

Ministry of Energy & Mines Energy & Minerals Division Geological Survey Branch

ASSESSMENT REPORT TITLE PAGE AND SUMMARY

TITLE OF REPORT [type of survey(s)] GEOCHEMICAL, GEOLOGICAL + PROSPECTING / 23,000
AUTHOR(S) J. T. SHEARER, M. Se, P. Geo SIGNATURE(S)
NOTICE OF WORK PERMIT NUMBER(S)/DATE(S) MX-4-486 YEAR OF WORK ZO 11
STATEMENT OF WORK - CASH PAYMENT EVENT NUMBER(S)/DATE(S) EVENT # 4866224
PROPERTY NAME MC GILLIVIR AY
CLAIM NAME(S) (on which work was done)
COMMODITIES SOUGHT AU/Ag/CU.
MINERAL INVENTORY MINFILE NUMBER(S), IF KNOWN
MINING DIVISION KAMLOOPS NTS 92 I/12 (92 I.042)
LATITUDE 50 ° 29 ' 20 " LONGITUDE 121 ° 40 ' 30 " (at centre of work)
OWNER(S)
1) Atocha Resources Utd 2) J. T. Shearer
MAILING ADDRESS
unit 5-2330 TYNER ST.,
Port COQUITLAM, B.C. V3C ZZI
OPERATOR(S) [who paid for the work]
1)
MAILING ADDRESS
As Above
PROPERTY GEOLOGY KEYWORDS (lithology, age, stratigraphy, structure, alteration, mineralization, size and attitude):
The major rooks on the property are dioritic intrusive
Nount Letter Pandex in fault contact with altered lower
Cretocoos Bridge River Group volcanics and sediments
Dukes are altered and entain anomalous values of An +0
REFERENCES TO PREVIOUS ASSESSMENT WORK AND ASSESSMENT REPORT NUMBERS ASSESSMENT REPORT NUMBERS
12,948 7 027 31066
(OVER)

TYPE OF WORK IN THIS REPORT	EXTENT OF WORK (IN METRIC UNITS)	ON WHICH CLAIMS	PROJECT COSTS APPORTIONED
GEOLOGICAL (scale, area)			(incl. support)
Ground, mapping			8,000
Photo interpretation			
GEOPHYSICAL (line-kilometres)			
Ground			
Magnetic			
		4	
Airborne			
GEOCHEMICAL			
number of samples analysed for)			
Soil			5,000
Silt			
Rock			
Other			
DRILLING			
total metres; number of holes, size)			
Core			
Non-core			
RELATED TECHNICAL			
Sampling/assaying			5,000
Petrographic			
Mineralographic			
Metallurgic			
ROSPECTING (scale, area)			5,000
REPARATORY/PHYSICAL			
Line/grid (kilometres)			
Topographic/Photogrammetric (scale, area)			
Legal surveys (scale, area)			
			RYUKER SHEET
Trench (metres)			
Underground dev. (metres)			
Other			
			23,000

GEOCHEMICAL, GEOLOGICAL and PROSPECTING ASSESSMENT REPORT on the McGILLIVRAY PROJECT

Lytton-Lillooet Area of British Columbia

NTS 92I/12 (92I.042+052)
Latitude 50°29'20"N/Longitude 121°40'30"W
Permit MX-4-480

For

BC Geological Survey Assessment Report 32728

Atocha Resources Inc. 2300 – 1066 Hastings St. Vancouver, B.C. V6E 3X2

www.atocharesources.com

Prepared by

J. T. SHEARER, M.Sc., P.Geo. #5-2330 Tyner St. Port Coquitlam, B.C. V3C 2Z1

> Phone: 604-970-6402 Fax: 604-944-6102

E-mail: <u>jo@HomegoldResourcesLtd.com</u>

August 1, 2011

Fieldwork Completed between May 4 and May 24, 2011

TABLE OF CONTENTS

<u> </u>	<u>Page</u>
SUMMARY	.3
INTRODUCTION	.5
LOCATION and ACCESS	.6
HISTORY1	L O
FIELD PROCEDURES1	L 2
REGIONAL GEOLOGY1	L3
LOCAL GEOLOGY and 2011 PROGRAM1	L5
MINERALIZATION1	L 7
EXPLORATION1	L9
GEOCHEMISTRY 20112	20
CONCLUSIONS2	27
RECOMMENDATIONS2	29
REFERENCES3	30
APPENDICES	
APPENDIX I Statement of Qualifications, J. T. Shearer, M.Sc., P.Geo3	32
APPENDIX II Statement of Costs3	33
APPENDIX III Assay Certificates3	34
APPENDIX IV List of Samples3	35

FIGURES

On	or	Fol	low	ing
	F	ag	P	

FIGURE 1	LOCATION MAP	5
FIGURE 2	CLAIM MAP	7
FIGURE 3	REGIONAL GEOLOGY	13
FIGURE 4	LOCAL GEOLOGY	15
FIGURE 5	STRUCTURE of PROPERTY	17
FIGURE 6	COMPOSITE PROSPECTING MAP	18
FIGURE 7	ROCK SAMPLES 2011 RESULTS	21
FIGURE 8	GPS LOCATIONS for McGILLIVRAY AREA	22
FIGURE 9a	GOOGLE IMAGE SOIL RESULTS	23
FIGURE 9b	GOOGLE IMAGE SOIL RESULTS	24
FIGURE 9c	GOOGLE IMAGE SOIL RESULTS	26

Summary

The McGillivray property consists of 235 claim cells, acquired to cover an historical copper porphyry target property with a large gossanous alteration zone to explore for its precious metal potential. The McGillivray property is near the recently discovered epithermal precious metal Skoonka Creek property. The claims cover ground originally staked in the 1940's. Previous work in the area covered by the property outlined large zones of hydrothermal alteration and copper anomaly in soil geochemistry at the time when the focus of much exploration was toward porphyry copper targets. There has been no exploration focused on precious metals until Atocha Resources Ltd. acquired the property.

The McGillivray Property geology consists of fault bounded slices of dioritic and granodioritic intrusives of the Permian to Triassic age Mount Lytton Complex, with highly altered Lower Cretaceous andesitic volcanics of the Pimainus Formation of the Spences Bridge group. The western side of the McGillivray Property is next to the regional Fraser River fault. Within the fault bounded slices of altered volcanics are strong alteration zones with evidence of drusy quartz and anomalous silver soil samples. The mineral deposit type that is recommended to target for is for the exploration for epithermal precious metals.

The McGillivray property demonstrates many features of classic epithermal deposits: the vein mineralogy and textures, with generations of carbonate, silica and chalcedony, the tendency for mineralization to occur in flat vein structures, the presence of brecciated quartz veins, and the suite of geochemical indicator elements Mo, As, and Ag.

Work in 2009 consisting of trenching, follow-up soil sampling, prospecting and geology which has confirmed the potential for an epithermal gold-silver mineralized system. The property is centered on McGillivray Creek and is located 34 kilometres east-southeast of Lillooet, British Columbia and is well served by roads and power. The claims are about midway between Lytton and the Blustry Mountain Gold Showings, on the east side of the Fraser River.

Current work in 2011 consisted of geological mapping, prospecting and collecting 95 samples.

Three new mineralized, northwest trending zones were identified, occurring east of the Fraser Fault system and west of suture-thrust fault structure. The zones are hosted in intermediate (andesitic) to a felsic (rhyolitic) volcanic sequence. Adjacent to the Fraser Fault is an iron-carbonate breccia (possible dolomite or ankerite affinity) horizon hosted in andesitic rocks and intruded by weakly mineralized-copper-bearing dioritic stock. This zone is proximal to the Alice Minfile occurrence. The iron carbonate hosts occasional stringers and breccia fragments of malachite-azurite mineralization.

Approximately 200-300 metres to the east is highly altered, siliceous rhyolite to dacitic rhyolite hosting abundant finely disseminated pyrite. This zone is approximately 200 metres wide and can be traced down slope for over 500 metres before masked by talus. Some 300 metres further to the east, adjacent to probably accretionary-like or suture structure, is an intensely siliceous to quartz-muscovite-pyrite bearing strata-bound structure hosted in rhyolitic rocks. This zone ranges between 60-00 metres wide and traceable for 1500 metres trending north-westerly.

The iron carbonate breccia hosts some of the highest silver-copper-zinc values obtained from the property. Of the 10 rock samples collected from the breccia, 7 were highly anomalous with high of 4.70% copper, 31.5 ppm silver and 4,411 ppm zinc. These values were come from samples that were collected from an old adit. Associated with these values are anomalous pathfinder elements including arsenic >1000 ppm and antimony 2,375 ppm.

Several of the samples collected from the greisen-like alteration zone contain anomalous copper and zinc with the highest values including 279 ppm and 230 ppm respectively.

The sampling survey was of reconnaissance in nature, based on the initial sampling merits follow-up detail work in order to define the extension of the iron carbonate breccia and greisen mineralized structures.

Respectfully submitted,

J. T. Shearer, M.Sc., P.Geo.

Introduction

This report is prepared for Atocha Resources Ltd. (Atocha) of Vancouver, BC at the request of the Board of Directors.

The purpose of this report is to summarize the 2011 exploration program on the McGillivray Creek property and document it as a property of merit. This report is prepared to support Atocha Resources Ltd. in raising funds to support further exploration of this property.

This report is largely based on fieldwork conducted between May 4 and May 24, 2011, the historical reports of previous operators and government geological mapping. The author also discussed ongoing activities with the field exploration crew and Dan G. Cardinal, P.Geo. during the program. The documents reviewed are listed in the References near the end of this report.

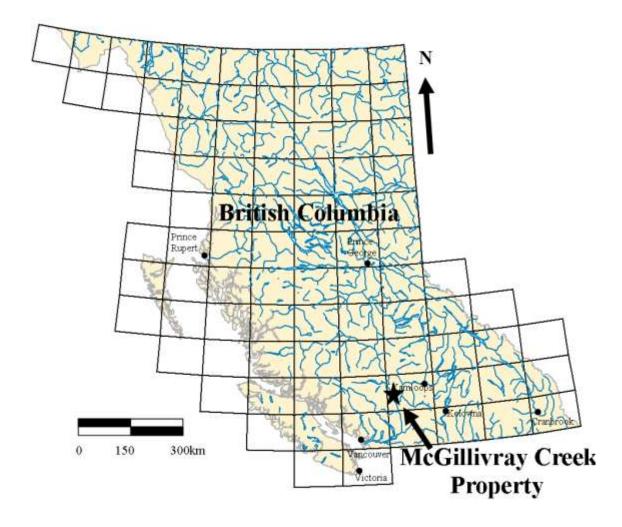


Figure 1 Location Map

Location and ACCESS

The McGillivray property consists of 17 cell claims located under the Mineral Title Online claim system of British Columbia. The claims are registered in the name of Atocha Resources Ltd. and J. T. Shearer. Total area is 7,903.119 hectares. The claims are all in the Kamloops Mining Division of British Columbia. The "cell claim" boundaries are defined in the provincial database and referred to in the UTM NAD 83 coordinate system. This location based database allows title to be assured for geographic location.

Tenure			Current Expiry*	Size (cell	Cell Area
Number	Name	Registry Date		Units)	(ha)
526001	MCGILL THREE	2006 Jan 21	2013 Jan 1	10	205.503
526002	MCGILLVERY CREEK ONE	2006 Jan 21	2013 Jan 1	25	513.858
521254	MCGILLIVERY WEST 1	2005 Oct 15	2013 Jan 1	18	370.020
527194	MCGILL 1	2006 Feb 07	2014 Jan 1	25	513.922
528832	MCGILLIVRAY SOUTHEAST	2006 Feb 23	2013 Jan 1	25	514.121
542787	Lau-Lu	2006 Oct 08	2013 Jan 1	16	329.17
836071	MCG 1	2010 Oct 16	2013 Jan 1	25	514.22
836072	MCG 2	2010 Oct 16	2013 Jan 1	24	493.93
836073	MCG 3	2010 Oct 16	2013 Jan 1	21	6431.76
836074	MCZ 1	2010 Oct 16	2013 Jan 1	6	123.54
852349	G Nor	2011 Apr 23	2013 Jan 1	24	493.11
853275	TZ	2011 May 2	2013 Jan 1	10	205.58
846423	MCGILL 11	2011 Feb 13	2013 Jan 1	16	329.05
853271	Alice	2011 May 2	2013 Jan 1	11	226.15
853359	La Lau East	2011 May 3	2013 Jan 1	18	370.19
830342	LA LAU 3	2011 May 3	2013 Jan 1	11	226.25
841116	LA LAU 4	2010 Dec 10	2013 Jan 1	7	144.00
			Total Area	292	6,004.374

^{*} Subject to approval of work documented in the Assessment Report

In British Columbia, each cell claim equals about 20.55 hectares. All claim cells staked in British Columbia require approximately \$80 of assessment work to be undertaken in Years One to Three, (\$4.00 per ha per year), followed by about \$160 per cell per year thereafter (\$8.00 per ha per year).

The claims are located in mapsheets 92I-042 and 92I-052. The latitude 50°29′20″N and longitude 121°40′30″W are near the center of the area that work was done in 2006.

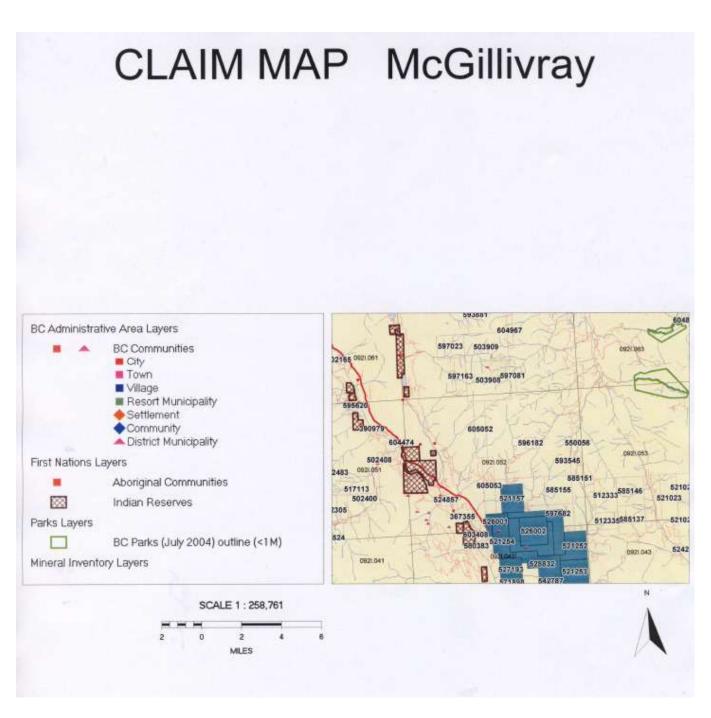


Figure 2 Claim Map

The property is located on the eastern side of the Fraser Canyon. Highway 12, which follows the river, crosses the western side of the property. There is a network of logging roads over the property, accessing the highway on the north side of the McGillivray Creek valley. The Laluwissin Creek valley is to the south end of the property and has a deactivated logging road in its lower valley leading to the Fraser River. The upper valley of the Laluwissin Creek road, along the eastern edge of the claims, is accessed from Highway 12 in the Izman Creek valley to the south. This road connects up to a network of logging roads from Spences Bridge and Cache Creek on Highway 1 and near Pavilion on Highway 99. Most of the property is accessible by foot with cliff and landslide exposures limiting foot travel in a few areas.

Most of these claims are located on Crown Land and have no surface rights attached to the claims. There is crown land available for use by permit application through a permit for development of a mill and tailings if the project moves to this level.

There is a small adit, with a tennantite showing, above McGillivray Creek, on the north side, described in the BC Ministry of Mines, Geological Fieldwork (White, 1980). There are reports of several small pits on the property near the highway described by Chisholm (1971). These were not visited by the author. There are several filled in bulldozer or excavator trenches at the end of the logging road that likely date from 1972 or 1973, near the centre of the 2009 fieldwork area.

The property is within the territorial land of the Lytton First Nations band.

There are no known new parks planned for any area contained within the McGillivray Property. No First Nations reserves are indicated on the claims maps within the boundaries of the McGillivray claims.

There is a network of logging roads and several clear-cut openings from previous logging operations. The environmental liabilities of this will be the responsibility of the logging companies. The creeks are often steep and the semi arid environment limits the amount of water in creeks. It is not known whether there are any fish in the claim area. Wildlife throughout the area is sparse and primarily comprises deer and rare, itinerant black bears. Hill slopes are seasonal range for cattle.

There is a description of a spring credited to a report by D.C. Malcolm by Pezzot and White (1983); "A spring, at elevation 3,600 feet near McGillivray Creek, deposits a white precipitate which showed 1.19% silicon and 84.75% alumina."

