

ASSESSMENT REPORT TITLE PAGE AND SUMMARY

TITLE OF REPORT: Assessment Report on Diamond Drilling performed on the Aley Carbonatite Property

TOTAL COST: \$926,262

AUTHOR(S): JEREMY CROZIER

SIGNATURE(S): Submitted Electronically

NOTICE OF WORK PERMIT NUMBER(S)/DATE(S):MX-13 141, 10-0900126-0517, May 17,

2010

STATEMENT OF WORK EVENT NUMBER(S)/DATE(S): 4996687, August 26, 2011

YEAR OF WORK: 2011

PROPERTY NAME: Aley

CLAIM NAME(S) (on which work was done): 520262

COMMODITIES SOUGHT: Niobium

MINERAL INVENTORY MINFILE NUMBER(S), IF KNOWN:

MINING DIVISION: Omineca NTS / BCGS: 94B.041, 94B.042

LATITUDE: ____56_____° ___27_____' ____0____"

OWNER(S): ALEY CORPORATION

MAILING ADDRESS: 15th Floor - 1040 W. Georgia St. Vancouver BC V6E 4H8

OPERATOR(S) [who paid for the work]: Taseko Mines Limited

MAILING ADDRESS: 15th Floor - 1040 W. Georgia St. Vancouver BC V6E 4H8

REPORT KEYWORDS (lithology, age, stratigraphy, structure, alteration, mineralization, size and attitude. **Do not use abbreviations or codes**)

Niobium, carbonatite, Aley, drilling, fersmite, columbite, pyrochlore, metasomatism, mapping, Kechika, Palaeozoic, Skoki Formation, Road River Group, characterization.

REFERENCES TO PREVIOUS ASSESSMENT WORK AND ASSESSMENT REPORT NUMBERS:

30113, 28733, 27991,16484, 15721

TYPE OF WORK IN THIS REPORT	EXTENT OF WORK (in metric units)	ON WHICH CLAIMS	PROJECT COSTS APPORTIONED (incl. support)
GEOLOGICAL (scale, area)			
Ground, mapping	2km x 2km	520262	\$55,000
Photo interpretation			
GEOPHYSICAL (line-kilometres)			
Ground			
Magnetic			
Electromagnetic			
Induced Polarization			
Radiometric			
Seismic			
Other			
Airborne			
GEOCHEMICAL (number of sample	es analysed for)		
Soil			
Silt			
Rock			
Other			
DRILLING (total metres, number of Core	f holes, size, storage location) 4460m NQ Storage in between Mackenzie, 23 holes BC	520262	\$79,0338
Non-core			
RELATED TECHNICAL			
Sampling / Assaying		520262	\$80,924
Petrographic			
Mineralographic			
Metallurgic			
PROSPECTING (scale/area)			
PREPATORY / PHYSICAL			
Line/grid (km)			
Topo/Photogrammetric (sca	ale, area)		
Legal Surveys (scale, area)			
Road, local access (km)/tra			
Trench (number/metres)			
Underground development	(metres)		
Other	,		
		TOTAL COST	\$926,262

BC Geological Survey Assessment Report 32798

Assessment Report on Diamond Drilling performed on the Aley Carbonatite Property

Located in the Omineca Mining District, British Columbia, Canada

NTS: 94B.041 & 94B.042

Located at Map Center at approximately 56° 27' N Latitude 123° 44' W Longitude UTM NAD 83, Zone 10

Owner: Aley Corporation
Operator: Taseko Mines Limited through its wholly owned subsidiary, Aley Corporation

Tenure Numbers: 513258, 516635, 520172, 520261, 520262, 520263, 520264, 520265, 554104, 554107, 559138, 559535, 559540

Authors: Jeremy Crozier, MBA, MSc, BSc (Hons) November 20, 2011

TABLE OF CONTENTS

Summary Location and Access Physiography and Climate Claims Exploration History Regional Geology Property Geology 2007 Diamond Drilling Conclusions and Recommendations	3 4 8 10 10
Statement of Costs	24
Figure 1 - Property Location Map	5 6 15
LIST OF TABLES	
Table 1 - Claims on which Work was Conducted	8

LIST OF APPENDICES

Appendix A – Geological Drill Logs

Appendix B – Sample Logs
Appendix C – Assay Certificates
Appendix D – Analytical Procedures

Appendix E – Drill Sections

Appendix F – Report Figures at their original scale

November 20, 2011

Summary

The Aley Property, owned by Aley Corporation, itself a wholly-owned subsidiary of Taseko Mines Limited ("Taseko"), is located in northeastern British Columbia within the Omineca Mining Division. The property comprises 104 contiguous mineral claims covering 5936 hectares in the headwaters of the Ospika River closely adjacent to Ospika Arm of Williston Lake. The Aley claims are centered on 56° 27' N 123° 44' W, NTS mapsheets 94B.041 and 94B.042. Exploration work was conducted during the period July 15 through September 3, 2010 and comprised a program of helicopter-supported exploration drilling, mapping and rock characterization. Taseko Mines Limited was the operator of the program.

Work reported on includes:

- i. A diamond drill program comprising a total meterage of 4,460m over 23 holes in the Central Zone at Aley. The objective of the drill program was the confirmation of previous exploration work undertaken by Cominco between 1985 and 1986. The program also sought to establish a better understanding of the deposit geometry as well as collection of sufficient sample material for metallurgical test work. While some metallurgical material was indeed collected, this remains in safe storage pending future analysis. As such, no assessment credit has been applied with respect to any element of metallurgical test work beyond the collection and bagging of the samples themselves. All such sample material remains in appropriate storage awaiting analysis once deemed appropriate,
- ii. 1312 (in addition to 75 duplicate, 75 standard reference and 25 blank) samples of sawn NQ-sized core obtained through diamond drilling were sent for assay analysis. Samples were assayed for Nb, Ta, U, Th and REE's as well as a standard multi-element suite, by Inspectorate Laboratories of Richmond, BC.
- iii. 88 rock samples collected from outcrop and 2007 drill core were submitted for whole-rock analysis as part of a geochemical characterization exercise. Interpretative work based on the results of such analysis, in consideration of observations made and understanding gained during geological core logging form the basis of the "Property Geology" section of this report. Such work is considered to represent a very significant contribution to understanding of this unusual deposit type, and of British Columbian geology.

Assessment credit has been applied through the BC online system based on a total expenditure of \$900,000, though the total value sought under this report is \$926,262. At approximately \$207 per meter, this work was clearly of very moderate cost when compared to similar exploration projects in BC. The relatively modest cost of the program may be explained as follows:

- iv. Ground conditions in 2010 target area were excellent, meaning that drilling was straightforward and that significant daily production was achievable.
- v. Weather conditions were highly favorable resulting in negligible standby and well-optimized overhead costs.
- vi. Equipment reliability was excellent, which served to assure optimal machine utilization.
- vii. Standby charges were avoided though the application of a 3-crew operational strategy, whereby two drill rigs were operated by two day crews, and one rig by a single night crew. This approach had the advantage that in cases where holes were completed at night time, the night crew simply withdrew several rod lengths, shut down and walked to the second rig to continue drilling. Given the speed of drilling and the shallow nature of the drill holes, otherwise significant standby costs were negated.

Location and Access

The Aley claims are located in the Omineca Mining District in northeastern BC (Figure 1), centered at 56°27'N and 123°44'W. The property derives its name from Aley Creek, a prominent valley located northeast of the claims. No other named topographic features on NTS topographic sheet 94B/05 (1:50,000 scale) occur on the property.

The property is situated approximately 30 km northeast of the head of the Ospika Arm of Williston Lake. Logging roads lead from Mackenzie, BC along the western margin of Williston Lake, around its northernmost tip, via the Tsay Keh Dene community, and down the east shore of the same lake to the former site of CANFOR's Ospika Camp. Direct access by air charter to the Ospika Camp is possible, and during the 2010 exploration season such services were provided by Tsayta Aviation of Fort St. James using Cessna 206 and Britten-Norman Islander aircraft. Barge access is also available from Mackenzie (approximately 90 km to the south on Williston Lake) for the purposes of movement of heavy equipment, though was not used by Taseko during the program that forms the basis of this report. Logging roads and a caterpillar trail constructed by Cominco in 1985 once provided rough surface access to the property, however due to the poor state of repair of this trail and in consideration of time consuming permitting process for its re-establishment, site access and equipment transport during the 2010 field season was effected by Bell 206 Jet Ranger and 407 helicopters. Helicopter access was conducted principally from the airstrip at Ospika Camp approximately 20 km from the claims as well as a staging site on a cut block 10 km from the claims

Recently-constructed logging roads under the operation of Canfor extend approximately 30 km beyond the Ospika Camp towards the property. These logging roads are proximal to the disused Cominco caterpillar trail which conditional upon permitting could be readily reopened, connecting the Ospika Camp to the road access previously made on the property. In 2005 (prior to the acquisition of Aley Corporation by Taseko Mines Limited), AllNorth Consultants of Prince George conducted a helicopter-supported survey of the access to the Aley claims via existing Canfor logging roads, upon which basis a route (on Aley claim blocks) connecting the logging roads to the disused trail was designed. The Allnorth road has been substantially modified from the previous trail in compliance with the current Forest Practices Code of British Columbia, and the Forest Road Engineering Guide for road construction. This work was presented by Allnorth in a detailed report entitled "Aley Property Exploration Road Survey" dated September 6, 2005 by Ken MacDonald, P.Geo. No assessment value derived from Allnorth's survey, design and reporting work has been associated with or declared as a component of the current report.

Physiography and Climate

Elevations range from 1,300 m in the creek valleys to the west and south of the claim blocks to 2,233 m on the ridge to the very east of the property known as the Saddle Zone. The topography primarily consists of steep mountainous terrain with U to V-shaped glacial valleys. Small creeks drain from several peaks that form a ridge along the centre of the property in all directions. Flows are seasonal depending on snow meltwater, rain, and winter freezing and avalanche trains are evident on some of the steeper slopes

Boreal forest covers the area below the tree line (~1600-m). Much of the central part of the claims lie above the tree line and these areas are dominated by alpine shrubs and grasses. The higher elevations are commonly covered with sparse grass, broken scree, and outcrop.

The northern boreal forest region is subjected to an extreme range of weather conditions throughout the year. Summers are short, from June to late September with variably dry to wet with local storms, which may give heavy rainfall or even snow at any time. Humidity ranges from very dry to humid. Autumn is short with the rapid onset of snowstorms and heavy rains starting in late September, which effectively ends the field season. Snow stays on the ground from October through early June and may remain all year in relatively shaded patches on the peaks on the property. As such, exploration is limited to the period from June to late September only.

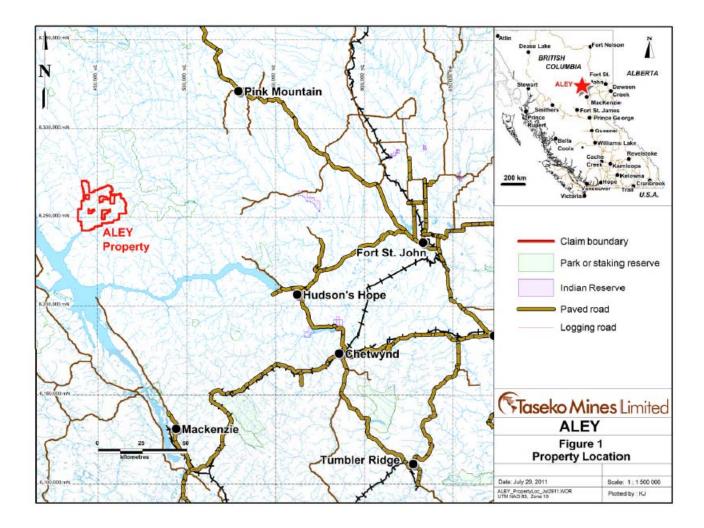


Figure 1 - Property Location Map

Claims

Taseko Mines Limited, through its wholly owned subsidiary Aley Corporation, is the 100% owner of the Aley mineral claims and was the operator of the programs described in this report. In the period July 15 through September 3, 2010, work was conducted on one of the thirteen mineral claims that together constitute the Aley property.

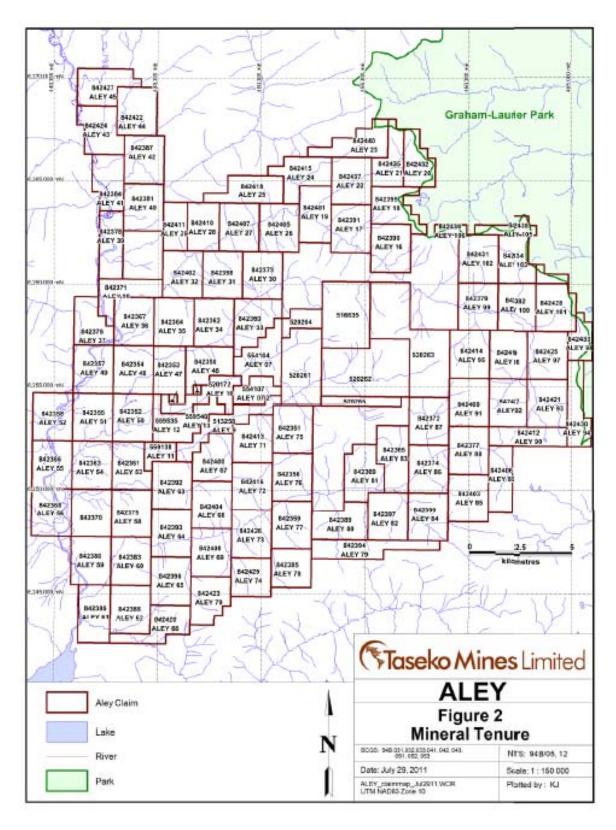


Figure 2 - Overview Claims Map

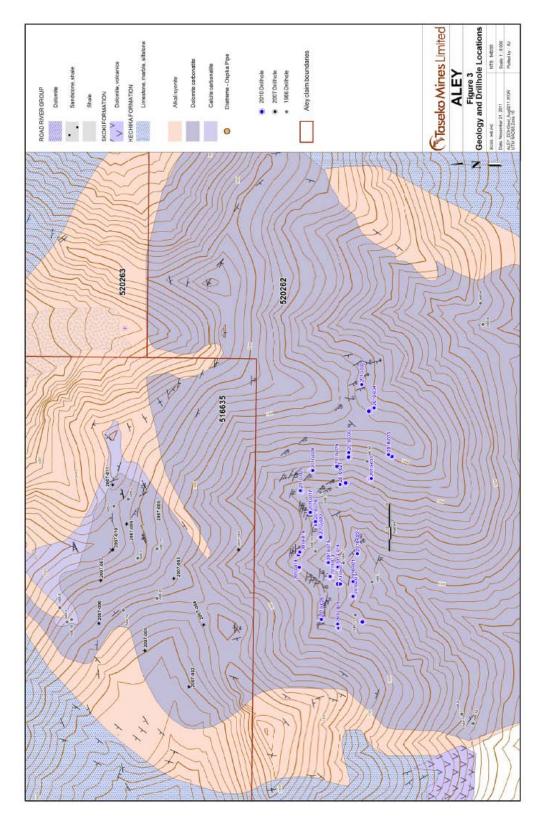


Figure 3 - Claims upon which work was conducted

A map of all claims relative to topography has been presented in Figure 2; drilling relative to claims and geology is presented in Figure 3. All figures have been included at their original scale within Appendix F for purposes of clarity. Table 1 provides a summary of claims upon which work was conducted and Table 2 a listing of claims to which assessment work has been applied.

Table 1 - Claims on which Work was conducted

Tenure Number	Total Holes Drilled on Claim	Drill Hole Numbers
		2010-11
		2010-12
		2010-13
		2010-14
		2010-15
		2010-16
		2010-17
		2010-18
		2010-19
		2010-20
		2010-21
520262	23	2010-22
		2010-23
		2010-24
		2010-25
		2010-26
		2010-27
		2010-28
		2010-29
		2010-30
		2010-31
		2010-32
		2010-33

Table 2 - Claims to which Work was Applied

Tenure Number	Tenure Type	Owner	Map Number	Good To Date	Status	Area
513258	Mineral	200960 (100%)	094B	2021/jan/31	GOOD	411.556
516635	Mineral	200960 (100%)	094B	2021/jan/32	GOOD	750.575
520172	Mineral	200960 (100%)	094B	2021/jan/33	GOOD	339.846
520261	Mineral	200960 (100%)	094B	2021/jan/34	GOOD	697.374
520262	Mineral	200960 (100%)	094B	2021/jan/35	GOOD	1072.953
520263	Mineral	200960 (100%)	094B	2021/jan/36	GOOD	1161.984
520264	Mineral	200960 (100%)	094B	2021/jan/37	GOOD	178.717
520265	Mineral	200960 (100%)	094B	2021/jan/38	GOOD	178.889
554104	Mineral	200960 (100%)	094B	2021/jan/39	GOOD	446.975
554107	Mineral	200960 (100%)	094B	2021/jan/40	GOOD	232.517
559138	Mineral	200960 (100%)	094B	2021/jan/41	GOOD	161.117
559535	Mineral	200960 (100%)	094B	2021/jan/42	GOOD	17.887
559540	Mineral	200960 (100%)	094B	2021/jan/43	GOOD	17.885

Exploration History

Cominco Ltd. (1985-1986)

Cominco Ltd. acquired the Aley property subsequent to an initiative in 1980 that was originally focused on the follow-up of regional base metals anomalies to the north of the property, at which time no other claims existed in the region. K.R. Pride followed the stratigraphy southeast from these anomalies and in so doing encountered what hes suspected to be a carbonatite complex. Samples collected by Pride showed evidence of carbonatite including the presence of pyrochlore. In 1982, PC LeCouteur of Cominco visited the property to collect further samples and to assess the scale of the potential body. In October 1982, claims Aley 1 through Aley 4 (80 units in total) were staked in order to cover the carbonatite complex. Additional staking in 1986 added the claims Aley 5 through Aley 7 (32 units) and the final claim Aley 8 was added in March 1986 (20 units).

Field work commenced in 1983 and continued regularly through the 1986 field season. Metallurgical studies were conducted between 1983 and 1985. No exploration was undertaken between September 1986 and September 2004, when Aley Corporation acquired control of the mineral claims from Teck-Cominco.

Work performed by Cominco included

i. The construction of 20-km bulldozer access trail from Ospika barge landing to the Aley camp (1984), now partially superseded by the recent logging roads and CANFOR's Ospika Camp.

- ii. The development of approximately 28 km of caterpillar trails to drill sites accessible by means of 4x4 Land Cruiser from a small camp located near the centre of the carbonatite plug.
- iii. The preparation orthophotographic base maps (1983).
- iv. Magnetometer surveys at both reconnaissance and detailed local grid scale (17 line-kilometers); scintillometer reconnaissance surveys.
- v. Geological mapping at a scale of 1:5,000 over claims Aley 1-7, and at a 1:500 scale in the case of exploration trenching.
- vi. Soil sampling on contour lines and along road banks.
- vii. Rock chip sampling of outcrops, talus, road cuts with outcrop/subcrop, and all trenches (5-m contiguous samples).
- viii. Diamond drilling in two campaigns totaling 3,046.36m over 19 holes in two areas of interest, namely the Saddle and Central Zones. NQ core was drilled in 1985 and BQ in 1986. All core was stored on site and sample preparation work was undertaken in the field.
- ix. An environmental baseline study was initiated during the 1985 and 1986 field seasons by Norelco.
- x. Metallurgical testing using gravity separation on a 4 ton bulk sample in 1983 and 1984. Some flotation testwork was carried out until 1991 with varying success.
- xi. Mineralogical studies conducted on samples throughout programs.

Cominco compiled reports for each field season outlining the work carried out and the results achieved. In these reports, Cominco provided preliminary estimates for the resource based on inhouse analysis, suggesting 15 million tonnes in the Saddle Zone and 15 to 20 million tonnes in the Central Zone. The details of these estimates and the grade assumed have not been recovered from the Cominco files and are historic in nature. While there is no written record of why Cominco did not continue with work on the property, it is believed that activities were terminated as an element of the takeover of control of Cominco by Teck who owned 50% of the Niobec Operation in Quebec;

Following the acquisition of control of the mineral claims Aley Corporation in 2004, exploration efforts concentrated on trench sampling for metallurgical material and the confirmation of previous geology and drill hole collar locations. Trenches were opened by means of drilling and blasting in the vicinity of the previous Cominco trenches cut in 1985 and 1986. The purpose of these trenches was twofold, firstly to acquire material suitable for metallurgical testwork, and secondly to confirm the grades estimated by Cominco in the 1980's. The samples were collected from trenches in the Central Zone near to the location of CZ-85-6, CZ-85-6A and CZ-85-8, and in the Saddle Zone at SZ-84-4. In total, 912 kg of sample were gathered from the Aley site. During the same period, all of the major zones identified by Cominco in their previous work were visited and drill holes locations identified and logged using GPS. This work was carried out as a means by which to validate the previous mapping and survey work undertaken using conventional survey compass mapping, as compared to current GPS technology in order to identify any systematic errors in the mapping developed by Cominco. Aley Corporation reported a "reasonable correlation" between the Cominco sampling work and that of Aley Corporation and that in their view. GPS survey work verified the Cominco mapping as reasonable and suitable for continued exploration, with the recommendation of conducting a survey for future resource work.

In 2006, a geological review and compilation of previous drilling and trenching were performed by Dave Thomas of AMEC with the objective of evaluating the mineralization and planning the 2006 field program. The 2006 drilling program was postponed to 2007 to accommodate a study being carried out on mountain goat movements and allow more time for consultation with First Nations.

In 2006, some metallurgical test work continued on surface samples blasted from the Saddle and Central Zone trenches to which end approximately 1200 kg of material was worked on by PRA laboratories in Vancouver. .Work carried out in 2006 also included A preliminary wildlife and environmental survey executed in conjunction the Tsay Keh Dene First Nation. None of the 2006 activities have been included in the applied assessment value.

Taseko Mines Ltd. (2007)

Diamond drilling with a total meterage of 4,532 feet of NQ2 and BTW-sized core was undertaken over a total of 11 holes during the 2007 program at the Aley Property. The objective of the drill program was the confirmation of previous exploration work undertaken by Cominco between 1985 and 1986. The program also sought to establish a better understanding of the deposit geometry as well as collection of sufficient sample material for metallurgical test work Drilling was conducted by Peak Drilling of Courtenay, BC and Full Force Drilling of Peachland, BC using a Hydracore prospector rig and a modified skid-mounded B20 with an Isuzu power pack, respectively.

Unlike the 1985 and 1986 programs during which the property was accessed by means of cat-trail, all access to the property in 2007 was undertaken by means of helicopter, this being due to the fact that critical portions of the former access roads had collapsed and that their re-establishment in accordance with modern standards, would have been time-consuming and expensive. All drilling was performed on 16' x 16' timber pads built in-situ utilizing timber purchased in Mackenzie. Where possible, pads were constructed on the old cat trails, which had the advantage of being relatively flat, though elsewhere such pads were erected on slopes of up to 45 degrees. Wherever possible, the pads were carefully dismantled and the material subsequently re-used. Reclamation of drill sites was undertaken upon completion of drilling.

All project personnel were accommodated at Canfor's Ospika camp, situated on the lower northern flank of the Ospika arm of Williston Lake. Core logging, splitting and sampling was also undertaken at this facility, making use of the extensive outbuildings that served this purpose well. Although skeleton core was initially placed in secure storage at the Ospika Camp (inside a locked and boarded-off trailer under the supervision of a watchman), core was in 2008 removed to a permanent storage facility at the Gibraltar Mine near Williams Lake BC, itself owned at operated by taseko Mines Limited.

A total of 388 samples, 22 duplicates, 11 blanks and 23 standards (one derived from low grade Aley carbonatite and the other a Canmet standards, OKA-1) were sent for assay analysis. Assay samples were collected according to geological intervals or subintervals thereof, averaging approximately 3 m sampling lengths. Competent 30 cm core sections were also collected for wax immersion specific gravity samples every 8-10 m length. All samples were sawn on site and shipped to PRA Laboratories in Vancouver, BC for preparation and from there on to IPL for analysis. Analysis for Nb, Ta, U, and Th was performed together with the standard multi-element analysis. Duplicates for quality control were forwarded to Global Discovery Labs (Teck Cominco) for XRF analysis. The remaining sawn half core was stored on site at Canfor's Ospika camp and later transferred to a secure facility at Taseko's Gibraltar Mine.

Regional Geology

The Aley region lies within the Western Foreland belt of the Rocky Mountains which is characterized by Early to Middle Paleozoic deep water carbonates and shales (McLeish, 2011;

Figures 4a and 4b). These slope to off-shelf deep water strata, defining the paleogeographic Kechika Trough. In the Aley region, the north-south trending, 50 km wide trough is bound to the west by the Northern Rocky Mountain Trench (NRMT), which is host to an Eocene dextral strike-slip fault interpreted to have accommodated >400 km of dextral strike-slip displacement; and to the east by a facies boundary defined by the western limit of shallow water carbonates of the Macdonald Platform. North of 59 degrees N Latitude, the Kechika Trough widens into the Selwyn Basin. The trough terminates immediately south of the Aley region, where the facies boundary marking the east margin of the trough curves around to the west, and is truncated against the NRMT fault. Strata on the western side of the NRMT are: (1) lithologically similar Paleozoic continental margin sediments, (2) assigned to the Kechika formation, and (3) form part of the Cassiar terrane, a continental block of uncertain paleogeographic affinity

The Aley Creek area lies near the eastern limit of Paleozoic volcanism and coarse clastic sedimentation in the Foreland Belt. The Lady Laurier volcanics and westerly-derived Earn Group conglomerates, exposed to the immediate north and west of the Aley carbonatite, have been cited as evidence for tectonism in the mid-Paleozoic. Synmagmatic contractional deformation structures in continental margin strata that is host to the Aley carbonatite, suggesting that this activity was (1) at least in part the result of convergence along the parent margin and (2) associated with carbonatite emplacement (McLeish, 2011).

Property Geology

The Aley Carbonatite complex intrudes Cambrian to Ordovician sedimentary rocks of the Kechika (limestone), Skoki (dolomite to volcaniclastics) and Road River Group formations (clastic sedimentary rocks). The intrusion is ovoid in plan view with a diameter of approximately 2 km and surrounded by a fenite aureole up to 500 m thick that has previously been mapped as "amphibolite" (Pride, Cominco Ltd., 1987) and "syenite" (Mäder, 1986). The complex is predominantly composed of dolomite carbonatite (CD) with minor calcite carbonatite (CC). Texturally, relationships suggest that CD is metasomatic in origin while CC is interpreted to be primary. Three calcite carbonatite intrusions are identifiable within the drill holes, each with an associated cumulate phase. In approximate order of intersection, from top to bottom of the drill holes, these are (Chakhmouradian et al, 2010 and Kressall, 2011, as determined in conclusion from the work programs that form the basis of this assessment):

Primary Phases:

I. Magnetite-Apatite-Columbite Cumulate (CM) & Phlogopite-Magnetite Calcite Carbonatite (CC)

Heavy mineral cumulate separates (CM) are composed of densely packed magnetite (35-50 vol. %), apatite (25-35 vol. %), columbite (5 vol. %), phlogopite (0-15 vol. %) and zircon (up to 1.5 vol. %). Zircon is only identifiable by shortwave ultra-violet light (fluoresces yellow). Interstitial carbonate is predominantly calcite (up to approximately 10 vol. %). Fine- to medium-grained (up to ~5 mm diameter grains) magnetite is anhedral with a globular appearance. Phlogopite is fine-grained (<1 mm) and pinkish-brown in colour. Columbite can rarely be distinguished from magnetite due to its similar black colour and sub-metallic luster.

Phlogopite-magnetite-phyric CC, closely associated with CM, occurs at similar shallow depths. A sharp contact between CM and CC in some drillholes suggests an evolutionary

relationship between CM and CC. The unit is composed of calcite (65-75 vol. %), magnetite (5-25 vol. %), phlogopite (0-10 vol. %), apatite (7.5 to 15 vol. %), columbite (observed up to 2 vol. %) and zircon (trace). Magnetite is typically fine-grained (<1 mm) and has similar globular appearance as magnetite within CM. Phlogopite is typically fine-grained, pinkish-brown and occurs as disseminations. Large (up to 3 cm in diameter) brecciated massive magnetite occurs more rarely within CC (presumably fractured cumulate). Columbite is recognized by its black submetallic luster, hexagonal to octahedral shape in cross-section in core and is distinguished from magnetite by being non-magnetic. Magnetite and apatite are commonly concentrated in laminae within laminated CC.

II: Phoscorite (PH)

Phoscorite is composed of magnetite, apatite, olivine, interstitial calcite and abundant baddeleyite (ZrO2). The unit is medium- to coarse-grained, with magnetite crystals as large as 1 cm in diameter, and can be differentiated from the mineralized CM by the subhedral to euhedral shape of magnetite, presence of olivine and absence of zircon. Rounded olivine crystals are commonly serpentinized, and are recognizable by their greenish-brown colour and very low hardness.

A niobate-barren phlogopite-magnetite-phyric CC also occurs in association with the phoscorite. Similarly, observed sharp contacts (e.g. at 2010-22-184.3 m) between CC and PH suggests a fractionation relationship between the two units. CC related to PH differs from CC related to CM by absence of zircon and columbite and the subhedral to euhedral shape of magnetite crystals.

III: Silicocarbonatite (CS)

CS refers to cumulates and calcitic carbonatites bearing blue sodic-amphibole. Fine- to medium-grained blue amphibole occurs as euhedral prismatic crystals with dipyrimid terminations within massive porphyritic and cumulate CS with magnetite, apatite, phlogopite and abundant zircon (0-5 vol. % locally). In laminated CS, the amphibole commonly forms blue 1-5 cm bands. A currently unidentified green mineral with the same crystal form as the blue amphibole is commonly observed within the CS, sometimes occurring within the core of the blue amphibole. Magnetite occurs as fine- to coarse-grained (up to 1 cm in diameter) subhedral to euhedral crystals. Black phlogopite commonly occurs as coarse-grained (up to 1 cm) or locally pegmatitic euhdedral crystals. The unit appears to be a layered intrusion ranging from a magnetite-apatite-sodic amphibole cumulate devoid of calcite to an increased proportion of calcite in porphyritic layers, to an aphyric white calcite carbonatite (composed entirely of calcite). Early observations suggest that zircon may concentrate locally to specific CS phases. Black to pink octahedral pyrochlore has been observed within CS.

Metasomatic Phases:

IV: Dolomite carbonatite (CD)

CD is the most abundant and texturally variable lithology. The unit dominantly consists of dolomite (75-99%), apatite (1-20%), pyrite (1-5%), calcite (0-5%) and niobates (0-2%). Interpretation is that most, if not all CD is secondary after CM, CC, PH and CS.

Dolomitization is closely related to lamination of the complex, with laminated CD being the most abundant lithology in the complex. The lamination is generally defined by concentrated apatite laminae. Massive CD on the other hand tends to contain very little apatite. Partial chloritization and silicification of CD (up to 25 vol. %) suggest low grade metamorphism of the complex. Relict textures of the other lithologies (CM, CC, PH and CS) are observed within bands of the dolomite carbonatite. These include pseudomorphs after phenocrysts and cumulate minerals. Phlogopite is replaced dominantly by chlorite and dolomite, but also pyrite, silica, muscovite and monazite. Coarse-grained (up to 1 cm) chloritized phlogopite within CD is commonly associated with silicocarbonatite. Back-scatter electron imaging indicates that dark-grey submetallic pseudomorphs after magnetite are dominantly composed of dolomite with rutile inclusions occurring along cleavage planes. Pyrite commonly aggregates along the rim of the pseudomorphs.

Fersmite occurs as anhedral, octahedral and hexagonal polycrystalline pseudomorph up to 4 mm in diameter after columbite and pyrochlore concentrating within zircon-bearing apatite laminae. Fersmite is rarely recognizable within hand sample, but where visible it has a pale-yellow to pink colour and grainy texture. Two varieties of fersmite pseudomorphs are recognized at Aley: 1) Ti-enriched acicular yellow fersmite; and 2) subplatey lamellar Th-rich fersmite embedded in Th-poor fersmite. The two varieties of fersmite are only distinguishable using microscopic methods. Monazite also occurs in some pseudomorphs with fersmite, but is only identifiable by microscopic methods. Within the oxidized zone, fersmite needles are disaggregated and redispersed. Nb-mineralization within CD generally reflects associated primary mineralization. The most fersmite-rich CD is observed in the vicinity of CM and associated CC, whereas the least mineralized CD is observed in the vicinity of PH. Some fersmite is observed locally in CD associated with CS.

Although pyrite is observed within all lithologies, it is most abundant within dolomite carbonatite occurring as stringers, laminae, massive aggregates and to lesser extent as euhedral cubic disseminations. The greatest concentration of pyrite occurs with dolomitized CM bands .

The least common textural variety of CD is brecciated matrix-supported dolomite carbonatite observed within drillcore associated with localized fault zones that are dominated by rubble and gouge. Nb-mineralization has not yet been observed within brecciated zones.

Fault zones are generally around 10 to 15 meters wide but are thicker towards the surface. Faults are generally traceable between adjacent drillholes but displacement appears to be minor maintaining the CM-PH-CS sequence. Faults are likely associated with localized slumping of the complex. Some bands of sheared breccia within the dolomite carbonatite suggest that some ductile deformation must have followed brittle deformation.

V: Fenite (AM and AMX)

The fenite aureole has previously been referred to as a syenite (Mäder, 1986) and an amphibolite (Assessment report 16484). The fenite is texturally variable, ranging from dark-to greyish green in colour and composed of variable proportions of albite, quartz, arvedsonite, aegirine, calcite, apatite and accessory lorenzenite and rare-earth carbonates (Mäder, 1986). A fenitized conglomerate also occurs along the margins of the complex containing rounded clasts of amphibole-rich quartz syenite (?), metasomatized sedimentary rocks and quartzite.

Centimetre- to metre-scale fenite blocks also occur within the core of the complex (AMX). A fenite-block rich horizon is most commonly observed in the drillholes occurring between CM and PH or CS (when PH is not present). Aphyric to magnetite-phlogopite-phyric calcite carbonatite commonly occurs in contact with the fenite clast and as crosscutting veinlets. Black phlogopite rims (1-2 cm thick) occur between calcite and dark-green fenite core. Dolomitized fenite clasts are greyish purple in colour and contain abundant pyrite disseminated within the matrix.

The so-called ampibolite occurs in two phases. One is the massive amphibole-rich rock and the other a coarse breccia dominated by rounded amphibole-rich quartz syenite mixed with rounded clasts of amphibole-metasomatised Paleozoic sedimentary rocks, particularly pure early Cambrian quartzite that occurs some 1-km below the present surface. Pride (Pride, 1984) proposed that the amphibolite resulted from Mg and Fe metasomatisation that overprinted breccias of sedimentary rocks associated with the emplacement of the carbonatite, producing "fenitisation" as such bringing into question whether that the amphibolite indeed an intrusive rock.

Mäder (1986) observed that the rock had syenitic textures with original Na-amphiboles and the unusual petrochemistry that lead to quartz and albite dominance. This he termed quartz-albite syenite in order to distinguish it from the more common nepheline syenite normally associated with carbonatites. The rock in question had undergone extensive metasomatism that overprinted much of the original quartz-albite-arfvedsonite magmatic textures. Mader suggested that the metasomatism replaced albite and some arfvedsonite with aegirine and that quartz increased and sometimes recrystallised to form larger grains while residual albite reformed into finer grained albite aggregates.

The breccia comprises up to 30% xenoliths of quartzite and igneous rocks such as microsyenite and albitite. Reaction rims caused by metasomatism rim the sedimentary clastics showing pervasive adsorption and formation of recrystallised quartz, albite, and secondary aegirine. Micro-syenite clasts are much less common. These too show reaction rims with similar mineralogy observed in the massive metasomatised syenite and in the sedimentary clasts.

2010 Geological Mapping

In 2009, and independently of Taseko, a five-week academically-oriented mapping campaign was conducted on the property by Duncan F. McLeish, Dr. Stephen T. Johnston of the University of Victoria and Mitch G. Mihalynuk of the MEMPR, with the objective of gaining a better understand the tectonic and structural controls on, and timing of, emplacement of carbonatites in the Canadian Cordillera. Observations from this work formed the basis of a M.Sc. thesis (McLeish, 2011). In 2010, and in follow up to the 2009 work of McLeish, a two-week mapping campaign by Duncan F. McLeish and Anton Chakhmouradian, and supported by Ryan Kressal (University of Manitoba) was conducted at the request of Taseko with the objective of providing a structural and petrographic basis within which to undertake the targeting exploration drilling that summer.

To this end, 88 rock samples collected from outcrop and 2007 drill core were submitted for whole-rock analysis as part of a geochemical characterization exercise. Interpretative work based on the results of such analysis, in consideration of observations made and understanding gained during geological core logging form the basis of the "Property Geology" section of this report. Such work is considered to represent a very significant contribution to understanding of this unusual deposit type,

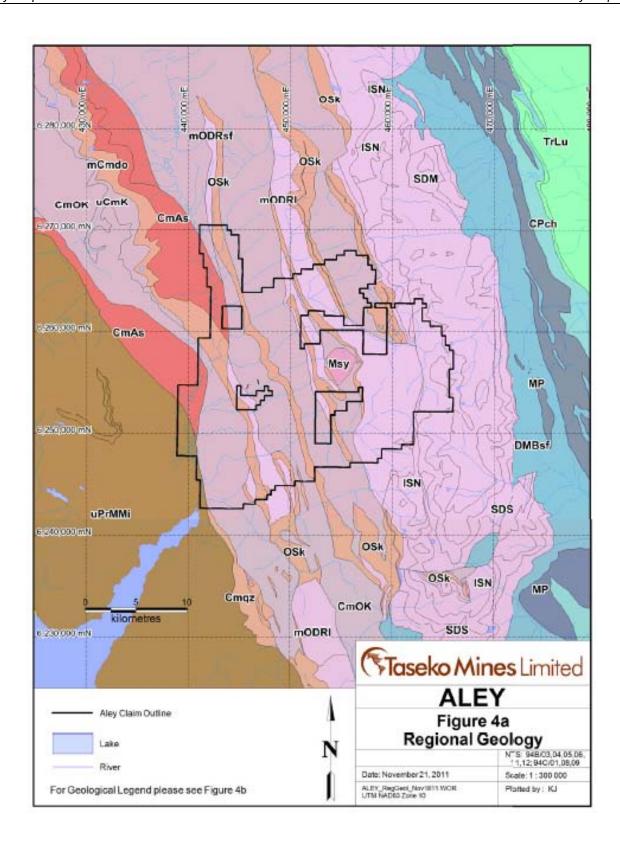


Figure 4a - Regional Geological Map

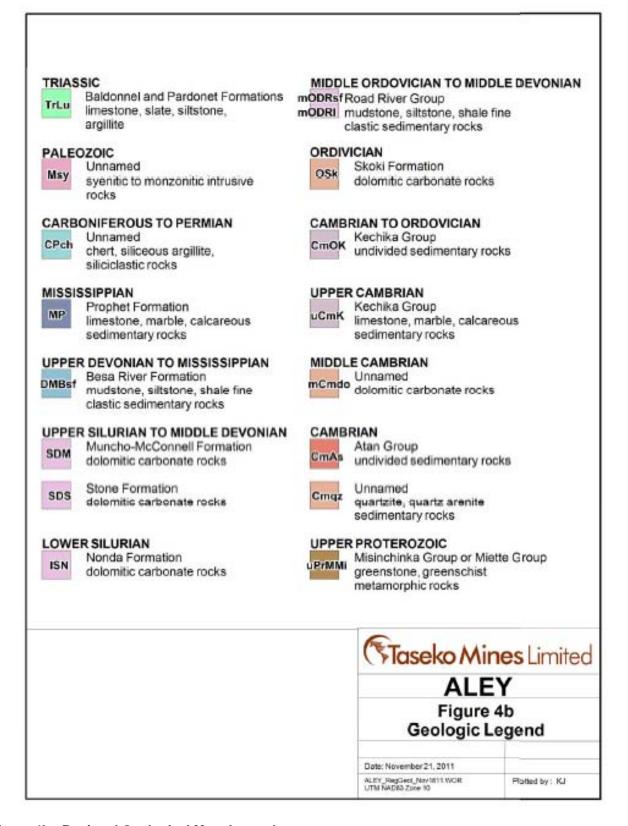


Figure 4b - Regional Geological Map-Legend

and of British Columbian geology, and served as significant guide in the orientation of the 2010 drilling program.

2010 Geological Mapping and Rock Characterization

In 2009, and independently of Taseko, a five-week academically-oriented mapping campaign was conducted on the property by Duncan F. McLeish, Dr. Stephen T. Johnston of the University of Victoria and Mitch G. Mihalynuk of the MEMPR, with the objective of gaining a better understand the tectonic and structural controls on, and timing of, emplacement of carbonatites in the Canadian Cordillera. Observations from this work formed the basis of a M.Sc. thesis (McLeish, 2011). In 2010, and in follow up to the 2009 work of McLeish, a two-week mapping campaign by Duncan F. McLeish and Anton Chakhmouradian, and supported by Ryan Kressal (University of Manitoba) was conducted at the request of Taseko with the objective of providing a structural and petrographic basis within which to undertake the targeting exploration drilling that summer.

To this end, 88 rock samples collected from outcrop and 2007 drill core were submitted for whole-rock analysis as part of a geochemical characterization exercise. Interpretative work based on the results of such analysis, in consideration of observations made and understanding gained during geological core logging form the basis of the "Property Geology" section of this report. Such work is considered to represent a very significant contribution to understanding of this unusual deposit type, and of British Columbian geology, and served as significant guide in the orientation of the 2010 drilling program. Analytical results from this program are presented in Appendix C.

2010 Diamond Drilling

A diamond drill program comprising a total meterage of 4,460m over 23 holes (2010-012 through 2010-034) was undertaken by Taseko at the so-called "Central Zone" at Aley. All 2010 holes were drilled at similar azimuths (20° to 60°) and inclinations (-45° to -55°). Downhole surveys were performed on selected inclined holes using a Reflex survey tool, from which the data were corrected by Taseko personnel to remove magnetic interference. Geotechnical data were collected for all of the holes, with the exception of 2010-031 through 2010-034. Core from 1,178 drill runs was measured, and averaged 3.0m in length with 97% in recovery.

1312 samples (in addition to 75 duplicate, 75 standard reference samples and 25 blanks) of sawn NQ-sized core obtained through diamond drilling were sent for assay analysis. Samples were assayed for Nb, Ta, U, Th and REE's as well as a standard multi-element suite, by Inspectorate Laboratories of Richmond, BC.

Drilling was conducted by Blackhawk Drilling of Smithers, BC using a JT-2000 hydraulic drill rig. In a similar manner to the 2007 all drilling activities were undertaken by means of helicopter, this being due to the fact that critical portions of the former access roads had collapsed and that their reestablishment in accordance with modern standards, would have been time-consuming and expensive. All drilling was performed on 16' x 16' timber pads built in-situ. Where possible, pads were constructed on the old cat trails, which had the advantage of being relatively flat, though elsewhere such pads were erected on slopes of up to 45 degrees. Wherever possible, the pads were carefully dismantled and the material subsequently re-used. Reclamation of drill sites was undertaken upon completion of drilling. All project personnel were accommodated in the old lodge adjacent to the site of the former Ospika camp, situated on the lower northern flank of the Ospika

arm of Williston Lake. This facility is now under the management of Finlay River Outfitters, from whom basic accommodation and meals are available.

The objective of the drill program was the confirmation of previous exploration work undertaken by Cominco between 1985 and 1986. The program also sought to establish a better understanding of the deposit geometry as well as collection of sufficient sample material for metallurgical test work. While some metallurgical material was indeed collected, this remains in safe storage pending future analysis. As such, no assessment credit has been applied with respect to any element of metallurgical test work beyond the collection and bagging of the samples themselves. All such sample material remains in appropriate storage awaiting analysis once deemed appropriate,

Table 3 shows the UTM coordinates for each of the diamond drill hole collars as well as the total length of core in metres. Detailed geological logs, embodying geological observations as well as downhole survey information are attached in Appendix A. Sample logs for every hole are presented in Appendix B and assay Certificates are included in Appendix C.

Sample preparation, analysis and security

The 2010 drill core samples were transported by helicopter from the drill sites to the nearby Ospika Camp where the core was logged (in accordance with the system of codes laid out in the "Property Geology" section of the report) and samples laid out by company personnel. Samples were taken by cutting the drill core in half lengthwise using a diamond saw. Cores from the first six drill holes were split at Ospika and cores from the remaining 17 drill holes were split at the Gibraltar Mine, all under supervision of company personnel. The 2010 drill cores and split samples were trucked from Ospika to the Gibraltar Mine by commercial carrier. The half-core samples were tagged, bagged and shipped by commercial carrier to Inspectorate Exploration & Mining Services Ltd. (Inspectorate), Richmond, BC for preparation and analysis. The remaining half core is stored at the Gibraltar Mine near McLeese Lake BC, itself owned at operated by Taseko Mines Limited. Coarse rejects and pulp samples are stored at the Hunter Dickinson Inc warehouse facility in Port Kells, BC.

Samples from the 2010 drill program were dried and crushed to 70% passing 2 mm (10 mesh). Then 250 g sub-samples were split and pulverized to 95% passing 150 mesh (106 micron). The primary assay was performed by Inspectorate. Nb_2O_5 (%) was determined by multi-acid digestion with ICP finish (Inspectorate code: Nb_2O_5 -AD3-OR-ICP); Ta (ppm) by 4 acid digestion with ICP finish (Inspectorate code: Nb_2O_5 -AD3-OR-ICP); Ta (ppm) by 4 acid digestion with ICP finish (Inspectorate code: Nb_2O_5 -AD3-OR-ICP); Th (ppm) by 4 acid digestion with ICP finish (Inspectorate code: Nb_2O_5 -AD3-OR-ICP); and REE group (ppm) by 4 acid digestion with ICP-MS finish (Inspectorate code: Nb_2O_5 -AD3-OR-ICP); and REE group (ppm) by lithium borate fusion with ICP-MS finish (Inspectorate code: Nb_2O_5 -AD3-OR-ICP). The major components (Nb_2O_5 -AD3-OR-ICP), Nb_2O_5 -AD3-OR

Inline duplicates were assayed by the same lab using same method as the mainstream samples. The additional check assays were carried out by Acme. Nb, U, W, Mo and Sr were determined by phosphoric acid digestion with ICP finish (Acme code: 7KP). REE group and refractory elements were determined by lithium borate fusion with ICP-MS finish (Acme code: 4B02). Precious and base metals were measured by agua regia digestion with ICP-MS finish.

Table 3 - Drill Hole Collars.

Hala ID	0	UTM Zone	10 NAD 83	Elevation	Depth	A mino codle	Dip
Hole ID	Core	Easting	Northing	(metres)	(metres)	Azimuth	
2010-012	NQ	454,261.31	6,256,503.02	1,612.94	154.26	20	-55
2010-013	NQ	454,293.13	6,256,548.29	1,619.33	215.20	20	-55
2010-014	NQ	454,332.71	6,256,516.19	1,589.43	91.54	20	-55
2010-015	NQ	454,350.86	6,256,555.97	1,599.19	215.85	20	-55
2010-016	NQ	454,525.45	6,256,609.67	1,653.28	147.86	20	-55
2010-017	NQ	454,564.59	6,256,632.07	1,653.79	214.93	20	-55
2010-018	NQ	454,331.71	6,256,677.03	1,654.53	152.45	20	-55
2010-019	NQ	454,396.41	6,256,675.06	1,657.53	152.44	20	-55
2010-020	NQ	454,459.25	6,256,587.55	1,644.08	215.24	20	-50
2010-021	NQ	454,271.13	6,256,449.48	1,585.70	149.39	20	-55
2010-022	NQ	454,388.90	6,256,431.03	1,566.00	303.65	20	-55
2010-023	NQ	454,208.33	6,256,449.49	1,592.55	213.41	20	-55
2010-024	NQ	454,090.89	6,256,515.75	1,643.53	153.05	30	-55
2010-025	NQ	454,656.32	6,256,672.09	1,667.24	217.94	30	-45
2010-026	NQ	454,110.85	6,256,585.18	1,649.39	215.24	40	-55
2010-027	NQ	454,681.67	6,256,504.63	1,677.78	213.72	30	-45
2010-028	NQ	454,740.85	6,256,621.61	1,714.31	213.41	30	-45
2010-029	NQ	454,758.05	6,256,520.80	1,727.22	215.85	30	-45
2010-030	NQ	454,816.99	6,256,466.95	1,763.47	213.41	30	-45
2010-031	NQ	454,707.46	6,256,372.49	1,707.25	214.94	30	-45
2010-032	NQ	455,105.38	6,256,412.53	1,819.83	205.18	60	-50
2010-033	NQ	454,808.09	6,256,300.23	1,781.80	213.41	30	-45
2010-034	NQ	455,006.03	6,256,360.54	1,813.57	213.41	60	-50

Four different standards were used for QA/QC purposes, namely Aley-1, Aley-2, Aley-3 and OKA-1. These standards were inserted into the sample stream at a frequency of approximately one in every twenty samples. Ideally, standards were placed to match the anticipated grade range of the surrounding samples. These standards are in addition to those routinely analyzed by the analytical laboratories as an internal check. Standard performance was monitored and the results were compared with the expected value and range, as determined from the round-robin testing of the

standard. Nb₂O₅ assay results were monitored for QA/QC failures, that is, results outside the control limits, and re-analyzed as necessary.

Coarse granite and sand blanks were submitted with the regular half core samples in the field to test for possible sources of contamination during analyses. The laboratory was instructed to crush and prepare the samples in numerical order, so that an assessment of possible cross-contamination could be made.

Discussion and Conclusions

The 2010 exploration program focused on building an improved understanding of the geology of the Aley carbonatite confirmation of the 1985-1986 exploration drilling work undertaken by Cominco, to provide better understand the geometry of the deposit and to yield sufficient material for further metallurgical test work. As such, drill holes were located either in moderate proximity to existing Cominco holes or exploration trenches for purposes of confirmation, or between Cominco holes in order to test for continuity.

The following summary of the petrographic characteristics of the Aley carbonatites is based on both field observations made by Chakhmouradian and Kressall (2010) and McLeish (2011), and results of the detailed petrographic analysis of outcrop and drillcore material by Chakhmouradian and Kressall.

In accord with the findings of Cominco, two major modal types of carbonatite can be distinguished: calcite carbonatites and dolomite carbonatites, the latter making up the bulk of the Aley intrusive complex. Several different textural types of carbonatite can be recognized among both calcite and dolomite carbonatites, including

- Magnetite-Apatite-Columbite Cumulate (CM) and Phlogopite-Magnetite Calcite Carbonatite (CC)
- Phoscorite (PH)
- Silicocarbonatite (CS)
- Dolomite carbonatite (CD)
- Fenite (AM and AMX)

Of greatest significant to niobate mineralization is CM. Chakhmouradian and Kressall (2010) reported that the modal composition of carbonatite is important for constraining the distribution of Nb minerals, whereas color variations – in general - appear not to have any relation to mineralization. By far the most common accessory and, locally, major constituents of all carbonatites are apatite, phlogopite (euhedral crystals up to 5 cm across commonly replaced by chlorite, dolomite and, to lesser extent, muscovite) and pyrite (euhedral cubic and pyritohedral crystals up to 5 mm across commonly oxidized to a mixture of reddish-brown Fe oxi-hydroxides). The occurrence of pyrite is pervasive and can be confidently interpreted as subsolidus sulfide mineralization superposed over primary textures. For this reason, the presence or absence of pyrite has no bearing on the distribution of Nb minerals and those textural characteristics that result from the presence of oxidized pyrite in the rock (e.g., patchy reddish coloration) cannot be used as an exploration tool

The results of detailed petrographic study of polished thin sections show that very few of the textural characteristics and relations observed on the macro- or microscale are primary, i.e.

produced by crystallization from magma or such processes as magma-flow differentiation, intrusive brecciation, etc. These primary textural, structural and modal characteristics include:

- cumulate layers enriched in heavy minerals (predominantly apatite, magnetite and Nb phases) and containing a relatively small content of carbonate;
- porphyritic textures consisting of phlogopite phenocrysts immersed in a carbonate matrix
- xenoliths of country-rock material (sedimentary dolomites and fenites);
- enrichment of calcite carbonatite in mafic silicates (phlogopite, aegirine and richterite) near the contact with fenitic xenoliths;
- relict grains of dolomite in some laminated calcite carbonatites.

While brecciation was observed in both outcrop and drillcore, Chakhmouradian and Kressall (2010) noted that this could not be unambiguously interpreted as either a synemplacement (i.e. primary) or postemplacement texture.

There is overwhelming field and petrographic evidence that most of the primary characteristics of the carbonatites have been modified and, in some cases, obliterated by the postemplacement evolution of the Aley complex. This evolution involved at least two deformation events, lowgrade metamorphic overprint, and re-equilibration of the carbonatite with groundwater. The first deformation event involved stress-induced plastic flow of carbonate material, accompanied by its intrusive emplacement into dilated fissures in the fenitized country rock, brecciation of the country rock, grain-size reduction and development of lamination in the carbonatite in response to grain-size, grain-shape and density variations in the rock, fragmentation and alignment of apatite crystals, formation of lenticular inequigranular textures, and possibly, chemical re-equilibration of the primary minerals with a fluid. The subsequent deformation event produced folding in laminated carbonatites, ranging from isolated flexures to multiple tightly spaced folds.

Exhumation of the carbonatites and their re-equilibration with groundwater produced widespread oxidation of pyrite and decalcification of dolomite, which locally converted these rocks into an incompetent ochre-brown to reddish brown calcite-enriched material containing isolated fragments of carbonatite.

Assay results for all of the 2010 drill holes have been received and have been presented on the sections included in Appendix E. These holes intersected relatively consistent niobium mineralization of significant grade across an area measuring over 900m east-west and 350m north-south. Mineralized drill intercepts are in some cases in excess of 200m in length, the true widths of which will be determined by further delineation drilling. Niobium mineralization is, at an average drill spacing of approximately 150m relatively continuous and close to surface. The extent of niobium mineralization indicated by the 2010 drilling is currently undefiined laterally and at depth.

Selected mineralized intercepts include 125.3m @ 0.53% Nb2O5 from 9.1m in hole 2010-012, 76.9m @ 0.67% Nb2O5 from 14.6m in hole 2010-014, 134.1m @ 0.70% Nb2O5 from 6.3m in hole 2010-021, 144.1m @ 0.57% Nb2O5 from 6.7m in hole 2010-022, 141.7m @ 0.82% Nb2O5 from 4.6m in hole 2010-023, 153.2m @ 0.52% Nb2O5 from 45.1m in hole 2010-030, and 207.3m @ 0.66% Nb2O5 from 6.1m in hole 2010-033.

The average unweighted grade by interval of all core samples from the 2010 drilling program, irrespective of rock-type, is 0.38% Nb₂O₅; when a cut-off grade of 0.20% Nb₂O₅ is applied (resulting in the exclusion of 470 of a total of 1311 samples), the average unweighted grade by interval, again irrespective of rock-type, rises to 0.54% Nb₂O₅. Preliminary evaluation of the drill data suggests,

subject to geological and grade continuity, the potential for a deposit in the order of 40Mt tonnes at an approximate grade of 0.5% Nb₂O₅.

Recommendations for further work

To facilitate a more detailed assessment of the property, the collection of further geological and geotechnical information is required. The proposed work program has been constrained by internal budgetary factors and has been prioritized in the interest of advancing data collection and analysis. An exploration program comprising the following priority elements is proposed:

- (i) Helicopter-supported exploration/resource drilling comprising approximately 17,000m of NQ-diameter diamond drill core across approximately 65 holes. This element of the program would have the objective of providing infill drill coverage for the purposes of resource definition, and has been laid out in consideration of the current geological and geostatistical understanding of the deposit. The diamond drilling program would also seek to test the potential continuation of niobium mineralization within the Central Zone in areas where it is currently unconstrained.
- (ii) Helicopter-supported geotechnical drilling, with the objective of collecting geotechnical and hydrogeological data at potential Tailings Storage locations, in accordance with standard industrial practices.
- (iii) Further geological interpretation and development of a more rigorous understanding of controls on niobium mineralization.

Statement of Costs

Exploration Work type	Comment	Days			Totals
Personnel (Name) / Position	Field Days (list actual days)*	Days	Rate	Subtotal*	
Jeremy Crozier (Project Manager)	July 15 - September 3	40			
Ryan Libke (Project Coordinator)	July 15 - September 3	42	\$260.00	\$10,920.00	
Duncan McLeish (Project Geologist)	July 15 - August 23	39			
Ryan Kressall (Project Geologist)	July 23 - September 3	43			
Steve Dumma (L3 FAA/geotech)	July 23 - August 30	39	\$275.00		
Ashley Nystrom (Technician)	August 12 - August 16	5			
Chris Gallagher (Niton Operator)	August 16 - August 19	4			
Barry Poole (Core Splitter)	August 12 - August 22	11			
Kirk Miller (Core Splitter)	August 12 - August 20	9			
Dwayne Pierre (Core Splitter)	August 12 - August 17	6			
Jesse Collison (Project Coordinator)	August 21 - August 30	10			
	*dates listed include partial days worked and breaks within	project		\$00.175.00	****
Office Studies	List Personnel (office only, do not include field days)			\$82,175.00	\$82,175.00
Database compilation	Si Yuan Lee, Data Technician	2.0	\$200.00	\$400.00	
	Ted Oliver, Database Manager	3.0			
QAQC verification	Romeo Taras, Data Technician	3.0			
Graphics and GIS	Katrina Jessen, Comppilation Geologist	1.0			
Graphics and Ols	Alexandra Shaw, Lands geologist	1.0			
QAQC Management	Eric Titley, Senior Geologist, QAQC	2.0		,	
QAQC ivialiagement	Eric Titley, Seriior Geologist, QAQC	2.0	\$000.00	\$1,200.00	
				\$3,620.00	\$3,620.00
Diamond Drilling	No. of Holes, Size of Core and Metres	No.	Rate	Subtotal	
Diamond Drilling	4460 meters at NQ	IVO.		\$694,783.00	
Blackhawk Drilling Ltd.	4460 meters at NQ		total job	\$694,783.00	
					\$694,783.00
Other Operations	Clarify	Days	Rate	Subtotal	
Nothing to declare					
Nothing to declare					
·				\$0.00	
·	Clarify	No.	Rate	Subtotal	
Nothing to declare Transportation Helicopter	Yellowhead helicopters - provision of 1 x Bell 407 at an average rate of \$1850 per hour, plus fuel, plus GST including pilot and engineer, for a total of 121.4 hours,	No.			
Transportation	Yellowhead helicopters - provision of 1 x Bell 407 at an average rate of \$1850 per hour, plus fuel, plus GST including pilot and engineer, for a total of 121.4 hours, using 22153 litres of Jet-B Transport of drill core from Ospika Camp to Inspectorate	No.	Rate	Subtotal	
Transportation Helicopter	Yellowhead helicopters - provision of 1 x Bell 407 at an average rate of \$1850 per hour, plus fuel, plus GST including pilot and engineer, for a total of 121.4 hours, using 22153 litres of Jet-B	No.	Rate total job	Subtotal \$357,432.00	
Transportation Helicopter Sample Transport	Yellowhead helicopters - provision of 1 x Bell 407 at an average rate of \$1850 per hour, plus fuel, plus GST including pilot and engineer, for a total of 121.4 hours, using 22153 litres of Jet-B Transport of drill core from Ospika Camp to Inspectorate laboratories, Richmond Air Canada, WestJet and Pacific Coastal flights from	No.	Rate total job total job	\$ubtotal \$357,432.00 \$15,378.00 \$10,405.00	
Transportation Helicopter Sample Transport	Yellowhead helicopters - provision of 1 x Bell 407 at an average rate of \$1850 per hour, plus fuel, plus GST including pilot and engineer, for a total of 121.4 hours, using 22153 litres of Jet-B Transport of drill core from Ospika Camp to Inspectorate laboratories, Richmond Air Canada, WestJet and Pacific Coastal flights from	No.	Rate total job total job	\$ubtotal \$357,432.00 \$15,378.00 \$10,405.00	
Transportation Helicopter Sample Transport Miscellaneous Airfares	Yellowhead helicopters - provision of 1 x Bell 407 at an average rate of \$1850 per hour, plus fuel, plus GST including pilot and engineer, for a total of 121.4 hours, using 22153 litres of Jet-B Transport of drill core from Ospika Camp to Inspectorate laboratories, Richmond Air Canada, WestJet and Pacific Coastal flights from Vancouver, Victoria and Winnipeg	No.	Rate total job total job	\$ubtotal \$357,432.00 \$15,378.00 \$10,405.00	
Transportation Helicopter Sample Transport Miscellaneous Airfares Accommodation & Food	Yellowhead helicopters - provision of 1 x Bell 407 at an average rate of \$1850 per hour, plus fuel, plus GST including pilot and engineer, for a total of 121.4 hours, using 22153 litres of Jet-B Transport of drill core from Ospika Camp to Inspectorate laboratories, Richmond Air Canada, WestJet and Pacific Coastal flights from Vancouver, Victoria and Winnipeg Rates per day	No.	Rate total job total job	\$ubtotal \$357,432.00 \$15,378.00 \$10,405.00 \$383,215.00	
Transportation Helicopter Sample Transport Miscellaneous Airfares Accommodation & Food	Yellowhead helicopters - provision of 1 x Bell 407 at an average rate of \$1850 per hour, plus fuel, plus GST including pilot and engineer, for a total of 121.4 hours, using 22153 litres of Jet-B Transport of drill core from Ospika Camp to Inspectorate laboratories, Richmond Air Canada, WestJet and Pacific Coastal flights from Vancouver, Victoria and Winnipeg Rates per day	No.	Rate total job total job	\$ubtotal \$357,432.00 \$15,378.00 \$10,405.00 \$383,215.00 \$32,481.00	\$383,215.00
Transportation Helicopter Sample Transport Miscellaneous Airfares Accommodation & Food Finlay River Outfitters	Yellowhead helicopters - provision of 1 x Bell 407 at an average rate of \$1850 per hour, plus fuel, plus GST including pilot and engineer, for a total of 121.4 hours, using 22153 litres of Jet-B Transport of drill core from Ospika Camp to Inspectorate laboratories, Richmond Air Canada, WestJet and Pacific Coastal flights from Vancouver, Victoria and Winnipeg Rates per day	No.	Rate total job total job	\$ubtotal \$357,432.00 \$15,378.00 \$10,405.00 \$383,215.00 \$32,481.00	\$383,215.00 \$32,481.00
Transportation Helicopter Sample Transport Miscellaneous Airfares Accommodation & Food Finlay River Outfitters Miscellaneous Field equipment purchase	Yellowhead helicopters - provision of 1 x Bell 407 at an average rate of \$1850 per hour, plus fuel, plus GST including pilot and engineer, for a total of 121.4 hours, using 22153 litres of Jet-B Transport of drill core from Ospika Camp to Inspectorate laboratories, Richmond Air Canada, WestJet and Pacific Coastal flights from Vancouver, Victoria and Winnipeg Rates per day Accomodation at former CANFOR Lodge Safety equipment, 2 x GPS, sample bags and tickets, tools,	No.	Rate total job total job total job	\$ubtotal \$357,432.00 \$15,378.00 \$10,405.00 \$383,215.00 \$32,481.00	\$383,215.00 \$32,481.00
Transportation Helicopter Sample Transport Miscellaneous Airfares Accommodation & Food Finlay River Outfitters Miscellaneous Field equipment purchase Sample Analysis and Assay	Yellowhead helicopters - provision of 1 x Bell 407 at an average rate of \$1850 per hour, plus fuel, plus GST including pilot and engineer, for a total of 121.4 hours, using 22153 litres of Jet-B Transport of drill core from Ospika Camp to Inspectorate laboratories, Richmond Air Canada, WestJet and Pacific Coastal flights from Vancouver, Victoria and Winnipeg Rates per day Accomodation at former CANFOR Lodge Safety equipment, 2 x GPS, sample bags and tickets, tools,	No.	Rate total job total job total job total job	\$ubtotal \$357,432.00 \$15,378.00 \$10,405.00 \$383,215.00 \$32,481.00 \$11,361.00	\$383,215.00 \$32,481.00 \$11,361.00
Transportation Helicopter Sample Transport Miscellaneous Airfares Accommodation & Food Finlay River Outfitters Miscellaneous Field equipment purchase	Yellowhead helicopters - provision of 1 x Bell 407 at an average rate of \$1850 per hour, plus fuel, plus GST including pilot and engineer, for a total of 121.4 hours, using 22153 litres of Jet-B Transport of drill core from Ospika Camp to Inspectorate laboratories, Richmond Air Canada, WestJet and Pacific Coastal flights from Vancouver, Victoria and Winnipeg Rates per day Accomodation at former CANFOR Lodge Safety equipment, 2 x GPS, sample bags and tickets, tools,	No.	Rate total job total job total job	\$ubtotal \$357,432.00 \$15,378.00 \$10,405.00 \$383,215.00 \$32,481.00 \$11,361.00	\$383,215.00 \$32,481.00 \$11,361.00
Transportation Helicopter Sample Transport Miscellaneous Airfares Accommodation & Food Finlay River Outfitters Miscellaneous Field equipment purchase Sample Analysis and Assay	Yellowhead helicopters - provision of 1 x Bell 407 at an average rate of \$1850 per hour, plus fuel, plus GST including pilot and engineer, for a total of 121.4 hours, using 22153 litres of Jet-B Transport of drill core from Ospika Camp to Inspectorate laboratories, Richmond Air Canada, WestJet and Pacific Coastal flights from Vancouver, Victoria and Winnipeg Rates per day Accomodation at former CANFOR Lodge Safety equipment, 2 x GPS, sample bags and tickets, tools,	No.	Rate total job total job total job total job	\$ubtotal \$357,432.00 \$15,378.00 \$10,405.00 \$383,215.00 \$32,481.00 \$11,361.00 \$11,361.00	\$383,215.00 \$32,481.00 \$11,361.00
Transportation Helicopter Sample Transport Miscellaneous Airfares Accommodation & Food Finlay River Outfitters Miscellaneous Field equipment purchase Sample Analysis and Assay Inspectorate Laboratories	Yellowhead helicopters - provision of 1 x Bell 407 at an average rate of \$1850 per hour, plus fuel, plus GST including pilot and engineer, for a total of 121.4 hours, using 22153 litres of Jet-B Transport of drill core from Ospika Camp to Inspectorate laboratories, Richmond Air Canada, WestJet and Pacific Coastal flights from Vancouver, Victoria and Winnipeg Rates per day Accomodation at former CANFOR Lodge Safety equipment, 2 x GPS, sample bags and tickets, tools, water supply equipment, first aid equipment	No.	Rate total job total job total job total job	\$ubtotal \$357,432.00 \$15,378.00 \$10,405.00 \$383,215.00 \$32,481.00 \$11,361.00 \$11,361.00	\$383,215.00 \$32,481.00 \$11,361.00 \$123,480.00
Transportation Helicopter Sample Transport Miscellaneous Airfares Accommodation & Food Finlay River Outfitters Miscellaneous Field equipment purchase Sample Analysis and Assay	Yellowhead helicopters - provision of 1 x Bell 407 at an average rate of \$1850 per hour, plus fuel, plus GST including pilot and engineer, for a total of 121.4 hours, using 22153 litres of Jet-B Transport of drill core from Ospika Camp to Inspectorate laboratories, Richmond Air Canada, WestJet and Pacific Coastal flights from Vancouver, Victoria and Winnipeg Rates per day Accomodation at former CANFOR Lodge Safety equipment, 2 x GPS, sample bags and tickets, tools, water supply equipment, first aid equipment	No.	Rate total job total job total job total job	\$ubtotal \$357,432.00 \$15,378.00 \$10,405.00 \$383,215.00 \$32,481.00 \$11,361.00 \$11,361.00	\$383,215.00 \$32,481.00 \$11,361.00

References

- CHAKHMOURADIAN, A.R. AND KRESSALL, R.D., 2010. Aley Carbonatite, BC: Petrographic analysis of carbonatite types and assessment of their niobium potential, priv rept to Taseko Mines Ltd., 197p.
- **KRESSALL, R., 2010**. Petrological Study of Aley 2010 Drillcore. priv rept to Taseko Mines Ltd., 10p.
- MACDONALD, K., 2005, Aley Property Exploration Road Survey, priv. Report to Aley Corp., 12 p
- MÄDER, U.K., 1986. The Aley Carbonatite Complex, unpubl M.Sc. thesis, UBC, Vancouver, BC, 177p.
- MCLEISH, D., 2011 Technical Report on Structural Geology, Aley Carbonatite Niobium Project
- **PRIDE, K.R., 1984.** Aley Group 1983 Year End Report, May 1984, priv rept to Cominco Ltd., 26p with Appendices.
- TISDALE, D., 2001. Summary report for: Aley Property, Omineca Mining Division

Statements of Authors' Qualifications

I, Jeremy Crozier, hereby state:

- That I am Exploration Manager for Taseko Mines Ltd., with offices located at 15th Floor, 1040 W. Georgia St. Vancouver, BC, V6E 4H8
- 2. That I am a graduate of the University of St.Andrews, Scotland (B.Sc., 1995) and have been employed as an exploration a geologist since that time. I subsequently earned an MSc degree from the University of the Orange Free State, South Africa (2001, part time) and an MBA from the Ecole des Hautes Etudes Commerciales, Montreal (2004).
- That my experience has given me considerable knowledge in geological, geochemical and geophysical prospecting techniques as well as in the planning, execution and evaluation of exploration drilling programs.
- 4. That the accompanying Statement of Costs is an accurate statement of expenditures on the project.

November 22, 2011.

Jeremy Crozier

APPENDIX A

GEOLOGICAL LOGS

November 20, 2011 Appendix A

Printed on 10/Feb/2011

GEOLOGY LOG

2010-012 Hole ID

		GENERAL INF	ORMATION		
Coordinate System	Easting	Northing	Elevation	Collar Azimuth	Collar Dip
ST. PL Nad 83	454261.31	6256503.02	1612.94	20.00	-55.00
Start Depth	Final Depth	Proposed Depth	Final Length	Rig	Area
0.00	154.26		154.26		Central 1
Operator	Year				
Taseko	2010				

	DRILLING	BIT SIZE	
Bit Size	From	То	Length
NW (Casing)	0.00	8.60	8.60
NQ	8.60	154.26	154.26

	PROFESSIONAL / TECHNICIAN				
	Name	Start Date	End Date		
Collar Surveyor					
Geology Logged By	Ryan Kressall				
Specific Gravity By	Steve Dumma				
Geotech Logged By	Steve Dumma	01/Aug/2010			
Drill Contractor		24/Jul/2010	25/Jul/2010		

SUMMARY

Measurement unit: Metres (Unless otherwise specified)

GEOLOGY LEGEND

Hole ID **2010-012**

ROCK CODE

MIN STYLE				
Abbr.	Description			
n	barren			
d	disseminated			
g	aggregated			
b	banded			

FABRIC				
Abbr.	Description			
Х	brecciated			
- 1	laminated			
f	decalcified			
V	veined			
р	porphyritic			
m	massive			

TEXTURE								
Abbr.	Description							
f	decalcified							
р	porphyritic							
V	veined							

LITHO					
Abbr.	Description				
CASE	Casing				
OVBN	Overburden				
OXID	Oxide				
AM	Amphibolite				
CC	Calcite Carbonatite				
CD	Dolomite Carbonatite				
CCCD	Mixed Calcite and Dolomite Carbonatite				
AMX	Amphibole and Mixed Carbonatite				
CM	Carbonatite Cumulate				

STRUCT						
Abbr.	Description					
Z	fault					
е	strained					
S	shear zone					
У	dyke					

MISCELLANEOUS:

ZONE							
Abbr.	Description						
OX	Oxide						
S	Supergene						
Н	Hypogene						

	HCL
Abbr.	Description
VW	very weak
W	weak
М	moderate
S	strong
VS	very strong

2010-012 Log by Ryan Kressall Date Hole ID

ROCK CODE ROCK											
MINERALIZATION STRUCTURE MISCELLANEOUS Zone HCL Apatite Zircon TO 8.60 9.10 ROCK CODE n ICD MAIN COMMENTS Cored talus. Mottled brown carbonable. Mottles areas react strongly to HCl while bulk rock reacts weakly or not at all. Core angle is variable per rock fragment. Apatite and zircon content is variable between 10 and 25 vol. % and 0 and 0.1 vol. % respectively. MINERALIZATION Type Value Comments Prite % 1.00 STRUCTURE Type Intens CA' Comments Laminations % moderate MISCELLANEOUS Zone HCL Apatite Zircon Type Intens CA' Comments Laminations % moderate MISCELLANEOUS Zone HCL Apatite Zircon		ROCK CODE	CASE	=	Min Style	Fabric	Texture		Struct		
ALTERATION STRUCTURE MISCELLANEOUS Zone HCL Apatite Zircon ROCK CODE nICD = Min Style Fabric Texture Litho Struct n i CD STRUCTURE MAIN COMMENTS Cored talus. Mottled brown carbonatite. Mottles areas react strongly to HCl while bulk rock reacts weakly or not at all. Core angle is variable per rock fragment. Apatite and zircon content is variable between 10 and 25 vol. % and 0 and 0.1 vol. % respectively. MINERALIZATION Type Value Comments Pyrite % 1.00 ALTERATION Type Value Comments Caricite % 1.00 STRUCTURE Type Intens CA' Comments Laminations % moderate MISCELLANEOUS Zone HCL Apatite Zircon		MAIN COMMENTS	No rock								
FROM TO 8.60 - 9.10 ROCK CODE nICD = Min Style Fabric Texture Litho Struct n Fabric Texture Litho Struct CO MAIN COMMENTS Cored talus. Mottled brown carbonatite. Mottles areas react strongly to HCl while bulk rock reacts weakly or not at all. Core angle is variable per rock fragment. Aparite and zircon content is variable between 10 and 25 vol. % and 0 and 0.1 vol. % respectively. MINERALIZATION Type Value Comments Pyrite % 1.00 ALTERATION Type Value Comments Calcite % 1.00 STRUCTURE Type Intens CA* Comments Laminations % moderate MISCELLANEOUS Zone HCL Apatite Zircon		MINERALIZATION									
FROM TO 8.60 - 9.10 ROCK CODE nICD = Min Style Fabric Texture Litho Struct CD Struct MAIN COMMENTS Cored talus. Mottled brown carbonatire. Mottles areas react strongly to HCl while bulk rock reacts weakly or not at all. Core angle is variable per rock fragment. Apatite and zircon content is variable between 10 and 25 vol. % and 0 and 0.1 vol. % respectively. MINERALIZATION Type Value Comments Pyrite % 1.00 ALTERATION Type Value Comments Calcite % 1.00 STRUCTURE Type Intens CA' Comments Laminations % moderate MISCELLANEOUS Zone HCL Apatite Zircon		ALTERATION									
FROM TO 8.60 - 9.10 ROCK CODE NICD = Min Style n Fabric Texture Litho CD MAIN COMMENTS Cored talus. Mottled brown carbonatite. Mottles areas react strongly to HCl while bulk rock reacts weakly or not at all. Core angle is variable per rock fragment. Apatite and zircon content is variable between 10 and 25 vol. % and 0 and 0.1 vol. % respectively. MINERALIZATION Type Value Comments ALTERATION Type Value Comments Calcite % 1.00 STRUCTURE Type Intens CA* Comments Laminations % moderate Litho CD To exture Litho CD Struct Struct Struct MINERALIZATION Type Value Comments Laminations % moderate Litho CD To exture Litho CD Struct Litho CD Struct Litho CD Struct Struct Struct Litho CD Struct Litho CD Struct Litho CD Struct Litho CD Struct Struct Struct MINERALIZATION Type Intens CA* Comments Laminations % moderate Litho CD To exture Litho CD Struct Litho CD Struct Struct Struct MINERALIZATION Type Intens CA* Comments Laminations % moderate Litho CD To exture Litho CD Struct Litho CD Struct Struct Struct MINERALIZATION Type Intens CA* Comments Laminations % moderate Litho CD To exture Litho CD Struct Litho CD Struct Struct Litho CD Struct L		STRUCTURE									
8.60 - 9.10 MAIN COMMENTS Cored talus. Mottled brown carbonatite. Mottles areas react strongly to HCl while bulk rock reacts weakly or not at all. Core angle is variable per rock fragment. Apatite and zircon content is variable between 10 and 25 vol. % and 0 and 0.1 vol. % respectively. MINERALIZATION Type Value Comments Pyrite % 1.00 ALTERATION Type Value Comments Calcite % 1.00 STRUCTURE Type Intens CA° Comments Laminations % moderate MISCELLANEOUS Zone HCL Apatite Zircon		MISCELLANEOUS	Zone	HCL		Apatite	Zircon				
8.60 - 9.10 MAIN COMMENTS Cored talus. Mottled brown carbonatite. Mottles areas react strongly to HCl while bulk rock reacts weakly or not at all. Core angle is variable per rock fragment. Apatite and zircon content is variable between 10 and 25 vol. % and 0 and 0.1 vol. % respectively. MINERALIZATION Type Value Comments Pyrite % 1.00 ALTERATION Type Value Comments Calcite % 1.00 STRUCTURE Type Intens CA° Comments Laminations % moderate MISCELLANEOUS Zone HCL Apatite Zircon											
MINERALIZATION		ROCK CODE	nICD	=		Fabric I	Texture i		Struct		
Pyrite % 1.00		MAIN COMMENTS				ct strongly to HCl v	vhile bulk rock reacts weal	kly or not at all. Core angl	e is variable per rock fragn	nent. Apatite and zircon content is var	able between 10
Pyrite % 1.00		MINERALIZATION	Type	Value	Comment	5					
STRUCTURE Type Intens CA° Comments Laminations % moderate MISCELLANEOUS Zone HCL Apatite Zircon				1.00							
STRUCTURE Type Intens CA° Comments Laminations % moderate MISCELLANEOUS Zone HCL Apatite Zircon		ALTERATION	Type	Value	Comment	5					
Laminations % moderate MISCELLANEOUS Zone HCL Apatite Zircon			Calcite %	1.00							
MISCELLANEOUS Zone HCL Apatite Zircon		STRUCTURE	Туре	Intens		CA°	Comments				
			Laminations %	moderate							
		MISCELLANEOUS	Zone	HCL		Apatite	Zircon				
				W			0.1				

2010-012 Log by Ryan Kressall Date Hole ID

FROM 9.10 - 12.70 ROCK CODE dlcCD = Min Style d Fabric Texture CD MAIN COMMENTS Interval is composed of grey dolomite carbonatite laminae (up to 20 cm thick), dark brown decalcified laminae (up to 2 cm thick) and thin (generally less than 1 cm) dark lam and interstital dolomite. Pyrite laminae is surrounded by "halo" of oxidized dolomite (up to 2 cm thick). Zircon occurs dominantly in apatite-rich laminae.	
	minae composed of oxidized pyrite
MINERALIZATION Type Value Comments	
Niobates % 0.10 Potential fersmite occurs as fine grained dark grey octahedral grains disseminated in discrete laminae. Grains do not have red	ed streak.
Pyrite % 1.50 Mostly confined to thin laminae less than a centimetre thick wihin oxidized dolomite. Rarely, laminae occur asthick as 4 cm.	
ALTERATION Type Value Comments	
Silica % 1.00	
Oxidation % 25.00	
Calcite % 25.00	
STRUCTURE Type Intens CA° Comments	
Veining % moderate 45 Composed of dolomite	
Laminations % strong 10 Core angle is generally low but varies up to 45 degrees	
MISCELLANEOUS Zone HCL Apatite Zircon	
OX M 20 0.5	

2010-012 Log by Ryan Kressall Date Hole ID

FROM 12.70	TO - 15.30	ROCK CODE	mCD	=	Min Style	Fabric m	Texture f	Litho CD	Struct	
		MAIN COMMENTS							es a mottled appearance. Grey material is composed con occurs dominantly in apatite laminae.	of dolomite and brown pitted
		MINERALIZATION	Туре	Value	Comments					
			Pyrite %	1.00						
		ALTERATION	Туре	Value	Comments					
			Silica %	1.00						
			Calcite %	15.00						
		STRUCTURE	Туре	Intens		CA°	Comments			
			Laminations %	weak		60	Grey and brown lamiae o	oriented 60 to 90 degree	es to core in places.	
			Veining %	weak		40	Dolomite veins up to 3 m	nm wide		
		MISCELLANEOUS	Zone	HCL	Α	patite	Zircon			
			OX	S		15	0.5			

2010-012 Log by Ryan Kressall Date Hole ID

FROM 15.30	TO - 16.90	ROCK CODE	blcCD	=	Min Style b	Fabric I	Texture c	Litho CD	Struct
		MAIN COMMENTS	Interval is composed of Weathered incoherent				·		n laminae reacts strongly to HCI. Oxidized areas are up to 20 cm thick. al
		MINERALIZATION	Туре	Value	Comments				
			Niobates %	0.10	Fine grained dark	k grey grains - do n	ot streak red - Occur in	grey dolomite carbona	tite laminae rich in pyrite and pseudomorphs
			Pyrite %	1.50	Oxidized and alte	erted to yellow lim	onite. Occur dominantly	in oxidized areas	
		ALTERATION	Туре	Value	Comments				
			Oxidation %	40.00	Oxidation of dolo	omite surrounding	pyrites		
			Calcite %	25.00	Dark brown lamin	nae			
		STRUCTURE	Туре	Intens		CA° C	omments		
			Laminations %	strong		40 Ge	enerally 40 but does inc	rease to 60 in middle o	of interval
		MISCELLANEOUS	Zone	HCL	Ар	atite	Zircon		
			OX	М		15	0.25		

2010-012 Log by Ryan Kressall Date Hole ID

FROM TO ROCK CODE nIfCD = Min Style Fabric Texture Litho Struct 16.90 - 19.30	
MAIN COMMENTS Dark brown decalcified unit with a few fragments of coherant laminated dolomite carbonatite. Zicon is smaller in this interval and disseminated throughout.	
MINERALIZATION Type Value Comments	
Pyrite % 0.10 Oxidized pyite visible in coherent dolomite carbonatite fragments. Most likely broken down in incoherant brown rock.	
ALTERATION Type Value Comments	
Oxidation % 80.00	
STRUCTURE Type Intens CA° Comments	
Laminations % weak 40 Primary texture lost due to alteration	
MISCELLANEOUS Zone HCL Apatite Zircon	
OX VS 10 0.1	

2010-012 Log by Ryan Kressall Date Hole ID

FROM 19.30	TO - 21.80	ROCK CODE	gmCM	=	Min Style g	Fabric m	Texture	Litho CM	Struct
		MAIN COMMENTS					nately of magnetite and ap ulate is void of apatite and		ssory columbite and phlogopite. Small amount of calcitization occurs in last 50 cm
		MINERALIZATION	Туре	Value	Comments				
			Pyrite %	0.10					
			Magnetite %	40.00					
			Niobates %	3.00	Small (~0.5 mm) black nonmeta	allic grains likely columbite	e	
		ALTERATION	Туре	Value	Comments				
			Calcite %	10.00					
		STRUCTURE	Туре	Intens		CA°	Comments		
			Veining %	weak		40	thin centimetre-scale do	olomite veins	
			Laminations %	weak		30	2-12 cm thick laminae of	f dolomite carbonatite s	separate massive magnetite-rich zones
		MISCELLANEOUS	Zone	HCL	Α	patite	Zircon		
			OX	VS		30	1		

2010-012 Log by Ryan Kressall Date Hole ID

FROM 21.80	- ;	TO 25.09	ROCK CODE	dlcCD	=	Min Style d	Fabric I	Texture c	Litho CD	Struct	
			MAIN COMMENTS	Decalcified medium bro	wn mottles are conf	ined mostly to pa	arallel mottles. M	ottles are composed dom	inatly of calcite (reacts	strongly to HCI). Apatite occurs as orient	ed laminae. Zircon occurs with apatite.
			MINERALIZATION	Туре	Value	Comments					
				Pyrite %	1.00	Red streak wh	en scratched				
				Niobates %	0.10	Localized fine	grained dark grey	grains do not streak red	when scratched - possib	ly fersmite pseudomorphs	
			ALTERATION	Туре	Value	Comments					
				Oxidation %	10.00						
				Calcite %	25.00						
			STRUCTURE	Туре	Intens		CA°	Comments			
				Laminations %	moderate		20				
				Veining %	weak		80	Calcite along fractures (joints?)		
			MISCELLANEOUS	Zone	HCL		Apatite	Zircon	1		
				OX	W		10	0.25			

2010-012 Log by Ryan Kressall Date Hole ID

FROM 25.09	TO - 27.80	ROCK CODE	nlcCD	=	Min Style n	Fabric I	Texture c	Litho CD	Struct
		MAIN COMMENTS		actures. A few dark g	grey dolomite dark gr	rey clasts (around	d 5 cm diameter) occur ra		dolomite carbonatite. Towards end of interval, dark brown decalcification occurs rk grey colour of dolomite is due to minute inclusions of most likely pyite.
		MINERALIZATION	Туре	Value	Comments				
			Pyrite %	0.50	Fresh cores with o	xidized rims			
		ALTERATION	Туре	Value	Comments				
			Oxidation %	10.00					
			Calcite %	20.00					
		STRUCTURE	Туре	Intens	C	A° (Comments		
			Veining %	moderate		40 V	eins rimmed by dark bro	wn calcite alteration	
			Laminations %	moderate		25 v	varies between 10 and 40	degrees	
		MISCELLANEOUS	Zone	HCL	Apa	atite	Zircon		
			OX	W	1	10	0.25		
		MISCELLANEOUS							

2010-012 Log by Ryan Kressall Date Hole ID

FROM 27.80	TO - 30.05	ROCK CODE	lcCD	=	Min Style	Fabric I	Texture c	Litho CD	Struct		
		MAIN COMMENTS	Light grey to beige dolo within thin (up to 1 cm)		th laminae of dark grey	dolomite bein	ng altered to dark brown c	alcite . Major oxidatio	on and minor brecciation at end of se	ection near fracture (fault?). Zircon (occurs
		MINERALIZATION	Туре	Value	Comments						
			Pyrite %	0.50	Confined to thin lami	inae					
		ALTERATION	Туре	Value	Comments						
			Calcite %	15.00	Mostly of dark grey d	olomite.					
			Oxidation %	30.00							
		STRUCTURE	Туре	Intens	CA°	C	Comments				
			Laminations %	strong	40						
		MISSELLANGOUS	7	lici	A+:+		7:				
		MISCELLANEOUS	Zone	HCL	Apatit	le	Zircon				
			OX	M	20		0.25				

2010-012 Log by Ryan Kressall Date Hole ID

FROM 30.05	TO - 33.77	ROCK CODE	ЫCD	=	Min Style b	Fabric I	Texture	Litho CD	Struct	
		MAIN COMMENTS	Mottled light grey to bei locally.	ge laminated carbo	natite with10-20 cm	thick intervals of	extensive decalcificati	on and oxidation. Apat	ite occurs as oriented aggregates in dolomite carbonatite. Zircon is concenti	rated
		MINERALIZATION	Туре	Value	Comments					
			Pyrite %	1.00	Oxidized, streak re	ed, disseminated a	nd aggregated in deca	lcified-oxidized zones		
			Niobates %	0.10	Localized dark gre	ey grains that do no	t streak red			
		ALTERATION								
		STRUCTURE	Туре	Intens	C	:A° Co	mments			
			Laminations %	moderate		40				
		MISCELLANEOUS	Zone	HCL	Apa	atite	Zircon			
			OX	М		20	0.25			

2010-012 Log by Ryan Kressall Date Hole ID

FROM 33.77	TO 36.26	ROCK CODE	dICD	=	Min Style d	Fabric I	Texture	Litho CD	Struct	
		MAIN COMMENTS	Fine-grained oxidized	laminated light grey t	o beige dolomite carl	bonatite. Small p	atches of decalcificati	on. Apatite-zircon lamiı	nae occurs associated with pyrite.	
		MINERALIZATION	Туре	Value	Comments					
			Niobates %	0.10	Possible fersmite;	dark grey to yellov	v without red streak;	localized		
			Pyrite %	1.50	Fine to medium-gr	rained oxidized py	rite with red streak			
		ALTERATION	Туре	Value	Comments					
			Silica %	1.00	Minor laminae und	lergone silicification	on			
			Calcite %	5.00	reacts strongly to	HCI				
			Oxidation %	35.00	beige to orange co	lour				
		STRUCTURE	Туре	Intens	C	A° Co	mments			
			Laminations %	strong	1	5 Ger	nerally a low angle but	t varies up to 45 degrees	5	
		MISCELLANEOUS	Zone	HCL	Apa	tite	Zircon			
			OX	VW	2	0	0.5			
			Laminations % Zone	strong HCL	1 Apa	5 Ger	nerally a low angle but	t varies up to 45 degrees		

2010-012 Log by Ryan Kressall Date Hole ID

TO - 39.20	ROCK CODE	dICD	=	Min Style d	Fabric I	Texture	Litho CD	Struct
	MAIN COMMENTS							cets of dark grey dolomite carbonatite reacts weakly to HCl and dark brown calcite
	MINERALIZATION	Туре	Value	Comments				
		Pyrite %	1.00	Occur within thin	oxidized dolomite	e laminae		
		Niobates %	1.00	Dark grey fersmite	grains up to 2 mi	m diameter		
	ALTERATION	Туре	Value	Comments				
		Calcite %	5.00	Decalcification occ	curs concordant a	nd irregularly discordan	t to lamination	
		Oxidation %	20.00					
	STRUCTURE	Туре	Intens	C	CA° Co	omments		
		Laminations %	weak		40			
	MISCELLANEOUS	Zone	HCL	Ара	atite	Zircon		
			VW					
		- 39.20 MAIN COMMENTS MINERALIZATION ALTERATION STRUCTURE	MAIN COMMENTS Grey to beige oxidized of mottles reacts strongly MINERALIZATION Type Pyrite % Niobates % ALTERATION Type Calcite % Oxidation % STRUCTURE Type Laminations %	MAIN COMMENTS Grey to beige oxidized dolomite carbonatite mottles reacts strongly. Zircon concentrates MINERALIZATION Type Value Pyrite % 1.00 Niobates % 1.00 ALTERATION Type Value Calcite % 5.00 Oxidation % 20.00 STRUCTURE Type Intens Laminations % weak MISCELLANEOUS Zone HCL	MAIN COMMENTS Grey to beige oxidized dolomite carbonatite. Medium grained ps mottles reacts strongly. Zircon concentrates in apatite laminae MINERALIZATION Type Value Comments Pyrite % 1.00 Occur within thin Niobates % 1.00 Dark grey fersmite Calcite % 5.00 Decalcification occur oxidation % 20.00 STRUCTURE Type Intens Calcite % weak MISCELLANEOUS Zone HCL Apa	MAIN COMMENTS Grey to beige oxidized dolomite carbonatite. Medium grained pseudomorphs of formottles reacts strongly. Zircon concentrates in apatite laminae and with oriented mottles reacts strongly. Zircon concentrates in apatite laminae and with oriented mottles reacts strongly. Zircon concentrates in apatite laminae and with oriented mottles reacts strongly. Zircon concentrates in apatite laminae and with oriented mottles reacts strongly. Zircon concentrates in apatite laminae and with oriented mottles reacts strongly. Zircon concentrates in apatite laminae and with oriented mottles reacts strongly. Zircon concentrates in apatite laminae and with oriented mottles reacts strongly. Zircon concentrates in apatite laminae and with oriented mottles reacts strongly. Zircon concentrates in apatite laminae and with oriented mottles reacts strongly. Zircon concentrates in apatite laminae and with oriented mottles reacts strongly. Zircon concentrates in apatite laminae and with oriented mottles reacts strongly. Zircon concentrates in apatite laminae and with oriented mottles reacts strongly. Zircon concentrates in apatite laminae and with oriented mottles reacts strongly. Zircon concentrates in apatite laminae and with oriented mottles reacts strongly. Zircon concentrates in apatite laminae and with oriented mottles reacts strongly. Zircon concentrates in apatite laminae and with oriented mottles reacts strongly. Zircon concentrates in apatite laminae and with oriented mottles reacts strongly. Zircon concentrates in apatite laminae and with oriented mottles reacts strongly. Zircon concentrates in apatite laminae and with oriented mottles reacts strongly. Zircon concentrates in apatite laminae and with oriented mottles reacts strongly. Zircon concentrates in apatite laminae and with oriented mottles reacts strongly. Zircon concentrates in apatite laminae and with oriented mottles reacts strongly. Zircon concentrates in apatite laminae and with oriented mottles reacts strongly and zircon concentrates in apatite laminae	MAIN COMMENTS Grey to beige oxidized dolomite carbonatite. Medium grained pseudomorphs of fersmite most likely after mottles reacts strongly. Zircon concentrates in apatite laminae and with oriented apatite in dolomite car Pyrite % 1.00 Occur within thin oxidized dolomite laminae Niobates % 1.00 Dark grey fersmite grains up to 2 mm diameter ALTERATION Type Value Comments Calcite % 5.00 Decalcification occurs concordant and irregularly discordant Oxidation % 20.00 STRUCTURE Type Intens CA° Comments Laminations % weak 40 MISCELLANEOUS Zone HCL Apatite Zircon	MAIN COMMENTS Grey to beige oxidized dolomite carbonatite. Medium grained pseudomorphs of fersmite most likely after pyrochlore. Few pock mottles reacts strongly. Zircon concentrates in apatite laminae and with oriented apatite in dolomite carbonatite. MINERALIZATION Type Value Comments Pyrite % 1.00 Occur within thin oxidized dolomite laminae Niobates % 1.00 Dark grey fersmite grains up to 2 mm diameter ALTERATION Type Value Comments Calcite % 5.00 Decalcification occurs concordant and irregularly discordant to lamination Oxidation % 20.00 STRUCTURE Type Intens CA* Comments Laminations % weak 40 MISCELLANEOUS Zone HCL Apatite Zircon

2010-012 Log by Ryan Kressall Date Hole ID

FROM 39.20	T0 - 42.22	ROCK CODE	dICD	=	Min Style d	Fabric I	Texture	Litho CD	Struct	
		MAIN COMMENTS							laminae. Dark grey and beige colors are likely the result of reaction with meteoric atite and zircon concentrate localled within the most strongly laminated	
		MINERALIZATION	Туре	Value	Comments					
			Niobates %	0.10	Possible fersmite p	seudomorphs	after pyrochlore: dark gr	ey in colour, no red stre	eak, fine grained	
			Pyrite %	1.50	Oxidized with fresh	core - confine	d to thin laminae			
		ALTERATION	Туре	Value	Comments					
			Calcite %	5.00	Dark brown mottle	d laminae - rea	acts strongly with HCl			
			Oxidation %		Surrounds oxidized	pyrite				
		STRUCTURE	Туре	Intens	CA	/ °	Comments			
			Veining %	moderate	6		dolomite veins up to 1.5 o also at 40 and 80 degree		ination-dark grey dolomite and dark brown decalcification surrounds fracture;	
			Laminations %	moderate	10) (Generally low but does v	ary up to 40 degrees		
		MISSELLANEOUS	Zono	uci	A ===	tit o	Zirson			
		MISCELLANEOUS	Zone	HCL	Apat		Zircon			
				W	15)	0.25			

2010-012 Log by Ryan Kressall Date Hole ID

FROM 42.22	-	TO 44.50	ROCK CODE	blfCD	=	Min Style b	Fabric I	Texture f	Litho CD	Struct	
			MAIN COMMENTS	Highly fractured and all pyrite.	tered rock to minor ir	ncoherent rock. Co	herent rock cont	ains strong decalcified la	minae parallel to lamina	tion. Zircon occurs within centimeter-scale apatite pods and as aggre	gates with
			MINERALIZATION	Туре	Value	Comments					
				Pyrite %	2.00	Fine- to mediu	m- grained, confi	ined to laminae			
				Niobates %	0.10	possible fersmi	te, dark grey fine	e-grained, localized			
			ALTERATION	Туре	Value	Comments					
				Calcite %	10.00	Concentrated n	ear fractures				
				Oxidation %	30.00						
			STRUCTURE	Туре	Intens		CA°	Comments			
				Laminations %	moderate		40				
				Veining %	moderate		25	Oxidized-pyrite infilled	fracture		
			MISCELLANEOUS	Zone	HCL	Α	patite	Zircon			
				OX	W		15	1			

2010-012 Log by Ryan Kressall Date Hole ID

FROM 44.50	T0 - 48.24	ROCK CODE	nmCDz	=	Min Style n	Fabric m	Texture	Litho CD	Struct z	
		MAIN COMMENTS	Weakly laminated to ma laminar, unoriented swi			cement of fabri	c (~ 6 cm) along series	of fractures. Faults cros	scut brown decalcification	mottles. Zircon and apatite occur together as
		MINERALIZATION	Туре	Value	Comments					
			Pyrite %	2.50	Oxidized, red streak					
		ALTERATION	Туре	Value	Comments					
			Calcite %	20.00						
			Oxidation %	20.00						
			Silica %	1.00	Silicification of unkr	nown mineral, lo	ocalized			
		STRUCTURE	Туре	Intens	CA	° Co	omments			
			Veining %	strong	80	do	lomite in-filled faults	- visible displacement o	f carbonatite (5 cm) - fault	s crosscut dark brown mottles
			Laminations %	very weak	40					
		MISCELLANEOUS	Zone	HCL	Apati	ite	Zircon			
			OX	VW	25		0.5			

2010-012 Log by Ryan Kressall Date Hole ID

dIfCD = Min Style Fabric Texture Litho Struct d I f CD	Litho Struct	Touture							
	CD	f	Fabric I	Min Styl d	=	dlfCD	ROCK CODE	TO - 51.34	FROM 48.24
Laminated 5 to cm thick intervals of massive dolomite carbonatite and pyrite-rich intervals. Thin (> 1 cm)apatite-rich laminae with disseminated zircon.	apatite-rich laminae with disseminated zircon	1 intervals. Thin (> 1 cr	onatite and pyrite-	assive dolomite	to cm thick intervals of ma	Laminated 5 to	MAIN COMMENTS		
Type Value Comments				Comme	Value	Туре	MINERALIZATION		
Niobates % 0.50 Possible fersmite: fine grained dark grey, no red steak. Occurs disseminated within massive dolomite and pyrite-rich dolomite	rs disseminated within massive dolomite and p	grey, no red steak. Occ	nite: fine grained da	Possible	s % 0.50	Niobates			
Pyrite % 0.50 Oxidized, red streak: stringers oriented parallel to lamination.	n.	ed parallel to laminat	streak: stringers orie	Oxidized,	% 0.50	Pyrite %			
Type Value Comments				Comme	Value	Туре	ALTERATION		
Calcite % 5.00					% 5.00	Calcite 9			
Type Intens CA° Comments		mments	CA°	ns	oe Inte	Тур	STRUCTURE		
Veining % weak 80			80	k	ng % wea	Veining			
Laminations % moderate 40			40	ate	ions % moder	Lamination			
Zone HCL Apatite Zircon		Zircon	Apatite	- ,	ne HCI	Zon	MISCELLANEOUS		
0X VW 10 0.1		0.1	10	'	(vw	OX			
Pyrite % 0.50 Oxidized, red streak: stringers oriented parallel to lamination. Type Value Comments Calcite % 5.00 Type Intens CA° Comments Veining % weak 80 Laminations % moderate 40 Zone HCL Apatite Zircon		ed parallel to laminat	CA° 80 40 Apatite	Oxidized, Comme	% 0.50 Value % 5.00 De Interior g % wealions % moder HCL	Pyrite 9 Type Calcite 9 Typi Veining Laminatio	STRUCTURE		

2010-012 Log by Ryan Kressall Date Hole ID

FROM 51.34	-	TO 53.60	ROCK CODE	nliCD	=	Min Style n	Fabric I	Texture i	Litho CD	Struct			
			MAIN COMMENTS					ter phlogopite, swirls of c gregates. Zircons occurs d		light decalcifization localized t ear apatite laminae.	o laminae and along fractu	res/veins. locaApatite	
			MINERALIZATION	Туре	Value	Comments							
				Pyrite %	0.50	Oxidized with s	ome fresh cores	: streaks red					
			ALTERATION	Туре	Value	Comments							
				Calcite %	10.00								
				Oxidation %	10.00								
			STRUCTURE	Туре	Intens		CA°	Comments					
				Laminations %	moderate		5	Generally low but varies	s up to 20 degrees on a 1	10s of centimeters scale			
				Veining %	strong		80	Veins have been decalc	ified				
			MISCELLANEOUS	Zone	HCL	Α	patite	Zircon	_				
				OX	VW		20	0.25					

2010-012 Log by Ryan Kressall Date Hole ID

FROM 53.60 -	TO 55.22	ROCK CODE	blfCD	=	Min Style b	Fabric I	Texture f	Litho CD	Struct	
		MAIN COMMENTS	5 5 ,		•			, , ,		n of phlogopite pseudomorphs and a few natite with no visible apatite and zircon.
		MINERALIZATION	Туре	Value	Comments					
			Niobates %	0.10	Possible fersmite:	dark grey, octahe	dral, no streak. Occur in	pyrite-rich laminae		
			Pyrite %	0.50	Fine- to medium g	rained.				
		ALTERATION								
		STRUCTURE	Туре	Intens	C	A° Co	omments			
			Laminations %	weak	4	lO As	low as 10 degrees			
			Veining %	moderate	8	80				
		MISCELLANEOUS	Zone	HCL	Ара	tite	Zircon			
			OX	W	1!	5	0.5			

2010-012 Log by Ryan Kressall Date Hole ID

FROM 55.22	TO - 58.28	ROCK CODE	nlfgCD	=	Min Style Fa	abric I	Texture fg	Litho CD	Struct
		MAIN COMMENTS							own calcitization and beige oxidation haloe and thin apatite- and zircon -rich ro-phenocrysts) also occurs disseminated in light grey carbonatite.
		MINERALIZATION	Туре	Value	Comments				
			Pyrite %	0.50	Disseminated pyrite follo	ws lamination			
		ALTERATION	Туре	Value	Comments				
			Calcite %	10.00	Dark brown "mottled" lan	minae			
		STRUCTURE	Туре	Intens	CA°	Comm	ents		
			Laminations %	strong	10	General	ly low but as high	as 40 (towards top of i	interval)
		MISCELLANEOUS	Zone	HCL	Apatite		Zircon		
			OX	W	5		0.1		
							'		

2010-012 Log by Ryan Kressall Date Hole ID

е
t

2010-012 Log by Ryan Kressall Date Hole ID

FROM 60.99	TO 63.37	ROCK CODE	nlfCD	=	Min Style n	Fabric I	Texture f	Litho CD	Struct		
		MAIN COMMENTS	Weathered fine-graine disseminated and is vo	5, 5,	olomite carbonatite:	. ~50 % of inter	rval is rubble. Zircon occu	rs within thin apatite la	aminae within compenent rock. With	in weathered carbonatite, zircon c	occurs
		MINERALIZATION	Туре	Value	Comments						
			Pyrite %	1.50	Massive oxidized	pyrite aggregat	tes, stringers and locally o	disseminated in "pods"			
		ALTERATION	Type	Value	Comments						
			Calcite % Oxidation %	5.00 30.00	Gives dolomite ora	ange to pink col	lour				
		STRUCTURE	Туре	Intens	С	A°	Comments				
			Laminations %	weak	1	10	Generally low but varies	up to 40 degrees			
		MISCELLANEOUS	Zone	HCL	Ара	itite	Zircon				
			OX	W	į	5	0.5				

2010-012 Log by Ryan Kressall Date Hole ID

FROM TO 65.94	ROCK CODE	dICD	=	Min Style d	Fabric I	Texture	Litho CD	Struct	
	MAIN COMMENTS	Laminated grey, beige a Zircon occurs dissemina			or decalcification	. Bands of thin apatite I	aminae seperated by do	olomite carbonatite laminae and disseminated apatite in	dolomite carbonatite.
	MINERALIZATION	Туре	Value	Comments					
		Niobates %	0.10	Likely fersmite, d	ark grey to yellov	v, Occurs disseminated	in mottled dolomite ca	bonatite laminae	
		Pyrite %	0.50	Disseminated wit	thin particular lar	ninae; oxidized, some li	monitized		
	ALTERATION	Туре	Value	Comments					
		Calcite %	5.00	Dark brown lamin	iae: reacts strong	ly to HCI			
		Oxidation %	20.00	Beige to orange t	o pink dolomite o	arbonatite			
	STRUCTURE	Туре	Intens		CA° (Comments			
		Laminations %	weak		10	generally low but varies	up to 40 degrees		
		Veining %	moderate		80 d	lolomite (?) infilled frac	tures		
	MISCELLANEOUS	Zone	HCL	Ар	atite	Zircon			
		OX	W		15	0.5			

2010-012 Log by Ryan Kressall Date Hole ID

FROM 65.94	-	TO 68.50	ROCK CODE	dmCD	=	Min Style d	Fabric m	Texture	Litho CD	Struct
			MAIN COMMENTS	Dolomite carbonatite ha carbonatite. A high cond					rown secondary calcite.	Apatite occurs disseminated and as semi-oriented aggreagates in dolomite
			MINERALIZATION	Туре	Value	Comments				
				Pyrite %	1.00	Oxidized pyrite o	ccur disseminat	ed within particula lamin	ae	
				Niobates %	0.10	dark grey to blac	k, fine grained c	oncentrates at end of int	erval; some show hexag	gonal shape - columbite being replaced by fersmite?
			ALTERATION	Туре	Value	Comments				
				Calcite %	10.00	discordant to lar	nination and cor	ncentrated along fracture	S	
				Oxidation %	20.00	Gives carbonatit	e pinkish colour			
			STRUCTURE	Туре	Intens		CA°	Comments		
				Veining %	weak		80	dolomite (?) infilled frac	ture	
				Laminations %	very weak		20	Diffcult to observe with	out UV lamp	
			MISCELLANEOUS	Zone	HCL	ĮA	patite	Zircon		
				OX	W		7.5	0.25		

2010-012 Log by Ryan Kressall Date Hole ID

ROCK CODE DIFFCU CONTROL CODE DIFFCU CODE									
WINERALIZATION Type Value Comments Niobates % 0.25 Black to dark grey grains disseminated throughout - no red streak, possible columbite and/or fersmite Pyrite % 5.00 Medium- to coarse-grained oxidized pyrite aggregates, concentrate near 80 degree fracture ALTERATION Type Value Comments Calcite % 5.00 Along vugs Oxidation % 20.00 STRUCTURE Type Intens CA* Comments Laminations % weak 10 Core angle starts ~40 degrees but decreases in competent rock in bottom of interval. MISCELLANEOUS Zone HCL Apatite Zircon		ROCK CODE	dIfCD	=	Min Style d	Fabric I	Texture f		Struct
Niobates % 0.25 Black to dark grey grains disseminated throughout - no red streak, possible columbite and/or fersmite Pyrite % 5.00 Medium- to coarse-grained oxidized pyrite aggregates, concentrate near 80 degree fracture Type Value Comments Calcite % 5.00 Along vugs Oxidation % 20.00 STRUCTURE Type Intens CA° Comments Laminations % weak 10 Core angle starts ~40 degrees but decreases in competent rock in bottom of interval. MISCELLANEOUS Zone HCL Apatite Zircon		MAIN COMMENTS	•		e; mottled with ligh	t grey dolomite,	beige oxidized dolomite,	dark brown decalcifica	ation and dark grey dolomite. Apatite and zircon concentrate in strong laminations
Pyrite % 5.00 Medium- to coarse-grained oxidized pyrite aggregates, concentrate near 80 degree fracture Type Value Comments Calcite % 5.00 Along vugs Oxidation % 20.00 STRUCTURE Type Intens CA° Comments Laminations % weak 10 Core angle starts ~40 degrees but decreases in competent rock in bottom of interval. MISCELLANEOUS Zone HCL Apatite Zircon		MINERALIZATION	Туре	Value	Comments				
ALTERATION Type Value Comments Calcite % 5.00 Along vugs Oxidation % 20.00 STRUCTURE Type Intens CA° Comments Laminations % weak 10 Core angle starts ~40 degrees but decreases in competent rock in bottom of interval. MISCELLANEOUS Zone HCL Apatite Zircon			Niobates %	0.25	Black to dark gre	y grains dissemir	nated throughout - no red	d streak, possible colui	mbite and/or fersmite
Calcite % 5.00 Along vugs Oxidation % 20.00 STRUCTURE Type Intens CA° Comments Laminations % weak 10 Core angle starts ~40 degrees but decreases in competent rock in bottom of interval. MISCELLANEOUS Zone HCL Apatite Zircon			Pyrite %	5.00	Medium- to coar	se-grained oxidiz	zed pyrite aggregates, cor	ncentrate near 80 degr	ree fracture
STRUCTURE Type Intens CA° Comments Laminations % weak 10 Core angle starts ~40 degrees but decreases in competent rock in bottom of interval. MISCELLANEOUS Zone HCL Apatite Zircon		ALTERATION	Туре	Value	Comments				
STRUCTURE Type Intens CA° Comments Laminations % weak 10 Core angle starts ~40 degrees but decreases in competent rock in bottom of interval. MISCELLANEOUS Zone HCL Apatite Zircon			Calcite %	5.00	Along vugs				
Laminations % weak 10 Core angle starts ~40 degrees but decreases in competent rock in bottom of interval. MISCELLANEOUS Zone HCL Apatite Zircon			Oxidation %	20.00					
MISCELLANEOUS Zone HCL Apatite Zircon		STRUCTURE	Туре	Intens		CA°	Comments		
			Laminations %	weak		10	Core angle starts ~40 deg	grees but decreases in	competent rock in bottom of interval.
		MISCELLANEOUS	Zone	HCL	Ap	atite	Zircon		
0X VW 20 0.5			OX	VW		20	0.5		

2010-012 Log by Ryan Kressall Date Hole ID

FROM 70.70	_	TO 74.50	ROCK CODE	glfCD	=	Min Style g	Fabric I	Texture f	Litho CD	Struct		
			MAIN COMMENTS					carbonatite with porphyr t not visible in weathered		fer phlogopite. Abundant pseudom % of compenent rock.	orphs occur in dark grey dolomite	pods. Apatite
			MINERALIZATION	Туре	Value	Comments						
				Magnetite %	2.00	unoriented pods a	and laminated m	nassive aggregates over ~	·20 cm interval			
				Pyrite %	1.50	laminated oxidize	ed pyrite					
				Niobates %		Columbite likely p	resent in magne	etite aggregates				
			ALTERATION	Туре	Value	Comments						
				Oxidation %	50.00							
			STRUCTURE	Туре	Intens	(CA°	Comments				
				Laminations %	weak		10 9	Strength of lamination in	ncreases down interval	l		
			MISCELLANEOUS	Zone	HCL	Ара	atite	Zircon				
				OX	VW		15	0.5				

2010-012 Log by Ryan Kressall Date Hole ID

FROM 74.50	T0 - 77.86	ROCK CODE	nICD	=	Min Style n	Fabric I	Texture	Litho CD	Struct	
		MAIN COMMENTS	Light grey to beige dolo	nite carbonatite wi	th fractured interva	ıls. Laminated s	stong laminations and large	unoriented aggregate	es of apatite with associated disseminated zircon	
		MINERALIZATION	Туре	Value	Comments					
			Niobates %	0.50	Possible fersmit	e in apatite lam	inae			
			Pyrite %	1.50	Fine grained oxid	dized pyrite occi	urs disseminated in particula	ar dolomite laminae a	nd coarser laminae occur almost entirely composed of pyrite	
		ALTERATION	Туре	Value	Comments					
		ALIERATION	Oxidation %	40.00	follows laminati	ons				
		CTDUCTUDE.	_			CA0				
		STRUCTURE	Type	Intens		CA°	Comments			
			Laminations %	weak		10				
		MISCELLANEOUS	Zone	HCL	Aı	oatite	Zircon			
			OX	W		15	0.5			
FROM 77.86	TO - 80.36	ROCK CODE	bmCD	=	Min Style b	Fabric m	Texture	Litho CD	Struct	
		MAIN COMMENTS	Light grey to beige oxidi	zed dolomite carbo	natite. A few apati	te laminae and	semi-oriented aggregates.			
		MINERALIZATION	Туре	Value	Comments					
			Niobates %	0.10	fine-grained in s	trong localized	laminations			
			Pyrite %	0.50	Fine-grained oxi	dized pyrites oc	curs disseminated and as st	ringers oriented para	lel to lamination	
		ALTERATION	Туре	Value	Comments					
		ALIERATION	Oxidation %	50.00	Gives carbonatit	e mottled appe	arance			
		STRUCTURE								
		MISCELLANEOUS	Zone	HCL	Δι	patite	Zircon			
		MISCELLANEOUS	OX	VS		2.5	0.1			

2010-012 Log by Ryan Kressall Date Hole ID

FROM 80.36	TO - 82.57	ROCK CODE	nICD	=	Min Style n	Fabric I	Texture	Litho CD	Struct	
		MAIN COMMENTS	Laminated light grey-be towards bottom of inter		ed-weathered	dolomite carbonati	ite with fractured intervals	. Large apatite aggreg	ates with disseminated zircon. A	patite aggregates become strongly laminated
		MINERALIZATION								
		ALTERATION	Туре	Value	Comments	5				
			Oxidation %	60.00						
		STRUCTURE	Туре	Intens		CA°	Comments			
		01110010112	Laminations %	moderate		40	Starts low at 10 degrees	but steepens for most	of interval	
		MISCELLANEOUS	Zone	HCL		Apatite	Zircon			
		MISCELLANEOUS	OX	VW		25	0.75			
FROM 82.57	TO - 85.36	ROCK CODE	nmfCD	=	Min Style n	Fabric m	Texture f	Litho CD	Struct	
		MAIN COMMENTS	Fractured dolomite carb	onatite has mottled	d light grey-beig	ge-dark brown appo	earance. Dark bron decalcit	fication concentrates a	long fractures. Crenulated lamina	ee and "veins" of apatite.
		MINERALIZATION	Туре	Value	Comments	5				
			Pyrite %	1.00	Highly oxidiz	zed medium-graine	d aggregates and laminae			
		ALTERATION	Туре	Value	Comments	5				
			Oxidation %	70.00	Gives dolomo	ote beige-orange co	olor			
		STRUCTURE	Туре	Intens		CA°	Comments			
		STRUCTURE	Type Laminations %	Intens weak		10	Strength of laminations	veakens downhole		
		STRUCTURE MISCELLANEOUS						veakens downhole		

Printed on 10/Feb/2011

Measurement unit: Metres (Unless otherwise specified)

2010-012 Log by Ryan Kressall Date Hole ID

FROM 85.36	TO - 88.95	ROCK CODE	bICD	=	Min Style b	Fabric I	Texture	Litho CD	Struct
		MAIN COMMENTS	Light grey to beige lami unoriented aggregates	nated dolomite carb of apatite.	onatite with sma	all "pods" of dark g	grey dolomite carbonatite. T	hick (up to 30 cm) m	nassive dolomite carbonatite seperated by strongly laminated apatite with few
		MINERALIZATION	Туре	Value	Comments				
			Niobates %	0.10	fersmite pseu	domorphs concent	trate in apatite laminae		
			Pyrite %	0.50	Oriented string	gers and laminae o	of pyrite with various degree	es of oxidation	
		ALTERATION							
		STRUCTURE	Туре	Intens		CA°	Comments		
			Laminations %	weak		40	Generally at 40 degrees bu	t does occur as low a	s 10 degrees - Crosscut by fold (?) at 70 degrees
		MISCELLANEOUS	Zone	HCL	ı	Apatite	Zircon		
			OX	VW		10	0.25		
FROM 88.95	TO - 91.60	ROCK CODE	dICD	=	Min Style	Fabric	Texture	Litho	Struct
					u	'		CD	
		MAIN COMMENTS	Laminated medium gre	y dolomite carbonat	ite oxidized to lig	tht grey and beige	. White apatite occurs as la		gates and as weak crenulated laminae. Zircon concentrates in apatite aggrega
		MAIN COMMENTS MINERALIZATION	Laminated medium gre	y dolomite carbonat Value	ite oxidized to lig	ght grey and beige	. White apatite occurs as la		gates and as weak crenulated laminae. Zircon concentrates in apatite aggrega
					Comments		. White apatite occurs as lai	ge unoriented aggre	gates and as weak crenulated laminae. Zircon concentrates in apatite aggrega
			Туре	Value	Comments Dark grey to ye	ellow fersmite occi		ge unoriented aggre	gates and as weak crenulated laminae. Zircon concentrates in apatite aggrega
			Type Niobates %	Value 0.10	Comments Dark grey to ye	ellow fersmite occi	urs within apatite aggregate	ge unoriented aggre	gates and as weak crenulated laminae. Zircon concentrates in apatite aggrega
		MINERALIZATION	Type Niobates % Pyrite %	Value 0.10 1.00	Comments Dark grey to ye Oxidized pyrite	ellow fersmite occi	urs within apatite aggregate	ge unoriented aggre	gates and as weak crenulated laminae. Zircon concentrates in apatite aggrega
		MINERALIZATION	Type Niobates % Pyrite % Type	Value 0.10 1.00 Value	Comments Dark grey to ye Oxidized pyrite	ellow fersmite occi	urs within apatite aggregate	ge unoriented aggre	gates and as weak crenulated laminae. Zircon concentrates in apatite aggrega
		MINERALIZATION ALTERATION	Type Niobates % Pyrite % Type Oxidation %	Value 0.10 1.00 Value 70.00	Comments Dark grey to ye Oxidized pyrite Comments	ellow fersmite occu e occurs in laminae	urs within apatite aggregate e up to 3 cm thick.	ge unoriented aggre	gates and as weak crenulated laminae. Zircon concentrates in apatite aggrega
		MINERALIZATION ALTERATION	Type Niobates % Pyrite % Type Oxidation % Type	Value 0.10 1.00 Value 70.00 Intens	Comments Dark grey to ye Oxidized pyrite Comments	ellow fersmite occu e occurs in laminae CA°	urs within apatite aggregate e up to 3 cm thick. Comments	ge unoriented aggre	gates and as weak crenulated laminae. Zircon concentrates in apatite aggrega

2010-012 Log by Ryan Kressall Date Hole ID

FROM 91.60	TO - 95.24	ROCK CODE	bICD	=	Min Style b	Fabric I	Texture	Litho CD	Struct	
		MAIN COMMENTS			apatite-zircon laminae. I Irge unoriented aggregat			•	esent (pseudomorphs composed dominantly of chlorite after phlogopite)	
		MINERALIZATION	Туре	Value	Comments					
			Niobates %	0.10	Possible dark grey fers	smite in zircon-	-rich apatite laminae			
			Pyrite %	0.50	Fresh and oxidized pyr	rite disseminat	ed throughout interval			
		ALTERATION	Type Silica %	Value 1.00	Comments + chloritization					
			Sincu 76	1.00	1 CHIOTEIZUCION					
		STRUCTURE	Туре	Intens	CA°	Со	mments			
			Laminations %	weak	40					
		MISCELLANEOUS	Zone	HCL	Apatite	9	Zircon			
			OX		10		0.25			

2010-012 Log by Ryan Kressall Date Hole ID

FROM 95.24	T0 - 96.42	ROCK CODE	bmCM	=	Min Style b	Fabric m	Texture	Litho CM	Struct	
		MAIN COMMENTS	Half of interval is comp	oosed of magnetite-a	apatite-phlogopite-zirc	on cumulate uni	t. Aggregates of apati	te, magnetite and zirc	on and semi-oritented laminae of apatite with disseminated zircon	
		MINERALIZATION	Туре	Value	Comments					
			Pyrite %	5.00	Thick (up to 10 cm) I	aminae of oxidiz	ed pyrite with intersti	tal dolomite		
			Magnetite %	20.00	Occurs as dominant	mineral in cumu	late unit			
			Niobates %	1.00	Columbite likely pre cumulate: likely colu			nlogopite cumulate, bu	at cannot observe; black and dark grey minerals observed below magnetite	
		ALTERATION	Туре	Value	Comments					
			Oxidation %	20.00						
		STRUCTURE								
		MISCELLANEOUS	Zone	HCL	Apat	ite	Zircon			
			OX	VW	25		1			

2010-012 Log by Ryan Kressall Date Hole ID

FROM TO ROCK CODE dICD = Min Style Fabric Texture Litho Struct 96.42 - 100.13	
MAIN COMMENTS Light grey to beige laminated dolomite carbonatite with few laminae of porphyritic (pseudomorphs after phlogopite) dolomite carbonatite. Numerous thin laminae of apatite with diseminated	zircon
MINERALIZATION Type Value Comments	
Pyrite % 0.25 Oxidized pyrite stringers	
Niobates % 0.10 Dak grey fersmite observed with porphyritic laminae	
ALTERATION	
STRUCTURE Type Intens CA° Comments	
Laminations % moderate 20	
Veining % weak 80 Pyrite infilled fracture	
MISCELLANEOUS Zone HCL Apatite Zircon	
0X VW 20 0.25	

2010-012 Log by Ryan Kressall Date Hole ID

FROM 100.13	T0 - 102.20	ROCK CODE	dliCD	=	Min Style Fa	bric Texture I i	Litho CD	Struct		
		MAIN COMMENTS	Thin (~1 cm) apatite lar	ninae with thicker (u	p to 10 cm) laminae composo	ed of massive dolomite carbo	natite, locally inequigran	ular. Zircon occurs disseminated t	hroughout interval.	
		MINERALIZATION	Туре	Value	Comments					
			Pyrite %	1.50	Disseminated oxidized py	rite				
			Niobates %	0.10	Possible fersmite: dark gre	ey near high concentrations o	f pyrite			
		ALTERATION	Туре	Value	Comments					
			Oxidation %	20.00	Follows laminae orientation	on				
		STRUCTURE	Туре	Intens	CA°	Comments				
			Laminations %	moderate	40					
		MISCELLANEOUS	Zone	HCL	Apatite	Zircon				
			OX	VW	10	0.25				

2010-012 Log by Ryan Kressall Date Hole ID

FROM TO 102.20 - 107.95	ROCK CODE	dlpCCCD	=	Min Style d	Fabric I	Texture p	Litho CCCD	Struct		
	MAIN COMMENTS					n thick laminae of porphyl rious thickness. Zircon occ			ts the dolomite carbonatite (relatively conco	ordant
	MINERALIZATION	Туре	Value	Comments						
		Pyrite %	1.00							
		Niobates %	0.10	Pyrochlore preser	nt at ~1 % in calc	cite carbonatite,				
	ALTERATION	Туре	Value	Comments						
		Oxidation %	10.00	follows laminatio	on, decreases do	wnhole				
		Calcite %	5.00	Small 10 cm lamii	nae (or dyke)- re	eacts strongly to				
	STRUCTURE	Туре	Intens	(CA°	Comments				
		Laminations %	strong		20					
		Veining %	moderate		40	Calcite carbonatite vein?				
	MISCELLANEOUS	Zone	HCL	Ар	atite	Zircon				
		Н	W		15	0.25				

2010-012 Log by Ryan Kressall Date Hole ID

FROM 107.95	TO - 110.63	ROCK CODE	ICCCD	=	Min Style	Fabric I	Texture	Litho CCCD	Struct		
		MAIN COMMENTS	Last 20 cm at end of inte laminae. Calcite present.	erval is white calcite	e carbonatite an	d aggregate of ph	ogopite. Apatite occurs as	weak to moderate lam	inations of thin to moderate thic	kness. Apatite occurs disseminated in apatite	
		MINERALIZATION	Туре	Value	Comments						
			Niobates %	0.05	Minor pyroch	ore occurs in bioti	te clot				
			Pyrite %	1.50	Stringers para	allel to laminae an	d disseminated in dolomit	e carbonatite			
		ALTERATION									
		STRUCTURE	Туре	Intens		CA°	Comments				
			Laminations %	strong		40					
		MISCELLANEOUS	Zone	HCL		Apatite	Zircon				
			Н	M		10	0.5				
FROM 110.63	TO - 115.10	ROCK CODE	gICD	=	Min Style g	Fabric I	Texture	Litho CD	Struct		
		MAIN COMMENTS	Light to medium grey do	lomite carbonatite.	. Apatites occur	s as aggregates to	moderately laminated. Zi	rcon occurs disseminate	ed in apatite aggregates and lami	пае.	
			_								
		MINERALIZATION	Type Magnetite %	Value 2.50	Comments	ate with phlogopi	to.				
			Niobates %	0.10		ely present with m					
						- /	.3				
		ALTERATION									
		STRUCTURE	Туре	Intens		CA°	Comments				
			Laminations %	weak		20	Lamination increases do	wnhole			
		MISCELLANEOUS	Zone	HCL		Apatite	Zircon				
			Н	W		15	0.25				

Printed on 10/Feb/2011

MISCELLANEOUS

GEOLOGY LOG

Log by Ryan Kressall Date Hole ID **2010-012**

rius	EKO	/VIII 162	Limiled	RPORATION	GLOL	JOY LO		105 07		Butte	Tiole ib	
FROM 115.10	-	TO 120.12	ROCK CODE	gxAMX	=	Min Style g	Fabric ×	Texture	Litho AMX	Struct		
			MAIN COMMENTS	Medium grey dolomite o	arbonatite with 10s	s of centimeter so	ale fenite xenolith	s. scale Apatite is accum	nulated around fenite	cenoliths.		
			MINERALIZATION	Type	Value	Comments						
				Niobates %	0.05	Possible pyroc	nlore: pinkish brow	n mineral occurs around	l fenite			
				Pyrite %	0.50	Thin laminae a	round fenite and s	tringers in dolomite carb	bonatite			
			ALTERATION	Туре	Value	Comments						
				Amphibolite %	50.00	fenite						
			STRUCTURE									
			MISCELLANEOUS	Zone	HCL	,	Apatite	Zircon				
			1-11501117 1111005	Н	VW		7.5	0.25				
FROM 120.12	-	TO 125.55	ROCK CODE	ЫCD	=	Min Style b	Fabric I	Texture	Litho CD	Struct		
			MAIN COMMENTS	Laminated medium greoccurs disseminated in		tite with brecciate	ed intervals up to 1	m and small intervals (<	:10 cm) of porphyritic (dolomite carbonatite. Apatite occ	urs as weak to moderate laminatio	ns. Zircon
			MINERALIZATION	Туре	Value	Comments						
				Niobates %	0.50	Likely fersmite	within apatite lam	ninae. High concentratio	on of fine-medium grai	ned yellow fersmite in porphyrition	c dolomite carbonatite	
				Pyrite %	1.00	Thin laminae o	f fine-grained pyrit	te and medium-coarse g	grained disseminated o	xidized pyrite		
			ALTERATION									
			STRUCTURE	Туре	Intens		CA°	Comments				

Printed on 10/Feb/2011

Measurement unit: Metres (Unless otherwise specified)

Apatite

Zircon

0.25

HCL

VW

Zone

Page 37

Log by Ryan Kressall Date

2010-012

Hole ID

FROM 125.55 -	TO 128.97	ROCK CODE	dICD	=	Min Style d	Fabric I	Texture	Litho CD	Struct
		MAIN COMMENTS	Apatite occurs as weak	laminations. Zircon o	occurs disseminato	ed in aptatite.fi			
		MINERALIZATION	Туре	Value	Comments				
			Niobates %	0.50	suspect very fine	e grained fersmi	ite replacing pyrochlore		
			Pyrite %	3.00	Very fresh gold o	coloured pyrite o	cubes and aggregates		
		ALTERATION	Туре	Value	Comments				
			Oxidation %	1.00	Minor oxidation	of pyrite			
		STRUCTURE							
		MISCELLANEOUS	Zone	HCL	Aı	patite	Zircon		
			Н	VW		5	0.1		
FROM 128.97 -	TO 134.44	ROCK CODE	dICD	=	Min Style d	Fabric I	Texture	Litho CD	Struct
		MAIN COMMENTS	Apatite occurs as aggre	gates to moderately	laminations. Zirco	on occurs dissem	ninated in apatite laminati	ons and aggregates.	
		MINERALIZATION	Туре	Value	Comments				
			Niobates %	1.00	very fine grained	d fersmite replac	cing pyrochlore		
			Pyrite %	2.00	fresh high lustu	re cubic aggrega	ates		
		ALTERATION							
		STRUCTURE	Туре	Intens		CA°	Comments		
			Laminations %	moderate		40	weak to moderate lamina	ations of pyrite and apatite	
		MISCELLANEOUS	Zone	HCL	Aı	patite	Zircon		

2010-012 Log by Ryan Kressall Date Hole ID

FROM 134.44	-	TO 137.06	ROCK CODE	dmiCD	=	Min Style d	Fabric m	Texture i	Litho CD	Struct	
			MAIN COMMENTS	-						to medium grained) hosted in fine to very fine grained dolomite matrix. Apatite ite laminations and aggregates and medium grained in phlogopite aggregates.	
			MINERALIZATION	Туре	Value	Comments					
				Niobates %	0.30						
				Pyrite %	1.50	fresh and weather	, fine-grained, go	d to black oxidized pyr	ite		
			ALTERATION								
			STRUCTURE	Туре	Intens	С	A° Co	mments			
				Laminations %	weak	Ž	20				
			MISCELLANEOUS	Zone	HCL	Apa	itite	Zircon			
				Н	VW	1	0	0.5			

2010-012 Log by Ryan Kressall Date Hole ID

FROM 137.06	-	TO 142.19	ROCK CODE	dmpCD	=	Min Style d	Fabric m	Texture p	Litho CD	Struct
			MAIN COMMENTS	Massive, fine grained disseminated in apatite						atite occurs in weak to moderate laminations. Fine-grained zircon occurs
			MINERALIZATION	Туре	Value	Comments				
				Magnetite %	1.00	locally dissemina	ted medium to coa	rse grained magnetite		
				Pyrite %	5.00	laminated, disser	ninated, and aggre	gated fine grained pyrit	e. Very fresh.	
				Niobates %	0.60	very fine grained	fersmite (pink, rep	lacing pyrochlore octahe	edra) and fine to med	ium grained suspect columbite (hard, opaque, hexagonal grains with no streak)
			ALTERATION	Туре	Value	Comments				
				Oxidation %	1.00	minor pyrite oxida	ation but mostly ve	ery fresh		
			STRUCTURE							
			MISCELLANEOUS	Zone	HCL	Ap	atite	Zircon		
				Н	VW		10	1		

2010-012 Log by Ryan Kressall Date Hole ID

FROM TO 142.19 - 148.46	ROCK CODE	dmiAMX	=	Min Style d	Fabric m	Texture i	Litho AMX	Struct	
	MAIN COMMENTS	Fine grained dolomite clasts and occurs as mo					and pyrite phenocrysts.	Locally weakly laminated but mostly massive. Apatite rims fenite (amphibe	olite)
	MINERALIZATION	Туре	Value	Comments					
		Pyrite %	0.50	Laregly pyrite poor					
		Magnetite %	0.00						
		Niobates %	0.50	Fine grained yellow t	to pink fersmit	e occurs locally within t	the porphyritic zones		
	ALTERATION	Туре	Value	Comments					
		Amphibolite %	15.00	Blocks and lenses of	amphibolite; 1	0-20% of section. Brec	ciated "conglomeratic"	unit of amphibolite.	
		Oxidation %	1.00	Rare oxidized pyrite					
	STRUCTURE								
	MISCELLANEOUS	Zone	HCL	Apati	te	Zircon			
		Н	VW	5		0.1			

2010-012 Log by Ryan Kressall Date Hole ID

FROM 148.46	TO - 154.26	ROCK CODE	dICD	=	Min Style d	Fabric I	Texture	Litho CD	Struct	
		MAIN COMMENTS	Very weak to weakly lan predominantly in dolom		dolomite carbonatit	e with localized p	ohenocrysts of altered p	phlogopite. Apatite oo	curs as aggregates to weak laminations. Zircon occurs disseminated	
		MINERALIZATION	Туре	Value	Comments					
			Niobates %	0.10	Locally mineralized	, Minor yellow to	pink fine-grained fersm	nite in porphyritic lam	ina	
			Pyrite %	0.30	Medium-grained py	rite aggregates				
		ALTERATION								
		STRUCTURE	Туре	Intens	CA	۸° Co	mments			
			Laminations %	weak	41	O Ger	nerally 40 but does vary	to shallow angles		
		MISCELLANEOUS	Zone	HCL	Apat		Zircon			
			Н	VW	15	i	0.1			

End of Hole End of Hole

2010-013 Hole ID

		GENERAL INF	ORMATION		
Coordinate System	Easting	Northing	Elevation	Collar Azimuth	Collar Dip
ST. PL Nad 83	454293.13	6256548.29	1619.33	20.00	-55.00
Start Depth	Final Depth	Proposed Depth	Final Length	Rig	Area
0.00	215.20		215.20		Central 1
Operator	Year				
Taseko	2010				

DRILLING BIT SIZE					
Bit Size	From	То	Length		
NW (Casing)	0.00	6.10	6.10		
NQ	6.10	215.20	215.20		

PROFESSIONAL / TECHNICIAN					
	Name	Start Date	End Date		
Collar Surveyor					
Geology Logged By	Ryan Kressall				
Specific Gravity By	Steve Dumma				
Geotech Logged By	Steve Dumma	30/Jul/2010			
Drill Contractor		26/Jul/2010	28/Jul/2010		

SUMMARY	

Measurement unit: Metres (Unless otherwise specified)

GEOLOGY LEGEND

Hole ID **2010-013**

ROCK CODE

	MIN STYLE								
Abbr.	Description								
n	barren								
d	disseminated								
g	aggregated								
b	banded								

	FABRIC
Abbr.	Description
Х	brecciated
- 1	laminated
f	decalcified
V	veined
р	porphyritic
m	massive

	TEXTURE
Abbr.	Description
f	decalcified
р	porphyritic
V	veined

	LITHO
Abbr.	Description
CASE	Casing
OVBN	Overburden
OXID	Oxide
AM	Amphibolite
CC	Calcite Carbonatite
CD	Dolomite Carbonatite
CCCD	Mixed Calcite and Dolomite Carbonatite
AMX	Amphibole and Mixed Carbonatite
CM	Carbonatite Cumulate

	STRUCT
Abbr.	Description
Z	fault
е	strained
S	shear zone
У	dyke

MISCELLANEOUS:

	ZONE
Abbr.	Description
OX	Oxide
S	Supergene
Н	Hypogene

	HCL
Abbr.	Description
VW	very weak
W	weak
М	moderate
S	strong
VS	very strong

2010-013 Log by Ryan Kressall Date Hole ID

ROCK CODE ROCK											
MINERALIZATION STRUCTURE MISCELLANEOUS Zone HCL Apatite Zircon TO 6.10 - 7.08 MAIN COMMENTS Losse dolomite carbonatite. Apatite occurs moderately laminated. Zircon occurs disseminated in apatite laminae. MINERALIZATION Type Value Comments Pyrite % 3.00 Fine-grained disseminated oxidized pyrite ALTERATION Type Value Comments Dividation % 60.00 Beige dolomite STRUCTURE Type Intens CA* Comments Laminations % weak Core angle varies from rock fragment to rock fragment to rock fragment MISCELLANEOUS Zone HCL Apatite Zircon		ROCK CODE	CASE	=	Min Style	Fabric	Texture		Struct		
ALTERATION STRUCTURE MISCELLANEOUS Zone HCL Apatite Zircon FROM		MAIN COMMENTS	No rock								
FROM TO 6.10 - 7.08 ROCK CODE nlfgCD = Min Style Fabric Texture Litho Struct n I fg CD MAIN COMMENTS Loose dolomite carbonatite. Apatite occurrs moderately laminated. Zircon occurs disseminated in apatite laminae. MINERALIZATION Type Value Comments Pyrite % 3.00 Fine-grained disseminated oxidized pyrite ALTERATION Type Value Comments Oxidation % 60.00 Beige dolomite STRUCTURE Type Intens CA* Comments Laminations % weak Core angle varies from rock fragment to rock fragment to rock fragment MISCELLANEOUS Zone HCL Apatite Zircon		MINERALIZATION									
FROM TO 6.10 - 7.08 ROCK CODE nlfgCD = Min Style Fabric Texture Litho Struct MIN COMMENTS Loose dolomite carbonatite. Apatite occurs moderately laminated. Zircon occurs disseminated in apatite laminae. MINERALIZATION Type Value Comments Pyrite % 3.00 Fine-grained disseminated oxidized pyrite ALTERATION Type Value Comments Oxidation % 60.00 Beige dolomite STRUCTURE Type Intens CA* Comments Laminations % weak Core angle varies from rock fragment to rock fragment to rock fragment MISCELLANEOUS Zone HCL Apatite Zircon		ALTERATION									
FROM TO 6.10 - 7.08 ROCK CODE nlfgCD = Min Style Fabric Texture Litho CD MAIN COMMENTS Loose dolomite carbonatite. Apatite occurrs moderately laminated. Zircon occurs disseminated in apatite laminae. MINERALIZATION Type Value Comments Pyrite % 3.00 Fine-grained disseminated oxidized pyrite ALTERATION Type Value Comments Oxidation % 60.00 Beige dolomite STRUCTURE Type Intens CA* Comments Laminations weak Core angle varies from rock fragment to rock fragment MISCELLANEOUS Zone HCL Apatite Zircon		STRUCTURE									
MAIN COMMENTS Loose dolomite carbonatite. Apatite occurrs moderately laminated. Zircon occurs disseminated in apatite laminae. MINERALIZATION Type Value Comments Pyrite % 3.00 Fine-grained disseminated oxidized pyrite ALTERATION Type Value Comments Oxidation % 60.00 Beige dolomite STRUCTURE Type Intens CA° Comments Laminations % weak Core angle varies from rock fragment to rock fragment MISCELLANEOUS Zone HCL Apatite Zircon		MISCELLANEOUS	Zone	HCL	Apati	te	Zircon				
MAIN COMMENTS Loose dolomite carbonatite. Apatite occurrs moderately laminated. Zircon occurs disseminated in apatite laminae. MINERALIZATION Type Value Comments Pyrite % 3.00 Fine-grained disseminated oxidized pyrite ALTERATION Type Value Comments Oxidation % 60.00 Beige dolomite STRUCTURE Type Intens CA° Comments Laminations % weak Core angle varies from rock fragment to rock fragment MISCELLANEOUS Zone HCL Apatite Zircon											
MINERALIZATION Type Value Comments Pyrite % 3.00 Fine-grained disseminated oxidized pyrite ALTERATION Type Value Comments Oxidation % 60.00 Beige dolomite STRUCTURE Type Intens CA* Comments Laminations % weak Core angle varies from rock fragment to rock fragment MISCELLANEOUS Zone HCL Apatite Zircon		ROCK CODE	nlfgCD	=		Fabric I			Struct		
ALTERATION Type Value Comments Oxidation % 60.00 Beige dolomite Type Intens CA° Comments Laminations % weak Core angle varies from rock fragment to rock fragment MISCELLANEOUS Zone HCL Apatite Zircon		MAIN COMMENTS	Loose dolomite carbona	tite. Apatite occurrs	s moderately laminated	. Zircon occ	curs disseminated in apatite	laminae.			
ALTERATION Type Value Comments Oxidation % 60.00 Beige dolomite STRUCTURE Type Intens CA° Comments Laminations % weak Core angle varies from rock fragment to rock fragment MISCELLANEOUS Zone HCL Apatite Zircon		MINERALIZATION	Туре	Value	Comments						
STRUCTURE Type Intens CA° Comments Laminations % weak Core angle varies from rock fragment to rock fragment MISCELLANEOUS Zone HCL Apatite Zircon			Pyrite %	3.00	Fine-grained dissem	inated oxid	ized pyrite				
STRUCTURE Type Intens CA° Comments Laminations % weak Core angle varies from rock fragment to rock fragment MISCELLANEOUS Zone HCL Apatite Zircon		ALTERATION	Туре	Value	Comments						
Laminations % weak Core angle varies from rock fragment to rock fragment MISCELLANEOUS Zone HCL Apatite Zircon			Oxidation %	60.00	Beige dolomite						
MISCELLANEOUS Zone HCL Apatite Zircon		STRUCTURE	Туре	Intens	CA		Comments				
			Laminations %	weak			Core angle varies from rock	fragment to rock frag	gment		
OX VW 10 0.5		MISCELLANEOUS	Zone	HCL	Apati	te	Zircon				
			OX	VW	10		0.5				

2010-013 Log by Ryan Kressall Date Hole ID

FROM 7.08	TO 9.63	ROCK CODE	dlfgCD	=	Min Style d	Fabric I	Texture fg	Litho CD	Struct	
		MAIN COMMENTS	Oxidized light grey to be dolomite.	oeige laminated dolom	iite carbonatite. Cr	oss lamination occ	curs at end of inteval. A	patite occurs weakly t	o moderately laminated in irregular laminae. Zircon occurs disseminate	d in
		MINERALIZATION	Туре	Value	Comments					
			Pyrite %	2.00	Laminated and d	lisseminated oxidiz	zed pyrite.			
			Niobates %	0.10	Rare potential fe	rsmite: dark grey,	fine grained, no red stre	ak		
		ALTERATION	Туре	Value	Comments					
			Calcite %	2.50	few calcitized da	rk brown laminae				
			Oxidation %	50.00						
		STRUCTURE	Туре	Intens		CA° C	omments			
			Laminations %	moderate		30				
		MISCELLANEOUS	Zone	HCL	Ap	oatite	Zircon			
			OX	W		5	0.1			

2010-013 Log by Ryan Kressall Date Hole ID

FROM 9.63	TO 4.63	ROCK CODE	liCD	=	Min Style	Fabric I	Texture i	Litho CD	Struct			
		MAIN COMMENTS	Fine-grained light gey to disseminated in apatite		lcified dolomite carb	onatite with s	mall intevals (<10 cm) of	inequigranular dolomit	e carbonatite. Apatite occurs a	ggregated to weakly lar	ninated. Zircon occurs	
		MINERALIZATION	Туре	Value	Comments							
			Niobates %	0.50	Potential fersmite	e occurs locally	concentated in laminae e	enriched in apatite lami	nae with pyrite			
			Pyrite %	2.00	Disseminated to v	weakly laminat	ed oxidzed pyite					
		ALTERATION	Туре	Value	Comments							
			Calcite %	1.00	Slight calcitization	n						
			Oxidation %	30.00	Beige to pink dolo	omite carbonais	te					
		STRUCTURE	Туре	Intens	(CA°	Comments					
			Laminations %	moderate		10	Generally low but steeps	ens to 20 degees in plac	es			
			Veining %	moderate	!	80	Dolomite infilled factue					
		MISCELLANEOUS	Zone	HCL	Ара	atite	Zircon					
			OX	W	7	7.5	0.25					

2010-013 Log by Ryan Kressall Date Hole ID

FROM 14.63 -	TO 18.26	ROCK CODE	liCDz	=	Min Style	Fabric I	Texture i	Litho CD	Struct z	
		MAIN COMMENTS	Light grey to beige lami weak to moderate irreg					onatite up to 20 cm t	hick. Visible cm-scale displa	acement along 80 degree fracture. Apatite occurs as
		MINERALIZATION	Туре	Value	Comments					
			Pyrite %		Oxidized pyite occ	urs as fine graine	ed disseminated grains a	and as medium graine	ed aggregtes up to 10 cm wid	le diameter.
			Niobates %	0.10	Rare suspect fersn	mite: fine-graine	d, yellowish-grey			
		ALTERATION	Туре	Value	Comments					
			Oxidation %	25.00	Beige to pink: Gen	erally follows lar	nination			
		STRUCTURE	Туре	Intens	С	A° C	omments			
			Veining %	weak	8	30 Ir	n-filled fracture (dolomit	e?)		
			Laminations %	weak	1	10 G	enerally low but steeper	ıs to 25 degees in plac	ces	
		MISCELLANEOUS	Zone	HCL	Apa	atite	Zircon			
			OX	VW	7.	.5	0.5			

2010-013 Log by Ryan Kressall Date Hole ID

FROM 18.26	-	TO 19.08	ROCK CODE	gmCM	=	Min Style g	Fabric m	Texture	Litho CM	Struct		
			MAIN COMMENTS	Magnetite-apatite-colu disseminated in calcite						hick. Magnetite and columbite occ	ur concentrated in massive cu	mulate unit and
			MINERALIZATION	Туре	Value	Comments						
				Magnetite %	40.00							
				Pyrite %	1.00	Oxidized fine-grain	ned aggregates.					
				Niobates %	3.00	Fine gained colum	bite occurs aggreg	gated with magnetite	in cumulate and dissen	ninated in calcite		
			ALTERATION	Туре	Value	Comments						
				Calcite %	20.00	Primary calcite lam	ninae					
				Oxidation %	10.00							
			STRUCTURE	Туре	Intens	C	A° Co	omments				
				Laminations %	weak	1	0					
			MISCELLANEOUS	Zone	HCL	Ара	tite	Zircon				
				OX	S	2	5	1.5				

2010-013 Log by Ryan Kressall Date Hole ID

FROM 19.08 -	TO 22.61	ROCK CODE	lfgCD	=	Min Style Fab	oric Textur fg	e Litho CD	Struct	
		MAIN COMMENTS	Oxidized light grey to pir	nk dolomite carbona	tite with slight decalcificatio	n. Apatite occurs weakly	to moderately laminated.	Zircon is concentrated near and wit	thin apatite laminae.
		MINERALIZATION	Туре	Value	Comments				
			Pyrite %	2.50	Laminae up to 3 cm wide o	f oxidized pyrite and diss	eminated fine grained pyr	ite	
			Niobates %	0.10	Potential disseminated fin	e-grained dark grey fersr	nite		
		ALTERATION	Туре	Value	Comments				
			Oxidation %	50.00	Pink dolomite carbonatite				
		STRUCTURE	Туре	Intens	CA°	Comments			
			Veining %	moderate	80	Pyrite infilled fract	tue		
			Laminations %	weak	10	varies between 0 a	and 20 degees		
		MISCELLANEOUS	Zone	HCL	Apatite	Zircon			
			OX	W	7.5	0.5			

2010-013 Log by Ryan Kressall Date Hole ID

FROM 22.61 -	TO 27.51	ROCK CODE	nmiCD	=	Min Style n	Fabric m	Texture i	Litho CD	Struct	
		MAIN COMMENTS					dolomite carbonatite with in ally concentrated in apatite a			onatite. Apatite occurs aggregated to weakly
		MINERALIZATION	Туре	Value	Comments					
			Pyrite %	5.00	Massive fine- to	medium-grain	ed aggregates and disseminat	ted fresh to oxidized	l pyrite	
		ALTERATION	Туре	Value	Comments					
			Silica %	1.00	+ possible chloit	ization - irregul	ar veining			
			Oxidation %	25.00						
		STRUCTURE	Туре	Intens		CA°	Comments			
			Laminations %	weak		20	Not continuous lamination			
		MISCELLANEOUS	Zone	HCL	Α	patite	Zircon			
			OX	VW		5	0.25			
FROM 27.51 -	TO 32.77	ROCK CODE	nmiCD	=	Min Style n	Fabric m	Texture i	Litho CD	Struct	
		MAIN COMMENTS	Inequigranular light gre	y to beige dolomite	carbonatite with o	lark irregular clo	ts typically surrounded by oxi	idized dolomite. Apa	atite occurs as unoriented aggreaga	tes.
		MINERALIZATION	Туре	Value	Comments					
			Pyrite %	1.00	Rare aggreagate	es up to 5 cm dia	ameter			
		ALTERATION	Туре	Value	Comments					
			Oxidation %	20.00						
			_			540				
		STRUCTURE	Type	Intens		CA°	Comments			
			Veining %	moderate		80	dolomite			
		MISCELLANEOUS	Zone	HCL	А	patite	Zircon			
		MISCELLANEOUS		TICE		patric	ZIICOII			

Printed on 10/Feb/2011

GEOLOGY LOG

2010-013 Log by Ryan Kressall Date Hole ID

FROM 32.77	TO - 37.85	ROCK CODE	nmiCD	=	Min Style n	Fabric m	Texture i	Litho CD	Struct	
		MAIN COMMENTS	High oxidation gives dole apatite.	omite carbonatite r	mottled appearar	nce: light grey to l	beige with clots of dark grey	dolomite (after pyrit	e?). Apatite occurs locally aggregated	I. Apatite occurs as rare grain associated with
		MINERALIZATION	Туре	Value	Comments					
			Pyrite %	0.50	Uncommon ag	gregates up to 1 o	cm diameter with fresh core	and thin oxidized rim	1.	
		ALTERATION	Туре	Value	Comments					
			Oxidation %	65.00						
			Calcite %	1.00						
		STRUCTURE	Туре	Intens		CA°	Comments			
		STRUCTURE	Veining %	moderate		80	Carbonate vein surrounde	d by calcitization		
					I					
		MISCELLANEOUS	Zone	HCL W	/	Apatite 5	Zircon 0.1			
			UA.	VV		5	0.1			
FROM 37.85	TO - 42.69	ROCK CODE	nliCD	=	Min Style n	Fabric I	Texture i	Litho CD	Struct	
37103	12103									
		MAIN COMMENTS	Laminated light grey dol Zircon occurs dissemina	omite carbonatite v ted in apatite aggre	with mete wide ir gates and lamina	ntervals of massiv se.	ve fine-grained to inequigra	nular (fine- to mediu	m grained) dolomite carbonatite. Apa	tite occurs aggregated to weakly laminated.
		MINERALIZATION	Туре	Value	Comments					
			Pyrite %	1.00	Fine-gained ag	ggregates up to 1	cm wide and few laminated	stringers		
		ALTERATION	Type	Value	Comments					
		ALIERATION	Oxidation %	20.00	I	to laminated into	ervals			
						540				
		STRUCTURE	Type	Intens		CA°	Comments		ale luckamenta a fi mana a lee a de lee a lee	
			Laminations %	weak		40	i meter tnick intervals sep	erated by 1 meter thi	ck intervals of massive dolomite carb	onatite
		MISCELLANEOUS	Zone	LICI		A	7!			
		MISCELLANEOUS	OX	HCL VW		Apatite	Zircon 0.25			

2010-013 Log by Ryan Kressall Date Hole ID

FROM 42.69	T0 - 47.39	ROCK CODE	dlfgCD	=	Min Style d	Fabric I	Texture fg	Litho CD	Struct		
		MAIN COMMENTS	Light grey to beige dolo	mite carbonatite. Ap	patite occurs weakly to	moderately lar	ninated concentrated n	nore towards top of int	terval. Zircon occurs disseminated w	vithin apatite laminae.	
		MINERALIZATION	Type	Value	Comments						
			Niobates %	0.50	Suspect fine-grained	d fersmite occu	rs disseminated locally	within laminae of popl	hyritic dolomite carbonatite		
			Pyrite %	4.00	Oriented disseminat	ed and stringer	s of fine-grained oxidiz	ed pyite and aggegate	s (cm scale) of fresh pyrite.		
		ALTERATION	Type Oxidation %	Value 25.00	Comments Gives beige colour to	laminae					
		STRUCTURE	Туре	Intens	, ,		omments				
			Laminations %	moderate	40						
		MISCELLANEOUS	Zone	HCL	Apati	te	Zircon				
			OX	VW	15		0.5				

2010-013 Log by Ryan Kressall Date Hole ID

FROM 47.39	-	TO 50.04	ROCK CODE	dmfgCD	=	Min Style d	Fabric m	Texture fg	Litho CD	Struct	
			MAIN COMMENTS	Mottled (light grey to be Zircon occurs dissemina	5 ·	•	omite cabonatite	with clots of dark grey d	olomite carbonatite an	d weak laminae of pophyitic dolor	mite carbonatite. Apatite occurs aggregated.
			MINERALIZATION	Туре	Value	Comments					
				Niobates %	0.50	Suspect fine-gra	ained pinkish yell	ow fersmite in pophyriti	c laminae (altered phlog	gopites)	
				Pyrite %	1.00	Fresh fine-gaind intervals	ed massive aggeg	rates generally around 1 o	cm but as large as 8 cm	and some oxidized disseminated	but oriented grains in weakly laminated
			ALTERATION	Туре	Value	Comments					
				Oxidation %	40.00	Beige mottles					
			STRUCTURE	Туре	Intens		CA°	Comments			
				Laminations %	very weak		0	Generally low when visil	ole		
			MISCELLANEOUS	Zone	HCL	Α	patite	Zircon			
				OX	VW		10	0.25			

2010-013 Log by Ryan Kressall Date Hole ID

FROM 50.04	TO - 52.28	ROCK CODE	IpCD	=	Min Style Fal	bric Textu I p	re Litho	o Struct	
		MAIN COMMENTS			nite carbonatite with clots of eminated, predominantly in		lomite carbonatite (al	tered phlogopite). Altered phlogo	opites are black, soft and tabular. Apatite occurs
		MINERALIZATION	Туре	Value	Comments				
			Pyrite %	4.00	Occus aggregated in dark (dolomite "clots" and diss	eminated and as strir	ngers in light grey dolomite	
			Niobates %	0.50	Suspect fine-grained fersr	mite occurs in porphyrition	dark grey aggregates	and laminae	
		ALTERATION	Туре	Value	Comments				
			Oxidation %	2.50	Beige dolomite carbonatit	e			
		STRUCTURE	Туре	Intens	CA°	Comments			
			Laminations %	weak	10	Generally low but	steepens to 40 degre	es in places	
		MISCELLANEOUS	Zone	HCL	Apatite	Zircon			
			OX	VW	10	0.5			

2010-013 Log by Ryan Kressall Date Hole ID

FROM 52.28	TO 56.13	ROCK CODE	dmfgCD	=	Min Style d	Fabric m	Texture fg	Litho CD	Struct	
		MAIN COMMENTS	Massive to weakly lam concentrated within ap		ink dolomite carbo	onatite with few "clo	ots" of dark grey dolomi	te carbonatite enriche	ed in oxidized pyite. Apatite occur	s weakly to moderately laminated. Zircon occurs
		MINERALIZATION	Туре	Value	Comments					
			Niobates %	0.10	Suspect yellowi	sh grey fine-gained	fersmite disseminated	locally in small lamina	ae.	
			Pyrite %	0.75	Fine-gained; occ	curs asdisseminated	l, as laminated aggrega	tes and as interstital	in-filled fractures (?)	
		ALTERATION	Туре	Value	Comments					
			Calcite %	1.00	Dark brown irreg	gular mottles				
			Oxidation %	70.00	Pink to beige do	lomite carbonatite				
		STRUCTURE	Туре	Intens		CA° Co	omments			
			Laminations %	very weak	:	40 W	here present			
		MISCELLANEOUS	Zone	HCL	А	patite	Zircon			
			OX	W		12.5	0.5			

2010-013 Log by Ryan Kressall Date Hole ID

FROM 56.13	T0 - 58.48	ROCK CODE	dlfgCD	=	Min Style d	Fabric I	Texture fg	Litho CD	Struct
		MAIN COMMENTS	Weakly laminated to m	assive light grey to p	ink dolomite cabona	atite. Apatite occi	urs moderately laminat	ed. Zircon occurs disse	eminated in dolomite carbonatite to concentrated within apatite laminae.
		MINERALIZATION	Туре	Value	Comments				
			Niobates %	0.10	Rare suspect fine-	-grained fersmite	in uncommon laminae	(rich in apatite and zi	ircon) of porphyritic dolomite
			Pyrite %	0.75	Disseminated agg	regates up to 2-3	cm (generally < 1 cm)		
		ALTERATION	Туре	Value	Comments				
			Oxidation %	30.00	Beige to pink dolo	mite carbonatite			
		STRUCTURE	Туре	Intens	C	CA° C	omments		
			Laminations %	weak		40 Ge	enerally ~40 degrees bu	t does steepen to 60 (degrees in places; becomes massive towards of end of interval (~1 m)
		MISCELLANEOUS	Zone	HCL	Дра	atite	Zircon		
			OX	VW	12	2.5	0.5		

2010-013 Log by Ryan Kressall Date Hole ID

FROM 58.48	TO - 63.25	ROCK CODE	nmfgCD	=	Min Style n	Fabric m	Texture fg	Litho CD	Struct		
		MAIN COMMENTS	Highly fractured light disseminated through		massive dolomite ca	arbonatite with re	latively high amount of v	white dolomite-calcit	e veining. Apatite occurs weakly to	moderately laminated. Zircon or	curs
		MINERALIZATION	Туре	Value	Comments						
			Pyrite %	1.00	Disseminated an	d aggregated (up t	o 3 cm) fine-grained oxic	dized pyrite			
		ALTERATION	Туре	Value	Comments						
			Calcite %	5.00	Veining and dark	brown mottles re	act strongly to HCI				
			Oxidation %	50.00	Beige to pink dol	omite carbonatite					
		STRUCTURE	Туре	Intens	(CA° C	omments				
			Veining %	moderate		80 do	olomite-calcite infilled fr	acture - some veins re	eact to HCl		
		MISCELLANEOUS	Zone	HCL	Ар	atite	Zircon				
			OX	W	1	2.5	0.25				

2010-013 Log by Ryan Kressall Date Hole ID

FROM 63.25	TO 65.91	ROCK CODE	mCD	=	Min Style	Fabric m	Texture	Litho CD	Struct
		MAIN COMMENTS	Mottled-massive to weal	akly laminated (sma	ll intervals less than	0 cm) light grey t	o beige dolomite carbo	onatite. Apatite occurs (weakly to moderately laminated. Zircon occurs disseminated within apatite
		MINERALIZATION	Туре	Value	Comments				
			Niobates %	0.10	Rare dark grey to p	oink fine-grained	suspect fersmite		
			Pyrite %	1.50	Aggregates up to 5	5 cm and dissemi	nated fine-grained fre	sh to oxidized pyrite	
		ALTERATION	Туре	Value	Comments				
			Calcite %	0.50	Veining with dolor	mite			
			Oxidation %	50.00	Beige to pink dolo	mite			
		STRUCTURE	Туре	Intens	С	A° Co	omments		
			Veining %	weak	7	70 Ca	lcite-dolomite and py	rite infilled fractures- va	aries between 70 and 90 - some irregular shaped veining
			Laminations %	very weak	2	20 W	here present		
		MISCELLANEOUS	Zone	HCL	Apa	ntite	Zircon		
			OX	VW	12	2.5	0.75		

2010-013 Log by Ryan Kressall Date Hole ID

FROM 65.91	TO - 66.69	ROCK CODE	gmfgCM	=	Min Style g	Fabric m	Texture fg	Litho CM	Struct	
		MAIN COMMENTS	First 40 cm of interval Zircon occurs dissemi			e carbonatite. R	emaining 70 cm consists	of magnetite-apatit	e-columbite cumulate rock fragments in light grey to pink dolomite c	arbonatite.
		MINERALIZATION	Туре	Value	Comments					
			Niobates %	1.00	Fine-grained columb	bite occurs with	magnetite			
			Magnetite %	25.00	Massive aggregates	with apatite an	nd columbite			
			Pyrite %	5.00	Fine-grained; disser	minated and as	aggregates up to 5 cm in	massive carbonatite		
		ALTERATION	Туре	Value	Comments					
			Oxidation %	80.00						
			Silica %	0.50	Minor silicification o	of massive carbo	onatite			
		STRUCTURE								
		MISCELLANEOUS	Zone	HCL	Apat	ite	Zircon			
			OX	VW	20		1.5			
				:		·	-			

2010-013 Log by Ryan Kressall Date Hole ID

Struct
throughout interval but concetrates in apaptite laminae.
r pyrite

2010-013 Log by Ryan Kressall Date Hole ID

FROM TO ROCK CODE dliCD = Min Style Fabric Texture Litho Struct 72.18 - 76.14	
MAIN COMMENTS Fractured light grey to beige laminaed dolomite carbonatite with small intervals of massive inequigranular and porphyritic dolomite carbonatite. Apatite occurs moderately laminated. Zirco concentrated within apatite laminae (higher zircon concentration towards top of interval).	n occurs
MINERALIZATION Type Value Comments	
Pyrite % 1.50 Disseminated and stringers of fine-grained oxidized pyrite	
Niobates % 0.50 Localized disseminated suspect fine-grained fersmie	
ALTERATION Type Value Comments	
Oxidation % 20.00 Beige dolomite	
STRUCTURE Type Intens CA° Comments	
Laminations % weak 50 Varies between 40 and 60	
MISCELLANEOUS Zone HCL Apatite Zircon	
0X VW 15 0.5	

2010-013 Log by Ryan Kressall Date Hole ID

FROM 76.14	TO - 80.23	ROCK CODE	dlfCD	=	Min Style d	Fabric I	Texture f	Litho CD	Struct		
		MAIN COMMENTS	Laminated light grey to disseminated within ap	_	onatite with zones	of moderate deca	alcification (pitted carbo	natite and incompent	ant rock). Apatite occurs weakly	to moderately laminated	Zircon occurs
		MINERALIZATION	Туре	Value	Comments						
			Pyrite %	2.50	Mostly laminate	d fine-grained oxi	dized pyrite, some disse	minated and larger ag	gregates (up to 3 cm)		
			Niobates %	0.25	Suspect fine-gra	ined yellow-dark	grey fersmite				
	ALTE	ALTERATION	Туре	Value	Comments						
			Oxidation %	10.00	Beige dolomite						
		STRUCTURE	Туре	Intens		CA° (Comments				
			Laminations %	moderate		50 5	0 to 60 degrees variation	n			
		MISCELLANEOUS	Zone	HCL	Aŗ	oatite	Zircon				
			OX	VW		7.5	0.25				

2010-013 Log by Ryan Kressall Date Hole ID

FROM 80.23	_	TO 82.19	ROCK CODE	nmfgCD	=	Min Style n	Fabric m	Texture fg	Litho CD	Struct	
			MAIN COMMENTS	Massive to weakly lamin crenulations. Zircon occ					mite cabonatite (altere	d phlogopite). Apatite occurs aggregated to moderately laminated with localliz	zed
			MINERALIZATION	Туре	Value	Comments					
				Pyrite %	0.75	Oxidized stringe	rs (< 1 mm thick	ζ)			
				Niobates %	0.05	Very rare suspec	t dark grey fersr	nite in pod of porphyritic	dolomite carbonatite		
			ALTERATION	Туре	Value	Comments					
				Oxidation %	25.00	Beige dolomite					
			STRUCTURE	Туре	Intens		CA°	Comments			
				Laminations %	very weak	:	20				
				Veining %	moderate		55	50 to 60 degree veins of	dolomite and oxidized	pyrite	
			MISCELLANEOUS	Zone	HCL	ĮA	oatite	Zircon			
				OX	VW		10	0.25			

2010-013 Log by Ryan Kressall Date Hole ID

FROM 82.19	TO - 83.13	ROCK CODE	gmCM	=	Min Style g	Fabric m	Texture	Litho CM	Struct	
		MAIN COMMENTS		hlogopite-columbite c throughout cumulate.		enoliths up to 30 c	m within light grey to lig	ght pink dolomite car	bonatite. Minor calcite occurs interstitially to cumulate phases. Zircon occurs	
		MINERALIZATION	Туре	Value	Comments					
			Pyrite %	1.00	Occurs magnetite	aggregates				
			Niobates %	2.00	Fine-grained colu	mbite occurs with	magnetite			
			Magnetite %	40.00	Large aggregates					
		ALTERATION	Туре	Value	Comments					
			Calcite %	7.50						
			Oxidation %	20.00	Beige dolomite an	nd around magnet	ite aggregates			
		STRUCTURE								
		MISCELLANEOUS	Zone	HCL	Ара	atite	Zircon			
			OX	М	2	20	1			

2010-013 Log by Ryan Kressall Date Hole ID

FROM 83.13	TO - 88.57	ROCK CODE	dlpCD	=	Min Style d	Fabric I	Texture p	Litho CD	Struct
		MAIN COMMENTS							ck - contains abundant phlogopite and Na-amphibole). Interval is locally e(white). Zircon occurs concentrated within apatite laminae.
		MINERALIZATION	Туре	Value	Comments				
			Niobates %	0.10	Suspect fine-gra	ined yellowish grey	y fersmite - locally disse	eminated	
			Pyrite %	1.50	Fine grained, occ	urs disseminated a	and as stringers to weal	k laminations.	
		ALTERATION	Туре	Value	Comments				
			Oxidation %	20.00	Beige dolomite				
			Calcite %	5.00	Calcite carbonati	te laminae			
		STRUCTURE	Туре	Intens		CA° C	omments		
			Laminations %	moderate		20 Ge	enerally 20 but steepen	s to 40 degrees	
		MISCELLANEOUS	Zone	HCL	Ap	atite	Zircon		
			OX	М		20	0.75		

2010-013 Log by Ryan Kressall Date Hole ID

FROM 88.57 -	TO 96.19	ROCK CODE	dlpCD	=	Min Style d	Fabric I	Texture p	Litho CD	Struct		
		MAIN COMMENTS	Light grey to beige lami throughout interval but				olomite carbonatite and	clumps of altered phlo	ogopite. Apatite occurs moderately	laminated. Zircon occurs disseminated	
		MINERALIZATION	Туре	Value	Comments						
			Niobates %	0.10	Locally dissemina	ted fine-grained	fersmite - occurs in som	e porphyritic dolomit	e laminae		
			Pyrite %	1.00	thin oxidized lam	inae and dissemi	inated fine grained - cond	centrated in porphyrit	tic and dark grey dolomite laminae		
		ALTERATION	Туре	Value	Comments						
			Oxidation %	20.00	Beige dolomite						
		STRUCTURE	Туре	Intens		CA° (Comments				
			Laminations %	moderate	!	20 ١	ariable between and 40	degrees; some swirly	laminations		
		MISCELLANEOUS	Zone	HCL	Ара	atite	Zircon				
			OX	VW		5	0.5				

2010-013 Log by Ryan Kressall Date Hole ID

FROM 96.19	T0 - 98.49	ROCK CODE	dlpCD	=	Min Style d	Fabric I	Texture p	Litho CD	Struct	
		MAIN COMMENTS	Moderately fractured mo throughout interval.	ttled-massive dolor	mite carbonati	te. Altered phlogor	pite locally concentrated. Ap	atite occurs weakly to	o strongly laminated (strengthens downhole). Rare zircon occurs dissemir	ated
		MINERALIZATION	Туре	Value	Comments	5				
			Niobates %	0.75	Suspect fine	-grained pyrochlor	e (pink) altered to fersmite (yellowish to dark grey) - typically with altered phlogopites	
			Pyrite %	1.00	Typically occ	ur as fine-grained :	aggregates up to 3 cm diame	eter.		
		ALTERATION								
		STRUCTURE	Туре	Intens		CA°	Comments			
			Laminations %	very weak		40	Few laminated intervals le	ess than 10 cm		
		MISCELLANEOUS	Zone	HCL		Apatite	Zircon			
			OX	VW		12.5	0.1			
FROM 98.49	TO - 102.13	ROCK CODE	nlfgCD	=	Min Style n	Fabric I	Texture fg	Litho CD	Struct	
		MAIN COMMENTS	Light grey to beige lamin laminated. Apatite occur) cm of massive dolomite. In	terval contains uncor	nmon alterer phlogopite (~1-2 vol. %). Apatite occurs moderately to stron	gly
		MINERALIZATION	Туре	Value	Comments	5				
		MINERALIZATION	. / -							
		MINERALIZATION	Pyrite %	2.00	Few fine gra	ined stringers in m	assive dolomite; mostly cond	centrated as lamine u	p to 3 cm thick	
			Pyrite %	ı			assive dolomite; mostly cond	centrated as lamine u	p to 3 cm thick	
		ALTERATION		2.00 Value 5.00	Few fine gra Comments Beige dolom	S	assive dolomite; mostly cond	centrated as lamine u	p to 3 cm thick	
			Pyrite % Type	Value	Comments	S	assive dolomite; mostly cond	centrated as lamine u	p to 3 cm thick	
		ALTERATION	Pyrite % Type Oxidation %	Value 5.00	Comments Beige dolom	5 ite		centrated as lamine u	p to 3 cm thick	
		ALTERATION	Pyrite % Type Oxidation % Type	Value 5.00 Intens	Comments Beige dolom	s ite CA°		centrated as lamine u	p to 3 cm thick	

Printed on 10/Feb/2011

Measurement unit: Metres (Unless otherwise specified)

Log by Ryan Kressall Date

Hole ID

2010-013

FROM		TO
102.13	_	106.01

ROCK CODE

dmpCD

Min Style

Fabric m

Texture

Litho CD

Struct

MAIN COMMENTS Massive dolomite carbonatite with distinct altered phlogopite (or magnetite) phenocrysts (up to 1 cm in diameter) rimmed by pyrite. Rare, very weak laminations; mostly massive and fabricless. Minor calcite occurs with magnetite. Apatite occurs aggregated (with magnetite and phenocrysts) to moderately laminated. Zircon occurs in high concentration in magnetite zone and in apatite laminae.

MINERALIZATION

Туре	Value	Comments
Pyrite %	2.50	pyrite abundant at top of section as aggregates (rimming phogopite); disseminated at bottom of section
Magnetite %	2.00	Locally disseminated medium grained occurs with pseudomorph phenocrysts.
Niobates %	0.60	Very fine grained pink to grey fersmite replacement of pyrochlore (?)

ALTERATION

STRUCTURE

MISCELLANEOUS

Zone	HCL	Apatite	Zircon
Н	W	20	1

FROM TO 106.01 107.62

ROCK CODE

nmAMX

Min Style

Fabric

Texture fg

Litho AMX

Struct

MAIN COMMENTS Dolomite carbonatite with large (up to 10cm) blocks of fenite (amphibolite). Largely barren and massive with very minor laminated zones which are potentially mineralized at low grade (?). Apatite occurs aggregated to weakly laminated. Zircon occurs clusted within apatite laminae.

MINERALIZATION

rype	value	Comments
Pyrite %	1.50	Pyrite disseminated throughout amphibolite blocks

ALTERATION

Type	Value	Comments
Amphibolite %	30.00	amphibolite blocks with pyrite and minor chlorite alteration

STRUCTURE

MISCELLANEOUS

Zone	HCL	Apatite	Zircon
Н	W	7.5	0.25

Log by Ryan Kressall Date Hole ID **2010-013**

Litho **FROM** TO Min Style Fabric Texture Struct **ROCK CODE** dmpCD CDm 107.62 109.91 MAIN COMMENTS Fine grained dolomite carbonatite with fine to medium grained phlogopite phenocrysts (up to 1 cm) associated with zones of very fine grained niobate (fersmite) mineralization. Apatite occurs aggregated. Zircon occurs disseminated within dolomite. **MINERALIZATION** Type Value Comments Pyrite % 2.00 Fine grained pyrite occuring mostly in weak bands Niobates % 0.50 fine grained fersmite zones near top of section **ALTERATION** STRUCTURE **MISCELLANEOUS** Zone HCL **Apatite** Zircon Н VW 10 0.5 **FROM** TO Min Style Fabric Texture Litho Struct **ROCK CODE** nmCD CD 109.91 111.95 MAIN COMMENTS Minor porphyritic sections (5cm) bearing phlogopite - appears largely barren. Apatite occurs disseminated in low concentrations (top 1 meter of interval) to moderately laminated (bottom 1 m of interval). Rare zircon occurs in dolomite carbonatite.

MINERALIZATION

Type	Value	Comments
Niobates %	0.10	Possible fersmite - very rare
Pyrite %	0.25	disseminated, fine grained

ALTERATION

STRUCTURE

MISCELLANEOUS

Zone	HCL	Apatite	Zircon
Н	VW	5	0.1
		•	

2010-013 Log by Ryan Kressall Date Hole ID

FROM 111.95	TO - 116.00	ROCK CODE	bmCD	=	Min Style b	Fabric m	Texture fg	Litho CD	Struct	
		MAIN COMMENTS	Minor sections of weak laminated. Zircon occur				ections of inequigranular do	olomite carbonatite w	rith medium to coarse grains of	dolomite. Apatite occurs weakly to strongly
		MINERALIZATION	Туре	Value	Comments					
			Pyrite %	3.00	Concentrated in b	anded phlogop	nite but also occuring as dis	seminated and aggre	gated	
			Niobates %	0.60	Fine grained fersn	nite occuring m	nostly in banded phlogopite	sections with minor	disseminated fersmite in matri	x
		ALTERATION								
		STRUCTURE								
		MISCELLANEOUS	Zone	HCL	Ара	atite	Zircon			
			Н	VW	7	' .5	0.1			
FROM 116.00	TO - 119.09	ROCK CODE	gmiAMX	=	Min Style g	Fabric m	Texture i	Litho AMX	Struct	
		MAIN COMMENTS	Distict dark to medium associated with apatite		te sections through	out with minor	porphyritic (altered phlogo	pite bearing) bands. <i>i</i>	Apatite occurs aggregated to w	eakly laminated. Zircon occurs as clusters
		MINERALIZATION	Туре	Value	Comments					
			Niobates %	0.30	Minor fersmite co	ncentated in ri	ms of amphibolite block - p	ossible minor dissem	inated fersmite	
			Pyrite %	3.00	large (10cm) aggre	egates of pyrite	e as well as disseminated ar	nd laminated		
		ALTERATION	Туре	Value	Comments					
			Amphibolite %	2.50	single 15cm block	of amphibolite	3/4 way down section			
		STRUCTURE	Туре	Intens	١	A°	Comments			
		SINGEIGNE	Laminations %	very weak			very weak laminations			
		MICCELLANICOUS	Zene	lici	^ n-	<u> </u>				
		MISCELLANEOUS	Zone H	HCL VW		atite 5	Zircon 0.25			
			- 11	VVV		J	0.23			

HCL

VW

Log by Ryan Kressall Date Hole ID **2010-013**

Min Style Litho **FROM** TO Fabric Texture Struct dmCD **ROCK CODE** CDm р 119.09 122.07 MAIN COMMENTS Porphyritic to inequigranular; minor sections of light grey dolomite banding. Distinct coarse grained altered phlogopite phenocrysts Apatite occurs aggregated to weakly laminated. Zircon occurs disseminated with apatite aggregates and laminae. **MINERALIZATION** Type Value Comments Pyrite % 1.50 aggregated and disseminated Niobates % 0.10 Minor very fine grained fersmite **ALTERATION** STRUCTURE **MISCELLANEOUS** Zone HCL **Apatite** Zircon Н VW 7.5 0.5 Min Style **FROM** TO Fabric Texture Litho Struct nmCD **ROCK CODE** CD 122.07 124.31 MAIN COMMENTS Dark grey and mottled dolomite Apatite occurs aggregated. Zircon occurs disseminated throughout interval. **MINERALIZATION** Type Value Comments Pyrite % 0.50 fine grained aggregates **ALTERATION** STRUCTURE

Apatite

10

Zircon

0.25

Printed on 10/Feb/2011 Measurement unit: Metres (Unless otherwise specified)

Zone

Н

MISCELLANEOUS

Log by Ryan Kressall Date Hole ID **2010-013**

riascia	07411103	COF	PORATION	01010	.	•	J			
FROM 124.31	TO - 126.52	ROCK CODE	dmCD	=	Min Style d	Fabric m	Texture fg	Litho CD	Struct	
		MAIN COMMENTS	minor laminated section	s; lamination defin	ed by dolomite an	d apatite. Apati	ite occurs aggregated to weal	kly crenulated. Zircor	n occurs disseminated in dolomite.	
		MINERALIZATION	Туре	Value	Comments					
			Pyrite %	0.75	disseminated w	ith minor pyrite	e bands			
			Niobates %	0.30	fine grained dis	seminated fersi	mite			
		ALTERATION								
		CTRUCTURE	Tune	Intone		CA°	Comments			
		STRUCTURE	Type Laminations %	Intens weak		20	Comments weak and rare laminations	· mostly massive		
					<u> </u>			, mostly massive		
		MISCELLANEOUS	Zone	HCL		patite	Zircon			
			Н	VW		2.5	0.5			
FROM	T0	ROCK CODE	nmiCD	=	Min Style n	Fabric m	Texture	Litho CD	Struct	
126.52	- 129.77				"	""	'	CB		
		MAIN COMMENTS	Motteld dark grey to ligh	nt grey color, Apatito	e occurs crenulated	d to weakly lam	inated. Zircon occurs clustere	ed throughout interv	al.	
		MINERALIZATION	Туре	Value	Comments					
		MINERALIZATION	Niobates %	Value	barren					
			Pyrite %	1.50	occurred dissem	ninated aggreat	es under 1cm			
		ALTERATION								
		STRUCTURE	Туре	Intens		CA°	Comments			
			Laminations %	weak		27	rare and weak, mostly mas	ssive		
		MISCELLANEOUS	Zone	HCL	Α	patite	Zircon			
				1		P				

0.5

5

VW

Н

2010-013 Log by Ryan Kressall Date Hole ID

FROM 129.77	TO - 131.83	ROCK CODE	bmpCD	=	Min Style b	Fabric m	Texture p	Litho CD	Struct
		MAIN COMMENTS	Massive to weakly lamin	nated light to dark gi	rey dolomite cabor	natite, possible	pyroclore. Apatitite occurs a	aggregated to weakly	laminated. Zircon occurs clustered associated with apatite.
		MINERALIZATION	Туре	Value	Comments				
			Pyrite % Niobates %	2.50 0.25	Fine-grained lan		own pyrochloe (possibly alte	ered to fersmite) occu	r locally near phenocrysts
		ALTERATION	11000000		Too Province 3.1		γγγγγγ	,	
		STRUCTURE	Туре	Intens		CA°	Comments		
			Laminations %	weak		40			
		MISCELLANEOUS	Zone H	HCL VW		patite 17.5	Zircon 0.25		
						,,,,	0.23		
FROM 131.83	TO - 137.13	ROCK CODE	dmiCD	=	Min Style d	Fabric m	Texture i	Litho CD	Struct
		MAIN COMMENTS	Dominantly massive ine assocciation with apatit		tly porphyritic dolo	omite carbonatit	e with few 50 cm increment	ts of lamination. Apa	tite occurs crenulated to moderately laminated. Zircon occurs clustered in
		MINERALIZATION	Туре	Value	Comments				
			Niobates %	0.10	Rare reddish bro	own suspect pyro	ochlore replaced by fersmite	2	
			Pyrite %	1.00	Stringers and ag	ggregates of fres	h pyrite up to 1 cm diamete	r/thickness	
		ALTERATION	Туре	Value	Comments				
			Silica %	1.00	wiith chloritizat	ion			
		STRUCTURE	Туре	Intens		CA°	Comments		
			Laminations %	weak		80			
		MICCELLANICOLIC	Zone	uci	Δ.				
		MISCELLANEOUS	Zone	HCL	A	patite	Zircon		

2010-013 Log by Ryan Kressall Date Hole ID

FROM 137.13	T0 - 141.00	ROCK CODE	dmpCD	=	Min Style d	Fabric m	Texture p	Litho CD	Struct	
		MAIN COMMENTS	Massive to very weakly la Zircon occurs disseminat					sts. Phenocrysts compo	se 15 -25 vol. % of interval. Apatite occurs aggregated to weakly lamin	ated.
		MINERALIZATION	Туре	Value	Comments					
			Pyrite %	0.75	Disseminated	l aggregates up to	1cm			
			Niobates %	0.10	Likely fersmit	e after pyrochlore	e: pinkish brown fine grain	ed, disseminated locally		
		ALTERATION								
		STRUCTURE	Туре	Intens		CA°	Comments			
			Laminations %	weak		40				
		MISCELLANEOUS	Zone	HCL		Apatite	Zircon			
			Н	VW		12.5	0.75			
FROM 141.00	T0 - 142.08	ROCK CODE	nmfgCD	=	Min Style n	Fabric m	Texture fg	Litho CD	Struct	
		MAIN COMMENTS	Mottled light grey to me	dium grey dolomite	carbonatite. Ap	oatite occrs weakl	y laminated.			
		MINERALIZATION	Туре	Value	Comments					
			Pyrite %	1.50	Stringers and	weak laminae up	to 1 cm thick			
		ALTERATION								
		STRUCTURE	Туре	Intens		CA°	Comments			
			Laminations %	weak		40	Slightly crenulated			
		MISCELLANEOUS	Zone	HCL		Apatite	Zircon			
			Н	VW		7.5	0.1			

2010-013 Log by Ryan Kressall Date Hole ID

FROM 142.08	TO - 145.12	ROCK CODE	dmfgCCCD	=	Min Style d	Fabric m	Texture fg	Litho CCCD	Struct
		MAIN COMMENTS	Mottled-massive light g	grey to medium-grey-	porphyritic dolomite	carbonatite with	1 intervals of dissemina	ted magnetite in crea	nm calcite carbonatite.
		MINERALIZATION	Type	Value	Comments				
			Pyrite %	4.00	Disseminated to ag	gregated fine-gr	ained pyrite		
			Niobates %	1.00	Suspect fine-graine	d fersmite after	pyrochlore occurs disser	minated locally black	columbite likely occurs with magnetite
			Magnetite %	5.00	Medim grained diss	eminated in calc	ite carbonatite.		
		ALTERATION							
		STRUCTURE	Type	Intens	CA	·° Co	omments		
			Veining %	weak	40	ру	rite (~5 mm)		
			Laminations %	very weak	40) lar	ninated over short incre	ments (~10 cm)	
		MISCELLANEOUS	Zone	HCL	Apat	ite	Zircon		
			Н	VW					

2010-013 Log by Ryan Kressall Date Hole ID

			CORALION								
FROM 145.12	T0 - 147.03	ROCK CODE	nmfgCD	=	Min Style n	Fabric m	Texture fg	Litho CD	Struct		
		MAIN COMMENTS	Mottled massive to weak common altered phlogop					inequigranular, but ge	nerally the interval is fine-gra	ained equigranular. Dolomite carbonatite contains	
		MINERALIZATION	Туре	Value	Commen	its					
			Pyrite %	1.00	Localled a	ggregated up to 1 cm	diameter				
		ALTERATION									
		STRUCTURE	Туре	Intens		CA°	Comments				
			Laminations %	weak		70	Short 10 cm interval sho	ws lamination			
		MISCELLANEOUS	Zone	HCL		Apatite	Zircon				
			Н	VW		7.5	0.1				
FROM 147.03	TO - 153.77	ROCK CODE	nmiCD	=	Min Style n	Fabric m	Texture i	Litho CD	Struct		
		MAIN COMMENTS								ite. A few laminae of medium- to coarse-grained to medium-grained) associated with apatite.	
		MINERALIZATION	Туре	Value	Commen	its					
			Pyrite %	1.75	Aggregate	d with altered phlogo	ppite phenocrysts				
		ALTERATION									
		STRUCTURE	Туре	Intens		CA°	Comments				
			Laminations %	weak		45	Rare lamination				
		MISCELLANEOUS	Zone	HCL		Apatite	Zircon				
			Н	VW		20	0.75				

Printed on 10/Feb/2011

Log by Ryan Kressall Date Hole ID **2010-013**

Litho **FROM** TO Min Style Fabric Texture Struct nmCD **ROCK CODE** CD m 158.02 153.77 MAIN COMMENTS Massive inequigranular medium grey dolomite carbonatite with small intervals and clots of porphyritic carbonatite (phenocrysts = altered phlogopite) and no visible Nb-mineralization. Apatite occurs disseminated to aggregated. **MINERALIZATION** Type Value Comments Pyrite % 1.00 Aggregated up to 3 cm but generally less than 1 cm. **ALTERATION** STRUCTURE HCL **MISCELLANEOUS** Zone **Apatite** Zircon Н VW 0.1 5 Min Style **FROM** TO Fabric Texture Litho Struct **ROCK CODE** nmCD CD 158.02 160.95 MAIN COMMENTS Massive to weakly laminated with phenocrysts of altered phlogopite. Apatite occurs aggregated. Zircon occurs as clusters associated with apatite.

MINERALIZATION
Type Value Comments

Pyrite % 2.50 Aggregated up to 5 cm; and commonly forms rims around altered phlogopite

Niobates % 0.50 Pale pink to yellow fersmite occurs locally disseminated with apatite, zircon and pseudomorphs (afer magnetite? Or phloopite?)

ALTERATION

STRUCTURE

 MISCELLANEOUS
 Zone
 HCL
 Apatite
 Zircon

 H
 VW
 20
 0.75

2010-013 Log by Ryan Kressall Date Hole ID

FROM 160.95	T0 - 164.2	ROCK CODE	nmCD	=	Min Style n	Fabric m	Texture i	Litho CD	Struct		
		MAIN COMMENTS	Mottled-massive to wea	akly laminated light	to medium gre	/ dolomite carbona	tite. Apatite occurs aggre	egated to weakly lamin	ated. Rare zircon occurs associated	d with apatite.	
		MINERALIZATION	Туре	Value	Comments						
			Pyrite %	0.50	Disseminate	d aggregates up to	3 cm diameter; and as ur	ncommon fine-grained	(<0.5 mm) oxidized-black pyrite (s	treaks red)	
		ALTERATION									
		STRUCTURE	Туре	Intens		CA°	Comments				
			Laminations %	very weak		50					
		MISCELLANEOUS	Zone	HCL		Apatite	Zircon				
			Н	VW		7.5	0				
FROM 16/1-21	TO	ROCK CODE	dmCD	=	Min Style	Fabric m	Texture p	Litho CD	Struct		

FROM		TO
164.21	-	169.32

MAIN COMMENTS Light- to medium-grey dolomite carbonatite with abundant phenocrysts of altered phlogopite. Niobates are concentrated towards top of interval. Apatite occurs aggregated to moderately laminated. Zircon occurs in clusters associated with apatite.

MINERALIZATION

Type	Value	Comments
Niobates %	0.75	Pinkish-brown fersmite after pyrochlore (?)
Pyrite %	1.00	Aggregaed up to 1 cm; commonly associated with altered phenocrysts

ALTERATION

STRUCTURE

MISCELLANEOUS

Zone	HCL	
Н	VW	

HCL	Apatite	Zirco
VW	10	0.1

2010-013 Log by Ryan Kressall Date Hole ID

		(0)	PORATION							
FROM 169.32	TO 173.63	ROCK CODE	dlentCD	=	Min Style d	Fabric lent	Texture p	Litho CD	Struct	
		MAIN COMMENTS	10 to 20 cm intervals of occurs aggregated. Apat				rbonatite with minor lami	inae of cream calcite ca	rbonatite seperated by laminated	to lenticular dolomite carbonatite. Apatite
		MINERALIZATION	Туре	Value	Comments	;				
			Niobates %	1.50	Pale yellow f	ersmite appears to	be replacing pinkish-brow	wn pyrochlore; concent	rates around magnetite-rich interv	als
			Magnetite %	10.00	Locally disse	minated medium-	grained magnetite			
			Pyrite %	0.50	Common lan	ninated aggregates	s of pyrite in top 50 cm of	interval.		
		ALTERATION								
		STRUCTURE	Туре	Intens		CA°	Comments			
			Laminations %	weak		40	varies between 35 and 4	45 degrees		
		MISCELLANEOUS	Zone	HCL		Apatite	Zircon			
			OX	W		12.5	0.5			
FROM 173.63	TO 175.66	ROCK CODE	nmCD	=	Min Style n	Fabric m	Texture p	Litho CD	Struct	
		MAIN COMMENTS	Mottled ("vein"-like)-maconcentrated in the top		grey dolomite o	carbonatite with a	few localized concentration	ons of altered phlogopi	te phenocrysts. Apatite occurs as a	oggregates. Zircon occurs disseminated
		MINERALIZATION	Туре	Value	Comments	5				
			Pyrite %	2.00	Unoriented t	o weakly laminate	d aggregates up to 1 cm			
		ALTERATION								
		STRUCTURE	Туре	Intens		CA°	Comments			
			Laminations %	very weak		40				
		MISCELLANEOUS	Zone	HCL		Apatite	Zircon			
			Н	VW		12.5	0.5			

Printed on 10/Feb/2011

MISCELLANEOUS

Zone

Н

GEOLOGY LOG

2010-013 Log by Ryan Kressall Date Hole ID

		C01	RPDRATION							
FROM 175.66	TO - 180.29	ROCK CODE	nmCD	=	Min Style n	Fabric m	Texture i	Litho CD	Struct	
		MAIN COMMENTS	Mottled light- to dark-g throughout interval.	rey inequigranular t	o locally porph	ritic (altered phlog	gopite) dolomite carbonati	te. Phenocrysts compo	se ~5 vol. % of rock. Apatite occurs aggre	gated. Zircon occurs disseminated
		MINERALIZATION	Туре	Value	Comments	5				
			Pyrite %	0.50	Aggregated	up to 1 cm.				
		ALTERATION								
		STRUCTURE	Туре	Intens		CA°	Comments			
			Laminations %	very weak		40	Measured up to 60 degre	eees where present		
		MISCELLANEOUS	Zone	HCL		Apatite	Zircon			
		1-1100111111111111111111111111111111111	Н	VW		7.5	0.75			
FROM 180.29	TO - 188.02	ROCK CODE	nICD	=	Min Style n	Fabric I	Texture i	Litho CD	Struct	
		MAIN COMMENTS	Weakly laminated dolor occurs clustered in asso			thick intervals of r	nottled-massive light to m	nedium grey inequigran	nular dolomite carbonatite. Apatite occur	's aggregated to weakly laminated. Zirco
		MINERALIZATION	Туре	Value	Comments	5				
			Pyrite %	0.50	Aggregated	up to 1 cm and cond	centrated around altered p	hlogopite		
			Niobates %	0.10	Fine grained	pink fersmite (afte	er pyrochlore?) occurs with	apatite, zircon and pse	eudomorphs (after magnetite?)	
		ALTERATION								
		STRUCTURE	Туре	Intens		CA°	Comments			
			Laminations %	weak		50	Varies between 40 and 6	0 degrees		

Printed on 10/Feb/2011

HCL VW Apatite

7.5

Zircon

0.75

Measurement unit: Metres (Unless otherwise specified)

2010-013 Log by Ryan Kressall Date Hole ID

FROM 188.02	TO - 190.21	ROCK CODE	nmCD	= 1	Min Style n	Fabric m	Texture fg	Litho CD	Struct	
		MAIN COMMENTS	Slightly-mottled massive	e to weakly laminated	d dolomite carbonatite	with unco	ommon altered phlogopite	and pyrite. Apatite oc	curs weakly to moderately aggrega	ted. Zircon occurs as rare clusters.
		MINERALIZATION	Туре	Value	Comments					
			Pyrite %	0.50	Uncommon aggregate	s of pyrite	up to 1 cm.			
		ALTERATION								
		STRUCTURE	Туре	Intens	CA°		Comments			
			Laminations %	weak	40		35 to 45 degrees			
		MISCELLANEOUS	Zone	HCL	Apatite	9	Zircon			
			Н	VW	10		0.1			
FROM 190.21	TO - 192.75	ROCK CODE	nlpCD	= !	Min Style n	Fabric I	Texture p	Litho CD	Struct	
		MAIN COMMENTS	Porphyritic to inequigran	nular laminated light-	to dark-grey dolomite	carbonatit	te. Apatite occurs moderat	ely laminated. Zircon	occurs clusters assocciated with ap	patite.
		MINERALIZATION	Туре	Value	Comments					
			Pyrite %	0.75	Aggregated up to 1 cm	- commor	nly associated with phenoc	rysts		
		ALTERATION								
		STRUCTURE	Туре	Intens	CA°		Comments			
			Laminations %	weak	30					
		MISCELLANEOUS	Zone	HCL	Apatite	2	Zircon			
			Н	VW	7.5		0.1			

Printed on 10/Feb/2011

HCL

VW

Log by Ryan Kressall Date Hole ID **2010-013**

ridoon		COF	PORATION	0_0_0							
FROM 192.75	TO - 195.90	ROCK CODE	dICD	=	Min Style d	Fabric I	Texture i	Litho CD	Struct		
		MAIN COMMENTS	Moderately laminated in clusters associated with		ally porphyritic (alte	ered phlogopite	e) dolomite carbonatite with	ı abundant aggregatı	ed pyrite. Apatite occurs aggre	gated to moderately laminated	Zircon occurs as
		MINERALIZATION	Туре	Value	Comments						
			Pyrite %	4.00	aggregated to lar	minated up to !	5 cm.				
			Niobates %	0.10	Rare pale pink, fi	ne- to medium	n-grained fersmite (likely aft	ter pyrochlore)			
		ALTERATION									
		STRUCTURE	Туре	Intens		CA°	Comments				
			Laminations %	moderate		35	Varies between 30 and 40	degrees			
		MISCELLANEOUS	Zone	HCL	Ap	atite	Zircon				
			OX	VW		7.5	0.75				
FROM 195.90	T0 - 199.70	ROCK CODE	dICD	=	Min Style d	Fabric I	Texture p	Litho CD	Struct		
		MAIN COMMENTS					ts of altered phlogopite. Ma ninated throughout entire ir		appear to be mostly replaced	by grey dolomite giving the carb	onatite the mottled
		MINERALIZATION	Туре	Value	Comments						
			Pyrite %	1.50	Aggregated and	laminated up t	o 2 cm				
			Niobates %	0.10	Localled concent	rated fine-grain	ned pink fersmite				
		ALTERATION									
			T	1.1		C					
		STRUCTURE	Туре	Intens	1	CA°	Comments				

Apatite

Zircon

0.25

Printed on 10/Feb/2011 Measurement unit: Metres (Unless otherwise specified)

Zone

Н

MISCELLANEOUS

2010-013 Log by Ryan Kressall Date Hole ID

		COR	PORATION								
FROM 199.70 -	TO 202.20	ROCK CODE	dICD	= ^	Min Style d	Fabric I	Texture p	Litho CD	Struct		
		MAIN COMMENTS	Dominately dark grey do by pyrite. Apatite occurs					onatite. Phenocrysts	of altered phlogopite occurs d	ominantly within dark grey dolomite and are rimmed	d
		MINERALIZATION	Туре	Value	Comments						
			Pyrite %	3.00	Aggregated an	nd laminated up t	o 3 cm; commonly rims alte	ered phlogopite			
			Niobates %	0.10	Fine- to mediu	um-grained pink f	ersmite occurs around phe	nocrysts and pyrite			
		ALTERATION									
		STRUCTURE	Туре	Intens		CA°	Comments				
			Laminations %	moderate		50					
		MISCELLANEOUS	Zone	HCL		Apatite	Zircon				
			Н	VW		12.5	1				
FROM 202.20 -	TO 204.81	ROCK CODE	dmCD	= ^	Min Style d	Fabric m	Texture p	Litho CD	Struct		
		MAIN COMMENTS	Light- to medium-grey n clustered in associated w		ninated porphy	yritic dolomite car	bonatite. Altered phlogopi	e composes 5 % of t	he interval. Apatite occurs diss	seminated to weakly laminated. Zircon occurs	
		MINERALIZATION	Туре	Value	Comments						
			Niobates %	0.10	Locally concen	ntrated fine-grain	ed pink fersmite				
			Pyrite %	1.50	Aggregate to 2	2 cm around phen	ocrysts				
		ALTERATION									
		STRUCTURE	Туре	Intens		CA°	Comments				
			Laminations %	very weak		50	Lamination is localled cre	nulated			
		MISCELLANEOUS	Zone	HCL		Apatite	Zircon				
			Ц	\/\//		10	0.25				

Measurement unit: Metres (Unless otherwise specified)

2010-013 Log by Ryan Kressall Date Hole ID

			100 11 11 10 11						
FROM 204.81	TO - 210.22	ROCK CODE	dxCD	= ^	Min Style Fabi d x	ic Texture	Litho CD	Struct	
		MAIN COMMENTS	Slightly brecciated dolor	mite carbonatite with	intervals of lamination and	phenocrysts (altered phlogop	oite). Apatite occurs agg	gregated to weakly laminated. Z	ircon occurs clustered in association with apatite.
		MINERALIZATION	Туре	Value	Comments				
			Niobates %	0.50	Rare pink to pale-yellow fer	smite locally disseminated w	rith pyrite and altered p	seudomorph	
			Pyrite %	1.50	Aggregated up to 2 cm and	commonly form rims around	altered phlogopite		
		ALTERATION							
		STRUCTURE	Туре	Intens	CA°	Comments			
			Laminations %	weak	50				
		MISCELLANEOUS	Zone	HCL	Apatite	Zircon			
			Н	VW	15	0.5			
FROM 210.22	T0 - 213.34	ROCK CODE	nICD	= ^	Min Style Fabi n I	ic Texture fg	Litho CD	Struct	
		MAIN COMMENTS			vith mostly homogenous ap con occurs disseminated.	pearance containing very little	e pyrite and altered phl	ogopite. Interval has a few clot	s of dark grey dolomite carbonatite. Apatite occurs
		MINERALIZATION	Туре	Value	Comments				
			Pyrite %	0.25	Locally aggregate up to 3 cn	and disseminated very fine-	-grained oxidized pyrite	!	
		ALTERATION							
		STRUCTURE	Туре	Intens	CA°	Comments			
			Laminations %	weak	50				
		MISCELLANEOUS	Laminations % Zone	weak HCL	50 Apatite	Zircon			

2010-013 Log by Ryan Kressall Date Hole ID

FROM 213.34	TO - 215.20	ROCK CODE	dmCD	=	Min Style d	Fabric m	Texture p	Litho CD	Struct
		MAIN COMMENTS	Porphyritic to inequigrathroughout interval.	anular mottled light-	and medium-grey dolom	ite carbonatite	e. Altered phlogopite p	henocrysts composed	d ~ 10 vol % of interval. Apatite occurs aggregated. Zircon occurs disseminated
		MINERALIZATION	Туре	Value	Comments				
			Niobates %	0.50	Suspect pink fine-grain	ned fersmite (a	fter pyrochlore?) - occ	urs in close proximity	of altered phlogopite
			Pyrite %	2.00	Aggregated up to 1 cm				
		ALTERATION							
		STRUCTURE							
		MISCELLANEOUS	Zone	HCL	Apatite		Zircon		
			Н	VW	10		0.75		

End of Hole End of Hole

Hole ID 2010-014	10-014
-------------------------	--------

		GENERAL INF	ORMATION		
Coordinate System	Easting	Northing	Elevation	Collar Azimuth	Collar Dip
ST. PL Nad 83	454332.71	6256516.19	1589.43	20.00	-55.00
Start Depth	Final Depth	Proposed Depth	Final Length	Rig	Area
0.00	91.54		91.54		Central 1
Operator	Year				
Taseko	2010				

PROFESSIONAL / TECHNICIAN

	Name	Start Date	End Date
Collar Surveyor	Ryan Kressall	23/Aug/2010	
Geology Logged By	Ryan Kressall		
Specific Gravity By	Steve Dumma		
Geotech Logged By	Steve Dumma	02/Aug/2010	
Drill Contractor			

	М		

DRILLING BIT SIZE									
Bit Size	From	То	Length						
NW (Casing)	NW (Casing) 0.00 9.75 9.75								
NQ 9.75 91.54 91.54									

DOWN HOLE SURVEY									
Depth	Azimuth	Dip	Temp °C	Mag.	Roll	Method			
26.82	10.30	-56.00	16.1	6024	241.3	Reflex EZ-shot			
109.12	16.90	-55.10	16.8	5895	319.1	Reflex EZ-shot			
206.65	16.90	-55.70	13.2	5899	73.8	Reflex EZ-shot			

GEOLOGY LEGEND

Hole ID **2010-014**

ROCK CODE

MIN STYLE						
Abbr.	Description					
n	barren					
d	disseminated					
g	aggregated					
b	banded					

	FABRIC
Abbr.	Description
Х	brecciated
1	laminated
f	decalcified
٧	veined
р	porphyritic
m	massive

	TEXTURE
Abbr.	Description
f	decalcified
р	porphyritic
V	veined

LITHO						
Abbr.	Description					
CASE	Casing					
OVBN	Overburden					
OXID	Oxide					
AM	Amphibolite					
CC	Calcite Carbonatite					
CD	Dolomite Carbonatite					
CCCD	Mixed Calcite and Dolomite Carbonatite					
AMX	Amphibole and Mixed Carbonatite					
CM	Carbonatite Cumulate					

	STRUCT
Abbr.	Description
Z	fault
е	strained
S	shear zone
У	dyke

MISCELLANEOUS:

	ZONE
Abbr.	Description
OX	Oxide
S	Supergene
Н	Hypogene

	HCL
Abbr.	Description
VW	very weak
W	weak
М	moderate
S	strong
VS	very strong

2010-014 Log by Ryan Kressall Date Hole ID

FROM 0.00	-	TO 9.75	ROCK CODE	CASE	=	Min Style Fab	ric Texture	Litho CASE	Struct	
			MAIN COMMENTS	No rock						
			MINERALIZATION							
			ALTERATION							
			STRUCTURE							
			MISCELLANEOUS	Zone	HCL	Apatite	Zircon			
FROM		то	ROCK CODE	nmCD	=	Min Style Fab	ric Texture	Litho	Struct	
9.75	_									
		14.63				n n		CD		
		14.63				n n apatite and abunadant disse	f	CD		
		14.63					f	CD		
		14.63	MAIN COMMENTS				f	CD		
		14.63	MAIN COMMENTS MINERALIZATION	Calcitized to decalcified	rubble. Aggregated	apatite and abunadant disse	f minated zircon occur within r	CD		
		14.63	MAIN COMMENTS MINERALIZATION	Calcitized to decalcified Type	rubble. Aggregated Value	apatite and abunadant disse	f minated zircon occur within r	CD		
		14.63	MAIN COMMENTS MINERALIZATION ALTERATION	Calcitized to decalcified Type	rubble. Aggregated Value	apatite and abunadant disse	f minated zircon occur within r	CD		

2010-014 Log by Ryan Kressall Date Hole ID

FROM 14.63	-	TO 21.72	ROCK CODE	nmfCD	=	Min Style n	Fabric m	Texture f	Litho CD	Struct
			MAIN COMMENTS	Calcizitized medium- to Apatite occurs oriented				s (up to 5 cm; approx. 10 v	rol. % of interval) of oxid	dized to fresh dolomite carbonatite. Intervals up to 80 cm consist of rubble.
			MINERALIZATION	Туре	Value	Comments				
				Pyrite %	1.00	Oxidized to redd	ish brown; fine	e to medium grained		
			ALTERATION	Туре	Value	Comments				
				Calcite %	85.00					
				Oxidation %	5.00					
			STRUCTURE	Туре	Intens		CA°	Comments		
				Veining %	strong		80	Consists of white dolor	nite.	
				Laminations %	weak		20	Remanant fabric visible	e in fresh dolomite	
			MISCELLANEOUS	Zone	HCL	ĮA į	patite	Zircon	_	
				OX	S		7.5	0.1		

2010-014 Log by Ryan Kressall Date Hole ID

FROM 21.72	TO - 25.16	ROCK CODE	nIfCD	=	Min Style n	Fabric I	Texture f	Litho CD	Struct	
		MAIN COMMENTS	Light-grey to medium b	rown partially decal	cfied dolomite carbo	onatite. Around	40 % of rock is decalcified	d (no react with HCI). A	patite occurs weakly laminated. Zircon occurs disseminated throughout interval.	
		MINERALIZATION	Туре	Value	Comments					
			Pyrite %	1.00	Form oxidized red	ddish brown uno	riented aggregates			
		ALTERATION	Туре	Value	Comments					
			Oxidation %	10.00	Beige dolomite (r	ninor)				
			Calcite %	10.00	Laminated dark b	rown bands up	to 3 cm and few irregular	mottles		
		STRUCTURE	Туре	Intens	(CA°	Comments			
			Laminations %	moderate		15	Varies between 10 and 25	degrees		
		MISCELLANEOUS	Zone	HCL	Ар	atite	Zircon			
			OX	W		2.5	0.1			

2010-014 Log by Ryan Kressall Date Hole ID

FROM 25.16	-	TO 33.22	ROCK CODE	nlcCDz	=	Min Style n	Fabric I	Texture c	Litho CD	Struct z	
			MAIN COMMENTS					n light-grey dolomite carbo disseminated throughout		~ 10 % of interval in lamina	e less than 5 cm. ~3 cm displacement is observed along
			MINERALIZATION	Туре	Value	Comments					
				Pyrite %	0.75	Disseminated to	stringers of ox	kidized pyrite (reddish-bro	wn)		
			ALTERATION	Туре	Value	Comments					
				Oxidation %	30.00	beige dolomite					
				Calcite %	50.00	Dark grey (low ca	Icitization: We	eak reaction to HCI))to dar	rk brown (high calcitiza	tion: strong reaction to HCI) dolomite laminae
			STRUCTURE	Туре	Intens		CA°	Comments			
				Veining %	moderate		80	Dolomite (~ 1 cm thick)			
				Laminations %	strong		40	Mostly 40 but does occu	ur as low as 10 degrees.		
			MISCELLANEOUS	Zone	HCL	Ar	atite	Zircon			
				OX	M		2.5	0.1			
						I					

2010-014 Log by Ryan Kressall Date Hole ID

FROM 33.22	TO - 38.35	ROCK CODE	dmfCD	=	Min Style d	Fabric m	Texture f	Litho CD	Struct	
		MAIN COMMENTS	Mottled-massive to we Zircon occurs concentr			th minor decalcifica	ation. A few irregular "n	nottles" of fresh dolor	nite remain up to 5 cm diameter. Apatite occurs weakly laminated to veine	d.
		MINERALIZATION	Туре	Value	Comments					
			Niobates %	0.10	Suspect fersmite	e occurs dissemina	ted locally: dark grey fin	e-grained		
			Pyrite %	1.00	Disseminated fir	ne- to medium-gra	ined oxidized pyrite			
		ALTERATION	Туре	Value	Comments					
			Calcite %	50.00	Dark grey (weak	reaction to HCI) to	dark brown (strong read	tion to HCI) mottles		
			Oxidation %	20.00	Beige dolomite c	arbonatite "mottle	es"			
		STRUCTURE	Туре	Intens		CA° C	omments			
			Laminations %	very weak		20				
		MISCELLANEOUS	Zone	HCL	Ap	patite	Zircon			
			OX	М		5	0.5			

2010-014 Log by Ryan Kressall Date Hole ID

FROM 38.35	TO - 44.92	ROCK CODE	gICD	=	Min Style g	Fabric I	Texture c	Litho CD	Struct
		MAIN COMMENTS					s composed of magnetite out the interval and conce		pyrite (bottom 5 m of interval). Calcite occurs interstitial to magnetite. Apatite apatite cumulate
		MINERALIZATION	Туре	Value	Comments				
			Pyrite %	2.00	Occurs dissemin	ated, within inre	egular-shaped veins and a	s laminated aggregate	s up 8 cm with calcite matrix. Aggregates are likely after altered magnetite.
			Magnetite %	1.00	Medium-grained	d aggregated lam	ninae up to 4 cm with inte	rstial calcite and apati	te
			Niobates %	0.25	Fine-grained bla	ick columbite wit	th magnetite		
		ALTERATION	Туре	Value	Comments				
			Calcite %	65.00	Medium- to darl	k-brown (high ca	lcitization)/ dark grey (lov	v calcitization) follows	lamination
			Oxidation %	10.00	Beige dolomite t	typically occurs v	vith fresh light-grey dolor	nite	
		STRUCTURE	Туре	Intens		CA°	Comments		
			Veining %	weak		10	Low angle irregular dolor	nite veins	
			Laminations %	moderate		20			
		MISCELLANEOUS	Zone	HCL	A	patite	Zircon		
			OX	S		10	0.5		

2010-014 Log by Ryan Kressall Date Hole ID

FROM 44.92	TO - 48.17	ROCK CODE	glcCD	=	Min Style g	Fabric I	Texture c	Litho CD	Struct		
		MAIN COMMENTS	Calcitized dark-grey dolo throughout interval, but				e cumulate and dissemin	ated magnetite. Apa	tite occurs aggregated to moder	rately laminated. Zircon occurs disseminated	
		MINERALIZATION	Туре	Value	Comments						
			Magnetite %	10.00	Cumulated up t	to 25 cm and locally	disseminated in calcitize	ed dolomite carbonat	ite.		
			Pyrite %	1.25	Stringers and la	aminae of oxidized	pyrite follow lamination.				
			Niobates %	1.00	Fine-grained bl	ack columbite likel	y present with magnetite	e- cannot distinguish	from magnetite		
		ALTERATION	Туре	Value	Comments						
			Oxidation %	60.00	Rusty orange co	olor concentrated a	round magnetite				
			Calcite %	85.00	Dark-grey calcit	tization					
		STRUCTURE	Туре	Intens		CA° (Comments				
			Laminations %	weak		20					
			Veining %	moderate		75 C	Oxidized pyrite less than 1	I mm thick			
		MISCELLANEOUS	Zone	HCL	Δ	patite	Zircon				
			OX	S		10	0.5				
						'					

2010-014 Log by Ryan Kressall Date Hole ID

FROM 48.17	TO - 50.80	ROCK CODE	glcCDz	=	Min Style g	Fabric I	Texture c	Litho CD	Struct z	
		MAIN COMMENTS	Calcitized light-grey to throughout interval.	medium-brown lamir	nated dolomite cai	rbonatite. Oxidiz	ed fault show reverse fau	ılt displacement. Apa	tite occurs weakly to modera	ately laminated. Zircon occurs assocciated with apatite
		MINERALIZATION	Туре	Value	Comments					
			Pyrite %	1.00	Small stringers l	ess than 1 cm pa	rallel to fabric			
			Niobates %	0.10	Suspect yellowis	h to dark-grey fi	ne-grained fersmite occu	rs near cream coloure	d dolomite	
		ALTERATION	Туре	Value	Comments					
			Oxidation %	25.00	Beige coloured d	olomite and red	to black tarnish on pyrite			
			Calcite %	40.00	Dark grey (mode	rate calcitization) to dark brown (high cald	citization) laminae		
		STRUCTURE	Туре	Intens		CA°	Comments			
			Veining %	moderate		40	Crosscutting oxidation ve	eins		
			Laminations %	moderate		30	Varies between 25 and 4	O degrees		
		MISCELLANEOUS	Zone	HCL	Aŗ	patite	Zircon			
			OX	S		10	0.25			

2010-014 Log by Ryan Kressall Date Hole ID

FROM 50.80	T0 - 54.02	ROCK CODE	gICD	=	Min Style g	Fabric I	Texture c	Litho CD	Struct	
		MAIN COMMENTS							ate phase and calcite carbonatite with disseminated fine-grained magnetite interval. Zircon occurs locally concentrated with apatite and magnetite	
		MINERALIZATION	Туре	Value	Comments					
			Pyrite %	1.00	Disseminated fin	ie-grained oxidiz	zed pyrite			
			Niobates %	0.50	Black fine-graine	d colmbite likely	occurs with magnetite			
			Magnetite %	10.00	Mostly occurs as	medium-grainer	d aggregates but also occ	urs disseminated fine-	grained in calcite carbonatite	
		ALTERATION	Туре	Value	Comments					
		ALIERATION	Calcite %	85.00						
		STRUCTURE	Туре	Intens		CA°	Comments			
			Veining %	weak		40	Oxidized pyrite			
			Laminations %	weak		10				
		MISCELLANEOUS	Zone	HCL	Ар	patite	Zircon			
			OX	VS		12.5	0.25			

2010-014 Log by Ryan Kressall Date Hole ID

FROM 54.02	TO - 60.36	ROCK CODE	nlentcCD	=	Min Style n	Fabric lent	Texture c	Litho CD	Struct
		MAIN COMMENTS	Highly weathered (calcit interval.	ized to decalcified) n	nedium-grey to dark	-brown dolomi	te carbonatite. About 50 '	% of interval consits o	of rubble and loose rock fragments. Apatite occurs weakly laminated throughout
		MINERALIZATION	Туре	Value	Comments				
			Pyrite %		Fine-grained oxidiz	ed pyrite occu	r in unoriented clusters an	nd as thin laminae (< 1	cm)
		ALTERATION	Туре	Value	Comments				
			Calcite %	60.00	Reacts moderately	(dark-grey lan	ninae) to strongly (dark-br	own laminae) to HCI	
		STRUCTURE	Туре	Intens	CA	7 °	Comments		
			Laminations %	moderate	21	0	Some laminations have le	nticular appearance tl	hickening up to as much as 6 cm and then thinning out to less than 1 cm
		MISCELLANEOUS	Zone	HCL	Apat	tite	Zircon		
			OX	S	10)	0		

2010-014 Log by Ryan Kressall Date Hole ID

FROM 60.36	TO - 66.12	ROCK CODE	gmcCM	=	Min Style g	Fabric m	Texture c	Litho CM	Struct	
		MAIN COMMENTS	. 3	•				•	onatite has been mostly decalcified. About 40 % of interval has been eroded tigh concentration in both cumulate and dolomite carbonatite.	0
		MINERALIZATION	Туре	Value	Comments					
			Pyrite %	1.50	Disseminated and	stringers of pyri	te			
			Niobates %	2.50	Black fine-grained	columbite likely	occurs with magnetite	- difficult to differenti	ate from magnetite	
			Magnetite %	80.00	Cumulate with apa	atite				
		ALTERATION	Туре	Value	Comments					
			Oxidation %	40.00	Concentrated arou	ınd magnetite ir	itervals			
			Calcite %	20.00	Medium-brown do	lomite carbonat	ite intervals			
		STRUCTURE	Туре	Intens	C	A° (Comments			
			Laminations %	weak	1	10 C	Only visible in carbonatite	e phases		
		MISCELLANEOUS	Zone	HCL	Apa	itite	Zircon			
			OX	S	3	5	0.75			

2010-014 Log by Ryan Kressall Date Hole ID

FROM 66.12	TO - 72.17	ROCK CODE	nIfCD	=	Min Style n	Fabric I	Texture f	Litho CD	Struct		
		MAIN COMMENTS	Calcitized and decalcifie throughout interval. Ziro						n weathered (decalcification) to rubble. A	patite occurs weakly laminated	
		MINERALIZATION	Туре	Value	Comments						
			Pyrite %	1.50	Locally disseminated	d fine-grained o	oxidized pyrite				
		ALTERATION	Туре	Value	Comments						
			Calcite %	30.00	Dark brown laminae						
		STRUCTURE	Туре	Intens	CA	. C	omments				
			Laminations %	moderate	20						
				_			_				
		MISCELLANEOUS	Zone	HCL	Apati	te	Zircon				
				W	5		0.25				
						-					

2010-014 Log by Ryan Kressall Date Hole ID

FROM 72.17 -	TO 74.63	ROCK CODE	glcCD	=	Min Style g	Fabric I	Texture c	Litho CD	Struct		
		MAIN COMMENTS					ervals of magnetite-apa centrates in magnetite-a		0 cm thick composing 20 % of inter	val. Calcite occurs interstital to magnetite a	nd
		MINERALIZATION	Туре	Value	Comments						
			Niobates %	0.75	Fine-grained black	columbite likely	occurs with magnetite				
			Magnetite %	7.50	Aggregated with a	apatite in cumulat	e laminae; medium-grai	ned			
			Pyrite %	1.50	Oxidized pyrite occ	curs disseminated	l and as stringers though	nout interval.			
		ALTERATION	Туре	Value	Comments						
			Calcite %	30.00	Medium-brown la	minae					
			Oxidation %	40.00	Rusty orange colo	ur concentrated a	round magnetite.				
		STRUCTURE									
		MISCELLANEOUS	Zone	HCL	Apa	atite	Zircon				
			OX	S	1	15	0.25				

2010-014 Log by Ryan Kressall Date Hole ID

FROM 74.63	TO 79.27	ROCK CODE	ICD	=	Min Style	Fabric I	Texture c	Litho CD	Struct	
		MAIN COMMENTS	3 3 ,			•	n) of coarse grained to ine ughout interval. No obers	, ,	actured-weathered intervals are concentrated around oxidized pyrite intervals. ion.	
		MINERALIZATION	Туре	Value	Comments					
			Pyrite %	2.00	Fine-greind oxidiz	ed pyrite occurs o	disseminated, as stringer	s and as aggregated	aminae up to 3 cm thick.	
		ALTERATION	Туре	Value	Comments					
			Calcite %	60.00	Dark grey (low calc	itization: modera	ate HCI reaction) to dark I	brown (hogh calcitiza	tion: stronger HCl reaction)	
			Oxidation %	25.00	Beige carbonatite					
		STRUCTURE	Type	Intens	ر	A° C	omments			
		STRUCTURE	Laminations %	moderate		30	onnicites .			
			Laiiiiiatioiis /0	moderate	-	,,				
		MISCELLANEOUS	Zone	HCL	Apa	itite	Zircon			
			Н	S	1	0	0.1			

2010-014 Log by Ryan Kressall Date Hole ID

FROM 79.27	T0 - 86.42	ROCK CODE	bmCD	=	Min Style b	Fabric m	Texture c	Litho CD	Struct	
		MAIN COMMENTS	Calcitized to slightly dec within dolomite carbona					gularly spaced interva	s of magnetite-apatite cumulate (10 to 25 cm). Apatite occurs wea	akly laminated
		MINERALIZATION	Туре	Value	Comments					
			Niobates %	1.00	Fine-grained blac	k columbite likely	occurs with magnetite			
			Magnetite %	10.00	Medium-grained	: within cumulate	lamnae with apatite.			
			Pyrite %	1.00	Disseminated fin	e- to medium-gra	nined oxidized pyrite.			
		ALTERATION	Туре	Value	Comments					
			Oxidation %	30.00	Rusty orange con	ncentrated around	l magnetite intervals.			
			Calcite %	60.00	Dark grey (Low ca	alcitization: mode	rate reaction to HCI) to c	dark brown (high calcit	zation: strong reaction to HCI)	
		STRUCTURE	Туре	Intens		CA° (Comments			
			Laminations %	very weak		30				
			Veining %	weak		80 🛛	olomite ~ 1 cm thick			
		MISCELLANEOUS	Zone	HCL	Ар	atite	Zircon			
			OX	S		7.5	0.25			
			Calcite % Type Laminations % Veining % Zone	60.00 Intens very weak weak HCL	Dark grey (Low ca	CA° (30 80 Datite	rate reaction to HCI) to c Comments Colomite ~ 1 cm thick Zircon	dark brown (high calcit	zation: strong reaction to HCI)	

Log by	Ryan Kressall	Date	Hole ID	2010-014

FROM 86.42 -	TO - 91.54	ROCK CODE	nlcCD	=	Min Style n	Fabric I	Texture c	Litho CD	Struct		
		MAIN COMMENTS	Moderately calcitized lig	ght-grey to dark-brov	wn dolomite carbonatite	with no visible	e Nb mineralization. Ap	atite occurs weakly t	o moderately laminated. Zircon oc	curs disseminated throughou	ıt interval.
		MINERALIZATION	Туре	Value	Comments						
			Pyrite %	1.00	Oxidized fine- to medic	um-grained di	sseminated				
		ALTERATION	Туре	Value	Comments						
			Calcite %	40.00	Dark brown dolomite (r	reacts strongly	y to HCI)				
			Oxidation %	40.00	Beige dolomite						
		STRUCTURE									
		MISCELLANEOUS	Zone	HCL	Apatite		Zircon				
			OX	М	12.5		0				

End of Hole End of Hole

2010-015 Hole ID

GENERAL INFORMATION						
Coordinate System	Easting	Northing	Elevation	Collar Azimuth	Collar Dip	
ST. PL Nad 83	454350.86	6256555.97	1599.19	20.00	-55.00	
Start Depth	Final Depth	Proposed Depth	Final Length	Rig	Area	
0.00	215.85		215.85		Central 1	
Operator	Year					
Taseko	2010					

DRILLING BIT SIZE					
Bit Size	From	То	Length		
NW (Casing)	0.00	18.72	18.72		
NQ	18.72	215.85	215.85		

PROFESSIONAL / TECHNICIAN				
	Name	Start Date	End Date	
Collar Surveyor				
Geology Logged By	Ryan Kressall			
Specific Gravity By	Ryan Kressall			
Geotech Logged By	Steve Dumma	03/Aug/2010		
Drill Contractor		30/Jul/2010	01/Aug/2010	

SUMMARY

GEOLOGY LEGEND

Hole ID **2010-015**

ROCK CODE

MIN STYLE				
Abbr.	Description			
n	barren			
d	disseminated			
g	aggregated			
b	banded			

FABRIC				
Abbr.	Description			
Х	brecciated			
1	laminated			
f	decalcified			
٧	veined			
р	porphyritic			
m	massive			

	TEXTURE
Abbr.	Description
f	decalcified
р	porphyritic
V	veined

LITHO				
Abbr.	Description			
CASE	Casing			
OVBN	Overburden			
OXID	Oxide			
AM	Amphibolite			
CC	Calcite Carbonatite			
CD	Dolomite Carbonatite			
CCCD	Mixed Calcite and Dolomite Carbonatite			
AMX	Amphibole and Mixed Carbonatite			
CM	Carbonatite Cumulate			

	STRUCT
Abbr.	Description
Z	fault
е	strained
S	shear zone
У	dyke

MISCELLANEOUS:

ZONE				
Abbr.	Description			
OX	Oxide			
5	Supergene			
Н	Hypogene			

	HCL
Abbr.	Description
VW	very weak
W	weak
М	moderate
S	strong
VS	very strong

2010-015 Log by Ryan Kressall Date Hole ID

FROM 0.00	TO - 18.7	RULN LUDE	CASE	=	Min Style	Fabric Texture	Litho CASE	Struct		
		MAIN COMMEN	TS No rock							
		MINERALIZATI	ON							
		ALTERATION								
		STRUCTURE								
		MISCELLANEO	JS Zone	HCL	Apatite	Zircon				
FROM 18.72	T0 - 18.9	RULN LUDE	dmfgCD	=	Min Style d	Fabric Texture m fg	Litho CD	Struct		
		MAIN COMMEN	TS End of casing							
		MINERALIZATI	ON Type	Value	Comments					
			Pyrite %	15.00	Fine-grained dissemina	ated oxidized-pyrite				
			Niobates %	0.50		e-grained, yellowish to dark gr	ev			
						<u> </u>	•			
		ALTERATION		Value	Comments					
			Oxidation %	60.00	beige dolomite carbona					
			Calcite %	10.00	Calcitization of dolomi	te matrix				
		STRUCTURE								
		MISCELLANEO	JS Zone	HCL	Apatite	Zircon				
			OX	W	2.5	0.1				

Printed on 10/Feb/2011

OX

GEOLOGY LOG

М

Log by Ryan Kressall Date Hole ID **2010-015**

FROM Min Style Fabric Litho Struct TO Texture dlcCD **ROCK CODE** CD С 18.90 23.56 MAIN COMMENTS Decalcified to calcitized light-grey to dark brown dolomite carbonatite. Decalcification predominates in top meter (weak reaction to HCI), while calcitization increase downwards. Apatite occurs aggregated to weakly laminated. Zircon occurs concentrated in apatite aggregates with fersmite (?). **MINERALIZATION** Type Value Comments Pyrite % 1.75 Oxidized pyrite occurs aggregated to weakly laminated. Niobates % 0.25 Suspect dark-grey fine-grained fersmite occurs associated with zircon-rich apatite aggregates **ALTERATION** CA° Comments STRUCTURE Type Intens Laminations % 10 Generally low: varies between 0 and 20 degrees moderate HCL Zircon **MISCELLANEOUS** Zone **Apatite**

7.5

0.5

2010-015 Log by Ryan Kressall Date Hole ID

FROM 23.56	TO - 25.99	ROCK CODE	gmCD	=	Min Style g	Fabric m	Texture c	Litho CD	Struct				
		MAIN COMMENTS	Calcitized dolomite carl	oonatite with interva	als (10 to 25 cm) of ma	agnetite-apatite c	umulate and short into	ervals (~ 30 cm) of dec	calcification. Zircon centrates in cumula	ite phases.			
		MINERALIZATION	Туре	Value	Comments								
			Pyrite %	1.50	Oxidized aggregate less than 1 mm.								
			Magnetite %	15.00	Aggregated in cumulate phase with apatite: medium-grained								
			Niobates %	1.00	Black fine-grained columbite likely occurs within cumulate phase								
		ALTERATION	Туре	Value	Comments								
			Oxidation %	50.00	Concentrated around magnetite								
			Calcite %	30.00	Dark brown mottle	25							
		STRUCTURE											
		MISCELLANEOUS	Zone	HCL	Apa	tite	Zircon						
			OX	М	12	.5	0.5						

2010-015 Log by Ryan Kressall Date Hole ID

FROM 25.99 -	TO 27.71	ROCK CODE	glfgCD	=	Min Style g	Fabric I	Texture fg	Litho CD	Struct
		MAIN COMMENTS	Slightly calcitized dolor	nite carbonatite. Apa	atite occurs weakly t	o moderately lam	nated. Zircon concentra	ates with apatite.	
		MINERALIZATION	Туре	Value	Comments				
			Magnetite %	2.50	Thin laminae and	5 cm irregular agg	regate of massive magr	netite(xenolith?)	
			Niobates %	0.10	Fine-grained dark	-grey suspect fers	mite occurs associated	with apatite and zirco	on.
			Pyrite %	1.00	Thin stringers (< 0).5 mm)			
		ALTERATION	Туре	Value	Comments				
			Calcite %	10.00	Small medium- to	dark-brown lamii	пае		
			Oxidation %	30.00	Beige dolomite ca	rbonatite			
		STRUCTURE							
		MISCELLANEOUS	Zone	HCL	Apa	atite	Zircon		
			OX	W		5	0.1		

2010-015 Log by Ryan Kressall Date Hole ID

FROM 27.71	TO - 30.95	ROCK CODE	glCCCD	=	Min Style g	Fabric I	Texture c	Litho CCCD	Struct	
		MAIN COMMENTS	Dolomite carbonatite wo					umulate and calcite ca	arbonatite. Thin laminae of apatite occur within dolomite carbonatite. Zircon	
		MINERALIZATION	Туре	Value	Comments					
			Pyrite %	1.00	Thin stringers (< 0	0.5 mm) of oxidiz	ed pyrite			
			Niobates %	2.00	Fine-grained black	k columbite likely	occurs with magnetite.			
			Magnetite %	40.00	Medium grained r	magnetite concen	ntrated within cumulate	phase		
		ALTERATION	Туре	Value	Comments					1
			Oxidation %	60.00	Beige dolomite an	nd rusty orange o	xidation of magnetite ar	nd pyrite		
			Calcite %	20.00	Dark-brown lamin	nae				
		STRUCTURE	Туре	Intens		CA° C	Comments			
			Laminations %	moderate	ate 10 Visible only within dolomite carbonatite					
		MISCELLANEOUS	Zone	HCL	Ара	atite	Zircon			
			OX	M	17	2.5	0.25			

2010-015 Log by Ryan Kressall Date Hole ID

FROM 30.95	-	TO 35.15	ROCK CODE	ICD	=	Min Style	Fabric I	Texture c	Litho CD	Struct						
			MAIN COMMENTS	Moderately calcitized lig locally.	ht-grey to dark-bro	wn dolomite carbonat	ite. Apatite o	ccurs aggregated to weakly	/ laminated. Zircon oc	curs association with apatite. Phenocryst	s of altered phlogopite concentrate					
			MINERALIZATION	Туре	Value	Comments										
				Pyrite %	1.50	Disseminated irregu	Disseminated irregular aggregates of oxidized pyrite up to 2 cm in diameter.									
			ALTERATION	Туре	Value	Comments	Comments									
				Calcite %	30.00	Dark-brown lamina	Dark-brown laminae									
				Oxidation %	30.00	Beige dolomite	Beige dolomite									
			STRUCTURE	Туре	Intens	CA	•	Comments								
				Laminations %	weak	25		Slight localized crenulation	15							
			MISCELLANEOUS	Zone	HCL	Apat	ite	Zircon								
			MISCELLARES	OX	M	7.5		0.1								
FROM 35.15	-	TO 35.55	ROCK CODE	gmCM	=	Min Style g	Fabric m	Texture	Litho CM	Struct						
			MAIN COMMENTS	Cumalte unit composed	of magnetite, apat	ite and phlogopite wit	h interstial ar	nd associated laminae of ca	alcite.							
			MINERALIZATION	Туре	Value	Comments										
				Magnetite %	70.00	Medium grained ma	sive magneti	te								
				Niobates %	2.50	Fine-grained black (olumbite like	ly occurs with magnetite.								
			ALTERATION	Туре	Value	Comments										
				Oxidation %	70.00	Rusty orange interstital to magnetite										
			STRUCTURE													
			MISCELLANEOUS	Zone	HCL	Apat	ito	Zircon								
			MISCELLANEOUS	20110	TICE	- Арис	116	ZIICOII								

Printed on 10/Feb/2011

2010-015 Log by Ryan Kressall Date Hole ID

FROM 35.55	T (- 42.	ROCK CODE	nlfCD	=	Min Style n	Fabric I	Texture f	Litho CD	Struct				
		MAIN COMMENTS	Calcitized to decalcified interval.	light-grey dolomite	carbonatite. Calcitiz	zed decrease d	own interval and decalcifica	tion increases down in	terval. Apatite occurs weakly laminated. Zircon occurs disseminated throug	ghout			
		MINERALIZATION	Туре	Value	Comments								
			Pyrite %	1.00	Disseminated fine	e-grained oxidi	zed pyrite.						
		ALTERATION	Type	Type Value Comments									
		7.2.12.0.1.0.1.	Oxidation %	50.00	Beige dolomite								
			Calcite % 10.00 Dark-brown dolomite carbonatite in top 30 cm of interval.										
		STRUCTURE	Type	Intens		CA°	Comments						
		SIRUCIURE	Laminations %	moderate		30	Comments						
					I								
		MISCELLANEOUS	Zone OX	HCL W		atite	Zircon 0.1						
			UX	VV		5	U.I						
FROM 42.43	T (- 46.	ROCK CODE	nmfCD	=	Min Style n	Fabric m	Texture f	Litho CD	Struct				
		MAIN COMMENTS	Decalcified dolomite ca	bonatite. Rubble co	mposes 50 % of inte	erval. Pitted d	ecalcified carbonatite comp	oses remaining 50 %. I	Fine-grained apatite occurs disseminated throughout interval.				
		MINERALIZATION	Туре	Value	Comments								
			Pyrite %	0.75	Disseminated fine	e-grained oxidi	zed pyrite.						
		ALTERATION	Type	Value	Comments								
			Calcite %	5.00	Uncommon dark-	brown mottle							
		STRUCTURE											
		MISCELLANEOUS	Zone	HCL	Ара	atite	Zircon						
			OX	W		2.5	0						

Printed on 10/Feb/2011

2010-015 Log by Ryan Kressall Date Hole ID

ROCK CODE	mCD	=	•	bric Texture m c	Litho CD	Struct		
MAIN COMMENTS	Moderately calcitized mottled	l light-grey to d	ark-brown dolomite carbon	natite. ~ 50 % of interval cor	nsists of fragmented rocks. A	Apatite occurs weakly laminated. Zi	ircon occurs associated with apatite.	
MINERALIZATION	Туре	Value	Comments					
	Pyrite %	1.00	Thin (< 1 mm) stringers of	f oxidized pyrite.				
	Niobates %	0.10	Suspect dark-grey fine-gr	ained fersmite occurs assoc	iated with apatite and zirco	n.		
ALTERATION	Type	Value	Comments					
	Oxidation %	40.00	Beige to pink dolomite					
	Calcite %	40.00	Dark-brown mottles conce	entrates along fractures.				
STRUCTURE	Туре	Intens	CA°	Comments				
	Veining %	moderate	80	dolomite in-filled fra	acture			
	Laminations %	weak	20	weak lamination vis	weak lamination visible in small intervals: varies between 10 and 20 degrees			
MISCELLANEOUS	Zone	HCL	Apatite	Zircon				
	OX	М	5	0.1				
ALTERATION	Pyrite % Niobates % Type Oxidation % Calcite % Type Veining % Laminations % Zone	1.00 0.10 Value 40.00 40.00 Intens moderate weak HCL	CA° 80 Suspect dark-grey fine-gr. Comments Beige to pink dolomite CA° 80 20	entrates along fractures. Comments dolomite in-filled fra weak lamination vis Zircon	octure			

2010-015 Log by Ryan Kressall Date Hole ID

FROM 52.56	FO 3.45	ROCK CODE	glfgCD	=	Min Style g	Fabric I	Texture fg	Litho CD	Struct			
		MAIN COMMENTS					citization. A interval of in pite occurs at 53.2 to 53.4			7.9 to 58.3 m but generally the in	terval is fine-	
		MINERALIZATION	Туре	Value	Comments							
			Niobates %	0.50	Potential black f	ine-grained colu	olumbite in "dolomitized mgt-apt cumulate"					
			Pyrite %	1.00	Oxidized pyrite s	stringers (< 1 mr	m)					
		ALTERATION	Type Value Comments									
			Oxidation %	40.00	Beige dolomite							
			Calcite %	2.50	Uncommon dark	Uncommon dark brown mottles						
		STRUCTURE	Туре	Intens		CA°	Comments					
			Laminations %	moderate	!	30	Not visible in inequigran	ular and "dolomitized	mgt-apt cumulate"			
				_								
		MISCELLANEOUS	Zone	HCL	A	patite	Zircon					
			OX	W								

2010-015 Log by Ryan Kressall Date Hole ID

FROM 58.45	TO - 66.88	ROCK CODE	glfgCD	=	Min Style g	Fabric I	Texture fg	Litho CD	Struct	
		MAIN COMMENTS	Weakly laminated to mo altered phlogopite occur			bonatite. Apatite	e occurs aggregated to mo	oderately laminated. Z	ircon occurs associated with apatite aggregates and laminae. Phenocrysts of	
		MINERALIZATION	Туре	Value	Comments					
			Niobates %	0.10	Fine-grained yel	lowish to dark gre	ey fersmite occurs locally	disseminated within a	patite aggregates with zircon.	
			Magnetite %	0.50	Rare clusters of	fine-grained mag	netite.			
			Pyrite %	1.00	Stringers of oxid	lized pyrite (< 0.5	5 mm)			
		ALTERATION	Туре	Value	Comments					
			Oxidation %	30.00	Beige dolomite					
			Calcite %	15.00	Dark brown lami	nae and mottles				
		STRUCTURE	Туре	Intens		CA°	Comments			
			Veining %	moderate	!	40	Pyrite(?) - veins are sour	ce of high oxidation		
			Laminations %	weak		30				
		MISCELLANEOUS	Zone	HCL	Aı	patite	Zircon			
			OX	W		10	0.1			

2010-015 Log by Ryan Kressall Date Hole ID

FROM 66.88	TO - 68.64	ROCK CODE	dICCCD	=	Min Style d	Fabric I	Texture fg	Litho CCCD	Struct	
		MAIN COMMENTS	•	_				•	te contain accessory altered phlogopite, magnetite and nite carbonatite. Zircon occurs locally concentrated wit	
		MINERALIZATION	Туре	Value	Comments					
			Niobates %	0.50	Pink pyrochlore o	ccurs disseminat	ed within calcite carbonat	tite.		
		ALTERATION	Туре	Value	Comments					
			Calcite %	30.00	Calcite carbonati	te laminae				
			Oxidation %	60.00	Beige dolomite					
		STRUCTURE	Туре	Intens	-	CA° (Comments			
			Laminations %	moderate	!	30				
		MISCELLANEOUS	Zone	HCL	Ар	atite	Zircon			
			OX	S		5	0.25			

2010-015 Log by Ryan Kressall Date Hole ID

strongly in calcite rock). Apatite

2010-015 Log by Ryan Kressall Date Hole ID

FROM 71.10	TO - 73.46	ROCK CODE	dlfgCC	=	Min Style d	Fabric I	Texture fg	Litho CC	Struct	
		MAIN COMMENTS	Beige to white calcite c	arbonatite laminated	l with mottled light-grey	to beige dolomi	te carbonatite. Apat	tite occurs aggregated t	to weakly laminated Zircon occurs disseminated throughout interval.	
		MINERALIZATION	Туре	Value	Comments					
			Pyrite %	1.50	Oxidized pyrite occurs disseminations	as 1 cm aggrega	tes and as laminae u	ıp to 3 cm thick in doloı	mite carbonaite. In calcite carbonatite, oxidized pyrite occurs as fine-grained	
			Niobates %	0.75	Fine-grained pinkish b	rown pyrochlore	occurs disseminate	d in calcite carbonatite		
			Magnetite %	1.50	Fine-grained dissemin	ated magnetite	in calcite carbonatit	e		
		ALTERATION	Туре	Value	Comments					
			Calcite %	50.00	Calcite carbonatite lam	ninae				
			Oxidation %	30.00	Beige dolomite					
		STRUCTURE	Туре	Intens	CA°	Com	ments			
			Laminations %	weak	30					
		MISCELLANEOUS	Zone	HCL	Apatite	•	Zircon			
			OX	S	7.5		0.1			

2010-015 Log by Ryan Kressall Date Hole ID

FROM 73.46	TO - 75.62	ROCK CODE	dICC	=	Min Style d	Fabric I	Texture p	Litho CC	Struct	
		MAIN COMMENTS	White calcite carbonati	te with microphenoc	rysts of magnetite.	A small interval (~15 cm) of beige oxidize	ed dolomite carbonatit	e occurs in the middle of the interval. Apatite occurs as thick (5 to 10 cm) laminae.	
		MINERALIZATION	Туре	Value	Comments					
			Pyrite %	1.00	Fine-grained oxid	dized pyrite occurs	disseminated in calcite	e carbonatite. In the do	olomite carbonatite, oxidized pyrite forms aggregates up to 2 cm.	
			Magnetite %	2.00	Fine-grained diss	seminated magne	tite in calcite carbonatit	te		
			Niobates %	1.50	Fine-grained pinl	kish brown pyroch	lore occurs disseminate	ed in calcite carbonatit	е	
		ALTERATION	Туре	Value	Comments					
			Oxidation %	10.00	Beige dolomite					
		STRUCTURE	Туре	Intens		CA° C	omments			
			Laminations %	strong		40				
		MISCELLANEOUS	Zone	HCL	Ар	atite	Zircon			
			OX	VS		7.5	0			

2010-015 Log by Ryan Kressall Date Hole ID

FROM 75.62	TO - 79.63	ROCK CODE	dlfgCC	=	Min Style d	Fabric I	Texture fg	Litho CC	Struct	
		MAIN COMMENTS	White to beige partiall the bottom of the inte					slight decalcification.	Apatite occurs strongly laminated. Dolom	ite carbonatite starts to occur towards
		MINERALIZATION	Туре	Value	Comments					
			Pyrite %	1.00	Thin (< 0.5 mm) I	aminae of oxidize	d pyrite			
			Magnetite %	1.00	Fine-grained occu	urs disseminated v	within calcite carbonatit	e and in small (~5 cm)	clusters	
		ALTERATION	Туре	Value	Comments					
			Oxidation %	50.00	Beige calcite					
			Calcite %	10.00	Bands of dark-bro	own calcitization				
		STRUCTURE	Туре	Intens	(CA° C	omments			
			Laminations %	strong		30				
					,					
		MISCELLANEOUS	Zone	HCL	Ар	atite	Zircon			
			OX	VS		7.5	0.1			

2010-015 Log by Ryan Kressall Date Hole ID

FROM 79.63	TO 98.61	ROCK CODE	blfgCD	=	Min Style b	Fabric I	Texture fg	Litho CD	Struct	
		MAIN COMMENTS							ly the dolomite carbonatite has a fine- to medium-grained inequigranular textre ntrates within stronger apatite laminations	
		MINERALIZATION	Туре	Value	Comments					
			Pyrite %	2.00	Oxidized pyrite	occurs dissemina	ted, veined, laminated an	d as stringers; Fresh p	yrite occurs locally disseminated	
			Niobates %	0.10	Localized dark	grey likely fersmit	e - no red streak			
		ALTERATION	Туре	Value	Comments					
			Oxidation %	60.00	Beige dolomite	; follows lamination	on			
			Calcite %	5.00	Dark-brown m	ottles				
		STRUCTURE	Туре	Intens		CA°	Comments			
			Laminations %	moderate		30				
			Veining %	weak		60	Oxidized pyrite vein (~ 1 r	nm thick)		
		MISCELLANEOUS	Zone	HCL		Apatite	Zircon			
			OX	W		2.5	0.25			

2010-015 Log by Ryan Kressall Date Hole ID

FROM 98.61	TO - 100.15	ROCK CODE	nmiCD	=	Min Style n	Fabric m	Texture i	Litho CD	Struct
		MAIN COMMENTS	Dominantly fine- to me Apatite occurs oriented			carbonatite with s	small (<5cm) laminatior	s of fine-grained equig	ranular and porphyritic (phenocrysts = altered phlogopite?) dolomite carbonati
		MINERALIZATION	Туре	Value	Comments				
			Pyrite %	1.00	Oxidized aggreg	ates of pyrite			
		ALTERATION	Туре	Value	Comments				
			Oxidation %	20.00	Beige fine-grain	ed dolomite inters	stitial to medium-graine	d white dolomite.	
			Calcite %	2.50	Uncommon dark	c-brown calcitizati	ion		
		STRUCTURE							
		MISCELLANEOUS	Zone	HCL	A	patite	Zircon		
			OX	VW		5	0		
FROM 100.15	TO - 101.91	ROCK CODE	blpCD	=	Min Style b	Fabric I	Texture p	Litho CD	Struct
		MAIN COMMENTS							es compose ~2.5 vol. % of rock. A 5 cm laminae enriched in altered magnetite (?) moderately laminated. Zircon also occurs disseminated throughout interval.
		MAIN COMMENTS MINERALIZATION							
			and phlogopite occurs v	within top 20 cm of i	Comments	tial fersmite grain		f zircon. Apatite occurs	
			and phlogopite occurs v	within top 20 cm of i	Comments Fine-grained da	tial fersmite grain	s and high abundancy o	f zircon. Apatite occurs	
			Type Niobates %	within top 20 cm of i Value 0.50	Comments Fine-grained da	tial fersmite grain	s and high abundancy o	f zircon. Apatite occurs	
		MINERALIZATION	Type Niobates % Pyrite %	Within top 20 cm of i Value 0.50 1.00	Comments Fine-grained da Disseminated ar Comments	tial fersmite grain	es and high abundancy o ccurs with altered pheno e-grained oxidized pyrite	f zircon. Apatite occurs	
		MINERALIZATION	Type Niobates % Pyrite % Type	Value 0.50 1.00 Value	Comments Fine-grained da Disseminated ar Comments	tial fersmite grain rk-grey fersmite or <mark>nd stringers of fine</mark>	es and high abundancy o ccurs with altered pheno e-grained oxidized pyrite	f zircon. Apatite occurs	
		MINERALIZATION ALTERATION	Type Niobates % Pyrite % Type	Value 0.50 1.00 Value	Comments Fine-grained dat Disseminated ar Comments Beige dolomite s	tial fersmite grain rk-grey fersmite or <mark>nd stringers of fine</mark>	es and high abundancy o ccurs with altered pheno e-grained oxidized pyrite	f zircon. Apatite occurs	

Log by Ryan Kressall Date Hole ID **2010-015**

Min Style Litho **FROM** TO Fabric Texture Struct mCD **ROCK CODE** CD m 101.91 107.58 MAIN COMMENTS Weathered (oxidized and calcitized) light-grey dolomite carbonation. Interval is locally inequigranular with medium-grained grains being fresh white colour and interstital fine-grained matrix being medium-to dark brown (oxidized and/or calcitized) Slight decalcification has occurs of some calcitized dolomite carbonatite has occurred. Apatite occurs oriented to weakly laminated. Zircon occurs disseminated throughout interval but concentrates with apatite in some areas but with no visibly obvious Nb mineralization. Value Comments **MINERALIZATION** Type Pyrite % 0.50 Oxidized pyrite up to 1 mm disseminated throughout interval Niobates % Likely present in low concentration with zircon and apatite. **ALTERATION** Type Value Comments Oxidation % 40.00 Beige dolomite Calcite % 40.00 Dark grey (low calcitization:moderate reaction to HCI) to dark-brown (high calcitization: strong reaction to HCI)

STRUCTURE

MISCELLANEOUS	Zone	HCL	Apatite	Zircon	
	OX	W	10	5	

2010-015 Log by Ryan Kressall Date Hole ID

FROM 107.58	TO - 111.32	ROCK CODE	nmfgCD	=	Min Style n	Fabric m	Texture fg	Litho CD	Struct	
		MAIN COMMENTS	Massive to weakly lam laminated. Zircon occu			oxidized to beige.	Oxidiation and calcitiza	tion along grains bound	daries gives rock vein-like appearance	Apatite occurs aggregate to weakly
		MINERALIZATION	Туре	Value	Comments					
			Pyrite %	2.50	Disseminated fir	negrained oxidiz	zed pyrite			
		ALTERATION	Туре	Value	Comments					
			Oxidation %	50.00	Beige dolomite					
			Calcite %	10.00	Dark-brown mot	tles of calcitization	on			
		STRUCTURE								
		MISCELLANEOUS	Zone	HCL	A	patite	Zircon			
			OX	W		15	0.1			
FROM 111.32	TO - 116.13	ROCK CODE	nmiCD	=	Min Style n	Fabric m	Texture i	Litho CD	Struct	
		MAIN COMMENTS	Slightly oxidized fine- occurs fine- to mediun	to medium-grained o grained dissemina	inequigranular light ed throughout inte	-grey dolomite ca rval	rbonatite. Oxidation giv	ves carbonatite beige co	olour. Apatite occurs aggregated with	pseudomorphs to weakly laminated. Zircon
		MINERALIZATION	Туре	Value	Comments					
			Pyrite %	1.00	1	n grained oxidized	pyrite. Larger grains ha	ave fresh cores		
		ALTERATION	Туре	Value	Comments					
		ALIERATION	Oxidation %	45.00	Beige dolomite					
		STRUCTURE								
		STRUCTURE MISCELLANEOUS	Zone	HCL	A	patite	Zircon			

2010-015 Log by Ryan Kressall Date Hole ID

FROM 116.13	TO - 119.62	ROCK CODE	bmpCD	=	Min Style b	Fabric m	Texture p	Litho CD	Struct		
		MAIN COMMENTS	Light- to medium grey pseudomorphs to weak					tion. Pseuodomorphs o	occur with and are often rimme	ed by fresh pyrite. Apatite occurs aggree	gated with
		MINERALIZATION	Туре	Value	Comments						
			Niobates %	0.50	Suspect fine-grain	ned dark-grey fer	smite locally concentra	ted (+ possible fresh co	lumbite)		
			Pyrite %	7.50	Abundant around	pseudomorphs					
		ALTERATION	Туре	Value	Comments						
			Oxidation %	20.00	Beige dolomite						
		STRUCTURE	Туре	Intens		A° C	omments				
			Veining %	strong		70 D	olomite ~ 1 cm thick ve	ins			
		MISCELLANEOUS	Zone	HCL	Ара	atite	Zircon				
			OX	VW	12	2.5	0.5				

2010-015 Log by Ryan Kressall Date Hole ID

FROM 119.62	TO - 126.07	ROCK CODE	dmpCCCD	=	. '	bric Tex	ture p	Litho CCCD	Struct	
		MAIN COMMENTS	phenocrysts of altered Zircon occurs dissemina	phlogopite (~ 10 vol. ' ated throughout inte nated magnetite in ca	% of unit) Apatite appears t rval.	to occur interstial with	calcite to	magnetite within calci	to black phlogopite (plus likely colmbite). Dolomite carbonatite contain re carbonatite. Within dolomite carbonatite, apatite occurs weakly lami ed magnetite. Medium-grained magnetite concentrates along contact l	inated.
		MINERALIZATION	Туре	Value	Comments					
			Niobates %	1.50	Most likely dominantly co	olumbite in calcite carb	onatite (bl	lack fine-grained); fine	grained pink pyrochlore is also visible in calcite carbonatite at lower gra	de.
			Pyrite %	0.50	Locally disseminated fine	-grained oxidized pyri	te			
			Magnetite %	20.00	Occur very fine- to mediur	m grained disseminat	ed within c	alcite carbonatite		
		ALTERATION	Туре	Value	Comments					
			Oxidation %	25.00	Beige dolomite carbonatit	te				
		STRUCTURE								
		MISCELLANEOUS	Zone	HCL	Apatite	Zircor	1			
			OX	M	20	0.75				

2010-015 Log by Ryan Kressall Date Hole ID

FROM 126.07	TO - 129.40	ROCK CODE	blfCM	=	Min Style b	Fabric I	Texture f	Litho CM	Struct	
		MAIN COMMENTS					atite cumulate phases. Mi 1) Zircon occurs dissemina		erstital to magnetite and apatite and as thin laminae. val.	. Dolomite carbonatite is
		MINERALIZATION	Туре	Value	Comments					
			Pyrite %	1.50	Oxidized pyrite stri	ingers and aggre	egates up to 2 cm in diam	eter		
			Magnetite %	20.00	Medium-grained m	nagnetite aggreg	gated in cumulate phase v	with apatite.		
			Niobates %	1.00	Likely fine-grained	black columbite	e with magnetite			
		ALTERATION	Туре	Value	Comments					
			Calcite %	5.00	Dark brown mottle	!S				
			Oxidation %	50.00	Beige dolomite and	d rusty orange m	nagneite-apatite cumulat	e		
		STRUCTURE	Туре	Intens	C	A° C	Comments			
			Laminations %	weak	2	25				
		MISCELLANEOUS	Zone	HCL	Apa	tite	Zircon			
			OX	М	1!	5	0.5			

2010-015 Log by Ryan Kressall Date Hole ID

ROM 29.40 -	TO - 138.05	ROCK CODE	nliCD	=	Min Style n	Fabric I	Texture i	Litho CD	Struct		
		MAIN COMMENTS	Light-grey to beige ine Apatite occurs oriente	equigranular fine- to d to weakly laminate	medium-grained ed. Zircon occurs o	dolomite carbona lisseminated thro	tite with intervals of fine- ughout with few clusters o	grained equigranular occuring with apatite	dolomite carbonatite. Interva aggregates.	contains localized altered phlogopite phe	enocrysts
		MINERALIZATION	Туре	Value	Comments						
			Pyrite %	1.50	Fresh to oxidiz	zed aggregates an	d stringer. Towards bottor	m of interval, pyrite is	more fresh		
		ALTERATION	Type	Value	Comments						
		ALTERATION	Type Calcite %	2.50	Dark-brown m	ottles					
			Oxidation %	50.00		dolomite plus oxid	lized pyrite				
					, ,	,	. ,				
		STRUCTURE									
		MISCELLANEOUS	Zone	HCL	ı	Apatite	Zircon				
				W		7.5	0.1				
FROM 38.05 -	T0 - 140.80	ROCK CODE	nmCD	=	Min Style n	Fabric m	Texture p	Litho CD	Struct		
		MAIN COMMENTS	corase grained aggreg	ates of phlogopite ar	nd altered magnet	tite (?) in massive	dolomite carbonatite				
		MINERALIZATION	Type	Value	Comments						
			Pyrite %	1.50							
			Magnetite %	1.00	Magnetite alte	ered to pyrite and	phologpite				
			Niobates %	0.10	Possible colun	nbite in zones of a	altered magentite and phlo	ogopite			
		ALTERATION									
		STRUCTURE									
		MISCELLANEOUS	Zone	HCL		Apatite	Zircon				

0.5

Printed on 10/Feb/2011 Measurement unit: Metres (Unless otherwise specified)

VW

Log by Ryan Kressall Date Hole ID

Litho **FROM** TO Min Style Fabric Texture Struct dmCC **ROCK CODE** m CC 140.80 141.53 MAIN COMMENTS Massive calcite carbonatite with aggregates of magnetite and altered phlogopite - possible columbite. Apatite occurs aggregated. Zircon occurs disseminated throughout interval. **MINERALIZATION** Type Value Comments Magnetite % 4.00 Very-fine grained to medium-grained disseminated magnetite Niobates % 0.50 Likely fine-grained columbite **ALTERATION** STRUCTURE HCL Zircon **MISCELLANEOUS** Zone **Apatite** Н S 15 0.1 Min Style Fabric Texture Litho Struct **FROM** TO **ROCK CODE** gxfgAMX fg AMX 141.53 148.20 MAIN COMMENTS Large fenite xenoliths within dolomite carbonatite with calcite occurs disseminated within fenite. Apatite occurs locally dissemnated within dolomite carbonatite. Zircon occurs disseminated within dolomitized fenite. **MINERALIZATION** Type Value Comments Niobates % 0.20 Fine- to medium-grained pinkish brown pyrochlore near fenite contact Pyrite % 0.50 Fresh fine-grained disseminated pyrite **ALTERATION** Type Value Comments Dolomite % 20.00 Dolomitization of fenite STRUCTURE **MISCELLANEOUS** HCL Zircon Zone **Apatite** Н W 2.5 0.25

Printed on 10/Feb/2011

Measurement unit: Metres (Unless otherwise specified)

Page 26

2010-015

Log by Ryan Kressall Date Hole ID **2010-015**

FROM Min Style Fabric Litho Struct TO Texture nlfgCD **ROCK CODE** CDfg 148.20 155.42 MAIN COMMENTS Weakly laminated light- to medium-grey dolomite carbonatite. Apatite defines mineral fabric as weak to moderate laminations **MINERALIZATION** Type Value Comments Pyrite % 1.00 Irregualar aggregates **ALTERATION** STRUCTURE HCL Zircon **MISCELLANEOUS** Zone **Apatite** VW Н 12.5 0.1 Min Style Fabric Litho Struct Texture **FROM** TO **ROCK CODE** mCD CD 155.42 164.41 MAIN COMMENTS Porphyritic to locally inequigranular light grey dolomite carbonatite. Very weakly laminated to aggregated apatite. Type Value Comments **MINERALIZATION** Niobates % 0.20 possible columbite with phlogopite phenocrysts Pyrite % 1.00 fine to medium grained aggregated **ALTERATION** STRUCTURE **MISCELLANEOUS** HCL Zircon Zone **Apatite**

10

0.1

Printed on 10/Feb/2011 Measurement unit: Metres (Unless otherwise specified)

Н

VW

2010-015 Log by Ryan Kressall Date Hole ID

Litho **FROM** TO Min Style Fabric Texture Struct **ROCK CODE** nmiCD CD m 177.90 164.41 MAIN COMMENTS Light- to dark-grey inequigranular to locally porphyritic dolomite carbonatite. Apatite occurs aggregated to weakly laminated. Zircon occurs disseminated throughout interval and concentrates with apatite. Potential Nb mineralization based on phenocrysts and zircon content but none observed. **MINERALIZATION** Type Value Comments Pyrite % 0.50 Aggregated fine- to medium-grained fresh pyrite **ALTERATION** STRUCTURE HCL **MISCELLANEOUS** Zone **Apatite** Zircon

FROM TO 177.90 186.62

Printed on 10/Feb/2011

ROCK CODE

nmiCD

Н

Min Style

VW

Fabric

10

Texture

0.5

Litho

CD

Struct

MAIN COMMENTS Mottled-massive light- to dark-grey dolomite carbonatite with a few altered phlogopite phenocrysts (less than 1 vol. % of interval). Apatite occurs aggregated to weakly laminated. Zircon occurs disseminated throughout interval.

