

ASSESSMENT REPORT TITLE PAGE AND SUMMARY

		Property in 2011	\$ 15,053.64
AUTHOR(S)	J.David Williams	SIGNATURE(S)	Danied Milliane
NOTICE OF WORK PER	MIT NUMBER(S)/DATE(S)	not applicable	YEAR OF WORK 2011
STATEMENT OF WORK	- CASH PAYMENT EVENT NUI	MBER(S)/DATE(S) 5154047 / 1	2 December 2011
PROPERTY NAME	ASHLU		
CLAIM NAME(S) (on whi	ch work was done <u>) Tenures:</u>	546232, 546740, 593774, 5	93775, 593778, 593782
COMMODITIES SOUGH	⊤_ Gold, Silver, Copper	, Zinc, Tungsten, Bismuth, Te	ellurium
MINERAL INVENTORY		· · ·	2GNW045 (Tuff), 092GNW047 (Ice)
MINING DIVISION	Vancouver	NTS092G.0	93, 092G.094
LATITUDE <u>49</u>	° <u>57</u> ' <u>14.3</u> "	LONGITUDE <u>123</u> °	25 ' 25.6 " (at centre of work)
OWNER(S)			
1) Ashlu Mines I	nC.	2)	
MAILING ADDRESS			
2001 - 837 W	est Hastings Street		
Vancouver, BC	C V6C 3N7		
OPERATOR(S) [who paid	d for the work]		
1) Ashlu Mines I	nc.	2)	
MAILING ADDRESS			
	est Hastings Street		
Vancouver BC	0		
		atigraphy, structure, alteration, minerali	ization size and attitude):
			er group, Ashlu, Ashloo, Pokosha Showing,
		•	profels, phyllonite, pendant, hornblendite,
			te, chalcopyrite, tellurbismuth, calaverite,
	gold, silver, copper, tungs		
·· · ·		· · ·	rs <u>00004A, 05592, 06043, 06155, 06774, 07403</u>
			RS <u>- 00004A, 05592, 06043, 06155, 06774, 0740.</u> 527, 17888, 17889, 17919, 17937, 23664, 24036, 3134

TYPE OF WORK IN THIS REPORT	EXTENT OF WORK (IN METRIC UNITS)	ON WHICH CLAIMS	PROJECT COSTS APPORTIONED (incl. support)
GEOLOGICAL (scale, area)			
Ground, mapping			
Photo interpretation			
GEOPHYSICAL (line-kilometres)			
Ground			
Magnetic			
Electromagnetic			
Induced Polarization			
Seismic			
Airborne			
GEOCHEMICAL			
(number of samples analysed for)		546232, 546740, 593774,	
Soil77 samples, 53-eler	nent ICP-MS	593775, 593778, 593782	\$ 15,053.64
Silt			
Rock			
Other			
DRILLING (total metres; number of holes, size)			
Core			
Non-core			
RELATED TECHNICAL			
Sampling/assaying			
Petrographic			
Mineralographic			
Metallurgic			
PROSPECTING (scale, area)			
PREPARATORY/PHYSICAL			
Line/grid (kilometres)			
Topographic/Photogrammetric (scale, area)			
Legal surveys (scale, area)			
Road, local access (kilometres)/trail			
Trench (metres)			
Underground dev. (metres)			
Other			

Soil Geochemical Report on the ASHLU PROPERTY in 2011

Sunshine Coast Regional District, Southwest British Columbia BC Geological Survey Assessment Report 32702

Tenures Worked:	546232, 546740, 593774, 593775, 593778, 593782
Mining Division:	Vancouver
NTS:	092G.093, 092G.094
Latitude:	49°57'14.3"N
Longitude:	123°25'25.6"W
Owner & operator:	Ashlu Mines Inc.
0	Rich River Exploration Ltd.
Consultant:	J.David Williams, P.Eng., geological consultant

for

ASHLU MINES Inc.

2001 – 837 West Hastings Street Vancouver, BC V6C 3N7

by

Integrex Engineering

303-1225 Cardero Street Vancouver, BC V6G 2H8 www.integrex.ca

J.David Williams, P.Eng.

21 December 2011

TABLE OF CONTENTS

SUMMARY	1
INTRODUCTION	
LOCATION & ACCESS	5
TOPOGRAPHY, VEGETATION & PHYSIOGRAPHY	5
INFRASTRUCTURE	7
MINERAL TENURE DISPOSITION	
PROPERTY HISTORY	
GEOLOGICAL SETTING	
Regional Geology	12
Property Geology	12
Structure	13
Mineralization	14
Fieldwork of 2011	17
SAMPLING METHOD, PREPARATION, ANALYSIS AND QUALITY CONTROL	
INTERPRETATION AND CONCLUSIONS	
RECOMMENDATIONS	
ITEMIZED COST STATEMENT	
STATEMENT OF QUALIFICATIONS	
REFERENCES & BIBLIOGRAPHY	

TABLES

TABLE 1: ASHLU PROPERTY	3
TABLE 2: MINERAL TENURES OF THE ASHLU PROPERTY	8
TABLE 3: ASHLU AREA HISTORY 1947-2009	11
TABLE 4: MINERAL OCCURRENCES ON THE ASHLU PROPERTY	14
TABLE 5: PROPOSED EXPLORATION BUDGET	20
TABLE 6: SUMMARY OF PROJECT COSTS	22

TABLE OF CONTENTS (CONT'D)

FIGURES

FIGURE 1: LOCATION OF THE ASHLU PROPERTY IN BC	
FIGURE 2: LOCATION OF THE ASHLU PROERTY IN SOUTHWESTERN BC	
FIGURE 3: ACCESS ROUTE TO ASHLU PROPERTY	6
FIGURE 4: MINERAL TENURES OF THE ASHLU PROPERTY	9
FIGURE 5: ASHLU PROPERTY 1:50,000	FOLLOWING PAGE 9
FIGURE 6: ASHLU PROPERTY IN THE COAST BELT OF BC	
FIGURE 7: GENERALIZED REGIONAL GEOLOGY	
FIGURE 8: ASHLU PROJECT 2011 – SOIL SAMPLE LOCATIONS 1:30,000	FOLLOWING PAGE 17
FIGURE 9: ASHLU PROJECT 2011 – AU, AG, BI, HG SOIL ASSAYS 1:50,000	FOLLOWING PAGE 18

PHOTOGRAPHS

APPENDICES

APPENDIX A - TABLE OF SOIL SAMPLE LOCATIONS & DESCRIPTIONS	
APPENDIX B – ASSAY CERTIFICATE & 'METHOD SPECIFICATIONS' SHEETS	15 pages
APPENDIX C – SOIL SAMPLE ASSAY PLANS –1:30,000	
APPENDIX D – SOIL SAMPLE LOCATION MAP – 1:10,000	(IN POCKET) 1 MAP

SUMMARY

Ashlu Mines Inc. ["Ashlu Mines"], a privately held resource company based in Vancouver, BC holds mineral tenures in the Ashlu Creek valley and the high mountains overlooking the creek, located about 30 kilometers northwest of the Squamish-Brackendale district. Ashlu Mines' 22 mineral tenures, 5,697 hectares in size, perhaps confusingly, does not include the mining lease enclosing the former Ashlu mine. Accounting for the overstaking onto the mining lease, located in the center of Ashlu Mines' claim block, the working size of the Property amounts to 5,427 hectares.

Historically, all or most activity on the Property was centered on the Ashlu mine, which extracted gold, silver and copper from 13,650 tonnes of ore while in production from 1932 to 1939. The mineralization is also known to contain bismuth, tellurium and tungsten.

The bedrock geology consists of overwhelmingly predominant granitoids of the Jurassic Cloudburst Pluton and more recent plutonic rocks. Pendants of marine sediments and volcanics of the Lower Cambrian Gambier Group occur in a few places. Mineralization appears to be structurally controlled by shearing that is often associated with dike rocks of various types, mostly diabase. Quartz occupies the shears and contains sulfide mineralization that tends to occur near the wall rocks as massive or nearly massive pods of pyrite, pyrrhotite and chalcopyrite. The wall rocks can also be mineralized. In the Ashlu Mine, gold and silver grades in the vein are proportional to its sulfide content.

In August 2009, Ashlu Mines began a \$54,721, 24-day field program to begin what is hoped to be an ongoing endeavor to assess the mineral potential of its namesake Property. That work consisted of rock, soil and silt sampling that not only focused both on two known prospective areas, the Pokosha Showing and the Ice Showing, but began to develop a database from soil sampling that could eventually cover all road-accessible parts of the Property.

Ashlu Mines returned to the property in 2011 to complete a 5-day program at a cost of \$15,053.64, and is the subject of this report. That program of soil sampling is part of Ashlu Mines' continuing effort to develop a Property-wide soil sample database. The 77 soil samples were collected during the field program were from sections of the Ashlu North FSR that falls within the Property boundaries as it parallels Ashlu Creek.

At least three new targets for follow up exploration were located as a result of the 2011 field program. The targets feature highly anomalous assays in gold or silver, or more weakly anomalous gold corroborated by anomalous mercury. As a pathfinder to potential mineralization, mercury is becoming better appreciated but a more detailed examination of the assay results from both the 2009 and 2011 sampling may identify other elements that could be more effective in identifying exploration targets.

The fieldwork of 2011 contributed to the merits of the Ashlu Property as one that holds good potential for the discovery of a resource in gold, silver, copper, bismuth and tellurium and perhaps tungsten. In pursuit of that potential, it is recommended that the work of 2009 and 2011 be expanded with more detailed work at the Pokosha and Ice showings and with follow up at all other identified targets. Soil sampling along the roads has worked well and should be extended to every road on the Property. Silt sampling,

Ashlu Mines Inc. Ashlu Project 2011

begun in 2009, also had its successes and should be expanded to represent a greater proportion of the Property. The broader coverage of road-based, reconnaissance-style soil and silt sampling could uncover a series of additional targets.

To fulfill those ambitions, a program of field exploration of two months duration is proposed. That program, budgeted at \$405,000, could be concluded in a single field season, or extended over a span of several years. The ultimate intent of the fieldwork would be to identify drill targets to be pursued in a subsequent field program.

Photo 1: Scenic view of part of the Ashlu Property. Looking south across the Ashlu Creek valley from a point above the Ashlu Mine area. Photo by J.D.Williams, 17Sep'09.

INTRODUCTION

Ashlu Mines, in its ongoing effort to investigate the mineral potential on its namesake Property had Rich River Exploration Ltd. conduct a 5-day field program of soil sampling in October 2011. The field program on the Ashlu Property was intended to build upon the rather successful exploration Rich River Exploration completed for Ashlu Mines in 2009.

The 5,427-hectare Ashlu Property consists of a block of 22 contiguous mineral tenures straddling Ashlu Creek in southwestern BC. The Property surrounds a mining lease of the former Ashlu mine, a gold, silver and copper producer from the 1930's.

In many respects, the 2011 soil program, consisting of 77 new samples, can be considered as an extension of the 2009 survey. Where appropriate, this report describes the most recent survey in the context of the 134 soil samples gathered in 2009. This report also concludes with recommendations for further work that calls for follow up on the sample results with a program designed to extend field techniques that were found to be so effective in both 2009 and 2011. All sample details including field notes, assayer's

certificates, and maps showing sample locations and plots of assay values for a series of selected elements are appended herein.

Software used in the preparation of this Report include technical drawings composed in AutoCAD Civil 3D versions 2010, 2011 and 2012, while illustrations were developed in CorelDRAW Graphics Suite version X5. This report was prepared in Microsoft Office 2010 Word with certain tabular data organized in Excel. Generation of this report in PDF format, as submitted to Mineral Titles Branch, was with Adobe Acrobat X Professional.

All units of measurement are consistent with the International System of Units [SI] unless

specifically noted otherwise. Where values quoted from historical documents are made in some other system of measurement, they are quoted directly with SI units offered in brackets, sometimes rounded for convenience. All maps and drawings displaying Universal Transverse Mercator [UTM] coordinates conform to North American Datum 1983 [NAD83, zone 10] unless specified differently. All monetary figures are in Canadian

Table 1: ASHLU PROPERTY

092G.093, .094

49°57'14.3"N

123°25'25.6"W

Ashlu, Ashloo,

082GNW013

469,600 (Zone 10, NAD83)

Ashlu Mines Inc. [100%]

5,533,600

Mining Division: Vancouver

Claim Area: 5,697 hectares Property size: 5,427 hectares

BC Minfile of principal target

Golden Coin, Golden King

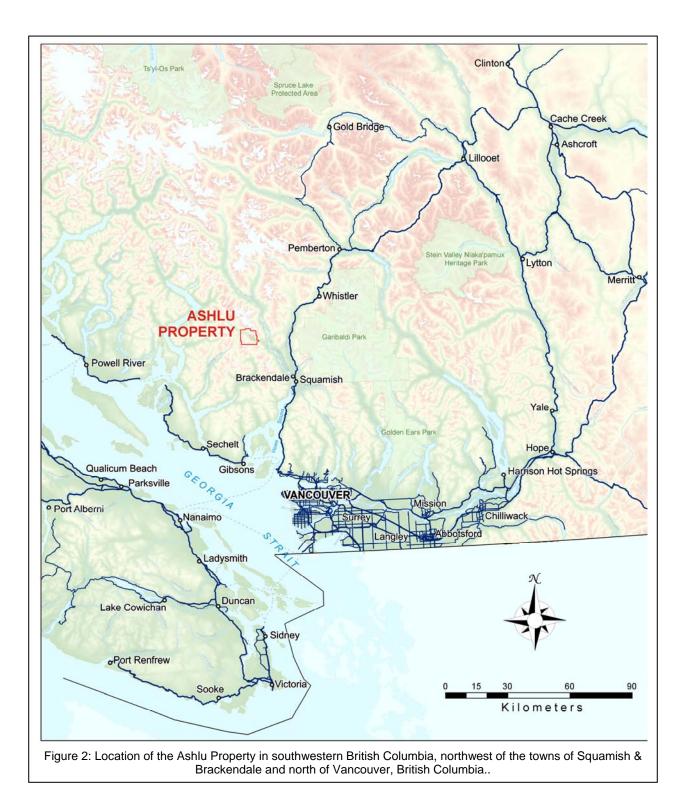
NTS:

Latitude:

UTM N:

UTM E:

Owner:


Names:

Minfile ID:

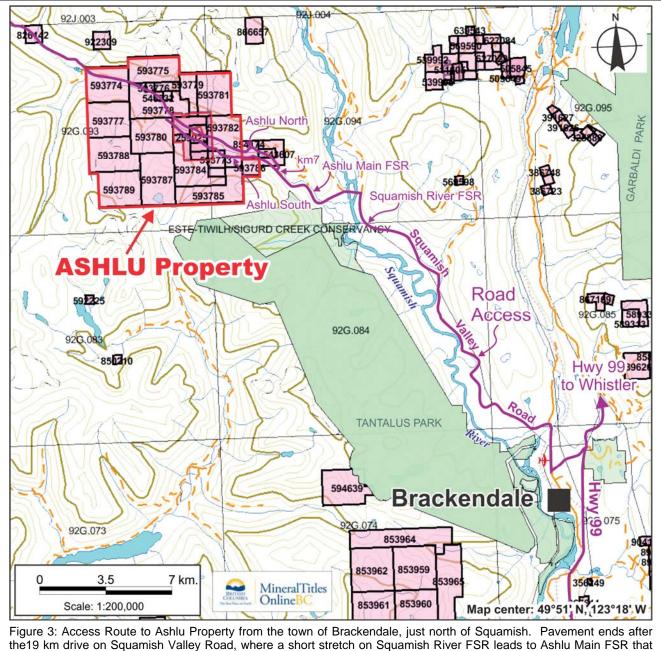
Longitude:

Ashlu Mines Inc. Ashlu Project 2011

dollars. Strike and dip measurements follow the right hand convention where when facing the strike direction in azimuth degrees relative to astronomic north, the dipping feature falls downward to the right by a measure referenced in degrees with respect to horizontal.

LOCATION & ACCESS

The Ashlu Property is located in southwestern British Columbia about 160 kilometers north-northwest of Vancouver (figure 1), or roughly 30 kilometers northwest of the closest commercial centers, Squamish and Brackendale (figure 2). The Property straddles Ashlu Creek which flows southeast to join the Squamish River which passes the twin towns of Brackendale and Squamish as it empties into Howe Sound. During the snow-free months of the year there is generally good road-access to the Property along the lower roads that run along Ashlu Creek. Other transport, such as helicopter or snow machine would be required during the snowbound winter season.


Squamish and Brackendale are easily accessible from Vancouver by Highway 99, a driving distance of about 60 kilometers. From Squamish or Brackendale the Property can be reached by continuing north on Highway 99 to the Squamish Valley Road turnoff (figure 3). That road runs for 23 kilometers, mostly northwesterly along the east bank of the Squamish River. The pavement ends at the start of the Squamish River FSR which, after 1200 meters, passes the Ashlu Main FSR. Ashlu Main immediately crosses the Squamish River and continues northwest along the southwest bank of Ashlu Creek to the 7-kilometer maker. At that point Ashlu Main forks into Ashlu South which continues onto the Property. Ashlu North first crosses Ashlu Creek before it too continues onto the Property as it parallels Ashlu Creek on its northeast bank.

All gravel roads are in generally good condition although a four-wheel drive vehicle would be recommended for most travel along the Ashlu Main, North and South forks. Ashlu South continues to the area of the former Ashlu mine where it is washed out at Roaring Creek. Ashlu North is unbroken as it crossed the entire length of the Property but deteriorates towards the western edge of the Property. Other roads are mapped but they may not be passable due to their poor condition, choked with overgrowth or isolated by washed out culverts or stream crossings. For field exploration, accessing passible roads with an ATV or a small SUV would be preferred.

TOPOGRAPHY, VEGETATION & PHYSIOGRAPHY

The high peaks of the Coast Mountains are everywhere evident on the Ashlu Property. The vigorous southeast flow of Ashlu Creek falls from elevations in the valley bottom that range from 500 meters in the west of the Property to 208 meters at the east boundary. From there, glacier-clad peaks exceeding 2000 meters in elevation tower over the valley bottom. The highest elevation is a peak in the northeast corner of the Property, at 2116 meters. Steep slopes and numerous cliffs are clearly visible, periodically incised by boulder-filled trickles that often surge to foamy races during rainy periods to feed Ashlu Creek.

The slopes are well drained with swampy ground all but absent on the Property. The flow of water in the numerous creeks draining the valley would be ample to sustain a drill program in the snow-free months. Lakes are mapped at higher elevations in the southwest of the Property.

the 19 km drive on Squamish Valley Road, where a short stretch on Squamish River FSR leads to Ashlu Main FSR that crosses the Squamish River and runs along the south bank of Ashlu Creek. At the 7km marker the road forks to Ashlu North and Ashlu South, both of which provide access to the Property. Source: after Mineral Titles, 14 December 2011.

Old growth vegetation is now relatively uncommon in the valley and is recognized by mature stands of conifers with lesser deciduous species forming a nearly unbroken canopy with an open and clear understory. Logging since the 1960's has occurred on most of the more accessible slopes which are recovering with thick, tangled regrowth, often intermixed with fallen debris. Although there was no logging activity on the Property during the field program, some areas appeared to have been rather recently cut.

The amount of outcrop is variable, often abundant. Examination of outcrop is hindered by difficult movement through thick regrowth that is further impeded by the frequent appearance of impassible cliff faces. Trails often need to be cut to provide access to exposures. The best access is by logging road but many are choked with regrowth. The distribution of soil, where it occurs, has rather well developed profiles that provide worthwhile sample coverage over extended areas. That distribution is often locally broken by steep outcrop or cliffs. Glacial till is recognized by sometimes thick lenses or fans of coarser and lighter colored, unsorted material containing large rounded boulders.

Typically, the Coast Mountains are subject to mild winter temperatures and heavy winter precipitation. Maximum average temperatures range to 18° C in summer with average minimum temperature of -2° C in mid-winter. Average annual precipitation of 3345 mm, varies from 512 mm in November to a drier 90 mm during August.¹ It is expected that snow-free months in the valley bottom extend from May through to at least mid-October. That period would be more restricted with increasing elevation.

INFRASTRUCTURE

Given the steepness of the terrain above the Ashlu valley bottom, logging roads are invaluable in providing access to parts of the Property that would otherwise be all but unapproachable. There are numerous roads in various states of repair that reach into areas where no known mineral activity has occurred. These roads, to whatever extent possible, would be useful not only for access but as traverse routes during an exploration program.

A newly completed run-of-river facility, the Ashlu Green Power Project, is a 49MW run-of-river facility owned by Innergex Renewable Energy Inc. of Longueuil, Quebec, and began operation in November 2009.² The intake for that project occupies a wider part of Ashlu Creek just inside or on the east boundary of the Property. Its generating station lies five kilometers downstream. The prospect of available hydro power located a few kilometers off the Property could have a positive impact on the economics of a potential mining operation.

The Squamish-Brackendale (combined population of about 18,000) is large enough to provide most services required by an exploration program. For the remaining equipment and services, Vancouver is about an hour's drive from Brackendale on Highway 99. Helicopter service is available in Squamish and an airport is located in Brackendale.

As far as is known, no cellular communication is available on the Property. The Property lies outside Pine Beetle Salvage Area which disqualifies any exploration program from an enhanced rebate of expenses from the Province of BC.

¹ ClimateBC Web Version; Center for Forest Conservation Genetics, University of British Columbia, www.genetics.forestry.ubc.ca/cfcg/climate-models.html [January 2010]

² Press release by Innergex Renewable Energy, 14Dec'09; <u>www.innergex.com</u>

MINERAL TENURE DISPOSITION

The Ashlu Property consists of 22 MTO^3 mineral tenures that fall within the Vancouver Mining District. All tenures are 100% owned by Ashlu Mines Inc. The tenures are composed of up to 24 cells arranged in various shapes to form a roughly square block of contiguous claims spanning 8 kilometers east to west and about 7.5 kilometers in its north-south dimension (table 2, figures 4 & 5). At this latitude, MTO cells are about 20.8 hectares in size that contribute to a tenure size of 5,697 hectares.

Complicating that arrangement is a Mining Lease (tenure 259025) held by Slim's Exploration and Mining Ltd. that is completely enclosed by Ashlu Mines' holdings in the east-central part of the Ashlu Property. That mining lease, in turn, encloses an area that has been claimed by Ashlu Mines. Ashlu Mines has overstaked much of the area of the mining lease to acquire ground up to the lease boundary in most places, and to stake the ground contained within the lease. Accounting for the ground occupied by the mining lease, the Ashlu Property is reduced to a working size of 5,427 hectares that is available to Ashlu Mines for field exploration.

Tenure	Claim		Issue	Good To	Area
Number	Name	Cells	Date	Date	[ha]
546230	ICE 2	1	2006-Dec-01	2011-Dec-18	20.784
546232	ICE	1	2006-Dec-01	2011-Dec-18	20.784
546740	START	1	2006-Dec-06	2011-Dec-18	20.782
560351		4	2007-Jun-09	2014-Jan-01	83.175
593773	GEORGE VEIN	4	2008-Nov-03	2011-Dec-18	83.196
593774		20	2008-Nov-03	2011-Dec-18	415.630
593775		18	2008-Nov-03	2011-Dec-18	374.021
593776	YALAKOM	3	2008-Nov-03	2011-Dec-18	62.348
593777		20	2008-Nov-03	2011-Dec-18	415.772
593778		20	2008-Nov-03	2011-Dec-18	415.720
593779	YALAKOM AU	8	2008-Nov-03	2011-Dec-18	166.279
593780		20	2008-Nov-03	2011-Dec-18	415.843
593781		20	2008-Nov-03	2011-Dec-18	415.721
593782		20	2008-Nov-03	2011-Dec-18	415.897
593783	GEORGE EXT	2	2008-Nov-03	2011-Dec-18	41.603
593784		20	2008-Nov-03	2011-Dec-18	415.992
593785		20	2008-Nov-03	2011-Dec-18	416.101
593786	TROY-AU	4	2008-Nov-03	2011-Dec-18	83.203
593787		24	2008-Nov-03	2011-Dec-18	499.225
593788		22	2008-Nov-03	2011-Dec-18	457.509
593789		20	2008-Nov-03	2011-Dec-13	416.056
606232		2	2009-Jun-17	2011-Dec-18	41.596
		274			5697.237

Table 2: Mineral Tenures of the Ashlu Property

In a Statement of Work filed with BC Mineral Titles on 12 December 2011, the expiry date of all mineral claims of the Ashlu Property, but for two exceptions, was brought to a common date of 01 September 2012. Tenure 593789 will expire six days earlier on 26 August 2012, and the expiry date of tenure 560351, which falls over ground enclosed by the mining lease, is unchanged at 01 January 2014. These expiry dates are contingent on

³ MTO: <u>Mineral Tenure Online</u>, a computerized claim staking system instituted by the Province of British Columbia in January 2005. Tenures are composed of one or more 'cells' of pre-defined size and location. The boundaries of the cells are defined by latitude and longitude coordinates and vary in size with changing latitude.

Ashlu Mines Inc. Ashlu Project 2011

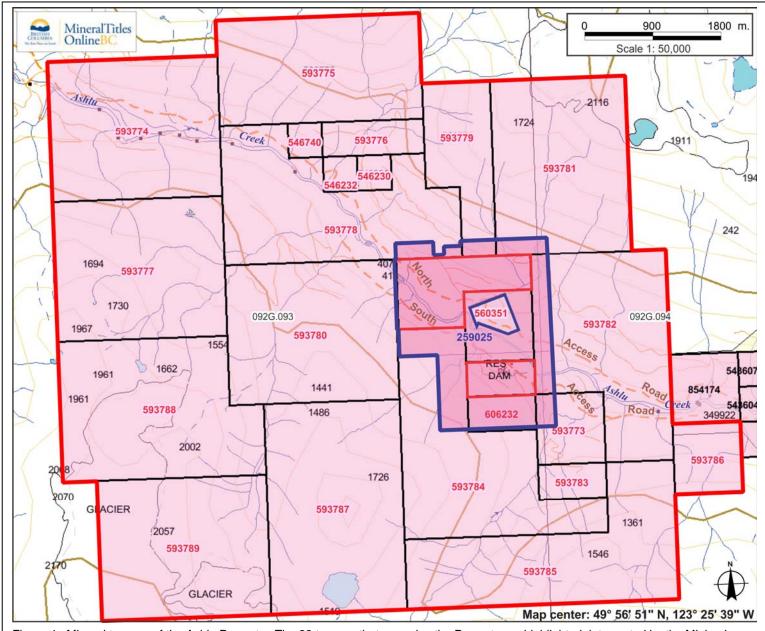
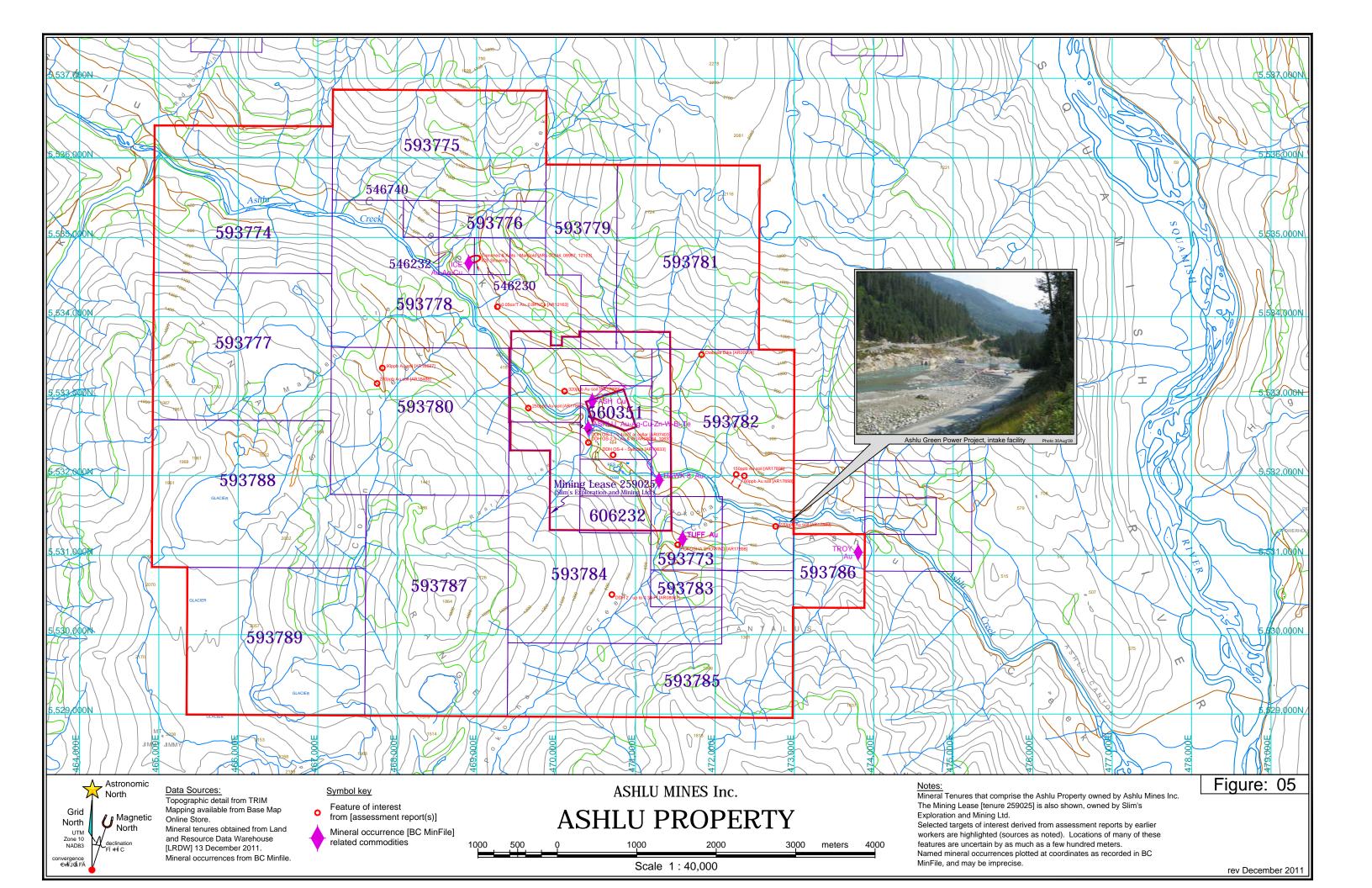



Figure 4: Mineral tenures of the Ashlu Property. The 22 tenures that comprise the Property are highlighted, interrupted by the Mining Lease of tenure 259025, not owned by Ashlu Mines. That lease, in turn, encloses tenure 560351 which is owned by Ashlu Mines. Source: after Mineral Titles, 13 December 2011.

acceptance, by BC Mineral Titles, of this Report in support of that Statement of Work (ref. BC Mineral Titles Event Number 5154047).