Accessibility, Climate, Local Resources, Infrastructure and Physiography

Elevations range from 450m (1,500ft.) in the valley of the Fraser River to 1,800m (5,900ft.) on McGillivray Mountain. The area is mountainous with steep slopes. There are a couple of large natural slides and cliffs on the property, especially on the south facing slopes.

The area lies in the rain shadow of the Coast Mountains, therefore the climate is relatively dry; Lytton receives less than 40 cm precipitation per annum, of which 25% falls as snow during the winter months. Mean temperatures vary from -4°C in °winter to 30°C in the summer. At lower elevations, the vegetation is open pine forest. The north facing slopes have locally thick forests of pine and fir. The area is grazed by cattle during the summer months. Work can continue throughout the year although snow will likely be present on the ground throughout the winter limiting the activities and slowing access.

There are electrical power lines following Highway 12 on the western side of the property. McGillivray Creek and its tributaries had water sufficient for drilling in October after a long dry spell and should be

sufficient for year round exploration. There is abundant water in the Fraser River for any need on the property.

Lillooet and Lytton are the major towns in the area, both on Highway 12. Lillooet the regional source of most required supplies, heavy equipment and services for exploration is 34 kilometres by highway to the north-north west. The regional population is about 50,000. The major industries include logging, ranching and hospitality. The distance to Lytton is about 30 kilometres to the south. There are major railroads, with access to the continental railroad networks, in both Lytton and Lillooet. Both communities would be the source of personnel for exploration or operations.

The property is underlain by crown land. It is used by the local rancher for grazing cattle in the summer. It has been logged in the past for timber. This has left a network of logging roads to access most areas of the property. The land is steep, but there are several areas locally that should be sufficient for a mill site and tailings impound.

J. T. Shearer (property vendor), has initiated informal discussions with First Nations Bands resident near the property. These are the Fountain, Bonaparte and Lytton Bands.

History

In 1941 the Victory Claim was staked on the ridge between Laluwissin Creek and McGillivray Creek within the existing claims, according to Duffel and McTaggart, 1952. This is described to be located over the ridge located in the area where the work program of 2006 was done. It describes a northwesterly trending zone of faulting. There is a description of "inclusions" that are consistent with the body or bodies of altered volcanics seen in the 2006 mapping. It also mentions fine grained pyrite in a rusty fault zone.

In 1971 Cuda Resources, (Chisholm, 1972) did a copper soil geochemical and magnetometer study in the area of Laluwissin Creek and Highway 12 and south. This is about a kilometre southwest of the grid of the 2006 work. Geological mapping of these areas was completed in August of 1972 by Asano (1972) for Colt Resources Ltd. (renamed from Cuda Resources). He has mapped generally northerly trending bands of altered Nicola volcanics in Mount Lytton Complex diorite. The volcanics show varying levels of epidote and chlorite alteration. He correlates the magnetic highs to patches of gossan. There are several zones of copper mineralization described. The copper geochemistry and magnetometer survey were contoured in a general northerly trend. There is a special correlation between copper in soils and magnetometer highs.

D.C. Malcolm undertook geological mapping of the McGillivray Creek basin in 1972 to 1976 for Acacia Mineral Development Corporation. Copies of his reports were not available to the author. The following is credited to Malcolm's report dated March 14, 1980 as recounted in the report of Pezzot and White (1986):

"The main deposits occur at the summit of a ridge and along its flanks between elevations 4,500 and 5,000 feet. On the north side of the ridge a number of small hand trenches expose sheared and brecciated feldspar porphyry and altered limy volcanics. Five samples over an area 200 feet by 200 feet, averaged 0.42% copper.

A road has been built from McGillivray Creek to the lower part of the deposit on the north slope of the ridge. Trenches have been roughed out partly across the deposit at elevations 4,650 and 4,800 feet.

On the south side of the ridge, 1,500 feet south of these trenches, chalcopyrite occurs with magnetite in old trenches and malachite stained feldspar porphyry forms a slide in a dry gulch. One picked sample assayed 0.37 oz. silver, per ton and 7.16% copper.

On the road, at elevation 3,300 feet, a porphyry dike was exposed. Chalcopyrite bearing limestone breccia float occurs near it.

Pyritic deposits occur over a large area east of the porphyry dikes and extend across the claims. Two outcrops have been sampled and assayed 0.095% and 0.15% copper."

The area described by Malcolm is consistent with the area that was the focus of the 2006 study.

A geochemical program was completed in 1978 (White, 1978) for Acacia Minerals. This is centered in the same basin as the 2006 work program of Atocha. His conclusions read:

"The limonite gossans exposed in the southern portion of the survey area have a strong copper zinc geochemical expression which indicates they are part of a northerly trending mineralized zone.

They are heavily pyritized appear to be associated with a series of andesites, dacites, limestone breccias and tuffs. A strong copper, lead, silver and zinc anomaly occurs at 9 / 60s - OE at the head of a small stream which is seeping an alumina-rich white powder."

In 1983 Ryan Energy undertook an 80 line kilometre VLF – EM and Magnetics airborne survey (Pezzot and White, 1983) over the ACE 1 to 8 claims in the McGillivray Creek basin that was the area of focus of the 2006 work. The resulting magnetic lows were interpreted as:

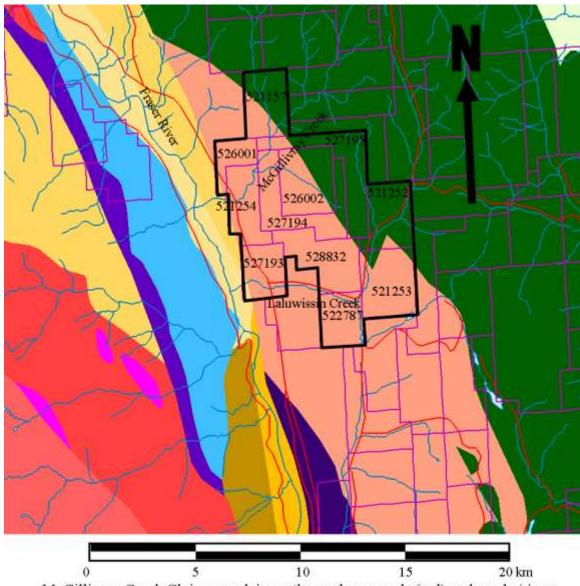
"Two northwest-southeast trending magnetic lows are evident across the survey area. One follows a geologically defined fault across the southwest corner of the claims area. The second follows McGillivray Creek. Terrain clearance effects across the valley formed by McGillivray Creek are not influencing the magnetic field intensity in this area and it is likely that another fault is present.

A north-south trending magnetic high correlates with a mountain ridge on the east side of McGillivray Creek. No geological evidence of a lithology change is reported in this area. The magnetic data may be reflecting an unmapped facies change within the volcanic unit; possibly a dioritic phase or simply an increased content of higher magnetic susceptibility materials. A closed magnetic high located on line 20 immediately west of this ridge is likely an outlier of the same rock unit."

The VLF EM from the 1983 report is reported as:

"The VLF-EM data is presented in profile form over the same topographic and geological base map used to illustrate the magnetic contours. The Seattle frequency data ... shows a subtle shift in the field intensity which correlates with the G.S.C. defined fault crossing the southwest corner of the survey area. In addition, the northwest-southeast trending belt of limestone is reflected as a slight conductivity increase. This response extends further south than the unit as indicated by D.C. Malcolm."

There is no further recorded work found by the author until the program of 2006 by Atocha.


Field Procedures

The author and crew concentrated their efforts along the upper reaches of McGillivray creek valley and a section exposed along an escarpment overlooking the Fraser River canyon. Several days were spent traversing the north ridge running along the edge of the escarpment, an area where historical copper porphyry related surveys. Another day was spent examining a section of logging road where a soil sample from previous survey by the Atocha field crew returned elevated (290ppb) gold-in-soil value. This area is located north and northeast of McGillivray Creek valley. For detail Property description including history, regional geology and recent geochemical and geological surveys, the author recommends the reader to review a Technical Report authored by Mr. Sean Butler, P.Geo., titled 'Summary Report on the McGillivray Property' dated January 31, 2008.

Soil samples were collected by mattock from the thin "B" horizon immediately under the thin organic "A" horizon. Average depth of soil samples was 15cm.

Regional Geology

The major rock formations on the property are dioritic and granodioritic intrusives of the Permian to Triassic age Mount Lytton Complex. The other major unit is the altered Lower Cretaceous andesitic volcanics of the Pimainus Formation of the Spences Bridge group. The Spences Bridge Group outcrops on the eastern side of the claims as well as fault controlled bands as inliers or roof pendants in the diorite on the western side. The 2006 program reportedly found sedimentary rocks on the eastern side of the property (Shearer pers. comm.). This is likely the interbedded volcaniclastic rocks of the Pimainus Formation.

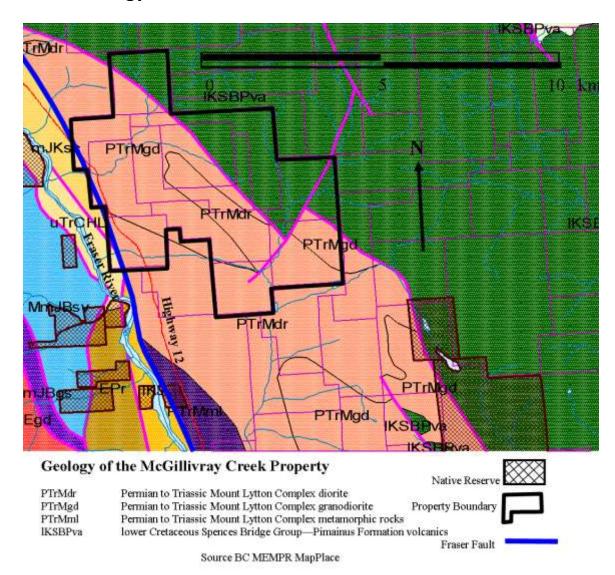
McGillivray Creek Claims overlain on the geology, roads (red) and creeks/rivers (blue).

Claim numbers locate the claims (purple boundaries inside black property boundary)

FIGURE 3 Regional Geology

There are bands of fault bounded northerly trending altered volcanics that have been mapped as gneisses and schists (Duffell and McTaggart, 1952). There are gneisses and schists defined to the south of this property on the geological map from the MapPlace, used in this report. Locally the alteration was observed to be argillic to kaolinitic. These bands extend over the ridge and were mapped near Highway 12 (Asano, 1972) as well in the basin to the east (Shearer, 2006). The intensity of alteration varies greatly on a local basis. These are likely part of the Pimainus Formation of volcanics of the Spences Bridge Group. The geological map reproduced from the BC MEMPR MapPlace reproduced for this report (Figure 4) does not show these bands of altered volcanics, but were observed during the field visit and reported in many property scale reports.

The regional Fraser Fault, a major north-north westerly trending structure, is located on the western boundary of the McGillivray property. This strike slip fault may have 135 to 160 kilometres of dextral strike slip. This was determined by the correlation of Late Permian intrusives of the Mount Lytton Complex in the area of McGillivray Creek with the Farwell Pluton in the area of the mouth of the Chilcotin River as noted in Read (2000) crediting a GSC paper by Friedman and van der Heyden. The rocks to the west of this structure, the Fraser Fault, are not related geologically to the units found on the McGillivray property and the geology and mineral deposit types are not reported by the author.


The close spatial relation to this fault has likely influenced the units on the McGillivray property. The strong northerly trending faulting that separates the Mount Lytton intrusives and the altered volcanics, sub parallel to this fault is likely related to this fault. As well, deep faults like the Fraser Fault have acted as conduits of deep hydrothermal fluids in other regions.

At this early stage of mapping there is field evidence to suggest to the author that a tectonic plate collision between 2 accreted terranes may occur in the McGillivray Property and that McGillivray creek valley may part of a surface expression to such a structural suture zone (Plate I).

Evidence to suggest a possible terrane collision proposal includes the following:

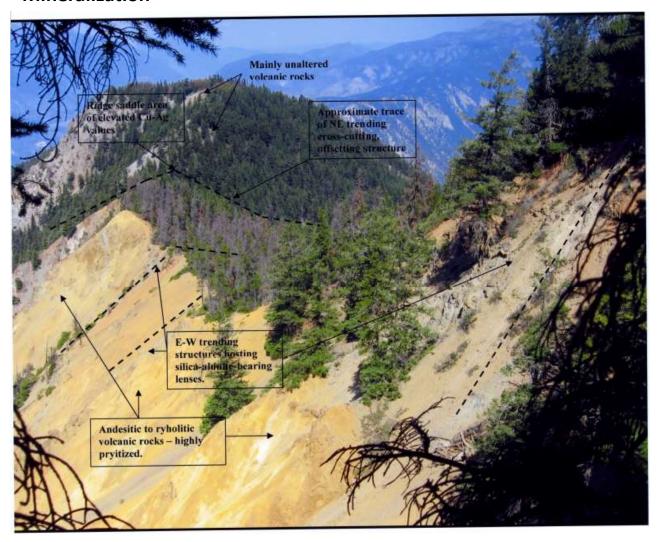
- (i) Regional GSC map shows the McGillivray Property and area to be underlain mostly by the Lytton Complex. However, field mapping shows the Property, at least within the McGillivray watershed, to be predominately underlain by 2 different types of compositional volcanic rocks andesitic and alkalic.
- (ii) Regional geology along the Fraser River fault system shows faulted sections of the bedrock as been part of the Cadwallader Group, an island arc terrane of Upper Triassic to Lower Cretaceous age that includes mafic to intermediate volcanic flows and younger fine clastic sediments. Sections of the Cadwallader sediments can be observed on Highway 12 consisting of mudstone, shale, and siltstone along an area of the highway that is precariously unstable directly overlooking the Fraser River. To the south and on the Property the ridge overlooking the highway, the rocks here are composed of, what the author believes, as part of the Cadwallader terrane, composed predominately andesitic and minor intermediate rocks.
- (iii) North and east of the McGillivray creek are alkalic compositional volcanic rocks. These rocks are believed to part of the Spences Bridge terrane.
- (iv) Fragmented alkalic volcanic rocks discussed above are believed to be result of tectonic activity related to an accretionary collision between terrane represented by the andesitic rocks to southwest and the alkalic volcanic rocks to the northeast.

Local Geology and 2009 PROGRAM

Figure 4 Local Geology

The Company has received results for samples collected from the initial trenching program. Geological examination of the ridge section shows that the rocks are predominately composed of underlying, mildly altered siliceous andesite carrying 2-4% disseminated pyrite. Minor chalcopyrite was observed. The andesite is cut by series of roughly east-west trending second and third order faults. Within some of these structures are well silicified, bleached, carbonitized and appears to be alunite alteration. Trenching found associated with epithermal environments.

A thrust fault may have also acted as a channel way to ascending mineral-bearing solutions altering the andesitic rocks observed along the escarpment, with the cross-cutting, east-west trending second and third order faults hosting epithermal, calcite-silica-alunite-bearing minerals. The ubiquitous pyrite associated with the andesite and concentrated mainly between the ridge escarpment and McGillivray creek to the east may also be spatially reflecting some distal epithermal system. Nevertheless, it is


obvious as noted by the highly iron oxidized escarpment, that the disseminated pyrite, anomalous copper and silver and alteration minerals observed along the ridge are structurally controlled.

To the northeast a new area of previously defined gold-in-soil results panned concentrate collected near the site of the anomalous gold value contained at least one (possibly 2) very fine crystalline gold flake along with a silvery grain believed to be electrum or telluride.

Bedrock observed along this area is composed of purplish coloured, alkali composition volcanic rocks associated with fine grain, creamy feldspathic phenocrysts. In some sections the volcanic rock appears as trachytic texture. In the area of the elevated gold value the volcanic rocks are highly fragmented which the author interprets to be result of tectonic action. The fragments have been subsequently healed by banded white and pearl-white quartz veinlets, fracture-filling colliform silica and large bands of massive, dark, siliceous incipient-like chalcedony.

.

Mineralization

Figure 5

McGillivray Cliff exposure looking northwesterly. Highly pyritized volcanic rocks consisting predominately of siliceous andesite with subordinate dacitic to rhyolitic lenses. Interpreted by author as part of the Cadwallader Island arc volcanic terrane.

D.G. Cardinal, P.Geo.

The mineralization is largely disseminated and shear related copper and silver - lead with some, zinc reported. There is gold reported as a possible metal in the copper porphyry deposits described in the BC Minfile property descriptions on this property near the ridge. Strong lineations were seen on the ground during the property visit and are also visible in the contour maps. These are probable fault boundaries to the altered volcanic units with the Mount Lytton Complex intrusives as described in several historical reports. The high level and large surface extent of alteration seen indicates strong hydrothermal alteration. This alteration was evident as the author walked the property as well as seen in the large landslide visible from a distance near the highway.

