

TAIGA Consultants Ltd.

COMBINED BULK AND CLAY XRD ANALYSIS OF ONE MUD SAMPLE FROM A WELL LOCATION

Work Order A 15196

BC Geological Survey Assessment Report 32731c

August, 2011

AGAT Laboratories Ltd. 3801 - 21 Street N.E. Calgary, Alberta T2E 6T5

COMBINED X-RAY DIFFRACTION ANALYSIS

One mud sample from a well location was analyzed by AGAT Laboratories Ltd. for bulk and clay XRD mineralogy. The sample was cleaned of hydrocarbons prior analysis and the "cleaned" solids were analyzed. The sample was examined using XRD technique to determine their crystalline mineralogical composition. In order to separate the particles less than 3μ m (clay fraction) from the bulk fraction, the samples were treated in an ultrasonic bath using sodium metaphosphate as a deflocculating agent. The materials were then centrifuged at different speed, which separates the clay fraction from the bulk materials. Weight fraction was measured for both bulk and clay portions of the samples.

The combined bulk and clay XRD results (Table 1) indicate that the sample consists mainly of quartz (66%) [silicon dioxide, SiO₂], with lesser amounts of plagioclase feldspar (16%) [sodium to calcium aluminum silicate, Na(AlSi₃O₈)-Ca(Al2Si2O8)]. Minor amounts of potassium feldspar (7%) [potassium aluminum silicate, K(SiAl₃O₈)], illite (6%) [potassium aluminum silicate hydroxide, KAl₂(OH)₂AlSi₃(O,OH)₁₀], kaolinite (5%) [aluminum silicate hydroxide, Al₄Si₄O₁₀(OH)₈)], plus trace chlorite [(Mg,Fe)₅Al(AlSi₃) O₁₀(OH)₉] are also present.

The clay fraction ($<3\mu$ m) weight is 3.95% of the total rock volume. The clay fraction XRD (Table 1) results indicate that the sample consists mainly of illite (51%), with lesser amounts of kaolinite (15%), quarzt (13%) and plagioclase feldspar (10%). Minor amounts of potassium feldspar (7%) and chlorite (4%) are also identified.

The analyses indicate that the samples are composed of sand/silt/clays (quartz, plagioclase feldspar, potassium feldspar, illite, kaolinite and chlorite – formation materials). Water sensitive clays are not identified in the sample.

				Tab	le 1-	Sun	nma	ry of	XRE) Ana	lys	is						
Company: .ocation:	TAIGA Consultants	Ltd.													١	Nork		o. A-1519 gust, 201
SAMPLE ID.	TYPE OF ANALYSIS	WEIGHT %	Qtz	Plag	K-Feld	Cal	Dol	Anhy	Pyr	Musc	Bar	Sider	∢ Kaol	Chl	CLAYS	S — ML	► Smec	Total Clay
1	BULK FRACTION: CLAY FRACTION: BULK & CLAY	96.05 3.95 100	67 13 66	17 10 16	7 7	0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	5 15 5	0 4 TR	4 51 6	0 0 0	0 0	9 70 11

XRD LEGEND

- XRD Analysis is semi-quantitative (approx. 10% at best) and identifies only crystalline substances; amorphous (non-crystalline) substances will not be detected.
- Bulk Fraction greater than 3 microns size fraction.
- Clay Fraction less than 3 micron size fraction.
- Bulk and Clay mathematical recalculation including the bulk and clay fraction representing the whole sample.
- Total Clay sum of the clay minerals (may include authigenic and matrix clays plus clays in rock fragments).

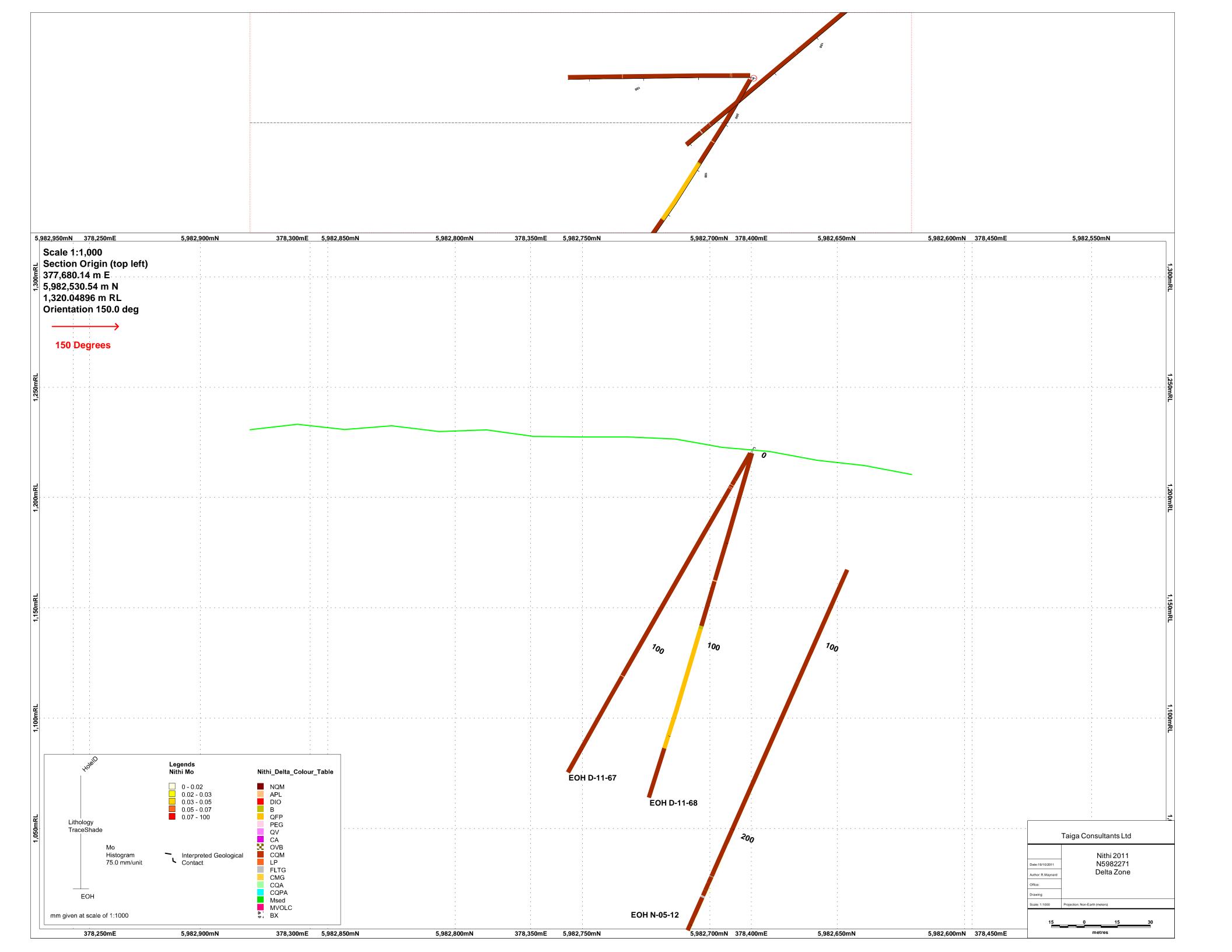
ABBREVIATIONS

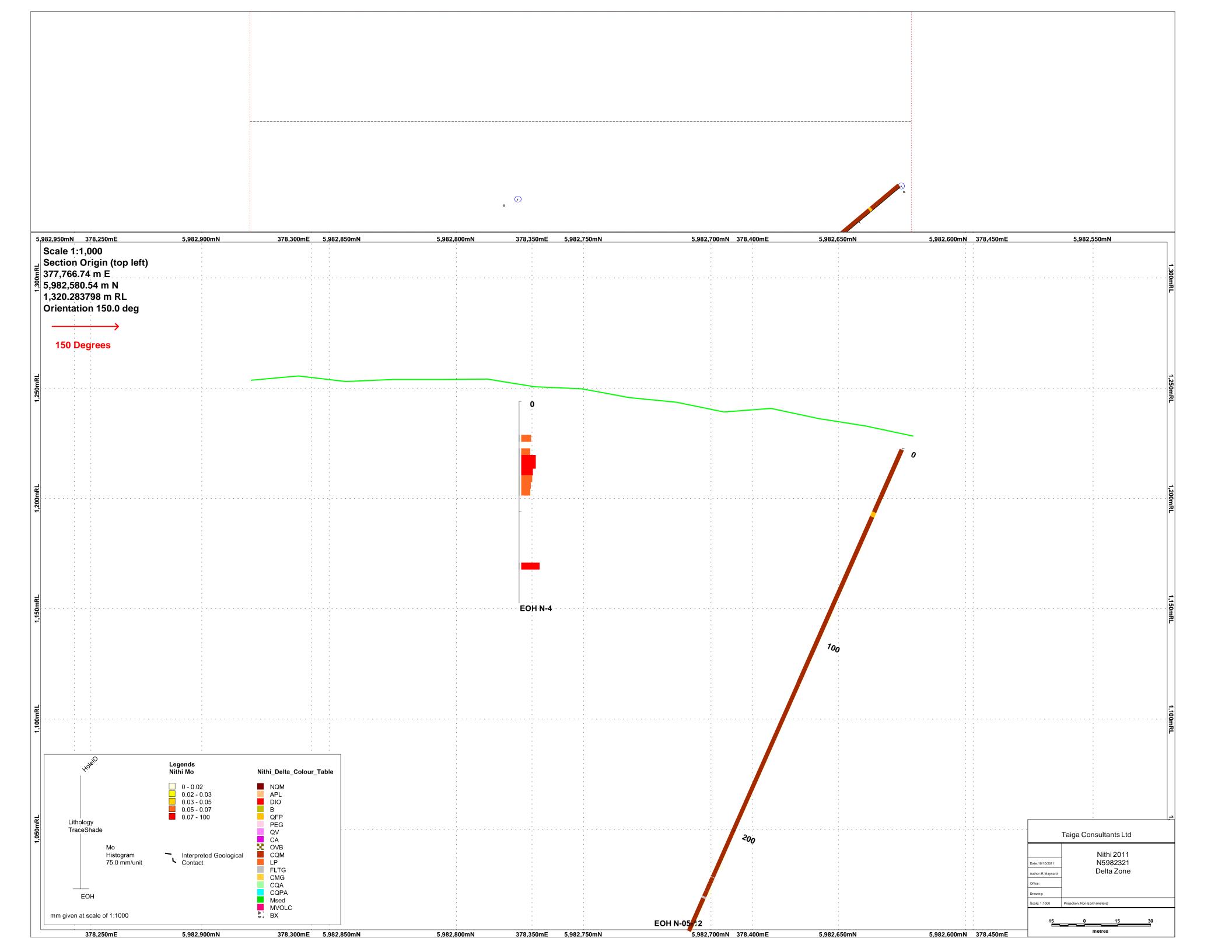
Amp - Amphiboles	Dol - Dolomite	Musc	- Muscovite	Pr	- Pure (95 – 100%)
Ana - Analcime	Gyp - Gypsum	Plag	- Plagioclase Feldspar	NPr	- Near Pure (90 - 95%)
Anh - Anhydrite	Hema - Hematite	Port	- Portlandite	Abnt	- Abundant (60 - 90%)
Ank - Ankerite	Magn - Magnetite	Pyrrh	- Pyrrhotite		
		Pyr	- Pyrite	Com	- Common (30 - 60%)
Anata- Anatase	Ill - Illite	Qtz	- Quartz	Mnr	- Minor (10 – 30%)
Cal - Calcite	Kaol - Kaolinite	Sid	- Siderite	Rre	- Rare (1 – 10%)
Chl - Chlorite	K-feld- Potassic Feldspar	Smec	- Smectite (montmorillonite)	Tr	- Trace; detectable,
Cupr - Cuprite	Graph - Graphite	Goe	- Goethite	but 1	not measurable $(0 - 1\%)$
ML - Mixed-layer cl	ays (illite-smectite or smectit	e-chlorite	e) Unk	- Unk	nown mineral

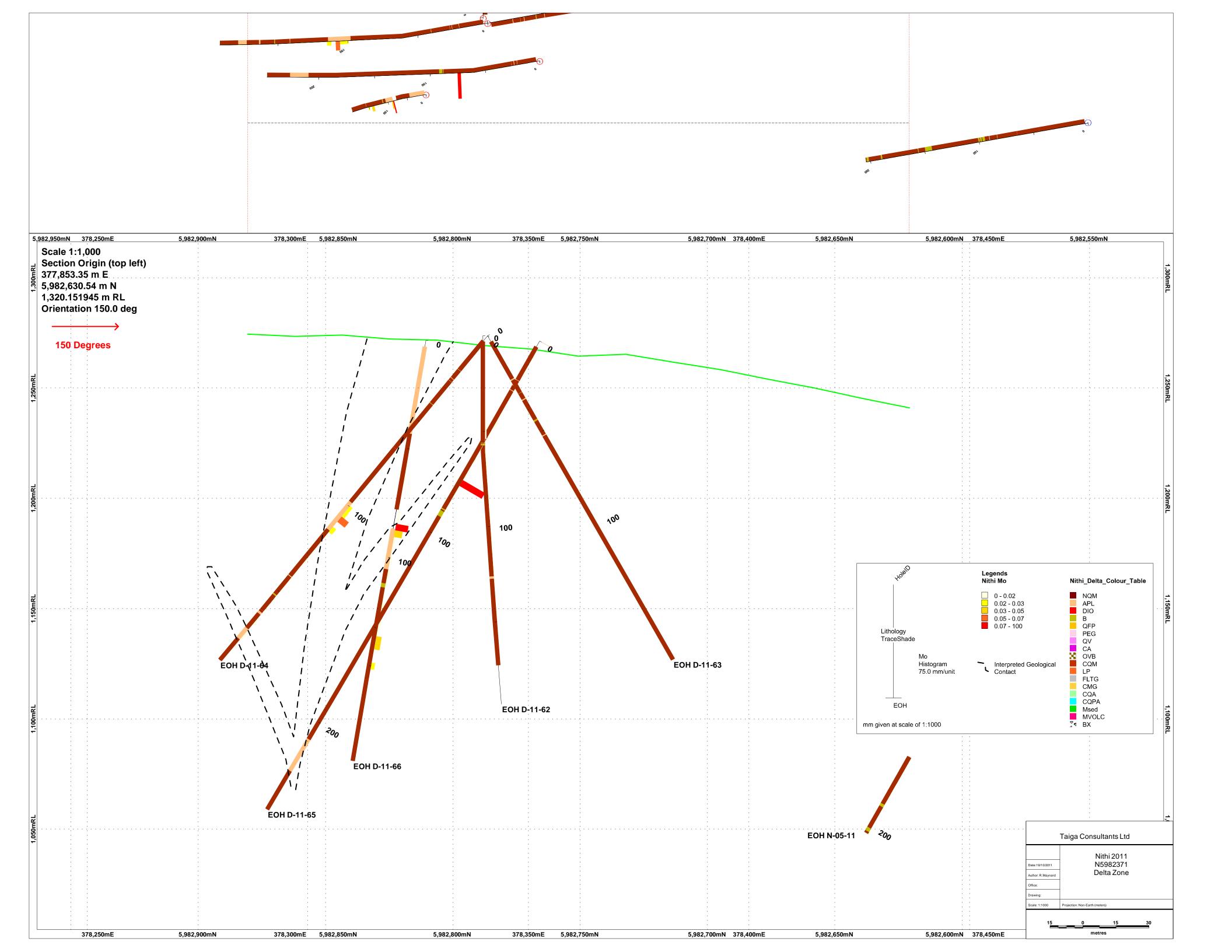
NOTE: Not all these minerals are present in this sample suite

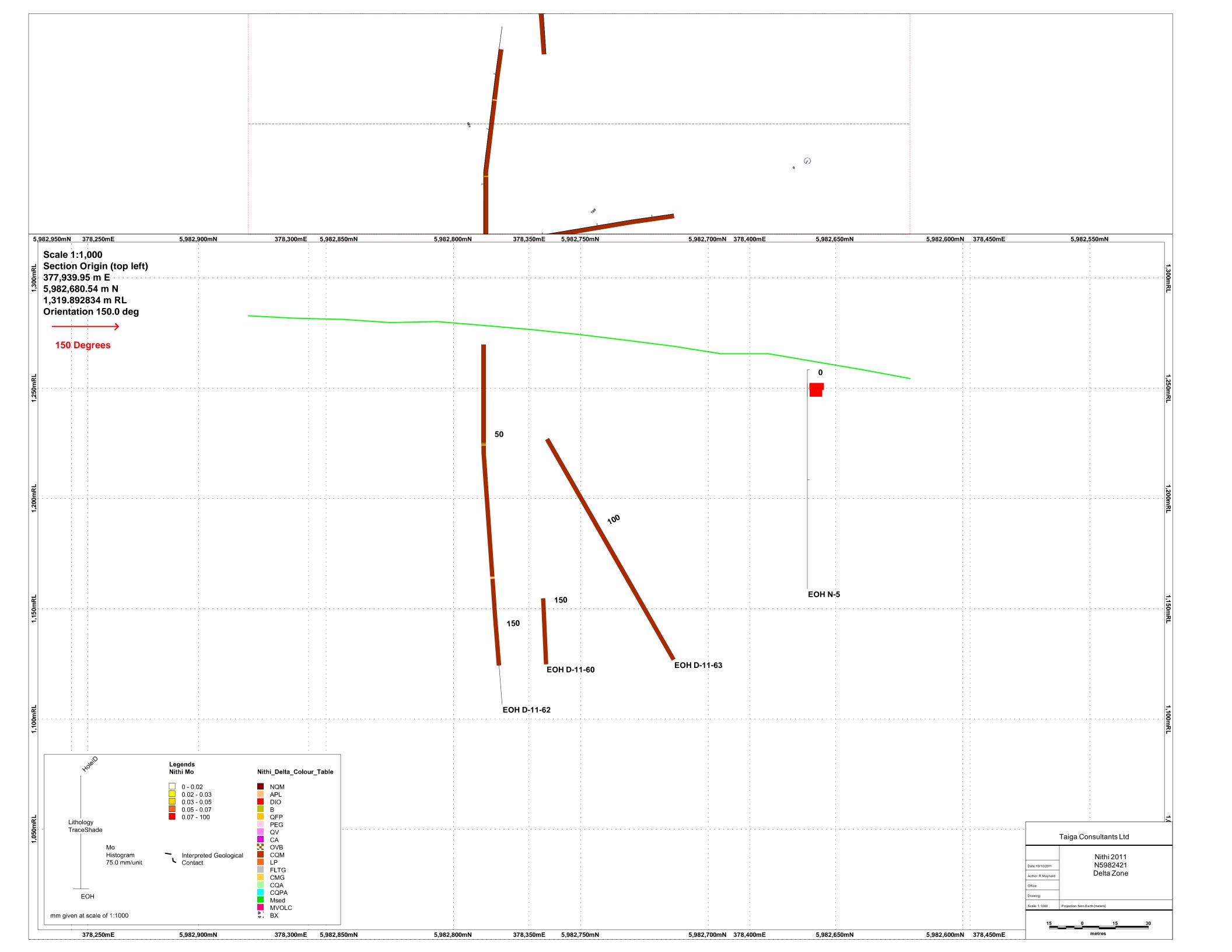
APPENDIX

BULK & CLAY PROCEDURES


- 1. Crush dry rock sample until grains disintegrate completely.
- 2. Weigh empty beaker and put sample in it. Weigh again "total weight". (≈3g of sample).
- 3. Add 50 mL of distilled water, plus a few drops of Sodium Metaphosphate.
- 4. Put in ultrasonic bath for 2 (two) hours.
- 5. Stir sample and pour out top portion into test tube.
- 6. Centrifuge for 5 minutes at 600 rpm.
- 7. Pour out top portion into another test tube for the clay fraction ($<3\mu m$) sample.
- 8. Recombine the coarser residue in the first test tube with the residue in the beaker and weight this "bulk sample" (after drying completely). Subtract this weight from the "total weight" to get the clay fraction weight.
- 9. Centrifuge the "clay fines" in the second test tube for 20 minutes at maximum rpms.
- 10. Pour out most of the water then shake test tube using Vortex Mixer.
- 11. Pipette onto a glass slide.
- 12. Put the slide on the hot plate (low) until dry then run sample in XRD.
- 13. Then put slide in a glycol vapour bath overnight (glycolated clay); Smectite will swell and be recognized.
- 14. If chlorite suspected, then treat the remaining sample in the test tube with diluted HCl and leave overnight (acidized clay). If chlorite was present in the sample this test causes it to disappear.
- 15. Run the "clay fraction" slide from 2-38 degrees.
- 16. Grind the "bulk sample" and spread the powder on an aluminum holder then run from 4-58 degrees.

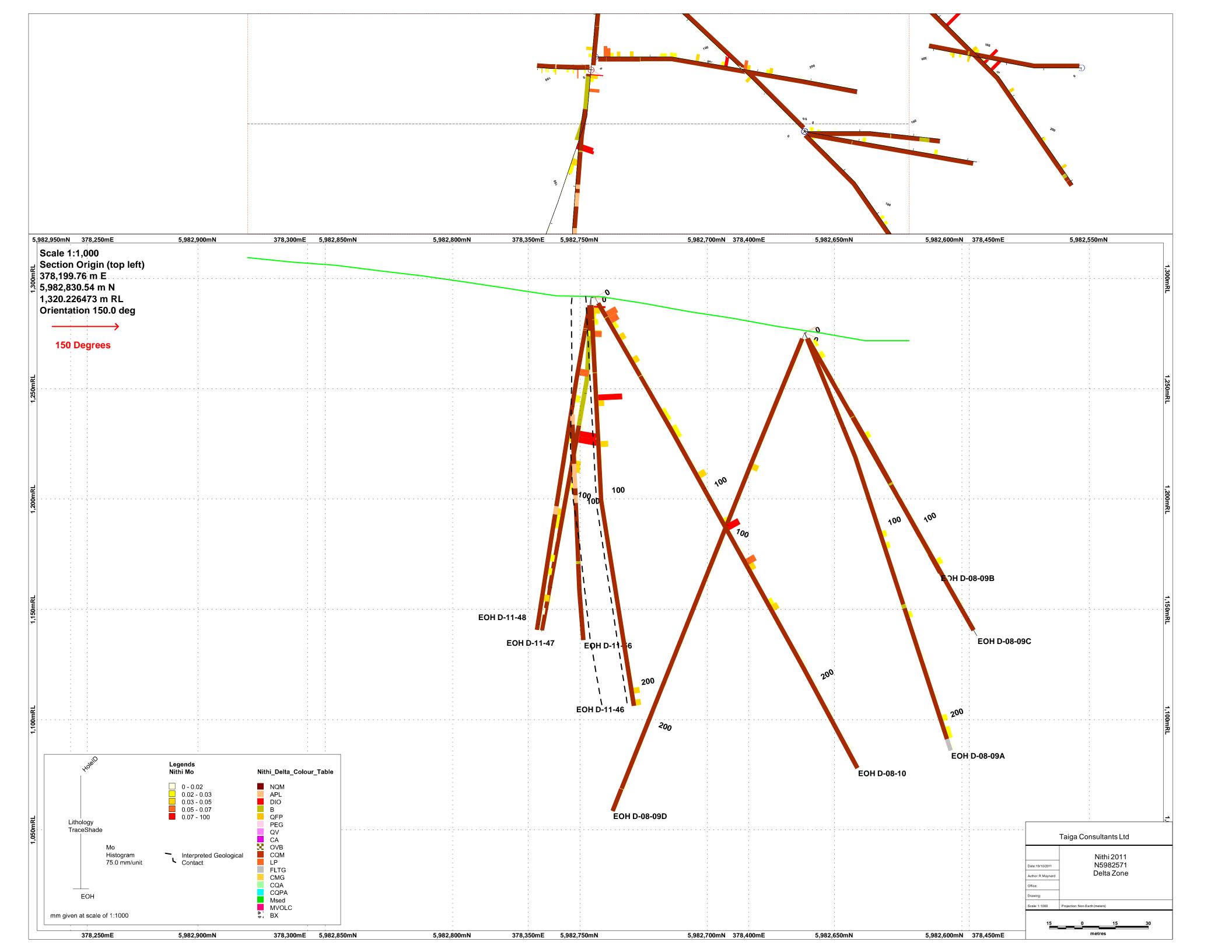

Appendix 2 Summary of Personnel Summary of Expenditures


	Pers	onnel			
Field Personnel	Dates	Man days			
James W. Davis	5/06-5/10	5.00			
	5/18-5/28	11.00			
	6/08-6/17	10.00			
	6/26-7/07	12.00			
	8/16-8/25	10.00	48.00		
T. B. Millinoff	5/01-6/12	43.00			
	6/16-7/07	22.00	65.00		
S. Fitchett	5/04-5/29	26.00			
	6/01-7/09	39.00	65.00		
J. Fitchett	5/04-5/29	26.00			
	6/01-7/09	39.00	65.00		
B. Secord-Smith	6/01-6/18	17.50			
	6/26-7/08	12.50	30.00	273.00	
Office Personnel (report wrtiing)					
James W. Davis	May 2011	2.25			
	July 2011	1.75			
	Aug.2011	2.25	6.25		
T.B. Millinoff	May 2011	1.75			
	July 2011	0.75			
	Aug.2011	0.75	3.25		
R. Maynard	May 2011	2.00			
	July 2011	0.75			
	Aug.2011	16.00	18.75		
M.D. Jamieson	June 2011	1.25	1.25	29.50	302.50

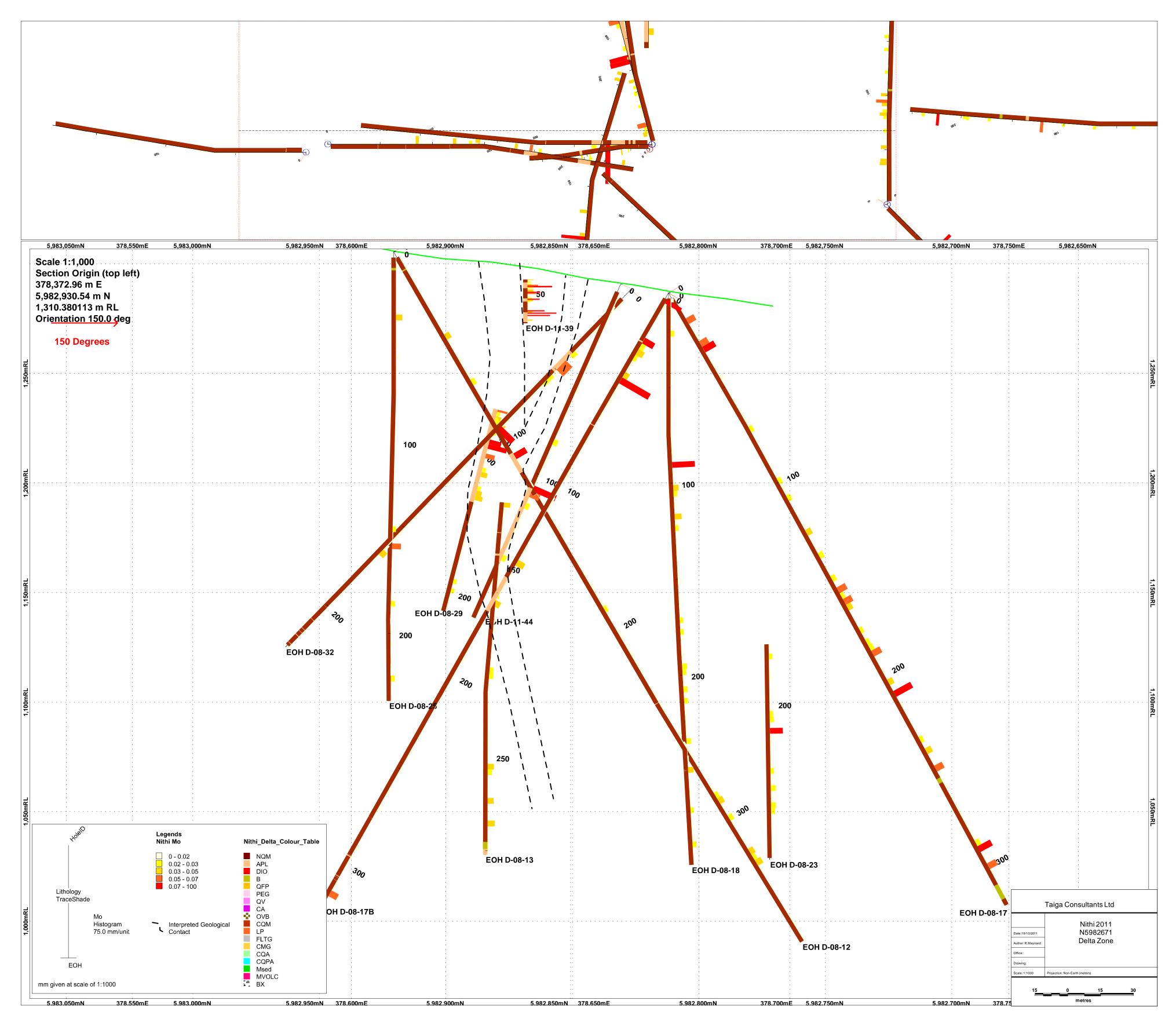

Summary of Expenditures	2011 Nithi Mtn. Drill Program	Leeward Capital Corp.
AGAT	441.00	clay analysis from drill cuttings
Archer CRM Partership	6324.39	Archaeological Study
Avison Management	21943.88	Huckelberry Management and Mitigation Study
Doug Wylie Trucking	64435.90	Road building, excavator onsite to move drill and ongoing reclamation
Loring Labs Ltd.	54137.52	Assays
Manitoulin Transport	1212.79	Shipping (samples to lab)
MBI Pacific Drilling Products	6855.28	Drill Logging equipment
Normans Electric	8342.09	Core Shed lighting/rewiring
Vancouver Pertrographics	2636.79	Petrographic Study
WestCan Projects Ltd.	21317.24	Environmental Study, water sampling, reclamation
Corewest Drilling	381936.16	
LDS Drilling	257268.26	drilling 6,266 m 32 drillholes NQ core
Taiga Consultants Ltd.	266344.25	drill program supervision, logging, sampling, report writing
Tetra Tech Wardrop	58036.65	resource calculation
TOTAL	1151232.20	

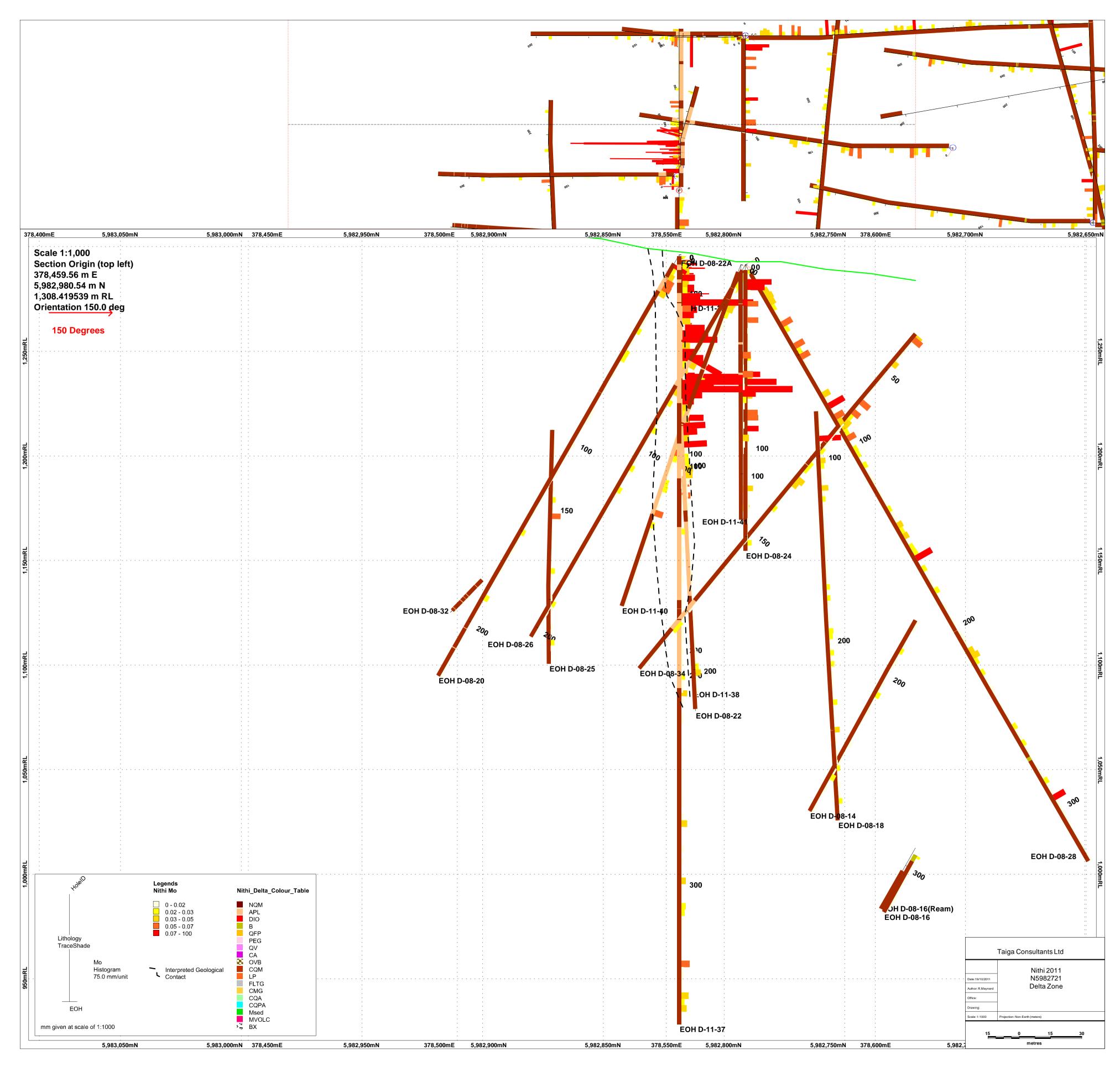

Appendix 3 Geological Sections Vancouver Petrographics Report Map 1 Drill Hole Locations and Zones

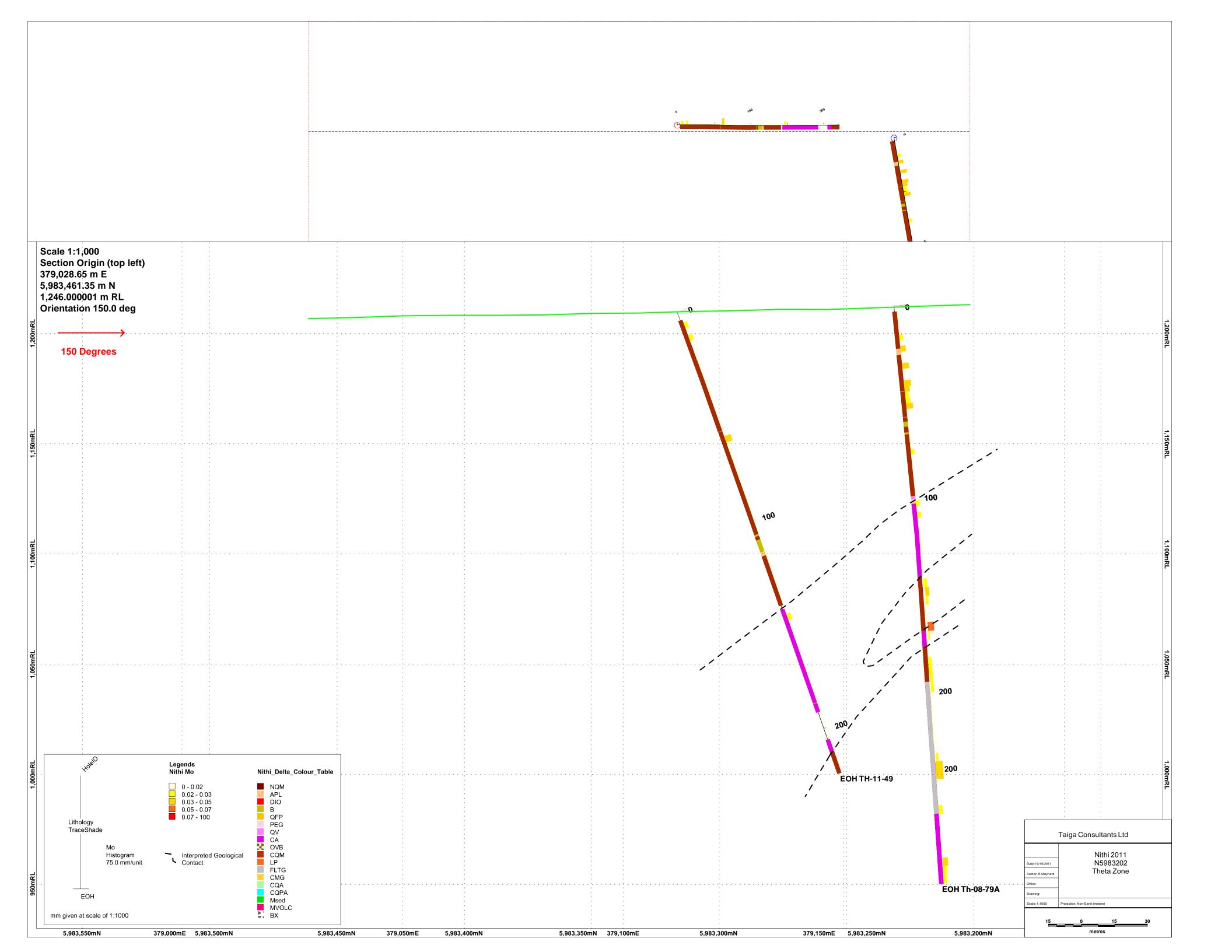


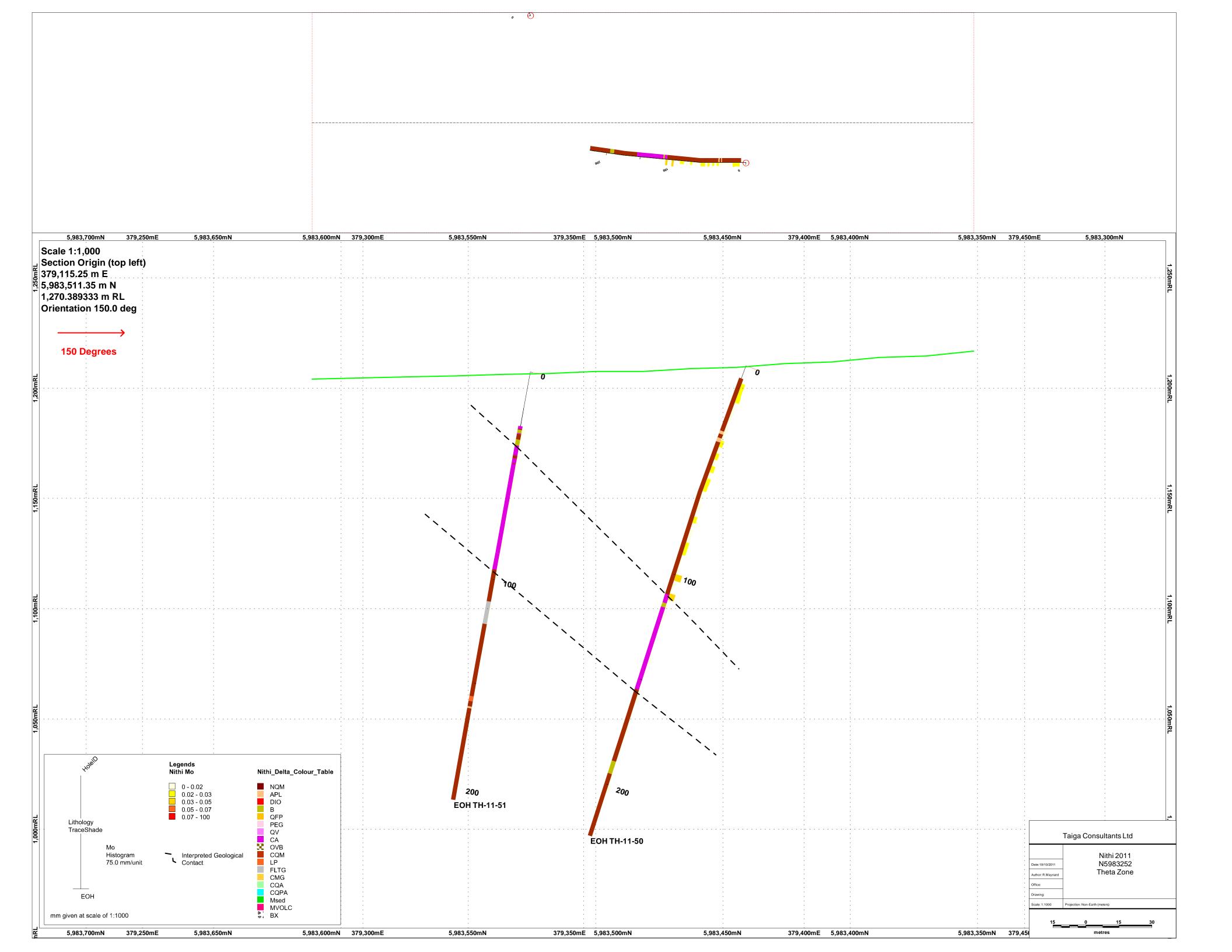


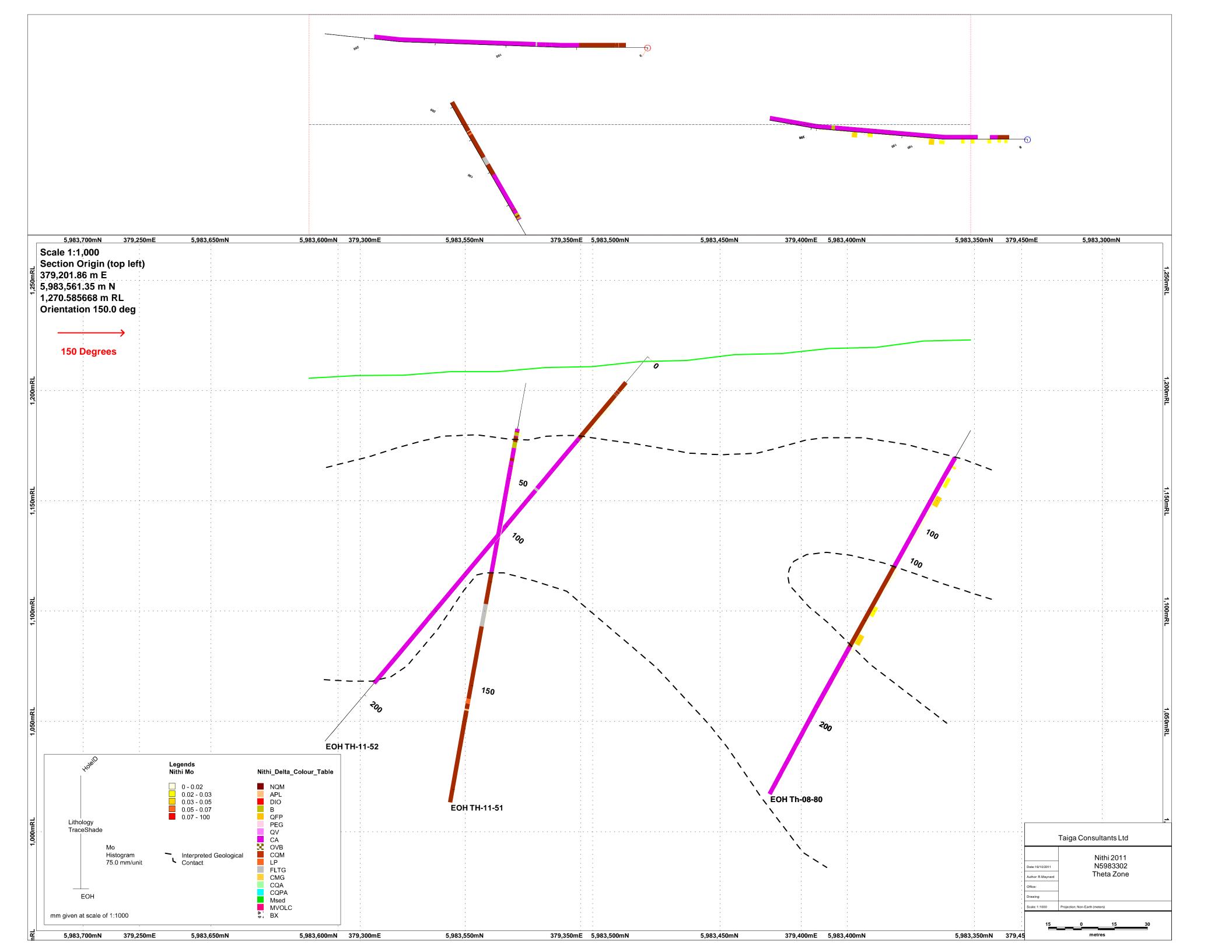


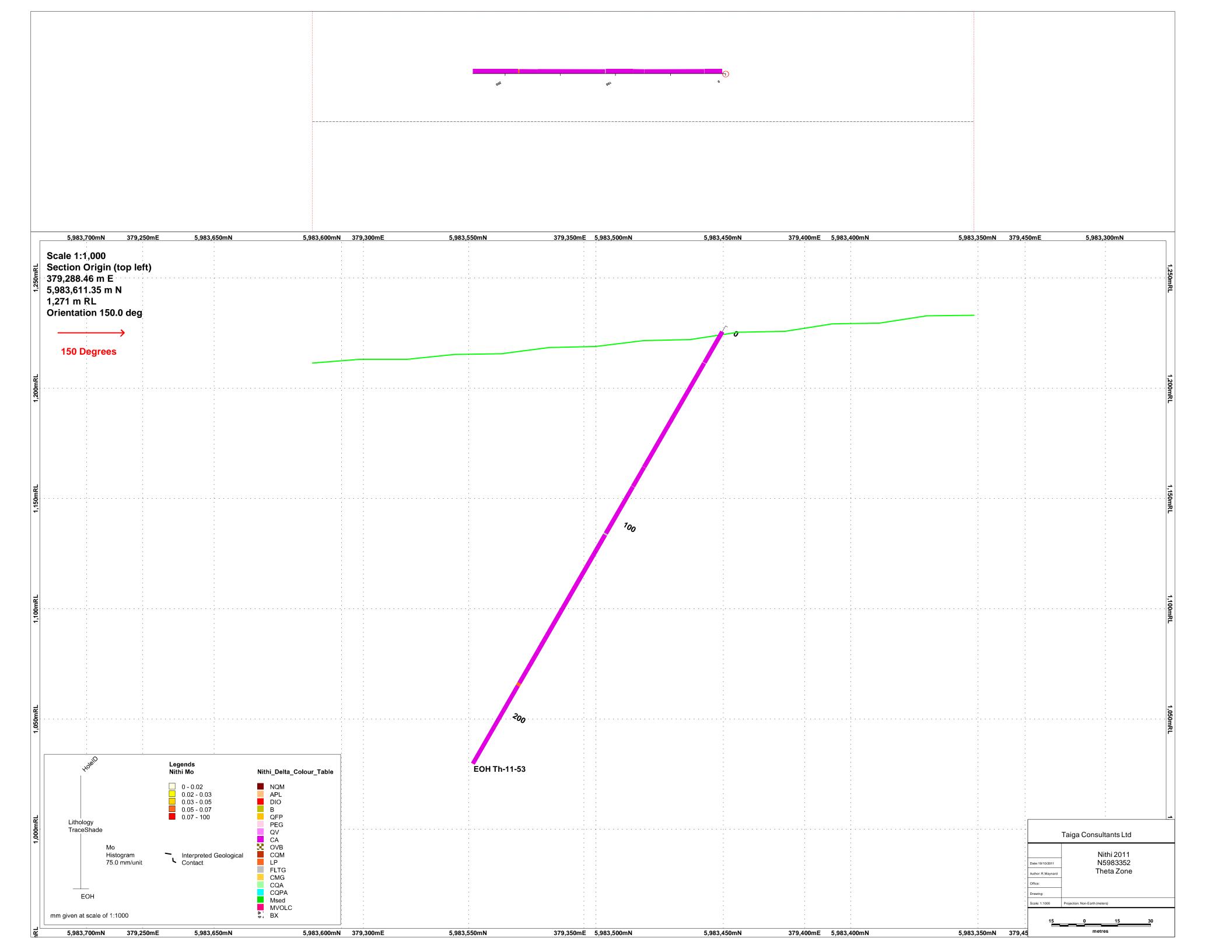


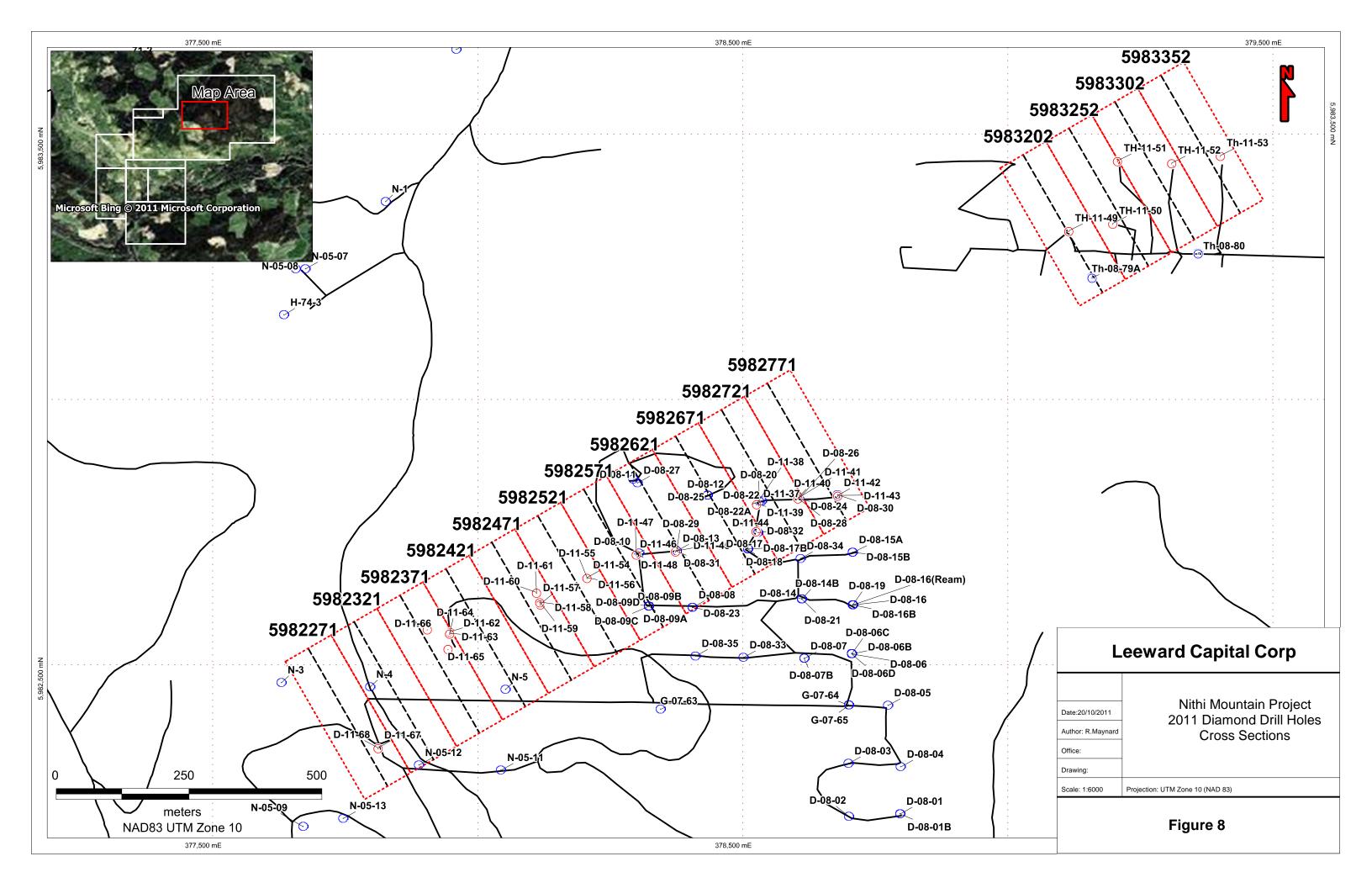


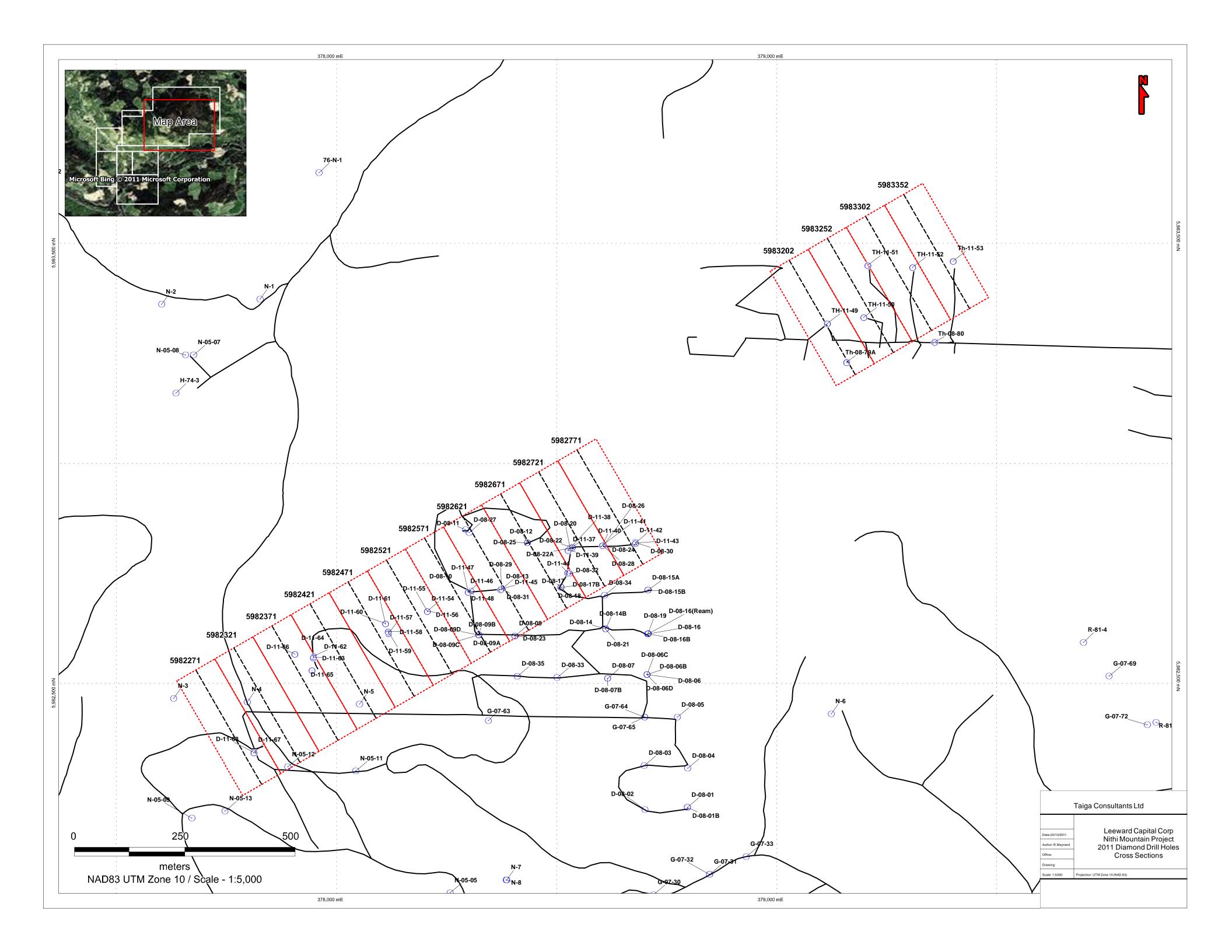












Vancouver Petrographics Ltd.