MINERALIZATION

Pyrite %

Value Comments

Fresh locally disseminated fine-grained pyrite

ALTERATION

STRUCTURE

MISCELLANEOUS

Zone Н

Type

HCL VW

0.50

Apatite 5

Zircon 0.1

Measurement unit: Metres (Unless otherwise specified)

2010-015 Log by Ryan Kressall Date Hole ID

FROM 186.62 -	TO 201.02	ROCK CODE	птрСD	=	Min Style n	Fabric m	Texture p	Litho CD	Struct	
		MAIN COMMENTS	Mottled-massive light-	to dark-grey inequig	ranular to porphy	yritic dolomite ca	irbonatite.			
		MINERALIZATION	Туре	Value	Comments					
		ALTERATION	Pyrite %	0.70	disseminated a	nd veined fresh	pyrite			
		STRUCTURE	Туре	Intens		CA°	Comments			
		MISCELLANEOUS	Veining % Zone	moderate HCL	A	35 patite	Zircon			
			Н	VW		5	0.1			
FROM 201.02 -	TO 215.85	ROCK CODE	nmCD	=	Min Style n	Fabric m	Texture i	Litho CD	Struct	
		MAIN COMMENTS	Fine- to medium-graine occurs disseminated th	ed inequigranular ligh roughout interval.	t- to medium-gr	ained dolomite v	vith localized altered phlo	gopite phenocrysts Ap	natite occurs aggregate to weakly laminated. Fine- to medium grained zircon	
		MINERALIZATION	Туре	Value	Comments					
			Pyrite %	0.50	Disseminated f	ine-grained pyrit	e and aggregates up to 2.	5 cm.		
		ALTERATION								
		STRUCTURE								
		MISCELLANEOUS	Zone	HCL	Α	patite	Zircon			
			Н	VW		10	0.3			

End of Hole End of Hole

Hole ID	2010-016
---------	----------

	GENERAL INFORMATION							
Coordinate System	Easting	Northing	Elevation	Collar Azimuth	Collar Dip			
ST. PL Nad 83	454525.45	6256609.67	1653.28	20.00	-55.00			
Start Depth	Final Depth	Proposed Depth	Final Length	Rig	Area			
0.00	147.86		147.86		Central 2			
Operator	Year							
Taseko	2010							

PROFESSIONAL / TECHNICIAN

	Name	Start Date	End Date
Collar Surveyor		29/Aug/2010	
Geology Logged By	Ryan Kressall		
Specific Gravity By	Steve Dumma		
Geotech Logged By		05/Aug/2010	
Drill Contractor		01/Aug/2010	03/Aug/2010

	IRY

DRILLING BIT SIZE						
Bit Size	From	То	Length			
NW (Casing)	0.00	6.09	6.09			
NQ	6.09	147.86	147.86			

DOWN HOLE SURVEY								
Depth	Azimuth	Dip	Temp °C	Mag.	Roll	Method		
17.68	23.50	-55.20	12.2	5825	151.2	Reflex EZ-shot		
48.16	23.50	-54.80	11.0	5641	270.2	Reflex EZ-shot		
78.64	24.00	-54.90	9.2	5691	92.0	Reflex EZ-shot		

GEOLOGY LEGEND

Hole ID **2010-016**

ROCK CODE

MIN STYLE						
Abbr.	Description					
n	barren					
d	disseminated					
g	aggregated					
b	banded					
b	banded					

FABRIC						
Abbr.	Description					
Х	brecciated					
ı	laminated					
f	decalcified					
V	veined					
р	porphyritic					
m	massive					

	TEXTURE
Abbr.	Description
f	decalcified
р	porphyritic
V	veined

	LITHO
Abbr.	Description
CASE	Casing
OVBN	Overburden
OXID	Oxide
AM	Amphibolite
CC	Calcite Carbonatite
CD	Dolomite Carbonatite
CCCD	Mixed Calcite and Dolomite Carbonatite
AMX	Amphibole and Mixed Carbonatite
CM	Carbonatite Cumulate

	STRUCT
Abbr.	Description
Z	fault
е	strained
S	shear zone
У	dyke

MISCELLANEOUS:

	ZONE
Abbr.	Description
OX	Oxide
S	Supergene
Н	Hypogene

	HCL
Abbr.	Description
VW	very weak
W	weak
M	moderate
S	strong
VS	very strong

2010-016 Log by Ryan Kressall Date Hole ID

FROM TO ALTERATION STRUCTURE MINSCELLANEOUS Zone HCL Apatite Zircon MAIN COMMENTS Moreck FROM TO 6.09 - 10.65 MAIN COMMENTS Moreck MINSCELLANEOUS Zone HCL Apatite Zircon MINSCELLANEOUS DiffgED = Min Style Fabric Texture Litho Struct fg CD MAIN COMMENTS Moreck MINSCELLANEOUS To a patite DiffgED = Min Style Fabric Texture Litho Struct MINSCELLANEOUS DiffgED = Min Style Fabric Texture Litho Struct MINSCELLANEOUS DiffgED = Min Style Fabric Texture Litho Struct MINSCELLANEOUS DiffgED = Min Style Fabric Texture Litho Struct MINSCELLANEOUS DiffgED = Min Style Fabric Texture Litho Struct MINSCELLANEOUS DiffgED = Min Style Fabric Texture Litho Struct MINSCELLANEOUS DiffgED = Min Style Fabric Texture Litho Struct MINSCELLANEOUS DiffgED = Min Style Fabric Texture Litho Struct MINSCELLANEOUS DiffgED = Min Style Fabric Texture Litho Struct MINSCELLANEOUS DiffgED = Min Style Fabric Texture Litho Struct MINSCELLANEOUS DiffgED = Min Style Fabric Texture Litho Struct MINSCELLANEOUS DiffgED = Min Style Fabric Texture Litho Struct MINSCELLANEOUS DiffgED = Min Style Fabric Texture Litho Struct MINSCELLANEOUS DiffgED = Min Style Fabric Texture Litho Struct MINSCELLANEOUS DiffgED = Min Style Fabric Texture Litho Struct MINSCELLANEOUS DiffgED = Min Style Fabric Texture Litho Struct MINSCELLANEOUS DiffgED = Min Style Fabric Texture Litho CASE MINSCELLANEOUS DiffgED = Min Style Fabric Texture Litho CASE MINSCELLANEOUS DiffgED = MINSCELLANEOUS DiffgED = Min Style DiffgED = Min Sty	CASE MAIN COMMENTS MINERALIZATION ALTERATION STRUCTURE MISCELLANEOUS ADDITION MINERALIZATION MINERALIZATION ALTERATION STRUCTURE MINERALIZATION MINERALIZATION ALTERATION Type Value Comments Pyrite % 0.75 Nobestes % 0.10 Petential fearmine. Type value Comments Nobestes % 0.10 Petential fearmine. Type value Comments Nobestes % 0.10 Potential fearmine. Tipe value Comments ALTERATION Type Value Comments ALTERATION ALTERATION ALTERATION Type Value Comments ALTERATION ALTERATION Type Value ALTERATION Type Value Comments ALTERATION										
MINERALIZATION STRUCTURE MISCELLANEOUS Zone HCL Apatite Zircon Litho Struct fg CD Struct MAIN COMMENTS Highyly axidized light grey to beige laminated dolomite carbonatite. Apatite occurs moderately laminated. Zircon clusters within apatite laminae. MINERALIZATION Type Value Comments Pyilte % 0.75 Very fine-grained pyilte occur oriented and concentrated within laminae. Niobates % 0.10 Potential feramine. The to very fine-grained dark-grey grains that do not streak red occur in associatation with zircon-rich apatite laminae. STRUCTURE Type Intens Ca* Comments Laminations % strong 40 MISCELLANEOUS Zone HCL Apatite Zircon Texture Litho Struct fg CD Struct Goddon's STRUCTURE Type Intens CA* Comments Laminations % strong 40 MISCELLANEOUS Zone HCL Apatite Zircon	MINERALIZATION STRUCTURE MISCELLANEOUS Zone HCL Apatite Zircon TO 6.09 - 10.65 ROCK CODE bifgCD = Min Style bifgCD		ROCK CODE	CASE	=	Min Style	Fabric	Texture		Struct	
ALTERATION STRUCTURE MISCELLANEOUS Zone HCL Apatite Zircon To 6.09 - 10.65 ROCK CODE blifgCD BlifgCD MAIN COMMENTS Highyly oxidized light grey to beige laminated dolomite carbonatite. Apatite occurs moderately laminated. Zircon clusters within apatite laminae. MINERALIZATION Type Value Comments Pyrite % 0.75 Nobates % 0.10 Potential fersmite: fine- to very fine-grained dark-grey grains that do not streak red occur in associatation with zircon-rich apatite laminae. ALTERATION Type Value Comments Oxidation % 75.00 Beige to pink dolomite STRUCTURE Type Intens CA* Comments Laminations % strong 40 MISCELLANEOUS Zone HCL Apatite Zircon	ALTERATION STRUCTURE MISCELLANEOUS Zone HCL Apatite Zircon Texture Litho Struct CD MAIN COMMENTS Highly oxidized light grey to beige laminated dolomite carbonatite. Apatite occurs moderately laminated. Zircon clusters within apatite laminae. MINERALIZATION Type Value Comments Pyrite % 0.75 Very fine-grained pyrite occur oriented and concentrated within laminae. Niobates % 0.10 Podeation % 75.00 Beige to pink dolomite Type Intens CA* Comments ALTERATION Type Intens CA* Comments Laminations % Strong 40 MISCELLANEOUS Zone HCL Apatite Zircon		MAIN COMMENTS	No rock							
FROM TO 6.09 10.65 ROCK CODE blfgCD = Min Style Fabric Texture Litho Struct b lighty oxidized light grey to beige laminated dolomite carbonatite. Apatite occurs moderately laminated. Zircon clusters within apatite laminae. MINERALIZATION Type Value Comments Pyrite % 0.75 Very fine-grained pyrite occur oriented and concentrated within laminae. Niobates % 0.10 Potential fersmite: fine- to very fine-grained dark-grey grains that do not streak red occur in associatation with zircon-rich apatite laminae ALTERATION Type Value Comments Oxidation % 75.00 Beige to pink dolomite STRUCTURE Type Intens CA* Comments Laminations % strong 40 MISCELLANEOUS Zone HCL Apatite Zircon	FROM TO G.09 - 10.65 ROCK CODE bifgCD = Min Style Fabric Texture Litho Struct fg CD		MINERALIZATION								
FROM TO 6.09 - 10.65 ROCK CODE blfgCD = Min Style Fabric Texture Litho Struct fg CD MAIN COMMENTS Highyly oxidized light grey to beige laminated dolomite carbonatite. Apatite occurs moderately laminated. Zircon clusters within apatite laminae. MINERALIZATION Type Value Comments Niobates % 0.75 Very fine-grained pyrite occur oriented and concentrated within laminae. Niobates % 0.10 Potential fersmite: fine- to very fine-grained dark-grey grains that do not streak red occur in associatation with zircon-rich apatite laminae ALTERATION Type Value Comments Oxidation % 75.00 Beige to pink dolomite STRUCTURE Type Intens CA* Comments Laminations % Strong 40 MISCELLANEOUS Zone HCL Apatite Zircon	FROM TO 6.09 - 10.65 ROCK CODE DifgCD = Min Style Fabric Texture Litho Struct fg CD MAIN COMMENTS Highyly oxidized light grey to beige laminated dolomite carbonatite. Apatite occurs moderately laminated. Zircon clusters within apatite laminae. MINERALIZATION Type Value Comments Pyrite % 0.75 Very fine-grained pyrite occur oriented and concentrated within laminae. Niobates % 0.10 Potential fersmite: fine- to very fine-grained dark-grey grains that do not streak red occur in associatation with zircon-rich apatite laminae ALTERATION Type Value Comments Oxidation % 75.00 Beige to pink dolomite STRUCTURE Type Intens CA* Comments Laminations % Strong 40 MISCELLANEOUS Zone HCL Apatite Zircon		ALTERATION								
FROM TO 6.09 - 10.65 ROCK CODE DifgCD = Min Style Fabric Texture Litho CD	FROM TO 6.09 - 10.65 ROCK CODE DIFGCD = Min Style Fabric Texture CD CD Struct MAIN COMMENTS Highyly oxidized light grey to beige laminated dolomite carbonatite. Apatite occurs moderately laminated. Zircon clusters within apatite laminae. MINERALIZATION Type Value Comments Prite % 0.75 Very fine-grained pyrite occur oriented and concentrated within laminae. Niobates % 0.10 Potential fersmite: fine- to very fine-grained dark-grey grains that do not streak red occur in associatation with zircon-rich apatite laminae ALTERATION Type Value Comments Oxidation % 75.00 Beige to pink dolomite STRUCTURE Type Intens CA* Comments Laminations % strong 40 MISCELLANEOUS Zone HCL Apatite Zircon		STRUCTURE								
6.09 - 10.65 MAIN COMMENTS Highyly oxidized light grey to beige laminated dolomite carbonatite. Apatite occurs moderately laminated. Zircon clusters within apatite laminae. MINERALIZATION Type Value Comments Pyrite % 0.75 Very fine-grained pyrite occur oriented and concentrated within laminae. Niobates % 0.10 Potential fersmite: fine- to very fine-grained dark-grey grains that do not streak red occur in associatation with zircon-rich apatite laminae ALTERATION Type Value Comments Oxidation % 75.00 Beige to pink dolomite STRUCTURE Type Intens CA* Comments Laminations % strong 40 MISCELLANEOUS Zone HCL Apatite Zircon	6.09 - 10.65 MAIN COMMENTS Highly oxidized light grey to beige laminated dolomite carbonatite. Apatite occurs moderately laminated. Zircon clusters within apatite laminae. MINERALIZATION Type Value Comments Pyrite % 0.75 Very fine-grained pyrite occur oriented and concentrated within laminae. Niobates % 0.10 Potential fersmite: fine- to very fine-grained dark-grey grains that do not streak red occur in associatation with zircon-rich apatite laminae ALTERATION Type Value Comments Oxidation % 75.00 Beige to pink dolomite STRUCTURE Type Intens CA* Comments Laminations % strong 40 MISCELLANEOUS Zone HCL Apatite Zircon		MISCELLANEOUS	Zone	HCL		Apatite	Zircon			
6.09 - 10.65 MAIN COMMENTS Highyly oxidized light grey to beige laminated dolomite carbonatite. Apatite occurs moderately laminated. Zircon clusters within apatite laminae. MINERALIZATION Type Value Comments Pyrite % 0.75 Very fine-grained pyrite occur oriented and concentrated within laminae. Niobates % 0.10 Potential fersmite: fine- to very fine-grained dark-grey grains that do not streak red occur in associatation with zircon-rich apatite laminae ALTERATION Type Value Comments Oxidation % 75.00 Beige to pink dolomite STRUCTURE Type Intens CA* Comments Laminations % strong 40 MISCELLANEOUS Zone HCL Apatite Zircon	6.09 - 10.65 MAIN COMMENTS Highly oxidized light grey to beige laminated dolomite carbonatite. Apatite occurs moderately laminated. Zircon clusters within apatite laminae. MINERALIZATION Type Value Comments Pyrite % 0.75 Very fine-grained pyrite occur oriented and concentrated within laminae. Niobates % 0.10 Potential fersmite: fine- to very fine-grained dark-grey grains that do not streak red occur in associatation with zircon-rich apatite laminae ALTERATION Type Value Comments Oxidation % 75.00 Beige to pink dolomite STRUCTURE Type Intens CA* Comments Laminations % strong 40 MISCELLANEOUS Zone HCL Apatite Zircon										
MINERALIZATION Type Value Comments Pyrite % 0.75 Very fine-grained pyrite occur oriented and concentrated within laminae. Niobates % 0.10 Potential fersmite: fine- to very fine-grained dark-grey grains that do not streak red occur in associatation with zircon-rich apatite laminae ALTERATION Type Value Comments Oxidation % 75.00 Beige to pink dolomite STRUCTURE Type Intens CA° Comments Laminations % strong 40 MISCELLANEOUS Zone HCL Apatite Zircon	MINERALIZATION Type Value Comments Pyrite % 0.75 Very fine-grained pyrite occur oriented and concentrated within laminae. Niobates % 0.10 Potential fersmite: fine- to very fine-grained dark-grey grains that do not streak red occur in associatation with zircon-rich apatite laminae ALTERATION Type Value Comments Oxidation % 75.00 Beige to pink dolomite STRUCTURE Type Intens CA° Comments Laminations % strong 40 MISCELLANEOUS Zone HCL Apatite Zircon		ROCK CODE	blfgCD	=		Fabric I			Struct	
Pyrite % 0.75 Very fine-grained pyrite occur oriented and concentrated within laminae. Niobates % 0.10 Potential fersmite: fine- to very fine-grained dark-grey grains that do not streak red occur in associatation with zircon-rich apatite laminae ALTERATION Type Value Comments Oxidation % 75.00 Beige to pink dolomite STRUCTURE Type Intens CA° Comments Laminations % strong 40 MISCELLANEOUS Zone HCL Apatite Zircon	Pyrite % 0.75 Very fine-grained pyrite occur oriented and concentrated within laminae. Niobates % 0.10 Potential fersmite: fine- to very fine-grained dark-grey grains that do not streak red occur in associatation with zircon-rich apatite laminae ALTERATION Type Value Comments Oxidation % 75.00 Beige to pink dolomite STRUCTURE Type Intens CA° Comments Laminations % strong 40 MISCELLANEOUS Zone HCL Apatite Zircon		MAIN COMMENTS	Highyly oxidized light gr	ey to beige laminate	ed dolomite ca	rbonatite. Apatite	occurs moderately laminat	ted. Zircon clusters with	in apatite laminae.	
Pyrite % 0.75 Very fine-grained pyrite occur oriented and concentrated within laminae. Niobates % 0.10 Potential fersmite: fine- to very fine-grained dark-grey grains that do not streak red occur in associatation with zircon-rich apatite laminae ALTERATION Type Value Comments Oxidation % 75.00 Beige to pink dolomite STRUCTURE Type Intens CA° Comments Laminations % strong 40 MISCELLANEOUS Zone HCL Apatite Zircon	Pyrite % 0.75 Very fine-grained pyrite occur oriented and concentrated within laminae. Niobates % 0.10 Potential fersmite: fine- to very fine-grained dark-grey grains that do not streak red occur in associatation with zircon-rich apatite laminae ALTERATION Type Value Comments Oxidation % 75.00 Beige to pink dolomite STRUCTURE Type Intens CA° Comments Laminations % strong 40 MISCELLANEOUS Zone HCL Apatite Zircon		MINERALIZATION	Туре	Value	Comments	5				
ALTERATION Type Value Comments Oxidation % 75.00 Beige to pink dolomite STRUCTURE Type Intens CA° Comments Laminations % strong 40 MISCELLANEOUS Zone HCL Apatite Zircon	ALTERATION Type Value Comments Oxidation % 75.00 Beige to pink dolomite STRUCTURE Type Intens CA° Comments Laminations % strong 40 MISCELLANEOUS Zone HCL Apatite Zircon				0.75	Very fine-gra	ained pyrite occur c	riented and concentrated	within laminae.		
STRUCTURE Type Intens CA° Comments Laminations % strong 40 MISCELLANEOUS Zone HCL Apatite Zircon	STRUCTURE Type Intens CA° Comments Laminations % strong 40 MISCELLANEOUS Zone HCL Apatite Zircon			Niobates %	0.10	Potential fer	rsmite: fine- to ver	y fine-grained dark-grey gr	rains that do not streak	red occur in associatation with zircon-rich apatite laminae	
STRUCTURE Type Intens CA° Comments Laminations % strong 40 MISCELLANEOUS Zone HCL Apatite Zircon	STRUCTURE Type Intens CA° Comments Laminations % strong 40 MISCELLANEOUS Zone HCL Apatite Zircon		ALTERATION	Туре	Value	Comments	5				
Laminations % strong 40 MISCELLANEOUS Zone HCL Apatite Zircon	Laminations % strong 40 MISCELLANEOUS Zone HCL Apatite Zircon			Oxidation %	75.00	Beige to pinl	k dolomite				
MISCELLANEOUS Zone HCL Apatite Zircon	MISCELLANEOUS Zone HCL Apatite Zircon		STRUCTURE	Туре	Intens		CA°	Comments			
				Laminations %	strong		40				
			MISCELLANEOUS	Zone	HCL		Apatite	Zircon			
				OX	VW			0.25			

Printed on 10/Feb/2011

2010-016 Log by Ryan Kressall Date Hole ID

ROM 0.65	-	TO 12.18	ROCK CODE	ЫСМ	=	Min Style b	Fabric I	Texture	Litho CM	Struct	
			MAIN COMMENTS	after magnetite?). A	patite occurs moderate ulate. Magnetite cumu	ely laminated in dolo	omite carbonatite	(~ 7.5 vol. %) and concen	ntrated in cumulate p	als of similar size consiting of a dark-grey non-magnetic mineral (pseuodor hase (~40 vol. %). Zircon occurs disseminated in low concentration in both fine- to medium-grained dolomite carbonatite is observed as well (dolomit	·
			MINERALIZATION	Type	Value	Comments					
				Niobates %	1.00	Fine-grained colu	ımbite likely occur	s with magnetite.			
				Magnetite %	25.00	Occurs fine- to m	edium grained in (cumulate intervals; unde	ergone some oxidatio	1	
				Pyrite %	1.00	Thin laminae (~1	mm thick) of oxidi	zed pyrite			
			ALTERATION	Туре	Value	Comments					
				Oxidation %	80.00	Beige dolomite a	nd orange oxidatio	n around magnetite			
				Calcite %	2.50	Minor calcie arou	nd magnetite cum	ulates			
			STRUCTURE	Туре	Intens		CA° C	omments			
				Laminations %	weak		25 0	oserved only in dolomite	carbonatite; Varies t	etween 20 and 30 degrees.	
			MISCELLANEOUS	Zone	HCL	Ар	atite	Zircon			
					W		20	0.1			

2010-016 Log by Ryan Kressall Date Hole ID

FROM 12.18 -	TO 17.93	ROCK CODE	nlfgCD	=	Min Style n	Fabric I	Texture fg	Litho CD	Struct	
		MAIN COMMENTS	Light-grey to beige lam	inated dolomite carb	onatite with dark br	own laminae of ca	alcitization. Apatite occu	ırs strongly laminate	d. Zircon occurs disseminated thro	oughout interval.
		MINERALIZATION	Туре	Value	Comments					
			Pyrite %	1.00	Stringers and cond	entrated in lamin	ae: fine-grained oxidize	d		
			Niobates %	0.10	Possible very fine-	grained dark grey	fersmite in apatite lami	nae		
		ALTERATION	Туре	Value	Comments					
			Oxidation %	50.00	Beige dolomite: fo	llows lamination				
			Calcite %	2.50	Dark-brown lamin	ae (uncommon)				
		STRUCTURE	Туре	Intens	С	A° Co	omments			
			Laminations %	strong	4	40				
		MISCELLANEOUS	Zone	HCL	Apa	ntite	Zircon			
			OX	W	1	0	0.5			

2010-016 Log by Ryan Kressall Date Hole ID

FROM 17.93 -	TO 22.71	ROCK CODE	gliCCCD	=	Min Style g	Fabric I	Texture i	Litho CCCD	Struct
		MAIN COMMENTS		ark grey (dolomitiza	ntion of previous pha	ase?). Slight calcit	ization and decalcificat	ion occurs along certai	olobs of massive fine-grained magnetite. Dolomite is dominantly inequigranular n laminae. Apatite occurs moderately laminated in dolomite carbonatite and n dolomite carbonatite.
		MINERALIZATION	Туре	Value	Comments				
			Niobates %	1.00	Fne-grained colur	mbite likely occurs	s with magnetite and ap	oatite. Possible dark-gr	ey fersmite may occur with apatite laminae in dolomite carbonatite.
			Magnetite %	7.50	Fine- to medum g	grained magnetite	occurs disseminated ir	ı calcite carbonatite, ag	ggregated with and without apatite
			Pyrite %	1.00	Fine-grained pyrit	te occurs dissemir	nated and concentrated	within specific lamina	e.
		ALTERATION							
		STRUCTURE	Туре	Intens	C	CA° C	omments		
			Laminations %	moderate		30			
		MISCELLANEOUS	Zone	HCL	Ара	atite	Zircon		
			OX	М	1	10	1		

2010-016 Log by Ryan Kressall Date Hole ID

FROM 22.71 -	TO 24.93	ROCK CODE	nICD	=	Min Style n	Fabric I	Texture i	Litho CD	Struct	
		MAIN COMMENTS	Beige- to light-grey ine	quigranular dolomit	e carbonatite with ι	uncommon med	lium-grey laminae. Apatit	e occurs strongly lamina	ated.	
		MINERALIZATION	Туре	Value	Comments					
			Pyrite %	1.75	Oxidized thin (<	1 mm) pyrite st	ringers and laminae; Mino	or fresh pyrite aggregate	s up to 3 cm thick.	
		ALTERATION	Туре	Value	Comments					
			Oxidation %	60.00	Beige dolomite					
		STRUCTURE	Туре	Intens		CA°	Comments			7
			Laminations %	moderate	<u> </u>	35	Varies between 30 and 4	15 degrees; contains loca	lized crenulations.	
		MISCELLANEOUS	Zone	HCL	Aŗ	oatite	Zircon			٦
			OX	VW		15	0			

2010-016 Log by Ryan Kressall Date Hole ID

FROM 24.93 -	TO 35.79	ROCK CODE	glpCD	=	Min Style g	Fabric I	Texture p	Litho CD	Struct
		MAIN COMMENTS	Slightly oxidized beige medium- to dark-grey						ulate. There are a few non-magnetic intervals of similar size consisting of
		MINERALIZATION	Туре	Value	Comments				
			Niobates %	1.00	Fine-grained colu intervals.	ımbite likely presen	t with magnetite; Poss	sibly black columbite o	r fersmite replacing columbite occur within medium- to dark-grey dolomite
			Magnetite %	30.00	Medium grained	magnetite forms ag	gregates with apatite.		
			Pyrite %	1.00	Fresh pyrite com	monly occurs in darl	κ-grey dolomite comm	only forming a rim on	altered magnetite (?)
		ALTERATION	Туре	Value	Comments				
			Oxidation %	30.00	Beige dolomite (c	dominantly void ot p	yrite, magnetite and a	apatite)	
		STRUCTURE	Туре	Intens		CA° Co	mments		
			Laminations %	moderate		30			
		MISCELLANEOUS	Zone	HCL	Ар	atite	Zircon		
			OX	VW		20	0.5		

2010-016 Log by Ryan Kressall Date Hole ID

FROM 35.79	TO - 42.42	ROCK CODE	ICD	=	Min Style	Fabric I	Texture p	Litho CD	Struct	
		MAIN COMMENTS								becomes massive and partially fragmented to terval. Zircon occurs clustered within apatite
		MINERALIZATION	Type	Value	Comments					
			Niobates %	0.10	Possible fine-grain	ned fersmite m	ay occur with apatite lam	inae.: dark grey, no re	ed streak.	
			Pyrite %	1.50	Fresh pyrite appea	rs to be replaci	ing phenocrysts - occurs a	s rim and associated	with phenocrysts	
		ALTERATION	Туре	Value	Comments					
			Oxidation %	40.00	Beige dolomite					
		STRUCTURE	Туре	Intens	C	A°	Comments			
			Veining %	moderate	7	0	Veins of oxidized crude			
			Laminations %	moderate	3	80	Varies between 20 and 4	O degrees; intensity o	f lamination decreases downhole.	
		MISCELLANEOUS	Zone	HCL	Apa	tite	Zircon			
			OX	VW	11	0	0.1			

2010-016 Log by Ryan Kressall Date Hole ID

FROM 42.42	T0 - 47.08	ROCK CODE	glCD	=	Min Style g	Fabric I	Texture p	Litho CD	Struct
		MAIN COMMENTS	consists of white medic pyrite. An aggregate of	ım-grained dolomite phlogopite-apatite a	within a medium-grey and abundant zircon (~	y fine-grained d ·5 vol. %) occurs	dolomite groundmass. F rs (~7.5 cm diameter) in	Porphyritic dolomite ca the middle of the inter	lolomite carbonatite occurs locally porphyritic to inequigranular. Inequigranular arbonatite consists of phenocrysts of altered magnetite (?) being replaced by rval. This aggregate likely represents an altered biotitized magnetite-apatite out but more concentrated in magnetite-apatite and phlogopite-apatite
		MINERALIZATION	Туре	Value	Comments				
			Pyrite %	1.50	Fresh pyrite laminae	up to 2 cm thic	ick and occurs with alter	red magnetite (?)	
			Magnetite %	5.00	Fine- to medium-gra	ained magnetit	te occurs with apatite.		
		ALTERATION	Туре	Value	Comments				
			Oxidation %	30.00	Beige dolomite				
		STRUCTURE	Туре	Intens	CA	° C	Comments		
			Laminations %	weak	40				
		MISCELLANEOUS	Zone	HCL	Apati	te	Zircon		
			OX	W	15		2		

2010-016 Log by Ryan Kressall Date Hole ID

FROM 47.08	TO - 49.18	ROCK CODE	nlfgCD	=	Min Style n	Fabric I	Texture fg	Litho CD	Struct		
		MAIN COMMENTS	Light-grey to dominant	ly beige dolomite ca	rbonatite. Apatite o	ccurs moderately	laminated. Zircon locally	concentrates with a	patite laminae.		
		MINERALIZATION	Туре	Value	Comments						
			Niobates %	0.10	Possible fine-grai	ned fersmite with	nin zircon-rich apatite lar	minae.			
			Pyrite %	1.50	Fine-grained oxid	ized pyrite occurs	concentrated with lamir	1ae.			
		ALTERATION	Туре	Value	Comments						
			Oxidation %	80.00	Beige dolomite						
		STRUCTURE	Туре	Intens	(CA° C	omments				
			Laminations %	weak		35 va	aries between 30 and 40	degrees			
		MISCELLANEOUS	Zone	HCL	Ар	atite	Zircon				
			OX	VW		10	0.1				

2010-016 Log by Ryan Kressall Date Hole ID

FROM 49.18	T0 - 52.58	ROCK CODE	dmiCD	=	Min Style d	Fabric m	Texture i	Litho CD	Struct	
		MAIN COMMENTS	3 ,	, ,			_	,	laminated. Porphyritic dolomite carbonatite contains brown to green e. Zircon concentrates in porphyritic dolomite carbonatite.	
		MINERALIZATION	Туре	Value	Comments					
			Niobates %	0.50	Fine-grained yellow	fersmite after	oyrochlore occurs withi	n porphyritic dolomite	carbonatite.	
			Pyrite %	0.50	Oxidized pyrite occu	ırs as stringers (< 1 cm)			
		ALTERATION	Туре	Value	Comments					
			Oxidation %	15.00	Beige dolomite					
		STRUCTURE	Туре	Intens	CA	v. C	omments			
			Laminations %	weak	30)				
		MISCELLANEOUS	Zone	HCL	Apat	ite	Zircon			
			OX	VW	5		0.5			

2010-016 Log by Ryan Kressall Date Hole ID

FROM 52.58 -	TO 57.51	ROCK CODE	dlpAMX	=	Min Style d	Fabric I	Texture p	Litho AMX	Struct	
		MAIN COMMENTS		osed of phlogopite,	aegirine (?) and riel	beckite. Apatite oc		•	enoliths. Phenocrysts are altered phlogopite. Amphibolite/fenite is dark green to mite carbonatite. Zircon concentrates with apatite in porphyritic dolomite.	
		MINERALIZATION	Туре	Value	Comments					
			Niobates %	0.25	yellow likely fersr	nite disseminated	in porphyritic dolomit	e carbonatite (fine-grai	ned)	
			Pyrite %	0.50	Fine-grained fres	h to oxidized aggre	egates (< 1 cm)			
		ALTERATION	Туре	Value	Comments					
			Amphibolite %	35.00	irregular shaped >	kenoliths				
		STRUCTURE	Туре	Intens	(CA° Co	omments			
			Laminations %	weak		30				
		MISCELLANEOUS	Zone	HCL	Ар	atite	Zircon			
			OX	VW	-	7.5	0.1			

2010-016 Log by Ryan Kressall Date Hole ID

FROM 57.51	-	TO 65.59	ROCK CODE	dlpCD	=	Min Style d	Fabric I	Texture p	Litho CD	Struct		
			MAIN COMMENTS	Light-grey to beige lan phlogopite.	ninated dolomite carl	bonatite with pheno	cyrsts of altered	phlogopite. Small laminae	e (< 5 cm) of calcite ca	arbonatite occur irregularly thoughout in	nterval with fresh brown to altered black	
			MINERALIZATION	Туре	Value	Comments						
				Pyrite %	1.00	Oxidized fine-grai	ined disseminate	ed pyrite				
				Niobates %	0.50	Potential fine-gra	ined fersmite gr	ains - dark-grey to black o	ccur with altered phlo	ogopite		
			ALTERATION	Type Oxidation %	Value 30.00	Comments Beige dolomite						
			STRUCTURE	Туре	Intens	C	CA° (Comments				
				Laminations %	strong		30					
			MISCELLANEOUS	Zone	HCL	Ара	atite	Zircon				
				OX	М							

2010-016 Log by Ryan Kressall Date Hole ID

FROM 65.59	TO - 69.77	ROCK CODE	dlpAMX	=	Min Style d	Fabric I	Texture p	Litho AMX	Struct
		MAIN COMMENTS							th minor calcite veining. Phenocrysts are altered phlogopite. Apatite occurs h particular apatite laminae.
		MINERALIZATION	Туре	Value	Comments				
			Pyrite %	1.00	Stringers (< 1 mr	n thick) in laminat	ed dolomite carbonatite	e: oxidized. Fresh pyrit	e occurs locally disseminated in bottom half of interval.
			Niobates %	0.10	Possible pink py	rochlore occurs wi	th zircon and apatite in	porphyritic dolomite.	
		ALTERATION	Туре	Value	Comments				
			Calcite %	15.00	Calcitization of a	amphibolite			
			Amphibolite %	35.00	Composed domi	nantly of green ae	girine, blue riebeckite ar	nd minor phlogopite.; r	reacts moderately to HCl
		STRUCTURE	Туре	Intens		CA° C	omments		
			Laminations %	strong		30 0	nly in dolomite carbona	tite	
		MISCELLANEOUS	Zone	HCL	A	patite	Zircon		
			OX	М					

2010-016 Log by Ryan Kressall Date Hole ID

FROM 69.77	TO - 80.37	ROCK CODE	dlpAMX	=	Min Style d	Fabric I	Texture p	Litho AMX	Struct
		MAIN COMMENTS							n of xenoliths preserved concentric texture of amphibolite/fenite: cores are more ircon occurs clustered with apatite laminae.
		MINERALIZATION	Туре	Value	Comments				
			Niobates %	0.50	Possiblte fine-g laminae	grained pyrochlore (occurs disseminated in	pophyritic dolomite ca	rbonatite; dark grey fine-grained fersmite may occur with zircon-rich apatite
		ALTERATION	Туре	Value	Comments				1
			Amphibolite %	25.00	Xenoliths 25 to	50 cm partially to o	ompletely dolomitized.		
			Oxidation %	30.00	Beige dolomite				
		STRUCTURE	Туре	Intens		CA° C	omments		
			Laminations %	weak		40			
				<u> </u>					
		MISCELLANEOUS	Zone	HCL	Α	patite	Zircon		
			OX	VW		10	0.25		
						·			

2010-016 Log by Ryan Kressall Date Hole ID

FROM 80.37	_	TO 92.58	ROCK CODE	nmfgCD	=	Min Style n	Fabric m	Texture fg	Litho CD	Struct
			MAIN COMMENTS	locally porphyritic with	phenocrysts of alter	ed phlogopite. Poph	nyritic dolomite car	rbonatite appears to be t	the boundary betwee	d texture of amphiboloite/fenite. Carbonatite is dominantly fine-grained but is amphibolite clasts and host dolomite carbonatite. Apatite occus strongly in the core of some amphibolite/fenite xenoliths.
			MINERALIZATION	Туре	Value	Comments				
				Niobates %	0.10	Potential fine-gr	ained dark-grey fei	rsmite grains occur disse	eminated locally.	
				Pyrite %	0.50	Fine-grained diss	seminated oxidized	d pyrite.		
			ALTERATION	Туре	Value	Comments				
				Dolomite %	75.00	Of amphibolite/f	fenite xenoliths.			
			STRUCTURE	Туре	Intens		CA° C	omments		
				Laminations %	moderate		30			
			MISCELLANEOUS	Zone	HCL	Ар	oatite	Zircon		
				OX	VW		10	0.25		

2010-016 Log by Ryan Kressall Date Hole ID

FROM 92.58	TO - 96.52	ROCK CODE	nmfgAM	=	Min Style n	Fabric m	Texture fg	Litho AM	Struct	
		MAIN COMMENTS							curs as veins within amphibolite/fe	nite and within the fine-grained groundmass. d of inteval.
		MINERALIZATION								
		ALTERATION	Туре	Value	Comment	5				
			Oxidation %	20.00	Bown fenite	2				
			Amphibolite %	95.00						
		STRUCTURE	Туре	Intens		CA°	Comments			
			Veining %	strong		60	Apatite and calcite veins	croscut fenite		
		MISCELLANEOUS	Zone	HCL		Apatite	Zircon			
			OX	М		2.5	0.5			
FROM 96.52	TO - 102.21	ROCK CODE	nxfgCD	=	Min Style n	Fabric x	Texture fg	Litho CD	Struct	
		MAIN COMMENTS	Fragmented fine-graine relatively homogeneous	ed light grey dolomit s with only oxidized	e carbonatite o pyrite as a acce	with infilled fracture essory mineral. The	es of dark brown calcite. Int occassional apatite grain oc	erval is largely broken ccurs within dark-brov	ed up to loose rock fragements and wn calcite "matrix".	rubble. Dolomite carbonatite fragments are
		MINERALIZATION	Туре	Value	Comment	S				
			Pyrite %	1.00	Locally disso	eminated within do	lomite cabonatite.			
		ALTERATION								
		STRUCTURE	Туре	Intens		CA°	Comments			
			Veining %	strong		60				
				-			*			
		MISCELLANEOUS	Zone	HCL		Apatite	Zircon			

Printed on 10/Feb/2011

2010-016 Log by Ryan Kressall Date Hole ID

FROM TO 102.21 - 110.82	ROCK CODE	nmfgCD	=	Min Style n	Fabric m	Texture fg	Litho CD	Struct
	MAIN COMMENTS	pophyritic dolomite car	bonatite occurs adja	cent to magnetite; lik	cely dolomitized	l magnetite-apatite cumu	late.Some intervals	mall 10 cm interval of magnetite-apatite cumulate occurs as106.74 m. A dark-grey have been completed decalcified to rubble. (up t 30 cm intevals). There are a few entrated with apatite and magnetite.
	MINERALIZATION	Туре	Value	Comments				
		Pyrite %	1.50	Disseminated aggr	egates (up to 1	cm) of oxidized pyrite		
		Niobates %		None observed				
	ALTERATION	Туре	Value	Comments				
		Calcite %	10.00	Dark-brown mottle	<u> </u>			
		Oxidation %	70.00	Beige dolomite and	d around magne	tite		
	STRUCTURE	Туре	Intens	CA	A° (Comments		
	Laminations % very weak			2	0 F	ew laminae of inequigran	ular dolomite carbor	natite
	MISCELLANEOUS	Zone	HCL	Apa	tite	Zircon		
		OX	W	10	ו	1		

2010-016 Log by Ryan Kressall Date Hole ID

FROM 110.82	_	TO 119.37	ROCK CODE	nmAMX	=	Min Style n	Fabric m	Texture i	Litho AMX	Struct		
			MAIN COMMENTS		Dolomitization preserv					ritic.Phenocrysts consist of altert ritic segments and laminated wit		
			MINERALIZATION	Type	Value	Comments						
				Niobates %	0.25	Likely fine-grained yellow fersmite occurs within pophyritic segments of interval.						
				Pyrite %	0.50	Disseminated and o	oriented within I	laminated dolomite car	rbonatite: fine-grained	, oxidized		
			ALTERATION	Туре	Value	Comments						
				Dolomite %	60.00	Of amphibolite/fen	ite					
				Amphibolite %	30.00	Up to 50 cm interva	ls composed of	green aegirine and blu	e riebeckite.			
			STRUCTURE	Туре	Intens	CA	۱° C	omments				
				Laminations %	weak	45	5 0	nly locally present.				
			MISCELLANEOUS	Zone	HCL	Apat	ite	Zircon				,
				OX	VW	5		0.1				

2010-016 Log by Ryan Kressall Date Hole ID

FROM 119.37	TO 133.67	ROCK CODE	nlpCD	=	Min Style n	Fabric I	Texture p	Litho CD	Struct
		MAIN COMMENTS	Dominantly beige to d aggregated to weakly					esh dolomite carbonat	ite is locally preserved. Phenocrysts consist of altered phlogopite. Apatite occurs
		MINERALIZATION	Туре	Value	Comments				
			Pyrite %	1.00	Fine-grained oxidiz	ed pyrite occurs	disseminated throughor	ut interval.	
		ALTERATION	Type	Value	Comments				
			Oxidation % Calcite %	85.00 20.00	Beige dolomite Dark-brown mottlii	ng			
			Calcite 70	20.00	Dark-Drown mottin	iig			
		STRUCTURE	Туре	Intens	CA	A° Co	omments		
			Laminations %	weak	21	0			
		MISCELLANEOUS	Zone	HCL	Apat	tite	Zircon		
			OX	W	7.5	5	0.1		
				'					

2010-016 Log by Ryan Kressall Date Hole ID

FROM 133.67	TO - 137.00	ROCK CODE	nmiAMX	=	Min Style n	Fabric m	Texture i	Litho AMX	Struct	
		MAIN COMMENTS	•			_	Ovoid texture of amphibo minated thoughout inter	•	d by dolomitization. Much of dolomitized fenite has inequiganular tex	cture.
		MINERALIZATION	Туре	Value	Comments					
			Pyrite %	0.50	Uncommon irregula	aggregates up	to 2 cm thick of oxidized	pyrite		
		ALTERATION	Туре	Value	Comments					
			Dolomite %	50.00	Of fenite					
			Amphibolite %	40.00	Relatively unaltered	fenite consist	s of green aegirine, blue r	iebeckite and black p	nlogopite; matrix has slightly calcitized	
			Calcite %	10.00	Of fenite matrix: mo	derate reaction	n to HCI			
		STRUCTURE								
		MISCELLANEOUS	Zone	HCL	Apati	ite	Zircon			
			OX	М	7.5		0.5			

2010-016 Log by Ryan Kressall Date Hole ID

FROM 137.00 -	TO - 145.15	ROCK CODE	nmcCD	=	Min Style n	Fabric m	Texture c	Litho CD	Struct	
		MAIN COMMENTS								re seen in amphibolte/fenite. Apatite occurs ocrysts of altered dark grey magnetite (?)
		MINERALIZATION	Туре	Value	Comments					
			Pyrite %	1.00	Fine-grained oxi	dized pyrite occur	rs diseminated in dolomi	te carbonatite		
		ALTERATION	Туре	Value	Comments					
			Calcite %	15.00	Dark-brown mot	tles				
			Oxidation %	70.00	Beige dolomite					
		STRUCTURE								
		MISCELLANEOUS	Zone	HCL	Ap	oatite	Zircon			
			OX	W		12.5	0.1			
FROM 145.15 -	TO - 147.86	ROCK CODE	nxfgCD	=	Min Style n	Fabric ×	Texture fg	Litho CD	Struct	
		MAIN COMMENTS	Dominantly light-grey disseminated through		omite. Fractures are	infilled by pyrite	and white dolomite(?). A	patite occurs locally la	aminated and concentrated along fr	actures. Zircon occurs fine- to medium grained
		MINERALIZATION	Туре	Value	Comments					
			Pyrite %	1.00	Fine- to medium	ı-grained pyite oc	curs locally concentrated	in aggregates and str	ingers.	
		ALTERATION	Туре	Value	Comments					
			Oxidation %	20.00	Beige dolomite c	oncentrated alon	g fractures concentrated	around pyrite.		
		STRUCTURE								
		MISCELLANEOUS	Zone	HCL	Ar	patite	Zircon			
			OX	VW			0.25			

Printed on 10/Feb/2011

GEOLOGY LOG

Log by	Ryan Kressall	Date	Hole ID	2010-016

End of Hole End of Hole

Measurement unit: Metres (Unless otherwise specified)

Hole ID 2010-017	
-------------------------	--

	GENERAL INFORMATION						
Coordinate System	Easting	Northing	Elevation	Collar Azimuth	Collar Dip		
ST. PL Nad 83	454564.59	6256632.07	1653.79	20.00	-55.00		
Start Depth	Final Depth	Proposed Depth	Final Length	Rig	Area		
0.00	214.93		214.93		Central 2		
Operator	Year			1			
Taseko	2010						

	PROFESSIONAL / TECHNICIAN							
	Name	Start Date	End Date					
Collar Surveyor	Ryan Kressall	02/Sep/2010						
Geology Logged By	Ryan Kressall							
Specific Gravity By	Steve Dumma							
Geotech Logged By	Steve Dumma	08/Aug/2010						
Drill Contractor		03/Aug/2010	05/Aug/2010					

SUMMARY

DRILLING BIT SIZE						
Bit Size	From	То	Length			
NW (Casing)	0.00	6.09	6.09			
NQ	6.09	214.93	214.93			

	DOWN HOLE SURVEY							
Depth	Azimuth	Dip	Temp °C	Mag.	Roll	Method		
47.24	21.40	-54.20	12.4	5943	135.5	Reflex EZ-shot		
138.68	20.00	-55.20	13.5	5807	64.0	Reflex EZ-shot		
169.16	20.40	-54.80	13.2	5354	129.5	Reflex EZ-shot		
199.64	20.00	-54.80	16.3	5558	177.5	Reflex EZ-shot		

GEOLOGY LEGEND

Hole ID **2010-017**

ROCK CODE

MIN STYLE					
Abbr.	Description				
n	barren				
d	disseminated				
g	aggregated				
b	banded				

	FABRIC
Abbr.	Description
Х	brecciated
ı	laminated
f	decalcified
V	veined
р	porphyritic
m	massive

	TEXTURE
Abbr.	Description
f	decalcified
р	porphyritic
V	veined

LITHO								
Abbr.	Description							
CASE	Casing							
OVBN	Overburden							
OXID	Oxide							
AM	Amphibolite							
CC	Calcite Carbonatite							
CD	Dolomite Carbonatite							
CCCD	Mixed Calcite and Dolomite Carbonatite							
AMX	Amphibole and Mixed Carbonatite							

Carbonatite Cumulate

CM

STRUCT
Description
fault
strained
shear zone
dyke

MISCELLANEOUS:

ZONE								
Abbr.	Description							
OX	Oxide							
S	Supergene							
Н	Hypogene							

	HCL
Abbr.	Description
VW	very weak
W	weak
М	moderate
S	strong
VS	very strong

2010-017 Log by Ryan Kressall Date Hole ID

FROM 0.00 -	TO 6.09	ROCK CODE	CASE	=	Min Style F	abric Texture	Litho CASE	Struct
		MAIN COMMENTS	No rock					
		MINERALIZATION						
		ALTERATION						
		STRUCTURE						
		MISCELLANEOUS	Zone	HCL	Apatite	Zircon		

2010-017 Log by Ryan Kressall Date Hole ID

FROM TO 6.09 - 10.25 ROCK CODE dliCCCD = Min Style d li CCD
magnetite-apatite cumulate phases, Calcite carbonatite forms a 20 cm thick laminae. Calcite carbonatite contains a high content of dissemnated magnetite, brown phlogopite and pinkish brown pyrochlore Minor porphyritic dolomite carbonatite occurs near calcite carbonatite (phenocrysts =altered phlogopite). Dolomite carbonatite varies between fine-grained equigranular to inequigranular to porphyritic.
MINERALIZATION Type Value Comments
Niobates % 2.00 Fine-grained pinkish brown pyrochlore observed in calcite carbonatite; fine-grained yellowish grey fersmite observed in porphyritic dolomite carbonatite; fine-grained columbite likely occurs with magneite
Magnetite % 10.00 Occurs in cumulate phases and finely-grained disseminated in calcite carbonatite
Pyrite % 1.50 Fine-grained oxidized pyrite occurs disseminated in dolomite carbonatite; Fresh pyrite occurs in calcite carbonatite (possibly replacing magnetite).
ALTERATION Type Value Comments
Calcite % 10.00 Calcite carbonatite
Oxidation % 40.00 Beige dolomite carbonatite
STRUCTURE Type Intens CA° Comments
Laminations % weak 30 varies between 20 and 40 degrees
MISCELLANEOUS Zone HCL Apatite Zircon
OX M 15 0.5

2010-017 Log by Ryan Kressall Date Hole ID

FROM 10.25	TO - 18.82	ROCK CODE	dlpCD	=	Min Style d	Fabric I	Texture p	Litho CD	Struct	
		MAIN COMMENTS	Massive to weakly lami Zircon occurs dissemina					ocrysts (dark grey alto	ered to dolomitized magnetite?). Apatite occurs aggregated to weakly laminated.	
		MINERALIZATION	Туре	Value	Comments					
			Pyrite %	1.00	Up to 1 mm oxidiz	ed stringers				
			Niobates %	0.75	Fine-grained yello	wish grey second	ary fersmite			
		ALTERATION	Туре	Value	Comments					
			Oxidation %	70.00	Beige to pink dolo	mite				
			Calcite %	2.50	Dark brown mottl	es - react strongly	y to HCI			
		STRUCTURE	Туре	Intens		CA° C	omments			_
			Laminations %	moderate		30 Ge	enerally varies 20 to 30 o	degrees but does local	ly steepen to as high as 70 degrees	
		MISCELLANEOUS	Zone	HCL	Ana	atite	Zircon			
		·······································	OX	W		5	0.5			
										J

2010-017 Log by Ryan Kressall Date Hole ID

FROM 18.82	-	TO 21.44	ROCK CODE	gmiCD	=	Min Style g	Fabric m	Texture i	Litho CD	Struct
			MAIN COMMENTS		veen ~20.8 and 21.1 r	n. Apatite occurs la				carbonatite. A 30 cm interval of light grey to beige laminated dolomite ted in cumulate phases and decalcified laminae in dolomite carbonatite. Locallized
			MINERALIZATION	Туре	Value	Comments				
				Pyrite %	0.75	Fresh to oxidized	stringers within la	minated carbonatite ar	nd fine-grained disse	eminations in medium- to dark grey dolomite carbonatite.
				Niobates %	1.50	Rare fine-grained likely occurs with		dark-grey dolomite cart	oonatite; Dissemina	ted yellowish fersmite with phlogopite phenocrysts; and fine-grained columbite
				Magnetite %	40.00	Medium grained	magnetite concent	ates in cumulate phase	2	
			ALTERATION	Туре	Value	Comments				
				Oxidation %	40.00	Beige to pink dolo	omite and minor ox	idation around magnet	ite.	
			STRUCTURE	Туре	Intens	(CA° Co	mments		
				Laminations %	weak		12.5 Loc	allized in dolomite carb	onatite	
			MISCELLANEOUS	Zone	HCL	Ар	atite	Zircon		
				OX	W		15	0.5		

2010-017 Log by Ryan Kressall Date Hole ID

FROM 21.44	TO - 28.10	ROCK CODE	nliCD	=	Min Style n	Fabric I	Texture i	Litho CD	Struct
		MAIN COMMENTS		t interval. Apatite oc	curs oriented to modera	itely laminated	d. Zircon occurs dissem	inated throughout into	gnetite (dark grey) and altered phlogopite (black). A network of healed fractures erval with minor clusters within apatite laminae. A minor clast of what appears to
		MINERALIZATION	Туре	Value	Comments				
			Pyrite %	1.00	Oxidized pyrite stringe	ers (<1 mm)			
		ALTERATION	Type Oxidation %	Value 20.00	Comments Beige dolomite				
			Silica %	2.50	Along veins and silicif	ication of dolo	omite matrix		
		STRUCTURE	Type	Intens	CA°	Co	omments		
			Laminations %	moderate	30	No	ot visible in fractured ar	eas	
		MISCELLANEOUS	Zone	HCL	Apatite	e	Zircon		
			OX	VW	5		0.1		

2010-017 Log by Ryan Kressall Date Hole ID

FROM 28.10	TO - 30.54	ROCK CODE	glfgCD	=	Min Style g	Fabric I	Texture fg	Litho CD	Struct
		MAIN COMMENTS		agnetite) and inequi	granular dolomite tex				olomite carbonatite is generally fine-grained inequigranular with minor localized arbonatite and concentrates along the fringes of amphibolite/fenite xenolith.
		MINERALIZATION	Туре	Value	Comments				
			Magnetite %	20.00	Medium-grained m	agnetite			
			Pyrite %	0.50	Disseminated fresh	n pyrite occurs w	ith phenocrysts and ma	gnetite; stringers and	d laminae of fresh pyrite
		ALTERATION	Туре	Value	Comments				
			Oxidation %	5.00	Minor beige dolom	ite			
		STRUCTURE	Туре	Intens	C/	A° Co	omments		
			Laminations %	weak	2	5			
		MISCELLANEOUS	Zone	HCL	Ара	tite	Zircon		
			OX	W	21	ס	0.75		

2010-017 Log by Ryan Kressall Date Hole ID

FROM TO ROCK CODE dlpCD = Min Style Fabric Texture Litho Struct	
30.54 - 34.82 d l p CD	
MAIN COMMENTS Mixed porphyritic and inequigranular dolomite carbonatite - inequigranular sections are devoid of apatite whereas porphyritic sections are apatite rich (15%). Altered phlogopite phenocrysts; penichment of niobates in bottom half of section.	oossible
MINERALIZATION Type Value Comments	
Niobates % 0.30 Possible fine grained fersmite (altered pyrochlore) and columbite	
Pyrite % 0.50 Minor pyrite after magnetite (?)	
Magnetite % 1.00 Minor magnetite occuring in 10cm aggregates	
ALTERATION Type Value Comments	
Calcite % 0.50 Calcite rims around magnetite aggregates	
STRUCTURE	
MISCELLANEOUS Zone HCL Apatite Zircon	
H VW 15 0.1	

Log by Ryan Kressall Date Hole ID **2010-017**

Min Style **FROM** Litho Struct TO Fabric Texture bliAMX **ROCK CODE** AMX 34.82 37.70 MAIN COMMENTS Weak to moderately laminated inequgranular mixed carbonatite with fenite blocks (up to 20 cm in size). Apatite concentrated in banded sections of mixed carbonatite matrix; lower apatite concentration around fenite blocks. Niobate mineralization occurs in apatite rich bands **MINERALIZATION** Type Value Comments Pyrite % 1.00 minor banded pyrite minore magnetite in calcite carbonaite Magnetite % 0.50 Niobates % 0.20 as fersmite after pyrochlore and possible rare primary pyrochlore **ALTERATION** Type Value Comments Amphibolite % 50.00 large fenite blocks locally brecciated Calcite % 3.00 calcite concentrated around fenite blocks STRUCTURE **MISCELLANEOUS** HCL Zircon Zone **Apatite** Н VW 7.5 0.1

2010-017 Log by Ryan Kressall Date Hole ID

FROM 37.70 -	TO 48.60	ROCK CODE	PICCCD	=	Min Style b	Fabric I	Texture p	Litho CCCD	Struct
		MAIN COMMENTS	Banded mixed calcite a	nd dolomite carbona	tite. Large sections o	of composed of p	hlogoptite phencrysts, c	alcite, and pyrochlore	e. Minor section of fenite occurs as bands. Apatite strongly laminated.
		MINERALIZATION	Туре	Value	Comments				
			Niobates %	0.50	fersmite after pyro	ochlore and prima	ary pyrochlore		
			Pyrite %	0.50	Minor, fresh, and c	disseminated fine	e grains		
			Magnetite %	1.00	occurs locally in ca	lcite carbonatite			
		ALTERATION	Type	Value	Comments				
			Amphibolite %	5.00	minor fenite bands	s 5cm			
			Calcite %	20.00	calcite occurs as ba	ands generally ne	ear fenite sections		
		STRUCTURE							
		MISCELLANEOUS	Zone	HCL	Apa	tite	Zircon		
			Н	М		0	0.25		

Printed on 10/Feb/2011

GEOLOGY LOG

2010-017 Log by Ryan Kressall Date Hole ID

FROM 48.60	_	TO 51.29	ROCK CODE	nlfgAMX	=	Min Style n	Fabric I	Texture fg	Litho AMX	Struct		
			MAIN COMMENTS	Section of large fenite b	locks (up to 40cm)	with mixed carbon	atite. Barren					
			MINERALIZATION	Туре	Value	Comments						
				Pyrite %	2.00	occurs near fen	ite blocks and dis	sseminated in calcite rich r	natrix. Fresh.			
			ALTERATION	Туре	Value	Comments						
				Calcite %	10.00	occurs in matrix	c around fenite					
				Amphibolite %	40.00	Large chloritize	d(?) blocks.					
			STRUCTURE									
			MISCELLANEOUS	Zone	HCL	А	patite	Zircon				
				Н	W		15	0.1				
FROM 51.29	-	TO 61.14	ROCK CODE	dmiCD	=	Min Style d	Fabric m	Texture i	Litho CD	Struct		
			MAIN COMMENTS	Massive fine grained do 20cm in length). Lamina				d dolomite. Localized minc	or intervals of mottled o	calcitized carbonatite and pophyri	tic (phlogopite bearing) carbonatite	(арргох.
			MINERALIZATION	Type	Value	Comments						
				Niobates %	0.20	Minor fersmite	in porphyritic do	lomite				
				Pyrite %	2.00	Occurs as aggre	gate					
			ALTERATION	Туре	Value	Comments						
				Oxidation %	20.00	Beige carbonati	ite					
			STRUCTURE	Туре	Intens		CA°	Comments				
				Laminations %	moderate	!	30	Present only in porphyrit	ic laminae			
			MISCELLANEOUS	Zone	HCL	А	patite	Zircon				
				Н	VW		7.5	0.1				

2010-017 Log by Ryan Kressall Date Hole ID

FROM 61.14	_	TO 70.10	ROCK CODE	nlpAMX	=	Min Style n	Fabric I	Texture p	Litho AMX	Struct
			MAIN COMMENTS	moderately weathered (oxidized and decalci	fied). Phenocrysts are	composed of		(after magnetite?) an	ervals). Interval is locally inequigranular to porphyrtic. Top meter of interval is ad black pseudomorphs after phlogopite. Dark rey pseudomorphs are commonly
			MINERALIZATION	Туре	Value	Comments				
				Pyrite %	1.50	Fresh pyrite occurs v	with dark grey	pseudomorphs and as py	rite-chlorite veinlets ر	up to 2 cm thick
			ALTERATION	Туре	Value	Comments				
				Oxidation %	30.00	beige dolomite - dec	reases down i	interval		
				Amphibolite %	5.00	Blocks of fenite				
			STRUCTURE	Туре	Intens	CA	•	Comments		
				Laminations %	strong	60	1	Not visible in fenite or bre	ecciated dolomite carb	onatite
							,			
			MISCELLANEOUS	Zone	HCL	Apat	ite	Zircon		
				OX	VW	5		0.1		

2010-017 Log by Ryan Kressall Date Hole ID

FROM 70.10 -	TO 87.35	ROCK CODE	gmiCM	=	Min Style g	Fabric m	Texture i	Litho CM	Struct		
		MAIN COMMENTS	Magnetite cumulate u magnetite grains. Sma					; matrix switches to p	redominantly calcite at 79.5m. Apa	tite occurs as disseminated	aggregates around
		MINERALIZATION	Туре	Value	Comments						
			Pyrite %	1.00	minor pyrite						
			Magnetite %	55.00	Coarse grained ma	agnetite cumulate	s				
			Niobates %	2.50	suspect fersmite	after pyrochlore or	columbite as well as pr	rimary columbite (nor	n-magnetic hexagonal opaques)		
		ALTERATION	Туре	Value	Comments						
			Oxidation %	0.50	minor oxidation a	long fracture zone	S				
			Calcite %	20.00	primary calcite ma	atrix at bottom of	section				
		STRUCTURE									
		MISCELLANEOUS	Zone	HCL	Apa	atite	Zircon				
			Н	М	1:	2.5	0.5				

2010-017 Log by Ryan Kressall Date Hole ID

FROM 87.35 -	TO 93.41	ROCK CODE	dxCD	=	Min Style d	Fabric x	Texture i	Litho CD	Struct	
		MAIN COMMENTS	Intensely brecciated d fine grained massive o	olomite carbonatite - lolomite carbonatite.	coarse grained do Apatite as irregula	olomite breccia clast ar aggregates in bre	es suspended in a matrix cciated sections and wea	of fine grained dolom kly laminated in fine	nite carbontite. Minor section grained sections	ns of porphyritic (altered phlogopite) carbonatite and
		MINERALIZATION	Туре	Value	Comments					
			Niobates %	0.40	Suspect columb	bite (after pyrochlor	e?) and fersmite occuring	g as fine, disseminato	ed grains	
			Pyrite %	0.50	fine grained ag	gregates in brecciat	ed section of interval			
		ALTERATION	Туре	Value	Comments					
		ALIERATION	Oxidation %	5.00		ing in fracture zone	 PS			
						<u> </u>	· ·			
		STRUCTURE								
		MISCELLANEOUS	Zone	HCL	Δ	Apatite	Zircon			
				VW		7.5	0.5			
FROM 93.41 -	TO 120.42	ROCK CODE	nmCD	=	Min Style n	Fabric m	Texture i	Litho CD	Struct	
FROM 93.41 -		ROCK CODE MAIN COMMENTS			n	m	i	CD		tite disseminated through interval - no visible minera
			Massive inequigranlar		n	m	i	CD		tite disseminated through interval - no visible minera
		MAIN COMMENTS	Massive inequigranlar fabric	dolomite carbonatite	n e with locally breco	m	i ons (10cm long). Minor fe	CD		tite disseminated through interval - no visible minera
		MAIN COMMENTS MINERALIZATION	Massive inequigranlar fabric Type Pyrite %	dolomite carbonatite Value 2.00	n e with locally breco Comments fresh to oxidize	m iate dolomite sectio	i ons (10cm long). Minor fe	CD		tite disseminated through interval - no visible minera
		MAIN COMMENTS	Massive inequigranlar fabric Type Pyrite % Type	dolomite carbonatite Value 2.00 Value	n Comments fresh to oxidize Comments	m iate dolomite section ed as aggregates an	i ons (10cm long). Minor fe	CD		tite disseminated through interval - no visible minera
		MAIN COMMENTS MINERALIZATION	Massive inequigranlar fabric Type Pyrite %	dolomite carbonatite Value 2.00	n Comments fresh to oxidize Comments dolomitization	m iate dolomite section d as aggregates an of fenite (?)	i ons (10cm long). Minor fe d bands	CD nite blocks concentra	ited at start of interval. Apa	tite disseminated through interval - no visible minera
		MAIN COMMENTS MINERALIZATION ALTERATION	Massive inequigranlar fabric Type Pyrite % Type Dolomite %	Value 2.00 Value 10.00	n Comments fresh to oxidize Comments dolomitization	m iate dolomite section d as aggregates an of fenite (?)	i ons (10cm long). Minor fe	CD nite blocks concentra	ited at start of interval. Apa	tite disseminated through interval - no visible minera
		MAIN COMMENTS MINERALIZATION	Massive inequigranlar fabric Type Pyrite % Type Dolomite %	Value 2.00 Value 10.00	n Comments fresh to oxidize Comments dolomitization	m iate dolomite section d as aggregates an of fenite (?)	i ons (10cm long). Minor fe d bands	CD nite blocks concentra	ited at start of interval. Apa	tite disseminated through interval - no visible minera
		MAIN COMMENTS MINERALIZATION ALTERATION	Massive inequigranlar fabric Type Pyrite % Type Dolomite %	Value 2.00 Value 10.00	comments fresh to oxidize Comments dolomitization abundant iron o	m iate dolomite section d as aggregates an of fenite (?)	i ons (10cm long). Minor fe d bands	CD nite blocks concentra	ited at start of interval. Apa	tite disseminated through interval - no visible minera

2010-017 Log by Ryan Kressall Date Hole ID

FROM 120.42	TO - 137.52	ROCK CODE	nxcCD	=	Min Style n	Fabric x	Texture c	Litho CD	Struct	
		MAIN COMMENTS	Extreemly variable breco	iated, massive, and	l weakly laminated	dolomite carbon	aite. All sections appear	barren and moderately	to highly calcitized. Low apatite content (disseminated) and ve	y low zircon.
		MINERALIZATION	Туре	Value	Comments					
			Pyrite %	1.00	disseminated ar	nd as bands - all I	highly oxidized			
		ALTERATION	Туре	Value	Comments					
			Oxidation %	70.00	heavily oxidized	and calcitized th	roughout			
			Calcite %		calcitization - se	e above - not ab	le to differentiate from o	xidized sections		
		STRUCTURE								
		MISCELLANEOUS	Zone	HCL		patite	Zircon			
			Н	М		2.5	0.1			
FROM 137.52	TO - 159.67	ROCK CODE	nxcCD	=	Min Style n	Fabric x	Texture c	Litho CD	Struct	
157.52	/ס.ככו									
		MAIN COMMENTS	Strongly calcitized and of the concept (of breccia). Zircon concept (of breccia).	lecalcified light-gre entrates locally witl	y to beige dolomite 1 apatite. Phenocry	carboantite. Int ests of altered ph	erval is mostly brecciated logopite occurs locally.	d with small intervals of	lamination. Apatite occurs as aggregates and veins interstitial	to dolomite clasts
			(of breccia). Zircon conc	entrates locally witl	n apatite. Phenocry	e carboantite. Int ests of altered ph	erval is mostly brecciated logopite occurs locally.	d with small intervals of	lamination. Apatite occurs as aggregates and veins interstitial	to dolomite clasts
		MINERALIZATION	(of breccia). Zircon conc	decalcified light-greentrates locally with Value 1.00	Comments	sts of altered ph	logopite occurs locally.		lamination. Apatite occurs as aggregates and veins interstitial	to dolomite clasts
		MINERALIZATION	(of breccia). Zircon conco	entrates locally with Value 1.00	Comments Fine-grained ox	sts of altered ph	erval is mostly brecciated logopite occurs locally. urs disseminated through		lamination. Apatite occurs as aggregates and veins interstitial	to dolomite clast
			(of breccia). Zircon conco	Value 1.00 Value	Comments Fine-grained ox Comments	rsts of altered ph	logopite occurs locally.		lamination. Apatite occurs as aggregates and veins interstitial	to dolomite clasts
		MINERALIZATION	(of breccia). Zircon conco	Value 1.00 Value 70.00	Comments Fine-grained ox Comments Dark brown alte	rsts of altered ph	logopite occurs locally.		lamination. Apatite occurs as aggregates and veins interstitial	to dolomite clasts
		MINERALIZATION ALTERATION	(of breccia). Zircon conco	Value 1.00 Value 70.00 30.00	Comments Fine-grained ox Comments Dark brown alte Beige dolomite	rsts of altered ph	logopite occurs locally. Irs disseminated through		lamination. Apatite occurs as aggregates and veins interstitial	to dolomite clasts
		MINERALIZATION	(of breccia). Zircon conco	Value 1.00 Value 70.00 30.00 Intens	Comments Fine-grained ox Comments Dark brown alte Beige dolomite	ration	logopite occurs locally. urs disseminated through Comments	out interval.	lamination. Apatite occurs as aggregates and veins interstitial	to dolomite clasts
		MINERALIZATION ALTERATION	(of breccia). Zircon conco	Value 1.00 Value 70.00 30.00	Comments Fine-grained ox Comments Dark brown alte Beige dolomite	ration	logopite occurs locally. Irs disseminated through	out interval.	lamination. Apatite occurs as aggregates and veins interstitial	to dolomite clasts
		MINERALIZATION ALTERATION	(of breccia). Zircon conco	Value 1.00 Value 70.00 30.00 Intens	Comments Fine-grained ox Comments Dark brown alte Beige dolomite	ration	logopite occurs locally. urs disseminated through Comments	out interval.	lamination. Apatite occurs as aggregates and veins interstitial	to dolomite clasts

2010-017 Log by Ryan Kressall Date Hole ID

FROM 159.67	-	TO 168.50	ROCK CODE	gxCCCD	=	Min Style g	Fabric ×	Texture p	Litho CCCD	Struct	
			MAIN COMMENTS	magnetite (~ 15 % of c	umulate phase). No a	apatite occurs in brec	ciated dolomite ca	arbonatite. Zircon concer	ntrates within magn	and intense oxidation (to yellowish orange colour). Apatite occurs aggregated with etite-apatite cumulate and occurs disseminated within dolomite carbonatite (~ e phase (also point of high oxidation).	
			MINERALIZATION	Туре	Value	Comments					
				Magnetite %	10.00	Medium-grained n	nagnetite aggrega	ated with apatite			
				Pyrite %	1.00	Pyrite occurs as ag	gregated stringer	s: fresh core with oxidaiz	ed rim		
				Niobates %	1.00	Likely fine-grained	d columbite occurs	s with magnetite			
			ALTERATION	Туре	Value	Comments					
				Oxidation %	70.00	Concentrated aro	und magnetite				
				Calcite %	1.00	Minor dark brown	mottles				
			STRUCTURE								
			MISCELLANEOUS	Zone	HCL	Apa	itite	Zircon			
				OX	М		.5	0.5			

2010-017 Log by Ryan Kressall Date Hole ID

FROM 168.50	TO - 173.68	ROCK CODE	nxCD	=	Min Style n	Fabric x	Texture p	Litho CD	Struct	
		MAIN COMMENTS	Brecciated light-grey	dolomite carbonatite	with dark-brown calcitiz	zed and oxidized	d matrix. Apatite occurs	disseminated to agg	regated within calcitized matrix.	
		MINERALIZATION	Туре	Value	Comments					
			Pyrite %	1.00	Disseminated fine-g	rained oxidized	pyrite			
		ALTERATION	Туре	Value	Comments					
			Oxidation %	15.00	Orange colour along	brecciated fragr	ment boundaries			
			Calcite %	15.00	Dark brown matrix					
		STRUCTURE								
		MISCELLANEOUS	Zone	HCL	Apati	te	Zircon			
			OX	W	7.5		0			

2010-017 Log by Ryan Kressall Date Hole ID

FROM 173.68	TO - 177.71	ROCK CODE	gmCM	=	Min Style g	Fabric m	Texture c	Litho CM	Struct	
		MAIN COMMENTS	Highly oxidizied and o Zircon occurs dissemi		t with few preserved	1 areas of magnet	ite-apatite cumulate up	to 10 cm. Most of in	erval is composed of hemitized magnetite and rubble. Apar	tite occurs aggregated.
		MINERALIZATION	Туре	Value	Comments					
			Magnetite %	5.00	Hematite after ma	agnetite is also pr	esent (likely > 50 % of i	nterval).		
			Niobates %	1.50	Fine-grained colu	mbite likely prese	nt with magnetite: Like	y secondary Nb mine	ralization in oxidized cumulate	
			Pyrite %	1.50	Oxidized aggregat	es of pyrite				
		ALTERATION	Туре	Value	Comments					
			Calcite %	50.00	Dark brown interv	als (occurs commo	only with oxidation)			
			Oxidation %	80.00	Orange to red alte	ration				
		STRUCTURE								
		MISCELLANEOUS	Zone	HCL	Apa	atite	Zircon			
			OX	S		5	0.25			

MISCELLANEOUS

GEOLOGY LOG

Log by Ryan Kressall Date Hole ID **2010-017**

FROM 177.71	TO - 181.99	ROCK CODE	nmcCD	=	Min Style n	Fabric m	Texture c	Litho CD	Struct	
		MAIN COMMENTS	Brecciated to massive	ight-grey dolomite (arbonatite with p	nenocrysts of alte	red phlogopite. Apatite oc	curs aggregated withi	in brecciated segment and orient	ed within porphyritic dolomite carbonatite.
		MINERALIZATION								
		ALTERATION	Туре	Value	Comments					
			Calcite %	20.00	Dark brown mo	ttling				
			Oxidation %	20.00	Beige to orange	dolomite				
		STRUCTURE								
		MISCELLANEOUS	Zone	HCL	A	patite	Zircon			
				М		7.5	0			
FROM 181.99	TO - 190.10	ROCK CODE	nmpCC	=	Min Style	Fabric m	Texture	Litho CC	Struct	
_							P	cc		
		MAIN COMMENTS			has undergone va		xidation and decalcification	on. Apatite occurs agg	regated. Zircon occurs dissemina ed phlogopite occur as clumps up	ed in higher concentration in highly weathered to 10 cm thick.
		MAIN COMMENTS MINERALIZATION			has undergone va		xidation and decalcification	on. Apatite occurs agg		
3-			calcite carbonatite. Cal	cite carbonatite con	has undergone va tains a high abund Comments	ance of phlogopit	xidation and decalcification	on. Apatite occurs agg		
			calcite carbonatite. Cal	cite carbonatite con Value	has undergone va tains a high abund Comments Yellowish alter	ance of phlogopit	xidation and decalcification e, chloritized to various de ce after pyrochlore?	on. Apatite occurs agg		
			Type Niobates %	cite carbonatite con Value 0.75	has undergone va tains a high abund Comments Yellowish alter	ance of phlogopit	xidation and decalcification e, chloritized to various de ce after pyrochlore?	on. Apatite occurs agg		
		MINERALIZATION	Type Niobates % Magnetite %	value 0.75 2.00	has undergone va tains a high abund Comments Yellowish alter Disseminated f	ance of phlogopit ed grains - fersmit ine-grained magn	xidation and decalcification e, chloritized to various de ce after pyrochlore?	on. Apatite occurs agg		
		MINERALIZATION	Type Niobates % Magnetite % Type	Value 0.75 2.00 Value	has undergone va tains a high abund Comments Yellowish alter Disseminated f	ance of phlogopit ed grains - fersmit ine-grained magn long fractures	xidation and decalcification e, chloritized to various de ce after pyrochlore?	on. Apatite occurs agg		

Apatite

5

Zircon

0.5

HCL

VS

Zone

OX

2010-017 Log by Ryan Kressall Date Hole ID

FROM 190.10	TO - 195.43	ROCK CODE	nmfgCD	=	Min Style n	Fabric m	Texture fg	Litho CD	Struct			
		MAIN COMMENTS	Massive to slightly bre concentrated with apa		omite carbonatite with	n localized occura	ince of phenocrysts of al	tered phlogopite and	l altered magnetite. Apatite occurs	as disseminated agg	regates. Zircon occurs	
		MINERALIZATION	Туре	Value	Comments							
			Pyrite %	1.00	Dissemined oxidize	d aggregates up	to 1 mm in diameter and	l rimming altered ma	gnetite.			
		ALTERATION	Type Oxidation %	Value 10.00	Comments Orange dolomite							
			Calcite %	10.00	_	ractures and mat	rix in brecciated area					
		STRUCTURE	culcite //	10.00	J Bank Brown Gong III		X III Diceciated dice					
		MISCELLANEOUS	Zone	HCL	Apat	tite	Zircon					
			OX	W	1.5	5	0.75					

2010-017 Log by Ryan Kressall Date Hole ID

FROM TO 195.43 - 204.19	ROCK CODE	gmiCM	=	Min Style g	Fabric m	Texture i	Litho CM	Struct	
	MAIN COMMENTS		cumulate has been	extensively oxidized an	d weathered in	places to hematite (rus		nates towards top half of interval, while calcite carbonatite dominates bottom n-magnetic). Dolomite carbonatite towards top of interval has a series of	
	MINERALIZATION	Туре	Value	Comments					
		Pyrite %	0.25	Rare stringer of fresh	to oxidized pyr	ite			
		Magnetite %	40.00	Occurs massively (fin	e-grained) and (disseminated within ca	lcite carbonatite (fin	e- to medium-grained), and aggregated with apatite	
		Niobates %	1.50	Suspect yellow fine-g	grained fersmite	in porphyritic carbona	tite; black fine-grain	ed columbite likely occurs with magnetite.	
	ALTERATION	Туре	Value	Comments					
		Calcite %	10.00	Dark-brown calcitizat	tion concentrate	es along fractrures of d	lolomite carbonatite.		
	STRUCTURE								
	MISCELLANEOUS	Zone	HCL	Apatit	te	Zircon			
		OX	M	12.5		0.25			
	ALTERATION STRUCTURE	Pyrite % Magnetite % Niobates % Type Calcite % Zone	0.25 40.00 1.50 Value 10.00	Rare stringer of fresh Occurs massively (fine- Suspect yellow fine-g Comments Dark-brown calcitizat Apatit	e-grained) and organized grained fersmited to the second grain and	disseminated within ca in porphyritic carbona es along fractrures of d Zircon	tite; black fine-grain	ed columbite likely occurs with magnetite.	

2010-017 Log by Ryan Kressall Date Hole ID

FROM 204.15	TO - 210.19	ROCK CODE	nmiCD	=	Min Style n	Fabric m	Texture i	Litho CD	Struct	
		MAIN COMMENTS	Moderately calcitized throughout interval. 2			arbonatite. Interva	al is inequigranular to loca	lly porphyritic. Pheno	ocrysts consist of altered phlog	opite (or magnetite). Apatite occurs disperse
		MINERALIZATION	Туре	Value	Comments					
			Pyrite %	3.00	Abundant fine-g	grained oxidized p	yrite occurs disseminated	and as small stringe	rs.	
		ALTERATION	Туре	Value	Comments					
			Calcite %	40.00	Medium to dark	-brown discoloura	tion of dolomite carbonat	ite (moderate to stro	ong reaction to HCI)	
			Oxidation %	20.00	Beige dolomite:	concentrated alon	g fractures and near pyrite	е		
		STRUCTURE								
		MISCELLANEOUS	Zone	HCL	A	patite	Zircon			
			OX	М		7.5	0.1			
FROM 210.19	TO - 214.93	ROCK CODE	dmiCD	=	Min Style d	Fabric m	Texture i	Litho CD	Struct	
		ROCK CODE MAIN COMMENTS			d	m	i	CD		sts of altered phlogopite and magnetite (?) occur
			Slightly calcitized ine		d	m	i	CD		sts of altered phlogopite and magnetite (?) occur
		MAIN COMMENTS	Slightly calcitized ined locally.	quigranular medim-gr	d ey dolomite carbon	m natite. Apatite occ	i	CD		sts of altered phlogopite and magnetite (?) occur
		MAIN COMMENTS	Slightly calcitized ineclocally.	quigranular medim-gr Value	ey dolomite carbon Comments Fresh to oxidize	m natite. Apatite occ d disseminated ar	i urs disseminated to aggre nd aggregated pyrite.	CD egate. Zircon occurs l	ocally disseminated. Phenocry	e nearby oxidized pyrite) occur locally
		MAIN COMMENTS	Slightly calcitized ineclocally. Type Pyrite %	quigranular medim-gr Value 0.75	ey dolomite carbon Comments Fresh to oxidize	m natite. Apatite occ d disseminated ar	i urs disseminated to aggre nd aggregated pyrite.	CD egate. Zircon occurs l	ocally disseminated. Phenocry	
		MAIN COMMENTS MINERALIZATION	Slightly calcitized ineclocally. Type Pyrite % Niobates %	Quigranular medim-gr Value 0.75 0.75	ey dolomite carbon Comments Fresh to oxidize Disseminated ye Comments	m natite. Apatite occ d disseminated ar	i urs disseminated to aggre nd aggregated pyrite. ey fine-grained fersmite a	CD egate. Zircon occurs l	ocally disseminated. Phenocry	
		MAIN COMMENTS MINERALIZATION	Slightly calcitized ineclocally. Type Pyrite % Niobates % Type	Value 0.75 0.75 Value	ey dolomite carbon Comments Fresh to oxidize Disseminated ye Comments	m natite. Apatite occ d disseminated ar ellowish to dark gr	i urs disseminated to aggre nd aggregated pyrite. ey fine-grained fersmite a	CD egate. Zircon occurs l	ocally disseminated. Phenocry	
		MAIN COMMENTS MINERALIZATION ALTERATION	Slightly calcitized ineclocally. Type Pyrite % Niobates % Type	Value 0.75 0.75 Value	ey dolomite carbon Comments Fresh to oxidize Disseminated ye Comments Medium-brown	m natite. Apatite occ d disseminated ar ellowish to dark gr	i urs disseminated to aggre nd aggregated pyrite. ey fine-grained fersmite a	CD egate. Zircon occurs l	ocally disseminated. Phenocry	

Printed on 10/Feb/2011

GEOLOGY LOG

Log by	Ryan Kressall	Date	Hole ID	2010-017

End of Hole End of Hole

Measurement unit: Metres (Unless otherwise specified)

Hole ID 2010-018	
-------------------------	--

	GENERAL INFORMATION					
Coordinate System	Easting	Northing	Elevation	Collar Azimuth	Collar Dip	
ST. PL Nad 83	454331.71	6256677.03	1654.53	20.00	-55.00	
Start Depth	Final Depth	Proposed Depth	Final Length	Rig	Area	
0.00	152.45		152.45		Central 1	
Operator	Year					
Taseko	2010					

	PROFESSIONAL /	TECHNICIAN	
	Name	Start Date	End Date
Collar Surveyor	Ryan Kressall	02/Sep/2010	
Geology Logged By	Ryan Kressall		
Specific Gravity By	Steve Dumma		
Geotech Logged By	Steve Dumma	09/Aug/2010	
Drill Contractor		04/Aug/2010	06/Aug/2010

SUMMARY

DRILLING BIT SIZE				
Bit Size	From	То	Length	
NW (Casing)	0.00	6.09	6.09	
NQ	6.09	152.45	152.45	

DOWN HOLE SURVEY						
Depth	Azimuth	Dip	Temp °C	Mag.	Roll	Method
21.34	21.20	-56.90	13.1	5734	160.3	Reflex EZ-shot
51.82	22.70	-56.90	12.8	5719	53.5	Reflex EZ-shot
82.30	23.20	-57.00	12.7	5738	116.8	Reflex EZ-shot
112.78	23.70	-57.20	13.5	5730	295.6	Reflex EZ-shot
143.26	23.70	-57.20	14.7	5694	152.5	Reflex EZ-shot

GEOLOGY LEGEND

Hole ID **2010-018**

ROCK CODE

MIN STYLE				
Abbr.	Description			
n	barren			
d	disseminated			
g	aggregated			
b	banded			
b	banded			

	FABRIC
Abbr.	Description
Х	brecciated
ı	laminated
f	decalcified
V	veined
р	porphyritic
m	massive

	TEXTURE
Abbr.	Description
f	decalcified
р	porphyritic
V	veined

	LITHO
Abbr.	Description
CASE	Casing
OVBN	Overburden
OXID	Oxide
AM	Amphibolite
CC	Calcite Carbonatite
CD	Dolomite Carbonatite
CCCD	Mixed Calcite and Dolomite Carbonatite
AMX	Amphibole and Mixed Carbonatite
CM	Carbonatite Cumulate

STRUCT								
Abbr.	Description							
Z	fault							
е	strained							
S	shear zone							
У	dyke							

MISCELLANEOUS:

ZONE									
Abbr.	Description								
OX	Oxide								
S	Supergene								
Н	Hypogene								

HCL
Description
very weak
weak
moderate
strong
very strong

2010-018 Log by Ryan Kressall Date Hole ID

MAIN COMMENTS ALTERATION STRUCTURE MISCELLANEOUS Zone HCL Apatite Zircon Texture Litho Struct Texture Litho Struct MINERALIZATION TO ROCK CODE MAIN COMMENTS Light-grey dolomite carbonatite. Phenocrysts consist of dolomitized philogopite (?). Apatite occurs disseminated to weakly laminated. Zircon occurs disseminated throughout interval. MINERALIZATION Type Value Comments Nobates % 0.10 Rare suspect fine-grained yellow fersmite - shows some similarities to limonitized pyrite Pyrite % 2.00 Fine-grained oxidized pyrite (some show yellow colour of limonite) occurs disseminated and as stringers. ALTERATION Type Value Comments Oxidation % 10.00 Lacilezé dark brown calcitization of dolomites Laminations % wesk 40 Visible in apatite laminae and westhered pyrite stringers	FROM 0.00	-	TO 6.09	ROCK CODE	CASE	=	Min Style	Fabric	Texture	Litho CASE	Struct	
ALTERATION STRUCTURE MISCELLANEOUS Zone HCL Apatite Zircon				MAIN COMMENTS	No rock							
FROM TO 6.09 - 12.09 ROCK CODE dmpCD = Min Style Fabric Texture Litho Struct D CD MAIN COMMENTS Light-grey dolomite carbonatite. Phenocrysts consist of dolomitized phlogopite (?). Apatite occurs disseminated to weakly laminated. Zircon occurs disseminated throughout interval. MINERALIZATION Type Value Comments Niobates % 0.10 Rare suspect fine-grained yellow fersmite - shows some similarities to limonitized pyrite Pyrite % 2.00 Fine-grained oxidized pyrite (some show yellow colour of limonite) occurs disseminated and as stringers. ALTERATION Type Value Comments Oxidation % 10.00 Beige dolomite - concentrated around oxidized pyrite stringers Calcite % 10.00 Localized dark brown calcitization of dolomite Type Intens CA* Comments				MINERALIZATION								
FROM TO 6.09 - 12.09 ROCK CODE dmpCD = Min Style Fabric Texture Litho Struct MINERALIZATION Type Value Comments Niobates % 0.10 Rare suspect fine-grained vellow fersmite - shows some similarities to limonitized pyrite Pyrite % 2.00 Fine-grained oxidized pyrite (some show yellow colour of limonite) occurs disseminated and as stringers. ALTERATION Type Value Comments Oxidation % 10.00 Beige dolomite - concentrated around oxidized pyrite stringers Calcite % 10.00 Localized dark brown calcitization of dolomite Type Intens CA* Comments				ALTERATION								
FROM TO 6.09 - 12.09 ROCK CODE dmpCD = Min Style Fabric Texture DCD CO MAIN COMMENTS Light-grey dolomite carbonatite. Phenocrysts consist of dolomitized phlogopite (?). Apatite occurs disseminated to weakly laminated. Zircon occurs disseminated throughout interval. MINERALIZATION Type Value Comments Niobates % 0.10 Rare suspect fine-grained yellow fersmite - shows some similarities to limonitized pyrite Pyrite % 2.00 Fine-grained oxidized pyrite (some show yellow colour of limonite) occurs disseminated and as stringers. ALTERATION Type Value Comments Oxidation % 10.00 Belge dolomite - concentrated around oxidized pyrite stringers Calcite % 10.00 Localized dark brown calcitization of dolomite STRUCTURE Type Intens CA* Comments				STRUCTURE								
MAIN COMMENTS Light-grey dolomite carbonatite. Phenocrysts consist of dolomitized phlogopite (?). Apatite occurs disseminated to weakly laminated. Zircon occurs disseminated throughout interval. MINERALIZATION Type Value Comments Niobates % 0.10 Rare suspect fine-grained yellow fersmite - shows some similarities to limonitized pyrite Pyrite % 2.00 Fine-grained oxidized pyrite (some show yellow colour of limonite) occurs disseminated and as stringers. ALTERATION Type Value Comments Oxidation % 10.00 Beige dolomite - concentrated around oxidized pyrite stringers Calcite % 10.00 Localized dark brown calcitization of dolomite STRUCTURE Type Intens CA* Comments				MISCELLANEOUS	Zone	HCL		Apatite	Zircon			
MAIN COMMENTS Light-grey dolomite carbonatite. Phenocrysts consist of dolomitized phlogopite (?). Apatite occurs disseminated to weakly laminated. Zircon occurs disseminated throughout interval. MINERALIZATION Type Value Comments Niobates % 0.10 Rare suspect fine-grained yellow fersmite - shows some similarities to limonitized pyrite Pyrite % 2.00 Fine-grained oxidized pyrite (some show yellow colour of limonite) occurs disseminated and as stringers. ALTERATION Type Value Comments Oxidation % 10.00 Beige dolomite - concentrated around oxidized pyrite stringers Calcite % 10.00 Localized dark brown calcitization of dolomite STRUCTURE Type Intens CA* Comments												
MINERALIZATION Type Value Comments Niobates % 0.10 Rare suspect fine-grained yellow fersmite - shows some similarities to limonitized pyrite Pyrite % 2.00 Fine-grained oxidized pyrite (some show yellow colour of limonite) occurs disseminated and as stringers. ALTERATION Type Value Comments Oxidation % 10.00 Beige dolomite - concentrated around oxidized pyrite stringers Calcite % 10.00 Localized dark brown calcitization of dolomite STRUCTURE Type Intens CA° Comments		-		ROCK CODE	dmpCD	=					Struct	
Niobates % 0.10 Rare suspect fine-grained yellow fersmite - shows some similarities to limonitized pyrite Pyrite % 2.00 Fine-grained oxidized pyrite (some show yellow colour of limonite) occurs disseminated and as stringers. Type Value Comments Oxidation % 10.00 Beige dolomite - concentrated around oxidized pyrite stringers Calcite % 10.00 Localized dark brown calcitization of dolomite STRUCTURE Type Intens CA° Comments				MAIN COMMENTS	Light-grey dolomite car	bonatite. Phenocrys	s consist of do	olomitized phlogop	ite (?). Apatite occurs diss	eminated to weakly lam	inated. Zircon occurs disseminated throughout interval.	
ALTERATION Type Value Comments Oxidation % 10.00 Beige dolomite - concentrated around oxidized pyrite stringers Calcite % 10.00 Localized dark brown calcitization of dolomite Type Intens CA° Comments Comments				MINERALIZATION	Туре	Value	Rare suspect fine-grained yellow fersmite - shows some similarities to limonitized pyrite					
ALTERATION Type Value Comments Oxidation % 10.00 Beige dolomite - concentrated around oxidized pyrite stringers Calcite % 10.00 Localized dark brown calcitization of dolomite STRUCTURE Type Intens CA° Comments												
Oxidation % 10.00 Beige dolomite - concentrated around oxidized pyrite stringers Calcite % 10.00 Localized dark brown calcitization of dolomite STRUCTURE Type Intens CA° Comments					Pyrite %	2.00	Fine-grained	oxidized pyrite (so	me show yellow colour of	limonite) occurs dissem	inated and as stringers.	
Calcite % 10.00 Localized dark brown calcitization of dolomite STRUCTURE Type Intens CA° Comments				ALTERATION	Туре	Value	Comments	5				
STRUCTURE Type Intens CA° Comments					Oxidation %	10.00				ngers		
					Calcite %	10.00	Localized da	rk brown calcitizati	on of dolomite			
Laminations % weak 40 Visible in apatite laminae and weathered pyrite stringers				STRUCTURE	Туре	Intens		CA°	Comments			
										e and weathered pyrite	stringers	
MISCELLANEOUS Zone HCL Apatite Zircon				MISCELL ANEOLIS	7one	нсі		Anatite	Zircon			
0X W 5 0.1				MIJCELEAREOUS								

Printed on 10/Feb/2011

2010-018 Log by Ryan Kressall Date Hole ID

FROM 12.09	TO - 15.43	ROCK CODE	dmfgCD	=	Min Style d	Fabric m	Texture fg	Litho CD	Struct
		MAIN COMMENTS	Slightly decalcified ligh	t- to medium grey do	olomite carbonait	e. Apatite occurs ag	gregated to weakly lami	nated.	
		MINERALIZATION	Туре	Value	Comments				
			Niobates %	0.10	Rare suspect fi	ne-grained yellow to	o dark-grey fersmite: gre	eater potential in top 1	1.5 m of interval
			Pyrite %	0.50	Oxidized fine-g	grained pyrite occurs	disseminated and in st	ringers. Looks as thou	gh much of pyrite has weathered away leaving small equant and elongated
		ALTERATION	Туре	Value	Comments				
			Calcite %	5.00	Dark brown mo	ottles of calcitization	1		
			Oxidation %	2.50	Minor beige-co	loued dolomite cond	centated along veins		
		STRUCTURE	Туре	Intens		CA° C	omments		
			Laminations %	weak		40			
			Veining %	weak		10 F	racture infilled seconday	/ minerals (clay minera	als?). Thinner Irregular infilled factures occur off main fracture (at 80 degrees)
		MISCELLANEOUS	Zone	HCL		Apatite	Zircon		
			OX	W		10	0.5		

2010-018 Log by Ryan Kressall Date Hole ID

FROM 15.43	TO - 25.57	ROCK CODE	dlpCD	=	Min Style d	Fabric I	Texture p	Litho CD	Struct	
		MAIN COMMENTS	Moderately calcitized t disseminated.	o decalcified porphyr	itic light-grey dolom	ite carbonatite. F	henocrysts are compose	ed of dolomitized mag	netite (?). Apatite occurs oriented to weakly laminated. Zircon occurs	
		MINERALIZATION	Туре	Value	Comments					
			Niobates %	0.25	Few suspect pink	- to yellow fine-gi	ained fersmite: one pinl	k grained is rimmed by	zircon	
			Pyrite %	1.50	Fine-grained oxid	ized pyrite occurs	disseminated and comr	nonly associated (som	etimes as rims) with phenocrysts.	
		ALTERATION	Туре	Value	Comments					
			Oxidation %	10.00	Beige to pink dolo	omite				
			Calcite %	25.00	Dark brown segm	ent ~ 1.25 m and s	small irregular mottles. (Calcitizition follows lar	nination in first 1.5 m of interval	
		STRUCTURE	Туре	Intens	(CA° C	omments			
			Laminations %	moderate		40				
		MISCELLANEOUS	Zone	HCL	Λn	atite	Zircon			
		MISCELLAINEUUS	OX	M		7.5	0.1			
			UX	IVI		7.5	0.1			

2010-018 Log by Ryan Kressall Date Hole ID

FROM 25.57 -	TO 33.54	ROCK CODE	nliCD	=	Min Style n	Fabric I	Texture i	Litho CD	Struct	
		MAIN COMMENTS		um-brown). Dolomit	e is locally fine- to me	dium-grained i			fenite but composed entirely of dolomite of en to blue fenite occurs at around 29.1 m. A	
		MINERALIZATION	Type	Value	Comments					
			Pyrite %	2.00	Stringers and aggre	gates up to 1 cn	n thick of oxidized pyrite	occurs disseminated	throughout laminated dolomite carbonatit	e. Ovoid dolomite is void of pyrite.
		ALTERATION	Type Dolomite %	Value 45.00	Comments of fenite blocks?					
			Amphibolite %	5.00	Single coarse-graine	ed rounded bloc	k occurs adjacent to med	lium-grey to mediun	n-brown ovoid dolomite	
		STRUCTURE	Type Laminations %	Intens	CA 35		omments	in laminated dolomi	te and conforms to ovoid dolomite and rour	nded fenite block
		MISCELLANEOUS	Zone	HCL	Apat		Zircon			
		·····SCEEEAREOOS	OX	VW	7.5		0.1	<u> </u>		
					'					

2010-018 Log by Ryan Kressall Date Hole ID

FROM TO 33.54 - 41.28	ROCK CODE	gmiAMX	=	Min Style g	Fabric m	Texture i	Litho AMX	Struct	
	MAIN COMMENTS	Interval is composed of with a high concentrati						ovoid texture observed in fenite. Interval is locally inequigranular to porph regated.	yritic
	MINERALIZATION	Туре	Value	Comments					
		Niobates %	0.25	Yellowish grey fine-	grained fersmite	(after pyrochlore?) occ	urs near fenite-carbo	natite boundary in carbonatite	
		Pyrite %	0.50	Uncommon fine-gra	ained stringers ar	nd aggregates of oxidiz	ed pyrite occur locally		
	ALTERATION	Туре	Value	Comments					
		Calcite %	15.00	Blue fenite (riebeck	ite?) reacts mode	erately to HCI: calcitized	d fenite?		
		Dolomite %	45.00	of fenite blocks?					
		Amphibolite %	50.00	Green to blue round	led blocks				
	STRUCTURE								
	MISCELLANEOUS	Zone	HCL	Apat	ite	Zircon			
		OX	W	2.5	i	0.1			

2010-018 Log by Ryan Kressall Date Hole ID

FROM 41.28 -	TO 47.59	ROCK CODE	dmpCD	=	Min Style d	Fabric m	Texture p	Litho CD	Struct	
		MAIN COMMENTS		brecciated texture.					ohlogopite (?) and a high abundance of e blocks. Apatite occurs dispersed thro	oxidized pyrite. Interval has minor ughout dolomite carbonatite. Zircon occurs
		MINERALIZATION	Туре	Value	Comments					
			Pyrite %	3.50	Disseminated to o	riented fine-grain	ed fresh to highly oxid	ized pyrite. Some oxid	lized pyrites appear to be weathered or	ut leaving small pits in rock
			Niobates %	0.10	Suspect highly-we	eathered fine-grain	ned yellow grains: may	just be limonite after	pyrite	
		ALTERATION	Туре	Value	Comments					
			Oxidation %	30.00	Beige to pink dolo	mite				
		STRUCTURE	Туре	Intens	С	A° Co	mments			
			Laminations %	weak		30 On	ly locally present on a	scale of 10 to 20 cm		
		MISCELLANEOUS	Zone	HCL	Apa	itite	Zircon			
			OX	VW	12	2.5	0.1			

2010-018 Log by Ryan Kressall Date Hole ID

FROM 47.59	TO - 64.52	ROCK CODE	ICD	=	Min Style	Fabric I	Texture	Litho CD	Struct	
		MAIN COMMENTS	Laminated to ovoid text occurs disperse to weak	ture light-grey to be ly laminated in lami	ige dolomite carbo inated dolomite ca	natite. Interval rbonatite. Zirco	is inequigranular to locallly pon occurs in small clusters in	porphyritic. Phenocrys porphyritic segments.	s consist of dolomitized magnetite (?) - partially altered to pyrite. A No Nb-mineralization observed.	patite
		MINERALIZATION	Туре	Value	Comments					
			Pyrite %	3.00	Fresh pyrite occ	urs locally aggre	egated.			
		ALTERATION	Туре	Value	Comments					
			Dolomite %	80.00	Of fenite? Remr	nant ovoid textu	ure of fenite			
		STRUCTURE	Туре	Intens		CA°	Comments			
		SINGEIGNE	Laminations %	weak		40	Locally present			
		MISCELLANEOUS	Zone	HCL	^	patite	Zircon			
		MISCELLANEOUS	Zone	VW	A	5	0.25			
				<u> </u>						
FROM 64.52	TO - 72.00	ROCK CODE	nmiCD	=	Min Style n	Fabric m	Texture i	Litho CD	Struct	
			Dominantly massive-m	ottled light-grey to (n dark-grey dolomte	m carbonatite wit	i :h minor blue fenite at top o	CD finterval and minor sr	Struct nall intervals with blobs of calcite (visible with UV lamp but with wea . Zircon occurs disseminated.	k reaction
			Dominantly massive-m	ottled light-grey to (n dark-grey dolomte	m carbonatite wit	i :h minor blue fenite at top o	CD finterval and minor sr	nall intervals with blobs of calcite (visible with UV lamp but with wea	k reaction
		MAIN COMMENTS	Dominantly massive-moto HCI). Interval is generated	ottled light-grey to orally inequigranular	n dark-grey dolomte with uncommon pl	m carbonatite wit henocrysts of al	i th minor blue fenite at top o Itered phlogopite. Apatite oc	CD finterval and minor sr	nall intervals with blobs of calcite (visible with UV lamp but with wea	k reaction
FROM 64.52		MAIN COMMENTS	Dominantly massive-meto HCI). Interval is generated Type	ottled light-grey to o ally inequigranular o Value	n dark-grey dolomte with uncommon p Comments	m carbonatite wit henocrysts of al	i th minor blue fenite at top o Itered phlogopite. Apatite oc	CD finterval and minor sr	nall intervals with blobs of calcite (visible with UV lamp but with wea	k reaction
		MAIN COMMENTS MINERALIZATION	Dominantly massive-mito HCI). Interval is generated Type Pyrite %	ottled light-grey to o ally inequigranular o Value 2.50	n dark-grey dolomte with uncommon plood Comments Form large aggre	m carbonatite wit henocrysts of al egates from 1 to	i ch minor blue fenite at top o ltered phlogopite. Apatite oc o 10 cm.	CD finterval and minor sr	nall intervals with blobs of calcite (visible with UV lamp but with wea	k reaction
		MAIN COMMENTS MINERALIZATION	Dominantly massive-meto HCI). Interval is generated Type Pyrite % Type	ottled light-grey to o rally inequigranular v Value 2.50 Value	n dark-grey dolomte with uncommon pl Comments Form large aggre Comments	m carbonatite wit henocrysts of al egates from 1 to ock partially dolo	i ch minor blue fenite at top o ltered phlogopite. Apatite oc o 10 cm.	CD finterval and minor sr	nall intervals with blobs of calcite (visible with UV lamp but with wea	k reaction
		MAIN COMMENTS MINERALIZATION	Dominantly massive-meto HCI). Interval is generated Type Pyrite % Type Amphibolite %	ottled light-grey to deally inequigranular of Value 2.50 Value 5.00	n dark-grey dolomte with uncommon pi Comments Form large aggre Comments Blue to black blo Beige to pink do	m carbonatite wit henocrysts of al egates from 1 to ock partially dolo	i ch minor blue fenite at top o ltered phlogopite. Apatite oc o 10 cm.	CD finterval and minor sr	nall intervals with blobs of calcite (visible with UV lamp but with wea	k reaction
		MAIN COMMENTS MINERALIZATION ALTERATION	Dominantly massive-mito HCI). Interval is generated Type Pyrite % Type Amphibolite % Oxidation %	value 2.50 Value 5.00	n dark-grey dolomte with uncommon pi Comments Form large aggre Comments Blue to black blo Beige to pink do	m carbonatite wit henocrysts of al egates from 1 to ock partially dolo	i ch minor blue fenite at top o ltered phlogopite. Apatite oc o 10 cm.	CD f interval and minor sr curs weakly laminate	nall intervals with blobs of calcite (visible with UV lamp but with wea	k reaction
		MAIN COMMENTS MINERALIZATION ALTERATION	Dominantly massive-meto HCI). Interval is generated Type Pyrite % Type Amphibolite % Oxidation % Type	value 2.50 Value 5.00 Intens	n dark-grey dolomte with uncommon pload to be comments Comments Comments Blue to black bload Beige to pink do	m carbonatite wit henocrysts of al egates from 1 to ock partially dolo lomite CA°	i th minor blue fenite at top or ltered phlogopite. Apatite oc to 10 cm. comitized Comments	CD f interval and minor sr curs weakly laminate	nall intervals with blobs of calcite (visible with UV lamp but with wea	k reaction

2010-018 Log by Ryan Kressall Date Hole ID

FROM 72.00	-	TO 78.33	ROCK CODE	gmiAMX	=	Min Style g	Fabric m	Texture i	Litho AMX	Struct	
			MAIN COMMENTS	bottom of interval, co	mmonly as veins up t	o 10 cm thick in fenite	blocks. Dolomite	carbonatite is domina	ıntly inequigranular w	inates towards top of interval. Cream calcite carbonatite is more common towards ith locallized phenocrysts of altered black phlogopite. Calcite carbonatite are ed throughout interval. Zircon occurs disseminated throughout interval.	
			MINERALIZATION	Туре	Value	Comments					
				Pyrite %	0.50	Disseminated fine-	-graned to aggreg	ated up to 1 cm: domin	antly oxidized, minor	fresh pyrite	
				Niobates %	0.10	Pale-yellow to grey	fine-grained fers	mite occur near contac	t with fenite		
			ALTERATION	Туре	Value	Comments					
				Silica %	1.00	Minor silicification					
				Dolomite %	15.00	Of fenite blocks to	medium-grey col	our			
				Amphibolite %	70.00	Green to blue block	s dolomitized to	various degrees			
			STRUCTURE								
			MISCELLANEOUS	Zone	HCL	Apa	tite	Zircon			
					М	5	j	0.1			

2010-018 Log by Ryan Kressall Date Hole ID

FROM TO 78.33 - 95.12	ROCK CODE	nmiAMX	=	Min Style n	Fabric m	Texture i	Litho AMX	Struct	
	MAIN COMMENTS		occurs dispersed to v					Phenocrysts consist of black altered phlogopite and dolomitized dark-grey sseminated in dolomite carbonatite and in lower concentration in fenite. No	
	MINERALIZATION	Туре	Value	Comments					
		Pyrite %	1.50	Disseminated to a	aggregated.				
	ALTERATION	Type	Value	Comments					_
		Amphibolite %	15.00	Dark-greenish gre	y to bluish green fe	enite blocks occur irre	gularly throughout inte	rval	
		Silica %	1.00	Minor silicification	n of matrix				
		Oxidation %	2.00	Beige to pink dolo	mite				
	STRUCTURE								
	MISCELLANEOUS	Zone	HCL	Apa	atite	Zircon			
		OX	VW		5	0.1			

2010-018 Log by Ryan Kressall Date Hole ID

FROM 95.12	TO - 103.53	ROCK CODE	dmpCD	=	Min Style d	Fabric m	Texture p	Litho CD	Struct	
		MAIN COMMENTS					mite carbonatite. Pheno occurs disseminated thro		e-grained altered phlogopite and pyrite aggregates. Apatite occurs dispersed in	
		MINERALIZATION	Туре	Value	Comments					
			Pyrite %	1.50	Disseminated fres	h pyrite occurs wi	th altered phlogopite			
			Niobates %	1.00	, ,	, , ,	o black hard octahedral o smite pseudomorphs	crystals: may be pyro	chlore. Downhole where inequigranular texture increases, grains appear more	
		ALTERATION	Туре	Value	Comments					
			Silica %	2.50	Localized silicifica	tion of matrix				
		STRUCTURE								
		MISCELLANEOUS	Zone	HCL	Apa	tite	Zircon			
			OX	VW	!	5	0.1			

2010-018 Log by Ryan Kressall Date Hole ID

FROM TO 103.53 - 110.91	ROCK CODE	dmiAMX	=	Min Style d	Fabric m	Texture i	Litho AMX	Struct
	MAIN COMMENTS	Inequigranular light-gr magentic dark-grey mi					te occurs aggregated.	Zircon occurs disseminated throughout interval. A aggregate of a metallic non-
	MINERALIZATION	Туре	Value	Comments				
		Pyrite %	2.00	Larger aggregates up carbonatite	p to 2-3 cm of fre	esh pyrite concentrate	within dolomitized fe	enite: smaller aggregates up to 1 cm occur within inequigranular dolomite
		Niobates %	0.25	Suspect rare yellow	grains occuring ir	n inequigranular dolom	nite carbonatite: poss	ibly fermsite
	ALTERATION	Туре	Value	Comments				
		Amphibolite %	35.00			mitized to various exte	ents	
		Dolomite %	15.00	Of fenite clasts - to i	medium-grey col	our		
		Silica %	2.00	Minor silicification o	f matrix			
		Oxidation %	20.00	Beige dolomite				
	STRUCTURE							
	MISCELLANEOUS	Zone	HCL	Apati	te	Zircon		
		OX	VW	2.5		0		

2010-018 Log by Ryan Kressall Date Hole ID

FROM 110.91	TO - 119.69	ROCK CODE	dmpCD	=	Min Style d	Fabric m	Texture p	Litho CD	Struct	
		MAIN COMMENTS	Dominantly porphyrition occurs disseminated the		nular light-grey dolo	omite carbonatite	e. Phenocrysts are compos	ed of altereed phlogo	pite with abundant pyrite. Apatite occurs aggregated	to weakly laminated. Zircor
		MINERALIZATION	Туре	Value	Comments					
			Pyrite %	1.50	Disseminated to	aggregated with	altered phlogopite: locally	y oxidized		
			Niobates %	0.25	Fine-grained pal	le-yellow to yellow	wish grey grains: possibly t	fersmite		
		ALTERATION	Туре	Value	Comments					
			Oxidation %	10.00	Localized beige	dolomite				
			Silica %	5.00	Locallized silicifi	ication including a	a 3 cm band oriented at 10	degrees to core		
		STRUCTURE								
		MISCELLANEOUS	Zone	HCL	Aj	patite	Zircon			
			OX	VW		10	0.75			
FROM 119.69	TO - 127.86	ROCK CODE	nmCD	=	Min Style n	Fabric m	Texture fg	Litho CD	Struct	
		ROCK CODE MAIN COMMENTS	Dominantly inequigran	ular light-grey to be	n ige dolomite carbor	m natite with few po	fg ods of porphyritic dolomite	CD e carbonaite. Uncomr	Struct non phenocrysts consist of altered phlogopite. Carbon ts. A large ~2 m segment of partially decalcified dolor	atite is essentially nite carbonatite occurs at
			Dominantly inequigran	ular light-grey to be	n ige dolomite carbor	m natite with few po	fg ods of porphyritic dolomite	CD e carbonaite. Uncomr	non phenocrysts consist of altered phlogopite. Carbon	atite is essentially nite carbonatite occurs at
		MAIN COMMENTS	Dominantly inequigran composed of only dolo around 123 m.	ular light-grey to be nite with dissemina	n ige dolomite carbor ited apatite and und Comments	m natite with few po common oxidized	fg ods of porphyritic dolomite	CD e carbonaite. Uncomr es in porphyry segmer	non phenocrysts consist of altered phlogopite. Carbon ts. A large ~2 m segment of partially decalcified dolo	atite is essentially nite carbonatite occurs at
		MAIN COMMENTS	Dominantly inequigran composed of only dolo around 123 m.	ular light-grey to be nite with dissemina Value	n ige dolomite carbor ited apatite and und Comments	m natite with few po common oxidized	fg ods of porphyritic dolomit I pyrite. Apatite aggregate	CD e carbonaite. Uncomr es in porphyry segmer	non phenocrysts consist of altered phlogopite. Carbon ts. A large ~2 m segment of partially decalcified dolo	atite is essentially nite carbonatite occurs at
		MAIN COMMENTS MINERALIZATION	Dominantly inequigran composed of only dolo around 123 m.	ular light-grey to be nite with dissemina Value	n ige dolomite carbor ited apatite and und Comments Disseminated fire	m natite with few po common oxidized ne-grained oxidiz	fg ods of porphyritic dolomit I pyrite. Apatite aggregate	CD e carbonaite. Uncomr es in porphyry segmer	non phenocrysts consist of altered phlogopite. Carbon ts. A large ~2 m segment of partially decalcified dolo	atite is essentially nite carbonatite occurs at
		MAIN COMMENTS MINERALIZATION ALTERATION	Dominantly inequigran composed of only dolo around 123 m. Type Pyrite %	ular light-grey to be mite with dissemina Value 0.25	n ige dolomite carbor ited apatite and und Comments Disseminated fire	m natite with few po common oxidized ne-grained oxidiz CA°	fg ods of porphyritic dolomito I pyrite. Apatite aggregate ed pyrite and forms string	CD e carbonaite. Uncomr es in porphyry segmer ers and irregualar vei	non phenocrysts consist of altered phlogopite. Carbon ts. A large ~2 m segment of partially decalcified dolor ns in decalcified segment	atite is essentially nite carbonatite occurs at
		MAIN COMMENTS MINERALIZATION ALTERATION	Dominantly inequigran composed of only dolo around 123 m. Type Pyrite % Type	ular light-grey to be mite with dissemina Value 0.25	n ige dolomite carbor ited apatite and und Comments Disseminated fin	m natite with few po common oxidized ne-grained oxidiz CA°	fg ods of porphyritic dolomite I pyrite. Apatite aggregate ed pyrite and forms string Comments	CD e carbonaite. Uncomr es in porphyry segmer ers and irregualar vei	non phenocrysts consist of altered phlogopite. Carbon ts. A large ~2 m segment of partially decalcified dolor ns in decalcified segment	atite is essentially nite carbonatite occurs at

Printed on 10/Feb/2011

2010-018 Log by Ryan Kressall Date Hole ID

FROM 127.86	TO - 138.54	ROCK CODE	nmpCD	=	Min Style n	Fabric m	Texture p	Litho CD	Struct
		MAIN COMMENTS		I. There also appears					Phenocrysts consist of fine- to coarse grained altered phlogopite: grain size dispersed to weakly laminated within dolomite carbonatite. Zircon occurs
		MINERALIZATION	Туре	Value	Comments				
			Pyrite %	1.75	Fine-grained fresh pyri	te aggregates v	vith altered phlogopi	ite and magnetite	
		ALTERATION	Туре	Value	Comments				
			Silica %	1.00	Locallized silicification				
			Oxidation %	10.00	Beige to pink dolomite				
		STRUCTURE							
		MISCELLANEOUS	Zone	HCL	Apatite	!	Zircon		
			Н	VW	7.5		0.1		
					•				

Log by Ryan Kressall Date Hole ID **2010-018**

Min Style Litho Struct **FROM** TO Fabric Texture dmpCCCD **ROCK CODE** CCCD m 138.54 143.72 MAIN COMMENTS Porphyritic white to light-grey dominantly calcite carbonatite. Phenocrysts consist of magnetite and phlogopite. Phlogopite is altered to chlorite (?) towards top of interval. Where dolomite carbonatite, magnetite appears to have been dolomitized (dark grey non-magnetic metallic grains). Apatite occurs dispersed to aggregated. Zircon occurs disseminated. **MINERALIZATION** Type Value Comments Magnetite % 5.00 Medium-grained phenocrysts occur disseminated throughout interval. Slightly dolomitized within dolomite carbonatite. Niobates % 0.50 Fine-grained columbite likely occurs with magnetite Pyrite % 1.50 Aggregates with magnetite and phlogopite. **ALTERATION** Type Value Comments Silica % 5.00 occurs with green chloritization of matrix STRUCTURE **MISCELLANEOUS** Zone HCL Apatite Zircon Н S 10 0.1

2010-018 Log by Ryan Kressall Date Hole ID

FROM 143.72	T0 - 145.92	ROCK CODE	dmpAMX	=	Min Style d	Fabric m	Texture p	Litho AMX	Struct	
		MAIN COMMENTS	Porphyritic light-grey of metallic) rimmed by py		-		•		nant towards top of interval) and altered magnetite (d	ark grey, non-magnetic,
		MINERALIZATION	Туре	Value	Comments					
			Niobates %	0.10	Locallized fine-gra bottom of interva		rochlore to fine-graine	d pale yellow fersmite	(needle-like replacement of pyrchlore). Fersmite is do	minant Nb-mineral towards
			Pyrite %	1.25	Occurs aggregated	d with altered mag	gnetite (?), often formi	ng rims around pseud	omorphs.	
		ALTERATION	Туре	Value	Comments					
			Amphibolite %	50.00	Green to blue feni	ite block with abu	ndant phlogopite.			
		STRUCTURE	Туре	Intens		CA° C	omments			
			Laminations %	weak		40 Or	nly locally present			
		MISCELLANEOUS	Zone	HCL	Ара	atite	Zircon			
			Н	VW		5	0.1			

2010-018 Log by Ryan Kressall Date Hole ID

FROM 145.92	TO - 149.47	ROCK CODE	nmiCD	=	Min Style n	Fabric m	Texture i	Litho CD	Struct		
		MAIN COMMENTS		ur irregularly up to ~						opearance. "Blobs" of fine-grained equerved Nb minerals, but texture and mi	
		MINERALIZATION	Туре	Value	Comments						
			Pyrite %	1.50	Fine-grained pyrit	e aggregates occ	ur with altered phlogop	oite - appear to be repla	acing phlogopite		
		ALTERATION	Туре	Value	Comments						
			Silica %	1.00	Localized silicifica	tion of matrix					
		STRUCTURE	Туре	Intens	C	:A° (Comments				
			Laminations %	weak		40 C	only locally present in fi	ne-grained equigranula	ar		
		MISCELLANEOUS	Zone	HCL	Ара	atite	Zircon				
			Н	VW	7	' .5	0.5				

2010-018 Log by Ryan Kressall Date Hole ID

ROM 19.47	TO - 152.45	ROCK CODE	dmpAMX	=	Min Style d	Fabric m	Texture p	Litho AMX	Struct
		MAIN COMMENTS	1 meter block of fenite occurs aggregated with						various degrees) magnetite and dark grey mineral (altered magnetite?). Apatit
		MINERALIZATION	Туре	Value	Comments				
			Pyrite %	0.50	Fine-grained fresh p	yrite occurs with	phenocrysts		
			Niobates %	0.25	Medium-grained pir magnetite.	nkish grey grains	with altered looking ap	pearance: might be p	pyrchlore or fersmite replacement of columbite. Columbite may be present with
			Magnetite %	1.50	Disseminated fine-	to medium grain	ed: more may have bee	n present but has be	en altered
		ALTERATION	Туре	Value	Comments				
			Amphibolite %	35.00	Green to blue fenite	block with abun	dant phlogopite; partia	lly calcitized (reacts	moderately to HCI)
			Calcite %	10.00	Calcitization of feni	te blocks.			
		STRUCTURE							
		MISCELLANEOUS	Zone	HCL	Apat	ite	Zircon		
			Н	VS	5		0.5		

End of Hole End of Hole

2010-019 Hole ID

		GENERAL INF	ORMATION		
Coordinate System	Easting	Northing	Elevation	Collar Azimuth	Collar Dip
ST. PL Nad 83	454396.41	6256675.06	1657.53	20.00	-55.00
Start Depth	Final Depth	Proposed Depth	Final Length	Rig	Area
0.00	152.44		152.44		Central 1
Operator	Year				
Taseko	2010				

	PROFESSIONAL /	TECHNICIAN	
	Name	Start Date	End Date
Collar Surveyor	Ryan Kressall	02/Sep/2010	
Geology Logged By	Ryan Kressall		
Specific Gravity By	Steve Dumma		
Geotech Logged By	Steve Dumma	10/Aug/2010	
Drill Contractor		05/Aug/2010	07/Aug/2010

Geotech Logged By	Steve Dumma	10/Aug/2010	
Drill Contractor		05/Aug/2010	07/Aug/2010
	SUMMAR	RY	

	DRILLING	BIT SIZE	
Bit Size	From	То	Length
NW (Casing)	0.00	4.57	4.57
NQ	4.57	152.44	152.44

		D	OWN HOLE	SURVEY	,	
Depth	Azimuth	Dip	Temp °C	Mag.	Roll	Method
18.29	21.20	-54.40	7.9	5645	275.8	Reflex EZ-shot
48.77	23.80	-53.70	7.9	5695	315.8	Reflex EZ-shot
109.73	24.50	-53.80	7.8	5728	16.3	Reflex EZ-shot
140.21	22.60	-54.20	8.3	5774	204.7	Reflex EZ-shot

GEOLOGY LEGEND

Hole ID **2010-019**

ROCK CODE

	MIN STYLE
Abbr.	Description
n	barren
d	disseminated
g	aggregated
b	banded

	FABRIC
Abbr.	Description
Х	brecciated
1	laminated
f	decalcified
٧	veined
р	porphyritic
m	massive

	TEXTURE
Abbr.	Description
f	decalcified
р	porphyritic
V	veined

	LITHO
Abbr.	Description
CASE	Casing
OVBN	Overburden
OXID	Oxide
AM	Amphibolite
CC	Calcite Carbonatite
CD	Dolomite Carbonatite
CCCD	Mixed Calcite and Dolomite Carbonatite
AMX	Amphibole and Mixed Carbonatite
CM	Carbonatite Cumulate

	STRUCT
Abbr.	Description
Z	fault
е	strained
S	shear zone
У	dyke

MISCELLANEOUS:

	ZONE
Abbr.	Description
OX	Oxide
S	Supergene
Н	Hypogene

Abbr. Description VW very weak W weak
,
W weak
M moderate
S strong
VS very strong

Measurement unit: Metres (Unless otherwise specified)

2010-019 Log by Ryan Kressall Date Hole ID

FROM 0.00	-	TO 4.57	ROCK CODE	CASE	=	Min Style	Fabric	Texture	Litho CASE	Struct
			MAIN COMMENTS	No rock						
			MINERALIZATION							
			ALTERATION							
			STRUCTURE							
			MISCELLANEOUS	Zone	HCL		Apatite	Zircon		
FROM 4.57	-	TO 16.82	ROCK CODE	nlcCD	=	Min Style n	Fabric I	Texture c	Litho CD	Struct
	-		ROCK CODE MAIN COMMENTS	Partially calcitized and	oxidized laminated l ally throughout inte	n light-grey to d rval. Apatite o	l ark-brown dolomite (c carbonatite with clasts (5 to	CD o 100 cm) of dark-grey	Struct / dolomite carbonatite (altered fenite?).Altered phlogopite and dolomitized tite. Dark-grey dolomite carbonatite (composed ~20 % of interval) is devoid of
	-			Partially calcitized and magnetite (?) occur loca	oxidized laminated l ally throughout inte	n light-grey to d rval. Apatite o	l ark-brown dolomite c ccurs weakly to mode	c carbonatite with clasts (5 to	CD o 100 cm) of dark-grey	y dolomite carbonatite (altered fenite?).Altered phlogopite and dolomitized
	-		MAIN COMMENTS	Partially calcitized and magnetite (?) occur loca apatite. Zircon occurs d	oxidized laminated l ally throughout inte iseminated through	n light-grey to d rval. Apatite o nout interval. Comment	l ark-brown dolomite c ccurs weakly to mode	c carbonatite with clasts (5 to erately laminated in light-g	CD o 100 cm) of dark-grey	y dolomite carbonatite (altered fenite?).Altered phlogopite and dolomitized
	-		MAIN COMMENTS	Partially calcitized and magnetite (?) occur loca apatite. Zircon occurs d	oxidized laminated l ally throughout inter iseminated through Value	n light-grey to d rval. Apatite o nout interval. Comment	I ark-brown dolomite occurs weakly to mode cs s rite occurs dissemina	c carbonatite with clasts (5 to erately laminated in light-g	CD o 100 cm) of dark-grey	y dolomite carbonatite (altered fenite?).Altered phlogopite and dolomitized
	-		MAIN COMMENTS MINERALIZATION	Partially calcitized and magnetite (?) occur loca apatite. Zircon occurs do Type Pyrite % Type Calcite %	oxidized laminated lally throughout interiseminated through Value 0.50 Value 25.00	n light-grey to d rval. Apatite o rout interval. Comment Oxidized py Comment Dark-browr	ark-brown dolomite occurs weakly to mode S.S. Trite occurs disseminates I mottling	c carbonatite with clasts (5 to erately laminated in light-gi	CD o 100 cm) of dark-grey	y dolomite carbonatite (altered fenite?).Altered phlogopite and dolomitized
	-		MAIN COMMENTS MINERALIZATION	Partially calcitized and magnetite (?) occur loca apatite. Zircon occurs d Type Pyrite % Type	oxidized laminated lally throughout interiseminated through Value 0.50 Value	n light-grey to d rval. Apatite o rout interval. Comment Oxidized py Comment Dark-browr	ark-brown dolomite occurs weakly to mode S.S. Trite occurs disseminates I mottling	c carbonatite with clasts (5 to erately laminated in light-g	CD o 100 cm) of dark-grey	y dolomite carbonatite (altered fenite?).Altered phlogopite and dolomitized
	-		MAIN COMMENTS MINERALIZATION	Partially calcitized and magnetite (?) occur loca apatite. Zircon occurs do Type Pyrite % Type Calcite %	oxidized laminated lally throughout interiseminated through Value 0.50 Value 25.00	n light-grey to d rval. Apatite o rout interval. Comment Oxidized py Comment Dark-brown Beige dolor	ark-brown dolomite occurs weakly to mode S.S. Trite occurs disseminates I mottling	c carbonatite with clasts (5 to erately laminated in light-gi	CD o 100 cm) of dark-grey	y dolomite carbonatite (altered fenite?).Altered phlogopite and dolomitized
	-		MAIN COMMENTS MINERALIZATION ALTERATION	Partially calcitized and magnetite (?) occur loca apatite. Zircon occurs do Type Pyrite % Type Calcite % Oxidation %	oxidized laminated lally throughout interiseminated through Value 0.50 Value 25.00 15.00	n light-grey to d rval. Apatite o rout interval. Comment Oxidized py Comment Dark-brown Beige dolor	ark-brown dolomite occurs weakly to mode S.S. Irrite occurs disseminates mottling nite to weathered yellow	c carbonatite with clasts (5 to erately laminated in light-go ated llow intervals (limonite?) Comments	CD o 100 cm) of dark-grey rey dolomite carbonat ~ m down the lamina	y dolomite carbonatite (altered fenite?).Altered phlogopite and dolomitized
	-		MAIN COMMENTS MINERALIZATION ALTERATION	Partially calcitized and magnetite (?) occur loca apatite. Zircon occurs do Type Pyrite % Type Calcite % Oxidation % Type	oxidized laminated lally throughout interiseminated through Value 0.50 Value 25.00 15.00 Intens	n light-grey to d rval. Apatite o rout interval. Comment Oxidized py Comment Dark-brown Beige dolor	ark-brown dolomite of cours weakly to mode of the cours weakly to mode of the cours disseminates of the course of the cours disseminates of the course of th	c carbonatite with clasts (5 to erately laminated in light-grated llow intervals (limonite?) Comments 40 degrees at top of hole;	CD o 100 cm) of dark-grey rey dolomite carbonat ~ m down the lamina	y dolomite carbonatite (altered fenite?).Altered phlogopite and dolomitized tite. Dark-grey dolomite carbonatite (composed ~20 % of interval) is devoid of

2010-019 Log by Ryan Kressall Date Hole ID

FROM 16.82	-	TO 42.25	ROCK CODE	dmfgAMX	=	Min Style d	Fabric m	Texture fg	Litho AMX	Struct		
			MAIN COMMENTS					rbonatite with large blocl val. Fenite and dark-grey			ccur locally (~1 vol. % of interval). Apatite occurs	
			MINERALIZATION	Туре	Value	Comments						
				Pyrite %	1.00	Oxidized pyrite oc	curs dissemina	ated to locally oriented				
				Niobates %	0.10	Locallized dissem	inated fine-gra	ained yellowish dark grey	fersmite occurs in lam	inated porphyry		
			ALTERATION	Туре	Value	Comments						
				Calcite %	10.00	Dark brown mottl	es and calcitiza	ation of fenite blocks				
				Dolomite %	10.00	Dark-grey blocks	- secondary dol	omite after fenite (?)				
				Amphibolite %	30.00	Dark green to blus	sish grey blocks	s ~ 1 m in length. Matrix is	partially calcitized (re	acts moderately to HCL)		
			STRUCTURE	Туре	Intens	(CA°	Comments				
				Laminations %	very weak		40	Only locally present and	measurable			
			MISCELLANEOUS	Zone	HCL	Ар	atite	Zircon				
				OX	W	7	7.5	0.1				

2010-019 Log by Ryan Kressall Date Hole ID

FROM 42.25 -	TO 61.67	ROCK CODE	gcrenfCD	=	Min Style g	Fabric cren	Texture f	Litho CD	Struct	
		MAIN COMMENTS					with minor intervals of roughout interval. Zircon		bonatite (up to 1 m) Interval is heavily pitted possibly due to decalcification or twith apatite.	the
		MINERALIZATION	Туре	Value	Comments					
			Niobates %	0.10	Rare visible fine-gra	ained light-grey i	fersmite occur in clusters	s with apatite and zi	con concentrations	
			Pyrite %	1.00	Oxidized pyrite occu	ırs disseminated	I throughout interval.			
		ALTERATION	Туре	Value	Comments					
			Calcite %	2.00	Dark-brown calcitiza	ation				
		STRUCTURE	Туре	Intens	CA	v. Co	omments			
			Laminations %	moderate	40	Ту	pically 40 degrees (mino	r variations to 30 de	grees) -steepens in last meter to 80 degrees	
		MISCELLANEOUS	Zone	HCL	Apat	ite	Zircon			
			OX	W	5		0.1			
							·			

2010-019 Log by Ryan Kressall Date Hole ID

FROM 61.67	-	TO 72.35	ROCK CODE	dIfCD	=	Min Style d	Fabric I	Texture f	Litho CD	Struct	
			MAIN COMMENTS	Domiantly laminated do disseminated throughou				al contains a few segments	of rubble and fragme	ented rock. Apatite occurs oriente	d to strongly laminated. Zircon occurs
			MINERALIZATION	Туре	Value	Comments					
				Pyrite %	1.00	Oxidized red- to	yellow (limonit	e?) pyrite occurs disseminat	ed throughout interv	ral	
			ALTERATION	Туре	Value	Comments					
				Oxidation %	70.00	Beige to pink do	lomite				
				Calcite %	2.50	Minor dark-brow	vn mottling				
			STRUCTURE	Туре	Intens		CA°	Comments			
				Laminations %	strong		65	Steep (varier between 50	to 70 degrees)		
			MISCELLANEOUS	Zone	HCL	A	patite	Zircon			
				OX	VW		7.5	0.1			
FROM 72.35	-	TO 76.71	ROCK CODE	nmfCD	=	Min Style n	Fabric m	Texture f	Litho CD	Struct	
			MAIN COMMENTS	75 % of inteval is compo remnants of dolomitized	sed of rubble and v d phencrysts (phlog	veathered rock frag opite or magnetite	ments. Compet ?). Apatite occu	ant fragments of massive d irs aggregated. No zircon ob	olomite carbonatite served in compenant	is light-grey to beige and inequigr rock.	anlar. Dolomite carbonatite contains a few
			MINERALIZATION	Туре	Value	Comments					
				Pyrite %	0.50	Fine-grained oxi	dized pyrite occ	urs disseminated throughou	ut competant rock.		
			ALTERATION	Туре	Value	Comments					
				Oxidation %	75.00	Beige dolomite a	and weathered r	rubble.			
			STRUCTURE								
			MISCELLANEOUS	Zone	HCL	Δι	patite	Zircon			

Printed on 10/Feb/2011

Measurement unit: Metres (Unless otherwise specified)

2010-019 Log by Ryan Kressall Date Hole ID

FROM 76.71 -	TO 82.44	ROCK CODE	glfCD	=	Min Style g	Fabric I	Texture f	Litho CD	Struct	
		MAIN COMMENTS	Laminated to weakly cre	enulated light-grey t	o medium-brown dol	lomite carbonati	te. Apatite occurs aggr	regated to weakly lami	nated. Fine- to medium grained zircon occurs associated wi	th apatite aggregates.
		MINERALIZATION	Туре	Value	Comments					
			Niobates %	0.50	Fine-grained black	octahedral grain	s with pale yellow incl	usions occur clustered	within apatite laminae- possibly fersmite replacing columbi	te (or pyrochlore?)
			Pyrite %	1.50	Stringers and aggre	egates up to 1 cm	ı			
		ALTERATION	Туре	Value	Comments					
			Calcite %	10.00	Dark-brown calcitiz	zation				
		STRUCTURE	Туре	Intens	CA	A° Co	omments			
			Veining %	moderate	20	0 Ne	twork of fractures infi	illed with secondary Fe	-oxidized minerals	
			Laminations %	weak	40	0				
		MISCELLANEOUS	Zone	HCL	Apat	tite	Zircon			
			OX	W	12.	.5	0.25			

2010-019 Log by Ryan Kressall Date Hole ID

ROCK CODE mfCM = Min Style Fabric Texture Litho CM MAIN COMMENTS Highly weathered interval intrepretted to be weathered magnetite cumulate based on similarities in colour and density to weathered cumulate units in past holes (where magnetite was still present). Calcitized laminated dolomite carbonatite is recognizable towards end of interval. Interval reacts moderately to HCI in places indicating either presence of primary calcite or calcitization as a precursor to decalcification. Apatite occurs aggregated within weathered rock and laminated within competant dolomite carbonatite Zircon occurs disseminated and concentrated within vein. MINERALIZATION Type Value Comments Pyrite % 0.25 Oxidized pyrite aggregates observed in dolomite carbonatite at end of interval. ALTERATION
Calcitized laminated dolomite carbonatite is recognizable towards end of interval. Interval reacts moderately to HCI in places indicating either presence of primary calcite or calcitization as a precursor to decalcification. Apatite occurs aggregated within weathered rock and laminated within competant dolomite carbonatite Zircon occurs disseminated and concentrated within vein. MINERALIZATION Type Value Comments Pyrite % 0.25 Oxidized pyrite aggregates observed in dolomite carbonatite at end of interval
Pyrite % 0.25 Oxidized pyrite aggregates observed in dolomite carbonatite at end of interval
ALTERATION
ANIMATION
STRUCTURE Type Intens CA° Comments
Veining % weak 30 Zircon-rich vein
Laminations % weak 40 Only recognizable in dolomite carbonatite at end of interval.
MISCELLANEOUS Zone HCL Apatite Zircon
0X M 10 0.25

2010-019 Log by Ryan Kressall Date Hole ID

ROCK CODE gmfCD = Min Style Fabric Texture Litho CD MAIN COMMENTS MAIN COMMENTS MAIN COMMENTS MINERALIZATION Type Value Comments Niobates % 0.10 Pale-yellow to pale-pink fine-grained possible fersmite and pyrochlore occurs disseminated locally in associated with apatite aggregates. Pyrite % 1.00 Oxidized pyrite occurs disseminated, as aggregates (up to 1cm), thin stringers and within oxidized veins. ALTERATION Type Value Comments Calcite % 2.5.00 Dark-brown mottles of calcitization Oxidation % 50.00 Beige to pink dolomite Type Intens CA* Comments Veining % moderate To Vein of oxidized pyrite MINERALIZATION MINERALIZATION Type Value Comments Calcite % 2.5.00 Dark-brown mottles of calcitization Oxidation for oxidized pyrite Veining % moderate Type Intens CA* Comments Veining % MINERALIZATION MINERALIZATION Type Value Comments Calcite % 2.5.00 Dark-brown mottles of calcitization Oxidation for oxidized pyrite Veining % moderate Type Veining % MINERALIZATION Type Value Comments Veining % MINERALIZATION Type Value Comments Calcite % 2.5.00 Dark-brown mottles of calcitization Oxidation for oxidized pyrite Veining % MINERALIZATION MINERALIZATION Type Value Comments Calcite % 2.5.00 Dark-brown mottles of calcitization Oxidation for oxidized pyrite Veining % MINERALIZATION Type Value Comments Calcite % 2.5.00 Dark-brown mottles of calcitization Oxidation for oxidized pyrite Veining % MINERALIZATION Vein of oxidized pyrite										
calcitization concentrates along the clast boundaries. Remnants of dolomitzed phenocrysts (phiogopite?) occur locally. Apatite occurs aggregated within massive dolomite carbonatite. Laminated dolomite carbonatite is devoid of apatite. Zircon occurs in clusters associated with apatite aggregates. MINERALIZATION Type Value Comments Niobates % 0.10 Pale-yellow to pale-pink fine-grained possible fersmite and pyrochlore occurs disseminated locally in associated with apatite aggregates. Pyrite % 1.00 Oxidized pyrite occurs disseminated, as aggregates (up to 1cm), thin stringers and within oxidized veins. ALTERATION Type Value Comments Calcite % 25.00 Dark-brown mottles of calcitization Oxidation % 50.00 Beige to pink dolomite Type Intens CA Comments Veining % moderate 70 Vein of oxidized pyrite MISCELLANEOUS Zone HCL Apatite Zircon		ROCK CODE	gmfCD	=	_ `		Texture f		Struct	
Niobates % 0.10 Pale-yellow to pale-pink fine-grained possible fersmite and pyrochlore occurs disseminated locally in associated with apatite aggregates. Pyrite % 1.00 Oxidized pyrite occurs disseminated, as aggregates (up to 1cm), thin stringers and within oxidized veins. ALTERATION Type Value Comments Calcite % 25.00 Dark-brown mottles of calcitization Oxidation % 50.00 Beige to pink dolomite STRUCTURE Type Intens CA° Comments Veining % moderate 70 Vein of oxidized pyrite MISCELLANEOUS Zone HCL Apatite Zircon		MAIN COMMENTS	calcitization concentra	tes along the clast bo	oundaries. Remnant	s of dolomitzed pl	henocrysts (phlogopite			
Pyrite % 1.00 Oxidized pyrite occurs disseminated, as aggregates (up to 1cm), thin stringers and within oxidized veins. Type Value Comments Calcite % 25.00 Dark-brown mottles of calcitization Oxidation % 50.00 Beige to pink dolomite STRUCTURE Type Intens CA° Comments Veining % moderate 70 Vein of oxidized pyrite MISCELLANEOUS Zone HCL Apatite Zircon		MINERALIZATION	Туре	Value	Comments					
ALTERATION Type Value Comments Calcite % 25.00 Dark-brown mottles of calcitization Oxidation % 50.00 Beige to pink dolomite STRUCTURE Type Intens CA° Comments Veining % moderate 70 Vein of oxidized pyrite MISCELLANEOUS Zone HCL Apatite Zircon			Niobates %	0.10	Pale-yellow to pa	le-pink fine-graine	ed possible fersmite an	d pyrochlore occurs dis	seminated locally in associated with apatite aggregates.	
Calcite % 25.00 Dark-brown mottles of calcitization Oxidation % 50.00 Beige to pink dolomite Type Intens CA° Comments Veining % moderate 70 Vein of oxidized pyrite MISCELLANEOUS Zone HCL Apatite Zircon			Pyrite %	1.00	Oxidized pyrite or	curs disseminated	d, as aggregates (up to	1cm), thin stringers an	d within oxidized veins.	
STRUCTURE Type Intens CA° Comments Veining % moderate 70 Vein of oxidized pyrite MISCELLANEOUS Zone HCL Apatite Zircon		ALTERATION	Туре	Value	Comments					
STRUCTURE Type Intens CA° Comments Veining % moderate 70 Vein of oxidized pyrite MISCELLANEOUS Zone HCL Apatite Zircon			Calcite %	25.00	Dark-brown mott	les of calcitization	ı			
Veining % moderate 70 Vein of oxidized pyrite MISCELLANEOUS Zone HCL Apatite Zircon			Oxidation %	50.00	Beige to pink dolo	omite				
MISCELLANEOUS Zone HCL Apatite Zircon		STRUCTURE	Туре	Intens	(CA° Co	omments			
			Veining %	moderate		70 Ve	ein of oxidized pyrite			
		MISCELLANEOUS	Zone	HCL	Ар	atite	Zircon			
OX M 7.5 0.1			OX	М		7.5	0.1			

2010-019 Log by Ryan Kressall Date Hole ID

FROM 101.06	TO - 104.77	ROCK CODE	gmiCD	=	Min Style g	Fabric m	Texture i	Litho CD	Struct	
		MAIN COMMENTS	Massive-mottled inequ	igranular light-grey t	to medium-brown do	olomite carbonatit	e. Apatite occurs aggre	egated to weakly lamii	nated. No zircons were observed in interval.	
		MINERALIZATION	Туре	Value	Comments					
			Niobates %	0.10	Possible fine-grain	ned columbite wit	n magnetite phenocyrs	sts		
			Magnetite %	0.50	Minor medium-gr	ained magnetite p	henocrysts occur locall	У		
			Pyrite %	0.75	Oxidized pyrite ag	gregates up to 1 cr	n in diameter; fine-gra	ined needles ~ 3 mm l	long occurs locally	
		ALTERATION	Туре	Value	Comments					
			Calcite %	30.00	Medium-brown ca	alcitization				
		STRUCTURE								
		MISCELLANEOUS	Zone	HCL	Apa	atite	Zircon			
			OX	М	1	10	0			

2010-019 Log by Ryan Kressall Date Hole ID

FROM 104.77	TO - 114.94	ROCK CODE	gICD	=	Min Style g	Fabric I	Texture i	Litho CD	Struct
		MAIN COMMENTS	are interpretted as alte	ered magnetite-phlog enocrysts concentrat	gopite aggregates based o	on medium- to	coarse-grained textu	re, asssociated with zi	ks (50 to 100 cm) and black irregular aggregates up to 10 cm thick. Black aggregate ircon and apatite and hexagonal crystal shape of phlogopite. Recognizable I Zircon occurs concentrated with apatite and black aggregates and with altered
		MINERALIZATION	Туре	Value	Comments				
			Pyrite %	1.00	Oxidized aggregates a	nd stringers of	pyrite		
			Niobates %	0.75	Likely columbite with	altered magne	tite aggregates		
		ALTERATION	Туре	Value	Comments				
			Calcite %	2.50	Minor localized reactio	n to HCl			
			Oxidation %	70.00	Beige to pink dolomite	2			
		STRUCTURE	Туре	Intens	CA°	Со	mments		
			Laminations %	moderate	55	Loc	ally observable		
		MISCELLANEOUS	Zone	HCL	Apatite	9	Zircon		
			OX	W	10		1		

2010-019 Log by Ryan Kressall Date Hole ID

FROM 114.94	TO - 117.37	ROCK CODE	dcrenfCD	=	Min Style d	Fabric cren	Texture f	Litho CD	Struct
		MAIN COMMENTS	Locally calcitized to de	calcified laminated d	olomite carbonatite wi	ith crenulations.	Fine-grained altered ph	llogopite concentrate	e locally. Apatite occurs as weak laminations. Zircon occurs as small clusters.
		MINERALIZATION	Туре	Value	Comments				
			Pyrite %	1.50	Oxidized pyrite aggr	egates up to 1 cr	n.		
			Niobates %	0.50	Pale-yellow to dark	grey fine-grained	d likely fersmite occurs l	ocally disseminated	
		ALTERATION	Туре	Value	Comments				
			Oxidation %	80.00	Beige to orange dolo	omite discoloura	tion		
			Calcite %	10.00	Dark brown mottling	g			
		STRUCTURE							
		MISCELLANEOUS	Zone	HCL	Apati	ite	Zircon		
			OX	W	5		0.1		

2010-019 Log by Ryan Kressall Date Hole ID

FROM 117.37	-	TO 119.46	ROCK CODE	nmpCD	=	Min Style n	Fabric m	Texture p	Litho CD	Struct
			MAIN COMMENTS			•		•		dolomitized to various extents. Last meter of interval has steep crenulated on atite in last meter of interval. No Nb-mineralization oberved.
			MINERALIZATION	Туре	Value	Comments				
				Pyrite %		No pyrite observed?				
				Niobates %	0.10	Rare pale-yellow fine	e grain: possible	pyrochlore or fersmite		
			ALTERATION	Type Oxidation %	Value 40.00	Comments Beige dolomite				
			STRUCTURE	Туре	Intens	CA°	' Cor	mments		
				Laminations %	moderate	80	Only	y observed in last met	er: varies between 70 t	to 85 degrees
			MISCELLANEOUS	Zone	HCL	Apatit	te	Zircon		
				OX	VW	2.5		0.5		

2010-019 Log by Ryan Kressall Date Hole ID

FROM TO 130.54 FROM TO 124.71 ROCK CODE ImpCD = Min Style Fabric Texture Litho Struct MAIN COMMENTS Porphyritic to locally inequigranular dolomite carbonatries. Phenocrysts consist of fine- to medium-grained altered phlogopite. Grain size of phlogipite decreases downhole. Apatite occurs dispersed to aggregate. Texture curs dispersed to aggregate. Texture curs dispersed to aggregate decreases downhole in a part of the physical form reacting dispersed to aggregate decreases downhole. Apatite occurs dispersed to a a										
ALTERATION TO 124.71 - 130.54 ROCK CODE Mineralization Type Value Comments Oxidation % TO 124.71 - 130.54 MINERALIZATION Type Value Comments Oxidation % TO 124.71 - 130.54 MINERALIZATION Type Value Comments Oxidation % TO 124.71 - 130.54 TO 124.71 - 130.54 MINERALIZATION Type Value Comments Oxidation % TO 124.71 - 130.54 MINERALIZATION Type Value Comments Oxidation % To 124.71 - 130.54 MINERALIZATION Type Value Comments Oxidation % To 124.71 - 130.54 MINERALIZATION Type Value Comments Oxidation % Type Value Comments Oxidation fine-grained altered philosophic also form massive focal/bed pints occurs aggregated. Zircon occurs in clusters associated with apartic aggregates. No Nh-mineralization observed. ALTERATION Type Value Comments Silica % 0.50 Minor silicification of matrix Oxidation % So.00 Belge to pink dolomite carbonatite STRUCTURE STRUCTURE		ROCK CODE	dmpCD	=	Min Style d				Struct	
Niobates % 0.10 Pale-yellow to light-grey fine grains: possible fersmite (?) Prite % 1.00 Oxidated pyrite occurs disseminated to aggregated ALTERATION Type Value Comments STRUCTURE MISCELLANEOUS Zone HCL Apatite Zircon OX VW 12.5 0.1 ALTERATION TO 130.54 ROCK CODE nmiCD = Min Style Fabric Texture Litho Struct In Style Fabric Texture Litho Struct In Struct Litho Struct Ox Will Depropry to pink dolomite carbonatite Locally phenocrysts consist of fine-grained altered phlogopite also form massive localized lens - 2 cm thick. Apatite occurs aggregated. Zircon occurs in clusters associated with apatite aggregates. No Nb-mineralization observed. ALTERATION Type Value Comments Silica % 0.50 Minor silicification of matrix Oxidation % So.00 Beige to pink dolomite carbonatite STRUCTURE NIOD Struct Litho Struct In Struc		MAIN COMMENTS			te carbonatite. Pho	enocrysts consist o	f fine- to medium-graine	d altered phlogopite.	Grain size of phlogpite decrease	s downhole. Apatite occurs dispersed to
Pyrite % 1.00 Oxidized pyrite occurs disseminated to aggregated ALTERATION Type Value Comments Oxidation % 75.00 Belge to pink dolomite STRUCTURE MISCELLANEOUS Zone HCL Apatite Zircon OX VW 12.5 0.1 FROM TO 124.71 130.54 ROCK CODE nmiCD = Min Style Fabric Texture Litho Struct n m i CD Struct CODE no MAIN COMMENTS Fine-to medium-grained inequigranular to locally porphyritic light-grey to pink dolomite carbonatite. Locally phenocrysts consist of fine-grained altered philogopite also form massive localized lens - 2 cm thick. Apatite occurs aggregated. Zircon dusters associated with apatite aggregates. No Nb-mineralization observed. MINERALIZATION Type Value Comments Pyrite % 1.00 Oxidized pyrite occurs disseminated and as aggregates up to 1 cm ALTERATION Type Value Comments Silica % 0.50 Minor silicification of matrix Oxidation % 50.00 Belge to pink dolomite carbonatite STRUCTURE		MINERALIZATION	Туре	Value	Comments					
ALTERATION Type Value Comments Oxidation % 75.00 Beige to pink dolomite STRUCTURE MISCELLANEOUS Zone HCL Apatite Zircon OX VW 12.5 0.1 ROCK CODE miCD = Min Style Fabric n i CD MAIN COMMENTS Fine-to medium-grained inequigranular to locally porphyritic light-grey to pink dolomite carbonatite. Locally phenocrysts consist of fine-grained altered phlogopite. Altered phlogopite also form massive locallized lens - 2 cm thick. Apatite occurs aggregated. Zircon occurs in clusters associated with apatite aggregates. No ND-mineralization observed. MINERALIZATION Type Value Comments Pyrite % 1.00 Oxidized pyrite occurs disseminated and as aggregates up to 1 cm ALTERATION Type Value Comments Silica % 0.50 Minor silicification of matrix Oxidation % 50.00 Beige to pink dolomite carbonatite STRUCTURE			Niobates %	0.10	Pale-yellow to I	ight-grey fine grair	ns: possible fersmite (?)			
STRUCTURE MISCELLANEOUS Zone HCL Apatite Zircon OX VW 12.5 0.1 ROCK CODE MAIN COMMENTS Fine- to medium-grained inequigranular to locally porphyritic light-grey to pink dolomite carbonatite. Locally phenocrysts consist of fine-grained altered philogopite. Altered philogopite also form massive localized pyrite occurs disseminated and as aggregates up to 1 cm ALTERATION Type Value Comments Fine- to medium-grained inequigranular to locally porphyritic light-grey to pink dolomite carbonatite aggregates. No Nb-mineralization observed. ALTERATION Type Value Comments Silica % 0.50 Minor silicification of matrix Oxidation % 50.00 Beige to pink dolomite carbonatite STRUCTURE			Pyrite %	1.00	Oxidized pyrite	occurs disseminato	ed to aggregated			
STRUCTURE MISCELLANEOUS Zone HCL Apatite Zircon OX VW 12.5 0.1 ROCK CODE MAIN COMMENTS Fine- to medium-grained inequigranular to locally porphyritic light-grey to pink dolomite carbonatite. Locally phenocrysts consist of fine-grained altered phlogopite. Altered phlogopite also form massive localized prite occurs disseminated and as aggregates up to 1 cm ALTERATION Type Value Comments Pyrite % 1.00 Oxidized prite occurs disseminated and as aggregates up to 1 cm ALTERATION Type Value Comments Silica % 0.50 Minor silicification of matrix Oxidation % 50.00 Beige to pink dolomite carbonatite STRUCTURE		ΔΙ ΤΕΡΔΤΙΩΝ	Tyne	Value	Comments					
STRUCTURE MISCELLANEOUS Zone HCL Apatite Zircon OX VW 12.5 0.1 ROCK CODE nmiCD = Min Style Fabric m i CD MAIN COMMENTS Fine- to medium-grained inequigranular to locally porphyritic light-grey to pink dolomite carbonatite. Locally phenocrysts consist of fine-grained altered phlogopite. Altered phlogopite also form massive locallized lens - 2 cm thick. Apatite occurs aggregated. Zircon occurs in clusters associated with apatite aggregates. No Nb-mineralization observed. MINERALIZATION Type Value Comments Pyrite % 1.00 Oxidized pyrite occurs disseminated and as aggregates up to 1 cm ALTERATION STRUCTURE STRUCTURE STRUCTURE STRUCTURE MINSCELLANEOUS Zone HCL Apatite Zircon Texture Litho i CD CD Type Value Comments Pyrite % 1.00 Oxidized pyrite occurs disseminated and as aggregates up to 1 cm ALTERATION Silica % 0.50 Minor silicification of matrix Oxidation % 50.00 Beige to pink dolomite carbonatite STRUCTURE		ALIERATION				olomite				
MISCELLANEOUS Zone HCL Apatite Zircon OX VW 12.5 0.1 ROCK CODE nmiCD = Min Style n Fabric m Texture i CD Struct CD MAIN COMMENTS Fine- to medium-grained inequigranular to locally porphyritic light-grey to pink dolomite carbonatite. Locally phenocrysts consist of fine-grained altered phlogopite. Altered phlogopite also form massive locallized lens - 2 cm thick. Apatite occurs aggregated. Zircon occurs in clusters associated with apatite aggregates. No Nb-mineralization observed. MINERALIZATION Type Value Comments Pyrite % 1.00 Oxidized pyrite occurs disseminated and as aggregates up to 1 cm ALTERATION Type Value Comments Silica % 0.50 Minor silicification of matrix Oxidation % 50.00 Beige to pink dolomite carbonatite		CTD LICTURE								
FROM TO 124.71 - 130.54 ROCK CODE nmiCD = Min Style Fabric Texture Litho Struct CD CD MAIN COMMENTS Fine- to medium-grained inequigranular to locally porphyritic light-grey to pink dolomite carbonatite. Locally phenocrysts consist of fine-grained altered phlogopite. Altered phlogopite also form massive localized lens - 2 cm thick. Apatite occurs aggregated. Zircon occurs in clusters associated with apatite aggregates. No Nb-mineralization observed. MINERALIZATION Type Value Comments Pyrite % 1.00 Oxidized pyrite occurs disseminated and as aggregates up to 1 cm ALTERATION Type Value Comments Silica % 0.50 Minor silicification of matrix Oxidation % 50.00 Beige to pink dolomite carbonatite STRUCTURE		STRUCTURE								
FROM TO 124.71 - 130.54 ROCK CODE nmiCD = Min Style Fabric Texture Litho Struct CD MAIN COMMENTS Fine- to medium-grained inequigranular to locally porphyritic light-grey to pink dolomite carbonatite. Locally phenocrysts consist of fine-grained altered phlogopite. Altered phlogopite also form massive localized lens ~ 2 cm thick. Apatite occurs aggregated. Zircon occurs in clusters associated with apatite aggregates. No Nb-mineralization observed. MINERALIZATION Type Value Comments Pyrite % 1.00 Oxidized pryrite occurs disseminated and as aggregates up to 1 cm ALTERATION Type Value Comments Silica % 0.50 Minor silicification of matrix Oxidation % 50.00 Beige to pink dolomite carbonatite STRUCTURE		MISCELLANEOUS	Zone	HCL	А	patite	Zircon			
124.71 - 130.54 MAIN COMMENTS Fine- to medium-grained inequigranular to locally porphyritic light-grey to pink dolomite carbonatite. Locally phenocrysts consist of fine-grained altered phlogopite. Altered phlogopite also form massive locallized lens ~ 2 cm thick. Apatite occurs aggregated. Zircon occurs in clusters associated with apatite aggregates. No Nb-mineralization observed. MINERALIZATION Type Value Comments Pyrite % 1.00 Oxidized pyrite occurs disseminated and as aggregates up to 1 cm ALTERATION Type Value Comments Silica % 0.50 Minor silicification of matrix Oxidation % 50.00 Beige to pink dolomite carbonatite			OX	VW		12.5	0.1			
124.71 - 130.54 MAIN COMMENTS Fine- to medium-grained inequigranular to locally porphyritic light-grey to pink dolomite carbonatite. Locally phenocrysts consist of fine-grained altered phlogopite. Altered phlogopite also form massive locallized lens ~ 2 cm thick. Apatite occurs aggregated. Zircon occurs in clusters associated with apatite aggregates. No Nb-mineralization observed. MINERALIZATION Type Value Comments Pyrite % 1.00 Oxidized pyrite occurs disseminated and as aggregates up to 1 cm ALTERATION Type Value Comments Silica % 0.50 Minor silicification of matrix Oxidation % 50.00 Beige to pink dolomite carbonatite										
In the state of th		ROCK CODE	nmiCD	=			Texture i		Struct	
ALTERATION Type Value Comments Silica % 0.50 Minor silicification of matrix Oxidation % 50.00 Beige to pink dolomite carbonatite		MAIN COMMENTS								opite. Altered phlogopite also form massive
ALTERATION Type Value Comments Silica % 0.50 Minor silicification of matrix Oxidation % 50.00 Beige to pink dolomite carbonatite STRUCTURE		MINERALIZATION	Туре	Value	Comments					
Silica % 0.50 Minor silicification of matrix Oxidation % 50.00 Beige to pink dolomite carbonatite STRUCTURE			Pyrite %	1.00	Oxidized pyrite	occurs disseminato	ed and as aggregates up t	o 1cm		
Silica % 0.50 Minor silicification of matrix Oxidation % 50.00 Beige to pink dolomite carbonatite STRUCTURE		ΔΙ ΤΕΡΔΤΙΩΝ	Tyne	Value	Comments					
Oxidation % 50.00 Beige to pink dolomite carbonatite STRUCTURE		ALIERATION				ion of matrix				
					Beige to pink do	olomite carbonatite	2			
MISCELLANEOUS Zone HCL Apatite Zircon		STRUCTURE								
		MISCELLANEOUS	Zone	HCL	А	patite	Zircon			
VW 10 0.5							0.5			

Printed on 10/Feb/2011

2010-019 Log by Ryan Kressall Date Hole ID

0 ROCK CODE .04	dlpCD	=	Min Style d	Fabric I	Texture p	Litho CD	Struct
MAIN COMMENTS	Phenocrysts consist of	black altered phlogor	pite dolomitized to var	rious extents; a	and dark grey medium-gr	ained altered magnet	uigranular texture. Intervals has been partially decalcified and oxidized. tite (?). Altered magnetite (?) occurs as aggregated clumps up to ~3 cm thick. nated. Zircon occurs associated with apatite laminae.
MINERALIZATION	Туре	Value	Comments				
	Niobates %	0.25	Fine-grained pale-ye	ellow to dark g	rey grains: potential fersi	mite (?)	
	Pyrite %	2.00	Oxidized pyrite occu	rs disseminate	ed throughout interval		
ALTERATION	Туре	Value	Comments				
	Calcite %	5.00	Locallized dark-brov	vn mottling: re	eacts strongly to HCl		
	Oxidation %	65.00	Beige to pink dolom	ite			
STRUCTURE	Туре	Intens	CA	° C	Comments		
	Laminations %	moderate	30	V	aries between 20 and 40	degrees	
MISCELLANEOUS	Zone	HCL	Apati	ite	Zircon		
	OX	W	5		0.25		

2010-019 Log by Ryan Kressall Date Hole ID

ROCK CODE dmiCD = Min Style Fabric Texture Litho CD MAIN COMMENTS Low recovery from interval: significant portion consists of rubble (decalcification?). Compentant rock is dominantly fine- to medium-grained inequigranular dolomite carbonatite with a small interval (~30 cm) of fine-grained equigranular texture. Apatite occurs weakly laminated. Minor chloritization of matrix and altered phlogopites is observed. MINERALIZATION Type Value Comments Pyrite % 1.00 Oxidized pyrite occurs disseminated throughout interval: some pyrite has needle-like shape (~3 mm long) Niobates % 0.50 Pale yellow fine-grained: potential secondary fersmite (?) - occurs disseminated locally
of fine-grained equigranular texture. Apatite occurs weakly laminated. Minor chloritization of matrix and altered phlogopites is observed. MINERALIZATION Type Value Comments Pyrite % 1.00 Oxidized pyrite occurs disseminated throughout interval: some pyrite has needle-like shape (~ 3 mm long)
Pyrite % 1.00 Oxidized pyrite occurs disseminated throughout interval: some pyrite has needle-like shape (~ 3 mm long)
Niobates % 0.50 Pale yellow fine-grained: potential secondary fersmite (?) - occurs disseminated locally
ALTERATION Type Value Comments
Calcite % 30.00 Dark-brown calcitization (moderate reaction to HCI)
Oxidation % 40.00 Beige dolomite
STRUCTURE Type Intens CA° Comments
Laminations % very weak 30 Varies between 20 and 40 degrees
MISCELLANEOUS Zone HCL Apatite Zircon
OX M 5 0

2010-019 Log by Ryan Kressall Date Hole ID

FROM 143.99	TO - 148.18	ROCK CODE	dmpCD	=	Min Style d	Fabric m	Texture p	Litho CD	Struct	
		MAIN COMMENTS	Light-grey to beige por aggregated to weakly l				ed dolomite carbonatite.	Phenocrysts consist of	black altered phlogopite and dark-grey dolomitized magnetite (?). Apatite occurs	
		MINERALIZATION	Туре	Value	Comments					
			Pyrite %	1.50	Disseminated to	aggregated oxi	dized pyrite; abundant n	eedles of oxidized pyrite	e (?) occurs toward end of interval	
			Niobates %	0.25	Pale-pink to pale	e-yellow fine- to	medium-grained: poten	tial fersmites?		
		ALTERATION	Туре	Value	Comments					
			Oxidation %	40.00	Pink dolomite					
			Silica %	1.00	Minior silicificat	ion of matrix				
		STRUCTURE	Туре	Intens		CA°	Comments			
			Laminations %	weak		40	Locally present			
			_							
		MISCELLANEOUS	Zone	HCL	A	patite	Zircon	1		
			OX	W		5	1			

Log by	Rvan Kressall	Date	Hole ID	2010-019
LUS DA	Ryali Kiessali	Date	חטופ וט	2010 013

FROM 148.18 -	TO 152.44	ROCK CODE	dliCD	=	Min Style d	Fabric I	Texture i	Litho CD	Struct	
		MAIN COMMENTS	Dominantly inequigranu dissseminated.	ar to locally porphyr	ritic light grey to be	eige dolomite carl	oonatite. Phenocrysts con	sist of black altered	hlgopite Apatite occurs aggregated to weakly laminated. Zircon occ	urs
		MINERALIZATION	Туре	Value	Comments					
			Niobates %	0.10	Localized fne-grained pale-yellow grains towards top of interval: likely fersmite					
			Pyrite %	0.75	Disseminated fir	e-grained oxidize	ed pyrite			
		ALTERATION	Туре	Value	Comments					
			Silica %	1.00	Minor silicification	on of matrix				
			Oxidation %	80.00	Beige to pink dol	omite				
		STRUCTURE	Type	Intens		CA° (Comments			
			Veining %	moderate		85 A	Apatite vein			
			Laminations %	moderate		35 \	aries between 30 and 40	degrees		
		MISCELLANEOUS	Zone	HCL	Ap	atite	Zircon			
			OX	VW		7.5	0.1			

End of Hole End of Hole

Printed on 10/Feb/2011

GEOLOGY LOG

Hole ID	2010-020
---------	----------

Length

3.66

215.24

To

3.66

215.24

GENERAL INFORMATION								
Coordinate System	Easting	Northing	Elevation	Collar Azimuth	Collar Dip			
ST. PL Nad 83	454459.25	6256587.55	1644.08	20.00	-50.00			
Start Depth	Final Depth	Proposed Depth	Final Length	Rig	Area			
0.00	215.24		215.24		Central 2			
Operator	Year							
Taseko	2010							

PROFESSIONAL / TECHNICIAN								
	Name	Start Date	End Date					
Collar Surveyor	Ryan Kressall	02/Sep/2010						
Geology Logged By	Ryan Kressall							
Specific Gravity By	Steve Dumma							
Geotech Logged By	Steve Dumma	11/Aug/2010						
Drill Contractor		08/Aug/2010	10/Aug/2010					

DOWN HOLE SURVEY									
Depth	Azimuth	Dip	Temp °C	Mag.	Roll	Method			
23.16	18.70	-55.00	14.1	5556	22.8	Reflex EZ-shot			
84.12	19.00	-54.80	9.4	5570	329.9	Reflex EZ-shot			
114.60	16.80	-54.70	9.5	5766	315.6	Reflex EZ-shot			
145.08	15.30	-54.80	7.5	5802	231.4	Reflex EZ-shot			
206.04	16.80	-54.80	6.3	5732	84.4	Reflex EZ-shot			

DRILLING BIT SIZE

From

0.00

3.66

SUMMARY

Measurement unit: Metres (Unless otherwise specified)

Bit Size

NW (Casing)

NQ

GEOLOGY LEGEND

2010-020 Hole ID

ROCK CODE

MIN STYLE						
Abbr.	Description					
n	barren					
d	disseminated					
g	aggregated					
b	banded					

	FABRIC
Abbr.	Description
Х	brecciated
ı	laminated
f	decalcified
V	veined
р	porphyritic
m	massive

	TEXTURE
Abbr.	Description
f	decalcified
р	porphyritic
V	veined

LITHO						
Abbr.	Description					
CASE	Casing					
OVBN	Overburden					
OXID	Oxide					
AM	Amphibolite					
CC	Calcite Carbonatite					
CD	Dolomite Carbonatite					
CCCD	Mixed Calcite and Dolomite Carbonatite					
AMX	Amphibole and Mixed Carbonatite					
CM	Carbonatite Cumulate					

STRUCT					
Abbr.	Description				
Z	fault				
е	strained				
S	shear zone				
у	dyke				

MISCELLANEOUS:

ZONE					
Abbr.	Description				
OX	Oxide				
S	Supergene				
Н	Hypogene				

HCL						
Abbr.	Description					
VW	very weak					
W	weak					
М	moderate					
S	strong					
VS	very strong					

2010-020 Log by Ryan Kressall Date Hole ID

FROM 0.00	TO - 3.66	ROCK CODE	CASE	=	Min Style	Fabric	Texture	Litho CASE	Struct	
		MAIN COMMENTS	No rock.							
		MINERALIZATION								
		ALTERATION								
		STRUCTURE								
		MISCELLANEOUS	Zone	HCL		Apatite	Zircon			
FROM	то		- ICCD	=	Min Style	Fabric	Texture	Litho	Struct	
3.66	- 18.34	ROCK CODE	glfCD	=	g	I	f	CD		
			Large portions of inter	val are composed of 1	g rubble and frag	l gmented rocks. Inter	f	CD ey to oxidized-beige la	minated dolomite carbonatite. Minor int	ervals (~10 cm) of inequigranular
			Large portions of inter	val are composed of 1	g rubble and frag	l gmented rocks. Inter trong laminations. Z	f val is composed of light-gro	CD ey to oxidized-beige la		ervals (~10 cm) of inequigranular
		MAIN COMMENTS	Large portions of interdolomite carbonatite o	val are composed of i occur irregularly. Apat	g rubble and frag tite occurs as st Comment:	l gmented rocks. Inter trong laminations. Z S	f val is composed of light-gro	CD ey to oxidized-beige la throughout interval.	minated dolomite carbonatite. Minor int	ervals (~10 cm) of inequigranular
		MAIN COMMENTS	Large portions of interdolomite carbonatite o	val are composed of I occur irregularly. Apat Value	g rubble and frag ite occurs as st Comment: Minor poten	l gmented rocks. Inter trong laminations. Z S stial fesmite:fine-gra	f val is composed of light-gri ircon occurs disseminated	CD ey to oxidized-beige lange throughout interval. eak, concentrate in thir	minated dolomite carbonatite. Minor int	ervals (~10 cm) of inequigranular
		MAIN COMMENTS MINERALIZATION	Large portions of interdolomite carbonatite of Type Niobates % Pyrite %	val are composed of roccur irregularly. Apat Value 0.10 1.50	g rubble and frag ite occurs as st Comment: Minor poten	gmented rocks. Inter trong laminations. Z S ntial fesmite:fine-gra ium-grained oxidize	f val is composed of light-gra ircon occurs disseminated sined, dark grey, no red stre	CD ey to oxidized-beige lange throughout interval. eak, concentrate in thir	minated dolomite carbonatite. Minor int	ervals (~10 cm) of inequigranular
		MAIN COMMENTS	Large portions of interdolomite carbonatite of Type Niobates %	val are composed of r occur irregularly. Apat Value 0.10	g rubble and frag ite occurs as st Comment: Minor poten Fine to med	I gmented rocks. Inter trong laminations. Z S atial fesmite:fine-gra ium-grained oxidize	f val is composed of light-gra ircon occurs disseminated sined, dark grey, no red stre	CD ey to oxidized-beige lange throughout interval. eak, concentrate in thir	minated dolomite carbonatite. Minor int	ervals (~10 cm) of inequigranular
		MAIN COMMENTS MINERALIZATION	Large portions of interdolomite carbonatite of Type Niobates % Pyrite % Type	val are composed of inccur irregularly. Apat Value 0.10 1.50 Value	g rubble and frag ite occurs as st Comment: Minor poten Fine to med Comment: Beige dolom	I gmented rocks. Inter trong laminations. Z S atial fesmite:fine-gra ium-grained oxidize	f val is composed of light-gri ircon occurs disseminated ained, dark grey, no red stre d pyrite concentrates in oxi	CD ey to oxidized-beige lange throughout interval. eak, concentrate in thir	minated dolomite carbonatite. Minor int	ervals (~10 cm) of inequigranular
		MAIN COMMENTS MINERALIZATION ALTERATION	Large portions of interdolomite carbonatite of Type Niobates % Pyrite % Type Oxidation % Calcite %	val are composed of roccur irregularly. Apat Value 0.10 1.50 Value 50.00 1.50	g rubble and frag ite occurs as st Comment: Minor poten Fine to med Comment: Beige dolom	gmented rocks. Interstrong laminations. Z S Itial fesmite:fine-grained oxidize S Itial fesmined oxidize S Itial fesmined oxidize	f val is composed of light-gri ircon occurs disseminated ained, dark grey, no red stre d pyrite concentrates in oxi	CD ey to oxidized-beige lange throughout interval. eak, concentrate in thir	minated dolomite carbonatite. Minor int	ervals (~10 cm) of inequigranular
		MAIN COMMENTS MINERALIZATION	Large portions of interdolomite carbonatite of Type Niobates % Pyrite % Type Oxidation %	val are composed of roccur irregularly. Apat Value 0.10 1.50 Value 50.00	g rubble and frag ite occurs as st Comment: Minor poten Fine to med Comment: Beige dolom	gmented rocks. Inter trong laminations. Z S ntial fesmite:fine-gra ium-grained oxidize S	f val is composed of light-gri ircon occurs disseminated ained, dark grey, no red stre d pyrite concentrates in oxi	CD ey to oxidized-beige lange throughout interval. eak, concentrate in thir	minated dolomite carbonatite. Minor int	ervals (~10 cm) of inequigranular
		MAIN COMMENTS MINERALIZATION ALTERATION STRUCTURE	Large portions of interdolomite carbonatite of Type Niobates % Pyrite % Type Oxidation % Calcite % Type Laminations %	val are composed of a secur irregularly. Apate Value 0.10 1.50 Value 50.00 1.50 Intens strong	g rubble and frag ite occurs as st Comment: Minor poten Fine to med Comment: Beige dolom	gmented rocks. Intertrong laminations. Z s stial fesmite:fine-grained oxidize s nite dark-brown mottling CA° 40	f val is composed of light-gri ircon occurs disseminated sined, dark grey, no red stre d pyrite concentrates in oxi g reacts to HCI Comments	CD ey to oxidized-beige lange throughout interval. eak, concentrate in thir	minated dolomite carbonatite. Minor int	ervals (~10 cm) of inequigranular
		MAIN COMMENTS MINERALIZATION ALTERATION	Large portions of interdolomite carbonatite of Type Niobates % Pyrite % Type Oxidation % Calcite % Type	val are composed of a secur irregularly. Apate Value 0.10 1.50 Value 50.00 1.50 Intens	g rubble and frag ite occurs as st Comment: Minor poten Fine to med Comment: Beige dolom	gmented rocks. Intertrong laminations. Z s ntial fesmite:fine-grained oxidize s nite dark-brown mottling	f val is composed of light-gri ircon occurs disseminated ained, dark grey, no red stre d pyrite concentrates in oxi	CD ey to oxidized-beige lange throughout interval. eak, concentrate in thir	minated dolomite carbonatite. Minor int	ervals (~10 cm) of inequigranular

Printed on 10/Feb/2011

2010-020 Log by Ryan Kressall Date Hole ID

FROM 18.34	TO 31.05	ROCK CODE	bmcCDz	=	Min Style b	Fabric m	Texture c	Litho CD	Struct z	
		MAIN COMMENTS	Small laminae of dark- other. Apatite occurs m							kes appear to be approximately orthogonal to each
		MINERALIZATION	Туре	Value	Comments					
			Pyrite %	0.75	Fine-grained oxi	dized pyrite occurs	concentrated within la	minae.		
			Niobates %	0.10	Potential fersmi	te: dark-grey, fine-	grained, no red streak o	occur in oxidized pyrite	e-apatite-zircon-rich laminae	
		ALTERATION	Туре	Value	Comments					
			Oxidation %	50.00	Beige oxidation	concentrates aroun	d pyrite-rich laminae			
			Calcite %	45.00	Dark-brown calc	itization of dolomit	te			
		STRUCTURE	Туре	Intens		CA° C	omments			
			Laminations %	moderate		25 Va	aries between 10 and 35	i		
		MISCELLANEOUS	Zone	HCL	Α	patite	Zircon			
			OX	М		5	0.25			

2010-020 Log by Ryan Kressall Date Hole ID

FROM 31.05	TO - 40.86	ROCK CODE	nICD	=	Min Style n	Fabric I	Texture c	Litho CD	Struct		
		MAIN COMMENTS		f altered phlogopite						gget" of massive magnetite void of apatite con occurs concentrated in apatite laminae.	
		MINERALIZATION	Type	Value	Comments						
			Pyrite %	0.50	Oxidized stringers	and thin laminae	e (< 1 cm)				
		ALTERATION	Type Oxidation %	Value 35.00	Comments Roigo dolomito co	acontratos aroun	d pyrite stringers and lar	minao			
			Calcite %	55.00			moderate to strong calci				
		STRUCTURE	Туре	Intens			omments	,			
			Laminations %	weak	4	10					
		MISCELLANEOUS	Zone	HCL	Ара	itite	Zircon				
			OX	M	7	.5	0.1				

2010-020 Log by Ryan Kressall Date Hole ID

FROM 40.86	-	TO 48.92	ROCK CODE	glcCCCD	=	Min Style g	Fabric I	Texture c	Litho CCCD	Struct	
			MAIN COMMENTS	magnetite-bearing cald	ite carbonatite. A sm curs weakly to mode	nall (< 5 cm) magne rately laminated w	etite-apatite cumula ithin dolomite and c	te unit occurs at the e	nd of the interal (~ 48	arbonatite. Last 1 m of interval consists of interlaminated dolc .85 m). Some of the weathered rubble is magnetic (weathered gnetite. Zircon occurs locally concentrated within dark-grey lan	magnetite
			MINERALIZATION	Туре	Value	Comments					
				Pyrite %	0.50	Oxidized oyrite:	fine-grained dissem	inations to thin string	ers.		
				Niobates %	0.75	Fine-grained col	umbite likely occurs	with magnetite in cur	nulate, calcite carbona	itite and in rubble.	
				Magnetite %	5.00	Fine- to medium	n grained disseminat	ed in calcite carbonati	te to aggregated in sr	nall cumlate unit.	
			ALTERATION								
			STRUCTURE	Туре	Intens		CA° Co	mments			
				Laminations %	moderate		25 Ob	served in dolomite and	l calcite carbonatite: v	aries between 20 and 30 degrees	
			MISCELLANEOUS	Zone	HCL	Aj	patite	Zircon			
					М		5	0.1			

2010-020 Log by Ryan Kressall Date Hole ID

FROM 48.92	TO - 53.54	ROCK CODE	nlcCD	=	Min Style n	Fabric I	Texture c	Litho CD	Struct
		MAIN COMMENTS	Weathered light-grey la concentrated within apa				ous degrees of calcitization	n, oxidiation and decalc	cification. Apatite occurs moderately laminated. Zircon occurs locally
		MINERALIZATION	Туре	Value	Comments				
			Pyrite %	1.00	Oxidized pyrite or	ccurs as small (< 2 cm long) stringers and	as discordant veins	
		ALTERATION	Туре	Value	Comments				
			Oxidation %	30.00	Beige dolomite				
			Calcite %	40.00	Dark brown calcit	ization of dolor	mite		
		STRUCTURE	Туре	Intens	(CA°	Comments		
			Laminations %	weak		40	Highly variable between	20 and 60 degrees	
			Veining %	weak		70	1 cm thick dolomite veins 50 degrees	s dip at 70 degrees - sm	naller irregular veins have no preferred orientation; oxidized pyrite veins occur at
		MISCELLANEOUS	Zone	HCL	Ар	atite	Zircon		
			OX	M		5	0.25		

2010-020 Log by Ryan Kressall Date Hole ID

FROM 53.54	TO - 54.57	ROCK CODE	gmfCM	=	Min Style g	Fabric m	Texture f	Litho CM	Struct
		MAIN COMMENTS	Highly weathered inter	val composed of mag	gnetite-apatite cum	ulate. Unit is prini	pally composed of apat	te, magnetite, phloop	oite and Fe-oxidization products. No calcite or dolomite is present.
		MINERALIZATION	Туре	Value	Comments				
			Niobates %	2.50	Likely black colum	nbite occurs with r	nagnetite.		
			Magnetite %	45.00	Fine- to medium-	grained magnetit	e aggregates with apati	te.	
			Pyrite %		Not observed but	likely present (hig	hly oxidized)		
		ALTERATION	Туре	Value	Comments				
			Oxidation %	30.00	Orange hematite	after magnetite			
		STRUCTURE							
		MISCELLANEOUS	Zone	HCL	Apa	atite	Zircon		
			OX	VW		10	1		
			Zone	HCL	Ара	atite	Zircon 1		

2010-020 Log by Ryan Kressall Date Hole ID

FROM TO 54.57 - 66.58	ROCK CODE	dlfgCD	=	Min Style d	Fabric I	Texture fg	Litho CD	Struct
	MAIN COMMENTS	dolomitized phlogopite	or magnetite and bl	ack chloritized phlog	optite. Greenis	h-blue clasts (~ 5 cm dian	neter) occur ~ 63 m (fe	to decalcified to various degrees. Locallized phenocrysts consists of dark-rey nite xenoliths?).occur Apatite occurs oriented (in areas of lower concentration) to ar greenish blue xenolith.
	MINERALIZATION	Туре	Value	Comments				
		Pyrite %	1.00	Oxidized pyrite occ	cur concentrate	d in oxidized laminae		
		Magnetite %	0.10	Rare medium-grai	ned magnetite	grain in dolomite carbona	atite	
		Niobates %	0.50	Possible fersmite after pyrochlore of pyrochlore: fine-grained yellowish grey to black grains occur near fenite (?) clasts; fine-grained light- to medium-octahedral grains occur with phenocrysts				
	ALTERATION	Туре	Value	Comments				
		Calcite %	25.00	Dark-brown mottl	ing of dolomite	(calcitization)		
		Amphibolite %	2.50	Possible fenite occ	curs at ~ 63 m -	does not have typical ovi	oid texture of fenites	though.
		Oxidation %	75.00	Beige dolomite co	ncentrates arou	ınd oxidized pyrite		
	STRUCTURE	Туре	Intens	С	A°	Comments		
		Laminations %	moderate		25	Steeper (45 degrees) tow	ards top of interval an	d decreases to 5 degrees at end of interval (25 is the most consistant angle).
	MISCELLANEOUS	Zone	HCL	Apa	itite	Zircon		
		OX	М	7		0.5		

2010-020 Log by Ryan Kressall Date Hole ID

FROM 66.58	T0 - 70.21	ROCK CODE	blpCCCD	=	Min Style b	Fabric I	Texture p	Litho CCCD	Struct
		MAIN COMMENTS	blue clasts similar to the	ose observed in 54.57 dolomite carbonatit	7-66.58 m interval o te occurs at the end	ccur irregularly in of the interval wi	interval. The clasts are th abundant phenocry	e non-magnetic and cor	ed around 50 % of interval. Calcite is the dominate carbonatite phase. Greenish- ntain a high proportion o phlogopite (altered magnetie cumulate?). A ~20 cm hloopite. Apatite occurs strongly laminated in dolomite and calcite carbonatite
		MINERALIZATION	Туре	Value	Comments				
			Pyrite %	0.50	Thin laminae of fro	esh to oxidized py	yrite in calcite carbona	tite	
			Niobates %	1.50	Pale-pink pyrochlo carbonatite	ore and yellowish-	-black fersmite in med	ium-grey dolomite-carb	ponatite; likely black columbite occurs with magnetite in cumulate and calcite
			Magnetite %	35.00	Medium-grained n	nagnetite occurs	aggregated with apati	te and occurs dissemina	ated in calcite-carbonatite and in medium-grey dolomite carbonatite
		ALTERATION							
		STRUCTURE	Туре	Intens	С	A° C	omments		
			Laminations %	moderate	2	40 ~2	25 degrees towards top	of interval; steepens t	owards bottom of interval
		MISCELLANEOUS	Zone	HCL	Apa	atite	Zircon		
			OX	VS					

2010-020 Log by Ryan Kressall Date Hole ID

FROM 70.21	TO - 74.76	ROCK CODE	dlpAMX	=	Min Style d	Fabric I	Texture p	Litho AMX	Struct	
		MAIN COMMENTS	Large clasts of fenite (1 carbonatite. Zircon occ				rbonatite. Dolomite carbo	natite is light-grey to p	oink with phenocrysts of dolomitized phlogop	ite. Apatite occurs laminated within
		MINERALIZATION	Туре	Value	Comments					
			Niobates %	0.10	Pale-yellow fine	-grained fersmit	e in calcite and dolomite o	carbonatites		
			Pyrite %	0.50	Fine-grained fre	sh pyrite in calcit	te carbonatite and fenite	clasts; fine-grained ox	idized pyrite occurs in dolomite carbonatite in	association with phlogopite
		ALTERATION	Туре	Value	Comments					
			Amphibolite %	60.00	Blue to green fe	nite blocks				
			Oxidation %	40.00	Beige dolomite					
		STRUCTURE	Туре	Intens		CA°	Comments			
			Laminations %	moderate		15	Varies between 10 and 20	O degrees - only visible	in carbonatite	
		MISCELLANEOUS	Zone	HCL	A	patite	Zircon			
			OX	М		5	0.1			

Printed on 10/Feb/2011

GEOLOGY LOG

2010-020 Log by Ryan Kressall Date Hole ID

FROM 74.76	T0 - 79.40	ROCK CODE	dlpCCCD	=	Min Style d	Fabric I	Texture p	Litho CCCD	Struct
		MAIN COMMENTS		apatite occur as stro	ong laminations in ca	alcite carbonatite.	Calcite carbonatite con	Itains high abundance	tains interstital calcite. Dolomite carbonatite only occurs in the top 15 cm of e of phlogopite, magnetite, and zircon. Magnetite-apatite cumulate is devoid of .
		MINERALIZATION	Туре	Value	Comments				
			Magnetite %	15.00	Medium-grained r	nagnetite occurs a	aggregated with apatite	e; fine-grained occur co	oncentrated in laminae of calcite carbonatite
			Pyrite %		None observed (?)				
			Niobates %	1.00	Fine-grained pale-	-pink pyrochlore ir	calcite carbonatite and	d likely black columbit	e aggregated with magnetite.
		ALTERATION							
		STRUCTURE	Туре	Intens	C	A° Co	omments		
			Laminations %	moderate		35 On	ly visible in carbonatite	: decreases from 40 to	o 25 degrees downhole.
		MISCELLANEOUS	Zone	HCL	Apa	atite	Zircon		
			OX	М	2	25	0.25		

2010-020 Log by Ryan Kressall Date Hole ID

FROM 79.40 -	TO 83.57	ROCK CODE	blpCD	=	Min Style b	Fabric I	Texture p	Litho CD	Struct	
		MAIN COMMENTS							and porphyritic dolomite carbonatite. Porphyritic laminae are enriched in apatite contains magnetite at ~ 82.25 m (poor lamination).	
		MINERALIZATION	Туре	Value	Comments					
			Magnetite %	0.50	Minor fine- to medi	ium grained mag	netite occurs in single p	orphyry laminae		
			Pyrite %	0.50	Aggregated to strin	gers up to 1 cm:c	xidized pyrite			
			Niobates %	0.75	Fine-grained, pale-	yellow to grey fe	smite occurs in porphry	/		
		ALTERATION	Туре	Value	Comments					
			Oxidation %	50.00	Beige to pink dolom	nite				
		STRUCTURE	Туре	Intens	CA	۸° Cc	mments			
			Laminations %	weak	25	5 Ge	nerally 25 but varies up	to 75 degrees. Observ	red to steepen from 40 to 75 degrees within 10 centimetres.	
		MISCELLANEOUS	Zone	HCL	Apat	tite	Zircon			
			OX	VW	7.5	5	0.5			

2010-020 Log by Ryan Kressall Date Hole ID

FROM 83.57	-	TO 90.73	ROCK CODE	glCD	=	Min Style g	Fabric I	Texture p	Litho CD	Struct	
			MAIN COMMENTS		ed within dolomite ca	arbonatite. Magnetite a	and altered ph	nloopite occur as phenod	rysts in laminated dol	olomitized magnetite-apatite cumulates?).Calcite carb omite carbonatite. Fresh phloopite occurs in uncommon	
			MINERALIZATION	Type	Value	Comments					
				Magnetite %	10.00	Fine- to medium gra	ined occur cor	ncentrated with apatite	and disseminated with	iin dolomite carbonatite.	
				Pyrite %	1.00	Aggregates of fresh	pyrite occur di	isseminated throuhout	interval. Fine-grained o	oxidized pyrite occur within thin laminae.	
				Niobates %	0.75	Black columbite likel	y occurs asso	ciated with magnetite			
			ALTERATION	Туре	Value	Comments					
				Oxidation %	25.00	Beige to pink dolomi	te concentrat	es around thin laminae	enriched in pyrite		
			STRUCTURE	Туре	Intens	CA°	· (Comments			
				Laminations %	moderate	30	V	aries between 20 and 4	O degress but most co	nsistently ~30 degrees	
			MISCELLANEOUS	Zone	HCL	Apati	te	Zircon			
				OX	W	10		0.5			

2010-020 Log by Ryan Kressall Date Hole ID

gopite
) [

2010-020 Log by Ryan Kressall Date Hole ID

FROM 94.31	T0 - 96.42	ROCK CODE	dmpCD	=	Min Style d	Fabric m	Texture p	Litho CD	Struct	
		MAIN COMMENTS	Massive porphyritic dol dolomite carboantite A			• •			of rubble. Phenocrysts of altered phloopite occu .43-96.42 m)	unevenly distributed throughout
		MINERALIZATION	Туре	Value	Comments					
			Niobates %	0.50	Yellowish to dark g	grey "grainy" fersm	ite (?) occurs dissemin	ated throuhout		
			Pyrite %	1.00	Disseminated fine	-grained oxidized _I	yrite			
		ALTERATION								
		STRUCTURE	Туре	Intens	C	A° Co	mments			
			Veining %	weak	4	0 Fra	ture infilled with dom	inatly zircon (visible v	vith UV) in dark-grey dolomite	
		MISCELLANEOUS	Zone	HCL	Apa	tite	Zircon			
			OX	VW	7.		0.5			

2010-020 Log by Ryan Kressall Date Hole ID

FROM 96.42	T0 - 104.82	ROCK CODE	dlpCD	=	Min Style d	Fabric I	Texture p	Litho CD	Struct	
		MAIN COMMENTS							c dolomite carbonatite. Phenocrysts consist of d trated near top of interval.	olomitized magnetite, commonly
		MINERALIZATION	Туре	Value	Comments					
			Pyrite %	1.75	Fine-grained oxidize	d pyrite occurs	disseminated and as stri	ngers (up to 1 cm lor	ng); fresh pyrite rims phenocrysts	
			Niobates %	0.10	Potential fersmite -	dark-grey, fine	-grained, colorless streak			
		ALTERATION	Туре	Value	Comments					
			Oxidation %	45.00	Beie to pink dolomito	e concentrates	around pyrite aggregates	i		
		STRUCTURE	Туре	Intens	CA	· c	omments			
			Laminations %	weak	10	G	ernerally low but doe loca	lly vary up to 30 deg	rees	
		MISCELLANEOUS	Zone	HCL	Apati	te	Zircon			
			OX	VW	7.5		0.5			

2010-020 Log by Ryan Kressall Date Hole ID

FROM 104.82	TO - 111.08	ROCK CODE	dlpAMX	=	Min Style d	Fabric I	Texture p	Litho AMX	Struct	
		MAIN COMMENTS		abundant fresh pyrit	te and phenocrysts of	black altered ph			olour with abundant disseminated ite (?). Apatite occurs moderately l	
		MINERALIZATION	Type	Value	Comments					
			Niobates %	0.50	Pale-pink and pale-	yellow to grey, f	ne-grained: possibly f	fersmite or pyrochlore	in calcite carbonatite	
			Pyrite %	1.00	Fresh pyrite in dolon	nite carbonatite				
			Magnetite %	2.50	Medium-grained dis	seminations in o	alcite carbonatite.			
		ALTERATION	Туре	Value	Comments					
			Oxidation %	30.00	Beige to pink calcite	and dolomite				
		STRUCTURE	Туре	Intens	CA	° Co	mments			
			Laminations %	moderate	30					
		MISCELLANEOUS	Zone	HCL	Apati	ite	Zircon			
			OX	S	5		0.25			

2010-020 Log by Ryan Kressall Date Hole ID

FROM 111.08	TO - 116.57	ROCK CODE	dlpCD	=	Min Style d	Fabric I	Texture p	Litho CD	Struct	
		MAIN COMMENTS					altered phlogopite and da ed. Zircon occurs dissemir		agnetite (?). Dark-grey phenocrysts occur commonly associated with pyrite w val.	vhich
		MINERALIZATION	Туре	Value	Comments					
			Niobates %	0.25	Pinkish grey, fine	e-grained: possib	ly fersmite or pyrochlore			
			Pyrite %	2.00	Fresh pyrite occu	rs associated wit	th phenocrysts, often for	ming rims		
		ALTERATION	Туре	Value	Comments					
			Oxidation %	30.00	Beige dolomite					
		STRUCTURE	Туре	Intens		CA°	Comments			
			Laminations %	moderate		30	Varies between 15 and 60	degrees		
		MISCELLANEOUS	Zone	HCL	Ар	atite	Zircon			
			OX	VW		10	0.25			

2010-020 Log by Ryan Kressall Date Hole ID

FROM 116.57	-	TO 129.60	ROCK CODE	dlpAMX	=	Min Style d	Fabric I	Texture p	Litho AMX	Struct
			MAIN COMMENTS		exture (similar to fen	ites) and may represe	ent dolomitizat			contained fine-grained disseminated magnetite and phlogopite. Some dolomite within laminated carbonatite and aggregated within "dolomitized fenite". Fenite
			MINERALIZATION	Type	Value	Comments				
				Niobates %	0.25	Pale-pink, fine-gra	ined: Likely pyr	rochlore in calcite carbon	atite; yellowish-grey,fi	ine-grained in dolomite carbonatite: possibly fersmite
				Pyrite %	0.50	Fresh pyrite occurs	aggregate with	h altered phlogopite and	dark-grey phenocrysts	s in dolomite carbonatite
			ALTERATION	Туре	Value	Comments				
				Amphibolite %	35.00	Green- to blue feni	te blocks			
				Oxidation %	10.00	Pink and beige carb	onatite			
			STRUCTURE	Туре	Intens	CA	\ ° (Comments		
				Laminations %	moderate	3:	5 (Only observed in carbona	atite: 30 to 40 degrees	
			MISCELLANEOUS	Zone	HCL	Apat	tite	Zircon		
				OX	М	5		0.1		

2010-020 Log by Ryan Kressall Date Hole ID

FROM 129.60	TO - 144.52	ROCK CODE	dmfgCD	=	Min Style d	Fabric m	Texture fg	Litho CD	Struct		
		MAIN COMMENTS	Dominantly fine-grain possbly dolomitized m						patite cumulate (void of zircon). I th porphyry.	Phenocrysts consist of alter	ed phlogopite and
		MINERALIZATION	Туре	Value	Comments						
			Pyrite %	1.00	Pyrite occurs conc	entrated within p	orphyry often forming g	gregates with and rir	ns on phenocrysts		
			Magnetite %	2.50	Medium-grained r	magnetite occurs a	aggregated with apatite	2.			
			Niobates %	0.25	Fine-grained pale-	-yellow likely fersr	nite occurs disseminate	ed with porphyry; Blac	ck columbite likely occurs with ma	gnetite cumulate	
		ALTERATION	Туре	Value	Comments						
			Oxidation %	60.00	Beige to pink dolo	mite					
		STRUCTURE	Туре	Intens	C	.A° Co	omments				
			Laminations %	weak		40 Or	ly locally present; show	s minor variation to	30 degrees		
		MISCELLANEOUS	Zone	HCL	Apa	atite	Zircon				
			OX	VW	1	10	0.25				

2010-020 Log by Ryan Kressall Date Hole ID

FROM TO 144.52 - 146.77	ROCK CODE	gmpAMX	=	Min Style g	Fabric m	Texture p	Litho AMX	Struct
	MAIN COMMENTS							e interval has a brecciated appearance with dark-rey clasts of dolomite greates. No zircon observed.
	MINERALIZATION	Туре	Value	Comments				
		Niobates %	0.25	Pale-pink to yellow fin	ne grained fersm	nite (after pyrochlore:) occurs near fenite co	ntacts
		Pyrite %	1.00	Fresh pyrite occurs ag	gregated			
	ALTERATION	Туре	Value	Comments				
		Amphibolite %	70.00					
	STRUCTURE							
	MISCELLANEOUS	Zone	HCL	Apatite	е	Zircon		
		OX	VW	20				

2010-020 Log by Ryan Kressall Date Hole ID

FROM 146.77	_	TO 157.26	ROCK CODE	blpCD	=	Min Style b	Fabric I	Texture p	Litho CD	Struct	
			MAIN COMMENTS	Interlamination betwee Resembles clasts at ~6		ined aphyric light-	grey to beige dolo	omite carbonatite and th	iin laminae of dolomit	e carbonatite. Greenish-blue clasts occur at ~154 m (fenite or altere	ed magnetite?
			MINERALIZATION	Туре	Value	Comments					
				Pyrite %	1.50	Oxidized pyrite f	orms aggregates	and stringers within aph	nryic dolomite carbona	tite:	
				Niobates %	0.25	Black fine-graine with columbite -		ctahedral (?) columbite	occurs within porphyry	laminae; paler yellower grains with similar octahedral to hexagona	al shape occur
			ALTERATION	Туре	Value	Comments					
				Oxidation %	75.00	Beige to pink do	lomite - mostly a	ffects aphryic dolomite (carbonatite		
				Amphibolite %	2.50	Possible fenite c	lasts, greenish bl	ue, ~ 4 cm diameter			
			STRUCTURE	Туре	Intens		CA°	Comments			
				Laminations %	weak		65	varies between 60 and 7	O degrees		
			MISCELLANEOUS	Zone	HCL	A	patite	Zircon			
				OX	VW						

2010-020 Log by Ryan Kressall Date Hole ID

FROM TO RO 157.26 - 168.09	DCK CODE blpAMX	=	Min Style Fa	abric Texture	Litho AMX	Struct	
MAIN	"crosscutting" fenite.		te carbonatite consist of bl			porphyry. Aphryic calcite carboatite f ninated within dolomite carbonatite (forms only small (< 10 cm) laminae ~20 vol. %). Zircon occurs concentrated in
MINE	RALIZATION Type	Value	Comments				
	Pyrite %	0.50	Locally concentrated oxid	dized pyrite - occurs dissemir	nated and as stringers		
	Niobates %	0.10	Pale-yellow to dark grey f	fersmite grains occur in dolor	mite carbonatite with high	abundance of phenocrysts	
ALT	TERATION Type	Value	Comments				
	Amphibolite %	70.00	Green to blue fenite block	ks with abundant phlogopite	!		
	Oxidation %	10.00	Beige dolomite; concentr	ated around pyrite stringers			
STI	RUCTURE Type	Intens	CA°	Comments			
	Laminations %	weak	30	Only visible in carbo	natite; varies between 25 a	and 35 degrees	
MISC	ELLANEOUS Zone	HCL	Apatite	Zircon			
		VW	7.5	0.25			

2010-020 Log by Ryan Kressall Date Hole ID

FROM 168.09	TO - 184.18	ROCK CODE	nlpCD	=	Min Style n	Fabric I	Texture p	Litho CD	Struct	
		MAIN COMMENTS		nsist of fine-grained					r interval. Laminae and clots of dark-grey dolomite carbonatite increases down the sex weakly to moderately laminated. Zircon occurs concentrated with porphyry. No	
		MINERALIZATION	Туре	Value	Comments					
			Pyrite %	1.75	Fine-grained dissem	ninations to ag	ggregates up to 1 cm - oxic	lized pyrite		
		ALTERATION	Туре	Value	Comments					
			Amphibolite %	0.50	Small greenish blue	clast (fenite o	r altered magnetite?)			
			Calcite %	5.00	Dark-brown mottlin	(calcitization)				
			Oxidation %	80.00	Beige dolomite					
			Silica %	2.50	Minor silicification o	of matrix				
		STRUCTURE	Туре	Intens	CA	° (Comments			
			Laminations %	weak	60	V	aries between 50 and 70	degrees		
		MISCELLANEOUS	Zone	HCL	Apati	ite	Zircon			
			OX	W	2.5		0.25			

2010-020 Log by Ryan Kressall Date Hole ID

FROM 184.18	TO - 187.80	ROCK CODE	glCM	=	Min Style g	Fabric I	Texture i	Litho CM	Struct	
		MAIN COMMENTS		ed (decalcified and	oxidized). Towards t	he middle of the	interval, magnetite-apa	ite cumulate and dol	tite is void of magnetite but contains thin laminae of lomite carbonatite occur as thin (< 3 cm) interlaminati	
		MINERALIZATION	Туре	Value	Comments					
			Magnetite %	45.00	Fine- to medium-g	grained magnetit	te occurs aggregated with	ı apatite		
			Pyrite %	0.50	Thin laminations of	of fresh to oxidiz	ed pyrite occurs within do	olomite carbonatite		
		ALTERATION	Туре	Value	Comments					
			Oxidation %	15.00	Beige dolomite and	d orange hemati	te on magnetite			
		STRUCTURE	Туре	Intens	C	A° C	omments			
			Laminations %	very weak	. 4	10 N	ot always visible and ver	/ irregular (swirly) boo	undaries	
		MISCELLANEOUS	Zone	HCL	Ара	tite	Zircon			
			OX	VW	3	0	1			

2010-020 Log by Ryan Kressall Date Hole ID

FROM 187.80	TO - 200.00	ROCK CODE	ICD	=	Min Style	Fabric I	Texture p	Litho CD	Struct
		MAIN COMMENTS	dolomitized magnetite	(?). A fenite block (~	20 cm) occurs at ~19	4 m. Dolomitized	I fenite appears to occur	right after fenite wit	massive. Phenocrysts are comprised of black altered phlogopite and dark-grey h swirly texture (red to brown in colour). Apatite occurs aggregated throughout d throughout interval. Very fine-grained disseminations of zircon concentrate in
		MINERALIZATION	Туре	Value	Comments				
			Niobates %	0.25	Pale-yellow to dar	k-grey fine-grain	ed fersmite in porphyry		
			Pyrite %	1.00	Fine-grained pyrit	e aggregates occi	urs commonly with pher	nocrysts; commonly f	orm aggregates with and rims on dark grey phenocrysts (dolomitized magnetite?)
		ALTERATION	Туре	Value	Comments				
			Oxidation %	35.00	Beige to pink dolo	mite			
		STRUCTURE	Туре	Intens	С	A° C	omments		
			Laminations %	very weak	<u></u>	50			
			Veining %	moderate	5	50 D	olomite vein orthogonal	to lamination	
		MISCELLANEOUS	Zone	HCL	Apa	itite	Zircon		
			OX	VW	2	0	0.75		
		STRUCTURE	Oxidation % Type Laminations % Veining % Zone	35.00 Intens very weak moderate HCL	Beige to pink dolo	A° C 50 D	olomite vein orthogonal Zircon	to lamination	

2010-020 Log by Ryan Kressall Date Hole ID

FROM 200.00 -	TO - 215.24	ROCK CODE	nlfCD	=	Min Style n	Fabric I	Texture f	Litho CD	Struct	
		MAIN COMMENTS	Decalcification of dolom disseminated throughou				eases. Fine-grained alter	ed phlogopites occu	towards the top of interval. Apatite occurs weakly la	minated. Zircon occurs
		MINERALIZATION	Туре	Value	Comments					
			Pyrite %	1.50	Fine-grained oxid	lized pyrite occurs	disseminated throughou	ıt interval.		
		ALTERATION	Туре	Value	Comments					
			Oxidation %	80.00	Beige to pink dol	omite				
			Calcite %	25.00	Dark-brown calci	tization				
		STRUCTURE	Туре	Intens		CA° Co	omments			
			Laminations %	moderate		25 Va	ries between 20 and 35	degrees		
		MISCELLANEOUS	Zone	HCL	Ар	atite	Zircon			
			OX	W		7.5	0.1			

End of Hole End of Hole

2010-021 Hole ID

	GENERAL INFORMATION												
Coordinate System	Easting	Northing	Elevation	Collar Azimuth	Collar Dip								
ST. PL Nad 83	454271.13	6256449.48	1585.70	20.00	-55.00								
Start Depth	Final Depth	Proposed Depth	Final Length	Rig	Area								
0.00	149.39		149.39		Central 1								
Operator	Year			- 1									
Taseko	2010												

PROFESSIONAL / TECHNICIAN

	Name	Start Date	End Date
Collar Surveyor	Ryan Kressall	02/Sep/2010	
Geology Logged By	Ryan Kressall		
Specific Gravity By	Steve Dumma		
Geotech Logged By		12/Aug/2010	
Drill Contractor		08/Aug/2010	10/Aug/2010

		RY

DRILLING BIT SIZE							
Bit Size	From	То	Length				
NW (Casing)	0.00	4.57	4.57				
NQ	4.57	149.39	149.39				

DOWN HOLE SURVEY									
Depth	Azimuth Dip Temp °C Mag. Roll Method								
15.24	27.60	-56.00	13.4	5050	50.4	Reflex EZ-shot			
137.16	26.30	-57.70	15.1	5921	356.0	Reflex EZ-shot			

GEOLOGY LEGEND

Hole ID **2010-021**

ROCK CODE

MIN STYLE						
Abbr.	Description					
n	barren					
d	disseminated					
g	aggregated					
b	banded					

FABRIC						
Abbr.	Description					
Х	brecciated					
- 1	laminated					
f	decalcified					
V	veined					
р	porphyritic					
m	massive					

	TEXTURE
Abbr.	Description
f	decalcified
р	porphyritic
V	veined

LITHO						
LITHO						
Abbr.	Description					
CASE	Casing					
OVBN	Overburden					
OXID	Oxide					
AM	Amphibolite					
CC	Calcite Carbonatite					
CD	Dolomite Carbonatite					
CCCD	Mixed Calcite and Dolomite Carbonatite					
AMX	Amphibole and Mixed Carbonatite					
CM	Carbonatite Cumulate					

STRUCT						
Abbr.	Description					
Z	fault					
е	strained					
S	shear zone					
У	dyke					

MISCELLANEOUS:

ZONE							
Abbr.	Description						
OX	Oxide						
S	Supergene						
Н	Hypogene						

HCL						
Abbr.	Description					
VW	very weak					
W	weak					
М	moderate					
S	strong					
VS	very strong					

2010-021 Log by Ryan Kressall Date Hole ID

FROM 0.00 -	TO 4.57	ROCK CODE	CASE	=	Min Style	Fabric	Texture	Litho CASE	Struct		
		MAIN COMMENTS	No rock.								
		MINERALIZATION									
		ALTERATION									
		STRUCTURE									
		MISCELLANEOUS	Zone	HCL	А	patite	Zircon				

2010-021 Log by Ryan Kressall Date Hole ID

FROM 4.57	TO - 9.27	ROCK CODE	gmpCM	=	Min Style g	Fabric m	Texture p	Litho CM	Struct
		MAIN COMMENTS	phryic dolomite carbona grained magnetite-apat	atite The remainder o tite unit becomes pro	of the interval is co ogressively less ma	omposed of fine-g agnetic in the last	rained magnetite aggrega 30 cm of the interval but	ated with apatite wit appears essentially t	magnetite-bearing dolomite. Interval from ~ 6.25 - 7.5 m consists of magnetite-h thin laminae of light- to medium-grey dolomite carbonatite. The dark-grey fine-the same; apatite content may increase (?). Medium- to coarse-grained phlogopite Zircon occurs disseminated throughout interval.
		MINERALIZATION	Туре	Value	Comments				
			Niobates %	2.00	Black columbite	likely occurs with	magnetite		
			Magnetite %	45.00	Medium-grained	d magnetite disser	ninated in dolomite; fine	-grained magnetite a	aggregated with apatite
		ALTERATION	Туре	Value	Comments				
			Calcite %	2.50	Dark brown - mi	nor calcitization o	f dolomite		
			Oxidation %	10.00	pink dolomite &	orange hematite	(?) around magnetit		
		STRUCTURE	Туре	Intens		CA°	Comments		
			Veining %	moderate		45 [Oolomite veins occur at 40	0, 50 and 75 degrees	
			Laminations %	very weak		30 L	ocally observed		
		MICCELLANEOUS	Zono	исі	Λ.	natito	Zircon		
		MISCELLANEOUS	Zone OX	HCL VW	A	patite 20	Zircon 1		
			O/				•		

2010-021 Log by Ryan Kressall Date Hole ID

FROM 9.27	-	TO 11.27	ROCK CODE	glfgCD	=	Min Style g	Fabric I	Texture fg	Litho CD	Struct
			MAIN COMMENTS		erval is dark grey (~1	10 cm) and rich in lamina	ited apatite - i	may be dolomitized ma	ignetite-apatite simila	tervals appear to possibly represent altered magnetite-apatite cumulate. One at ar to 4.57-9.27 interval. The last 20 cm of the interval is composed of dark brown
			MINERALIZATION	Type	Value	Comments				
				Pyrite %	1.00	Fine-grained dissemin	nated oxidized	l pyrite and stringers fo	llowing lamination	
				Magnetite %	1.50	Occurs in small cumul	ate with apat	ite and in weathered in	terval at end of interva	al (last 20 cm)
			ALTERATION	Туре	Value	Comments				
				Oxidation %	50.00	Beige to pink dolomit	е			
			STRUCTURE	Туре	Intens	CA°	C	omments		
				Laminations %	weak	20	Ge	nerally around 20, vari	es up to 40 degrees als	so cross laminations occur
			MISCELLANEOUS	Zone	HCL	Apatit	e	Zircon		
				OX	VW	12.5		0.1		

2010-021 Log by Ryan Kressall Date Hole ID

FROM 11.27	TO - 15.43	ROCK CODE	nlpCD	=	Min Style n	Fabric I	Texture p	Litho CD	Struct
		MAIN COMMENTS					ltered phlogopite and dark roughout interval. No Nb-1		ignetite (?). Phenocrysts appear to be partially dolomitized (dolomite inclusions). ed.
		MINERALIZATION	Туре	Value	Comments				
			Pyrite %	1.50	Fine-grained fresh	pyrite occurs o	disseminated throughout i	nterval; oxidized pyrit	te occurs as stringers up to 3 cm long
		ALTERATION	Туре	Value	Comments				
			Oxidation %	45.00	Beige dolomite				
		STRUCTURE	Туре	Intens	CA	7°	Comments		
			Laminations %	moderate	3	0			
		MISCELLANEOUS	Zone	HCL	Apa	tite	Zircon		
			OX	VW	10)	0.25		

2010-021 Log by Ryan Kressall Date Hole ID

FROM 15.43	TO - 22.16	ROCK CODE	glpCD	=	Min Style g	Fabric I	Texture p	Litho CD	Struct		
		MAIN COMMENTS								mulate occurs at ~ 12 m. Phenocrysts consist occurs concentrated in magnetite-apatite	
		MINERALIZATION	Type	Value	Comments						
			Niobates %	1.00	Black columbite lik	ely occurs with i	magnetite				
			Magnetite %	20.00	Aggregated with a	patite					
			Pyrite %	1.00	Fine-grained oxidiz	zed pyrite occurs	disseminated throuhg	out intervals. Cores ar	re commonly fresh.		
		ALTERATION	Туре	Value	Comments						
			Calcite %	5.00	Dark-brown calcitiz	zation concentra	ates around magnetie-a	patite cumulate.			
			Oxidation %	50.00	Beige dolomite						
		STRUCTURE	Туре	Intens	CA	۹° C	Comments				
			Laminations %	moderate	11	0					
		MISCELLANEOUS	Zone	HCL	Apa	tite	Zircon				
			OX	W			0.5				

2010-021 Log by Ryan Kressall Date Hole ID

FROM 22.16	-	TO 36.83	ROCK CODE	gmfCD	=	Min Style g	Fabric m	Texture f	Litho CD	Struct
			MAIN COMMENTS	5 5 ,	rs at ~ 27 m. Apatite	occurs aggregated to	concentric in ov	oid textured dolomite	carbonatite and as stro	ally. Ovoid texture may be indicative of dolomitized fenite (?). A minor interval of ong laminatations in laminated dolomite carbonatite. Zircon occurs in erval
			MINERALIZATION	Type	Value	Comments				
				Niobates %	0.50	Fine-grained black h	nexagonal to oct	tahedral columbite (?) o	observed in ovoid textu	ured dolomite at top of interval. Columbite also likely occurs with magnetite.
				Pyrite %	1.50	Oxidized pyrite occu	ırs as dissemina	tions, stringers and un	oriented aggregates	
				Magnetite %	1.00	Small (<5 cm) aggre	gates with apat	ite occur irregularly thr	oughout interval.	
			ALTERATION	Туре	Value	Comments				
				Oxidation %	50.00	Beige dolomite				
			STRUCTURE	Туре	Intens	CA	° C	omments		
				Laminations %	weak	10	Lo	ocallized texture is shal	low towards top of inte	erval (~10 degrees) but steepens to 40 degrees towards bottom of hole
			MISCELLANEOUS	Zone	HCL	Apat	ite	Zircon		
				OX	W	12.5	5	0.25		

2010-021 Log by Ryan Kressall Date Hole ID

FROM 36.83	TO - 51.53	ROCK CODE	blpCD	=	Min Style b	Fabric I	Texture p	Litho CD	Struct	
		MAIN COMMENTS							nterval. Porphyry are confined to thin laminae (generally < 3 cm) with phenocrysts d throughout interval. Zircon occurs concentrated within localized apatite laminae.	
		MINERALIZATION	Type	Value	Comments					
			Niobates %	0.10	Fine-grained dar	k-grey to grainy p	ale-yellow fersmite (afto	er columbite?) occur w	vithin thin apatite-zircon-rich laminae.	
			Pyrite %	1.50	Fine- to medium	grained oxidized	pyrite occur concentrate	d within laminae.		
		ALTERATION	Туре	Value	Comments					
			Oxidation %	50.00	Beige dolomite -	generally surroun	ds oxidized pyrite			
			Calcite %	12.50	Dark-brown calci	tization generally	follows lamination			
		STRUCTURE	Туре	Intens		CA° (Comments			
			Laminations %	weak		30				
			Veining %	strong		70 C	alcite veins locally conce	entrated around 49.25	m	
		MISCELLANEOUS	Zone	HCL	Ap	atite	Zircon			
			OX	W		7.5	0.5			

2010-021 Log by Ryan Kressall Date Hole ID

sible in highly
S

2010-021 Log by Ryan Kressall Date Hole ID

FROM 54.38	TO - 58.47	ROCK CODE	dlpCCCD	=	Min Style F	Fabric I	Texture p	Litho CCCD	Struct
		MAIN COMMENTS	not magnetic and alway	s in dolomite) and a		nd calcite carbo	natite. A 4 cm lens		nsist of medium-grained magnetite and dark-grey dolomitized magnetite (where cumulate (?) occus at the very top of the interval. Apatite occurs weakly
		MINERALIZATION	Type	Value	Comments				
			Pyrite %	1.50	Oxidized pyite occurs as	fine-grained d	issemination		
			Magnetite %	2.50	Fine- to medium-graine	ed magnetite oc	cus locally dissemir	nated	
			Niobates %	0.50	Black columbite likely o	ccurs with mag	netite		
		ALTERATION	Туре	Value	Comments				
			Oxidation %	35.00	Beige dolomite and calc	ite			
		STRUCTURE	Туре	Intens	CA°	Com	ments		
			Laminations %	moderate	20	Varies	s beween 15 and 30	degrees	
		MISCELLANEOUS	Zone	HCL	Apatite		Zircon		
			OX	М	10		0.5		

2010-021 Log by Ryan Kressall Date Hole ID

FROM 58.47	-	TO 62.26	ROCK CODE	glcCD	=	Min Style g	Fabric I	Texture c	Litho CD	Struct	
			MAIN COMMENTS							e observed). Some rock fragments have pophyritic texture with phenocrysts of lout in dolomite carbonatite. Rock fragments have been oxidized to calcitized to	
			MINERALIZATION	Type	Value	Comments					
				Magnetite %	5.00	Medium-grained ag	ggregate wih ap	atite			
				Pyrite %	1.00	Stringers and thin I	aminations (~1	mm) of oxidized pyrite			
			ALTERATION	Туре	Value	Comments					
				Calcite %	20.00	Dark-brown mottlir	ng (calcitization	n)			
				Oxidation %	40.00	Beige to pink dolon	nite				
			STRUCTURE	Туре	Intens	CA	/° (Comments			
				Laminations %	weak	20	0 N	Measured on few competa	ant rock fragments		
			MISCELLANEOUS	Zone	HCL	Apat	tite	Zircon			
				OX	W	7.5	5	0.1			

2010-021 Log by Ryan Kressall Date Hole ID

FROM 62.26	TO 82.19	ROCK CODE	ЫCD	=	Min Style b	Fabric I	Texture p	Litho CD	Struct	
		MAIN COMMENTS	•	riched in apatite +/-	zircon and phenocr	ysts of dark-grey	dolomitized magnetite	(?). Black hexagonal g	n swirly texture. Interval contains common pods and laminae of dark-grey rains identified as columbite occu in dark-grey pods and laminae. Apatite occurs ughout interval.	
		MINERALIZATION	Туре	Value	Comments					
			Pyrite %	1.50	Oxidized pyrite oc	curs as stringers :	and concentrated within	laminae.		
			Niobates %	0.25	Fine-grained black	k hexagonal grain	s occur within dark-grey	laminae and pods: su	spect columbite	
		ALTERATION	Туре	Value	Comments					
			Oxidation %	70.00	Beige dolomite					
		STRUCTURE	Туре	Intens	С	'A° C	omments			
			Laminations %	moderate		20 La	amination is generally lo	w (15 to 30 degrees) b	ut steepens to as much 60 degrees	
		MISCELLANEOUS	Zone	HCL	Apa	atite	Zircon			
			OX	VW		5	0.1			

2010-021 Log by Ryan Kressall Date Hole ID

FROM 82.19	TO - 85.69	ROCK CODE	nmfCD	=	Min Style n	Fabric m	Texture f	Litho CD	Struct	
		MAIN COMMENTS		pite and dark-grey d	lolomitized magneti					re last meter of interval. Localized phenocrysts 26 to 82.19). Apatite occurs aggregated to weakl
		MINERALIZATION	Type	Value	Comments					
			Pyrite %	1.00	Aggregates of ox	idized pyrite				
		ALTERATION	Туре	Value	Comments					
		ALILIATION	Oxidation %	80.00	Pink dolomite					
		STRUCTURE								
		MISCELLANEOUS	Zone	HCL	Ap	atite	Zircon			
			OX	VW		2.5	0			
FROM 85.69	TO - 89.51	ROCK CODE	gliCM	=	Min Style g	Fabric I	Texture i	Litho CM	Struct	
		MAIN COMMENTS	contains disseminated	magnetite. Small g	rey laminae (< 3 cm)	of dolomite carbo	natite contain dark-gre	y phenocrysts. Magne		onatite. Calcite carbonatite lamina (~5 cm) abount 50 % of interval. Magnetite-apatite gh concentration.
		MINERALIZATION	Type	Value	Comments					
			Magnetite %	20.00	Fine- to medium	-grained magnetit	e occus aggregated wit	h apatite; fine-grainec	magnetite occurs disseminated	in calcite carbonatie lamina
			Pyrite %	0.75	Thin laminae of o	oxidized pyrite (~0	.5 mm)			
		ALTERATION	Туре	Value	Comments					
			Oxidation %	50.00	Beige dolomite a	nd pink calcite; ru	sty orange around som	e magnetite		
		STRUCTURE								
		MISCELLANEOUS	Zone	HCL	Ap	atite	Zircon			
			OX	М		30	0.5			

2010-021 Log by Ryan Kressall Date Hole ID

FROM 89.51	TO - 93.51	ROCK CODE	nlfgCD	=	Min Style n	Fabric I	Texture fg	Litho CD	Struct	
		MAIN COMMENTS	Oxidized and partially (decalcified light-grey	to beige dolomite ca	rbonatite.Apatit	e occus moderately lam	inated. Zircon occurs d	isseminated throughout interval.	
		MINERALIZATION	Туре	Value	Comments					
			Pyrite %	1.00	Fine-grained pyrite	e occurs dissemi	nated to concentrated w	vithin laminae.		
		ALTERATION	Туре	Value	Comments					
			Calcite %	2.50	Uncommon dark-b	rown mottling (calcitization) - generally	follows laminaion		
			Oxidation %	60.00	Beige dolomite					
		STRUCTURE	Туре	Intens	C	A° C	omments			
			Laminations %	moderate	2	.0				
		MISCELLANEOUS	Zone	HCL	Ара	tite	Zircon			
		MIJCLLLAMEOUS	OX	W	2.		0.25			

2010-021 Log by Ryan Kressall Date Hole ID

FROM 93.51 -	TO 100.31	ROCK CODE	nmcCD	=	Min Style n	Fabric m	Texture c	Litho CD	Struct		
		MAIN COMMENTS	Mottled light-grey to d	ark-brown dolomite	carbonatite. Lamina	tions are weak	and locallized. Dark-browr	mottles generally fol	low a swirly texure. Apatite form v	reak laminae. No zircon obse	rved.
		MINERALIZATION	Туре	Value	Comments						
			Pyrite %	1.50	Oxidized pyrite oc	curs dissemina	ted to aggregated				
		ALTERATION	Туре	Value	Comments						
			Calcite %	70.00	Medium- to dark-	brown calcitiza	tion				
			Oxidation %	25.00	Beige dolomite in	temixed wih cal	citization				
		STRUCTURE	Туре	Intens	(CA°	Comments				
			Laminations %	very weak	:	40	Only locally measureable				
		MISCELLANEOUS	Zone	HCL	Ара	atite	Zircon				
			OX	S		1.5	0				

2010-021 Log by Ryan Kressall Date Hole ID

FROM 100.31	TO - 105.81	ROCK CODE	bmfgCD	=	Min Style b	Fabric m	Texture fg	Litho CD	Struct	
		MAIN COMMENTS	Dominantly light-grey fingrained dolomie carbona	_			onatite has been moder	ately decalcified (brov	wn in colour, pitted, no reaction to HCI)	. Apatite occurs as rare laminae in fine-
		MINERALIZATION	Туре	Value	Comments					
			Pyrite %	1.00	Oxidized pyrite o	ccurs as aggregates	s, stringers and thin lam	ninae. Fine-grained di	sseminaed pyrite occurs in apatite agg	regates wih suspect pyrochlore
			Niobates %	0.10	Suspect fine-gra	ned black pyrochlo	e (or columbite) occus v	vithin apatite aggreg	ates - octahedral shape, do not streak i	red, occur with oxidized pyrie
		ALTERATION	Туре	Value	Comments					
			Calcite %	5.00	Uncommon dark	-brown mottling (c	alcitization)			
			Oxidation %	10.00	Beige dolomite					
		STRUCTURE	Туре	Intens		CA° Co	omments			
			Laminations %	very weak		20 Or	ly locally measureable			
		MISCELLANEOUS	Zone	HCL	Ap	oatite	Zircon			
			OX	М		5	0.25			

2010-021 Log by Ryan Kressall Date Hole ID

FROM 105.81	TO - 109.89	ROCK CODE	gmcCD	=	Min Style g	Fabric m	Texture c	Litho CD	Struct	
		MAIN COMMENTS	Light-grey to domina	ntly dark-brown dolor	nite carbonatite. Darl	c brown mottling f	follows a swirly texture.	Apatite occurs weak	ly laminated. Zicon occurs concenta	ted within medium-grey apatite aggegates.
		MINERALIZATION	Туре	Value	Comments					
			Niobates %	0.10	Suspect fine-grain	ed black pyrochlor	e in zircon-rich apatite	aggregate		
			Pyrite %	1.25	Pyrite aggregates	up to 2 cm occur lo	ocally concentrated			
		ALTERATION Type Value			Comments					
			Calcite %	80.00	Dark-brown calciti	zation (reacts stro	ngly to HCI)			
			Oxidation %	10.00	Beige dolomite an	d high oxidation o	f pyrite			
		STRUCTURE								
		MISCELLANEOUS	Zone	HCL	Apa	itite	Zircon			
			OX	S	Ī	5	0.25			

2010-021 Log by Ryan Kressall Date Hole ID

FROM 109.89	TO - 119.68	ROCK CODE	glfgCCCD	=	Min Style g	Fabric I	Texture fg	Litho CCCD	Struct	
		MAIN COMMENTS							umulate at ~111.70 m. Magnetite-apatite cu concentrated with medium-grey apatite ag	
		MINERALIZATION	Туре	Value	Comments					
			Magnetite %	2.50	Medium-grained n	nagnetite aggreg	gated with apatite			
			Niobates %	0.10	Occur with apatite	aggregates and	lenses with zircon: octa	hedral, dark-grey grai	ns, do not streak read - fersmite (?)	
			Pyrite %	1.50	Thin laminae of ox	iidzed pyrite; fin	ie-grained oxidized pyrit	e occurs disseminate	d in apatite aggegates with fersmite (?) and	l zircon
		ALTERATION	Туре	Value	Comments					
			Calcite %	10.00	Dark-brown calciti	zation - irregulai	mottling			
			Oxidation %	25.00	Beige dolomite					
		STRUCTURE	Туре	Intens	C	A° C	omments			
			Laminations %	weak	2	20				
		MISCELLANEOUS	Zone	HCL	Ара	itite	Zircon			
				М		5	0.25			

2010-021 Log by Ryan Kressall Date Hole ID

FROM 119.68	TO - 131.73	ROCK CODE	dlpCD	=	Min Style d	Fabric I	Texture p	Litho CD	Struct	
		MAIN COMMENTS		nedium-grained dark-					locally. The last 2 m of interval consist dom ore and/or columbite). Apatite occurs moder	
		MINERALIZATION	Type	Value	Comments					
			Niobates %	0.75	Fine-grained black	grains, octahedı	al and hexagonal, occu	ır within porphyry: likel	y pyrochlore and columbite	
			Pyrite %	1.25	Fine-grained oxidiz	ed pyrite occurs	disseminated most co	mmonly within porphy	ry	
		ALTERATION	Туре	Value	Comments					
			Calcite %	30.00	Dark brown calcitiz	ation; follows fr	actures in places giving	carbonatite brecciated	l appearance	
			Oxidation %	70.00	Beige to pink dolor	nite				
		STRUCTURE	Туре	Intens	CA	۹° C	omments			
			Veining %	moderate	6	0 Ca	alcite vein			
			Laminations %	weak	2	0				
		MISCELLANEOUS	Zone	HCL	Apa	tito	Zircon			
		MISCELLANEOUS	OX	M	Apa	LILE	0.1			
			UX.	Ivi	3		Uil			

2010-021 Log by Ryan Kressall Date Hole ID

FROM 131.73	TO - 140.42	ROCK CODE	dlpCD	=	Min Style d	Fabric I	Texture p	Litho CD	Struct	
		MAIN COMMENTS	Laminated light-grey to (dolomitized to various					rained disseminaed l	black mineral with dolomite?). Phenci	ysts consist of altered phlogopite
		MINERALIZATION	Туре	Value	Comments					
			Niobates %	0.25	Dark-grey fine-g	rained likely fer	smite occurs disseminated	with altered phlogop	ite and pyrite	
			Pyrite %	1.75	Oxidized pyrite o	occurs dissemin	ated to aggregated.			
		ALTERATION	Туре	Value	Comments					
		ALILICATION	Oxidation %	75.00	Beige dolomie					
		STRUCTURE	Type	Intens		CA°	Comments			
			Laminations %	moderate		30				
		MISCELLANEOUS	Zone	HCL	A	patite	Zircon			
			OX	VW		7.5	0.1			
FROM 140.42	TO - 146.15	ROCK CODE	nmCD	=	Min Style n	Fabric m	Texture fg	Litho CD	Struct	
		MAIN COMMENTS	Massive ligh-grey to bei	ge dolomite carbon	atite with small int	ervals (< 5 cm ir	n length) of inequigranular o	dalamita Lacally cma	II (< 1 cm) dark grains of dolomito occ	ur - appear to possibly be dolomitized grains
			(?).				. 3. /	iolollite.Locally Silia	ii (< 1 cm) dark grams of dolomite occi	
		MINERALIZATION	(?). Type	Value	Comments		- 3. /	orionite.Locally Sina	ii (< 1 ciii) daik giaiiis oi doloiliite occi	
		MINERALIZATION		Value 1.00	1	ı-grained dissen			(Citi) dank grains of dolorinte occi	
			Type Pyrite %		1	1-grained disser				
		MINERALIZATION ALTERATION	Туре	1.00	Fine- to medium					
			Type Pyrite % Type	1.00 Value	Fine- to medium		minated fresh core pyrite wi			
		ALTERATION	Type Pyrite % Type	1.00 Value	Comments Beige dolomite of		minated fresh core pyrite wi			

ı				
Log by	Ryan Kressall	Date	Hole ID	2010-021

FROM 146.15	TO - 149.39	ROCK CODE	nmiCD	= 1	Min Style n	Fabric m	Texture i	Litho CD	Struct
		MAIN COMMENTS					carbonatite. Interval bec alcitized laminated dolor		moderately laminated towards end of interval. Inequigranular dolomite
		MINERALIZATION	Туре	Value	Comments				
			Pyrite %	0.50	Occurs as oxidized	aggregates in ca	lcitized carbonatite		
		ALTERATION	Туре	Value	Comments				
			Calcite %	30.00	Dark-brown calciti	zation towards b	ottom of interval		
			Oxidation %	50.00	Beige mottling of	dolomite			
		STRUCTURE	Туре	Intens	С	A° C	omments		
			Laminations %	weak	:	30 M	easured at bottom of int	erval/hole	
		MISCELLANEOUS	Zone	HCL	Ара	ntite	Zircon		
			OX	М	2	.5	0		

End of Hole End of Hole

2010-022 Hole ID

	GENERAL INFORMATION											
Coordinate System	Easting	Northing	Elevation	Collar Azimuth	Collar Dip							
ST. PL Nad 83	454388.90	6256431.03	1566.00	20.00	-55.00							
Start Depth	Final Depth	Proposed Depth	Final Length	Rig	Area							
0.00	303.65		303.65		Central 1							
Operator	Year											
Taseko	2010											

DRILLING BIT SIZE										
Bit Size	From	То	Length							
NW (Casing)	0.00	6.70	6.70							
NQ	6.70	303.65	303.65							

PROFESSIONAL / TECHNICIAN							
	Name	Start Date	End Date				
Collar Surveyor		29/Aug/2010					
Geology Logged By	Ryan Kressall						
Specific Gravity By	Steve Dumma						
Geotech Logged By	Steve Dumma	15/Aug/2010					
Drill Contractor		10/Aug/2010	12/Aug/2010				

SUMMARY

GEOLOGY LEGEND

Hole ID **2010-022**

ROCK CODE

MIN STYLE					
Abbr.	Description				
n	barren				
d	disseminated				
g	aggregated				
b	banded				
	33 3				

FABRIC					
Abbr.	Description				
Х	brecciated				
ı	laminated				
f	decalcified				
V	veined				
р	porphyritic				
m	massive				

	TEXTURE
Abbr.	Description
f	decalcified
р	porphyritic
V	veined

LITHO					
Abbr.	Description				
CASE	Casing				
OVBN	Overburden				
OXID	Oxide				
AM	Amphibolite				
CC	Calcite Carbonatite				
CD	Dolomite Carbonatite				
CCCD	Mixed Calcite and Dolomite Carbonatite				
AMX	Amphibole and Mixed Carbonatite				
CM	Carbonatite Cumulate				

STRUCT					
Abbr.	Description				
Z	fault				
е	strained				
S	shear zone				
У	dyke				

MISCELLANEOUS:

	ZONE
Abbr.	Description
OX	Oxide
S	Supergene
Н	Hypogene

	HCL
Abbr.	Description
VW	very weak
W	weak
М	moderate
S	strong
VS	very strong

2010-022 Log by Ryan Kressall Date Hole ID

FROM 0.00	-	TO 6.70	ROCK CODE	CASE	=	Min Style	Fabric	Texture	Litho CASE	Struct
			MAIN COMMENTS	No rock						
			MINERALIZATION							
			ALTERATION							
			STRUCTURE							
			MISCELLANEOUS	Zone	HCL		Apatite	Zircon		
									4.4.4	
FROM 6.70	_	TO 18.92	ROCK CODE	lfgCD	=	Min Style	Fabric I	Texture fg	Litho CD	Struct
	-			-	mite carbonatite.Up	o to 8 m, the i	l nterval is dominantly	fg	CD	Struct val is composed of fractured laminaed dolomite carbonatite. Apatite occurs
	-			Light-grey to beige dolo	mite carbonatite.Up	o to 8 m, the i	l nterval is dominantly ı interval.	fg	CD	
	-		MAIN COMMENTS	Light-grey to beige dolo weakly laminated. Zirco	mite carbonatite.Up n occurs disseminat	o to 8 m, the i ted throughou Commen	l nterval is dominantly i interval. ts	fg	CD	
	-		MAIN COMMENTS	Light-grey to beige dolo weakly laminated. Zirco Type	mite carbonatite.Up on occurs disseminat Value	o to 8 m, the i ted throughou Commen	I nterval is dominantly i interval. ts ed pyrite occurs disse	fg y composed of rubble. The re	CD	
	-		MAIN COMMENTS MINERALIZATION	Light-grey to beige dolo weakly laminated. Zirco Type Pyrite %	omite carbonatite.Up on occurs disseminat Value 1.50	c to 8 m, the intensity of the comment of the comme	I nterval is dominantly i interval. ts ed pyrite occurs disse	fg y composed of rubble. The re	CD	
	-		MAIN COMMENTS MINERALIZATION	Light-grey to beige dolo weakly laminated. Zirco Type Pyrite % Type	omite carbonatite.Up on occurs disseminat Value 1.50 Value	Comment Comment Comment Comment Comment	nterval is dominantly i interval. ts ed pyrite occurs disse ts -brown calcitization	fg y composed of rubble. The re	CD	
	-		MAIN COMMENTS MINERALIZATION	Light-grey to beige dolo weakly laminated. Zirco Type Pyrite % Type Calcite %	vmite carbonatite.Up vn occurs disseminat Value 1.50 Value 2.50	Comment Comment Comment Comment Comment	nterval is dominantly i interval. ts ed pyrite occurs disse ts -brown calcitization	fg y composed of rubble. The re eminated - locally oxidized	CD	
	_		MAIN COMMENTS MINERALIZATION ALTERATION	Light-grey to beige dolo weakly laminated. Zirco Type Pyrite % Type Calcite % Oxidation %	value 1.50 Value 2.50 15.00	Comment Comment Comment Comment Minor dark Beige dolor	nterval is dominantly i interval. ts ed pyrite occurs disse ts -brown calcitization mite - concentrated a	fg y composed of rubble. The re eminated - locally oxidized around oxidized pyrite Comments	CD emainder of the inter	
	-		MAIN COMMENTS MINERALIZATION ALTERATION	Light-grey to beige dolo weakly laminated. Zirco Type Pyrite % Type Calcite % Oxidation % Type	value 1.50 Value 2.50 15.00 Intens	Comment Comment Comment Comment Minor dark Beige dolor	nterval is dominantly i interval. ts ed pyrite occurs disse ts -brown calcitization mite - concentrated a	fg y composed of rubble. The re eminated - locally oxidized around oxidized pyrite Comments	CD emainder of the inter	val is composed of fractured laminaed dolomite carbonatite. Apatite occurs
	-		MAIN COMMENTS MINERALIZATION ALTERATION	Light-grey to beige dolo weakly laminated. Zirco Type Pyrite % Type Calcite % Oxidation % Type Veining %	value 1.50 Value 2.50 15.00 Intens moderate	Comment Comment Comment Comment Minor dark Beige dolor	nterval is dominantly i interval. ts ed pyrite occurs disse ts -brown calcitization mite - concentrated a CA° 40	fg y composed of rubble. The re eminated - locally oxidized around oxidized pyrite Comments	CD emainder of the inter	val is composed of fractured laminaed dolomite carbonatite. Apatite occurs

Printed on 10/Feb/2011

Printed on 10/Feb/2011

GEOLOGY LOG

Log by Ryan Kressall Date Hole ID **2010-022**

			PORATION						
FROM 18.92 -	TO 21.29	ROCK CODE	blpCD	-	Style Fabric I	Texture p	Litho CD	Struct	
		MAIN COMMENTS						on section below). Dark-grey metallic-looking pher ersed to moderately laminated. Zircon occurs disse	
		MINERALIZATION	Туре	Value Co	mments				
			Pyrite %	1.50 Ger	nerally fresh-pyrite occurs ag	ggregated with dark-grey p	henocrysts		
			Niobates %	0.10 fine	e-grained grainy textured pi	nkish fersmite locally conce	entrated with dark-gre	y phenocrysts and pyrite	
		ALTERATION							
		STRUCTURE	Туре	Intens	CA°	Comments			
			Laminations %	weak	15	Lamination is crosscut in	n places by massive do	omite carbonatite (irregular to 40 degrees contact	? at around 21 m)
		MISCELLANEOUS	Zone	HCL	Apatite	Zircon			
			Н	VW	5	0.25			
FROM 21.29 -	TO 23.83	ROCK CODE	nmpCD	-	Style Fabric n m	Texture p	Litho CD	Struct	
		MAIN COMMENTS	but not magnetic).Pyrit	e-rich intervals (~0.5 to 1.	m) are seperated by lamin	ated porphyritic light-grey	dolomite carbonatite v	exagonal). Dark-grey grains may be dolomitized ma with locally concentrated phenocrysts of the same omineralization observed, though columbite may be	dark-grey mineral. Apatite
		MINERALIZATION	Туре	Value Co	mments				
			Pyrite %	30.00 Agg	gregated with dark-grey crys	stals often forming rims on	crystals (replacement	texture?).	
		ALTERATION							
		STRUCTURE	Туре	Intens	CA°	Comments			
			Laminations %	moderate	20	Only observed in dolomit	te carbonatite.		
		MISCELLANEOUS	Zone	HCL	Apatite	Zircon			

20

0.75

VW

2010-022 Log by Ryan Kressall Date Hole ID

dolomite carbonatite occur ted with dark-grey dolomitized ite. Apatite also occurs as
nminae
t ii

2010-022 Log by Hole ID Ryan Kressall Date

FROM Min Style Fabric Litho Struct TO Texture **ROCK CODE** blCD CD 26.96 32.22

MAIN COMMENTS Light-to medium-grey dolomite carbonatite with localized phenocrysts of black altered phlogopite and dark-grey dolomitized magnetite (?). Porphyritic laminae is interlaminated with fine-grained dolomite carbonatite (with stringers of pyrite). Minor magnetite and unidentified mica occurs within one of the porphyritic intervals at ~27.5 m. Apatite occurs moderately laminated within fine-grained dolomite and aggregated within porphyry. Zircon occurs concentrated within porphyry.

