P.Eng. 06 December 2011

JDW/jdw Ash_AssessmentReport.docx

ITEMIZED COST STATEMENT

The 2011 field exploration program at the Ash Property was conducted by Rich River Exploration over the period beginning on 21 April and ending on 20 August. Over that period, 33 days were dedicated to the Project with 29 of those days on the Property—the remaining four days consisting of travel time.

The field program opened with a two-day visit to the Property, on 21 & 22 of April to check on road and snow conditions, which were found to be unfavorable for an early start to the exploration season. Fieldwork was completed over two periods, 16 June to 04 July, and 09 to 20 August. Each of those periods began and ended with a travel day that involved setting up or packing up field gear and the travel trailer which accommodated the Rich River crew. The travel trailer was parked, just east of the Property, at one of numerous clearings adjacent to the Ashnola FSR, all of which show evidence of being frequented by campers.

Apart from the initial Property visit in April, Rich River Exploration's field crew consisted of Craig Lynes and two field technicians. The author, engaged by Rich River Exploration as a consulting geologist, joined that crew for a single day on 13 August.

Of the 29 field days, at least four were taken up by road repair. The very late arrival of summer conditions and the rather heavy runoff extending well into June necessitated repairs to the Ashnola FSR as well as some refurbishment of the heavily water-barred access to north target area of the Property. During the August period, the only access road to the Cu Showing in south part of the Property also found to require remediation of numerous deep water-bars. All work to the access roads was done manually.

A total of \$85,765 was expended on the entire 2011 field program (table 4). That expenditure includes HST applied at 12% or in the amount charged at the point of sale.

The total amount of time in the field, including travel days, is estimated at 93.3 person-days, and based on a 10-hour day, the total hours of fieldwork amounts to 930. All together, including program preparation, management and reporting, the program generated 96.9 person-days, or 969 person-hours of work.

Table 4: Summary of Project Costs

CHARGEABLE ITEM	Cost
Personnel & Professional Fees	
Project geological consultant – J.D.Williams – layout proposed work: 10hrs @ \$67.20/hr	672.00
Project geological consultant – J.D.Williams – field visit & travel: 2.3 days @ \$672/day	1,545.60
Rich River Exploration Ltd Craig Lynes, Planning & compilation: 20 hrs @ \$39.20/hr	784.00
Rich River Exploration Ltd. – Field check for snow conditions 21-22 Apr: 2 days C.Lynes @ \$560/day, 1 field technician @ \$504/day	2,128.00
Rich River Exploration Ltd. – Fieldwork 27 days C.Lynes @ \$560/day, 2 field technicians @ \$504/day	42,336.00
Rich River Exploration Ltd Mobilization & demobilization – 4 days C.Lynes @ \$560/day, 2 field technicians @ \$504/day	6,272.00
Analytical Cost	
Acme Analytical Labs – 2 rock samples 36-element ICP-MS @ \$39.23	78.47
EcoTech Acme Analytical Labs: 14 rock, 142 soil & 2 silt samples total 158 samples; 35-element ICP-AES & Fire Assay Au @ \$18.75	2,963.39
Rich River Exploration Ltd. – sample deliveries: 6 hrs @ \$56/hr	336.00
Accommodation, Board	
Travel trailer rental: 29 days @ \$224/day	6,496.00
Meals – charge out 89 person-days @ \$67.20/person/day	5,980.80
Equipment Rentals	
Truck rental – 4WD crew cab – 29 days @ \$140/day	4,060.00
Jeep rental – bush vehicle – 29 days @ \$112/day	3,248.00
ATV rental – 9 days @ \$84/day	756.00
Equipment rental – radios, chain saw, generator, etc – 29 days @ \$84/day	2,436.00
Satellite phone – 29 days @ \$33.60/day	974.40
Field consumable, supplies & expenses	
Fuel (trucks & all equipment)	1,689.31
Field gear & supplies	544.54
TRIM data	448.00
Report Preparation	
Project geological consultant - J.D.Williams - 3 days @ \$672/day	2,016.00
TOTAL PROJECT EXPENSES	85,764.51

STATEMENT OF QUALIFICATIONS

I, J.David Williams residing at 303 - 1225 Cardero Street in the City of Vancouver, in the Province of British Columbia

DO HEREBY CERTIFY;

- 1. That I am a consulting engineer with a business address of 303 1225 Cardero Street, Vancouver, British Columbia, V6G 2H8.
- 2. That I am doing business under the name of Integrex Engineering and that I am the sole proprietor of the company and that I hold a valid license issued by the City of Vancouver to conduct business at the above address.
- 3. That I am a graduate of the University of Toronto where I obtained a Bachelor of Applied Science degree in Geological Engineering (exploration option).
- 4. That I have actively practiced my profession as a geological engineer since graduating in 1978.
- 5. That I am a Professional Engineer registered with the Association of Professional Engineers and Geoscientists of the Province of British Columbia.
- 6. That the information, opinions and recommendations in the attached documents are based on my position as consulting project geologist that included a field visit to the Property on 13 August 2011 and a review of the data gathered by Rich River Exploration Ltd. during the 2011 field program.
- 7. That I have not received, directly or indirectly, nor do I expect to receive any interest, direct or indirect, in the property of Norm Tribe or Charlotte Resources Ltd., nor do I directly own any securities of Norm Tribe or Charlotte Resources Ltd. or any affiliate thereof known to me.
- 8. I am the author of this Report entitled "Rock, Soil & Silt Sampling and Prospecting Report on the Ash Project in 2011", dated 06 December 2011.
- 9. That I hereby grant to Norm Tribe and to Charlotte Resources Ltd. authorization to include this report in any Prospectus, Statement of Material Facts or other public document.

J.David Williams, P.Eng.

dated at Vancouver, British Columbia this 6th day of December 2011.

REFERENCES & BIBLIOGRAPHY

Note: All or most assessment reports available for download from the BC Ministry of Energy and Mines, Assessment Report Indexing System [ARIS] at: www.empr.gov.bc.ca/mining/geoscience/aris/pages/default.aspx

- Baldys, Christopher (1991): Report on Prospecting, Geological Mapping & Physical Work, Dino Group of Claims; BC Ministry of Energy and Mines, Assessment Report 22290, 28 pages.
- Betmanis, A.I. (1900): <u>Ashnola River Diatreme Prospect</u>; *in* Renning, 1991b, Appendix 2.
- Campbell, K.V. (1984): <u>Cool Creek Claims, Geology</u>: BC Ministry of Energy and Mines, Assessment Report 12610A, 29 pages, 1 map
- Christie, James S. (1977): <u>Geology and Rock Geochemistry of the Ashnola McBride</u>
 <u>Creek Property of Prism Resources Ltd.</u>; BC Ministry of Energy and Mines,
 Assessment Report 06289, 20 pages, 2 maps.
- Church, Calvin & Renning, Michael (1991): <u>Geology of the Oro Claims</u>; BC Ministry of Energy and Mines, Assessment Report 21627, 76 pages.
- Clark, A.M.S. (1980): <u>Diamond Drilling Report, McBride Creek</u>; BC Ministry of Energy and Mines, Assessment Report 07827, 112 pages, 3 maps.
- Cochrane, D.R., Giroux, G., Scott, A. (1970): <u>Geophysical and Geochemical Report on Prism Resources' Ashnola Property of 166 Located Max; Cat; Ash; Nola; Car; Q; Jam; G.C. and McBride Claims; BC Ministry of Energy and Mines, Assessment Report 02721, 70pages, 23 maps.</u>
- Cochrane, D.R., Giroux, G.H. (1971): <u>Magnetometer Report on the Max #3 and Max #4</u>
 <u>Claims</u>; BC Ministry of Energy and Mines, Assessment Report 03158, 10pages.
- Golden, Stephen J. & Walus, Alojzy A. (2011): <u>Updated Technical Report on the Porphyry Copper-Molybdenum Prospect, Ash Mineral Claim, Ashnola Area; Charlotte Resources Ltd., 59 pages.</u>
- Grill, E.C., Campbell, K.V. (1985): <u>Cool Creek Claims, Geology, Geochemistry and Geophysics</u>; BC Ministry of Energy and Mines, Assessment Report 14761, 121 pages, 9 maps.
- Hadley, M.G., Hodgson, G.D. (1984): <u>Cool Creek Claims, Geological Mapping and Rock Sampling</u>; BC Ministry of Energy and Mines, Assessment Report 13370, 43 pages, 4 maps.
- MapPlace (2011): online at www.mapplace.ca, Ministry of Energy and Mines, www.empr.gov.bc.ca/Mining/Geoscience/MapPlace/Pages/default.aspx

Mineral Titles Online (2011): British Columbia Ministry of Energy and Mines, www.empr.gov.bc.ca/Titles/Mineral/Pages/default/aspx

MINFILE (2011):

<u>Ash</u> 092HSE094, last edit: 28 March 2008 <u>Cu</u> 092HSE189, last edit: 28 March 2008

Cool Creek 092HSE190, last edit: 28 November 1991

BC Ministry of Energy and Mines, MINFILE Mineral Inventory, URL www.empr.gov.bc.ca/MINING/GEOSCIENCE/MINFILE/Pages/default.aspx#

- Montgomery, J.H. (1971): Geochemical Report on the Red Group of Mineral Claims of Prism Resources Ltd.; BC Ministry of Energy and Mines, Assessment Report 03457, 13 pages, 1 map.
- Montgomery, J.H. (1980): <u>Geochemical and Geological Report on the Cu, Ag, Al, Norm Claims (East and West Groups)</u>; BC Ministry of Energy and Mines, Assessment Report 07549, 25 pages, 3 maps.
- Phendler, R.W. (1972): <u>Geological Report on the IT Claim Group</u>; BC Ministry of Energy and Mines, Assessment Report 04377, 15 pages, 1 map.
- Renning, Michael (1991a): <u>Geology of the Dino Claim</u>; BC Ministry of Energy and Mines, Assessment Report 21626, 77 pages.
- Renning, Michael (1991b): <u>Geological Field Trips and Drill Core Analysis on the Lucky</u> <u>and Bill Claims</u>; BC Ministry of Energy and Mines, Assessment Report 21665, 26 pages, 2 maps.
- Rice, H.M.A. (1947): <u>Geology and Mineral Deposits of the Princeton Map Area, British Columbia</u>; Geological Survey of Canada, memoir 243, map 888A.
- Ridley, S.L. (1984): <u>Cool Creek Claims, Geochemistry</u>; BC Ministry of Energy and Mines, Assessment Report 12610B, 48 pages, 3 maps.
- Scott, A (1970): <u>Geophysical Report on portions of the Ash, Jam, Q, Car Claims</u>; BC Ministry of Energy and Mines, Assessment Report 02545, 31 pages, 3 maps.
- Sinclair, A.J., Giroux, G.H. (1971): Report on the Geology and a Statistical Analysis of Exploration Data on Prism Resources' Ashnola Property: BC Ministry of Energy and Mines, Assessment Report 03236, 42 pages, 15 maps.
- Sinclair, A.J. (1975): Report on the Relationship between Sulphides and Wallrock

 Alteration, and its Importance to Exploration, Ashnola Property: BC Ministry of Energy and Mines, Assessment Report 05610, 46 pages, 1 map.
- Sinclair, A.J. (1976): <u>Statistical Analysis of Geophysical Data, Ashnola Porphyry</u>
 <u>Prospect</u>; BC Ministry of Energy and Mines, Assessment Report 05894, 34 pages.

Sinclair, A.J. (1978); <u>Rock Geochemistry Orientation</u>, <u>Ashnola Porphyry Deposit</u>; BC Ministry of Energy and Mines, Assessment Report 06929, 11 pages.

- Stevenson, J.Paul (1988): <u>Assessment Report on the Lucky Bill Property</u>; BC Ministry of Energy and Mines, Assessment Report 17716, 132 pages, 5 maps.
- Tribe, N.L. (2004): Geological <u>Mapping Report on the Ash Mineral Claim Group</u>; BC Ministry of Energy and Mines, Assessment Report 27486, 12 pages, 4 maps.
- Tribe, N.L. (2006): <u>Geological Mapping Report on the Ash Mineral Claim</u>; BC Ministry of Energy and Mines, Assessment Report 28527, 12 pages, 3 maps.
- Tribe, N.L. (2007): <u>Geological Mapping Report on the Ash Mineral Claim</u>; BC Ministry of Energy and Mines, Assessment Report 29314, 19 pages.
- Watt, D.Dylan (1989): <u>A Report on Precious Metal Geochemistry on the Ashnola Claim</u>
 <u>Group;</u> BC Ministry of Energy and Mines, Assessment Report 18415, 31pages, 1 map.

Ash Project 2011 Appendix A

APPENDIX A – Sample Descriptions

Series of three tables listing all 160 rock, soil and silt samples collected during the 2011 fieldwork at the Ash Property. Sample location coordinates, descriptions and assays for selected elements are included.