At this time, no exploration permit in the form of a 'Notice of Work' application is active nor has one been submitted to the permit office of the Ministry of Forests, Lands and Natural Resource Operations, in Victoria, BC. No private land is bounded within the Ashlu Property, obviating the requirement for Land Owner Notifications to be issued in advance of any exploration activity. No other permits or exemptions connected with the Property are in force and none have been applied for. No royalty agreement or any other encumbrance applies to any part of the Property. As far as is known, no environmental liabilities apply to the Property.

PROPERTY HISTORY

The history of the Ashlu area begins with the discovery of the Ashlu quartz veins by F.Pykett and associates in 1923 (BC Minfile, Ashlu, 1997). Since then, the history of the area has been dominated by exploration and development on those veins or by workers targeting similar deposits nearby. Production at the Ashlu mine began in 1932 and by the time it closed in 1939, underground workings of the mine totaled hundreds of meters ("several thousand feet") in length joined by a 22.7 tonne ("25 ton") mill established in 1936 (Stevenson, 1947, p.18). Production over that period amounted to 13,650 tonnes ("15,047 tons"), and yielded 199 kilograms ("6,396 oz") of gold, 222 kilograms ("7,154" oz) of silver and 30,022 kilograms ("66,187 lbs.") of copper (ibid).

On the nearby Ice showing, limited surface and underground work during the 1920's and 1930's resulted in the shipping of 2 tons of hand-sorted ore at a reported grade of over 171 gm/tne ("over 5 oz/T") in gold (Yeager, 1979, p 2).

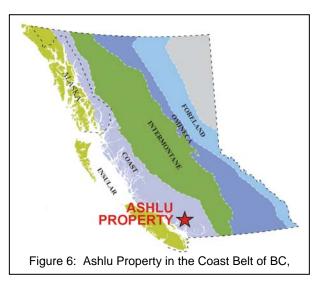
Since World War II numerous interests have been active in the area now covered by the current footprint of the Ashlu Property (table 3). Principal among those workers was Walter Babkirk who was a central figure in much of the exploration conducted through the latter half of the 1970's and into the 1980's. As principal of Slim's Mining and Exploration, the owner of the mining lease, he oversaw the only production recorded over that period. In 1984, 36 tonnes were milled in a 91 tonne/day facility installed in 1979 (BC Minfile, Ashlu, 1997).

Exploration activity has tended to be concentrated on the Ashlu mine and its immediate vicinity, including older workings on the opposite side of Ashlu Creek. Renewed interest at the Ice Showing is first recorded in 1979. Work on the Tuff Showing, also referred to as the Pokosha Showing or George Vein and located in the southeast of the Property, has retained intermittent interest over the years. Details of the discovery of that occurrence and the 10 meter-long adit driven into the quartz vein at the showing are unknown.

Since 1995 no recorded activity on the Property is known. In 2004 Ashlu Mines conducted a brief reconnaissance sampling program in the area. Almost all of those samples were taken outside the current boundaries of the Property. After allowing its original tenures to lapse, Ashlu Mines began assembling its current tenure holdings in 2006.

In 2009, Ashlu Mines completed a 24-day field program consisting of prospecting along accessible roads as well as rock sampling at the Ice and Pokosha showings, and soil and silt samples along several sections of the access roads. Although rock samples from the Pokosha Showing were low, soil samples from some places along the roads below it were favorably anomalous in gold, silver, bismuth and mercury. A sample from the Ice Showing returned just over 14% copper and 25.5 gm/tne in gold and 173 gm/tne in silver. Here too, soil samples from that area were anomalous in gold, silver and mercury (Williams, 2010).

Ashlu Mines Inc. Ashlu Project 2011


Table 3: Ashlu area history 1947-2009

Year	Owner/Operator	Claims	Work Performed	Reference(s)
1947	Giant Mines and Metals Ltd.	M2, M3, M4, M5, M2-4 Fr.	Geological mapping	AR 00004A (Allen, 1947)
1975	W.Babkirk	Ash	Drill hole Ash#2 – 0.0-18.28m	AR 05592 (Babkirk, 1975)
1976	W.Babkirk	Ash	Drill hole Ash#2 – 18.28-32.91m	AR06043 (Babkirk, 1976)
1976	Ashlu Gold Mines Ltd.	Ash	4 drill holes: 1-76, 2-26, 3-76, 4-76 – total 300.53m	AR 06155 (Cooper, 1976)
1977	W.Babkirk	Able	Drill hole – 21.37m	AR 06774 (Babkirk, 1978)
1979	C. & W.Babkirk	Ash	Drill Hole OS-1 – 53.34m	AR 07403 (Babkirk, 1979)
1979	Mar-Gold Resources Ltd.	Ice, Yalakum	Geological mapping, sampling	AR 07844 (Yeager, 1979)
1979	Ashlu Gold Mines Ltd.	unknown	Drilling the Pokosha Showing unpublished report by P.H.Sevensma	Mazacek, 1988b, p.13
1980	W.Babkirk, J.Peever	Able	Drill hole – 99.06m, 762 line-m magnetics	AR 08067 (Babkirk, 1980a)
1980	Slim's Expl'n & Mining Ltd. / W.Babkirk	Ash	Drill hole OS-2 – 68.58m	AR 08084 (Babkirk, 1980b)
1980	Mar-Gold Resources Ltd.	Ice, Yalakum	Geological mapping, sampling 2200 line-m magnetics	AR 08967A & B (Yeager, 1981)
1982	Slim's Expl'n & Mining Ltd. / W.Babkirk	Ashlu	Drill holes OS-3, OS-4 – 124.05m	AR 10633 (Babkirk, 1982)
1983	Mar-Gold Resources Ltd.	Ice, Yalakum, Silverton No.2	Prospecting, rock & soil sampling	AR 12163 (Ikona, 1984)
1984	Opsprey Mining & Expl'n Ltd. / Slim's Expl'n & Min'g Ltd.	Hawk 1 - 4	8 drill holes – 324m	AR 13278 (Babkirk, 1984)
1985	Slim's Expl'n & Mining Ltd. / W.Babkirk	Hawk 5 & 8	2 drill holes: 85-14 & 85-16 – 110.64m total	AR 13847 (Babkirk, 1985a)
1985	H.D.Schnelle	Eagle, Troy, Florette	4 drill holes: 85-1 to -4 – 144.57m total	AR 13873 (Schnelle, 1985)
1985	Slim's Expl'n & Mining Ltd. / W.Babkirk	Hawk 6 & 7	Drill hole 85-16 – 42.67m	AR 14703 (Babkirk, 1985b)
1987	W.Babkirk	Tusk	Drill hole Candy #1-87 (may be just off west edge of Ashlu Property)	AR 16313 (Babkirk, 1987)
1987	P.Mazacek	Elephant	Geological mapping, prospecting, rock, soil & silt sampling,	AR 16430 (Mazacek, 1987)
1987	H.Ross / Tenquille Resources Ltd.	Gee Whiz	B-horizon soil geochemistry	AR 16486 (Robins, 1987a)
1987	H.Ross / Tenquille Resources Ltd	Bimbo	B-horizon soil geochemistry	AR 16627 (Robins, 1987b)
1988	H.Ross / Tenquille Resources Ltd.	Bimbo, Gee Whiz	Prospecting, geological mapping, rock sampling	AR 17888 (Mazacek, 1988a)
1988	Tenquille Resources Ltd. / Valentine Gold Corp.	Hawk	Prospecting, geological mapping, sampling old core, soil & silt geochem, petrography 5.5 line-km IP, line of magnetics Underground geological mapping, channel sampling, 9 test holes – 65.23m	AR 17889 (Mazacek, 1988b)
1988	W.Babkirk	Tusk	Drill Hole – 45.1m	AR 17919 (Babkirk, 1988)
1988	P.Mazacek	Elephant	Prospecting, geological mapping, rock sampling	AR 17937 (Mazacek, 1988c)
1994	L.Demczuk	Au	Prospecting, geological mapping	AR 23664 (Demczuk, 1994)
1995	Homegold Resources Ltd. / J.T.Shearer	Ashlu	Prospecting, geological mapping,	AR 24036 (Shearer, 1995)
2009	Ashlu Mines Inc.	Ashlu Property	Prospecting, rock, soil, silt sampling	AR 31343 (Williams, 2010)

GEOLOGICAL SETTING

Regional Geology

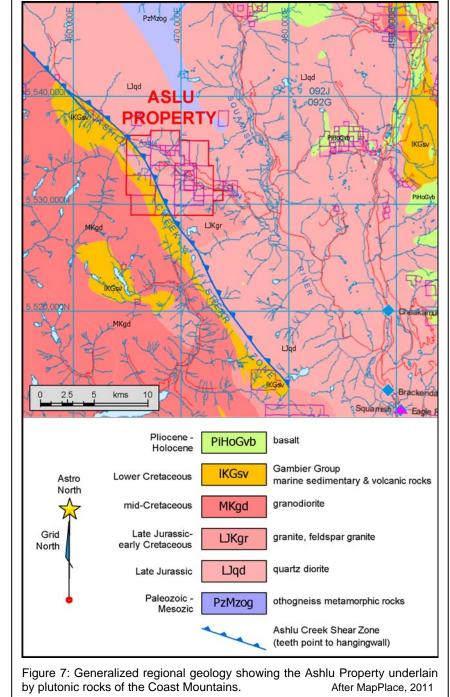
The Ashlu Property lies within the southern end of the Coast Belt, a morphogeological belt of generally granitic and metamorphic rocks that rise out of the Fraser Valley and extend northward along the coast to Alaska and Yukon. The granitic rocks range from 185 to 50 million years old and coexist with scattered remnants of older deformed sedimentary and volcanic bedrock which the granitic bodies intruded. The Coast Belt developed from the migration and docking of allochthonous rocks of the Insular belt along a subduction zone descending under previously accreted terranes of the Intermontane Belt (figure 6). Rising melt from the subducted plate emplaced plutonic rocks that intruded and uplifted older rocks, of which only eroded remnants remain.

Property Geology

As the features of the bedrock geology was not the emphasis of the 2009 field program, the following is a compendium of a few observations made by Ashlu Mines along with others recorded by earlier workers. Historically, only local areas of the bedrock geology of the Property have been mapped in any detail.

A series of white to grey plutonic rocks are dominant in the Property area. They range in age from lower Jurassic to middle Cretaceous and vary in composition from quartz diorite to granodiorite and diorite. Most of the Property is underlain by plutonic rocks of the Cloudburst pluton of Jurassic age. Few supracrustal rocks were seen in outcrop but they do exist especially in the high peaks in the south part of the Property where marine sedimentary and volcanic rocks of the Lower Cretaceous Gambier Group are perched as an apparent pendant. Rocks of the Squamish Pluton fall west of the Gambier pendant in the southwest corner of the Property (figure 7).

The predominant granitoid material is leucocratic, medium grained and comprised of off-white and pale grey feldspar with glassy quartz grains and a small proportion of biotite and hornblende. Grey colored granodiorite also occurs, further distinguished by a relatively small proportion of quartz but a significant amount of biotite. Into both varieties of granitoid are, sometimes common and very large, often fractured, angular inclusions of more mafic rock that may locally predominate. The best exposures of these inclusions are in the portals of the former Ashlu mine and in exposures on the opposite bank of Ashlu Creek.


Numerous dike rocks occur throughout the work area and may be closely implicated in the metallogeny of the Property. A few dikes were observed in the 2009 fieldwork but some earlier workers described a range of dike compositions. Perhaps the most prevalent Ashlu Mines Inc. Ashlu Project 2011

among those varieties is a population of black to medium green, fine grained diabase dikes inconsistently altered to chlorite and epidote. Other diabase varieties are characterized by a variable phyric texture of feldspar or hornblende crystals. The dikes may demonstrate chilled contacts and occur as wide planar intrusions that may branch into filaments as thin fracture fillings.

In showings in Stuyvesant Creek, on the north side of Ashlu Creek directly opposite the mine,⁴ a pegmatite dike up to 60 centimeters wide was noted by Allen (1947, p.3). It is described as coarse grained feldspar and quartz displaying a graphic texture and accompanied by a few large biotite flakes.

Allen (ibid) also describes a large dike composed of nearly massive dark green coarse grained hornblende with scattered fine gained feldspar and minor sulfides.

Yet another variety is an alaskite dike associated with mineralization at the Ice Showing reported by Yeager (1979, p.5).

Structure

Little if any structural fabric in the plutonic rocks was noted in the most of the plutonic rocks. Partly defining the contact of the Gambier Group rocks with granitoid rocks in the southwest of the Property is where the regional Ashlu Creek Shear Zone of Cretaceous age is mapped (Monger, 1990, fig.2). This feature was not seen in 2009 as it is at high elevation.

⁴ Allen knew of that creek as Pykett Creek, its historical name which is now attributed to a creek to the northwest that drains area of the Ice Showing. It is not known how the name Stuyvesant Creek displaced the original designation.

Most of the mineralization appears to be localized in shear zones or in quartz veins that occupy shear zones. Dike rocks also appear to have an influence on the distribution of those features in a manner that is not currently understood. Against some of the largest diabase dikes, shearing was clearly evident involving strong brittle deformation of the dike and associated alteration that includes chlorite and epidote.

Mineralization

Several mineralized occurrences are recorded on the Property (table 4 & figure 5). Of the known occurrences the most important is the Ashlu mine. Even though the mine, as it falls within the mining lease that is not part of the Ashlu Property, it is the foremost exploration target in the surrounding rocks that underlie the Property. The characteristics of the Ice and Tuff occurrences are also most relevant.

Table 4 Mineral Occurrences on the Ashlu Property					
<u>Name</u>	Minfile No.	Commodities			
Ash	092GNW046	Cu			
Ashlu	092GNW013	Au-Ag-Cu-Zn-W-Bi-Te			
Hawk 8	092GNW062	Au			
Ice	092GNW047	Au-Ag-Cu			
Troy	092GNW055	Au			
Tuff	092GNW045	Au			

Ashlu Mine: Mineralization is hosted in a quartz vein oriented about 010° Az and varies from centimeters to 4.6 meters in width (BC Minfile, Ashlu, 1997). Mining was conducted in the plane of the vein dipping 25 to 30° west until at the lowest level where it steepens to 35° . The underground workings extend about 90 meters along strike and down-dip for about 85 meters.

The vein occurs as bands of quartz in a shear zone in granodiorite that tends to follow the hangingwall of an elongated roof pendant that has been variously described as a biotite-amphibole hornfels (ibid), a diabase dike (Allen, 1947, p.8) or a basic dike (Stevenson, 1947, p.18). Petrographic work by Shearer (1995, p.6) suggests that that dike material is a phyllonite derived from coarse grained granodiorite. Shearer goes on to speculate that the shear zone that produced the phyllonite also served as a conduit for mineralized fluids. Furthermore Shearer suggests that apparent association of the vein within a complex intrusion cut by dikes may instead be modeled by fault movement and phyllonite development.

The Ashlu vein consists of white quartz with pods, streaks and disseminations of pyrite and pyrrhotite, especially at contacts with wall rocks, along with minor chalcopyrite, scheelite, sphalerite, ankerite and siderite (BC Minfile, Ashlu, 1997). Sulfides containing gold with telluride minerals occurs in sheets, as irregular zones or in other forms in both the quartz and extending into the wall rocks (Allen, 1947, p.8)⁵. Gold content is generally proportional to sulfide content and can occur in amounts to several tens of grams/tonne ("several ounces", Stevenson, 1947, p.18). Gold occurs as micron sized grains (0.01-0.04 mm) in the native state but is mainly associated with tellurides (tellurbismuth, calaverite, frohbergite, hessite and altaite) (Mazacek, 1988b, p.16).

⁵ Allen (1947, pp.7 & 8) asserts that the Ashlu Vein of the former mine is exposed along the drainages on the opposite bank of Ashlu Creek. Some of the exposures are at the contact with east-west trending "diabasic" dikes.

*Tuff Showing / Pokosha Showing / George Vein:*⁶ A quartz vein exposed along the access road was sampled by Ashlu Mines in 2009 accompanied by a 10 meter-long adit collared about 15 meters to the west, which exposes a 9 meter-wide quartz vein of the same or a related structure, was also examined during that field program. This showing occurs at the contact of dacite of the Gambier Group and granodiorite. It contains sparse pods of massive sulfide and disseminated sulfides in some of the quartz and wall rocks. The results of Ashlu Mines' sampling were low, with a maximum value of 108 ppb in gold.

In 1978, a 50 foot-long (15 meter) chip sample of that structure was reported to average 0.5 oz/T (17 gm/tne) in gold but a hole drilled that year along with sampling of the vein on surface and from the adit returned only low gold values (Mazacek, 1988, p.13). Prospecting by Shearer (1995, p.6) suggests that vein could extend over as much as a kilometer in strike based on quartz float and subcrop and a meter-wide quartz exposure in Ashlu Creek. The creek exposure assayed 0.121 oz/T (4.1 gm/tne) in gold (ibid).

Ice Showing: Mineralization occurs in sheared fractures and in several types of veins. Several sets of fractures and veins were mapped, but fractures at 081°Az dipping 60°N were associated with sulfide mineralization and veins oriented 296/72° and 130/80° contained gold mineralization. An open cut trending 060°Az, exposes a 17 centimeter-wide massive pyrite and chalcopyrite vein from which values up to 156.5 gm/tne gold and 305 gm/tne silver were obtained. The adjacent wall rocks assayed as high as 4.4 gm/tne in gold (Yeager, 1979, pp.4-5). With great effort, this mineralization was located by Ashlu Mines in its 2009 field program, and resampled with similarly spectacular results.

In a nearby stockwork of quartz flooding, additional pyrite and chalcopyrite mineralization is at least partly associated with an alaskite dike. A 17 meter-long adit driven along a sulfide vein and other mineralization from the stockwork returned gold assays of up to 4.8 gm/tne (ibid, p.5). Sampling from quartz containing epidote, magnetite and pyrite about 20 meters north of that adit assayed 42.6 gm/tne in gold (Yeager, 1981, p.7). A second adit 400 meters to the southeast is 27 meters long. Sampling by Yeager in 1980 (ibid, p.6) in part of that adit returned no appreciable values in either gold or silver.

Shear zones at the 081°Az orientation elsewhere on the Ice-Yalakum property of 1979 contained pyrite, chalcopyrite, quartz, magnetite and actinolite. Selected sampling returned values only as high as 3.6 gm/tne in gold. The existence of magnetite may expose additional mineralization with a magnetic survey. Such a survey by Yeager in 1980 on a 20 x 20 meter field grid over the high grade open cut met with some success. The 3-hole, 315 meter-long drill program of 1980 encountered numerous additional narrow mineralized zones. Among them was a 10 centimeter intersection that returned the highest grade in gold, 1.2 gm/tne, of that campaign (Yeager et al, 1981, p.6).

*Ash:*⁷ Some of the several quartz showings exposed along Stuyvesant Creek, directly opposite the Ashlu Mine, fall just along the Property boundary that is contained by the mining lease (figure 5). Mineralization in quartz in Stuyvesant Creek ranges from a few centimeters to over 2 meters thick ("a few inches to 7 feet", Allen, 1947, p.8). The quartz is controlled by shearing along the contact and within diabase dike material. Two adits, 7.5

⁶ The Pokosha Showing and George Vein will be used interchangeably in this report.

⁷ The Ash showings probably refer to those exposed in Stuyvesant Creek on the north bank of Ashlu Creek. The location recorded in Minfile locates it on the south side of Ashlu Creek.

and 10 meters long expose the vein in separate places. Gold assays from the shortest adit are reportedly low (BC Minfile, Ash, 1990). The veins contain pyrite, chalcopyrite and a telluride mineral (ibid). The veins are oriented north south to about 008°Az and dip 20 to 30° westerly and are considered by Allen (1947, p.7) to be the up-dip extension of the vein of the Ashlu mine

*Hawk 8:*⁸ This occurrence is located on south bank of Ashlu Creek and falls inside the mining lease east of the Ashlu mine. It consists of a quartz vein oriented $010^{\circ}/15^{\circ}$. A chip sample taken in 1988 for Tenquille Resources Ltd. assayed 4.11 gm/tne in gold over a 1 meter width (Mazacek, 1988b, Map 5 & BC Minfile, Hawk 8, 1990).

Troy: Located in the extreme southwest corner of the property the Troy occurrence was suspected to hold mineralization localized along a contact between meta-diorite and underlying quartz diorite. That contact is marked by closely spaced limonite-coated fractures with minor quartz veins. The zone appeared to strike northwest and was believed to be target for pyrite-gold mineralization (Schnelle, 1985, p.A-2).

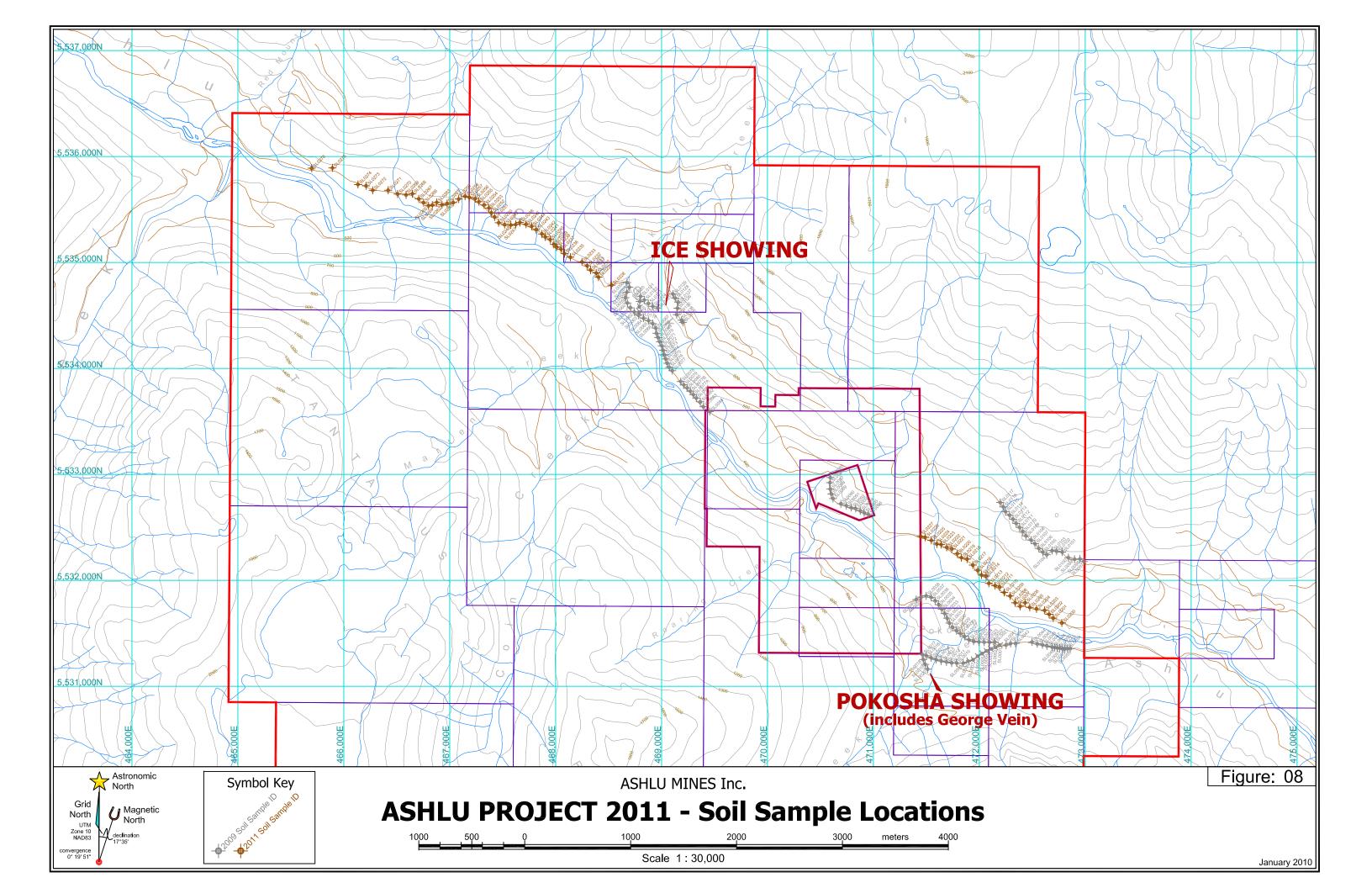
In 1985, a 145 meter-long program of four drill holes conducted by Schnelle encountered the steeply dipping contact but without any significant mineralization. The best result was from a 30 centimeter-long intersection of fracturing and oxidation that returned 0.9 gm/tne in gold (ibid).

⁸ The BC Minfile coordinates misplaces the Hawk 8 occurrence by about 500 meters. Mazacek locates it on Ashlu Creek north-northwest of coordinates recorded by BC Minfile.

FIELDWORK OF 2011

The fieldwork of 2011 at the Ashlu Property consisted of the collection of 77 soil samples along the north branch of the Ashlu FSR, completed over three field days⁹ in late October. That work continued the soil sampling of 2009 along sections of the more accessible roads on the Property (figure 8 locates soil samples of 2011 along with those of 2009).

As mobility over much of the Property is difficult, or in the steepest terrain, impossible, one of the best methods to assess the Property's potential is to take soil samples at intervals from the uphill bank of the available roads. This method was employed elsewhere on the Property with some success by Robins in 1987, Mazacek in 1988 and again by Ashlu Mines in 2009. The latest sampling is part of a continuing effort to ultimately complete a more comprehensive survey that ranges over roads covering a much greater portion of the Property.


Ashlu North FSR, as it runs generally north-northwest upstream above Ashlu Creek, crosses through the east part of the Property for about 1.8 kilometers before passing through the mining lease to reappear over a 4.1 kilometer-long stretch in the west part of the Property. In general, the western segment of Ashlu North deteriorates with distance upstream, making sections in the far west of the Property inaccessible. Certain sections of the FSR are carved into cliff-forming walls of bedrock which obviates any possibility of gathering a soil sample.

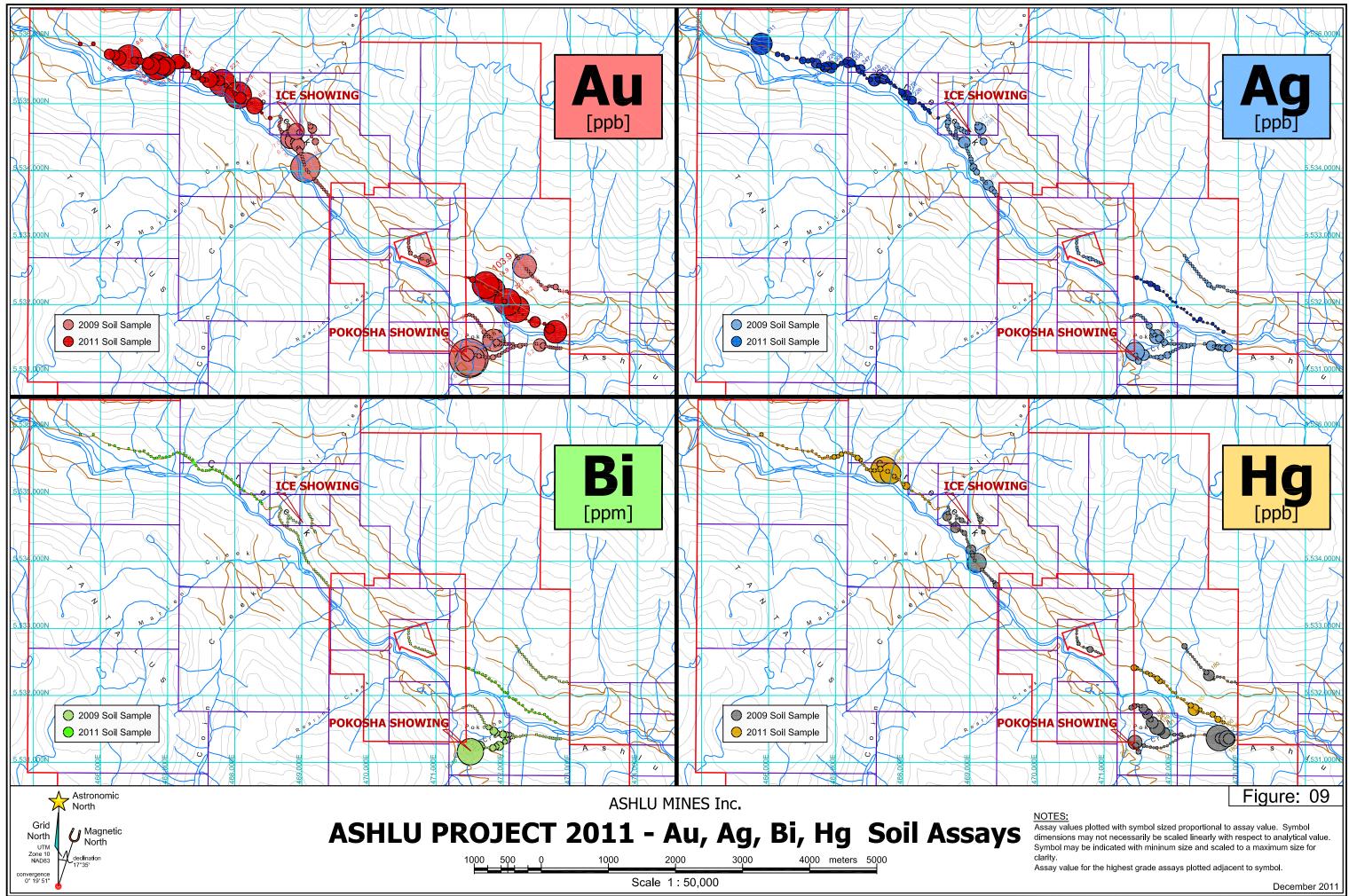
In 2011, the scope of the field program was to gather soil samples along the entire length of both the east and west section of the Ashlu North FSR. Samples were to be selected from undisturbed soil exposed on the upslope side of the road over a combined traverse of 5.9 kilometers. The field crew succeeded in representing most of that length of road, with short gaps to bypass cliff or rock faces and with part of the west segment of road unsampled due to wash-out conditions or where the road became inaccessible.

The highest assay gold value returned from the 2011 sampling, 103.9 ppb, is by any measure, strongly anomalous (figure 9) and represents a target for further investigation. That result is accompanied by other samples along the east segment of Ashlu North FSR that returned assays that, in the 2009 sampling, were of interest in that area, including those in the vicinity of the Pokosha Showing on the opposite side of Ashlu Creek.