MINERALIZATION	Type	Value	Comments
	1		

4	rype	value	Confinences
	Pyrite %	1.00	Occurs aggregated within porphyry and as thin stringers within fine-grained dolomite
	Magnetite %	0.50	Fine-grained magnetite occurs concentrated within a single laminae
	Niobates %	0.50	Fine-grained pale-yellow grainy fersmite occurs within porphyritic laminae

ALTERATION

STRUCTURE	Type	Intens	CA°	Comments

Type	IIILEIIS	CA	Comments
Laminations %	moderate	25	Varies between 20 and 40, but generally towards lower end

MISCELLANEOUS

Zone	HCL	Apatite	Zircon	
Н	VW	10	0.25	

Н

GEOLOGY LOG

2010-022 Log by Ryan Kressall Date Hole ID

FROM 32.22	_	TO 42.04	ROCK CODE	bICD	=	Min Style b	Fabric I	Texture p	Litho CD	Struct			
			MAIN COMMENTS	magnetite (described in	previous intervals) monly adjacent to d	+ pyrite + black alto ark bands and as is	ered phlogopite (fir olated laminae. Ph	ne-grained) + apatite + ab nencrysts consist of magr	bundant zircon or ma	cm in size. Dark-grey bands consist of dominantly dark-grey dolomitized agnetite + phlogopite + apatite + abundant zircon. Porphyritic dolomite plomitized magnetite and phlogopite. Apatite occurs strongly laminated within			
			MINERALIZATION	Туре	Value	Comments							
				Pyrite %	1.50	Aggregated with dark-grey dolomitized magnetite in dark-bands and porphyry and as thin stringers within fine-grained dolomite							
				Niobates %	50.00	Likely fine-grained columbite occurs with magnetite.							
				Magnetite %	5.00	Fined-grained o	Fined-grained occurs aggregated with apatite within single dark grey band and disseminated within some porphyry laminae						
			ALTERATION										
			STRUCTURE	Туре	Intens		CA° C	omments					
				Veining %	moderate	!	40 M	lassive pyrite ~ 2 cm thick	crosscuts laminatio	on			
				Laminations %	weak		45 Hi	ighly variable: 20 to 50 de	egrees - shallower an	ngle towards top of interval			
			MISCELLANEOUS	Zone	HCL	A	patite	Zircon					

0.5

VW

2010-022 Log by Ryan Kressall Date Hole ID

FROM 42.04	-	TO 49.66	ROCK CODE	gmpCD	= 1	Min Style g	Fabric m	Texture p	Litho CD	Struct			
			MAIN COMMENTS		(?) + apatite + pyrite +	+ abundant zircon. I	Phenocrysts in po	orphyry consist dominar		of previous interval ~ 5 to 30 cm in length). Dark-clots consist of dark-grey nlogopite. Dolomitization of phlogopite is common. Apatite occurs aggregated			
			MINERALIZATION	Type	Value	Comments							
				Niobates %	0.50	Abundant fine-grained pale-yellow to dark-grey fersmite occurs disseminaed within porphyric clots.							
				Pyrite %	1.00	Aggregates up to ~ 0.5 mm common in porphyry, minor pyrite aggregated in dark clots and irregular veining							
			ALTERATION										
			STRUCTURE	Туре	Intens	С	A° C	omments					
				Veining %	weak	3	30 M	ostly irregular quartz ve	eining - but generally	steep ~ 80 degrees			
				Laminations %	very weak		no	measurable orientation	n: bends around clast	s			
			MISCELLANEOUS	Zone	HCL	Apa	tite	Zircon					
				OX	VW		.5	0.25					

2010-022 Log by Ryan Kressall Date Hole ID

FROM 49.66	TO - 58.95	ROCK CODE	dmpCD	=	Min Style d	Fabric m	Texture p	Litho CD	Struct
		MAIN COMMENTS	mottled appearance in p	laces. Phenocrysts	consist of fine-grane	d black altered ph	logopite commonly as	ssociated with dissemi	ained occurs vein-like (irregularly, no measurable orientation) giving the intennated pyrite and occur locally concentrated. Inequigranular texture becomes nayry with apatite. Inequigranular dolomite carbonatite is void of apatite and
		MINERALIZATION	Туре	Value	Comments				
			Niobates %	0.10	Fine-grained pale-	pink octahedral p	yrchlore or fersmite od	curs with porphyry: Ol	served more towards top of interval
			Pyrite % 0.75 Disseminated to aggregate fine				ined pyrite		
		ALTERATION							
		STRUCTURE	Туре	Intens	С	A° Co	mments		
			Laminations %	weak	4	10 On	ly locally observed		
			Veining %	weak	6	50 Qt:	z vein		
		MISCELLANEOUS	Zone	HCL	Apa	ntite	Zircon		
			ΩX	VW	7	5	N 1		

2010-022 Log by Date Hole ID Ryan Kressall

FROM 58.95	-	TO 70.99	ROCK CODE	dmpCD	=	Min Style d	Fabric m	Texture p	Litho CD	Struct
			MAIN COMMENTS							rstital to fine-grained light grey dolomite), and locally interlaminated. Swirl-like

textures are also common between the two phases. The dark-grey dolomite grades into porphyritic dolomite carbonatite. Phenocrysts consist of fine- to medium-grained black altered phlopite. Locally associated are clumps of dark-grey dolomitized magnetite. Apatite occurs clustered within dark-grey and porphyry clasts. Apatite occurs in lower concentration in fine-grained dolimite as moderate laminations. Zircon concentrates in dark-coloured clasts.

MINERALIZATION	Туре	Value	Comments					
	Niobates % 0.75 Fine-grained pale-yellow to dark-grey fersmite occurs disseminated within porphyry phase							
	Pyrite %	1.50	Occurs aggregated within dark-grey dolomite phase and as irregular veins associated with dark-grey phase					

ALTERATION

STRUCTURE	Туре	Intens	CA°	Comments	
	Laminations %	weak	40	Only locallized observabl	e
MISCELLANEOUS	Zone	HCL	Apatite	Zircon	
	Н	VW	7.5	0.5	

2010-022 Log by Ryan Kressall Date Hole ID

FROM 70.99	TO - 79.92	ROCK CODE	gmpCD	=	Min Style g	Fabric m	Texture p	Litho CD	Struct	
		MAIN COMMENTS		_			•	<u> </u>	ed magnetite, altered phlogopite, apatite (localized bands), pyrite and abundant curs disseminated in dark-grey clasts.	
		MINERALIZATION	Туре	Value	Comments					
			Niobates %	0.75	Fine-grained pale-	-pink pyrochore o	f fersmite occur dissem	inated within dark-gr	ey clasts.	
			Pyrite %	1.75	Aggregated with o	dolimitized magn	etite (?) and as thin lan	ninations (<0.5 cm) in	short laminated intervals (~10 cm)	
		ALTERATION	Туре	Value	Comments					
			Oxidation %	5.00	Beige dolomite oc	curs locally				
		STRUCTURE	Туре	Intens	С	A° C	omments			
			Laminations %	weak	:	25 0	nly locally observed: vai	ies between 20 and 30	degrees	
			Veining %	moderate		80 Q	uartz vein (~ 0.5 cm thi	ck)		
		MISCELLANEOUS	Zone	HCL	Apa	atite	Zircon			
			Н	VW		5	0.5			

2010-022 Log by Ryan Kressall Date Hole ID

FROM 79.92	T0 - 90.24	ROCK CODE	nlpCD	=	Min Style n	Fabric I	Texture p	Litho CD	Struct
		MAIN COMMENTS		hlogopite and dark-					nilar to the rest of the lamination of the interval. Locallized phenocrysts consist ocally concetrated with apatite in places (more towards top of interval)No Nb-
		MINERALIZATION	Туре	Value	Comments				
			Pyrite %	0.50	Thin stringers (< 0.5	mm)			
		ALTERATION	Туре	Value	Comments				
			Oxidation %	30.00	Beige dolomite				
		STRUCTURE	Туре	Intens	CA	, (Comments		
			Laminations %	moderate	40	V	Varies between 30 and 6	O degrees throughout i	nterval: crenulations are at 60 degrees
			Veining %	weak	30		Dolomite vein (~1 cm thic	ck) crosscuts lamination	n - best observed with UV
		MISCELLANEOUS	Zone	HCL	Apati	te	Zircon		
			Н	VW	10		0.1		

2010-022 Log by Ryan Kressall Date Hole ID

FROM 90.24	-	T0 94.18	ROCK CODE	dICD	=	Min Style d	Fabric I	Texture p	Litho CD	Struct	
			MAIN COMMENTS	dolomite carbonatite ar concentration in calcite (disseminated) calcite c	nd white calcite carb carbonatite at ~ 91.2 arbonatite. The dolo dominantly apatite v	onatite. Calcite carb 25 m. A ~2 m interva mite carbonatite is	onatite contains Il of mottled-wea composed of inte	a higher abundance of m kly laminated dolomite c ermixed light grey dolomit	agnetite than the do arbonatite seperates te carbonatite (esser	ed along with fine-grained brown phlogopite disseminations in light-grey to beige domite carbonatite. Magnetite also occurs aggregated with little apatite in high so the aggregated magnetite from ~ 0.75 m interval of magnetite-bearing ntially void of other minerals) and dark-grey to porphyritic aggregates. Dark-grey t zircon. Apatite occurs oriented in calcite; moderately laminated within dolomite;	
			MINERALIZATION	Туре	Value	Comments					
				Pyrite %	0.25	Minor disseminat	ed pyrite				
				Magnetite %	10.00	Aggregated and d	isseminated in ca	alcite carbonatite; dissem	inated in lower conc	entrations in dolomite carbonatite	
				Niobates %	1.00	Fine-grained grain	ny pale-pink to da	ark grey grains (typically o	catahedral) - potent	ial fersmite and/or pyrochlore; colmbite is likely to occur in associated with	
			ALTERATION	Туре	Value	Comments					
				Oxidation %	30.00	Beige dolomite					
			STRUCTURE	Туре	Intens	(CA° C	omments			
				Laminations %	weak		15 V	aries between 10 and 20 (degrees		
			MISCELLANEOUS	Zone	HCL	Ара	atite	Zircon			
				Н	М	7	7.5	0.25			

2010-022 Log by Ryan Kressall Date Hole ID

FROM 94.18	TO - 98.64	ROCK CODE	nmpCD	=	•	bric Te m	k ture p	Litho CD	Struct
		MAIN COMMENTS	porphyritic dolomite. Pro	oportion of dark-gre	ey porphyritic dolomite carbo	natite increases with	a higher a	bundance of dark-grey o	e. Light-grey aphyric dolomite occurs irregularly intermixed with medium-grey dolomitized magnetite and abundant aggregated pyrite. Apatite occurs as es/clasts occur at end of interval. No Nb-mineralization observed.
		MINERALIZATION	Туре	Value	Comments				
			Pyrite %	2.00	Occur as small (< 1 cm) str	ingers and aggregate	s within da	rk-grey apatite clasts a	nd disseminated within larger porphyry portion that makes up top half of interval
		ALTERATION	Туре	Value	Comments				
			Oxidation %	15.00	Beige dolomite: occurs loc	ally			
		STRUCTURE							
		MISCELLANEOUS	Zone	HCL	Apatite	Zirco	1		
			OX	VW	5	0.25			
				·			•		

2010-022 Log by Ryan Kressall Date Hole ID

Litho **FROM** TO Min Style Fabric Texture Struct glpCCCD **ROCK CODE** CCCD 98.64 105.49

MAIN COMMENTS Magnetite-bearing calcite carbonatite is interlaminated with dolomite carbonatite void of magnetite occurs disseminated to aggregated within calcite carbonatite. Dolomite carbonatite contains localized phenocyrsts of black altered phlogopite and dark-grey dolomitized magnetite. Magnetite occurs aggregated with apatite in ~15 cm intervals in the last half of the interval along with minor mica (phlogopite?).. Apatite occurs laminaed within dolomite carbonatite. Zircon occurs concentrated within magnetite-apatite aggregates.

Value **MINERALIZATION** Type Comments Magnetite % 20.00 Fine-grained magnetite occurs disseminated to aggregated within calcite carbonatite; aggregates with apatite 0.25 Fine-grained pyrite occurs with magnetite. Pyrite % Niobates % 1.00 Fine-grained suspect columbite occurs in porphyry with dolomitized magnetite: Columbite also likely occurs with magnetite

ALTERATION

CA° Comments STRUCTURE Type Intens Laminations % weak 20 Generally low but does steepen up to 50 degrees

MISCELLANEOUS Zone HCL **Apatite** Zircon OX М 10 0.75

2010-022 Log by Ryan Kressall Date Hole ID

FROM 105.49	TO - 111.77	ROCK CODE	blpCD	=	Min Style b	Fabric I	Texture p	Litho CD	Struct		
		MAIN COMMENTS					rich laminae. Phenocryst curs moderately laminate		pite occur within dolomite carbn	tite. Dark-grey dolomitized ma	agnetite occur
		MINERALIZATION	Туре	Value	Comments						
			Pyrite %	1.00	Occurs aggregat	ed with dolomit	tized magnetite				
			Niobates %	0.10	Fine-grained pa	le-pink fersmite	e (?) occurs disseminated	within dark-grey lamina	е		
		ALTERATION	Туре	Value	Comments						
			Calcite %	20.00	Dark-brown cald	itization					
			Oxidation %	25.00	Beige dolomite						
		STRUCTURE	Туре	Intens		CA°	Comments				
			Laminations %	moderate		30					
		MISCELLANEOUS	Zone	HCL	Α	patite	Zircon				
			OX	W		10	0.5				
		MISCELLANEOUS			A						

Log by Ryan Kressall Date Hole ID **2010-022**

FROM TO
111.77 - 118.12

ROCK CODE bICD = Min Style b Fabric Texture Ditho CD

| Name of the control of the con

black altered phlogopite. Apatite occurs as moderate laminations in dolomite carbonatite. Zircon occurs concentrated with magnetite-apatite phase and dark-grey interval.

Туре	Value	Comments
Niobates %	1.00	Columbite likely occurs with magnetite.
Magnetite %	15.00	Fine-grained magnetite occurs aggregated with apatite
Pvrite %	1.00	Aggregates with dark-grey dolomitized magnetite

(?) and pyrite with apatite. This intervals are seperated by light-grey to beige fine-grained to porphyritic dolomite carbonatite. Porphyritic dolomite ocurs as laminae 2 to 10 cm in thickness with phenocrysts of

ALTERATION

MINERALIZATION

STRUCTURE Type Intens CA° Comments

Laminations % weak 25 varies between 20 and 30 degrees

 MISCELLANEOUS
 Zone
 HCL
 Apatite
 Zircon

 H
 W
 15
 0.5

Measurement unit: Metres (Unless otherwise specified)

Printed on 10/Feb/2011

Page

2010-022 Log by Ryan Kressall Date Hole ID

FROM 118.12	TO 130.22	ROCK CODE	blpCD	=	Min Style b	Fabric I	Texture p	Litho CD	Struct		
		MAIN COMMENTS	Strongly laminated dolo apatite lamine.	mite carbonatite wi	th laminae (1 to 20 cn	n) of light-grey a	phryic dolomite, porph	nyritic dolomite and dolo	omitized magnetite-apatite. Zircon c	oncentrates with dolomitized mag	gnetite-
		MINERALIZATION	Туре	Value	Comments						
			Niobates %	0.10	Rare pale-pink fers	mite (?) occurs ir	n dark-grey laminae (d	olomitized mgt-apt)			
			Pyrite %	1.00	Aggregates with do	olomitized magn	etite				
		ALTERATION	Туре	Value	Comments						
			Oxidation %	2.50	Beige dolomite nea	r fractures					
		STRUCTURE	Туре	Intens	CA	√° Co	omments				
			Laminations %	strong	20	O Ge	enerally low angle but o	does steepen to as mucl	h as 40 degrees		
		MISCELLANEOUS	Zone	HCL	Apat	tite	Zircon				
			Н	VW	10		0.25				

2010-022 Log by Ryan Kressall Date Hole ID

FROM 130.22	-	TO 134.06	ROCK CODE	nlpAMX	=	Min Style n	Fabric I	Texture p	Litho AMX	Struct	
			MAIN COMMENTS							-zircon-rich laminae. Phenocrysts consist of ccurs concentrate within apatite laminae. No	
			MINERALIZATION	Туре	Value	Comments					
				Pyrite %	1.00	Occur aggregated	l with porphyry a	ınd dark-grey apatite lamir	1ae		
			ALTERATION	Туре	Value	Comments					
				Oxidation %	2.50	Locally concentra	ited beige dolom	ite			
				Amphibolite %	25.00	Dark green fenite	with abundant	phlogopite - reacts modera	ately to HCl - calcite p	present in matrix?	
			STRUCTURE	Туре	Intens	(CA°	Comments			
				Laminations %	weak		10	Generally low, varies from	0 to 20 degrees		
					_		_	_			
			MISCELLANEOUS	Zone	HCL	Ар	atite	Zircon			
				OX	VW		10	0.5			

2010-022 Log by Ryan Kressall Date Hole ID

FROM 134.06	-	TO 139.09	ROCK CODE	blpCD	=	Min Style b	Fabric I	Texture p	Litho CD	Struct
			MAIN COMMENTS	aggregated pyrite and b	lack medium-graine	ed grains (possibly o	columbite). Inbet	ween these intervals is la	minated dolomite ca	als. Another 10 cm interval composed of dark-grey dolomitized magnetite, rbonatite, fine-grained aphryic to porphyritic. Phencrysts consist of altered black st of interval with fresh and dolomitized magnetite-apatite cumulates.
			MINERALIZATION	Туре	Value	Comments				
				Magnetite %	5.00	Medium-grained	l magnetite aggre	egated with apatite and r	minor phlogopite	
				Pyrite %	1.50	Abundant in dol	omitized magnet	tite-apatite cumulate; < c	m aggregates in dolo	mite carbonatite
				Niobates %	1.00	Black fine- to mo small porphyry la	_	olumbite within dolomitiz	red magnetite-apatite	e cumulate; also likely occurs with fresh magnetite; pale-pink fersmite observed in
			ALTERATION	Туре	Value	Comments				
				Oxidation %	5.00	localized beige	dolomite; and of I	magnetite		
			STRUCTURE	Туре	Intens		CA°	Comments		
				Laminations %	weak		20	Highly variable from 20 t	o 70 degrees	
			MISCELLANEOUS	Zone	HCL	Aı	patite	Zircon		
				Н	VW		20	1		

2010-022 Log by Ryan Kressall Date Hole ID

FROM 139.09	TO - 144.77	ROCK CODE	blpAMX	=	Min Style b	Fabric I	Texture p	Litho AMX	Struct	
		MAIN COMMENTS		nd zircon. 20 cm inte	rvals contain abunda	nt apatite lamina			20 cm). Small 1 cm laminae look to be composed essentially of only apatite with nlogopite occur disseminated throughout interval along with medium-grained	
		MINERALIZATION	Туре	Value	Comments					
			Niobates %	0.10	Localized porphyri	tic laminae contai	n minor fine-grained fo	ersmite: pale-pink, gra	iny texture, octahedral form	
			Pyrite %	1.00	Aggregated with d	olomitized magne	tite			
		ALTERATION	Туре	Value	Comments					
			Oxidation %	30.00	Beige dolomite sur	rounds fenite clas	ts			
			Amphibolite %	30.00	Dark-green to bluis	sh grey				
		STRUCTURE	Туре	Intens	C.	A° Co	mments			
			Laminations %	weak	3	0				
		MISCELLANEOUS	Zone	HCL	Ара	tite	Zircon			
			Н	VW	12	.5	0.25			
			Laminations % Zone	weak HCL	Apa	o tite	Zircon			

2010-022 Log by Ryan Kressall Date Hole ID

FROM 144.77	_	TO 159.77	ROCK CODE	blpCD	=	Min Style b	Fabric I	Texture p	Litho CD	Struct			
			MAIN COMMENTS					yritic intervals up to 5 cm occurs disseminated thro		of apatite and altered phlogopit	e and dolomitized magn	etite. Most of interval is	
			MINERALIZATION	Туре	Value	Comments							
				Niobates %	0.50	Fine-grained pal	e-pink to grey,	grainy, octahedral shape	: fersmite in apatite-phl	logopite laminae			
				Pyrite %	1.50	Fine-grained wit	hin apatite-ph	logopite laminae; stringe	rs and veins within wea	thered segments			
			ALTERATION	Туре	Value	Comments							
				Oxidation %	75.00	Beige dolomite							
			STRUCTURE	Туре	Intens		CA°	Comments					
				Laminations %	moderate		20	Generally 20 but does s	hallow to ~ 5 degrees				
				Veining %	moderate		80	Oxidized pyrite vein					
			MISCELLANEOUS	Zone	HCL	Ar	oatite	Zircon					
					VW		7.5	0.1					

2010-022 Log by Ryan Kressall Date Hole ID

FROM 159.77	TO - 163.48	ROCK CODE	nlpAMX	=	Min Style n	Fabric I	Texture p	Litho AMX	Struct
		MAIN COMMENTS	~10 cm and ~50 cm fenit Fenite is void of apatite.		inated porphyritic lig	ht-grey to beige	dolomite carbonatite. Ph	nencrysts consist of al	ltered phlogopite. Apatite occurs laminated throughout dolomite carbonatite.
		MINERALIZATION	Туре	Value	Comments				
			Pyrite %	1.00	Disseminated wit	h porphyry; and a	as small pods and irregul	lar veinlets	
		ALTERATION	Туре	Value	Comments				
			Amphibolite %	40.00	Medium-green fe	nite clasts with a	bundant phlogopite. Lar	ger clast reacts moder	rately to HCI indicating likely calcite in matrix
		STRUCTURE	Туре	Intens	C	:A° C	omments		
			Laminations %	moderate		20			
		MISCELLANEOUS	Zone	HCL	Apa	atite	Zircon		
			Н	М		'.5	0.1		

Log by Ryan Kressall Date Hole ID **2010-022**

Min Style Litho **FROM** TO Fabric Texture Struct **ROCK CODE** gmpCD CDm 173.26 163.48 MAIN COMMENTS Interval is composed principally of light-grey porphyritic dolomite carbonatite with phenocrysts of altered phlogopite. Abundance of phenocrysts increases downhole. Up to 169 m the interval is dominantly fine-grained dolomite with locallized fine- to medium-grained inequigranular and porphyritic texture. A small 10 cm interval of aggregated magnetite (no apatite) with medium-grained disseminated zircon occurs at ~168 m. Value Comments **MINERALIZATION** Type Magnetite % 2.50 Medium-grained aggregate with dolomite groundmass Niobates % 0.50 Likely fine-grained columbite occurs with magnetite Pyrite % 1.00 Occur as disseminated needles in zone adjacent to porphyry (altered phlogopite?) **ALTERATION** Intens CA° Comments STRUCTURE Type Laminations % very weak 40 Measured at end of interval; only locally observed in interval

MISCELLANEOUS

Zone	HCL	Apatite	Zircon	
Н	VW			

2010-022 Log by Ryan Kressall Date Hole ID

FROM 173.26	TO - 181.01	ROCK CODE	nmCD	=	Min Style n	Fabric m	Texture p	Litho CD	Struct	
		MAIN COMMENTS							lized (~ 5 cm) medium-grey pophyritic with do hout interval. No Nb-mineralization observed.	
		MINERALIZATION	Туре	Value	Comments					
			Pyrite %							
		ALTERATION	Туре	Value	Comments					
			Oxidation %	5.00	Minor irregular o	xidation surroun	ding pyrite needles			
		STRUCTURE	Туре	Intens		CA°	Comments			
			Laminations % very weak			20 Only locally observed				
		MISCELLANEOUS	Zone	HCL	An	oatite	Zircon			
			Н	VW		2.5	0.25			

2010-022 Log by Ryan Kressall Date Hole ID

FROM 181.01	TO - 184.77	ROCK CODE	blpCD	=	Min Style b	Fabric I	Texture p	Litho CD	Struct			
		MAIN COMMENTS	carbonatite occurs at	the beginning of the ir	nterval. Magnetite-beari	ng calcite carb	onatite occurs near the o	end of the interval b	within dominantly laminated dolomite carbona ut becomes progressively dolomitized (more do urs concentrated within dolomite carbonatite.	plomite, less calcite, less		
		MINERALIZATION	Type	Value	Comments							
			Niobates %	1.00	Likely fine-grained col	umbite occurs	with magnetite					
			Pyrite %	0.75	Aggregated with dolomitized magnetite (locally concentrated throughout interval).							
			Magnetite %	10.00	Disseminated to aggre	egated (with ap	patite) fine- to medium	grained magnetite				
		ALTERATION	Type Value Comments									
		Oxidation % 10.00 Beige dolomite										
		STRUCTURE										
		MISCELLANEOUS	Zone	HCL	Apatite	е	Zircon					
			Н	М	10		0.5					

2010-022 Log by Ryan Kressall Date Hole ID

FROM 184.77	TO - 187.81	ROCK CODE	nlpCD	=	Min Style n	Fabric I	Texture p	Litho CD	Struct			
		MAIN COMMENTS	Light-grey to beige part interval. Zircon is rare. N			ractured and fra	agmented rock in places. Pl	nenocrysts consist of f	ine-grained black altered phlogop	ite. Apatite occurs aggregated throughout		
		MINERALIZATION	Туре	Value	Comments							
			Pyrite %	1.00	Oxidized pyrite occurs diseminated to aggregated							
		ALTERATION	Туре	Value	Comments							
Calcite % 5.00 Dark-brown mottling												
			Oxidation %	70.00	Beige dolomite							
		STRUCTURE	Туре	Intens		CA°	Comments					
			Laminations %	moderate		40	Present in the last 2 m o	f interval: Weathered	may have masked fabric in first pa	art of interval.		
		MICCELLANICOLIC	7	IICI	Δ.	+!+_	7:					
		MISCELLANEOUS	Zone H	HCL W	A	patite 5	Zircon 0.1					
							5					
FROM 187.81	TO - 197.63	ROCK CODE	nmpCD	=	Min Style n	Fabric m	Texture p	Litho CD	Struct			
		MAIN COMMENTS	Mottled-massive light-grey to beige dolomite carbonatite. Phenocrysts consist of altered phlogopite. Only a few intervals (~10 to 75 cm, but generally ~10-20 cm) of aphyric inequigranular dolomite occur. Apatite occurs disseminated. Zircon occurs in higher concentration in inequigranular dolomite carbontite. No Nb-mineralization									
	MINERALIZATION Type Value Comments											
			Pyrite %		Oxidized pyrite occurs as needles (~ 1 cm long) occur associated with altered phlogopite							
		ALTERATION	Туре	Value	Comments							
		ALILIATION	Calcite %	1.00		ıds of calcitizat	ion (oriented at ~ 20 degre	=s)				
			Oxidation %	55.00			nottled appearance					
		STRUCTURE										
			_									
		MISCELLANEOUS	Zone H	HCL W	A	patite 5	Zircon 0.25					
			Н	VV		כ	0.25					

Printed on 10/Feb/2011

2010-022 Log by Ryan Kressall Date Hole ID

FROM 197.63	TO 207.15	ROCK CODE	miCD	=	Min Style	Fabric m	Texture i	Litho CD	Struct	
		MAIN COMMENTS							ne-grained equigranlular dolomite c omite. No Nb-mineralization obser	arbonatite. Apatite occurs aggregated. ved.
		MINERALIZATION	Туре	Value	Comments					
			Pyrite %	1.50	Fresh to oxidized pyrite occurs aggregated throughout interval					
		ALTERATION	Type	Value	Comments					
			Calcite %	1.00	Uncommon dark	-brown mottling	(calcitization.			
		STRUCTURE								
		MISCELLANEOUS	Zone	HCL	Ар	oatite	Zircon			
				W		7.5	0.75			
						7.13				
					l	,,,				
FROM 207.15	TO - 225.73	ROCK CODE	bmiCD	=	Min Style b	Fabric m	Texture i	Litho CD	Struct	
			Light- to medium-grey	= dolomite carbonati	Min Style b te with small amour	Fabric m nt of altered phlo	Texture i	CD s with pyrite in massi	ve dolomite carbonatite and with a	patite within thin laminae. Aptite occurs
			Light- to medium-grey	= dolomite carbonati	Min Style b te with small amour	Fabric m nt of altered phlo	Texture i ogopite (~1%) that cluster	CD s with pyrite in massi	ve dolomite carbonatite and with a	patite within thin laminae. Aptite occurs
		MAIN COMMENTS	Light- to medium-grey moderately laminated t	= dolomite carbonati hroughout the inte	Min Style b te with small amounderval but aggregates Comments	Fabric m nt of altered phlo with zircon in po	Texture i ogopite (~1%) that cluster	CD s with pyrite in massi	ve dolomite carbonatite and with a	patite within thin laminae. Aptite occurs
		MAIN COMMENTS	Light- to medium-grey moderately laminated t Type	= dolomite carbonati hroughout the inte Value	Min Style b te with small amound and an	Fabric m nt of altered phlo with zircon in po o 1 cm. Rare oxidi	Texture i ogopite (~1%) that cluster orphyry sections (both with	CD s with pyrite in massi in dolomite and thin	ve dolomite carbonatite and with a	patite within thin laminae. Aptite occurs
		MAIN COMMENTS	Light- to medium-grey moderately laminated t Type Pyrite %	= dolomite carbonati hroughout the inte Value 1.00	Min Style b te with small amound and an	Fabric m nt of altered phlo with zircon in po o 1 cm. Rare oxidi	Texture i ogopite (~1%) that cluster orphyry sections (both with	CD s with pyrite in massi in dolomite and thin	ve dolomite carbonatite and with a	patite within thin laminae. Aptite occurs
		MAIN COMMENTS MINERALIZATION	Light- to medium-grey moderately laminated t Type Pyrite % Niobates %	= dolomite carbonati hroughout the inte Value 1.00 0.10	Min Style b te with small amoun rival but aggregates Comments Aggregated up to Fine-grained yell Comments	Fabric m nt of altered phlo with zircon in po o 1 cm. Rare oxidi ow fersmite obse	Texture i ogopite (~1%) that cluster orphyry sections (both with	CD s with pyrite in massi in dolomite and thin	ve dolomite carbonatite and with a	patite within thin laminae. Aptite occurs
		MAIN COMMENTS MINERALIZATION	Light- to medium-grey moderately laminated to Type Pyrite % Niobates % Type	= dolomite carbonati hroughout the inte Value 1.00 0.10 Value	Min Style b te with small amoun eval but aggregates Comments Aggregated up to Fine-grained yell Comments Beige dolomite -	Fabric m Int of altered phlo with zircon in po I cm. Rare oxidi ow fersmite obse	Texture i ogopite (~1%) that cluster, or the cluster of the cluste	CD s with pyrite in massi in dolomite and thin	ve dolomite carbonatite and with a	patite within thin laminae. Aptite occurs
		MAIN COMMENTS MINERALIZATION ALTERATION	Light- to medium-grey moderately laminated to Type Pyrite % Niobates % Type Oxidation %	= dolomite carbonati hroughout the inte Value 1.00 0.10 Value 10.00	Min Style b te with small amoun rival but aggregates Comments Aggregated up to Fine-grained yell Comments Beige dolomite -	Fabric m Int of altered phlo with zircon in po Int of a	Texture i ogopite (~1%) that clusters orphyry sections (both with sized pyrite laminae erved with some porphyry. wards top of interval	CD s with pyrite in massi in dolomite and thin	ve dolomite carbonatite and with a	patite within thin laminae. Aptite occurs
		MAIN COMMENTS MINERALIZATION ALTERATION	Light- to medium-grey moderately laminated to Type Pyrite % Niobates % Type Oxidation % Type	dolomite carbonati hroughout the inte Value 1.00 0.10 Value 10.00 Intens	Min Style b te with small amoun rival but aggregates Comments Aggregated up to Fine-grained yell Comments Beige dolomite -	Fabric m Int of altered phlo with zircon in po Int of a	Texture i ogopite (~ 1%) that cluster orphyry sections (both with sized pyrite laminae erved with some porphyry. wards top of interval Comments	CD s with pyrite in massi in dolomite and thin	ve dolomite carbonatite and with a	patite within thin laminae. Aptite occurs

Printed on 10/Feb/2011

2010-022 Log by Ryan Kressall Date Hole ID

TO 240.85	ROCK CODE	gmfgCD	=	Min Style g	Fabric m	Texture fg	Litho CD	Struct
	MAIN COMMENTS	m. Apatite occurs aggi	regated (~10 cm in size	e) with localized porpl	nyry. Phenocry:	sts consist of dark-grey (dolomitized magnetite	e (?) and black altered (including dolomitization) phlogopite. Apatite occurs in
	MINERALIZATION	Туре	Value	Comments				
		Niobates %	0.10	Pinkish grey fine-gr	ained fersmite	with porphyry observed	only in fresh rock - lik	ely present in weathered rock as well
		Pyrite %	1.50	Aggregated pyrite u	ıp to 1 cm - oxi	dized in weathered carbo	onatite	
	ALTERATION	Туре	Value	Comments				
		Oxidation %	40.00	Beige to pink weath	nering of dolom	nite		
		Calcite %	10.00	Medium- to dark-b	rown mottling	(calcitization)		
	STRUCTURE	Туре	Intens	CA	۱° (Comments		
		Laminations %	weak	30) (Measured at end of inter	val	
	MISCELLANEOUS	Zone	HCL	Apat	ite	Zircon		
		Н	W	10		0.5		
		MAIN COMMENTS MINERALIZATION ALTERATION STRUCTURE	MAIN COMMENTS MAIN COMMENTS Interval is composed of m. Apatite occurs agg lesser concentration in Type Niobates % Pyrite % ALTERATION Type Oxidation % Calcite % STRUCTURE Type Laminations % MISCELLANEOUS Zone	MAIN COMMENTS Interval is composed of dominantly weather m. Apatite occurs aggregated (~10 cm in size lesser concentration in weathered carbonati MINERALIZATION Type Value Niobates % 0.10 Pyrite % 1.50 ALTERATION Type Value Oxidation % 40.00 Calcite % 10.00 STRUCTURE Type Intens Laminations % weak MISCELLANEOUS Zone HCL	MAIN COMMENTS Interval is composed of dominantly weathered dolomite carbonat m. Apatite occurs aggregated (~10 cm in size) with localized porpl lesser concentration in weathered carbonatite. Interval becomes Niobates % 0.10 Pinkish grey fine-green Pyrite % 1.50 Aggregated pyrite Lamination % 40.00 Beige to pink weath Calcite % 10.00 Medium- to dark-breen Caminations % weak 30 MISCELLANEOUS Zone HCL Apate	MAIN COMMENTS Interval is composed of dominantly weathered dolomite carbonatite weathered m. Apatite occurs aggregated (~10 cm in size) with localized porphyry. Phenocrys lesser concentration in weathered carbonatite. Interval becomes progressively m MINERALIZATION Type Value Comments Niobates % 0.10 Pinkish grey fine-grained fersmite Pyrite % 1.50 Aggregated pyrite up to 1 cm - oxid ALTERATION Type Value Comments Oxidation % 40.00 Beige to pink weathering of dolom Calcite % 10.00 Medium- to dark-brown mottling STRUCTURE Type Intens CA° Laminations % weak 30 MISCELLANEOUS Zone HCL Apatite	MAIN COMMENTS Interval is composed of dominantly weathered dolomite carbonatite weathered to rubble in places. A lar m. Apatite occurs aggregated (~10 cm in size) with localized porphyry. Phenocrysts consist of dark-grey relesser concentration in weathered carbonatite. Interval becomes progressively more laminated towards MINERALIZATION Type Value Comments Niobates % 0.10 Pinkish grey fine-grained fersmite with porphyry observed Pyrite % 1.50 Aggregated pyrite up to 1 cm - oxidized in weathered carbonation weathered carbonatical weather with porphyry. Phenocrysts consists of dark-grey with localized prophyry. Phenocrysts consists of dark-grey with locali	MAIN COMMENTS Interval is composed of dominantly weathered dolomite carbonatite weathered to rubble in places. A large compentant segme m. Apatite occurs aggregated (~10 cm in size) with localized porphyry. Phenocrysts consist of dark-grey dolomitized magnetite lesser concentration in weathered carbonatite. Interval becomes progressively more laminated towards bottom of interval (inc MINERALIZATION Type Value Comments Niobates % 0.10 Pinkish grey fine-grained fersmite with porphyry observed only in fresh rock - like Pyrite % 1.50 Aggregated pyrite up to 1 cm - oxidized in weathered carbonatite ALTERATION Type Value Comments Oxidation % 40.00 Beige to pink weathering of dolomite Calcite % 10.00 Medium- to dark-brown mottling (calcitization) STRUCTURE Type Intens CA* Comments Laminations % Weak 30 Measured at end of interval MISCELLANEOUS Zone HCL Apatite Zircon

2010-022 Log by Ryan Kressall Date Hole ID

FROM 240.85	TO - 247.25	ROCK CODE	glCD	=	Min Style g	Fabric I	Texture p	Litho CD	Struct	
		MAIN COMMENTS		occur throughout int					nterval consist of laminated light-g ghtout interval. Zircon concentrat	
		MINERALIZATION	Туре	Value	Comments					
			Magnetite %	5.00	Fine- to coarse grain	ed magnetite	occurs loclly disseminat	ed and commonly asso	ociated wih apatite	
			Niobates %	0.50	Fine-grained columb	oite likely occu	rs with magnetite			
			Pyrite %	0.50	Form aggregates cor	mmonly with a	dolomitized magnetite			
		ALTERATION	Туре	Value	Comments					
			Oxidation %	0.50	Minor oxidation arou	und magnetite	2			
		STRUCTURE	Туре	Intens	CA	° (Comments			
			Laminations %	weak	40	9	Steepens to 70 degrees t	owards end of interval		
		MISCELLANEOUS	Zone	HCL	Apati	ite	Zircon			
			Н	М	12.5		0.5			

2010-022 Log by Ryan Kressall Date Hole ID

FROM 247.25	TO - 254.20	ROCK CODE	nmpCD	=	Min Style n	Fabric m	Texture p	Litho CD	Struct	
		MAIN COMMENTS	the end of the interval,	inequigranular white	e dolomite carbona	atite occurs mo		e of interval. Apatite		rated towards the top of the interval. Towards ations with altered phlogopite and aggregated
		MINERALIZATION	Туре	Value	Comments					
			Pyrite %	1.00	T	es (< 1 cm) and	aminations of fresh pyrite			
			Magnetite %	0.50	Minor magnetit	e occurs within	one of porphyry intervals.			
		ALTERATION	Туре	Value	Comments					
			Silica %	1.00	Minor silica vein	iing				
		STRUCTURE	Туре	Intens		CA°	Comments			
			Laminations %	weak		30	Only locally observable			
		MISCELLANEOUS	Zone	HCL	Α	patite	Zircon			
			Н	VW		10	0.25			
FROM 254.20	TO - 256.50	ROCK CODE	nmCD	=	Min Style n	Fabric m	Texture i	Litho CD	Struct	
		MAIN COMMENTS	Massive white fine- to r	medium grained ineq	quigranular dolomi	ite carbonaite w	rith slight light-grey mottling	of dolomite. Dolom	ite carbonatite is void of other m	nerals
		MINERALIZATION								
		ALTERATION								
		STRUCTURE								
		MISCELLANEOUS	Zone	HCL	A	patite	Zircon			
				VW		0	0			

Printed on 10/Feb/2011

Н

GEOLOGY LOG

М

Log by Ryan Kressall Date Hole ID **2010-022**

Litho **FROM** TO Min Style Fabric Texture Struct gmCCCD **ROCK CODE** CCCD m 256.50 265.44 MAIN COMMENTS Magnetite occurs in aggregates with apatite and dark-green grains with minor interstital calcite. Dark-green grains fluoresce the same as dolomite (deep purple colour). Aggregates are ~20 cm thick. Occuring interlaminated with aggregates are porphryritic calcite carbonatite with phenocrysts of fine-grained phlogopite, magnetite and dark-green grains similar to those in aggregates described above. Calcite carbonatite are ~3 to 15 cm thick and occur only with aggregates at the top of the interval. The remainder of the interval is composed of light-grey dolomite with clasts of magnetite-apatite aggregates containing abundant phlogopite. Textures are variable within clast from very fine-grained magnetic to medium-grained magnetite (with apatite) and variable degrees of magnetism (variable extents of dolomitization?). Clasts that are not magnetic are lighter in colour (i.e. dark grey or dark blue). Veins of dolomite crosscut clasts. Some clasts contain interstital calcite. Zircon concentrates with magnetiteapatite aggregate clasts that do not contain noticable calcite. **MINERALIZATION** Type Value Comments Niobates % 1.00 Likely columbite occurs with magnetite: also possible fine-grained black pyrochlore or columbite observed in calcite carbonatite Pyrite % 1.00 occurs aggregated within magnetite-apatite aggregate clasts. Magnetite % 15.00 Most commonly aggregated with apatite but also disseminated within calcite carbonatite. **ALTERATION STRUCTURE** Type Intens CA° Comments Laminations % moderate 0 Interlamination between cumulate and calcite carbonatite at top of interval. **MISCELLANEOUS** HCL Zone **Apatite** Zircon

2010-022 Log by Ryan Kressall Date Hole ID

FROM 265.44	TO - 269.53	ROCK CODE	nmfgCD	=	Min Style n	Fabric m	Texture fg	Litho CD	Struct	
		MAIN COMMENTS							zed. After a meter of alteration, the mottled section of interval. No Nb	:- to medium
		MINERALIZATION	Туре	Value	Comments					
			Pyrite %	1.00	Occurs aggregated (up	to 1 cm) in m	ottled section of interva	ıl.		
		ALTERATION	Туре	Value	Comments					
			Calcite %	10.00	Locallized dark-brown	calcitization -	- occurs with oxidation			
			Oxidation %	5.00	Locallized beige dolom	nite				
		STRUCTURE								
		MISCELLANEOUS	Zone	HCL	Apatite	2	Zircon			
					10		0.5			
					·					

2010-022 Log by Ryan Kressall Date Hole ID

FROM 269.53 -	TO 278.50	ROCK CODE	blfcccd	=	Min Style b	Fabric I	Texture f	Litho CCCD	Struct	
		MAIN COMMENTS		vol. %. Magnetite ag	gregates contain a					gates. Magnetite aggregates contain variable in size from 20 to 100 cm and contacts are
		MINERALIZATION	Type	Value	Comments					
			Pyrite %	0.50	Occurs aggregat	ed with dark-gre	y dolomitized magnetite			
			Niobates %	1.00	Fine-grained col	umbite likely to	occur with magnetite			
			Magnetite %	10.00	Medium-grained	d occur aggregate	ed with dark-green dolomi	ite (?) and apatite wit	h abundant zircon	
		ALTERATION	Туре	Value	Comments					
			Calcite %	10.00	Dark-brown mot	ttling				
			Oxidation %	25.00	Beige to pink ox	idiation of dolom	nite			
		STRUCTURE	Туре	Intens		CA°	Comments			
			Veining %	strong		90	1 cm thick beige dolomite	vein		
			Laminations %	moderate		30	Observed in dolomite and	d at contacts with mag	gnetite aggregates	
		MISCELLANEOUS	Zone	HCL	Α	patite	Zircon			
			Н	М		12.5	0.75			
			<u> </u>	-						

2010-022 Log by Ryan Kressall Date Hole ID

-	TO 295.29	ROCK CODE	nmpCD	=	Min Style n	Fabric m	Texture p	Litho CD	Struct	
		MAIN COMMENTS	of accessory minerals. A A small (~ 30 cm) magne	spatite occurs aggreg etite-apatite-[dark g	gated to weakly lar green dolomite?] cl	ninated within ligh asts occurs as at ~	it-grey dolomite carbon	atite. Zircon occurs lo	cally disseminated.	
		MINERALIZATION	Type	Value	Comments					
			Niobates %	0.10	Minor colmbite r	may occur with ma	gnetite clast.			
			Pyrite %	0.75	Occurs as irregul	ar veins (<0.5 mm	thick) in porphyry			
			Magnetite %	0.50	Minor magnetite	e clast				
		ALTERATION	Туре	Value	Comments					
			Oxidation %	5.00	Minor beige dolo	mite occurs locally	near fractures			
		STRUCTURE	Туре	Intens		CA° C	omments			
			Laminations %	very weak	:	20 G	enerally low but variable	e - appears to change	direction within small interval	
		MISCELLANEOUS	Zone	HCL	Aj	patite	Zircon			
			Н	VW		10	0.2			
	-		- 295.29 MAIN COMMENTS MINERALIZATION ALTERATION STRUCTURE	MAIN COMMENTS Locally porphyritic light of accessory minerals. A small (~ 30 cm) magn beyond magentite (ano MINERALIZATION MINERALIZATION Type Niobates % Pyrite % Magnetite % ALTERATION Type Oxidation % STRUCTURE Type Laminations % MISCELLANEOUS Zone	MAIN COMMENTS Locally porphyritic light-grey dolomite carbo of accessory minerals. Apatite occurs aggre A small (~ 30 cm) magnetite-apatite-[dark beyond magentite (another 10 cm). The who beyond magentite (another 10 cm). The whole where the provided magnetite with the provided ma	MAIN COMMENTS Cocally porphyritic light-grey dolomite carbonatite intermixed of accessory minerals. Apatite occurs aggregated to weakly lar A small (~ 30 cm) magnetite-apatite-[dark green dolomite?] cl beyond magentite (another 10 cm). The whole clast is enriched beyond magentite (another 10 cm). The whole clast is enriched Niobates % 0.10 Minor colmbite in Pyrite % 0.75 Occurs as irregul Magnetite % 0.50 Minor magnetite Magnetite % 0.50 Minor magnetite Oxidation % 5.00 Minor beige dolo STRUCTURE Type Value Comments Oxidation % 5.00 Minor beige dolo STRUCTURE Type Intens Laminations % very weak MISCELLANEOUS Zone HCL Aparts STRUCTURE Apar	MAIN COMMENTS Locally porphyritic light-grey dolomite carbonatite intermixed with white dolomi of accessory minerals. Apatite occurs aggregated to weakly laminated within ligh A small (~ 30 cm) magnetite-apatite-[dark green dolomite?] clasts occurs as at ~ beyond magentite (another 10 cm). The whole clast is enriched in zircon. MINERALIZATION Type Value Comments Niobates % 0.10 Minor colmbite may occur with ma Pyrite % 0.75 Occurs as irregular veins (<0.5 mm Magnetite % 0.50 Minor magnetite clast ALTERATION Type Value Comments Oxidation % 5.00 Minor beige dolomite occurs locally Laminations % very weak 20 G MISCELLANEOUS Zone HCL Apatite	MAIN COMMENTS Locally porphyritic light-grey dolomite carbonatite intermixed with white dolomite carbonatite. Phencry of accessory minerals. Apatite occurs aggregated to weakly laminated within light-grey dolomite carbon A small (~ 30 cm) magnetite-glark green dolomite?] clasts occurs as at ~283.5 m. Core is fine-group beyond magentite (another 10 cm). The whole clast is enriched in zircon. MINERALIZATION Type Value Comments Niobates % 0.10 Minor colmbite may occur with magnetite clast. Pyrite % 0.75 Occurs as irregular veins (<0.5 mm thick) in porphyry Magnetite % Oxidation % 5.00 Minor magnetite clast Type Value Comments Oxidation % 5.00 Minor beige dolomite occurs locally near fractures Type Laminations % Very weak 20 Generally low but variable MISCELLANEOUS Zone HCL Apatite Zircon	MAIN COMMENTS Locally porphyritic light-grey dolomite carbonatite intermixed with white dolomite carbonatite. Phencrysts consist of fine-gray of accessory minerals. Apatite occurs aggregated to weakly laminated within light-grey dolomite carbonatite. Zircon occurs lo A small (~ 30 cm) magnetite-apatite-[dark green dolomite?] clasts occurs as at ~283.5 m. Core is fine-grained green rimmed beyond magnetite (another 10 cm). The whole clast is enriched in zircon. MINERALIZATION Type Value Comments Niobates % 0.10 Minor colmbite may occur with magnetite clast. Pyrite % 0.75 Occurs as irregular veins (<0.5 mm thick) in porphyry Magnetite % 0.50 Minor magnetite clast ALTERATION Type Value Comments Oxidation % 5.00 Minor beige dolomite occurs locally near fractures STRUCTURE Type Intens CA* Comments Laminations % Very weak 20 Generally low but variable - appears to change MISCELLANEOUS Zone HCL Apatite Zircon	MAIN COMMENTS Locally porphyritic light-grey dolomite carbonatite intermixed with white dolomite carbonatite. Phencrysts consist of fine-grained black altered (including dolomitiz of accessory minerals. A patite occurs aggregated to weakly laminated within light-grey dolomite carbonatite. Zircon occurs locally disseminated. A small (- 30 cm) magnetite-apatite-[dark green dolomite?] clasts occurs as at ~283.5 m. Core is fine-grained green rimmed by medium-grained metallic grey magn beyond magnetite (another 10 cm). The whole clast is enriched in zircon. MINERALIZATION Type Value Comments Niobates % 0.10 Minor colmbite may occur with magnetite clast. Pyrite % 0.75 Occurs as irregular veins (<0.5 mm thick) in porphyry Magnetite % Oxidation % 5.00 Minor magnetite clast Type Value Comments Oxidation % 5.00 Minor beige dolomite occurs locally near fractures Type Laminations % Very weak 20 Cenerally low but variable - appears to change direction within small interval MISCELLANEOUS Zone HCL Apatite Zircon

r					
Log by	Ryan Kressall	Date	H	ole ID	2010-022

FROM 295.29	TO - 303.65	ROCK CODE	dICCCD	=	Min Style d	Fabric I	Texture p	Litho CCCD	Struct	
233.23	505.65	MAIN COMMENTS	dolomitized magnetite. deep purple) occurs ~29 returns to interlaminati	Mottled light to da 8 m. White to beige on between magne	rk-grey dolomite ca dolomite carbonat tite-bearing calcite	bonatite grades in te crosscuts at ~ 2 carbonatite and po	ito calcitized carbonatite 99 and then becomes the	at ~297 m. An inter e dominant phase co natite. Another whit	1 m intervals). Phenocrysts consist of altered phlogopite and dark-grey rval of dark-green dolomite (same as described in previous intervals, fluoreseces ontaining magnetite-apatite clasts with phlogopite. After ~300.5 m the interval te-beige dolomite vein (~15 cm) occurs at 301.5 m. Abundant black phlogopite apatite aggregates.	
		MINERALIZATION	Туре	Value	Comments	.	J			
			Niobates %	1.50	Fine-grained columbite likely occurs with magnetite					
			Magnetite %	25.00	Fine- to medium	-grained magnetit	e occurs disseminated w	ithin calcite carbona	tite and aggregated with apatite in clasts.	
			Pyrite %	0.50	Pyrite occrurs ag	gregated with dark	grey dolomitized magno	etite		
		ALTERATION	Туре	Value	Comments					
			Oxidation %	5.00	Minor beige dolo	mite				
		STRUCTURE	Туре	Intens		CA° C	omments			
			Laminations %	moderate	2	50				
		MISCELLANEOUS	Zone	HCL	Ap	atite	Zircon			
			Н	S		15	0.5			

End of Hole End of Hole

Hole ID	2010-023
---------	----------

	GENERAL INFORMATION									
Coordinate System	Easting	Northing	Elevation	Collar Azimuth	Collar Dip					
ST. PL Nad 83	454208.33	6256449.49	1592.55	20.00	-55.00					
Start Depth	Final Depth	Proposed Depth	Final Length	Rig	Area					
0.00	213.41		213.41		Central 2					
Operator	Year									
Taseko	2010									

	PROFESSIONAL / TECHNICIAN									
Name Start Date End Date										
Collar Surveyor		29/Aug/2010								
Geology Logged By	Ryan Kressall									
Specific Gravity By	Steve Dumma									
Geotech Logged By	Steve Dumma	18/Aug/2010								
Drill Contractor		11/Aug/2010	12/Aug/2010							

SUMMARY

DRILLING BIT SIZE								
Bit Size	From	То	Length					
NW (Casing)	0.00	4.57	4.57					
NQ	4.57	213.41	213.41					

	DOWN HOLE SURVEY										
Depth	Azimuth	Dip	Temp °C	Mag.	Roll	Method					
121.92	26.80	-57.00	5.2	5893	17.1	Reflex EZ-shot					
152.40	26.70	-57.50	5.3	5880	265.8	Reflex EZ-shot					
182.88	25.40	-57.70	4.6	5907	16.7	Reflex EZ-shot					
213.36	24.50	-58.30	7.8	5916	342.2	Reflex EZ-shot					

GEOLOGY LEGEND

Hole ID **2010-023**

ROCK CODE

MIN STYLE						
Abbr.	Description					
n	barren					
d	disseminated					
g	aggregated					
b	banded					

FABRIC						
Abbr.	Description					
Х	brecciated					
ı	laminated					
f	decalcified					
٧	veined					
р	porphyritic					
m	massive					

	TEXTURE
Abbr.	Description
f	decalcified
р	porphyritic
V	veined

LITHO						
Abbr.	Description					
CASE	Casing					
OVBN	Overburden					
OXID	Oxide					
AM	Amphibolite					
CC	Calcite Carbonatite					
CD	Dolomite Carbonatite					
CCCD	Mixed Calcite and Dolomite Carbonatite					
AMX	Amphibole and Mixed Carbonatite					
CM	Carbonatite Cumulate					

STRUCT						
Abbr.	Description					
Z	fault					
е	strained					
S	shear zone					
У	dyke					

MISCELLANEOUS:

ZONE						
Abbr.	Description					
OX	Oxide					
S	Supergene					
Н	Hypogene					

HCL						
Abbr.	Description					
VW	very weak					
W	weak					
М	moderate					
S	strong					
VS	very strong					

2010-023 Log by Ryan Kressall Date Hole ID

FROM 0.00 -	то								
	4.57	ROCK CODE	CASE	=	Min Style	Fabric	Texture	Litho CASE	Struct
		MAIN COMMENTS	No. rock.						
		MINERALIZATION							
		ALTERATION							
		STRUCTURE							
		MISCELLANEOUS	Zone	HCL		Apatite	Zircon		
FROM 4.57 -	TO 12.20	ROCK CODE	nlpCD	=	Min Style n	Fabric I	Texture p	Litho CD	Struct
		MAIN COMMENTS	phenocrysts (to lamina	e in laminated and ir	ı clusters in ma	ssive) consist of al	tered phlogopite associated	l with pyrite. Few dark	massive dolomite carbonatite; light-grey to beige in colour. Localized signey clots occur within rubble (at ~11 m) - resemble dolomitized magnetite for apatite aggregates. No Nb-mineralization observed.
		MINERALIZATION	Туре	Value	Comments	5			
			Pyrite %	1.25	Occurs disse	minated, aggregate	ed and as stringers: domina	ntly oxidized, may con	ntain fresh core
		ALTERATION	Туре	Value	Comments				
			Oxidation %	90.00	Beige dolom	ite			
		STRUCTURE	Туре	Intens	1	CA°	Comments		
			Laminations %	moderate		50	Shallows to 20 degrees to	wards end of interval	
		MISCELLANEOUS	Zone	HCL		Apatite	Zircon		

Printed on 10/Feb/2011

Measurement unit: Metres (Unless otherwise specified)

2010-023 Log by Ryan Kressall Date Hole ID

FROM 12.20	-	TO 28.23	ROCK CODE	glpCCCD	=	Min Style g	Fabric I	Texture p	Litho CCCD	Struct
			MAIN COMMENTS		opite-chlorite veinir	ng occurs at ~14.25 m.	.Dark-grey dolon	nitized magnetite occurs	aggregated with apa	lour oxidized to beige. Dolomite contains contains localized phenocrysts of black tite in laminae 1 to 5 cm thick. Pink calcite carbonatite occurs laminated with
			MINERALIZATION	Туре	Value	Comments				
				Niobates %	0.25	Locally observed w	ith some apatite	aggregates - fine-grain	ed, black, octahedral (columbite (?) - also likely to occur with magnetite
				Pyrite %	2.00	Commonly aggrega	ated with dolomi	tized magnetit; dissemi	nated; mostly oxidize	d - becomes fresher to bottom of interval
				Magnetite %	1.00	Occur fine-grained	interlaminated v	with calcite carbonatite		
			ALTERATION	Туре	Value	Comments				
				Oxidation %	50.00	Beige dolomite				
			STRUCTURE	Туре	Intens	CA	۹° C	omments		
				Laminations %	moderate	3	0			
			MISCELLANEOUS	Zone	HCL	Apa	tite	Zircon		
				Н	M	7.	5	0.1		

2010-023 Log by Ryan Kressall Date Hole ID

FROM 28.23	TO - 30.83	ROCK CODE	nliCD	=	Min Style n	Fabric I	Texture i	Litho CD	Struct		
		MAIN COMMENTS	Highly oxidized dolomit Zircon occurs dissemina				'5 % rubble Apatite occi	urs laminated in aggre	egates with dark-grey magnetite and dol	omitized magnetite and oxidized pyrite.	
		MINERALIZATION	Туре	Value	Comments						
			Pyrite %	2.00	Disseminated to a	ggregated to dolo	mitized magnetite. Oxi	dized			
			Niobates %	0.50	Fine-grained colum	nbite likely occurs	with magneite				
			Magnetite %	5.00	Bands (2 to 10 cm)	of medium-grain	ed magnetite aggregate	ed with apatite -			
		ALTERATION	Туре	Value	Comments						
			Oxidation %	50.00	Beige dolomite						
		STRUCTURE	Туре	Intens	C	A° Co	omments				
			Laminations %	moderate	1	15 Ste	eepens to 50 degrees in	places			
		MISCELLANEOUS	Zone	HCL	Apa	itite	Zircon				
			OX	VW		5	0.1				

2010-023 Log by Ryan Kressall Date Hole ID

FROM 30.83	-	TO 37.76	ROCK CODE	glCM	=	Min Style g	Fabric I	Texture i	Litho CM	Struct	
			MAIN COMMENTS	Cumulate is interlamina dolomite carbonatite. L	ated with light-grey ight-grey massive d	dolomite carbonati olomite carbonatite	te and medium-g is void of apatiti	rey dolomite carbonatite ie. Zircon occrs locally cor	mottled to beige. Ap centrated within cun	undant medim-grained phlogopite, uncommon zircon and dolomite groundmass. atite occurs weakly laminated and in swirls in medium-grey-beige mottled nlate Very fine-grained dark-green phase with disseminated magnetite and/or . Carbonatite laminae range from ~2 to 50 cm. Dolomite carbonatite also occurs as	
			MINERALIZATION	Туре	Value	Comments					
				Pyrite %	1.00	Fresh pyrite occu	ır locally aggregat	ted with magnetite in cur	nulate		
				Magnetite %	30.00	Medium-grained	magnetite in cur	nulate units			
				Niobates %	2.00	Fine-grained colu	umbite likely occu	urs with magnetite			
			ALTERATION	Type	Value	Comments					
				Oxidation %	15.00	Beige dolomite					
			STRUCTURE	Туре	Intens		CA°	Comments			
				Laminations %	moderate		35	Varies between 20 and 50) degrees		
			MISCELLANEOUS	Zone	HCL	Ar	oatite	Zircon			
			Pilocalaritation	Н	VW		20	0.25			

2010-023 Log by Ryan Kressall Date Hole ID

FROM 37.76	TO - 41.13	ROCK CODE	blpCD	=	Min Style b	Fabric I	Texture p	Litho CD	Struct
		MAIN COMMENTS			•	•		,	eite give rock banded appearance for remainder of interval. A few unoriented neentrated in dark-grey bands.
		MINERALIZATION	Туре	Value	Comments				
			Niobates %	0.50	Pale-yellow to gre	y fine-grained fers	mite within dark-grey b	ands	
			Pyrite %	1.00	Fresh pyrite occur	s aggregated with	dark-grey dolomitized r	nagnetite	
		ALTERATION							
		STRUCTURE	Туре	Intens	C	:A° Co	mments		
			Laminations %	moderate		35 Ste	epens to 60 degrees in	places	
		MISCELLANEOUS	Zone	HCL	Ара	atite	Zircon		
			Н	VW	7	'.5	0.5		

2010-023 Log by Ryan Kressall Date Hole ID

FROM 41.13	_	TO 52.21	ROCK CODE	glCM	=	Min Style g	Fabric I	Texture i	Litho CM	Struct
			MAIN COMMENTS	veins and laminae occu	ir commonly in contac 6 interval) occurs irreg	t with cumulate. A	~20 cm interva	l of phlogopite-phryic dol	omite carbonatite occ	Cumulate phases are always less than 1 m thick. White calcite to beige dolomite urs at ~242 m (non-magnetic). Non-magnetic dark-green fine-grained phase (also the dolomitized magnetite). Zicon occurs associated with apatite and concentrates
			MINERALIZATION	Туре	Value	Comments				
				Niobates %	1.00	Pale-pink fine-gra magnetite.	ined octahedra	al grains observed in phlog	gopite-phryic dolomite	carbonatite: possible pyrochlore: fine-grained columbite likely occurs with
				Pyrite %	1.50	Occurs aggregated	d with magneti	te and confined to dark-g	rey laminae in dolomit	te carbonatite
				Magnetite %	25.00	Medium-grained:	aggregated wit	h apatite		
			ALTERATION							
			STRUCTURE	Туре	Intens	C	:A°	Comments		
				Laminations %	moderate		30	Varies between 20 and 4	O degrees	
			MISCELLANEOUS	Zone	HCL		atite	Zircon		
				OX	M	17	7.5	0.5		

2010-023 Log by Ryan Kressall Date Hole ID

FROM 52.21	TO - 54.88	ROCK CODE	blpCD	=	Min Style b	Fabric I	Texture p	Litho CD	Struct
		MAIN COMMENTS	Weakly laminated light- free). Apparent phenocr				s or weak laminations. A	patite occurs aggegat	ed with dark-laminations (zircon-bearing) and in light-colored aggregates (zircon-
		MINERALIZATION	Туре	Value	Comments				
			Pyrite %	1.25	Fresh to oxidized: lo	cally concentr	ated; crosscuting veins		
			Niobates %	0.10	Fine-grained dark-g	rey grains in w	reak dark-grey laminae: p	ossibly fersmite	
		ALTERATION							
		STRUCTURE	Туре	Intens	CA	ı° (Comments		
			Veining %	moderate	60) Т	hin (< 1 mm) pyrite veins	; variable oxidized - o	ccur locally spaced ~ 5 cm
			Laminations %	very weak	10	1			
		MISCELLANEOUS	Zone	HCL	Apat	ite	Zircon		
			OX	VW	7.5	i	0.25		

2010-023 Log by Ryan Kressall Date Hole ID

Min Style **FROM** Litho TO Fabric Texture Struct glpCD **ROCK CODE** CD 54.88 60.10

MAIN COMMENTS Interval is composed dominantly of light-grey dolomite carbonatite with dark-grey clasts. Clasts are composed of dolomitized magnetite (?), apatite, pyrite and black pyrochlore (?). Some clasts contain some medium-grained magnetite (looks the same as dolomitized magnetite). Light-grey dolomite contains thin (< 2 cm) laminae of d. grey apatite agregates with abundant zircon. A larger clast (or possible laminae) of porphyritic dolomite carbonatite at ~ 58 m consists dominantly of altered phlogopite (dolomitized to some extent). Locallized phencrysts of altered phlogopite and fine-grained magnetite occur for the last meter. Locallized aggregates of zircon-rich apatite occur within porphyry.

MINERALIZATION	Type	Value	Comments
	NI 1 . 0/	0.50	F

Niobates %	0.50	Fine-grained black octahedrals in dark-grey clasts - likely pyrochlore of combite
Magnetite %	1.00	Rare dark-grey clasts contain magnetite aggregated with apatite; fine-grained phenocrysts in porphyry with altered phlogopite
Pyrite %	5.00	Fresh pyrite occurs aggregated w. d. grey dolomitized magnetite and altered phlogopite- aggregaes are up to 10 cm in size with the largest occur with dolomite porphyry

ALTERATION

STRUCTURE

2010-023 Log by Ryan Kressall Date Hole ID

FROM 60.10	_	TO 64.26	ROCK CODE	ЫСМ	=	Min Style b	Fabric I	Texture i	Litho CM	Struct	
			MAIN COMMENTS		ate composed ~50 %	of interval. Cumlates	are 2 to 50 cm			atite appears laminated within cumulate. Calcite occurs interstital to magnetite r concentration in the dolomite carbonatite. Dark-grey laminae within dolomite	
			MINERALIZATION	Type	Value	Comments					
				Magnetite %	20.00	Medium-grained mag	gnetite occurs	aggregated with apatite			
				Pyrite %	2.00	Aggregated within do	olomite carbon	atite and 1 cm thick vein			
				Niobates %	1.00	Fine-grained columbi	ite likely occurs	s with magnetite			
			ALTERATION								
			STRUCTURE	Туре	Intens	CA°	Co	omments			
				Veining %	strong	80	1 c	m vein of pyrite crosscu	ts cumlate		
				Laminations %	moderate	40					
			MISCELLANEOUS	Zone	HCL	Apatit	·e	Zircon			
			MISCELLANEOUS	Н	S	15		0.75			
				11	J	ID		0./3			

2010-023 Log by Ryan Kressall Date Hole ID

FROM 64.26	-	T0 80.74	ROCK CODE	ЫCD	=	Min Style b	Fabric I	Texture p	Litho CD	Struct
			MAIN COMMENTS	of the interval is compos	sed of magnetite wi ess magnetic (dolon	ithin fine-grained m nitized magnetite?)	zircon.Bands are from 1 to 50 cm in thickness. The dark-grey band at the very end concentrates in the fringes of the magnetite-bearing band where the band red phlogopite that seem to be locally concentrated.			
			MINERALIZATION	Туре	Value	Comments				
				Niobates %	1.00	Pale-pink to med	lium-grey, fine-gra	nined, octahedral fersmi	te in dark-bands	
				Pyrite %	2.00	Aggregates withi	n dark-grey bands	and and as massive py	ite laminae up to 1 cn	n thick
				Magnetite %	2.50	Medium-grained	magnetite aggreg	ated with apatite in sin	gle band at end of int	erval
			ALTERATION	Туре	Value	Comments				
				Oxidation %	5.00	Beige dolomite -	locally concentrate	ed		
			STRUCTURE	Туре	Intens		CA° C	omments		
				Veining %	moderate	!	65 U	ncommon pyrite veins -	observed towards bo	ttom of interval
				Laminations %	weak		30			
			MISCELLANEOUS	Zone	HCL	Ар	atite	Zircon		
				Н	VW		10	0.5		

2010-023 Log by Ryan Kressall Date Hole ID

FROM 80.74	TO - 87.71	ROCK CODE	blpCD	=	Min Style b	Fabric I	Texture p	Litho CD	Struct	
		MAIN COMMENTS	Frequent thin (generally Dolomite is light-grey in			minae compo	osed dominantly of apatite	(+ dolomitized magne	tite?) with abundant zircon give dolomite carbonatite banded appear	rance.
		MINERALIZATION	Туре	Value	Comments					
			Niobates %	1	Fine-grained pale	pink grainy-	textured fersmite occurs dis	sseminated within dar	k-grey bands (observable in larger laminae)	
			Pyrite %	1.50	Aggregated with o	lark-bands a	nd as small stringers (<1 cm) within dolomite		
		ALTERATION								
		STRUCTURE	Туре	Intens	C	A°	Comments			
			Laminations %	moderate	4	10	Varies between 30 and 5	O degrees within inter	val	
		MISCELLANEOUS	Zone	HCL	Apa	itite	Zircon			
			Н	VW	12	2.5	0.5			
FROM 87.71 -	TO 95.36	ROCK CODE	ЫCD	=	Min Style b	Fabric I	Texture i	Litho CD	Struct	
		MAIN COMMENTS	Dominantly light-grey do apatite and abundant zi				ey apatite bands (also likely	odolomitized magneti	te?). Non-magnetic dark-grey clasts composed of pyrite, dolomitized	magnetite,
		MINERALIZATION	Туре	Value	Comments					
			Niobates %	0.50	Fine-grained black	coctahedral g	grains in apatite bands and	aggregates wih dolom	itized magnetite - likely pyrochlore or columbite	
			Pyrite %	2.00	Aggregated with o	lolomitized d	lark-grey magnetite			
		ALTERATION								
		STRUCTURE	Туре	Intens	С	A°	Comments			
			Laminations %	moderate		20	varies between 15 to 20 c	legrees		
		MISCELLANEOUS	Zone	HCL	Apa	itite	Zircon			

2010-023 Log by Ryan Kressall Date Hole ID

FROM 95.36	TO - 98.76	ROCK CODE	gICM	=	Min Style g	Fabric I	Texture	Litho CM	Struct	
		MAIN COMMENTS	Interval is dominantly carbonatite contains the	•	•				interlaminated with light grey laminated dolomite carbonatite. Dolomite	
		MINERALIZATION	Туре	Value	Comments					
			Niobates %	1.00	Fine-grained colu	mbite likely occurs	with magnetite			
			Pyrite %	2.00	Aggregates with r	nagnetite in highe	r concentration near d	olomite contact		
			Magnetite %	35.00	Medium-grained	magnetite aggrega	tes with apatite in cur	nulate phase		
		ALTERATION								
		STRUCTURE	Туре	Intens	C	:A° Co	mments			
			Laminations %	moderate		50 Ge	nerally ~50 degrees in	dolomite, but steepen	s to 70 or 80 degrees near contacts with cumulate	
		MISCELLANEOUS	Zone	HCL	Ара	atite	Zircon			
			Н	VW	1:	2.5	0.25			

2010-023 Log by Ryan Kressall Date Hole ID

FROM 98.76	-	TO 102.81	ROCK CODE	ЫCD	=	Min Style b	Fabric I	Texture p	Litho CD	Struct		
			MAIN COMMENTS		HCI. Veins of white	dolomite crosscut dark	k-bands. Apat	ite occurs strongly lamin			e and apatite. Dark-bands are non-metallic rs concentrated within dark-bands. Interval	
			MINERALIZATION	Туре	Value	Comments						
				Niobates %	0.10	Likely fine-grained c	olumbite occu	ırs with magnetite				
				Magnetite %	1.00	Fine-grained locallize	ed disseminat	tions and single aggregat	ion within dolomite o	arbonatite		
				Pyrite %	1.50	Veined, and confined	d to thin lamir	nae				
			ALTERATION									
			STRUCTURE	Туре	Intens	CA	°	Comments				
				Laminations %	weak	20	C	Generally low: varies from	10 to 40 degrees			
				Veining %	moderate	70	١	/eined pyrite (<0.5 mm t	hick)			
			MISCELLANEOUS	Zone	HCL	Apati	ite	Zircon				
				Н	W	12.5		0.25				

2010-023 Log by Ryan Kressall Date Hole ID

FROM 102.81	TO - 131.10	ROCK CODE	nICD	=	Min Style n	Fabric I	Texture p	Litho CD	Struct	
		MAIN COMMENTS	Laminated to swirly tex grey dolomitized magne	tured light-grey dolo etite (?) concentrate	omite carbonatite locally within lam	with large dark iinae varying 1 to	grey clasts composed of ap o 5 cm in thickness. Zircon c	patite, dolomitized ma concentrates with darl	ignetite and abundant apatite. Phenocrysts of c-grey apatite aggregates.No Nb-mineralizat	of black altered phlogopite and dark ion observed.
		MINERALIZATION	Туре	Value	Comments					
			Pyrite %	2.00	Occurs dissemi	nated througho	ut dolomite and aggregated	d with d. grey aggregat	tes	
		ALTERATION								
		STRUCTURE	Туре	Intens		CA°	Comments			
			Laminations %	moderate	1	50				
		MISCELLANEOUS	Zone	HCL	А	patite	Zircon			
			Н	VW		10	0.25			
FROM 131.10	TO - 133.83	ROCK CODE	nmfgCD	=	Min Style n	Fabric m	Texture fg	Litho CD	Struct	
		MAIN COMMENTS	Ovoid texture within do	lomite carbonatite.	Core is composed	of dolomite carl	oonatite. Rim is composed	magnetite. Apatite oc	curs is localized aggregates. Possible dolomit	tized fenite?
		MINERALIZATION	Туре	Value	Comments					
			Magnetite %	20.00	Fine-grained al	ong rim of ovoid	dolomite			
		ALTERATION								
		STRUCTURE								
		MISCELLANEOUS	Zone	HCL	А	patite	Zircon			
			Н	VW		10	0			

2010-023 Log by Ryan Kressall Date Hole ID

FROM 133.83	TO - 142.85	ROCK CODE	nmpCD	=	Min Style n	Fabric m	Texture p	Litho CD	Struct	
		MAIN COMMENTS					s and porphyritic dolomite o e. No Nb-mineralization obs		bands are composed dominantly of ap	atite with dark-grey dolomitized magnetite
		MINERALIZATION	Туре	Value	Comment	:5				
			Pyrite %	1.00	Fresh pyrite	occurs as aggregat	tes p to 1cm and stringers u	p to 3 cm - fine-graine	ed oxidized pyrite occurs with porphyry	
		ALTERATION								
		STRUCTURE	Туре	Intens		CA°	Comments			
			Laminations %	weak		20	Only locally observed			
		MISCELLANEOUS	Zone	HCL		Apatite	Zircon			
			Н	VW		10	0.5			
FROM 142.85	T0 - 148.93	ROCK CODE	nlpAMX	=	Min Style n	Fabric I	Texture p	Litho AMX	Struct	
		MAIN COMMENTS	Light-grey laminated do laminae in dolomite con grey lamine). Zircon occ	isist of dolomite, ap	atite and dark	-grey dolomitized r	magnetite. A few ~3 cm lam	itic to inequigranular. I iinae contain magnetit	Phencrysts consist of black altered phlo te aggregated with apatite. Apatite occ	ogopite locally concentrated. Dark-grey ur moderately laminate (white and dark-
		MINERALIZATION	Туре	Value	Comment	:S				
			Pyrite %	1.00	Fresh pyrite	occurs as aggregat	tes and as stringers			
		ALTERATION	Туре	Value	Comment	:5				
		7.2.2.0	Amphibolite %	20.00			clasts - lighter coloured clas	sts react moderately to	o HCI (calcite present in matrix)	
		STRUCTURE	Туре	Intens		CA°	Comments			
			Laminations %	moderate		30				
		MISCELLANEOUS	Zone	HCL	<u>'</u>	Apatite	Zircon			

2010-023 Log by Ryan Kressall Date Hole ID

FROM 148.93	TO - 169.36	ROCK CODE	blpCD	=	Min Style b	Fabric I	Texture p	Litho CD	Struct	
		MAIN COMMENTS	Light- to medium-grey in dolomite. A single "band	nterlaminated dolom " of biotitization occ	nite carbonatite, lo curs at 157.25 m (po	cally porphyrit ossible fenite?	tic. Phenocrysts of altered p '). No Nb-mineralization ob	phlogopite occur comn served.	nonly with apatite laminae (little z	ircon). Phencrysts occur in both shades of
		MINERALIZATION	Туре	Value	Comments					
			Niobates %	0.10	Minor fine-graine	ed pale-yellow	to grey fersmite with apati	te and altered phlogo	pite	
			Pyrite %	1.50	Large aggregates	of pyrite (up t	to 1 cm) and stringers assoc	iated with altered phl	ogopite	
		ALTERATION	Туре	Value	Comments					
			Amphibolite %	1.00	Single "band" of t	black biotitizat	tion at ~157.25 m			
		STRUCTURE	Туре	Intens	(CA°	Comments			
			Laminations %	moderate		15	Variable between 10 and	20 degrees		
		MISCELLANEOUS	Zone	HCL	Ар	atite	Zircon			
			OX	VW		10	0			
FROM 169.36	TO - 173.42	ROCK CODE	nlpCD	-	Min Style n	Fabric I	Texture p	Litho CD	Struct	
		MAIN COMMENTS	Mottled-massive to wea apatite. No Nb-mineraliz	kly laminated light-g ation observed.	grey to dark-grey d	olomite carbor	natite with dark-grey band:	s (~5 cm) consisting of	dark-grey dolomitized magnetite	and apatite. Common zircon occurs with
		MINERALIZATION	Туре	Value	Comments					
			Pyrite %	1.50		d with dark-gr	rey dolomitized magnetite	and as thin laminae (~0.5 mm)	
		ALTERATION								
		ALTERATION STRUCTURE	Туре	Intens	(CA°	Comments			
			Type Laminations %	Intens moderate		CA° 20	Comments			
							Comments			

Printed on 10/Feb/2011

2010-023 Log by Ryan Kressall Date Hole ID

FROM TO ROCK CODE nlpCD = Min Style Fabric Texture Litho Struct 173.42 - 202.51	
MAIN COMMENTS Interval is composed dominantly of light- to medium-grey laminated dolomte carbonatte. Phenocrysts of altered phlogopite occur locally concentrated and are generally confined to laminae (1 to 30 Phlogopite is commonly rimmed by pyrite. Small porphyry laminae are composed essentially of apatite, altered phlogopite and common zircon. The larger porphyry laminae are composed of apatite altered phlogopite with common zircon within a dolomite groundmass. No Nb-mineralization observed	
MINERALIZATION Type Value Comments	
Pyrite % 1.75 Fresh pyrite occurs commonly aggregated with phlogopite and as seperata pyrite commonly associated with medium-grey laminae	
ALTERATION	
STRUCTURE Type Intens CA° Comments	
Laminations % weak 30	
MISCELLANEOUS Zone HCL Apatite Zircon	
H VW 5 0.25	

MISCELLANEOUS

GEOLOGY LOG

2010-023 Log by Ryan Kressall Date Hole ID

FROM 202.51	TO 208.80	ROCK CODE	bmiCD	=	Min Style Fab b m		Litho CD	Struct
		MAIN COMMENTS	Inequigranular segment	s are void of apatte a	nd zircon. Mica phenocrysts	. 3	rds bottom of interval	ts consist of black altered phlogopite associated wth apatite aggregates. occuring commonly with inequigranular segments. Medium-grey splotches occur tite.
		MINERALIZATION	Туре	Value	Comments			
			Niobates %	0.50	Fine-grained pale-pink grai	ny occur with porphyry and apa	tite laminae	
			Pyrite %	2.50	Commonly aggregated with	phlogopte and as uncommon	massive pyrite aggrega	ates and laminae
		ALTERATION						
		STRUCTURE	Туре	Intens	CA°	Comments		
			Veining %	weak	85	Irregular pyrite vein (~ 1 r	nm thick);	
			Laminations %	very weak	10	Varies between 5 and 20	degrees	

Apatite

10

Zircon

0.25

HCL

VW

Zone

Н

Printed on 10/Feb/2011

GEOLOGY LOG

Logby	Dyan Krossall	Date	Hele	ın	2010-023
Log by	Ryan Kressall	Date	Hole	עו	2010-025

FROM 208.80	TO - 213.41	ROCK CODE	gICD	=	Min Style g	Fabric I	Texture p	Litho CD	Struct	
		MAIN COMMENTS	Dominantly porphyrition aggregates with altered			nents (0.2 to 0.5 n	n) of massive aphryic do	olomite carbonatite.	Aggregated apatite and zircon concent	crate within porphyry. Apatite commonly
		MINERALIZATION	Туре	Value	Comments					
			Pyrite %	Pyrite % 1.50 Aggregated frequently with phlogopite; uncommon veins						
			Niobates %	1.00	Fine-grained yello	w grainy fersmite	occurs with phlogopite	and apatite aggregat	tes; also occurs disseminated with por	ohyry
		ALTERATION								
		STRUCTURE	Туре	Intens	C	A° Co	mments			
			Veining %	weak	-	70 Pyr	ite veining			
		MISCELLANEOUS	Zone	HCL	Apa	atite	Zircon			
			Н	VW						

End of Hole End of Hole

Measurement unit: Metres (Unless otherwise specified)

2010-024 Hole ID

	GENERAL INFORMATION								
Coordinate System	Easting	Northing	Elevation	Collar Azimuth	Collar Dip				
ST. PL Nad 83	454090.89	6256515.75	1643.53	30.00	-55.00				
Start Depth	Final Depth	Proposed Depth	Final Length	Rig	Area				
0.00	153.05		153.05		Central 1				
Operator	Year								
Taseko	2010								

PROFESSI	ONAL / TE	CHNICIAN
I IVOI ESSI	DITAL / IL	CITICIAIT

	Name	Start Date	End Date
Collar Surveyor		29/Aug/2010	
Geology Logged By	Ryan Kressall		
Specific Gravity By	Steve Dumma		
Geotech Logged By	Steve Dumma	19/Aug/2010	
Drill Contractor		13/Aug/2010	14/Aug/2010

C	HIL	A D	4 /	RY
	Uľ	al la	IA	K I

DRILLING BIT SIZE								
Bit Size	From	То	Length					
NW (Casing)	0.00	7.32	7.32					
NQ	7.32	153.05	153.05					

DOWN HOLE SURVEY									
Depth	Azimuth	Dip	Temp °C	Mag.	Roll	Method			
26.82	27.40	-57.60	15.9	5568	357.7	Reflex EZ-shot			
87.78	27.10	-58.50	13.9	5885	129.3	Reflex EZ-shot			
153.01	23.30	-58.60	16.5	5784	115.7	Reflex EZ-shot			

GEOLOGY LEGEND

2010-024 Hole ID

ROCK CODE

MIN STYLE						
Abbr.	Description					
n	barren					
d	disseminated					
g	aggregated					
b	banded					

	FABRIC
Abbr.	Description
Х	brecciated
- 1	laminated
f	decalcified
V	veined
р	porphyritic
m	massive

	TEXTURE
Abbr.	Description
f	decalcified
р	porphyritic
V	veined

LITHO						
Abbr.	Description					
CASE	Casing					
OVBN	Overburden					
OXID	Oxide					
AM	Amphibolite					
CC	Calcite Carbonatite					
CD	Dolomite Carbonatite					
CCCD	Mixed Calcite and Dolomite Carbonatite					
AMX	Amphibole and Mixed Carbonatite					
CM	Carbonatite Cumulate					

	STRUCT
Abbr.	Description
Z	fault
е	strained
S	shear zone
У	dyke

MISCELLANEOUS:

ZONE						
Abbr.	Description					
OX	Oxide					
S	Supergene					
Н	Hypogene					

	HCL
Abbr.	Description
VW	very weak
W	weak
М	moderate
S	strong
VS	very strong

2010-024 Log by Ryan Kressall Date Hole ID

FROM 0.00	-	TO 7.32	ROCK CODE	CASE	=	Min Style	Fabric	Texture	Litho CASE	Struct	
			MAIN COMMENTS	No rock.							
			MINERALIZATION								
			ALTERATION								
			STRUCTURE								
			MISCELLANEOUS	Zone	HCL		Apatite	Zircon			
EDOM		TO				Min Style	Fahric	Texture	Litho	Struct	
FROM 7.32	-	TO 17.00	ROCK CODE	blcCD	=	Min Style b	Fabric I	Texture c	Litho CD	Struct	
	-		ROCK CODE MAIN COMMENTS	Laminated dolomite ca	rbonatite is light-gre	b ey to dark-brov	l vn in colour. Apatite	c occurs as moderately lam	CD ination in dolomite car	Struct bonatite typically ~1- 5 cm thick. Apatite laminae seem to be areas of of apatite at around 15 m is aggregated with dark-grey non-metallic	
	-			Laminated dolomite ca weathering - surrounde	rbonatite is light-gre	b ey to dark-brov	l vn in colour. Apatite ontain pits of decalc	c occurs as moderately lam	CD ination in dolomite car	bonatite typically ~1- 5 cm thick. Apatite laminae seem to be areas of	
	-		MAIN COMMENTS	Laminated dolomite ca weathering - surrounde (dolomitized magnetite	rbonatite is light-gre ed by calcitization and ??).	b ey to dark-browd commonly co	l vn in colour. Apatite ontain pits of decalc S	c occurs as moderately lam	CD lination in dolomite car er lamina (~10 cm thick)	bonatite typically ~1- 5 cm thick. Apatite laminae seem to be areas of of apatite at around 15 m is aggregated with dark-grey non-metallic	
	-		MAIN COMMENTS	Laminated dolomite ca weathering - surrounde (dolomitized magnetite Type	rbonatite is light-gre ed by calcitization and e?). Value	b ey to dark-browd commonly comment	l vn in colour. Apatite ontain pits of decald S ine-grained grey fer	c occurs as moderately lam ification (?). A single large smite observed with apati	CD ination in dolomite car ir lamina (~10 cm thick) ite-dolomitized magne	bonatite typically ~1- 5 cm thick. Apatite laminae seem to be areas of of apatite at around 15 m is aggregated with dark-grey non-metallic	mineral
	-		MAIN COMMENTS	Laminated dolomite ca weathering - surrounde (dolomitized magnetite Type Niobates % Pyrite %	rbonatite is light-gre ed by calcitization and e?). Value 0.25	b ey to dark-browd commonly comment	I vn in colour. Apatite ontain pits of decale S ine-grained grey fer rite occurs commonl	c occurs as moderately lam ification (?). A single large smite observed with apati	CD ination in dolomite car ir lamina (~10 cm thick) ite-dolomitized magne	bonatite typically ~1- 5 cm thick. Apatite laminae seem to be areas of of apatite at around 15 m is aggregated with dark-grey non-metallic tite aggregates.	mineral
	-		MAIN COMMENTS MINERALIZATION	Laminated dolomite ca weathering - surrounde (dolomitized magnetite Type Niobates %	rbonatite is light-gre ed by calcitization and e?). Value 0.25 1.50	ey to dark-browd commonly comment Pontential for Oxidized py Comment Comment	I on in colour. Apatite contain pits of decalc S ine-grained grey fer rite occurs commonl S	c occurs as moderately lam ification (?). A single large smite observed with apati	CD Ination in dolomite car In lamina (~10 cm thick) Ite-dolomitized magnet Iaminae. Fresh pyrite o	bonatite typically ~1- 5 cm thick. Apatite laminae seem to be areas of of apatite at around 15 m is aggregated with dark-grey non-metallic cite aggregates.	mineral
	-		MAIN COMMENTS MINERALIZATION	Laminated dolomite ca weathering - surrounde (dolomitized magnetite Type Niobates % Pyrite % Type Calcite %	rbonatite is light-gre ed by calcitization and e?). Value 0.25 1.50 Value	ey to dark-browd commonly comment Pontential for Oxidized py Comment Comment	I on in colour. Apatite contain pits of decalc S ine-grained grey fer rite occurs commonl S	c occurs as moderately lam ification (?). A single large smite observed with apatite y associated with apatite	CD Ination in dolomite car In lamina (~10 cm thick) Ite-dolomitized magnet Iaminae. Fresh pyrite o	bonatite typically ~1- 5 cm thick. Apatite laminae seem to be areas of of apatite at around 15 m is aggregated with dark-grey non-metallic cite aggregates.	mineral
	-		MAIN COMMENTS MINERALIZATION ALTERATION	Laminated dolomite ca weathering - surrounde (dolomitized magnetite Type Niobates % Pyrite % Type	rbonatite is light-gre ed by calcitization and e?). Value 0.25 1.50 Value 25.00	comment Comment Comment Comment Contact py Comment Dark-brown	on in colour. Apatite ontain pits of decale state of the colours of the colours commonles calcitization concer	c occurs as moderately lam ification (?). A single large smite observed with apati y associated with apatite strates around apatite lam Comments	CD Innation in dolomite car Ir lamina (~10 cm thick) Ite-dolomitized magnet Iaminae. Fresh pyrite o	bonatite typically ~1- 5 cm thick. Apatite laminae seem to be areas of of apatite at around 15 m is aggregated with dark-grey non-metallic cite aggregates.	mineral
	-		MAIN COMMENTS MINERALIZATION ALTERATION	Laminated dolomite ca weathering - surrounde (dolomitized magnetite Type Niobates % Pyrite % Type Calcite %	rbonatite is light-greed by calcitization and early). Value 0.25 1.50 Value 25.00 Intens	comment Comment Comment Comment Contact py Comment Dark-brown	vn in colour. Apatite ontain pits of decale s s ine-grained grey fer rite occurs common! s calcitization concer	c occurs as moderately lam ification (?). A single large smite observed with apati y associated with apatite strates around apatite lam Comments	CD Ination in dolomite car Ir lamina (~10 cm thick) Ite-dolomitized magnet Iaminae. Fresh pyrite o Innae and dolomite vein	bonatite typically ~1- 5 cm thick. Apatite laminae seem to be areas of of apatite at around 15 m is aggregated with dark-grey non-metallic tite aggregates. Cours disseminaed and as stringers in less weathered dolomite carbors	mineral
	-		MAIN COMMENTS MINERALIZATION ALTERATION	Laminated dolomite ca weathering - surrounde (dolomitized magnetite Type Niobates % Pyrite % Type Calcite % Type Veining %	rbonatite is light-greed by calcitization and and and and and and and and and an	comment Comment Comment Comment Contact py Comment Dark-brown	vn in colour. Apatite ontain pits of decale S ine-grained grey fer rite occurs commonl S calcitization concer CA° 60	c occurs as moderately lam ification (?). A single large smite observed with apatit y associated with apatite strates around apatite lam Comments Common veins up to 1 cr	CD Ination in dolomite car Ir lamina (~10 cm thick) Ite-dolomitized magnet Iaminae. Fresh pyrite o Innae and dolomite vein	bonatite typically ~1- 5 cm thick. Apatite laminae seem to be areas of of apatite at around 15 m is aggregated with dark-grey non-metallic tite aggregates. Cours disseminaed and as stringers in less weathered dolomite carbors	mineral

Printed on 10/Feb/2011

2010-024 Log by Ryan Kressall Date Hole ID

FROM 17.00	TO - 23.66	ROCK CODE	bliCD	=	Min Style b	Fabric I	Texture i	Litho CD	Struct
		MAIN COMMENTS		lomitized magnetite	?). Pale-pink fersmite i	is observed in t	he larger bands. Larger	bands (~ 10 cm) are o	rincipally apatite, dolomite and very fine-grained dark-grey non-magnetitic non- composed of [magnetite + apatite + minor pyrite] or [pyrite + d. grey metallic gnetite.
		MINERALIZATION	Туре	Value	Comments				
			Magnetite %	7.50	Aggregated with apa	atite in larger ba	ands (~10 cm)		
			Niobates %	1.50	Fine-grained octahed	dral pale-pink g	grainy-textured fersmite	observed in larger d	grey bands.
			Pyrite %	2.50			idized; sometimes oxidi mineral (dolomitized ma		cur disseminated and as aggregates up to 0.5 mm in dolomite; massive pyrite
		ALTERATION	Туре	Value	Comments				
			Oxidation %	30.00	Beige dolomite				
		STRUCTURE	Туре	Intens	CA°	· Co	omments		
			Laminations %	moderate	20	Ge	enerally low ~20 degrees	but steepens to 70 o	degrees locally.
		MISCELLANEOUS	Zone	HCL	Apati	te	Zircon		
			OX	VW	15		0.5		

2010-024 Log by Ryan Kressall Date Hole ID

FROM 23.66	- 39.7	ROCK CODE	glpCD	=	Min Style g	Fabric I	Texture p	Litho CD	Struct
		MAIN COMMENTS	dolomitized magnetite (occurs as white laminati	(?), apatite, pyrite, a ions within laminato	abundant zircon and i ed dolomite carbonat	uncommon fersm ite and common	ite grains. At the end o y with < 2 cm dark-grey	of interval, 5 cm dark-g y bands (dolomitized n	interval. Dark-grey aggregates up to ~10 cm diameter consist of dark-grey grey aggregate consists of magneite, apatite, minor pyrite and zircon. Apatite magnetite?) within dolomite. Zircon occurs associated with dark-grey aggregates en oxidized to decalcified (decalcified) to various extents locally.
		MINERALIZATION	Type	Value	Comments				
			Pyrite %	2.50	Aggregated with a	patite and dolom	itized magnetite; and f	fine-grained dissemina	ations in dolomite carbonatite.
			Niobates %	0.50	Fine-grained yellow	w to dark-grey fe	smite (octahedral) obs	erved on fringes of d. g	grey aggregates
		ALTERATION	Туре	Value	Comments				
			Oxidation %	45.00	Beige dolomnite				
		STRUCTURE	Туре	Intens	C	A° Co	omments		
			Laminations %	weak	2	O Ge	nerally low around 20 t	out steepens locally to	~ 40 degrees
		MISCELLANEOUS	Zone	HCL	Ара	tite	Zircon		
			OX	VW	10	0	0.5		

2010-024 Log by Ryan Kressall Date Hole ID

FROM 39.75	TO - 50.04	ROCK CODE	blfgCD	=	Min Style b	Fabric I	Texture fg	Litho CD	Struct		
		MAIN COMMENTS	Laminated dolomite car bands make up about 4		y to beige in colour \	with dark-grey ba	ands. Dark-bands consist	of apatite, dark-grey	non-magnetic mineral (dolomiti	ized magnetite?), pyrite and con	nmon zircon. Dark
		MINERALIZATION	Туре	Value	Comments						
			Niobates %	0.25	Minor fine-graine	d pale-yellow to	grey fersmite within d. gre	ey bands			
			Pyrite %	1.50	Occur as stringers	within dark-grey	bands and disseminated	l within dolomite car	bonatite		
		ALTERATION	Туре	Value	Comments						
			Oxidation %	50.00	Beige dolomite						
		STRUCTURE	Туре	Intens		CA° (Comments				
			Laminations %	moderate		10 L	ow angle between 0 and 2	20 degrees			
			Veining %	weak		60 S	ingle dolomite vein (~ 1 n	nm thick) observed ri	mmed by dark-brown alteration	(weak reaction to HCI)	
		MISCELLANEOUS	Zone	HCL	Apa	atite	Zircon				
			OX	VW	7	7.5	0.1				

2010-024 Log by Ryan Kressall Date Hole ID

FROM 50.04	TO - 57.14	ROCK CODE	glpCCCD	=	Min Style g	Fabric I	Texture p	Litho CCCD	Struct
		MAIN COMMENTS	minor apatite, minor pl	nlogopite and abunda	ant zircon and comp	ose ~5 % of inter	val. Dark-grey bands con	sist of apatite, dark-	ation is banded to aggregated. Dark-grey aggregates are composed of magnetite, grey metallic mineral (dolomitized magnetite?) and zircon and sometimes contain con) occur within light-grey dolomite. Locallized phenocrysts consist of altered
		MINERALIZATION	Type	Value	Comments				
			Niobates %	1.00	Minor fine-grained	d yellow to d. grey	/ fersmite within d. grey	bands observed; like	ly columbite associated with magnetite.
			Magnetite %	5.00	Medium-grained r	magnetite occurs	aggregated and banded;	; fine-grained magne	etite occurs disseminated within calcite carbonatite.
			Pyrite %	2.00	Stringers and lam	inae associated w	vith d. grey bands		
		ALTERATION	Туре	Value	Comments				
			Oxidation %	10.00	Beige dolomite				
		STRUCTURE	Туре	Intens	С	:A° C	omments		
			Laminations %	strong		15 Lo	ow angle between 10 and	d 20 degrees	
		MISCELLANEOUS	Zone	HCL	Apa	atite	Zircon		
			OX	М	1	15	0.5		

2010-024 Log by Ryan Kressall Date Hole ID

FROM 57.14 -	TO 63.11	ROCK CODE	dlpCD	=	Min Style d	Fabric I	Texture p	Litho CD	Struct
		MAIN COMMENTS							d magnetite?), apatite, dolomite, pyrite and common zircon. Dark-bands pyrochlore?) and oxidized pyrite.
		MINERALIZATION	Туре	Value	Comments				
			Pyrite %	2.00	Fine-grained pyr	ite occurs dissen	ninated with porphyry; as	s stringers within aphry	ric laminae; and aggregated (up to 2 cm) within dark-grey bands
			Niobates %	1.00	Observed locally	disseminated in	porphyry		
		ALTERATION	Туре	Value	Comments				
			Oxidation %	2.50	Beige dolomie co	ncentrated arou	nd healed fractures		
		STRUCTURE	Туре	Intens		CA°	Comments		
			Laminations %	moderate		10	Generally low angle ~ 10	degrees; steepens to 4	O degrees towards end of interval
		MISCELLANEOUS	Zone	HCL	Ap	atite	Zircon		
			OX	VW		7.5	0.1		

2010-024 Log by Ryan Kressall Date Hole ID

FROM 63.11	-	TO 67.94	ROCK CODE	glfgCD	=	Min Style g	Fabric I	Texture fg	Litho CD	Struct
			MAIN COMMENTS				•			ed magnetite?), black altered phlogopite and common zircon. Dark-grey zircon; with apatite rim. Dark-grey aggregates composed ~ 2.5 % of interval.
			MINERALIZATION	Туре	Value	Comments				
				Pyrite %	1.50	Aggegated with da	ark-grey mineral	in bands and irregular a	aggregates; thick lamin	ae up to 2 cm; single vein observed (~ 1mm thick)
				Niobates %	0.10	Fine-grained yello	w to dark-grey fe	rsmite and fine-graine	d black columbite (or p	yrochlore?) observed in dark-grey aggregates
			ALTERATION	Туре	Value	Comments				
				Oxidation %	2.50	Localized beige do	lomite			
			STRUCTURE	Туре	Intens	С	A° C	omments		
				Veining %	weak	7	70 Sr	mall pyrite vein		
				Laminations %	weak	Ē	30 V	aries beween 20 and 40) degrees	
			MISCELLANEOUS	Zone	HCL	Apa	itite	Zircon		
				OX	VW	1	5	0.75		

2010-024 Log by Ryan Kressall Date Hole ID

Ocm) dark- dically

2010-024 Log by Ryan Kressall Date Hole ID

FROM 87.66	=	TO 89.65	ROCK CODE	bcrenpCCCD	= ^	Min Style Fabr b cren		Litho CCCD	Struct
			MAIN COMMENTS	laminae consist of magr	netite disseminated wi urs as strong laminati	thin calcite while thinner ar	e essentially composed entire	ely of magnetite. Fine-	e occurs within thin laminae up to 5 cm associated wih calcite carbonatite - thicker grained brown phlogopit occurs disseminated with magnetite in calcite see. Cream calcite carbonatite laminae void of accessory minerals (~ 2 cm thick)
			MINERALIZATION	Туре	Value	Comments			
				Niobates %		Fine-grained black to yellow pyrochlore)	pyrochlore - replaced by part	ially by fersmite (Nb20	05 (Niton) % = ~ 1.7 wt % in places - concentrated near magnetite and visible
				Magnetite %	12.50	Fine- to medium-grained ma	agnetite occurs disseminated	in calcite carbonatite	and aggregated in thin laminae (< 1cm)
				Pyrite %	0.50	Fresh pyrite occurs locally ag	ggregated with magnetite		
			ALTERATION						
			STRUCTURE	Туре	Intens	CA°	Comments		
				Laminations %	strong	0	Lamination is low ~ 0 de	egrees: crenulations co	re angle = ~ 30 degrees)
			MISCELLANEOUS	Zone	HCL	Apatite	Zircon		
				Н	М	20	0.5		

2010-024 Log by Ryan Kressall Date Hole ID

FROM 89.65	_	TO 105.82	ROCK CODE	blfgCD	=	Min Style b	Fabric I	Texture fg	Litho CD	Struct	
			MAIN COMMENTS						· ·	on . White magnetite-bearing calcite carbonatit e. Light-grey dolomite contains thin laminae of	•
			MINERALIZATION	Туре	Value	Comments					
				Magnetite %	2.50	Aggregated with	apatite in larger d	. grey bands and dissem	inated within thin ca	lcite laminae	
				Pyrite %	1.50	Occur aggregated	l within d. grey lar	ninae and as stringers w	ithin dolomite carbo	natite.	
				Niobates %	0.75	Fine-grained yell	owish grey fersmi	te observed with smaller	bands; possible fers	mite & columbite (pyrochlore) observed with ma	gnetite and within calcite laminae
			ALTERATION								
			STRUCTURE	Туре	Intens		CA° C	omments			
				Laminations %	moderate		20 V	aries between 15 and 30	degrees		
			MISCELLANEOUS	Zone	HCL	Ар	atite	Zircon			
				Н	VW		15	0.5			

2010-024 Log by Ryan Kressall Date Hole ID

FROM 105.82	TO - 111.61	ROCK CODE	blfgAMX	=	Min Style b	Fabric I	Texture fg	Litho AMX	Struct	
		MAIN COMMENTS	Light-grey dolomite carb	onatite with dark-ક્	grey bands c	omposed of dark-gre	y metallic mineral, apatite, t	olack altered phlogopi	ite, pyrite and zircon (~ 5 to 10 % of interval).	
		MINERALIZATION	Туре	Value	Commen	its				
			Niobates %	0.10	Fine-grain	ed yellow to dark-gre	y fersmite occurs within dar	k-coloured bands		
			Pyrite %	1.50	Aggregate	d with dark-grey met	allic mineral in dark-coloure	d bands; aggregates	(< 1 cm) and stringers within dolomite carbonat	ite
		ALTERATION	Туре	Value	Commen	its				
			Amphibolite %	10.00	Fine-grane	ed dark-grey to coarse	e-grained black (phlogopite)	clasts		
		STRUCTURE	Туре	Intens		CA°	Comments			
			Laminations %	moderate	!	10				
		MISCELLANEOUS	Zone	HCL		Apatite	Zircon			
			Н	VW		7.5	0.5			
FROM 111.61	TO - 115.25	ROCK CODE	nmiCD	=	Min Style n	Fabric m	Texture i	Litho CD	Struct	
		MAIN COMMENTS	Massive light-grey dolon	nite carbonatite wit	th locallized v	weak lamination. Und	ommon altered black phlog	opite occurs locally wi	ith apatite laminae (< 1cm thick).	
		MINERALIZATION	Туре	Value	Commen	its				
			Pyrite %	0.50	Rare aggre	egates and fine-grain	ed disseminations			
		ALTERATION								
		STRUCTURE	Туре	Intens		CA°	Comments			
			Veining %	moderate	!	40	Dolomite veins rimmed by	apatite		
			Laminations %	very weak		10	Only locally observed			
		MISCELLANEOUS	Zone	HCL		Apatite	Zircon			
			Н	VW		5	0			

Printed on 10/Feb/2011

2010-024 Log by Ryan Kressall Date Hole ID

			PORALION								
FROM 115.25 -	TO 124.39	ROCK CODE	nlpCD	=	Min Style n	Fabric I	Texture p	Litho CD	Struct		
		MAIN COMMENTS	Laminated dolomite carl Zircon is rare. No Nb-mir			ocrysts of altered	d phlogopite associated v	with pyrite. Apatite occu	s moderately laminated to aggi	egated "swirls" within dolom	iite carbonatite.
		MINERALIZATION	Туре	Value	Comments						
			Pyrite %	1.00	Small (< 1 mm) aggregates occu	r associated with altered	d phlogopite			
		ALTERATION									
		STRUCTURE	Туре	Intens		CA°	Comments				
			Laminations %	moderate		55	Generally between 50 a	and 60 degrees, but doe	shallow to 20 degrees in places		
		MISCELLANEOUS	Zone H	HCL VW		Apatite 12.5	Zircon 0.1				
FROM 124.39 -	TO 139.53	ROCK CODE	nlpCD	=	Min Style n	Fabric I	Texture p	Litho CD	Struct		
		MAIN COMMENTS	Laminated dolomite carl	bonatite is light-gre		to locally inequi			re composed of black altered ph		dolomite. Phlogopite

is altered to dolomite in places. Pyrite composes massive laminae up to 2 cm thick in places; more common towards top of interval. Dark bands are barren (confirmed by Niton XRF). Zircon occurs disseminated throughout interval.

MINERALIZATION	Туре	Value	Comments
	Pyrite %	1.50	Fresh pyrite occurs as aggregates up to 2 cm and as thick laminae (up to 2 cm) with phlogopite and apatite

ALTERATION

STRUCTURE	Туре	Intens	CA°	Comments	
	Laminations %	weak	15	Varies between 10 and 20 degrees	
MISCELLANEOUS	Zone	HCL	Apatite	Zircon	
			10	0.25	

2010-024 Log by Ryan Kressall Date Hole ID

FROM 139.53	TO - 143.41	ROCK CODE	птрАМХ	=	Min Style n	Fabric m	Texture p	Litho AMX	Struct	
		MAIN COMMENTS	Light-grey dolomite ca Calcite veins are also pi Apatite occurs aggrega	esent within fenite	blocks., rimmed by	phlogopite. Pheno	crysts within dolomite (arbonatite are compri	nole along with increase in calcite in the matrix (calcitized-reacts strongly to sed of fine-to medium-grained black altered phlogopite (some dolomitizati im on calcitized fenite.	HCI). on).
		MINERALIZATION	Туре	Value	Comments					
			Pyrite %	1.00	Aggregates up t	o 1 cm occur dissen	ninated throughout dol	omite carbonatite.		
		ALTERATION	Туре	Value	Comments					
			Amphibolite %	60.00	Green to light-g	rey (calcitized)				
		STRUCTURE								
		JIKOCIOKE								
		MISCELLANEOUS	Zone	HCL	A	patite	Zircon			
				M		5	0.1			
FROM	то		ico	=	Min Style	Fabric	Texture	Litho	Struct	
143.41	- 147.34	ROCK CODE	nmiCD	=	n	m	i	CD		
		MAIN COMMENTS	Mottled textured dolor	nite carbonatite ligh	nt- to medium grev	Medium-grey dolo	mite occurs commonly	vein-like to light-grev	dolomite. Apatite occurs as aggregates. Zircon occurs disseminated. Uncom	nmon
		MAIN COMMENTS	iregular bands or aggre							
		MINERALIZATION	Туре	Value	Comments					
			Pyrite %	0.50	Typically < 0.5 n	nm aggregates (but	up to ~2.5 cm) occur w	ith light-grey coarse-g	rained dolomite	
		ALTERATION								
		STRUCTURE								
		MISCELLANEOUS	Zone	HCL	А	patite	Zircon			
			Н	VW		5	0.1			

Log by	Ryan Kressall	Date	Hole ID	2010-024
5-7	rtyan rtiessan	Dute	TIOIC ID	

FROM 147.34 -	TO 153.05	ROCK CODE	nlpCD	= ^	Ain Style n	Fabric I	Texture p	Litho CD	Struct	
		MAIN COMMENTS	Laminated dolomite carb	onatite is light-grey (with localized pher	ocrysts of black a	altered phlogopite. Abur	ndant apatite occurs	as swirly-like laminations. Zircon occurs disseminated through	nout
		MINERALIZATION	Type Pyrite %		Comments Fine-grained pyrite	occurs associate	d with phlogopite; comr	monly aggregated to	ether.	
		ALTERATION								
		STRUCTURE	Туре	Intens	C	A° Co	mments			
			Laminations %	moderate	4	.0				
		MISCELLANEOUS	Zone	HCL	Apa	tite	Zircon			
			Н	VW	2	5	0.1			

End of Hole End of Hole

Hole ID	2010-025
---------	----------

GENERAL INFORMATION					
Coordinate System	Easting	Northing	Elevation	Collar Azimuth	Collar Dip
ST. PL Nad 83	454656.32	6256672.09	1667.24	30.00	-45.00
Start Depth	Final Depth	Proposed Depth	Final Length	Rig	Area
0.00	217.94		217.94		Central 3
Operator	Year				
Taseko	2010				

PROFESSIONAL / TECHNICIAN

	Name	Start Date	End Date
Collar Surveyor		29/Aug/2010	
Geology Logged By	Ryan Kressall		
Specific Gravity By	Steve Dumma		
Geotech Logged By	Steve Dumma	21/Aug/2010	
Drill Contractor		14/Aug/2010	16/Aug/2010

		RY

DRILLING BIT SIZE					
Bit Size	From	То	Length		
NW (Casing)	0.00	3.05	3.05		
NQ	3.05	217.94	217.94		

DOWN HOLE SURVEY						
Depth	Azimuth	Dip	Temp °C	Mag.	Roll	Method
32.31	34.80	-46.50	14.0	5616	84.7	Reflex EZ-shot
138.99	36.40	-48.20	13.9	5748	72.6	Reflex EZ-shot
214.58	34.90	-48.50	9.3	5757	196.8	Reflex EZ-shot

GEOLOGY LEGEND

Hole ID **2010-025**

ROCK CODE

MIN STYLE					
Abbr.	Description				
n	barren				
d	disseminated				
g	aggregated				
b	banded				

FABRIC						
Abbr.	Description					
Х	brecciated					
- 1	laminated					
f	decalcified					
V	veined					
р	porphyritic					
m	massive					

	TEXTURE
Abbr.	Description
f	decalcified
р	porphyritic
V	veined

	LITHO
Abbr.	Description
CASE	Casing
OVBN	Overburden
OXID	Oxide
AM	Amphibolite
CC	Calcite Carbonatite
CD	Dolomite Carbonatite
CCCD	Mixed Calcite and Dolomite Carbonatite
AMX	Amphibole and Mixed Carbonatite
CM	Carbonatite Cumulate

	STRUCT
Abbr.	Description
Z	fault
е	strained
S	shear zone
у	dyke

MISCELLANEOUS:

Printed on 10/Feb/2011

	ZONE
Abbr.	Description
OX	Oxide
S	Supergene
Н	Hypogene

	HCL	
Abbr.	Description	
VW	very weak	
W	weak	
М	moderate	
S	strong	
VS	very strong	

2010-025 Log by Ryan Kressall Date Hole ID

FROM 0.00	-	TO 3.05	ROCK CODE	CASE	=	Min Style	Fabric	Texture	Litho CASE	Struct
			MAIN COMMENTS							
			MINERALIZATION							
			ALTERATION							
			STRUCTURE							
			MISCELLANEOUS	Zone	HCL		Apatite	Zircon		
FROM 3.05	_	TO 18.66	ROCK CODE	nmCD	=	Min Style n	Fabric m	Texture c	Litho CD	Struct
			MAIN COMMENTS	Dark-brown calcitization Apatite occurs oriented brecciated carbonatited Dark-grey to black fine	on infills fractures and d to moderately lamir -grained phase (~10 c	d forms matrix lated in dolon m thick) occul	x to brecciated dolo nite carbonatite and r between 10.5 and 7	nite carbonatite clasts. In is locally concentrated th	places the matrix is fine-groughout interval. Zircon onese appears to be filling frac	ed and brecciated, increasing downhole. Rubble composes ~50 % of interval. grained and dark-green. The dark-green matrix reacts moderately to HCI. occurs disseminated throughout interval, but in higher concentration in ctures between brecciated dolomite carbonaite clasts and appears to have
			MINERALIZATION	Туре	Value	Comment	S			
				Pyrite %	1.50	Fine-graine	d oxidized pyrite oc	curs disseminated and as	stringers within dolomite	carbonatite.
			ALTERATION	Туре	Value	Comment	5			
				Oxidation %	20.00	Orange dolo	omite - occurs most	y near fractures		
				Calcite %	50.00	Dark brown	laminae, mottles a	nd matrix (to breccia)		
			STRUCTURE	Туре	Intens		CA°	Comments		
				Laminations %	weak		10	At top of interval - 40 d	egrees - shallows to 10 deg	grees within 1 m - dissappears within rubble (within next 2 m)
			MISCELLANEOUS	Zone	HCL		Apatite	Zircon		
				OX	W		10	0.25		

Printed on 10/Feb/2011

Measurement unit: Metres (Unless otherwise specified)

2010-025 Log by Ryan Kressall Date Hole ID

FROM 18.66	_	TO 22.31	ROCK CODE	nmfgAMX	=	Min Style n	Fabric m	Texture fg	Litho AMX	Struct
			MAIN COMMENTS	crystals of phlogopite (?) occur clustered wi	thin fenite and occa	sionally within	calcite veins. Apatite occu	urs dispersed within do	is crosscut the fenite and occurs within the matrix of the fenite. Black altered olomite carbonatite a larger vein of green "fenite" (~2.5 cm).
			MINERALIZATION	Туре	Value	Comments				
				Pyrite %	0.50	Oxidized stringer	s within dolomi	te carbonatite.		
			ALTERATION	Туре	Value	Comments				
				Oxidation %	10.00	Orange dolomite	clasts			
				Amphibolite %	40.00	Medium-green fi	ne-grained feni	te (?) with phlogopite and	calcite appears intrus	sive into dolomite carbonatite (?)
				Calcite %	20.00	Dark-brown mott	tling focuses on	green fenite		
			STRUCTURE	Туре	Intens		CA°	Comments		
				Laminations %	weak		20	Only locally observed		
			MISCELLANEOUS	Zone	HCL	Ар	atite	Zircon		
				OX	S		5	0		

2010-025 Log by Ryan Kressall Date Hole ID

FROM 22.31	TO - 33.15	ROCK CODE	nlcAMX	=	Min Style n	Fabric I	Texture c	Litho AMX	Struct
		MAIN COMMENTS		eakly laminated with	dolmite carbonatit	e. Zircon occurs			ite carbonatite and as the matrix to short brecciated segments (<10 cm). Apatite e.e. Between ~28.6 and 31 m, the interval has almost entirely been calcitized.
		MINERALIZATION	Туре	Value	Comments				
			Pyrite %	0.50	Oxidized pyrite oc	curs as aggregat	es and stringers within d	olomite carbonatite	
		ALTERATION	Туре	Value	Comments				
			Calcite %	70.00	Dark-brown lamir	nae and matrix (b	reccia)		
			Amphibolite %	5.00	Medium-green fe	nite has ovoid te	xture		
			Oxidation %	10.00	Beige mottling in	dolomite carbon	atite - concentrates arou	nd oxidized pyrite	
		STRUCTURE	Туре	Intens		CA° (Comments		
			Laminations %	very weak		40 (Only locally observed		
			Veining %	weak		40 [Oark-brown veins of dark-	brown calcitization v	vary beween 20 and 60 degrees
		MISCELLANEOUS	Zone	HCL	Ара	atite	Zircon		
			OX	М		10	0.1		
				'					

2010-025 Log by Ryan Kressall Date Hole ID

FROM 33.15	TO - 34.95	ROCK CODE	nmfgAMX	=	Min Style n	Fabric m	Texture fg	Litho AMX	Struct
		MAIN COMMENTS							e, has black phlogopite-rich rim than medium-grey margin near dolomite e carbonatite. Zircon occurs disseminated within dolomite carbonatite.
		MINERALIZATION	Туре	Value	Comments				
			Pyrite %	0.25	Minor oxidized a	ggregates within	dolomite carbonatite; als	o observed in smalle	quanitities in fenite
		ALTERATION	Туре	Value	Comments				
			Amphibolite %	65.00	Dark-green to lig	ht grey compose	two separate segments ir	n interval seperated b	y dolomite carbonatite - one is ~1.1 m, one is ~15 cm
			Calcite %	5.00	Minor calcitization	on concentrated a	along laminae		
		STRUCTURE	Туре	Intens		CA°	Comments		
			Laminations %	very weak		30 (Only locally observed; may	/ just be contact betv	veen fenite and dolomite carbonatite
			Veining %	moderate		35 (Calcite veins (~0.5 mm) m	easured in fenit - 30	and 40 degrees, but may be much more variable
		MISCELLANEOUS	Zone	HCL	Ар	oatite	Zircon		
			OX	М	·	5	0.1		
					1				

2010-025 Log by Ryan Kressall Date Hole ID

FROM 34.95	TO - 45.52	ROCK CODE	blcCD	=	Min Style b	Fabric I	Texture c	Litho CD	Struct	
		MAIN COMMENTS	Magnetite is fine- to r	nedium-grained and c curs disseminated wit	ccurs mostly as ag thin dolomite carbo	ggregates (with ph onatite. No Nb-mi	logopite) within calcite s neralization observed. N	emi-oriented to lamir	plack in colour. Magnetite-bearing calcite carbonatite occurs ~40 m and 40.5 m. nation. Apatite occurs dispersed to moderately laminated within dolomite -mineralization (0.4 to 0.68 wt. % Nb2O5) in highly weathered bands (brown in	
		MINERALIZATION	Туре	Value	Comments					
			Niobates %		Not observed, b	ut present in smal	II amount based on Nito 2	XRF analysis		
			Magnetite %	2.50	Fine- to mediun	n-grained magnet	ite aggregates occur cond	centrated with calcite	carbonatite	
		ALTERATION	Туре	Value	Comments					
			Oxidation %	10.00	Beige dolomite	mottling				
			Calcite %	30.00	Dark-brown mo	ttling within dolor	nite carbonatite and com	nmonly associated wit	h dark-grey breccia matrix	
		STRUCTURE	Туре	Intens		CA°	Comments			
			Veining %	strong			Dolomite vein up to ~ 3 cr unknown mineral occur w	•	ne-grained black vein crosscut calcitization(~42 m) Veins of white fluorescent natite (unmeasured)	
		MISCELLANEOUS	Zone	HCL	А	patite	Zircon			
			Н	М		7.5	0.25			

2010-025 Log by Hole ID Ryan Kressall Date

FROM Min Style Litho Struct TO Fabric Texture nmpCCCD **ROCK CODE** CCCD m 45.52 47.84

MAIN COMMENTS Greenish grey rock resembles "fenite" from 17.67 to 22.31 m interval. Rock reacts moderately to HCI. Under UV only white irregular blobs in rock fluoresce bright pink and can be confirmed as calcite. Phlogopite occurs as fine- to medium-grained phenocrysts associated mostly with calcite blobs. Apatite and zircon occur dispersed throughout interval. Groundmass appears to be composed of greenish grey fine-grained equant dolomite (fluoresces deep purple colour under UV) with interstital calcite (fluroesces bright pink under UV).

MINERALIZATION Value Comments Type Pyrite % 0.00 No pyrite observed?

ALTERATION

STRUCTURE

HCL Zircon **MISCELLANEOUS** Zone Apatite OX М 10 0.25

2010-025 Log by Ryan Kressall Date Hole ID

FROM 47.84	T0 - 55.74	ROCK CODE	nICD	=	Min Style n	Fabric I	Texture i	Litho CD	Struct
		MAIN COMMENTS		al. A few coarse grain	ied dolomite laminae (-5 cm) occur o	concordant to lamination. A		ndes into greenish grey rock described in previous interval. Calcite occurs as veins ated with in dolomite carbonatite and dark-grey rock; where crenulated, apatite
		MINERALIZATION	Туре	Value	Comments				
			Pyrite %	1.00	Oxidized pyrite occur	rs concentrate	ed within highly altered lar	ninae and in ~0.5 cm	aggregates with coarse grained lamnae
		ALTERATION	Туре	Value	Comments				
			Oxidation %	20.00	Beige dolomite mott	tling; occurs ir	n both dolomite carbonatit	e and light-grey rock	
		STRUCTURE	Туре	Intens	CA	•	Comments		
			Veining %	moderate	70				nination; calcitized veins crosscut dolomite at 70 degrees - veins are observed to oresce vein observed with UV crosscuts coarse-grained laminae at 60 degrees
			Laminations %	moderate	30				
		MISSELLANGOUS	7	uci	A		7:		·
		MISCELLANEOUS	Zone	HCL	Apati	te	Zircon		
			OX	М	7.5		0.75		

2010-025 Log by Ryan Kressall Date Hole ID

FROM 55.74	T0 - 66.30	ROCK CODE	nmCD	=	Min Style n	Fabric m	Texture p	Litho CD	Struct
		MAIN COMMENTS							
		MINERALIZATION	Туре	Value	Comments				
			Pyrite %	1.50	Oxidized pyrite	ocurs dissemina	ted throughout interval a	nd as small (< 1.5 cm) st	ringers
		ALTERATION	Туре	Value	Comments				
			Oxidation %	20.00	Beige dolomite				
			Calcite %	45.00	Dark-brown calc	itization concer	ntrates as veins		
		STRUCTURE	Туре	Intens		CA°	Comments		
			Laminations %	moderate		35			
			Veining %	moderate		80	Coarse-grained dolomite	e veins ~ 2.5 cm thick; Ca	alcitization forms veins at ~30 degrees throughout interval
		MISCELLANEOUS	Zone	HCL	Α	patite	Zircon		
			OX	М		12.5	0		
				-	1				

2010-025 Log by Ryan Kressall Date Hole ID

FROM 66.30	TO - 100.06	ROCK CODE	nxCD	=	Min Style n	Fabric ×	Texture c	Litho CD	Struct	
		MAIN COMMENTS	50 % of interval is complight-grey in colour. Apa Cavity occurs between 8	atite occurs dispersed		•		e breccia composed of	dolomite carbonatite clasts within a calcitized matrix. The matrix is places is	
		MINERALIZATION	Туре	Value	Comments					
			Pyrite %	1.00	Oxidized aggrega	tes up to 1 cm occ	ur within dolomite clast	s and in calcite matrix		
		ALTERATION	Туре	Value	Comments					
			Calcite %	75.00	Dark brown calcit	ized breccia matri	x; some rubble is entire	y composed of calcite.		
		STRUCTURE	Туре	Intens		CA° C	omments			
			Veining %	moderate		40 W	hite fluorescent (white	as well) mineral - vein	s ~ 0.5 mm	
		MISCELLANEOUS	Zone	HCL	Ар	atite	Zircon			
			OX	S	-	7.5	0.25			

2010-025 Log by Ryan Kressall Date Hole ID

FROM TO 100.06 - 115.30	ROCK CODE	nICD	=	Min Style n	Fabric I	Texture p	Litho CD	Struct
	MAIN COMMENTS	fluoreseces deep purple	(indicating likely do % of interval. Apat	lomite). Other dark-c	coloured non-ma	agnetic bands are comp	osed of altered phlogor	reen matrix with minor apatite. Dark-green matrix does not react to HCl and pite, pyrite apatite and dolomite and abundant zircon. These bands are 1 to 15 cm erved in either magnetic or non-magnetic bands using Niton (~0.10 wt. % and
	MINERALIZATION	Туре	Value	Comments				
		Pyrite %	1.50	Form oxidized agg	regates up to 1 c	m within dolomite carb	onatite and fresh to ox	kidized aggregates within non-magetic bands
	ALTERATION	Туре	Value	Comments				
		Oxidation %	30.00	Beige dolomite; co	ncentrated ofte	n around non-magnetic	dark-coloured bands -	oxidized pyrite
	STRUCTURE	Туре	Intens	C	A° (Comments		
		Laminations %	weak	4	10			
	MISCELLANEOUS	Zone	HCL	Apa	tite	Zircon		
		OX	VW	11	0	0.25		

2010-025 Log by Ryan Kressall Date Hole ID

FROM 115.30	TO - 132.93	ROCK CODE	nICD	=	Min Style n	Fabric I	Texture p	Litho CD	Struct
		MAIN COMMENTS	indicates that generally	these bands of apar	tite and altered phlo	ogopite are near b	arren (< 0.17 wt. Nb205). One band at ~117 m	tered phlogopite and abundant zircon within dolomite carbonaite. Niton XRF composed of apatite, dark-grey unknown and yellowish fersmite (?) has a Nb2O5 rds bottom of interval (i.e. towards breccia).
		MINERALIZATION	Туре	Value	Comments				
			Niobates %	0.10	Only observed in	one band at ~117 v	vith dark-grey metallic ι	ınknown - yellowish, f	fine-grained: likely fersmite
			Pyrite %	1.75	Mostly as aggreg	ates (up to 1 cm) a	ssociated with apatite		
		ALTERATION	Туре	Value	Comments				
			Oxidation %	30.00	Beige dolomite				
		STRUCTURE	Туре	Intens		CA° C	omments		
			Laminations %	moderate		40			
		MISCELLANEOUS	Zone	HCL	Ар	atite	Zircon		
			Н	VW		15	0.25		

2010-025 Log by Ryan Kressall Date Hole ID

			REGRATION							
FROM 132.93	TO - 135.39	ROCK CODE	nxfgCD	=	Min Style n	Fabric x	Texture fg	Litho CD	Struct	
		MAIN COMMENTS							oxidized to a pink colour. From ~134 metallic, and zircon. Fractures are or	4.4 to 135 m dolomite is more fractured than ented at ~35 degrees
		MINERALIZATION	Туре	Value	Comment	:5				
			Pyrite %	0.50	Disseminat	ed fine-grained pyri	te - generally oxidized; ~0.	5 mm vein		
		ALTERATION	Туре	Value	Comment	:5				
			Oxidation %	40.00	Pink o beige	e dolomite clasts an	d matrix			
		STRUCTURE	Туре	Intens		CA°	Comments			
			Veining %	weak		50	Oxidized pyrite vein ~ 0.5	5 mm thick; orange fin	e-grained dolomite (?) vein at ~40 d	egrees
		MISCELLANEOUS	Zone	HCL		Apatite	Zircon			
			Н	VW		12.5	0.75			
FROM 135.39	TO - 146.80	ROCK CODE	nICD	=	Min Style n	Fabric I	Texture fg	Litho CD	Struct	
		MAIN COMMENTS					vals are around 1-2 m long o d. grey metallic unknown)			commonly aggregated with dark-grey
		MINERALIZATION	Туре	Value	Comment	:5				
			Pyrite %	2.00	Fine-graine laminated s		s occurs aggregated with d	ark-grey metallic unkn	own; as oxidized stringers within do	lomite; as thin laminae within highly
		ALTERATION	Туре	Value	Comment	:5				
			Oxidation %	30.00	Beige to pin	nk dolomite locally c	oncentrated around oxidiz	ed pyrite		
		STRUCTURE	Туре	Intens		CA°	Comments			
			Laminations %	weak		40				
		MISCELLANEOUS	Zone	HCL		Apatite	Zircon			

Printed on 10/Feb/2011

2010-025 Log by Ryan Kressall Date Hole ID

FROM 146.80	TO - 155.28	ROCK CODE	nmCD	=	Min Style n	Fabric m	Texture c	Litho CD	Struct		
		MAIN COMMENTS	Light-grey dolomite carb interval. Abundant joint					atite occurs moderate	ely laminated throughout the interval.	Zircon occurs disseminated througho	ut
		MINERALIZATION	Туре	Value	Comments						
			Pyrite %	0.50	Locallized aggregat	tes and stringer	of oxidized pyrite				
		ALTERATION	Туре	Value	Comments						
			Calcite %	10.00	Dark-brown calcitiz	ation concentra	ates near joints				
		STRUCTURE	Туре	Intens	CA	4° (Comments				
			Veining %	moderate	7	0 S	ome joints infilled with c	alcite			
		MISCELLANEOUS	Zone	HCL	Apa	tite	Zircon				
			Н	W	10)	0.25				
							'				

2010-025 Log by Ryan Kressall Date Hole ID

FROM 155.28	_	TO 176.84	ROCK CODE	bICD	=	Min Style b	Fabric I	Texture p	Litho CD	Struct	
			MAIN COMMENTS	Localized porphyry bar Nb2O5). Apatite occurs	nds containing altere s aggregated to mode	d phlogopite, pyrite erately laminated t	e and zircon within hroughout interva	dolomite are not miner	alized (~0.1 Nb2O5). C ed with apatite. Nb-m	me bands contain black altered phlogopite and pyrite aggregated with zirco Ine highly oxidized/weathered pod (~7.5 cm) at ~157.3 m is mineralized (~0.7 inerals are not observed in dark-grey fine-grained bands (cryptic Nb-	
			MINERALIZATION	Туре	Value	Comments					
				Pyrite %	2.00	Fresh pyrite occi	urs as weak lamina	ntions and stringers with	nin light-grey dolomite	carbonatite; fine-grained pyrite occurs aggregated with altered phlogopite	
			ALTERATION	Туре	Value	Comments					
				Calcite %	10.00	Dark-brown calc	itization - concent	rates towards bottom o	f interval (towards ma	gnetite-bearing calcite carbonatite).	
				Oxidation %	1.00	Minor oxidation	concentrated ~157	.3 m - original texture o	r lithology unknown		
			STRUCTURE	Туре	Intens		CA° (Comments			
				Laminations %	moderate	2	30				
			MISCELLANEOUS	Zone	HCL	A	patite	Zircon			
				Н	VW		25	1			

2010-025 Log by Ryan Kressall Date Hole ID

FROM 176.84	_	TO 183.61	ROCK CODE	blpCCCD	=	Min Style b	Fabric I	Texture p	Litho CCCD	Struct
			MAIN COMMENTS	dolomite carbonatite. F calcite carbonatite. Calc	ine-grained to medi itization concentrat rs at ~182.5 m. Apat	um-grained magne es towards top of ir	tite occurs aggrega nterval. Near conta	ated within calcite groun acts with dolomite carbo	idmass. Concentratio natite, ground mass	e carbonatite forms ~ 1 m wide intervals seperated by 10 to 30 cm intervals of n varies between laminae (10 to 80 vol. % of units).Minor phlogopite occurs within is medium-green in colour and fluoresces dark purple (dolomite?) A band of dark- y observed in dolomite carbonatite. Low Nb-mineralization observed (Niton XRF -
			MINERALIZATION	Type	Value	Comments				
				Pyrite %	0.50	Minor fresh pyrit	e occurs with mag	netite		
				Niobates %	0.10	Likely columbite	occuring with mag	netite		
				Magnetite %	50.00	Fine- to coarse-g	rained magnetite	occurs within calcite carl	bonatite	
			ALTERATION	Туре	Value	Comments				
				Calcite %	25.00	Dark-brown calci	tization occurs tov	vards top of interval		
				Oxidation %	2.50	Beige dolomite to	o pink calcite - occ	urs near contacts betwe	en calcite-carbonatito	e and dolomite carbonatite
			STRUCTURE	Туре	Intens		CA° C	omments		
				Laminations %	moderate	!	40			
			MISCELLANEOUS	Zone	HCL	Ар	atite	Zircon		
				Н	S		5	0.1		

2010-025 Log by Ryan Kressall Date Hole ID

FROM 183.61	TO - 192.40	ROCK CODE	dmCD	=	Min Style d	Fabric m	Texture p	Litho CD	Struct		
		MAIN COMMENTS	Light-grey dolomite c interval.	arbonatite with phen	ocrysts of black al	tered phlogopite. C	oncentration of altered p	ohlogopite increases do	own interval (towards calcite ca	arbonatite). Apatite occurs dispersed throughout	
		MINERALIZATION	Туре	Value	Comments						_
			Niobates %	0.25	Fine-grained ye	ellow grainy octahe	dral fersmite - after pyro	chlore?			
			Pyrite %	0.50	Small aggregat	tes (< 0.5 mm) of p	yrite occur disseminated	through interval.			
		ALTERATION									
		STRUCTURE									
		MISCELLANEOUS	Zone	HCL	-	Apatite	Zircon				7
			Н	VW		15	0.1				
FROM 192.40	TO - 198.89	ROCK CODE	dmpCC	=	Min Style d	Fabric m	Texture p	Litho CC	Struct		

MAIN COMMENTS White calcite carbonatite contains disseminated magnetite, apatite and phenocrysts of phlogopite. A few intervals (~20 cm) contain dolomite and altered phlogopite. Apatite occurs aggregated to weakly laminated within dolomite. No zircon observed. No Nb-mineralization observed.

MINERALIZATION	Туре	Value	Comments						
	Niobates %	0.10	lare disseminated fine-grained yellow fersmite						
	Magnetite % 5.00		Medium-grained magnetite occurs disseminated throughout calcite carbonatite						
	Pyrite % 0.50		Small oxidized stringers observed in dolomite						

ALTERATION

STRUCTURE	Туре	Intens	CA°	Comments	
	Laminations %	weak	30	Only locally observed	
MISCELLANEOUS	Zone	HCL	Apatite	Zircon	
	Н	VS	7.5	0	

2010-025 Log by Ryan Kressall Date Hole ID

FROM 198.89	T0 206.60	ROCK CODE	dmpCD	= ^	Min Style d	Fabric m	Texture p	Litho CD	Struct	
		MAIN COMMENTS	Light-grey dolomite carb mineralization.	onatite with phenocr	ysts of black alte	ered phlogopite.	. Apatite occurs aggregat	ed. No niobates observ	ed. Niton XRF indicates a small i	nterval (~205 -206 m) with cryptic Nb-
		MINERALIZATION	Туре	Value	Comments					
			Pyrite %	1.00	Dispersed aggre	gates of fresh p	yrite - and laminae within	medium-grey dolomit	e carbonatite vein	
		ALTERATION								
		STRUCTURE	Туре	Intens		CA°	Comments			
			Veining %	strong		60	Vein of medium-grey do	lomite carbonatite at -	~205.5	
		MISCELLANEOUS	Zone	HCL	Aı	patite	Zircon			
			Н	VW		7.5	0.1			
FROM 206.60 -	TO 217.94	ROCK CODE	nmCD	= ^	Min Style n	Fabric m	Texture fg	Litho CD	Struct	
		MAIN COMMENTS	White massive dolomite	carbonaite. Apaite oc	curs dispersed t	o weakly lamina	ated. Zircon occurs dissem	inated throughout int	erval. Phenocrysts of black altere	ed phogopite form clots (~2.5 cm) and occur locally.
		MINERALIZATION	Type	1	Comments					
			Pyrite %	1.75	Occurs dissemin	ated throughou	it interval and commonly a	associated with black a	altered phlogopite	
		ALTERATION								
		STRUCTURE								
		MISCELLANEOUS	Zone	HCL	Aı	patite	Zircon			
			Н	VW		5	0.1			

End of Hole End of Hole

Hole ID 2010-026

	GENERAL INFORMATION											
Coordinate System	Easting	Northing	Elevation	Collar Azimuth	Collar Dip							
ST. PL Nad 83	454110.85	6256585.18	1649.39	40.00	-55.00							
Start Depth	Final Depth	Proposed Depth	Final Length	Rig	Area							
0.00	215.24		215.24		Central 1							
Operator	Year											
Taseko	2010											

PROFESSI	ONAL / TE	CHNICIAN
I IVOI ESSI	DITAL / IL	CITICIAIT

	Name	Start Date	End Date
Collar Surveyor		29/Aug/2010	
Geology Logged By	Ryan Kressall		
Specific Gravity By	Steve Dumma		
Geotech Logged By	Steve Dumma	23/Aug/2010	
Drill Contractor		15/Aug/2010	16/Aug/2010

8	١R	V.≏	v	ш	v	ш	u	3	

DRILLING BIT SIZE							
Bit Size	From	То	Length				
NW (Casing)	0.00	3.05	3.05				
NQ	3.05	215.24	215.24				

DOWN HOLE SURVEY									
Depth	Azimuth	Dip	Temp °C	Mag.	Roll	Method			
32.31	36.40	-56.30	10.9	5735	139.0	Reflex EZ-shot			
129.84	39.30	-56.60	11.3	5780	62.2	Reflex EZ-shot			
215.19	36.90	-57.00	12.0	5768	15.4	Reflex EZ-shot			

GEOLOGY LEGEND

Hole ID **2010-026**

ROCK CODE

MIN STYLE						
Abbr.	Description					
n	barren					
d	disseminated					
g	aggregated					
b	banded					

	FABRIC
Abbr.	Description
Х	brecciated
ı	laminated
f	decalcified
V	veined
р	porphyritic
m	massive

	TEXTURE
Abbr.	Description
f	decalcified
р	porphyritic
V	veined

	LITHO
Abbr.	Description
CASE	Casing
OVBN	Overburden
OXID	Oxide
AM	Amphibolite
CC	Calcite Carbonatite
CD	Dolomite Carbonatite
CCCD	Mixed Calcite and Dolomite Carbonatite
AMX	Amphibole and Mixed Carbonatite
CM	Carbonatite Cumulate

STRUCT							
Abbr.	Description						
Z	fault						
е	strained						
S	shear zone						
У	dyke						

MISCELLANEOUS:

Printed on 10/Feb/2011

	ZONE
Abbr.	Description
OX	Oxide
S	Supergene
Н	Hypogene

	HCL
Abbr.	Description
VW	very weak
W	weak
М	moderate
S	strong
VS	very strong

2010-026 Log by Ryan Kressall Date Hole ID

FROM 0.00	TO - 3.05	ROCK CODE	CASE	=	Min Style	Fabric	Texture	Litho CASE	Struct	
		MAIN COMMENTS	No Rock.							
		MINERALIZATION								
		ALTERATION								
		STRUCTURE								
		MISCELLANEOUS	Zone	HCL		Apatite	Zircon			
FROM 3.05	TO - 17.07	ROCK CODE	nICD	=	Min Style n	Fabric I	Texture c	Litho CD	Struct	
		MAIN COMMENTS	Light grey to dark-brown laminated. Zircon occur				ed and fragmented. Dark-	brown calcitization is conc	entrated to laminae. No Nb-mineralization obsereved. Apatite occurs strongly	
		MINERALIZATION	Туре	Value	Comment	S				
			Pyrite %	1.50		rite concentrated w	ithin laminae			
			. 4	55	omailea py.					
		ALTERATION	Туре	Value	Comment	S				
			Oxidation %	15.00	Beige dolom	nite - locallized arou	ınd pyrite-rich laminae			
			Calcite %	35.00	Dark-brown	calcitization (react	s strongly to HCI) - genera	Illy follows lamination		
		STRUCTURE	Type	Intens		CA°	Comments			
		SIRULIURE	Type Laminations %	moderate		30		here is steepens to 60 degr		
			Laillilations %	mouerate		30	30 degrees until ~om w	nere is steepens to bo degi	ees	
		MISCELLANEOUS	Zone	HCL		Apatite	Zircon			
			OX	М		7.5	0.1			

Printed on 10/Feb/2011

2010-026 Log by Ryan Kressall Date Hole ID

FROM 17.07	TO - 32.67	ROCK CODE	ЫCD	=	Min Style b	Fabric I	Texture fg	Litho CD	Struct
		MAIN COMMENTS		er the magnetite pro	oportion, the higher	the pyrite prop			osed of magnetite,apatite, interstitial dolomite and pyrite in variable nineral appears in place of magnetite. Apatite occurs aggregated to strong d. grey
		MINERALIZATION	Туре	Value	Comments				
			Magnetite %	5.00	Aggregated with	apatite: fine- to	medium-grained, d. gre	у	
			Niobates %	0.75	Fine-grained pink	cish brown pyroc	hlore observed in bands	with less magnetite; co	lumbite likely occurs with magnetite
			Pyrite %	2.00	Occurs aggregate	d with magnetit	e and apatite; also withi	n thin d.grey apatite lar	minae
		ALTERATION	Туре	Value	Comments				
			Oxidation %	80.00	Beige dolomite				
		STRUCTURE	Туре	Intens	(CA°	Comments		
			Laminations %	moderate		50	Varies from 70 degrees a	at top of interval to loca	lly 20 degrees in places; 50 degrees is most common
			Veining %	weak		50	Pink calcite vein (~2 cm t	thick) occurs concordant	t to lamination - crosscuts magnetite-apatite band
		MISCELLANEOUS	Zone	HCL	Ар	atite	Zircon		
			OX	VW		7.5	0.25		

2010-026 Log by Ryan Kressall Date Hole ID

FROM 32.67	_	TO 41.46	ROCK CODE	blpCD	=	Min Style b	Fabric I	Texture p	Litho CD	Struct	
			MAIN COMMENTS		ig d. grey laminations	s (generally < 1 cm t		_		ommonly associated with apatite laminae a ted throughout interval. Mineralization occ	
			MINERALIZATION	Туре	Value	Comments					
				Niobates %	0.50	Pale-yellow to d	. grey fine-grained	fersmite observed in apa	tite laminae and wit	h locallized porphyry	
				Pyrite %	1.00	Fine-grained oxi	dized pyrite occurs	with apatite laminae			
			ALTERATION	Type	Value	Comments					
				Oxidation %	35.00	Beige dolomite					
				_							
			STRUCTURE	Туре	Intens	I I	CA° C	omments			
				Laminations %	strong		40 R	elatively consistant			
						_					
			MISCELLANEOUS	Zone	HCL	IA AI	patite	Zircon			
				OX	VW		7.5	0.5			

2010-026 Log by Ryan Kressall Date Hole ID

FROM 41.46	T0 - 58.34	ROCK CODE	ЫCD	=	Min Style b	Fabric I	Texture fg	Litho CD	Struct
		MAIN COMMENTS							of fine-grained black altered phlogopite. Apatite occurs as weak to strong d. grey syrite, d. grey metallic unknown and a black mineral identified as columbite (no
		MINERALIZATION	Type	Value	Comments				
			Pyrite %	1.50	Fresh to locallize	d oxidized pyrite	ocurs disseminated to co	oncentrated within lam	ninae up to 5 cm thick.
			Niobates %	0.10	Fine-grained blac	k mineral observ	ved in d. grey bands ident	ified as columbite (?)	
		ALTERATION	Type	Value	Comments				
			Oxidation %	60.00	Beige dolomite lo	calized around p	yrite-rich laminae		
		STRUCTURE	Туре	Intens	(CA°	Comments		
			Laminations %	moderate		70	Generally ~ 70 degrees bu	it does shallow to 50 de	egrees in places and interval also appears massive in places
			_		_				
		MISCELLANEOUS	Zone	HCL	Ар	atite	Zircon		
			OX	VW		5	0.25		

2010-026 Log by Ryan Kressall Date Hole ID

FROM 58.34	T0 - 73.90	ROCK CODE	ЫCD	=	Min Style b	Fabric I	Texture p	Litho CD	Struct			
		MAIN COMMENTS		ssociated with apa						ck altered phlogopite (dolomitization of and apatite: only obvious potential		
		MINERALIZATION	Type	Value	Comments							
			Pyrite %	2.50	Fresh to oxidi	zed fine-grained ¡	pyrite stringers and aggreg	gates occur associated	with apatite laminae- 10 cm band a	t 71.5 m composed of ~70 % pyrite		
		ALTERATION	Туре	Value	Comments							
		7.2.2	Oxidation %	50.00	Beige dolomite - follows lamination							
		STRUCTURE	Туре	Intens		CA°	Comments					
			Laminations %	moderate		50						
	MISCELLA		Zone	HCL		Apatite	Zircon					
		HISCELLARES	OX	VW		5	0.1					
FROM 73.90	TO - 81.31	ROCK CODE	blpCD	=	Min Style b	Fabric I	Texture p	Litho CD	Struct			
	MAIN COMMENTS Light-grey dolomite carbonatite with dark-grey bands composed of apatite, pyrite, black-altered phlogopite, dark-grey metallic mineral and abundaniobates observed in these bands. Apatite occurs as thin (<0.5) strong laminations with dolomite carbonatite (void of zircon).							ic mineral and abundant zircon. Bar	ds compose abount 7.5 % of interval. No			
		MINERALIZATION	Туре	Value	Comments							
			Pyrite %	1.25	Aggregated with d. grey apatite bands and as irregular veins (no measurable orientation)							
		ALTERATION										
		ALTERATION										
		STRUCTURE	Туре	Intens		CA°	Comments					
			Type Laminations %	Intens moderate		CA° 25	Comments Between 15 and 30 degr	ees				
					е			ees				

2010-026 Log by Ryan Kressall Date Hole ID

FROM 81.31	_	TO 83.46	ROCK CODE	bicccd .	=	Min Style b	Fabric I	Texture p	Litho CCCD	Struct
			MAIN COMMENTS		sheared (?) laminae v	vithin calcite carbo	natite - contact bet			ations within dolomite carbonatite with pyrite and d. grey mineral. Magnetite . Magneite also occurs locally disseminate within calcite carbonatite. Clasts of
			MINERALIZATION	Туре	Value	Comments				
				Pyrite %	1.75	Fine-grained fre	sh pyrite occurs diss	seminated throughout i	nterval	
				Niobates %	1.50	Pinkish-brown p	yrochlore observed	disseminated with mag	gnetite in calcite carbo	natite
				Magnetite %	10.00	Occurs aggregate	ed with apatite and	disseminated within ca	alcite carbonatite; fine	- to medium grained
			ALTERATION	Туре	Value	Comments				
				Oxidation %	2.50	Of magnetite-cla	asts within dolomite	e carbonatite		
			STRUCTURE	Туре	Intens		CA° Co	omments		
				Laminations %	moderate		25			
			MISCELLANEOUS	Zone	HCL	ĮA	patite	Zircon		
				Н	М		12.5	0.75		

2010-026 Log by Ryan Kressall Date Hole ID

FROM 83.46	T0 - 98.24	ROCK CODE	bmCD	=	Min Style b	Fabric m	Texture p	Litho CD	Struct			
		MAIN COMMENTS		he bands compose	~ 2.5 % of interval, oc	curing more fre	quently towards end of i	interval. No niobates	- to medium-grained inequigranular. Dark bands are composed of apatite, pyrite observed in bands or in dolomite carboatite porphry. Apatite occurs as thin (<1 stions.			
		MINERALIZATION	Туре	Value	Comments							
			Pyrite %	1.25	Fresh pyrite occurs a	curs aggregated within d. grey bands and dissemnated with altered phlogopite throughout interval.						
		ALTERATION										
		STRUCTURE	Туре	Intens	CA	° Co	omments					
			Laminations %	weak	10							
		MISCELLANEOUS	Zone	HCL	Apati	ite	Zircon					
			Н	VW	10		0.25					
			Н	VW	10		0.25					

2010-026 Log by Ryan Kressall Date Hole ID

FROM TO 98.24 - 103.51	ROCK CODE	nmpAMX	=	•	abric Te m	xture p	Litho AMX	Struct
	MAIN COMMENTS	calcite carbonatite. Gre carbonatite and white	een fenite grades into magnetite-bearing c d and less dark in col	o medium-grey colour toward alcite carbonatite is irregular our (dolomitization of magn	ds grey dolomite carb r with veins of grey d	onatite. Clasts o olmite penatrati	of massive phlogo ng into calcite car	d 103.5 m. The first half of interval is dominanted by fenite clasts veined by beige pite occurs at ~ 101 m in dolomite carbonatite Contact between grey dolomite bonatite. At contacts between calcite and dolomite carbonatite, magnetite bonatite. Zircon occurs concentrated at contacts between calcite and dolomite
	MINERALIZATION	Туре	Value	Comments				
		Magnetite %	5.00	Fine-grained - disseminat	ted within calcite car	oonatite		
		Pyrite %	0.75	Aggregates < 1 cm occur w	within dolomite and o	alcite carbonatit	te	
	ALTERATION	Туре	Value	Comments				
		Oxidation %	5.00	Beige dolomite mottling				
		Amphibolite %	30.00	Bluish green fenite clasts	(~0.3 to 1 m thick) w	th phlogopite n	ear contacts with	calcite carbonatite.
	STRUCTURE							
	MISCELLANEOUS	Zone	HCL	Apatite	Zirco	n		
		Н	М	2.5	0.5			

2010-026 Log by Ryan Kressall Date Hole ID

			0.6	FORALION						
FROM 103.51	_	TO 119.16	ROCK CODE	blpCD	=	Min Style b	Fabric I	Texture p	Litho CD	Struct
			MAIN COMMENTS	(~40 degrees measured clasts (~15 cm) occur at interval, occuring more f	at ~108.4 m) occur 108.75 m with visil requently towards	between inequigra ble apatite occurin end of interval. No	anular and fine- ng dispersed witl o niobates obsen	grained dolomite. Dark ba hin. Dark-grey metallic mir rved in bands or in dolomit	nds (<2.5 mm) are com neral aggregates at con te carboatite porphry. A	t- to medium-grained inequigranular (occurs on meter-wide scale). Sharp contoosed of apatite, pyrite and altered phlogopite. Irregular fine-grained dark-gretact between clasts and dolomite carbonatie. The bands compose ~ 2.5 % of patite occurs as thin (<1 cm) laminations within dolomite carbonatite; white took potential for mineralization.
			MINERALIZATION	Туре	Value	Comments				
				Pyrite %	0.50	Fine-grained p	yrite occurs asso	ciated with phlogopite		
			ALTERATION							
			STRUCTURE	Туре	Intens		CA°	Comments		
				Laminations %	weak		35	Locally observed.		
			MISCELLANEOUS	Zone	HCL	A	Apatite	Zircon		
				Н	VW		10	0.25		
FROM 119.16	-	TO 127.48	ROCK CODE	nmAMX	=	Min Style n	Fabric m	Texture	Litho AMX	Struct
			MAIN COMMENTS					olomite carbonatite.Calcite and calcite. Rare apatite on		sscut fenite blocks. Smaller fenite clasts contain dolomite within matrix (likely lolomite carbonatite.
			MINERALIZATION	Туре	Value	Comments				
				Pyrite %	0.50	Aggregates up	to 1 cm within d	olomite carbonatite - loca	lly concentrated	
			ALTERATION	Туре	Value	Comments				
				Amphibolite %	60.00	Light-grey to d	ark-green fenite	clasts up to 2.5 m thick		
			STRUCTURE							
			MISCELLANEOUS	Zone	HCL	A	Apatite	Zircon		
				Н	М		1	0		

Printed on 10/Feb/2011

Measurement unit: Metres (Unless otherwise specified)

2010-026 Log by Ryan Kressall Date Hole ID

FROM 127.48	TO - 136.44	ROCK CODE	blpCD	=	Min Style b	Fabric I	Texture p	Litho CD	Struct
		MAIN COMMENTS	apatite, pyrite and altere	ed phlogopite. The b	oands compose ~ 2.5	% of interval, occ	uring more frequently t	towards end of interva	to medium-grained inequigranular. Dark bands (up to 5 cm) are composed of I. No niobates observed in bands or in dolomite carboatite porphyry. Apatite er-coloured apatite laminations.
		MINERALIZATION	Туре	Value	Comments				
			Pyrite %	1.50	Occurs aggregated	d with dark-grey a	patite laminae		
		ALTERATION							
		STRUCTURE	Туре	Intens	C	:A° Co	omments		
			Laminations %	moderate		40 Int	erval becomes more m	assive towards end of	interval
		MISCELLANEOUS	Zone	HCL	Ара	atite	Zircon		
			Н	VS	1	10	0.25		

2010-026 Log by Ryan Kressall Date Hole ID

FROM 136.44	TO - 155.25	ROCK CODE	птрАМХ	=	Min Style n	Fabric m	Texture p	Litho AMX	Struct
		MAIN COMMENTS	5 5 .	undant dolomite in r gated along the fring	natrix (evidence of do ges of fenite blocks.No	olomitization?). o niobates obse	. Apatite occurs as dark- erved in dark laminae of	grey laminations aggr dolomite carbonatite	
		MINERALIZATION	Туре	Value	Comments				
			Pyrite %	0.25	Occur aggregated w	vith d. grey apat	tite veins within dolomit	e carbonatite and wiit	thin
		ALTERATION	Туре	Value	Comments				
			Amphibolite %	75.00					
		STRUCTURE	Туре	Intens	CA	۱° (Comments		
			Veining %	moderate	40		0 to 50 degrees - roughleimilar appearance as fen		ation - composed of pyrite, black altered phlogopite and minor dolomite - have
			Laminations %	weak	10) 0	Only observed in dolomite	e carbonatite - variabl	le on cm-scale - 10 to 30 degrees
		MISCELLANEOUS	Zone	HCL	Apat	ite	Zircon		
			Н	М	5		0.1		

2010-026 Log by Ryan Kressall Date Hole ID

FROM TO 155.25 - 165.89	ROCK CODE	nlpCC	=	Min Style n	Fabric I	Texture p	Litho CC	Struct
	MAIN COMMENTS		te carbonatite (calcit	tization of fenite clasts	s?). Aphyric be	eige dolomite carbonatite c		locks occur in higher concentration towards last 3 m of interval. Laminae of green .2 and 162.2 m. Smaler veins occur within fenite (at ~ 165.3 m). Apatite occurs
	MINERALIZATION	Туре	Value	Comments				
		Pyrite %	0.50	Commonly associate	ed with phlogo	pite in calcite carbonatite		
		Magnetite %	1.00	Fine- to medium-gra	ained magneti	te occurs disseminated wi	thin calcite carbonat	ite
	ALTERATION	Туре	Value	Comments				
		Amphibolite %	10.00	Medium-green with	black phlogop	ite		
	STRUCTURE	Туре	Intens	CA	° (Comments		
		Laminations %	moderate	15	V	aries between 10 and 20 d	egrees	
		Veining %	moderate	60	Е	Beige dolomite vein (~2.5 cr	n) at around 165.3 n	1
	MISCELLANEOUS	Zone	HCL	Apati	te	Zircon		
		Н	VS	5		0		

2010-026 Log by Ryan Kressall Date Hole ID

FROM 165.89	-	TO 171.26	ROCK CODE	blpCD	=	Min Style b	Fabric I	Texture p	Litho CD	Struct	
			MAIN COMMENTS	altered phlogopite and v	visible fine- to medi bonatite laminae (~	um-grained fersmi 2.5 cm thick) occu	ite. The bands c r with a strongly	compose ~ 5 % of interval, o y banded interval at ~ 169.1	occuring more frequen	edium-grained inequigranular. Dark bands are composed of apatite, pyrite, tly towards end of interval Zircon occurs associated with darker-coloured apatite s towards end of interval to steep crenulation. Laminated apatite follows	
			MINERALIZATION	Type	Value	Comments					
				Niobates %	0.50	Fine- to mediun	n grained yellow	v fersmite observed within	dark-cloured apatite b	ands with altered phlogopite	
				Pyrite %	1.00	Aggregates and	stringers (< 1 cr	n) within dolomite carbona	atite; commonly assoc	iated with apatite and altered phlogopite	
			ALTERATION	Туре	Value	Comments					
				Silica %	1.00	Minor quartz ve	in				
			STRUCTURE	Туре	Intens		CA°	Comments			
				Veining %	moderate	!	30	Dark grey dolomite(?) ve	ins ~ 1 cm thick crossc	ut crenulations	
				Laminations %	moderate	!	50	Lamination becomes ste	eply crenulated at ~16	9.6 m -~85 degrees	
			MISCELLANEOUS	Zone	HCL	А	patite	Zircon			
			PHISCELLARGEOUS	Н	W		5	0.25			
				<u> </u>							

2010-026 Log by Ryan Kressall Date Hole ID

FROM TO ROCK CODE nmAM = Min Style Fabric Texture Litho Struct 171.26 - 177.91 ROCK CODE nmAM = Min Style Fabric Texture Litho AM	
MAIN COMMENTS Medium-green fenite with common ovoid texture - rimmed by grayish green.to blue. Fenite is crosscut by calcite veins up to 10 cm thick. Phlogopite crystals typically concentrate are contacts between calcite and fenite. Fenite reacts moderately to HCI indicating some calcitization of the matrix. Apatite occurs as thin laminae(<1 cm) within thicker calcite veins.	und the margins of the
MINERALIZATION Type Value Comments	
Niobates % 0.10 Minor pale-pink pyrochlore occurs with apatite laminae in calcite-carbonatite vein	
Pyrite % No pyrite observed.	
ALTERATION Type Value Comments	
Amphibolite % 90.00	
STRUCTURE Type Intens CA° Comments	
Veining % moderate 70 Calcite veins crosscut fenite at various angle but generally steep angle for thin (<1cm) veins - The thic ~20 degrees	ck 10 cm vein crosscuts at
MISCELLANEOUS Zone HCL Apatite Zircon	
H M 1 0	

2010-026 Log by Ryan Kressall Date Hole ID

FROM 177.91	-	TO 185.89	ROCK CODE	blpAMX	=	Min Style b	Fabric I	Texture p	Litho AMX	Struct
			MAIN COMMENTS	(~ 2.5 cm thick) crosscut	e fenite blocks. Phlo te-calcite contact, n	ogopite accumulat nagnetite within c	es at contact be	tween fenite and calcite. [Dolomite carbonatite o	edium-grained phlogopite and minor magnetite. Beige aphryic calcite carbonatite cours sporadically throughout interval (~1 m segments) dominantly towards top occurs moderately laminated with calcite and dolomite carbonaite. Zircon occurs
			MINERALIZATION	Type	Value	Comments				
				Niobates %	0.50	Suspect pinkish bands in dolom	, , ,	ite occur within phlogopite	e-rich bands within cald	cite carbonatite - Suspect fine-grained pale-pink fersmite occurs within apatite
				Pyrite %	0.25	Occurs common	ly aggregated w	rith phlogopite in calcite ca	arbonatite in small prop	portion and aggregated with dark-grey metallic mineral (after magnetite?).
			ALTERATION	Туре	Value	Comments				
				Amphibolite %	25.00	Dark-green bloc	ks			
			STRUCTURE	Туре	Intens		CA°	Comments		
				Laminations %	moderate	!	20	Generally low but steepe	ns to 60 degrees towa	rds end of interval
			MISCELLANEOUS	Zone	HCL	A	patite	Zircon		
				Н	S		7.5	0.1		

2010-026 Log by Ryan Kressall Date Hole ID

FROM 185.89	TO - 196.16	ROCK CODE	blpCD	= ^	Min Style Fabric b I	Texture p	Litho CD	Struct	
		MAIN COMMENTS	composed of apatite, py	rite and altered phlog	opite. The bands compose ~ 2.	5 % of interval, occuring mor	e frequently towards	oundmass is commonly fine- to medium-grained inequigranular. I top of interval. No niobates observed in bands or in dolomite carbo n apatite. No niobates observed.	
		MINERALIZATION	Туре	Value	Comments				
			Pyrite %	1.75	Fine-grained pyrie occurs comr	nonly aggregated with altere	ed phlogopite phenoc	ysts	
		ALTERATION							
		STRUCTURE	Туре	Intens	CA°	Comments			
			Laminations %	weak	50	varies between 40 and 60	degrees		
		MISCELLANEOUS	Zone	HCL	Apatite	Zircon			
			Н	VW	10	0.25			
FROM 196.16	TO - 209.80	ROCK CODE	nlpAMX	= ^	Min Style Fabric	Texture p	Litho AMX	Struct	
		MAIN COMMENTS			0 - 150 cm) wihin weakly lamina ed throughout interval. Zircon o			s consist of black altered phlogoptite. Minor beige phlogopite-phyr arbonatite.	ic calcite veins
		MINERALIZATION	Туре	Value	Comments				
			Pyrite %	1.00	Occurs commonly aggregated v	with altered phlogopite in do	lomite carbonatite		
					7 . 33 . 3	1 3 1			
		ALTERATION	Туре		Comments	, , ,			
		ALTERATION	Type Amphibolite %	Value 30.00	Comments	in core of fenite, phlogopite		ween fenite and calcite carbonatite - towards dolomite carbonatite	e fenite grades
		ALTERATION STRUCTURE		Value 30.00	Comments Ovoid texture - Medium-green	in core of fenite, phlogopite		ween fenite and calcite carbonatite - towards dolomite carbonatite	e fenite grades
			Amphibolite %	Value 30.00	Comments Ovoid texture - Medium-green into a medium-grey colour (dol	in core of fenite, phlogopite omitization?)	occurs at contact bet		e fenite grades
			Amphibolite % Type	Value 30.00	Comments Ovoid texture - Medium-green into a medium-grey colour (dol	in core of fenite, phlogopite omitization?) Comments	occurs at contact bet		e fenite grades

Printed on 10/Feb/2011

Log by	Ryan Kressall	Date	Hole ID	2010-026

FROM 209.80 -	TO 215.24	ROCK CODE	nmfgAM	=	Min Style n	Fabric m	Texture fg	Litho AM	Struct	
		MAIN COMMENTS		ar to be orthogonal to	each other (30 an	d 60 degree core an			.5 cm thick. A ~20 cm interval of aphryic dolomite carbonaite occurs at ~ 213.5 m te around the margins of the contacts between calcite and fenite. Apatite occur	
		MINERALIZATION	Type	Value	Comments					
			Pyrite %	0.25	Minor pyrite aggr	egates observed wi	thin medium-grey feni	ite		
		ALTERATION	Туре	Value	Comments					
			Amphibolite %	85.00	Dark-green to lig	nt grey				
		STRUCTURE	Туре	Intens	(CA° Co	mments			
			Veining %	strong		65 Cal	cite veins crosscut feni	ite between 60 and 70) degrees	
			_			,				
		MISCELLANEOUS	Zone	HCL	Ap	atite	Zircon			
			Н	W		1	0.1			

End of Hole End of Hole

Hole ID 2010-027	
-------------------------	--

GENERAL INFORMATION						
Coordinate System	Easting	Northing	Elevation	Collar Azimuth	Collar Dip	
ST. PL Nad 83	454681.67	6256504.63	1677.78	30.00	-45.00	
Start Depth	Final Depth	Proposed Depth	Final Length	Rig	Area	
0.00	213.72		213.72		Central 3	
Operator	Year					
Taseko	2010					

PROFESSIONAL / TECHNICIAN

	Name	Start Date	End Date
Collar Surveyor		29/Aug/2010	
Geology Logged By	Ryan Kressall		
Specific Gravity By	Steve Dumma		
Geotech Logged By	Steve Dumma	24/Aug/2010	
Drill Contractor		18/Aug/2010	19/Aug/2010

	M		

DRILLING BIT SIZE					
Bit Size	From	То	Length		
NW (Casing)	0.00	3.45	3.45		
NQ	3.45	213.72	213.72		

DOWN HOLE SURVEY						
Depth	Azimuth	Dip	Temp °C	Mag.	Roll	Method
4.27	30.10	-46.70	12.3	5708	18.2	Reflex EZ-shot
213.66	28.60	-47.70	16.8	5778	16.3	Reflex EZ-shot

GEOLOGY LEGEND

Hole ID **2010-027**

ROCK CODE

MIN STYLE					
Abbr.	Description				
n	barren				
d	disseminated				
g	aggregated				
b	banded				

FABRIC					
Abbr.	Description				
Х	brecciated				
ı	laminated				
f	decalcified				
V	veined				
р	porphyritic				
m	massive				

	TEXTURE
Abbr.	Description
f	decalcified
р	porphyritic
V	veined

LITHO					
Abbr.	Description				
CASE	Casing				
OVBN	Overburden				
OXID	Oxide				
AM	Amphibolite				
CC	Calcite Carbonatite				
CD	Dolomite Carbonatite				
CCCD	Mixed Calcite and Dolomite Carbonatite				
AMX	Amphibole and Mixed Carbonatite				
CM	Carbonatite Cumulate				

STRUCT						
Abbr.	Description					
Z	fault					
е	strained					
S	shear zone					
У	dyke					

MISCELLANEOUS:

	ZONE
Abbr.	Description
OX	Oxide
S	Supergene
Н	Hypogene

	HCL
Abbr.	Description
VW	very weak
W	weak
М	moderate
S	strong
VS	very strong

2010-027 Log by Ryan Kressall Date Hole ID

FROM 0.00	-	TO 3.45	ROCK CODE	CASE	=	Min Style	Fabric	Texture	Litho CASE	Struct	
			MAIN COMMENTS	No Rock.							
			MINERALIZATION								
			ALTERATION								
			STRUCTURE								
			MISCELLANEOUS	Zone	HCL		Apatite	Zircon			
									4.4.4		
FROM 3.45	_	TO 24.67	ROCK CODE	blfCD	=	Min Style b	Fabric I	Texture f	Litho CD	Struct	
	-		ROCK CODE MAIN COMMENTS	Light grey dolomite carb most evident one occuri Apatite occurs aggregat	oonatite with weak I ng at ~13.2 m - 13.8 ed to weakly lamina	b amination. Nit m. This zone is led throughout	I on XRF indicates th s rich is aggregated entire interval, oft	f nat bands of high decalcifi to laminated apatite and	CD cation have the highest oxidized pyrite with con m laminae) rich in oxidiz	Nb-mineralization (0.47 to 0.7 Nb wt. %). These zones are uncommon winnon zircon and may represent a weathered magnetite cumulate phase sed pyrite and zircon. Niton XRF indicates that these dark-grey laminae n	(?).
	-			Light grey dolomite carb most evident one occuri Apatite occurs aggregat	oonatite with weak I ng at ~13.2 m - 13.8 ed to weakly lamina	b amination. Nit m. This zone is led throughout	I on XRF indicates th s rich is aggregated entire interval, oft ncrease in Nb wt. %	f nat bands of high decalcific to laminated apatite and en forming dark-grey (~1 co	CD cation have the highest oxidized pyrite with con m laminae) rich in oxidiz	Nb-mineralization (0.47 to 0.7 Nb wt. %). These zones are uncommon winnon zircon and may represent a weathered magnetite cumulate phase sed pyrite and zircon. Niton XRF indicates that these dark-grey laminae n	(?).
	-		MAIN COMMENTS	Light grey dolomite carb most evident one occuri Apatite occurs aggregat minor source of Nb-min	oonatite with weak I ing at ~13.2 m - 13.8 ed to weakly lamina eralization - interval Value 1.50	b amination. Nit m. This zone is led throughout I shows slight i Comments Oxidized pyri	I on XRF indicates th orich is aggregated entire interval, oft ncrease in Nb wt. % ite concentrated to	f nat bands of high decalcific to laminated apatite and en forming dark-grey (~1 cc 6 where laminae are presecc laminae with apatite and	CD cation have the highest oxidized pyrite with con m laminae) rich in oxidiz nt (from <0.1 to ~0.2 wt	Nb-mineralization (0.47 to 0.7 Nb wt. %). These zones are uncommon was innon zircon and may represent a weathered magnetite cumulate phase ed pyrite and zircon. Niton XRF indicates that these dark-grey laminae n%).	(?).
	-		MAIN COMMENTS	Light grey dolomite carb most evident one occuri Apatite occurs aggregat minor source of Nb-min	oonatite with weak I ng at ~13.2 m - 13.8 ed to weakly lamina eralization - interval Value	b amination. Nit m. This zone is led throughout I shows slight i Comments Oxidized pyri	I on XRF indicates th orich is aggregated entire interval, oft ncrease in Nb wt. % ite concentrated to	f nat bands of high decalcific to laminated apatite and en forming dark-grey (~1 cc 6 where laminae are presecc laminae with apatite and	CD cation have the highest oxidized pyrite with con m laminae) rich in oxidiz nt (from <0.1 to ~0.2 wt	Nb-mineralization (0.47 to 0.7 Nb wt. %). These zones are uncommon winnon zircon and may represent a weathered magnetite cumulate phase sed pyrite and zircon. Niton XRF indicates that these dark-grey laminae n	(?).
	-		MAIN COMMENTS	Light grey dolomite carb most evident one occuri Apatite occurs aggregat minor source of Nb-min Type Pyrite % Niobates % Type	oonatite with weak I ng at ~13.2 m - 13.8 ed to weakly lamina eralization - interval Value 1.50 0.10 Value	amination. Nit m. This zone is led throughout I shows slight i Comments Oxidized pyri Possible fers Comments	on XRF indicates the rich is aggregated entire interval, oft ncrease in Nb wt. % ite concentrated to mite grains in deca	f nat bands of high decalcific to laminated apatite and en forming dark-grey (~1 color where laminae are presen laminae with apatite and lcified mineralized bands-	CD cation have the highest oxidized pyrite with con m laminae) rich in oxidiz nt (from <0.1 to ~0.2 wt locally disseminated dark-grey to black, fine	Nb-mineralization (0.47 to 0.7 Nb wt. %). These zones are uncommon was innon zircon and may represent a weathered magnetite cumulate phase ed pyrite and zircon. Niton XRF indicates that these dark-grey laminae n%).	(?).
	-		MAIN COMMENTS MINERALIZATION	Light grey dolomite carb most evident one occuri Apatite occurs aggregat minor source of Nb-min Type Pyrite % Niobates %	oonatite with weak I ing at ~13.2 m - 13.8 ed to weakly lamina eralization - interval Value 1.50 0.10	amination. Nit m. This zone is led throughout I shows slight i Comments Oxidized pyri Possible fers Comments	on XRF indicates the rich is aggregated entire interval, oft ncrease in Nb wt. % ite concentrated to mite grains in deca	f nat bands of high decalcific to laminated apatite and en forming dark-grey (~1 cc 6 where laminae are presecc laminae with apatite and	CD cation have the highest oxidized pyrite with con m laminae) rich in oxidiz nt (from <0.1 to ~0.2 wt locally disseminated dark-grey to black, fine	Nb-mineralization (0.47 to 0.7 Nb wt. %). These zones are uncommon was innon zircon and may represent a weathered magnetite cumulate phase ed pyrite and zircon. Niton XRF indicates that these dark-grey laminae n%).	(?).
	-		MAIN COMMENTS MINERALIZATION	Light grey dolomite carb most evident one occuri Apatite occurs aggregat minor source of Nb-min Type Pyrite % Niobates % Type	oonatite with weak I ng at ~13.2 m - 13.8 ed to weakly lamina eralization - interval Value 1.50 0.10 Value	amination. Nit m. This zone is led throughout I shows slight i Comments Oxidized pyri Possible fers Comments	on XRF indicates the rich is aggregated entire interval, oft ncrease in Nb wt. % ite concentrated to mite grains in deca	f nat bands of high decalcific to laminated apatite and en forming dark-grey (~1 color where laminae are presen laminae with apatite and lcified mineralized bands-	CD cation have the highest oxidized pyrite with con m laminae) rich in oxidiz nt (from <0.1 to ~0.2 wt locally disseminated dark-grey to black, fine	Nb-mineralization (0.47 to 0.7 Nb wt. %). These zones are uncommon was innon zircon and may represent a weathered magnetite cumulate phase ed pyrite and zircon. Niton XRF indicates that these dark-grey laminae n%).	(?).
	-		MAIN COMMENTS MINERALIZATION ALTERATION	Light grey dolomite carb most evident one occuri Apatite occurs aggregat minor source of Nb-min Type Pyrite % Niobates % Type Oxidation %	oonatite with weak I ng at ~13.2 m - 13.8 ed to weakly lamina eralization - interval Value 1.50 0.10 Value 50.00	amination. Nit m. This zone is led throughout I shows slight i Comments Oxidized pyri Possible fers Comments	on XRF indicates the rich is aggregated entire interval, oft ncrease in Nb wt. % ite concentrated to mite grains in decange in the concentrated to mite grains in the concentrated to mite grains in decange in the concentrated to mite grains in decange in the concentrated to mite grains in the concentrated to mite grains in decange in the concentrated in the	f nat bands of high decalcificate laminated apatite and en forming dark-grey (~1 color where laminae are presentational laminae with apatite and life mineralized bands-rk-grey laminations (apatical color with apatite)	CD cation have the highest oxidized pyrite with con m laminae) rich in oxidiz nt (from <0.1 to ~0.2 wt locally disseminated dark-grey to black, fine	Nb-mineralization (0.47 to 0.7 Nb wt. %). These zones are uncommon was innon zircon and may represent a weathered magnetite cumulate phase ed pyrite and zircon. Niton XRF indicates that these dark-grey laminae n%).	(?).
	-		MAIN COMMENTS MINERALIZATION ALTERATION	Light grey dolomite carb most evident one occuri Apatite occurs aggregat minor source of Nb-min Type Pyrite % Niobates % Type Oxidation % Type	vonatite with weak I ling at ~13.2 m - 13.8 ed to weakly lamina eralization - interval Value 1.50 0.10 Value 50.00	amination. Nit m. This zone is led throughout I shows slight i Comments Oxidized pyri Possible fers Comments	on XRF indicates the rich is aggregated entire interval, ofte increase in Nb wt. % it is concentrated to mite grains in decases mostly around da	f nat bands of high decalcificate laminated apatite and en forming dark-grey (~1 color where laminae are presentational laminae with apatite and life mineralized bands-rk-grey laminations (apatical color with apatite)	CD cation have the highest oxidized pyrite with con m laminae) rich in oxidiz nt (from <0.1 to ~0.2 wt locally disseminated dark-grey to black, fine	Nb-mineralization (0.47 to 0.7 Nb wt. %). These zones are uncommon was innon zircon and may represent a weathered magnetite cumulate phase ed pyrite and zircon. Niton XRF indicates that these dark-grey laminae n%).	(?).

Printed on 10/Feb/2011

Measurement unit: Metres (Unless otherwise specified)

2010-027 Log by Ryan Kressall Date Hole ID

FROM 24.67	T0 - 46.08	ROCK CODE	blcCD	=	Min Style b	Fabric I	Texture c	Litho CD	Struct
		MAIN COMMENTS	mineralization up 0.77 N	lb. Wt. % (generally	0.25 - 0.30 wt. %). T	hese zones are	calcitized (dark-brown) l	but remnant d. grey mi	t mineralization is generally low (< 0.1 Nb wt. %) but with bands of Nb- ineral is observed in some aggregated with apatite and abundant zircon is spersed and laminatated apatite stand out.
		MINERALIZATION	Type	Value	Comments				
			Niobates %		No observed but li	kely present on	small scale as indicated	by Niton XRF	
			Pyrite %	1.50	Fine-grained oxidi:	zed pyrite occu	rs disseminated and as s	tringers	
		ALTERATION	Туре	Value	Comments				
			Calcite %	75.00	Dark-brown calciti	zation			
		STRUCTURE	Туре	Intens	C	A°	Comments		
			Laminations %	weak	4	10	Only locally observed		
			Veining %	moderate	8	30	~1 cm thick fresh calcite v	veins crosscut calcitized	d dolomite carbonatite
		MISCELLANEOUS	Zone	HCL	Apa	itite	Zircon		
			OX	М		5	0.25		

2010-027 Log by Ryan Kressall Date Hole ID

FROM 46.08	TO - 63.17	ROCK CODE	nliCD	=	Min Style n	Fabric I	Texture i	Litho CD	Struct
		MAIN COMMENTS	indicating calcite in the	fenite matrix. Niton bands of apatite, sti	XRF indicates this inter ringers of oxidized pyrite	rval to be all < 0	0.1 Nb wt. %. Porphyrit	ic to inequigranular la	n 52.1 m and 52.5 m. and at ~62.25 m. The fenite clast reacts moderately to HCl aminae up to 10 cm thick occur locally. Porphyritic laminae consist of phlogopite apatite, dark-grey unknown mineral, disseminated pyrite, common zircon and
		MINERALIZATION							
		ALTERATION	Туре	Value	Comments				
			Calcite %	15.00	Dark-brown motting				
			Amphibolite %	2.50	Medium-green core w	ith bluish grey	rim - core lookings be	composed of fine-grai	ined green acicular mineral (aegirine or arvedsonite?).
		STRUCTURE	Туре	Intens	CA°	Со	mments		
			Laminations %	moderate	60	Ger	nerally weak laminatio	n but becomes strong	locally, most notably near fenite clasts
		MISCELLANEOUS	Zone	HCL	Apatit	e	Zircon		
			OX	W	10		0.75		
			-	•			-		

2010-027 Log by Ryan Kressall Date Hole ID

FROM 63.17	-	TO 72.56	ROCK CODE	blcCD	=	Min Style b	Fabric I	Texture c	Litho CD	Struct	
			MAIN COMMENTS	associated with strongl unknown mineral and a	y laminated apatite. bundant zircon. Nito	Inequigranular do n XRF indicate zo	olomite carbonat ones of cryptic Nt	ite laminae contains only r	ninor dispersed apati these zones rise to ~(crysts of black altered phlogopite occur t of apatite, altered phlogopite, dark-grey · 20 cm interval. No niobates are observed
			MINERALIZATION	Type	Value	Comments					
				Pyrite %	1.00	Occur as thin (<	0.25 mm) oxidize	ed laminae associated with	n apatite laminae; and	d locally concentrated aggregates up to 1	cm
			ALTERATION	Type Calcite %	Value 20.00	Comments Dark brown calc	itization - gener	ally follows lamination (fo	rms laminae un to 2.5	(cm thick)	
				Oxidation %	35.00			inds thin pyrite-rich lamina		o ciri ciricky	
						. 3	.,,, ,	F /			
			STRUCTURE	Туре	Intens		CA°	Comments			
				Laminations %	moderate		40				
				Veining %	weak		80	Veins of ~1 cm calcitization	on crosscut laminatio	n	
			MISCELLANEOUS	Zone	HCL	Α	patite	Zircon			
				OX	М		10	0.5			

2010-027 Log by Ryan Kressall Date Hole ID

FROM 72.56	T0 - 79.31	ROCK CODE	nliCD	=	Min Style n	Fabric I	Texture i	Litho CD	Struct
		MAIN COMMENTS							Apatite occurs aggregated locally with black altered phlogopite and oxidized nineralization (0.04 to 0.08 Nb wt. %).
		MINERALIZATION	Туре	Value	Comments				
			Pyrite %	1.50	Fresh to oxidized	l pyrite aggregate	s up to 0.5 cm in size.		
		ALTERATION	Туре	Value	Comments				
			Calcite %	10.00	Dark-brown calci	tization mottles a	and rare laminae		
			Oxidation %	55.00	Beige dolomite o	ccurs mottled wit	th light-grey dolomite		
		STRUCTURE	Туре	Intens		CA° (Comments		
			Laminations %	weak		60			
			Veining %	weak		85 F	ine- to coarse grained-do	olmite carbonatite cro	osscuts lamination
		MISCELLANEOUS	Zone	HCL	Ар	atite	Zircon		
			Н	VW		5	0		

2010-027 Log by Ryan Kressall Date Hole ID

FROM 79.31	T0 - 92.53	ROCK CODE	blcCD	=	Min Style b	Fabric I	Texture c	Litho CD	Struct
		MAIN COMMENTS	Interval is locally inequ ~ 89.5 m. Fine-grained Niton XRF indicates the	igranular. Finer-grair phlogopite, pyrite an e zone to contain low	ned appear to altere nd zircon accumulat v Nb-mineralization	d to dark-brown e at boundary. A (< 0.1 Nb wt. 5) I	calcite first, giving the in patite occurs aggregated	nterval a locallized brec d to weakly laminated v nd at ~ 85.9 m that cont	A few short intervals retain original light-grey colour of dolomite carbonatite. criated appearance. A medium-grey fine-grained blob (~25 cm diameter) occurs at within dolomite carbonatite. Zircon occurs locally concentrated. tains 0.68 Nb wt. %.Original texture of the small band is mostly destroyed by n calcitized matrix.
		MINERALIZATION	Type	Value	Comments				
			Pyrite %	1.50					
		ALTERATION	Туре	Value	Comments				
			Calcite %	80.00	Dark-brown calcit	tization - has cor	mpletely replaced dolom	ite is most of interval.	
			Oxidation %	10.00	Gives dolomite be	eige colour			
		STRUCTURE	Туре	Intens		CA°	Comments		
			Veining %	moderate	!	80 0	Calcite veins (<0.5 cm) -	generally ~80 degrees I	but as shallow as 60 degrees in places
			Laminations %	weak		50 (Only locally observed due	e to high calcitization o	of interval
		MISCELLANEOUS	Zone	HCL	Ар	atite	Zircon		
			Н	М		5	0.5		

2010-027 Log by Ryan Kressall Date Hole ID

FROM 92.53	TO - 105.81	ROCK CODE	nmiCD	=	Min Style n	Fabric m	Texture i	Litho CD	Struct
		MAIN COMMENTS		ars to grade back into	o inequigranular dolon	nite at ~100.5 r	m Between 101.5 and 103.		te dolomite carbonatite. Sharp contact occurs at 96.68 m (~60 degrees). Finess d. grey semi-brecciated dolomite unit - looks to possibly be dolomitized fenite.
		MINERALIZATION	Туре	Value	Comments				
			Pyrite %	1.25	Oxidized aggregate	s up to 1 cm			
			_						
		ALTERATION	Туре	Value	Comments				
			Calcite %	5.00	D. brown mottling				
			Oxidation %	20.00	Beige dolomite				
			Amphibolite %	2.50	D. grey fine-grained	d clasts up to ~	7.5 cm		
		STRUCTURE	Туре	Intens	CA	۱°	Comments		
		SIRUCIURE							
			Veining %	moderate	61	0 \	Veins of inequigranular u	p to 2 cm within fine-g	grained dolomite
		MISCELLANEOUS	Zone	HCL	Apat	tite	Zircon		
			Н	W	1		0		

2010-027 Log by Ryan Kressall Date Hole ID

FROM 105.81	-	TO 110.21	ROCK CODE	blfgCD	=	Min Style b	Fabric I	Texture fg	Litho CD	Struct	
			MAIN COMMENTS	Light-grey to pink dolor increase in Nb-minerali					th dark-grey unknown	mineral, oxidized pyrite and abundant zircon. Niton XRF indicate a relative	
			MINERALIZATION	Туре	Value	Comments					
				Pyrite %	1.50	Oxidized pyrite o	ccurs concentra	ated to laminae as stringe	rs, dissemintated, aggr	egated and as thin laminae	
			ALTERATION	Туре	Value	Comments					
				Calcite %	5.00	Dark-brown calci	tization concer	ntrates to laminae (<2.5 cm	n)		
				Oxidation %	70.00	Beige to pink dol	omite - genera	lly follows lamination (aro	und pyrite stringers an	d laminations)	
			STRUCTURE	Туре	Intens		CA°	Comments			
				Laminations %	moderate		30	varies 20 to 40 degrees			
			MISCELLANEOUS	Zone	HCL	Δr	oatite	Zircon			
			MISCELLANEOUS	OX	W		10	0.5			
				UA .			10	0.3			

2010-027 Log by Ryan Kressall Date Hole ID

andscontain various proportions of apatite to magnetite, contain nae. Disseminated zircon occur with dolomite carbonatite.
nedium-grained
ii Va

2010-027 Log by Ryan Kressall Date Hole ID

FROM 125.13	TO - 131.62	ROCK CODE	blfcc	=	Min Style b	Fabric I	Texture f	Litho CC	Struct
		MAIN COMMENTS	m. Apatite ocurs as str grey mineral, phlogopi carbonatite. Altered ph	rong laminations with te and calcite) - possi hlogopite occur as irre	hin dolomite carbona ibly fenite. Phlogoite egular veins semi-pa	atite. Zircon occ e is dominantly rallel to lamina	curs associated with apatito mineral is small 4 cm clast tion within dolomite carbo	e laminae. Lamination whereas it forms the natite.	t ~128.83 m, a small magnetite-apatite cumulate occurs. Another occurs at ~130.6 on converges around small clasts (4 to 10 cm) within interval (composed of bluish e rim of larger clasts. One clast is composed magnetite-phlogopite calcite n and oxidized pyrite based on Niton XRF analysis. No niobates observed.
		MINERALIZATION	Туре	Value	Comments				
			Magnetite %	5.00	Occurs aggregated	d with apatite v	vithin cumulate clasts and	disseminated (fine-	grained) within calcite carbonatite clast
			Pyrite %	0.50	Oxidized stringers	s occur locally.			
		ALTERATION	Туре	Value	Comments				
			Amphibolite %	15.00	Greenish-grey wit	th ovoid texture	- darker coloured rims		
		STRUCTURE	Туре	Intens		CA°	Comments		
			Veining %	moderate	2	60	Dolomite vein (< 0.5 mm)	crosscuts lamination	1
			Laminations %	moderate	2	10	Generally low ~ 10 degrees	- steepends to ~ 60	degrees around clasts
		MISCELLANEOUS	Zone	HCL	Ара	atite	Zircon		
			Н	W		5	0.5		

2010-027 Log by Ryan Kressall Date Hole ID

FROM 131.62	-	TO 147.82	ROCK CODE	nlfgCD	=	Min Style n	Fabric I	Texture fg	Litho CD	Struct	
			MAIN COMMENTS	tint) and decalcification	. Black altered phlog	gopite phenocrysts o	cur locally. Apa		ated to crenulated a	5 - 142.5 m. Zone of crenulation shows increase in ssociated with zircon and dark-grey laminae (pyr y laminae.	
			MINERALIZATION	Туре	Value	Comments					
				Pyrite %	2.00	Oxidized pyrite agg	gregates up to 1	cm			
			ALTERATION	Туре	Value	Comments					
				Calcite %	1.00	Rare dark-brown n	nottling of dolo	mite			
				Oxidation %	60.00	Pink dolomite and	abundant oxid	ation of pyrite			
				Amphibolite %	1.00	Rare dark-grey cla	st ~ 10 cm				
			STRUCTURE	Туре	Intens	C	A°	Comments			
				Laminations %	moderate	3	10	Generally ~ 30 degrees - co	ore angle of crenulat	ions is steep ~ 85 degrees	
					_	·	_				
			MISCELLANEOUS	Zone	HCL	Apa	tite	Zircon			
				OX	VW	7.	5	0.5			

2010-027 Log by Ryan Kressall Date Hole ID

FROM 147.82	TO - 151.14	ROCK CODE	gmfgCD	=	Min Style I	Fabric m	Texture fg	Litho CD	Struct	
		MAIN COMMENTS	<u> </u>		regates (~10-15 cm) with a mineralization up to 1.07 N	•			onatite. Apatite occurs dispersed to weakly oriented within dolomite carbonatite. ggregates.	
		MINERALIZATION	Туре	Value	Comments					
			Niobates %	0.50	Pale-pink fine-grained fersmite observed along the fringes of one of the aggregates					
			Pyrite %	3.50	Aggregated with d. grey mineral (replacement of magnetite?) - less commonly disseminated in dolomite carbonatite					
		ALTERATION	Туре	Value	Comments					
			Oxidation %	15.00	Beige dolomite - concer	ntrated aroun	d aggregates			
		STRUCTURE								
		MISCELLANEOUS	Zone	HCL	Apatite		Zircon			
			OX	W	12.5		0.75			

2010-027 Log by Ryan Kressall Date Hole ID

FROM 151.14	-	TO 175.18	ROCK CODE	nlpAMX	=	Min Style n	Fabric I	Texture p	Litho AMX	Struct	
			MAIN COMMENTS	(calcite present within	matrix). Magnetite to	black altered pl	nlogopite occur as		nite carbonaite near co	onatite (contact at ~ 40 degrees). Fenite blocks commonly react moderately to HCl ntact with fenite. A large interval of porphyritic dolomite carbonatite occurs Zircon is rare.	
			MINERALIZATION	Туре	Value	Comments					
				Pyrite %	0.75	Oxidized pyrito	e occurs concentra	ated within laminae			
			ALTERATION	Type Amphibolite %	Value 30.00	Comments Medium-green	n to light-green oc	curs within core of fenite	blocks - towards dolor	nite contact, fenite becomes medium- to light greyish blue in colour	
				Calcite %	1.00	Minor calcitization concentrated around thin calcite veins					
			STRUCTURE	Туре	Intens		CA°	Comments			
			Veining %	weak		10	Thin (~0.25 mm) calcite	veins - surrounded by c	alcitization		
				Laminations %	moderate		30	Varies between 40 and 2	20 degrees		
			MISCELLANEOUS	Zone	HCL		Apatite	Zircon			
				OX	W		2.5	0.1			

2010-027 Log by Ryan Kressall Date Hole ID

FROM 175.18	TO - 188.00	ROCK CODE	nmAM	=	•	abric 1 m	Гexture	Litho AM	Struct		
		MAIN COMMENTS	-		eins (0.1 to 5 cm thick) and ten calcite veins and fenite.			•	HCI (calcitized?). Veins are oriented at 30, 40 and 60 degrees. Phlogopite		
		MINERALIZATION	Туре	Value	Comments						
			Pyrite %	0.50	Oxidized aggregates with	hin dolomite veins.					
		ALTERATION	Туре	Value	Comments						
			Calcite %	5.00	Dark-brown veins crosscut calcite veins; localized						
		STRUCTURE									
		MISCELLANEOUS	Zone	HCL	Apatite	Ziro	con				
			Н	М	0	0.3	25				

2010-027 Log by Ryan Kressall Date Hole ID

FROM 188.00	TO - 193.78	ROCK CODE	blcAMX	=	Min Style b	Fabric I	Texture c	Litho AMX	Struct		
		MAIN COMMENTS	mineralized bands occ	ur within weathered o	dolomite carbonatite	as indicating by I	Niton XRF (0.88 and 0.9	9 Nb wt. %). UV indi	rards end of interval, a bluish-green unit shows; possibly fenite (?). Nb- cate this small (~5 cm) intervals to contain abundant apatite and zircon. Dark- ed in unmineralizaed calcitized dolomite carbonatie.		
		MINERALIZATION	Type	Value	Comments						
			Niobates %		Not observed but	present based on	Niton XRF analysis				
			Pyrite % 0.50 Oxidized aggregates up to 1cm								
		ALTERATION	Туре	Value	Comments						
			Amphibolite %	10.00	bluish green segmets; occur at 192.75 and between 196.25 -196.75 m - veined extensively by calcite; fenite reacts moderately to HCl						
			Calcite %	60.00	Dark-brown calciti	zation - replaces	dolomite extensively				
STRUCTURE Type Intens CA° Comments											
			Laminations %	weak	2	20 Or	nly locally observed				
		MISCELLANEOUS	Zone	HCL	Apa	ntite	Zircon				
			OX	M	12	2.5	0.5				

Log by	Duan Krassall	Data	Hala ID	2010-027
Log by	Ryan Kressall	Date	Hole ID	2010-027

FROM 193.78	TO - 213.72	ROCK CODE	nmfgCD	=	Min Style n	Fabric m	Texture fg	Litho CD	Struct
		MAIN COMMENTS	occurs at ~212.8 m (poss	sible dyke?). Pitted v patite occurs aggreg	within inequigranul ated with porphyry	ar dolomite indicat	te weathering out of pyri	te crystals (and likel	omite carbonatite. A pink fine- to medium-grained dolomite carbonatite (~0.5 m y leaching of Fe into dolomite). At contact occurs abundant black altered liton XRF indicate interval to be relatively barren with the highest Nb reading
		MINERALIZATION	Туре	Value	Comments				
			Pyrite %	1.50	Aggregated up to	o 1 cm; locally oxidiz	zed		
		ALTERATION	Туре	Value	Comments				
			Calcite %	5.00	Dark-brown mot	tling occurs irregula	arly through interval		
			Oxidation %	25.00	Pink dolomite - s	strongest near inec	quigranular dolomite, bu	t occurs locally elsew	here where pyrite is present abundantly
		STRUCTURE	Туре	Intens		CA° Co	omments		
			Laminations %	weak		30 On	nly locally observed		
		MISCELLANEOUS	Zone	HCL	Ар	oatite	Zircon		
			OX	W		7.5	0.1		

End of Hole End of Hole

2010-028 Hole ID

		GENERAL INF	ORMATION		
Coordinate System	Easting	Northing	Elevation	Collar Azimuth	Collar Dip
ST. PL Nad 83	454740.85	6256621.61	1714.31	30.00	-45.00
Start Depth	Final Depth	Proposed Depth	Final Length	Rig	Area
0.00	213.41		213.41		Central 3
Operator	Year				
Taseko	2010				

DRILLING BIT SIZE							
Bit Size	From	То	Length				
NW (Casing)	0.00	3.05	3.05				
NQ	3.05	213.41	213.41				

	PROFESSIONAL / TECHNICIAN							
	Name	Start Date	End Date					
Collar Surveyor								
Geology Logged By	Ryan Kressall							
Specific Gravity By	Steve Dumma							
Geotech Logged By	Steve Dumma	25/Aug/2010						
Drill Contractor								

SUMMARY

GEOLOGY LEGEND

Hole ID **2010-028**

ROCK CODE

MIN STYLE							
Abbr.	Description						
n	barren						
d	disseminated						
g	aggregated						
b	banded						
	33 3						

	FABRIC
Abbr.	Description
Х	brecciated
ı	laminated
f	decalcified
٧	veined
р	porphyritic
m	massive

	TEXTURE
Abbr.	Description
f	decalcified
р	porphyritic
V	veined

LITHO							
Abbr.	Description						
CASE	Casing						
OVBN	Overburden						
OXID	Oxide						
AM	Amphibolite						
CC	Calcite Carbonatite						
CD	Dolomite Carbonatite						
CCCD	Mixed Calcite and Dolomite Carbonatite						
AMX	Amphibole and Mixed Carbonatite						
CM	Carbonatite Cumulate						

	STRUCT
Abbr.	Description
Z	fault
е	strained
S	shear zone
У	dyke

MISCELLANEOUS:

	ZONE
Abbr.	Description
OX	Oxide
S	Supergene
Н	Hypogene

	HCL
Abbr.	Description
VW	very weak
W	weak
М	moderate
S	strong
VS	very strong

2010-028 Log by Ryan Kressall Date Hole ID

FROM 0.00	T0 - 3.05	ROCK CODE	CASE	=	Min Style	Fabric	Texture	Litho CASE	Struct		
		MAIN COMMENTS	No rock								
		MINERALIZATION									
		ALTERATION									
		STRUCTURE									
		MISCELLANEOUS	Zone	HCL	Apa	tite	Zircon				
FROM	то	ROCK CODE	nmfgCD	=	Min Style	Fabric	Texture	Litho	Struct		
3.05	- 6.30	ROCK CODE	וווווופכט	-	n	m	fg	CD			
		MAIN COMMENTS	Interval composed of	dolomite carbonatite	talus - massive to lan	ninated and light	-grey to oxidized beige	in colour with minor cald	itization.		
		MINERALIZATION	Туре	Value	Comments						
			Pyrite %	1.50	Fine-grained gener	rally oriented oxid	ized pyrite confined to	laminae (< 2.5 cm)			
		ALTERATION	Туре	Value	Comments						
			Calcite %	5.00	Dark brown mottlin						
			Oxidation %	10.00	Beige dolomite - fo	ollow lamination -	surrounds pyrite-bear	ring laminae			
		STRUCTURE									
		MISCELLANEOUS	Zone	HCL	Apa	tite	Zircon				
			OX	W	7.	.5	0.25				

Printed on 10/Feb/2011

2010-028 Log by Ryan Kressall Date Hole ID

FROM TO 6.30 - 23.05 ROCK CODE gliCD = Min Style g lich light-grey weakly laminated dolomite carbonatite locally weathered to various extents (generally oxidation and calcitization). Rubble composes -40 % of interval. Dark-grey to black aggregates (2-5 cm) and dark-grey bands up to 10 cm thick are potential areas of Nb-mineralization composing - 10 % of the interval. Aggregates are common within rubble and in places contain magnetite, but mostly consist of hematite (streaks red). The bands are composed of apatite, oxidized pyrite, dark-grey unknown and abundant zircon. The aggregates and bands mark an area of high oxidation and weathering. MINERALIZATION Type Value Comments Niobates % 0.50 Likely fine-grained columbite occurs associated with magnetite Magnetite % 1.00 Minor medium-grained magnetite aggregates in rubble; likely was present in higher abundance previously but has been altered to hematite Pyrite % 1.00 Oxidized pyrite occurs associated with d. grey bands and to a lesser degree disseminated within dolomite carbonatite ALTERATION Type Value Comments Oxidation % 30.00 Beige dolomite and hematite associated with magnetite aggregates Calcite % 15.00 Dark brown calcitization - mortling and some laminae Type Calcite % 15.00 Comments Cancer of the native of the interval. Aggregates are common within rubble and in places contain magnetite, but mostly consist of the interval. Aggregates are common within rubble and in places contain magnetite, but mostly consist of the interval. Aggregates are common within rubble and in places common within rubble and									
dark-grey bands up to 10 cm thick are potential areas of Nb-mineralization composing ~ 10 % of the interval. Aggregates are common within rubble and in places contain magnetite, but mostly consist of hematite (streaks red). The bands are composed of apatite, oxidized pyrite, dark-grey unknown and abundant zircon. The aggregates and bands mark an area of high oxidation and weathering. MINERALIZATION Type Value Comments Niobates % 0.50 Likely fine-grained columbite occurs associated with magnetite Magnetite % 1.00 Minor medium-grained magnetite aggregates in rubble; likely was present in higher abundance previously but has been altered to hematite Pyrite % 1.00 Oxidized pyrite occurs associated with d. grey bands and to a lesser degree disseminated within dolomite carbonatite ALTERATION Type Value Comments Oxidation % 30.00 Beige dolomite and hematite associated with magnetite aggregates Calcite % 15.00 Dark brown calcitization - mottling and some laminae		ROCK CODE	gliCD	=	Min Style g	Fabric I	Texture i		Struct
Niobates % 0.50 Likely fine-grained columbite occurs associated with magnetite Magnetite % 1.00 Minor medium-grained magnetite aggregates in rubble; likely was present in higher abundance previously but has been altered to hematite Pyrite % 1.00 Oxidized pyrite occurs associated with d. grey bands and to a lesser degree disseminated within dolomite carbonatite ALTERATION Type Value Comments Oxidation % 30.00 Beige dolomite and hematite associated with magnetite aggregates Calcite % 15.00 Dark brown calcitization - mottling and some laminae		MAIN COMMENTS	dark-grey bands up to 10	O cm thick are poten	tial areas of Nb-mi	ineralization comp	osing ~ 10 % of the inter	val. Aggregates are co	ommon within rubble and in places contain magnetite, but mostly consist of
Magnetite % 1.00 Minor medium-grained magnetite aggregates in rubble; likely was present in higher abundance previously but has been altered to hematite Pyrite % 1.00 Oxidized pyrite occurs associated with d. grey bands and to a lesser degree disseminated within dolomite carbonatite Type Value Comments Oxidation % 30.00 Beige dolomite and hematite associated with magnetite aggregates Calcite % 15.00 Dark brown calcitization - mottling and some laminae		MINERALIZATION	Туре	Value	Comments				
Pyrite % 1.00 Oxidized pyrite occurs associated with d. grey bands and to a lesser degree disseminated within dolomite carbonatite Type Value Comments Oxidation % 30.00 Beige dolomite and hematite associated with magnetite aggregates Calcite % 15.00 Dark brown calcitization - mottling and some laminae			Niobates %	0.50	Likely fine-grain	ed columbite occu	rs associated with magno	etite	
ALTERATION Type Value Comments Oxidation % 30.00 Beige dolomite and hematite associated with magnetite aggregates Calcite % 15.00 Dark brown calcitization - mottling and some laminae			Magnetite %	1.00	Minor medium-g	rained magnetite	aggregates in rubble; like	ely was present in hig	her abundance previously but has been altered to hematite
Oxidation % 30.00 Beige dolomite and hematite associated with magnetite aggregates Calcite % 15.00 Dark brown calcitization - mottling and some laminae			Pyrite %	1.00	Oxidized pyrite o	ccurs associated w	vith d. grey bands and to	a lesser degree disse	minated within dolomite carbonatite
Calcite % 15.00 Dark brown calcitization - mottling and some laminae		ALTERATION	Туре	Value	Comments				
			Oxidation %	30.00	Beige dolomite a	and hematite assoc	ciated with magnetite ag	ggregates	
CTDUCTURE Type Intens CA° Comments			Calcite %	15.00	Dark brown calcit	tization - mottling	g and some laminae		
STRUCTURE Type litters CA comments		STRUCTURE	Туре	Intens		CA° C	Comments		
Laminations % moderate 30 Generally 30 degrees but shallows to 10 degrees locally			Laminations %	moderate		30 G	enerally 30 degrees but s	shallows to 10 degrees	s locally
MISSELLANIFOLIS 7 IICI A		MICCELLANGOUS	7	1161			7!		
MISCELLANEOUS Zone HCL Apatite Zircon		MISCELLANEOUS	Zone		Ap	patite	Zircon		
OX W 5 0.5			OX	W		5	0.5		

2010-028 Log by Ryan Kressall Date Hole ID

FROM 23.05	TO 25.87	ROCK CODE	nmiCD	=	Min Style n	Fabric m	Texture i	Litho CD	Struct		
		MAIN COMMENTS		tite forms as yellow a		- '			y calcitized and oxidized. Haloes of ox ning "clasts" of apatite and medium-g	•	
		MINERALIZATION	Туре	Value	Comments						
			Pyrite %	1.00	Form oxidized agg	regates up to 3 cm	diameter				
		ALTERATION	Туре	Value	Comments						
			Silica %	5.00	Silicification of ma	trix common					
			Oxidation %	50.00	Common beige do	lomite in groundm	ass				
			Calcite %	30.00	Dark-brown calciti	zation - concentra	tes on fine-grained ma	trix dolomite			
		STRUCTURE									
		MISCELLANEOUS	Zone	HCL	Apa	tite	Zircon				
			OX	W	7.	.5	0				

2010-028 Log by Ryan Kressall Date Hole ID

FROM 25.87	_	TO 30.09	ROCK CODE	glfgCD	=	Min Style g	Fabric I	Texture fg	Litho CD	Struct
			MAIN COMMENTS		gates to weak bands	with d. grey unknown	, pyrite and ziro			inequigranular dolomite occur sporadically throughout interval. Apatite form d. ved. Black phlogopite aggregates (<2.5 cm) occur within fractures within dolomite
			MINERALIZATION	Type	Value	Comments				
				Pyrite %	0.50	Generally oxidized p	yrite - may have	e fresh core - < 1 cm ag	gregates	
			ALTERATION	Type	Value	Comments				
				Calcite % Oxidation %	2.50 30.00	d. brown mottling Beige dolomite				
				Oxidation 70	30.00	Beige dolonine				
			STRUCTURE	Туре	Intens	CA	° C	omments		
				Laminations %	weak	20				
			MISCELLANEOUS	Zone	HCL	Apati	ito.	Zircon		
			MISCELLANEOUS	OX	W	5		0.25		

2010-028 Log by Ryan Kressall Date Hole ID

FROM 30.09	TO - 43.61	ROCK CODE	gmiCD	=	Min Style g	Fabric m	Texture i	Litho CD	Struct	
		MAIN COMMENTS		n removes the matri	x leaving high-relied				fine-grained matrix. Calcitization commonly forms rims on medium-grained 2.5 cm) occur sporadically throughout interval. Aggregates contain apatite and	
		MINERALIZATION	Туре	Value	Comments					
			Pyrite %	1.00	Form oxidized aggr	egates u to 2 cm	in inequigranular dolo	mite; occur disseminat	ted within locally laminated fine-grained segments	
		ALTERATION	Type Oxidation %	Value 40.00	Comments		entrated around dissen			
			Calcite %	15.00	_		on rims around medim			
		STRUCTURE	Type Laminations %	Intens weak	C/		omments cally observed			
		MISCELLANEOUS	Zone	HCL	Apa	tite	Zircon			
			OX	W	1.!		0			
						· ·				

2010-028 Log by Ryan Kressall Date Hole ID

FROM 43.61	TO - 62.10	ROCK CODE	gmfCCCD	=	Min Style g	Fabric m	Texture f	Litho CCCD	Struct
		MAIN COMMENTS	contains calcitization i	nfilling fractures. Cald	cite carbonatite is o	bserved between	~ 49.8 0 and 50.35 m: co	ntains bands of fine-	composed almost entirely of rubble. Localized brecciated to fractured dolomite -grained magnetite and disseminated yellow fersmite. Apatite forms d. grey erval may be modestly mineralized (0.18 & 0.29 Nb wt %: random checks).
		MINERALIZATION	Туре	Value	Comments				
			Niobates %	0.10	Yellow fine-grain	ned fersmite obser	ved within calcite carbon	atite	
			Magnetite %	0.50	Fine-grained mag	gnetite occurs as b	ands within calcite carbo	onatite	
			Pyrite %	1.00	Fine-grained oxid	dized pyrite occurs	confined to laminae		
		ALTERATION	Туре	Value	Comments				
			Calcite %	20.00	Locally dark-brow	wn mottling			
			Oxidation %	40.00	Beige to pink dol	omite			
		STRUCTURE	Туре	Intens		CA° C	omments		
			Veining %	moderate		40 De	olomite veins (~0.5 mm)	measured at 40 degi	rees
		MISCELLANEOUS	Zone	HCL	Ар	oatite	Zircon		
			OX	М		10	0.75		

2010-028 Log by Ryan Kressall Date Hole ID

FROM 62.10	TO - 79.37	ROCK CODE	blicd	=	Min Style b	Fabric I	Texture i	Litho CD	Struct
		MAIN COMMENTS	Bands (~5 - 25 cm thick)	composed of magn	etite (or non-mang	etic d. grey or hen	natite alteration product), apatite, common z	ight-grey to beige dolomite groundmass. Rubble occurs between 68.9 and 72.3 m. ircon +/- phlogopite. Between 63.1 and 63.35 m (just before magnetite band), of black altered phlogopite (fine- to medium-grained).
		MINERALIZATION	Туре	Value	Comments				
			Magnetite %	2.50	Occurs aggregate	s with apatite wit	:hin bands: fine- to medi	um grained	
			Niobates %	1.00	Likely columbite	occurs with magn	etite bands		
			Pyrite %	1.00	Form oxidized ag	gregates up to 0.	5 cm - within dolomite		
		ALTERATION	Туре	Value	Comments				
			Oxidation %	20.00	Beige dolomite; h	igh around bande	ed magnetite		
			Calcite %	20.00	Dark-brown mott	ling increases tov	vards the end of the inte	rval	
		STRUCTURE	Туре	Intens	(CA° (Comments		
			Laminations %	moderate		50 0	bserved also at 30 degre	es locally; also dippin	ng in opposite directions within same competant piece of core
		MISCELLANEOUS	Zone	HCL	Ар	atite	Zircon		
			OX	W	-	7.5	0.25		

FROM 79.37	TO - 86.49	ROCK CODE	bliCD	=	Min Style b	Fabric I	Texture i	Litho CD	Struct	
		MAIN COMMENTS	bands (2.5 to 5 cm) occur	r sporadically throug	ghout interval, comp	posed ~5 % of ir	nterval. Larger bands (tow	ards 5 cm) contain dis	um-grey to beige in colour. Interval contair seminated magnetite within a dolomite m ids. Inequigranular dolomite contains unco	atrix. Smaller bands contain dakr-grey
		MINERALIZATION	Туре	Value	Comments					
			Niobates %	0.10	Fine-grained colu	mbite likely occi	urs with magnetite in d. g	rey bands		
			Pyrite %	1.50	Aggregates and st	tringers of oxidi	zed pyrite (up to ~2 cm) v	vithin dolomite carbor	atite	
			Magnetite %	1.50	Within d. grey dol	lomite band				
		ALTERATION	Туре	Value	Comments					
			Oxidation %	15.00	Beige dolomite					
			Calcite %	15.00	Dark-brown mottl	ling; commonly	follow lamination			
		STRUCTURE	Туре	Intens	C	CA°	Comments			
			Laminations %	moderate		40				
		MISCELLANEOUS	Zone	HCL	An	atite	Zircon			
			OX	W		2.5	0.1	<u> </u>		

FROM 86.49	-	TO 106.54	ROCK CODE	blfgAMX	=	Min Style b	Fabric I	Texture fg	Litho AMX	Struct
			MAIN COMMENTS	fenite clast at 87.14 to 8 massive dolomite carbo green to d. brown core.	37.59 m contains phl matite. Oher clasts a Localized ~10 cm ba	ogopite megacryst are typically 10 to 20 nds of inequigranu	s and shows a we O cm, showing the lar dolomite occur	ak lamination (~75 degree typically ovoid texture of	e core angle) concord f fenite. The core of t	and calcitization of matrix. Rubble composes ~50 % of interval. A medium-green lant to crosscutting veins of dolomite (up to 1 cm thick) extending from host the clasts is commonly calcitized dark-brown. White calcite forms rims around d.
			MINERALIZATION	Туре	Value	Comments				
				Pyrite %	1.00	Occur dissemina	ted within d. grey	bands (fresh to oxidized)	; typically confined t	to laminae as aggregates <0.5 cm in size
				Niobates %	0.10	Fine-grained yel	low fersmite occu	rs disseminated within d.	grey bands	
			ALTERATION	Туре	Value	Comments				
				Amphibolite %	10.00	Dark-green to da	ark-brown (calcitiz	ed) with abundant phlog	oite (typically near c	ontact with calcite veins.
				Calcite %	5.00	Dark-brown calc	itization - mostly	of fenite - ovoid texture r	etained	
				Oxidation %	30.00	Beige dolomite -	generally around	pyrite-rich laminae		
			STRUCTURE	Туре	Intens		CA° (Comments		
				Laminations %	weak		15			
				Veining %	moderate		40 [Oolomite veins (~1 cm) cro	sscuts dolomite carl	ponatite and fenite
			MISCELLANEOUS	Zone	HCL	A	patite	Zircon		
				OX	W		7.5	0.25		

FROM 106.54	TO - 115.85	ROCK CODE	nmiCD	=	Min Style n	Fabric m	Texture i	Litho CD	Struct		
		MAIN COMMENTS	~ 50 % of interval is con preferentially altered ar	nposed of rubble - n nd weathered (calcit	nore dominantly to ized and oxidized).	owards top of int Apatite occurs	terval. White medium-grair dispersed throughout dolor	ned dolomite occurs w mite. No zircon observ	vithin fine-grained medium-grey t ved. No observed potential Nb-mi	o beige dolomite groundmass. Groundmass is neralization.	
		MINERALIZATION	Туре	Value	Comments						
			Pyrite %	1.00	Fine-grained ox	idized pyrite occ	curs disseminated - oxidized	d dolomite commonly	surrounds pyrite		
		ALTERATION	Туре	Value	Comments						
			Calcite %	10.00	Dark-brown mo	ttling					
			Oxidation %	40.00	Beige dolomite	in fine-grained g	groundmass				
		STRUCTURE									
		MISCELLANEOUS	Zone	HCL	Α	patite	Zircon				
			OX	VW		5	0				
FROM 115.85	TO - 118.90	ROCK CODE	gmiCM	=	Min Style g	Fabric m	Texture i	Litho CM	Struct		
		MAIN COMMENTS	Interval composed of cu Niton XRF did not detec	mulated cumulated t any Nb in interval	l magnetite with li (below detection l	ttle apatite and imit).	no observed zircon. Dolomi	te occurs interstitial 1	to magnetite. The last 30 cm of th	e interval have been extensively oxidized.	
		MINERALIZATION	Туре	Value	Comments						
			Magnetite %	60.00	Fine- to mediun	n grained cumul	ate (?) with interstial dolon	nite			
		ALTERATION	Туре	Value	Comments						
			Oxidation %	20.00							
		STRUCTURE	Туре	Intens	Intens CA° Comments						
			Veining %	moderate		30	Dolomite veins (~0.5 mm)) crosscut magnetite (cumulate		
		MISCELLANEOUS	Zone	HCL	^	patite	Zircon				

2010-028 Log by Ryan Kressall Date Hole ID

FROM 118.90	TO - 123.90	ROCK CODE	blfgCD	=	Min Style b	Fabric I	Texture fg	Litho CD	Struct	
		MAIN COMMENTS							th laminated light-grey dolomite carbonatite. D. grey and abundant zircon. No niobates observed in bands.	
		MINERALIZATION	Туре	Value	Comments					
			Pyrite %	1.50	Stringers to thin la	aminae (<0.25 cm	thick)			
			Magnetite %	5.00	Medium-grained r	magnetite occurs	aggregated within d. gre	y bands with d. grey	unknown and apatite.	
		ALTERATION	Туре	Value	Comments					
			Oxidation %	35.00	Beige laminated d	olomite; orange l	nalo occurs around some	dark-grey magnetite	-bearing bands	
		STRUCTURE	Туре	Intens	С	'A° C	omments			
			Laminations %	moderate		35 M	easured 30 and 40 degre	es throughout interv	al.	
		MISCELLANEOUS	Zone	HCL	Ара	atite	Zircon			
			OX	VW	1	10	0.5			

FROM 123.90	TO - 137.82	ROCK CODE	bliCD	=	Min Style b	Fabric I	Texture i	Litho CD	Struct		
		MAIN COMMENTS		Apatite aggregates ar	ound the rim of the					ds consist of dominantly dark-grey t consist of black altered phlogopite,	
		MINERALIZATION	Туре	Value	Comments						
			Pyrite %	1.75	Oxidized stringers	and aggregates u	p to 2 cm.				
			Magnetite %	0.50	Uncommon locali	zed medium-grain	ed phenocrysts				
		ALTERATION	Туре	Value	Comments						
			Calcite %	2.50	D. brown mottling	g, concentrates tov	vards end of interval (to	owards magnetite cun	nulate)		
		STRUCTURE	Туре	Intens		CA° Co	mments				
			Laminations %	moderate		20					
		MISCELLANEOUS	Zone	HCL	Ара	atite	Zircon				
			OX	VW		15	0.5				

2010-028 Log by Ryan Kressall Date Hole ID

FROM 137.82	-	TO 139.18	ROCK CODE	gmiCM	=	Min Style g	Fabric m	Texture i	Litho CM	Struct		
			MAIN COMMENTS	Highly oxidized magn	etite cumulate unit wi	th low apatite content ar	nd common ziro	con. Dolomite occurs i	nterstitally and as a in	ndividual ~5 cm band (interlamination?). Calcite occurs as crosscuting veir	15.
			MINERALIZATION	Туре	Value	Comments						
				Magnetite %	80.00	Fine- to medium-grain	ed magnetite o	occurs aggregates				
			ALTERATION	Туре	Value	Comments						
				Calcite %	30.00	Dark-brown mottling w	vithin cumulate	е				
				Oxidation %	50.00	Orange colour around n	nagnetite (like	ly hematite forming)				
			STRUCTURE	Туре	Intens	CA°	Con	nments				
				Veining %	weak	30	Calci	ite vein (~0.25 cm)				
			MISCELLANEOUS	Zone	HCL	Apatite	!	Zircon				
					М	5		0.5				

2010-028 Log by Ryan Kressall Date Hole ID

FROM 139.18 -	TO 150.49	ROCK CODE	glcCD	=	Min Style g	Fabric I	Texture c	Litho CD	Struct
		MAIN COMMENTS		own and abundant z					ly less than 5 cm in thickness). Uncommon d. grey aggregates (<5 cm)composed rs as strong laminations in laminated segment, but is not present in
		MINERALIZATION	Type	Value	Comments				
			Pyrite %	1.00	Fine-grained oxidiz	zed pyrite occur	s confined to laminae		
		ALTERATION	Type Oxidation %	Value 45.00	Comments Beige dolomite				
			Calcite %	10.00	Mottles up to 1.5 cr	m and matix to	medium-grained dolom	nite.	
		STRUCTURE	Type Laminations %	Intens moderate	C/		Comments	towards end of interval	
			Laminations //	moderate		.5	reepens to 30 degrees	towarus eriu or irrtervar	
		MISCELLANEOUS	Zone	HCL	Apa	tite	Zircon		
			OX	М	2.	5	0.5		

2010-028 Log by Ryan Kressall Date Hole ID

FROM 150.49	TO - 152.99	ROCK CODE	blfgCD	=	Min Style b	Fabric I	Texture fg	Litho CD	Struct	
		MAIN COMMENTS	Dark-grey band (~25 cm zones of high oxidation					vithin laminated light-	grey to beige dolomite carbonatite	. Other potentia mineralizaed zones < 10 cm are
		MINERALIZATION	Туре	Value	Comments					
			Pyrite %	1.50	Oxidized aggregat	es up t 0.5 cm				
			Magnetite %	2.50	Fine- to medium-	grained magnetit	e occurs disseminated	within d. grey band		
		ALTERATION	Туре	Value	Comments					
			Oxidation %	45.00	Beige dolomite in	laminated carbon	atite; and concentrate	d around apatite-pyrit	te bands	
		STRUCTURE	Туре	Intens	С	A° C	omments			
			Laminations %	moderate		30 Va	aries between 20 and 4	0 degrees		
		MISCELLANEOUS	Zone	HCL	Apa	atite	Zircon			
			OX	VW	12	2.5	0.5			

2010-028 Log by Ryan Kressall Date Hole ID

FROM 152.99	-	TO 195.70	ROCK CODE	nmpCD	=	Min Style n	Fabric m	Texture p	Litho CD	Struct	
			MAIN COMMENTS	,, , ,	l inequigranular app	ears to be gradationa	I but is commo	nly obscured by d. brow	n calcitization bands. F	nocrysts consist of black fine- to medium-grained altered phlogopite. Contact Pristine dolomite is medium-grey in colour; Interval has been extensively oxidized	
			MINERALIZATION	Type	Value	Comments					
				Pyrite %	1.00	Fresh to locally oxid	dized fine-grair	ned pyrite aggregates wi	th altered phlogopite a	and confined to laminae where present	
			ALTERATION	Туре	Value	Comments					
				Calcite %	10.00	Localized bands of	dark-brown cal	lcitization ~ 10 cm thick			
				Oxidation %	75.00	Common light-grey	to beige dolon	nie			
			STRUCTURE	Туре	Intens	C.A	√° (Comments			
				Laminations %	weak	10	0 0	Generally low ~ 10 degree	s, but locally steepens	to 20 and 30 degrees	
			MICCELLANGOUS	7	uci	A ===		7:			
			MISCELLANEOUS	Zone	HCL	Apat	tite	Zircon			
				OX	W	5		0.1			
							,			, ,	

2010-028 Log by Ryan Kressall Date Hole ID

FROM 195.70	_	TO 201.22	ROCK CODE	gliCM	=	Min Style g	Fabric I	Texture i	Litho CM	Struct	
			MAIN COMMENTS	Cumulate phase is comp within this interval: 0.0		apatite (~10 %), co	mmon zircon in a f	fine-graned medium-g	reen dolomite matrix. F	ink calcite veins crosscut cumulate. Niton XRF indicates a low Nb-mineralization	on
			MINERALIZATION	Туре	Value	Comments					
				Niobates %	0.25	Fine-grained colu	ımbite likely occur	s with magnetite			
				Magnetite %	65.00	Fine- to medium	-grained magnetit	e occurs dominantly ag	ggregated within dolom	ite grounmass; less commonly disseminated within dolomite	
				Pyrite %	0.25	Veined pyrite cor	ncordant to lamina	tion			
			ALTERATION								
			STRUCTURE	Туре	Intens		CA° C	omments			
				Laminations %	weak		20				
				Veining %	weak		70 Pi	nk calcite irregular veir	ns u to 2.5 cm thick		
			MISCELLANEOUS	Zone	HCL	Ap	atite	Zircon			
				OX	W		7.5	0.5			

FROM TO ROCK CODE glcCD = Min Style Fabric Texture Litho Struct g I c CD	
MAIN COMMENTS Highly calcitized to oxidized dolomite carbonatite with minor disseminated and aggregated (~5 cm) magnetite. Some magnetite aggregates have been demagnitized to daggregates mark areas of high oxidation. Gouge to rubble occurs between ~203 -203.4 m (possible fault?). Apatite occurs moderately laminated and aggregated with magnetite.	
MINERALIZATION Type Value Comments	
Magnetite % 1.00 Medium-grained: mostly disseminated but also aggregates - more aggregate likely existed previously bu have been oxidized	ed and altered (dolomitized?)
Pyrite % 1.75 Stringers follow lamination	
ALTERATION Type Value Comments	
Oxidation % 65.00 Orange colour; concentrates around magnetite aggregates	
Calcite % 25.00 Medium to dark-brown mottling of interval - generally follows lamination	
STRUCTURE Type Intens CA° Comments	
Laminations % moderate 20	
MISCELLANEOUS Zone HCL Apatite Zircon	
OX M 10 0.5	

2010-028 Log by Ryan Kressall Date Hole ID

FROM 203.71	TO - 208.87	ROCK CODE	bliCM	=	Min Style b	Fabric I	Texture i	Litho CM	Struct	
		MAIN COMMENTS		crosscut by 20 cm v	ein of calcite at 20				te. Cumulate has common d. green mact between dolomite and magnetite	
		MINERALIZATION	Type	Value	Comments					
			Magnetite %	20.00	Fine- to medium	-grained magne	etite occurs aggregates w	ith minor apatite with	in d. green matrix	
			Pyrite %	0.50	Aggregates up to	0.5 cm within (dolomite carbonatite			
		ALTERATION	Туре	Value	Comments					
			Calcite %	10.00	Dark-brown mot	tling				
			Oxidation %	40.00	Beige dolomite a	nd orange colou	ır around magnetite (hem	natitization)		
		STRUCTURE	Туре	Intens		CA°	Comments			
			Laminations %	moderate		80	2.5 cm calcite vein - frac	ture infilled by calcite -	prismatic calcite crystals observed o	n walls of fracture
			Laminations %	moderate		40				
		MISCELLANEOUS	Zone	HCL	Ar	atite	Zircon			
			OX	VW		17.5	0.1			

Log by	Ryan Kressall	Date	Hole ID	2010-028

FROM 208.87	TO - 213.41	ROCK CODE	blpCD	=	Min Style b	Fabric I	Texture p	Litho CD	Struct
		MAIN COMMENTS							ively calcitized towards end of interval (at ~212.20 m). Phencrysts consist of fine idant zircon. Niton XRF indicates the zone to be relatively unmineralized: < 0.05
		MINERALIZATION	Туре	Value	Comments				
			Pyrite %	1.50	Oxidized aggregat	ces (< 0.5 cm) and	l stringers		
		ALTERATION	Туре	Value	Comments				
			Calcite %	7.50	Dark-brown mott	ling - concentrate	s towards end of interva	l	
			Oxidation %	50.00	Beige dolomite -c	ommonly follows	fractures - higher toward	ds to of interval (porp	hyry)
		STRUCTURE	Туре	Intens	C	:A° C	omments		
			Veining %	moderate		80 Ca	alcite vein (<0.5 cm)		
			Laminations %	weak		40 0	nly locally observed		
		MISCELLANEOUS	Zone	HCL	Apa	atite	Zircon		
			OX	W		5	0.25		

End of Hole End of Hole

2010-029 Hole ID

	GENERAL INFORMATION							
Coordinate System	Easting	Northing	Elevation	Collar Azimuth	Collar Dip			
ST. PL Nad 83	454758.05	6256520.80	1727.22	30.00	-45.00			
Start Depth	Final Depth	Proposed Depth	Final Length	Rig	Area			
0.00	215.85		215.85		Central 3			
Operator	Year							
Taseko	2010							

PROFESSIONAL / TECHNICIAN

	Name	Start Date	End Date
Collar Surveyor		29/Aug/2010	
Geology Logged By	Ryan Kressall		
Specific Gravity By	Ryan Kressall		
Geotech Logged By	Steve Dumma	26/Aug/2010	
Drill Contractor		18/Aug/2010	19/Aug/2010

		RY

DRILLING BIT SIZE						
Bit Size	From	То	Length			
NW (Casing)	0.00	4.49	4.49			
NQ	4.49	215.85	215.85			

DOWN HOLE SURVEY							
Depth	Azimuth	Dip	Temp °C	Mag.	Roll	Method	
35.97	29.00	-45.70	4.8	5591	14.6	Reflex EZ-shot	
112.17	22.90	-46.60	7.6	5713	84.5	Reflex EZ-shot	
212.75	23.50	-47.50	8.2	5702	113.3	Reflex EZ-shot	

GEOLOGY LEGEND

Hole ID **2010-029**

ROCK CODE

MIN STYLE						
Abbr.	Description					
n	barren					
d	disseminated					
g	aggregated					
b	banded					

FABRIC						
Abbr.	Description					
Х	brecciated					
ı	laminated					
f	decalcified					
V	veined					
р	porphyritic					
m	massive					

	TEXTURE
Abbr.	Description
f	decalcified
р	porphyritic
V	veined

	LITHO								
Abbr.	Description								
CASE	Casing								
OVBN	Overburden								
OXID	Oxide								
AM	Amphibolite								
CC	Calcite Carbonatite								
CD	Dolomite Carbonatite								
CCCD	Mixed Calcite and Dolomite Carbonatite								
AMX	Amphibole and Mixed Carbonatite								
CM	Carbonatite Cumulate								

STRUCT								
Abbr.	Description							
Z	fault							
е	strained							
S	shear zone							
у	dyke							

MISCELLANEOUS:

ZONE						
Abbr.	Description					
OX	Oxide					
S	Supergene					
Н	Hypogene					

	HCL
Abbr.	Description
VW	very weak
W	weak
М	moderate
S	strong
VS	very strong

FROM 0.00	T0 - 4.49	ROCK CODE	CASE	=	Min Style	Fabric	Texture	Litho CASE	Struct
		MAIN COMMENTS	No Rock.						
		MINERALIZATION							
		ALTERATION							
		STRUCTURE							
		MISCELLANEOUS	Zone	HCL		Apatite	Zircon		
FROM 4.49	TO - 17.29	ROCK CODE	blfgCD	=	Min Style b	Fabric I	Texture fg	Litho CD	Struct
				omite carbonatite. A	b patite occurs l	l laminated within dol	fg omite carbonatite. Zircon o	CD	Struct thick apatite bands with pyrite. Fine grained medium-grained aggregates
			Light-grey to beige dolo	omite carbonatite. A	b patite occurs l	l laminated within dol throughout interval	fg omite carbonatite. Zircon o	CD	
		MAIN COMMENTS	Light-grey to beige dolo contained apatite and a	omite carbonatite. A bundant zircon occi	b patite occurs lur sporadically Comment	l laminated within dol r throughout interval ts	fg omite carbonatite. Zircon o (~1% of interval).	CD ccurs concentrated in	
		MAIN COMMENTS	Light-grey to beige dolo contained apatite and a	omite carbonatite. A Ibundant zircon occi Value	b patite occurs for sporadically Comment Fine-graine	l laminated within dol o throughout interval ts ed black soft octahed	fg omite carbonatite. Zircon o (~1% of interval). ral grains within apatite ba	CD ccurs concentrated in nds- do not streak red	thick apatite bands with pyrite. Fine grained medium-grained aggregates
		MAIN COMMENTS MINERALIZATION	Light-grey to beige dolo contained apatite and a Type Niobates % Pyrite %	omite carbonatite. A abundant zircon occu Value 0.25 1.75	b patite occurs for sporadically Comment Fine-graine	laminated within dol throughout interval ts ed black soft octahed rite occurs mostly co	fg omite carbonatite. Zircon o (~1% of interval). ral grains within apatite ba	CD ccurs concentrated in nds- do not streak red	thick apatite bands with pyrite. Fine grained medium-grained aggregates d - fersmite after pyrochlore?
		MAIN COMMENTS	Light-grey to beige dolo contained apatite and a Type Niobates %	omite carbonatite. A abundant zircon occu Value 0.25	patite occurs lur sporadically Comment Fine-graine Oxidized py	laminated within dol throughout interval ts ed black soft octahed vrite occurs mostly co	fg omite carbonatite. Zircon o (~1% of interval). ral grains within apatite ba	CD ccurs concentrated in nds- do not streak red	thick apatite bands with pyrite. Fine grained medium-grained aggregates d - fersmite after pyrochlore?
		MAIN COMMENTS MINERALIZATION	Light-grey to beige dolo contained apatite and a Type Niobates % Pyrite % Type	omite carbonatite. A obundant zircon occi Value 0.25 1.75 Value	patite occurs lur sporadically Comment Fine-graine Oxidized py Comment	laminated within dol throughout interval ts d black soft octahed rite occurs mostly co	fg omite carbonatite. Zircon o (~1% of interval). ral grains within apatite ba	CD ccurs concentrated in nds- do not streak red	thick apatite bands with pyrite. Fine grained medium-grained aggregates d - fersmite after pyrochlore?
		MAIN COMMENTS MINERALIZATION ALTERATION	Light-grey to beige dolo contained apatite and a Type Niobates % Pyrite % Type Oxidation % Calcite %	value 0.25 1.75 Value 50.00	patite occurs for sporadically Comment Fine-graine Oxidized py Comment Beige dolor	laminated within dol throughout interval ts d black soft octahed rite occurs mostly co ts nite mottling	fg omite carbonatite. Zircon o (~1% of interval). ral grains within apatite ba infined to laminae and apat	CD ccurs concentrated in nds- do not streak red	thick apatite bands with pyrite. Fine grained medium-grained aggregates d - fersmite after pyrochlore?
		MAIN COMMENTS MINERALIZATION	Light-grey to beige dolo contained apatite and a Type Niobates % Pyrite % Type Oxidation %	Value 0.25 1.75 Value 50.00	patite occurs for sporadically Comment Fine-graine Oxidized py Comment Beige dolor	laminated within dol throughout interval ts d black soft octahed rite occurs mostly co	fg omite carbonatite. Zircon o (~1% of interval). ral grains within apatite ba infined to laminae and apat	CD ccurs concentrated in nds- do not streak red tite bands in small agg	thick apatite bands with pyrite. Fine grained medium-grained aggregates d - fersmite after pyrochlore?
		MAIN COMMENTS MINERALIZATION ALTERATION	Light-grey to beige dolo contained apatite and a Type Niobates % Pyrite % Type Oxidation % Calcite % Type	value 0.25 1.75 Value 50.00 10.00 Intens	patite occurs lur sporadically Comment Fine-graine Oxidized py Comment Beige dolor Dark-browr	laminated within dol throughout interval ts d black soft octahed rite occurs mostly co ts nite mottling	fg omite carbonatite. Zircon o (~1% of interval). ral grains within apatite ba infined to laminae and apat	CD ccurs concentrated in nds- do not streak red tite bands in small agg	thick apatite bands with pyrite. Fine grained medium-grained aggregates d - fersmite after pyrochlore? gregates (<0.5 cm) and stringers
		MAIN COMMENTS MINERALIZATION ALTERATION	Light-grey to beige dolo contained apatite and a Type Niobates % Pyrite % Type Oxidation % Calcite % Type Veining %	value 0.25 1.75 Value 50.00 10.00 Intens weak	patite occurs lur sporadically Comment Fine-graine Oxidized py Comment Beige dolor Dark-browr	laminated within dol throughout interval ts d black soft octahed write occurs mostly co ts nite mottling CA°	fg omite carbonatite. Zircon of (~1% of interval). ral grains within apatite bainfined to laminae and apatite to laminae and apatite bainfined to laminae and apatit	CD ccurs concentrated in nds- do not streak red tite bands in small agg	thick apatite bands with pyrite. Fine grained medium-grained aggregates d - fersmite after pyrochlore? gregates (<0.5 cm) and stringers

Printed on 10/Feb/2011

GEOLOGY LOG

FROM 17.29	TO 26.83	ROCK CODE	glfgCD	=	Min Style g	Fabric I	Texture fg	Litho CD	Struct		
		MAIN COMMENTS	Same as above interval carbonatite. Zircon conc			n) sporadically sp	aced magnetite-apatite	cumulate bands. Band	ds compose ~ 10 % of interval. A	Apatite occurs weakly laminated within dolo	mite
		MINERALIZATION	Туре	Value	Comments						
			Magnetite %	5.00	Fine- to medium	grained aggrega	tes with apatite				
			Pyrite %	1.00	Oxidized fine-gra	ined pyrite occui	rs dominantly confined to	o thin laminae with ap	patite		
			Niobates %	0.50	Likely columbite	occurs with mag	netite				
		ALTERATION	Туре	Value	Comments						
			Oxidation %	50.00	Beige dolomite - ı	rust around mag	netite cumulates				
			Calcite %	5.00	Dark-brown mott	ling - generally f	follows laminae				
		STRUCTURE	Туре	Intens		CA°	Comments				
			Laminations %	moderate		15					
		MISCELLANEOUS	Zone	HCL	Ар	atite	Zircon				
			OX	W		20	0.5				

2010-029 Log by Ryan Kressall Date Hole ID

FROM 26.83	-	TO 31.92	ROCK CODE	blfgCD	=	Min Style b	Fabric I	Texture fg	Litho CD	Struct	
			MAIN COMMENTS	occurs dispersed in low	concentration withir	n dolomite carbonati	te. No zircon v		neddark-grey vein (~1.5	n band of apatite with visible fersmite. Be cm thick) crosscuts lamination at steep a	
		MINERALIZATION Type Value Comments									
				Niobates %	0.50	Fine-grained yello	w to d. grey fe	rsmite within apatite ban	nd		
				Pyrite %	0.50	Fine-grained oxidi	zed stringers f	follow orientation: comm	only associated with ph	nlogopite	
			ALTERATION	Туре	Value	Comments					
				Oxidation %	50.00	Beige to pink dolo	mite				
			STRUCTURE	Туре	Intens	С	A°	Comments			
				Veining %	moderate		85	Dark-grey dolomite (?) v	ein		
				Laminations %	weak		15				
			MISCELLANEOUS	Zone	HCL	Apa	atite	Zircon			
				OX	VW	7	.5	0			

2010-029 Log by Ryan Kressall Date Hole ID

FROM 31.92	TO - 38.04	ROCK CODE	nmiCD	=	Min Style n	Fabric m	Texture i	Litho CD	Struct			
		MAIN COMMENTS	Medium-grained white o	lolomite within fine	e-grained light-grey to	beige dolomit	te carbonatite. Apatite occ	urs dispersed throug	nout interval.			
		MINERALIZATION	Туре	Value	Comments							
			Pyrite %	0.50	Oxidized pyrie aggregates up to 0.5 cm							
		ALTERATION	Туре	Value	Comments							
			Oxidation %	30.00	Fine-grained beige dolomite within matrix							
		STRUCTURE										
		MISCELLANEOUS	Zone	HCL	Apati	ite	Zircon					
			OX	VW	5		0					
FROM 38.04	TO	ROCK CODE	blfgCD	=	Min Style	Fabric	Texture	Litho	Struct			
	- 42.23		_		Ь	ı	fg	CD				
	42.23			nite carbonatite. A	-	ı aminated with			gates to bands with abundant zircon, ox	idized pyrite and d. grey unknown.		
	- 42.23			mite carbonatite. A Value	-	I aminated with			gates to bands with abundant zircon, ox	idized pyrite and d. grey unknown.		
	- 42.23	MAIN COMMENTS	Light-grey to beige dolo		patite occurs weakly la			d. grey (~1.5 cm) aggra		idized pyrite and d. grey unknown.		
	- 42.23	MAIN COMMENTS	Light-grey to beige dolo	Value	patite occurs weakly la		iin dolomite and as small o	d. grey (~1.5 cm) aggra		idized pyrite and d. grey unknown.		
	- 42.23	MAIN COMMENTS MINERALIZATION	Light-grey to beige dolo Type Pyrite %	Value 0.50	patite occurs weakly la Comments Oxidized fine-graine	ed pyrite occui	iin dolomite and as small o	d. grey (~1.5 cm) aggra		idized pyrite and d. grey unknown.		
	- 42.23	MAIN COMMENTS MINERALIZATION	Light-grey to beige dolo Type Pyrite % Type	Value 0.50 Value	patite occurs weakly la Comments Oxidized fine-graine Comments	ed pyrite occur	iin dolomite and as small o	d. grey (~1.5 cm) aggra		idized pyrite and d. grey unknown.		
	- 42.23	MAIN COMMENTS MINERALIZATION ALTERATION	Light-grey to beige dolo Type Pyrite % Type Oxidation %	Value 0.50 Value 30.00	patite occurs weakly la Comments Oxidized fine-graine Comments Beige to pink dolom	ed pyrite occur	in dolomite and as small o	d. grey (~1.5 cm) aggra		idized pyrite and d. grey unknown.		
	- 42.23	MAIN COMMENTS MINERALIZATION ALTERATION	Type Pyrite % Type Oxidation % Type	Value 0.50 Value 30.00 Intens	patite occurs weakly la Comments Oxidized fine-graine Comments Beige to pink dolom	ed pyrite occur	in dolomite and as small o	d. grey (~1.5 cm) aggra		idized pyrite and d. grey unknown.		