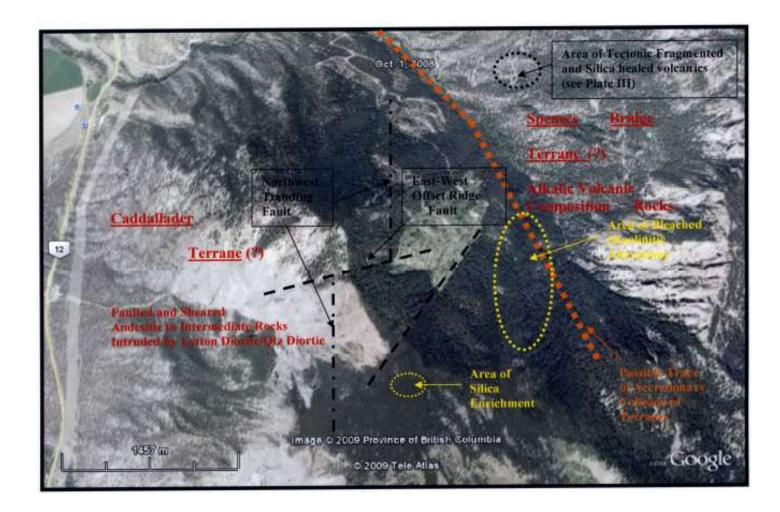


Figure 6

Airphoto depicts interpretation, both from preliminary filed surveys and photos, a NW trending structural trace of accretionary collision of Cadwallader and Spences Bridge terranes with related first-second order structures and potential epithermal signatures. Silica-healed breccia-fragmented alkalic volcanic rocks outlined above are interpreted to be tectonic-accretion related.

EXPLORATION

A geological, prospecting and sampling program was conducted on the McGillivray claim group from May 5 to May 13, 2011. The surveys were conducted by experienced geologists and prospectors.

Three new mineralized, northwest trending zones were identified, occurring east of the Fraser Fault system and west of suture-thrust fault structure. The zones are hosted in intermediate (andesitic) to a felsic (rhyolitic) volcanic sequence. Adjacent to the Fraser Fault is an iron-carbonate breccia horizon hosted in andesitic rocks and intruded by weakly mineralized-copper-bearing dioritic stock. This zone is proximal to the Alice Minfile occurrence. The iron carbonate hosts occasional stringers and breccia fragments of malachite-azurite mineralization.

Approximately 200-300 metres to the east is highly altered, siliceous rhyolite to dacitic rhyolite hosting abundant finely disseminated pyrite. This zone is approximately 200 metres wide and can be traced down slope for over 500 metres before masked by talus. Some 300 metres futher to the east, adjacent to probably accretionary-like or suture structure, is an intensely siliceous to quartz-muscoviet-pyrite bearing strata-bound structure hosted in rhyolitic rocks. This zone ranges between 60-00 metres wide and traceable for 1500 metres trending north-westerly.

A total of 95 soil and rock samples were collected, majority obtained over the mineralized zones (see figure xx for results).

The iron carbonate breccia hosts some of the highest silver-copper-zinc values obtained from the property. Of the 10 rock samples collected from the breccia, 7 were highly anomalous with high of 4.70% copper, 31.5 ppm silver and 4,411 ppm zinc. These values were come from samples that were collected from an old adit. Associated with these values are anomalous pathfinder elements including arsenic >1000 ppm and antimony 2,375 ppm.

Several of the samples collected from the greisen-like alteration zone contain anomalous copper and zinc with the highest values including 279 ppm and 230 ppm respectively.

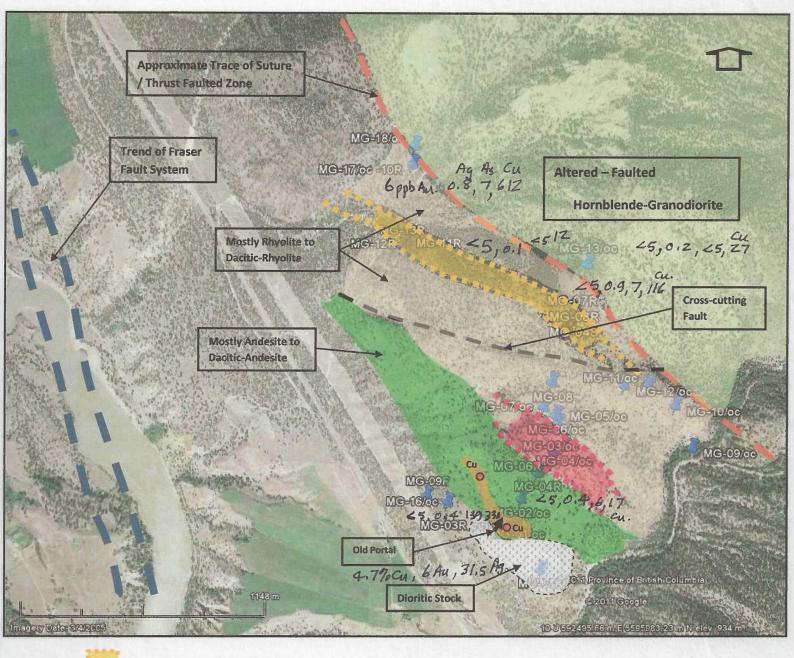
The sampling survey was of reconnaissance in nature, based on the initial sampling merits follow-up detail work in order to define the extension of the iron carbonate breccia and greisen mineralized structures.

Geochemistry 2011

The geological examination of the ridge section show that the rocks are predominately composed of underlying, mildly altered siliceous andesite carrying 2-4% disseminated pyrite. No other sulphides were observed. The andesite is cut by series of roughly east-west trending second and third order faults. Within some of these structures are well silicified, bleached, carbonitized and, what appears to be alunite alteration. Trenching exposed a mineral assemblage associated with epithermal environments. The anomalous Ag and Cu values previously found are further defined by soil and rock samples exposed by trenches into fresh rock. Additional trenching is warranted to follow the mineralized structure on the ridge saddle.

A mapped thrust fault may have also acted as a channel way to ascending mineral-bearing solutions altering the andesitic rocks observed along the escarpment, with the cross-cutting, east-west trending second and third order faults hosting epithermal, calcite-silica-alunite-bearing minerals. The ubiquitous pyrite associated with the andesite and concentrated mainly between the ridge escarpment and McGillivray creek to the east may also be spatially reflecting some distal epithermal system. As demonstrated by the highly iron-oxidized escarpment, that the disseminated pyrite, anomalous copper and silver and alteration minerals observed along the ridge are structurally controlled.

To the northeast, a new area of anomalous gold-in-soil results was found. Panned concentrate of soil collected near the site of the anomalous gold value contained at least one very fine crystalline gold flake along with a silvery grain believed to be electrum or telluride.


Bedrock observed along this area is composed of purplish coloured, alkali composition volcanic rocks associated with fine grain, creamy feldspathic phenocrysts. In some sections the volcanic rock appears as trachytic texture. In the area of the elevated gold-in-soil values the volcanic rocks are highly fragmented which is interpreted to be result of tectonic action. The fragments have been subsequently healed by banded white and pearl-white quartz veinlets, fracture-filling colliform silica and large bands of massive, dark, siliceous incipient-like chalcedony.

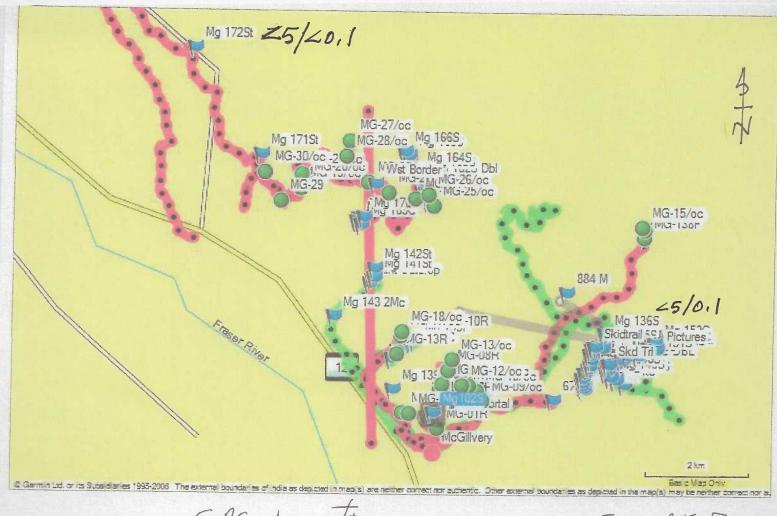
The Skoonka Creek epithermal gold property of Almaden Resources and Strongbow Exploration Inc. is about 14 kilometres to the southeast of the McGillivray property. This property was discovered in 2004. The showings are in the Pimainus Formation volcanics of the Spences Bridge Group. There are intrusives of the Mount Lytton Complex on the south end of this group of claims. The Pimainus Formation is thought to be the same formation as the altered volcanics of the McGillivray property. An initial drilling program completed in October 2005 on this prospect returned high grade gold values including 20.2 g/t gold over 12.8 metres, 26.8 g/t Au over 3.31 metres and 7.5 g/t Au over 4.1 metres (Chang and Gale, 2006).

To the north, about ten kilometres, on Blustry Mountain, is the Top Hat property. Ryan Exploration undertook a program of geology and soil geochemistry in 1984 (Richards, 1984). In 1987 Aerodat Ltd. of Mississauga, Ontario was commissioned by Kangold Resources to conduct an airborne geophysical survey over the property (Lechow, 1987). This survey consisted of a low level, helicopter supported programme which included a frequency VLF electromagnetic system, a high sensitivity caesium vapour magnetometer. The results of the geophysics were used to locate grids on the following project. In 1987 Mark Management Ltd. conducted a soil geochemical survey over a grid area of 900m x 100m in size. In general, anomalous values for Au, Ag, As, Cu, Hg, Mo, Sb, Pb and Zn outlined an open ended zone 650m long by 220m wide (Lechow, 1987). In 2003, Wyn Development completed geological mapping, prospecting, geochemistry and detailed Induced Polarization (IP). This property has several gold targets defined.

GENERAL PROPERTY GEOLOGY AND

MINERALIZED ZONES

Highly siliceous-pryitized zone


Highly siliceous rhyolite to dacitic-rhyolite pyritized zone.

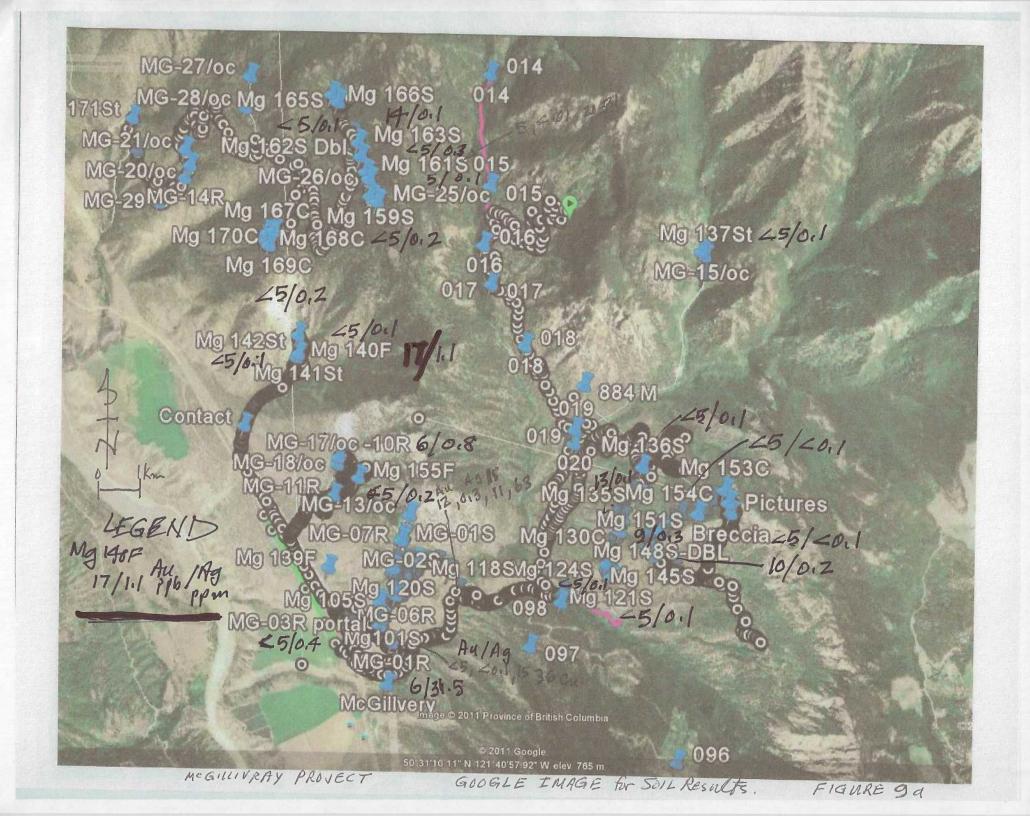
Copper-bearing iron-carbonate breccia.

Au Ag As Cu
A G, 1:4, 12, 22 Results in ppm

Phu Ppm Ppm Ppm

2011 RESULTS
Figure 7
ROCK SAMPLES

GPS Locations FIGURE 8
for McGillivray Area.


refer to Figure 9a, b+c
for Results.

LEGEND

Mg 1725t Z5/20.1

Sample# AU / Ag

ppb / ppm

Exploration has also occurred on Izman Creek, also known as the Bob and Cop showings, about 8 kilometres to the south. In 1972 there was an extensive soil sampling study (Jones, 1972a and b). This is a copper skarn or copper porphyry target. This property is underlain by the Mount Lytton Complex in contact with sediments, including crystalline limestone.

Small programs, including prospecting and local small grid geophysics and geochemistry, for copper and zinc, were done in this area, near the mouth of Izman Creek, on the Laurie claim by Weymark, 1980 and Allen (1988 and 1989).

Due to the large dextral slip movement on the Fraser Fault the properties on the western side of the fault were not reviewed by the author.

CONCLUSIONS

The historical data found, the work undertaken by Atocha, as well as the discovery of the nearby Skoonka Creek epithermal system, leads to the conclusion that there is enough data to justify further exploration of this property for an epithermal precious metal system. The early work was focused toward base metals, largely copper. The earlier work found the fault bounded altered volcanics in contact with the Mount Lytton Complex intrusives. These fault zones and the high level of alteration indicates the probability of a large hydrothermal system. This alteration is what attracted the porphyry copper exploration.

The close proximity of the regionally significant Fraser fault, the Mount Lytton Complex intrusives and the Spences Bridge Group volcanics created a focus point for potential deep seated hydrothermal fluids to react in near surface rocks.

This property needs more work to determine if there is a shear zone epithermal precious metal deposit. It is under explored historically for the precious metal potential, having been focused on its copper potential. The Spences Bridge Group volcanics were considered a low potential formation for precious metal deposits before the Skoonka Creek property was found. In light of this recent nearby discovery and the Top Hat property to the north east more work to determine the precious metal potential of this property is justified.

Evidence of accretionary collision along the upper reaches of McGillivray creek is a structural target to hosting an epithermal system.

Geochemical, mineral alteration and structural signatures have been identified that may vector to a potential epithermal system in the area of McGillivray creek valley. They include: an area of elevated whole rock geochemical values of Al-K-Na indicative of alunite/adularia alteration minerals; elevated arsenic indicative epithermal system with the potential of hosting gold at depth; kaolinitic (bleaching) alteration along the flanks of McGillivray creek; structurally controlled carbonitized-silica-alunite alteration along east-west second-third order structures; an area of silica enrichment and; banded quartz veins and fractured filled colliform silica and chalcedony hosted in tectonically fragmented alkalic volcanic rocks.

The evidence of silica enrichment or litho-capping, banded quartz veining and associated chalcedony, suggests that the level of erosion of the paleosurface is shallow and that the epithermal system may be preserved to depth.

Three new mineralized, northwest trending zones were identified, occurring east of the Fraser Fault system and west of suture-thrust fault structure. The zones are hosted in intermediate (andesitic) to a felsic (rhyolitic) volcanic sequence. Adjacent to the Fraser Fault is an iron-carbonate breccia (possible dolomite or ankerite affinity) horizon hosted in andesitic rocks and intruded by weakly mineralized-copper-bearing dioritic stock. This zone is proximal to the Alice Minfile occurrence. The iron carbonate hosts occasional stringers and breccia fragments of malachite-azurite mineralization.

Approximately 200-300 metres to the east is highly altered, siliceous rhyolite to dacitic rhyolite hosting abundant finely disseminated pyrite. This zone is approximately 200 metres wide and can be traced down slope for over 500 metres before masked by talus. Some 300 metres further to the east, adjacent to probably accretionary-like or suture structure, is an intensely siliceous to quartz-muscovite-pyrite bearing strata-bound structure hosted in rhyolitic rocks. This zone ranges between 60-00 metres wide and traceable for 1500 metres trending north-westerly.