ROCK SAMPLES & SELECTED ASSAYSED ELEMENTS	1 PAGE
SOIL SAMPLES & SELECTED ASSAYED ELEMENTS	4 PAGES
SILT SAMPLES & SELECTED ASSAYED ELEMENTS	1 PAGE

CHARLOTTE RESOURCES Ltd. ASH PROJECT 2011 Rock Samples & Selected Assayed Elements

Date	Sampler	Sample ID	UTM North	UTM East	UTM Elev'n	Source	Source Descriptor	Location	Description	Cu [ppm]	Mo [ppm]	Au [ppb]	Ag [ppm]	Bi [ppm]
01-Jul-11	C.Lynes	14751	5441069	695588		grab		On main Ash logging road	Siliceous meta volcanic, 1-3% fine grained pyrite	106	3	15	0.4	10
01-Jul-11	C.Lynes	14752	5443872	693966		grab	talus	At 34.1 km on Ash main road; north side of McBride Creek	Hydrothermal altered rhyolite, 1-2% diss pyrite	588	2	190	4.0	205
02-Jul-11	C.Lynes	14753	5443872	693966		grab	1 meter length	Ferricrete trench	ferrecrete zone; starting coordinates 5443872N, 693966E	422	23	5	0.8	20
02-Jul-11	C.Lynes	14754	5443872	693965		chip	1 meter length	Ferricrete trench	ferrecrete zone	1558	5	<5	1.0	50
02-Jul-11	C.Lynes	14755	5443872	693964		chip	1 meter length	Ferricrete trench	ferrecrete zone	942	4	5	0.6	35
02-Jul-11	C.Lynes	14756	5443871	693963		chip	1 meter length	Ferricrete trench	ferrecrete zone	1860	3	5	0.8	50
02-Jul-11	C.Lynes	14757	5443871	693962		chip	1 meter length	Ferricrete trench	ferrecrete zone	1608	3	<5	0.8	50
02-Jul-11	C.Lynes	14758	5443871	693961		chip	1 meter length	Ferricrete trench	ferrecrete zone	1284	5	5	0.6	40
02-Jul-11	C.Lynes	14759	5443871	693960		chip	1 meter length	Ferricrete trench	ferrecrete zone	1220	4	<5	0.8	45
02-Jul-11	C.Lynes	14760	5443871	693959		chip	1 meter length	Ferricrete trench	ferrecrete zone	1344	3	<5	0.8	45
02-Jul-11	C.Lynes	14761	5443887	694175		grab		In old road cut out, N side of McBride Creek	Siliceous Qtz-eye rhyollite with minor disseminated chalcopyrite & pyrite, & minor chalcocite, malachite stain	4572	3	5	<0.2	<5
02-Jul-11	C.Lynes	14762	5444026	694866		grab	Old drill site	Old Cat road; abundant material in area	Siliceous rhyolite with 2-5% pyrite on fractures	18	21	5	1.6	<5
02-Jul-11	C.Lynes	14763	5444149	694630		grab	Composite grab	Below core stack on old road	Rhyolite, copper stained volcanic rocks; minor disseminated chalcopyrite & pyrite	1.16%	4	10	0.8	<5
03-Jul-11	C.Lynes	14764	5441630	695661		grab		Below breccia area; in talus above road at 34 km	Rusty rhyolite breccia; hematite & limonite stain	830	3 1	1.15g/t	3.4	730
13-Aug-11	J.D.Williams	545609	5442338	694947	1783	grab	selected from several pieces of shattered float/subcrop; 0.2 x 0.5m area	Above (east of) Cu Showing	Very light grey, clay altered rhyolite, retains overall hardness (H ~6.5) with slight chlaky feel; dissmeinated quartz eyes sometimes vissible; patchy orange iron oxide stain; no sulfides	198	2	19	0	5
13-Aug-11	J.D.Williams	545610	5442339	694947	1786	grab	from angular rock in rootball of small overturned conifer; 0.5 x 0.5m area; 3m NNE of sample 545609	Above (east of) Cu Showing	Similar to sample 545609; bleached, light grey, quartz-eye rhyolite with prominent orange & orange-brown stain on all well-developed, closely spaced, geometrically patterned joint planes; rulifides	0 147	1	16	2	8

Highlighted samples rerun by high-grade analytical procedure with reporting in grams per tonne for Au and in percent for Cu

CHARLOTTE RESOURCES Ltd.

ASH PROJECT 2011
Soil Samples & Selected Assayed Elements

Date	Sampler	Sample ID	UTM North	UTM East	Location	Color	Depth	Soil Development	Moisture	Vegetation	Slope Inclination°	Slope Direction°	Description or Remark	Cu [ppm]	Mo [ppm]	Au [ppb]	Ag [ppm]	Zn [ppm]
15-Aug-11	I.Campbell	AS-001	5442373	694700 S	South area		5	well	dry	lodge pole pine	10	310		4	<1	<5	<0.2	36
15-Aug-11	I.Campbell	AS-002	5442381	694719 S	South area		5	well	dry	lodge pole pine	5	310		6	<1	<5	<0.2	40
15-Aug-11	I.Campbell	AS-003	5442376	694748 S	South area		5	well	dry	lodge pole pine	5	310		4	<1	<5	<0.2	36
15-Aug-11	I.Campbell	AS-004	5442384		South area		10	well	dry	lodge pole pine	5			4	<1	<5	<0.2	32
	I.Campbell	AS-005	5442384					well	dry	lodge pole pine	5			8	<1	5	0.2	136
	I.Campbell	AS-006	5442387				10	well	dry	lodge pole pine	5			4	<1	<5	0.4	44
15-Aug-11	I.Campbell	AS-007	5442389					well	dry	lodge pole pine	5			4	<1	<5	0.2	66
J	I.Campbell	AS-008	5442381	694870 S				well	dry	lodge pole pine	5			4	<1	<5	0.4	44
		AS-009	5442381	694894 S				well	dry	lodge pole pine	10			4	<1	<5	0.2	52
	I.Campbell	AS-010	5442398					well	dry	lodge pole pine	15	250		6	<1	<5	0.4	88
	I.Campbell	AS-011	5442409					well	dry	lodge pole pine	20			8	<1	<5	0.6	88
J		AS-012	5442420					well	dry	lodge pole pine	25	250		4	<1	<5	0.2	60
_	I.Campbell	AS-013	5442430					well	dry	lodge pole pine	25			6	<1	<5	<0.2	50
_		AS-014	5442431	695004 S				well	dry	lodge pole pine	25	280		4	<1	<5 .5	0.2	72
_	I.Campbell	AS-015	5442435					well	dry	lodge pole pine	30			6	<1	<5 .5	8.0	60
_	I.Campbell	AS-016	5442432					well	dry	lodge pole pine	30	310		6	<1	<5	0.6	62 68
_	I.Campbell	AS-017	5442411					well	dry	lodge pole pine	10			6	<1	<5 .5	0.2	
		AS-018	5442385					well	dry	lodge pole pine	20			8 6	<1	<5	0.2	220 202
_		AS-019	5442359					well	dry	lodge pole pine	25			10	<1 <1	<5 <5	0.2 0.2	240
_	I.Campbell	AS-020	5442335					poor	dry	lodge pole pine	40				<1	<5	0.2	148
	I.Campbell	AS-021	5442314					poor	dry	lodge pole pine	40	270		8 12	<1 <1	<5	0.2	218
_	I.Campbell	AS-022	5442290 5442269					poor	dry	lodge pole pine	40 45	270 270		6	<1	<5	<0.2	272
	I.Campbell I.Campbell	AS-023 AS-024	5442247					poor	dry	lodge pole pine	45 45	270 270		8	<1	<5	0.4	196
15-Aug-11	I.Campbell	AS-024 AS-025	5442247					poor	dry	lodge pole pine lodge pole pine	40			6	<1	5	0.4	140
_	I.Campbell	AS-025 AS-026	5442188					poor well	dry	clear-cut	5			6	<1	<5	0.0	132
_	I.Campbell	AS-026 AS-027	5442214					well	dry dry	clear-cut	5			8	<1	<5	0.2	108
_	I.Campbell	AS-027 AS-028	5442239					well	dry	clear-cut	5			4	<1	<5	0.4	60
	I.Campbell	AS-028 AS-029	5442264					well	dry	clear-cut	5			6	<1	<5	0.4	74
_	I.Campbell	AS-023	5442295					well	dry	clear-cut	10			4	<1	<5	<0.2	62
_	I.Campbell	AS-031	5442319					well	dry	clear-cut	10			4	<1	<5	<0.2	76
	I.Campbell	AS-031	5442347					well	dry	clear-cut	5			2	<1	<5	<0.2	34
	I.Campbell	AS-033	5442343					well	dry	clear-cut	5			4	<1	<5	<0.2	32
	I.Campbell	AS-034	5442316					well	dry	clear-cut	5			4	<1	<5	<0.2	30
	I.Campbell	AS-035	5442294					well	dry	clear-cut	5			4	<1	<5	<0.2	30
		AS-036	5442272					well	dry	clear-cut	5			4	<1	<5	<0.2	22
	I.Campbell	AS-037	5442249					medium	damp	clear-cut	flat		Edge of small bog	6	<1	<5	<0.2	16
	I.Campbell	AS-038	5442222					well	damp	clear-cut	flat		Edge of small bog	2	<1	<5	<0.2	10
_	I.Campbell	AS-039	5442201					well	dry	clear-cut	5		o. oan bog	4	<1	<5	0.2	36
29-Jun-11		CC-S1	5445330		Start of Line 1		Ü		~-,		Ū		o field notes	8	2	<5	0.8	148
29-Jun-11		CC-S2	5445282		Cat Creek road								no field notes	20	2	5	0.4	128
29-Jun-11		CC-S3	5445233		Cat Creek road								o field notes	8	1	5	0.6	96
29-Jun-11		CC-S4	5445187		Cat Creek road								o field notes	6	2	5	0.8	140

CHARLOTTE RESOURCES Ltd. ASH PROJECT 2011

Soil Samples & Selected Assayed Elements

Date	Sampler	Sample ID	UTM North	UTM East	Location	Color	Depth	Soil Development	Moisture	Vegetation	Slope Inclination°	Slope Direction°	Description or Remark	Cu [ppm]	Mo [ppm]	Au [ppb]	Ag [ppm]	Zn [ppm]
15-Aug-11	I.Campbell	AS-001	5442373	694700	South area		5	well	dry	lodge pole pine	10	310		4	<1	<5	<0.2	36
29-Jun-11	C.Lynes	CC-S5	5445141	695110	Cat Creek road								no field notes	12	2	<5	0.6	146
29-Jun-11	C.Lynes	CC-S6	5445093	695123	Cat Creek road								no field notes	12	2	5	0.6	90
29-Jun-11	C.Lynes	CC-S7	5445044	695134	Cat Creek road								no field notes	10	2	5	1.0	142
29-Jun-11	C.Lynes	CC-S8	5444998	695152	Cat Creek road								no field notes	8	2	5	0.4	218
29-Jun-11	C.Lynes	CC-S9	5444952	695174	Cat Creek road								no field notes	10	1	5	0.6	212
29-Jun-11	C.Lynes	CC-S10	5444908		Cat Creek road								no field notes	8	2	5	0.2	432
29-Jun-11		CC-S11	5444863		Cat Creek road								no field notes	12	1	5	0.4	438
29-Jun-11		CC-S12	5444818		Cat Creek road								no field notes	6	1	<5	0.2	232
29-Jun-11	C.Lynes	CC-S13	5444773		Cat Creek road								no field notes	18	1	5	0.2	636
29-Jun-11	C.Lynes	CC-S14	5444727		Cat Creek road								no field notes	8	1	5	0.8	218
29-Jun-11		CC-S15	5444683		Cat Creek road								no field notes	12	<1	10	0.4	272
29-Jun-11		CC-S16	5444640		Cat Creek road								no field notes	20	2	5	0.2	170
29-Jun-11		CC-S17	5444596		Cat Creek road								no field notes	16	1	10	<0.2	326
29-Jun-11		CC-S18	5444555		Cat Creek road								no field notes	22	2	5	<0.2	166
29-Jun-11		CC-S19	5444516		Cat Creek road								no field notes	8	<1	5	<0.2	206
29-Jun-11		CC-S20	5444476		Cat Creek road								no field notes	14	2	<5	0.4	146
29-Jun-11		CC-S21	5444437		Cat Creek road								no field notes	8	<1	5	<0.2	146
29-Jun-11	-	L1-S2	5445352			light brown		medium	damp	lodge pole pine	30	60		12	2	<5	0.4	116
29-Jun-11	I -	L1-S3	5445411			light brown		medium	damp	lodge pole pine	35	60		6	2	5	0.6	118
29-Jun-11	,	L1-S4	5445443			light brown	15	medium	damp	lodge pole pine	45	80		6	1	<5	0.6	120
29-Jun-11		L1-S5	5445491			brown	15	5 poor	damp	lodge pole pine	45	80		6	1	<5	1.6	72
29-Jun-11	C.Lynes	L1-S6	5445520		Line 1			SHALE					Sample not taken					
29-Jun-11		L1-S7	5445565			light brown		medium	damp	pine	50	80						
29-Jun-11	C.Lynes	L1-S8	5445588			light brown	15	medium	damp	pine	50	80		28	5	5	1.2	70
29-Jun-11		L1-S9	5445644			brown	15	5 medium	damp	pine	50	80		20	3	<5	1.0	74
29-Jun-11	C.Lynes	L1-S10	5445680	695231	Line 1	light brown	15	5 medium	damp	pine	50	80		20	3	<5	1.2	42
29-Jun-11	C.Lynes	L1-S11	5445719	695249	Line 1	red-brown	15	5 well	damp	lodge pole pine	15	65		8	3	5	3.8	48
29-Jun-11	C.Lynes	L2-S6	5445606	694988	Line 2	brown	15	5 poor	damp	lodge pole pine	50	60		12	2	<5	0.8	76
29-Jun-11	-	L2-S7	5445648	695006	Line 2	brown	15	medium	damp	lodge pole pine	50	60		8	2	<5	0.4	50
29-Jun-11	C.Lynes	L2-S8	5445709	695024	Line 2	grey-brown	15	5 well	dry	lodge pole pine	50	60		12	2	5	0.4	64
29-Jun-11	C.Lynes	L2-S9	5445731	695044	Line 2	brown	15	5 well	dry	lodge pole pine	50	60		6	1	<5	0.4	72
29-Jun-11	C.Lynes	L2-S10	5445781	695070	Line 2	brown	15	5 well	dry	lodge pole pine	50	60		6	1	<5	0.4	60
29-Jun-11	C.Lynes	L2-S11	5445807	695087	Line 2	brown	15	medium	damp	lodge pole pine	40	50		34	8	5	8.0	62
28-Jun-11	C.Lynes	L3-S1	5445784	694893	Line 3	light brown	15	medium	damp	pine	40	60		4	2	<5	0.6	48
28-Jun-11	C.Lynes	L3-S2	5445842	694914	Line 3	brown	15	5 poor	damp	pine	40	60		10	2	<5	0.4	70
28-Jun-11	C.Lynes	L3-S3	5445868	694929	Line 3	brown	15	5 medium	damp	pine	40	60		16	4	<5	1.0	46
28-Jun-11	C.Lynes	L3-S4	5445912	694956	Line 3	light brown	15	medium	damp	pine	40	60		12	4	5	8.0	56
28-Jun-11	C.Lynes	L3-S5	5445946	694965	Line 3	brown	15	medium	damp	pine	40	60		26	1	5	0.6	116
28-Jun-11	C.Lynes	L3-S6	5446003	694992	Line 3	brown	15	medium	damp	lodge pole pine	40	60		10	2	5	0.4	54
28-Jun-11	C.Lynes	L3-S7	5446041	695018	Line 3	brown	15	5 medium	damp	lodge pole pine	40	60		10	1	5	0.4	40
28-Jun-11	C.Lynes	L3-S8	5446075	695035	Line 3	red-brown	15	medium	damp	lodge pole pine	35	60		16	1	<5	0.2	44
28-Jun-11	C.Lynes	L3-S9	5446116	695058	Line 3	light brown	15	medium	damp	lodge pole pine	10	30		12	2	5	8.0	42

CHARLOTTE RESOURCES Ltd. ASH PROJECT 2011 Soil Samples & Selected Assayed Elements