Similarly, many of the 2011 gold assays from samples along the western segment of the FSR rival the anomalous results of 2009 in the Ice Showing area. From a sample at the end of that same segment of road, the highest silver assay, 511 ppm, makes that location another area to follow up.

⁹ The 2011 field program spanned 5 days including a two travel days to arrive at and return from the Property, leaving three full days for work in the field.

SAMPLING METHOD, PREPARATION, ANALYSIS AND QUALITY CONTROL


All soil samples were collected in the field using various implements including a scoop or GeoTul. Soil profiles on the Ashlu Property were variably developed with sample depths ranging from 10 to 45 centimeters. It was also notable that soils in areas sampled in 2011 tended to be rather high in coarser material, containing a low proportion of organics.

Soil was collected in amounts to generously fill a pre-labeled kraft paper bag. The sample location was marked by a tyvek tag labeled with sample number affixed to a nearby tree or other suitable anchor. Field notes recorded characteristics of the sample and its local environment. Location coordinates at each sample site, as displayed by a hand-held GPS, were also recorded in those field notes.

All 77 soil samples of the 2011 fieldwork were delivered in a single shipment to Acme Labs in Vancouver for preparation and analysis at the end of the program. Acme Labs' Group 1F was requested for all rock and geochemical samples. That procedure provides results for 53-elements by ICP-MS. Some of those elements report only partial concentrations due to refractory elements.

Sample preparation at Acme Labs includes drying the sample at 60°C from which a sample pulp was extracted by sieving to -80 mesh (-180 μ m). Ashlu Mines specified that analysis be performed on a 15-gram subsample of that pulp. That subsample was digested in a solution of hot aqua regia composed of equal parts HCl and HNO3 which is maintained at about 95°C for one hour. That solution is allowed to cool then is brought to volume with a weak solution of HCl. Analysis is completed by aspirating that cooled solution into an ICP mass spectrometer.

No quality control measures, in the form of blank or standard samples, were inserted into the series of field samples gathered in 2011. For its part, Acme Labs imposes its own quality control protocol. One or more pulp duplicates are inserted into each batch of as many as 35 samples to monitor analytical precision, and one or more -10 mesh reject duplicates are inserted into the same batch to monitor sub-sample precision. In addition, Acme Labs inserts its own reagent blanks and a reference standard into the job stream.

INTERPRETATION AND CONCLUSIONS

The 2011 fieldwork succeeded in identifying additional targets to investigate in a subsequent exploration program. The highest grade gold and silver results in separate locations on nearly opposite sides of the Property are themselves targets for further investigation.

One could say that, of the gold assays returned from the 2011 sampling, a greater proportion are of a magnitude that were recognized as anomalous in the 2009 survey— those values greater than about 10 ppb. Whether those broadly elevated results represents real gold enrichment or a reflection of a difference in the kind of material sampled or a peculiarity in the sampling conditions, remains an open question. Nonetheless, the relative gold assays of 2011 point to a target not only at the location of the highest assay in the east of the Property but also in the area of the next highest assay, 22.1 ppb, located northwest of the Ice Showing. That latter target is made all the more compelling by the pair of clearly anomalous mercury results in the same area (figure 9).

It is notable that silver assays along the western segment of the Ashlu North FSR are generally much stronger than those obtained in the eastern section. Many of those 2011silver assays in the west are of a magnitude returned in 2009 in the immediate vicinity of the Ice Showing. That trend of elevated silver in soils, culminates in the highly anomalous silver result near the western Property boundary and deserves further investigation.

The 2011 sampling appears to have reinforced the notion that bismuth, while perhaps acting as an effective pathfinder in the Pokosha Showing area in the 2009 sampling, that element is ineffective as a pathfinder elsewhere on the Property. That behavior is in stark contrast to mercury which seems to be much more effective as a pathfinder throughout all sampled areas. Before more aggressive exploration is performed on the Property, the assay data from both the 2009 and 2011 fieldwork should be reviewed for additional elements that may qualify as effective pathfinders; perhaps a combination that would include arsenic, cesium and barium, among others.

An assessment of the targets identified in soil sampling in the 2009 fieldwork and the two new targets singled out in 2011 would involve resampling those areas with similar soil sampling at intervals of 25 meters or less. Prospecting at the same time and geological mapping, may be warranted if there are sufficient outcrop exposures. Where some encouragement is found, soil sampling on an organized field grid may be considered as well as surveying with a magnetometer and/or by VLF-EM. Recognition that soil anomalies may be derived from a source further upslope should be accommodated in any field examination.

RECOMMENDATIONS

Given the success of the 2009 field program and the additional favorable results of the 2011 fieldwork, where the effectiveness of conventional field exploration techniques at the Ashlu Property was demonstrated, any additional work would want to make the most of that experience. Not only are those methods effective but they are relatively inexpensive.

A field program on the Ashlu Property would be designed to follow up local showings that have demonstrated potential for mineralization and, on a more regional basis, to prospect and run soil sample traverses on all available roads. The two-pronged approach of closely focused localized work that contrasts with Property-wide reconnaissance would be effective in assessing known occurrences while maximizing the possibility of locating additional mineralization. The ultimate outcome of this work would be to prepare the Property for a drill campaign that would target the best of the newly assessed mineralized areas.

To accomplish that task, perhaps not necessarily to completion, a field program of 60 days duration is proposed (table 5). This proposed program is designed not only to follow up the results of Ashlu Mines' previous work, but is also operationally patterned after it. As proposed, an upcoming field program would employ six persons; two geologists, two prospectors and a pair of field technicians. As with the earlier field programs, all would be accommodated at lodgings off the Property within a 40-minute daily commute from Brackendale, or preferably, a site even closer to the Property. Field gear, including ATVs would be stored in a shipping container on-site.

What may impede progress of the entire program would be the condition of the roads. Most roads would need to be reopened for ATV access which may also require temporary construction of stream crossings. In 2009, it was learned that many of the roads are heavily washed out at some drainages, and in 2011, it was apparent that sections of the Ashlu North FSR, in the west part of the Property, requires refurbishment.

ITEM	Amount
Geologist – pre-program planning & permitting ; 10 days @ \$700/day	7,000
Project Geologist 60 days @ \$700/day	42,000
Mapping Geologist 60 days \$ \$550/day	33,000
Prospectors (2) 60 days @ \$550/day	66,000
Field technicians (2) 60 days @ \$500/day	60,000
Field supplies & rentals for 3 months	12,000
Accommodation & Groceries 6 persons 60 days @ \$150/day	54,000
Transportation – project vehicles (2) 60 days @ \$200/day incl. fuel	24,000
Field transportation – ATV (2) 60 days @ \$100/day	12,000
Analytical cost 1000 samples @ \$40/sample (shipped)	40,000
Reporting and Data Processing - Project Geologist 10 days @ \$600/day	7,000
Ashlu Mines Project Management 10 days @ \$1000/day	10,000
Contingency (~10%)	38,000
TOTAL PROPOSED PROJECT EXPENSES	405,000

Table 5: Proposed Exploration Budget

Ashlu Mines Inc. Ashlu Project 2011

As proposed, the rather modest amount of fieldwork makes the presumption that several mineralized targets would be found. The success of the program will be measured on the quality of targets to be considered for drilling in a subsequent program. Fieldwork of the kind proposed can be conducted over the span of several years if the available funds does not allow for the completion of the program in a single season.

Respectfully submitted,

J.David Williams, P.Eng. 21 December 2011

JDW/jdw Ashlu2011_AssessmentReport.docx

ITEMIZED COST STATEMENT

To complete the 5-day field program of 2011 at the Ashlu Project, Rich River Exploration, based in Grindrod, BC, hired a crew chief and field technician who were also local residents to the north Okanagan area. On 25 October, the field crew travelled to Brackendale where they took up hotel accommodation. For each of the three field days the crew commuted the 33.5 kilometers from Brackendale to the Property before returning to their residences on 29 October.

The author, as project geological consultant, based in Vancouver, introduced the Rich River crew to the Property on their first field day. A second trip to Brackendale was made at the end of the program to retrieve the 77 soil samples in advance of delivering them to Acme Labs for analysis.

A total of \$15,054 was expended on the entire 2011 Ashlu field program (table 6). That cost includes HST at the rate of 12% or by the amount charged at the point of sale. The total number of field days by all involved is estimated at 12 person-days and, based on a 10-hour day, the total hours of fieldwork amounts to 120.

CHARGEABLE ITEM	Cost
Personnel & Professional Fees	
Project geological consultant – budgeting & map preparation – 7 hrs. @ \$67.20/hr.	470.40
Rich River Exploration - Crew chief: 5 days @ \$560/day	2,800.00
Rich River Exploration - Field technician: 5 days @ \$504/day	2,520.00
Rich River Exploration - Project management: 3hrs @ \$56/hr.	168.00
Project geological consultant - project introduction & sample retrieval & delivery: 10 hrs. @ \$67.20/hr.	672.00
Analytical Cost	
Acme Analytical Labs – 77 Soils by 53-element ICP-MS @ \$35.71	2,749.33
Accommodation, Board	
Rich River Exploration - Hotel: 5 nights @ \$125.46/night	627.20
Rich River Exploration - Meal charge-out: 10 person-days @\$112/person-day	1,120.00
Equipment Rentals	
Rich River Exploration - Truck rental: 5 days @ \$168/day	840.00
Rich River Exploration - Field equipment rental – radios, saws, etc.:5 days @ \$84/day	420.00
Rich River Exploration - Satellite phone: 5 days @ \$33.60/day	168.00
Field consumable, supplies & expenses	
Fuel (all vehicles)	341.59
Field gear & supplies	141.12
Report Preparation	
Project geological consultant: 3 days @ \$672/day	2,016.00
TOTAL PROJECT EXPENSES	\$ 15,053.64

Table 6: Summary of Project Costs

STATEMENT OF QUALIFICATIONS

I, J.David Williams residing at 303 - 1225 Cardero Street in the City of Vancouver, in the Province of British Columbia

DO HEREBY CERTIFY;

- 1. That I am a consulting engineer with a business address of 303 1225 Cardero Street, Vancouver, British Columbia, V6G 2H8.
- 2. That I am doing business under the name of Integrex Engineering and that I am the sole proprietor of the company and that I hold a valid license issued by the City of Vancouver to conduct business at the above address.
- 3. That I am a graduate of the University of Toronto where I obtained a Bachelor of Applied Science degree in Geological Engineering (exploration option).
- 4. That I have actively practiced my profession as a geological engineer since graduating in 1978.
- 5. That I am a Professional Engineer registered with the Association of Professional Engineers and Geoscientists of the Province of British Columbia [registration no. 14,954].
- 6. That the information, opinions and recommendations in the attached documents are based on my position as consulting project geologist over a period that extends from 26 August 2009 and my involvement with fieldwork at the Ashlu Property over the period from 30 August to 21 September 2009 and on 26 and 29 October 2011.
- 7. That I have not received, directly or indirectly, nor do I expect to receive any interest, direct or indirect, in the property of Ashlu Mines Inc., nor do I directly own any securities of Ashlu Mines Inc. or any affiliate thereof known to me.
- 8. I am the author of this Report entitled "Soil Geochemical Report on the Ashlu Property in 2011" dated 21 December 2011.
- 9. That I hereby grant to Ashlu Mines Inc. authorization to include this report in any Prospectus, Statement of Material Facts or other public document.

J.David Williams, P.Eng.

dated at Vancouver, British Columbia, this 21st day of December 2011.

REFERENCES & BIBLIOGRAPHY

Allen, Alfred R. (1947): <u>The Geology of the Mineral Claims M-2, M-3, M-4, M-5 and M-2-4 Fractional</u>; British Columbia Ministry of Energy and Mines, Assessment Report 00004A, 17 pages, 8 maps.

Annual Report of the Minister of Mines: 1924, <u>Ashloo Creek Section</u>, p.1925 1925, <u>Ashloo Creek Section</u>, p.A299-300 1926, <u>Golden King</u>, pp. A332-333 1927, <u>Golden King</u>, p. C364 1930, <u>Golden Coin (Golden King)</u>, p. A310 1935, <u>Ashloo Gold Mining Syndicate</u>, pp. F1 - 7 1937, <u>Ashloo Gold Mines Ltd.</u>, p. F34 1938, <u>Ashloo Gold Mines Ltd.</u>, F68 1939, <u>Ashloo Gold Mines Ltd.</u>, A86 www.empr.gov.bc.ca/Mining/Geoscience/PublicationsCatalogue/AnnualReports/P ages/AnnualReports.aspx#1979

- Babkirk, Walter (1975): <u>Ash Claim, Record #18684, Diamond Drill Hole #2 log;</u> British Columbia Ministry of Energy and Mines, Assessment Report 05592, 4 pages.
- Babkirk, Walter (1978): <u>Diamon(*sic*)</u> Drilling Report on Able Claim, Record #175, <u>Pokosha Cr.</u>; British Columbia Ministry of Energy and Mines, Assessment Report 06774, 4 pages.
- Babkirk, Walter (1979): <u>1979 Diamond Drill Hole Report for Ashlu Group</u>; British Columbia Ministry of Energy and Mines, Assessment Report 07403, 11 pages.
- Babkirk, Walter (1980a): <u>1980 Diamond Drill Hole Report for Able Claim, 8 Units;</u> British Columbia Ministry of Energy and Mines, Assessment Report 08067, 10 pages.
- Babkirk, Walter (1980b): 1<u>980 Diamond Drill Hole Report for Ashlu Group;</u> British Columbia Ministry of Energy and Mines, Assessment Report 08084, 12 pages.
- Babkirk, Walter (1982): <u>1982 Diamond Drill Hole Report for Ashlu Group</u>; British Columbia Ministry of Energy and Mines, Assessment Report 10633, 14 pages.
- Babkirk, Walter, et al (1984): <u>Assessment Work Report for 1984, Claims Included Hawk</u> <u>1-4</u>; British Columbia Ministry of Energy and Mines, Assessment Report 13278, 32 pages.
- Babkirk, Walter (1985a): <u>Assessment Work Report for 1985, Claims Included –</u> <u>Hawk 5 & 8</u>; British Columbia Ministry of Energy and Mines, Assessment Report 13847, 17 pages.

- Babkirk, Walter (1985b): <u>Assessment Work Report for 1985, Claims Included Hawk 6 &</u> <u>7</u>; British Columbia Ministry of Energy and Mines, Assessment Report 14703, 18 pages.
- Babkirk, Walter (1987): <u>Assessment Work Report 1987, for Claim Group Tusk, Drill Core</u> <u>Logging</u>; British Columbia Ministry of Energy and Mines; Assessment Report 16313, 10 pages.
- Babkirk, Walter (1988): <u>Assessment Report 1988 for Claims Group Tusk</u>; British Columbia Ministry of Energy and Mines, Assessment Report 17919, 12 pages.
- Cooper, Michael W. (1977): <u>Drilling Report, Ashlu Group</u>; British Columbia Ministry of Energy and Mines, Assessment Report 06155, 24 pages, 1 map.
- Data Distribution Service (2011): <u>EMPR Mineral and Placer Claims SVW</u>; Land and Resource Data Warehouse, Integrated Land Management Bureau, British Columbia Ministry of Agriculture and Lands, <u>www.lrdw.ca</u> [accessed 13 December 2011]
- Demczuk, Les (1994): <u>Geological Assessment Report on the Au Mineral Claim</u>; British Columbia Ministry of Energy and Mines, Assessment Report 23664, 13 pages.

Exploration in British Columbia;

1975, <u>Ash</u>, p. E107 1976, <u>Ashloo</u>, p. E120 1977, <u>Ashlu</u>, p. E120 1978, <u>Able</u>, <u>Tuff</u>, <u>Gold</u>, pp. E137-138 1979, <u>Tuff</u>, <u>Gold</u>, <u>Ashlu</u>, Ice, pp. 138-139 1980, <u>Able</u>, <u>Ashloo</u>, <u>Ice</u>, pp. 184-185 1982, <u>Ashloo</u>, p.162 1984, <u>Ashlu, Gold</u>, <u>Able</u>, p. 174 1985, <u>Able</u>, <u>Tuff</u>, <u>Ashloo</u>, Gold, p. C164 1986, <u>Ashloo</u>, p. C195 www.empr.gov.bc.ca/Mining/Geoscience/ExplorationandMines/Pages/ default.aspx

- Ikona, Charles K. (1984): <u>Prospecting Report on the Ashlu Group</u>; British Columbia Ministry of Energy and Mines, Assessment Report 12163, 17 pages, 1 map.
- MapPlace (2011): online at <u>www.mapplace.ca</u>, Ministry of Energy and Mines, www.empr.gov.bc.ca/Mining/Geoscience/MapPlace/Pages/default.aspx
- Mazacek, P. (1987): <u>Elephant Claim</u>; British Columbia Ministry of Energy and Mines, Assessment Report 16430, 11 pages.
- Mazacek, Pavel (1988a): <u>Assessment Report on Bimbo and Gee Whiz Claims</u>; British Columbia Ministry of Energy and Mines, Assessment Report 17888, 17 pages.

- Mazacek, Pavel (1988b): <u>Assessment Report for Hawk Claim Group</u>; British Columbia Ministry of Energy and Mines, Assessment Report 17889A & B, 128 pages, 7 maps.
- Mazacek, Pavel (1988c): <u>Elephant Claim</u>; British Columbia Ministry of Energy and Mines, Assessment Report 17937, 16 pages.
- Mineral Titles (2011): <u>Mineral Titles Online Viewer</u>; BC Ministry of Energy and Mines, <u>www.empr.gov.bc.ca/Titles/MineralTitles/mto/Pages/default/aspx</u> [13 & 14 December 2011].
- MINFILE (2010):

<u>Ash</u> 092GNW046, revised 06 June 1990 <u>Ashloo</u> 092GNW013, revised 30 July 1997 <u>Elephant</u> 092GNW064, revised 07 June 1990 <u>Hawk 8</u> 092GNW062, date coded 06 June 1990 <u>Ice</u> 092GNW047, revised 07 June 1990 <u>Troy</u> 092GNW055, revised 07 June 1990 <u>Tuff</u> 092GNW045, 30 July 1997 BC Ministry of Energy and Mines, MINFILE digital data, http://empr.gov.bc.ca/Mining/Geoscience/MINFILE/Pages/default.aspx

- Monger, J.W.H. (1990): <u>Georgia Basin: Regional setting and adjacent Coast Mountains</u> <u>geology, British Columbia</u>; *in* Geological Survey of Canada, Current Research, Frontier Geoscience Program, Cordilleran and Offshore Basins, British Columbia, Paper 90-1F, pages 95-101.
- Robins, John E. (1987a): <u>1987 Assessment Report of the Gee Whiz Claims</u>; British Columbia Ministry of Energy and Mines, Assessment Report 16486, 19 pages.
- Robins, John E. (1987b): <u>1987 Assessment Report, Geochemical Report of the Bimbo</u> <u>Claims</u>; British Columbia Ministry of Energy and Mines, Assessment Report 16627,19 pages.
- Schnelle, Herbert D., Chamberlain, J.A. (1985): <u>Assessment Work Report for 1985, Claims</u> <u>Included – Eagle, Troy & Florette</u>; British Columbia Ministry of Energy and Mines, Assessment Report 13873, 19 pages.
- Shearer, J.T. (1995): <u>Geological and Prospecting Report on the Ashlu Creek Property</u>; British Columbia Ministry of Energy and Mines, Assessment Report 24036, 27 pages, 2 maps.
- Stevenson, J.S. (1947): <u>Lode-Gold Deposits</u>, <u>South-western British Columbia</u>; British Columbia Department of Mines [currently Ministry of Energy and Mines], Bulleting No. 20 – Part IV.
- Williams, J.David (2010): <u>Assessment Report on Prospecting, Geochemical & Rock</u> <u>Sampling on the Ashlu Property in 2009</u>; British Columbia Ministry of Energy and Mines, Assessment Report 31343, 118 pages, 3 maps.

- Yeager, David A, Ikona, Charles K. (1979): <u>Report on the Ice and Yalakum Mineral</u> <u>Claims</u>; British Columbia Ministry of Energy and Mines, Assessment Report 07844, 25 pages, 2 maps.
- Yeager, David A. et al (1981): <u>Geological & Geophysical Report on the Ice and Yalakum</u> <u>Mineral Claims</u>; British Columbia Ministry of Energy and Mines, Assessment Report 08967A, 24 pages, 1 map.
- Yeager, David A. Ikona, Charles K. (1981): <u>Diamond Drilling Report on the Ice and</u> <u>Yalakum Mineral Claims</u>; British Columbia Ministry of Energy and Mines, Assessment Report 08967B, 31 pages, 1 map.

Note: All or most assessment reports from the British Columbia Ministry of Energy and Mines are available for download at: <u>http://aris.empr.gov.bc.ca/</u>

APPENDIX A – Table of Soil Sample Locations & Descriptions

A single table containing all field notes related to the 77 soil samples gathered on the Ashlu Property in 2011. Those data include location coordinates and various aspects that describe each sample. Assay values for Au, Ag, Bi, Te, Cu, Pb & Zn are also included. The table is intended to be printed on tabloid or 11 x 17" media.

ASHLU MINES Ltd. ASHLU PROJECT 2011 B-Horizon SOILS - Field Notes & Selected Analyses