8080 GLOVER ROAD, LANGLEY, B.C. V1M 3S3 PHONE: 604-888-1323 • FAX: 604-888-3642 email: vanpetro@vanpetro.com Website: www.vanpetro.com

- Report for: Leeward Capital Corp. 101 – 2719 7th Avenue N.E. Calgary, AB T2A 2L9 Canada
- Sent to: Terri Millinoff, P.Geo. tmillinoff@taiga-ltd.com

Report 110678

August 25, 2011

Table of Contents

Summary:	
Table 1: List of samples and petrographic classification of the samples	
Glossary of microstructural and petrologic terms used in the text	
The polished thin sections and the offcuts	7
Petrographic descriptions	
ر م Sample D-11-38 97.6	8
、つう Sample D-11-38 616	
N Sample D-11-39 353	
Sample D-11-88 320.2	
Sample D-11-59 139.5	
Sample D-11-68 484	
Sample D-11-55 28.8	24
Sample D-11-56 22.65	
Sample D-11-66 220.1	

	Samples for Thin Section/Polished Section									
DDH	Box #	from (ft)	To (ft)	From (m)	TO (m)	interval (m)	· · · · · · · · · · · · · · · · · · ·			
D-11-38	Box 6	97.6	98.2	29.75	29.93	0.18	Aplite			
D-11-38	Box 45	616	616.45	187.76	187.89	0.14				
D-11-39	Box 25	353	353.6	1 07.59	107.78	0.18	1/2sample			
Th-11-53		615.5	616.1	187.60	187.79	0.18				
D-11-68	Bx 22	320.2	320.8	97.60	97.78	0.18				
D-11-59	bx10	139.5	139.95	42.52	42.66	0.14	Aplite			
D-11-68	bx 34	484	484.6	147.52	147.71	0.18	QFP w felsic scoria fragment?			
D-11-55	bx2	28.8	29	8.78	8.84	0.06	NQM w mo frac fill , py on x frac			
D-11-56	bx 1	22.65	22.9	6.90	6.98	0.08	qv in alt NQM w mo selvages			
D-11-66		220.1	220.5	67.09	67.21	0.12	copper mineralization			
D-11-68	bx22	320.2	320.8	97.60	97.78	0.18	QFP just past basalt in ddh			
Large Kaol	in sample ro	om D-1 1 -65		bucket						

NITHI MAY_JUNE - JULY 2011

Summary:

Sample N°	SAMPLE ID		Lithology
1	D-11-38	97.6	Altered (chlorite-white mica-clay?) fine-grained porphyritic dacite
2	D-11-38	616	Fine-grained porphyritic dacite Quartz-pyrite-calcite-chalcopyrite-white mica veins White mica-calcite veinlets
3	D-11-39	353	Altered (quartz-K-feldspar [Domain A] and clay [Domain B]) breccia Quartz veins
4	Th-11-53	615.5	Clay altered fine-grained porphyritic rhyodacite Quartz-white mica-pyrite veinlets
5	D-11-68	320.2	Altered (clay-epidote-chlorite) fine-grained porphyritic rhyolite
6	D-11-59	139.5	Altered (white mica-quartz-kaolinite?) fine-grained porphyritic andesite(?) Quartz-white mica veinlet
7	D-11-68	484	Altered (clay-epidote-chlorite-rutile?) fine-grained porphyritic rhyolite
8	D-11-55	28.8	Altered (white mica-chlorite-pyrite-rutile) granite Quartz-molybdenite veinlets
9	D-11-56	22.65	Altered (white mica-pyrite) granite Quartz-pyrite-molybdenite vein
10	D-11-66	220.1	Altered (white mica) granite Quartz-white mica-pyrite veinlet

The samples can be subdivided into six different suites. The first four suites are **hypabyssal** lithologies. The fifth was set apart due to its **brecciated** microstructure. The last suite includes **granitic** rocks which host the **molybdenite mineralization**.

The first suite (Samples N° 1 and 2) is a fine-grained porphyritic dacite. The two samples show different amounts of alteration; chlorite-white mica and possible clay have almost completely bleached Sample N° 1. Sample N° 2 is less altered with plagioclase with and some of the biotite still preserved. The veinlet within the second sample possibly indicates the assemblage (i.e., quartz-pyrite-calcite-chalcopyrite-white mica±chlorite) of the waning stages of the alteration, which almost left this sample unaffected, while intensely altering Sample N°

Glossary of microstructural and petrologic terms used in the text

a, b, c: symbols used to describe the crystallographic axes of the crystals.

Alteromorph: Mineral or group of minerals developed by partial to complete alteration or weathering of a primary mineral. The alteromorph does not always preserve the shape, size and volume of the mineral that it has replaced.

Aspect ratio: Ratio of length to width of crystals and grains.

Decussate: An arrangement of randomly-oriented elongate grains (such as mica).

- Epitaxis (epitaxy): Nucleation and growth of a mineral in another with a systematic relationship between the two crystal structures.
- Embayed phenocryst: Phenocryst (typically in a volcanic or shallow intrusive igneous rock) with smoothly curved embayments formed either by magmatic corrosion (re-solution in the magma, owing to changes in external conditions) or, in some instances, dendritic growth.
- Groundmass: Aggregate that is distinctly finer-grained than the phenocrysts (q.v.) in an igneous rock.

Intergrowth: Aggregate of two or more minerals, generally arranged in a regular manner, formed by simultaneous growth or exsolution.

Interlobate: With irregular, lobate grain boundaries.

- Interstitial: Mineral occupying angular cavities or interspace fillings between other minerals.
- Matrix: Aggregate that is distinctly finer-grained than the porphyroblasts in a metamorphic rock. The usage is similar to that of groundmass (q.v.) in an igneous rock.
- **Pleochroism:** A property of certain crystals of absorbing light to an extent that depends on the orientation of the vector of the light with respect to the optic axes of the crystal.

Poikilitic: Term referring to grains with many inclusions in igneous rocks.

- **Polygonal**: Crystal with straight grain boundaries and consisting of anhedral or subhedral grains.
- **Relict** (residual structure): Structure remaining after a deformation or metamorphic event, such as a porphyroclast in a mylonite, a phenocryst in a metamorphosed volcanic rock, or a partly replaced porphyroblast in a retrograde metamorphic rock. 'Relict' is sometimes used as an adjective for 'residual'.
- Undulose (undulatory) extinction: Wavy, non-uniform extinction in a single grain, owing to slight bending of the crystal. Patchy, irregular undulose extinction can be due to submicroscopic fractures, kinks and dislocation tangles.

X, Y, Z: symbols used to describe the optical indicatrix of the crystals.

Xenoblastic: Describes a structure of irregular grains showing no crystal-face boundaries in a metamorphic rock.

References:

Amstutz, G.C., 1954, 1960, A geometric classification of basic intergrowth patterns of minerals. Am. Geol. Inst. Data Sheet 21.

Delvigne, J.E., 1998, Atlas of Micromorphology of Mineral Alteration and Weathering, The

The polished thin sections and the offcuts

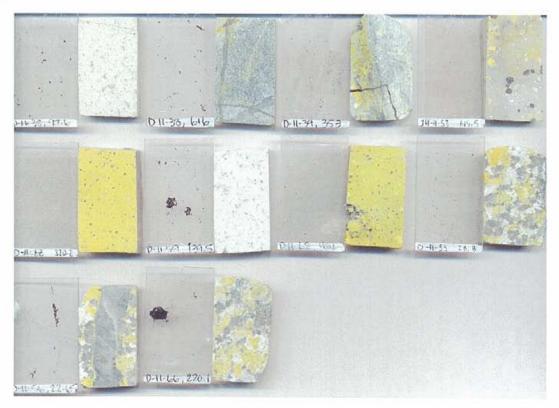


Figure I: The polished thin sections and the offcuts.

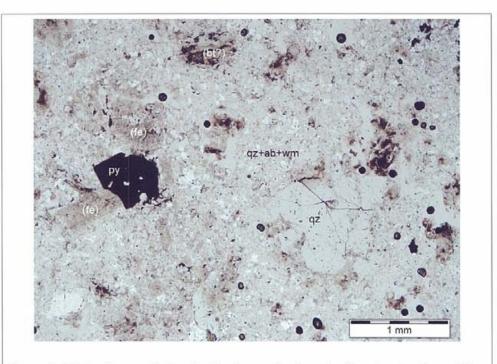
Petrographic descriptions

Sample D-11-38 97.6

Altered (chlorite-white mica clay?) fine-grained porphyritic dacite

This polished thin section is characterized by a fine-grained porphyritic microstructure defined by the presence of completely altered subhedral feldspar, alteromorphosis of chlorite+white mica, and embayed quartz phenocrysts immersed within an inequigranular interlobate groundmass made up of quartz and albite. Pyrite forms subhedral crystals dispersed within the groundmass.

Mineral	Modal %	Main size range (mm)
Quartz	65 - 70	0.5-1 as phenocryst, up to 0.2 in the groundmass
(Feldspar) altered by white mica+clay	20 - 24	Up to 1.5
White mica-chlorite-clay (after biotite?)	6 - 8	Up to 1
White mica	4 - 5	0.02
Pyrite	1 - 1.5	Up to 1
Rutile	tr - 1	Up to 0.4
Pyrrhotite	tr	Up to 0.2
Titanite	tr	. Up to 0.1
Chalcopyrite	tr	Up to 0.05


Quartz occurs as anhedral and embayed phenocrysts of up to 1 mm in size. Some phenocrysts are rimmed and in some instances the embayments, indicating a resorption process which occurred within the magma, are occupied by intensely altered feldspar. The phenocrysts are immersed within a fine-grained (0.1-0.2 mm) interlobate aggregate of quartz, albite and irregularly distributed very fine-grained white mica and possibly clay.

Subhedral structural relicts of possible **feldspar** are intensely to completely altered by a very fine-grained aggregate of white mica and possible clay. The nature of the cryptocrystalline aggregate should be further investigated with infrared-spectrometry analysis. The absence of the yellow colour on the stained offcut (see Fig. 0) suggests that no feldspar was present within this lithology, however, the feldspar could have been completely altered and replaced by white mica+clay.

Chlorite and lesser **white mica** form an epitaxial replacement of a tabular to columnar ferromagnesian mineral, which had a relatively high aspect ratio in some of its occurrences (up to 10:1). The presence of anhedral titanite within the alteromorphoses indicates that the

ferromagnesian mineral could have been biotite.

Pyrite is dispersed within the groundmass as subhedral crystals and hosts blebs and subrounded inclusions of **pyrrhotite**, **chalcopyrite**, quartz and other fine-grained unresolved minerals. In some instances pyrite is fractured and rare chalcopyrite is observed between the cracks.

Figure 1: Photomicrograph showing the fine-grained porphyritic microstructure with resorbed quartz phenocrysts (qz), structural relicts of feldspar with subhedral shapes (fe), alteromorphoses of possible biotite (bt?) and subhedral pyrite (py). The groundmass is made up of quartz, albite and white mica (qz+ab+wm). Plane polarized transmitted light.

Sample D-11-38 616

Fine-grained porphyritic dacite

Quartz-pyrite-calcite-chalcopyrite-white mica veins

White mica-calcite veinlets

This polished thin section shows a fine-grained porphyritic microstructure with subhedral crystals of plagioclase and lesser tabular crystals of altered biotite and quartz immersed within a fine-grained interlobate aggregate of quartz+albite±biotite. Quartz-rich veins host minor amounts of pyrite; chalcopyrite and rutile and are crosscut by veinlets made up of calcite, which in turn are crosscut by white mica±chlorite±calcite veinlets.

Mineral	Modal %	Main size range (mm)
Plagioclase	46 - 50	Up to 1
Quartz	35 - 40	Up to 1
Biotite	8 - 10	Up to 1
White mica	5 - 6	Up to 0.2
Chlorite	2 - 3	Up to 0.5
Pyrite	1 - 2	Up to 1
Calcite	1	Up to 0.1
Rutile	0.5 - 1	Up to 0.4
Sphalerite	tr	Up to 0.7
Chalcopyrite	tr	Up to 0.5
Apatite	tr	Up to 0.05

Plagioclase forms subhedral phenocrysts of up to 1 mm in size. The phenocrysts show distinct normal (albite-richer rims) zonation and refractive indexes greater than quartz. The measured extinction angle [X': trace (010) in the zone perpendicular to (010), Troger (1979)] of 15° and the refractive indexes greater than quartz indicate a 30% anorthite content (i.e. **oligoclase-andesine**) for the plagioclase. The plagioclase is weakly fractured and is weakly altered by a very fine-grained dispersion of white mica and lesser calcite. Albite and Carlsbad twinning are observed but are not widespread, and in some instances the plagioclase rims are finely interlobated with the fine-grained groundmass. Plagioclase and quartz form an interlobate aggregate with maximum grain-size of 0.1 mm. In this case the plagioclase shows refractive indexes comparable with the quartz and is therefore interpreted as being albite. Albite is also distinguished from the quartz by its typical albite twins.

Quartz forms fine-grained interlobate crystals which constitute the groundmass in association with albite and lesser biotite flakes of up to 0.1 mm. It is rarely observed as anhedral



Figure 2a: Photomicrograph with subhedral phenocrysts of plagioclase (pl) immersed within a fine-grained groundmass of quartz and albite. Crossed nicols transmitted light.

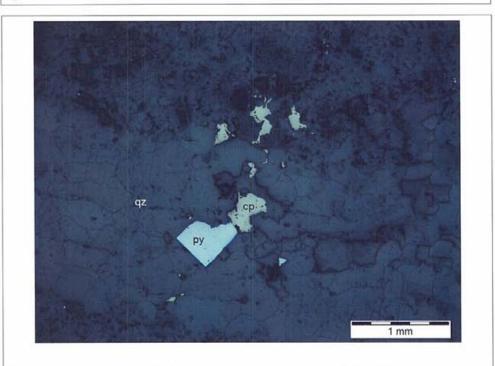
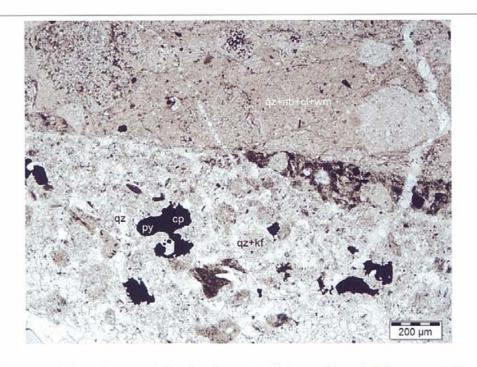


Figure 2b: Subhedral pyrite (py) and anhedral chalcopyrite (cp) within a quartz-rich vein (qz). Plane polarized reflected light.

Sample D-11-39 353 Altered (quartz-K-feldspar [Domain A] and clay [Domain B]) breccia Quartz veins

This sample is made up of two domains. The first domain (A) is characterized by a fragmental microstructure with sub-angular fragments made up of a fine-grained aggregate of quartz, albite and white mica. The fragments are immersed within a matrix composed of a fine-grained aggregate of quartz, albite, clay and white mica. **Domain B** consists mostly of an inequigranular aggregate of quartz overgrown by bladed quartz of up to 0.5 mm. The coarser quartz crystals are interpreted as being temporally associated with the quartz veinlets and veins which crosscut the two domains. Pyrite is dispersed within the two domains and is absent from the quartz-veins and veinlets, and chalcopyrite occurs only within Domain B.

Mineral	Modal %	Main size range (mm)
Domain A (57 % of PTS)		
Quartz	17 - 20	0.01-0.1
Albite?	8 - 10	0.01-0.1
Clay	5 - 6	cryptocrystalline
White mica	1.5 - 2	Up to 0.2
Pyrite	0.4 - 0.5	0.2
Rutile	tr	Up to 0.1
Domain B (33 % of PTS)		
Quartz	40 - 44	0.01-0.5 and rare fragments of up to 0.4
K-feldspar	15 - 17	0.01-0.5
Pyrite	0.5 - 0.8	Up to 0.3
Chalcopyrite	0.5 - 0.8	Up to 0.4
White mica	tr	Up to 0.1
Veinlets and Vein (10% of PTS)		
Quartz	10	Up to 1


Quartz forms a fine- to very fine-grained aggregate with interlobate grain shapes associated with possible albite, white mica and clay within the lithic fragments of Domain A. Rare quartz fragments of up to 0.4 mm in size and with a strong undulose extinction are also found

immersed within a very fine-grained matrix which is possibly composed of quartz, and possibly of albite and clay. The lithic fragments are, in some instances, showing subhedral structural relicts of **feldspar** which are strongly replaced by clay and are immersed within a very fine-grained groundmass of quartz and possibly albite.

Within Domain B the quartz shows different grain shapes: from the very fine-grained and interlobate aggregate with grain size of up to 0.05 mm, which is locally overgrown by granoblastic patches with crystals of up to 0.2 mm, then which is finally overgrown by bladed to blocky quartz of up to 0.5 mm. The coarser quartz is possibly coeval with the quartz veins and veinlets, in which it occurs as clear crystals from blocky to columnar shapes, and in some instances, blades and columns which are oriented perpendicular to the vein/veinlet walls.

K-feldspar is associated with quartz within Domain B as fine to very fine-grained interlobated to polygonal crystals with refractive indexes smaller than quartz and low birefringence. The presence of K-feldspar within Domain B, itself representing a vein-like domain with intense recrystallization and replacement, is interpreted here as an evidence of a potassic (K-feldspar) alteration.

Pyrite is distributed heterogeneously in the two domains as rounded to euhedral crystals. The presence of rounded crystals within the matrix of Domain A suggests that the deposition of pyrite could have started during the brittle brecciation and continued during the quartz-feldspar alteration observed within Domain B. **Chalcopyrite** occurs as amoeboid crystals within Domain B where in some instances it is spatially associated and rims anhedral pyrite and euhedral crystals of quartz.

Figure 3a: Photomicrograph showing the contact between Domain A (upper part of the Figure) with lithic fragments immersed within a matrix of quartz, albite, clay and white mica (qz+ab+cl+wm), and Domain B, in which pyrite and chalcopyrite (py and cp, see details in Figure 3b) are hosted within a quartz (qz) and quartz+K-feldspar aggregate (qz+kf). Plane polarized transmitted light.

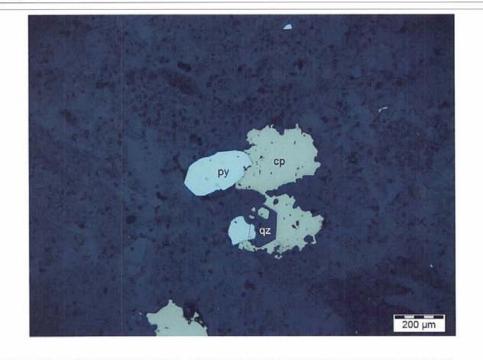


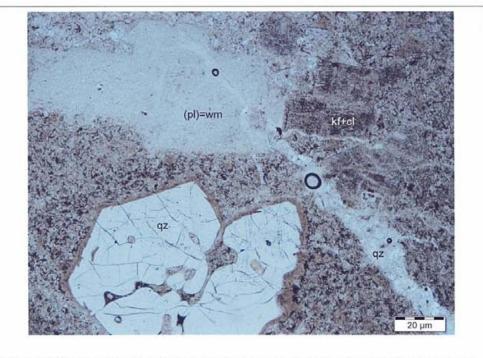
Figure 3b: Detail of the previous Figure 3a. Chalcopyrite rims anhedral crystal of pyrite (py) and euhedral quartz (qz) within Domain B. Plane polarized reflected light.

Sample Ø-11-53 615.5

Clay altered fine-grained porphyritic rhyodacite Quartz-white mica-pyrite veinlets

The microstructure of this polished thin section is characterized by subhedral and embayed phenocrysts of quartz and euhedral feldspar crystals intensely altered by very fine-grained white mica and lesser clay. The phenocrysts are immersed in a fine-grained groundmass made up of a xenomorphic aggregate consisting of albite±quartz, and possibly white mica– and which is strongly altered by clay.

Mineral	Modal %	Main size range (mm)
Albite	55 - 60	Up to 0.12
Quartz	(9) 25 - 30	Up to 4
Clay	12 - 15	cryptocrystalline
K-feldspar, partially replaced by clay	(15) 15 - 17	Up to 2.5
(Plagioclase) replaced by white mica	(12) 12 - 15	Up to 2.5
Pyrite	tr	Up to 0.05
Rutile	tr	Up to 0.05


*figures in parentheses indicate the % of the phenocrystalline portion of the mineral

Quartz forms subhedral phenocrysts of up to 4 mm in size with abundant embayments generated by its resorption and partial replacement of possibly feldspar (albite?) which is in turn completely replaced by a cryptocrystalline aggregate of clay. Albite is partially to completely replaced by clay and in some instances rims the euhedral faces of quartz. Quartz possibly occurs also within the xenomorphic groundmass, however the nature of this strongly altered aggregate is not resolved by the microscope due to the fine grain size and the strong clay alteration. The phenocrysts are subordinate as compared to the groundmass. Quartz finally forms thin veinlets (up to 0.2 mm wide) with lesser amounts of white mica and rare pyrite.

Albite possibly constitutes most of the xenomorphic groundmass where it forms irregular to interlobate crystals of up to 0.12 mm in size. Albite is the major constituent of the rims and resorption microstructures around the quartz phenocrysts. Structural euhedral-shaped relicts which are made up of very fine-grained white mica are interpreted as alteromorphosis after **plagioclase**.

Euhedral **K-feidspar** phenocrysts are partially replaced by cryptocrystalline clay and in some occurrences enclose euhedral plagioclase.

Pyrite is anhedral and is found in some of the quartz veinlets that crosscut the sample and within the intensely to completely altered feldspars.

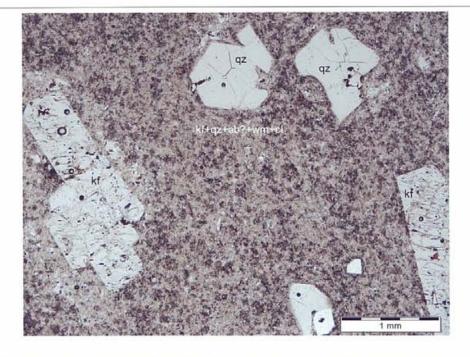
Figure 4: Subhedral and embayed quartz phenocrysts (qz), euhedral alteromorphosis of white mica after plagioclase [(pl)=wm] and clay-altered K-feldspar (kf+cl) are immersed within a clay altered groundmass. Plane polarized transmitted light.

Sample D-11-88 320.2

Altered (clay-epidote-chlorite) fine grained porphyritic rhyolite

This sample has a fine-grained porphyritic microstructure with subhedral to euhedral quartz and K-feldspar phenocrysts immersed within a very fine-grained groundmass constituting Kfeldspar prevailing on quartz, possible albite and white mica. The groundmass is moderately to strongly altered by a cryptocrystalline dispersion of possible clay.

Mineral	Modal %	Main size range (mm)
K-feldspar	(20) 50 - 55	Up to 5
Quartz	(15) 25 - 30	Up to 1.2
Clay	10 - 12	cryptocrystalline
Albite?	5 - 7	Up to 0.1
White mica	4 - 5	Up to 0.04
Iron-oxides and limonite	1	Up to 0.3
Titanite?	tr	Up to 0.01
Epidote	tr	Up to 0.01
Chlorite	tr	Up to 0.25


*Figures in parentheses indicate the % of the phenocrystalline portion of the mineral

K-feldspar forms euhedral to subhedral prisms of up to 5 mm in size which are subtly altered by clay dispersion and possibly very fine-grained epitaxial epidote prisms (saussurite). The optical sign is small and negative, and indicates that the feldspar belongs to the high albite series (i.e., low sanidine or anorthoclase); no perthites are observed and in some instances the crystals show Carlsbad contact twinning.

Quartz is euhedral to subhedral and shows subtle embayments indicating a certain degree of resorption and disequilibrium with the groundmass, however, the resorption is less evolved if compared with the previous sample (D-11-53 615.5). Quartz forms interlobate fine-grained crystals (up to 0.04 mm) within the groundmass.

The groundmass is possibly formed by abundant K-feldspar, quartz, possible albite, and is later altered by a very fine-grained dispersion of white mica flakes and cryptocrystalline clay. The amount of K-feldspar as a constituent of the groundmass can be ascertained by the yellow stain; however it must also be considered that white mica and clay may sometimes absorb the stain.

The walls of some irregular cavities of up to 0.5 mm in size are encrusted by iron oxides, limonite, epidote crystals and polygonal quartz crystals. Rare pseudomorphoses with subhedral shapes (up to 0.5 mm) consist of white mica and chlorite, are partially destroyed during the sample preparation and are possibly the result of the alteration of some ferromagnesian mineral. Rare crystals of up to 0.3 mm in size are completely oxidized.

Figure 5: K-feldspar (kf) and quartz (qz) phenocrysts immersed in a groundmass made up of K-feldspar, quartz, possible albite, white mica and clay (kf+qz+ab? +wm+cl). Plane polarized transmitted light.

Sample D-11-59 139.5 Altered (white mica-quartz-kaolinite?) fine-grained porphyritic andesite(?) Quartz-white mica veinlet

The microstructure of this polished thin section is characterized by subhedral to euhedral phenocrysts, likely of feldspar, which are completely replaced by very fine-grained white mica and immersed within a fine-grained groundmass with interlobate quartz, albite and white mica. Quartz phenocrysts are rare and anhedral. Pyrite forms polkilitic crystals and hosts inclusions of quartz, white mica-rich alteromorphoses, pyrrhotite and chalcopyrite.

Mineral	Modal %	Main size range (mm)
Quartz	(1) 40 - 44	0.1-0.3 within the groundmass, up to 0.8 as phenocryst, up to 0.4 within the veinlet
White mica+Kaolinite? (alteromorphosis after feldspar)	(35) 35 - 40	0.004-0.03 (alteromorphosis size up to 1 mm)
Albite	12 - 15	Up to 0.1
White mica	8 - 10	Up to 0.25
Pyrite	2	Up to 5
Rutile	tr	Up to 0.25
Chalcopyrite	tr	Up to 0.4
Galena	tr	Up to 0.5
Pyrrhotite	tr	Up to 0.05
Titanite	tr	Up to 0.05

* figures in parentheses indicate the % of the phenocrystalline portion of the mineral

Quartz forms fine-grained crystals of up to 0.1 mm in size with interlobate to polygonal shapes. It is generally associated with albite and white mica flakes and constitutes the groundmass of the porphyritic rock. In some cases the quartz forms monomineralic aggregates with patchy and irregular shapes in which the crystals reach 0.3 mm. Quartz also forms very rare (2) phenocrysts of up to 0.8 mm in size which have an anhedral shape. A thin veinlet (0.5 mm wide) crosscuts the polished thin section and is infilled by blocky to polygonal quartz of up to 0.4 mm with a weak to moderate undulose extinction and rare white mica flakes.

White mica forms very fine-grained aggregates within alteromorphoses with euhedral to subhedral shapes. The presence of kaolinite within the alteromorphoses is suspected and

should be confirmed by X-ray diffractometric analysis or infrared spectrometry. The shape of the alteromorphoses and the mineral products indicate that the primary phase could have been **feldspar**. White mica forms crystal aggregates with crystals of up to 0.25 mm in size which are randomly oriented and interpreted as being crystallized during a post-magmatic alteration event. Only in some cases is white mica is associated with very fine-grained **titanite** and therefore is interpreted as having originated from the alteration of a Ti-bearing phase such as biotite.

Pyrite forms anhedral poikilitic and fractured crystals of up to 5 mm in size and includes quartz crystals, white mica alteromorphoses after feldspar and blebs of **chalcopyrite** and **pyrrhotite**.

Galena mantles the pyrite in some rare occurrences, while in some cases the chalcopyrite infills the fractures of pyrite.

In only one instance, a plagioclase crystal is found hosted as armoured inclusion within the pyrite. It is identified as plagioclase by its growth zoning and the Carlsbad contact twin. By assuming that this crystal was analogous to the other crystals, which are now completely replaced by white mica, and finally by the very small amount of quartz as phenocryst, this porphyritic rock is tentatively classified as andesite.

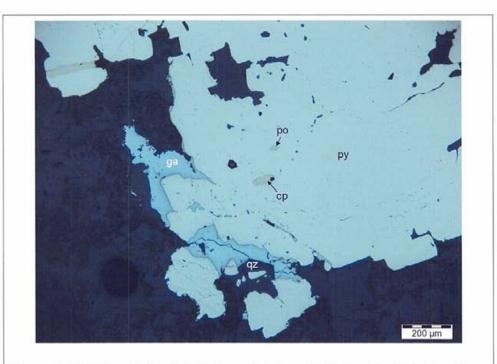


Figure 6: Poikilitic pyrite hosts inclusions of chalcopyrite (cp), pyrrhotite (po) and is mantled by galena (ga). Plane polarized reflected light.

Sample D-11-68 484

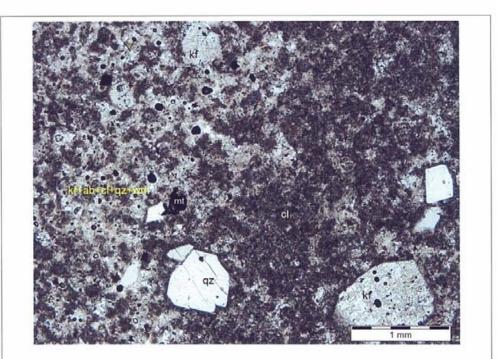
Altered (clay-epidote-chlorite-rutile?) fine-grained porphyritic rhyolite

This sample shares some compositional and microstructural similarities with Sample D-11-88 320.2. Euhedral to subhedral phenocrysts of K-feldspar and quartz are immersed within a finegrained groundmass made up of K-feldspar, clay, quartz and possibly albite.

Mineral	Modal %	Main size range (mm)
K-feldspar (and perthitic albite)	(15) 50 - 55	Up to 3
Quartz	(10) 25 - 30	Up to 1
Clay	15 - 17	cryptocrystalline
White mica	3 - 5	Up to 0.04
Epidote	1 - 2	Up to 0.4
Magnetite	0.5 - 1	Up to 0.2
Pyrite	tr	Up to 0.1
Fe-chlorite	tr	Up to 0.3
Titanite?	tr	Up to 0.5
Iron-oxides and limonite	tr	Up to 0.05
Rutile	tr	Up to 0.02

* figures in parentheses indicate the % of the phenocrystalline portion of the mineral

K-feldspar forms euhedral to subhedral phenocrysts with a small 2V and negative optical sign. Replacement perthites are common and in some instances fine albite twinning is observed within the perthites, which also show a refractive index greater than the host K-feldspar. The perthitic feldspar is relatively fresh with only minor saussuritic overgrowths of very fine-grained epidote. K-feldspar is possibly the dominant constituent of the fine-grained groundmass. Fine grained laths of albite and quartz form an interlobate aggregate, which is moderately to strongly altered by a cryptocrystalline dispersion of clay and white mica flakes. The presence of very fine-grained epidote crystals is also suspected.


Quartz forms euhedral to subhedral phenocrysts of up to 1 mm in size and is associated, as very fine-grained interstitial grains, with the feldspar-rich groundmass. Some phenocrysts show embayment and evidence of disequilibrium with the groundmass which has partially corroded and replaced the quartz. Quartz also occurs as polygonal crystals within irregular and partially filled cavities and has recrystallized within the groundmass. Columnar epidote with high (10:1 and higher) aspect ratio is associated with secondary quartz.

Clay is more abundant if compared with Sample D-11-88 320.2, and in this sample it locally obscures the groundmass with a cryptocrystalline and earthy dispersion.

Magnetite forms subhedral and rare cubic crystals which are irregularly dispersed within the groundmass and are fractured in most of their occurrences.

Rare alteromorphoses with subhedral shapes are made up of **chlorite** and white mica and are possibly replacing a ferromagnesian mineral. The sign of elongation of the chlorite is positive and is therefore identified as Fe-chlorite.

Titanite forms a tabular prism of 0.5 mm with a thin corona of rutile.

Figure 7: Phenocrysts of K-feldspar (kf) and quartz (qz), and fine-grained magnetite (mt) are immersed within an heterogeneous groundmass; clay alteration differentially affected the groundmass: on the right side of the Figure the groundmass is intensely altered by clay (cl), on the left, moderate to strong alteration partially replaces fine-grained aggregate consisting of K-feldspar, albite, quartz and white mica (kf+ab+cl+qz+wm). Plane polarized reflected light.

Sample D-11-55 28.8 Altered (white mica-chlorite-pyrite-rutile) granite Quartz-molybdenite veinlets

This sample is characterized by a coarse-grained granitic microstructure with subhedral plagioclase and interstitial quartz and K-feldspar. Pyrite and rutile are preferentially associated with the alteromorphosis of white mica and chlorite after possible biotite. Quartz and quartz-molybdenite form subparallel veinlets.

Mineral	Modal %	Main size range (mm)
Plagioclase	37 - 40	Up to 5
Quartz	30 - 32	Up to 8
K-feldspar	24 - 26	Up to 8
White mica	3 - 4	Up to 0.5
Chlorite	1	Up to 0.5
Pyrite	1	Up to 0.7
Titanite	tr	Up to 0.05
Rutile	tr	~0.1
Molybdenite	tr	Up to 1
Biotite	tr	Up to 0.2

Plagioclase forms subhedral crystals of up to 5 mm in size. It is weakly to moderately altered by a fine- to very fine-grained dispersion of white mica flakes. It appears to be the first phase to have crystallized as it is in many occurrences mantled by K-feldspar and later by quartz. Plagioclase is distinguished by its typical albite twin and its refractive indexes are greater than the K-feldspar and are comparable to or slightly higher than the quartz.

Quartz forms interlobate and interstitial crystals, which in most of the cases infills the spaces left after the growth of plagioclase and K-feldspar. In some cases quartz and K-feldspar are interlobated, indicating a contemporaneous crystallization. It is fractured and shows moderate to strong undulose extinction, possibly due to the strain accumulated during the same deformation event which accompanied the quartz+molybdenite infill.

K-feldspar is anhedral, mantles plagioclase and is in some cases interlobated with quartz. It is distinguished from plagioclase in transmitted light by the different alteration pattern: if plagioclase is preferentially altered by very fine-grained white mica, K-feldspar hosts dusty cryptocrystalline dispersions unresolved by the microscope. In some instances K-feldspar hosts perthitic rods and strings.

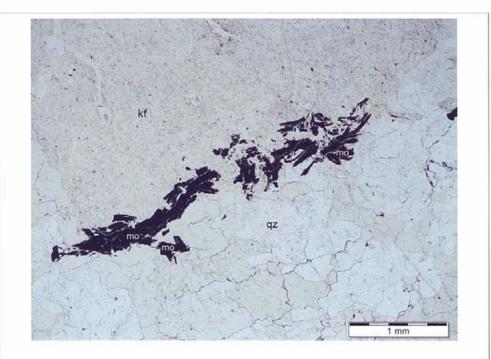
Sample D-11-56 22.65 Altered (white mica-pyrite) granite Quartz-pyrite-molybdenite vein

This polished thin section consists of a quartz-rich vein crosscutting a coarse-grained granite, which is very similar to the previous sample (D-11-55 28.8), with plagioclase, quartz and K-feldspar. Pyrite and molybdenite occurs in the proximity of the quartz-rich vein walls.

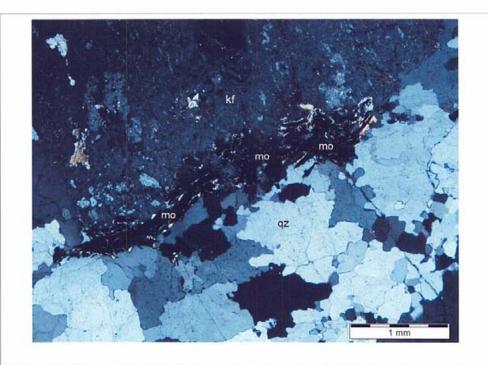
Mineral	Modal %	Main size range (mm)
Quartz-molybdenite-pyrite vein (48% of PTS)		
Quartz	44 - 46	Up to 1
Molybdenite	2 - 3	Up to 1.2
Pyrite	1 - 2	Up to 0.5, up to 7x1.5 within the vein
Chalcopyrite	tr	Up to 0.12
Oxides	tr	cryptocrystalline
Granite (52% of PTS)		
Plagioclase	18 - 22	Up to 5
Quartz	15 - 18	Up to 5
K-feldspar	14 - 16	Up to 6
White mica	3 - 4	Up to 1
Titanite	tr	up to 0.1
Pyrite	tr	Up to 0.5

Quartz is the main constituent of the vein that crosscuts the granite. Within the vein, quartz occurs as inequigranular interlobate to polygonal crystalswith weak to moderate undulose extinction. It hosts sparse flakes of molybdenide within its fractures and along its grain boundaries. Within the granite quartz forms interlobate crystals of up to 6 mm in size which mantle plagioclase and K-feldspar.

Plagioclase forms subhedral to anhedral crystals mantled by K-feldspar and quartz and is distinguished by its typical albite twins. Plagioclase shows refractive indexes greater than the quartz and this, together with the small angle of extinction of albite twin lamellae, calculated with the "symmetrical zone" method [X':trace (010) in the zone perpendicular (010)], which is


generally smaller than 15°, indicates that the plagioclase can be determined as being an oligoclase. Plagioclase is moderately altered by a very fine-grained dispersion of white mica.

K-feldspar forms anhedral crystals that are characterized by the presence of perthites as replacement patches of albite, beads and rods.


White mica forms irregular flakes and bent crystals of up to 1 mm in size hosting fine-grained dispersions of titanite and is possibly derived by the alteromorphosis of biotite as already described in the previous sample. Most of the white mica appears to be a product of the alteration of pre-existing biotite as suggested by the titanite dispersions, however, particularly at the contact between the quartz-rich vein and some feldspars, white mica may have crystallized as alteration product nucleated on pre-existing white mica (i.e., very fine- grained white mica after plagioclase) and/or as partially replacing the perthitic K-feldspar.

Pyrite forms fine-grained anhedral crystals generally associated with the white mica-rich alteromorphosis after biotite and, within the quartz vein, occurs as poikilitic crystals of up to 7 by 1.5 mm in size aligned along the vein wall. In this case it hosts inclusions of quartz and fine- grained amoeboid chalcopyrite, which shows various degrees of oxidation.

Molybdenite forms bent flakes with a high aspect ratio (10:1); it is preferentially precipitated along the vein walls and in particular, the coarser lamellae are associated with white mica flakes occurring at the boundary between quartz (on the vein side) and K-feldspar (on the rock side).

Figure 9a: Contact between the host rock (upper left of the photomicrograph) with a K-feldspar crystal (kf) and the quartz-pyrite-molybdenite vein (qz) and (mo) on the lower right. Molybdenite lamellae (mo) occur preferentially at the contact between the K-feldspar (kf) and the vein (qz). Plane polarized transmitted light.

Figure 9b: Same detail shown in the previous Figure 9a. In this photomicrograph the association of molybdenite (mo) with white mica (higly birefringent flakes) at the contact between the perthitic K-feldspar (kf) and the vein (qz) is shown. Crossed polars transmitted light.

Sample D-11-66 220.1 Altered (white mica) granite Quartz-white mica-pyrite veinlet

This polished thin section is characterized by a granitic microstructure with abundant anhedral K-feldspar, subhedral to euhedral plagioclase and anhedral quartz. White mica completely replaces biotite and partially replaces some of the plagioclase crystals.

Mineral	Modal %	Main size range (mm)
K-feldspar	35 - 39	Up to 4
Quartz	27 - 30	Up to 5
Plagioclase	22 - 25	Up to 2.5
White mica	7 - 9	Up to 1
Pyrite	6 - 7	~7
Rutile	tr	Up to 0.4
Chalcopyrite	tr	Up to 0.35
Pyrrhotite	tr	Up to 0.05

K-feldspar occurs as anhedral crystals interlobated with quartz and mantles the plagioclase. K-feldspar is weakly altered by very fine-grained dispersions of a high relief mineral irresolvable by the microscope- possibly epidote-and hosts inclusions of plagioclase and perthites as replacement beads and rods. Some of the perthites are probably altered by white mica. K-feldspar is locally interlobated with plagioclase with some evidence of disequilibrium between the two phases such as embayment of plagioclase occupied K-feldspar.

Plagioclase forms subhedral to anhedral crystals and is, in most of its occurrences, mantled and enclosed within the K-feldspar. In some instances plagioclase shows embayments at the contact with K-feldspar and quartz. The plagioclase shows a refractive index lower than quartz, thus indicating an **albitic** composition and is distinguished from the K-feldspar by its albite twin lamellae.

Anhedral quartz is interlobated with the feldspars and it shows moderate to strong undulose extinction. Quartz is generally clear and devoid of solid inclusions.

White mica occurs as alteration product after biotite, and in this case forms alteromorphoses that may reach 1 mm in size in association with fine-grained titanite. In other occurrences white mica is inclusion-free, preferentially replaces the plagioclase and reaches dimensions of up to 0.5 mm with decussate flakes and flake aggregates. White mica is also abundant at the outer rim of the coarse-grained pyrite (see Fig. 10b).

Pyrite forms anhedral crystals of up to 7 mm in size with interlobate margins and hosts inclusions of quartz, white mica, **chalcopyrite** and **pyrrhotite**. Pyrite occurs, in association with white mica and quartz, as anhedral crystals of up to 0.7 mm within a quartz-rich veinlet, which is (0.5 mm wide).

Rutile in one case occurs as anhedral crystal aggregate of about 0.4 mm, which is possibly overgrown on a white mica alteromorphosis.

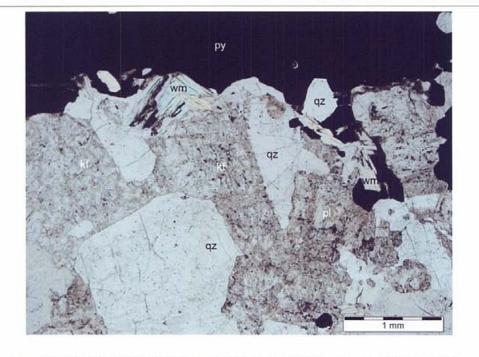


Figure 10a: Granitic microstructure with coarse-grained quartz (qz), K-feldspar (kf) and plagioclase (pl). A plurimillimetric pyrite crystal (py) overprints the magmatic microstructure and is rimmed by white mica (wm). Plane polarized transmitted light.

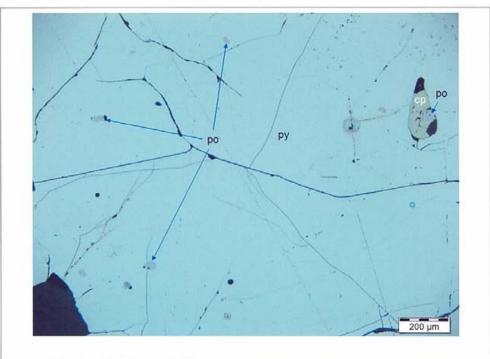
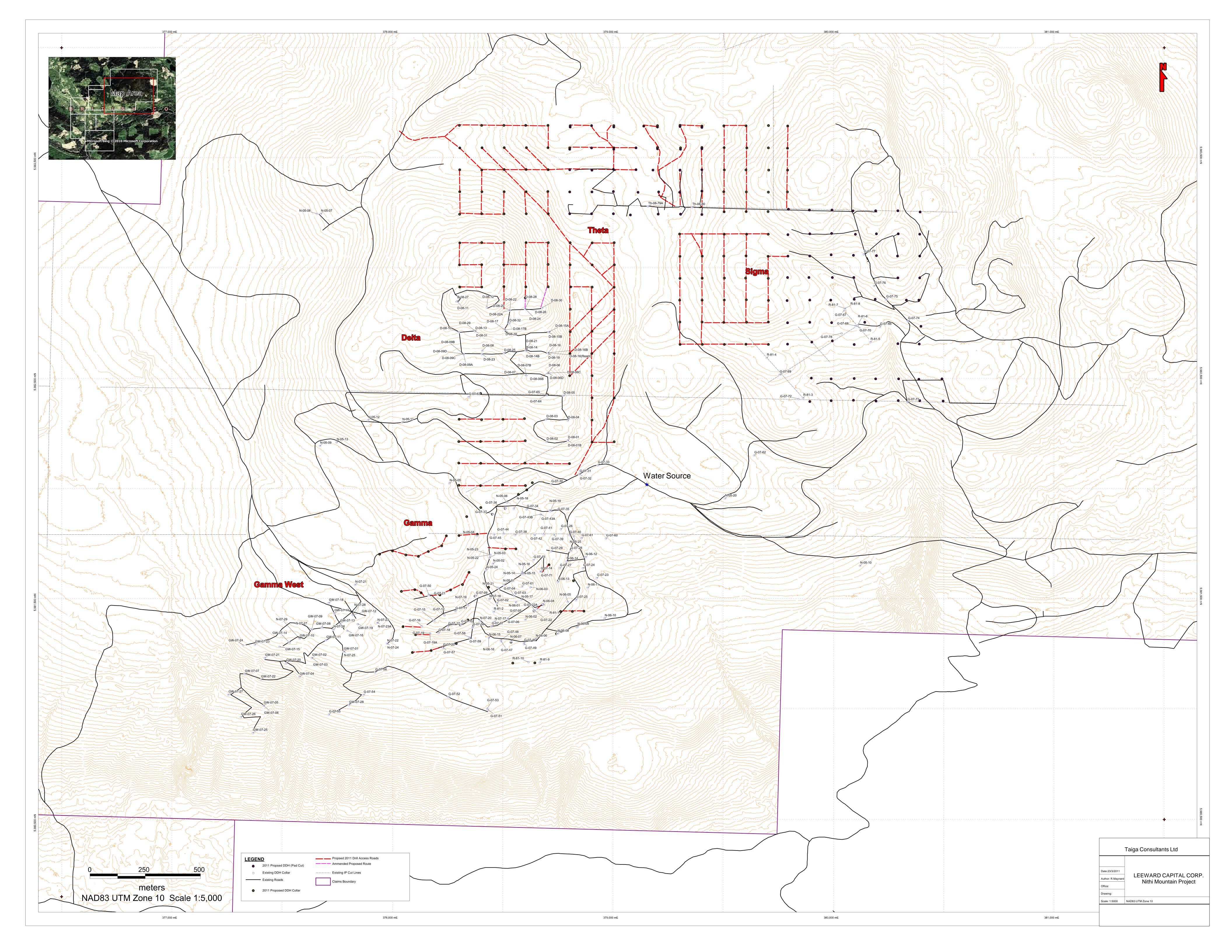



Figure 10b: Detail of the plurimillimetric pyrite (py) shown in Fig. 10a with inclusions of chalcopyrite (cp) and pyrrhotite (po). Plane polarized reflected light.

Appendix 4 WestCan Projects Ltd. Reclamation Report including Archaeological Report Huckelberry Study and Water Survey Report Tetra Tech-Wardrop Reserve Calculation

ENGINEERING DESIGN ENVIRONMENTAL CONSTRUCTION

MINERAL EXPLORATION RECLAMATION PLAN

NITHI MOUNTAIN PROJECT MINERAL LEASE NO. MX-11-192

Prepared for: Leeward Capital Corp. 101, 2719 – 7th Avenue NE Calgary, AB T2A 2L9

Attn: Jim Davis

Prepared by: WestCan Projects Ltd. 1579 – 9th Avenue Prince George, BC V2L 3R8 1-877-612-0355

Written by: Jody Watson, EIT Reviewed by: Robert S.J. Bourcier, PAg

Date: September 15, 2011 WestCan File: 11173-150

le: 11173-150

WWW.WESTCANPROJECTS.COM

WestCan Projects

LEEWARD CAPITAL RECLAMATION PLAN NITHI MOUNTAIN EXPLORATION ACTIVITY

SIGNATURE PAGE

•

WestCan Projects Ltd. is pleased to submit this report for your review. This report has been prepared using sound technical and professional judgement, based on our knowledge and experience, applicable regulatory framework, industry best management practices, and current understanding of project conditions, design, and environmental setting.

Report Title:

Exploration Activity Reclamation Plan – Nithi Mountain

Prepared for: Leeward Capital Corp.

Written by:

Jody Watso

Reviewed by:

Rob Bourcier, PAg

WESTCAN PROJECTS LTD.