Date	Sampler	Sample ID	UTM North	UTM East	Location	Color	Depth	Soil Development	Moisture	Vegetation	Slope Inclination°	Slope Direction°	Description or Remark	Cu [ppm]	Mo [ppm]	Au [ppb]	Ag [ppm]	Zn [ppm]
15-Aug-11	I.Campbell	AS-001	5442373	694700 S	South area			5 well	dry	lodge pole pine	10	310		4	<1	<5	<0.2	36
28-Jun-11		L3-S10	5446156			red-brown		5 medium	damp	lodge pole pine	10	10		8	2	<5	0.4	46
28-Jun-11		L3-S11	5446215			red		5 well	damp	mixed	flat		it height of land	8	2	<5	0.4	68
28-Jun-11		L4-S1	5445997			brown		0 well	wet	mixed	5	30		398	6	5	18.0	128
28-Jun-11		L4-S2	5446039			brown		5 medium	damp	lodge pole pine	45	30		14	2	5	0.2	152
28-Jun-11		L4-S3	5446051			brown		5 medium	damp	lodge pole pine	45	30		10	1	5	0.4	172
28-Jun-11	,	L4-S4	5446093			light brown		5 medium	damp	lodge pole pine	45	30		12	1	<5	0.6	172
28-Jun-11		L4-S5	5446113			light brown		5 medium	damp	lodge pole pine	45	30		24	2	<5	0.2	170
28-Jun-11		L4-S6	5446147			brown		5 medium	damp	lodge pole pine	45	30		18	2	5	0.4	314
28-Jun-11	,	L4-S7	5446191			light brown		5 medium	damp	lodge pole pine	45	30		22	2	<5	0.4	78
28-Jun-11		L4-S8	5446231	694875 L		light brown		5 medium	damp	lodge pole pine	35	20		14	2	<5	0.4	334
28-Jun-11		L4-S9	5446265			light brown		5 medium	damp	lodge pole pine	20	20		4	2	<5	<0.2	180
28-Jun-11		L4-S10	5446307			light brown		5 medium	damp	lodge pole pine	10	30		10	2 1	5	0.6	148 88
28-Jun-11		L4-S11	5446349			red-brown		5 well	damp	lodge pole pine	5	20		8 58	5	<5	0.6 0.4	114
27-Jun-11	,	L5-S1	5446081			grey-brown		5 poor	damp	lodge pole pine	40	350				5	_	
27-Jun-11	,	L5-S2	5446132			light brown		5 poor	damp	lodge pole pine	45	355		12 32	2	5 10	0.2 0.4	154 158
27-Jun-11		L5-S3	5446163			red-brown		5 medium	damp	lodge pole pine	45	10		12	2	<5	0.4	218
27-Jun-11		L5-S4 L5-S5	5446211 5446245			brown		5 well 5 medium	damp	lodge pole pine	45 45	15 20		20	3	<5	0.2	108
27-Jun-11						light brown			damp	lodge pole pine				_				
27-Jun-11	,	L5-S6	5446284			brown		5 poor	damp	lodge pole pine	45	10		10 24	2	<5	0.2 0.2	152 84
27-Jun-11	,	L5-S7	5446323			light brown		5 poor	damp	lodge pole pine	20	10		8	2	10	0.2	148
27-Jun-11	,	L5-S8	5446367			light brown		5 poor	damp	lodge pole pine	15	340		_	3	5		140
27-Jun-11		L5-S9	5446412			light brown		5 poor	damp	lodge pole pine	10	310		16	3	5 5	0.8 0.6	190
27-Jun-11		L5-S10	5446477			light brown		5 poor	damp	lodge pole pine	5	330		8				202
27-Jun-11		L5-S11	5446495			light brown		5 medium	damp	lodge pole pine	flat		t height of land	6 22	2 2	5 <5	0.6 0.2	138
27-Jun-11	-	L6-S1	5446154			brown		5 medium	damp	lodge pole pine	45	340 350		12	2	<5	0.2	120
27-Jun-11 27-Jun-11		L6-S2 L6-S3	5446196 5446237			brown		5 medium 5 medium	damp	lodge pole pine	45 45	340		10	2	<5	0.4	142
	,	L6-S3 L6-S4	5446237			brown			damp	lodge pole pine	45 45	330		12	2	5	0.2	150
27-Jun-11	-	L6-S5	5446325			light brown		5 medium	damp	lodge pole pine		350		24	3	<5	0.2	104
27-Jun-11 27-Jun-11		L6-S5 L6-S6	5446363			light brown brown		5 medium 5 medium	damp	lodge pole pine	45 35	350 350		20	2	5	0.6	214
27-Jun-11 27-Jun-11		L6-S7	5446402			light brown		5 medium	damp damp	lodge pole pine lodge pole pine	30	340		10	2	<5	0.4	188
27-Jun-11 27-Jun-11	-	L6-S8	5446451			brown		5 medium 5 poor	damp		10	320		6	2	<5	0.4	160
27-Jun-11 27-Jun-11	,	L6-S9	5446492			grey		5 medium	damp	lodge pole pine lodge pole pine	5	340		6	2	<5	0.4	144
27-Jun-11	,	L6-S10	5446545			light brown		5 well			50	330		4	2	<5	0.4	178
27-Jun-11 27-Jun-11		L6-S10 L6-S11	5446588			light brown		5 well	damp	lodge pole pine lodge pole pine	flat	flat		6	2	<5	0.4	74
27-Jun-11 23-Jun-11	-	MC-S1	5443226		તાલ ઇ ∕IcBride Creek	•		5 weii 5 poor	wet damp	mixed	20	210		10	1	<5	0.4	128
23-Jun-11		MC-S1	5443225		//cBride Creek //cBride Creek			0 medium	damp	mixed	25	210		8	1	5	0.2	108
23-Jun-11		MC-S3	5443201		AcBride Creek			5 well	damp	mixed	25	220		6	1	5	<0.2	150
23-Jun-11	-	MC-S4	5443245		лсвнае Стеек ЛсВride Creek			5 medium	damp	mixed	25	220		6	2	5	0.2	100
23-Jun-11		MC-S5	5443266		лсвнае Стеек ЛсВride Creek			5 medium	damp	mixed	25	220		8	2	<5	0.2	96
23-Jun-11		MC-S6	5443285		лсвнае Стеек ЛсВride Creek			0 poor	damp	mixed	40	180		8	1	5	0.2	140
23-Jun-11		MC-S7	5443277		лсвпае Стеек ЛсВride Creek			0 poor	damp	mixed	40	230		6	<1	<5	<0.2	68
∠3-Juii-11	C.Lynes	INIC-37	3443211	093202 IV	ACDITUE CIEEK	DIOMII	2	υ μυσι	uanip	mixeu	40	230		1 0	< I	<0	<0.Z	00

CHARLOTTE RESOURCES Ltd. ASH PROJECT 2011

Soil Samples & Selected Assayed Elements

Date	Sampler	Sample ID	UTM North	UTM East	Location	Color	Depth	Soil Development	Moisture	Vegetation	Slope Inclination°	Slope Direction°	Description or Remark	Cu [ppm]	Mo [ppm]	Au [ppb]	Ag [ppm]	Zn [ppm]
15-Aug-11	I.Campbell	AS-001	5442373	694700	South area		5 v	well	dry	lodge pole pine	10	310		4	<1	<5	<0.2	36
23-Jun-11	C.Lynes	MC-S8	5443306	695222	McBride Creek	brown	15	poor	damp	mixed	20	210		6	<1	<5	<0.2	118
23-Jun-11	C.Lynes	MC-S9	5443335	695157 I	McBride Creek	brown	15	poor	damp	mixed	40	210		10	1	<5	<0.2	134
23-Jun-11	C.Lynes	MC-S10	5443349	695110 I	McBride Creek	red-brown	25 ו	medium	damp	mixed	30	200		6	1	5	0.2	112
25-Jun-11	C.Lynes	MC-S11	5443345	695061 I	McBride Creek	light brown	15 r	medium	damp	mixed	45	190		22	2	<5	< 0.2	64
25-Jun-11	C.Lynes	MC-S12	5443372	695008 1	McBride Creek	llight brown	20 r	medium	damp	mixed	45	210		6	1	<5	< 0.2	184
25-Jun-11	C.Lynes	MC-S13	5443396	694951 I	McBride Creek	grey	15	poor (sandy)	damp	mixed	40	220		28	2	<5	< 0.2	78
25-Jun-11	C.Lynes	MC-S14	5443429	694909 I	McBride Creek	grey	20	poor (sandy)	damp	mixed	40	220		14	1	5	< 0.2	136
25-Jun-11	C.Lynes	MC-S15	5443452	694867 I	McBride Creek	brown	30	poor	damp	mixed	30	220		6	1	<5	0.2	176
25-Jun-11	C.Lynes	MC-S16	5443465	694828 1	McBride Creek	brown	20 ו	medium	damp	mixed	20	220		8	1	5	<0.2	132
25-Jun-11	C.Lynes	MC-S17	5443484	694767 f	McBride Creek	light red	20 \	well	damp	mixed	10	210		8	2	<5	0.6	230
25-Jun-11	C.Lynes	MC-S18	5443503	694705 I	McBride Creek	light red	25 v	well	damp	mixed	10	210		10	2	15	8.0	126
25-Jun-11	C.Lynes	MC-S19	5443528	694667 1	McBride Creek	grey	35 ı	medium	damp	mixed	10	210		6	<1	5	< 0.2	24
25-Jun-11	C.Lynes	MC-S20	5443533	694610 I	McBride Creek	grey	15	poor	damp	spruce, pine	40	230		18	1	<5	0.4	60
25-Jun-11	C.Lynes	MC-S21	5443551	694568	McBride Creek	light red	10 r	medium	damp	spruce, pine	40	215		10	2	<5	0.2	190
25-Jun-11	C.Lynes	MC-S22	5443566	694513 I	McBride Creek	grey	20 1	medium	damp	spruce, pine	20	190		126	2	5	0.2	132

ASH PROJECT 2011

Silt Samples & Selected Assayed Elements

Date	Sampler	Sample ID	UTM	UTM Location	Color	Prop'n	Prop'n	Avg.	Avg.	Slope°	Cu	Мо	Au	Ag	Zn
Date	Sampler	Sample ID	North	East	COIOI	Silt	Organic	Width	Depth	Slope	[ppm]	[ppm]	[ppb]	[ppm]	[ppm]
25-Jun-11	C.Lynes	MC-SILT-TRIB	5443574	694481 North flowing stream of McBride Cr.	tan, brown	50	50	1	0.5	25	362	4	10	0.2	284
01-Jul-11	C.Lynes	ASH 2011-SLT1	5441042	695586 On main Ash logging road south of Property	brown	30	70	1	0.3	30	10	1	<5	0.2	44

Page Silt-1

Ash Project 2011 Appendix B

APPENDIX B – Assay Certificates & Assayer's Specification Sheets

Assay certificates for all 160 samples gathered on the 2011 exploration program.

A pair of rock samples from the Ash Property was submitted as part of a larger group of samples to Acme Analytical Laboratories of Vancouver, BC. Acme Labs certificate VAN11004042 is included herein with the unrelated results blanked out for clarity. Assaying costs for that batch have been pro-rated to properly account for charges applied to the 2011 field program on the Ash Property.

All other samples were prepared and analyzed by Eco Tech Laboratory Ltd. in Kamloops, BC. Certificates AK 2011-0938, -0940 & -0941 are attached, in their entirety.

Specification sheets issued by each laboratory describing the analytical procedures used are also appended.

ACME LABS:

CERTIFICATE OF ANALYSIS VAN11004042	5 PAGES
METHODS SPECIFICATIONS, GROUP 1D AND IF	2 PAGES
ECO TECH LAB:	
CERTIFICATE OF ANALYSIS AK 2011-0938	8 PAGES
CERTIFICATE OF ANALYSIS AK 2011-0940	2 PAGES
CERTIFICATE OF ANALYSIS AK 2011-0941	2 PAGES
ANALYTICAL PROCEDURE ASSESSMENT REPORT	2 PAGES

Acme Analytical Laboratories (Vancouver) Ltd.

1020 Cordova St. East Vancouver BC V6A 4A3 Canada

www.acmelab.com

Client:

Integrex Engineering

303 - 1225 Cardero Street Vancouver BC V6G 2H8 Canada

Submitted By:

J. David Williams

Receiving Lab:

Canada-Vancouver August 18, 2011

Received: Report Date:

October 06, 2011

Page:

1 of 2

CERTIFICATE OF ANALYSIS

VAN11004042.1

CLIENT JOB INFORMATION

Ash-Fox Project: Aug2011 Shipment ID:

P.O. Number

X 2 Number of Samples:

|--|

Method	Number of	Code Description	Test	Report	Lab
Code	Samples		Wgt (g)	Status	
R200-250	> ₹2	Crush, split and pulverize 250 g rock to 200 mesh			VAN
1DX2	> 2	1:1:1 Aqua Regia digestion ICP-MS analysis	15	Completed	VAN

SAMPLE DISPOSAL

STOR-PLP Store After 90 days Invoice for Storage STOR-RJT Store After 90 days Invoice for Storage

Acme does not accept responsibility for samples left at the laboratory after 90 days without prior written instructions for sample storage or return.

Integrex Engineering Invoice To:

> 303 - 1225 Cardero Street Vancouver BC V6G 2H8

Canada

CC: Criag Lynes

ADDITIONAL COMMENTS

This report supersedes all previous preliminary and final reports with this file number dated prior to the date on this certificate. Signature indicates final approval; preliminary reports are unsigned and should be used for reference only. All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of analysis only. Results apply to samples as submitted. "*" asterisk indicates that an analytical result could not be provided due to unusually high levels of interference from other elements.