Mate Mate Mate Mate M	SampleID	Date	Samplers	UTM Easting	UTM Northing	Depth [cm] Color	Prop'n>Silt	Prop'n Organic	Moisture	Vegetation	Slope [*]	lope Dir.	Disturbance	Disturbance Description	Au [ppb]	Ag [ppb]	Bi [ppm]	Te [ppm]	Cu [ppm]	Pb [ppm]	Zn [ppm]	Hg [ppb]	Comment
Math Num Num Num Num <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td>•</td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>				-					•			-			-								
Num Num Num Num Num				-		U						-			_								
BADE ALA CAU CAU <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td>98</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>				-								-				98							
No.00 Sol J. Living No.00 No.00 No.00 No.00				-						•	15	S	low-moderate	above road; old cut block	0.8	54	0.05				49.4	53	
Martin Value Value <t< td=""><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>S</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>				-								S											
bols No.1 No.1 <th< td=""><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td>•</td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>				-						•		-											
Boold Deal Deal <thdeal< th=""> Deal Deal <th< td=""><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td>1</td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>•••</td><td></td></th<></thdeal<>				-						1		-										•••	
Nucl: Nucl: <th< td=""><td></td><td></td><td>. ,</td><td>-</td><td></td><td></td><td></td><td></td><td></td><td>•</td><td></td><td>·</td><td></td><td></td><td>-</td><td></td><td>••••</td><td></td><td></td><td></td><td></td><td></td><td></td></th<>			. ,	-						•		·			-		••••						
Suber Suber <th< td=""><td>SL0210</td><td>26-Oct-11</td><td>D.Wiuik, D.Nadrozny</td><td>472235</td><td>5531886</td><td>45 brown</td><td>high</td><td>low</td><td>damp</td><td>sparse</td><td>5</td><td>S</td><td>low-moderate</td><td>above road; old cut block</td><td>0.9</td><td>75</td><td>0.07</td><td><0.02</td><td>7.87</td><td>4.00</td><td>33.8</td><td>62</td><td></td></th<>	SL0210	26-Oct-11	D.Wiuik, D.Nadrozny	472235	5531886	45 brown	high	low	damp	sparse	5	S	low-moderate	above road; old cut block	0.9	75	0.07	<0.02	7.87	4.00	33.8	62	
Name Alles Main Main <t< td=""><td></td><td></td><td></td><td>-</td><td></td><td>U</td><td></td><td></td><td></td><td>1</td><td>•</td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td>12.11</td><td></td><td></td><td></td><td></td></t<>				-		U				1	•	-							12.11				
Barbar Wards Wards <t< td=""><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td>•</td><td></td><td>-</td><td></td><td></td><td></td><td>33</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>				-						•		-				33							
Base 1 Base 1 Base 1 Base 2 Base 2<				-		U				1		-			_	28 54							
Boold Number Martin ATTM Static D D D D <td></td> <td></td> <td></td> <td>-</td> <td></td> <td>U</td> <td></td> <td></td> <td></td> <td>1</td> <td></td> <td>-</td> <td></td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>65</td> <td></td>				-		U				1		-			_							65	
No.11 No.11 <th< td=""><td>SL0216</td><td>26-Oct-11</td><td>D.Wiuik, D.Nadrozny</td><td>471986</td><td>5532096</td><td>15 orange</td><td>high</td><td>low</td><td>damp</td><td>sparse</td><td>10</td><td>S</td><td>low-moderate</td><td>above road; old cut block</td><td>1.1</td><td>92</td><td>0.09</td><td><0.02</td><td>11.97</td><td>4.49</td><td>25.7</td><td>69</td><td></td></th<>	SL0216	26-Oct-11	D.Wiuik, D.Nadrozny	471986	5532096	15 orange	high	low	damp	sparse	10	S	low-moderate	above road; old cut block	1.1	92	0.09	<0.02	11.97	4.49	25.7	69	
Barbon Barbon<				-		U			damp	sparse		-			_	88	0.11					55	
Bit Display				-								-			_							90	
Subscription Subscription APPL Subscription				-		v				•		-											
State Columbia Virtue State State State State <				-		U				1		s											
Subscip Subscip <t< td=""><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td>-</td><td>2</td><td>S</td><td></td><td></td><td>0.2</td><td>155</td><td>0.10</td><td><0.02</td><td></td><td>5.55</td><td></td><td>110</td><td></td></t<>				-						-	2	S			0.2	155	0.10	<0.02		5.55		110	
Subset Subset<	SL0223	27-Oct-11	D.Wiuik, D.Nadrozny	471640	5532338	10 orange	high	low	damp	sparse	6	S	low-moderate	above road; old cut block	0.9	92	0.09	<0.02	11.63				
Bit Distribution Probability				-						1		-				78							
State No. Optime Augus Marke State Addition <				-						•		-					0.10						
Starce Visco Num Num Num Optimization S Number and started				-								-			_		0.08						
Subsci State State <t< td=""><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td>-</td><td></td><td></td><td></td><td>83</td><td>0.04</td><td></td><td></td><td></td><td></td><td></td><td></td></t<>				-							-	-				83	0.04						
Subset Status Like Like Like Like Like Like Like Like	SL0229	27-Oct-11	D.Wiuik, D.Nadrozny	468405	5534862	20 brown	high	low	dry	sparse	5	S	moderate	above road; old cut block	1.8	91	0.04	<0.02	25.58	3.11	34.6	54	many small clasts
Subset Weile Duku										1		-			-							73	
Su223 20-bit Diku Diktorn 408/24 553/24 20 how high low damp spara 5 S downortanic downortani downortanic downortani do				-		U				•		S	•		_								
Su203 20 Ard 10 Nuk, Nuk, Nuk, Nuk, Nuk, Walk,				-		U				1	-	S		· · · ·	1.4								
Sub202 20 - ch1 Nink, Dikatory 46804 55308 20 orange Ninh We dam moderate bash 7 S. box-moderate dow read; did cut block. 94 123 0.09 -0.02 24.4 49 6.7 44 47 Su232 27.0411 Wilk, Disartary 46804 553164 35 orange Nigh We dam moderate brank No Sovemoderate dow read; did cut block. 49 13 10 0.04 0.02 21.43 49 6.7 4 4 SU232 27.0411 Wilk, Dikatrary 46784 55317 35 orange Nigh We we we moderate brank 6.5 Now-moderate dow read; did cut block. 13 16 0.04 0.02 12.0 4.7 4.5 4.				-						•	-	-			2.6								
St.0237 27 - 04-11 Wirkle Disation? 4488015 555 arrange high low damp modurals truth 10 S low-modarial down of dot Ublock. 9.0 27.0 0.4 0.02 21.0 0.4 0.02 21.0 0.4 0.02 21.0 0.4 0.02 21.0 0.4 0.02 21.0 0.4 0.02 21.0 0.4 0.02 21.0 0.4 0.02 21.0 0.4 0.02 21.0 0.4 0.02 21.0 0.4 0.02	SL0235	27-Oct-11	D.Wiuik, D.Nadrozny	468139	5535050	35 brown	high	low	damp	sparse	7	S	low-moderate	above road; old cut block	1.7	226	0.06	0.02	35.69	3.33	78.1	48	
SL023 Z-0411 Divik. Divikiobarom 448000 SS3146 35 arong high low widt pages 10 S low-moderal above road; old unblock 24 169 0.02 10.02 10.02 20.011 Divik. Dikadorm 447744 SS3574 35 low high low damp sparse 8 low-moderal above road; old unblock 10 430 000 -0.02 13.6 41.7 44.6 62 SL0241 Z/0.11 Divik. Dikadorm 44774 SS3580 25 brown-orange high low damp sparse 10 S low-moderal above road; old unblock 21.1 14.0 0.00 40.02 12.4 23.8 27.0 10 Divik. Dikadorm 47.7 453.5320 25 brown-orange high low damp sparse 10 S low-moderal above road; old unblock 21.1 14.0 0.00 40.02 12.4 38.7 13.0 38.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0				-		U						•											
SL229 2/0.01 3/Wite, Natarony 46794 55377 3/St horm, high low damp sparse 8 Sow-moderate above road; old od block 1.0 0.0 4.0				-		U						-			_								
SL0240 27/03+11 Multi, Netarony 497948 S38217 39 red-crange high low damp sparse 7 S low-moderate above rad. did tot block. 15.00 -0.00 40.00 10.41 40.00 10.40 40.00 10.41 40.00 10.41 40.00 40.02 10.41 40.00 40.02 10.41 40.04 40.02 10.41 40.04 40.02 10.41 40.04 40.02 10.41 40.04 40.02 10.41 40.04 40.02 10.41 40.04 40.02 10.41 40.04 40.02 10.41 40.04 40.02 10.41 40.04 40.02 10.41 40.04 40.02 10.41 40.04 40.02 10.41 40.04 40.01 50.00 40.01 50.00 40.02 10.42 10.04 40.02 10.04 1				-		U					-	-										45	
S10241 270cH1 Wink D Natory 467802 6582241 15 in ed-orange Init Init 47802 658224 16 16 43 00 -0.02 14.2 14.0 0.00				-								-										62	
SL024 27-04:11 DWW. DNatory 46774 553301 15 orange high low damp sparse 10 S low-moderate above road; old of tholes 21.2 114 0.04 40.02 17.2 40.09 77.4 77.7 <td>SL0241</td> <td>27-Oct-11</td> <td>D.Wiuik, D.Nadrozny</td> <td>467902</td> <td>5535241</td> <td></td> <td>high</td> <td>low</td> <td>damp</td> <td>sparse</td> <td>7</td> <td>S</td> <td>low-moderate</td> <td>above road; old cut block</td> <td>1.6</td> <td>43</td> <td>0.05</td> <td><0.02</td> <td>10.81</td> <td>4.06</td> <td>35.2</td> <td>87</td> <td></td>	SL0241	27-Oct-11	D.Wiuik, D.Nadrozny	467902	5535241		high	low	damp	sparse	7	S	low-moderate	above road; old cut block	1.6	43	0.05	<0.02	10.81	4.06	35.2	87	
Su244 27-04:1 DWikit, D Matory 447774 553342 25 orange high ow damp sparse 12 S Jow-moderate above road; old cut block 43.5 43.4 0.03 -0.02 23.85 377 977 111 SL0246 27-04:11 DWikit, D Matory 447724 5533342 20 dark red high low damp sparse 10 S low-moderate above road; old cut block 2.4 23.0 0.04 2.3.5 377 411 SL0244 27-04:11 DWikit, D Matory 447624 5533364 30 dark red high low damp moderate brush 0.5 low-moderate above road; old cut block 2.6 13.8 0.6 0.60 2.1.8 3.7 41.1 10.1									damp	sparse		-			_		0.04						
SL245 27-04:11 DWike, Duadroomy 447721 5533574 D dark red high low damp sparse 10 S Jow-moderate above road, idd cut block. 3.3 241 0.05 0.04 12.35 6.68 28.1 308 SL2447 27-04:11 DWike, Datarony 447693 S533594 30 ank red high low damp moderate brush 10 S low-moderate above road, idd cut block. 6.1 138 0.05 0.04 12.35 6.68 28.1 308 SL2447 27-04:11 DWike, Dhatrony 447677 S533584 30 ank red high low damp moderate brush 7 S low-moderate above road, idd cut block. 31 14 0.03 -0.02 18.7 34 445 104 SL245 27-04:11 DWike, Dhatrony 447626 S535542 40 orange high low damp moderate brush 5 S low-moderate above road, idd cut block. 31 34 40 0.03 0.03 18.39 38.0 <t< td=""><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td>1</td><td></td><td>-</td><td></td><td></td><td>22.1</td><td></td><td>0.04</td><td></td><td></td><td></td><td></td><td></td><td></td></t<>				-						1		-			22.1		0.04						
Su24 27.04:11 Wulk D Natorym 46763 553359 20 dark red high low damp moderate brush 0 S low-moderate above road; old ut block 6.1 36.0 0.02 1.14 5.71 2.99 130 SL024 27.04:11 Wulk; D Natorym 46763 553359 30 dark red high low damp moderate brush 8 S low-moderate above road; old ut block 6.1 136 0.6 0.02 1.14 5.71 2.99 130 SL024 27.04:11 Wulk; D Natorym 467518 S53358 40 orange high low damp poderate brush 7 S low-moderate above road; old ut block 2.0 35 0.00 -0.02 1.01 30.0 <				-		U		-		•		-			4.5								
Suc247 27-0.411 D/Muk D Natorary 467624 553359 30 dark red high low damp moderate brush 10 S low-moderate above road; old out block 61 136 0.06 0.06 21,53 46,4 33.8 88 SL0249 27-0d-11 D/Muk D.Natorary 467615 553358 40 orange high low damp moderate brush 8 S low-moderate above road; old out block 25 38 0.05 0.02 10.87 44.5 10 SL0247 27-0d-11 D/Muk D.Natorary 46762 553357 15 orange high low damp moderate brush 15 S low-moderate above road; old out block 2.0 3.0 3.0 2.0 3.0 4.7 94 SL0252 27-0d-11 D/Muk D.Natorary 46732 553542 4.3 54 red-varage 55 50 sow-moderate above road; old out block 2.0 4.4 8.03 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0												~											
b2r.041 V/wik, D.Nadrozny 447518 553358 40 orange high low damp moderate brush 7 S Iow-moderate above road; old cublock 3.1 134 0.03 -0.02 18.76 5.80 42.7 14 SL0250 27.0411 D/wik, D.Nadrozny 46742 5533549 42 red-orange high low damp pagese 10 S low-moderate above road; old cublock 44 48 0.03 0.03 13.97 3.06 3.80 42 SL0250 27.0411 D/wik, D.Nadrozny 467425 5533544 32 datr red high low damp berse brush 15 S low-moderate above road; old cublock 4.4 48 0.03 0.03 13.97 3.06 3.8 4.5 4 SL0250 27.0411 D/wik, D.Nadrozny 487742 533544 32 datr red high low damp moderate brush 10 S low-moderate above road; old cublock 1.6 1.2 0.03 18.39 3.3 7.8 1.6 <tr< td=""><td></td><td></td><td>1</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>S</td><td></td><td></td><td>6.1</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr<>			1									S			6.1								
SL0250 27-Oct 11 D/Wuik, D.Nadrozm 46742 553575 15 orange high low damp sparse 10 S low-moderate bow moderate obser moderate<						-	0																
SL0251 27-Oct.11 D.Wuk, D.Nadrozny 467424 5535429 45 red-orange high low damp moderate brush 5 S low-moderate above road; old cut block 4.4 88 0.03 0.03 13.97 3.06 38.0 59 SL0252 27-Oct.11 D.Wuk, D.Nadrozny 467325 S53544 4.0 dark red high low damp moderate brush 15 S low-moderate above road; old cut block 2.9 116 <0.02 2.002 18.48 38.4 54 54 54 55 56 30.0 100 13.97 3.06 38.0 59 SL0251 27-Oct.11 D.Wuk, D.Nadrozny 467245 5535543 35 dark red high low damp moderate brush 6 S low-moderate above road; old cut block 1.6 127 0.06 0.08 34.61 48 0.0 46744 4535626 30 and red moderate bruch moderate above road; old cut block 5.1 281 0.06 0.06 6.327 4.80 7.3 6.8 <th< td=""><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>						-						-											
SL0252 27-Oct-11 D/Wuik D.Nadrozny 467392 5535469 25 red-brown high low damp bense brush 15 S low-moderate above road; old cut block 2.9 116 <0.02 2.02 1.68 3.64 5.4 SL0253 27-Oct-11 D/Wuik D.Nadrozny 467370 5535514 40 dark red high low damp moderate brush 12 S low-moderate above road; old cut block 1.0 2.47 0.06 4.03 3.4 1.68 3.5.4 5.4 7.8 106 SL0254 27-Oct-11 D/Wuik D.Nadrozny 467276 5535574 20 dark red high low damp moderate brush 6 S low-moderate above road; old cut block 1.6 247 0.6 0.8 3.48 1.48 3.5 3.7 7.6 SL0255 29-Oct-11 D/Wuik D.Nadrozny 467270 5535614 20 dark red high low damp moderate brush 10 S low-moderate above road; old cut block 5.1 281 0.6 0.6 <t< td=""><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td>· · · · ·</td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>				-						· · · · ·					-								
SL0253 27-Oct-11 D.Wulk, D.Nadrozny 467370 5535514 40 dark red high low damp moderate brush 12 S low-moderate above road; old cut block 1.0 247 0.06 <0.02 26.91 5.84 78.0 106 SL0254 27-Oct-11 D.Wulk, D.Nadrozny 467305 5535574 20 dark red high low damp moderate brush 10 S low-moderate above road; old cut block 1.6 127 0.06 0.03 18.39 3.53 37.8 126 SL0255 27-Oct-11 D.Wulk, D.Nadrozny 46726 5535674 20 dark red high low damp moderate brush 6 S low-moderate above road; old cut block 1.5 205 0.07 0.06 6.2.7 4.80 7.8.0 84 SL0258 28-Oct-11 D.Wulk, D.Nadrozny 467145 5535674 20 dark red-brown high low damp moderate brush 10 S low-moderate above road; old cut block 5.1 281 0.06 6.63 5.1 <t< td=""><td></td><td></td><td></td><td>-</td><td></td><td>0</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>				-		0																	
SL0255 27. Oct-11 D.Wluk, D.Nadrozny 467276 5535574 20 dark red high low damp moderate brush 6 S low-moderate above road; old cut block 3.4 101 0.06 0.08 34.61 4.89 57.3 76 SL0256 28-Oct-11 D.Wluk, D.Nadrozny 467240 5535603 45 red-brown high low damp moderate brush 12 S low-moderate above road; old cut block 1.5 205 0.70 0.66 42.72 4.77 59.0 84 SL0257 28-Oct-11 D.Wluk, D.Nadrozny 467145 553564 20 red-brown high low damp moderate brush 12 S low-moderate above road; old cut block 5.1 281 0.66 0.68 3.51 86.1 65 SL0258 28-Oct-11 D.Wluk, D.Nadrozny 46703 553556 30 dark red-brown high low damp moderate brush 6 S low-moderate above road; old cut block 5.7 151 0.66 0.68 3.1 45.1 45.															_								
SL0256 28-Oct-11 D.Witak, D.Nadrozny 46724 553603 45 red-brown high low damp sparse 6 S low-moderate above road; old cut block 1.5 205 0.06 42.72 4.70 59.0 84 SL0257 28-Oct-11 D.Witak, D.Nadrozny 467146 5535614 20 red-brown high low damp moderate above road; old cut block 5.1 281 0.06 42.72 4.80 73.4 88 SL0258 28-Oct-11 D.Witak, D.Nadrozny 46703 553559 20 dark brown high low damp moderate brush 10 S low-moderate above road; old cut block 5.7 151 0.06 6.83 5.13 86.1 65 SL0259 28-Oct-11 D.Witak, D.Nadrozny 467033 5535563 20 dark brown high low damp moderate brush 6 S low-moderate above road; old cut block 2.5 86 0.03 1.53 6.9	SL0254			467325	5535543	35 dark red	high	low	damp	moderate brush	10	S	low-moderate	above road; old cut block	1.6								
SL0257 28-Oct-11 D.Wluk, D.Nadrozny 467186 5535614 20 red-brown high low damp moderate brush 12 S low-moderate above road; old cut block 5.1 281 0.06 63.27 4.80 73.4 88 SL0258 28-Oct-11 D.Wluk, D.Nadrozny 467145 5535626 30 dark red-brown high low damp moderate brush 10 S low-moderate above road; old cut block 5.7 151 0.06 0.66 63.27 4.80 73.4 88 SL0259 28-Oct-11 D.Wluk, D.Nadrozny 467085 5535626 30 dark red-brown high low damp moderate brush 10 S low-moderate above road; old cut block 2.6 134 0.05 <0.02 32.03 7.43 56.9 117 SL0260 28-Oct-11 D.Wluk, D.Nadrozny 466976 5535567 20 dark brown high low damp moderate brush 6 S low-moderate above road; old cut block 6.7 186 0.05 0.05 42.98 7.4 <td></td> <td>-</td> <td></td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>												-			_								
SL0258 28-Oct-11 D.Wiuk, D.Nadrozny 467145 5535626 30 dark red-brown high low damp moderate brush 10 S low-moderate above road; old cut block 5.7 151 0.06 66.83 5.13 86.1 65 SL0259 28-Oct-11 D.Wiuk, D.Nadrozny 467085 553559 20 dark brown high low damp moderate brush 10 S low-moderate above road; old cut block 2.6 134 0.05 <0.23 35.33 6.9 117 SL0260 28-Oct-11 D.Wiuk, D.Nadrozny 467033 553557 20 dark brown high low damp moderate brush 6 S low-moderate above road; old cut block 2.5 86 0.06 0.03 15.33 6.7 34.8 106 SL0261 28-Oct-11 D.Wiuk, D.Nadrozny 466927 5535557 20 dark brown high low damp moderate brush 6 S low-moderate above road; old cut block <td></td> <td></td> <td></td> <td>-</td> <td></td>				-																			
SL0259 28-Oct-11 D.Wiuk, D.Nadrozny 467085 553559 20 dark brown high low damp moderate brush 10 S low-moderate above road; old cut block 2.6 134 0.05 <0.02 32.03 7.43 56.9 117 SL0260 28-Oct-11 D.Wiuk, D.Nadrozny 467033 553556 35 dark brown high low damp moderate brush 6 S low-moderate above road; old cut block 2.6 134 0.05 <0.02 32.03 7.43 56.9 117 SL0261 28-Oct-11 D.Wiuk, D.Nadrozny 466705 553557 20 dark brown high low damp moderate brush 6 S low-moderate above road; old cut block 6.7 186 0.07 0.05 42.98 7.45 84.0 19 SL0262 28-Oct-11 D.Wiuk, D.Nadrozny 466927 553557 20 dark brown high low damp moderate brush 5 S low-moderate above road; old cut block 9.6 26 0.05 0.03 38.04 <th< td=""><td></td><td></td><td>1</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td>_</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td> </td></th<>			1									-			_								
SL0260 28-Oct-11 D.Wiuk, D.Nadrozny 46703 553556 35 dark brown high low damp moderate brush 6 S low-moderate above road; old cut block 2.5 86 0.6 0.3 15.33 6.70 34.8 106 SL0261 D.Wiuk, D.Nadrozny 466976 553557 20 dark brown high low damp moderate brush 6 S low-moderate above road; old cut block 6.7 186 0.07 0.05 42.98 7.45 84.0 119 SL0262 28-Oct-11 D.Wiuk, D.Nadrozny 466927 553557 20 dark brown high low damp moderate brush 6 S low-moderate above road; old cut block 6.7 186 0.07 0.5 42.98 7.45 84.0 119 SL0263 28-Oct-11 D.Wiuk, D.Nadrozny 466878 5535567 20 dark brown high low damp moderate brush 5 S low-moderate above road; old cut block 9.6 2.6 0.05 0.02 36.55 9.5 9.5			1	-					•			-		,									
SL0262 28-Oct-11 D.Wiuk, D.Nadrozny 466927 5535545 15 dark brown high low damp moderate brush 6 S low-moderate above road; old cut block 6.0 308 0.05 0.03 38.04 8.47 89.5 84 SL0263 28-Oct-11 D.Wiuk, D.Nadrozny 466878 5535567 20 dark brown high low damp moderate brush 5 S low-moderate above road; old cut block 9.6 226 0.05 0.02 36.05 9.58 75.4 84 SL0264 28-Oct-11 D.Wiuk, D.Nadrozny 466836 5535542 30 brown high low damp sparse 10 S low-moderate above road; old cut block 8.4 250 0.05 0.05 50.51 9.4 63.3 55 SL0264 28-Oct-11 D.Wiuk, D.Nadrozny 466800 5535535 45 brown-orange high low damp moderate brush 6 S low-moderate above road; old cut block 2.7 141 0.05 <0.02 33.57 8.63				467033	5535566	35 dark brown	0					-	low-moderate	above road; old cut block		86		0.03		6.70	34.8		
SL0263 28-Oct-11 D.Wiuk, D.Nadrozny 466878 5535567 20 dark brown high low damp moderate brush 5 S low-moderate above road; old cut block 9.6 226 0.05 0.02 36.55 9.58 7.4 83 SL0264 28-Oct-11 D.Wiuk, D.Nadrozny 466836 5535542 30 brown high low damp sparse 10 S low-moderate above road; old cut block 8.4 250 0.05 0.05 50.51 9.49 63.3 55 SL0264 D.Wiuk, D.Nadrozny 466800 5535535 45 brown-orange high low damp moderate brush 6 S low-moderate above road; old cut block 2.7 141 0.05 <0.02							0								-								
SL0264 28-Oct-11 D.Wiuk, D.Nadrozny 466836 5535542 30 brown high low damp sparse 10 S low-moderate above road; old cut block 8.4 250 0.05 0.05 50.51 9.49 63.3 55 SL0265 28-Oct-11 D.Wiuk, D.Nadrozny 466800 5535535 45 brown-orange high low damp moderate brush 6 S low-moderate above road; old cut block 2.7 141 0.05 <0.02							0																
SL0265 28-Oct-11 D.Wiuik, D.Nadrozny 466800 5535535 45 brown-orange high low damp moderate brush 6 S low-moderate above road; old cut block 2.7 141 0.05 <0.02 33.57 8.63 79.2 31			1	-							-	-			_								
												-											
	SL0266	28-Oct-11	D.Wiuik, D.Nadrozny	466753	5535565		high	low		sparse	-	-			6.6	150		0.03	28.26	8.95	75.9	64	
SL0267 28-Oct-11 D.Wiuik, D.Nadrozny 466708 5535601 20 brown-orange high low damp moderate brush 7 S low-moderate above road; old cut block 5.0 259 0.06 0.02 55.47 13.69 85.8 44	SL0267	28-Oct-11	D.Wiuik, D.Nadrozny	466708	5535601	20 brown-orange	high	low	damp	moderate brush	7	S	low-moderate	above road; old cut block	5.0	259	0.06	0.02	55.47	13.69	85.8	44	

ASHLU MINES Ltd. ASHLU PROJECT 2011 B-Horizon SOILS - Field Notes & Selected Analyses

SampleID	Date	Samplers	UTM Easting		Depth [cm] Color	Prop'n>Silt	Prop'n Organic	Moisture	Vegetation	Slope [°] Slo		Disturbance Intensity	Disturbance Description	Au [ppb]	Ag [ppb]	E [pr	Bi om] [Te ppm]	Cu [ppm]	Pb [ppm]	Zn [ppm]	Hg [ppb]	Comment
SL0268	28-Oct-11	D.Wiuik, D.Nadrozny	466648	5535649	15 dark brown	high	low	damp	moderate brush	6 S	S I	low-moderate	above road; old cut block	0.9	14	46	0.04	<0.02	26.17	5.32	. 50.	36	<mark>)</mark>
SL0269	28-Oct-11	D.Wiuik, D.Nadrozny	466588	5535638	30 dark brown	high	low	damp	moderate brush	5 S	S l	low-moderate	above road; old cut block	3.6	13	37	0.03	<0.02	39.96	10.30	55.	0 3	4
SL0270	28-Oct-11	D.Wiuik, D.Nadrozny	466508	5535646	40 dark brown	high	low	damp	moderate brush	2 8	S I	low-moderate	above road; old cut block	3.6	19	92	0.04	0.03	44.06	12.51	75.	3 2	<mark>6</mark>
SL0271	28-Oct-11	D.Wiuik, D.Nadrozny	466419	5535682	20 light brown	high	low	damp	sparse	0 5	S l	low-moderate	above road; old cut block	8.6	8	31	0.06	0.03	26.26	3.57	34.	4 1	Poor sample; sand, small clasts
SL0272	28-Oct-11	D.Wiuik, D.Nadrozny	466273	5535681	20 brown	high	low	damp	sparse	0 5	S I	low-moderate	below road; old cut block	5.7	15	57	0.06	<0.02	38.27	10.40	70.	7 4	Poor sample; clasts
SL0273	28-Oct-11	D.Wiuik, D.Nadrozny	466210	5535724	15 brown	high	low	damp	dense bush	0 5	S I	low-moderate	above road; old cut block	4.5	11	10	0.04	0.03	42.32	9.66	66.	2 3	Poor soil development
SL0274	28-Oct-11	D.Wiuik, D.Nadrozny	466134	5535736	20 brown	high	low	damp	dense bush	0 5	S I	low-moderate	above road; old cut block	4.6	14	11	0.02	<0.02	34.95	8.00	54.	5 2	5 Poor soil development
SL0275	28-Oct-11	D.Wiuik, D.Nadrozny	465893	5535893	35 brown	high	low	damp	dense bush	0 5	S I	low-moderate	above road; old cut block	2.3	51	11	0.07	<0.02	20.67	8.19	33.	2 10	Poor soil development
SL0276	28-Oct-11	D.Wiuik, D.Nadrozny	465697	5535890	25 red-orange	high	low	damp	sparse-moderate	0 5	S r	moderate	at road junction	2.4	5	57	0.08	0.04	8.74	5.49	23.	26	B Last 700m of road very dense; not accessible

APPENDIX B – Assay Certificate & 'Methods Specifications' Sheets

Assayer's certificate from Acme Analytical Laboratories of Vancouver, BC, representing all 77 soil samples gathered on the Ashlu Property in 2011. All samples were analyzed for a suite of 53 elements by ICP-MS from a 15 gram subsample (Acme code 1F05). Details on that analytical procedure are detailed in the 'Methods Specifications' sheets as released by Acme Labs.

Acme Certificates:

Acme Method Specifications

METHOD SPECIFICATIONS, GROUP 1D AND IF	JES
--	-----

CERTIFICATE OF ANALYSIS

Client:

Integrex Engineering 303 - 1225 Cardero Street Vancouver BC V6G 2H8 Canada

Acme Analytical Laboratories (Vancouver) Ltd.

1020 Cordova St. East Vancouver BC V6A 4A3 Canada

www.acmelab.com

Submitted By: J. David Williams Receiving Lab: Canada-Vancouver Received: October 31, 2011 Report Date: November 23, 2011 Page: 1 of 4

VAN11005881.1

CLIENT JOB INFORMATION

Project:	ASHLU
Shipment ID:	2011-01
P.O. Number	
Number of Samples:	77

SAMPLE DISPOSAL

STOR-PLP	Store After 90 days Invoice for Storage
STOR-RJT-SOIL	Store Soil Reject - RJSV Charges Apply

Acme does not accept responsibility for samples left at the laboratory after 90 days without prior written instructions for sample storage or return.

Invoice To:	Integrex Engineering
	303 - 1225 Cardero Street
	Vancouver BC V6G 2H8
	Canada

CC:

Michael Raftery Criag Lynes

Method Code	Number of Samples	Code Description	Test Wgt (g)	Report Status	Lab
Dry at 60C	77	Dry at 60C			VAN
SS80	77	Dry at 60C sieve 100g to -80 mesh			VAN
1F05	77	1:1:1 Aqua Regia digestion Ultratrace ICP-MS analysis	15	Completed	VAN
RJSV	77	Saving all or part of Soil Reject			VAN

ADDITIONAL COMMENTS

This report supersedes all previous preliminary and final reports with this file number dated prior to the date on this certificate. Signature indicates final approval; preliminary reports are unsigned and should be used for reference only. All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of analysis only. Results apply to samples as submitted. "*" asterisk indicates that an analytical result could not be provided due to unusually high levels of interference from other elements.

Integrex Engineering

303 - 1225 Cardero Street Vancouver BC V6G 2H8 Canada

Part 1

VAN11005881.1

Project: ASHLU

2 of 4

Report Date:

Page:

November 23, 2011

1020 Cordova St. East Vancouver BC V6A 4A3 Canada Phone (604) 253-3158 Fax (604) 253-1716

www.acmelab.com

Acme Analytical Laboratories (Vancouver) Ltd.

CERTIFICATE OF ANALYSIS

	Method	1F15	1F15	1F15	1F15	1F15	1F15	1F15	1F15	1F15	1F15	1F15	1F15	1F15	1F15	1F15	1F15	1F15	1F15	1F15	1F15
	Analyte	Мо	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	U	Au	Th	Sr	Cd	Sb	Bi	v	Ca	Р
	Unit	ppm	ppm	ppm	ppm	ppb	ppm	ppm	ppm	%	ppm	ppm	ppb	ppm	ppm	ppm	ppm	ppm	ppm	%	%
	MDL	0.01	0.01	0.01	0.1	2	0.1	0.1	1	0.01	0.1	0.1	0.2	0.1	0.5	0.01	0.02	0.02	2	0.01	0.001
SL0200 Soil		2.69	8.32	6.20	19.8	104	3.0	2.4	146	2.89	2.1	0.4	7.8	0.8	11.6	0.15	0.15	0.19	66	0.12	0.032
SL0201 Soil		1.79	12.21	6.88	27.1	86	3.6	5.5	197	2.74	4.5	1.0	4.2	1.9	10.7	0.09	0.11	0.14	49	0.11	0.087
SL0202 Soil		3.21	14.12	3.40	49.3	67	10.2	8.0	208	2.62	2.1	0.2	1.8	0.7	18.6	0.05	0.04	0.06	87	0.15	0.028
SL0203 Soil		4.04	22.25	4.39	93.5	98	15.2	10.7	314	3.94	2.7	0.4	2.0	1.4	13.0	0.08	0.06	0.07	72	0.14	0.055
SL0204 Soil		2.17	4.15	3.23	49.4	54	4.8	7.1	222	3.55	3.2	0.3	0.8	0.8	10.5	0.05	0.05	0.05	96	0.13	0.031
SL0205 Soil		1.78	6.30	2.45	56.4	62	8.6	6.2	320	2.72	4.3	0.4	4.7	1.4	15.7	0.08	0.05	0.04	58	0.15	0.025
SL0206 Soil		3.85	14.34	7.22	33.1	122	6.7	10.2	891	2.14	7.0	1.5	1.4	0.8	17.0	0.15	0.14	0.11	49	0.16	0.030
SL0207 Soil		1.51	18.29	5.18	48.7	82	8.7	11.4	366	2.42	2.1	2.9	1.2	1.1	18.3	0.04	0.07	0.10	59	0.21	0.033
SL0208 Soil		0.84	11.83	5.30	41.7	95	5.7	5.1	260	2.75	2.3	0.6	0.7	1.6	10.6	0.07	0.07	0.11	51	0.11	0.059
SL0209 Soil		2.07	20.17	4.69	44.8	73	8.4	7.0	252	2.61	3.3	1.2	1.1	2.3	14.3	0.04	0.06	0.08	51	0.13	0.023
SL0210 Soil		2.06	7.87	4.00	33.8	75	6.2	5.0	184	1.40	4.3	4.0	0.9	1.0	21.8	0.04	0.07	0.07	34	0.33	0.023
SL0211 Soil		1.35	12.11	3.81	35.9	23	6.1	6.0	220	2.30	2.8	0.8	14.2	1.7	14.2	0.02	0.06	0.08	49	0.15	0.038
SL0212 Soil		0.70	11.24	1.58	16.1	33	4.4	5.0	123	1.87	0.7	0.7	1.1	1.7	15.1	0.03	0.03	0.03	53	0.16	0.023
SL0213 Soil		0.51	13.12	2.01	20.9	28	5.4	6.6	209	2.19	0.9	1.0	1.1	1.6	19.7	0.04	0.04	0.03	66	0.25	0.040
SL0214 Soil		1.04	9.01	1.92	18.2	54	4.1	4.8	106	2.79	1.3	1.2	22.7	2.5	11.4	0.05	0.04	0.03	74	0.12	0.018
SL0215 Soil		1.09	14.69	2.31	32.0	46	6.7	6.5	175	2.47	1.2	1.4	2.8	2.2	18.2	0.04	0.04	0.03	65	0.13	0.018
SL0216 Soil		1.03	11.97	4.49	25.7	92	4.2	4.5	151	3.04	1.4	0.6	1.1	2.0	12.2	0.03	0.07	0.09	73	0.10	0.031
SL0217 Soil		2.80	6.03	6.39	25.4	88	4.3	7.2	381	2.35	0.9	0.4	0.8	0.9	11.0	0.06	0.07	0.11	66	0.11	0.017
SL0218 Soil		2.50	8.52	3.22	31.8	58	5.3	4.7	155	2.75	1.1	0.8	0.6	1.8	8.3	0.07	0.04	0.05	61	0.09	0.032
SL0219 Soil		1.83	9.72	3.33	29.6	57	5.5	4.9	153	1.86	2.3	4.4	14.9	2.4	17.6	0.07	0.06	0.04	47	0.12	0.034
SL0220 Soil		8.85	23.51	10.53	28.7	157	5.3	20.9	599	2.83	1.5	4.9	0.6	2.1	7.9	0.07	0.09	0.16	61	0.09	0.027
SL0221 Soil		0.58	8.25	3.44	19.7	111	3.3	3.5	131	2.15	0.8	0.4	103.9	1.1	7.7	0.04	0.05	0.07	52	0.09	0.021
SL0222 Soil		2.56	35.39	5.55	50.3	155	8.3	14.0	438	2.65	2.3	3.6	0.2	1.2	18.2	0.12	0.06	0.10	49	0.25	0.043
SL0223 Soil		1.64	11.63	4.01	37.7	92	4.8	5.1	183	2.38	1.3	2.9	0.9	1.0	12.0	0.05	0.05	0.09	45	0.15	0.047
SL0224 Soil		2.62	13.95	3.96	38.8	78	6.3	8.7	280	2.65	1.5	1.8	1.2	1.4	22.7	0.06	0.05	0.08	58	0.26	0.025
SL0225 Soil		1.85	23.98	3.08	38.3	55	5.6	5.7	245	2.37	20.4	3.9	3.2	2.7	29.1	0.04	0.06	0.10	53	0.18	0.069
SL0226 Soil		0.76	7.86	3.42	13.4	120	2.3	2.3	100	1.72	0.8	0.8	0.9	0.8	8.6	0.08	0.04	0.08	38	0.08	0.073
SL0227 Soil		1.99	9.11	5.07	25.7	74	3.5	3.7	143	2.99	1.3	0.6	0.6	1.6	8.8	0.07	0.07	0.09	65	0.08	0.039
SL0228 Soil		0.16	25.43	2.92	26.3	83	4.8	7.3	281	2.59	0.7	0.5	2.3	1.2	19.1	0.04	0.04	0.04	62	0.18	0.072
SL0229 Soil		0.20	25.58	3.11	34.6	91	5.5	7.5	277	2.65	0.8	0.4	1.8	1.4	20.1	0.03	0.04	0.04	62	0.19	0.086

Page:

Integrex Engineering

303 - 1225 Cardero Street Vancouver BC V6G 2H8 Canada

AcmeLabs

Acme Analytical Laboratories (Vancouver) Ltd.