Printed on 10/Feb/2011

Measurement unit: Metres (Unless otherwise specified)

2010-029 Log by Ryan Kressall Date Hole ID

FROM 42.23	TO - 44.58	ROCK CODE	blfgCD	=	Min Style b	Fabric I	Texture fg	Litho CD	Struct
		MAIN COMMENTS							occurs interstitial to magnetite-apatite aggregates. Bands compose ~ 30 % of additional and disseminated within dolomite carbonatite
		MINERALIZATION	Туре	Value	Comments				
			Magnetite %	25.00	Fine- to medium-gra	ined magneti	ite occurs aggregates wi	h apatite in bands	
			Niobates %	1.00	Columbite likely occu	ırs with magn	netite		
			Pyrite %	1.00	Oxidized pyrite occur	s concentrate	ed to thin laminae (<2.5	cm)	
		ALTERATION	Туре	Value	Comments				
			Oxidation %	40.00	Beige dolomite				
			Calcite %	2.50	Dark-brown mottling	Į.			
		STRUCTURE	Туре	Intens	CA°	' (Comments		
			Laminations %	moderate	45	V	aries beween 40 and 50) degrees	
		MISCELLANEOUS	Zone	HCL	Apatit	te	Zircon		
			OX	VW	17.5		0.5		

2010-029 Log by Ryan Kressall Date Hole ID

FROM 44.58	T0 - 47.58	ROCK CODE	blfgCD	=	Min Style b	Fabric I	Texture fg	Litho CD	Struct		
		MAIN COMMENTS			oonatite to locally inequig 5 % of interval . Zircon occ				thin dolomite carbonatite; sometir ved.	nes forming bands with dark gre	y dolomite:
		MINERALIZATION	Туре	Value	Comments						
			Pyrite %	1.50	Thin oxidized stringers						
		ALTERATION	Type Calcite %	Value 2.50	Comments Rare d. brown calcitize	d hand					
			Oxidation %	30.00	Beige dolomite - typica		pyrite stringers				
		STRUCTURE	Туре	Intens	CA°	Со	mments				
			Laminations %	moderate	30	Ste	epens up to 40 degree	?S			
		MISCELLANEOUS	Zone	HCL	Apatite		Zircon				
			OX	W	10		0.1				

2010-029 Log by Ryan Kressall Date Hole ID

FROM 47.58	TO - 60.59	ROCK CODE	bliCD	=	Min Style b	Fabric I	Texture i	Litho CD	Struct		
		MAIN COMMENTS					omite. Interval has been nated within laminated c	•	. Near highly oxidized and weathered zor ns are rare.	es, black altered phlogopite and	
		MINERALIZATION	Туре	Value	Comments						
			Pyrite %	1.25	Stringers and agg	regates accumula	te within laminated seg	ments			
		ALTERATION	Туре	Value	Comments						
			Oxidation %	75.00	Beige to red dolor	mite carbonatite -	concentrates at highly v	reathered fractures.			
			Amphibolite %	2.50	Small (<2.5 cm) d	. green clasts occu	ır clustered at ~59.8 m				
		STRUCTURE	Туре	Intens	(CA° C	omments				
			Laminations %	weak		75 Lo	ocally observed				
		MISCELLANEOUS	Zone	HCL	Ар	atite	Zircon				
			OX	W		5	0.1				

2010-029 Log by Ryan Kressall Date Hole ID

FROM 60.59	TO - 66.11	ROCK CODE	nmAMX	=	Min Style n	Fabric m	Texture	Litho AMX	Struct			
		MAIN COMMENTS	D. green clasts (20 to 2) fenite?). Apatite occurs		•			r dolomite is commo	on towards top of interval. Dolo	mite shows common c	ovoid texture (dolomitize	ed
		MINERALIZATION	Туре	Value	Comments							
			Pyrite %	0.75	Small oxidized aggreg	ates (<0.5 cm)	occur concentrated to	laminae and commo	on near fenite clasts			
		ALTERATION	Туре	Value	Comments							
			Amphibolite %	15.00	D. green clasts 20 to 2	5 cm - typically	highly oxidized					
			Oxidation %	50.00	Beige dolomite and ex	tensive red we	athering near fenite cla	asts				
		STRUCTURE	Туре	Intens	CA°	Coi	mments					
			Laminations %	weak	85	Gen	eral measurement; lar	nination distorts aro	ound fenite clasts			
					I		<u> </u>		<u> </u>	<u> </u>		
		MISCELLANEOUS	Zone	HCL	Apatite	2	Zircon					
			OX	W	20		0.75					
						,						

2010-029 Log by Ryan Kressall Date Hole ID

FROM 70 A 74.83 ROCK CODE gmfgCD = Min Style g m fg m											
MINERALIZATION Type Value Comments Pyrite % 1.00 Fine-grained oxidized pyrite occurs disseminated throughout interval. ALTERATION Type Value Comments Oxidation % 60.00 Beige dolomite Calcite % 10.00 Dark-brown mottling (calcitization) STRUCTURE Type Intens CA° Comments		ROCK CODE	gmfgCD	=	•				Struct		
ALTERATION Type Value Comments Oxidation % 60.00 Beige dolomite Calcite % 10.00 Dark-brown mottling (calcitization) STRUCTURE Type Intens CA° Comments		MAIN COMMENTS	Medium-grey to beige	massive to weakly lar	minated dolomite car	bonatite with un	icommon dark-grey agg	regates (<2.5 cm) con	tains apatite and abundant zircon (con	npose ~ 1.5 % of interval).	
ALTERATION Type Value Comments Oxidation % 60.00 Beige dolomite Calcite % 10.00 Dark-brown mottling (calcitization) STRUCTURE Type Intens CA° Comments		MINERALIZATION	Туре	Value	Comments						
Oxidation % 60.00 Beige dolomite Calcite % 10.00 Dark-brown mottling (calcitization) STRUCTURE Type Intens CA° Comments			Pyrite %	1.00	Fine-grained oxidiz	ed pyrite occurs	disseminated througho	ut interval.			
Calcite % 10.00 Dark-brown mottling (calcitization) STRUCTURE Type Intens CA° Comments		ALTERATION	Туре	Value	Comments						
STRUCTURE Type Intens CA° Comments			Oxidation %	60.00	Beige dolomite						
			Calcite %	10.00	Dark-brown mottlin	ng (calcitization)					
Laminations % very weak 40 Only locally observed		STRUCTURE	Туре	Intens	CA	۹° Co	omments				
			Laminations %	very weak	41	0 Or	nly locally observed				
MISCELLANEOUS Zone HCL Apatite Zircon		MISCELLANEOUS	Zone	HCL	Apat	tite	Zircon				
0X VW 2.5 0.1			OX	VW	2.5	5	0.1				

2010-029 Log by Ryan Kressall Date Hole ID

FROM 74.83	TO - 85.38	ROCK CODE	nlpCD	=	Min Style n	Fabric I	Texture p	Litho CD	Struct	
		MAIN COMMENTS	Light-grey to pink local dark-grey unknown mi						n. Phenocrysts consist of black altered phlogopite (dolomitization observed) and ry.	
		MINERALIZATION	Туре	Value	Comments					
			Niobates %	0.25	F. grained d. grey	potential fersmit	e observed within porp	hyry		
			Pyrite %	2.00	Oxidized pyrite a	ggregates occur as	ssociated with phenocr	ysts		
		ALTERATION	Туре	Value	Comments					
			Oxidation %	45.00	Beige to pink dol	omite				
			Calcite %	5.00	D. brown mottlin	g (calcitization)				
		STRUCTURE	Туре	Intens		CA° C	omments			
			Veining %	moderate		80 Se	econdary calcite along v	walls of fracture (~0.5 o	m thick)	
			Laminations %	moderate		45				
		MISCELLANEOUS	Zone	HCL	Ар	atite	Zircon			
			OX	W	1	12.5	0.5			

2010-029 Log by Ryan Kressall Date Hole ID

FROM 85.38	_	TO 90.85	ROCK CODE	nlcCD	=	Min Style n	Fabric I	Texture c	Litho CD	Struct	
			MAIN COMMENTS	Light-grey dolomite carl commonly with abunda		ctensively calcitized	d to dark-brow	n. Numerous secondary ca	lcite veins crosscut fab	ic (prismatic calcite along walls of fractures). Apatite occurs strongly laminated,	
			MINERALIZATION	Туре	Value	Comments					_
				Pyrite %	1.00	Oxidized aggrega	ites observed w	vithin less altered laminate	ed dolomite carbonatite		
			ALTERATION	Туре	Value	Comments					
				Calcite %	70.00	Dark-brown calci	tization - follov	ws laminae and replaces e	ntire segments up to 60	cm	
				Oxidation %	20.00	Beige dolomite -	follows lamina	tion and generally surrour	nds oxidized pyrite aggr	gates	
			STRUCTURE	Туре	Intens		CA°	Comments			-
				Veining %	strong		80	~0.5 cm secondary calcit	e vein		
				Laminations %	strong		50				
			MISCELLANEOUS	Zone	HCL	Ар	atite	Zircon			
				OX	S		5	0.25			
					-						

2010-029 Log by Ryan Kressall Date Hole ID

FROM 90.85	TO - 107.08	ROCK CODE	glfgCD	=	Min Style g	Fabric I	Texture fg	Litho CD	Struct
		MAIN COMMENTS	Medium-grey to beige la also occurs as white lam			ommon dark-gre	y aggregates (<2.5 cm) co	ontains apatite and a	bundant zircon and oxidized pyrte. Aggregates compose ~ 1% of interval. Apatite
		MINERALIZATION	Туре	Value	Comments				
			Pyrite %	2.00	Most commonly as	oxidized aggreg	ates up to 0.5 cm - Rare a	aggregates up to 2.5	cm
		ALTERATION	Туре	Value	Comments				
			Calcite %	20.00	Dark-brown mottlir	ng (calcitization	- extensive between 103	.30 m and 105.61 m	
			Oxidation %	50.00	Beige dolomite - fo	llows laminatio	n and generally forms aro	und oxidized pyrite a	ggregates
		STRUCTURE	Туре	Intens	CA	۸° C	omments		
			Veining %	moderate	50	0 V	eins of soft white mineral	l (fine-grained) at 50	-60 degrees - fluoresces white -
			Laminations %	moderate	5(0 60	degrees at top of interva	al; shallows to 40 de	grees towards end of interval
		MISCELLANEOUS	Zone	HCL	Apat	tite	Zircon		
			OX	W	5		0.25		
					1				

2010-029 Log by Ryan Kressall Date Hole ID

FROM 107.08	-	TO 112.26	ROCK CODE	blpCD	=	Min Style b	Fabric I	Texture p	Litho CD	Struct	
			MAIN COMMENTS					o beige dolomite. Pale-pii gated to weakly laminated		observed in white dolomite bands (up to 15 cm) with abundant phlogopite	
			MINERALIZATION	Туре	Value	Comments					
				Pyrite %	1.00	Oxidized aggrega	ates up to 0.5 cr	n			
				Niobates %	0.50	Fine-grained fers	smite occurs dis	seminated within white d	olomite bands		
			ALTERATION	Туре	Value	Comments					
				Calcite %	2.50	Minor dark-brow	n mottling (cald	ciization)			
				Oxidation %	50.00	Beige dolomite					
			STRUCTURE	Туре	Intens		CA°	Comments			
				Laminations %	weak		50				
			MISCELLANEOUS	Zone	HCL	Aŗ	oatite	Zircon			
				OX	VW		5	0.1			

2010-029 Log by Ryan Kressall Date Hole ID

FROM 112.26	-	TO 121.25	ROCK CODE	nlfgCD	=	Min Style n	Fabric I	Texture fg	Litho CD	Struct	
			MAIN COMMENTS							ghout interval. Black altered phogopite veining (<1 cm) occurs between 118.20 and logopite veins. Apatite laminations also occur within calcitized segments. No	
			MINERALIZATION	Туре	Value	Comments					
				Pyrite %	0.50	Generally small	oxidized aggrega	ntes (<0.5 cm) within dolor	nite carbonatite - rar	e up to 2.5 cm aggregates	
			ALTERATION	Туре	Value	Comments					
				Calcite %	25.00	D. brown mottli	ng (calcitization)				
				Oxidation %	45.00	Beige dolomite					
				Amphibolite %	2.50	Uncommon blui	sh-grey clasts o	cur clustered at ~118.0 m a	and at ~119.7 m		
							_	_			
			STRUCTURE	Туре	Intens		CA°	Comments			
				Laminations %	moderate		60	Generally steep but shall	ows to as low as 45 do	egrees locally	
				Veining %	weak		45	Phlogopite veining conco	rdant to lamination		
				_							
			MISCELLANEOUS	Zone	HCL	A	patite	Zircon			
				OX	М		5	0.5			

Printed on 10/Feb/2011

GEOLOGY LOG

FROM TO 121.25 - 130.49 ROCK CODE nIAMX = Min Style n I I Texture Litho AMX MAIN COMMENTS Light-grey to beige dominantly laminated dolomite carbonatite. Towards top of interval, dolomite is more massive and inequigranular. Apatite occur a lesser extent around fringes of fenite clasts. Zircon concentrates with fenite clasts MINERALIZATION Type Value Comments ALTERATION Type Value Comments Amphibolite % 30.00 Greyish blue clasts (5 to 20 cm) extensively crosscut by dolomite Oxidation % 60.00 Beige dolomite STRUCTURE Type Intens CA* Comments Laminations % moderate 30 Strengthens towarda bottom of interva. MISCELLANEOUS Zone HCL Apatite Zircon OX VW 10 0.25	s moderately laminated within dolomite carbonatite and to
ALTERATION Type Value Comments Pyrite % 1.50 Oxidized aggregates up to 0.5 mm occur locally clustered throughout interval ALTERATION Type Value Comments Amphibolite % 30.00 Greyish blue clasts (5 to 20 cm) extensively crosscut by dolomite Oxidation % 60.00 Beige dolomite STRUCTURE Type Intens CA° Comments Laminations % moderate 30 Strengthens towarda bottom of interva. MISCELLANEOUS Zone HCL Apatite Zircon	s moderately laminated within dolomite carbonatite and to
ALTERATION Type Value Comments Amphibolite % 30.00 Greyish blue clasts (5 to 20 cm) extensively crosscut by dolomite Oxidation % 60.00 Beige dolomite Type Intens CA° Comments Laminations % moderate Apatite Zircon	
ALTERATION Type Amphibolite % 30.00 Greyish blue clasts (5 to 20 cm) extensively crosscut by dolomite Oxidation % 60.00 Beige dolomite STRUCTURE Type Intens CA° Comments Laminations % moderate 30 Strengthens towarda bottom of interva. MISCELLANEOUS Zone HCL Apatite Zircon	
Amphibolite % 30.00 Greyish blue clasts (5 to 20 cm) extensively crosscut by dolomite Oxidation % 60.00 Beige dolomite Type Intens CA° Comments Laminations % moderate 30 Strengthens towarda bottom of interva. MISCELLANEOUS Zone HCL Apatite Zircon	
Amphibolite % 30.00 Greyish blue clasts (5 to 20 cm) extensively crosscut by dolomite Oxidation % 60.00 Beige dolomite Type Intens CA° Comments Laminations % moderate 30 Strengthens towarda bottom of interva. MISCELLANEOUS Zone HCL Apatite Zircon	
STRUCTURE Type Intens CA° Comments Laminations % moderate 30 Strengthens towarda bottom of interva. MISCELLANEOUS Zone HCL Apatite Zircon	
Laminations % moderate 30 Strengthens towarda bottom of interva. MISCELLANEOUS Zone HCL Apatite Zircon	
Laminations % moderate 30 Strengthens towarda bottom of interva. MISCELLANEOUS Zone HCL Apatite Zircon	
FROM TO 130.49 - 139.94 ROCK CODE nmiCD = Min Style Fabric Texture Litho Struct n m i CD	
MAIN COMMENTS Light-grey dolomite carbonatite with localized zones of no oxidiation (fresh pyrite) and zones of oxidation and calcitization. The bands of alteration a occurs within a fine-grained groundmass. Apatite occurs as aggregates up to 15 cm. No zircon observed	re on a scale of ~10 to 30 cm. Medium-grained dolomite
MINERALIZATION Type Value Comments	
Pyrite % 1.75 Common aggregates up to 0.25 mm - fresh to locally oxidized	
ALTERATION Type Value Comments	
Oxidation % 20.00 Locally concentrated	
Calcite % 20.00 Dark-brown bands (~10-30 cm)	
STRUCTURE	
MISCELLANEOUS Zone HCL Apatite Zircon	
M 10 0	

2010-029 Log by Ryan Kressall Date Hole ID

FROM 139.94	T0 - 151.04	ROCK CODE	nIfCD	=	Min Style I	Fabric I	Texture f	Litho CD	Struct		
		MAIN COMMENTS			omite carbonatite, locally i gopite occurs at ~151.5 m:					Apatite occurs aggregated to weak	ly laminated. A
		MINERALIZATION	Туре	Value	Comments						
			Pyrite %	0.50	Aggregates up to 0.5 cr	m					
		ALTERATION	Туре	Value	Comments						
			Calcite %	5.00	Uncommon dark-brown	n calcitizatior	n				
			Oxidation %	80.00	Beige to pink dolomite						
		STRUCTURE	Туре	Intens	CA°	Co	omments				
			Laminations %	weak	15	Sh	allow core angle: 10 - 2	O degrees			
		MISCELLANEOUS	Zone	HCL	Apatite		Zircon				
			OX	W	5		0.1				

2010-029 Log by Ryan Kressall Date Hole ID

FROM 151.04	TO - 154.60	ROCK CODE	nmiAMX	=	Min Style n	Fabric m	Texture i	Litho AMX	Struct		
		MAIN COMMENTS	Clasts (10 to 30 cm) of to carbonatite. Calcitization						common aggregates within fenite clasts a nite carbonaitte.	nd clots/veins within dolomite	
		MINERALIZATION	Туре	Value	Comments						
			Pyrite %	0.50	Rare oxidized aggregat	tes up to 0.5 m	nm				
		ALTERATION	Type Oxidation %	Value 40.00	Comments Reige dolomite - conce	entrates mostl	y to fractured dolomite	towards end of inter	val and groundmass to inequigranular		
			Silica %	2.50			dium-grained dolomite		Tan ana Sicanamass to mequisianala		
			Amphibolite %	30.00	Bluish-grey fenite						
		STRUCTURE									
		MISCELLANEOUS	Zone	HCL	Apatite	9	Zircon				
			OX	М	5		0.1				

FROM 154.60	-	TO 172.47	ROCK CODE	nxiCD	=	Min Style n	Fabric ×	Texture i	Litho CD	Struct
			MAIN COMMENTS	brecciated towards end greyish blue dolomite	d of interval. Apatite observed in brecciate	occurs as large fraced/fractured clasts.	ctured clasts and we	eak laminations. Dark-	brown calcitization con	grey dolomite groundmass. Dolomite becomes increases fractured to locally icentrates to groundmass of inequigranular dolomite and matrix to breccia. Minor m greenish blue bands or clasts occur between 166.54 and 167.07
			MINERALIZATION	Туре	Value	Comments				
				Pyrite %	1.00	Oxidized aggreg	ates up to 1 cm			
			ALTERATION	Туре	Value	Comments				
				Oxidation %	50.00	Beige dolomite				
				Calcite %	50.00	Dark-brown cald	itization of groundr	mass (inequigranular) a	and matrix (breccia)	
			STRUCTURE	Туре	Intens		CA° Co	omments		
				Veining %	moderate	e	30 Me	edium-green fine-gree	n calcitic vein (~5 cm) a	at 154.95 m
			MISCELLANEOUS	Zone	HCL	Α	patite	Zircon		
				OX	VW		15	0		

2010-029 Log by Ryan Kressall Date Hole ID

FROM 172.47	ro 3.52	ROCK CODE	nliCD	=	Min Style n	Fabric I	Texture i	Litho CD	Struct
		MAIN COMMENTS				_			val has been largely calcitized - follows lamination and of groundmass to mediumongly laminated. No zircon observed.
		MINERALIZATION	Туре	Value	Comments				
			Pyrite %	0.75	Aggregates up to	0.5 cm - gene	rally oxidized exept in pris	stine 188.14-189.37 inter	val
		ALTERATION	Type Oxidation %	Value 25.00	Comments Beige dolomite				
			Calcite %	70.00	Dark-brown calci	tization - exte	nsive, generally follows la	minationj	
		STRUCTURE	Туре	Intens		CA°	Comments		
			Laminations %	weak		10	Strong towards top of i	nterval (where measure	d) - becomes weak to massive towards bottom of interval
		MISCELLANEOUS	Zone	HCL	Aŗ	oatite	Zircon		
			OX			10	0		

2010-029 Log by Ryan Kressall Date Hole ID

FROM 193.52 -	TO 206.71	ROCK CODE	bliCD	=	Min Style b	Fabric I	Texture i	Litho CD	Struct	
		MAIN COMMENTS		nineralization (?) ha					of high calcitization become more common to ellow clay like matrix. Bands are 2.5 to 30 cm.	
		MINERALIZATION	Type	Value	Comments					
			Pyrite %	1.25	Occurs as oxidized a	aggregates up to	o 0.5 cm occuring in sma	II clusters in dolomite		
		ALTERATION	Type Oxidation %	Value 30.00	Comments Beige dolomite					
			Calcite %	5.00	Dark-brwon calcitiz	ation concentra	ted toward medium-gra	ined bands		
		STRUCTURE	Type Laminations %	Intens moderate	CA		omments			
			Laiiiiiatioiis 70	moderate	20	U				
		MISCELLANEOUS	Zone	HCL	Apat	tite	Zircon			
			OX	М	2.5	5	0			

Log by	Duan Krassall	Data	11-		2010-029
Log by	Ryan Kressall	Date	HC	ole ID	2010-025

FROM 206.71	TO 215.85	ROCK CODE	nxcCD	=	Min Style n	Fabric ×	Texture c	Litho CD	Struct	
		MAIN COMMENTS							cm in diameter. Matrix of breccia is dark-brown calcitization (lly within laminated segments.	reacts to HCI).
		MINERALIZATION	Туре	Value	Comments					
			Pyrite %	0.50	Irregular oxidized	d aggregates up to	0.5 cm			
		ALTERATION	Туре	Value	Comments					
			Oxidation %	50.00	Beige dolomite					
			Calcite %	50.00	Dark-brown calci	tization - matrix to	breccia and groundmas	s to medium-graine	d dolomite - irregular mottles	
		STRUCTURE	Туре	Intens		CA° C	omments			
			Laminations %	weak		20 Pr	esent towards top of int	erval.		
		MISCELLANEOUS	Zone	HCL	Ар	atite	Zircon			
			OX			1.5	0.1			

End of Hole End of Hole

2010-030 Hole ID

GENERAL INFORMATION								
Coordinate System	Easting	Northing	Elevation	Collar Azimuth	Collar Dip			
ST. PL Nad 83	454816.99	6256466.95	1763.47	30.00	-45.00			
Start Depth	Final Depth	Proposed Depth	Final Length	Rig	Area			
0.00	213.41		213.41		Central 3			
Operator	Year							
Taseko	2010							

PROFESSIONAL / TEI	
PRIJEPSSILINAL / IPI	HIVILIAN

	Name	Start Date	End Date
Collar Surveyor		29/Aug/2010	
Geology Logged By	Ryan Kressall		
Specific Gravity By	Steve Dumma		
Geotech Logged By	Ryan Libke	29/Aug/2010	
Drill Contractor		20/Aug/2010	21/Aug/2010

		R۱	

DRILLING BIT SIZE							
Bit Size	From	То	Length				
NW (Casing)	0.00	3.05	3.05				
NQ	3.05	213.41	213.41				

	DOWN HOLE SURVEY									
Depth	Azimuth	Dip	Temp °C	Mag.	Roll	Method				
39.62	31.90	-47.60	11.7	5805	272.1	Reflex EZ-shot				
112.78	31.90	-47.60	11.7	5805	272.1	Reflex EZ-shot				
213.36	31.90	-47.60	11.7	5805	272.1	Reflex EZ-shot				

GEOLOGY LEGEND

2010-030 Hole ID

ROCK CODE

MIN STYLE						
Abbr.	Description					
n	barren					
d	disseminated					
g	aggregated					
b	banded					
b	banded					

	FABRIC
Abbr.	Description
Х	brecciated
ı	laminated
f	decalcified
V	veined
р	porphyritic
m	massive

	TEXTURE
Abbr.	Description
f	decalcified
р	porphyritic
V	veined

LITHO									
Abbr.	Description								
CASE	Casing								
OVBN	Overburden								
OXID	Oxide								
AM	Amphibolite								
CC	Calcite Carbonatite								
CD	Dolomite Carbonatite								
CCCD	Mixed Calcite and Dolomite Carbonatite								
AMX	Amphibole and Mixed Carbonatite								
CM	Carbonatite Cumulate								

STRUCT									
Abbr.	Description								
Z	fault								
е	strained								
S	shear zone								
У	dyke								

MISCELLANEOUS:

	ZONE
Abbr.	Description
OX	Oxide
S	Supergene
Н	Hypogene

	HCL
Abbr.	Description
VW	very weak
W	weak
М	moderate
S	strong
VS	very strong

2010-030 Log by Ryan Kressall Date Hole ID

FROM 0.00	TO 3.05	ROCK CODE	CASE	=	Min Style Fabric	Texture	Litho CASE	Struct	
		MAIN COMMENTS	No rock.						
		MINERALIZATION							
		ALTERATION							
		STRUCTURE							
		MISCELLANEOUS	Zone	HCL	Apatite	Zircon			
FROM 3.05	TO 3.67	ROCK CODE	nmiCD	=	Min Style Fabric	Texture i	Litho CD	Struct	
		MAIN COMMENTS	Talus composed domin	antly of massive ligh	t-grey dolomite carbonatite. Tal	us cotais variable apatite p	proportion, 1 to 20 %. No z	ircon observed though.	
		MINERALIZATION	Туре	Value	Comments				
			Pyrite %	1.00	Dissemiated fine-grained oxid	ized pyrite			
		ALTERATION	Туре	Value	Comments				
			Oxidation %	30.00	Beige dolomite				
		STRUCTURE							
		STRUCTURE MISCELLANEOUS	Zone	HCL	Apatite	Zircon			

Printed on 10/Feb/2011

2010-030 Log by Ryan Kressall Date Hole ID

ROCK CODE 8 NOCK CODE 9 Nock CODE 1 1.19 NAIN COMMENTS Highly fragmented dolomite carboatite. Interval is locally variable betwee fine- to medium-grained inequigraular to fine-grained on a 10s cm scale. Uncommon localized phenocrysts consist of black altered phlogopite. No zircon observed. MINERALIZATION Type Value Comments Pyrite % 2.00 Common oxidized aggregates up to 1 cm; rare fresh aggregate ALTERATION Type Value Comments Calcite % 1.00 Occurs as d. brown calcitized veins Oxidation % MISCELLANEOUS Type Intens CA* Comments Veining % moderate 40 Dark-brow calcitized veins occur at 40 ad 60 degrees Laminations % moderate 25 Varies between 20 ad 30 degrees MISCELLANEOUS ABAITE Apatite Zircon OX VW 7.5 O											
philogopite. Apatite form laminae (up to 5 cm) with d. grey dolomite (fluoresces dark purple) and occasional altered phlogopite. No zircon observed. MINERALIZATION Type Value Comments Pyrite % 2.00 Common oxidized aggregates up to 1 cm; rare fresh aggregate ALTERATION Type Value Comments Calcite % 1.00 Occurs as d. brown calcitized veins Oxidation % 60.00 Beige dolomite STRUCTURE Type Intens CA° Comments Veining % moderate 40 Dark-brow calcitized veins occur at 40 ad 60 degrees Laminations % moderate 25 Varies between 20 ad 30 degrees MISCELLANEOUS Zone HCL Apatite Zircon		ROCK CODE	bliCD	=	Min Style b	Fabric I	Texture i		Struct		
ALTERATION Type Value Comments Calcite % 1.00 Occurs as d. brown calcitized veins Oxidation % 60.00 Beige dolomite Type Intens CA° Comments Veining % moderate 40 Dark-brow calcitized veins occur at 40 ad 60 degrees Laminations % moderate 25 Varies between 20 ad 30 degrees MISCELLANEOUS Zone HCL Apatite Zircon		MAIN COMMENTS									
ALTERATION Type Value Comments Calcite % 1.00 Occurs as d. brown calcitized veins Oxidation % 60.00 Beige dolomite STRUCTURE Type Intens CA° Comments Veining % moderate 40 Dark-brow calcitized veins occur at 40 ad 60 degrees Laminations % moderate 25 Varies between 20 ad 30 degrees MISCELLANEOUS Zone HCL Apatite Zircon		MINERALIZATION	Туре	Value	Comments						
Calcite % 1.00 Occurs as d. brown calcitized veins Oxidation % 60.00 Beige dolomite Type Intens CA° Comments Veining % moderate 40 Dark-brow calcitized veins occur at 40 ad 60 degrees Laminations % moderate 25 Varies between 20 ad 30 degrees MISCELLANEOUS Zone HCL Apatite Zircon			Pyrite %	2.00	Common oxidized aggregates up to 1 cm; rare fresh aggregate						
STRUCTURE Type Intens CA° Comments Veining % moderate 40 Dark-brow calcitized veins occur at 40 ad 60 degrees Laminations % moderate 25 Varies between 20 ad 30 degrees MISCELLANEOUS Zone HCL Apatite Zircon		ALTERATION	Туре	Value	Comments						
STRUCTURE Type Intens CA° Comments Veining % moderate 40 Dark-brow calcitized veins occur at 40 ad 60 degrees Laminations % moderate 25 Varies between 20 ad 30 degrees MISCELLANEOUS Zone HCL Apatite Zircon			Calcite %	1.00	Occurs as d. brown c	alcitized veins					
Veining % moderate 40 Dark-brow calcitized veins occur at 40 ad 60 degrees Laminations % moderate 25 Varies between 20 ad 30 degrees MISCELLANEOUS Zone HCL Apatite Zircon			Oxidation %	60.00	Beige dolomite						
Laminations % moderate 25 Varies between 20 ad 30 degrees MISCELLANEOUS Zone HCL Apatite Zircon		STRUCTURE	Туре	Intens	CA	° Co	omments				
MISCELLANEOUS Zone HCL Apatite Zircon			Veining %	moderate	40	Da	rk-brow calcitized veins	occur at 40 ad 60 de	grees		
			Laminations %	moderate	e 25 Varies between 20 ad 30 degrees						
		MISCELLANEOUS	Zone	HCL	Apati	ite	Zircon				
			OX	VW			0				

2010-030 Log by Ryan Kressall Date Hole ID

FROM 11.19	TO - 26.33	ROCK CODE	glfgCD	=	Min Style g	Fabric I	Texture fg	Litho CD	Struct			
		MAIN COMMENTS		and d. grey apatite-	bearing clasts (dolo				earing bands (up to 5 cm) as previous interval. Interval also contains magnetite- sed ~1% of interval. D. grey clasts compose ~1.5 %Apatite also occurs as thin			
		MINERALIZATION	Туре	Value	Comments							
			Niobates %	0.25	Black fine-graine	ack fine-grained columbite (?) observed along fringes of bands						
			Magnetite %	0.50	Medium-grained	Medium-grained magnetite occurs aggregated with apatite						
			Pyrite %	1.25	Very-fine grained pyrite occurs dissemination; Aggregates and stringers up to 0.5 cm occur concentrated locally							
		ALTERATION	Туре	Value	Comments							
			Oxidation %	70.00	Beige to pink oxid	diation of dolomite						
		STRUCTURE	Туре	Intens	CA°		mments					
			Laminations %	moderate		15 Vai	ries between 10 and 20 (degrees				
		MISCELLANEOUS	Zone	HCL	Ар	atite	Zircon					
			OX	VW		15	0.25					

2010-030 Log by Ryan Kressall Date Hole ID

FROM 26.33 -	TO 29.43	ROCK CODE	blfgCD	=	Min Style b	Fabric I	Texture fg	Litho CD	Struct		
		MAIN COMMENTS	Laminated dolomite car cm) within dolomite car		cm bands of magn	netite-apatite cui	mulate. Zircon concentra	tes at contact of cun	nulate band with dolomite vein.	. Apatite occurs as thin d. grey lamin:	ations (< 1.5
		MINERALIZATION	Туре	Value	Comments						
			Niobates %	1.00	Likely fine-grained	d columbite occu					
			Magnetite %	5.00	Medium-grained n	magnetite aggreg					
			Pyrite %	0.50	Form small aggregates and stringers (<0.5 cm) - often weathered out - leaving small pits						
		ALTERATION									
		STRUCTURE	Туре	Intens	CA°		Comments				
			Veining %	weak	20		1edium-grained dolomite	vein (~2 cm) crosscu	ts cumulate band		
			Laminations %	moderate		20					
		MISCELLANEOUS	Zone	HCL	Apa	atite	Zircon				
			OX	VW	17	7.5	0.5				

Printed on 10/Feb/2011

GEOLOGY LOG

2010-030 Log by Ryan Kressall Date Hole ID

ridscho / till ics	COR	PORATION							
FROM TO 29.43 - 37.88	ROCK CODE	blfgCD	=	Min Style b	Fabric I	Texture fg	Litho CD	Struct	
	MAIN COMMENTS							lack altered phlogopite and commo Fersmite occurs at ~36.9 m.	only associated with thin (<1 cm) apatite
	MINERALIZATION	Туре	Value	Comments					
		Niobates %	0.25	Suspect grey fi	ne-grained fersn	nite observed in thick apat	ite band with abundar	nt zircon and oxidized pyrite	
		Pyrite %	1.75	Generally occur	as fine-grained	disseminations associated	d with banding; one lar	rge (~3.5 cm diameter) oxidized agg	gregate occurs at ~36.65 m
	ALTERATION								
	7.2.2								
	STRUCTURE	Туре	Intens		CA°	Comments			
		Laminations %	moderate		20				
	MISCELLANEOUS	Zone	HCL	Д	patite	Zircon			
		OX	VW		7.5	0.25			
FROM TO 37.88 - 45.07	ROCK CODE	bmiCD	=	Min Style b	Fabric m	Texture i	Litho CD	Struct	
	MAIN COMMENTS	Massive to weakly lamin	nated mottled light-	grey to beige dolo	omite. Apatite od	ccurs dispersed in massive	dolomite and as rare o	d. grey bands (~5 cm) in locally lam	inated dolomite.
	MINERALIZATION	Туре	Value	Comments					
		Pyrite %	1.00	Form aggregate	es up to 0.5 cm a	and small stringers confine	d to laminations		
		Niobates %	0.10	Suspect grey fe	rsmite in rare d.	grey bands			
	ALTERATION	Туре	Value	Comments					
		Oxidation %	35.00		- follows lamina	ations where present			
	STRUCTURE	Туре	Intens		CA°	Comments			
		Laminations %	weak		5	Locally present at low ar	ngle - 5 to 10 degrees		
	MISCELLANEOUS	Zone	HCL	Δ	patite	Zircon			

0

5

VW

OX

2010-030 Log by Ryan Kressall Date Hole ID

FROM 45.07	TO - 64.02	ROCK CODE	bliCD	=	Min Style b	Fabric I	Texture i	Litho CD	Struct
		MAIN COMMENTS	Light-grey laminated to bands cotain visible fin					terval. Bands are very	fine- to fine-grained composed dominantly of apatite (observed with UV). Most
		MINERALIZATION	Туре	Value	Comments				
			Pyrite %	1.25	Fine-grained pyrit	e (fresh to oxidiz	ed) occur commonly with	h apatite bands; oxidi:	zed aggregates up to 2.5 mm occur in laminated dolomite
			Niobates %	0.50	Yellow to grey in c	olour, grainy text	ture occurs in zircon-rich	apatite grey bands - i	dentified as fersmite
		ALTERATION	Туре	Value	Comments				
			Oxidation %	40.00	Beige dolomite - o	xidiation follows	lamination		
		STRUCTURE	Туре	Intens	C	A° C	omments		
			Laminations %	moderate		20			
		MISCELLANEOUS	Zone	HCL	Apa	itite	Zircon		
			OX	VW	1	0	0.75		

2010-030 Log by Ryan Kressall Date Hole ID

TO - 66.82	ROCK CODE	gmCD	=	Min Style g	Fabric m	Texture	Litho CD	Struct		
	MAIN COMMENTS							carbonatite with visible pale-pink fersn	nite. Aggregates compose ~20 % of	
	MINERALIZATION	Туре	Value	Comments						
		Niobates %	0.75	Pale pink fine-graine	ale pink fine-grained fersmite observed in apatite aggregates					
		Pyrite %	1.50	Locally concentrated	Locally concentrated oxidized aggregates up to 1 cm.					
	ALTERATION									
	STRUCTURE	Туре	Intens	CA°		mments				
		Laminations %	weak	20	On	ly locally observed - cros	s-lamination with 40	O degrees core angle at ~66.65 m		
	MISCELLANEOUS	Zone	HCL	Apati	te	Zircon				
				12.5		0				
		- 66.82 MAIN COMMENTS MINERALIZATION ALTERATION STRUCTURE	MAIN COMMENTS Apatite forms aggregate interval. Laminations ap MINERALIZATION Type Niobates % Pyrite % ALTERATION STRUCTURE Type Laminations %	MAIN COMMENTS Apatite forms aggregates (up to 10 cm) with interval. Laminations appear to cross at ~66 MINERALIZATION Type Value Niobates % 0.75 Pyrite % 1.50 ALTERATION STRUCTURE Type Intens Laminations % weak	ALTERATION STRUCTURE Type Intens Type Intens CA Laminations % Weak MISCELLANEOUS Apatite forms aggregates (up to 10 cm) with d. grey dolomite within interval. Laminations appear to cross at ~66.65 m. Interval become comments Niobates % 0.75 Pale pink fine-graine Pyrite % 1.50 Locally concentrated Laminations % Weak 20	MAIN COMMENTS Apatite forms aggregates (up to 10 cm) with d. grey dolomite within massive to w interval. Laminations appear to cross at ~66.65 m. Interval becomes progressivly roughly rough	Apatite forms aggregates (up to 10 cm) with d. grey dolomite within massive to weakly laminated light-grinterval. Laminations appear to cross at ~66.65 m. Interval becomes progressivly more oxidized further do MINERALIZATION Type Value Comments Niobates % 0.75 Pale pink fine-grained fersmite observed in apatite aggregate Pyrite % 1.50 Locally concentrated oxidized aggregates up to 1 cm. ALTERATION STRUCTURE Type Intens CA° Comments Laminations % weak 20 Only locally observed - cross MISCELLANEOUS Zone HCL Apatite Zircon	Apatite forms aggregates (up to 10 cm) with d. grey dolomite within massive to weakly laminated light-grey to beige dolomite interval. Laminations appear to cross at ~66.65 m. Interval becomes progressivly more oxidized further down the interval. MINERALIZATION Type Value Comments Niobates % 0.75 Pale pink fine-grained fersmite observed in apatite aggregates Pyrite % 1.50 Locally concentrated oxidized aggregates up to 1 cm. ALTERATION STRUCTURE Type Intens CA° Comments Laminations % weak 20 Only locally observed - cross-lamination with 4. MISCELLANEOUS Zone HCL Apatite Zircon	Apatite forms aggregates (up to 10 cm) with d. grey dolomite within massive to weakly laminated light-grey to beige dolomite carbonatite with visible pale-pink fersh interval. Laminations appear to cross at ~66.65 m. Interval becomes progressivly more oxidized further down the interval. MINERALIZATION Type Value Comments Niobates % 0.75 Pale pink fine-grained fersmite observed in apatite aggregates Pyrite % 1.50 Locally concentrated oxidized aggregates up to 1 cm. ALTERATION STRUCTURE Type Intens CA* Comments Laminations % weak 20 Only locally observed - cross-lamination with 40 degrees core angle at ~66.65 m MISCELLANEOUS Zone HCL Apatite Zircon	

2010-030 Log by Ryan Kressall Date Hole ID

TO - 82.04	ROCK CODE	blfCD	=	Min Style b	Fabric I	Texture f	Litho CD	Struct
	MAIN COMMENTS	cm) are comprised of apa dolomite (observed near	atite + d.grey unkno mgt band).	own + pyrite or apatite	+ phlogopite (al	tered) with common zir	con. Single magnetit	e-apatite band occurs at ~71.65 m. Apatite also occurs as locallized swirls in
	MINERALIZATION	Туре	Value	Comments				
		Pyrite %	1.50	Oxidized pyrite form	n aggregates up	to 1 cm - a large concent	tration of pyrite occu	rs at the end of the interval where the lamination steepens
		Magnetite %	1.00	Single band of aggr	egated medium-	grained magnetite with	apatite	
	ALTERATION	Туре	Value	Comments				
		Oxidation %	60.00	Beige dolomite; pin	k dolomite in las	t 70 cm of interval		
	STRUCTURE	Туре	Intens	CA	v° Co	omments		
		Laminations %	moderate	30) Va	ries between 20 and 40	degrees; steepens in	last 80 cm to 65 degrees
	MISCELLANEOUS	Zone	HCL	Apat	ite	Zircon		
		OX	VW	10		0.25		
		MAIN COMMENTS MINERALIZATION ALTERATION STRUCTURE	MAIN COMMENTS Light-grey laminated do cm) are comprised of ap dolomite (observed near Laminations steepens to MINERALIZATION Type Pyrite % Magnetite % ALTERATION Type Oxidation % STRUCTURE Type Laminations % MISCELLANEOUS Zone	MAIN COMMENTS Light-grey laminated dolomite carbonatite cm) are comprised of apatite + d.grey unknown dolomite (observed near mgt band). Laminations steepens towards end of intensional magnetite with the state of the state o	MAIN COMMENTS Light-grey laminated dolomite carbonatite has been oxidized and cm) are comprised of apatite + d.grey unknown + pyrite or apatite dolomite (observed near mgt band). Laminations steepens towards end of interval with abundant apatite % MINERALIZATION Type Value Comments Pyrite % 1.50 Oxidized pyrite form Magnetite % 1.00 Single band of aggr ALTERATION Type Value Comments Oxidation % 60.00 Beige dolomite; pin STRUCTURE Type Intens CA Laminations % moderate 30 MISCELLANEOUS Zone HCL Apat	MAIN COMMENTS Light-grey laminated dolomite carbonatite has been oxidized and weathered (dec cm) are comprised of apatite + d.grey unknown + pyrite or apatite + phlogopite (al dolomite (observed near mgt band)). Laminations steepens towards end of interval with abundant apatite laminae an MINERALIZATION Type Value Comments Pyrite % 1.50 Oxidized pyrite form aggregates up Magnetite % 1.00 Single band of aggregated medium- Oxidation % Oxidation % 60.00 Beige dolomite; pink dolomite in las STRUCTURE Type Intens CA° Co Laminations % moderate 30 Va MISCELLANEOUS Zone HCL Apatite	MAIN COMMENTS Light-grey laminated dolomite carbonatite has been oxidized and weathered (decalcification) locally to vacm) are comprised of apatite + d.grey unknown + pyrite or apatite + phlogopite (altered) with common zir dolomite (observed near mgt band). Laminations steepens towards end of interval with abundant apatite laminae an oxidized pyrite aggregat MINERALIZATION Type Value Comments Pyrite % 1.50 Oxidized pyrite form aggregates up to 1 cm - a large concent Magnetite % 1.00 Single band of aggregated medium-grained magnetite with ALTERATION Type Value Comments Oxidation % 60.00 Beige dolomite; pink dolomite in last 70 cm of interval STRUCTURE Type Intens CA° Comments Laminations % moderate 30 Varies between 20 and 40 MISCELLANEOUS Zone HCL Apatite Zircon	MAIN COMMENTS Light-grey laminated dolomite carbonatite has been oxidized and weathered (decalcification) locally to various extents. Rubbl cm) are comprised of apatite + d.grey unknown + pyrite or apatite + phlogopite (altered) with common zircon. Single magnetite dolomite (observed near mgt band). Laminations steepens towards end of interval with abundant apatite laminae an oxidized pyrite aggregates. Dolomite become Pyrite % 1.50 Oxidized pyrite form aggregates up to 1 cm - a large concentration of pyrite occu Magnetite % 1.00 Single band of aggregated medium-grained magnetite with apatite ALTERATION Type Value Comments Oxidation % 60.00 Beige dolomite; pink dolomite in last 70 cm of interval STRUCTURE Type Intens CA° Comments Laminations % moderate 30 Varies between 20 and 40 degrees; steepens in MISCELLANEOUS Zone HCL Apatite Zircon

2010-030 Log by Ryan Kressall Date Hole ID

Min Style Litho **FROM** TO Fabric Texture Struct dlpCC **ROCK CODE** CC 82.04 86.80

MAIN COMMENTS Magnetite-bearing calcite carbonatite is in sharp contact with dolomite carbonatite. Contact measured at 70 degrees at top of interval, at 80 degrees at bottom of interval. Light-grey dolomite vein (12 cm; top contact: 10 degrees; bottom contact: 20 degrees) crosscuts calcite at 84.57 m. Pyrite accumulates at contact. Dolomitization extends into calcite carbonatite near contact (looks similar to calcite carbonatite, but does not react to HCI, UV= dark purple and magnetite is not magnetic). Between and 83.89 and 84.26 m, carbonatite does not react to HCI, contains abundant pyrite and has been extensively oxidized to pink. Calcite carbonatite is a greenish grey colour in places (follows laminations and has weaker reaction to HCI). Apatite occurs laminated within calcite carbonaite. Zircon occurs disseminated within calcite carbonatite.

MINERALIZATION	Туре	Value	Comments
	Magnetite %	15.00	Medium-grained dolomite occurs disseminated within calcite carbonatite.
	Pyrite %	1.25	Rare aggregates (up to 0.5 cm) within calcite carbonatite - concentrate in oxidized interval and near dolomite vein

ALTERATION

STRUCTURE	Туре	Intens	CA°	Comments	
	Laminations %	strong	70		
	Veining %	strong	15	12 cm dolomite vein cross	scuts calcite carbonatite
MISCELLANEOUS	Zone	HCL	Apatite	Zircon	
	OX	S	20	0.25	

2010-030 Log by Ryan Kressall Date Hole ID

FROM 86.80	TO - 104.02	ROCK CODE	nlpCD	=	Min Style n	Fabric I	Texture p	Litho CD	Struct
		MAIN COMMENTS	Steeply laminated light- (dolomitized magnetite)						large massive aggregate (~25 cm) of pyrite occurs at 101.91 m. Dark-grey unknown ated).
		MINERALIZATION	Туре	Value	Comments				
			Pyrite %	2.00	Fresh pyrite forms lamination);	s large 25 cm aggr	egate and sometimes f	form laminae with apat	tite (up 2 cm thick); oxidized pyrite occurs as thin stringers (parallel to
		ALTERATION	Туре	Value	Comments				
			Oxidation %	25.00	Oxidized beige to	pink dolomite			
		STRUCTURE	Туре	Intens		A° Co	omments		
			Laminations %	strong		70 St	eep: varies between 60	and 80 degrees	
		MISCELLANEOUS	Zone	HCL	Ара	atite	Zircon		
			OX	VW		10	0.25		

2010-030 Log by Ryan Kressall Date Hole ID

FROM 104.02	TO 121.95	ROCK CODE	blpCD	=	Min Style b	Fabric I	Texture p	Litho CD	Struct
		MAIN COMMENTS	Apatite, d. grey unknow	n (dolomitized magı	netite?), pyrite, blac	k altered phlogop	ite and abundant zircor	n in various proportion	s form large aggregates (or bands) 10 to 30 cm. Bands comprise ~20 % of interval.
		MINERALIZATION	Туре	Value	Comments				
			Niobates %	1.00	Pale-yellow grains	ed fine-grained fe	rsmite observed in band	ds	
			Pyrite %	1.75	Commonly aggreg	ate within miner	alized bands - also occu	r as rare aggregates in	dolomite up to 1 cm diameter
		ALTERATION	Туре	Value	Comments				
			Silica %	0.50	Minor silicification	of matrix observ	red .		
			Calcite %	1.00	White pods and st	tringers (1.5 cm) o	f calcite occur locally co	ncentrated- likely seco	ondary calcite infilled vugs and fractures
		STRUCTURE	Туре	Intens	C	A° C	omments		
			Laminations %	moderate		35 A	ppears to be cross-lami	nated in places (i.e. 110	.93) - may actually be due to fault displacement(?)
		MISCELLANEOUS	Zone	HCL	Apa	ntite	Zircon		
			Н	W	1	5	0.75		

2010-030 Log by Ryan Kressall Date Hole ID

FROM 121.95	TO - 129.95	ROCK CODE	blpCCCD	=	Min Style b	Fabric I	Texture p	Litho CCCD	Struct	
		MAIN COMMENTS	compose ~40 % of intecarbonatite?). Apatite of	rval Within magnetit occurs aggregated wit rsmite observed in do	e-bearing intervals thin dolomite carb olomite. Fersmite o	s, carbonate matrix onatite. Within cal occurs within dark-	towards contact with d cite carbonatite, fine-gr grey bands up to 10 cm	olomite, does not rea ained brown phlogop with apatite, dark-gro	intervals within light-grey dolomite carbonatite. Magnetite-apatite calcite act HCl and intervals become less magnetic (dolomitization of calcite oite also occurs disseminated. Pale-pink fine-grained pyrochlore is observed in ey unknown metallic, dolomite, pyrite and common zircon. This bands likely	
		MINERALIZATION	Туре	Value	Comments					
			Niobates %	1.50	Pale-pink octach	edral suspect pyro	chlore observed in magn	etite-bearing calcite	; yellow grainy-textured fersmite observed in dark-coloured bands in dolomite	
			Pyrite %	1.25	Fresh pyrite occu	irs commonly aggre	egated with d. grey unkr	nown metallic minera	al (dolomitized magnetite?)	
			Magnetite %	15.00	Fine- to medium	ı-grained magnetit	e occurs disseminated t	o aggregated with ap	patite within calcite carbonatite	
		ALTERATION								
		STRUCTURE	Туре	Intens		CA° C	omments			
			Laminations %	moderate		30				
		MISCELLANEOUS	Zone	HCL	Aŗ	patite	Zircon			
			Н	М		15	0.5			

2010-030 Log by Ryan Kressall Date Hole ID

FROM 129.95	TO - 144.21	ROCK CODE	blpCD	=	Min Style b	Fabric I	Texture p	Litho CD	Struct
		MAIN COMMENTS			•		e proportions of apatite, between ~136.1 and 137.8		n metallic mineral, black altered phlogopite abundant zircon and yellow fersmite.
		MINERALIZATION	Туре	Value	Comments				
			Niobates %	1.50	Fine-grained yell	low grainy fersm	ite observed in bands		
			Pyrite %	2.00	Fresh pyrite occu	ırs aggregated w	ihin bands		
		ALTERATION	Туре	Value	Comments				
			Amphibolite %	2.50	Clasts (up to 20 o		to black fenite (?) occur l	between 131.40 and 13	2.5 m; larger clasts have ovoid texture; pyrite and d. grey mineral in core with
		STRUCTURE	Туре	Intens		CA°	Comments		
			Laminations %	strong		40	Generally ~40 degrees; st	eepens locally to ~70	degrees and becomes weakly laminated between 136.1 and 137.8 m
		MISCELLANEOUS	Zone	HCL	Ap	patite	Zircon		
			Н	VW		20	1		
		MISCELLANEOUS	Zone	HCL		oatite	<u> </u>	eepens locally to ~70	degrees and becomes weakly laminated between 136.1 and 137.8 m

2010-030 Log by Ryan Kressall Date Hole ID

FROM 144.21	TO - 149.81	ROCK CODE	gmpCD	=	Min Style g	Fabric m	Texture p	Litho CD	Struct			
		MAIN COMMENTS	Dominantly ovoid to swi of altered phlogopite acc				nination (shear like) occuring	at ~147.69 m. Altere	I phlogopite phenocrysts accumulate locally Fine- to coar	rse grained phenocrysts		
		MINERALIZATION	Туре	Value	Comments							
			Niobates %	0.10	Minor yellow fers	mite observed	rved locally within apatite-pyrite aggregate					
			Pyrite %	1.00	Mostly occur as f	resh stringers	within dolomite but also occ	ur in aggregates wit	apatite			
		ALTERATION										
		STRUCTURE	Туре	Intens		CA°	Comments					
			Laminations %	weak		75	Only locally observed					
		MISCELLANEOUS	Zone	HCL	Ар	atite	Zircon					
			Н	VW		5	0.1					
	TO - 157.70	ROCK CODE	blpCD	=	Min Style b	Fabric I	Texture p	Litho CD	Struct			
		ROCK CODE MAIN COMMENTS	Thin (< 2.5 cm) d. grey ba	ands occur within lig Itered phlogopite ab	b ght-grey laminated	l dolomite. Agg	p gregates (up to 10 cm) occur v	CD where lamination no	Struct t present. Bands consist variable proportions of apatite, angle.; interval is massive with d. grey aggregates betw			
		MAIN COMMENTS	Thin (< 2.5 cm) d. grey ba metallic mineral, black a niobates identified in ba	ands occur within lig Itered phlogopite ab Inds or aggregates	b ght-grey laminated undant zircon and	l dolomite. Agg	p gregates (up to 10 cm) occur v	CD where lamination no	t present. Bands consist variable proportions of apatite,			
			Thin (< 2.5 cm) d. grey ba	ands occur within lig Itered phlogopite ab	b ght-grey laminated undant zircon and Comments	l dolomite. Agg yellow fersmi	p gregates (up to 10 cm) occur v te. Lamination is variable bu	CD where lamination no t generally steep cor	t present. Bands consist variable proportions of apatite,	een 155 and 156 m. No		
		MAIN COMMENTS	Thin (< 2.5 cm) d. grey ba metallic mineral, black a niobates identified in ba Type	ands occur within lig Itered phlogopite ab inds or aggregates Value	b ght-grey laminated undant zircon and Comments	l dolomite. Agg yellow fersmi	p gregates (up to 10 cm) occur v te. Lamination is variable bu	CD where lamination no t generally steep cor	t present. Bands consist variable proportions of apatite, e angle.; interval is massive with d. grey aggregates betw	een 155 and 156 m. No		
FROM 149.81		MAIN COMMENTS MINERALIZATION	Thin (< 2.5 cm) d. grey ba metallic mineral, black a niobates identified in ba Type	ands occur within lig Itered phlogopite ab inds or aggregates Value	b ght-grey laminated undant zircon and Comments Occurs aggregate	l dolomite. Agg yellow fersmi	p gregates (up to 10 cm) occur v te. Lamination is variable bu	CD where lamination no t generally steep cor	t present. Bands consist variable proportions of apatite, e angle.; interval is massive with d. grey aggregates betw	een 155 and 156 m. No		
		MAIN COMMENTS MINERALIZATION ALTERATION	Thin (< 2.5 cm) d. grey be metallic mineral, black a niobates identified in ba Type Pyrite %	ands occur within lig Itered phlogopite ab Inds or aggregates Value 2.00	b ght-grey laminated undant zircon and Comments Occurs aggregate	l dolomite. Agg yellow fersmi d within dark-	p gregates (up to 10 cm) occur of the Lamination is variable but only be a series of the comments process of the comments proc	CD where lamination no t generally steep cor vithin laminated dol	t present. Bands consist variable proportions of apatite, e angle.; interval is massive with d. grey aggregates betw	een 155 and 156 m. No n and 15 cm).		
		MAIN COMMENTS MINERALIZATION ALTERATION	Thin (< 2.5 cm) d. grey be metallic mineral, black a niobates identified in ba Type Pyrite % Type	ands occur within lig ltered phlogopite ab inds or aggregates Value 2.00	b ght-grey laminated undant zircon and Comments Occurs aggregate	l dolomite. Agg yellow fersmi d within dark-	p gregates (up to 10 cm) occur of the Lamination is variable but only be a series of the comments process of the comments proc	CD where lamination no t generally steep cor vithin laminated dol	t present. Bands consist variable proportions of apatite, e angle.; interval is massive with d. grey aggregates betwo	een 155 and 156 m. No n and 15 cm).		

2010-030 Log by Ryan Kressall Date Hole ID

FROM 157.70	TO 53.72	ROCK CODE	gmCD	=	Min Style g	Fabric m	Texture	Litho CD	Struct	
		MAIN COMMENTS	Mottled-massive to wea zircon. Aggregates comp	kly laminated (or sv ose ~7.5 % of inter	wirly?) light-grey t val. No niobates o	to beige dolomito bserved within a	e carbonatite. Aggregates (´ aggregates	10-15 cm) are compose	d dominantly of pyrite with d. grey metallic unknown, apatite and abun	dant
		MINERALIZATION	Туре	Value	Comments					
			Pyrite %	2.00	Most commonl	y aggregated wit	th d. grey metallic mineral a	nd apatite; less comn	on aggregates up to 1 cm within dolomite	
		ALTERATION	Туре	Value	Comments					
			Oxidation %	30.00	Beige to minor	pink dolomite				
		STRUCTURE	Туре	Intens		CA°	Comments			
			Laminations %	very weak	(60	Only locally observed (me	asured at ~161.85 m)		
		MISCELLANEOUS	Zone	HCL	<u> </u>	Apatite	Zircon			
			Н	VW		5	0.5			
FROM 163.72	TO 76.97	ROCK CODE	nmiCD	=	Min Style n	Fabric m	Texture i	Litho CD	Struct	
			Massive light-grey dolon	iite carbonatite tra	n nsitions from fine	m e-grained equigra	i anular to locally porphyritic.	CD Minor phenocrysts co	Struct Insists of black altered phlogopite. Interval contains large intervals of recoppite?). Uncommon apatite occurs dispersed in dolomite. Zircon occurs	i locally
			Massive light-grey dolomoxidiation (~167.7 - 168.7	iite carbonatite tra	n nsitions from fine	m e-grained equigra	i anular to locally porphyritic.	CD Minor phenocrysts co	nsists of black altered phlogopite. Interval contains large intervals of rec	i locally
		MAIN COMMENTS	Massive light-grey dolon oxidiation (~167.7 - 168.7 concentrated.	iite carbonatite tra m and ~171.8-175.7	nsitions from fine m). pyrite occurs	m e-grained equigra as fine grained c	i anular to locally porphyritic. ixidized needles near porph	CD Minor phenocrysts cc yry (dolomitized phlog	nsists of black altered phlogopite. Interval contains large intervals of rec	l locally
		MAIN COMMENTS MINERALIZATION	Massive light-grey dolom oxidiation (~167.7 - 168.7 concentrated. Type Pyrite %	nite carbonatite tra m and ~171.8-175.7 Value	nsitions from fine m). pyrite occurs	m e-grained equigra as fine grained c	i anular to locally porphyritic. ixidized needles near porph	CD Minor phenocrysts cc yry (dolomitized phlog	nsists of black altered phlogopite. Interval contains large intervals of rec copite?). Uncommon apatite occurs dispersed in dolomite. Zircon occurs	i locally
		MAIN COMMENTS	Massive light-grey dolom oxidiation (~167.7 - 168.7 concentrated.	nite carbonatite tra m and ~171.8-175.7 Value 1.50	n nsitions from fine m). pyrite occurs Comments Oxidized aggree Comments	m e-grained equigra as fine grained c gates up to 1 cm	i anular to locally porphyritic. ixidized needles near porph	CD Minor phenocrysts cc yry (dolomitized phlog	nsists of black altered phlogopite. Interval contains large intervals of rec copite?). Uncommon apatite occurs dispersed in dolomite. Zircon occurs	i locally
		MAIN COMMENTS MINERALIZATION ALTERATION	Massive light-grey dolom oxidiation (~167.7 - 168.7 concentrated. Type Pyrite % Type Oxidation %	nite carbonatite tra m and ~171.8-175.7 Value 1.50 Value	n nsitions from fine m). pyrite occurs Comments Oxidized aggree Comments	m e-grained equigra as fine grained c gates up to 1 cm nantly pink (or rec	i anular to locally porphyritic. exidized needles near porph and fine-grained needles	CD Minor phenocrysts cc yry (dolomitized phlog	nsists of black altered phlogopite. Interval contains large intervals of rec copite?). Uncommon apatite occurs dispersed in dolomite. Zircon occurs	i locally
		MAIN COMMENTS MINERALIZATION	Massive light-grey dolom oxidiation (~167.7 - 168.7 concentrated. Type Pyrite % Type	value Value Value 50.00	n insitions from fine m). pyrite occurs Comments Oxidized aggres Comments Beige to domin	m e-grained equigra as fine grained c gates up to 1 cm	i anular to locally porphyritic. exidized needles near porph and fine-grained needles d) oxidation of dolomite	CD Minor phenocrysts cc yry (dolomitized phlog	nsists of black altered phlogopite. Interval contains large intervals of rec copite?). Uncommon apatite occurs dispersed in dolomite. Zircon occurs	l locally
		MAIN COMMENTS MINERALIZATION ALTERATION	Massive light-grey dolom oxidiation (~167.7 - 168.7 concentrated. Type Pyrite % Type Oxidation % Type	value 1.50 Value 50.00 Intens	n insitions from fine m). pyrite occurs Comments Oxidized aggree Comments Beige to domin	m e-grained equigra as fine grained c gates up to 1 cm eantly pink (or rec	i anular to locally porphyritic. exidized needles near porph and fine-grained needles d) oxidation of dolomite Comments	CD Minor phenocrysts cc yry (dolomitized phlog	nsists of black altered phlogopite. Interval contains large intervals of rec copite?). Uncommon apatite occurs dispersed in dolomite. Zircon occurs	i locally

2010-030 Log by Ryan Kressall Date Hole ID

FROM 176.97	TO - 186.20	ROCK CODE	gmiCD	=	•	abric Textu m i	re Litho CD	Struct	
		MAIN COMMENTS						3.5 - 184.0 m. Aggregates (up to ~10 cm) of apatite v pyrite. No niobates observed in aggregates or apatite	
		MINERALIZATION	Туре	Value	Comments				
			Pyrite %	1.25	Oxidized aggregates up t	to 1 cm			
		ALTERATION	Туре	Value	Comments				
			Oxidation %	50.00	Beige to pink oxidation o	f dolomite			
		STRUCTURE							
		MISCELLANEOUS	Zone	HCL	Apatite	Zircon			
			Н	VW					

2010-030 Log by Ryan Kressall Date Hole ID

FROM 186.20	TO - 198.30	ROCK CODE	blcCD	=	Min Style b	Fabric I	Texture c	Litho CD	Struct	
		MAIN COMMENTS		nagnetite-apatite cu					rained dolomite grains observed within calcitized matrix - bands up to 10 cm. occur sporadically throughout interval - comprise ~ 2.5 % of interval. Apatite	
		MINERALIZATION	Туре	Value	Comments					
			Niobates %	0.10	Columbite likely	y occurs with mag	gnetite and possibly in oth	ner apatite bands with	dark-grey unknown mineral	
			Pyrite %	1.00	Oxidized aggreg	gates up to 1 cm c	bserved in less calcitized	dolomite		
			Magnetite %	1.00	Magnetite occu	rs aggregated wi	th apatite in single cumul	ate band (~10 cm)		
		ALTERATION	Туре	Value	Comments					
			Oxidation %	20.00	Beige dolomite					
			Calcite %	70.00	D. brown calciti	zation - generally	follows lamination or loc	ally within fractures		
		STRUCTURE	Туре	Intens		CA°	Comments			
			Veining %	moderate		30	Secondary calcite veins (up to 1.5 cm thick)		
			Laminations %	moderate		10	Varies between 5 and 20	degrees		
		MISCELLANEOUS	Zone	HCL	Α	patite	Zircon			
			Н	S		7.5	0.25			

2010-030 Log by Ryan Kressall Date Hole ID

FROM 198.30	-	TO 203.50	ROCK CODE	blcAMX	=	Min Style b	Fabric I	Texture c	Litho AMX	Struct	
			MAIN COMMENTS	Fenite blocks (up to 50 common zircon occur in			o dark-brown do	lomite carbonatite. Beige	calcite crosscuts fenit	e blocks. Rare d. grey bands (< 1 cm) composed dominantly of apatite with	
			MINERALIZATION	Туре	Value	Comments					
				Pyrite %	1.00	Fine-grained diss	seminations and	stringers: oxidized			
			ALTERATION	Туре	Value	Comments					
				Amphibolite %	50.00	Dark-green fenite	e clasts with com	nmon black phlogopite- ca	alcitized (reacts to HCI)		
				Calcite %	20.00	D. brown mottlin	g concentratesw	rithin laminae			
			STRUCTURE	Туре	Intens		CA°	Comments			
				Laminations %	moderate		10	Only present within dolor	nite		
				Veining %	moderate		40	2 cm calcitized vein in dol	omite carbonatite; cal	cite crosscuts fenite at various angles	
			MISCELLANEOUS	Zone	HCL	Ар	atite	Zircon			
					S		5	0.1			

2010-030 Log by Ryan Kressall Date Hole ID

FROM 203.50	TO - 208.30	ROCK CODE	bliCD	=	Min Style b	Fabric I	Texture i	Litho CD	Struct	
		MAIN COMMENTS	Laminated light-grey to niobates observed.	o beige dolomite carb	oonatite with band	ls of inequigranı	ular dolomite (< 5 cm) and	d uncommon d.grey bar	ds (< 2.5 cm) of apatite, d. grey mineral, oxidiz	ed pyrite and common zircon. No
		MINERALIZATION	Туре	Value	Comments					
			Pyrite %	1.25	Oxidized pyrite	occurs dissemina	ated and as aggregates ar	nd stringers throughout	interval	
		ALTERATION	Туре	Value	Comments					
			Oxidation %	80.00	Beige dolomite -	oxidized veins	crosscut dolomite			
		STRUCTURE	Туре	Intens		CA°	Comments			
			Laminations %	moderate		40				
			Veining %	moderate		30	Brown veins focal point	of oxidiation occur at 3	0 and 40 degrees (roughly orthoogonal to each	other) - likely joints of faults
		MISCELLANEOUS	Zone	HCL	A	patite	Zircon			
			Н	W		10	0.1			

			1	
Log by	Ryan Kressall	Date	Hole ID	2010-030

FROM 208.30	TO - 213.41	ROCK CODE	dlpCD	=	Min Style d	Fabric I	Texture p	Litho CD	Struct
		MAIN COMMENTS	Laminated light-grey to towards bottom of inter						inequigranular dolomite (< 5 cm). Magnetite becomes the dominant phenocrysts th apatite.
		MINERALIZATION	Туре	Value	Comments				
			Pyrite %	1.00	Oxidized pyrite occ	curs as small need	les (length <0.5cm) and	as aggreagates up t	o 1 cm with magnetite phenocrysts
			Niobates %	0.10	Columbite may occ	cur with magnetit	e		
			Magnetite %	2.50	medium-grained p	henocrysts disser	ninated within dolomite	2	
		ALTERATION	Туре	Value	Comments				
			Oxidation %	60.00	Beige to orange do	lomite concentra	tes to laminae		
			Calcite %	1.50	Minor dark-brown	calcitization; gen	erally follows lamination	1	
		STRUCTURE	Туре	Intens	C	A° Co	mments		
			Laminations %	moderate	2	20 Ge	nerally between 10 and 2	20 degrees	
		MISCELLANEOUS	Zone	HCL	Apa	tite	Zircon		
			Н	W	1.	5	0.1		

End of Hole End of Hole

Hole ID 2010-031

		GENERAL INF	ORMATION		
Coordinate System	Easting	Northing	Elevation	Collar Azimuth	Collar Dip
ST. PL Nad 83	454707.46	6256372.49	1707.25	30.00	-45.00
Start Depth	Final Depth	Proposed Depth	Final Length	Rig	Area
0.00	214.94		214.94		Central 3
Operator	Year				
Taseko	2010				

PROFESSIONAL / TECHNICIAN					
	Name	Start Date	End Date		
Collar Surveyor					
Geology Logged By	Ryan Kressall				
Specific Gravity By	Steve Dumma				
Geotech Logged By					
Drill Contractor		21/Aug/2010	22/Aug/2010		

	PROFESSIONAL / TECHNICIAN						
	Name	Start Date	End Date				
Collar Surveyor							
Geology Logged By	Ryan Kressall						
Specific Gravity By	Steve Dumma						
Geotech Logged By							
Drill Contractor		21/Δμσ/2010	22/Δμα/2010				

SUMMARY

	DRILLING BIT SIZE						
Bit Size	From	To	Length				
NW (Casing)	0.00	5.77	5.77				
NQ	5.77	214.94	214.94				

DOWN HOLE SURVEY						
Depth	Azimuth	Dip	Temp °C	Mag.	Roll	Method
206.04	35.00	-48.50	5.8	5800	161.2	Reflex EZ-shot

GEOLOGY LEGEND

Hole ID **2010-031**

ROCK CODE

	MIN STYLE				
Abbr.	Description				
n	barren				
d	disseminated				
g	aggregated				
b	banded				

	FABRIC					
Abbr.	Description					
Х	brecciated					
ı	laminated					
f	decalcified					
V	veined					
р	porphyritic					
m	massive					

	TEXTURE
Abbr.	Description
f	decalcified
р	porphyritic
V	veined

	LITHO
Abbr.	Description
CASE	Casing
OVBN	Overburden
OXID	Oxide
AM	Amphibolite
CC	Calcite Carbonatite
CD	Dolomite Carbonatite
CCCD	Mixed Calcite and Dolomite Carbonatite
AMX	Amphibole and Mixed Carbonatite
CM	Carbonatite Cumulate

	STRUCT
Abbr.	Description
Z	fault
е	strained
S	shear zone
У	dyke

MISCELLANEOUS:

	ZONE
Abbr.	Description
OX	Oxide
S	Supergene
Н	Hypogene

	HCL
Abbr.	Description
VW	very weak
W	weak
М	moderate
S	strong
VS	very strong

2010-031 Log by Ryan Kressall Date Hole ID

FROM 0.00	-	TO 5.77	ROCK CODE	CASE	=	Min Style	Fabric	Texture	Litho CASE	Struct	
			MAIN COMMENTS	No Rock.							
			MINERALIZATION								
			ALTERATION								
			STRUCTURE								
			MISCELLANEOUS	Zone	HCL		Apatite	Zircon			
FROM 5.77	-	TO 6.09	ROCK CODE	CASE	=	Min Style	Fabric	Texture	Litho CASE	Struct	
			MAIN COMMENTS	Talus composed of dolo	mite carbonatite an	d unknown d. bro	own rock (metased	diment?) with thin (< 0.5 n	nm) dolomite veins.		
			MINERALIZATION	Туре	Value	Comments					
				Pyrite %	1.00	Oxidized pyrite	aggregrates < 0.5	cm			
			ALTERATION								
			STRUCTURE								
			MISCELLANEOUS	Zone	HCL	A	Apatite	Zircon			
							1.5	0			

2010-031 Log by Ryan Kressall Date Hole ID

FROM 6.09 -	TO 23.68	ROCK CODE	blfgCD	=	Min Style b	Fabric I	Texture fg	Litho CD	Struct			
		MAIN COMMENTS	Light-grey to beige dol No niobates identified					of apatite with comr	mon zircon and oxidized pyrite (ot	her minerals not identified	; too fine grained).	
		MINERALIZATION	Туре	Value	Comments							
			Pyrite %	1.00	Small aggregates	and stringers (<0	.5 mm) occur concentrat	ed				
		ALTERATION	Type Oxidation %	Value 50.00	Comments Beige dolomite							
			Calcite %	1.00	Minor dark-browr	n mottles (calcitiz	ation)					
		STRUCTURE	Туре	Intens	(CA° C	omments					
			Laminations %	strong		40						
		MISCELLANEOUS	Zone	HCL	Ара	atite	Zircon					
			OX	W		10	0.1					

2010-031 Log by Ryan Kressall Date Hole ID

TO 27.02	ROCK CODE	gliCM	=	Min Style g	Fabric I	Texture i	Litho CM	Struct	
	MAIN COMMENTS	carbonatite phase. Calci	te carbonatite occur	rs as a 30 cm lamin	ae at 25.2 m. Cal	cite contains dispersed apa			
	MINERALIZATION	Туре	Value	Comments					
		Pyrite %	0.25	Minor oxidized p	yrite observed wi	ithin calcite and dolomite	carbonatites		
		Magnetite %	55.00	Massive magnet	ite cumulates ag	gregated with minor apati	te		
		Niobates %	2.50	Fine-grained hor	ney-brown octaho	edral pyrochlore identified	in calcite carbonatit	te; columbite likely occurs aggregated	with magnetite
	ALTERATION	Туре	Value	Comments					,
		Oxidation %	15.00	Beige dolomite a	and calcite				
		Calcite %	20.00	Dark-brown calc	itization occurs d	ominantly around magnet	ite-bearing bands -	follow laminae	
	STRUCTURE	Туре	Intens		CA°	Comments			
		Laminations %	moderate		40				
		Veining %	moderate		20	Dolomite veins (2 - 15 cm)	crosscut magnetite	cumulate	
	MISCELLANEOUS	Zone	HCL	At	patite	Zircon			
		OX	M	1		0.5			
		27.02 MAIN COMMENTS MINERALIZATION ALTERATION STRUCTURE	MAIN COMMENTS MAIN COMMENTS Dominantly phase is ma carbonatite phase. Calci occurs commonly inters: MINERALIZATION Type Pyrite % Magnetite % Niobates % ALTERATION Type Oxidation % Calcite % STRUCTURE Type Laminations % Veining % MISCELLANEOUS Zone	MAIN COMMENTS Dominantly phase is magnetite cumulate by carbonatite phase. Calcite carbonatite occur occurs commonly interstital to magnetite. A MINERALIZATION Type Value Pyrite % 0.25 Magnetite % 55.00 Niobates % 2.50 ALTERATION Type Value Oxidation % 15.00 Calcite % 20.00 STRUCTURE Type Intens Laminations % moderate Veining % MISCELLANEOUS Zone HCL	MAIN COMMENTS Dominantly phase is magnetite cumulate bands with minor are carbonatite phase. Calcite carbonatite occurs as a 30 cm laminoccurs commonly interstital to magnetite. Apatite laminae occurs commonly interstital to magnetite cumulate bands with minor apatite carbonatite occurs as a 30 cm lamina occurs carbonatite occurs as a 30 cm lamination o	MAIN COMMENTS Dominantly phase is magnetite cumulate bands with minor apatite and comme carbonatite phase. Calcite carbonatite occurs as a 30 cm laminae at 25.2 m. Cal occurs commonly interstital to magnetite. Apatite laminae occur within dolomi MINERALIZATION Type Value Comments Pyrite % D.25 Minor oxidized pyrite observed with Magnetite % Magnetite % S5.00 Massive magnetite cumulates ag Niobates % 2.50 Fine-grained honey-brown octable of the comments Oxidation % 15.00 Beige dolomite and calcite Calcite % Calcite % 20.00 Dark-brown calcitization occurs of the comments Type Laminations % moderate 40 Veining % MISCELLANEOUS Zone HCL Apatite	MAIN COMMENTS Dominantly phase is magnetite cumulate bands with minor apatite and common zircon. Bands are 20 to carbonatite phase. Calcite carbonatite occurs as a 30 cm laminae at 25.2 m. Calcite contains dispersed approach occurs commonly interstital to magnetite. Apatite laminae occur within dolomite carbonatite. MINERALIZATION Type Value Comments Pyrite % Double Some Some Massive magnetite cumulates aggregated with minor apatite Niobates % 2.50 Fine-grained honey-brown octahedral pyrochlore identified ALTERATION Type Value Comments Oxidation % 15.00 Beige dolomite and calcite Calcite % 20.00 Dark-brown calcitization occurs dominantly around magnet STRUCTURE Type Intens CA° Comments Laminations % moderate 40 Veining % moderate 40 NISCELLANEOUS Zone HCL Apatite Zircon	MAIN COMMENTS Dominantly phase is magnetite cumulate bands with minor apatite and common zircon. Bands are 20 to 90cm thick interlam carbonatite phase. Calcite carbonatite occurs as a 30 cm laminae at 25.2 m. Calcite contains dispersed apatite and dissemina occurs commonly interstital to magnetite. Apatite laminae occur within dolomite carbonatite. MINERALIZATION Type Value Comments Magnetite % 55.00 Massive magnetite cumulates aggregated with minor apatite Niobates % 2.50 Fine-grained honey-brown octahedral pyrochlore identified in calcite carbonatite ALTERATION Type Value Comments Oxidation % 15.00 Beige dolomite and calcite Calcite % 20.00 Dark-brown calcitization occurs dominantly around magnetite-bearing bands - STRUCTURE Type Intens CA* Comments Laminations % moderate 40 Veining % moderate 40 Dolomite veins (2 - 15 cm) crosscut magnetite MISCELLANEOUS Zone HCL Apatite Zircon	MAIN COMMENTS Dominantly phase is magnetite cumulate bands with minor apatite and common zircon. Bands are 20 to 90cm thick interlaminated with dolomite and calcite carbonatite phase. Calcite carbonatite occurs as a 30 cm laminae at 25.2 m. Calcite contains dispersed apatite and disseminated fine-grained magnetite, phlogopit occurs commonly interstital to magnetite. Apatite laminae occur within dolomite carbonatite. MINERALIZATION Type Value Comments Magnetite % 55.00 Massive magnetite cumulates aggregated with minor apatite Niobates % 2.50 Fine-grained honey-brown octahedral pyrochlore identified in calcite carbonatite; columbite likely occurs aggregated ALTERATION Type Value Comments Oxidation % 15.00 Beige dolomite and calcite Calcite % 20.00 Dark-brown calcitization occurs dominantly around magnetite-bearing bands - follow laminae STRUCTURE Type Intens CA* Comments Laminations % moderate 40 Veining % moderate 20 Dolomite veins (2 - 15 cm) crosscut magnetite cumulate MISCELLANEOUS Zone HCL Apatite Zircon

2010-031 Log by Ryan Kressall Date Hole ID

FROM 27.02 -	TO 42.32	ROCK CODE	bliCD	=	Min Style b	Fabric I	Texture i	Litho CD	Struct	
		MAIN COMMENTS	bands (up to 35 vol. %). carbonatite, d. grey to v	Magnetite cumulate white in colour.	e bands are 2 to 30 c	m in thickness. M	agnetite also occurs loca	ally disseminated wit		terval and apatite is more abundant in some occur as weak laminae within dolomite eige dolomite core.
		MINERALIZATION	Туре	Value	Comments					
			Magnetite %	12.50	Massive magnetit	e cumulates aggre	egated with apatite; rare	ely disseminated wit	hin dolomite	
			Niobates %	1.00	Columbite likely o	ccurs with magne	tite			
			Pyrite %	1.00	Occurs as oxidized	l stringers and agg	gregates most typically o	confined to laminae		
		ALTERATION	Туре	Value	Comments					
			Calcite %	10.00	Dark-brown calciti	ization concentrat	es in bands (~2.5 to 25 to	cm thick) within dolo	mite carbonatite	
			Oxidation %	60.00	Beige dolomite - t	ypically follows la	minae and follows lamii	1ae		
		STRUCTURE	Туре	Intens	С	:A° Co	omments			
			Laminations %	moderate		15 Ge	nerally low 10 to 20 deg	rees) - steep core ang	gle (70 degrees) observed with disse	eminated magnetite (at ~35 m)
		MISCELLANEOUS	Zone	HCL	Apa	atite	Zircon			
			OX	М	2	20	0.5			

2010-031 Log by Ryan Kressall Date Hole ID

FROM 42.32	=	TO 48.69	ROCK CODE	blfgCD	=	Min Style b	Fabric I	Texture fg	Litho CD	Struct		
			MAIN COMMENTS	Light-grey to beige dolo zircon.(other minerals a			te observed in th	e last two intervals (23.68	3-42.32: no magnetite	bands though).Apatite occurs as me	edium-grey laminae with common	
			MINERALIZATION	Туре	Value	Comments						
				Pyrite %	1.00	Oxidized fine-gra	ained pyrite strin	gers occur typically confin	ed to laminae; surrou	inding my oxidized dolomite		
				Magnetite %	0.50	3 cm aggregate o	of magnetite-apa	atite observed at ~48.1 m	with halo of oxidiation	n in surrounding dolomite		
			ALTERATION	Туре	Value	Comments						
				Oxidation %	15.00	Beige dolomite; f	follows laminae	and typically surrounds py	rite			
			STRUCTURE	Туре	Intens		CA°	Comments				
				Laminations %	moderate		25	Steepens to 70 degrees a	round small magnetit	e aggregate		
				Veining %	weak		50	Calcite veins (<0.5 cm) - s	urrounded by calcitiza	ation		
			MISCELLANEOUS	Zone	HCL	Ar	patite	Zircon				
				OX	VW		10	0.25				

2010-031 Log by Ryan Kressall Date Hole ID

FROM 48.69	TO - 63.20	ROCK CODE	nlfgCD	=	Min Style n	Fabric I	Texture fg	Litho CD	Struct
		MAIN COMMENTS	Weakly laminated light	-grey dolomite carbo	onatite with low co	ncentration of a	patite laminae and no obs	erved zircon.	
		MINERALIZATION	Туре	Value	Comments				
			Pyrite %	1.25	Oxidized aggrega	ates up to 0.5 cm	n occur locally concentrated	d	
		ALTERATION	Type	Value	Comments				
			Oxidation %	60.00	Beige dolomite				
		STRUCTURE	Туре	Intens		CA°	Comments		
			Laminations %	very weak	1	30	Measured at 20 and 40 de	egrees at two different	places (respectively going downhole)
		MISCELLANEOUS	Zone	HCL	A	patite	Zircon		
			OX	VW		2.5	0		

2010-031 Log by Ryan Kressall Date Hole ID

FROM 63.20 -	TO 79.81	ROCK CODE	gmiCD	=	Min Style g	Fabric m	Texture i	Litho CD	Struct
		MAIN COMMENTS	black altered phlogopite	and oxidized pyrite occuring as parallel	within a dolomite needles (possibly p	groundmass. To	owards bottom of interval,	aggregates contain n	mmon d. grey irregular shaped aggregates (1-2.5 cm are composed of fine-grained more apatite and black altered phlogopite. One "blob" at ~65.85 m contains coarse apatite (~1.5 cm thick), crosscutting dolomite (oriented at ~85 degrees).
		MINERALIZATION	Type	Value	Comments				
			Pyrite %	1.00	Fine-grained oxid	dized pyrite occ	urs locally disseminated; o	xidized aggregates up	to 2 cm diameter (weathered out in places)
		ALTERATION	Туре	Value	Comments				
			Oxidation %	20.00	Bands (~1 cm) of	strong oxidiation	on (beige "veins" crosscutti	ng each other at 20, 5	50 and 60 degrees); minor oxidiation of dolomite matrix
		STRUCTURE	Туре	Intens		CA°	Comments		
			Veining %	weak		85	D. grey "vein" enriched in	apatite and pyrite at	~79.7 m
			Laminations %	weak		15	Only locally observed (mo	re present towards en	nd of interval) -measured at ~78.10 m
		MISCELLANEOUS	Zone	HCL	Ap	atite	Zircon		
			OX	VW		10	0.1		

2010-031 Log by Ryan Kressall Date Hole ID

FROM 79.81	T0 - 87.58	ROCK CODE	bICD	=	Min Style b	Fabric I	Texture	Litho CD	Struct
		MAIN COMMENTS	Light-grey dolomite ca	rbonatite oxidized to	pink. Apatite occur	s as grey laminae (<2.5 cm) with pyrite,	d. grey unknown, abund	dant zircon and uncommonly with magnetite. No niobates observed in laminae.
		MINERALIZATION	Туре	Value	Comments				
			Niobates %	0.10	Likely columbite o	occurs with magne	tite		
			Magnetite %	0.50	Rare magnetite-a	patite bands (< 2	cm): medium-grained	I	
			Pyrite %	1.50	Oxidized aggregat	tes (< 0.5 cm) occu	r locally concentraed	to lamine	
		ALTERATION	Туре	Value	Comments				
			Calcite %	5.00	Reddish brown m	ottling - calcitizat	ion combined with ox	idation	
			Oxidation %	50.00	Beige to pink dolo	omite - follows lam	nination		
		STRUCTURE	Туре	Intens		CA° Co	omments		
			Laminations %	moderate		50			
		MISCELLANEOUS	Zone	HCL	Ара	atite	Zircon		
			OX	W	1:	2.5	0.5		
			O/A	**	"		0.5		

2010-031 Log by Ryan Kressall Date Hole ID

FROM 87.58	-	TO 119.97	ROCK CODE	bliCD	=	Min Style b	Fabric I	Texture i	Litho CD	Struct	
			MAIN COMMENTS	Interval is dominantly composed of light grey oxidized to pink dolomite carbonatite similar to previous interval (79.81 - 87.58), but interval contains large bands of magnetite-apatite cumulate (5 to 25 cm thick). Cumulates compose ~7.5 % of interval. Dolomite carbonatite contains abundant grey apatite laminae with common zircon. Zircon occurs concentrated within cumulate bands. White dolomite rims (~1.5 cm thick) occur around magnetite cumulates Cross-laminated occurs at ~114.7 between different cumulate bands(?) - one 75 degree CA and one a 85 degree CA. Calcite pod occurs with one cumulate band at ~114.7 m. Common locallized inequigranular bands (~5 cm) occur throughout interval.							
	MINERALIZATION Type Value Comments										
				Pyrite %	1.75	Fine-grained oxidized pyrite occurs locally disseminated and as stringers confined to laminae					
				Niobates %	0.50	Columbite likel	Columbite likely occurs with magnetite				
			Magnetite % 3.50 Fine- to medium-grained magnetite occurs aggregated with apatite								
			ALTERATION	Туре	Value Comments						
				Oxidation %	40.00	Beige to pink dolomite					
				Calcite %	2.50	Minor dark-brown calcitization					
			STRUCTURE	Туре	Intens		CA°	Comments			
				Laminations %	moderate		10	Interval starts at low core angle (~10 degrees); progressively steepens through interval to ~70 degrees (at 114.7 m) than shallows to ~50 degrees for remainder of interval			
			MISCELLANEOUS	Veining %	moderate		40	Minor secondary calcite veins (infilled fractures - crystalized from wall of fracture) - ~ 1 cm thick			
				Zone	HCL	Д	\patite	Zircon			
				OX	М		17.5	0.75			

2010-031 Log by Ryan Kressall Date Hole ID

FROM 119.97	TO - 123.59	ROCK CODE	dlpCCCD	=	Min Style d	Fabric I	Texture p	Litho CCCD	Struct
		MAIN COMMENTS	similar to calcite carbo calcite carbonatite. Zir	natite observed in hol con occurs dissemina	le # 2010-030. Con ted within calcite ca	tact (between CC a arbonatite. Magn	and CD) measured at 40	degrees at top of into	lisseminated to aggregated within calcite carbonatite. Calcite carbonatite looks erval and 75 degrees at ~121 m. Apatite occurs aggregated with magnetite within laminae occur at ~122.75 m. The larger (deeper) laminae erodes into brown gouge etite though).
		MINERALIZATION	Туре	Value	Comments				
			Pyrite %	1.00	Oxidized aggrega	ites up to 0.5 cm v	vithin dolomite carbonat	tite; aggregated with	magnetite in calcite carbonatite
			Magnetite %	10.00	Fine- to medium	-grained magnetit	e occurs disseminated t	o aggregated with ca	lcite carbonatite - aggregated in laminae/lens ~121 m
			Niobates %	0.10	Likely columbite	occurs with magn	etite cumulate		
		ALTERATION	Туре	Value	Comments				
			Oxidation %	15.00	Beige dolomite				
		STRUCTURE	Туре	Intens		CA° C	omments		
			Laminations %	moderate		60 0	bserved in dolomite carb	onatite	
		MISCELLANEOUS	Zone	HCL	Ар	atite	Zircon		
			OX	S		10	0.25		

2010-031 Log by Ryan Kressall Date Hole ID

FROM 123.59	TO - 131.96	ROCK CODE	gmfCD	=	Min Style F	F abri c m	Texture f	Litho CD	Struct
		MAIN COMMENTS	interval is highly weath	ered, dominantly oxi		n minor calcitiz	ation. Aggregates co	onsist of variable propo	omite carbonatite becomes dominantly competant rock at ~ 128 m. The enitire portions of oxidized pyrite, apatite, d. grey unknown and abundant zircon. No val.
		MINERALIZATION	Type	Value	Comments				
			Pyrite %	1.25	Oxidized pyrite occurs m	nostly aggrega	ted with apatite and	d d. grey unknown mine	eral; also occurs locally concentrated as small aggregates (<0.5 cm)
		ALTERATION	Type Calcite %	Value 1.00	Comments Minor dark-brown mott	ling (calcitizat	ion)		
			Oxidation %	70.00	Beige to pink dolomite				
		STRUCTURE	Туре	Intens	CA°		nments		
			Laminations %	weak	40	Only	observed at very en	d of interval	
		MISCELLANEOUS	Zone	HCL	Apatite		Zircon		
			OX	W	10		0.25		

2010-031 Log by Ryan Kressall Date Hole ID

FROM 131.96	TO - 135.98	ROCK CODE	glcCD	=	Min Style g	Fabric I	Texture c	Litho CD	Struct	
		MAIN COMMENTS							s where dolomite carbonatite has not been nd calcitized). Magnetite-apatite cumulate	
		MINERALIZATION	Type	Value	Comments					
			Magnetite %	1.50	Occurs aggregated v	with apatite; ob	served locally within high	nly calciized dolomite		
			Pyrite %	1.00	Small (<0.5 cm)oxid	dized aggregate	s observed where calcitiz	ation is not too inten	se	
		ALTERATION	Туре	Value	Comments					
			Calcite %	90.00	Dark-brown calcitiz	ation				
		STRUCTURE	Туре	Intens	CA	۰° (Comments			
			Veining %	moderate	50) lo	ocalized dolomite veins (<	0.5 cm thick)		
			Laminations %	weak	40	o S	teepens to 80 degrees lo	cally where calcitizati	on is the most intense	
		MISCELLANEOUS	Zone	HCL	Apat	ite	Zircon			
			OX	S	10		0.5			

2010-031 Log by Ryan Kressall Date Hole ID

FROM 135.98	_	TO 152.07	ROCK CODE	gcrenfgCD	=	· · · · · · · · · · · · · · · · · · ·	F abric cren	Texture fg	Litho CD	Struct	
			MAIN COMMENTS			ughout intervals. Few inter nor black altered phlogopit				eep angle (139.83-140.53 m and 149.96-152.07 m). Aggregates consist of apatite, llogopite occur locally.	
			MINERALIZATION	Туре	Value	Comments					
				Pyrite %	1.00	Oxidized pyrite occurs a	ggregated up	to 1 cm			
			ALTERATION	Туре	Value	Comments					
				Calcite %	1.50	Minor dark-brown mott	ling at top of	interva			
				Oxidation %	20.00	Pink dolomite occur loca	ally				
			STRUCTURE	Туре	Intens	CA°	Cor	mments			
				Laminations %	moderate	e 80	Mos	stly crenulated			
			MISCELLANEOUS	Zone	HCL	Apatite		Zircon			
				OX		10		0.5			

2010-031 Log by Ryan Kressall Date Hole ID

FROM 152.07	TO - 154.63	ROCK CODE	ncrenvCD	=	Min Style n	Fabric cren	Texture v	Litho CD	Struct	
		MAIN COMMENTS	Coarse-grained dolomite products (likely clays and						re composed euhedral tabular grains with inter nterval.	itital brown and yellow weathering
		MINERALIZATION	Туре	Value	Comments					
			Pyrite %	0.50	Uncommon fresh pyr	rite aggregates	up to 0.5 cm			
		ALTERATION	Туре	Value	Comments					
			Oxidation %	10.00	Oxidation concentrat	es near coarse	-grained veins			
		STRUCTURE	Туре	Intens	CA°	С	omments			
			Laminations %	moderate	70	Cr	enulations			
			Veining %	strong	80	d	ifficult to measure due to	o variabilitybut alway	rs steep (near 80 degrees)	
		MISCELLANEOUS	Zone	HCL	Apatit	te	Zircon			
			OX	VW	10		0.25			

2010-031 Log by Ryan Kressall Date Hole ID

FROM 154.63	TO 164.11	ROCK CODE	nlcAMX	=	Min Style n	Fabric I	Texture c	Litho AMX	Struct	
		MAIN COMMENTS	Dark-green fenite class with apatite.Minor gree		.,	•	, 5	•	re?).Apatite occurs strongly laminated with dolomite. Zircon occurs lly.	s associated
		MINERALIZATION	Туре	Value	Comments					
			Pyrite %	0.75	Minor oxidized p	yrite aggregates w	th dolomite(<0.5 cm)			
		ALTERATION	Type	Value	Comments					
			Calcite %	10.00			d textured dolomite			
			Amphibolite %	25.00	Dark-green fenit	e with black phlogo	pite and calcite with gre	eyish blue rim		
		STRUCTURE	Туре	Intens		CA° C	omments			
			Laminations %	weak		40 Lo	cally variable within cen	timeters from 40 to	80 degrees; observed within dolomite	
			_				-			
		MISCELLANEOUS	Zone	HCL		atite	Zircon			
			OX	М		10	0.75			

2010-031 Log by Ryan Kressall Date Hole ID

FROM 164.11	TO - 171.57	ROCK CODE	ncrencCD	=	Min Style n	Fabric cren	Texture c	Litho CD	Struct		
		MAIN COMMENTS	Interval has almost bee appearance. A fault is la					nite is more resistant to	calcitization than fine-grained dolo	mite giving the interval a locally brec	iated
		MINERALIZATION	Туре	Value	Comments						
			Pyrite %	1.50	Oxidized pyrite o	occurs dissemin	ated (fine-grained) to agg	regated (up to 1 cm)			
		ALTERATION	Туре	Value	Comments						1
			Calcite %	70.00	Dark-brown calci	itization					
			Oxidation %	15.00	Yellow color is hi	ghly weathered	f rock (limonite?)				
		STRUCTURE	Туре	Intens		CA°	Comments				
			Veining %	moderate		60	Secondary calcite veins	- also at 20 degrees			
			Laminations %	moderate		80	Crenulated				
		MISCELLANEOUS	Zone	HCL	Ar	patite	Zircon				
			OX	М		10	0.25				
				'							

2010-031 Log by Ryan Kressall Date Hole ID

FROM 171.57	TO - 183.55	ROCK CODE	ICD	=	Min Style	Fabric I	Texture	Litho CD	Struct	
		MAIN COMMENTS	brecciated at ~40 degree	es. At, bottom, cont	act is at ~70 degrees, s	sharper and les	s brecciated. Apatite occ	curs laminated within la	5.89-176.62 m). Contact between inequigranular and laminated at top appears aminated dolomite carbonatite. Inequigranular dolomite is void of apatite. around weathered dolomite core (diameter = ~5 to 10 cm)	
		MINERALIZATION	Type	Value	Comments					
			Pyrite %	1.50	Oxidized aggregates	up to 1 cm				
		ALTERATION	Type Calcite %	Value 2.50	Comments Minor d. brown mot	tling (calcitizat	ion)			
			Oxidation %	20.00	Red dolomite - mor	<u> </u>				
		STRUCTURE	Type	Intens	CA		omments			
			Laminations %	moderate	70					
		MISCELLANEOUS	Zone	HCL	Apat	ite	Zircon			
			OX	W	7.5		0			

2010-031 Log by Ryan Kressall Date Hole ID

FROM 183.55	TO - 190.30	ROCK CODE	nmcCD	=	Min Style n	Fabric m	Texture c	Litho CD	Struct	
		MAIN COMMENTS	Interval has almost been locally brecciated appear	entirely calcitized. ance. Apatite occurs	Crenulations of state of the contract of the c	can be observed tow ithin dolomite form	rards end of interval. Coarse-gra ing dark-grey bands. Zircon occ	nined dolomite is i urs associated wi	more resistant to calcitization than fi th apatite.	ne-grained dolomite giving the interval a
		MINERALIZATION	Туре	Value	Comment	.S				
			Pyrite %	1.00	Fine grained	disseminations to	aggregated up to 1 cm			
		ALTERATION	Туре	Value	Comment	:S				
			Calcite %	50.00	Dark brown					
		STRUCTURE	Туре	Intens		CA°	Comments			
		STRUCTURE	Laminations %	weak		80	Crenulations at end of interva	 I		
			Veining %	moderate		40	Calcite veins up to 0.5 cm			
		MISCELLANEOUS	Zone	HCL		Apatite	Zircon			
		1-11502227 1112005	OX	M		7.5	0.5			
FROM 190.30	TO - 195.67	ROCK CODE	nlfgCD	=	Min Style n	Fabric I	Texture fg	Litho CD	Struct	
		MAIN COMMENTS	Light-grey to beige dolor	nite carbonatite. Ap	oatite occurs v	veakly laminated.				
		MINERALIZATION	Туре	Value	Comment	.s				
			Pyrite %	1.00	Oxidized ag	gregates up to 0.5 cr	т			
		ALTERATION	Туре	Value	Comment	:S				
			Oxidation %	40.00	Beige dolorr	nite				
		STRUCTURE	Туре	Intens		CA°	Comments			
			Laminations %	weak		75				
		MISCELLANEOUS	Zone	HCL		Apatite	Zircon			
		MISCELLANGE	ZUITE	HUL		riputite	LIICOII			

2010-031 Log by Ryan Kressall Date Hole ID

FROM 195.67	TO - 210.23	ROCK CODE	nIfgAMX	=	Min Style F	Fabric I	Texture fg	Litho AMX	Struct
		MAIN COMMENTS	Fenite clasts within do	olomite carbonatite (s	imilar to previous interval); light-grey, wea	kly laminated. Clot	of phlogopite (altere	d?) + pyrite occur in associated with fenite clasts.
		MINERALIZATION	Туре	Value	Comments				
			Pyrite %	0.50	Fresh to oxidized aggre	gates up to 0.5 c	m		
		ALTERATION	Туре	Value	Comments				
			Amphibolite %	7.50	Dark-green to bluish gre	ey clasts; grey coi	mmonly rims d. gree	en; clasts are 2.5 to 25	cm in thickness; smaller grey clasts react to HCl
			Oxidation %	15.00	Beige to orange dolomit	te			
		STRUCTURE	Туре	Intens	CA°	Comm	nents		
			Laminations %	weak	65				
		MISCELLANEOUS	Zone	HCL	Apatite		Zircon		
			OX	W	10		0.1		

2010-031 Log by Ryan Kressall Date Hole ID

FROM 210.23	TO - 214.94	ROCK CODE	blfgCD	=	Min Style b	Fabric I	Texture fg	Litho CD	Struct	
		MAIN COMMENTS	Light-grey dolomite carb ~213.1 m. ~2.5 cm clot of			9043-210.23 m) b	ut with 30 cm d grey band	d composed of apati	e, d. grey unknown, black altered phlogopi	e and abundant zircon occuring at
		MINERALIZATION	Туре	Value	Comments					
			Pyrite %	1.50	Fresh pyrite occu	rs locally aggrega	ted up to 1 cm - uncommo	on laminae and strin	gers	
			Niobates %	0.10	Fine-grained pale	e-pink pyrochlore	(or fersmite) observed in	d. grey band in relat	vely low abundance	
		ALTERATION	Туре	Value	Comments					
			Oxidation %	10.00	Beige dolomite					
		STRUCTURE	Туре	Intens		CA° (Comments			
			Laminations %	moderate		30 6	5 degrees (at top) shallov	vs to 30 degrees thro	ugh interval	
		MISCELLANEOUS	Zone	HCL	Ар	atite	Zircon			
			Н			12.5	0.25			

End of Hole End of Hole

Hole ID 2010-032

		GENERAL INF	ORMATION		
Coordinate System	Easting	Northing	Elevation	Collar Azimuth	Collar Dip
ST. PL Nad 83	455105.38	6256412.53	1819.83	60.00	-50.00
Start Depth	Final Depth	Proposed Depth	Final Length	Rig	Area
0.00	205.18		205.18		Central 4
Operator	Year				
Taseko	2010				

	EECCIOI	IAI / TE	CHRICIANI
PKU	FESSIUI	NAL / IE	CHNICIAN

	Name	Start Date	End Date
Collar Surveyor	Ryan Kressall	02/Sep/2010	
Geology Logged By	Ryan Kressall		
Specific Gravity By	Ryan Libke		
Geotech Logged By			
Drill Contractor		22/Aug/2010	23/Aug/2010

SUMMARY			

DRILLING BIT SIZE				
Bit Size	From	То	Length	
NW (Casing)	0.00	2.60	2.60	
NQ	2.60	205.18	205.18	

DOWN HOLE SURVEY						
Depth	Azimuth	Dip	Temp °C	Mag.	Roll	Method
103.63	60.50	-47.60	6.7	5817	108.0	Reflex EZ-shot
205.13	58.30	-49.50	7.2	6629	281.6	Reflex EZ-shot

GEOLOGY LEGEND

Hole ID **2010-032**

ROCK CODE

MIN STYLE		
Abbr.	Description	
n	barren	
d	disseminated	
g	aggregated	
b	banded	

FABRIC			
Abbr.	Description		
Х	brecciated		
ı	laminated		
f	decalcified		
V	veined		
р	porphyritic		
m	massive		

	TEXTURE
Abbr.	Description
f	decalcified
р	porphyritic
V	veined

	LITHO
Abbr.	Description
CASE	Casing
OVBN	Overburden
OXID	Oxide
AM	Amphibolite
CC	Calcite Carbonatite
CD	Dolomite Carbonatite
CCCD	Mixed Calcite and Dolomite Carbonatite
AMX	Amphibole and Mixed Carbonatite
CM	Carbonatite Cumulate

STRUCT				
Description				
fault				
strained				
shear zone				
dyke				

MISCELLANEOUS:

ZONE			
Abbr.	Description		
OX	Oxide		
S	Supergene		
Н	Hypogene		

	HCL
Abbr.	Description
VW	very weak
W	weak
М	moderate
S	strong
VS	very strong

2010-032 Log by Ryan Kressall Date Hole ID

FROM 0.00 -	TO 2.60	ROCK CODE	CASE	=	Min Style	Fabric	Texture	Litho CASE	Struct		
		MAIN COMMENTS	No Rock.								
		MINERALIZATION									
		ALTERATION									
		STRUCTURE									
		MISCELLANEOUS	Zone	HCL		Apatite	Zircon				
FROM 2.60 -	TO 3.05	ROCK CODE	mfCD	=	Min Style	Fabric m	Texture f	Litho CD	Struct		
		MAIN COMMENTS	Talus fragments are cor	nposed dolomite ca	rbonatite. Some f	ragments are porp	hyritic with altered phlog	opite. Apatite occurs agg	gregated.		
		MINERALIZATION	Туре	Value	Comments						
		PHILIPPETATION	Pyrite %	1.00	Oxidized pyrite	un to 0 F cm					
			Fyille /0	1.00	Oxidized pyrite	ир to 0.5 ст					
		ALTERATION	Туре	Value	Comments						
			Calcite %	20.00	Dark-brown ca	lcitization - reacts	strongly to HCI				
		STRUCTURE									
		MISCELLANEOUS	Zone	HCL	ŀ	Apatite	Zircon				
			OX	М		5	0.1				

Printed on 10/Feb/2011

2010-032 Log by Ryan Kressall Date Hole ID

FROM 3.05 -	TO 20.86	ROCK CODE	bliCD	=	Min Style b	Fabric I	Texture i	Litho CD	Struct	
		MAIN COMMENTS	occurs as thin laminae (t in band. Zircon occurs as 5-10 cm medium-grained matrix, commonly giving	typically up to 0.5 cn ssociated with apation d dolomite bands oc g the inequigranular	n). A few larger band te. cur typically spaced band a brecciated a	ds (~ 2.5 to 5 cm at ~ 15 cm but d appearance. Ineq) of apatite are aggregate lo occur spaced greater th uigranular bands are void	d with d. grey unknow an 100 cm in places. I of apatite and zircor	nd calcitization gives laminae variable colours wn mineral. Interval is highly weathered thou Medium-graned dolomite is commonly situato 1. diameter and contain abundant zircon.	gh and no niobates can be observed
		MINERALIZATION	Туре	Value	Comments					
			Pyrite %	1.00	Oxidized pyrite oc	curs mostly con	fined to thin laminae (~1 r	nm thick); also as coi	mmon stringers	
			Magnetite %	2.50	2 magnetite-apat	ite aggregated o	occur at ~12.25 m; magnet	ite is fine- to mediun	n-grained, subhedral to euhedral	
			Niobates %	0.10	Likely columbite v	with magnetite;	also potential in larger ap	atite bands.		
		ALTERATION	Туре	Value	Comments					
			Calcite %	25.00	Dark-brown calcit	ization occurs as	s thin laminae (<0.5 cm) a	ind as matrix to medi	ium-grained dolomite	
			Oxidation %	40.00	Beige to pink dolo	mite laminae				
		STRUCTURE	Туре	Intens		CA°	Comments			
			Veining %	moderate		75 -	~2.5 cm medium-grey dolo	omite vein crosscuts	fabric at ~ 15.30 m	
			Laminations %	strong		20 1	Most commonly 20 degree	es; observed at 40 de	grees locally	
		MISCELLANEOUS	Zone	HCL	Ара	atite	Zircon			
			OX	W	12	2.5	0.25			

2010-032 Log by Ryan Kressall Date Hole ID

FROM 20.86	-	TO 36.82	ROCK CODE	blfCD	=	Min Style b	Fabric I	Texture f	Litho CD	Struct	
			MAIN COMMENTS	bands (> 5 cm) consist of Dominant texture of do calcitized and vary in size	of magnetite while solomite is laminated ze from ~1.5 cm to >	smaller bands (<5 o but contains local 50 cm.	m) conssit of d. g ized intervals of b	rey mineral. A larger magr	netite-apatite cumul d. brown calcitized v	gnetite or d. grey unknown mineral; apatite, dolomite and abundant zircon. ate band occurs beween 31.54 and 32.01 m. ein. Vein crosscuts apatite laminae (observed with UV lamp). Veins are high n.	
			MINERALIZATION	Type	Value	Comments					
				Magnetite %	5.00	Magnetite aggre	egated with apati	te			
				Pyrite %	1.50	Oxidized pyrite	occur locally conce	entrated to laminae in fine	-grained disseminat	ions to aggregates up to 1 cm	
			ALTERATION	Туре	Value	Comments					
				Calcite %	20.00	Dark-brown mo	ttling of dolomite				
				Oxidation %	40.00	Yellow to pink d	lolomite - general	ly follows laminae			
			STRUCTURE	Туре	Intens		CA°	Comments			
				Veining %	strong		45	Calcitized vein measured a	t ~25.0 m		
				Laminations %	moderate	2	25				
			MISCELLANEOUS	Zone	HCL	Α	patite	Zircon			
					W		5	0.5			

2010-032 Log by Ryan Kressall Date Hole ID

FROM 36.82	-	TO 87.20	ROCK CODE	blvCD	=	Min Style b	Fabric I	Texture v	Litho CD	Struct
			MAIN COMMENTS	dolomite carbonatite. U Dolomite carbonatite is irregularly spaced and a Inequigranular dolomite	ncommon ~2.5 cm g locally brecciated wi re typically 0.5 to 1.5 with medium-grair	greenish grey band ith light-grey dolor 5 m thick. ned white dolomite	s occur within dolor mite clasts and d. b e in a light-grey to d	nite. rown calcitized matrix. C ark-brown calcitized ma	olomite is massive a trix occur irregular go	k and orange). Apatite occurs thin laminae with common zircon within laminated and void of apatite near brecciated intervals. Brecciated veined intervals are generally as small bands (<5 cm). A larger band (~25 cm) occurs at ~61.1 m. quigranular is fine-grained dolomite void of apatite (~ 5 cm thick).
			MINERALIZATION	Type	Value	Comments				
				Pyrite %	1.50	Oxidized pyrite	occurs dominantly a	ıs thin laminae (<0.25 cr	n), stringers and com	mon aggregates (<0.5 cm)
			ALTERATION	Type Calcite %	Value 10.00	Comments				and to brecciated intervals.
				Oxidation %	35.00	Beige to pink do	lomite - locally cond	centrated		
				Amphibolite %	1.00	D. green fenite o	lasts (< 5 cm diame	eter) occur locally concen	trated - commonly ri	mmed by apatite
			STRUCTURE	Туре	Intens		CA° C	omments		
				Laminations %	strong		80 Tv	vo measured at ~80 deg	rees right next each l	out dip opposite directions (calcitized dolomite;fresh dolomite observed)
				Laminations %	moderate		20 Ge	enerally ~ 20 degrees - 40	O degrees observed n	ear top of interval
			MISCELLANEOUS	Zone	HCL	Α	patite	Zircon		
				OX	W		7.5	0.25		

2010-032 Log by Ryan Kressall Date Hole ID

FROM 87.20	-	TO 99.45	ROCK CODE	IAMX	=	Min Style	Fabric I	Texture	Litho AMX	Struct
			MAIN COMMENTS	white dolomite is not on observed (note:observed carbonatite as well - do	calcitized and contain ed near fenite clast at eflects lamination. 1 white inequigranula	s black altered phlo : ~98.6 m). Laminat r dolomite and larg	ogopite phencrys ted dolomite carb	ts. Clasts compose ~ 80 onatite occurs locally w	% of breccia. Pristine r ith thin apatite lamina	P) calcitized matrix. Where there is little clasts in the intrusive dolomite phase, the natrix is composed of fine- to medium-grained dolomite and phlogopite can be le (<0.5 cm) with common zircon. Fenite clasts are observed in laminated dolomite cluded within white dolomite matrix and become progressively less dark coloured
			MINERALIZATION	Type	Value	Comments				
				Pyrite %	1.25	Oxidized stringer	s and aggregates	s up to 1 cm		
			ALTERATION	Туре	Value	Comments				
				Oxidation %	40.00	Pink dolomite				
				Calcite %	20.00	Dark-brown calci	izaton - common	nly breccia matrix		
				Amphibolite %	5.00	D. green fenite cl	asts (2 to 20 cm)	;common apatite rim; co	ommonly calcitized	
			STRUCTURE	Туре	Intens	ı	CA°	Comments		
				Veining %	moderate		30	Calcitized veins measure	ed at ~30 degrees -vari	able dip directions
				Laminations %	moderate		20	Only locally observed; sto	eep 80 degree laminat	ion observed between 97.6 and 98.8 m.
			MISCELLANEOUS	Zone	HCL	Ар	atite	Zircon		
							5	0.1		

2010-032 Log by Ryan Kressall Date Hole ID

FROM 99.45	-	TO 103.45	ROCK CODE	blicd	=	Min Style b	Fabric I	Texture i	Litho CD	Struct	
			MAIN COMMENTS	grey unknown mineral o zircon occurs. Apatite o	occur locally concenti occurs as localized lai	rated near dissemir minae within dolom	nated magnetite. <i>I</i> nite carbonatite.		terval, a 10 cm band c	d within pink and orange dolomite. Bands omposed of black altered phlogopite with	·
			MINERALIZATION	Туре	Value	Comments					
				Niobates %	0.10	Possible columbi	te with magnetite	and apatite-d. grey min	eral (dolomitized ma	gnetite) bands	
				Magnetite %	0.50	Medium-grained	disseminations w	ithin orange and pink do	lomite		
				Pyrite %	1.00	Oxidized fine-gra	ined pyrite occurs	locally disseminated - c	ommonly weathered	out leaving pits	
			ALTERATION	Туре	Value	Comments					
				Calcite %	5.00	Dark-brown calci	tization generally	follows laminae			
				Oxidation %	60.00	Orange and pink	dolomite				
				Amphibolite %	5.00	30 cm fenite clas	t occurs at ~102.20	o m; ovoid texture: medi	um-green core with l	olack rim	
			STRUCTURE	Туре	Intens	l	CA° C	omments			
				Laminations %	moderate		20				
			MISCELLANEOUS	Zone	HCL	Ар	atite	Zircon			,
					W		5	0.25			
					-						

2010-032 Log by Ryan Kressall Date Hole ID

FROM 103.45	T0 - 124.00	ROCK CODE	blvCD	=	Min Style b	Fabric I	Texture v	Litho CD	Struct
		MAIN COMMENTS	Interval is essentially th altered phlogopite and z		37.20 - laminated c	dolomite carbona	atite with intervals of brec	ciated dolomite carboi	natite. Apatite forms thin laminae - commonly associated with fine-grained black
		MINERALIZATION	Туре	Value	Comments				
			Pyrite %	1.25	Oxidized pyrite o	occurs as aggrega	ates (up to 1 cm) and string	gers	
		ALTERATION	Туре	Value	Comments				
			Oxidation %	60.00	Beige to pink do	lomite			
			Calcite %	15.00	D. brown interva	ls up to 10 cm ar	nd matrix to breccia (calcit	ization)	
		STRUCTURE	Туре	Intens		CA°	Comments		
			Veining %	moderate		30	D. brown veins/dykes - m	neasured irregular shap	ped contact
			Laminations %	strong		25			
		MISCELLANEOUS	Zone	HCL	A	patite	Zircon		
			OX	W		10	0.25		

2010-032 Log by Ryan Kressall Date Hole ID

FROM 124.00	-	TO 132.16	ROCK CODE	IcAMX	=	Min Style	Fabric I	Texture c	Litho AMX	Struct	
			MAIN COMMENTS	dolomite - may actually	be dolomitized clast	ts. Dark-grey inec	quigranular dolon		5 cm thick) - relatively	129.1 m. Clasts have similar appearance to fenite clasts but are composed of concordant with lamination. i cm).	
			MINERALIZATION	Туре	Value	Comments					
				Pyrite %	1.25	Oxidized aggre	gates up to 1 cm				
			ALTERATION	Туре	Value	Comments					_
				Calcite %	5.00	Irregular d. grey	y mottling (calcit	zation) - also commonly a	long dolomite clast (or	dolomitized fenite) edges	
				Oxidation %	30.00	Beige to pink d	olomite				
				Amphibolite %	25.00	D. green to grey	y clasts (up to ~3	O cm)			
			STRUCTURE	Туре	Intens		CA°	Comments			
				Veining %	moderate		20	Inequigranular dolomite	up to 5 cm - commonly	calcitized	
				Laminations %	moderate		20				
			MISCELLANEOUS	Zone	HCL	A	Apatite	Zircon			
				OX	М		10	0.25			

2010-032 Log by Ryan Kressall Date Hole ID

FROM 132.16	TO - 153.08	ROCK CODE	bliCD	=	Min Style b	Fabric I	Texture i	Litho CD	Struct	
		MAIN COMMENTS	dolomite.	osed of apatite, d. g	rey mineral, oxidized p				er veins are 1 to 30 cm wide and commonly calcitized around medium-grained compose ~ 15 % of interval. No niobates identified in bands. A 20 thick	
		MINERALIZATION	Туре	Value	Comments					
			Pyrite %	1.00	Stringers and aggree	gates up to 1 cm	n			
		ALTERATION	Туре	Value	Comments					
			Oxidation %	40.00	Beige to pink dolom					
			Calcite %	25.00	D. brown calcitization	n is commonly	associated with inequi	igranular dolomite		
		STRUCTURE	Туре	Intens	CA	• C	Comments			
			Veining %	strong	10	In	nequigranular veins up t	to 30 cm		
			Laminations %	moderate	20					
		MISCELLANEOUS	Zone	HCL	Apati	ite	Zircon			
			OX	М	15		0.25			

2010-032 Log by Ryan Kressall Date Hole ID

FROM 153.08	TO - 164.39	ROCK CODE	blcCD	=	Min Style b	Fabric I	Texture c	Litho CD	Struct	
		MAIN COMMENTS	D. brown calcitization ob breccia. Gouge and rubble A ~15 cm magnetite-apat Apatite occurs aggregate	e intervals are comi tite cumulate band	mon. A fault is labo occurs at ~161.59 m	eled at ~162.53 m. n.	tion and medium-graine	d dolomite can be o	bserved. Calcitization concentrates to	matrix of inequigranular dolomite and
		MINERALIZATION	Туре	Value	Comments					
			Pyrite %	0.50	Uncommon oxidi	ized pyrite aggregat	tes up to 0.5 cm; laminat	ions composed alm	ost entirely of oxidized pyrite up to 1 c	m
			Magnetite %	5.00	Medium-grained	magnetite aggrega	ated with apatite in ~ 15 o	cm band at ~161.59		
			Niobates %	0.50	Columbite likely	occurs with magnet	tite			
		ALTERATION	Туре	Value	Comments					
			Calcite %	70.00	Dark-brown calci	tization makes up (entire rock in places			
			Oxidation %	15.00	Beige dolomite					
		STRUCTURE	Туре	Intens		CA° Co	omments			
			Veining %	moderate		10 Ine	equigranular dolomite ve	ins up to 2.5 cm; Se	condary calcite vein (~0.5 cm) at 80 de	grees
			Laminations %	weak		20 On	ly locally observed			
		MISCELLANEOUS	Zone	HCL	Ар	oatite	Zircon			
			OX	М		5	0.25			

2010-032 Log by Ryan Kressall Date Hole ID

FROM TO 164.39 - 192.30	ROCK CODE	bliCD	=	Min Style F	abric Textu I i	re Litho CD	Struct	
	MAIN COMMENTS	localized areas brecciate with disseminated mag	ed appearance. Apati [,] netite occurs at ~176. lacement observed at	te forms common bands (.75 m (~10 cm thick); cross t ~169.6 m - infilled by sec	~ 2.5 cm) with dark-grey u cut by calcitization.	nknown mineral. In brecci	phlogopite are observed locally. Frequent crosscutting ated intervals, apatite occurs aggregated with commo	
	MINERALIZATION	Type	Value	Comments				
		Magnetite %	0.10	Fine-grained magnetite	occurs locally disseminate	d within calcite carbonatit	e	
		Pyrite %	0.75	Oxidized pyrite occurs lo	cally disseminated - comn	nonly associated with blac	k altered phlogopite	
	ALTERATION	Туре	Value	Comments				
		Oxidation %	30.00	Beige to pink dolomite				
		Calcite %	25.00	Dark-brown calcitization	occurs commonly associa	ted with inequigranular do	olomite veins	
	STRUCTURE	Туре	Intens	CA°	Comments			
		Veining %	moderate	20	Inequigranular do	olomite (up to 10 cm thick)	is concordant to lamination	
		Laminations %	moderate	20				
	MISCELLANEOUS	Zone	HCL	Apatite	Zircon			,
		OX	W	10	0.5			
				1	I .	1		

Printed on 10/Feb/2011

GEOLOGY LOG

2010-032 Log by Ryan Kressall Date Hole ID

FROM 192.30	TO - 205.18	ROCK CODE	blpCD	=	Min Style b	Fabric I	Texture p	Litho CD	Struct
		MAIN COMMENTS	Inequigranular dolomite	is commonly calcitiz	ed (d. brown). Bands	s within laminate	ed dolomite is composed	d of apatite, oxidized	uigranular dolomite composes ~5 % of interval and locally brecciates dolomite. pyrite, black altered phlogopite +/- zircon. es) within cumulate. Cumulate is concordant with laminated dolomite - contact at
		MINERALIZATION	Туре	Value	Comments				
			Niobates %	1.00	Likely columbite oc	curs with magne	etite		
			Magnetite %	15.00	Medium-grained m	agnetite occurs	aggregated with apatite	within cumulate ph	ase
			Pyrite %	1.00	Oxdized aggregates	s up to 1 cm			
		ALTERATION	Туре	Value	Comments				
			Oxidation %	30.00	Beige dolomite				
			Calcite %	10.00	Dark-brown calcitiz	ation - associate	ed with inequigranular ve	eins and matrix to b	reccia
		STRUCTURE	Туре	Intens	CA	A° C	omments		
			Laminations %	moderate	20	J			
			Veining %	weak	50) In	equigranulat veins at va	rious angles - measu	red at 5, 50 and 80 degrees - up to 10 cm thick
		MISCELLANEOUS	Zone	HCL	Apat	rite	Zircon		
			OX	М	15		0.5		

End of Hole End of Hole

Measurement unit: Metres (Unless otherwise specified)

Hole ID	2010-033
---------	----------

GENERAL INFORMATION					
Coordinate System	Easting	Northing	Elevation	Collar Azimuth	Collar Dip
ST. PL Nad 83	454808.09	6256300.23	1781.80	30.00	-45.00
Start Depth	Final Depth	Proposed Depth	Final Length	Rig	Area
0.00	213.41		213.41		Central 4
Operator	Year			1	
Taseko	2010				

PROFESSIONAL / TECHNICIAN				
	Name	Start Date	End Date	
Collar Surveyor	Ryan Kressall			
Geology Logged By	Ryan Kressall			
Specific Gravity By	Ryan Libke			
Geotech Logged By				
Drill Contractor		25/Aug/2010	27/Aug/2010	

	SUMMARY	

DRILLING BIT SIZE				
Bit Size	From	То	Length	
NW (Casing)	0.00	5.64	5.64	
NQ	5.64	213.41	213.41	

DOWN HOLE SURVEY						
Depth	Azimuth	Dip	Temp °C	Mag.	Roll	Method
213.36	42.30	-48.40	5.9	5698	318.7	Reflex EZ-shot

GEOLOGY LEGEND

Hole ID **2010-033**

ROCK CODE

MIN STYLE				
Abbr.	Description			
n	barren			
d	disseminated			
g	aggregated			
b	banded			
b	banded			

FABRIC				
Abbr.	Description			
Х	brecciated			
- 1	laminated			
f	decalcified			
V	veined			
р	porphyritic			
m	massive			

	TEXTURE
Abbr.	Description
f	decalcified
р	porphyritic
V	veined

LITHO				
Abbr.	Description			
CASE	Casing			
OVBN	Overburden			
OXID	Oxide			
AM	Amphibolite			
CC	Calcite Carbonatite			
CD	Dolomite Carbonatite			
CCCD	Mixed Calcite and Dolomite Carbonatite			
AMX	Amphibole and Mixed Carbonatite			
CM	Carbonatite Cumulate			

STRUCT				
Abbr.	Description			
Z	fault			
е	strained			
S	shear zone			
У	dyke			

MISCELLANEOUS:

ZONE									
Abbr.	Description								
OX	Oxide								
S	Supergene								
Н	Hypogene								

	HCL
Abbr.	Description
VW	very weak
W	weak
М	moderate
S	strong
VS	very strong

2010-033 Log by Ryan Kressall Date Hole ID

FROM 0.00	-	TO 5.64	ROCK CODE	CASE	=	Min Style	Fabric	Texture	Litho CASE	Struct		
			MAIN COMMENTS	No rock.								
			MINERALIZATION									
			ALTERATION									
			STRUCTURE									
			MISCELLANEOUS	Zone	HCL		Apatite	Zircon				
FROM 5.64	-	TO 6.10	ROCK CODE	nmCASE	=	Min Style n	Fabric m	Texture	Litho CASE	Struct		
			MAIN COMMENTS	Weathered talus of light	-grey dolomite carb	onatite.						
			MINERALIZATION	Туре	Value	Comments						
				Pyrite %	1.00	Oxidized pyrit	e - disseminated					
			ALTERATION	Туре	Value	Comments						
				Calcite %	10.00	1	tles (calcitization)					
				Oxidation %	10.00	Orange dolom	nite					
			STRUCTURE									
			MISCELLANEOUS	Zone	HCL		Apatite	Zircon				1
				OX	VW		5	0.1				

2010-033 Log by Ryan Kressall Date Hole ID

FROM 6.10	TO - 27.44	ROCK CODE	glcCD	=	Min Style g	Fabric I	Texture c	Litho CD	Struct	
		MAIN COMMENTS		val. White calcite lan					g boundary between dolomite and magnetite are abundant between 9.68 and 25.79 m. Bev	
		MINERALIZATION	Type	Value	Comments					
			Magnetite %	10.00	Magnetite occu	rs aggregated wit	h apatite			
			Niobates %	1.00	Likely columbit	e occurs with mag	netite			
			Pyrite %	1.50	Oxidized; locally	/ disseminated ar	d aggregates up to 1 cm			
		ALTERATION	Туре	Value	Comments					
			Calcite %	30.00	Dark-brown cal	citization -follow	laminae and concentrate	s around cumulate cla	sts	
			Amphibolite %	1.00	Minor greyish b	lue ~ 2.5 clot occu	rs at ~16.1 m - possibly fe	enite (?)		
		STRUCTURE	Туре	Intens		CA°	Comments			
			Laminations %	moderate		30				
			Veining %	moderate		60	Greyish blue 3 cm vein (o	r laminae) occurs at ~	16.2 m - includes laminae of I. grey dolomite	- similar clots appear elsewhere
		MISCELLANEOUS	Zone	HCL	А	patite	Zircon			
			OX	М		10	0.5			
				-	•		-			

2010-033 Log by Ryan Kressall Date Hole ID

FROM 27.44 -	TO 41.97	ROCK CODE	blcCD	=	Min Style b	Fabric I	Texture c	Litho CD	Struct	
		MAIN COMMENTS	Light-grey dolomite carb phlogopite, zircon and v Localized inequigranula	isible pinkish browr	n pyrochore. Clasts	compose ~ 10 % o	of interval.	magnetite. Minor am	ount of clasts contain magnetite, but r	najority are composed of apatite, black
		MINERALIZATION	Туре	Value	Comments					
			Pyrite %	0.50	Oxidized pyrite	aggregates up to 1	cm and minor disseminat	ted fine-graned pyrito	2	
			Magnetite %	0.50	Minor magnetit	e occurs aggregate	ed with apatite within sm	all clasts (<2.5 cm)		
			Niobates %	1.00	Pinkish-brown s	suspect pyrochlore	(?) observed in phlogopit	e-bearing clasts		
		ALTERATION	Туре	Value	Comments					
			Calcite %	50.00	Large intervals	of calcitization occ	ur between 30.63-32.82 r	n and 35.68-38.48 m		
			Oxidation %	25.00	Beige to pink la	minated dolmite				
		STRUCTURE	Туре	Intens		CA°	Comments			
			Veining %	weak		40 1	Minor secondary calcite ve	ins		
			Laminations %	moderate		35				
		MISCELLANEOUS	Zone	HCL	А	patite	Zircon			
			OX	М		7.5	0.5			
		MISCELLANEOUS			A					

2010-033 Log by Ryan Kressall Date Hole ID

FROM 41.97 -	TO 58.17	ROCK CODE	ЫCD	=	Min Style b	Fabric I	Texture	Litho CD	Struct	
		MAIN COMMENTS	Light grey laminated do interval (more abunant						rcon. Larger bands (> 10 cm) contain interstitial calcite. Bands compose	e ~ 5 % of
		MINERALIZATION	Туре	Value	Comments					
			Niobates %	0.25	Likely columbite wi	th magnetite				
			Pyrite %	1.00	Fresh pyrite occurs	with uncommon	altered magnetite; occ	urs locally concentrate	d to laminae	
			Magnetite %	3.50	Occurs aggregated	with apatite; fine	e to medium grained			
		ALTERATION	Туре	Value	Comments					
			Oxidation %	45.00	Beige dolomite					
		STRUCTURE	Туре	Intens	CA	۸° Cc	omments			
			Laminations %	strong	41	0				
		MISCELLANEOUS	Zone	HCL	Apat	tite	Zircon			
			Н	W	7.5		0.25			

2010-033 Log by Ryan Kressall Date Hole ID

FROM 58.17	TO - 61.13	ROCK CODE	bcreniCD	=	Min Style Fabi b crei		Litho CD	Struct		
		MAIN COMMENTS	Light-grey crenulated d in bands but interval ha		with steep core angle. Bands	(< 2.5 cm) are composed of I	aminated apatite, dark-g	rey unknown (not-magnetic), pyrite an	d common zircon. No niobates identifi	ed
		MINERALIZATION	Туре	Value	Comments					
			Pyrite %	1.00	Fine-grained;aggregated wi	th d. grey unknown				
		ALTERATION	Туре	Value	Comments					
			Oxidation %	15.00	Yellow stained dolomite (?)					
		STRUCTURE	Туре	Intens	CA°	Comments				
			Laminations %	strong	75	crenulations (betweer	70 and 80 degrees			
		MISCELLANEOUS	Zone	HCL	Apatite	Zircon				
			Н	VW	10	0.25				

2010-033 Log by Ryan Kressall Date Hole ID

FROM 61.13	-	TO 65.63	ROCK CODE	glpCD	=	Min Style g	Fabric I	Texture p	Litho CD	Struct	
			MAIN COMMENTS	magnetite floaters" occ	cur within calcite vein	is. Light grey lamin	ated dolomite carb	onatite. Veins extend	from dolomite host ro	s (<0.5 mm). Cumulate contains abundant zircon anc ck. Clasts compose ~ 40 % of interval. Porphyritic ligl Phenocrysts consist of d. grey unknown mineral. Apa	nt-grey dolomite carbonatite
			MINERALIZATION	Туре	Value	Comments					
				Pyrite %	1.00	Common aggrega	ites up to 0.5 cm w	vithin porphyry			
				Magnetite %	25.00	Magnetite occurs	aggregated with a	patite; commonly asso	ciated with calcite		
				Niobates %	1.50	Fine-grained hon	ey-brown pyrochlo	re identified in porphyr	y columbite likely pre	sent with magnetite	
			ALTERATION								
			STRUCTURE	Туре	Intens	(CA° Co	omments			
				Laminations %	moderate		25 Lo	cally observed; measur	ed at top of interval		
			MISCELLANEOUS	Zone	HCL	Ар	atite	Zircon			
						:	20	0.5			

2010-033 Log by Ryan Kressall Date Hole ID

FROM 65.63	_	T0 70.78	ROCK CODE	blpCD	=	Min Style b	Fabric I	Texture p	Litho CD	Struct	
			MAIN COMMENTS	Apatite occurs weakly lablobs of calcite occur wi	aminated within dol ithin porphyry.	omite. Porphyritic do	olomite occurs ne		enocrysts of fine-gr	ite, zircon and identified pale-pink fersmite. Bands compose ~2.5 % ained black altered phlogopite, d. grey unknown and uncommon ma	
			MINERALIZATION	Type	Value	Comments					
				Pyrite %	1.25	Fresh pyrite aggre	gates up to 1 cm	- commonly aggregated v	within bands w/ d. g	rey unknown mineral	
				Magnetite %	0.10	Minor fine-grained	d magnetite occu	rs disseminaed within po	orphyry		
				Niobates %	0.50	Fine-grained pale	pink fersmite obs	served in bands with apa	tite and d. gey unkn	own mineral	
			ALTERATION	Туре	Value	Comments					
				Silica %	3.50	D. grey silicificatio					
				Oxidation %	50.00	Beige dolomite occ	curs towards bot	tom of interval			
			STRUCTURE	Туре	Intens	С	A° C	omments			
				Laminations %	weak		50 M	easured at end of interva	al; core angle of cren	ulations: 40 degrees	
			MISCELLANEOUS	Zone	HCL	Ana	ntite	Zircon			
				Н	W	1,50		0.25			
					1						

2010-033 Log by Ryan Kressall Date Hole ID

FROM 70.78	-	TO 78.02	ROCK CODE	blfgCD	=	Min Style b	Fabric I	Texture fg	Litho CD	Struct	
			MAIN COMMENTS	White to beige dolomi composes ~ 40 % of ir				ite cumulate (1-100 cm)	and with common cla	sts (~5-10 cm). Cumulate contains abundant zircon and	phlogopite. Cumulate
			MINERALIZATION	Туре	Value	Comments					
				Niobates %	1.50	Likely columbite o	ccurs with magne	etite			
				Pyrite %	1.00	Minor oxidized py	rite				
				Magnetite %	30.00	Magnetite occurs	aggregated with a	apatite			
			ALTERATION	Туре	Value	Comments					
				Oxidation %	20.00	Beige to pink dolo	mite				
			STRUCTURE	Туре	Intens		A° C	omments			
				Laminations %	moderate		30				
			MISCELLANEOUS	Zone	HCL	Ара	atite	Zircon			
					VW	2	.0	0.75			

2010-033 Log by Ryan Kressall Date Hole ID

FROM 78.02	-	TO 88.41	ROCK CODE	blpCCCD	=	Min Style b	Fabric I	Texture p	Litho CCCD	Struct
			MAIN COMMENTS	green dolomite occur at and medium-green dolo Localized crenulation o	the contact (70 degomite matrix. Magneccurs as ~74.10 m.	rees). Contact may a etite is typically disse	actually be a fault eminated with mo	t. Dips of two banded ph ed-green dolomite mati	nases are in different di rix. Apatite occurs lamir	onatite. Contact is sharp between two banded phases with ~ 1 cm medium- rections. Bands are 0.5 to 60 cm thick, composed of magnetite, apatite, zircon nated throughout interval.
			MINERALIZATION	Туре	Value	Comments				
				Pyrite %	1.00	Locallized fine-gr	ained needles in o	oxidized zones		
				Magnetite %	10.00	Fine- to medium-	grained magnetit	te occurs disseminated	within d. grey dolomite	matrix
			ALTERATION	Туре	Value	Comments				
				Oxidation %	30.00	Pink dolomite				
			STRUCTURE	Туре	Intens	(CA° C	Comments		
				Laminations %	moderate		30			
			MISCELLANEOUS	Zone	HCL	Ара	atite	Zircon		
				OX	М		20	0.5		

2010-033 Log by Ryan Kressall Date Hole ID

ciated with magnetite. Calcite occurs commonly
ocia

2010-033 Log by Ryan Kressall Date Hole ID

FROM 98.37	TO - 109.50	ROCK CODE	gliCD	=	Min Style g	Fabric I	Texture i	Litho CD	Struct		
		MAIN COMMENTS	Laminated light-grey d has very little apatite la	•	evious interval but w	rith larger clasts ((5 to 50 cm) of magneti	te-apatite. Zircon occu	rs with cumulate clasts. Clasts comp	ose ~ 20 % of interval. Laminated dol	omite
		MINERALIZATION	Туре	Value	Comments						
			Magnetite %	12.50	Occur aggregated	with apatite med	dium-grained				
			Niobates %	1.00	Likely columbite o	ccurs with magn	etite				
			Pyrite %	1.50	Fresh pyrite occurs	s commonly asso	ciated magnetite; oxidi	ized pyrite occurs disse	minated within laminated dolomite		
		ALTERATION	Туре	Value	Comments						
			Oxidation %	30.00	Beige dolomite						
			Calcite %	10.00	Dark-brown calciti	zation concentra	ites around cumulate cl	asts			
		STRUCTURE	Туре	Intens	С	A° C	omments				
			Laminations %	weak	4	40					
		MISCELLANEOUS	Zone	HCL	Apa	itite	Zircon				
			Н	VW	1	0	0.5				

2010-033 Log by Ryan Kressall Date Hole ID

FROM 109.50	TO - 112.30	ROCK CODE	gmiCM	=	Min Style g	Fabric m	Texture i	Litho CM	Struct
		MAIN COMMENTS	Dominantly magnetite 15 to 30 cm lamination	•	th more magnetite	e than apatite. Com	mon phlogopite occurs	with magnetite. Zirco	n occurs commonly within cumulate. Dolomite carbonatite (laminated) occurs as
		MINERALIZATION	Туре	Value	Comments				
			Magnetite %	40.00	Medium-grained	d magnetite occurs a	aggregated with apatite		
			Pyrite %	1.50	Oxidized pyrite	occurs with magneti	te		
			Niobates %	2.50	Columbite likely	occurs with magnet	tite		
		ALTERATION	Туре	Value	Comments				
			Calcite %	20.00	Dark-brown calc	itization concentrat	es toward end of interv	al	
		STRUCTURE	Туре	Intens		CA° Co	mments		
			Laminations %	very weak		20 Me	asured contact betwee	n dolomite and cumu	late
		MISCELLANEOUS	Zone	HCL	A	patite	Zircon		
			Н	W		15	0.5		

2010-033 Log by Ryan Kressall Date Hole ID

ccurs as laminae up 3.5 cm thick with d.

2010-033 Log by Ryan Kressall Date Hole ID

FROM 120.02	T0 - 139.45	ROCK CODE	liCD	=	Min Style	Fabric I	Texture i	Litho CD	Struct	
		MAIN COMMENTS							mite comprises medium-grained dolomite carbonatite within a calcitized matrix.) aggregated with d. grey unknown mineral and altered phlogopite.	
		MINERALIZATION	Туре	Value	Comments					
			Pyrite %	1.00	Oxidized aggreg	ates up to 0.5 cm	1			
		ALTERATION	Туре	Value	Comments					
			Calcite %	20.00	D. brown calcitiz	ation				
			Oxidation %	10.00	Beige dolomite					
		STRUCTURE	Туре	Intens		CA°	Comments			
			Laminations %	weak		50				
			Veining %	moderate		70	White secondary calcite	veins (up to 1 cm)		
		MISCELLANEOUS	Zone	HCL	Α	patite	Zircon			
			OX	М		5	0.1			

2010-033 Log by Ryan Kressall Date Hole ID

FROM 139.45	TO - 143.64	ROCK CODE	nmcCD	=	Min Style n	Fabric m	Texture c	Litho CD	Struct	
133.13	115.01									
		MAIN COMMENTS	Light-grey dolomite carb	oonatite has been ex	xtensively calcit	tized (dark-brown)	to locally decalcified (pitter	surface). Apatite occ	urs aggregated. No zircon observed.	
		MINERALIZATION	Туре	Value	Comments					
			Pyrite %	1.00	Oxidized aggr	reagates up to 0.2	5 cm			
		ALTERATION	Туре	Value	Comments					
			Calcite %	80.00	Dark-brown c	alcitization				
		STRUCTURE	Туре	Intens		CA°	Comments			
			Veining %	moderate		60	Thin (<0.25 cm) secondar	calcite veins		
		MISCELLANEOUS	Zone	HCL		Apatite	Zircon			
			OX	S		5	0			
FROM	TO	ROCK CODE	gICD	=	Min Style	Fabric	Texture	Litho	Struct	
143.64	- 149.81		_		~	1		רח		
	115.01		3		g	I		CD		
	113.01	MAIN COMMENTS		oonatite. 2.5 - 10 cm		l composed of apa	tite, dark-grey unknown mi		rcon. No niobates identified	
	113.61		Light-grey dolomite carb		ı aggregates are		tite, dark-grey unknown mi		rcon. No niobates identified	
	113.01	MAIN COMMENTS MINERALIZATION		oonatite. 2.5 - 10 cm Value 1.25	comments				rcon. No niobates identified	
	113.01	MINERALIZATION	Light-grey dolomite carb Type Pyrite %	Value 1.25	Comments Oxidized pyrit	te occurs locally di			rcon. No niobates identified	
	113.01		Light-grey dolomite carb	Value	comments	te occurs locally di			rcon. No niobates identified	
	113.01	MINERALIZATION ALTERATION	Type Pyrite % Type Oxidation %	Value 1.25 Value 50.00	Comments Comments	te occurs locally di	sseminated		rcon. No niobates identified	
	113.01	MINERALIZATION	Light-grey dolomite carb Type Pyrite % Type	Value 1.25 Value	Comments Comments	te occurs locally di			rcon. No niobates identified	
	113.01	MINERALIZATION ALTERATION	Type Pyrite % Type Oxidation % Type	Value 1.25 Value 50.00 Intens	Comments Oxidized pyrit Comments beige dolomit	te occurs locally di te CA°	sseminated		rcon. No niobates identified	

2010-033 Log by Ryan Kressall Date Hole ID

FROM 149.81	TO - 155.78	ROCK CODE	gliCCCD	=	Min Style g	Fabric I	Texture i	Litho CCCD	Struct				
		MAIN COMMENTS	Porphyritic calcite to dol	Magnetite-apatite cumulate clasts (7.5 to 1 m) within dolomite carbonatite. Clasts compose ~ 30 % of interval. Abundant zircon occur within cumulate phase. Porphyritic calcite to dolomite carbonatite occurs in the last 40 cm. Calcite occurs as patches within dolomite carbonatite (dolomitization of calcite carbonatite?). Calcite contains fine-grained phenocrysts of nagnetite and brown phlogopite. Dolomite contains non-magnetic dark-grey fine-grained phenocrysts.									
		MINERALIZATION	Туре	Value	Comments								
			Niobates %	1.00	Likely columbite o	ccurs wih magne	etite						
			Magnetite %	15.00	Magnetite occurs a	aggregated with	apatite in clasts; dissem	inated withn calcite-d	lolomite carbonatite				
		ALTERATION	Туре	Value	Comments								
			Oxidation %	20.00	Beige dolomite								
		STRUCTURE	Туре	Intens	C	A° C	Comments						
			Laminations %	moderate	4	10							
		MISCELLANEOUS	Zone	HCL	Ара	tite	Zircon						
			OX	W	12	.5	0.5						

2010-033 Log by Ryan Kressall Date Hole ID

FROM 155.78	TO - 163.90	ROCK CODE	blfgCD	=	Min Style b	Fabric I	Texture fg	Litho CD	Struct		
		MAIN COMMENTS	Light-grey dolomite car unknown and abundan				te inequigranular dolom	ite bands. Dark-grey I	bands (up to 5 cm) are composed of a	oatite, black altered phlogopite, c	. grey
		MINERALIZATION	Туре	Value	Comments						
			Niobates %	0.50	Yellow fine-grain	ed suspect fersmi	te within d. grey bands				
			Pyrite %	1.00	Fresh to oxidized	pyrite occurs local	lly concentrated to lami	nae			
		ALTERATION	Туре	Value	Comments						
			Oxidation %	30.00	Beige to pink dolo	mite					
		STRUCTURE	Туре	Intens	(CA° C	omments				
			Laminations %	moderate	!	20					
		MISCELLANEOUS	Zone	HCL	Ар	atite	Zircon				
			OX	VW		5	0.25				

2010-033 Log by Ryan Kressall Date Hole ID

FROM 163.90	_	TO 166.09	ROCK CODE	gICD	=	Min Style g	Fabric I	Texture	Litho CD	Struct	
			MAIN COMMENTS	Light-grey dolomite ca within dolomite carbor		n clasts are compos	ed of apatite, mag	netite, abundant zircor	n and interstital dolomi	te. Clasts compose ~ 10 % of interval. Apatite also occurs weakly laminated	
			MINERALIZATION	Туре	Value	Comments					
				Magnetite %	7.50	Aggregated with	apatite				
				Pyrite %	0.50	Fresh aggregate	d upto 0.25 cm				
				Niobates %	1.00	Columbite likely	occurs with magne	tite			
			ALTERATION	Туре	Value	Comments					
				Oxidation %	40.00	Beige dolomite					
			STRUCTURE	Туре	Intens		CA° C	omments			_
				Laminations %	very weak	٢	20 Be	est viewed in apatite ur	nder UV		
			MISCELLANEOUS	Zone	HCL	Aŗ	patite	Zircon			
				OX	VW		5	0.25			

2010-033 Log by Ryan Kressall Date Hole ID

FROM 166.09	TO - 171.07	ROCK CODE	bmiCD	=	Min Style b	Fabric m	Texture i	Litho CD	Struct	
		MAIN COMMENTS	Light- to medium-grey cm) occur ocassionally t	mottled dolomite ca hroughout interval.	arbonatite with u	ncommon d. grey	apatite <2.5 cm bands (wit	h common pyrite). Ap	atite also occurs as white laminae. Minor me	dium-grained dolomite laminae (<2
		MINERALIZATION	Туре	Value	Comments					
			Pyrite %	0.50	Occurs commo	only associated w	th d. grey apatite bands			
		ALTERATION								
		STRUCTURE	Туре	Intens		CA°	Comments			
			Laminations %	moderate	!	30				
		MISCELLANEOUS	Zone	HCL		Apatite	Zircon			
			Н	VW		10	0.1			
FROM 171.07	TO - 181.00	ROCK CODE	gmiCD	=	Min Style g	Fabric m	Texture i	Litho CD	Struct	
		ROCK CODE MAIN COMMENTS	_	grey to beige dolomi	g	m	i	CD	Struct black altered phlogopite, pyrite and commor	ıly abundant zircon. Aggregates
			Mottled-massive light-	grey to beige dolomi	g	m	i	CD		ıly abundant zircon. Aggregates
		MAIN COMMENTS	Mottled-massive light- compose ~ 5 % of interv	grey to beige dolomi val.	g ite carbonatite w	m	i ates (up to 10 cm) composec	CD		ily abundant zircon. Aggregates
		MAIN COMMENTS	Mottled-massive light-compose ~ 5 % of interv	grey to beige dolomi val. Value	g ite carbonatite w	m ith d.grey aggrega	i ates (up to 10 cm) composec	CD		ily abundant zircon. Aggregates
		MAIN COMMENTS MINERALIZATION	Mottled-massive light-compose ~ 5 % of intervention Type Pyrite %	grey to beige dolomi val. Value 2.00	g Comments Aggregated up Comments	m ith d.grey aggrega o to 5 cm associat	i ates (up to 10 cm) composec	CD d of apatite, dolomite		Ily abundant zircon. Aggregates
		MAIN COMMENTS MINERALIZATION	Mottled-massive light-compose ~ 5 % of intervention Type Pyrite % Type	grey to beige dolomi val. Value 2.00 Value	g Comments Aggregated up Comments	m ith d.grey aggrega o to 5 cm associat	i ates (up to 10 cm) composed ed with apatite	CD d of apatite, dolomite		Ily abundant zircon. Aggregates
		MAIN COMMENTS MINERALIZATION ALTERATION	Mottled-massive light-compose ~ 5 % of intervention of the compose	grey to beige dolomi val. Value 2.00 Value 40.00	g Comments Aggregated up Comments	m ith d.grey aggrega to 5 cm associat	i ates (up to 10 cm) composed ed with apatite dation zone between 176.41 Comments	CD d of apatite, dolomite and 178.3 m		
		MAIN COMMENTS MINERALIZATION ALTERATION	Mottled-massive light-compose ~ 5 % of interventions of the compose of the compos	yal. Value 2.00 Value 40.00 Intens	g Comments Aggregated up Comments Beige topink d	m ith d.grey aggrega to 5 cm associat clolomite; high oxid	i ates (up to 10 cm) composed ed with apatite dation zone between 176.41 Comments	CD d of apatite, dolomite and 178.3 m	black altered phlogopite, pyrite and commor	

Printed on 10/Feb/2011

Printed on 10/Feb/2011

GEOLOGY LOG

2010-033 Log by Ryan Kressall Date Hole ID

FROM 181.00 -	TO 186.94	ROCK CODE	bliCD	=	Min Style b	Fabric I	Texture i	Litho CD	Struct	
		MAIN COMMENTS	altered phlogopite and s	suspect fersmite. Ba	ands compose ~3.5 %	of interval.	nassive inequigranular dolom d dolomite has been oxidize			ite occurs as d. grey bands (1 to 7.5 cm) with black
		MINERALIZATION	Туре	Value	Comments					
			Niobates %	0.25	I	c fine-grained	fersmite within d. grey band	ds with apatite		
			Pyrite %	1.50	Fresh to oxidized s	stringers (~1 cr	n long)			
		ALTERATION	Туре	Value	Comments					
			Oxidation %	10.00		mite - commo	nly surrounds pyrite stringer	rs		
		STRUCTURE	Туре	Intens	٢	A°	Comments			
		JIROCIORE	Laminations %	moderate		10	Locally observed; crenulation	ons measured at 45	degrees	
				1161						
		MISCELLANEOUS	Zone OX	HCL VW		itite 1.5	Zircon 0.5			
				1						
FROM 186.94	TO 195.31	ROCK CODE	gmiCD	=	Min Style g	Fabric m	Texture i	Litho CD	Struct	
		MAIN COMMENTS	Massive-mottled light-	to medium-grey dol	omite carbonatite w	ith uncommor	1 2.5 to 10 cm clasts compos	ed of apatite, black	altered phlogopite, and pale-ye	ellow fersmite. Apatite occurs dispersed in dolomite.
		MINERALIZATION	Туре	Value	Comments					
			Pyrite %	1.25	Fresh pyrite occurs	s commonly ag	ggregated with clasts.			
			Niobates %	0.25	Fine-grained pale-	yellow fersmi	te observed in apatite clasts	i.		
		ALTERATION								
		STRUCTURE								
		MISCELLANEOUS	Zone	HCL	Apa	itite	Zircon			

Measurement unit: Metres (Unless otherwise specified)

Log by	Ryan Kressall	Date	Hole ID	2010-033

FROM 195.31	TO - 213.41	ROCK CODE	gmpCD	=	Min Style g	Fabric m	Texture p	Litho CD	Struct	
		MAIN COMMENTS	with oxidized pyrite.		·			·	arbonatite. Phenocrysts consist of black altered phlogopite commonly associate ltered phlogopite. No niobates identified in clasts.	:ed
		MINERALIZATION	Туре	Value	Comments					
			Pyrite %	1.00	Oxidized fine-gra	ned pyrite occurs	s commonly associated wi	th phenocrysts; rare	aggregates up to 2 cm	
		ALTERATION	Туре	Value	Comments					
			Amphibolite %	5.00	Dark-green fenite	e clast (~25 cm) o	ccurs at ~20.3 m			
			Oxidation %	50.00	Pink dolomite cor	mposes porphyry	1			
		STRUCTURE	Туре	Intens	(CA°	Comments			
			Laminations %	weak		70 I	ocally observed at ~200.7	'5 - parallels nearby	ontact between inequigranular and porphyry	
		MISCELLANEOUS	Zone	HCL	Ар	atite	Zircon			
			OX	VW	1	2.5	0.25			

End of Hole End of Hole

2010-034 Hole ID

GENERAL INFORMATION						
Coordinate System	Easting	Northing	Elevation	Collar Azimuth	Collar Dip	
ST. PL Nad 83	455006.03	6256360.54	1813.57	60.00	-50.00	
Start Depth	Final Depth	Proposed Depth	Final Length	Rig	Area	
0.00	213.41		213.41		Central 4	
Operator	Year					
Taseko	2010					

PROFES	SSIONAL	/ TECHNICIAN
1 1101 =	JOIGITAL	/ I E GI III TI GI / TI T

	Name	Start Date	End Date
Collar Surveyor	Ryan Kressall	02/Sep/2010	
Geology Logged By	Ryan Kressall		
Specific Gravity By	Ryan Libke		
Geotech Logged By			
Drill Contractor		26/Aug/2010	27/Aug/2010

		RY

DRILLING BIT SIZE				
Bit Size	From	То	Length	
NW (Casing)	0.00	2.49	2.49	
NQ	2.49	213.41	213.41	

DOWN HOLE SURVEY						
Depth	Azimuth	Dip	Temp °C	Mag.	Roll	Method
30.48	61.80	-55.50	7.4	5660	318.7	Reflex EZ-shot
106.68	58.90	-56.60	8.0	5780	218.6	Reflex EZ-shot
213.36	62.30	-58.50	11.5	5837	110.2	Reflex EZ-shot

GEOLOGY LEGEND

Hole ID **2010-034**

ROCK CODE

MIN STYLE					
Abbr.	Description				
n	barren				
d	disseminated				
g	aggregated				
b	banded				

FABRIC					
Abbr.	Description				
Х	brecciated				
- 1	laminated				
f	decalcified				
V	veined				
р	porphyritic				
m	massive				

	TEXTURE
Abbr.	Description
f	decalcified
р	porphyritic
V	veined

	LITHO				
LITHO					
Abbr.	Description				
CASE	Casing				
OVBN	Overburden				
OXID	Oxide				
AM	Amphibolite				
CC	Calcite Carbonatite				
CD	Dolomite Carbonatite				
CCCD	Mixed Calcite and Dolomite Carbonatite				
AMX	Amphibole and Mixed Carbonatite				
CM	Carbonatite Cumulate				

	STRUCT
Abbr.	Description
Z	fault
е	strained
S	shear zone
У	dyke

MISCELLANEOUS:

Printed on 10/Feb/2011

	ZONE
Abbr.	Description
OX	Oxide
S	Supergene
Н	Hypogene

	HCL
Abbr.	Description
VW	very weak
W	weak
М	moderate
S	strong
VS	very strong

2010-034 Log by Ryan Kressall Date Hole ID

FROM 70 O.D - 2.49 MAIN COMMENTS No Rout. MINERALIZATION ALTERATION STRUCTURE MISCELLANEOUS Zone HCL Apatite Zirron FROM 70 O.D - 26.58 MAIN COMMENTS ROCK CODE DICTOR Mineral Comments Mineral Co									
MINERALIZATION STRUCTURE MISCELLANEOUS Zone HCL Apatite Zircon MINERALIZATION 2.49 Zone HCL Apatite Zircon MINERALIZATION TO 2.49 AND AND AND AND AND AND AND AN	-	ROCK CODE	CASE	=	Min Style	Fabric	Texture		Struct
ALTERATION STRUCTURE MISCELLANEOUS Zone HCL Apatite Zircon TO 2.49 - 26.58 ROCK CODE Light grey dolomite carbonatite. Interval is composed of fractured weathered rock from 2.49 - 5.13 m. D. grey bands (0.5 to 10 cm thick) are composed of apatite. d. grey metallic mineral, pyrite, abundant zircon and common fine-grained fersmite. D. grey bands compose - 3.5 % of interval. 2 black altered philogopite clots (-15 cm) occur at - 23.3 m and 24.4 m. Clots are predominantly philogopite with minor pyrite. The later clot contans abundant unidentified golden-frown mica. MINERALIZATION Type Value Comments Niobates % 0.10 Common suspect yellow fine-grained fersmite observed in d. grey bands Pyrite % 1.25 Concentrates to d. grey bands - also occurs as stringers within laminated dolomite ALTERATION Type Value Comments Calcite % 150 Localized d. brown calcitization of healed fractures (at verious angles) Oxidation % 20.00 Beige to pink dolomite - concentrates in top (2.49 - 5.13 m.), and occurs locally near fractures throughout interval STRUCTURE Type Laminations % moderate 35 Measured between 30 and 40 degrees MISCELLANEOUS Zone HCL Apatite Zircon		MAIN COMMENTS	No Rocl.						
FROM TO 2.49 - 26.58 ROCK CODE bliCD = Min Style Fabric Texture Litho Struct Light grey dolomite carbonatite. Interval is composed of fractured weathered rock from 2.49 - 5.13 m. D. grey bands (0.5 to 10 cm thick) are composed of apatite, d. grey metallic mineral, pyrite, abundant zircon and common fine-grained fersmite. D. grey bands compose-3.5 % of interval. 2 black altered phiogopite clots (-15 cm) occur at -23.3 m and 24.4 m. Clots are predominantly phiogopite with minor pyrite. The later dot contans abundant uniformicified golden-brown mics. MINERALIZATION Type Value Comments Niobates % 0.10 Common suspec yellow fine-grained fersmite observed in d.grey bands Pyrite % 1.25 Concentrates to d.grey bands - also occurs as stringers within laminated dolomite ALTERATION Type Value Comments Cakite % 1.50 Localized d. brown calcitization of healed fractures (at various angles) Oxidation % 20.00 Begiet opinix dolomite - concentrates in top (2.49 - 5.13 m), and occurs locally near fractures throughout interval STRUCTURE Type Intens CA' Comments Laminations % moderate 35 Measured between 30 and 40 degrees MISCELLANEOUS Zone HCL Apatite Zircon		MINERALIZATION							
FROM TO 2.49 - 26.58 ROCK CODE bliCD = Min Style Fabric Texture Litho Struct CD		ALTERATION							
FROM 2.49 - 26.58 ROCK CODE bliCD = Min Style Fabric Texture Litho Struct Light grey dolomite carbonatite. Interval is composed of fractured weathered rock from 2.49 - 5.13 m. D. grey bands (0.5 to 10 cm thick) are composed of apatite, d. grey metallic mineral, pyrite, abundant zirron and common fine-grained fersmite. D. grey bands compose -3.5% of interval. 2 black altered phlogopite clots (-15 cm) occur at -23.3 m and 24.4 m. Clots are predominantly phlogopite with minor pyrite. The later cot contans abundant unidenitified golden-brown mica. MINERALIZATION Type Value Comments Niobates % 0.10 Common suspec yellow fine-grained fersmite observed in d.grey bands Pyrite % 1.25 Concentrates to d. grey bands - also occurs as stringers within laminated dolomite ALTERATION Type Value Comments Calcite % 1.50 Localized d. brown calcitization of healed fractures (at various angles) Oxidation % 20.00 Beige to pink dolomite - concentrates in top (2.49 - 5.13 m), and occurs locally near fractures throughout interval STRUCTURE Type Intens CA* Comments Laminations % moderate 35 Measured between 30 and 40 degrees MISCELLANEOUS Zone HCL Apatite Zircon		STRUCTURE							
ALTERATION Type Value Comments ALTERATION Type Value Comments Calcite % 1.50 Localized d. brown calcitization of healed fractures in top (2.49 - 5.13 m.) and occurs locally near fractures throughout interval STRUCTURE Type Intens CA* Comments MINSCELLANEOUS MISCELLANEOUS ADMIN COMMENTS Light grey dolomite carbonatite. Interval is composed of fractured weathered rock from 2.49 - 5.13 m. D. grey bands (0.5 to 10 cm thick) are composed of apatite, d. grey metallic mineral, pyrite, abundant valicant interval phologopite clots (-15 cm) occur at -23.3 m and 24.4 m. Clots are predominantly phologopite with minor pyrite. The later clot contans abundant unidentitied golden-brown mica. Type Value Comments Comments Calcite % 1.50 Localized d. brown calcitization of healed fractures (at various angles) Oxidation % 20.00 Beige to pink dolomite - concentrates in top (2.49 - 5.13 m), and occurs locally near fractures throughout interval MISCELLANEOUS Zone HCL Apatite Zircon		MISCELLANEOUS	Zone	HCL		Apatite	Zircon		
ALTERATION Type Value Comments ALTERATION Type Value Comments Calcite % 1.50 Localized d. brown calcitization of healed fractures in top (2.49 - 5.13 m.) and occurs locally near fractures throughout interval STRUCTURE Type Intens CA* Comments MINSCELLANEOUS MISCELLANEOUS ADMIN COMMENTS Light grey dolomite carbonatite. Interval is composed of fractured weathered rock from 2.49 - 5.13 m. D. grey bands (0.5 to 10 cm thick) are composed of apatite, d. grey metallic mineral, pyrite, abundant valicant interval phologopite clots (-15 cm) occur at -23.3 m and 24.4 m. Clots are predominantly phologopite with minor pyrite. The later clot contans abundant unidentitied golden-brown mica. Type Value Comments Comments Calcite % 1.50 Localized d. brown calcitization of healed fractures (at various angles) Oxidation % 20.00 Beige to pink dolomite - concentrates in top (2.49 - 5.13 m), and occurs locally near fractures throughout interval MISCELLANEOUS Zone HCL Apatite Zircon									
ALTERATION Type Value Comments ALTERATION Type Value Comments Calcite % 1.50 Localized d. brown calcitization of healed fractures in top (2.49 - 5.13 m.) and occurs locally near fractures throughout interval STRUCTURE Type Intens CA* Comments MINSCELLANEOUS MISCELLANEOUS ADMIN COMMENTS Light grey dolomite carbonatite. Interval is composed of fractured weathered rock from 2.49 - 5.13 m. D. grey bands (0.5 to 10 cm thick) are composed of apatite, d. grey metallic mineral, pyrite, abundant valicant interval phologopite clots (-15 cm) occur at -23.3 m and 24.4 m. Clots are predominantly phologopite with minor pyrite. The later clot contans abundant unidentitied golden-brown mica. Type Value Comments Comments Calcite % 1.50 Localized d. brown calcitization of healed fractures (at various angles) Oxidation % 20.00 Beige to pink dolomite - concentrates in top (2.49 - 5.13 m), and occurs locally near fractures throughout interval MISCELLANEOUS Zone HCL Apatite Zircon									
xircon and common fine-grained fersmite. D. grey bands compose ~3.5 % of interval. 2 black altered phlogopite clots (~15 cm) occur at ~23.3 m and 24.4 m. Clots are predominantly phlogopite with minor pyrite. The later clot contans abundant unidentified golden-brown mica. MINERALIZATION Type Value Comments Niobates % 0.10 Common suspec yellow fine-grained fersmite observed in d.grey bands Pyrite % 1.25 Concentrates to d. grey bands - also occurs as stringers within laminated dolomite ALTERATION Type Value Comments Calcite % 1.50 Localized d. brown calcitization of healed fractures (at various angles) Oxidation % 20.00 Beige to pink dolomite - concentrates in top (2.49 - 5.13 m), and occurs locally near fractures throughout interval STRUCTURE Type Intens CA° Comments Laminations % moderate 35 Measured between 30 and 40 degrees MISCELLANEOUS Zone HCL Apatite Zircon	-	ROCK CODE	bliCD	=	Min Style b	Fabric I	Texture i		Struct
Niobates % 0.10 Common suspec yellow fine-grained fersmite observed in d.grey bands Pyrite % 1.25 Concentrates to d. grey bands - also occurs as stringers within laminated dolomite ALTERATION Type Value Comments Calcite % 1.50 Localized d. brown calcitization of healed fractures (at various angles) Oxidation % 20.00 Beige to pink dolomite - concentrates in top (2.49 - 5.13 m), and occurs locally near fractures throughout interval STRUCTURE Type Intens CA° Comments Laminations % moderate 35 Measured between 30 and 40 degrees MISCELLANEOUS Zone HCL Apatite Zircon		MAIN COMMENTS	zircon and common fine	-grained fersmite.	D. grey bands	compose ~3.5 % of			
Niobates % 0.10 Common suspec yellow fine-grained fersmite observed in d.grey bands Pyrite % 1.25 Concentrates to d. grey bands - also occurs as stringers within laminated dolomite ALTERATION Type Value Comments Calcite % 1.50 Localized d. brown calcitization of healed fractures (at various angles) Oxidation % 20.00 Beige to pink dolomite - concentrates in top (2.49 - 5.13 m), and occurs locally near fractures throughout interval STRUCTURE Type Intens CA° Comments Laminations % moderate 35 Measured between 30 and 40 degrees MISCELLANEOUS Zone HCL Apatite Zircon		MINERALIZATION	Type	Value	Comment	:S			
ALTERATION Type Value Comments Calcite % 1.50 Localized d. brown calcitization of healed fractures (at various angles) Oxidation % 20.00 Beige to pink dolomite - concentrates in top (2.49 - 5.13 m), and occurs locally near fractures throughout interval STRUCTURE Type Intens CA° Comments Laminations % moderate 35 Measured between 30 and 40 degrees MISCELLANEOUS Zone HCL Apatite Zircon					Common su	ıspec yellow fine-gr	ained fersmite observed ir	ı d.grey bands	
Calcite % 1.50 Localized d. brown calcitization of healed fractures (at various angles) Oxidation % 20.00 Beige to pink dolomite - concentrates in top (2.49 - 5.13 m), and occurs locally near fractures throughout interval Type Intens CA° Comments Laminations % moderate 35 Measured between 30 and 40 degrees MISCELLANEOUS Zone HCL Apatite Zircon			Pyrite %	1.25	Concentrate	es to d. grey bands -	also occurs as stringers w	vithin laminated dolomite	e
Calcite % 1.50 Localized d. brown calcitization of healed fractures (at various angles) Oxidation % 20.00 Beige to pink dolomite - concentrates in top (2.49 - 5.13 m), and occurs locally near fractures throughout interval Type Intens CA° Comments Laminations % moderate 35 Measured between 30 and 40 degrees MISCELLANEOUS Zone HCL Apatite Zircon		AI TEDATION	Tyne	\/alue	Comment	·c			
STRUCTURE Type Intens CA° Comments Laminations % moderate 35 Measured between 30 and 40 degrees MISCELLANEOUS Zone HCL Apatite Zircon		ALTERATION			1		of healed fractures (at va	rious angles)	
Laminations % moderate 35 Measured between 30 and 40 degrees MISCELLANEOUS Zone HCL Apatite Zircon									r fractures throughout interval
Laminations % moderate 35 Measured between 30 and 40 degrees MISCELLANEOUS Zone HCL Apatite Zircon		CTRUCTURE	Turne	Intone		CAS	Cammanta		
MISCELLANEOUS Zone HCL Apatite Zircon		SIRULIURE						and AD degrees	
			Laiiiiiatioiis //	moderate		23	Measured between 30 a	illu 40 deglees	
OX VW 7.5 0.25		MISCELLANEOUS		1					
			OX	VW		7.5	0.25		

Printed on 10/Feb/2011

2010-034 Log by Ryan Kressall Date Hole ID

FROM 26.58	TO - 34.65	ROCK CODE	gmCD	=	Min Style g	Fabric m	Texture	Litho CD	Struct	
		MAIN COMMENTS	Massive-mottled light- and d. grey unknown m Coarse-grained dolomit	ineral compose ~ 5%	% of interval. No niobat	es identified in a		degrees, displaced 5 (m by fault (65 degrees). Aggregates (2 to 10 cm diameter) of apatite with pyrite	
		MINERALIZATION	Туре	Value	Comments					
			Pyrite %	1.50	Occurs most commo	only aggregated	with apatite and d. grey	unknown mineral		
		ALTERATION	Туре	Value	Comments					
			Oxidation %	7.50	Beige dolomite;mind	or oxidized pyrit	e; more common toward	ls bottom of interval		
		STRUCTURE								
		MISCELLANEOUS	Zone	HCL	Apati	ite	Zircon			
			OX	VW	1.5		0			

2010-034 Log by Ryan Kressall Date Hole ID

FROM 34.65	-	TO 111.24	ROCK CODE	nmiCD	=	Min Style n	Fabric m	Texture i	Litho CD	Struct	
			MAIN COMMENTS		, pyrite and commo	n zircon are observe	d locally withir	n non-calcitized dolomite.		massive to locally laminated. Uncommon aggregates (~2.5 - 15 cm) of apatite, in aggregates. Weak laminae of apatite are also observed within dolomite. Clots	
			MINERALIZATION	Туре	Value	Comments					
				Pyrite %	1.50	Oxidized aggrega	tes and stringe	ers up to 1 cm; confined to	laminae		
			ALTERATION	Туре	Value	Comments					
				Calcite %	0.00	D. brown calcitiza	ition occurs loc	cally;commonly concentra	ted around medium- to	coarse-grained dolomite clots	
				Oxidation %	20.00	Beige to pink dolo	omite;observed	d in non-calcitized interva	ls - commoly follows la	minae	
			STRUCTURE	Туре	Intens	(CA°	Comments			
				Laminations %	weak		30	Relatively constant thro	oughout interval where	observed locally	
				Veining %	weak		70	Minor thin calcitized vei	ns occur occasionally th	rougout interval	
			MISCELLANEOUS	Zone	HCL	Ар	atite	Zircon			
				OX	М		5	0.1			

2010-034 Log by Ryan Kressall Date Hole ID

FROM 111.24	_	TO 119.16	ROCK CODE	gmiCD	=	Min Style g	Fabric m	Texture i	Litho CD	Struct	
			MAIN COMMENTS	best observed with UV I	ight. d medium-grey to b					yrite, zircon and yellow fersmite(?). Aggregates compose ~5 % of interval and are ne- and medium-grained dolomite is gradational. Medium-grained dolomite is	
			MINERALIZATION	Туре	Value	Comments					
				Niobates %	0.10	Pale-yellow suspect fir	ne-grained fersi	mite observed in apati	ite aggregates		
				Pyrite %	1.25	Locally concentrated a	ggregates up to	0.5 cm - commonly w	veathered out		
			ALTERATION	Туре	Value	Comments					ī
				Calcite %	1.00	Locally d. brown mottli	ing (calcitizatio	n)			
				Oxidation %	15.00	Beige to pink dolomite	e - common in m	nedium-grained dolom	nite		
			STRUCTURE								
			MISCELLANEOUS	Zone	HCL	Apatite	2	Zircon			
				OX	VW	5		0.1			

2010-034 Log by Ryan Kressall Date Hole ID

FROM 119.16	TO 128.05	ROCK CODE	nlfgCD	=	Min Style n	Fabric I	Texture fg	Litho CD	Struct
		MAIN COMMENTS					gated apatite and laminat unidentified mineral. No		d at 119.16 (with UV lamp). Apatite occurs as thin laminae (generally < 1 cm) with
		MINERALIZATION	Туре	Value	Comments				
			Pyrite %	1.25	Oxidized aggrega	tes and stringers	up to 0.5 cm - commonly	weathered out.	
		ALTERATION	Туре	Value	Comments				
			Oxidation %	10.00	Pink dolomite - c	ommonly surrour	nds oxidized and weathere	d-out pyrite	
			Calcite %	1.50	Uncommon d. bro	own mottling (ca	citization)		
		STRUCTURE	Туре	Intens	(CA° (Comments		
			Laminations %	moderate		0 0	bserved at 0 to 5 degrees	; best observed with	UV
			_						
		MISCELLANEOUS	Zone	HCL	Ар	atite	Zircon		
			OX	VW		10	0.5		

2010-034 Log by Ryan Kressall Date Hole ID

FROM 128.05	-	TO 141.85	ROCK CODE	gliCD	=	Min Style g	Fabric I	Texture i	Litho CD	Struct		
			MAIN COMMENTS		I. Aggregates compo	ose ~ 1 % of interval	, being more pro	ed of magnetite, apatite, minent towards top of int	• •	ncommon zircon. Magnetite in some a	aggregates appears to be altered to non-	
			MINERALIZATION	Type	Value	Comments						
				Pyrite %	1.25	Oxidized aggregation	tes up to 0.5 cm	occur locally confined to l	aminae (?)			
			ALTERATION	Туре	Value	Comments						
				Calcite %	2.50	Common d. browi	n bands of calciti	zation				
				Oxidation %	30.00	Beige to pink dolo	mite - commonl	y follows laminae				
			STRUCTURE	Туре	Intens	(CA° (Comments				
				Laminations %	moderate		10					
			MISCELLANEOUS	Zone	HCL	Ap	atite	Zircon				
				OX	W		10	0.1				

2010-034 Log by Ryan Kressall Date Hole ID

FROM 141.85	-	TO 151.68	ROCK CODE	nliCD	=	Min Style n	Fabric I	Texture i	Litho CD	Struct	
			MAIN COMMENTS		um-grained dolomit	e, commonly formi	ng matrix to "flo	ating" dolomite grains. Co		cally throughout interval (composes ~ 2.5 % of inte olack altered phlogopite occurs Apatite occurs local	
			MINERALIZATION	Туре	Value	Comments					
				Pyrite %	1.25	Oxidized aggrega	tes up to 0.5 cm	occur locally throughout i	interval; needles of o	kidized pyrite occurs at the end of the interval (150.	5 m to 151.68 m)
				Magnetite %	0.50	Medium-grained	magnetite occui	locally at ~143.9 m with r	ed oxidiation product	s (hematite?)	
			ALTERATION	Туре	Value	Comments					
				Calcite %	30.00	Extensive calcitiz	ation beween 14	6.5 and 150.4 m.			
				Oxidation %	30.00	Pink dolomite					
			STRUCTURE	Туре	Intens		CA°	Comments			
				Laminations %	very weak		30				
				Veining %	moderate		17.5	Medium-grained dolomite	e "bands" typically oc	cur at ~ 17.5 degrees	
			MISCELLANEOUS	Zone	HCL	Ар	atite	Zircon			
				OX	М		5	0.25			

2010-034 Log by Ryan Kressall Date Hole ID

FROM 151.68	TO - 155.49	ROCK CODE	nlfgAMX	=	Min Style Fab	oric Texture fg	Litho AMX	Struct
		MAIN COMMENTS						at 114.15 m). Clasts are commonly crosscut by dolomite veins (1 to 3 cm thick). containing abundant zircon and frequently aggregated with apatite.
		MINERALIZATION	Туре	Value	Comments			
			Pyrite %	1.25	Fresh aggregates and strin	gers up to 1 cm		
		ALTERATION	Туре	Value	Comments			
			Oxidation %	30.00	Beige to pink dolomite lam	ninae		
			Amphibolite %	30.00	D. green to blue clasts			
		STRUCTURE	Туре	Intens	CA°	Comments		
			Laminations %	moderate	40	Measured 20 degrees	at top; towards bottom s	tronger lamination measured at 40 degrees
			Veining %	moderate	40	Observed dolomite ve	ns in fenite clasts; smalle	er (< 1 cm) unoriented veins extend from larger ones
		MISCELLANEOUS	Zone	HCL	Apatite	Zircon		
			OX	VW	10	0.25		

2010-034 Log by Ryan Kressall Date Hole ID

FROM 155.49	_	TO 184.08	ROCK CODE	blpCD	=	Min Style b	Fabric I	Texture p	Litho CD	Struct	
			MAIN COMMENTS		ey fersmite (?). D. gr	ey unidentified min	eral identified in so	me bands. Bands comp	ose ~7.5 % of interval	o strongly laminated apatite aggregates with black altered phlogopite, pyrite, I. Apatite also occurs as thin white weak to locally "swirly" laminae within	
			MINERALIZATION	Туре	Value	Comments					
				Pyrite %	1.25	Most commonly	aggregated with all	tered phlogopite; isolate	ed aggregates (up to 0	0.5 cm) do occur within dolomite though	
				Niobates %	0.10	Yellowish grey fi	ne-grained suspect	fersmite observed in w	eak apatite bands.		
			ALTERATION	Туре	Value	Comments					
				Oxidation %	5.00	Beige to pink dol	lomite:more commo	on towards top of interv	val (above ~164 m)		
			STRUCTURE	Туре	Intens		CA° Co	omments			
				Laminations %	weak		50 Me	easured at 20 degrees at	t top of interval; 50 de	egrees at bottom of interval.	
			MISCELLANEOUS	Zone	HCL	Ар	patite	Zircon			
				Н	VW		12.5	0.5			

2010-034 Log by Ryan Kressall Date Hole ID

FROM 184.08	TO 194.09	ROCK CODE	blpCCCD	=	Min Style b	Fabric I	Texture p	Litho CCCD	Struct
		MAIN COMMENTS	and brown phlogopite oc Gradational boundary (~ bands (up to 2.5 cm) com	curs as dissemination 7.5 cm and ~ 2.5 cm posed of apatite, d.	ons within apatite ban for former and later ca . grey unknown minera	ds (up to 2.5 c Icite laminae) Il and apatite (m) in calcite carbonatit observed - magnetite b occur sporadically throu	e. Jecomes d. grey in colo ghout inteval - likely a	uite carbonatite occur: ~186.7- 187.3 m and 193.8 - 194.0 m. Fine-grained magnetite our towards dolomite and non-magnetite; pyrite concentration increases. Thin altered magnetite bands. No niobates identified in bands. The clast is commonly rimmed by ~ 0.5 cm of pyrite.
		MINERALIZATION	Туре	Value	Comments				
			Pyrite %	1.50	Localized aggregates	and stringers	up to 1 cm; common in	d. grey bands and in g	radational boundary between dolomite and calcite
			Magnetite %	2.50	Occurs within apatite	e bands within	calcite carbonatite		
			Niobates %	0.50	Honey-brown fine-gr	rained pyrochlo	ore observed in calcite o	arbonatite. Potential o	columbite may occur with magnetite
		ALTERATION							
		STRUCTURE	Туре	Intens	CA°	C	Comments		
			Laminations %	moderate	50	Vā	aries between 40 and 6	O degrees	
		MISCELLANEOUS	Zone	HCL	Apatit	te	Zircon		
			Н	М	12.5		0.25		

2010-034 Log by Ryan Kressall Date Hole ID

FROM 194.09	TO - 207.40	ROCK CODE	blpCD	=	Min Style b	Fabric I	Texture p	Litho CD	Struct	
		MAIN COMMENTS	Light-grey dolomite car compose ~2.5 % of inte						prised of apatite, black altered phlogopite, pyrite and common zircon. Bands	
		MINERALIZATION	Туре	Value	Comments					
			Niobates %	0.10	Suspect fersmite	- yellow grey, fine-	grained common with	in d. grey bands		
			Pyrite %	1.50	Aggregates and s	tringers up to 2 cm	; commonly associated	d with apatite bands a	nd phlogopite phenocrysts	
		ALTERATION								
		STRUCTURE	Туре	Intens	C	CA° Co	omments			
			Laminations %	weak		25				
		MISCELLANEOUS	Zone	HCL	Λn	atite	Zircon			
		MISCELLANEOUS	H	VW		10	0.25			
			П	V VV		10	0.25			

Log by	Rvan Kressall	Date	Hole ID	2010-034
LUS Dy	ityan iticaaan	Date	HOIE ID	_0.0 05.

FROM 207.40	TO - 213.41	ROCK CODE	bIAMX	=	Min Style b	Fabric I	Texture	Litho AMX	Struct	
		MAIN COMMENTS	black altered phlogopite	e occur sporadically t erval. Similar bands a	hroughout interval (~ are observed in dolomi	1 % of interval). ite near fenite c	Dark-grey bands (1-5 cm lasts but contain very-fi) within dolomite ca	wn phlogopite occurs at contact with fenite. Common fine- to mediu bonatite. are comprised of apatite, black altered phlogopite and pyri e. Apatite also comprise thin white laminations (< 1 cm) within dolor	te. Band
		MINERALIZATION	Туре	Value	Comments					
			Niobates %	0.25	Suspect fersmite wi	ithin d. grey apa	tite bands - pink to yello)W		
			Magnetite %	0.10	Very-fine-grained m	nagnetite occurs	s within			
		ALTERATION	Туре	Value	Comments					
			Amphibolite %	35.00	D. greeen fenite cor	e with black phl	ogopite rim (ovoid textu	re) with abundant py	rite	
		STRUCTURE	Туре	Intens	CA	·° Co	omments			
			Laminations %	moderate	25	i				
		MISCELLANEOUS	Zone	HCL	Apat	ite	Zircon			
		MISCELLANEOUS	Н	M	7.5		0.1			

End of Hole End of Hole

APPENDIX B

SAMPLE LOGS

August 17, 2008 Appendix B

Hole ID 2010-012

	QC Code	Method		
BL	Blank	0	Not Sampled	
DP	Duplicate	1	RC Chips	
MS	Regular Mainstream	2	Sawn 1/2 Core	
NS	Not Sampled	3	Split 1/2 Core	
DX	Duplicate in-line	4	Whole Core	
ST	Standard	5	1/4 Core	

Sampler	RK	Pg	1 of 1
Sign		Date	31-Jul-10

Sample	Interv	al (ft)	Sam	Sample Information			
Number	From	То	QC Code	Standard	Method		
NS_2010-012_0-9.1	0	9.1	NS		0		
875600	9.1	12.7	MS		3		
875601	12.7	15.3	MS		3		
875602	15.3	16.9	MS		3		
875603	16.9	19.3	MS		3		
875604	19.3	21.8	MS		3		
875605			BL	Granite	3		
875606	21.8	25.09	MS		3		
875607	25.09	27.8	MS		3		
875608	27.8	30.5	MS		3		
875609	30.5	33.77	MS		3		
875610			ST	Aley3	3		
875611	33.77	36.26	MS		3		
875612	36.26	39.2	MS		3		
875613	39.2	42.22	MS		3		
875614	42.22	44.5	MS		3		
875615	44.5	48.24	MS		3		
875616	48.24	51.34	MS		3		
875617	51.34	53.6	MS		3		
875618	53.6	55.22	MS		3		
875619	55.22	58.28	MS		3		
875620			DX		3		
875621	58.28	60.99	MS		3		
875622	60.99	63.37	MS		3		
875623	63.37	65.94	MS		3		
875624	65.94	68.5	MS		3		
875625	68.5	70.7	MS		3		
875626	70.7	74.5	MS		3		
875627	74.5	77.86	MS		3		
875628	77.86	80.36	MS		3		
875629	80.36	82.57	MS		3		
875630			ST	Aley3	3		
875631	82.57	85.36	MS		3		
875632	85.36	88.95	MS		3		
875633	88.95	91.6	MS		3		
875634	91.6	95.24	MS		3		
875635	95.24	96.42	MS		3		
875636	96.42	100.13	MS		3		
875637	100.13	102.2	MS		3		
875638	102.2	107.95	MS		3		
875639	107.95	110.63	MS		3		
875640			DX		3		
875641	110.63	115.1	MS		3		
875642	115.1	120.12	MS		3		
875643	120.12	125.55	MS		3		

Sample	Interval (ft)		Sample Information			
Number	From	То	QC Code	Standard	Method	
875644	125.55	128.97	MS		3	
875645	128.97	134.44	MS		3	
875646	134.44	137.06	MS		3	
875647	137.06	142.19	MS		3	
875648	142.19	148.46	MS		3	
875649	148.46	154.26	MS		3	

Total: BL-1 DP-0 MS-45 NS-1 ST-2 DX-2

Hole ID 2010-013

	QC Code	Method		
BL	Blank	0	Not Sampled	
DP	Duplicate	1	RC Chips	
MS	Regular Mainstream	2	Sawn 1/2 Core	
NS	Not Sampled	3	Split 1/2 Core	
DX	Duplicate in-line	4	Whole Core	
ST	Standard	5	1/4 Core	

Sampler	RK	Pg	1 of 1
Sign		Date	04-Aug-10

Sample	Interv	al (ft)	Sample Information			
Number	From	То	QC Code	Standard	Method	
NS_2010-013_0-7.08	0	7.08	NS		0	
875650			ST	Aley3	3	
875651	7.08	9.63	MS		3	
875652	9.63	14.63	MS		3	
875653	14.63	18.26	MS		3	
875654	18.26	19.08	MS		3	
875655	19.08	22.61	MS		3	
875656	22.61	27.51	MS		3	
875657	27.51	32.77	MS		3	
875658	32.77	37.85	MS		3	
875659	37.85	42.69	MS		3	
875660			DX		3	
875661	42.69	47.39	MS		3	
875662	47.39	50.04	MS		3	
875663	50.04	52.28	MS		3	
875664	52.28	56.13	MS		3	
875665	56.13	58.48	MS		3	
875666	58.48	63.25	MS		3	
875667	63.25	65.91	MS		3	
875668	65.91	66.69	MS		3	
875669	66.69	72.18	MS		3	
875670			ST	Aley3	3	
875671	72.18	76.14	MS		3	
875672	76.14	80.23	MS		3	
875673	80.23	82.19	MS		3	
875674	82.19	83.13	MS		3	
875675	83.13	88.57	MS		3	
875676	88.57	96.19	MS		3	
875677	96.19	98.49	MS		3	
875678	98.49	102.13	MS		3	
875679	102.13	106.1	MS		3	
875680			DX		3	
875681	106.1	107.62	MS		3	
875682	107.62	109.91	MS		3	
875683	109.91	111.95	MS		3	
875684	111.95	116	MS		3	
875685	116	119.09	MS		3	
875686	119.09	122.07	MS		3	
875687	122.07	124.31	MS		3	
875688			BL	Granite	3	
875689	124.31	126.52	MS		3	
875690			ST	OKA-1	3	
875691	126.52	129.77	MS		3	
875692	129.77	131.83	MS		3	
875693	131.83	137.13	MS		3	

Sample	Interv	al (ft)	Sample Information		
Number	From	То	QC Code	Standard	Method
875694	137.13	141	MS		3
875695	141	147.03	MS		3
875696	147.03	153.77	MS		3
875697	153.77	158.02	MS		3
875698	158.02	160.95	MS		3
875699	160.95	164.21	MS		3
875700			DX		3
875701	164.21	169.32	MS		3
875702	169.32	173.63	MS		3
875703	173.63	175.66	MS		3
875704	175.66	180.29	MS		3
875705	180.29	188.02	MS		3
875706	188.02	192.75	MS		3
875707	192.75	195.9	MS		3
875708	195.9	199.7	MS		3
875709	199.7	204.81	MS		3
875710			ST	Aley1	3
875711	204.81	210.22	MS		3
875712	210.22	213.34	MS		3
875713	213.34	215.2	MS		3

Total: BL-1 DP-0 MS-56 NS-1 ST-4 DX-3

Hole ID 2010-014

	QC Code	Method		
BL	Blank	0	Not Sampled	
DP	Duplicate	1	RC Chips	
MS	Regular Mainstream	2	Sawn 1/2 Core	
NS	Not Sampled	3	Split 1/2 Core	
DX	Duplicate in-line	4	Whole Core	
ST	Standard	5	1/4 Core	

Sampler	RK	Pg	1 of 1
Sign		Date	04-Aug-10

Sample	Interval (ft)		Sample Information		
Number	From	То	QC Code	Standard	Method
NS_2010-014_0-14.63	0	14.63	NS		0
875714	14.63	19.16	MS		3
875715	19.16	21.72	MS		3
875716	21.72	25.16	MS		3
875717	25.16	28.16	MS		3
875718	28.16	31.13	MS		3
875719	31.13	33.22	MS		3
875720			DX		3
875721	33.22	35.62	MS		3
875722	35.62	38.35	MS		3
875723	38.35	41.21	MS		3
875724	41.21	44.92	MS		3
875725	44.92	48.17	MS		3
875726	48.17	50.8	MS		3
875727	50.8	54.02	MS		3
875728	54.02	57.65	MS		3
875729	57.65	60.36	MS		3
875730			ST	Aley2	3
875731	60.36	63.77	MS		3
875733	63.77	66.12	MS		3
875732			BL	Granite	3
875734	66.12	69.51	MS		3
875735	69.51	72.17	MS		3
875736	72.17	74.63	MS		3
875737	74.63	77.08	MS		3
875738	77.08	79.27	MS		3
875739	79.27	81.71	MS		3
875740			DX		3
875741	81.71	84.21	MS		3
875742	84.21	86.42	MS		3
875743	86.42	88.85	MS		3
875744	88.85	91.54	MS		3

Sample	Interval (ft)		Sample Information		
Number	From	То	QC Code	Standard	Method

Total: BL-1 DP-0 MS-27 NS-1 ST-1 DX-2

Hole ID 2010-015

	QC Code		Method
BL	Blank	0	Not Sampled
DP	Duplicate	1	RC Chips
MS	Regular Mainstream	2	Sawn 1/2 Core
NS	Not Sampled	3	Split 1/2 Core
DX	DX Duplicate in-line		Whole Core
ST	Standard	5	1/4 Core

Sampler	RK	Pg	1 of 1
Sign		Date	05-Aug-10

Sample	Interv	al (ft)	Sample Information		
Number	From	То	QC Code	Standard	Method
NS_2010-015_0-18.9	0	18.9	NS		0
875745	18.9	23.56	MS		3
875746	23.56	25.99	MS		3
875747	25.99	27.71	MS		3
875748	27.71	30.95	MS		3
875749	30.95	35.15	MS		3
875750			ST	Aley1	3
875751	35.15	38.37	MS		3
875752	38.37	42.43	MS		3
875753	42.43	46.38	MS		3
875754	46.38	49.47	MS		3
875755	49.47	52.56	MS		3
875756	52.56	55.5	MS		3
875757	55.5	58.45	MS		3
875758	58.45	62.43	MS		3
875759	62.43	66.46	MS		3
875760			DX		3
875761	66.46	68.64	MS		3
875762	68.64	71.1	MS		3
875763			BL	Granite	3
875764	71.1	73.46	MS		3
875765	73.46	75.62	MS		3
875766	75.62	79.63	MS		3
875767	79.63	82.9	MS		3
875768	82.9	86.19	MS		3
875769	86.19	89.61	MS		3
875770			ST	OKA-1	3
875771	89.61	92.92	MS		3
875772	92.92	95.89	MS		3
875773	95.89	98.61	MS		3
875774	98.61	101.91	MS		3
875775	101.91	104.82	MS		3
875776	104.82	107.58	MS		3
875777	107.58	111.32	MS		3
875778	111.32	116.32	MS		3
875779	116.32	119.62	MS		3
875780			DX		3
875781	119.62	122.9	MS		3
875782	122.9	126.07	MS		3
875783			BL	Granite	3
875784	126.07	129.4	MS		3
875785	129.4	133.57	MS		3
875786	133.57	138.05	MS		3
875787	138.05	140.8	MS		3
875788	140.8	143.83	MS		3

Sample	Interv	al (ft)	Sample Information		
Number	From	То	QC Code	Standard	Method
875789	143.83	148.2	MS		3
875790			ST	Aley3	3
875791	148.2	151.83	MS		3
875792	151.83	155.42	MS		3
875793	155.42	158.48	MS		3
875794	158.48	161.87	MS		3
875795	161.87	164.41	MS		3
875796	164.41	167.78	MS		3
875797	167.78	171.86	MS		3
875798	171.86	175.15	MS		3
875799	175.15	177.9	MS		3
875800			DX		3
875801	177.9	182.7	MS		3
875802	182.7	186.62	MS		3
875803	186.62	191.37	MS		3
875804	191.37	196.15	MS		3
875805	196.15	201.02	MS		3
875806	201.02	205.36	MS		3
875807	205.36	210.34	MS		3
875808	210.34	215.85	MS		3

Total: BL-2 DP-0 MS-56 NS-1 ST-3 DX-3

Hole ID 2010-016

QC Code		Method		
BL	Blank	0	Not Sampled	
DP	Duplicate	1	RC Chips	
MS	Regular Mainstream	2	Sawn 1/2 Core	
NS	Not Sampled	3	Split 1/2 Core	
DX	DX Duplicate in-line		Whole Core	
ST	Standard	5	1/4 Core	

Sampler	RK	Pg	1 of 1
Sign		Date	06-Aug-10

Sample	Interval (ft)		Sample Information		
Number	From	То	QC Code	Standard	Method
NS_2010-016_0-6.09	0	6.09	NS		0
875809	6.09	10.65	MS		3
875810			ST	Aley2	3
875811	10.65	12.18	MS		3
875812	12.18	15	MS		3
875813	15	17.93	MS		3
875814	17.93	20.23	MS		3
875815	20.23	22.71	MS		3
875816	22.71	24.93	MS		3
875817	24.93	27.94	MS		3
875818			BL	Granite	3
875819	27.94	31.37	MS		3
875820			DX		3
875821	31.37	35.79	MS		3
875822	35.79	39.04	MS		3
875823	39.04	42.42	MS		3
875824	42.42	47.08	MS		3
875825	47.08	49.18	MS		3
875826	49.18	52.58	MS		3
875827	52.58	57.51	MS		3
875828	57.51	61.61	MS		3
875829	61.61	65.59	MS		3
875830			ST	Aley1	3
875831	65.59	69.77	MS		3
875832	69.77	73.07	MS		3
875833	73.07	76.3	MS		3
875834	76.3	80.37	MS		3
875835	80.37	83.77	MS		3
875836	83.77	87.08	MS		3
875837	87.08	92.58	MS		3
875838	92.58	96.52	MS		3
875839	96.52	102.21	MS		3
875840			DX		3
875841	102.21	106.09	MS		3
875842	106.09	110.82	MS		3
875843	110.82	113.68	MS		3
875844	113.68	117.06	MS		3
875845	117.06	119.37	MS		3
875846	119.37	124.39	MS		3
875847	124.39	128.08	MS		3
875848	128.08	133.67	MS		3
875849	133.67	137	MS		3
875850			ST	OKA-1	3
875851	137	141.36	MS		3
875852	141.36	145.15	MS		3

Sample	Interval (ft)		Sample Information		
Number	From	То	QC Code	Standard	Method
875853	145.15	147.86	MS		3

Total: BL-1 DP-0 MS-39 NS-1 ST-3 DX-2

Hole ID 2010-017

	QC Code		Method		
BL	Blank	0	Not Sampled		
DP	Duplicate	1	RC Chips		
MS	Regular Mainstream	2	Sawn 1/2 Core		
NS	Not Sampled	3	Split 1/2 Core		
DX	DX Duplicate in-line		Whole Core		
ST	Standard	5	1/4 Core		

Sampler	RK	Pg	1 of 1
Sign		Date	08-Aug-10

Sample	Interval (ft)		Sample Information		
Number	From	То	QC Code	Standard	Method
NS_2010-017_0-6.09	0	6.09	NS		0
875854	6.09	10.25	MS		3
875855	10.25	15.06	MS		3
875856	15.06	18.82	MS		3
875857	18.82	21.44	MS		3
875858	21.44	24.36	MS		3
875859	24.36	28.1	MS		3
875860			DX		3
875861	28.1	30.54	MS		3
875862	30.54	34.82	MS		3
875863	34.82	37.7	MS		3
875864	37.7	40.68	MS		3
875865	40.68	43.93	MS		3
875866	43.93	48.6	MS		3
875867	48.6	51.29	MS		3
875868	51.29	54.55	MS		3
875869	54.55	57.96	MS		3
875870			ST	Aley2	3
875871	57.96	61.14	MS		3
875872	61.14	65.55	MS		3
875873	65.55	70.1	MS		3
875874	70.1	74.91	MS		3
875875	74.91	78.35	MS		3
875876	78.35	82.4	MS		3
875877			BL	Granite	3
875878	82.4	84.85	MS		3
875879	84.85	87.35	MS		3
875880			DX		3
875881	87.35	93.41	MS		3
875882	93.41	97.98	MS		3
875883	97.98	102.37	MS		3
875884	102.37	106.89	MS		3
875885	106.89	111.28	MS		3
875886	111.28	115.79	MS		3
875887	115.79	120.42	MS		3
875888	120.42	124.14	MS		3
875889	124.14	128.92	MS		3
875890			ST	Aley1	3
875891	128.92	133.15	MS		3
875892	133.15	137.52	MS		3
875893	137.52	143.1	MS		3
875894	143.1	147.87	MS		3
875895	147.87	152.61	MS		3
875896	152.61	156.13	MS		3
875897	156.13	159.67	MS		3

Sample	Interv	Interval (ft)		Sample Information		
Number	From	То	QC Code	Standard	Method	
875898	159.67	162.15	MS		3	
875899	162.15	165.15	MS		3	
880250			DX		3	
880251	165.15	168.5	MS		3	
880252	168.5	173.68	MS		3	
880253	173.68	177.71	MS		3	
880254	177.71	181.99	MS		3	
880255	181.99	185.78	MS		3	
880256	185.78	190.5	MS		3	
880257	190.5	195.42	MS		3	
880258	195.42	198.26	MS		3	
880259	198.26	201.82	MS		3	
880260			ST	OKA-1	3	
880261	201.82	204.15	MS		3	
880262	204.15	206.85	MS		3	
880263	206.85	210.19	MS		3	
880264	210.19	214.93	MS		3	

Total: BL-1 DP-0 MS-54 NS-1 ST-3 DX-3

Hole ID 2010-018

	QC Code		Method
BL	Blank	0	Not Sampled
DP	Duplicate	1	RC Chips
MS	Regular Mainstream	2	Sawn 1/2 Core
NS	Not Sampled	3	Split 1/2 Core
DX	Duplicate in-line	4	Whole Core
ST	Standard	5	1/4 Core

Sampler	RK	Pg	1 of 1
Sign		Date	09-Aug-10

Sample	Interv	al (ft)	Sample Information		
Number	From	То	QC Code	Standard	Method
NS_2010-018_0-6.09	0	6.09	NS		0
880265	6.09	9.14	MS		3
880266	9.14	12.19	MS		3
880267	12.19	15.43	MS		3
880268	15.43	18.19	MS		3
880269	18.19	21.34	MS		3
880270			DX		3
880271	21.34	25.57	MS		3
880272	25.57	29.87	MS		3
880273	29.87	33.54	MS		3
880274	33.54	37.7	MS		3
880275	37.7	41.28	MS		3
880276	41.28	44.21	MS		3
880277	44.21	47.59	MS		3
880278	47.59	51.83	MS		3
880279	51.83	55.15	MS		3
880280			ST	Aley3	3
880281	55.15	60.31	MS		3
880282	60.31	64.52	MS		3
880283	64.52	68.61	MS		3
880284	68.61	72	MS		3
880285	72	78.33	MS		3
880286	78.33	82.32	MS		3
880287	82.32	86.39	MS		3
880288	86.39	91.58	MS		3
880289	91.58	95.12	MS		3
880290			DX		3
880291	95.12	99.96	MS		3
880292	99.96	103.53	MS		3
880293	103.53	107.68	MS		3
880294	107.68	110.91	MS		3
880295	110.91	115.46	MS		3
880296	115.46	119.69	MS		3
880297	119.69	123.76	MS		3
880298	123.76	127.86	MS		3
880299	127.86	131.1	MS		3
880300			ST	Aley1	3
880301	131.1	134.64	MS		3
880302	134.64	138.5	MS		3
880303	138.5	140.85	MS		3
880305	140.85	143.72	MS		3
880304			BL	Granite	3
880306	143.72	145.92	MS		3
880307	145.92	149.47	MS		3
880308	149.47	152.45	MS		3

Sample	Interv	Interval (ft) Sample Infor		ple Inform	rmation	
Number	From	То	QC Code	Standard	Method	
Total: RI -1	DD-0	MS-30	NS-1	ST-2 D	Y_2	

Hole ID 2010-019

QC Code			Method
BL	Blank	0	Not Sampled
DP	Duplicate	1	RC Chips
MS	Regular Mainstream	2	Sawn 1/2 Core
NS	Not Sampled	3	Split 1/2 Core
DX	Duplicate in-line	4	Whole Core
ST	Standard	5	1/4 Core

Sampler	RK	Pg	1 of 1
Sign		Date	10-Aug-10

Sample	Interval (ft)		Sample Information		
Number	From	То	QC Code	Standard	Method
NS_2010-019_0-4.57	0	4.57	NS		0
880309	4.57	8.46	MS		3
880310			DX		3
880311	8.46	12.58	MS		3
880312	12.58	16.82	MS		3
880313	16.82	20.91	MS		3
880314	20.91	25.25	MS		3
880315	25.25	29.35	MS		3
880316	29.35	33.54	MS		3
880317	33.54	38.04	MS		3
880318	38.04	42.25	MS		3
880319	42.25	45.73	MS		3
880320			ST	Aley2	3
880321	45.73	49.44	MS		3
880322	49.44	52.62	MS		3
880323	52.62	57.29	MS		3
880324	57.29	61.67	MS		3
880325	61.67	65.74	MS		3
880326	65.74	69.55	MS		3
880327	69.55	72.35	MS		3
880328	72.35	76.68	MS		3
880329	76.68	79.27	MS		3
880330			DX		3
880331	79.27	82.44	MS		3
880332	82.44	87.44	MS		3
880333	87.44	89.63	MS		3
880334	89.63	92.1	MS		3
880335	92.1	96.07	MS		3
880336	96.07	101.06	MS		3
880337	101.06	104.77	MS		3
880338	104.77	108.36	MS		3
880339	108.36	111.67	MS		3
880340			ST	Aley3	3
880341	111.67	114.94	MS		3
880342			BL	Granite	3
880343	114.94	117.37	MS		3
880344	117.37	119.46	MS		3
880345	119.46	124.71	MS		3
880346	124.71	127.57	MS		3
880347	127.57	130.54	MS		3
880348	130.54	134.15	MS		3
880349	134.15	137.2	MS		3
880350			DX		3
880351	137.2	141.04	MS		3
880352	141.04	143.99	MS		3

Sample Interval		al (ft)	Sample Information		
Number	From	То	QC Code	Standard	Method
880353	143.99	148.18	MS		3
880354	148.18	152.44	MS		3

Total: BL-1 DP-0 MS-40 NS-1 ST-2 DX-3

Hole ID 2010-020

	QC Code	Method		
BL	Blank	0	Not Sampled	
DP	Duplicate	1	RC Chips	
MS	Regular Mainstream	2	Sawn 1/2 Core	
NS	Not Sampled	3	Split 1/2 Core	
DX	DX Duplicate in-line		Whole Core	
ST	Standard	5	1/4 Core	

Sampler	RK	Pg	1 of 1
Sign		Date	12-Aug-10

Sample	Interval (ft)		Sample Information		
Number	From	То	QC Code	Standard	Method
NS_2010-020_0-3.66	0	3.66	NS		0
880355	3.66	6.64	MS		3
880356	6.64	9.72	MS		3
880357	9.72	12.81	MS		3
880358	12.81	18.34	MS		3
880359	18.34	22.59	MS		3
880360			ST	Aley2	3
880361	22.59	26.84	MS		3
880362	26.84	31.05	MS		3
880363	31.05	35.14	MS		3
880364	35.14	38.04	MS		3
880365	38.04	40.86	MS		3
880366	40.86	44.68	MS		3
880367	44.68	48.92	MS		3
880368	48.92	53.54	MS		3
880369	53.54	55.54	MS		3
880370			DX		3
880371	55.54	60.07	MS		3
880372	60.07	63.03	MS		3
880373	63.03	66.58	MS		3
880374	66.58	70.21	MS		3
880375	70.21	74.76	MS		3
880376	74.76	76.66	MS		3
880377	76.66	79.4	MS		3
880378	79.4	83.47	MS		3
880379	83.47	87.2	MS		3
880380			ST	Aley1	3
880381	87.2	90.73	MS		3
880382			BL	Granite	3
880383	90.73	94.31	MS		3
880384	94.31	96.42	MS		3
880385	96.42	99.1	MS		3
880386	99.1	101.81	MS		3
880387	101.81	104.82	MS		3
880388	104.82	108.39	MS		3
880389	108.39	111.08	MS		3
880390			DX		3
880391	111.08	113.88	MS		3
880392	113.88	116.57	MS		3
880393	116.57	120.05	MS		3
880394	120.05	123.78	MS		3
880395	123.78	126.83	MS		3
880396	126.83	129.6	MS		3
880397	129.6	132.64	MS		3
880398	132.64	135.81	MS		3

Sample	Interval (ft)		Sample Information		
Number	From	То	QC Code	Standard	Method
880399	135.81	139.02	MS		3
875350			ST	OKA-1	3
875351	139.02	142.07	MS		3
875352	142.07	144.52	MS		3
875353	144.52	146.77	MS		3
875354	146.77	150.04	MS		3
875355	150.04	153.58	MS		3
875356	153.58	157.26	MS		3
875357	157.26	161.21	MS		3
875358	161.21	164.38	MS		3
875359	164.38	168.09	MS		3
875360			DX		3
875361	168.09	172.22	MS		3
875362	172.22	176.21	MS		3
875363	176.21	180.14	MS		3
875364	180.14	184.18	MS		3
875365	184.18	187.8	MS		3
875366	187.8	190.85	MS		3
875367	190.85	193.83	MS		3
875368	193.83	196.95	MS		3
875369	196.95	200	MS		3
875370			ST	Aley1	3
875371	200	203.97	MS		3
875372	203.97	207.32	MS		3
875373	207.32	211.81	MS		3
875374	211.81	215.24	MS		3

Total: BL-1 DP-0 MS-62 NS-1 ST-4 DX-3

Hole ID 2010	0-021
--------------	-------

	QC Code		Method		
BL	Blank	0	Not Sampled		
DP	Duplicate	1	RC Chips		
MS	Regular Mainstream	2	Sawn 1/2 Core		
NS	Not Sampled	3	Split 1/2 Core		
DX	Duplicate in-line	4	Whole Core		
ST	Standard	5	1/4 Core		

Sampler	Pg	1 of 1
Sign	 Date	13-Aug-10

Sample	Interv	al (ft)	Sample Information		ation
Number	From	To	QC Code	Standard	Method
NS_2010-021_0-4.57	0	4.57	NS		0
875375	4.57	6.26	MS		3
875376	6.26	9.27	MS		3
875377	9.27	11.27	MS		3
875378	11.27	15.43	MS		3
875379	15.43	17.61	MS		3
875380			DX		3
875381	17.61	20.16	MS		3
875382	20.16	22.16	MS		3
875383	22.16	25.27	MS		3
875384	25.27	27.44	MS		3
875385			BL	Granite	3
875386	27.44	31.06	MS		3
875387	31.06	34	MS		3
875388	34	36.83	MS		3
875389	36.83	39.97	MS		3
875390			ST	Aley2	3
875391	39.97	43.14	MS		3
875392	43.14	46.35	MS		3
875393	46.35	49.02	MS		3
875394	49.02	51.53	MS		3
875395	51.53	54.38	MS		3
875396	54.38	58.47	MS		3
875397	58.47	62.26	MS		3
875398	62.26	65.5	MS		3
875399	65.5	68.83	MS		3
874900			DX		3
874901	68.83	71.67	MS		3
874902	71.67	75.08	MS		3
874903	75.08	78.89	MS		3
874904	78.89	82.19	MS		3
874905	82.19	85.68	MS		3
874906	85.68	89.51	MS		3
874907	89.51	93.51	MS		3
874908	93.51	97.56	MS		3
874909	97.56	101.31	MS		3
874910			ST	OKA-1	3
874911	101.31	105.81	MS		3
874912	105.81	109.89	MS		3
874913	109.89	113.65	MS		3
874914	113.65	116.35	MS		3
874915	116.35	119.68	MS		3
874916	119.68	122.68	MS		3
874917	122.68	125.9	MS		3
874918	125.9	128.85	MS		3

Sample	Number		Sample Information		
Number			QC Code	Standard	Method
874919	128.85	131.74	MS		3
844921	131.74	134.65	MS		3
874920			DX		3
844922	134.65	137.67	MS		3
844923	137.67	140.42	MS		3
874924	140.42	143.29	MS		3
875925	143.29	146.15	MS		3
875926	146.15	149.39	MS		3

Total: BL-1 DP-0 MS-46 NS-1 ST-2 DX-3

Hole ID 2010-022

	QC Code		Method
BL	Blank	0	Not Sampled
DP	Duplicate	1	RC Chips
MS	Regular Mainstream	2	Sawn 1/2 Core
NS	Not Sampled	3	Split 1/2 Core
DX	Duplicate in-line	4	Whole Core
ST	Standard	5	1/4 Core

Sampler	RK	Pg	1 o	f 2
Sign		Date	16-Au	g-10

Sample	Interval (ft)		Sample Information		
Number	From	То	QC Code	Standard	Method
NS_2010-022_0-6.7	0	6.7	NS		0
874927	6.7	9.91	MS		3
874928	9.91	13.39	MS		3
874929	13.39	16.13	MS		3
874930			ST	Aley3	3
874931	16.13	18.92	MS		3
874932	18.92	21.29	MS		3
874933	21.29	23.83	MS		3
874934	23.83	26.96	MS		3
874935	26.96	29.83	MS		3
874936	29.83	32.22	MS		3
874937	32.22	35.45	MS		3
874938	35.45	38.41	MS		3
874939	38.41	42.04	MS		3
874940			DX		3
874941	42.04	46.03	MS		3
874942	46.03	49.66	MS		3
874943	49.66	52.83	MS		3
874944	52.83	55.85	MS		3
874945	55.85	58.95	MS		3
874946	58.95	62.03	MS		3
874947	62.03	65.12	MS		3
874948	65.12	68.22	MS		3
874949	68.22	70.99	MS		3
874950			ST	OKA-1	3
874951	70.99	73.97	MS		3
874952	73.97	77.09	MS		3
874953	77.09	79.92	MS		3
874954	79.92	83.47	MS		3
874955	83.47	86.5	MS		3
874956	86.5	90.24	MS		3
874957	90.24	94.18	MS		3
874958	94.18	98.64	MS		3
874959	98.64	101.26	MS		3
874960			DX		3
874961	101.26	103.48	MS		3
874962			BL	Granite	3
874963	103.48	105.49	MS		3
874964	105.49	108.54	MS		3
874965	108.54	111.77	MS		3
874966	111.77	115.06	MS		3
874967	115.06	118.92	MS		3
874968	118.92	121.96	MS		3
874969	121.96	125.22	MS		3
874970			ST	Aley2	3

Sample Interval (ft)		Sample Information			
Number	From	То	QC Code	Standard	Method
874971	125.22	127.48	MS		3
874972	127.48	130.22	MS		3
874973	130.22	134.06	MS		3
874974	134.06	136.43	MS		3
874975	136.43	139.09	MS		3
874976	139.09	144.77	MS		3
874977	144.77	147.73	MS		3
874978	147.73	150.81	MS		3
874979	150.81	153.81	MS		3
874980			DX		3
874981	153.81	156.8	MS		3
874982	156.8	159.77	MS		3
874983	159.77	163.48	MS		3
874984	163.48	166.88	MS		3
874985	166.88	169.96	MS		3
874986	169.96	173.26	MS		3
874987	173.26	177.28	MS		3
874988	177.28	181.01	MS		3
874989	181.01	184.77	MS	A14	3
874990	404.77	407.04	ST	Aley1	3
874991	184.77	187.81	MS		3
874992	187.81	190.85	MS MS		3
874993	190.85	194.69 198.07	MS		3
874994 874995	194.69 198.07	201.12	MS		3
874996	201.12	204.18	MS		3
874997	204.18	207.15	MS		3
874998	207.15	210.21	MS		3
874999	210.21	213.36	MS		3
875000	210.21	210.00	DX		3
875001	213.36	216.51	MS		3
875002	216.51	219.66	MS		3
875003	219.66	222.75	MS		3
875004	222.75	225.73	MS		3
875005	225.73	228.68	MS		3
875006	228.68	232.73	MS		3
875007	232.73	238.59	MS		3
875008	238.59	240.85	MS		3
875009	240.85	244	MS		3
875010			ST	Aley2	3
875011	244	247.25	MS		3
875012	247.25	250.74	MS		3
875013	250.74	254.2	MS		3
875014	254.2	256.5	MS		3
875015	256.5	259.49	MS		3

Hole ID 2010-022

	QC Code		Method
BL	Blank	0	Not Sampled
DP	Duplicate	1	RC Chips
MS	Regular Mainstream	2	Sawn 1/2 Core
NS	Not Sampled	3	Split 1/2 Core
DX	Duplicate in-line	4	Whole Core
ST	Standard	5	1/4 Core

Sampler	RK	Pg	2 of 2
Sign	-	Date	16-Aug-10

Sample	Interval (ft)		Sam	ple Inform	ation
Number	From	To	QC Code	Standard	Method
875016	259.49	261.96	MS		3
875017	261.96	265.44	MS		3
875018	265.44	269.53	MS		3
875019	269.53	272.6	MS		3
875020			DX		3
875021	272.6	275.84	MS		3
875022			BL	Granite	3
875023	275.84	278.5	MS		3
875024	278.5	281.43	MS		3
875025	281.43	285.36	MS		3
875026	285.36	289.32	MS		3
875027	289.32	292.11	MS		3
875028	292.11	295.29	MS		3
875029	295.29	297.74	MS		3
875030			ST	OKA-1	3
875031	297.74	301.57	MS		3
875032	301.57	303.65	MS		3

Sample	Interval (ft)		Sample Information		
Number	From	То	QC Code	Standard	Method

Total: BL-2 DP-0 MS-93 NS-1 ST-6 DX-5

Hole ID 2010-023

	QC Code		Method
BL	Blank	0	Not Sampled
DP	Duplicate	1	RC Chips
MS	Regular Mainstream	2	Sawn 1/2 Core
NS	Not Sampled	3	Split 1/2 Core
DX	Duplicate in-line	4	Whole Core
ST	Standard	5	1/4 Core

Sampler	RK	Pg	1 of 1
Sign		Date	18-Aug-10

Sample	Interval (ft)		Sam	ple Inform	ation
Number	From	То	QC Code	Standard	Method
NS_2010-023_0-4.57	0	4.57	NS		0
875033	4.57	9.14	MS		3
875034	9.14	12.19	MS		3
875035	12.19	15.24	MS		3
875036	15.24	18.29	MS		3
875037	18.29	20.73	MS		3
875038	20.73	23.47	MS		3
875039	23.47	28.22	MS		3
875040			DX		3
875041	28.22	30.83	MS		3
875042	30.83	32.89	MS		3
875043	32.89	35.32	MS		3
875044	35.32	37.76	MS		3
875045	37.76	41.13	MS		3
875046	41.13	43.95	MS		3
875047	43.95	47.04	MS		3
875048	47.04	49.58	MS		3
875049	49.58	52.21	MS		3
875050			ST	Aley3	3
875051	52.21	54.88	MS	-,-	3
875052	54.88	57.52	MS		3
875053	57.52	60.1	MS		3
875054	60.1	64.26	MS		3
875055			BL	Granite	3
875056	64.26	67.51	MS		3
875057	67.51	70.71	MS		3
875058	70.71	73.89	MS		3
875059	73.89	77.65	MS		3
875060			DX		3
875061	77.65	80.74	MS		3
875062	80.74	84.39	MS		3
875063	84.39	87.71	MS		3
875064	87.71	90.24	MS		3
875065	90.24	92.74	MS		3
875066	92.74	95.36	MS		3
875067	95.36	98.76	MS		3
875068	98.76	102.81	MS		3
875069	102.81	106.31	MS		3
875070			ST	OKA-1	3
875071	106.31	109.55	MS		3
875072	109.55	112.82	MS		3
875073	112.82	116.76	MS		3
875074	116.76	118.9	MS		3
875075	118.9	121.88	MS		3
875076	121.88	124.26	MS		3
3.3070	.200	12 1.20			

Sample Interval		al (ft)	Sample Information		
Number	From	То	QC Code	Standard	Method
875077	124.26	126.6	MS		3
875078	126.6	131.1	MS		3
875079	131.1	133.83	MS		3
875080			DX		3
875081	133.83	136.69	MS		3
875082	136.69	139.94	MS		3
875083	139.94	142.85	MS		3
875084	142.85	146.34	MS		3
875085	146.34	148.93	MS		3
875086	148.93	152.44	MS		3
875087	152.44	155.49	MS		3
875088	155.49	158.54	MS		3
875089	158.54	161.59	MS		3
875090			ST	Aley2	3
875091	161.59	164.63	MS		3
875092	164.63	169.36	MS		3
875093	169.36	173.42	MS		3
875094	173.42	176.38	MS		3
875095	176.38	179.57	MS		3
875096	179.57	182.67	MS		3
875097	182.67	185.98	MS		3
875098	185.98	189.76	MS		3
875099	189.76	193.02	MS		3
875100			DX		3
875101	193.02	196.45	MS		3
875102	196.45	199.52	MS		3
875103	199.52	202.51	MS		3
875104	202.51	205.32	MS		3
875105	205.32	208.8	MS		3
875106	208.8	211.04	MS		3
875107	211.04	213.41	MS		3

Total: BL-1 DP-0 MS-67 NS-1 ST-3 DX-4

Hole ID 2010-024	Hole ID	2010-024
------------------	---------	----------

	QC Code		Method
BL	Blank	0	Not Sampled
DP	Duplicate	1	RC Chips
MS	Regular Mainstream	2	Sawn 1/2 Core
NS	Not Sampled	3	Split 1/2 Core
DX	DX Duplicate in-line		Whole Core
ST	Standard	5	1/4 Core

Sampler	Pg	1 of 1
Sign	 Date	20-Aug-10

Sample		Interv	al (ft)	Sample Information		
	Number	From	То	QC Code	Standard	Method
NS.	_2010-024_0-7.32	0	7.32	NS		0
	875108	7.32	10.45	MS		3
	875109	10.45	13.42	MS		3
	875110			ST	Aley1	3
	875111	13.42	17	MS		3
	875112	17	19.48	MS		3
	875113	19.48	23.66	MS		3
	875114	23.66	26.36	MS		3
	875115	26.36	29.1	MS		3
	875116	29.1	31.78	MS		3
	875117	31.78	34.98	MS		3
	875118	34.98	37.43	MS		3
	875119	37.43	39.75	MS		3
	875120			DX		3
	875121	39.75	43.32	MS		3
	875122	43.32	46.72	MS		3
	875123	46.72	50.04	MS		3
	875124	50.04	53.42	MS		3
	875125	53.42	57.14	MS		3
	875126	57.14	60.09	MS		3
	875127	60.09	63.11	MS		3
	875128	63.11	65.66	MS		3
	875129	65.66	67.94	MS		3
	875130			ST	Aley2	3
	875131	67.94	70.97	MS		3
	875132	70.97	74.48	MS		3
	875133	74.48	77.85	MS		3
	875134	77.85	81.14	MS		3
	875135	81.14	84.4	MS		3
	875136	84.4	87.66	MS		3
	875137	87.66	89.65	MS		3
	875138			BL	Granite	3
	875139	89.65	92.91	MS		3
	875140			DX		3
	875141	92.91	96.25	MS		3
	875142	96.25	99.51	MS		3
	875143	99.51	102.75	MS		3
	875144	102.75	105.82	MS		3
	875145	105.82	108.76	MS		3
	875146	108.76	111.61	MS		3
	875147	111.61	115.25	MS		3
	875148	115.25	118.29	MS		3
	875149	118.29	121.24	MS		3
	875150			ST	OKA-1	3
	875151	121.24	124.39	MS		3

Sample	Interval (ft)		Sample Info		ormation	
Number	From	То	QC Code	Standard	Method	
875152	124.39	127.44	MS		3	
875153	127.44	130.49	MS		3	
875154	130.49	133.54	MS		3	
875155	133.54	136.59	MS		3	
875156	136.59	139.53	MS		3	
875157	139.53	143.41	MS		3	
875158	143.41	147.34	MS		3	
875159	147.34	150.2	MS		3	
875160			DX		3	
875161	150.2	153.05	MS		3	

Total: BL-1 DP-0 MS-47 NS-1 ST-3 DX-3

Hole ID 2010-025

	QC Code		Method
BL	Blank	0	Not Sampled
DP	Duplicate	1	RC Chips
MS	Regular Mainstream	2	Sawn 1/2 Core
NS	Not Sampled	3	Split 1/2 Core
DX	DX Duplicate in-line		Whole Core
ST	Standard	5	1/4 Core

Sampler	RK	Pg	1 of 1
Sign		Date	22-Aug-10

Sample	Interv	al (ft)	Sam	ple Inform	ation
Number	From	То	QC Code	Standard	Method
NS_2010-025_0-3.05	0	3.05	NS		0
875162	3.05	6.41	MS		3
875163	6.41	10.2	MS		3
875164	10.2	14.02	MS		3
875165	14.02	18.66	MS		3
875166	18.66	22.31	MS		3
875167	22.31	26.12	MS		3
875168	26.12	29.55	MS		3
875169	29.55	33.15	MS		3
875170			ST	Aley1	3
875171	33.15	36.43	MS		3
875172	36.43	39.19	MS		3
875173	39.19	42.35	MS		3
875174	42.35	45.52	MS		3
875175	45.52	47.84	MS		3
875176	47.84	51.76	MS		3
875177	51.76	55.74	MS		3
875178	55.74	58.62	MS		3
875179	58.62	61.86	MS		3
875180			DX		3
875181	61.86	66.3	MS		3
875182	66.3	69.47	MS		3
875183	69.47	71.9	MS		3
875184	71.9	75	MS		3
875185	75	78.05	MS		3
875186	78.05	81.1	MS		3
875187	81.1	84.75	MS		3
S_2010-025_84.75-87	84.75	87.2	NS		0
875188	87.2	90.25	MS		3
875189	90.25	93.29	MS		3
875190			ST	Aley3	3
875191	93.29	96.34	MS	,	3
875192	96.34	100.06	MS		3
875193	100.06	103.08	MS		3
875194	103.08	106.14	MS		3
875195	106.14	108.78	MS		3
875196	108.78	111.79	MS		3
875197	111.79	115.3	MS		3
875198	115.3	118.86	MS		3
875199	118.86	122.43	MS		3
875200			DX		3
875201	122.43	125.98	MS		3
875202	125.98	128.99	MS		3
875203	128.99	132.93	MS		3
875204	132.93	135.39	MS		3

Sample	Interv	al (ft)	Sample Information		
Number	From	То	QC Code	Standard	Method
875205	135.39	138.44	MS		3
875206	138.44	141.47	MS		3
875207	141.47	144.52	MS		3
875208	144.52	146.8	MS		3
875209	146.8	149.99	MS		3
875210			ST	OKA-1	3
875211	149.99	152.48	MS		3
875212	152.48	155.28	MS		3
875213	155.28	157.5	MS		3
875214	157.5	160.37	MS		3
875215	160.37	163.51	MS		3
875216	163.51	166.46	MS		3
875217			BL	Granite	3
875218	166.46	170.01	MS		3
875219	170.01	173.34	MS		3
875220			DX		3
875221	173.34	176.84	MS		3
875222	176.84	179.49	MS		3
875223	179.49	183.61	MS		3
875224	183.61	186.55	MS		3
875225	186.55	189.3	MS		3
875226	189.3	192.4	MS		3
875227	192.4	195.52	MS		3
875228	195.52	198.89	MS		3
875229	198.89	202.18	MS		3
875230			ST	Aley2	3
875231	202.18	206.6	MS		3
875232	206.6	209.77	MS		3
875233	209.77	212.99	MS		3
875234	212.99	215.49	MS		3
875235	215.49	217.94	MS		3

Total: BL-1 DP-0 MS-66 NS-2 ST-4 DX-3

Hole ID 2010-026

QC Code		Method		
BL	Blank	0	Not Sampled	
DP	Duplicate	1	RC Chips	
MS	Regular Mainstream	2	Sawn 1/2 Core	
NS	Not Sampled	3	Split 1/2 Core	
DX	Duplicate in-line	4	Whole Core	
ST	Standard	5	1/4 Core	

Sampler	RK	Pg	1 of 1
Sign		Date	23-Aug-10

Sample	Interv	al (ft)	Sam	ple Inform	ation
Number	From	То	QC Code	Standard	Method
NS_2010-026_0-3.05	0	3.05	NS		0
875236	3.05	6.61	MS		3
875237	6.61	10.07	MS		3
875238	10.07	13.39	MS		3
875239	13.39	17.07	MS		3
875240			DX		3
875241	17.07	20.12	MS		3
875242	20.12	23.17	MS		3
875243			BL	Granite	3
875244	23.17	26.22	MS		3
875245	26.22	29.27	MS		3
875246	29.27	32.67	MS		3
875247	32.67	35.54	MS		3
875248	35.54	38.41	MS		3
875249	38.41	41.46	MS		3
875250			ST	OKA-1	3
875251	41.46	44.92	MS		3
875252	44.92	47.99	MS		3
875253	47.99	51.19	MS		3
875254	51.19	54.36	MS		3
875255	54.36	58.34	MS		3
875256	58.34	61.69	MS		3
875257	61.69	64.9	MS		3
875258	64.9	68	MS		3
875259	68	71.05	MS		3
875260			DX		3
875261	71.05	73.9	MS		3
875262	73.9	77.66	MS		3
875263	77.66	81.31	MS		3
875264	81.31	83.46	MS		3
875265	83.46	86.52	MS		3
875266	86.52	89.58	MS		3
875267	89.58	92.45	MS		3
875268	92.45	95.51	MS		3
875269	95.51	98.24	MS		3
875270			ST	Aley3	3
875271	98.24	103.51	MS		3
875272	103.51	106.6	MS		3
875273	106.6	109.8	MS		3
875274	109.8	112.89	MS		3
875275	112.89	116	MS		3
875276	116	119.16	MS		3
875277	119.16	123.1	MS		3
875278	123.1	127.48	MS		3
875279	127.48	130.45	MS		3

Sample	Interv	Interval (ft)		Sample Information		
Number	From	То	QC Code	Standard	Method	
875280			DX		3	
876281	130.45	133.68	MS		3	
875282	133.68	136.44	MS		3	
875283	136.44	140.24	MS		3	
875284	140.24	143.94	MS		3	
875285	143.94	148.17	MS		3	
875286	148.17	151.79	MS		3	
875287	151.79	155.25	MS		3	
875288	155.25	157.9	MS		3	
875289	157.9	161.24	MS		3	
875290			ST	Aley2	3	
875291	161.24	163.66	MS		3	
875292	163.66	165.89	MS		3	
875293	165.89	168.61	MS		3	
875294	168.61	171.26	MS		3	
875295	171.26	174.57	MS		3	
875296	174.57	177.91	MS		3	
875297	177.91	181.71	MS		3	
875298	181.71	185.89	MS		3	
875299	185.89	189.63	MS		3	
875300			DX		3	
875301	189.63	192.8	MS		3	
875302	192.8	196.16	MS		3	
875303	196.16	200.6	MS		3	
875304	200.6	205.17	MS		3	
875305	205.17	209.8	MS		3	
875306	209.8	212.58	MS		3	
875307	212.58	215.25	MS		3	

Total: BL-1 DP-0 MS-64 NS-1 ST-3 DX-4

Hole ID 2010	-027
--------------	------

QC Code			Method
BL	Blank	0	Not Sampled
DP	Duplicate	1	RC Chips
MS	Regular Mainstream	2	Sawn 1/2 Core
NS	Not Sampled	3	Split 1/2 Core
DX	Duplicate in-line	4	Whole Core
ST	Standard	5	1/4 Core

Sampler	Pg	1 of 1
Sign	 Date	29-Aug-10

Sample	Interval (ft)		Sample Information		
Number	From	То	QC Code	Standard	Method
NS_2010-027_0-3.45	0	3.45	NS		0
912536	3.45	7.14	MS		3
912537	7.14	10.56	MS		3
912538	10.56	13.49	MS		3
912539	13.49	17.43	MS		3
912540			DX		3
912541	17.43	21.06	MS		3
912542	21.06	24.67	MS		3
912543	24.67	28.21	MS		3
912544	28.21	31.48	MS		3
912545	31.48	35.01	MS		3
912546	35.01	38	MS		3
912547	38	41.75	MS		3
912548	41.75	46.08	MS		3
912549	46.08	49.61	MS		3
912550			ST	Aley2	3
912551	49.61	52.99	MS		3
912552	52.99	56.52	MS		3
912553	56.52	59.83	MS		3
912554	59.83	63.17	MS		3
912555	63.17	66.32	MS		3
912556	66.32	69.39	MS		3
912557	69.39	72.56	MS		3
912558	72.56	75.95	MS		3
912559	75.95	79.31	MS		3
912560			DX		3
912561	79.31	82.67	MS		3
912562	82.67	85.66	MS		3
912563	85.66	88.9	MS		3
912564	88.9	92.53	MS		3
912565	92.53	96.03	MS		3
912566	96.03	99.55	MS		3
912567	99.55	102.85	MS		3
912568	102.85	105.31	MS		3
912569	105.31	107.72	MS		3
912571	107.72	110.21	MS		3
912572	110.21	113.78	MS		3
912570			ST	OKA-1	3
912573	113.78	117.26	MS		3
912574	117.26	121.07	MS		3
912575			BL	Granite	3
912576	121.07	125.13	MS		3
912577	125.13	128.26	MS		3
912578	128.26	131.62	MS		3
912579	131.62	135.61	MS		3

Sample	Interv	al (ft)	Sample Information		ation
Number	From	То	QC Code	Standard	Method
912580			DX		3
912581	135.61	139.63	MS		3
912582	139.63	143.71	MS		3
912583	143.71	147.82	MS		3
912584	147.82	151.14	MS		3
912585	151.14	154.51	MS		3
912586	154.51	158.02	MS		3
912587	158.02	161.43	MS		3
912588	161.43	164.7	MS		3
912589	164.7	168.36	MS		3
912590			ST	Aley1	3
912591	168.36	171.88	MS		3
912592	171.88	175.18	MS		3
912593	175.18	178.32	MS		3
912594	178.32	181.53	MS		3
912595	181.53	184.8	MS		3
912596	184.8	188	MS		3
912597	188	191.76	MS		3
912598	191.76	194.51	MS		3
912599	194.51	198.07	MS		3
912600			DX		3
912601	198.07	201.6	MS		3
912602	201.6	205.2	MS		3
912603	205.2	208.61	MS		3
912604	208.61	211.67	MS		3
912605	211.67	213.72	MS		3

Total: BL-1 DP-0 MS-62 NS-1 ST-3 DX-4

Hole ID 2010-028

QC Code		Method		
BL	Blank	0	Not Sampled	
DP	Duplicate	1	RC Chips	
MS	Regular Mainstream	2	Sawn 1/2 Core	
NS	Not Sampled	3	Split 1/2 Core	
DX	Duplicate in-line	4	Whole Core	
ST	Standard	5	1/4 Core	

Sampler	RK	Pg	1 of 1
Sign		Date	02-Sep-10

Sample	Interv	al (ft)	Sample Information		
Number	From	То	QC Code	Standard	Method
NS_2010-028_0-3.05	0	3.05	NS		0
912750			ST	Aley1	3
912751	3.05	6.3	MS		3
912752	6.3	11.3	MS		3
912753	11.3	14.3	MS		3
912754	14.3	17.8	MS		3
912755	17.8	20.34	MS		3
912756	20.34	23.05	MS		3
912757	23.05	25.87	MS		3
912758	25.87	30.09	MS		3
912759	30.09	33.54	MS		3
912760			DX		3
912993	33.54	36.97	MS		3
912994	36.97	40.4	MS		3
912995	40.4	43.61	MS		3
912996	43.61	47.33	MS		3
912997	47.33	51.01	MS		3
912998	51.01	54.88	MS		3
912999			BL	Granite	3
912833	54.88	58.45	MS		3
912834	58.45	62.1	MS		3
912835	62.1	65.49	MS		3
912836	65.49	69.15	MS		3
912837	69.15	72.64	MS		3
912838	72.64	76.22	MS		3
912839	76.22	79.37	MS		3
912840			DX		3
912841	79.37	82.88	MS		3
912842	82.88	86.49	MS		3
912843	86.49	89.74	MS		3
912844	89.74	92.97	MS		3
912845	92.97	95.95	MS		3
912846	95.95	99.45	MS		3
912847	99.45	102.78	MS		3
912848	102.78	106.54	MS		3
912849	106.54	109.76	MS		3
907550			ST	OKA-1	3
907551	109.76	112.8	MS		3
907552	112.8	115.85	MS		3
907553	115.85	118.9	MS		3
907554	118.9	121.53	MS		3
907555	121.53	123.9	MS		3
907556	123.9	127.39	MS		3
907557	127.39	130.91	MS		3
907558	130.91	134.3	MS		3

Sample	Interv	al (ft)	Sample Information		
Number	From	То	QC Code	Standard	Method
907559	134.3	137.82	MS		3
907560			DX		3
907561	137.82	139.18	MS		3
907562	139.18	142.96	MS		3
907563	142.96	146.44	MS		3
907564	146.44	150.49	MS		3
907565	150.49	152.99	MS		3
907566	152.99	155.58	MS		3
907567	155.58	158.54	MS		3
907568	158.54	161.59	MS		3
907569	161.59	164.63	MS		3
907570			ST	Aley1	3
907571	164.63	167.68	MS		3
907572	167.68	170.73	MS		3
907573	170.73	173.78	MS		3
907574	173.78	176.83	MS		3
907575	176.83	179.88	MS		3
907576	179.88	182.93	MS		3
907577	182.93	185.98	MS		3
907578	185.98	189.02	MS		3
907579	189.02	192.07	MS		3
907580			DX		3
907581	192.07	195.7	MS		3
907582	195.7	198.4	MS		3
907583	198.4	201.22	MS		3
907584	201.22	203.71	MS		3
907585	203.71	206.82	MS		3
907586	206.82	208.87	MS		3
907587	208.87	213.4	MS		3

Total: BL-1 DP-0 MS-65 NS-1 ST-3 DX-4

Hole ID 2010-029

QC Code			Method
BL	Blank	0	Not Sampled
DP	Duplicate	1	RC Chips
MS	Regular Mainstream	2	Sawn 1/2 Core
NS	Not Sampled	3	Split 1/2 Core
DX	Duplicate in-line	4	Whole Core
ST	Standard	5	1/4 Core

Sampler	RK	Pg	1 of 1
Sign		Date	02-Sep-10

Sample	Interv	al (ft)	Sample Information		
Number	From	То	QC Code	Standard	Method
NS_2010-029_0-4.49	0	4.49	NS		0
912919	4.49	7.63	MS		3
912920			DX		3
912921	7.63	10.74	MS		3
912922	10.74	13.7	MS		3
912923	13.7	17.29	MS		3
912924	17.29	20.5	MS		3
912925			BL	Granite	3
912926	20.5	23.78	MS		3
912927	23.78	26.83	MS		3
912928	26.83	29.33	MS		3
912929	29.33	31.92	MS		3
912930			ST	Aley2	3
912931	31.92	35.1	MS		3
912932	35.1	38.04	MS		3
912933	38.04	42.23	MS		3
912934	42.23	44.58	MS		3
912935	44.58	47.58	MS		3
912936	47.58	50.82	MS		3
912937	50.82	53.9	MS		3
912938	53.9	57.27	MS		3
912939	57.27	60.59	MS		3
912940			DX		3
912941	60.59	63.41	MS		3
912942	63.41	66.11	MS		3
912943	66.11	69	MS		3
912944	69	71.8	MS		3
912945	71.8	74.83	MS		3
912946	74.83	78.45	MS		3
912947	78.45	82.03	MS		3
912948	82.03	85.38	MS		3
912949	85.38	88.16	MS		3
912950			ST	Aley3	3
912951	88.16	90.85	MS		3
912952	90.85	94.83	MS		3
912953	94.83	98.83	MS		3
912954	98.83	102.8	MS		3
912955	102.8	107.08	MS		3
912956	107.08	109.59	MS		3
912957	109.59	112.26	MS		3
912958	112.26	115.24	MS		3
912959	115.24	118.29	MS		3
912960			DX		3
912961	118.29	121.25	MS		3
912962	121.25	124.39	MS		3

Sample	Interv	al (ft)	Sample Information		
Number	From	То	QC Code	Standard	Method
912963	124.39	127.59	MS		3
912964	127.59	130.49	MS		3
912965	130.49	133.76	MS		3
912966	133.76	137.1	MS		3
912967	137.1	139.94	MS		3
912968	139.94	143.21	MS		3
912969	143.21	146.5	MS		3
912970			ST	OKA-1	3
912971	146.5	151.04	MS		3
912972	151.04	154.6	MS		3
912973	154.6	158.21	MS		3
912974	158.21	161.87	MS		3
912975	161.87	165.48	MS		3
912976	165.48	169.09	MS		3
912977	169.09	172.47	MS		3
912978	172.47	175.98	MS		3
912979	175.98	179.52	MS		3
912980			DX		3
912981	179.52	182.9	MS		3
912982	182.9	186.43	MS		3
912983	186.43	189.83	MS		3
912984	189.83	193.52	MS		3
912985	193.52	196.8	MS		3
912986	196.8	200.15	MS		3
912987	200.15	203.3	MS		3
912988	203.3	206.71	MS		3
912989	206.71	209.76	MS		3
912990			ST	Aley2	3
912991	209.76	212.8	MS		3
912992	212.8	215.85	MS		3

Total: BL-1 DP-0 MS-65 NS-1 ST-4 DX-4

Hole ID 2010-030

QC Code			Method
BL	Blank	0	Not Sampled
DP	Duplicate	1	RC Chips
MS	Regular Mainstream	2	Sawn 1/2 Core
NS	Not Sampled	3	Split 1/2 Core
DX	Duplicate in-line	4	Whole Core
ST	Standard	5	1/4 Core

Sampler	RK	Pg	1 of 1
Sign		Date	27-Aug-10

Sample	Interv	al (ft)	Sample Information		
Number	From	To	QC Code	Standard	Method
NS_2010-030_0-3.67	0	3.67	NS		0
875308	3.67	7.42	MS		3
875309	7.42	11.19	MS		3
875310			ST	Aley2	3
875311	11.19	14.49	MS		3
875312	14.49	17.39	MS		3
875313	17.39	20.42	MS		3
875314	20.42	23.57	MS		3
875315	23.57	26.33	MS		3
875316	26.33	29.43	MS		3
875317	29.43	32.26	MS		3
875318	32.26	35.11	MS		3
875319	35.11	37.88	MS		3
875320			DX		3
875321	37.88	41.34	MS		3
875322	41.34	45.07	MS		3
875323	45.07	48.34	MS		3
875324	48.34	51.63	MS		3
875325	51.63	54.88	MS		3
875326	54.88	57.93	MS		3
875327	57.93	60.98	MS		3
875328	60.98	64.02	MS		3
875329	64.02	66.82	MS		3
875330			ST	Aley1	3
875331	66.82	69.89	MS	7	3
875332	69.89	72.84	MS		3
875333	72.84	75.72	MS		3
875334	75.72	78.77	MS		3
875335	78.77	82.04	MS		3
875336	82.04	84	MS		3
875337	84	86.18	MS		3
875338	86.18	89.25	MS		3
875339	89.25	92.49	MS		3
875340	00.20	52.10	DX		3
875341	92.49	95.49	MS		3
875342	95.49	98.49	MS		3
875343	98.49	101.04	MS		3
875344	101.04	104.02	MS		3
875345	104.02	104.02	MS		3
875346	106.99	110.01	MS		3
875347	110.01	113	MS		3
875348	113	115.95	MS		3
875349	115.95	119.09	MS		3
912500	1 10.00	110.00	DX		3
912501	119.09	121.95	MS		3
312301	113.03	121.90	IVIO		ა

Sample Interval		al (ft)	Sample Information		
Number	From	То	QC Code	Standard	Method
912502	121.95	124.73	MS		3
912503	124.73	126.73	MS		3
912504			BL	Granite	3
912505	126.73	129.25	MS		3
912506	129.25	132.19	MS		3
912507	132.19	135.5	MS		3
912508	135.5	138.48	MS		3
912509	138.48	141.32	MS		3
912510			ST	Aley3	3
912511	141.32	144.21	MS		3
912512	144.21	147.14	MS		3
912513	147.14	149.81	MS		3
912514	149.81	153.51	MS		3
912515	153.51	157.17	MS		3
912516	157.17	160.27	MS		3
912517	160.27	163.13	MS		3
912518	163.13	166.88	MS		3
912519	166.88	170.39	MS		3
912520			DX		3
912521	170.39	173.95	MS		3
912522	173.95	176.97	MS		3
912523	176.97	180.16	MS		3
912524	180.16	183.09	MS		3
912525	183.09	186.2	MS		3
912526	186.2	189.22	MS		3
912527	189.22	192.17	MS		3
912528	192.17	195.12	MS		3
912529	195.12	198.3	MS		3
912530			ST	Aley2	3
912531	198.3	200.83	MS		3
912532	200.83	203.5	MS		3
912533	203.5	208.3	MS		3
912534	208.3	211.64	MS		3
912535	211.64	213.41	MS		3

Total: BL-1 DP-0 MS-69 NS-1 ST-4 DX-4

Hole ID	2010-031
I IOIC ID	

QC Code			Method
BL	Blank	0	Not Sampled
DP	Duplicate	1	RC Chips
MS	Regular Mainstream	2	Sawn 1/2 Core
NS	Not Sampled	3	Split 1/2 Core
DX	Duplicate in-line	4	Whole Core
ST	Standard	5	1/4 Core

Sampler	RK	Pg	1 of 1
Sign	-	Date	30-Aug-10

Sample	Interv	al (ft)	Sample Information		ation
Number	From	То	QC Code	Standard	Method
NS_2010-031_0-6.09	0	6.09	NS		0
912606	6.09	9.66	MS		3
912607	9.66	13.12	MS		3
912608	13.12	16.37	MS		3
912609	16.37	20.04	MS		3
912610			ST	Aley1	3
912611	20.04	23.68	MS		3
912612	23.68	27.02	MS		3
912613	27.02	30	MS		3
912614			BL	Granite	3
912615	30	33.15	MS		3
912616	33.15	36.13	MS		3
912617	36.13	39.06	MS		3
912618	39.06	42.32	MS		3
912619	42.32	45.59	MS		3
912620			DX		3
912621	45.59	48.69	MS		3
912622	48.69	52.35	MS		3
912623	52.35	55.96	MS		3
912624	55.96	59.36	MS		3
912625	59.36	63.2	MS		3
912626	63.2	66.66	MS		3
912627	66.66	69.96	MS		3
912628	69.96	73.21	MS		3
912629	73.21	76.49	MS		3
912630			ST	Aley2	3
912631	76.49	79.81	MS		3
912632	79.81	83.76	MS		3
912633	83.76	87.58	MS		3
912634	87.58	90.77	MS		3
912635	90.77	94.16	MS		3
912636	94.16	97.55	MS		3
912637	97.55	100.75	MS		3
912638	100.75	103.95	MS		3
912639	103.95	107.21	MS		3
912640			DX		3
912641	107.21	110.47	MS		3
912642	110.47	113.61	MS		3
912643	113.61	116.84	MS		3
912644	116.84	119.97	MS		3
912645	119.97	123.59	MS		3
912646	123.59	127.82	MS		3
912647	127.82	131.96	MS		3
912648	131.96	135.98	MS		3
912649	135.98	139.85	MS		3

Sample	Interv	ral (ft) Sample Inform		ation	
Number	From	То	QC Code	Standard	Method
912650			ST	Aley1	3
912651	139.85	143.04	MS		3
912652	143.04	146.09	MS		3
912653	146.09	149.21	MS		3
912654	149.21	152.07	MS		3
912655	152.07	154.63	MS		3
912656	154.63	157.65	MS		3
912657	157.65	160.72	MS		3
912658	160.72	164.11	MS		3
912659	164.11	167.86	MS		3
912660			DX		3
912661	167.86	171.57	MS		3
912662	171.57	175.61	MS		3
912663	175.61	179.78	MS		3
912664	179.78	183.55	MS		3
912665	183.55	187.01	MS		3
912666	187.01	190.3	MS		3
912667	190.3	193	MS		3
912668	193	195.67	MS		3
912669	195.67	199.07	MS		3
912670			ST	Aley2	3
912671	199.07	202.57	MS		3
912672	202.57	205.96	MS		3
912673	205.96	210.23	MS		3
912674	210.23	212.58	MS		3
912675	212.58	214.94	MS		3

Total: BL-1 DP-0 MS-62 NS-1 ST-4 DX-3

Hole ID	2010-032
טו שוטוו	

	QC Code		Method
BL	Blank	0	Not Sampled
DP	Duplicate	1	RC Chips
MS	Regular Mainstream	2	Sawn 1/2 Core
NS	Not Sampled	3	Split 1/2 Core
DX	Duplicate in-line	4	Whole Core
ST	Standard	5	1/4 Core

Sampler		Pg	1 of 1
Sign	-	Date	30-Aug-10

Sample	Interv	al (ft)	Sample Information		ation
Number	From	То	QC Code	Standard	Method
NS_2010-032_0-3.05	0	3.05	NS		0
912676	3.05	6.06	MS		3
912677	6.06	9.04	MS		3
912678	9.04	11.97	MS		3
912679	11.97	15.04	MS		3
912680			DX		3
912681	15.04	17.99	MS		3
912682	17.99	20.86	MS		3
912683	20.86	24.2	MS		3
912684	24.2	27.44	MS		3
912685	27.44	30.54	MS		3
912686	30.54	33.54	MS		3
912687	33.54	36.82	MS		3
912688	36.82	40.26	MS		3
912689	40.26	43.68	MS		3
912690			ST	Aley1	3
912691	43.68	47.17	MS		3
912692	47.17	50.61	MS		3
912693	50.61	54.05	MS		3
912694	54.05	57.6	MS		3
912695	57.6	60.98	MS		3
912696	60.98	64.19	MS		3
912697	64.19	67.56	MS		3
912698	67.56	70.85	MS		3
912699	70.85	74.16	MS		3
912700			DX		3
912701	74.16	77.34	MS		3
912702	77.34	80.68	MS		3
912703	80.68	84.02	MS		3
912704	84.02	87.2	MS		3
912705	87.2	90.23	MS		3
912706	90.23	93.27	MS		3
912707	93.27	96.49	MS		3
912708	96.49	99.45	MS		3
912709	99.45	103.45	MS		3
912710			ST	Aley3	3
912711	103.45	106.71	MS	,	3
912712	106.71	110.5	MS		3
912713	110.5	113.75	MS		3
912714	113.75	117.04	MS		3
912715	117.04	120.51	MS		3
912716	120.51	124	MS		3
912717	124	127.37	MS		3
912718	127.37	129.71	MS		3
912719	129.71	132.16	MS		3

Sample			Sample Information		ation
Number	From	То	QC Code	Standard	Method
912720			DX		3
912721	132.16	135.74	MS		3
912722	135.74	139.16	MS		3
912723	139.16	142.58	MS		3
912724	142.58	146.13	MS		3
912725	146.13	149.61	MS		3
912726	149.61	153.08	MS		3
912727	153.08	155.86	MS		3
912728	155.86	158.68	MS		3
912729	158.68	161.41	MS		3
912730			ST	Aley1	3
912731	161.41	164.39	MS		3
912732	164.39	167.5	MS		3
912733	167.5	170.63	MS		3
912734	170.63	173.78	MS		3
912735	173.78	176.83	MS		3
912736	176.83	179.88	MS		3
912737	179.88	182.93	MS		3
912738	182.93	185.98	MS		3
912739	185.98	189.17	MS		3
912740			DX		3
912741	189.17	192.3	MS		3
912742	192.3	195.42	MS		3
912743	195.42	198.57	MS		3
912744	198.57	201.8	MS		3
912745			BL	Granite	3
912746	201.8	205.18	MS		3

Total: BL-1 DP-0 MS-63 NS-1 ST-3 DX-4

Hole ID 2010-033

QC Code			Method
BL	Blank	0	Not Sampled
DP	Duplicate	1	RC Chips
MS	Regular Mainstream	2	Sawn 1/2 Core
NS	Not Sampled	3	Split 1/2 Core
DX	Duplicate in-line	4	Whole Core
ST	Standard	5	1/4 Core

Sampler	RK	Pg	1 of 1
Sign		Date	01-Sep-10

Interv	al (ft)	Sample Information				
From	То	QC Code	Standard	Method		
0	6.1	NS		0		
6.1	9.69	MS		3		
9.69	13.1	MS		3		
13.1	16.68	MS		3		
16.68	20.65	MS		3		
		ST	Aley1	3		
20.65	23.97	MS		3		
23.97	27.44	MS		3		
27.44	31.09	MS		3		
31.09	35.65	MS		3		
35.65	38.49	MS		3		
38.49	41.97	MS		3		
41.97	45.22	MS		3		
45.22	48.43	MS		3		
		DX		3		
48.43	51.75	MS		3		
51.75	55.07	MS		3		
				3		
				3		
				3		
		BL	Granite	3		
63.39	65.63	MS		3		
				3		
				3		
	70.70		Alev2	3		
70.78	74 46		7 110 12	3		
				3		
				3		
				3		
				3		
				3		
				3		
				3		
				3		
00.07	100.70			3		
100 73	103 66			3		
				3		
				3		
				3		
				3		
				3		
				3		
				3		
		MS		3		
126.84	130.13					
	From 0 6.1 9.69 13.1 16.68 20.65 23.97 27.44 31.09 35.65 38.49 41.97 45.22	0 6.1 6.1 9.69 9.69 13.1 13.1 16.68 16.68 20.65 20.65 23.97 23.97 27.44 27.44 31.09 31.09 35.65 35.65 38.49 41.97 45.22 45.22 48.43 51.75 55.07 55.07 58.17 58.17 61.13 61.13 63.39 65.63 68.14 68.14 70.78 74.46 78.02 78.02 81.42 84.73 88.41 91.46 94.51 94.51 98.37 100.73 103.66 106.46 109.5 109.5 112.3 116.08 120.02 120.02 123.45	From To QC Code 0 6.1 NS 6.1 9.69 MS 9.69 13.1 MS 13.1 16.68 MS 16.68 20.65 MS 20.65 23.97 MS 23.97 27.44 MS 27.44 31.09 MS 31.09 35.65 MS 35.65 38.49 MS 38.49 41.97 MS 41.97 45.22 MS 45.22 48.43 MS 51.75 55.07 MS 55.07 55.07 MS 55.07 58.17 MS 51.75 55.07 MS 55.07 58.17 MS 61.13 63.39 MS 65.63 68.14 MS 65.63 68.14 MS 70.78 74.46 MS 74.46 78.02 MS	From To QC Code Standard 0 6.1 NS 6.1 9.69 MS 9.69 13.1 MS 13.1 16.68 MS 16.68 20.65 MS 20.65 23.97 MS 23.97 27.44 MS 27.44 31.09 MS 31.09 35.65 MS 35.65 38.49 MS 38.49 41.97 MS 41.97 45.22 MS 45.22 48.43 MS 51.75 55.07 MS 55.07 58.17 MS 55.07 58.17 MS 61.13 63.39 MS 65.63 68.14 MS 65.63 68.14 MS 68.14 70.78 MS 74.46 78.02 MS 74.46 78.02 MS 74.46 MS MS		

Sample	Interv	al (ft)	Sample Information		
Number	From To		QC Code	Standard	Method
912890			ST	OKA-1	3
912892	133.2	136.13	MS		3
912893	136.13	139.45	MS		3
912894	139.45	143.64	MS		3
912895	143.64	146.6	MS		3
912896	146.6	149.81	MS		3
912897	149.81	152.81	MS		3
912898	152.81	155.78	MS		3
912899	155.78	159.89	MS		3
912900			DX		3
912901	159.89	163.9	MS		3
912902	163.9	166.09	MS		3
912903	166.09	168.69	MS		3
912904	168.69	171.07	MS		3
912905	171.07	174.44	MS		3
912906	174.44	177.84	MS		3
912907	177.84	181	MS		3
912908	181	184.06	MS		3
912909	184.06	186.94	MS		3
912910			ST	Aley1	3
912911	186.94	189.72	MS		3
912912	189.72	192.56	MS		3
912913	192.56	195.31	MS		3
912914	195.31	198.92	MS		3
912915	198.92	202.52	MS		3
912916	202.52	206.47	MS		3
912917	206.47	210.15	MS		3
912918	210.15	213.94	MS		3

Total: BL-1 DP-0 MS-64 NS-1 ST-4 DX-3

Hole ID 2010-034

	QC Code		Method
BL	Blank	0	Not Sampled
DP	Duplicate	1	RC Chips
MS	Regular Mainstream	2	Sawn 1/2 Core
NS	Not Sampled	3	Split 1/2 Core
DX	Duplicate in-line	4	Whole Core
ST	Standard	5	1/4 Core

Sampler	RK	Pg	1 of 1
Sign		Date	02-Sep-10

Sample	Interv	al (ft)	Sample Information			
Number	From	To	QC Code	Standard	Method	
NS_2010-034_0-2.49	0	2.49	NS		0	
912761	2.49	5.1	MS		3	
912762	5.1	8.67	MS		3	
912763	8.67	12.2	MS		3	
912764	12.2	15.7	MS		3	
912765	15.7	19.32	MS		3	
912766	19.32	22.82	MS		3	
912767	22.82	26.58	MS		3	
912768	26.58	30.49	MS		3	
912769	30.49	34.65	MS		3	
912770			ST	Aley2	3	
912771	34.65	39.63	MS		3	
912772	39.63	42.68	MS		3	
912773	42.68	45.73	MS		3	
912774	45.73	48.78	MS		3	
912775	48.78	51.83	MS		3	
912776	51.83	54.88	MS		3	
912777	54.88	57.93	MS		3	
912778	57.93	60.96	MS		3	
912779	60.96	64.02	MS		3	
912780			DX		3	
912781	64.02	67.07	MS		3	
912782	67.07	70.12	MS		3	
912783	70.12	73.17	MS		3	
912784	73.17	76.22	MS		3	
912785	76.22	79.27	MS		3	
912786	79.27	82.32	MS		3	
912787	82.32	85.37	MS		3	
912788	85.37	88.41	MS		3	
912789	88.41	91.46	MS		3	
912790			ST	Aley1	3	
912791	91.46	94.51	MS		3	
912792	94.51	97.56	MS		3	
912793	97.56	100.61	MS		3	
912794	100.61	103.66	MS		3	
912795	103.66	106.71	MS		3	
912796	106.71	111.24	MS		3	
912797	111.24	115.22	MS		3	
912798	115.22	119.16	MS		3	
912799	119.16	122.15	MS		3	
912800			DX		3	
912801	122.15	125.1	MS		3	
912802	125.1	128.05	MS		3	
912803	128.05	131.62	MS		3	
912804	131.62	134.94	MS		3	

Sample	Interv	al (ft)	Sam	ple Inform	ation
Number	From	То	QC Code	Standard	Method
912805	134.94	138.56	MS		3
912806	138.56	141.85	MS		3
912807	141.85	145.27	MS		3
912808	145.27	148.62	MS		3
912809	148.62	151.68	MS		3
912810			ST	Aley3	3
912811	151.68	155.49	MS		3
912812	155.49	159.07	MS		3
912813	159.07	162.59	MS		3
912814	162.59	166.2	MS		3
912815	166.2	169.87	MS		3
912816	169.87	173.66	MS		3
912817	173.66	177.25	MS		3
912818	177.25	180.61	MS		3
912819	180.61	184.08	MS		3
912820			DX		3
912821	184.08	186.49	MS		3
912822	186.49	189.02	MS		3
912823			BL	Granite	3
912824	189.02	191.43	MS		3
912825	191.43	194.09	MS		3
912826	194.09	197.43	MS		3
912827	197.43	200.78	MS		3
912828	200.78	203.99	MS		3
912829	203.99	207.4	MS		3
912830			ST	Aley1	3
912831	207.4	210.3	MS		3
912832	210.3	213.41	MS		3

Total: BL-1 DP-0 MS-64 NS-1 ST-4 DX-3

APPENDIX C

ASSAY CERTIFICATES

August 17, 2008 Appendix C

ALEY - ANALYTICAL RESULTS

Logged By	Ryan Kressall
Laboratory	Inspectorate
File No.	10-360-03506-01

Location	UTM NAD 83	Comment
Easting	653,897.393	Central 1
Northing	7,710,479.998	
Elevation	491.625	

Direction / Length			
Azimuth	20 °		
Inclination	-55 °		
Length	154.26 Metres		

Drill Hole Information				
Date Start	24-Jul-10			
Date End	25-Jul-10			
Operator	Taseko			

Sample	Interval (met	res)	Sample Analytical Results Number		Litho Sample Method						
From	To	Int.	Number	Nb ₂ O ₅ %	Ta ppm	Th ppm	U ppm	TREO %	Y2O3 %		
0.00	9.10	9.10	Not Sampled							CASE	Not Sampled
9.10	12.70	3.56	875600	0.60	19.44	104.7	5.1	0.211	0.013	dlcCD	1/2 Core Split
12.70	15.30	2.60	875601	0.78	15.93	78.1	4.1	0.847	0.015	mCD	1/2 Core Split
15.30	16.90	1.60	Not Sampled								Not Sampled
16.90	19.30	2.40	875603	0.58	0.11	133.5	5.9	0.850	0.014	nlfCD	1/2 Core Split
19.30	21.80	2.50	875604	1.59	0.41	215.9	9.3	0.755	0.009	gmCM	1/2 Core Split
Blank	Granite		875605	0.03	1.95	11.0	4.8	0.034	0.002		Quality Control
21.80	25.09	3.30	875606	0.36	9.32	88.0	2.2	0.184	0.008	dlcCD	1/2 Core Split
25.09	27.80	2.70	875607	0.20	3.42	56.3	1.6	0.176	0.005	nlcCD	1/2 Core Split
27.80	30.50	2.70	875608	0.45	2.39	181.0	4.3	0.242	0.012	IcCD	1/2 Core Split
30.50	33.77	3.30	875609	0.55	18.69	362.9	5.5	0.255	0.015	bICD	1/2 Core Split
Standard	Aley3		875610	0.79	7.89	300.5	8.2	0.207	0.011		Quality Control
33.77	36.26	2.50	875611	0.52	85.85	305.1	10.4	0.240	0.018	dICD	1/2 Core Split
36.26	39.20	2.90	875612	0.35	57.33	262.8	8.6	0.290	0.014	dICD	1/2 Core Split
39.20	42.22	3.00	875613	0.67	21.6	193.7	3.9	0.197	0.012	dICD	1/2 Core Split
42.22	44.50	2.30	875614	1.15	1.78	280.8	4.8	0.234	0.014	blfCD	1/2 Core Split
44.50	48.24	3.70	875615	0.67	0.87	250.0	5.0	0.241	0.019	nmCDz	1/2 Core Split
48.24	51.34	3.10	875616	0.33	7.58	105.6	2.6	0.207	0.012	dlfCD	1/2 Core Split
51.34	53.60	2.30	875617	0.29	5.86	129.8	2.6	0.321	0.011	nliCD	1/2 Core Split
53.60	55.22	1.60	875618	0.75	4.5	196.2	9.9	0.184	0.014	blfCD	1/2 Core Split
55.22	58.28	3.10	875619	0.30	8.71	113.2	2.8	0.217	0.011	nlfgCD	1/2 Core Split
Duplicate	Previous		875620	0.28	8.14	115.3	2.7	0.205	0.011		Quality Control
58.28	60.99	2.70	875621	0.54	26.26	193.3	5.7	0.225	0.013	dlfCD	1/2 Core Split
60.99	63.37	2.40	875622	0.48	25.91	179.2	8.9	0.223	0.011	nlfCD	1/2 Core Split
63.37	65.94	2.60	875623	0.38	15.18	154.4	2.4	0.141	0.011	dICD	1/2 Core Split
65.94	68.50	2.60	875624	0.20	4.42	129.4	2.9	0.474	0.012	dmCD	1/2 Core Split
68.50	70.70	2.20	875625	0.52	1.26	190.8	5.1	0.333	0.015	dlfCD	1/2 Core Split
70.70	74.50	3.80	875626	1.39	0.53	192.1	10.5	0.295	0.016	glfCD	1/2 Core Split
74.50	77.86	3.40	875627	0.38	21.97	129.9	3.6	0.225	0.010	nICD	1/2 Core Split
77.86	80.36	2.50	875628	0.22	4.12	87.8	2.4	0.284	0.009	bmCD	1/2 Core Split
80.36	82.57	2.20	875629	0.84	1.63	258.9	5.3	0.255	0.020	nICD	1/2 Core Split
Standard	Aley3		875630	0.82	30.54	295.1	9.1	0.230	0.010		Quality Control
82.57	85.36	2.80	875631	0.18	5.6	141.6	1.8	0.287	0.011	nmfCD	1/2 Core Split
85.36	88.95	3.60	875632	0.74	22.17	180.8	5.2	0.235	0.011	bICD	1/2 Core Split
88.95	91.60	2.60	875633	1.18	28.92	151.9	10.4	0.269	0.016	dICD	1/2 Core Split
91.60	95.24	3.60	875634	0.42	12.95	106.9	2.5	0.181	0.009	bICD	1/2 Core Split
95.24	96.42	1.20	875635	0.83	30.87	216.2	14.0	0.194	0.012	bmCM	1/2 Core Split
96.42	100.13	3.70	875636	0.30	8.14	40.9	5.5	0.123	0.005	dICD	1/2 Core Split
100.13	102.20	2.10	875637	0.76	29.53	172.9	11.2	0.226	0.010	dliCD	1/2 Core Split

ALEY - ANALYTICAL RESULTS

Drill Co	ore Samples
naed By	Ryan Kross

	•
Logged By	Ryan Kressall
Laboratory	Inspectorate
File No.	10-360-03506-01

Location	UTM NAD 83	Comment
Easting	653,897.393	Central 1
Northing	7,710,479.998	
Elevation	491.625	

Direction / Length				
Azimuth	20 °			
Inclination	-55 °			
Length	154.26 Metres			

0.292

0.262

0.011

0.012

Drill Hole Information					
Date Start	24-Jul-10				
Date End	25-Jul-10				
Operator	Taseko				

Sample	Interval (met	res)	Sample Number	·					Litho	Sample Method	
From	То	Int.		Nb ₂ O ₅ %	Ta ppm	Th ppm	U ppm	TREO %	Y2O3 %		·
102.20	107.95	5.80	875638	0.35	14.15	75.3	6.0	0.166	0.008	dlpCCCD	1/2 Core Split
107.95	110.63	2.70	875639	0.69	15.68	148.2	8.5	0.209	0.013	ICCCD	1/2 Core Split
Duplicate	Previous		875640	0.65	16.68	150.9	9.0	0.207	0.013		Quality Control
110.63	115.10	4.50	875641	0.47	10	90.0	3.1	0.181	0.007	glCD	1/2 Core Split
115.10	120.12	5.00	875642	0.30	20.5	115.0	6.4	0.141	0.008	gxAMX	1/2 Core Split
120.12	125.55	5.40	875643	0.28	30.54	155.9	12.6	0.145	0.010	bICD	1/2 Core Split
125.55	128.97	3.40	875644	0.40	29.85	156.7	6.1	0.140	0.007	dICD	1/2 Core Split
128.97	134.44	5.50	875645	0.61	16.11	161.9	4.8	0.204	0.012	dICD	1/2 Core Split
134.44	137.06	2.60	875646	0.26	100.54	139.5	113.4	0.355	0.012	dmiCD	1/2 Core Split
137.06	142.19	5.10	875647	0.29	59.1	116.5	73.5	0.221	0.010	dmpCD	1/2 Core Split
142.19	148.46	6.30	875648	0.30	12.61	97.5	7.8	0.223	0.008	dmiAMX	1/2 Core Split
148.46	154.26	5.80	875649	0.21	55.66	171.1	45.2	0.302	0.012	dICD	1/2 Core Split

Drill Hole Selected Interval - Weighted Average Analytical Results Sample Interval (metres) **Analytical Results** То Int. TREO % Y2O3 % Nb₂O₅% Ta ppm Th ppm U ppm

153.7

157.4

6

6

16

13

0.534

0.691

-May-11	HUNTER Responsible DICKINSON Mineral INC. Development	

From

9.10

70.70

134.44

96.42

125.34

25.72

Incl.