1020 Cordova St. East Vancouver BC V6A 4A3 Canada Phone (604) 253-3158 Fax (604) 253-1716

Client:

Integrex Engineering

303 - 1225 Cardero Street Vancouver BC V6G 2H8 Canada

Project:

Ash-Fox

Report Date:

October 06, 2011

www.acmelab.com

Page:

2 of 2

Part 1

CERTIFICA	ATE OF AN	IALY	′SIS													VA	\N1	1004	1042	1	
	Method	WGHT	1DX15	1DX15	1DX15	1DX15	1DX15	1DX15	1DX15	1DX15	1DX15	1DX15	1DX15	1DX15	1DX15	1DX15	1DX15	1DX15	1DX15	1DX15	1DX15
	Analyte	Wgt	Мо	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	Au	Th	Sr	Cd	Sb	Bi	V	Са	Р
	Unit	kg	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppb	ppm	ppm	ppm	ppm	ppm	ppm	%	%
	MDL	0.01	0.1	0.1	0.1	1	0.1	0.1	0.1	1	0.01	0.5	0.5	0.1	1	0.1	0.1	0.1	2	0.01	0.001
545609	Rock	1.57	1.7	198.2	48.6	315	0.4	3.0	0.5	41	4.36	173.9	18.7	6.1	8	0.4	26.5	5.1	<2	0.01	0.045
545610	Rock	1.56	0.9	147.4	98.3	33	2.3	0.3	0.2	34	0.88	92.1	16.3	5.5	7	0.2	42.3	7.8	<2	0.03	0.013
0.00			V.				-											- 1		شثنسا	
- 5 1 5 0 1 0	D.J.	2.00	2.0	110	1.0	10		10.4	10.5	205	1.50	2.1	70.0	^^	040	40.4		10.1	70	1 20	0.000
545040	Peals	1 70	^^	1510	2.0		^^	11.5	20.4	000	4.00	2.5	40.7	0.6	22	-0.1	0.1	-0.1	162	2.22	0.120
545044				0450				25.0	25.0	-007	1.00	2.5	40.7	^_	- 25	0.1	0.0	0.1	161	1 10	0.110
			0.5	7000	1.0	24		94.0	00.4	240	4 40	2.0	45.7	2.0	24		-0.4	10.1	100	1.00	0.400
545047		4.00	0.0	202	0.1	50	2.0	07.0	00.0	707	4.70	0.7	40.0	0.0	22	0.0	0.0	-0.4	470	4.04	0.420
		1 10		10000				25.0	07.0	070	1.01	0.5	40.0	0.5	00	0.0	0.4		104	1.50	0.400
				12222					07.1	201	101		22.0	0.5	25	2.2	2.0	2.1	400	4.74	0.407
		2.00	1.0	10000	0.0	50		00.1	07.4	040	5.00		47.0	0.5	25	0.0	0.1	40.4	104	1.42	0.405
		2.01	2.0	10000	5.0	- 10	44.0	24.0	05.0	200	4.00	0.0	40.7	0.5		2.0	0.5	0.4	404	4.00	0.110
545000	De de	1.00	0.7	10000	1.0	10	0.0	20.5	25.7	000	4.07	2.2	12.5	0.5	21	0.2	0.5	-0.1	104	1 10	0.125
545000		2.00	0.0	10000		50	5.0	22.0	20.7	007	4.70	0.7	04.7	0.5	20	0.0	0.2	-0.1	167	1 10	0.422
		4 = 0		0011		10		10.5	01.0	201	0.07	0.5	4.0	<u> </u>		-0.4	-0.4	-0.4	140		0.000
010020	Took	1.72	0.0	100.1	9.0		9.1	0.7	84.8		5.00	5.0	0.5	1.0		0.4	0.0	0.1	100	1.00	0.450

Acme Analytical Laboratories (Vancouver) Ltd.

1020 Cordova St. East Vancouver BC V6A 4A3 Canada Phone (604) 253-3158 Fax (604) 253-1716

Project: Ash-Fox

Client:

Report Date: October 06, 2011

www.acmelab.com

Page: 2 of 2 Part 2

Integrex Engineering 303 - 1225 Cardero Street Vancouver BC V6G 2H8 Canada

CERTIFICATE OF ANALYSIS

VAN11004042.1

		Method	1DX15	1DX15	1DX15	1DX15	1DX15	1DX15	1DX15	1DX15	1DX15	1DX15	1DX15	1DX15	1DX15	1DX15	1DX15	1DX15	1DX15	7AR
		Analyte	La	Cr	Mg	Ва	Ti	В	Al	Na	K	W	Hg	Sc	TI	S	Ga	Se	Te	Cu
		Unit	ppm	ppm	%	ppm	%	ppm	%	%	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	%
		MDL	1	1	0.01	1	0.001	1	0.01	0.001	0.01	0.1	0.01	0.1	0.1	0.05	1	0.5	0.2	0.001
545609	Rock		11	<1	0.01	67	<0.001	7	0.39	0.004	0.25	0.4	0.03	0.4	0.4	<0.05	<1	<0.5	<0.2	
545610	Rock		17	<1	0.01	55	<0.001	4	0.34	0.003	0.25	0.2	0.07	0.2	0.3	0.05	<1	<0.5	<0.2	
- 5 1 5 S 1 1	T.ook			10	1.50		0.117		1.00	0.000	0.01	-2.1	-0.01	1.0	-0.1	-0.05		-0.5	-0.0	
515010	D. d.		^	24	0.00	-	0.440	^	1.05	0.000	0.00	-0.4	10.01	2.2	10.1	40.05	4	-O E	-0.0	
545040	Deal		_	45	2.42	24	0 111	11	0.70	0.004	0.00	-0.1	-0.01	F 0	-0.1	-0.0E	10	-O E	-0.2	
-515011	D.,.!		-	10	4 70	11	0.450	^	1.00	0.040	0.00	-0.4	-0.04	6.0	-0.1	0.07	٥	-0 E	-0.0	
515015	nl.			40	1.00	15	2 100	2	1.00	2.005	0.05	-0.4	-0.04	F.0	-0.1	-0.05	7	-0.5	40.0	
- 5 5 5 5 5 5 5 5 5 5 	- Real		-		1.00	10		-	1.00	0.050	0.04	-2.1	-0.01	5.4	-0.1	0.40	_	-0.5	-0.0	
0 100 11	Took		-	- ŪŽ	1.00		0.100		2.11	0.010	0.01	9.1	9.91	7,1	3.1	9.19	9	9.5		
						- 40	0.454		2.00	0.044	2.00	-0.4	0.04	0.7	-0.4	-0.05		2.0	-0.0	4.000
- C + C C + C					4.00		- 150		2.04				2.00	2.5	-0.4	244	10	2.5		1011
					2.00		0.450	-	0.00	0.050	0.00	-0.4	0.04	0.0	-0.4	10.05	10	-0.5	10.0	4.000
					1 0 1	•	0.400		101	0.047	2.00	-0.4	0.04	2.0	-0.4	0.47		0.7		4.000
0.002							0.115		0.40	0.057	2.00		2.04		- 0.4	-0.05		-0.5		1 101
010022										0.00			0.01	2.0	0.1	0.05				1 000
0100 <u>2</u> 0	T.OOK			-01	1.0.	•	0.101	17		0.0.5	0.01	-0.1	2.01	4.4	-0.1	-0.05	- 11	-0.5	-0.0	
0.002.											0.10	2.1	2.24			0.40		-0.5		
010020	, took				1.20	-	₩.20.				3									

Phone (604) 253-3158 Fax (604) 253-1716

Integrex Engineering 303 - 1225 Cardero Street

Vancouver BC V6G 2H8 Canada

Project:

Client:

Ash-Fox

Report Date:

October 06, 2011

www.acmelab.com

Page:

1 of 1

Part 1

	NITOOL	DED		_								3-				\	NIAA	004	0.40	7	
QUALITY CO	JNTROL	KEP	UR													VA	N11	004	042.		
	Method	WGHT	1DX15	1DX15	1DX15	1DX15	1DX15	1DX15	1DX15	1DX15	1DX15	1DX15	1DX15	1DX15	1DX15	1DX15	1DX15	1DX15	1DX15	1DX15	1DX15
	Analyte	Wgt	Мо	Cu	Pb	Zn	Ag	Ni	Со	Mn	Fe	As	Au	Th	Sr	Cd	Sb	Bi	V	Са	Р
	Unit	kg	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppb	ppm	ppm	ppm	ppm	ppm	ppm	%	%
	MDL	0.01	0.1	0.1	0.1	1	0.1	0.1	0.1	1	0.01	0.5	0.5	0.1	1	0.1	0.1	0.1	2	0.01	0.001
Pulp Duplicates																					
- 0 1002 i	Flooit	2.21	0.0	-10000	-	HO.	11.0	01.0	20.0	888	1.00	2.2	18.7	0.5		0.2	9.5	3. ∔			-0.110
DED 515021	0.0		0.0	10000	10	12	110	25.5	05.7	704	101	2.0	10.0	^ F	50		2.5	0.4	100	1.07	0.404
E4E000	Dools	2.20	0.0	10000	F 1	F2	F 0	22.0	26.7	967	4 72	0.7	21.7	0.5	30	0.3	0.3	-0.1	167	1.40	0 122
DED 545000	00																				
Core Reject Duplicates																					
- 5 : 5 5 : 5	Rudi	0.00	÷.5	7000	9.2	91	2.0	- 0 1.0	20.1	910	1.10	2.0	15.7	9.0	21	2.1	-0.4	-0.1	400	1.00	
BUP 515010	Q 0		9.5	****	9.7		0.2	91.1	27.0	- 000	1.72	2.0	01.5	0.0	20	€. 1	- 	- 			-0.100
Reference Materials																					
STD DS8	Standard		12.7	114.2	132.4	312	1.8	35.4	7.9	625	2.58	25.6	107.4	6.9	66	2.5	6.2	7.6	42	0.69	0.082
STD DS8	Standard		13.6	103.3	116.3	297	1.9	38.0	7.6	609	2.41	28.0	107.6	6.4	59	2.2	5.3	6.6	43	0.70	0.078
OTD 00 7	Oten de d																				
- 0.13 - 0.0 T	Otada. d																				
OTD 00 7	Otersteed																				
OTD DAM.	Otom dan d																				
OTO Print Emposioni																					
STD DS8 Expected			13.44	110	123	312	1.69	38.1	7.5	615	2.46	26	107	6.89	67.7	2.38	5.7	6.67	41.1	0.7	0.08
OTD COT Expenses																					
BLK	Blank		<0.1	1.2	<0.1	<1	<0.1	<0.1	<0.1	<1	<0.01	<0.5	<0.5	<0.1	<1	<0.1	<0.1	<0.1	<2	<0.01	<0.001
DIV	Distrib																				
BLK	Blank		<0.1	<0.1	<0.1	<1	<0.1	<0.1	<0.1	<1	<0.01	<0.5	<0.5	<0.1	<1	<0.1	<0.1	<0.1	<2	<0.01	<0.001
Buit	Diani.																				
Prep Wash																					
G1	Prep Blank	<0.01	0.2	4.8	3.6	44	<0.1	2.3	3.7	520	1.80	8.0	1.2	4.5	45	<0.1	0.1	<0.1	35	0.43	0.065
G1	Prep Blank	<0.01	0.1	2.8	3.3	41	<0.1	2.2	3.7	529	1.82	<0.5	<0.5	5.2	52	<0.1	<0.1	<0.1	36	0.44	0.071

Acme Analytical Laboratories (Vancouver) Ltd.

Acme Analytical Laboratories (vancouver)

1020 Cordova St. East Vancouver BC V6A 4A3 Canada Phone (604) 253-3158 Fax (604) 253-1716 Client: Integrex Engineering

303 - 1225 Cardero Street Vancouver BC V6G 2H8 Canada

Project:

Ash-Fox

Report Date:

October 06, 2011

www.acmelab.com

Page: 1 of 1 Part 2

QUALITY CONTROL	REP	OR	Γ												VA	N11	0040)42
Method	1DX15	1DX15	1DX15	1DX15	1DX15	1DX15	1DX15	1DX15	1DX15	1DX15	1DX15	1DX15	1DX15	1DX15	1DX15	1DX15	1DX15	7AR
Analyte	La	Cr	Mg	Ва	Ti	В	Al	Na	K	w	Hg	Sc	TI	s	Ga	Se	Te	Cu
Unit	ppm	ppm	%	ppm	%	ppm	%	%	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	%
MDL	1	1	0.01	1	0.001	1	0.01	0.001	0.01	0.1	0.01	0.1	0.1	0.05	1	0.5	0.2	0.001
Pulp Duplicates																		
					000			0.0	0.00	• • •								
515000		5.1	1.01		0.101		0.40	0.010	0.00	0.1	0.01	1.0	0.1	0.17		0.7	0.2	4 000
PEP-515020 QC																		1.000
Core Reject Duplicates																		
515010 P.U.I.	+		1.00	+0	0.444	-	1.00	0.050	0.01	- 3.4	0.01	5.4		0.10		0.5	0.0	
BUP 5 (50 (0	- +		1.07		0.102	- -	2.07	0.002		0.1	0.01	7.0	0. 1	0.12	3	0.0	0.2	
Reference Materials																		
STD DS8 Standard	14	107	0.65	283	0.115	2	0.95	0.091	0.44	3.0	0.20	1.9	5.5	0.16	5	5.9	5.3	
STD DS8 Standard	15	119	0.59	274	0.109	2	0.91	0.090	0.41	2.9	0.19	2.0	5.3	0.16	5	5.1	4.8	0.554
OTD 00.7																		0.540
OTD D44																		0.504
OTD INTERPOSION																		0.002
STD DS8 Expected	14.6	115	0.6045	279	0.113	2.6	0.93	0.0883	0.41	3	0.192	2.3	5.4	0.1679	4.7	5.23	5	
272 22 7 5 ,																		-0.555
BLK Blank	<1	<1	<0.01	<1	<0.001	<1	<0.01	<0.001	<0.01	<0.1	<0.01	<0.1	<0.1	<0.05	<1	<0.5	<0.2	
	-14	٠,4	-0.04	<i>ا</i> ر	<0.004	.,4	ZO 04	<0.004	~ 0.04	<0.1	<u> ۵</u> 0 04	-0 4	-0.4	<0.05	٦,4	-O F	40 O	
BLK Blank	<1	<1	<0.01	<1	<0.001	<1	<0.01	<0.001	<0.01	<0.1	<0.01	<0.1	<0.1	<0.05	<1	<0.5	<0.2	
Prep Wash																		
G1 Prep Blank	10	4	0.47	146	0.093	<1	0.82	0.065	0.44	<0.1	<0.01	1.6	0.3	<0.05	4	<0.5	<0.2	
G1 Prep Blank	11	4	0.47	146	0.099	<1	0.85	0.078	0.45	<0.1	<0.01	1.5	0.3	<0.05	4	<0.5	<0.2	

METHOD SPECIFICATIONS GROUP 1D AND 1F – GEOCHEMICAL AQUA REGIA DIGESTION

Package Codes: 1D01 to 1D03, 1DX1 to 1DX3, 1F01 to 1F07

Sample Digestion: HNO3-HCl acid digestion Instrumentation Method: ICP-ES (1D), ICP-MS (1DX, 1F)

Applicability: Sediment, Soil, Non-mineralized Rock and Drill Core

Method Description:

Prepared sample is digested with a modified Aqua Regia solution of equal parts concentrated HCl, HNO3 and DI H2O for one hour in a heating block of hot water bath. Sample is made up to volume with dilute HCl. Sample splits of 0.5g, 15g or 30g can be analyzed.

For 1F07, Lead isotopes (Pb₂₀₄, Pb₂₀₆, Pb₂₀₇, Pb₂₀₈) are suitable for geochemical exploration of U and other commodities where gross differences in natural to radiogenic Pb ratios, is a benefit. Isotope values can be reported in both concentrations and intensities. Sample splits of 0.25g, 0.5g, 15g or 30g can be analyzed.