Project:	ASHLU
Report Date:	Novemb

ber 23, 2011

1020 Cordova St. East Vancouver BC V6A 4A3 Canada Phone (604) 253-3158 Fax (604) 253-1716

www.acmelab.com

2 of 4 Part 2

1F15

ppm

0.1

< 0.1

<0.1

< 0.1

<0.1 <0.1

<0.1 <0.1

<0.1

<0.1 <0.1

<0.1 <0.1

<0.1

<0.1

<0.1 <0.1

< 0.1

<0.1

< 0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1 <0.1

<0.1 <0.1

<0.1

<0.1

Ge

1F15

ppm

0.02

0.04

0.08

< 0.02 0.12

0.06 < 0.02

< 0.02

0.03 0.05

0.11 0.03

0.04

0.02

< 0.02 0.05

0.05

0.07

< 0.02

0.10

0.08

0.12

0.03

0.04 0.03

0.03

0.05 0.02

0.07

< 0.02

0.03

Hf

CERTIFICATE OF ANALYSIS VAN11005881															881.					
		Method Analyte	1F15 La	1F15 Cr	1F15 Mg	1F15 Ba	1F15 Ti	1F15 B	1F15 Al	1F15 Na	1F15 K	1F15 W	1F15 Sc	1F15 TI	1F15 S	1F15 Hg	1F15 Se	1F15 Te	1F15 Ga	1F15 Cs
		Unit MDL	ppm 0.5	ppm 0.5	% 0.01	ppm 0.5	% 0.001	ppm 1	% 0.01	% 0.001	% 0.01	ppm 0.1	ppm 0.1	ppm 0.02	% 0.02	ppb 5	ррт 0.1	ppm 0.02	ppm 0.1	ppm 0.02
SL0200	Soil	MIDE	2.4	10.9	0.12	29.5	0.139	<1	1.50	0.004	0.03	0.1	1.2	0.02	<0.02	98	0.2	0.02	12.3	0.69
SL0201	Soil		3.5	14.0	0.20	36.8	0.096	<1	3.60	0.001	0.04	0.2	2.0	0.06	0.02	136	0.5	<0.02	8.9	1.08
SL0202	Soil		2.1	30.9	0.63	83.9	0.193	<1	1.58	0.008	0.11	<0.1	1.1	0.06	<0.02	39	0.2	< 0.02	7.6	0.79
SL0203	Soil		2.6	47.2	0.83	42.9	0.199	<1	4.38	0.002	0.05	0.1	2.1	0.09	0.02	129	0.5	<0.02	10.1	1.23
SL0204	Soil		1.8	11.9	0.49	36.2	0.231	<1	2.92	0.008	0.04	<0.1	1.9	0.04	<0.02	53	0.3	<0.02	11.2	0.83
SL0205	Soil		2.0	29.8	0.54	36.0	0.168	<1	1.76	0.003	0.04	<0.1	1.0	0.04	<0.02	50	0.2	<0.02	8.5	0.54
SL0206	Soil		5.3	12.8	0.37	61.9	0.105	1	2.31	0.007	0.05	0.1	1.6	0.11	0.04	109	0.5	<0.02	6.9	0.93
SL0207	Soil		4.4	15.7	0.49	60.1	0.120	1	2.41	0.010	0.06	0.1	2.2	0.10	<0.02	67	0.4	0.03	8.0	1.29
SL0208	Soil		3.4	14.9	0.30	33.5	0.114	<1	3.26	0.004	0.05	0.2	2.2	0.07	0.03	185	0.6	0.03	8.7	1.35
SL0209	Soil		5.4	16.1	0.50	64.8	0.121	<1	4.37	0.005	0.10	0.2	3.2	0.10	0.03	127	0.7	<0.02	6.9	1.09
SL0210	Soil		3.8	13.1	0.42	49.1	0.111	<1	2.65	0.007	0.05	0.4	1.8	0.06	0.03	62	0.5	<0.02	7.2	1.04
SL0211	Soil		4.9	12.9	0.37	48.6	0.080	<1	2.57	0.007	0.09	0.2	2.1	0.07	<0.02	47	0.4	0.02	4.8	0.67
SL0212	Soil		3.1	12.0	0.27	36.4	0.070	<1	1.00	0.017	0.05	<0.1	1.1	0.03	<0.02	35	0.3	<0.02	3.3	0.40
SL0213	Soil		3.7	14.3	0.32	60.4	0.071	<1	1.18	0.019	0.09	0.1	1.2	0.05	<0.02	32	0.2	<0.02	3.8	0.51
SL0214	Soil		3.1	13.8	0.24	47.7	0.100	<1	2.94	0.007	0.05	0.1	1.7	0.03	<0.02	73	0.4	0.03	6.0	0.68
SL0215	Soil		3.2	17.3	0.42	67.1	0.131	<1	2.47	0.014	0.06	0.2	2.0	0.04	<0.02	65	0.3	<0.02	6.6	0.89
SL0216	Soil		2.9	17.7	0.27	43.9	0.179	<1	2.43	0.006	0.05	0.1	1.7	0.05	0.06	69	0.3	<0.02	10.1	0.96
SL0217	Soil		3.2	9.3	0.24	34.7	0.109	<1	1.55	0.005	0.04	<0.1	1.0	0.06	<0.02	55	0.2	<0.02	8.7	1.19
SL0218	Soil		2.6	16.5	0.27	34.1	0.111	<1	3.94	0.002	0.05	<0.1	1.5	0.04	0.02	90	0.4	<0.02	8.7	0.76
SL0219	Soil		4.2	16.9	0.42	46.4	0.135	<1	4.70	0.001	0.05	0.3	2.7	0.04	0.03	125	0.7	<0.02	9.8	0.69
SL0220	Soil		7.5	13.6	0.25	32.2	0.144	<1	2.99	0.003	0.04	0.1	1.8	0.09	0.03	128	0.7	<0.02	10.4	0.79
SL0221	Soil		2.7	11.3	0.25	27.2	0.113	<1	1.87	0.005	0.06	<0.1	1.2	0.04	<0.02	77	0.3	<0.02	7.8	0.55
SL0222	Soil		5.3	16.1	0.43	76.7	0.122	1	3.33	0.005	0.06	0.1	1.9	0.10	0.03	110	0.4	<0.02	8.6	1.40
SL0223	Soil		4.7	11.5	0.27	42.2	0.092	<1	2.66	0.005	0.05	0.1	1.8	0.07	0.02	98	0.4	<0.02	7.7	0.94
SL0224	Soil		3.5	15.2	0.41	67.4	0.128	1	2.39	0.010	0.08	0.1	1.7	0.06	<0.02	63	0.2	<0.02	8.2	1.18
SL0225	Soil		4.3	17.1	0.43	62.3	0.103	<1	4.19	0.004	0.08	0.7	2.3	0.05	0.02	84	0.7	0.05	7.5	0.71
SL0226	Soil		3.4	9.7	0.11	21.5	0.075	<1	2.00	0.003	0.02	<0.1	1.3	0.05	0.03	107	0.6	<0.02	7.6	0.46
SL0227	Soil		3.4	11.6	0.20	27.6	0.117	<1	2.90	0.003	0.03	<0.1	1.8	0.05	0.02	134	0.5	<0.02	12.0	0.91
SL0228	Soil		3.1	12.7	0.36	64.8	0.068	<1	1.67	0.015	0.10	<0.1	1.3	0.06	<0.02	35	0.3	0.02	4.5	0.40
SL0229	Soil		3.1	14.1	0.46	77.5	0.094	<1	2.49	0.017	0.12	0.1	1.6	0.07	<0.02	54	0.3	<0.02	6.0	0.61

Project:

Page:

Integrex Engineering

303 - 1225 Cardero Street

Vancouver BC V6G 2H8 Canada

ASHLU Report Date:

November 23, 2011

1020 Cordova St. East Vancouver BC V6A 4A3 Canada Phone (604) 253-3158 Fax (604) 253-1716

www.acmelab.com

Acme Analytical Laboratories (Vancouver) Ltd.

2 of 4 Part 3

CERTIFICATE OF ANALYSIS

AcmeLabs

	Method	1F15	1F15	1F15	1F15	1F15	1F15	1F15	1F15	1F15	1F15	1F15	1F15	1F15
	Analyte	Nb	Rb	Sn	Та	Zr	Y	Ce	In	Re	Be	Li	Pd	Pt
	Unit	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppb	ppm	ppm	ppb	ppb
	MDL	0.02	0.1	0.1	0.05	0.1	0.01	0.1	0.02	1	0.1	0.1	10	2
SL0200 Soil		1.86	5.3	0.6	0.06	1.0	1.52	4.4	0.06	<1	0.2	3.9	<10	<2
SL0201 Soil		1.65	6.0	0.4	<0.05	2.8	2.26	7.2	0.03	<1	0.4	7.4	<10	<2
SL0202 Soil		0.81	6.0	0.3	<0.05	0.2	1.37	4.3	<0.02	<1	0.2	10.8	<10	<2
SL0203 Soil		1.68	7.8	0.4	<0.05	4.9	1.90	8.0	<0.02	<1	0.4	24.2	<10	<2
SL0204 Soil		1.21	2.9	0.4	<0.05	1.5	1.79	4.0	<0.02	<1	0.4	9.9	<10	<2
SL0205 Soil		1.90	4.6	0.4	<0.05	0.3	1.40	4.2	<0.02	<1	0.2	13.1	<10	<2
SL0206 Soil		1.32	6.8	0.5	<0.05	0.7	3.21	12.4	<0.02	<1	0.3	23.5	<10	<2
SL0207 Soil		1.24	10.0	0.5	<0.05	1.0	4.04	13.1	<0.02	<1	0.3	26.4	<10	<2
SL0208 Soil		1.58	8.4	0.5	<0.05	2.3	2.16	7.5	0.02	<1	0.2	11.0	<10	<2
SL0209 Soil		1.53	9.0	0.3	<0.05	4.2	4.56	16.4	<0.02	1	0.4	12.7	<10	<2
SL0210 Soil		1.29	6.7	0.3	<0.05	1.2	2.66	9.9	<0.02	2	0.3	20.4	<10	<2
SL0211 Soil		1.02	6.4	0.2	<0.05	1.4	3.53	11.8	<0.02	<1	0.2	11.6	<10	<2
SL0212 Soil		0.54	3.5	0.1	<0.05	0.3	1.79	6.1	<0.02	<1	<0.1	4.5	<10	<2
SL0213 Soil		0.51	6.1	0.1	<0.05	0.2	2.39	7.7	<0.02	<1	0.1	5.8	<10	<2
SL0214 Soil		0.99	4.2	0.2	<0.05	1.0	2.39	8.3	<0.02	<1	0.2	7.4	<10	<2
SL0215 Soil		0.83	5.5	0.2	<0.05	1.3	2.70	7.1	<0.02	2	0.1	11.3	<10	<2
SL0216 Soil		1.35	5.4	0.5	<0.05	2.2	2.64	6.5	<0.02	<1	0.2	7.2	<10	<2
SL0217 Soil		1.04	6.1	0.4	<0.05	0.6	1.73	6.2	<0.02	<1	0.3	8.6	<10	<2
SL0218 Soil		1.38	7.8	0.3	<0.05	3.8	1.95	5.3	<0.02	<1	0.3	7.8	<10	<2
SL0219 Soil		1.42	4.6	0.3	<0.05	3.9	3.55	11.7	<0.02	<1	0.2	9.9	<10	<2
SL0220 Soil		2.30	5.5	0.7	<0.05	4.4	3.78	17.4	<0.02	<1	0.2	7.7	<10	<2
SL0221 Soil		1.38	3.8	0.4	<0.05	1.1	1.52	5.0	<0.02	<1	0.1	5.1	<10	<2
SL0222 Soil		1.48	10.3	0.5	<0.05	1.8	4.15	18.3	<0.02	<1	0.6	20.1	<10	<2
SL0223 Soil		1.26	8.7	0.3	<0.05	1.1	3.62	8.0	<0.02	<1	0.3	10.2	<10	<2
SL0224 Soil		1.32	9.8	0.4	<0.05	1.2	2.36	7.7	<0.02	<1	0.3	17.3	<10	<2
SL0225 Soil		1.06	6.4	0.2	<0.05	1.8	3.38	18.6	<0.02	<1	0.3	24.9	<10	<2
SL0226 Soil		1.14	2.8	0.4	<0.05	0.8	1.90	6.3	<0.02	<1	0.2	3.8	<10	<2
SL0227 Soil		1.97	5.2	0.6	<0.05	2.4	2.21	6.9	<0.02	<1	0.3	7.4	<10	<2
SL0228 Soil		0.55	5.9	0.2	<0.05	0.3	1.99	6.6	<0.02	<1	0.1	4.9	<10	<2
SL0229 Soil		0.71	6.9	0.3	<0.05	1.3	2.24	7.0	<0.02	<1	0.2	7.0	<10	<2

This report supersedes all previous preliminary and final reports with this file number dated prior to the date on this certificate. Signature indicates final approval; preliminary reports are unsigned and should be used for reference only.

Integrex Engineering

303 - 1225 Cardero Street Vancouver BC V6G 2H8 Canada

Project: ASHLU

Report Date:

Page:

November 23, 2011

1020 Cordova St. East Vancouver BC V6A 4A3 Canada Phone (604) 253-3158 Fax (604) 253-1716

www.acmelab.com

3 of 4 Part 1

Instantion Instantinstantion Instantion		Method	1F15	1F15	1F15	1F15	1F15	1F15	1F15	1F15	1F15	1F15	1F15	1F15	1F15	1F15	1F15	1F15	1F15	1F15	1F15	1F15
bit bit <th></th>																						
MDL Odf Odf <thodf< th=""> <thodf< th=""> <thodf< th=""></thodf<></thodf<></thodf<>		-					-													•		
SL0231 Soil 0.69 15.21 3.88 49.8 111 8.8 11.0 272 3.48 1.3 0.3 1.4 1.0 27.9 0.08 0.06 0.04 92 0.19 0.038 SL0232 Soil 1.47 61.88 5.10 66.7 0.86 6.2 0.9 6.6 1.0 0.67 0.08 0.06 0.04 1.09 0.05 0.038 SL0233 Soil 0.51 16.67 2.25 3.66 54 5.0 5.7 302 2.00 1.9 0.4 2.6 1.0 18.7 0.07 0.05 0.04 43 0.21 0.137 SL0236 Soil 0.60 35.69 3.33 76.1 2.26 9.5 1.24 4.92 2.70 4.7 4.5 1.7 0.68 0.06 5.0 0.031 5.0239 Soil 0.66 115.0 3.4 2.70 1.4 0.5 9.9 0.9 16.0 0.11 0.4 0.4 0.2 0.70 0.5 3.9 0.62 <t< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th>••</th><th>••</th><th>•••</th><th>••</th><th></th><th></th><th></th><th></th><th></th><th>••</th><th>••</th><th></th><th></th><th>••</th><th></th><th></th></t<>							••	••	•••	••						••	••			••		
Soll 1.97 61.68 5.10 64.0 106 11.4 15.1 421 3.48 25.0 9.6 6.2 0.9 66.7 0.08 0.18 0.04 109 0.55 0.087 SL0233 Soll 0.45 23.28 3.62 44.7 89 6.7 9.0 1.9 0.6 1.4 0.7 0.28 0.11 0.05 0.067 50.033 0.53 SL0234 Soll 0.60 3.63 78.1 226 9.5 1.24 4.92 2.00 1.9 0.6 1.4 0.70 0.50 0.04 4.3 0.21 0.13 SL0236 Soll 0.79 2.241 4.99 6.3 1.27 648 2.72 1.4 0.6 0.11 0.04 0.40 6.6 0.16 0.13 Sl0237 Soll 0.66 1.10 3.42 4.08 1.99 3.01 1.1 0.4 2.4 1.0 1.17 0.68 0.9 0.7 0.68 0.9 0.07 0.03 0.44 0.2 0.67	SL0230 Soil		1.05	17.01	3.95	42.0	109	5.5	8.8	496	2.20	6.5	2.6	1.0	0.4	27.9	0.11	0.06	0.04	51	0.38	0.061
SL0233 Soil 0.45 23.28 3.62 44.7 89 6.7 9.0 438 2.60 1.9 0.6 1.4 0.7 32.8 0.11 0.05 0.06 5.9 0.33 0.61 SL0234 Soil 0.61 3.60 3.3 7.1 22.60 1.9 0.4 2.6 1.0 1.7 0.6 3.60 0.06 8.60 0.01 0.60 3.60 3.3 7.1 2.26 2.70 4.7 1.6 4.38 0.12 0.08 0.00 8.60 0.00 8.60 0.00 8.60 0.00 8.60 0.00 8.60 0.01 1.0 0.00 0.00 8.60 0.01 1.0 0.00 8.60 0.00 0.60 1.50 0.15 0.13 0.13 0.01 1.0 0.00 8.00 0.01 0.16 0.11 0.01 0.16 0.17 0.08 0.02 0.43 0.17 0.30 0.44 4.0 0.77 0.27 0.31 1.1 1.3 1.9 0.4 3.6 0.09 0	SL0231 Soil		0.69	15.21	3.98	49.8	111	8.6	11.0	272	3.48	1.3	0.3	1.4	1.0	27.9	0.08	0.06	0.04	92	0.19	0.038
Sl0234 Soil 0.51 16.67 2.95 36.6 54 5.0 5.7 302 2.00 1.9 0.4 2.6 1.0 18.7 0.07 0.05 0.04 43 0.21 0.137 SL0236 Soil 0.79 2241 4.99 6.37 123 7.0 12.7 648 2.79 1.0 0.8 4.9 0.3 33.0 0.15 0.08 0.99 66 0.30 0.03 0.31 SL0236 Soil 0.60 21.43 3.67 41.4 270 5.3 5.4 241 2.72 1.4 0.5 9.9 0.9 16.0 0.11 0.04 0.4 6.8 0.15 0.133 SL0238 Soil 0.71 25.0 4.35 4.71 18.3 2.00 16.8 2.4 1.0 1.1 1.3 1.4 1.4.8 7.5 7.7 227 3.01 5.1 9.3 2.0 0.8 2.5 0.06 0.05 0.2 0.67 0.5 0.2 0.4 0.27 0.3	SL0232 Soil		1.97	61.68	5.10	64.0	106	11.4	15.1	421	3.48	25.0	9.6	6.2	0.9	66.7	0.08	0.16	0.04	109	0.55	0.067
Sl0235 Soil 0.60 35.69 3.33 78.1 226 9.5 124 492 2.70 4.7 4.5 1.7 0.6 43.8 0.12 0.08 0.06 58 0.44 0.080 SL0236 Soil 0.79 22.41 4.99 63.7 123 7.0 127 648 2.79 1.0 0.8 4.9 0.3 3.3.3 0.15 0.08 0.09 66 0.30 0.03 1.5 0.18 0.04 0.4 65 0.15 0.13 SL0237 Soil 0.66 11.50 3.42 40.8 169 5.5 7.7 227 3.01 51 9.3 0.4 3.6 0.99 0.07 0.05 3.9 0.62 0.43 SL0240 Soil 1.39 13.4 1.6 7.7 7.27 3.01 1.9 1.0 1.4 4.8 7.7 7.2 1.1 1.2 1.0 8.2 4.0 0.60 0.05 0.05 7.2 0.34 0.12 0.03 1.0 0.4	SL0233 Soil		0.45	23.28	3.62	44.7	89	6.7	9.0	438	2.60	1.9	0.6	1.4	0.7	32.8	0.11	0.05	0.06	59	0.33	0.053
Slu236 Soil 0.79 22.41 4.99 63.7 123 7.0 12.7 648 2.79 1.0 0.8 4.9 0.3 33.3 0.15 0.08 0.09 56 0.30 0.031 SL0237 Soil 0.66 11.50 3.42 40.8 169 5.3 6.1 177 2.72 1.4 0.5 9.9 0.9 16.0 0.11 0.04 0.04 65 0.15 0.133 SL0239 Soil 0.71 25.02 4.35 47.3 178 7.1 8.3 2.00 1.8 1.5 0.4 0.01 11.7 0.08 0.09 0.07 0.05 39 0.62 0.44 SL0240 Soil 1.81 10.81 4.46 73 5.5 7.7 2.27 3.01 5.1 1.3 1.9 1.4 0.42 3.87 0.06 0.05 0.04 62 0.67 0.68 0.60 0.65 0.60 0.65 0.62 0.67 0.68 0.60 0.60 0.60 0.60 0	SL0234 Soil		0.51	16.67	2.95	36.6	54	5.0	5.7	302	2.00	1.9	0.4	2.6	1.0	18.7	0.07	0.05	0.04	43	0.21	0.137
Slo237 Soil 0.60 21.43 3.67 41.4 270 5.3 5.4 241 2.72 1.4 0.5 9.9 0.9 16.0 0.11 0.04 5.6 0.13 Slo238 SL0239 Soil 0.71 25.02 4.35 47.3 178 7.1 8.3 2.80 1.69 3.1 13.3 1.9 0.4 336 0.09 0.07 0.05 39 0.62 0.43 SL0240 Soil 1.39 1.4.4 4.76 3.5.5 7.7 2.27 0.11 5.1 9.3 2.0 0.8 2.4 0.00 0.05 0.05 7.2 0.34 0.127 SL0241 Soil 1.61 1.0.81 4.06 35.2 43 4.8 5.6 198 3.00 1.6 8.7 1.6 0.9 1.70 0.06 0.05 0.05 7.2 0.34 0.067 Sto244 5.0 0.4 4.21 0.7 0.33 0.04 10.0 0.04 10.0 0.067 Sto24 0.67 0.08	SL0235 Soil		0.60	35.69	3.33	78.1	226	9.5	12.4	492	2.70	4.7	4.5	1.7	0.6	43.8	0.12	0.08	0.06	58	0.44	0.080
Slo238 Soil 0.66 11.50 3.42 40.8 169 5.3 6.1 187 2.78 1.5 0.4 2.4 1.0 11.7 0.08 0.03 0.04 63 0.176 Sl.0239 SL0240 Soil 1.39 13.45 4.17 44.6 73 5.5 7.7 227 3.01 5.1 9.3 2.0 0.8 25.4 0.08 0.06 0.04 62 0.67 0.068 SL0241 Soil 1.61 10.81 4.06 3.2 7.3 4.8 5.6 198 3.00 1.6 8.7 1.6 0.9 17.0 0.06 0.04 62 0.67 0.08 SL0242 Soil 19.9 14.24 3.87 7.8 7.1 14.4 4.532 4.32 1.5 0.4 2.21 0.6 3.25 0.04 5.9 0.05 3.2 0.05 3.3 0.05 0.23 0.05 3.2 0.05 0.65 0.6 0.10 0.04 0.05 0.5 68 0.10 0.25<	SL0236 Soil		0.79	22.41	4.99	63.7	123	7.0	12.7	648	2.79	1.0	0.8	4.9	0.3	33.3	0.15	0.08	0.09	56	0.30	0.031
Slo239 Soil 0.71 26.02 4.35 47.3 178 7.1 8.3 280 1.89 3.1 13.3 1.9 0.4 33.6 0.09 0.07 0.05 39 0.62 0.043 SL0240 Soil 1.39 13.45 4.17 44.6 73 5.5 7.7 227 3.01 5.1 9.3 2.0 0.8 25.4 0.08 0.06 0.04 62 0.67 0.068 SL0242 Soil 1.90 14.24 3.87 22.8 1.06 3.7 5.3 101 280 2.4 1.7 2.5 1.1 16.2 0.07 0.03 0.04 580 20.9 0.65 SL0243 Soil 0.73 17.92 4.09 78.7 114 17.4 54.5 0.4 22.1 0.6 32.5 0.08 0.04 0.08 0.08 0.04 0.30 0.33 0.30 59 0.14 0.70 0.30 0.03 59 0.14 0.70 0.30 0.03 50 1.01 0.	SL0237 Soil		0.60	21.43	3.67	41.4	270	5.3	5.4	241	2.72	1.4	0.5	9.9	0.9	16.0	0.11	0.04	0.04	56	0.15	0.133
Slo240 Soil 1.39 13.45 4.17 44.6 73 5.5 7.7 227 3.01 5.1 9.3 2.0 0.8 2.5.4 0.08 0.06 0.04 62 0.67 0.06 SL0241 Soil 1.61 10.81 4.06 35.2 43 4.8 5.6 198 3.00 10.6 8.7 1.6 0.9 17.0 0.06 0.05 0.05 72 0.34 0.127 SL0242 Soil 0.73 17.92 4.09 78.7 114 17.4 4.42 5.2 1.1 16.2 0.07 0.03 0.04 58 0.067 0.53 SL0244 Soil 0.57 1.3 1.4 5.0 9.9 415 2.85 1.6 0.4 4.5 1.0 1.4.5 0.07 0.03 0.04 50 0.32 0.05 0.05 0.04 0.05 50 0.1 0.73 1.23 6.68 28.1 24.1 3.7 3.4 264 3.20 1.9 0.5 3.3 1.0 0.4	SL0238 Soil		0.66	11.50	3.42	40.8	169	5.3	6.1	187	2.78	1.5	0.4	2.4	1.0	11.7	0.08	0.03	0.04	63	0.15	0.176
Soll 1.61 10.81 4.06 35.2 43 4.8 5.6 198 3.00 10.6 8.7 1.6 0.9 17.0 0.06 0.05 0.05 72 0.34 0.127 SL0242 Soil 1.90 14.24 3.87 22.8 106 3.7 5.3 101 2.80 2.4 1.7 2.5 1.1 16.2 0.07 0.03 0.04 58 0.29 0.067 SL0244 Soil 0.73 17.92 4.09 78.7 114 14.4 532 4.32 1.5 0.4 22.1 0.6 32.5 0.08 0.10 0.04 100 0.03 59 0.14 0.170 SL0244 Soil 0.37 12.35 6.68 28.1 241 3.7 3.4 264 3.20 1.9 0.5 3.3 1.0 9.1 0.06 0.05 0.65 0.10 0.70 0.32 0.55 3.1 0.1 0.91 0.06 0.05 6.6 0.10 0.70 0.14 0.70 0.10<	SL0239 Soil		0.71	25.02	4.35	47.3	178	7.1	8.3	280	1.69	3.1	13.3	1.9	0.4	33.6	0.09	0.07	0.05	39	0.62	0.043
SL0242 Soil 1.90 14.24 3.87 22.8 106 3.7 5.3 101 2.80 2.4 1.7 2.5 1.1 16.2 0.07 0.03 0.04 58 0.29 0.057 SL0243 Soil 0.73 17.92 4.09 78.7 114 17.4 14.4 532 4.32 1.5 0.4 22.1 0.6 32.5 0.08 0.10 0.04 100 0.32 0.053 SL0244 Soil 0.54 23.85 3.77 37.7 134 50 9.9 415 2.85 1.6 0.4 4.5 1.0 14.5 0.07 0.03 0.03 59 0.14 0.170 SL0245 Soil 0.37 12.5 6.68 28.1 241 3.7 3.4 264 3.20 1.9 0.5 3.3 1.0 0.4 2.4 0.8 9.3 0.10 0.05 6.5 0.10 0.070 0.25 6.5 0.10 0.070 0.25 5.024 0.05 0.4 2.4 0.8<	SL0240 Soil		1.39	13.45	4.17	44.6	73	5.5	7.7	227	3.01	5.1	9.3	2.0	0.8	25.4	0.08	0.06	0.04	62	0.67	0.068
SL0243 Soil 0.73 17.92 4.09 78.7 114 17.4 14.4 532 4.32 1.5 0.4 22.1 0.6 32.5 0.08 0.10 0.04 100 0.32 0.033 SL0244 Soil 0.54 23.85 3.77 37.7 134 5.0 9.9 415 2.85 1.6 0.4 4.5 1.0 14.5 0.07 0.03 0.03 59 0.14 0.170 SL0245 Soil 0.37 12.35 6.68 28.1 241 3.7 3.4 264 3.20 1.9 0.5 3.3 1.0 9.1 0.08 0.06 0.05 58 0.10 0.269 SL0246 Soil 0.91 21.53 4.64 3.33 4.9 20.9 3.26 1.7 0.6 6.1 1.7 9.0 0.05 0.05 0.6 0.67 0.75 0.8 0.10 0.6 6.1 1.7 9.0 0.05 0.05 0.0 0.06 0.05 70 0.17 0.06 0.11<	SL0241 Soil		1.61	10.81	4.06	35.2	43	4.8	5.6	198	3.00	10.6	8.7	1.6	0.9	17.0	0.06	0.05	0.05	72	0.34	0.127
SL0244 Soil 0.54 23.85 3.77 37.7 134 5.0 9.9 415 2.85 1.6 0.4 4.5 1.0 14.5 0.07 0.03 0.03 59 0.14 0.170 SL0245 Soil 0.37 12.35 6.68 28.1 241 3.7 3.4 264 3.20 1.9 0.5 3.3 1.0 9.1 0.08 0.05 58 0.10 0.269 SL0246 Soil 0.91 21.53 4.64 33.3 136 3.3 4.9 209 3.26 1.7 0.6 6.1 1.7 9.0 0.05 0.06 67 0.08 0.18 0.10 0.07 0.05 0.05 65 0.10 0.070 SL0248 Soil 0.67 18.76 5.78 44.5 134 4.9 6.1 327 2.90 1.0 0.6 3.1 1.3 1.7 0.03 0.04 5.3 0.11 0.32 0.9 2.0 1.0 0.6 3.1 1.3 1.7 0.00	SL0242 Soil		1.90	14.24	3.87	22.8	106	3.7	5.3	101	2.80	2.4	1.7	2.5	1.1	16.2	0.07	0.03	0.04	58	0.29	0.067
SL0245 Soil 0.37 12.35 6.68 28.1 241 3.7 3.4 264 3.20 1.9 0.5 3.3 1.0 9.1 0.08 0.06 0.05 58 0.10 0.268 SL0246 Soil 0.39 10.14 5.71 28.9 263 3.2 4.0 175 2.75 0.8 0.4 2.4 0.8 9.3 0.10 0.05 0.05 6.6 0.07 0.070 SL0247 Soil 0.91 21.53 4.64 33.3 136 3.3 4.9 209 3.26 1.7 0.6 6.1 1.7 9.0 0.05 0.04 0.06 67 0.08 0.12 0.07 0.076 0.076 0.076 0.07 0.07 0.05 0.04 0.06 0.05 5.5 0.19 0.17 0.076 SL0249 Soil 0.67 18.76 5.78 44.5 134 4.9 6.1 327 2.90 1.0 0.6 3.1 1.3 1.4 0.08 0.03 0.03 5.	SL0243 Soil		0.73	17.92	4.09	78.7	114	17.4	14.4	532	4.32	1.5	0.4	22.1	0.6	32.5	0.08	0.10	0.04	100	0.32	0.053
SL0246 Soil 0.39 10.14 5.71 28.9 263 3.2 4.0 175 2.75 0.8 0.4 2.4 0.8 9.3 0.10 0.05 0.05 65 0.10 0.070 SL0247 Soil 0.91 21.53 4.64 33.3 136 3.3 4.9 209 3.26 1.7 0.6 6.1 1.7 9.0 0.05 0.04 0.06 67 0.8 0.12 SL0248 Soil 0.73 10.85 7.94 41.0 318 3.6 5.3 286 3.30 1.0 0.4 2.5 0.8 13.1 0.09 0.06 0.05 70 0.17 0.076 SL0249 Soil 0.67 18.76 5.78 44.5 134 4.9 6.1 327 2.90 1.0 0.6 3.1 1.3 1.14 1.03 0.04 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.04 0.9 0.07 5.0 0.14 1.90 <td>SL0244 Soil</td> <td></td> <td>0.54</td> <td>23.85</td> <td>3.77</td> <td>37.7</td> <td>134</td> <td>5.0</td> <td>9.9</td> <td>415</td> <td>2.85</td> <td>1.6</td> <td>0.4</td> <td>4.5</td> <td>1.0</td> <td>14.5</td> <td>0.07</td> <td>0.03</td> <td>0.03</td> <td>59</td> <td>0.14</td> <td>0.170</td>	SL0244 Soil		0.54	23.85	3.77	37.7	134	5.0	9.9	415	2.85	1.6	0.4	4.5	1.0	14.5	0.07	0.03	0.03	59	0.14	0.170
Slo247 Soil 0.91 21.53 4.64 33.3 136 3.3 4.9 209 3.26 1.7 0.6 6.1 1.7 9.0 0.05 0.04 0.06 67 0.08 0.122 SL0248 Soil 0.73 10.85 7.94 41.0 318 3.6 5.3 286 3.30 1.0 0.4 2.5 0.8 131 0.09 0.06 0.05 70 0.17 0.076 SL0249 Soil 0.67 18.76 5.78 44.5 134 4.9 6.1 327 2.90 1.0 0.6 3.1 1.3 17.4 0.08 0.03 0.03 55 0.19 0.170 0.05 Soil 0.09 2.064 5.80 42.7 35 4.4 6.0 289 3.04 1.3 0.7 4.4 1.2 24.4 0.05 0.02 0.03 61 0.20 0.027 0.025 0.11 0.33 0.11 0.32 0.11 0.32 0.12 0.02 0.02 0.02 0.02 0.02<	SL0245 Soil		0.37	12.35	6.68	28.1	241	3.7	3.4	264	3.20	1.9	0.5	3.3	1.0	9.1	0.08	0.06	0.05	58	0.10	0.269
SL0248 Soil 0.73 10.85 7.94 41.0 318 3.6 5.3 286 3.30 1.0 0.4 2.5 0.8 13.1 0.09 0.06 0.05 70 0.17 0.076 SL0249 Soil 0.67 18.76 5.78 44.5 134 4.9 6.1 327 2.90 1.0 0.6 3.1 1.3 17.4 0.08 0.03 0.03 55 0.19 0.17 SL0250 Soil 0.90 20.64 5.80 42.7 35 4.4 6.0 289 3.04 1.3 0.77 2.0 1.4 19.0 0.11 0.03 0.04 53 0.11 0.326 0.027 0.027 0.025 0.021 0.02 0.03 61 0.20 0.027 0.021 0.02 0.03 61 0.20 0.21 0.02 0.03 61 0.20 0.03 0.11 0.03 0.04 0.3 0.12 0.02 0.03 61 0.20 0.027 0.026 0.02 0.02 0.02 <	SL0246 Soil		0.39	10.14	5.71	28.9	263	3.2	4.0	175	2.75	0.8	0.4	2.4	0.8	9.3	0.10	0.05	0.05	65	0.10	0.070
SL0249 Soil 0.67 18.76 5.78 44.5 134 4.9 6.1 327 2.90 1.0 0.6 3.1 1.3 17.4 0.08 0.03 0.03 55 0.19 0.170 SL0250 Soil 0.90 20.64 5.80 42.7 35 4.4 6.0 289 3.04 1.3 0.7 2.0 1.4 19.0 0.11 0.03 0.04 53 0.11 0.326 SL0251 Soil 0.60 13.97 3.06 38.0 88 4.3 6.2 272 3.01 0.6 0.7 4.4 1.2 24.4 0.05 0.02 0.03 61 0.20 0.027 0.027 0.05 0.02 0.03 61 0.20 0.027 0.025 0.03 61 0.20 0.027 0.02 0.03 61 0.20 0.027 0.026 0.02 0.03 0.03 0.05 0.06 0.20 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 <	SL0247 Soil		0.91	21.53	4.64	33.3	136	3.3	4.9	209	3.26	1.7	0.6	6.1	1.7	9.0	0.05	0.04	0.06	67	0.08	0.182
SL0250Soil0.9020.645.8042.7354.46.02893.041.30.72.01.419.00.110.030.04530.110.326SL0251Soil0.6013.973.0638.0884.36.22723.010.60.74.41.224.40.050.020.03610.200.027SL0252Soil0.2413.641.6835.41164.36.43142.890.50.42.90.923.00.12<0.02	SL0248 Soil		0.73	10.85	7.94	41.0	318	3.6	5.3	286	3.30	1.0	0.4	2.5	0.8	13.1	0.09	0.06	0.05	70	0.17	0.076
SL0251 Soil 0.60 13.97 3.06 38.0 88 4.3 6.2 272 3.01 0.6 0.7 4.4 1.2 24.4 0.05 0.02 0.03 61 0.20 0.027 SL0252 Soil 0.24 13.64 1.68 35.4 116 4.3 6.4 314 2.89 0.5 0.4 2.9 0.9 23.0 0.12 <0.02 <0.02 60 0.25 0.132 SL0253 Soil 3.12 26.91 5.84 78.0 247 7.8 13.7 536 3.39 1.1 1.2 1.0 0.7 25.3 0.15 0.05 0.06 80 0.27 0.064 SL0254 Soil 1.18 18.39 3.53 37.8 127 4.4 7.2 291 2.60 1.5 0.6 1.6 0.8 16.3 0.08 0.03 0.05 47 0.18 0.189 0.25 0.21 0.06 0.06 0.06 0.06 72 0.27 0.060 0.06 0.06 0	SL0249 Soil		0.67	18.76	5.78	44.5	134	4.9	6.1	327	2.90	1.0	0.6	3.1	1.3	17.4	0.08	0.03	0.03	55	0.19	0.170
SL0252 Soil 0.24 13.64 1.68 35.4 116 4.3 6.4 314 2.89 0.5 0.4 2.9 0.9 23.0 0.12 <0.02 <0.02 60 0.25 0.132 SL0253 Soil 3.12 26.91 5.84 78.0 247 7.8 13.7 536 3.39 1.1 1.2 1.0 0.7 25.3 0.15 0.06 80 0.27 0.064 SL0254 Soil 1.18 18.39 3.53 37.8 127 4.4 7.2 291 2.60 1.5 0.6 1.6 0.8 16.3 0.08 0.03 0.05 47 0.18	SL0250 Soil		0.90	20.64	5.80	42.7	35	4.4	6.0	289	3.04	1.3	0.7	2.0	1.4	19.0	0.11	0.03	0.04	53	0.11	0.326
SL0253 Soil 3.12 26.91 5.84 78.0 247 7.8 13.7 536 3.39 1.1 1.2 1.0 0.7 25.3 0.15 0.05 0.06 80 0.27 0.064 SL0254 Soil 1.18 18.39 3.53 37.8 127 4.4 7.2 291 2.60 1.5 0.6 1.6 0.8 16.3 0.08 0.05 0.06 80 0.27 0.064 SL0255 Soil 1.94 34.61 4.89 57.3 101 7.9 10.0 315 2.92 3.0 2.2 3.4 1.0 30.7 0.06 0.06 0.06 72 0.27 0.060 SL0255 Soil 1.94 34.61 4.89 57.3 101 7.9 10.0 315 2.92 3.0 2.2 3.4 1.0 30.7 0.06 0.06 0.06 72 0.27 0.060 0.043 SL0256 Soil 2.59 42.7 4.80 73.4 281 15.3 20.5 <t< td=""><td>SL0251 Soil</td><td></td><td>0.60</td><td>13.97</td><td>3.06</td><td>38.0</td><td>88</td><td>4.3</td><td>6.2</td><td>272</td><td>3.01</td><td>0.6</td><td>0.7</td><td>4.4</td><td>1.2</td><td>24.4</td><td>0.05</td><td>0.02</td><td>0.03</td><td>61</td><td>0.20</td><td>0.027</td></t<>	SL0251 Soil		0.60	13.97	3.06	38.0	88	4.3	6.2	272	3.01	0.6	0.7	4.4	1.2	24.4	0.05	0.02	0.03	61	0.20	0.027
SL0254 Soil 1.18 18.39 3.53 37.8 127 4.4 7.2 291 2.60 1.5 0.6 1.6 0.8 16.3 0.08 0.03 0.05 47 0.18 0.189 SL0255 Soil 1.94 34.61 4.89 57.3 101 7.9 10.0 315 2.92 3.0 2.2 3.4 1.0 30.7 0.06 0.06 0.06 72 0.27 0.060 SL0256 Soil 2.59 42.72 4.77 59.0 205 9.7 15.3 471 3.22 11.8 4.6 1.5 0.4 66.2 0.18 0.08 0.07 70 0.60 0.04 SL0257 Soil 1.18 63.27 4.80 73.4 281 15.3 20.5 700 3.48 3.8 0.9 5.1 0.4 130.5 0.18 0.09 0.06 73 0.61 0.079 SL0258 Soil 1.87 6.81 1.51 17.4 25.3 930 3.78 5.1 <t< td=""><td>SL0252 Soil</td><td></td><td>0.24</td><td>13.64</td><td>1.68</td><td>35.4</td><td>116</td><td>4.3</td><td>6.4</td><td>314</td><td>2.89</td><td>0.5</td><td>0.4</td><td>2.9</td><td>0.9</td><td>23.0</td><td>0.12</td><td><0.02</td><td><0.02</td><td>60</td><td>0.25</td><td>0.132</td></t<>	SL0252 Soil		0.24	13.64	1.68	35.4	116	4.3	6.4	314	2.89	0.5	0.4	2.9	0.9	23.0	0.12	<0.02	<0.02	60	0.25	0.132
SL0255 Soil 1.94 34.61 4.89 57.3 101 7.9 10.0 315 2.92 3.0 2.2 3.4 1.0 30.7 0.06 0.06 0.06 72 0.27 0.060 SL0256 Soil 2.59 42.72 4.77 59.0 205 9.7 15.3 471 3.22 11.8 4.6 1.5 0.4 66.2 0.18 0.08 0.07 70 0.60 0.043 SL0257 Soil 1.18 63.27 4.80 73.4 281 15.3 20.5 700 3.48 3.8 0.9 5.1 0.4 66.2 0.18 0.09 0.06 73 0.61 0.079 SL0258 Soil 1.87 66.83 5.13 86.1 151 17.4 25.3 930 3.78 5.1 3.0 5.7 0.3 132.8 0.21 0.10 0.06 77 0.60 0.064 SL0258 Soil 1.87 66.83 5.13 86.1 151 17.4 25.3 930	SL0253 Soil		3.12	26.91	5.84	78.0	247	7.8	13.7	536	3.39	1.1	1.2	1.0	0.7	25.3	0.15	0.05	0.06	80	0.27	0.064
SL0256 Soil 2.59 42.72 4.77 59.0 205 9.7 15.3 471 3.22 11.8 4.6 1.5 0.4 66.2 0.18 0.08 0.07 70 0.60 0.043 SL0257 Soil 1.18 63.27 4.80 73.4 281 15.3 20.5 700 3.48 3.8 0.9 5.1 0.4 130.5 0.18 0.09 0.06 73 0.61 0.079 SL0258 Soil 1.87 66.83 5.13 86.1 17.4 25.3 930 3.78 5.1 3.0 5.7 0.3 132.8 0.21 0.10 0.06 77 0.60 0.064	SL0254 Soil		1.18	18.39	3.53	37.8	127	4.4	7.2	291	2.60	1.5	0.6	1.6	0.8	16.3	0.08	0.03	0.05	47	0.18	0.189
SL0257 Soil 1.18 63.27 4.80 73.4 281 15.3 20.5 700 3.48 3.8 0.9 5.1 0.4 130.5 0.18 0.09 0.06 73 0.61 0.079 SL0258 Soil 1.87 66.83 5.13 86.1 151 17.4 25.3 930 3.78 5.1 3.0 5.7 0.3 132.8 0.21 0.10 0.06 77 0.60 0.064	SL0255 Soil		1.94	34.61	4.89	57.3	101	7.9	10.0	315	2.92	3.0	2.2	3.4	1.0	30.7	0.06	0.06	0.06	72	0.27	0.060
SL0258 Soil 1.87 66.83 5.13 86.1 151 17.4 25.3 930 3.78 5.1 3.0 5.7 0.3 132.8 0.21 0.10 0.06 77 0.60 0.064	SL0256 Soil		2.59	42.72	4.77	59.0	205	9.7	15.3	471	3.22	11.8	4.6	1.5	0.4	66.2	0.18	0.08	0.07	70	0.60	0.043
	SL0257 Soil		1.18	63.27	4.80	73.4	281	15.3	20.5	700	3.48	3.8	0.9	5.1	0.4	130.5	0.18	0.09	0.06	73	0.61	0.079
SL0259 Soil 0.98 32.03 7.43 56.9 134 7.3 9.2 349 3.20 2.5 4.1 2.6 0.6 29.9 0.20 0.07 0.05 68 0.24 0.092	SL0258 Soil		1.87	66.83	5.13	86.1	151	17.4	25.3	930	3.78	5.1	3.0	5.7	0.3	132.8	0.21	0.10	0.06	77	0.60	0.064
	SL0259 Soil		0.98	32.03	7.43	56.9	134	7.3	9.2	349	3.20	2.5	4.1	2.6	0.6	29.9	0.20	0.07	0.05	68	0.24	0.092