The iron carbonate breccia hosts some of the highest silver-copper-zinc values obtained from the property. Of the 10 rock samples collected from the breccia, 7 were highly anomalous with high of 4.70% copper, 31.5 ppm silver and 4,411 ppm zinc. These values were come from samples that were collected from an old adit. Associated with these values are anomalous pathfinder elements including arsenic >1000 ppm and antimony 2,375 ppm.

Several of the samples collected from the greisen-like alteration zone contain anomalous copper and zinc with the highest values including 279 ppm and 230 ppm respectively.

The sampling survey was of reconnaissance in nature, based on the initial sampling merits follow-up detail work in order to define the extension of the iron carbonate breccia and greisen mineralized structures.

The author recommends detail prospecting and geological surveys should be conducted along the McGillivray creek watershed and south along the ridge in the area of the silica enrichment. These areas should be identified and geologically interpreted followed by geochemical soil surveys. This data once compiled would assist in developing an epithermal model for follow-up phased exploration programs.

RECOMMENDATIONS

Government permits and approvals will be required for the next stages of exploration as well as field preparation. Any costs of gaining the approval of work on this property with First Nations are not budgeted due to variation from Nation to Nation.

The first step in the exploration of this property should be extending the existing grid from its present location to the south. This is recommended to allow for systematic geochemical sampling and control of geological mapping. The area behind the ridge, especially the area with the elevated values in silver in soil samples, should be the focus of the geochemistry. The sampling should extend out from here, fill the area to the existing grid, and continue to the south toward Laluwissin Creek. As well some exploration of the area at the base of the landslide needs to be done to try and find extensions of the zone defined near the top of the ridge.

The road up the hill to the area of ridge samples needs to be extended to the ridge line area using an excavator. This will assist in sampling, give access for trenching and allow for future diamond drilling if targets are developed. The trenching should be focused near the area of the anomalous silver values found in soils on the rim and any other targets developed by the geological mapping and sampling.

The goal of this proposed program is to develop diamond drill targets to continue the exploration of this property. The recommended budget for this work should be:

Phase I

Phase I Program at \$210,000.00 should consist of more detailed geological mapping, geochemical soil and rock sampling, and expansion of anomalous zones, IP geophysics, extension of the road and trenching of targets.

Permits, approvals & planning		\$5,000.00
Senior Geologist	40 days @ \$600/day	\$24,000.00
J	• • • • • • • • • • • • • • • • • • • •	. ,
Geotechnician	40 days @ \$400/day	\$16,000.00
Geotechnician	40 days @ \$300/day	\$13,000.00
Labourer	40 days @ \$250/day	\$10,000.00
IP Geophysics		\$35,000.00
Equipment Rental		
(2) 4x4 Trucks	40 days @ \$75/day (X2)	\$6,000.00
(2) 4-Trax	40 days @ \$50/day (X2)	\$4,000.00
Camp @ \$3,000/month		\$4,500.00
Excavator - Trail Building		\$20,000.00
Excavator - Trenching		\$10,000.00
Petrographic Work		\$5,000.00
Food and Fuel, Mob/Demob		\$4,000.00
Assays	1500 samples @ \$15/sample	\$22,500.00
Field Supplies (pickets, tags, sample I	pags, flagging, etc.)	\$2,000.00
Preparation, Drafting and Report		\$10,000.00
Writing		
Contingency @ ~10%		\$19,000.00
TOTAL – Phase I		\$ 210,000.00

REFERENCES

Allen Guy, 1988:

Prospecting Report on the Laurie Mineral Claim, Mines and Petroleum Resources Assessment Report 18133

Allen Guy, 1989

Geological Report on the Laurie Mineral Claim (Rec, No, 7411) Kamloops Mining Division, Ministry of Energy, Mines and Petroleum Resources Assessment Report 18806

Asano, Edward, 1972

Geological Report on the Colt Resources Ltd. Property, Ministry of Energy, Mines and Petroleum Resources Assessment Report 04455

British Columbia Survey Branch, 1999-2003:

The Map Place: www.em.gov.bc.ca/Mining/Geolsurv/MapPlace Minfile: www.em.gov.bc.ca/Mining/Geolsurv/minfile/

British Columbia Geological Survey Branch and the Geological Survey of Canada, 1982-1994: British Columbia Regional Geochemical Survey Program, NTS 92I – Ashcroft, BC: RGS 40.

Chang, F and Gale, D., 2006

Report on Exploration Activities, Prospecting, Mapping, Geochemistry, Geophysics and Drilling, Skoonka Creek Property for Strongbow Exploration Inc., Ministry of Energy, Mines and Petroleum Resources Assessment Report 28182

Chisholm, Edward 0., 1971

Qualifying Report on the Lillooet Property, for Cuda Resources, Ministry of Energy, Mines and Petroleum Resources Assessment Report 03154

Duffell, S. and McTaggart, K. C., 1952:

Ashcroft Map Area, British Columbia (92I/NW). Geological Survey of Canada Memoir 262.

Gonzalez, R. A. 1987:

Geochemical Assessment Report on the Top Hat Property, Kamloops Mining Division, Ministry of Energy, Mines and Petroleum Resources Assessment Report 16,352B

Jones, H.M., 1972a

Geochemical Report on the Spot No 1; COP Nos 1, 2,25 to 30; Ken 2; Kent 1, 2 and Alpine 1-8 Claims, Part of the East Group, Ministry of Energy, Mines and Petroleum Resources Assessment Report 03937

1972b

Geochemical Report on the CB Nos 1-9 and REB Nos 1-4 Claims, Part of the West Group Izman Creek Area, Ministry of Energy, Mines and Petroleum Resources Assessment Report 03938

Lechow, W., 1987:

Report on Combined Helicopter Borne Electromagnetic Magnetic and VLF EMI Survey, Top Hat Property, Lillooet Area, Ministry of Energy, Mines and Petroleum Resources Assessment Report 16,352A

Mortimer, N. 1987:

Geological Map of the Pavilion Map Area, British Columbia. Geological Map of Part of NTS92I/13. British Columbia Geological Survey Branch Open File 1987-18.

Pezzot, E. T., 2004:

Assessment Report on a 3-D Induced Polarization and Resistivity Survey, July 2004, 21pp and maps.

Pezzot, E. T. and White, G. E., 1983:

Airborne VLF-EM and Magnetometer Survey on the Ace 1-8 Claims, Assessment Report 11,371

Read, P. B., 1988a:

Tertiary Stratigraphy and Industrial Minerals; Fraser River, Lytton to Gang Ranch. British Columbia Geological Survey Branch Open File 1988-29a.

1988b:

Tertiary Stratigraphy and Industrial Minerals, Fraser River, Lytton to Gang Ranch. British Columbia Geological Survey branch Open file 1933-2b.

1990:

Cretaceous and Tertiary Stratigraphy and Industrial Minerals, Hat Creek, Southern B.C. British Columbia Geological Survey branch Open File 1990-23.

2000:

Geology and Industrial Minerals of the Tertiary Basins, South-Central British Columbia, British Columbia Geological Survey branch, Geofile 2000-3.

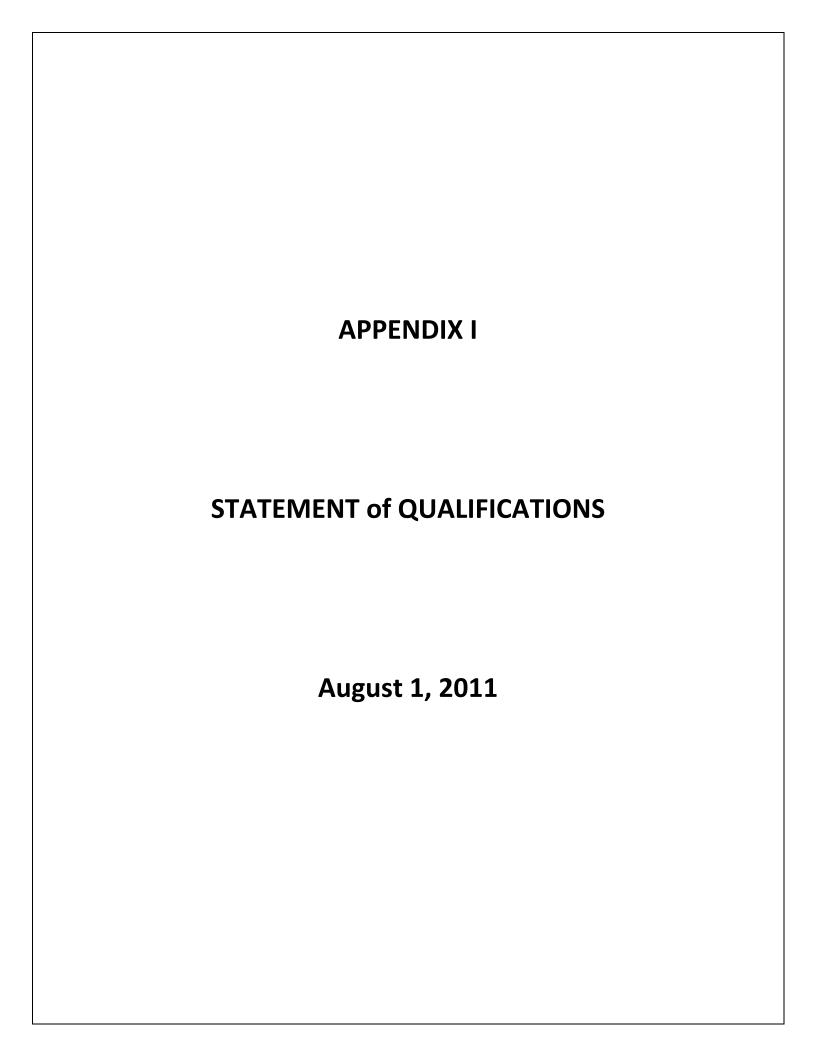
Richards, G. G., 1984:

Geochemical Report on the Top Hat Property, Top Hat 1-4 Mineral Claims, Kamloops Mining Division. British Columbia Ministry of Energy, Mines and Petroleum Resources Assessment Report 12,948.

Shearer, J.T. 2006:

Geochemical, Geological and Prospecting Assessment Report on the McGillivray Project, Lillooet, Kamloops Mining Division, November 30, 2006

Weymark, William J., 1980


Geological – Geochemical – Geophysical Surveys of the Laurie Mineral Claims Group, British Columbia Ministry of Energy, Mines and Petroleum Resources Assessment Report 8762

White, Glen E., 1978

Geochemical Report Acacia Mineral Dev. Corp., Kamloops Mining Division, British Columbia Ministry of Energy, Mines and Petroleum Resources Assessment Report 07027

White, G.P.E., 1980

Geological Fieldwork: A Summary of Field Activities and Current Research, 1980, British Columbia Ministry of Energy, Mines and Petroleum Resources, Pg 115-116 A Tennantite Occurrence McGillivray Creek -Lytton Lillooet Area.

STATEMENT OF QUALIFICATIONS

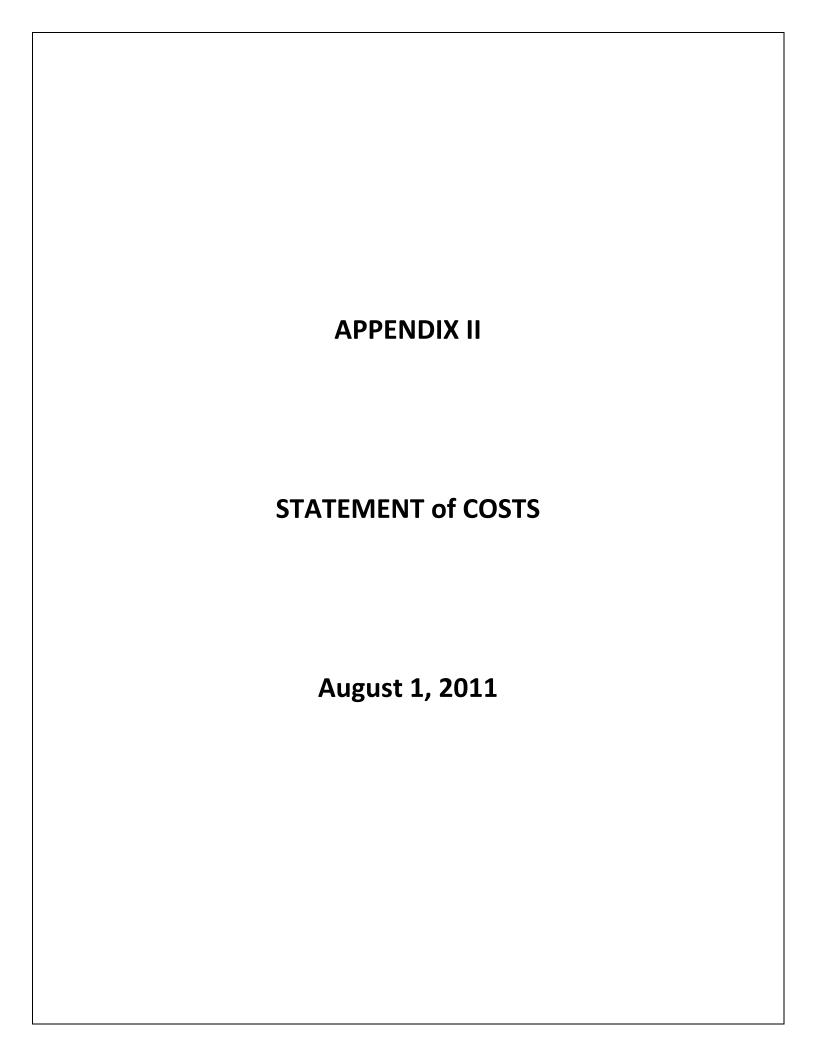
I, J. T. (Jo) Shearer, M.Sc.., P.Geo., of Unit 5 – 2330 Tyner St., Port Coquitlam, B.C. V3C 2Z1 do hereby certify that:

I am an independent consulting geologist and principal of Homegold Resources Ltd.

This Certificate applies to the Technical Report titled: GEOCHEMICAL, GEOLOGICAL and PROSPECTING ASSESSMENT REPORT on the McGILLIVRAY PROPERTY, LYTTON-LILLOOET AREA,, Prepared for Atocha Resources Inc., Vancouver, B.C., Prepared by myself, J. T. SHEARER, M.Sc., P.Geo., Consulting Geologist, #5-2330 Tyner St., Port Coquitlam, B.C., V3C 2Z1 dated August 1, 2011.

My academic qualifications are as follows: Bachelor of Science, (B.Sc.) in Honours Geology from the University of British Columbia, 1973, Associate of the Royal School of Mines (ARSM) from the Imperial College of Science and Technology in London, England in 1977 in Mineral Exploration, and Master of Science (M.Sc.) in Geology from the University of London, UK, 1977

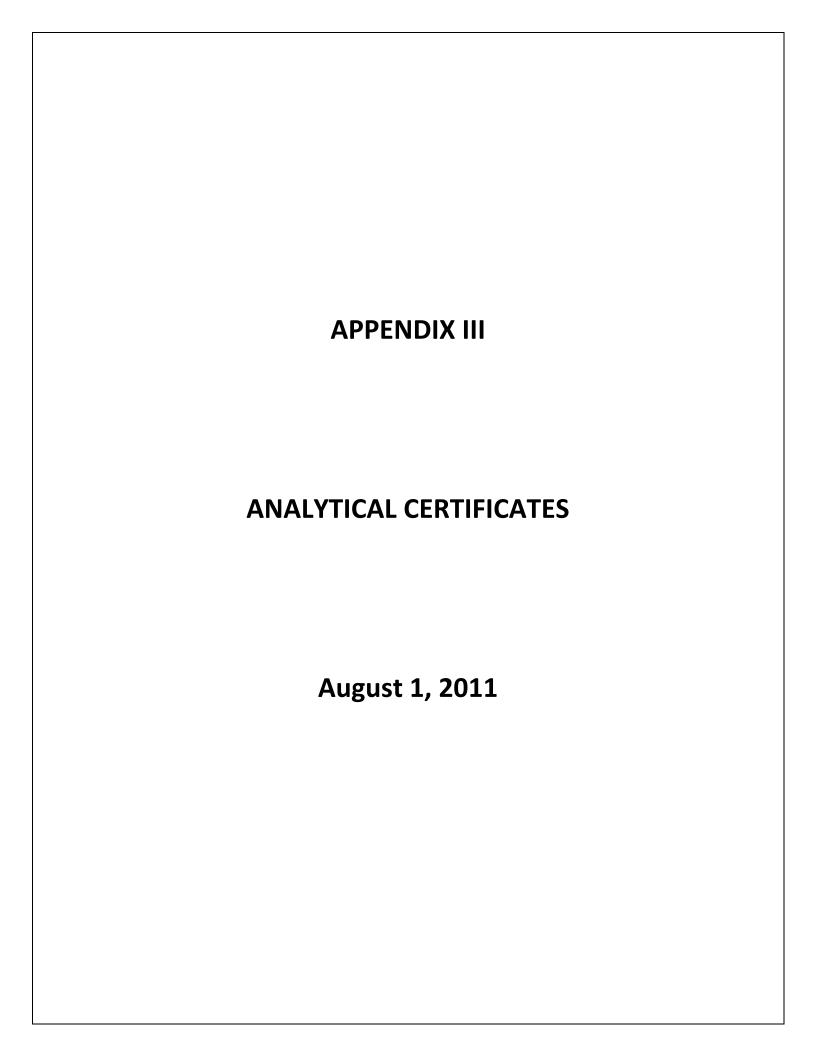
I am a Member in good standing of the Association of Professional Engineers and Geoscientists in the Province of British Columbia (APEGBC) Canada, Member No.19279 and a Fellow of the Geological Association of Canada, (Fellow No. F439)


I have been professionally active in the mining industry continuously for over 30 years since initial graduation from university and have worked on several nearby mineral properties.,

I inspected the McGillivray Property between May 4 and May 13, 2011. Working on May 4 to May 24, 2011.