TABLE OF CONTENTS

1.0	INTRODUCTION1
1.1	SITE LOCATION
1.2	Site Visit
1.3	REGULATORY FRAMEWORK
1.4	REPORT OBJECTIVES
2.0	OVERVIEW ASSESSMENT
2.1	GAMMA ZONE
2.2	SIGMA ZONE
2.3	DELTA ZONE
2.4	THETA ZONE
2.5	NOLAN LAKE WATER SOURCE INTAKE AREA
3.0	RECLAMATION PLAN
3.1	CONSTRUCTION BEST MANAGEMENT PRACTICES
3.2	BUILDINGS, MACHINERY AND DEBRIS
3.3	EXPLORATION TRAILS
3.4	DRAINAGE MANAGEMENT
3.5	REVEGETATION
3.6	SEASONAL (TEMPORARY/PARTIAL) DEACTIVATION
3.7	ARCHAEOLOGICAL AREAS
4.0	SITE-SPECIFIC RECOMMENDATIONS
4.1	GAMMA ZONE
4.2	SIGMA ZONE
4.3	DELTA ZONE
4.4	THETA ZONE
4.5	NOLAN LAKE ACCESS
5.0	REFERENCES

APPENDICES

APPENDIX A - SITE MAPS

APPENDIX B - AS-BUILT SURVEY (GPS)

APPENDIX C - INSTALLATION GUIDELINES

APPENDIX D – ARCHAEOLOGICAL ASSESSMENT

APPENDIX E - EDIBLE PLANT SURVEY

1.0 INTRODUCTION

WestCan Projects Ltd (WestCan) has been retained by Leeward Capital Corp (Leeward) to prepare a reclamation plan for their exploration activities on the Nithi Mountain Project, located near Fraser Lake, BC. The permit area is approximately 620 ha in size, containing four existing exploration target sites (Gamma, Delta, Sigma, Theta) that have been drilled over the past six years (2005 – present). Exploration activity is ongoing.

1.1 SITE LOCATION

The Nithi Mountain Property is located approximately 8 km south of Fraser Lake, BC (160 km east of Prince George), and can be accessed via Chowsunket Road, turning onto Nithi Forest Service Road (FSR). The Nithi FSR forms a circle route via the Foster FSR and 213 FSR, which allows road access to the majority of the site. The Nolan Lake FSR takes off from Nithi FSR at approximately KM12. A location map is included in Appendix A.

1.2 SITE VISIT

Jody Watson, EIT and Rob Bourcier, P.Ag of WestCan visited the site on July 22, 2011 to perform an overview assessment, and returned on August 29, 2011 to conduct the as-built survey of recent (2011) activities.

Representative sections of the four existing exploration areas within the Nithi Mountain Property (Gamma, Delta, Sigma and Theta) were assessed, as well as the Nolan Lake water source access road. As-built surveys were conducted for the 2011 activity that occurred at Delta and Theta group.

Access to the sites was gained on existing FSRs via 4x4 truck, as well as on ATV and foot where conditions required. As-built survey was performed using GPS equipment. A detailed inspection of each drill hole was not within the scope of this assessment.

1.3 REGULATORY FRAMEWORK

Reclamation is required to be performed in all areas impacted by mineral exploration activities, as defined Part 9 of the Health, Safety and Reclamation Code for Mines in British Columbia: Mineral Exploration (MX Code, Part 9.13.1 and 10.7.1-10.7.31). Additional relevant regulations to exploration activities in this area includes the federal *Fisheries Act*, which prohibits disturbance to fish-bearing streams, the provincial *Water Act*, which governs work in and around watercourses, and the *Forest and Ranges Practices Act*, which governs exploration activities such as road building, logging and reforestation.

Key agency reference documents used in the preparation of this report include:

- <u>Health, Safety and Reclamation Code for Mines in British Columbia</u>, Ministry of Energy, Mines and Petroleum Resources (2008)
- <u>Handbook for Mineral and Coal Exploration in British Columbia</u>; Ministry of Energy, Mines and Petroleum Resources and Ministry of Environment (2008/09)
- <u>Best Management Practices Handbook: Hillslope Restoration in British Columbia;</u> Ministry of Forests (2001)

1.4 REPORT OBJECTIVES

This Reclamation Plan has been developed to meet the objectives of the MX Code, including the following (from Section 9.13.1 of the Code):

- Reclamation of mechanically disturbed sites, campsites and exploration access shall occur within one year of cessation of exploration,
- Appropriate measures shall be taken to minimize the establishment of noxious weeds and the erosion of exposed or disturbed soil, and
- Exploration sites shall be revegetated to a self-sustaining state with species appropriate for the site.

This plan is intended to provide Leeward with the appropriate Best Management Practices (BMPs), procedures and site-specific prescriptions (where appropriate) for achieving these goals.

2.0 OVERVIEW ASSESSMENT

Terrain along the Nithi Mountain property is characterized by two large hillslopes (including Nithi Mountain), with a total elevation difference of approximately 320 m from the base (Gamma) to peak (Sigma/Delta) areas. Several non-classified drainages and streams are present in the lease, although none have been designated as fish-bearing (EDI, 2008). No steep slopes or areas of geotechnical instability were noted during the site assessment, and trails through the area are general flat (no significant cut/fills required). Vegetation in the area is typical of the moist, cold Sub-Boreal-Spruce biogeoclimatic zone (SBSmc2), with areas near the peak entering the Englemann Spruce Subalpine Fir (ESSFmv1) zone. An archaeological assessment (Appendix D) and edible-plant survey (Appendix E) have recently been conducted in the area.

Recent forestry activity in the area by West Fraser Mills Ltd. (West Fraser) in the winter of 2010/2011 has resulted in many of the exploration areas being cleared. Logged areas and associated service roads will not require reclamation by Leeward under the MX Code, as these would fall under the jurisdiction of the *Forest and Range Practices Act*. West Fraser has provided maps of their recent activity on Nithi Mountain, which are included as Appendix A. The following impacts were observed:

- Gamma Zone Partially logged
- Sigma Zone Partially logged
- Delta Zone Partially logged

As the Nithi Mountain property is in close proximity to Fraser Lake, BC., no associated camps or buildings have been constructed in association with exploration activities. Aside from ground disturbances, no residual evidence of activity by Leeward (ie. machinery, equipment, petroleum products or other debris) was noted in any of the areas.

2.1 GAMMA ZONE

The Gamma zone was explored from 2005 – 2008. The area has been deactivated, with debris piling, cross drains and waterbars installed in 2008 (Allnorth, 2009). During the site assessment, a representative area of the Gamma was inspected to confirm deactivation.

The nutrient-poor soil conditions along much of the access trails are such that limited vegetation growth has occurred, however this is typical of natural regeneration rates that would be expected in this area. Where soil conditions were improved, vegetation establishment was proportionally increased. A seeding program was undertaken in 2008 with a native seed mix of Needle grass applied in the western Gamma zone (Leeward, pers comm).

No significant erosion concerns were observed, as the soils are generally well drained.

PHOTO 2: GAMMA – TYPICAL VEGETATION ESTABLISHMENT IN POOR SOILS

PHOTO 3: GAMMA - SMALL TREE GROWTH IN POOR SOILS (APPROX. 5 YEAR)

PHOTO 4: GAMMA – VEGETATION ESTABLISHMENT WHERE SOIL CONDITIONS/NUTRIENTS ARE MORE PLENTIFUL

2.2 SIGMA ZONE

The Sigma zone was explored in 2008. The area has been harvested and constructed, with drill pads and sumps reclaimed (Allnorth, 2009). During the site assessment, a representative area of the Delta was inspected to determine appropriate reclamation prescriptions.

A significant portion of the southern extent of the Sigma zone, as well as through the center of the exploration target, has been logged during recent activity in the area (see Maps, Appendix A). The remaining trails and pads were assessed. Extensive debris scattering along the trails has facilitated significant vegetation establishment through natural regeneration.

Ground cover was stable and no erosion concerns were noted.

PHOTO 5: SIGMA - TYPICAL TRAIL

PHOTO 6: SIGMA - TYPICAL DRILL PAD

PHOTO 7: SIGMA - LOGGED AREA

PHOTO 8: SIGMA - TYPICAL TREE GROWTH

2.3 DELTA ZONE

The Delta zone was explored in 2007/08 and 2011. During the site assessment, a representative area of the recent Delta activity was inspected to determine appropriate reclamation measures.

A significant portion of the western extents of the Delta zone have been cleared during recent winter logging activity in the area (see Maps, Appendix A). In the remaining (unlogged) areas, waterbars had been installed, debris piles were present, and soils had generally been left in a roughened state. Several isolated wetland areas were present near the trails, but no water crossing structures or erosion concerns were noted. Vegetation establishment on the trails and pad areas was minimal as the trails are still relatively fresh, but good soil conditions should facilitate rapid natural regeneration.

The total area of disturbance in the Delta Zone was calculated to be approximately 1.1 ha (see Appendix B for map).

PHOTO 9: DELTA - HOLE IN CUTBLOCK

PHOTO 10: DELTA - TYPICAL TRAIL

PHOTO 11: DELTA - DEBRIS PILING ON TRAIL

PHOTO 12: DELTA - TYPICAL DRILL PAD AREA

2.4 THETA ZONE

The Theta Zone had been harvested in the winter of 2008 with two holes drilled, and an additional five holes drilled in 2011.

The access trail to the 2011 holes followed the IP line, with a wide clearing width and debris piling along the edges. Some waterbars had been installed, but drainage issues were evident along the long hillslope access trail (approx. 10-20% grade). A wetland area is present beyond the end of the access trail (see Photo 16), but no erosion concerns (sediment deposition) was noted at the time of the site visit, likely attributable to the loose state of the soils. Vegetation establishment on the trails and pad areas was minimal as the trails are still relatively fresh, but good soil conditions should facilitate rapid natural regeneration.

The total area of disturbance in the Theta Zone was calculated to be approximately 1.6 ha (see Appendix B for map).

PHOTO 13: THETA - ACCESS TRAIL

PHOTO 14: THETA - TYPICAL TRAIL TO PAD

PHOTO 15: THETA - TYPICAL DRILL PAD

PHOTO 16: THETA - END OF 2011 TRAIL (ALONG IP LINE), ADJACENT TO WETLAND

2.5 NOLAN LAKE WATER SOURCE INTAKE AREA

The Nolan Lake water intake access was utilized in 2007/08. There is currently road access to a small landing area outside the riparian zone of the lake (prepared for water truck access), with a small trail through approximately 35 m of forested riparian area to the waters edge.

The landing area is relatively flat and has been seeded, with an established stable ground cover of grasses (no significant erosion concerns noted). This open area would have high success for planted trees, and should be reforested (when area is no longer required) to a density and species diversity similar to surrounding cutblock conditions. The small trail to the lake was prepared with no significant disturbance to the riparian area, and appears to have heavy use by wildlife. Corduroy has been installed on a small drainage along the access roadway (see Photo 19), which should be removed if access to this area is no longer required (rock and wood can be salvaged for re-placement if necessary). If continued (long-term) access is necessary, a culvert or other stable structure which allows free flow of water should be installed.

PHOTO 17: NOLAN LAKE - LANDING AREA

PHOTO 18: NOLAN LAKE - TRAIL TO LAKE

PHOTO 19: NOLAN LAKE - CORDOROY

3.0 RECLAMATION PLAN

The following reclamation plan covers permanent deactivation for exploration trails within the Nithi Mountain property. The priority will be on the management of drainage and erosion controls for high-runoff (freshet) conditions, with vegetation establishment forming a key component of sustained erosion control. No stream crossings or riparian management issues were noted during the site assessment, aside from the Nolan Lake access (see Section 2.5).

3.1 CONSTRUCTION BEST MANAGEMENT PRACTICES

Reclamation planning will begin prior to/during construction of all exploration trails, following these key best management practices:

- Trail alignments will be planned to avoid, minimize or mitigate impacts to riparian and other sensitive areas.
- All drainages along proposed trail routes will be identified and clearly marked prior to construction. Appropriate drainage structures (ex. temporary bridge, culvert), where required, will be installed.
- Construction methods will limit vegetation removal, soil disturbance and surface drainage disruption.
- Any soil stockpiles created as a result of trail or drill pad construction should be placed on upslope area for later use in reclamation. Woody debris from clearing activities should also be stockpiled for scattering during reclamation.
- Yearly inspections and maintenance will be undertaken on all trails (until permanent deactivation and reclamation), to ensure safety and stability
- Progressive reclamation will be implemented as practical, as per Sections 3.2 to 3.5.

3.2 BUILDINGS, MACHINERY AND DEBRIS

- Prior to permanent deactivation/restoration, all buildings, machinery, equipment, cables, culverts and other debris from exploration activities will be removed.
- All hydrocarbon products and drilling additives will be removed and appropriately disposed of.

3.3 EXPLORATION TRAILS

- Road surfaces will be re-graded to generally match natural topography, where practical and deemed safe
- Where excessive compaction of soils has occurred, tracked machinery will be used to rip/loosen soils to allow natural groundwater flow and enhance vegetation establishment

- Any sidecast or temporarily stockpiled topsoil/cut material will be spread over road surface to enhance ground cover and limit barriers to runoff flow (ie. berms). Spread material should be left in a rough, loose condition
- Any ditchlines will be re-graded to prevent channelized flow of runoff
- Stockpiled woody debris will be scattered over road surface to provide wildlife habitat complexity and microsites for natural regeneration of vegetation.

3.4 DRAINAGE MANAGEMENT

As the Nithi Mountain property is not located in an area with significant stream crossings or slope stability issues, waterbars will be the primary means of runoff management for all reclaimed trails within the lease area. Best management practices will be as follows:

- All natural drainages noted along trails will be maintained throughout exploration activities
- Prior to construction, all drainages along the trails will be identified and clearly marked
- Any culverts or temporary drainage structures across the trails will be removed at the end of each field season (see Section 3.6), and/or at completion of activity in an area (permanent deactivation), prior to site demobilization
- Waterbars will be installed at the end of each field season (see Section 3.6), and/or at completion of activity in an area (permanent deactivation), prior to site demobilization
- Waterbars will be orientated such that water will drain downhill across the trail (see Appendix C)
- Waterbar spacing will be determined by slope and soil conditions as per Table 1:

TABLE 1: WATERBAR SPACING (MEMPR, 1992)

Slope Gradient	Erodible Soils (silt/clay)	Normal Soils (loam)	Rocky soils (sand/gravel)
Under 5%	45 m	60 m	n/a
5-10%	35 m	45 m	60 m
>10%	15 m	30 m	45 m

3.4.1 STREAM CROSSINGS

There were no noted stream crossings associated with existing exploration activities in the Nithi Mountain property, or anticipated in the future exploration areas. All stream crossings within the permit area are associated with existing FSR roadways. Any future stream crossings required as part of exploration activities would be constructed as per best management practices outlined in Section 10.4.5 of the MX Handbook (MEMPR, 2008)

3.5 REVEGETATION

Natural regeneration of vegetation has been successful in good soil conditions throughout the existing reclaimed areas of the Nithi Exploration project. Creating conditions that encourage colonization of native species will be the primary revegetation strategy, with supplemental seeding with an appropriate seed mix to expedite establishment. NOTE: Natural regeneration was the primary recommendation of the edible plant survey (see Appendix D), to encourage growth and establishment of huckleberry and other potential food sources (Avison, 2011).

- Roughening of soils will occur to help in promoting emergence of the natural seed bed.
- Woody debris (stockpiled during construction) will be spread across the trail surface to help stabilize soils and create micro-sites for vegetation
- Supplemental seeding with an appropriate seed mix (standard Canada No. 1 Forage Mix, Interior BC Reclamation) will be performed by hand using broadcast seeding techniques, applied progressively as soil roughening is completed
 - The mix will be certified to be free of invasive plant species, and no fertilizer admixes will be used (as these typically encourage weed growth over sustainable native cover).
 - It is recommended that a 30 kg/ha application rate be used at this location, or as recommended by manufacturer.
- Live staking/tree planting and/or fertilizer application may be recommended for areas of poor soils, large drill target pads or other areas where natural regeneration may be hindered. These areas will be assessed on a site-specific basis, with planting/seeding prescriptions developed to reflect soil and site conditions.
- Reforestation of previously planted cutblocks stocked by licensees should be reforested if mineral exploration activities have occurred within (ie. creation of exploration trails and drill pad establishment). Leeward to discuss reforestation stocking densities and standard with West Fraser Mills or corresponding licensees.

3.5.1 SEEPAGE AREAS

Where practical and as a best management practice, areas where seepage is encountered can be live planted. Planting density of 1 stem / m² using local deciduous species (cottonwood, willow or red osier dogwood) should be harvested and collected in situ (see Appendix C for installation guidelines). The establishment of these species will aid in water absorption and also provide further site stability through root mass over time.

3.5.2 RIPARIAN AREAS

The only noted riparian management areas associated with the Nithi Mountain project are the wetland area adjacent to the Theta trail (see Section 2.4) and the Nolan Lake access (see Section 2.5). Where practical and as a best management practice, riparian areas should be live planted. Planting density of 1 stem / m² using local deciduous species (cottonwood,

willow or red osier dogwood) should be harvested and collected in situ (see Appendix C for installation guidelines). The establishment of these species will create a vegetated buffer for erosion and sedimentation protection, and provide further site stability through root mass over time.

3.6 SEASONAL (TEMPORARY/PARTIAL) DEACTIVATION

Where activity in an area has been suspended, and/or at the end of the field season (prior to spring freshet), all trails will have temporary waterbars established (see Section 3.4) to assist in management of runoff during freshet, and all crossing structures will be removed. Where practical, stockpiled woody debris will also be spread to provide interim erosion control.

3.7 ARCHAEOLOGICAL AREAS

In areas that have high potential for archaeological artifacts to be discovered (see Figure 1 of Archaeological Assessment, Appendix D), all on-site personnel will be made aware of means of identifying potential archeologically significant features. Any potential features will be clearly marked, and appropriate regulatory agencies and/or specialists will be contacted to determine a management plan.

4.0 SITE-SPECIFIC RECOMMENDATIONS

4.1 GAMMA ZONE

No additional reclamation activity is recommended for the existing Gamma zone. It was noted that additional effort should have been made in the past to reclaim the trails at the time of deactivation (ie. roughening, scattering of woody debris, additional waterbars, etc), however any disturbance at this time would likely only adversely impact the successful establishment of the limited vegetation species present. Any future activity in this area should follow the reclamation guidelines included in Section 3.0.

4.2 SIGMA ZONE

No additional reclamation activity is recommended for the Sigma zone. Any future activity in this area should follow the reclamation guidelines included in Section 3.0.

4.3 DELTA ZONE

Additional reclamation in the Delta zone is recommended.

The total area of disturbance in the Delta zone is approximately **1.08 ha** (not including the areas that were disturbed by recent logging activity), with the following breakdown: 1.60 km of trail (average width 5 m), and 11 landing areas/drill pads (average area 250 m²). See Appendix B for as-built survey map.

The disturbed area is comprised of access trails and drill pads. Implementation of Best Management Practices as outlined in the following sections is recommended:

- Section 3.3 Exploration Trails
- Section 3.4 Drainage Management
- Section 3.5 Revegetation

Any future activity in this area should follow the reclamation guidelines included in Section 3.0.

4.4 THETA ZONE

Additional reclamation in the Theta zone is recommended.

The total area of disturbance in the Theta zone is approximately **1.62 ha**, with the following breakdown: 800 m of 'typical' trail (average width 6 m), 800 m of 'widened trail' (average width 10.5 m), and 10 landing areas/drill pads (average area 300 m²). See Appendix B for as-built survey map.

The disturbed area is comprised of access trails and drill pads. Implementation of Best Management Practices as outlined in the following sections is recommended:

- Section 3.3 Exploration Trails
- Section 3.4 Drainage Management
- Section 3.5 Revegetation

Any future activity in this area should follow the reclamation guidelines included in Section 3.0.

4.5 NOLAN LAKE ACCESS

The landing area near the Nolan Lake Access was constructed outside of the riparian zone of the lake (>35m from wetted perimeter), and no reclamation of the existing path through the riparian is required. Reforestation of the landing area is recommended when access to the water source is no longer needed, to a density and species diversity similar to surrounding cutblock conditions.

5.0 REFERENCES

Allnorth Consultants Limited, Nithi Mountain Exploration As-Built (Drawing), February 2009

Archer, <u>Preliminary Field Reconnaissance of Nithi Mountain Mineral Exploration Tenure</u> Parcel 51542, western half., July 2011

Avison Management Services Ltd., <u>Huckleberry Mitigation and Monitoring Plan – Nithi</u> <u>Mountain Moly Property, Study</u> Area, July 2011

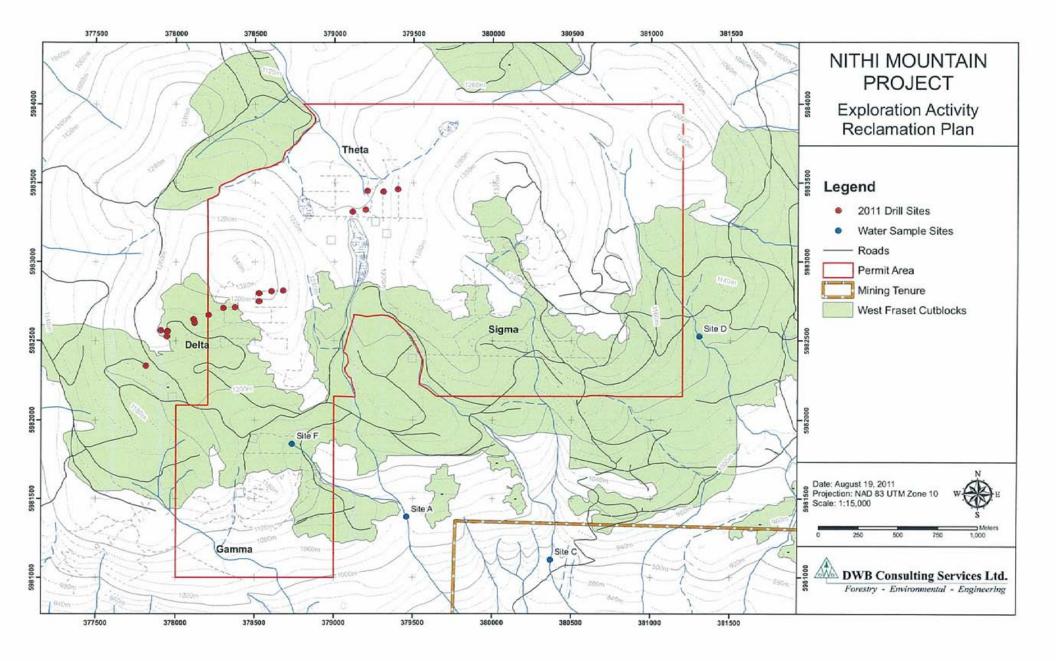
EDI Environmental Dynamics Inc., <u>Nithi Mountain Property – Environmental Baseline</u> <u>Analysis: State of the Baseline</u>; April 2008

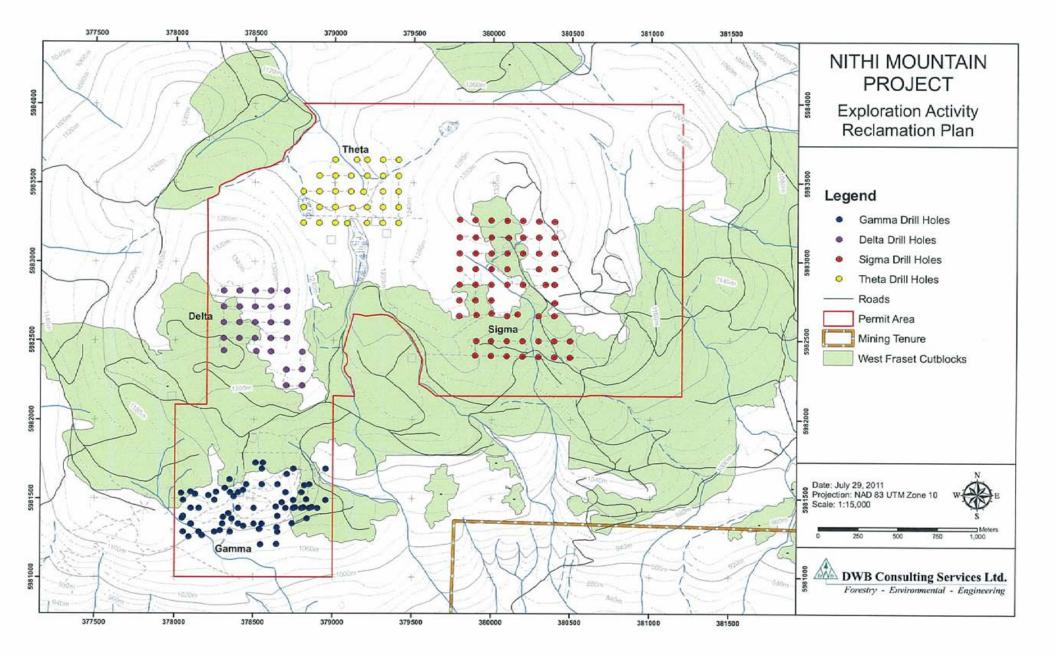
Environment Canada, Environmental Code of Practice for Metal Mines, 2009

Ministry of Energy, Mines and Petroleum Resources, <u>Health, Safety and Reclamation Code</u> for Mines in British Columbia; 2008

Ministry of Energy, Mines and Petroleum Resources and Ministry of Environment. <u>Handbook</u> for Mineral and Coal Exploration in British Columbia; 2008/09

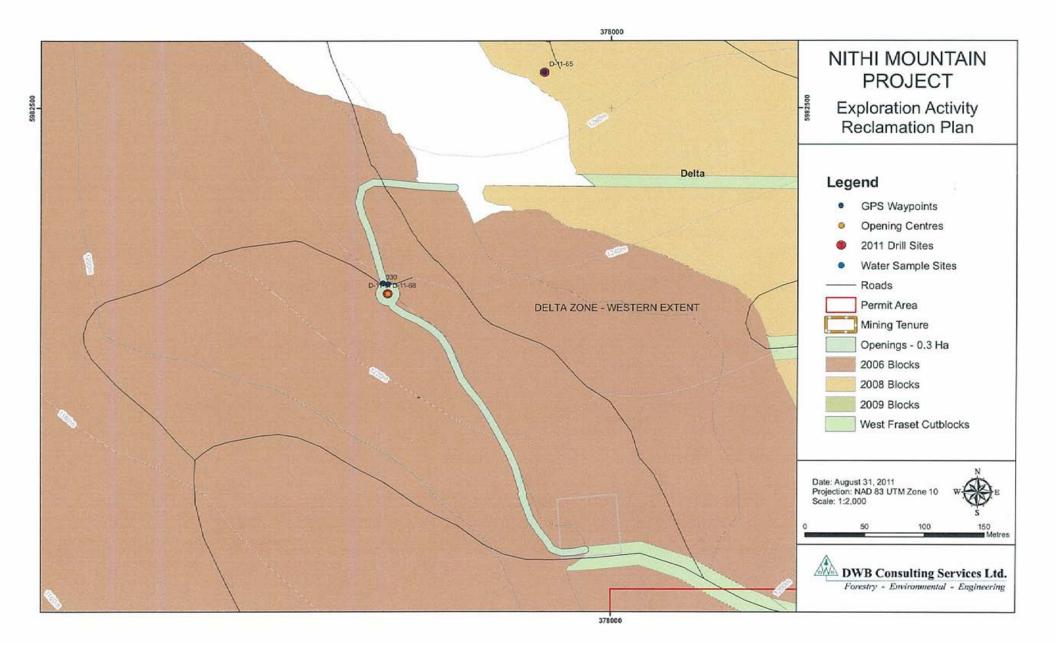
Ministry of Forests, <u>Best Management Practices Handbook: Hillslope Restoration in British</u> Columbia; 2001

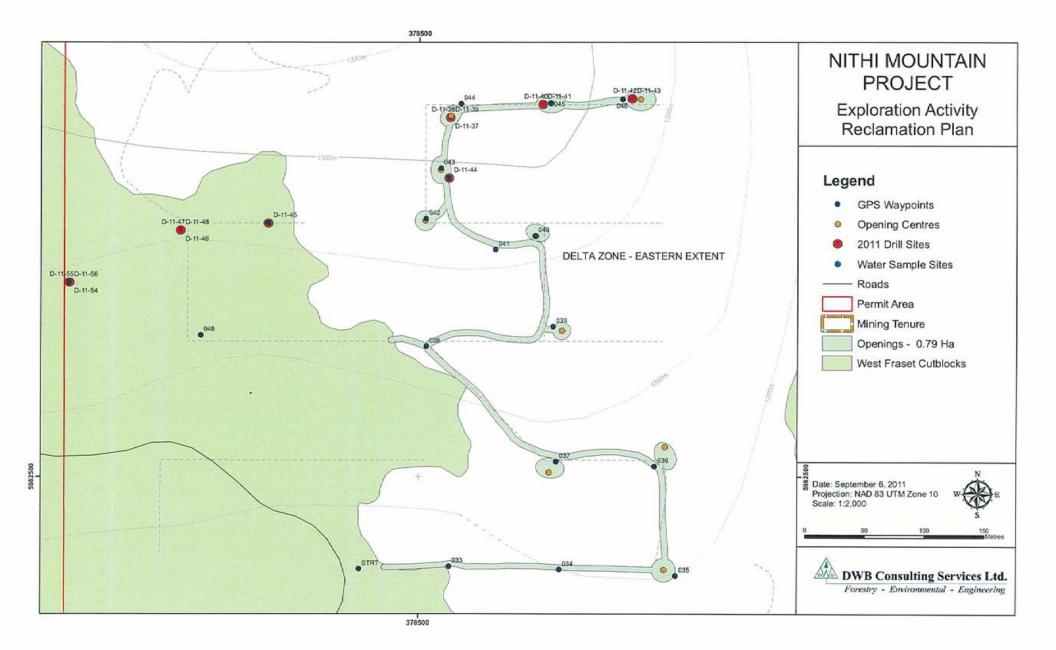

Ministry of Forests, Forest Practices Code (FPC) - Soil Rehabilitation Guidebook, 1997

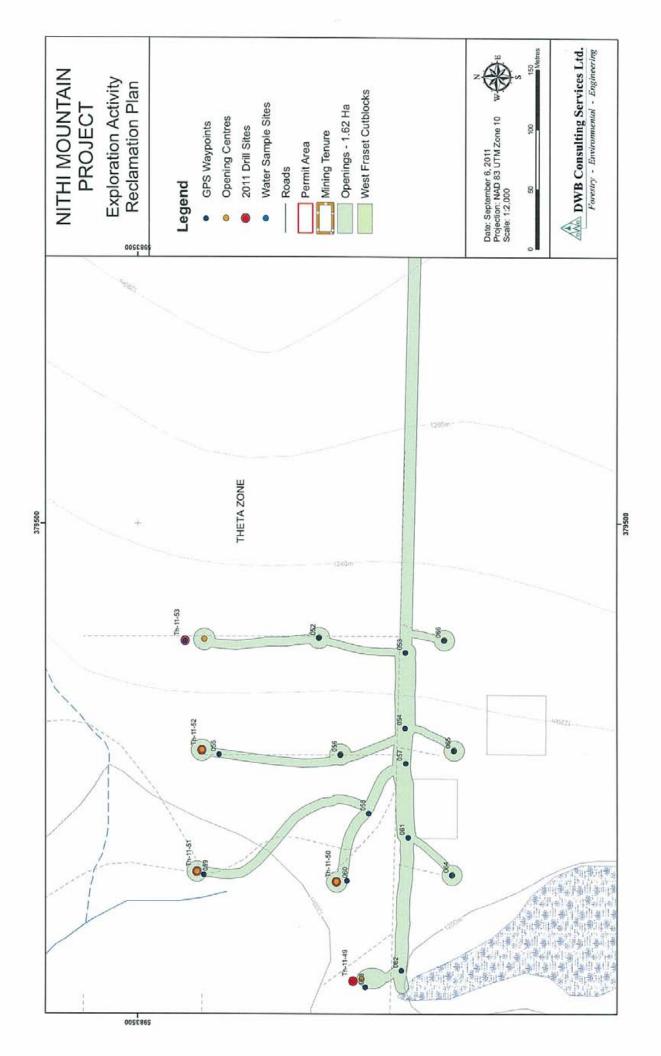

Prospectors and Developers Association of Canada, <u>Excellence in Environmental</u> <u>Stewardship (EES)</u>, 2009

10.0

APPENDIX A - SITE MAPS

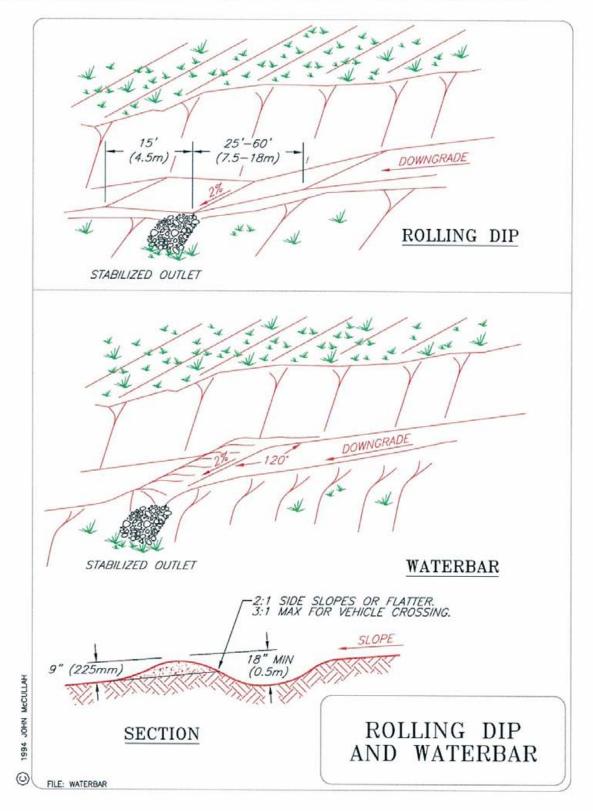




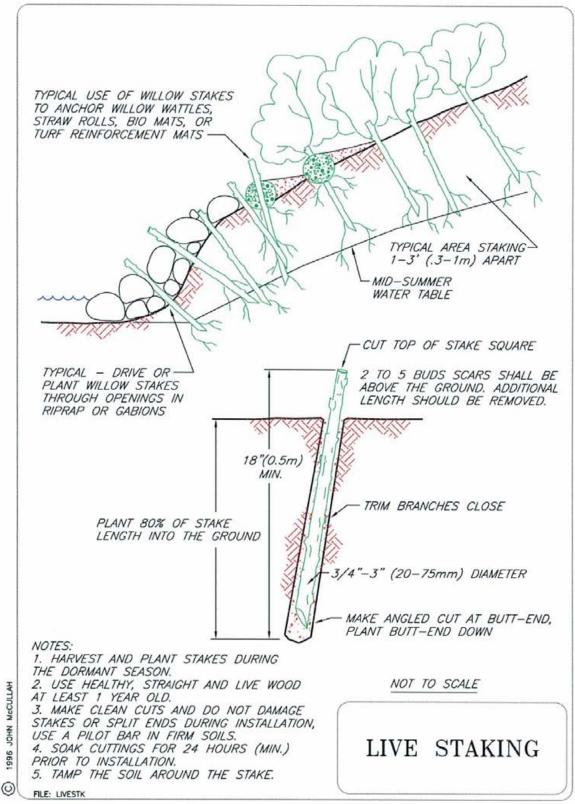

APPENDIX B - AS-BUILT SURVEY (GPS)

File: 11173-150 15/09/2011

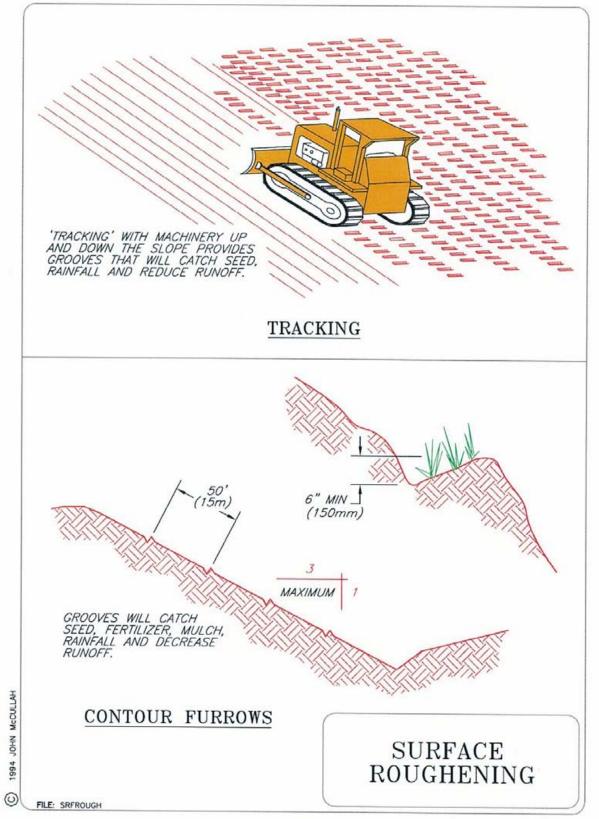
WESTCAN PROJECTS LTD.



.



APPENDIX C - INSTALLATION GUIDELINES



**

APPENDIX D – ARCHAEOLOGICAL ASSESSMENT

APPENDIX E - EDIBLE PLANT SURVEY

WestCan Projects Ltd.

ENGINEERING A DESIGN A ENVIRONMENTAL A CONSTRUCTION

September 15, 2011

Jim Davies Vice President Taiga Consultants Ltd./ Leeward Capital Corp. 101, 2719-7th Ave N.E. Calgary, Alberta T2A 2L9

Dear Mr. Davis:

RE: Cost Engineered Estimate for Completion of Existing Reclamation Work

Nithi Mountain Project - Mineral Lease No. MX-11-192

Enclosed below is a "Cost Engineered Estimate" for reclamation works based on the collected information from the most recent site visit. This estimate was complied to ensure that Leeward Capital Corp. Is meeting all of its requirements as stipulated within the current NOW permit as issued by Forest, Lands and Natural Resources Operations (FLNRO) formerly known as Mines and Energy (MEM).

Total area to be reclaimed within the mineral lease was approximately **2.7 hectares** (ha) of disturbance. Areas were initially determined within each of the drill target zones – Gamma, Sigma, Delta and Theta. The site inspection revealed that no additional reclamation activity was recommended within the Gamma and Sigma zones respectively.

Associated reclamation activities were only noted within the Delta and Theta zones. A total area of **1.08 ha** was disturbed within the Delta zone. This area was broken down into "exploration trails" and "drill pads" respectively. A total of 1.6 km of trail was observed and noted in the field. A total of 11 drill pads (average size of 250 m²) was also noted in the field.

A total area of **1.62 ha** was disturbed within the Theta zone. This area was also broken down into "exploration trail" and "drill pads" area respectively. A total of 800m of trail was observed and noted in the field. A total of 10 drill pads (average size of 300 m²) was also noted in the field.

The Cost Engineered Estimate was based on the information provided above and the implementation of the Best Management Practices (BMPs) as described in the *Mineral Exploration Reclamation Plan – Nithi Mountain Project Mineral Lease No. MX -11- 192* prepared by WestCan Projects Ltd. Anticipated timelines for the completion and implementation of the reclamation plan are 3-4 days.

The following table details the associated costs to complete the reclamation works based on the total area observed in the field and implementation of BMPs as the reclamation plan.

Table 1: Cost Engineered Estimate

Description of Supply or Service Required for Reclamation	Estimated Costs	
Excavator site preparation – spreading of woody debris waste over existing drill pads and exploration trails. Re-establishment of natural watercourses – i.e. waterbars, swales, ditching etc. as directed by Senior Env. Technician.	 Mobilization/demobilization to site ~ \$925 if local machine used on site. (\$1485 if low bedded from Prince George). All Found Rate for 100 series excavator ~ \$130/hr (30hrs) - \$3900 LOA non applicable as it is assumed local operator would be utilized. 	
Environmental Services – initial prework, seeding, mulching, tree planting. Final site inspection and post reclamation report.	 Professional Rate - \$80/hr (18 hrs) ~ \$1440 Senior Env. Technician - \$70/hr (40 hrs) ~ \$2800 Junior Env. Technician - \$60/hr (40 hrs) ~ \$2400 Living Out Allowance - \$140/day/individual ~ \$980 Approved forest reclamation seed - 300kg ~ \$400 Hay mulch - 30 bales @ \$6 - \$180.00 Transportation - 0.80/km (850) ~ \$656 	
ESTIMATED TOTAL COSTS	Approximately \$16,000 including HST	

Respectfully submitted,

Robert S.J. Bourcier, P.Ag. Project Manager WestCan Projects Ltd.

WestCan Ref.: 11173-150

ENGINEERING DESIGN ENVIRONMENTAL CONSTRUCTION

MINERAL EXPLORATION **RECLAMATION PLAN**

NITHI MOUNTAIN PROJECT MINERAL LEASE NO. MX-11-192

Prepared for: Leeward Capital Corp. 101, 2719 – 7th Avenue NE Calgary, AB T2A 2L9

Attn: Jim Davis

Prepared by: WestCan Projects Ltd. 1579 – 9th Avenue Prince George, BC V2L 3R8 1-877-612-0355

Written by: Jody Watson, EIT Reviewed by: Robert S.J. Bourcier, PAg

Date: July 29, 2011 WestCan File: 11173-150

WWW.WESTCANPROJECTS.COM

estCan Projects PRINCE GEORGE A GRANDE PRAIRIE

SIGNATURE PAGE

WestCan Projects Ltd. is pleased to submit this report for your review. This report has been prepared using sound technical and professional judgement, based on our knowledge and experience, applicable regulatory framework, industry best management practices, and current understanding of project conditions, design, and environmental setting.

Report Title: Exploration Activity Reclamation Plan – Nithi Mountain

Prepared for: Leeward Capital Corp.

Written by:

Jody Watson, EIT

Reviewed by:

Rob Bourcier, PAg

TABLE OF CONTENTS

1.0	INTRODUCTION1
1.1	SITE LOCATION
1.2	Site Visit
1.3	REGULATORY FRAMEWORK
1.4	REPORT OBJECTIVES
2.0	CURRENT CONDITIONS
2.1	GAMMA ZONE
2.2	SIGMA ZONE
2.3	DELTA ZONE
2.4	THETA ZONE
2.5	NOLAN LAKE WATER SOURCE INTAKE AREA
3.0	RECLAMATION PLAN
3.1	CONSTRUCTION BEST MANAGEMENT PRACTICES
3.2	BUILDINGS, MACHINERY AND DEBRIS
3.3	EXPLORATION TRAILS
3.4	DRAINAGE MANAGEMENT
3.5	REVEGETATION
3.6	SEASONAL (TEMPORARY/PARTIAL) DEACTIVATION
3.7	ARCHAEOLOGICAL AREAS
4.0	REFERENCES

APPENDICES

APPENDIX A - SITE MAPS

APPENDIX B - INSTALLATION GUIDELINES

APPENDIX C - ARCHAEOLOGICAL ASSESSMENT

APPENDIX D - EDIBLE PLANT SURVEY

1.0 INTRODUCTION

WestCan Projects Ltd (WestCan) has been retained by Leeward Capital Corp (Leeward) to prepare a reclamation plan for their exploration activities on the Nithi Mountain Project, located near Fraser Lake, BC. The permit area is approximately 620 ha in size, containing three existing exploration target sites (Gamma, Delta, Sigma) that have been drilled over the past six years (2005 – present), and one site (Theta) that has been cleared in preparation for future drilling. Exploration activity is ongoing.

1.1 SITE LOCATION

The Nithi Mountain Property is located approximately 8 km south of Fraser Lake, BC (160 km east of Prince George), and can be accessed via Chowsunket Road, turning onto Nithi Forest Service Road (FSR). The Nithi FSR forms a circle route via the Foster FSR and 213 FSR, which allows road access to the majority of the site. The Nolan Lake FSR takes off from Nithi FSR at approximately KM12. A location map is included in Appendix A.

1.2 SITE VISIT

Jody Watson, EIT and Rob Bourcier, P.Ag of WestCan visited the site on July 22, 2011. Representative sections of the three existing exploration areas within the Nithi Mountain Property (Gamma, Delta, and Sigma) were assessed, as well as the Nolan Lake water source access road. Access to the sites was gained on existing FSRs via 4x4 truck, as well as on ATV and foot where conditions required. A detailed inspection of each drill hole was not within the scope of this assessment.

1.3 REGULATORY FRAMEWORK

Reclamation is required to be performed in all areas impacted by mineral exploration activities, as defined Part 9 of the Health, Safety and Reclamation Code for Mines in British Columbia: Mineral Exploration (MX Code). Additional relevant regulations to exploration activities in this area includes the federal *Fisheries Act*, which prohibits disturbance to fishbearing streams, and the provincial *Water Act*, which governs work in and around watercourses.

Key agency reference documents used in the preparation of this report include:

- <u>Health, Safety and Reclamation Code for Mines in British Columbia</u>, Ministry of Energy, Mines and Petroleum Resources (2008)
- <u>Handbook for Mineral and Coal Exploration in British Columbia</u>; Ministry of Energy, Mines and Petroleum Resources and Ministry of Environment (2008/09)
- <u>Best Management Practices Handbook: Hillslope Restoration in British Columbia;</u> Ministry of Forests (2001)

1.4 REPORT OBJECTIVES

This Deactivation Plan has been developed to meet the objectives of the MX Code, including the following (from Section 9.13.1 of the Code):

- Reclamation of mechanically disturbed sites, campsites and exploration access shall occur within one year of cessation of exploration,
- Appropriate measures shall be taken to minimize the establishment of noxious weeds and the erosion of exposed or disturbed soil, and
- Exploration sites shall be revegetated to a self-sustaining state with species appropriate for the site.

This plan is intended to provide Leeward with the appropriate Best Management Practices (BMPs), procedures and site-specific prescriptions (where appropriate) for achieving these goals.

2.0 CURRENT CONDITIONS

Terrain along the Nithi Mountain property is characterized by two large hillslopes (including Nithi Mountain), with a total elevation difference of approximately 320 m from the base (Gamma) to peak (Sigma/Delta) areas. Several non-classified drainages and streams are present in the lease, although none have been designated as fish-bearing (EDI, 2008). No steep slopes or areas of geotechnical instability were noted during the site assessment, and trails through the area are general flat (no significant cut/fills required). Vegetation in the area is typical of the moist, cold Sub-Boreal-Spruce biogeoclimatic zone (SBSmc2), with areas near the peak entering the Englemann Spruce Subalpine Fir (ESSFmv1) zone. An archaeological assessment (Appendix C) and edible-plant survey (Appendix D) have recently been conducted in the area.

Recent forestry activity in the area by West Fraser Mills Ltd. (West Fraser) in the winter of 2010/2011 has resulted in many of the exploration areas being cleared. Logged areas and associated service roads will not require reclamation by Leeward under the MX Code, as these would fall under the jurisdiction of the *Forest and Range Practices Act*. West Fraser has provided maps of their recent activity on Nithi Mountain, which are included as Appendix A. The following impacts were observed:

- Gamma Zone Partially logged
- Sigma Zone Partially logged
- Delta Zone Partially logged

As the Nithi Mountain property is in close proximity to Fraser Lake, BC., no associated camps or buildings have been constructed in association with exploration activities. Aside from ground disturbances, no residual evidence of activity by Leeward (ie. machinery, equipment, petroleum products or other debris) was noted in any of the areas.

2.1 GAMMA ZONE

The Gamma zone was explored from 2005 – 2008. The area has been deactivated, with debris piling, cross drains and waterbars installed in 2008 (Allnorth, 2009). During the site assessment, a representative area of the Gamma was inspected to confirm deactivation.

The nutrient-poor soil conditions along much of the access trails are such that limited vegetation growth has occurred, however this is typical of natural regeneration rates that would be expected in this area. Where soil conditions were improved, vegetation establishment was proportionally increased. A seeding program was undertaken in 2008 with a native seed mix of Needle grass applied in the western Gamma zone (Leeward, pers comm). No significant erosion concerns were observed, as the soils are generally well drained. It was noted that additional effort should have been made in the past to reclaim the trails at the time of deactivation (ie. roughening, scattering of woody debris, additional waterbars, etc), however any disturbance at this time would likely only adversely impact the successful establishment of the limited vegetation species present. No additional reclamation activity is recommended for the existing Gamma zone. Any future activity in this area should follow the reclamation guidelines included in Section 3.0.

PHOTO 1: GAMMA - DEBRIS PILING ALONG ROADWAY

PHOTO 2: GAMMA – TYPICAL VEGETATION ESTABLISHMENT IN POOR SOILS

PHOTO 3: GAMMA – SMALL TREE GROWTH IN POOR SOILS (APPROX. 5 YEAR)

PHOTO 4: GAMMA – VEGETATION ESTABLISHMENT WHERE SOIL CONDITIONS/NUTRIENTS ARE MORE PLENTIFUL

2.2 SIGMA ZONE

The Sigma zone was explored in 2008. The area has been harvested and constructed, with drill pads and sumps reclaimed (Allnorth, 2009). During the site assessment, a representative area of the Delta was inspected to determine appropriate reclamation prescriptions.

A significant portion of the southern extent of the Sigma zone, as well as through the center of the exploration target, has been logged during recent activity in the area (see Maps, Appendix A). The remaining trails and pads were assessed. Extensive debris scattering along the trails has facilitated significant vegetation establishment through natural regeneration. Ground cover was stable and no erosion concerns were noted. No additional reclamation activity is recommended for the Sigma zone. Any future activity in this area should follow the reclamation guidelines included in Section 3.0.

PHOTO 5: SIGMA - TYPICAL TRAIL

PHOTO 6: SIGMA - TYPICAL DRILL PAD

PHOTO 7: SIGMA - LOGGED AREA

PHOTO 8: SIGMA - TYPICAL TREE GROWTH

2.3 DELTA ZONE

The Delta zone was explored in 2007/08 and 2011. During the site assessment, a representative area of the recent Delta activity was inspected to determine appropriate reclamation measures.

A significant portion of the western extents of the Delta zone have been cleared during recent winter logging activity in the area (see Maps, Appendix A). In the remaining (unlogged) areas, waterbars had been installed, debris piles were present, and soils had generally been left in a rough state. Several isolated wetland areas were present near the trails, but no water crossing structures or erosion concerns were noted. Vegetation establishment on the trails and pad areas was minimal as the trails are still relatively fresh, but good soil conditions should facilitate rapid natural regeneration. Scattering of woody debris across the roadways would provide erosion control and microsite complexity for vegetation. Additional reclamation in the Delta zone, as per guidelines included in Section 3.0, is recommended.

PHOTO 9: DELTA - HOLE IN CUTBLOCK

PHOTO 11: DELTA - DEBRIS PILING ON TRAIL

PHOTO 10: DELTA - TYPICAL TRAIL

PHOTO 12: DELTA - TYPICAL DRILL PAD AREA

2.4 THETA ZONE

The Theta Zone had been harvested in the winter of 2008 with two holes drilled, and an additional five holes drilled in 2011.

Vegetation establishment on the trails and pad areas was minimal as the trails are still relatively fresh, but good soil conditions should facilitate rapid natural regeneration. Scattering of woody debris across the roadways would provide erosion control and microsite complexity for vegetation. Additional reclamation in the Theta zone, as per guidelines included in Section 3.0, is recommended.

PHOTO 13: THETA - TYPICAL DRILL PAD

PHOTO 14: THETA - TYPICAL TRAIL

2.5 NOLAN LAKE WATER SOURCE INTAKE AREA

The Nolan Lake water intake access was utilized in 2007/08. There is currently road access to a small landing area outside the riparian zone of the lake (prepared for water truck access), with a small trail through approximately 35 m of forested riparian area to the waters edge.

The landing area is relatively flat and has been seeded, with an established stable ground cover of grasses (no significant erosion concerns noted). This open area would have high success for planted trees, and should be reforested (when area is no longer required) to a density and species diversity similar to surrounding cutblock conditions. The small trail to the lake was prepared with no significant disturbance to the riparian area, and appears to have heavy use by wildlife. Corduroy has been installed on a small drainage along the access roadway (see Photo 15), which should be removed if access to this area is no longer required (rock and wood can be salvaged for re-placement if necessary). If continued (long-term) access is necessary, a culvert or other stable structure which allows free flow of water should be installed.