This report supersedes all previous preliminary and final reports with this file number dated prior to the date on this certificate. Signature indicates final approval; preliminary reports are unsigned and should be used for reference only.

RTIFICATE OF ANALYSIS

Page:

Integrex Engineering

303 - 1225 Cardero Street Vancouver BC V6G 2H8 Canada

AcmeLabs

Acme Analytical Laboratories (Vancouver) Ltd.

Project:	ASHLU
Report Date:	Novemb

ber 23, 2011

3 of 4

1020 Cordova St. East Vancouver BC V6A 4A3 Canada Phone (604) 253-3158 Fax (604) 253-1716

www.acmelab.com

Part 2 N111005001 1

1F15

ppm

0.02

< 0.02

0.06

< 0.02

< 0.02

0.03 <0.02

< 0.02

0.07

0.05

< 0.02

0.03

0.03

0.06

< 0.02

0.05

0.11

0.09

0.14

0.04

0.06

0.10

0.02

< 0.02

0.06

0.03

0.03 < 0.02

< 0.02

< 0.02

0.03

Hf

CERTIFIC	ATE O	FAN	IALY	SIS													VA	N11	005	881	.1
		Method	1F15	1F15	1F15	1F15	1F15	1F15	1F15	1F15	1F15	1F15	1F15	1F15	1F15	1F15	1F15	1F15	1F15	1F15	1F15
		Analyte	La	Cr	Mg	Ва	Ti	в	AI	Na	к	w	Sc	ті	S	Hg	Se	Те	Ga	Cs	Ge
		Unit	ppm	ppm	%	ppm	%	ppm	%	%	%	ppm	ppm	ppm	%	ppb	ppm	ppm	ppm	ppm	ppm
		MDL	0.5	0.5	0.01	0.5	0.001	1	0.01	0.001	0.01	0.1	0.1	0.02	0.02	5	0.1	0.02	0.1	0.02	0.1
SL0230	Soil		2.7	12.0	0.40	66.0	0.076	1	2.89	0.010	0.07	0.4	1.3	0.06	0.05	73	0.4	0.02	5.1	0.66	<0.1
SL0231	Soil		2.7	16.1	0.85	94.9	0.211	<1	3.75	0.005	0.08	0.1	2.4	0.06	<0.02	81	0.4	<0.02	12.6	1.11	<0.1
SL0232	Soil		3.6	19.3	1.25	142.2	0.181	<1	2.96	0.015	0.19	1.7	2.6	0.10	<0.02	53	0.4	<0.02	10.7	1.58	<0.1
SL0233	Soil		3.5	12.7	0.66	96.7	0.104	<1	1.64	0.014	0.14	0.2	1.5	0.07	0.02	31	0.1	<0.02	6.3	0.96	<0.1
SL0234	Soil		3.2	11.1	0.40	63.8	0.074	<1	3.28	0.010	0.10	0.1	1.5	0.07	0.02	56	0.5	0.02	5.4	0.66	<0.1
SL0235	Soil		3.5	16.1	0.78	81.8	0.109	<1	3.34	0.009	0.08	0.4	1.7	0.11	0.02	48	0.3	0.02	7.9	1.18	<0.1
SL0236	Soil		2.7	14.6	0.65	105.0	0.099	1	2.90	0.008	0.07	0.1	1.3	0.08	<0.02	74	0.2	<0.02	7.6	1.22	<0.1
SL0237	Soil		2.3	15.3	0.40	52.1	0.076	1	4.77	0.005	0.04	0.1	1.5	0.07	0.03	147	0.5	<0.02	7.5	0.96	<0.1
SL0238	Soil		2.4	15.4	0.45	59.0	0.085	<1	4.43	0.007	0.06	0.1	1.7	0.06	0.02	100	0.5	<0.02	7.4	0.79	<0.1
SL0239	Soil		3.3	13.2	0.70	72.8	0.079	1	2.63	0.016	0.06	0.2	1.6	0.06	0.03	45	0.3	<0.02	6.1	0.86	<0.1
SL0240	Soil		3.3	12.6	0.48	57.4	0.082	1	3.98	0.009	0.05	0.3	1.4	0.07	0.03	62	0.4	<0.02	9.6	0.85	<0.1
SL0241	Soil		2.4	14.9	0.39	44.7	0.080	1	4.06	0.008	0.03	0.6	1.3	0.07	0.02	87	0.5	<0.02	9.2	0.84	<0.1
SL0242	Soil		3.7	13.4	0.27	54.4	0.076	1	4.63	0.005	0.05	0.1	1.6	0.06	0.03	110	0.7	<0.02	9.0	0.53	<0.1
SL0243	Soil		1.8	47.6	1.34	71.6	0.139	1	3.72	0.013	0.10	0.2	1.5	0.08	0.03	249	0.3	<0.02	10.3	1.26	<0.1
SL0244	Soil		2.0	14.6	0.46	59.9	0.070	<1	4.97	0.004	0.05	0.1	1.4	0.07	0.02	111	0.6	<0.02	6.3	0.82	<0.1
SL0245	Soil		2.0	14.3	0.27	38.3	0.081	<1	5.02	0.002	0.03	0.1	1.5	0.06	0.06	308	0.6	0.04	10.3	0.78	<0.1
SL0246	Soil		1.7	11.3	0.31	44.4	0.086	<1	3.85	0.005	0.03	<0.1	1.5	0.06	0.03	130	0.3	<0.02	10.6	0.93	<0.1
SL0247	Soil		2.6	11.8	0.30	45.8	0.086	<1	5.44	0.002	0.04	0.2	2.4	0.11	0.03	88	0.5	0.06	7.5	0.70	<0.1
SL0248	Soil		1.9	10.5	0.45	72.5	0.106	<1	3.71	0.008	0.05	0.1	1.4	0.08	0.03	102	0.5	<0.02	9.9	1.00	<0.1
SL0249	Soil		2.5	13.4	0.47	68.7	0.077	<1	4.61	0.006	0.07	0.1	1.5	0.06	0.03	104	0.5	<0.02	7.2	0.83	<0.1
SL0250	Soil		2.4	13.5	0.38	75.8	0.079	<1	4.79	0.003	0.04	0.2	1.5	0.07	0.03	94	0.5	<0.02	9.4	0.80	<0.1
SL0251	Soil		3.9	11.2	0.45	118.5	0.080	<1	2.77	0.014	0.07	0.1	1.6	0.07	<0.02	59	0.1	0.03	6.4	0.56	<0.1
SL0252	Soil		3.0	10.9	0.58	118.2	0.067	<1	1.94	0.020	0.09	<0.1	1.2	0.06	<0.02	54	<0.1	<0.02	4.9	0.51	<0.1
SL0253	Soil		3.3	14.0	0.76	74.6	0.097	<1	5.75	0.003	0.04	0.1	1.2	0.05	0.04	106	0.6	<0.02	8.1	1.44	<0.1
SL0254	Soil		3.4	11.5	0.35	58.8	0.062	<1	3.81	0.005	0.05	0.1	1.6	0.08	0.03	126	0.5	0.03	7.1	0.66	<0.1
SL0255	Soil		2.5	17.0	0.88	96.4	0.120	<1	3.89	0.013	0.11	0.4	1.6	0.12	<0.02	76	0.3	0.08	8.0	1.56	<0.1
SL0256	Soil		3.6	20.7	0.93	109.1	0.111	1	4.07	0.009	0.09	0.3	1.9	0.11	0.03	84	0.6	0.06	7.7	1.88	<0.1
SL0257	Soil		1.9	32.5	1.36	179.3	0.099	<1	3.71	0.016	0.21	<0.1	1.5	0.14	0.03	88	0.3	0.06	7.9	2.20	<0.1
SL0258	Soil		2.4	32.9	1.46	194.9	0.089	1	3.93	0.007	0.20	<0.1	1.7	0.14	0.03	65	0.2	0.06	8.9	2.46	<0.1
SL0259	Soil		2.6	17.3	0.69	79.6	0.098	<1	4.28	0.005	0.06	0.1	1.6	0.10	0.03	117	0.4	<0.02	9.6	1.13	<0.1

Project:

Page:

Integrex Engineering

303 - 1225 Cardero Street

Vancouver BC V6G 2H8 Canada

ASHLU Report Date:

November 23, 2011

1020 Cordova St. East Vancouver BC V6A 4A3 Canada Phone (604) 253-3158 Fax (604) 253-1716

www.acmelab.com

Acme Analytical Laboratories (Vancouver) Ltd.

3 of 4 Part 3

CERTIFICATE OF ANALYSIS

	Method	1F15	1F15	1F15	1F15	1F15	1F15	1F15	1F15	1F15	1F15	1F15	1F15	1F15
	Analyte	Nb	Rb	Sn	Та	Zr	Y	Ce	In	Re	Be	Li	Pd	Pt
	Unit	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppb	ppm	ppm	ppb	ppb
	MDL	0.02	0.1	0.1	0.05	0.1	0.01	0.1	0.02	1	0.1	0.1	10	2
SL0230 Soil		0.74	4.6	0.3	<0.05	0.5	2.38	9.7	<0.02	1	0.3	27.0	<10	<2
SL0231 Soil		1.22	5.9	0.3	<0.05	1.6	2.16	5.7	<0.02	<1	0.2	18.3	<10	<2
SL0232 Soil		0.63	11.4	0.4	<0.05	0.7	3.56	6.6	<0.02	<1	0.3	50.6	<10	<2
SL0233 Soil		0.72	8.4	0.3	<0.05	0.2	2.83	6.4	<0.02	<1	0.2	11.7	<10	<2
SL0234 Soil		0.84	6.2	0.2	<0.05	1.4	2.65	6.6	<0.02	<1	0.3	8.1	<10	<2
SL0235 Soil		0.73	7.7	0.2	<0.05	0.9	3.38	9.5	<0.02	<1	0.3	21.2	<10	<2
SL0236 Soil		0.89	6.8	0.4	<0.05	0.3	2.31	6.8	0.02	1	0.4	15.4	<10	<2
SL0237 Soil		1.05	5.3	0.3	<0.05	3.2	1.68	5.3	<0.02	<1	0.3	9.5	<10	<2
SL0238 Soil		0.80	4.7	0.3	<0.05	2.1	1.64	6.1	<0.02	<1	0.3	10.0	<10	<2
SL0239 Soil		0.61	4.6	0.3	<0.05	0.2	2.49	8.3	<0.02	<1	0.3	33.1	<10	<2
SL0240 Soil		1.12	4.8	1.1	<0.05	1.1	2.83	9.3	<0.02	<1	0.4	19.2	<10	<2
SL0241 Soil		1.09	4.8	0.3	<0.05	2.3	1.38	5.6	<0.02	<1	0.3	21.4	<10	<2
SL0242 Soil		1.22	3.8	0.3	<0.05	1.9	2.72	8.1	<0.02	1	0.4	5.3	<10	<2
SL0243 Soil		0.91	5.8	0.3	<0.05	0.3	1.83	4.6	<0.02	<1	0.3	24.4	<10	<2
SL0244 Soil		0.82	4.8	0.2	<0.05	1.8	1.60	5.2	<0.02	<1	0.3	10.4	<10	<2
SL0245 Soil		1.33	3.5	0.4	<0.05	3.6	1.33	4.4	<0.02	<1	0.3	6.7	<10	<2
SL0246 Soil		1.42	3.4	0.4	<0.05	3.6	1.57	4.3	<0.02	1	0.2	10.2	<10	<2
SL0247 Soil		1.52	4.4	0.3	<0.05	4.4	2.31	7.4	<0.02	<1	0.3	7.2	<10	<2
SL0248 Soil		1.20	4.1	0.3	<0.05	0.7	1.82	4.6	<0.02	<1	0.4	12.4	<10	<2
SL0249 Soil		1.18	5.1	0.2	<0.05	1.6	1.86	5.7	<0.02	<1	0.3	10.7	<10	<2
SL0250 Soil		1.55	5.3	0.3	<0.05	3.2	1.53	5.5	<0.02	<1	0.4	9.9	<10	<2
SL0251 Soil		1.43	7.4	0.2	<0.05	0.3	2.59	9.1	<0.02	<1	0.2	7.1	<10	<2
SL0252 Soil		0.83	6.4	0.2	<0.05	<0.1	2.23	6.8	<0.02	<1	0.2	8.0	<10	<2
SL0253 Soil		1.39	6.2	0.2	<0.05	2.2	2.59	8.1	<0.02	<1	0.7	21.9	<10	<2
SL0254 Soil		0.88	4.9	0.2	<0.05	0.9	2.19	8.0	<0.02	<1	0.3	7.2	<10	<2
SL0255 Soil		0.99	7.6	0.2	<0.05	0.9	2.30	6.7	<0.02	1	0.3	23.8	<10	<2
SL0256 Soil		0.92	6.5	0.3	<0.05	0.3	4.26	10.2	<0.02	<1	0.5	43.6	<10	<2
SL0257 Soil		0.47	9.7	0.3	<0.05	<0.1	2.34	6.0	<0.02	<1	0.4	30.6	<10	<2
SL0258 Soil		0.55	12.8	0.2	<0.05	0.1	3.18	7.6	<0.02	<1	0.5	35.4	<10	<2
SL0259 Soil		1.23	5.2	0.3	<0.05	0.8	2.83	6.0	<0.02	<1	0.4	14.8	<10	<2

VAN11005881.1

Page:

Integrex Engineering

303 - 1225 Cardero Street

Vancouver BC V6G 2H8 Canada

Part 1

VAN11005881.1

Acme Ana 1020 Cordova St. East Vancouver BC V6A 4A3 Canada

Phone (604) 253-3158 Fax (604) 253-1716

. .

Acme Analytical Laboratories (Vancouver) Ltd.

Project:	ASHLU
Report Date:	Novembe

4 of 4

November 23, 2011

www.acmelab.com

CERTIFICATE OF ANALYSIS

	Method	1F15	1F15	1F15	1F15	1F15	1F15	1F15	1F15	1F15	1F15	1F15	1F15	1F15	1F15	1F15	1F15	1F15	1F15	1F15	1F15
	Analyte	Mo	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	U	Au	Th	Sr	Cd	Sb	Bi	v	Ca	P
	Unit	ppm	ppm	ppm	ppm	ppb	ppm	ppm	ppm	%	ppm	ppm	ppb	ppm	ppm	ppm	ppm	ppm	ppm	%	%
	MDL	0.01	0.01	0.01	0.1	2	0.1	0.1	۶۶.n 1	0.01	0.1	0.1	0.2	0.1	0.5	0.01	0.02	0.02	2	0.01	0.001
SL0260 So	il	0.47	15.33	6.70	34.8	86	4.7	5.9	347	2.27	1.3	0.9	2.5	0.3	25.4	0.11	0.05	0.06	50	0.26	0.130
SL0261 So	il	0.75	42.98	7.45	84.0	186	11.3	14.1	828	3.28	2.9	2.1	6.7	0.9	53.8	0.19	0.06	0.07	65	0.64	0.145
SL0262 So	il	0.52	38.04	8.47	89.5	308	11.5	15.8	617	3.11	3.9	1.3	6.0	0.6	57.6	0.23	0.09	0.05	60	0.44	0.101
SL0263 So	il	0.63	36.55	9.58	75.4	226	9.7	12.4	469	3.06	1.8	1.1	9.6	0.6	55.5	0.18	0.05	0.05	63	0.44	0.078
SL0264 So	il	0.77	50.51	9.49	63.3	250	9.9	12.3	636	2.86	2.6	2.6	8.4	0.2	56.9	0.24	0.07	0.05	60	0.35	0.077
SL0265 So	il	0.71	33.57	8.63	79.2	141	9.5	13.4	498	3.16	2.3	0.8	2.7	0.6	57.0	0.30	0.05	0.05	67	0.40	0.081
SL0266 So	il	0.69	28.26	8.95	75.9	150	9.9	14.2	482	3.05	3.8	0.9	6.6	0.5	53.1	0.20	0.07	0.05	62	0.42	0.119
SL0267 So	il	0.83	55.47	13.69	85.8	259	13.9	14.9	610	3.41	4.9	4.6	5.0	0.5	66.7	0.28	0.08	0.06	76	0.44	0.056
SL0268 So	il	0.78	26.17	5.32	50.3	146	6.4	11.4	810	2.46	2.2	4.2	0.9	0.2	33.6	0.15	0.06	0.04	57	0.36	0.051
SL0269 So	il	0.49	39.96	10.30	55.0	137	8.2	11.0	428	2.49	2.4	2.2	3.6	0.6	42.4	0.15	0.06	0.03	57	0.33	0.064
SL0270 So	il	0.66	44.06	12.51	75.3	192	11.0	14.7	621	2.80	3.1	3.2	3.6	0.5	57.0	0.35	0.07	0.04	59	0.44	0.069
SL0271 So	il	0.32	26.26	3.57	34.4	81	4.3	7.1	545	1.89	0.6	0.4	8.6	1.1	28.9	0.12	0.03	0.06	32	0.29	0.062
SL0272 So	il	0.60	38.27	10.40	70.7	157	10.1	12.8	582	2.64	2.8	2.4	5.7	0.4	70.3	0.19	0.09	0.06	54	0.35	0.075
SL0273 So	il	0.55	42.32	9.66	66.2	110	9.7	12.5	458	2.69	3.0	2.6	4.5	0.4	65.8	0.14	0.06	0.04	58	0.38	0.086
SL0274 So	il	0.44	34.95	8.00	54.5	141	7.7	10.5	458	2.47	2.9	2.0	4.6	0.7	47.0	0.14	0.05	0.02	54	0.31	0.080
SL0275 So	il	1.08	20.67	8.19	33.2	511	4.4	5.2	347	1.04	0.5	0.6	2.3	<0.1	61.4	0.32	0.10	0.07	22	0.74	0.058
SL0276 So	il	0.63	8.74	5.49	23.2	57	4.3	4.0	138	3.31	6.3	0.6	2.4	2.7	12.0	0.02	0.06	0.08	57	0.11	0.045

Page:

Integrex Engineering

303 - 1225 Cardero Street

Vancouver BC V6G 2H8 Canada

VAN11005881.1

AcmeLabs Acme An

Acme Analytical Laboratories (Vancouver) Ltd.