That as of the date of the certificate, to the best of the my knowledge, information and belief, this technical report contains all scientific and technical information that is required to be disclosed to make the technical report not misleading.

I consent to the filing of the Technical Report with any stock exchange and other regulatory authority and any publication by them, including electronic publication in the public company files on their websites accessible by the public, of the Technical Report.


Signed and dated in Vancouver B.C.	\bigcirc \bigcirc	
August 1, 2011	Sheare	
Date	J.T. (Jo) Shearer, M.Sc., P.Geo.	

Statement of Costs McGillivray Project 2011

Wages	HST	Total without HST
J.T. Shearer, M.Sc., P.Geo., 8 days @ \$700/day, May 4-12, 2011	\$ 672.00	\$ 5,600.00
D. G. Cardinal, P.Geo. Field, 6.5 days @ \$600/day May 4-12, 2011	468.00	3,900.00
+ Office 3 days @ \$600/day,	216.00	1,800.00
Subtotal	\$ 1,356.00	\$ 10,700.00
Expenses		
Transportation:		
Truck 1 Rental, 8 truck days @ \$100/day	96.00	800.00
Truck 2 Rental, 8 truck days @ \$100/day	96.00	800.00
Fuel	22.39	375.48
Food & Meals	80.77	673.10
ATV 1 - Olynyk, 8 days @ \$60/day	57.60	480.00
ATV 2 – Homegold, 8 days @ \$60/day	57.60	480.00
Supplies – ribbon, bags, GPS, Radios, Mapping Tablet	48.21	401.79
Prospector, R. Olynyk, 8 days @ \$350/day; May 4-12, 2011	336.00	2,800.00
Computer Mapping	72.00	600.00
Assays	281.96	2,439.63
Word Processing and Reproduction	42.00	350.00
Report Writing	252.00	2,100.00
Subtotal	\$ 1,442.53	\$ 12,300.00
Total	\$ 2,798.53	\$ 23,600.00

Event # 4866224 File \$23,000 Work PAC Debit 7,693.46 Recorded May 25, 2011

Certificate of Analysis

Inspectorate Exploration & Mining Services Ltd. #200 - 11620 Horseshoe Way Richmond, British Columbia V7A 4V5 Canada

Date Received: 05/13/2011

Date Completed: 06/20/2011

Invoice:

Phone: 604-272-7818

Distribution List

Attention: Johan T. Shearer

Unit 5, 2330 Tyner Street Port Coquitlam, B.C. V3C 2Z1

Phone: (604)970-6402

EMail: jo@homegoldresourcesltd.com

Submitted By: Homegold Resources

Unit 5, 2330 Tyner Street

Port Coquitlam, B.C. V3C 2Z1

Attention: Johan T. Shearer

Project: McGillvery

Description:

Location	Samples	Type	Preparation Description
Vancouver, BC	26	Rock	SP-RX-2K/Rock/Chips/Drill Core
Vancouver, BC	69	Soil	SP-SS-1K/Soils, Humus Sediments 1kg dried, sieved and riffle split

Location	Method	Description
Vancouver, BC	30-AR-TR	30 Element, Aqua Regia, ICP, Trace Level
Vancouver, BC	Cu-AR-OR-AA	Cu, Ore Grade, AQR, AA
Vancouver, BC	Au-1AT-AA	Au, 1AT Fire Assay, AAS

The results of this assay were based solely upon the content of the sample submitted. Any decision to invest should be made only after the potential investment value of the claim or deposit has been determined based on the results of assays of multiple samples of geologic materials collected by the prospective investor or by a qualified person selected by him and based on an evaluation of all engineering data which is available concerning any proposed project. For our complete terms and conditions please see our website at www.inspectorate.com.

By

Mike Caron, Lab Manager

Homegold Resources Unit 5, 2330 Tyner Street Port Coquitlam, B.C. V3C 2Z1

		Au	Cu	Ag	Al	As	Ba	Bi	Ca	Cd	Co	Cr	Cu	Fe	Hg
		Au-1AT-AA	Cu-AR-OR-AA	30-AR-TR	30-AR-TR	30-AR-TR	30-AR-TR	30-AR-TR	30-AR-TR	30-AR-TR	30-AR-TR	30-AR-TR	30-AR-TR	30-AR-TR	30-AR-TR
Sample	Sample	ppb	%	ppm	%	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%	ppm
Description Mg-02R	Type Rock	5	0.01 4.70	31.5	0.01	>10000	10	2 <2	>10	0.5 41.7	27	1 11	>10000	5.19	<3
Mg-02R Mg-03R	Rock	<5	4.70	0.4	0.13	139	54	<2	0.41	<0.5	1	138	>10000	1.19	63
Mg-04R	Rock	<5		0.4	1.47	6	155	<2	0.41	<0.5	3	88	17	1.19	22
Mg-05R	Rock	<5		0.4	1.25	7	69	<2	0.20	<0.5	22	64	572	3.03	8
Mg-06R	Rock	6		1.4	1.57	9	64	<2	0.08	<0.5	6	126	57	2.77	6
Mg-07R	Rock	<5		0.9	3.17	7	35	<2	< 0.01	<0.5	7	66	116	5.98	<3
Mg-09F	Rock	<5		1.5	0.53	258	51	<2	6.59	1.7	4	51	1535	2.49	<3
Mg-10R	Rock	6		0.8	1.48	7	49	<2	1.18	< 0.5	19	67	612	4.10	<3
Mg-11R	Rock	<5		0.1	0.90	<5	30	<2	0.05	< 0.5	<1	83	12	2.46	<3
Mg-12R	Rock	<5		0.1	0.56	<5	<10	<2	0.03	< 0.5	2	85	6	2.03	<3
Mg-13R	Rock	<5		0.2	0.98	<5	18	<2	0.06	< 0.5	2	100	27	3.34	<3
Mg-14R	Rock	38		2.6	2.69	7	27	<2	1.43	< 0.5	47	74	5968	4.25	<3
Mg-130C	Rock	<5		< 0.1	4.53	<5	56	<2	3.24	< 0.5	21	28	84	4.93	<3
Mg-140F	Rock	17		1.1	1.34	<5	133	<2	0.73	< 0.5	15	66	2547	2.38	<3
Mg-143-2MC	Rock	<5		< 0.1	2.04	7	78	<2	0.42	< 0.5	3	85	36	1.95	<3
Mg-153C	Rock	<5		< 0.1	2.88	6	103	14	2.31	< 0.5	11	42	70	3.29	<3
Mg-167C	Rock	<5		< 0.1	0.97	9	1650	<2	>10	< 0.5	15	55	17	3.49	<3
Mg-168C	Rock	<5		0.2	2.10	7	281	<2	1.65	< 0.5	10	27	11	4.32	<3
Mg-170C	Rock	<5		< 0.1	4.04	6	58	9	2.66	< 0.5	6	18	13	2.46	<3
Mg-158C	Rock	<5		< 0.1	0.99	<5	100	<2	0.08	< 0.5	<1	92	10	2.73	<3
Breccia	Rock	<5		< 0.1	1.76	7	26	10	3.08	< 0.5	11	40	37	3.68	<3
Mg-116C	Rock	8		0.5	1.70	17	18	<2	0.85	< 0.5	16	20	285	4.80	<3
Mg-138F	Rock	<5		< 0.1	1.72	<5	126	3	1.49	< 0.5	9	65	30	1.99	<3
Mg-139F	Rock	<5		0.1	1.10	19	36	<2	6.90	< 0.5	11	36	54	3.54	<3
Mg-177C	Rock	<5		< 0.1	1.54	8	1210	<2	>10	< 0.5	16	59	40	3.23	<3
Mg-154C	Rock	<5		< 0.1	1.89	5	125	<2	2.58	< 0.5	15	15	44	4.26	<3
Mg-100S	Soil	<5		< 0.1	1.54	13	89	<2	0.47	< 0.5	15	33	36	2.84	<3
Mg-101S	Soil	<5		< 0.1	1.56	15	91	<2	0.44	< 0.5	15	29	36	3.10	<3
Mg-102S	Soil	<5		0.1	1.81	11	79	<2	0.52	< 0.5	16	32	59	3.32	<3
Mg-103S	Soil	<5		0.2	1.86	12	70	<2	0.56	< 0.5	16	30	54	3.36	<3
Mg-104S	Soil	8		0.2	2.79	10	86	<2	0.84	<0.5	17	38	81	3.92	<3
Mg-105S	Soil	<5		<0.1	2.14	11	80	<2	0.68	<0.5	15	34	48	3.34	<3
Mg-106S	Soil	6		0.2	2.13	24	128	<2	0.49	<0.5	14	31	63	3.62	<3
Mg-107S	Soil	7		0.1	2.22	12	98	<2	0.61	<0.5	22	30	104	3.54	<3
Mg-108S	Soil	7		0.6	2.50	12	114	<2	0.67	<0.5	25	29	141	4.11	17
Mg-109S	Soil	11		1.0	2.14	16	255	<2	0.46	<0.5	17	34	100	5.08	<3
Mg-110S	Soil	22		1.9	4.10	13	102	<2	1.38	<0.5	25	23	124	4.05	<3
Mg-111S	Soil	8		0.2	2.92 2.97	23	79 107	<2	0.60 0.73	<0.5 0.9	19 25	29	50 71	4.99 4.97	<3
Mg-112S	Soil	8		0.4		18 10		<2 <2	0.73		25 14	18 29	70	3.79	<3 <3
Mg-113S	Soil	6		0.2	2.55	10	114	<2	0.01	<0.5	14	29	/0	3.19	<3

Homegold Resources Unit 5, 2330 Tyner Street Port Coquitlam, B.C. V3C 2Z1

		Au	Cu	Ag	Al	As	Ba	Bi	Ca	Cd	Co	Cr	Cu	Fe	Hg
	~ .	Au-1AT-AA	Cu-AR-OR-AA	30-AR-TR	30-AR-TR	30-AR-TR	30-AR-TR	30-AR-TR	30-AR-TR	30-AR-TR	30-AR-TR	30-AR-TR	30-AR-TR	30-AR-TR	30-AR-TR
Sample Description	Sample	ppb 5	% 0.01	ppm 0.1	% 0.01	ppm 5	ppm 10	ppm 2	% 0.01	ppm 0.5	ppm	ppm 1	ppm 1	% 0.01	ppm 3
Mg-114S	Type Soil	<5	0.01	0.1	2.10	20	143	<2	0.01	<0.5	22	20	68	3.84	<3
Mg-115S	Soil	9		0.4	4.17	27	42	<2	2.42	<0.5	37	24	190	3.46	<3
Mg-117S	Soil	7		0.4	3.85	16	50	<2	1.64	0.8	38	33	153	5.24	<3
Mg-118S	Soil	12		0.3	2.59	11	138	<2	0.58	< 0.5	27	46	63	4.70	<3
Mg-119S	Soil	5		0.3	4.10	14	78	<2	1.69	< 0.5	31	54	108	5.21	<3
Mg-120S	Soil	53		0.3	1.71	20	73	<2	0.42	< 0.5	12	26	60	3.19	<3
Mg-121S	Soil	<5		0.1	2.80	9	127	<2	0.76	< 0.5	18	24	67	3.87	<3
Mg-122S	Soil	16		0.2	3.28	10	135	<2	1.09	< 0.5	19	33	67	4.02	<3
Mg-123S	Soil	10		0.2	2.04	15	99	<2	0.42	< 0.5	9	17	36	3.70	<3
Mg-124S	Soil	<5		0.2	2.68	5	123	<2	0.83	< 0.5	13	23	65	3.24	<3
Mg-125S	Soil	<5		0.2	3.38	6	118	<2	1.24	< 0.5	17	16	85	3.84	<3
Mg-126S	Soil	13		0.2	3.57	<5	208	<2	1.01	< 0.5	16	17	67	4.24	<3
Mg-127S	Soil	6		0.4	4.49	10	135	<2	1.70	< 0.5	25	19	158	5.63	<3
Mg-128S	Soil	5		0.2	4.42	5	43	<2	2.05	< 0.5	21	24	104	4.88	<3
Mg-129S	Soil	<5		0.2	0.20	9	1184	4	>10	< 0.5	13	1	20	5.00	<3
Mg-131S	Soil	7		0.1	2.43	5	389	<2	1.38	< 0.5	15	17	34	3.38	<3
Mg-132S	Soil	<5		< 0.1	2.60	<5	217	<2	1.07	< 0.5	15	25	41	3.40	<3
Mg-133S	Soil	8		< 0.1	2.18	<5	152	<2	0.68	< 0.5	13	37	26	2.99	<3
Mg-134S (A)	Soil	<5		0.2	2.33	6	135	<2	0.66	< 0.5	14	42	29	3.09	<3
Mg-134S Dup (B)	Soil	<5		0.2	2.29	<5	200	2	0.79	< 0.5	14	38	29	3.14	<3
Mg-135S	Soil	13		0.1	2.48	6	130	2	0.80	< 0.5	13	39	30	3.16	<3
Mg-136S	Soil	<5		0.1	1.69	<5	106	3	0.70	< 0.5	10	28	17	2.40	<3
Mg-137ST	Soil	<5		0.1	2.06	7	77	<2	1.44	< 0.5	14	47	34	3.08	<3
Mg-140ST	Soil	<5		<0.1	1.80	<5	309	<2	2.67	<0.5	9	11	36	2.56	<3
Mg-142ST	Soil	<5		<0.1	1.60	<5	405	<2	2.63	<0.5	8	10	24	2.30	<3
Mg-144S	Soil	<5		0.1	2.45	<5	105	<2	0.75	<0.5	18	43	29	3.95	<3
Mg-145S	Soil	18		0.2	2.30 2.00	<5 <5	110 152	<2	0.84	<0.5	13 12	36 36	39	3.60	<3 <3
Mg-146S Mg-147S	Soil Soil	14 <5		0.1 0.5	2.00	<5 5	132	3	0.76 0.70	<0.5 <0.5	12	30	32 25	3.07 3.22	9
Mg-14/S Mg-148S (A)	Soil	10		0.3	3.29	<5	80	3	1.38	<0.5	13	39	76	4.03	<3
Mg-148S Dup (B)	Soil	<5		0.2	3.29	<5	101	6	1.36	<0.5	17	34	66	3.94	3
Mg-149S	Soil	<5		0.1	3.67	<5	91	<2	1.27	<0.5	16	39	56	3.95	<3
Mg-150S	Soil	8		0.2	4.52	7	108	5	1.44	<0.5	14	35	59	3.89	<3
Mg-151S	Soil	9		0.3	4.24	7	145	6	1.42	<0.5	17	40	63	3.93	<3
Mg-152S	Soil	6		0.3	3.07	7	91	<2	1.42	<0.5	18	36	70	3.91	<3
Mg-159S	Soil	<5		0.2	2.87	7	100	<2	0.77	<0.5	13	33	33	3.03	<3
Mg-160S	Soil	<5		0.2	3.64	9	140	4	1.35	< 0.5	13	38	35	3.28	<3
Mg-161S	Soil	5		0.1	3.54	5	158	3	1.15	< 0.5	15	35	40	3.51	<3
Mg-162S (A)	Soil	<5		< 0.1	3.39	7	203	4	1.10	< 0.5	12	29	31	3.19	<3
Mg-162S Dup (B)	Soil	<5		0.1	3.50	9	181	2	1.15	< 0.5	14	28	35	3.43	<3