Element	Group 1D Detection	Group 1DX Detection	Group 1F Detection	Upper Limit
Ag	0.3 ppm	0.1 ppm	2 ppb	100 ppm
Al*	0.01%	0.01%	0.01%	10%
As	2 ppm	0.5 ppm	0.1 ppm	10000 ppm
Au	2 ppm	0.5 ppb	0.2 ppb	100 ppm
B*^	20 ppm	20 ppm	20 ppm	2000 ppm
Ba*	1 ppm	1 ppm	0.5 ppm	10000 ppm
Bi	3 ppm	0.1 ppm	0.02 ppm	2000 ppm
Ca*	0.01%	0.01%	0.01%	40%
Cd	0.5 ppm	0.1 ppm	0.01 ppm	2000 ppm
Со	1 ppm	0.1 ppm	0.1 ppm	2000 ppm
Cr*	1 ppm	1 ppm	0.5 ppm	10000 ppm
Cu	1 ppm	0.1 ppm	0.01 ppm	10000 ppm
Fe*	0.01%	0.01%	0.01%	40%
Ga*	-	1 ppm	0.1 ppm	1000 ppm
Hg	1 ppm	0.01 ppm	5 ppb	50 ppm
K*	0.01%	0.01%	0.01%	10%
La*	1 ppm	1 ppm	0.5 ppm	10000 ppm
Mg*	0.01%	0.01%	0.01%	30%
Mn*	2 ppm	1 ppm	1 ppm	10000 ppm
Мо	1 ppm	0.1 ppm	0.01 ppm	2000 ppm

Element	Group 1D Detection	Group 1DX Detection	Group 1F Detection	Upper Limit
Na*	0.01%	0.001%	0.001%	5%
Ni	1 ppm	0.1 ppm	0.1 ppm	10000 ppm
P*	0.001%	0.001%	0.001%	5%
Pb	3 ppm	0.1 ppm	0.01 ppm	10000 ppm
S	0.05%	0.05%	0.02%	10%
Sb	3 ppm	0.1 ppm	0.02 ppm	2000 ppm
Sc	-	0.1 ppm	0.1 ppm	100 ppm
Se	-	0.5 ppm	0.1 ppm	100 ppm
Sr*	1 ppm	1 ppm	0.5 ppm	10000 ppm
Te	-	0.2 ppm	0.02 ppm	1000 ppm
Th*	2 ppm	0.1 ppm	0.1 ppm	2000 ppm
Ti*	0.01%	0.001%	0.001%	5%
TI	5 ppm	0.1 ppm	0.02 ppm	1000 ppm
U*	8 ppm	0.1 ppm	0.05 ppm	2000 ppm
V*	1 ppm	2 ppm	2 ppm	10000 ppm
W*	2 ppm	0.1 ppm	0.05 ppm	100 ppm
Zn	1 ppm	1 ppm	0.1 ppm	10000 ppm
Be*	-	-	0.1 ppm	1000 ppm
Ce*	-	-	0.1 ppm	2000 ppm
Cs*	-	-	0.02 ppm	2000 ppm
Ge*	-	-	0.1 ppm	100 ppm
Hf*	-	-	0.02 ppm	1000 ppm
In	-	-	0.02 ppm	1000 ppm
Li*	-	-	0.1 ppm	2000 ppm
Nb*	-	-	0.02 ppm	2000 ppm
Rb*	-	-	0.1 ppm	2000 ppm
Re	-	-	1 ppb	1000 ppb
Sn*	-	-	0.1 ppm	100 ppm
Ta*	-	-	0.05 ppm	2000 ppm
Υ*	-	-	0.01 ppm	2000 ppm
Zr*	-	-	0.1 ppm	2000 ppm
Pt*	-	-	2 ppb	100 ppm
Pd*	-	-	10 ppb	100 ppm
Pb ₂₀₄	-	-	0.01 ppm	10000 ppm
Pb ₂₀₆	-	-	0.01 ppm	10000 ppm
Pb ₂₀₇	-	-	0.01 ppm	10000 ppm
Pb ₂₀₈	-	-	0.01 ppm	10000 ppm

^{*} Solubility of some elements will be limited by mineral species present.

^Detection limit = 1 ppm for 15g / 30g analysis.

Limitations:

Au solubility can be limited by refractory and graphitic samples.

CERTIFICATE OF ANALYSIS AK 2011-0938

Charlotte Resources

P.O. Box 131

Grindrod, B.C. V0E 1Y0

No. of samples received: 102

Sample Type: Soils **Project: Ash**

Submitted by: Craig Lynes

18-Aug-11

ET #.	Tag #	Au (nnh)	
	Tag #	(ppb)	
1	CC-S1	<5	
2	CC-S2	5	
3	CC-S3	5	
4	CC-S4	5	
5	CC-S5	<5	
6	CC-S6	5	
7	CC-S7	5	
8	CC-S8	5	
9	CC-S9	5	
10	CC-S10	5	
11	CC-S11	5	
12	CC-S12	<5	
13	CC-S13	5	
14	CC-S14	5	
15	CC-S15	10	
16	CC-S16	5	
17	CC-S17	10	
18	CC-S18	5	
19	CC-S19	5	
20	CC-S20	<5	
21	CC-S21	5	
22	MC-S1	<5	
23	MC-S2	5	
24	MC-S3	5	
25	MC-S4	5	
26	MC-S5	<5	
27	MC-S6	5	
28	MC-S7	<5	
29	MC-S8	<5	
30	MC-S9	<5	

All business is undertaken subject to the Company's General Conditions of Business which are available on request. Registered Office: Eco Tech Laboratory Ltd., 100041 Dallas Drive, Kamboops, BC V2C 614 Canada.

Charlotte Resources AK11-0938

18-Aug-11

Chanot	te nesources 7		
ET #.	Tag #	Au (ppb)	
31	MC-S10	5	
32	MC-S11	<5	
33	MC-S12	<5	
34	MC-S13	<5	
35	MC-S14	5	
36	MC-S15	<5	
37	MC-S16	5	
38	MC-S17	<5	
39	MC-S18	15	
40	MC-S19	5	
41	MC-S20	<5	
42	MC-S21	<5 <5	
43	MC-S22	5	
44	MC-SLT-TRIB	10	
45	L1-S2	<5	
46	L1-S3	5	
47	L1-S4		
48	L1-S5	<5 <5	
49	L1-S8		
50	L1-S9	5 <5	
51	L1-S10		
52	L1-S11	<5	
53	L2-S6	5	
54	L2-S7	<5	
55	L2-S8	<5	
56	L2-S9	5	
57	L2-S39	<5 <5	
58	L2-S10 L2-S11	5	
59	L3-S1	5 <5	
60	L3-S1 L3-S2		
61	L3-S3	<5	
62	L3-S4	<5	
63	L3-S5	5 5	
64	L3-S6	5	
65	L3-30 L3-S7		
66	L3-S8	5	
67	L3-S9	<5	
68	L3-S9 L3-S10	5	
69		<5 .r	
70	L3-S11 L4-S1	<5	
70 71	L4-S1 L4-S2	5	
71 72	L4-S2 L4-S3	5	
		5	
73 74	L4-S4	<5 	
74	L4-S5	<5	

Charlotte Resources AK11-0938

18-Aug-11

Chanot	ie nesources	WK11-0330	
ET #.	Tag #	Au (ppb)	
75	L4-S6	5	
76	L4-S7	<5	
77	L4-S8	<5	
78	L4-S9	<5	
79	L4-S10	5	
80	L4-S11	<5	
81	L5-S1	5	
82	L5-S2	5	
83	L5-S3	10	
84	L5-S4	<5	
85	L5-S5	<5	
86	L5-S6	<5	
87	L5-S7	10	
88	L5-S8	5	
89	L5-S9	5	
90	L5-S10	5	
91	L5-S11	5	
92	L6-S1	<5	
93	L6-S2	<5	
94	L6-S3	<5	
95	L6-S4	5	
96	L6-S5	<5	
97	L6-S6	5	
98	L6-S7	<5	
99	L6-S8	<5	
100	L6-S9	<5	
101	L6-S10	<5	
102	L6-S11	<5	
QC DAT	'A:		
Repeat:			
1	CC-S1	<5	
10	CC-S10	5	
19	CC-S19	<5	
28	MC-S7	<5	
36	MC-S15	<5	
45	L1-S2	<5	
5 5	L2-S8	<5	
65	L3-S7	5	
71	L4-S2	5	
82	L5-S2	<5	
90	L5-S10	<5	

Charlotte Resources AK11-0938

18-Aug-11

		Au	
ET #.	Tag #	(ppb)	
Standard:			
OXE86		610	
OXE86		620	
OXE86		610	

FA Geochem/AA Finish

ECO TECH LABORATORY LTD.

NM/sa/el Norman Monteith
XLS/11 B.C. Certified Assayer

18-Aug-11

Stewart Group ECO TECH LABORATORY LTD.

ICP CERTIFICATE OF ANALYSIS AK 2011-0938

10041 Dallas Drive

KAMLOOPS, B.C.

V2C 6T4

www.stewartgroupglobal.com

Phone: 250-573-5700 Fax : 250-573-4557

Charlotte Resources P.O. Box 131 Grindrod, B.C. V0E 1Y0

No. of samples received: 102

Sample Type: Soils Project: Ash

Submitted by: Craig Lynes

Values in ppm unless otherwise reported

Et #.	Tag #	Ag A	Al%	As E	Ba E	3e E	3i Ca	% Cd	Со	Cr	Cu	Fe%	Hg	К%	La	Li	Mg%	Mn	Мо	Na%	Ni	Р	Pb	S%	Sb	Sc	Se	Sn	Sr	Ti%	U	v	w	γ	Zn
1	CC-S1	0.8 1	.76	5 9	98	<1 <	5 0.	5 <1	7	6	8	1.62	<5	0.05	4	8	0.10	345	2	0.04	8	540	27	<0.01	<5	1	<10	<5	12	0.11	<5	44	<5	1	148
2	CC-S2	0.4 1	.68	15 2	12	<1 <	5 0.1	2 <1	5	8	20	1.71	<5	0.06	8	6	0.12	280	2	0.03	9	310	54	0.02	<5	<1	<10	<5	16	0.07	<5	38	<5	1 -	128
3	CC-S3	0.6 1	.92	10 13	38	<1 <	5 0.	4 <1	6	4	8	1.47	<5	0.04	4	8	0.09	565	1	0.04	8	690	27	< 0.01	<5	<1	<10	<5	12	0.11	<5	38	<5	2	96
4	CC-S4	0.8 1	.55	10 12	24 .	<1 <	5 0.	5 <1	5	6				0.05		8	0.09	290	2	0.04	8	400	24	< 0.01	<5	<1	<10	<5	12	0.10	<5	40	<5	1 -	140
5	CC-S5	0.6 1	.54	15 15	54	<1 <	5 0.1	1 <1	5	6					8	8	0.10	335	2	0.03				0.02											
6	CC-S6	0.6 1	.86	10 8	36 -	<1 <	5 0.1	6 <1	4	4	12	0.94	<5	0.05	4	6	0.07	235	2	0.05	6	1110	21	0.01	<5	1	<10	<5	14	0.08	<5	20	<5	3	90
7	CC-S7	1.0 1	.69	10 14	18 -	<1 <	5 0.1	8 <1	6	6	10	1.43	<5	0.05	4	10	0.11	260	2	0.05	10	590	24	0.01	<5	<1	<10	<5	14	0.11	<5	36	<5	1 1	142
8	CC-S8	0.4 1	.51	10 26	86	<1 <	5 0.2	0 <1	5	6	8	1.31	<5	0.07	6	8	0.10	440	2	0.04	10	250	39	0.02	<5	<1	<10	<5	18	0.09	<5	36	<5	1 2	218
9	CC-S9	0.6 1	.41	15 10)6 -	<1 <	5 0.1	8 <1	6	6	10	1.52	<5	0.06	4	8	0.11	715	1	0.05	7	460	36	<0.01	<5	<1	<10	<5	14	0.10	<5	40	<5	1 2	212
10	CC-S10	0.2 1	.72	15 25	52 ·	<1 <	5 0.1	6 <1	5	6	8	1.47	<5	0.06	4	8	0.11	495	2	0.04	9	320	48	<0.01	<5	<1	<10	<5	14	0.10	<5	38	<5	1 4	432
11	CC-S11	0.4 1	.38	10 21	12 .	<1 <	5 0.2	4 <1	5	6	12	1.45	<5	0.07	6	6	0.11	875	1	0.04	7	750	36	0.01	<5	<1	<10	<5	16	0.09	<5	38	<5	2 4	438
12	CC-S12																	930	1	0.05	6	490	45	<0.01	<5	<1	<10	<5	14	0.08	<5	34	<5	2 2	232
13	CC-S13	0.2 1	.28	10 32	22 -	<1 <	5 0.4	0 2	6	6	18	1.92	<5	0.12	8	10	0.11	1035	1	0.04	7	520	54	0.02	<5	<1	<10	<5	20	0.06	<5	38	<5	3 6	336
14	CC-S14	0.8 1	.73	20 28	32 -	<1 <	5 0.3	1 <1	4	4	8	1.11	<5	0.07	4	10	0.09	170	1	0.04	7 :	2060	27	< 0.01	<5	<1	<10	<5	18	0.09	<5	24	<5	1 2	218
15	CC-S15	0.4 1	.31	<5 31	18 -	<1 <	5 0.1	8 <1	5	6	12	1.54	<5	0.09	6	8	0.12	725	<1	0.04	8	690	18	<0.01	<5	<1	<10	<5	12	0.07	<5	38	<5	1 2	272
16	CC-S16																							<0.01											
17	CC-S17	<0.2 1	.40	<5 45	52 .	<1 <	5 0.3	6 3	5	6	16	1.31	<5	0.14	8	6	0.11	1445	1	0.04	7	680	18	<0.01	<5	1	<10	<5	18	0.07	<5	30	<5	2 3	326
18	CC-S18	< 0.2 1	.09	<5 3€	86	<1 <	5 0.3	4 <1	6	8	22	2.00	<5	0.13	10	4	0.10	1155	2	0.03	7	270	66	<0.01	<5	1	<10	<5	18	0.06	<5	40	<5	3 1	166
19	CC-S19	<0.2 1	.14	<5 27	78 -	<1 <	5 0.3	1 <1	4	4	8	1.19	<5	0.10	4	8	0.12	225	<1	0.04	6	1040	12	< 0.01	<5	<1	<10	<5	18	0.07	<5	32	<5	1 2	206
20	CC-S20	0.4 1	.78	5 26	86	<1 <	5 0.1	4 <1	8	6	14	1.75	<5	0.08	10	8	0.12	535	2	0.03	9	410	27	0.01	<5	1	<10	<5	10	0.06	<5	36	<5	1 1	146
21	CC-S21	<0.2 1																																	
22	MC-S1	0.2 1											_		4	8	0.09	1210	1	0.04	6	1170	12	<0.01	<5	<1	<10	<5	16	0.09	<5	38	<5	1 1	128
23	MC-S2	0.2 1								6	8	1.17	<5	0.06	6	10	0.10	460	1	0.04	7	1140	12	<0.01	<5	1	<10	<5	18	0.10	<5	30	<5	3 1	108
24	MC-S3	< 0.2 1	.54	<5 14	٠ 0١	<1 <	5 0.2	4 <1	6	6	6	1.19	<5	0.06	4	10	0.12	1070	1	0.03	9	1080	12	< 0.01	<5	1	<10	<5	12	0.09	<5	32 -	<5	2 1	150
25	MC-S4	0.2 1	.71	<5 11	4 -	<1 <	5 0.2	0 <1	6	6	6	1.34	<5	0.07	4	10	0.14	475	2	0.04	8	520	15	<0.01	<5	1	<10	<5	12	0.09	<5	38 -	<5	2 1	100
26	MC-S5	0.2 1						-	-	6	8	1.36	<5	0.05	4	8	0.11	860	2	0.04	8	930	12	<0.01	<5	1	<10	<5	12	0.10	<5	36	<5	2	96
27	MC-S6	0.2 1	.27	<5 18	32 •	<1 <	5 0.3	7 <1	6	8	8	1.57	<5	0.07	6	6	0.13	1785	1	0.03	6	1020	18	< 0.01	<5	1	<10	<5	20	0.07	<5	44 .	<5	2 1	140
28	MC-S7	<0.2 1	.26	< 5 7	'O •	<1 <	5 0.1	5 <1	6	14	6	1.66	<5	0.04	6	8	0.13	385	<1	0.03	8	260	15	<0.01	<5	1	<10	<5	10	0.06	<5	54	<5	1	68
29	MC-S8	<0.2 1	.17	<5 9	2 <	<1 <	5 0.1	9 <1	4	8	6	1.07	<5	0.05	6	8	0.09	285	<1	0.03	6	220	15	< 0.01	<5	<1	<10	<5	14	0.06	<5	30 -	<5	1 1	118
30	MC-S9	<0.2 1	.45	5 10	8 -	<1 <	5 0.2	1 <1	5	8	10	1.23	<5	0.08	6	10	0.12	365	1	0.03	7	540	21	<0.01	<5	<1	<10	<5	14	0.07	<5	32 -	<5	1 1	134