Project:	ASHLU
Report Date:	Novemb

November 23, 2011

1020 Cordova St. East Vancouver BC V6A 4A3 Canada Phone (604) 253-3158 Fax (604) 253-1716

www.acmelab.com

4 of 4 Part 2

CERTIFICATE OF ANALYSIS

		Method	1F15	1F15	1F15	1F15	1F15	1F15	1F15	1F15	1F15	1F15	1F15	1F15	1F15	1F15	1F15	1F15	1F15	1F15	1F15	1F15
		Analyte	La	Cr	Mg	Ва	Ti	в	AI	Na	к	w	Sc	ті	S	Hg	Se	Те	Ga	Cs	Ge	Hf
		Unit	ppm	ppm	%	ppm	%	ppm	%	%	%	ppm	ppm	ppm	%	ppb	ppm	ppm	ppm	ppm	ppm	ppm
		MDL	0.5	0.5	0.01	0.5	0.001	1	0.01	0.001	0.01	0.1	0.1	0.02	0.02	5	0.1	0.02	0.1	0.02	0.1	0.02
SL0260	Soil		1.7	12.1	0.52	40.2	0.083	<1	2.68	0.007	0.06	<0.1	1.1	0.08	0.03	106	0.3	0.03	9.7	0.94	<0.1	<0.02
SL0261	Soil		2.2	21.7	1.07	125.8	0.100	1	4.54	0.017	0.12	0.1	1.7	0.12	0.02	119	0.3	0.05	8.4	1.58	<0.1	0.03
SL0262	Soil		3.6	18.3	1.22	126.4	0.051	2	3.16	0.009	0.15	<0.1	1.5	0.12	0.02	84	0.1	0.03	7.1	1.39	<0.1	<0.02
SL0263	Soil		2.3	18.4	1.08	99.9	0.090	<1	2.87	0.011	0.09	0.1	1.2	0.09	0.02	83	0.2	0.02	7.1	1.33	<0.1	<0.02
SL0264	Soil		2.6	18.9	1.06	128.1	0.074	<1	3.26	0.008	0.18	0.1	1.0	0.13	0.05	55	0.3	0.05	7.3	1.46	<0.1	<0.02
SL0265	Soil		2.1	18.6	1.05	124.6	0.092	<1	2.90	0.016	0.08	0.2	1.2	0.07	0.02	31	<0.1	<0.02	6.6	1.33	<0.1	<0.02
SL0266	Soil		2.2	17.4	1.14	107.8	0.068	1	2.83	0.013	0.15	<0.1	1.2	0.10	0.02	64	0.1	0.03	6.2	1.27	<0.1	<0.02
SL0267	Soil		3.0	25.2	1.44	145.0	0.097	<1	3.41	0.013	0.19	0.1	1.6	0.14	0.03	44	0.3	0.02	8.4	1.68	<0.1	<0.02
SL0268	Soil		2.7	14.0	0.66	124.6	0.079	<1	2.08	0.012	0.13	0.2	1.1	0.09	0.04	60	0.1	<0.02	6.1	0.93	<0.1	<0.02
SL0269	Soil		2.8	15.4	0.88	104.6	0.060	<1	2.06	0.017	0.18	0.1	1.2	0.11	0.02	34	0.1	<0.02	4.9	0.99	<0.1	<0.02
SL0270	Soil		2.6	18.4	1.17	114.0	0.073	<1	2.77	0.013	0.19	<0.1	1.3	0.13	0.03	26	0.1	0.03	6.3	1.31	<0.1	<0.02
SL0271	Soil		3.9	8.0	0.46	62.5	0.035	<1	1.06	0.017	0.09	0.2	0.8	0.05	<0.02	10	<0.1	0.03	2.7	0.28	<0.1	<0.02
SL0272	Soil		2.7	17.6	1.08	116.7	0.084	<1	2.26	0.016	0.16	0.1	1.2	0.10	0.03	42	0.3	<0.02	5.7	1.20	<0.1	<0.02
SL0273	Soil		2.9	17.5	1.04	123.6	0.078	<1	2.11	0.020	0.18	<0.1	1.2	0.12	0.02	33	0.2	0.03	5.5	1.14	<0.1	<0.02
SL0274	Soil		3.2	15.6	0.78	105.7	0.074	<1	1.62	0.020	0.17	0.2	1.2	0.10	<0.02	25	0.2	<0.02	4.4	0.84	<0.1	<0.02
SL0275	Soil		1.5	6.9	0.43	108.4	0.034	2	0.81	0.007	0.10	<0.1	0.5	0.06	0.09	105	0.3	<0.02	2.6	0.35	<0.1	<0.02
SL0276	Soil		5.0	18.3	0.30	29.9	0.091	<1	3.25	0.006	0.04	0.3	2.9	0.04	<0.02	68	0.6	0.04	7.5	0.63	<0.1	0.07

Project:

Page:

Integrex Engineering

303 - 1225 Cardero Street

Vancouver BC V6G 2H8 Canada

ASHLU Report Date:

November 23, 2011

1020 Cordova St. East Vancouver BC V6A 4A3 Canada Phone (604) 253-3158 Fax (604) 253-1716

www.acmelab.com

4 of 4 Part 3

CERTIFICATE OF ANALYSIS

	Method	1F15	1F15	1F15	1F15	1F15	1F15	1F15	1F15	1F15	1F15	1F15	1F15	1F15
	Analyte	Nb	Rb	Sn	Та	Zr	Y	Ce	In	Re	Be	Li	Pd	Pt
	Unit	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppb	ppm	ppm	ppb	ppb
	MDL	0.02	0.1	0.1	0.05	0.1	0.01	0.1	0.02	1	0.1	0.1	10	2
SL0260 Sc	il	1.00	4.6	0.4	<0.05	0.3	1.38	3.7	<0.02	<1	0.2	7.2	<10	<2
SL0261 Sc	il	0.86	8.3	0.3	<0.05	1.3	2.33	5.5	<0.02	<1	0.4	21.5	<10	<2
SL0262 Sc	il	0.36	10.2	0.2	<0.05	<0.1	3.15	9.0	<0.02	<1	0.4	20.1	<10	<2
SL0263 Sc	il	0.61	8.1	0.2	<0.05	0.2	2.21	5.2	<0.02	<1	0.3	17.5	<10	<2
SL0264 Sc	il	0.70	10.8	0.2	<0.05	<0.1	2.39	6.5	<0.02	<1	0.3	17.7	<10	<2
SL0265 Sc	il	0.64	7.3	0.2	<0.05	0.2	1.93	4.9	<0.02	<1	0.2	20.5	<10	<2
SL0266 Sc	il	0.39	8.3	0.4	<0.05	0.8	2.12	5.9	<0.02	<1	0.3	19.9	<10	<2
SL0267 Sc	il	0.76	11.1	0.2	<0.05	0.2	2.92	7.6	<0.02	<1	0.3	22.5	<10	<2
SL0268 Sc	il	0.65	7.2	0.3	<0.05	0.2	2.37	5.7	<0.02	<1	0.2	16.9	<10	<2
SL0269 Sc	il	0.43	9.9	0.2	<0.05	0.2	2.52	7.1	<0.02	<1	0.2	12.8	<10	<2
SL0270 Sc	il	0.45	11.5	0.2	<0.05	0.1	2.66	6.5	<0.02	<1	0.2	16.9	<10	<2
SL0271 Sc	il	0.35	5.0	0.3	<0.05	0.3	2.41	8.0	<0.02	<1	0.1	4.5	<10	<2
SL0272 Sc	il	0.48	9.4	0.6	<0.05	<0.1	2.80	6.3	<0.02	1	0.3	18.7	<10	<2
SL0273 Sc	il	0.41	10.2	0.3	<0.05	<0.1	3.03	6.8	<0.02	<1	0.3	19.7	<10	<2
SL0274 Sc	il	0.38	9.2	0.3	<0.05	<0.1	2.61	7.2	<0.02	<1	0.1	14.6	<10	<2
SL0275 Sc	il	0.29	5.7	0.3	<0.05	<0.1	1.05	2.8	<0.02	<1	<0.1	3.9	<10	<2
SL0276 Sc	il	1.49	3.3	0.4	<0.05	1.4	2.94	11.3	0.03	<1	0.1	5.6	<10	<2

Page:

Integrex Engineering

303 - 1225 Cardero Street

Vancouver BC V6G 2H8 Canada

Part 1

\/AN1

005881

Acme Analytical Laboratories (Vancouver) Ltd.

Project:	ASHLU
Report Date:	Novembe

er 23, 2011

1 of 1

1020 Cordova St. East Vancouver BC V6A 4A3 Canada Phone (604) 253-3158 Fax (604) 253-1716

www.acmelab.com

TY CONTROL REPORT

	Method	1F15	1F15	1F15	1F15	1F15	1F15	1F15	1F15	1F15	1F15	1F15	1F15	1F15	1F15	1F15	1F15	1F15	1F15	1F15	1F15
	Analyte	Мо	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	U	Au	Th	Sr	Cd	Sb	Bi	v	Ca	F
	Unit	ppm	ppm	ppm	ppm	ppb	ppm	ppm	ppm	%	ppm	ppm	ppb	ppm	ppm	ppm	ppm	ppm	ppm	%	%
	MDL	0.01	0.01	0.01	0.1	2	0.1	0.1	1	0.01	0.1	0.1	0.2	0.1	0.5	0.01	0.02	0.02	2	0.01	0.001
Pulp Duplicates																					
SL0217	Soil	2.80	6.03	6.39	25.4	88	4.3	7.2	381	2.35	0.9	0.4	0.8	0.9	11.0	0.06	0.07	0.11	66	0.11	0.017
REP SL0217	QC	2.99	6.46	6.72	27.1	97	4.7	7.6	400	2.45	0.9	0.4	2.3	0.9	11.9	0.07	0.08	0.12	66	0.12	0.019
SL0233	Soil	0.45	23.28	3.62	44.7	89	6.7	9.0	438	2.60	1.9	0.6	1.4	0.7	32.8	0.11	0.05	0.06	59	0.33	0.053
REP SL0233	QC	0.51	24.44	3.80	47.7	102	6.9	9.4	458	2.66	2.0	0.7	1.2	0.7	34.2	0.10	0.05	0.05	59	0.34	0.055
SL0236	Soil	0.79	22.41	4.99	63.7	123	7.0	12.7	648	2.79	1.0	0.8	4.9	0.3	33.3	0.15	0.08	0.09	56	0.30	0.031
REP SL0236	QC	0.79	22.92	5.22	63.9	127	7.3	12.5	655	2.77	0.9	0.8	2.6	0.3	33.3	0.17	0.05	0.07	57	0.30	0.032
SL0269	Soil	0.49	39.96	10.30	55.0	137	8.2	11.0	428	2.49	2.4	2.2	3.6	0.6	42.4	0.15	0.06	0.03	57	0.33	0.064
REP SL0269	QC	0.48	39.06	9.94	51.5	139	8.5	10.8	424	2.51	2.3	2.3	4.2	0.6	42.2	0.15	0.05	0.04	56	0.33	0.064
Reference Materials																					
STD DS8	Standard	13.40	109.3	129.7	318.8	1830	38.6	7.5	633	2.50	25.4	2.8	122.8	6.7	68.9	2.41	5.57	6.35	42	0.71	0.085
STD DS8	Standard	13.47	109.5	116.0	298.9	1568	38.5	7.4	611	2.43	23.1	2.8	106.9	7.0	59.2	2.18	5.06	6.21	40	0.71	0.074
STD DS8	Standard	13.33	108.3	125.9	292.4	1810	37.2	7.3	615	2.40	25.6	2.9	109.6	7.2	51.8	2.34	3.98	4.70	41	0.74	0.065
STD DS8 Expected		13.44	110	123	312	1690	38.1	7.5	615	2.46	26	2.8	107	6.89	67.7	2.38	5.7	6.67	41.1	0.7	0.08
BLK	Blank	<0.01	<0.01	<0.01	<0.1	<2	<0.1	<0.1	<1	<0.01	<0.1	<0.1	<0.2	<0.1	<0.5	<0.01	<0.02	<0.02	<2	<0.01	<0.001
BLK	Blank	<0.01	<0.01	<0.01	<0.1	<2	<0.1	<0.1	<1	<0.01	<0.1	<0.1	<0.2	<0.1	<0.5	<0.01	<0.02	<0.02	<2	<0.01	<0.001
BLK	Blank	<0.01	<0.01	<0.01	<0.1	<2	<0.1	<0.1	<1	<0.01	<0.1	<0.1	<0.2	<0.1	<0.5	<0.01	<0.02	<0.02	<2	<0.01	<0.001

Page:

Integrex Engineering

303 - 1225 Cardero Street

Vancouver BC V6G 2H8 Canada

VAN11005881.1

Acme Analytical Laboratories (Vancouver) Ltd.

Project:	ASHLU
Report Date:	Novemb

per 23, 2011

1020 Cordova St. East Vancouver BC V6A 4A3 Canada Phone (604) 253-3158 Fax (604) 253-1716

www.acmelab.com

1 of 1 Part 2

QUALITY CONTROL REPORT

	Method	1F15	1F15	1F15	1F15	1F15	1F15	1F15	1F15	1F15	1F15	1F15	1F15	1F15	1F15	1F15	1F15	1F15	1F15	1F15	1F15
	Analyte	La	Cr	Mg	Ba	Ti	В	AI	Na	ĸ	w	Sc	TI	S	Hg	Se	Те	Ga	Cs	Ge	Hf
	Unit	ppm	ppm	%	ppm	%	ppm	%	%	%	ppm	ppm	ppm	%	ppb	ppm	ppm	ppm	ppm	ppm	ppm
	MDL	0.5	0.5	0.01	0.5	0.001	1	0.01	0.001	0.01	0.1	0.1	0.02	0.02	5	0.1	0.02	0.1	0.02	0.1	0.02
Pulp Duplicates																					
SL0217	Soil	3.2	9.3	0.24	34.7	0.109	<1	1.55	0.005	0.04	<0.1	1.0	0.06	<0.02	55	0.2	<0.02	8.7	1.19	<0.1	<0.02
REP SL0217	QC	3.4	10.1	0.26	35.9	0.117	<1	1.62	0.006	0.05	0.1	1.1	0.06	<0.02	55	0.2	<0.02	9.0	1.25	<0.1	<0.02
SL0233	Soil	3.5	12.7	0.66	96.7	0.104	<1	1.64	0.014	0.14	0.2	1.5	0.07	0.02	31	0.1	<0.02	6.3	0.96	<0.1	<0.02
REP SL0233	QC	3.5	12.7	0.68	99.5	0.104	<1	1.66	0.014	0.14	0.2	1.5	0.07	0.02	30	0.2	0.02	6.6	1.01	<0.1	<0.02
SL0236	Soil	2.7	14.6	0.65	105.0	0.099	1	2.90	0.008	0.07	0.1	1.3	0.08	<0.02	74	0.2	<0.02	7.6	1.22	<0.1	<0.02
REP SL0236	QC	2.7	15.0	0.66	108.4	0.099	2	3.06	0.008	0.07	0.1	1.3	0.08	0.03	92	0.2	<0.02	7.4	1.22	<0.1	<0.02
SL0269	Soil	2.8	15.4	0.88	104.6	0.060	<1	2.06	0.017	0.18	0.1	1.2	0.11	0.02	34	0.1	<0.02	4.9	0.99	<0.1	<0.02
REP SL0269	QC	2.9	15.4	0.85	102.2	0.061	<1	2.05	0.017	0.18	0.1	1.1	0.10	0.02	30	0.1	<0.02	5.0	0.98	<0.1	<0.02
Reference Materials																					
STD DS8	Standard	15.0	124.4	0.62	280.3	0.114	3	0.92	0.086	0.41	3.1	2.0	5.73	0.16	210	5.5	5.49	4.7	2.49	<0.1	0.09
STD DS8	Standard	15.1	110.8	0.60	257.4	0.112	2	0.91	0.084	0.41	3.1	2.0	5.05	0.15	175	5.2	5.07	4.9	2.45	<0.1	0.10
STD DS8	Standard	14.7	118.6	0.62	295.1	0.089	2	0.94	0.091	0.42	3.0	1.9	5.46	0.17	191	4.9	4.83	4.7	2.38	0.1	0.09
STD DS8 Expected		14.6	115	0.6045	279	0.113	2.6	0.93	0.0883	0.41	3	2.3	5.4	0.1679	192	5.23	5	4.7	2.48	0.13	0.08
BLK	Blank	<0.5	<0.5	<0.01	<0.5	<0.001	<1	<0.01	<0.001	<0.01	<0.1	<0.1	<0.02	<0.02	<5	<0.1	<0.02	<0.1	<0.02	<0.1	<0.02
BLK	Blank	<0.5	<0.5	<0.01	<0.5	<0.001	<1	<0.01	<0.001	<0.01	<0.1	<0.1	<0.02	<0.02	<5	<0.1	<0.02	<0.1	<0.02	<0.1	<0.02
BLK	Blank	<0.5	<0.5	<0.01	<0.5	<0.001	<1	<0.01	<0.001	<0.01	<0.1	<0.1	<0.02	<0.02	<5	<0.1	<0.02	<0.1	<0.02	<0.1	<0.02

Draigat

Page:

Integrex Engineering

303 - 1225 Cardero Street

Vancouver BC V6G 2H8 Canada

Acme Analytical Laboratories (Vancouver) Ltd.

FIUJECI.	ASHLU
Report Date:	November 23, 2011

1020 Cordova St. East Vancouver BC V6A 4A3 Canada Phone (604) 253-3158 Fax (604) 253-1716

www.acmelab.com

1 of 1 Part 3

QUALITY CONTROL REPORT

	Method	1F15	1F15	1F15	1F15	1F15	1F15	1F15	1F15	1F15	1F15	1F15	1F15	1F15
	Analyte	Nb	Rb	Sn	Та	Zr	Y	Ce	In	Re	Be	Li	Pd	Pt
	Unit	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppb	ppm	ppm	ppb	ppb
	MDL	0.02	0.1	0.1	0.05	0.1	0.01	0.1	0.02	1	0.1	0.1	10	2
Pulp Duplicates														
SL0217	Soil	1.04	6.1	0.4	<0.05	0.6	1.73	6.2	<0.02	<1	0.3	8.6	<10	<2
REP SL0217	QC	1.08	6.5	0.4	<0.05	0.7	1.87	6.6	<0.02	<1	0.2	8.9	<10	<2
SL0233	Soil	0.72	8.4	0.3	<0.05	0.2	2.83	6.4	<0.02	<1	0.2	11.7	<10	<2
REP SL0233	QC	0.68	8.7	0.3	<0.05	0.2	2.87	6.5	<0.02	<1	0.2	12.2	<10	<2
SL0236	Soil	0.89	6.8	0.4	<0.05	0.3	2.31	6.8	0.02	1	0.4	15.4	<10	<2
REP SL0236	QC	0.90	6.8	0.4	<0.05	0.3	2.35	6.6	<0.02	<1	0.4	15.2	<10	<2
SL0269	Soil	0.43	9.9	0.2	<0.05	0.2	2.52	7.1	<0.02	<1	0.2	12.8	<10	<2
REP SL0269	QC	0.37	9.8	0.2	<0.05	<0.1	2.49	7.0	<0.02	<1	0.2	12.3	<10	<2
Reference Materials														
STD DS8	Standard	1.36	39.7	6.9	<0.05	1.9	6.06	27.9	2.15	56	5.1	30.1	124	363
STD DS8	Standard	1.31	38.0	5.9	<0.05	2.0	5.98	27.2	2.21	49	5.2	26.0	97	298
STD DS8	Standard	1.34	37.4	7.0	<0.05	1.8	5.53	29.2	2.10	45	5.0	23.7	135	357
STD DS8 Expected		1.65	39	6.7	0.003	2.3	6.1	29.8	2.19	55	5.2	26.34	110	339
BLK	Blank	<0.02	<0.1	<0.1	<0.05	<0.1	<0.01	<0.1	<0.02	<1	<0.1	<0.1	<10	<2
BLK	Blank	<0.02	<0.1	<0.1	<0.05	<0.1	<0.01	<0.1	<0.02	<1	<0.1	<0.1	<10	<2
BLK	Blank	<0.02	<0.1	<0.1	<0.05	<0.1	<0.01	<0.1	<0.02	<1	<0.1	<0.1	<10	<2

METHOD SPECIFICATIONS GROUP 1D AND 1F – GEOCHEMICAL AQUA REGIA DIGESTION

Package Codes: Sample Digestion: Instrumentation Method: Applicability: 1D01 to 1D03, 1DX1 to 1DX3, 1F01 to 1F07 HNO3-HCI acid digestion ICP-ES (1D), ICP-MS (1DX, 1F) Sediment, Soil, Non-mineralized Rock and Drill Core

Method Description:

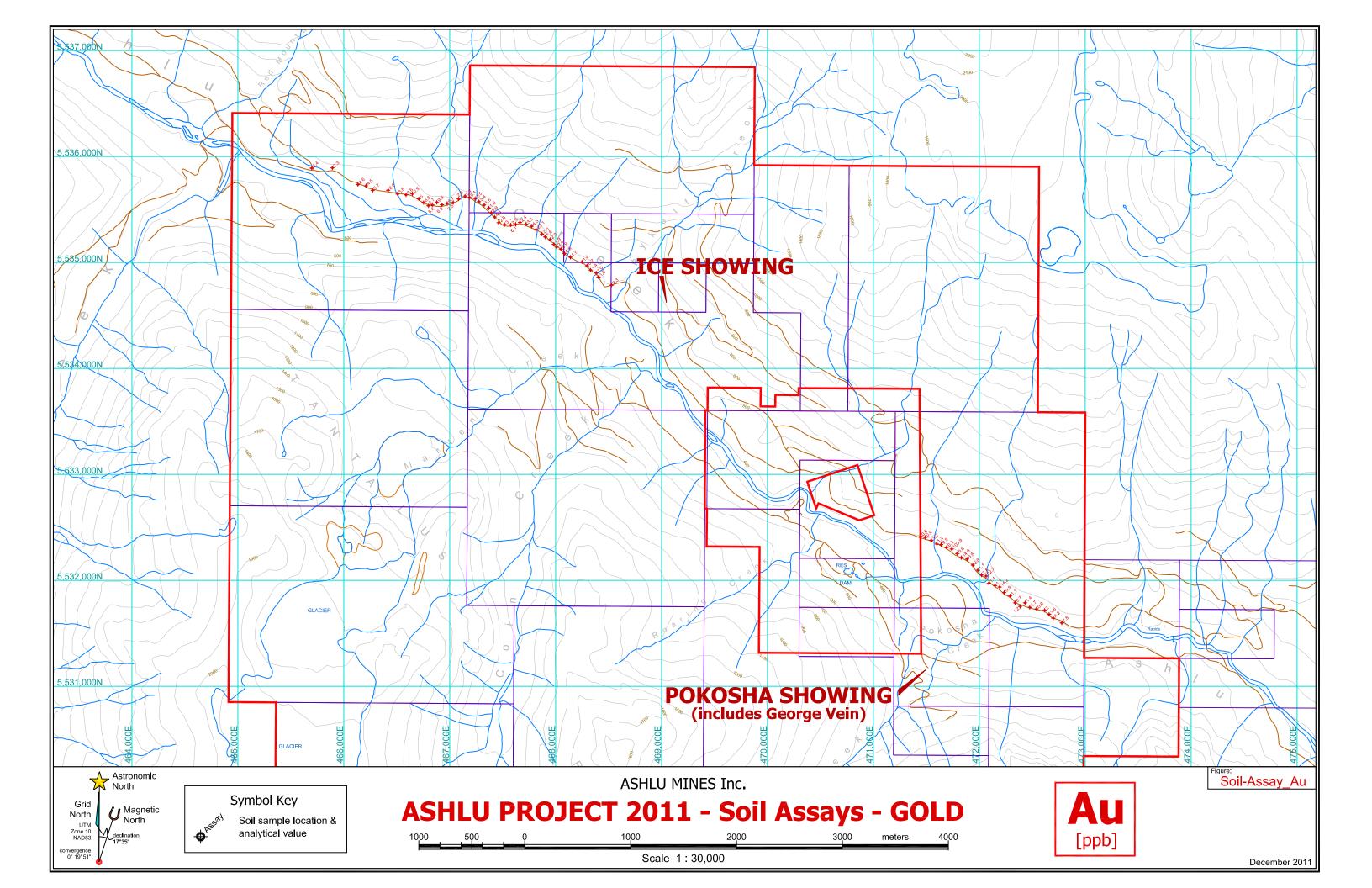
Prepared sample is digested with a modified Aqua Regia solution of equal parts concentrated HCl, HNO3 and DI H2O for one hour in a heating block of hot water bath. Sample is made up to volume with dilute HCl. Sample splits of 0.5g, 15g or 30g can be analyzed.

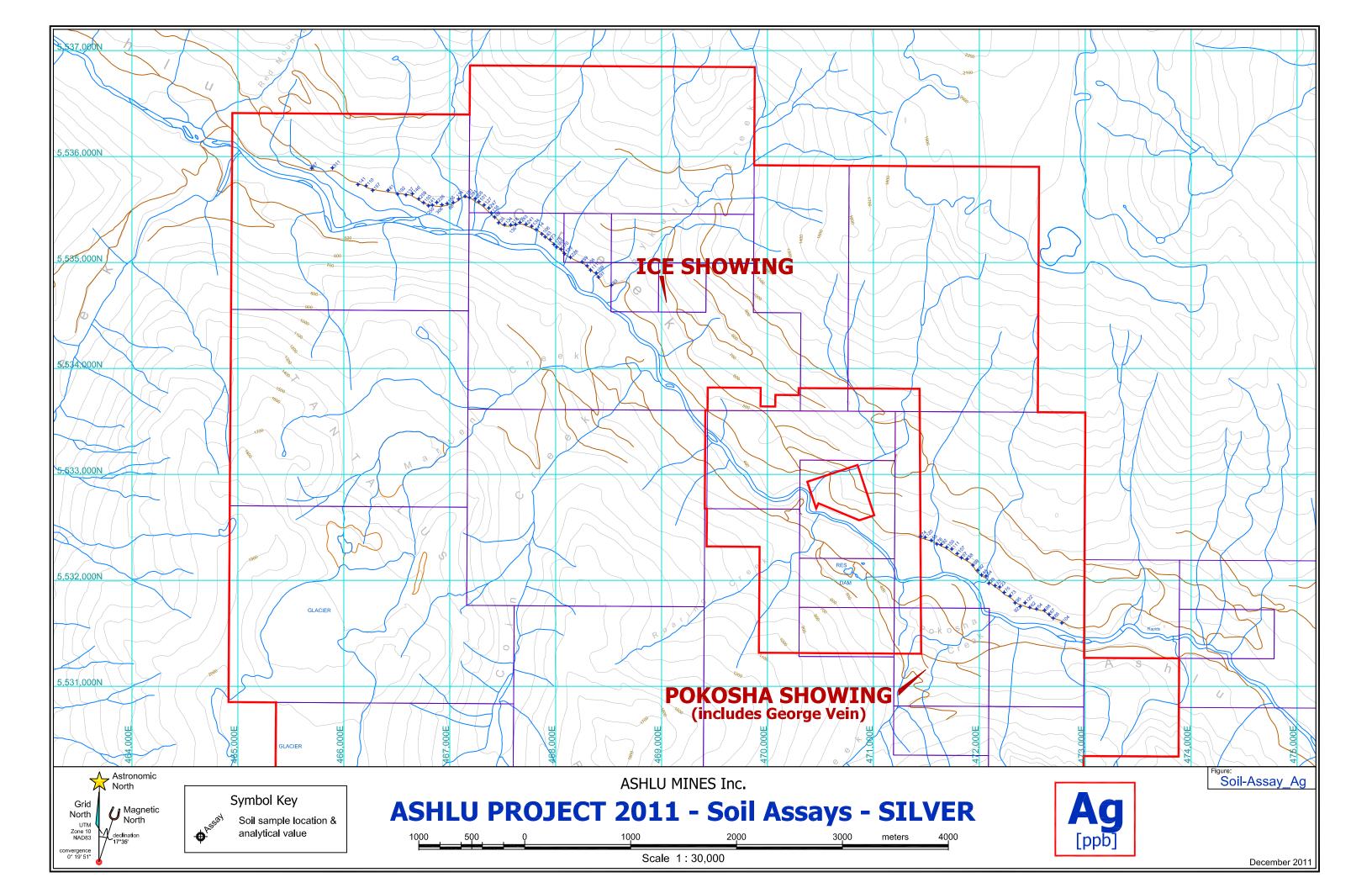
For 1F07, Lead isotopes (Pb_{204} , Pb_{206} , Pb_{207} , Pb_{208}) are suitable for geochemical exploration of U and other commodities where gross differences in natural to radiogenic Pb ratios, is a benefit. Isotope values can be reported in both concentrations and intensities. Sample splits of 0.25g, 0.5g, 15g or 30g can be analyzed.