PHOTO 15: NOLAN LAKE - LANDING AREA

PHOTO 16: NOLAN LAKE - TRAIL TO LAKE

PHOTO 17: NOLAN LAKE - CORDOROY

3.0 RECLAMATION PLAN

The following reclamation plan covers permanent deactivation for exploration trails within the Nithi Mountain property. The priority will be on the management of drainage and erosion controls for high-runoff (freshet) conditions, with vegetation establishment forming a key component of sustained erosion control. No stream crossings or riparian management issues were noted during the site assessment, aside from the Nolan Lake access (see Section 2.5).

3.1 CONSTRUCTION BEST MANAGEMENT PRACTICES

Reclamation planning will begin prior to/during construction of all exploration trails, following these key best management practices:

- Trail alignments will be planned to avoid, minimize or mitigate impacts to riparian and other sensitive areas.
- All drainages along proposed trail routes will be identified and clearly marked prior to construction. Appropriate drainage structures (ex. Temporary bridge, culvert), where required, will be installed.
- Construction methods will limit vegetation removal, soil disturbance and surface drainage disruption.
- Any soil stockpiles created as a result of trail or drill pad construction should be placed on upslope area for later use in reclamation. Woody debris from clearing activities should also be stockpiled for scattering during reclamation.
- Yearly inspections and maintenance will be undertaken on all trails (until permanent deactivation and reclamation), to ensure safety and stability
- Progressive reclamation will be implemented as practical, as per Sections 3.2 to 3.5.

3.2 BUILDINGS, MACHINERY AND DEBRIS

- Prior to permanent deactivation/restoration, all buildings, machinery, equipment, cables, culverts and other debris from exploration activities will be removed.
- All hydrocarbon products and drilling additives will be removed and appropriately disposed of.

3.3 EXPLORATION TRAILS

- Road surfaces will be re-graded to generally match natural topography, where
 practical and deemed safe
- Where excessive compaction of soils has occurred, tracked machinery will be used to rip/loosen soils to allow natural groundwater flow and enhance vegetation establishment

- Any sidecast or temporarily stockpiled topsoil/cut material will be spread over road surface to enhance ground cover and limit barriers to runoff flow (ie. berms). Spread material should be left in a rough, loose condition
- Any ditchlines will be re-graded to prevent channelized flow of runoff
- Stockpiled woody debris will be scattered over road surface to provide wildlife habitat complexity and microsites for natural regeneration of vegetation.

3.4 DRAINAGE MANAGEMENT

As the Nithi Mountain property is not located in an area with significant stream crossings or slope stability issues, waterbars will be the primary means of runoff management for all reclaimed trails within the lease area. Best management practices will be as follows:

- All natural drainages noted along trails will be maintained throughout exploration activities
- Prior to construction, all drainages along the trails will be identified and clearly marked
- Any culverts or temporary drainage structures across the trails will be removed at the end of each field season (see Section 3.6), and/or at completion of activity in an area (permanent deactivation), prior to site demobilization
- Waterbars will be installed at the end of each field season (see Section 3.6), and/or at completion of activity in an area (permanent deactivation), prior to site demobilization
- Waterbars will be orientated such that water will drain downhill across the trail (see Appendix B)
- Waterbar spacing will be determined by slope and soil conditions as per Table 1:

Slope Gradient	Erodible Soils (silt/clay)	Normal Soils (loam)	Rocky soils (sand/gravel)
Under 5%	45 m	60 m	n/a
5-10%	35 m	45 m	60 m
>10%	15 m	30 m	45 m

TABLE 1: WATERBAR SPACING (MEMPR, 1992)

3.4.1 STREAM CROSSINGS

There were no noted stream crossings associated with existing exploration activities in the Nithi Mountain property, or anticipated in the future exploration areas. All stream crossings within the permit area are associated with existing FSR roadways. Any future stream crossings required as part of exploration activities would be constructed as per best management practices outlined in Section 10.4.5 of the MX Handbook (MEMPR, 2008)

3.5 REVEGETATION

Natural regeneration of vegetation has been successful in good soil conditions throughout the existing reclaimed areas of the Nithi Exploration project. Creating conditions that encourage colonization of native species will be the primary revegetation strategy, with supplemental seeding with an appropriate seed mix to expedite establishment. NOTE: Natural regeneration was the primary recommendation of the edible plant survey (see Appendix D), to encourage growth and establishment of huckleberry and other potential food sources (Avison, 2011).

- Roughening of soils will occur to help in promoting emergence of the natural seed bed.
- Woody debris (stockpiled during construction) will be spread across the trail surface to help stabilize soils and create micro-sites for vegetation
- Supplemental seeding with an appropriate seed mix (standard Canada No. 1 Forage Mix, Interior BC Reclamation) will be performed by hand using broadcast seeding techniques, applied progressively as soil roughening is completed
 - The mix will be certified to be free of invasive plant species, and no fertilizer admixes will be used (as these typically encourage weed growth over sustainable native cover).
 - It is recommended that a 30 kg/ha application rate be used at this location, or as recommended by manufacturer.
- Live staking/tree planting and/or fertilizer application may be recommended for areas of poor soils, large drill target pads or other areas where natural regeneration may be hindered. These areas will be assessed on a site-specific basis, with planting/seeding prescriptions developed to reflect soil and site conditions.

3.5.1 SEEPAGE AREAS

Where practical and as a best management practice, areas where seepage is encountered can be live planted. Planting density of 1 stem / m² using local deciduous species (cottonwood, willow or red osier dogwood) should be harvested and collected in situ (see Appendix B for installation guidelines). The establishment of these species will aid in water absorption and also provide further site stability through root mass over time.

3.5.2 RIPARIAN AREAS

The only noted riparian management area associated with the Nithi Mountain project is the Nolan Lake access (see Section 2.5 for detail). The landing area was constructed outside of the riparian zone of the lake (>35m from wetted perimeter), and no reclamation of the existing path through the riparian is required. Reforestation of the landing area is recommended when access to the water source is no longer needed, to a density and species diversity similar to surrounding cutblock conditions.

3.6 SEASONAL (TEMPORARY/PARTIAL) DEACTIVATION

Where activity in an area has been suspended, and/or at the end of the field season (prior to spring freshet), all trails will have temporary waterbars established (see Section 3.4) to assist in management of runoff during freshet, and all crossing structures will be removed. Where practical, stockpiled woody debris will also be spread to provide interim erosion control.

3.7 ARCHAEOLOGICAL AREAS

In areas that have high potential for archaeological artifacts to be discovered (see Figure 1 of Archaeological Assessment, Appendix C), all on-site personnel will be made aware of means of identifying potential archeologically significant features. Any potential features will be clearly marked, and appropriate regulatory agencies and/or specialists will be contacted to determine a management plan.

4.0 REFERENCES

Allnorth Consultants Limited, Nithi Mountain Exploration As-Built (Drawing), February 2009

Archer, <u>Preliminary Field Reconnaissance of Nithi Mountain Mineral Exploration Tenure</u> Parcel 51542, western half., July 2011

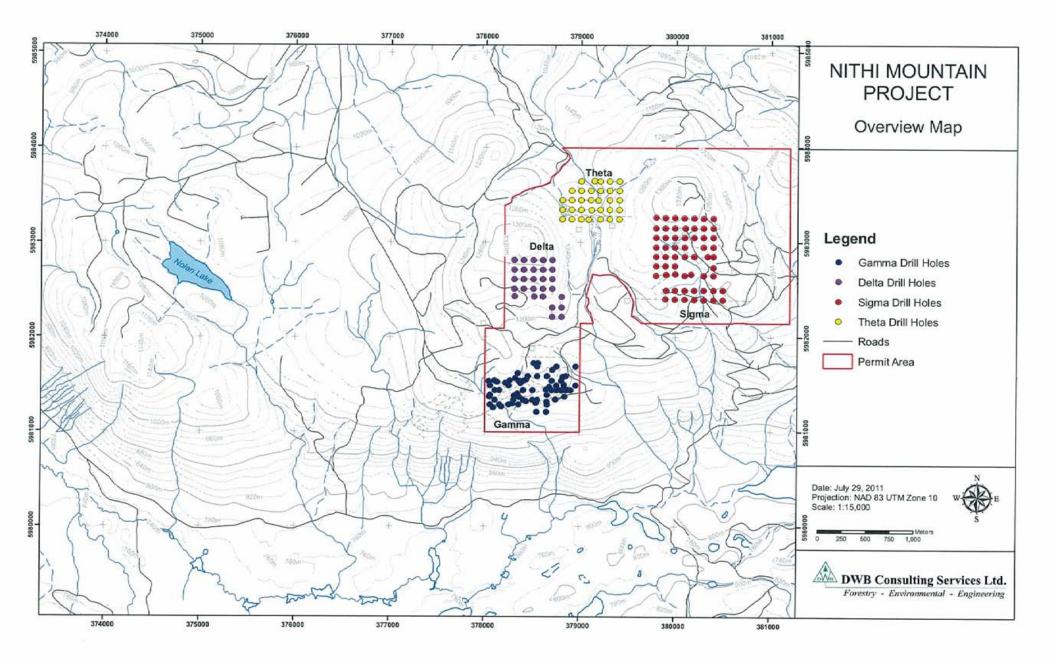
Avison Management Services Ltd., <u>Huckleberry Mitigation and Monitoring Plan – Nithi</u> <u>Mountain Moly Property, Study</u> Area, July 2011

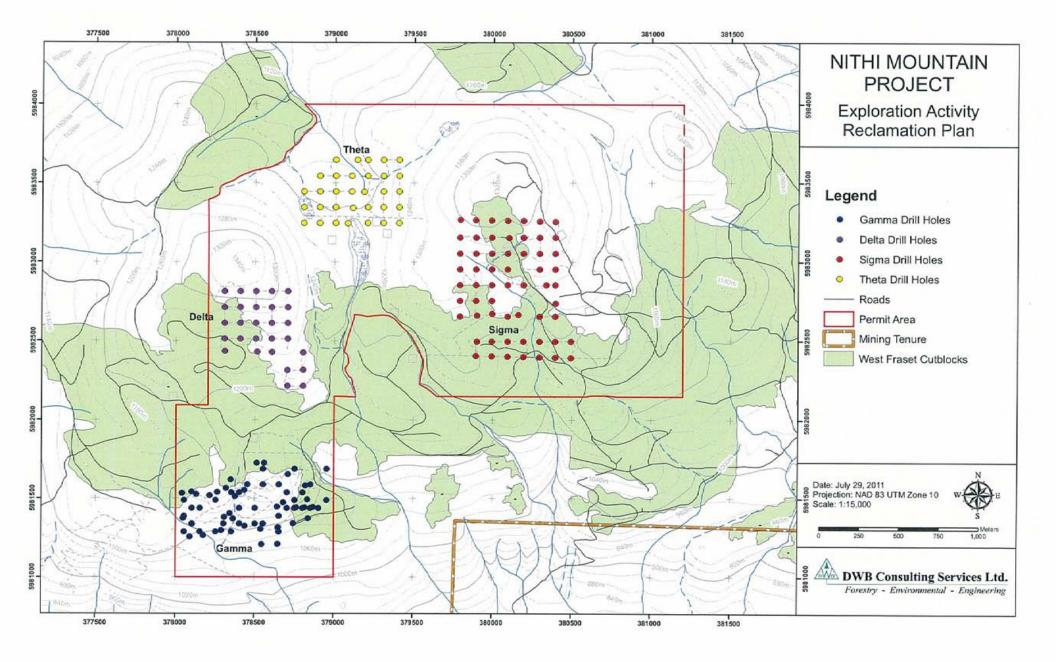
EDI Environmental Dynamics Inc., <u>Nithi Mountain Property – Environmental Baseline</u> <u>Analysis: State of the Baseline</u>; April 2008

Environment Canada, Environmental Code of Practice for Metal Mines, 2009

Ministry of Energy, Mines and Petroleum Resources, <u>Health, Safety and Reclamation Code</u> for Mines in British Columbia; 2008

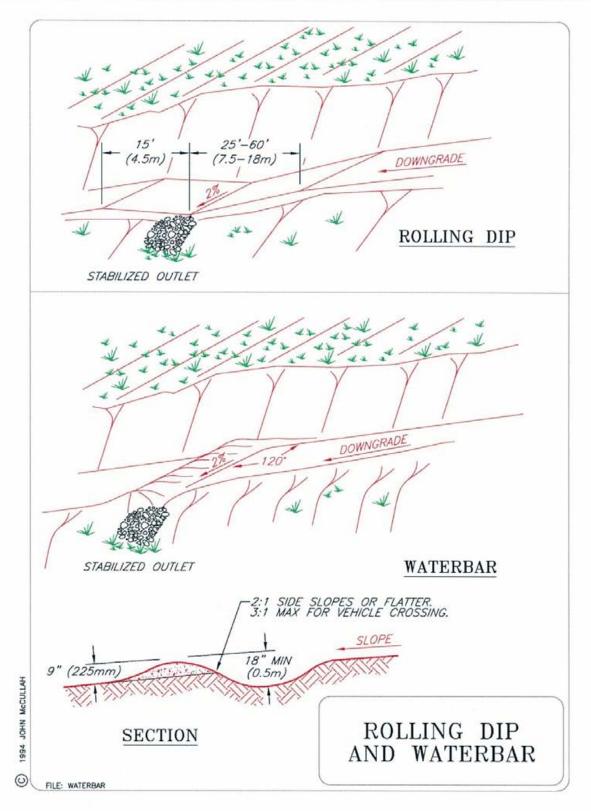
Ministry of Energy, Mines and Petroleum Resources and Ministry of Environment. <u>Handbook</u> for Mineral and Coal Exploration in British Columbia; 2008/09

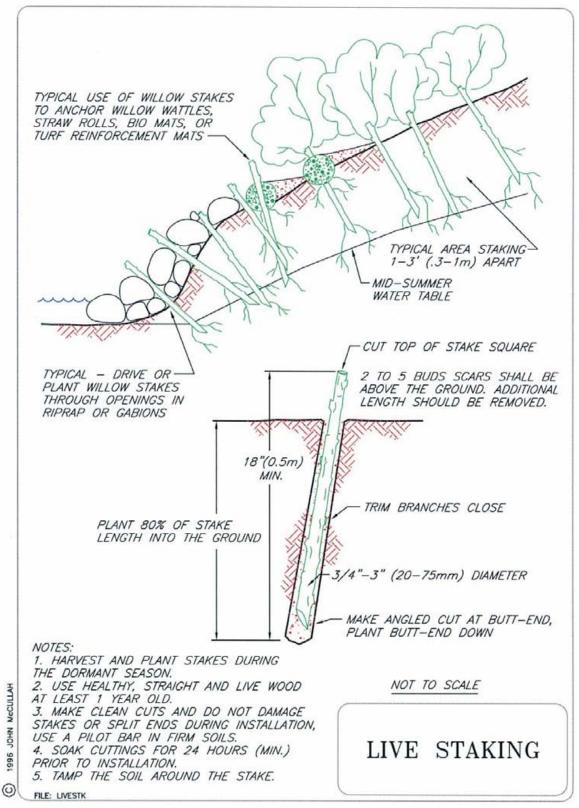

Ministry of Forests, <u>Best Management Practices Handbook: Hillslope Restoration in British</u> <u>Columbia</u>; 2001

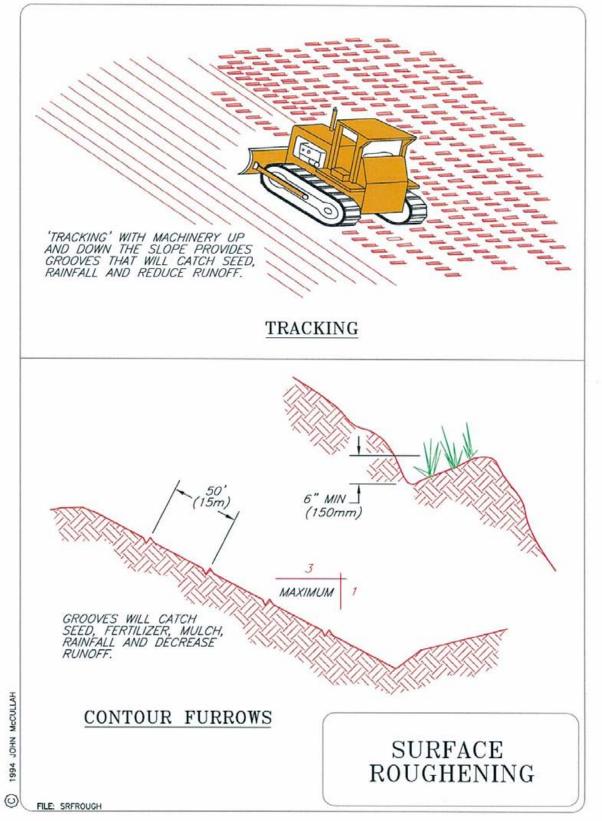

Ministry of Forests, Forest Practices Code (FPC) - Soil Rehabilitation Guidebook, 1997

Prospectors and Developers Association of Canada, <u>Excellence in Environmental</u> <u>Stewardship (EES)</u>, 2009

APPENDIX A - SITE MAPS




APPENDIX B - INSTALLATION GUIDELINES


LEEWARD CAPITAL RECLAMATION PLAN NITHI MOUNTAIN EXPLORATION ACTIVITY

LEEWARD CAPITAL RECLAMATION PLAN NITHI MOUNTAIN EXPLORATION ACTIVITY

APPENDIX C - ARCHAEOLOGICAL ASSESSMENT

	Prelimin	CHER hary Field	For use by Archaeological Permitting Section only	
Reconnaissance (PFR) Assessment No. 9245		· · ·	OGC / ILMB #	
Adn	ninistrative Info	ormation		
1.1	Date	July 18, 2011	1.2 Author Frank Craig	
1.3 Report Title Preliminary Field Reconnaissance of Nithi Mountain Mineral Exploration Tenure Parcel 51542, western half. (No survey in 550990)				
1.4	Permit #	Non-Permitted	1.5 Permit holder	
1.6	Proponent	Leeward Capital Corp.	1.7 Contact James W. Davis	
Proj	ject Information			
2.1 2.2	Land Use Activity Components & size (Figure 1)	Tenure Parcel 550990 is 77	exploration 352 ha. 7 ha.	
		 HP 1 - 5 x 10 m (Figure 1, 1 HP 2 - 10 x 10 m (Figure 1, 1 HP 3 - 5 x 28 m (Figure 1, 1 HP 4 - 20 x 50 m (Figure 1, 1 HP 5 - 30 x 30 m (Figure 1, 1 	Inset 2) Inset 2) Inset 1)	
2.3	Method of PFR	Foot ATV	Truck 🗆 Overflight	
2.4	Borden Block	FISe, FISf 2.5 NTS Map	sheet 93-F-15 2.6 Sites N/A	
2.7	Geographic Location	The study area is located 55 km west of the community of Vanderhoof and 5.5 km south of the community of Fraser Lake. Mineral tenure 515427 has a centre point located at NAD83, UTM 10 coordinate 378661, 5982699 while 550990 has a centre point located at NAD83, UTM 10 coordinate 375302, 5983100.		
		From the community of Fraser Lake head south on Chowsunkit Road past the waste transfer station to approximately 4.9 km mark. Turn Right at the transmission lines onto the Nithi Mtn FSR and follow for an additional 5.6 km. Turn left and go up hill into some cutblocks at top of the hill for approximately 5.5 km and you will be in the south middle section of the tenure.		
2.8	Access	transfer station to approximate Nithi Mtn FSR and follow fo cutblocks at top of the hill fo	ely 4.9 km mark. Turn Right at the transmission lines onto the r an additional 5.6 km. Turn left and go up hill into some	
2.8 2.9	Access Methodology	transfer station to approximate Nithi Mtn FSR and follow fo cutblocks at top of the hill fo section of the tenure. Areas identified as having his	ely 4.9 km mark. Turn Right at the transmission lines onto the r an additional 5.6 km. Turn left and go up hill into some	

177 East Columbia St, Box 523 Vanderhoof B.C, V0J 3A0 *T:* 1.250.567.9496 *F:* 1.250.567.9492

www.archercrm.ca 1.877.261.5591

2.12 Comments Based on an Archaeological Overview Assessment (AOA report 9245, May 20/11) of the Nithi Mountain Mineral Exploration area, it was established that pre-AD 1846 CMTs or other archaeological remains may be present inside the Study Area. The present PFR only addresses those areas field visited during the survey and confirms five areas of high potential for archaeological resources (HPs) as illustrated in Figure 1. Additional areas of high archaeological potential are present within the project area but were not visited during the present PFR, as they will not be impacted by development as

Previously recorded archaeological site information obtained from RAAD on May 25, 2011

planned at this stage

3 All Known Archaeological Sites Within 250 m Site no. Direction & distance from development Type Possibility of impact None Five Closest Known Archaeological Sites Between 250 & 5000 m Site no. Direction & distance from development Type Possibility of impact FISf-003 CMT 1500 m south None FISf-004 CMT 1500 m south None FISf-006 Lithic, CD, CMT 700 m west None FISf-007 Lithic, CD, Hearth 850 m west None FISf-008 CD 850 m west None Physiography of Study Area HPs 1, 2 & 3: Isolated knolls and terraces with minimal slope (2%) around a small wetland. HPs 4 & 5: Un-named mountain apex (HP 4) and the apex of Nithi Mountain (HP 5), Steep hilly terrain with a maximum slope of 45% in all directions. 6 Vegetation in Study Area HPs 1, 2 & 3: Forest cover consists of subalpine fir, lodgepole pine, and spruce. Understory and ground cover consist of huckleberry, juniper, alder & moss. HPs 4 & 5: Forest cover consists of subalpine fir, lodgepole pine, and spruce. Understory and ground cover consist of huckleberry, juniper, alder & moss. **Ground Visibility** HPs 1, 2 & 3: Moderate due to open terrain and ground cover vegetation. HPs 4 & 5: Good due to minimal ground cover vegetation. Excellent in areas of bedrock outcrops. 8 Previous Impacts / Disturbances HPs 1, 2 & 3: Large portions of the general project area have been previously logged. Numerous roads are present. The HPs themselves are intact with no disturbance. HPs 4 & 5: Large portions of the general project area have been previously logged. Numerous roads are present. The HPs themselves are relatively intact with no significant disturbance. The summit of Nithi Mountain, HP5, has some historic disturbance from previous exploration and survey activities. There is an old transit station present.

9	Archaeological Potential		

HPs 1, 2 & 3:	Moderate-high for subsurface cultural material remains and features. Low for
	CMTs in the area.
HPs 4 & 5:	Moderate - high for subsurface cultural material remains and features. Low for CMTs in the area.
Note:	Additional areas of high archaeological potential are present within the project area but were not visited during the present PFR, as they are not in an area of mineral exploration interest at this time and will not be impacted by development (see figure 1)

10 Recommendations

Our Preliminary Field Reconnaissance of Nithi Mountain Mineral Exploration Tenure Parcels 515427 & 550990 suggests pre-AD 1846 CMTs or buried archaeological remains may be present inside the assessed Study Area. It is recommended that an archaeological impact assessment (AIA) be undertaken if ground and/or timber altering activities are to commence within areas identified as high potential on Figure 1 in order to ascertain potential cultural resource management needs.

The development areas illustrated on the attached maps indicate areas subject to archaeological assessment, unless otherwise noted. If Final Plans differ, the results of this assessment may not be applicable in part or in whole.

To address the prospect of unanticipated archaeological remains being discovered, it is recommended that the proponent inform its employees and contractors of this possibility. If archaeological materials or other heritage remains are uncovered during construction, work in the area of the find must immediately cease and the Archaeology Branch and/or ARCHER informed. It is recommended that the proponent also promptly inform the relevant First Nations concerning any unanticipated archaeological findings.

It was not the intent of this study to identify, evaluate, or comment on the presence or absence of Aboriginal Rights in the study area. Completion of this study does not "abrogate or derogate from aboriginal treaty rights" (Heritage Conservation Act Sec. 8). The study was conducted without prejudice to First Nations Treaty Negotiations, aboriginal rights or aboriginal title.

I concur that the above information is true as of July 18, 2011, given available information.

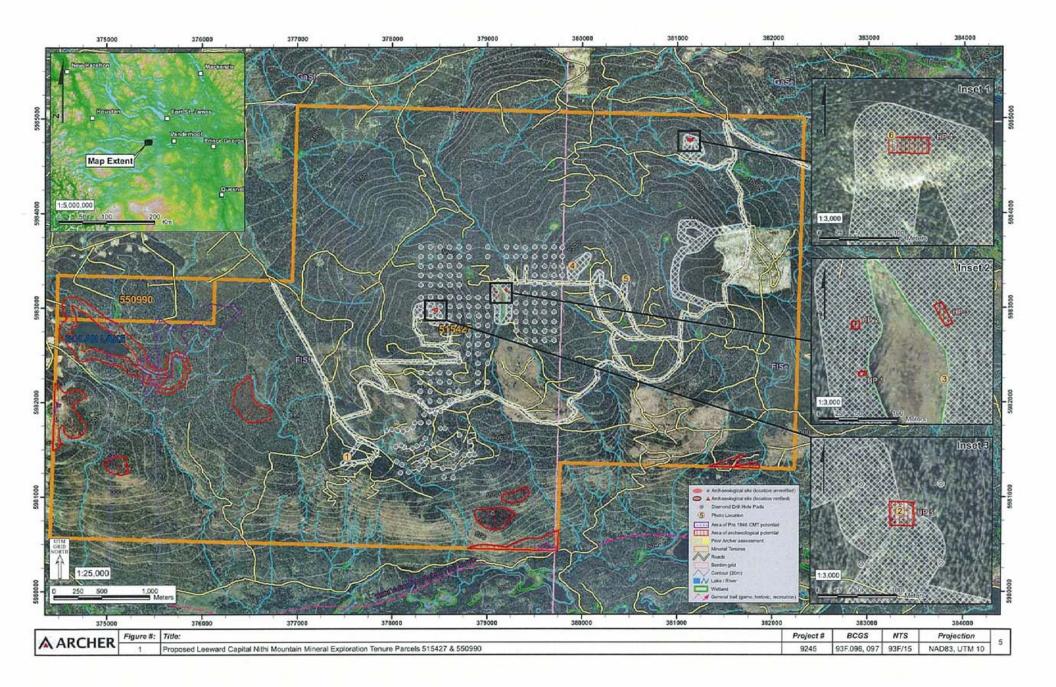
Sincerely,

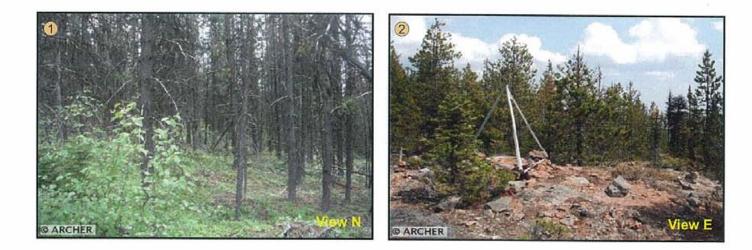
Frank Craig, BA, RPCA (Directing archaeologist)

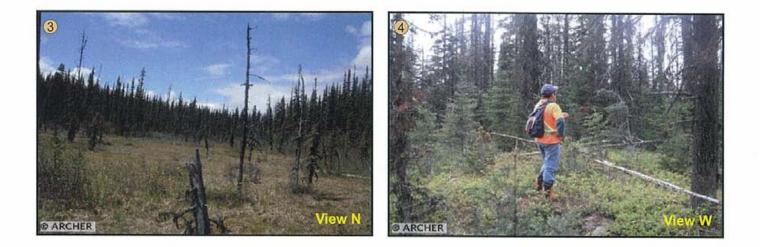
11 References Cited

Subject Report Citation:

ARCHER CRM Partnership


2011 Archaeological Overview Assessment of Nithi Mountain Mineral Exploration site. Consultant file 9245. Prepared for Leeward Capital Corp., Fort Fraser, BC..


12 Distribution List


Individual	Association	Phone	Fax	E-mail
Chief and Council	Stellat'en First Nation	250.699.8747	250.699.6430	
Chief and Council	Nadleh Whut'en First Nation	250.690.7211	250.690.7316	-77
James W. Davis	Leeward Capital Corp.	403.265.2777	403.235.5362	jimd@taiga-ltd.com

13 Archaeology Branch Information

MAIL:	LOCATION:	CONTACT:
Archaeology Branch Ministry of Natural Resource Operations PO Box 9816	#3 - 1250 Quadra Street, Victoria, BC V8W 2K7	Reception (250) 953-3334 Fax (250) 953-3340
Stn Prov Govt Victoria BC, V8W 9W3		

See Figure 1 for photo locations.

ARCHER	Figure #: 2	Proposed Leeward Capital Nithi Mountain Mineral Exploration Tenure Parcels 515427 & 550990	6
---------------	----------------	--	---

APPENDIX D - EDIBLE PLANT SURVEY

WESTCAN PROJECTS LTD.

Huckleberry Mitigation and Monitoring Plan

Nithi Mountain Moly Property, Study Area

July 21, 2011

Prepared for: Leeward Capital Corporation 101, 2719 7 Avenue NE, Calgary, Alberta, T2A 2L9

Prepared by: Avison Management Services Ltd Box774 Vanderhoof, BC, V0J 3A0

Table of Contents

Table of Contents	2
Executive Summary	3
1.0 Background	4
2.0 Introduction	4
2.1 Study Area	4
3.0 Methods	6
3.1 Vegetation Mapping and Site Selection	6
3.2 Field Surveys	6
4.0 Results	7
4.1 Vegetation Mapping	7
4.2 Study Area and Vegetation Descriptions	9
4.2.1 Study Area Overview	8
4.2.2 Description of Vegetation Types	8
5.1 Mitigation and Monitoring Strategies	17
5.2 Recommended Mitigation and Monitoring Plan	19
Literature Cited	20

Tables and Figures

Map 1:Nithi Mountain Moly Property Study Area Overview	5
Table 1: Number of field Inspection Plots by Vegetation Type	7
Table 2: Occurrence of Upland and Wetland Vegetation Typeswithin the Study area	7
Map 2: Study Area Vegetation Types	8
Map3: Mitigation and Monitoring Strategy 3	18
Table3: Strategy 3 Mitigation Strategy by Vegetation Type	19

Executive Summary

The Nithi Mountain Moly property is undergoing mineral exploration by Leeward Capital Corporation. One of the *conditions of authorization* given within the approval of the amended Mines Act permit for the Nithi Mountain Moly property was that a mitigation and monitoring plan be developed to address plant species of concern to the Stellat'en First Nation. It was determined through discussions held by Leeward Capital Corporation representatives that huckleberries (*Vaccinium sp.*) were the plant species of concern. In June 2011 Avison Management Services Ltd. assessed the study area through aerial photo interpretation and ground surveys to estimate the distribution and percent cover of huckleberry plants. The resulting report proposes three mitigation and monitoring strategies to address the impact exploration activities will have on huckleberry species, within the study area.

1.0 Background

Leeward Capital Corporation has been conducting mineral exploration in the Nithi Mountain area since 2005, in order to better define the molybdenum resource within the Nithi Mountain Moly Property (EDI. 2008). This property is located 5 km south of community of Fraser Lake, BC and within the Stellat'en First Nation territory.

Due to severe market conditions in 2008 Leeward Capital Corporation was unable to complete the 2007 amended Mines Act Permit: MX-11-192. A request for an extension of the permit was made in 2011 to complete the remaining drilling. The remaining drilling includes an estimated 30 –35 drill hole sites, utilizing existing trails with the new disturbance area totaling approximately 1.4 ha.

The Ministry of Energy and Mines granted the Mines Act Permit extension on April 30, 2011. One of the conditions of this authorization was the development and implementation of "a detailed mitigation and monitoring plan establishing how impact to plants species of significant interest to the Stellat'en First Nation would be minimized" for the new disturbance areas.

In June 2011 Avison Management Services Ltd (AMS) conducted a vegetation survey within Nithi Mountain Moly Property on the 199.35 ha study area (Map 1).

2.0 Introduction

This report provides information used to determine and ultimately the approval of a mitigation and monitoring plan for the plant species of significant interest to the Stellat'en First Nation within the Nithi Mountain Moly Property.

Prior to the development of the field surveys Taiga Consultants Ltd. engaged in discussions with the Stellat'en First Nation on behalf of Leeward Capital Corporation. Taiga Consultants Ltd. staff concluded that huckleberries (*Vaccinium* sp) were the plant species of significant interest to the First Nation within this area. Within the Vanderhoof Forest District there are several species of Vaccinium for the purposes of this report, huckleberries refer to the following species *Vaccinium membranaceum*, *Vaccinium ovalifolium*, *Vaccinium myrtilloides*, *Vaccinium caespitosum*, although *Vaccinium membranaceum* and *Vaccinium* caespitosum were the only huckleberry species observed.

A vegetation survey was done to investigate and document the occurrence and approximate the distribution of huckleberry plants within the study area. The data collected from this survey was utilized to design the proposed mitigation and monitoring plan for huckleberry species cover within the study area.

2.1 Study Area

The Nithi Mountain Moly Property is located 5 km south of Fraser Lake, in central British Columbia and is located within the Prince George Forest Region (BC Forest. 1993). The study area is within the Fraser river Plateau ecoregion, the Bulkley Basin ecosection (EDI. 2008) and 2 biogioclimatic (BEC) subzones.

ESSFmv1 dominates the study area with only small portions of lower elevations identified through PEM as SBSmc2. ESSFmv1 captures the highest, coldest type of forest in the Vanderhoof Forest District (ILMB, 1997). Precipitation levels are moderate and primarily in the form of snow. Soils are Humo-Ferric Podzols with parent materials predominantly morainal (BC Forest. 1993).

Lodgepole pine, initiated by forest fire, is the predominant species within the ESSFmv1 ecozone, but subalpine fir and hybrid white spruce are common in late succession forests. Map 1 outlines the Nithi Mountain Moly Property and the Study Area with the BEC ecozone classification.

Access to the study area is on gravel roads, unsuitable for 2WD vehicles during inclement weather. Access within the study area is limited to 4WD quad and walking due to road deactivations, blowdown and steep slopes. The soils are shallow and site productivity is very poor with Forest Resource inventory data classifying the site index range between 11-13 (BC Forest. 1997).

3.0 Methods

3.1 Vegetation Mapping and Site Selection

Vegetation Mapping utilized the Ministry of Environment Predictive Ecosystem Mapping (PEM) and Vegetation Resources Inventory (VRI) data, 1:20,000 Colour Aerial Photographs (1997), Seamless Image Database (SID) colour Orthoimagery (2006) and contour lines to assist in the delineation of the study area into a preliminary BEC map to the site series level. The compilation of a final baseline BEC map was not within the scope of this plan.

The site series distribution and access within the study area was used to select field site locations and other areas of interest to help determine the distribution of huckleberry species across the study area.

3.2 Field Surveys

Two types of field inspections were completed to improve the vegetation mapping and to record the distribution and percent cover of huckleberry species within the study area. For both plotbased surveys and visual checks, boundaries of all survey areas encompassed a homogeneous ecosystem as defined by the site series and could vary in shape to ensure homogeneity. The focuses of the surveys were on preliminary BEC mapping and huckleberry species distribution however; an inventory of the dominant terrestrial vegetation was also noted.

Plot-Based Surveys (Ground Inspections)

A 20 m by 20 m plot was selected in an area of homogeneous vegetation, at least 20 m away from any disturbance or community boundary (to avoid edge effects). This plot was used to define the tree layer if present. All identifications and measurements of tree species, including: percent covers, average diameter at breast height (dbh), within the canopy and sub-canopy layers of the 20 m by 20 m plot, were identified. A 10 m by 10 m subplot (or some equal area) was identified to define the shrub and ground layers. Percent cover was estimated to the nearest whole number for species occupying less than 5 percent of the plot. Percent cover was estimated to the nearest 5 percent for species occupying 5 percent or more of the plot.

In addition to vegetation characteristics, general site information on slope, aspect, structural stage, forest pests and disease and inferred moisture regime and nutrient status were recorded. Universal transverse mercator (UTM) co-ordinates and photographs were recorded for each plot-based survey.

Visual Checks (Visual Inspections)

Visual checks included an assessment of correct assignment of the BEC site series, based on the percent cover of dominant tree, shrub and other plants species. Dominant vegetation characteristics, general site information on slope, aspect, structural stage, forest pests and disease, inferred moisture regime and nutrient status were recorded. Universal transverse mercator (UTM) co-ordinates and photographs were recorded for each visual check.

4.0 Results

4.1 Vegetation Mapping

Field inspections were conducted on June 20-23, 2011, collecting data at 36 plots distributed across the study area (see Table 1). The study area is primarily within the ESSFmv 1 BEC subzone with a small polygon in the southwest corner that is classified within the SBSmc2 subzone. The field inspections identified six productive forest site series based on the BEC field guide (BC Forest, 1993) and one wetland (non productive swamp) within the study area. The productive forestland dominated the landscape covering 196.41 ha. The non-productive land covered 2.92 ha of the study area (see Table 2 and Figure 2)

Vegetation ⊤ype (BEC Site Series)	Number of Plots
Nechako Moist Very Cold Engelmann Spruce- Sub alpine Fir (E	ESSF mv1)
01: Bl- Rhododendron- Feathermoss	15
02: PI- Huckleberry-Caldonia	4
03: BI- Huckleberry- Feathermoss	9
04: BI- Huckleberry- Gooseberry	2
05: Bl- Horsetail-Glowmoss	
Babine Moist Cold Sub–Boreal Spruce (SBS mc2)	······································
01: Sxw- Huckleberry	1
Non Productive (NP) Natural (Swamp)	
Total	36

Table 1:	Number of Field Inspection Plots by Vegetation Type	
· ·		

 Table 2: Occurrence of the Upland and Wetland Vegetation Types within the Study Area

 Upland Vegetation Type

Upland Vegetation Type	
Nechako Moist Very Cold Engelmann Spruce- Subalpine Fir	Area
(ESSF mv1)	(ha)
01: Bl (Sub alpine fir)- Rhododendron- Feathermoss	125.29
02: Pl (Lodgepole Pine)- Huckleberry-Caldonia	7.44
03: Bl (Sub alpine fir)- Huckleberry- Feathermoss	39.50
04: Bl (Sub alpine fir)- Huckleberry- Gooseberry	4.53
05: Bl (Sub alpine fir) - Horsetail-Glowmoss	15.53
Babine Moist Cold Sub–Boreal Spruce (SBS mc2)	
01: Sxw (Hybrid White Spruce)- Huckleberry	4.22
Wetland Vegetation Type	
Non Productive (NP) Natural (Swamp)	2.94
Anthropogenic Disturbance (not removed from vegetation type total areas)	(0.30)
Study Area Total	199.35

4.2 Study Area and Vegetation Descriptions

4.2.1 Study Area Overview

The study area is primarily within the ESSFmv1 BEC ecozone with a small polygon in the southwest corner that can be classified within the SBSmc2 zone. The elevation range for the study area is 1200-1350m with variable slope aspects ranging from 0 – 35%. Although not verified with soil profiles, soil moisture levels ranges from subxeric to subhydric conditions and the soil nutrient regime ranges from poor to rich. South facing slopes are dominated by Lodgepole pine (*Pinus contorta*), which has a mortality rate in excess of 80%, due to mountain pine beetle (*Dendroctonus ponderosae* Hopk.)(EDI.2008). The north facing slopes are dominated by mature to late seral stage sub alpine fir (*Abies lasiocarpa*) and hybrid white spruce (*Picea glauca X engelmannii*). Ingress sub alpine fir, white spruce and Lodgepole pine in the understory generally show moderate to poor form and vigor.

The field data identifies six site series based on the BEC field guide (BC Forest, 1993) and one wetland, classified as NPS (non- productive shrub). Many of the vegetation survey plots are classified as transitional as they contained plants bridging between several site series. A possible explanation for this is the successional changes many of the sites are undergoing due to overstory mortality and increased light levels to the forest floor. Overstory mortality is primarily due to the mountain pine beetle epidemic and to a lesser extent the late seral stage sub alpine fir.

The overall seasonal huckleberry yield was observed throughout the field surveys. Generally, the huckleberry yield on all of the sites is found to be minimal; with only two to three flowers/berries per bush observed. Possible reasons for low berry productivity are poor site conditions or the cool wet weather of 2011.

4.2.2 Description of Vegetation Types

Overall, sub alpine fir is the dominant tree species with a carpet of red-stemmed feather moss (*Pleurozium schreberi*) found on most sites. The forest cover is mature to overmature with low shrub layers in variable slopes. The following provides a general description of each BEC subzone, by site series surveyed within the study area. This includes vegetation cover, forest type, percent cover of huckleberry species and ranking relative to the other vegetation types. Photo documentation is included with each description

ESSFmv1 01: BI- Rhododendron-Feathermoss

This ecozone site series is sub alpine fir leading forest cover with variable slopes and aspects. The majority of the study area is classified as this site type. White-flowered rhododendron (*Rhododendron albiflorum*) is present in isolated patches throughout this site series. There is minimal advance sub alpine fir growth in the shrub layer and huckleberry species cover is the second highest of the sites surveyed, ranging between 0 and 35%.

Vegetation plot #V003 Photo Orientation: Forest Floor BEC site series: ESSFmv1 01 Photo date: June 20, 2011

Vegetation plot # V017 Photo Orientation: West BEC site series: ESSFmv1 01 Photo date: June 21, 2011

ESSFmv1 02: PI-Huckleberry-Cladonia

ESSFmv1 02 is a dry Lodgepole pine leading stand, with minimal shrub cover and located on exposed rocky slopes. Terrestrial vegetation is primarily lichen (*Cladina & Cladonia sp.*). With a range of huckleberry species cover from 0 to 10% this site ranks fourth in coverage amongst the sites.

Vegetation Plot #V006 Photo Orientation: Forest Floor BEC site series: ESSFmv1 02 Photo date: June 22, 2011

Vegetation Plot #V026 Photo Orientation: East BEC site series: ESSFmv1 02 Photo date: June 23, 2011

ESSFmv1 03: BI-Huckleberry–Feathermoss

ESSFmv1 03 site type contains the most variable aspects and slopes with a mixture of Lodgepole pine and sub alpine fir leading forest cover. Vegetation is more diverse than ESSFmv1 02 sites primarily due to higher nutrient and soil moisture regimes. The shrub layer is comprised of sub alpine seedlings and poles and to a lesser extent alder (*Alnus sp.*) Huckleberry species is present in all plots with variable coverage ranging from trace to 65%. ESSFmv1 03 has the highest percent huckleberry species cover of all sites, within the study area.

Vegetation Plot #V027 Photo Orientation: Forest Floor BEC site series: ESSFmv1 03 Photo date: June 23, 2011

Vegetation Plot #V009 Photo Orientation: East BEC site series: ESSFmv1 03 Photo date: June 22, 2011

ESSFmv1 04: BI-Huckleberry- Gooseberry

ESSFmv1 04 is associated with subsurface drainage systems and subhydric soil moisture regime. Sub alpine fir is the leading forest cover species with advanced regeneration layer of sub alpine fir. Huckleberry species cover ranges between 0 and 20% and is ranked third in coverage by site type. The dominant plant species on these sites is red-stemmed feather moss (*Pleurozium schreberi*).

Vegetation Plot # V020A Photo Orientation: Forest Floor BEC site series: ESSFmv1 04 Photo date: June 21, 2011

Vegetation Plot # V037 Photo Orientation: West BEC site series: ESSFmv1 04 Photo date: June 21, 2011

ESSFmv1 05: BI-Horsetail-Glow moss

This site type is dominated by sub alpine fir with large scattered hybrid white spruce (*Picea glauca x engelmannil*) in the overstory. The shrub layer is comprised of sub alpine fir advanced regeneration and minimal huckleberry species coverage (0-2%), the least of the ESSFmv1 ecozone types. The forest floor is predominantly covered with horsetail (*Equisetum sp.*), Sphagnum moss (*Sphagnum sp.*) and red-stemmed feather moss (*Pleurozium schreberi*). Seasonally saturated soils make this site series unsuitable for huckleberry species.

Vegetation Plot # V021 Photo Orientation: Forest Floor BEC site series: ESSFmv1 05 Photo date: June 22, 2011

Vegetation Plot # V022 Photo Orientation: West BEC site series: ESSFmv1 05 Photo date: June 22, 2011

SBSmc2 01: Sxw- Huckleberry

A small portion to the southwest of the study area is best classified as SBSmc2 01. Dominated by sub alpine fir, SBSmc2 01 has the highest forest cover crown closure. The rich site has a wide diversity of vegetation but low coverage due to low light levels. There is no evidence of huckleberry species on this site type.

Vegetation Plot # V035 Photo Orientation: Forest Floor BEC site series: SBSmc2 01 Photo date: June 23, 2011

Vegetation Plot #V035 BEC site series: SBSmc2 01

Photo Orientation: North Photo date: June 23, 2011

Non Productive Wetland

Two sites have been identified as non-productive wetlands within the study area. The largest is an open low-lying site dominated by grass and grass like species (*Eriophorum sp. & Carex sp.*). Soils are saturated with standing water in this fen-like wetland. The scattered Lodgepole pine and hybrid white spruce are stunted with willow (salix sp) occupying raised microsites. These wetlands are unsuitable growing sites for huckleberry species.

Vegetation Plot #V015 Non Productive Wetland

Photo Orientation: South Photo date: June 22, 2011

5.1 Mitigation and Monitoring Strategies

Strategy 1. Natural Regeneration

Strategy 1 involves the least intervention as it relies on the forest to restore itself. It is anticipated that the loss of huckleberry plants in the disturbed sites will be compensated by their increased presence in the forested area adjacent to the disturbance, due to increased light levels (Cocksedge,W., 2006). Huckleberry plants are known to propagate through rhizomes and that these rhizomes will spread from undisturbed areas over time. Huckleberry species are known to regenerate naturally from rhizomes over 3-5 years from the adjacent undisturbed sites (Haeussler,S., D. Coates and J. Mather, 1990.). This strategy will require a minimum of two monitoring surveys. A walkthrough survey, 2 and 5 years after disturbance, is recommended to evaluate the levels of vegetative competition and huckleberry regeneration (percent cover) on disturbed sites as five years is required for huckleberry plant reestablishment after disturbance (Haeussler,S., D. Coates and J. Mather, 1990.) This strategy is the most viable considering the disturbance area size, ease of the application of the treatment and cost.

Strategy 2: Artificially Stocking

Strategy 2 involves transplanting huckleberry nursery stock on all disturbed sites. Maximum planting densities are recommended at 1 metre spacing for 10,000 stems per hectare to ensure survival due to browsing by wildlife (Barney, 1999). This strategy will require a minimum of 2 monitoring surveys, at 2 and 5 years after disturbance. A walkthrough survey is recommended to evaluate the levels of vegetative competition and huckleberry regeneration (percent cover) on the disturbed sites.

Strategy 2 has some significant limitations such as the nursery stock availability, compatible seed sources and additional planting costs. Verbal conversations with BC nurseries indicated that there are currently limited quantities of huckleberry seedlings available for purchase and it is doubtful that local seed source transplants are available (Degenais,J., personal communication) Local seed stock would require seed collection in the fall, which would then be ready for transplanting 2 years later. Vegetative competition is a significant factor in huckleberry transplant survival (Barney, 1999). Should local seed stock be utilized, close monitoring will be required, as competing vegetation will have 2 years of advanced growth on transplanted huckleberry plants. This strategy is considered the least viable for both the ease of the treatment application and cost.

Strategy 3: Mitigation Strategy by Vegetation Type

Strategy 3 is a combination of Strategies 1 and 2. It focuses only on those areas with the greatest current huckleberry species presence, which has the best potential for successful huckleberry reestablishment. Table 3 presents the proposed mitigation strategy for each vegetation type. South-facing slopes would be expected to have improved huckleberry presence since light intensity is the most significant factor in berry yield (Cocksedge, W.2006). Strategy 3 proposes that huckleberries only be transplanted on disturbed sites identified as ESSFmv1 01 and ESSFmv1 03, on south facing slopes. The remainder of the disturbed sites would have no treatment and be left to reestablish naturally. Map 3 identifies the areas to be considered for transplanting huckleberry plants in new disturbances as a result of exploration activity. The outlined area identifies ESSFmv1 01 and ESSFmv1 03 sites with southerly aspects. This strategy will require a minimum of 2 monitoring surveys at 2 and 5 years after disturbance. A walkthrough survey is recommended to evaluate the levels of vegetative competition and huckleberry regeneration (percent cover) on the disturbed sites.

Vegetation	Huckleberry	Proposed
Type (BEC site series)	presence based on % cover*	Mitigation Strategy
ESSFmv1 01	Mod	Southerly Aspects: Plant to 10,000 stems per ha Northerly Aspects: Leave to Natural Regeneration
ESSFmv1 02	Low	Leave to Natural Regeneration
ESSFmv1 03	High	Southerly Aspects: Plant to 10,000 stems per ha Northerly Aspects: Leave to Natural Regeneration
ESSFmv1 04	Low	Leave to Natural Regeneration
ESSFmv1 05	Very Low	N/A
SBSmc2 01	Low	Leave to Natural Regeneration
NP Nat	Very Low	N/A

Table 3: Strategy 3. Mitigation Strategy by Vegetation Type

*Determinations of the huckleberry presence are site specific and apply to seasonal levels for 2011. Presence does not imply yield

5.2 Recommended Mitigation and Monitoring Plan

After completion of the vegetation survey, Avison Management Services Ltd. developed 3 mitigation and monitoring strategies to address the impact exploration activities will have on huckleberry species cover, within the study area. Strategy 1 proposes that the disturbed sites be left to reestablish on their own from the adjacent undisturbed sites. Monitoring is required to ensure the huckleberry species have reestablished to pre disturbance percent cover levels. Strategy 2 proposes transplanting nursery stock huckleberries in new disturbances. Strategy 2 has some significant limitations such as the nursery stock availability, compatible seed sources and additional planting costs. Strategy 3 focuses only on those areas with the greatest current huckleberry species presence and has the best potential for successful huckleberry reestablishment. This strategy has similar limitations to strategy 2 due to nursery stock availability and vegetative competition. All 3 strategies recommend walkthrough surveys be completed at 2 and 5 years after disturbance to monitor huckleberry reestablishment (percent cover) and vegetative competition.

This report recommends the proposed Strategy 1: Natural Regeneration as a mitigation and monitoring plan to address the impact of exploration disturbances. The estimated 1.4 ha of new disturbance is expected to have minimal negative impact on the percent cover of huckleberry species, over time. This strategy allows the forest to restore itself and is the most viable considering estimated new disturbance size, ease of application and nursery stock limitations.

Literature Cited

Barney, 1999. Growing Western Huckleberries. University of Idaho. http://www.cals.uidaho.edu/edComm/pdf/BUL/BUL0821.pdf

BC Forest. 1993." A field Guide for Site Identification and Interpretation for the Southwest Portion of the Prince George Forest Region (p 10)

BC Forest. 1997. Site Index Estimates by Site Series for Coniferous Tree Species in British Columbia. BC Forest Renewal BC and Ministry of Forests.p15

Cocksedge, W. 2006. Incorporating non-timber forest products into sustainable forest management. An overview for forest managers. Royal Roads University. http://www.roayalroads.ca

EDI, 2008, Nithi Mountain Property, Environmental Baseline Analysis: State of Baseline., Environmental Dynamics Inc., EDI Project No. 08-BC-0003.

Haeussler, S., D. Coates and J. Mather. 1990. Autecology of Common Plants In British Columbia: A Literature Review. FRDA Report 158, Forestry Canada and BC Ministry of Forests, Victoria, BC.

ILMB.1997. Vanderhoof Land and Resource Management Plan. Integrated Land Management Bureau.

WestCan Projects Ltd.

ENGINEERING A DESIGN A ENVIRONMENTAL A CONSTRUCTION

September 15, 2011

Jim Davies Vice President Taiga Consultants Ltd./ Leeward Capital Corp. 101, 2719-7th Ave N.E. Calgary, Alberta T2A 2L9

Dear Mr. Davis:

RE: August 2011 Water Sampling Results

As per your request, water sampling was performed on the Nithi Mountain property on August 29, 2011. The sample locations were located on watercourses consistent with the sampling program undertaken in 2008. With the exception of two sites (A and C), which had been located on roadways that were no longer accessible due to recent logging activities and deactivations, samples were collected from consistent locations, as outlined in Table 1.