Charlotte Resources

Et #.	Tag #	Ag	AI%	As	Ва	Ве	Bi	Ca%	Cd	Со	Cr	Cu	Fe%	Hg	К%	La	Li	Mg%	Mn	Мо	Na%	Ni	Р	Pb	S%	Sb	Sc	Se	Sn !	Sr	TI%	U	v ·	w	Υ :	Zn
31	MC-S10	0.2	1.68	5	90	<1	<5	0.16	<1	5	6	6	1.56	<5	0.03	4	6	0.09	460						<0.01											
32	MC-S11																		185						0.02											
33	MC-S12							0.22										0.08							< 0.01											
34	MC-S13																		190						0.03				-							
35	MC-S14																		200						0.01											
			0.0	٠.	, 0	` '	-0	0.10	`'	-	10	17	1.07	~5	0.07	U	U	0.13	200	ı	0.03	**	300	13	0.01	<0	< 1	<10	<0	12 (0.00	< 5 4	44 <	.5	2 1	30
36	MC-S15	0.2	1.82	<5	148	<1	<5	0.20	<1	4	4	6	1.16	<5	0.03	2	6	0.07	700	1	0.04	5	2250	12	<0.01	<5	<1	<10	<5 ¹	12 /	0.10	<5	28 <	:5	2 1	76
37	MC-S16	<0.2	1.13	<5	90	<1	<5	0.18	<1	5	6								670		0.04	4	1400	12	< 0.01	<5	<1	<10	<5 1	10 /	0.09	<5	42 <	:5	1 1	32
38	MC-S17							0.20		5	4								435						0.01											
39	MC-S18												1 14	<5	0.03	,	8	0.03	705		0.04				< 0.01											
40	MC-S19							0.09										0.04			0.02			_	<0.01											
				_			-			_	_	Ū	0.,,	10	0.00		_	0.01		`'	0.02	-	70	•	\0.01	\0	` '	~10	~0	٠,	0.00	~~	17			
41	MC-S20	0.4	0.89	<5	76	<1	<5	0.19	<1	3	10	18	1.06	<5	0.06	10	4	0.11	55	1	0.03	5	330	15	0.01	<5	1	<10	<5 1	18 (0.04	<5 :	22 <	:5	1	60
42	MC-S21	0.2	2.08	5	146	<1	<5	0.15	<1	5	4	10	1.22	<5	0.04	6	8	0.05	905						< 0.01											
43	MC-S22																		270		0.03				< 0.01											
44	MC-SLT-TRIB																	0.14			0.02				0.04											
45	L1-S2																		735			_			<0.01											
																	Ī				0.00	•	-		10.01		•		٠٠.							
46	L1-S3	0.6	2.05	10	142	<1	<5	0.15	<1	5	4	6	1.40	<5	0.04	4	8	0.08	375	2	0.04	9	930	30	< 0.01	<5	<1	<10	<5 1	12 (0.12	<5 :	32 <	:5	1 1	18
47	L1-S4																	0.09							< 0.01											
48	L1-S5																	0.10			0.04				0.02											
49	L1-S8							0.24										0.10			0.03				0.07											
50	L1-S9																		1220		0.03				0.05											
																-	_			_		•	,,,,		0.00		-			•					•	•
51	L1-S10																		405	3	0.05	7	370	45	0.02	<5	1	<10	<5 1	14 (0.12	<5 4	40 <	:5	2 4	42
52	L1-S11	3.8	1.85	35	82	<1	<5	0.11	<1	6	6	8	1.72	<5	0.03	4	10	0.08	155	3	0.04	6	280	63	< 0.01	<5	<1	<10	<5	8 (0.12	<5 4	46 <	5 <	1 4	48
53	L2-S6							0.15										0.12		2	0.03	8	290		< 0.01											
54	L2-S7	0.4	1.10	15	166	<1	<5	0.12											870						0.02											
55	L2-S8	0.4	1.14	10	310	<1	<5	0.20	<1	3	6	12	1.39	<5	0.10	12	4	0.13	685						0.04											
56	L2-S9							0.14												1	0.03	3	290	84	0.03	<5	<1	<10	<5 1	4 (J.05 ·	<5 3	34 <	5 <	1 7	72
57	L2-S10							0.18					1.17	<5	0.08	10	6	0.08	1120		0.03				0.02	<5	<1	<10	<5 1	6 (J.05 ·	<5 3	34 <	5 <	1 6	60
58	L2-S11																		510	8	0.03	3	720	123	0.12	<5	<1	<10	<5 4	10 C	J.01 ·	<5 2	26 <	5	2 6	32
59	L3-S1																	0.08		2	0.03	4	250	33	<0.01	<5	<1	<10	<5 1	0 0	J.08 ·	<5 3	32 <	5 <	1 4	18
60	L3-S2	0.4	1.40	10	318	<1	<5	0.27	<1	5	6	10	1.72	<5	0.08	10	6	0.11	1845	2	0.03	6	410	69	0.02	<5	<1	<10	<5 2	:8 C	3.08 •	<5 4	40 <	5	2 7	70
61	L3-S3	1.0	1.36	20	222	<1	<5	0.15	~1	Л	B	16	1 96	-5	0.00	16	6	0.10	655	1	0.03	E	350	120	0.05	_E	1ر	-10	_E +	6 (0.06 -	-F '	24 -	5	1 4	16
62	L3-S4																		615																-	
63	L3-S5	0.6	1.05	15	246	-1	-5	0.14	-1	-	4	26	1./0	<0 .E	0.09	10	4	0.09	010						0.04							-	-	_	1 5	
64	L3-S6																				0.03				0.03											
65	L3-S7	0.4	1.J J	20	70	< I	<0 .E	0.10	< 1	0	0	10	1.00	<5	0.00	40	0	0.10	700						0.01											54
UU.	L0-07	0.4	0.89	30	<i>1</i> 8	<1	<5	U. 11	<1	3	6	10	1.32	<5	0.06	12	4	0.05	475	1	0.02	4	240	147	<0.01	<5	<1	<10	<5	6 0).06 -	<5 2	28 <	5	1 4	Ю
66	L3-S8	0.2	1.21	50	102	<1	<5	0.10	<1	4	8	16	1.75	<5	0.05	12	4	0.08	720	1	0.02	5	270	87	<0.01	10	<1	<10	<5	6 (0.08	<5 3	36 <	5	1 4	14
67	L3-S9							0.09																	<0.01											12
68	L3-S10							0.10							0.04			0.09	225		0.03				<0.01											
69	L3-S11							0.11										0.09	420						0.02											68
70	L4-S1	18.0																							0.02											-
		-		-	-	-	-		• •		- '				2.30		~	U. 1 1	J 10	•	0.00	5	0	-10	0.07	~0	-	~ 10	~ 0 11	5 0		· · · · ·	,,,	•	- 12	

54

63

71

L2-S7

L3-S5

L4-S2

Et #.	Tag #	Αa	Αľ	% <i>E</i>	ls.	Ва	Be	Bi	Ca%	6 Cd	Co	Cr	Cu	Fe%	На	K %	la	1 3	Mg%	Mn	Mo	Na%	Mi	D	Pb	C° /-	Sh	90	Se	e.		T19/		ı v	\A/	v	7n
71	L4-S2																		0.10					510		0.02		-		-	V-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1						
72	L4-S3																		0.11			0.04			24	0.01											
73	L4-S4																		0.12			0.04				<0.01											
74	L4-S5																		0.11			0.03			39	0.01											
75	L4-S6																		0.12					580	45	0.02	<5	<1	<10	<5	16	0.08	<5	36	<5	2	314
76	L4-S7	0.4	1.3	3 2	25	188	<1	<5	0.2	<1	5	6	22	2.16	<5	0.09	10	6	0.10	435	2	0.04	5	550	39	0.05	<5	<1	<10	<5	18	0.08	<5	46	<5	1	78
77	L4-S8																		0.13			0.04	-		39	0.03											
78	L4-S9								0.14							0.06			0.09							<0.01											
79	L4-S10								0.11				10	1.73	<5	0.03			0.11	465		0.04		790	21												
80	L4-S11	0.6	1.7	9 <	<5	62	<1	<5	0.10	<1									0.07					520		0.01											
81	L5-S1	0.4	1.1	8 3	30 2	276	<1	<5	0.14	l <1	3	10	58	2.55	<5	0.10	18	6	0.11	245	5	0.03	6	560	66	0.08	<5	<1	<10	<5	20	0.06	<5	30	5	2	114
82	L5-S2																		0.11			0.04		460	27	0.01			<10				_				154
83	L5-S3																		0.13			0.03		400	51	0.04											
84	L5-S4																		0.11			0.04			30	0.02											
85	L5-S5	0.2	1.2	1 2	20 2	220	<1	<5	0.22	2 <1	5	10	20	1.87	<5	0.09	12	6	0.12	930	3	0.03	7	350	54	0.05											
86	L5-S6	0.2	1.6	0 1	0	128	<1	<5	0.21	<1	6	6	10	1.67	<5	0.06	4	8	0.11	965	2	0.04	9	500	24	0.01	<5	<1	<10	<5	18	0.11	<5	44	<5	1	152
87	L5-S7	0.2	1.5	4 2	20	132	<1	<5	0.12	<1									0.14			0.02			63	0.03	_		<10	_			_		-		84
88	L5-S8								0.10										0.11			0.03		430	27	0.01		1	<10	<5	8	0.11	<5	44	<5	1	
89	L5-S9	8.0	1.7	3 2	20	96	<1	<5	0.06	<1										110		0.02			39	0.02									-		
90	L5-S10	0.6	2.7	3 1	0	92	<1	<5	0.11	<1	5	6	8	1.48	<5	0.04	6	8	0.08	365	3	0.04	5	1260	21	0.01	<5	1	<10	<5	10	0.13	<5	30	<5	3	190
91	L5-S11	0.6	1.9	5	5	94	<1	<5	0.11	<1	6	6	6	1.54	<5	0.04	4	8	0.09	635	2	0.03	5	960	30	0.01	<5	<1	<10	<5	8	0.13	<5	40	<5	1.	202
92	L6-S1																	6	0.12	1080	2	0.03			54	0.04	<5	<1	<10	<5	22	0.09	<5	44	<5	2	138
93	L6-S2															0.06		8	0.11	600	2	0.04	7	580	48	0.02	<5	<1	<10	<5	24	0.09	<5	34	<5	1	120
94	L6-S3															0.05		6	0.11	885	2	0.04	7	590	54	0.01	<5	<1	<10	<5	14	0.10	<5	46	<5	2	142
95	L6-S4	0.2	1.6	6 1	0 1	154	<1	<5	0.20	<1	6	8	12	1.89	<5	0.04	6	8	0.12	455	2	0.04	7	1010	36	0.01	<5	1	<10	<5	14	0.10	<5	46	<5	2	150
96	L6-S5	0.6	1.8	9 2	25 1	168	<1	<5	0.21	<1	7	10	24	2.28	<5	0.07	8	8	0.14	590	3	0.04	9	550	39	0.03	<5	1	<10	<5	18	0.11	<5	50	<5	2	104
97	L6-S6										7	10	20	2.14	<5	0.08	8	10	0.15	780	2	0.03	9	570	48	0.02	<5	1	<10	<5	24	0.10	<5	44	<5	2	214
98	L6-S7								0.15		6	8	10	1.98	<5	0.04	4	8	0.12	235	2	0.04	7	600	21	0.01	<5	1	<10	<5	12	0.13	<5	50	<5	2	188
99	L6-S8								0.15		6	6	6	1.52	<5	0.04	4	8	0.10	600	2	0.03	5	760	21	0.01	<5	<1	<10	<5	14	0.12	<5	40	<5	1	160
100	L6-S9	0.2	1.8	1	5	70	<1	<5	0.09	<1	6	6	6	1.60	<5	0.03	4	8	0.09	385	2	0.03	5	900	18	<0.01	<5	1	<10	<5	6	0.13	<5	42	<5	2	144
101	L6-S10	0.4	2.2	5	5	96	<1	<5	0.10	<1	6	6	4	1.71	<5	0.04	4	8	0.08	235	2	0.03	7	1220	36	0.01	<5	1	<10	<5	8	0.13	<5	42	<5	1	178
102	L6-S11	0.4	2.73	3	5	48	<1	<5	0.09	<1	5	6	6	1.60	<5	0.03	2	6	0.07	490	2	0.03	5	1520	18	0.02	<5	1	<10	<5	6	0.13	<5	40	<5	2	74
QC DATA	<u>:</u>																																				
Repeat:	CC-S1	1 0	1 0	o +	Λ 4	00	.4		0.45	4	^	^	_	4	_	0.05		_	0.44		_	a - ·	_				-		, -	_		_	_		_		
10	CC-S10	0.0	1.00) i	U 1	02	<1	<5 .E	0.15	<1	6	b)														<0.01											
19	CC-S10								0.18																	<0.01											
28	MC-S7								0.31																	<0.01											
36	MC-S15								0.16										0.13							<0.01										1	
45	L1-S2	0.Z	1.07	/ <: 7 1.	၂ 5 1	70	< I	<0 <0	0.40	<1	5	4	14	1.24	<5 -E	0.03	2	þ	0.07	720]	0.04	5 2	2290	12	<0.01	<5	<1	<10	<5	12	0.10	<5	30	<5	2 '	182
54	12-87																		0.11							<0.01	<5	<1	<10	<5	18	0.09	<5	38	<5] '	118