ALEY - ANALYTICAL RESULTS

Logged By	Ryan Kressall
Laboratory	Inspectorate
File No.	10-360-03524-01

Location	UTM NAD 83	Comment
Easting	653,906.952	Central 1
Northing	7,710,493.880	
Elevation	493.571	

Direction / Length				
Azimuth	20 °			
Inclination	-55 °			
Length	215 20 Motros			

Drill Hole Information					
Date Start	26-Jul-10				
Date End	28-Jul-10				
Operator	Taseko				

File No.	10-300-035		Elevation	493.57				engui 21	5.20 Metres	Opera	-
Sample	e Interval (met	res)	Sample Number	Analytical Results			Litho	Sample Method			
From	То	Int.		$\mathrm{Nb_2O_5}\%$	Ta ppm	Th ppm	U ppm	TREO %	Y2O3 %		
0.00	7.08	7.10	Not Sampled							CASE	Not Sampled
Standard	Aley3		875650	0.78	29.52	283.5	7.8	0.211	0.009		Quality Control
7.08	9.63	2.60	875651	0.43	19.04	102.2	4.0	0.191	0.008	dlfgCD	1/2 Core Split
9.63	14.63	5.00	875652	0.54	35.74	173.6	4.6	0.225	0.012	liCD	1/2 Core Split
14.63	18.26	3.60	875653	0.35	23.53	105.0	3.3	0.151	0.010	liCDz	1/2 Core Split
18.26	19.08	0.80	875654	1.17	0.81	300.7	5.8	0.163	0.008	gmCM	1/2 Core Split
19.08	22.61	3.50	875655	0.43	40.53	174.5	5.7	0.199	0.012	IfgCD	1/2 Core Split
22.61	27.51	4.90	875656	0.59	67.51	309.0	18.1	0.283	0.026	nmiCD	1/2 Core Split
27.51	32.77	5.30	875657	0.02	0.43	237.4	1.4	0.587	0.012	nmiCD	1/2 Core Split
32.77	37.85	5.10	875658	0.01	0.22	46.7	1.0	0.333	0.004	nmiCD	1/2 Core Split
37.85	42.69	4.80	875659	0.17	2.13	97.0	2.5	0.361	0.012	nliCD	1/2 Core Split
Duplicate	Previous		875660	0.18	2.25	95.4	2.6	0.360	0.013		Quality Control
42.69	47.39	4.70	875661	0.54	12.28	137.3	8.1	0.261	0.017	dlfgCD	1/2 Core Split
47.39	50.04	2.60	875662	0.34	7.27	99.2	3.9	0.228	0.010	dmfgCD	1/2 Core Split
50.04	52.28	2.20	875663	0.74	20.55	158.5	10.8	0.302	0.017	IpCD	1/2 Core Split
52.28	56.13	3.90	875664	0.39	11.36	157.7	6.4	0.294	0.012	dmfgCD	1/2 Core Split
56.13	58.48	2.30	875665	0.32	3.49	59.0	1.4	0.161	0.007	dlfgCD	1/2 Core Split
58.48	63.25	4.80	875666	0.46	12.44	150.3	4.2	0.238	0.013	nmfgCD	1/2 Core Split
63.25	65.91	2.70	875667	0.69	10.49	100.4	4.2	0.228	0.011	mCD	1/2 Core Split
65.91	66.69	0.80	875668	1.43	0.62	172.8	6.6	0.259	0.009	gmfgCM	1/2 Core Split
66.69	72.18	5.50	875669	0.46	6.73	71.0	3.6	0.210	0.008	nlfgCD	1/2 Core Split
Standard	Aley3		875670	0.79	6.55	264.3	7.8	0.209	0.009		Quality Control
72.18	76.14	4.00	875671	0.40	1.48	72.8	4.2	0.168	0.007	dliCD	1/2 Core Split
76.14	80.23	4.10	875672	0.36	16.2	40.7	6.6	0.173	0.007	dlfCD	1/2 Core Split
80.23	82.19	2.00	875673	0.22	11.98	33.1	5.7	0.156	0.005	nmfgCD	1/2 Core Split
82.19	83.13	0.90	875674	0.59	1.79	159.2	64.9	0.210	0.007	gmCM	1/2 Core Split
83.13	88.57	5.40	875675	0.47	1.27	76.4	8.4	0.243	0.009	dlpCD	1/2 Core Split
88.57	96.19	7.60	875676	0.49	16.58	118.8	5.6	0.175	0.008	dlpCD	1/2 Core Split
96.19	98.49	2.30	875677	0.33	21.9	72.0	13.8	0.229	0.009	dlpCD	1/2 Core Split
98.49	102.13	3.60	875678	0.36	32.29	114.6	33.3	0.171	0.009	nlfgCD	1/2 Core Split
102.13	106.10	4.00	875679	0.33	89.11	116.4	120.9	0.236	0.011	dmpCD	1/2 Core Split
Duplicate	Previous		875680	0.32	87.51	119.5	112.5	0.232	0.011		Quality Control
106.10	107.62	1.50	875681	0.35	11.61	95.7	10.4	0.214	0.010	nmAMX	1/2 Core Split
107.62	109.91	2.30	875682	0.36	13.1	158.2	5.9	0.321	0.016	dmpCD	1/2 Core Split
109.91	111.95	2.00	875683	0.13	2.16	108.1	2.3	0.338	0.010	nmCD	1/2 Core Split
111.95	116.00	4.00	875684	0.37	14.43	145.4	5.3	0.193	0.010	bmCD	1/2 Core Split
116.00	119.09	3.10	875685	0.37	13.01	226.8	27.4	0.190	0.013	gmiAMX	1/2 Core Split
119.09	122.07	3.00	875686	0.22	23.43	133.6	19.7	0.321	0.013	dmCD	1/2 Core Split
122.07	124.31	2.20	875687	0.27	23.4	130.7	8.4	0.248	0.010	nmCD	1/2 Core Split

ALEY - ANALYTICAL RESULTS

Drill Core Samples				
Logged By	Ryan Kressall			
Laboratory	Inspectorate			

10-360-03524-01

File No.

Location	UTM NAD 83	Comment
Easting	653,906.952	Central 1
Northing	7,710,493.880	
Elevation	493.571	

Direction / Length			
Azimuth 20 °			
Inclination	-55 °		
Length	215.20 Metres		

Drill Hole Information		
Date Start	26-Jul-10	
Date End	28-Jul-10	
Operator	Taseko	

Sample	e Interval (met	res)	Sample				Litho	Sample Method			
From	То	Int.	Number	Nb ₂ O ₅ %	Ta ppm	Th ppm	U ppm	TREO %	Y2O3 %	Little	cample wethou
Blank	Granite		875688	<0.01	1.77	11.1	4.5	0.022	0.002		Quality Control
124.31	126.52	2.20	875689	0.41	81.04	282.9	26.9	0.197	0.011	dmCD	1/2 Core Split
Standard	OKA-1		875690	0.53	1.97	62.9	31.9	0.330	0.007		Quality Control
126.52	129.77	3.30	875691	0.29	25.47	157.3	7.0	0.204	0.010	nmiCD	1/2 Core Split
129.77	131.83	2.10	875692	0.11	28.89	177.1	14.7	0.241	0.011	bmpCD	1/2 Core Split
131.83	137.13	5.30	875693	0.10	3.9	84.4	2.9	0.221	0.009	dmiCD	1/2 Core Split
137.13	141.00	3.90	875694	0.09	42.36	68.8	49.7	0.165	0.009	dmpCD	1/2 Core Split
141.00	147.03	6.00	875695	0.08	6.87	111.9	3.5	0.248	0.009	dmfgCCCE	1/2 Core Split
147.03	153.77	6.70	875696	0.05	16.27	108.3	3.4	0.519	0.012	nmiCD	1/2 Core Split
153.77	158.02	4.20	875697	0.04	10.46	53.0	2.7	0.357	0.007	nmCD	1/2 Core Split
158.02	160.95	2.90	875698	0.03	17.1	161.9	10.0	0.303	0.011	nmCD	1/2 Core Split
160.95	164.21	3.30	875699	0.14	3.46	74.0	4.8	0.428	0.009	nmCD	1/2 Core Split
Duplicate	Previous		875700	0.14	3.38	79.0	4.8	0.421	0.008		Quality Control
164.21	169.32	5.10	875701	0.36	57.73	356.1	22.8	0.214	0.014	dmCD	1/2 Core Split
169.32	173.63	4.30	875702	0.06	4.41	77.2	2.9	0.271	0.008	dlentCD	1/2 Core Split
173.63	175.66	2.00	875703	0.04	14.89	94.5	4.1	0.231	0.012	nmCD	1/2 Core Split
175.66	180.29	4.60	875704	0.01	6.22	182.7	1.9	0.217	0.011	nmCD	1/2 Core Split
180.29	188.02	7.70	875705	0.02	11.67	81.3	9.0	0.231	0.011	nICD	1/2 Core Split
188.02	192.75	4.70	875706	0.07	6.68	81.0	4.3	0.150	0.009	nlpCD	1/2 Core Split
192.75	195.90	3.20	875707	0.09	148.61	127.0	144.4	0.140	0.014	dICD	1/2 Core Split
195.90	199.70	3.80	875708	0.03	13.4	100.3	11.6	0.178	0.011	dICD	1/2 Core Split
199.70	204.81	5.10	875709	0.04	45.27	99.9	41.5	0.207	0.012	dmCD	1/2 Core Split
Standard	Aley1		875710	0.41	26.2	170.9	12.0	0.204	0.010		Quality Control
204.81	210.22	5.40	875711	0.08	72.92	262.2	68.5	0.187	0.019	dxCD	1/2 Core Split
210.22	213.34	3.10	875712	0.17	3.07	114.6	10.4	0.103	0.012	nICD	1/2 Core Split
213.34	215.20	1.90	875713	0.19	12.89	210.4	11.1	0.188	0.012	dmCD	1/2 Core Split
	Drill Hole Selected Interval - Weighted Average Analytical Results										

	Drill Hole Selected Interval - Weighted Average Analytical Results									
Sample	Interval (met	res)				Analytica	l Results			
From	То	Int.		Nb ₂ O ₅ %	Ta ppm	Th ppm	U ppm	TREO %	Y2O3 %	
7.08	27.51	20.43		0.511	39	190.2	8	0.216	0.014	
42.69	126.52	83.83		0.420	18	117.9	15	0.233	0.010	

ALEY - ANALYTICAL RESULTS

Drill	Core	Samples

	<u>- </u>
Logged By	Ryan Kressall
Laboratory	Inspectorate
File No.	10-360-03477-01

Location	UTM NAD 83	Comment
Easting	653,919.105	Central 1
Northing	7,710,484.222	

Azimuth	10.3 °
Inclination	-56 °
Length	91.54 Metres

Drill Hole	Information
Date Start	

Date Start	
Date End	
Operator	Taseko

Sample	Interval (met	res)	Sample Number		Analytical Results				Litho	Sample Method	
From	То	Int.	Number	Nb ₂ O ₅ %	Ta ppm	Th ppm	U ppm	TREO %	Y2O3 %	1	
0.00	14.63	14.60	Not Sampled							CASE	Not Sampled
14.63	19.16	4.50	875714	1.05	29.53	172.5	13.5	0.266	0.018	nmfCD	1/2 Core Split
19.16	21.72	2.60	875715	0.62	20.28	119.5	9.8	0.295	0.015	nmfCD	1/2 Core Split
21.72	25.16	3.40	875716	0.28	7.84	141.1	3.0	0.173	0.010	nlfCD	1/2 Core Split
25.16	28.16	3.00	875717	0.53	11.06	142.4	4.3	0.202	0.013	nlcCDz	1/2 Core Split
28.16	31.13	3.00	875718	0.53	14.61	106.3	3.7	0.233	0.013	nlcCDz	1/2 Core Split
31.13	33.22	2.10	875719	0.62	17.55	126.9	5.6	0.416	0.015	nlcCDz	1/2 Core Split
Duplicate	Previous		875720	0.63	15.54	125.7	5.7	0.404	0.015		Quality Control
33.22	35.62	2.40	875721	0.25	9.08	72.4	2.2	0.169	0.008	dmfCD	1/2 Core Split
35.62	38.35	2.70	875722	0.47	1.45	47.7	4.3	0.191	0.009	dmfCD	1/2 Core Split
38.35	41.21	2.90	875723	0.35	2.86	96.8	4.4	0.273	0.010	glCD	1/2 Core Split
41.21	44.92	3.70	875724	0.61	0.57	74.4	6.2	0.254	0.010	glCD	1/2 Core Split
44.92	48.17	3.20	875725	0.70	2.08	105.1	2.8	0.166	0.007	glcCD	1/2 Core Split
48.17	50.80	2.60	875726	0.37	9.38	75.5	2.4	0.158	0.008	glcCDz	1/2 Core Split
50.80	54.02	3.20	875727	0.90	3.57	109.2	13.1	0.266	0.012	glCD	1/2 Core Split
54.02	57.65	3.60	875728	0.67	2.49	98.6	18.0	0.220	0.010	nlentcCD	1/2 Core Split
57.65	60.36	2.70	875729	0.42	0.15	43.8	2.8	0.184	0.009	nlentcCD	1/2 Core Split
Standard	Aley2		875730	0.69	6.7	183.5	2.3	0.225	0.012		Quality Control
60.36	63.77	3.40	875731	1.53	6.21	193.7	21.6	0.232	0.008	gmcCM	1/2 Core Split
63.77	66.12	2.40	875733	1.61	1	187.5	14.8	0.264	0.009	gmcCM	1/2 Core Split
Blank	Granite		875732	0.01	1.82	8.5	4.4	0.019	0.002		Quality Control
66.12	69.51	3.40	875734	1.25	9.27	194.4	17.0	0.277	0.012	nlfCD	1/2 Core Split
69.51	72.17	2.70	875735	0.77	0.81	88.8	6.1	0.295	0.012	nlfCD	1/2 Core Split
72.17	74.63	2.50	875736	0.67	2.74	88.2	10.2	0.173	0.006	glcCD	1/2 Core Split
74.63	77.08	2.50	875737	0.46	17.06	66.5	3.8	0.143	0.006	ICD	1/2 Core Split
77.08	79.27	2.20	875738	0.34	13.57	57.0	3.1	0.133	0.006	ICD	1/2 Core Split
79.27	81.71	2.40	875739	0.47	14.84	63.1	6.5	0.137	0.006	bmCD	1/2 Core Split
Duplicate	Previous		875740	0.47	14.28	62.9	6.3	0.136	0.006		Quality Control
81.71	84.21	2.50	875741	0.35	17.82	61.0	5.1	0.135	0.006	bmCD	1/2 Core Split
84.21	86.42	2.20	875742	0.78	35.02	119.4	12.3	0.187	0.007	bmCD	1/2 Core Split
86.42	88.85	2.40	875743	0.41	28.82	101.9	5.9	0.206	0.007	nlcCD	1/2 Core Split
88.85	91.54	2.70	875744	0.53	25.58	135.8	6.9	0.174	0.009	nlcCD	1/2 Core Split

Drill Hole Selected Interval - Weighted Average Analytical Results

Sample	e Interval (met	res)		Analytical Results						
From	То	Int.		$Nb_2O_5\%$	Ta ppm	Th ppm	U ppm	TREO %	Y2O3 %	
14.63	91.54	76.91		0.671	11	110.4	8	0.226	0.010	
41.21	74.63	33.42	Incl.	0.865	4	115.4	11	0.234	0.009	

ALEY - ANALYTICAL RESULTS

Logged By	Ryan Kressall
Laboratory	Inspectorate
File No.	10-360-03460-01

Location	UTM NAD 83	Comment
Easting	653,924.516	Central 1
Northing	7,710,496.391	
Elevation	487.433	

Direction	n / Lengtn
Azimuth	10.3 °
Inclination	-56 °
Lenath	215.85 Metres

Drill Hole Information			
Date Start	30-Jul-10		
Date End	01-Aug-10		
Operator	Taseko		

Sample Interval (metres)		Sample			Analytica		3.19th 21				
From	To	Int.	Number	Nb ₂ O ₅ %	Ta nnm	Th ppm	U ppm	TREO %	V2O3 %	Litho	Sample Method
0.00	18.90	18.90	Not Sampled	14020570	τα ρριτι	тп ррш	Орріп	TIKEO 70	1200 /0	CASE	Not Sampled
18.90	23.56	4.70	875745	0.72	19.05	101.1	5.3	0.281	0.011	dlcCD	1/2 Core Split
						112.4		0.201			-
23.56	25.99	2.40	875746	1.52	88.66		26.9		0.012	gmCD	1/2 Core Split
25.99	27.71	1.70	875747	0.52	16.22	63.2	8.6	0.206	0.006	glfgCD	1/2 Core Split
27.71	30.95	3.20	875748	0.87	27.83	61.6	10.0	0.264	0.008	glCCCD	1/2 Core Split
30.95	35.15	4.20	875749	0.81	6.09	49.1	3.3	0.414	0.010	ICD	1/2 Core Split
Standard	Aley1		875750	0.43	18.26	121.6	7.8	0.236	0.009		Quality Control
35.15	38.37	3.20	875751	0.43	23.47	117.7	7.8	0.253	0.010	nlfCD	1/2 Core Split
38.37	42.43	4.10	875752	0.40	14	84.1	2.3	0.225	0.010	nlfCD	1/2 Core Split
42.43	46.38	4.00	875753	0.25	11.25	57.6	4.6	0.191	0.009	nmfCD	1/2 Core Split
46.38	49.47	3.10	875754	0.66	<0.05	36.4	2.6	0.215	0.010	mCD	1/2 Core Split
49.47	52.56	3.10	875755	0.62	12.44	54.1	5.7	0.221	0.008	mCD	1/2 Core Split
52.56	55.50	2.90	875756	0.27	10.26	32.9	4.3	0.160	0.006	glfgCD	1/2 Core Split
55.50	58.45	3.00	875757	0.24	1.18	26.3	0.8	0.133	0.004	glfgCD	1/2 Core Split
58.45	62.43	4.00	875758	0.26	20.47	49.6	2.7	0.131	0.004	glfgCD	1/2 Core Split
62.43	66.46	4.00	875759	0.39	4.41	40.7	2.2	0.185	0.005	glfgCD	1/2 Core Split
Duplicate	Previous		875760	0.42	4.33	43.1	2.3	0.186	0.005		Quality Control
66.46	68.64	2.20	875761	0.28	1.21	27.1	1.5	0.152	0.007	dICCCD	1/2 Core Split
68.64	71.10	2.50	875762	0.87	0.34	75.7	3.2	0.216	0.009	glCCCD	1/2 Core Split
Blank	Granite		875763	<0.01	1.79	6.7	3.0	0.020	0.002		Quality Control
71.10	73.46	2.40	875764	0.55	14.14	84.1	2.9	0.200	0.009	dlfgCC	1/2 Core Split
73.46	75.62	2.20	875765	0.63	0.2	95.6	2.0	0.175	0.009	dICC	1/2 Core Split
75.62	79.63	4.00	875766	0.67	0.55	81.2	5.4	0.194	0.009	dlfgCC	1/2 Core Split
79.63	82.90	3.30	875767	0.39	77.83	153.2	10.8	0.192	0.010	blfgCD	1/2 Core Split
82.90	86.19	3.30	875768	0.74	39.68	132.1	9.2	0.204	0.007	blfgCD	1/2 Core Split
86.19	89.61	3.40	875769	0.57	38	137.1	19.9	0.226	0.014	blfgCD	1/2 Core Split
Standard	OKA-1		875770	0.53	1.55	37.2	21.8	0.328	0.008		Quality Control
89.61	92.92	3.30	875771	0.37	66.8	142.5	11.7	0.206	0.010	blfgCD	1/2 Core Split
92.92	95.89	3.00	875772	<0.01	119.88	177.2	24.3	0.175	0.011	blfgCD	1/2 Core Split
95.89	98.61	2.70	875773	0.73	43.57	178.9	14.3	0.291	0.014	blfgCD	1/2 Core Split
98.61	101.91	3.30	875774	0.36	39.8	69.2	12.0	0.215	0.008	blpCD	1/2 Core Split
101.91	104.82	2.90	875775	0.51	94.87	220.1	14.5	0.216	0.015	mCD	1/2 Core Split
104.82	107.58	2.80	875776	0.03	4.74	35.9	1.2	0.166	0.007	mCD	1/2 Core Split
107.58	111.32	3.70	875777	0.27	50.96	195.8	11.5	0.313	0.012	nmfgCD	1/2 Core Split
111.32	116.32	5.00	875778	0.16	6.32	105.2	3.4	0.310	0.014	nmiCD	1/2 Core Split
116.32	119.62	3.30	875779	0.05	18.01	46.3	1.4	0.252	0.011	bmpCD	1/2 Core Split
Duplicate	Previous	2.00	875780	0.05	16.17	39.0	1.3	0.256	0.010		Quality Control
119.62	122.90	3.30	875781	0.16	0.76	33.1	3.0	0.229	0.008	dmpCCCD	-
122.90	126.07	3.20	875782	0.05	7.63	39.9	5.1	0.178		dmpCCCD	-
122.00	.20.07	0.20	0.0102	0.00		00.0	3.1	0.770	0.000		./2 33/3 Opin

ALEY - ANALYTICAL RESULTS

Hole ID 2010-015

Drill	Core	Sam	ples
-------	------	-----	------

Logged By	Ryan Kressall
Laboratory	Inspectorate
File No.	10-360-03460-01

Location	UTM NAD 83	Comment
Easting	653,924.516	Central 1
Northing	7,710,496.391	
Flevation	487 433	

Direction / Length

Azimuth	10.3 °
Inclination	-56 °
Length	215.85 Metres

Drill	Hole	Informatio	n

Date Start	30-Jul-10
Date End	01-Aug-10
Operator	Taseko

Sample	Interval (met	res)	Sample Number	Analytical Results				Litho	Sample Method		
From	То	Int.	Number	Nb ₂ O ₅ %	Ta ppm	Th ppm	U ppm	TREO %	Y2O3 %	1	
Blank	Granite		875783	<0.01	2.09	9.7	4.3	0.020	0.002		Quality Control
126.07	129.40	3.30	875784	0.15	20.3	90.7	12.9	0.232	0.009	blfCM	1/2 Core Split
129.40	133.57	4.20	875785	0.12	3.75	115.2	9.6	0.290	0.012	nliCD	1/2 Core Split
133.57	138.05	4.50	875786	0.07	2.35	92.6	14.4	0.310	0.011	nliCD	1/2 Core Split
138.05	140.80	2.80	875787	0.02	7.49	27.8	4.9	0.189	0.008	nmCD	1/2 Core Split
140.80	143.83	3.00	875788	0.07	2.56	51.0	10.5	0.254	0.010	gxfgAMX	1/2 Core Split
143.83	148.20	4.40	875789	0.14	4.72	77.4	25.9	0.313	0.005	gxfgAMX	1/2 Core Split
Standard	Aley3		875790	0.79	0.94	166.0	7.3	0.216	0.010		Quality Control
148.20	151.83	3.60	875791	0.35	0.09	26.6	3.5	0.616	0.012	nlfgCD	1/2 Core Split
151.83	155.42	3.60	875792	0.24	0.75	49.4	5.6	0.872	0.012	nlfgCD	1/2 Core Split
155.42	158.48	3.10	875793	0.05	10.24	42.6	16.7	0.269	0.010	mCD	1/2 Core Split
158.48	161.87	3.40	875794	0.11	0.12	16.0	4.6	0.264	0.009	mCD	1/2 Core Split
161.87	164.41	2.50	875795	0.06	0.26	38.0	1.7	0.272	0.010	mCD	1/2 Core Split
164.41	167.78	3.40	875796	0.05	0.24	63.8	2.1	0.271	0.012	nmiCD	1/2 Core Split
167.78	171.86	4.10	875797	0.02	4.22	74.4	2.4	0.557	0.011	nmiCD	1/2 Core Split
171.86	175.15	3.30	875798	0.03	2.99	159.9	4.3	0.466	0.013	nmiCD	1/2 Core Split
175.15	177.90	2.80	875799	0.07	5.57	73.0	15.2	0.267	0.014	nmiCD	1/2 Core Split
Duplicate	Previous		875800	0.07	3.11	64.5	14.1	0.264	0.014		Quality Control
177.90	182.70	4.80	875801	0.04	0.12	47.1	1.5	0.252	0.009	nmiCD	1/2 Core Split
182.70	186.62	3.90	875802	0.04	0.48	42.0	4.1	0.225	0.012	nmiCD	1/2 Core Split
186.62	191.37	4.80	875803	0.02	2.36	58.7	2.8	0.225	0.011	nmpCD	1/2 Core Split
191.37	196.15	4.80	875804	0.05	1.28	76.3	3.3	0.252	0.013	nmpCD	1/2 Core Split
196.15	201.02	4.90	875805	0.02	1.11	78.6	2.8	0.263	0.012	nmpCD	1/2 Core Split
201.02	205.36	4.30	875806	0.06	<0.05	34.7	1.2	0.148	0.010	nmCD	1/2 Core Split
205.36	210.34	5.00	875807	0.05	0.24	70.9	3.6	0.249	0.014	nmCD	1/2 Core Split
210.34	215.85	5.50	875808	0.03	0.7	140.5	4.7	0.258	0.014	nmCD	1/2 Core Split
			ala Calaatad			ad Avar	_				

Drill Hole Selected Interval - Weighted Average Analytical Results
--

Sample	e Interval (met	res)				Analytica	l Results			
From	То	Int.		Nb ₂ O ₅ %	Ta ppm	Th ppm	U ppm	TREO %	Y2O3 %	
18.90	104.82	85.92		0.551	29	90.3	8	0.232	0.009	
18.90	35.15	16.25	Incl.	0.872	28	77.5	9	0.367	0.010	
68.64	86.19	17.55	Incl.	0.638	24	105.6	6	0.197	0.009	

ALEY - ANALYTICAL RESULTS

Logged By	Ryan Kressall
Laboratory	Inspectorate
File No.	10-360-03480-01

Location	UTM NAD 83	Comment
Easting	653,977.535	Central 2
Northing	7,710,513.262	
Elevation	503.918	

Direction	n / Length
Azimuth	23.5 °
Inclination	-55.2 °
Lenath	147.86 Metres

Drill Hole Information				
Date Start	01-Aug-10			
Date End	03-Aug-10			
Operator	Taseko			

Sample	e Interval (met	res)	Sample Analytical Results					Litho	Sample Method		
From	То	Int.	Number	Nb ₂ O ₅ %	Ta ppm	Th ppm	U ppm	TREO %	Y2O3 %	Littio	Sample Method
0.00	6.09	6.10	Not Sampled							CASE	Not Sampled
6.09	10.65	4.60	875809	0.54	17.84	107.2	4.6	0.212	0.009	blfgCD	1/2 Core Split
Standard	Aley2		875810	0.73	50.02	195.7	2.2	0.219	0.011		Quality Control
10.65	12.18	1.50	875811	0.84	0.92	145.0	2.8	0.257	0.008	blCM	1/2 Core Split
12.18	15.00	2.80	875812	0.35	3.34	79.7	1.7	0.212	0.007	nlfgCD	1/2 Core Split
15.00	17.93	2.90	875813	0.53	14.9	150.6	3.5	0.249	0.010	nlfgCD	1/2 Core Split
17.93	20.23	2.30	875814	0.80	5.65	150.7	3.8	0.192	0.008	gliCCCD	1/2 Core Split
20.23	22.71	2.50	875815	1.07	0.88	119.7	1.8	0.366	0.009	gliCCCD	1/2 Core Split
22.71	24.93	2.20	875816	0.42	11.81	115.2	4.8	0.353	0.010	nICD	1/2 Core Split
24.93	27.94	3.00	875817	0.76	43.36	138.2	18.4	0.270	0.009	glpCD	1/2 Core Split
Blank	Granite		875818	0.01	2.05	11.5	5.1	0.028	0.002		Quality Control
27.94	31.37	3.40	875819	0.75	24.5	129.4	21.2	0.223	0.006	glpCD	1/2 Core Split
Duplicate	Previous		875820	0.79	22.3	127.7	22.8	0.220	0.006		Quality Control
31.37	35.79	4.40	875821	1.06	5.47	117.1	14.5	0.261	0.007	glpCD	1/2 Core Split
35.79	39.04	3.20	875822	0.61	27.34	170.2	3.0	0.179	0.008	ICD	1/2 Core Split
39.04	42.42	3.40	875823	0.43	53.8	138.9	16.4	0.201	0.008	ICD	1/2 Core Split
42.42	47.08	4.70	875824	1.45	34.66	169.0	27.0	0.199	0.013	glCD	1/2 Core Split
47.08	49.18	2.10	875825	0.37	8.64	123.8	6.8	0.223	0.009	nlfgCD	1/2 Core Split
49.18	52.58	3.40	875826	0.85	57.21	131.8	36.8	0.155	0.009	dmiCD	1/2 Core Split
52.58	57.51	4.90	875827	0.24	21.78	78.9	10.9	0.267	0.009	dlpAMX	1/2 Core Split
57.51	61.61	4.10	875828	0.29	14.31	107.9	5.5	0.221	0.011	dlpCD	1/2 Core Split
61.61	65.59	4.00	875829	0.25	18.62	107.8	8.0	0.189	0.010	dlpCD	1/2 Core Split
Standard	Aley1		875830	0.40	16.36	96.4	6.9	0.222	0.010	-	Quality Control
65.59	69.77	4.20	875831	0.30	36.84	121.2	11.3	0.150	0.009	dlpAMX	1/2 Core Split
69.77	73.07	3.30	875832	0.64	8.11	138.3	3.4	0.135	0.008	dlpAMX	1/2 Core Split
73.07	76.30	3.20	875833	0.43	5.58	117.0	4.5	0.147	0.008	dlpAMX	1/2 Core Split
76.30	80.37	4.10	875834	0.31	9.62	62.9	2.9	0.085	0.004	dlpAMX	1/2 Core Split
80.37	83.77	3.40	875835	0.25	17.27	62.4	12.1	0.155	0.009	nmfgCD	1/2 Core Split
83.77	87.08	3.30	875836	0.19	86.64	142.4	36.0	0.184	0.009	nmfgCD	
87.08	92.58	5.50	875837	0.26	9.08	59.5	5.5	0.140	0.007	nmfgCD	1/2 Core Split
92.58	96.52	3.90	875838	0.18	26.12	72.3	54.4	0.106	0.006	nmfgAM	1/2 Core Split
96.52	102.21	5.70	875839	0.22	102.17	105.0	14.4	0.144	0.007	nxfgCD	1/2 Core Split
Duplicate	Previous		875840	0.12	26.03	63.7	8.8	0.115	0.005		Quality Control
102.21	106.09	3.90	875841	0.16	86.47	99.1	40.3	0.184	0.009	nmfgCD	1/2 Core Split
106.09	110.82	4.70	875842	0.43	88.13	292.6	19.9	0.263	0.009	nmfgCD	1/2 Core Split
110.82	113.68	2.90	875843	1.74	142.1	1043.4	18.7	0.248	0.010	nmAMX	1/2 Core Split
113.68	117.06	3.40	875844	0.23	88.57	186.0	44.4	0.351	0.008	nmAMX	1/2 Core Split
117.06	119.37	2.30	875845	0.30	150.24	254.5	71.5	0.264	0.011	nmAMX	1/2 Core Split
119.37	124.39	5.00	875846	0.15	132.08	283.4	52.2	0.440	0.013	nlpCD	1/2 Core Split
			1	I	I .	1		1	1		•

ALEY - ANALYTICAL RESULTS

	•
Logged By	Ryan Kressall
Laboratory	Inspectorate
File No.	10-360-03480-01
	•

Location	UTM NAD 83	Comment
Easting	653,977.535	Central 2
Northing	7,710,513.262	
Elevation	503.918	

Direction / Length					
Azimuth	23.5 °				
Inclination	-55.2 °				
Length	147.86 Metres				

Drill Hole Information					
Date Start	01-Aug-10				
Date End	03-Aug-10				
Operator	Taseko				

Sample	Interval (met	res)	Sample Number	'					Litho	Sample Method	
From	То	Int.		Nb ₂ O ₅ %	Ta ppm	Th ppm	U ppm	TREO %	Y2O3 %		
124.39	128.08	3.70	875847	0.22	48.63	205.6	11.5	0.213	0.010	nlpCD	1/2 Core Split
128.08	133.67	5.60	875848	0.15	73.62	153.4	20.0	0.250	0.010	nlpCD	1/2 Core Split
133.67	137.00	3.30	875849	0.09	15.71	128.3	6.5	0.299	0.010	nmiAMX	1/2 Core Split
Standard	OKA-1		875850	0.54	2.32	57.3	30.8	0.324	0.008		Quality Control
137.00	141.36	4.40	875851	0.25	153.42	310.2	30.6	0.265	0.014	nmcCD	1/2 Core Split
141.36	145.15	3.80	875852	0.36	90.41	211.1	17.6	0.188	0.011	nmcCD	1/2 Core Split
145.15	147.86	2.70	875853	0.36	0.32	59.0	10.9	0.184	0.009	nxfgCD	1/2 Core Split

		Drill H	ole Selected	Interval -	· Weight	ed Avera	age Ana	lytical Re	esults	
Sample	e Interval (met	res)				Analytica	l Results			
From	То	Int.		Nb ₂ O ₅ %	Ta ppm	Th ppm	U ppm	TREO %	Y2O3 %	
6.09	80.37	74.28		0.599	21	121.5	10	0.222	0.009	
17.93	52.58	34.65	Incl.	0.832	27	138.4	16	0.256	0.009	
106.09	119.37	13.28		0.639	111	420.5	35	0.323	0.009	

ALEY - ANALYTICAL RESULTS

Drill Core Samples

Logged By	Ryan Kressall
Laboratory	Inspectorate
File No.	10-360-03360-01

Location	UTM NAD 83	Comment
Easting	653,989.390	Central 2
Northing	7,710,520.203	
Elevation	504.076	

Direction / Length

Azimuth	21.4 °
Inclination	-54.2 °
Length	214.93 Metres

Date Start	03-Aug-10
Date End	05-Aug-10
Operator	Taseko

Sample	Interval (met	res)	Sample	Sample Analytical Results Number			Litho	Sample Method			
From	То	Int.	Number	Nb ₂ O ₅ %	Ta ppm	Th ppm	U ppm	TREO %	Y2O3 %		о ф. го с
0.00	6.09	6.10	Not Sampled							CASE	Not Sampled
6.09	10.25	4.20	875854	1.05	7.47	154.5	4.8	0.212	0.009	dliCCCD	1/2 Core Split
10.25	15.06	4.80	875855	0.36	2.77	80.1	1.6	0.159	0.007	dlpCD	1/2 Core Split
15.06	18.82	3.80	875856	1.10	21.71	131.8	8.5	0.188	0.009	dlpCD	1/2 Core Split
18.82	21.44	2.60	875857	1.93	<0.05	137.4	10.6	0.229	0.005	gmiCD	1/2 Core Split
21.44	24.36	2.90	875858	0.18	2.63	101.2	3.9	0.584	0.006	nliCD	1/2 Core Split
24.36	28.10	3.70	875859	0.28	70.65	201.4	64.2	0.413	0.011	nliCD	1/2 Core Split
Duplicate	Previous		875860	0.28	69.36	212.4	67.5	0.410	0.011		Quality Control
28.10	30.54	2.40	875861	0.54	10.45	136.9	17.0	0.247	0.008	glfgCD	1/2 Core Split
30.54	34.82	4.30	875862	0.21	71.95	123.4	98.3	0.279	0.011	dlpCD	1/2 Core Split
34.82	37.70	2.90	875863	0.25	11.4	147.0	9.8	0.281	0.007	bliAMX	1/2 Core Split
37.70	40.68	3.00	875864	0.11	16.84	64.6	11.7	0.134	0.007	bICCCD	1/2 Core Split
40.68	43.93	3.20	875865	0.24	11.6	112.6	8.5	0.132	0.007	bICCCD	1/2 Core Split
43.93	48.60	4.70	875866	0.30	2.18	261.2	32.1	0.170	0.010	bICCCD	1/2 Core Split
48.60	51.29	2.70	875867	0.17	17.27	94.1	12.5	0.123	0.006	nlfgAMX	1/2 Core Split
51.29	54.55	3.30	875868	0.28	44.57	231.9	20.9	0.145	0.009	dmiCD	1/2 Core Split
54.55	57.96	3.40	875869	0.24	8.18	154.0	8.3	0.261	0.009	dmiCD	1/2 Core Split
Standard	Aley2		875870	0.68	40.32	224.0	2.5	0.224	0.012		Quality Control
57.96	61.14	3.20	875871	0.19	16.36	135.1	17.5	0.232	0.010	dmiCD	1/2 Core Split
61.14	65.55	4.40	875872	0.75	32.38	381.5	11.5	0.216	0.015	nlpAMX	1/2 Core Split
65.55	70.10	4.50	875873	0.49	23.34	141.5	16.6	0.186	0.008	nlpAMX	1/2 Core Split
70.10	74.91	4.80	875874	0.71	111.89	596.1	8.6	0.113	0.004	gmiCM	1/2 Core Split
74.91	78.35	3.40	875875	0.29	42.09	222.7	12.4	0.105	0.005	gmiCM	1/2 Core Split
78.35	82.40	4.10	875876	0.50	2.16	585.4	28.4	0.141	0.006	gmiCM	1/2 Core Split
Blank	Granite		875877	<0.01	3.61	16.1	4.4	0.017	0.002		Quality Control
82.40	84.85	2.40	875878	0.87	0.58	836.1	5.4	0.171	0.007	gmiCM	1/2 Core Split
84.85	87.35	2.50	875879	0.46	3.58	480.3	30.0	0.135	0.006	gmiCM	1/2 Core Split
Duplicate	Previous		875880	0.45	3.18	507.2	32.2	0.135	0.006		Quality Control
87.35	93.41	6.10	875881	0.15	75.75	231.4	50.1	0.178	0.010	dxCD	1/2 Core Split
93.41	97.98	4.60	875882	0.10	4.85	117.5	7.0	0.132	0.008	nmCD	1/2 Core Split
97.98	102.37	4.40	875883	0.13	28.35	54.0	19.6	0.462	0.012	nmCD	1/2 Core Split
102.37	106.89	4.50	875884	0.17	28.99	146.5	21.4	0.135	0.009	nmCD	1/2 Core Split
106.89	111.28	4.40	875885	0.15	132.63	281.4	71.4	0.243	0.014	nmCD	1/2 Core Split
111.28	115.79	4.50	875886	0.13	99.2	133.4	46.3	0.178	0.010	nmCD	1/2 Core Split
115.79	120.42	4.60	875887	0.17	40.14	90.4	11.4	0.106	0.008	nmCD	1/2 Core Split
120.42	124.14	3.70	875888	0.06	52.02	164.8	22.5	0.169	0.015	nxcCD	1/2 Core Split
124.14	128.92	4.80	875889	0.22	23.74	109.8	9.0	0.254	0.010	nxcCD	1/2 Core Split
Standard	Aley1		875890	0.48	29.89	151.5	9.6	0.210	0.009		Quality Control
128.92	133.15	4.20	875891	0.28	20.05	126.4	12.7	0.220	0.012	nxcCD	1/2 Core Split

ALEY - ANALYTICAL RESULTS

Logged By	Ryan Kressall
Laboratory	Inspectorate
File No.	10-360-03360-01

Location	UTM NAD 83	Comment
Easting	653,989.390	Central 2
Northing	7,710,520.203	
Elevation	504.076	

Direction / Length				
Azimuth 21.4 °				
Inclination	-54.2 °			
Length	214.93 Metres			

Drill Hole Information								
Date Start	03-Aug-10							
Date End	05-Aug-10							
Operator	Taseko							

Sample	Sample Interval (metres) Sample Number Analytical Results					Analytical Results					Sample Method
From	То	Int.	Number	Nb ₂ O ₅ % Ta ppm Th ppm U ppm TREO % Y2O3 %						·	
133.15	137.52	4.40	875892	0.17	62.83	178.2	13.7	0.272	0.011	nxcCD	1/2 Core Split
137.52	143.10	5.60	875893	0.23	68.09	215.2	11.6	0.220	0.011	nxcCD	1/2 Core Split
143.10	147.87	4.80	875894	0.15	1.72	139.6	5.2	0.153	0.007	nxcCD	1/2 Core Split
147.87	152.61	4.70	875895	0.09	1.11	146.2	6.3	0.414	0.012	nxcCD	1/2 Core Split
152.61	156.13	3.50	875896	0.07	4.21	77.7	3.9	0.267	0.009	nxcCD	1/2 Core Split
156.13	159.67	3.50	875897	0.13	3.96	202.0	5.8	0.308	0.014	nxcCD	1/2 Core Split
159.67	162.15	2.50	875898	0.05	8.83	126.4	7.5	0.276	0.016	gxCCCD	1/2 Core Split
162.15	165.15	3.00	875899	0.09	17.62	109.2	10.3	0.154	0.013	gxCCCD	1/2 Core Split
Duplicate	Previous		880250	0.09	21.04	120.0	10.5	0.156	0.013		Quality Control
165.15	168.50	3.30	880251	0.09	8.05	225.7	4.8	0.283	0.016	gxCCCD	1/2 Core Split
168.50	173.68	5.20	880252	0.03	0.72	136.1	2.4	0.164	0.008	nxCD	1/2 Core Split
173.68	177.71	4.00	880253	0.08	8.7	81.9	11.8	0.146	0.009	gmCM	1/2 Core Split
177.71	181.99	4.30	880254	0.02	2.69	200.4	3.7	0.279	0.015	nmcCD	1/2 Core Split
181.99	185.78	3.80	880255	0.01	2.4	128.9	6.8	0.322	0.015	nmpCC	1/2 Core Split
185.78	190.50	4.70	880256	0.03	0.19	95.7	7.3	0.232	0.014	nmpCC	1/2 Core Split
190.50	195.42	4.90	880257	0.15	3.21	88.6	3.5	0.127	0.008	nmfgCD	1/2 Core Split
195.42	198.26	2.80	880258	0.08	2.52	107.8	3.5	0.184	0.008	gmiCM	1/2 Core Split
198.26	201.82	3.60	880259	0.21	24.35	116.9	10.6	0.224	0.013	gmiCM	1/2 Core Split
Standard	OKA-1		880260	0.53	26.09	54.9	29.0	0.396	0.008		Quality Control
201.82	204.15	2.30	880261	0.11	21.08	77.5	7.8	0.143	0.008	gmiCM	1/2 Core Split
204.15	206.85	2.70	880262	0.04	2.36	128.5	2.7	0.263	0.010	nmiCD	1/2 Core Split
206.85	210.19	3.30	880263	0.04	15.42	77.0	5.0	0.241	0.013	nmiCD	1/2 Core Split
210.19	214.93	4.70	880264	0.52	2.01	123.3	9.2	0.157	0.009	dmiCD	1/2 Core Split
		Drill H	ole Selected	Interval -	Weight	ed Avera	age Ana	lytical Re	esults		
Compile Interval (marked)											

Drill Hole Selected Interval - Weighted Average Analytical Results											
Sample	e Interval (me	etres)		Analytical Results							
From	То	Int.]	Nb ₂ O ₅ %	Ta ppm	Th ppm	U ppm	TREO %	Y2O3 %		
6.09	30.54	24.45		0.744	17	133.6	16	0.356	0.008		
6.09	21.44	15.35	Incl.	0.996	8	122.7	6	0.192	0.008		
61 14	87 35	26 21		0.582	36	441 8	16	0.154	0.007		

ALEY - ANALYTICAL RESULTS

Logged By	Ryan Kressall
Laboratory	Inspectorate
File No.	10-360-03413-01

Location	UTM NAD 83	Comment
Easting	653,918.323	Central 1
Northing	7,710,533.209	
Elevation	504.302	

Direction / Length						
Azimuth	21.2 °					
Inclination	-56.9 °					
Length	152.45 Metres					

Drill Hole Information							
Date Start	04-Aug-10						
Date End	06-Aug-10						
Operator	Taseko						

Sample	e Interval (met	res)	Sample Analytical Results						Litho	Sample Method		
From	То	Int.	Number	Nb ₂ O ₅ %	Ta ppm	Th ppm	U ppm	TREO %	Y2O3 %		<u>-</u>	
0.00	6.09	6.10	Not Sampled							CASE	Not Sampled	
6.09	9.14	3.10	880265	0.29	74.31	328.0	8.5	0.191	0.010	dmpCD	1/2 Core Split	
9.14	12.19	3.00	880266	0.12	40.68	117.7	14.5	0.219	0.010	dmpCD	1/2 Core Split	
12.19	15.43	3.20	880267	0.09	55.07	93.9	19.0	0.185	0.008	dmfgCD	1/2 Core Split	
15.43	18.19	2.80	880268	0.10	66.69	60.2	25.2	0.221	0.008	dlpCD	1/2 Core Split	
18.19	21.34	3.10	880269	0.20	138.79	86.9	43.7	0.244	0.012	dlpCD	1/2 Core Split	
Duplicate	Previous		880270	0.21	139.43	87.1	41.7	0.235	0.011		Quality Control	
21.34	25.57	4.20	880271	0.10	61.15	65.9	30.7	0.286	0.011	dlpCD	1/2 Core Split	
25.57	29.87	4.30	880272	0.16	79.52	180.7	53.6	0.181	0.011	nliCD	1/2 Core Split	
29.87	33.54	3.70	880273	0.05	60.63	55.9	22.9	0.145	0.007	nliCD	1/2 Core Split	
33.54	37.70	4.20	880274	0.05	54.4	89.1	20.5	0.343	0.011	gmiAMX	1/2 Core Split	
37.70	41.28	3.60	880275	0.06	44.59	84.7	30.3	0.305	0.006	gmiAMX	1/2 Core Split	
41.28	44.21	2.90	880276	0.04	69.22	97.9	36.3	0.256	0.011	dmpCD	1/2 Core Split	
44.21	47.59	3.40	880277	<0.01	5.19	22.3	2.7	0.228	0.009	dmpCD	1/2 Core Split	
47.59	51.83	4.20	880278	0.04	9.5	31.1	2.5	0.442	0.011	ICD	1/2 Core Split	
51.83	55.15	3.30	880279	0.02	10.96	24.4	3.1	0.174	0.007	ICD	1/2 Core Split	
Standard	Aley3		880280	0.72	0.49	302.6	9.5	0.222	0.010		Quality Control	
55.15	60.31	5.20	880281	0.02	17.48	34.0	5.7	0.294	0.010	ICD	1/2 Core Split	
60.31	64.52	4.20	880282	0.08	13.22	84.0	6.9	0.326	0.010	ICD	1/2 Core Split	
64.52	68.61	4.10	880283	0.11	25.21	137.1	16.6	0.993	0.009	nmiCD	1/2 Core Split	
68.61	72.00	3.40	880284	0.06	21.26	48.6	9.8	0.926	0.012	nmiCD	1/2 Core Split	
72.00	78.33	6.30	880285	0.13	42.14	146.6	16.6	0.270	0.008	gmiAMX	1/2 Core Split	
78.33	82.32	4.00	880286	0.05	12.82	80.3	7.9	0.483	0.010	nmiAMX	1/2 Core Split	
82.32	86.39	4.10	880287	0.34	72.21	208.7	20.5	0.224	0.013	nmiAMX	1/2 Core Split	
86.39	91.58	5.20	880288	0.07	42.57	82.9	43.2	0.332	0.008	nmiAMX	1/2 Core Split	
91.58	95.12	3.50	880289	0.07	134.38	106.3	116.2	0.324	0.010	nmiAMX	1/2 Core Split	
Duplicate	Previous		880290	0.07	111.31	100.8	108.8	0.329	0.011		Quality Control	
95.12	99.96	4.80	880291	0.62	25.22	340.8	13.3	0.256	0.013	dmpCD	1/2 Core Split	
99.96	103.53	3.60	880292	0.05	20.96	118.7	13.6	0.346	0.009	dmpCD	1/2 Core Split	
103.53	107.68	4.20	880293	0.04	8.09	100.6	5.0	0.540	0.005	dmiAMX	1/2 Core Split	
107.68	110.91	3.20	880294	0.08	47.71	102.6	16.8	0.296	0.007	dmiAMX	1/2 Core Split	
110.91	115.46	4.50	880295	0.05	4.57	130.7	4.1	0.233	0.019	dmpCD	1/2 Core Split	
115.46	119.69	4.20	880296	0.05	42.73	108.4	22.2	0.256	0.029	dmpCD	1/2 Core Split	
119.69	123.76	4.10	880297	0.04	1.36	72.7	2.5	0.138	0.011	nmCD	1/2 Core Split	
123.76	127.86	4.10	880298	0.04	1.58	251.8	4.5	0.336	0.017	nmCD	1/2 Core Split	
127.86	131.10	3.20	880299	0.06	2.78	53.8	3.2	0.149	0.012	nmpCD	1/2 Core Split	
Standard	Aley1		880300	0.47	24.31	158.6	9.8	0.225	0.011		Quality Control	
131.10	134.64	3.50	880301	0.02	0.69	52.0	1.2	0.114	0.009	nmpCD	1/2 Core Split	
134.64	138.50	3.90	880302	0.03	2.49	77.9	1.8	0.249	0.012	nmpCD	1/2 Core Split	

ALEY - ANALYTICAL RESULTS

Drill Core Samples

Logged By Ryan Kressall

Laboratory Inspectorate

File No. 10-360-03413-01

Location	UTM NAD 83	Comment
Easting	653,918.323	Central 1
Northing	7,710,533.209	
Elevation	504.302	

Direction / Length							
Azimuth	21.2 °						
Inclination	-56.9 °						
Length	152.45 Metres						

Drill Hole Information							
Date Start	04-Aug-10						
Date End	06-Aug-10						
Operator	Taseko						

Sample	e Interval (met	res)	Sample Number	'					Litho	Sample Method	
From	То	Int.		$Nb_2O_5\%$	Ta ppm	Th ppm	U ppm	TREO %	Y2O3 %		
138.50	140.85	2.30	880303	0.02	0.36	85.0	5.7	0.276	0.013	dmpCCCD	1/2 Core Split
140.85	143.72	2.90	880305	<0.01	2.4	60.2	6.9	0.223	0.010	dmpCCCD	1/2 Core Split
Blank	Granite		880304	<0.01	1.69	8.8	4.4	0.021	0.003		Quality Control
143.72	145.92	2.20	880306	0.01	8.62	30.1	13.5	0.157	0.009	dmpAMX	1/2 Core Split
145.92	149.47	3.60	880307	<0.01	1.49	44.3	1.2	0.218	0.013	nmiCD	1/2 Core Split
149.47	152.45	3.00	880308	<0.01	0.15	45.7	4.7	0.189	0.010	dmpAMX	1/2 Core Split

ALEY - ANALYTICAL RESULTS

Logged By	Ryan Kressall
Laboratory	Inspectorate
File No.	10-360-03413-01

Location	UTM NAD 83	Comment
Easting	653,938.036	Central 1
Northing	7,710,532.801	
Elevation	505.216	

Direction / Length				
Azimuth	21.2 °			
Inclination	-54.4 °			
Length	152.44 Metres			

Drill Hole Information				
Date Start	05-Aug-10			
Date End	07-Aug-10			
Operator	Taseko			

Sample	e Interval (met	res)	Sample Analytical Results			Litho	Sample Method				
From	То	Int.	Number	Nb ₂ O ₅ %	Ta ppm	Th ppm	U ppm	TREO %	Y2O3 %	_	Sample Method
0.00	4.57	4.60	Not Sampled	2 3						CASE	Not Sampled
4.57	8.46	3.90	880309	0.82	52.7	108.4	14.4	0.233	0.009	nlcCD	1/2 Core Split
Duplicate	Previous		880310	0.83	42.52	68.1	13.3	0.243	0.010		Quality Control
8.46	12.58	4.10	880311	0.46	10.76	85.9	5.3	0.237	0.010	nlcCD	1/2 Core Split
12.58	16.82	4.20	880312	0.27	14.25	97.4	7.2	0.268	0.012	nlcCD	1/2 Core Split
16.82	20.91	4.10	880313	0.02	7.44	38.9	6.7	0.181	0.006	dmfgAMX	1/2 Core Split
20.91	25.25	4.30	880314	0.07	13.08	66.6	8.2	0.240	0.010	dmfgAMX	1/2 Core Split
25.25	29.35	4.10	880315	0.12	8.27	34.5	4.5	0.131	0.006	dmfgAMX	1/2 Core Split
29.35	33.54	4.20	880316	0.15	13.15	67.3	6.5	0.154	0.007	dmfgAMX	1/2 Core Split
33.54	38.04	4.50	880317	0.14	9.48	44.0	3.7	0.280	0.004	dmfgAMX	1/2 Core Split
38.04	42.25	4.20	880318	0.10	16.69	71.7	3.7	0.248	0.007	dmfgAMX	1/2 Core Split
42.25	45.73	3.50	880319	0.12	14.96	88.9	6.5	0.259	0.006	gcrenfCD	1/2 Core Split
Standard	Aley2		880320	0.67	6.83	174.1	2.2	0.220	0.012		Quality Control
45.73	49.44	3.70	880321	0.08	0.59	33.1	2.1	0.156	0.006	gcrenfCD	1/2 Core Split
49.44	52.62	3.20	880322	0.26	0.55	56.4	4.0	0.403	0.010	gcrenfCD	1/2 Core Split
52.62	57.29	4.70	880323	0.30	4.75	61.6	4.6	0.294	0.010	gcrenfCD	1/2 Core Split
57.29	61.67	4.40	880324	0.16	3.11	50.5	3.6	0.471	0.008	gcrenfCD	1/2 Core Split
61.67	65.74	4.10	880325	0.23	17.06	150.6	9.0	0.181	0.009	dlfCD	1/2 Core Split
65.74	69.55	3.80	880326	0.05	6.09	64.4	2.3	0.303	0.009	dlfCD	1/2 Core Split
69.55	72.35	2.80	880327	0.10	5.11	73.3	3.3	0.301	0.009	dlfCD	1/2 Core Split
72.35	76.68	4.30	880328	<0.01	2.43	29.0	2.6	0.770	0.009	nmfCD	1/2 Core Split
76.68	79.27	2.60	880329	0.28	1.59	64.4	4.0	0.327	0.011	glfCD	1/2 Core Split
Duplicate	Previous		880330	0.31	1.8	66.8	4.5	0.327	0.011		Quality Control
79.27	82.44	3.20	880331	0.34	4.05	90.9	4.5	0.574	0.013	glfCD	1/2 Core Split
82.44	87.44	5.00	880332	0.07	29.23	76.9	13.3	0.324	0.012	mfCM	1/2 Core Split
87.44	89.63	2.20	880333	0.05	4.93	140.5	8.1	0.407	0.009	gmfCD	1/2 Core Split
89.63	92.10	2.50	880334	0.03	14.96	137.5	6.6	1.456	0.012	gmfCD	1/2 Core Split
92.10	96.07	4.00	880335	0.10	3.81	112.5	4.5	0.885	0.011	gmfCD	1/2 Core Split
96.07	101.06	5.00	880336	0.15	13.37	44.4	8.3	0.333	0.008	gmfCD	1/2 Core Split
101.06	104.77	3.70	880337	0.06	0.5	43.7	1.1	0.088	0.004	gmiCD	1/2 Core Split
104.77	108.36	3.60	880338	0.12	11.99	53.4	6.1	0.094	0.006	glCD	1/2 Core Split
108.36	111.67	3.30	880339	0.22	7.28	271.3	6.5	0.122	0.006	glCD	1/2 Core Split
Standard	Aley3		880340	0.76	38.11	290.2	8.7	0.214	0.010		Quality Control
111.67	114.94	3.30	880341	0.11	13.65	117.2	5.8	0.403	0.009	gICD	1/2 Core Split
Blank	Granite		880342	<0.01	1.77	9.3	4.2	0.024	0.002		Quality Control
114.94	117.37	2.40	880343	0.11	36.97	152.7	8.3	0.406	0.015	dcrenfCD	1/2 Core Split
117.37	119.46	2.10	880344	0.10	17.27	42.9	4.9	0.151	0.006	nmpCD	1/2 Core Split
119.46	124.71	5.20	880345	0.02	5.27	85.4	2.9	0.252	0.011	dmpCD	1/2 Core Split
124.71	127.57	2.90	880346	0.05	8.67	180.9	4.3	0.517	0.016	nmiCD	1/2 Core Split

ALEY - ANALYTICAL RESULTS

Drill Core Samples

Logged By Ryan Kressall

Laboratory Inspectorate

File No. 10-360-03413-01

Location	UTM NAD 83	Comment
Easting	653,938.036	Central 1
Northing	7,710,532.801	
Elevation	505.216	

Direction / Length				
Azimuth	21.2 °			
Inclination -54.4 °				
Length	152.44 Metres			

Drill Hole Information					
Date Start	05-Aug-10				
Date End	07-Aug-10				
Operator	Taseko				

Sample	e Interval (met	res)	Sample Number	'			Litho	Sample Method			
From	То	Int.		$Nb_2O_5\%$	Ta ppm	Th ppm	U ppm	TREO %	Y2O3 %		
127.57	130.54	3.00	880347	0.02	8.5	139.0	6.1	0.489	0.013	nmiCD	1/2 Core Split
130.54	134.15	3.60	880348	0.04	59.68	76.8	26.6	0.192	0.010	dlpCD	1/2 Core Split
134.15	137.20	3.00	880349	0.05	94.82	134.6	37.5	0.246	0.013	dlpCD	1/2 Core Split
Duplicate	Previous		880350	0.05	11.88	135.9	34.9	0.268	0.015		Quality Control
137.20	141.04	3.80	880351	0.07	100.98	272.1	32.6	0.179	0.017	dlpCD	1/2 Core Split
141.04	143.99	3.00	880352	0.30	31.22	348.9	6.8	0.438	0.017	dmiCD	1/2 Core Split
143.99	148.18	4.20	880353	0.02	4.25	88.4	4.9	0.261	0.010	dmpCD	1/2 Core Split
148.18	152.44	4.30	880354	0.18	26.76	209.0	7.2	0.213	0.012	dliCD	1/2 Core Split

ALEY - ANALYTICAL RESULTS

Logged By	Ryan Kressall
Laboratory	Inspectorate
File No.	10-360-03268-01

Location	UTM NAD 83	Comment
Easting	653,957.437	Central 2
Northing	7,710,506.330	
Elevation	501.115	

Direction / Length				
Azimuth	18.7 °			
Inclination	-55 °			
Length	215.24 Metres			

Drill Hole Information							
Date Start 08-Aug-10							
Date End	10-Aug-10						
Operator	Taseko						

Sample Interval (metres)		Sample Analytical Results						Litho	Sample Method		
From	То	Int.	Number	Nb ₂ O ₅ %	Ta ppm	Th ppm	U ppm	TREO %	Y2O3 %	Littlo	Sample Method
0.00	3.66	3.70	Not Sampled	2 5						CASE	Not Sampled
3.66	6.64	3.00	880355	0.25	3.19	92.7	6.5	0.148	0.008	glfCD	1/2 Core Split
6.64	9.72	3.10	880356	0.71	9.52	133.3	29.6	0.239	0.012	glfCD	1/2 Core Split
9.72	12.81	3.10	880357	0.49	5.33	158.6	15.4	0.186	0.013	glfCD	1/2 Core Split
12.81	18.34	5.50	880358	0.25	2.35	51.9	5.2	0.178	0.007	glfCD	1/2 Core Split
18.34	22.59	4.20	880359	0.36	4.51	122.7	9.6	0.224	0.011	bmcCDz	1/2 Core Split
Standard	Aley2		880360	0.74	2.01	166.4	47.9	0.214	0.012		Quality Control
22.59	26.84	4.20	880361	0.37	3.04	82.0	7.8	0.197	0.008	bmcCDz	1/2 Core Split
26.84	31.05	4.20	880362	0.35	3.04	85.6	5.2	0.168	0.008	bmcCDz	1/2 Core Split
31.05	35.14	4.10	880363	0.78	5.28	128.8	<0.1	0.218	0.013	nICD	1/2 Core Split
35.14	38.04	2.90	880364	0.61	3.4	123.7	31.3	0.200	0.012	nICD	1/2 Core Split
38.04	40.86	2.80	880365	0.55	3.04	159.4	7.8	0.185	0.014	nICD	1/2 Core Split
40.86	44.68	3.80	880366	0.71	3.52	81.1	0.1	0.173	0.010	glcCCCD	1/2 Core Split
44.68	48.92	4.20	880367	0.57	3.3	118.2	17.6	0.249	0.009	glcCCCD	1/2 Core Split
48.92	53.54	4.60	880368	0.65	3.25	73.7	<0.1	0.185	0.011	nlcCD	1/2 Core Split
53.54	55.54	2.00	880369	2.74	26.12	270.7	58.0	0.270	0.010	gmfCM	1/2 Core Split
Duplicate	Previous		880370	2.80	25.01	275.6	55.7	0.266	0.010		Quality Control
55.54	60.07	4.50	880371	0.47	2.27	93.5	0.7	0.149	0.008	dlfgCD	1/2 Core Split
60.07	63.03	3.00	880372	0.51	3.43	105.2	12.9	0.188	0.009	dlfgCD	1/2 Core Split
63.03	66.58	3.50	880373	0.32	14.87	103.4	68.5	0.180	0.009	dlfgCD	1/2 Core Split
66.58	70.21	3.60	880374	0.29	348.6	152.9	38.0	0.134	0.006	blpCCCD	1/2 Core Split
70.21	74.76	4.60	880375	0.15	48.99	93.2	99.4	0.129	0.008	dlpAMX	1/2 Core Split
74.76	76.66	1.90	880376	0.23	180.83	135.9	31.1	0.191	0.009	dlpCCCD	1/2 Core Split
76.66	79.40	2.70	880377	0.24	35.97	62.7	103.0	0.158	0.008	dlpCCCD	1/2 Core Split
79.40	83.47	4.10	880378	1.11	62.79	139.7	105.6	0.199	0.010	blpCD	1/2 Core Split
83.47	87.20	3.70	880379	0.20	158.87	84.2	40.1	0.144	0.008	glCD	1/2 Core Split
Standard	Aley1		880380	0.45	8.2	135.4	25.7	0.196	0.010		Quality Control
87.20	90.73	3.50	880381	0.29	101.44	90.2	131.9	0.180	0.010	glCD	1/2 Core Split
Blank	Granite		880382	<0.01	3.59	7.4	2.5	0.015	0.002		Quality Control
90.73	94.31	3.60	880383	0.25	47.62	90.3	22.0	0.159	0.009	blpCD	1/2 Core Split
94.31	96.42	2.10	880384	0.66	27.77	184.2	41.4	0.175	0.011	dmpCD	1/2 Core Split
96.42	99.10	2.70	880385	0.17	29.95	76.4	70.9	0.186	0.009	dlpCD	1/2 Core Split
99.10	101.81	2.70	880386	0.16	12.08	138.5	27.3	0.179	0.011	dlpCD	1/2 Core Split
101.81	104.82	3.00	880387	0.60	11.5	275.3	40.9	0.168	0.010	dlpCD	1/2 Core Split
104.82	108.39	3.60	880388	0.50	4.83	255.4	1.5	0.139	0.008	dlpAMX	1/2 Core Split
108.39	111.08	2.70	880389	0.51	36	257.3	10.3	0.181	0.007	dlpAMX	1/2 Core Split
Duplicate	Previous		880390	0.47	35	250.2	10.1	0.180	0.007		Quality Control
111.08	113.88	2.80	880391	0.37	10.43	188.8	58.3	0.192	0.008	dlpCD	1/2 Core Split
113.88	116.57	2.70	880392	0.42	13	294.0	124.6	0.195	0.010	dlpCD	1/2 Core Split

ALEY - ANALYTICAL RESULTS

Logged By	Ryan Kressall
Laboratory	Inspectorate
File No.	10-360-03268-01

Location	UTM NAD 83	Comment
Easting	653,957.437	Central 2
Northing	7,710,506.330	
Elevation	501.115	

Direction / Length							
Azimuth 18.7 $^{\circ}$							
Inclination	-55 °						
Length	215.24 Metres						

Drill Hole Information							
Date Start	08-Aug-10						
Date End	10-Aug-10						
Operator	Taseko						

	•	-	I								
· ·	Interval (met	res)	Sample Number		Analytical Results					Litho	Sample Method
From	То	Int.		$Nb_2O_5\%$	Ta ppm	Th ppm	U ppm	TREO %	Y2O3 %		
116.57	120.05	3.50	880393	0.22	16.13	70.9	36.0	0.156	0.008	dlpAMX	1/2 Core Split
120.05	123.78	3.70	880394	0.27	6.8	91.6	12.7	0.168	0.009	dlpAMX	1/2 Core Split
123.78	126.83	3.00	880395	0.25	5.05	94.2	10.8	0.196	0.006	dlpAMX	1/2 Core Split
126.83	129.60	2.80	880396	0.13	16.77	62.1	33.0	0.118	0.006	dlpAMX	1/2 Core Split
129.60	132.64	3.00	880397	0.35	41.22	200.0	134.2	0.194	0.014	dmfgCD	1/2 Core Split
132.64	135.81	3.20	880398	0.26	32.37	66.3	59.7	0.193	0.009	dmfgCD	1/2 Core Split
135.81	139.02	3.20	880399	0.19	25.9	74.4	119.4	0.162	0.007	dmfgCD	1/2 Core Split
Standard	OKA-1		875350	0.54	25.1	45.1	0.6	0.321	0.008		Quality Control
139.02	142.07	3.00	875351	0.17	8.04	86.9	31.5	0.189	0.008	dmfgCD	1/2 Core Split
142.07	144.52	2.50	875352	0.22	18.67	108.2	75.2	0.156	0.011	dmfgCD	1/2 Core Split
144.52	146.77	2.20	875353	0.67	110.89	344.5	222.4	0.234	0.017	gmpAMX	1/2 Core Split
146.77	150.04	3.30	875354	0.18	15.24	93.1	31.9	0.484	0.011	blpCD	1/2 Core Split
150.04	153.58	3.50	875355	0.59	36.94	196.8	138.9	0.406	0.011	blpCD	1/2 Core Split
153.58	157.26	3.70	875356	0.72	11.34	413.4	68.1	0.198	0.009	blpCD	1/2 Core Split
157.26	161.21	4.00	875357	0.17	15.74	83.6	25.8	0.133	0.007	blpAMX	1/2 Core Split
161.21	164.38	3.20	875358	0.35	70.52	189.2	128.3	0.247	0.010	blpAMX	1/2 Core Split
164.38	168.09	3.70	875359	0.28	17.79	110.7	52.2	0.160	0.008	blpAMX	1/2 Core Split
Duplicate	Previous		875360	0.28	17.53	111.8	59.6	0.164	0.009		Quality Control
168.09	172.22	4.10	875361	0.20	20.45	153.0	83.9	0.301	0.013	nlpCD	1/2 Core Split
172.22	176.21	4.00	875362	0.07	7.34	94.7	37.7	0.335	0.007	nlpCD	1/2 Core Split
176.21	180.14	3.90	875363	0.12	20.26	146.6	101.9	0.586	0.011	nlpCD	1/2 Core Split
180.14	184.18	4.00	875364	0.65	36.38	195.3	88.2	0.474	0.015	nlpCD	1/2 Core Split
184.18	187.80	3.60	875365	0.41	51.06	73.0	13.6	0.236	0.007	glCM	1/2 Core Split
187.80	190.85	3.00	875366	0.49	7.08	118.8	5.8	0.555	0.010	ICD	1/2 Core Split
190.85	193.83	3.00	875367	0.45	2.98	56.0	2.2	0.170	0.008	ICD	1/2 Core Split
193.83	196.95	3.10	875368	0.05	24.25	126.3	58.3	0.192	0.010	ICD	1/2 Core Split
196.95	200.00	3.10	875369	0.03	5.92	107.4	14.9	0.293	0.008	ICD	1/2 Core Split
Standard	Aley1		875370	0.48	8.08	129.7	23.8	0.180	0.010		Quality Control
200.00	203.97	4.00	875371	0.05	12.44	48.1	76.6	0.155	0.009	nlfCD	1/2 Core Split
203.97	207.32	3.30	875372	0.06	8.9	65.6	77.5	0.236	0.010	nlfCD	1/2 Core Split
207.32	211.81	4.50	875373	0.02	4.57	112.9	31.1	0.343	0.009	nlfCD	1/2 Core Split
211.81	215.24	3.40	875374	0.25	2.92	66.5	2.2	0.123	0.008	nlfCD	1/2 Core Split

ALEY - ANALYTICAL RESULTS

Drill Core Samples							
Logged By	Ryan Kressall						
Laboratory	Inspectorate						
File No.	10-360-03268-01						

Location	UTM NAD 83	Comment
Easting	653,957.437	Central 2
Northing	7,710,506.330	
Elevation	501.115	

Direction / Length							
Azimuth 18.7 °							
Inclination	-55 °						
Length	215.24 Metres						

Drill Hole Information							
Date Start 08-Aug-1							
Date End	10-Aug-10						
Operator	Taseko						

Sample	e Interval (me	tres)	Sample Number		Analytical Results						Sample Method
From	То	Int.		Nb ₂ O ₅ %	Ta ppm	Th ppm	U ppm	TREO %	Y2O3 %		·
	Drill Hole Selected Interval - Weighted Average Analytical Results										
Sample	e Interval (met	tres)				Analytica	l Results				
From	To	Int.		Nb ₂ O ₅ %	Ta ppm	Th ppm	U ppm	TREO %	Y2O3 %		
3.66	70.21	66.55		0.546	24	110.9	15	0.192	0.010		
31.05	55.54	24.49	Incl.	0.822	6	123.6	12	0.211	0.011		
79.40	116.57	37.17		0.446	47	168.0	57	0.174	0.009		
144.52	164.38	19.86		0.434	38	212.9	93	0.346	0.010		
180.14	193.83	13.69		0.507	27	115.6	31	0.487	0.010		

ALEY - ANALYTICAL RESULTS

Logged By	Ryan Kressall
Laboratory	Inspectorate
File No.	10-360-03430-01

Location	UTM NAD 83	Comment
Easting	653,900.542	Central 1
Northing	7,710,463.719	
Classatian	402 221	

Direction	n / Length
Azimuth	27.6 °
Inclination	-56 °

Drill Hole Information						
Date Start	08-Aug-10					
Date End	10-Aug-10					
Operator	Taseko					

File No.	10-360-034	30-01	Elevation	483.32	I.			ength 14	19.39 Metres	Opera	tor Taseko
Sample	Interval (met	res)	Sample Number		Analytical Results			Litho	Sample Method		
From	То	Int.		$Nb_2O_5\%$	Ta ppm	Th ppm	U ppm	TREO %	Y2O3 %		
0.00	4.57	4.60	Not Sampled							CASE	Not Sampled
4.57	6.26	1.70	875375	0.09	13.29	31.8	1.7	0.170	0.005	gmpCM	1/2 Core Split
6.26	9.27	3.00	875376	2.07	1.7	114.7	10.8	0.313	0.010	gmpCM	1/2 Core Split
9.27	11.27	2.00	875377	0.90	1.18	59.7	6.9	0.308	0.006	glfgCD	1/2 Core Split
11.27	15.43	4.20	875378	0.33	12.48	78.1	2.8	0.264	0.008	nlpCD	1/2 Core Split
15.43	17.61	2.20	875379	0.96	15.9	93.2	8.6	0.248	0.010	glpCD	1/2 Core Split
Duplicate	Previous		875380	0.94	15.8	91.0	8.2	0.250	0.010		Quality Control
17.61	20.16	2.60	875381	0.57	26.37	107.3	5.0	0.256	0.012	glpCD	1/2 Core Split
20.16	22.16	2.00	875382	1.15	0.8	166.8	13.8	0.217	0.010	glpCD	1/2 Core Split
22.16	25.27	3.10	875383	0.53	19.28	140.3	4.1	0.183	0.009	gmfCD	1/2 Core Split
25.27	27.44	2.20	875384	1.80	1.66	81.8	3.4	0.287	0.014	gmfCD	1/2 Core Split
Blank	Granite		875385	0.15	0.18	35.2	0.6	0.032	0.002		Quality Control
27.44	31.06	3.60	875386	0.56	12.77	115.3	2.7	0.236	0.009	gmfCD	1/2 Core Split
31.06	34.00	2.90	875387	0.37	7.51	59.5	1.6	0.158	0.007	gmfCD	1/2 Core Split
34.00	36.83	2.80	875388	0.75	21.88	139.9	2.7	0.202	0.009	gmfCD	1/2 Core Split
36.83	39.97	3.10	875389	0.31	3.92	67.0	1.0	0.195	0.008	blpCD	1/2 Core Split
Standard	Aley2		875390	0.76	2.25	152.4	2.0	0.227	0.012		Quality Control
39.97	43.14	3.20	875391	0.77	13.31	161.3	3.9	0.234	0.014	blpCD	1/2 Core Split
43.14	46.35	3.20	875392	0.34	5.93	93.6	1.4	0.152	0.009	blpCD	1/2 Core Split
46.35	49.02	2.70	875393	0.36	16.4	145.5	2.1	0.187	0.011	blpCD	1/2 Core Split
49.02	51.53	2.50	875394	0.50	17	91.5	4.4	0.171	0.008	blpCD	1/2 Core Split
51.53	54.38	2.90	875395	1.82	1.33	120.5	6.3	0.289	0.012	blfCD	1/2 Core Split
54.38	58.47	4.10	875396	0.79	0.19	119.8	2.5	0.194	0.010	dlpCCCD	1/2 Core Split
58.47	62.26	3.80	875397	0.62	21.24	151.0	3.6	0.199	0.010	glcCD	1/2 Core Split
62.26	65.50	3.20	875398	0.37	10.29	73.5	2.0	0.174	0.009	bICD	1/2 Core Split
65.50	68.83	3.30	875399	0.44	8.75	97.4	2.4	0.249	0.011	bICD	1/2 Core Split
Duplicate	Previous		874900	0.43	9.18	96.6	2.9	0.233	0.011		Quality Control
68.83	71.67	2.80	874901	0.52	8.66	130.9	2.7	0.324	0.013	bICD	1/2 Core Split
71.67	75.08	3.40	874902	0.64	11.51	198.2	3.4	0.289	0.021	bICD	1/2 Core Split
75.08	78.89	3.80	874903	0.44	12.71	286.8	7.0	0.184	0.020	bICD	1/2 Core Split
78.89	82.19	3.30	874904	0.25	4.4	212.7	2.1	0.273	0.013	bICD	1/2 Core Split
82.19	85.68	3.50	874905	0.74	12.14	180.1	4.1	0.220	0.013	nmfCD	1/2 Core Split
85.68	89.51	3.80	874906	2.00	0.12	140.6	5.8	0.293	0.012	gliCM	1/2 Core Split
89.51	93.51	4.00	874907	0.50	19.45	102.2	2.1	0.181	0.010	nlfgCD	1/2 Core Split
93.51	97.56	4.00	874908	0.49	14.72	129.4	3.2	0.350	0.013	nmcCD	1/2 Core Split
97.56	101.31	3.80	874909	0.51	0.22	87.0	4.8	0.268	0.016	nmcCD	1/2 Core Split
Standard	OKA-1		874910	0.55	10.76	40.7	31.2	0.323	0.008		Quality Control
101.31	105.81	4.50	874911	0.42	0.25	88.5	4.4	0.447	0.016	bmfgCD	1/2 Core Split
105.81	109.89	4.10	874912	0.54	0.06	72.4	3.2	0.293	0.016	gmcCD	1/2 Core Split

ALEY - ANALYTICAL RESULTS

Logged By	Ryan Kressall
Laboratory	Inspectorate
File No.	10-360-03430-01

Location	UTM NAD 83	Comment
Easting	653,900.542	Central 1
Northing	7,710,463.719	
Flevation	483.321	

Direction / Length					
Azimuth	27.6 °				
Inclination	-56 °				
Length	149.39 Metres				

Drill Hole Information						
Date Start	08-Aug-10					
Date End	10-Aug-10					
Operator	Taseko					

Sample	e Interval (met	res)	Sample Number		Analytical Results						Sample Method
From	То	Int.	Number	Nb ₂ O ₅ %	Ta ppm	Th ppm	U ppm	TREO %	Y2O3 %		•
109.89	113.65	3.80	874913	0.55	0.13	87.5	5.5	0.265	0.013	glfgCCCD	1/2 Core Split
113.65	116.35	2.70	874914	0.48	1.16	55.2	2.9	0.292	0.008	glfgCCCD	1/2 Core Split
116.35	119.68	3.30	874915	0.41	0.45	26.9	2.5	0.254	0.009	glfgCCCD	1/2 Core Split
119.68	122.68	3.00	874916	0.77	0.38	34.1	7.8	0.258	0.011	dlpCD	1/2 Core Split
122.68	125.90	3.20	874917	0.67	0.34	32.4	7.3	0.229	0.008	dlpCD	1/2 Core Split
125.90	128.85	2.90	874918	0.76	0.07	23.1	5.3	0.215	0.009	dlpCD	1/2 Core Split
128.85	131.74	2.90	874919	1.30	0.41	32.2	8.3	0.311	0.018	dlpCD	1/2 Core Split
Duplicate	Previous		874920	1.31	0.09	33.5	8.5	0.288	0.018		Quality Control
131.74	134.65	2.90	874921	0.90	0.12	25.1	6.4	0.256	0.012	dlpCD	1/2 Core Split
134.65	137.67	3.00	874922	0.76	1.4	50.6	6.4	0.242	0.012	dlpCD	1/2 Core Split
137.67	140.42	2.80	874923	0.56	2.79	132.9	3.9	0.172	0.011	dlpCD	1/2 Core Split
140.42	143.29	2.90	874924	0.22	<0.05	7.3	1.1	0.112	0.004	nmCD	1/2 Core Split
143.29	146.15	2.90	874925	0.25	0.16	19.5	0.9	0.133	0.005	nmCD	1/2 Core Split
146.15	149.39	3.20	874926	0.11	0.37	44.8	0.9	0.155	0.004	nmiCD	1/2 Core Split
Standard	OKA-1		874950A	0.53	9	38.5	28.0	0.332	0.008		Quality Control

	Drill Hole Selected Interval - Weighted Average Analytical Results										
Sample	Sample Interval (metres) Analytical Results										
From	То	Int.		Nb ₂ O ₅ %	Ta ppm	Th ppm	U ppm	TREO %	Y2O3 %		
6.26	140.42	134.16		0.702	7	106.6	4	0.275	0.012		
6.26	27.44	21.18	Incl.	0.982	11	104.5	6	0.284	0.010		
51.53	62.26	10.73	Incl.	1.004	8	131.0	4	0.231	0.011		
119.68	137.67	17.99	Incl.	0.855	1	33.0	7	0.263	0.012		

ALEY - ANALYTICAL RESULTS

Drill Core Samples

Logged By	Ryan Kressall
Laboratory	Inspectorate
File No.	10-360-03294-01

Location	UTM NAD 83	Comment
Easting	653,936.470	Central 1
Northing	7,710,458.448	
Elevation	477.317	

Direction / Length

Azimuth	20 °
nclination	-55 °
Length	303.65 Metres

Drill Hole	Information
Data Ctart	10 4 10

Date Start	10-Aug-10
Date End	12-Aug-10
Operator	Taseko

]				•				
Sample	Interval (met	res)	Sample Analytical Results Number					Litho	Sample Method		
From	То	Int.		$\mathrm{Nb_2O_5}\%$	Ta ppm	Th ppm	U ppm	TREO %	Y2O3 %		
0.00	6.70	6.70	Not Sampled							CASE	Not Sampled
6.70	9.91	3.20	874927	0.34	15.13	217.1	3.7	0.287	0.012	lfgCD	1/2 Core Split
9.91	13.39	3.50	874928	0.35	21.26	171.0	2.9	0.219	0.009	IfgCD	1/2 Core Split
13.39	16.13	2.70	874929	0.38	40.88	150.9	2.4	0.138	0.009	IfgCD	1/2 Core Split
Standard	Aley3		874930	0.76	34.21	248.5	7.5	0.192	0.008		Quality Control
16.13	18.92	2.80	874931	0.33	29.61	170.2	2.8	0.163	0.009	IfgCD	1/2 Core Split
18.92	21.29	2.40	874932	0.56	8.82	148.7	5.1	0.263	0.010	blpCD	1/2 Core Split
21.29	23.83	2.50	874933	1.09	63.55	149.1	27.6	0.262	0.012	nmpCD	1/2 Core Split
23.83	26.96	3.10	874934	0.69	30.31	146.3	15.5	0.201	0.009	blpCD	1/2 Core Split
26.96	29.83	2.90	874935	0.43	13.28	117.9	7.7	0.227	0.010	bICD	1/2 Core Split
29.83	32.22	2.40	874936	0.38	41.05	228.8	52.5	0.208	0.013	bICD	1/2 Core Split
32.22	35.45	3.20	874937	1.47	19.45	182.2	6.6	0.276	0.011	bICD	1/2 Core Split
35.45	38.41	3.00	874938	1.46	18.32	232.6	13.4	0.293	0.015	bICD	1/2 Core Split
38.41	42.04	3.60	874939	0.75	35.15	158.6	24.0	0.205	0.013	bICD	1/2 Core Split
Duplicate	Previous		874940	0.74	32.9	156.2	22.0	0.200	0.012		Quality Control
42.04	46.03	4.00	874941	0.38	16.32	174.4	11.9	0.161	0.009	gmpCD	1/2 Core Split
46.03	49.66	3.60	874942	0.80	30.38	329.1	13.7	0.145	0.015	gmpCD	1/2 Core Split
49.66	52.83	3.20	874943	0.29	15.57	314.2	11.8	0.157	0.013	dmpCD	1/2 Core Split
52.83	55.85	3.00	874944	0.20	26.86	417.2	15.1	0.222	0.016	dmpCD	1/2 Core Split
55.85	58.95	3.10	874945	0.29	80.6	331.9	18.6	0.160	0.012	dmpCD	1/2 Core Split
58.95	62.03	3.10	874946	0.38	22.16	306.8	10.2	0.144	0.015	dmpCD	1/2 Core Split
62.03	65.12	3.10	874947	0.46	52.34	632.0	30.2	0.230	0.021	dmpCD	1/2 Core Split
65.12	68.22	3.10	874948	0.34	9.71	298.9	9.1	0.297	0.013	dmpCD	1/2 Core Split
68.22	70.99	2.80	874949	0.25	7.88	161.9	7.2	0.483	0.011	dmpCD	1/2 Core Split
Standard	OKA-1		874950	0.51	0.26	44.8	25.4	0.318	0.007		Quality Control
70.99	73.97	3.00	874951	0.58	6.21	179.1	3.3	0.301	0.010	gmpCD	1/2 Core Split
73.97	77.09	3.10	874952	0.93	31.89	145.6	15.9	0.300	0.012	gmpCD	1/2 Core Split
77.09	79.92	2.80	874953	1.21	38.16	225.2	21.4	0.566	0.016	gmpCD	1/2 Core Split
79.92	83.47	3.50	874954	0.44	6.72	238.5	9.4	0.274	0.012	nlpCD	1/2 Core Split
83.47	86.50	3.00	874955	0.30	2.73	131.1	3.9	0.262	0.008	nlpCD	1/2 Core Split
86.50	90.24	3.70	874956	0.43	3.51	117.6	3.6	0.171	0.008	nlpCD	1/2 Core Split
90.24	94.18	3.90	874957	0.80	<0.05	130.7	6.6	0.222	0.009	dICD	1/2 Core Split
94.18	98.64	4.50	874958	0.48	14.77	156.5	7.8	0.164	0.010	nmpCD	1/2 Core Split
98.64	101.26	2.60	874959	1.09	27.12	144.3	10.9	0.188	0.010	glpCCCD	1/2 Core Split
Duplicate	Previous		874960	1.06	27.32	159.2	10.9	0.189	0.010		Quality Control
101.26	103.48	2.20	874961	1.23	29.96	144.2	10.2	0.195	0.006	glpCCCD	1/2 Core Split
Blank	Granite		874962	0.02	2.17	9.5	3.1	0.020	0.002		Quality Control
103.48	105.49	2.00	874963	0.51	1.78	81.1	2.4	0.131	0.006	glpCCCD	1/2 Core Split
105.49	108.54	3.10	874964	0.57	<0.05	87.9	4.8	0.160	0.008	blpCD	1/2 Core Split

ALEY - ANALYTICAL RESULTS

Logged By Ryan Kressall	
=0990u = y	
Laboratory Inspectorate	
File No. 10-360-03294-01	

Location	UTM NAD 83	Comment
Easting	653,936.470	Central 1
Northing	7,710,458.448	
Elevation	477.317	

Direction	n / Length
Azimuth	20 °

Azimuth	20 °
Inclination	-55 °
Length	303.65 Metres

Drill Hole Information							
Date Start	10-Aug-10						
Date End	12-Aug-10						
Operator	Taseko						

Sample	Interval (met	res)	Sample Analytical Results Number					Litho	Sample Method		
From	То	Int.	Number	Nb ₂ O ₅ %	Ta ppm	Th ppm	U ppm	TREO %	Y2O3 %		
108.54	111.77	3.20	874965	0.45	6.63	105.7	4.0	0.137	0.008	blpCD	1/2 Core Split
111.77	115.06	3.30	874966	0.73	21.66	102.6	9.0	0.206	0.008	bICD	1/2 Core Split
115.06	118.92	3.90	874967	0.73	9.21	86.8	2.8	0.181	0.010	bICD	1/2 Core Split
118.92	121.96	3.00	874968	0.48	13.66	110.9	4.1	0.165	0.008	blpCD	1/2 Core Split
121.96	125.22	3.30	874969	0.50	3.2	72.4	1.3	0.140	0.006	blpCD	1/2 Core Split
Standard	Aley2		874970	0.73	4.44	166.6	2.2	0.209	0.011		Quality Control
125.22	127.48	2.30	874971	0.34	3.02	91.5	2.2	0.256	0.007	blpCD	1/2 Core Split
127.48	130.22	2.70	874972	0.47	1.76	92.0	1.8	0.136	0.007	blpCD	1/2 Core Split
130.22	134.06	3.80	874973	0.40	29.88	98.5	36.0	0.163	0.008	nlpAMX	1/2 Core Split
134.06	136.43	2.40	874974	0.54	3.29	167.1	8.7	0.165	0.009	blpCD	1/2 Core Split
136.43	139.09	2.70	874975	0.77	3.4	142.7	8.9	0.538	0.011	blpCD	1/2 Core Split
139.09	144.77	5.70	874976	0.27	17.84	142.7	16.0	0.215	0.009	blpAMX	1/2 Core Split
144.77	147.73	3.00	874977	0.49	5.85	131.3	6.1	0.133	0.009	blpCD	1/2 Core Split
147.73	150.81	3.10	874978	0.39	6.78	197.2	5.4	0.112	0.009	blpCD	1/2 Core Split
150.81	153.81	3.00	874979	0.18	6.88	200.1	5.5	0.384	0.007	blpCD	1/2 Core Split
Duplicate	Previous		874980	0.18	2.77	116.2	4.7	0.389	0.007		Quality Control
153.81	156.80	3.00	874981	0.14	26.72	67.4	26.9	0.139	0.006	blpCD	1/2 Core Split
156.80	159.77	3.00	874982	0.21	77.19	65.6	30.0	0.108	0.006	blpCD	1/2 Core Split
159.77	163.48	3.70	874983	0.20	98.96	116.4	42.4	0.139	0.007	nlpAMX	1/2 Core Split
163.48	166.88	3.40	874984	0.15	29.42	43.1	20.3	0.167	0.005	gmpCD	1/2 Core Split
166.88	169.96	3.10	874985	0.07	24.34	52.0	9.4	0.131	0.006	gmpCD	1/2 Core Split
169.96	173.26	3.30	874986	0.12	56.43	121.0	23.7	0.324	0.010	gmpCD	1/2 Core Split
173.26	177.28	4.00	874987	0.10	29.08	56.9	20.2	0.709	0.007	nmCD	1/2 Core Split
177.28	181.01	3.70	874988	0.10	13.69	67.3	6.8	0.254	0.006	nmCD	1/2 Core Split
181.01	184.77	3.80	874989	0.16	82.11	75.2	74.2	0.134	0.007	blpCD	1/2 Core Split
Standard	Aley1		874990	0.45	21.61	139.0	9.1	0.184	0.009		Quality Control
184.77	187.81	3.00	874991	0.10	137.07	96.6	32.9	0.218	0.008	nlpCD	1/2 Core Split
187.81	190.85	3.00	874992	0.38	53.14	187.4	18.4	0.290	0.008	nmpCD	1/2 Core Split
190.85	194.69	3.80	874993	0.15	147.22	371.4	63.7	0.591	0.011	nmpCD	1/2 Core Split
194.69	198.07	3.40	874994	0.11	121.43	253.2	76.1	0.271	0.011	nmpCD	1/2 Core Split
198.07	201.12	3.10	874995	0.04	8.31	100.0	7.9	0.801	0.007	miCD	1/2 Core Split
201.12	204.18	3.10	874996	0.17	3.79	105.5	3.7	0.491	0.009	miCD	1/2 Core Split
204.18	207.15	3.00	874997	0.12	9.67	54.8	6.4	0.177	0.004	miCD	1/2 Core Split
207.15	210.21	3.10	874998	0.42	70	141.7	60.6	0.180	0.009	bmiCD	1/2 Core Split
210.21	213.36	3.20	874999	0.14	2.73	70.3	2.4	0.274	0.005	bmiCD	1/2 Core Split
Duplicate	Previous		875000	0.13	2.35	67.7	2.2	0.278	0.005		Quality Control
213.36	216.51	3.10	875001	0.15	27.39	117.6	17.4	0.276	0.008	bmiCD	1/2 Core Split
216.51	219.66	3.20	875002	0.06	21.19	98.2	8.1	0.456	0.008	bmiCD	1/2 Core Split
219.66	222.75	3.10	875003	0.03	7.45	193.1	8.4	0.879	0.009	bmiCD	1/2 Core Split

ALEY - ANALYTICAL RESULTS

Drill	Co	ore	Sa	mpl	es

Logged By	Ryan Kressall
Laboratory	Inspectorate
File No.	10-360-03294-01

Location	UTM NAD 83	Comment
Easting	653,936.470	Central 1
Northing	7,710,458.448	
Flevation	477 317	

Azimuth	20 °
nclination	-55 °
Length	303.65 Metres

Drill Hole Information				
Date Start	10-Aug-10			
Date End	12-Aug-10			

Taseko

Operator

Sample	Interval (met	val (metres) Sample Number Analytical Results			Analytical Results			Analytical Results		Litho	Sample Method
From	To	Int.	Number	Nb ₂ O ₅ %	Ta ppm	Th ppm	U ppm	TREO %	Y2O3 %		•
222.75	225.73	3.00	875004	0.10	2.7	153.4	2.0	0.951	0.009	bmiCD	1/2 Core Split
225.73	228.68	3.00	875005	0.35	3.88	150.8	4.8	0.272	0.013	gmfgCD	1/2 Core Split
228.68	232.73	4.00	875006	0.18	4.2	148.2	4.4	0.171	0.013	gmfgCD	1/2 Core Split
232.73	238.59	5.90	875007	0.10	39.48	229.1	11.0	0.177	0.015	gmfgCD	1/2 Core Split
238.59	240.85	2.30	875008	0.16	39.25	171.0	14.7	0.130	0.011	gmfgCD	1/2 Core Split
240.85	244.00	3.20	875009	0.10	12.59	103.8	8.1	0.162	0.009	glCD	1/2 Core Split
Standard	Aley2		875010	0.71	<0.05	168.2	2.3	0.207	0.011		Quality Control
244.00	247.25	3.20	875011	0.16	10.9	171.2	4.4	0.230	0.016	glCD	1/2 Core Split
247.25	250.74	3.50	875012	0.09	15.45	168.4	5.7	0.222	0.013	nmpCD	1/2 Core Split
250.74	254.20	3.50	875013	0.10	5.03	244.2	5.0	0.234	0.011	nmpCD	1/2 Core Split
254.20	256.50	2.30	875014	0.13	1.48	93.8	1.2	0.151	0.009	nmCD	1/2 Core Split
256.50	259.49	3.00	875015	0.15	2.28	137.9	6.5	0.223	0.014	gmCCCD	1/2 Core Split
259.49	261.96	2.50	875016	0.04	5.16	114.1	6.7	0.214	0.010	gmCCCD	1/2 Core Split
261.96	265.44	3.50	875017	0.07	8.35	75.4	4.7	0.188	0.009	gmCCCD	1/2 Core Split
265.44	269.53	4.10	875018	0.08	9.42	244.0	7.6	0.230	0.017	nmfgCD	1/2 Core Split
269.53	272.60	3.10	875019	0.15	60.49	181.8	42.7	0.317	0.012	blfCCCD	1/2 Core Split
Duplicate	Previous		875020	0.15	65.22	191.9	45.0	0.319	0.013		Quality Control
272.60	275.84	3.20	875021	0.09	6.3	107.1	4.8	0.137	0.006	blfCCCD	1/2 Core Split
Blank	Granite		875022	<0.01	2.28	10.0	2.9	0.022	0.002		Quality Control
275.84	278.50	2.70	875023	0.12	4.89	67.5	7.0	0.111	0.005	blfCCCD	1/2 Core Split
278.50	281.43	2.90	875024	0.07	2.77	251.7	6.0	0.280	0.016	nmpCD	1/2 Core Split
281.43	285.36	3.90	875025	0.11	1.83	148.8	4.4	0.238	0.014	nmpCD	1/2 Core Split
285.36	289.32	4.00	875026	0.11	1.06	51.7	1.6	0.110	0.007	nmpCD	1/2 Core Split
289.32	292.11	2.80	875027	0.18	1.26	90.4	1.6	0.119	0.006	nmpCD	1/2 Core Split
292.11	295.29	3.20	875028	0.06	3.06	186.8	4.2	0.237	0.012	nmpCD	1/2 Core Split
295.29	297.74	2.40	875029	0.06	5.13	157.3	19.1	0.308	0.014	dICCCD	1/2 Core Split
Standard	OKA-1		875030	0.52	0.34	50.4	30.3	0.317	0.007		Quality Control
297.74	301.57	3.80	875031	0.08	29.8	67.7	16.6	0.208	0.008	dICCCD	1/2 Core Split
301.57	303.65	2.10	875032	0.02	1.75	60.2	7.9	0.223	0.013	dICCCD	1/2 Core Split

Sample Interval (metres)		Analytical Results								
From	То	Int.		Nb ₂ O ₅ %	Ta ppm	Th ppm	U ppm	TREO %	Y2O3 %	
6.70	150.81	144.11		0.571	19	181.9	11	0.236	0.010	
21.29	49.66	28.37	Incl.	0.821	29	192.6	18	0.224	0.012	
90.24	103.48	13.24	Incl.	0.822	15	144.3	8	0.191	0.009	

ALEY - ANALYTICAL RESULTS

Drill	Core	Sam	ples
-------	------	-----	------

Logged By	Ryan Kressall
Laboratory	Inspectorate
File No.	10-360-03316-01

Location	UTM NAD 83	Comment
Easting	653,881.414	Central 2
Northing	7,710,463.539	
Elevation	485.410	

Direction / Length

Azimuth	26.8 °	
nclination	-57 °	
Length	213.41 Metres	

Drill Hole Information			
Date Start	11-Aug-10		
Date End	12-Aug-10		
Operator	Taseko		

Sample	Sample Interval (metres)		Sample Analytical Results			Litho	Sample Method				
From	То	Int.	Number	Nb ₂ O ₅ %	Ta ppm	Th ppm	U ppm	TREO %	Y2O3 %		Sample Method
0.00	4.57	4.60	Not Sampled	2 3						CASE	Not Sampled
4.57	9.14	4.60	875033	0.37	291.3	25.6	5.0	0.118	0.010	nlpCD	1/2 Core Split
9.14	12.19	3.00	875034	0.40	71.14	11.8	4.8	0.354	0.018	nlpCD	1/2 Core Split
12.19	15.24	3.10	875035	0.78	143.78	25.9	13.4	0.255	0.009	glpCCCD	1/2 Core Split
15.24	18.29	3.00	875036	1.02	159.64	33.9	13.7	0.306	0.014	glpCCCD	1/2 Core Split
18.29	20.73	2.40	875037	0.65	289.38	18.4	2.9	0.312	0.014	glpCCCD	1/2 Core Split
20.73	23.47	2.70	875038	0.46	183.83	12.8	1.7	0.294	0.012	glpCCCD	1/2 Core Split
23.47	28.22	4.80	875039	0.76	175	21.1	6.9	0.219	0.011	glpCCCD	1/2 Core Split
Duplicate	Previous		875040	0.79	186	20.4	7.3	0.215	0.011		Quality Control
28.22	30.83	2.60	875041	1.06	230.2	17.2	5.0	0.207	0.010	nliCD	1/2 Core Split
30.83	32.89	2.10	875042	2.10	228.37	<0.2	35.0	0.206	0.007	glCM	1/2 Core Split
32.89	35.32	2.40	875043	3.09	179.07	0.5	31.5	0.360	0.013	glCM	1/2 Core Split
35.32	37.76	2.40	875044	2.08	230.96	38.8	18.9	0.297	0.010	glCM	1/2 Core Split
37.76	41.13	3.40	875045	0.57	183.9	13.5	7.4	0.225	0.010	blpCD	1/2 Core Split
41.13	43.95	2.80	875046	1.23	200.71	57.1	22.9	0.170	0.007	glCM	1/2 Core Split
43.95	47.04	3.10	875047	0.50	143.63	18.3	5.5	0.153	0.008	glCM	1/2 Core Split
47.04	49.58	2.50	875048	1.16	408.05	<0.2	13.5	0.257	0.013	glCM	1/2 Core Split
49.58	52.21	2.60	875049	1.39	483.46	67.4	22.5	0.192	0.009	glCM	1/2 Core Split
Standard	Aley3		875050	0.78	336.95	2.4	9.9	0.198	0.009		Quality Control
52.21	54.88	2.70	875051	0.36	244.61	14.4	4.8	0.168	0.011	blpCD	1/2 Core Split
54.88	57.52	2.60	875052	0.73	228.06	15.9	5.7	0.204	0.011	glpCD	1/2 Core Split
57.52	60.10	2.60	875053	0.73	282.67	12.1	4.6	0.180	0.014	glpCD	1/2 Core Split
60.10	64.26	4.20	875054	1.20	244.41	<0.2	5.3	0.202	0.010	blCM	1/2 Core Split
Blank	Granite		875055	0.01	10.03	1.5	4.3	0.018	0.002		Quality Control
64.26	67.51	3.20	875056	0.34	319.91	7.6	4.8	0.191	0.012	bICD	1/2 Core Split
67.51	70.71	3.20	875057	0.63	289.18	17.5	8.3	0.173	0.021	bICD	1/2 Core Split
70.71	73.89	3.20	875058	0.80	318.08	28.8	41.0	0.324	0.037	bICD	1/2 Core Split
73.89	77.65	3.80	875059	0.99	358.54	18.4	10.2	0.216	0.015	bICD	1/2 Core Split
Duplicate	Previous		875060	1.03	330.15	18.2	10.5	0.216	0.016		Quality Control
77.65	80.74	3.10	875061	0.62	406.65	7.0	4.6	0.351	0.016	bICD	1/2 Core Split
80.74	84.39	3.70	875062	0.53	232.36	7.4	6.1	0.184	0.012	blpCD	1/2 Core Split
84.39	87.71	3.30	875063	0.40	146.19	25.1	11.6	0.151	0.009	blpCD	1/2 Core Split
87.71	90.24	2.50	875064	0.72	173.45	14.7	20.0	0.192	0.010	bICD	1/2 Core Split
90.24	92.74	2.50	875065	0.79	230.61	32.6	39.4	0.197	0.014	bICD	1/2 Core Split
92.74	95.36	2.60	875066	0.61	137.1	6.6	8.2	0.229	0.013	bICD	1/2 Core Split
95.36	98.76	3.40	875067	1.20	119.52	17.9	5.8	0.201	0.007	glCM	1/2 Core Split
98.76	102.81	4.00	875068	2.59	239.88	26.9	35.0	0.231	0.009	bICD	1/2 Core Split
102.81	106.31	3.50	875069	1.49	163.38	8.7	6.2	0.131	0.012	nICD	1/2 Core Split
Standard	OKA-1		875070	0.54	65.47	39.6	33.6	0.320	0.007		Quality Control

ALEY - ANALYTICAL RESULTS

Logged By	Ryan Kressall
Laboratory	Inspectorate
File No.	10-360-03316-01

Location	UTM NAD 83	Comment
Easting	653,881.414	Central 2
Northing	7,710,463.539	
Elevation	485.410	

Direction / Length			
Azimuth	26.8 °		
Inclination	-57 °		
Lenath	213.41 Metres		

Drill Hole Information				
Date Start	11-Aug-10			
Date End	12-Aug-10			
Operator	Taseko			

File No.	10-300-033	10 01	Elevation	405.41	•			angui 21	5.41 Metres	Opera	toi i aseko
	Interval (met	•	Sample Number		T	Analytica			T	Litho	Sample Method
From	То	Int.		Nb ₂ O ₅ %		Th ppm	U ppm	TREO %	Y2O3 %		
106.31	109.55	3.20	875071	0.35	100.16	7.1	3.1	0.168	0.009	nICD	1/2 Core Split
109.55	112.82	3.30	875072	0.43	74.24	4.8	4.0	0.135	0.006	nICD	1/2 Core Split
112.82	116.76	3.90	875073	0.54	129.56	10.4	4.1	0.176	0.012	nICD	1/2 Core Split
116.76	118.90	2.10	875074	1.20	194.07	12.5	7.0	0.224	0.012	nICD	1/2 Core Split
118.90	121.88	3.00	875075	0.25	77.76	4.8	3.4	0.189	0.008	nICD	1/2 Core Split
121.88	124.26	2.40	875076	0.36	53.94	4.2	2.8	0.143	0.006	nICD	1/2 Core Split
124.26	126.60	2.30	875077	0.83	118.92	9.6	5.6	0.193	0.012	nICD	1/2 Core Split
126.60	131.10	4.50	875078	0.60	154.14	7.1	5.5	0.247	0.014	nICD	1/2 Core Split
131.10	133.83	2.70	875079	0.35	86.65	3.3	2.3	0.243	0.009	nmfgCD	1/2 Core Split
Duplicate	Previous		875080	0.35	84.52	3.4	2.3	0.240	0.008		Quality Control
133.83	136.69	2.90	875081	0.32	66.05	3.0	2.2	0.128	0.007	nmpCD	1/2 Core Split
136.69	139.94	3.20	875082	0.39	79.84	9.5	11.6	0.131	0.007	nmpCD	1/2 Core Split
139.94	142.85	2.90	875083	0.30	66.29	2.9	2.1	0.108	0.006	nmpCD	1/2 Core Split
142.85	146.34	3.50	875084	0.32	49.77	1.9	1.6	0.136	0.005	nlpAMX	1/2 Core Split
146.34	148.93	2.60	875085	0.12	49.28	1.9	1.6	0.131	0.008	nlpAMX	1/2 Core Split
148.93	152.44	3.50	875086	0.14	77.99	14.1	25.1	0.136	0.008	blpCD	1/2 Core Split
152.44	155.49	3.10	875087	0.21	107.54	13.7	3.6	0.102	0.007	blpCD	1/2 Core Split
155.49	158.54	3.00	875088	0.21	49.46	9.9	10.0	0.098	0.006	blpCD	1/2 Core Split
158.54	161.59	3.10	875089	0.23	122.57	1.1	2.6	0.121	0.008	blpCD	1/2 Core Split
Standard	Aley2		875090	0.75	222.14	1.5	2.6	0.224	0.012		Quality Control
161.59	164.63	3.00	875091	0.21	66.35	<0.2	0.8	0.116	0.005	blpCD	1/2 Core Split
164.63	169.36	4.70	875092	0.18	118.47	21.4	24.8	0.128	0.008	blpCD	1/2 Core Split
169.36	173.42	4.10	875093	0.62	206.38	15.5	5.3	0.171	0.013	nlpCD	1/2 Core Split
173.42	176.38	3.00	875094	0.42	193.57	13.1	5.0	0.134	0.010	nlpCD	1/2 Core Split
176.38	179.57	3.20	875095	0.43	217.56	23.7	5.7	0.146	0.011	nlpCD	1/2 Core Split
179.57	182.67	3.10	875096	0.34	212.97	10.9	3.8	0.167	0.011	nlpCD	1/2 Core Split
182.67	185.98	3.30	875097	0.32	128.12	4.7	3.1	0.162	0.009	nlpCD	1/2 Core Split
185.98	189.76	3.80	875098	0.19	354.57	6.1	5.5	0.217	0.014	nlpCD	1/2 Core Split
189.76	193.02	3.30	875099	0.73	459.29	58.8	19.1	0.246	0.018	nlpCD	1/2 Core Split
Duplicate	Previous		875100	0.72	450.01	58.5	18.9	0.237	0.017		Quality Control
193.02	196.45	3.40	875101	0.41	253.09	17.7	10.6	0.292	0.018	nlpCD	1/2 Core Split
196.45	199.52	3.10	875102	0.15	425.27	173.9	219.2	0.164	0.020	nlpCD	1/2 Core Split
199.52	202.51	3.00	875103	0.15	309.13	73.7	99.1	0.224	0.018	nlpCD	1/2 Core Split
202.51	205.32	2.80	875104	0.33	91.07	6.5	5.8	0.666	0.014	bmiCD	1/2 Core Split
205.32	208.80	3.50	875105	0.15	62.34	22.8	10.0	1.065	0.017	bmiCD	1/2 Core Split
208.80	211.04	2.20	875106	6.75	165.99	47.2	39.2	0.412	0.021	glCD	1/2 Core Split
211.04	213.41	2.40	875107	0.41	178.59	99.9	113.2	0.258	0.014	glCD	1/2 Core Split
				1	1	1	I	1		I .	II.

ALEY - ANALYTICAL RESULTS

Drill Core Samples				
Logged By	Ryan Kressall			
Laboratory	Inspectorate			
File No.	10-360-03316-01			

Location	UTM NAD 83	Comment
Easting	653,881.414	Central 2
Northing	7,710,463.539	
Elevation	485.410	

Direction / Length			
Azimuth 26.8 °			
Inclination	-57 °		
Length	213.41 Metres		

Drill Hole Information				
Date Start	11-Aug-10			
Date End	12-Aug-10			
Operator	Taseko			

Sample Interval (metres)			Sample Number			Analytica	l Results			Litho	Sample Method	
From	То	Int.		Nb ₂ O ₅ %	Ta ppm	Th ppm	U ppm	TREO %	Y2O3 %			
	Drill Hole Selected Interval - Weighted Average Analytical Results											
Sample	e Interval (me	tres)		Analytical Results								
From	То	Int.		Nb ₂ O ₅ %	Ta ppm	Th ppm	U ppm	TREO %	Y2O3 %			
4.57	146.34	141.77		0.820	195	15.3	10	0.225	0.011			
12.19	106.31	94.12	Incl.	1.006	236	18.8	13	0.241	0.012			
169.36	196.45	27.09		0.434	255	18.5	7	0.201	0.013			
202.51	213.41	10.90		1.609	116	40.4	37	1.207	0.016			

ALEY - ANALYTICAL RESULTS

Logged By	Ryan Kressall
Laboratory	Inspectorate
File No.	10-360-03507-01

Location	UTM NAD 83	Comment
Easting	653,845.447	Central 1
Northing	7,710,483.374	
Elevation	500.948	

Direction / Length					
Azimuth	30 °				
Inclination	-55 °				
Lenath	153.05 Metres				

Drill Hole Information							
Date Start	13-Aug-10						
Date End	14-Aug-10						
Operator	Taseko						

Sample	e Interval (met	res)	Sample						Litho	Sample Method	
From	То	Int.	Number	Nb ₂ O ₅ %	Ta ppm	Th ppm	U ppm	TREO %	Y2O3 %	Little	Campio Motrica
0.00	7.32	7.30	Not Sampled	2 3						CASE	Not Sampled
7.32	10.45	3.10	875108	0.29	7.1	109.2	1.6	0.153	0.010	blcCD	1/2 Core Split
10.45	13.42	3.00	875109	0.27	5.14	189.2	2.1	0.347	0.016	blcCD	1/2 Core Split
Standard	Aley1		875110	0.44	23.97	168.7	9.8	0.206	0.011		Quality Control
13.42	17.00	3.60	875111	0.33	12.03	101.9	2.1	0.140	0.010	blcCD	1/2 Core Split
17.00	19.48	2.50	875112	0.70	38.72	168.4	8.4	0.201	0.011	bliCD	1/2 Core Split
19.48	23.66	4.20	875113	0.28	15.35	123.1	4.6	0.231	0.011	bliCD	1/2 Core Split
23.66	26.36	2.70	875114	0.29	11.58	138.3	5.2	0.204	0.013	glpCD	1/2 Core Split
26.36	29.10	2.70	875115	0.74	37.38	170.0	14.4	0.261	0.018	glpCD	1/2 Core Split
29.10	31.78	2.70	875116	0.34	25.49	191.0	7.2	0.297	0.017	glpCD	1/2 Core Split
31.78	34.98	3.20	875117	0.53	20.11	164.0	3.0	0.219	0.019	glpCD	1/2 Core Split
34.98	37.43	2.50	875118	0.46	28.1	129.5	6.8	0.187	0.010	glpCD	1/2 Core Split
37.43	39.75	2.30	875119	0.66	28.3	157.7	9.1	0.214	0.012	glpCD	1/2 Core Split
Duplicate	Previous		875120	0.65	26.5	161.3	8.7	0.204	0.012		Quality Control
39.75	43.32	3.60	875121	0.44	19.85	116.0	3.6	0.175	0.010	blfgCD	1/2 Core Split
43.32	46.72	3.40	875122	0.46	8.99	99.4	2.3	0.192	0.010	blfgCD	1/2 Core Split
46.72	50.04	3.30	875123	0.41	19.83	107.8	2.8	0.170	0.009	blfgCD	1/2 Core Split
50.04	53.42	3.40	875124	0.49	1.86	127.1	4.3	0.161	0.010	glpCCCD	1/2 Core Split
53.42	57.14	3.70	875125	0.39	10	86.4	3.4	0.199	0.009	glpCCCD	1/2 Core Split
57.14	60.09	3.00	875126	0.40	13.38	119.7	4.4	0.209	0.010	dlpCD	1/2 Core Split
60.09	63.11	3.00	875127	0.36	9.22	79.8	2.9	0.199	0.009	dlpCD	1/2 Core Split
63.11	65.66	2.50	875128	0.39	21.02	113.0	3.6	0.154	0.008	glfgCD	1/2 Core Split
65.66	67.94	2.30	875129	0.33	16.69	117.0	7.2	0.154	0.009	glfgCD	1/2 Core Split
Standard	Aley2		875130	0.72	1	137.7	2.5	0.215	0.013		Quality Control
67.94	70.97	3.00	875131	0.27	5.8	62.4	3.4	0.118	0.006	bICD	1/2 Core Split
70.97	74.48	3.50	875132	0.44	8.44	91.1	2.8	0.143	0.008	bICD	1/2 Core Split
74.48	77.85	3.40	875133	0.55	15.32	105.1	5.2	0.170	0.010	bICD	1/2 Core Split
77.85	81.14	3.30	875134	0.34	8.04	105.7	3.1	0.146	0.009	bICD	1/2 Core Split
81.14	84.40	3.30	875135	0.33	11.59	65.1	4.3	0.131	0.007	bICD	1/2 Core Split
84.40	87.66	3.30	875136	0.44	10.66	76.2	3.9	0.175	0.009	bICD	1/2 Core Split
87.66	89.65	2.00	875137	0.74	0.52	45.5	2.5	0.197	0.008	crenpCCC	•
Blank	Granite		875138	0.02	1.52	12.0	5.9	0.018	0.002		Quality Control
89.65	92.91	3.30	875139	0.54	16.57	92.6	11.3	0.168	0.008	blfgCD	1/2 Core Split
Duplicate	Previous		875140	0.52	16.91	90.4	11.4	0.161	0.008		Quality Control
92.91	96.25	3.30	875141	0.41	15.64	103.6	6.9	0.155	0.007	blfgCD	1/2 Core Split
96.25	99.51	3.30	875142	0.30	15.62	99.0	4.5	0.155	0.010	blfgCD	1/2 Core Split
99.51	102.75	3.20	875143	0.56	14.1	123.8	2.9	0.150	0.008	blfgCD	1/2 Core Split
102.75	105.82	3.10	875144	0.88	31.89	221.3	6.5	0.199	0.013	blfgCD	1/2 Core Split
105.82	108.76	2.90	875145	0.28	9.76	99.5	5.7	0.136	0.009	blfgAMX	1/2 Core Split

ALEY - ANALYTICAL RESULTS

Drill	Co	ore	Sa	mpl	es

Logged By	Ryan Kressall
Laboratory	Inspectorate
File No.	10-360-03507-01

Location	UTM NAD 83	Comment
Easting	653,845.447	Central 1
Northing	7,710,483.374	
Flevation	500 948	

Direction	n / Lengtn
Azimuth	30 °
Inclination	-55 °
Length	153.05 Metres

Drill Hole Information							
Date Start	13-Aug-10						
Date End	14-Aug-10						
Operator	Taseko						

Sample	Interval (met	etres) Sample Analytical Results					Litho	Sample Method			
From	То	Int.		Nb ₂ O ₅ %	Ta ppm	Th ppm	U ppm	TREO %	Y2O3 %		
108.76	111.61	2.80	875146	0.42	29.67	198.3	18.5	0.146	0.013	blfgAMX	1/2 Core Split
111.61	115.25	3.60	875147	0.15	2.52	65.1	2.4	0.099	0.007	nmiCD	1/2 Core Split
115.25	118.29	3.00	875148	0.17	46.33	113.2	64.2	0.148	0.008	nlpCD	1/2 Core Split
118.29	121.24	2.90	875149	0.15	72.73	363.1	106.0	0.203	0.019	nlpCD	1/2 Core Split
Standard	OKA-1		875150	0.53	5.94	56.6	32.8	0.321	0.008		Quality Control
121.24	124.39	3.20	875151	0.13	23.82	191.9	32.5	0.174	0.011	nlpCD	1/2 Core Split
124.39	127.44	3.00	875152	0.17	105.81	284.3	136.1	0.205	0.016	nlpCD	1/2 Core Split
127.44	130.49	3.10	875153	0.16	25.65	174.1	20.0	0.216	0.012	nlpCD	1/2 Core Split
130.49	133.54	3.00	875154	0.15	29.1	124.0	35.2	0.374	0.011	nlpCD	1/2 Core Split
133.54	136.59	3.10	875155	0.28	23.16	208.3	19.4	0.305	0.016	nlpCD	1/2 Core Split
136.59	139.53	2.90	875156	0.14	51.66	133.5	25.8	0.188	0.013	nlpCD	1/2 Core Split
139.53	143.41	3.90	875157	0.15	13.14	122.9	9.0	0.134	0.010	nmpAMX	1/2 Core Split
143.41	147.34	3.90	875158	0.12	2.06	155.2	3.8	0.266	0.009	nmiCD	1/2 Core Split
147.34	150.20	2.90	875159	0.07	22.49	169.4	25.9	0.372	0.016	nlpCD	1/2 Core Split
Duplicate	Previous		875160	0.06	22.45	174.1	25.5	0.385	0.015		Quality Control
150.20	153.05	2.90	875161	0.03	11.82	316.8	15.3	0.717	0.028	nlpCD	1/2 Core Split
	Drill Hole Selected Interval - Weighted Average Analytical Results										
Sample Interval (metres) Analytical Results											

Drill Hole Selected Interval - Weighted Average Analytical Results											
Sample Interval (metres) Analytical Results											
From	То	Int.		Nb ₂ O ₅ %	Ta ppm	Th ppm	U ppm	TREO %	Y2O3 %		
7.32	111.61	104.29		0.436	16	119.3	5	0.188	0.010		

ALEY - ANALYTICAL RESULTS

Logged By	Ryan Kressall
Laboratory	Inspectorate
File No.	10-360-03533-01

Location	UTM NAD 83	Comment
Easting	654,017.214	Central 3
Northing	7,710,532.661	
Elevation	508.175	

nt	Direction .	/ Length

Azimuth	30 °
Inclination	-45 °
Length	217.94 Metres

Drill Hole I	Information
Date Start	14-Aug-10
Date End	16-Aug-10
Operator	Taseko

Sample	Interval (met	res)	Sample Analytical Results						Litho	Sample Method	
From	То	Int.	Number	Nb ₂ O ₅ %	Ta ppm	Th ppm	U ppm	TREO %	Y2O3 %	-1	campio monioa
0.00	3.05	3.00	Not Sampled							CASE	Not Sampled
3.05	6.41	3.40	875162	0.21	27.11	103.7	9.0	0.273	0.011	nmCD	1/2 Core Split
6.41	10.20	3.80	875163	0.34	38.6	218.7	11.4	0.279	0.020	nmCD	1/2 Core Split
10.20	14.02	3.80	875164	0.18	5.02	136.4	3.5	0.162	0.016	nmCD	1/2 Core Split
14.02	18.66	4.60	875165	0.15	14.62	58.8	4.6	0.091	0.006	nmCD	1/2 Core Split
18.66	22.31	3.60	875166	0.07	12.43	29.3	4.3	0.096	0.006	nmfgAMX	1/2 Core Split
22.31	26.12	3.80	875167	0.23	7.52	78.3	3.6	0.126	0.007	nlcAMX	1/2 Core Split
26.12	29.55	3.40	875168	0.34	9.1	151.6	4.8	0.129	0.010	nlcAMX	1/2 Core Split
29.55	33.15	3.60	875169	0.15	8.5	129.4	5.2	0.257	0.015	nlcAMX	1/2 Core Split
Standard	Aley1		875170	0.39	20.87	157.8	9.9	0.199	0.010		Quality Control
33.15	36.43	3.30	875171	0.12	5.44	41.4	3.6	0.097	0.006	nmfgAMX	1/2 Core Split
36.43	39.19	2.80	875172	0.19	59.7	191.0	22.4	0.271	0.014	blcCD	1/2 Core Split
39.19	42.35	3.20	875173	0.22	171.76	225.1	31.8	0.132	0.009	blcCD	1/2 Core Split
42.35	45.52	3.20	875174	0.15	9.08	94.9	4.7	0.125	0.009	blcCD	1/2 Core Split
45.52	47.84	2.30	875175	0.06	20.43	45.9	25.6	0.101	0.007	nmpCCCD	1/2 Core Split
47.84	51.76	3.90	875176	0.17	1.43	43.7	1.8	0.149	0.006	nICD	1/2 Core Split
51.76	55.74	4.00	875177	0.17	10.93	63.7	7.3	0.110	0.006	nICD	1/2 Core Split
55.74	58.62	2.90	875178	0.40	3.35	130.3	6.4	0.139	0.008	nmCD	1/2 Core Split
58.62	61.86	3.20	875179	0.14	46.99	268.8	6.7	0.227	0.011	nmCD	1/2 Core Split
Duplicate	Previous		875180	0.14	44.21	272.5	7.1	0.224	0.012		Quality Control
61.86	66.30	4.40	875181	0.24	122.7	271.7	109.4	0.112	0.007	nmCD	1/2 Core Split
66.30	69.47	3.20	875182	0.14	47.68	104.0	15.9	0.632	0.011	nxCD	1/2 Core Split
69.47	71.90	2.40	875183	0.07	67.52	172.4	33.9	0.225	0.015	nxCD	1/2 Core Split
71.90	75.00	3.10	875184	0.12	8.7	270.7	7.8	0.204	0.018	nxCD	1/2 Core Split
75.00	78.05	3.00	875185	0.05	5.96	117.3	5.2	0.257	0.016	nxCD	1/2 Core Split
78.05	81.10	3.00	875186	0.06	6.84	195.6	5.3	0.276	0.017	nxCD	1/2 Core Split
81.10	84.75	3.70	875187	0.04	1.64	242.1	7.6	0.363	0.018	nxCD	1/2 Core Split
84.75	87.20	2.50	Not Sampled							nxCD	Not Sampled
87.20	90.25	3.00	875188	0.09	17.62	122.6	13.5	1.654	0.022	nxCD	1/2 Core Split
90.25	93.29	3.00	875189	0.31	26.95	417.7	15.5	0.593	0.020	nxCD	1/2 Core Split
Standard	Aley3		875190	0.80	30.29	290.4	8.4	0.219	0.011		Quality Control
93.29	96.34	3.00	875191	0.17	65.97	261.4	13.5	0.602	0.014	nxCD	1/2 Core Split
96.34	100.06	3.70	875192	0.08	22.42	46.8	15.0	0.991	0.009	nxCD	1/2 Core Split
100.06	103.08	3.00	875193	0.20	160.94	143.5	138.0	0.152	0.009	nICD	1/2 Core Split
103.08	106.14	3.10	875194	0.04	9.53	43.5	10.5	0.636	0.007	nICD	1/2 Core Split
106.14	108.78	2.60	875195	0.26	130.66	170.2	50.8	0.344	0.016	nICD	1/2 Core Split
108.78	111.79	3.00	875196	0.10	126.94	137.3	99.3	0.249	0.012	nICD	1/2 Core Split
111.79	115.30	3.50	875197	0.13	64.61	155.7	27.5	0.499	0.013	nICD	1/2 Core Split
115.30	118.86	3.60	875198	0.32	13.6	144.1	9.5	0.291	0.011	nICD	1/2 Core Split

ALEY - ANALYTICAL RESULTS

Logged By	Ryan Kressall				
Laboratory	Inspectorate				
File No.	10-360-03533-01				

Location	UTM NAD 83	Comment
Easting	654,017.214	Central 3
Northing	7,710,532.661	
Floyation	508 175	

Direction	n / Lengtn
Azimuth	30 °
Inclination	-45 °
Length	217.94 Metres

Drill Hole Information						
Date Start	14-Aug-10					
Date End	16-Aug-10					
Operator	Taseko					

122.43 125.98 3.50 875201 0.02 3.73 145.0 4.4 0.243 0.011 nICD 1/2 Core Split 125.98 128.99 3.00 875202 0.12 6.98 191.8 15.4 0.276 0.016 nICD 1/2 Core Split 128.99 132.93 3.90 875203 0.08 13.88 143.8 11.9 0.317 0.014 nICD 1/2 Core Split 132.93 135.39 2.50 875204 0.47 12.79 255.1 28.3 0.408 0.015 nxtgCD 1/2 Core Split 135.99 138.44 3.10 875205 0.14 0.62 88.5 3.4 0.178 0.007 nICD 1/2 Core Split 138.44 141.47 3.00 875206 0.20 0.59 76.2 3.5 0.175 0.008 nICD 1/2 Core Split 141.47 144.52 3.10 875207 0.04 0.28 48.0 1.0 0.075 0.004 nICD 1/2 Core Split 144.62 146.80 2.30 875208 0.11 2.34 107.6 5.6 0.385 0.011 nICD 1/2 Core Split 149.99 152.48 2.50 875211 0.05 1.16 54.1 2.7 0.495 0.005 nmCD 1/2 Core Split 152.48 155.28 2.80 875212 0.29 3 138.1 5.5 0.297 0.009 nmCD 1/2 Core Split 157.50 160.37 2.90 875214 0.10 1.08 68.2 2.1 0.13 0.007 bICD 1/2 Core Split 160.37 163.51 3.10 875215 0.34 4.82 102.6 4.7 0.326 0.009 bICD 1/2 Core Split 160.37 163.51 3.10 875215 0.34 4.82 102.6 4.7 0.326 0.009 bICD 1/2 Core Split 160.37 163.51 3.10 875215 0.34 4.82 102.6 4.7 0.326 0.009 bICD 1/2 Core Split 160.37 163.51 3.10 875215 0.34 4.82 102.6 4.7 0.326 0.009 bICD 1/2 Core Split 160.37 163.51 3.10 875215 0.34 4.82 102.6 4.7 0.326 0.016 bICD 1/2 Core Split 160.37 163.51 3.50 875214 0.03 17.3 201.7 2.20 0.137 0.014 Quality Control 160.44 170.01 3.50 875215 0.32 4.91 148.8 5.8 0.401 0.012 bICD 1/2 Core Split 170.01 173.34 3.30 875220 0.30 17.3 201.7 22.0 0.137 0.014 Quality Control 173.34 176.84 3.50 875221 0.32 193.94 189.9 94.2 0.176 0.012 bICD 1/2 Core Split 179.49 183.		ı							711gtil 21			•
From To Int. New 20, % Tappm Th ppm Th ppm							Litho	Sample Method				
Duplicate Previous 875200 0.03 9.25 76.9 9.6 0.280 0.008 Quality Control 122.43 125.98 3.50 875201 0.02 3.73 145.0 4.4 0.243 0.011 nICD 1/2 Core Split 128.99 3.00 875202 0.12 6.98 191.8 15.4 0.276 0.016 nICD 1/2 Core Split 128.99 132.93 3.90 875203 0.08 13.88 143.8 11.9 0.317 0.014 nICD 1/2 Core Split 132.93 135.39 2.50 875204 0.47 12.79 255.1 28.3 0.408 0.015 nxfgCD 1/2 Core Split 132.93 138.44 3.10 875205 0.14 0.62 88.5 3.4 0.178 0.007 nICD 1/2 Core Split 138.44 141.47 3.00 875206 0.20 0.59 76.2 3.5 0.175 0.008 nICD 1/2 Core Split 144.52 146.80 2.30 875208 0.11 2.34 107.6 5.6 0.385 0.011 nICD 1/2 Core Split 144.52 146.80 2.30 875209 0.16 2.22 69.1 3.9 0.154 0.006 nmcD 1/2 Core Split 149.99 3.20 875209 0.16 2.22 69.1 3.9 0.154 0.006 nmcD 1/2 Core Split 149.99 152.48 2.50 875211 0.05 1.16 54.1 2.7 0.495 0.005 nmcD 1/2 Core Split 152.48 155.28 2.80 875212 0.29 3 138.1 5.5 0.297 0.009 nmCD 1/2 Core Split 157.50 160.37 2.90 875214 0.10 1.08 68.2 2.1 0.213 0.007 0.009 nmCD 1/2 Core Split 160.37 163.51 3.10 875215 0.34 4.82 10.26 4.7 0.326 0.009 bICD 1/2 Core Split 160.37 163.51 3.10 875215 0.34 4.82 10.26 4.7 0.326 0.009 bICD 1/2 Core Split 160.37 163.51 3.10 875215 0.34 4.82 10.26 4.7 0.326 0.009 bICD 1/2 Core Split 160.35 166.46 3.00 875217 0.001 1.41 1.00 3.9 0.027 0.002 0.001 0.001 1/2 Core Split 160.35 166.46 3.00 875215 0.34 4.82 10.26 4.7 0.326 0.009 bICD 1/2 Core Split 170.01 173.34 3.30 875215 0.34 4.82 10.68 8.21 0.15 bICD 1/2 Core Split 166.46 170.01 3.50 875218 0.32 4.91 148.8 5.8 0.009 bICD 1/2 Core Split 173.34 176.84 3.50 87522	From	То	Int.		$Nb_2O_5\%$	Ta ppm	Th ppm	U ppm	TREO %	Y2O3 %		
122.43	118.86	122.43	3.60	875199	0.03	9.19	70.6	9.5	0.271	0.008	nICD	1/2 Core Split
125.98	Duplicate	Previous		875200	0.03	9.25	76.9	9.6	0.280	0.008		Quality Control
128.99	122.43	125.98	3.50	875201	0.02	3.73	145.0	4.4	0.243	0.011	nICD	1/2 Core Split
132.93 135.39 2.50 875204 0.47 12.79 255.1 28.3 0.408 0.015 nxfgCD 1/2 Core Split 135.39 138.44 3.10 875205 0.14 0.62 88.5 3.4 0.178 0.007 niCD 1/2 Core Split 141.47 144.52 3.10 875206 0.20 0.59 76.2 3.5 0.175 0.008 niCD 1/2 Core Split 141.47 144.52 146.80 2.30 875208 0.11 2.34 107.6 5.6 0.385 0.011 niCD 1/2 Core Split 146.80 149.99 3.20 875209 0.16 2.22 69.1 3.9 0.154 0.006 nmCD 1/2 Core Split 146.80 149.99 3.20 875209 0.16 2.22 69.1 3.9 0.154 0.006 nmCD 1/2 Core Split 149.99 152.48 2.50 875211 0.53 36.01 43.1 27.9 0.318 0.008 Quality Control 149.99 152.48 2.50 875211 0.05 1.16 54.1 2.7 0.495 0.005 nmCD 1/2 Core Split 152.48 155.28 2.80 875212 0.29 3 138.1 5.5 0.297 0.009 nmCD 1/2 Core Split 157.50 160.37 2.90 875214 0.10 1.08 68.2 2.1 0.213 0.007 biCD 1/2 Core Split 160.37 163.51 3.10 875215 0.34 4.82 102.6 4.7 0.326 0.009 biCD 1/2 Core Split 160.37 163.51 3.50 875218 0.32 4.91 148.8 5.8 0.401 0.012 biCD 1/2 Core Split 170.01 173.34 3.30 875216 0.45 6.3 77.0 5.8 0.825 0.016 biCD 1/2 Core Split 170.01 173.34 3.30 875221 0.32 16.58 196.8 21.4 0.145 0.015 biCD 1/2 Core Split 170.01 173.34 3.50 875222 0.30 17.3 201.7 22.0 0.137 0.014 Quality Control 179.49 183.61 4.10 875223 0.16 21.85 147.8 187.7 0.173 0.010 biCD 1/2 Core Split 179.49 183.61 4.10 875223 0.16 21.85 147.8 187.7 0.173 0.010 biCCD 1/2 Core Split 189.30 192.40 3.10 875225 0.26 186.1 237.7 110.8 0.160 0.010 biCCD 1/2 Core Split 189.89 0.20 189.89 3.40 875225 0.26 186.1 237.7 110.8 0.000 dmCD 1/2 Core Split 189.89 202.18 3.30 875229 0.02 9.32 41.3 3.6 0.204 0.008 dmpCD 1/2 Core Split	125.98	128.99	3.00	875202	0.12	6.98	191.8	15.4	0.276	0.016	nICD	1/2 Core Split
135.39	128.99	132.93	3.90	875203	0.08	13.88	143.8	11.9	0.317	0.014	nICD	1/2 Core Split
138.44	132.93	135.39	2.50	875204	0.47	12.79	255.1	28.3	0.408	0.015	nxfgCD	1/2 Core Split
141.47	135.39	138.44	3.10	875205	0.14	0.62	88.5	3.4	0.178	0.007	nICD	1/2 Core Split
144.52 146.80 2.30 875208 0.11 2.34 107.6 5.6 0.385 0.011 nICD 1/2 Core Split 146.80 149.99 3.20 875209 0.16 2.22 69.1 3.9 0.154 0.006 nmCD 1/2 Core Split Standard OKA-1 875210 0.53 36.01 43.1 27.9 0.318 0.008 Quality Control 149.99 152.48 2.50 875212 0.29 3 138.1 5.5 0.297 0.009 nmCD 1/2 Core Split 155.28 157.50 2.20 875213 0.58 5.77 128.8 8.7 0.204 0.012 blCD 1/2 Core Split 160.37 163.51 3.10 875215 0.34 4.82 102.6 4.7 0.326 0.009 blCD 1/2 Core Split 163.51 166.46 3.00 875217 <0.01	138.44	141.47	3.00	875206	0.20	0.59	76.2	3.5	0.175	0.008	nICD	1/2 Core Split
146.80	141.47	144.52	3.10	875207	0.04	0.28	48.0	1.0	0.075	0.004	nICD	1/2 Core Split
Standard OKA-1 875210 0.53 36.01 43.1 27.9 0.318 0.008 Quality Control 149.99 152.48 2.50 875211 0.05 1.16 54.1 2.7 0.495 0.005 nmCD 1/2 Core Split 152.48 155.28 2.80 875212 0.29 3 138.1 5.5 0.297 0.009 nmCD 1/2 Core Split 155.28 157.50 2.20 875213 0.58 5.77 128.8 8.7 0.204 0.012 blCD 1/2 Core Split 160.37 160.37 2.90 875214 0.10 1.08 68.2 2.1 0.213 0.007 blCD 1/2 Core Split 160.37 163.51 3.10 875216 0.45 6.3 77.0 5.8 0.825 0.016 blCD 1/2 Core Split 160.351 166.46 3.00 875218 0.32 4.91 148.8 5.8 0.825 0.016 blCD 1/2 Core Split	144.52	146.80	2.30	875208	0.11	2.34	107.6	5.6	0.385	0.011	nICD	1/2 Core Split
149.99	146.80	149.99	3.20	875209	0.16	2.22	69.1	3.9	0.154	0.006	nmCD	1/2 Core Split
152.48	Standard	OKA-1		875210	0.53	36.01	43.1	27.9	0.318	0.008		Quality Control
155.28 157.50 2.20 875213 0.58 5.77 128.8 8.7 0.204 0.012 bICD 1/2 Core Split 157.50 160.37 2.90 875214 0.10 1.08 68.2 2.1 0.213 0.007 bICD 1/2 Core Split 160.37 163.51 3.10 875215 0.34 4.82 102.6 4.7 0.326 0.009 bICD 1/2 Core Split 163.51 166.46 3.00 875216 0.45 6.3 77.0 5.8 0.825 0.016 bICD 1/2 Core Split Blank Granite 875217 <0.01	149.99	152.48	2.50	875211	0.05	1.16	54.1	2.7	0.495	0.005	nmCD	1/2 Core Split
157.50 160.37 2.90 875214 0.10 1.08 68.2 2.1 0.213 0.007 blCD 1/2 Core Split 160.37 163.51 3.10 875215 0.34 4.82 102.6 4.7 0.326 0.009 blCD 1/2 Core Split 163.51 166.46 3.00 875216 0.45 6.3 77.0 5.8 0.825 0.016 blCD 1/2 Core Split Blank Granite 875217 <0.01	152.48	155.28	2.80	875212	0.29	3	138.1	5.5	0.297	0.009	nmCD	1/2 Core Split
160.37 163.51 3.10 875215 0.34 4.82 102.6 4.7 0.326 0.009 bICD 1/2 Core Split 163.51 166.46 3.00 875216 0.45 6.3 77.0 5.8 0.825 0.016 bICD 1/2 Core Split Blank Granite 875217 <0.01	155.28	157.50	2.20	875213	0.58	5.77	128.8	8.7	0.204	0.012	bICD	1/2 Core Split
163.51	157.50	160.37	2.90	875214	0.10	1.08	68.2	2.1	0.213	0.007	bICD	1/2 Core Split
Blank Granite 875217 <0.01 1.41 10.0 3.9 0.027 0.002 Quality Control 166.46 170.01 3.50 875218 0.32 4.91 148.8 5.8 0.401 0.012 blCD 1/2 Core Split 170.01 173.34 3.30 875219 0.32 16.58 196.8 21.4 0.145 0.015 blCD 1/2 Core Split Duplicate Previous 875220 0.30 17.3 201.7 22.0 0.137 0.014 Quality Control 173.34 176.84 3.50 875221 0.23 93.94 189.9 94.2 0.176 0.012 blCD 1/2 Core Split 176.84 179.49 2.70 875222 0.19 102.91 188.2 81.7 0.159 0.008 blpCCCD 1/2 Core Split 183.61 186.55 2.90 875224 0.38 6.63 138.1 5.4 0.179 0.009 dmCD 1/2 Core Split <tr< td=""><td>160.37</td><td>163.51</td><td>3.10</td><td>875215</td><td>0.34</td><td>4.82</td><td>102.6</td><td>4.7</td><td>0.326</td><td>0.009</td><td>bICD</td><td>1/2 Core Split</td></tr<>	160.37	163.51	3.10	875215	0.34	4.82	102.6	4.7	0.326	0.009	bICD	1/2 Core Split
166.46 170.01 3.50 875218 0.32 4.91 148.8 5.8 0.401 0.012 bICD 1/2 Core Split 170.01 173.34 3.30 875219 0.32 16.58 196.8 21.4 0.145 0.015 bICD 1/2 Core Split Duplicate Previous 875220 0.30 17.3 201.7 22.0 0.137 0.014 Quality Control 173.34 176.84 3.50 875221 0.23 93.94 189.9 94.2 0.176 0.012 bICD 1/2 Core Split 176.84 179.49 2.70 875222 0.19 102.91 188.2 81.7 0.159 0.008 blpCCCD 1/2 Core Split 179.49 183.61 4.10 875223 0.16 21.85 147.8 187.7 0.173 0.010 blpCCCD 1/2 Core Split 183.61 186.55 2.90 875224 0.38 6.63 138.1 5.4 0.179 0.009 dmCD	163.51	166.46	3.00	875216	0.45	6.3	77.0	5.8	0.825	0.016	bICD	1/2 Core Split
170.01 173.34 3.30 875219 0.32 16.58 196.8 21.4 0.145 0.015 bICD 1/2 Core Split Duplicate Previous 875220 0.30 17.3 201.7 22.0 0.137 0.014 Quality Control 173.34 176.84 3.50 875221 0.23 93.94 189.9 94.2 0.176 0.012 bICD 1/2 Core Split 176.84 179.49 2.70 875222 0.19 102.91 188.2 81.7 0.159 0.008 blpCCCD 1/2 Core Split 179.49 183.61 4.10 875223 0.16 21.85 147.8 187.7 0.173 0.010 blpCCCD 1/2 Core Split 183.61 186.55 2.90 875224 0.38 6.63 138.1 5.4 0.179 0.009 dmCD 1/2 Core Split 186.55 189.30 2.80 875225 0.26 186.1 237.7 110.8 0.162 0.011 dmCD <td>Blank</td> <td>Granite</td> <td></td> <td>875217</td> <td><0.01</td> <td>1.41</td> <td>10.0</td> <td>3.9</td> <td>0.027</td> <td>0.002</td> <td></td> <td>Quality Control</td>	Blank	Granite		875217	<0.01	1.41	10.0	3.9	0.027	0.002		Quality Control
Duplicate Previous 875220 0.30 17.3 201.7 22.0 0.137 0.014 Quality Control 173.34 176.84 3.50 875221 0.23 93.94 189.9 94.2 0.176 0.012 blCD 1/2 Core Split 176.84 179.49 2.70 875222 0.19 102.91 188.2 81.7 0.159 0.008 blpCCCD 1/2 Core Split 179.49 183.61 4.10 875223 0.16 21.85 147.8 187.7 0.173 0.010 blpCCCD 1/2 Core Split 183.61 186.55 2.90 875224 0.38 6.63 138.1 5.4 0.179 0.009 dmCD 1/2 Core Split 186.55 189.30 2.80 875225 0.26 186.1 237.7 110.8 0.162 0.011 dmCD 1/2 Core Split 189.30 192.40 3.10 875226 0.15 105.62 196.9 63.6 0.236 0.010 dmCD </td <td>166.46</td> <td>170.01</td> <td>3.50</td> <td>875218</td> <td>0.32</td> <td>4.91</td> <td>148.8</td> <td>5.8</td> <td>0.401</td> <td>0.012</td> <td>bICD</td> <td>1/2 Core Split</td>	166.46	170.01	3.50	875218	0.32	4.91	148.8	5.8	0.401	0.012	bICD	1/2 Core Split
173.34 176.84 3.50 875221 0.23 93.94 189.9 94.2 0.176 0.012 blCD 1/2 Core Split 176.84 179.49 2.70 875222 0.19 102.91 188.2 81.7 0.159 0.008 blpCCCD 1/2 Core Split 179.49 183.61 4.10 875223 0.16 21.85 147.8 187.7 0.173 0.010 blpCCCD 1/2 Core Split 183.61 186.55 2.90 875224 0.38 6.63 138.1 5.4 0.179 0.009 dmCD 1/2 Core Split 186.55 189.30 2.80 875225 0.26 186.1 237.7 110.8 0.162 0.011 dmCD 1/2 Core Split 189.30 192.40 3.10 875226 0.15 105.62 196.9 63.6 0.236 0.010 dmCD 1/2 Core Split 195.52 198.89 3.40 875228 0.11 8.97 67.8 13.9 0.138	170.01	173.34	3.30	875219	0.32	16.58	196.8	21.4	0.145	0.015	bICD	1/2 Core Split
176.84 179.49 2.70 875222 0.19 102.91 188.2 81.7 0.159 0.008 blpCCCD 1/2 Core Split 179.49 183.61 4.10 875223 0.16 21.85 147.8 187.7 0.173 0.010 blpCCCD 1/2 Core Split 183.61 186.55 2.90 875224 0.38 6.63 138.1 5.4 0.179 0.009 dmCD 1/2 Core Split 186.55 189.30 2.80 875225 0.26 186.1 237.7 110.8 0.162 0.011 dmCD 1/2 Core Split 189.30 192.40 3.10 875226 0.15 105.62 196.9 63.6 0.236 0.010 dmCD 1/2 Core Split 192.40 195.52 3.10 875227 0.15 0.3 39.6 10.9 0.150 0.011 dmpCC 1/2 Core Split 195.52 198.89 3.40 875228 0.11 8.97 67.8 13.9 0.138	Duplicate	Previous		875220	0.30	17.3	201.7	22.0	0.137	0.014		Quality Control
179.49 183.61 4.10 875223 0.16 21.85 147.8 187.7 0.173 0.010 blpCCCD 1/2 Core Split 183.61 186.55 2.90 875224 0.38 6.63 138.1 5.4 0.179 0.009 dmCD 1/2 Core Split 186.55 189.30 2.80 875225 0.26 186.1 237.7 110.8 0.162 0.011 dmCD 1/2 Core Split 189.30 192.40 3.10 875226 0.15 105.62 196.9 63.6 0.236 0.010 dmCD 1/2 Core Split 192.40 195.52 3.10 875227 0.15 0.3 39.6 10.9 0.150 0.011 dmpCC 1/2 Core Split 195.52 198.89 3.40 875228 0.11 8.97 67.8 13.9 0.138 0.009 dmpCC 1/2 Core Split 198.89 202.18 3.30 875229 0.02 9.32 41.3 3.6 0.204	173.34	176.84	3.50	875221	0.23	93.94	189.9	94.2	0.176	0.012	bICD	1/2 Core Split
183.61 186.55 2.90 875224 0.38 6.63 138.1 5.4 0.179 0.009 dmCD 1/2 Core Split 186.55 189.30 2.80 875225 0.26 186.1 237.7 110.8 0.162 0.011 dmCD 1/2 Core Split 189.30 192.40 3.10 875226 0.15 105.62 196.9 63.6 0.236 0.010 dmCD 1/2 Core Split 192.40 195.52 3.10 875227 0.15 0.3 39.6 10.9 0.150 0.011 dmpCC 1/2 Core Split 195.52 198.89 3.40 875228 0.11 8.97 67.8 13.9 0.138 0.009 dmpCC 1/2 Core Split 198.89 202.18 3.30 875229 0.02 9.32 41.3 3.6 0.204 0.008 dmpCD 1/2 Core Split Standard Aley2 875230 0.75 44.04 183.7 2.3 0.218 0.013 Qu	176.84	179.49	2.70	875222	0.19	102.91	188.2	81.7	0.159	0.008	blpCCCD	1/2 Core Split
186.55 189.30 2.80 875225 0.26 186.1 237.7 110.8 0.162 0.011 dmCD 1/2 Core Split 189.30 192.40 3.10 875226 0.15 105.62 196.9 63.6 0.236 0.010 dmCD 1/2 Core Split 192.40 195.52 3.10 875227 0.15 0.3 39.6 10.9 0.150 0.011 dmpCC 1/2 Core Split 195.52 198.89 3.40 875228 0.11 8.97 67.8 13.9 0.138 0.009 dmpCC 1/2 Core Split 198.89 202.18 3.30 875229 0.02 9.32 41.3 3.6 0.204 0.008 dmpCD 1/2 Core Split Standard Aley2 875230 0.75 44.04 183.7 2.3 0.218 0.013 Quality Control 202.18 206.60 4.40 875231 0.02 10.12 33.8 5.6 0.147 0.008 dmpCD	179.49	183.61	4.10	875223	0.16	21.85	147.8	187.7	0.173	0.010	blpCCCD	1/2 Core Split
189.30 192.40 3.10 875226 0.15 105.62 196.9 63.6 0.236 0.010 dmCD 1/2 Core Split 192.40 195.52 3.10 875227 0.15 0.3 39.6 10.9 0.150 0.011 dmpCC 1/2 Core Split 195.52 198.89 3.40 875228 0.11 8.97 67.8 13.9 0.138 0.009 dmpCC 1/2 Core Split 198.89 202.18 3.30 875229 0.02 9.32 41.3 3.6 0.204 0.008 dmpCD 1/2 Core Split Standard Aley2 875230 0.75 44.04 183.7 2.3 0.218 0.013 Quality Control 202.18 206.60 4.40 875231 0.02 10.12 33.8 5.6 0.147 0.008 dmpCD 1/2 Core Split 206.60 209.77 3.20 875232 0.07 2.03 72.0 2.5 0.127 0.007 nmCD 1/2	183.61	186.55	2.90	875224	0.38	6.63	138.1	5.4	0.179	0.009	dmCD	1/2 Core Split
192.40 195.52 3.10 875227 0.15 0.3 39.6 10.9 0.150 0.011 dmpCC 1/2 Core Split 195.52 198.89 3.40 875228 0.11 8.97 67.8 13.9 0.138 0.009 dmpCC 1/2 Core Split 198.89 202.18 3.30 875229 0.02 9.32 41.3 3.6 0.204 0.008 dmpCD 1/2 Core Split Standard Aley2 875230 0.75 44.04 183.7 2.3 0.218 0.013 Quality Control 202.18 206.60 4.40 875231 0.02 10.12 33.8 5.6 0.147 0.008 dmpCD 1/2 Core Split 206.60 209.77 3.20 875232 0.07 2.03 72.0 2.5 0.127 0.007 nmCD 1/2 Core Split	186.55	189.30	2.80	875225	0.26	186.1	237.7	110.8	0.162	0.011	dmCD	1/2 Core Split
195.52 198.89 3.40 875228 0.11 8.97 67.8 13.9 0.138 0.009 dmpCC 1/2 Core Split 198.89 202.18 3.30 875229 0.02 9.32 41.3 3.6 0.204 0.008 dmpCD 1/2 Core Split Standard Aley2 875230 0.75 44.04 183.7 2.3 0.218 0.013 Quality Control 202.18 206.60 4.40 875231 0.02 10.12 33.8 5.6 0.147 0.008 dmpCD 1/2 Core Split 206.60 209.77 3.20 875232 0.07 2.03 72.0 2.5 0.127 0.007 nmCD 1/2 Core Split	189.30	192.40	3.10	875226	0.15	105.62	196.9	63.6	0.236	0.010	dmCD	1/2 Core Split
198.89 202.18 3.30 875229 0.02 9.32 41.3 3.6 0.204 0.008 dmpCD 1/2 Core Split Standard Aley2 875230 0.75 44.04 183.7 2.3 0.218 0.013 Quality Control 202.18 206.60 4.40 875231 0.02 10.12 33.8 5.6 0.147 0.008 dmpCD 1/2 Core Split 206.60 209.77 3.20 875232 0.07 2.03 72.0 2.5 0.127 0.007 nmCD 1/2 Core Split	192.40	195.52	3.10	875227	0.15	0.3	39.6	10.9	0.150	0.011	dmpCC	1/2 Core Split
Standard Aley2 875230 0.75 44.04 183.7 2.3 0.218 0.013 Quality Control 202.18 206.60 4.40 875231 0.02 10.12 33.8 5.6 0.147 0.008 dmpCD 1/2 Core Split 206.60 209.77 3.20 875232 0.07 2.03 72.0 2.5 0.127 0.007 nmCD 1/2 Core Split	195.52	198.89	3.40	875228	0.11	8.97	67.8	13.9	0.138	0.009	dmpCC	1/2 Core Split
202.18 206.60 4.40 875231 0.02 10.12 33.8 5.6 0.147 0.008 dmpCD 1/2 Core Split 206.60 209.77 3.20 875232 0.07 2.03 72.0 2.5 0.127 0.007 nmCD 1/2 Core Split	198.89	202.18	3.30	875229	0.02	9.32	41.3	3.6	0.204	0.008	dmpCD	1/2 Core Split
206.60 209.77 3.20 875232 0.07 2.03 72.0 2.5 0.127 0.007 nmCD 1/2 Core Split	Standard	Aley2		875230	0.75	44.04	183.7	2.3	0.218	0.013		Quality Control
	202.18	206.60	4.40	875231	0.02	10.12	33.8	5.6	0.147	0.008	dmpCD	1/2 Core Split
209.77 212.99 3.20 875233 0.27 17.6 160.3 6.3 0.179 0.009 nmCD 1/2 Core Split	206.60	209.77	3.20	875232	0.07	2.03	72.0	2.5	0.127	0.007	nmCD	1/2 Core Split
	209.77	212.99	3.20	875233	0.27	17.6	160.3	6.3	0.179	0.009	nmCD	1/2 Core Split
212.99 215.49 2.50 875234 0.17 25.34 203.6 12.9 0.270 0.007 nmCD 1/2 Core Split	212.99	215.49	2.50	875234	0.17	25.34	203.6	12.9	0.270	0.007	nmCD	1/2 Core Split
215.49 217.94 2.40 875235 0.32 34.39 282.0 18.2 0.209 0.011 nmCD 1/2 Core Split	215.49	217.94	2.40	875235	0.32	34.39	282.0	18.2	0.209	0.011	nmCD	1/2 Core Split

ALEY - ANALYTICAL RESULTS

Drill Core Samples

Logged By	Ryan Kressall
Laboratory	Inspectorate
File No.	10-360-03558-01

Location	UTM NAD 83	Comment
Easting	653,851.320	Central 1
Northing	7,710,504.580	
Elevation	502.734	

Direction / Length					
Azimuth	40 °				
Inclination	-55 °				

Length

215.24 Metres

Drill Hole Information						
Date Start	15-Aug-10					
Date End	16-Aug-10					
Operator	Taseko					

Sample	e Interval (met	res)	Sample Analytical Results			Litho	Sample Method				
From	То	Int.	Number	Nb ₂ O ₅ %	Ta ppm	Th ppm	U ppm	TREO %	Y2O3 %	Litho	Sample Method
0.00	3.05	3.00	Not Sampled	2 5 5 1			- 111			CASE	Not Sampled
3.05	6.61	3.60	875236	0.44	15	73.0	4.0	0.222	0.009	nICD	1/2 Core Split
6.61	10.07	3.50	875237	0.51	34	162.0	6.0	0.204	0.008	nICD	1/2 Core Split
10.07	13.39	3.30	875238	0.51	29	124.0	4.0	0.188	0.007	nICD	1/2 Core Split
13.39	17.07	3.70	875239	0.41	14	74.0	4.0	0.250	0.007	nICD	1/2 Core Split
Duplicate	Previous		875240	0.35	13	72.0	4.0	0.248	0.007		Quality Control
17.07	20.12	3.10	875241	0.64	19	103.0	6.0	0.229	0.008	blCD	1/2 Core Split
20.12	23.17	3.10	875242	0.49	24	107.0	9.0	0.191	0.007	blCD	1/2 Core Split
Blank	Granite		875243	0.01	2	9.0	4.0	0.017	0.002		Quality Control
23.17	26.22	3.00	875244	0.42	140	135.0	32.0	0.173	0.010	blCD	1/2 Core Split
26.22	29.27	3.10	875245	0.31	11	71.0	3.0	0.167	0.006	bICD	1/2 Core Split
Standard	OKA-1		285051	0.51	21	53.0	28.0	0.318			Quality Control
29.27	32.67	3.40	875246	0.65	25	140.0	4.0	0.204	0.008	bICD	1/2 Core Split
32.67	35.54	2.90	875247	0.49	15	124.0	3.0	0.168	0.008	blpCD	1/2 Core Split
35.54	38.41	2.90	875248	0.36	39	61.0	16.0	0.176	0.009	blpCD	1/2 Core Split
38.41	41.46	3.10	875249	0.36	49	85.0	14.0	0.187	0.010	blpCD	1/2 Core Split
Duplicate	Previous		875250	0.34	63	81.0	17.0	0.193	0.010		Quality Control
41.46	44.92	3.50	875251	0.37	16	115.0	4.0	0.155	0.008	bICD	1/2 Core Split
44.92	47.99	3.10	875252	0.48	11	91.0	5.0	0.174	0.006	bICD	1/2 Core Split
47.99	51.19	3.20	875253	0.37	17	117.0	5.0	0.175	0.008	bICD	1/2 Core Split
51.19	54.36	3.20	875254	0.65	37	196.0	15.0	0.211	0.010	bICD	1/2 Core Split
54.36	58.34	4.00	875255	0.46	15	128.0	4.0	0.194	0.011	bICD	1/2 Core Split
58.34	61.69	3.30	875256	0.16	8	56.0	3.0	0.186	0.006	bICD	1/2 Core Split
61.69	64.90	3.20	875257	0.11	42	108.0	9.0	0.153	0.006	bICD	1/2 Core Split
64.90	68.00	3.10	875258	0.17	148	127.0	71.0	0.262	0.007	bICD	1/2 Core Split
68.00	71.05	3.00	875259	0.09	121	117.0	96.0	0.236	0.009	bICD	1/2 Core Split
Duplicate	Previous		875260	0.11	117	119.0	95.0	0.239	0.009		Quality Control
71.05	73.90	2.90	875261	0.16	103	335.0	59.0	0.314	0.015	bICD	1/2 Core Split
73.90	77.66	3.80	875262	0.40	79	348.0	64.0	0.257	0.015	blpCD	1/2 Core Split
77.66	81.31	3.70	875263	0.26	124	291.0	92.0	0.262	0.017	blpCD	1/2 Core Split
81.31	83.46	2.10	875264	0.83	3	368.0	23.0	0.191	0.010	bICCCD	1/2 Core Split
83.46	86.52	3.10	875265	0.82	165	254.0	153.0	0.266	0.012	bmCD	1/2 Core Split
Standard	Aley1		285052	0.40	24	158.0	10.0	0.209			Quality Control
86.52	89.58	3.10	875266	0.11	19	38.0	7.0	0.433	0.010	bmCD	1/2 Core Split
89.58	92.45	2.90	875267	0.06	102	143.0	88.0	0.294	0.017	bmCD	1/2 Core Split
92.45	95.51	3.10	875268	0.01	10	52.0	5.0	0.215	0.009	bmCD	1/2 Core Split
95.51	98.24	2.70	875269	0.20	91	112.0	48.0	0.254	0.014	bmCD	1/2 Core Split
Duplicate	Previous		875270	0.18	85	106.0	45.0	0.237	0.013		Quality Control
98.24	103.51	5.30	875271	0.09	58	109.0	21.0	0.280	0.005	nmpAMX	1/2 Core Split

ALEY - ANALYTICAL RESULTS

Logged By	Ryan Kressall
Laboratory	Inspectorate
File No.	10-360-03558-01

Location	UTM NAD 83	Comment
Easting	653,851.320	Central 1
Northing	7,710,504.580	
Elevation	502.734	

Direction / Length					
Azimuth	40 °				
Inclination	-55 °				
Longth	215 24 Motros				

Drill Hole Information						
Date Start	15-Aug-10					
Date End	16-Aug-10					
Operator	Taseko					

File No.	10-300-035	20 01	Elevation	502.75	'			engui 21	5.24 Metres	Opera	1 aseko
	Interval (met		Sample Number				al Results		T	Litho	Sample Method
From	То	Int.		$Nb_2O_5\%$	Ta ppm	Th ppm	U ppm		Y2O3 %		
103.51	106.60	3.10	875272	0.06	109	50.0	115.0	0.206	0.010	blpCD	1/2 Core Split
106.60	109.80	3.20	875273	0.08	86	66.0	59.0	0.280	0.010	blpCD	1/2 Core Split
109.80	112.89	3.10	875274	0.01	32	10.0	46.0	0.249	0.010	blpCD	1/2 Core Split
112.89	116.00	3.10	875275	0.03	87	21.0	134.0	0.221	0.011	blpCD	1/2 Core Split
116.00	119.16	3.20	875276	0.05	82	40.0	73.0	0.231	0.012	blpCD	1/2 Core Split
119.16	123.10	3.90	875277	0.05	7	37.0	8.0	0.196	0.005	nmAMX	1/2 Core Split
123.10	127.48	4.40	875278	0.03	24	35.0	21.0	0.650	0.006	nmAMX	1/2 Core Split
127.48	130.45	3.00	875279	0.08	18	169.0	21.0	0.223	0.015	blpCD	1/2 Core Split
Duplicate	Previous		875280	0.10	19	165.0	20.0	0.244	0.015		Quality Control
130.45	133.68	3.20	875281	0.10	3	44.0	3.0	0.300	0.009	blpCD	1/2 Core Split
133.68	136.44	2.80	875282	0.08	1	22.0	2.0	0.280	0.007	blpCD	1/2 Core Split
136.44	140.24	3.80	875283	0.06	4	29.0	6.0	0.280	0.004	nmpAMX	1/2 Core Split
140.24	143.94	3.70	875284	0.07	3	40.0	5.0	0.085	0.006	nmpAMX	1/2 Core Split
143.94	148.17	4.20	875285	0.09	16	597.0	18.0	0.121	0.030	nmpAMX	1/2 Core Split
Standard	Aley2		285053	0.69	45	192.0	2.0	0.229			Quality Control
148.17	151.79	3.60	875286	0.07	12	42.0	9.0	0.127	0.007	nmpAMX	1/2 Core Split
151.79	155.25	3.50	875287	0.09	19	97.0	9.0	0.184	0.011	nmpAMX	1/2 Core Split
155.25	157.90	2.70	875288	0.06	41	21.0	34.0	0.181	0.011	nlpCC	1/2 Core Split
157.90	161.24	3.30	875289	0.08	89	102.0	145.0	0.200	0.012	nlpCC	1/2 Core Split
Duplicate	Previous		875290	0.08	82	91.0	143.0	0.191	0.012		Quality Control
161.24	163.66	2.40	875291	0.11	123	81.0	136.0	0.145	0.007	nlpCC	1/2 Core Split
163.66	165.89	2.20	875292	0.36	197	222.0	234.0	0.203	0.012	nlpCC	1/2 Core Split
165.89	168.61	2.70	875293	0.28	191	314.0	81.0	0.208	0.014	blpCD	1/2 Core Split
168.61	171.26	2.60	875294	0.09	16	69.0	16.0	0.111	0.009	blpCD	1/2 Core Split
171.26	174.57	3.30	875295	0.11	49	91.0	45.0	0.104	0.006	nmAM	1/2 Core Split
174.57	177.91	3.30	875296	0.04	17	27.0	15.0	0.060	0.004	nmAM	1/2 Core Split
177.91	181.71	3.80	875297	0.13	32	94.0	28.0	0.194	0.010	blpAMX	1/2 Core Split
181.71	185.89	4.20	875298	0.18	13	108.0	61.0	0.163	0.011	blpAMX	1/2 Core Split
185.89	189.63	3.70	875299	0.25	82	246.0	57.0	0.200	0.013	blpCD	1/2 Core Split
Duplicate	Previous		875300	0.26	89	233.0	64.0	0.201	0.013		Quality Control
189.63	192.80	3.20	875301	0.06	111	123.0	127.0	0.198	0.014	blpCD	1/2 Core Split
192.80	196.16	3.40	875302	0.05	93	142.0	109.0	0.254	0.013	blpCD	1/2 Core Split
196.16	200.60	4.40	875303	0.07	23	107.0	27.0	0.284	0.010	nlpAMX	1/2 Core Split
200.60	205.17	4.60	875304	0.07	45	178.0	42.0	0.331	0.017	nlpAMX	1/2 Core Split
205.17	209.80	4.60	875305	0.13	63	120.0	63.0	0.194	0.008	nlpAMX	1/2 Core Split
209.80	212.58	2.80	875306	0.06	49	102.0	58.0	0.161	0.005	nmfgAM	1/2 Core Split
212.58	215.24	2.70	875307	0.10	122	112.0	150.0	0.156	0.008	nmfgAM	1/2 Core Split
			•	•	•	•		•	•	•	

ALEY - ANALYTICAL RESULTS

Drill Core Samples						
Logged By	Ryan Kressall					
Laboratory	Inspectorate					
File No.	10-360-03558-01					

Location	UTW NAD 83	Comment
Easting	653,851.320	Central 1
Northing	7,710,504.580	
Elevation	502.734	

Direction / Length		
Azimuth	40 °	
Inclination	-55 °	
Length	215.24 Metres	

Drill Hole Information			
Date Start	15-Aug-10		
Date End	16-Aug-10		
Operator	Taseko		

Sample	e Interval (met	res)	Sample	Sample Analytical Results				Litho	Sample Method		
From	То	Int.		${ m Nb}_2{ m O}_5\%$	Ta ppm	Th ppm	U ppm	TREO %	Y2O3 %		·
	Drill Hole Selected Interval - Weighted Average Analytical Results										
Sample	e Interval (met	res)		Analytical Results							
	To	Int.		Nb.O.%	Ta ppm	Th ppm	U ppm	TREO %	Y2O3 %		
From	10	IIIC.		2 5 5 7		• •					

ALEY - ANALYTICAL RESULTS

Logged By	Ryan Kressall
Laboratory	Inspectorate
File No.	10-360-03576-01

Location	UTM NAD 83	Comment
Easting	654,025.429	Central 3
Northing	7,710,481.728	
Elevation	511.387	

Direction / Length			
Azimuth 30 °			
Inclination	nclination -45 °		
Length	213.72 Metres		

Drill Hole Information			
Date Start	18-Aug-10		
Date End	19-Aug-10		
Operator	Taseko		

Sample	Interval (met	res)	Sample Analytical Results			ingin 213.72 Metro					
From	To	Int.	Number	Nb ₂ O ₅ %	Ta ppm	Th ppm	U ppm		Y2O3 %	Litho	Sample Method
0.00	3.45	3.40	Not Sampled	2 5 7			- pp		1 - 0 - 7 - 7	CASE	Not Sampled
3.45	7.14	3.70	912536	0.33	26.56	107.5	4.2	0.281	0.010	blfCD	1/2 Core Split
7.14	10.56	3.40	912537	0.30	35.19	93.4	4.8	0.156	0.009	blfCD	1/2 Core Split
10.56	13.49	2.90	912538	0.64	9.82	135.1	2.6	0.158	0.011	blfCD	1/2 Core Split
13.49	17.43	3.90	912539	0.42	6.06	176.8	2.4	0.127	0.017	blfCD	1/2 Core Split
Duplicate	Previous		912540	0.43	6.6	192.2	2.5	0.135	0.017		Quality Control
17.43	21.06	3.60	912541	0.20	7.33	102.5	3.8	0.158	0.024	blfCD	1/2 Core Split
21.06	24.67	3.60	912542	0.50	30.54	308.5	3.8	0.147	0.017	blfCD	1/2 Core Split
24.67	28.21	3.50	912543	0.12	0.76	134.3	2.5	0.187	0.023	blcCD	1/2 Core Split
28.21	31.48	3.30	912544	0.25	0.43	80.8	2.2	0.116	0.016	blcCD	1/2 Core Split
31.48	35.01	3.50	912545	0.31	9.9	330.8	6.3	0.193	0.038	blcCD	1/2 Core Split
35.01	38.00	3.00	912546	0.23	1.41	112.8	2.3	0.204	0.015	blcCD	1/2 Core Split
38.00	41.75	3.80	912547	0.54	4.29	130.4	3.1	0.170	0.013	blcCD	1/2 Core Split
41.75	46.08	4.30	912548	0.43	22	125.5	20.6	0.191	0.010	blcCD	1/2 Core Split
46.08	49.61	3.50	912549	0.22	10.38	117.3	6.8	0.158	0.017	nliCD	1/2 Core Split
Standard	Aley2		912550	0.68	41.62	153.8	2.3	0.228	0.012		Quality Control
49.61	52.99	3.40	912551	0.19	8.95	85.0	4.0	0.147	0.010	nliCD	1/2 Core Split
52.99	56.52	3.50	912552	0.37	10.7	102.6	3.6	0.199	0.012	nliCD	1/2 Core Split
56.52	59.83	3.30	912553	0.18	4.52	128.8	3.0	0.208	0.011	nliCD	1/2 Core Split
59.83	63.17	3.30	912554	0.14	10.18	85.3	2.6	0.248	0.010	nliCD	1/2 Core Split
63.17	66.32	3.10	912555	0.30	20.19	107.4	7.6	0.299	0.010	blcCD	1/2 Core Split
66.32	69.39	3.10	912556	0.27	10.71	101.7	8.9	0.180	0.011	blcCD	1/2 Core Split
69.39	72.56	3.20	912557	0.21	40.41	113.2	15.6	0.142	0.008	blcCD	1/2 Core Split
72.56	75.95	3.40	912558	0.21	30.47	114.6	13.3	0.121	0.006	nliCD	1/2 Core Split
75.95	79.31	3.40	912559	0.23	3.98	99.0	2.8	0.133	0.010	nliCD	1/2 Core Split
Duplicate	Previous		912560	0.22	3.78	97.6	2.6	0.129	0.011		Quality Control
79.31	82.67	3.40	912561	0.17	18.23	168.7	5.5	0.123	0.013	blcCD	1/2 Core Split
82.67	85.66	3.00	912562	0.04	1.29	76.9	2.8	0.174	0.009	blcCD	1/2 Core Split
85.66	88.90	3.20	912563	0.15	12.36	316.8	4.5	0.319	0.024	blcCD	1/2 Core Split
88.90	92.53	3.60	912564	0.26	1.33	129.0	2.4	0.156	0.015	blcCD	1/2 Core Split
92.53	96.03	3.50	912565	0.18	1.28	70.8	2.3	0.193	0.008	nmiCD	1/2 Core Split
96.03	99.55	3.50	912566	0.07	0.75	51.9	0.6	0.083	0.006	nmiCD	1/2 Core Split
99.55	102.85	3.30	912567	0.08	3.14	64.3	2.7	0.174	0.015	nmiCD	1/2 Core Split
102.85	105.31	2.50	912568	0.10	1.83	66.0	3.9	0.473	0.037	nmiCD	1/2 Core Split
105.31	107.72	2.40	912569	0.56	5.54	72.3	3.1	0.351	0.018	blfgCD	1/2 Core Split
107.72	110.21	2.50	912571	0.39	6.65	260.0	5.4	0.378	0.019	blfgCD	1/2 Core Split
110.21	113.78	3.60	912572	1.04	8	227.6	4.1	0.268	0.010	bICM	1/2 Core Split
Standard	OKA-1		912570	0.53	41.64	52.8	26.8	0.323	0.007		Quality Control
113.78	117.26	3.50	912573	1.17	0.16	158.2	3.9	0.245	0.008	bICM	1/2 Core Split

ALEY - ANALYTICAL RESULTS

Hole ID 2010-027

Drill	Core	Samp	les
-------	------	------	-----

Logged By	Ryan Kressall
Laboratory	Inspectorate
File No.	10-360-03576-01

Location	UTM NAD 83	Comme
Easting	654,025.429	Central 3
Northing	7,710,481.728	
Elevation	511.387	

Direction / Length

Azimuth	30 °
Inclination	-45 °
Length	213.72 Metres

Drill	Hole	Inform	ation
_			

Date Start	18-Aug-10
Date End	19-Aug-10
Operator	Taseko

Sample	Interval (met	res)	Sample Number			Litho	Sample Method				
From	То	Int.	Number	Nb ₂ O ₅ %	Ta ppm	Th ppm	U ppm	TREO %	Y2O3 %		
117.26	121.07	3.80	912574	1.55	0.46	138.6	6.2	0.317	0.010	blCM	1/2 Core Split
Blank	Granite		912575	0.02	1.68	10.9	3.6	0.023	0.002		Quality Control
121.07	125.13	4.10	912576	1.45	0.44	160.5	9.2	0.321	0.009	blCM	1/2 Core Split
125.13	128.26	3.10	912577	0.56	44.6	166.2	20.3	0.279	0.012	blfCC	1/2 Core Split
128.26	131.62	3.40	912578	0.59	3.88	178.7	24.6	0.296	0.009	blfCC	1/2 Core Split
131.62	135.61	4.00	912579	0.45	5.05	173.7	5.4	0.222	0.013	nlfgCD	1/2 Core Split
Duplicate	Previous		912580	0.44	5.54	187.3	5.1	0.215	0.012		Quality Control
135.61	139.63	4.00	912581	0.26	5.48	194.8	5.7	0.207	0.016	nlfgCD	1/2 Core Split
139.63	143.71	4.10	912582	0.25	10.41	367.2	9.9	0.295	0.036	nlfgCD	1/2 Core Split
143.71	147.82	4.10	912583	0.18	1.34	108.8	3.2	0.270	0.008	nlfgCD	1/2 Core Split
147.82	151.14	3.30	912584	1.05	13.24	148.6	3.7	0.202	0.010	gmfgCD	1/2 Core Split
151.14	154.51	3.40	912585	0.20	5.49	58.5	4.3	0.150	0.006	nlpAMX	1/2 Core Split
154.51	158.02	3.50	912586	0.41	55.08	111.9	63.1	0.291	0.008	nlpAMX	1/2 Core Split
158.02	161.43	3.40	912587	0.25	11.45	98.9	8.3	0.288	0.009	nlpAMX	1/2 Core Split
161.43	164.70	3.30	912588	0.22	1.36	50.4	2.4	0.130	0.006	nlpAMX	1/2 Core Split
164.70	168.36	3.70	912589	0.16	7.41	89.8	4.3	0.135	0.008	nlpAMX	1/2 Core Split
Standard	Aley1		912590	0.40	23.57	160.3	9.7	0.201	0.010		Quality Control
168.36	171.88	3.50	912591	0.50	5.74	139.7	3.3	0.745	0.007	nlpAMX	1/2 Core Split
171.88	175.18	3.30	912592	0.24	15.34	61.7	8.2	0.222	0.006	nlpAMX	1/2 Core Split
175.18	178.32	3.10	912593	0.37	8.47	125.3	6.3	0.518	0.007	nmAM	1/2 Core Split
178.32	181.53	3.20	912594	0.27	3.14	60.4	5.4	0.227	0.007	nmAM	1/2 Core Split
181.53	184.80	3.30	912595	0.21	20.98	47.2	4.4	0.155	0.004	nmAM	1/2 Core Split
184.80	188.00	3.20	912596	0.09	13.31	45.9	8.8	0.288	0.005	nmAM	1/2 Core Split
188.00	191.76	3.80	912597	0.86	4.57	133.1	9.7	0.492	0.008	blcAMX	1/2 Core Split
191.76	194.51	2.80	912598	0.24	54.88	128.1	10.6	0.259	0.008	blcAMX	1/2 Core Split
194.51	198.07	3.60	912599	0.11	10.67	17.1	7.2	1.038	0.006	nmfgCD	1/2 Core Split
Duplicate	Previous		912600	0.10	11.51	17.0	7.6	1.048	0.006		Quality Control
198.07	201.60	3.50	912601	0.10	0.11	83.1	4.7	0.487	0.013	nmfgCD	1/2 Core Split
201.60	205.20	3.60	912602	0.06	9.04	105.0	7.0	0.724	0.010	nmfgCD	1/2 Core Split
205.20	208.61	3.40	912603	0.11	4.66	57.8	5.2	0.189	0.007	nmfgCD	1/2 Core Split
208.61	211.67	3.10	912604	0.06	38.59	93.9	27.6	0.303	0.010	nmfgCD	1/2 Core Split
211.67	213.72	2.10	912605	0.10	30.88	105.9	29.0	0.398	0.010	nmfgCD	1/2 Core Split

Drill Hole Selected Interval - Weighted Average Analytical Results

Sample	e Interval (met	res)		Analytical Results						
From	То	Int.		$Nb_2O_5\%$	Ta ppm	Th ppm	U ppm	TREO %	Y2O3 %	
3.45	46.08	42.63		0.357	13	154.1	5	0.181	0.017	
105.31	135.61	30.30		0.905	8	170.9	9	0.346	0.012	
110.21	125.13	14.92	Incl.	1.312	2	170.4	6	0.331	0.009	

ALEY - ANALYTICAL RESULTS

Drill Core Samples

Logged By	Ryan Kressall
Laboratory	Inspectorate
File No.	10-360-03594-01

Location	UTM NAD 83	C
Easting	654,043.110	(
Northing	7.710.517.535	

Elevation

522.521

omment Direction / Length Central 3 Azimuth 30 °

Azimuth	30 °
Inclination	-45 °
Length	213.41 Metres

Drill Hole Information				
Date Start				
Date End				
Operator	Taseko			

Sample	e Interval (met	res)	Sample Analytical Results		Litho	Sample Method					
From	То	Int.	Number	Nb ₂ O ₅ %	Ta ppm	Th ppm	U ppm	TREO %	Y2O3 %	_	cample weiled
0.00	3.05	3.00	Not Sampled	2 3						CASE	Not Sampled
Standard	Aley1		912750	0.43	21.85	168.7	10.1	0.229	0.009		Quality Control
3.05	6.30	3.20	912751	0.37	25.34	155.1	3.5	0.203	0.008	nmfgCD	1/2 Core Split
6.30	11.30	5.00	912752	0.33	29.38	245.0	5.0	0.163	0.010	gliCD	1/2 Core Split
11.30	14.30	3.00	912753	0.37	49.52	347.2	6.8	0.220	0.012	gliCD	1/2 Core Split
14.30	17.80	3.50	912754	0.67	18.44	248.8	7.2	0.258	0.012	gliCD	1/2 Core Split
17.80	20.34	2.50	912755	0.52	11.32	227.7	5.4	0.205	0.011	gliCD	1/2 Core Split
20.34	23.05	2.71	912756	0.40	0.24	337.1	7.8	0.275	0.014	gliCD	1/2 Core Split
23.05	25.87	2.80	912757	0.29	1.15	424.2	2.6	0.334	0.008	nmiCD	1/2 Core Split
25.87	30.09	4.20	912758	0.30	42.04	409.4	22.3	0.175	0.019	glfgCD	1/2 Core Split
30.09	33.54	3.40	912759	0.65	9.85	355.5	7.1	0.295	0.019	gmiCD	1/2 Core Split
Duplicate	Previous		912760	0.09	9.93	362.5	7.0	0.306	0.017		Quality Control
33.54	36.97	3.40	912993	0.08	1.75	306.9	3.1	0.379	0.012	gmiCD	1/2 Core Split
36.97	40.40	3.40	912994	<0.01	0.14	593.0	3.5	0.371	0.013	gmiCD	1/2 Core Split
40.40	43.61	3.20	912995	0.36	7.58	280.7	5.1	0.327	0.011	gmiCD	1/2 Core Split
43.61	47.33	3.70	912996	0.36	6.71	290.1	5.1	0.314	0.010	gmfCCCD	1/2 Core Split
47.33	51.01	3.70	912997	0.98	11.06	254.6	16.7	0.322	0.015	gmfCCCD	1/2 Core Split
51.01	54.88	3.90	912998	0.87	25.65	261.1	12.1	0.339	0.013	gmfCCCD	1/2 Core Split
Blank	Granite		912999	<0.01	1.81	11.7	4.0	0.023	0.002		Quality Control
54.88	58.45	3.60	912833	<0.01	20.9	343.7	9.7	0.276	0.013	gmfCCCD	1/2 Core Split
58.45	62.10	3.60	912834	0.51	10.08	182.8	5.3	0.239	0.011	gmfCCCD	1/2 Core Split
62.10	65.49	3.40	912835	0.17	2.62	300.0	10.3	0.319	0.015	bliCD	1/2 Core Split
65.49	69.15	3.70	912836	0.19	3.8	235.8	5.5	0.303	0.013	bliCD	1/2 Core Split
69.15	72.64	3.50	912837	0.20	11.39	232.7	8.1	0.251	0.011	bliCD	1/2 Core Split
72.64	76.22	3.60	912838	0.17	5.55	365.1	8.3	0.363	0.020	bliCD	1/2 Core Split
76.22	79.37	3.20	912839	0.19	10.05	249.5	5.0	0.209	0.012	bliCD	1/2 Core Split
Duplicate	Previous		912840	0.19	10.66	269.8	5.0	0.224	0.013		Quality Control
79.37	82.88	3.50	912841	0.52	2.8	335.7	6.4	0.327	0.016	bliCD	1/2 Core Split
82.88	86.49	3.60	912842	0.54	7.77	492.4	10.2	0.317	0.012	bliCD	1/2 Core Split
86.49	89.74	3.20	912843	0.88	5.06	146.4	4.8	0.167	0.007	blfgAMX	1/2 Core Split
89.74	92.97	3.20	912844	0.31	43.56	482.6	10.3	0.366	0.015	blfgAMX	1/2 Core Split
92.97	95.95	3.00	912845	0.12	1.7	162.9	3.2	0.096	0.008	blfgAMX	1/2 Core Split
95.95	99.45	3.50	912846	0.12	26.83	146.4	11.1	0.122	0.009	blfgAMX	1/2 Core Split
99.45	102.78	3.30	912847	0.31	25.74	165.6	9.9	0.234	0.012	blfgAMX	1/2 Core Split
102.78	106.54	3.80	912848	0.19	8.33	380.3	42.1	0.172	0.022	blfgAMX	1/2 Core Split
106.54	109.76	3.20	912849	0.63	16.71	278.3	9.0	0.176	0.010	nmiCD	1/2 Core Split
Standard	OKA-1		907550	0.55	20	50.0	28.0	0.321	0.007		Quality Control
109.76	112.80	3.00	907551	0.02	3	401.0	7.0	0.361	0.016	nmiCD	1/2 Core Split
112.80	115.85	3.00	907552	0.02	2	293.0	4.0	0.268	0.018	nmiCD	1/2 Core Split

ALEY - ANALYTICAL RESULTS

Drill Core Samples

Logged By	Ryan Kressall
Laboratory	Inspectorate
File No.	10-360-03594-01

Location	UTM NAD 83	Comment
Easting	654,043.110	Central 3
Northing	7,710,517.535	
	500 50d	

Direction / Length

Azimuth	30 °
nclination	-45 °
Length	213.41 Metres

Drill Hole I	nformation
Date Start	
Date End	
Operator	Taseko

File No.	10-360-035	94-01	Elevation	522.52	1			engtn 21	3.41 Metres	Opera	tor Taseko
	e Interval (met		Sample Number			Analytica			I	Litho	Sample Method
From	То	Int.		$Nb_2O_5\%$	Ia ppm	Th ppm	U ppm	-	Y2O3 %		
115.85	118.90	3.10	907553	0.04	31	71.0	4.0	0.198	0.010	gmiCM	1/2 Core Split
118.90	121.53	2.60	907554	0.09	15	174.0	7.0	0.159	0.008	blfgCD	1/2 Core Split
121.53	123.90	2.40	907555	0.21	8	200.0	5.0	0.395	0.010	blfgCD	1/2 Core Split
123.90	127.39	3.50	907556	0.06	8	308.0	9.0	0.307	0.015	bliCD	1/2 Core Split
127.39	130.91	3.50	907557	0.17	5	216.0	5.0	0.547	0.011	bliCD	1/2 Core Split
130.91	134.30	3.40	907558	0.08	2	299.0	5.0	0.295	0.010	bliCD	1/2 Core Split
134.30	137.82	3.50	907559	0.16	4	192.0	4.0	0.135	0.009	bliCD	1/2 Core Split
Duplicate	Previous		907560	0.14	4	178.0	4.0	0.135	0.010		Quality Control
137.82	139.18	1.40	907561	0.06	34	124.0	34.0	0.161	0.008	gmiCM	1/2 Core Split
139.18	142.96	3.80	907562	0.19	19	323.0	13.0	0.379	0.012	glcCD	1/2 Core Split
142.96	146.44	3.50	907563	0.09	8	114.0	9.0	0.880	0.019	glcCD	1/2 Core Split
146.44	150.49	4.10	907564	0.11	84	175.0	62.0	0.292	0.013	glcCD	1/2 Core Split
150.49	152.99	2.50	907565	0.40	137	343.0	106.0	0.237	0.011	blfgCD	1/2 Core Split
152.99	155.58	2.60	907566	0.13	50	258.0	21.0	0.412	0.013	nmpCD	1/2 Core Split
155.58	158.54	3.00	907567	0.09	3	176.0	5.0	0.369	0.009	nmpCD	1/2 Core Split
158.54	161.59	3.10	907568	0.14	2	257.0	5.0	0.732	0.014	nmpCD	1/2 Core Split
161.59	164.63	3.00	907569	0.12	6	214.0	5.0	0.753	0.011	nmpCD	1/2 Core Split
Duplicate	Previous		907570	0.14	5	201.0	4.0	0.751	0.011		Quality Control
Standard	Aley1		285054	0.43	26	165.0	12.0	0.207			Quality Control
164.63	167.68	3.10	907571	0.11	5	217.0	6.0	0.408	0.014	nmpCD	1/2 Core Split
167.68	170.73	3.00	907572	0.12	1	248.0	4.0	0.418	0.012	nmpCD	1/2 Core Split
170.73	173.78	3.10	907573	0.07	3	86.0	2.0	0.179	0.009	nmpCD	1/2 Core Split
173.78	176.83	3.10	907574	0.02	6	124.0	3.0	0.225	0.015	nmpCD	1/2 Core Split
176.83	179.88	3.00	907575	0.02	6	124.0	3.0	0.258	0.013	nmpCD	1/2 Core Split
179.88	182.93	3.10	907576	0.03	9	95.0	4.0	0.217	0.010	nmpCD	1/2 Core Split
182.93	185.98	3.00	907577	0.02	9	138.0	3.0	0.265	0.011	nmpCD	1/2 Core Split
185.98	189.02	3.00	907578	0.04	21	165.0	10.0	0.264	0.011	nmpCD	1/2 Core Split
189.02	192.07	3.00	907579	0.01	10	271.0	5.0	0.323	0.011	nmpCD	1/2 Core Split
Duplicate	Previous		907580	0.01	10	272.0	5.0	0.329	0.012		Quality Control
192.07	195.70	3.60	907581	0.08	35	149.0	26.0	0.177	0.012	nmpCD	1/2 Core Split
195.70	198.40	2.70	907582	0.17	186	164.0	143.0	0.134	0.007	gliCM	1/2 Core Split
198.40	201.22	2.80	907583	0.25	9	307.0	398.0	0.160	0.010	gliCM	1/2 Core Split
201.22	203.71	2.50	907584	0.16	112	559.0	46.0	0.227	0.029	glcCD	1/2 Core Split
203.71	206.82	3.10	907585	0.23	22	120.0	22.0	0.179	0.009	bliCM	1/2 Core Split
206.82	208.87	2.10	907586	0.12	49	157.0	33.0	0.198	0.010	bliCM	1/2 Core Split
208.87	213.41	4.60	907587	0.08	41	235.0	24.0	0.295	0.012	blpCD	1/2 Core Split
		I	1	1	I .	1	I	1	1		l .

ALEY - ANALYTICAL RESULTS

Drill Core Samples						
Logged By Ryan Kressall						
Laboratory	Inspectorate					
File No.	10-360-03594-01					

Location	UTM NAD 83	Comment
Easting	654,043.110	Central 3
Northing	7,710,517.535	
Elevation	522.521	

Direction / Length						
Azimuth 30 °						
Inclination	-45 °					
Length	213.41 Metres					

Drill Hole Information						
Date Start						
Date End						
Operator	Taseko					

Sample	Sample Interval (metres) Sample Number Analytical Results							Litho	Sample Method		
From	То	Int.		$Nb_2O_5\%$	Ta ppm	Th ppm	U ppm	TREO %	Y2O3 %		
	Drill Hole Selected Interval - Weighted Average Analytical Results										
Sample	Sample Interval (metres) Analytical Results										
From	То	Int.		Nb ₂ O ₅ %	Ta ppm	Th ppm	U ppm	TREO %	Y2O3 %		
	1	59.05		0.477	17	308.1	8	0.315	0.013		

ALEY - ANALYTICAL RESULTS

Logged By	Ryan Kressall
Laboratory	Inspectorate
File No.	10-360-03593-01

Location	UTM NAD 83	Comment
Easting	654,048.646	Central 3
Northing	7,710,486.881	
Elevation	526.458	

Direction / Length						
Azimuth	30 °					
Inclination	-45 °					
l enath	215 85 Metres					

Drill Hole Information							
Date Start	18-Aug-10						
Date End	19-Aug-10						
Operator	Taseko						

File No.	10-360-035	93-01	Elevation	526.45	8			ength 21	5.85 Metres	Opera	tor Taseko
Sample	Interval (met	res)	Sample Number			Analytica	l Results	3		Litho	Sample Method
From	То	Int.	Number	${ m Nb}_2{ m O}_5\%$	Ta ppm	Th ppm	U ppm	TREO %	Y2O3 %		·
0.00	4.49	4.50	Not Sampled							CASE	Not Sampled
4.49	7.63	3.10	912919	0.27	6.01	44.3	1.0	0.095	0.004	blfgCD	1/2 Core Split
7.63	10.74	3.10	912921	0.39	6.75	97.1	1.9	0.110	0.005	blfgCD	1/2 Core Split
10.74	13.70	3.00	912922	0.25	7.76	96.3	1.3	0.093	0.005	blfgCD	1/2 Core Split
13.70	17.29	3.60	912923	0.42	6	107.0	1.3	0.103	0.005	blfgCD	1/2 Core Split
17.29	20.50	3.20	912924	0.82	12.19	169.4	2.2	0.157	0.006	glfgCD	1/2 Core Split
Blank	Granite		912925	0.01	1.69	10.2	4.1	0.017	0.002		Quality Control
20.50	23.78	3.30	912926	0.79	14.57	192.7	4.3	0.179	0.010	glfgCD	1/2 Core Split
23.78	26.83	3.00	912927	0.97	14.58	229.2	4.5	0.201	0.013	glfgCD	1/2 Core Split
26.83	29.33	2.50	912928	0.24	37.74	250.8	5.3	0.143	0.013	blfgCD	1/2 Core Split
29.33	31.92	2.60	912929	0.63	100.21	554.4	13.0	0.154	0.012	blfgCD	1/2 Core Split
Standard	Aley2		912930	0.71	2.06	186.2	2.1	0.216	0.012		Quality Control
31.92	35.10	3.20	912931	0.18	8.24	154.6	1.3	0.178	0.006	nmiCD	1/2 Core Split
35.10	38.04	2.90	912932	0.26	8.01	190.2	1.4	0.173	0.006	nmiCD	1/2 Core Split
38.04	42.23	4.20	912933	0.69	12.94	253.6	2.7	0.181	0.013	blfgCD	1/2 Core Split
42.23	44.58	2.40	912934	1.02	18.19	218.7	3.0	0.259	0.007	blfgCD	1/2 Core Split
44.58	47.58	3.00	912935	0.39	11.52	120.6	3.1	0.188	0.008	blfgCD	1/2 Core Split
47.58	50.82	3.20	912936	0.21	1.77	260.0	8.5	1.117	0.017	bliCD	1/2 Core Split
50.82	53.90	3.10	912937	0.27	2.16	216.7	4.7	0.253	0.012	bliCD	1/2 Core Split
53.90	57.27	3.40	912938	0.35	2.26	209.2	9.4	0.285	0.022	bliCD	1/2 Core Split
57.27	60.59	3.30	912939	0.12	58.47	202.8	29.0	0.231	0.010	bliCD	1/2 Core Split
60.59	63.41	2.80	912941	0.86	6.01	205.9	6.6	0.298	0.018	nmAMX	1/2 Core Split
63.41	66.11	2.70	912942	0.71	5.27	118.0	6.4	0.343	0.020	nmAMX	1/2 Core Split
66.11	69.00	2.90	912943	0.61	4.84	347.5	9.6	0.265	0.021	gmfgCD	1/2 Core Split
69.00	71.80	2.80	912944	0.24	2.62	354.8	5.7	0.231	0.012	gmfgCD	1/2 Core Split
71.80	74.83	3.00	912945	0.14	1.41	271.6	4.3	0.174	0.011	gmfgCD	1/2 Core Split
74.83	78.45	3.60	912946	0.38	6.01	120.1	4.1	0.273	0.015	nlpCD	1/2 Core Split
78.45	82.03	3.60	912947	0.70	3.37	264.6	8.1	0.214	0.016	nlpCD	1/2 Core Split
82.03	85.38	3.30	912948	0.37	31.91	91.5	6.2	0.184	0.008	nlpCD	1/2 Core Split
85.38	88.16	2.80	912949	0.44	1.51	70.5	4.1	0.183	0.009	nlcCD	1/2 Core Split
Standard	Aley3		912950	0.78	37.05	316.9	9.3	0.222	0.010		Quality Control
88.16	90.85	2.70	912951	0.35	28.99	156.0	7.8	0.193	0.011	nlcCD	1/2 Core Split
90.85	94.83	4.00	912952	0.30	13.35	116.4	8.4	0.229	0.012	glfgCD	1/2 Core Split
94.83	98.83	4.00	912953	0.48	5.38	182.3	8.5	0.225	0.010	glfgCD	1/2 Core Split
98.83	102.80	4.00	912954	0.28	1.8	221.4	8.7	0.195	0.011	glfgCD	1/2 Core Split
102.80	107.08	4.30	912955	0.14	1.29	206.1	6.5	0.343	0.013	glfgCD	1/2 Core Split
107.08	109.59	2.50	912956	0.60	37.16	256.4	14.6	0.405	0.019	blpCD	1/2 Core Split
109.59	112.26	2.70	912957	0.65	37.14	397.9	12.9	0.357	0.025	blpCD	1/2 Core Split
112.26	115.24	3.00	912958	0.47	40.56	427.3	10.5	0.391	0.009	nlfgCD	1/2 Core Split

ALEY - ANALYTICAL RESULTS

Logged By	Ryan Kressall
Laboratory	Inspectorate
File No.	10-360-03593-01

Location	UTM NAD 83	Comment
Easting	654,048.646	Central 3
Northing	7,710,486.881	
Flevation	526 458	

Direction / Length						
Azimuth	30 °					
Inclination	-45 °					
Lenath	215.85 Metres					

Drill Hole Information							
Date Start	18-Aug-10						
Date End	19-Aug-10						
Operator	Taseko						

Sample	e Interval (met	res)	Sample Number		Analytical Results				Litho	Sample Method	
From	То	Int.	Number	Nb ₂ O ₅ %	Ta ppm	Th ppm	U ppm	TREO %	Y2O3 %	1	
115.24	118.29	3.10	912959	0.25	6.17	196.5	7.2	0.197	0.011	nlfgCD	1/2 Core Split
Duplicate	Previous		912960	0.26	5.78	190.3	6.8	0.192	0.010		Quality Control
118.29	121.25	3.00	912961	0.14	13.27	165.6	17.8	0.166	0.006	nlfgCD	1/2 Core Split
121.25	124.39	3.10	912962	0.15	9.7	216.9	12.1	0.156	0.009	nIAMX	1/2 Core Split
124.39	127.59	3.20	912963	0.16	9.75	217.5	8.8	0.231	0.009	nIAMX	1/2 Core Split
127.59	130.49	2.90	912964	0.32	12.07	125.0	10.2	0.219	0.009	nIAMX	1/2 Core Split
130.49	133.76	3.30	912965	0.14	2.75	533.6	20.2	0.260	0.019	nmiCD	1/2 Core Split
133.76	137.10	3.30	912966	0.04	1.58	761.8	11.4	0.493	0.018	nmiCD	1/2 Core Split
137.10	139.94	2.80	912967	0.08	0.63	160.8	7.8	0.526	0.018	nmiCD	1/2 Core Split
139.94	143.21	3.30	912968	0.16	58.3	155.5	10.9	0.209	0.010	nlfCD	1/2 Core Split
143.21	146.50	3.30	912969	0.14	15.02	99.8	6.8	0.220	0.010	nlfCD	1/2 Core Split
Standard	OKA-1		912970	0.53	44.94	60.3	32.4	0.327	0.008		Quality Control
146.50	151.04	4.50	912971	0.45	11.33	139.7	6.3	0.264	0.006	nlfCD	1/2 Core Split
151.04	154.60	3.60	912972	0.15	10.58	186.8	7.1	0.182	0.007	nmiAMX	1/2 Core Split
154.60	158.21	3.60	912973	0.18	8.06	128.3	7.8	0.180	0.007	nxiCD	1/2 Core Split
158.21	161.87	3.70	912974	0.18	11.77	107.5	10.8	0.172	0.008	nxiCD	1/2 Core Split
161.87	165.48	3.60	912975	0.03	2.81	100.4	4.7	0.157	0.004	nxiCD	1/2 Core Split
165.48	169.09	3.60	912976	0.11	6.63	155.2	4.7	0.251	0.006	nxiCD	1/2 Core Split
169.09	172.47	3.40	912977	0.05	0.39	140.2	1.7	0.216	0.006	nxiCD	1/2 Core Split
172.47	175.98	3.50	912978	0.19	18.36	119.4	4.3	0.161	0.008	nliCD	1/2 Core Split
175.98	179.52	3.50	912979	0.25	0.4	339.3	5.5	0.151	0.011	nliCD	1/2 Core Split
Duplicate	Previous		912980	0.22	0.29	327.4	5.3	0.162	0.011		Quality Control
179.52	182.90	3.40	912981	0.11	9.78	331.1	4.6	0.210	0.012	nliCD	1/2 Core Split
182.90	186.43	3.50	912982	0.13	3.02	118.7	2.9	0.294	0.008	nliCD	1/2 Core Split
186.43	189.83	3.40	912983	0.17	8.16	154.8	5.7	0.217	0.008	nliCD	1/2 Core Split
189.83	193.52	3.70	912984	0.13	49.37	269.8	18.0	0.268	0.010	nliCD	1/2 Core Split
193.52	196.80	3.30	912985	0.07	9.31	209.1	5.0	0.292	0.009	bliCD	1/2 Core Split
196.80	200.15	3.30	912986	0.17	5.94	269.3	6.0	0.431	0.010	bliCD	1/2 Core Split
200.15	203.30	3.20	912987	0.07	0.29	400.0	4.9	0.993	0.013	bliCD	1/2 Core Split
203.30	206.71	3.40	912988	0.05	0.92	164.0	2.7	0.425	0.006	bliCD	1/2 Core Split
206.71	209.76	3.00	912989	0.13	11.77	275.7	5.7	0.282	0.013	nxcCD	1/2 Core Split
Standard	Aley2		912990	0.71	47.24	207.5	2.6	0.234	0.012		Quality Control
209.76	212.80	3.00	912991	0.10	12.82	158.3	5.9	0.287	0.006	nxcCD	1/2 Core Split
212.80	215.85	3.00	912992	0.26	21.72	218.0	11.4	0.305	0.012	nxcCD	1/2 Core Split
			ala Salaatad				_				1

	Drill Hole Selected Interval - Weighted Average Analytical Results											
Sample Interval (metres) Analytical F						l Results						
F	rom	То	Int.		$Nb_2O_5\%$	Ta ppm	Th ppm	U ppm	TREO %	Y2O3 %		
4	.49	115.24	110.75		0.448	15	206.6	7	0.299	0.012		

ALEY - ANALYTICAL RESULTS

Drill Core Samples

Logged By	Ryan Kressall
Laboratory	Inspectorate
File No.	10-360-03595-01

Location	UTM NAD 83	Comment
Easting	654,066.758	Central 3
Northing	7,710,470.650	
Elevation	537.505	

Direction / Length

Azimuth	30 °
Inclination	-45 °
Length	213.41 Metres

|--|

Date Start	20-Aug-10
Date End	21-Aug-10
Operator	Taseko

Sample	e Interval (met	res)	Sample Analytical Results			Litho	Sample Method				
From	То	Int.	Number	Nb ₂ O ₅ %	Ta ppm	Th ppm	U ppm	TREO %	Y2O3 %	LILIO	Sample Method
0.00	3.67	3.00	Not Sampled	2 3						CASE	Not Sampled
3.67	7.42	3.80	875308	0.18	2.84	102.7	1.0	0.136	0.007	bliCD	1/2 Core Split
7.42	11.19	3.80	875309	0.22	2.85	240.7	2.1	0.269	0.009	bliCD	1/2 Core Split
Standard	Aley1		875310	0.47	27	210.5	2.6	0.226	0.013		Quality Control
11.19	14.49	3.30	875311	0.33	2.66	66.0	1.0	0.132	0.006	glfgCD	1/2 Core Split
14.49	17.39	2.90	875312	0.31	3.36	74.1	0.6	0.144	0.006	glfgCD	1/2 Core Split
17.39	20.42	3.00	875313	0.22	3.34	68.9	0.8	0.113	0.005	glfgCD	1/2 Core Split
20.42	23.57	3.10	875314	0.20	2.62	111.2	1.3	0.184	0.008	glfgCD	1/2 Core Split
23.57	26.33	2.80	875315	0.43	23.43	207.4	4.9	0.156	0.012	glfgCD	1/2 Core Split
26.33	29.43	3.10	875316	0.60	39.85	239.8	9.6	0.149	0.010	blfgCD	1/2 Core Split
29.43	32.26	2.80	875317	0.25	3.34	272.0	2.3	0.221	0.011	blfgCD	1/2 Core Split
32.26	35.11	2.90	875318	0.29	4.82	129.4	1.5	0.143	0.009	blfgCD	1/2 Core Split
35.11	37.88	2.80	875319	0.24	7.48	129.1	3.0	0.119	0.008	blfgCD	1/2 Core Split
Duplicate	Previous		875320	0.26	7.52	129.5	3.0	0.120	0.008		Quality Control
37.88	41.34	3.50	875321	0.19	3.63	108.8	1.9	0.101	0.008	bmiCD	1/2 Core Split
41.34	45.07	3.70	875322	0.19	33.32	201.2	12.9	0.129	0.013	bmiCD	1/2 Core Split
45.07	48.34	3.30	875323	0.36	4.46	363.6	7.0	0.155	0.020	bliCD	1/2 Core Split
48.34	51.63	3.30	875324	0.16	1.98	244.9	3.4	0.137	0.014	bliCD	1/2 Core Split
51.63	54.88	3.20	875325	0.33	7.66	433.6	4.9	0.315	0.016	bliCD	1/2 Core Split
54.88	57.93	3.00	875326	0.36	38.37	492.7	19.6	0.229	0.031	bliCD	1/2 Core Split
57.93	60.98	3.00	875327	0.36	50.59	261.8	21.8	0.149	0.012	bliCD	1/2 Core Split
60.98	64.02	3.00	875328	0.12	8.38	207.1	3.4	0.136	0.014	bliCD	1/2 Core Split
64.02	66.82	2.80	875329	0.57	14.14	280.1	8.4	0.201	0.015	gmCD	1/2 Core Split
Standard	Aley1		875330	0.47	23.73	166.2	11.1	0.223	0.010		Quality Control
66.82	69.89	3.10	875331	0.73	16.63	370.7	12.9	0.237	0.024	blfCD	1/2 Core Split
69.89	72.84	3.00	875332	0.63	4.65	200.3	4.1	0.257	0.015	blfCD	1/2 Core Split
72.84	75.72	2.90	875333	0.78	14.24	273.1	5.9	0.226	0.016	blfCD	1/2 Core Split
75.72	78.77	3.00	875334	0.54	10.81	200.6	7.0	0.296	0.019	blfCD	1/2 Core Split
78.77	82.04	3.30	875335	0.44	2.82	259.1	7.0	0.294	0.020	blfCD	1/2 Core Split
82.04	84.00	2.00	875336	0.43	0.13	31.3	3.8	0.294	0.013	dlpCC	1/2 Core Split
84.00	86.18	2.20	875337	0.65	0.92	126.0	3.7	0.255	0.016	dlpCC	1/2 Core Split
86.18	89.25	3.10	875338	0.64	2.85	227.9	7.3	0.205	0.015	nlpCD	1/2 Core Split
89.25	92.49	3.20	875339	0.44	0.82	145.3	4.0	0.243	0.013	nlpCD	1/2 Core Split
Duplicate	Previous		875340	0.41	0.73	132.1	3.8	0.247	0.014		Quality Control
92.49	95.49	3.00	875341	0.44	1.88	237.6	8.2	0.240	0.015	nlpCD	1/2 Core Split
95.49	98.49	3.00	875342	0.29	0.97	71.3	2.0	0.165	0.010	nlpCD	1/2 Core Split
98.49	101.04	2.60	875343	0.26	0.53	100.5	2.5	0.197	0.012	nlpCD	1/2 Core Split
101.04	104.02	3.00	875344	0.76	7.58	292.8	8.9	0.208	0.018	nlpCD	1/2 Core Split
104.02	106.99	3.00	875345	0.93	3.3	192.7	5.3	0.249	0.014	blpCD	1/2 Core Split

ALEY - ANALYTICAL RESULTS

Logged By	Ryan Kressall
Laboratory	Inspectorate
File No.	10-360-03595-01

Location	UTM NAD 83	Comment
Easting	654,066.758	Central 3
Northing	7,710,470.650	
	505 505	

Direction / Length					
Azimuth	30 °				
Inclination	-45 °				

Drill Hole Information					
Date Start	20-Aug-10				
Date End	21-Aug-10				
Operator	Taseko				

File No.	10-360-035	95-01	Elevation	537.505	,		ᆜᄔ	ength 21	13.41 Metre	S Opera	tor Taseko
Sample	e Interval (met	res)	Sample Number			Analytica	l Results	3		Litho	Sample Method
From	То	Int.	Number	${ m Nb}_2{ m O}_5\%$	Ta ppm	Th ppm	U ppm	TREO %	Y2O3 %		·
106.99	110.01	3.00	875346	0.68	6.59	240.4	8.2	0.221	0.018	blpCD	1/2 Core Split
110.01	113.00	3.00	875347	0.50	2.25	119.0	3.2	0.276	0.014	blpCD	1/2 Core Split
113.00	115.95	3.00	875348	0.60	2.41	200.7	8.6	0.246	0.016	blpCD	1/2 Core Split
115.95	119.09	3.10	875349	0.35	0.84	158.6	9.3	0.231	0.016	blpCD	1/2 Core Split
Duplicate	Previous		912500	0.35	0.92	162.7	9.3	0.237	0.017		Quality Control
119.09	121.95	2.90	912501	1.03	2.23	288.2	11.8	0.270	0.020	blpCD	1/2 Core Split
121.95	124.73	2.80	912502	0.60	1.79	127.8	4.9	0.232	0.012	blpCCCD	1/2 Core Split
124.73	126.73	2.00	912503	1.47	0.16	74.0	1.9	0.254	0.009	blpCCCD	1/2 Core Split
Blank	Granite		912504	0.05	1.68	12.6	4.8	0.026	0.003		Quality Control
126.73	129.25	2.50	912505	1.25	0.1	95.3	2.0	0.273	0.013	blpCCCD	1/2 Core Split
129.25	132.19	2.90	912506	0.39	5.79	326.3	14.1	0.195	0.019	blpCD	1/2 Core Split
132.19	135.50	3.30	912507	0.70	15.93	318.7	11.5	0.243	0.020	blpCD	1/2 Core Split
135.50	138.48	3.00	912508	1.28	23.28	335.5	14.6	0.228	0.016	blpCD	1/2 Core Split
138.48	141.32	2.80	912509	0.52	9.05	241.9	7.7	0.200	0.015	blpCD	1/2 Core Split
Standard	Aley3		912510	0.79	35.22	308.8	8.6	0.221	0.009		Quality Control
141.32	144.21	2.90	912511	0.31	18.65	197.6	6.8	0.175	0.012	blpCD	1/2 Core Split
144.21	147.14	2.90	912512	0.23	2.33	223.8	4.8	0.205	0.010	gmpCD	1/2 Core Split
147.14	149.81	2.70	912513	0.43	5.11	307.5	6.3	0.191	0.018	gmpCD	1/2 Core Split
149.81	153.51	3.70	912514	1.38	16.41	249.6	12.8	0.312	0.021	blpCD	1/2 Core Split
153.51	157.17	3.70	912515	0.66	0.18	276.9	10.8	0.277	0.025	blpCD	1/2 Core Split
157.17	160.27	3.10	Not Sampled							gmCD	Not Sampled
160.27	163.13	2.90	912517	0.66	10.95	253.7	7.6	0.259	0.020	gmCD	1/2 Core Split
163.13	166.88	3.80	912518	0.23	4.28	198.3	6.2	0.175	0.015	nmiCD	1/2 Core Split
166.88	170.39	3.50	912519	0.16	2.07	381.2	5.3	0.446	0.015	nmiCD	1/2 Core Split
Duplicate	Previous		912520	0.15	2.15	445.6	5.4	0.473	0.015		Quality Control
170.39	173.95	3.60	912521	0.35	6.89	348.2	6.3	0.297	0.014	nmiCD	1/2 Core Split
173.95	176.97	3.00	912522	0.38	6.07	398.0	8.3	0.251	0.016	nmiCD	1/2 Core Split
176.97	180.16	3.20	912523	0.37	2.41	314.1	8.0	0.428	0.016	gmiCD	1/2 Core Split
180.16	183.09	2.90	912524	0.72	28.35	294.4	17.1	0.556	0.022	gmiCD	1/2 Core Split
183.09	186.20	3.10	912525	0.04	0.55	194.2	3.0	0.718	0.011	gmiCD	1/2 Core Split
186.20	189.22	3.00	912526	0.17	2.8	202.8	5.1	0.197	0.011	blcCD	1/2 Core Split
189.22	192.17	2.90	912527	0.73	0.14	100.1	9.5	0.261	0.010	blcCD	1/2 Core Split
192.17	195.12	3.00	912528	0.22	10.86	163.9	4.6	0.168	0.008	blcCD	1/2 Core Split
195.12	198.30	3.20	912529	0.34	3.88	159.9	5.3	0.178	0.009	blcCD	1/2 Core Split
Standard	Aley2		912530	0.72	45.85	209.2	2.3	0.227	0.012		Quality Control
198.30	200.83	2.50	912531	0.14	6.73	115.5	3.5	0.207	0.011	blcAMX	1/2 Core Split
200.83	203.50	2.70	912532	0.18	5.22	56.8	3.6	0.158	0.006	blcAMX	1/2 Core Split
203.50	208.30	4.80	912533	0.34	20.08	178.1	7.7	0.165	0.008	bliCD	1/2 Core Split
208.30	211.64	3.30	912534	0.20	21.36	189.4	41.2	0.308	0.009	dlpCD	1/2 Core Split

ALEY - ANALYTICAL RESULTS

Drill Core Samples				
Logged By	Ryan Kressall			
Laboratory	Inspectorate			
File No.	10-360-03595-01			

198.30

138.48

150.13

37.44

Incl.