Site	2008 UTM (approx.)	2011 UTM	Description
Site A	379460 E 5981385 N	378633 E 5980635 N	Approximately 700m upstream of 2008 sample location (deactivated road)
Site C	380367 E 5981114 N	380292 E 5982389 N	Approximately 1.1 km upstream of 2008 sample location (deactivated road)
Site D	381302 E 5982528 N	same	Deactivated spur road approx 400 m from Foster Rd Extension, downstream of large beaver pond
Site F (Dup)	378736 E 5981850 N	same	Deactivated spur road approx. 300 m from Foster Rd Extension. Duplicate sample taken for QC
Burns Creek	374442 E 5980058 N	same	At bridge crossing of Nithi Pit Rd

Table 1 – Aug 2011 Nithi Mountain Water Sample Locations

The laboratory used (Caro Analytical) is consistent with the 2008 program. The attached laboratory results have not been processed for comparison to relevant water quality guidelines etc., however they will provide a historical record of water quality in the proximity of the Nithi Mountain development that will be invaluable in future Environmental Assessment applications. It is anticipated that there may be significant water quality changes when compared to 2008 results, reflecting the impacts of expansive logging activity in the area.

Recommendations

A sampling program at regular intervals (monthly, bi-monthly, or quarterly) is recommended for this property to establish a historical baseline that can be used in future studies and regulatory applications. Additional sampling locations at the north end of the site, near the Theta Zone, may be appropriate if development in this area continues.

DWB will be pleased to provide additional sampling services, and/or processing of data results, at your request.

Respectfully submitted,

Jody Watson, EIT Environmental Engineer WestCan Projects Ltd.

ATTCH: Caro - K1H1290 WestCan Ref.: 11173-150 **CERTIFICATE OF ANALYSIS**

CLIENT	DWB Consulting 1579-9th Ave.			
	Prince George BC	TEL	1(250)562-5541	
	V2L 3R8	FAX	1(250)562-5561	
ATTENTION	Jody Watson			
RECEIVED / TEMP	Aug-31-11 08:05 / 5.0 °C	WORK ORDER	K1H1290	
REPORTED	Sep-09-11	PROJECT	Nithi Mtn	
COC #(s)	32826	PROJECT INFO	11173-150	

General Comments:

CARO Analytical Services employs methods which are based on those found in "Standard Methods for the Examination of Water and Wastewater", 21st Edition, 2005, published by the American Public Health Association (APHA); US EPA protocols found in "Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, SW846", 3rd Edition; protocols published by the British Columbia Ministry of Environment (BCMOE); and/or CCME Canada-wide Standard Reference methods.

Methods not described in these publications are conducted according to procedures accepted by appropriate regulatory agencies, and/or are done in accordance with recognized professional standards using accepted testing methodologies and quality control efforts except where otherwise agreed to by the client.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirity. CARO is not responsible for any loss or damage resulting directly or indirectly from error or omission in the conduct of testing. Liability is limited to the cost of analysis. Samples will be disposed of 30 days after the test report has been issued unless otherwise agreed to in writing.

· All solids results are reported on a dry weight basis unless otherwise noted

 Units: mg/kg = milligrams per kilogram, equivalent to parts per million (ppm) mg/L = milligrams per litre, equivalent to parts per million (ppm) ug/L = micrograms per litre, equivalent to parts per billion (ppb) ug/g = micrograms per gram, equivalent to parts per million (ppm) ug/m3 = micrograms per cubic meter of air

- "RDL" Reported detection limit
- "<" Less than reported detection limit
- "AO" Aesthetic objective
- "MAC" Maximum acceptable concentration (health-related guideline)

"LAB" RMD = Richmond location, KEL = Kelowna location, EDM = Edmonton location, SUB = Subcontracted

Please contact CARO if more information is needed or to provide feedback on our services.

CARO Analytical Services

Final Review Per:

Jennifer Shanko, AScT Administration Coordinator

CARO Analytical Services #120 12791 Clarke Place Richmond, BC V6V 2H9 Tel: 604-279-1499 Fax: 604-279-1599

#102 3677 Highway 97N Kelowna, BC V1X 5C3 Tel: 250-765-9646 Fax: 250-765-3893 www.caro.ca

9523 42 Avenue Edmonton, AB T6E 5R2 Tel: 780-628-3737

Page 1 of 25

1.7

88

	WB Consulting lithi Mtn			WORK ORDER # REPORTED	K1H1290 Sep-09-11	
Analyte	Result	RDL	Units	Prepared	Analyzed	Notes
General Parameters						
Site A (K1H1290-01) M	atrix: Water Sampled: Aug-29-11					
Alkalinity, Total as CaCO3	30.0	10		20020100	1217/02/01/07	_
Bromide			mg/L	Sep-01-11	Sep-01-11	
Carbon, Total Organic	< 0.05		mg/L	Aug-31-11	Sep-01-11	
Chloride	18.0		mg/L	Aug-31-11	Sep-01-11	
	0.46		mg/L	Aug-31-11	Sep-01-11	
Conductivity (EC)	70		uS/cm	Sep-01-11	Sep-01-11	
Fluoride	0.25		mg/L	Aug-31-11	Sep-01-11	
Hardness, Total (Total as Cal			mg/L	Sep-01-11	Sep-06-11	
Hardness, Total (Diss. as Cal			mg/L	Sep-01-11	Sep-03-11	
Nitrogen, Ammonia as N	0.01		mg/L	Aug-31-11	Sep-01-11	
Nitrogen, Nitrate+Nitrite as N			mg/L	Aug-31-11	Sep-01-11	
Nitrogen, Nitrate as N	0.007		mg/L	Aug-31-11	Sep-01-11	
Nitrogen, Nitrite as N	< 0.003	0.003	mg/L	Aug-31-11	Sep-01-11	
Nitrogen, Total Kjeldahl	0.48	0.05	mg/L	Aug-31-11	Sep-08-11	
Nitrogen, Total	0.483	0.050	mg/L	Aug-31-11	Sep-08-11	
H	7.12	0.01	pH Units	Sep-01-11	Sep-01-11	
Phosphorus, Total	0.17	0.01	mg/L	Aug-31-11	Sep-06-11	
Phosphate, Ortho as P	0.081	0.005	mg/L	Aug-31-11	Sep-01-11	
Solids, Total Dissolved	48	5	mg/L	Sep-02-11	Sep-02-11	
Solids, Total Suspended	< 1	1	mg/L	Aug-31-11	Aug-31-11	
Sulfate	6.2	0.5	mg/L	Aug-31-11	Sep-01-11	
Furbidity	2.5	0.1	NTU	Aug-31-11	Aug-31-11	1.20
Site D (K1H1290-02) M	atrix: Water Sampled: Aug-29-11					
Alkalinity, Total as CaCO3	13.6	1.0	mg/L	Sep-01-11	Sep-01-11	1.1.1.1.1.1.1.1
Bromide	< 0.05		mg/L	Aug-31-11	Sep-01-11	
Carbon, Total Organic	19.7		mg/L	Aug-31-11	Sep-01-11	
Chloride	0.42		mg/L	Aug-31-11	Sep-01-11	
Conductivity (EC)	39		uS/cm	Sep-01-11	Sep-01-11	
luoride	0.16		mg/L	Aug-31-11	Sep-01-11	
Hardness, Total (Total as Cad			mg/L	Sep-01-11	Sep-06-11	
Hardness, Total (Diss. as CaC	Sold and the second sec		mg/L	Sep-01-11	CAN STREET, SALES	
Nitrogen, Ammonia as N	0.04		mg/L	Aug-31-11	Sep-03-11 Sep-01-11	
Nitrogen, Nitrate+Nitrite as N			mg/L	Aug-31-11	Sep-01-11	
Nitrogen, Nitrate as N	0.031		mg/L		Sep-01-11	
litrogen, Nitrite as N	< 0.003		mg/L	Aug-31-11	Sep-01-11	
Nitrogen, Total Kjeldahl	0.55		mg/L	Aug-31-11	Sep-01-11	
litrogen, Total	0.577		mg/L	Aug-31-11	Sep-08-11	
oH	6.43			Aug-31-11	Sep-08-11	
hosphorus, Total	0.12		pH Units mg/L	Sep-01-11	Sep-01-11	
Phosphate, Ortho as P	0.12			Aug-31-11	Sep-06-11	
Solids, Total Dissolved	23	0.005	and the second s	Aug-31-11	Sep-01-11	
Solids, Total Suspended	80		mg/L	Sep-02-11	Sep-02-11	
Sulfate	00	1	mg/L	Aug-31-11	Aug-31-11	

0.5 mg/L

0.1 NTU

Aug-31-11

Aug-31-11

Sep-01-11

Aug-31-11

Sulfate

Turbidity

	DWB Consulting Nithi Mtn			WORK ORDER # REPORTED	K1H1290 Sep-09-11	
Analyte	Result	RDL	Units	Prepared	Analyzed	Notes
General Parameters,	Continued					
Site C (K1H1290-03) N	fatrix: Water Sampled: Aug-29-11					
Alkalinity, Total as CaCO3	4.6	10	mg/L	Sep 01 11	See 01.11	
Bromide	< 0.05			Sep-01-11	Sep-01-11	
Carbon, Total Organic	15.7		mg/L mg/L	Aug-31-11	Sep-01-11	
Chloride	0.59		mg/L mg/L	Aug-31-11	Sep-01-11	
Conductivity (EC)	22		Collection of the	Aug-31-11	Sep-01-11	
Fluoride	0.03		uS/cm mg/L	Sep-01-11	Sep-01-11	
Hardness, Total (Total as Ca			DEED COLUMN	Aug-31-11	Sep-01-11	
Hardness, Total (Diss. as Ca			mg/L mg/L	Sep-01-11	Sep-06-11	
Nitrogen, Ammonia as N	< 0.01		mg/L	Sep-01-11	Sep-03-11	
Nitrogen, Nitrate+Nitrite as			mg/L mg/L	Aug-31-11 Aug-31-11	Sep-01-11	
Nitrogen, Nitrate as N	0.050		mg/L	Aug-31-11	Sep-01-11	
Nitrogen, Nitrite as N	< 0.003		mg/L		Sep-01-11	
Nitrogen, Total Kjeldahl	0.37		mg/L	Aug-31-11 Aug-31-11	Sep-01-11	
Nitrogen, Total	0.419	0.050		Aug-31-11	Sep-08-11	
рН	6.53		pH Units	Sep-01-11	Sep-08-11 Sep-01-11	
Phosphorus, Total	< 0.01		mg/L	Aug-31-11		
Phosphate, Ortho as P	< 0.005	0.005		Aug-31-11	Sep-06-11	
Solids, Total Dissolved	38		mg/L	Sep-02-11	Sep-01-11	
Solids, Total Suspended	2		mg/L	Aug-31-11	Sep-02-11	
Sulfate	1.5		mg/L	Aug-31-11	Aug-31-11 Sep-01-11	
Turbidity	3.2		NTU	Aug-31-11	Aug-31-11	
			me	Aug J1 11	Aug-51-11	
	latrix: Water Sampled: Aug-29-11					
Alkalinity, Total as CaCO3	8.5	1.0	mg/L	Sep-01-11	Sep-01-11	
Bromide	< 0.05	0.05	mg/L	Aug-31-11	Sep-01-11	
Carbon, Total Organic	10.2	0.5	mg/L	Aug-31-11	Sep-01-11	
Chloride	0.37	0.10	mg/L	Aug-31-11	Sep-01-11	
Conductivity (EC)	37	2	uS/cm	Sep-01-11	Sep-01-11	
Fluoride	0.30	0.01	mg/L	Aug-31-11	Sep-01-11	
Hardness, Total (Total as Ca		0.1	mg/L	Sep-01-11	Sep-06-11	
Hardness, Total (Diss. as Ca			mg/L	Sep-01-11	Sep-03-11	
Nitrogen, Ammonia as N	0.01		mg/L	Aug-31-11	Sep-01-11	
Nitrogen, Nitrate+Nitrite as		0.005	100 M 100 M	Aug-31-11	Sep-01-11	
Nitrogen, Nitrate as N	0.025	0.005		Aug-31-11	Sep-01-11	
Nitrogen, Nitrite as N	< 0.003	0.003		Aug-31-11	Sep-01-11	
Nitrogen, Total Kjeldahl	0.25		mg/L	Aug-31-11	Sep-08-11	
Nitrogen, Total	0.272	0.050	17	Aug-31-11	Sep-08-11	
pH	6.87		pH Units	Sep-01-11	Sep-01-11	
Phosphorus, Total	< 0.01		mg/L	Aug-31-11	Sep-06-11	
Phosphate, Ortho as P	< 0.005	0.005	A MARKET MARK	Aug-31-11	Sep-01-11	
Solids, Total Dissolved	43	5	mg/L	Sep-02-11	Sep-02-11	
Solids, Total Suspended	6		mg/L	Aug-31-11	Aug-31-11	
Sulfate	6.1		mg/L	Aug-31-11	Sep-01-11	
Turbidity	3.3	0.1	NTU	Aug-31-11	Aug-31-11	

	WB Consulting lithi Mtn			WORK ORDER # REPORTED	K1H1290 Sep-09-11	
Analyte	Result	RDL	Units	Prepared	Analyzed	Notes
General Parameters,	Continued					
Burns Creek (K1H1290-0	05) Matrix: Water Sampled: Aug-29	-11				
Alkalinity, Total as CaCO3	69.6	and the second s	mg/L	Sep-01-11	Sep-01-11	1.1.1.1.1.1
Bromide	< 0.05		mg/L	Aug-31-11	Sep-01-11	
Carbon, Total Organic	7.9		mg/L	Aug-31-11	Sep-01-11	
Chloride	0.25		mg/L	Aug-31-11	Sep-01-11	
Conductivity (EC)	130		uS/cm	Sep-01-11	Sep-01-11	
Fluoride	0.32		mg/L	Aug-31-11	Sep-01-11	
Hardness, Total (Total as Ca			mg/L	Sep-01-11	Sep-06-11	
Hardness, Total (Diss. as Cad			mg/L	Sep-01-11	Sep-00-11 Sep-03-11	
Nitrogen, Ammonia as N	< 0.01		mg/L	Aug-31-11	Sep-03-11	
Nitrogen, Nitrate+Nitrite as N		0.005	17	Aug-31-11	Sep-01-11	
Nitrogen, Nitrate as N	0.029		mg/L	Aug-31-11	Sep-01-11	
Nitrogen, Nitrite as N	< 0.003	0.003		Aug-31-11	Sep-01-11	
Nitrogen, Total Kjeldahl	0.34		mg/L	Aug-31-11	Sep-08-11	
Nitrogen, Total	0.368	0.050	10	Aug-31-11	Sep-08-11	
pH	7.32		pH Units	Sep-01-11	Sep-01-11	
Phosphorus, Total	0.02		mg/L	Aug-31-11	Sep-06-11	
Phosphate, Ortho as P	< 0.005		mg/L	Aug-31-11	Sep-01-11	
Solids, Total Dissolved	85		mg/L	Sep-02-11	Sep-02-11	
Solids, Total Suspended	9		mg/L	Aug-31-11	Aug-31-11	
Sulfate	2.3		mg/L	Aug-31-11	Sep-01-11	
Turbidity	1.6		NTU	Aug-31-11	Aug-31-11	1000
Dup (K1H1290-06) Mat	rix: Water Sampled: Aug-29-11					
Alkalinity, Total as CaCO3	9.2	1.0	mg/L	Sep-01-11	Sep-01-11	1111111
Bromide	< 0.05		mg/L	Aug-31-11	Sep-01-11	
Carbon, Total Organic	9.2		mg/L	Aug-31-11	Sep-01-11	
Chloride	0.36		mg/L	Aug-31-11	Sep-01-11	
Conductivity (EC)	37		uS/cm	Sep-01-11	Sep-01-11	
Fluoride	0.13		mg/L	Aug-31-11	Sep-01-11	
Hardness, Total (Total as Cat	203) 12.5		mg/L	Sep-01-11	Sep-06-11	
Hardness, Total (Diss. as CaC	103) 11		mg/L	Sep-01-11	Sep-03-11	
Nitrogen, Ammonia as N	0.02		mg/L	Aug-31-11	Sep-01-11	
Nitrogen, Nitrate+Nitrite as N	0.014	0.005		Aug-31-11	Sep-01-11	
Nitrogen, Nitrate as N	0.014	0.005		Aug-31-11	Sep-01-11	
Nitrogen, Nitrite as N	< 0.003	0.003	and the second second	Aug-31-11	Sep-01-11	
Nitrogen, Total Kjeldahl	0.28		mg/L	Aug-31-11	Sep-08-11	
Nitrogen, Total	0.290	0.050	and the second se	Aug-31-11	Sep-08-11	
рН	6.97		pH Units	Sep-01-11	Sep-01-11	
Phosphorus, Total	< 0.01		mg/L	Aug-31-11	Sep-06-11	
Phosphate, Ortho as P	< 0.005	0.005		Aug-31-11	Sep-01-11	
Solids, Total Dissolved	44		mg/L	Sep-02-11	Sep-02-11	
Solids, Total Suspended	3		mg/L	Aug-31-11	Aug-31-11	
Sulfate	6.1		mg/L	Aug-31-11	Sep-01-11	
Turbidity	3.8		NTU	Aug-31-11	Aug-31-11	

Dissolved Metals by ICPMS

CLIENT PROJECT	DWB Consulting Nithi Mtn			WORK ORDER # REPORTED	K1H1290 Sep-09-11	
Analyte	Result	RDL	Units	Prepared	Analyzed	Notes
Dissolved Metals	by ICPMS, Continued					
Site A (K1H1290-01)) Matrix: Water Sampled: Aug-29-11					
Aluminum, dissolved	266	2	ug/L	Sep-01-11	Sep-03-11	1.200
Antimony, dissolved	0.05		ug/L	Sep-01-11 Sep-01-11	Sep-03-11	
Arsenic, dissolved	0.24		ug/L	Sep-01-11	Sep-03-11	
Barium, dissolved	7.9	0.2		Sep-01-11	Sep-03-11	
Beryllium, dissolved	0.06		ug/L	Sep-01-11	Sep-03-11	
Bismuth, dissolved	0.009	0.002		Sep-01-11	Sep-03-11	
Boron, dissolved	1		ug/L	Sep-01-11	Sep-03-11	
Cadmium, dissolved	0.050	0.002		Sep-01-11	Sep-03-11	
Calcium, dissolved	6500		ug/L	Sep-01-11		
Chromium, dissolved	0.3		ug/L	Sep-01-11	Sep-03-11 Sep-03-11	
Cobalt, dissolved	0.085	0.005	100 C	Sep-01-11	Sep-03-11	
Copper, dissolved	4.0		ug/L	Sep-01-11	Sep-03-11	
ron, dissolved	224		ug/L	Sep-01-11	Sep-03-11	
ead, dissolved	0.06		ug/L	Sep-01-11	Sep-03-11	
ithium, dissolved	1.97		ug/L	Sep-01-11	Sep-03-11	
lagnesium, dissolved	2730		ug/L	Sep-01-11	Sep-03-11	
langanese, dissolved	57.3		ug/L	Sep-01-11	Sep-03-11	
fercury, dissolved	< 0.01		ug/L	Sep-01-11	and the second second	
folybdenum, dissolved	112		ug/L	Sep-01-11	Sep-03-11 Sep-03-11	
lickel, dissolved	0.72		ug/L	Sep-01-11	Sep-03-11	
hosphorus, dissolved	9		ug/L	Sep-01-11		
otassium, dissolved	1280		ug/L	Sep-01-11	Sep-03-11 Sep-03-11	
elenium, dissolved	0.2		ug/L	Sep-01-11	Sep-03-11	
ilicon, dissolved	7990	100	ug/L	Sep-01-11	Sep-03-11	
Silver, dissolved	0.02		ug/L	Sep-01-11	Sep-03-11	
odium, dissolved	3780		ug/L	Sep-01-11	Sep-03-11	
trontium, dissolved	72.1	0.1		Sep-01-11	Sep-03-11	
ellurium, dissolved	< 0.05	0.05	Charles and the second second	Sep-01-11	Sep-03-11	
hallium, dissolved	0.005	0.004	ug/L	Sep-01-11	Sep-03-11	
horium, dissolved	0.09	0.01		Sep-01-11	Sep-03-11	
in, dissolved	< 0.05		ug/L	Sep-01-11	Sep-03-11	
itanium, dissolved	5.2		ug/L	Sep-01-11	Sep-03-11	
Iranium, dissolved	0.466	0.001		Sep-01-11	Sep-03-11	
anadium, dissolved	0.5		ug/L	Sep-01-11	Sep-03-11	
inc, dissolved	4		ug/L	Sep-01-11	Sep-03-11	
Zirconium, dissolved	0.81	0.01		Sep-01-11	Sep-03-11	

Aluminum, dissolved	418	2 ug/	/L	Sep-01-11	Sep-03-11
Antimony, dissolved	0.14	0.05 ug/	/L	Sep-01-11	Sep-03-11
Arsenic, dissolved	0.64	0.05 ug/	/L	Sep-01-11	Sep-03-11
Barium, dissolved	14.4	0.2 ug/	/L	Sep-01-11	Sep-03-11
Beryllium, dissolved	0.15	0.01 ug/	/L	Sep-01-11	Sep-03-11
Bismuth, dissolved	0.028	0.002 ug/	/L	Sep-01-11	Sep-03-11
Boron, dissolved	2	1 ug/	/L	Sep-01-11	Sep-03-11
Cadmium, dissolved	0.059	0.002 ug/	/L	Sep-01-11	Sep-03-11

CLIENT PROJECT	DWB Consulting Nithi Mtn				1290 09-11
Analyte	Result	RDL Units	Prepared	Analyzed	Notes

Dissolved Metals by ICPMS, Continued

Site D	(K1H1290-02)	Matrix: Water	Sampled: Aug	-29-11,	Continued
--------	--------------	---------------	--------------	---------	-----------

Calcium, dissolved	3580	50	ug/L	Sep-01-11	Sep-03-11	E HEALTER
Chromium, dissolved	0.5	0.1	ug/L	Sep-01-11	Sep-03-11	
Cobalt, dissolved	0.690	0.005	ug/L	Sep-01-11	Sep-03-11	
Copper, dissolved	4.7		ug/L	Sep-01-11	Sep-03-11	
Iron, dissolved	501	2	ug/L	Sep-01-11	Sep-03-11	
Lead, dissolved	0.37	0.05	ug/L	Sep-01-11	Sep-03-11	
Lithium, dissolved	0.44	0.05	ug/L	Sep-01-11	Sep-03-11	
Magnesium, dissolved	1060		ug/L	Sep-01-11	Sep-03-11	
Manganese, dissolved	465	0.05	ug/L	Sep-01-11	Sep-03-11	
Mercury, dissolved	< 0.01	0.01	ug/L	Sep-01-11	Sep-03-11	
Molybdenum, dissolved	32.2		ug/L	Sep-01-11	Sep-03-11	
Nickel, dissolved	0.86		ug/L	Sep-01-11	Sep-03-11	
Phosphorus, dissolved	16		ug/L	Sep-01-11	Sep-03-11	
Potassium, dissolved	822		ug/L	Sep-01-11	Sep-03-11	
Selenium, dissolved	0.3		ug/L	Sep-01-11	Sep-03-11	
Silicon, dissolved	6280		ug/L	Sep-01-11	Sep-03-11	
Silver, dissolved	< 0.01		ug/L	Sep-01-11	Sep-03-11	
Sodium, dissolved	2320		ug/L	Sep-01-11	Sep-03-11	
Strontium, dissolved	44.1	0.1	ug/L	Sep-01-11	Sep-03-11	
Tellurium, dissolved	< 0.05		ug/L	Sep-01-11	Sep-03-11	
Thallium, dissolved	0.013	0.004	ug/L	Sep-01-11	Sep-03-11	
Thorium, dissolved	0.43		ug/L	Sep-01-11	Sep-03-11	
Tin, dissolved	< 0.05	0.05	ug/L	Sep-01-11	Sep-03-11	
Titanium, dissolved	9.3		ug/L	Sep-01-11	Sep-03-11	
Uranium, dissolved	1.59	0.001		Sep-01-11	Sep-03-11	
Vanadium, dissolved	1.5		ug/L	Sep-01-11	Sep-03-11	
Zinc, dissolved	6		ug/L	Sep-01-11	Sep-03-11	
Zirconium, dissolved	1.81		ug/L	Sep-01-11	Sep-03-11	

Site C (K1H1290-03) Matrix: Water Sampled: Aug-29-11

Aluminum, dissolved	350	2	ug/L	Sep-01-11	Sep-03-11	1,000 000
Antimony, dissolved	0.05	0.05	ug/L	Sep-01-11	Sep-03-11	
Arsenic, dissolved	0.17		ug/L	Sep-01-11	Sep-03-11	
Barium, dissolved	5.7	0.2	ug/L	Sep-01-11	Sep-03-11	
Beryllium, dissolved	0.16		ug/L	Sep-01-11	Sep-03-11	
Bismuth, dissolved	0.011	0.002	- 100m	Sep-01-11	Sep-03-11	
Boron, dissolved	3	1	ug/L	Sep-01-11	Sep-03-11	
Cadmium, dissolved	0.026	0.002		Sep-01-11	Sep-03-11	
Calcium, dissolved	1690		ug/L	Sep-01-11	Sep-03-11	
Chromium, dissolved	0.3		ug/L	Sep-01-11	Sep-03-11	
Cobalt, dissolved	0.080	0.005		Sep-01-11	Sep-03-11	
Copper, dissolved	4.3		ug/L	Sep-01-11	Sep-03-11	
Iron, dissolved	200		ug/L	Sep-01-11	Sep-03-11	
Lead, dissolved	0.12		ug/L	Sep-01-11	Sep-03-11	
Lithium, dissolved	0.76		ug/L	Sep-01-11	Sep-03-11	
Magnesium, dissolved	649		ug/L	Sep-01-11	Sep-03-11	

WORK ORDER # REPORTED		1290 09-11
Prepared	Analyzed	Notes
	200400000000000000000000000000000000000	

Site C (K1H1290-03) Matrix: Water Sampled: Aug-29-11, Continued

Site C (KIH1290-03)	Matrix: water Sampled: Aug-29-11, Continued				
Manganese, dissolved	14.9	0.05	ug/L	Sep-01-11	Sep-03-11
Mercury, dissolved	< 0.01	0.01	ug/L	Sep-01-11	Sep-03-11
Molybdenum, dissolved	20.6	0.01	ug/L	Sep-01-11	Sep-03-11
Nickel, dissolved	0.55	0.02	ug/L	Sep-01-11	Sep-03-11
Phosphorus, dissolved	8	5	ug/L	Sep-01-11	Sep-03-11
Potassium, dissolved	532	5	ug/L	Sep-01-11	Sep-03-11
Selenium, dissolved	0.4	0.1	ug/L	Sep-01-11	Sep-03-11
Silicon, dissolved	5960	100	ug/L	Sep-01-11	Sep-03-11
Silver, dissolved	< 0.01	0.01	ug/L	Sep-01-11	Sep-03-11
Sodium, dissolved	2130	5	ug/L	Sep-01-11	Sep-03-11
Strontium, dissolved	26.6	0.1	ug/L	Sep-01-11	Sep-03-11
Tellurium, dissolved	< 0.05	0.05	ug/L	Sep-01-11	Sep-03-11
Thallium, dissolved	0.007	0.004	ug/L	Sep-01-11	Sep-03-11
Thorium, dissolved	0.39	0.01	ug/L	Sep-01-11	Sep-03-11
Tin, dissolved	0.05	0.05		Sep-01-11	Sep-03-11
Titanium, dissolved	3.8		ug/L	Sep-01-11	Sep-03-11
Uranium, dissolved	0.985	0.001		Sep-01-11	Sep-03-11
Vanadium, dissolved	0.4		ug/L	Sep-01-11	Sep-03-11
Zinc, dissolved	38		ug/L	Sep-01-11	Sep-03-11
Zirconium, dissolved	0.85		ug/L	Sep-01-11	Sep-03-11
Site F (K1H1290-04)	Matrix: Water Sampled: Aug-29-11				
Aluminum, dissolved	262	2	ug/L	Sep-01-11	Sep-03-11
Antimony, dissolved	0.06		ug/L	Sep-01-11	Sep-03-11
Arsenic, dissolved	0.13		ug/L	Sep-01-11	Contraction of the second s
Barium, dissolved	5.7		ug/L	Sep-01-11	Sep-03-11
Beryllium, dissolved	0.06		ug/L	Sep-01-11	Sep-03-11
Bismuth, dissolved	0.007	0.002		Sep-01-11	Sep-03-11
Boron, dissolved	states and in the 3 and 1 should be	1			Sep-03-11
Cadmium, dissolved	0.035	0.002		Sep-01-11	Sep-03-11
Calcium, dissolved	2350		ug/L	Sep-01-11	Sep-03-11
Chromium, dissolved	0.2		-	Sep-01-11	Sep-03-11
Cobalt, dissolved	0.056		ug/L	Sep-01-11	Sep-03-11
Copper, dissolved	5.3	0.005	19970	Sep-01-11	Sep-03-11
ron, dissolved	124	0.1		Sep-01-11	Sep-03-11
Lead, dissolved	0.07		ug/L	Sep-01-11	Sep-03-11
ithium, dissolved	1.95		ug/L	Sep-01-11	Sep-03-11
Magnesium, dissolved	1.95		ug/L	Sep-01-11	Sep-03-11
Manganese, dissolved	5.06		ug/L	Sep-01-11	Sep-03-11
Mercury, dissolved	< 0.01		ug/L	Sep-01-11	Sep-03-11
Molybdenum, dissolved	20.1		ug/L	Sep-01-11	Sep-03-11
Nickel, dissolved			ug/L	Sep-01-11	Sep-03-11
	0.71		ug/L	Sep-01-11	Sep-03-11
Phosphorus, dissolved Potassium, dissolved	7 663		ug/L	Sep-01-11	Sep-03-11
		5	ug/L	Sep-01-11	Sep-03-11
A CONTRACTOR OF A SECOND A REAL PROVIDED TO THE REAL			- Hui		
Selenium, dissolved Silicon, dissolved	0.2 7920	0.1	ug/L ug/L	Sep-01-11 Sep-01-11	Sep-03-11

CLIENT PROJECT	DWB Consulting Nithi Mtn			WORK ORDER # REPORTED	K1H1290 Sep-09-11	
Analyte	Result	t RD	. Units	Prepared	Analyzed	Notes
Dissolved Metals	by ICPMS, Continued					
Site F (K1H1290-04)	Matrix: Water Sampled: A	Aug-29-11, Continued				
Silver, dissolved	0.01		1 ug/L	Sep-01-11	Sep-03-11	2011/01
Sodium, dissolved	2770		5 ug/L	Sep-01-11	Sep-03-11	
Strontium, dissolved	28.9	0	1 ug/L	Sep-01-11	Sep-03-11	
Tellurium, dissolved	< 0.05		13 10 10 10 10 10 10 10 10 10 10 10 10 10	Sep-01-11	Sep-03-11	
Thallium, dissolved	< 0.004	CRIDDE SERVICE IN THE REPORT OF	4 ug/L	Sep-01-11	Sep-03-11	
Thorium, dissolved	0.07			Sep-01-11	Sep-03-11	
Tin, dissolved	< 0.05	ALL DESCRIPTION OF THE REAL PROPERTY OF THE REAL PR	15 ug/L	Sep-01-11		
Titanium, dissolved	4.3		2 ug/L	Sep-01-11	Sep-03-11	
Uranium, dissolved	0.385	the second second second second second	1 ug/L	Sep-01-11	Sep-03-11	
Vanadium, dissolved	0.3		2 ug/L	and the second	Sep-03-11	
Zinc, dissolved	8	and the second se	2 Ug/L 1 Ug/L	Sep-01-11	Sep-03-11	
Zirconium, dissolved	0.51			Sep-01-11	Sep-03-11	
			1 ug/L	Sep-01-11	Sep-03-11	
		pled: Aug-29-11				
Aluminum, dissolved	9		2 ug/L	Sep-01-11	Sep-03-11	
Antimony, dissolved	0.07	0.0	5 ug/L	Sep-01-11	Sep-03-11	
Arsenic, dissolved	0.62	. 0.0	5 ug/L	Sep-01-11	Sep-03-11	
Barium, dissolved	15.1	. 0.	2 ug/L	Sep-01-11	Sep-03-11	
Beryllium, dissolved	< 0.01	. 0.0	1 ug/L	Sep-01-11	Sep-03-11	
Bismuth, dissolved	< 0.002	.0.00	2 ug/L	Sep-01-11	Sep-03-11	
Boron, dissolved	2	Directory Repairing of the	1 ug/L	Sep-01-11	Sep-03-11	
Cadmium, dissolved	0.004	0.00	2 ug/L	Sep-01-11	Sep-03-11	
Calcium, dissolved	14000	5	0 ug/L	Sep-01-11	Sep-03-11	
Chromium, dissolved	< 0.1	0.	1 ug/L	Sep-01-11	Sep-03-11	
Cobalt, dissolved	0.032	0.00	5 ug/L	Sep-01-11	Sep-03-11	
Copper, dissolved	1.0	0.	1 ug/L	Sep-01-11	Sep-03-11	
Iron, dissolved	137		2 ug/L	Sep-01-11	Sep-03-11	
Lead, dissolved	< 0.05	0.0	5 ug/L	Sep-01-11	Sep-03-11	
Lithium, dissolved	1.23	0.0	5 ug/L	Sep-01-11	Sep-03-11	
Magnesium, dissolved	3470		5 ug/L	Sep-01-11	Sep-03-11	
Manganese, dissolved	29.4	0.0	5 ug/L	Sep-01-11	Sep-03-11	
Mercury, dissolved	< 0.01		1 ug/L	Sep-01-11	Sep-03-11	
Molybdenum, dissolved	2.32		1 ug/L	Sep-01-11	Sep-03-11	
Nickel, dissolved	0.24		2 ug/L	Sep-01-11	Sep-03-11	
Phosphorus, dissolved	11		5 ug/L	Sep-01-11	Sep-03-11	
Potassium, dissolved	675		5 ug/L	Sep-01-11	Sep-03-11	
Selenium, dissolved	< 0.1		1 ug/L	Sep-01-11	Sep-03-11	
Silicon, dissolved	5930		0 ug/L	Sep-01-11	Sep-03-11	
Silver, dissolved	< 0.01		1 ug/L	Sep-01-11	Sep-03-11	
Sodium, dissolved	4480		5 ug/L	Sep-01-11	Sep-03-11	
Strontium, dissolved	136		1 ug/L	Sep-01-11	Sep-03-11	
Tellurium, dissolved	< 0.05		5 ug/L	Sep-01-11	Sep-03-11	
Thallium, dissolved	< 0.004		4 ug/L	Sep-01-11	Sep-03-11	
Thorium, dissolved	< 0.01		1 ug/L	Sep-01-11	0	
Fin, dissolved	< 0.05	A DAVID OF CASES IN SHARE NOT AND A	5 ug/L	and an and a second sec	Sep-03-11	
Fitanium, dissolved	< 0.2		2 ug/L	Sep-01-11 Sep-01-11	Sep-03-11 Sep-03-11	

CLIENT PROJECT	DWB Consulting Nithi Mtn			WORK ORDER # REPORTED	K1H1290 Sep-09-11	
Analyte	Result	RDL	Units	Prepared	Analyzed	Notes
Dissolved Metal	s by ICPMS, Continued					
Burns Creek (K1H	1290-05) Matrix: Water Sampled: A	Aug-29-11, Continued				
Uranium, dissolved	0.101	0.001	10/1	Con 01 11	C++ 02.11	
Vanadium, dissolved	0.3			Sep-01-11	Sep-03-11	
Zinc, dissolved	5		ug/L	Sep-01-11	Sep-03-11	
Zirconium, dissolved	0.13		ug/L ug/L	Sep-01-11 Sep-01-11	Sep-03-11	
			uy/c	3ep-01-11	Sep-03-11	
Aluminum, dissolved) Matrix: Water Sampled: Aug-29-1 276					
Antimony, dissolved			ug/L	Sep-01-11	Sep-03-11	
Arsenic, dissolved	< 0.05		ug/L	Sep-01-11	Sep-03-11	
Barium, dissolved	0.12		ug/L	Sep-01-11	Sep-03-11	
the second s	5.8		ug/L	Sep-01-11	Sep-03-11	
Beryllium, dissolved Bismuth, dissolved	0.06		ug/L	Sep-01-11	Sep-03-11	
Boron, dissolved	0.008	0.002		Sep-01-11	Sep-03-11	
	3		ug/L	Sep-01-11	Sep-03-11	
Cadmium, dissolved Calcium, dissolved	0.038	0.002	A DOM NOT	Sep-01-11	Sep-03-11	
	2350		ug/L	Sep-01-11	Sep-03-11	
Chromium, dissolved	0.2		ug/L	Sep-01-11	Sep-03-11	
Cobalt, dissolved	0.060	0.005		Sep-01-11	Sep-03-11	
Copper, dissolved	5.8		ug/L	Sep-01-11	Sep-03-11	
Iron, dissolved	134		ug/L	Sep-01-11	Sep-03-11	
Lead, dissolved	0.07	0.05		Sep-01-11	Sep-03-11	
Lithium, dissolved	1.94	0.05	1 A A A	Sep-01-11	Sep-03-11	
Magnesium, dissolved			ug/L	Sep-01-11	Sep-03-11	
Manganese, dissolved		0.05	100 and	Sep-01-11	Sep-03-11	
Mercury, dissolved	< 0.01	0.01		Sep-01-11	Sep-03-11	
Molybdenum, dissolve		0.01		Sep-01-11	Sep-03-11	
Nickel, dissolved Phosphorus, dissolved	0.78	0.02		Sep-01-11	Sep-03-11	
Potassium, dissolved			ug/L	Sep-01-11	Sep-03-11	
Station of Children States	661		ug/L	Sep-01-11	Sep-03-11	
Selenium, dissolved Silicon, dissolved	0.2		ug/L	Sep-01-11	Sep-03-11	
Silver, dissolved	7760		ug/L	Sep-01-11	Sep-03-11	
Sodium, dissolved	0.02	0.01		Sep-01-11	Sep-03-11	
Strontium, dissolved	2750 28.3		ug/L	Sep-01-11	Sep-03-11	
Fellurium, dissolved			ug/L	Sep-01-11	Sep-03-11	
Thallium, dissolved	< 0.05 0.005	0.05	1.20	Sep-01-11	Sep-03-11	
Thorium, dissolved	0.005	0.004	1000	Sep-01-11	Sep-03-11	
Fin, dissolved		0.01	a copi	Sep-01-11	Sep-03-11	
Fitanium, dissolved	< 0.05 4.7	0.05	-	Sep-01-11	Sep-03-11	
Jranium, dissolved	0.389		ug/L	Sep-01-11	Sep-03-11	
/anadium, dissolved	0.389	0.001		Sep-01-11	Sep-03-11	
Zinc, dissolved			ug/L	Sep-01-11	Sep-03-11	
	12		ug/L	Sep-01-11	Sep-03-11	
Zirconium, dissolved	0.59	0.01	ug/L	Sep-01-11	Sep-03-11	

Total Recoverable Metals by ICPMS

=

CLIENT PROJECT	DWB Consulting Nithi Mtn				WORK ORDER # REPORTED		1290 09-11
Analyte		Result	RDL	Units	Prepared	Analyzed	Notes
Cotal Recover	able Metals by ICF	MS Continued					
Iotal Recover	able metals by for	ino, continued					
		Sampled: Aug-29-11					
Site A (K1H129			2	ug/L	Sep-01-11	Sep-06-11	0.000.0
		Sampled: Aug-29-11		ug/L ug/L	Sep-01-11 Sep-01-11	Sep-06-11 Sep-06-11	6 GRQ 8

, and the strip	0.07	0.05	ug/L	Sep-01-11	Sep-06-11	
Arsenic	0.29	0.05	ug/L	Sep-01-11	Sep-06-11	
Barium	8.2		ug/L	Sep-01-11	Sep-06-11	
Beryllium	0.07		ug/L	Sep-01-11	Sep-06-11	
Bismuth	0.014	0.002	ug/L	Sep-01-11	Sep-06-11	
Boron	2		ug/L	Sep-01-11	Sep-06-11	
Cadmium	0.051	0.002	ug/L	Sep-01-11	Sep-06-11	
Calcium	6820	50	ug/L	Sep-01-11	Sep-06-11	
Chromium	0.5	0.1	ug/L	Sep-01-11	Sep-06-11	
Cobalt	0.108	0.005	ug/L	Sep-01-11	Sep-06-11	
Copper	4.4	0.1	ug/L	Sep-01-11	Sep-06-11	
Iron	308		ug/L	Sep-01-11	Sep-06-11	
Lead	0.08	0.05	ug/L	Sep-01-11	Sep-06-11	
Lithium	2.11		ug/L	Sep-01-11	Sep-06-11	
Magnesium	2820		ug/L	Sep-01-11	Sep-06-11	
Manganese	77.3		ug/L	Sep-01-11	Sep-06-11	
Mercury	0.01	0.01	ug/L	Sep-01-11	Sep-06-11	
Molybdenum	109		ug/L	Sep-01-11	Sep-06-11	
Nickel	0.80		ug/L	Sep-01-11	Sep-06-11	
Phosphorus	18	5	ug/L	Sep-01-11	Sep-06-11	
Potassium	1250		ug/L	Sep-01-11	Sep-06-11	
Selenium	0.3	0.1	ug/L	Sep-01-11	Sep-06-11	
Silicon	7300		ug/L	Sep-01-11	Sep-06-11	
Silver	0.04	0.01	ug/L	Sep-01-11	Sep-06-11	
Sodium	3950		ug/L	Sep-01-11	Sep-06-11	
Strontium	70.1		ug/L	Sep-01-11	Sep-06-11	
Tellurium	< 0.05		ug/L	Sep-01-11	Sep-06-11	
Thallium	0.005	0.004		Sep-01-11	Sep-06-11	
Thorium	0.06		ug/L	Sep-01-11	Sep-06-11	
Tin	< 0.05		ug/L	Sep-01-11	Sep-06-11	
Titanium	4.2		ug/L	Sep-01-11	Sep-06-11	
Uranium	0.525	0.001		Sep-01-11	Sep-06-11	
Vanadium	0.8		ug/L	Sep-01-11	Sep-06-11	
Zinc	3		ug/L	Sep-01-11	Sep-06-11	
Zirconium	0.48		ug/L	Sep-01-11	Sep-06-11	

Site D (K1H1290-02) Matrix: Water Sampled: Aug-29-11

Aluminum	3110	2 ug/L	Sep-01-11	Sep-06-11	72210
Antimony	0.13	0.05 ug/L	Sep-01-11	Sep-06-11	
Arsenic	1.22	0.05 ug/L	Sep-01-11	Sep-06-11	
Barium	47.9	0.2 ug/L	Sep-01-11	Sep-06-11	
Beryllium	0.27	0.01 ug/L	Sep-01-11	Sep-06-11	
Bismuth	0.155	0.002 ug/L	Sep-01-11	Sep-06-11	
Boron	2	1 ug/L	Sep-01-11	Sep-06-11	
Cadmium	0.083	0.002 ug/L	Sep-01-11	Sep-06-11	

CLIENT PROJECT					WORK ORDER # REPORTED	K1H1290 Sep-09-11	
Analyte	Result	RDL Unit	s Prepared	Analyzed	Notes		
Total Recover	able Metals by ICPMS, Continued						

Site D (K1H1290-02) Matrix: Water Sampled: Aug-29-11, Continued

	that Water buildplear Aug 25 11, Col	lunueu				
Calcium	3580	50	ug/L	Sep-01-11	Sep-06-11	1823
Chromium	2.4	0.1	ug/L	Sep-01-11	Sep-06-11	
Cobalt	1.87	0.005	ug/L	Sep-01-11	Sep-06-11	
Copper	9.3		ug/L	Sep-01-11	Sep-06-11	
Iron	3450		ug/L	Sep-01-11	Sep-06-11	
Lead	2.69	0.05	ug/L	Sep-01-11	Sep-06-11	
Lithium	1.53		ug/L	Sep-01-11	Sep-06-11	
Magnesium	1640	5.0	ug/L	Sep-01-11	Sep-06-11	
Manganese	570		ug/L	Sep-01-11	Sep-06-11	
Mercury	0.02		ug/L	Sep-01-11	Sep-06-11	
Molybdenum	35.3		ug/L	Sep-01-11	Sep-06-11	
Nickel	2.34		ug/L	Sep-01-11	Sep-06-11	
Phosphorus	110		ug/L	Sep-01-11	Sep-06-11	
Potassium	1220		ug/L	Sep-01-11	Sep-06-11	
Selenium	0.5		ug/L	Sep-01-11	Sep-06-11	
Silicon	10000			Sep-01-11	Sep-06-11	
Silver	0.06		ug/L	Sep-01-11	Sep-06-11	
Sodium	2430		ug/L	Sep-01-11	Sep-06-11	
Strontium	50.9		ug/L	Sep-01-11	Sep-06-11	
Tellurium	< 0.05		ug/L	Sep-01-11	Sep-06-11	
Thallium	0.055	0.004		Sep-01-11	Sep-06-11	
Thorium	0.61		ug/L	Sep-01-11	Sep-06-11	
Tin	0.06		ug/L	Sep-01-11	Sep-06-11	
Titanium	53.5		ug/L	Sep-01-11	Sep-06-11	
Uranium	2.35	0.001	Statistics -	Sep-01-11	Sep-06-11	
Vanadium	6.0		ug/L	Sep-01-11	Sep-06-11	
Zinc	11		ug/L	Sep-01-11	Sep-06-11	
Zirconium	1.4	0.01		Sep-01-11	Sep-06-11	

Site C (K1H1290-03) Matrix: Water Sampled: Aug-29-11

Aluminum	462	2 ug/L	Sep-01-11	Sep-06-11
Antimony	0.06	0.05 ug/L	Sep-01-11	Sep-06-11
Arsenic	0.23	0.05 ug/L	Sep-01-11	Sep-06-11
Barium	6.7	0.2 ug/L		Sep-06-11
Beryllium	0.17	0.01 ug/L	Sep-01-11	Sep-06-11
Bismuth	0.025	0.002 ug/L	Sep-01-11	Sep-06-11
Boron	2	1 ug/L	Sep-01-11	Sep-06-11
Cadmium	0.028	0.002 ug/L	Sep-01-11	Sep-06-11
Calcium	1690	50 ug/L	Sep-01-11	Sep-06-11
Chromium	0.5	0.1 ug/L	Sep-01-11	Sep-06-11
Cobalt	0.112	0.005 ug/L	Sep-01-11	Sep-06-11
Copper	4.5	0.1 ug/L	Sep-01-11	Sep-06-11
Iron	361	2 ug/L	Sep-01-11	Sep-06-11
Lead	0.20	0.05 ug/L	Sep-01-11	Sep-06-11
Lithium	0.84	0.05 ug/L	Sep-01-11	Sep-06-11
Magnesium	676	5.0 ug/L	Sep-01-11	Sep-06-11

CLIENT PROJECT	DWB Consulting Nithi Mtn				WORK ORDER # REPORTED		1290 09-11
Analyte		Result	RDL	Units	Prepared	Analyzed	Notes
fotal Recoverable	Metals by ICPMS	6, Continued					
Site C (K1H1290-03)	Matrix: Water Sa	mpled: Aug-29-11, Continued					
Manganese	Stand Gen Boy	20.2	0.05	ug/L	Sep-01-11	Sep-06-11	89 M L .
Marcun		0.04		1.22			

Manganese	20.2	0.05	ug/L	Sep-01-11	Sep-06-11	
Mercury	0.01	0.01	ug/L	Sep-01-11	Sep-06-11	
Molybdenum	20.3		ug/L	Sep-01-11	Sep-06-11	
Nickel	0.60		ug/L	Sep-01-11	Sep-06-11	
Phosphorus	13	5	ug/L	Sep-01-11	Sep-06-11	
Potassium	518		ug/L	Sep-01-11	Sep-06-11	
Selenium	0.2		ug/L	Sep-01-11	Sep-06-11	
Silicon	5300		ug/L	Sep-01-11	Sep-06-11	
Silver	0.03		ug/L	Sep-01-11	Sep-06-11	
Sodium	2110		ug/L	Sep-01-11	Sep-06-11	
Strontium	25.1		ug/L	Sep-01-11	Sep-06-11	
Tellurium	< 0.05		ug/L	Sep-01-11	Sep-06-11	
Thallium	0.009		ug/L	Sep-01-11	Sep-06-11	
Thorium	0.31		ug/L	Sep-01-11	Sep-06-11	
Tin	< 0.05		ug/L	Sep-01-11	Sep-06-11	
Titanium	5.3		ug/L	Sep-01-11	Sep-06-11	
Uranium	1.09	0.001		Sep-01-11	Sep-06-11	
Vanadium	0.7		ug/L	Sep-01-11	Sep-06-11	
Zinc	33		ug/L	Sep-01-11	Sep-06-11	
Zirconium	0.51		ug/L	Sep-01-11	Sep-06-11	
			and the later of t			
the second	trix: Water Sampled: Aug-29-11					
Aluminum	374	2	ug/L	Sep-01-11	Sep-06-11	1.0
Antimony	0.06	0.05	ug/L	Sep-01-11	Sep-06-11	
Arsenic	0.18	0.05	ug/L	Sep-01-11	Sep-06-11	
Barium	6.7	0.2	ug/L	Sep-01-11	Sep-06-11	
Beryllium	0.07	0.01	ug/L	Sep-01-11	Sep-06-11	
Bismuth	0.017	0.002	ug/L	Sep-01-11	Sep-06-11	
Boron	1	1	ug/L	Sep-01-11	Sep-06-11	
Cadmium	0.045	0.002	ug/L	Sep-01-11	Sep-06-11	
Calcium	3540					
Characteria	2510	50	ug/L	Sep-01-11	Sep-06-11	
Chromium	0.4		ug/L ug/L	Sep-01-11 Sep-01-11	100000000000000000000000000000000000000	
		0.1	ug/L		Sep-06-11	
Cobalt	0.4	0.1 0.005	ug/L	Sep-01-11	Sep-06-11 Sep-06-11 Sep-06-11	
Cobalt Copper	0.4 0.090	0.1 0.005 0.1	ug/L ug/L	Sep-01-11 Sep-01-11	Sep-06-11 Sep-06-11 Sep-06-11 Sep-06-11	
Cobalt Copper Iron Lead	0.4 0.090 6.4	0.1 0.005 0.1 2	ug/L ug/L ug/L	Sep-01-11 Sep-01-11 Sep-01-11	Sep-06-11 Sep-06-11 Sep-06-11	
Cobalt Copper Iron Lead	0.4 0.090 6.4 260	0.1 0.005 0.1 2 0.05	ug/L ug/L ug/L ug/L ug/L	Sep-01-11 Sep-01-11 Sep-01-11 Sep-01-11	Sep-06-11 Sep-06-11 Sep-06-11 Sep-06-11 Sep-06-11	
Cobalt Copper Iron Lead Lithium	0.4 0.090 6.4 260 0.15	0.1 0.005 0.1 2 0.05 0.05	ug/L ug/L ug/L ug/L ug/L ug/L	Sep-01-11 Sep-01-11 Sep-01-11 Sep-01-11 Sep-01-11	Sep-06-11 Sep-06-11 Sep-06-11 Sep-06-11 Sep-06-11 Sep-06-11 Sep-06-11	
Cobalt Copper Iron Lead Lithium Magnesium	0.4 0.090 6.4 260 0.15 2.09	0.1 0.005 0.1 2 0.05 0.05	ug/L ug/L ug/L ug/L ug/L ug/L	Sep-01-11 Sep-01-11 Sep-01-11 Sep-01-11 Sep-01-11 Sep-01-11 Sep-01-11	Sep-06-11 Sep-06-11 Sep-06-11 Sep-06-11 Sep-06-11 Sep-06-11 Sep-06-11 Sep-06-11	
Cobalt Copper Iron Lead Lithium Magnesium Magnesium	0.4 0.090 6.4 260 0.15 2.09 1350	0.1 0.005 0.1 2 0.05 0.05 5.0 0.05	ug/L ug/L ug/L ug/L ug/L ug/L ug/L	Sep-01-11 Sep-01-11 Sep-01-11 Sep-01-11 Sep-01-11 Sep-01-11 Sep-01-11 Sep-01-11	Sep-06-11 Sep-06-11 Sep-06-11 Sep-06-11 Sep-06-11 Sep-06-11 Sep-06-11 Sep-06-11	
Cobalt Copper Iron Lead Lithium Magnesium Manganese Mercury	0.4 0.090 6.4 260 0.15 2.09 1350 9.54	0.1 0.005 0.1 2 0.05 0.05 5.0 0.05 0.05	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	Sep-01-11 Sep-01-11 Sep-01-11 Sep-01-11 Sep-01-11 Sep-01-11 Sep-01-11 Sep-01-11	Sep-06-11 Sep-06-11 Sep-06-11 Sep-06-11 Sep-06-11 Sep-06-11 Sep-06-11 Sep-06-11 Sep-06-11	
Cobalt Copper Iron Lead Lithium Magnesium Manganese Mercury Molybdenum	0.4 0.090 6.4 260 0.15 2.09 1350 9.54 < 0.01	0.1 0.005 0.1 2 0.05 0.05 5.0 0.05 0.01 0.01	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	Sep-01-11 Sep-01-11 Sep-01-11 Sep-01-11 Sep-01-11 Sep-01-11 Sep-01-11 Sep-01-11 Sep-01-11	Sep-06-11 Sep-06-11 Sep-06-11 Sep-06-11 Sep-06-11 Sep-06-11 Sep-06-11 Sep-06-11 Sep-06-11 Sep-06-11	
Cobalt Copper Iron Lead Lithium Magnesium Manganese Mercury Molybdenum Nickel	0.4 0.090 6.4 260 0.15 2.09 1350 9.54 < 0.01 19.9	0.1 0.005 0.1 2 0.05 5.0 0.05 5.0 0.05 0.01 0.01 0.01 0	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	Sep-01-11 Sep-01-11 Sep-01-11 Sep-01-11 Sep-01-11 Sep-01-11 Sep-01-11 Sep-01-11 Sep-01-11 Sep-01-11	Sep-06-11 Sep-06-11 Sep-06-11 Sep-06-11 Sep-06-11 Sep-06-11 Sep-06-11 Sep-06-11 Sep-06-11 Sep-06-11 Sep-06-11	
Cobalt Copper Iron Lead Lithium Magnesium Manganese Mercury Molybdenum Nickel Phosphorus	0.4 0.090 6.4 260 0.15 2.09 1350 9.54 < 0.01 19.9 0.85	0.1 0.005 0.1 2 0.05 0.05 5.0 0.05 0.01 0.01 0.02 5	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	Sep-01-11 Sep-01-11 Sep-01-11 Sep-01-11 Sep-01-11 Sep-01-11 Sep-01-11 Sep-01-11 Sep-01-11 Sep-01-11 Sep-01-11	Sep-06-11 Sep-06-11 Sep-06-11 Sep-06-11 Sep-06-11 Sep-06-11 Sep-06-11 Sep-06-11 Sep-06-11 Sep-06-11 Sep-06-11 Sep-06-11 Sep-06-11	
Chromium Cobalt Copper Iron Lead Lithium Magnesium Manganese Mercury Molybdenum Nickel Phosphorus Potassium Selenium	0.4 0.090 6.4 260 0.15 2.09 1350 9.54 < 0.01 19.9 0.85 16	0.1 0.005 0.1 2 0.05 0.05 5.0 0.05 0.01 0.01 0.02 5 5	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	Sep-01-11 Sep-01-11 Sep-01-11 Sep-01-11 Sep-01-11 Sep-01-11 Sep-01-11 Sep-01-11 Sep-01-11 Sep-01-11	Sep-06-11 Sep-06-11 Sep-06-11 Sep-06-11 Sep-06-11 Sep-06-11 Sep-06-11 Sep-06-11 Sep-06-11 Sep-06-11 Sep-06-11	