Page 3 of 4

0.4 1.15 15 174 <1 <5 0.14 <1 4 6 8 1.53 <5 0.07 10 6 0.09 915 2 0.03 4 310 69 0.02 <5 <1 <10 <5 12 0.06 <5 38 <5 <1 54 0.6 1.08 10 252 <1 <5 0.16 <1 5 4 28 1.38 <5 0.11 10 4 0.08 2090 1 0.03 6 420 129 0.03 <5 <1 <10 <5 18 0.04 <5 30 <5 1 120

0.4 1.26 15 298 <1 <5 0.19 <1 4 6 14 1.51 <5 0.09 10 6 0.10 1905 2 0.03 5 540 48 0.02 <5 <1 <10 <5 16 0.05 <5 26 <5 1 158

Et #.	Tag #	Ag	AI%	As	Ba	Be	Bi	Ca%	Cd	Co	Cr	Cu	Fe%	Hg	Κ%	La	Li	Mg%	Mn	Мо	Na%	Ni	Р	Pb	S%	Sb	Sc	Se	Sn	Sr	TI%	U	٧	W	Υ	Zn
80	L4-S11	0.4	1.79	<5	62	<1	<5	0.10	<1	5	4	8	1.26	<5	0.03	4	4	0.07	750	1	0.03	4	510	15	0.01	<5	<1	<10	<5	8	0.11	<5	36	<5	2	88
89	L5-S9	0.8	1.71	20	96	<1	<5	0.06	<1	3	8	16	1.84	<5	0.04	16	8	0.12	110	2	0.02	5	400	39	0.02	<5	<1	<10	<5	10	0.06	<5	34	<5	2	140
Standard.	:																																			
Till3		1.6	1.12	85	40	<1	<5	0.55	<1	13 !	58	20	2.02	<5	0.07	12	16	0.58	310	1	0.03	30	440	21	0.01	<5	3	<10	<5	10	0.05	<5	38	<5	6	38
Till3																		0.59			0.03															
Till3		1 4	1 10	85	42	c1	<5	0.56	-1	13	58	22	1 97	-5	0.07	12	16	0.50	300	1	0.03	30	450	21	0.01	-5	3	-10	25	10	0.05	-5	38	-5	5	38

ICP: Aqua Regia Digest / ICP- AES Finish.

NM/sa/el df/1_938S XLS/11 ECO TECH LABORATORY LTD.

Norman Monteith B.C. Certified Assayer

CERTIFICATE OF ANALYSIS AK 2011-0940

18-Aug-11

P.O. Box 131 **Grindrod, B.C.** V0E 1Y0

No. of samples received: 1

Sample Type: Silt Project: Ash

Submitted by: Craig Lyons

		Au	
ET #.	Tag #	(ppb)	
1	SLT-1	<5	

QC DATA:

Repeat:

1 SLT-1

5

Standard:

OXG84

940

FA Geochem/AA Finish

NM/cr/el

XLS/11

ECO TECHLABORATORY LTD.

Nerman Monteith B.C. Certified Assayer 18-Aug-11

Stewart Group ECO TECH LABORATORY LTD.

ICP CERTIFICATE OF ANALYSIS AK 2011-0940

Charlotte Resources

P.O. Box 131 **Grindrod, B.C.** V0E 1Y0

10041 Dallas Drive KAMLOOPS, B.C.

V2C 6T4

www.stewartgroupglobal.com

Phone: 250-573-5700 Fax : 250-573-4557

No. of samples received: 1

Sample Type: Silt Project: Ash

Submitted by: Craig Lyons

Values in ppm unless otherwise reported

Et :	#. Tag	# #	Αg	Al%	As	Ва	Ве	Bi	Ca%	Cd	Со	Cr	Cu	Fe%	Hg	Κ%	La	Li	Mg%	Mn	Мо	Na%	Ni	Р	Pb	S%	Sb	Sc	Se	Sn S	3r	Ti%	U	٧	W	ΥZ	<u>n</u>
1	SLT-1	C).2	1.34	<5	104	2	<5	0.81	<1	8	16	10	1.97	<5	0.19	14	16	0.33	785	1	0.04	9	830	18	0.04	<5	2	<10	<5 6	64 (0.07	<5	54 -	<5	16 4	4
QC DA																																					
Repe a	SLT-1	C).4	1.30	<5	102	2	<5	0.79	<1	7	16	10	2.05	<5	0.18	14	16	0.31	785	1	0.04	9	840	18	0.03	<5	2	<10	<5 6	62	0.07	<5	58 -	<5	16 4	4
Stand	ard:							_	0 = 4		40	00	00	1.04	. /	0.07	10	16	0.56	210	4	0.03	22	460	1Ω	0.01	-5	2	-10	-5 3	12 1	0.06	-5	38.	-5	6 4	.Ω
TILL3		1	1.4	1.13	85	36	<1	<5	0.54	<1	13	60	22	1.94	<5	0.07	12	10	0.56	310	1	0.03	32	400	10	0.01	~5	J	~10	~5	_	0.00	~0	-		U 7	•

ICP: Aqua Regia Digest / ICP- AES Finish.

NM/cr/el df/1_938S XLS/11 ECO TECHLABORATORY LTD.

Norman Monteith

B.C. Certified Assayer

CERTIFICATE OF ASSAY AK 2011-0941

Charlotte Resources

22-Aug-11

P.O. Box 131 **Grindrod, B.C.** V0E 1Y0

No. of samples received: 14

Sample Type: Rock

Project: Ash

Submitted by: Craig Lynes

ET #.	Tag #	Au (g/t)	Au (oz/t)	Cu (%)	
13	14763			1.16	
14	14764	1.15	0.034		
QC DAT Repeat:		1.23	0.036		
Standai OXi81 Cu120	rd:	1.82	0.053	1.52	

FA/AA Finish

NM/EL XLS/11

ECO TECHLABORATORY LTD.

Norman Monteith B.C. Certified Assayer

CERTIFICATE OF ANALYSIS AK 2011-0941

Charlotte Resources

18-Aug-11

P.O. Box 131 Grindrod, B.C.

V0E 1Y0

No. of samples received: 14

Sample Type: Rock

Project: Ash

NM/cr/el

Submitted by: Craig Lynes

		Au	
ET #.	Tag #	(ppb)	
1	14751	15	
2	14752	190	
3	14753	5	
4	14754	<5	
5	14755	5	
6	14756	5	
7	14757	<5	
8	14758	5	
9	14759	<5	
10	14760	<5	
11	14761	5	
12	14762	5	
13	14763	10	
14	14764	>1000	
	 .		
QC DAT			
Repeat			
1	14751	20	
2	14752	200	
10	14760	<5	
Resplit	•		
1 1	14751	20	
•	14,01	20	
Standa	rd:		
OXE86		610	
			XIXM
FA Geo	chem/AA Fin	ish	ECO TECH LABORATOR

Norman Monteith B.C. Certified Assayer

All business is undertaken subject to the Company's General Conditions of Business which are available on request, Registered Office: Eco Tech Laboratory (1td., 10004) Dallas Drive, Kamloops, BC V2C 6T4 Canada. 10-Aug-11

Stewart Group

ECO TECH LABORATORY LTD.

10041 Dallas Drive KAMLOOPS, B.C.

V2C 6T4

Et #.

www.stewartgroupglobal.com

Phone: 250-573-5700 Fax : 250-573-4557

ICP CERTIFICATE OF ANALYSIS AK 2011-0941

Charlotte Resources

P.O. Box 131 Grindrod, B.C.

V0E 1Y0

No. of samples received: 14

Sample Type: Rock

Project: Ash

3 0.07 3 250

Submitted by: Craig Lynes

P Pb S% Sb Sc Se Sn Sr Ti% U V W Y

0.16 <5 38 <5

15 1.66 <5 19 <10 <5

Zn

380

Values in ppm unless otherwise reported

Ag Al% As Ba Be Bi Ca% Cd Co Cr

0.4 1.96 10 14 <1 10 0.09 3 34 86

Tag #

14751

2	14752	4.0 0.27 25	240	<1 2	205	0.02	<1	1	122	588	0.83	<5 0.22	14 <2	0.02	30	2	0.02	2	90	111 0.23	3 14	0 <	1 <1	0 <	:5 4	4 <0	.01	<5 <	<2 <5	1	32
3	14753	0.8 0.28 5	120	<1	20	0.01	<1	<1	78	422	>10	<5 0.16	14 <2	0.02	25	23	0.08	2	220	21 0.30	3 1	5 <	1 <1	0 <	:5	8 <0	.01	<5 <	<2 <5	<1	8
4	14754	1.0 0.43 20	30	<1	50	0.01	<1	<1	10	1558	>10	<5 0.06	6 <2	<0.01	30	5	0.17	3	520	36 0.78	3 1	0 <	1 <1	0 <	:5 ·	4 <0	.01	<5 <	<2 <5	<1	12
5	14755	0.6 0.53 35	64	<1	35	< 0.01	<1	<1	36	942	>10	<5 0.09	8 <2	0.01	25	4	0.12	3	1290	30 0.84	4 1	0 <	1 <1	0 <	:5	4 <0	.01	<5 <	<2 <5	<1	8
6	14756	0.8 0.57 50	30	<1	50	< 0.01	<1	<1	4	1860	>10	<5 0.05	4 <2	< 0.01	20	3	0.19	2	1360	39 0.98	5 1	0 <	1 <1	0	5	2 <0	.01	<5 <	<2 <5	<1	12
7	14757	0.8 0.51 50	32	<1	50	< 0.01	<1	<1	6	1608	>10	< 5 0.06	6 <2	< 0.01	15	3	0.18	2	1590	39 0.93	3 1	5 <	1 <1	0	5	2 <0	.01	<5 <	<2 <5	<1	10
8	14758	0.6 0.40 10	56	<1	40	< 0.01	<1	<1	22	1284	>10	<5 0.09	8 <2	< 0.01	15	5	0.14	3	350	30 0.58	3 1	0 <	1 <1	0 <	5 4	4 <0	.01	<5 <	<2 <5	<1	10
9	14759	0.8 0.52 30	38	<1	45	< 0.01	<1	<1	14	1220	>10	<5 0.07	6 <2	< 0.01	15	4	0.17	2	1350	33 0.99	9 1	5 <	1 <1	0 <	5 4	4 <0	.01	<5 •	<2 <5	<1	10
10	14760	0.8 0.40 5	34	<1	45	0.01	<1	<1	20	1344	>10	<5 0.08	6 <2	0.02	35	3	0.16	3	300	30 0.60	3	5 <	1 <1	0 <	:5	4 0	.01	<5 <	<2 <5	<1	12
11	14761	<0.2 0.91 <5	676	<1	<5	0.18	<1	7	126	4572	1.94	<5 0.13	14 16	0.71	230	3	0.07	9	760	9 0.09	9 <	:5	2 <1	0 <	5 2	2 0	.02	<5	4 <5	5	114
12	14762	1.6 0.25 10	96	<1	<5	< 0.01	<1	<1	108	18	0.77	<5 0.18	20 <2	0.02	20	21	0.03	2	60	9 0.29	9 2	20 <	1 <1	0 <	:5	8 <0	.01	<5 <	<2 <5	<1	6
13	14763	0.8 0.47 15		2	<5	0.33	4	9	52	>10000	1.70	<5 0.24	12 <2	0.09	2135	4	0.04	3	830	18 0.59	9 <	:5	2 <1	0 <	5 2	8 <0	.01	<5 <	<2 <5	13	516
14	14764	3.4 0.30 45	50	<1 7	730	< 0.01	<1	<1	88	830	6.16	<5 0.20	16 <2	0.01	30	3	0.03	2	90	117 0.10	20	0 <	1 <1	0 <	5 4	4 <0	.01	<5 <	<2 <5	1	46
QC DATA:																															
QC DATA:																															
QC DATA: Repeat:	14751	0.4 1.95 15	5 14	<1	5	0.09	3	34	88	108	5.03	<5 0.03	<2 18	2.28	295	3	0.07	3	250	15 1.64	4 <	:5 2	0 <1	0 <	:5	4 0	.17	<5 3	38 <5	1	380
		0.4 1.95 15 0.8 0.40 <5			5 45			34 <1	88 20			<5 0.03 <5 0.07			295 45	-	0.07 0.16	3 4	250 300	15 1.64 30 0.65		-	0 <1 1 <1						38 <5 <2 <5		380 12
Repeat:	14751				-											-						-									
Repeat:	14751				-											-						-									
Repeat: 1 10	14751				-											-						-									
Repeat:	14751		36		45	0.01	<1			1322	>10		6 <2	0.02		3		4			5 1	0 <		0 <	:5 4	4 0	.01	<5 <			
Repeat: 1 10	14751 14760	0.8 0.40 <5	36	<1	45	0.01	<1	<1	20	1322	>10	<5 0.07	6 <2	0.02	45	3	0.16	4	300	30 0.68	5 1	0 <	1 <1	0 <	:5 4	4 0	.01	<5 <	<2 <5		12
Repeat: 1 10	14751 14760	0.8 0.40 <5	36	<1	45	0.01	<1	<1	20	1322	>10	<5 0.07	6 <2	0.02	45	3	0.16	4	300	30 0.68	5 1	0 <	1 <1	0 <	:5 4	4 0	.01	<5 <	<2 <5		12
Repeat: 1 10	14751 14760	0.8 0.40 <5	36	<1	45	0.01	<1	<1	20	1322	>10	<5 0.07	6 <2	0.02	45	3	0.16	4	300	30 0.68	5 1	0 <	1 <1	0 <	:5 4	4 0	.01	<5 <	<2 <5		12
Repeat: 1 10 Resplit: 1	14751 14760	0.8 0.40 <5	36	<1	45	0.01	<1 4	<1	20	1322	>10	<5 0.07	6 <2	2.27	45	3	0.16	4	300	30 0.68	5 1	0 <	1 <1	0 <	:5 4	4 0	.15	<5 <	<2 <5	1	12

Cu Fe% Hg K% La Li Mg% Mn Mo Na% Ni

285

106 4.98 <5 0.03 <2 18 2.31

ICP: Aqua Regia Digest / ICP- AES Finish.