45.07

101.04

Location	UTW NAD 83	Comment
Easting	654,066.758	Central 3
Northing	7,710,470.650	
Elevation	537.505	

0.530

0.786

Direction / Length					
Azimuth	30 °				
Inclination	-45 °				
Length	213.41 Metres				

Drill Hole Information					
Date Start	20-Aug-10				
Date End	21-Aug-10				
Operator	Taseko				

Sampl	e Interval (met	tres)	Sample Number	Analytical Results			Litho	Sample Method			
From	То	Int.		$Nb_2O_5\%$	Ta ppm	Th ppm	U ppm	TREO %	Y2O3 %		·
211.64	213.41	1.80	912535	0.73	4.44	205.4	13.0	0.325	0.013	dlpCD	1/2 Core Split
	Drill Hole Selected Interval - Weighted Average Analytical Results										
Sampl	e Interval (met	res)		Analytical Results							
From	То	Int.	Nb _o O _c % Ta ppm Th ppm U ppm TREO % Y2O3 %								

8

6

241.6

219.0

8

8

0.289

0.244

0.016

0.016

ALEY - ANALYTICAL RESULTS

Drill Core Samples

	<u> </u>
Logged By	Ryan Kressall
Laboratory	Inspectorate
File No.	10-360-03616-01

Location	UTM NAD 83	Comment
Easting	654,033.675	Central 3
Northing	7,710,441.555	
Elevation	520.369	

Direction / Length				
Azimuth	30 °			
Inclination	-45 °			

Length

١	n / Length	Dr	III Hole I	Information
	30 °	Da	te Start	21-Aug-10
ı	-45 °	Da	ate End	22-Aug-10
	214.94 Metres	0	perator	Taseko

Commis	lotom al (mont		Comple Analytical Decults								
·	Interval (met		Sample Analytical Results Number Nb ₂ O ₅ % Ta ppm Th ppm U ppm TREO % Y2O3 %			Litho	Sample Method				
From	То	Int.		Nb ₂ O ₅ %	Ta ppm	Th ppm	U ppm	TREO %	Y2O3 %	0.05	
0.00	6.09	6.10	Not Sampled							CASE	Not Sampled
6.09	9.66	3.60	912606	0.40	7.92	159.7	3.5	0.199	0.012	blfgCD	1/2 Core Split
9.66	13.12	3.50	912607	0.17	2.6	130.0	1.6	0.234	0.009	blfgCD	1/2 Core Split
13.12	16.37	3.30	912608	0.28	14.97	136.4	4.2	0.255	0.009	blfgCD	1/2 Core Split
16.37	20.04	3.70	912609	0.25	6.24	125.6	2.6	0.265	0.008	blfgCD	1/2 Core Split
Standard	Aley1		912610	0.44	22.21	136.6	7.3	0.204	0.010		Quality Control
20.04	23.68	3.60	912611	0.31	16.34	126.2	2.8	0.234	0.009	blfgCD	1/2 Core Split
23.68	27.02	3.30	912612	1.69	11.65	274.4	7.5	0.232	0.009	gliCM	1/2 Core Split
27.02	30.00	3.00	912613	0.67	1.94	154.5	5.0	0.200	0.009	bliCD	1/2 Core Split
Blank	Granite		912614	<0.01	2.05	8.0	2.8	0.020	0.002		Quality Control
30.00	33.15	3.10	912615	0.50	8.16	172.6	4.7	0.238	0.012	bliCD	1/2 Core Split
33.15	36.13	3.00	912616	0.81	0.98	100.7	1.7	0.218	0.010	bliCD	1/2 Core Split
36.13	39.06	2.90	912617	1.57	0.54	178.9	10.7	0.275	0.013	bliCD	1/2 Core Split
39.06	42.32	3.30	912618	0.45	0.5	171.6	3.3	0.195	0.008	bliCD	1/2 Core Split
42.32	45.59	3.30	912619	0.20	3.42	74.6	1.5	0.135	0.006	blfgCD	1/2 Core Split
Duplicate	Previous		912620	0.19	3.13	73.7	1.3	0.133	0.006		Quality Control
45.59	48.69	3.10	912621	0.34	6.26	81.1	1.3	0.213	0.007	blfgCD	1/2 Core Split
48.69	52.35	3.70	912622	0.19	2.13	76.7	1.0	0.131	0.006	nlfgCD	1/2 Core Split
52.35	55.96	3.60	912623	0.19	1.44	94.0	1.1	0.081	0.007	nlfgCD	1/2 Core Split
55.96	59.36	3.40	912624	0.16	1.8	98.4	1.1	0.117	0.010	nlfgCD	1/2 Core Split
59.36	63.20	3.80	912625	<0.01	0.25	64.3	0.4	0.086	0.005	nlfgCD	1/2 Core Split
63.20	66.66	3.50	912626	0.11	3.59	153.8	1.5	0.170	0.020	gmiCD	1/2 Core Split
66.66	69.96	3.30	912627	0.40	6.74	241.7	2.7	0.531	0.024	gmiCD	1/2 Core Split
69.96	73.21	3.20	912628	0.42	11.33	268.3	3.6	0.214	0.023	gmiCD	1/2 Core Split
73.21	76.49	3.30	912629	0.34	7.72	254.0	3.6	0.569	0.019	gmiCD	1/2 Core Split
Standard	Aley2		912630	0.70	4.68	206.3	2.1	0.217	0.012		Quality Control
76.49	79.81	3.30	912631	0.36	23.97	317.5	9.9	0.258	0.025	gmiCD	1/2 Core Split
79.81	83.76	4.00	912632	0.46	13.03	201.0	4.1	0.206	0.010	bICD	1/2 Core Split
83.76	87.58	3.80	912633	0.48	48.13	253.2	7.6	0.180	0.011	bICD	1/2 Core Split
87.58	90.77	3.20	912634	0.36	3.96	133.0	1.9	0.150	0.009	bliCD	1/2 Core Split
90.77	94.16	3.40	912635	0.29	7.24	146.6	1.9	0.154	0.009	bliCD	1/2 Core Split
94.16	97.55	3.40	912636	0.39	19.24	413.5	5.3	0.151	0.009	bliCD	1/2 Core Split
97.55	100.75	3.20	912637	0.89	7.65	175.6	3.5	0.219	0.020	bliCD	1/2 Core Split
100.75	103.95	3.20	912638	0.32	4.36	132.0	1.6	0.173	0.011	bliCD	1/2 Core Split
103.95	107.21	3.30	912639	0.22	2.31	48.9	0.9	0.133	0.008	bliCD	1/2 Core Split
Duplicate	Previous		912640	0.25	2.62	50.7	1.0	0.137	0.007		Quality Control
107.21	110.47	3.30	912641	0.48	5.92	110.6	1.7	0.138	0.007	bliCD	1/2 Core Split
110.47	113.61	3.10	912642	0.88	5.67	261.9	3.6	0.198	0.013	bliCD	1/2 Core Split
113.61	116.84	3.20	912643	0.56	3.71	214.1	2.6	0.190	0.018	bliCD	1/2 Core Split
1.13.01	110.01	0.20	0.2010	0.00	0.7 1		2.0	0.700	0.010	505	7/2 0010 Opin

ALEY - ANALYTICAL RESULTS

Logged By	Ryan Kressall
Laboratory	Inspectorate
File No.	10-360-03616-01

Location	UTM NAD 83	Comment
Easting	654,033.675	Central 3
Northing	7,710,441.555	
Flevation	520 369	

Direction / Length				
Azimuth	30 °			
Inclination	-45 °			
Length	214.94 Metres			

Drill Hole Information					
Date Start	21-Aug-10				
Date End	22-Aug-10				
Operator	Taseko				

			L L								
·	Interval (met	res)	Sample Number			Analytica				Litho	Sample Method
From	То	Int.		$\mathrm{Nb_2O_5}\%$	Ta ppm	Th ppm	U ppm	TREO %	Y2O3 %		
116.84	119.97	3.10	912644	0.54	4.64	187.3	2.2	0.176	0.019	bliCD	1/2 Core Split
119.97	123.59	3.60	912645	0.68	7.86	91.1	4.6	0.147	0.008	dlpCCCD	1/2 Core Split
123.59	127.82	4.20	912646	0.81	4.98	120.0	2.1	0.188	0.014	gmfCD	1/2 Core Split
127.82	131.96	4.10	912647	0.80	5.29	99.8	1.8	0.179	0.010	gmfCD	1/2 Core Split
131.96	135.98	4.00	912648	0.83	1.81	223.1	4.1	0.212	0.020	glcCD	1/2 Core Split
135.98	139.85	3.90	912649	0.40	4.05	154.4	1.9	0.167	0.016	gcrenfgCD	1/2 Core Split
Standard	Aley1		912650	0.43	20.74	139.9	7.6	0.237	0.009		Quality Control
139.85	143.04	3.20	912651	0.21	1.17	66.9	1.6	0.163	0.007	gcrenfgCD	1/2 Core Split
143.04	146.09	3.10	912652	0.50	5.04	110.3	3.0	0.182	0.013	gcrenfgCD	1/2 Core Split
146.09	149.21	3.10	912653	1.21	11.39	204.1	12.9	0.299	0.033	gcrenfgCD	1/2 Core Split
149.21	152.07	2.90	912654	0.42	2.88	157.5	4.8	0.259	0.014	gcrenfgCD	1/2 Core Split
152.07	154.63	2.60	912655	0.22	1.35	88.9	2.3	0.097	0.008	ncrenvCD	1/2 Core Split
154.63	157.65	3.00	912656	0.47	6.33	88.5	3.1	0.172	0.011	nlcAMX	1/2 Core Split
157.65	160.72	3.10	912657	0.26	16.19	97.8	5.2	0.139	0.008	nlcAMX	1/2 Core Split
160.72	164.11	3.40	912658	0.28	17.61	150.2	6.2	0.153	0.009	nlcAMX	1/2 Core Split
164.11	167.86	3.80	912659	0.26	30.05	137.2	6.0	0.163	0.009	ncrencCD	1/2 Core Split
Duplicate	Previous		912660	0.26	31.22	144.9	6.5	0.157	0.009		Quality Control
167.86	171.57	3.70	912661	0.25	57.44	188.8	8.7	0.311	0.013	ncrencCD	1/2 Core Split
171.57	175.61	4.00	912662	0.52	5.53	159.8	5.6	0.287	0.028	ICD	1/2 Core Split
175.61	179.78	4.20	912663	0.11	0.68	271.6	2.8	0.329	0.019	ICD	1/2 Core Split
179.78	183.55	3.80	912664	0.09	4.33	262.2	4.7	0.289	0.013	ICD	1/2 Core Split
183.55	187.01	3.50	912665	0.60	9.85	166.5	8.7	0.169	0.012	nmcCD	1/2 Core Split
187.01	190.30	3.30	912666	1.28	41.88	370.0	30.6	0.373	0.017	nmcCD	1/2 Core Split
190.30	193.00	2.70	912667	0.24	12.95	97.7	5.9	0.167	0.008	nlfgCD	1/2 Core Split
193.00	195.67	2.70	912668	0.29	1.98	58.8	2.1	0.171	0.007	nlfgCD	1/2 Core Split
195.67	199.07	3.40	912669	0.35	17.39	106.0	8.0	0.200	0.009	nlfgAMX	1/2 Core Split
Standard	Aley2		912670	0.71	46.55	190.3	2.2	0.237	0.012		Quality Control
199.07	202.57	3.50	912671	0.28	5.7	91.9	5.1	0.159	0.010	nlfgAMX	1/2 Core Split
202.57	205.96	3.40	912672	0.10	2.32	42.4	2.9	0.116	0.006	nlfgAMX	1/2 Core Split
205.96	210.23	4.30	912673	0.11	6.53	63.1	4.0	0.179	0.009	nlfgAMX	1/2 Core Split
210.23	212.58	2.40	912674	0.06	1.64	137.1	1.8	0.122	0.009	blfgCD	1/2 Core Split
212.58	214.94	2.40	912675	0.31	33.82	122.3	26.6	0.184	0.010	blfgCD	1/2 Core Split

ALEY - ANALYTICAL RESULTS

Drill Core Samples				
Logged By	Ryan Kressall			
Laboratory	Inspectorate			
File No.	10-360-03616-01			

Location	UTW NAD 83	Comment
Easting	654,033.675	Central 3
Northing	7,710,441.555	
Elevation	520.369	

Direction / Length				
Azimuth	30 °			
Inclination	-45 °			
Length	214.94 Metres			

Drill Hole Information					
Date Start	21-Aug-10				
Date End	22-Aug-10				
Operator	Taseko				

Sample	e Interval (me	tres)	Sample Number	'			Litho	Sample Method			
From	То	Int.		Nb ₂ O ₅ %	Ta ppm	Th ppm	U ppm	TREO %	Y2O3 %		·
		Drill H	ole Selected	Interval -	· Weight	ed Avera	age Ana	lytical R	esults		
Sample	e Interval (me	tres)				Analytica	l Results				
From	То	Int.		Nb ₂ O ₅ %	Ta ppm	Th ppm	U ppm	TREO %	Y2O3 %		
20.04	42.32	22.28		0.845	6	168.9	5	0.231	0.010		
23.68	39.06	15.38	Incl.	1.055	5	178.5	6	0.238	0.011		
66.66	199.07	132.41		0.477	12	177.4	5	0.242	0.014		
119.97	135.98	16.01	Incl.	0.783	5	134.1	3	0.182	0.013		

ALEY - ANALYTICAL RESULTS

Logged By	Ryan Kressall
Laboratory	Inspectorate
File No.	10-360-03617-01

Location	UTM NAD 83	Comment
Easting	654,154.760	Central 4
Northing	7,710,454.927	
Elevation	554.683	

Direction / Length					
Azimuth	60 °				
Inclination	-50 °				
Length	205.18 Metres				

Drill Hole Information					
Date Start	22-Aug-10				
Date End	23-Aug-10				
Operator	Taseko				

Sample Interval (Interves)										-	<u> </u>	
From	Sample		res)		Number		Litho	Sample Method				
3.05	From	То	Int.		$Nb_2O_5\%$	Ta ppm	Th ppm	U ppm	TREO %	Y2O3 %		
6.06	0.00	3.05	3.00	Not Sampled							CASE	Not Sampled
9.04	3.05	6.06	3.00	912676	0.27	3.9	70.2	2.6	0.187	0.011	bliCD	1/2 Core Split
11.97	6.06	9.04	3.00	912677	0.56	5.43	88.1	2.1	0.247	0.012	bliCD	1/2 Core Split
Duplicate Previous 912680 0.45 3.91 60.9 2.1 0.185 0.009 Duplic Control 15.04 17.99 2.90 912681 0.35 3.49 77.3 2.2 0.197 0.009 bilCD 1/2 Core Split 17.99 20.86 2.90 912682 1.01 36.25 17.98 10.4 0.220 0.012 0.016 bilCD 1/2 Core Split 22.86 24.20 3.30 912683 0.98 18.18 206.2 5.7 0.246 0.016 bilCD 1/2 Core Split 24.20 27.44 3.20 912684 0.60 9.09 119.0 3.2 0.180 0.013 bilCD 1/2 Core Split 27.44 30.54 3.10 912685 0.78 10.53 155.3 4.4 0.208 0.014 bilCD 1/2 Core Split 30.54 33.54 3.00 912686 1.12 80.01 204.1 7.8 0.247 0.014 bilCD 1/2 Core Split 33.54 36.82 3.30 912687 0.25 4.51 187.1 3.0 0.286 0.014 bilCD 1/2 Core Split 36.82 40.26 3.40 912688 0.29 2.56 271.8 3.3 0.191 0.022 bivCD 1/2 Core Split 40.26 43.68 3.40 912689 0.18 2.69 121.0 2.3 0.179 0.011 bivCD 1/2 Core Split 37.43 3.44 3.45 3	9.04	11.97	2.90	912678	0.58	7.53	81.6	3.2	0.347	0.011	bliCD	1/2 Core Split
15.04	11.97	15.04	3.10	912679	0.45	3.85	60.9	2.1	0.185	0.008	bliCD	1/2 Core Split
17.99	Duplicate	Previous		912680	0.45	3.91	60.9	2.1	0.185	0.009		Quality Control
20.86	15.04	17.99	2.90	912681	0.35	3.49	77.3	2.2	0.197	0.009	bliCD	1/2 Core Split
24.20	17.99	20.86	2.90	912682	1.01	36.25	179.8	10.4	0.220	0.012	bliCD	1/2 Core Split
27.44 30.54 3.10 912685 0.78 10.53 155.3 4.4 0.208 0.014 bifCD 1/2 Core Split 30.54 33.54 3.00 912686 1.12 80.01 204.1 7.8 0.247 0.014 bifCD 1/2 Core Split 33.54 36.82 3.30 912687 0.25 4.51 187.1 3.0 0.286 0.014 bifCD 1/2 Core Split 36.82 40.26 3.40 912688 0.29 2.56 271.8 3.3 0.191 0.022 bivCD 1/2 Core Split 40.26 43.68 3.40 912689 0.18 2.69 121.0 2.3 0.179 0.011 bivCD 1/2 Core Split 36.82 40.26 43.68 3.40 912689 0.18 2.69 121.0 2.3 0.200 0.010 Cauality Control 43.68 47.17 3.50 912691 0.27 7.63 118.3 2.2 0.165 0.009 bivCD 1/2 Core Split 47.17 50.61 3.40 912692 0.26 24.84 127.0 5.7 0.160 0.011 bivCD 1/2 Core Split 50.61 54.05 3.40 912693 0.19 13.94 131.8 6.6 0.259 0.013 bivCD 1/2 Core Split 54.05 57.60 3.60 912694 0.16 33.61 102.3 14.5 0.160 0.008 bivCD 1/2 Core Split 60.98 64.19 3.20 912696 0.16 0.46 62.3 1.4 0.111 0.006 bivCD 1/2 Core Split 64.19 67.56 3.40 912697 0.19 0.74 62.0 1.1 0.119 0.006 bivCD 1/2 Core Split 67.56 70.85 3.30 912699 0.35 2.6 89.0 2.8 0.159 0.012 bivCD 1/2 Core Split 70.85 74.16 3.30 912699 0.35 2.6 89.0 2.8 0.159 0.012 bivCD 1/2 Core Split 77.34 80.68 3.30 912702 0.77 6.24 119.9 2.9 0.233 0.011 bivCD 1/2 Core Split 77.34 80.68 3.30 912702 0.77 6.24 119.9 2.9 0.233 0.011 bivCD 1/2 Core Split 84.02 87.20 3.20 912707 0.75 0.14 140.9 2.3 0.216 0.011 bivCD 1/2 Core Split 99.45 103.45 4.00 912709 0.31 7.53 68.8 3.2 0.198 0.009 bivCD 1/2 Core Split 99.45 103.45 4.00 912709 0.31 7.53 68.8 3.2 0.198 0.008 bivCD 1/2 Core Split 99.45 103.45 4.00 912709 0.31 7.53 68.8 3.2 0.198 0.009 bivCD 1/2 Core Split 99.45 103.45 4.00	20.86	24.20	3.30	912683	0.98	18.18	206.2	5.7	0.246	0.016	blfCD	1/2 Core Split
30.54 33.54 3.00 912686 1.12 80.01 204.1 7.8 0.247 0.014 blfCD 1/2 Core Split 33.54 36.82 3.30 912687 0.25 4.51 187.1 3.0 0.286 0.014 blfCD 1/2 Core Split 33.54 36.82 40.26 3.40 912688 0.29 2.56 271.8 3.3 0.191 0.022 blvCD 1/2 Core Split 40.26 43.68 3.40 912689 0.18 2.69 121.0 2.3 0.179 0.011 blvCD 1/2 Core Split 40.26 43.68 3.40 912689 0.50 19.39 142.9 8.3 0.200 0.010 UQuality Control 43.68 47.17 3.50 912691 0.27 7.63 118.3 2.2 0.165 0.009 blvCD 1/2 Core Split 47.17 50.61 3.40 912692 0.26 24.84 127.0 5.7 0.160 0.011 blvCD 1/2 Core Split 54.05 57.60 3.60 912694 0.16 33.61 131.8 6.6 0.259 0.013 blvCD 1/2 Core Split 54.05 57.60 3.60 912694 0.16 33.61 102.3 14.5 0.160 0.008 blvCD 1/2 Core Split 64.19 67.56 3.40 912697 0.19 0.74 62.0 1.1 0.111 0.006 blvCD 1/2 Core Split 64.19 67.56 3.40 912697 0.19 0.74 62.0 1.1 0.119 0.006 blvCD 1/2 Core Split 67.56 70.85 74.16 3.30 912699 0.35 2.6 89.0 2.8 0.159 0.012 blvCD 1/2 Core Split 70.85 74.16 3.30 912699 0.35 2.6 89.0 2.8 0.159 0.012 blvCD 1/2 Core Split 77.34 80.68 3.30 912702 0.77 6.24 11.99 2.9 0.233 0.011 blvCD 1/2 Core Split 77.34 80.68 3.30 912702 0.77 6.24 11.99 2.9 0.233 0.011 blvCD 1/2 Core Split 84.02 87.20 3.20 912704 0.36 3.62 77.6 2.8 0.140 0.009 blvCD 1/2 Core Split 99.45 103.45 4.00 912709 0.31 7.53 96.8 3.2 0.140 0.008 blvCD 1/2 Core Split 99.45 103.45 4.00 912709 0.31 7.53 96.8 3.2 0.198 0.008 blvCD 1/2 Core Split 99.45 103.45 4.00 912709 0.31 7.53 96.8 3.2 0.198 0.008 blvCD 1/2 Core Split 99.45 103.45 4.00 912701 0.30 32.78 29.65 5.3 0.272 0.018 blvCD 1/2 Core Split 106.71 103.	24.20	27.44	3.20	912684	0.60	9.09	119.0	3.2	0.180	0.013	blfCD	1/2 Core Split
33.54 36.82 3.30 912687 0.25 4.51 187.1 3.0 0.286 0.014 blfCD 1/2 Core Split	27.44	30.54	3.10	912685	0.78	10.53	155.3	4.4	0.208	0.014	blfCD	1/2 Core Split
36.82 40.26 3.40 912688 0.29 2.56 271.8 3.3 0.191 0.022 blvCD 1/2 Core Split	30.54	33.54	3.00	912686	1.12	80.01	204.1	7.8	0.247	0.014	blfCD	1/2 Core Split
March Marc	33.54	36.82	3.30	912687	0.25	4.51	187.1	3.0	0.286	0.014	blfCD	1/2 Core Split
Standard Aley1	36.82	40.26	3.40	912688	0.29	2.56	271.8	3.3	0.191	0.022	blvCD	1/2 Core Split
43.68 47.17 3.50 912691 0.27 7.63 118.3 2.2 0.165 0.009 blvCD 1/2 Core Split 47.17 50.61 3.40 912692 0.26 24.84 127.0 5.7 0.160 0.011 blvCD 1/2 Core Split 50.61 54.05 3.40 912693 0.19 13.94 131.8 6.6 0.259 0.013 blvCD 1/2 Core Split 54.05 57.60 3.60 912694 0.16 33.61 102.3 14.5 0.160 0.008 blvCD 1/2 Core Split 60.98 64.19 3.20 912696 0.16 0.46 62.3 1.4 0.111 0.006 blvCD 1/2 Core Split 64.19 67.56 3.40 912697 0.19 0.74 62.0 1.1 0.119 0.006 blvCD 1/2 Core Split 70.85 73.16 3.30 912699 0.35 2.6 89.0 2.8 0.159 0.012 <	40.26	43.68	3.40	912689	0.18	2.69	121.0	2.3	0.179	0.011	blvCD	1/2 Core Split
47.17 50.61 3.40 912692 0.26 24.84 127.0 5.7 0.160 0.011 blvCD 1/2 Core Split 50.61 54.05 3.40 912693 0.19 13.94 131.8 6.6 0.259 0.013 blvCD 1/2 Core Split 54.05 57.60 3.60 912694 0.16 33.61 102.3 14.5 0.160 0.008 blvCD 1/2 Core Split 57.60 60.98 3.40 912695 0.34 4.45 93.5 2.2 0.150 0.008 blvCD 1/2 Core Split 60.98 64.19 3.20 912696 0.16 0.46 62.3 1.4 0.111 0.006 blvCD 1/2 Core Split 64.19 67.56 3.40 912697 0.19 0.74 62.0 1.1 0.119 0.006 blvCD 1/2 Core Split 70.85 74.16 3.30 912699 0.35 2.6 89.0 2.8 0.159 0.012 <t< td=""><td>Standard</td><td>Aley1</td><td></td><td>912690</td><td>0.50</td><td>19.39</td><td>142.9</td><td>8.3</td><td>0.200</td><td>0.010</td><td></td><td>Quality Control</td></t<>	Standard	Aley1		912690	0.50	19.39	142.9	8.3	0.200	0.010		Quality Control
50.61 54.05 3.40 912693 0.19 13.94 131.8 6.6 0.259 0.013 blvCD 1/2 Core Split 54.05 57.60 3.60 912694 0.16 33.61 102.3 14.5 0.160 0.008 blvCD 1/2 Core Split 57.60 60.98 3.40 912695 0.34 4.45 93.5 2.2 0.150 0.008 blvCD 1/2 Core Split 60.98 64.19 3.20 912696 0.16 0.46 62.3 1.4 0.111 0.006 blvCD 1/2 Core Split 64.19 67.56 3.40 912697 0.19 0.74 62.0 1.1 0.119 0.006 blvCD 1/2 Core Split 67.56 70.85 3.30 912698 0.78 11.89 234.7 7.3 0.247 0.018 blvCD 1/2 Core Split 70.85 74.16 3.30 912700 0.36 2.72 90.9 3.0 0.165 0.012 <	43.68	47.17	3.50	912691	0.27	7.63	118.3	2.2	0.165	0.009	blvCD	1/2 Core Split
54.05 57.60 3.60 912694 0.16 33.61 102.3 14.5 0.160 0.008 blvCD 1/2 Core Split 57.60 60.98 3.40 912695 0.34 4.45 93.5 2.2 0.150 0.008 blvCD 1/2 Core Split 60.98 64.19 3.20 912696 0.16 0.46 62.3 1.4 0.111 0.006 blvCD 1/2 Core Split 64.19 67.56 3.40 912697 0.19 0.74 62.0 1.1 0.119 0.006 blvCD 1/2 Core Split 67.56 70.85 3.30 912698 0.78 11.89 234.7 7.3 0.247 0.018 blvCD 1/2 Core Split 70.85 74.16 3.30 912699 0.35 2.6 89.0 2.8 0.159 0.012 Duol12 blvCD 1/2 Core Split Duplicate Previous 912700 0.36 2.72 90.9 3.0 0.165 0.012	47.17	50.61	3.40	912692	0.26	24.84	127.0	5.7	0.160	0.011	blvCD	1/2 Core Split
57.60 60.98 3.40 912695 0.34 4.45 93.5 2.2 0.150 0.008 blvCD 1/2 Core Split 60.98 64.19 3.20 912696 0.16 0.46 62.3 1.4 0.111 0.006 blvCD 1/2 Core Split 64.19 67.56 3.40 912697 0.19 0.74 62.0 1.1 0.119 0.006 blvCD 1/2 Core Split 67.56 70.85 3.30 912698 0.78 11.89 234.7 7.3 0.247 0.018 blvCD 1/2 Core Split 70.85 74.16 3.30 912699 0.35 2.6 89.0 2.8 0.159 0.012 blvCD 1/2 Core Split Duplicate Previous 912700 0.36 2.72 90.9 3.0 0.165 0.012 Quality Control 74.16 77.34 3.20 912701 0.10 0.71 53.1 0.9 0.225 0.005 blvCD 1/2 Core Split <td>50.61</td> <td>54.05</td> <td>3.40</td> <td>912693</td> <td>0.19</td> <td>13.94</td> <td>131.8</td> <td>6.6</td> <td>0.259</td> <td>0.013</td> <td>blvCD</td> <td>1/2 Core Split</td>	50.61	54.05	3.40	912693	0.19	13.94	131.8	6.6	0.259	0.013	blvCD	1/2 Core Split
60.98 64.19 3.20 912696 0.16 0.46 62.3 1.4 0.111 0.006 blvCD 1/2 Core Split 64.19 67.56 3.40 912697 0.19 0.74 62.0 1.1 0.119 0.006 blvCD 1/2 Core Split 67.56 70.85 3.30 912698 0.78 11.89 234.7 7.3 0.247 0.018 blvCD 1/2 Core Split 70.85 74.16 3.30 912699 0.35 2.6 89.0 2.8 0.159 0.012 blvCD 1/2 Core Split Duplicate Previous 912700 0.36 2.72 90.9 3.0 0.165 0.012 blvCD 1/2 Core Split 74.16 77.34 3.20 912701 0.10 0.71 53.1 0.9 0.225 0.005 blvCD 1/2 Core Split 77.34 80.68 3.30 912702 0.77 6.24 119.9 2.9 0.233 0.011 blvCD	54.05	57.60	3.60	912694	0.16	33.61	102.3	14.5	0.160	0.008	blvCD	1/2 Core Split
64.19 67.56 3.40 912697 0.19 0.74 62.0 1.1 0.119 0.006 blvCD 1/2 Core Split 67.56 70.85 3.30 912698 0.78 11.89 234.7 7.3 0.247 0.018 blvCD 1/2 Core Split 70.85 74.16 3.30 912699 0.35 2.6 89.0 2.8 0.159 0.012 blvCD 1/2 Core Split Duplicate Previous 912700 0.36 2.72 90.9 3.0 0.165 0.012 Quality Control 74.16 77.34 3.20 912701 0.10 0.71 53.1 0.9 0.225 0.005 blvCD 1/2 Core Split 77.34 80.68 3.30 912702 0.77 6.24 119.9 2.9 0.233 0.011 blvCD 1/2 Core Split 80.68 84.02 3.30 912703 0.66 8.75 95.0 4.2 0.167 0.011 blvCD 1/2 Core Split </td <td>57.60</td> <td>60.98</td> <td>3.40</td> <td>912695</td> <td>0.34</td> <td>4.45</td> <td>93.5</td> <td>2.2</td> <td>0.150</td> <td>0.008</td> <td>blvCD</td> <td>1/2 Core Split</td>	57.60	60.98	3.40	912695	0.34	4.45	93.5	2.2	0.150	0.008	blvCD	1/2 Core Split
67.56 70.85 3.30 912698 0.78 11.89 234.7 7.3 0.247 0.018 blvCD 1/2 Core Split 70.85 74.16 3.30 912699 0.35 2.6 89.0 2.8 0.159 0.012 blvCD 1/2 Core Split Duplicate Previous 912700 0.36 2.72 90.9 3.0 0.165 0.012 Quality Control 74.16 77.34 3.20 912701 0.10 0.71 53.1 0.9 0.225 0.005 blvCD 1/2 Core Split 77.34 80.68 3.30 912702 0.77 6.24 119.9 2.9 0.233 0.011 blvCD 1/2 Core Split 80.68 84.02 3.30 912703 0.66 8.75 95.0 4.2 0.167 0.011 blvCD 1/2 Core Split 87.20 3.20 912704 0.36 3.62 77.6 2.8 0.140 0.009 blvCD 1/2 Core Split	60.98	64.19	3.20	912696	0.16	0.46	62.3	1.4	0.111	0.006	blvCD	1/2 Core Split
70.85 74.16 3.30 912699 0.35 2.6 89.0 2.8 0.159 0.012 blvCD 1/2 Core Split Duplicate Previous 912700 0.36 2.72 90.9 3.0 0.165 0.012 Quality Control 74.16 77.34 3.20 912701 0.10 0.71 53.1 0.9 0.225 0.005 blvCD 1/2 Core Split 77.34 80.68 3.30 912702 0.77 6.24 119.9 2.9 0.233 0.011 blvCD 1/2 Core Split 80.68 84.02 3.30 912703 0.66 8.75 95.0 4.2 0.167 0.011 blvCD 1/2 Core Split 84.02 87.20 3.20 912704 0.36 3.62 77.6 2.8 0.140 0.009 blvCD 1/2 Core Split 87.20 90.23 3.00 912705 0.32 7.61 88.4 4.2 0.178 0.009 lAMX 1/2 Core Split	64.19	67.56	3.40	912697	0.19	0.74	62.0	1.1	0.119	0.006	blvCD	1/2 Core Split
Duplicate Previous 912700 0.36 2.72 90.9 3.0 0.165 0.012 Quality Control 74.16 77.34 3.20 912701 0.10 0.71 53.1 0.9 0.225 0.005 blvCD 1/2 Core Split 77.34 80.68 3.30 912702 0.77 6.24 119.9 2.9 0.233 0.011 blvCD 1/2 Core Split 80.68 84.02 3.30 912703 0.66 8.75 95.0 4.2 0.167 0.011 blvCD 1/2 Core Split 84.02 87.20 3.20 912704 0.36 3.62 77.6 2.8 0.140 0.009 blvCD 1/2 Core Split 87.20 90.23 3.00 912705 0.32 7.61 88.4 4.2 0.178 0.009 IAMX 1/2 Core Split 90.23 93.27 3.00 Not Sampled	67.56	70.85	3.30	912698	0.78	11.89	234.7	7.3	0.247	0.018	blvCD	1/2 Core Split
74.16 77.34 3.20 912701 0.10 0.71 53.1 0.9 0.225 0.005 blvCD 1/2 Core Split 77.34 80.68 3.30 912702 0.77 6.24 119.9 2.9 0.233 0.011 blvCD 1/2 Core Split 80.68 84.02 3.30 912703 0.66 8.75 95.0 4.2 0.167 0.011 blvCD 1/2 Core Split 84.02 87.20 3.20 912704 0.36 3.62 77.6 2.8 0.140 0.009 blvCD 1/2 Core Split 87.20 90.23 3.00 912705 0.32 7.61 88.4 4.2 0.178 0.009 IAMX 1/2 Core Split 90.23 93.27 3.00 Not Sampled	70.85	74.16	3.30	912699	0.35	2.6	89.0	2.8	0.159	0.012	blvCD	1/2 Core Split
77.34 80.68 3.30 912702 0.77 6.24 119.9 2.9 0.233 0.011 blvCD 1/2 Core Split 80.68 84.02 3.30 912703 0.66 8.75 95.0 4.2 0.167 0.011 blvCD 1/2 Core Split 84.02 87.20 3.20 912704 0.36 3.62 77.6 2.8 0.140 0.009 blvCD 1/2 Core Split 87.20 90.23 3.00 912705 0.32 7.61 88.4 4.2 0.178 0.009 blvCD 1/2 Core Split 90.23 93.27 3.00 Not Sampled 99.45 3.00 912707 0.75 0.14 140.9 2.3 0.216 0.011 IAMX 1/2 Core Split 99.45 3.00 912708 0.19 12.64 67.4 3.9 0.142 0.008 IAMX 1/2 Core Split Sta	Duplicate	Previous		912700	0.36	2.72	90.9	3.0	0.165	0.012		Quality Control
80.68 84.02 3.30 912703 0.66 8.75 95.0 4.2 0.167 0.011 blvCD 1/2 Core Split 84.02 87.20 3.20 912704 0.36 3.62 77.6 2.8 0.140 0.009 blvCD 1/2 Core Split 87.20 90.23 3.00 912705 0.32 7.61 88.4 4.2 0.178 0.009 IAMX 1/2 Core Split 90.23 93.27 3.00 Not Sampled Not Sampled Not Sampled Not Sampled 93.27 96.49 3.20 912707 0.75 0.14 140.9 2.3 0.216 0.011 IAMX 1/2 Core Split 96.49 99.45 3.00 912708 0.19 12.64 67.4 3.9 0.142 0.008 IAMX 1/2 Core Split 99.45 103.45 4.00 912709 0.31 7.53 96.8 3.2 0.198 0.008 bliCD 1/2 Core Split Standard	74.16	77.34	3.20	912701	0.10	0.71	53.1	0.9	0.225	0.005	blvCD	1/2 Core Split
84.02 87.20 3.20 912704 0.36 3.62 77.6 2.8 0.140 0.009 blvCD 1/2 Core Split 87.20 90.23 3.00 912705 0.32 7.61 88.4 4.2 0.178 0.009 IAMX 1/2 Core Split 90.23 93.27 3.00 Not Sampled Not Sampled Not Sampled 93.27 96.49 3.20 912707 0.75 0.14 140.9 2.3 0.216 0.011 IAMX 1/2 Core Split 96.49 99.45 3.00 912708 0.19 12.64 67.4 3.9 0.142 0.008 IAMX 1/2 Core Split 99.45 103.45 4.00 912709 0.31 7.53 96.8 3.2 0.198 0.008 bliCD 1/2 Core Split Standard Aley3 912710 0.80 32.78 297.6 7.7 0.199 0.009 Quality Control 103.45 106.71 3.30 912711 0.35 3.44 283.5 5.3 0.272 0.018 blvCD 1/2 Core	77.34	80.68	3.30	912702	0.77	6.24	119.9	2.9	0.233	0.011	blvCD	1/2 Core Split
87.20 90.23 3.00 912705 0.32 7.61 88.4 4.2 0.178 0.009 IAMX 1/2 Core Split 90.23 93.27 3.00 Not Sampled Not Sampled Not Sampled 93.27 96.49 3.20 912707 0.75 0.14 140.9 2.3 0.216 0.011 IAMX 1/2 Core Split 96.49 99.45 3.00 912708 0.19 12.64 67.4 3.9 0.142 0.008 IAMX 1/2 Core Split 99.45 103.45 4.00 912709 0.31 7.53 96.8 3.2 0.198 0.008 bliCD 1/2 Core Split Standard Aley3 912710 0.80 32.78 297.6 7.7 0.199 0.009 Quality Control 103.45 106.71 3.30 912711 0.35 3.44 283.5 5.3 0.272 0.018 blvCD 1/2 Core Split 106.71 110.50 3.80 912712 <	80.68	84.02	3.30	912703	0.66	8.75	95.0	4.2	0.167	0.011	blvCD	1/2 Core Split
90.23 93.27 3.00 Not Sampled Not Sampled 93.27 96.49 3.20 912707 0.75 0.14 140.9 2.3 0.216 0.011 IAMX 1/2 Core Split 96.49 99.45 3.00 912708 0.19 12.64 67.4 3.9 0.142 0.008 IAMX 1/2 Core Split 99.45 103.45 4.00 912709 0.31 7.53 96.8 3.2 0.198 0.008 bliCD 1/2 Core Split Standard Aley3 912710 0.80 32.78 297.6 7.7 0.199 0.009 Quality Control 103.45 106.71 3.30 912711 0.35 3.44 283.5 5.3 0.272 0.018 blvCD 1/2 Core Split 106.71 110.50 3.80 912712 0.41 5.35 190.5 4.5 0.216 0.013 blvCD 1/2 Core Split	84.02	87.20	3.20	912704	0.36	3.62	77.6	2.8	0.140	0.009	blvCD	1/2 Core Split
93.27 96.49 3.20 912707 0.75 0.14 140.9 2.3 0.216 0.011 IAMX 1/2 Core Split 96.49 99.45 3.00 912708 0.19 12.64 67.4 3.9 0.142 0.008 IAMX 1/2 Core Split 99.45 103.45 4.00 912709 0.31 7.53 96.8 3.2 0.198 0.008 bliCD 1/2 Core Split Standard Aley3 912710 0.80 32.78 297.6 7.7 0.199 0.009 Quality Control 103.45 106.71 3.30 912711 0.35 3.44 283.5 5.3 0.272 0.018 blvCD 1/2 Core Split 106.71 110.50 3.80 912712 0.41 5.35 190.5 4.5 0.216 0.013 blvCD 1/2 Core Split	87.20	90.23	3.00	912705	0.32	7.61	88.4	4.2	0.178	0.009	IAMX	1/2 Core Split
96.49 99.45 3.00 912708 0.19 12.64 67.4 3.9 0.142 0.008 IAMX 1/2 Core Split 99.45 103.45 4.00 912709 0.31 7.53 96.8 3.2 0.198 0.008 bliCD 1/2 Core Split Standard Aley3 912710 0.80 32.78 297.6 7.7 0.199 0.009 Quality Control 103.45 106.71 3.30 912711 0.35 3.44 283.5 5.3 0.272 0.018 blvCD 1/2 Core Split 106.71 110.50 3.80 912712 0.41 5.35 190.5 4.5 0.216 0.013 blvCD 1/2 Core Split	90.23	93.27	3.00	Not Sampled								Not Sampled
99.45 103.45 4.00 912709 0.31 7.53 96.8 3.2 0.198 0.008 bliCD 1/2 Core Split Standard Aley3 912710 0.80 32.78 297.6 7.7 0.199 0.009 Quality Control 103.45 106.71 3.30 912711 0.35 3.44 283.5 5.3 0.272 0.018 blvCD 1/2 Core Split 106.71 110.50 3.80 912712 0.41 5.35 190.5 4.5 0.216 0.013 blvCD 1/2 Core Split	93.27	96.49	3.20	912707	0.75	0.14	140.9	2.3	0.216	0.011	IAMX	1/2 Core Split
Standard Aley3 912710 0.80 32.78 297.6 7.7 0.199 0.009 Quality Control 103.45 106.71 3.30 912711 0.35 3.44 283.5 5.3 0.272 0.018 blvCD 1/2 Core Split 106.71 110.50 3.80 912712 0.41 5.35 190.5 4.5 0.216 0.013 blvCD 1/2 Core Split	96.49	99.45	3.00	912708	0.19	12.64	67.4	3.9	0.142	0.008	IAMX	1/2 Core Split
103.45 106.71 3.30 912711 0.35 3.44 283.5 5.3 0.272 0.018 blvCD 1/2 Core Split 106.71 110.50 3.80 912712 0.41 5.35 190.5 4.5 0.216 0.013 blvCD 1/2 Core Split	99.45	103.45	4.00	912709	0.31	7.53	96.8	3.2	0.198	0.008	bliCD	1/2 Core Split
106.71 110.50 3.80 912712 0.41 5.35 190.5 4.5 0.216 0.013 blvCD 1/2 Core Split	Standard	Aley3		912710	0.80	32.78	297.6	7.7	0.199	0.009		Quality Control
	103.45	106.71	3.30	912711	0.35	3.44	283.5	5.3	0.272	0.018	blvCD	1/2 Core Split
110.50 113.75 3.20 912713 0.34 12.63 108.6 5.3 0.266 0.013 hlyCD 1/2 Caro Split	106.71	110.50	3.80	912712	0.41	5.35	190.5	4.5	0.216	0.013	blvCD	1/2 Core Split
1 110.00 110.70 0.20 0.2710 0.04 12.00 100.0 0.0 0.200 0.010 bivCD 1/2 Core Spiil	110.50	113.75	3.20	912713	0.34	12.63	108.6	5.3	0.266	0.013	blvCD	1/2 Core Split

ALEY - ANALYTICAL RESULTS

Logged By Ryan Kressall	
Logged by Ryan Kressan	
Laboratory Inspectorate	
File No. 10-360-03617-01	

Location	UTM NAD 83	Comment
Easting	654,154.760	Central 4
Northing	7,710,454.927	
Floyation	554 683	

Direction / Length					
Azimuth	60 °				
Inclination	-50 °				
Length	205.18 Metres				

Drill Hole Information					
Date Start	22-Aug-10				
Date End	23-Aug-10				
Operator	Taseko				

		17-01	Lievation	334.00				angui 20	3.16 Metres	Орста	-
Sample From	Interval (met	res) Int.	Sample Number	Nb ₂ O ₅ %	Ta ppm	Analytica Th ppm	I Results		Y2O3 %	Litho	Sample Method
113.75	117.04	3.30	912714	0.21	3.74	179.8	2.3	0.247	0.012	blvCD	1/2 Core Split
							1.0	0.247		blvCD	-
117.04	120.51	3.50	912715	0.15	0.55	97.6			0.007		1/2 Core Split
120.51	124.00	3.50	912716	0.83	2.18	121.6	2.2	0.202	0.014	blvCD	1/2 Core Split
124.00	127.37	3.40	912717	0.14	16.5	57.2	7.1	0.103	0.006	IcAMX	1/2 Core Split
127.37	129.71	2.30	912718	0.32	2.58	64.9	3.5	0.127	0.009	IcAMX	1/2 Core Split
129.71	132.16	2.40	912719	0.13	1.5	72.5	2.1	0.098	0.006	IcAMX	1/2 Core Split
Duplicate	Previous		912720	0.13	1.49	74.4	2.6	0.102	0.006		Quality Control
132.16	135.74	3.60	912721	0.44	3.83	86.5	3.3	0.129	0.007	bliCD	1/2 Core Split
135.74	139.16	3.40	912722	0.48	7.82	92.5	3.3	0.211	0.007	bliCD	1/2 Core Split
139.16	142.58	3.40	912723	0.14	1.37	20.1	1.1	0.241	0.006	bliCD	1/2 Core Split
142.58	146.13	3.50	912724	0.42	6.11	67.7	2.7	0.162	0.008	bliCD	1/2 Core Split
146.13	149.61	3.50	912725	0.22	27.57	90.0	5.5	0.146	0.010	bliCD	1/2 Core Split
149.61	153.08	3.50	912726	0.22	2.84	41.6	1.8	0.134	0.006	bliCD	1/2 Core Split
153.08	155.86	2.80	912727	0.14	2.2	51.0	1.9	0.148	0.005	blcCD	1/2 Core Split
155.86	158.68	2.80	912728	0.44	3.09	71.4	3.1	0.191	0.010	blcCD	1/2 Core Split
158.68	161.41	2.70	912729	0.35	3.43	77.9	2.4	0.170	0.010	blcCD	1/2 Core Split
Standard	Aley1		912730	0.45	21.96	142.4	10.7	0.215	0.011		Quality Control
161.41	164.39	3.00	912731	0.46	7.37	45.2	2.1	0.130	0.006	blcCD	1/2 Core Split
164.39	167.50	3.10	912732	0.06	0.57	15.0	0.5	0.149	0.005	bliCD	1/2 Core Split
167.50	170.63	3.10	912733	0.05	0.71	22.4	0.9	0.104	0.004	bliCD	1/2 Core Split
170.63	173.78	3.20	912734	0.08	0.92	34.2	1.8	0.173	0.005	bliCD	1/2 Core Split
173.78	176.83	3.10	912735	0.36	6.04	59.5	2.4	0.217	0.009	bliCD	1/2 Core Split
176.83	179.88	3.00	912736	0.23	7.12	39.3	3.4	0.147	0.007	bliCD	1/2 Core Split
179.88	182.93	3.10	912737	0.11	1.98	36.0	1.7	0.119	0.005	bliCD	1/2 Core Split
182.93	185.98	3.00	912738	0.24	8.41	122.2	2.4	0.181	0.008	bliCD	1/2 Core Split
185.98	189.17	3.20	912739	0.13	2.07	86.3	2.4	0.205	0.006	bliCD	1/2 Core Split
Duplicate	Previous		912740	0.13	1.93	85.4	2.4	0.209	0.006		Quality Control
189.17	192.30	3.10	912741	0.30	30.69	82.8	7.0	0.162	0.008	bliCD	1/2 Core Split
192.30	195.42	3.10	912742	0.29	33.33	140.3	13.4	0.206	0.010	blpCD	1/2 Core Split
195.42	198.57	3.20	912743	0.31	31.02	187.6	7.3	0.207	0.009	blpCD	1/2 Core Split
198.57	201.80	3.20	912744	0.65	5.92	80.0	4.1	0.213	0.007	blpCD	1/2 Core Split
Blank	Granite		912745	0.01	1.57	9.3	4.4	0.021	0.002	•	Quality Control
201.80	205.18	3.40	912746	0.09	25.47	46.9	9.0	0.162	0.008	blpCD	1/2 Core Split

ALEY - ANALYTICAL RESULTS

Drill Core Samples						
Logged By	Ryan Kressall					
Laboratory	Inspectorate					
File No.	10-360-03617-01					

Location	UTM NAD 83	Comment
Easting	654,154.760	Central 4
Northing	7,710,454.927	
Elevation	554.683	

Direction / Length			
Azimuth 60 °			
Inclination	-50 °		
Length 205.18 Metres			

Drill Hole Information				
Date Start	22-Aug-10			
Date End	23-Aug-10			
Operator	Taseko			

Sample	mple Interval (metres) Sample Number Analytical Results					Litho	Sample Method				
From	То	Int.		$Nb_2O_5\%$	Ta ppm	Th ppm	U ppm	TREO %	Y2O3 %		
	Drill Hole Selected Interval - Weighted Average Analytical Results										
Sample	e Interval (met	tres)				Analytica	l Results				
From	То	Int.		Nb ₂ O ₅ %	Ta ppm	Th ppm	U ppm	TREO %	Y2O3 %		
3.05	33.54	30.49		0.672	18	125.0	4	0.236	0.012		
17.99	33.54	15.55	Incl.	0.894	30	172.6	6	0.220	0.014		
67.56	146.13	78.57		0.379	6	105.9	3	0.184	0.010		

ALEY - ANALYTICAL RESULTS

Drill Core Samples

Logged By	Ryan Kressall
Laboratory	Inspectorate
File No.	10-360-03626-01

Location	UTM NAD 83	Comment
Easting	654,064.539	Central 4
Northing	7,710,419.843	
Elevation	543.094	

Direction / Length					
Azimuth 30 °					
Inclination -45°					

Length

213.41 Metres

Drill Hole Information					
Date Start 25-Aug-10					
Date End	27-Aug-10				
Operator	Taseko				

Sample	Interval (met	res)	Sample Analytical Results		1 :41	0 M (l 1					
From	То	Int.	Number	Nb ₂ O ₅ %	Ta ppm	Th ppm	U ppm	TREO %	Y2O3 %	Litho	Sample Method
0.00	6.10	6.10	Not Sampled	1.020570	. с. рр		о рр		1200 70	CASE	Not Sampled
6.10	9.69	3.60	912747	1.01	17.31	158.5	5.7	0.223	0.010	glcCD	1/2 Core Split
9.69	13.10	3.40	912748	0.82	9.41	114.5	4.6	0.191	0.007	glcCD	1/2 Core Split
13.10	16.68	3.60	912749	0.75	18.1	140.4	2.8	0.250	0.009	glcCD	1/2 Core Split
16.68	20.65	4.00	912851	1.35	46.7	378.3	9.4	0.263	0.009	glcCD	1/2 Core Split
Standard	Aley1	1.00	912850	0.39	37.13	159.6	9.3	0.233	0.010	9.002	Quality Control
20.65	23.97	3.30	912852	0.76	26.87	174.1	3.4	0.337	0.010	glcCD	1/2 Core Split
23.97	27.44	3.50	912853	1.06	37.74	171.3	4.6	0.353	0.010	glcCD	1/2 Core Split
27.44	31.09	3.60	912854	0.21	3.97	45.9	1.3	0.410	0.006	blcCD	1/2 Core Split
31.09	35.65	4.60	912855	1.13	27.83	205.9	5.1	0.891	0.010	blcCD	1/2 Core Split
35.65	38.49	2.80	912856	0.41	8.27	91.7	2.0	0.403	0.010	blcCD	1/2 Core Split
38.49	41.97	3.50	912857	0.35	4.94	91.4	1.6	0.306	0.012	blcCD	1/2 Core Split
41.97	45.22	3.20	912858	0.80	0.41	206.8	4.3	0.326	0.012	bICD	1/2 Core Split
45.22	48.43	3.20	912859	0.60	10.34	119.5	2.1	0.215	0.009	bICD	1/2 Core Split
48.43	51.75	3.30	912861	0.80	42.52	293.2	7.0	0.276	0.011	bICD	1/2 Core Split
51.75	55.07	3.30	912862	0.46	6.95	94.0	1.5	0.149	0.008	bICD	1/2 Core Split
55.07	58.17	3.10	912863	0.35	7.44	90.3	1.8	0.142	0.007	blCD	1/2 Core Split
58.17	61.13	3.00	912864	0.40	12.06	96.3	3.8	0.264	0.009	bcreniCD	1/2 Core Split
61.13	63.39	2.26	912865	0.75	3.09	112.3	1.3	0.171	0.006	glpCD	1/2 Core Split
Blank	Granite		912866	0.02	1.91	9.5	3.5	0.021	0.002	31 -	Quality Control
63.39	65.63	2.20	912867	0.88	0.23	172.5	2.0	0.189	0.012	glpCD	1/2 Core Split
65.63	68.14	2.50	912868	0.58	8.39	143.1	2.8	0.198	0.011	blpCD	1/2 Core Split
68.14	70.78	2.60	912869	0.25	8.42	234.9	2.8	0.344	0.016	blpCD	1/2 Core Split
Standard	Aley2		912870	0.72	46.24	187.8	2.0	0.217	0.013		Quality Control
70.78	74.46	3.70	912871	0.91	2.11	130.6	2.1	0.236	0.008	blfgCD	1/2 Core Split
74.46	78.02	3.60	912872	1.25	0.42	138.7	3.9	0.254	0.010	blfgCD	1/2 Core Split
78.02	81.42	3.40	912873	0.80	0.94	173.2	2.0	0.189	0.008	blpCCCD	1/2 Core Split
81.42	84.73	3.30	912874	0.67	11.7	144.2	2.3	0.182	0.008	blpCCCD	1/2 Core Split
84.73	88.41	3.70	912875	0.57	0.41	90.4	7.4	0.179	0.008	blpCCCD	1/2 Core Split
88.41	91.46	3.00	912876	0.82	0.82	158.6	3.8	0.202	0.010	gliCD	1/2 Core Split
91.46	94.51	3.10	912877	0.42	10.76	99.9	1.9	0.183	0.011	gliCD	1/2 Core Split
94.51	98.37	3.90	912878	0.85	35.4	234.2	7.1	0.187	0.012	gliCD	1/2 Core Split
98.37	100.73	2.40	912879	1.70	1.06	372.0	12.6	0.270	0.014	gliCD	1/2 Core Split
Duplicate	Previous		912880	1.77	1.35	351.4	12.5	0.264	0.013		Quality Control
100.73	103.66	2.90	912881	0.31	7.83	112.1	2.4	0.209	0.010	gliCD	1/2 Core Split
103.66	106.46	2.80	912882	0.78	0.24	83.2	2.6	0.212	0.009	gliCD	1/2 Core Split
106.46	109.50	3.00	912883	0.67	0.1	107.0	3.1	0.237	0.010	gliCD	1/2 Core Split
109.50	112.30	2.80	912884	1.63	0.85	220.0	11.2	0.263	0.011	gmiCM	1/2 Core Split
112.30	116.08	3.80	912885	1.77	0.43	136.2	11.5	0.331	0.022	blcCD	1/2 Core Split

ALEY - ANALYTICAL RESULTS

Logged By	Ryan Kressall
Laboratory	Inspectorate
File No.	10-360-03626-01

Location	UTM NAD 83	Comment
Easting	654,064.539	Central 4
Northing	7,710,419.843	
Flevation	543 094	

Direction / Length				
Azimuth 30 °				
Inclination	-45 °			
Length	213.41 Metres			

Drill Hole Information							
Date Start 25-Aug-10							
Date End	27-Aug-10						
Operator	Taseko						

	10-300-030		Lievation	343.07	•			ingtii 21.	3.41 Michie	Орсти	
Sample	Interval (met	res)	Sample Number		Analytical Results					Litho	Sample Method
From	То	Int.		$Nb_2O_5\%$	Ta ppm	Th ppm	U ppm	TREO %	Y2O3 %		
116.08	120.02	3.90	912886	1.04	0.2	69.9	3.9	0.308	0.017	blcCD	1/2 Core Split
120.02	123.45	3.40	912887	0.65	0.17	144.6	5.1	0.355	0.020	liCD	1/2 Core Split
123.45	126.84	3.40	912888	0.19	0.11	81.6	2.2	0.090	0.006	liCD	1/2 Core Split
126.84	130.13	3.30	912889	0.48	0.13	83.3	3.0	0.136	0.007	liCD	1/2 Core Split
130.13	133.20	3.10	912891	0.27	3.46	102.2	1.9	0.120	0.007	liCD	1/2 Core Split
Standard	OKA-1		912890	0.53	41.81	54.2	27.3	0.344	0.008		Quality Control
133.20	136.13	2.90	912892	0.29	5.26	77.8	2.0	0.138	0.008	liCD	1/2 Core Split
136.13	139.45	3.30	912893	0.43	10.85	89.4	3.7	0.126	0.006	liCD	1/2 Core Split
139.45	143.64	4.20	912894	1.34	0.44	274.6	10.9	0.475	0.014	nmcCD	1/2 Core Split
143.64	146.60	2.96	912895	0.62	0.08	122.3	2.9	0.163	0.014	gICD	1/2 Core Split
146.60	149.81	3.20	912896	0.55	2.77	209.8	2.2	0.185	0.015	glCD	1/2 Core Split
149.81	152.81	3.00	912897	1.26	0.33	136.5	11.3	0.201	0.009	gliCCCD	1/2 Core Split
152.81	155.78	3.00	912898	1.07	0.36	150.0	2.9	0.173	0.007	gliCCCD	1/2 Core Split
155.78	159.89	4.10	912899	0.16	1.36	80.6	1.1	0.124	0.005	blfgCD	1/2 Core Split
159.89	163.90	4.00	912901	0.56	8.19	153.0	2.8	0.168	0.008	blfgCD	1/2 Core Split
163.90	166.09	2.20	912902	0.44	0.18	90.8	0.9	0.113	0.005	glCD	1/2 Core Split
166.09	168.69	2.60	912903	0.10	0.79	79.6	0.6	0.102	0.007	bmiCD	1/2 Core Split
168.69	171.07	2.40	912904	0.18	1.44	112.9	1.4	0.200	0.009	bmiCD	1/2 Core Split
171.07	174.44	3.40	912905	0.48	6.97	164.2	3.9	0.193	0.014	gmiCD	1/2 Core Split
174.44	177.84	3.40	912906	0.35	1.67	160.4	2.8	0.197	0.012	gmiCD	1/2 Core Split
177.84	181.00	3.20	912907	0.22	4.44	152.3	2.9	0.270	0.009	gmiCD	1/2 Core Split
181.00	184.06	3.10	912908	0.46	5.4	149.9	2.7	0.255	0.013	bliCD	1/2 Core Split
184.06	186.94	2.90	912909	0.52	8.47	124.3	3.6	0.220	0.013	bliCD	1/2 Core Split
Standard	Aley1		912910	0.44	26.53	146.8	8.9	0.249	0.010		Quality Control
186.94	189.72	2.80	912911	0.17	0.69	147.6	0.9	0.217	0.008	gmiCD	1/2 Core Split
189.72	192.56	2.80	912912	0.29	2.5	142.1	1.3	0.128	0.013	gmiCD	1/2 Core Split
192.56	195.31	2.80	912913	0.20	0.31	48.7	3.5	0.114	0.006	gmiCD	1/2 Core Split
195.31	198.92	3.60	912914	0.52	15.9	197.2	6.0	0.163	0.013	gmpCD	1/2 Core Split
198.92	202.52	3.60	912915	0.50	62.94	111.8	29.8	0.181	0.011	gmpCD	1/2 Core Split
202.52	206.47	3.90	912916	0.41	5.93	228.5	3.5	0.166	0.011	gmpCD	1/2 Core Split
206.47	210.15	3.70	912917	0.41	9.26	158.3	4.8	0.451	0.016	gmpCD	1/2 Core Split
210.15	213.41	3.80	912918	0.30	8.34	134.5	2.8	0.144	0.010	gmpCD	1/2 Core Split

ALEY - ANALYTICAL RESULTS

Drill Core Samples							
Logged By Ryan Kressall							
Laboratory	Inspectorate						
File No.	10-360-03626-01						

Location	UTM NAD 83	Comment
Easting	654,064.539	Central 4
Northing	7,710,419.843	
Elevation	543.094	

Direction / Length						
Azimuth	30 °					
Inclination	-45 °					
Length	213.41 Metres					

Drill Hole Information							
Date Start 25-Aug-10							
Date End	27-Aug-10						
Operator	Taseko						

Sample	e Interval (me	tres)	Sample Number	Analytical Results							Sample Method
From	То	Int.		$\mathrm{Nb_2O_5}\%$	Ta ppm	Th ppm	U ppm	TREO %	Y2O3 %		·
	Drill Hole Selected Interval - Weighted Average Analytical Results										
Sample	e Interval (me	tres)		Analytical Results							
From	То	Int.		Nb ₂ O ₅ %	Ta ppm	Th ppm	U ppm	TREO %	Y2O3 %		
6.10	213.41	207.31		0.658	9	147.2	4	0.280	0.010		
6.10	35.65	29.55	Incl.	0.900	24	177.4	5	0.530	0.009		
61.13	123.45	62.32	Incl.	0.873	5	150.1	5	0.249	0.012		
139.45	155.78	16.33	Incl.	0.990	1	186.2	6	0.318	0.012		

ALEY - ANALYTICAL RESULTS

Logged By	Ryan Kressall
Laboratory	Inspectorate
File No.	10-360-03625-01

Location	UTM NAD 83	Comment
Easting	654,124.652	Central 4
Northing	7,710,438.797	

Direction / Length							
Azimuth	60 °						
Inclination	-50 °						
Longth	212 41 Motros						

Drill Hole Information						
Date Start	26-Aug-10					
Date End	27-Aug-10					
Operator	Taseko					

File No.	10-360-036	25-01	Elevation	552.770	b			ength 21	3.41 Metres	Opera	tor Taseko
Sample	Interval (met	res)	Sample Number		Analytical Results					Litho	Sample Method
From	То	Int.	Number	$Nb_2O_5\%$	Ta ppm	Th ppm	U ppm	TREO %	Y2O3 %		·
0.00	2.49	2.50	Not Sampled							CASE	Not Sampled
2.49	5.10	2.60	912761	0.30	4.9	50.6	0.8	0.209	0.009	bliCD	1/2 Core Split
5.10	8.67	3.60	912762	0.26	2.77	48.7	0.5	0.200	0.008	bliCD	1/2 Core Split
8.67	12.20	3.50	912763	0.29	12.74	75.0	1.7	0.173	0.007	bliCD	1/2 Core Split
12.20	15.70	3.50	912764	0.31	43.33	136.2	7.4	0.163	0.008	bliCD	1/2 Core Split
15.70	19.32	3.60	912765	0.26	26.99	113.5	4.8	0.248	0.008	bliCD	1/2 Core Split
19.32	22.82	3.50	912766	0.38	24.05	76.4	4.3	0.152	0.009	bliCD	1/2 Core Split
22.82	26.58	3.80	912767	0.30	9.77	41.7	4.1	0.196	0.007	bliCD	1/2 Core Split
26.58	30.49	3.90	912768	0.11	0.7	23.8	0.3	0.140	0.004	gmCD	1/2 Core Split
30.49	34.65	4.20	912769	0.28	10.58	52.4	4.9	0.175	0.008	gmCD	1/2 Core Split
Standard	Aley2		912770	0.71	48.04	224.9	2.4	0.235	0.013		Quality Control
34.65	39.63	5.00	912771	0.29	4.86	74.8	0.6	0.150	0.009	nmiCD	1/2 Core Split
39.63	42.68	3.00	912772	0.44	4.13	100.5	0.7	0.183	0.009	nmiCD	1/2 Core Split
42.68	45.73	3.00	912773	0.32	4.62	94.9	1.4	0.161	0.010	nmiCD	1/2 Core Split
45.73	48.78	3.10	912774	0.44	2.08	106.4	0.6	0.224	0.011	nmiCD	1/2 Core Split
48.78	51.83	3.00	912775	0.53	3.78	103.4	0.7	0.238	0.011	nmiCD	1/2 Core Split
51.83	54.88	3.10	912776	0.35	2.49	93.5	0.7	0.174	0.009	nmiCD	1/2 Core Split
54.88	57.93	3.00	912777	0.48	8.89	119.5	2.4	0.168	0.008	nmiCD	1/2 Core Split
57.93	60.96	3.00	912778	0.32	2.09	76.1	0.9	0.122	0.006	nmiCD	1/2 Core Split
60.96	64.02	3.10	912779	0.37	1.61	98.9	0.3	0.171	0.007	nmiCD	1/2 Core Split
64.02	67.07	3.00	912781	0.34	2.79	75.9	0.4	0.130	0.007	nmiCD	1/2 Core Split
67.07	70.12	3.10	912782	0.56	7.84	103.8	1.2	0.171	0.010	nmiCD	1/2 Core Split
70.12	73.17	3.00	912783	0.50	4.04	96.8	0.9	0.145	0.006	nmiCD	1/2 Core Split
73.17	76.22	3.00	912784	0.42	5.99	60.1	1.6	0.187	0.010	nmiCD	1/2 Core Split
76.22	79.27	3.00	912785	0.13	0.65	44.3	0.5	0.176	0.007	nmiCD	1/2 Core Split
79.27	82.32	3.00	912786	0.23	4.08	89.0	1.5	0.349	0.017	nmiCD	1/2 Core Split
82.32	85.37	3.10	912787	0.22	2.22	46.0	0.8	0.111	0.008	nmiCD	1/2 Core Split
85.37	88.41	3.00	912788	0.33	5.06	62.2	1.6	0.135	0.007	nmiCD	1/2 Core Split
88.41	91.46	3.00	912789	0.68	8.91	83.9	1.4	0.149	0.007	nmiCD	1/2 Core Split
Standard	Aley1		912790	0.45	28.25	172.9	10.4	0.203	0.009		Quality Control
91.46	94.51	3.10	912791	0.49	5.69	124.5	1.1	0.205	0.009	nmiCD	1/2 Core Split
94.51	97.56	3.00	912792	0.26	6.24	33.9	1.9	0.117	0.004	nmiCD	1/2 Core Split
97.56	100.61	3.00	912793	0.42	5.65	49.4	1.7	0.187	0.007	nmiCD	1/2 Core Split
100.61	103.66	3.00	912794	0.24	2.29	46.0	0.8	0.170	0.005	nmiCD	1/2 Core Split
103.66	106.71	3.00	912795	0.27	2.53	50.7	1.0	0.112	0.006	nmiCD	1/2 Core Split
106.71	111.24	4.50	912796	0.32	2.36	40.7	1.2	0.155	0.009	nmiCD	1/2 Core Split
111.24	115.22	4.00	912797	0.25	3.18	45.6	1.0	0.185	0.009	gmiCD	1/2 Core Split
115.22	119.16	3.90	912798	0.31	3.16	50.4	1.2	0.292	0.011	gmiCD	1/2 Core Split
119.16	122.15	3.00	912799	0.40	5.39	55.7	1.4	0.264	0.011	nlfgCD	1/2 Core Split

ALEY - ANALYTICAL RESULTS

Logged By	Ryan Kressall
Laboratory	Inspectorate
File No.	10-360-03625-01

Location	UTM NAD 83	Comment
Easting	654,124.652	Central 4
Northing	7,710,438.797	
Elevation	552.776	

Direction	Direction / Length							
Azimuth	60 °							
Inclination	-50 °							
Length	213.41 Metres							

Drill Hole Information								
Date Start	26-Aug-10							
Date End	27-Aug-10							
Operator	Taseko							

Sample	Interval (met	res)	Sample Analytical Results Number							Litho	Sample Method	
From	То	Int.	Number	Nb ₂ O ₅ %	Ta ppm	Th ppm	U ppm	TREO %	Y2O3 %		,	
122.15	125.10	2.90	912801	0.27	4.01	37.0	1.3	0.190	0.010	nlfgCD	1/2 Core Split	
125.10	128.05	3.00	912802	0.38	5.15	53.3	1.4	0.235	0.011	nlfgCD	1/2 Core Split	
128.05	131.62	3.60	912803	0.54	5.61	47.2	1.3	0.367	0.020	gliCD	1/2 Core Split	
131.62	134.94	3.30	912804	0.22	0.71	23.9	0.4	0.183	0.006	gliCD	1/2 Core Split	
134.94	138.56	3.60	912805	0.43	1.39	42.6	0.6	0.178	0.009	gliCD	1/2 Core Split	
138.56	141.85	3.30	912806	0.33	20.41	88.5	1.6	0.292	0.009	gliCD	1/2 Core Split	
141.85	145.27	3.40	912807	0.42	5.55	39.8	1.7	0.281	0.008	nliCD	1/2 Core Split	
145.27	148.62	3.30	912808	0.54	10.05	57.8	3.7	0.220	0.011	nliCD	1/2 Core Split	
148.62	151.68	3.10	912809	0.25	2.97	34.5	1.3	0.187	0.006	nliCD	1/2 Core Split	
Standard	Aley2		912810	0.77	50.37	211.3	2.1	0.229	0.013		Quality Control	
151.68	155.49	3.80	912811	0.30	3.46	35.0	1.1	0.188	0.006	nlfgAMX	1/2 Core Split	
155.49	159.07	3.60	912812	0.21	0.5	20.1	0.5	0.169	0.005	blpCD	1/2 Core Split	
159.07	162.59	3.50	912813	0.50	3.58	27.0	1.2	0.161	0.007	blpCD	1/2 Core Split 1/2 Core Split 1/2 Core Split	
162.59	166.20	3.60	912814	0.19	22.39	30.5	9.8	0.164 0.0	0.006	blpCD		
166.20	169.87	3.70	912815	0.29	11.17	36.5	5.5	0.171	0.007	blpCD		
169.87	173.66	3.80	912816	0.16	3.3	19.7	3.0	0.152	0.005	blpCD	1/2 Core Split	
173.66	177.25	3.60	912817	0.41	13.24	51.6	7.6	0.207	0.007	blpCD	1/2 Core Split 1/2 Core Split	
177.25	180.61	3.40	912818	0.17	14.03	34.9	6.5	0.300	0.009	blpCD		
180.61	184.08	3.50	912819	0.19	2.85	28.2	2.7	0.154	0.005	blpCD	1/2 Core Split	
184.08	186.49	2.40	912821	0.19	1.3	25.9	0.4	0.105	0.004	blpCCCD	1/2 Core Split	
186.49	189.02	2.50	912822	0.46	5.35	55.6	1.7	0.218	0.010	blpCCCD	1/2 Core Split	
Blank	Granite		912823	0.31	3.75	50.1	2.9	0.189	0.009		Quality Control	
189.02	191.43	2.40	912824	0.33	3.57	49.2	2.3	0.223	0.009	blpCCCD	1/2 Core Split	
191.43	194.09	2.70	912825	0.27	1.22	44.7	0.3	0.142	0.005	blpCCCD	1/2 Core Split	
194.09	197.43	3.30	912826	0.20	4.17	24.6	1.6	0.159	0.007	blpCD	1/2 Core Split	
197.43	200.78	3.30	912827	0.18	0.92	40.3	0.6	0.182	0.006	blpCD	1/2 Core Split	
200.78	203.99	3.20	912828	0.10	11.22	26.3	4.9	0.183	0.007	blpCD	1/2 Core Split	
203.99	207.40	3.40	912829	0.08	10.02	44.2	6.8	0.326	0.007	blpCD	1/2 Core Split	
Standard	Aley3		912830	0.79	38.49	307.9	7.7	0.201	0.009		Quality Control	
207.40	210.30	2.90	912831	0.39	21.5	120.2	4.9	0.259	0.007	bIAMX	1/2 Core Split	
210.30	213.41	3.10	912832	0.23	2.45	22.8	1.5	0.122	0.007	bIAMX	1/2 Core Split	

	Drill Hole Selected Interval - Weighted Average Analytical Results											
Sample	Sample Interval (metres) Analytical Results											
From	To	Int.		Nb ₂ O ₅ %	Ta ppm	Th ppm	U ppm	TREO %	Y2O3 %			
2.49	162.59	160.10		0.346	7	64.7	2	0.196	0.008			

Certificate of Analysis

Inspectorate Exploration & Mining Services Ltd. #200 - 11620 Horseshoe Way

Date Received: 10/18/2010

Date Completed: 03/16/2011

Invoice:

Richmond, British Columbia V7A 4V5 Canada

Phone: 604-272-7818

Distribution List

Attention: Eric Titley

Suite 1020-800 West Pender St.

Vancouver, BC V6C 2V6

EMail: erictitley@hdimining.com

Attention: Jeremy Crozier

EMail: jeremycrozier@hdimining.com

Attention: T.Kodata

EMail: tkodata@hdimining.com

Submitted By: Aley Corporation

Suite 1020-800 West Pender St.

Vancouver, BC V6C 2V6

Attention: Eric Titley

Project: Aley 2010 Project

Purchase Order: **ALY 0002**Description: **Aley 2010-020**

LocationSamplesTypePreparation DescriptionVancouver, BC66CoreSP-RX-2K/Rock/Chips/Drill CoreVancouver, BC4PulpSP-PU/Pulp Handling, submitted pulps

Location	Method	Description
Vancouver, BC	REE-LB-MS	REE Group by ICP-MS
Vancouver, BC	Nb2O5-AD3-OR-ICP	Niobium by multi-acid digestion, ICP
Vancouver, BC	Ta-4A-LL-MS	Tantalum, 4 Acid, ICP
Vancouver, BC	Th-4A-LL-MS	Thorium, 4 Acid, Low Level
Vancouver, BC	30-4A-TR	30 Element, 4 Acid, ICP, Trace Level
Vancouver, BC	U-4A-LL-MS	Uraium, 4 Acid, Low Level
Vancouver, BC	WR-FS-ICP	Whole Rock, Lithium Borate Fusion, ICP

Submittal Information

Uranium (U), Tantalum (Ta), and Thorium (Th) numbers shown have been revised with accurate detection limits.

The results of this assay were based solely upon the content of the sample submitted. Any decision to invest should be made only after the potential investment value of the claim or deposit has been determined based on the results of assays of multiple samples of geologic materials collected by the prospective investor or by a qualified person selected by him and based on an evaluation of all engineering data which is available concerning any proposed project. For our complete terms and conditions please see our website at www.inspectorate.com.

Вv

Mike Caron, Lab Manager

Certificate of Analysis 10-360-03268-01

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

#200 - 11620 Horseshoe Way Richmond, British Columbia V7A 4V5 Canada

		Nb2O5	Al2O3	BaO	CaO	Cr2O3	Fe2O3	K2O	LOI	MgO	MnO	Na2O	P2O5	SiO2	TiO2
		Nb2O5-AD3-OR-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP
Sample	Sample	%	%	%	%	%	%	%	%	%	%	%	%	%	%
Description	Туре	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
B875350	Pulp	0.54	1.90	0.30	66.03	< 0.01	8.29	0.71	1.50	2.38	1.36	0.44	3.41	9.92	0.22 0.05
B875351	Core	0.17	0.20	< 0.01	60.21	< 0.01	7.19	< 0.01	4.58	17.26	0.75	0.04	5.42	1.83	
B875352	Core	0.22	0.65	< 0.01	55.15	< 0.01	9.28	0.02	4.40	15.86	0.64	0.26	4.22	5.69	0.14
B875353	Core	0.67	5.80	< 0.01	32.91	0.01	6.21	0.28	6.38	14.91	0.16	0.23	8.80	21.52	0.79
B875354	Core	0.18	0.24	< 0.01	65.01	< 0.01	5.34	0.03	5.06	15.20	0.45	0.11	5.73	0.86	0.05
B875355 B875356	Core Core	0.59 0.72	0.41 1.34	<0.01 <0.01	64.65 60.12	<0.01 <0.01	4.44 4.64	0.07 0.07	4.56 4.67	15.14 17.21	0.41 0.46	0.13 0.08	6.96 4.19	1.39 5.17	0.03
B875357	Core	0.72	5.14	0.01	20.34	< 0.01			5.67	17.21	0.46	0.08	2.57	38.28	0.09
B875358	Core	0.17	1.13	< 0.02	49.93	< 0.01	6.96 7.06	0.78 0.23	4.82	15.61	0.23	0.39	3.45	36.26 14.44	0.83
B875359	Core	0.28	3.60	0.01	28.05	<0.01	6.62	0.23	5.57	15.59	0.42	0.30	3.43	36.39	0.09
B875360 Dup	Core	0.28	3.57	0.01	27.90	0.01	6.40	0.40	5.51	15.39	0.32	0.40	3.50	37.56	0.19
В875361	Core	0.20	0.35	< 0.01	62.71	< 0.02	5.99	0.39	4.89	16.74	0.33	0.32	4.10	2.32	0.20
B875362	Core	0.20	0.33	< 0.01	63.62	< 0.01	5.30	0.04	6.70	18.08	0.43	0.10	2.12	1.63	0.03
B875363	Core	0.12	0.20	< 0.01	61.94	< 0.01	6.36	0.03	7.02	15.78	0.32	0.08	2.12	2.92	0.02
B875364	Core	0.65	0.45	< 0.01	60.52	< 0.01	6.20	0.03	4.09	12.90	0.32	0.12	6.51	6.23	0.07
B875365	Core	0.41	0.43	0.03	30.32	< 0.01	29.47	0.03	6.40	8.38	0.48	0.10	7.03	6.88	0.29
B875366	Core	0.49	0.47	< 0.01	54.27	0.01	9.15	0.03	5.65	14.58	0.75	0.04	4.88	7.02	0.05
B875367	Core	0.45	0.25	< 0.01	65.59	< 0.01	5.10	0.03	3.87	14.71	0.75	0.04	5.08	2.74	0.05
B875368	Core	0.05	0.70	< 0.01	57.52	< 0.01	7.06	0.05	4.03	14.17	0.26	0.06	5.93	6.86	0.03
B875369	Core	0.03	0.40	< 0.01	64.42	< 0.01	4.58	< 0.01	4.28	16.07	0.31	0.06	2.52	5.81	0.07
B875370	Pulp	0.48	0.30	< 0.01	66.47	< 0.01	5.70	0.04	3.35	14.65	0.43	0.09	3.42	2.56	0.11
B875371	Core	0.05	0.38	< 0.01	63.81	< 0.01	3.69	0.02	7.16	15.71	0.27	0.07	4.21	3.41	0.04
B875372	Core	0.06	0.40	< 0.01	61.74	< 0.01	4.41	< 0.01	8.58	15.17	0.28	0.06	4.98	2.55	0.06
B875373	Core	0.02	0.30	< 0.01	55.58	< 0.01	8.91	< 0.01	8.02	15.36	0.37	0.04	6.07	2.37	0.09
B875374	Core	0.25	0.18	< 0.01	58.94	< 0.01	6.71	< 0.01	10.35	14.32	0.88	0.04	4.34	1.92	0.08
B880355	Core	0.25	0.17	< 0.01	63.30	< 0.01	5.87	< 0.01	6.75	15.22	0.71	0.04	5.06	0.62	0.07
B880356	Core	0.71	0.39	< 0.01	63.91	< 0.01	4.57	0.03	7.48	14.19	0.34	0.07	5.32	2.08	0.17
B880357	Core	0.49	0.25	< 0.01	64.74	< 0.01	3.92	0.02	7.84	14.18	0.34	0.07	5.59	1.78	0.09
B880358	Core	0.25	0.13	< 0.01	65.63	< 0.01	3.59	0.02	7.81	17.22	0.45	0.06	2.60	1.22	0.03
B880359	Core	0.36	0.23	< 0.01	66.99	< 0.01	4.11	< 0.01	7.87	12.73	0.45	0.06	4.49	1.27	0.10
B880360	Pulp	0.74	0.23	0.02	69.68	< 0.01	3.75	0.04	4.73	11.89	0.28	0.12	3.43	3.95	0.12
B880361	Core	0.37	0.15	< 0.01	65.09	< 0.01	4.01	< 0.01	9.98	13.76	0.45	0.06	4.13	1.04	0.04
B880362	Core	0.35	0.17	< 0.01	62.94	< 0.01	5.86	< 0.01	8.64	12.91	0.57	0.04	5.28	1.27	0.09
B880363	Core	0.78	0.36	< 0.01	68.58	< 0.01	5.65	< 0.01	6.89	8.64	0.27	0.08	5.49	1.89	0.16
B880364	Core	0.61	0.26	< 0.01	64.82	< 0.01	4.13	0.01	8.51	14.96	0.26	0.08	4.31	1.04	0.04
B880365	Core	0.55	0.21	< 0.01	64.89	< 0.01	4.08	0.01	8.74	11.64	0.30	0.07	6.75	1.25	0.05
B880366	Core	0.71	0.22	0.01	66.04	< 0.01	5.16	0.02	7.51	11.84	0.38	0.07	5.06	1.29	0.06
B880367	Core	0.57	0.17	0.02	62.32	< 0.01	11.19	< 0.01	6.31	8.48	0.55	0.04	5.44	0.99	0.08
B880368	Core	0.65	0.30	< 0.01	60.43	< 0.01	6.82	< 0.01	7.82	11.47	0.52	0.05	8.24	1.68	0.13
B880369	Core	2.74	1.14	0.03	39.02	< 0.01	25.73	0.39	7.35	7.13	0.39	0.06	7.03	5.69	1.10

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		Nb2O5	Al2O3	BaO	CaO	Cr2O3	Fe2O3	K2O	LOI	MgO	MnO	Na2O	P2O5	SiO2	TiO2
		Nb2O5-AD3-OR-ICP	WR-FS-ICP												
Sample	Sample	%	%	%	%	%	%	%	%	%	%	%	%	%	%
Description	Type	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
B880370 Dup	Core	2.80	1.16	0.03	39.78	< 0.01	22.53	0.45	7.42	6.77	0.36	0.08	7.50	5.61	0.85
B880371	Core	0.47	0.14	< 0.01	65.53	< 0.01	4.51	< 0.01	8.38	14.18	0.41	0.06	4.15	0.95	0.08
B880372	Core	0.51	0.49	< 0.01	62.87	< 0.01	3.94	0.02	7.82	16.26	0.29	0.07	4.42	2.44	0.05
B880373	Core	0.32	0.33	< 0.01	61.01	< 0.01	5.70	< 0.01	7.33	16.52	0.37	0.08	4.91	1.85	0.06
B880374	Core	0.29	1.56	0.10	30.49	< 0.01	24.01	0.70	4.96	11.84	0.47	0.43	5.76	11.61	0.43
B880375	Core	0.15	4.36	0.13	39.39	< 0.01	7.37	1.81	4.40	13.05	0.32	1.32	2.68	22.12	0.72
B880376	Core	0.23	1.66	0.08	31.37	< 0.01	21.49	0.73	4.25	10.97	0.42	0.17	11.42	10.08	0.32
B880377	Core	0.24	0.69	< 0.01	56.09	< 0.01	9.95	0.05	5.75	15.44	0.56	0.08	4.78	3.30	0.12
B880378	Core	1.11	0.54	< 0.01	56.33	< 0.01	8.44	0.03	5.83	15.95	0.54	0.05	5.77	3.55	0.25
B880379	Core	0.20	0.29	0.01	47.11	< 0.01	16.21	0.06	4.53	13.44	0.52	0.06	7.85	4.29	0.15
B880380	Pulp	0.45	0.34	< 0.01	65.79	< 0.01	5.70	0.06	3.72	15.82	0.43	0.13	3.71	2.22	0.11
B880381	Core	0.29	0.43	< 0.01	63.29	< 0.01	5.51	0.06	4.66	14.87	0.29	0.12	5.06	3.44	0.12
B880382	Core	< 0.01	15.41	0.11	5.73	0.02	3.60	3.68	0.53	1.31	0.09	3.82	0.19	64.38	0.39
B880383	Core	0.25	0.31	< 0.01	65.71	< 0.01	4.12	0.03	4.14	15.98	0.33	0.11	5.63	2.13	0.12
B880384	Core	0.66	0.71	< 0.01	62.57	< 0.01	5.01	0.01	4.91	16.31	0.26	0.09	3.47	4.78	0.11
B880385	Core	0.17	0.29	< 0.01	67.41	< 0.01	4.36	< 0.01	5.10	16.44	0.27	0.07	3.36	0.95	0.09
B880386	Core	0.16	0.34	< 0.01	57.21	< 0.01	6.41	0.01	7.65	16.45	0.31	0.06	7.10	2.12	0.15
B880387	Core	0.60	0.30	< 0.01	60.53	< 0.01	6.70	< 0.01	4.86	18.22	0.34	0.04	4.00	2.67	0.14
B880388	Core	0.50	2.50	0.08	47.78	< 0.01	10.73	1.08	2.26	7.60	0.35	1.23	3.30	19.63	0.71
B880389	Core	0.51	0.36	0.02	61.40	< 0.01	8.24	0.07	4.28	14.04	0.47	0.11	4.84	3.24	0.13
B880390 Dup	Core	0.47	0.33	0.02	62.13	< 0.01	7.76	0.07	4.97	13.79	0.47	0.11	4.62	3.04	0.12
B880391	Core	0.37	0.19	< 0.01	63.41	< 0.01	4.54	< 0.01	4.98	19.25	0.38	0.05	3.30	1.88	0.10
B880392	Core	0.42	0.23	< 0.01	65.92	< 0.01	4.11	0.01	4.42	17.23	0.35	0.07	3.76	2.25	0.09
B880393	Core	0.22	3.51	0.05	41.39	< 0.01	6.53	1.70	3.98	12.38	0.30	1.05	2.77	23.71	0.63
B880394	Core	0.27	0.59	< 0.01	59.04	< 0.01	4.51	0.19	4.90	16.68	0.32	0.16	3.00	9.11	0.05
B880395	Core	0.25	1.77	0.01	50.73	< 0.01	4.63	0.52	5.18	18.19	0.28	0.16	2.05	14.92	0.11
B880396	Core	0.13	4.23	0.01	38.03	< 0.01	6.35	0.31	6.73	17.94	0.20	0.10	1.75	21.94	0.32
B880397	Core	0.35	0.75	< 0.01	60.30	< 0.01	4.47	0.10	4.78	16.40	0.31	0.31	6.09	4.05	0.06
B880398	Core	0.26	0.33	< 0.01	62.19	< 0.01	4.66	0.03	4.58	19.05	0.39	0.13	5.71	1.14	0.03
B880399	Core	0.19	0.46	< 0.01	54.03	< 0.01	9.17	0.06	4.47	18.17	0.34	0.08	4.06	6.05	0.13

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		Total	Ag	Al	As	Ba	Bi	Ca	Cd	Co	Cr	Cu	Fe	K	La
		WR-FS-ICP	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR
Sample	Sample	%	ppm	%	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%	%	ppm
Description	Type	0.01	0.5	0.01	5	10	2	0.01	0.5	1	1	1	0.01	0.01	10
B875350	Pulp	96.49	< 0.5	0.87	25	2883	<2	>10	< 0.5	5	9	17	2.83	0.57	898
B875351	Core	97.56	< 0.5	0.07	11	26	<2	>10	< 0.5	5	9	11	2.57	< 0.01	401
B875352	Core	96.33	< 0.5	0.29	11	27	<2	>10	< 0.5	6	8	17	3.08	0.01	286
B875353	Core	98.01	< 0.5	3.29	8	55	<2	>10	< 0.5	9	28	44	3.76	0.22	396
B875354	Core	98.09	< 0.5	0.09	43	25	<2	>10	< 0.5	4	12	12	3.12	0.02	2104
B875355	Core	98.20	< 0.5	0.17	34	36	<2	>10	< 0.5	4	10	36	2.57	0.05	1468
B875356	Core	98.05	< 0.5	0.58	7	38	<2	>10	< 0.5	4	12	42	2.70	0.05	327
B875357	Core	96.93	< 0.5	2.61	<5	172	<2	>10	< 0.5	18	44	23	4.67	0.56	256
B875358	Core	97.50	< 0.5	0.50	14	73	<2	>10	< 0.5	9	12	28	4.09	0.17	491
B875359	Core	100.71	< 0.5	1.81	5	120	<2	>10	< 0.5	7	46	19	3.88	0.31	320
B875360 Dup	Core	101.04	< 0.5	1.78	5	106	<2	>10	< 0.5	7	46	18	3.85	0.30	310
B875361	Core	97.73	< 0.5	0.13	17	24	<2	>10	< 0.5	6	10	15	3.50	0.03	611
B875362	Core	98.31	<0.5	0.06	27	26	<2	>10	<0.5	5	10	5	3.00	0.02	981
B875363	Core	97.71	<0.5	0.12	50	25	<2	>10	<0.5	4	10	9	3.84	0.03	2411
B875364	Core	97.48	<0.5	0.17	31	30	<2	>10	<0.5	8	13	38	4.29	0.02	1775
B875365	Core	90.04	<0.5	0.19	<5	252	<2	>10	<0.5	20	12	8	>10	0.14	470
B875366	Core	96.69	<0.5	0.10	47	41	<2	>10	<0.5	11	13	33	3.92	0.02	2400
B875367	Core	97.95	<0.5	0.05	5 7	64	<2	>10	<0.5	6 9	9	27	3.50	< 0.01	284
B875368	Core	96.86	<0.5	0.30		26	<2	>10	<0.5		11	5	4.88	0.03	330
B875369	Core	98.54	<0.5	0.17	16	14	<2	>10	<0.5	5	14	3	3.15	< 0.01	650
B875370	Pulp	97.12	<0.5	0.10	6 7	42	<2	>10	< 0.5	5 7	5	29	4.03	0.03	322 270
B875371	Core	98.77	< 0.5	0.16		38	<2	>10	<0.5	7	10	5 5	2.47	0.01	443
B875372 B875373	Core Core	98.24 97.11	<0.5 <0.5	0.17 0.12	13 28	79 78	<2 <2	>10 >10	<0.5 <0.5	10	9	2	2.99 3.88	<0.01 <0.01	940
B875374	Core	97.11	<0.5	0.12	<5	80	<2	>10	<0.5	4	10	15	2.95	<0.01	198
B880355	Core	97.83	<0.5	0.02	5	51	<2	>10	<0.5	3	19	16	2.89	< 0.01	251
B880356	Core	98.57	<0.5	0.04	9	46	<2	>10	<0.5	10	8	48	3.98	0.01	428
B880357	Core	98.83	<0.5	0.10	7	34	<2	>10	<0.5	9	13	38	3.68	0.03	335
B880358	Core	98.77	<0.5	0.12	8	44	<2	>10	<0.5	5	8	18	3.20	< 0.02	344
B880359	Core	98.32	<0.5	0.07	30	73	<2	>10	<0.5	8	8	31	3.70	< 0.01	426
B880360	Pulp	98.24	<0.5	0.08	10	160	<2	>10	<0.5	4	6	41	3.19	0.03	357
B880361	Core	98.72	< 0.5	0.05	11	61	<2	>10	<0.5	6	9	25	3.20	< 0.01	384
B880362	Core	97.80	< 0.5	0.06	19	66	<2	>10	<0.5	6	8	24	3.22	< 0.01	297
B880363	Core	98.04	< 0.5	0.15	37	75	<2	>10	<0.5	14	8	28	5.28	< 0.01	393
B880364	Core	98.43	<0.5	0.08	10	50	<2	>10	<0.5	8	9	37	3.71	< 0.01	320
B880365	Core	97.99	<0.5	0.06	9	60	<2	>10	<0.5	7	9	33	3.60	< 0.01	318
B880366	Core	97.66	< 0.5	0.08	21	122	<2	>10	< 0.5	10	10	25	4.54	< 0.01	295
B880367	Core	95.58	< 0.5	0.06	28	173	<2	>10	< 0.5	5	7	33	6.14	< 0.01	457
B880368	Core	97.46	< 0.5	0.12	17	66	<2	>10	< 0.5	14	8	7	3.50	< 0.01	319
B880369	Core	95.07	< 0.5	0.56	<5	268	<2	>10	< 0.5	16	9	313	>10	0.33	439

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		Total	Ag	Al	As	Ba	Bi	Ca	Cd	Co	Cr	Cu	Fe	K	La
		WR-FS-ICP	30-4A-TR												
Sample	Sample	%	ppm	%	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%	%	ppm
Description	Type	0.01	0.5	0.01	5	10	2	0.01	0.5	1	1	1	0.01	0.01	10
B880370 Dup	Core	92.54	< 0.5	0.56	<5	263	<2	>10	< 0.5	17	8	288	>10	0.33	489
B880371	Core	98.41	< 0.5	0.05	12	47	<2	>10	< 0.5	7	8	28	3.74	< 0.01	268
B880372	Core	98.70	< 0.5	0.23	6	30	<2	>10	< 0.5	7	12	34	3.19	0.02	347
B880373	Core	98.18	< 0.5	0.14	8	45	<2	>10	< 0.5	11	16	21	3.71	< 0.01	332
B880374	Core	92.37	< 0.5	0.73	<5	824	<2	>10	< 0.5	23	12	18	>10	0.57	266
B880375	Core	97.68	< 0.5	2.29	<5	1369	<2	>10	< 0.5	20	20	43	5.10	1.57	232
B880376	Core	92.96	< 0.5	0.75	<5	587	<2	>10	< 0.5	23	10	6	>10	0.59	324
B880377	Core	96.82	< 0.5	0.30	6	71	<2	>10	< 0.5	9	11	17	3.91	0.04	274
B880378	Core	97.29	< 0.5	0.24	<5	37	<2	>10	< 0.5	6	14	61	4.18	0.02	352
B880379	Core	94.52	< 0.5	0.12	<5	112	<2	>10	< 0.5	11	14	10	8.18	0.05	224
B880380	Pulp	98.04	< 0.5	0.11	7	40	<2	>10	< 0.5	6	6	27	3.78	0.03	343
B880381	Core	97.87	< 0.5	0.17	<5	56	<2	>10	< 0.5	9	13	19	4.32	0.05	284
B880382	Core	99.26	< 0.5	8.28	<5	830	<2	3.12	< 0.5	8	156	2	2.85	3.36	28
B880383	Core	98.60	< 0.5	0.13	6	35	<2	>10	< 0.5	7	8	18	3.40	0.02	269
B880384	Core	98.25	< 0.5	0.32	<5	31	<2	>10	< 0.5	9	9	45	4.19	0.01	307
B880385	Core	98.35	< 0.5	0.12	8	20	<2	>10	< 0.5	7	9	11	3.57	< 0.01	329
B880386	Core	97.81	< 0.5	0.14	9	23	<2	>10	< 0.5	8	9	13	3.98	< 0.01	326
B880387	Core	97.82	<0.5	0.11	<5	22	<2	>10	<0.5	6	10	35	4.16	< 0.01	273
B880388	Core	97.25	<0.5	1.44	<5	621	<2	>10	<0.5	15	27	20	6.28	0.82	242
B880389	Core	97.22	<0.5	0.15	<5	219	<2	>10	<0.5	8	8	17	4.99	0.07	324
B880390 Dup	Core	97.43	<0.5	0.15	6	217	<2	>10	<0.5	8	8	17	4.81	0.07	335
B880391	Core	98.09	<0.5	0.08	6	27	<2	>10	<0.5	6	12	24	3.02	0.01	341
B880392	Core	98.46	< 0.5	0.09	6	27	<2	>10	<0.5	5	10	29	3.21	0.02	328
B880393	Core	98.02	<0.5	1.88	6 7	433	<2	>10	<0.5	16	35	35	5.05	1.51	271
B880394	Core	98.56	<0.5	0.28	,	77	<2	>10	<0.5	6	14	20	3.51	0.16	312
B880395	Core	98.57	<0.5	0.92	13	114	<2	>10	<0.5	6	22	16	3.97	0.46	386
B880396	Core	97.92	<0.5	2.51	<5	76	<2	>10	<0.5	20	38	13	5.31	0.23	181
B880397	Core	97.64	< 0.5	0.33	10	37	<2	>10	<0.5	5	10	23	3.35	0.05	329
B880398	Core	98.24	< 0.5	0.15	8	27	<2	>10	<0.5	5	8	16	3.27	0.03	325
B880399	Core	97.02	< 0.5	0.26	10	51	<2	>10	< 0.5	6	2	17	6.06	0.04	375

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		Mg	Mn	Mo	Na	Ni	P	Pb	Sb	Sc	Sr	Ti	Tl	V	W
		30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR
Sample	Sample	%	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm
Description	Type	0.01	5	1	0.01	1	10	2	5	1	1	0.01	10	1	10
B875350	Pulp	1.42	6867	13	0.34	1	>10000	63	<5	3	>10000	0.09	<10	153	<10
B875351	Core	>10	3942	1	0.02	<1	>10000	18	<5	7	2850	0.01	<10	21	<10
B875352	Core	>10	3459	3	0.24	1	>10000	9	<5	7	1876	0.04	<10	52	<10
B875353	Core	9.59	984	3	0.17	13	>10000	8	<5	13	1742	0.23	<10	75	<10
B875354	Core	>10	3839	5	0.05	<1	>10000	16	<5	8	2153	0.01	<10	18	<10
B875355	Core	>10	3165	2	0.07	2	>10000	8	<5	6	2311	0.02	<10	18	<10
B875356	Core	>10	3623	2	0.03	3	>10000	6	<5	7	2478	0.03	<10	26	<10
B875357	Core	>10	1861	11	0.27	17	>10000	11	<5	22	951	0.33	<10	126	<10
B875358	Core	>10	3267	2	0.20	4	>10000	42	<5	15	1970	0.03	<10	36	<10
B875359	Core	>10	2353	2	0.28	7	>10000	11	<5	15	1504	0.06	<10	72	<10
B875360 Dup	Core	>10	2372	2	0.27	7	>10000	8	<5	14	1477	0.06	<10	70	<10
B875361	Core	>10	3523	6	0.04	2	>10000	14	<5	6	1730	< 0.01	<10	20	<10
B875362	Core	>10	4208	5	0.03	<1	9354	13	<5	6 8	2084	< 0.01	<10	11	<10
B875363	Core	>10	2605	5 2	0.05	<1 2	>10000	21	<5		530	0.01	<10	27 58	<10
B875364	Core	8.36	3427	1	0.04	4	>10000	15	<5 <5	11	2401	0.03	<10		<10
B875365 B875366	Core Core	5.48 9.43	4477 4545	3	0.05 0.03	2	>10000 >10000	26 17	<5	9 11	2815 2683	0.17 0.02	<10 <10	221 23	<10 <10
B875367	Core	9.43	5093	1	0.03	<1	>10000	8	<5	6	4134	0.02	<10	23	<10
B875368	Core	9.40	2371	3	0.03	<1	>10000	14	<5	6	575	0.02	<10	75	<10
B875369	Core	>10	2903	3	0.02	<1	>10000	10	<5	7	566	0.08	<10	27	<10
B875370	Pulp	>10	4213	3	0.02	<1	>10000	6	<5	7	2260	0.02	<10	33	<10
B875370 B875371	Core	>10	2422	1	0.04	<1	>10000	13	<5	4	712	0.03	<10	31	<10
B875372	Core	>10	2577	1	0.02	<1	>10000	11	<5	4	629	0.02	<10	32	<10
B875373	Core	>10	2272	2	0.02	<1	>10000	18	<5	6	261	0.03	<10	38	<10
B875374	Core	9.79	5510	3	0.02	<1	>10000	6	<5	6	3183	0.02	<10	9	<10
B880355	Core	>10	4843	2	0.02	<1	>10000	7	<5	7	3202	0.02	<10	14	<10
B880356	Core	>10	3784	1	0.03	1	>10000	9	<5	7	2546	0.05	<10	51	<10
B880357	Core	9.31	4034	1	0.03	2	>10000	10	<5	7	2432	0.03	<10	27	<10
B880358	Core	>10	5137	1	0.02	<1	>10000	8	<5	6	3181	0.01	<10	10	<10
B880359	Core	7.73	5066	2	0.02	<1	>10000	9	<5	8	2765	0.04	<10	26	<10
B880360	Pulp	8.23	3046	2	0.06	1	>10000	6	<5	7	2175	0.06	<10	67	<10
B880361	Core	9.31	4796	2	0.02	<1	>10000	7	<5	6	3094	0.02	<10	15	<10
B880362	Core	8.64	4376	2	0.02	<1	>10000	6	<5	7	2631	0.02	<10	16	<10
B880363	Core	5.80	3402	3	0.02	<1	>10000	9	<5	6	1977	0.07	<10	91	<10
B880364	Core	>10	3082	2	0.02	<1	>10000	9	<5	6	1567	0.02	<10	33	<10
B880365	Core	8.05	3496	2	0.02	<1	>10000	8	<5	7	2173	0.03	<10	34	<10
B880366	Core	7.44	4216	3	0.02	<1	>10000	10	<5	5	2111	0.02	<10	55	<10
B880367	Core	5.91	4053	3	0.02	<1	>10000	7	<5	7	1922	0.03	<10	76	<10
B880368	Core	7.95	3616	2	0.02	<1	>10000	9	<5	4	2566	0.04	<10	63	<10
B880369	Core	4.27	3815	5	0.04	10	>10000	2	<5	5	2505	0.57	<10	281	<10

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		Mg	Mn	Mo	Na	Ni	P	Pb	Sb	Sc	Sr	Ti	Tl	V	W
		30-4A-TR													
Sample	Sample	%	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm
Description	Type	0.01	5	1	0.01	1	10	2	5	1	1	0.01	10	1	10
B880370 Dup	Core	4.21	3630	4	0.04	9	>10000	7	<5	5	2383	0.51	<10	277	<10
B880371	Core	9.29	4510	3	0.02	<1	>10000	8	<5	6	2786	0.04	<10	43	<10
B880372	Core	>10	3152	1	0.02	2	>10000	8	<5	6	1487	0.03	<10	31	<10
B880373	Core	>10	3242	2	0.03	1	>10000	9	<5	6	1707	0.03	<10	32	<10
B880374	Core	7.75	4393	1	0.31	5	>10000	28	<5	15	2991	0.25	<10	165	<10
B880375	Core	7.80	3024	3	0.94	10	>10000	10	<5	12	2349	0.39	<10	104	<10
B880376	Core	6.51	3633	<1	0.13	3	>10000	28	<5	13	2420	0.17	<10	129	<10
B880377	Core	>10	4205	1	0.05	2	>10000	9	<5	5	2968	0.04	<10	44	<10
B880378	Core	>10	3753	1	0.03	2	>10000	5	<5	6	2480	0.07	<10	50	<10
B880379	Core	8.87	3690	<1	0.04	1	>10000	16	<5	9	2817	0.06	<10	83	<10
B880380	Pulp	>10	3873	3	0.04	<1	>10000	9	<5	6	2050	0.03	<10	34	<10
B880381	Core	>10	2968	<1	0.03	2	>10000	10	<5	7	2002	0.06	<10	59	<10
B880382	Core	0.78	715	3	2.96	7	863	12	<5	5	615	0.29	<10	53	<10
B880383	Core	9.69	3517	2	0.03	<1	>10000	10	<5	8	2613	0.04	<10	31	<10
B880384	Core	>10	2776	2	0.03	1	>10000	9	<5	10	870	0.06	<10	50	<10
B880385	Core	>10	2866	1	0.02	<1	>10000	8	<5	6	893	0.04	<10	31	<10
B880386	Core	9.90	2701	3	0.02	<1	>10000	12	<5	5	697	0.04	<10	33	<10
B880387	Core	>10	2867	2	0.02	2	>10000	9	<5	5	845	0.06	<10	108	<10
B880388	Core	4.81	2767	2	1.14	13	>10000	14	<5	9	4057	0.36	<10	156	<10
B880389	Core	7.70	3949	1	0.09	3	>10000	17	<5	6	3828	0.05	<10	75	<10
B880390 Dup	Core	7.86	3937	1	0.09	<1	>10000	15	<5	5	3724	0.04	<10	74	<10
B880391	Core	>10	3343	1	0.03	<1	>10000	14	<5	6	1703	0.05	<10	71	<10
B880392	Core	>10	3573	1	0.03	1	>10000	11	<5	5	1782	0.05	<10	55	<10
B880393	Core	8.07	3000	3	0.77	10	>10000	14	<5	14	1768	0.36	<10	132	<10
B880394	Core	>10	3225	6	0.10	1	>10000	12	<5	11	1618	0.02	<10	44	<10
B880395	Core	>10	3104	17	0.10	3	>10000	11	<5	16	1661	0.04	<10	45	<10
B880396	Core	>10	2178	5	0.05	15	8838	10	<5	12	1358	0.08	<10	71	<10
B880397	Core	9.41	3004	4	0.22	1	>10000	12	<5	6	1639	0.02	<10	29	<10
B880398	Core	>10	3605	4	0.07	<1	>10000	16	<5	6	2143	0.01	<10	17	<10
B880399	Core	>10	3030	<1	0.05	<1	>10000	14	<5	8	1524	0.08	<10	115	<10

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		Zn	Zr	Ce	Dy	Er	Eu	Gd	Hf	Но	La	Lu	Nd	Pr	Sm
		30-4A-TR	30-4A-TR	REE-LB-MS	•	REE-LB-MS	REE-LB-MS	REE-LB-MS	REE-LB-MS	REE-LB-MS	REE-LB-MS	REE-LB-MS	REE-LB-MS	REE-LB-MS	REE-LB-MS
Sample	Sample	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Description	Type	2	1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
B875350	Pulp	419	69	>1000	16.1	4.8	13.3	45.6	0.2	2.1	955.6	0.4	489.4	155.5	52.7
B875351	Core	13	14	722.6	18.5	5.3	10.0	35.1	0.7	2.7	432.0	0.4	270.7	74.4	38.3
B875352	Core	15	13	584.3	21.8	7.2	10.9	34.6	0.6	3.3	333.8	0.5	234.5	61.0	
B875353	Core	24	98	869.6	32.4	9.7	28.1	57.9	2.6	4.6	443.2	0.6	385.5	97.5	64.5
B875354	Core	13	19	>1000	24.4	6.3	16.6	66.1	1.8	3.1	>1000	0.4	635.4	202.2	66.6
B875355	Core	13	57	>1000	25.7	6.8	20.4	67.5	4.5	3.3	>1000	0.4	607.8	189.6	
B875356	Core	20	70	767.3	18.3	5.6	15.3	36.6	3.2	2.6	429.3	0.3	287.3	77.9	41.5
B875357	Core	44	90	515.7	13.6	4.3	8.5	25.8	3.5	1.9	274.5	0.3	204.1	54.7	31.5
B875358	Core	64	105	951.7	20.7	6.2	13.6	41.0	4.4	3.0	585.0	0.5	340.0	95.6	
B875359	Core	47	71	616.6	16.9	5.6	10.7	31.9	6.9	2.5	337.7	0.4	238.7	65.1	36.3
B875360 Dup	Core	45	70	628.8	18.3	5.6	11.3	33.1	7.8	2.6	342.3	0.4	247.5	65.3	38.6
B875361	Core	16	43	>1000	25.9	7.5	16.5	55.8	1.6	3.5	709.9	0.5	531.4	139.9	73.3
B875362	Core	14	18	>1000	15.9	4.0	10.2	48.9	0.1	1.9	>1000	0.3	568.5	170.5	56.0
B875363	Core	8	36	>1000	27.3	6.4	19.1	90.0	0.8	2.9	>1000	0.5	>1000	337.7	104.9
B875364	Core	11	51	>1000	34.2	9.3	24.4	80.9	8.5	4.5	>1000	0.6		234.7	87.3
B875365	Core	136	50	911.5	18.0	4.8	13.3	43.9	14.2	2.3	483.0	0.3	385.0	100.6	
B875366	Core	17	26	>1000	24.5	5.9	19.0	77.1	8.4	2.9	>1000	0.3	852.4	270.9	78.3
B875367	Core	19	15	652.4	19.1	5.1	13.5	36.8	5.3	2.6	308.7	0.3	291.3	73.8	43.1
B875368	Core	14	55	742.7	19.8	7.0	9.8	37.1	2.2	3.1	380.6	0.6		81.0	42.1
B875369	Core	8	16	>1000	19.1	5.9	12.1	47.7	0.8	2.6	721.4	0.4	492.3	138.3	56.4
B875370	Pulp	21	29	686.5	20.6	6.6	13.0	40.3	2.0	3.1	349.7	0.5	289.3	74.3	46.6
B875371	Core	17	38	591.0	18.4	5.9	10.1	33.5	1.0	2.7	292.8	0.5		66.1	40.2
B875372	Core	7	34	919.2	21.2	6.6	12.2	43.2	1.0	3.1	485.7	0.6		98.2	
B875373	Core	8	40	>1000	22.0	6.3	12.3	57.3	0.7	2.8	969.8	0.5	614.3	176.4	63.9 32.7
B875374	Core	21	11	467.6	17.2	5.1	9.4	29.0	3.0	2.4	220.9	0.3	209.5	53.6	32.7
B880355 B880356	Core Core	24 18	36 33	555.4 907.9	18.5 26.1	5.7 8.0	9.4 16.0	33.8 50.1	1.7 3.9	2.6 3.7	280.6 492.2	0.4	252.2 374.7	62.3 97.6	
B880357	Core	16	38	693.9	27.1	8.9	13.2	43.6	2.4	4.2	352.8	0.6		76.7	33.8 49.9
B880358	Core	22	15	691.6	15.3	4.4	9.2	32.0	0.8	2.1	391.0	0.0		71.5	37.5
B880359	Core	22	30	851.1	23.4	6.9	12.7	45.0	1.6	3.3	477.1	0.3	347.2	90.6	
B880360	Pulp	12	39	825.7	24.2	8.1	13.9	45.8	1.6	3.7	408.6	0.4	350.4	89.6	
B880361	Core	16	21	759.9	18.4	5.1	11.1	36.7	2.1	2.5	419.8	0.7		80.4	42.4
B880362	Core	17	23	645.0	17.4	5.3	10.0	33.5	1.7	2.5	335.0	0.3	269.4	69.3	38.6
B880363	Core	18	31	822.0	28.2	9.1	15.6	49.8	4.8	4.2	417.4	0.4	353.9	91.9	57.7
B880364	Core	10	33	735.7	26.8	8.9	16.3	47.2	3.7	4.0	387.0	0.8	334.5	83.5	52.3
B880365	Core	12	36	693.9	28.8	10.4	15.3	45.1	3.1	4.6	341.0	0.9	306.2	76.7	49.2
B880366	Core	24	30	650.6	22.4	7.0	14.1	39.6	4.5	3.2	313.0	0.6		74.4	46.8
B880367	Core	27	71	979.2	20.3	6.2	13.3	44.7	3.5	2.8	495.7	0.5	401.3	107.5	52.6
B880368	Core	13	24	693.7	23.1	7.6	13.9	42.2	3.3	3.4	337.7	0.6		78.3	49.3
B880369	Core	108	86	>1000	25.8	6.6	18.7	60.4	11.7	3.3	514.1	0.5	480.3	121.0	72.3

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		Zn	Zr	Ce	Dy	Er	Eu	Gd	Hf	Но	La	Lu	Nd	Pr	Sm
		30-4A-TR	30-4A-TR	REE-LB-MS											
Sample	Sample	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Description	Type	2	1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
B880370 Dup	Core	110	90	>1000	25.8	6.9	18.0	56.2	12.0	3.3	497.2	0.4	468.3	121.9	69.6
B880371	Core	17	20	574.6	18.3	5.9	11.5	33.6	4.4	2.5	272.4	0.5	245.9	64.0	38.6
B880372	Core	10	38	725.2	20.1	6.4	13.1	39.1	3.4	2.8	360.8	0.5	306.1	79.8	45.4
B880373	Core	22	49	693.5	19.9	6.3	12.1	37.1	2.4	2.9	344.9	0.5	295.5	77.1	44.8
B880374	Core	173	375	516.5	14.7	4.2	9.6	28.8	15.6	2.0	237.5	0.3	231.2	59.7	36.1
B880375	Core	68	96	490.0	15.3	5.1	9.0	28.8	2.8	2.4	250.1	0.5	211.3	53.4	32.2
B880376	Core	131	176	725.2	21.5	6.4	13.3	44.2	10.4	3.1	349.2	0.5	330.3	82.1	50.3
B880377	Core	17	31	601.5	17.0	5.4	10.6	33.6		2.3	301.6	0.4	262.5	66.5	39.0
B880378	Core	18	67	771.5	21.8	6.6	17.6	41.6	3.2	3.1	393.8	0.5	307.8	83.5	46.4
B880379	Core	60	167	544.9	18.2	5.2	11.3	34.4	7.6	2.4	246.5	0.4	256.4	63.3	
B880380	Pulp	21	28	735.7	23.6	7.3	13.6	44.3	2.4	3.5	391.2	0.5	315.6	80.5	51.2
B880381	Core	16	86	687.2	21.7	6.7	14.4	42.4	4.9	3.1	320.8	0.5	307.5	75.6	
B880382	Core	52	6	56.1	2.9	1.5	1.2	3.8	3.2	0.5	28.7	0.2	24.2	6.2	4.3
B880383	Core	14	30	605.8	19.2	6.5	10.5	36.1	5.5	2.9	282.1	0.5	274.6	67.4	42.8
B880384	Core	11	93	668.1	22.7	7.8	13.0	40.2	6.0	3.3	320.8	0.7	291.3	75.2	46.1
B880385	Core	8	27	714.4	18.6	6.2	10.5	36.8	4.3	2.7	369.8	0.5	301.4	79.4	44.3
B880386	Core	7	25	672.0	23.6	7.9	11.5	39.9	1.8	3.6	353.3	0.7	292.4	73.9	45.2
B880387	Core	6	51	645.1	19.8	6.4	13.3	36.4	2.7	2.8	311.9	0.5	278.0	69.9	43.8
B880388	Core	74	102	543.9	16.6	5.4	9.9	29.7	3.1	2.4	252.8	0.5	228.8	58.6	
B880389	Core	34	63	703.9	17.3	5.2	10.9	36.0	3.0	2.4	349.1	0.4	294.2	77.2	41.9
B880390 Dup	Core	39	65	699.9	17.2	5.4	11.1	36.6	2.8	2.4	344.6	0.4	295.1	76.7	43.4
B880391	Core	11	28	746.6	17.7	5.3	11.7	35.8	1.7	2.4	371.9	0.4	314.4	82.4	44.4
B880392	Core	12	39	749.4	20.8	6.3	13.3	41.7	2.0	2.9	351.0	0.5	338.7	84.3	52.0
B880393	Core	76	71	588.4	17.9	5.6	11.3	35.5	3.3	2.5	272.2	0.5	277.3	67.9	47.1
B880394	Core	29	24	625.1	20.2	6.7	11.3	37.5	1.4	3.0	311.3	0.5	293.7	71.4	48.0
B880395	Core	35	27	753.0	15.2	4.5	10.5	35.0	2.1	2.0	404.4	0.3	320.5	81.9	
B880396	Core	19	37	442.4	13.0	4.2	8.1	26.3	2.7	1.9	223.0	0.3	199.7	50.9	33.0
B880397	Core	12	38	720.3	28.9	10.0	14.9	46.5	1.8	4.3	378.8	0.7	310.7	79.3	51.2
B880398	Core	14	18	737.0	19.1	6.0	11.6	37.5	2.2	2.8	408.6	0.4	297.4	77.6	
B880399	Core	25	67	620.5	15.8	5.0	9.8	31.3	2.4	2.2	331.6	0.4	256.0	67.1	37.9

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

			Tr.	¥ 71	**	T	and a	
		Tb	Tm	Yb	Y DEE LD MC	Ta Ta-4A-LL-MS	Th	U U-4A-LL-MS
Sample	Sample		REE-LB-MS					
Description	Type	ppm 0.1	ppm 0.1	ppm 0.1	ppm 0.10	ppm 0.05	ppm 0.2	ppm 0.1
B875350	Pulp	2.3	0.1	4.1	61.9	25.10	45.1	0.1
B875351	Core	2.9	0.6	3.5	62.7	8.04	86.9	31.5
B875352	Core	3.5	0.8	5.0	87.1	18.67	108.2	75.2
B875353	Core	5.4	1.0	6.0	130.6	110.89	344.5	222.4
B875354	Core	3.8	0.7	4.5	83.4	15.24	93.1	31.9
B875355	Core	4.2	0.7	4.6	87.6	36.94	196.8	138.9
B875356	Core	3.1	0.6	3.7	71.7	11.34	413.4	68.1
B875357	Core	2.2	0.4	3.2	51.8	15.74	83.6	25.8
B875358	Core	3.3	0.7	4.3	81.3	70.52	189.2	128.3
B875359	Core	2.8	0.6	3.9	66.1	17.79	110.7	52.2
B875360 Dup	Core	3.0	0.6	3.9	69.8	17.53	111.8	59.6
B875361	Core	4.3	0.8	5.2	100.3	20.45	153.0	83.9
B875362	Core	2.4	0.4	2.8	53.9	7.34	94.7	37.7
B875363	Core	4.1	0.7	4.8	87.0	20.26	146.6	101.9
B875364	Core	5.1	1.0	5.8	120.9	36.38	195.3	88.2
B875365	Core	3.1	0.5	3.4	58.8	51.06	73.0	13.6
B875366	Core	3.7	0.6	3.8	75.9	7.08	118.8	5.8
B875367	Core	3.2	0.5	3.0	65.2	2.98	56.0	2.2
B875368	Core	3.1	0.8	5.0	79.2	24.25	126.3	58.3
B875369	Core	3.1	0.6	4.5	66.3	5.92	107.4	14.9
B875370	Pulp	3.6	0.7	4.5	75.9	8.08	129.7	23.8
B875371	Core	3.0	0.7	4.6	70.9	12.44	48.1	76.6
B875372	Core	3.5	0.8	5.2	77.1	8.90	65.6	77.5
B875373	Core	3.5	0.7	4.8	74.6	4.57	112.9	31.1
B875374	Core	2.8	0.5	3.1	64.9	2.92	66.5	2.2
B880355	Core	3.1	0.6	3.7	65.1	3.19	92.7	6.5
B880356	Core	4.4	0.9	5.7	93.9	9.52	133.3	29.6
B880357	Core	4.5	1.0	6.1	104.7	5.33	158.6	15.4
B880358	Core	2.5	0.5	3.0	55.8	2.35	51.9	5.2
B880359	Core	3.9	0.8	4.5	88.9	4.51	122.7	9.6
B880360	Pulp	3.9	0.9	6.3	95.2	2.01	166.4	47.9
B880361	Core	3.1	0.5	3.5	63.7	3.04	82.0	7.8
B880362	Core	2.9	0.6	3.6	64.6	3.04	85.6	5.2
B880363	Core	4.6	1.0	6.2	106.0	5.28	128.8	<0.1
B880364	Core	4.4	1.1	6.7	96.4	3.40	123.7	31.3
B880365	Core	4.7	1.2	7.7	112.3	3.04	159.4	7.8
B880366	Core	3.8	0.8	5.1	79.6	3.52	81.1	0.1
B880367	Core	3.4	0.7	4.6	69.1	3.30	118.2	17.6
B880368	Core	3.9	0.8	5.7	83.0	3.25	73.7	< 0.1
B880369	Core	4.7	0.7	4.4	78.4	26.12	270.7	58.0
B000307	Corc	7./	0.7	7.7	70.4	20.12	270.7	30.0

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		Tb	Tm	Yb	Y	Ta	Th	U
			REE-LB-MS			Ta-4A-LL-MS		U-4A-LL-MS
Sample	Sample	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Description	Type	0.1	0.1	0.1	0.10	0.05	0.2	0.1
B880370 Dup	Core	4.6	0.7	4.5	76.4	25.01	275.6	55.7
B880371	Core	3.1	0.6	4.2	62.2	2.27	93.5	0.7
B880372	Core	3.3	0.7	4.7	72.1	3.43	105.2	12.9
B880373	Core	3.4	0.7	4.5	67.0	14.87	103.4	68.5
B880374	Core	2.6	0.4	2.9	45.9	348.60	152.9	38.0
B880375	Core	2.5	0.6	4.0	59.3	48.99	93.2	99.4
B880376	Core	3.8	0.7	4.6	73.3	180.83	135.9	31.1
B880377	Core	2.8	0.6	3.8	60.6	35.97	62.7	103.0
B880378	Core	3.7	0.7	4.6	80.6	62.79	139.7	105.6
B880379	Core	3.0	0.6	3.6	59.6	158.87	84.2	40.1
B880380	Pulp	4.0	0.8	4.9	78.5	8.20	135.4	25.7
B880381	Core	3.7	0.7	4.7	76.9	101.44	90.2	131.9
B880382	Core	0.4	0.2	1.7	16.3	3.59	7.4	2.5
B880383	Core	3.2	0.7	4.5	69.8	47.62	90.3	22.0
B880384	Core	3.6	0.9	5.9	86.3	27.77	184.2	41.4
B880385	Core	3.1	0.7	4.6	67.0	29.95	76.4	70.9
B880386	Core	3.7	1.0	5.9	87.8	12.08	138.5	27.3
B880387	Core	3.2	0.7	4.6	75.2	11.50	275.3	40.9
B880388	Core	2.7	0.6	3.9	59.7	4.83	255.4	1.5
B880389	Core	3.0	0.6	3.9	59.0	36.00	257.3	10.3
B880390 Dup	Core	3.0	0.6	4.0	58.9	35.00	250.2	10.1
B880391	Core	2.9	0.6	4.1	60.8	10.43	188.8	58.3
B880392	Core	3.6	0.7	4.8	76.5	13.00	294.0	124.6
B880393	Core	3.0	0.6	4.1	62.8	16.13	70.9	36.0
B880394	Core	3.3	0.8	4.8	71.5	6.80	91.6	12.7
B880395	Core	2.5	0.4	3.1	48.6	5.05	94.2	10.8
B880396	Core	2.2	0.4	3.0	47.4	16.77	62.1	33.0
B880397	Core	4.8	1.1	6.7	106.9	41.22	200.0	134.2
B880398	Core	3.2	0.7	4.4	67.0	32.37	66.3	59.7
B880399	Core	2.6	0.6	3.8	55.6	25.90	74.4	119.4

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		Nb2O5 Nb2O5-AD3-OR-ICP	Al2O3 WR-FS-ICP	BaO WR-FS-ICP	CaO WR-FS-ICP	Cr2O3 WR-FS-ICP	Fe2O3 WR-FS-ICP	K2O WR-FS-ICP	LOI WR-FS-ICP	MgO WR-FS-ICP	MnO WR-FS-ICP	Na2O WR-FS-ICP	P2O5 WR-FS-ICP	SiO2 WR-FS-ICP	TiO2 WR-FS-ICP
Sample	Sample	% % % % % % % % % % % % % % % % % % %	WK-FS-ICP	WK-FS-ICP %	WK-FS-ICP	WK-FS-ICP %	WK-FS-ICP	WK-FS-ICP %	WK-FS-ICP	WK-FS-ICP %	WK-FS-ICP %	WK-FS-ICP %	WK-FS-ICP %	WK-FS-ICP	WK-FS-ICP
Description	Type	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
B875350	Pulp	0.54	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
B875350 Dup	i uip	0.54													
QCV1010-00449-0002-BLK		< 0.01													
STD-OKA-1 expected		0.53													
STD-OKA-1 result		0.54													
B875368	Core	0.05													
B875368 Dup	Corc	0.05													
OCV1010-00449-0005-BLK		< 0.01													
STD-OKA-1 expected		0.53													
STD-OKA-1 result		0.52													
B880366	Core	0.71													
B880366 Dup		0.65													
QCV1010-00449-0008-BLK		< 0.01													
STD-OKA-1 expected		0.53													
STD-OKA-1 result		0.53													
B880384	Core	0.66													
B880384 Dup		0.70													
QCV1010-00449-0011-BLK		< 0.01													
STD-OKA-1 expected		0.53													
STD-OKA-1 result		0.52													
B875350	Pulp		1.90	0.30	66.03	< 0.01	8.29	0.71	1.50	2.38	1.36	0.44	3.41	9.92	0.22
B875350 Dup			1.89	0.32	66.00	< 0.01	8.29	0.65	1.44	2.40	1.34	0.42	3.39	10.04	0.28
QCV1010-00452-0002-BLK			< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
B875368	Core		0.70	< 0.01	57.52	< 0.01	7.06	0.05	4.03	14.17	0.26	0.06	5.93	6.86	0.21
B875368 Dup			0.77	< 0.01	56.33	< 0.01	7.20	0.05	4.07	15.42	0.26	0.07	6.07	6.93	0.21
QCV1010-00452-0005-BLK			< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
B880366	Core		0.22	0.01	66.04	< 0.01	5.16	0.02	7.51	11.84	0.38	0.07	5.06	1.29	0.06
B880366 Dup			0.24	0.01	66.97	< 0.01	5.24	0.02	7.80	10.94	0.38	0.07	5.24	1.34	0.06
QCV1010-00452-0008-BLK			< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
B880384	Core		0.71	< 0.01	62.57	< 0.01	5.01	0.01	4.91	16.31	0.26	0.09	3.47	4.78	0.11
B880384 Dup			0.73	< 0.01	62.45	< 0.01	5.05	0.02	4.98	16.32	0.26	0.09	3.50	4.80	0.11
QCV1010-00452-0011-BLK			< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
QCV1010-00452-0013-BLK			< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
STD-SY-4 expected			20.69		8.05		6.21	1.66	4.56	0.54	0.11	7.10	0.13	49.90	0.29
STD-SY-4 result			20.32	0.04	9.04	< 0.01	6.52	1.63	4.52	0.54	0.10	6.94	0.12	49.95	0.28

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

			Total	Ag	Al	As	Ba	Bi	Ca	Cd	Co	Cr	Cu	Fe	K	La
			WR-FS-ICP	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR
	Sample	Sample	%	ppm	%	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%	%	ppm
	Description	Type	0.01	0.5	0.01	5	10	2	0.01	0.5	1	1	1	0.01	0.01	10
	B875350	Pulp		< 0.5	0.87	25	2883	<2	>10	< 0.5	5	9	17	2.83	0.57	898
0.0774.04	B875350 Dup			<0.5	0.91	23	2876	<2	>10	<0.5	4	8	15	2.99	0.60	942
`	0-00450-0002-BLK			< 0.5	< 0.01	<5	<10	<2	< 0.01	< 0.5	<1	<1	<1	< 0.01	< 0.01	<10
	N-ME-8 expected CDN-ME-8 result			61.7 61.6									1030 1060			
SID-C	B875368	Core		<0.5	0.30	7	26	<2	>10	<0.5	9	11	5	4.88	0.03	330
	B875368 Dup	Core		<0.5	0.30	7	27	<2	>10	<0.5	9	10	6	4.88	0.03	339
OCV1010	0-00450-0005-BLK			<0.5	< 0.01	<5	<10	<2	<0.01	<0.5	<1	<1	<1	<0.01	< 0.04	<10
I	45P-4A expected			0.3	₹0.01	9	<10	~2	₹0.01	₹0.5	122	1103	749	₹0.01	₹0.01	10
I	AS-45P-4A result			< 0.5							119	1061	734			
JID OILL	B880366	Core		<0.5	0.08	21	122	<2	>10	< 0.5	10	10	25	4.54	< 0.01	295
	B880366 Dup			<0.5	0.09	18	124	<2	>10	<0.5	8	10	29	4.62	< 0.01	279
QCV1010	0-00450-0008-BLK			< 0.5	< 0.01	<5	<10	<2	< 0.01	< 0.5	<1	<1	<1	< 0.01	< 0.01	<10
STD-OREAS-	45P-4A expected			0.3							122	1103	749			
STD-OREA	AS-45P-4A result			< 0.5							121	1103	771			
	B880384	Core		< 0.5	0.32	<5	31	<2	>10	< 0.5	9	9	45	4.19	0.01	307
	B880384 Dup			< 0.5	0.31	<5	30	<2	>10	< 0.5	9	10	43	3.99	0.01	294
QCV1010	0-00450-0011-BLK			< 0.5	< 0.01	<5	<10	<2	< 0.01	< 0.5	<1	<1	<1	< 0.01	< 0.01	<10
STD-CDN	N-ME-8 expected			61.7									1030			
	CDN-ME-8 result			61.4									1023			
	0-00450-0013-BLK			< 0.5	< 0.01	<5	<10	<2	< 0.01	< 0.5	<1	<1	<1	< 0.01	< 0.01	<10
	N-ME-6 expected			101									6130			
STD-C	CDN-ME-6 result			>100									6316			
	B875350	Pulp	96.49													
007/101/	B875350 Dup		96.46													
QCV1010	0-00452-0002-BLK B875368	Core	<0.01 96.86													
	B875368 Dup	Core	96.86 97.38													
OCV1010	0-00452-0005-BLK		< 0.01													
QCVION	B880366	Core	97.66													
	B880366 Dup	Coic	98.31													
OCV1010	0-00452-0008-BLK		< 0.01													
	B880384	Core	98.25													
	B880384 Dup		98.33													
QCV1010	0-00452-0011-BLK		< 0.01													
QCV1010	0-00452-0013-BLK		< 0.01													
STI	D-SY-4 expected															
	STD-SY-4 result		100.01													

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		Mg	Mn	Mo	Na	Ni	P	Pb	Sb	Sc	Sr	Ti	Tl	V	W
		30-4A-TR													
Sample	Sample	%	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm
Description	Type	0.01	5	1	0.01	1	10	2	5	1	1	0.01	10	1	10
B875350	Pulp	1.42	6867	13	0.34	1	>10000	63	<5	3	>10000	0.09	<10	153	<10
B875350 Dup		1.37	7255	13	0.36	2	>10000	68	<5	3	>10000	0.15	<10	164	<10
QCV1010-00450-0002-BLK		< 0.01	<5	<1	< 0.01	<1	<10	<2	<5	<1	<1	< 0.01	<10	<1	<10
B875368	Core	9.40	2371	3	0.02	<1	>10000	14	<5	6	575	0.08	<10	75	<10
B875368 Dup		9.48	2358	3	0.02	<1	>10000	13	<5	7	574	0.08	<10	75	<10
QCV1010-00450-0005-BLK		< 0.01	<5	<1	< 0.01	<1	<10	<2	<5	<1	<1	< 0.01	<10	<1	<10
STD-OREAS-45P-4A expected					0.08	385		22							
STD-OREAS-45P-4A result					0.08	373		24							
B880366	Core	7.44	4216	3	0.02	<1	>10000	10	<5	5	2111	0.02	<10	55	<10
B880366 Dup		7.40	4317	3	0.02	<1	>10000	4	<5	6	2119	0.03	<10	56	<10
QCV1010-00450-0008-BLK		< 0.01	<5	<1	< 0.01	<1	<10	<2	<5	<1	<1	< 0.01	<10	<1	<10
STD-OREAS-45P-4A expected					0.08	385	454	22							
STD-OREAS-45P-4A result					0.08	378	468	24							
B880384	Core	>10	2776	2	0.03	1	>10000	9	<5	10	870	0.06	<10	50	<10
B880384 Dup		>10	2654	2	0.03	2	>10000	7	<5	10	871	0.05	<10	48	<10
QCV1010-00450-0011-BLK		< 0.01	<5	<1	< 0.01	<1	<10	<2	<5	<1	<1	< 0.01	<10	<1	<10
QCV1010-00450-0013-BLK		< 0.01	<5	<1	< 0.01	<1	<10	<2	<5	<1	<1	< 0.01	<10	<1	<10
STD-CDN-ME-6 expected								10200							
STD-CDN-ME-6 result								>10000							

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

			Zn	Zr	Ce	Dy	Er	Eu	Gd	Hf	Но	La	Lu	Nd	Pr	Sm
			30-4A-TR		REE-LB-MS				REE-LB-MS			REE-LB-MS		REE-LB-MS		
	Sample	Sample	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
	Description	Type	2	1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
	B875350	Pulp	419	69												
	B875350 Dup		435	81												
	QCV1010-00450-0002-BLK		<2	<1												
	B875368	Core	14	55												
	B875368 Dup		19	54												
	QCV1010-00450-0005-BLK		<2	<1												
	OREAS-45P-4A expected		142													
S	ΓD-OREAS-45P-4A result		129													
	B880366	Core	24	30												
	B880366 Dup		25	51												
	QCV1010-00450-0008-BLK		<2	<1												
	OREAS-45P-4A expected		142													
S	ΓD-OREAS-45P-4A result		132													
	B880384	Core	11	93												
	B880384 Dup		11	85												
	QCV1010-00450-0011-BLK		<2	<1												
	QCV1010-00450-0013-BLK		<2	<1												
:	STD-CDN-ME-6 expected		5170													
	STD-CDN-ME-6 result		5494													
	QCV1010-00453-0001-BLK				< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
	B875350	Pulp			>1000	16.1	4.8	13.3	45.6	0.2	2.1	955.6	0.4	489.4	155.5	52.7
	B875350 Dup				>1000	16.5	4.7	13.0	45.4	0.2	2.0	958.9	0.4	480.1	153.4	52.3
	B875368	Core			742.7	19.8	7.0	9.8	37.1	2.2	3.1	380.6	0.6	308.7	81.0	42.1
	B875368 Dup				756.7	20.4	7.3	10.0	37.5	2.2	3.1	387.5	0.6	317.1	82.5	42.5
	B880366	Core			650.6	22.4	7.0	14.1	39.6	4.5	3.2	313.0	0.6	300.6	74.4	46.8
	B880366 Dup				660.1	22.6	7.0	14.0	41.0	5.3	3.4	321.4	0.6	307.7	75.4	48.0
	B880384	Core			668.1	22.7	7.8	13.0	40.2	6.0	3.3	320.8	0.7	291.3	75.2	46.1
	B880384 Dup				655.7	22.8	7.9	12.9	39.6	6.4	3.4	327.2	0.7	295.2	74.6	46.3
	QCV1010-00453-0010-BLK				< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
	STD-SY-4 expected				122.0	18.2	14.2		14.0	10.6	4.3	58.0		57.0		12.7
L	STD-SY-4 result				114.9	17.8	12.9		13.4	10.3	4.2	54.5		54.2		12.0

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		Tb	Tm	Yb	Y	Ta	Th	
		REE-LB-MS	REE-LB-MS	REE-LB-MS	REE-LB-MS	Ta-4A-LL-MS	Th-4A-LL-MS	U-4A-LL-MS
Sample	Sample	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Description	Type	0.1	0.1	0.1	0.10	0.05	0.2	0.1
QCV1010-00453-0001-BLK		< 0.1	< 0.1	< 0.1	< 0.10			
B875350	Pulp	2.3	0.6	4.1	61.9			
B875350 Dup		2.4	0.6	4.1	61.4			
B875368	Core	3.1	0.8	5.0	79.2			
B875368 Dup		3.0	0.8	5.1	79.6			
B880366	Core	3.8	0.8	5.1	79.6			
B880366 Dup		3.9	0.8	5.2	81.3			
B880384	Core	3.6	0.9	5.9	86.3			
B880384 Dup		3.8	0.9	5.9	85.6			
QCV1010-00453-0010-BLK		< 0.1	< 0.1	< 0.1	< 0.10			
STD-SY-4 expected				14.8	119.0			
STD-SY-4 result				13.6	111.5			
B875350	Pulp					25.10	45.1	0.6
B875350 Dup						25.45	46.3	0.5
QCV1103-01139-0002-BLK						< 0.05	< 0.2	< 0.1
QCV1103-01139-0005-BLK						< 0.05	< 0.2	< 0.1
QCV1103-01139-0008-BLK						< 0.05	< 0.2	< 0.1
QCV1103-01139-0011-BLK						< 0.05	< 0.2	< 0.1
QCV1103-01139-0013-BLK						< 0.05	< 0.2	< 0.1
D-OREAS-45P-4A expected								
STD-OREAS-45P-4A result								0.6

Certificate of Analysis

Inspectorate Exploration & Mining Services Ltd. #200 - 11620 Horseshoe Way

Date Received: 10/20/2010

Date Completed: 05/06/2011

Invoice:

Richmond, British Columbia V7A 4V5 Canada

Phone: 604-272-7818

Distribution List

Attention: Eric Titley

Suite 1020-800 West Pender St.

Vancouver, BC V6C 2V6

EMail: erictitley@hdimining.com

Attention: Jeremy Crozier

EMail: jeremycrozier@hdimining.com

Attention: T.Kodata

EMail: tkodata@hdimining.com

Submitted By: Aley Corporation

Suite 1020-800 West Pender St.

Vancouver, BC V6C 2V6

Attention: Eric Titley

Project: **Aley 2010 Project** Description: **Aley 2010-022**

Location	Samples	Type	Preparation Description
Vancouver, BC	6	Pulp	SP-PU/Pulp Handling, submitted pulps
Vancouver, BC	100	Rock	SP-RX-2K/Rock/Chips/Drill Core

Location	Method	Description
Vancouver, BC	Ta-4A-LL-MS	Tantalum, 4 Acid, ICP
Vancouver, BC	REE-LB-MS	REE Group by ICP-MS
Vancouver, BC	U-4A-LL-MS	Uraium, 4 Acid, Low Level
Vancouver, BC	Nb2O5-AD3-OR-ICP	Niobium by multi-acid digestion, ICP
Vancouver, BC	Th-4A-LL-MS	Thorium, 4 Acid, Low Level
Vancouver, BC	WR-FS-ICP	Whole Rock, Lithium Borate Fusion, ICP
Vancouver, BC	30-4A-TR	30 Element, 4 Acid, ICP, Trace Level

Submittal Information

Ta, Th, and U results shown have been revised with accurate detection limits.

The results of this assay were based solely upon the content of the sample submitted. Any decision to invest should be made only after the potential investment value of the claim or deposit has been determined based on the results of assays of multiple samples of geologic materials collected by the prospective investor or by a qualified person selected by him and based on an evaluation of all engineering data which is available concerning any proposed project. For our complete terms and conditions please see our website at www.inspectorate.com.

В

Mike Caron, Lab Manager

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		Nb2O5	A12O3	BaO	CaO	Cr2O3	Fe2O3	K2O	LOI	MgO	MnO	Na2O	P2O5	SiO2	TiO2
~ .	~ .	Nb2O5-AD3-OR-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP
Sample	Sample	%	%	%	%	%	%	%	%	%	%	%	%	%	%
Description	Туре	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
B874927 B874928	Rock	0.34 0.35	0.22 0.16	<0.01 <0.01	32.11 32.41	<0.01 <0.01	6.74 5.32	0.05 0.05	37.40 37.67	15.39 15.87	0.53	0.04 0.06	5.05	0.84 1.91	0.06 0.02
	Rock	0.38			31.60		5.51	0.03	40.73	16.99	0.61 0.36	0.08	5.58		I
B874929 B874930	Rock	0.38	0.22 0.58	<0.01 0.02	28.30	<0.01 <0.01	19.04	0.02	31.37	11.90	0.36	0.08	3.15 5.96	0.66 2.24	0.02 0.64
B874931	Pulp Rock	0.76	0.38	< 0.02	32.78	<0.01	6.45	0.11	39.08	17.15	0.49	0.06	3.51	0.63	0.04
B874932	Rock	0.56	0.18	< 0.01	31.90	<0.01	6.85	0.04	35.70	17.13	0.48	0.06	4.95	2.83	0.02
B874933	Rock	1.09	1.30	< 0.01	27.20	< 0.01	27.74	0.03	14.51	10.84	0.32	0.04	6.69	4.59	1.42
B874934	Rock	0.69	0.54	< 0.01	30.46	< 0.01	15.38	0.02	29.86	12.44	0.16	0.04	6.20	2.05	0.67
B874935	Rock	0.43	0.34	< 0.01	33.47	< 0.01	6.63	0.08	36.24	15.42	0.48	0.04	4.80	1.61	0.67
B874936	Rock	0.43	0.28	<0.01	35.26	<0.01	5.49	< 0.02	33.41	14.76	0.42	0.04	8.33	1.65	0.23
B874937	Rock	1.47	0.28	< 0.01	33.26	<0.01	9.88	0.01	25.91	11.85	0.39	0.04	10.63	5.31	0.19
B874938	Rock	1.46	1.74	< 0.01	31.64	< 0.01	6.62	0.11	27.58	13.43	0.36	0.07	9.26	8.11	0.33
B874939	Rock	0.75	0.93	< 0.01	32.53	0.01	15.86	0.02	23.52	12.90	0.33	0.03	6.03	4.56	0.27
B874940 Dup	Rock	0.74	0.93	< 0.01	32.94	< 0.01	15.14	0.02	24.50	13.30	0.34	0.04	5.94	4.35	0.60
B874941	Rock	0.74	0.33	< 0.01	32.34	<0.01	6.02	0.02	39.43	15.91	0.55	0.04	3.00	1.39	0.00
B874942	Rock	0.80	0.25	< 0.01	32.93	< 0.01	5.76	0.02	34.36	14.76	0.57	0.03	5.89	3.19	0.72
B874943	Rock	0.29	0.33	< 0.01	34.04	< 0.01	5.05	0.03	37.08	16.11	0.57	0.03	5.82	0.56	0.72
B874944	Rock	0.20	0.13	< 0.01	34.69	< 0.01	4.79	0.05	35.59	14.95	0.57	0.04	8.02	0.60	0.02
B874945	Rock	0.29	0.12	< 0.01	33.25	< 0.01	6.40	0.03	36.96	16.87	0.68	0.04	3.60	0.73	0.02
B874946	Rock	0.38	0.17	< 0.01	31.12	< 0.01	9.32	0.02	36.08	16.01	0.48	0.04	2.44	2.25	0.35
B874947	Rock	0.46	0.19	< 0.01	36.12	< 0.01	4.77	0.02	29.55	13.15	0.40	0.04	11.18	4.27	0.10
B874948	Rock	0.34	0.19	< 0.01	30.88	< 0.01	6.19	0.02	35.65	14.30	0.58	0.03	4.54	6.46	0.41
B874949	Rock	0.25	0.10	< 0.01	31.45	< 0.01	6.32	0.02	38.11	15.03	0.66	0.03	4.04	2.61	0.10
B874950	Pulp	0.51	1.87	0.38	48.13	< 0.01	4.37	0.80	32.11	1.96	0.88	0.44	2.64	5.96	0.22
B874951	Rock	0.58	0.13	< 0.01	32.96	< 0.01	8.97	0.04	33.38	13.56	0.62	0.04	4.09	4.93	0.19
B874952	Rock	0.93	1.10	< 0.01	29.39	< 0.01	5.60	0.04	34.30	15.01	0.71	0.04	3.99	8.86	0.39
B874953	Rock	1.21	1.02	< 0.01	30.03	< 0.01	7.34	0.04	31.65	14.73	0.58	0.04	4.60	8.42	0.70
B874954	Rock	0.44	0.14	< 0.01	33.42	< 0.01	5.27	0.02	34.25	14.07	0.53	0.03	7.30	4.00	0.08
B874955	Rock	0.30	0.10	< 0.01	34.71	0.01	5.52	0.02	36.31	17.03	0.66	0.03	4.03	1.16	0.05
B874956	Rock	0.43	0.10	< 0.01	36.16	< 0.01	5.01	0.02	34.97	16.42	0.56	0.03	5.23	1.36	0.06
B874957	Rock	0.80	0.44	0.03	33.04	< 0.01	13.00	0.10	31.41	10.78	0.40	0.05	5.83	2.84	0.27
B874958	Rock	0.48	0.22	< 0.01	32.73	< 0.01	6.40	0.01	36.36	15.56	0.41	0.03	4.52	2.25	0.22
B874959	Rock	1.09	0.34	0.01	30.97	< 0.01	16.20	0.07	29.16	11.24	0.42	0.04	5.98	2.80	0.63
B874960 Dup	Rock	1.06	0.38	0.01	30.50	< 0.01	16.41	0.07	29.22	11.42	0.44	0.05	6.25	2.17	0.66
B874961	Rock	1.23	0.50	0.02	26.23	< 0.01	20.98	0.36	25.67	11.00	0.46	0.05	7.32	3.87	0.56
B874962	Rock	0.02	16.36	0.13	5.36	0.03	4.15	3.86	2.02	1.32	0.12	3.43	0.33	61.76	0.43
B874963	Rock	0.51	0.16	< 0.01	33.56	< 0.01	6.76	0.06	36.36	14.39	0.51	0.05	5.04	2.25	0.08
B874964	Rock	0.57	0.17	< 0.01	32.46	< 0.01	7.40	0.03	36.19	14.06	0.51	0.03	6.05	1.62	0.11
B874965	Rock	0.45	0.11	< 0.01	34.33	< 0.01	4.39	0.03	37.68	15.56	0.49	0.03	5.37	1.33	0.08
B874966	Rock	0.73	0.40	< 0.01	33.19	< 0.01	8.10	0.09	33.90	14.13	0.46	0.04	5.38	2.74	0.24

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		Nb2O5	A12O3	BaO	CaO	Cr2O3	Fe2O3	K2O	LOI	MgO	MnO	Na2O	P2O5	SiO2	TiO2
		Nb2O5-AD3-OR-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP
Sample	Sample	%	%	%	%	%	%	%	%	%	%	%	%	%	%
Description	Type	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
B874967 B874968	Rock	0.73	0.38	< 0.01	32.30 33.97	< 0.01	13.44	0.09	29.52	13.52 16.18	0.34	0.04	5.77	2.65	0.34 0.04
B874969	Rock	0.48 0.50	0.16	<0.01 <0.01		<0.01 <0.01	4.27	0.03	39.20 38.02	17.22	0.36	0.03	4.03	1.27	
B874969 B874970	Rock	0.50	0.09 0.22	0.01	35.03 37.56	< 0.01	3.84 4.86	0.03 0.07	37.04	17.22	0.54 0.40	0.03	4.86 3.92	0.68 3.30	0.03
B874970 B874971	Pulp		0.22	< 0.02		<0.01		0.07		16.63		0.10		0.79	0.13 0.03
B874971 B874972	Rock	0.34 0.47	0.08	<0.01	34.40 31.38	<0.01	4.17 4.59	0.02	38.63 37.58	15.38	0.50 0.48	0.03	4.68 5.33	0.79	0.03
B874973	Rock Rock	0.47	0.12	0.01	26.11	< 0.01	5.47	0.03	37.36	13.38	0.48	0.03	4.37	6.79	0.00
B874974	Rock	0.54	0.94	< 0.01	32.43	< 0.01	9.81	0.38	32.61	13.33	0.40	0.38	6.82	2.38	0.12
B874975	Rock	0.77	0.20	< 0.01	35.56	< 0.01	7.32	0.07	30.76	13.33	0.38	0.04	8.94	1.73	0.17
B874976	Rock	0.77	2.01	< 0.01	27.99	<0.01	4.40	0.03	33.66	16.47	0.37	0.04	4.88	9.42	0.17
B874977	Rock	0.49	0.14	< 0.01	33.99	< 0.01	4.40	0.04	37.72	16.49	0.37	0.03	5.68	0.76	0.23
B874978	Rock	0.49	0.14	< 0.01	32.61	< 0.01	4.76	0.02	38.22	16.49	0.47	0.03	5.08	0.70	0.03
B874979	Rock	0.18	0.13	< 0.01	30.57	< 0.01	6.04	0.05	38.20	18.42	0.47	0.03	2.69	3.49	0.04
B874980 Dup	Rock	0.18	0.22	< 0.01	29.57	< 0.01	6.15	0.03	39.07	16.85	0.42	0.03	2.68	3.50	0.04
B874981	Rock	0.14	0.18	< 0.01	33.13	< 0.01	3.69	0.01	39.87	17.33	0.56	0.03	4.10	1.33	0.05
B874982	Rock	0.21	0.28	< 0.01	33.77	< 0.01	5.08	0.04	31.14	17.10	0.41	0.03	4.51	1.55	0.03
B874983	Rock	0.20	0.53	< 0.01	29.86	< 0.01	3.19	0.35	36.89	18.21	0.34	0.40	3.28	5.62	0.03
B874984	Rock	0.15	0.10	< 0.01	32.11	< 0.01	4.71	0.03	39.69	18.31	0.45	0.03	2.91	0.83	0.02
B874985	Rock	0.07	0.26	< 0.01	31.68	< 0.01	4.76	0.04	37.74	19.31	0.49	0.03	4.10	1.23	0.03
B874986	Rock	0.12	0.60	< 0.01	35.71	< 0.01	4.08	0.01	33.19	16.34	0.35	0.04	7.97	1.47	0.02
B874987	Rock	0.10	0.13	< 0.01	33.22	< 0.01	5.37	0.02	37.73	16.24	0.48	0.03	4.01	1.44	0.01
B874988	Rock	0.10	0.06	< 0.01	33.73	< 0.01	3.81	0.02	38.85	16.36	0.54	0.03	4.69	1.23	0.02
B874989	Rock	0.16	0.16	0.01	34.09	< 0.01	7.52	0.06	33.85	13.85	0.46	0.04	6.32	2.79	0.09
B874990	Pulp	0.45	0.26	< 0.01	33.27	< 0.01	5.46	0.05	38.78	14.20	0.48	0.05	4.21	2.16	0.12
B874991	Rock	0.10	0.31	< 0.01	31.90	< 0.01	4.65	0.02	39.44	16.50	0.39	0.03	4.50	1.63	0.02
B874992	Rock	0.38	0.15	< 0.01	35.77	< 0.01	5.14	0.02	37.87	17.49	0.51	0.03	4.52	1.41	0.04
B874993	Rock	0.15	0.20	< 0.01	35.50	< 0.01	5.14	0.03	36.78	16.05	0.29	0.03	5.82	3.04	0.09
B874994	Rock	0.11	0.23	< 0.01	33.89	0.01	4.49	0.01	37.72	15.56	0.30	0.03	5.54	1.88	0.09
B874995	Rock	0.04	0.06	< 0.01	33.96	< 0.01	6.39	0.03	39.03	16.28	0.59	0.02	2.03	0.66	0.02
B874996	Rock	0.17	0.10	< 0.01	34.12	< 0.01	4.91	0.03	37.90	16.31	0.57	0.03	4.21	0.90	0.02
B874997	Rock	0.12	0.03	< 0.01	32.15	< 0.01	3.86	0.01	41.70	17.01	0.63	0.03	2.38	0.70	0.01
B874998	Rock	0.42	0.19	< 0.01	34.60	< 0.01	2.93	0.03	37.01	15.89	0.50	0.04	6.89	1.02	0.02
B874999	Rock	0.14	0.08	< 0.01	33.37	< 0.01	4.04	0.03	40.90	16.94	0.58	0.04	2.68	0.60	0.01
B875000 Dup	Rock	0.13	0.03	< 0.01	34.07	< 0.01	3.97	0.02	41.11	16.77	0.58	0.03	2.68	0.27	< 0.01
B875001	Rock	0.15	0.14	< 0.01	32.77	< 0.01	3.92	0.02	38.10	16.53	0.50	0.03	6.21	0.64	0.03
B875002	Rock	0.06	0.29	< 0.01	33.57	< 0.01	5.69	0.01	36.99	16.13	0.46	0.02	4.19	1.48	0.10
B875003	Rock	0.03	0.13	< 0.01	35.42	< 0.01	5.53	0.03	35.99	15.92	0.45	0.02	5.42	0.34	0.02
B875004	Rock	0.10	0.03	< 0.01	34.50	< 0.01	5.32	0.01	39.83	17.83	0.66	0.02	1.69	0.15	< 0.01
B875005	Rock	0.35	0.09	< 0.01	36.37	< 0.01	4.19	0.03	37.91	16.55	0.56	0.03	4.44	0.26	0.03
B875006	Rock	0.18	0.06	< 0.01	34.92	< 0.01	3.82	0.02	38.60	16.03	0.48	0.03	5.02	0.23	0.02

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		Nb2O5	Al2O3	BaO	CaO	Cr2O3	Fe2O3	K2O	LOI	MgO	MnO	Na2O	P2O5	SiO2	TiO2
		Nb2O5-AD3-OR-ICP	WR-FS-ICP												
Sample	Sample	%	%	%	%	%	%	%	%	%	%	%	%	%	%
Description	Type	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
B875007	Rock	0.10	0.24	0.01	36.77	< 0.01	5.25	0.02	36.72	12.37	0.37	0.03	6.62	1.07	0.09
B875008	Rock	0.16	0.35	< 0.01	33.67	< 0.01	4.03	0.02	37.70	15.43	0.44	0.03	5.29	1.65	0.14
B875009	Rock	0.10	0.31	< 0.01	34.09	< 0.01	10.25	0.04	30.72	13.96	0.43	0.05	7.33	2.94	0.13
B875010	Pulp	0.71	0.15	0.02	39.05	< 0.01	4.91	0.04	36.81	12.77	0.38	0.09	3.90	3.04	0.12
B875011	Rock	0.16	0.63	< 0.01	30.28	< 0.01	9.32	0.05	30.40	11.80	0.38	0.04	6.37	9.12	0.45
B875012	Rock	0.09	0.76	< 0.01	31.42	< 0.01	5.01	0.05	32.76	14.10	0.29	0.04	6.22	7.62	0.53
B875013	Rock	0.10	0.61	< 0.01	31.81	< 0.01	7.82	0.05	36.73	14.71	0.44	0.03	4.13	2.17	0.58
B875014	Rock	0.13	0.07	< 0.01	33.13	< 0.01	3.97	0.02	39.18	16.34	0.40	0.04	3.84	2.56	0.03
B875015	Rock	0.15	0.99	0.04	34.35	< 0.01	10.48	0.40	25.49	10.35	0.28	0.27	7.64	8.55	0.79
B875016	Rock	0.04	0.76	0.01	33.93	< 0.01	5.98	0.05	32.68	14.38	0.44	0.08	5.74	5.68	0.40
B875017	Rock	0.07	0.73	0.05	26.09	< 0.01	14.73	0.45	27.14	13.07	0.63	0.47	6.45	7.79	0.79
B875018	Rock	0.08	0.20	< 0.01	33.27	< 0.01	4.84	0.02	35.91	14.44	0.60	0.04	7.59	1.59	0.07
B875019	Rock	0.15	0.47	< 0.01	30.27	< 0.01	8.19	0.06	32.41	15.60	0.46	0.05	6.00	5.23	0.35
B875020 Dup	Rock	0.15	0.46	< 0.01	31.34	< 0.01	8.29	0.06	31.56	15.20	0.47	0.05	5.95	5.14	0.33
B875021	Rock	0.09	0.22	0.09	30.46	< 0.01	10.04	0.17	34.32	15.53	0.67	0.22	2.39	4.51	0.29
B875022	Rock	< 0.01	15.71	0.12	4.05	0.03	4.28	3.64	1.63	1.50	0.12	3.50	0.31	63.63	0.43
B875023	Rock	0.12	0.28	0.02	30.61	< 0.01	12.75	0.16	31.33	14.66	0.57	0.15	3.38	4.78	0.47
B875024	Rock	0.07	0.38	< 0.01	33.61	< 0.01	4.84	0.02	30.50	14.39	0.43	0.05	8.85	6.97	0.17
B875025	Rock	0.11	0.36	< 0.01	35.46	< 0.01	4.58	0.03	31.67	13.50	0.42	0.08	8.72	4.78	0.19
B875026	Rock	0.11	0.23	< 0.01	32.35	< 0.01	3.26	0.02	40.71	16.34	0.54	0.05	3.37	2.09	0.08
B875027	Rock	0.18	0.11	0.01	33.77	< 0.01	3.84	0.02	38.06	17.93	0.65	0.06	3.94	1.73	0.01
B875028	Rock	0.06	0.59	< 0.01	33.11	< 0.01	4.30	0.02	34.44	16.38	0.38	0.06	6.97	3.82	0.21
B875029	Rock	0.06	1.35	0.06	32.74	< 0.01	11.67	0.49	27.06	8.48	0.48	0.45	5.47	10.38	0.98
B875030	Pulp	0.52	1.84	0.36	48.26	< 0.01	4.45	0.76	32.10	1.92	0.87	0.44	2.69	5.83	0.23
B875031	Rock	0.08	0.99	0.15	32.44	< 0.01	8.62	0.67	30.79	11.29	0.54	0.48	4.32	8.12	0.56
B875032	Rock	0.02	0.80	0.07	42.01	< 0.01	8.87	0.44	29.20	3.85	0.26	0.51	5.84	7.05	0.64

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		Total	Ag	Al	As	Ba	Bi	Ca	Cd	Со	Cr	Cu	Fe	K	La
C1-	C 1 -	WR-FS-ICP	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR
Sample Description	Sample Type	% 0.01	ppm 0.5	% 0.01	ppm 5	ppm 10	ppm 2	% 0.01	ppm 0.5	ppm	ppm	ppm	% 0.01	% 0.01	ppm 10
B874927	Rock	98.43	2.6	0.01	17	47	<2	>10	<0.5	44	<1	7	5.35	0.01	673
B874928	Rock	99.67	1.0	0.09	7	32	<2	>10	< 0.5	17	<1	5	3.85	0.02	505
B874929	Rock	99.36	0.9	0.11	<5	13	<2	>10	< 0.5	42	<1	8	4.06	< 0.01	266
B874930	Pulp	100.69	0.8	0.30	<5	151	<2	>10	< 0.5	35	<1	23	>10	0.08	325
B874931	Rock	100.38	1.3	0.08	<5	18	<2	>10	< 0.5	42	<1	5	4.78	0.02	409
B874932	Rock	98.78	0.5	0.16	10	21	<2	>10	< 0.5	31	<1	9	5.42	0.01	655
B874933	Rock	94.54	1.3	0.62	<5	34	<2	>10	< 0.5	70	<1	18	>10	< 0.01	393
B874934	Rock	98.21	1.1	0.26	<5	62	<2	>10	< 0.5	41	<1	23	>10	0.04	366
B874935	Rock	99.15	0.6	0.12	<5	22	<2	>10	< 0.5	34	<1	10	9.26	< 0.01	467
B874936	Rock	99.80	1.4	0.13	<5	28	<2	>10	< 0.5	21	<1	10	7.44	< 0.01	407
B874937	Rock	98.66	1.1	0.45	<5	36	<2	>10	< 0.5	12	<1	7	7.68	0.07	541
B874938	Rock	99.09	1.0	0.90	<5	31	<2	>10	< 0.5	43	13	7	5.88	0.01	627
B874939	Rock	97.38	0.7	0.46	<5	28	<2	>10	< 0.5	50	<1	11	>10	< 0.01	427
B874940 Dup	Rock	98.08	0.5	0.42	<5	25	<2	>10	< 0.5	33	<1	9	>10	< 0.01	395
B874941	Rock	99.25	0.8	0.11	<5	26	<2	>10	< 0.5	40	<1	4	4.37	< 0.01	460
B874942	Rock	99.21	< 0.5	0.47	<5	28	<2	>10	< 0.5	36	<1	6	4.38	< 0.01	289
B874943	Rock	99.46	0.6	0.07	<5	31	<2	>10	< 0.5	21	<1	5	6.38	< 0.01	325
B874944	Rock	99.43	1.5	0.05	5	27	<2	>10	< 0.5	31	<1	4	3.97	< 0.01	485
B874945	Rock	98.84	0.6	0.09	<5	19	<2	>10	< 0.5	21	<1	4	5.19	< 0.01	334
B874946	Rock	98.45	0.8	0.17	<5	20	<2	>10	< 0.5	34	<1	5	8.49	< 0.01	288
B874947	Rock	99.82	0.8	0.10	<5	26	<2	>10	< 0.5	37	<1	29	4.34	< 0.01	518
B874948	Rock	99.26	0.5	0.09	10	29	<2	>10	< 0.5	13	<1	7	5.26	< 0.01	973
B874949	Rock	98.47	0.9	0.05	41	37	<2	>10	< 0.5	14	<1	6	5.09	< 0.01	2247
B874950	Pulp	99.76	0.9	0.94	30	2854	<2	>10	< 0.5	34	<1	11	3.63	0.59	1390
B874951	Rock	98.91	0.7	0.05	12	39	<2	>10	< 0.5	39	<1	7	7.51	< 0.01	1401
B874952	Rock	99.42	< 0.5	0.56	8	36	<2	>10	< 0.5	36	<1	5	4.93	0.02	872
B874953	Rock	99.15	0.8	0.51	14	44	<2	>10	< 0.5	32	<1	6	>10	0.02	2807
B874954	Rock	99.13	< 0.5	0.08	13	33	<2	>10	< 0.5	22	<1	5	5.92	< 0.01	735
B874955	Rock	99.64	< 0.5	0.05	<5	32	<2	>10	< 0.5	26	<1	6	4.44	< 0.01	626
B874956	Rock	99.93	0.6	0.05	6	32	<2	>10	< 0.5	17	<1	5	4.25	< 0.01	445
B874957	Rock	98.19	< 0.5	0.22	<5	225	<2	>10	< 0.5	57	<1	17	>10	0.07	513
B874958	Rock	98.74	0.7	0.11	<5	27	<2	>10	< 0.5	67	<1	13	4.96	< 0.01	372
B874959	Rock	97.88	0.7	0.18	<5	107	<2	>10	< 0.5	38	<1	31	>10	0.05	351
B874960 Dup	Rock	97.57	0.5	0.18	<5	102	<2	>10	< 0.5	54	<1	32	>10	0.05	346
B874961	Rock	97.04	0.8	0.26	<5	146	<2	>10	< 0.5	83	<1	56	>10	0.29	330
B874962	Rock	99.29	1.5	8.11	<5	839	<2	3.69	< 0.5	22	18	8	3.22	4.06	26
B874963	Rock	99.22	< 0.5	0.08	<5	58	<2	>10	< 0.5	21	<1	11	5.72	0.03	254
B874964	Rock	98.66	0.6	0.09	<5	65	<2	>10	< 0.5	83	<1	14	>10	< 0.01	337
B874965	Rock	99.41	< 0.5	0.06	<5	39	<2	>10	< 0.5	28	<1	5	4.45	< 0.01	324
B874966	Rock	98.68	< 0.5	0.24	<5	43	<2	>10	< 0.5	61	<1	10	6.70	0.05	499

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

Sample Description B874967 B874968	Sample Type Rock	WR-FS-ICP %	30-4A-TR	30-4A-TR	30-4A-TR										
Description B874967	Type				30-4A-1K	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR
B874967			ppm	%	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%	%	ppm
	D1-	0.01	0.5	0.01	5	10	2	0.01	0.5	1	1	1	0.01	0.01	10
B874968		98.39	< 0.5	0.21	<5	49	<2	>10	< 0.5	38	<1	7	>10	0.06	330
	Rock	99.57	< 0.5	0.08	<5	26	<2	>10	< 0.5	43	<1	6	3.67	0.02	335
B874969	Rock	100.38	<0.5	0.05	<5	34	<2	>10	<0.5	47	<1	4	3.30	0.02	276
B874970	Pulp	99.63	< 0.5	0.09	6	172	<2	>10	<0.5	29	<1	3	4.18	0.03	410
B874971	Rock	99.97	<0.5	0.05	<5	35	<2	>10	<0.5	37	<1	8	3.60	0.01	603
B874972	Rock	95.85	<0.5	0.05	<5	40	<2	>10	<0.5	37	<1	4	3.52	0.01	317
B874973	Rock	93.05	<0.5	0.49	<5	139	<2	>10	<0.5	25	<1	5	4.54	0.27	398
B874974	Rock	98.32	<0.5	0.13	<5	55	<2	>10	<0.5	38	<1	7	>10	0.04	340
B874975	Rock	98.76	<0.5	0.17	15	35	<2	>10	<0.5	55	<1	4	9.76	0.01	2534
B874976	Rock	99.51	<0.5	1.22	<5	26	<2	>10	<0.5	40	<1	6	3.58	0.02	489
B874977	Rock	99.70	<0.5	0.08	<5	27	<2	>10	<0.5	12	<1	12	3.88	0.01	259
B874978	Rock	99.55	<0.5	0.06	<5 1.5	48	<2	>10	<0.5	33	<1	7	4.10	0.01	230
B874979	Rock	100.18	0.6	0.13	15	35	<2	>10	<0.5	56	<1	6	5.03	0.03	1587
B874980 Dup	Rock	98.59	<0.5	0.12	16	35	<2	>10	<0.5	45	<1	6	4.90	0.03	1597
B874981	Rock	100.30	<0.5	0.10	<5	36	<2	>10	<0.5	35	<1	2	2.17	< 0.01	324
B874982	Rock	93.95	<0.5	0.16	<5	26	<2	>10	<0.5	31	<1	7	6.66	0.02	223
B874983	Rock	98.71	<0.5	0.28	<5	70	<2	>10	<0.5	41	<1	3	2.87	0.24	358
B874984	Rock	99.20	<0.5	0.06	8	30	<2	>10	<0.5	32	<1	13	4.43	0.01	507
B874985	Rock	99.69	<0.5	0.15	<5	32	<2	>10	<0.5	6	<1	4	4.10	0.02	303
B874986	Rock	99.80	<0.5	0.35	12	23	<2	>10	<0.5	28	<1	4	3.54	< 0.01	1391
B874987	Rock	98.69	< 0.5	0.08	36	27	<2	>10	<0.5	47	<1	3	4.77	< 0.01	3702 653
B874988	Rock	99.35	< 0.5	0.04	7	38 83	<2	>10	<0.5	17 26	<1	3 4	3.62	< 0.01	
B874989 B874990	Rock	99.23 99.04	<0.5 <0.5	0.10 0.12	<5 <5	43	<2 <2	>10 >10	<0.5 <0.5	26 27	<1 <1	7	6.55 4.88	0.04 0.03	252 381
B874990 B874991	Pulp Rock	99.04	<0.5	0.12	<5	45	<2	>10	<0.5	41	<1	7	6.80	< 0.03	532
B874991 B874992	Rock	102.95	<0.5	0.10	8	38	<2	>10	<0.5	40	<1	3	7.62	0.01	901
B874993	Rock	102.98	<0.5	0.07	50	36 37	<2	>10	<0.5	33	<1	8	4.34	< 0.01	2705
B874994	Rock	99.75	<0.5	0.11	20	34	<2	>10	<0.5	31	<1	8	3.59	< 0.01	965
B874995	Rock	99.73	<0.5	0.13	49	22	<2	>10	<0.5	26	<1	2	5.04	< 0.01	4212
B874996	Rock	99.12	0.5	0.06	26	35	<2	>10	<0.5	41	<1	3	4.18	< 0.01	2214
B874997	Rock	98.52	<0.5	0.02	6	37	<2	>10	<0.5	36	<1	2	3.52	< 0.01	461
B874998	Rock	99.11	<0.5	0.12	<5	35	<2	>10	<0.5	29	<1	3	4.57	< 0.01	391
B874999	Rock	99.28	<0.5	0.02	11	28	<2	>10	<0.5	35	<1	2	2.37	< 0.01	850
B875000 Dup	Rock	99.55	<0.5	0.02	8	28	<2	>10	<0.5	57	<1	2	3.71	< 0.01	883
B875001	Rock	98.92	<0.5	0.02	8	27	<2	>10	<0.5	27	<1	3	3.71	< 0.01	763
B875002	Rock	98.96	<0.5	0.05	20	22	<2	>10	<0.5	21	<1	4	4.81	< 0.01	1983
B875003	Rock	99.27	<0.5	0.07	49	19	<2	>10	<0.5	22	<1	4	5.25	0.02	4933
B875004	Rock	100.07	<0.5	0.02	107	23	<2	>10	<0.5	17	<1	4	4.89	< 0.01	5533
B875005	Rock	100.46	<0.5	0.04	17	68	<2	>10	< 0.5	6	<1	3	3.90	0.01	865
B875006	Rock	99.24	<0.5	0.04	<5	28	<2	>10	<0.5	16	<1	6	3.47	0.01	303

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		Total	Ag	Al	As	Ba	Bi	Ca	Cd	Co	Cr	Cu	Fe	K	La
		WR-FS-ICP	30-4A-TR												
Sample	Sample	%	ppm	%	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%	%	ppm
Description	Type	0.01	0.5	0.01	5	10	2	0.01	0.5	1	1	1	0.01	0.01	10
B875007	Rock	99.56	< 0.5	0.14	13	93	<2	>10	< 0.5	37	<1	8	8.31	< 0.01	356
B875008	Rock	98.75	< 0.5	0.19	<5	36	<2	>10	< 0.5	28	<1	9	5.67	0.01	240
B875009	Rock	100.25	< 0.5	0.15	<5	52	<2	>10	< 0.5	28	<1	5	8.86	0.03	263
B875010	Pulp	101.29	< 0.5	0.08	10	170	<2	>10	< 0.5	29	<1	4	4.55	0.04	370
B875011	Rock	98.87	< 0.5	0.31	8	54	<2	>10	< 0.5	15	<1	10	8.69	0.05	441
B875012	Rock	98.82	< 0.5	0.38	5	29	<2	>10	< 0.5	30	<1	9	4.63	0.02	462
B875013	Rock	99.10	1.9	0.31	<5	41	<2	>10	< 0.5	25	<1	5	>10	0.02	524
B875014	Rock	99.59	< 0.5	0.04	<5	21	<2	>10	< 0.5	54	<1	3	6.09	< 0.01	265
B875015	Rock	99.65	< 0.5	0.51	<5	244	<2	>10	< 0.5	19	<1	6	9.85	0.33	355
B875016	Rock	100.13	< 0.5	0.38	<5	78	<2	>10	< 0.5	49	<1	6	5.05	0.04	348
B875017	Rock	98.40	< 0.5	0.38	<5	327	<2	>10	< 0.5	26	<1	8	>10	0.40	271
B875018	Rock	98.60	< 0.5	0.10	<5	50	<2	>10	< 0.5	23	<1	3	4.26	< 0.01	342
B875019	Rock	99.11	< 0.5	0.24	5	55	<2	>10	< 0.5	38	<1	6	6.68	0.06	619
B875020 Dup	Rock	98.87	< 0.5	0.23	<5	53	<2	>10	< 0.5	45	<1	7	7.10	0.05	615
B875021	Rock	98.92	< 0.5	0.10	<5	606	<2	>10	< 0.5	42	<1	3	8.68	0.14	231
B875022	Rock	98.95	< 0.5	6.88	<5	739	<2	3.72	< 0.5	43	63	6	3.19	3.57	24
B875023	Rock	99.16	< 0.5	0.13	<5	134	<2	>10	< 0.5	35	<1	5	>10	0.13	159
B875024	Rock	100.23	< 0.5	0.18	6	39	<2	>10	< 0.5	44	<1	4	3.90	0.02	476
B875025	Rock	99.80	< 0.5	0.18	<5	67	<2	>10	< 0.5	51	<1	4	4.17	0.02	395
B875026	Rock	99.06	< 0.5	0.12	<5	44	<2	>10	< 0.5	35	<1	3	2.84	0.01	175
B875027	Rock	100.15	< 0.5	0.06	<5	93	<2	>10	< 0.5	22	<1	4	3.36	0.01	186
B875028	Rock	100.29	< 0.5	0.31	<5	30	<2	>10	< 0.5	46	<1	5	3.98	0.01	394
B875029	Rock	99.61	< 0.5	0.71	<5	457	<2	>10	< 0.5	19	<1	13	>10	0.46	617
B875030	Pulp	99.75	1.1	0.97	24	2968	<2	>10	< 0.5	39	<1	10	6.13	0.72	899
B875031	Rock	98.97	< 0.5	0.49	6	1543	<2	>10	< 0.5	31	<1	8	6.80	0.53	467
B875032	Rock	99.54	< 0.5	0.40	6	565	<2	>10	< 0.5	34	<1	7	6.83	0.34	488

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		Mg	Mn	Мо	Na	Ni	P	Pb	Sb	Sc	Sr	Ti	Tl	V	W
	~ .	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR
Sample	Sample	%	ppm	ppm 1	%	ppm 1	ppm	ppm 2	ppm	ppm 1	ppm	% 0.01	ppm	ppm	ppm
Description B874927	Type Rock	9.99	5 4579	3	0.01	3	>10000	10	5 <5	9	1665	0.01	10 <10	327	10 <10
B874928	Rock	>10	4933	3	0.03	3	>10000	9	<5 <5	5	2522	< 0.01	<10	327	<10
B874929	Rock	>10	2971	<1	0.04	4	>10000	7	<5	4	496	< 0.01	<10	367	<10
B874930	Pulp	8.84	4303	<1	0.04	6	>10000	12	<5	6	2099	0.20	<10	460	<10
B874931	Rock	>10	3899	4	0.03	4	>10000	8	<5	5	750	< 0.01	<10	425	<10
B874932	Rock	>10	4492	2	0.02	5	>10000	9	<5	9	2078	0.06	<10	452	<10
B874933	Rock	6.98	1421	<1	0.03	7	>10000	17	<5	4	1359	0.48	<10	691	<10
B874934	Rock	9.40	4587	<1	0.03	4	>10000	11	<5	5	2654	0.33	<10	518	<10
B874935	Rock	>10	6655	<1	0.02	3	>10000	11	<5	6	2373	0.09	<10	386	<10
B874936	Rock	>10	5849	<1	0.03	3	>10000	11	<5	7	2359	0.06	<10	330	<10
B874937	Rock	8.05	2913	<1	0.04	4	>10000	11	<5	6	3053	0.23	<10	484	<10
B874938	Rock	9.85	3254	<1	0.04	7	>10000	12	<5	8	3118	0.09	<10	324	<10
B874939	Rock	9.44	3339	<1	0.02	11	>10000	20	<5	7	1968	< 0.01	<10	713	<10
B874940 Dup	Rock	8.87	3145	<1	0.02	9	>10000	14	<5	7	1875	0.24	<10	661	<10
B874941	Rock	9.71	5498	<1	0.01	3	>10000	11	<5	10	2350	0.04	<10	399	<10
B874942	Rock	9.25	4711	<1	0.02	3	>10000	13	<5	9	2636	0.13	<10	350	<10
B874943	Rock	>10	8145	3	0.02	3	>10000	14	<5	7	3253	0.01	<10	310	<10
B874944	Rock	>10	4973	1	0.02	2	>10000	12	<5	7	2655	< 0.01	<10	297	<10
B874945	Rock	>10	6165	<1	0.02	3	>10000	12	<5	6	690	0.01	<10	318	<10
B874946	Rock	>10	4878	11	0.02	4	>10000	14	<5	9	838	0.03	<10	333	<10
B874947	Rock	9.56	4034	<1	0.03	3	>10000	17	<5	8	2195	0.03	<10	264	<10
B874948	Rock	>10	5462	<1	0.02	2	>10000	13	<5	10	2631	0.05	<10	306	<10
B874949	Rock	9.92	5902	<1	0.02	4	>10000	12	<5	10	3023	0.04	<10	410	<10
B874950	Pulp	1.73	8008	22	0.39	8	>10000	67	<5	3	>10000	0.14	30	323	<10
B874951	Rock	9.51	5895	<1	0.02	5	>10000	13	<5	10	3157	0.08	<10	430	<10
B874952	Rock	>10	6860	<1	0.02	3	>10000	11	<5	8	3712	0.07	<10	308	<10
B874953	Rock	>10	9353	<1	0.03	3	>10000	12	<5	9	3164	0.23	<10	306	<10
B874954	Rock	>10	6783	3	0.02	2	>10000	12	<5	6	3202	0.02	<10	286	<10
B874955	Rock	>10	5967	<1	0.02	2	>10000	10	<5	6	3479	0.02	<10	317	<10
B874956	Rock	>10	5233	1	0.02	3	>10000	9	<5	8	3447	0.03	<10	396	<10
B874957 B874958	Rock	8.17 >10	3642	<1 <1	0.03 0.02	5 4	>10000	14 10	<5 <5	5 8	3612 2108	0.17 0.09	<10	450 430	<10 <10
	Rock		3567				>10000			-			<10		
B874959	Rock	8.58	3989	<1	0.03	4	>10000	11 11	<5	7 7	3210	0.30	<10	488	<10 <10
B874960 Dup	Rock	7.94	3442	<1 <1	0.03 0.04	5	>10000		<5	4	2616	0.28	<10	486	<10
B874961	Rock	8.85	4468			6	>10000	10	<5	5	3704 572	0.36	<10	512	
B874962 B874963	Rock Rock	1.23 >10	834 4778	<1 <1	3.01 0.03	6 2	1391 >10000	21	<5 <5	5	572 4032	0.30 0.04	<10 <10	112 341	<10 <10
B874964	Rock	>10	4778 8377	3	0.03	4	>10000	6	<5 <5	5	4032	0.04	<10 <10	363	<10
B874964 B874965	Rock	>10	5555	3	0.02	3	>10000	8	<5 <5	5 7	3902	0.05	<10	438	<10 <10
B874966	Rock	>10	4191	<1	0.02	4	>10000	7	<5	6	2998	0.03	<10	458	<10
Do/4900	NOCK	>10	4191	<1	0.02	4	>10000	/	<3	O	2998	0.13	<10	403	<10

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		Mg	Mn	Mo	Na	Ni	P	Pb	Sb	Sc	Sr	Ti	Tl	V	W
		30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR
Sample	Sample	%	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm
Description	Type	0.01	5	1	0.01	1	10	2	5	1	1	0.01	10	1	10
B874967	Rock	9.44	3051	<1	0.03	4	>10000	9	<5	4	2214	0.20	<10	513	<10
B874968	Rock	>10	3452	<1	0.02	2	>10000	9	<5	6	2035	0.02	<10	346	<10
B874969	Rock	>10	5141	<1	0.02	3	>10000	9	<5	5	4075	0.01	<10	335	<10
B874970	Pulp	9.17	3819	<1	0.06	2	>10000	12	<5	7	2759	0.06	<10	314	<10
B874971	Rock	>10	4824	10	0.02	2	>10000	9	<5	5	3473	0.02	<10	334	<10
B874972	Rock	9.72	4069	<1	0.02	3	>10000	9	<5	7	3252	0.04	<10	422	<10
B874973	Rock	>10	3753	<1	0.52	4	>10000	10	<5	9	2305	0.07	<10	448	<10
B874974	Rock	>10	6700	<1	0.02	3	>10000	10	<5	6	2995	0.08	<10	433	<10
B874975	Rock	>10	5923	<1	0.03	3	>10000	10	<5	5	3389	0.08	<10	448	<10
B874976	Rock	>10	3346	5	0.02	4	>10000	11	<5	10	1992	0.05	<10	370	<10
B874977	Rock	>10	4758	<1	0.02	2	>10000	47	<5	5 7	3400	0.02	<10	338	<10
B874978	Rock	>10	4420	2	0.02	2	>10000	17	<5	•	2559	0.01	<10	328	<10
B874979	Rock	>10	3967	8	0.02	2	>10000	11	<5	9	2055	0.02	<10	359	<10
B874980 Dup	Rock	>10	3795	8	0.02	2	>10000	11	<5	9	1968	0.02	<10	349	<10
B874981	Rock	>10	3851	1	0.02	2	>10000	10	<5	5	2553	0.01	<10	343	<10
B874982	Rock	>10	6167	2	0.02	3	>10000	11	<5	7	2887	0.01	<10	347	<10
B874983	Rock	>10	3402	<1	0.39	4	>10000	11	<5	13	1946	0.02	<10	441	<10
B874984	Rock	>10	4672	1	0.02	3	>10000	19	<5	6	2899	0.01	<10	434	<10
B874985	Rock	>10	4670	1	0.02	2	>10000	11	<5	5	3116	0.01	<10	354	<10
B874986	Rock	>10	3265	2	0.03	2	>10000	10	<5	5	2019	< 0.01	<10	319	<10
B874987	Rock	>10	4697	2	0.02	2	>10000	8	<5	6	1945	< 0.01	<10	336	<10
B874988	Rock	>10	5683	1	0.02	1 3	>10000	8	<5	6 7	3879	< 0.01	<10	335	<10
B874989 B874990	Rock	9.63 >10	4407 4772	<1 3	0.03 0.04	2	>10000 >10000	11 9	<5 <5	7	3462 2520	0.04 0.03	<10 <10	342 340	<10 <10
B874991	Pulp Rock	>10	6605	3	0.04	3	>10000	12	<5	5	1831	< 0.03	<10	323	<10
B874992	Rock	>10	8963	4	0.02	2	>10000	12	<5	5	3285	0.01	<10	323	<10
B874993	Rock	>10	2818	4	0.02	5	>10000	16	<5 <5	9	543	0.02	<10	332 448	<10
B874994	Rock	>10	2698	2	0.02	5	>10000	78	<5	8	586	0.05	<10	417	<10
B874995	Rock	>10	5167	15	0.02	3	9657	14	<5	7	1875	< 0.03	<10	337	<10
B874996	Rock	>10	5377	3	0.02	3	>10000	12	<5	6	2745	<0.01	<10	319	<10
B874997	Rock	>10	6401	2	0.02	2	>10000	10	<5	5	4065	< 0.01	<10	340	<10
B874998	Rock	>10	8903	<1	0.02	4	>10000	13	<5	5	4206	< 0.01	<10	302	<10
B874999	Rock	>10	3960	4	0.04	2	>10000	11	<5	5	1806	< 0.01	<10	302	<10
B875000 Dup	Rock	>10	5950	4	0.02	7	>10000	9	<5	6	2899	< 0.01	<10	332	<10
B875001	Rock	9.56	4514	5	0.02	3	>10000	10	<5	7	2754	0.01	<10	322	<10
B875002	Rock	>10	4314	<1	0.02	3	>10000	11	<5	11	1712	0.01	<10	349	<10
B875002 B875003	Rock	>10	4671	2	0.02	3	>10000	14	<5	9	684	< 0.04	<10	324	<10
B875003	Rock	>10	6745	38	0.02	4	8552	14	<5	10	1894	< 0.01	112	422	<10
B875005	Rock	>10	5653	10	0.01	4	>10000	12	<5	9	3117	0.01	<10	386	<10
B875006	Rock	>10	4772	6	0.03	2	>10000	13	<5	6	2832	< 0.02	<10	301	<10
D675000	NUCK	/10	4112	U	0.03		>10000	13		0	2032	<0.01	<10	501	<10

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		Mg	Mn	Mo	Na	Ni	P	Pb	Sb	Sc	Sr	Ti	Tl	V	W
		30-4A-TR													
Sample	Sample	%	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm
Description	Type	0.01	5	1	0.01	1	10	2	5	1	1	0.01	10	1	10
B875007	Rock	>10	6623	8	0.02	4	>10000	18	<5	8	839	0.03	<10	245	<10
B875008	Rock	>10	7115	<1	0.02	3	>10000	13	<5	7	2859	0.04	<10	307	<10
B875009	Rock	9.39	4099	2	0.03	3	>10000	12	<5	8	2541	0.05	<10	285	<10
B875010	Pulp	9.17	4099	<1	0.06	2	>10000	16	<5	6	2891	0.04	<10	266	<10
B875011	Rock	9.23	4056	4	0.03	3	>10000	95	<5	10	823	0.18	<10	269	<10
B875012	Rock	>10	2901	<1	0.02	4	>10000	20	<5	7	848	0.17	<10	349	<10
B875013	Rock	>10	7734	30	0.02	4	>10000	13	<5	16	796	0.06	<10	346	<10
B875014	Rock	>10	6924	6	0.03	2	>10000	14	<5	7	2553	< 0.01	<10	260	<10
B875015	Rock	8.93	2900	2	0.28	3	>10000	12	<5	4	2191	0.42	<10	314	<10
B875016	Rock	9.03	4038	<1	0.06	1	>10000	11	<5	6	2375	0.17	<10	254	<10
B875017	Rock	8.20	5713	<1	0.46	3	>10000	12	<5	7	1970	0.47	<10	305	<10
B875018	Rock	9.76	5618	4	0.03	2	>10000	13	<5	10	2587	< 0.01	<10	224	<10
B875019	Rock	8.82	4123	<1	0.04	3	>10000	12	<5	8	1930	0.09	<10	271	<10
B875020 Dup	Rock	9.35	4468	<1	0.04	4	>10000	14	<5	8	2085	0.09	<10	266	<10
B875021	Rock	>10	6532	2	0.21	2	>10000	13	<5	8	3257	0.06	<10	246	<10
B875022	Rock	1.15	532	<1	2.97	6	911	21	<5	4	502	0.28	<10	74	<10
B875023	Rock	>10	9840	5	0.11	2	>10000	11	<5	8	4263	0.35	<10	239	<10
B875024	Rock	8.60	3819	2	0.04	1	>10000	12	<5	8	2022	0.03	<10	201	<10
B875025	Rock	9.73	4184	<1	0.06	1	>10000	10	<5	6	2918	0.04	<10	203	<10
B875026	Rock	>10	5244	<1	0.04	1	>10000	8	<5	5	3621	0.02	<10	235	<10
B875027	Rock	>10	6205	5	0.05	1	>10000	12	<5	6	4131	< 0.01	<10	235	<10
B875028	Rock	>10	3859	<1	0.05	2	>10000	12	<5	6	2112	0.03	<10	227	<10
B875029	Rock	>10	7941	1	0.32	3	>10000	15	<5	7	2793	0.59	<10	222	<10
B875030	Pulp	3.18	>10000	17	0.33	7	<10	63	<5	2	>10000	0.09	<10	189	<10
B875031	Rock	7.95	4763	7	0.44	3	>10000	12	<5	8	3811	0.31	<10	314	<10
B875032	Rock	3.26	2237	1	0.50	2	>10000	11	<5	2	4161	0.39	<10	214	<10

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		Zn	Zr	Ce	Dy	Er	Eu	Gd	Hf	Но	La	Lu	Nd	Pr	17
Sample	Commis	30-4A-TR		REE-LB-MS	REE-LB-MS		REE-LB-MS		REE-LB-MS				REE-LB-MS		REE-LB-MS
Description	Sample Type	ppm 2	ppm 1	ppm 0.1	ppm 0.1	ppm 0.1	ppm 0.1	ppm 0.1	ppm 0.1	ppm 0.1	ppm 0.1	ppm 0.1	ppm 0.1	ppm 0.1	ppm 0.1
B874927	Rock	15	42	>1000	24.9	9.3	14.6	51.7	1.1	3.7	719.0	0.1	437.5	119.4	
B874928	Rock	15	31	842.7	20.0	6.8	11.8	39.2	1.2	2.8	457.4	0.5	344.7	89.4	
B874929	Rock	8	26	515.7	18.4	7.0	9.6	31.6	1.5	2.8	264.7	0.7	231.0	57.9	
B874930	Pulp	63	63	732.9	19.0	6.5	13.2	39.2	6.6	2.6	363.4	0.5	325.1	82.7	
B874931	Rock	11	36	614.0	19.4	7.5	10.1	34.4	1.5	3.0	329.8	0.7	262.8	65.6	
B874932	Rock	20	37	>1000	21.3	7.4	15.0	46.7	1.3	3.0	571.0	0.6	414.2	109.5	
B874933	Rock	23	26	990.8	24.3	7.4	30.9	52.3	4.5	3.3	506.1	0.5	439.8	112.3	60.4
B874934	Rock	47	37	761.9	21.2	7.2	14.5	41.4	3.3	3.0	380.3	0.5	344.6	86.7	50.1
B874935	Rock	13	29	868.7	21.8	7.5	14.3	43.2	3.2	3.0	452.5	0.6	371.4	95.4	51.2
B874936	Rock	10	77	778.7	27.5	10.9	15.4	47.8	6.7	4.4	378.2	0.9	359.7	90.5	55.3
B874937	Rock	27	81	>1000	28.0	8.5	21.6	60.9	9.4	3.8	513.4	0.6	513.6	125.0	73.5
B874938	Rock	15	76	>1000	32.6	11.0	25.0	65.7	5.8	4.7	608.7	0.8	530.3	136.4	79.6
B874939	Rock	21	65	769.9	24.7	8.8	22.4	47.1	11.4	3.6	372.5	0.7	352.3	87.7	
B874940 Dup	Rock	20	55	759.0	23.8	8.6	20.2	44.6	9.9	3.5	364.3	0.6	342.8	86.2	50.7
B874941	Rock	23	44	615.4	17.9	7.2	8.7	29.8	1.8	2.9	371.2	0.5	225.1	61.0	31.8
B874942	Rock	24	72	538.7	27.9	11.8	13.7	37.0	2.4	4.7	270.5	0.9	229.2	58.0	37.4
B874943	Rock	18	49	584.6	26.5	10.8	11.7	37.7	0.9	4.3	300.7	0.7	251.8	63.3	
B874944	Rock	16	69	831.1	31.3	13.0	13.4	47.5	1.2	5.1	465.7	0.9	337.0	89.6	
B874945	Rock	11	60	603.4	23.9	9.4	11.1	36.1	1.9	3.7	321.6	0.8	245.1	62.2	
B874946	Rock	20	45	529.5	28.0	12.4	11.9	37.4	1.7	4.8	278.9	0.9	218.2	55.4	
B874947	Rock	14	101	844.1	38.7	18.6	16.7	52.3	2.6	6.8	485.2	1.7	341.6	89.2	
B874948	Rock	25	44	>1000	26.9	10.1	13.6	48.6	0.8	4.2	894.7	0.6	365.9	112.6	
B874949	Rock	33	51	>1000	23.1	7.7	15.1	56.1	1.8	3.3	>1000	0.5	539.3	174.0	
B874950	Pulp	461	89	>1000	15.4	4.9	13.5	43.8	<0.1	2.0	930.1	0.4	497.4	152.9	
B874951	Rock	26	56	>1000	19.7	7.3	12.8	43.7	3.2	3.0	936.8	0.5	379.4	114.5	
B874952	Rock	26	33	>1000	26.1	8.7	21.1	53.5	1.8	3.7	809.8	0.5	447.1	125.8	
B874953	Rock	24	54	>1000	33.0	11.9	21.6	67.1	3.6	4.9	>1000	0.8	620.3	182.7	71.2
B874954 B874955	Rock	22	55 31	>1000	25.4 18.5	9.6	14.3	46.8	2.6	3.9 2.5	680.9 633.3	0.7	389.4	107.5	
B874956	Rock	32	47	>1000	17.4	6.4	11.6	39.8	2.4	2.5	337.1	0.4	369.3 281.5	102.0	
B874956 B874957	Rock Rock	29 53	79	654.1 848.1	20.7	6.1	11.7 15.2	34.3 42.8	4.3	2.6	432.1	0.5	281.5 372.3	72.7 93.2	
B874958	Rock	55 14	79 46	623.7	20.7	7.5	11.5	42.8 34.0	2.7	3.0	320.2	0.6	262.7	93.2 67.2	
B874959	Rock	47	55	717.6	20.2	7.3	13.3	40.2	7.4	3.0	342.8	0.6	323.6	80.4	47.3
B874960 Dup	Rock	47	61	717.0	20.2	7.6	13.8	40.2	8.5	3.0	342.8	0.5	319.1	81.8	
B874961	Rock	94	53	751.4	16.2	4.6	12.7	38.5	6.4	2.1	355.3	0.3	348.1	86.4	
B874962	Rock	59	7	72.9	3.1	1.7	1.4	4.4	1.2	0.5	36.1	0.2	32.4	7.8	
B874963	Rock	26	35	504.9	13.2	3.9	9.5	28.3	3.0	1.7	230.6	0.2	232.4	58.4	
B874964	Rock	27	32	610.7	16.9	5.9	11.1	32.7	4.0	2.4	298.4	0.4	274.7	69.2	
B874965	Rock	23	48	524.0	16.0	5.8	10.3	30.2	3.1	2.3	243.9	0.4	238.0	59.5	
B874966	Rock	36	44	807.1	16.7	5.4	13.2	36.0	3.9	2.3	406.9	0.4	336.9	87.4	

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		Zn	Zr	Ce	Dy	Er	Eu	Gd	Hf	Но	La	Lu	Nd	Pr	
Sample	Sample	30-4A-TR		REE-LB-MS	REE-LB-MS		REE-LB-MS		REE-LB-MS				REE-LB-MS		REE-LB-MS
Description	Type	ppm 2	ppm 1	ppm 0.1	ppm 0.1	ppm 0.1	ppm 0.1	ppm 0.1	ppm 0.1	ppm 0.1	ppm 0.1	ppm 0.1	ppm 0.1	ppm 0.1	ppm 0.1
B874967	Rock	29	35	683.1	20.9	6.7	14.9	40.2	4.7	3.0	322.3	0.4	318.8	78.8	
B874968	Rock	12	36	633.6	16.4	5.8	10.8	32.9	2.3	2.4	323.3	0.5	270.7	69.5	
B874969	Rock	20	38	535.2	13.5	4.3	9.8	28.9	2.5	1.9	260.8	0.3	240.1	61.2	
B874970	Pulp	15	40	802.7	22.3	8.1	14.1	43.8	1.9	3.4	387.6	0.7	351.5	88.8	
B874971	Rock	19	26	>1000	15.7	4.9	11.7	39.6	1.7	2.1	545.4	0.3	406.0	108.9	50.0
B874972	Rock	25	67	519.0	14.9	4.7	10.3	29.7	2.5	2.0	237.1	0.3	241.4	59.5	36.2
B874973	Rock	43	74	624.9	16.3	5.6	11.5	32.9	3.4	2.4	313.1	0.4	274.9	68.5	39.4
B874974	Rock	25	59	623.3	19.4	7.2	11.2	35.0	5.6	2.9	313.5	0.6	275.6	69.2	40.4
B874975	Rock	19	51	>1000	25.7	7.3	19.2	68.4	4.0	3.3	>1000	0.5	660.6	191.2	76.6
B874976	Rock	16	35	836.3	19.2	6.8	11.6	38.5	3.3	2.8	467.5	0.5	316.0	85.5	
B874977	Rock	18	36	498.8	17.5	6.1	10.9	32.1	4.1	2.6	233.2	0.4	232.5	57.1	
B874978	Rock	17	42	409.6	18.5	7.0	9.4	29.0	2.8	2.8	210.3	0.6	186.3	46.3	31.7
B874979	Rock	16	19	>1000	15.0	4.6	11.0	42.6	0.5	2.0	>1000	0.3	426.9	134.9	
B874980 Dup	Rock	16	19	>1000	14.9	4.4	11.0	43.6	0.5	2.0	>1000	0.3	453.9	142.6	
B874981	Rock	22	30	536.5	12.9	4.3	8.4	26.0	1.1	1.8	290.1	0.3	215.1	57.3	
B874982	Rock	14	34	412.3	13.2	4.4	8.7	24.3	1.6	1.8	192.5	0.3	189.3	46.2	
B874983	Rock	30	81	535.2	14.0	5.2	9.2	28.1	1.8	2.1	268.4	0.4	231.4	57.9	
B874984	Rock	27	22	655.4	11.3	4.0	7.8	24.1	0.9	1.6	396.8	0.3	228.0	64.4	28.2
B874985	Rock	22	19	504.2	12.4	4.1	7.5	24.3	0.8	1.7	266.0	0.3	207.0	53.2	
B874986	Rock	11	34	>1000	22.7	7.2	16.0	52.7	0.7	3.2	970.1	0.5	487.8	142.3	
B874987 B874988	Rock	14 20	21 17	>1000	18.9 13.7	4.4	17.0	72.9	0.5 0.9	2.2 1.8	>1000 618.2	0.3	869.7	289.8	71.6 40.3
B874988 B874989	Rock Rock	20 44	118	998.2 507.5	13.7	4.2 4.9	10.4 10.1	34.6 29.8	5.0	2.1	235.0	0.2	342.2 238.5	98.1 58.0	
B874990	Pulp	26	34	702.1	19.3	6.3	12.3	37.4	2.5	2.1	361.5	0.3	299.9	76.0	
B874991	Rock	14	60	848.6	17.2	6.3	10.5	35.3	1.0	2.5	490.9	0.4	316.0	86.6	
B874992	Rock	20	40	>1000	18.1	6.0	12.3	40.4	1.4	2.6	813.0	0.4	406.8	123.8	
B874993	Rock	12	106	>1000	24.6	6.9	24.7	77.9	1.1	3.2	>1000	0.4	846.3	267.9	
B874994	Rock	14	87	>1000	21.5	7.6	14.1	42.2	0.8	3.2	705.4	0.6	362.5	106.0	
B874995	Rock	21	10	>1000	20.7	3.2	19.5	95.1	0.2	2.0	>1000	0.2	>1000	394.7	87.6
B874996	Rock	18	20	>1000	21.4	6.3	16.4	58.9	1.2	2.9	>1000	0.4	605.4	200.3	
B874997	Rock	24	9	712.4	9.4	2.7	6.3	22.7	0.4	1.2	442.6	0.1	221.2	65.9	
B874998	Rock	16	36	682.1	19.1	6.6	12.0	35.7	1.4	2.9	372.7	0.4	282.2	73.4	
B874999	Rock	16	12	>1000	11.9	3.5	8.6	30.6	0.2	1.5	790.6	0.2	346.8	111.1	33.1
B875000 Dup	Rock	16	11	>1000	12.3	3.4	8.7	32.4	0.3	1.6	809.7	0.2	351.9	113.2	33.8
B875001	Rock	16	24	>1000	17.4	5.4	11.8	38.9	0.9	2.4	735.0	0.3	383.0	114.6	43.5
B875002	Rock	18	25	>1000	18.6	5.6	15.0	52.5	2.9	2.5	>1000	0.4	565.9	192.3	50.1
B875003	Rock	14	19	>1000	24.5	5.4	20.7	85.8	0.2	2.6	>1000	0.4	>1000	346.5	76.6
B875004	Rock	27	16	>1000	24.4	5.4	18.1	86.3	< 0.1	2.7	>1000	0.3	>1000	365.7	77.5
B875005	Rock	25	36	>1000	26.7	9.1	14.0	46.2	1.3	4.0	672.4	0.5	383.3	113.9	
B875006	Rock	16	21	652.9	26.2	9.7	11.8	39.0	0.7	4.1	330.4	0.6	263.2	70.1	41.5

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		Zn	Zr	Ce	Dy	Er	Eu	Gd	Hf	Но	La	Lu	Nd	Pr	Sm
		30-4A-TR	30-4A-TR	REE-LB-MS											
Sample	Sample	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Description	Type	2	1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
B875007	Rock	11	36	656.5	29.0	11.3	12.4	41.8	0.7	4.7	339.1	0.9	284.8	72.9	44.5
B875008	Rock	13	37	486.0	20.5	7.4	10.3	33.1	1.6	3.2	227.9	0.5	220.7	55.8	35.7
B875009	Rock	42	41	613.7	19.0	6.4	12.0	37.0	2.5	2.7	277.3	0.4	290.4	72.3	43.8
B875010	Pulp	15	32	795.5	22.3	8.0	14.0	43.0	2.0	3.3	385.0	0.7	346.8	89.5	51.4
B875011	Rock	32	48	861.8	31.8	11.0	17.1	53.9	4.8	4.8	443.1	0.7	374.4	97.1	58.5
B875012	Rock	14	332	836.9	26.5	9.8	15.0	50.1	5.0	4.0	389.3	0.9	397.1	98.8	59.7
B875013	Rock	31	68	884.5	23.3	7.7	16.0	50.1	4.0	3.4	445.9	0.6	395.9	100.3	66.9
B875014	Rock	10	17	575.9	19.4	6.6	10.7	33.5	0.6	2.8	266.1	0.5	261.7	66.0	40.4
B875015	Rock	58	103	824.9	28.2	10.0	16.9	54.2	9.6	4.2	382.6	0.7	409.4	98.2	64.1
B875016	Rock	23	116	818.2	22.0	7.1	14.1	45.6	6.1	3.1	382.4	0.5	380.7	94.6	55.7
B875017	Rock	95	185	710.5	20.4	6.2	14.0	43.3	10.2	2.8	306.4	0.4	352.5	86.5	53.3
B875018	Rock	27	29	859.1	36.4	12.4	17.3	58.8	1.8	5.5	397.1	0.7	403.4	100.7	64.8
B875019	Rock	31	78	>1000	28.8	8.6	20.0	64.9	4.3	3.9	730.9	0.5	601.0	161.0	79.3
B875020 Dup	Rock	31	78	>1000	30.5	9.3	20.8	65.4	4.8	4.3	737.5	0.6	607.3	159.8	80.6
B875021	Rock	59	24	531.6	13.3	4.2	9.1	27.4	2.9	1.8	264.3	0.2	223.6	59.0	33.9
B875022	Rock	43	6	84.7	3.2	1.7	1.6	5.0	2.7	0.5	43.3	0.2	34.5	8.7	5.4
B875023	Rock	75	58	423.6	11.4	3.5	8.4	24.6	4.0	1.6	180.4	0.2	209.6	51.0	32.6
B875024	Rock	26	34	>1000	34.2	11.9	20.3	64.0	1.3	5.1	545.2	0.8	496.2	129.0	73.3
B875025	Rock	27	33	886.0	29.5	10.5	18.1	53.7	2.5	4.4	438.4	0.7	412.6	101.7	63.3
B875026	Rock	19	16	412.8	13.4	4.6	8.4	25.4	0.8	2.0	190.0	0.3	196.2	48.1	30.4
B875027	Rock	25	12	440.7	14.2	4.4	9.8	28.6	1.1	2.0	192.6	0.2	227.9	54.2	36.5
B875028	Rock	25	34	878.7	26.1	8.5	17.7	52.4	1.3	3.6	425.1	0.6	427.4	105.5	66.5
B875029	Rock	74	83	>1000	29.9	9.8	21.7	66.3	8.6	4.3	654.2	0.8	596.7	154.3	81.1
B875030	Pulp	470	63	>1000	14.9	4.8	13.3	42.9	0.3	1.9	927.1	0.4	494.4	154.4	50.6
B875031	Rock	89	330	792.7	18.1	5.5	14.2	41.8	7.8	2.5	401.7	0.4	355.6	89.4	52.6
B875032	Rock	79	77	837.5	26.9	9.1	16.6	49.7	3.5	4.0	421.7	0.6	377.2	94.3	58.0

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

			Tb	Tm	Yb	Y	Ta	Th	U
				REE-LB-MS			Ta-4A-LL-MS		U-4A-LL-MS
	Sample	Sample	ppm	ppm	ppm	ppm	ppm	ppm	ppm
De	escription	Туре	0.1	0.1	0.1	0.10	0.05	0.20	0.10
	B874927	Rock	4.6	1.1	6.6	96.0	15.13	217.13	3.73
	B874928	Rock	3.6	0.8	4.8	69.1	21.26	170.96	2.87
	B874929	Rock	3.3	0.8	5.4	67.0	40.88	150.86	2.40
	B874930	Pulp	3.6	0.7	4.2	65.0	34.21	248.46	7.49
	B874931	Rock	3.4	0.9	5.6	72.6	29.61	170.21	2.75
	B874932	Rock	4.1	0.8	5.1	77.5	8.82	148.67	5.09
	B874933	Rock	4.7	0.8	4.9	94.7	63.55	149.10	27.55
	B874934	Rock	3.8	0.8	5.0	74.1	30.31	146.26	15.49
	B874935	Rock	4.0	0.9	5.7	77.1	13.28	117.88	7.71
	B874936	Rock	5.1	1.3	8.0	103.5	41.05	228.83	52.51
	B874937	Rock	5.4	0.9	5.7	87.4	19.45	182.18	6.62
	B874938	Rock	6.2	1.2	7.0	116.9	18.32	232.59	13.40
	B874939	Rock	4.5	1.0	6.0	99.0	35.15	158.64	24.03
B874	4940 Dup	Rock	4.4	1.0	5.4	93.9	32.90	156.21	21.97
	B874941	Rock	3.1	0.8	4.9	69.9	16.32	174.35	11.86
	B874942	Rock	4.7	1.4	7.9	117.5	30.38	329.11	13.68
	B874943	Rock	4.7	1.2	6.8	105.5	15.57	314.16	11.77
	B874944	Rock	5.4	1.5	8.3	123.0	26.86	417.20	15.06
	B874945	Rock	4.1	1.1	6.3	94.5	80.60	331.92	18.63
	B874946	Rock	4.9	1.5	8.2	115.1	22.16	306.81	10.24
	B874947	Rock	6.4	2.4	14.6	165.6	52.34	631.95	30.20
	B874948	Rock	4.7	1.1	5.9	101.2	9.71	298.88	9.11
	B874949	Rock	3.8	0.9	5.0	83.6	7.88	161.89	7.24
	B874950	Pulp	2.5	0.9	4.1	54.5	0.26	44.83	25.40
	B874951	Rock	3.4	0.8	4.1	76.0	6.21	179.08	3.32
	B874952					96.9	31.89		15.88
	B874952 B874953	Rock Rock	4.8 5.7	1.0 1.3	5.6 7.4	96.9 122.6	38.16	145.64 225.23	21.43
	B874954 B874955	Rock	4.5	1.1 0.7	6.9 4.2	96.6 65.5	6.72	238.52	9.36
		Rock	3.2				2.73	131.11	3.86
	B874956	Rock	3.2	0.7	4.4	65.8	3.51	117.63	3.57
	B874957	Rock	3.8	0.8	5.0	74.3	< 0.05	130.68	6.59
	B874958	Rock	3.6	0.9	5.3	76.7	14.77	156.53	7.83
	B874959	Rock	3.7	0.8	4.9	74.9	27.12	144.27	10.91
	4960 Dup	Rock	3.8	0.9	4.8	76.1	27.32	159.20	10.90
	B874961	Rock	3.1	0.5	2.8	50.5	29.96	144.19	10.17
	B874962	Rock	0.4	0.2	1.9	17.1	2.17	9.46	3.06
	B874963	Rock	2.5	0.4	2.6	44.4	1.78	81.12	2.43
	B874964	Rock	3.1	0.6	4.0	63.2	< 0.05	87.86	4.76
	B874965	Rock	2.9	0.6	3.8	59.4	6.63	105.67	4.00
	B874966	Rock	3.2	0.6	3.8	59.1	21.66	102.58	9.02

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		Tb	Tm	Yb	Y	Ta	Th	U
			REE-LB-MS			Ta-4A-LL-MS		U-4A-LL-MS
Sample	Sample	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Description	Туре	0.1	0.1	0.1	0.10	0.05	0.20	0.10
B874967	Rock	4.0	0.7	4.6	75.9	9.21	86.79	2.79
B874968	Rock	2.9	0.6	4.3	62.5	13.66	110.90	4.07
B874969	Rock	2.5	0.4	2.9	47.6	3.20	72.39	1.34
B874970	Pulp	4.2	1.0	6.3	87.4	4.44	166.64	2.23
B874971	Rock	2.9	0.5	3.3	53.5	3.02	91.50	2.24
B874972	Rock	2.7	0.5	3.2	52.5	1.76	91.99	1.77
B874973	Rock	3.0	0.6	4.0	62.8	29.88	98.52	36.00
B874974	Rock	3.5	0.9	5.3	74.4	3.29	167.11	8.69
B874975	Rock	4.6	0.8	5.1	89.4	3.40	142.65	8.85
B874976	Rock	3.5	0.7	4.9	72.9	17.84	142.67	15.95
B874977	Rock	3.3	0.7	4.2	67.4	5.85	131.29	6.12
B874978	Rock	3.3	0.8	4.9	71.0	6.78	197.15	5.37
B874979	Rock	2.6	0.5	3.3	51.5	6.88	200.11	5.45
B874980 Dup	Rock	2.6	0.5	3.3	52.0	2.77	116.24	4.72
B874981	Rock	2.4	0.4	2.7	47.4	26.72	67.36	26.88
B874982	Rock	2.4	0.4	3.0	49.4	77.19	65.58	30.04
B874983	Rock	2.6	0.6	3.7	54.6	98.96	116.38	42.42
B874984	Rock	2.0	0.4	3.0	42.3	29.42	43.06	20.34
B874985	Rock	2.3	0.5	3.1	44.7	24.34	51.97	9.44
B874986	Rock	4.3	0.8	4.8	79.8	56.43	121.03	23.72
B874987	Rock	3.0	0.5	3.3	58.9	29.08	56.88	20.21
B874988	Rock	2.4	0.4	3.0	47.1	13.69	67.26	6.76
B874989	Rock	2.7	0.5	3.2	53.5	82.11	75.16	74.23
B874990	Pulp	3.5	0.7	4.6	70.6	21.61	138.97	9.07
B874991	Rock	3.1	0.7	4.9	66.4	137.07	96.64	32.89
B874992	Rock	3.1	0.7	4.4	66.1	53.14	187.44	18.40
B874993	Rock	4.3	0.9	5.5	89.3	147.22	371.42	63.68
B874994	Rock	3.9	0.9	5.9	83.6	121.43	253.19	76.14
B874995	Rock	3.2	0.4	2.6	53.2	8.31	100.01	7.89
B874996	Rock	3.7	0.7	4.3	74.6	3.79	105.51	3.70
B874997	Rock	1.6	0.3	1.9	32.4	9.67	54.83	6.42
B874998	Rock	3.5	0.7	4.3	70.9	70.00	141.66	60.60
B874999	Rock	2.0	0.4	2.4	40.7	2.73	70.32	2.42
B875000 Dup	Rock	2.0	0.3	2.7	40.8	2.35	67.71	2.16
B875001	Rock	3.1	0.6	3.5	60.7	27.39	117.55	17.37
B875002	Rock	3.0	0.6	3.8	63.4	21.19	98.21	8.13
B875003	Rock	3.8	0.6	4.0	72.7	7.45	193.14	8.42
B875004	Rock	3.9	0.6	3.6	74.0	2.70	153.42	2.04
B875005	Rock	4.6	0.9	5.3	104.0	3.88	150.82	4.84
B875006	Rock	4.6	1.1	6.2	102.8	4.20	148.15	4.35

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		Tb	Tm	Yb	Y	Ta	Th	U
			REE-LB-MS			Ta-4A-LL-MS		U-4A-LL-MS
Samp	ole Sample	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Description		0.1	0.1	0.1	0.10	0.05	0.20	0.10
B8750		5.2	1.3	7.2	121.9	39.48	229.07	11.00
B8750		3.8	0.8	5.1	83.5	39.25	170.95	14.71
B8750		3.5	0.7	4.2	69.4	12.59	103.81	8.05
B8750		4.1	1.0	6.1	86.8	< 0.05	168.20	2.29
B8750		5.9	1.2	6.9	124.0	10.90	171.24	4.40
B8750	12 Rock	4.9	1.2	7.7	102.8	15.45	168.37	5.66
B8750	13 Rock	4.5	0.8	5.5	87.1	5.03	244.23	5.01
B8750	14 Rock	3.6	0.7	4.5	67.1	1.48	93.79	1.16
B8750	15 Rock	5.5	1.1	7.0	107.1	2.28	137.91	6.53
B8750	l6 Rock	4.1	0.8	4.9	81.2	5.16	114.08	6.68
B8750	17 Rock	3.8	0.7	4.4	70.9	8.35	75.40	4.65
B8750	18 Rock	6.8	1.3	7.0	136.6	9.42	243.95	7.57
B8750	19 Rock	5.3	0.9	5.5	96.2	60.49	181.81	42.70
B875020 D	up Rock	5.7	1.0	5.6	103.8	65.22	191.89	45.02
B8750	21 Rock	2.5	0.4	2.7	47.6	6.30	107.09	4.80
B8750	22 Rock	0.5	0.2	1.8	18.2	2.28	10.03	2.86
B8750	23 Rock	2.2	0.3	2.4	41.6	4.89	67.47	6.95
B8750	24 Rock	6.5	1.3	7.2	127.3	2.77	251.67	5.95
B8750	25 Rock	5.4	1.1	6.5	112.4	1.83	148.80	4.37
B8750	26 Rock	2.5	0.5	3.3	52.4	1.06	51.69	1.56
B8750	27 Rock	2.7	0.4	2.6	49.7	1.26	90.36	1.58
B8750	28 Rock	4.9	0.9	5.4	91.7	3.06	186.84	4.22
B8750	29 Rock	5.8	1.1	6.9	107.8	5.13	157.29	19.10
B8750	30 Pulp	2.4	0.6	4.1	54.4	0.34	50.36	30.25
B8750	31 Rock	3.5	0.6	3.8	60.5	29.80	67.70	16.60
B8750	32 Rock	5.2	1.0	5.7	99.2	1.75	60.19	7.87

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		Nb2O5	A12O3	BaO	CaO	Cr2O3	Fe2O3	K2O	LOI	MgO	MnO	Na2O	P2O5	SiO2	TiO2
		Nb2O5-AD3-OR-ICP	WR-FS-ICP												
Sample	Sample	%	%	%	%	%	%	%	%	%	%	%	%	%	%
Description	Type	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
B874927	Rock	0.34													
B874927 Dup		0.34													
QCV1010-00533-0002-BLK		< 0.01													
STD-OKA-1 expected		0.53													
STD-OKA-1 result		0.52													
B874945	Rock	0.29													
B874945 Dup		0.27													
QCV1010-00533-0005-BLK		<0.01													
STD-OKA-1 expected		0.53													
STD-OKA-1 result	n 1	0.54													
B874963	Rock	0.51													
B874963 Dup		0.50													
QCV1010-00533-0008-BLK		< 0.01													
STD-OKA-1 expected		0.53													
STD-OKA-1 result	D 1	0.54													
B874981	Rock	0.14													
B874981 Dup		0.15													
QCV1010-00533-0011-BLK		< 0.01													
STD-OKA-1 expected		0.53													
STD-OKA-1 result	D 1	0.53													
B874999	Rock	0.14 0.13													
B874999 Dup QCV1010-00533-0014-BLK															
STD-OKA-1 expected		<0.01 0.53													
STD-OKA-1 expected STD-OKA-1 result		0.53													
B875017	Rock	0.07													
B875017 Dup	KOCK	0.07													
QCV1010-00533-0017-BLK		<0.01													
STD-OKA-1 expected		0.53													
STD-OKA-1 expected STD-OKA-1 result		0.52													
B874927	Rock	0.52	0.22	< 0.01	32.11	< 0.01	6.74	0.05	37.40	15.39	0.53	0.04	5.05	0.84	0.06
B874927 Dup	KOCK		0.22	< 0.01	31.78	< 0.01	6.72	0.03	37.40	15.12	0.53	0.04	5.09	0.85	0.06
QCV1010-00537-0002-BLK			< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.00
B874945	Rock		0.01	< 0.01	33.25	< 0.01	6.40	0.01	36.96	16.87	0.68	0.04	3.60	0.73	0.01
B874945 Dup	ROCK		0.19	< 0.01	32.64	< 0.01	6.20	0.02	39.01	15.86	0.67	0.04	3.49	0.73	0.09
QCV1010-00537-0005-BLK			< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.02	< 0.01	< 0.01	< 0.07	< 0.04	< 0.01	< 0.01	<0.03
B874963	Rock		0.16	< 0.01	33.56	< 0.01	6.76	0.06	36.36	14.39	0.51	0.05	5.04	2.25	0.01
B874963 Dup	ROCK		0.15	< 0.01	32.44	< 0.01	6.89	0.05	36.67	15.47	0.51	0.05	5.17	1.57	0.08
QCV1010-00537-0008-BLK			< 0.13	< 0.01	< 0.01	< 0.01	< 0.01	< 0.03	< 0.01	< 0.01	< 0.01	< 0.03	< 0.01	< 0.01	< 0.01
B874981	Rock		0.01	< 0.01	33.13	< 0.01	3.69	0.01	39.87	17.33	0.56	0.03	4.10	1.33	0.01
B874981 Dup	ROCK		0.13	< 0.01	33.13	< 0.01	3.68	< 0.01	39.91	17.33	0.55	0.03	4.10	1.33	0.05

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		Nb2O5	Al2O3	BaO	CaO	Cr2O3	Fe2O3	K2O	LOI	MgO	MnO	Na2O	P2O5	SiO2	TiO2
		Nb2O5-AD3-OR-ICP	WR-FS-ICP												
Sample	Sample	%	%	%	%	%	%	%	%	%	%	%	%	%	%
Description	Type	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
QCV1010-00537-0011-BLK			< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
B874999	Rock		0.08	< 0.01	33.37	< 0.01	4.04	0.03	40.90	16.94	0.58	0.04	2.68	0.60	0.01
B874999 Dup			0.08	< 0.01	33.50	< 0.01	3.96	0.01	41.09	16.52	0.57	0.02	2.68	0.27	< 0.01
QCV1010-00537-0014-BLK			< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
B875017	Rock		0.73	0.05	26.09	< 0.01	14.73	0.45	27.14	13.07	0.63	0.47	6.45	7.79	0.79
B875017 Dup			0.73	0.05	26.10	< 0.01	14.69	0.46	27.14	12.93	0.63	0.49	6.47	7.80	0.80
QCV1010-00537-0017-BLK			< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
QCV1010-00537-0019-BLK			< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
STD-SY-4 expected			20.69		8.05		6.21	1.66	4.56	0.54	0.11	7.10	0.13	49.90	0.29
STD-SY-4 result			20.83	0.04	7.52	< 0.01	6.53	1.80	4.54	0.52	0.11	7.04	0.17	50.06	0.29

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

			Total	Ag	Al	As	Ba	Bi	Ca	Cd	Co	Cr	Cu	Fe	K	La
			WR-FS-ICP	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR
	Sample	Sample	%	ppm	%	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%	%	ppm
	Description	Туре	0.01	0.5	0.01	5	10	2	0.01	0.5	1	1	1	0.01	0.01	10
	B874927	Rock		2.6	0.10	17	47	<2	>10	< 0.5	44	<1	7	5.35	0.02	673
	B874927 Dup QCV1010-00534-0002-BLK			2.4	0.11	24	48	<2 <2	>10	<0.5	65	<1	7	5.58	0.02	640
CTD	-OREAS-45P-4A expected			<0.5 0.3	< 0.01	<5	<10	<2	< 0.01	< 0.5	<1 122	1 1103	<1 749	< 0.01	< 0.01	<10
	TD-OREAS-45P-4A expected			< 0.5							122	1035	749			
r,	B874945	Rock		0.5	0.09	<5	19	<2	>10	< 0.5	21	<1	4	5.19	< 0.01	334
	B874945 Dup	ROCK		0.0	0.09	<5	19	<2	>10	<0.5	27	<1	4	5.44	< 0.01	327
	QCV1010-00534-0005-BLK			<0.5	< 0.01	<5	<10	<2	< 0.01	<0.5	<1	1	<1	< 0.01	< 0.01	<10
STD	-OREAS-45P-4A expected			0.3	10.01		110	~_	10.01	10.0	122	1103	749	10.01	10.01	
	TD-OREAS-45P-4A result			< 0.5							133	1025	757			
	B874963	Rock		< 0.5	0.08	<5	58	<2	>10	< 0.5	21	<1	11	5.72	0.03	254
	B874963 Dup			< 0.5	0.08	<5	59	<2	>10	< 0.5	39	<1	10	6.31	0.03	254
	QCV1010-00534-0008-BLK			< 0.5	< 0.01	<5	<10	<2	< 0.01	< 0.5	<1	1	<1	< 0.01	< 0.01	<10
	STD-CDN-ME-6 expected			101.0									6130			
	STD-CDN-ME-6 result			94.6									6597			
	B874981	Rock		< 0.5	0.10	<5	36	<2	>10	< 0.5	35	<1	2	2.17	< 0.01	324
	B874981 Dup			< 0.5	0.10	<5	37	<2	>10	< 0.5	21	<1	2	2.17	< 0.01	320
	QCV1010-00534-0011-BLK			< 0.5	< 0.01	<5	<10	<2	< 0.01	< 0.5	<1	1	<1	< 0.01	< 0.01	<10
	B874999	Rock		< 0.5	0.02	11	28	<2	>10	< 0.5	35	<1	2	2.37	< 0.01	850
	B874999 Dup			< 0.5	0.03	9	28	<2	>10	< 0.5	14	<1	3	2.39	< 0.01	881
	QCV1010-00534-0014-BLK			< 0.5	< 0.01	<5	<10	<2	< 0.01	< 0.5	<1	1	<1	< 0.01	< 0.01	<10
	B875017	Rock		< 0.5	0.38	<5	327	<2	>10	<0.5	26	<1	8	>10	0.40	271
	B875017 Dup			<0.5	0.35	<5	319	<2	>10	<0.5	52	<1	5	>10	0.38	263
CUTTO	QCV1010-00534-0017-BLK			<0.5	< 0.01	<5	<10	<2	< 0.01	< 0.5	<1	1 1102	<1	< 0.01	< 0.01	<10
	-OREAS-45P-4A expected			0.3 <0.5							122 122	1103 1056	749 746			
5	TD-OREAS-45P-4A result QCV1010-00534-0019-BLK			<0.5	< 0.01	<5	<10	<2	< 0.01	< 0.5	<1	<1	/46 <1	< 0.01	< 0.01	<10
	B874927	Rock	98.43	<0.5	<0.01	9	<10	<2	<0.01	<0.5	<1	<1	<1	<0.01	<0.01	<10
	B874927 Dup	NOCK	97.78													
	QCV1010-00537-0002-BLK		< 0.01													
	B874945	Rock	98.84													
	B874945 Dup	noen	99.20													
	QCV1010-00537-0005-BLK		< 0.01													
	B874963	Rock	99.22													
	B874963 Dup		99.04													
	QCV1010-00537-0008-BLK		< 0.01													
	B874981	Rock	100.30													
	B874981 Dup		100.24													
	QCV1010-00537-0011-BLK		< 0.01													
	B874999	Rock	99.28													
	B874999 Dup		98.72													

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		Total	Ag	Al	As	Ba	Bi	Ca	Cd	Co	Cr	Cu	Fe	K	La
		WR-FS-ICP	30-4A-TR												
Sample	Sample	%	ppm	%	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%	%	ppm
Description	Type	0.01	0.5	0.01	5	10	2	0.01	0.5	1	1	1	0.01	0.01	10
QCV1010-00537-0014-BLK		< 0.01													
B875017	Rock	98.40													
B875017 Dup		98.30													
QCV1010-00537-0017-BLK		< 0.01													
QCV1010-00537-0019-BLK		< 0.01													
STD-SY-4 expected															
STD-SY-4 result		99.47													

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

			Mg 30-4A-TR	Mn 30-4A-TR	Mo 30-4A-TR	Na 30-4A-TR	Ni 30-4A-TR	P 30-4A-TR	Pb 30-4A-TR	Sb 30-4A-TR	Sc 30-4A-TR	Sr 30-4A-TR	Ti 30-4A-TR	T1 30-4A-TR	V 30-4A-TR	W 30-4A-TR
	Sample	Sample	30-4A-1R %			30-4A-1K %							30-4A-1K %			
	Description	Type	0.01	ppm 5	ppm 1	0.01	ppm 1	ppm 10	ppm 2	ppm 5	ppm 1	ppm 1	0.01	ppm 10	ppm	ppm 10
	B874927	Rock	9.99	4579	3	0.01	3	>10000	10	<5	9	1665	0.01	<10	327	<10
	B874927 Dup	NOCK	>10	4791	3	0.03	3	>10000	9	<5	10	1749	0.01	<10	339	<10
	OCV1010-00534-0002-BLK		< 0.01	<5	<1	< 0.01	<1	<10	<2	<5	<1	<1	< 0.01	<10	<1	<10
STE	-OREAS-45P-4A expected		₹0.01	\ 3	<u></u>	0.08	385	<10	22	\	\1	\1	₹0.01	<10	\1	10
	TD-OREAS-45P-4A result					0.07	378		23							
-	B874945	Rock	>10	6165	<1	0.02	3	>10000	12	<5	6	690	0.01	<10	318	<10
	B874945 Dup		>10	6419	<1	0.02	3	>10000	12	<5	6	646	0.02	<10	313	<10
	QCV1010-00534-0005-BLK		< 0.01	<5	<1	< 0.01	<1	<10	<2	<5	<1	<1	< 0.01	<10	<1	<10
STE	-OREAS-45P-4A expected					0.08	385		22							
S	TD-OREAS-45P-4A result					0.07	380		22							
	B874963	Rock	>10	4778	<1	0.03	2	>10000	6	<5	5	4032	0.04	<10	341	<10
	B874963 Dup		>10	5314	<1	0.03	2	>10000	6	<5	5	4481	0.04	<10	341	<10
	QCV1010-00534-0008-BLK		< 0.01	<5	<1	< 0.01	<1	<10	<2	<5	<1	<1	< 0.01	<10	<1	<10
	B874981	Rock	>10	3851	1	0.02	2	>10000	10	<5	5	2553	0.01	<10	343	<10
	B874981 Dup		>10	3862	<1	0.02	2	>10000	8	<5	5	2522	0.01	<10	338	<10
	QCV1010-00534-0011-BLK		< 0.01	<5	<1	< 0.01	<1	<10	<2	<5	<1	<1	< 0.01	<10	<1	<10
	B874999	Rock	>10	3960	4	0.02	2	>10000	11	<5	5	1806	< 0.01	<10	327	<10
	B874999 Dup		>10	3976	4	0.02	3	>10000	9	<5	5	1838	< 0.01	<10	330	<10
	QCV1010-00534-0014-BLK		< 0.01	<5	<1	< 0.01	<1	<10	<2	<5	<1	<1	< 0.01	<10	<1	<10
	B875017	Rock	8.20	5713	<1	0.46	3	>10000	12	<5	7	1970	0.47	<10	305	<10
	B875017 Dup		8.34	5847	<1	0.46	3	>10000	11	<5	6	1909	0.48	<10	293	<10
	QCV1010-00534-0017-BLK		< 0.01	<5	<1	< 0.01	<1	<10	<2	<5	<1	<1	< 0.01	<10	<1	<10
	-OREAS-45P-4A expected					0.08	385		22							
5	TD-OREAS-45P-4A result					0.09	387		22							
	QCV1010-00534-0019-BLK		< 0.01	<5	<1	< 0.01	<1	<10	<2	<5	<1	<1	< 0.01	<10	<1	<10

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		Zn 30-4A-TR	Zr	Ce REE-LB-MS	Dy DEE LD MG	Er REE-LB-MS	Eu	Gd	Hf DEE LD MG	Ho REE-LB-MS	La DEE LD MS	Lu		Pr DEE I D MG	Sm DEE LD MG
Sample	Sample	50-4A-1R ppm	50-4A-1R ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Description	Туре	2	1 ppin	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
B874927	Rock	15	42	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
B874927 Dup		15	41												
QCV1010-00534-0002-BLK		<2	<1												
-OREAS-45P-4A expected		142													
TD-OREAS-45P-4A result		142													
B874945	Rock	11	60												
B874945 Dup		10	54												
QCV1010-00534-0005-BLK		<2	<1												
-OREAS-45P-4A expected		142													
TD-OREAS-45P-4A result		146													
B874963	Rock	26	35												
B874963 Dup		27	35												
QCV1010-00534-0008-BLK		<2	<1												
STD-CDN-ME-6 expected		5170													
STD-CDN-ME-6 result		5230													
B874981	Rock	22	30												
B874981 Dup		21	30												
QCV1010-00534-0011-BLK		<2	<1												
B874999	Rock	16	12												
B874999 Dup		16	10												
QCV1010-00534-0014-BLK		<2	<1												
B875017	Rock	95	185												
B875017 Dup		93	186												
QCV1010-00534-0017-BLK		<2	<1												
-OREAS-45P-4A expected		142													
TD-OREAS-45P-4A result		128													
QCV1010-00534-0019-BLK		<2	<1												
B874927	Rock			>1000	24.9	9.3	14.6	51.7	1.1	3.7	719.0	0.8		119.4	59.8
B874927 Dup				>1000	26.1	9.4	14.5	50.6	1.0	3.8	706.8	0.8		119.2	58.0
QCV1010-00535-0002-BLK	D 1			<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
B874945	Rock			603.4	23.9	9.4	11.1	36.1	1.9	3.7	321.6	0.8		62.2	40.3
B874945 Dup				592.4	24.2	9.7	11.4	37.0	2.1	3.8	304.7	0.8		61.4	39.4
QCV1010-00535-0005-BLK	D 1			<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
B874963	Rock			504.9	13.2	3.9	9.5	28.3	3.0	1.7	230.6	0.2		58.4	34.0
B874963 Dup QCV1010-00535-0008-BLK				512.8	13.0	4.0	9.8	28.9	3.3	1.8	229.8	0.2		58.9	34.8
	Dools			<0.1	<0.1	<0.1	<0.1 8.4	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1 57.3	<0.1 30.3
B874981	Rock			536.5 540.8	12.9	4.3		26.0	1.1 0.9	1.8 1.8	290.1	0.3		57.3	30.3
B874981 Dup QCV1010-00535-0011-BLK				540.8 <0.1	13.0 <0.1	4.1 <0.1	8.1 <0.1	25.6 <0.1	<0.1	<0.1	289.3 <0.1	0.2	221.6 <0.1	<0.1	30.3 <0.1
-	Rock					<0.1 3.5		30.6	<0.1			<0.1 0.2			
B874999	KOCK			>1000 >1000	11.9	3.5	8.6 8.3		0.2	1.5	790.6	0.2		111.1	33.1
B874999 Dup				>1000	11.6	3.5	8.3	30.8	0.2	1.5	767.6	0.2	346.2	107.9	32.3

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		Zn	Zr	Ce	Dy	Er	Eu	Gd	Hf	Но	La	Lu	Nd	Pr	Sm
		30-4A-TR	30-4A-TR	REE-LB-MS											
Sample	Sample	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Description	Type	2	1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
QCV1010-00535-0014-BLK				< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
B875017	Rock			710.5	20.4	6.2	14.0	43.3	10.2	2.8	306.4	0.4	352.5	86.5	53.3
B875017 Dup				707.2	20.5	6.3	13.7	43.1	10.4	2.8	308.0	0.5	348.6	86.4	52.6
QCV1010-00535-0017-BLK				< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
QCV1010-00535-0019-BLK				< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
STD-SY-4 expected				122.0	18.2	14.2	2.0	14.0	10.6	4.3	58.0	2.1	57.0	15.0	12.7
STD-SY-4 result				126.9	17.4	13.7	2.0	13.8	9.7	3.9	62.4	1.9	60.1	14.4	12.2

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

			Tb	Tm	Yb	Y	Ta	Th	U
			REE-LB-MS	REE-LB-MS	REE-LB-MS	REE-LB-MS	Ta-4A-LL-MS	Th-4A-LL-MS	U-4A-LL-MS
	Sample	Sample	ppm	ppm	ppm	ppm	ppm	ppm	ppm
	escription	Type	0.1	0.1	0.1	0.10	0.05	0.20	0.10
	B874927	Rock	4.6	1.1	6.6	96.0			
	4927 Dup		4.6	1.2	6.8	96.0			
QCV1010-00535-0			< 0.1	< 0.1	< 0.1	< 0.10			
]	B874945	Rock	4.1	1.1	6.3	94.5			
B874	4945 Dup		4.1	1.1	6.4	88.6			
QCV1010-00535-0	0005-BLK		< 0.1	< 0.1	< 0.1	< 0.10			
]	B874963	Rock	2.5	0.4	2.6	44.4			
B874	4963 Dup		2.5	0.4	2.5	44.7			
QCV1010-00535-0	0008-BLK		< 0.1	< 0.1	< 0.1	< 0.10			
]	B874981	Rock	2.4	0.4	2.7	47.4			
B874	4981 Dup		2.4	0.4	2.8	47.4			
QCV1010-00535-0	0011-BLK		< 0.1	< 0.1	< 0.1	< 0.10			
, 1	B874999	Rock	2.0	0.4	2.4	40.7			
B874	4999 Dup		1.9	0.3	2.5	39.7			
QCV1010-00535-0			< 0.1	< 0.1	< 0.1	< 0.10			
]	B875017	Rock	3.8	0.7	4.4	70.9			
	5017 Dup		3.8	0.7	4.3	71.5			
QCV1010-00535-0	•		< 0.1	< 0.1	< 0.1	< 0.10			
QCV1010-00535-0	0019-BLK		<0.1	<0.1	<0.1	< 0.10			
STD-SY-4			2.6	2.3	14.8	119.0			
	Y-4 result		2.4	2.2	14.3	109.1			
	B874927	Rock	2	2.2	14.5	107.1	15.13	217.13	3.73
	4927 Dup	110011					18.73	204.60	3.79
QCV1105-00499-0	•						< 0.05	< 0.20	< 0.10
QCV1105-00499-0							< 0.05	<0.20	<0.10
QCV1105-00499-0							< 0.05	<0.20	< 0.10
QCV1105-00499-0							< 0.05	< 0.20	< 0.10
	B874999	Rock					2.73	70.32	2.42
	4999 Dup	NOCK					2.73	68.85	2.42
QCV1105-00499-0	•						< 0.05	<0.20	<0.10
QCV1105-00499-0							<0.05	<0.20	< 0.10
QCV1105-00499-0									
QC V 1105-00499-0	0019-BLK						< 0.05	< 0.20	< 0.10

Certificate of Analysis

Inspectorate Exploration & Mining Services Ltd. #200 - 11620 Horseshoe Way

Date Received: 10/22/2010

Date Completed: 03/16/2011

Invoice:

Richmond, British Columbia V7A 4V5 Canada

Phone: 604-272-7818

Distribution List

Attention: Eric Titley

Suite 1020-800 West Pender St.

Vancouver, BC V6C 2V6

EMail: erictitley@hdimining.com

Attention: Jeremy Crozier

EMail: jeremycrozier@hdimining.com

Attention: T.Kodata

EMail: tkodata@hdimining.com

Submitted By: Aley Corporation

Suite 1020-800 West Pender St.

Vancouver, BC V6C 2V6

Attention: Eric Titley

Project: Aley 2010 Project

Purchase Order: **ALY0002**Description: **Aley 2010-023**

Location	Samples	Type	Preparation Description
Vancouver, BC	72	Core	SP-RX-2K/Rock/Chips/Drill Core
Vancouver, BC	3	Pulp	SP-PU/Pulp Handling, submitted pulps

Location	Method	Description
Vancouver, BC	REE-LB-MS	REE Group by ICP-MS
Vancouver, BC	Nb2O5-AD3-OR-ICP	Niobium by multi-acid digestion, ICP
Vancouver, BC	Ta-4A-LL-MS	Tantalum, 4 Acid, ICP
Vancouver, BC	Th-4A-LL-MS	Thorium, 4 Acid, Low Level
Vancouver, BC	30-4A-TR	30 Element, 4 Acid, ICP, Trace Level
Vancouver, BC	U-4A-LL-MS	Uraium, 4 Acid, Low Level
Vancouver, BC	WR-FS-ICP	Whole Rock, Lithium Borate Fusion, ICP

Submittal Information

Uranium (U), Tantalum (Ta), and Thorium (Th) numbers shown have been revised with accurate detection limits.

The results of this assay were based solely upon the content of the sample submitted. Any decision to invest should be made only after the potential investment value of the claim or deposit has been determined based on the results of assays of multiple samples of geologic materials collected by the prospective investor or by a qualified person selected by him and based on an evaluation of all engineering data which is available concerning any proposed project. For our complete terms and conditions please see our website at www.inspectorate.com.