PROJECT	DWB Consulting Nithi Mtn	WORK ORDER # REPORTED			K1H1290 Sep-09-11	
Analyte	Result	RDL	Units	Prepared	Analyzed	Notes
fotal Recovera	ble Metals by ICPMS, Continued					
Site F (K1H1290	-04) Matrix: Water Sampled: Aug-29-11, Continued					
Silver	0.06	0.01	ug/L	Con 01 11	C 05 11	
Sodium	2950		ug/L	Sep-01-11 Sep-01-11	Sep-06-11	
Strontium	27.9		ug/L	Sep-01-11	Sep-06-11 Sep-06-11	
Tellurium	< 0.05		ug/L	Sep-01-11	Sep-06-11	
Thallium	< 0.004	0.004		Sep-01-11	Sep-06-11	
Thorium	0.05		ug/L	Sep-01-11	Sep-06-11	
Tin	< 0.05		ug/L	Sep-01-11	Sep-06-11	
Titanium	4.9		ug/L	Sep-01-11	Sep-06-11	
Jranium	0.476	0.001	STATE -	Sep-01-11		
/anadium	0.6		ug/L	Sep-01-11	Sep-06-11	
Zinc	9		ug/L	Sep-01-11	Sep-06-11 Sep-06-11	
Zirconium	0.24		ug/L	Sep-01-11	Sep-06-11	
Burne Creek (K1		0.01	ug/c	360-01-11	Sep-06-11	
	H1290-05) Matrix: Water Sampled: Aug-29-11 256	2	ug/L	C == 01.11		
Antimony	0.08		ug/L	Sep-01-11	Sep-06-11	
Arsenic	1.12		ug/L	Sep-01-11	Sep-06-11	
Barium	19.9		ug/L	Sep-01-11	Sep-06-11	
Beryllium	0.02		(17th)	Sep-01-11	Sep-06-11	
Bismuth	0.004	0.002	ug/L	Sep-01-11	Sep-06-11	
Boron	2		ug/L	Sep-01-11	Sep-06-11	
Cadmium	0.011	0.002	1.	Sep-01-11 Sep-01-11	Sep-06-11	
Calcium	14600		ug/L		Sep-06-11	
Chromium	0.4		ug/L	Sep-01-11 Sep-01-11	Sep-06-11	
Cobalt	0.187	0.005		Sep-01-11	Sep-06-11	
Copper	1.6		ug/L	Sep-01-11	Sep-06-11	
ron	749		ug/L	Sep-01-11	Sep-06-11	
.ead	0.23		ug/L	Sep-01-11	Sep-06-11	
ithium	1.37	0.05	ug/L	Sep-01-11	Sep-06-11	
Magnesium	3560		ug/L	Sep-01-11	Sep-06-11 Sep-06-11	
Manganese	89.1		ug/L	Sep-01-11	Sep-06-11	
Mercury	< 0.01		ug/L	Sep-01-11	Sep-06-11	
Molybdenum	2.14		ug/L	Sep-01-11	Sep-06-11	
Nickel	0.45		ug/L	Sep-01-11	Sep-06-11	
hosphorus	55		ug/L	Sep-01-11	Sep-06-11	
otassium	732		ug/L	Sep-01-11	Sep-06-11	
Selenium	< 0.1		ug/L	Sep-01-11	Sep-06-11	
ilicon	5600		ug/L	Sep-01-11	Sep-06-11	
Silver	0.01		ug/L	Sep-01-11	Sep-06-11	
Sodium	4720		ug/L	Sep-01-11	Sep-06-11	
Strontium	126		ug/L	Sep-01-11	Sep-06-11	
Fellurium	< 0.05	0.05		Sep-01-11	Sep-06-11	
Thallium	0.004	0.004		Sep-01-11	Sep-06-11	
Thorium	0.02	0.01	11 P	Sep-01-11	Sep-06-11	
īn	< 0.05	0.05		Sep-01-11	Sep-06-11	
Fitanium	8.3		ug/L	Sep-01-11	Sep-06-11	

CLIENT PROJECT	DWB Consulting Nithi Mtn			WORK ORDER # REPORTED	K1H1290 Sep-09-11	
Analyte	Result	RDL	Units	Prepared	Analyzed	Notes
otal Recovera	able Metals by ICPMS, Continued					
Burns Creek (Ki	1H1290-05) Matrix: Water Sampled: Aug-	29-11. Continued				
Jranium	0.228		ug/L	Sep-01-11	See. 06.11	
Vanadium	1.3		ug/L	Sep-01-11	Sep-06-11 Sep-06-11	
Zinc	8		ug/L	Sep-01-11	and the second se	
Zirconium	0.17		ug/L	Sep-01-11	Sep-06-11 Sep-06-11	
wp (K1H1200	06) Matrix: Water Sampled: Aug-29-11		-3/-	July of Tr	50p 00 11	
ST IN STATE OF ST						_
Aluminum	390		ug/L	Sep-01-11	Sep-06-11	
Antimony	0.06		ug/L	Sep-01-11	Sep-06-11	
Arsenic	0.19		ug/L	Sep-01-11	Sep-06-11	
Barium Beryllium	6.9		ug/L	Sep-01-11	Sep-06-11	
	0.07		ug/L	Sep-01-11	Sep-06-11	
Bismuth	0.014	0.002		Sep-01-11	Sep-06-11	
Boron	1		ug/L	Sep-01-11	Sep-06-11	
admium	0.038	0.002		Sep-01-11	Sep-06-11	
Calcium	2780		ug/L	Sep-01-11	Sep-06-11	
Chromium	0.4		ug/L	Sep-01-11	Sep-06-11	
obalt	0.092	0.005		Sep-01-11	Sep-06-11	
opper	6.4		ug/L	Sep-01-11	Sep-06-11	
ron	280		ug/L	Sep-01-11	Sep-06-11	
ead	0.17		ug/L	Sep-01-11	Sep-06-11	
ithium	2.10		ug/L	Sep-01-11	Sep-06-11	
1agnesium	1360		ug/L	Sep-01-11	Sep-06-11	
langanese	9.38		ug/L	Sep-01-11	Sep-06-11	
1ercury	< 0.01	0.01	1-1-1-1	Sep-01-11	Sep-06-11	
lolybdenum lickel	20.1		ug/L	Sep-01-11	Sep-06-11	
	0.83		ug/L	Sep-01-11	Sep-06-11	
hosphorus otassium	13		ug/L	Sep-01-11	Sep-06-11	
elenium	675		ug/L	Sep-01-11	Sep-06-11	
ilicon	0.2		ug/L	Sep-01-11	Sep-06-11	
ilver	7100		ug/L	Sep-01-11	Sep-06-11	
odium	0.06		ug/L	Sep-01-11	Sep-06-11	
trontium	2970		ug/L	Sep-01-11	Sep-06-11	
ellurium	28.0		ug/L	Sep-01-11	Sep-06-11	
hallium	< 0.05		ug/L	Sep-01-11	Sep-06-11	
horium	< 0.004	0.004		Sep-01-11	Sep-06-11	
în	0.04		ug/L	Sep-01-11	Sep-06-11	
itanium	< 0.05		ug/L	Sep-01-11	Sep-06-11	
Iranium	4.9		ug/L	Sep-01-11	Sep-06-11	
anadium	0.481	0.001		Sep-01-11	Sep-06-11	
inc	0.7		ug/L	Sep-01-11	Sep-06-11	
	9		ug/L	Sep-01-11	Sep-06-11	
lirconium	0.28	0.01	ug/L	Sep-01-11	Sep-06-11	

=

ANALYSIS / REPORT INFORMATION

CLIENT	
PROJECT	

DWB Consulting Nithi Mtn

WORK ORDER # REPORTED

Sep-09-11

K1H1290

Analysis Description	Method Reference(s)	(* = modified from)	LAB
	Preparation	Analysis	
Dissolved Metals by ICPMS	N/A	EPA 6020A	RMD
Alkalinity, total	NO PREP	APHA 2320 B	KEL
Bromide by IC	IC	APHA 4110 B	KEL
Total Organic Carbon	N/A	APHA 5310 B	KEL
Chloride by IC	IC	APHA 4110 B	KEL
Conductivity-Water	NO PREP	APHA 2510 B	KEL
Fluoride by IC	IC	APHA 4110 B	KEL
Ammonia-N	N/A	APHA 4500-NH3 G	KEL
Nitrate by IC	IC	APHA 4110 B	KEL
Nitrite by IC	IC	APHA 4110 B	KEL
Total Nitrogen (TKN + NO3-N+NO2-N)		Calc	KEL
Total Kjeldahl Nitrogen	N/A	EPA 351.2	KEL
pH	NO PREP	APHA 4500-H+ B	KEL
Orthophosphate-P by IC	IC	APHA 4110 B	KEL
Phosphorus, Total (colour)	Acid Digestion	EPA 351.2	KEL
Total Dissolved Solids (180C)	N/A	APHA 2540 C	KEL
Total Suspended Solids (105C)	N/A	APHA 2540 D	KEL
Sulfate by IC	IC	APHA 4110 B	KEL
Turbidity	NO PREP	APHA 2130 B	KEL
Total Recoverable Metals by ICPMS	EPA 200.2 *	EPA 6020A	RMD

CLIENT	DWB Consulting	WORK ORDER #	K1H1290
PROJECT	Nithi Mtn	REPORTED	Sep-09-11
The following section	reports quality control (QC) data that is associated with your s	ample data. Groups of samples are prepared in "batches" and	
analyzed in conjunction	on with quality control samples that ensure your data is of the	highest quality. Common QC types include:	
Method Blank free from conta	(BIK): Laboratory reagent water is carried through sample prep amination, i.e. not biased high from sources such as the sample	paration and analysis steps. Method Blanks indicate that results are container or the laboratory environment	

Duplicate (Dup): Preparation and analysis of a replicate aliquot of a sample. Duplicates provide a measure of the analytical method's precision,

i.e. how reproducible a result is. Duplicates are only reported if they are associated with your sample data.

• Blank Spike (BS): A known amount of standard is carried through sample preparation and analysis steps. Blank Spikes, also known as laboratory control samples (LCS), are prepared from a different source of standard than used for the calibration. They ensure that the calibration is acceptable (i.e. not biased high or low) and also provide a measure of the analytical method's accuracy (i.e. closeness of the result to a target value).

• Standard Reference Material (SRM): A material of similar matrix to the samples, externally certified for the parameter(s) listed. Standard Reference Materials ensure that the preparation steps in the method are adequate to achieve acceptable recoveries of the parameter(s) tested for.

Each QC type is analyzed at a 5-10% frequency, i.e. one blank/duplicate/spike for every 10 samples. For all types of QC, the specified recovery (% Rec) and relative percent difference (RPD) limits are derived from long-term method performance averages and/or prescribed by the reference method.

		Reporting	Spike	Source		% REC		% RPD	
Analyte	Result	Limit Units	Level	Result	% REC	Limits	% RPD	Limit	Notes

Dissolved Metals by ICPMS, Batch R102735

Blank (R102735-BLK1)			Prepared: Sep-01-11, Analyzed: Sep-03-11		
Aluminum, dissolved	< 2	2 ug/L			
Antimony, dissolved	< 0.05	0.05 ug/L			
Arsenic, dissolved	< 0.05	0.05 ug/L			
Barlum, dissolved	< 0.2	0.2 ug/L			
Beryllium, dissolved	< 0.01	0.01 ug/L			
Bismuth, dissolved	< 0.002	0.002 ug/L			
Boron, dissolved	< 1	1 ug/L			
Cadmium, dissolved	< 0.002	0.002 ug/L			
Calcium, dissolved	< 50	50 ug/L			
Chromium, dissolved	< 0.1	0.1 ug/L			
Cobalt, dissolved	< 0.005	0.005 ug/L			
Copper, dissolved	< 0.1	0.1 ug/L			
iron, dissolved	< 2	2 ug/L			
Lead, dissolved	< 0.05	0.05 ug/L			
Jithium, dissolved	< 0.05	0.05 ug/L			
Magnesium, dissolved	< 5	5 ug/L			
Manganese, dissolved	< 0.05	0.05 ug/L			
Mercury, dissolved	< 0.01	0.01 ug/L			
Nolybdenum, dissolved	< 0.01	0.01 ug/L			
lickel, dissolved	< 0.02	0.02 ug/L			
hosphorus, dissolved	< 5	5 ug/L			
Potassium, dissolved	< 5	5 ug/L			
Selenium, dissolved	< 0.1	0.1 ug/L			
Silicon, dissolved	< 100	100 ug/L			
Silver, dissolved	< 0.01	0.01 ug/L			
Sodium, dissolved	< 5	5 ug/L			
Strontium, dissolved	< 0.1	0.1 ug/L			
fellurium, dissolved	< 0.05	0.05 ug/L			
Fhallium, dissolved	< 0.004	0.004 ug/L			
Thorium, dissolved	< 0.01	0.01 ug/L			
lin, dissolved	< 0.01	0.05 ug/L			
Fitanium, dissolved	< 0.2	0.2 ug/L			
Uranium, dissolved	< 0.001	0.2 Ug/L 0.001 ug/L			
Vanadium, dissolved	< 0.2	0.2 ug/L			
Zinc, dissolved	< 0.2				
Zirconium, dissolved	< 0.01	1 ug/L 0.01 ug/L			
	< 0.01	0.01 Ug/L			
Duplicate (R102735-DUP1)	Sour	ce: K1H1290-03	Prepared: Sep-01-11, Analyzed: Sep-03-11		
Numinum, dissolved	367	2 ug/L	350	5	20
Antimony, dissolved	< 0.05	0.05 ug/L	0.05		20
Arsenic, dissolved	0.18	0.05 ug/L	0.17		20
Barlum, dissolved	6.1	0.2 ug/L	5.7	6	20

K1H1290

WORK ORDER #

CLIENT

DWB Consulting

ROJECT	Nithi Mtn					REPORTE			Sep-09-	
			Reporting	Spike	Source		% REC		% RPD	
Analyte		Result	Limit Units	Level	Result	% REC	Limits	% RPD	Limit	Notes

Dissolved Metals by ICPMS, Batch R102735, Continued

0.01 ug/L 0.002 ug/L 1 ug/L 0.002 ug/L 0.1 ug/L 0.005 ug/L 0.1 ug/L 0.05 ug/L 0.05 ug/L 0.05 ug/L 0.05 ug/L 0.01 ug/L 0.01 ug/L 0.02 ug/L 0.1 ug/L 0.01 ug/L 0.01 ug/L 0.01 ug/L 0.01 ug/L 0.01 ug/L 0.01 ug/L 0.01 ug/L 0.05 ug/L 0.01 ug/L 0.01 ug/L 0.05 ug/L 0.01 ug/L 0.05 ug/L 0.01 ug/L 0.05 ug/L		$\begin{array}{c} 0.16\\ 0.011\\ 3\\ 0.026\\ 1690\\ 0.3\\ 0.080\\ 4.3\\ 200\\ 0.12\\ 0.76\\ 649\\ 14.9\\ < 0.01\\ 20.6\\ 0.55\\ 8\\ 532\\ 0.4\\ 5960\\ < 0.01\\ 2130\\ 26.6\end{array}$			2 9 3 5 6 4 6 5 5 5 3 3	20 20 20 20 20 20 20 20 20 20 20 20 20 2	
0.002 ug/L 1 ug/L 0.002 ug/L 0.1 ug/L 0.1 ug/L 0.005 ug/L 0.05 ug/L 0.05 ug/L 0.05 ug/L 0.05 ug/L 0.01 ug/L 0.05 ug/L 0.05 ug/L 0.05 ug/L 0.05 ug/L 0.05 ug/L 0.01 ug/L 0.05 ug/L 0.05 ug/L 0.05 ug/L 0.01 ug/L 0.05 ug/L 0.05 ug/L 0.05 ug/L 0.05 ug/L		0.011 3 0.026 1690 0.3 0.080 4.3 200 0.12 0.76 649 14.9 < 0.01 20.6 0.55 8 532 0.4 5960 < 0.01 2130			9 3 6 6 4 6 5 5 5 3	20 20 20 20 20 20 20 20 20 20 20 20 20 2	
1 ug/L 0.002 ug/L 0.1 ug/L 0.005 ug/L 0.1 ug/L 0.05 ug/L 0.05 ug/L 0.05 ug/L 0.05 ug/L 0.01 ug/L 0.05 ug/L 0.05 ug/L 0.05 ug/L 0.05 ug/L 0.05 ug/L		3 0.026 1690 0.3 0.080 4.3 200 0.12 0.76 649 14.9 < 0.01 20.6 0.55 8 532 0.4 5960 < 0.01 2130			3 6 6 4 5 5 5 3	20 20 20 20 20 20 20 20 20 20 20 20 20 2	
50 ug/L 0.1 ug/L 0.005 ug/L 2 ug/L 0.05 ug/L 0.05 ug/L 0.05 ug/L 0.01 ug/L 0.01 ug/L 0.01 ug/L 0.01 ug/L 100 ug/L 0.01 ug/L 0.01 ug/L 0.01 ug/L 0.01 ug/L 0.01 ug/L 0.01 ug/L 0.01 ug/L 0.05 ug/L		1690 0.3 0.080 4.3 200 0.12 0.76 649 14.9 < 0.01 20.6 0.55 8 532 0.4 5960 < 0.01 2130			3 6 6 4 5 5 5 3	20 20 20 20 20 20 20 20 20 20 20 20 20 2	
0.1 ug/L 0.005 ug/L 0.1 ug/L 0.05 ug/L 0.05 ug/L 0.05 ug/L 0.05 ug/L 0.01 ug/L 0.01 ug/L 0.01 ug/L 0.01 ug/L 0.01 ug/L 0.01 ug/L 0.01 ug/L 0.01 ug/L 0.05 ug/L 0.05 ug/L 0.05 ug/L 0.05 ug/L 0.05 ug/L 0.01 ug/L 0.05 ug/L 0.05 ug/L 0.05 ug/L 0.05 ug/L 0.05 ug/L 0.05 ug/L 0.05 ug/L		1690 0.3 0.080 4.3 200 0.12 0.76 649 14.9 < 0.01 20.6 0.55 8 532 0.4 5960 < 0.01 2130			3 6 6 4 5 5 5 3	20 20 20 20 20 20 20 20 20 20 20 20 20 2	
0.005 ug/L 0.1 ug/L 2 ug/L 0.05 ug/L 5 ug/L 0.05 ug/L 0.01 ug/L 0.01 ug/L 0.02 ug/L 5 ug/L 0.1 ug/L 100 ug/L 0.01 ug/L 0.01 ug/L 0.01 ug/L 0.01 ug/L 0.01 ug/L 0.01 ug/L 0.05 ug/L 0.05 ug/L 0.05 ug/L 0.01 ug/L 0.05 ug/L 0.01 ug/L 0.05 ug/L 0.01 ug/L 0.05 ug/L		0.080 4.3 200 0.12 0.76 649 14.9 < 0.01 20.6 0.55 8 532 0.4 5960 < 0.01 2130			5 6 4 5 5 5 3	20 20 20 20 20 20 20 20 20 20 20 20 20 2	
0.1 vg/L 2 vg/L 0.05 vg/L 5 vg/L 0.05 vg/L 0.01 vg/L 0.01 vg/L 0.01 vg/L 5 vg/L 5 vg/L 0.1 vg/L 100 vg/L 100 vg/L 0.1 vg/L 0.05 vg/L 0.05 vg/L 0.05 vg/L 0.05 vg/L 0.05 vg/L 0.01 vg/L 0.01 vg/L 0.05 vg/L 0.01 vg/L 0.01 vg/L 0.05 vg/L 0.01 vg/L 0.02 vg/L		4.3 200 0.12 0.76 649 14.9 < 0.01 20.6 0.55 8 532 0.4 5960 < 0.01 2130			6 4 5 5 5 3	20 20 20 20 20 20 20 20 20 20 20 20 20 2	
2 ug/L 0.05 ug/L 5 ug/L 0.01 ug/L 0.01 ug/L 0.02 ug/L 0.02 ug/L 5 ug/L 5 ug/L 0.1 ug/L 100 ug/L 0.01 ug/L 0.01 ug/L 0.01 ug/L 0.01 ug/L 0.05 ug/L 0.004 ug/L 0.01 ug/L 0.05 ug/L 0.05 ug/L 0.01 ug/L 0.05 ug/L 0.05 ug/L		200 0.12 0.76 649 14.9 < 0.01 20.6 0.55 8 532 0.4 5960 < 0.01 2130			6 4 5 5 5 3	20 20 20 20 20 20 20 20 20 20 20 20 20 2	
0.05 ug/L 0.05 ug/L 0.05 ug/L 0.01 ug/L 0.01 ug/L 0.02 ug/L 5 ug/L 0.1 ug/L 100 ug/L 0.01 ug/L 0.01 ug/L 0.1 ug/L 0.05 ug/L 0.004 ug/L 0.01 ug/L 0.05 ug/L 0.01 ug/L 0.05 ug/L 0.01 ug/L		0.12 0.76 649 14.9 < 0.01 20.6 0.55 8 532 0.4 5960 < 0.01 2130			6 4 5 5 5 3	20 20 20 20 20 20 20 20 20 20 20 20 20 2	
0.05 ug/L 5 ug/L 0.01 ug/L 0.01 ug/L 0.02 ug/L 5 ug/L 5 ug/L 100 ug/L 0.01 ug/L 0.01 ug/L 0.01 ug/L 0.05 ug/L 0.004 ug/L 0.01 ug/L 0.01 ug/L 0.01 ug/L 0.01 ug/L 0.01 ug/L 0.05 ug/L		0.12 0.76 649 14.9 < 0.01 20.6 0.55 8 532 0.4 5960 < 0.01 2130			4 5 5 3	20 20 20 20 20 20 20 20 20 20 20 20 20 2	
5 ug/L 0.05 ug/L 0.01 ug/L 0.02 ug/L 5 ug/L 5 ug/L 0.1 ug/L 100 ug/L 0.01 ug/L 0.01 ug/L 0.1 ug/L 0.1 ug/L 0.1 ug/L 0.05 ug/L 0.004 ug/L 0.01 ug/L 0.05 ug/L 0.01 ug/L		649 14.9 < 0.01 20.6 0.55 8 532 0.4 5960 < 0.01 2130			6 5 5 3	20 20 20 20 20 20 20 20 20 20 20 20	
0.05 ug/L 0.01 ug/L 0.02 ug/L 5 ug/L 5 ug/L 0.1 ug/L 100 ug/L 0.01 ug/L 0.1 ug/L 0.1 ug/L 0.1 ug/L 0.1 ug/L 0.05 ug/L 0.004 ug/L 0.01 ug/L 0.05 ug/L 0.01 ug/L		14.9 < 0.01 20.6 0.55 8 532 0.4 5960 < 0.01 2130			6 5 5 3	20 20 20 20 20 20 20 20 20 20 20	
0.01 ug/L 0.01 ug/L 5 ug/L 5 ug/L 0.1 ug/L 100 ug/L 0.01 ug/L 0.1 ug/L 0.1 ug/L 0.05 ug/L 0.004 ug/L 0.01 ug/L 0.05 ug/L 0.01 ug/L 0.05 ug/L		14.9 < 0.01 20.6 0.55 8 532 0.4 5960 < 0.01 2130			5 5 3	20 20 20 20 20 20 20 20 20 20	
0.01 ug/L 0.02 ug/L 5 ug/L 0.1 ug/L 100 ug/L 0.01 ug/L 0.01 ug/L 0.1 ug/L 0.1 ug/L 0.05 ug/L 0.004 ug/L 0.05 ug/L 0.05 ug/L 0.05 ug/L		< 0.01 20.6 0.55 8 532 0.4 5960 < 0.01 2130			5 5 3	20 20 20 20 20 20 20 20	
0.02 ug/L 5 ug/L 0.1 ug/L 100 ug/L 0.01 ug/L 0.1 ug/L 0.1 ug/L 0.05 ug/L 0.004 ug/L 0.01 ug/L 0.05 ug/L 0.01 ug/L 0.01 ug/L		20.6 0.55 8 532 0.4 5960 < 0.01 2130			5 3	20 20 20 20 20 20 20	
5 ug/L S ug/L 0.1 ug/L 100 ug/L 0.01 ug/L 0.1 ug/L 0.1 ug/L 0.05 ug/L 0.004 ug/L 0.01 ug/L 0.05 ug/L 0.2 ug/L		0.55 8 532 0.4 5960 < 0.01 2130			5 3	20 20 20 20 20 20	
S ug/L 0.1 ug/L 100 ug/L 0.01 ug/L 0.1 ug/L 0.05 ug/L 0.004 ug/L 0.01 ug/L 0.05 ug/L 0.05 ug/L		8 532 0.4 5960 < 0.01 2130			3	20 20 20 20	
S ug/L 0.1 ug/L 100 ug/L 0.01 ug/L 0.1 ug/L 0.05 ug/L 0.004 ug/L 0.01 ug/L 0.05 ug/L 0.05 ug/L		532 0.4 5960 < 0.01 2130				20 20 20	
0.1 ug/L 100 ug/L 0.01 ug/L 0.1 ug/L 0.05 ug/L 0.004 ug/L 0.01 ug/L 0.05 ug/L 0.05 ug/L		0.4 5960 < 0.01 2130				20 20	
100 ug/L 0.01 ug/L 5 ug/L 0.1 ug/L 0.05 ug/L 0.01 ug/L 0.01 ug/L 0.01 ug/L 0.05 ug/L		5960 < 0.01 2130			3	20	
0.01 ug/L 5 ug/L 0.1 ug/L 0.05 ug/L 0.04 ug/L 0.01 ug/L 0.01 ug/L 0.05 ug/L 0.2 ug/L		< 0.01 2130			2		
5 ug/L 0.1 ug/L 0.05 ug/L 0.01 ug/L 0.01 ug/L 0.05 ug/L 0.2 ug/L		2130				20	
0.1 ug/L 0.05 ug/L 0.004 ug/L 0.01 ug/L 0.05 ug/L 0.2 ug/L						20	
0.05 ug/L 0.004 ug/L 0.01 ug/L 0.05 ug/L 0.2 ug/L					5	20	
0.004 ug/L 0.01 ug/L 0.05 ug/L 0.2 ug/L		< 0.05			4	20	
0.01 ug/L 0.05 ug/L 0.2 ug/L		0.007				20	
0.05 ug/L 0.2 ug/L		0.39				20	
0.2 ug/L		0.05			< 1	20	
		3.8				20	
		0.985			1	20	
0.2 ug/L		0.985			5	20	
1 ug/L		38				20	
0.01 ug/L		0.85			5	20	
e: K1H1290-04	Prepared: Sep		and Con	02.11	3	20	
04000 2020	and the second se	-01-11, Analy	zeu: Sep	-03-11			
		0.06	123	81-114			
		0.13	100	89-115			
	312	5.7	110	86-115			
	19.7	0.06	78	77-124			
	20.0	0.035	97	82-126			
	40.1	0.2	98	85-117			
0.005 ug/L	11.9	0.056	97	76-131			
0.1 ug/L	78.1	5.3	107	88-113			
2 ug/L	117	124	105	80-115			
0.05 ug/L	10.2	0.07	95	84-121			
0.05 ug/L	31.8	5.06	96	75-135			
0.02 ug/L	78.9	0.71	97	83-121			
0.1 ug/L	3.00	0.2	96	91-122			
0.01 ug/L		0.01		74-120			
0.004 ug/L	3.50	0.004	103	79-119			
0.2 ug/L	79.8	0.3	94	80-115			
1 ug/L	80.0	8	97	89-123			
	Prepared: Sep	-01-11, Analy	zed: Sep-	03-11			
2 ug/L	20.9		95	74-127			
0.05 ug/L	4.00						
0.05 ug/L	40.4						
0.2 ug/L							
	2 ug/L 0.05 ug/L 0.02 ug/L 0.1 ug/L 0.01 ug/L 0.04 ug/L 1 ug/L 2 ug/L 2 ug/L 0.05 ug/L 0.05 ug/L 0.05 ug/L 0.01 ug/L 1 ug/L 0.02 ug/L 0.01 ug/L 50 ug/L 50 ug/L 0.1 ug/L	0.05 ug/L 40.4 0.2 ug/L 312 0.01 ug/L 19.7 0.002 ug/L 19.7 0.003 ug/L 19.7 0.005 ug/L 20.0 0.1 ug/L 40.1 0.005 ug/L 11.9 0.1 ug/L 78.1 2 ug/L 10.2 0.05 ug/L 31.8 0.02 ug/L 78.9 0.1 ug/L 3.50 0.01 ug/L 3.50 0.02 ug/L 79.8 1 ug/L 80.0 Prepared: Sep 2 ug/L 20.9 0.05 ug/L 40.4 0.2 ug/L 312 0.01 ug/L 161 0.02 ug/L 19.7 1 ug/L 161 0.002 ug/L 20.0 50 ug	0.05 ug/L 40.4 0.13 0.2 ug/L 312 5.7 0.01 ug/L 19.7 0.06 0.002 ug/L 20.0 0.035 0.1 ug/L 40.1 0.2 0.005 ug/L 11.9 0.056 0.1 ug/L 78.1 5.3 2 ug/L 11.7 124 0.05 ug/L 10.2 0.07 0.05 ug/L 31.8 5.06 0.02 ug/L 78.9 0.71 0.1 ug/L 3.00 0.2 0.01 ug/L 3.00 0.2 0.01 ug/L 3.50 0.004 0.2 ug/L 79.8 0.3 1 ug/L 80.0 8 Prepared: Sep-01-11, Analy 0.05 ug/L 40.0 0.05 ug/L 40.0 0.05 ug/L 119.7 <	0.05 ug/L 40.4 0.13 100 0.2 ug/L 312 5.7 110 0.01 ug/L 19.7 0.06 78 0.002 ug/L 20.0 0.035 97 0.1 ug/L 40.1 0.2 98 0.005 ug/L 11.9 0.056 97 0.1 ug/L 78.1 5.3 107 2 ug/L 117 124 105 0.05 ug/L 10.2 0.07 95 0.05 ug/L 31.8 5.06 96 0.02 ug/L 78.9 0.71 97 0.1 ug/L 3.50 0.004 103 0.2 ug/L 0.01 0.01 0.02 0.01 ug/L 79.8 0.3 94 1 ug/L 20.9 95 0.05 ug/L 20.9 2 ug/L 20.9 95 <	0.05 ug/L 40.4 0.13 100 89-115 0.2 ug/L 312 5.7 110 86-115 0.01 ug/L 19.7 0.06 78 77-124 0.002 ug/L 20.0 0.035 97 82-126 0.1 ug/L 40.1 0.2 98 85-117 0.005 ug/L 11.9 0.056 97 76-131 0.1 ug/L 78.1 5.3 107 88-113 2 ug/L 117 124 105 80-115 0.05 ug/L 10.2 0.07 95 84-121 0.05 ug/L 31.8 5.06 96 75-135 0.02 ug/L 3.00 0.2 96 91-122 0.01 ug/L 3.50 0.004 103 79-119 0.2 ug/L 79.8 0.3 94 80-115 1 ug/L 20.9 9<	0.05 ug/L 40.4 0.13 100 89-115 0.2 ug/L 312 5.7 110 86-115 0.01 ug/L 19.7 0.06 78 77-124 0.002 ug/L 20.0 0.035 97 82-126 0.1 ug/L 40.1 0.2 98 85-117 0.005 ug/L 11.9 0.056 97 76-131 0.1 ug/L 78.1 5.3 107 88-113 2 ug/L 117 124 105 80-115 0.05 ug/L 10.2 0.07 95 84-121 0.05 ug/L 31.8 5.06 96 75-135 0.02 ug/L 3.00 0.2 96 91-122 0.01 g/L 3.50 0.004 103 79-119 0.2 ug/L 79.8 0.3 94 80-115 1 ug/L 20.9 9 </td <td>0.05 ug/L 40.4 0.13 100 89-115 0.2 ug/L 312 5.7 110 86-115 0.01 ug/L 19.7 0.06 78 77-124 0.002 ug/L 20.0 0.035 97 82-126 0.1 ug/L 40.1 0.2 98 85-117 0.005 ug/L 11.9 0.056 97 76-131 0.1 ug/L 78.1 5.3 107 88-113 2 ug/L 117 124 105 80-115 0.05 ug/L 31.8 5.06 96 75-135 0.02 ug/L 78.9 0.71 97 83-121 0.1 ug/L 3.00 0.2 96 91-122 0.01 74-120 0.01 74-120 0.004 ug/L 3.50 0.004 103 79-119 0.2 ug/L 79.8 0.3 94 80-115 1 ug/L 80.0 8 97 89-123 <!--</td--></td>	0.05 ug/L 40.4 0.13 100 89-115 0.2 ug/L 312 5.7 110 86-115 0.01 ug/L 19.7 0.06 78 77-124 0.002 ug/L 20.0 0.035 97 82-126 0.1 ug/L 40.1 0.2 98 85-117 0.005 ug/L 11.9 0.056 97 76-131 0.1 ug/L 78.1 5.3 107 88-113 2 ug/L 117 124 105 80-115 0.05 ug/L 31.8 5.06 96 75-135 0.02 ug/L 78.9 0.71 97 83-121 0.1 ug/L 3.00 0.2 96 91-122 0.01 74-120 0.01 74-120 0.004 ug/L 3.50 0.004 103 79-119 0.2 ug/L 79.8 0.3 94 80-115 1 ug/L 80.0 8 97 89-123 </td

K1H1290

WORK ORDER #

CLIENT

DWB Consulting Nithi Mtn

PROJECT	Nithi Mtn					REPORTE	D		Sep-09-	11
			Reporting	Spike	Source		% REC		% RPD	
Analyte		Result	Limit Units	Level	Result	% REC	Limits	% RPD	Limit	Notes

Dissolved Metals by ICPMS, Batch R102735, Continued

Reference (R102735-SRM1), Continued	Prepared: Sep-01-11, Analyzed: Sep-03-11						
Copper, dissolved	81.8	0.1 ug/L	78.1	105	91-115		
Iron, dissolved	122	2 ug/L	117	104	81-117		
Lead, dissolved	9.26	0.05 ug/L	10.2	91	90-114		
Lithium, dissolved	10.0	0.05 ug/L	9.60	105	77-134		
Magnesium, dissolved	604	5 ug/L	611	99	79-122		
Manganese, dissolved	30.0	0.05 ug/L	31.8	94	86-114		
Molybdenum, dissolved	40.1	0.01 ug/L	38.7	104	92-113		
Nickel, dissolved	76.7	0.02 ug/L	78.9	97	89-114		
Phosphorus, dissolved	40	5 ug/L	44.8	89	60-117		
Potassium, dissolved	270	5 ug/L	284	95	80-113		
Selenium, dissolved	2.8	0.1 ug/L	3.00	92	84-120		
Sodium, dissolved	1720	5 ug/L	1740	99	78-118		
Strontium, dissolved	88.8	0.1 ug/L	97.9	91	88-113		
Thallium, dissolved	3.45	0.004 ug/L	3.50	99	96-129		
Uranium, dissolved	19.1	0.001 ug/L	24.4	78	68-95		
Vanadium, dissolved	74.3	0.2 ug/L	79.8	93	83-110		
Zinc, dissolved	77	1 ug/L	80.0	96	90-115		

General Parameters, Batch K103658

Blank (K103658-BLK1)			Prepared: Aug-31-1	1, Analyzed: Aug-	31-11			
Turbidity	< 0.1	0.1 NTU						
Blank (K103658-BLK2)			Prepared: Aug-31-11	1, Analyzed: Aug-	-31-11			
Turbidity	< 0.1	0.1 NTU						
Blank (K103658-BLK3)			Prepared: Aug-31-11	1, Analyzed: Aug-	31-11			
Turbidity	< 0.1	0.1 NTU						
LCS (K103658-BS1)		Prepared: Aug-31-11, Analyzed: Aug-31-11						
Turbidity	40	0.1 NTU	40.0	99	85-115			
LCS (K103658-BS2)			Prepared: Aug-31-11	1, Analyzed: Aug-	31-11			
Turbidity	40	0.1 NTU	40.0	99	85-115			
LCS (K103658-BS3)			Prepared: Aug-31-11	I, Analyzed: Aug-	31-11			
Turbidity	39	0.1 NTU	40.0	98	85-115			
Duplicate (K103658-DUP1)	Source	e: K1H1290-02	Prepared: Aug-31-11	1, Analyzed: Aug-	31-11			
Turbidity	88	0.1 NTU		88		< 1	20	

General Parameters, Batch K103662

Blank (K103662-BLK1)			Prepared: Aug-31-11, Analyzed: Aug-31-11
Bromide	< 0.05	0.05 mg/L	
Chloride	< 0.10	0.10 mg/L	
Fluoride	< 0.01	0.01 mg/L	
Nitrogen, Nitrate as N	< 0.005	0.005 mg/L	
Nitrogen, Nitrite as N	< 0.003	0.003 mg/L	
Phosphate, Ortho as P	< 0.005	0.005 mg/L	
Sulfate	< 0.5	0.5 mg/L	
Blank (K103662-BLK2)			Prepared: Aug-31-11, Analyzed: Aug-31-11
Bromide	< 0.05	0.05 mg/L	
Chloride	< 0.10	0.10 mg/L	
Fluoride	< 0.01	0.01 mg/L	
Nitrogen, Nitrate as N	< 0.005	0.005 mg/L	
Nitrogen, Nitrite as N	< 0.003	0.003 mg/L	
Phosphate, Ortho as P	< 0.005	0.005 mg/L	
Sulfate	< 0.5	0.5 mg/L	

CLIENT PROJECT	DWB Consulting Nithi Mtn				WORK OF	999 TA 1999		K1H129	
					REPORTE	0		Sep-09	-11
Analyte	Result	Reporting Limit Units	Spike Level	Source	% REC	% REC		% RPD	
		cinic onics	Level	Result	% REL	Limits	% RPD	Limit	Notes
	, Batch K103662, Continued								
Blank (K103662-BLK3)			Prepared: /	Aug-31-11, A	Analyzed: Aug	9-31-11			
Bromide	< 0.05	0.05 mg/L							
Chloride Fluoride	< 0.10	0.10 mg/L							
Nitrogen, Nitrate as N	< 0.01 < 0.005	0.01 mg/L							
Nitrogen, Nitrite as N	< 0.003	0.005 mg/L 0.003 mg/L							
Phosphate, Ortho as P	< 0.005	0.005 mg/L							
Sulfate	< 0.5	0.5 mg/L							
Blank (K103662-BLK4)			Prepared: A	Aug-31-11, A	nalyzed: Sep	-01-11			
Bromide	< 0.05	0.05 mg/L							
Chloride	< 0.10	0.10 mg/L							
Fluoride	< 0.01	0.01 mg/L							
Nitrogen, Nitrate as N	< 0.005	0.005 mg/L							
Nitrogen, Nitrite as N	< 0.003	0.003 mg/L							
Phosphate, Ortho as P Sulfate	< 0.005	0.005 mg/L							
Blank (K103662-BLK5)	< 0.5	0.5 mg/L	Deserved. /						_
Concernance of the second s	0.222	1553 W.C	Prepared: A	Aug-31-11, A	nalyzed: Sep	-01-11			
Bromide	< 0.05	0.05 mg/L							
Chloride Fluoride	< 0.10	0.10 mg/L							
Nitrogen, Nitrate as N	< 0.01	0.01 mg/L							
Nitrogen, Nitrite as N	< 0.005 < 0.003	0.005 mg/L							
Phosphate, Ortho as P	< 0.005	0.003 mg/L							
Sulfate	< 0.5	0.005 mg/L 0.5 mg/L							
LCS (K103662-BS1)			Prepared: A	Aug-31-11, A	nalyzed: Aug	-31-11			
Bromide	4.16	0.05 mg/L	4.00		104	85-115			
Chloride	3.92	0.10 mg/L	4.00		98	85-115			
Fluoride	4.06	0.01 mg/L	4.00		102	85-115			
Nitrogen, Nitrate as N	4.29	0.005 mg/L	4.00		107	85-115			
Nitrogen, Nitrite as N	4.26	0.003 mg/L	4.00		106	85-115			
Phosphate, Ortho as P Sulfate	4.17 4.1	0.005 mg/L	4.00		104	85-115			
.CS (K103662-BS2)	4.1	0.5 mg/L	4.00		102	85-115			
Bromide	4.23	0.05 mg/L	Prepared: A	ug-31-11, A	nalyzed: Aug	19230109333			
Chloride	3.94	0.10 mg/L	4.00		106 98	85-115			
luoride	4.07	0.01 mg/L	4.00		102	85-115 85-115			
Nitrogen, Nitrate as N	4.30	0.005 mg/L	4.00		102	85-115			
Nitrogen, Nitrite as N	4.29	0.003 mg/L	4.00		107	85-115			
Phosphate, Ortho as P	4.24	0.005 mg/L	4.00		106	85-115			
Sulfate	4.2	0.5 mg/L	4.00		105	85-115			_
CS (K103662-BS3)	1.1874.	and the state of the	10000000	ug-31-11, A	nalyzed: Sep	The second second			
Bromide Chloride	4.24	0.05 mg/L	4.00		105	85-115			
luoride	3.96 4.12	0.10 mg/L	4.00		99	85-115			
litrogen, Nitrate as N	4.31	0.01 mg/L 0.005 mg/L	4.00		103	85-115			
litrogen, Nitrite as N	4.25	0.003 mg/L	4.00		108	85-115			
hosphate, Ortho as P	4.23	0.005 mg/L	4.00		106 106	85-115 85-115			
ulfate	4.2	0.5 mg/L	4.00		106	85-115			
.CS (K103662-BS4)				ug-31-11, A	nalyzed: Sep-				
Bromide	4.12	0.05 mg/L	4.00		103	85-115			
Chloride	3.91	0.10 mg/L	4.00		98	85-115			
luoride	4.06	0.01 mg/L	4.00		101	85-115			
litrogen, Nitrate as N	4.28	0.005 mg/L	4.00		107	85-115			
Nitrogen, Nitrite as N	4.26	0.003 mg/L	4.00		106	85-115			
hosphate, Ortho as P	4.22	0.005 mg/L	4.00		106	85-115			
ulfate	4.2	0.5 mg/L	4.00		105	85-115			

=

CLIENT PROJECT	DWB Consulting Nithi Mtn				WORK ORDER # K1H129 REPORTED Sep-09-						
Analyte		Result	Reporting	Units	Spike Level	Source	04 REC	% REC	8/ DDD	% RPD	
General Parameters,	Batch K103662 C		Linit	Units	Level	Result	% REC	Limits	% RPD	Limit	Notes
LCS (K103662-BS5)	Bateli HT00002, O	ontinueu			Propared: A	ug 21.11 A	analyzanda Com	01.11			
				and the second	w.w.w.ee	ug-51-11, A	Analyzed: Sep	0003 Pd-1273			
Bromide Chloride		4.19 3.94		mg/L	4.00		105	85-115			
Fluoride		4.08		mg/L mg/L	4.00		99 102	85-115 85-115			
Nitrogen, Nitrate as N		4.31		mg/L	4.00		102	85-115			
Nitrogen, Nitrite as N		4.29		mg/L	4.00		107	85-115			
Phosphate, Ortho as P		4.29	0.005	mg/L	4.00		107	85-115			
Sulfate		4.3	0.5	mg/L	4.00		107	85-115			
Duplicate (K103662-DUI	P5)	So	urce: K1H12	90-06	Prepared: A	ug-31-11, A	nalyzed: Sep	-01-11			
Bromide		< 0.05	0.05	mg/L		< 0.05	5			15	
Chloride		0.37		mg/L		0.36				15	
Fluoride Nitrogen, Nitrate as N		0.12		mg/L		0.13			4	15	
Nitrogen, Nitrite as N		0.014 < 0.003		mg/L mg/L		0.014				15	
Phosphate, Ortho as P		< 0.005		mg/L mg/L		< 0.003				15	
Sulfate		6.2		mg/L		< 0.005			1	20 15	
General Parameters,	Batch K103664										
Blank (K103664-BLK1)					Prepared: A	ug-31-11, A	nalyzed: Sep	-01-11			
Carbon, Total Organic		< 0.5	0.5	mg/L							
Blank (K103664-BLK2)					Prepared: A	ug-31-11, A	nalyzed: Sep	-01-11			
Carbon, Total Organic		< 0.5	0.5	mg/L							
Blank (K103664-BLK3)					Prepared: A	ug-31-11, A	nalyzed: Sep	-01-11			
Carbon, Total Organic		< 0.5	0.5	mg/L							_
Blank (K103664-BLK4)		1225	7855		Prepared: A	ug-31-11, A	nalyzed: Sep	-01-11			
Carbon, Total Organic		< 0.5	0.5	mg/L							
LCS (K103664-BS1)		CONST			Prepared: A	ug-31-11, A	nalyzed: Sep	-01-11			
Carbon, Total Organic		9.0	0.5	mg/L	10.0		90	80-121			
LCS (K103664-BS2)					Prepared: A	ug-31-11, A	nalyzed: Sep	-01-11			
Carbon, Total Organic		9.5	0.5	mg/L	10.0		95	80-121			
LCS (K103664-BS3)					51 10 5 10 10 10 10 10 10 10 10 10 10 10 10 10	ug-31-11, A	nalyzed: Sep	-01-11			
Carbon, Total Organic		9.5	0.5	mg/L	10.0		95	80-121			
LCS (K103664-BS4)				14.1	and the second second second	ug-31-11, A	nalyzed: Sep	-01-11		_	
Carbon, Total Organic		9.2	and the second s	mg/L	10.0	- 304 MOV - 14	92	80-121			
Duplicate (K103664-DUF	2)		urce: K1H12		Prepared: A		nalyzed: Sep	-01-11	8.3	56725	
Carbon, Total Organic	Datab Kingana	9.2	0.5	mg/L		9.2	!		< 1	17	_
General Parameters,	Batch K103667										
Blank (K103667-BLK1)					Prepared: A	ug-31-11, A	nalyzed: Sep-	-06-11			
Solids, Total Suspended		< 1	1	mg/L		_					
Blank (K103667-BLK2)					Prepared: A	ug-31-11, A	nalyzed: Sep	06-11			
Solids, Total Suspended		< 1	1	mg/L							
Blank (K103667-BLK3)					Prepared: A	ug-31-11, A	nalyzed: Sep-	-06-11			
Solids, Total Suspended		< 1	1	mg/L	_						
LCS (K103667-BS1)					Prepared: A	ug-31-11, A	nalyzed: Sep-	06-11			
Collida Total Courses to 4											

392

1 mg/L

434

90

84-108

Solids, Total Suspended

CLIENT PROJECT	DWB Consulting Nithi Mtn					WORK OR			K1H129 Sep-09	
			0		Transferred.					_
Analyte		Result	Reporting Limit Units	Spike Level	Source Result	% REC	% REC Limits	% RPD	% RPD Limit	Notes
General Parameters,	Batch K103667, Co	ontinued								
LCS (K103667-BS2)				Prepared: A	.ug-31-11, A	analyzed: Sep	-06-11			
Solids, Total Suspended		49	1 mg/L	50.0		97	84-108			
LCS (K103667-BS3)				Prepared: A	ug-31-11, A	alyzed: Sep	06-11			
Solids, Total Suspended		50	1 mg/L	50.0		100	84-108			
General Parameters,	Batch K103672									
Blank (K103672-BLK1)				Prepared: S	ep-01-11, A	nalyzed: Sep-	01-11			
Nitrogen, Ammonia as N		< 0.01	0.01 mg/L							
Blank (K103672-BLK2)				Prepared: S	ep-01-11, A	nalyzed: Sep-	01-11			
Nitrogen, Ammonia as N		< 0.01	0.01 mg/L			,				
Blank (K103672-BLK3)				Prepared: S	ep-01-11, A	nalyzed: Sep-	01-11			
Nitrogen, Ammonia as N		< 0.01	0.01 mg/L							
LCS (K103672-BS1)			Chronic Hits Barriers	Prepared: S	ep-01-11. A	nalyzed: Sep-	01-11			
Nitrogen, Ammonia as N		9.33	0.10 mg/L	10.0		93	85-115			
LCS (K103672-BS2)				Prepared: S	ep-01-11, A	nalyzed: Sep-				
Nitrogen, Ammonia as N		9.63	0.10 mg/L	10.0		96	85-115			
LCS (K103672-BS3)				Prepared: S	ep-01-11. A	nalyzed: Sep-	Carrie			
Nitrogen, Ammonia as N		9.45	0.10 mg/L	10.0		94	85-115			
Duplicate (K103672-DUP1)	Sou	rce: K1H1290-03	Prepared: S	ep-01-11. A	nalyzed: Sep-				
Nitrogen, Ammonia as N		< 0.01	0.01 mg/L		< 0.01				20	
General Parameters,	Batch K103679									
Blank (K103679-BLK1)				Prepared: S	ep-01-11, A	nalyzed: Sep-	01-11			
Alkalinity, Total as CaCO3		< 1.0	1.0 mg/L							
Conductivity (EC)		< 2	2 uS/cm					_	_	
Blank (K103679-BLK2)				Prepared: S	ep-01-11, A	nalyzed: Sep-	01-11			
Alkalinity, Total as CaCO3 Conductivity (EC)		< 1.0 < 2	1.0 mg/L 2 uS/cm							
Blank (K103679-BLK3)			2 4 4 4 4 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4	Prepared: S	ep-01-11. A	nalyzed: Sep-	01-11			
Alkalinity, Total as CaCO3		< 1.0	1.0 mg/L	riepareur o	ep or rijn	nullicut och	01 11			
Conductivity (EC)		< 2	2 uS/cm							
Blank (K103679-BLK4)				Prepared: S	ep-01-11, A	nalyzed: Sep-	01-11			
Alkalinity, Total as CaCO3 Conductivity (EC)		< 1.0 < 2	1.0 mg/L 2 uS/cm							
LCS (K103679-BS1)			2 0a/cm	Dropperd: C	an 01 11 1	nahmadi Car				-
Alkalinity, Total as CaCO3		106	1.0 mg/L	Prepared: S	ep-01-11, A	nalyzed: Sep-				
LCS (K103679-BS2)		100	4.9 mg/c			106	95-109			
Alkalinity, Total as CaCO3		102	1.0 mg/L	Prepared: 5	ep-01-11, A	nalyzed: Sep-				
LCS (K103679-BS3)		102	1.0 mg/c		ap.01.11	102	95-109			
Alkalinity, Total as CaCO3		102	10 mail		ep-01-11, A	nalyzed: Sep-		_		
LCS (K103679-BS4)		102	1.0 mg/L	100 Dronovodi C		102	95-109			
100 (1110001 5 004)				Prepareo: 5	ep-01-11, A	nalyzed: Sep-	01-11			