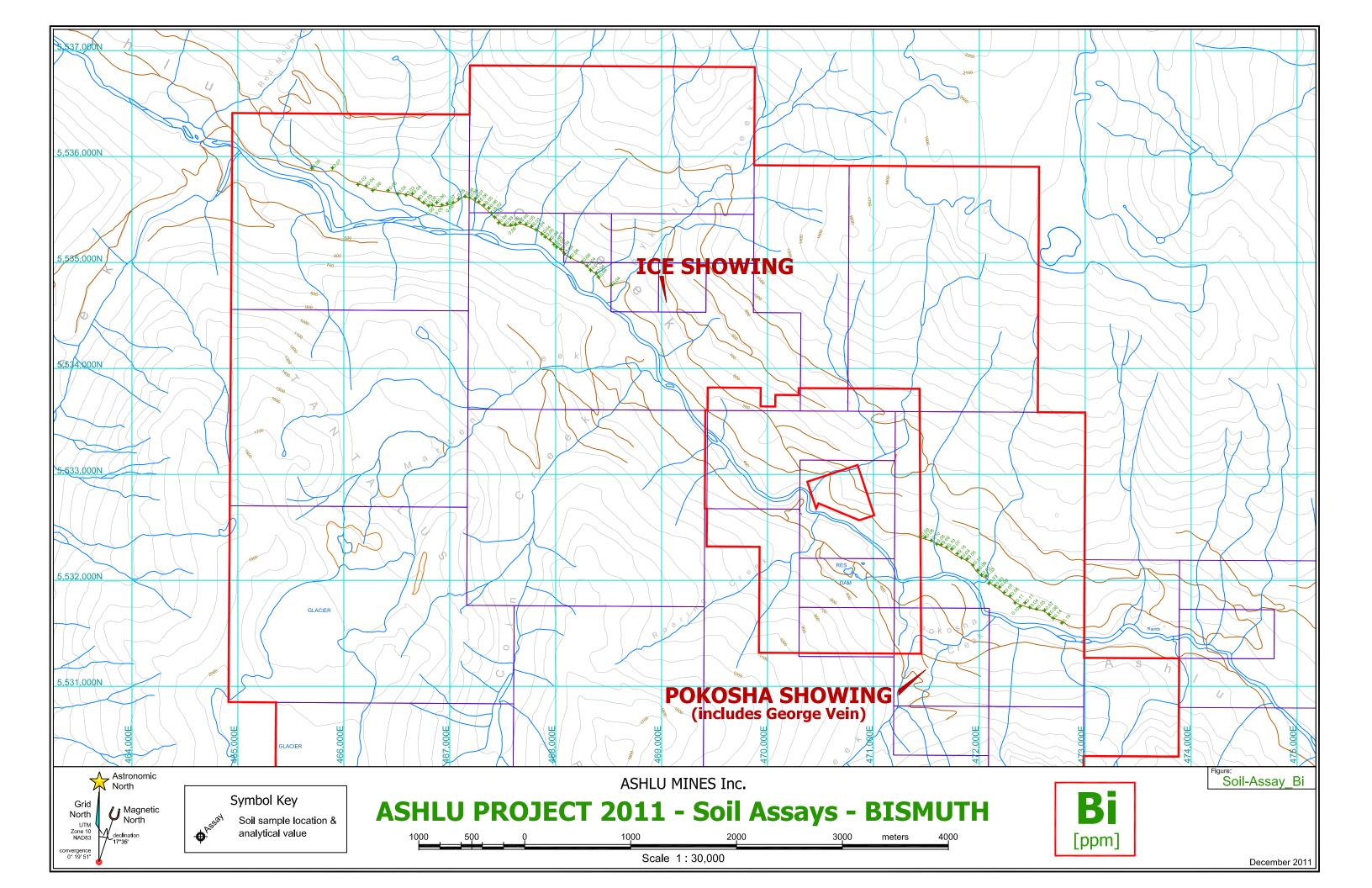
Element	Group 1D Detection	Group 1DX Detection	Group 1F Detection	Upper Limit
Ag	0.3 ppm	0.1 ppm	2 ppb	100 ppm
Al*	0.01%	0.01%	0.01%	10%
As	2 ppm	0.5 ppm	0.1 ppm	10000 ppm
Au	2 ppm	0.5 ppb	0.2 ppb	100 ppm
B*^	20 ppm	20 ppm	20 ppm	2000 ppm
Ba*	1 ppm	1 ppm	0.5 ppm	10000 ppm
Bi	3 ppm	0.1 ppm	0.02 ppm	2000 ppm
Ca*	0.01%	0.01%	0.01%	40%
Cd	0.5 ppm	0.1 ppm	0.01 ppm	2000 ppm
Со	1 ppm	0.1 ppm	0.1 ppm	2000 ppm
Cr*	1 ppm	1 ppm	0.5 ppm	10000 ppm
Cu	1 ppm	0.1 ppm	0.01 ppm	10000 ppm
Fe*	0.01%	0.01%	0.01%	40%
Ga*	-	1 ppm	0.1 ppm	1000 ppm
Hg	1 ppm	0.01 ppm	5 ppb	50 ppm
K*	0.01%	0.01%	0.01%	10%
La*	1 ppm	1 ppm	0.5 ppm	10000 ppm
Mg*	0.01%	0.01%	0.01%	30%
Mn*	2 ppm	1 ppm	1 ppm	10000 ppm
Мо	1 ppm	0.1 ppm	0.01 ppm	2000 ppm

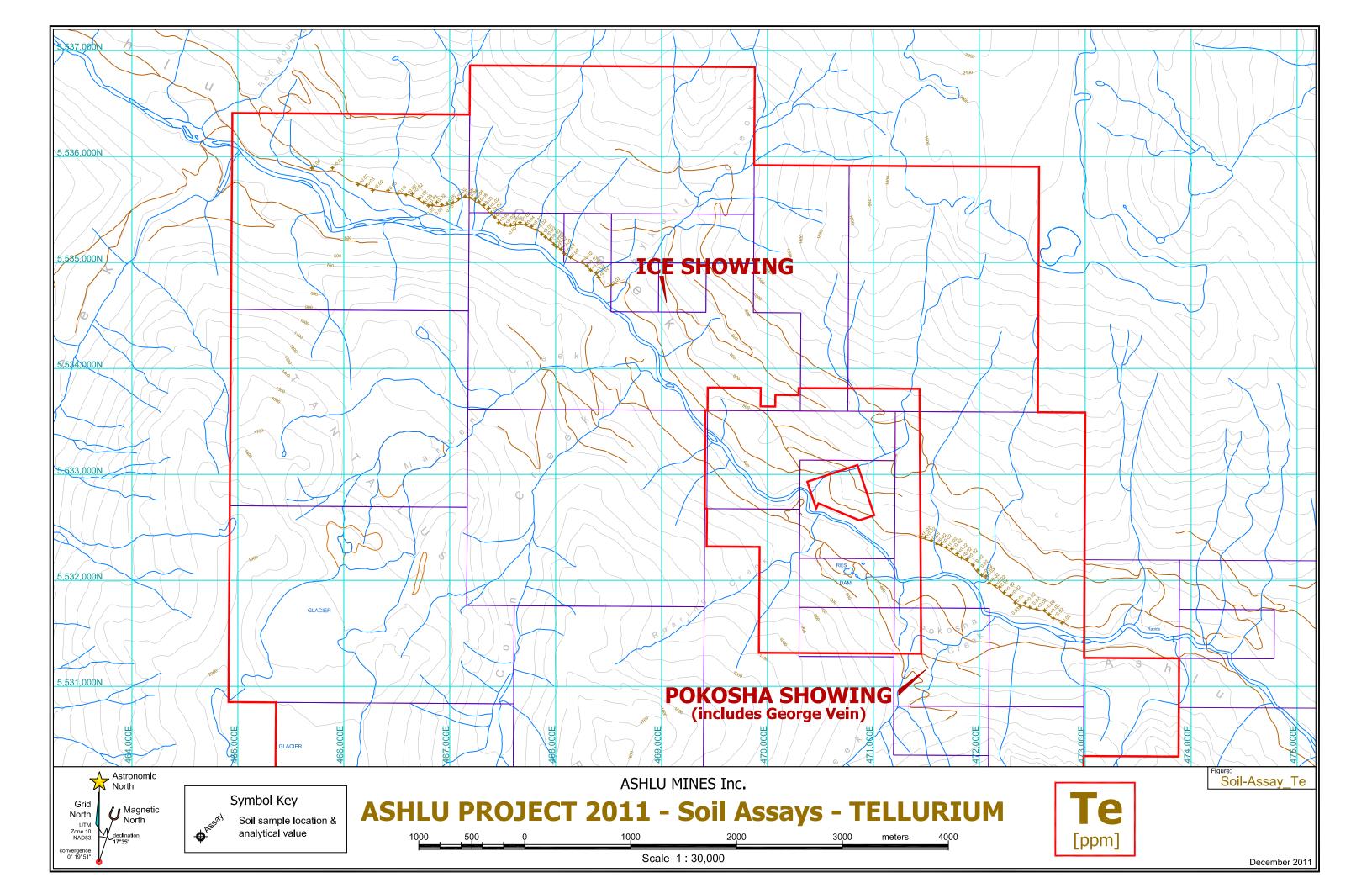
Element	Group 1D	Group 1DX	Group 1F	Upper
	Detection	Detection	Detection	Limit
Na*	0.01%	0.001%	0.001%	5%
Ni	1 ppm	0.1 ppm	0.1 ppm	10000 ppm
Ρ*	0.001%	0.001%	0.001%	5%
Pb	3 ppm	0.1 ppm	0.01 ppm	10000 ppm
S	0.05%	0.05%	0.02%	10%
Sb	3 ppm	0.1 ppm	0.02 ppm	2000 ppm
Sc	-	0.1 ppm	0.1 ppm	100 ppm
Se	-	0.5 ppm	0.1 ppm	100 ppm
Sr*	1 ppm	1 ppm	0.5 ppm	10000 ppm
Те	-	0.2 ppm	0.02 ppm	1000 ppm
Th*	2 ppm	0.1 ppm	0.1 ppm	2000 ppm
Ti*	0.01%	0.001%	0.001%	5%
TI	5 ppm	0.1 ppm	0.02 ppm	1000 ppm
U*	8 ppm	0.1 ppm	0.05 ppm	2000 ppm
۷*	1 ppm	2 ppm	2 ppm	10000 ppm
W*	2 ppm	0.1 ppm	0.05 ppm	100 ppm
Zn	1 ppm	1 ppm	0.1 ppm	10000 ppm
Be*	-	-	0.1 ppm	1000 ppm
Ce*	-	-	0.1 ppm	2000 ppm
Cs*	-	-	0.02 ppm	2000 ppm
Ge*	-	-	0.1 ppm	100 ppm
Hf*	-	-	0.02 ppm	1000 ppm
In	-	-	0.02 ppm	1000 ppm
Li*	-	-	0.1 ppm	2000 ppm
Nb*	-	-	0.02 ppm	2000 ppm
Rb*	-	-	0.1 ppm	2000 ppm
Re	-	-	1 ppb	1000 ppb
Sn*	-	-	0.1 ppm	100 ppm
Та*	-	-	0.05 ppm	2000 ppm
Y*	-	-	0.01 ppm	2000 ppm
Zr*	-	-	0.1 ppm	2000 ppm
Pt*	-	-	2 ppb	100 ppm
Pd*	-	-	10 ppb	100 ppm
Pb ₂₀₄	-	-	0.01 ppm	10000 ppm
Pb ₂₀₆	-	-	0.01 ppm	10000 ppm
Pb ₂₀₇	-	-	0.01 ppm	10000 ppm
Pb ₂₀₈	-	-	0.01 ppm	10000 ppm

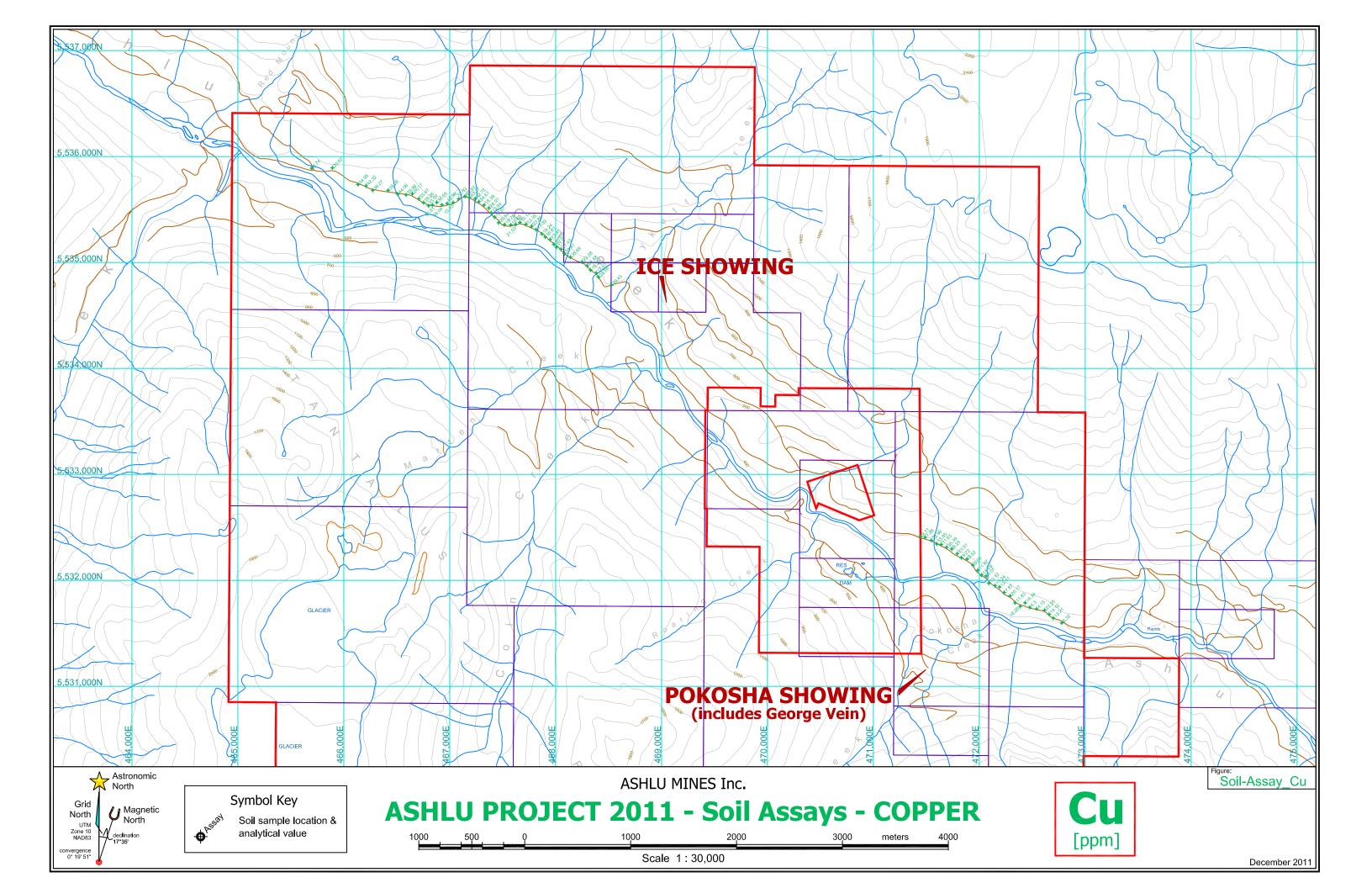
* Solubility of some elements will be limited by mineral species present. ^Detection limit = 1 ppm for 15g / 30g analysis.

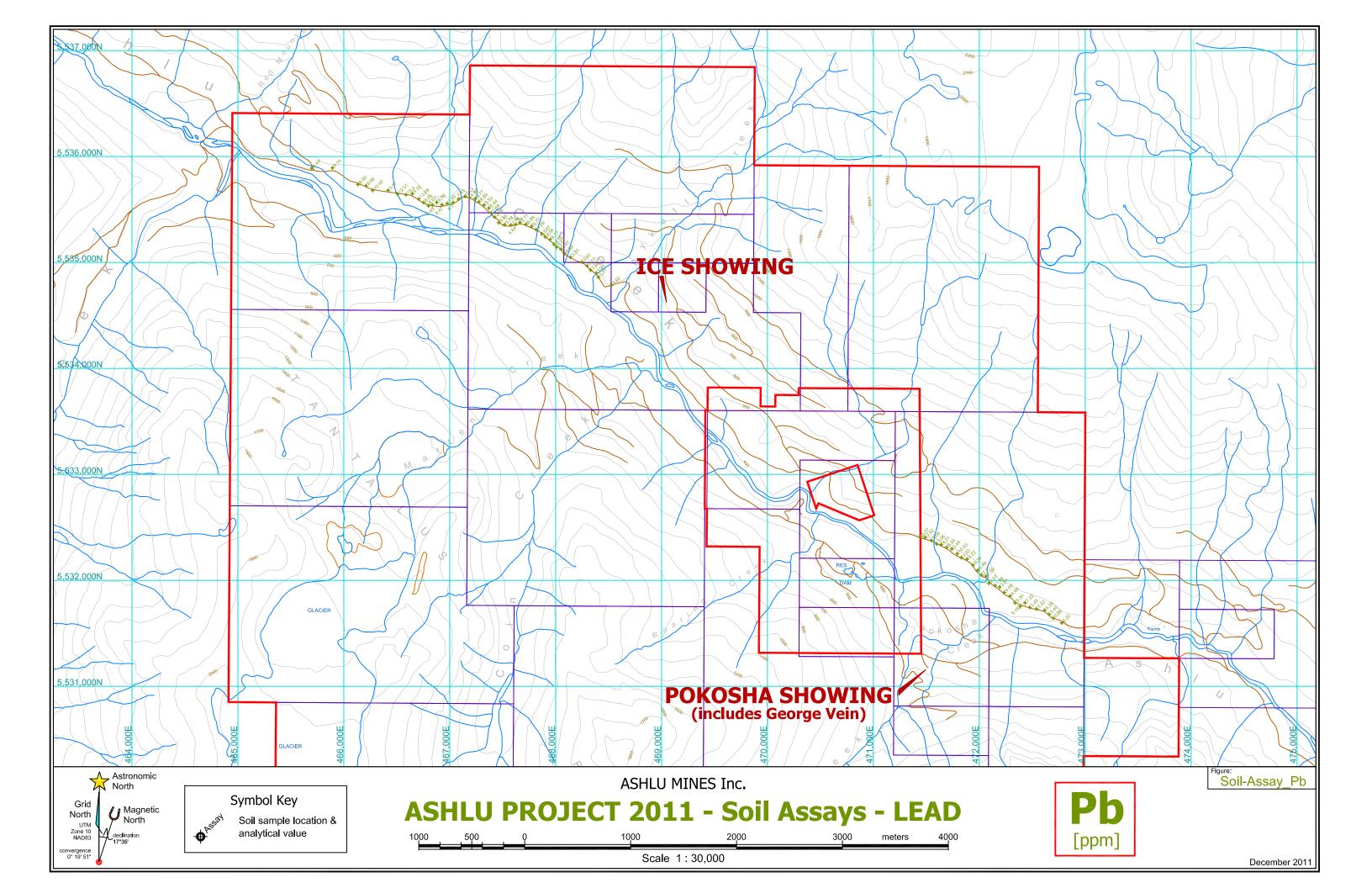

Limitations:

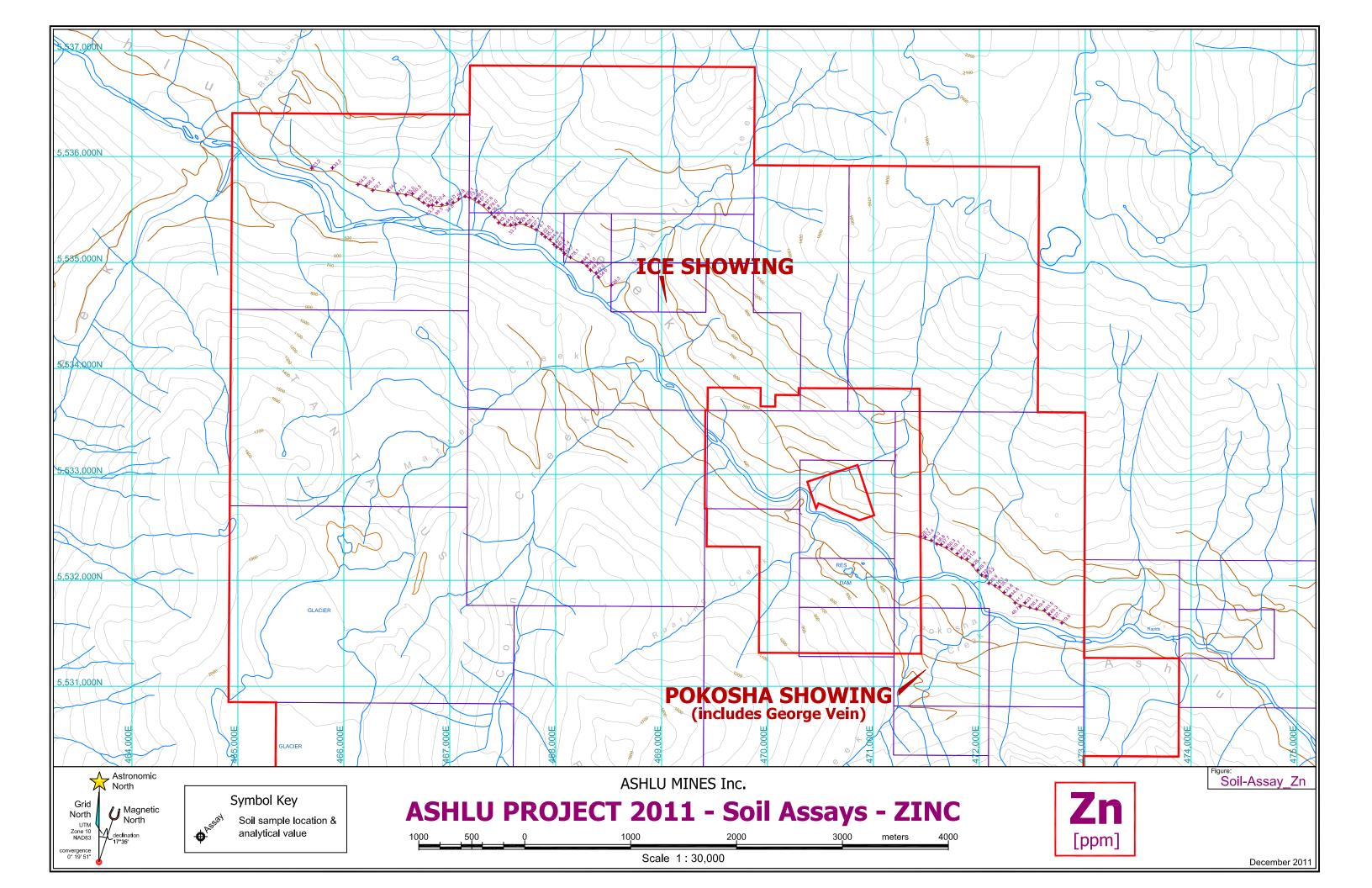

Au solubility can be limited by refractory and graphitic samples.

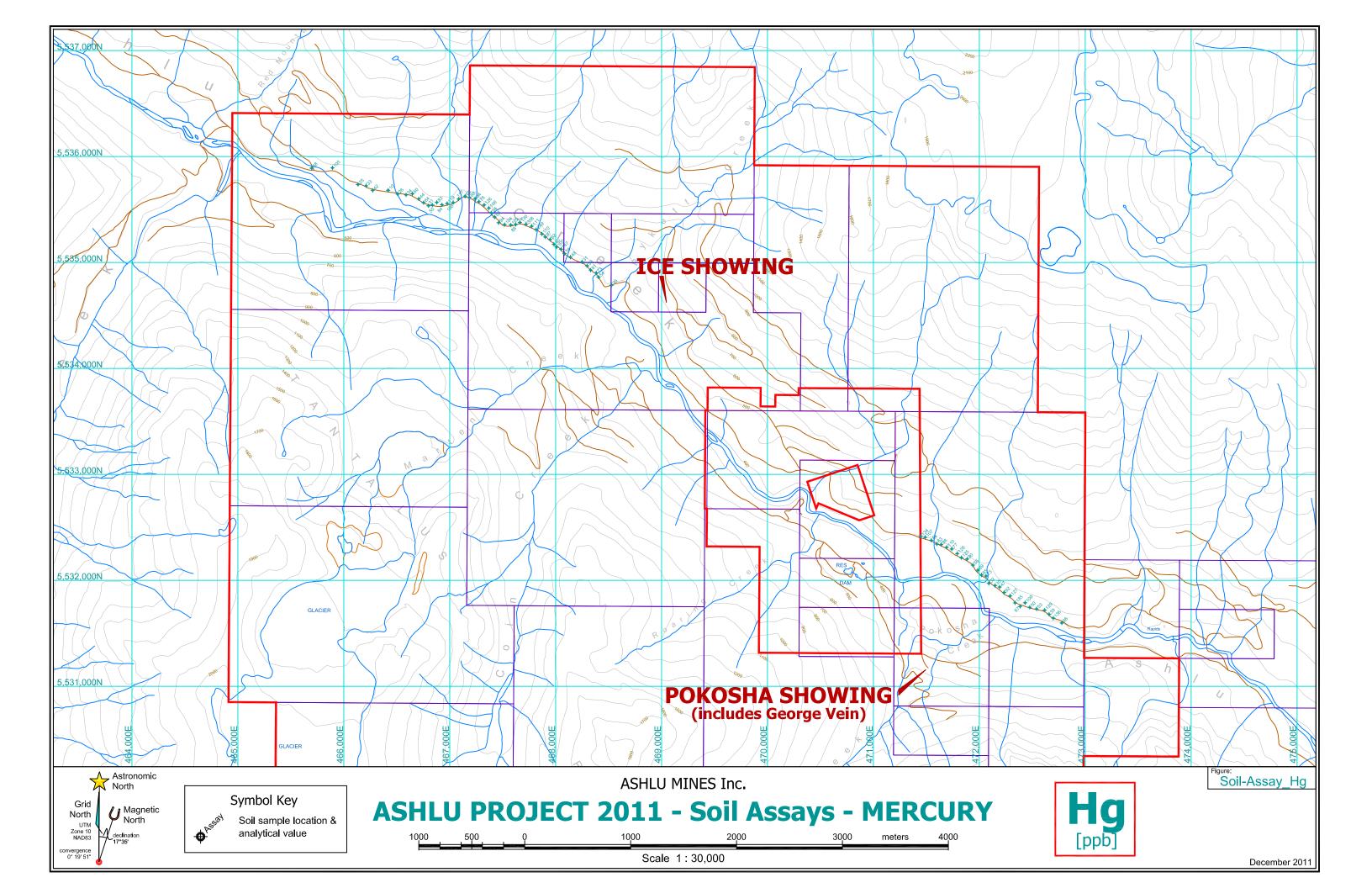

APPENDIX C – Soil Sample Assay Plans—1:30,000

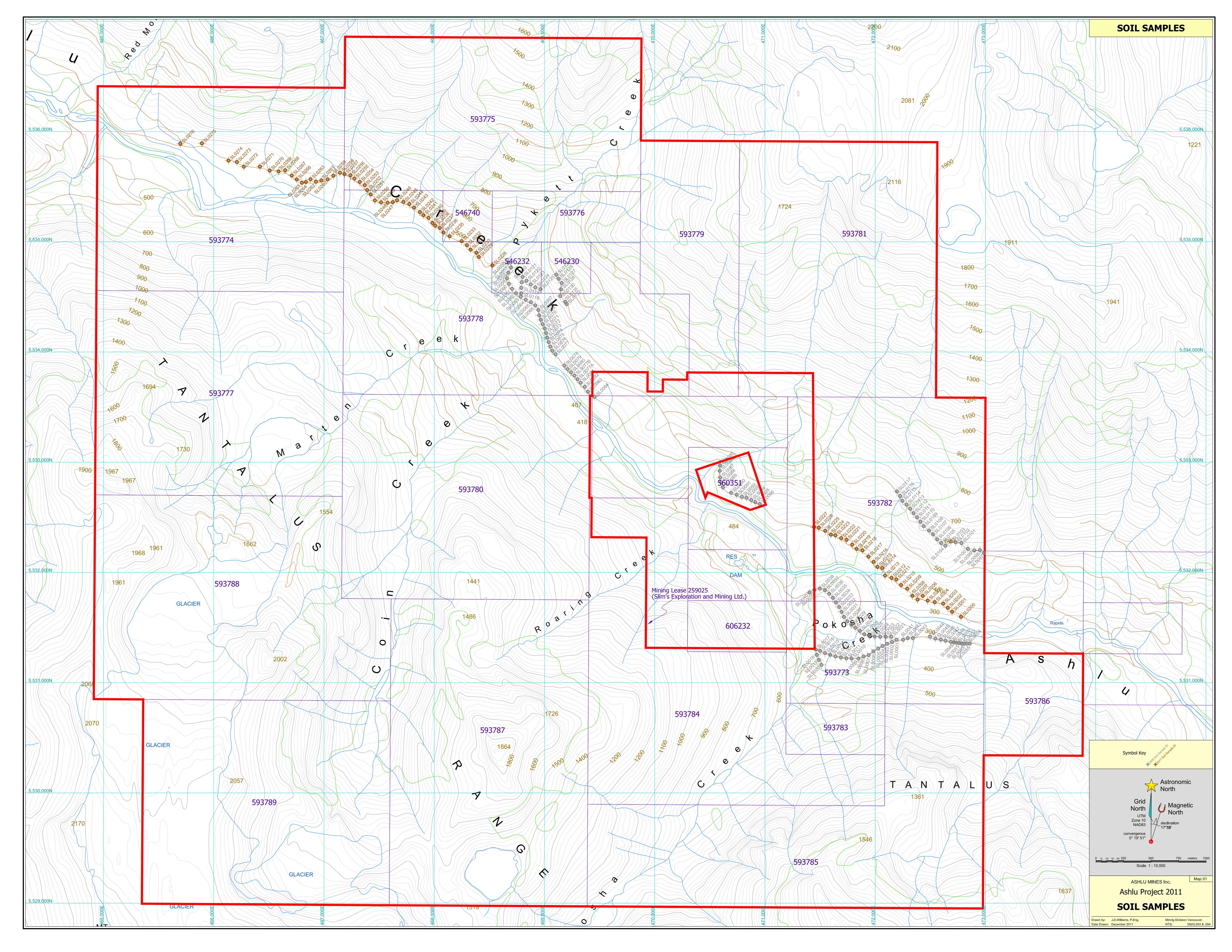

Series of eight maps showing all 77 soil sample locations of the 2011 fieldwork annotated with assay value for each of Au, Ag, Bi, Te, Cu. Pb, Zn & Hg. Those elements are expected to be economically significant on the Ashlu Property or, at least in the case of Hg, to be useful as pathfinders to mineralization. All maps are drawn at 1:30,000 scale intended to be printed on B-size (11" x 17") media in landscape mode.


Soil Assays - GOLD	MAP SOIL-ASSAY_AU
SOIL ASSAYS - SILVER	MAP SOIL-ASSAY_AG
Soil Assays - BISMUTH	MAP SOIL-ASSAY_BI
SOIL ASSAYS - TELLURIUM	MAP SOIL-ASSAY_TE
SOIL ASSAYS - COPPER	MAP SOIL-ASSAY_CU
Soil Assays - LEAD	MAP SOIL-ASSAY_PB
Soil Assays - ZINC	MAP SOIL-ASSAY_ZN
SOIL ASSAYS - MERCURY	MAP SOIL-ASSAY_HG









APPENDIX D – Soil Sample Location Map—1:10,000

Single 1:10,000 scale large-format map showing soil sample locations on a TRIM base that includes labeled mineral tenures. Samples are located in the field with coordinates displayed by a hand-held GPS receiver and annotated on the map with a unique SampleID. Soil samples of the 2009 field program, taken under similar field conditions and comparable field methods are also shown for reference. The map is intended for printing on E-size (36" x 48") media in landscape mode. For hardcopy reproduction of this report, the map is contained in a pocket inside the back cover.

```
SOIL SAMPLES ...... MAP 01
```