Вv

Mike Caron, Lab Manager

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		Nb2O5	Al2O3	BaO	CaO	Cr2O3	Fe2O3	K2O	LOI	MgO	MnO	Na2O	P2O5	SiO2	TiO2
		Nb2O5-AD3-OR-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP
Sample	Sample	%	%	%	%	%	%	%	%	%	%	%	%	%	%
Description	Type	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
B875033	Core	0.37	0.20	< 0.01	31.96	< 0.01	5.04	0.05	37.62	16.98	0.68	0.06	6.61	1.11	0.03
B875034	Core	0.40	0.12	< 0.01	31.77	< 0.01	5.64	0.04	38.74	17.47	0.44	0.04	4.27	0.46	0.11
B875035	Core	0.78	1.03	< 0.01	30.03	< 0.01	10.66	0.09	31.62	14.24	0.53	0.10	4.62	2.97	3.14
B875036	Core	1.02	0.72	< 0.01	31.11	< 0.01	8.03	0.07	34.37	17.28	0.34	0.05	5.02	1.70	0.63
B875037	Core	0.65	0.19	< 0.01	35.04	< 0.01	6.72	0.03	37.43	12.42	0.52	0.03	6.19	0.50	0.06
B875038	Core	0.46	0.13	< 0.01	33.72	< 0.01	5.48	0.02	38.95	16.43	0.48	0.03	4.70	0.42	0.02
B875039	Core	0.76	0.31	< 0.01	30.28	< 0.01	10.65	0.03	32.84	15.47	0.52	0.04	7.05	1.59	0.16
B875040 Dup	Core	0.79	0.30	< 0.01	30.81	< 0.01	10.70	0.03	33.83	15.20	0.46	0.04	6.60	1.50	0.15
B875041	Core	1.06	0.35	< 0.01	30.04	< 0.01	16.21	0.06	29.67	13.81	0.38	0.05	6.08	2.20	0.20
B875042	Core	2.10	1.07	0.04	21.58	< 0.01	42.93	0.70	12.69	7.25	0.58	0.11	6.72	5.21	1.48
B875043	Core	3.09	1.41	0.03	23.57	< 0.01	32.77	0.91	13.52	7.53	0.43	0.19	11.32	7.25	0.98
B875044	Core	2.08	0.89	0.03	23.65	< 0.01	33.40	0.50	18.27	7.94	0.56	0.15	8.22	4.37	0.90
B875045	Core	0.57	0.48	< 0.01	33.82	< 0.01	8.40	0.06	36.10	13.50	0.67	0.05	4.97	1.84	0.16
B875046	Core	1.23	1.22	0.04	19.27	< 0.01	36.21	0.76	19.54	10.08	0.47	0.06	5.08	5.84	0.92
B875047	Core	0.50	0.13	< 0.01	32.57	< 0.01	9.37	0.02	36.44	14.90	0.53	0.03	3.74	1.60	0.06
B875048	Core	1.16	0.42	< 0.01	20.52	< 0.01	31.28	0.16	25.00	11.58	0.54	0.05	6.32	2.77	0.28
B875049	Core	1.39	0.25	0.01	22.24	< 0.01	37.91	0.13	17.46	8.47	0.47	0.06	7.69	4.08	0.28
B875050	Pulp	0.78	0.52	0.02	27.73	< 0.01	19.17	0.09	30.88	12.34	0.50	0.06	5.32	2.65	0.50
B875051	Core	0.36	0.15	< 0.01	34.98	< 0.01	5.92	0.02	37.93	15.19	0.42	0.06	4.29	0.88	0.03
B875052	Core	0.73	0.49	< 0.01	34.12	< 0.01	11.32	0.06	31.78	14.69	0.39	0.08	4.65	2.05	0.39
B875053 B875054	Core Core	0.73 1.20	0.46 0.64	<0.01 0.02	32.81 29.84	<0.01 <0.01	17.25 27.86	0.02 0.17	26.59 19.95	15.01 10.33	0.45 0.44	0.04 0.05	5.51	1.20 3.03	0.78
B875055		0.01			4.70	0.01	4.47	3.41	19.93	10.55	0.44	3.72	6.22 0.29	63.81	0.74
В875056	Core Core	0.01	15.36 0.15	0.14 <0.01	34.67	< 0.02	7.89	0.02	32.27	16.76	0.12	0.03	6.23	05.81	0.39
B875057	Core	0.63	0.13	<0.01	34.48	<0.01	5.69	0.02	36.18	16.70	0.39	0.03	5.09	0.34	0.04
B875058	Core	0.80	0.29	< 0.01	39.15	< 0.01	5.90	0.00	29.29	11.23	0.32	0.06	12.13	0.84	0.23
B875059	Core	0.80	0.35	< 0.01	36.92	< 0.01	11.28	0.09	28.57	13.87	0.42	0.08	7.76	0.84	0.50
B875060 Dup	Core	1.03	0.30	< 0.01	36.25	< 0.01	11.26	0.03	28.29	13.67	0.39	0.08	7.70	0.83	0.47
B875061	Core	0.62	0.30	< 0.01	35.57	< 0.01	13.36	0.07	28.61	14.57	0.38	0.09	6.05	1.26	0.47
B875062	Core	0.53	0.12	< 0.01	38.31	< 0.01	6.65	0.04	34.02	13.66	0.41	0.05	6.71	0.63	0.07
B875063	Core	0.40	0.12	< 0.01	33.34	<0.01	9.71	0.04	37.38	14.44	0.53	0.05	3.40	1.05	0.07
B875064	Core	0.72	0.13	< 0.01	35.57	< 0.01	12.53	0.19	30.70	13.28	0.53	0.05	5.53	1.13	0.08
B875065	Core	0.79	0.40	< 0.01	33.96	< 0.01	10.03	0.03	31.71	15.29	0.53	0.04	5.74	1.57	0.53
B875066	Core	0.61	0.47	< 0.01	34.32	< 0.01	9.51	0.03	33.11	14.07	0.58	0.05	5.49	1.55	0.25
B875067	Core	1.20	0.92	0.01	22.31	< 0.01	38.19	0.51	15.79	8.12	0.50	0.07	7.28	4.05	1.11
B875068	Core	2.59	0.96	0.01	31.62	< 0.01	8.13	0.73	26.80	14.93	0.63	0.07	8.25	5.13	1.88
B875069	Core	1.49	0.53	< 0.01	30.88	< 0.01	5.88	0.03	37.27	17.97	0.74	0.03	3.24	2.77	0.08
B875070	Pulp	0.54	1.71	0.39	47.07	< 0.01	4.72	0.71	31.47	2.21	0.99	0.44	2.61	7.00	0.21
B875071	Core	0.35	0.10	< 0.01	36.14	< 0.01	5.77	0.03	39.18	13.16	0.69	0.06	4.61	0.52	0.02
B875072	Core	0.43	0.11	< 0.01	34.08	< 0.01	6.24	0.03	38.72	16.29	0.76	0.04	4.01	0.52	0.09

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		Nb2O5	Al2O3	BaO	CaO	Cr2O3	Fe2O3	K2O	LOI	MgO	MnO	Na2O	P2O5	SiO2	TiO2
		Nb2O5-AD3-OR-ICP	WR-FS-ICP												
Sample	Sample	%	%	%	%	%	%	%	%	%	%	%	%	%	%
Description	Type	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
B875073	Core	0.54	0.16	< 0.01	34.88	< 0.01	5.34	0.03	38.12	16.27	0.42	0.08	4.43	0.63	0.03
B875074	Core	1.20	0.39	< 0.01	36.17	< 0.01	13.10	0.07	28.20	12.92	0.41	0.06	6.96	1.25	0.31
B875075	Core	0.25	0.16	< 0.01	34.79	< 0.01	5.54	0.04	38.35	15.04	0.70	0.06	4.75	0.52	0.02
B875076	Core	0.36	0.09	< 0.01	32.43	< 0.01	3.94	0.03	40.14	17.65	0.77	0.04	4.11	0.30	0.02
B875077	Core	0.83	0.22	< 0.01	28.72	< 0.01	13.78	0.05	31.19	18.38	0.46	0.04	6.14	0.60	0.15
B875078	Core	0.60	0.17	< 0.01	34.46	< 0.01	5.80	0.04	34.26	15.07	0.66	0.06	8.33	0.60	0.07
B875079	Core	0.35	0.24	< 0.01	30.93	< 0.01	19.41	0.06	26.62	12.71	0.70	0.06	7.17	1.32	0.50
B875080 Dup	Core	0.35	0.23	< 0.01	31.48	< 0.01	19.19	0.05	26.42	12.16	0.69	0.06	7.08	1.30	0.51
B875081	Core	0.32	0.12	< 0.01	31.40	< 0.01	6.54	0.01	39.46	17.49	0.66	0.04	3.22	0.85	0.06
B875082	Core	0.39	0.19	< 0.01	31.80	< 0.01	5.77	0.01	38.29	16.98	0.61	0.05	4.55	1.36	0.06
B875083	Core	0.30	0.08	< 0.01	34.27	< 0.01	5.96	0.03	39.18	15.05	0.78	0.04	4.59	0.63	0.03
B875084	Core	0.32	0.10	< 0.01	33.00	< 0.01	5.66	0.02	39.51	15.23	0.84	0.05	4.36	0.87	0.02
B875085	Core	0.12	2.68	0.01	21.61	0.01	7.04	0.21	33.09	18.45	0.56	0.19	3.84	11.26	0.40
B875086	Core	0.14	1.63	< 0.01	25.96	< 0.01	5.86	0.07	35.57	18.57	0.59	0.08	3.82	7.26	0.27
B875087	Core	0.21	0.09	< 0.01	30.08	< 0.01	5.19	0.02	40.12	19.07	0.74	0.05	3.49	0.41	0.02
B875088	Core	0.21	0.20	< 0.01	33.04	< 0.01	4.41	0.02	40.74	16.41	0.74	0.05	3.37	0.72	0.02
B875089	Core	0.23	0.08	< 0.01	31.57	0.02	4.23	0.01	39.22	18.15	0.70	0.04	5.19	0.32	0.01
B875090	Pulp	0.75	0.18	0.03	35.32	< 0.01	6.23	0.04	37.73	11.39	0.51	0.09	4.09	4.18	0.14
B875091	Core	0.21	0.04	< 0.01	34.46	< 0.01	4.28	0.02	37.58	19.58	0.73	0.03	4.08	0.25	< 0.01
B875092	Core	0.18	0.14	< 0.01	30.27	< 0.01	4.40	0.01	38.76	18.91	0.72	0.04	5.48	0.59	0.01
B875093	Core	0.62	0.11	< 0.01	32.13	< 0.01	5.19	0.02	37.07	18.39	0.56	0.05	5.99	0.38	0.03
B875094	Core	0.42	0.09	< 0.01	30.40	< 0.01	4.50	0.01	38.51	19.56	0.63	0.05	5.30	0.28	0.02
B875095	Core	0.43	0.10	< 0.01	31.52	< 0.01	4.37	0.03	38.42	17.57	0.61	0.03	6.08	0.30	0.01
B875096	Core	0.34	0.05	< 0.01	33.50	< 0.01	6.87	0.03	37.80	14.17	0.78	0.04	5.56	0.29	0.03
B875097	Core	0.32	0.06	< 0.01	34.75	< 0.01	6.87	0.02	40.29	14.23	0.92	0.03	3.08	0.21	0.02
B875098	Core	0.19	0.04	< 0.01	34.09	< 0.01	7.05	0.01	36.83	14.64	0.79	0.03	5.67	0.18	0.02
B875099	Core	0.73	0.13	< 0.01	34.93	< 0.01	5.93	0.05	35.94	14.67	0.67	0.04	6.59	0.42	0.02
B875100 Dup	Core	0.72	0.15	< 0.01	35.41	< 0.01	6.29	0.05	36.05	13.95	0.67	0.04	6.55	0.52	0.03
B875101	Core	0.41	0.11	< 0.01	33.30	< 0.01	6.27	0.04	38.56	16.22	0.64	0.03	4.39	0.31	0.04
B875102	Core	0.15	0.24	< 0.01	32.98	< 0.01	5.56	0.04	35.09	14.59	0.53	0.04	9.40	0.63	0.03
B875103	Core	0.15	0.16	< 0.01	34.07	< 0.01	6.10	0.02	33.64	15.87	0.53	0.04	9.23	0.46	0.03
B875104	Core	0.33	0.09	< 0.01	34.91	< 0.01	5.06	0.03	37.35	15.15	0.65	0.03	6.00	0.28	0.02
B875105	Core	0.15	0.11	< 0.01	34.12	< 0.01	8.51	0.02	37.63	15.07	0.96	0.03	3.13	0.35	0.01
B875106	Core	6.75	0.23	< 0.01	34.82	< 0.01	5.12	0.04	35.48	15.23	0.36	0.04	7.54	0.53	0.07
B875107	Core	0.41	0.53	< 0.01	31.62	< 0.01	5.77	0.02	37.34	18.07	0.32	0.04	4.49	1.18	0.10

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		Total	Ag	Al	As	Ba	Bi	Ca	Cd	Co	Cr	Cu	Fe	K	La
		WR-FS-ICP	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR
Sample	Sample	%	ppm	%	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%	%	ppm
Description	Type	0.01	0.5	0.01	5	10	2	0.01	0.5	1	1	1	0.01	0.01	10
B875033	Core	100.34	1.9	0.08	5	55	<2	>10	<0.5	2	7	45	2.94	0.03	168
B875034	Core	99.10	1.1	0.06	28	24	<2	>10	<0.5	6	8	48	3.63	0.02	838
B875035	Core	99.02	1.1	0.54	63	24	<2	>10	<0.5	26	11	112	6.41	0.08	446
B875036	Core	99.32	1.1	0.37	20	26	<2	>10	<0.5	11	9	118	4.80	0.05	704
B875037	Core	99.15	0.9	0.10	42	30	<2	>10	<0.5	2 3	11 7	83	3.78	0.03	778
B875038	Core	100.37	1.3	0.07	41	23	<2	>10	< 0.5		,	57	3.41	< 0.01	751
B875039	Core	98.94	1.0	0.15	21 25	41	<2	>10	< 0.5	13 13	8	106	5.80	0.02	340 344
B875040 Dup B875041	Core Core	99.62 99.05	0.9	0.16 0.18	25 <5	42 52	<2 <2	>10 >10	<0.5 <0.5	13	10	108 132	5.92 9.84	0.02	316
B875042	Core	100.38	1.6 1.6	0.18	<5	274	<2	>10	<0.5	33	10	120	>10	0.05 0.60	397
					15	214				19	9	39			805
B875043 B875044	Core Core	99.90 98.89	1.2 1.6	0.79 0.50	15 <5	209	<2 <2	>10 >10	<0.5 <0.5	22	8	262	>10 >10	0.83 0.45	514
B875045	Core	100.06	1.3	0.30	8	45	<2	>10	<0.5	11	8	86	5.43	0.43	409
B875046	Core	99.51	1.0	0.19	° <5	288	<2	>10	<0.5	43	7	279	>10	0.69	279
B875047	Core	99.40	0.8	0.06	<5	38	<2	>10	<0.5	13	8	59	6.13	0.09	221
B875048	Core	98.94	1.2	0.00	9	64	<2	>10	<0.5	29	9	11	>10	0.01	437
B875049	Core	99.06	1.0	0.13	<5	120	<2	>10	<0.5	21	13	131	>10	0.14	309
B875050	Pulp	99.78	1.0	0.13	11	141	<2	>10	<0.5	14	5	69	>10	0.12	326
B875051	Core	99.87	1.4	0.07	5	15	<2	>10	<0.5	11	7	55	4.00	< 0.01	270
B875052	Core	100.03	0.5	0.25	<5	36	<2	>10	<0.5	18	9	116	7.76	0.04	290
B875053	Core	100.12	0.7	0.23	5	28	<2	>10	<0.5	23	12	104	>10	0.02	308
B875054	Core	99.30	0.5	0.32	<5	124	<2	>10	<0.5	25	7	23	>10	0.13	299
B875055	Core	98.92	0.6	8.45	<5	949	<2	3.12	<0.5	9	94	7	2.99	3.37	34
B875056	Core	99.01	0.8	0.08	9	18	<2	>10	<0.5	20	9	66	5.90	0.01	331
B875057	Core	99.54	1.0	0.14	7	33	<2	>10	< 0.5	9	16	91	4.29	0.04	255
B875058	Core	99.73	1.1	0.17	22	52	<2	>10	< 0.5	11	11	37	4.06	0.07	548
B875059	Core	100.66	0.8	0.15	9	55	<2	>10	< 0.5	21	15	122	8.03	0.05	300
B875060 Dup	Core	99.11	0.9	0.16	7	53	<2	>10	< 0.5	20	16	123	8.28	0.05	298
B875061	Core	100.78	0.8	0.15	22	48	<2	>10	< 0.5	17	13	74	>10	0.05	672
B875062	Core	100.81	1.2	0.06	9	29	<2	>10	< 0.5	12	12	82	4.81	0.03	284
B875063	Core	100.32	1.2	0.07	7	28	<2	>10	< 0.5	8	9	60	6.86	0.04	241
B875064	Core	100.24	1.0	0.22	13	54	<2	>10	< 0.5	25	13	94	8.36	0.06	298
B875065	Core	99.93	0.8	0.25	6	25	<2	>10	< 0.5	26	10	111	7.37	< 0.01	292
B875066	Core	99.39	1.0	0.21	8	27	<2	>10	< 0.5	13	17	85	6.36	0.02	362
B875067	Core	98.87	1.6	0.41	<5	93	<2	>10	< 0.5	32	7	161	>10	0.37	286
B875068	Core	99.14	< 0.5	0.49	<5	71	<2	>10	< 0.5	19	8	149	5.91	0.58	345
B875069	Core	99.42	1.5	0.31	<5	29	<2	>10	< 0.5	<1	12	191	4.12	0.02	196
B875070	Pulp	99.54	0.6	0.91	27	2890	<2	>10	< 0.5	4	7	18	3.28	0.59	875
B875071	Core	100.28	0.6	0.04	5	26	<2	>10	< 0.5	3	8	43	3.41	< 0.01	234
B875072	Core	100.90	1.3	0.05	746	34	<2	>10	< 0.5	5	11	54	4.06	0.02	197

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		Total	Ag	Al	As	Ba	Bi	Ca	Cd	Co	Cr	Cu	Fe	K	La
		WR-FS-ICP	30-4A-TR												
Sample	Sample	%	ppm	%	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%	%	ppm
Description	Type	0.01	0.5	0.01	5	10	2	0.01	0.5	1	1	1	0.01	0.01	10
B875073	Core	100.38	1.4	0.08	6	23	<2	>10	<0.5	5	10	71	3.58	0.02	222
B875074	Core	99.86	1.3	0.19	7	43	<2	>10	<0.5	14	17	162	8.72	0.05	265
B875075	Core	99.97	1.0	0.08	7	33	<2	>10	<0.5	3	10	34	3.36	0.03	264
B875076	Core	99.52	0.8	0.04	6	28	<2	>10	< 0.5	2	8	44	2.48	0.02	188
B875077	Core	99.74	0.9	0.11	50	35	<2	>10	< 0.5	15	17	110	7.41	0.04	278
B875078	Core	99.54	< 0.5	0.08	9	37	<2	>10	< 0.5	4	10	84	3.80	0.03	377
B875079	Core	99.72	0.5	0.11	7	44	<2	>10	< 0.5	22	10	64	>10	0.04	399
B875080 Dup	Core	99.18	0.6	0.11	5	44	<2	>10	< 0.5	22	10	66	>10	0.04	367
B875081	Core	99.85	0.5	0.05	<5	23	<2	>10	< 0.5	13	9	44	4.13	0.01	174
B875082	Core	99.66	< 0.5	0.09	<5	24	<2	>10	< 0.5	10	10	56	3.68	< 0.01	182
B875083	Core	100.65	< 0.5	0.03	<5	32	<2	>10	< 0.5	5	8	42	3.50	0.01	155
B875084	Core	99.67	< 0.5	0.04	<5	34	<2	>10	< 0.5	6	8	39	3.06	0.01	214
B875085	Core	99.34	1.0	1.57	10	73	<2	>10	< 0.5	11	38	18	4.15	0.17	206
B875086	Core	99.69	< 0.5	0.85	20	35	<2	>10	< 0.5	10	26	20	3.70	0.06	222
B875087	Core	99.28	< 0.5	0.04	8	27	<2	>10	< 0.5	7	10	30	3.33	< 0.01	172
B875088	Core	99.73	0.8	0.09	6	25	<2	>10	< 0.5	4	9	27	2.68	< 0.01	147
B875089	Core	99.55	1.0	0.04	5	27	<2	>10	< 0.5	6	12	28	2.50	< 0.01	176
B875090	Pulp	99.93	0.9	0.08	21	170	<2	>10	< 0.5	6	5	55	3.78	0.03	336
B875091	Core	101.05	< 0.5	0.02	7	28	<2	>10	< 0.5	6	9	25	2.69	< 0.01	183
B875092	Core	99.34	< 0.5	0.07	5	27	<2	>10	< 0.5	4	10	25	2.55	< 0.01	192
B875093	Core	99.91	0.5	0.05	<5	24	<2	>10	< 0.5	4	13	76	3.48	0.01	266
B875094	Core	99.37	0.6	0.03	5	24	<2	>10	< 0.5	4	9	57	2.99	< 0.01	212
B875095	Core	99.05	0.7	0.05	5	29	<2	>10	< 0.5	4	10	55	2.87	0.02	221
B875096	Core	99.11	1.0	0.03	7	31	<2	>10	< 0.5	5	10	42	3.74	< 0.01	243
B875097	Core	100.49	1.2	0.03	7	32	<2	>10	< 0.5	4	9	38	3.89	< 0.01	276
B875098	Core	99.36	0.9	0.02	13	31	<2	>10	< 0.5	7	13	22	4.27	< 0.01	356
B875099	Core	99.40	1.2	0.06	11	39	<2	>10	< 0.5	4	9	94	3.75	0.03	415
B875100 Dup	Core	99.71	1.1	0.06	11	39	<2	>10	< 0.5	4	10	91	3.77	0.03	415
B875101	Core	99.93	2.2	0.06	19	32	<2	>10	< 0.5	4	9	54	3.94	0.02	557
B875102	Core	99.12	1.9	0.11	11	26	<2	>10	< 0.5	7	10	23	2.97	0.02	260
B875103	Core	100.18	1.5	0.08	15	23	<2	>10	< 0.5	7	12	23	3.66	0.01	381
B875104	Core	99.57	1.3	0.04	89	18	<2	>10	< 0.5	4	9	43	3.07	0.01	2927
B875105	Core	99.95	1.1	0.06	174	19	<2	>10	< 0.5	15	9	21	5.41	0.01	6078
B875106	Core	99.46	0.9	0.11	43	16	<2	>10	< 0.5	12	10	29	3.32	0.02	1438
B875107	Core	99.49	1.6	0.28	15	17	<2	>10	< 0.5	15	11	65	3.72	< 0.01	475

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		Mg	Mn	Mo	Na	Ni	P	Pb	Sb	Sc	Sr	Ti	Tl	V	W
		30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR
Sample	Sample	%	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm
Description	Туре	0.01	5	1	0.01	1	10	2	5	1	1	0.01	10	1	10
B875033	Core	>10	4109	1	0.03	2	>10000	7	<5	5 7	2701	0.01	<10	14	<10
B875034	Core	>10	3070	1 2	0.03	2 5	>10000	12 7	<5	•	912	0.02	<10	27	<10
B875035 B875036	Core Core	9.52 >10	3560 2270	1	0.06 0.03	3	>10000 >10000	8	<5 <5	6 9	919 667	0.29 0.15	<10 <10	59 77	<10 <10
B875037	Core	>10	3298	2	0.03	2	>10000	9	<5	8	1762	0.13	<10	30	<10
B875038	Core	>10	3401	1	0.02	1	>10000	8	<5	6	1650	< 0.01	<10	20	<10
B875039	Core	9.39	2900	1	0.02	3	>10000	7	<5	5	2183	0.06	<10	91	<10
B875040 Dup	Core	9.90	2976	2	0.03	3	>10000	6	<5	6	2248	0.00	<10	94	<10
B875041	Core	8.64	2501	<1	0.03	5	>10000	4	<5	6	1664	0.10	<10	158	<10
B875042	Core	4.36	3597	3	0.08	15	>10000	4	<5	2	2124	0.53	<10	619	<10
B875043	Core	5.23	2980	2	0.15	9	>10000	13	<5	3	3390	0.22	<10	374	<10
B875044	Core	5.72	4022	1	0.11	12	>10000	3	<5	4	3081	0.47	<10	416	<10
B875045	Core	>10	4761	2	0.03	2	>10000	7	<5	6	2914	0.06	<10	53	<10
B875046	Core	5.99	3490	1	0.04	10	>10000	<2	<5	3	2371	0.61	<10	420	<10
B875047	Core	>10	3924	<1	0.02	2	>10000	5	<5	6	2452	0.03	<10	67	<10
B875048	Core	7.86	3481	<1	0.03	7	>10000	11	<5	8	1694	0.09	<10	228	<10
B875049	Core	5.37	3378	<1	0.04	11	>10000	4	<5	8	2341	0.19	<10	321	<10
B875050	Pulp	8.02	3681	3	0.04	6	>10000	8	<5	5	1889	0.17	<10	210	<10
B875051	Core	>10	3042	1	0.04	1	>10000	7	<5	6	1470	0.02	<10	28	<10
B875052	Core	9.58	2869	1	0.05	3	>10000	6	<5	5	1505	0.22	<10	190	<10
B875053	Core	9.54	3084	1	0.02	5	>10000	7	<5	7	2024	0.21	<10	127	<10
B875054	Core	6.23	3573	1	0.03	7	>10000	3	<5	4	2231	0.33	<10	348	<10
B875055	Core	0.90	775	4	2.90	6	1251	12	<5	5	709	0.27	<10	60	<10
B875056	Core	>10	3136	<1	0.03	15	>10000	15	<5	6	1722	0.02	<10	28	<10
B875057	Core	>10	2575	1	0.05	3	>10000	6	<5	6	910	0.06	<10	55	<10
B875058	Core	8.53	3041	1	0.04	2	>10000	12	<5	5	2034	0.05	<10	38	<10
B875059	Core	8.73	2931	1	0.05	4	>10000	5	<5	5	2235	0.16	<10	153	<10
B875060 Dup	Core	8.89	2979	1	0.05	3	>10000	6	<5	5	2260	0.14	<10	146	<10
B875061	Core	9.28	3230	4	0.05	5	>10000	9	<5	6	992	0.16	<10	134	<10
B875062	Core	>10	4117	1	0.03	1	>10000	7	<5	6	3056	0.03	<10	36	<10
B875063	Core	>10	3973	<1	0.04	3	>10000	8	<5	6	2193	0.04	<10	66	<10
B875064	Core	9.70	3819	3	0.03	3	>10000	6	<5	4	2737	0.18	<10	202	<10
B875065	Core	>10	4054	2	0.03	4	>10000	6	<5	8	2601	0.21	<10	180	<10
B875066	Core	>10	4052	1	0.03	3	>10000	6	<5	7	3131	0.09	<10	108	<10
B875067	Core	6.57	3424	1	0.04	12	>10000	<2	<5	1	2948	0.65	<10	525	<10
B875068	Core	9.40	4678	1	0.05	3	>10000	7	<5	2	3894	1.07	<10	38	<10
B875069	Core	>10	5361	2	0.02	2	>10000	3	<5	9	3092	0.04	<10	39	<10
B875070	Pulp	1.48	7224	14	0.37	2	>10000	76	<5	3	>10000	0.15	<10	169	<10
B875071	Core	>10	4255	1	0.03	1	>10000	7	<5	5	2405	< 0.01	<10	13	<10
B875072	Core	>10	5172	<1	0.02	1	>10000	5	<5	4	3465	0.02	<10	31	<10

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		Mg	Mn	Mo	Na	Ni	P	Pb	Sb	Sc	Sr	Ti	Tl	V	W
		30-4A-TR													
Sample	Sample	%	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm
Description	Type	0.01	5	1	0.01	1	10	2	5	1	1	0.01	10	1	10
B875073	Core	>10	2985	1	0.05	1	>10000	9	<5	4	1547	0.01	<10	40	<10
B875074	Core	9.70	2877	1	0.04	3	>10000	<2	<5	3	2089	0.18	<10	270	<10
B875075	Core	>10	4447	2	0.04	<1	>10000	7	<5	4	2858	< 0.01	<10	13	<10
B875076	Core	>10	5185	1	0.02	<1	>10000	6	<5	4	3721	< 0.01	<10	8	<10
B875077	Core	9.76	2652	1	0.03	3	>10000	4	<5	5	1853	0.07	<10	138	<10
B875078	Core	>10	4628	1	0.04	1	>10000	6	<5	5	3720	0.03	<10	60	<10
B875079	Core	8.47	4774	<1	0.04	5	>10000	4	<5	3	3996	0.26	<10	630	<10
B875080 Dup	Core	8.01	4546	1	0.04	5	>10000	4	<5	3	3841	0.26	<10	619	<10
B875081	Core	>10	4408	2	0.02	1	>10000	7	<5	4	2821	0.02	<10	32	<10
B875082	Core	>10	4130	1	0.03	2	>10000	5	<5	5	3284	0.02	<10	37	<10
B875083	Core	>10	4940	2	0.02	<1	>10000	6	<5	4	4366	0.01	<10	22	<10
B875084	Core	>10	5015	<1	0.03	<1	>10000	8	<5	6	4162	< 0.01	<10	12	<10
B875085	Core	>10	3557	5	0.15	15	>10000	6	<5	8	2235	0.08	<10	56	<10
B875086	Core	>10	4003	3	0.05	7	>10000	6	<5	7	2399	0.06	<10	39	<10
B875087	Core	>10	5089	12	0.03	1	>10000	7	<5	5	3484	< 0.01	<10	7	<10
B875088	Core	>10	4923	1	0.03	<1	>10000	6	<5	5	3802	< 0.01	<10	7	<10
B875089	Core	>10	4663	<1	0.02	<1	>10000	6	<5	4	3854	< 0.01	<10	4	<10
B875090	Pulp	8.67	3376	2	0.06	1	>10000	8	<5	6	2546	0.05	<10	72	<10
B875091	Core	>10	5054	5	0.02	<1	>10000	6	<5	4	3913	< 0.01	<10	2	<10
B875092	Core	>10	4749	2	0.03	<1	>10000	6	<5	5	3708	< 0.01	<10	3	<10
B875093	Core	>10	3919	1	0.03	1	>10000	5	<5	5	2902	0.02	<10	44	<10
B875094	Core	>10	4320	<1	0.03	<1	>10000	5	<5	5	3294	< 0.01	<10	16	<10
B875095	Core	>10	4171	1	0.02	<1	>10000	6	<5	5	2851	< 0.01	<10	13	<10
B875096	Core	>10	4586	4	0.02	1	>10000	7	<5	5	2820	< 0.01	<10	24	<10
B875097	Core	>10	5630	2	0.02	1	>10000	6	<5	5	3251	< 0.01	<10	16	<10
B875098	Core	>10	5156	2	0.02	2	>10000	9	<5	7	2493	< 0.01	<10	19	<10
B875099	Core	>10	4454	2	0.02	2	>10000	3	<5	5	2349	0.01	<10	17	<10
B875100 Dup	Core	>10	4469	2	0.02	2	>10000	2	<5	6	2335	0.01	<10	17	<10
B875101	Core	>10	4214	1	0.02	2	>10000	7	<5	6	1990	< 0.01	<10	11	<10
B875102	Core	>10	2971	2	0.03	2	>10000	13	<5	6	1666	0.01	<10	16	<10
B875103	Core	9.73	3405	8	0.03	2	>10000	12	<5	6	2072	0.01	<10	13	<10
B875104	Core	>10	4047	2	0.02	2	>10000	15	<5	8	2320	< 0.01	<10	10	<10
B875105	Core	>10	6643	3	0.02	6	>10000	25	<5	11	1474	< 0.01	<10	12	<10
B875106	Core	>10	2383	1	0.03	2	>10000	13	<5	6	679	0.02	<10	23	<10
B875107	Core	>10	2132	<1	0.03	2	>10000	13	<5	6	635	0.04	<10	31	<10

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		Zn	Zr	Ce	Dy	Er	Eu	Gd	Hf	Но	La	Lu	Nd	Pr	Sm
		30-4A-TR	30-4A-TR	REE-LB-MS	REE-LB-MS	REE-LB-MS	REE-LB-MS	REE-LB-MS	REE-LB-MS	REE-LB-MS	REE-LB-MS	REE-LB-MS	REE-LB-MS	REE-LB-MS	REE-LB-MS
Sample	Sample	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Description	Type	2	1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	
B875033	Core	14	23	440.7	19.3	7.8	9.8	29.6	2.2	3.2	222.4	0.5	183.9	52.0	
B875034	Core	10	10	>1000	37.7	14.3	21.2	75.4	1.9	6.0	>1000	1.1	692.0	236.2	
B875035	Core	18	19	996.1	16.5	6.5	15.2	33.2	1.6	2.6	675.5	0.5	290.1	98.8	
B875036	Core	8	19	>1000	27.0	10.0	20.4	57.8	1.9	4.1	>1000	0.7	534.0	179.7	
B875037	Core	12	24	>1000	27.2	10.3	16.8	53.1	4.1	4.4	906.8	0.7	434.3	141.5	
B875038	Core	12	14	>1000	25.3	9.3	15.3	50.4	2.4	3.9	>1000	0.6	441.5	147.5	
B875039	Core	17	31	843.3	21.1	7.5	16.9	42.4	4.2	3.2	438.6	0.5	340.3	99.8	
B875040 Dup	Core	17	35	822.1	21.5	7.6	17.1	42.1	4.2	3.3	430.9	0.5	335.3	97.0	
B875041	Core	24	58	799.8	20.2	7.1	16.0	41.5	5.8	2.9	389.5	0.5	333.8	95.2	
B875042	Core	177	65	812.4	15.6	4.3	13.3	37.8	8.3	2.1	384.6	0.1	335.7	97.4	
B875043	Core	117	46	>1000	33.6	8.6	29.3	83.4	7.2	4.4	838.9	0.3	744.6	215.7	
B875044	Core	125	72	>1000	23.8	6.6	20.4	59.1	8.9	3.3	658.9	0.2	526.1	159.6	
B875045	Core	22	36	865.7	19.9	7.2	14.3	40.7	4.1	3.1	478.4	0.4	334.8	100.5	
B875046	Core	85	59 44	663.0	15.3 16.0	5.0 5.8	11.4	33.3	6.3	2.1	320.9 285.9	0.3	273.9	78.9	
B875047	Core	21		593.2			10.7	31.9	6.0			0.4	246.6	71.5	
B875048	Core	67 140	131	992.2	26.5 19.4	9.7	16.5	47.2	9.6	4.1	514.6	0.6	397.2	117.7	
B875049	Core	140	313 48	740.8 769.8	19.4	6.2 6.6	14.2	40.4	18.2 10.0	2.7 2.9	341.4 377.1	0.3 0.5	322.1	91.7 90.6	
B875050 B875051	Pulp Core	58 10	48 26	769.8 646.1	20.5	8.5	13.8 11.3	38.3 35.1	2.5	3.3	321.8	0.5	315.0 260.7	90.6 74.7	
B875052	Core	15	50	794.2	20.3	7.6	14.6	40.0	8.3	3.3	391.3	0.6	318.6	93.4	
B875053	Core	17	32	682.9	26.4	10.9	14.0	39.6	5.1	4.4	342.0	0.5	277.1	80.9	
B875054	Core	56	60	788.5	21.3	7.4	16.7	40.0	10.8	3.1	376.5	0.6	325.1	94.6	
B875055	Core	55	7	65.9	3.1	1.7	1.3	3.9	3.0	0.4	33.4	0.4	27.7	7.7	
B875056	Core	19	27	732.4	22.2	9.1	11.6	36.3	2.6	3.6	404.2	0.2	277.8	82.6	
B875057	Core	11	24	621.9	38.8	16.7	16.1	50.2	4.3	6.7	310.7	1.1	277.3	76.1	51.0
B875058	Core	12	39	>1000	68.5	29.4	28.6	91.4	3.5	12.0	676.5	2.0	568.8	158.9	
B875059	Core	14	33	819.4	29.9	11.1	23.4	49.6	8.3	4.9	381.2	0.6	355.9	101.9	
B875060 Dup	Core	14	30	815.4	30.8	11.7	23.9	49.9	8.4	4.9	380.5	0.6	357.0	102.3	
B875061	Core	22	35	>1000	34.3	12.0	20.6	68.6	5.4	5.3	910.5	0.7	651.8	199.4	
B875062	Core	18	36	699.0	24.2	8.9	14.7	40.1	4.4	3.8	336.4	0.5	301.8	84.7	
B875063	Core	34	57	558.0	17.1	6.6	10.1	30.7	3.3	2.7	323.8	0.4	233.4	67.0	
B875064	Core	19	25	740.4	19.2	6.8	15.2	38.5	4.4	2.9	366.9	0.3	304.1	89.3	
B875065	Core	19	27	741.4	28.1	10.9	15.8	44.5	6.6	4.5	349.7	0.6	332.2	91.5	
B875066	Core	17	19	876.9	25.6	9.1	15.9	46.1	2.3	3.9	431.3	0.5	371.7	110.2	
B875067	Core	63	33	776.3	17.2	4.7	14.3	40.2	4.8	2.3	357.0	0.1	347.1	96.2	53.3
B875068	Core	40	88	901.4	22.1	6.7	17.1	48.4	6.8	3.1	396.9	0.3	399.8	112.1	60.5
B875069	Core	30	42	501.9	18.7	7.5	13.3	30.4	0.9	3.1	213.9	0.4	226.9	62.9	36.2
B875070	Pulp	428	75	>1000	14.9	4.8	13.5	39.9	0.3	2.0	963.8	0.4	476.4	164.8	50.9
B875071	Core	14	11	656.5	17.3	6.5	10.3	31.0	0.9	2.7	337.2	0.4	255.3	75.6	37.5
B875072	Core	16	10	522.0	13.1	4.4	10.2	27.1	1.4	1.8	245.3	0.2	224.0	64.0	34.4

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		Zn	Zr	Ce	Dy	Er	Eu	Gd	Hf	Но	La	Lu	Nd	Pr	Sm
		30-4A-TR	30-4A-TR	REE-LB-MS											
Sample	Sample	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Description	Type	2	1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
B875073	Core	8	12	670.1	23.2	8.5	13.4	38.1	1.9	3.6	329.8	0.6	283.2	79.7	47.7
B875074	Core	13	35	859.1	23.5	7.7	18.9	47.1	8.4	3.5	410.0	0.5	368.7	106.0	57.9
B875075	Core	13	7	741.9	16.9	5.9	11.0	34.0	0.6	2.5	373.7	0.3	296.4	86.7	42.7
B875076	Core	11	10	554.4	13.7	4.3	10.1	28.2	2.2	1.9	258.9	0.2	239.2	67.0	36.2
B875077	Core	10	10	739.1	22.8	7.8	18.3	42.4	4.2	3.4	341.5	0.5	323.4	90.3	51.5
B875078	Core	13	19	950.5	27.2	9.5	17.3	49.3	1.7	4.0	460.0	0.5	405.0	117.7	60.7
B875079	Core	28	9	971.5	18.8	5.7	13.1	39.1	0.7	2.6	484.8	0.2	375.1	113.5	49.4
B875080 Dup	Core	28	8	954.3	18.9	5.6	12.8	39.3	0.7	2.6	479.6	0.2	373.2	111.0	49.9
B875081	Core	15	9	504.2	14.3	4.8	9.3	25.6	1.7	2.0	242.4	0.3	199.3	59.2	31.0
B875082	Core	13	14	500.2	14.5	4.6	11.0	28.6	2.5	2.0	231.6	0.2	222.9	62.4	36.1
B875083	Core	18	16	410.9	12.5	4.0	9.1	25.4	1.4	1.8	182.0	< 0.1	191.3	52.0	30.7
B875084	Core	18	11	530.9	11.8	3.1	9.1	26.0	1.3	1.5	246.6	< 0.1	229.3	65.2	33.7
B875085	Core	24	13	502.8	15.9	5.8	8.8	27.8	1.2	2.4	244.2	0.3	212.0	60.4	33.4
B875086	Core	17	12	524.5	15.6	5.5	8.9	28.4	1.2	2.3	255.2	0.3	219.1	61.6	33.8
B875087	Core	17	13	384.1	13.9	5.0	7.7	23.8	0.9	2.0	180.0	0.2	170.4	47.6	27.9
B875088	Core	13	9	372.0	12.3	4.4	7.7	22.5	1.1	1.8	169.6	0.2	166.7	45.8	27.4
B875089	Core	14	12	460.6	15.5	5.2	9.2	28.4	0.7	2.3	209.5	0.2	203.1	57.0	33.9
B875090	Pulp	14	31	879.1	24.1	9.1	15.6	46.2	2.5	3.8	421.4	0.7	349.5	102.3	54.5
B875091	Core	16	8	449.0	11.3	3.6	7.4	23.1	0.4	1.6	211.7	< 0.1	193.2	54.7	29.7
B875092	Core	13	15	485.1	16.1	5.8	9.4	29.2	0.8	2.5	229.4	0.3	216.6	60.9	34.3
B875093	Core	11	30	641.3	23.8	8.9	13.9	39.6	3.4	3.8	306.3	0.6	286.7	80.2	46.4
B875094	Core	12	23	507.8	20.5	7.7	10.3	32.1	2.3	3.2	235.0	0.4	223.2	62.4	36.6
B875095	Core	13	26	547.9	23.1	8.7	10.9	34.4	2.1	3.7	263.8	0.5	237.7	67.0	39.9
B875096	Core	16	27	641.0	22.3	8.2	10.9	34.4	2.2	3.4	331.9	0.4	251.4	73.5	40.2
B875097	Core	22	14	633.1	17.4	6.3	9.1	29.8	1.4	2.6	332.3	0.3	242.2	72.6	34.4
B875098	Core	17	22	839.7	26.8	9.8	11.9	42.5	0.5	4.2	446.4	0.5	317.4	96.9	47.5
B875099	Core	15	41	946.3	33.2	12.8	14.8	49.6	4.6	5.6	506.6	0.7	354.7	107.5	53.7
B875100 Dup	Core	14	40	905.4	31.9	11.8	14.3	47.8	4.1	5.1	495.9	0.7	344.6	104.1	51.6
B875101	Core	15	19	>1000	36.5	13.8	15.9	53.8	1.6	5.9	724.7	0.8	433.3	138.0	59.9
B875102	Core	9	48	601.3	37.1	16.4	13.3	43.0	1.7	6.7	318.1	1.1	239.2	69.5	43.3
B875103	Core	10	35	845.9	35.5	14.7	14.0	46.3	1.1	6.1	510.3	1.0	292.2	90.7	46.8
B875104	Core	10	14	>1000	35.5	8.6	30.5	114.4	1.0	4.3	>1000	0.4	>1000	430.9	127.6
B875105	Core	19	4	>1000	40.7	8.6	31.8	140.0	0.4	4.9	>1000	0.4	>1000	662.0	114.9
B875106	Core	7	22	>1000	42.3	17.0	18.3	70.6	1.4	7.0	>1000	1.1	603.7	238.9	62.3
B875107	Core	11	30	>1000	27.4	10.8	14.9	43.7	2.8	4.5	589.7	0.7	344.5	112.5	46.9

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		Tb	Tm	Yb	Y	Ta	Th	U
				REE-LB-MS		Ta-4A-LL-MS		U-4A-LL-MS
Sample	Sample	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Description	Туре	0.1	0.1	0.1	0.10	0.05	0.2	0.1
B875033	Core	3.4	0.8	4.9	79.1	291.30	25.6	5.0
B875034	Core	6.3	1.6	10.0	143.3	71.14	11.8	4.8
B875035	Core	2.6	0.7	4.8	72.6	143.78	25.9	13.4
B875036	Core	4.6	1.1	6.7	113.6	159.64	33.9	13.7
B875037	Core	4.8	1.1	6.7	111.2	289.38	18.4	2.9
B875038	Core	4.4	1.0	6.3	98.3	183.83	12.8	1.7
B875039	Core	3.9	0.8	5.0	86.7	175.00	21.1	6.9
B875040 Dup	Core	3.9	0.8	5.4	87.4	186.00	20.4	7.3
B875041	Core	3.7	0.7	5.0	78.6	230.20	17.2	5.0
B875042	Core	3.0	0.4	2.7	52.8	228.37	< 0.2	35.0
B875043	Core	6.8	0.8	4.7	106.1	179.07	0.5	31.5
B875044	Core	4.7	0.6	3.8	78.4	230.96	38.8	18.9
B875045	Core	3.6	0.8	4.8	79.9	183.90	13.5	7.4
B875046	Core	2.9	0.4	3.3	55.1	200.71	57.1	22.9
B875047	Core	2.9	0.5	4.3	63.2	143.63	18.3	5.5
B875048	Core	4.6	1.0	6.0	101.1	408.05	< 0.2	13.5
B875049	Core	3.6	0.6	4.1	69.7	483.46	67.4	22.5
B875050	Pulp	3.6	0.7	4.7	73.4	336.95	2.4	9.9
B875051	Core	3.6	0.9	6.0	84.2	244.61	14.4	4.8
B875052	Core	3.7	0.8	5.5	82.7	228.06	15.9	5.7
B875053	Core	4.6	1.2	6.6	113.0	282.67	12.1	4.6
B875054	Core	3.7	0.8	4.7	79.6	244.41	< 0.2	5.3
B875055	Core	0.3	0.1	1.9	17.9	10.03	1.5	4.3
B875056	Core	3.9	1.0	6.5	94.4	319.91	7.6	4.8
B875057	Core	6.8	1.9	10.6	165.1	289.18	17.5	8.3
B875058	Core	12.0	3.4	18.4	293.9	318.08	28.8	41.0
B875059	Core	5.4	1.2	6.7	117.7	358.54	18.4	10.2
B875060 Dup	Core	5.6	1.2	6.9	124.1	330.15	18.2	10.5
B875061	Core	6.0	1.2	7.3	129.4	406.65	7.0	4.6
B875062	Core	4.3	0.9	5.8	98.2	232.36	7.4	6.1
B875063	Core	3.0	0.7	4.5	68.4	146.19	25.1	11.6
B875064	Core	3.5	0.7	4.2	80.2	173.45	14.7	20.0
B875065	Core	4.9	1.1	6.5	112.2	230.61	32.6	39.4
B875066	Core	4.5	0.9	5.6	103.5	137.10	6.6	8.2
B875067	Core	3.4	0.4	2.7	55.3	119.52	17.9	5.8
B875068	Core	4.3	0.6	3.9	74.5	239.88	26.9	35.0
B875069	Core	3.3	0.7	4.5	92.0	163.38	8.7	6.2
B875070	Pulp	2.3	0.5	4.0	58.5	65.47	39.6	33.6
B875071	Core	3.0	0.7	4.5	68.2	100.16	7.1	3.1
B875072	Core	2.4	0.4	3.0	49.3	74.24	4.8	4.0

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		Tb	Tm	Yb	Y	Ta	Th	U
			REE-LB-MS			Ta-4A-LL-MS	Th-4A-LL-MS [
Sample	Sample	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Description	Туре	0.1	0.1	0.1	0.10	0.05	0.2	0.1
B875073	Core	4.2	0.9	6.0	92.1	129.56	10.4	4.1
B875074	Core	4.5	0.8	5.3	91.1	194.07	12.5	7.0
B875075	Core	3.0	0.6	4.0	66.0	77.76	4.8	3.4
B875076	Core	2.5	0.4	2.9	50.6	53.94	4.2	2.8
B875077	Core	4.2	0.8	5.1	94.4	118.92	9.6	5.6
B875078	Core	4.9	1.0	5.7	108.2	154.14	7.1	5.5
B875079	Core	3.3	0.5	3.5	67.3	86.65	3.3	2.3
B875080 Dup	Core	3.3	0.5	3.6	65.9	84.52	3.4	2.3
B875081	Core	2.5	0.4	3.3	52.7	66.05	3.0	2.2
B875082	Core	2.7	0.4	3.2	55.1	79.84	9.5	11.6
B875083	Core	2.4	0.3	2.3	44.7	66.29	2.9	2.1
B875084	Core	2.2	0.2	2.0	39.0	49.77	1.9	1.6
B875085	Core	2.7	0.6	4.0	62.7	49.28	1.9	1.6
B875086	Core	2.7	0.5	3.8	60.9	77.99	14.1	25.1
B875087	Core	2.4	0.5	3.1	53.4	107.54	13.7	3.6
B875088	Core	2.3	0.3	2.8	49.5	49.46	9.9	10.0
B875089	Core	2.8	0.4	3.1	60.6	122.57	1.1	2.6
B875090	Pulp	4.5	1.0	7.0	97.6	222.14	1.5	2.6
B875091	Core	2.1	0.3	2.1	42.2	66.35	< 0.2	0.8
B875092	Core	2.9	0.5	3.7	64.2	118.47	21.4	24.8
B875093	Core	4.3	0.9	6.0	99.8	206.38	15.5	5.3
B875094	Core	3.7	0.8	4.8	81.6	193.57	13.1	5.0
B875095	Core	4.1	0.9	5.7	89.7	217.56	23.7	5.7
B875096	Core	3.8	0.8	5.0	88.5	212.97	10.9	3.8
B875097	Core	3.1	0.6	3.8	68.0	128.12	4.7	3.1
B875098	Core	4.6	0.9	5.7	106.4	354.57	6.1	5.5
B875099	Core	5.8	1.3	7.6	138.6	459.29	58.8	19.1
B875100 Dup	Core	5.6	1.3	7.4	130.8	450.01	58.5	18.9
B875101	Core	6.2	1.5	8.3	142.4	253.09	17.7	10.6
B875102	Core	6.3	1.7	10.1	160.2	425.27	173.9	219.2
B875103	Core	6.1	1.6	9.0	145.6	309.13	73.7	99.1
B875104	Core	6.7	0.9	5.6	106.4	91.07	6.5	5.8
B875105	Core	6.9	0.9	5.5	133.2	62.34	22.8	10.0
B875106	Core	7.0	1.9	10.8	165.8	165.99	47.2	39.2
B875107	Core	4.7	1.2	7.3	109.9	178.59	99.9	113.2

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		Nb2O5	Al2O3	BaO	CaO	Cr2O3	Fe2O3	K2O	LOI	MgO	MnO	Na2O	P2O5	SiO2	TiO2
		Nb2O5-AD3-OR-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP
Sample	Sample	%	%	%	%	%	%	%	%	%	%	%	%	%	%
Description B875033	Type Core	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
B875033 Dup	Core	0.36													
QCV1010-00622-0002-BLK		< 0.01													
STD-OKA-1 expected		0.53													
STD-OKA-1 expected STD-OKA-1 result		0.54													
B875051	Core	0.36													
B875051 Dup	Corc	0.36													
QCV1010-00622-0005-BLK		< 0.01													
STD-OKA-1 expected		0.53													
STD-OKA-1 result		0.53													
B875069	Core	1.49													
B875069 Dup		1.49													
QCV1010-00622-0008-BLK		< 0.01													
STD-OKA-1 expected		0.53													
STD-OKA-1 result		0.53													
B875087	Core	0.21													
B875087 Dup		0.21													
QCV1010-00622-0011-BLK		< 0.01													
STD-OKA-1 expected		0.53													
STD-OKA-1 result		0.53													
B875105	Core	0.15													
B875105 Dup		0.14													
B875033	Core		0.20	< 0.01	31.96	< 0.01	5.04	0.05	37.62	16.98	0.68	0.06	6.61	1.11	0.03
B875033 Dup			0.18	< 0.01	32.02	< 0.01	4.93	0.05	37.60	17.03	0.63	0.06	6.33	1.08	0.03
QCV1010-00626-0002-BLK	~		< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
B875051	Core		0.15	< 0.01	34.98	< 0.01	5.92	0.02	37.93	15.19	0.42	0.06	4.29	0.88	0.03
B875051 Dup			0.14	< 0.01	34.91	< 0.01	5.89	0.02	37.89	15.21	0.42	0.05	4.21	0.88	0.03
QCV1010-00626-0005-BLK B875069	Core		< 0.01	<0.01 <0.01	<0.01 30.88	<0.01 <0.01	<0.01 5.88	< 0.01	<0.01 37.27	<0.01 17.97	<0.01 0.74	<0.01 0.03	< 0.01	<0.01 2.77	<0.01 0.08
B875069 Dup	Core		0.53 0.55	< 0.01	31.04	< 0.01	5.88	0.03 0.04	37.27	18.02	0.74	0.03	3.24 3.50	2.77	0.08
QCV1010-00626-0008-BLK			< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.04	<0.01	< 0.01	< 0.01	< 0.03	< 0.01	< 0.01	< 0.01
B875087	Core		0.01	< 0.01	30.08	< 0.01	5.19	0.01	40.12	19.07	0.01	0.01	3.49	0.41	0.01
B875087 Dup	Core		0.09	< 0.01	30.82	< 0.01	5.25	0.02	40.12	18.99	0.74	0.05	3.52	0.41	0.02
QCV1010-00626-0011-BLK			< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.02	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
B875105	Core		0.11	< 0.01	34.12	< 0.01	8.51	0.02	37.63	15.07	0.96	0.03	3.13	0.35	0.01
B875105 Dup			0.11	< 0.01	33.95	< 0.01	8.52	0.02	37.70	14.97	1.00	0.03	3.15	0.34	0.01
QCV1010-00626-0014-BLK			< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
STD-SY-4 expected			20.69		8.05		6.21	1.66	4.56	0.54	0.11	7.10	0.13	49.90	0.29
STD-SY-4 result			20.71	0.05	8.11	< 0.01	6.59	1.63	4.56	0.57	0.15	7.24	0.15	49.93	0.30

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		Total	Ag	Al	As	Ba	Bi	Ca	Cd	Со	Cr	Cu	Fe	K	La
Sample	C1-	WR-FS-ICP %	30-4A-TR	30-4A-TR %	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR %	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR %	30-4A-TR %	30-4A-TR
Description	Sample Type	0.01	ppm 0.5	0.01	ppm 5	ppm 10	ppm 2	0.01	ppm 0.5	ppm 1	ppm 1	ppm 1	0.01	0.01	ppm 10
B875033	Core	0.01	1.9	0.01	5	55	<2	>10	<0.5	2	7	45	2.94	0.01	168
B875033 Dup	Core		1.5	0.08	6	56	<2	>10	< 0.5	2	7	45	2.94	0.03	152
QCV1010-00623-0002-BLK			<0.5	< 0.01	<5	<10	<2	< 0.01	<0.5	<1	1	<1	< 0.01	< 0.01	<10
STD-CDN-ME-6 expected			101.0									6130			
STD-CDN-ME-6 result			96.7									6444			
B875051	Core		1.4	0.07	5	15	<2	>10	< 0.5	11	7	55	4.00	< 0.01	270
B875051 Dup			1.1	0.07	7	15	<2	>10	< 0.5	12	7	55	3.97	< 0.01	268
QCV1010-00623-0005-BLK			< 0.5	< 0.01	<5	<10	<2	< 0.01	< 0.5	<1	<1	<1	< 0.01	< 0.01	<10
STD-CDN-ME-8 expected			61.7									1030			
STD-CDN-ME-8 result			63.1									966			
B875069	Core		1.5	0.31	<5	29	<2	>10	< 0.5	<1	12	191	4.12	0.02	196
B875069 Dup			1.6	0.30	<5	29	<2	>10	< 0.5	<1	13	192	4.19	0.02	214
QCV1010-00623-0008-BLK			< 0.5	< 0.01	<5	<10	<2	< 0.01	< 0.5	<1	1	<1	< 0.01	< 0.01	<10
STD-CDN-ME-8 expected			61.7									1030			
STD-CDN-ME-8 result			62.1									1041			
B875087	Core		< 0.5	0.04	8	27	<2	>10	< 0.5	7	10	30	3.33	< 0.01	172
B875087 Dup			< 0.5	0.04	8	26	<2	>10	< 0.5	7	10	28	3.31	< 0.01	168
QCV1010-00623-0011-BLK			< 0.5	< 0.01	<5	<10	<2	< 0.01	< 0.5	<1	<1	<1	< 0.01	< 0.01	<10
B875105	Core		1.1	0.06	174	19	<2	>10	< 0.5	15	9	21	5.41	0.01	6078
B875105 Dup			1.1	0.06	186	19	<2	>10	< 0.5	16	9	22	5.17	0.01	6160
QCV1010-00623-0014-BLK			< 0.5	< 0.01	<5	<10	<2	< 0.01	< 0.5	<1	<1	<1	< 0.01	< 0.01	<10
TD-OREAS-45P-4A expected										122	1103	749			
STD-OREAS-45P-4A result										127	1198	732			
B875033	Core	100.34													
B875033 Dup		99.96													
QCV1010-00626-0002-BLK	~	<0.01													
B875051	Core	99.87													
B875051 Dup		99.65													
QCV1010-00626-0005-BLK	C	<0.01													
B875069	Core	99.42													
B875069 Dup QCV1010-00626-0008-BLK		99.92 <0.01													
,	C														
B875087 B875087 Dup	Core	99.28													
OCV1010-00626-0011-BLK		100.03 <0.01													
B875105	Core	<0.01 99.95													
B875105 B875105 Dup	core	99.95 99.82													
OCV1010-00626-0014-BLK		99.82 <0.01													
STD-SY-4 expected		<0.01													
STD-SY-4 result		100.01													
STD-ST-4 result		100.01													

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		Mg	Mn	Mo	Na	Ni	P	Pb	Sb	Sc	Sr	Ti	Tl	V	W
		30-4A-TR													
Sample	Sample	%	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm
Description	Type	0.01	5	1	0.01	1	10	2	5	1	1	0.01	10	1	10
B875033	Core	>10	4109	1	0.03	2	>10000	7	<5	5	2701	0.01	<10	14	<10
B875033 Dup		>10	4127	1	0.03	1	>10000	8	<5	5	2723	0.01	<10	14	<10
QCV1010-00623-0002-BLK		< 0.01	<5	<1	< 0.01	<1	<10	<2	<5	<1	<1	< 0.01	<10	<1	<10
B875051	Core	>10	3042	1	0.04	1	>10000	7	<5	6	1470	0.02	<10	28	<10
B875051 Dup		>10	3025	2	0.04	1	>10000	6	<5	6	1458	0.02	<10	28	<10
QCV1010-00623-0005-BLK		< 0.01	<5	<1	< 0.01	<1	13	<2	<5	<1	<1	< 0.01	<10	<1	<10
B875069	Core	>10	5361	2	0.02	2	>10000	3	<5	9	3092	0.04	<10	39	<10
B875069 Dup		>10	5461	2	0.02	2	>10000	<2	<5	8	3162	0.04	<10	40	<10
QCV1010-00623-0008-BLK		< 0.01	<5	<1	< 0.01	<1	<10	<2	<5	<1	<1	< 0.01	<10	<1	<10
B875087	Core	>10	5089	12	0.03	1	>10000	7	<5	5	3484	< 0.01	<10	7	<10
B875087 Dup		>10	5078	12	0.03	<1	>10000	7	<5	5	3476	< 0.01	<10	6	<10
QCV1010-00623-0011-BLK		< 0.01	<5	<1	< 0.01	<1	14	<2	<5	<1	<1	< 0.01	<10	<1	<10
B875105	Core	>10	6643	3	0.02	6	>10000	25	<5	11	1474	< 0.01	<10	12	<10
B875105 Dup		>10	6333	3	0.02	5	>10000	27	<5	11	1402	< 0.01	<10	13	<10
QCV1010-00623-0014-BLK		< 0.01	<5	<1	< 0.01	<1	11	2	<5	<1	<1	< 0.01	<10	<1	<10
-OREAS-45P-4A expected					0.08	385	454								
STD-OREAS-45P-4A result					0.08	361	466								

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		Zn	Zr	Ce	Dy	Er	Eu	Gd	Hf	Но	La	Lu	Nd	Pr	Sm
C1-	C1-	30-4A-TR		REE-LB-MS				REE-LB-MS	REE-LB-MS		REE-LB-MS			REE-LB-MS	
Sample Description	Sample Type	ppm 2	ppm 1	ppm 0.1											
B875033	Core	14	23	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
B875033 Dup	Core	14	21												
QCV1010-00623-0002-BLK		<2	<1												
STD-CDN-ME-6 expected		5170													
STD-CDN-ME-6 result		5295													
B875051	Core	10	26												
B875051 Dup		10	27												
QCV1010-00623-0005-BLK		<2	<1												
B875069	Core	30	42												
B875069 Dup		24	43												
QCV1010-00623-0008-BLK		<2	<1												
B875087	Core	17	13												
B875087 Dup		15	13												
QCV1010-00623-0011-BLK		<2	<1												
B875105	Core	19	4												
B875105 Dup		19	6												
QCV1010-00623-0014-BLK		<2	<1												
STD-OREAS-45P-4A expected STD-OREAS-45P-4A result		142 141													
B875033	Core	141		440.7	19.3	7.8	9.8	29.6	2.2	3.2	222.4	0.5	183.9	52.0	31.8
B875033 Dup	Core			440.7	19.5	7.8	10.0	29.0	2.2	3.2	225.5	0.5	181.3	52.0	32.3
QCV1010-00624-0002-BLK				<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
STD-SY-4 expected				122.0	18.2	14.2	2.0	14.0	10.6	4.3	58.0	2.1	57.0	15.0	12.7
STD-SY-4 result				121.3	18.0	14.2	1.9	13.9	11.1	4.3	57.8	1.9	57.0	14.9	12.7
B875051	Core			646.1	20.5	8.5	11.3	35.1	2.5	3.3	321.8	0.6	260.7	74.7	41.2
B875051 Dup				640.0	20.9	8.3	11.4	35.7	2.7	3.4	318.5	0.6	264.7	75.8	42.3
QCV1010-00624-0005-BLK				< 0.1	< 0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	< 0.1	<0.1	<0.1	<0.1
STD-SY-4 expected				122.0	18.2	14.2	2.0	14.0	10.6	4.3	58.0	2.1	57.0	15.0	12.7
STD-SY-4 result				123.7	18.1	14.8	1.9	13.9	9.6	4.3	60.6	1.9	57.9	15.2	12.5
B875069	Core			501.9	18.7	7.5	13.3	30.4	0.9	3.1	213.9	0.4	226.9	62.9	36.2
B875069 Dup				503.1	19.3	7.6	13.6	30.0	0.9	3.2	222.1	0.4	228.1	63.3	37.0
QCV1010-00624-0008-BLK				< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
STD-SY-4 expected				122.0	18.2	14.2	2.0	14.0	10.6	4.3	58.0	2.1	57.0	15.0	12.7
STD-SY-4 result				124.2	18.4	14.7	1.9	14.4	9.7	4.4	60.4	2.0	57.3	15.6	12.8
B875087	Core			384.1	13.9	5.0	7.7	23.8	0.9	2.0	180.0	0.2	170.4	47.6	27.9
B875087 Dup				401.3	13.5	4.8	7.5	23.6	1.1	2.0	183.2	0.2	172.1	48.3	28.1
QCV1010-00624-0011-BLK				< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
STD-SY-4 expected				122.0	18.2	14.2	2.0	14.0	10.6	4.3	58.0	2.1	57.0	15.0	12.7
STD-SY-4 result	_			125.4	18.6	14.5	1.9	14.3	10.6	4.4	61.7	2.0	58.4	15.7	12.9
B875105	Core			>1000	40.7	8.6	31.8	140.0	0.4	4.9	>1000	0.4	>1000	662.0	114.9
B875105 Dup				>1000	41.7	8.8	33.0	145.5	0.4	4.8	>1000	0.4	>1000	673.5	118.2

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		Zn	Zr	Ce	Dy	Er	Eu	Gd	Hf	Но	La	Lu	Nd	Pr	Sm
		30-4A-TR	30-4A-TR	REE-LB-MS											
Sample	Sample	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Description	Type	2	1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
QCV1010-00624-0014-BLK				< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
STD-SY-4 expected				122.0	18.2	14.2	2.0	14.0	10.6	4.3	58.0	2.1	57.0	15.0	12.7
STD-SY-4 result				120.1	18.0	14.7	1.9	13.7	11.0	4.3	57.5	2.0	55.1	14.9	12.1

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		Tb	Tm	Yb	Y	Ta	Th	U
						Ta-4A-LL-MS		U-4A-LL-MS
Sample	Sample	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Description	Type	0.1	0.1	0.1	0.10	0.05	0.2	0.1
B875033	Core	3.4	0.8	4.9	79.1			
B875033 Dup		3.4	0.8	5.1	82.2			
QCV1010-00624-0002-BLK		< 0.1	< 0.1	< 0.1	< 0.10			
STD-SY-4 expected		2.6	2.3	14.8	119.0			
STD-SY-4 result		2.4	2.1	15.1	117.1			
B875051	Core	3.6	0.9	6.0	84.2			
B875051 Dup		3.7	0.9	6.0	85.7			
QCV1010-00624-0005-BLK		< 0.1	< 0.1	< 0.1	< 0.10			
STD-SY-4 expected		2.6	2.3	14.8	119.0			
STD-SY-4 result		2.4	2.1	15.1	122.3			
B875069	Core	3.3	0.7	4.5	92.0			
B875069 Dup		3.3	0.7	4.6	93.7			
QCV1010-00624-0008-BLK		<0.1	<0.1	<0.1	< 0.10			
STD-SY-4 expected		2.6	2.3	14.8	119.0			
STD-SY-4 result		2.5	2.2	15.3	120.9			
B875087	Core	2.3	0.5	3.1	53.4			
B875087 Dup	Core	2.4	0.5	3.0	53.4			
QCV1010-00624-0011-BLK								
-		<0.1	<0.1	<0.1	< 0.10			
STD-SY-4 expected		2.6	2.3	14.8	119.0			
STD-SY-4 result		2.5	2.2	15.4	121.2			
B875105	Core	6.9	0.9	5.5	133.2			
B875105 Dup		6.8	0.9	5.3	132.7			
QCV1010-00624-0014-BLK		< 0.1	< 0.1	< 0.1	< 0.10			
STD-SY-4 expected		2.6	2.3	14.8	119.0			
STD-SY-4 result		2.6	2.2	15.2	112.8			
B875033	Core					291.30	25.6	5.0
B875033 Dup						264.27	24.6	4.7
QCV1103-01156-0002-BLK						< 0.05	< 0.2	< 0.1
QCV1103-01156-0005-BLK						< 0.05	< 0.2	< 0.1
QCV1103-01156-0008-BLK						< 0.05	< 0.2	< 0.1
B875087	Core					107.54	13.7	3.6
B875087 Dup						116.41	13.3	3.9
QCV1103-01156-0011-BLK						< 0.05	< 0.2	< 0.1
QCV1103-01156-0014-BLK						< 0.05	<0.2	<0.1
QC V 1103-01130-0014-BER						<0.03	₹0.2	<0.1

Certificate of Analysis

Inspectorate Exploration & Mining Services Ltd. #200 - 11620 Horseshoe Way

Date Received: 10/25/2010

Date Completed: 05/06/2011

Invoice:

Richmond, British Columbia V7A 4V5 Canada

Phone: 604-272-7818

Distribution List

Attention: Eric Titley

Suite 1020-800 West Pender St.

Vancouver, BC V6C 2V6

EMail: erictitley@hdmining.com

Attention: Jeremy Crozier

EMail: jeremycrozier@hdmining.com

Attention: T.Kodata

EMail: tkodata@hdmining.com

Submitted By: Aley Corporation

Suite 1020-800 West Pender St.

Vancouver, BC V6C 2V6

Attention: Eric Titley

Project: **Aley 2010 Project** Description: **Aley 2010-017**

Location	Samples	Type	Preparation Description
Vancouver, BC	58	Core	SP-RX-2K/Rock/Chips/Drill Core
Vancouver, BC	3	Pulp	SP-PU/Pulp Handling, submitted pulps

Location	Method	Description
Vancouver, BC	Ta-4A-LL-MS	Tantalum, 4 Acid, ICP
Vancouver, BC	REE-LB-MS	REE Group by ICP-MS
Vancouver, BC	U-4A-LL-MS	Uraium, 4 Acid, Low Level
Vancouver, BC	Nb2O5-AD3-OR-ICP	Niobium by multi-acid digestion, ICP
Vancouver, BC	Th-4A-LL-MS	Thorium, 4 Acid, Low Level
Vancouver, BC	WR-FS-ICP	Whole Rock, Lithium Borate Fusion, ICP
Vancouver, BC	30-4A-TR	30 Element, 4 Acid, ICP, Trace Level

Submittal Information

Ta, Th, and U results shown have been revised with accurate detection limits.

The results of this assay were based solely upon the content of the sample submitted. Any decision to invest should be made only after the potential investment value of the claim or deposit has been determined based on the results of assays of multiple samples of geologic materials collected by the prospective investor or by a qualified person selected by him and based on an evaluation of all engineering data which is available concerning any proposed project. For our complete terms and conditions please see our website at www.inspectorate.com.

Вv

Mike Caron, Lab Manager

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		Nb2O5	A12O3	BaO	CaO	Cr2O3	Fe2O3	K2O	LOI	MgO	MnO	Na2O	P2O5	SiO2	TiO2
		Nb2O5-AD3-OR-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP
Sample	Sample	%	%	%	%	%	%	%	%	%	%	%	%	%	%
Description	Type	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
B875854	Core	1.05	0.29	0.01	28.48	< 0.01	24.00	0.14	22.73	11.45	0.38	0.05	8.92	1.62	0.39
B875855	Core	0.36	0.10	< 0.01	30.91	< 0.01	5.31	0.02	40.06	18.80	0.52	0.02	3.73	0.83	0.08
B875856	Core	1.10	0.58	< 0.01	30.04	< 0.01	6.15	0.08	37.68	18.40	0.50	0.04	3.24	2.79	0.14
B875857	Core	1.93	1.07	0.03	21.66	< 0.01	25.50	0.57	26.10	13.53	0.68	0.06	4.51	5.17	0.74
B875858	Core	0.18	0.13	< 0.01	30.88	< 0.01	5.91	0.01	39.86	18.77	0.61	0.03	2.50	1.38	0.13
B875859	Core	0.28	0.22	< 0.01	32.20	< 0.01	7.33	0.05	36.21	17.44	0.59	0.03	4.93	1.67	0.14
B875860 Dup	Core	0.28	0.22	< 0.01	32.32	< 0.01	7.40	0.05	36.37	17.36	0.58	0.03	4.86	1.49	0.13
B875861	Core	0.54	0.91	< 0.01	27.37	< 0.01	13.64	0.26	31.29	14.75	0.50	0.06	5.21	4.99	0.18
B875862	Core	0.21	0.26	< 0.01	33.38	< 0.01	6.23	0.04	36.18	17.09	0.47	0.04	5.67	1.76	0.27
B875863	Core	0.25	3.27	0.06	23.06	< 0.01	8.45	1.69	22.87	13.87	0.47	1.28	3.06	18.83	0.64
B875864 B875865	Core Core	0.11 0.24	0.21 0.18	0.02 0.01	35.29 30.65	<0.01 <0.01	4.95 5.10	0.12 0.08	36.21 37.28	15.44 18.46	0.47 0.48	0.21 0.17	4.31 3.44	2.52 3.39	0.12 0.05
B875866	Core	0.24	0.18	0.01	48.11	< 0.01	3.32	0.08	37.42	6.58	0.48	0.17	3.18	1.07	0.03
B875867	Core	0.30	0.19	0.04	29.49	< 0.01	4.42	0.07	29.00	16.49	0.32	1.24	3.65	13.03	0.02
B875868	Core	0.28	0.16	< 0.01	32.68	< 0.01	4.47	0.02	38.44	19.12	0.49	0.03	3.55	1.31	0.06
B875869	Core	0.24	0.36	< 0.01	31.97	< 0.01	6.45	0.02	38.79	18.05	0.40	0.03	2.77	2.05	0.05
B875870	Pulp	0.68	0.16	0.02	36.90	< 0.01	5.26	0.04	36.93	14.25	0.38	0.08	3.78	3.17	0.12
B875871	Core	0.19	0.19	< 0.01	30.73	< 0.01	5.15	0.03	40.33	18.97	0.58	0.03	2.96	0.77	0.03
B875872	Core	0.75	0.92	< 0.01	28.02	< 0.01	6.42	0.03	34.09	17.80	0.30	0.05	5.08	6.00	0.25
B875873	Core	0.49	0.57	< 0.01	30.25	< 0.01	5.22	0.14	34.16	17.00	0.50	0.15	5.40	5.81	0.06
B875874	Core	0.71	0.23	0.01	15.61	< 0.01	50.02	0.15	15.51	7.78	0.54	0.04	3.70	3.19	0.64
B875875	Core	0.29	0.09	< 0.01	26.53	< 0.01	20.00	0.05	30.37	16.31	0.56	0.04	3.24	1.86	0.18
B875876	Core	0.50	0.26	0.04	18.12	< 0.01	49.65	0.10	13.50	6.18	0.55	0.08	5.16	3.29	0.50
B875877	Core	< 0.01	15.67	0.12	3.92	0.03	4.71	3.59	0.92	1.49	0.11	3.46	0.30	58.22	0.41
B875878	Core	0.87	0.18	0.05	20.57	< 0.01	44.68	0.10	16.30	5.30	0.48	0.21	4.89	3.95	0.58
B875879	Core	0.46	0.25	0.01	27.70	< 0.01	22.11	0.11	29.02	11.79	0.56	0.03	4.00	2.59	0.28
B875880 Dup	Core	0.45	0.24	0.02	26.62	< 0.01	22.91	0.11	28.93	12.17	0.57	0.03	3.97	2.59	0.28
B875881	Core	0.15	0.20	< 0.01	32.01	< 0.01	4.48	0.05	38.14	19.04	0.42	0.03	4.78	1.58	0.07
B875882	Core	0.10	0.91	< 0.01	27.61	< 0.01	4.98	0.11	38.62	18.74	0.51	0.04	2.10	5.24	0.07
B875883	Core	0.13	0.32	< 0.01	31.74	< 0.01	5.78	0.04	36.86	18.91	0.45	0.05	3.48	1.76	0.08
B875884	Core	0.17	0.28	< 0.01	31.05	< 0.01	6.88	0.05	36.90	18.71	0.47	0.05	2.94	2.05	0.05
B875885	Core	0.15	0.19	< 0.01	30.59	< 0.01	4.51	0.03	35.87	18.20	0.37	0.04	5.11	4.77	0.05
B875886	Core	0.13	0.11	< 0.01	30.39	< 0.01	3.87	0.02	39.23	19.48	0.36	0.03	3.85	3.34	0.03
B875887	Core	0.17	0.07	< 0.01	30.69	< 0.01	3.73	0.03	41.04	19.75	0.59	0.02	3.34	1.62	0.02
B875888	Core	0.06	0.43	0.01	31.88	< 0.01	9.67	0.06	31.86	14.25	0.36	0.05	8.31	3.47	0.13
B875889	Core	0.22	0.20	< 0.01	35.79	< 0.01	4.23	0.05	37.29	16.52	0.48	0.03	5.19	1.27	0.04
B875890	Pulp	0.48	0.23	< 0.01	32.78	< 0.01	5.92	0.05	37.91	17.63	0.48	0.05	4.12	1.63	0.14
B875891	Core	0.28	0.13	< 0.01	32.62	< 0.01	5.63	0.03	37.83	16.48	0.47	0.03	5.98	0.41	0.05
B875892	Core	0.17 0.23	0.21	<0.01	32.50	<0.01 <0.01	5.70	0.01	38.38	16.03	0.48	0.02	4.93	1.22	0.05
B875893	Core	0.23	0.40	<0.01	31.10	<0.01	4.75	0.01	38.90	17.48	0.24	0.02	4.03	2.73	0.04

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		Nb2O5	Al2O3	BaO	CaO	Cr2O3	Fe2O3	K2O	LOI	MgO	MnO	Na2O	P2O5	SiO2	TiO2
		Nb2O5-AD3-OR-ICP	WR-FS-ICP												
Sample	Sample	%	%	%	%	%	%	%	%	%	%	%	%	%	%
Description	Type	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
B875894	Core	0.15	0.14	0.01	36.22	< 0.01	4.55	< 0.01	39.34	16.37	0.39	0.02	3.25	1.16	0.02
B875895	Core	0.09	0.36	0.02	39.70	< 0.01	6.87	0.02	36.80	11.33	0.48	0.02	3.78	1.41	0.13
B875896	Core	0.07	0.60	< 0.01	32.25	< 0.01	4.72	0.02	36.54	16.52	0.45	0.02	3.97	4.15	0.16
B875897	Core	0.13	0.65	< 0.01	32.41	< 0.01	5.93	0.03	36.26	15.47	0.47	0.03	5.19	3.28	0.26
B875898	Core	0.05	2.17	0.03	25.84	< 0.01	13.09	0.24	26.82	11.46	0.30	0.20	5.55	11.52	1.58
B875899	Core	0.09	2.70	0.02	22.29	< 0.01	17.15	0.20	29.03	14.39	0.48	0.04	2.46	8.50	1.96
B880250 Dup	Core	0.09	2.79	0.02	22.75	< 0.01	17.98	0.20	28.41	13.74	0.49	0.04	2.64	8.77	2.03
B880251	Core	0.09	1.63	< 0.01	26.19	< 0.01	10.26	0.08	33.72	17.09	0.39	0.03	3.26	5.03	1.19
B880252	Core	0.03	0.05	< 0.01	34.56	< 0.01	5.29	0.01	39.52	17.81	0.69	0.03	2.48	0.92	0.03
B880253	Core	0.08	1.65	0.02	30.65	< 0.01	14.24	0.15	28.47	10.59	0.52	0.03	3.05	9.04	1.09
B880254	Core	0.02	0.54	< 0.01	31.58	< 0.01	5.61	0.03	34.99	15.81	0.46	0.04	5.50	5.04	0.24
B880255	Core	0.01	0.71	0.04	43.62	< 0.01	5.76	0.12	33.00	5.62	0.21	0.14	4.86	5.26	0.37
B880256	Core	0.03	0.59	0.02	39.96	< 0.01	5.64	0.06	32.15	9.14	0.28	0.13	4.92	6.98	0.30
B880257	Core	0.15	0.43	< 0.01	31.46	< 0.01	5.75	0.01	37.97	17.40	0.59	0.03	3.55	3.59	0.27
B880258	Core	0.08	0.57	0.01	28.46	< 0.01	8.08	0.11	38.02	17.47	0.67	0.03	3.73	2.71	0.28
B880259	Core	0.21	2.69	0.08	21.49	< 0.01	25.79	1.08	19.08	9.94	0.48	0.08	6.39	9.70	1.49
B880260	Pulp	0.53	1.81	0.34	47.09	< 0.01	4.63	0.72	31.92	2.34	0.84	0.42	2.65	5.94	0.22
B880261	Core	0.11	2.29	0.07	29.45	< 0.01	19.52	0.76	25.87	7.74	0.44	0.04	3.20	6.62	1.40
B880262	Core	0.04	0.36	< 0.01	30.95	< 0.01	5.38	0.06	39.18	17.54	0.35	0.03	3.84	2.83	0.12
B880263	Core	0.04	0.28	0.01	34.24	< 0.01	4.43	0.03	38.26	16.06	0.25	0.02	5.27	1.71	0.05
B880264	Core	0.52	0.09	< 0.01	34.16	< 0.01	4.03	0.01	37.51	17.17	0.51	0.02	5.81	0.96	0.04

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		Total	Ag	Al	As	Ba	Bi	Ca	Cd	Co	Cr	Cu	Fe	K	La
		WR-FS-ICP	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR
Sample	Sample	%	ppm	%	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%	%	ppm
Description	Туре	0.01	0.5	0.01	5	10	2	0.01	0.5	1	1	1 50	0.01	0.01	10
B875854	Core	98.47	<0.5	0.13	<5	89	<2	>10	<0.5	21 7	12	58	>10	0.07	351
B875855	Core	100.39	<0.5	0.05	8	38	<2	>10	<0.5	•	9	19	3.37	0.01	266
B875856 B875857	Core	99.64	<0.5	0.29 0.53	6	62 243	<2	>10	<0.5 <0.5	6 8	13 11	55	4.05	0.05 0.40	328
	Core	99.63	<0.5 <0.5	0.55	<5	36	<2 <2	>10	<0.5	4	15	70	>10		465
B875858	Core	100.22			78			>10		•		11	3.63	0.01	2242
B875859	Core	100.81 100.82	<0.5 <0.5	0.10 0.10	30 37	54 55	<2 <2	>10 >10	<0.5 <0.5	8 7	20 30	16 15	4.42 4.48	0.03 0.03	1221 1227
B875860 Dup	Core			0.10		55 73				10		30		0.03	
B875861 B875862	Core Core	99.16	<0.5 <0.5	0.43	<5 15	73 34	<2 <2	>10 >10	<0.5 <0.5	8	16 12	12	8.59 3.91	0.19	481 583
B875863	Core	101.39 97.56	<0.5	1.78	13	462	<2	>10	<0.5	17	23	25	5.61	1.35	722
B875864	Core	99.88	<0.5	0.11	<5	187	<2	>10	<0.5	7	14	8	3.34	0.09	240
B875865	Core	99.88	<0.5	0.11	<5	89	<2	>10	<0.5	5	12	o 14	3.44	0.09	219
B875866	Core	100.38	<0.5	0.09	7	325	<2	>10	<0.5	6	8	2	2.20	0.05	290
B875867	Core	99.64	<0.5	0.11	<5	323 196	<2	>10	<0.5	4	20	10	2.20	0.03	214
B875868	Core	100.35	<0.5	0.49	<5	37	<2	>10	<0.5	6	11	17	2.83	< 0.01	248
B875869	Core	101.26	<0.5	0.08	9	36	<2	>10	<0.5	4	14	17	4.10	0.04	492
B875870	Pulp	101.11	<0.5	0.10	12	175	<2	>10	<0.5	5	9	35	3.46	0.04	379
B875871	Core	99.78	1.0	0.09	8	34	<2	>10	<0.5	4	11	11	3.70	< 0.03	413
B875872	Core	98.97	0.7	0.09	7	29	<2	>10	<0.5	12	15	51	3.90	0.01	359
B875873	Core	99.29	<0.5	0.43	6	39	<2	>10	<0.5	5	17	24	3.30	0.10	311
B875874	Core	97.42	<0.5	0.28	<5	104	<2	>10	<0.5	23	10	23	>10	0.10	309
B875875	Core	99.23	<0.5	0.11	<5	51	<2	>10	<0.5	17	10	12	>10	0.10	205
B875876	Core	97.45	0.6	0.03	<5	272	<2	>10	<0.5	35	14	<1	>10	0.03	364
B875877	Core	92.96	0.8	8.30	<5	896	<2	3.07	< 0.5	9	163	3	3.10	3.07	39
B875878	Core	97.30	<0.5	0.07	<5	352	<2	>10	<0.5	18	8	1	>10	0.07	392
B875879	Core	98.45	0.7	0.12	<5	121	<2	>10	<0.5	21	19	6	>10	0.08	248
B875880 Dup	Core	98.44	< 0.5	0.12	<5	118	<2	>10	< 0.5	19	27	4	>10	0.08	236
B875881	Core	100.80	< 0.5	0.09	7	26	<2	>10	< 0.5	4	9	9	2.99	0.03	279
B875882	Core	98.94	< 0.5	0.42	7	34	<2	>10	< 0.5	6	28	6	3.53	0.07	217
B875883	Core	99.47	<0.5	0.15	29	21	<2	>10	<0.5	7	18	6	3.78	0.03	1277
B875884	Core	99.44	<0.5	0.14	7	25	<2	>10	<0.5	12	18	11	4.52	0.03	219
B875885	Core	99.73	< 0.5	0.09	11	22	<2	>10	<0.5	6	15	10	2.81	0.02	402
B875886	Core	100.72	< 0.5	0.05	7	22	<2	>10	< 0.5	5	16	8	2.48	< 0.01	280
B875887	Core	100.92	< 0.5	0.03	<5	30	<2	>10	<0.5	3	16	8	2.43	0.01	162
B875888	Core	100.48	1.2	0.24	51	123	30	>10	<0.5	42	37	18	9.37	0.03	453
B875889	Core	101.10	< 0.5	0.11	<5	80	<2	>10	<0.5	30	21	28	4.13	0.03	828
B875890	Pulp	100.96	< 0.5	0.13	29	66	11	>10	< 0.5	14	<1	27	5.51	0.04	565
B875891	Core	99.67	< 0.5	0.06	74	70	<2	>10	< 0.5	29	95	10	4.92	0.01	659
B875892	Core	99.56	<0.5	0.10	27	92	<2	>10	< 0.5	27	29	20	4.90	< 0.01	896
B875893	Core	99.72	<0.5	0.21	18	73	<2	>10	<0.5	20	37	23	4.04	< 0.01	656

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		Total	Ag	Al	As	Ba	Bi	Ca	Cd	Co	Cr	Cu	Fe	K	La
		WR-FS-ICP	30-4A-TR												
Sample	Sample	%	ppm	%	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%	%	ppm
Description	Type	0.01	0.5	0.01	5	10	2	0.01	0.5	1	1	1	0.01	0.01	10
B875894	Core	101.50	< 0.5	0.07	30	114	<2	>10	< 0.5	38	18	8	4.01	< 0.01	465
B875895	Core	100.92	< 0.5	0.21	39	206	<2	>10	< 0.5	50	32	16	6.39	< 0.01	1557
B875896	Core	99.42	< 0.5	0.34	76	66	<2	>10	< 0.5	22	20	11	4.53	0.01	779
B875897	Core	100.00	< 0.5	0.37	<5	83	<2	>10	< 0.5	34	26	22	5.91	0.02	1198
B875898	Core	98.78	< 0.5	1.18	51	285	<2	>10	< 0.5	81	30	59	>10	0.21	766
B875899	Core	99.23	< 0.5	1.44	<5	187	<2	>10	< 0.5	86	40	36	>10	0.18	419
B880250 Dup	Core	99.85	< 0.5	1.49	12	216	<2	>10	< 0.5	87	36	37	>10	0.18	422
B880251	Core	98.88	< 0.5	0.87	52	65	<2	>10	< 0.5	43	37	19	9.10	0.08	900
B880252	Core	101.42	< 0.5	0.03	26	62	<2	>10	< 0.5	11	12	25	4.77	< 0.01	449
B880253	Core	99.51	< 0.5	0.87	116	235	<2	>10	< 0.5	43	24	35	>10	0.15	348
B880254	Core	99.86	< 0.5	0.28	38	60	<2	>10	< 0.5	36	24	12	4.89	0.02	794
B880255	Core	99.70	< 0.5	0.41	29	401	<2	>10	< 0.5	38	31	9	5.95	0.10	1153
B880256	Core	100.18	< 0.5	0.33	34	225	<2	>10	< 0.5	15	53	9	5.35	0.05	670
B880257	Core	101.07	< 0.5	0.22	25	52	<2	>10	< 0.5	44	28	15	4.55	0.02	315
B880258	Core	100.14	< 0.5	0.30	37	167	<2	>10	< 0.5	28	15	11	6.48	0.09	480
B880259	Core	98.31	< 0.5	1.45	8	948	<2	>10	< 0.5	70	10	29	>10	1.02	569
B880260	Pulp	98.93	< 0.5	0.95	61	2755	<2	>10	< 0.5	16	28	23	2.75	0.62	1584
B880261	Core	97.40	0.6	1.26	73	283	<2	>10	< 0.5	70	12	31	>10	0.68	362
B880262	Core	100.65	< 0.5	0.19	<5	48	<2	>10	< 0.5	36	18	8	4.91	0.05	742
B880263	Core	100.61	< 0.5	0.16	10	141	42	>10	< 0.5	57	14	6	4.28	0.02	665
B880264	Core	100.32	0.8	0.05	79	52	<2	>10	< 0.5	17	2	8	3.97	0.01	400

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		Mg	Mn	Mo	Na	Ni	P	Pb	Sb	Sc	Sr	Ti	Tl	V	W
		30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR
Sample	Sample	%	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm
Description	Туре	0.01	5	1	0.01	1	10	2	5	1	1	0.01	10	1	10
B875854	Core	6.36	3128	1	0.04	6	>10000	16	<5	3	2592	0.20	<10	277	<10
B875855	Core	9.85	3911	1	0.02	1	>10000	17	<5	5	2571	0.03	<10	38	<10
B875856	Core	9.89	3892	2	0.03	3	>10000	38	<5	8	2240	0.06	<10	34	<10
B875857	Core	7.16	5182	1	0.04	7	>10000	39	<5	4	2683	0.26	<10	260	<10
B875858	Core	9.71	4621	4	0.02	1	8726	22	<5	10	1912	0.01	<10	21	<10
B875859	Core	9.02	4426	5	0.02	2	>10000	22	<5	9	1871	0.02	<10	32	<10
B875860 Dup	Core	9.22	4464	6	0.02	3	>10000	23	<5	10	1893	0.03	<10	33	<10
B875861	Core	7.97	3890	2	0.04	3	>10000	23	<5	7	2581	0.06	<10	147	<10
B875862	Core	9.07	3595	1	0.03	2	>10000	15	<5	7	1507	0.06	<10	36	<10
B875863	Core	7.66	3700	4	1.06	9	>10000	14	<5	15	1839	0.33	<10	113	<10
B875864	Core	8.20	3767	1	0.19	1	>10000	8	<5	7	3756	0.06	<10	45	<10
B875865	Core	9.61	3850	3	0.15	1	>10000	11	<5	6	2506	0.02	<10	43	<10
B875866	Core	3.83	2565	<1	0.04	<1	>10000	11	<5	4	3483	< 0.01	<10	32	<10
B875867	Core	8.88	3875	2	0.98	1	>10000	11	<5	14	2923	0.04	<10	39	<10
B875868	Core	<0.01	3822	2	0.03	2	>10000	15	<5	5	2203	0.02	<10	30	<10
B875869	Core	9.50	5208	9	0.02	2	>10000	15	<5	7	2022	0.01	<10	15	<10
B875870	Pulp	7.74	3198	2	0.06	2	>10000	24	<5	8	2325	0.06	<10	72	<10
B875871	Core	>10	4990	16	0.02	2	>10000	13	<5	6	2326	< 0.01	<10	10	<10
B875872	Core	9.75	2215	4	0.03	8	>10000	26	<5	8	773	0.08	<10	93	<10
B875873	Core	9.40	3937	7	0.14	1	>10000	17	<5		2636	0.02	<10	25	<10
B875874	Core	4.57	4344	1	0.03	13	>10000	18	<5	12	1679	0.39	<10	341	<10
B875875	Core	8.99	4406	<1	0.02	5	>10000	11	<5	7	2846	0.08	<10	106	<10
B875876 B875877	Core	3.73	4605	1 4	0.06	12 7	>10000 1219	10	<5 <5	11 5	1927 694	0.26	<10	252	<10
B875878	Core	0.86	743	4	2.65 0.18		>10000	12 15	<5	11	2563	0.26 0.23	<10	55 285	<10
B875879	Core	3.26 6.79	4060	4		11	>10000	8	<5	10	2873		<10		<10 <10
B875880 Dup	Core	6.79	4623 4584	4	0.02 0.02	6 6	>10000	8 6	<5 <5	10	2873 2827	0.15 0.14	<10	151 150	<10
	Core Core		3317	3	0.02	2	>10000	11	<5 <5	5	2027	0.14	<10 <10	20	
B875881 B875882	Core	>10 <0.01	4362	8	0.02	4	>10000 7426	9	<5 <5	11	2463	0.02	<10	23	<10 <10
B875883	Core	>10	3632	9	0.02	2	>10000	16	<5	8	1299	0.01	<10	18	<10
B875884	Core	>10	3859	3	0.03	3	>10000	16	<5	6	1652	0.01	<10	35	<10
B875885	Core	9.84	3022	3	0.04	2	>10000	17	<5 <5	5	1566	0.02	<10	16	<10
				1	0.03	2	>10000		<5	4	1530	0.01		11	
B875886 B875887	Core Core	>10 >10	2917 4860	2	0.02	<1	>10000	12 12	<5	5	3256	< 0.01	<10 <10	6	<10 <10
B875888	Core	>10	4254	<1	0.02	25	>10000	3	10	19	1447	0.01	<10	51	<10
B875889	Core	>10	5686	4	0.04	9	>10000	33	16	8	2170	0.09	121	45	15
B875890	Pulp	>10	5663	<1	0.02	13	>10000	96	<5	8 11	2019	0.02	<10	53	13
В875891	Core	>10	3496	2	0.04	7	>10000	96 14	6	6	1958	0.06	<10	33 45	24
B875891 B875892	Core	>10	5385	3	0.02	13	>10000	14 19	6 17	9	1958 1441	0.01	<10 <10	45 44	<10
B875893	Core	>10	2682	<1	0.02	19	>10000	26	<5	5	363	0.02	<10	44	<10
D6/3893	Core	>10	2002	<1	0.02	19	>10000	20	< 3	3	303	0.02	<10	46	<10

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		Mg	Mn	Mo	Na	Ni	P	Pb	Sb	Sc	Sr	Ti	Tl	V	W
		30-4A-TR													
Sample	Sample	%	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm
Description	Type	0.01	5	1	0.01	1	10	2	5	1	1	0.01	10	1	10
B875894	Core	>10	4360	<1	0.02	13	>10000	48	<5	7	1189	0.01	<10	44	24
B875895	Core	8.80	5503	<1	0.02	12	>10000	11	<5	10	1241	0.04	<10	35	21
B875896	Core	>10	5260	<1	0.02	24	>10000	6	45	7	1729	0.06	39	48	<10
B875897	Core	>10	5670	10	0.03	17	>10000	7	<5	10	1743	0.06	<10	47	<10
B875898	Core	8.62	3412	4	0.16	31	>10000	20	<5	2	975	0.77	<10	59	<10
B875899	Core	>10	5700	<1	0.03	20	>10000	15	<5	16	785	0.83	<10	69	25
B880250 Dup	Core	>10	5740	6	0.03	20	>10000	16	<5	20	799	0.86	<10	74	23
B880251	Core	>10	4446	3	0.02	15	>10000	<2	<5	12	513	0.27	<10	57	32
B880252	Core	>10	8252	5	0.02	20	>10000	21	27	9	2621	0.01	<10	48	23
B880253	Core	7.49	5954	6	0.02	21	>10000	18	<5	10	1357	0.63	<10	54	<10
B880254	Core	>10	5204	<1	0.02	7	>10000	28	<5	9	1637	0.09	<10	46	<10
B880255	Core	4.92	2660	<1	0.12	15	>10000	27	8	4	2865	0.27	<10	28	14
B880256	Core	7.03	3378	4	0.11	27	>10000	19	<5	5	1898	0.16	<10	33	<10
B880257	Core	>10	5932	<1	0.03	12	>10000	50	22	7	2051	0.13	<10	53	10
B880258	Core	>10	6987	<1	0.03	12	>10000	12	<5	7	2485	0.17	<10	52	<10
B880259	Core	7.62	5426	2	0.07	24	>10000	28	11	<1	1765	1.02	<10	69	<10
B880260	Pulp	1.95	6160	17	0.32	8	>10000	74	21	4	>10000	0.19	112	36	<10
B880261	Core	6.17	5169	<1	0.03	20	>10000	32	<5	<1	2027	0.99	<10	64	<10
B880262	Core	>10	4003	<1	0.02	15	>10000	9	<5	6	831	0.05	<10	50	13
B880263	Core	>10	2865	<1	0.02	18	>10000	28	<5	4	564	0.03	<10	46	<10
B880264	Core	>10	5848	<1	0.03	11	>10000	29	<5	6	2792	0.02	<10	47	30

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		Zn	Zr	Ce	Dy	Er	Eu	Gd	Hf	Но	La	Lu	Nd	Pr	Sm
	a 1	30-4A-TR		REE-LB-MS	REE-LB-MS	REE-LB-MS	REE-LB-MS		REE-LB-MS	REE-LB-MS	REE-LB-MS	REE-LB-MS	REE-LB-MS		REE-LB-MS
Sample	Sample	ppm 2	ppm	ppm	ppm 0.1	ppm 0.1	ppm	ppm 0.1	ppm 0.1	ppm	ppm	ppm	ppm 0.1	ppm 0.1	ppm
Description B875854	Type Core	90	65	0.1 833.6	20.8	6.2	15.3	45.0	8.5	2.9	382.8	0.1	343.9	101.0	0.1 56.7
B875855	Core	19	19	623.8	14.5	4.8	10.8	30.6	2.2	2.9	313.3	0.4	244.0	70.4	38.1
B875856	Core	23	18	743.0	17.1	5.5	19.9	35.7	1.7	2.4	350.4	0.3	297.4	87.1	44.6
B875857	Core	108	54	935.5	12.7	3.2	10.9	32.8	7.5	1.6	495.1	0.1	319.8	100.3	42.4
B875858	Core	32	11	>1000	22.6	3.3	23.9	105.8	1.0	1.9	>1000	0.2	>1000	429.4	159.0
B875859	Core	32	39	>1000	27.7	7.7	21.3	80.7	3.3	3.5	>1000	0.5	791.9	256.1	108.3
B875860 Dup	Core	32	46	>1000	27.2	7.6	20.8	79.1	3.0	3.6	>1000	0.5	774.0	249.5	105.6
B875861	Core	57	38	958.3	19.2	5.7	15.0	44.5	5.0	2.6	517.8	0.3	371.2	110.3	56.9
B875862	Core	25	37	>1000	24.9	8.3	15.8	49.6	2.5	3.6	661.3	0.6	418.8	127.6	61.1
B875863	Core	105	87	>1000	16.0	4.8	12.3	40.9	3.5	2.1	742.6	0.4	394.1	128.6	50.8
B875864	Core	34	79	521.4	14.5	4.6	9.6	28.8	1.2	2.0	244.4	0.3	218.2	61.3	35.9
B875865	Core	28	27	510.6	15.3	5.1	10.6	29.7	1.1	2.1	237.4	0.4	217.6	60.9	36.3
B875866	Core	14	39	665.5	20.0	7.3	12.3	37.2	0.4	3.1	318.3	0.6	263.8	76.0	43.9
B875867	Core	53	62	479.1	13.2	4.3	8.6	26.3	1.6	1.8	220.0	0.3	202.7	56.3	32.3
B875868	Core	21	35	553.1	19.0	6.6	11.2	33.5	1.2	2.8	271.6	0.4	226.1	63.9	40.3
B875869	Core	51	26	>1000	22.1	6.7	14.3	48.4	1.0	2.9	531.6	0.4	411.6	118.5	62.5
B875870	Pulp	12	43	869.2	24.5	8.5	15.1	46.5	1.3	3.6	427.3	0.8	350.2	100.9	55.9
B875871	Core	37	25	890.3	23.5	7.2	14.8	47.6	1.2	3.3	448.5	0.3	372.3	106.1	61.2
B875872	Core	13 31	60	817.1	31.2 18.0	11.2 5.6	17.3	52.6	2.6 1.7	4.6	405.4	0.8	339.7	94.8	62.5
B875873	Core		28	730.5			12.6	37.5	9.4	2.5	355.6 200.7	0.3	292.1	84.4	46.9
B875874 B875875	Core Core	258 94	107 43	455.7 408.9	10.6 11.5	3.1 3.7	7.6 7.6	22.6 23.5	9.4 4.6	1.4 1.6	188.7	0.1 0.2	177.9 172.1	51.2 48.8	28.5 28.2
B875876	Core	275	246	559.8	14.0	4.6	9.2	29.5	17.2	1.9	261.2	0.2	217.6	63.8	35.0
B875877	Core	57	11	64.4	3.0	1.6	1.4	4.0	2.2	0.4	32.0	0.3	25.8	7.2	4.4
B875878	Core	261	273	669.6	15.9	5.3	11.5	35.4	20.3	2.3	326.8	0.3	265.9	76.5	43.6
B875879	Core	74	99	536.7	13.9	4.2	9.3	28.3	6.2	1.8	234.6	0.2	220.3	61.9	36.0
B875880 Dup	Core	76	93	532.4	13.7	4.4	9.3	29.0	6.2	1.9	238.4	0.3	221.2	62.6	36.6
B875881	Core	19	50	681.6	21.4	7.1	13.1	40.6	1.4	3.2	333.5	0.4	281.6	80.3	49.4
B875882	Core	34	14	508.0	17.5	5.3	9.0	31.2	0.5	2.4	264.7	0.2	191.9	54.6	37.0
B875883	Core	25	16	>1000	29.8	7.8	22.5	98.4	0.7	3.7	>1000	0.4	>1000	375.9	126.7
B875884	Core	28	32	517.9	18.1	5.8	9.8	30.7	1.5	2.6	268.2	0.3	200.6	57.9	35.5
B875885	Core	20	71	928.2	28.4	9.9	15.8	50.3	1.4	4.1	514.5	0.6	350.2	102.9	58.6
B875886	Core	12	35	697.5	18.8	6.8	11.4	36.2	1.1	2.8	345.6	0.5	274.7	79.1	43.4
B875887	Core	20	16	401.9	16.7	5.6	8.9	27.1	0.3	2.4	193.7	0.2	164.5	46.9	29.0
B875888	Core	55	196	626.6	29.2	10.8	14.4	46.2	5.4	4.6	296.1	0.7	281.1	75.1	52.1
B875889	Core	27	37	987.9	22.1	7.2	14.1	45.6	2.4	3.1	525.6	0.4	387.9	112.3	56.4
B875890	Pulp	33	38	825.5	21.3	7.1	14.0	42.2	2.2	3.0	418.2	0.5	311.9	91.4	52.5
B875891	Core	30	41	851.2	25.7	8.8	14.2	45.0	2.2	3.9	431.4	0.6	339.8	98.4	53.2
B875892	Core	36	74	>1000	24.7	8.6	14.5	48.9	1.2	3.7	616.7	0.5	412.1	127.3	59.0
B875893	Core	12	61	854.1	24.1	8.0	13.5	44.9	1.1	3.6	428.9	0.5	341.0	98.3	54.5

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		Zn	Zr	Ce	Dy	Er	Eu	Gd	Hf	Но	La	Lu	Nd	Pr	Sm
		30-4A-TR	30-4A-TR	REE-LB-MS											
Sample	Sample	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Description	Type	2	1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
B875894	Core	19	35	603.6	15.2	5.1	9.1	29.6	0.6	2.2	294.2	0.3	238.7	68.8	36.4
B875895	Core	44	37	>1000	26.5	8.2	18.4	62.6	1.4	3.7	>1000	0.5	589.3	186.4	77.4
B875896	Core	30	60	>1000	19.7	6.2	13.6	45.7	2.4	2.7	605.6	0.4	399.2	123.2	56.8
B875897	Core	38	53	>1000	29.4	9.8	17.5	58.8	2.3	4.3	762.4	0.5	514.7	159.5	69.0
B875898	Core	70	213	>1000	31.6	11.8	16.3	59.7	4.7	4.9	573.3	1.0	449.8	130.2	70.8
B875899	Core	78	310	577.3	24.6	8.7	12.7	43.5	8.7	3.7	278.2	0.6	243.0	66.8	49.5
B880250 Dup	Core	80	336	579.5	25.5	9.0	12.8	45.4	9.2	3.8	278.3	0.6	248.8	69.1	50.4
B880251	Core	35	86	>1000	33.9	11.4	16.7	62.8	3.9	5.0	627.2	0.7	441.8	133.6	69.6
B880252	Core	37	33	658.8	17.2	5.3	9.3	33.9	< 0.1	2.4	286.6	0.2	263.2	76.1	40.3
B880253	Core	99	188	570.3	18.0	6.3	10.9	34.3	6.3	2.6	250.7	0.4	243.4	68.8	39.6
B880254	Core	30	101	>1000	30.1	10.3	16.4	60.1	1.4	4.5	549.3	0.6	488.5	140.2	72.5
B880255	Core	50	88	>1000	31.9	10.2	20.6	70.4	2.4	4.5	739.3	0.7	601.7	177.7	82.4
B880256	Core	38	225	889.2	27.2	9.6	15.1	49.8	1.9	4.0	445.4	0.7	365.6	104.5	57.9
B880257	Core	29	24	491.3	17.1	6.0	9.7	29.0	4.8	2.6	220.9	0.3	206.8	57.7	34.4
B880258	Core	49	33	722.0	18.5	5.5	11.6	38.1	2.2	2.5	332.3	0.3	304.1	87.4	48.3
B880259	Core	155	605	853.3	26.9	8.9	16.7	52.7	13.5	3.9	394.0	0.5	378.9	103.6	63.6
B880260	Pulp	510	123	>1000	15.1	4.8	13.3	44.3	< 0.1	2.1	>1000	0.4	490.4	166.1	54.5
B880261	Core	99	130	551.6	17.3	5.7	10.0	32.4	4.6	2.4	262.7	0.3	234.0	64.4	37.6
B880262	Core	28	52	>1000	22.1	7.2	13.6	49.0	1.1	3.0	530.7	0.5	424.6	122.1	64.9
B880263	Core	11	25	923.3	25.2	9.5	13.3	48.8	0.1	4.0	464.2	0.7	389.5	107.5	61.8
B880264	Core	28	39	613.6	20.2	6.8	12.0	36.9	5.9	3.0	268.2	0.4	261.8	71.8	43.1

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		Tb	Tm	Yb	Y	Ta	Th	U
			REE-LB-MS			Ta-4A-LL-MS		U-4A-LL-MS
Sample	Sample	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Description	Type	0.1	0.1	0.1	0.10	0.05	0.20	0.10
B875854	Core	4.0	0.6	4.0	67.7	7.47	154.51	4.83
B875855	Core	2.6	0.4	3.3	52.9	2.77	80.12	1.63
B875856	Core	3.1	0.5	3.8	74.2	21.71	131.80	8.48
B875857	Core	2.3	0.3	2.2	38.6	< 0.05	137.41	10.56
B875858	Core	3.7	0.3	2.9	47.0	2.63	101.21	3.88
B875859	Core	5.1	0.8	5.3	85.5	70.65	201.43	64.20
B875860 Dup	Core	4.9	0.8	5.3	83.9	69.36	212.43	67.46
B875861	Core	3.5	0.6	3.7	64.2	10.45	136.87	17.00
B875862	Core	4.5	0.9	5.9	90.2	71.95	123.36	98.28
B875863	Core	2.8	0.5	3.5	54.5	11.40	147.03	9.76
B875864	Core	2.6	0.4	3.2	51.9	16.84	64.58	11.71
B875865	Core	2.8	0.5	3.7	58.2	11.60	112.60	8.53
B875866	Core	3.6	0.8	5.8	80.6	2.18	261.19	32.13
B875867	Core	2.3	0.4	3.1	47.4	17.27	94.09	12.46
B875868	Core	3.5	0.7	4.3	71.7	44.57	231.91	20.86
B875869	Core	4.0	0.6	4.2	73.6	8.18	153.97	8.26
B875870	Pulp	4.4	1.0	6.5	94.8	40.32	224.01	2.52
B875871	Core	4.2	0.6	3.9	78.2	16.36	135.08	17.47
B875872	Core	5.6	1.2	7.0	118.9	32.38	381.45	11.54
B875873	Core	3.2	0.5	3.4	61.5	23.34	141.53	16.64
B875874	Core	1.8	0.3	2.0	35.4	111.89	596.09	8.63
B875875	Core	2.0	0.3	2.5	41.0	42.09	222.65	12.38
B875876	Core	2.6	0.4	3.4	49.2	2.16	585.40	28.39
B875877	Core	0.4	0.1	1.8	17.3	3.61	16.14	4.44
B875878	Core	2.9	0.5	3.7	55.2	0.58	836.07	5.37
B875879	Core	2.4	0.4	2.6	47.1	3.58	480.33	30.03
B875880 Dup	Core	2.5	0.4	2.6	47.5	3.18	507.22	32.17
B875881	Core	3.9	0.7	4.1	77.8	75.75	231.36	50.07
B875882	Core	3.2	0.5	3.0	61.8	4.85	117.50	7.03
B875883	Core	4.9	0.8	5.0	95.7	28.35	53.98	19.63
B875884	Core	3.2	0.6	3.6	68.5	28.99	146.48	21.40
B875885	Core	5.1	1.0	6.3	107.9	132.63	281.43	71.36
B875886	Core	3.3	0.7	4.6	78.1	99.20	133.38	46.31
B875887	Core	2.9	0.5	3.0	63.3	40.14	90.43	11.37
B875888	Core	5.1	1.1	6.8	114.6	52.02	164.78	22.51
B875889	Core	3.9	0.7	4.5	79.4	23.74	109.83	9.01
B875890	Pulp	3.8	0.7	4.8	74.4	29.89	151.47	9.59
B875891	Core	4.4	0.9	5.5	96.7	20.05	126.41	12.70
B875892	Core	4.2	0.8	5.3	89.8	62.83	178.15	13.65
B875893	Core	4.3	0.8	5.3	85.6	68.09	215.16	11.59

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		Tb	Tm	Yb	Y	Ta	Th	U	
		REE-LB-MS	REE-LB-MS	REE-LB-MS	REE-LB-MS	Ta-4A-LL-MS	Th-4A-LL-MS	U-4A-LL-MS	
Sample	Sample	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Description	Type	0.1	0.1	0.1	0.10	0.05	0.20	0.10	
B875894	Core	2.6	0.5	3.5	58.0	1.72	139.60	5.23	
B875895	Core	4.4	0.8	5.4	97.9	1.11	146.16	6.26	
B875896	Core	3.5	0.6	4.2	70.2	4.21	77.69	3.90	
B875897	Core	5.1	1.0	5.5	109.4	3.96	201.95	5.75	
B875898	Core	5.5	1.3	8.7	125.1	8.83	126.44	7.48	
B875899	Core	4.5	0.9	6.0	98.7	17.62	109.17	10.30	
B880250 Dup	Core	4.6	0.9	5.9	101.5	21.04	120.01	10.50	
B880251	Core	6.1	1.1	6.7	129.2	8.05	225.74	4.78	
B880252	Core	2.9	0.5	3.0	61.5	0.72	136.12	2.35	
B880253	Core	3.2	0.6	3.9	74.7	8.70	81.93	11.81	
B880254	Core	5.2	1.0	6.4	117.6	2.69	200.44	3.74	
B880255	Core	5.6	1.1	6.6	117.8	2.40	128.94	6.77	
B880256	Core	4.8	1.1	6.4	106.9	0.19	95.70	7.26	
B880257	Core	3.0	0.6	3.8	66.7	3.21	88.60	3.49	
B880258	Core	3.3	0.5	3.2	61.8	2.52	107.80	3.45	
B880259	Core	5.0	0.9	5.6	99.1	24.35	116.85	10.64	
B880260	Pulp	2.3	0.6	4.1	59.3	26.09	54.89	28.98	
B880261	Core	3.0	0.6	3.7	65.0	21.08	77.51	7.78	
B880262	Core	4.0	0.7	4.8	80.0	2.36	128.48	2.72	
B880263	Core	4.5	1.0	6.2	103.8	15.42	77.00	4.98	
B880264	Core	3.6	0.6	4.0	74.6	2.01	123.25	9.15	

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		Nb2O5	A12O3	BaO	CaO	Cr2O3	Fe2O3	K2O	LOI	MgO	MnO	Na2O	P2O5	SiO2	TiO2
		Nb2O5-AD3-OR-ICP	WR-FS-ICP												
Sample	Sample	%	%	%	%	%	%	%	%	%	%	%	%	%	%
Description	Type	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
B875854	Core	1.05													
B875854 Dup		1.00													
QCV1010-00691-0002-BLK		< 0.01													
STD-OKA-1 expected		0.53													
STD-OKA-1 result		0.54													
B875872	Core	0.75													
B875872 Dup		0.73													
QCV1010-00691-0005-BLK		< 0.01													
STD-OKA-1 expected		0.53													
STD-OKA-1 result		0.54													
B875890	Pulp	0.48													
B875890 Dup		0.46													
QCV1010-00691-0008-BLK		< 0.01													
STD-OKA-1 expected		0.53													
STD-OKA-1 result		0.53													
B880258	Core	0.08													
B880258 Dup		0.09													
B875854	Core		0.29	0.01	28.48	< 0.01	24.00	0.14	22.73	11.45	0.38	0.05	8.92	1.62	0.39
B875854 Dup			0.28	0.01	28.50	< 0.01	24.04	0.12	22.81	11.50	0.38	0.05	9.00	1.63	0.41
QCV1010-00695-0002-BLK			< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
B875872	Core		0.92	< 0.01	28.02	< 0.01	6.42	0.03	34.09	17.80	0.30	0.05	5.08	6.00	0.25
B875872 Dup			0.92	< 0.01	30.91	< 0.01	6.34	0.03	33.10	17.62	0.29	0.05	5.07	5.97	0.24
QCV1010-00695-0005-BLK			< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
B875890	Pulp		0.23	< 0.01	32.78	< 0.01	5.92	0.05	37.91	17.63	0.48	0.05	4.12	1.63	0.14
B875890 Dup			0.23	< 0.01	31.16	< 0.01	5.99	0.05	37.84	17.84	0.48	0.05	4.27	1.67	0.12
QCV1010-00695-0008-BLK			< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
B880258	Core		0.57	0.01	28.46	< 0.01	8.08	0.11	38.02	17.47	0.67	0.03	3.73	2.71	0.28
B880258 Dup			0.58	0.01	29.87	< 0.01	7.83	0.11	38.16	16.99	0.65	0.03	3.52	2.76	0.27
QCV1010-00695-0011-BLK			< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
STD-SY-4 expected			20.69		8.05		6.21	1.66	4.56	0.54	0.11	7.10	0.13	49.90	0.29
STD-SY-4 result			19.51	0.04	7.81	< 0.01	6.31	1.77	4.53	0.57	0.11	6.51	0.14	50.57	0.28

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		Total	Ag	Al	As	Ba	Bi	Ca	Cd	Со	Cr	Cu	Fe	K	La
		WR-FS-ICP	30-4A-TR												
Sample	Sample	%	ppm	%	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%	%	ppm
Description	Type	0.01	0.5	0.01	5	10	2	0.01	0.5	1	1	1	0.01	0.01	10
B875854	Core		< 0.5	0.13	<5	89	<2	>10	< 0.5	21	12	58	>10	0.07	351
B875854 Dup			< 0.5	0.13	<5	84	<2	>10	< 0.5	24	11	37	>10	0.08	382
QCV1010-00692-0002-BLK			< 0.5	< 0.01	<5	<10	<2	< 0.01	< 0.5	<1	<1	<1	< 0.01	< 0.01	<10
STD-CDN-ME-6 expected			101.0									6130			
STD-CDN-ME-6 result			96.5									6437			
B875872	Core		0.7	0.45	7	29	<2	>10	< 0.5	12	15	51	3.90	0.01	359
B875872 Dup			0.7	0.45	7	29	<2	>10	< 0.5	11	15	50	3.83	0.01	356
QCV1010-00692-0005-BLK			< 0.5	< 0.01	<5	<10	<2	< 0.01	< 0.5	<1	<1	<1	< 0.01	< 0.01	<10
STD-CDN-ME-6 expected			101.0									6130			
STD-CDN-ME-6 result			99.2									6443			
B875890	Pulp		< 0.5	0.13	29	66	11	>10	< 0.5	14	<1	27	5.51	0.04	565
B875890 Dup			< 0.5	0.11	39	63	<2	>10	< 0.5	33	8	28	5.92	0.03	621
QCV1010-00692-0008-BLK			< 0.5	< 0.01	<5	<10	<2	< 0.01	< 0.5	<1	<1	<1	< 0.01	< 0.01	<10
STD-CDN-ME-8 expected			61.7									1030			
STD-CDN-ME-8 result			58.9									1062			
B880258	Core		< 0.5	0.30	37	167	<2	>10	< 0.5	28	15	11	6.48	0.09	480
B880258 Dup			< 0.5	0.30	35	164	<2	>10	< 0.5	22	17	11	6.60	0.09	488
QCV1010-00692-0011-BLK			< 0.5	< 0.01	<5	<10	<2	< 0.01	< 0.5	<1	<1	<1	< 0.01	< 0.01	<10
STD-CDN-ME-6 expected			101.0									6130			
STD-CDN-ME-6 result			96.7									6210			
B875854	Core	98.47													
B875854 Dup		98.73													
QCV1010-00695-0002-BLK		< 0.01													
B875872	Core	98.97													
B875872 Dup		100.55													
QCV1010-00695-0005-BLK		< 0.01													
B875890	Pulp	100.96													
B875890 Dup		99.72													
QCV1010-00695-0008-BLK		< 0.01													
B880258	Core	100.14													
B880258 Dup		100.78													
QCV1010-00695-0011-BLK		< 0.01													
STD-SY-4 expected															
STD-SY-4 result		98.14													

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		Mg	Mn	Мо	Na	Ni	P	Pb	Sb	Sc	Sr	Ti	Tl	V	W
		30-4A-TR													
Sample	Sample	%	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm
Description	Type	0.01	5	1	0.01	1	10	2	5	1	1	0.01	10	1	10
B875854	Core	6.36	3128	1	0.04	6	>10000	16	<5	3	2592	0.20	<10	277	<10
B875854 Dup		6.19	3048	2	0.04	5	>10000	17	<5	3	2516	0.19	<10	295	<10
QCV1010-00692-0002-BLK		< 0.01	<5	<1	< 0.01	<1	<10	<2	<5	<1	<1	< 0.01	<10	<1	<10
STD-CDN-ME-6 expected								10200							
STD-CDN-ME-6 result								>10000							
B875872	Core	9.75	2215	4	0.03	8	>10000	26	<5	8	773	0.08	<10	93	<10
B875872 Dup		9.49	2181	3	0.04	8	>10000	25	<5	8	781	0.08	<10	93	<10
QCV1010-00692-0005-BLK		< 0.01	<5	<1	< 0.01	<1	<10	<2	<5	<1	<1	< 0.01	<10	<1	<10
STD-CDN-ME-6 expected								10200							
STD-CDN-ME-6 result								>10000							
B875890	Pulp	>10	5663	<1	0.04	13	>10000	96	<5	11	2019	0.06	<10	53	13
B875890 Dup		>10	5446	<1	0.04	15	>10000	94	<5	10	1916	0.05	<10	51	<10
QCV1010-00692-0008-BLK		< 0.01	<5	<1	< 0.01	<1	<10	<2	<5	<1	<1	< 0.01	<10	<1	<10
STD-CDN-ME-8 expected								19400							
STD-CDN-ME-8 result								>10000							
B880258	Core	>10	6987	<1	0.03	12	>10000	12	<5	7	2485	0.17	<10	52	
B880258 Dup		>10	6947	2	0.03	14	>10000	15	<5	7	2471	0.18	<10	52	
QCV1010-00692-0011-BLK		< 0.01	<5	<1	< 0.01	<1	<10	<2	<5	<1	<1	< 0.01	<10	<1	<10
STD-CDN-ME-6 expected								10200							
STD-CDN-ME-6 result								9903							

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		Zn	Zr	Ce	Dy	Er	Eu	Gd	Hf	Но	La	Lu	Nd	Pr	Sm
~ .		30-4A-TR		REE-LB-MS	REE-LB-MS			REE-LB-MS							
Sample	Sample	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Description	Туре	2	1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
B875854	Core	90	65												
B875854 Dup		94	66												
QCV1010-00692-0002-BLK		<2	<1												
STD-CDN-ME-6 expected		5170													
STD-CDN-ME-6 result	a	5465													
B875872	Core	13	60												
B875872 Dup QCV1010-00692-0005-BLK		13	60												
`		<2 5170	<1												
STD-CDN-ME-6 expected															
STD-CDN-ME-6 result	D 1	5441	20												
B875890 B875890 Dup	Pulp	33 29	38 37												
OCV1010-00692-0008-BLK		<2	<1												
STD-CDN-ME-8 expected		19200	<1												
STD-CDN-ME-8 expected STD-CDN-ME-8 result		>10000													
B880258	Core	>10000	33												
B880258 Dup	Core	49	34												
QCV1010-00692-0011-BLK		<2	<1												
STD-CDN-ME-6 expected		5170	<1												
STD-CDN-ME-6 result		5212													
B875854	Core	3212		833.6	20.8	6.2	15.3	45.0	8.5	2.9	382.8	0.4	343.9	101.0	56.7
B875854 Dup	Corc			832.3	20.9	6.3	15.8	46.4	8.4	2.8	383.3	0.4	351.1	100.6	57.0
QCV1010-00693-0002-BLK				<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
B875872	Core			817.1	31.2	11.2	17.3	52.6	2.6	4.6	405.4	0.8	339.7	94.8	62.5
B875872 Dup	2010			830.9	31.3	11.2	17.2	52.9	2.7	4.6	410.4	0.8	339.6	96.2	63.4
QCV1010-00693-0005-BLK				<0.1	<0.1	< 0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
B875890	Pulp			825.5	21.3	7.1	14.0	42.2	2.2	3.0	418.2	0.5	311.9	91.4	52.5
B875890 Dup				807.1	21.3	7.1	14.0	42.7	2.2	3.1	423.2	0.5	316.2	90.5	51.0
QCV1010-00693-0008-BLK				< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
B880258	Core			722.0	18.5	5.5	11.6	38.1	2.2	2.5	332.3	0.3	304.1	87.4	48.3
B880258 Dup				742.2	18.4	5.4	11.7	37.9	2.1	2.5	343.7	0.3	305.2	88.2	49.3
QCV1010-00693-0011-BLK				< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	<0.1	< 0.1	<0.1	< 0.1	<0.1
STD-SY-4 expected				122.0	18.2	14.2	2.0	14.0	10.6	4.3	58.0	2.1	57.0	15.0	12.7
STD-SY-4 result				129.8	18.5	14.4	2.0	14.8	10.9	4.3	62.0	2.0	58.4	15.4	12.9

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		Tb	Tm	Yb	Y	Ta	Th	U
			REE-LB-MS			Ta-4A-LL-MS		U-4A-LL-MS
Sample	Sample	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Description	Туре	0.1	0.1	0.1	0.10	0.05	0.20	0.10
B875854	Core	4.0	0.6	4.0	67.7	0.03	0.20	0.10
B875854 Dup	2310	4.0	0.6	4.0	68.9			
OCV1010-00693-0002-BLK		<0.1	<0.1	<0.1	< 0.10			
B875872	Core	5.6	1.2	7.0	118.9			
B875872 Dup		5.7	1.2	7.3	118.5			
QCV1010-00693-0005-BLK		<0.1	<0.1	<0.1	< 0.10			
B875890	Pulp	3.8	0.7	4.8	74.4			
B875890 Dup	·r	3.9	0.7	4.9	76.2			
QCV1010-00693-0008-BLK		<0.1	<0.1	<0.1	< 0.10			
B880258	Core	3.3	0.5	3.2	61.8			
B880258 Dup		3.2	0.5	3.2	61.2			
QCV1010-00693-0011-BLK		<0.1	<0.1	< 0.1	< 0.10			
STD-SY-4 expected		2.6	2.3	14.8	119.0			
STD-SY-4 result		2.4	2.2	14.6	119.5			
B875854	Core					7.47	154.51	4.83
B875854 Dup						7.40	137.26	4.85
QCV1105-00497-0002-BLK						< 0.05	< 0.20	< 0.10
B875872	Core					32.38	381.45	11.54
B875872 Dup						33.54	376.59	11.60
QCV1105-00497-0005-BLK						< 0.05	< 0.20	< 0.10
B875890	Pulp					29.89	151.47	9.59
B875890 Dup	•					29.13	151.67	9.72
QCV1105-00497-0008-BLK						< 0.05	< 0.20	< 0.10
B880258	Core					2.52	107.80	3.45
B880258 Dup						2.52	104.45	3.42
QCV1105-00497-0011-BLK						< 0.05	< 0.20	< 0.10

Certificate of Analysis

Inspectorate Exploration & Mining Services Ltd. #200 - 11620 Horseshoe Way

Date Received: 11/01/2010

Date Completed: 03/16/2011

Invoice:

Richmond, British Columbia V7A 4V5 Canada

Phone: 604-272-7818

Distribution List

Attention: Eric Titley

Suite 1020-800 West Pender St.

Vancouver, BC V6C 2V6

EMail: erictitley@hdimining.com

Attention: Jeremy Crozier

EMail: jeremycrozier@hdimining.com

Attention: T.Kodata

EMail: tkodata@hdimining.com

Submitted By: Aley Corporation

Suite 1020-800 West Pender St.

Vancouver, BC V6C 2V6

Attention: Eric Titley

Project: Aley 2010 Project

Purchase Order: ALY 0002

Description: ALEY 2010-018

Location	Samples	Type	Preparation Description
Vancouver, BC	86	Core	SP-RX-2K/Rock/Chips/Drill Core
Vancouver, BC	4	Pulp	SP-PU/Pulp Handling, submitted pulps

	Location	Method	Description	
	Vancouver, BC	REE-LB-MS	REE Group by ICP-MS	
	Vancouver, BC	Nb2O5-AD3-OR-ICP	Niobium by multi-acid digestion, ICP	
	Vancouver, BC	Ta-4A-LL-MS	Tantalum, 4 Acid, ICP	
	Vancouver, BC	Th-4A-LL-MS	Thorium, 4 Acid, Low Level	
	Vancouver, BC	30-4A-TR	30 Element, 4 Acid, ICP, Trace Level	
	Vancouver, BC	U-4A-LL-MS	Uraium, 4 Acid, Low Level	
	Vancouver, BC	WR-FS-ICP	Whole Rock, Lithium Borate Fusion, ICP	

Submittal Information

Uranium (U), Tantalum (Ta), and Thorium (Th) numbers shown have been revised with accurate detection limits.

The results of this assay were based solely upon the content of the sample submitted. Any decision to invest should be made only after the potential investment value of the claim or deposit has been determined based on the results of assays of multiple samples of geologic materials collected by the prospective investor or by a qualified person selected by him and based on an evaluation of all engineering data which is available concerning any proposed project. For our complete terms and conditions please see our website at www.inspectorate.com.

Βv

Mike Caron, Lab Manager

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		Nb2O5	Al2O3	BaO	CaO	Cr2O3	Fe2O3	K2O	LOI	MgO	MnO	Na2O	P2O5	SiO2	TiO2
		Nb2O5-AD3-OR-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP
Sample	Sample	%	%	%	%	%	%	%	%	%	%	%	%	%	%
Description	Type	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
B880265	Core	0.29	0.30	< 0.01	36.35	< 0.01	3.09	0.05	40.20	18.20	0.34	0.03	3.99	0.34	0.05
B880266	Core	0.12	0.20	0.01	38.63	< 0.01	3.65	< 0.01	39.20	16.66	0.47	0.04	4.63	0.23	0.07
B880267	Core	0.09	0.17	0.01	36.68	< 0.01	3.98	0.01	39.20	18.13	0.53	0.04	4.15	0.13	0.10
B880268	Core	0.10	0.16	0.01	36.81	< 0.01	4.64	< 0.01	39.15	17.67	0.56	0.03	4.12	< 0.01	0.10
B880269	Core	0.20	0.17	0.04	38.18	< 0.01	3.88	< 0.01	35.29	13.57	0.45	0.03	8.14	0.14	0.15
B880270 Dup	Core	0.21	0.18	0.04	38.67	0.02	3.90	0.03	35.28	13.44	0.47	0.05	8.16	0.11	0.15
B880271	Core	0.10	0.33	0.01	35.70	< 0.01	3.91	0.02	38.68	18.18	0.40	0.03	5.24	0.44	0.10
B880272	Core	0.16	0.47	0.01	32.22	< 0.01	4.46	0.15	35.26	17.15	0.40	0.15	5.72	4.98	0.09
B880273	Core	0.05	0.55	0.01	32.28	< 0.01	4.15	0.10	40.59	17.52	0.41	0.09	2.63	1.24	0.04
B880274	Core	0.05	2.92	0.04	24.58	< 0.01	5.12	0.57	32.47	16.60	0.31	0.09	3.09	12.00	0.36
B880275	Core	0.06	4.29	0.13	18.98	< 0.01	6.30	2.11	24.38	14.92	0.36	0.88	2.60	24.36	0.45
B880276	Core	0.04	0.47	0.01	35.97	< 0.01	3.96	0.09	37.42	18.55	0.32	0.03	5.97	1.00	0.05
B880277	Core	< 0.01	0.22	< 0.01	35.69	< 0.01	3.90	0.01	38.21	18.31	0.31 0.36	0.03	5.81	0.34	0.04
B880278 B880279	Core Core	0.04	0.30 0.28	<0.01 <0.01	35.18 35.61	0.01 <0.01	6.59 4.11	0.03	34.98 39.39	15.69 17.28	0.36	0.03	7.57 5.15	2.23 0.43	0.08
B880280		0.02	0.28	0.01	28.80	<0.01	17.56	0.04	29.69	17.28	0.57	0.05	6.42	2.51	0.03
B880281	Pulp Core	0.72	0.36	< 0.02	37.41	< 0.01	7.65	< 0.07	32.75	15.43	0.32	0.03	7.68	1.07	0.07
B880282	Core	0.02	0.63	< 0.01	35.68	< 0.01	6.59	0.01	34.80	15.43	0.33	0.03	6.99	1.58	0.10
B880283	Core	0.08	0.03	0.01	29.97	< 0.01	8.56	0.01	36.69	17.06	0.43	0.04	1.40	4.60	0.21
B880284	Core	0.06	0.21	< 0.01	32.55	< 0.01	6.74	0.03	37.71	18.35	0.44	0.04	3.04	0.29	0.03
B880285	Core	0.13	4.34	0.11	23.77	< 0.01	7.38	1.50	25.15	14.12	0.34	0.69	2.70	18.53	0.82
B880286	Core	0.05	1.60	0.11	28.92	< 0.01	7.40	0.20	32.24	15.82	0.34	0.16	3.01	9.72	0.40
B880287	Core	0.34	2.19	0.04	30.17	0.01	6.13	0.49	31.67	13.82	0.36	0.39	4.01	10.36	0.45
B880288	Core	0.07	0.17	< 0.01	31.45	< 0.01	4.38	0.02	35.24	17.74	0.48	0.03	3.17	7.20	0.63
B880289	Core	0.07	2.61	< 0.01	26.84	0.01	6.88	0.05	31.45	15.80	0.22	0.03	4.14	11.60	0.72
B880290 Dup	Core	0.07	2.70	< 0.01	26.58	0.01	6.89	0.05	31.06	16.04	0.21	0.03	4.30	11.41	0.76
B880291	Core	0.62	0.34	< 0.01	32.45	< 0.01	5.26	0.03	37.50	17.72	0.23	0.03	4.13	1.46	0.04
B880292	Core	0.05	1.23	< 0.01	28.95	< 0.01	5.28	0.03	37.66	18.51	0.31	0.03	2.25	4.91	0.18
B880293	Core	0.04	3.09	< 0.01	24.51	0.01	7.78	0.06	32.57	17.28	0.62	0.05	0.37	12.89	0.31
B880294	Core	0.08	2.72	0.02	27.28	< 0.01	7.10	0.65	31.80	14.20	0.67	0.27	1.93	14.08	0.41
B880295	Core	0.05	0.64	< 0.01	34.96	< 0.01	3.91	0.06	34.20	15.25	0.35	0.10	8.23	4.28	0.07
B880296	Core	0.05	0.45	< 0.01	34.76	< 0.01	3.54	0.04	35.94	16.11	0.24	0.11	7.59	3.62	0.14
B880297	Core	0.04	0.13	< 0.01	33.40	< 0.01	3.56	< 0.01	41.23	19.56	0.62	0.04	4.22	0.32	0.03
B880298	Core	0.04	0.11	< 0.01	29.98	< 0.01	5.35	< 0.01	41.69	18.95	0.58	0.03	1.83	0.78	0.01
B880299	Core	0.06	0.28	< 0.01	31.34	< 0.01	3.92	< 0.01	39.08	17.44	0.47	0.03	4.41	2.19	0.08
B880300	Pulp	0.47	0.25	< 0.01	31.43	< 0.01	5.49	0.03	39.05	17.12	0.47	0.04	4.60	1.51	0.11
B880301	Core	0.02	0.23	< 0.01	31.98	< 0.01	3.37	< 0.01	40.09	18.02	0.59	0.03	3.94	1.49	0.01
B880302	Core	0.03	0.52	< 0.01	33.32	< 0.01	3.73	0.01	36.76	18.68	0.32	0.03	4.69	3.79	0.11
B880303	Core	0.02	0.40	0.05	47.34	< 0.01	5.98	0.16	31.11	5.49	0.25	0.22	6.11	5.85	0.23
B880304	Core	< 0.01	13.93	0.12	4.39	0.04	3.89	2.89	1.10	1.49	0.11	2.95	0.28	67.42	0.47

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		Nb2O5	Al2O3	BaO	CaO	Cr2O3	Fe2O3	K2O	LOI	MgO	MnO	Na2O	P2O5	SiO2	TiO2
		Nb2O5-AD3-OR-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP
Samp	le Sample	%	%	%	%	%	%	%	%	%	%	%	%	%	%
Description		0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
B88030		< 0.01	0.54	0.05	45.23	< 0.01	3.88	0.21	33.26	7.13	0.17	0.11	5.20	4.63	0.20
B88030		0.01	1.02	0.02	30.09	< 0.01	4.19	0.36	30.94	16.16	0.25	0.56	3.53	12.05	0.20
B88030		< 0.01	0.27	< 0.01	31.11	< 0.01	2.38	< 0.01	40.09	20.95	0.25	0.04	2.94	2.14	0.06
B88030		< 0.01	0.74	0.06	45.54	< 0.01	3.15	0.34	32.76	5.60	0.15	0.19	4.40	6.35	0.10
B88030		0.82	1.75	0.02	36.25	< 0.01	4.80	0.12	32.78	13.32	0.52	0.04	2.09	5.83	0.05
B880310 Dt	•	0.83	1.83	< 0.01	36.55	< 0.01	4.69	< 0.01	32.76	13.94	0.54	0.04	2.07	6.03	0.03
B8803		0.46	4.42	0.10	25.14	0.01	7.58	1.46	32.55	13.32	0.37	0.69	1.02	15.89	0.79
B8803		0.27	1.50	0.03	32.74	< 0.01	5.92	0.28	35.04	15.54	0.68	0.14	5.56	2.45	0.27
B8803		0.02	0.25	< 0.01	35.91	< 0.01	6.63	0.03	35.99	16.68	0.48	0.04	1.76	1.51	0.11
B8803		0.07	0.73	0.01	31.75	< 0.01	5.80	0.07	37.28	15.32	0.66	0.03	4.72	3.57	0.22
B8803		0.12	3.97	0.08	22.40	< 0.01	6.85	2.02	25.82	15.36	0.46	0.73	2.75	17.75	0.70 0.73
B8803		0.15	3.78	0.06	24.76	0.01	6.72	1.32	27.99	13.84	0.53	0.94 0.29	3.22	16.36	
B88033 B88033		0.14 0.10	2.45 1.29	0.05 <0.01	27.24 34.32	<0.01 <0.01	7.94 5.32	1.19 0.23	33.40 34.87	14.34 18.11	0.80 0.53	0.29	2.15 4.43	12.38	0.36 0.16
B8803		0.10	0.30	<0.01	31.40	<0.01	5.50	0.23	39.70	15.54	0.53	0.08	3.70	3.85 2.88	0.16
B88032		0.12	0.30	0.01	36.55	< 0.01	5.10	0.02	36.82	13.12	0.64	0.04	4.08	3.44	0.03
B88032		0.08	0.21	< 0.02	32.30	< 0.01	4.22	0.03	40.04	18.37	0.43	0.08	3.35	1.56	0.13
B88032		0.26	0.09	< 0.01	33.13	< 0.01	4.74	0.02	39.21	15.67	0.50	0.03	4.61	2.30	0.01
B88032		0.30	0.07	< 0.01	33.03	< 0.01	4.74	< 0.01	39.27	16.95	0.30	0.03	3.71	2.30	0.02
B88032		0.16	0.06	< 0.01	33.56	< 0.01	5.19	< 0.01	41.95	18.06	0.55	0.03	2.59	0.12	0.03
B88032		0.23	0.18	< 0.01	32.57	< 0.01	3.91	< 0.01	38.78	16.17	0.38	0.03	5.59	1.69	0.03
B88032		0.05	0.28	0.01	34.04	< 0.01	4.35	0.01	36.40	14.90	0.44	0.05	7.86	1.36	0.03
B88032		0.10	0.19	0.02	33.44	< 0.01	4.75	< 0.01	37.86	14.80	0.56	0.03	5.96	1.29	0.02
B88032		< 0.01	0.12	0.01	31.84	< 0.01	4.40	< 0.01	40.00	17.47	0.38	0.03	4.71	0.59	0.02
B88032		0.28	0.09	< 0.01	35.20	< 0.01	4.69	< 0.01	37.78	14.20	0.49	0.03	6.59	0.05	0.02
B880330 Du	ip Core	0.31	0.10	< 0.01	35.40	< 0.01	4.62	< 0.01	37.79	14.40	0.48	0.03	6.38	0.05	0.02
B88033	•	0.34	0.13	0.02	36.17	< 0.01	5.15	0.02	37.33	13.27	0.46	0.02	6.34	0.35	0.03
B88033	Core	0.07	0.92	0.03	35.59	< 0.01	16.20	0.23	23.21	5.95	0.52	0.09	12.24	4.29	0.26
B88033		0.05	0.24	< 0.01	34.03	< 0.01	3.85	0.01	39.11	15.56	0.38	0.02	5.46	0.23	0.04
B88033	34 Core	0.03	0.33	0.01	33.14	< 0.01	4.76	0.03	38.06	16.16	0.38	0.05	6.61	0.57	0.05
B88033	S5 Core	0.10	0.26	< 0.01	34.70	< 0.01	5.27	0.03	38.01	14.80	0.34	0.02	4.94	0.57	0.04
B88033	6 Core	0.15	0.18	0.01	35.48	< 0.01	4.44	0.03	39.98	14.73	0.49	0.03	4.25	0.16	0.03
B88033	7 Core	0.06	0.06	< 0.01	31.45	< 0.01	2.47	< 0.01	41.64	19.88	0.55	0.02	3.40	< 0.01	< 0.01
B88033	88 Core	0.12	4.03	0.01	23.94	< 0.01	5.34	0.23	30.17	18.29	0.39	0.06	3.52	12.85	0.23
B88033	S9 Core	0.22	2.41	0.01	27.66	< 0.01	4.94	0.05	34.36	17.38	0.41	0.02	2.69	9.41	0.15
B88034	10 Pulp	0.76	0.53	0.02	28.70	< 0.01	19.45	0.08	29.00	13.16	0.42	0.05	5.94	1.88	0.58
B88034	11 Core	0.11	1.13	0.01	29.09	< 0.01	5.84	0.03	40.50	19.19	0.49	0.01	1.56	1.87	0.06
B88034		< 0.01	15.42	0.13	4.25	0.05	3.87	3.36	1.18	1.57	0.11	3.52	0.26	68.70	0.46
B88034	3 Core	0.11	0.66	0.01	34.11	< 0.01	4.21	0.03	39.06	16.20	0.37	0.02	4.59	1.03	0.04
B88034	4 Core	0.10	1.63	0.03	24.66	< 0.01	4.06	0.80	33.09	17.77	0.43	0.34	3.19	13.93	0.08

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		Nb2O5	A12O3	BaO	CaO	Cr2O3	Fe2O3	K2O	LOI	MgO	MnO	Na2O	P2O5	SiO2	TiO2
		Nb2O5-AD3-OR-ICP	WR-FS-ICP												
Sample	Sample	%	%	%	%	%	%	%	%	%	%	%	%	%	%
Description	Type	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
B880345	Core	0.02	0.60	< 0.01	31.57	< 0.01	3.98	0.04	37.22	18.62	0.34	0.05	6.32	3.95	0.18
B880346	Core	0.05	0.28	< 0.01	32.31	< 0.01	4.70	< 0.01	40.79	18.81	0.42	0.03	4.11	0.37	0.04
B880347	Core	0.02	0.72	< 0.01	29.13	< 0.01	5.68	0.03	38.94	18.53	0.29	0.03	3.81	2.71	0.11
B880348	Core	0.04	0.44	< 0.01	32.02	< 0.01	4.48	0.01	37.91	16.32	0.30	0.03	5.51	2.34	0.09
B880349	Core	0.05	0.32	< 0.01	35.00	< 0.01	5.28	< 0.01	36.22	15.91	0.38	0.03	6.23	2.43	0.08
B880350 Dup	Core	0.05	0.32	< 0.01	34.78	< 0.01	5.17	< 0.01	36.02	16.10	0.37	0.03	6.18	2.31	0.08
B880351	Core	0.07	0.61	< 0.01	32.73	< 0.01	6.19	< 0.01	36.60	17.44	0.29	0.03	5.88	3.91	0.07
B880352	Core	0.30	0.36	0.01	35.97	< 0.01	5.87	< 0.01	38.62	15.77	0.43	0.03	5.06	0.94	0.09
B880353	Core	0.02	0.67	< 0.01	29.74	< 0.01	7.32	< 0.01	35.19	16.87	0.26	0.03	4.61	5.10	0.16
B880354	Core	0.18	0.27	< 0.01	32.53	< 0.01	4.50	0.01	41.14	18.82	0.39	0.03	3.78	1.78	0.02

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		Total	Ag	Al	As	Ba 20.44 TP	Bi	Ca 30-4A-TR	Cd	Co	Cr	Cu	Fe 30-4A-TR	K 20.44 TP	La 30-4A-TR
Sample	Sample	WR-FS-ICP %	30-4A-TR	30-4A-TR %	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-1K %	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-1R %	30-4A-TR %	
Description	Type	0.01	ppm 0.5	0.01	ppm 5	ppm 10	ppm 2	0.01	ppm 0.5	ppm 1	ppm 1	ppm 1	0.01	0.01	ppm 10
B880265	Core	102.96	<0.5	0.12	10	47	<2	>10	<0.5	3	27	25	2.20	0.04	301
B880266	Core	103.81	< 0.5	0.07	17	89	<2	>10	< 0.5	3	11	11	2.60	0.01	349
B880267	Core	103.16	< 0.5	0.05	11	69	<2	>10	< 0.5	4	11	10	2.74	< 0.01	346
B880268	Core	103.25	< 0.5	0.02	15	79	<2	>10	< 0.5	5	13	9	3.12	< 0.01	422
B880269	Core	100.06	< 0.5	0.04	37	244	<2	>10	< 0.5	3	11	19	2.77	< 0.01	375
B880270 Dup	Core	100.50	< 0.5	0.05	32	230	<2	>10	< 0.5	3	17	19	2.73	0.01	369
B880271	Core	103.04	< 0.5	0.11	16	64	<2	>10	< 0.5	5	16	8	2.84	< 0.01	453
B880272	Core	101.06	< 0.5	0.20	19	76	<2	>10	< 0.5	7	15	16	3.41	0.12	313
B880273	Core	99.62	< 0.5	0.23	10	80	<2	>10	< 0.5	12	19	6	3.02	0.08	255
B880274	Core	98.14	< 0.5	1.40	39	278	<2	>10	< 0.5	10	30	12	3.83	0.45	1019
B880275	Core	99.77	<0.5	2.18	28	866	<2	>10	<0.5	13	33	26	4.91	1.79	948
B880276	Core	103.83	<0.5	0.21	19	85	<2	>10	<0.5	6	18	6	2.58	0.09	499
B880277	Core	102.88	<0.5	0.07	12	26	<2	>10	<0.5	4	14	3	2.44	< 0.01	429
B880278 B880279	Core	103.05	<0.5	0.12	37 10	45	<2	>10	<0.5	11 5	18	4	4.09	0.03	1586
	Core	102.76	<0.5	0.10		49	<2	>10	<0.5	-	28	70	2.50	0.04	345
B880280 B880281	Pulp Core	100.51 102.86	<0.5 <0.5	0.27 0.16	9 23	142 38	<2 <2	>10 >10	<0.5 <0.5	15 10	22 22	3	>10 5.03	0.07 0.01	359 593
B880282	Core	102.94	0.9	0.16	28	40	<2	>10	<0.5	9	24	16	4.37	0.01	942
B880283	Core	99.91	< 0.5	0.13	134	140	<2	>10	<0.5	7	23	11	5.45	0.02	5754
B880284	Core	99.45	<0.5	0.48	112	58	<2	>10	<0.5	8	14	6	4.62	0.02	4831
B880285	Core	99.46	<0.5	2.49	16	716	<2	>10	<0.5	18	39	28	5.31	1.39	572
B880286	Core	99.81	0.6	0.84	48	110	<2	>10	< 0.5	12	32	13	5.22	0.19	1695
B880287	Core	100.10	<0.5	1.15	7	281	<2	>10	< 0.5	12	28	40	4.13	0.45	373
B880288	Core	100.51	< 0.5	0.07	24	26	<2	>10	< 0.5	3	21	19	3.08	0.01	968
B880289	Core	100.36	0.5	1.55	22	23	<2	>10	< 0.5	14	44	10	4.81	0.05	770
B880290 Dup	Core	100.04	< 0.5	1.58	24	24	<2	>10	< 0.5	15	44	9	5.00	0.05	867
B880291	Core	99.20	< 0.5	0.14	9	15	<2	>10	< 0.5	8	17	44	3.74	0.03	445
B880292	Core	99.36	< 0.5	0.57	24	15	<2	>10	< 0.5	6	25	6	3.72	0.02	929
B880293	Core	99.54	< 0.5	1.75	43	51	<2	>10	< 0.5	10	36	6	5.86	0.06	2036
B880294	Core	101.15	< 0.5	1.43	18	154	<2	>10	< 0.5	11	26	10	5.00	0.57	725
B880295	Core	102.05	< 0.5	0.21	12	21	<2	>10	< 0.5	5	17	10	2.80	0.04	398
B880296	Core	102.56	0.5	0.19	14	19	<2	>10	< 0.5	6	18	8	2.53	0.03	463
B880297	Core	103.12	< 0.5	0.04	9	34	<2	>10	< 0.5	5	10	8	2.57	0.01	231
B880298	Core	99.32	< 0.5	0.03	41	28	<2	>10	< 0.5	6	11	5	4.37	< 0.01	971
B880299	Core	99.24	0.8	0.12	6	23	<2	>10	< 0.5	4	17	7	2.91	< 0.01	245
B880300	Pulp	100.12	<0.5	0.12	7	46	<2	>10	<0.5	5	6	35	4.20	0.03	362
B880301	Core	99.77	<0.5	0.09	<5	29	<2	>10	<0.5	3	11	3	2.23	< 0.01	167
B880302	Core	101.97	<0.5	0.25	10	20	<2	>10	<0.5	7	19	3	2.64	0.01	385
B880303	Core	103.19	0.5	0.19	12	343	<2	>10	<0.5	9	12	2	4.29	0.17	496
B880304	Core	99.10	<0.5	7.65	<5	863	<2	3.05	<0.5	9	175	<1	2.57	2.84	34

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		Total	Ag	Al	As	Ba	Bi	Ca	Cd	Co	Cr	Cu	Fe	K	La
C1-	C1-	WR-FS-ICP %	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR
Sample Description	Sample Type	0.01	ppm 0.5	% 0.01	ppm 5	ppm 10	ppm 2	% 0.01	ppm 0.5	ppm 1	ppm 1	ppm 1	% 0.01	% 0.01	ppm 10
B880305	Core	100.62	<0.5	0.01	11	318	<2	>10	<0.5	7	12	3	2.64	0.20	407
B880306	Core	99.39	< 0.5	0.53	6	175	<2	>10	<0.5	7	21	7	2.98	0.33	249
B880307	Core	100.24	< 0.5	0.12	10	13	<2	>10	< 0.5	3	27	4	1.76	< 0.01	403
B880308	Core	99.39	0.5	0.35	8	433	<2	>10	< 0.5	9	11	5	2.32	0.32	311
B880309	Core	97.56	0.6	0.93	75	280	<2	>10	< 0.5	2	11	57	3.24	0.18	402
B880310 Dup	Core	98.49	< 0.5	0.92	73	265	<2	>10	< 0.5	3	14	35	3.25	0.19	395
B880311	Core	103.34	< 0.5	1.25	18	119	<2	>10	< 0.5	5	19	32	3.69	0.13	360
B880312	Core	100.15	0.7	0.65	18	109	<2	>10	< 0.5	8	17	24	4.21	0.15	412
B880313	Core	99.40	< 0.5	0.28	5	313	<2	>10	< 0.5	6	15	3	4.87	0.33	306
B880314	Core	100.15	0.6	0.37	12	115	<2	>10	< 0.5	8	17	12	3.98	0.07	393
B880315	Core	98.89	0.6	2.07	5	515	<2	>10	< 0.5	16	28	46	4.56	1.43	193
B880316	Core	100.27	0.9	2.07	<5	464	<2	>10	< 0.5	17	31	62	4.76	1.18	271
B880317	Core	102.58	0.5	1.23	25	346	<2	>10	< 0.5	10	23	36	4.77	0.99	1034
B880318	Core	103.19	< 0.5	0.59	23	68	<2	>10	< 0.5	7	22	13	3.39	0.14	585
B880319	Core	99.77	< 0.5	0.12	16	48	<2	>10	< 0.5	4	14	11	3.87	0.02	711
B880320	Pulp	100.02	0.6	0.08	11	169	<2	>10	<0.5	6	7	38	3.38	0.04	372
B880321	Core	100.54	< 0.5	0.01	6	37	<2	>10	<0.5	4	12	8	3.03	< 0.01	282
B880322	Core	100.31	<0.5	0.02	33	36	<2	>10	<0.5	5	15	16	3.39	< 0.01	1529
B880323	Core	100.32	<0.5	0.01	21	42	<2	>10	<0.5	3	20	24	3.01	< 0.01	826
B880324	Core	102.14	<0.5	0.01	45	54	<2	>10	<0.5	5 7	9	15	3.66	< 0.01	1994
B880325	Core	99.36	< 0.5	0.07	13 29	63 88	<2	>10	< 0.5	8	11 12	14 7	2.78 3.08	0.01 <0.01	435 843
B880326 B880327	Core Core	99.74 98.93	0.7 0.5	0.11 0.07	32	88 129	<2 <2	>10 >10	<0.5 <0.5	8 10	12	10	3.40	< 0.01	843 856
B880328	Core	98.93 99.58	0.3	0.07	104	70	<2	>10	<0.5	7	18	2	3.40	0.01	3972
B880329	Core	99.17	<0.5	0.04	30	70	<2	>10	<0.5	4	10	23	3.48	<0.01	1024
B880330 Dup	Core	99.28	<0.5	0.02	28	69	<2	>10	<0.5	4	8	21	3.36	< 0.01	976
B880331	Core	99.29	<0.5	0.05	66	123	<2	>10	<0.5	4	10	24	3.72	0.01	2559
B880332	Core	99.54	0.7	0.44	241	252	<2	>10	< 0.5	14	12	53	>10	0.19	898
B880333	Core	98.95	< 0.5	0.08	36	51	<2	>10	< 0.5	2	9	6	3.04	< 0.01	1569
B880334	Core	100.14	< 0.5	0.11	219	70	<2	>10	< 0.5	6	9	6	4.09	0.03	9535
B880335	Core	99.00	< 0.5	0.06	93	76	<2	>10	< 0.5	4	8	12	3.24	0.01	4100
B880336	Core	99.80	< 0.5	0.01	6	51	<2	>10	< 0.5	2	23	10	2.01	< 0.01	164
B880337	Core	99.48	< 0.5	0.01	5	50	<2	>10	< 0.5	2	9	5	2.00	< 0.01	160
B880338	Core	99.05	0.6	2.06	27	80	<2	>10	< 0.5	6	25	20	3.85	0.17	154
B880339	Core	99.49	0.5	0.11	90	83	<2	>10	< 0.5	5	9	4	3.32	0.02	3700
B880340	Pulp	99.80	0.5	0.26	7	143	<2	>10	< 0.5	13	7	72	>10	0.07	312
B880341	Core	99.79	< 0.5	0.56	39	94	<2	>10	< 0.5	5	13	10	4.53	0.03	1224
B880342	Core	102.88	< 0.5	7.42	<5	865	<2	2.82	< 0.5	8	214	1	2.54	2.31	40
B880343	Core	100.35	< 0.5	0.30	42	86	<2	>10	< 0.5	3	11	12	3.07	0.03	1267
B880344	Core	100.01	< 0.5	0.78	<5	209	<2	>10	< 0.5	3	20	8	2.83	0.70	269

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		Total	Ag	Al	As	Ba	Bi	Ca	Cd	Co	Cr	Cu	Fe	K	La
		WR-FS-ICP	30-4A-TR												
Sample	Sample	%	ppm	%	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%	%	ppm
Description	Type	0.01	0.5	0.01	5	10	2	0.01	0.5	1	1	1	0.01	0.01	10
B880345	Core	102.89	< 0.5	0.26	12	28	<2	>10	< 0.5	5	14	4	2.78	0.03	403
B880346	Core	101.88	< 0.5	0.11	44	25	<2	>10	< 0.5	4	11	6	3.26	< 0.01	1750
B880347	Core	99.99	< 0.5	0.35	47	21	<2	>10	< 0.5	6	14	6	4.07	0.02	1588
B880348	Core	99.45	< 0.5	0.21	9	19	<2	>10	< 0.5	6	16	6	3.21	< 0.01	339
B880349	Core	101.89	< 0.5	0.13	11	22	<2	>10	< 0.5	8	15	7	3.24	< 0.01	405
B880350 Dup	Core	101.37	< 0.5	0.13	16	21	<2	>10	< 0.5	8	25	9	3.23	< 0.01	459
B880351	Core	103.76	< 0.5	0.24	10	21	<2	>10	< 0.5	11	17	7	3.90	< 0.01	279
B880352	Core	103.15	< 0.5	0.13	36	69	<2	>10	< 0.5	6	11	22	3.31	< 0.01	1366
B880353	Core	99.97	< 0.5	0.27	16	18	<2	>10	< 0.5	26	18	5	4.56	< 0.01	381
B880354	Core	103.30	< 0.5	0.08	10	26	<2	>10	< 0.5	4	21	13	2.76	< 0.01	344

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		Mg	Mn	Mo	Na	Ni	P	Pb	Sb	Sc	Sr	Ti	T1	V	W
		30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR
Sample	Sample	%	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm
Description	Type	0.01	5	1	0.01	1	10	2	5	1	1	0.01	10	1	10
B880265	Core	>10	2438	<1	0.02	1	>10000	58	<5	6	787	0.02	<10	27	<10
B880266	Core	9.77	3298	2	0.02	1	>10000	33	<5	8	2090	0.03	<10	28	<10
B880267	Core	>10	3660	<1	0.02	2	>10000	26	<5	10	2803	0.03	<10	45	<10
B880268	Core	>10	3815	2	0.02	1	>10000	23	<5	6	1854	0.04	<10	55	<10
B880269	Core	6.98	3207	3	0.02	2	>10000	51	<5	8	2279	0.06	<10	70	28
B880270 Dup	Core	7.03	3201	2	0.02	3	>10000	51	<5	8	2225	0.05	<10	67	28
B880271	Core	>10	2855	2	0.02	1	>10000	24	<5	5	1399	0.02	<10	38	<10
B880272	Core	9.92	2958	2 2	0.10	3	>10000	42	<5	8	1747	0.03	<10	39	<10
B880273	Core	>10	2924 2248	5	0.06	2 8	8529	15 16	<5	6 12	1549 941	0.01	<10	17 60	<10
B880274 B880275	Core	9.81	2839	3	0.06 0.62	9	>10000 8927	19	<5 <5	20	1945	0.06	<10		<10 <10
B880276	Core Core	8.98 >10	2839	2	0.62	2	>10000	19 16	<5	20 7	1945 806	0.20 0.01	<10 <10	86 24	<10
B880277	Core	>10	2037	2	0.03	<1	>10000	8	<5 <5	6	625	0.01	<10	25	<10
B880278	Core	9.93	2302	5	0.02	1	>10000	6 14	<5 <5	10	742	0.01	<10	41	<10
B880279	Core	>10	2443	1	0.03	<1	>10000	10	<5	7	1183	0.03	<10	25	<10
B880280	Pulp	7.86	3540	2	0.03	3	>10000	20	<5	6	1642	0.02	<10	219	<10
B880281	Core	9.49	2358	1	0.04	1	>10000	9	<5	9	1399	0.13	<10	56	<10
B880282	Core	9.47	2863	3	0.03	2	>10000	26	<5	11	1512	0.04	<10	47	<10
B880283	Core	>10	3338	75	0.03	2	3956	31	<5	18	751	0.03	<10	42	<10
B880284	Core	>10	3284	8	0.03	2	8640	22	<5	11	516	< 0.01	<10	22	<10
B880285	Core	8.52	2699	4	0.58	15	8504	25	<5	13	1392	0.34	<10	112	<10
B880286	Core	9.98	2416	21	0.13	7	9210	16	<5	11	334	0.16	<10	61	<10
B880287	Core	8.48	2546	5	0.31	10	>10000	58	<5	8	941	0.20	<10	69	<10
B880288	Core	>10	3661	12	0.02	1	9846	29	<5	6	1446	< 0.01	<10	16	<10
B880289	Core	>10	1639	1	0.02	17	>10000	17	<5	11	329	0.17	<10	67	<10
B880290 Dup	Core	>10	1606	2	0.02	19	>10000	17	<5	11	328	0.23	<10	73	<10
B880291	Core	>10	1712	3	0.02	2	>10000	107	<5	5	341	0.01	<10	52	<10
B880292	Core	>10	2331	14	0.02	3	6831	13	<5	8	269	0.04	<10	29	<10
B880293	Core	>10	5004	72	0.04	9	1131	13	<5	15	592	0.08	<10	69	<10
B880294	Core	9.01	4923	15	0.21	6	5868	17	<5	10	1174	0.09	<10	53	<10
B880295	Core	9.66	2576	3	0.04	<1	>10000	16	<5	4	1354	0.01	<10	23	<10
B880296	Core	9.72	1838	3	0.08	<1	>10000	15	<5	4	626	0.04	<10	29	<10
B880297	Core	>10	4684	5	0.03	<1	>10000	13	<5	3	2893	< 0.01	<10	8	<10
B880298	Core	>10	5094	33	0.02	1	5894	15	<5	10	1915	< 0.01	<10	32	<10
B880299	Core	>10	4072	2	0.02	1	>10000	18	<5	3	1757	0.02	<10	22	<10
B880300	Pulp	9.71	4095	3	0.04	2	>10000	93	<5	8	1884	0.03	<10	39	<10
B880301	Core	9.61	4138	2	0.02	<1	>10000	12	<5	3	2458	< 0.01	<10	9	<10
B880302	Core	>10	2297	3	0.03	<1	>10000	12	<5	4	728	0.03	<10	42	<10
B880303	Core	3.40	1830	1	0.18	1	>10000	12	<5	3	2842	0.12	<10	78	<10
B880304	Core	0.82	733	4	2.42	7	999	10	<5	6	704	0.25	<10	57	<10

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		Mg	Mn	Mo	Na	Ni	P	Pb	Sb	Sc	Sr	Ti	Tl	V	W
		30-4A-TR													
Sample	Sample	%	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm
Description	Type	0.01	5	1	0.01	1	10	2	5	1	1	0.01	10	1	10
B880305	Core	3.88	957	2	0.08	<1	>10000	11	<5	3	3007	0.07	<10	50	<10
B880306	Core	8.26	1906	2	0.44	<1	>10000	11	<5	4	744	0.07	<10	77	<10
B880307	Core	>10	1995	4	0.03	1	9695	11	<5	3	285	0.02	<10	18	<10
B880308	Core	3.23	919	2	0.14	<1	>10000	12	<5	2	3297	0.05	<10	33	<10
B880309	Core	6.94	4020	1	0.04	2	>10000	121	<5	9	4456	0.08	<10	40	18
B880310 Dup	Core	7.06	4087	1	0.04	2	>10000	109	<5	6	4389	0.07	<10	40	18
B880311	Core	7.82	3681	1	0.08	4	>10000	80	<5	12	2955	0.04	<10	46	12
B880312	Core	8.74	4629	3	0.08	5	>10000	58	<5	12	2768	0.04	<10	47	<10
B880313	Core	8.85	7926	1	0.44	2	5286	13	<5	10	3578	0.03	<10	52	<10
B880314	Core	9.14	4902	4	0.03	4	>10000	24	<5	10	2488	0.03	<10	34	<10
B880315	Core	7.70	3301	2	0.53	14	8391	28	<5	14	2205	0.24	<10	82	<10
B880316	Core	7.72	3945	2	0.74	15	>10000	32	<5	14	2410	0.31	<10	92	<10
B880317	Core	9.01	5684	2	0.22	9	6700	33	<5	13	2686	0.14	<10	62	<10
B880318	Core	9.34	4254	2	0.06	4	>10000	29	<5	10	2164	0.03	<10	30	<10
B880319	Core	9.75	4475	9	0.02	1	>10000	37	<5	8	1876	< 0.01	<10	21	<10
B880320	Pulp	7.48	2931	2	0.06	<1	>10000	117	<5	8	2187	0.06	<10	75	<10
B880321	Core	>10	4119	3	0.02	1	>10000	24	<5	5	2052	< 0.01	<10	11	<10
B880322	Core	9.50	3692	1	0.02	2	>10000	48	<5	7	1531	< 0.01	<10	10	<10
B880323	Core	9.89	3419	2	0.02	<1	>10000	72	<5	7	842	0.01	<10	18	<10
B880324	Core	>10	3847	2	0.02	1	8064	49	<5	8	1335	< 0.01	<10	20	<10
B880325	Core	9.85	2942	1	0.03	<1	>10000	43	<5	5	1125	< 0.01	<10	18	<10
B880326	Core	8.89	3354	2	0.03	<1	>10000	21	<5	8	1569	< 0.01	<10	22	<10
B880327	Core	9.11	4190	2	0.02	<1	>10000	34	<5	7	2048	< 0.01	<10	20	<10
B880328	Core	9.67	2826	2	0.02	<1	>10000	16	<5	11	414	< 0.01	<10	18	<10
B880329	Core	7.98	3844	2	0.02	1	>10000	69	<5	8	1424	0.01	<10	18	<10
B880330 Dup	Core	7.80	3739	2	0.02	<1	>10000	64	<5	7	1401	< 0.01	<10	18	<10
B880331	Core	7.92	3550	3	0.02	<1	>10000	78	<5	10	1326	< 0.01	<10	16	<10
B880332	Core	3.17	4189	8	0.07	3	>10000	26	<5	17	2002	0.09	<10	127	<10
B880333	Core	9.58	3253	1	0.02	<1	>10000	26	<5	9	1626	< 0.01	<10	23	<10
B880334	Core	9.87	2726	4	0.02	<1	>10000	50	<5	23	570	0.01	<10	34	<10
B880335	Core	9.84	3801	4	0.02	<1	>10000	49	<5	12	1711	< 0.01	<10	25	<10
B880336	Core	>10	4704	2	0.02	3	>10000	30	<5	4	3386	< 0.01	<10	6	<10
B880337	Core	>10	4678	4	0.02	<1	>10000	20	<5	3	3435	< 0.01	<10	5	<10
B880338	Core	9.83	2995	4	0.05	5	>10000	53	<5	7	1717	0.07	<10	50	<10
B880339	Core	8.61	2719	2	0.03	<1	>10000	25	<5	14	649	0.01	<10	35	<10
B880340	Pulp	7.48	3688	2	0.04	4	>10000	18	<5	6	1590	0.17	<10	202	<10
B880341	Core	>10	4044		0.01	2	5148	35	<5	10	1079	0.02	<10	33	<10
B880342	Core	0.83	724	4	2.36	7	855	12	5	6	678	0.24	<10	54	<10
B880343	Core	8.79	2808	1	0.02	1	>10000	34	<5	11 13	644	0.01	<10	28	<10
B880344	Core	>10	3187	1	0.25	<1	>10000	26	<5	13	1914	0.03	<10	18	<10

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		Mg	Mn	Mo	Na	Ni	P	Pb	Sb	Sc	Sr	Ti	Tl	V	W
		30-4A-TR													
Sample	Sample	%	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm
Description	Type	0.01	5	1	0.01	1	10	2	5	1	1	0.01	10	1	10
B880345	Core	9.95	2507	2	0.03	<1	>10000	14	<5	6	886	0.04	<10	37	<10
B880346	Core	>10	2973	11	0.02	<1	>10000	25	<5	10	802	0.01	<10	26	<10
B880347	Core	>10	2155	9	0.02	1	>10000	19	<5	10	333	0.03	<10	36	<10
B880348	Core	>10	2292	2	0.02	2	>10000	19	<5	5	629	0.03	<10	31	<10
B880349	Core	9.74	2299	5	0.02	2	>10000	22	<5	6	626	0.02	<10	41	<10
B880350 Dup	Core	9.90	2356	5	0.02	1	>10000	43	<5	5	597	0.03	<10	41	<10
B880351	Core	9.32	1906	5	0.02	2	>10000	25	<5	3	358	0.02	<10	18	<10
B880352	Core	8.36	2541	2	0.02	1	>10000	57	<5	8	520	0.02	<10	36	<10
B880353	Core	9.20	1689	6	0.02	2	>10000	15	<5	5	267	0.04	<10	48	<10
B880354	Core	>10	2508	3	0.02	<1	>10000	40	<5	5	579	< 0.01	<10	12	<10

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		Zn	Zr	Ce	Dy	Er	Eu	Gd	Hf	Но	La	Lu	Nd	Pr	Sm
		30-4A-TR	30-4A-TR	REE-LB-MS											
Sample	Sample	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Description	Type	2	1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
B880265	Core	11	22	744.7	21.4	7.6	11.7	38.6	< 0.1	3.2	369.0	0.6	300.3	84.6	
B880266	Core	26	12	856.2	21.8	7.7	13.9	42.0	1.9	3.2	422.9	0.6	347.7	101.1	48.8
B880267	Core	31	9	723.0	17.2	5.9	11.0	34.9	2.0	2.4	372.4	0.5	281.3	83.5	40.4
B880268	Core	17	8	883.1	16.9	5.7	11.2	35.5	0.4	2.3	477.1	0.4	315.2	96.6	
B880269	Core	33	16	942.3	24.6	8.3	16.3	47.8	2.2	3.8	482.9	0.6	383.5	110.6	
B880270 Dup	Core	34	13	911.4	23.2	7.7	15.2	46.6	2.3	3.5	462.5	0.6	364.7	106.9	53.7
B880271	Core	15	11	>1000	25.9	8.3	16.6	56.6	0.5	3.7	619.3	0.7	490.3	143.5	69.2
B880272	Core	21	42	692.3	22.6	8.0	13.2	39.7	2.6	3.4	342.7	0.6	289.8	81.4	44.4
B880273	Core	12	10	570.1	15.6	6.0	8.2	27.4	0.1	2.4	294.6	0.5	212.6	63.3	32.0
B880274	Core	19	14	>1000	25.4	8.5	17.3	58.9	1.6	3.6	>1000	0.6	542.2	184.1	61.0
B880275	Core	108	40	>1000	15.4	4.6	11.8	41.3	2.4	2.0	>1000	0.4	395.7	140.7	43.8
B880276	Core	14	20	989.1	22.5	8.4	11.9	42.6	0.9	3.4	609.3	0.7	337.6	104.9	45.9
B880277	Core	8	5	888.9	18.9	6.7	11.0	38.1	0.9	2.8	515.8	0.6	318.7	97.2	44.2
B880278	Core	8	12	>1000	25.8	7.2	19.7	69.0	< 0.1	3.5	>1000	0.6	718.8	262.2	70.5
B880279	Core	10	4	675.1	16.5	5.9	9.2	31.7	< 0.1	2.3	369.5	0.5	256.8	76.4	36.3
B880280	Pulp	61	52	870.7	21.9	7.3	15.0	42.5	9.4	3.2	426.1	0.6	350.5	102.5	50.1
B880281	Core	15	13	>1000	21.1	6.9	14.4	47.9	0.5	3.1	816.5	0.5	413.0	129.8	52.3
B880282	Core	20	12	>1000	21.9	7.7	14.7	50.4	1.4	3.2	>1000	0.6	502.0	183.2	48.8
B880283	Core	22	8	>1000	19.9	4.2	22.7	93.0	0.2	2.3	>1000	0.2	>1000	500.4	78.1
B880284	Core	10	4	>1000	33.8	6.6	32.3	136.8	< 0.1	3.7	>1000	0.4	>1000	741.8	114.6
B880285	Core	97	35	>1000	17.5	5.8	11.3	37.2	1.5	2.5	707.6	0.5	359.0	118.6	
B880286	Core	19	16	>1000	24.9	7.0	21.1	73.8	0.6	3.2	>1000	0.5	898.9	306.8	84.9
B880287	Core	34	30	867.4	26.0	9.8	15.7	43.1	2.0	4.0	441.5	0.7	342.1	102.2	50.5
B880288	Core	22	16	>1000	20.2	6.5	14.8	45.0	2.0	2.8	926.2	0.4	534.3	204.1	72.3
B880289	Core	7	32	>1000	21.2	6.7	14.8	47.1	2.1	3.0	905.5	0.6	548.2	151.4	61.6
B880290 Dup	Core	7	37	>1000	23.7	7.4	16.7	54.0	4.0	3.4	959.2	0.6	521.6	155.8	62.9
B880291	Core	4	31	>1000	26.3	9.3	15.7	45.2	0.8	4.0	548.9	0.7	363.0	112.0	
B880292	Core	6	11	>1000	21.0	6.2	15.2	56.8	0.3	2.9	>1000	0.5	640.0	210.3	71.4
B880293	Core	17	11	>1000	15.2	2.0	20.3	73.2	0.1	1.3	>1000	<0.1	>1000	365.6	
B880294	Core	33	66	>1000	15.9	4.7	13.1	41.6	3.7	2.1	782.3	0.3	459.2	151.1	51.5
B880295	Core	10	26	876.5	34.0	13.4	15.8	51.6	0.3	5.5	461.9	1.1	357.9	102.2	56.8
B880296	Core	6	21	947.3	51.3	21.3	17.9	64.5	0.3	8.8	497.8	1.9	375.6	111.1	64.3
B880297	Core	15	6	530.5	20.3	7.8	9.1	28.8	<0.1	3.3	274.3	0.5	205.2	60.8	31.8
B880298	Core	15	14	>1000	29.8	12.1	13.8	58.6	<0.1	4.8	>1000	0.9	521.5	173.0	
B880299	Core	15	7	558.6	23.3	9.0	11.0	34.8	<0.1	3.7	281.0	0.6	232.7	68.1	37.3
B880300	Pulp	24	25	869.8	22.4	7.8	14.6	43.7	2.6	3.4	459.1	0.6	337.7	100.3	51.1
B880301	Core	18	7	435.6	17.4	6.6	8.4	27.0	<0.1	2.9	203.2	0.5	180.0	54.5	
B880302	Core	8	15	966.3	25.2	8.2	15.4	50.3	<0.1	3.7	477.8	0.6	399.8	115.1	59.7
B880303	Core	42	52	>1000	26.8	8.9	18.3	54.5	<0.1	4.1	588.7	0.6	446.4	132.8	64.6
B880304	Core	56	7	79.9	3.6	1.8	1.5	4.4	2.5	0.6	39.8	0.2	31.5	9.2	5.1

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		Zn	Zr	Ce	Dy	Er	Eu	Gd	Hf	Ho	La	Lu	Nd	Pr	Sm
Sample	Sample	30-4A-TR		REE-LB-MS	REE-LB-MS		REE-LB-MS		REE-LB-MS						REE-LB-MS
Description	Type	ppm 2	ppm 1	ppm 0.1	ppm 0.1	ppm 0.1	ppm 0.1	ppm 0.1	ppm 0.1	ppm 0.1	ppm 0.1	ppm 0.1	ppm 0.1	ppm 0.1	ppm 0.1
B880305	Core	17	56	871.2	19.8	6.4	13.1	40.2	0.4	2.8	463.4	0.5	338.2	99.7	46.7
B880306	Core	54	42	608.1	17.1	5.9	9.7	31.6	0.8	2.6	310.3	0.5	243.0	71.8	35.7
B880307	Core	7	8	855.0	20.9	8.0	10.8	38.0	< 0.1	3.4	447.5	0.7	323.6	97.9	45.6
B880308	Core	23	26	732.4	20.6	6.8	13.2	39.4	< 0.1	3.1	363.6	0.5	300.1	86.3	45.5
B880309	Core	61	12	888.1	21.6	6.5	16.7	48.6	1.6	3.0	435.2	0.3	395.2	114.6	58.2
B880310 Dup	Core	58	11	971.5	23.6	6.7	17.1	46.7	1.5	3.3	424.7	0.3	402.3	111.6	61.0
B880311	Core	47	12	924.1	22.3	6.8	16.5	46.0	5.0	3.2	433.6	0.5	391.0	112.8	56.8
B880312	Core	34	13	>1000	26.0	7.9	17.1	53.0	2.5	3.7	510.4	0.5	462.4	130.6	67.5
B880313	Core	67	28	713.3	12.8	3.6	11.0	30.3	1.2	1.7	361.2	0.3	285.4	82.4	40.0
B880314	Core	27	11	930.0	22.3	6.5	15.0	47.2	0.7	3.1	465.4	0.4	381.7	109.4	59.4
B880315	Core	82	23	516.2	12.2	3.9	8.7	24.9	1.6	1.7	247.8	0.3	207.2	60.6	30.3
B880316	Core	64	25	603.1	14.3	4.9	9.0	26.2	1.2	2.1	335.9	0.4	215.8	66.5	31.1
B880317	Core	63	16	>1000	8.8	2.4	6.9	25.0	0.5	1.1	941.0	0.1	273.4	102.2	26.5
B880318	Core	30	14	977.2	16.3	5.1	10.9	34.0	1.0	2.4	634.9	0.3	296.9	97.0	37.9
B880319	Core	23	20	>1000	13.4	4.1	9.3	31.1	0.3	1.8	716.7	0.2	292.5	100.6	34.8
B880320	Pulp	12	32	855.8	23.7	8.7	15.0	43.1	0.9	3.7	423.8	0.8	342.0	99.0	50.0
B880321	Core	17	5	612.2	13.5	4.7	8.7	27.2	<0.1	1.9	345.4	0.3	217.2	65.0	31.1
B880322	Core	14	10	>1000	23.0	7.4	16.5	55.0	<0.1	3.1	>1000	0.6	550.2	186.7	63.5
B880323	Core	9	12	>1000	19.5	6.9	12.4	37.4	0.2	3.0	916.3	0.6	342.7	119.6	41.1
B880324	Core	13	7	>1000	18.5	5.0	17.7	59.2	0.5	2.3	>1000	0.4	627.5	229.3	64.4
B880325	Core	8	26	706.1	17.6	6.1	10.4	30.4	1.0	2.7	424.2	0.5	230.8	73.1	33.1
B880326 B880327	Core Core	11 21	10 9	>1000 >1000	20.7 19.4	6.6 6.0	14.4 14.4	47.2 45.9	0.8	3.0 2.7	867.9 >1000	0.5 0.4	428.8 427.4	138.5 144.7	53.2 51.1
B880328	Core	7	2	>1000	22.6	5.4	20.6	43.9 82.4	<0.1	2.7	>1000	0.4	989.7	393.1	80.8
B880329	Core	13	9	>1000	22.3	7.5	15.8	50.6	0.3	3.3	>1000	0.4	449.1	160.2	55.5
B880330 Dup	Core	11	9	>1000	24.4	7.8	17.3	51.2	0.5	3.3	>1000	0.6	481.8	162.2	56.1
B880331	Core	13	13	>1000	28.6	8.0	25.4	76.8	0.8	3.6	>1000	0.6	812.0	297.7	83.0
B880332	Core	75	46	>1000	25.7	8.1	18.7	58.2	13.8	3.6	>1000	0.5	511.7	167.5	63.1
B880333	Core	16	22	>1000	20.3	6.1	16.1	52.7	1.1	2.7	>1000	0.5	546.6	199.5	51.8
B880334	Core	13	8	>1000	31.7	7.1	33.3	119.5	0.5	3.7	>1000	0.5	>1000	569.1	112.7
B880335	Core	14	7	>1000	39.8	6.5	44.0	183.3	1.0	3.6	>1000	0.4	>1000	>1000	173.3
B880336	Core	23	3	>1000	21.5	4.3	26.3	90.4	0.2	2.4	>1000	0.3	>1000	441.9	91.4
B880337	Core	18	2	347.1	8.6	2.7	5.7	17.2	< 0.1	1.2	171.4	< 0.1	138.7	38.6	19.7
B880338	Core	24	65	362.6	11.7	4.1	7.2	20.9	4.7	1.8	173.7	0.3	153.9	42.0	24.1
B880339	Core	11	26	465.0	12.7	4.5	8.5	23.4	0.7	1.9	232.0	0.3	201.2	55.9	29.5
B880340	Pulp	57	49	845.0	21.3	6.9	14.7	42.0	9.5	3.1	413.7	0.5	330.2	96.4	49.4
B880341	Core	16	10	>1000	20.3	5.6	15.8	57.6	0.3	2.6	>1000	0.4	793.5	237.5	78.3
B880342	Core	51	6	94.2	3.4	1.9	1.5	4.6	3.8	0.6	50.5	0.2	34.6	10.3	5.0
B880343	Core	12	26	>1000	31.0	10.1	20.7	68.2	0.8	4.4	>1000	0.7	743.8	231.5	85.2
B880344	Core	43	20	599.2	11.5	4.0	8.0	25.8	1.9	1.7	311.1	0.2	229.6	67.4	30.2

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		Zn	Zr	Ce	Dy	Er	Eu	Gd	Hf	Но	La	Lu	Nd	Pr	Sm
		30-4A-TR	30-4A-TR	REE-LB-MS											
Sample	Sample	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Description	Type	2	1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
B880345	Core	11	32	968.1	23.3	8.1	14.6	47.7	< 0.1	3.5	497.4	0.6	411.3	115.0	59.1
B880346	Core	14	16	>1000	34.4	10.5	27.8	97.8	0.4	4.8	>1000	0.7	>1000	353.5	126.6
B880347	Core	10	20	>1000	29.1	8.2	24.8	87.2	0.2	3.8	>1000	0.6	>1000	316.5	112.4
B880348	Core	8	22	743.5	19.8	7.6	11.6	36.2	0.9	3.2	392.6	0.6	292.8	85.2	42.0
B880349	Core	8	37	958.5	23.4	9.2	13.6	44.1	0.7	3.8	513.9	0.7	365.8	109.4	50.5
B880350 Dup	Core	41	37	>1000	26.9	10.2	15.4	49.0	0.8	4.3	584.0	0.8	408.6	123.0	58.9
B880351	Core	10	40	674.0	29.9	12.0	13.9	43.6	0.8	5.0	352.6	0.9	269.4	76.6	42.3
B880352	Core	10	30	>1000	39.2	12.0	25.5	95.1	1.0	5.4	>1000	0.8	812.8	264.5	103.9
B880353	Core	8	35	>1000	19.2	6.4	13.0	44.0	< 0.1	2.8	571.3	0.6	397.7	116.7	53.6
B880354	Core	10	17	823.1	24.1	8.9	13.6	43.7	0.5	3.8	423.1	0.7	328.5	93.3	50.3

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

			Tb	Tm	Yb	Y	Ta	Th	U
				REE-LB-MS			Ta-4A-LL-MS		U-4A-LL-MS
	Sample	Sample	ppm	ppm	ppm		ppm	ppm	ppm
D	Description	Type	0.1	0.1	0.1	0.10	0.05	0.2	0.1
	B880265	Core	4.0	0.9	5.7	80.5	74.31	328.0	8.5
	B880266	Core	4.0	0.8	5.1	80.6	40.68	117.7	14.5
	B880267	Core	3.2	0.7	4.1	60.3	55.07	93.9	19.0
	B880268	Core	2.9	0.6	4.1	60.1	66.69	60.2	25.2
	B880269	Core	4.6	1.0	5.9	93.6	138.79	86.9	43.7
B88	80270 Dup	Core	4.3	0.9	5.4	87.6	139.43	87.1	41.7
	B880271	Core	4.8	1.0	5.9	90.3	61.15	65.9	30.7
	B880272	Core	4.3	0.9	5.5		79.52	180.7	53.6
	B880273	Core	2.8	0.7	4.5		60.63	55.9	22.9
	B880274	Core	4.5	0.9	5.7	87.7	54.40	89.1	20.5
	B880275	Core	2.8	0.5	3.4	50.3	44.59	84.7	30.3
	B880276	Core	4.0	1.0	5.7	85.0	69.22	97.9	36.3
	B880277	Core	3.5	0.8	4.9	69.7	5.19	22.3	2.7
	B880278	Core	4.5	0.9	5.1	87.6	9.50	31.1	2.5
	B880279	Core	2.9	0.6	4.4	58.9	10.96	24.4	3.1
	B880280	Pulp	4.0	0.8	5.0	78.7	0.49	302.6	9.5
	B880281	Core	3.9	0.7	4.9	76.1	17.48	34.0	5.7
	B880282	Core	3.5	0.9	5.5	81.3	13.22	84.0	6.9
	B880283	Core	3.4	0.4	2.9	73.9	25.21	137.1	16.6
	B880284	Core	4.8	0.8	4.8	98.0	21.26	48.6	9.8
	B880285	Core	2.9	0.7	4.6	63.1	42.14	146.6	16.6
	B880286	Core	4.3	0.8	5.0	80.9	12.82	80.3	7.9
	B880287	Core	4.6	1.1	6.2	102.2	72.21	208.7	20.5
	B880288	Core	3.3	0.6	4.0	66.1	42.57	82.9	43.2
	B880289	Core	4.0	0.8	5.0	80.2	134.38	106.3	116.2
B88	80290 Dup	Core	4.4	0.9	5.5	87.4	111.31	100.8	108.8
	B880291	Core	4.7	1.1	6.3	98.5	25.22	340.8	13.3
	B880292	Core	3.6	0.7	4.5	70.6	20.96	118.7	13.6
	B880293	Core	2.4	0.2	1.7	38.1	8.09	100.6	5.0
	B880294	Core	2.8	0.5	3.3	57.9	47.71	102.6	16.8
	B880295	Core	6.0	1.7	9.6	148.5	4.57	130.7	4.1
	B880296	Core	8.7	2.7	16.1	228.5	42.73	108.4	22.2
	B880297	Core	3.5	0.9	5.1	87.9	1.36	72.7	2.5
	B880298	Core	4.8	1.4	8.1	136.2	1.58	251.8	4.5
	B880299	Core	4.2	1.0	5.9		2.78	53.8	3.2
	B880300	Pulp	4.3	0.9	5.5		24.31	158.6	9.8
	B880301	Core	3.1	0.8	4.4	73.8	0.69	52.0	1.2
	B880302	Core	4.7	0.9	5.5		2.49	77.9	1.8
	B880303	Core	5.2	1.0	6.0	102.4	0.36	85.0	5.7
	B880304	Core	0.5	0.2	1.9		1.69	8.8	4.4
	D000304	Corc	0.5	0.2	1.9	19.7	1.09	0.0	7.7

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

			Tb	Tm	Yb	Y	Ta	Th	U
				REE-LB-MS			Ta-4A-LL-MS		U-4A-LL-MS
:	Sample	Sample	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Desc	cription	Туре	0.1	0.1	0.1	0.10	0.05	0.2	0.1
	8880305	Core	3.6	0.7	4.5	76.5	2.40	60.2	6.9
В	8880306	Core	3.1	0.7	4.5	69.2	8.62	30.1	13.5
В	8880307	Core	3.6	1.0	5.7	100.0	1.49	44.3	1.2
В	8880308	Core	3.8	0.8	4.6	80.8	0.15	45.7	4.7
В	8880309	Core	4.2	0.7	3.9	74.4	52.70	108.4	14.4
B8803	310 Dup	Core	4.3	0.7	4.1	82.5	42.52	68.1	13.3
В	8880311	Core	4.2	0.8	5.1	81.7	10.76	85.9	5.3
В	8880312	Core	4.8	0.8	4.8	91.6	14.25	97.4	7.2
В	8880313	Core	2.5	0.4	2.5	44.0	7.44	38.9	6.7
В	8880314	Core	4.2	0.7	4.3	78.2	13.08	66.6	8.2
В	8880315	Core	2.2	0.4	2.6	45.3	8.27	34.5	4.5
В	8880316	Core	2.5	0.5	3.6	55.3	13.15	67.3	6.5
В	8880317	Core	1.4	0.2	1.8	29.2	9.48	44.0	3.7
В	8880318	Core	3.0	0.6	3.4	58.4	16.69	71.7	3.7
В	8880319	Core	2.3	0.4	2.5	46.4	14.96	88.9	6.5
	8880320	Pulp	4.4	1.0	6.4	96.5	6.83	174.1	2.2
	8880321	Core	2.5	0.5	3.3		0.59	33.1	2.1
	8880322	Core	4.0	0.9	5.5		0.55	56.4	4.0
	8880323	Core	3.3	0.8	5.1	77.1	4.75	61.6	4.6
	8880324	Core	3.2	0.6	4.0	60.6	3.11	50.5	3.6
	8880325	Core	3.2	0.7	4.6		17.06	150.6	9.0
	8880326	Core	3.9	0.8	4.4	73.4	6.09	64.4	2.3
	8880327	Core	3.5	0.7	4.1	73.5	5.11	73.3	3.3
	8880328	Core	3.6	0.6	4.3	71.0	2.43	29.0	2.6
	8880329	Core	4.0	0.9	5.3		1.59	64.4	4.0
	330 Dup	Core	4.2	0.9	5.2		1.80	66.8	4.5
	8880331	Core	5.0	0.9	5.9	99.6	4.05	90.9	4.5
	8880332	Core	4.8	0.9	5.1	92.2	29.23	76.9	13.3
	8880333	Core	3.5	0.9	4.6		4.93	140.5	8.1
	8880334	Core	5.3	0.7	5.4	93.6	14.96	137.5	6.6
									4.5
	8880335 8880336	Core	5.2	0.8	4.7 3.5	88.1	3.81	112.5	4.5 8.3
		Core	3.5	0.5			13.37	44.4	
	8880337	Core	1.6	0.2	1.6		0.50	43.7	1.1
	8880338	Core	2.1	0.4	2.7	47.5	11.99	53.4	6.1
	8880339	Core	2.3	0.5	3.0	50.1	7.28	271.3	6.5
	8880340	Pulp	3.9	0.8	5.0		38.11	290.2	8.7
	8880341	Core	3.1	0.6	3.8		13.65	117.2	5.8
	8880342	Core	0.4	0.2	1.9	19.0	1.77	9.3	4.2
	8880343	Core	5.2	1.2	6.5	114.5	36.97	152.7	8.3
В	8880344	Core	2.1	0.4	2.6	44.5	17.27	42.9	4.9

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

			Tb	Tm	Yb	Y	Ta	Th	U
			REE-LB-MS	REE-LB-MS	REE-LB-MS	REE-LB-MS	Ta-4A-LL-MS	Th-4A-LL-MS [U-4A-LL-MS
Samp	ple Sa	ample	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Description	on T	Гуре	0.1	0.1	0.1	0.10	0.05	0.2	0.1
B8803-	45 (Core	4.3	0.9	5.5	89.5	5.27	85.4	2.9
B8803-	46 (Core	6.0	1.2	6.8	128.2	8.67	180.9	4.3
B8803-	47	Core	5.0	1.0	6.0	103.5	8.50	139.0	6.1
B8803-	48	Core	3.6	0.8	5.4	82.6	59.68	76.8	26.6
B8803-	49 (Core	4.3	1.0	6.2	104.9	94.82	134.6	37.5
B880350 D	up (Core	4.6	1.2	6.7	115.3	11.88	135.9	34.9
B8803	51 (Core	5.3	1.3	7.4	135.3	100.98	272.1	32.6
B8803	52	Core	7.3	1.4	7.6	135.5	31.22	348.9	6.8
B8803	53 (Core	3.5	0.8	5.0	75.0	4.25	88.4	4.9
B8803	54 (Core	4.4	1.0	6.2	93.9	26.76	209.0	7.2

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		Nb2O5	A12O3	BaO	CaO	Cr2O3	Fe2O3	K2O	LOI	MgO	MnO	Na2O	P2O5	SiO2	TiO2
0 1	0 1	Nb2O5-AD3-OR-ICP	WR-FS-ICP												
Sample	Sample Type	%	% 0.01	% 0.01	% 0.01	% 0.01	% 0.01	% 0.01	%	% 0.01	% 0.01	% 0.01	% 0.01	% 0.01	%
Description B880265		0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
B880265 Dup	Core	0.29													
QCV1011-00011-0002-BLK		< 0.01													
STD-OKA-1 expected		0.53													
STD-OKA-1 expected STD-OKA-1 result		0.53													
B880283	Core	0.33													
B880283 Dup	Core	0.11													
QCV1011-00011-0005-BLK		<0.01													
STD-OKA-1 expected		0.53													
STD-OKA-1 expected STD-OKA-1 result		0.56													
B880301	Core	0.02													
B880301 Dup	Corc	0.02													
OCV1011-00011-0008-BLK		< 0.01													
STD-OKA-1 expected		0.53													
STD-OKA-1 result		0.56													
B880319	Core	0.12													
B880319 Dup	Corc	0.12													
QCV1011-00011-0011-BLK		< 0.01													
STD-OKA-1 expected		0.53													
STD-OKA-1 result		0.54													
B880337	Core	0.06													
B880337 Dup	Corc	0.06													
QCV1011-00011-0014-BLK		< 0.01													
STD-OKA-1 expected		0.53													
STD-OKA-1 result		0.52													
B880265	Core	0.52	0.30	< 0.01	36.35	< 0.01	3.09	0.05	40.20	18.20	0.34	0.03	3.99	0.34	0.05
B880265 Dup	2010		0.32	< 0.01	36.35	< 0.01	3.10	0.05	40.25	18.19	0.36	0.03	4.03	0.35	0.05
QCV1011-00013-0002-BLK			< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
B880283	Core		0.94	0.02	29.97	< 0.01	8.56	0.11	36.69	17.06	0.47	0.04	1.40	4.60	0.05
B880283 Dup			0.94	0.02	29.93	< 0.01	8.57	0.12	36.72	16.91	0.47	0.04	1.45	4.61	0.05
QCV1011-00013-0005-BLK			< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
B880301	Core		0.23	< 0.01	31.98	< 0.01	3.37	< 0.01	40.09	18.02	0.59	0.03	3.94	1.49	0.01
B880301 Dup			0.24	< 0.01	32.06	< 0.01	3.37	0.01	40.19	17.95	0.60	0.03	3.95	1.48	0.01
QCV1011-00013-0008-BLK			< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
B880319	Core		0.30	< 0.01	31.40	< 0.01	5.50	0.02	39.70	15.54	0.64	0.04	3.70	2.88	0.03
B880319 Dup			0.35	< 0.01	31.17	< 0.01	5.42	0.02	39.15	16.22	0.58	0.03	3.79	2.77	0.02
QCV1011-00013-0011-BLK			< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
QCV1011-00013-0014-BLK			< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
QCV1011-00013-0016-BLK			< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
STD-SY-4 expected			20.69		8.05		6.21	1.66	4.56	0.54	0.11	7.10	0.13	49.90	0.29
STD-SY-4 result			20.65	0.05	8.06	< 0.01	6.20	1.68	4.50	0.59	0.11	7.44	0.16	50.76	0.30
DID DI TIOSUIT			20.03	0.03	0.00	\0.01	0.20	1.00	4.50	0.57	0.11	7.44	0.10	50.70	0.50

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

			Total	Ag	Al	As	Ba	Bi	Ca	Cd	Co	Cr	Cu	Fe	K	La
			WR-FS-ICP	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR
	Sample	Sample	%	ppm	%	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%	%	ppm
	Description	Type	0.01	0.5	0.01	5	10	2	0.01	0.5	1	1	1	0.01	0.01	10
	B880265	Core		< 0.5	0.12	10	47	<2	>10	< 0.5	3	27	25	2.20	0.04	301
	B880265 Dup			< 0.5	0.12	11	50	<2	>10	< 0.5	3	21	24	2.18	0.04	311
	QCV1011-00012-0002-BLK			< 0.5	< 0.01	<5	<10	<2	< 0.01	< 0.5	<1	<1	<1	< 0.01	< 0.01	<10
	STD-CDN-ME-6 expected			101.0									6130			
	STD-CDN-ME-6 result	_		96.6							_		6371			
	B880283	Core		<0.5	0.48	134	140	<2	>10	<0.5	7	23	11	5.45	0.11	5754
	B880283 Dup			0.7	0.45	130	133	<2	>10	<0.5	7	22	8	5.56	0.10	5861
	QCV1011-00012-0005-BLK			< 0.5	< 0.01	<5	<10	<2	< 0.01	< 0.5	<1	<1	<1	< 0.01	< 0.01	<10
	STD-CDN-ME-6 expected			101.0									6130 5920			
	STD-CDN-ME-6 result B880301	Core		97.3 <0.5	0.09	.=	29	2	>10	< 0.5	3	11	3920	2.23	< 0.01	167
	B880301 Dup	Core		<0.5 <0.5	0.09	<5 <5	30	<2 <2	>10	<0.5 <0.5	3	11	3	2.23	< 0.01	182
	QCV1011-00012-0008-BLK			<0.5	< 0.09	<5	<10	<2	<0.01	<0.5	<1	<1	<1	< 0.01	< 0.01	<10
STE	OREAS-45P-4A expected			<0.5	<0.01	9	<10	<2	<0.01	<0.5	122	1103	749	<0.01	<0.01	<10
	TD-OREAS-45P-4A result										119	1014	681			
	B880319	Core		< 0.5	0.12	16	48	<2	>10	< 0.5	4	14	11	3.87	0.02	711
	B880319 Dup	Corc		<0.5	0.12	19	49	<2	>10	<0.5	4	14	11	3.96	0.02	694
	QCV1011-00012-0011-BLK			< 0.5	< 0.01	<5	<10	<2	< 0.01	<0.5	<1	<1	<1	< 0.01	< 0.01	<10
	B880337	Core		< 0.5	0.01	5	50	<2	>10	<0.5	2	9	5	2.00	< 0.01	160
	B880337 Dup			< 0.5	0.01	5	53	<2	>10	< 0.5	2	9	6	2.07	< 0.01	163
	QCV1011-00012-0014-BLK			< 0.5	< 0.01	<5	<10	<2	< 0.01	< 0.5	<1	<1	<1	< 0.01	< 0.01	<10
	QCV1011-00012-0016-BLK			< 0.5	< 0.01	<5	<10	<2	< 0.01	< 0.5	<1	<1	<1	< 0.01	< 0.01	<10
	B880265	Core	102.96													
	B880265 Dup		103.08													
	QCV1011-00013-0002-BLK		< 0.01													
	B880283	Core	99.91													
	B880283 Dup		99.85													
	QCV1011-00013-0005-BLK		< 0.01													
	B880301	Core	99.77													
	B880301 Dup		99.90													
	QCV1011-00013-0008-BLK		< 0.01													
	B880319	Core	99.77													
	B880319 Dup		99.53													
	QCV1011-00013-0011-BLK		< 0.01													
	QCV1011-00013-0014-BLK		< 0.01													
	QCV1011-00013-0016-BLK		< 0.01													
	STD-SY-4 expected		100 51													
	STD-SY-4 result		100.51													

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

									_	_					
		Mg	Mn	Mo	Na	Ni	P	Pb	Sb	Sc	Sr	Ti	Tl	V	W
		30-4A-TR													
Sample	Sample	%	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm
Description	Type	0.01	5	1	0.01	1	10	2	5	1	1	0.01	10	1	10
B880265	Core	>10	2438	<1	0.02	1	>10000	58	<5	6	787	0.02	<10	27	<10
B880265 Dup		>10	2449	1	0.02	1	>10000	59	<5	6	769	0.02	<10	27	<10
QCV1011-00012-0002-BLK		< 0.01	<5	<1	< 0.01	<1	<10	<2	<5	<1	<1	< 0.01	<10	<1	<10
STD-CDN-ME-6 expected								10200							
STD-CDN-ME-6 result								9979							
B880283	Core	>10	3338	75	0.03	2	3956	31	<5	18	751	0.01	<10	42	<10
B880283 Dup		>10	3421	74	0.03	2	3818	28	<5	17	716	0.01	<10	40	<10
QCV1011-00012-0005-BLK		< 0.01	<5	<1	< 0.01	<1	<10	<2	<5	<1	<1	< 0.01	<10	<1	<10
STD-CDN-ME-6 expected								10200							
STD-CDN-ME-6 result								>10000							
B880301	Core	9.61	4138	2	0.02	<1	>10000	12	<5	3	2458	< 0.01	<10	9	<10
B880301 Dup		>10	4463	2	0.02	<1	>10000	12	<5	3	2665	< 0.01	<10	9	<10
QCV1011-00012-0008-BLK		< 0.01	<5	<1	< 0.01	<1	<10	<2	<5	<1	<1	< 0.01	<10	<1	<10
STD-OREAS-45P-4A expected					0.08	385	454	22							
STD-OREAS-45P-4A result					0.08	356	410	19							
B880319	Core	9.75	4475	9	0.02	1	>10000	37	<5	8	1876	< 0.01	<10	21	<10
B880319 Dup		9.94	4556	9	0.02	1	>10000	36	<5	8	1926	< 0.01	<10	21	<10
QCV1011-00012-0011-BLK		< 0.01	<5	<1	< 0.01	<1	<10	<2	<5	<1	<1	< 0.01	<10	<1	<10
B880337	Core	>10	4678	4	0.02	<1	>10000	20	<5	3	3435	< 0.01	<10	5	<10
B880337 Dup		>10	4894	3	0.02	<1	>10000	20	<5	4	3505	< 0.01	<10	6	<10
QCV1011-00012-0014-BLK		< 0.01	<5	<1	< 0.01	<1	<10	<2	<5	<1	<1	< 0.01	<10	<1	<10
QCV1011-00012-0016-BLK		< 0.01	<5	<1	< 0.01	<1	<10	<2	<5	<1	<1	< 0.01	<10	<1	<10

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

STD-CI	Sample Description B880265 B880265 Dup 011-00012-0002-BLK DN-ME-6 expected -CDN-ME-6 result B880283 B880283 Dup	Sample Type Core	30-4A-TR ppm 2 11 15 <2 5170	30-4A-TR ppm 1 22 22 22 <1	REE-LB-MS ppm 0.1	REE-LB-MS ppm 0.1	REE-LB-MS ppm 0.1	REE-LB-MS ppm 0.1	REE-LB-MS ppm	REE-LB-MS ppm	REE-LB-MS ppm			REE-LB-MS		
STD-CI	Description B880265 B880265 Dup 011-00012-0002-BLK DN-ME-6 expected -CDN-ME-6 result B880283	Type Core	2 11 15 <2	1 22 22					ppm	ppm	nnm	nnm				nnm
STD-CI	B880265 B880265 Dup 011-00012-0002-BLK DN-ME-6 expected I-CDN-ME-6 result B880283	Core	11 15 <2	22 22	0.1	0.1	0.1	0.1				ppm	ppm	ppm	ppm	ppm
STD-CI	B880265 Dup 011-00012-0002-BLK DN-ME-6 expected 0-CDN-ME-6 result B880283		15 <2	22				0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
STD-CI	011-00012-0002-BLK DN-ME-6 expected 0-CDN-ME-6 result B880283		<2													
STD-CI	DN-ME-6 expected -CDN-ME-6 result B880283			<1												
I	D-CDN-ME-6 result B880283		51/0													
SID	B880283		5106													
		Como	5406 22	8												
		Core	21	8												
OCV10	011-00012-0005-BLK		<2	<1												
-	DN-ME-6 expected		5170	\1												
I	-CDN-ME-6 result		5204													
512	B880301	Core	18	7												
	B880301 Dup		18	7												
QCV10	011-00012-0008-BLK		<2	<1												
STD-OREAS	S-45P-4A expected		142													
STD-ORI	EAS-45P-4A result		145													
	B880319	Core	23	20												
	B880319 Dup		24	37												
QCV10	011-00012-0011-BLK		<2	<1												
	B880337	Core	18	2												
	B880337 Dup		19	3												
~	011-00012-0014-BLK		<2	<1												
QCV10	011-00012-0016-BLK		<2	<1												
	B880265	Core			744.7	21.4	7.6	11.7	38.6	< 0.1	3.2	369.0	0.6	300.3	84.6	43.2
	B880265 Dup				760.6	22.3	7.6	11.7	39.4	<0.1	3.3	384.7	0.6	293.8	87.4	44.8
QCV10	011-00013-0002-BLK	_			< 0.1	<0.1	<0.1	<0.1	<0.1	<0.1	< 0.1	<0.1	< 0.1	<0.1	< 0.1	<0.1
	B880283	Core			>1000	19.9	4.2	22.7	93.0	0.2	2.3	>1000	0.2	>1000	500.4	78.1
OCTATI	B880283 Dup 011-00013-0005-BLK				>1000	20.0	4.4	22.2	90.6	0.2	2.1	>1000	0.2	>1000	469.7	77.7
QCVI	B880301	Core			<0.1 435.6	<0.1 17.4	<0.1	<0.1 8.4	<0.1 27.0	<0.1 <0.1	<0.1 2.9	<0.1 203.2	<0.1 0.5	<0.1 180.0	<0.1 54.5	<0.1 29.1
	B880301 Dup	Core			440.7	17.4	6.7	8.6	27.0	<0.1	3.0	203.2	0.5	185.1	50.5	29.1
OCV10	011-00013-0008-BLK				<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
QC V II	B880319	Core			>1000	13.4	4.1	9.3	31.1	0.3	1.8	716.7	0.2	292.5	100.6	34.8
	B880319 Dup	Corc			>1000	13.4	4.3	9.5	31.9	0.3	1.9	745.2	0.2	296.7	105.4	35.1
QCV10	011-00013-0011-BLK				<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
_	011-00013-0014-BLK				<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
-	011-00013-0016-BLK				< 0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	< 0.1	< 0.1	<0.1	< 0.1	<0.1
1 -	TD-SY-4 expected				122.0	18.2	14.2	2.0	14.0	10.6	4.3	58.0	2.1	57.0	15.0	12.7
	STD-SY-4 result				131.0	18.3	14.9	2.1	14.4	10.6	4.4	62.6	2.0	57.6	15.8	12.4

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		Tb	Tm	Yb	Y	Ta	Th	U
		REE-LB-MS		REE-LB-MS	REE-LB-MS	Ta-4A-LL-MS	Th-4A-LL-MS	U-4A-LL-MS
Sample	Sample	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Description	Type	0.1	0.1	0.1	0.10	0.05	0.2	0.1
B880265	Core	4.0	0.9	5.7	80.5			
B880265 Dup		3.9	0.9	5.8	82.1			
QCV1011-00013-0002-BLK		< 0.1	< 0.1	< 0.1	< 0.10			
B880283	Core	3.4	0.4	2.9	73.9			
B880283 Dup		2.9	0.4	2.8	60.3			
QCV1011-00013-0005-BLK		< 0.1	< 0.1	< 0.1	< 0.10			
B880301	Core	3.1	0.8	4.4	73.8			
B880301 Dup		3.1	0.8	4.6	78.2			
QCV1011-00013-0008-BLK		< 0.1	< 0.1	< 0.1	< 0.10			
B880319	Core	2.3	0.4	2.5	46.4			
B880319 Dup		2.3	0.4	2.5	50.6			
QCV1011-00013-0011-BLK		< 0.1	< 0.1	< 0.1	< 0.10			
QCV1011-00013-0014-BLK		< 0.1	< 0.1	< 0.1	< 0.10			
QCV1011-00013-0016-BLK		< 0.1	< 0.1	< 0.1	< 0.10			
STD-SY-4 expected		2.6	2.3	14.8	119.0			
STD-SY-4 result		2.5	2.3	14.9	124.5			
B880265	Core	2.0	2.0			74.31	328.0	8.5
B880265 Dup						72.67	328.7	8.3
QCV1103-01164-0002-BLK						< 0.05	<0.2	<0.1
B880283	Core					25.21	137.1	16.6
B880283 Dup						24.79	139.8	16.6
QCV1103-01164-0005-BLK						< 0.05	<0.2	<0.1
B880301	Core					0.69	52.0	1.2
B880301 Dup	Coic					0.68	52.4	1.3
QCV1103-01164-0008-BLK						< 0.05	<0.2	<0.1
B880319	Core					14.96	88.9	6.5
B880319 Dup	Coic					14.85	79.0	6.8
QCV1103-01164-0011-BLK						< 0.05	<0.2	<0.1
B880337	Core					0.50	43.7	1.1
B880337 Dup	Core					0.54	44.1	1.1
QCV1103-01164-0014-BLK						< 0.05	<0.2	<0.1
QCV1103-01164-0014-BLK								
QCV1103-01164-0016-BLK						< 0.05	< 0.2	< 0.1

Inspectorate Exploration & Mining Services Ltd. #200 - 11620 Horseshoe Way

Date Received: 11/02/2010

Date Completed: 12/08/2010

Invoice:

Richmond, British Columbia V7A 4V5 Canada

Phone: 604-272-7818

Distribution List

Attention: Eric Titley

Suite 1020-800 West Pender St.

Vancouver, BC V6C 2V6

EMail: erictitley@hdimining.com

Attention: Jeremy Crozier

EMail: jeremycrozier@hdimining.com

Attention: T.Kodata

EMail: tkodata@hdimining.com

Submitted By: Aley Corporation

Suite 1020-800 West Pender St.

Vancouver, BC V6C 2V6

Attention: Eric Titley

Project: Aley 2010 Project

Purchase Order: **ALY 0002**Description: **Aley 2010-021**

Location	Samples	Type	Preparation Description
Vancouver, BC	50	Core	SP-RX-2K/Rock/Chips/Drill Core
Vancouver, BC	3	Pulp	SP-PU/Pulp Handling, submitted pulps

Location	Method	Description
Vancouver, BC	Ta-4A-LL-MS	Tantalum, 4 Acid, ICP
Vancouver, BC	REE-LB-MS	REE Group by ICP-MS
Vancouver, BC	U-4A-LL-MS	Uraium, 4 Acid, Low Level
Vancouver, BC	Nb2O5-AD3-OR-ICP	Niobium by multi-acid digestion, ICP
Vancouver, BC	Th-4A-LL-MS	Thorium, 4 Acid, Low Level
Vancouver, BC	WR-FS-ICP	Whole Rock, Lithium Borate Fusion, ICP
Vancouver, BC	30-4A-TR	30 Element, 4 Acid, ICP, Trace Level

Submittal Information

Ta, Th, and U results shown have been revised with accurate detection limits.

The results of this assay were based solely upon the content of the sample submitted. Any decision to invest should be made only after the potential investment value of the claim or deposit has been determined based on the results of assays of multiple samples of geologic materials collected by the prospective investor or by a qualified person selected by him and based on an evaluation of all engineering data which is available concerning any proposed project. For our complete terms and conditions please see our website at www.inspectorate.com.

В

Mike Caron, Lab Manager

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		Nb2O5	A12O3	BaO	CaO	Cr2O3	Fe2O3	K2O	LOI	MgO	MnO	Na2O	P2O5	SiO2	TiO2
		Nb2O5-AD3-OR-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP
Sample	Sample	%	%	%	%	%	%	%	%	%	%	%	%	%	%
Description	Туре	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
B875375		0.09	0.69	0.03	25.60	< 0.01	15.87	0.29	29.50	14.06	0.59	0.24	4.51	9.28	1.29
B875376		2.07	1.24	0.04	23.18	< 0.01	27.82	0.79	14.97	9.16	0.49	0.22	11.55	9.77	1.62
B875377		0.90	0.61	0.01	30.04	< 0.01	11.53	0.13	33.45	15.48	0.75	0.05	6.31	3.05	0.56
B875378		0.33	0.19	< 0.01	33.48	< 0.01	4.29	0.01	38.70	18.67	0.62	0.03	5.56	1.08	0.04
B875379		0.96	1.00	0.01	26.39	< 0.01	23.30	0.27	22.99	10.93	0.53	0.05	8.40	4.66	0.91
B875380 Dup		0.94	1.03	0.01	27.10	< 0.01	22.98	0.27	23.20	11.26	0.54	0.05	8.39	4.97	0.90
B875381		0.57	0.37	< 0.01	34.54	< 0.01	4.79	< 0.01	34.59	15.85	0.47	0.06	8.97	2.30	0.07
B875382		1.15	0.65	0.01	25.60	< 0.01	27.73	0.23	24.68	10.52	0.43	0.06	7.02	3.47	0.97
B875383		0.53	0.23	< 0.01	32.92	< 0.01	5.91	0.03	38.60	17.44	0.57	0.04	5.38	1.08	0.07
B875384		1.80	0.31	< 0.01	36.50	<0.01	9.77	0.02	27.10	11.37	0.51	0.07	13.72	1.76	0.10
B875385		0.15	0.36	< 0.01	4.66	0.08	1.82	0.07	3.05	1.35	0.06	0.01	1.23	85.92	0.09
B875386		0.56	0.23	< 0.01	32.49	< 0.01	5.17	0.02	38.39	17.40	0.60	0.04	5.76	0.80	0.05
B875387 B875388		0.37 0.75	0.19 0.42	<0.01 <0.01	32.65 32.88	<0.01 <0.01	4.94 8.07	0.01 0.09	39.16 33.96	17.95 14.66	0.68 0.66	0.05 0.06	5.14 7.77	0.70 2.44	0.05 0.08
B875389		0.73	0.42	<0.01	31.44	<0.01	4.16	0.09	41.44	18.17	0.68	0.06	3.50	0.11	0.08
B875390		0.76	0.10	0.01	36.07	< 0.01	4.10	0.02	38.00	13.77	0.08	0.03	3.90	3.88	0.03
B875390	•	0.70	0.21	< 0.02	33.10	0.01	9.46	0.03	33.80	14.44	0.40	0.09	7.85	0.88	0.13
B875392		0.34	0.13	< 0.01	32.82	< 0.01	4.09	0.03	39.75	19.11	0.55	0.04	5.43	0.09	0.03
B875393		0.36	0.13	< 0.01	31.71	< 0.01	4.67	0.03	38.93	17.41	0.55	0.04	5.56	0.42	0.03
B875394		0.50	0.16	< 0.01	31.56	< 0.01	5.28	< 0.01	39.12	17.26	0.61	0.04	4.99	0.76	0.03
B875395		1.82	0.39	0.01	30.67	< 0.01	16.11	0.09	26.20	11.21	0.58	0.07	11.45	2.09	0.35
B875396		0.79	0.19	< 0.01	31.63	< 0.01	8.72	0.03	35.42	14.78	0.52	0.05	6.14	1.45	0.14
B875397	Core	0.62	0.24	< 0.01	32.25	< 0.01	6.80	0.02	37.10	16.15	0.46	0.09	6.37	0.57	0.07
B875398	Core	0.37	0.15	< 0.01	33.19	< 0.01	4.14	0.03	39.69	18.48	0.70	0.06	5.26	0.23	0.05
B875399	Core	0.44	0.20	< 0.01	31.78	< 0.01	4.95	0.05	38.12	17.94	0.62	0.07	5.41	0.16	0.09
B874900 Dup	Core	0.43	0.19	< 0.01	32.65	< 0.01	4.97	0.04	38.11	18.47	0.63	0.06	5.30	0.16	0.10
B874901	Core	0.52	0.18	< 0.01	32.95	< 0.01	5.37	0.05	35.23	16.65	0.63	0.05	7.81	0.13	0.07
B874902	Core	0.64	0.25	< 0.01	33.60	< 0.01	5.74	0.05	35.45	15.60	0.55	0.04	7.67	0.35	0.20
B874903	Core	0.44	0.27	< 0.01	35.52	< 0.01	4.79	0.05	32.56	15.28	0.52	0.04	10.52	0.23	0.18
B874904	Core	0.25	0.15	< 0.01	34.18	< 0.01	4.75	0.04	36.28	15.47	0.65	0.04	8.15	0.12	0.06
B874905	Core	0.74	0.30	< 0.01	29.62	< 0.01	10.36	0.02	36.08	15.12	0.46	0.04	6.37	0.78	0.21
B874906	Core	2.00	0.57	0.01	29.88	< 0.01	25.40	0.19	21.49	7.31	0.57	0.06	11.56	2.36	0.43
B874907		0.50	0.26	< 0.01	31.79	< 0.01	5.05	0.02	40.36	17.64	0.46	0.05	4.16	0.64	0.04
B874908		0.49	0.20	< 0.01	35.36	< 0.01	6.25	0.02	38.25	14.28	0.60	0.04	5.88	0.32	0.06
B874909		0.51	0.25	< 0.01	36.22	< 0.01	6.58	0.05	35.28	13.34	0.57	0.04	7.96	0.60	0.09
B874910		0.55	1.89	0.37	46.36	< 0.01	4.13	0.70	32.10	2.31	0.99	0.46	2.72	7.53	0.24
B874911		0.42	0.21	< 0.01	32.42	< 0.01	5.34	0.06	39.09	17.29	0.53	0.03	4.76	0.14	0.07
B874912		0.54	0.21	< 0.01	34.42	< 0.01	5.48	0.05	37.30	14.89	0.68	0.03	6.60	0.17	0.08
B874913		0.55	0.28	< 0.01	33.00	< 0.01	4.08	0.05	38.11	16.70	0.44	0.08	6.61	0.50	0.04
B874914	Core	0.48	0.20	< 0.01	31.12	< 0.01	7.08	0.05	39.04	16.80	0.73	0.03	4.05	0.65	0.11

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		Nb2O5	Al2O3	BaO	CaO	Cr2O3	Fe2O3	K2O	LOI	MgO	MnO	Na2O	P2O5	SiO2	TiO2
		Nb2O5-AD3-OR-ICP	WR-FS-ICP												
Sample	Sample	%	%	%	%	%	%	%	%	%	%	%	%	%	%
Description	Type	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
B874915	Core	0.41	0.17	< 0.01	32.26	< 0.01	4.86	0.02	39.38	16.69	0.59	0.03	5.06	0.76	0.06
B874916	Core	0.77	0.37	< 0.01	33.19	< 0.01	6.70	0.06	36.01	13.92	0.62	0.05	7.44	1.35	0.21
B874917	Core	0.67	0.62	< 0.01	37.32	< 0.01	5.77	0.04	37.83	12.99	0.68	0.04	5.48	1.14	0.09
B874918	Core	0.76	0.28	< 0.01	35.97	< 0.01	4.76	0.01	37.66	15.92	0.66	0.03	6.28	0.37	0.06
B874919	Core	1.30	0.51	< 0.01	37.51	< 0.01	7.39	0.05	31.16	11.25	0.55	0.05	11.03	1.02	0.18
B874920 Dup	Core	1.31	0.51	< 0.01	37.03	< 0.01	7.07	0.03	31.72	11.62	0.55	0.05	10.24	0.95	0.18
B874921	Core	0.90	0.41	< 0.01	32.69	< 0.01	4.79	0.03	35.76	16.32	0.55	0.05	7.23	1.98	0.09
B874922	Core	0.76	0.47	< 0.01	31.03	< 0.01	6.09	0.06	37.85	16.48	0.51	0.07	5.57	1.89	0.13
B874923	Core	0.56	0.26	< 0.01	31.21	< 0.01	4.62	0.03	40.99	17.97	0.29	0.08	3.98	0.50	0.03
B874924	Core	0.22	0.08	< 0.01	31.54	< 0.01	3.09	< 0.01	41.43	18.91	0.72	0.03	3.82	0.29	< 0.01
B874925	Core	0.25	0.08	< 0.01	31.85	< 0.01	3.33	0.02	41.19	18.22	0.76	0.03	4.04	0.35	< 0.01
B874926	Core	0.11	0.09	0.02	31.58	< 0.01	5.49	0.03	41.70	16.86	1.00	0.07	2.79	0.06	0.01
B874950	Pulp	0.53	1.84	0.37	46.98	< 0.01	4.05	0.77	32.15	2.24	0.93	0.47	2.63	7.14	0.23

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		Total	Ag	Al	As	Ba	Bi	Ca	Cd	Co	Cr	Cu	Fe 20 44 TP	K	La
C1-	C1-	WR-FS-ICP %	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR
Sample Description	Sample Type	0.01	ppm 0.5	% 0.01	ppm 5	ppm 10	ppm 2	% 0.01	ppm 0.5	ppm 1	ppm 1	ppm 1	% 0.01	% 0.01	ppm 10
B875375	Core	101.93	0.5	0.01	34	172	<2	>10	<0.5	22	14	<1	>10	0.01	285
B875376	Core	100.86	< 0.5	0.38	37	182	<2	>10	<0.5	15	10	7	>10	0.39	461
B875377	Core	101.98	< 0.5	0.21	48	65	<2	>10	<0.5	11	9	43	8.64	0.08	560
B875378	Core	102.68	< 0.5	0.07	48	22	<2	>10	< 0.5	9	11	25	3.26	< 0.01	512
B875379	Core	99.45	< 0.5	0.47	30	98	<2	>10	< 0.5	43	10	107	>10	0.21	368
B875380 Dup	Core	100.71	< 0.5	0.46	26	110	<2	>10	< 0.5	40	14	144	>10	0.25	399
B875381	Core	102.02	< 0.5	0.16	47	22	<2	>10	< 0.5	14	10	49	3.85	< 0.01	396
B875382	Core	101.38	< 0.5	0.29	27	76	<2	>10	< 0.5	29	10	8	>10	0.17	351
B875383	Core	102.27	< 0.5	0.09	45	34	<2	>10	< 0.5	13	8	35	4.69	0.02	314
B875384	Core	101.25	< 0.5	0.12	42	66	<2	>10	< 0.5	16	11	6	8.83	< 0.01	452
B875385	Core	98.72	< 0.5	0.15	36	11	<2	2.27	< 0.5	8	244	12	1.23	0.05	49
B875386	Core	100.96	< 0.5	0.09	41	31	<2	>10	< 0.5	10	9	34	3.76	< 0.01	376
B875387	Core	101.53	< 0.5	0.06	40	31	<2	>10	< 0.5	10	19	24	3.80	< 0.01	243
B875388	Core	101.10	< 0.5	0.16	38	59	<2	>10	< 0.5	20	9	49	6.70	0.05	301
B875389	Core	99.77	< 0.5	0.05	40	28	<2	>10	< 0.5	7	8	18	3.01	0.01	301
B875390	Pulp	101.30	< 0.5	0.07	46	150	<2	>10	< 0.5	6	8	28	3.41	0.03	333
B875391	Core	100.60	< 0.5	0.09	40	43	<2	>10	< 0.5	9	12	46	6.05	0.03	313
B875392	Core	102.07	< 0.5	0.05	43	32	<2	>10	< 0.5	9	9	19	3.00	< 0.01	232
B875393	Core	99.52	< 0.5	0.05	43	25	<2	>10	< 0.5	7	10	20	3.67	< 0.01	341
B875394	Core	99.82	< 0.5	0.06	43	24	<2	>10	< 0.5	19	9	29	3.91	< 0.01	254
B875395	Core	99.23	< 0.5	0.16	38	85	<2	>10	<0.5	19	13	13	>10	0.06	491
B875396	Core	99.07	<0.5	0.08	57	53	<2	>10	<0.5	12	12	4	7.06	0.02	300
B875397	Core	100.14	<0.5	0.09	41	33	<2	>10	<0.5	6	10	35	5.25	0.01	336
B875398	Core	101.97	<0.5	0.06	41	31	<2	>10	<0.5	5	10	22	3.07	0.02	277
B875399	Core	99.41	<0.5	0.07	47	34	<2	>10	<0.5	8 7	13	28	4.07	0.02	532
B874900 Dup	Core	100.69 99.12	<0.5	0.08	47 51	36 34	<2	>10	<0.5 <0.5	9	11 12	28 29	4.19	0.02 0.03	519 783
B874901 B874902	Core	99.12 99.50	<0.5	0.07	51 47	34	<2	>10	<0.5 <0.5	11	12	40	4.26	0.03	587
B874902 B874903	Core Core	99.96	<0.5 <0.5	0.11 0.11	41	27	<2 <2	>10 >10	<0.5	6	13	27	4.90 3.59	0.04	256
B874904	Core	99.91	<0.5	0.11	48	30	<2	>10	<0.5	8	11	16	3.76	0.03	557
B874905	Core	99.35	<0.5	0.00	37	27	<2	>10	<0.5	16	10	43	8.80	0.02	348
B874906	Core	99.83	<0.5	0.24	32	95	<2	>10	<0.5	33	11	19	>10	0.13	462
B874907	Core	100.46	<0.5	0.11	81	31	<2	>10	<0.5	9	15	32	3.99	0.02	282
B874908	Core	101.28	<0.5	0.10	40	43	<2	>10	<0.5	5	8	56	4.66	0.02	775
B874909	Core	101.00	<0.5	0.09	55	45	<2	>10	<0.5	20	13	6	4.79	0.03	454
B874910	Pulp	99.81	<0.5	0.89	27	2756	<2	>10	<0.5	8	13	7	3.37	0.53	937
B874911	Core	99.94	< 0.5	0.09	75	39	<2	>10	< 0.5	9	13	2	4.42	0.03	1330
B874912	Core	99.92	< 0.5	0.09	50	62	<2	>10	< 0.5	8	14	3	4.53	0.04	618
B874913	Core	99.89	< 0.5	0.12	49	41	<2	>10	< 0.5	6	19	5	3.55	0.04	496
B874914	Core	99.87	< 0.5	0.08	48	65	<2	>10	< 0.5	10	13	2	6.15	0.03	661

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		Total	Ag	Al	As	Ba	Bi	Ca	Cd	Co	Cr	Cu	Fe	K	La
		WR-FS-ICP	30-4A-TR												
Sample	Sample	%	ppm	%	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%	%	ppm
Description	Type	0.01	0.5	0.01	5	10	2	0.01	0.5	1	1	1	0.01	0.01	10
B874915	Core	99.88	< 0.5	0.07	51	32	<2	>10	< 0.5	12	15	2	4.15	0.01	501
B874916	Core	99.93	< 0.5	0.15	90	47	<2	>10	< 0.5	17	13	8	5.45	0.02	456
B874917	Core	102.01	< 0.5	0.26	94	55	<2	>10	< 0.5	11	12	5	4.77	0.01	370
B874918	Core	102.03	< 0.5	0.11	50	44	<2	>10	< 0.5	10	11	6	3.85	< 0.01	345
B874919	Core	100.72	< 0.5	0.23	101	73	<2	>10	< 0.5	15	12	33	5.80	0.03	626
B874920 Dup	Core	99.96	< 0.5	0.23	112	66	<2	>10	< 0.5	19	13	30	5.60	0.03	578
B874921	Core	99.91	< 0.5	0.19	51	34	<2	>10	< 0.5	18	19	15	4.10	0.02	467
B874922	Core	100.15	< 0.5	0.23	49	31	<2	>10	< 0.5	18	25	9	5.37	0.04	434
B874923	Core	99.96	< 0.5	0.12	42	21	<2	>10	< 0.5	15	13	4	4.12	0.03	313
B874924	Core	99.93	< 0.5	0.03	37	43	<2	>10	< 0.5	8	15	1	2.74	< 0.01	190
B874925	Core	99.89	< 0.5	0.03	39	47	<2	>10	< 0.5	8	12	1	2.85	< 0.01	235
B874926	Core	99.69	< 0.5	0.03	40	117	<2	>10	< 0.5	7	14	<1	4.65	0.02	297
B874950	Pulp	99.80	< 0.5	0.98	29	723	<2	>10	< 0.5	8	12	7	3.53	0.62	1035

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		Mg	Mn	Мо	Na	Ni	P	Pb	Sb	Sc	Sr	Ti	Tl	V	W
		30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR
Sample	Sample	%	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm
Description	Type	0.01	5	1	0.01	1	10	2	5	1	1	0.01	10	1	10
B875375	Core	8.56	3411	2	0.13	3	>10000	14	<5	7	1984	0.58	<10	188	<10
B875376	Core	4.20	2042	3	0.09	2	>10000	13	<5	3	1440	0.26	<10	267	<10
B875377	Core	6.76	3315	2	0.03	<1	>10000	15	<5	3	2017	0.14	<10	121	<10
B875378	Core	>10	3457	3	0.03	<1	>10000	18	<5	5	2303	0.02	<10	15	<10
B875379	Core	6.42	2960	3	0.04	3	>10000	18	<5	3	2048	0.33	<10	289	<10
B875380 Dup	Core	6.85	3205	3	0.04	4	>10000	22	<5	3	2348	0.40	<10	310	<10
B875381	Core	>10	2692	2	0.04	<1	>10000	17	<5	6	2238	0.02	<10	31	<10
B875382	Core	6.79	2452	2	0.05	3	>10000	13	<5	5	1347	0.28	<10	365	<10
B875383	Core	>10	3318	2	0.03	1	>10000	16	<5	6	1754	0.03	<10	34	<10
B875384	Core	6.74	2540	2	0.05	1	>10000	20	<5	3	2574	0.02	<10	94	<10
B875385	Core	0.79	361	<1	0.01	4	4406	5	<5	<1	270	0.01	<10	12	<10
B875386	Core	8.09	3165	3	0.03	<1	>10000	19	<5	6	2055	0.02	<10	22	<10
B875387	Core	8.56	3785	3	0.03	3	>10000	17	<5	5	2684	0.02	<10	30	<10
B875388	Core	7.39	3776	3	0.04	1	>10000	22	<5	6	3167	0.04	<10	60	<10
B875389	Core	8.04	3534	3	0.03	1	>10000	18	<5	6	2112	0.01	<10	13	<10
B875390	Pulp	6.16	2343	3	0.06	2	>10000	21	<5	7	1736	0.05	<10	64	<10
B875391	Core	5.83	2445	2	0.03	2	>10000	27	<5	6	1705	0.04	<10	83	<10
B875392	Core	8.10	2974	2	0.03	<1	>10000	24	<5	6	2249	0.01	<10	14	<10
B875393	Core	8.30	3258	2	0.05	2	>10000	17	<5	7	2092	0.01	<10	17	<10
B875394	Core	7.92	3412	2	0.03	<1	>10000	14	<5	5	2477	0.02	<10	20	<10
B875395	Core	5.22	3247	<1	0.05	2	>10000	13	<5	5	2797	0.10	<10	231	<10
B875396	Core	7.57	3142	2	0.04	<1	>10000	17	<5	7	2379	0.04	<10	99	<10
B875397 B875398	Core	7.87	2607	2	0.06	<1	>10000	18	<5	6	1746	0.03	<10	60	<10
B875398 B875399	Core	8.29	3750 3670	<1 2	0.05	<1 1	>10000	19	<5	6 8	2924 2733	0.02	<10	17 29	<10
	Core	8.91 9.11	3795	2	0.04	-	>10000 >10000	16	<5 <5	8	2868	0.03	<10	30	<10
B874900 Dup B874901	Core Core	7.70	3637	2	0.04 0.04	<1 <1	>10000	18 16	<5 <5	7	2926	0.03 0.02	<10 <10	40	<10 <10
B874902	Core	8.37	3463	2	0.04	<1	>10000	16	<5	9	1959	0.02	<10	36	<10
B874902 B874903	Core	7.14	2896	2	0.03	<1	>10000	17	<5	6	2088	0.04	<10	23	<10
B874904	Core	8.16	3912	3	0.03	<1	>10000	20	<5	7	2562	0.04	<10	18	<10
B874905	Core	8.33	2793	4	0.03	1	>10000	18	<5	6	1724	0.02	<10	180	<10
B874906	Core	3.64	3056	2	0.03	3	>10000	18	<5	3	2748	0.00	<10	233	<10
B874907	Core	8.53	2654	4	0.04	3	>10000	17	<5	5	1215	0.10	<10	34	<10
B874908	Core	6.85	3257	8	0.03	<1	>10000	54	<5	7	1120	0.02	<10	34	<10
B874909	Core	6.87	1778	7	0.03	<1	>10000	30	<5	4	1631	0.02	<10	37	<10
B874910	Pulp	1.24	6117	16	0.29	<1	>10000	84	<5	3	>10000	0.09	<10	164	<10
B874911	Core	9.39	3168	26	0.02	<1	>10000	31	<5	7	1539	0.01	<10	23	<10
B874912	Core	8.23	2563	7	0.02	1	>10000	26	<5	5	2087	0.01	<10	20	<10
B874913	Core	9.03	2335	5	0.02	<1	>10000	26	<5	5	1628	0.01	<10	25	<10
B874914	Core	8.74	4613	5	0.03	<1	>10000	27	<5	5	2953	0.03	<10	51	<10

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		Mg	Mn	Mo	Na	Ni	P	Pb	Sb	Sc	Sr	Ti	Tl	V	W
		30-4A-TR													
Sample	Sample	%	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm
Description	Type	0.01	5	1	0.01	1	10	2	5	1	1	0.01	10	1	10
B874915	Core	9.75	3522	4	0.03	<1	>10000	26	<5	5	2444	0.02	<10	29	<10
B874916	Core	7.64	3603	5	0.03	<1	>10000	31	<5	5	2944	0.04	<10	57	<10
B874917	Core	5.92	3584	5	0.03	<1	>10000	25	<5	5	2703	0.02	<10	28	<10
B874918	Core	7.37	2405	4	0.03	<1	>10000	23	<5	3	2836	0.01	<10	28	<10
B874919	Core	6.00	2271	4	0.04	<1	>10000	29	<5	3	2092	0.03	<10	89	<10
B874920 Dup	Core	6.62	2124	4	0.04	<1	>10000	27	<5	2	2139	0.03	<10	78	<10
B874921	Core	9.09	2548	2	0.04	<1	>10000	30	<5	3	2772	0.02	<10	30	<10
B874922	Core	9.35	3298	6	0.05	<1	>10000	29	<5	5	2279	0.04	<10	75	<10
B874923	Core	9.71	1873	3	0.06	<1	>10000	35	<5	3	703	0.01	<10	61	<10
B874924	Core	>10	4558	2	0.03	<1	>10000	22	<5	4	4012	< 0.01	<10	2	<10
B874925	Core	9.88	2295	3	0.03	<1	>10000	25	<5	3	4000	< 0.01	<10	6	<10
B874926	Core	8.84	5744	5	0.05	<1	>10000	28	<5	5	3539	< 0.01	<10	6	<10
B874950	Pulp	1.23	6227	15	0.32	<1	>10000	82	<5	3	>10000	0.10	<10	176	<10

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		Zn	Zr	Ce	Dy	Er	Eu	Gd	Hf	Но	La	Lu	Nd	Pr	Sm
0 1		30-4A-TR		REE-LB-MS		REE-LB-MS		REE-LB-MS		REE-LB-MS	REE-LB-MS	REE-LB-MS		REE-LB-MS	REE-LB-MS
Sample Description	Sample Type	ppm 2	ppm	ppm 0.1	ppm 0.1	ppm 0.1	ppm 0.1	ppm 0.1	ppm 0.1	ppm 0.1	ppm 0.1	ppm 0.1	ppm 0.1	ppm 0.1	ppm 0.1
B875375	Core	130	88	693.5	12.2	3.8	9.2	28.9	18.2	1.8	355.9	0.1	239.1	70.9	33.5
B875376	Core	128	61	>1000	25.4	6.9	20.4	63.5	44.6	3.5	754.0	0.3	550.8	167.0	75.1
B875377	Core	39	18	>1000	16.8	4.6	14.3	47.8	7.3	2.2	864.0	0.3	464.8	151.3	55.6
B875378	Core	19	15	>1000	18.4	5.8	12.8	41.9	4.5	2.7	642.0	0.4	362.8	114.8	47.3
B875379	Core	182	27	>1000	22.3	6.9	17.3	49.9	17.0	3.3	453.0	0.5	388.9	112.4	57.0
B875380 Dup	Core	185	33	997.7	22.3	7.0	17.1	49.6	16.1	3.3	467.9	0.5	388.8	113.2	57.6
B875381	Core	17	27	>1000	26.9	9.4	17.8	53.0	7.9	4.1	477.9	0.7	410.9	118.9	60.8
B875382	Core	106	59	877.7	20.7	7.3	14.4	44.2	29.5	3.3	392.8	0.7	335.2	95.8	49.5
B875383	Core	20	42	733.1	19.1	7.3	11.9	36.3	7.1	3.1	349.1	0.7	272.4	79.7	40.5
B875384	Core	32	21	>1000	34.0	11.1	24.7	69.8	17.2	5.1	527.3	0.8	532.0	149.0	83.1
B875385	Core	7	16	130.7	3.5	1.2	2.3	6.8	3.2	0.5	54.4	< 0.1	51.5	14.7	8.2
B875386	Core	19	28	975.2	20.0	6.8	13.6	40.4	4.6	3.1	466.2	0.5	336.9	102.5	46.8
B875387	Core	23	13	636.9	15.8	5.3	11.3	31.8	2.9	2.4	281.5	0.4	246.3	72.5	38.2
B875388	Core	41	45	811.6	20.0	6.6	15.1	42.6	13.0	3.0	343.9	0.4	331.7	93.5	50.0
B875389	Core	20	11	803.6	16.2	5.6	10.2	33.2	3.0	2.5	395.7	0.4	271.7	84.6	38.1
B875390	Pulp	15	28	924.5	24.8	9.3	15.4	46.1	1.7	4.0	408.2	0.9	341.3	100.7	51.8
B875391	Core	36	34	930.3	28.4	10.2	16.7	50.2	10.5	4.7	440.7	0.8	351.0	103.0	55.2
B875392	Core	29	13	600.8	18.0	6.7	10.8	31.9	2.6	2.9	274.4	0.5	236.4	67.5	38.0
B875393	Core	20	19	748.1	21.5	7.9	11.5	37.4	2.9	3.6	385.5	0.6	258.8	78.2	40.2
B875394	Core	16	22	690.4	16.5	5.7	11.6	34.4	3.6	2.6	308.4	0.5	265.5	76.3	41.1
B875395	Core	52	39	>1000	28.6	8.3	22.4	64.9	14.2	4.0	570.7	0.5	531.1	153.7	79.9
B875396	Core	36	40	792.3	21.0	7.5	14.4	40.4	8.7	3.3	335.2	0.5	303.0	88.1	46.8
B875397	Core	18	30	793.9	22.2	8.1	13.7	40.9	4.8	3.6	373.6	0.7	299.2	88.5	46.8
B875398	Core	25	14	706.4	18.6	6.4	12.2	37.0	2.1	2.9	316.5	0.4	265.7	77.4	39.9
B875399	Core	20	22	992.8	23.1	8.1	14.2	43.0	2.9	3.7	568.2	0.6		100.2	46.2
B874900 Dup	Core	19	25	933.8	22.8	8.2	13.4	41.6	2.9	3.6	517.5	0.6		94.8	44.9
B874901	Core	16	22	>1000	28.7	9.3	19.7	62.7	4.1	4.3	917.4	0.5	488.7	157.2	69.4
B874902	Core	16	39	>1000	40.3	16.1	19.4	63.4	4.9	7.0	677.5	1.2		132.2	64.5
B874903	Core	14	35	699.7	37.0	15.7	15.3	47.0	3.9	6.9	346.2	1.1	262.9	76.1	47.2
B874904	Core	17	24	>1000	24.7	9.8	13.4	47.1	3.3	4.2	662.4	0.7	385.7	124.0	51.3
B874905	Core	27	35	882.1	26.2	9.7	17.9	47.6	6.1	4.3	392.5	0.8		99.5	53.6
B874906	Core	75 15	39	>1000	29.7	8.5	22.9	66.9	32.5	4.2	574.9	0.5	550.3	157.6	81.3
B874907	Core	15	20	727.0	20.1	7.7	12.5	37.6	2.1	3.4	329.3	0.7	278.0	80.8	43.3
B874908	Core	42	17	>1000	26.9	9.7	17.7	62.7	2.4	4.2	941.8	0.8	636.5	201.7	76.2
B874909	Core	19 470	<1 10	>1000	32.1	11.7	18.3	56.6	3.2 <0.1	5.2 2.3	560.9	1.0	407.0	123.3 177.3	60.6 52.8
B874910 B874911	Pulp Core	470 16	10 <1	>1000 >1000	16.6 36.2	5.6 12.5	14.5 23.5	47.6 89.2	<0.1	5.6	>1000 >1000	0.6 0.9	500.1 911.4	290.6	104.5
B874911 B874912	Core	29	<1	>1000	32.0	11.8	23.3 17.7	58.5	1.4	5.3	>1000 676.8	0.9	476.2	145.9	65.9
B874912 B874913	Core	29 16	8	>1000	32.0 27.7	11.8	17.7	54.2	1.7	5.5 4.5	541.6	0.8	413.5	145.9	60.1
B874914	Core	32	<1	>1000	17.5	5.5	14.6	46.6	2.4	2.5	725.0	0.9	473.8	148.7	55.3
D0/4914	Core	32	<1	>1000	17.3	3.3	14.0	40.0	2.4	2.3	123.0	0.3	4/3.0	140./	33.3

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		Zn	Zr	Ce	Dy	Er	Eu	Gd	Hf	Но	La	Lu	Nd	Pr	Sm
		30-4A-TR	30-4A-TR	REE-LB-MS											
Sample	Sample	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Description	Type	2	1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
B874915	Core	19	<1	>1000	20.3	6.8	15.0	45.2	2.0	3.1	517.0	0.5	383.9	116.9	51.6
B874916	Core	24	<1	>1000	24.5	7.9	19.6	53.7	1.7	3.7	485.5	0.5	416.3	122.3	62.6
B874917	Core	22	<1	938.7	19.1	6.0	13.3	42.3	0.7	2.8	436.1	0.5	335.6	103.1	47.9
B874918	Core	23	<1	874.3	20.3	6.4	15.8	43.8	0.8	3.1	386.8	0.5	333.4	98.0	50.9
B874919	Core	19	<1	>1000	38.0	13.7	24.1	72.2	8.2	6.2	684.1	1.1	555.3	166.2	82.1
B874920 Dup	Core	19	<1	>1000	36.9	13.6	22.8	66.0	6.3	6.0	588.5	1.1	492.4	145.9	74.8
B874921	Core	18	<1	>1000	26.5	8.9	18.5	53.0	2.0	4.1	486.7	0.6	401.3	118.8	60.8
B874922	Core	16	<1	979.4	25.1	8.5	18.1	49.8	3.1	3.9	443.8	0.6	364.3	107.7	56.6
B874923	Core	11	4	679.0	21.9	8.6	12.0	37.4	0.6	3.8	316.7	0.9	261.3	74.8	41.7
B874924	Core	25	<1	454.6	10.6	3.1	8.0	24.6	0.1	1.5	188.6	0.2	181.3	51.6	28.7
B874925	Core	20	<1	545.5	11.1	3.2	8.8	26.4	0.1	1.5	236.2	0.2	208.6	60.7	31.5
B874926	Core	38	1	639.7	10.4	2.6	8.6	26.9	< 0.1	1.4	310.4	0.1	223.4	68.5	33.2
B874950	Pulp	478	15	>1000	15.6	5.1	14.0	46.0	< 0.1	2.3	>1000	0.5	487.1	172.9	51.2

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

			Tb	Tm	Yb	Y	Ta	Th	U
				REE-LB-MS			Ta-4A-LL-MS		U-4A-LL-MS
	Sample	Sample	ppm	ppm	ppm	ppm	ppm	ppm	ppm
	Description	Туре	0.1	0.1	0.1	0.10	0.05	0.20	0.10
	B875375	Core	2.5	0.4	2.6	41.3	13.29	31.76	1.66
	B875376	Core	5.4	0.7	4.0	76.0	1.70	114.71	10.79
	B875377	Core	3.4	0.5	2.8	50.9	1.18	59.69	6.87
	B875378	Core	3.5	0.7	3.9	63.1	12.48	78.10	2.75
	B875379	Core	4.6	0.8	4.3	75.6	15.90	93.15	8.57
	B875380 Dup	Core	4.6	0.8	4.4	75.2	15.80	91.01	8.19
	B875381	Core	5.3	1.1	6.2	94.9	26.37	107.34	4.99
l	B875382	Core	4.3	0.9	5.2	78.2	0.80	166.83	13.84
	B875383	Core	3.7	0.9	5.2	74.1	19.28	140.26	4.12
	B875384	Core	7.1	1.3	6.8	113.3	1.66	81.76	3.41
	B875385	Core	0.6	< 0.1	0.9	12.4	0.18	35.18	0.58
ı	B875386	Core	3.8	0.8	4.4	73.8	12.77	115.29	2.66
l	B875387	Core	3.2	0.6	3.4	56.0	7.51	59.52	1.59
l	B875388	Core	4.1	0.7	3.7	69.1	21.88	139.93	2.65
	B875389	Core	3.2	0.7	3.9	59.7	3.92	67.00	0.96
1	B875390	Pulp	4.7	1.2	6.6	96.5	2.25	152.39	2.02
	B875391	Core	5.5	1.2	6.7	109.7	13.31	161.33	3.90
	B875392	Core	3.5	0.8	4.5	68.8	5.93	93.62	1.40
	B875393	Core	4.1	0.9	5.0	83.0	16.40	145.50	2.13
	B875394	Core	3.4	0.6	3.8	60.5	17.00	91.52	4.37
	B875395	Core	6.1	0.9	4.6	90.8	1.33	120.53	6.25
	B875396	Core	4.3	0.9	4.7	78.0	0.19	119.78	2.47
	B875397	Core	4.4	1.0	5.5	82.1	21.24	150.98	3.59
	B875398	Core	3.7	0.8	4.0	69.5	10.29	73.48	1.99
	B875399	Core	4.4	1.0	5.2	86.3	8.75	97.39	2.40
	B874900 Dup	Core	4.4	0.9	4.9	85.0	9.18	96.56	2.91
	B874901	Core	5.7	1.0	5.2	98.6	8.66	130.86	2.68
	B874902	Core	7.6	2.0	10.1	162.2	11.51	198.20	3.37
	B874903	Core	6.8	2.0	9.3	155.8	12.71	286.80	7.03
	B874904	Core	4.6	1.2	6.2	100.3	4.40	212.68	2.10
	B874905	Core	5.3	1.2	6.5	105.0	12.14	180.11	4.06
	B874906	Core	6.2	0.9	5.1	92.4	0.12	140.55	5.78
	B874907	Core	3.9	1.0	5.4	79.1	19.45	102.19	2.06
	B874908	Core	5.0	1.2	6.8	99.6	14.72	129.42	3.21
	B874909	Core	6.1	1.4	7.9	123.7	0.22	86.97	4.82
	B874910	Pulp	2.9	0.7	4.3	62.2	10.76	40.70	31.22
	B874911	Core	6.8	1.5	8.2	129.7	0.25	88.49	4.36
	B874912	Core	6.0	1.4	7.4	122.6	0.06	72.36	3.23
	B874913	Core	5.5	1.2	7.3	104.1	0.13	87.51	5.49
	B874914	Core	3.3	0.6	3.4	61.2	1.16	55.16	2.89

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		Tb	Tm	Yb	Y	Ta	Th	U	
		REE-LB-MS	REE-LB-MS	REE-LB-MS	REE-LB-MS	Ta-4A-LL-MS	Th-4A-LL-MS	U-4A-LL-MS	
Sample	Sample	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Description	Type	0.1	0.1	0.1	0.10	0.05	0.20	0.10	
B874915	Core	4.0	0.8	4.6	72.6	0.45	26.94	2.50	
B874916	Core	5.0	0.9	5.0	87.3	0.38	34.08	7.80	
B874917	Core	3.8	0.7	4.0	65.5	0.34	32.40	7.25	
B874918	Core	4.0	0.7	4.2	71.0	0.07	23.12	5.28	
B874919	Core	7.3	1.7	9.0	143.2	0.41	32.16	8.31	
B874920 Dup	Core	7.2	1.7	8.8	138.1	0.09	33.46	8.54	
B874921	Core	5.3	1.0	5.6	97.0	0.12	25.11	6.36	
B874922	Core	5.1	1.0	5.5	92.0	1.40	50.64	6.40	
B874923	Core	4.2	1.1	6.4	85.8	2.79	132.87	3.92	
B874924	Core	2.2	0.3	1.7	33.7	< 0.05	7.27	1.08	
B874925	Core	2.3	0.3	1.9	36.4	0.16	19.51	0.94	
B874926	Core	2.2	0.3	1.6	32.2	0.37	44.81	0.88	
B874950	Pulp	2.8	0.7	4.4	59.9	8.75	38.45	28.03	

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		Nb2O5	A12O3	BaO	CaO	Cr2O3	Fe2O3	K2O	LOI	MgO	MnO	Na2O	P2O5	SiO2	TiO2
		Nb2O5-AD3-OR-ICP	WR-FS-ICP												
Sample	Sample	%	%	%	%	%	%	%	%	%	%	%	%	%	%
Description	Type	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
B875375	Core	0.09													
B875375 Dup		0.09													
QCV1011-00041-0002-BLK		< 0.01													
STD-OKA-1 expected		0.53													
STD-OKA-1 result		0.54													
B875393	Core	0.36													
B875393 Dup		0.36													
QCV1011-00041-0005-BLK		< 0.01													
STD-OKA-1 expected		0.53													
STD-OKA-1 result		0.54													
B874911	Core	0.42													
B874911 Dup		0.42													
QCV1011-00041-0008-BLK		< 0.01													
STD-OKA-1 expected		0.53													
STD-OKA-1 result		0.55													
QCV1011-00041-0010-BLK		< 0.01													
B875375	Core		0.69	0.03	25.60	< 0.01	15.87	0.29	29.50	14.06	0.59	0.24	4.51	9.28	1.29
B875375 Dup			0.71	0.03	25.30	< 0.01	15.80	0.30	29.51	14.36	0.59	0.25	4.54	9.40	1.32
QCV1011-00045-0002-BLK			< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
B875393	Core		0.14	< 0.01	31.71	< 0.01	4.67	0.01	38.93	17.41	0.55	0.06	5.56	0.42	0.04
B875393 Dup			0.14	< 0.01	31.77	< 0.01	4.74	0.01	38.92	17.42	0.56	0.06	5.58	0.43	0.04
QCV1011-00045-0005-BLK			< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
B874911	Core		0.21	< 0.01	32.42	< 0.01	5.34	0.06	39.09	17.29	0.53	0.03	4.76	0.14	0.07
B874911 Dup			0.21	< 0.01	32.59	< 0.01	5.33	0.05	39.18	16.97	0.53	0.03	4.81	0.14	0.07
QCV1011-00045-0008-BLK			< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
QCV1011-00045-0010-BLK			< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
STD-SY-4 expected			20.69		8.05		6.21	1.66	4.56	0.54	0.11	7.10	0.13	49.90	0.29
STD-SY-4 result			20.53	0.04	7.80	< 0.01	6.34	1.72	4.52	0.54	0.12	7.70	0.13	50.28	0.31

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

			Total	Ag	Al	As	Ba	Bi	Ca	Cd	Co	Cr	Cu	Fe	K	La
			WR-FS-ICP	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR
	Sample	Sample	%	ppm	%	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%	%	ppm
	Description	Type	0.01	0.5	0.01	5	10	2	0.01	0.5	1	1	1	0.01	0.01	10
	B875375	Core		0.6	0.29	34	172	<2	>10	< 0.5	22	14	<1	>10	0.20	285
	B875375 Dup			< 0.5	0.25	33	146	<2	>10	< 0.5	19	14	<1	>10	0.17	240
	QCV1011-00042-0002-BLK			<0.5	< 0.01	<5	<10	<2	< 0.01	< 0.5	<1	<1	<1	< 0.01	< 0.01	<10
	D-CDN-ME-8 expected			61.7									1030			
	STD-CDN-ME-8 result	_		60.5							_		1019			
	B875393	Core		<0.5	0.05	43	25	<2	>10	<0.5	7	10	20	3.67	< 0.01	341
	B875393 Dup			< 0.5	0.06	42	26	<2	>10	<0.5	7	10	20	3.85	< 0.01	359
`	QCV1011-00042-0005-BLK			< 0.5	< 0.01	<5	<10	<2	< 0.01	< 0.5	<1	<1	<1	< 0.01	< 0.01	<10
	D-CDN-ME-6 expected			101.0									6130			
	STD-CDN-ME-6 result			99.8	0.00	7.5	20	•	10	0.5		10	6098		0.02	1220
	B874911	Core		< 0.5	0.09 0.09	75	39 41	<2	>10 >10	<0.5 <0.5	9	13	2	4.42	0.03 0.03	1330
	B874911 Dup QCV1011-00042-0008-BLK			<0.5		74	<10	<2	<0.01		10	13	2	4.57		1348
	REAS-45P-4A expected			< 0.5	< 0.01	<5	<10	<2	<0.01	< 0.5	<1 122	<1 1103	<1 749	< 0.01	< 0.01	<10
	-OREAS-45P-4A result										132	1056	749 744			
	-OKEAS-45P-4A result OCV1011-00042-0010-BLK			< 0.5	< 0.01	<5	<10	<2	< 0.01	<0.5	<1	<1	/44 <1	< 0.01	< 0.01	<10
,	D-CDN-ME-6 expected			101.0	<0.01	<>>	<10	<2	<0.01	<0.5	<1	<1	6130	<0.01	<0.01	<10
I	STD-CDN-ME-6 result			98.3									6432			
	B875375	Core	101.93	96.3									0432			
	B875375 Dup	Corc	102.11													
C	OCV1011-00045-0002-BLK		<0.01													
	B875393	Core	99.52													
	B875393 Dup	Core	99.67													
	OCV1011-00045-0005-BLK		< 0.01													
	B874911	Core	99.94													
	B874911 Dup		99.92													
Ç	CV1011-00045-0008-BLK		< 0.01													
Ç	CV1011-00045-0010-BLK		< 0.01													
	STD-SY-4 expected															
	STD-SY-4 result		100.05													

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

			Mg	Mn	Mo	Na	Ni	P	Pb	Sb	Sc	Sr	Ti	Tl	V	W
			30-4A-TR													
	Sample	Sample	%	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm
	Description	Type	0.01	5	1	0.01	1	10	2	5	1	1	0.01	10	1	10
	B875375	Core	8.56	3411	2	0.13	3	>10000	14	<5	7	1984	0.58	<10	188	<10
	B875375 Dup		7.37	2924	2	0.11	2	>10000	14	<5	6	1692	0.39	<10	161	<10
	QCV1011-00042-0002-BLK		< 0.01	<5	<1	< 0.01	<1	<10	<2	<5	<1	<1	< 0.01	<10	<1	<10
	B875393	Core	8.30	3258	2	0.05	2	>10000	17	<5	7	2092	0.01	<10	17	<10
	B875393 Dup		8.87	3416	2	0.05	<1	>10000	15	<5	7	2218	0.01	<10	18	<10
	QCV1011-00042-0005-BLK		< 0.01	<5	<1	< 0.01	<1	<10	<2	<5	<1	<1	< 0.01	<10	<1	<10
	STD-CDN-ME-6 expected								10200							
	STD-CDN-ME-6 result								>10000							
	B874911	Core	9.39	3168	26	0.02	<1	>10000	31	<5	7	1539	0.01	<10	23	<10
	B874911 Dup		9.35	3257	25	0.03	<1	>10000	32	<5	7	1553	0.01	<10	24	<10
	QCV1011-00042-0008-BLK		< 0.01	<5	<1	< 0.01	<1	<10	<2	<5	<1	<1	< 0.01	<10	<1	<10
STD	OREAS-45P-4A expected					0.08	385	454								
S	ΓD-OREAS-45P-4A result					0.08	375	483								
	QCV1011-00042-0010-BLK		< 0.01	<5	<1	< 0.01	<1	<10	<2	<5	<1	<1	< 0.01	<10	<1	<10
	STD-CDN-ME-6 expected								10200							
l	STD-CDN-ME-6 result								9979							

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		Zn	Zr	Ce	Dy	Er	Eu	Gd	Hf	Но	La	Lu	Nd	Pr	Sm
		30-4A-TR	30-4A-TR	REE-LB-MS											
Sample	Sample	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Description	Type	2	1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
B875375	Core	130	88												
B875375 Dup		112	73												
QCV1011-00042-0002-BLK		<2	<1												
B875393	Core	20	19												
B875393 Dup		17	19												
QCV1011-00042-0005-BLK		<2	<1												
STD-CDN-ME-6 expected		5170													
STD-CDN-ME-6 result		5122													
B874911	Core	16	<1												
B874911 Dup		17	<1												
QCV1011-00042-0008-BLK		<2	<1												
STD-OREAS-45P-4A expected		142													
STD-OREAS-45P-4A result		134													
QCV1011-00042-0010-BLK		<2	<1												
STD-CDN-ME-6 expected		5170													
STD-CDN-ME-6 result		5163													
B875375	Core			693.5	12.2	3.8	9.2	28.9	18.2	1.8	355.9	0.3		70.9	33.5
B875375 Dup				685.3	12.1	3.7	9.3	28.4	17.4	1.7	353.1	0.3		71.3	33.5
QCV1011-00043-0002-BLK				< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
B875393	Core			748.1	21.5	7.9	11.5	37.4	2.9	3.6	385.5	0.6		78.2	40.2
B875393 Dup				749.2	21.9	8.4	11.9	36.8	3.0	3.5	387.6	0.6		79.3	40.4
QCV1011-00043-0005-BLK				< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
B874911	Core			>1000	36.2	12.5	23.5	89.2	1.4	5.6	>1000	0.9	911.4	290.6	104.5
B874911 Dup				>1000	36.7	12.6	23.4	91.8	1.5	5.6	>1000	1.0		296.1	105.4
QCV1011-00043-0008-BLK				< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
QCV1011-00043-0010-BLK				< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
STD-SY-4 expected				122.0	18.2	14.2	2.0	14.0		4.3	58.0	2.1	57.0	15.0	12.7
STD-SY-4 result				132.0	19.5	15.1	2.1	15.2		4.7	63.1	2.2	58.1	16.4	12.9

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		Tb	Tm	Yb	Y	Ta	Th	U
		REE-LB-MS	REE-LB-MS	REE-LB-MS	REE-LB-MS	Ta-4A-LL-MS	Th-4A-LL-MS	U-4A-LL-MS
Sample	Sample	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Description	Type	0.1	0.1	0.1	0.10	0.05	0.20	0.10
B875375	Core	2.5	0.4	2.6	41.3			
B875375 Dup		2.5	0.4	2.6	40.6			
QCV1011-00043-0002-BLK		< 0.1	< 0.1	< 0.1	< 0.10			
B875393	Core	4.1	0.9	5.0	83.0			
B875393 Dup		4.3	0.9	4.9	87.8			
QCV1011-00043-0005-BLK		< 0.1	< 0.1	< 0.1	< 0.10			
B874911	Core	6.8	1.5	8.2	129.7			
B874911 Dup		6.8	1.6	8.3	133.4			
QCV1011-00043-0008-BLK		< 0.1	< 0.1	< 0.1	< 0.10			
QCV1011-00043-0010-BLK		< 0.1	< 0.1	< 0.1	< 0.10			
STD-SY-4 expected		2.6	2.3	14.8	119.0			
STD-SY-4 result		2.8	2.4	15.6	125.1			
B875375	Core					13.29	31.76	1.66
B875375 Dup						13.28	31.39	1.67
QCV1105-00498-0002-BLK						< 0.05	< 0.20	< 0.10
B875393	Core					16.40	145.50	2.13
B875393 Dup						15.66	135.30	2.03
QCV1105-00498-0005-BLK						< 0.05	< 0.20	< 0.10
B874911	Core					0.25	88.49	4.36
B874911 Dup						0.26	65.06	4.30
QCV1105-00498-0008-BLK						< 0.05	< 0.20	< 0.10
QCV1105-00498-0010-BLK						< 0.05	< 0.20	< 0.10

Certificate of Analysis

Inspectorate Exploration & Mining Services Ltd. #200 - 11620 Horseshoe Way

Date Received: 11/03/2010

Date Completed: 05/06/2011

Invoice:

Richmond, British Columbia V7A 4V5 Canada

Phone: 604-272-7818

Distribution List

Attention: Eric Titley

Suite 1020-800 West Pender St.

Vancouver, BC V6C 2V6

EMail: erictitley@hdimining.com

Attention: Jeremy Crozier

EMail: jeremycrozier@hdimining.com

Attention: T.Kodata

EMail: tkodata@hdimining.com

Submitted By: Aley Corporation

Suite 1020-800 West Pender St.

Vancouver, BC V6C 2V6

Attention: Eric Titley

Project: Aley 2010 Project

Purchase Order: **Aley 0002**Description: **Aley 2010-015**

LocationSamplesTypePreparation DescriptionVancouver, BC3PulpSP-PU/Pulp Handling, submitted pulpsVancouver, BC61RockSP-RX-2K/Rock/Chips/Drill Core

Location	Method	Description
Vancouver, BC	Ta-4A-LL-MS	Tantalum, 4 Acid, ICP
Vancouver, BC	REE-LB-MS	REE Group by ICP-MS
Vancouver, BC	U-4A-LL-MS	Uraium, 4 Acid, Low Level
Vancouver, BC	Nb2O5-AD3-OR-ICP	Niobium by multi-acid digestion, ICP
Vancouver, BC	Th-4A-LL-MS	Thorium, 4 Acid, Low Level
Vancouver, BC	WR-FS-ICP	Whole Rock, Lithium Borate Fusion, ICP
Vancouver, BC	30-4A-TR	30 Element, 4 Acid, ICP, Trace Level

Submittal Information

Ta, Th, and U results shown have been revised with accurate detection limits.

The results of this assay were based solely upon the content of the sample submitted. Any decision to invest should be made only after the potential investment value of the claim or deposit has been determined based on the results of assays of multiple samples of geologic materials collected by the prospective investor or by a qualified person selected by him and based on an evaluation of all engineering data which is available concerning any proposed project. For our complete terms and conditions please see our website at www.inspectorate.com.