-

CLIENT PROJECT	DWB Consulting Nithi Mtn				WORK ORDER # REPORTED				K1H1290 Sep-09-11		
			Reporting	Spike	Source		% REC		% RPD		
Analyte		Result	Limit Units	Level	Result	% REC	Limits	% RPD	Limit	Notes	
General Parameters,	Batch K103679, C	ontinued									
LCS (K103679-BS5)				Prepared: S	Sep-01-11, A	nalyzed: Sep	-01-11				
Conductivity (EC)		1380	2 uS/cm	1410		98	95-105				
LCS (K103679-B56)				Prepared: \$	Sep-01-11, A	nalyzed: Sep	-01-11				
Conductivity (EC)		1370	2 uS/cm	1410		97	95-105				
LCS (K103679-BS7)				Prepared: S	Sep-01-11, A	nalyzed: Sep	-01-11				
Conductivity (EC)		1390	2 uS/cm	1410		99	95-105				
LCS (K103679-BS8)				Prepared: S	Sep-01-11, A	nalyzed: Sep	-01-11				
Conductivity (EC)		1390	2 uS/cm	1410		99	95-105				
Duplicate (K103679-DUP)	L)	Sou	rce: K1H1290-01	Prepared: S	ep-01-11, A	nalyzed: Sep	-01-11				
Alkalinity, Total as CaCO3		29.6	1.0 mg/L		30.0			2	10		
Conductivity (EC) pH		72	2 uS/cm 0.01 pH Unit		70 7.12)		2	5		
Reference (K103679-SRM	1)	7.60	out prionic	40500271398	Prepared: Sep-01-11, Analyzed: Sep-01-11						
pH	*)	7.01	0.01 pH Units		ер-01-11, А						
Reference (K103679-SRM	2)	7.01	0.01 pri one	2000 C 1000 C 1000	op.01.11 A	100	98-102				
pH	-/	7.02	0.01 pH Units		sep-01-11, A	nalyzed: Sep					
Reference (K103679-SRM	3)	7.02	0.01 priorite		an 01 11 4	100	98-102				
рН	5)	7.01	0.01 pH Units		ер-01-11, А	nalyzed: Sep	1945-1921-C				
Reference (K103679-SRM	4)	7.01	unut pri unit		ep.01-11 A	100 nalyzed: Sep	98-102				
pH	.,	7.01	0.01 pH Units		ep-01-11, A	100 100	23400583				
General Parameters,	Batch K103690	7.01	0.01 pri one	7.00		100	98-102				
	Batch K105050										
Blank (K103690-BLK1)				Prepared: S	ep-01-11, A	nalyzed: Sep-	-08-11				
Nitrogen, Total Kjeldahl		< 0.05	0.05 mg/L							_	
LCS (K103690-BS1)		765.0712	1857230	Prepared: S	ep-01-11, A	nalyzed: Sep-	-08-11				
Nitrogen, Total Kjeldahl		9.87	0.50 mg/L	10.0		99	89-118				
Duplicate (K103690-DUP1	.)	Sou	rce: K1H1290-03	Prepared: S	ep-01-11, A	nalyzed: Sep-	-08-11				
Nitrogen, Total Kjeldahl		0.34	0.05 mg/L		0.37	•		9	19		
General Parameters,	Batch K103691										
Blank (K103691-BLK1)				Prepared: S	iep-01-11, A	nalyzed: Sep-	06-11				
Phosphorus, Total		< 0.01	0.01 mg/L								
Blank (K103691-BLK2)				Prepared: S	ep-01-11, A	nalyzed: Sep-	06-11				
Phosphorus, Total		< 0.01	0.01 mg/L								
LCS (K103691-BS1)				Prepared: S	ep-01-11, A	nalyzed: Sep-	06-11				
Phosphorus, Total		0.41	0.02 mg/L	0.500		83	75-116				
LCS (K103691-BS2)				Prepared: S	ep-01-11, A	nalyzed: Sep-					
Phosphorus, Total		0.49	0.02 mg/L	0.500		97	75-116				
Duplicate (K103691-DUP1)		rce: K1H1290-04		ep-01-11. Ar	nalyzed: Sep-					
Phosphorus, Total		< 0.01	0.01 mg/L		< 0.01				20		

General Parameters, Batch K103724

=

=

CLIENT PROJECT	DWB Consulting Nithi Mtn					WORK OF			K1H129 Sep-09	
Analyte		Result	Reporting Limit Units	Spike Level	Source Result	% REC	% REC Limits	% RPD	% RPD Limit	Notes
General Parameter	ers, Batch K103724,	Continued								
Blank (K103724-BL	K1)			Prepared: S	Sep-02-11, A	nalyzed: Sep	-02-11			
Solids, Total Dissolved		< 5	5 mg/L							
Duplicate (K103724	-DUP1)	Sou	rce: K1H1290-06	Prepared: S	Sep-02-11, A	nalvzed: Sep	-02-11			
Solids, Total Dissolved		38	5 mg/L		44			15	15	
Reference (K103724	4-SRM1)			Prenared: 9	Sep-02-11, A		-02-11			
Solids, Total Dissolved		236	5 mg/L	240	жр 02 11, А					
and a second second second	e Metals by ICPMS,	Description internation	54.0	240		98	85-115			
Blank (R102730-BL				Prepared: S	Sep-01-11, A	nalvzed: Sep	-06-11			
Numinum		< 2	2 ug/L			initiation and				
Antimony		< 0.05	0.05 ug/L							
Vrsenic		< 0.05	0.05 ug/L							
Barium		< 0.2	0.2 ug/L							
Beryllium		< 0.01	0.01 ug/L							
Bismuth		< 0.002	0.002 ug/L							
Boron		< 1	1 ug/L							
Cadmium		< 0.002	0.002 ug/L							
Calcium Chromium		< 50	50 ug/L							
obalt		< 0.1 < 0.005	0.1 ug/L 0.005 ug/L							
Copper		< 0.1	0.1 ug/L							
ron		< 2	2 ug/L							
ead		< 0.05	0.05 ug/L							
ithium		< 0.05	0.05 ug/L							
lagnesium		< 5.0	5.0 ug/L							
langanese		< 0.05	0.05 ug/L							
fercury		< 0.01	0.01 ug/L							
folybdenum		< 0.01	0.01 ug/L							
lickel hosphorus		< 0.02	0.02 ug/L							
Potassium		< 5	5 ug/L 5 ug/L							
ielenium		< 0.1	0.1 ug/L							
ilicon		< 100	100 ug/L							
illver		< 0.01	0.01 ug/L							
iodium		< 5	5 ug/L							
itrontium		< 0.1	0.1 ug/L							
fellurium		< 0.05	0.05 ug/L							
hallium		< 0.004	0.004 ug/L							
horium		< 0.01	0.01 ug/L							
fin Staalum		< 0.05	0.05 ug/L							
'itanium Iranium		< 0.2 < 0.001	0.2 ug/L							
/anadium		< 0.001	0.001 ug/L 0.2 ug/L							
Zinc		< 0.2	1 ug/L							
Zirconium		< 0.01	0.01 ug/L							
Duplicate (R102730	-DUP1)	State-141	rce: K1H1290-03	Prepared: S	Sep-01-11, A	nalyzed: Sep	-06-11			
Aluminum		478	2 ug/L		462			3	20	
Antimony		0.06	0.05 ug/L		0.06				20	
Arsenic Barium		0.24 6.8	0.05 ug/L		0.23			-	20	
Beryllium		0.17	0.2 ug/L 0.01 ug/L		6.7 0.17			3	20 20	
Sismuth		0.028	0.002 ug/L		0.025			13	20	
Boron		1	1 ug/L		2			15	20	
Cadmium		0.027	0.002 ug/L		0.028			5	20	
Calcium		1700	50 ug/L		1690			< 1	20	
hromium		0.5	0.1 ug/L		0.5			5	20	
Cobalt		0.116	0.005 ug/L		0.112			4	20	
Copper		4.4	0.1 ug/L		4.5			2	20	
Iron		365	2 ug/L		361			1	20	
Lead		0.20	0.05 ug/L		0.20				20	

K1H1290

WORK ORDER #

CLIENT

DWB Consulting Nithi Mtn

		Reporting	Spike	Source		% REC		% RPD	
Analyte	Result	Limit Units	Level	Result	% REC	Limits	% RPD	Limit	Notes

Total Recoverable Metals by ICPMS, Batch R102730, Continued

Antimony 9.48 0.05 ug/L Arsenic 23.0 0.05 ug/L Barium 150 0.2 ug/L Beryllium 7.87 0.01 ug/L Cadmium 9.16 0.002 ug/L Chromium 9.16 0.005 ug/L Cobait 7.79 0.005 ug/L Copper 116 0.1 ug/L Iron 354 2 ug/L Lead 39.3 0.05 ug/L Nickel 30.8 0.05 ug/L Selenium 10.1 ug/L 1 Thallium 15.7 0.004 ug/L	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Marganese 20.4 0.05 0/L Mercury 0.02 0.01 ug/L Molybdenum 20.5 0.01 ug/L Mokel 0.66 0.02 ug/L Phosphorus 16 5 ug/L Potassium 534 5 ug/L Selenium 0.3 0.1 ug/L Selenium 0.3 0.1 ug/L Soliton 5500 100 ug/L Soliton 2150 5 ug/L Strontium 2150 5 ug/L Thalium 0.04 0.01 ug/L Thalium 0.08 0.004 ug/L Thorium 0.31 0.01 ug/L Tianium 5.3 0.2 ug/L Vanadum 0.8 0.2 ug/L Vanadum 0.8 0.5 ug/L Antimony 9.48 0.05 ug/L Antimony 9.48 0.05 <th>$\begin{array}{ccccccc} 676 & 2 & 20 \\ 20.2 & <1 & 20 \\ 0.01 & & 20 \\ 20.3 & 1 & 20 \\ 0.60 & 9 & 20 \\ 13 & & 20 \\ 518 & 3 & 20 \\ 0.2 & & 20 \\ 5330 & 3 & 20 \\ 0.03 & & 20 \\ 2110 & 2 & 20 \\ 25.1 & 3 & 20 \\ <0.05 & & 20 \end{array}$</th>	$\begin{array}{ccccccc} 676 & 2 & 20 \\ 20.2 & <1 & 20 \\ 0.01 & & 20 \\ 20.3 & 1 & 20 \\ 0.60 & 9 & 20 \\ 13 & & 20 \\ 518 & 3 & 20 \\ 0.2 & & 20 \\ 5330 & 3 & 20 \\ 0.03 & & 20 \\ 2110 & 2 & 20 \\ 25.1 & 3 & 20 \\ <0.05 & & 20 \end{array}$
Manganese 20.4 0.05 ug/L Mercury 0.02 0.01 ug/L Molybdenum 20.5 0.01 ug/L Mokkel 0.66 0.02 ug/L Phosphorus 16 5 ug/L Potassium 534 5 ug/L Selenium 0.3 0.1 ug/L Selenium 0.34 0.01 ug/L Solium 2150 5 ug/L Storetium 2.05 0.05 ug/L Storetium 2.05 0.05 ug/L Tellurium < 0.05	$\begin{array}{cccccc} 20.2 & <1 & 20 \\ 0.01 & 20 \\ 20.3 & 1 & 20 \\ 0.60 & 9 & 20 \\ 13 & 20 \\ 518 & 3 & 20 \\ 0.2 & 20 \\ 5330 & 3 & 20 \\ 0.03 & 20 \\ 2110 & 2 & 20 \\ 25.1 & 3 & 20 \\ <0.05 & 20 \end{array}$
Mercury 0.02 0.01 ug/L Molybdenum 20.5 0.01 ug/L Nickel 0.66 0.02 ug/L Phosphorus 16 5 ug/L Potassium 534 5 ug/L Selenium 0.3 0.1 ug/L Soliton 5500 100 ug/L Silcon 5500 100 ug/L Solitom 2150 5 ug/L Soldum 2150 5 ug/L Strontium 20.5 0.01 ug/L Thalium 0.008 0.004 ug/L Thorium 0.31 0.01 ug/L Thalium 0.33 0.2 ug/L Tin < 0.05	
Molybdenum 20.5 0.01 ug/L Nickel 0.66 0.02 ug/L Phosphorus 16 5 ug/L Phosphorus 0.3 0.1 ug/L Selenium 0.3 0.1 ug/L Saltor 5500 100 ug/L Saltor 5500 100 ug/L Saltor 5500 100 ug/L Saltor 5500 100 ug/L Saltor 0.04 0.01 ug/L Strontium 25.8 0.1 ug/L Strontium 0.05 0.05 ug/L Thallium 0.008 0.004 ug/L Thorium 0.31 0.01 ug/L Thallium 0.05 0.05 ug/L Tranum 5.3 0.2 ug/L Vanadium 0.8 0.2 ug/L Zirconium 0.52 0.01 ug/L Antimony 9.48 <td< td=""><td>$\begin{array}{cccccccc} 20.3 & 1 & 20 \\ 0.60 & 9 & 20 \\ 13 & 20 \\ 518 & 3 & 20 \\ 0.2 & 20 \\ 5330 & 3 & 20 \\ 0.03 & 20 \\ 2110 & 2 & 20 \\ 25.1 & 3 & 20 \\ < 0.05 & 20 \end{array}$</td></td<>	$\begin{array}{cccccccc} 20.3 & 1 & 20 \\ 0.60 & 9 & 20 \\ 13 & 20 \\ 518 & 3 & 20 \\ 0.2 & 20 \\ 5330 & 3 & 20 \\ 0.03 & 20 \\ 2110 & 2 & 20 \\ 25.1 & 3 & 20 \\ < 0.05 & 20 \end{array}$
Nickel 0.66 0.02 ug/L Phosphorus 16 5 ug/L Potassium 534 5 ug/L Selenium 0.3 0.1 ug/L Selenium 0.3 0.1 ug/L Silkon 5500 100 ug/L Sodium 2150 5 ug/L Sodium 25.8 0.1 ug/L Strontium 0.03 0.04 ug/L Thallium 0.008 0.004 ug/L Thorium 0.31 0.01 ug/L Thallium 0.008 0.004 ug/L Thorium 0.31 0.01 ug/L Uranium 0.31 0.01 ug/L Vuranium 0.8 0.2 ug/L Zirconium 0.8 0.2 ug/L Antimony 9.48 0.05 ug/L Artimony 9.48 0.05 ug/L Aritimon 150 0.	0.60 9 20 13 20 518 3 20 0.2 20 5330 3 20 0.03 20 2110 2 20 25.1 3 20 < 0.05
Phosphorus 16 5 ug/L Potassium 534 5 ug/L Selenium 0.3 0.1 ug/L Selenium 0.3 0.1 ug/L Silicon 5500 100 ug/L Silicon 5500 100 ug/L Sodium 2150 5 ug/L Strontium 25.8 0.1 ug/L Tellurium <0.05	13 20 518 3 20 0.2 20 5330 3 20 0.03 20 2110 2 20 25.1 3 20 < 0.05
Potassium 534 5 ug/L Selenium 0.3 0.1 ug/L Silicon 5500 100 ug/L Silicon 5500 100 ug/L Silicon 5500 100 ug/L Silicon 2150 5 ug/L Strontium 25.8 0.1 ug/L Tellurium < 0.05	518 3 20 0.2 20 5330 3 20 0.03 20 2110 2 20 25.1 3 20 < 0.05
Selenium 0.3 0.1 ug/L Silcon 5500 100 ug/L Silver 0.04 0.01 ug/L Sodium 2150 5 ug/L Strontium 2158 0.1 ug/L Tellurium < 0.05	0.2 20 5330 3 20 0.03 20 2110 2 20 25.1 3 20 < 0.05
Silicon 5500 100 ug/L Silver 0.04 0.01 ug/L Sodium 2150 5 ug/L Strontium 25.8 0.1 ug/L Thallium 0.008 0.004 ug/L Thorium 0.31 0.01 ug/L Thorium 0.31 0.01 ug/L Thorium 0.31 0.01 ug/L Tin < 0.05	5330 3 20 0.03 20 2110 2 20 25.1 3 20 < 0.05
Silver 0.04 0.01 ug/L Sodium 2150 5 ug/L Strontium 25.8 0.1 ug/L Tellurium <0.05	0.03 20 2110 2 20 25.1 3 20 < 0.05 20
Sodium 2150 5 ug/L Strontium 25.8 0.1 ug/L Tellurium < 0.05	2110 2 20 25.1 3 20 < 0.05 20
Strontium 25.8 0.1 ug/L Tellurium < 0.05	25.1 3 20 < 0.05 20
Tellurium < 0.05	< 0.05 20
Thallium 0.008 0.004 ug/L Thorium 0.31 0.01 ug/L Tin < 0.05	
Morium 0.31 0.01 ug/L Tin < 0.05	
Tin < 0.05	0.009 20
Tin < 0.05	0.31 < 1 20
Titanium 5.3 0.2 ug/L Uranium 1.11 0.001 ug/L Vanadium 0.8 0.2 ug/L Zinc 37 1 ug/L Zirconium 0.52 0.01 ug/L Matrix Spike (R102730-MS1) Source: K1H1290-04 Prot Antimony 9.48 0.05 ug/L Arsenic 23.0 0.05 ug/L Barium 150 0.2 ug/L Barium 150 0.2 ug/L Cadmium 9.16 0.002 ug/L Cobalt 7.79 0.005 ug/L Cobalt 7.79 0.005 ug/L Copper 116 0.1 ug/L Iron 354 2 ug/L Lead 39.3 0.05 ug/L Manganese 30.8 0.05 ug/L Nickel 50.1 0.02 ug/L Ton 157 0.004 ug/L	< 0.05 20
Uranium 1.11 0.001 ug/L Vanadium 0.8 0.2 ug/L Zinc 37 1 ug/L Zirconium 0.52 0.01 ug/L Matrix Spike (R102730-MS1) Source: K1H1290-04 Prot Antimony 9.48 0.05 ug/L Arsenic 23.0 0.05 ug/L Barium 150 0.2 ug/L Barium 9.16 0.002 ug/L Cadmium 9.16 0.002 ug/L Cobalt 7.79 0.005 ug/L Cobalt 7.79 0.005 ug/L Ion 354 2 ug/L Lead 39.3 0.05 ug/L Manganese 30.8 0.05 ug/L Nickel 50.1 0.02 ug/L Thallium 15.7 0.004 ug/L	
Vanadium 0.8 0.2 ug/L Zinc 37 1 ug/L Zirconium 0.52 0.01 ug/L Matrix Spike (R102730-MS1) Source: K1H1290-04 Pro Antimony 9.48 0.05 ug/L Arsenic 23.0 0.05 ug/L Barium 150 0.2 ug/L Beryllium 7.87 0.01 ug/L Cadmium 9.16 0.002 ug/L Cobalt 7.79 0.005 ug/L Copper 116 0.1 ug/L Iron 354 2 ug/L Lead 39.3 0.05 ug/L Manganese 30.8 0.05 ug/L Nickel 50.1 0.02 ug/L	
Zinc 37 1 ug/L Zirconium 0.52 0.01 ug/L Matrix Spike (R102730-MS1) Source: K1H1290-04 Pro Antimony 9.48 0.05 ug/L Assenic 23.0 0.05 ug/L Barium 150 0.2 ug/L Beryllium 7.87 0.01 ug/L Cadmium 9.16 0.002 ug/L Cobalt 7.79 0.005 ug/L Cobalt 7.79 0.005 ug/L Iron 354 2 ug/L Iron 354 2 ug/L Manganese 30.8 0.05 ug/L Nickel 50.1 0.02 ug/L	
Zirconium 0.52 0.01 ug/L Matrix Spike (R102730-MS1) Source: K1H1290-04 Product of the second sec	0.7 20
Matrix Spike (R102730-MS1) Source: K1H1290-04 Pro Antimony 9.48 0.05 ug/L Arsenic 23.0 0.05 ug/L Barium 150 0.2 ug/L Barium 150 0.2 ug/L Cadmium 9.16 0.002 ug/L Cadmium 9.16 0.002 ug/L Cobalt 7.79 0.005 ug/L Cobalt 7.79 0.005 ug/L Copper 116 0.1 ug/L Iron 354 2 ug/L Lead 39.3 0.05 ug/L Manganese 30.8 0.05 ug/L Nickel 50.1 0.02 ug/L Thallium 15.7 0.004 ug/L	33 11 20
Antimony 9.48 0.05 ug/L Arsenic 23.0 0.05 ug/L Barium 150 0.2 ug/L Beryllium 7.87 0.01 ug/L Cadmium 9.16 0.002 ug/L Chromium 9.16 0.002 ug/L Cobalt 7.79 0.005 ug/L Copper 116 0.1 ug/L Iron 354 2 ug/L Lead 39.3 0.05 ug/L Manganese 30.8 0.05 ug/L Sclenium 21.1 0.1 ug/L Thallium 15.7 0.004 ug/L	0.51 1 20
Arsenic 23.0 0.05 ug/L Barium 150 0.2 ug/L Beryllium 7.87 0.01 ug/L Cadmium 9.16 0.002 ug/L Chromium 9.16 0.002 ug/L Cobalt 7.79 0.005 ug/L Cobper 116 0.1 ug/L Iron 354 2 ug/L Lead 39.3 0.05 ug/L Nickel 30.8 0.05 ug/L Selenium 21.1 0.1 ug/L Thallium 15.7 0.004 ug/L	Prepared: Sep-01-11, Analyzed: Sep-06-11
Barium 150 0.2 ug/L Beryllium 7.87 0.01 ug/L Cadmium 9.16 0.002 ug/L Chromium 49.6 0.1 ug/L Cobalt 7.79 0.005 ug/L Cobalt 7.79 0.005 ug/L Copper 116 0.1 ug/L Iron 354 2 ug/L Lead 39.3 0.05 ug/L Nickel 30.8 0.05 ug/L Selenium 21.1 0.1 ug/L Thallium 15.7 0.004 ug/L	10.1 0.06 93 80-120
Beryllium 7.87 0.01 ug/L Cadmium 9.16 0.002 ug/L Chromium 49.6 0.1 ug/L Cobalt 7.79 0.005 ug/L Cobalt 7.79 0.005 ug/L Copper 116 0.1 ug/L Iron 354 2 ug/L Lead 39.3 0.05 ug/L Nickel 30.8 0.05 ug/L Selenium 21.1 0.1 ug/L Thallium 15.7 0.004 ug/L	24.4 0.18 94 80-120
Cadmium 9.16 0.002 ug/L Chromium 49.6 0.1 ug/L Cobalt 7.79 0.005 ug/L Copper 116 0.1 ug/L Iron 354 2 ug/L Lead 39.3 0.05 ug/L Nickel 50.1 0.02 ug/L Selenium 21.1 0.1 ug/L Thallium 15.7 0.004 ug/L	155 6.7 93 80-120
Chromium 49.6 0.1 ug/L Cobalt 7.79 0.005 ug/L Copper 116 0.1 ug/L Iron 354 2 ug/L Lead 39.3 0.05 ug/L Manganese 30.8 0.05 ug/L Selenium 21.1 0.1 ug/L Thallium 15.7 0.004 ug/L	9.76 0.07 80 80-120
Chromium 49.6 0.1 ug/L Cobalt 7.79 0.005 ug/L Copper 116 0.1 ug/L Iron 354 2 ug/L Lead 39.3 0.05 ug/L Nickel 30.8 0.05 ug/L Selenium 21.1 0.1 ug/L Thallium 15.7 0.004 ug/L	9.80 0.045 93 80-120
Cobalt 7.79 0.005 ug/L Copper 116 0.1 ug/L Iron 354 2 ug/L Lead 39.3 0.05 ug/L Manganese 30.8 0.05 ug/L Nickel 50.1 0.02 ug/L Selenium 15.7 0.004 ug/L	48.4 0.4 102 80-120
Copper 116 0.1 ug/L Iron 354 2 ug/L Lead 39,3 0.05 ug/L Manganese 30.8 0.05 ug/L Nickel 50.1 0.02 ug/L Selenium 21.1 0.1 ug/L Thallium 15.7 0.004 ug/L	7.32 0.090 105 80-120
Iron 354 2 ug/L Lead 39.3 0.05 ug/L Manganese 30.8 0.05 ug/L Nickel 50.1 0.02 ug/L Selenium 21.1 0.1 ug/L Thallium 15.7 0.004 ug/L	
Lead 39.3 0.05 ug/L Manganese 30.8 0.05 ug/L Nickel 50.1 0.02 ug/L Selenium 21.1 0.1 ug/L Thallium 15.7 0.004 ug/L	
Manganese 30.8 0.05 ug/L Nickel 50.1 0.02 ug/L Selenium 21.1 0.1 ug/L Thallium 15.7 0.004 ug/L	93.8 260 100 80-120
Nickel 50.1 0.02 ug/L Selenium 21.1 0.1 ug/L Thallium 15.7 0.004 ug/L	38.6 0.15 102 80-120
Selenium 21.1 0.1 ug/L Thallium 15.7 0.004 ug/L	21.8 9.54 97 80-120
Thallium 15.7 0.004 ug/L	48.4 0.85 102 80-120
	23.0 0.2 91 80-120
	15.9 0.004 99 80-120
Vanadium 73.1 0.2 ug/L	75.2 0.6 96 80-120
Zinc 515 1 ug/L	484 9 104 80-120
Reference (R102730-SRM1) Pro	Prepared: Sep-01-11, Analyzed: Sep-06-11
Aluminum 59 2 ug/L	59.2 100 81-129
Antimony 9.60 0.05 ug/L	10.1 95 88-114
Arsenic 23.2 0.05 ug/L	24.4 95 88-114
Barium 143 0.2 ug/L	
전화 문화가 있는 것을 받았다. 이 있는 것을 안 있다. 이 있다. 이 있는 것을 안 있다. 이 있는 것을 안 있다. 이 있는 것을 안 있다. 이 있다. 이 있는 것을 안 있다. 이 있다	9.76 104 76-131
2009년 2001 · · · · · · · · · · · · · · · · · ·	680 105 75-121
Cadmium 9.12 0.002 ug/L	9.80 93 89-111
Calcium 2130 50 ug/L	2040 104 86-121
Chromium 51.7 0.1 ug/L	48.4 107 89-114
Cobalt 8.06 0.005 ug/L	7.32 110 91-113
Copper 111 0.1 ug/L	97.4 114 91-115
Iron 105 2 ug/L	93.8 112 77-124
Lead 40.1 0.05 ug/L	38.6 104 92-113
Lithium 80.5 0.05 ug/L	78.0 103 85-115
Magnesium 726 5.0 ug/L	
	21.8 102 90-114
Mercury 0.98 0.01 ug/L	0.010
Molybdenum 39.0 0.01 ug/L	0.912 108 50-150
Nickel 52.0 0.02 ug/L	39.4 99 90-111
Phosphorus 40 5 ug/L	39.4 99 90-111 48.4 107 90-111
Potassium 1270 5 ug/L	39.4 99 90-111

-

LIENT ROJECT	DWB Consulting Nithi Mtn			WORK ORDER # REPORTED				K1H1290 Sep-09-11		
			Reporting	Spike	Source		% REC		% RPD	
Analyte		Result	Limit Units	Level	Result	% REC	Limits	% RPD	Limit	Notes

Reference (R102730-SRM1), Continued Prepared: Sep-01-11, Analyzed: Sep-06-11 0.1 ug/L 5 ug/L 0.1 ug/L 0.004 ug/L 0.001 ug/L 85-115 82-123 88-112 23.0 1530 Selenium 21.3 93 Sodium 1690 111 Strontium 65.8 72.6 91 16.1 3.70 15.9 Thallium 102 91-114 Uranium 3.84 96 85-120 76.9 527 0.2 ug/L 1 ug/L Vanadium 75.2 102 86-111 Zinc 484 109 85-111

=

Report to:

LEEWARD CAPITAL CORP.

Technical Report on the Nithi Mountain Molybdenum Property, British Columbia, Canada

Document No. 1192110100-L0001-00

Report to:

TECHNICAL REPORT ON THE NITHI MOUNTAIN MOLYBDENUM PROPERTY, BRITISH COLUMBIA, CANADA

EFFECTIVE DATE: AUGUST 31, 2011

Prepared by Gregory Zale Mosher, P.Geo.

JW/vc

Suite 800, 555 West Hastings Street, Vancouver, British Columbia V6B 1M1 Phone: 604-408-3788 Fax: 604-408-3722

Report to:

TECHNICAL REPORT ON THE NITHI MOUNTAIN MOLYBDENUM PROPERTY, BRITISH COLUMBIA, CANADA

EFFECTIVE DATE: AUGUST 31, 2011

Prepared by	"Original document signed by Gregory Zale Mosher, P.Geo."	Date	August 31, 2011
	Gregory Zale Mosher, P.Geo.		
Reviewed by	"Original document signed by Jeff Wilson, Ph.D., P.Geo."	Date	August 31, 2011
	Jeff Wilson, Ph.D., P.Geo.		
Authorized by	"Original document signed by Jeff Wilson, Ph.D., P.Geo." Jeff Wilson, Ph.D., P.Geo.	Date	August 31, 2011
JW/vc			
	RA TECH		

Suite 800, 555 West Hastings Street, Vancouver, British Columbia V6B 1M1 Phone: 604-408-3788 Fax: 604-408-3722

REVISION HISTORY

REV.		PREPARED BY	REVIEWED BY	APPROVED BY	
NO	ISSUE DATE	AND DATE	AND DATE	AND DATE	DESCRIPTION OF REVISION
00	2011/08/31	Gregory Z. Mosher	Jeff Wilson	Jeff Wilson	Final Report

TABLE OF CONTENTS

1.0	SUMN	IARY	1
2.0	INTRO	DDUCTION	3
	2.1	INTRODUCTION	3
	2.2	TERMS OF REFERENCE	3
3.0	RELIA	ANCE ON OTHER EXPERTS	4
4.0	PROP	PERTY DESCRIPTION AND LOCATION	5
5.0		SSIBILITY, CLIMATE, LOCAL RESOURCES, INFRASTRUCTURE AND	9
6.0	HISTO	DRY	10
7.0	GEOL	OGICAL SETTING AND MINERALIZATION	11
	7.1	GEOLOGICAL SETTING	11
	7.2	MINERALIZATION	
8.0	DEPC	SIT TYPE	14
9.0	EXPL	ORATION	16
10.0		ING	
10.0	10.1	Sampling Method and Approach	
11.0	SAME	PLE PREPARATION, ANALYSES, AND SECURITY	
12.0		VERIFICATION	
13.0		RAL PROCESSING AND METALLURGICAL TESTING	
14.0		RAL RESOURCE ESTIMATES	
	14.1	Exploratory Data Analysis	
		14.1.2 CAPPING	
		14.1.3 Composites	24
	14.2	BULK DENSITY	
	14.3	GEOLOGICAL INTERPRETATION	
	14.4	Spatial Analysis	
	14.5	RESOURCE BLOCK MODEL	
	14.6	INTERPOLATION PLAN	
	14.7		
	14.8	MINERAL RESOURCE TABULATION	
	14.9	BLOCK MODEL VALIDATION	31

15.0	ADJACENT PROPERTIES	32
16.0	OTHER RELEVANT DATA AND INFORMATION	33
17.0	INTERPRETATION AND CONCLUSIONS	34
18.0	RECOMMENDATIONS	39
19.0	REFERENCES	40
20.0	CERTIFICATES OF QUALIFIED PERSON	41

LIST OF TABLES

Table 1.1	Summary of Delta, Gamma and Gamma West Resources	2
Table 1.2	Recommended Nithi Exploration Budget 2011	2
Table 4.1	Nithi Molybdenum Property Mineral Tenures	7
Table 10.1	Leeward Drill Programs at Nithi Mountain 2005-2008 (by Zone)	. 17
Table 14.1	Descriptive Statistics Nithi MoS ₂ Assays and Composites	. 25
Table 14.2	Nithi Variography	. 26
Table 14.3	Nithi Search Ellipse Parameters	.26
Table 14.4	Nithi Block Model Parameters	. 26
Table 14.5	Nithi Resource Estimate Kriged	. 28
Table 14.6	Nithi Resource Estimate ID ²	. 29
Table 14.7	Nithi Resource Estimate ID ⁵	. 30
Table 14.8	Summary of Nithi Kriged Resource Estimate @ 0.02 MoS ₂ Lower Threshold	. 31
Table 17.1	Summary of Delta, Gamma and Gamma West Resources	. 34
Table 18.1	Recommended Nithi Exploration Budget 2011 (Costs in CAD\$)	. 39

LIST OF FIGURES

	Nithi Property Location	
	Nithi Property Location of Mineral Tenure 515427	
Figure 7.1	Nithi Property Molybdenum Zones	12
Figure 10.1	Location of Nithi Molybdenum Zones and Leeward Drill Holes 2005-2011	18
Figure 10.2	Plan View Nithi Delta, Gamma and Gamma West Zones	19
Figure 17.1	Plan View Nithi Northeast and Northwest Trends in Block Model Grades	36
Figure 17.2	Plan View High Grade Distribution on Margins of Delta and Gamma Zones	37
Figure 17.3	Cross Sectional View Delta and Gamma Zones Near-Surface	
-	High Grade Blocks	38

GLOSSARY

UNITS OF MEASURE

Above mean sea level	amsl
Acre	ac
Ampere	А
Annum (year)	а
Billion	В
Billion tonnes	Bt
Billion years ago	Ga
British thermal unit	BTU
Centimetre	cm
Cubic centimetre	cm ³
Cubic feet per minute	cfm
Cubic feet per second	ft ³ /s
Cubic foot	ft ³
Cubic inch	in ³
Cubic metre	m³
Cubic yard	yd ³
Coefficients of Variation	CVs
Day	d
Days per week	d/wk
Days per year (annum)	d/a
Dead weight tonnes	DWT
Decibel adjusted	dBa
Decibel	dB
Degree	0
Degrees Celsius	°C
Diameter	ø
Dollar (American)	US\$
Dollar (Canadian)	Cdn\$
Dry metric ton	dmt
Foot	ft
Gallon	gal
Gallons per minute (US)	gpm
Gigajoule	GJ
Gigapascal	GPa
Gigawatt	GW
Gram	g
Grams per litre	g/L
Grams per tonne	g/t
Greater than	>
Hectare (10,000 m ²)	ha
Hertz	Hz

Horsepower	hp
Hour	h
Hours per day	h/d
Hours per week	h/wk
Hours per year	h/a
Inch	"
Kilo (thousand)	k
Kilogram	kg
Kilograms per cubic metre	kg/m
Kilograms per hour	kg/h
Kilograms per square metre	kg/m
Kilometre	km
Kilometres per hour	km/h
Kilopascal	kPa
Kilotonne	kt
Kilovolt	kV
Kilovolt-ampere	kVA
Kilovolts	kV
Kilowatt	kW
Kilowatt hour	kWh
Kilowatt hours per tonne (metric ton)	kWł
Kilowatt hours per year	kWł
Less than	<
Litre	Ĺ
Litres per minute	_ L/m
Megabytes per second	Mb/s
Megapascal	MPa
Megavolt-ampere	MVA
Megawatt	MW
Metre	m
Metres above sea level	mas
Metres Baltic sea level	mbs
Metres per minute	m/m
Metres per second	m/s
Metric ton (tonne)	t
Microns	μm
Milligram	mg
Milligrams per litre	mg/
Millilitre	mL
Millimetre	mm
Million	M
Million bank cubic metres	Mbr
	Mbr
Million bank cubic metres per annum	
Million tonnes	Mt
Minute (plane angle)	
Minute (time)	min

Month	mo
Ounce	oz
Pascal	Ра
Centipoise	mPa∙s
Parts per million	ppm
Parts per billion	ppb
Percent	%
Pound(s)	lb
Pounds per square inch	psi
Revolutions per minute	rpm
Second (plane angle)	"
Second (time)	S
Specific gravity	SG
Square centimetre	cm ²
Square foot	ft ²
Square inch	in ²
Square kilometre	km ²
Square metre	m²
Thousand tonnes	kt
Three Dimensional	3D
Three Dimensional Model	3DM
Tonne (1,000 kg)	t
Tonnes per day	t/d
Tonnes per hour	t/h
Tonnes per year	t/a
Tonnes seconds per hour metre cubed	ts/hm ³
Volt	V
Week	wk
Weight/weight	w/w
Wet metric ton	wmt
Year (annum)	а

1.0 SUMMARY

Leeward Capital Corp. (Leeward) owns the Nithi Mountain Molybdenum Property (the Property) in central British Columbia (BC) at about 54° North Latitude and 125° West Longitude. The Property is located 10 km south of Fraser Lake and about 20 km southeast of the Endako Molybdenum Mine, which has been in production since 1965. Leeward acquired the Property in 2003 and between then and 2008 carried out geological mapping, geochemical sampling, geophysical surveying, and approximately 47,000 m of drilling in 210 holes. These exploration programs identified five zones of molybdenum (Mo) mineralization, three of which were sufficiently well-defined to support a resource estimate that was completed in July 2011. During the period May to July 2011 Leeward completed an additional 32 drill holes (6,460 aggregate meters), mostly within the Delta Zone.

Tetra Tech Wardrop (Tetra Tech), has been retained by Leeward to prepare a Technical Report on the Nithi Property, prepared in accordance with National Instrument 43-101 (NI 43-101) and containing a an updated resource estimate that incorporates data from the 2011 drill program.

The Property is comprised of seven mineral tenures. Mineral Tenure 515427, which contains the known mineralization of interest, was staked in 2003 as eight claims under the Modified Grid System. In 2005, those claims were converted to Mineral Tenure 515427 which is 2852.729 ha in area.

The Property is situated within the Intermontane Morphogeological/Tectonic Belt of BC that is comprised of the of the Cache Creek, Nisling, and Stikine allochthonous terranes. The Property area is underlain by the multi-phase granodioritic Francois Lake Plutonic Suite of Late Jurassic to Early Cretaceous age that, as part of the Endako Batholith, was emplaced along the boundary between the Stikine and Cache Creek Terranes.

In the Nithi Mountain area, the Nithi Quartz Monzonite has been extensively faulted and brecciated, and mineralization observed on the Property to date occurs in numerous crosscutting veinlets, fractures, and breccias within a northeast-trending zone approximately 2 km wide, called the Alpha Trend. Within this trend, five mineralized zones, Gamma, Gamma West, Delta, Sigma and Theta have been identified to date.

Of these, Gamma and Delta have been explored most extensively; Gamma West has also been explored in reasonable detail. Sigma and Theta are poorly-defined.

The drill data accumulated to date has been used to carry out resource estimates for the three zones Delta, Gamma and Gamma West.

Resources were estimated using ordinary kriging (OK), inverse distance squared (ID^2) and inverse distance to the fifth power (ID^5) . The kriged estimate is summarized below in Table 1.1. Resources are stated at a lower grade threshold of 0.02% molybdenum sulphide (MoS₂). Tonnes have been rounded to the nearest thousand.

Zone	Tonnes	MoS ₂ %	Mo%	
Delta Indicated	43,064,000	0.037	0.022	
Delta Inferred	71,023,000	0.034	0.021	
Gamma Indicated	93,310,000	0.039	0.023	
Gamma Inferred	114,383,000	0.035	0.021	
Gamma West Indicated	11,230,000	0.030	0.018	
Gamma West Inferred	54,182,000	0.029	0.017	
Total Indicated	147,604,000	0.038	0.023	
Total Inferred	239,588,000	0.033	0.020	

Table 1.1 Summary of Delta, Gamma and Gamma West Resources

Tetra Tech recommends a program of drilling to better define the distribution of mineralization, particularly in the Delta and Gamma Zones where higher-grade mineralization appears to be concentrated on the outer margins of those zones as currently defined. In addition, Leeward has indicated the intention to carry out some reclamation work as well as an archaeological and conceptual mine design studies. Drilling is assumed to cost approximately Cdn\$185/m. In addition, Tetra Tech recommends that samples are collected on the basis of lithology rather than on the length of drill runs, which will better serve to identify and define controls on the distribution of mineralization.

Table 1.2 Recommended Nithi Exploration Budget 2011

ltem	Holes	Metres	Cost
Drilling	65	16,000	2,960,000
Reclamation			25,000
Archaeological Study			15,000
Conceptual Mining Study			60,000
Total			3,060,000

Successful completion of this work will determine the most appropriate course of action to advance the Property.

2.0 INTRODUCTION

2.1 INTRODUCTION

Leeward owns the Nithi Mountain Molybdenum Property in central BC at approximately 54° North Latitude and 125° West Longitude. The Property is located 10 km south of Fraser Lake and approximately 20 km southeast of the Endako Molybdenum Mine which has been in production since 1965. Leeward acquired the Property in 2003 and between then and 2008 carried out geological mapping, geochemical sampling, geophysical surveying and about 47,000 m of drilling in 210 holes.

No work was carried out on the Property between 2008 and 2011. Between May and July 2011, Leeward drilled 32 holes (aggregate length 6,460 meters) to better define controls on mineralization, in particular, to assess the potential of northeast-trending structural zones to contain higher-grade mineralization. Of the 32 holes, 27 were drilled in the Delta Zone and five in the Theta Zone.

2.2 TERMS OF REFERENCE

Tetra Tech was retained by Leeward to prepare a Technical Report on the Nithi Property that has been prepared in accordance with NI 43-101 and contains an update of the resource estimate that was completed prior to the latest drill campaign. The updated estimate is the subject of this report and incorporates data from the 27 holes drilled in the Delta Zone; a resource estimate was not carried out for the Theta Zone.

Sources of information used in this report are listed in Section 21.0 References, or elsewhere in the text of the report.

The author conducted a site visit to the Property on July 26, 2011.

3.0 RELIANCE ON OTHER EXPERTS

Tetra Tech has relied upon Leeward for information pertaining to ownership of the Property, permitting requirements and status, and legal and financial liabilities pertaining to the Property. Tetra Tech has not independently verified the accuracy of this information.

4.0 PROPERTY DESCRIPTION AND LOCATION

The Property is located in central BC at approximately 54° North Latitude and 125° West Longitude, approximately 160 km west of the city of Prince George, 10 km south of Fraser Lake, and approximately 20 km southeast of the Endako Molybdenum Mine (Figure 4.1). The Property is comprised of seven mineral tenures as listed in Table 4.1 and shown in Figure 4.2. Mineral Tenure 515427, which contains the known areas of significant molybdenum mineralization, is 2852.729 ha in area and is highlighted in Figure 4.2. This mineral tenure was staked in 2004 under the Modified Grid System as the Terri 1 to Terri 8 Claims; in 2005 these were consolidated into Mineral Tenure 515427.

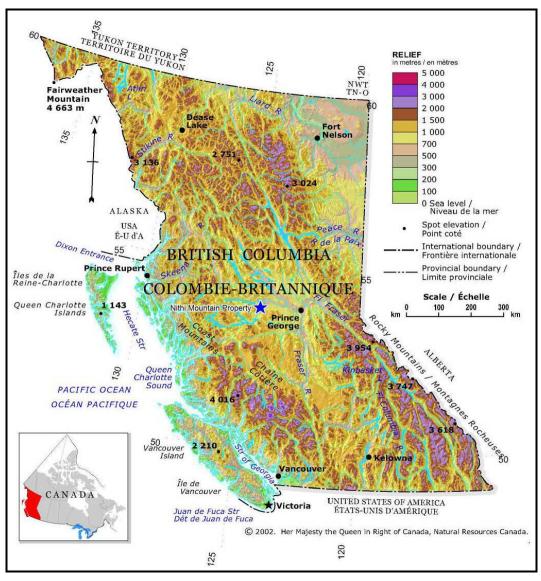
The boundaries of the Property have not been surveyed; the boundaries of the Property are map coordinates.

Table 4.1 was obtained from the British Columbia Government Mineral Titles Online website: https://www.mtonline.gov.bc.ca.

The Property is located in central BC, 158 km west of Prince George and 10 km south of the Village of Fraser Lake. Geographic co-ordinates of the approximate center of the Property are 53°58' north latitude and124°50 west longitude, within NTS Map Sheet 93F/15.

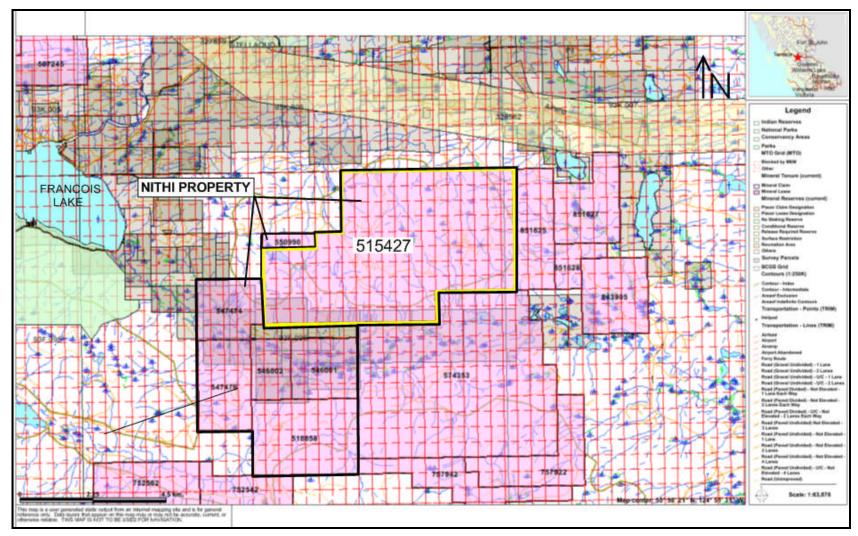
Leeward holds a 100% interest in the Property free and clear of any royalties, back-in rights, payments or other agreements and encumbrances. Leeward does not hold any surface rights and no other surface rights are recorded within the Property.

Other than the mineral zones that are the subject of this report, there are 11 other, apparently minor, known molybdenum occurrences within the Property. All are located within an east-northeast trend known as the Alpha Trend that also includes the main molybdenum zones of interest. There are no mine workings or any related tailings ponds, waste deposits or other improvements other than a series of forestry roads that have been constructed by logging companies and drill-access roads that have been constructed by the Leeward.


There are no known environmental liabilities.

Leeward holds the necessary permits to conduct exploration: an Occupation Licence to cut, under the forest Practices Access Code of British Columbia for road building, drill site construction and trenching, and drilling and water-use permits that are issued by the British Columbia Ministry of the Environment.

The mineral tenures are in good standing until at least 2014 and no expenditures are needed at present to maintain the Property in good standing.



Tenure Number	Owner	Tenure Type	Tenure Subtype	Map Number	lssue Date	Good To Date	Status	Area (ha)
515427	Leeward Capital (100%)	Mineral	Claim	093F	2005/Jun/28	2018/Oct/25	GOOD	2,852.73
518858	Leeward Capital (100%)	Mineral	Claim	093F	2005/Aug/09	2018/Jan/12	GOOD	761.66
546001	Leeward Capital (100%)	Mineral	Claim	093F	2006/Nov/28	2014/Nov/28	GOOD	380.66
546002	Leeward Capital (100%)	Mineral	Claim	093F	2006/Nov/28	2014/Nov/28	GOOD	228.40
547474	Leeward Capital (100%)	Mineral	Claim	093F	2006/Dec/14	2014/Dec/14	GOOD	361.48
547476	Leeward Capital (100%)	Mineral	Claim	093F	2006/Dec/14	2014/Dec/14	GOOD	456.83
550990	Leeward Capital (100%)	Mineral	Claim	093F	2007/Feb/02	2019/Feb/02	GOOD	76.07

Table 4.1 Nithi Molybdenum Property Mineral Tenures

Figure 4.2 Nithi Property Location of Mineral Tenure 515427

5.0 ACCESSIBILITY, CLIMATE, LOCAL RESOURCES, INFRASTRUCTURE AND PHYSIOGRAPHY

The Property is located between the major population centers of Prince George, 160 km to the east, and Smithers, 210 km to the west. Both communities are joined by Highway 16 that passes 10 km to the north of the Property, near the south shore of Fraser Lake. Access to the property is provided by the paved two-lane Chowsunket Road, 5 km south from the Village of Fraser Lake, then another 5 km by gravel logging roads most suitable for four-wheel-drive vehicles. A network of logging and drill roads provides access to the western and southern parts of the Property.

Population centres near the Property include Fraser Lake, 10 km north on Highway 16, Vanderhoof, 60 km east of Fraser Lake, and Burns Lake, 62 km west of Fraser Lake.

Two airfields, suitable for small aircraft, are located in the vicinity of Fraser Lake and a float-plane base is located on the northwest side of Fraser Lake. Scheduled flights are available from Prince George and Smithers. The Canadian National Railway passes south of Fraser Lake.

The property is centred on Nithi Mountain, with a maximum elevation of 1,352 masl, and a minimum elevation of about 900 masl in the valley of the Nithi River. Topography ranges from moderate to steep, with maximum local relief of about 450 m. The uplands around the crest of Nithi Mountain are of relatively subdued relief but the southern flanks of the mountain are relatively steep. The area is heavily forested with both deciduous and coniferous species. Warm summers, long cold winters and light precipitation typify the climate in the Nithi Mountain area.

Although Leeward holds no surface rights within the Property or elsewhere within the immediate area, suitable areas for mine infrastructure exist within and around the Property.

Electric power for an anticipated mining operation may be obtained from the main high voltage line to the Endako Mine that passes 2 km to the north of the Property.

The Nithi River, located 2 km south of the Gamma Zone, could reasonably provide an adequate water supply for a mining operation.

Skilled mining personnel are available both locally and from elsewhere within the province.

6.0 HISTORY

The following section is modified from Kelly (September 2008).

1952-1956: Uranium was discovered on the southwestern flanks of Nithi Mountain. Limited exploration by American Standard Mines demonstrated that the mineralization lacked depth and the Property was dropped.

1963-1964: R and P Metals Corp. Ltd. (Fraser Lake Mines) carried out trenching, soil sampling and limited diamond drilling on the MOLLY claim. The best intersection, in hole N-14, was 117 m averaging 0.10% MoS₂. Several other companies, New Indian Mines Ltd., Jodee Mines Ltd., Dundee Mines Ltd., and Fort Reliance Minerals, staked and explored claims in the Nithi Mountain area at this time. Property ownership was fragmented and the properties were dropped by the late 1960's.

1970-1973: Nithex Exploration and Development staked a large land package and carried out soil geochemical sampling and drilled four small-diameter core holes.