NM/cr/el df/1_6124AS **XLS/11**

ECO TECH LABORATORY LTB.

Norman Monteith B.C. Certified Assayer

Eco Tech Laboratory Limited

10041 Dallas Drive Kamloops, British Columbia V2C 6T4

Tel + 250 573 5700 Tel + 1 877 573 5755 Fax + 250 573 4557

www.stewartgroupglobal.com

Analytical Procedure Assessment Report

Eco Tech Laboratory Ltd. is registered for ISO 9001:2008 by International Certification Management for the "provision of assay, geochemical and environmental analytical services". Eco Tech also Participates in the annual Canadian Certified Reference Materials Project (CCRMP) and Geostats Pty bi-annual round robin testing programs. The laboratory operates an extensive quality control/quality assurance program, which covers all stages of the analytical process from sample preparation through to sample digestion and instrumental finish and reporting.

Samples (minimum sample size 250g) are catalogued and logged into the sample-tracking database. During the logging in process, samples are checked for spillage and general sample integrity. It is verified that samples match the sample shipment requisition provided by the clients. The samples are transferred into a drying oven and dried.

Soils are prepared by sieving through an 80-mesh screen to obtain a minus 80-mesh fraction. Samples unable to produce adequate minus 80-mesh material are screened at a coarser fraction. These samples are flagged with the relevant mesh.

Rock samples are crushed on a Terminator jaw crusher to -10 mesh ensuring that 70% passes through a Tyler 10 mesh screen.

Every 35 samples a re-split is taken using a riffle splitter to be tested to ensure the homogeneity of the crushed material.

A 250 gram sub sample of the crushed material is pulverized on a ring mill pulverizer ensuring that 95% passes through a -150 mesh screen. The sub sample is rolled, homogenized and bagged in a pre-numbered bag.

A barren gravel blank is prepared before each job in the sample prep to be analyzed for trace contamination along with the processed samples.

GOLD FIRE ASSAY: GEOCHEM (Au2-30)

A 15/30/50 g sample size is fire assayed along with certified reference materials using appropriate fluxes. The flux used is pre-mixed, purchased from Anachemia which contains Cookson Granular Litharge. (Silver and Gold Free). The ratios are 66% Litharge, 24% Sodium Carbonate, 2.7% Borax, 7.3% Silica. (The charges may be adjusted based on the sample). Flux weight per fusion is 150g. Purified Silver Nitrate or inquarts for the necessary silver addition is used for inquartation. The resultant dore bead is parted and then digested with nitric acid followed by hydrochloric acid solutions and then analyzed on an atomic absorption instrument (Perkin Elmer/Thermo S-Series AA instrument).

Over-range geochem values (Detection limit 5-1000ppb) for rocks are re-analyzed using gold assay methods (see below).

Appropriate certified reference material and repeat/re-split samples (Quality Control Components) accompany the samples on the data sheet for quality control assessment.

Results are collated by computer and are printed along with accompanying quality control data (repeats and standards). Results are emailed, faxed or mailed to the clients.

A 15/30/50 g sample size is fire assayed along with certified reference materials using appropriate fluxes. The flux used is pre-mixed, purchased from Anachemia which contains Cookson Granular Litharge. (Silver and Gold Free). The ratios are 66% Litharge, 24% Sodium Carbonate, 2.7% Borax, 7.3% Silica. (The charges may be adjusted based on the sample). Flux weight per fusion is 150g. Purified Silver Nitrate or inquarts for the necessary silver addition is used for inquartation. The resultant dore bead is parted and then digested with nitric acid followed by hydrochloric acid solutions and then analyzed on an atomic absorption instrument (Perkin Elmer/Thermo S-Series AA instrument). Gold detection limit on AA is 0.03-100 g/t. Any gold samples over 100g/t will be run using a gravimetric analysis protocol.

Appropriate certified reference material and repeat/re-split samples (Quality Control Components) accompany the samples on the data sheet for quality control assessment.

Results are collated by computer and are printed along with accompanying quality control data (repeats and standards). Results are emailed, faxed or mailed to the clients.

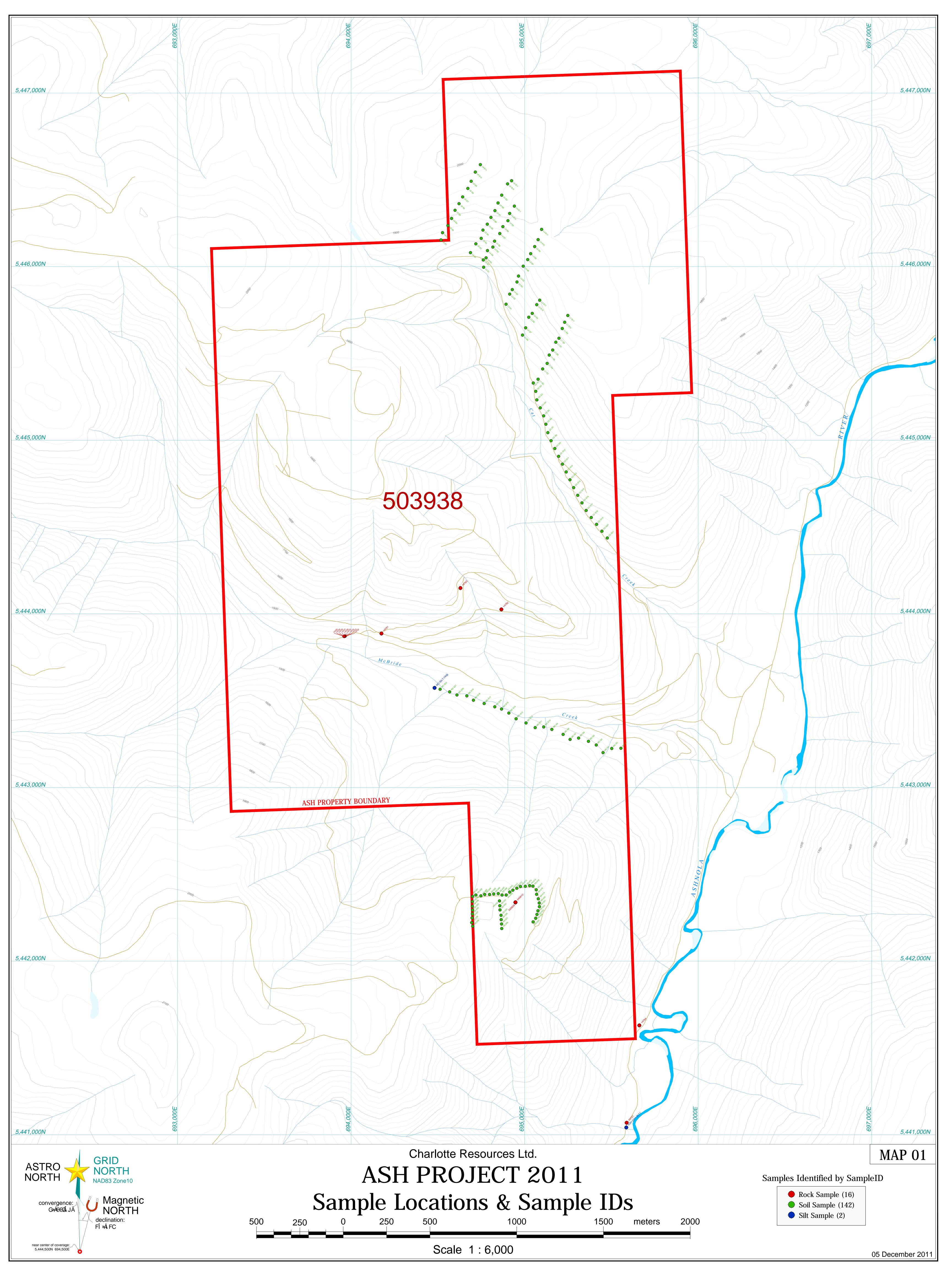
A 0.5 gram sample is digested with a 3:1:2 (HCl: HN0 $_3$: H $_2$ 0) solution in a water bath at 95°C. The sample is then diluted to 10ml with water. All solutions used during the digestion process contain Indium, which acts as an internal standard for the ICP run. The sample is analyzed on a Thermo iCap 6000 ICP unit. Certified reference material is used to check the performance of the machine and to ensure that proper digestion occurred in the wet lab. QC samples are run along with the client samples to ensure no machine drift occurred or instrumentation issues occurred during the run procedure. Repeat samples (every batch of 10 or less) and re-splits (every batch of 35 or less) are also run to ensure proper weighing and digestion occurred.

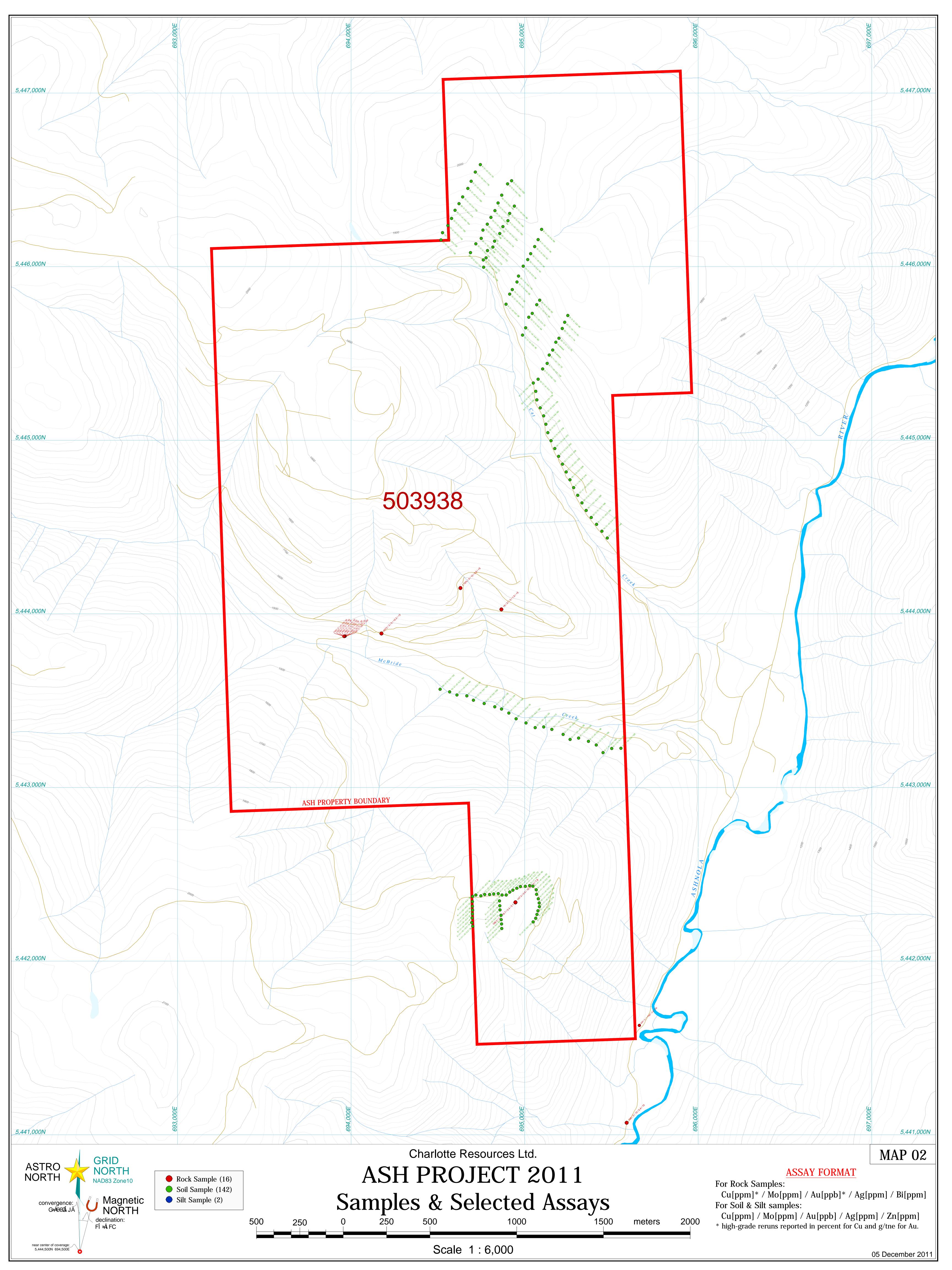
Results are collated by computer and are printed along with accompanying quality control data (repeats, re-splits, and standards). Any of the base metal elements (Ag, Cu, Pb, Zn) that are over limit (>1.0%) are immediately run as an ore grade assay (see protocol below).

Results are emailed, faxed or mailed to the clients.

Detection Limits:

Element	Unit	LDL	Element	Unit	LDL
Ag	ppm	0.5	Mn	ppm	5
Al *	%	0.01	Мо	ppm	1
As	ppm	5	Na *	%	0.01
Ba *	ppm	2	Ni	ppm	1
Be *	ppm	1	Р	%	0.001
Bi	ppm	5	Pb	ppm	3
Ca *	%	0.01	S *	%	0.01
Cd	ppm	1	Sb *	ppm	5
Со	ppm	1	Sn *	ppm	5
Cr *	ppm	2	Sr *	ppm	2
Cu	ppm	2	Ti *	ppm	10
Fe *	%	0.01	U	ppm	5
Hg	ppm	5	V	ppm	2
K *	%	0.01	W *	ppm	5
La *	ppm	2	Υ*	ppm	1
Li *	ppm	2	Zn	ppm	2
Mg *	%	0.01			


^{*}Elements marked with an asterisk* may not be totally digested


Ash Project 2011 Appendix C

APPENDIX C – Sample Location & Assay Maps

Pair of 1:6,000 scale maps featuring all 160 samples collected during the 2011 fieldwork at the Ash Property. Map 01 locates all samples and labels them by Sample ID. Map 02 annotates each sample with assays of selected elements: Cu, Mo, Au, Ag & Bi for rock samples and Cu, Mo, Au, Ag & Zn for soil and silt samples. The maps are intended to be printed on E-size (36" x 48") media in portrait mode.

Sample Locations & Sample IDs	MAP 01
SAMPLES & SELECTED ASSAYS	MAP 02