Homegold Resources Unit 5, 2330 Tyner Street Port Coquitlam, B.C. V3C 2Z1

		Au	Cu	Ag	Al	As	Ba	Bi	Ca	Cd	Co	Cr	Cu	Fe	Hg
		Au-1AT-AA	Cu-AR-OR-AA	30-AR-TR											
Sample	Sample	ppb	%	ppm	%	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%	ppm
Description	Type	5	0.01	0.1	0.01	5	10	2	0.01	0.5	1	1	1	0.01	3
Mg-163S	Soil	<5		0.3	2.79	<5	169	<2	0.73	< 0.5	9	21	20	2.33	<3
Mg-164S	Soil	8		0.1	3.74	7	101	3	1.11	< 0.5	13	42	29	3.13	<3
Mg-165S	Soil	<5		0.1	1.97	<5	76	3	0.61	< 0.5	8	28	15	2.09	<3
Mg-166S	Soil	14		0.1	3.11	7	124	<2	1.44	< 0.5	17	38	39	3.56	<3
Mg-169C	Soil	<5		0.2	2.64	15	164	5	1.27	< 0.5	19	33	40	4.19	<3
Mg-171ST	Soil	7		< 0.1	2.39	<5	47	3	1.92	< 0.5	16	34	26	2.97	<3
Mg-172ST	Soil	<5		< 0.1	1.89	10	76	<2	1.80	< 0.5	15	36	31	3.38	<3
Mg-173S	Soil	<5		0.3	3.40	5	122	2	1.18	< 0.5	15	45	65	4.02	<3
Mg-174S	Soil	7		< 0.1	2.12	7	308	<2	0.46	< 0.5	14	15	62	3.82	<3
Mg-175S	Soil	7		0.1	1.72	10	290	<2	0.64	< 0.5	12	14	73	4.60	<3
Mg-176S	Soil	20		0.1	2.30	8	149	<2	0.63	< 0.5	13	16	82	4.53	<3
Mg-01S	Soil	15		1.1	3.60	7	147	<2	0.37	< 0.5	2	5	149	5.35	<3
Mg-02S	Soil	11		0.5	2.80	<5	138	<2	0.19	< 0.5	<1	1	56	3.00	<3
Mg-03S	Soil	28		1.2	3.31	14	106	<2	0.12	< 0.5	2	6	279	7.98	<3
Mg-04S	Soil	6		0.4	2.02	7	164	<2	0.06	< 0.5	<1	1	114	2.58	<3

Homegold Resources Unit 5, 2330 Tyner Street Port Coquitlam, B.C. V3C 2Z1

		K	La	Mg	Mn	Мо	Na	Ni	P	Pb	Sb	Sc	Sr	Ti	Tl
		30-AR-TR	30-AR-TR	30-AR-TR	30-AR-TR	30-AR-TR	30-AR-TR	30-AR-TR	30-AR-TR	30-AR-TR	30-AR-TR	30-AR-TR	30-AR-TR	30-AR-TR	30-AR-TR
Sample	Sample	%	ppm	%	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm
Description	Type	0.01	2	0.01	5	1	0.01	1	10	2	2	1	1	0.01	10
Mg-02R	Rock	0.02	<2	6.41	1627	<1	< 0.01	8	177	71	2375	2	364	< 0.01	<10
Mg-03R	Rock	0.18	5	0.45	155	1	0.07	4	123	12	14	1	17	0.02	<10
Mg-04R	Rock	0.65	<2	1.18	585	2	0.05	7	322	3	<2	2	11	0.09	<10
Mg-05R	Rock	0.07	<2	0.56	206	<1	0.05	10	786	6	<2	5	21	0.39	<10
Mg-06R	Rock	0.90	3	1.58	630	4	0.02	27	236	11	<2	4	4	0.09	<10
Mg-07R	Rock	0.28	<2	3.65	2283	17	0.03	<1	155	8	<2	22	3	0.02	<10
Mg-09F	Rock	< 0.01	2	2.36	1144	<1	< 0.01	4	1125	5	<2	6	99	< 0.01	<10
Mg-10R	Rock	0.11	<2	1.16	530	<1	0.14	13	522	7	<2	8	46	0.12	<10
Mg-11R	Rock	0.09	2	1.13	258	<1	0.07	2	334	3	<2	6	6	0.03	<10
Mg-12R	Rock	0.04	3	0.72	198	<1	0.09	1	297	3	<2	5	12	0.06	<10
Mg-13R	Rock	0.14	2	1.03	409	1	0.04	3	239	2	<2	9	8	0.05	<10
Mg-14R	Rock	0.07	<2	1.40	507	<1	0.18	20	423	9	<2	13	168	0.16	<10
Mg-130C	Rock	0.19	<2	1.46	359	<1	0.45	5	513	<2	<2	17	123	0.06	<10
Mg-140F	Rock	0.19	3 2	0.91	364	<1 2	0.06	8	609	6	<2	2 3	44	0.17	<10
Mg-143-2MC	Rock	0.31		1.99	354		0.03	5	342	3 4	<2	4	20	0.10	<10
Mg-153C	Rock	0.08 0.11	15 8	0.87 1.67	415 1511	<1 <1	0.24 0.02	16 33	1639 941	6	<2 <2	4 6	817 334	0.56 <0.01	<10 <10
Mg-167C	Rock Rock	0.11	18	1.86	749		0.02	33 <1	2246	8	<2	6	334 84	0.03	<10
Mg-168C Mg-170C	Rock	0.17	17	0.64	526	<1 <1	0.04	8	1031	6	<2	7	257	0.03	<10
Mg-170C Mg-158C	Rock	0.16	3	0.04	150	2	0.06	1	463	3	<2	7	20	0.05	<10
Breccia	Rock	0.16	14	1.05	457	<1	0.06	5	1593	6	<2	11	59	0.03	<10
Mg-116C	Rock	0.14	<2	0.91	330	<1	0.05	12	1033	5	<2	10	24	0.33	<10
Mg-138F	Rock	0.09	12	0.85	430	<1	0.03	23	665	4	<2	5	294	0.23	<10
Mg-139F	Rock	0.10	2	2.26	892	2	0.03	8	854	4	<2	3	193	0.24	<10
Mg-177C	Rock	0.03	7	0.32	1332	<1	< 0.03	37	489	5	<2	7	198	< 0.00	<10
Mg-154C	Rock	0.13	16	1.46	859	<1	0.06	9	1877	8	<2	7	239	0.16	<10
Mg-100S	Soil	0.34	5	0.73	627	<1	0.02	33	427	5	<2	5	35	0.08	<10
Mg-101S	Soil	0.38	5	0.74	698	<1	0.02	29	439	5	<2	5	33	0.08	<10
Mg-102S	Soil	0.45	5	0.86	671	<1	0.02	32	365	5	<2	6	33	0.08	<10
Mg-103S	Soil	0.29	4	0.86	540	<1	0.03	26	331	3	<2	6	41	0.09	<10
Mg-104S	Soil	0.37	5	1.24	443	<1	0.05	33	401	4	<2	8	61	0.11	<10
Mg-105S	Soil	0.35	5	0.99	477	<1	0.04	30	426	2	<2	6	63	0.10	<10
Mg-106S	Soil	0.52	6	0.88	444	<1	0.02	33	377	8	<2	6	41	0.11	<10
Mg-107S	Soil	0.39	5	0.91	605	<1	0.02	34	342	6	<2	7	49	0.12	<10
Mg-108S	Soil	0.49	5	0.83	764	<1	0.02	41	528	8	<2	7	51	0.12	<10
Mg-109S	Soil	0.50	7	0.81	694	2	0.02	56	729	13	<2	8	38	0.11	<10
Mg-110S	Soil	0.40	6	1.29	651	<1	0.02	37	286	8	<2	10	82	0.11	<10
Mg-111S	Soil	1.06	5	1.46	1138	<1	0.02	31	814	6	<2	14	56	0.17	<10
Mg-112S	Soil	0.59	5	1.43	1404	<1	0.02	17	520	8	<2	14	48	0.17	<10
Mg-113S	Soil	0.47	6	0.93	592	<1	0.01	23	662	7	<2	10	47	0.10	<10

Homegold Resources Unit 5, 2330 Tyner Street Port Coquitlam, B.C. V3C 2Z1

		K	La	Mg	Mn	Mo	Na	Ni	P	Pb	Sb	Sc	Sr	Ti	Tl
		30-AR-TR	30-AR-TR	30-AR-TR	30-AR-TR	30-AR-TR	30-AR-TR	30-AR-TR	30-AR-TR	30-AR-TR	30-AR-TR	30-AR-TR	30-AR-TR	30-AR-TR	30-AR-TR
Sample	Sample	%	ppm	%	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm
Description	Type	0.01	2	0.01	5	1	0.01	1	10	2	2	1	1	0.01	10
Mg-114S	Soil	0.45	9	0.89	2705	<1	0.01	20	1326	14	<2	12	47	0.06	<10
Mg-115S	Soil	0.31	<2	1.36	859	<1	0.03	29	376	15	<2	9	102	0.06	<10
Mg-117S	Soil	0.28	3	2.54	1100	<1	0.08	81	461	82	<2	11	83	0.15	<10
Mg-118S	Soil	0.65	8	1.59	2144	<1	0.01	29	801	13	<2	11	36	0.07	<10
Mg-119S	Soil	0.58	4	2.38	1108	<1	0.11	86	688	,	<2	16	79	0.17	<10
Mg-120S	Soil	0.27	6 4	0.78	630 994	<1	0.01	20	341	5 4	<2	7 8	31 99	0.09	<10 <10
Mg-121S	Soil	0.53	5	1.27		<1	0.04	23 37	369 383	2	<2	8		0.15	<10
Mg-122S Mg-123S	Soil Soil	0.56 0.55	5 4	1.45 1.02	812 652	<1 <1	0.05 0.02	13	361	4	<2 <2	8 7	145 67	0.19 0.09	<10
Mg-124S	Soil	0.33	6	0.88	578	<1	0.02	18	309	3	<2	7	93	0.09	<10
Mg-1243 Mg-125S	Soil	0.42	3	1.07	522	<1	0.02	16	383	3	<2	8	127	0.10	<10
Mg-126S	Soil	0.23	4	1.07	761	<1	0.03	14	441	4	<2	8	82	0.08	<10
Mg-1203 Mg-127S	Soil	0.29	3	1.64	1716	<1	0.02	14	524	3	<2	24	124	< 0.13	<10
Mg-128S	Soil	0.26	<2	1.98	1266	<1	0.03	11	293	<2	<2	18	96	0.03	<10
Mg-129S	Soil	0.03	<2	6.78	2592	<1	< 0.01	2	99	8	<2	3	265	< 0.01	<10
Mg-131S	Soil	0.35	11	0.95	707	<1	0.03	11	302	5	<2	9	334	0.06	<10
Mg-132S	Soil	0.41	9	0.80	833	<1	0.03	15	274	3	<2	9	211	0.09	<10
Mg-133S	Soil	0.31	10	0.67	526	<1	0.02	25	284	3	<2	6	98	0.06	<10
Mg-134S (A)	Soil	0.26	10	0.70	342	<1	0.02	35	363	6	<2	7	97	0.13	<10
Mg-134S Dup (B)	Soil	0.26	9	0.75	414	<1	0.02	33	415	5	<2	6	98	0.13	<10
Mg-135S	Soil	0.24	11	0.79	625	<1	0.03	33	510	6	<2	8	130	0.15	<10
Mg-136S	Soil	0.38	9	0.46	610	<1	0.03	20	433	5	<2	5	114	0.14	<10
Mg-137ST	Soil	0.12	12	1.06	713	<1	0.04	41	728	7	<2	6	147	0.10	<10
Mg-140ST	Soil	0.17	7	0.83	593	<1	0.03	7	788	4	<2	5	138	0.04	<10
Mg-142ST	Soil	0.16	6	0.75	589	<1	0.04	6	748	6	<2	5	152	0.03	<10
Mg-144S	Soil	0.44	11	0.97	869	<1	0.02	24	295	4	<2	9	86	0.11	<10
Mg-145S	Soil	0.36	10	0.72	411	<1	0.03	29	203	6	<2	9	130	0.17	<10
Mg-146S	Soil	0.31	12	0.62	528	<1	0.02	30	357	6	<2	7	111	0.15	<10
Mg-147S	Soil	0.30	9	0.72	807	<1	0.02	28	526	7	<2	8	85	0.16	<10
Mg-148S (A)	Soil	0.12	7	1.15	275	<1	0.04	43	482	4	<2	13	443	0.25	<10
Mg-148S Dup (B)	Soil	0.18	8	1.24	505	<1	0.05	43	592	6	<2	12	522	0.29	<10
Mg-149S	Soil	0.25	10	1.08	379	<1	0.03	41	514	5	<2	11	219	0.27	<10
Mg-150S	Soil	0.21	10	1.04	259	<1	0.03	45	632	4	<2	11	161	0.27	<10
Mg-151S	Soil	0.23	9	0.95	314	<1	0.04	45	563	5	<2	13	669	0.33	<10
Mg-152S	Soil	0.39	13	1.07	707	<1	0.03	34	477	21	<2	10	191	0.23	<10
Mg-159S	Soil	0.19	8	0.75	348	<1	0.02	31	2107	4	<2	6	89	0.12	<10
Mg-160S	Soil	0.16	14	0.88	422	<1	0.03	33	749	6	<2	9	291	0.20	<10
Mg-161S	Soil	0.22	12	0.95	406	<1	0.02	33	615	4	<2	9	267	0.23	<10
Mg-162S (A)	Soil	0.18	15	0.79	434	<1	0.02	25	664	5	<2	8	355	0.15	<10
Mg-162S Dup (B)	Soil	0.15	17	0.85	563	<1	0.04	28	803	4	<2	9	331	0.15	<10

Homegold Resources Unit 5, 2330 Tyner Street Port Coquitlam, B.C. V3C 2Z1

		K	La	Mg	Mn	Mo	Na	Ni	P	Pb	Sb	Sc	Sr	Ti	Tl
		30-AR-TR													
Sample	Sample	%	ppm	%	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm
Description	Type	0.01	2	0.01	5	1	0.01	1	10	2	2	1	1	0.01	10
Mg-163S	Soil	0.36	11	0.55	303	<1	0.02	21	442	7	<2	5	238	0.14	<10
Mg-164S	Soil	0.35	14	1.01	349	<1	0.02	42	862	4	<2	8	202	0.19	<10
Mg-165S	Soil	0.23	5	0.57	685	<1	0.02	26	1097	3	<2	4	76	0.14	<10
Mg-166S	Soil	0.38	11	1.08	969	<1	0.05	51	535	6	<2	8	384	0.23	<10
Mg-169C	Soil	0.20	9	1.76	742	<1	0.13	20	681	37	<2	11	733	0.32	<10
Mg-171ST	Soil	0.10	10	1.60	476	<1	0.05	48	1139	5	<2	4	225	0.16	<10
Mg-172ST	Soil	0.08	10	1.29	551	<1	0.06	37	739	6	<2	6	210	0.11	<10
Mg-173S	Soil	0.47	18	1.24	486	<1	0.02	39	502	10	<2	10	203	0.14	<10
Mg-174S	Soil	0.50	9	0.74	730	<1	< 0.01	16	339	5	<2	11	52	0.05	<10
Mg-175S	Soil	0.34	9	0.52	405	<1	< 0.01	14	304	8	<2	15	36	0.03	<10
Mg-176S	Soil	0.46	13	0.88	863	<1	< 0.01	16	280	9	<2	11	43	0.03	<10
Mg-01S	Soil	0.51	<2	2.16	1050	4	0.03	2	810	13	<2	18	28	0.05	<10
Mg-02S	Soil	0.71	<2	1.69	472	<1	0.01	<1	397	8	<2	17	10	0.11	<10
Mg-03S	Soil	0.59	3	1.88	791	6	0.07	2	811	32	<2	17	38	0.05	<10
Mg-04S	Soil	0.69	<2	1.24	364	22	< 0.01	<1	254	7	<2	15	28	0.17	<10