1975-1976: Amax Potash Ltd. optioned the Nithex claims, staked additional ground, and carried out geological mapping, geochemical soil sampling, geophysical surveys, and a percussion drilling program of 12 holes. Amax subsequently dropped their option and no significant additional work was done through the remainder of the 1970's.

1980-1981: Rockwell Mining Corp. optioned the claims from Nithex and Fraser Lake Mines, and contracted Taiga Consultants Ltd. to carry out a program of geochemical sampling, mapping, prospecting, and a drilling program of 10 holes (1,818 aggregate meters) of NQ core. The option was dropped and no additional work was done until 1997.

1997: Six new molybdenite occurrences were located along new logging roads west and south of Nithi Mountain during a regional mapping program by the Geological Survey of Canada.

2003: In December 2003, he Property was staked by Leeward Capital Corp., the present owners of the Property, as eight four-post claims, Terri 1 to Terri 8, under the Modified Grid System.

2004-2005: The Terri 1 to 8 Claims were re-staked (consolidated) by Leeward as Mineral Tenure 515427 (TERRI claim), and a program of data compilation, prospecting, geophysics and drilling was undertaken.

7.0 GEOLOGICAL SETTING AND MINERALIZATION

7.1 GEOLOGICAL SETTING

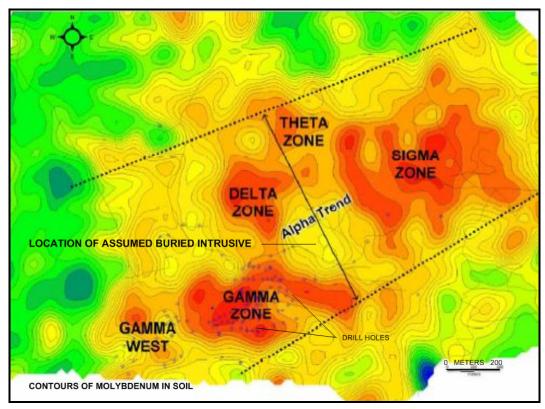
The Property is situated within the Intermontane Morphogeological/Tectonic Belt of BC that is comprised of the of the Cache Creek, Nisling, and Stikine allochthonous terranes. The Cache Creek and Nisling terranes were formed in the western Pacific during Permian to Middle Triassic time (280-230 Ma). The Stikine Terrane is a Carboniferous to Early Jurassic (320-190 Ma), island arc that was formed in the east Pacific. During the Early to Middle Jurassic (190-178 Ma), the two terranes joined to form the Intermontane Belt. Arc-related magmatic activity continued into the Tertiary.

The Property area is underlain by the multi-phase granodioritic Francois Lake Plutonic Suite of Late Jurassic to Early Cretaceous age that, as part of the Endako Batholith, was emplaced along the boundary between the Stikine and Cache Creek Terranes.

Biotite monzogranite to granodiorite phases of the François Lake Plutonic Suite comprise the northeastern part of the Endako batholith and are the host-rock of molybdenum mineralization in the Endako and Property areas. The François Lake Plutonic Suite has been subdivided into two sub-suites on the basis of composition and age:

- 1. The Glenannan sub-suite, consisting of the Glenannan and Nithi phases, with their various sub-phases, displays a range of compositions from biotite and hornblende-biotite monzogranite to granodiorite, is generally medium to coarse grained, and is located in the north-central to northwestern parts of the batholith.
- 2. The Endako sub-suite includes the Endako phase, its François sub-phase, the Casey phase, and a set of pre-ore felsic dykes. This suite generally consists of medium- to fine-grained monzogranite to granodiorite units. The Endako sub-suite is inferred to be younger than the Glenannan sub-suite.

The François Lake plutonic suite records a complex, protracted history that includes emplacement, solidification, locally intense veining, felsic dyke injection, Molybdenum and pyrite mineralization, alteration, and late dyke intrusion, fracturing, and jointing.



7.2 MINERALIZATION

This section is modified from Kelly (September 2008).

In the Nithi Mountain area, the Nithi Quartz Monzonite has been extensively faulted and brecciated, and mineralization observed on the Property to date occurs in numerous crosscutting veinlets, fractures and breccias within a northeast-trending zone approximately two km wide, called the Alpha Trend. Within this trend, five mineralized zones, Gamma, Gamma West, Delta, Sigma and Theta have been identified to date (Figure 7.1).

Mineralization is associated with intense clay alteration. Mineralized quartz veins are narrow (1 to 3 mm wide) and non- laminated, with varying proportions of solid molybdenite, quartz, hematite and a fine-grained black mixture of sulphides and lithified gouge. Quartz veins have a predominant east-northeast trend; these veins are cut by north-northwest trending, and less commonly by southeast trending veins. Laminated quartz-molybdenite veins, indicative of multiple stages of vein opening and sulphide deposition, are less abundant here than at the Endako mine. North-northwest trending fractures and faults locally cut and offset the east-northeast trending vein set.

Minor pyrite commonly occurs with molybdenite; hematite and magnetite are less common. Chalcopyrite, bornite and lesser chalcocite as well as fluorine have been noted in drill core.

Early mineralized veins have alteration envelopes of K-feldspar and variably contain quartz, quartz-molybdenite, or rarely, quartz- hematite. Veins with envelopes of sericite-quartz-pyrite cut those with K-feldspar envelopes veins and coalesce into broad, diffuse zones of pervasive sericitic alteration.

Argillic alteration consisting of kaolinite ±sericite varies from weak to intense, rated on the successive breakdown of mafic minerals, plagioclase, and finally K-feldspar, and their replacement by clay. Argillic alteration is most intense in the Gamma Zone.

Intense argillic alteration does not always coincide with elevated molybdenum mineralization, indicating that some alteration may be associated with post-mineral faulting and brecciation.

Geophysical data, primarily vertical gradiometrics, suggest the presence of several small intrusive centres or plugs, and the most prospective mineralization to date has been found on the outer edges of two of these. In addition to the geophysical indicators, soil geochemical results correspond to the outlines of these circular features. The Gamma and Delta Zones as delineated thus far are situated on the western outer edge of one of the coincident geochemical-geophysical circular features (Figure 7.1).

8.0 DEPOSIT TYPE

The following section is modified from Kelly (September 2008).

Porphyry molybdenum deposits are classified as alkalic-calcic granite type (e.g. Climax deposit) and low-fluorite (low-F) calc-alkaline quartz monzonite type (Endako deposit). Molybdenum mineralization at Nithi Mountain is classified as the low-F type.

Sinclair (1995) characterized low-F-type porphyry Mo deposits as calc-alkaline molybdenum stockworks, or stockworks of molybdenite-bearing quartz veinlets and fractures in intermediate to felsic intrusive rocks and associated country rocks. The following description of low-F-type Mo deposits is from Sinclair (1995):

- Deposits are low grade but large and amenable to bulk mining methods.
- These deposits are found in subduction zones related to arc/continent or continent/continent collision.
- The geological setting is that of high-level to subvolcanic felsic intrusive centres and multiple stages of intrusion are common.
- Geological age of the deposits range from Achaean to Tertiary with Mesozoic and Tertiary examples being most common.
- Host rocks are variable. Tuffs or other extrusive volcanic rocks may be associated with subvolcanic intrusives. Genetically related intrusive rocks are porphyritic and granodioritic with quartz monzonite being the most common. Intrusive rocks are characterized by low-F content (generally <0.1% F) compared to intrusive rocks associated with the Climax type porphyry Mo deposits;
- The deposits occur in various shapes from inverted cup-like to roughly cylindrical to highly irregular forms. They are typically hundreds of meters across and range from tens to hundreds of meters in vertical extent.
- The ore tends to be structurally controlled in stockworks of crosscutting fractures and quartz veinlets, veins, vein sets and breccias.
- The mineralogy consists principally of molybdenite with trace or minor chalcopyrite, scheelite, and galena.
- Gangue mineralogy consists of quartz, pyrite, potassium feldspar, biotite, sericite, clays, calcite and anhydrite.
- Alteration mineralogy consists of a core of potassic and silica alteration characterized by hydrothermal K-feldspar, biotite, quartz and possibly anhydrite.

• Phyllic alteration surrounds the inner potassic/silicic alteration core and may extend for hundreds of meters beyond the potassic/silicic and phyllic alteration zones. Where present, argillic alteration is characterized by kaolinite and typically overprinted onto the other zones.

The Endako Mine is an example of a porphyry molybdenum deposit. The following information has been modified from Kelly (September 2008); the present author has been unable to verify the following information and the information is not necessarily indicative of the mineralization that has been or may be found on the Property.

The Endako open-pit molybdenum mine, located about 20 km northwest of Nithi Mountain, has been in continuous production since 1965.

The current milling rate is about 30,000 st/d. A new 50,000 st/d mill is currently under construction and is scheduled to be finished in the spring of 2011. The average head grade is about 0.06% Mo and the recovery rate is about 78%.

The Endako deposit is a low F-type porphyry Mo deposit analogous to Nithi Mountain and like Nithi is related to an evolved aplitic phase of the host quartz monzonite. The host rock at Endako is the quartz monzonite phase of the Francois Lake Intrusive Suite. Two stages of molybdenite mineralization at 148-145 Ma are six to nine million years younger than the Nithi mineralization that has been dated at 154 Ma.

The Endako orebody is a 3.5 km-long stockwork zone that trends west- northwest and dips about 50° to the south. Mineralization has been traced to a depth of 330 m.

The stockwork is located at the structural intersection of the EW-trending South Boundary Fault, the NW-trending Casey Lake Fault, and NE-trending structures.

9.0 EXPLORATION

The following section is modified from Kelly (September 2008), and describes work carried out by Leeward since the acquisition of the Property in 2003.

2003: The Property was acquired in December 2003 by the staking of the Terri 1 to Terri 8 Claims.

2004: All data pertaining to previous exploration on the Property was compiled and a brief program consisting of prospecting, geological mapping, and geochemical sampling was completed. In addition, a NI 43-101 report was completed.

2005: Exploration included an airborne magnetic and electromagnetic survey and two drill programs (25 holes, 6,170 aggregate meters), to test the Gamma, Delta and Theta Zones.

2006: Sixteen drill holes (2923 m) were completed on the Gamma Zone.

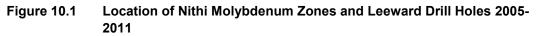
2007: Exploration work consisted of airborne gradiometer and radiometric surveys and digital terrain mapping, as well as soil geochemical surveys and the drilling of 120 holes (aggregate length 25,500 m).

2008: Drilling, primarily on the Delta Zone, comprised 50 holes (12,600 m).

Vertical gradiometer geophysical data suggest the presence of several small intrusive centres or plugs and the most prospective mineralization detected to date, appears to be spatially related to the outer rims of two of these inferred intrusive bodies. In addition to the geophysical indicators, molybdenum-in-soil geochemical results correspond closely to the outlines of these circular features. The Gamma and Delta Zones, as delineated to date, are situated on the southwestern and western edges respectively, of one of the coincident geochemical-geophysical circular features (Figure 7.1).

The airborne geophysical surveys were done under contract by Fugro and Aeroquest. The geochemical sampling, geological mapping and geological and supervisory aspects of the drill programs were done under contract by Taiga Consultants Ltd. of Calgary.

10.0 DRILLING


The location and amount of drilling that was carried out annually by Leeward between 2004 and 2011 is summarized below both by meters per zone and by meters per year (Table 10.1). The location of the zones and the distribution of the drill holes are shown in Figure 10.1. All holes were of NQ size.

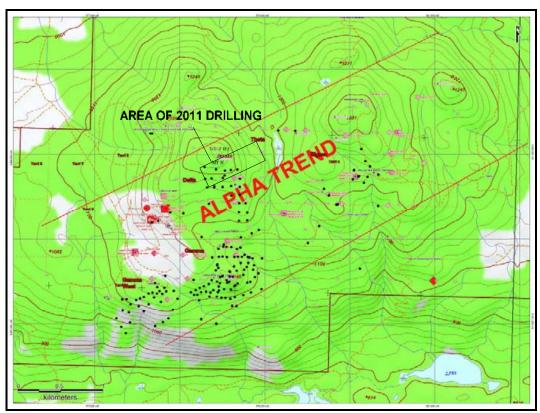

Nithi Dril	ling Summ	ary by Z	one	Ni	thi Drilling Sum	mary by	Year
Zone	Year	No. of Holes	Length (m)	Year	Zone	No. of Holes	Lengtł (m)
Delta	2007	3	817	2005	Gamma	17	3,941
Delta	2008	48	12,051	2005	Other	7	1,791
Delta	2011	27	5,351	2005	Subtotal	24	5,732
Delta	Subtotal	78	18,219				
				2006	Gamma	16	3,145
Gamma	2005	17	3,941				
Gamma	2006	16	3,145	2007	Delta	3	817
Gamma	2007	59	12,581	2007	Gamma	59	12,581
Gamma	Subtotal	92	19,667	2007	Gamma West	40	8,432
				2007	Other	6	1,098
Gamma West	2007	40	8,432	2007	Sigma	12	2,588
	1			2007	Subtotal	120	25,516
Other	2005	7	1,791		1	1	
Other	2007	6	1,098	2008	Delta	48	12,051
Other	Subtotal	13	2,889	2008	Theta	2	540
	1			2008	Subtotal	50	12,591
Sigma	2007	12	2,588		1	1	
				2011	Delta	27	5,351
Theta	2008	2	540	2011	Theta	5	1,110
Theta	2011	5	1,110	2011	Subtotal	32	6,461
Theta	Subtotal	7	1,650		1	1	
Total		237	53,444	Total		210	53,444

Table 10.1 Leeward Drill Programs at Nithi Mountain 2005-2008 (by Zone)

As can be seen from Table 10.1, the majority of holes have been drilled to test the Gamma (38%), Gamma West (16%) and Delta (34%) Zones. The geological interpretation for the Property has been developed from observations made within these areas.

Mineralization in the Gamma and Gamma West Zones is stockwork-style that is hosted by argillically-altered Nithi quartz-monzonite and Casey aplite. The predominant trend of mineralized fractures is about 060° and dips are vertical to steep, to the southeast. Drilling to date in the Gamma Zone has indicated the presence of mineralization over an area of about 1000 m NW-SE by 500 m NE-SW and to a maximum depth of 250 m below surface. The Delta Zone may be an offset portion of the Gamma Zone. (Figure 10.2)

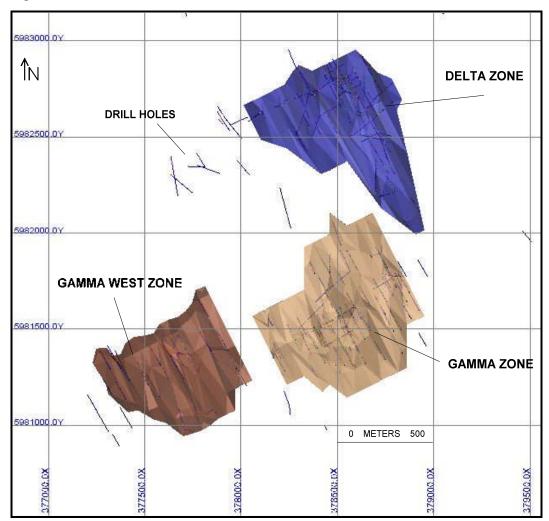


Figure 10.2 Plan View Nithi Delta, Gamma and Gamma West Zones

As in the Gamma Zone, Delta Zone mineralization is stockwork-style within argillically-altered Nithi quartz monzonite and Casey aplite. In addition to numerous quartz-molybdenite veins, disseminated molybdenite and rare, thicker seams of molybdenite occur as fracture fillings. Drilling in the Delta Zone has indicated the presence of mineralization over an area of about 800 m NW-SE by 450 m NE-SW and to a maximum depth of 260 m below surface.

The Delta and Gamma Zones are interpreted to contain multiple, stacked molybdenite zones that strike E-NE and dip gently to the SE. The shallow-dipping zones are intersected by a series of quartz-feldspar porphyry and basalt dykes and mineralized structures that strike NNW roughly perpendicular to the 060° trend. Some of the northwest-trending structures may also be mineralized.

Insufficient drilling has been done in the other zones (Sigma and Theta) to permit a meaningful interpretation of the mineralization that has been intersected in these areas.

Drill holes have intersected mineralization at a range of angles relative to true thickness; therefore it is not possible to make any generalization with respect to the relationship between sample length and the true thickness of mineralization.

10.1 SAMPLING METHOD AND APPROACH

Drill core from all programs was sampled in a similar manner: All core was logged, split with a mechanical splitter (early holes were cut rather than split or not processed at all if no mineralization was visually detected), and sampled. The length of individual samples was typically established by sampling between the wooden blocks that marked the drill runs. The most common sample length was 3.05 m (10 ft, the conventional maximum drill run).

Logging, splitting and sampling the core was done by geologists and a technician under the supervision of T. Millinoff, all of whom were employees of Taiga Consultants Ltd.

Because each hole was sampled in its entirety, sample bias was not a meaningful concern. Core recovery, in general, was reported by Leeward as being excellent.

Core from the 2011program was logged, split, and sampled at a rented garage located on Telegraph Road, Fraser Lake. All core, including that from previous drill campaigns, is stored out of doors within a fenced and protected area on the outskirts of Fraser Lake. Samples were placed in plastic sample bags, sealed, and shipped to Loring Laboratories in Calgary.

11.0 SAMPLE PREPARATION, ANALYSES, AND SECURITY

Drill core was logged, split with a mechanical splitter, and one-half was placed in a plastic sample bag with one of a triple set of assay tags. The second half of the core was returned to its proper place in the core box. The second copy of the sample tag was placed in the core box at the start of the sample interval and the third portion of the sample tag was retained in the assay book. It was noted during the site visit that no sample tags were seen in any of the core boxes examined. Sample preparation for all drill programs was carried out by employees of Taiga Consultants Ltd. of Calgary.

Sample bags were sealed and packed into shipping sacks that in turn were labelled and sealed and securely stored until shipment. Samples were shipped by truck from Fraser Lake to Loring Laboratories (Loring) in Calgary. Loring is an Alberta Certified Assayer and is also ISO certified.

Loring used a 2 g sample charge and analyzed for Mo using an Atomic Absorption with a Spectrophotometric finish.

Standards and blanks were used for all drill programs; duplicates were used for the 2011 program.

Blanks and standards were inserted into the sample stream after every ten regular samples. Three standards were obtained from WCM Minerals of Burnaby, BC. Blank material for earlier programs was obtained from barren granite; for the 2011 program, local river sand was used for blanks.

Tetra Tech considers the sampling, sample preparation, security and analytical procedures to be within industry norms and that the data that has been obtained from these samples is adequate for the purpose of the resource estimate that follows.

12.0 DATA VERIFICATION

Leeward employed standards, blanks and duplicate samples as quality assurance/quality control (QA/QC) measures in their 2011 drill program and this data was provided to Tetra Tech. Two of 98 analyses of blanks exceeded an accepted mean value of 0.001 % MoS_2 ; both were from hole D-11-42. Sample batches associated with failed blanks were re-run.

Tetra Tech received analytical data for one standard (Cu-119 from WCM Minerals of Burnaby, British Columbia) used during the 2011 drill program. Only one of 90 analyses (from hole D-11-42) differed from the expected mean by more than 10 percent. The sample batch associated with the failed standard was re-run.

Data was received for 99 duplicate pairs. About 35% of the pairs differed by more than 10 percent compared to the original assay, the analyses of 18 duplicates were less than 90% of the original and the assays of 17 duplicates were more than 110% of the original. The magnitude of the differences did not, as is commonly the case, increase with an increase of the assay values. Leeward did not have a set threshold for rejection of duplicate assays but a decision to re-run the relevant batch was made on a case-by-case basis.

Tetra Tech did not collect any samples of core to independently verify the existence of molybdenite mineralization as it is macroscopically visible in the core and in outcrop and its existence is therefore not in question.

13.0 MINERAL PROCESSING AND METALLURGICAL TESTING

In 2008, G&T Metallurgical Services Ltd. (G&T), located in Kamloops, BC, carried out a preliminary metallurgical assessment of Nithi molybdenum mineralization. Leeward send about 367 kg of coarse reject drill core sample material to G&T as three composites of low-grade (0.043 %MoS₂), medium-grade (0. 058 %MoS₂) and high-grade (0. 032 %MoS₂) mineralization. G&T carried out open-circuit and locked-cycle tests. Overall recoveries for the open-circuit tests ranged between 83 and 90%; for the locked-cycle tests recoveries were about 94%. Rate of recovery did not appear to have a quantitative relationship with grade.

14.0 MINERAL RESOURCE ESTIMATES

14.1 EXPLORATORY DATA ANALYSIS

14.1.1 Assays

Leeward provided Tetra Tech with an assay database in Microsoft Excel[™] format that included collar locations, down-hole surveys, assays (1,693 samples) with values expressed as MoS₂ and Mo, lithology, and alteration for the holes drilled during the 2011 program. The drill hole data were imported into the resource estimation software program GEMS[™], added to the existing database, and checked for integrity. Minor discrepancies were found between maximum stated hole lengths and maximum sample lengths, as well as a minor number of from-and-to transposition errors in the assay table. These were corrected to produce an error-free data set.

14.1.2 CAPPING

Capping is normally applied to a data set to compensate for the disproportionate influence of high values if those values are atypical of the sample population. The complete Nithi molybdenum assay population ranges in value from zero to a maximum of 1.62% MoS₂. Although most values (16,688 of 17,151) are equal to or less than 0.1% MoS₂, those in excess of 0.1% have an even progression to the maximum value of 1.62% which suggests a homogenous population, and the top decile contains less than 40% of the value of the total assay population, the threshold for capping when using the Parrish method. Therefore none of the high values is considered to be an outlier and no capping was applied.

14.1.3 COMPOSITES

Samples are composited to even lengths to overcome the distorting effect of variable sample lengths on the weighting of sample grades. In the case of the Nithi assay data set, all but 42 of the 1,693 assays from the 2011 drill program were 3.05 meters in length and overall, only 0.2% of the samples exceeded 3.05 m in length. Samples were therefore composited to 3.05 m. The compositing process was restricted to those assays that were located within the modeled geological solids (Gamma, Gamma West and Delta Zones) to minimize dilution on the margins of the mineralized zones. The comparative descriptive statistics for all raw assays and those composites within the principal three known zones are shown below in Table 14.1.

Nithi All Samples MoS ₂	Assays	Composites
Mean	0.026	0.030
Standard Error	0.000	0.000
Median	0.016	0.022
Mode	0.001	0.016
Standard Deviation	0.041	0.036
Sample Variance	0.002	0.001
Kurtosis	344.467	154.723
Skewness	13.220	9.155
Range	1.619	1.001
Minimum	0.000	0.000
Maximum	1.619	1.001
Sum	441.788	364.498
Count	17,151	12,265

Table 14.1 Descriptive Statistics Nithi MoS₂ Assays and Composites

14.2 BULK DENSITY

In 2007, Leeward collected 84 bulk density measurements from Gamma Zone core samples. Measurements ranged from 2.40 to 2.76 g/cm³. The average is 2.55 g/cm³. In 2011, 29 measurements of bulk density were made from fine-grained reject material. These values ranged between 2.59 to 2.79 g/cm³ with an average value of 2.71 g/cm³. For the purpose of the resource estimate, a weighted average of all 113 measurements, 2.59 g/cm³ was used.

14.3 GEOLOGICAL INTERPRETATION

Five zones of molybdenum concentration, Gamma, Gamma West, Delta, Sigma and Theta, have been identified by Leeward from surface geochemical and geophysical surveys and drilling. However, these zones appear to be identifiable only on the basis of concentration of mineralization, not by any unique geological features. Therefore, for this resource estimation exercise, the zones were modeled as grade shells. A grade of 0.02% MoS₂ was chosen as the appropriate lower boundary limit for the grade shell. This grade appears to be a natural limit at which the distribution of molybdenum mineralization becomes erratic or ceases to form a relatively coherent volume. Only three of the five currently-identified zones were modeled: Gamma, Gamma West and Delta. Too little data is currently available for the Sigma and Theta Zones to support a meaningful estimation of the resources present there. The three zones, as modeled, are shown in Figure 10.2.

14.4 SPATIAL ANALYSIS

Variographic analysis of the Nithi data set was made using composite values and Sage 2001 software. The resultant ellipse was flat-lying and elongate in a nearly north-south direction. Geological evidence (outcrop) indicates that the distribution of mineralization has been influenced by fractures trending both northeast and northwest. The north-trending ellipse was retained as a compromise for both trends, but rather than having the north-south axis longer than the east-west axis, both were made equal so that the search ellipse is a flat disk to give equal weight to both fracture directions. Variogram parameters are given in Table 14.2; search ellipse parameters are given in Table 14.3.

		ZYZ	C1			C2
Structure	Weight	Rotation Axiz	Axis Orientation	Range	Axis	Range
C0	0.371	Z	0	60	Х	90
C1	0.518	Y	87	120	Y	180
C2	0.111	Z	0	100	Z	200

Model – Two Structure Exponential C0 – Nugget C1 – First Structure C2 – Second Structure Lag – 65 m Pairs Minimum – 350 Range in metres

Search Ellipse	Axis	Axis Orientation	Indicated Range	Inferred Range
	Principal Axis	0	40	60
	Principal Dip	87	80	120
	Intermediate Axis	0	80	120

14.5 RESOURCE BLOCK MODEL

Block model parameters are given below in Table 14.4.

Table 14.4 Nithi Block Model Parameters

Origin	Coordinates	Dimensions	Number	Size (m)	Rotation
Х	377200	Columns	90	20	0
Y	5980900	Rows	105	20	
Z	1400	Levels	70	10	

14.6 INTERPOLATION PLAN

Resources were interpolated in two passes. In each pass, interpolation of grades was restricted to the solid from which the composited assay values were obtained; that is to say, interpolated values pertain only to an individual solid and grades within a given solid are not affected by grades in adjacent solids.

In the first pass, for a grade to be interpolated into a block it was necessary that a minimum of four (4) samples, with a minimum of one sample per drill hole (i.e. a minimum of four drill holes), be located within the volume of the search ellipse. The Indicated search ellipse was used for the first pass.

For the second pass, it was necessary that a minimum of two (2) samples, with a minimum of one sample per drill hole (two drill holes), be present within the volume of the search ellipse. The Inferred search ellipse was used for this pass. In both cases the maximum number of samples permitted for the estimation of a block grade was 16 samples.

Resources were estimated by ordinary kriging, inverse distance squared (ID^2) and inverse distance to the fifth power ID^5). Kriging is taken as the "best" estimate; the others were run as checks on the kriged estimate.

14.7 MINERAL RESOURCE CLASSIFICATION

As implied by the names of the search ellipses, blocks that received a grade during the first pass were classified as Indicated; those that received a grade during the second pass were classified as Inferred. No blocks were classified as Measured.

14.8 MINERAL RESOURCE TABULATION

The kriged, ID^2 and ID^5 resource estimates for the Delta, Gamma and Gamma West Zones are presented below in Table 14.5, Table 14.6, and Table 14.7 respectively. The base case of 0.02% MoS₂ is highlighted in yellow in each.

Table 14.5 Nithi Resource Estimate Kriged

Delta Threshold MoS ₂	Indicated Tonnes	Grade MoS₂%	Grade Mo%	Gamma Threshold MoS ₂	Indicated Tonnes	Grade MoS₂%	Grade Mo%	Gamma West Threshold MoS ₂	Indicated Tonnes	Grade MoS₂%	Grade Mo%
0.50	0	0.000	0.000	0.50	0	0.000	0.000	0.50	0	0.000	0.000
0.25	20,400	0.278	0.167	0.25	0	0.000	0.000	0.25	0	0.000	0.000
0.10	1,213,800	0.145	0.087	0.10	1,111,800	0.132	0.079	0.10	0	0.000	0.000
0.09	1,611,600	0.132	0.079	0.09	1,499,400	0.122	0.073	0.09	30,600	0.094	0.057
0.08	2,091,000	0.121	0.073	0.08	2,223,600	0.110	0.066	0.08	51,000	0.089	0.054
0.07	2,937,600	0.108	0.065	0.07	3,988,200	0.094	0.056	0.07	81,600	0.084	0.050
0.06	4,396,200	0.093	0.056	0.06	8,098,800	0.079	0.047	0.06	163,200	0.073	0.044
0.05	6,456,600	0.081	0.049	0.05	16,952,400	0.066	0.040	0.05	316,200	0.064	0.039
0.04	10,822,200	0.066	0.040	0.04	34,027,199	0.055	0.033	0.04	1,213,800	0.050	0.030
0.03	20,665,199	0.051	0.031	0.03	62,546,398	0.046	0.028	0.03	4,253,400	0.039	0.023
0.02	43,064,399	0.037	0.022	0.02	93,309,598	0.039	0.023	0.02	11,230,200	0.030	0.018
0.01	77,591,398	0.027	0.016	0.01	103,325,997	0.037	0.022	0.01	18,584,400	0.024	0.015
Delta Threshold MoS ₂	Inferred Tonnes	Grade MoS₂%	Grade Mo%	Gamma Threshold MoS ₂	Inferred Tonnes	Grade MoS₂%	Grade Mo%	Gamma West Threshold MoS ₂	Inferred Tonnes	Grade MoS₂%	Grade Mo%
0.50	10,200	0.510	0.306	0.50	0	0.000	0.000	0.50	0	0.000	0.000
0.25	40,800	0.338	0.203	0.25	0	0.000	0.000	0.25	0	0.000	0.000
0.10	887,400	0.144	0.087	0.10	571,200	0.118	0.071	0.10	71,400	0.140	0.084
0.09	1,122,000	0.134	0.080	0.09	1,020,000	0.108	0.065	0.09	142,800	0.118	0.071
0.08	1,540,200	0.120	0.072	0.08	1,591,200	0.099	0.060	0.08	142,800	0.118	0.071
0.07	2,488,800	0.103	0.062	0.07	2,754,000	0.089	0.053	0.07	255,000	0.098	0.059
0.06	4,182,000	0.087	0.052	0.06	5,630,400	0.076	0.046	0.06	591,600	0.079	0.047
0.05	7,925,400	0.072	0.043	0.05	12,556,200	0.064	0.039	0.05	1,560,600	0.064	0.038
0.04	15,534,599	0.058	0.035	0.04	29,294,399	0.053	0.032	0.04	4,896,000	0.050	0.030
0.03	32,180,999	0.046	0.028	0.03	65,606,398	0.043	0.026	0.03	17,380,799	0.038	0.023
0.00	71,022,598	0.034	0.004	0.02	114,382,796	0.035	0.021	0.02	54,182,398	0.029	0.017
0.02	11,022,590	0.034	0.021	0.02	114,302,730	0.035	0.021	0.02	04,102,000	0.023	•••

Table 14.6Nithi Resource Estimate ID2

Delta Threshold MoS ₂	Indicated Tonnes	Grade MoS₂%	Grade Mo%	Gamma Threshold MoS ₂	Indicated Tonnes	Grade MoS₂%	Grade Mo%	Gamma West Threshold MoS ₂	Indicated Tonnes	Grade MoS₂%	Grade Mo%
0.50	0	0.000	0.000	0.50	0	0.000	0.000	0.50	0	0.000	0.000
0.25	51,000	0.286	0.172	0.25	61,200	0.303	0.182	0.25	0	0.000	0.000
0.10	1,305,600	0.148	0.089	0.10	1,560,600	0.139	0.083	0.10	40,800	0.117	0.070
0.09	1,632,000	0.137	0.082	0.09	2,111,400	0.127	0.076	0.09	40,800	0.117	0.070
0.08	2,121,600	0.125	0.075	0.08	3,213,000	0.113	0.068	0.08	71,400	0.105	0.063
0.07	3,049,800	0.109	0.066	0.07	5,487,600	0.097	0.058	0.07	173,400	0.087	0.052
0.06	4,559,400	0.094	0.057	0.06	9,883,800	0.082	0.049	0.06	316,200	0.077	0.046
0.05	6,558,600	0.082	0.049	0.05	18,309,000	0.070	0.042	0.05	663,000	0.065	0.039
0.04	11,291,400	0.066	0.040	0.04	33,527,399	0.058	0.035	0.04	1,652,400	0.052	0.031
0.03	20,389,799	0.052	0.031	0.03	58,660,199	0.048	0.029	0.03	4,386,000	0.041	0.025
0.02	41,666,999	0.038	0.023	0.02	89,229,598	0.040	0.024	0.02	10,240,800	0.032	0.019
0.01	75,337,198	0.028	0.017	0.01	102,785,397	0.037	0.022	0.01	18,105,000	0.025	0.015
Delta Threshold MoS ₂	Inferred Tonnes	Grade MoS₂%	Grade Mo%	Gamma Threshold MoS ₂	Inferred Tonnes	Grade MoS₂%	Grade Mo%	Gamma West Threshold MoS ₂	Inferred Tonnes	Grade MoS₂%	Grade Mo%
0.50	10,200	0.555	0.333	0.50	0	0.000	0.000	0.50	0	0.000	0.000
0.25	81,600	0.376	0.226	0.25	20,400	0.333	0.200	0.25	0	0.000	0.000
0.10	1,193,400	0.147	0.088	0.10	887,400	0.129	0.077	0.10	122,400	0.147	0.088
0.09	1,632,000	0.133	0.080	0.09	1,326,000	0.118	0.071	0.09	214,200	0.125	0.075
0.08	2,386,800	0.118	0.071	0.08	2,295,000	0.104	0.062	0.08	285,600	0.115	0.069
0.07	3,672,000	0.103	0.062	0.07	3,845,400	0.092	0.055	0.07	530,400	0.096	0.058
0.06	5,722,200	0.089	0.053	0.06	7,384,800	0.079	0.047	0.06	1,091,400	0.080	0.048
0.05	9,486,000	0.075	0.045	0.05	14,198,400	0.067	0.040	0.05	2,233,800	0.067	0.040
0.04	17,044,199	0.062	0.037	0.04	29,671,799	0.055	0.033	0.04	6,038,400	0.052	0.031
0.03	32,262,599	0.049	0.029	0.03	63,025,798	0.044	0.027	0.03	17,462,399	0.040	0.024
								0.00	= 4 000 000	0.000	0.040
0.02	67,156,798	0.036	0.022	0.02	109,466,397	0.036	0.022	0.02	51,203,998	0.030	0.018

Table 14.7Nithi Resource Estimate ID5

Delta Threshold MoS ₂	Indicated Tonnes	Grade MoS₂%	Grade Mo%	Gamma Threshold MoS ₂	Indicated Tonnes	Grade MoS₂%	Grade Mo%	Gamma West Threshold MoS ₂	Indicated Tonnes	Grade MoS₂%	Grade Mo%
0.50	0	0.000	0.000	0.50	20,400	0.529	0.317	0.50	0	0.000	0.000
0.25	193,800	0.307	0.184	0.25	91,800	0.388	0.233	0.25	0	0.000	0.000
0.10	1,876,800	0.161	0.096	0.10	2,335,800	0.145	0.087	0.10	91,800	0.130	0.078
0.09	2,325,600	0.148	0.089	0.09	3,386,400	0.130	0.078	0.09	153,000	0.116	0.070
0.08	2,927,400	0.135	0.081	0.08	4,824,600	0.116	0.070	0.08	183,600	0.111	0.067
0.07	3,794,400	0.121	0.073	0.07	7,456,200	0.101	0.061	0.07	306,000	0.097	0.058
0.06	5,161,200	0.106	0.064	0.06	12,495,000	0.087	0.052	0.06	489,600	0.085	0.051
0.05	7,782,600	0.089	0.053	0.05	19,584,000	0.075	0.045	0.05	1,009,800	0.069	0.042
0.04	12,229,800	0.073	0.044	0.04	33,098,999	0.062	0.037	0.04	2,203,200	0.056	0.033
0.03	20,032,799	0.058	0.035	0.03	54,641,399	0.051	0.031	0.03	4,569,600	0.045	0.027
0.02	37,709,399	0.042	0.025	0.02	82,334,398	0.043	0.026	0.02	9,781,800	0.034	0.020
0.01	68,737,798	0.030	0.018	0.01	101,092,197	0.038	0.023	0.01	16,942,200	0.026	0.016
Delta Threshold MoS ₂	Inferred Tonnes	Grade MoS₂%	Grade Mo%	Gamma Threshold MoS ₂	Inferred Tonnes	Grade MoS₂%	Grade Mo%	Gamma West Threshold MoS ₂	Inferred Tonnes	Grade MoS₂%	Grade Mo%
0.50	20,400	0.532	0.319	0.50	0	0.000	0.000	0.50	0	0.000	0.000
0.25	1=0.000									0.000	
	153,000	0.357	0.214	0.25	30,600	0.344	0.207	0.25	0	0.000	0.000
0.10	153,000 2,101,200	0.357 0.143	0.214 0.086	0.25 0.10	30,600 1,621,800	0.344 0.131		0.25 0.10	0 224,400		0.000 0.085
0.10 0.09			-		-		0.207		-	0.000	
	2,101,200	0.143	0.086	0.10	1,621,800	0.131	0.207 0.078	0.10	224,400	0.000 0.141	0.085
0.09	2,101,200 2,774,400	0.143 0.131	0.086 0.079	0.10 0.09	1,621,800 2,386,800	0.131 0.119	0.207 0.078 0.071	0.10 0.09	224,400 397,800	0.000 0.141 0.121	0.085 0.073
0.09 0.08	2,101,200 2,774,400 3,784,200	0.143 0.131 0.119	0.086 0.079 0.071	0.10 0.09 0.08	1,621,800 2,386,800 3,417,000	0.131 0.119 0.109	0.207 0.078 0.071 0.065	0.10 0.09 0.08	224,400 397,800 530,400	0.000 0.141 0.121 0.112	0.085 0.073 0.067
0.09 0.08 0.07	2,101,200 2,774,400 3,784,200 5,691,600	0.143 0.131 0.119 0.104	0.086 0.079 0.071 0.062	0.10 0.09 0.08 0.07	1,621,800 2,386,800 3,417,000 5,559,000	0.131 0.119 0.109 0.095	0.207 0.078 0.071 0.065 0.057	0.10 0.09 0.08 0.07	224,400 397,800 530,400 969,000	0.000 0.141 0.121 0.112 0.095	0.085 0.073 0.067 0.057
0.09 0.08 0.07 0.06	2,101,200 2,774,400 3,784,200 5,691,600 8,007,000	0.143 0.131 0.119 0.104 0.093	0.086 0.079 0.071 0.062 0.056	0.10 0.09 0.08 0.07 0.06	1,621,800 2,386,800 3,417,000 5,559,000 10,434,600	0.131 0.119 0.109 0.095 0.081	0.207 0.078 0.071 0.065 0.057 0.048	0.10 0.09 0.08 0.07 0.06	224,400 397,800 530,400 969,000 1,581,000	0.000 0.141 0.121 0.112 0.095 0.083	0.085 0.073 0.067 0.057 0.050
0.09 0.08 0.07 0.06 0.05	2,101,200 2,774,400 3,784,200 5,691,600 8,007,000 12,056,400	0.143 0.131 0.119 0.104 0.093 0.080	0.086 0.079 0.071 0.062 0.056 0.048	0.10 0.09 0.08 0.07 0.06 0.05	1,621,800 2,386,800 3,417,000 5,559,000 10,434,600 16,574,999	0.131 0.119 0.109 0.095 0.081 0.071	0.207 0.078 0.071 0.065 0.057 0.048 0.043	0.10 0.09 0.08 0.07 0.06 0.05	224,400 397,800 530,400 969,000 1,581,000 3,070,200	0.000 0.141 0.121 0.112 0.095 0.083 0.069	0.085 0.073 0.067 0.057 0.050 0.042
0.09 0.08 0.07 0.06 0.05 0.04	2,101,200 2,774,400 3,784,200 5,691,600 8,007,000 12,056,400 18,237,599	0.143 0.131 0.119 0.104 0.093 0.080 0.068	0.086 0.079 0.071 0.062 0.056 0.048 0.041	0.10 0.09 0.08 0.07 0.06 0.05 0.04	1,621,800 2,386,800 3,417,000 5,559,000 10,434,600 16,574,999 30,202,199	0.131 0.119 0.109 0.095 0.081 0.071 0.059	0.207 0.078 0.071 0.065 0.057 0.048 0.043 0.035	0.10 0.09 0.08 0.07 0.06 0.05 0.04	224,400 397,800 530,400 969,000 1,581,000 3,070,200 7,680,600	0.000 0.141 0.121 0.095 0.083 0.069 0.054	0.085 0.073 0.067 0.057 0.050 0.042 0.033

Table 14.8Summary of Nithi Kriged Resource Estimate @ 0.02 MoS2 LowerThreshold

Zone	Tonnes	MoS ₂ %	Mo%
Delta Indicated	43,064,000	0.037	0.022
Delta Inferred	71,023,000	0.034	0.021
Gamma Indicated	93,310,000	0.039	0.023
Gamma Inferred	114,383,000	0.035	0.021
Gamma West Indicated	11,230,000	0.030	0.018
Gamma West Inferred	54,182,000	0.029	0.017
Total Indicated	147,604,000	0.038	0.023
Total Inferred	239,588,000	0.033	0.020

Note: Tonnes have been rounded to the nearest thousand in Table 14.8.

14.9 BLOCK MODEL VALIDATION

The block model was validated in the following two ways:

- 1. By comparison of results of the three interpolation methods (Table 14.5, Table 14.5, and Table 14.6)
- 2. Visual inspection of the goodness of fit of the block model relative to the enclosing geological solid.

These tests show good agreement both between the estimation methods and between the block model and the geological solids. The interpolation results are consistent with the expected behaviour of the methodologies used: kriging estimates a larger tonnage with a lower grade than either ID^2 or ID^5 ; ID^2 estimates more tonnes at a lower grade than ID^5 .

15.0 ADJACENT PROPERTIES

There are no adjacent properties.

16.0 OTHER RELEVANT DATA AND INFORMATION

There is no additional information or explanations that would make this technical report not misleading.

17.0 INTERPRETATION AND CONCLUSIONS

Leeward carried out a drill program on the Property during the first half of 2011 that comprised 32 holes with an aggregate length of 6,461 meters to bring the total amount of drilling to date to 242 holes with an aggregate length of 53,444 m.

The drill data accumulated prior to 2011 was used to in July 2011 carry out a resource estimates for the three zones Delta, Gamma and Gamma West.

The July 2011 resource estimate has been updated in this report with the addition of the data obtained during the 2011 drill program.

Resources were estimated using OK, ID^2 and ID^5 . The kriged estimate is summarized below in Table 17.1. Resources are stated at a lower grade threshold of 0.02% MoS₂. Tonnes have been rounded to the nearest thousand.

Zone	Tonnes	MoS ₂ %	Mo%
Delta Indicated	43,064,000	0.037	0.022
Delta Inferred	71,023,000	0.034	0.021
Gamma Indicated	93,310,000	0.039	0.023
Gamma Inferred	114,383,000	0.035	0.021
Gamma West Indicated	11,230,000	0.030	0.018
Gamma West Inferred	54,182,000	0.029	0.017
Total Indicated	147,604,000	0.038	0.023
Total Inferred	239,588,000	0.033	0.020

 Table 17.1
 Summary of Delta, Gamma and Gamma West Resources

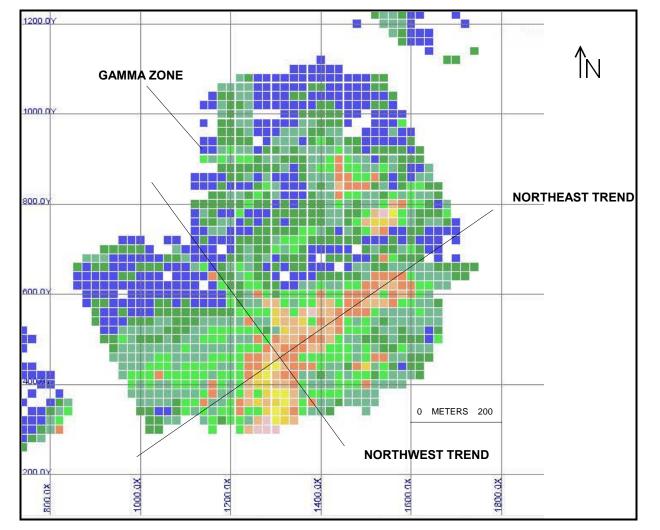
The pattern of grade distributions in the block model suggests three generalizations with respect to the nature of the mineralization discovered to date:

1. Consistent with observations of fracturing and mineralization in outcrop, grades exhibit both northeast and northwest trends. (Figure 17.1)

2. The highest grades in the Delta and Gamma Zones as defined to date appear to be distributed along the outer boundary of both zones with respect to the presumed barren intrusive around which the Delta, Gamma and Gamma West Zones are distributed. (Figure 17.2)

3. The highest grades of mineralization appear to be relatively shallow. (Figure 17.3)

Tetra Tech considers that the currently estimated resources are consistent with the amount of exploration that has been carried out to date but that additional drilling is



warranted to further investigate whether structurally-controlled, higher-grade volumes of mineralization can be defined in sufficient detail to permit which if present would enhance the potential economics of the Property.

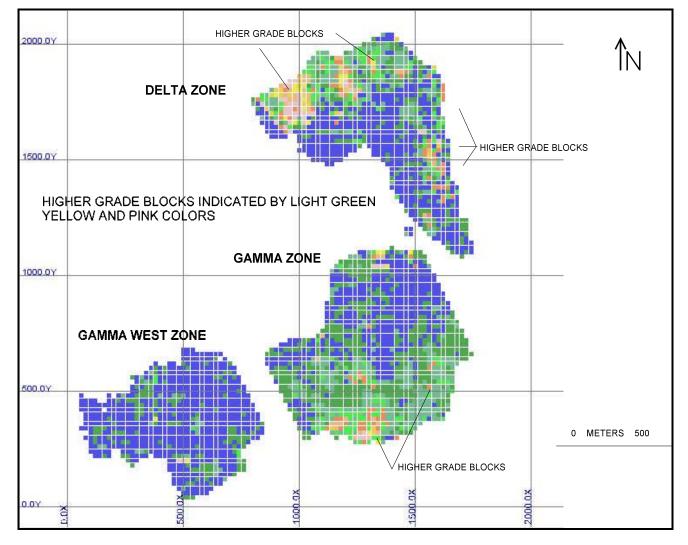


Figure 17.1 Plan View Nithi Northeast and Northwest Trends in Block Model Grades

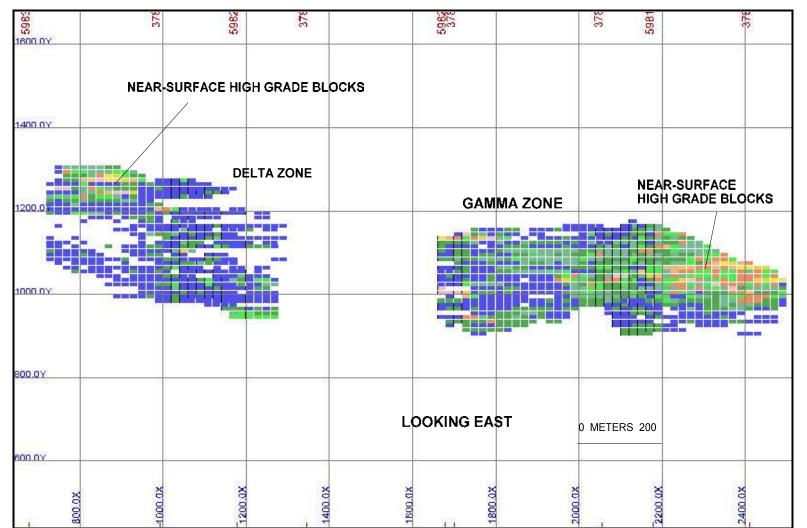


Figure 17.2 Plan View High Grade Distribution on Margins of Delta and Gamma Zones

Leeward Capital Corp. Technical Report on the Nithi Mountain Molybdenum Property, British Columbia, Canada

Figure 17.3 Cross Sectional View Delta and Gamma Zones Near-Surface High Grade Blocks

18.0 RECOMMENDATIONS

Tetra Tech recommends the following program that consists primarily of drilling to better define the distribution of higher-grade mineralization, particularly in the Delta and Gamma Zones where higher-grade mineralization appears to be concentrated on the outer margins of those zones as currently defined. Leeward has indicated the intention to carry out some reclamation work as well as an archaeological and conceptual mine design studies. Drilling is assumed to cost about Cdn\$185/m.

Table 18.1	Recommended Nithi Exploration Budget 2011 (Costs in CAD\$)

ltem	Holes	Metres	Cost
Drilling	65	16,000	2,960,000
Reclamation			25,000
Archaeological Study			15,000
Conceptual Mining Study			60,000
Total			3,060,000

On the basis of observations of core sampling and storage procedures employed in previous sampling programs, Tetra Tech recommends the following modifications:

- Depth measurements recorded on the wooden blocks in the core boxes should be shown to two decimal places and in both metric and imperial units.
- Consideration should be given to basing sample boundaries on lithology rather than on drill runs so as to better define distribution and controls of mineralization.

It is further recommended that:

- Previous sampling should be reviewed to determine whether those samples that were recorded as being of 3.0 m in length are in fact of 3.05 m length. If this is the case, sample lengths should be corrected.
- If core from previous drill campaigns is to be retained for archival purposes, it should be stored with greater consideration of its long-term preservation than is currently the case.

Successful completion of this work will determine the most appropriate course of action to advance the Property.

19.0 REFERENCES

Dawson, Kenneth, April 21, 2007. Review of the Drilling on the Nithi Mountain Property of Leeward Capital Corp., Fraser Lake, British Columbia

G&T Metallurgical Services Ltd., February 29, 2008. Preliminary Metallurgical Assessment – Nithi Mountain Property, British Columbia, Canada, For Leeward Capital Corp.

Kelly, James, February 15, 2008. Technical Report Resource Assessment on the Gamma Zone, Nithi Mountain Molybdenum Property, Fraser Lake, British Columbia. For Leeward Capital Corp.

Kelly, James, September 22, 2008. Technical Report on the Resource Assessment of the Gamma and Delta Zones, Mineral Tenure 515427, Nithi Mountain Molybdenum Property, Fraser Lake, British Columbia. For Leeward Capital Corp.

Sinclair, W.D., 1995. Porphyry Mo (Low-F type) in: Selected British Columbia Mineral Deposit Profiles, Volume 1, Metallics and Coal; D. Lefebure and G. Ray, editors; British Columbia Ministry of Energy Mines and Petroleum Resources Open File 1995-20, pp93-96.

40

20.0 CERTIFICATES OF QUALIFIED PERSON

GREGORY ZALE MOSHER, P.GEO.

I, Gregory Zale Mosher of North Vancouver British Columbia, do hereby certify:

- I am a Senior Geologist with Wardrop Engineering Inc. with a business address at 800-555 West Hastings Street, Vancouver, British Columbia, Canada.
- This certificate applies to the technical report entitled "Technical Report on the Nithi Mountain Molybdenum Property, British Columbia, Canada", dated August 31, 2011 (the "Technical Report").
- I am a graduate of Dalhousie University, (B.Sc. Hons., 1970) and McGill University (M.Sc.Applied, 1973). I am a member in good standing of the Association of Professional Engineers and Geoscientists of Association of Professional Engineers and Geoscientists of British Columbia (License # 121151). My relevant experience with respect to molybdenum deposits includes over 20 years of intermittent exploration for and evaluation of molybdenum deposits. In addition, I have carried out resource estimates of molybdenum deposits over the past six years. I am a "Qualified Person" for purposes of National Instrument 43-101 (the "Instrument").
- I completed a personal inspection of the Property on July 26, 2011, for one day.
- I am responsible for Sections 1-20 of the Technical Report.
- I am independent of Leeward Capital Corp. as defined by Section 1.5 of the Instrument.
- I have no prior involvement with the Property that is the subject of the Technical Report.
- I have read the Instrument and the technical report has been prepared in compliance with the Instrument.
- As of the date of this certificate, to the best of my knowledge, information and belief, the technical report contains all scientific and technical information that is required to be disclosed to make the technical report not misleading.

Signed and dated this 31st day of August, 2011, at Vancouver, Canada.

"Original document signed and stamped by Gregory Zale Mosher, P.Geo." Gregory Zale Mosher, P.Geo. Senior Geologist