Homegold Resources Unit 5, 2330 Tyner Street Port Coquitlam, B.C. V3C 2Z1

			***		_
		V	W	Zn	Zr
Sample	Comple	30-AR-TR	30-AR-TR	30-AR-TR	30-AR-TR
Description	Sample Type	ppm 1	ppm 10	ppm 2	ppm 2
Mg-02R	Rock	101	45	4411	<2
Mg-03R	Rock	7	<10	67	<2
Mg-04R	Rock	7	<10	75	2
Mg-05R	Rock	105	<10	45	4
Mg-06R	Rock	38	<10	159	<2
Mg-07R	Rock	276	<10	182	<2
Mg-09F	Rock	30	<10	125	4
Mg-10R	Rock	173	<10	81	4
Mg-11R	Rock	40	<10	41	<2
Mg-12R	Rock	37	<10	33	<2
Mg-13R	Rock	85	<10	62	<2
Mg-14R	Rock	149	<10	58	<2
Mg-130C	Rock	243	<10	66	<2
Mg-140F	Rock	52	<10	52	<2
Mg-143-2MC	Rock	26	<10	58	<2
Mg-153C	Rock	145	<10	60	13
Mg-167C	Rock	50	<10	57	3
Mg-168C	Rock	71	<10	106	4
Mg-170C	Rock	59	<10	61	25
Mg-158C	Rock	11	<10	21	<2
Breccia	Rock	133	<10	67	14
Mg-116C	Rock	173	<10	44	2
Mg-138F	Rock	61	<10	46	14
Mg-139F	Rock	75	<10	72	<2
Mg-177C	Rock	58	<10	42	2
Mg-154C	Rock	135	<10	74	7
Mg-100S	Soil	66	<10	107	5
Mg-101S	Soil	79	<10	121	5
Mg-102S	Soil	80	<10	111	5
Mg-103S	Soil	95	<10	89	4
Mg-104S	Soil	103	<10	78	7
Mg-105S	Soil	92	<10	88	5
Mg-106S	Soil	74	<10	146	6
Mg-107S	Soil	79	<10	124	5
Mg-108S	Soil	81	<10	152	5
Mg-109S	Soil	78	<10	230	3
Mg-110S	Soil	83	<10	182	6
Mg-111S	Soil	87	<10	161	7
Mg-112S	Soil	88	<10	228	4
Mg-113S	Soil	65	<10	149	8

Homegold Resources Unit 5, 2330 Tyner Street Port Coquitlam, B.C. V3C 2Z1

		w y	***	7	7
		V 20 AD TD	W 20 AD TD	Zn	Zr
Sample	Sample	30-AR-TR	30-AR-TR	30-AR-TR	30-AR-TR
Description	Type	ppm 1	ppm 10	ppm 2	ppm 2
Mg-114S	Soil	53	<10	151	<2
Mg-115S	Soil	85	<10	89	3
Mg-117S	Soil	98	<10	218	7
Mg-1178	Soil	79	<10	178	3
Mg-119S	Soil	110	<10	133	11
Mg-120S	Soil	68	<10	106	4
Mg-121S	Soil	96	<10	138	5
Mg-122S	Soil	95	<10	100	9
Mg-123S	Soil	105	<10	108	5
Mg-124S	Soil	86	<10	87	7
Mg-125S	Soil	110	<10	76	3
Mg-126S	Soil	107	<10	114	3
Mg-127S	Soil	164	<10	88	<2
Mg-128S	Soil	136	<10	79	2
Mg-129S	Soil	31	<10	87	<2
Mg-131S	Soil	78	<10	79	6
Mg-132S	Soil	86	<10	94	4
Mg-133S	Soil	65	<10	66	7
Mg-134S (A)	Soil	66	<10	71	15
Mg-134S Dup (B)	Soil	66	<10	68	15
Mg-135S	Soil	70	<10	81	17
Mg-136S	Soil	51	<10	86	7
Mg-137ST	Soil	73	<10	57	9
Mg-140ST	Soil	63	<10	52	2
Mg-142ST	Soil	52	<10	45	2
Mg-144S	Soil	91	<10	79	12
Mg-145S	Soil	86	<10	78	23
Mg-146S	Soil	70	<10	81	14
Mg-147S	Soil	70	<10	87	18
Mg-148S (A)	Soil	91	<10	56	24
Mg-148S Dup (B)	Soil	98	<10	65	26
Mg-149S	Soil	92	<10	69	33
Mg-150S	Soil	84	<10	77	39
Mg-151S	Soil	86	<10	65	39
Mg-152S	Soil	104	<10	71	30
Mg-159S	Soil	61	<10	101	8
Mg-160S	Soil	82	<10	70	15
Mg-161S	Soil	79	<10	73	25
Mg-162S (A)	Soil	67	<10	73	17
Mg-162S Dup (B)	Soil	75	<10	73	19

Homegold Resources Unit 5, 2330 Tyner Street Port Coquitlam, B.C. V3C 2Z1

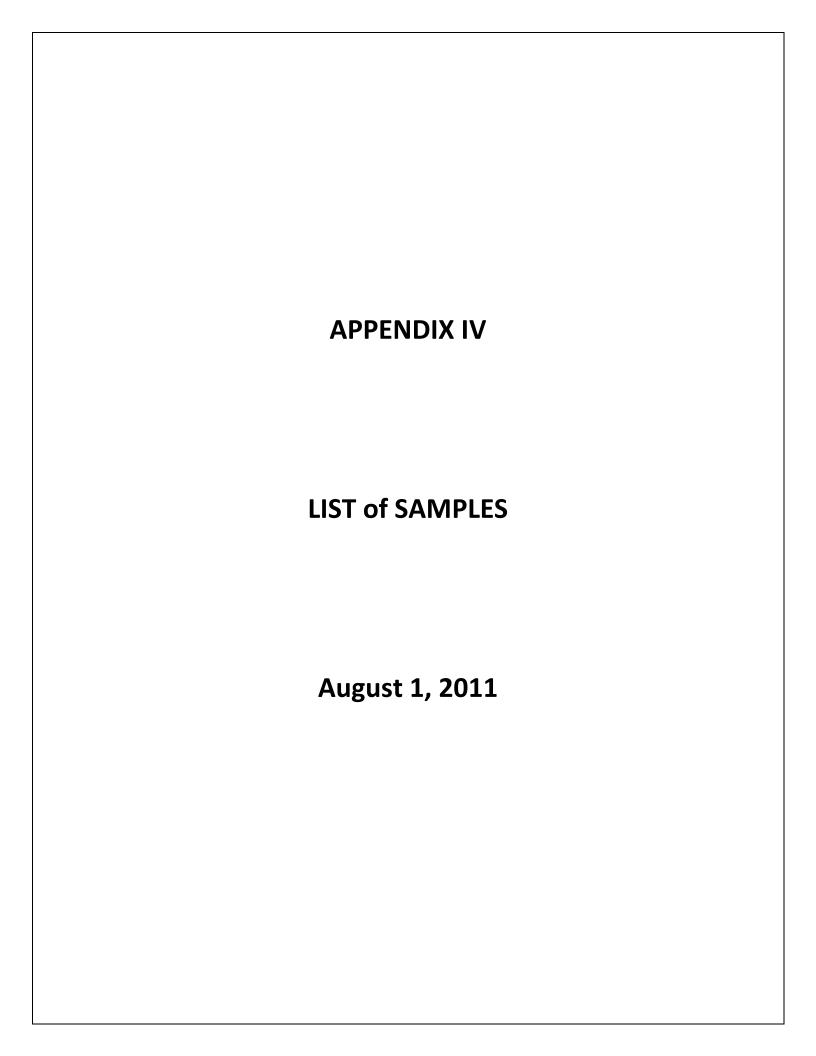
		V	W	Zn	Zr
		30-AR-TR	30-AR-TR	30-AR-TR	30-AR-TR
Sample	Sample	ppm	ppm	ppm	ppm
Description	Type	1	10	2	2
Mg-163S	Soil	42	<10	100	20
Mg-164S	Soil	66	<10	84	21
Mg-165S	Soil	41	<10	144	4
Mg-166S	Soil	77	<10	93	22
Mg-169C	Soil	122	<10	79	18
Mg-171ST	Soil	65	<10	57	11
Mg-172ST	Soil	97	<10	66	8
Mg-173S	Soil	77	<10	72	14
Mg-174S	Soil	81	<10	82	3
Mg-175S	Soil	101	<10	92	<2
Mg-176S	Soil	107	<10	77	3
Mg-01S	Soil	160	<10	305	<2
Mg-02S	Soil	52	<10	205	<2
Mg-03S	Soil	186	<10	377	<2
Mg-04S	Soil	17	<10	250	<2

Homegold Resources Unit 5, 2330 Tyner Street Port Coquitlam, B.C. V3C 2Z1

		Au	Cu	Ag	Al	As	Ba	Bi	Ca	Cd	Co	Cr	Cu	Fe	Hg
		Au-1AT-AA	Cu-AR-OR-AA	30-AR-TR	30-AR-TR	30-AR-TR	30-AR-TR	30-AR-TR	30-AR-TR	30-AR-TR	30-AR-TR	30-AR-TR	30-AR-TR	30-AR-TR	30-AR-TR
Sample	Sample	ppb	%	ppm	%	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%	ppm
Description	Type	5	0.01	0.1	0.01	5	10	2	0.01	0.5	1	1	1	0.01	3
Mg-02R	Rock			31.5	0.13	>10000	13	<2	>10	41.7	27	11	>10000	5.19	<3
Mg-02R Dup				31.9	0.13	>10000	15	<2	>10	42.6	28	12	>10000	5.19	<3
QCV1105-01356-0002-BLK				< 0.1	< 0.01	<5	<10	<2	< 0.01	< 0.5	<1	<1	<1	< 0.01	<3
STD-CDN-ME-6 expected				101									6130		
STD-CDN-ME-6 result	~ .			>100			=0			0.5			6269		
Mg-170C	Rock			<0.1	4.04	6	58	9	2.66	<0.5	6	18	13	2.46	<3
Mg-170C Dup QCV1105-01356-0005-BLK				<0.1	3.92	<5	59	10	2.67	<0.5	6	18	13	2.48	<3
STD-OREAS-45P-AR expected				< 0.1	< 0.01	<5	<10	<2	< 0.01	< 0.5	<1 107	<1 892	<1 674	< 0.01	<3
STD-OREAS-45P-AR expected STD-OREAS-45P-AR result											107	858	649		
Mg-110S	Soil			1.9	4.10	13	102	<2	1.38	< 0.5	25	23	124	4.05	<3
Mg-110S Dup	3011			1.9	3.84	13	99	<2	1.30	<0.5	23	23	124	3.76	<3
OCV1105-01356-0008-BLK				<0.1	< 0.01	<5	<10	<2	< 0.01	<0.5	<1	<1	<1	< 0.01	<3
STD-OREAS-45P-AR expected				\0.1	<0.01	\(\)	<10	\ <u></u>	₹0.01	₹0.5	107	892	674	₹0.01	~
STD-OREAS-45P-AR result											104	832	624		
Mg-129S	Soil			0.2	0.20	9	1184	4	>10	< 0.5	13	1	20	5.00	<3
Mg-129S Dup	5011			0.3	0.21	8	1241	2	>10	<0.5	13	1	21	5.13	<3
QCV1105-01356-0011-BLK				< 0.1	< 0.01	<5	<10	<2	< 0.01	< 0.5	<1	<1	<1	< 0.01	<3
STD-CDN-ME-6 expected				101.0									6130		
STD-CDN-ME-6 result				99.5									6470		
Mg-150S	Soil			0.2	4.52	7	108	5	1.44	< 0.5	14	35	59	3.89	<3
Mg-150S Dup				0.3	4.58	7	107	6	1.45	< 0.5	15	36	59	3.96	<3
QCV1105-01356-0014-BLK				< 0.1	< 0.01	<5	<10	<2	< 0.01	< 0.5	<1	<1	<1	< 0.01	<3
STD-OREAS-45P-AR expected											107	892	674		
STD-OREAS-45P-AR result											107	911	701		
Mg-176S	Soil			0.1	2.30	8	149	<2	0.63	< 0.5	13	16	82	4.53	<3
Mg-176S Dup				< 0.1	2.36	10	150	<2	0.63	< 0.5	13	16	83	4.72	<3
QCV1105-01356-0017-BLK				< 0.1	< 0.01	<5	<10	<2	< 0.01	< 0.5	<1	<1	<1	< 0.01	<3
STD-DS-1 expected				0.5		6930					10		27		
STD-DS-1 result	~ .			0.5		6561					8		26		
Mg-02R	Rock	6 5													
Mg-02R Dup		922													
STD-OxG84 expected STD-OxG84 result		922 917													
Mg-170C	Rock	<5													
Mg-170C Dup	NOCK	<5													
QCV1105-01357-0004-BLK		<5													
Mg-110S	Soil	22													
Mg-110S Dup		25													
Mg-129S	Soil	<5													
Mg-129S Dup		7													
6															

Homegold Resources Unit 5, 2330 Tyner Street Port Coquitlam, B.C. V3C 2Z1

		Au	Cu	Ag	Al	As	Ba	Bi	Ca	Cd	Co	Cr	Cu	Fe	Hg
		Au-1AT-AA	Cu-AR-OR-AA	30-AR-TR											
Sample	Sample	ppb	%	ppm	%	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%	ppm
Description	Type	5	0.01	0.1	0.01	5	10	2	0.01	0.5	1	1	1	0.01	3
QCV1105-01357-0008-BLK		<5													
Mg-150S	Soil	8													
Mg-150S Dup		<5													
STD-Oxi81 expected		1807													
STD-Oxi81 result		1835													
Mg-176S	Soil	20													
Mg-176S Dup		30													


Homegold Resources Unit 5, 2330 Tyner Street Port Coquitlam, B.C. V3C 2Z1

		K	La	Mg	Mn	Mo	Na	Ni	P	Pb	Sb	Sc	Sr	Ti	Tl
		30-AR-TR	30-AR-TR	30-AR-TR	30-AR-TR	30-AR-TR	30-AR-TR								
Sample	Sample	%	ppm	%	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm
Description	Type	0.01	2	0.01	5	1	0.01	1	10	2	2	1	1	0.01	10
Mg-02R	Rock	0.02	<2	6.41	1627	<1	< 0.01	8	177	71	2375	2	364	< 0.01	<10
Mg-02R Dup		0.02	<2	6.34	1610	<1	< 0.01	9	196	72	2433	2	355	< 0.01	<10
QCV1105-01356-0002-BLK		< 0.01	<2	< 0.01	<5	<1	< 0.01	<1	<10	<2	<2	<1	<1	< 0.01	<10
STD-CDN-ME-6 expected STD-CDN-ME-6 result										10200 9681					
Mg-170C	Rock	0.36	17	0.64	526	<1	0.08	8	1031	6	<2	7	257	0.35	<10
Mg-170C Dup	ROCK	0.37	17	0.65	513	<1	0.08	8	1014	6	<2	7	248	0.34	<10
OCV1105-01356-0005-BLK		< 0.01	<2	< 0.01	<5	<1	< 0.01	<1	<10	<2	<2	<1	<1	< 0.01	<10
STD-OREAS-45P-AR expected		10.01	12	(0.01	~		10.01	292		19	`-			(0.01	
STD-OREAS-45P-AR result								277		21					
Mg-110S	Soil	0.40	6	1.29	651	<1	0.02	37	286	8	<2	10	82	0.11	<10
Mg-110S Dup		0.38	6	1.24	628	<1	0.02	35	252	8	<2	10	80	0.10	<10
QCV1105-01356-0008-BLK		< 0.01	<2	< 0.01	<5	<1	< 0.01	<1	<10	<2	<2	<1	<1	< 0.01	<10
STD-OREAS-45P-AR expected								292		19					
STD-OREAS-45P-AR result								271		19					
Mg-129S	Soil	0.03	<2	6.78	2592	<1	< 0.01	2	99	8	<2	3	265	< 0.01	<10
Mg-129S Dup		0.03	<2	6.99	2684	<1	< 0.01	2	102	6	<2	3	274	< 0.01	<10
QCV1105-01356-0011-BLK		< 0.01	<2	< 0.01	<5	<1	< 0.01	<1	<10	<2	<2	<1	<1	< 0.01	<10
STD-CDN-ME-6 expected										10200					
STD-CDN-ME-6 result										9827					
Mg-150S	Soil	0.21	10	1.04	259	<1	0.03	45	632	4	<2	11	161	0.27	<10
Mg-150S Dup		0.22	10	1.05	264	<1	0.03	46	617	4	<2	11	163	0.27	<10
QCV1105-01356-0014-BLK		< 0.01	<2	< 0.01	<5	<1	< 0.01	<1	<10	<2	<2	<1	<1	< 0.01	<10
STD-OREAS-45P-AR expected								292		19					
STD-OREAS-45P-AR result								297		20					
Mg-176S	Soil	0.46	13	0.88	863	<1	< 0.01	16	280	9	<2	11	43	0.03	<10
Mg-176S Dup		0.46	13	0.89	879	<1	< 0.01	15	273	9	<2	11	43	0.03	<10
QCV1105-01356-0017-BLK		< 0.01	<2	< 0.01	<5	<1	< 0.01	<1	<10	<2	<2	<1	<1	< 0.01	<10
STD-DS-1 expected				2.76	437			49	340	14					
STD-DS-1 result				2.66	416			44	322	13					

Homegold Resources Unit 5, 2330 Tyner Street Port Coquitlam, B.C. V3C 2Z1

			***		-
		V	W	Zn	Zr
~		30-AR-TR	30-AR-TR	30-AR-TR	30-AR-TR
Samp	•	ppm	ppm	ppm	ppm
Description		1	10	2	2
Mg-02		101	45	4411	<2
Mg-02R Du	•	101	45	4507	<2
QCV1105-01356-0002-BL		<1	<10	<2	<2
STD-CDN-ME-6 expecte				5170	
STD-CDN-ME-6 resu			10	5476	2-
Mg-170		59	<10	61	25
Mg-170C Du		60	<10	61	28
QCV1105-01356-0005-BL		<1	<10	<2	<2
STD-OREAS-45P-AR expecte				123	
STD-OREAS-45P-AR resu			10	121	
Mg-110		83	<10	182	6
Mg-110S Du	•	79	<10	175	6
QCV1105-01356-0008-BL		<1	<10	<2	<2
STD-OREAS-45P-AR expecte				123	
STD-OREAS-45P-AR resu			10	121	
Mg-129		31	<10	87	<2
Mg-129S Du		32	<10	88	<2
QCV1105-01356-0011-BL		<1	<10	<2 5170	<2
STD-CDN-ME-6 expecte					
STD-CDN-ME-6 resu		0.4	.10	5575	20
Mg-150		84	<10	77	39
Mg-150S Du OCV1105-01356-0014-BL		84	<10	78	39
		<1	<10	<2	<2
STD-OREAS-45P-AR expecte				123	
STD-OREAS-45P-AR resu		107	.10	127	2
Mg-176		107 109	<10 <10	77	3
Mg-176S Du QCV1105-01356-0017-BL	•			80	3
- T		<1	<10	<2	<2
STD-DS-1 expecte				206 197	
STD-DS-1 resu	IIT			197	

APPENDIX IV LIST of SAMPLES

671 M		10 U 593910 5595355		
McGillvery	Stream	10 U 592135 5594313		05/05/2011 11:21
Mg 103S	06/05/2011 10:54	10 U 592108 5595097	707 m	
Mg 104S	06/05/2011 11:02	10 U 592094 5595148	724 m	
Mg 105S	06/05/2011 11:11	10 U 592077 5595214	742 m	
Mg 106S	06/05/2011 11:25	10 U 592211 5595246	774 m	
Mg 107S	06/05/2011 11:40	10 U 592220 5595273	774 m	
Mg 108S	06/05/2011 12:18	10 U 592235 5595286	767 m	
Mg 109S	06/05/2011 12:25	10 U 592255 5595296	762 m	
Mg 110S	06/05/2011 12:39	10 U 592294 5595298	756 m	
Mg 111S	06/05/2011 12:47	10 U 592314 5595326	768 m	
Mg 112S	06/05/2011 12:59	10 U 592359 5595361	777 m	
Mg 113S	06/05/2011 13:14	10 U 592386 5595407	787 m	
Mg 114S	06/05/2011 13:26	10 U 592391 5595501	797 m	
Mg 115S	06/05/2011 13:40	10 U 592431 5595553	801 m	
Mg 116C	06/05/2011 13:57	10 U 592436 5595576	820 m	
Mg 117S	06/05/2011 14:07	10 U 592437 5595600	836 m	
Mg 118S	06/05/2011 14:18	10 U 592448 5595652	852 m	
Mg 119S	06/05/2011 14:33	10 U 592345 5595651	899 m	
Mg 120S	06/05/2011 14:40	10 U 592219 5595584	906 m	
Mg 121S	07/05/2011 9:35	10 U 594377 5595563	869 m	
Mg 122S	07/05/2011 9:41	10 U 594357 5595591	869 m	
Mg 123S	07/05/2011 9:49	10 U 594330 5595646	877 m	
Mg 124S	07/05/2011 9:55	10 U 594330 5595700	892 m	
Mg 125S	07/05/2011 10:05	10 U 594335 5595783	894 m	
Mg 126S	07/05/2011 10:19	10 U 594369 5595883	913 m	
Mg 127S	07/05/2011 10:36	10 U 594421 5595974	942 m	
Mg 128S	07/05/2011 10:40	10 U 594443 5596017	946 m	
Mg 129C	07/05/2011 10:50	10 U 594444 5596027	946 m	
Mg 130C	07/05/2011 10:58	10 U 594450 5596033	958 m	
Mg 131S	07/05/2011 11:38	10 U 594471 5596154	970 m	
Mg 132S	07/05/2011 11:49	10 U 594441 5596246	960 m	
Mg 133S	07/05/2011 11:59	10 U 594469 5596347	994 m	
Mg 134S	07/05/2011 12:04	10 U 594558 5596403	1007 m	
Mg 135S	07/05/2011 12:14	10 U 594625 5596379	1011 m	
Mg 136S	07/05/2011 12:27	10 U 594649 5596659	950 m	
Mg100S	06/05/2011 10:35	10 U 592098 5594984	667 m	
Mg101S	06/05/2011 10:40	10 U 592095 5595040	687 m	
Mg102S	06/05/2011 10:45	10 U 592121 5595062	701 m	
Skidtrail	07/05/2011 12:01	10 U 594501 5596389	1002 m	

McGillvery	Stream	N50 29.613 W121 42.063	
Mg 103S	06-MAY-11 10:54:38	N50 30.035 W121 42.073	707 m
Mg 104S	06-MAY-11 11:02:29	N50 30.063 W121 42.084	724 m
Mg 105S	06-MAY-11 11:11:31	N50 30.099 W121 42.097	742 m
Mg 106S	06-MAY-11 11:25:23	N50 30.115 W121 41.984	774 m
Mg 107S	06-MAY-11 11:40:42	N50 30.130 W121 41.976	774 m
Mg 108S	06-MAY-11 12:18:56	N50 30.137 W121 41.963	767 m
Mg 109S	06-MAY-11 12:25:03	N50 30.142 W121 41.946	762 m
Mg 110S	06-MAY-11 12:39:47	N50 30.143 W121 41.913	756 m
Mg 111S	06-MAY-11 12:47:40	N50 30.157 W121 41.896	768 m
Mg 112S	06-MAY-11 12:59:46	N50 30.176 W121 41.857	777 m
Mg 113S	06-MAY-11 13:14:39	N50 30.200 W121 41.834	787 m
Mg 114S	06-MAY-11 13:26:03	N50 30.251 W121 41.828	797 m
Mg 115S	06-MAY-11 13:40:21	N50 30.278 W121 41.793	801 m
Mg 116C	06-MAY-11 13:57:22	N50 30.291 W121 41.789	820 m
Mg 117S	06-MAY-11 14:07:01	N50 30.304 W121 41.788	836 m
Mg 118S	06-MAY-11 14:18:46	N50 30.332 W121 41.778	852 m
Mg 119S	06-MAY-11 14:33:14	N50 30.332 W121 41.864	899 m
Mg 120S	06-MAY-11 14:40:28	N50 30.297 W121 41.973	906 m
Mg 121S	07-MAY-11 9:35:59	N50 30.266 W121 40.147	869 m
Mg 122S	07-MAY-11 9:41:50	N50 30.280 W121 40.164	869 m
Mg 123S	07-MAY-11 9:49:55	N50 30.311 W121 40.186	877 m
Mg 124S	07-MAY-11 9:55:44	N50 30.340 W121 40.185	892 m
Mg 125S	07-MAY-11 10:05:37	N50 30.385 W121 40.180	894 m
Mg 126S	07-MAY-11 10:19:18	N50 30.438 W121 40.149	913 m
Mg 127S	07-MAY-11 10:36:32	N50 30.487 W121 40.104	942 m
Mg 128S	07-MAY-11 10:40:25	N50 30.510 W121 40.085	946 m
Mg 129C	07-MAY-11 10:50:11	N50 30.515 W121 40.083	946 m
Mg 130C	07-MAY-11 10:58:44	N50 30.518 W121 40.079	958 m
Mg 131S	07-MAY-11 11:38:26	N50 30.583 W121 40.059	970 m
Mg 132S	07-MAY-11 11:49:28	N50 30.633 W121 40.083	960 m
Mg 133S	07-MAY-11 11:59:45	N50 30.687 W121 40.057	994 m
Mg 134S	07-MAY-11 12:04:24	N50 30.717 W121 39.982	1007 m
Mg 135S	07-MAY-11 12:14:32	N50 30.703 W121 39.925	1011 m
Mg 136S	07-MAY-11 12:27:41	N50 30.854 W121 39.901	950 m
Mg 137St	08-MAY-11 10:55:55	N50 31.957 W121 39.431	1059 m
Mg 138F	08-MAY-11 11:24:07	N50 31.863 W121 39.429	1060 m
Mg 139F	08-MAY-11 12:47:12	N50 30.259 W121 42.576	441 m
Mg 140F	08-MAY-11 14:04:14	N50 31.403 W121 42.846	616 m
Mg 141St	08-MAY-11 14:11:12	N50 31.423 W121 42.828	639 m
Mg 142St	08-MAY-11 14:36:32	N50 31.520 W121 42.825	765 m
Mg 143 2Mc	08-MAY-11 15:15:09	N50 31.018 W121 43.332	435 m
Mg 144S	09-MAY-11 9:59:55	N50 30.372 W121 39.761	1106 m
Mg 145S	09-MAY-11 10:10:58	N50 30.402 W121 39.825	1108 m
Mg 146S	09-MAY-11 10:21:13	N50 30.456 W121 39.877	1110 m
Mg 147S	09-MAY-11 10:29:13	N50 30.518 W121 39.867	1112 m
Mg 148S	09-MAY-11 10:43:48	N50 30.538 W121 39.772	1153 m
Mg 148S-DBL	09-MAY-11 10:52:34	N50 30.534 W121 39.765	1143 m
Mg 149S	09-MAY-11 11:13:30	N50 30.579 W121 39.680	1171 m
Mg 150s	09-MAY-11 11:20:39	N50 30.627 W121 39.606	1163 m

[T ==	T	1.551
Mg 151S	09-MAY-11 11:37:02	N50 30.629 W121 39.476	1261 m
Mg 152S	09-MAY-11 12:16:26	N50 30.705 W121 39.354	1291 m
Mg 153C	09-MAY-11 12:47:34	N50 30.756 W121 39.274	1369 m
Mg 154C	09-MAY-11 13:52:33	N50 30.694 W121 39.251	1408 m
Mg 155F	10-MAY-11 12:09:43	N50 30.761 W121 42.296	668 m
Mg 156S	10-MAY-11 13:26:40	N50 30.665 W121 42.518	580 m
Mg 157S	10-MAY-11 13:47:32	N50 30.656 W121 42.473	600 m
Mg 158C	10-MAY-11 13:57:37	N50 30.656 W121 42.483	589 m
Mg 159S	11-MAY-11 10:51:58	N50 32.212 W121 42.153	1328 m
Mg 160S	11-MAY-11 10:55:00	N50 32.275 W121 42.165	1319 m
Mg 161S	11-MAY-11 11:00:04	N50 32.332 W121 42.191	1314 m
Mg 162S	11-MAY-11 11:06:34	N50 32.410 W121 42.233	1307 m
Mg 162S Dbl	11-MAY-11 11:09:48	N50 32.412 W121 42.232	1308 m
Mg 163S	11-MAY-11 11:18:26	N50 32.482 W121 42.253	1295 m
Mg 164S	11-MAY-11 11:21:43	N50 32.519 W121 42.313	1279 m
Mg 165S	11-MAY-11 11:59:28	N50 32.686 W121 42.418	1302 m
Mg 166S	11-MAY-11 12:07:13	N50 32.724 W121 42.468	1300 m
Mg 167C	11-MAY-11 12:49:17	N50 32.038 W121 43.031	1071 m
Mg 168C	11-MAY-11 13:01:36	N50 32.007 W121 43.055	1077 m
Mg 169C	11-MAY-11 13:17:05	N50 31.972 W121 43.005	1095 m
Mg 170C	11-MAY-11 13:31:00	N50 32.050 W121 42.969	1083 m
Mg 171St	11-MAY-11 13:58:57	N50 32.685 W121 44.280	587 m
Mg 172St	11-MAY-11 14:09:22	N50 33.771 W121 45.141	708 m
MG-01/oc	06-MAY-11 12:35:14PM	N50 29.995 W121 42.089	700 m
MG-01R	06-MAY-11 11:24:08AM	N50 29.863 W121 42.013	575 m
MG-01S	07-MAY-11 1:21:34PM	N50 30.445 W121 41.904	976 m
MG-02/oc	06-MAY-11 12:47:56PM	N50 30.050 W121 42.072	733 m
MG-02R	06-MAY-11 12:02:30PM	N50 29.964 W121 42.120	664 m
MG-02S	07-MAY-11 1:29:27PM	N50 30.451 W121 41.899	975 m
MG-03/oc	06-MAY-11 2:26:32PM	N50 30.141 W121 41.966	790 m
MG-03R portal	06-MAY-11 12:21:28PM	N50 29.964 W121 42.108	673 m
MG-03S	07-MAY-11 1:35:32PM	N50 30.463 W121 41.887	976 m
MG-04/oc	06-MAY-11 2:56:39PM	N50 30.177 W121 41.916	815 m
MG-04R	06-MAY-11 1:29:00PM	N50 30.115 W121 42.011	787 m
MG-04S	07-MAY-11 1:43:28PM	N50 30.471 W121 41.879	980 m
MG-05/oc	06-MAY-11 3:17:23PM	N50 30.232 W121 41.935	871 m
MG-05R	06-MAY-11 1:48:12PM	N50 30.129 W121 41.980	789 m
MG-06/oc	06-MAY-11 3:24:03PM	N50 30.252 W121 41.942	886 m
MG-06R	06-MAY-11 2:41:30PM	N50 30.143 W121 41.957	790 m
MG-07/oc	06-MAY-11 3:46:37PM	N50 30.271 W121 41.983	890 m
MG-07R	07-MAY-11 1:57:00PM	N50 30.472 W121 41.884	979 m
MG-08	06-MAY-11 3:57:17PM	N50 30.327 W121 41.953	931 m
MG-08R	07-MAY-11 2:09:29PM	N50 30.471 W121 41.878	975 m
MG-09/oc	07-MAY-11 11:03:55AM	N50 30.152 W121 41.447	555 m
MG-09F	10-MAY-11 12:24:13PM	N50 30.026 W121 42.458	432 m
MG-10/oc	07-MAY-11 11:36:49AM	N50 30.261 W121 41.518	662 m
MG-11/oc	07-MAY-11 11:58:22AM	N50 30.313 W121 41.619	748 m
MG-11R	10-MAY-11 3:22:49PM	N50 30.658 W121 42.521	579 m
MG-12/oc	07-MAY-11 12:11:46PM	N50 30.315 W121 41.704	810 m
MG-12R	10-MAY-11 3:28:28PM	N50 30.656 W121 42.516	579 m

MG-13/oc	07-MAY-11 2:40:46PM	N50 30.586 W121 41.831	1029 m
MG-138F	08-MAY-11 1:25:09PM	N50 31.868 W121 39.433	1079 m
MG-13R	10-MAY-11 3:51:47PM	N50 30.640 W121 42.532	575 m
MG-14/oc	08-MAY-11 12:58:26PM	N50 31.953 W121 39.429	1120 m
MG-14R	11-MAY-11 3:02:35PM	N50 32.350 W121 43.778	772 m
MG-15/oc	08-MAY-11 1:09:04PM	N50 31.976 W121 39.459	1125 m
MG-16/oc	10-MAY-11 11:49:37AM	N50 30.016 W121 42.369	494 m
MG-17/oc -10R	10-MAY-11 2:32:48PM	N50 30.829 W121 42.483	640 m
MG-18/oc	10-MAY-11 2:54:28PM	N50 30.870 W121 42.469	677 m
MG-19/oc	11-MAY-11 12:29:50PM	N50 32.353 W121 43.779	784 m
MG-20/oc	11-MAY-11 12:36:13PM	N50 32.412 W121 43.727	796 m
MG-21/oc	11-MAY-11 12:43:04PM	N50 32.494 W121 43.770	813 m
MG-22/oc	11-MAY-11 1:00:21PM	N50 32.417 W121 42.929	1099 m
MG-23/oc	11-MAY-11 1:09:30PM	N50 32.311 W121 42.667	1130 m
MG-24/oc	11-MAY-11 1:20:30PM	N50 32.254 W121 42.328	1258 m
MG-25/oc	11-MAY-11 2:01:08PM	N50 32.180 W121 42.093	1352 m
MG-26/oc	11-MAY-11 2:06:08PM	N50 32.296 W121 42.161	1332 m
MG-27/oc	11-MAY-11 2:26:53PM	N50 32.841 W121 43.169	1096 m
MG-28/oc	11-MAY-11 2:32:47PM	N50 32.683 W121 43.208	1084 m
MG-29	11-MAY-11 3:18:04PM	N50 32.222 W121 44.028	697 m
MG-30/oc	11-MAY-11 3:31:49PM	N50 32.511 W121 44.235	592 m
Mg100S	06-MAY-11 10:35:45	N50 29.975 W121 42.084	667 m
Mg101S	06-MAY-11 10:40:42	N50 30.005 W121 42.085	687 m
Mg102S	06-MAY-11 10:45:52	N50 30.017 W121 42.063	701 m