Βı

Mike Caron, Lab Manager

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		Nb2O5	A12O3	BaO	CaO	Cr2O3	Fe2O3	K2O	LOI	MgO	MnO	Na2O	P2O5	SiO2	TiO2
		Nb2O5-AD3-OR-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP						
Sample	Sample	%	%	%	%	%	% 0.01	%	%	%	%	%	%	%	%
Description B875745	Type	0.01	0.01	<0.01	33.70	<0.01	6.81	0.01	0.01 37.04	0.01 15.67	0.01	0.01	6.06	0.01	0.01
B875746	Rock Rock	1.52	1.46	0.01	28.47	< 0.01	22.87	0.02	23.01	7.96	0.55	0.04	8.60	5.73	1.39
B875747	Rock	0.52	0.46	< 0.03	31.57	< 0.01	9.28	0.24	37.08	15.77	0.00	0.00	4.70	2.05	0.42
B875748	Rock	0.32	0.40	0.01	29.85	< 0.01	17.97	0.03	30.11	11.79	0.73	0.05	6.11	3.26	0.42
B875749	Rock	0.81	0.71	0.02	33.69	< 0.01	6.51	0.24	37.45	14.51	0.56	0.03	5.98	1.17	0.07
B875750	Pulp	0.43	0.23	< 0.01	31.76	< 0.01	5.79	0.01	39.06	16.38	0.50	0.05	4.49	1.17	0.08
B875751	Rock	0.43	0.53	0.01	32.17	< 0.01	11.10	0.08	33.87	15.38	0.32	0.03	5.94	2.15	0.13
B875752	Rock	0.40	0.33	< 0.01	33.95	< 0.01	4.36	< 0.01	39.81	18.46	0.48	0.03	4.95	0.33	0.02
B875753	Rock	0.40	0.17	0.01	31.27	< 0.01	10.62	< 0.01	37.45	19.23	0.48	0.03	2.91	0.57	0.02
B875754	Rock	0.66	0.12	< 0.01	34.00	< 0.01	5.93	0.01	40.68	16.73	0.99	0.02	3.56	0.09	0.23
B875755	Rock	0.62	0.12	< 0.01	36.09	< 0.01	4.93	0.01	37.16	15.39	0.71	0.04	6.54	1.13	0.03
B875756	Rock	0.02	0.33	0.01	29.32	< 0.01	7.61	0.02	35.75	15.71	0.71	0.04	4.06	7.79	0.04
B875757	Rock	0.24	0.08	< 0.01	31.81	< 0.01	4.06	0.03	41.52	18.72	0.73	0.03	3.40	0.53	0.02
B875758	Rock	0.26	0.20	0.01	31.56	< 0.01	5.54	0.07	40.25	17.42	0.78	0.03	3.54	0.96	0.04
B875759	Rock	0.39	0.15	< 0.01	32.81	< 0.01	5.15	0.03	39.45	17.55	0.95	0.05	4.89	0.58	0.03
B875760 Dup	Rock	0.42	0.16	< 0.01	32.99	< 0.01	5.11	0.04	39.38	17.42	0.95	0.06	5.03	0.56	0.03
B875761	Rock	0.28	0.16	0.05	40.19	< 0.01	3.55	0.10	39.91	12.03	0.65	0.04	3.23	0.71	0.03
B875762	Rock	0.87	0.33	0.05	38.66	< 0.01	14.97	0.23	29.91	7.28	0.50	0.08	6.05	1.62	0.22
B875763	Rock	< 0.01	16.68	0.13	4.09	0.02	3.80	4.08	1.02	1.55	0.12	4.07	0.30	63.63	0.45
B875764	Rock	0.55	0.22	0.03	40.52	< 0.01	5.09	0.08	37.47	10.06	0.65	0.07	4.69	1.00	0.03
B875765	Rock	0.63	0.21	0.05	43.13	< 0.01	7.91	0.14	35.76	7.38	0.52	0.10	4.05	0.63	0.04
B875766	Rock	0.67	0.24	0.03	42.53	< 0.01	4.74	0.05	37.45	8.74	0.59	0.05	4.85	0.90	0.03
B875767	Rock	0.39	0.24	< 0.01	34.65	< 0.01	4.65	0.03	38.93	17.16	0.51	0.04	4.54	1.24	0.03
B875768	Rock	0.74	0.16	< 0.01	31.37	< 0.01	5.55	0.03	41.77	18.64	0.64	0.03	2.54	0.10	0.03
B875769	Rock	0.57	0.49	< 0.01	32.08	< 0.01	6.15	0.03	36.88	17.34	0.49	0.04	6.35	1.21	0.13
B875770	Pulp	0.53	2.01	0.35	45.77	< 0.01	4.15	0.86	32.29	2.46	0.96	0.48	2.81	7.88	0.23
B875771	Rock	0.37	0.24	< 0.01	32.45	< 0.01	4.29	< 0.01	40.84	19.56	0.42	0.04	4.32	0.18	0.02
B875772	Rock	< 0.01	0.16	< 0.01	32.54	< 0.01	5.06	0.02	38.53	19.38	0.33	0.02	3.90	1.33	0.05
B875773	Rock	0.73	0.30	< 0.01	35.53	< 0.01	4.41	0.03	36.67	16.44	0.44	0.04	7.53	0.39	0.04
B875774	Rock	0.36	0.24	< 0.01	32.34	< 0.01	3.92	0.02	41.75	19.58	0.52	0.04	3.18	0.31	0.05
B875775	Rock	0.51	0.27	0.01	35.98	< 0.01	4.91	< 0.01	38.19	15.78	0.37	0.03	5.75	0.35	0.05
B875776	Rock	0.03	0.31	< 0.01	31.84	< 0.01	4.12	0.03	39.55	18.19	0.30	0.04	5.10	0.92	0.04
B875777	Rock	0.27	0.13	< 0.01	33.71	< 0.01	5.27	0.01	36.95	16.44	0.57	0.03	6.74	< 0.01	0.04
B875778	Rock	0.16	0.22	< 0.01	36.29	< 0.01	4.27	0.02	33.38	15.46	0.41	0.03	11.97	0.13	0.04
B875779	Rock	0.05	1.03	0.01	31.09	< 0.01	16.80	0.07	21.88	12.65	0.33	0.05	8.09	7.25	0.30
B875780 Dup	Rock	0.05	1.07	0.01	30.84	< 0.01	17.58	0.05	22.37	12.57	0.34	0.05	7.93	7.04	0.30
B875781	Rock	0.16	0.59	0.02	33.23	< 0.01	9.80	0.12	31.78	14.11	0.55	0.05	7.19	4.61	0.16
B875782	Rock	0.05	1.47	0.10	28.81	< 0.01	19.56	0.49	22.62	12.59	0.60	0.12	7.32	8.93	0.34
B875783	Rock	< 0.01	14.52	0.13	4.13	0.03	4.07	3.84	1.05	1.53	0.12	3.47	0.36	69.58	0.47
B875784	Rock	0.15	1.21	0.02	27.10	< 0.01	19.26	0.15	27.11	13.34	0.50	0.07	7.80	5.40	0.33

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		Nb2O5	Al2O3	BaO	CaO	Cr2O3	Fe2O3	K2O	LOI	MgO	MnO	Na2O	P2O5	SiO2	TiO2
		Nb2O5-AD3-OR-ICP	WR-FS-ICP												
Sample	Sample	%	%	%	%	%	%	%	%	%	%	%	%	%	%
Description	Type	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
B875785	Rock	0.12	0.40	< 0.01	32.10	< 0.01	5.07	0.03	36.91	19.99	0.31	0.04	6.93	0.51	0.05
B875786	Rock	0.07	0.31	< 0.01	30.80	< 0.01	4.43	0.01	36.83	21.21	0.33	0.03	6.87	0.27	0.05
B875787	Rock	0.02	0.28	< 0.01	30.93	< 0.01	5.15	0.02	37.13	18.94	0.33	0.03	4.90	2.28	0.07
B875788	Rock	0.07	0.62	0.02	33.51	< 0.01	5.14	0.30	32.73	13.79	0.39	0.08	7.28	5.92	0.09
B875789	Rock	0.14	1.54	0.05	20.21	< 0.01	6.36	1.02	22.79	17.83	0.51	1.18	4.11	27.08	0.11
B875790	Pulp	0.79	0.60	0.02	28.67	< 0.01	17.45	0.11	31.26	13.45	0.50	0.06	5.88	2.61	0.66
B875791	Rock	0.35	0.07	< 0.01	31.75	< 0.01	4.40	0.01	40.08	19.27	0.68	0.03	3.26	0.28	0.02
B875792	Rock	0.24	0.13	< 0.01	33.68	< 0.01	3.96	0.02	37.20	17.86	0.54	0.06	6.10	0.38	0.02
B875793	Rock	0.05	0.28	< 0.01	31.04	< 0.01	4.07	0.03	37.29	18.38	0.36	0.06	4.44	5.59	0.10
B875794	Rock	0.11	0.36	< 0.01	31.96	< 0.01	3.50	0.02	37.29	20.54	0.43	0.08	5.61	2.94	0.05
B875795	Rock	0.06	0.21	< 0.01	32.79	< 0.01	4.33	0.03	37.63	19.57	0.36	0.06	5.39	1.64	0.03
B875796	Rock	0.05	0.22	< 0.01	33.28	< 0.01	3.77	0.02	35.00	16.95	0.36	0.08	8.28	2.32	0.05
B875797	Rock	0.02	0.18	< 0.01	32.97	< 0.01	4.85	0.02	35.92	17.73	0.30	0.06	6.46	1.19	0.05
B875798	Rock	0.03	0.16	< 0.01	32.37	< 0.01	4.43	0.04	35.13	18.51	0.34	0.04	7.02	1.85	0.07
B875799	Rock	0.07	0.25	< 0.01	31.58	< 0.01	3.70	0.04	36.30	18.57	0.29	0.04	6.88	2.71	0.10
B875800 Dup	Rock	0.07	0.24	< 0.01	31.48	< 0.01	3.63	0.03	36.10	18.95	0.29	0.04	6.87	2.87	0.09
B875801	Rock	0.04	0.19	< 0.01	31.91	< 0.01	4.07	0.04	38.05	19.71	0.39	0.04	5.51	< 0.01	0.03
B875802	Rock	0.04	0.22	< 0.01	31.58	< 0.01	5.04	0.03	38.23	19.97	0.34	0.04	4.73	0.15	0.03
B875803	Rock	0.02	0.29	< 0.01	32.80	< 0.01	3.64	0.02	35.83	18.86	0.31	0.04	7.33	1.89	0.06
B875804	Rock	0.05	0.47	< 0.01	31.97	< 0.01	3.67	0.02	35.21	17.14	0.32	0.03	6.25	4.59	0.19
B875805	Rock	0.02	0.56	< 0.01	32.79	< 0.01	4.83	0.08	34.47	15.79	0.29	0.07	5.15	5.64	0.25
B875806	Rock	0.06	0.11	< 0.01	32.89	< 0.01	3.26	0.03	39.52	18.65	0.50	0.03	4.94	< 0.01	0.02
B875807	Rock	0.05	0.17	< 0.01	33.70	< 0.01	5.20	0.03	35.84	17.56	0.33	0.04	6.88	0.10	0.04
B875808	Rock	0.03	0.15	< 0.01	32.68	< 0.01	3.70	0.02	35.80	16.90	0.31	0.04	7.33	3.01	0.05

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		Total	Ag	Al	As	Ba 30 44 TP	Bi	Ca 30-4A-TR	Cd	Co	Cr	Cu	Fe 30-4A-TR	K 20.44 TP	La 30-4A-TR
Sample	Sample	WR-FS-ICP %	30-4A-TR	30-4A-TR %	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-1K %	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-1R %	30-4A-TR %	
Description	Туре	0.01	ppm 0.5	0.01	ppm 5	ppm 10	ppm 2	0.01	ppm 0.5	ppm 1	ppm 1	ppm 1	0.01	0.01	ppm 10
B875745	Rock	101.89	<0.5	0.11	8	64	<2	>10	<0.5	12	9	76	5.32	< 0.01	519
B875746	Rock	100.47	< 0.5	0.64	19	209	<2	>10	< 0.5	34	6	215	>10	0.12	642
B875747	Rock	102.15	< 0.5	0.20	7	46	<2	>10	< 0.5	18	9	63	6.96	0.02	385
B875748	Rock	101.39	< 0.5	0.31	12	135	<2	>10	< 0.5	27	4	118	>10	0.13	402
B875749	Rock	100.23	< 0.5	0.08	7	79	<2	>10	< 0.5	17	8	50	5.16	< 0.01	1139
B875750	Pulp	100.01	< 0.5	0.10	9	46	<2	>10	< 0.5	8	2	49	4.49	0.02	313
B875751	Rock	102.08	< 0.5	0.24	8	80	<2	>10	< 0.5	16	10	110	8.75	0.04	398
B875752	Rock	102.57	< 0.5	0.07	5	51	<2	>10	< 0.5	8	15	43	3.32	< 0.01	355
B875753	Rock	103.12	< 0.5	0.11	12	100	<2	>10	< 0.5	20	4	46	7.82	< 0.01	297
B875754	Rock	102.20	< 0.5	0.03	<5	71	<2	>10	< 0.5	6	3	19	4.64	< 0.01	365
B875755	Rock	102.32	< 0.5	0.11	9	52	<2	>10	< 0.5	9	8	71	3.76	0.01	321
B875756	Rock	101.82	< 0.5	0.14	<5	83	<2	>10	< 0.5	9	8	32	6.47	0.09	238
B875757	Rock	100.93	< 0.5	0.02	<5	35	<2	>10	< 0.5	6	5	24	3.26	< 0.01	214
B875758	Rock	100.42	< 0.5	0.07	8	100	<2	>10	< 0.5	7	5	33	4.81	0.04	203
B875759	Rock	101.64	<0.5	0.05	7	62	<2	>10	<0.5	10	8	43	4.36	0.02	294
B875760 Dup	Rock	101.74	<0.5	0.06	8	59	<2	>10	<0.5	8	10	46	4.28	0.02	297
B875761	Rock	100.64	<0.5	0.05	8	328	<2	>10	<0.5	10	3	39	2.96	0.05	222
B875762	Rock	99.90	<0.5	0.13	6	356	<2	>10	<0.5	25 9	9	32	>10	0.14	304
B875763	Rock	99.94	<0.5	7.88	83	892	<2	3.26	<0.5		104	4	2.87	3.09	18
B875764	Rock	99.90	<0.5	0.09	<5	239	<2	>10	<0.5	11	6	67	4.16	0.05	299
B875765 B875766	Rock	99.91	<0.5	0.08	<5	340 202	<2	>10	< 0.5	7	3 4	7 5	6.30 3.72	0.10	261 294
B875767	Rock Rock	100.19 102.04	<0.5 <0.5	0.10 0.09	8 <5	45	<2 <2	>10 >10	<0.5 <0.5	8	8	42	3.65	0.04 <0.01	294
B875768	Rock	100.84	<0.5	0.09	<5	33	<2	>10	<0.5	7	5	27	4.40	< 0.01	361
B875769	Rock	101.19	<0.5	0.00	12	47	<2	>10	<0.5	18	7	69	4.63	< 0.01	329
B875770	Pulp	100.27	0.5	0.90	24	2868	<2	>10	<0.5	6	8	11	3.18	0.51	956
B875771	Rock	102.37	< 0.5	0.09	<5	37	<2	>10	<0.5	5	8	33	3.21	0.01	318
B875772	Rock	101.33	< 0.5	0.06	7	23	<2	>10	< 0.5	6	6	40	3.55	< 0.01	234
B875773	Rock	101.82	< 0.5	0.12	<5	45	<2	>10	< 0.5	6	6	78	3.63	< 0.01	474
B875774	Rock	101.95	< 0.5	0.10	<5	65	<2	>10	< 0.5	7	4	39	3.00	< 0.01	355
B875775	Rock	101.68	< 0.5	0.12	16	94	<2	>10	< 0.5	7	5	53	3.86	< 0.01	363
B875776	Rock	100.44	< 0.5	0.13	<5	22	<2	>10	< 0.5	9	6	8	3.18	< 0.01	262
B875777	Rock	99.91	< 0.5	0.05	<5	40	<2	>10	< 0.5	5	13	30	4.17	< 0.01	669
B875778	Rock	102.24	< 0.5	0.09	6	21	<2	>10	< 0.5	8	7	19	3.27	< 0.01	578
B875779	Rock	99.55	< 0.5	0.49	14	75	<2	>10	< 0.5	31	33	19	>10	0.03	346
B875780 Dup	Rock	100.16	< 0.5	0.54	14	72	<2	>10	< 0.5	32	30	10	>10	0.03	351
B875781	Rock	102.22	< 0.5	0.27	10	169	<2	>10	< 0.5	11	13	7	7.61	0.07	396
B875782	Rock	102.96	< 0.5	0.65	13	692	<2	>10	< 0.5	21	7	11	>10	0.34	280
B875783	Rock	103.28	< 0.5	8.91	94	938	<2	3.70	< 0.5	10	165	4	3.11	2.80	27
B875784	Rock	102.29	< 0.5	0.54	23	126	<2	>10	< 0.5	23	5	14	>10	0.06	416

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		Total	Ag	Al	As	Ba	Bi	Ca	Cd	Co	Cr	Cu	Fe	K	La
		WR-FS-ICP	30-4A-TR												
Sample	Sample	%	ppm	%	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%	%	ppm
Description	Type	0.01	0.5	0.01	5	10	2	0.01	0.5	1	1	1	0.01	0.01	10
B875785	Rock	102.35	< 0.5	0.17	6	27	<2	>10	< 0.5	11	8	12	3.97	0.01	680
B875786	Rock	101.15	< 0.5	0.12	<5	21	<2	>10	< 0.5	9	11	4	3.46	< 0.01	669
B875787	Rock	100.06	< 0.5	0.12	<5	27	<2	>10	< 0.5	5	12	3	4.02	< 0.01	288
B875788	Rock	99.90	< 0.5	0.31	8	211	<2	>10	< 0.5	6	13	3	4.02	0.18	470
B875789	Rock	102.80	< 0.5	0.80	9	379	<2	>10	< 0.5	8	25	4	4.88	0.66	1075
B875790	Pulp	101.28	< 0.5	0.28	20	147	<2	>10	< 0.5	17	2	27	>10	0.07	316
B875791	Rock	99.86	< 0.5	< 0.01	<5	32	<2	>10	< 0.5	9	6	<1	3.60	< 0.01	2836
B875792	Rock	99.96	< 0.5	0.01	<5	47	<2	>10	< 0.5	5	7	2	2.95	0.01	4548
B875793	Rock	101.65	< 0.5	0.12	7	19	<2	>10	< 0.5	7	16	3	3.06	0.02	527
B875794	Rock	102.80	< 0.5	0.16	<5	22	<2	>10	< 0.5	7	12	2	2.72	0.01	466
B875795	Rock	102.03	< 0.5	0.09	<5	20	<2	>10	< 0.5	5	8	3	3.44	0.02	495
B875796	Rock	100.34	< 0.5	0.10	6	20	<2	>10	< 0.5	5	10	2	2.98	0.01	449
B875797	Rock	99.75	< 0.5	0.07	13	15	<2	>10	< 0.5	8	10	4	3.84	0.02	2328
B875798	Rock	99.98	< 0.5	0.07	<5	23	<2	>10	< 0.5	6	14	3	3.58	0.03	1655
B875799	Rock	100.45	< 0.5	0.11	5	28	<2	>10	< 0.5	5	16	3	2.78	0.03	430
B875800 Dup	Rock	100.59	< 0.5	0.10	<5	25	<2	>10	< 0.5	5	12	2	2.96	0.02	409
B875801	Rock	99.95	< 0.5	0.05	<5	22	<2	>10	< 0.5	6	11	2	3.37	< 0.01	432
B875802	Rock	100.36	< 0.5	0.08	5	16	<2	>10	< 0.5	11	11	3	3.77	< 0.01	350
B875803	Rock	101.08	< 0.5	0.11	<5	15	<2	>10	< 0.5	10	12	2	2.81	< 0.01	327
B875804	Rock	99.87	< 0.5	0.19	<5	26	<2	>10	< 0.5	11	15	4	3.00	< 0.01	369
B875805	Rock	99.93	< 0.5	0.24	7	73	<2	>10	< 0.5	11	21	3	3.56	0.04	350
B875806	Rock	99.94	< 0.5	0.03	<5	26	<2	>10	< 0.5	5	10	1	2.47	0.01	228
B875807	Rock	99.90	< 0.5	0.07	<5	38	<2	>10	< 0.5	11	12	4	4.24	0.02	376
B875808	Rock	100.00	< 0.5	0.05	<5	21	<2	>10	< 0.5	6	20	4	3.01	0.01	416

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		Mg	Mn	Mo	Na	Ni	P	Pb	Sb	Sc	Sr	Ti	Tl	V	W
		30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR
Sample	Sample	%	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm
Description	Type	0.01	5	1	0.01	1	10	2	5	1	1	0.01	10	1	10
B875745	Rock	6.01	4361	<1	0.02	<1	>10000	277	<5	8	2062	0.07	<10	78	<10
B875746	Rock	3.57	5294	<1	0.03	<1	>10000	637	<5	9	2242	0.64	<10	389	<10
B875747	Rock	5.74	5547	<1	0.02	<1	>10000	185	<5	9	2983	0.19	<10	122	<10
B875748	Rock	4.92	4881	<1	0.02	<1	>10000	316	<5	7	2434	0.36	<10	217	<10
B875749	Rock	6.00	4506	3	0.02	<1	>10000	174	<5	9	1834	0.04	<10	38	<10
B875750	Pulp	6.52	4280	3	0.03	<1	>10000	178	<5	8	2279	0.04	<10	45	<10
B875751	Rock	6.06	4004	<1	0.02	<1	>10000	318	<5	7	1718	0.15	<10	126	<10
B875752	Rock	6.53	3739	<1	0.02	<1	>10000	167	<5	7	1661	0.01	<10	29	<10
B875753	Rock	6.34	3868	3	0.01	<1	>10000	165	<5	8	500	0.11	<10	113	<10
B875754	Rock	5.97	7810	1	0.02	<1	>10000	64	<5	6	3291	0.01	<10	18	<10
B875755	Rock	5.45	5249	<1	0.02	<1	>10000	242	<5	6	3348	0.03	<10	15	<10
B875756	Rock	6.75	6740	<1	0.13	<1	>10000	110	<5	12	3712	0.04	<10	73 9	<10
B875757 B875758	Rock Rock	7.24 7.37	5761 6642	<1 <1	0.02 0.02	<1 <1	>10000 >10000	93 112	<5 <5	5 6	4157 4278	<0.01 0.02	<10 <10	32	<10 <10
B875759	Rock	6.68	7999	2	0.02	<1	>10000	155	<5	5	4278	0.02	<10	13	<10
B875760 Dup	Rock	6.45	7792	1	0.03	<1	>10000	164	<5	5	4712	0.02	<10	13	<10
В875761	Rock	5.11	5313	1	0.03	<1	>10000	104	<5 <5	6	6513	0.02	<10	12	<10
B875762	Rock	3.53	4036	<1	0.05	<1	>10000	30	<5	5	5599	0.02	<10	203	<10
B875763	Rock	0.81	856	1	2.50	5	1089	12	<5	5	651	0.09	<10	4	<10
B875764	Rock	4.39	5137	<1	0.04	<1	>1000	206	<5	6	4832	0.02	<10	23	<10
B875765	Rock	3.62	4162	<1	0.04	<1	>10000	21	<5	5	5445	0.02	<10	84	<10
B875766	Rock	4.04	4660	<1	0.04	<1	>10000	16	<5	4	4354	0.02	<10	42	<10
B875767	Rock	6.51	3844	<1	0.02	<1	>10000	155	<5	6	1384	0.01	<10	34	<10
B875768	Rock	6.54	4847	10	0.02	<1	9203	94	<5	7	2048	0.01	<10	28	<10
B875769	Rock	6.29	3602	1	0.02	<1	>10000	260	<5	6	1839	0.06	<10	46	<10
B875770	Pulp	1.30	6223	13	0.31	<1	>10000	79	<5	4	>10000	0.12	<10	169	<10
B875771	Rock	6.53	3010	<1	0.02	<1	>10000	129	<5	6	824	< 0.01	<10	20	<10
B875772	Rock	6.48	2238	<1	0.02	<1	>10000	144	<5	7	574	0.03	<10	79	<10
B875773	Rock	6.44	3375	4	0.02	<1	>10000	265	<5	7	2015	0.02	<10	43	<10
B875774	Rock	6.52	3788	3	0.02	<1	>10000	130	<5	6	2268	0.03	<10	28	<10
B875775	Rock	5.60	2802	<1	0.02	<1	>10000	191	<5	8	646	0.02	<10	47	<10
B875776	Rock	6.85	2354	<1	0.02	<1	>10000	16	<5	6	686	0.02	<10	24	<10
B875777	Rock	6.36	4689	5	0.02	2	>10000	105	<5	10	1908	0.01	<10	24	<10
B875778	Rock	5.49	3232	2	0.02	<1	>10000	57	<5	10	1713	0.02	<10	30	<10
B875779	Rock	5.32	2468	<1	0.03	<1	>10000	33	<5	16	1524	0.14	<10	112	<10
B875780 Dup	Rock	5.46	2575	<1	0.03	<1	>10000	32	<5	16	1552	0.15	<10	117	<10
B875781	Rock	5.78	4519	<1	0.03	<1	>10000	21	<5	10	2765	0.06	<10	75	<10
B875782	Rock	5.15	4475	<1	0.08	<1	>10000	24	<5	16	2632	0.18	<10	142	<10
B875783	Rock	1.02	935	<1	2.67	6	1460	12	<5	6	716	0.29	<10	3	<10
B875784	Rock	5.21	3827	<1	0.04	<1	>10000	31	<5	15	1398	0.17	<10	166	<10

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		Mg	Mn	Mo	Na	Ni	P	Pb	Sb	Sc	Sr	Ti	Tl	V	W
		30-4A-TR													
Sample	Sample	%	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm
Description	Type	0.01	5	1	0.01	1	10	2	5	1	1	0.01	10	1	10
B875785	Rock	7.02	2406	2	0.02	<1	>10000	12	<5	7	530	0.01	<10	31	<10
B875786	Rock	7.13	2683	<1	0.02	<1	>10000	15	<5	7	817	0.02	<10	35	<10
B875787	Rock	6.66	2860	<1	0.02	<1	>10000	12	<5	7	588	0.03	<10	55	<10
B875788	Rock	5.83	3255	<1	0.05	<1	>10000	16	<5	8	2250	0.04	<10	43	<10
B875789	Rock	6.53	4188	<1	0.87	<1	>10000	17	<5	25	1847	0.05	<10	47	<10
B875790	Pulp	5.65	4213	<1	0.04	<1	>10000	23	<5	7	1985	0.13	<10	226	<10
B875791	Rock	7.35	5606	1	0.02	<1	>10000	14	<5	8	2963	< 0.01	<10	10	<10
B875792	Rock	7.10	3988	<1	0.04	<1	>10000	19	<5	10	2272	< 0.01	<10	14	<10
B875793	Rock	6.95	2707	<1	0.04	<1	>10000	9	<5	6	512	0.03	<10	27	<10
B875794	Rock	6.72	3397	<1	0.05	<1	>10000	7	<5	5	1884	0.01	<10	16	<10
B875795	Rock	7.11	2855	1	0.06	<1	>10000	8	<5	5	711	0.01	<10	17	<10
B875796	Rock	6.55	2984	<1	0.06	<1	>10000	17	<5	6	1367	0.01	<10	23	<10
B875797	Rock	6.81	2649	<1	0.05	<1	>10000	15	<5	8	510	0.02	<10	23	<10
B875798	Rock	7.03	2986	1	0.04	<1	>10000	11	<5	8	779	0.02	<10	21	<10
B875799	Rock	6.46	2201	<1	0.03	<1	>10000	12	<5	6	764	0.02	<10	32	<10
B875800 Dup	Rock	7.29	2349	<1	0.03	<1	>10000	8	<5	6	754	0.02	<10	32	<10
B875801	Rock	7.58	3264	1	0.02	<1	>10000	7	<5	6	1622	< 0.01	<10	19	<10
B875802	Rock	6.72	2545	2	0.02	<1	>10000	10	<5	6	748	< 0.01	<10	23	<10
B875803	Rock	7.17	2395	<1	0.02	<1	>10000	10	<5	6	793	0.02	<10	32	<10
B875804	Rock	6.94	2720	<1	0.02	<1	>10000	22	<5	4	827	0.08	<10	36	<10
B875805	Rock	6.06	2253	<1	0.03	<1	>10000	14	<5	5	1217	0.09	<10	52	<10
B875806	Rock	6.94	3935	3	0.02	<1	>10000	9	<5	5	2491	< 0.01	<10	13	<10
B875807	Rock	7.25	2825	6	0.03	<1	>10000	12	<5	6	1241	0.01	<10	23	<10
B875808	Rock	6.86	2637	1	0.02	<1	>10000	12	<5	7	860	0.02	<10	28	<10

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		Zn	Zr	Ce	Dy	Er	Eu	Gd	Hf	Но	La	Lu	Nd	Pr	Sm
		30-4A-TR	30-4A-TR	REE-LB-MS	REE-LB-MS	REE-LB-MS	REE-LB-MS	REE-LB-MS	REE-LB-MS	REE-LB-MS	REE-LB-MS	REE-LB-MS	REE-LB-MS	REE-LB-MS	REE-LB-MS
Sample	Sample	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Description	•••	2	1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	
B875745		19	108	>1000	22.3	7.9	17.0	50.0	2.6	3.4	684.7	0.6	428.3	122.9	
B875746		88	334	>1000	27.3	8.2	22.8	65.8	10.3	3.7	>1000	0.5	669.9	193.3	
B875747		38	123	790.9	13.5	4.5	11.0	31.8	2.0	1.9	480.9	0.3	294.8	86.8	
B875748		69	245	>1000	17.1	5.4	13.5	39.3	3.3	2.4	614.7	0.4	396.0	113.9	
B875749		15	94	>1000	24.4	7.1	21.0	70.4	2.1	3.1	>1000	0.6	904.7	254.2	
B875750		26	89	890.6	19.7	6.7	14.2	42.4	2.3	2.9	509.9	0.5	363.7	101.8	
B875751		44	145	951.3	20.7	7.3	16.2	44.1	4.2	3.1	557.3	0.6	392.2	108.4	
B875752		10	71	853.7	20.4	7.5	13.5	41.3	1.0	3.2	468.3	0.6	355.2	99.6	
B875753		13 33	119	730.3	17.4	6.5	14.7	35.0	0.9	2.7 2.6	390.9	0.5	298.0	83.8	42.4 42.9
B875754 B875755		21	65	830.5	16.2 17.8	6.4 5.2	10.2	33.1	0.4	2.6	456.3 425.0	0.4	337.9 380.2	96.1 102.1	
B875756		38	78 109	838.6 613.0	17.8	5.2 4.4	15.0 10.0	41.3 29.5	2.4	1.9	318.9	0.2	261.0	72.3	
B875757		21	49	507.5	9.9	2.9	8.4	24.2	0.6	1.9	271.0	<0.1	214.8	60.7	
B875758		28	77	500.0	9.9	2.7	8.2	23.9	0.0	1.3	258.6	<0.1	222.2	59.7	
B875759		30	66	712.2	12.6	3.5	10.7	30.4	0.7	1.6	379.0	<0.1	302.2	84.1	
B875760 Dup		30	68	712.2	12.5	3.9	10.7	31.1	0.9	1.7	381.6	0.1	304.3	84.8	
B875761	Rock	18	56	580.7	13.9	4.8	9.9	28.4	0.6	2.0	299.0	0.3	248.3	68.3	
B875762		69	187	821.9	19.4	6.7	14.9	41.7	6.4	2.9	413.2	0.5	361.5	98.7	
B875763		59	129	69.3	2.8	1.8	1.3	3.9	1.1	0.5	44.4	0.2	30.9	8.3	
B875764		29	109	764.9	18.4	6.3	13.2	38.4	1.4	2.7	388.7	0.4	331.2	90.2	
B875765		50	130	658.3	17.7	6.3	12.4	34.6	2.4	2.6	343.5	0.5	289.8	78.3	
B875766		25	77	729.9	19.2	6.9	14.5	38.2	1.4	2.9	372.2	0.5	325.8	88.5	
B875767	Rock	12	73	713.8	19.8	7.2	13.4	39.1	1.6	3.1	386.9	0.6	312.2	84.1	
B875768	8 Rock	23	67	775.2	16.3	5.6	10.4	34.2	1.4	2.4	461.8	0.4	302.9	85.2	43.1
B875769	Rock	18	96	831.9	26.5	9.1	18.7	49.2	2.0	4.0	439.1	0.6	384.4	100.5	59.8
B875770) Pulp	472	122	>1000	15.2	5.2	14.2	43.6	< 0.1	2.1	>1000	0.4	528.6	178.8	53.3
B875771	Rock	11	65	773.2	19.1	7.2	12.0	36.9	1.4	2.9	438.8	0.6	323.2	88.3	45.1
B875772	Rock	11	116	652.5	19.1	7.2	14.0	35.2	2.5	3.0	349.3	0.6	285.3	75.9	44.5
B875773	Rock	15	101	>1000	27.5	9.5	18.3	55.8	1.5	4.1	659.8	0.7	492.0	137.8	69.1
B875774	Rock	18	71	821.5	15.0	5.1	10.9	34.4	0.8	2.2	466.0	0.3	338.0	95.3	43.0
B875775		10	104	778.7	31.5	12.5	15.6	46.3	1.6	5.2	475.6	1.0	325.8	88.6	
B875776		10	44	625.3	13.7	5.0	9.1	29.8	0.6	2.0	357.9	0.4	262.6	70.7	
B875777		21	72	>1000	26.7	9.9	15.0	50.5	1.9	4.2	904.7	0.7	452.4	136.7	
B875778		14	58	>1000	28.3	10.1	17.3	57.2	1.1	4.3	816.2	0.8	495.1	141.9	
B875779		44	199	924.2	22.2	7.6	15.4	47.0	9.3	3.3	564.6	0.5	392.4	108.1	58.5
B875780 Dup		43	208	956.8	22.0	7.2	14.5	45.6	10.0	3.2	566.7	0.5	392.7	109.9	
B875781	Rock	68	98	856.4	17.5	5.5	12.9	38.2	6.7	2.6	536.6	0.4	339.0	97.2	
B875782		141	358	656.2	16.7	5.4	11.7	36.0	19.5	2.4	379.9	0.4	284.9	76.7	
B875783		66	126	71.7	2.8	1.6	1.4	4.2	2.9	0.5	41.7	0.2	30.8	8.1	5.1
B875784	Rock	79	197	869.4	18.7	6.8	13.0	38.4	6.8	2.9	549.4	0.5	334.4	96.1	48.1

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		Zn	Zr	Ce	Dy	Er	Eu	Gd	Hf	Но	La	Lu	Nd	Pr	Sm
		30-4A-TR	30-4A-TR	REE-LB-MS											
Sample	Sample	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Description	Type	2	1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
B875785	Rock	10	48	>1000	24.3	9.3	12.9	43.1	1.1	3.9	851.1	0.8	360.8	110.3	47.9
B875786	Rock	11	49	>1000	22.2	8.0	14.5	49.1	1.4	3.4	890.8	0.6	453.2	138.7	59.3
B875787	Rock	12	61	705.3	15.6	5.9	9.2	31.2	0.9	2.4	438.2	0.5	278.6	79.5	39.5
B875788	Rock	31	83	956.1	19.4	7.3	12.3	39.5	4.2	3.0	626.1	0.6	347.0	103.2	47.8
B875789	Rock	76	125	>1000	11.4	3.5	9.4	33.2	4.0	1.5	>1000	0.2	371.0	130.8	36.1
B875790	Pulp	67	165	823.5	19.6	6.8	14.4	40.1	11.1	3.0	431.5	0.5	347.4	97.8	51.8
B875791	Rock	25	48	>1000	24.5	6.9	21.5	75.4	0.2	3.2	>1000	0.4	874.3	332.4	73.8
B875792	Rock	16	47	>1000	29.2	6.9	39.3	122.7	1.0	3.2	>1000	0.4	>1000	559.6	128.8
B875793	Rock	10	34	>1000	19.5	7.3	12.4	38.5	0.6	3.0	718.0	0.6	342.3	106.6	44.5
B875794	Rock	13	25	>1000	17.9	6.1	13.0	39.8	0.4	2.6	645.2	0.4	367.3	109.3	48.2
B875795	Rock	11	35	>1000	18.6	7.3	12.0	38.5	0.3	2.9	720.7	0.5	360.8	110.2	45.3
B875796	Rock	20	32	>1000	22.5	8.6	14.0	44.0	1.2	3.5	651.6	0.7	392.7	114.5	49.9
B875797	Rock	9	53	>1000	24.7	7.3	22.0	76.6	0.7	3.2	>1000	0.6	884.9	319.3	79.3
B875798	Rock	10	42	>1000	28.1	9.3	19.8	74.0	1.1	3.9	>1000	0.7	816.6	279.4	79.6
B875799	Rock	10	35	>1000	27.6	10.4	15.2	49.3	0.8	4.2	559.1	0.8	422.7	120.6	58.2
B875800 Dup	Rock	9	36	>1000	27.0	10.3	15.1	49.1	0.7	4.3	550.3	0.8	414.2	118.7	57.2
B875801	Rock	11	40	979.4	17.7	6.3	11.2	39.4	0.2	2.6	551.0	0.5	379.9	112.5	47.8
B875802	Rock	13	49	847.4	21.8	8.7	11.8	39.9	0.4	3.6	473.4	0.7	355.3	99.6	48.3
B875803	Rock	10	41	860.0	21.3	8.1	13.0	42.7	0.6	3.4	442.1	0.6	371.4	100.5	53.9
B875804	Rock	13	66	937.1	26.8	9.7	16.9	55.0	1.7	4.2	463.0	0.7	443.4	117.7	67.7
B875805	Rock	18	66	983.9	24.0	8.2	14.8	50.5	0.2	3.5	507.1	0.6	454.4	124.6	67.2
B875806	Rock	16	31	548.0	18.5	7.6	9.1	29.9	< 0.1	3.0	294.9	0.5	241.4	66.2	35.6
B875807	Rock	10	50	927.8	25.7	10.4	14.0	47.6	0.5	4.2	505.3	0.8	408.5	111.7	58.5
B875808	Rock	9	43	962.8	26.5	10.7	14.2	47.8	0.6	4.3	512.8	0.9	430.9	117.7	61.5

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

			Tb	Tm	Yb	Y	Ta	Th	U
				REE-LB-MS			Ta-4A-LL-MS		U-4A-LL-MS
	Sample	Sample	ppm	ppm	ppm	ppm	ppm	ppm	ppm
	scription	Type	0.1	0.1	0.1	0.10	0.05	0.20	0.10
	3875745	Rock	5.0	0.9	5.6	86.8	19.05	101.08	5.29
	3875746	Rock	5.9	0.9	5.5	93.2	88.66	112.36	26.88
	3875747	Rock	2.9	0.5	3.2	50.3	16.22	63.16	8.60
	3875748	Rock	3.7	0.6	4.0	59.8	27.83	61.61	9.99
	3875749	Rock	5.1	0.8	5.5	78.8	6.09	49.14	3.27
	3875750	Pulp	4.3	0.8	5.0	73.9	18.26	121.60	7.79
	3875751	Rock	4.5	0.8	5.2	77.3	23.47	117.70	7.81
В	3875752	Rock	4.4	0.9	5.8	80.2	14.00	84.11	2.33
В	3875753	Rock	3.7	0.7	4.9	71.2	11.25	57.64	4.62
В	3875754	Rock	3.2	0.7	4.3	78.8	< 0.05	36.38	2.64
В	3875755	Rock	4.1	0.5	3.3	59.8	12.44	54.12	5.69
В	3875756	Rock	2.9	0.4	3.0	49.0	10.26	32.85	4.34
В	3875757	Rock	2.3	0.2	1.7	33.3	1.18	26.31	0.81
В	3875758	Rock	2.1	0.2	1.7	32.6	20.47	49.55	2.72
В	3875759	Rock	2.8	0.3	2.4	41.5	4.41	40.67	2.17
B8757	760 Dup	Rock	2.9	0.3	2.4	42.4	4.33	43.06	2.33
В	3875761	Rock	3.0	0.5	3.8	52.6	1.21	27.08	1.53
В	3875762	Rock	4.4	0.7	4.6	71.8	0.34	75.70	3.22
	3875763	Rock	0.4	0.1	1.8	18.2	1.79	6.69	3.00
	3875764	Rock	4.0	0.7	4.5	67.9	14.14	84.14	2.91
	3875765	Rock	3.7	0.7	4.8	68.1	0.20	95.61	1.96
	3875766	Rock	4.2	0.7	5.0	73.4	0.55	81.23	5.44
	3875767	Rock	4.3	0.8	5.4	77.8	77.83	153.19	10.79
	3875768	Rock	3.5	0.6	3.8	58.7	39.68	132.08	9.19
	3875769	Rock	5.7	1.0	6.3	108.3	38.00	137.05	19.89
	3875770	Pulp	2.9	0.6	4.6	60.0	1.55	37.16	21.80
	3875771	Rock	4.0	0.8	5.5	76.4	66.80	142.50	11.71
	3875772	Rock	4.1	0.8	5.8	83.0	119.88	177.18	24.31
	3875773	Rock	6.0	1.1	6.7	107.3	43.57	177.18	14.29
	3875774	Rock	3.2	0.5	3.7	59.3	39.80	69.24	11.98
	3875775	Rock	6.5	1.5	9.2	117.9	94.87	220.12	14.49
	3875776	Rock	2.9	0.5	3.9	52.8	4.74	35.85	1.20
	3875777 3875777			1.1	6.6	97.6	50.96	195.81	11.53
	3875778	Rock	5.6	1.1					3.43
	3875779	Rock	6.0		7.5	111.8	6.32	105.19	
		Rock	4.9	0.8	5.2	85.8	18.01	46.25	1.44
	780 Dup	Rock	4.8	0.8	4.9	81.0	16.17	39.03	1.25
	3875781	Rock	3.8	0.6	4.1	64.7	0.76	33.08	3.03
	3875782	Rock	3.6	0.6	3.8	59.6	7.63	39.90	5.07
	3875783	Rock	0.4	0.1	1.9	17.6	2.09	9.70	4.30
В	3875784	Rock	4.1	0.7	5.0	74.3	20.30	90.66	12.94

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

			Tb	Tm	Yb	Y	Ta	Th	U
			REE-LB-MS	REE-LB-MS	REE-LB-MS	REE-LB-MS	Ta-4A-LL-MS	Th-4A-LL-MS	U-4A-LL-MS
	Sample	Sample	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Des	scription	Type	0.1	0.1	0.1	0.10	0.05	0.20	0.10
В	3875785	Rock	5.0	1.1	6.7	96.3	3.75	115.22	9.61
В	3875786	Rock	4.6	0.9	6.1	85.8	2.35	92.59	14.35
В	3875787	Rock	3.3	0.7	4.6	63.6	7.49	27.78	4.86
В	3875788	Rock	4.0	0.8	5.4	79.0	2.56	51.02	10.45
В	3875789	Rock	2.2	0.3	2.7	40.6	4.72	77.38	25.93
В	3875790	Pulp	4.2	0.8	5.2	76.3	0.94	165.97	7.26
В	3875791	Rock	4.7	0.7	4.8	91.4	0.09	26.59	3.48
В	3875792	Rock	6.0	0.7	4.9	92.0	0.75	49.43	5.55
В	3875793	Rock	4.0	0.9	5.6	79.5	10.24	42.62	16.73
В	3875794	Rock	3.8	0.7	4.3	68.4	0.12	16.03	4.62
В	3875795	Rock	3.8	0.8	5.4	74.9	0.26	38.02	1.68
В	3875796	Rock	4.7	1.0	6.3	91.5	0.24	63.80	2.10
В	3875797	Rock	5.2	0.8	5.5	85.1	4.22	74.37	2.39
В	3875798	Rock	5.7	1.1	7.1	99.8	2.99	159.94	4.33
В	3875799	Rock	5.7	1.2	7.5	112.0	5.57	72.98	15.15
B8758	800 Dup	Rock	5.6	1.2	7.1	111.7	3.11	64.51	14.10
В	3875801	Rock	3.7	0.7	4.9	69.3	0.12	47.05	1.52
В	3875802	Rock	4.2	1.1	6.7	91.4	0.48	41.95	4.14
В	3875803	Rock	4.6	1.0	6.0	85.6	2.36	58.69	2.78
В	3875804	Rock	6.0	1.0	6.4	105.9	1.28	76.26	3.28
В	3875805	Rock	5.3	1.0	6.0	92.6	1.11	78.59	2.83
В	3875806	Rock	3.7	0.8	5.2	79.2	< 0.05	34.70	1.15
В	3875807	Rock	5.4	1.2	7.3	109.9	0.24	70.87	3.63
В	3875808	Rock	5.3	1.3	7.9	111.4	0.70	140.54	4.68

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		Nb2O5	Al2O3	BaO	CaO	Cr2O3	Fe2O3	K2O	LOI	MgO	MnO	Na2O	P2O5	SiO2	TiO2
0 1	a 1	Nb2O5-AD3-OR-ICP	WR-FS-ICP												
Sample	Sample	%	%	%	%	%	%	%	%	%	%	%	%	%	%
Description	Туре	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
B875745	Rock	0.72													
B875745 Dup OCV1011-00134-0002-BLK		0.72													
`		< 0.01													
STD-OKA-1 expected		0.53 0.54													
STD-OKA-1 result B875763	Rock	< 0.01													
B875763 Dup	ROCK	<0.01													
QCV1011-00134-0005-BLK		<0.01													
STD-OKA-1 expected		0.53													
STD-OKA-1 expected STD-OKA-1 result		0.54													
B875781	Rock	0.16													
B875781 Dup	NOCK	0.15													
QCV1011-00134-0008-BLK		< 0.01													
STD-OKA-1 expected		0.53													
STD-OKA-1 result		0.53													
B875799	Rock	0.07													
B875799 Dup	Rock	0.07													
QCV1011-00134-0011-BLK		< 0.01													
QCV1011-00134-0012-BLK		< 0.01													
STD-OKA-1 expected		0.53													
STD-OKA-1 result		0.52													
B875745	Rock		0.29	< 0.01	33.70	< 0.01	6.81	0.02	37.04	15.67	0.55	0.04	6.06	1.57	0.13
B875745 Dup			0.28	< 0.01	33.68	< 0.01	6.79	0.02	37.02	15.55	0.55	0.03	5.99	1.53	0.13
QCV1011-00138-0002-BLK			< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
B875763	Rock		16.68	0.13	4.09	0.02	3.80	4.08	1.02	1.55	0.12	4.07	0.30	63.63	0.45
B875763 Dup			16.61	0.13	4.08	0.03	3.74	3.98	1.04	1.52	0.12	3.85	0.26	63.90	0.44
QCV1011-00138-0005-BLK			< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
B875781	Rock		0.59	0.02	33.23	< 0.01	9.80	0.12	31.78	14.11	0.55	0.05	7.19	4.61	0.16
B875781 Dup			0.60	0.02	33.26	< 0.01	9.68	0.10	31.78	13.95	0.56	0.05	7.26	4.59	0.15
QCV1011-00138-0008-BLK			< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
B875799	Rock		0.25	< 0.01	31.58	< 0.01	3.70	0.04	36.30	18.57	0.29	0.04	6.88	2.71	0.10
B875799 Dup			0.24	< 0.01	31.68	< 0.01	3.70	0.05	36.26	18.85	0.29	0.04	6.85	2.75	0.10
QCV1011-00138-0011-BLK			< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
QCV1011-00138-0012-BLK			< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
STD-SY-4 expected			20.69		8.05		6.21	1.66	4.56	0.54	0.11	7.10	0.13	49.90	0.29
STD-SY-4 result			20.74	0.05	8.08	< 0.01	6.29	1.77	4.50	0.55	0.12	7.27	0.13	49.93	0.30

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

			Total	Ag	Al	As	Ba	Bi	Ca	Cd	Co	Cr	Cu	Fe	K	La
			WR-FS-ICP	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR
	Sample	Sample	%	ppm	%	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%	%	ppm
	Description	Type	0.01	0.5	0.01	5	10	2	0.01	0.5	1	1	1	0.01	0.01	10
	B875745	Rock		< 0.5	0.11	8	64	<2	>10	< 0.5	12	9	76	5.32	< 0.01	519
	B875745 Dup			< 0.5	0.11	8	64	<2	>10	<0.5	13	10	76	5.53	< 0.01	554
O/FFF	QCV1011-00135-0002-BLK			<0.5	< 0.01	<5	<10	<2	< 0.01	< 0.5	<1	<1	<1	< 0.01	< 0.01	<10
	-OREAS-45P-4A expected			0.3							122 132	1103	749			
2	TD-OREAS-45P-4A result B875763	Rock		<0.5 <0.5	7.88	83	892	<2	3.26	< 0.5	9	1055 104	742 4	2.87	3.09	10
	B875763 Dup	ROCK		<0.5 <0.5	7.88 8.10	83 95	933	<2	3.43	<0.5 <0.5	10	104	4	2.78	3.09	18 20
	QCV1011-00135-0005-BLK			<0.5	< 0.01	<5	<10	<2	< 0.01	<0.5	<1	<1	<1	< 0.01	< 0.01	<10
	STD-CDN-ME-6 expected			101.0	<0.01	9	<10	<2	<0.01	<0.5	<1	<1	6130	<0.01	<0.01	<10
	STD-CDN-ME-6 result			96.2									6269			
	B875781	Rock		<0.5	0.27	10	169	<2	>10	< 0.5	11	13	7	7.61	0.07	396
	B875781 Dup	noen		< 0.5	0.27	8	187	<2	>10	< 0.5	11	12	5	7.28	0.07	388
	QCV1011-00135-0008-BLK			< 0.5	< 0.01	<5	<10	<2	< 0.01	< 0.5	<1	<1	<1	< 0.01	< 0.01	<10
	STD-CDN-ME-8 expected			61.7									1030			
	STD-CDN-ME-8 result			59.7									1090			
	B875799	Rock		< 0.5	0.11	5	28	<2	>10	< 0.5	5	16	3	2.78	0.03	430
	B875799 Dup			< 0.5	0.11	8	23	<2	>10	< 0.5	5	13	2	2.87	0.03	412
	QCV1011-00135-0011-BLK			< 0.5	< 0.01	<5	<10	<2	< 0.01	< 0.5	<1	<1	<1	< 0.01	< 0.01	<10
	QCV1011-00135-0012-BLK			< 0.5	< 0.01	<5	<10	<2	< 0.01	< 0.5	<1	<1	<1	< 0.01	< 0.01	<10
	STD-CDN-ME-8 expected			61.7									1030			
	STD-CDN-ME-8 result			61.4									1050			
	B875745	Rock	101.89													
	B875745 Dup		101.59													
	QCV1011-00138-0002-BLK		< 0.01													
	B875763	Rock	99.94													
	B875763 Dup QCV1011-00138-0005-BLK		99.70													
	B875781	Rock	<0.01 102.22													
	B875781 Dup	ROCK	102.22													
	QCV1011-00138-0008-BLK		< 0.01													
	B875799	Rock	100.45													
	B875799 Dup	NOCK	100.43													
	OCV1011-00138-0011-BLK		< 0.01													
	QCV1011-00138-0012-BLK		< 0.01													
	STD-SY-4 expected															
	STD-SY-4 result		99.73													
	212 22 . 100411															

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

			Mg	Mn	Mo	Na	Ni	P	Pb	Sb	Sc	Sr	Ti	Tl	V	W
			30-4A-TR													
	Sample	Sample	%	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm
	Description	Type	0.01	5	1	0.01	1	10	2	5	1	1	0.01	10	1	10
	B875745	Rock	6.01	4361	<1	0.02	<1	>10000	277	<5	8	2062	0.07	<10	78	<10
	B875745 Dup		6.04	4513	1	0.02	<1	>10000	291	<5	8	2132	0.07	<10	79	<10
	QCV1011-00135-0002-BLK		< 0.01	<5	<1	< 0.01	<1	<10	<2	<5	<1	<1	< 0.01	<10	<1	<10
STD-	OREAS-45P-4A expected					0.08	385	454	22							
s ¹	D-OREAS-45P-4A result					0.07	354	495	24							
	B875763	Rock	0.81	856	1	2.50	5	1089	12	<5	5	651	0.27	<10	4	<10
	B875763 Dup		0.92	957	1	2.64	6	1195	11	<5	6	704	0.27	<10	3	<10
	QCV1011-00135-0005-BLK		< 0.01	<5	<1	< 0.01	<1	<10	<2	<5	<1	<1	< 0.01	<10	<1	<10
5	STD-CDN-ME-6 expected								10200							
	STD-CDN-ME-6 result								>10000							
	B875781	Rock	5.78	4519	<1	0.03	<1	>10000	21	<5	10	2765	0.06	<10	75	<10
	B875781 Dup		5.61	4358	<1	0.03	<1	>10000	18	<5	10	2734	0.06	<10	76	<10
	QCV1011-00135-0008-BLK		< 0.01	<5	<1	< 0.01	<1	<10	<2	<5	<1	<1	< 0.01	<10	<1	<10
	B875799	Rock	6.46	2201	<1	0.03	<1	>10000	12	<5	6	764	0.02	<10	32	<10
	B875799 Dup		6.56	2246	<1	0.03	<1	>10000	10	<5	6	727	0.02	<10	30	<10
	QCV1011-00135-0011-BLK		< 0.01	<5	<1	< 0.01	<1	<10	<2	<5	<1	<1	< 0.01	<10	<1	<10
	QCV1011-00135-0012-BLK		< 0.01	<5	<1	< 0.01	<1	<10	<2	<5	<1	<1	< 0.01	<10	<1	<10

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

			Zn	Zr	Ce	Dy	Er	Eu	Gd	Hf	Но	La	Lu	Nd	Pr	
			30-4A-TR			REE-LB-MS							REE-LB-MS			
	Sample	Sample	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
	Description	Type	2	1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
	B875745	Rock	19	108												
	B875745 Dup		20	112												
	QCV1011-00135-0002-BLK		<2	<1												
	-OREAS-45P-4A expected		142													
5	TD-OREAS-45P-4A result		142													
	B875763	Rock	59	129												
	B875763 Dup		65	129												
	QCV1011-00135-0005-BLK		<2	<1												
	STD-CDN-ME-6 expected		5170													
	STD-CDN-ME-6 result	~ .	5113													
	B875781	Rock	68	98												
	B875781 Dup		66	100												
	QCV1011-00135-0008-BLK B875799	Rock	<2 10	<1												
		KOCK	9	35												
	B875799 Dup QCV1011-00135-0011-BLK		<2	39												
	QCV1011-00135-0011-BLK QCV1011-00135-0012-BLK		<2	<1 <1												
	B875745	Rock	<2	<1	>1000	22.3	7.9	17.0	50.0	2.6	3.4	684.7	0.6	428.3	122.9	57.8
	B875745 Dup	KOCK			>1000	21.9	7.9	16.8	47.9	2.6	3.4	688.4	0.6	436.8	122.9	57.2
	OCV1011-00136-0002-BLK				<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
	B875763	Rock			69.3	2.8	1.8	1.3	3.9	1.1	0.5	44.4	0.1	30.9	8.3	4.5
	B875763 Dup	NOCK			68.8	2.8	1.7	1.3	4.0	1.1	0.5	40.2	0.2	29.6	7.9	4.6
	QCV1011-00136-0005-BLK				<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
	B875781	Rock			856.4	17.5	5.5	12.9	38.2	6.7	2.6	536.6	0.1	339.0	97.2	47.3
	B875781 Dup	ROCK			831.1	16.8	5.5	12.8	37.1	6.9	2.5	511.4	0.4	331.1	93.5	46.4
	QCV1011-00136-0008-BLK				<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
	B875799	Rock			>1000	27.6	10.4	15.2	49.3	0.8	4.2	559.1	0.8	422.7	120.6	58.2
	B875799 Dup	ROCK			>1000	26.7	10.1	14.7	48.8	0.8	4.2	556.0	0.8	411.5	118.8	57.7
	QCV1011-00136-0011-BLK				<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
	QCV1011-00136-0012-BLK				<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
	STD-SY-4 expected				122.0	18.2	14.2	2.0	14.0	10.6	4.3	.0.1	2.1	57.0	15.0	12.7
	STD-SY-4 result				131.6	18.4	14.3	2.0	14.6	10.8	4.4		2.2	62.5	16.5	13.1

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		Tb	Tm	Yb	Y	Ta	Th	U
		REE-LB-MS	REE-LB-MS	REE-LB-MS	REE-LB-MS	Ta-4A-LL-MS	Th-4A-LL-MS [J-4A-LL-MS
Sample	Sample	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Description	Type	0.1	0.1	0.1	0.10	0.05	0.20	0.10
B875745	Rock	5.0	0.9	5.6	86.8			
B875745 Dup		4.9	0.9	5.6	85.6			
QCV1011-00136-0002-BLK		< 0.1	< 0.1	< 0.1	< 0.10			
B875763	Rock	0.4	0.1	1.8	18.2			
B875763 Dup		0.4	0.1	1.9	17.9			
QCV1011-00136-0005-BLK		< 0.1	< 0.1	< 0.1	< 0.10			
B875781	Rock	3.8	0.6	4.1	64.7			
B875781 Dup		3.7	0.6	4.1	64.5			
QCV1011-00136-0008-BLK		< 0.1	< 0.1	< 0.1	< 0.10			
B875799	Rock	5.7	1.2	7.5	112.0			
B875799 Dup		5.4	1.2	7.3	111.1			
QCV1011-00136-0011-BLK		< 0.1	< 0.1	< 0.1	< 0.10			
QCV1011-00136-0012-BLK		< 0.1	< 0.1	< 0.1	< 0.10			
STD-SY-4 expected		2.6	2.3	14.8	119.0			
STD-SY-4 result		2.8	2.4	15.8	123.5			
B875745	Rock					19.05	101.08	5.29
B875745 Dup						19.05	107.15	5.46
QCV1105-00483-0002-BLK						< 0.05	< 0.20	< 0.10
B875763	Rock					1.79	6.69	3.00
B875763 Dup						1.79	6.88	3.14
QCV1105-00483-0005-BLK						< 0.05	< 0.20	< 0.10
B875781	Rock					0.76	33.08	3.03
B875781 Dup						0.79	34.11	2.98
QCV1105-00483-0008-BLK						< 0.05	< 0.20	< 0.10
B875799	Rock					5.57	72.98	15.15
B875799 Dup						5.54	72.39	15.40
QCV1105-00483-0011-BLK						< 0.05	< 0.20	< 0.10
QCV1105-00483-0012-BLK						< 0.05	< 0.20	< 0.10

Certificate of Analysis

Inspectorate Exploration & Mining Services Ltd. #200 - 11620 Horseshoe Way

Date Received: 11/04/2010

Date Completed: 05/06/2011

Invoice:

Richmond, British Columbia V7A 4V5 Canada

Phone: 604-272-7818

Distribution List

Attention: Eric Titley

Suite 1020-800 West Pender St.

Vancouver, BC V6C 2V6

EMail: erictitley@hdimining.com

Attention: Jeremy Crozier

EMail: jeremycrozier@hdimining.com

Attention: T.Kodata

EMail: tkodata@hdimining.com

Submitted By: Aley Corporation

Suite 1020-800 West Pender St.

Vancouver, BC V6C 2V6

Attention: Eric Titley

Project: Aley 2010 Project
Description: Aley 2010-014

Location	Samples	Type	Preparation Description
Vancouver, BC	1	Pulp	SP-PU/Pulp Handling, submitted pulps
Vancouver, BC	30	Rock	SP-RX-2K/Rock/Chips/Drill Core

Location	Method	Description
Vancouver, BC	Ta-4A-LL-MS	Tantalum, 4 Acid, ICP
Vancouver, BC	REE-LB-MS	REE Group by ICP-MS
Vancouver, BC	U-4A-LL-MS	Uraium, 4 Acid, Low Level
Vancouver, BC	Nb2O5-AD3-OR-ICP	Niobium by multi-acid digestion, ICP
Vancouver, BC	Th-4A-LL-MS	Thorium, 4 Acid, Low Level
Vancouver, BC	WR-FS-ICP	Whole Rock, Lithium Borate Fusion, ICP
Vancouver, BC	30-4A-TR	30 Element, 4 Acid, ICP, Trace Level

Submittal Information

Ta, Th, and U results shown have been revised with accurate detection limits.

The results of this assay were based solely upon the content of the sample submitted. Any decision to invest should be made only after the potential investment value of the claim or deposit has been determined based on the results of assays of multiple samples of geologic materials collected by the prospective investor or by a qualified person selected by him and based on an evaluation of all engineering data which is available concerning any proposed project. For our complete terms and conditions please see our website at www.inspectorate.com.

В

Mike Caron, Lab Manager

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		Nb2O5	A12O3	BaO	CaO	Cr2O3	Fe2O3	K2O	LOI	MgO	MnO	Na2O	P2O5	SiO2	TiO2
		Nb2O5-AD3-OR-ICP	WR-FS-ICP												
Sample	Sample	%	%	%	%	%	%	%	%	%	%	%	%	%	%
Description	Type	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
B875714	Rock	1.05	0.59	0.02	34.68	< 0.01	12.48	0.07	29.20	10.27	0.45	0.04	9.60	0.96	0.32
B875715	Rock	0.62	0.40	0.04	38.43	< 0.01	11.22	0.04	33.06	8.14	0.66	0.03	6.45	1.04	0.34
B875716	Rock	0.28	0.11	< 0.01	35.34	< 0.01	4.91	< 0.01	38.40	16.69	0.77	0.02	6.19	< 0.01	0.01
B875717	Rock	0.53	0.26	0.01	36.26	< 0.01	6.83	0.04	38.76	15.15	0.42	0.02	4.12	0.36	0.07
B875718	Rock	0.53	0.25	0.01	38.43	< 0.01	5.44	0.02	38.25	14.23	0.47	0.02	5.02	0.15	0.12
B875719	Rock	0.62	0.25	0.02	40.57	< 0.01	7.82	0.02	35.64	10.73	0.66	0.03	6.03	0.24	0.06
B875720 Dup	Rock	0.63	0.26	0.02	39.38	< 0.01	7.73	0.02	35.49	10.79	0.64	0.02	6.14	0.25	0.06
B875721	Rock	0.25	0.18	0.01	39.94	< 0.01	4.39	0.02	40.66	14.32	0.45	0.02	3.22	0.07	0.02
B875722	Rock	0.47	0.22	0.01	38.18	< 0.01	5.07	0.02	37.50	13.30	0.61	0.03	5.46	0.32	0.05
B875723	Rock	0.35	0.21	0.01	36.22	< 0.01	8.06	0.03	36.82	13.53	0.64	0.03	4.87	0.70	0.24
B875724	Rock	0.61	0.22	0.02	37.49	< 0.01	7.50	0.02	35.67	11.27	0.74	0.03	5.73	1.22	0.21
B875725	Rock	0.70	0.13	0.01	34.53	< 0.01	12.68	0.02	33.40	11.92	0.62	0.03	6.04	0.68	0.13
B875726	Rock	0.37	0.15	< 0.01	35.82	< 0.01	4.40	< 0.01	38.99	16.21	0.61	0.03	4.87	0.24	0.04
B875727	Rock	0.90	0.44	0.02	38.01	< 0.01	11.24	0.02	32.44	8.91	0.68	0.03	6.95	1.07	0.28
B875728	Rock	0.67	0.49	0.03	34.98	0.01	14.84	0.03	31.20	9.88	0.74	0.04	6.82	1.00	0.53
B875729	Rock	0.42	0.17	0.01	35.07	< 0.01	6.29	0.02	37.75	16.03	0.69	0.03	5.57	0.29	0.07
B875730	Pulp	0.69	0.20	0.02	35.45	< 0.01	4.85	0.06	37.99	14.09	0.43	0.08	3.97	2.90	0.15
B875731	Rock	1.53	0.74	0.02	15.56	< 0.01	62.56	0.29	7.95	1.46	0.33	0.04	6.80	2.44	1.47
B875732	Rock	0.01	14.29	0.12	3.91	0.03	4.02	3.35	0.90	1.40	0.12	3.02	0.27	67.73	0.45
B875733	Rock	1.61	0.69	0.03	27.31	< 0.01	38.82	0.23	14.52	3.79	0.47	0.05	8.83	3.60	1.09
B875734	Rock	1.25	0.52	0.02	29.29	< 0.01	16.44	0.03	31.12	13.10	0.63	0.04	7.31	1.04	0.51
B875735	Rock	0.77	0.34	< 0.01	34.02	< 0.01	6.37	< 0.01	35.98	16.53	0.64	0.03	5.65	3.14	0.21
B875736	Rock	0.67	0.28	0.01	29.24	< 0.01	17.57	0.04	31.55	14.02	0.65	0.03	5.30	1.00	0.54
B875737	Rock	0.46	0.17	< 0.01	32.98	< 0.01	4.31	< 0.01	38.68	18.07	0.66	0.03	5.26	0.40	0.05
B875738	Rock	0.34	0.16	< 0.01	33.63	< 0.01	5.07	0.01	39.38	16.66	0.67	0.02	4.29	0.41	0.06
B875739	Rock	0.47	0.27	0.01	31.38	< 0.01	10.43	0.06	36.32	15.87	0.69	0.03	4.33	1.05	0.24
B875740 Dup	Rock	0.47	0.26	0.01	30.58	< 0.01	10.66	0.05	36.23	15.11	0.67	0.02	4.39	0.98	0.24
B875741	Rock	0.35	0.15	0.01	33.54	< 0.01	5.27	0.01	39.83	17.03	0.69	0.02	3.85	0.15	0.06
B875742	Rock	0.78	0.60	0.02	31.10	< 0.01	15.76	0.22	30.68	13.62	0.67	0.04	6.35	2.44	0.44
B875743	Rock	0.41	0.29	< 0.01	32.87	< 0.01	5.28	0.04	39.42	19.21	0.69	0.03	4.11	0.90	0.05
B875744	Rock	0.53	0.17	0.01	33.56	< 0.01	6.24	0.02	38.61	17.14	0.66	0.03	4.51	0.55	0.06

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		Total	Ag	Al	As	Ba	Bi	Ca	Cd	Co	Cr	Cu	Fe	K	La
		WR-FS-ICP	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR
Sample	Sample	%	ppm	%	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%	%	ppm
Description	Type	0.01	0.5	0.01	5	10	2	0.01	0.5	1	1	1	0.01	0.01	10
B875714	Rock	98.68	< 0.5	0.33	11	233	<2	>10	< 0.5	11	13	40	8.82	0.05	565
B875715	Rock	99.84	< 0.5	0.24	49	370	<2	>10	< 0.5	10	15	25	7.74	0.03	795
B875716	Rock	102.47	< 0.5	0.06	6	72	<2	>10	< 0.5	3	11	10	3.51	< 0.01	484
B875717	Rock	102.30	< 0.5	0.15	14	114	<2	>10	< 0.5	10	12	15	4.87	0.03	533
B875718	Rock	102.44	< 0.5	0.14	<5	105	<2	>10	< 0.5	9	12	20	3.88	0.02	602
B875719	Rock	102.06	< 0.5	0.14	18	230	<2	>10	< 0.5	7	14	22	5.58	0.02	1475
B875720 Dup	Rock	100.81	< 0.5	0.14	16	217	<2	>10	< 0.5	5	11	20	5.51	0.02	1403
B875721	Rock	103.32	0.6	0.10	15	120	<2	>10	<0.5	3	12	10	3.13	< 0.01	504
B875722	Rock	100.77	<0.5	0.13	7	122	<2	>10	<0.5	8	10	4	3.62	< 0.01	564
B875723	Rock	101.36	<0.5	0.11	9	147	<2	>10	<0.5	12	13	6	5.75	0.02	985
B875724	Rock	100.12	<0.5	0.12	<5	193	<2	>10	<0.5	9	15	8	5.35	0.01	789
B875725	Rock	100.19	<0.5	0.07	6	142	<2	>10	< 0.5	11	12	10	9.04	< 0.01	408
B875726	Rock	101.37	<0.5	0.08	<5 22	76	<2	>10	< 0.5	4	12	14	3.14	< 0.01	415
B875727 B875728	Rock Rock	100.08 100.60	<0.5 <0.5	0.26 0.29	22 12	208 237	<2	>10 >10	<0.5 <0.5	17 21	14 14	16 20	8.02 >10	<0.01 <0.01	729 548
B875728 B875729		100.60	<0.5	0.29	9	116	<2		<0.5	13	13	8	>10 4.94	<0.01	496
B875730	Rock Pulp	101.99	<0.5 <0.5	0.09	8	226	<2 <2	>10 >10	<0.5 <0.5	2	8	8 14	4.94	0.01	624
B875731	Rock	99.65	0.8	0.09	o <5	273	<2	>10	<0.5	109	12	268	>10	0.03	760
B875732	Rock	99.62	0.8	6.71	<5	1124	<2	4.51	<0.5	109	208	6	2.94	3.18	49
B875733	Rock	99.43	<0.5	0.71	<5	284	<2	>10	<0.5	52	14	94	>10	0.18	775
B875734	Rock	100.06	<0.5	0.33	<5	184	<2	>10	<0.5	30	10	52	>10	0.02	805
B875735	Rock	102.93	< 0.5	0.20	10	78	<2	>10	< 0.5	16	18	13	4.38	< 0.01	1070
B875736	Rock	100.23	< 0.5	0.16	<5	114	<2	>10	< 0.5	21	13	32	>10	0.03	462
B875737	Rock	100.63	<0.5	0.11	<5	80	<2	>10	<0.5	6	16	21	3.07	< 0.01	382
B875738	Rock	100.38	< 0.5	0.09	<5	83	<2	>10	< 0.5	7	14	15	3.60	< 0.01	339
B875739	Rock	100.69	< 0.5	0.16	<5	124	<2	>10	< 0.5	16	16	33	7.35	0.04	351
B875740 Dup	Rock	99.22	< 0.5	0.17	<5	132	<2	>10	< 0.5	14	17	32	7.43	0.04	357
B875741	Rock	100.61	< 0.5	0.08	9	132	<2	>10	< 0.5	6	12	18	3.87	< 0.01	386
B875742	Rock	101.95	< 0.5	0.37	<5	173	<2	>10	< 0.5	17	15	54	>10	0.19	466
B875743	Rock	102.90	< 0.5	0.15	<5	78	<2	>10	< 0.5	4	15	19	3.73	0.03	586
B875744	Rock	101.55	< 0.5	0.08	5	119	<2	>10	< 0.5	3	22	17	4.35	< 0.01	505

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		Mg	Mn	Мо	Na	Ni	P	Pb	Sb	Sc	Sr	Ti	Tl	V	W
		30-4A-TR													
Sample	Sample	%	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm
Description	Type	0.01	5	1	0.01	1	10	2	5	1	1	0.01	10	1	10
B875714	Rock	6.29	3422	<1	0.03	11	>10000	212	<5	12	1815	0.20	<10	63	<10
B875715	Rock	4.30	4510	3	0.03	6	>10000	164	<5	14	1312	0.13	<10	41	<10
B875716	Rock	9.58	5944	<1	0.02	4	>10000	76	<5	12	3365	< 0.01	<10	61	<10
B875717	Rock	8.69	3199	<1	0.02	3	>10000	76	<5	10	868	0.04	<10	64	<10
B875718	Rock	7.63	3594	<1	0.02	4	>10000	131	<5	9	1560	0.05	<10	58	<10
B875719	Rock	6.59	4921	2	0.02	5	>10000	156	<5	14	1275	0.03	<10	44	<10
B875720 Dup	Rock	6.57	4789	2	0.02	6	>10000	152	<5	14	1253	0.03	10	43	<10
B875721	Rock	8.10	3186	<1	0.02	3	>10000	67	<5	9	1201	0.01	<10	52	<10
B875722	Rock	6.43	3433	<1	0.02	5	>10000	13	<5	9	2331	0.02	<10	55	<10
B875723	Rock	7.85	4865	1	0.02	7	>10000	18	<5	11	1929	0.12	<10	67	<10
B875724	Rock	6.71	4730	1	0.02	4	>10000	19	<5	10	2504	0.05	<10	47	<10
B875725	Rock	7.48	5391	<1	0.03	5	>10000	22	<5	13	3565	0.05	<10	63	<10
B875726	Rock	9.61	5213	<1	0.02	4	>10000	83	<5	9	3874	0.03	<10	64	<10
B875727	Rock	5.59	5755	4	0.03	5	>10000	23	<5	10	2175	0.11	<10	47	<10
B875728	Rock	5.23	5314	3	0.03	11	>10000	25	<5	8	2407	0.21	<10	65	<10
B875729	Rock	9.80	5713	<1	0.02	3	>10000	20	<5	9	3672	0.03	<10	58	<10
B875730	Pulp	8.86	3018	<1	0.06	4	>10000	112	<5	10	2929	0.08	<10	59	<10
B875731	Rock	1.12	2859	<1	0.03	15	>10000	105	<5	<1	2492	0.88	<10	100	<10
B875732	Rock	0.96	993	<1	2.13	8	1168	15	<5	3	873	0.34	<10	20	<10
B875733	Rock	2.48	3802	<1	0.04	13	>10000	27	<5	<1	3724	0.45	<10	78	<10
B875734	Rock	7.02	4912	3	0.03	12	>10000	119	<5	13	3232	0.26	<10	77	<10
B875735	Rock	8.31	4605	2	0.02	6	>10000	39	<5	8	2684	0.08	17	71	<10
B875736	Rock	7.92	4756	<1	0.02	14	>10000	49	<5	3	3847	0.28	<10	84	<10
B875737	Rock	9.66	4953	<1	0.02	5	>10000	104	<5	8	4403	0.04	<10	67	<10
B875738	Rock	9.12	5193	<1	0.02	3	>10000	92	<5	9	3786	0.04	<10	67	<10
B875739	Rock	8.69	5410	<1	0.02	5	>10000	121	<5	6	4041	0.15	<10	74	<10
B875740 Dup	Rock	8.14	5459	<1	0.02	5	>10000	116	<5	6	4050	0.16	<10	72	<10
B875741	Rock	9.98	5566	<1	0.02	5	>10000	83	<5	9	3245	0.04	<10	69	<10
B875742	Rock	8.05	5576	<1	0.03	8	>10000	189	<5	2	4361	0.31	<10	73	<10
B875743	Rock	9.70	5067	<1	0.02	4	>10000	107	<5	8	3201	0.03	<10	68	<10
B875744	Rock	9.14	4899	1	0.02	4	>10000	133	<5	9	2826	0.04	<10	62	<10

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		Zn	Zr	Ce	Dy	Er	Eu	Gd	Hf	Но	La	Lu	Nd	Pr	Sm
		30-4A-TR	30-4A-TR	REE-LB-MS											
Sample	Sample	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Description	Type	2	1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
B875714	Rock	29	60	>1000	37.3	14.2	19.8	59.6	5.7	6.1	506.7	1.2	424.9	122.0	67.3
B875715	Rock	34	23	>1000	30.7	11.3	19.7	56.8	2.7	4.7	700.0	0.9	468.3	144.9	67.3
B875716	Rock	30	28	663.4	21.6	8.2	11.5	35.5	1.1	3.4	356.0	0.6	253.7	74.1	39.4
B875717	Rock	16	32	773.9	26.0	9.8	15.4	43.0	3.3	4.1	394.9	0.9	307.0	88.3	50.0
B875718	Rock	14	20	899.4	27.5	10.2	16.0	47.5	2.1	4.3	457.7	0.8	353.3	103.4	55.6
B875719	Rock	19	27	>1000	34.1	11.8	20.7	70.0	4.0	5.2	>1000	0.9	636.5	204.8	84.4
B875720 Dup	Rock	19	53	>1000	34.0	11.5	20.0	68.9	4.1	5.0	>1000	0.9	617.5	198.4	81.9
B875721	Rock	13	14	665.1	16.3	5.8	10.1	29.8	1.2	2.5	337.8	0.6	257.5	74.9	37.1
B875722	Rock	24	19	748.0	19.1	6.3	13.5	37.4	4.5	2.9	374.1	0.5	293.0	86.3	45.3
B875723	Rock	43	16	>1000	22.0	7.3	13.8	44.3	2.5	3.3	655.6	0.6	402.0	124.5	52.9
B875724	Rock	44	12	>1000	20.6	7.9	14.2	41.5	3.2	3.2	554.0	0.6	363.5	112.6	47.7
B875725	Rock	54	54	654.1	16.3	5.5	11.8	34.0	5.9	2.4	300.1	0.4	269.9	77.6	41.0
B875726	Rock	20	12	616.6	17.2	5.7	11.9	31.8	2.1	2.6	292.0	0.4	252.3	72.0	38.1
B875727	Rock	32	10	>1000	25.3	8.5	19.0	50.7	4.8	3.8	547.2	0.7	420.8	124.7	62.8
B875728	Rock	45	15	858.6	20.9	6.8	16.1	43.0	2.7	3.0	413.6	0.5	351.8	101.1	52.8
B875729	Rock	20	8	718.2	19.2	6.3	15.4	37.4	2.0	2.8	340.4	0.4	291.6	84.8	44.6
B875730	Pulp	15	45	885.4	24.6	9.1	15.4	46.0	2.2	3.9	417.2	0.8	354.5	102.5	54.6
B875731	Rock	580	14	920.8	19.4	5.6	14.6	42.0	7.8	2.7	434.3	0.4	370.7	109.0	55.3
B875732	Rock	58	5	70.4	3.1	1.8	1.4	4.0	3.6	0.6	35.0	0.3	27.5	7.9	4.7
B875733	Rock	274	38	>1000	22.8	6.5	18.0	51.9	8.6	3.1	502.7	0.4	450.3	129.6	65.3
B875734	Rock	51	24	>1000	25.6	7.7	23.4	60.2	6.2	3.5	582.9	0.6	447.6	132.6	72.9
B875735	Rock	25	17	>1000	24.5	8.3	19.6	51.5	6.1	3.6	744.1	0.6	452.6	143.0	61.6
B875736	Rock	101	18	690.6	14.2	4.1	11.4	33.0	2.6	2.0	323.5	0.2	273.2	81.5	40.0
B875737	Rock	31	11	559.0	14.0	4.3	11.2	30.4	2.6	2.0	255.3	0.2	233.8	67.0	37.3
B875738	Rock	22	5	520.8	13.5	4.3	10.4	27.2	1.7	2.0	238.8	0.3	214.8	62.3	33.7
B875739	Rock	53	6	540.7	14.0	4.0	9.8	28.3	1.8	1.9	244.3	0.2	224.8	65.3	34.9
B875740 Dup	Rock	56	6	542.3	13.0	4.0	10.0	28.1	1.7	1.9	241.3	0.2	219.9	63.4	35.5
B875741	Rock	22	5	531.2	12.9	4.4	9.3	25.5	1.5	1.9	249.3	0.4	215.7	62.6	32.9
B875742	Rock	79	24	737.8	16.2	4.5	12.7	36.6	4.9	2.2	334.8	0.3	311.9	90.6	45.8
B875743	Rock	22	21	817.5	15.4	4.5	11.5	35.1	1.9	2.2	404.2	0.3	321.4	94.1	46.0
B875744	Rock	22	24	687.6	18.3	6.0	11.6	34.6	2.1	2.7	322.0	0.4	275.1	79.2	42.1

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

			Tb	Tm	Yb	Y	Ta	Th	U
			REE-LB-MS		REE-LB-MS	REE-LB-MS	Ta-4A-LL-MS	Th-4A-LL-MS	U-4A-LL-MS
	Sample	Sample	ppm	ppm	ppm	ppm	ppm	ppm	ppm
	Description	Туре	0.1	0.1	0.1	0.10	0.05	0.20	0.10
	B875714	Rock	6.6	1.7	10.4	143.1	29.53	172.53	13.52
	B875715	Rock	5.5	1.3	7.5	114.8	20.28	119.48	9.77
	B875716	Rock	3.8	1.0	5.3	79.4	7.84	141.14	3.04
	B875717	Rock	4.6	1.2	7.0	100.4	11.06	142.39	4.26
	B875718	Rock	5.0	1.2	7.1	104.4	14.61	106.32	3.71
	B875719	Rock	6.0	1.4	8.0	121.7	17.55	126.88	5.62
В	3875720 Dup	Rock	6.1	1.4	8.0	119.4	15.54	125.68	5.68
	B875721	Rock	3.0	0.7	4.7	60.9	9.08	72.35	2.21
	B875722	Rock	3.5	0.7	3.9	67.7	1.45	47.65	4.34
	B875723	Rock	3.7	0.9	5.0	76.3	2.86	96.75	4.38
	B875724	Rock	3.7	0.9	5.1	81.1	0.57	74.38	6.21
	B875725	Rock	3.0	0.6	3.6	57.2	2.08	105.05	2.77
	B875726	Rock	3.1	0.7	4.1	62.8	9.38	75.45	2.41
	B875727	Rock	4.7	1.0	6.1	95.8	3.57	109.15	13.09
	B875728	Rock	4.0	0.7	4.5	76.9	2.49	98.55	17.95
	B875729	Rock	3.7	0.7	4.1	71.0	0.15	43.75	2.77
	B875730	Pulp	4.5	1.1	6.8	95.5	6.70	183.50	2.34
	B875731	Rock	3.7	0.6	3.7	65.2	6.21	193.67	21.63
	B875732	Rock	0.5	0.2	2.1	18.2	1.82	8.50	4.42
	B875733	Rock	4.5	0.7	4.2	73.1	1.00	187.53	14.77
	B875734	Rock	5.1	0.9	5.3	91.5	9.27	194.37	17.01
	B875735	Rock	4.3	0.9	5.4	90.7	0.81	88.77	6.10
	B875736	Rock	2.7	0.4	2.6	47.0	2.74	88.16	10.21
	B875737	Rock	2.8	0.4	2.8	48.0	17.06	66.46	3.75
	B875738	Rock	2.5	0.5	3.0	48.0	13.57	57.02	3.10
	B875739	Rock	2.6	0.4	2.6	45.8	14.84	63.06	6.45
В	3875740 Dup	Rock	2.6	0.4	2.4	45.4	14.28	62.89	6.33
	B875741	Rock	2.4	0.5	3.2	47.5	17.82	61.00	5.05
	B875742	Rock	3.1	0.5	3.0	54.7	35.02	119.36	12.34
	B875743	Rock	2.8	0.5	3.3	54.4	28.82	101.92	5.85
	B875744	Rock	3.3	0.7	4.2	69.7	25.58	135.83	6.94
	D6/3/44	ROCK	3.3	0.7	4.2	09.7	23.36	155.65	0.94

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		Nb2O5	Al2O3	BaO	CaO	Cr2O3	Fe2O3	K2O	LOI	MgO	MnO	Na2O	P2O5	SiO2	TiO2
		Nb2O5-AD3-OR-ICP	WR-FS-ICP												
Sample	Sample	%	%	%	%	%	%	%	%	%	%	%	%	%	%
Description	Type	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
B875714	Rock	1.05													
B875714 Dup		1.04													
QCV1011-00185-0002-BLK		< 0.01													
STD-OKA-1 expected		0.53													
STD-OKA-1 result		0.54													
B875732	Rock	0.01													
B875732 Dup		0.01													
QCV1011-00185-0005-BLK		< 0.01													
QCV1011-00185-0006-BLK		< 0.01													
STD-OKA-1 expected		0.53													
STD-OKA-1 result		0.53													
B875714	Rock		0.59	0.02	34.68	< 0.01	12.48	0.07	29.20	10.27	0.45	0.04	9.60	0.96	0.32
B875714 Dup			0.60	0.02	34.62	< 0.01	12.52	0.07	29.22	10.29	0.45	0.04	9.61	0.97	0.33
QCV1011-00189-0002-BLK			< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
STD-SY-4 expected			20.69		8.05		6.21	1.66	4.56	0.54	0.11	7.10	0.13	49.90	0.29
STD-SY-4 result			20.63	0.04	7.96	< 0.01	6.38	1.72	4.52	0.57	0.12	6.74	0.13	51.51	0.29
B875732	Rock		14.29	0.12	3.91	0.03	4.02	3.35	0.90	1.40	0.12	3.02	0.27	67.73	0.45
B875732 Dup			15.24	0.12	3.84	0.03	3.98	3.53	0.85	1.54	0.12	3.40	0.28	66.65	0.46
QCV1011-00189-0005-BLK			< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
QCV1011-00189-0006-BLK			< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
STD-SY-4 expected			20.69		8.05		6.21	1.66	4.56	0.54	0.11	7.10	0.13	49.90	0.29
STD-SY-4 result			20.66	0.04	8.19	< 0.01	6.34	1.65	4.50	0.59	0.13	7.03	0.13	50.61	0.30

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

			Total	Ag	Al	As	Ba	Bi	Ca	Cd	Co	Cr	Cu	Fe	K	La
			WR-FS-ICP	30-4A-TR												
	Sample	Sample	%	ppm	%	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%	%	ppm
	Description	Type	0.01	0.5	0.01	5	10	2	0.01	0.5	1	1	1	0.01	0.01	10
	B875714	Rock			0.33	11	233	<2	>10	< 0.5	11	13	40	8.82	0.05	565
	B875714 Dup				0.35	8	234	<2	>10	< 0.5	12	15	38	8.80	0.05	541
	QCV1011-00186-0002-BLK			< 0.5	< 0.01	<5	<10	<2	< 0.01	< 0.5	<1	<1	<1	< 0.01	< 0.01	<10
STD	-OREAS-45P-4A expected			0.3							122	1103	749			
s	ΓD-OREAS-45P-4A result			< 0.5							127	1171	795			
	B875732	Rock		0.5	6.71	<5	1124	<2	4.51	< 0.5	11	208	6	2.94	3.18	49
	B875732 Dup			< 0.5	6.74	<5	1120	<2	4.36	< 0.5	11	207	9	2.64	2.59	50
	QCV1011-00186-0005-BLK			< 0.5	< 0.01	<5	<10	<2	< 0.01	< 0.5	<1	<1	<1	< 0.01	< 0.01	<10
	QCV1011-00186-0006-BLK			< 0.5	< 0.01	<5	<10	<2	< 0.01	< 0.5	<1	<1	<1	< 0.01	< 0.01	<10
STD	-OREAS-45P-4A expected			0.3							122	1103	749			
s	TD-OREAS-45P-4A result			< 0.5							127	1195	703			
	B875714	Rock	98.68													
	B875714 Dup		98.74													
	QCV1011-00189-0002-BLK		< 0.01													
	STD-SY-4 expected															
	STD-SY-4 result		100.61													
	B875732	Rock	99.62													
	B875732 Dup		100.04													
	QCV1011-00189-0005-BLK		< 0.01													
	QCV1011-00189-0006-BLK		< 0.01													
	STD-SY-4 expected															
	STD-SY-4 result		100.19													

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

			Mg	Mn	Mo	Na	Ni	P	Pb	Sb	Sc	Sr	Ti	Tl	V	W
			30-4A-TR													
	Sample	Sample	%	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm
	Description	Type	0.01	5	1	0.01	1	10	2	5	1	1	0.01	10	1	10
	B875714	Rock	6.29	3422	<1	0.03	11	>10000	212	<5	12	1815	0.20	<10	63	<10
	B875714 Dup		6.16	3344	<1	0.03	7	>10000	224	<5	12	1588	0.21	<10	61	<10
	QCV1011-00186-0002-BLK		< 0.01	<5	<1	< 0.01	<1	<10	<2	<5	<1	<1	< 0.01	<10	<1	<10
STD	-OREAS-45P-4A expected					0.08	385	454	22							
s	TD-OREAS-45P-4A result					0.08	389	470	21							
	B875732	Rock	0.96	993	<1	2.13	8	1168	15	<5	3	873	0.34	<10	20	<10
	B875732 Dup		0.89	905	<1	2.39	10	1168	12	<5	3	906	0.34	<10	21	<10
	QCV1011-00186-0005-BLK		< 0.01	<5	<1	< 0.01	<1	<10	<2	<5	<1	<1	< 0.01	<10	<1	<10
	QCV1011-00186-0006-BLK		< 0.01	<5	<1	< 0.01	<1	<10	<2	<5	<1	<1	< 0.01	<10	<1	<10
STD	-OREAS-45P-4A expected					0.08	385	454	22							
ş	TD-OREAS-45P-4A result					0.07	379	476	21							

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

			Zn	Zr	Ce	Dy	Er	Eu	Gd	Hf	Но	La	Lu	Nd	Pr	Sm
			30-4A-TR	30-4A-TR	REE-LB-MS											
	Sample	Sample	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
	Description	Type	2	1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
	B875714	Rock	29	60												
	B875714 Dup		28	76												
	QCV1011-00186-0002-BLK		<2	<1												
STD	-OREAS-45P-4A expected		142													
S	ΓD-OREAS-45P-4A result		153													
	B875732	Rock	58	5												
	B875732 Dup		57	6												
	QCV1011-00186-0005-BLK		<2	<1												
	QCV1011-00186-0006-BLK		<2	<1												
STD	-OREAS-45P-4A expected		142													
s	ΓD-OREAS-45P-4A result		152													
	B875714	Rock			>1000	37.3	14.2	19.8	59.6	5.7	6.1	506.7	1.2	424.9	122.0	67.3
	B875714 Dup				>1000	37.5	14.7	20.6	57.8	5.7	6.0	512.7	1.2	422.1	122.8	69.7
	QCV1011-00187-0002-BLK				< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
	STD-SY-4 expected				122.0	18.2	14.2	2.0	14.0	10.6	4.3	58.0	2.1	57.0	15.0	12.7
	STD-SY-4 result				126.8	19.1	14.8	2.0	14.0	10.1	4.4	58.2	2.0	57.4	15.3	12.3
	B875732	Rock			70.4	3.1	1.8	1.4	4.0	3.6	0.6	35.0	0.3	27.5	7.9	4.7
	B875732 Dup				70.2	3.1	1.8	1.5	4.0	3.6	0.6	34.8	0.3	27.1	8.0	4.6
	QCV1011-00187-0005-BLK				< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
	QCV1011-00187-0006-BLK				< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
	STD-SY-4 expected				122.0	18.2	14.2	2.0	14.0	10.6	4.3	58.0	2.1	57.0	15.0	12.7
	STD-SY-4 result				130.2	18.6	14.7	2.0	14.5	10.4	4.5	61.1	2.1	57.9	15.9	12.9

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		Tb	Tm	Yb	Y	Ta	Th	U
		REE-LB-MS	REE-LB-MS	REE-LB-MS	REE-LB-MS	Ta-4A-LL-MS	Th-4A-LL-MS	U-4A-LL-MS
Sample	Sample	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Description	Type	0.1	0.1	0.1	0.10	0.05	0.20	0.10
B875714	Rock	6.6	1.7	10.4	143.1			
B875714 Dup		6.6	1.8	10.4	146.5			
QCV1011-00187-0002-BLK		< 0.1	< 0.1	< 0.1	< 0.10			
STD-SY-4 expected		2.6	2.3	14.8	119.0			
STD-SY-4 result		2.5	2.3	14.9	115.4			
B875732	Rock	0.5	0.2	2.1	18.2			
B875732 Dup		0.4	0.2	2.1	17.8			
QCV1011-00187-0005-BLK		< 0.1	< 0.1	< 0.1	< 0.10			
QCV1011-00187-0006-BLK		< 0.1	< 0.1	< 0.1	< 0.10			
STD-SY-4 expected		2.6	2.3	14.8	119.0			
STD-SY-4 result		2.6	2.3	15.0	124.7			
B875714	Rock					29.53	172.53	13.52
B875714 Dup						30.84	172.53	14.05
QCV1105-00470-0002-BLK						< 0.05	< 0.20	< 0.10
B875732	Rock					1.82	8.50	4.42
B875732 Dup						1.84	8.37	4.26
QCV1105-00470-0005-BLK						< 0.05	< 0.20	< 0.10
QCV1105-00470-0006-BLK						< 0.05	< 0.20	< 0.10

Inspectorate Exploration & Mining Services Ltd. #200 - 11620 Horseshoe Way

Date Received: 11/04/2010

Date Completed: 05/06/2011

Invoice:

Richmond, British Columbia V7A 4V5 Canada

Phone: 604-272-7818

Distribution List

Attention: Eric Titley

Suite 1020-800 West Pender St.

Vancouver, BC V6C 2V6

EMail: erictitley@hdimining.com

Attention: Jeremy Crozier

EMail: jeremycrozier@hdimining.com

Attention: T.Kodata

EMail: tkodata@hdimining.com

Submitted By: Aley Corporation

Suite 1020-800 West Pender St.

Vancouver, BC V6C 2V6

Attention: Eric Titley

Project: Aley 2010 Project
Description: Aley 2010-016

Location	Samples	Type	Preparation Description
Vancouver, BC	3	Pulp	SP-PU/Pulp Handling, submitted pulps
Vancouver, BC	42	Rock	SP-RX-2K/Rock/Chips/Drill Core

Location	Method	Description
Vancouver, BC	Ta-4A-LL-MS	Tantalum, 4 Acid, ICP
Vancouver, BC	REE-LB-MS	REE Group by ICP-MS
Vancouver, BC	U-4A-LL-MS	Uraium, 4 Acid, Low Level
Vancouver, BC	Nb2O5-AD3-OR-ICP	Niobium by multi-acid digestion, ICP
Vancouver, BC	Th-4A-LL-MS	Thorium, 4 Acid, Low Level
Vancouver, BC	WR-FS-ICP	Whole Rock, Lithium Borate Fusion, ICP
Vancouver, BC	30-4A-TR	30 Element, 4 Acid, ICP, Trace Level

Submittal Information

Ta, Th, and U results shown have been revised with accurate detection limits.

The results of this assay were based solely upon the content of the sample submitted. Any decision to invest should be made only after the potential investment value of the claim or deposit has been determined based on the results of assays of multiple samples of geologic materials collected by the prospective investor or by a qualified person selected by him and based on an evaluation of all engineering data which is available concerning any proposed project. For our complete terms and conditions please see our website at www.inspectorate.com.

By

Mike Caron, Lab Manager

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		Nb2O5	Al2O3	BaO	CaO	Cr2O3	Fe2O3	K2O	LOI	MgO	MnO	Na2O	P2O5	SiO2	TiO2
		Nb2O5-AD3-OR-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP
Sample	Sample	%	%	%	%	%	%	%	%	%	%	%	%	%	%
Description	Туре	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
B875809	Rock	0.54	0.25	< 0.01	30.91	< 0.01	6.27	< 0.01	38.71	16.84	0.48	0.02	4.65	0.74	0.25
B875810	Pulp	0.73	0.20	0.02	33.60	< 0.01	4.59	0.05	38.33	13.96	0.39	0.08	3.92	3.34	0.13
B875811	Rock	0.84	0.33	< 0.01	27.64	< 0.01	15.55	0.05	31.04	14.78	0.56	0.04	6.77	1.27	0.39
B875812	Rock	0.35	0.10	< 0.01	32.69	< 0.01	4.79 4.84	< 0.01	39.19	18.41	0.63	0.02	4.28	0.34	0.05
B875813	Rock	0.53	0.17	< 0.01	31.54	< 0.01		< 0.01	38.80	17.97	0.41	0.02	4.38	0.35	0.04
B875814 B875815	Rock Rock	0.80 1.07	0.30 0.27	<0.01 <0.01	30.88 30.93	<0.01 <0.01	11.06 14.10	0.05 0.12	33.68 30.61	14.77 13.95	0.49	0.04 0.04	5.57 6.94	1.65 1.95	0.13 0.23
	Rock	0.42	0.27	< 0.01	32.03	< 0.01	5.38	0.12	37.78	18.30	0.37	0.04	4.47	0.90	0.23
B875816 B875817	Rock	0.42	0.17	0.01	27.76	< 0.01	26.50	0.02	23.10	11.02	0.47	0.03	5.20	2.59	1.02
B875818	Rock	0.70	15.90	0.03	4.56	0.01	4.46	3.40	1.00	1.78	0.40	3.05	0.40	68.98	0.48
B875819	Rock	0.75	0.55	0.12	27.90	< 0.01	15.93	0.23	31.57	14.48	0.13	0.05	4.86	2.12	0.48
B875820 Dup	Rock	0.79	0.53	0.02	28.06	< 0.01	15.48	0.23	31.78	14.46	0.57	0.03	4.80	2.12	0.47
B875821	Rock	1.06	0.33	0.02	29.27	< 0.01	17.53	0.24	29.28	12.54	0.57	0.04	5.91	2.00	0.43
B875822	Rock	0.61	0.48	< 0.03	30.63	< 0.01	5.18	0.22	38.81	18.41	0.32	0.03	4.11	0.72	0.06
B875823	Rock	0.43	0.19	< 0.01	31.16	< 0.01	6.69	0.04	38.28	16.82	0.54	0.04	4.51	0.72	0.10
B875824	Rock	1.45	0.19	< 0.01	30.75	< 0.01	12.78	0.04	30.28	14.68	0.43	0.03	6.40	2.05	0.43
B875825	Rock	0.37	0.12	< 0.01	30.79	< 0.01	5.61	< 0.01	40.34	18.64	0.58	0.03	2.99	0.87	0.45
B875826	Rock	0.85	3.37	< 0.01	22.64	< 0.01	7.27	0.19	28.84	16.81	0.43	0.02	2.52	15.77	0.82
B875827	Rock	0.24	2.37	0.01	24.75	< 0.01	5.87	0.19	31.85	17.30	0.43	0.20	3.04	13.09	0.72
B875828	Rock	0.29	0.32	< 0.01	30.00	< 0.01	5.44	0.02	37.00	17.59	0.37	0.03	5.25	1.91	0.19
B875829	Rock	0.25	0.44	0.01	31.96	< 0.01	5.53	0.07	34.19	14.63	0.36	0.07	6.33	4.55	0.21
B875830	Pulp	0.40	0.24	< 0.01	30.61	< 0.01	5.38	0.04	38.77	16.11	0.47	0.04	4.41	2.08	0.13
B875831	Rock	0.30	1.84	0.01	26.26	< 0.01	5.35	0.49	30.67	15.46	0.33	0.40	4.40	13.01	0.23
B875832	Rock	0.64	0.46	< 0.01	30.34	< 0.01	5.69	0.20	36.00	16.81	0.54	0.04	4.86	2.17	0.15
B875833	Rock	0.43	0.29	< 0.01	30.90	< 0.01	4.39	0.10	37.63	17.46	0.58	0.04	5.42	1.15	0.10
B875834	Rock	0.31	0.18	< 0.01	28.67	< 0.01	6.63	0.11	38.50	18.47	0.55	0.12	2.84	1.85	0.07
B875835	Rock	0.25	0.55	0.01	28.83	< 0.01	5.93	0.15	33.16	16.09	0.42	0.12	4.61	9.14	0.13
B875836	Rock	0.19	0.27	< 0.01	32.02	< 0.01	3.14	0.04	37.35	16.03	0.44	0.05	4.90	3.93	0.04
B875837	Rock	0.26	0.42	< 0.01	31.03	< 0.01	4.19	0.06	37.26	17.33	0.55	0.05	4.79	4.07	0.04
B875838	Rock	0.18	2.03	0.07	20.27	0.01	6.25	1.52	17.96	14.62	0.35	1.85	2.97	33.51	0.24
B875839	Rock	0.22	0.19	< 0.01	31.10	< 0.01	4.22	0.04	39.50	16.53	0.51	0.03	4.99	0.70	0.02
B875840	Rock	0.12	0.10	< 0.01	30.13	< 0.01	4.25	0.03	42.35	17.99	0.60	0.02	2.34	0.57	0.02
B875841	Rock	0.16	0.43	< 0.01	29.63	< 0.01	5.51	0.09	37.22	16.17	0.41	0.02	4.83	3.98	0.06
B875842	Rock	0.43	0.15	< 0.01	29.18	< 0.01	5.89	0.02	39.25	17.89	0.48	0.03	3.80	1.64	0.08
B875843	Rock	1.74	1.75	< 0.01	30.38	< 0.01	3.41	0.05	28.81	15.77	0.25	0.06	8.54	9.21	0.07
B875844	Rock	0.23	1.88	< 0.01	27.08	< 0.01	4.86	0.02	34.57	21.45	0.38	0.03	4.30	5.54	0.18
B875845	Rock	0.30	0.32	< 0.01	31.62	< 0.01	4.43	0.01	36.76	18.93	0.40	0.03	5.83	1.32	0.02
B875846	Rock	0.15	0.22	< 0.01	31.66	< 0.01	5.58	0.01	38.23	17.21	0.37	0.02	5.07	1.63	0.35
B875847	Rock	0.22	0.20	< 0.01	31.94	< 0.01	4.72	< 0.01	38.75	18.97	0.49	0.02	4.96	1.27	0.04
B875848	Rock	0.15	0.37	0.01	32.92	< 0.01	4.68	0.01	38.47	17.16	0.44	0.02	4.16	3.26	0.03

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		Nb2O5	A12O3	BaO	CaO	Cr2O3	Fe2O3	K2O	LOI	MgO	MnO	Na2O	P2O5	SiO2	TiO2
		Nb2O5-AD3-OR-ICP	WR-FS-ICP												
Sample	Sample	%	%	%	%	%	%	%	%	%	%	%	%	%	%
Description	Type	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
B875849	Rock	0.09	2.44	0.05	28.55	< 0.01	5.22	0.74	31.43	18.38	0.39	0.18	3.54	10.68	0.16
B875850	Pulp	0.54	1.75	0.34	46.59	< 0.01	4.14	0.68	32.18	2.23	0.87	0.33	2.60	6.38	0.22
B875851	Rock	0.25	0.71	< 0.01	30.47	< 0.01	5.61	0.07	36.44	16.35	0.31	0.02	6.30	2.46	0.06
B875852	Rock	0.36	0.45	< 0.01	29.97	< 0.01	4.64	0.01	38.15	17.10	0.37	0.02	5.25	1.56	0.06
B875853	Rock	0.36	0.17	< 0.01	31.74	< 0.01	3.39	0.02	38.45	16.76	0.48	0.02	5.92	1.02	0.02

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		Total	Ag	Al	As	Ba 20 44 TP	Bi 30-4A-TR	Ca 30-4A-TR	Cd	Co	Cr 30-4A-TR	Cu	Fe 30-4A-TR	K 30-4A-TR	La 30-4A-TR
Sample	Sample	WR-FS-ICP %	30-4A-TR	30-4A-TR %	30-4A-TR	30-4A-TR		30-4A-1R %	30-4A-TR	30-4A-TR		30-4A-TR	30-4A-1R %	30-4A-1R %	
Description	Type	0.01	ppm 0.5	0.01	ppm 5	ppm 10	ppm 2	0.01	ppm 0.5	ppm 1	ppm 1	ppm 1	0.01	0.01	ppm 10
B875809	Rock	99.13	<0.5	0.12	6	34	<2	>10	<0.5	10	9	33	4.35	<0.01	380
B875810	Pulp	98.62	< 0.5	0.08	10	160	<2	>10	< 0.5	4	6	38	3.24	0.03	336
B875811	Rock	98.42	< 0.5	0.14	<5	67	<2	>10	< 0.5	22	10	27	>10	0.03	458
B875812	Rock	100.53	< 0.5	0.03	8	28	<2	>10	< 0.5	6	8	21	3.20	< 0.01	390
B875813	Rock	98.54	< 0.5	0.07	9	19	<2	>10	< 0.5	7	9	33	3.43	< 0.01	470
B875814	Rock	98.64	< 0.5	0.13	<5	63	<2	>10	< 0.5	13	12	7	7.80	0.04	294
B875815	Rock	99.72	< 0.5	0.12	17	64	<2	>10	< 0.5	13	12	17	9.43	0.10	918
B875816	Rock	99.65	< 0.5	0.07	22	29	<2	>10	< 0.5	10	8	32	3.70	< 0.01	951
B875817	Rock	98.45	< 0.5	0.28	<5	212	<2	>10	< 0.5	36	12	128	>10	0.14	626
B875818	Rock	104.28	< 0.5	7.94	<5	927	<2	2.83	< 0.5	9	103	2	2.60	2.97	41
B875819	Rock	98.77	< 0.5	0.27	<5	200	<2	>10	< 0.5	8	9	45	>10	0.20	441
B875820 Dup	Rock	98.01	< 0.5	0.27	<5	202	<2	>10	< 0.5	8	9	42	>10	0.20	424
B875821	Rock	98.40	< 0.5	0.24	<5	221	<2	>10	< 0.5	17	12	42	>10	0.18	533
B875822	Rock	98.58	< 0.5	0.07	7	21	<2	>10	< 0.5	7	11	38	3.76	0.02	306
B875823	Rock	99.03	< 0.5	0.09	33	52	<2	>10	< 0.5	11	7	32	4.64	0.02	365
B875824	Rock	98.38	< 0.5	0.24	<5	78	<2	>10	< 0.5	14	8	69	8.48	0.04	309
B875825	Rock	100.02	< 0.5	0.06	10	26	<2	>10	< 0.5	4	10	26	3.93	< 0.01	454
B875826	Rock	98.89	< 0.5	1.85	<5	73	<2	>10	< 0.5	14	25	62	5.13	0.15	253
B875827	Rock	99.92	0.5	1.28	11	102	<2	>10	< 0.5	12	23	17	4.23	0.29	506
B875828	Rock	98.12	< 0.5	0.14	7	23	<2	>10	< 0.5	8	10	18	3.91	< 0.01	349
B875829	Rock	98.35	< 0.5	0.20	<5	79	<2	>10	<0.5	10	11	22	3.86	0.04	299
B875830	Pulp	98.31	< 0.5	0.07	5	28	<2	>10	<0.5	3	3	17	2.29	0.02	254
B875831	Rock	98.44	<0.5	1.04	<5	93	<2	>10	<0.5	7	18	18	3.70	0.39	243
B875832	Rock	97.25	<0.5	0.23	<5	64	<2	>10	<0.5	5	11	38	3.98	0.16	213
B875833	Rock	98.07	<0.5	0.13	<5	52	<2	>10	<0.5	4	10	24	3.12	0.07	246
B875834	Rock	98.00	<0.5	0.07	<5	72	<2	>10	<0.5	6	12	19	4.74	0.09	144
B875835	Rock	99.15	<0.5	0.27	<5	80	<2	>10	<0.5	8	17	16	4.12	0.13	236
B875836	Rock	98.22	<0.5	0.13	7	53	<2	>10	<0.5	5	12	13	2.22	0.04	279
B875837 B875838	Rock	99.80 101.64	<0.5	0.21	<5 <5	41 451	<2 <2	>10	<0.5	3 7	12 19	16 6	2.90 4.39	0.05 1.15	232 181
B875839	Rock		<0.5	1.06				>10	<0.5	7	9				
B875840	Rock Rock	97.84 98.40	<0.5 <0.5	0.09 0.03	8 6	55 49	<2 <2	>10 >10	<0.5 <0.5	6	9	13	2.96 2.98	0.02 <0.01	246 202
B875841	Rock	98.34	<0.5	0.03	9	34	<2	>10	<0.5	9	9	10	3.84	0.06	320
B875842	Rock	98.42	<0.5	0.21	10	38	<2	>10	<0.5	7	9	26	4.27	0.06	513
B875843	Rock	98.32	<0.5	0.06	<5	44	<2	>10	<0.5	<1	14	89	2.60	0.01	313
B875844	Rock	100.30	<0.5	0.87	23	35	<2	>10	<0.5	11	29	14	3.40	< 0.03	956
B875845	Rock	99.67	<0.5	0.37	13	38	<2	>10	<0.5	9	10	19	3.40	< 0.01	513
B875846	Rock	100.37	<0.5	0.10	34	76	<2	>10	<0.5	9	10	11	4.05	< 0.01	1572
B875847	Rock	101.37	< 0.5	0.10	9	46	<2	>10	<0.5	6	9	14	3.35	< 0.01	391
B875848	Rock	101.52	<0.5	0.18	13	98	<2	>10	<0.5	6	10	11	3.31	< 0.01	481

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		Total	Ag	Al	As	Ba	Bi	Ca	Cd	Co	Cr	Cu	Fe	K	La
		WR-FS-ICP	30-4A-TR												
Sample	Sample	%	ppm	%	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%	%	ppm
Description	Type	0.01	0.5	0.01	5	10	2	0.01	0.5	1	1	1	0.01	0.01	10
B875849	Rock	101.77	< 0.5	1.41	15	411	<2	>10	< 0.5	5	25	6	3.70	0.64	674
B875850	Pulp	98.31	< 0.5	0.96	24	2865	<2	>10	< 0.5	5	8	14	2.99	0.60	953
B875851	Rock	98.82	< 0.5	0.33	12	58	<2	>10	< 0.5	9	9	20	4.02	0.04	471
B875852	Rock	97.59	< 0.5	0.23	7	40	<2	>10	< 0.5	7	10	24	3.45	< 0.01	318
B875853	Rock	98.02	< 0.5	0.07	<5	65	<2	>10	< 0.5	4	15	4	2.49	0.01	194

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		Mg	Mn	Mo	Na	Ni	P	Pb	Sb	Sc	Sr	Ti	Tl	V	W
		30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR						
Sample	Sample	%	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm
Description	Type	0.01	5	1	0.01	1	10	2	5	1	1	0.01	10	1	10
B875809	Rock	9.82	3493	1	0.02	1	>10000	164	<5	6	2240	0.12	<10	94	<10
B875810	Pulp	7.59	2934	2	0.06	<1	>10000	201	<5	7	2231	0.06	<10	66	<10
B875811	Rock	7.51	4104	2	0.03	2	>10000	87	<5	5	2804	0.16	<10	207	<10
B875812	Rock	9.77	4396	1	0.02	<1	>10000	106	<5	6	2897	0.02	<10	9	<10
B875813	Rock	9.97	3000	2	0.02	1	>10000	159	<5	6	985	0.02	<10	21	<10
B875814	Rock	8.27	3507	1	0.03	2	>10000	33	<5	5	2393	0.05	<10	115	<10
B875815	Rock	7.43	3869	4	0.04	2	>10000	67	<5	6	2606	0.08	<10	139	<10
B875816	Rock	9.96	3235	3	0.02	<1	>10000	146	<5	8	1906	0.05	<10	42	<10
B875817	Rock	6.17	3332	3	0.04	4	>10000	241	<5	5	1951	0.44	<10	313	<10
B875818	Rock	0.83	742	4	2.61	6	1068	17	<5	5	709	0.28	<10	54	<10
B875819	Rock	8.21	4161	2	0.05	3	>10000	233	<5	5	3031	0.17	<10	190	<10
B875820 Dup	Rock	8.35	4372	2	0.04	3	>10000	222	<5	5	3138	0.18	<10	181	<10
B875821	Rock	7.21	3768	2	0.05	3	>10000	125	<5	5	2865	0.20	<10	196	<10
B875822	Rock	>10	2962	2	0.03	1	>10000	189	<5	5	1373	0.03	<10	49	<10
B875823	Rock	9.46	3846	3	0.03	1	>10000	126	<5	6	2476	0.05	<10	35	<10
B875824	Rock	7.96	3097	2	0.03	2	>10000	371	<5	5	2177	0.22	<10	153	<10
B875825	Rock	9.84	4116	2	0.02	<1	>10000	122	<5	6	1938	0.02	<10	13	<10
B875826	Rock	9.31	3141	3	0.18	10	9340	287	<5	11	1696	0.28	<10	90	<10
B875827	Rock	9.58	2515	3	0.16	6	>10000	73	<5	12	1278	0.20	<10	71	<10
B875828	Rock	9.54	2748	2	0.03	<1	>10000	97	<5	6	1362	0.07	<10	60	<10
B875829	Rock	8.11	2698	2	0.05	3	>10000	92	<5	7	2089	0.10	<10	78	<10
B875830	Pulp	5.91	2237	2	0.02	<1	9572	89	<5	5	1258	0.03	<10	22	<10
B875831	Rock	8.91	2436	2	0.37	3	>10000	97	<5	11	1566	0.10	<10	70	<10
B875832	Rock	9.52	3922	2	0.04	2	>10000	197	<5	5	3204	0.06	<10	51	<10
B875833	Rock	9.67	4260	2	0.04	1	>10000	128	<5	5	3422	0.05	<10	33	<10
B875834	Rock	>10	4118	2	0.11	1	>10000	101	<5	5	3100	0.03	<10	56	<10
B875835	Rock	9.35	3062	1	0.12	2	>10000	82	<5	11	2435	0.06	<10	61	<10
B875836	Rock	9.61	3237	1	0.05	1	>10000	63	<5	8	2111	0.02	<10	8	<10
B875837	Rock	>10	4029	3	0.04	<1	>10000	82	<5	6	3307	0.02	<10	24	<10
B875838	Rock	7.99	2560	2	1.52	2	>10000	32	<5	18	1845	0.14	<10	139	<10
B875839	Rock	9.98	3963	5	0.03	1	>10000	72	<5	5	2878	0.01	<10	7	<10
B875840	Rock	>10	4534	4	0.02	<1	8400	44	<5	5	2558	< 0.01	<10	<1	<10
B875841	Rock	9.28	3093	3	0.02	1 2	>10000	53	<5	8 7	1553	0.03	<10	22	<10
B875842	Rock	>10	3747	2	0.02		>10000	145 526	<5 <5	9	1990 2042	0.03	<10	35 14	<10
B875843	Rock	8.82	1872		0.05	3	>10000					0.05	<10		<10
B875844	Rock	>10	2841	5	0.03	10 2	>10000	81	<5	8 5	1932	0.07	<10	27 7	<10 <10
B875845	Rock	9.92	2931	3	0.03	3	>10000	106	<5	5 13	1660	0.01	<10	43	1
B875846	Rock	9.20	2860	3 4	0.02		>10000	57 75	<5 <5	6	923	0.06 0.02	<10		<10
B875847	Rock	>10	3653	3	0.02	<1 1	>10000	75 57	<5	8	2273 1329		<10	28	<10
B875848	Rock	8.84	3221	3	0.02	1	>10000	57	<5	8	1329	0.01	<10	14	<10

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		Mg	Mn	Mo	Na	Ni	P	Pb	Sb	Sc	Sr	Ti	Tl	V	W
		30-4A-TR													
Sample	Sample	%	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm
Description	Type	0.01	5	1	0.01	1	10	2	5	1	1	0.01	10	1	10
B875849	Rock	9.00	2978	3	0.17	3	>10000	35	<5	9	1723	0.08	<10	32	<10
B875850	Pulp	1.39	6667	13	0.34	1	>10000	65	<5	4	>10000	0.10	<10	156	<10
B875851	Rock	9.50	2487	3	0.02	2	>10000	90	<5	6	749	0.03	<10	32	<10
B875852	Rock	>10	2931	2	0.02	2	>10000	128	<5	6	1839	0.03	<10	35	<10
B875853	Rock	>10	3850	2	0.03	<1	>10000	9	<5	4	2900	< 0.01	<10	5	<10

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		Zn	Zr	Ce	Dy	Er	Eu	Gd	Hf	Ho	La	Lu	Nd	Pr	Sm
Sample	Sample	30-4A-TR		REE-LB-MS	REE-LB-MS		REE-LB-MS		REE-LB-MS				REE-LB-MS		REE-LB-MS
Description	Type	ppm 2	ppm 1	ppm 0.1	ppm 0.1	ppm 0.1	ppm 0.1	ppm 0.1	ppm 0.1	ppm 0.1	ppm 0.1	ppm 0.1	ppm 0.1	ppm 0.1	ppm 0.1
B875809	Rock	14	25	840.8	18.5	6.0	14.1	39.3	2.5	2.6	442.8	0.5	302.1	91.3	45.5
B875810	Pulp	12	37	871.9	23.2	8.8	15.9	45.5	1.1	3.5	407.8	0.8	333.3	98.9	53.9
B875811	Rock	55	53	>1000	20.3	5.9	17.2	47.8	4.0	2.6	525.2	0.3	396.7	118.7	57.6
B875812	Rock	21	17	842.7	16.2	5.2	12.3	35.2	2.0	2.2	480.1	0.3	277.9	89.1	41.0
B875813	Rock	10	26	986.0	20.7	7.4	16.0	43.6	1.3	3.0	543.5	0.6	341.7	106.2	50.4
B875814	Rock	52	54	759.6	18.4	6.2	15.2	39.8	7.0	2.7	353.3	0.5	305.1	88.0	48.5
B875815	Rock	52	51	>1000	25.0	6.4	23.1	74.9	10.5	2.9	>1000	0.4	745.8	232.2	91.1
B875816	Rock	15	24	>1000	22.5	6.8	22.1	61.4	2.8	3.0	982.4	0.5	639.7	198.2	72.6
B875817	Rock	89	25	>1000	20.5	6.6	17.5	46.0	3.7	2.8	636.6	0.4	391.5	124.8	52.7
B875818	Rock	58	7	108.6	3.6	1.9	2.0	5.5	2.3	0.6	57.5	0.2	38.6	11.4	6.3
B875819	Rock	71	34	900.8	14.8	4.1	13.3	37.1	4.0	1.9	447.6	0.2	335.4	100.2	47.1
B875820 Dup	Rock	71	34	888.4	14.9	4.3	13.3	37.3	4.1	1.9	438.9	0.2	331.0	99.7	46.2
B875821	Rock	68	35	>1000	18.2	5.3	15.4	43.9	5.2	2.4	563.3	0.4	395.4	122.5	55.5
B875822	Rock	13	36	708.6	17.9	6.5	12.9	35.7	2.5	2.7	340.8	0.6	271.7	79.1	42.5
B875823	Rock	19	34	799.6	18.5	6.1	14.0	38.1	3.5	2.6	399.3	0.4	301.0	89.2	44.7
B875824	Rock	41	67	755.1	26.1	8.7	27.8	50.0	11.3	3.8	331.0	0.6	334.0	92.0	58.9
B875825	Rock	22	26	893.1	19.4	6.8	13.4	36.8	2.3	2.8	485.3	0.5	303.0	94.7	43.4
B875826	Rock	47	52	597.2	18.7	6.4	16.5	35.4	5.6	2.8	288.7	0.5	242.7	68.7	42.6
B875827	Rock	40	28	>1000	19.9	6.3	14.6	46.0	3.3	2.8	609.0	0.4	398.9	120.2	58.6
B875828	Rock	15	27	855.2	23.1	8.0	16.4	46.8	3.0	3.3	410.5	0.6	359.1	100.8	58.1
B875829	Rock	20	43	734.7	21.0	7.3	15.5	42.6	5.2	3.0	338.3	0.5	304.2	85.9	50.9
B875830	Pulp	14	19	862.6	21.9	7.0	15.5	43.6	2.2	3.1	444.7	0.5	336.5	98.2	53.2
B875831	Rock	42	50	580.7	18.7	6.5	12.9	34.8	5.0	2.8	265.8	0.6	243.3	68.2	41.5
B875832	Rock	35	50	517.7	17.2	5.4	13.2	32.3	5.0	2.4	235.3	0.3	225.1	62.0	38.9
B875833	Rock	30	30	565.8	17.1	5.5	12.6	33.3	3.2	2.4	273.8	0.3	237.7	65.8	39.5
B875834	Rock	35	38	333.4	9.6	3.0	7.1	19.0	2.9	1.2	149.6	0.1	137.9	38.2	22.9
B875835	Rock	40	20	603.3	18.4	6.3	12.4	34.4	3.2	2.7	283.7	0.4	244.1	69.4	41.3
B875836	Rock	15	23	727.1	19.3	6.6	13.7	37.4	1.1	2.7	345.3	0.5	285.5	82.4	43.8
B875837 B875838	Rock	26 143	18 131	544.3 416.3	16.0 11.6	5.2 4.1	10.9	30.8 23.0	1.6 5.5	2.3 1.7	252.5 188.6	0.3	224.7 167.9	64.2 47.3	37.0 27.3
	Rock														
B875839 B875840	Rock Rock	21 19	32 17	562.2 463.1	14.9 10.6	4.9 3.6	11.4 6.8	32.0 21.4	1.7 0.4	2.1 1.5	267.0 213.3	0.3 0.2	230.3 178.4	64.0 51.9	38.3 27.0
B875841	Rock	27	40	715.3	19.8	7.0	13.0	38.1	2.1	2.9	353.9	0.2	285.9	80.9	46.3
B875842	Rock	28	53	>1000	20.1	6.5	15.0	44.3	3.1	2.9	600.6	0.5	378.4	114.6	56.0
B875843	Rock	26	166	978.4	25.1	7.8	20.5	54.1	0.8	3.5	422.0	0.5	420.8	114.0	67.5
B875844	Rock	17	45	>1000	22.6	6.2	20.3	64.1	1.9	2.8	>1000	0.3	632.8	201.0	82.5
B875845	Rock	14	83	>1000	22.7	8.1	17.4	46.8	2.4	3.3	610.7	0.4	368.9	113.8	56.4
B875846	Rock	17	82	>1000	29.8	9.9	23.0	73.6	2.3	4.2	>1000	0.8	708.9	239.3	82.6
B875847	Rock	20	43	839.1	20.5	7.1	13.8	40.0	1.5	3.1	440.1	0.5	308.1	91.0	46.5
B875848	Rock	18	43	982.8	21.6	7.7	14.6	44.0	2.1	3.2	517.8	0.6	372.1	109.9	54.5

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		Zn	Zr	Ce	Dy	Er	Eu	Gd	Hf	Но	La	Lu	Nd	Pr	Sm
		30-4A-TR	30-4A-TR	REE-LB-MS											
Sample	Sample	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Description	Type	2	1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
B875849	Rock	48	65	>1000	22.3	7.1	16.8	55.0	2.6	3.1	714.0	0.5	509.1	149.2	71.8
B875850	Pulp	466	69	>1000	16.2	5.2	15.6	45.9	0.2	2.1	>1000	0.5	494.8	170.7	54.7
B875851	Rock	14	119	>1000	30.2	10.1	20.3	56.2	3.3	4.4	530.7	0.7	416.5	118.7	68.0
B875852	Rock	14	66	719.1	23.3	8.0	16.6	43.2	2.6	3.5	347.6	0.6	300.6	83.6	51.4
B875853	Rock	19	6	709.2	20.0	6.5	14.3	40.5	1.3	2.8	326.2	0.3	307.5	84.9	51.4

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		m	T	X71	Y	T	TO	**
		Tb DEE I B MS	Tm REE-LB-MS	Yb		Ta Ta-4A-LL-MS	Th-4A-LL-MS	U U-4A-LL-MS
Sample	Sample	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Description	Туре	0.1	0.1	0.1	0.10	0.05	0.20	0.10
B875809	Rock	3.5	0.7	4.5	67.9	17.84	107.21	4.55
B875810	Pulp	4.3	1.1	6.7	88.2	50.02	195.68	2.21
B875811	Rock	3.7	0.6	3.8	65.8	0.92	145.01	2.79
B875812	Rock	3.0	0.6	3.5	57.0	3.34	79.72	1.70
B875813	Rock	3.7	0.9	5.6	76.5	14.90	150.62	3.49
B875814	Rock	3.5	0.7	4.7	65.9	5.65	150.69	3.82
B875815	Rock	4.6	0.7	4.3	72.8	0.88	119.71	1.84
B875816	Rock	4.0	0.8	4.8	80.5	11.81	115.18	4.76
B875817	Rock	3.7	0.8	4.3	73.4	43.36	138.22	18.36
B875818	Rock	0.5	0.2	2.1	18.6	2.05	11.45	5.13
B875819	Rock	2.8	0.4	2.6	47.1	24.50	129.39	21.23
B875820 Dup	Rock	2.8	0.4	2.8	47.8	22.30	127.66	22.75
B875821	Rock	3.4	0.6	3.8	58.6	5.47	117.07	14.46
B875822	Rock	3.2	0.8	5.0	66.7	27.34	170.19	3.04
B875823	Rock	3.3	0.7	4.5	64.9	53.80	138.89	16.43
B875824	Rock	4.9	1.0	6.0	104.3	34.66	169.02	27.00
B875825	Rock	3.2	0.8	5.0	70.7	8.64	123.75	6.84
B875826	Rock	3.5	0.7	4.6	69.8	57.21	131.75	36.82
B875827	Rock	3.6	0.7	4.6	69.3	21.78	78.87	10.93
B875828	Rock	4.4	1.0	6.1	84.3	14.31	107.92	5.46
B875829	Rock	3.9	0.9	5.2	79.5	18.62	107.78	7.96
B875830	Pulp	3.8	0.8	5.1	75.2	16.36	96.40	6.86
B875831	Rock	3.4	0.8	5.2	71.1	36.84	121.23	11.29
B875832	Rock	3.1	0.6	3.6	59.4	8.11	138.27	3.40
B875833	Rock	3.1	0.6	3.4	60.9	5.58	117.02	4.51
B875834	Rock	1.7	0.3	2.1	33.3	9.62	62.89	2.86
B875835	Rock	3.4	0.7	4.4	67.1	17.27	62.41	12.13
B875836	Rock	3.4	0.8	4.8	69.4	86.64	142.44	36.00
B875837	Rock	2.8	0.6	3.8	56.0	9.08	59.49	5.47
B875838	Rock	2.1	0.5	3.8	44.9	26.12	72.25	54.43
B875839	Rock	2.8	0.5	3.5	53.3	102.17	104.96	14.39
B875840	Rock	1.8	0.4	2.9	40.9	26.03	63.74	8.78
B875841	Rock	3.7	0.8	5.5	73.5	86.47	99.05	40.28
B875842	Rock	3.6	0.7	4.6	67.7	88.13	292.57	19.88
B875843	Rock	4.8	0.9	5.4	81.3	142.10	1043.39	18.69
B875844	Rock	4.1	0.7	4.2	66.9	88.57	186.00	44.40
B875845	Rock	4.2	0.9	5.8	82.9	150.24	254.54	71.47
B875846	Rock	5.3	1.2	7.2	105.7	132.08	283.38	52.21
B875847	Rock	3.7	0.8	4.9	75.7	48.63	205.61	11.50
B875848	Rock	3.9	0.9	5.5	81.0	73.62	153.40	20.04

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

			Tb	Tm	Yb	Y	Ta	Th	U
			REE-LB-MS	REE-LB-MS	REE-LB-MS	REE-LB-MS	Ta-4A-LL-MS	Th-4A-LL-MS [J-4A-LL-MS
	Sample	Sample	ppm	ppm	ppm	ppm	ppm	ppm	ppm
De	escription	Type	0.1	0.1	0.1	0.10	0.05	0.20	0.10
Ţ	B875849	Rock	4.0	0.8	5.0	77.3	15.71	128.30	6.51
1	B875850	Pulp	2.7	0.7	4.4	59.1	2.32	57.28	30.83
1	B875851	Rock	5.5	1.2	7.1	108.9	153.42	310.24	30.56
1	B875852	Rock	4.3	1.0	5.8	90.0	90.41	211.12	17.63
}	B875853	Rock	3.7	0.7	4.4	72.8	0.32	58.96	10.93

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		Nb2O5	A12O3	BaO	CaO	Cr2O3	Fe2O3	K2O	LOI	MgO	MnO	Na2O	P2O5	SiO2	TiO2
		Nb2O5-AD3-OR-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP
Sample	Sample	%	%	%	%	%	%	%	%	%	%	%	%	%	%
Description	Type	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
B875809	Rock	0.54													
B875809 Dup		0.50													
QCV1011-00195-0002-BLK		< 0.01													
STD-OKA-1 expected		0.53													
STD-OKA-1 result		0.53													
B875827	Rock	0.24													
B875827 Dup		0.22													
QCV1011-00195-0005-BLK		< 0.01													
STD-OKA-1 expected		0.53													
STD-OKA-1 result		0.54													
B875845	Rock	0.30													
B875845 Dup		0.29													
QCV1011-00195-0008-BLK		< 0.01													
STD-OKA-1 expected		0.53													
STD-OKA-1 result		0.53													
B875809	Rock		0.25	< 0.01	30.91	< 0.01	6.27	< 0.01	38.71	16.84	0.48	0.02	4.65	0.74	0.25
B875809 Dup			0.26	< 0.01	30.97	< 0.01	6.31	< 0.01	38.66	17.17	0.48	0.02	4.79	0.78	0.25
QCV1011-00199-0002-BLK	D 1		< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	<0.01
B875827	Rock		2.37	0.01	24.75	< 0.01	5.87	0.38	31.85	17.30	0.34	0.20	3.04	13.09	0.72
B875827 Dup			2.41	0.01	24.87	< 0.01	5.86	0.39	31.83	17.62	0.35	0.20	3.02	13.24	0.75
QCV1011-00199-0005-BLK	D1-		< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	<0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
B875845	Rock		0.32	< 0.01	31.62	< 0.01	4.43	0.01	36.76	18.93	0.40	0.03	5.83	1.32	0.02
B875845 Dup QCV1011-00199-0008-BLK			0.32	<0.01 <0.01	31.60 <0.01	<0.01 <0.01	4.43 <0.01	0.02 <0.01	36.73 <0.01	17.95 <0.01	0.40 <0.01	0.03 <0.01	5.85 <0.01	1.29 <0.01	0.02
•			< 0.01	<0.01		<0.01									<0.01
STD-SY-4 expected			20.69	0.04	8.05	-0.01	6.21	1.66	4.56	0.54	0.11	7.10	0.13	49.90	0.29
STD-SY-4 result			20.58	0.04	8.58	< 0.01	6.35	1.59	4.52	0.52	0.11	7.33	0.14	49.96	0.30

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		Total	Ag	Al	As	Ba	Bi	Ca	Cd	Co	Cr	Cu	Fe	K	La
		WR-FS-ICP	30-4A-TR												
Sample	Sample	%	ppm	%	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%	%	ppm
Description	Type	0.01	0.5	0.01	5	10	2	0.01	0.5	1	1	1	0.01	0.01	10
B875809	Rock		< 0.5	0.12	6	34	<2	>10	< 0.5	10	9	33	4.35	< 0.01	380
B875809 Dup			< 0.5	0.11	6	30	<2	>10	< 0.5	10	10	33	4.32	< 0.01	390
QCV1011-00196-0002-BLK			< 0.5	< 0.01	<5	<10	<2	< 0.01	< 0.5	<1	<1	<1	< 0.01	< 0.01	<10
STD-CDN-ME-8 expected			61.7									1030			
STD-CDN-ME-8 result			55.9									980			
B875827	Rock		0.5	1.28	11	102	<2	>10	< 0.5	12	23	17	4.23	0.29	506
B875827 Dup			0.8	1.26	11	104	<2	>10	< 0.5	12	24	18	4.19	0.30	508
QCV1011-00196-0005-BLK			< 0.5	< 0.01	<5	<10	<2	< 0.01	< 0.5	<1	<1	<1	< 0.01	< 0.01	<10
STD-CDN-ME-8 expected			61.7									1030			
STD-CDN-ME-8 result			58.3									972			
B875845	Rock		< 0.5	0.16	13	38	<2	>10	< 0.5	9	10	19	3.14	< 0.01	513
B875845 Dup			< 0.5	0.15	12	42	<2	>10	< 0.5	9	13	19	3.18	< 0.01	474
QCV1011-00196-0008-BLK			< 0.5	< 0.01	<5	<10	<2	< 0.01	< 0.5	<1	<1	<1	< 0.01	< 0.01	<10
STD-CDN-ME-8 expected			61.7									1030			
STD-CDN-ME-8 result			56.3									970			
B875809	Rock	99.13													
B875809 Dup		99.70													
QCV1011-00199-0002-BLK		< 0.01													
B875827	Rock	99.92													
B875827 Dup		100.56													
QCV1011-00199-0005-BLK		< 0.01													
B875845	Rock	99.67													
B875845 Dup		98.63													
QCV1011-00199-0008-BLK		< 0.01													
STD-SY-4 expected															
STD-SY-4 result		100.02													

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		Mg	Mn	Mo	Na	Ni	P	Pb	Sb	Sc	Sr	Ti	Tl	V	W
		30-4A-TR													
Sample	Sample	%	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm
Description	Type	0.01	5	1	0.01	1	10	2	5	1	1	0.01	10	1	10
B875809	Rock	9.82	3493	1	0.02	1	>10000	164	<5	6	2240	0.12	<10	94	<10
B875809 Dup		9.65	3488	2	0.02	1	>10000	156	<5	5	2231	0.13	<10	94	<10
QCV1011-00196-0002-BLK		< 0.01	<5	<1	< 0.01	<1	<10	<2	<5	<1	<1	< 0.01	<10	<1	<10
B875827	Rock	9.58	2515	3	0.16	6	>10000	73	<5	12	1278	0.20	<10	71	<10
B875827 Dup		9.58	2515	3	0.16	6	>10000	77	<5	12	1274	0.22	<10	72	<10
QCV1011-00196-0005-BLK		< 0.01	<5	<1	< 0.01	<1	<10	<2	<5	<1	<1	< 0.01	<10	<1	<10
B875845	Rock	9.92	2931	3	0.03	2	>10000	106	<5	5	1660	0.01	<10	7	<10
B875845 Dup		9.93	2944	3	0.03	3	>10000	106	<5	5	1687	0.01	<10	6	<10
QCV1011-00196-0008-BLK		< 0.01	<5	<1	< 0.01	<1	<10	<2	<5	<1	<1	< 0.01	<10	<1	<10

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		Zn	Zr	Ce	Dy	Er	Eu	Gd	Hf	Но	La	Lu	Nd	Pr	Sm
		30-4A-TR	30-4A-TR	REE-LB-MS											
Sample	Sample	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Description	Type	2	1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
B875809	Rock	14	25												
B875809 Dup		13	25												
QCV1011-00196-0002-BLK		<2	<1												
B875827	Rock	40	28												
B875827 Dup		40	34												
QCV1011-00196-0005-BLK		<2	<1												
B875845	Rock	14	83												
B875845 Dup		14	81												
QCV1011-00196-0008-BLK		<2	<1												
B875809	Rock			840.8	18.5	6.0	14.1	39.3	2.5	2.6	442.8	0.5	302.1	91.3	45.5
B875809 Dup				828.1	18.7	5.8	14.0	39.6	2.5	2.7	448.7	0.5	295.9	92.1	46.1
QCV1011-00197-0002-BLK				< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
B875827	Rock			>1000	19.9	6.3	14.6	46.0	3.3	2.8	609.0	0.4	398.9	120.2	58.6
B875827 Dup				>1000	20.3	6.3	14.9	46.4	3.3	2.8	624.5	0.5	405.1	123.9	59.3
QCV1011-00197-0005-BLK				< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
B875845	Rock			>1000	22.7	8.1	17.4	46.8	2.4	3.3	610.7	0.6	368.9	113.8	56.4
B875845 Dup				>1000	23.2	7.8	17.3	47.6	2.3	3.3	606.0	0.6	371.0	113.6	55.5
QCV1011-00197-0008-BLK				< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
STD-SY-4 expected				122.0	18.2	14.2	2.0	14.0	10.6	4.3	58.0	2.1	57.0	15.0	12.7
STD-SY-4 result				130.2	19.1	14.7	2.2	14.9	11.1	4.4	62.7	2.2	57.7	15.6	13.8

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		Tb	Tm	Yb	Y	Ta	Th	U
		REE-LB-MS	REE-LB-MS	REE-LB-MS	REE-LB-MS	Ta-4A-LL-MS	Th-4A-LL-MS	U-4A-LL-MS
Sample	Sample	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Description	Type	0.1	0.1	0.1	0.10	0.05	0.20	0.10
B875809	Rock	3.5	0.7	4.5	67.9			
B875809 Dup		3.5	0.7	4.3	67.3			
QCV1011-00197-0002-BLK		< 0.1	< 0.1	< 0.1	< 0.10			
B875827	Rock	3.6	0.7	4.6	69.3			
B875827 Dup		3.7	0.7	4.6	69.2			
QCV1011-00197-0005-BLK		< 0.1	< 0.1	< 0.1	< 0.10			
B875845	Rock	4.2	0.9	5.8	82.9			
B875845 Dup		4.2	1.0	6.0	82.3			
QCV1011-00197-0008-BLK		< 0.1	< 0.1	< 0.1	< 0.10			
STD-SY-4 expected		2.6	2.3	14.8	119.0			
STD-SY-4 result		2.6	2.4	16.2	121.2			
B875809	Rock					17.84	107.21	4.55
B875809 Dup						17.70	104.45	4.49
QCV1105-00495-0002-BLK						< 0.05	< 0.20	< 0.10
B875827	Rock					21.78	78.87	10.93
B875827 Dup						22.44	77.00	10.94
QCV1105-00495-0005-BLK						< 0.05	< 0.20	< 0.10
B875845	Rock					150.24	254.54	71.47
B875845 Dup						153.43	247.04	70.33
QCV1105-00495-0008-BLK						< 0.05	< 0.20	< 0.10

Certificate of Analysis

Inspectorate Exploration & Mining Services Ltd. #200 - 11620 Horseshoe Way

Date Received: 11/08/2010

Date Completed: 03/16/2011

Invoice:

Richmond, British Columbia V7A 4V5 Canada

Phone: 604-272-7818

Distribution List

Attention: Eric Titley

Suite 1020-800 West Pender St.

Vancouver, BC V6C 2V6

EMail: erictitley@hdimining.com

Attention: Jeremy Crozier

EMail: jeremycrozier@hdimining.com

Attention: T.Kodata

EMail: tkodata@hdimining.com

Submitted By: Aley Corporation

Suite 1020-800 West Pender St.

Vancouver, BC V6C 2V6

Attention: Eric Titley

Project: Aley 2010 Project

Purchase Order: **ALY 0002**Description: **Aley 2010-012**

Location	Samples	Type	Preparation Description
Vancouver, BC	2	Pulp	SP-PU/Pulp Handling, submitted pulps
Vancouver, BC	48	Rock	SP-RX-2K/Rock/Chips/Drill Core

Location	Method	Description
Vancouver, BC	REE-LB-MS	REE Group by ICP-MS
Vancouver, BC	Nb2O5-AD3-OR-ICP	Niobium by multi-acid digestion, ICP
Vancouver, BC	Ta-4A-LL-MS	Tantalum, 4 Acid, ICP
Vancouver, BC	Th-4A-LL-MS	Thorium, 4 Acid, Low Level
Vancouver, BC	30-4A-TR	30 Element, 4 Acid, ICP, Trace Level
Vancouver, BC	U-4A-LL-MS	Uraium, 4 Acid, Low Level
Vancouver, BC	WR-FS-ICP	Whole Rock, Lithium Borate Fusion, ICP

Submittal Information

Uranium (U), Tantalum (Ta), and Thorium (Th) numbers shown have been revised with accurate detection limits.

The results of this assay were based solely upon the content of the sample submitted. Any decision to invest should be made only after the potential investment value of the claim or deposit has been determined based on the results of assays of multiple samples of geologic materials collected by the prospective investor or by a qualified person selected by him and based on an evaluation of all engineering data which is available concerning any proposed project. For our complete terms and conditions please see our website at www.inspectorate.com.

By

Mike Caron, Lab Manager

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		Nb2O5	Al2O3	BaO	CaO	Cr2O3	Th	Fe2O3	K2O	LOI	MgO	MnO	Na2O	P2O5	SiO2
		Nb2O5-AD3-OR-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP	Th-4A-LL-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP
Sample	Sample	%	%	%	%	%	ppm	%	%	%	%	%	%	%	%
Description	Type	0.01	0.01	0.01	0.01	0.01	4	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
B875600	Rock	0.60	0.21	< 0.01	34.23	< 0.01		5.17	0.03	38.24	15.65	0.49	0.04	5.10	0.43
B875601	Rock	0.78	0.17	< 0.01	37.88	< 0.01		6.93	0.03	37.32	11.94	0.47	0.02	4.74	0.23
B875602	Rock	MS	MS				MS								
B875603	Rock	0.58	0.23	0.02	42.98	< 0.01		8.99	0.03	34.08	5.72	0.93	0.02	5.42	1.14
B875604	Rock	1.59	0.74	0.02	21.28	< 0.01		41.89	0.46	14.56	5.81	0.52	0.06	8.73	4.22
B875605	Rock	0.03	11.62	0.12	3.90	0.02		3.94	2.83	0.97	1.35	0.11	2.82	0.33	68.92
B875606	Rock	0.36	0.14	< 0.01	33.11	< 0.01		4.78	0.02	39.76	16.16	0.64	0.02	4.49	0.52
B875607	Rock	0.20	0.07	< 0.01	33.13	< 0.01		4.79	0.01	41.09	17.06	0.67	0.02	3.05	0.87
B875608	Rock	0.45	0.13	< 0.01	36.17	< 0.01		4.75	0.02	36.80	15.68	0.50	0.02	7.36	0.10
B875609	Rock	0.55	0.10	< 0.01	34.98	< 0.01		7.20	0.04	36.10	14.60	0.46	0.02	6.64	0.10
B875610	Pulp	0.79	0.47	0.02	29.64	< 0.01		16.82	0.07	31.29	12.91	0.47	0.04	5.39	2.14
B875611	Rock	0.52	0.16	< 0.01	33.58	< 0.01		4.79	0.04	38.65	17.27	0.33	0.03	5.84	0.06
B875612	Rock	0.35	0.09	< 0.01	32.47	< 0.01		5.34	0.03	39.79	17.18	0.38	0.02	4.91	< 0.01
B875613	Rock	0.67	0.14	< 0.01	32.07	< 0.01		4.10	0.03	38.13	17.27	0.47	0.03	5.87	0.04
B875614	Rock	1.15	0.24	< 0.01	35.57	< 0.01		5.63	0.04	33.03	14.13	0.48	0.04	9.74	0.39
B875615	Rock	0.67	0.19	< 0.01	35.88	< 0.01		4.05	0.05	35.80	14.93	0.43	0.04	8.26	0.14
B875616	Rock	0.33	0.17	< 0.01	31.58	< 0.01		4.88	0.05	41.42	17.08	0.33	0.04	3.19	0.22
B875617	Rock	0.29	0.14	< 0.01	31.88	< 0.01		4.83	0.02	39.99	17.12	0.41	0.04	4.66	0.10
B875618	Rock	0.75	0.24	< 0.01	29.92	< 0.01		13.90	0.05	34.13	14.07	0.43	0.04	6.35	0.28
B875619	Rock	0.30	0.11	< 0.01	31.85	< 0.01		4.73	0.04	39.83	18.52	0.39	0.03	4.44	< 0.01
B875620 Dup	Rock	0.28	0.11	< 0.01	32.33	< 0.01		4.92	0.02	39.10	18.54	0.41	0.02	4.50	< 0.01
B875621	Rock	0.54	0.20	< 0.01	32.29	< 0.01		4.93	0.06	38.99	17.45	0.34	0.05	5.13	0.22
B875622	Rock	0.48	0.31	< 0.01	29.95	< 0.01		8.20	0.08	38.28	17.38	0.47	0.03	4.63	0.37
B875623	Rock	0.38	0.10	< 0.01	32.47	< 0.01		4.08	0.01	40.61	18.69	0.57	0.02	4.30	< 0.01
B875624	Rock	0.20	0.06	< 0.01	32.64	< 0.01		4.59	0.01	40.68	17.44	0.46	0.02	4.15	< 0.01
B875625	Rock	0.52	0.10	< 0.01	32.43	< 0.01		6.11	0.02	37.93	17.71	0.47	0.02	5.82	< 0.01
B875626	Rock	1.39	0.32	< 0.01	32.04	< 0.01		12.21	0.07	28.57	13.47	0.39	0.06	10.71	1.48
B875627	Rock	0.38	0.16	< 0.01	32.62	< 0.01		5.26	0.03	39.20	17.10	0.48	0.03	4.83	0.12
B875628	Rock	0.22	0.06	< 0.01	30.95	< 0.01		5.93	0.01	40.64	18.24	0.63	0.01	2.92	< 0.01
B875629	Rock	0.84	0.12	< 0.01	34.93	< 0.01		6.66	0.02	34.90	15.10	0.48	0.03	7.55	< 0.01
B875630	Pulp	0.82	0.45	0.02	29.36	< 0.01		17.01	0.07	31.11	12.74 16.94	0.44	0.04	5.55	1.98
B875631	Rock	0.18	0.05	< 0.01	32.22	< 0.01		5.08	0.01	40.36		0.63	0.02	4.18	<0.01
B875632 B875633	Rock	0.74	0.21 0.32	< 0.01	33.78 35.28	< 0.01		5.47	0.03	38.60 33.52	17.02	0.55 0.48	0.05	3.80	0.40 1.04
B875633 B875634	Rock	1.18 0.42	0.32	<0.01 <0.01	35.28	<0.01 <0.01		7.11 3.96	0.06 0.02	33.52	14.50 16.74	0.48	0.08	7.36 5.54	0.39
	Rock										16.74				1.33
B875635 B875636	Rock Rock	0.83 0.30	0.34 0.09	<0.01 <0.01	32.25 32.88	<0.01 <0.01		8.36 3.67	0.05 0.02	33.63 40.02	14.81	0.46 0.59	0.04 0.02	7.68 4.02	0.60
				< 0.01		< 0.01				35.99	16.95	0.39		6.46	1.22
B875637 B875638	Rock Rock	0.76 0.35	0.23 0.22	< 0.01	33.26 29.57	<0.01		4.20 12.00	<0.01 0.06	35.99 34.75	13.86	0.47	0.03 0.06	10.72	1.22
B875639	Rock	0.69	0.22	<0.01	38.92	<0.01		5.24	0.08	32.84	15.84	0.39	0.08	5.50	0.12
D6/3039	ROCK	0.09	0.41	<0.01	36.92	<0.01		3.24	0.03	32.84	13.84	0.48	0.02	5.50	0.12

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		Nb2O5	A12O3	BaO	CaO	Cr2O3	Th	Fe2O3	K2O	LOI	MgO	MnO	Na2O	P2O5	SiO2
		Nb2O5-AD3-OR-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP	Th-4A-LL-ICP	WR-FS-ICP							
Sample	Sample	%	%	%	%	%	ppm	%	%	%	%	%	%	%	%
Description	Type	0.01	0.01	0.01	0.01	0.01	4	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
B875640 Dup	Rock	0.65	0.38	0.01	38.42	< 0.01		4.81	0.09	32.99	14.37	0.47	0.03	5.60	1.93
B875641	Rock	0.47	0.17	< 0.01	35.93	< 0.01		5.79	< 0.01	37.73	17.01	0.63	0.02	2.61	< 0.01
B875642	Rock	0.30	1.58	< 0.01	34.44	< 0.01		6.72	0.02	33.62	17.88	0.49	0.03	6.47	< 0.01
B875643	Rock	0.28	0.18	< 0.01	35.04	< 0.01		4.71	0.03	38.74	17.99	0.53	0.03	4.54	0.19
B875644	Rock	0.40	0.12	< 0.01	33.84	< 0.01		4.44	0.01	39.77	18.75	0.53	0.03	3.45	0.47
B875645	Rock	0.61	0.14	< 0.01	36.46	< 0.01		4.05	< 0.01	38.02	17.49	0.52	0.03	2.93	0.33
B875646	Rock	0.26	0.23	< 0.01	39.10	0.02		4.57	< 0.01	33.25	16.80	0.44	0.07	6.20	< 0.01
B875647	Rock	0.29	0.42	< 0.01	38.13	< 0.01		3.99	0.02	34.09	16.57	0.65	0.04	5.59	0.38
B875648	Rock	0.30	0.96	< 0.01	30.48	< 0.01		5.36	0.04	36.93	17.88	0.60	0.03	3.32	6.57
B875649	Rock	0.21	0.15	< 0.01	34.77	< 0.01		4.72	< 0.01	38.01	16.88	0.58	0.03	5.26	< 0.01

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		TiO2	Total	Ag	Al	As	Ba	Bi	Ca	Cd	Co	Cr	Cu	Fe 20.44 TP	K
Sample	Sample	WR-FS-ICP %	WR-FS-ICP %	30-4A-TR	30-4A-TR %	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR %	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR %	30-4A-TR %
Description	Type	0.01	0.01	ppm 0.5	0.01	ppm 5	ppm 10	ppm 2	0.01	ppm 0.5	ppm 1	ppm 1	ppm 1	0.01	0.01
B875600	Rock	0.10	99.69	1.0	0.01	<5	191	<2	>10	<0.5	4	14	38	4.39	0.04
B875601	Rock	0.12	99.86	0.6	0.12	35	146	<2	>10	< 0.5	i	11	32	5.45	0.03
B875602	Rock			NS											
B875603	Rock	0.17	99.72	0.9	0.15	36	250	<2	>10	< 0.5	10	15	11	8.15	0.04
B875604	Rock	1.15	99.44	< 0.5	0.45	8	185	<2	>10	< 0.5	19	15	44	>10	0.54
B875605	Rock	0.39	97.32	< 0.5	7.44	<5	1257	<2	4.48	< 0.5	11	153	8	3.52	3.61
B875606	Rock	0.03	99.67	< 0.5	0.08	<5	51	<2	>10	< 0.5	3	13	19	3.58	0.02
B875607	Rock	0.01	100.77	< 0.5	0.05	9	54	<2	>10	< 0.5	4	14	13	3.49	0.01
B875608	Rock	0.04	101.59	< 0.5	0.09	15	71	<2	>10	< 0.5	5	15	12	3.59	0.02
B875609	Rock	0.12	100.36	< 0.5	0.08	18	72	<2	>10	< 0.5	8	13	29	5.38	0.02
B875610	Pulp	0.54	99.78	< 0.5	0.28	<5	171	<2	>10	< 0.5	14	10	51	>10	0.09
B875611	Rock	0.07	100.82	< 0.5	0.10	<5	47	<2	>10	< 0.5	6	13	25	3.43	0.04
B875612	Rock	0.05	100.27	< 0.5	0.06	13	56	<2	>10	< 0.5	5	13	19	4.53	0.02
B875613	Rock	0.04	98.21	< 0.5	0.10	<5	39	<2	>10	< 0.5	3	11	31	3.73	0.03
B875614	Rock	0.19	99.48	0.6	0.15	<5	49	<2	>10	< 0.5	10	12	21	4.56	0.03
B875615	Rock	0.06	99.84	< 0.5	0.13	8	93	<2	>10	< 0.5	7	13	17	3.58	0.05
B875616	Rock	0.09	99.05	< 0.5	0.11	<5	36	<2	>10	< 0.5	11	13	20	3.98	0.05
B875617	Rock	0.04	99.24	0.6	0.08	7	103	<2	>10	< 0.5	7	15	15	4.14	0.02
B875618	Rock	0.30	99.71	0.8	0.14	<5	53	<2	>10	< 0.5	19	10	24	>10	0.07
B875619	Rock	0.04	99.98	0.6	0.08	<5	69	<2	>10	< 0.5	6	19	14	4.10	0.03
B875620 Dup	Rock	0.04	99.99	< 0.5	0.07	<5	32	<2	>10	< 0.5	7	15	14	4.20	0.03
B875621	Rock	0.07	99.74	0.6	0.13	<5	81	<2	>10	< 0.5	5	12	20	4.54	0.06
B875622	Rock	0.13	99.83	0.9	0.20	<5	200	<2	>10	< 0.5	10	16	23	7.07	0.08
B875623	Rock	0.02	100.87	0.8	0.07	<5	133	<2	>10	< 0.5	2	16	23	3.50	0.01
B875624	Rock	0.03	100.10	< 0.5	0.04	7	26	<2	>10	< 0.5	5	15	11	3.32	< 0.01
B875625	Rock	0.04	100.66	< 0.5	0.07	13	42	<2	>10	< 0.5	14	16	14	4.81	0.02
B875626	Rock	0.32	99.66	< 0.5	0.23	<5	41	<2	>10	< 0.5	20	27	13	8.52	0.04
B875627	Rock	0.05	99.87	< 0.5	0.11	7	38	<2	>10	< 0.5	6	12	17	4.44	0.02
B875628	Rock	0.02	99.42	<0.5	0.04	7	41	<2	>10	<0.5	5	15	11	5.24	< 0.01
B875629	Rock	0.07	99.85	0.9	0.07	7	45	<2	>10	<0.5	5	18	23	5.74	0.03
B875630	Pulp	0.52	99.30	<0.5	0.26	<5	175	<2	>10	<0.5	11	9	49	>10	0.08
B875631	Rock	0.01	99.51	0.5	0.04	7	56	<2	>10	<0.5	2	23	9	4.30	<0.01
B875632	Rock	0.06	99.98	0.7	0.13	<5	284	<2	>10	<0.5	<1	13	27	4.77	0.02
B875633	Rock	0.16	99.91	0.6	0.20	<5	103	<2	>10	<0.5	9	12	38	6.55	0.07
B875634	Rock	0.02	101.04	0.7	0.10	<5	51	<2	>10	<0.5	<1	12	15	2.82	0.02
B875635	Rock	0.28	99.24	0.5	0.21	<5	77	<2	>10	<0.5	13	17	50	7.85	0.05
B875636	Rock	0.03	100.36	0.6	0.06	<5	44	<2	>10	<0.5	6 7	13	15	3.44	0.02
B875637 B875638	Rock	0.10 0.32	98.94 103.39	1.0 0.6	0.15 0.23	<5 <5	47 58	<2 <2	>10 >10	<0.5 <0.5	10	13 14	33 17	3.90 3.74	0.01 0.02
B875639	Rock	0.32	99.45	0.6	0.23	<5	134	<2	>10	<0.5	10	14 19	33	3.74	0.02
В8/3639	Rock	0.05	99.45	0.5	0.21	<>>	134	<2	>10	<0.5	13	19	33	3.37	0.12

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		TiO2	Total	Ag	Al	As	Ba	Bi	Ca	Cd	Co	Cr	Cu	Fe	K
		WR-FS-ICP	WR-FS-ICP	30-4A-TR											
Sample	Sample	%	%	ppm	%	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%	%
Description	Type	0.01	0.01	0.5	0.01	5	10	2	0.01	0.5	1	1	1	0.01	0.01
B875640 Dup	Rock	0.06	99.16	< 0.5	0.23	<5	133	<2	>10	< 0.5	12	16	32	3.85	0.12
B875641	Rock	0.02	99.93	< 0.5	0.04	<5	40	<2	>10	< 0.5	2	13	17	4.22	0.02
B875642	Rock	0.07	101.32	0.6	0.08	<5	51	<2	>10	< 0.5	20	36	21	5.23	0.06
B875643	Rock	0.03	102.01	< 0.5	0.12	<5	24	<2	>10	< 0.5	10	16	13	4.11	< 0.01
B875644	Rock	0.02	101.44	0.5	0.08	6	35	<2	>10	< 0.5	4	20	15	4.15	< 0.01
B875645	Rock	0.02	100.01	< 0.5	0.09	<5	32	<2	>10	< 0.5	2	16	22	4.16	< 0.01
B875646	Rock	0.02	100.70	< 0.5	5.41	<5	39	<2	>10	< 0.5	11	20	13	5.86	< 0.01
B875647	Rock	0.02	99.92	< 0.5	0.10	<5	103	<2	>10	< 0.5	15	24	14	5.18	0.09
B875648	Rock	0.17	102.35	< 0.5	0.65	7	48	<2	>10	< 0.5	13	25	16	4.91	0.04
B875649	Rock	0.01	100.43	< 0.5	0.09	11	38	<2	>10	< 0.5	7	12	12	4.39	< 0.01

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		La	Mg	Mn	Мо	Na	Ni	P	Pb	Sb	Sc	Sr	Ti	Tl	V
0 1	a .	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR
Sample Description	Sample Type	ppm 10	% 0.01	ppm 5	ppm 1	% 0.01	ppm 1	ppm 10	ppm 2	ppm 5	ppm	ppm 1	% 0.01	ppm 10	ppm
B875600	Rock	565	9.97	4162	<1	0.01	5	>10000	146	<5	10	1945	0.01	<10	68
B875601	Rock	4420	8.42	3764	1	0.02	5	>10000	153	<5	13	615	0.06	415	47
B875602	Rock								<2						
B875603	Rock	4567	4.52	8264	4	0.02	6	>10000	19	<5	14	1319	0.04	366	28
B875604	Rock	3774	4.36	4585	<1	0.05	13	>10000	30	<5	<1	2313	0.36	<10	118
B875605	Rock	108	1.16	992	<1	3.05	9	1657	13	<5	3	842	0.32	<10	21
B875606	Rock	479	>10	4935	<1	0.02	4	>10000	78	<5	7	2924	0.02	<10	54
B875607	Rock	547	>10	5065	<1	0.02	3	>10000	50	<5	7	2803	< 0.01	<10	58
B875608	Rock	718	>10	3854	<1	0.03	4	>10000	47	<5	9	2418	0.02	26	59
B875609	Rock	727	>10	3378	5	0.02	5	>10000	123	<5	12	1402	0.05	<10	63
B875610	Pulp	459	9.66	3654	<1	0.05	7	>10000	138	<5	7	1793	0.17	<10	80
B875611	Rock	622	>10	2682	<1	0.02	5	>10000	112	<5	9	922	0.04	<10	66
B875612	Rock	1100	>10	3505	<1	0.02	4	>10000	84	<5	11	1444	0.03	22	68
B875613	Rock	497	>10	4000	<1	0.02	6	>10000	137	<5	8	2801	0.03	<10	63
B875614	Rock	554	>10	3600	<1	0.03	5	>10000	84	<5	8	3291	0.07	<10	65
B875615	Rock	603	>10	3371	<1	0.03	3	>10000	69	<5	12	2345	0.03	<10	63
B875616	Rock	562	>10	2758	<1	0.03	4	>10000	78	<5	12	803	0.05	<10	71
B875617	Rock	1267	>10	3540	<1	0.04	4	>10000	75	<5	12	1273	0.02	71	67
B875618	Rock	437	9.97	3749	<1	0.03	12	>10000	104	<5	9	2917	0.15	<10	88
B875619	Rock	578	>10	3333	<1	0.02	9	>10000	3465	<5	9	1534	0.02	<10	66
B875620 Dup	Rock	597	>10	3440	<1	0.02	6	>10000	242	<5	9	1569	0.02	<10	68
B875621	Rock	589	>10	3093	<1	0.03	5	>10000	160	<5	9	1264	0.04	<10	68
B875622	Rock	630	>10	4087	<1	0.02	6	>10000	153	<5	9	1964	0.07	<10	70
B875623	Rock	367	>10	4809	<1	0.02	4	>10000	116	<5	10	2386	0.01	<10	67
B875624	Rock	1619	9.89	3622	<1	0.02	3	>10000	69	<5	11	1000	0.01	207	67
B875625	Rock	1139	>10	3756	<1	0.02	4	>10000	58	<5	13	1486	0.02	50	68
B875626	Rock	857	9.28	3307	<1	0.04	9	>10000	56	<5	11	2746	0.09	<10	73
B875627 B875628	Rock Rock	670 845	>10 >10	4081 5748	<1 <1	0.02 0.02	6 4	>10000 >10000	85 61	<5 <5	11 9	2497 2187	0.03 <0.01	<10 <10	67 67
B875629	Rock	612	>10	4099	<1	0.02	6	>10000	109	<5	13	1997	0.01	<10	65
B875630	Pulp	501	9.92	3858	<1	0.03	10	>10000	178	<5	6	1957	0.03	<10	77
B875631	Rock	938	>10	5174	<1	0.04	6	>10000	50	<5	8	1677	< 0.20	25	60
B875632	Rock	659	>10	4658	<1	0.02	6	>10000	151	<5	9	1976	0.01	<10	67
B875633	Rock	579	>10	4136	<1	0.03	6	>10000	214	<5	6	2884	0.03	<10	62
B875634	Rock	469	>10	5450	<1	0.04	4	>10000	98	<5	7	4147	0.12	32	64
B875635	Rock	491	>10	4119	<1	0.03	6	>10000	178	<5	6	3586	0.15	<10	68
B875636	Rock	331	>10	5296	<1	0.03	3	>10000	65	<5	9	4385	0.02	<10	69
B875637	Rock	570	>10	4100	<1	0.04	4	>10000	159	<5	8	3382	0.06	<10	65
B875638	Rock	435	>10	4766	<1	0.03	4	>10000	77	<5	8	3838	0.04	<10	64
B875639	Rock	473	8.32	3351	<1	0.03	6	>10000	140	<5	7	3626	0.05	<10	59

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		La	Mg	Mn	Mo	Na	Ni	P	Pb	Sb	Sc	Sr	Ti	Tl	V
		30-4A-TR													
Sample	Sample	ppm	%	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm
Description	Type	10	0.01	5	1	0.01	1	10	2	5	1	1	0.01	10	1
B875640 Dup	Rock	505	>10	3758	<1	0.04	6	>10000	138	<5	7	3952	0.05	<10	61
B875641	Rock	480	>10	5329	<1	0.04	4	>10000	103	<5	7	4314	0.02	<10	64
B875642	Rock	368	>10	4550	<1	0.03	17	>10000	65	<5	14	2561	0.20	<10	80
B875643	Rock	355	>10	4596	<1	0.05	4	>10000	65	<5	9	2532	0.01	<10	67
B875644	Rock	356	>10	4200	<1	0.03	4	>10000	93	<5	7	3102	0.01	<10	71
B875645	Rock	507	>10	4267	<1	0.03	5	>10000	143	<5	7	3256	0.02	<10	64
B875646	Rock	1098	>10	4267	<1	0.03	5	>10000	68	<5	14	2297	0.04	<10	64
B875647	Rock	560	>10	4117	<1	0.15	4	>10000	70	<5	13	2366	0.06	<10	65
B875648	Rock	601	>10	5310	1	0.03	9	>10000	68	<5	13	3146	0.06	<10	69
B875649	Rock	950	>10	4957	<1	0.03	4	>10000	58	<5	9	2560	< 0.01	44	65

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		W	Zn	Zr	Ce	Dy	Er	Eu	Gd	Hf	Но	La	Lu	Nd	Pr
		30-4A-TR	30-4A-TR	30-4A-TR	REE-LB-MS	REE-LB-MS	REE-LB-MS	REE-LB-MS	REE-LB-MS	REE-LB-MS	REE-LB-MS	REE-LB-MS	REE-LB-MS	REE-LB-MS	REE-LB-MS
Sample	Sample	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Description	Type	10	2	1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	
B875600	Rock	<10	29	21	813.6	25.4	9.4	15.1	43.4	2.3	3.9	450.2	0.8	298.1	89.4
B875601	Rock	<10	21	15	>1000	35.3	10.0	34.2	123.0	4.7	4.4	>1000	0.8	>1000	470.8
B875602	Rock														
B875603	Rock	<10	50	16	>1000	31.6	9.4	28.6	103.3	3.9	4.1	>1000	0.6		
B875604	Rock	<10	200	89	>1000	28.0	6.1	26.5	100.6	16.2	3.0	>1000	0.3	>1000	
B875605	Rock	<10	75	8	133.6	3.4	1.7	1.7	5.4	3.9	0.5	79.9	0.2	41.3	
B875606	Rock	<10	29	18	725.5	16.7	5.6	11.6	35.4	1.8	2.4	381.5	0.3	269.3	
B875607	Rock	<10	29	9	701.4	11.7	3.7	8.9	27.3	0.8	1.6	398.6	0.2	241.7	
B875608	Rock	<10	21	50	934.0	24.2	8.8	15.3	46.1	2.8	3.6	532.4	0.6	337.6	
B875609	Rock	<10	23	82	974.4	30.3	11.0	17.9	51.4	4.5	4.7	559.6	0.9	355.8	
B875610	Pulp	<10	85	64	812.0	22.4	7.6	15.2	44.5	7.9	3.2	389.6	0.6	323.9	
B875611	Rock	<10	14	58	915.3	32.8	12.1	18.5	54.6	2.7	5.2	481.2	1.0	357.0	
B875612	Rock	<10	18	54	>1000	28.4	10.2	17.4	58.4	3.4	4.3	717.0	0.8	430.5	
B875613	Rock	<10	19	45	757.8	24.8	8.7	16.0	45.5	1.3	3.7	363.5	0.7	316.8	
B875614	Rock	<10	25	177	890.4	30.0	10.0	25.5	55.6	6.2	4.3	403.3	0.7	394.9	
B875615	Rock	<10	19	61	917.5	36.5	14.1	18.8	55.6	1.9	5.9	454.6	1.1	372.3	
B875616	Rock	<10	16	10	802.7	23.4	9.0	12.7	40.5	1.3	3.7	426.5	0.8	301.2	
B875617	Rock	<10	17	13	>1000	24.7	8.3	16.6	58.5	1.0	3.5	828.4	0.7	547.3	
B875618	Rock	<10	31	40	700.7	26.3	9.6	17.4	45.2	4.7	4.2	328.4	0.7	295.8	
B875619	Rock	13	62	20	855.3	21.5	8.4	12.1	39.7	1.3	3.3	458.2	0.7	308.2	
B875620 Dup	Rock	<10	2.5	22	803.2	20.6	8.2	11.9	38.0	1.3	3.2	428.0	0.7	294.3	
B875621	Rock	<10	26	29	878.2	24.7	10.0	14.7	44.2	1.9	3.9	461.8	0.9	326.8	
B875622	Rock	<10	37	24	880.3	21.8	8.0	15.0	42.4	2.3	3.2	453.2	0.7	328.1	99.0
B875623	Rock	<10	31	20	538.4	19.8	7.9	10.7	32.9	1.1	3.2	261.0	0.7	219.7	
B875624	Rock	<10	19	15	>1000	28.5	9.0	22.4	81.8	0.9	3.6	>1000	0.8	902.7	
B875625	Rock	<10	20	47	>1000	30.2	10.7	21.1	71.6	2.3	4.3	778.3	0.9	642.4	
B875626	Rock	<10	30	73	>1000	32.9	11.3	24.9	68.8	7.3	4.7	604.0	0.8	529.2	
B875627	Rock	<10	22	35	887.0	21.1	7.7	13.2	43.0	2.6	3.2	452.6	0.6	340.1	100.0
B875628	Rock	<10	24	13	>1000	20.0	6.3	12.0	48.3	0.6	2.7	653.6	0.4	475.5	
B875629	Rock	<10	20	61	963.0	37.9	14.2	21.2	61.8	4.1	5.9	467.9	1.1	409.0	
B875630	Pulp	<10	77 20	63	906.5	21.0	7.1	15.6	44.4 48.4	7.6 0.4	3.0 3.6	463.1 688.5	0.5 0.7	343.1	
B875631	Rock	<10		18	>1000 937.0	23.1	8.7	13.2						459.8	
B875632 B875633	Rock Rock	<10 <10	21 19	28 5	>1000	22.5 30.3	8.4 10.5	13.5 25.4	44.3 60.8	1.4 3.5	3.4 4.4	495.3 515.4	0.7 0.8	328.9 441.6	
B875634	Rock	<10	22	22	709.9	18.8	6.4	13.2	39.4	1.0	2.7	332.7	0.8	289.0	
B875635				35						2.8	3.7				
B875636	Rock	<10 <10	33 21	35 9	750.4 479.0	23.9 12.2	8.7 3.8	17.3 9.2	45.1 26.5	2.8	1.6	339.8 228.4	0.6 0.2	320.5 196.5	
B875637	Rock Rock	<10 <10	17	26	479.0 894.3	21.6	7.3	16.1	26.5 45.1	0.9	3.1	424.2	0.2	356.5	
B875638			21	20 11	650.3	17.0	7.3 5.5	10.1	36.0	1.7	2.4	302.5	0.5	266.4	
	Rock	<10													
B875639	Rock	<10	19	25	801.6	26.7	9.3	17.2	49.5	1.4	3.9	370.2	0.7	344.0	90

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		W	Zn	Zr	Ce	Dy	Er	Eu	Gd	Hf	Но	La	Lu	Nd	Pr
		30-4A-TR	30-4A-TR	30-4A-TR	REE-LB-MS										
Sample	Sample	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Description	Type	10	2	1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
B875640 Dup	Rock	<10	19	23	795.9	26.9	9.2	17.1	49.8	2.2	4.0	363.7	0.7	340.5	95.7
B875641	Rock	<10	23	25	713.8	16.4	4.8	12.1	36.9	1.3	2.2	340.8	0.3	285.5	82.4
B875642	Rock	<10	24	33	548.8	15.4	5.8	10.2	29.5	2.7	2.3	269.0	0.5	217.8	62.7
B875643	Rock	<10	16	26	562.3	18.9	7.5	10.9	32.9	1.7	3.0	272.4	0.6	223.6	64.8
B875644	Rock	<10	23	35	551.0	14.0	5.0	9.9	29.4	0.8	2.1	272.1	0.3	212.5	62.1
B875645	Rock	<10	17	36	792.5	23.4	8.2	15.3	44.8	0.4	3.4	387.8	0.6	318.5	91.6
B875646	Rock	<10	18	46	>1000	28.5	8.6	21.2	73.2	2.7	3.7	923.1	0.6	672.6	202.5
B875647	Rock	<10	29	41	870.7	19.5	6.6	14.6	42.8	6.4	2.8	432.6	0.5	337.3	99.2
B875648	Rock	<10	29	23	881.1	16.1	5.0	11.6	37.2	2.3	2.2	483.0	0.3	323.9	95.8
B875649	Rock	<10	22	41	>1000	26.8	8.6	16.7	59.2	1.1	3.8	711.7	0.6	521.8	152.7

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

			Sm	Tb	Tm	Yb	Y	Ta	Th	U
				REE-LB-MS				Ta-4A-LL-MS		U-4A-LL-MS
S	ample	Sample	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Descr	ription	Type	0.1	0.1	0.1	0.1	0.10	0.05	0.2	0.1
	75600	Rock	46.3	4.9	1.2	6.1	102.1	19.44	104.7	5.1
	75601	Rock	122.9	6.7	1.3	7.1	119.8	15.93	78.1	4.1
	75602	Rock								
	75603	Rock	105.2	5.6	1.2	5.9	111.5	0.11	133.5	5.9
	75604	Rock	109.0	5.6	0.7	3.8	69.4	0.41	215.9	9.3
	75605	Rock	5.8	0.5	0.2	1.8	17.5	1.95	11.0	4.8
	75606	Rock	39.4	3.5	0.6	3.5	61.8	9.32	88.0	2.2
	75607	Rock	32.4	2.4	0.3	2.1	41.6	3.42	56.3	1.6
	75608	Rock	50.5	5.0	1.0	5.4	91.2	2.39	181.0	4.3
	75609	Rock	57.0	6.0	1.4	7.3	120.0	18.69	362.9	5.5
	75610	Pulp	50.3	4.7	0.9	5.0	83.3	7.89	300.5	8.2
	75611	Rock	58.5	6.8	1.6	8.3	138.5	85.85	305.1	10.4
	75612	Rock	67.9	6.0	1.2	6.7	113.2	57.33	262.8	8.6
	75613	Rock	50.8	5.2	1.1	5.6	96.4	21.60	193.7	3.9
	75614	Rock	64.7	6.3	1.2	6.4	111.4	1.78	280.8	4.8
	75615	Rock	61.4	6.9	1.8	9.4	151.6	0.87	250.0	5.0
B8′	75616	Rock	45.6	4.5	1.2	6.7	95.8	7.58	105.6	2.6
	75617	Rock	69.5	4.9	1.1	6.3	88.7	5.86	129.8	2.6
B8′	75618	Rock	49.2	5.5	1.2	6.2	108.0	4.50	196.2	9.9
B8'	75619	Rock	44.0	4.2	1.1	6.2	89.4	8.71	113.2	2.8
B87562	•	Rock	43.2	4.2	1.1	6.0	86.2	8.14	115.3	2.7
B8'	75621	Rock	49.1	4.9	1.4	7.3	104.5	26.26	193.3	5.7
	75622	Rock	47.6	4.4	1.1	5.6	88.3	25.91	179.2	8.9
	75623	Rock	36.2	3.8	1.0	5.7	82.9	15.18	154.4	2.4
B8'	75624	Rock	113.0	5.8	1.2	6.7	93.6	4.42	129.4	2.9
B8'	75625	Rock	91.0	6.3	1.4	7.8	115.2	1.26	190.8	5.1
B8'	75626	Rock	81.2	7.0	1.4	7.2	124.5	0.53	192.1	10.5
B8'	75627	Rock	48.7	4.3	0.9	5.4	81.2	21.97	129.9	3.6
B8'	75628	Rock	57.6	3.9	0.8	4.0	70.3	4.12	87.8	2.4
B8'	75629	Rock	69.0	7.5	1.8	9.1	155.1	1.63	258.9	5.3
B8′	75630	Pulp	50.4	4.4	0.8	4.8	78.4	30.54	295.1	9.1
B8′	75631	Rock	57.3	4.5	1.1	5.9	90.3	5.60	141.6	1.8
B8'	75632	Rock	47.2	4.4	1.1	5.9	88.9	22.17	180.8	5.2
B8′	75633	Rock	69.6	6.4	1.3	6.9	122.9	28.92	151.9	10.4
B8′	75634	Rock	44.2	4.0	0.7	4.0	70.1	12.95	106.9	2.5
B8'	75635	Rock	51.2	5.0	1.1	5.6	93.5	30.87	216.2	14.0
B8'	75636	Rock	30.9	2.6	0.4	2.5	42.8	8.14	40.9	5.5
B8'	75637	Rock	53.7	4.5	0.9	4.8	80.1	29.53	172.9	11.2
B8'	75638	Rock	41.6	3.6	0.6	3.7	60.8	14.15	75.3	6.0
B8'	75639	Rock	55.3	5.6	1.1	6.4	103.2	15.68	148.2	8.5

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

			Sm	Tb	Tm	Yb	Y	Ta	Th	U
			REE-LB-MS	REE-LB-MS	REE-LB-MS	REE-LB-MS	REE-LB-MS	Ta-4A-LL-MS	Th-4A-LL-MS	U-4A-LL-MS
	Sample	Sample	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
	Description	Type	0.1	0.1	0.1	0.1	0.10	0.05	0.2	0.1
E	B875640 Dup	Rock	54.6	5.5	1.2	6.5	105.0	16.68	150.9	9.0
	B875641	Rock	43.0	3.4	0.5	3.0	55.9	10.00	90.0	3.1
	B875642	Rock	34.4	3.1	0.7	4.2	63.6	20.50	115.0	6.4
	B875643	Rock	37.1	3.8	0.9	5.0	77.9	30.54	155.9	12.6
	B875644	Rock	32.9	3.0	0.6	3.2	55.4	29.85	156.7	6.1
	B875645	Rock	51.2	4.8	1.0	5.4	92.0	16.11	161.9	4.8
	B875646	Rock	88.1	5.9	1.0	5.6	96.2	100.54	139.5	113.4
	B875647	Rock	50.1	4.1	0.8	4.5	75.4	59.10	116.5	73.5
	B875648	Rock	44.2	3.3	0.5	3.3	59.6	12.61	97.5	7.8
	B875649	Rock	70.7	5.5	1.0	5.6	97.8	55.66	171.1	45.2

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		Nb2O5	Al2O3	BaO	CaO	Cr2O3	Th	Fe2O3	K2O	LOI	MgO	MnO	Na2O	P2O5	SiO2
		Nb2O5-AD3-OR-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP	Th-4A-LL-ICP	WR-FS-ICP							
Sample	Sample	%	%	%	%	%	ppm	%	%	%	%	%	%	%	%
Description	Type	0.01	0.01	0.01	0.01	0.01	4	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
B875600	Rock	0.60													
B875600 Dup		0.65													
QCV1011-00247-0002-BLK		< 0.01													
STD-OKA-1 expected		0.53													
STD-OKA-1 result		0.53													
B875618	Rock	0.75													
B875618 Dup		0.70													
QCV1011-00247-0005-BLK		< 0.01													
STD-OKA-1 expected		0.53													
STD-OKA-1 result		0.53													
B875636	Rock	0.30													
B875636 Dup		0.30													
QCV1011-00247-0008-BLK		< 0.01													
QCV1011-00247-0009-BLK		< 0.01													
STD-OKA-1 expected		0.53													
STD-OKA-1 result		0.53													
B875600	Rock		0.21	< 0.01	34.23	< 0.01		5.17	0.03	38.24	15.65	0.49	0.04	5.10	0.43
B875600 Dup			0.21	0.05	34.13	< 0.01		5.12	0.04	38.23	15.88	0.49	0.03	5.05	0.42
QCV1011-00251-0002-BLK			< 0.01	< 0.01	< 0.01	< 0.01		< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
B875618	Rock		0.24	< 0.01	29.92	< 0.01		13.90	0.05	34.13	14.07	0.43	0.04	6.35	0.28
B875618 Dup			0.25	< 0.01	29.85	< 0.01		13.88	0.06	34.10	14.10	0.47	0.04	6.48	0.30
QCV1011-00251-0005-BLK			< 0.01	< 0.01	< 0.01	< 0.01		< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
B875636	Rock		0.09	< 0.01	32.88	< 0.01		3.67	0.02	40.02	18.41	0.59	0.02	4.02	0.60
B875636 Dup			0.09	< 0.01	31.37	< 0.01		3.44	0.02	40.02	19.32	0.58	0.03	3.95	0.65
QCV1011-00251-0008-BLK			< 0.01	< 0.01	< 0.01	< 0.01		< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
QCV1011-00251-0009-BLK			< 0.01	< 0.01	< 0.01	< 0.01		< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
STD-SY-4 expected			20.69		8.05			6.21	1.66	4.56	0.54	0.11	7.10	0.13	49.90
STD-SY-4 result			20.83	0.04	8.06	< 0.01		6.25	1.69	4.49	0.55	0.11	7.29	0.13	50.30

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

[TiO2	Total	Ag	Al	As	Ba	Bi	Ca	Cd	Co	Cr	Cu	Fe	K
			WR-FS-ICP	WR-FS-ICP	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR
	Sample	Sample	%	%	ppm	%	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%	%
1	Description	Type	0.01	0.01	0.5	0.01	5	10	2	0.01	0.5	1	1	1	0.01	0.01
	B875600	Rock			1.0	0.13	<5	191	<2	>10	< 0.5	4	14	38	4.39	0.04
	B875600 Dup				< 0.5	0.13	9	205	<2	>10	< 0.5	5	12	31	4.49	0.04
	QCV1011-00248-0002-BLK				<0.5	< 0.01	<5	<10	<2	< 0.01	< 0.5	<1	<1	<1	< 0.01	< 0.01
	STD-CDN-ME-6 expected				101.0									6130		
	STD-CDN-ME-6 result	D 1			98.5	0.14	_	5 0	•	10	0.7	10	10	5942	10	0.07
	B875618	Rock			0.8	0.14	<5 	53 51	<2	>10 >10	<0.5	19	10	24	>10	0.07
	B875618 Dup QCV1011-00248-0005-BLK				1.4	0.16 <0.01	<5 <5	<10	<2 <2	<0.01	<0.5 <0.5	17	10	24	>10 <0.01	0.06 <0.01
CTD	OREAS-45P-4A expected				< 0.5	<0.01	< 3	<10	<2	<0.01	<0.5	<1 122	<1 1103	<1 749	<0.01	<0.01
	TD-OREAS-45P-4A result											127	1209	784		
٦	B875636	Rock			0.6	0.06	<5	44	<2	>10	< 0.5	6	13	15	3.44	0.02
	B875636 Dup	ROCK			0.0	0.00	<5	42	<2	>10	<0.5	7	13	16	3.31	0.02
	QCV1011-00248-0008-BLK				<0.5	< 0.01	<5	<10	<2	< 0.01	<0.5	<1	<1	<1	< 0.01	< 0.01
	QCV1011-00248-0009-BLK				< 0.5	< 0.01	<5	<10	<2	< 0.01	<0.5	<1	<1	<1	< 0.01	< 0.01
	STD-CDN-ME-6 expected				101.0									6130		
	STD-CDN-ME-6 result				95.6									6141		
	B875600	Rock	0.10	99.69												
	B875600 Dup		0.10	99.77												
	QCV1011-00251-0002-BLK		< 0.01	< 0.01												
	B875618	Rock	0.30	99.71												
	B875618 Dup		0.31	99.84												
	QCV1011-00251-0005-BLK		< 0.01	< 0.01												
	B875636	Rock	0.03	100.36												
	B875636 Dup		0.03	99.49												
	QCV1011-00251-0008-BLK		< 0.01	< 0.01												
	QCV1011-00251-0009-BLK		< 0.01	< 0.01												
	STD-SY-4 expected		0.29													
Į	STD-SY-4 result		0.29	100.05												

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

			La	Mg	Mn	Mo	Na	Ni	P	Pb	Sb	Sc	Sr	Ti	Tl	V
			30-4A-TR													
	Sample	Sample	ppm	%	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm
	Description	Type	10	0.01	5	1	0.01	1	10	2	5	1	1	0.01	10	1
	B875600	Rock	565	9.97	4162	<1	0.03	5	>10000	146	<5	10	1945	0.06	<10	68
	B875600 Dup		618	>10	4352	<1	0.03	6	>10000	99	<5	8	2021	0.05	<10	64
	QCV1011-00248-0002-BLK		<10	< 0.01	<5	<1	< 0.01	<1	<10	<2	<5	<1	<1	< 0.01	<10	<1
S	TD-CDN-ME-6 expected															
	STD-CDN-ME-6 result				2045											
	B875618	Rock	437	9.97	3749	<1	0.03	12	>10000	104	<5	9	2917	0.15	<10	88
	B875618 Dup		410	9.77	4020	<1	0.03	7	>10000	115	<5	8	2621	0.18	<10	84
	QCV1011-00248-0005-BLK		<10	< 0.01	<5	<1	< 0.01	<1	<10	<2	<5	<1	<1	< 0.01	<10	<1
STD-C	OREAS-45P-4A expected						0.08	385	454							
ST	D-OREAS-45P-4A result				1444		0.08	376	464							
	B875636	Rock	331	>10	5296	<1	0.03	3	>10000	65	<5	9	4385	0.02	<10	69
	B875636 Dup		323	>10	5267	<1	0.02	4	>10000	60	<5	9	4270	0.02	<10	72
	QCV1011-00248-0008-BLK		<10	< 0.01	<5	<1	< 0.01	<1	<10	<2	<5	<1	<1	< 0.01	<10	<1
	QCV1011-00248-0009-BLK		<10	< 0.01	<5	<1	< 0.01	<1	<10	<2	<5	<1	<1	< 0.01	<10	<1
S	TD-CDN-ME-6 expected															
	STD-CDN-ME-6 result				2556											

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		W	Zn	Zr	Ce	Dy	Er	Eu	Gd	Hf	Но	La	Lu	Nd	Pr
		30-4A-TR	30-4A-TR	30-4A-TR	REE-LB-MS										
Sample	Sample	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Description	Type	10	2	1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
B875600	Rock	<10	29	21											
B875600 Dup		<10	26	22											
QCV1011-00248-0002-BLK		<10	<2	<1											
STD-CDN-ME-6 expected			5170												
STD-CDN-ME-6 result			5114												
B875618	Rock	<10	31	40											
B875618 Dup		<10	32	40											
QCV1011-00248-0005-BLK		<10	<2	<1											
STD-OREAS-45P-4A expected			142												
STD-OREAS-45P-4A result			151												
B875636	Rock	<10	21	9											
B875636 Dup		<10	25	8											
QCV1011-00248-0008-BLK		<10	<2	<1											
QCV1011-00248-0009-BLK		<10	<2	<1											
STD-CDN-ME-6 expected			5170												
STD-CDN-ME-6 result			5098												
B875600	Rock				813.6	25.4	9.4	15.1	43.4	2.3	3.9	450.2	0.8	298.1	89.4
B875600 Dup					809.7	24.0	9.1	15.3	44.2	2.2	3.8	452.4	0.7	296.4	88.4
QCV1011-00249-0002-BLK					< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
STD-CDN-ME-6 expected															
STD-CDN-ME-6 result					22.5	2.8	1.7	1.1	2.9	0.5	0.5	11.0	0.2	11.1	2.9
B875618	Rock				700.7	26.3	9.6	17.4	45.2	4.7	4.2	328.4	0.7	295.8	83.1
B875618 Dup					678.6	26.0	9.6	17.0	43.9	4.4	4.1	316.3	0.7	287.8	79.9
QCV1011-00249-0005-BLK					< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
STD-CDN-ME-6 expected															
STD-CDN-ME-6 result					24.0	3.0	1.7	1.1	3.0	0.7	0.5	12.4	0.2	12.2	3.0
B875636	Rock				479.0	12.2	3.8	9.2	26.5	1.1	1.6	228.4	0.2	196.5	56.4
B875636 Dup					486.7	11.8	3.7	9.1	26.2	1.0	1.7	229.4	0.2	198.4	56.5
QCV1011-00249-0008-BLK					< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
QCV1011-00249-0009-BLK					< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
STD-SY-4 expected					122.0	18.2	14.2	2.0	14.0	10.6	4.3	58.0	2.1	57.0	15.0
STD-SY-4 result					130.8	18.3	14.7	2.1	15.2	11.1	4.4	62.4	2.2	57.2	15.6

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		Sm	Tb	Tm	Yb	Y	Ta	Th	U
		REE-LB-MS	REE-LB-MS	REE-LB-MS	REE-LB-MS	REE-LB-MS	Ta-4A-LL-MS	Th-4A-LL-MS	U-4A-LL-MS
Sample	Sample	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Description	Type	0.1	0.1	0.1	0.1	0.10	0.05	0.2	0.1
B875600	Rock	46.3	4.9	1.2	6.1	102.1			
B875600 Dup		46.8	4.9	1.2	6.2	100.3			
QCV1011-00249-0002-BLK		< 0.1	< 0.1	< 0.1	< 0.1	< 0.10			
STD-CDN-ME-6 expected									
STD-CDN-ME-6 result		2.7	0.4	0.2	1.8	17.0			
B875618	Rock	49.2	5.5	1.2	6.2	108.0			
B875618 Dup		48.1	5.3	1.2	6.1	106.2			
QCV1011-00249-0005-BLK		< 0.1	< 0.1	< 0.1	< 0.1	< 0.10			
STD-CDN-ME-6 expected									
STD-CDN-ME-6 result		2.8	0.4	0.2	1.9	17.3			
B875636	Rock	30.9	2.6	0.4	2.5	42.8			
B875636 Dup		30.5	2.6	0.4	2.5	42.5			
QCV1011-00249-0008-BLK		< 0.1	< 0.1	< 0.1	< 0.1	< 0.10			
QCV1011-00249-0009-BLK		< 0.1	< 0.1	< 0.1	< 0.1	< 0.10			
STD-SY-4 expected		12.7	2.6	2.3	14.8	119.0			
STD-SY-4 result		12.9	2.8	2.5	15.0	125.3			
QCV1103-01166-0002-BLK							< 0.05	< 0.2	< 0.1
QCV1103-01166-0009-BLK							< 0.05	< 0.2	< 0.1

Certificate of Analysis

Inspectorate Exploration & Mining Services Ltd. #200 - 11620 Horseshoe Way

Date Received: 11/08/2010

Date Completed: 03/16/2011

Invoice:

Richmond, British Columbia V7A 4V5 Canada

Phone: 604-272-7818

Distribution List

Attention: Eric Titley

Suite 1020-800 West Pender St.

Vancouver, BC V6C 2V6

EMail: erictitley@hdimining.com

Attention: Jeremy Crozier

EMail: jeremycrozier@hdimining.com

Attention: T.Kodata

EMail: tkodata@hdimining.com

Submitted By: Aley Corporation

Suite 1020-800 West Pender St.

Vancouver, BC V6C 2V6

Attention: Eric Titley

Project: Aley 2010 Project

Purchase Order: **ALY 0002**Description: **Aley 2010-024**

Location	Samples	Type	Preparation Description
Vancouver, BC	3	Pulp	SP-PU/Pulp Handling, submitted pulps
Vancouver, BC	51	Rock	SP-RX-2K/Rock/Chips/Drill Core

Location	Method	Description
Location	Michiga	Description
Vancouver, BC	REE-LB-MS	REE Group by ICP-MS
Vancouver, BC	Nb2O5-AD3-OR-ICP	Niobium by multi-acid digestion, ICP
Vancouver, BC	Ta-4A-LL-MS	Tantalum, 4 Acid, ICP
Vancouver, BC	Th-4A-LL-MS	Thorium, 4 Acid, Low Level
Vancouver, BC	30-4A-TR	30 Element, 4 Acid, ICP, Trace Level
Vancouver, BC	U-4A-LL-MS	Uraium, 4 Acid, Low Level
Vancouver, BC	WR-FS-ICP	Whole Rock, Lithium Borate Fusion, ICP

Submittal Information

Uranium (U), Tantalum (Ta), and Thorium (Th) numbers shown have been revised with accurate detection limits.

The results of this assay were based solely upon the content of the sample submitted. Any decision to invest should be made only after the potential investment value of the claim or deposit has been determined based on the results of assays of multiple samples of geologic materials collected by the prospective investor or by a qualified person selected by him and based on an evaluation of all engineering data which is available concerning any proposed project. For our complete terms and conditions please see our website at www.inspectorate.com.

Вv

Mike Caron, Lab Manager

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		Nb2O5	Al2O3	BaO	CaO	Cr2O3	Fe2O3	K2O	LOI	MgO	MnO	Na2O	P2O5	SiO2	TiO2
		Nb2O5-AD3-OR-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP
Sample	Sample	%	%	%	%	%	%	%	%	%	%	%	%	%	%
Description	Type	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
B875108	Rock	0.29	0.11	< 0.01	34.06	< 0.01	4.93	0.03	39.45	18.13	0.68	0.03	3.82	0.14	0.07
B875109	Rock	0.27	0.22	0.01	34.07	< 0.01	4.97	0.02	37.77	17.84	0.61	0.02	5.15	0.63	0.05
B875110	Pulp	0.44	0.24	< 0.01	33.76	< 0.01	5.85	0.04	37.95	17.31	0.50	0.05	4.53	1.19	0.12
B875111	Rock	0.33	0.18	< 0.01	32.77	< 0.01	4.83	0.02	38.85	18.54	0.59	0.02	3.97	1.19	0.08
B875112	Rock	0.70	0.49	< 0.01	29.09	< 0.01	13.97	0.06	29.93	15.13	0.48	0.03	5.50	1.86	0.55
B875113	Rock	0.28	0.19	< 0.01	32.41	< 0.01	5.15	0.04	37.56	17.83	0.52	0.05	4.58	1.14	0.14
B875114	Rock	0.29	0.31	< 0.01	32.31	< 0.01	5.14	0.05	37.01	17.91	0.56	0.04	5.02	1.22	0.65
B875115	Rock	0.74	0.53	< 0.01	32.51	< 0.01	7.17	0.08	32.64	15.35	0.48	0.09	6.33	2.36	0.59
B875116	Rock	0.34	0.52	< 0.01	32.26	< 0.01	5.42	0.10	38.44	17.41	0.41	0.06	3.72	1.13	0.15
B875117	Rock	0.53	0.24	< 0.01	33.09	<0.01	5.29	0.02	37.65	17.51	0.45	0.04	4.80	0.35	0.09
B875118	Rock	0.46	0.27	< 0.01	31.81	< 0.01	6.88	0.05	37.04	17.05	0.55	0.03	3.76	0.92	0.18
B875119	Rock	0.66	0.42	< 0.01	29.73	< 0.01	11.45	0.07	32.79	16.76	0.36	0.03	4.29	1.73	0.18
B875120 Dup B875121	Rock Rock	0.65 0.44	0.43 0.15	<0.01 <0.01	29.39 30.59	<0.01 <0.01	10.61 5.17	0.07 0.03	33.35 37.79	17.48 17.83	0.35 0.46	0.03 0.03	4.08 4.01	1.75 1.28	0.17 0.03
B875122	Rock	0.44	0.13	<0.01	31.22	<0.01	4.58	0.03	39.13	18.64	0.46	0.03	3.76	0.65	0.03
B875123	Rock	0.40	0.11	< 0.01	32.66	< 0.01	4.38	0.02	39.13	18.21	0.47	0.03	3.76	0.63	0.02
B875124	Rock	0.49	0.17	0.01	31.13	< 0.01	9.00	0.00	35.47	16.21	0.56	0.04	3.76	1.42	0.03
B875125	Rock	0.39	0.20	< 0.01	33.11	< 0.01	4.39	0.07	39.73	17.87	0.50	0.04	3.93	0.19	0.03
B875126	Rock	0.40	0.13	< 0.01	33.07	< 0.01	5.18	0.04	39.73	18.01	0.09	0.04	3.93	1.04	0.03
B875127	Rock	0.36	0.25	< 0.01	31.28	< 0.01	5.51	0.06	39.65	18.55	0.46	0.05	2.62	0.98	0.09
B875128	Rock	0.39	0.16	< 0.01	31.46	< 0.01	6.07	0.03	38.12	18.82	0.62	0.04	3.77	0.62	0.14
B875129	Rock	0.33	0.17	< 0.01	32.62	< 0.01	5.25	0.04	39.43	17.97	0.67	0.04	3.78	0.10	0.03
B875130	Pulp	0.72	0.18	0.02	36.66	< 0.01	5.04	0.03	37.96	13.16	0.39	0.07	3.66	3.00	0.13
B875131	Rock	0.27	0.14	< 0.01	32.54	< 0.01	4.75	0.04	40.37	18.00	0.71	0.03	3.19	0.53	0.03
B875132	Rock	0.44	0.15	0.01	33.90	< 0.01	5.30	0.05	38.45	17.44	0.64	0.03	4.40	0.41	0.05
B875133	Rock	0.55	0.22	< 0.01	32.71	< 0.01	6.38	0.03	35.85	16.60	0.52	0.04	5.08	0.40	0.09
B875134	Rock	0.34	0.17	0.01	33.40	< 0.01	4.97	0.03	39.15	18.80	0.63	0.03	3.74	0.58	0.05
B875135	Rock	0.33	0.14	< 0.01	32.71	< 0.01	4.17	0.02	39.76	18.07	0.69	0.03	3.64	0.72	0.02
B875136	Rock	0.44	0.22	< 0.01	32.35	< 0.01	4.66	0.04	38.82	18.60	0.53	0.04	3.63	1.32	0.04
B875137	Rock	0.74	0.14	0.02	35.89	< 0.01	7.27	0.11	34.54	13.66	0.68	0.09	5.94	1.12	0.05
B875138	Rock	0.02	15.23	0.13	3.98	0.03	3.88	3.77	0.95	1.47	0.11	3.33	0.25	66.21	0.46
B875139	Rock	0.54	0.21	< 0.01	33.11	< 0.01	5.27	0.05	36.31	17.98	0.72	0.06	5.02	1.10	0.04
B875140 Dup	Rock	0.52	0.18	< 0.01	33.83	< 0.01	4.87	0.05	36.07	18.02	0.71	0.05	5.07	1.02	0.03
B875141	Rock	0.41	0.12	0.01	33.97	< 0.01	4.64	0.02	39.76	18.45	0.70	0.03	3.49	0.39	0.02
B875142	Rock	0.30	0.16	0.01	33.18	< 0.01	4.31	0.02	40.34	19.18	0.50	0.03	2.69	0.44	0.02
B875143	Rock	0.56	0.16	< 0.01	32.25	< 0.01	5.96	0.03	37.31	17.69	0.56	0.05	4.31	0.48	0.05
B875144	Rock	0.88	0.22	< 0.01	33.02	< 0.01	8.66	0.03	31.31	16.59	0.39	0.06	5.95	1.14	0.09
B875145	Rock	0.28	0.84	< 0.01	30.32	< 0.01	4.48	0.03	36.79	18.38	0.62	0.04	4.56	2.94	0.11
B875146	Rock	0.42	1.58	< 0.01	29.79	< 0.01	5.05	0.04	34.85	19.00	0.46	0.05	4.65	4.50	0.18
B875147	Rock	0.15	0.07	< 0.01	33.12	< 0.01	3.26	0.02	41.19	19.74	0.64	0.03	3.38	< 0.01	< 0.01

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		Nb2O5	A12O3	BaO	CaO	Cr2O3	Fe2O3	K2O	LOI	MgO	MnO	Na2O	P2O5	SiO2	TiO2
		Nb2O5-AD3-OR-ICP	WR-FS-ICP												
Sample	Sample	%	%	%	%	%	%	%	%	%	%	%	%	%	%
Description	Type	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
B875148	Rock	0.17	0.22	< 0.01	32.60	< 0.01	4.37	0.02	39.42	18.47	0.59	0.03	4.07	0.14	0.02
B875149	Rock	0.15	0.25	< 0.01	34.31	< 0.01	5.72	0.04	33.88	16.18	0.52	0.04	7.46	0.14	0.03
B875150	Pulp	0.53	1.84	0.34	47.56	< 0.01	4.19	0.72	32.03	2.39	0.90	0.43	2.50	6.23	0.24
B875151	Rock	0.13	0.13	< 0.01	32.51	< 0.01	4.85	0.04	38.39	17.99	0.65	0.03	4.22	< 0.01	0.01
B875152	Rock	0.17	0.55	< 0.01	32.61	< 0.01	4.69	0.14	36.90	17.83	0.52	0.04	5.50	0.82	0.07
B875153	Rock	0.16	0.65	< 0.01	31.52	< 0.01	7.05	0.09	35.25	18.34	0.36	0.04	4.19	2.28	0.10
B875154	Rock	0.15	0.17	< 0.01	33.78	< 0.01	4.57	0.02	39.19	18.74	0.61	0.03	3.70	0.21	0.03
B875155	Rock	0.28	0.22	< 0.01	33.54	< 0.01	4.49	0.03	36.23	17.56	0.46	0.05	5.46	2.42	0.07
B875156	Rock	0.14	0.40	< 0.01	32.77	< 0.01	3.78	0.04	37.25	18.08	0.30	0.06	4.74	2.94	0.15
B875157	Rock	0.15	5.37	0.05	22.62	0.01	7.38	1.16	24.38	14.50	0.38	1.02	2.54	19.87	0.94
B875158	Rock	0.12	0.15	< 0.01	30.46	< 0.01	4.41	0.02	39.39	17.98	0.65	0.04	3.25	0.38	0.01
B875159	Rock	0.07	0.19	< 0.01	34.48	< 0.01	3.99	0.04	36.21	16.48	0.41	0.08	6.36	0.37	0.06
B875160 Dup	Rock	0.06	0.21	< 0.01	34.59	< 0.01	4.78	0.06	35.74	15.76	0.44	0.07	6.27	0.41	0.06
B875161	Rock	0.03	0.25	< 0.01	33.70	< 0.01	4.48	0.05	33.06	16.00	0.24	0.06	9.62	0.20	0.11

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		Total	Ag	Al	As	Ba	Bi	Ca	Cd	Co	Cr	Cu	Fe	K	La
		WR-FS-ICP	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR
Sample	Sample	%	ppm	%	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%	%	ppm
Description	Type	0.01	0.5	0.01	5	10	2	0.01	0.5	1	1	1	0.01	0.01	10
B875108	Rock	101.46	1.4	0.06	7	60	<2	>10	< 0.5	5	11	24	3.32	0.01	277
B875109	Rock	101.37	0.9	0.12	23	93	<2	>10	< 0.5	5	14	16	3.19	< 0.01	791
B875110	Pulp	101.53	< 0.5	0.15	7	55	<2	>10	< 0.5	7	6	36	3.97	0.03	372
B875111	Rock	101.06	< 0.5	0.10	6	54	<2	>10	< 0.5	7	11	29	3.14	0.01	251
B875112	Rock	97.10	< 0.5	0.24	<5	54	<2	>10	< 0.5	17	11	62	9.57	0.04	347
B875113	Rock	99.61	<0.5	0.11	13	31	<2	>10	<0.5	8	10	21	3.42	0.02	429
B875114	Rock	100.22	<0.5	0.18	10	32	<2	>10	<0.5	9	11	19	3.36	0.03	365
B875115	Rock	98.13	<0.5	0.28	28	37	<2	>10	<0.5	17	15	83	4.74	0.05	441
B875116	Rock	99.65	<0.5	0.26	23	84	<2	>10	<0.5	8	9	31	3.52	0.08	588
B875117	Rock	99.54	<0.5	0.13	15	73	<2	>10	<0.5	9	10	45	3.54	< 0.01	382
B875118	Rock	98.56	<0.5	0.15	21	62	<2	>10	<0.5	19	12	222	4.52	0.04	300
B875119	Rock	97.81	<0.5	0.21	8	50 47	<2	>10	<0.5	20	14	46	7.63	0.05	312
B875120 Dup	Rock	97.71 97.40	< 0.5	0.23 0.09	11	35	<2	>10	<0.5	22 10	18	45 36	6.94	0.05 0.02	299
B875121 B875122	Rock	98.65	<0.5		8 10	38	<2 <2	>10	<0.5 <0.5	7	14 12	36	3.40 3.05		299 370
B875122 B875123	Rock Rock	100.63	<0.5 <0.5	0.06 0.07	8	38	<2	>10 >10	<0.5	8	12	30	3.05	<0.01	303
B875124	Rock	98.38	<0.5	0.07	13	36 86	<2	>10	<0.5	o 14	15	29	5.93	0.02	280
B875125	Rock	100.17	1.1	0.10	8	46	<2	>10	<0.5	5	10	29	2.99	0.04	371
B875126	Rock	100.17	<0.5	0.08	12	46	<2	>10	<0.5	8	13	35	3.34	0.02	395
B875127	Rock	99.50	<0.5	0.12	10	27	<2	>10	<0.5	14	13	28	3.66	0.03	346
B875128	Rock	99.86	<0.5	0.13	5	39	<2	>10	<0.5	9	12	29	3.95	0.03	280
B875129	Rock	100.10	<0.5	0.09	6	46	<2	>10	<0.5	5	10	25	3.39	0.02	284
B875130	Pulp	100.32	<0.5	0.10	16	202	<2	>10	<0.5	7	6	4	3.35	0.03	395
B875131	Rock	100.33	< 0.5	0.07	7	58	<2	>10	<0.5	7	11	24	3.12	0.03	217
B875132	Rock	100.84	<0.5	0.08	<5	104	<2	>10	< 0.5	7	10	31	3.47	0.03	251
B875133	Rock	97.92	<0.5	0.12	8	46	<2	>10	< 0.5	10	32	43	4.24	0.02	294
B875134	Rock	101.57	<0.5	0.09	6	87	<2	>10	<0.5	9	11	28	3.35	0.02	256
B875135	Rock	99.98	< 0.5	0.07	18	69	<2	>10	< 0.5	7	13	26	2.84	0.01	217
B875136	Rock	100.28	< 0.5	0.12	5	73	<2	>10	< 0.5	9	14	32	3.11	0.03	296
B875137	Rock	99.51	< 0.5	0.08	10	191	<2	>10	< 0.5	9	11	2	4.88	0.09	357
B875138	Rock	99.81	< 0.5	7.93	<5	1067	<2	2.83	< 0.5	9	127	2	2.54	3.05	37
B875139	Rock	99.87	< 0.5	0.08	32	50	<2	>10	< 0.5	6	11	39	3.57	0.03	301
B875140 Dup	Rock	99.93	< 0.5	0.09	34	47	<2	>10	< 0.5	6	12	32	3.33	0.02	277
B875141	Rock	101.61	< 0.5	0.06	15	122	<2	>10	< 0.5	5	10	29	3.13	< 0.01	285
B875142	Rock	100.90	2.1	0.09	10	109	<2	>10	< 0.5	7	15	23	2.85	0.02	255
B875143	Rock	98.85	0.5	0.09	<5	29	<2	>10	< 0.5	8	22	37	3.98	0.02	251
B875144	Rock	97.48	0.9	0.12	7	23	<2	>10	< 0.5	10	23	66	5.79	0.02	304
B875145	Rock	99.12	< 0.5	0.40	<5	32	<2	>10	< 0.5	7	16	21	3.01	0.02	230
B875146	Rock	100.15	0.7	0.80	6	33	<2	>10	< 0.5	9	26	33	3.30	0.02	240
B875147	Rock	101.46	< 0.5	0.03	<5	37	<2	>10	< 0.5	3	9	11	2.14	< 0.01	184

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		Total	Ag	Al	As	Ba	Bi	Ca	Cd	Co	Cr	Cu	Fe	K	La
		WR-FS-ICP	30-4A-TR												
Sample	Sample	%	ppm	%	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%	%	ppm
Description	Type	0.01	0.5	0.01	5	10	2	0.01	0.5	1	1	1	0.01	0.01	10
B875148	Rock	99.97	< 0.5	0.12	9	44	<2	>10	< 0.5	10	11	12	2.93	0.02	274
B875149	Rock	98.57	0.5	0.11	15	44	<2	>10	< 0.5	15	13	12	3.76	0.03	371
B875150	Pulp	99.36	0.7	0.96	28	2987	<2	>10	< 0.5	6	9	5	2.78	0.57	959
B875151	Rock	98.83	0.6	0.07	10	39	<2	>10	< 0.5	6	12	10	3.30	0.02	328
B875152	Rock	99.69	0.6	0.25	9	34	<2	>10	< 0.5	6	10	13	3.17	0.10	371
B875153	Rock	99.88	< 0.5	0.34	16	22	<2	>10	< 0.5	28	17	13	4.76	0.07	363
B875154	Rock	101.08	< 0.5	0.07	29	26	<2	>10	< 0.5	5	10	10	3.07	0.02	1181
B875155	Rock	100.54	0.5	0.12	21	52	<2	>10	< 0.5	7	12	18	3.02	0.02	739
B875156	Rock	100.51	< 0.5	0.21	8	24	<2	>10	< 0.5	7	13	11	2.50	0.03	325
B875157	Rock	100.22	0.7	2.83	<5	437	<2	>10	< 0.5	22	40	32	5.01	0.86	235
B875158	Rock	96.74	0.6	0.05	18	29	<2	>10	< 0.5	5	18	7	3.13	< 0.01	645
B875159	Rock	98.66	0.5	0.10	33	25	<2	>10	< 0.5	5	14	6	3.09	0.02	1220
B875160 Dup	Rock	98.40	< 0.5	0.11	39	25	<2	>10	< 0.5	7	12	5	3.10	0.02	1344
B875161	Rock	97.79	0.7	0.13	84	23	<2	>10	< 0.5	8	13	4	2.98	0.03	3160

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		Mg	Mn	Mo	Na	Ni	P	Pb	Sb	Sc	Sr	Ti	Tl	V	W
		30-4A-TR													
Sample	Sample	%	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm
Description	Type	0.01	5	1	0.01	1	10	2	5	1	1	0.01	10	1	10
B875108	Rock	>10	4930	3	0.05	<1	>10000	82	<5	6	3250	0.01	<10	15	<10
B875109	Rock	9.86	4404	2	0.04	<1	>10000	62	<5	8	2923	< 0.01	<10	16	<10
B875110	Pulp	>10	3812	4	0.07	<1	>10000	108	<5	7	2112	0.03	<10	40	<10
B875111	Rock	>10	4401	2	0.04	<1	>10000	78	<5	8	3253	0.02	<10	31	<10
B875112	Rock	8.68	3634	2	0.05	2	>10000	159	<5	6	2657	0.26	<10	293	<10
B875113	Rock	>10	3876	1	0.07	<1	>10000	70	<5	8	2729	0.04	<10	31	<10
B875114	Rock	9.71	4045	2	0.05	<1	>10000	68	<5	7	2901	0.05	<10	28	<10
B875115	Rock	8.96	3427	2	0.11	4	>10000	184	<5	8	2495	0.13	<10	110	<10
B875116	Rock	>10	2893	2	0.08	<1	>10000	84	<5	9	1362	0.03	<10	39	<10
B875117	Rock	>10	3303	2	0.06	<1	>10000	124	<5	7	1968	0.02	<10	31	<10
B875118	Rock	9.60	3943	2	0.05	2	>10000	111	<5	6	2264	0.05	<10	58	<10
B875119	Rock	9.36	2600	2	0.05	1	>10000	126	<5	6	1383	0.08	<10	142	<10
B875120 Dup	Rock	9.31	2528	2	0.06	<1	>10000	120	<5	5	1321	0.07	<10	147	<10
B875121	Rock	>10	3493	2	0.05	<1	>10000	110	<5	6	2255	0.01	<10	23	<10
B875122	Rock	>10	3576	5	0.06	<1	>10000	117	<5	7	2072	0.01	<10	22	<10
B875123	Rock	>10	3965	5	0.06	<1	>10000	100	<5	7	2378	0.01	<10	23	<10
B875124	Rock	9.50	3987	3	0.06	<1	>10000	96	<5	7	2537	0.05	<10	95	<10
B875125	Rock	>10	4920	2	0.05	<1	>10000	97	<5	5	3292	0.01	<10	15	<10
B875126	Rock	>10	3528	2	0.05	<1	>10000	98	<5	7	1867	0.03	<10	29	<10
B875127	Rock	>10	3368	4	0.06	<1	>10000	95	<5	6	1621	0.03	<10	42	<10
B875128	Rock	>10	4525	1	0.06	<1	>10000	98	<5	7	3003	0.04	<10	43	<10
B875129	Rock	>10	4866	3	0.05	<1	>10000	87	<5	6	2949	0.01	<10	16	<10
B875130	Pulp	7.98	2988	3	0.09	<1	>10000	18	<5	5	2255	0.04	<10	84	<10
B875131	Rock	>10	5111	2	0.05	<1	>10000	73	<5	6	3458	0.01	<10	16	<10
B875132	Rock	>10	4500	3	0.05	<1	>10000	104	<5	5	3467	0.02	<10	40	<10
B875133	Rock	9.81	3627	3	0.06	<1	>10000	143	<5	6	2879	0.03	<10	64	<10
B875134	Rock	>10	4446	4	0.05	<1	>10000	88	<5	6	3110	0.01	<10	21	<10
B875135	Rock	>10	4932	2	0.05	<1	>10000	86	<5	5	3517	< 0.01	<10	12	<10
B875136	Rock	>10	3753	3	0.05	<1	>10000	111	<5	5	2145	0.01	<10	22	<10
B875137	Rock	7.72	4890	2	0.10	<1	>10000	12	<5	3	4978	0.01	<10	52	<10
B875138	Rock	0.83	772	4	2.61	5	966	10	<5	6	740	0.26	<10	60	<10
B875139	Rock	9.72	5250	1	0.08	<1	>10000	128	<5	7	3901	0.02	<10	27	<10
B875140 Dup	Rock	>10	5190	2	0.07	<1	>10000	124	<5	7	4120	0.01	<10	24	<10
B875141	Rock	>10	4978	3	0.05	<1	>10000	108	<5	6	3615	< 0.01	<10	16	<10
B875142	Rock	>10	3483	2	0.05	<1	>10000	89	<5	5	1453	< 0.01	<10	24	<10
B875143	Rock	9.92	3905	1	0.06	2	>10000	142	<5	5	2711	0.02	<10	74	<10
B875144	Rock	8.90	2711	3	0.07	3	>10000	217	<5	6	1738	0.05	<10	135	<10
B875145	Rock	>10	4476	2	0.06	2	>10000	72	<5	7	3386	0.03	<10	41	<10
B875146	Rock	>10	3272	1	0.07	7	>10000	100	<5	7	2200	0.05	<10	35	<10
B875147	Rock	>10	4622	3	0.05	<1	>10000	40	<5	5	3605	< 0.01	<10	5	<10

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		Mg	Mn	Mo	Na	Ni	P	Pb	Sb	Sc	Sr	Ti	Tl	V	W
		30-4A-TR													
Sample	Sample	%	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm
Description	Type	0.01	5	1	0.01	1	10	2	5	1	1	0.01	10	1	10
B875148	Rock	>10	4230	2	0.06	<1	>10000	48	<5	5	2812	< 0.01	<10	11	<10
B875149	Rock	9.05	3588	4	0.06	<1	>10000	45	<5	6	2176	< 0.01	<10	16	<10
B875150	Pulp	1.29	6300	14	0.34	<1	>10000	64	<5	4	>10000	0.10	<10	178	<10
B875151	Rock	>10	4618	3	0.05	<1	>10000	40	<5	5	2710	< 0.01	<10	11	<10
B875152	Rock	>10	3744	2	0.05	1	>10000	54	<5	11	1993	0.02	<10	33	<10
B875153	Rock	>10	2536	3	0.06	<1	>10000	48	<5	10	1070	0.03	<10	40	<10
B875154	Rock	>10	4231	5	0.06	<1	>10000	46	<5	7	2161	< 0.01	<10	16	<10
B875155	Rock	9.77	3201	2	0.06	<1	>10000	71	<5	7	1728	0.02	<10	21	<10
B875156	Rock	>10	2147	2	0.08	<1	>10000	37	<5	6	710	0.05	<10	35	<10
B875157	Rock	8.05	2778	4	0.76	19	>10000	42	<5	16	1538	0.42	<10	122	<10
B875158	Rock	>10	4765	8	0.05	2	>10000	31	<5	6	2489	< 0.01	<10	10	<10
B875159	Rock	9.72	3083	2	0.08	<1	>10000	26	<5	7	1357	0.01	<10	20	<10
B875160 Dup	Rock	9.46	3013	2	0.07	<1	>10000	22	<5	8	1332	0.01	<10	20	<10
B875161	Rock	9.01	1774	3	0.07	1	>10000	22	<5	11	607	0.02	<10	25	<10

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

Sample Sample Sample Port P			Zn	Zr	Ce	Dy	Er	Eu	Gd	Hf	Но	La	Lu	Nd	Pr	· · ·
Description Type 2	Comple	Campla	30-4A-TR			REE-LB-MS										
B875108 Rock 23 20 S615 20.4 7.0 12.2 34.5 2.2 3.2 36.5 2.4 4.27.8 71.0	•			ррііі 1												ppm 0.1
B875100 Rock 20 20 > 10000 32.6 10.8 19.7 70.0 2.1 4.9 800.8 0.6 645.4 189.6 B875110 Pulp 24 29 760.9 32.4 8.2 16.3 45.2 28.3 3.7 49.7 0.6 318.8 92.5 8875112 Rock 24 38 745.7 22.5 7.7 16.2 34.4 2.2 33 20.2.6 0.4 237.3 66.0 38.5 38.5 38.5 38.5 38.5 39				20												
B875110 Pulp 24 29 760,9 23.4 8.2 16.3 44.5 2.8 3.7 429.7 0.6 318.8 92.5																
BR75112 Rock 24 38 745.7 22.5 7.7 16.2 43.5 7.4 3.4 394.5 0.4 329.1 93.5					760.9							429.7	0.6			
B875113 Rock 17 19 864.8 24.1 8.3 14.9 45.3 3.0 3.7 498.3 0.5 350.7 104.0	B875111	Rock	20	15	505.1	21.1	7.4	12.2	34.4	2.2	3.3	262.6	0.4	237.3	66.0	39.9
B875114 Rock 16	B875112	Rock	24	38	745.7	22.5	7.7	16.2	43.5	7.4	3.4	394.5	0.4	329.1	93.5	49.8
B875115 Rock 16 34 955.3 35.9 12.9 22.6 60.9 3.8 5.7 503.9 0.8 430.0 121.9 B875116 Rock 27 21 >1000 34.8 11.8 18.7 64.0 2.1 5.4 662.9 0.8 509.9 146.8 B875117 Rock 18 22 791.2 35.4 13.6 19.1 55.2 2.7 5.9 414.4 1.0 360.1 101.3 B875118 Rock 16 19 705.5 19.8 6.9 14.7 38.0 2.4 3.1 376.7 0.5 298.1 88.6 B875119 Rock 18 34 800.9 23.3 8.0 18.2 44.6 4.9 3.6 433.6 0.7 335.0 97.5 B875120 Dup Rock 17 33 758.5 22.8 8.3 17.5 43.0 4.0 3.5 413.8 0.7 335.0 97.5 B875120 Rock 14 18 648.0 26.6 7.3 13.8 38.5 2.4 3.3 342.7 0.5 258.4 81.2 B875122 Rock 14 18 716.3 19.8 7.0 13.5 39.1 1.9 3.0 396.9 0.6 300.2 88.5 B875122 Rock 15 17 653.8 18.2 6.3 13.1 35.9 1.9 2.8 355.6 0.5 274.9 79.3 B875124 Rock 28 32 589.8 19.6 6.9 13.8 37.0 3.0 31. 307.3 0.5 270.9 75.1 B875125 Rock 20 16 747.5 19.4 6.3 14.2 39.2 1.2 2.9 401.6 0.3 323.4 92.8 B875127 Rock 13 21 787.7 21.8 7.5 14.0 41.0 1.9 3.4 442.7 0.5 318.6 95.4 B875127 Rock 12 15 750.5 18.9 6.9 12.9 37.1 2.1 2.9 439.7 0.6 295.3 88.9 B875129 Rock 20 18 576.6 18.7 6.8 11.5 32.2 1.2 2.9 439.7 0.6 295.3 88.9 B875129 Rock 20 18 576.6 18.7 6.8 11.5 33.2 1.2 2.9 439.7 0.6 295.3 88.9 B875129 Rock 20 18 576.6 18.7 6.8 11.5 33.2 1.2 2.9 439.7 0.6 295.3 88.9 B875129 Rock 20 18 576.6 18.7 6.8 11.5 33.2 1.2 2.9 439.7 0.6 295.3 88.9 B875129 Rock 20 18 576.6 18.7 6.8 11.5 33.2 1.2 2.9 439.7 0.6 295.3 88.9 B875129 Rock 20 18 576.6 18.7 6.8 11.5 33.2 1.2 2.9 439.7 0.6 295.3 88.9 B875129 Rock 20 18 576.6 18.7 6.8 11.5 33.2 1.2 2.9 439.7 0.6 295.3 88.9 B875130 Pulp 13 28 806.1 25.2 9.1 16.4 46.4 1.8 4.0 425.8 0.8 339.9 98.8 B875130 Pulp 13 28 806.1 25.2 9.1 16.4 46.4 1.8 4.0 425.8 0.8 339.9 98.8 B875131 Rock 22 1.2 440.3 13.4 4.7 9.0 2.1 1.2 1.2 1.0 2.1 4.0 2.1 1.2 1.4 1.2 1.4 1.2 1.4 1.2 1.4 1.2 1.4 1.2 1.4 1.4 1.2 1.4 1.2 1.4 1.4 1.2 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4	B875113	Rock	17	19	864.8	24.1	8.3	14.9	45.3	3.0	3.7	498.3	0.5	350.7	104.0	50.9
B875116 Rock 18 22 7912 35.4 13.6 191 55.2 2.7 5.9 41.44 1.0 360.1 101.3 B875118 Rock 16 19 705.5 19.8 6.9 14.7 38.0 2.4 3.1 376.7 0.5 298.1 85.6 B875119 Rock 18 34 800.9 23.3 8.0 18.2 44.6 4.9 3.6 435.6 0.7 335.0 97.5 B875120 Dup Rock 17 33 758.5 22.8 8.3 17.5 43.0 40. 3.5 413.8 0.7 322.5 94.0 48.5 B875121 Rock 14 18 648.0 20.6 7.3 13.8 38.5 24. 3.3 342.7 0.5 285.4 81.2 B875123 Rock 14 18 716.3 19.8 7.0 13.5 39.1 1.9 3.0 396.9 0.6 300.2 88.5 B875123 Rock 15 17 655.8 18.2 6.3 13.1 35.9 1.9 3.0 396.9 0.6 300.2 88.5 B875124 Rock 28 32 589.8 19.6 6.9 13.8 37.0 3.0 31.1 307.3 0.5 270.9 75.1 B875125 Rock 13 21 75.5 14.0 41.0 1.9 3.0 31.1 307.3 0.5 270.9 75.1 B875127 Rock 13 21 787.7 21.8 7.5 14.0 41.0 1.9 3.4 442.7 0.5 318.6 95.4 B875128 Rock 13 21 787.7 21.8 7.5 14.0 41.0 1.9 3.4 442.7 0.5 318.6 95.4 B875128 Rock 18 21 577.8 17.5 18.9 6.9 12.9 37.1 2.1 2.9 40.16 0.3 323.4 92.8 B875127 Rock 12 15 750.5 18.9 6.9 12.9 37.1 2.1 2.9 45.7 0.6 295.3 88.9 B875128 Rock 18 21 577.8 17.5 61.1 12.2 32.3 2.5 2.7 305.7 0.3 250.0 71.5 B875128 Rock 20 18 576.6 18.7 6.8 11.5 33.2 1.5 2.7 305.7 0.3 250.0 71.5 B875129 Rock 20 18 576.6 18.7 6.8 11.5 33.2 2.5 2.7 305.7 0.3 250.0 71.5 B875129 Rock 20 18 576.6 18.7 6.8 11.5 33.2 2.5 2.7 305.7 0.3 250.0 71.5 B875121 Rock 22 12 440.3 13.4 4.7 9.6 26.1 11. 2.1 2.9 439.7 0.6 295.3 88.9 B875121 Rock 22 12 440.3 13.4 4.7 9.6 26.1 11. 2.1 2.1 2.1 4.0 2 198.2 55.1 B875121 Rock 22 12 440.3 13.4 4.7 9.6 26.1 11. 2.1 2.1 2.1 4.0 2 198.2 55.1 B875121 Rock 22 13 499.1 14.5 4.8 10.6 29.2 14.4 2.2 2.4 48.4 0.3 216.9 98.8 B875121 Rock 22 12 40.3 13.4 4.7 9.6 26.1 11. 2.1 2.2 14.0 0.2 198.2 55.1 B875121 Rock 22 13 499.1 14.5 4.8 10.6 29.2 14.4 2.2 2.4 48.4 0.3 216.9 98.8 B875121 Rock 22 12 40.3 13.4 4.7 9.6 26.1 11. 2.1 2.2 14.0 0.2 198.2 55.1 B875121 Rock 22 13 499.1 14.5 4.8 10.6 29.2 14.4 2.2 2.5 374.2 0.3 329.9 99.9 98.8 B875122 Rock 20 24 533.6 17.4 5.9 13.1 33.2 2.3 2.6 2.6 2.4 0.0 4.2 2.3 8.4 1.5 8.7 1.5 1.0 3.1 277.3 0.4 28.9 1.5 1.5 1.0 3.1 277.3 0.4 28.9 1.5 1.5 1.0 3.1 277.3 0.4 28.9 1.5 1.5 1	B875114	Rock	16	15	751.0	25.6	9.7	15.0	43.9	2.7	4.1	424.0	0.6	315.4	91.6	48.6
B875117 Rock 18 22 791.2 35.4 13.6 19.1 55.2 2.7 5.9 414.4 1.0 360.1 101.3	B875115	Rock	16	34	955.3	35.9	12.9	22.6	60.9	3.8	5.7	503.9	0.8	430.0	121.9	69.7
B875118 Rock 16 19 705.5 19.8 6.9 14.7 38.0 2.4 3.1 376.7 0.5 298.1 85.6 B875119 Rock 18 34 800.9 23.3 8.0 18.2 44.6 4.9 3.6 433.6 0.7 335.0 97.5 B875120 Dup Rock 17 33 758.5 22.8 8.3 17.5 43.0 4.0 3.5 413.8 0.7 322.5 94.0 B875121 Rock 14 18 648.0 20.6 7.3 13.8 38.5 2.4 3.3 342.7 0.5 285.4 81.2 B875121 Rock 14 18 716.3 19.8 7.0 13.5 13.8 38.5 2.4 3.3 342.7 0.5 285.4 81.2 B875123 Rock 15 17 635.8 18.2 6.3 13.1 35.9 1.9 2.8 335.6 0.5 274.9 79.3 B875124 Rock 28 32 589.8 19.6 6.9 13.8 37.0 3.0 3.1 307.3 0.5 270.9 75.1 B875126 Rock 20 16 747.5 19.4 6.3 14.2 39.2 1.2 2.9 401.6 0.3 323.4 92.8 B875127 Rock 13 21 787.7 21.8 7.5 14.0 41.0 1.9 3.4 442.7 0.5 318.6 95.4 B875128 Rock 18 21 577.8 17.5 61 12.2 32.3 2.5 2.7 305.7 0.3 250.0 71.5 B875129 Rock 20 18 576.6 18.7 6.8 11.5 33.2 1.2 2.9 49.0 6.9 25.3 88.9 B875129 Rock 20 18 576.6 18.7 6.8 11.5 33.2 1.2 2.9 49.0 6.9 25.3 88.9 B875129 Rock 20 18 576.6 18.7 6.8 11.5 33.2 1.2 2.9 49.7 0.6 295.3 88.9 B875129 Rock 20 18 576.6 18.7 6.8 11.5 33.2 1.2 2.9 49.7 0.6 295.3 88.9 B875131 Rock 22 12 440.3 13.4 47.9 9.6 26.1 1.1 2.1 2.1 2.1 2.1 40.2 198.2 55.1 B875131 Rock 20 2.4 533.6 17.4 5.9 9.1 16.4 46.4 1.8 40.4 25.8 0.8 339.9 9.8 8 B875131 Rock 20 1.8 576.6 18.7 6.8 11.5 33.2 1.2 3.0 300.3 0.4 245.3 70.3 B875132 Rock 20 2.4 533.6 17.4 5.9 9.1 16.4 46.4 1.8 40.4 25.8 0.8 339.9 9.8 8 B875131 Rock 22 12 440.3 13.4 47.9 9.6 26.1 1.1 2.1 2.1 2.1 4.0 2 198.2 55.1 B875132 Rock 20 2.4 533.6 17.4 5.9 9.1 1.4 40.4 40.0 3.3 311.8 0.4 28.9 7.8 0.7 B875132 Rock 20 2.4 533.6 17.4 5.9 9.1 1.1 44.0 4.0 3.3 311.8 0.4 28.9 7.8 0.7 B875134 Rock 19 15 540.5 19.7 6.9 12.1 351.1 0.0 3.1 277.3 0.4 238.9 68.0 B875131 Rock 20 2.4 533.6 17.4 5.9 9.1 1.1 44.0 4.0 3.3 311.8 0.4 28.9 7.8 0.7 B875134 Rock 19 15 540.5 19.7 6.9 12.1 351.1 0.0 3.1 277.3 0.4 238.9 68.0 B875138 Rock 16 26 626.2 21.6 7.0 17.1 44.0 4.0 3.3 311.8 0.4 28.9 7.8 0.7 B875149 Rock 20 2.4 533.6 17.4 5.9 9.1 1.5 4.6 3.7 0.6 33.8 0.2 2.66 7.6 B875139 Rock 26 27 613.2 17.9 5.2 14.2 39.7 4.9 2.7 314.3 0.3 29.9 3.8 9.9 9.9 8.8 B875141 Rock 18	B875116	Rock	27	21	>1000	34.8	11.8	18.7	64.0	2.1	5.4	662.9	0.8	509.9	146.8	73.8
B875119 Rock 18 34 8009 23.3 8.0 18.2 44.6 4.9 3.6 433.6 0.7 335.0 97.5	B875117	Rock	18	22	791.2	35.4	13.6	19.1	55.2	2.7	5.9	414.4	1.0	360.1	101.3	60.7
B875121 Rock	B875118	Rock	16	19	705.5	19.8	6.9	14.7	38.0	2.4	3.1	376.7	0.5	298.1	85.6	44.2
B87512 Rock	B875119	Rock	18	34	800.9	23.3	8.0	18.2	44.6	4.9	3.6	433.6	0.7	335.0	97.5	51.2
B875122 Rock 14 18 716.3 19.8 7.0 13.5 39.1 1.9 3.0 396.9 0.6 300.2 88.5 B875123 Rock 15 17 653.8 18.2 6.3 13.1 35.9 1.9 2.8 335.6 0.5 274.9 79.3 B875124 Rock 28 32 589.8 19.6 6.9 13.8 37.0 3.0 3.1 307.3 0.5 270.9 75.1 B875125 Rock 20 16 747.5 19.4 6.3 14.2 39.2 1.2 2.9 401.6 0.3 323.4 92.8 B875126 Rock 13 21 787.7 21.8 7.5 14.0 41.0 1.9 3.4 442.7 0.5 318.6 95.4 B875128 Rock 12 15 750.5 18.9 6.9 12.9 37.1 2.1 2.9 430.7 0.6 295.3 88.9 B875128 Rock 18 21 577.8 17.5 6.1 12.2 32.3 2.5 2.7 305.7 0.3 250.0 71.5 B875129 Rock 20 18 576.6 18.7 6.8 11.5 33.2 1.2 3.0 300.3 0.4 245.3 70.3 B875131 Rock 22 12 440.3 13.4 4.7 9.6 26.1 1.1 2.1 221.4 0.2 198.2 55.1 B875132 Rock 20 24 533.6 17.4 5.9 13.1 33.2 2.3 2.5 2.7 22.4 40.4 242.3 68.4 B875133 Rock 16 26 626.2 21.6 7.0 17.1 41.0 40 3.3 311.8 0.4 242.3 68.4 B875134 Rock 19 15 540.5 19.7 6.9 12.1 35.1 1.0 3.1 277.3 0.4 238.9 68.0 B875135 Rock 21 13 489.1 14.5 4.8 10.6 29.2 14.4 2.2 24.8 4.0 3 21.6 9.0 8875137 Rock 31 14.5 54.8 10.6 29.2 14.4 2.2 2.5 374.2 0.3 329.9 94.9 B875137 Rock 31 14.5 54.8 10.6 29.2 14.4 2.2 2.5 374.2 0.3 329.9 94.9 B875138 Rock 26 27 13 489.1 14.5 4.8 10.6 29.2 14.4 2.2 2.5 374.2 0.3 329.9 94.9 B875137 Rock 31 13 5 742.6 18.8 5.5 14.7 40.4 4.2 2.5 374.2 0.3 329.9 94.9 B875138 Rock 26 27 613.2 17.9 5.2 14.2 39.7 49 2.7 314.3 0.3 29.9 94.9 B875138 Rock 26 27 613.2 17.9 5.2 14.2 39.7 49 2.7 314.3 0.3 29.9 94.9 B875138 Rock 26 27 613.2 17.9 5.2 14.2 39.7 49 2.7 314.3 0.3 29.9 94.9 B875138 Rock 26 27 613.2 17.9 5.2 14.2 39.7 49 2.7 314.3 0.3 29.9 38.0 2 B875140 Dup Rock 21 21 603.2 17.8 5.1 14.1 36.0 3.1 2.4 296.2 0.3 270.5 78.3 B875141 Rock 18 16 578.2 16.1 5.3 11.4 33.0 1.3 2.4 314.4 0.3 247.4 70.4 B875141 Rock 18 16 578.2 16.1 5.3 11.4 33.0 1.3 2.4 296.2 0.3 270.5 78.3 B875141 Rock 18 16 578.2 16.1 5.3 11.4 33.0 1.3 2.4 314.4 0.3 247.4 70.4 B875141 Rock 18 16 578.2 16.1 5.3 11.4 33.0 1.3 2.4 314.4 0.3 247.4 70.4 255.1 70.9 B875141 Rock 18 16 578.2 16.1 5.7 14.2 35.2 3.3 2.5 276.4 0.4 255.1 70.2	B875120 Dup	Rock	17	33	758.5	22.8	8.3	17.5	43.0	4.0	3.5	413.8	0.7	322.5	94.0	
B875123 Rock 15 17 635.8 18.2 6.3 13.1 35.9 1.9 2.8 335.6 0.5 274.9 79.3 B875124 Rock 28 32 589.8 19.6 6.9 13.8 37.0 3.0 3.1 307.3 0.5 270.9 75.1 B875125 Rock 20 16 747.5 19.4 6.3 14.2 39.2 1.2 2.9 401.6 0.3 323.4 92.8 B875126 Rock 13 21 787.7 21.8 7.5 14.0 41.0 1.9 3.4 442.7 0.5 318.6 95.4 B875127 Rock 12 15 750.5 18.9 6.9 12.9 37.1 2.1 2.9 439.7 0.6 295.3 88.9 B875128 Rock 18 21 577.8 17.5 6.1 12.2 32.3 2.5 2.7 305.7 0.3 250.0 71.5 B875129 Rock 20 118 576.6 18.7 6.8 11.5 33.2 1.2 3.0 30.3 0.4 245.3 70.3 B875130 Pulp 13 28 806.1 25.2 9.1 16.4 46.4 1.8 4.0 425.8 0.8 339.9 98.8 B875132 Rock 22 12 440.3 13.4 4.7 9.6 26.1 1.1 2.1 2.1 2.1 4.0 2.1 198.2 55.1 B875132 Rock 20 24 533.6 17.4 5.9 13.1 33.2 2.3 2.6 264.0 0.4 242.3 68.4 B875133 Rock 16 26 626.2 21.6 7.0 17.1 41.0 4.0 3.3 311.8 0.4 289.7 80.7 B875135 Rock 19 15 540.5 19.7 6.9 12.1 35.1 1.0 3.1 277.3 0.4 238.9 68.0 B875137 Rock 19 15 540.5 19.7 6.9 12.1 35.1 1.0 3.1 277.3 0.4 238.9 68.0 B875137 Rock 31 35 742.6 18.8 5.5 14.7 40.4 4.2 2.5 374.2 0.3 329.9 94.9 B875137 Rock 31 35 742.6 18.8 5.5 14.7 40.4 4.2 2.5 374.2 0.3 329.9 94.9 B875137 Rock 31 35 742.6 18.8 5.5 14.7 40.4 4.2 2.5 374.2 0.3 329.9 94.9 B875138 Rock 21 21 21 603.2 17.9 5.2 14.2 39.7 4.9 2.7 314.3 0.3 299.3 80.2 B875139 Rock 21 21 603.2 17.9 5.2 14.2 39.7 4.9 2.7 314.3 0.3 299.3 80.2 B875139 Rock 21 21 603.2 17.9 5.2 14.2 39.7 4.9 2.7 314.3 0.3 299.3 80.2 B875139 Rock 26 27 613.2 17.9 5.2 14.2 39.7 4.9 2.7 314.3 0.3 299.3 80.2 B875139 Rock 26 27 613.2 17.9 5.2 14.2 39.7 4.9 2.7 314.3 0.3 299.3 80.2 B875140 Rock 18 16 578.2 16.1 53 11.4 33.0 1.3 2.4 314.4 0.3 247.4 70.4 B875141 Rock 18 16 578.2 16.1 53.3 11.4 33.0 1.3 2.4 314.4 0.3 247.4 70.4 B875141 Rock 18 16 578.2 16.1 57.7 16.6 5.7 14.2 35.2 3.3 2.5 2.74 30.4 0.7 247.7 70.9 B875147 Rock 18 16 578.2 16.1 57.7 16.6 5.7 14.2 35.2 3.3 2.5 2.74 40.4 0.4 25.5 17.7 0.9 25.1 70.2	B875121	Rock	14	18	648.0	20.6	7.3	13.8	38.5	2.4	3.3	342.7	0.5	285.4	81.2	42.7
B875124 Rock 28 32 589.8 19.6 6.9 13.8 37.0 3.0 3.1 307.3 0.5 270.9 75.1 B875125 Rock 20 16 747.5 19.4 6.3 14.2 39.2 1.2 2.9 401.6 0.3 323.4 92.8 B875126 Rock 13 21 787.7 21.8 7.5 14.0 41.0 1.9 3.4 442.7 0.5 318.6 92.8 B875127 Rock 12 15 750.5 18.9 6.9 12.9 37.1 2.1 2.9 439.7 0.6 295.3 88.9 B875128 Rock 18 21 577.8 17.5 6.1 12.2 32.3 2.5 2.7 305.7 0.3 250.0 71.5 B875129 Rock 20 18 576.6 18.7 6.8 11.5 33.2 1.2 3.0 300.3 0.4 245.3 70.3 B875131 Rock 22 12 440.3 13.4 4.7 9.6 26.1 1.1 2.1 2.1 22.1 4 0.2 198.2 55.1 B875132 Rock 20 24 533.6 17.4 5.9 13.1 33.2 2.3 2.6 26.0 26.0 0.4 242.3 68.4 B875133 Rock 16 26 626.2 21.6 7.0 17.1 41.0 4.0 3.3 311.8 0.4 289.7 80.7 B875134 Rock 19 15 540.5 19.7 6.9 12.1 35.1 1.0 3.1 277.3 0.4 238.9 68.0 B875137 Rock 21 13 489.1 14.5 4.8 10.6 29.2 1.4 2.2 248.4 0.3 216.9 60.8 B875137 Rock 31 14 652.6 19.1 6.7 12.8 37.4 0.9 2.9 345.6 0.5 283.0 80.9 B875138 Rock 21 13 14 652.6 19.1 6.7 12.8 37.4 0.9 2.9 345.6 0.5 283.0 80.9 B875137 Rock 31 14.6 652.6 19.1 6.7 12.8 37.4 0.9 2.9 345.6 0.5 283.0 80.9 B875138 Rock 21 21 21 603.2 17.8 5.5 14.7 40.4 4.2 2.5 374.2 0.3 329.9 94.9 B875138 Rock 26 27 613.2 17.9 5.2 14.2 39.7 4.9 2.7 314.3 0.3 29.9 94.9 B875138 Rock 26 27 613.2 17.9 5.2 14.2 39.7 4.9 2.7 314.4 0.3 216.9 60.8 B875138 Rock 21 21 21 603.2 17.8 5.1 14.1 36.0 3.1 2.4 296.2 0.3 229.5 78.3 B875140 Rock 18 16 578.2 16.1 5.3 11.4 33.0 1.3 2.4 314.4 0.3 247.7 70.9 B875140 Rock 18 16 578.2 16.1 5.3 11.4 33.0 1.3 2.4 314.4 0.3 247.7 70.4 B875141 Rock 18 16 578.2 16.1 5.3 11.4 33.0 1.3 2.4 314.4 0.3 247.7 70.4 B875147 Rock 18 16 578.2 16.1 5.3 11.4 33.0 1.3 2.4 314.4 0.3 247.7 70.4 B875147 Rock 12 14 21 557.7 16.6 5.7 14.2 35.2 3.3 3.3 309.4 0.7 247.7 70.9 B875147 Rock 12 14 21 557.7 16.6 5.7 14.2 35.2 3.3 3.3 30.9 4 0.7 247.7 70.9 B875147 Rock 18 16 578.2 16.1 5.3 11.4 33.0 1.3 2.4 314.4 0.3 247.4 70.4 B875147 Rock 18 16 578.2 16.1 5.3 11.4 33.0 1.3 2.4 314.4 0.3 247.4 70.4 B875147 Rock 18 16 578.2 16.1 5.3 11.4 33.0 1.3 2.4 314.4 0.3 247.4 70.4 B875147 Rock 18 16 578.2 16.1 5.3 11.4 33.0 1.3 2.	B875122	Rock	14	18	716.3	19.8	7.0	13.5	39.1	1.9	3.0	396.9	0.6	300.2	88.5	44.8
B875125 Rock 20 16 747.5 19.4 6.3 14.2 39.2 1.2 2.9 401.6 0.3 323.4 92.8 B875126 Rock 13 21 787.7 21.8 7.5 14.0 41.0 1.9 3.4 442.7 0.5 318.6 95.4 B875127 Rock 12 15 750.5 18.9 6.9 12.9 37.1 2.1 2.9 439.7 0.6 295.3 88.9 B875128 Rock 18 21 577.8 17.5 6.1 12.2 32.3 2.5 2.7 305.7 0.3 250.0 71.5 B875129 Rock 20 18 576.6 18.7 6.8 11.5 33.2 1.2 3.0 300.3 0.4 245.3 70.3 B875130 Pulp 13 28 806.1 25.2 9.1 16.4 46.4 1.8 4.0 425.8 0.8 339.9 98.8 B875131 Rock 22 12 440.3 13.4 4.7 9.6 26.1 1.1 2.1 221.4 0.2 198.2 55.1 B875132 Rock 16 26 626.2 21.6 7.0 17.1 41.0 4.0 3.3 311.8 0.4 289.7 80.7 B875134 Rock 19 15 540.5 19.7 6.9 12.1 35.1 1.0 3.1 277.3 0.4 238.9 68.0 B875135 Rock 22 13 489.1 14.5 4.8 10.6 29.2 1.4 2.2 248.4 0.3 216.9 60.8 B875135 Rock 31 31 46 652.6 19.1 6.7 12.8 37.4 0.9 2.9 345.6 0.5 283.0 80.9 B875137 Rock 31 31 35 742.6 18.8 5.5 14.7 40.4 4.2 2.5 374.2 0.3 329.9 94.9 B875138 Rock 56 8 62.6 3.2 1.9 1.5 4.6 3.7 0.6 33.1 2.4 296.2 0.3 299.3 80.2 B875131 Rock 21 21 40.3 21 21 60.3 2 17.8 5.1 14.1 36.0 3.1 2.4 296.2 0.3 299.3 80.2 B875131 Rock 18 16 578.2 16.1 5.3 11.4 36.0 3.1 2.4 296.2 0.3 299.3 80.2 B875131 Rock 18 16 578.2 16.1 5.3 11.4 36.0 3.1 2.4 296.2 0.3 299.3 80.2 B875131 Rock 18 16 578.2 16.1 5.3 11.4 36.0 3.1 2.4 396.4 0.4 255.1 70.9 B875143 Rock 18 16 578.2 16.1 5.3 11.4 33.0 1.3 2.4 314.4 0.3 247.4 70.4 B875141 Rock 18 16 578.2 16.1 5.3 11.4 33.0 1.3 2.4 314.4 0.3 247.4 70.4 B875143 Rock 18 16 578.2 16.1 5.3 11.4 33.0 1.3 2.4 314.4 0.3 247.7 70.9 B875143 Rock 14 21 557.7 16.6 5.7 14.2 35.2 3.3 2.5 276.4 0.4 255.1 70.2		Rock														
B875126 Rock 13 21 787.7 21.8 7.5 14.0 41.0 1.9 3.4 442.7 0.5 318.6 95.4 B875127 Rock 12 15 750.5 18.9 6.9 12.9 37.1 2.1 2.9 439.7 0.6 295.3 88.9 B875128 Rock 18 21 577.8 17.5 6.1 12.2 32.3 2.5 2.7 305.7 0.3 250.0 71.5 B875129 Rock 20 18 576.6 18.7 6.8 11.5 33.2 1.2 3.0 300.3 0.4 245.3 70.3 B875130 Pulp 13 28 806.1 25.2 9.1 16.4 46.4 1.8 4.0 425.8 0.8 339.9 98.8 B875131 Rock 20 24 533.6 17.4 5.9 13.1 33.2 2.3 2.6 264.0 0.4 242.3		Rock														42.9
B875127 Rock 12 15 750.5 18.9 6.9 12.9 37.1 2.1 2.9 439.7 0.6 295.3 88.9 B875128 Rock 18 21 577.8 17.5 6.1 12.2 32.3 2.5 2.7 305.7 0.3 250.0 71.5 B875129 Rock 20 18 576.6 18.7 6.8 11.5 33.2 1.2 3.0 300.3 0.4 245.3 70.3 B875130 Pulp 13 28 806.1 25.2 9.1 16.4 46.4 1.8 4.0 425.8 0.8 339.9 98.8 B875131 Rock 22 12 440.3 13.4 4.7 9.6 26.1 1.1 2.1 221.4 0.2 198.2 55.1 B875132 Rock 20 24 533.6 17.4 5.9 13.1 33.2 2.3 2.6 264.0 0.4 242.3 68.4 B875133 Rock 16 26 626.2 21.6 7.0 17.1 41.0 4.0 3.3 311.8 0.4 289.7 80.7 B875134 Rock 19 15 540.5 19.7 6.9 12.1 35.1 1.0 3.1 277.3 0.4 238.9 68.0 B875135 Rock 22 13 489.1 14.5 4.8 10.6 29.2 1.4 2.2 248.4 0.3 216.9 60.8 B875136 Rock 13 14 652.6 19.1 6.7 12.8 37.4 0.9 2.9 345.6 0.5 283.0 80.9 B875138 Rock 31 35 742.6 18.8 5.5 14.7 40.4 4.2 2.5 374.2 0.3 329.9 94.9 B875138 Rock 26 27 613.2 17.9 5.2 14.2 39.7 4.9 2.7 314.3 0.3 299.3 80.2 B875141 Rock 18 16 578.2 16.1 5.3 11.4 33.0 1.3 2.4 314.4 0.3 247.7 70.9 B875141 Rock 18 16 578.2 16.1 5.3 11.4 33.0 1.3 2.4 314.4 0.3 247.7 70.9 B875142 Rock 12 14 572.3 20.5 7.8 11.8 35.3 3.8 2.5 276.4 0.4 255.1 70.2																
B875128 Rock 18 21 577.8 17.5 6.1 12.2 32.3 2.5 2.7 305.7 0.3 250.0 71.5 B875129 Rock 20 18 576.6 18.7 6.8 11.5 33.2 1.2 3.0 300.3 0.4 245.3 70.3 B875130 Pulp 13 28 806.1 25.2 9.1 16.4 46.4 1.8 4.0 425.8 0.8 33.9 98.8 B875131 Rock 22 12 440.3 13.4 4.7 9.6 26.1 1.1 2.1 221.4 0.2 198.2 55.1 B875132 Rock 20 24 533.6 17.4 5.9 13.1 33.2 2.3 2.6 264.0 0.4 242.3 68.4 B875133 Rock 16 26 626.2 21.6 7.0 17.1 41.0 4.0 3.3 311.8 0.4 289.7 80.7 B875135 Rock 19 15 540.5 19.7 6.9 12.1 35.1 1.0 3.1 277.3 0.4 238.9 68.0 B875135 Rock 22 13 449.1 14.5 4.8 10.6 29.2 1.4 2.2 248.4 0.3 216.9 60.8 B875136 Rock 13 14 652.6 19.1 6.7 12.8 37.4 0.9 2.9 345.6 0.5 283.0 80.9 B875138 Rock 31 35 742.6 18.8 5.5 14.7 40.4 4.2 2.5 374.2 0.3 329.9 94.9 B875138 Rock 26 27 613.2 17.9 5.2 14.2 39.7 4.9 2.7 314.3 0.3 229.3 80.2 B875140 Dup Rock 21 21 21 603.2 17.8 5.1 14.1 36.0 3.1 2.4 296.2 0.3 270.5 78.3 B875141 Rock 18 16 578.2 16.1 5.3 11.4 35.3 1.8 35.3 1.8 33.3 30.4 0.7 247.7 70.9 B875142 Rock 12 14 572.3 20.5 7.8 11.8 35.3 1.8 33.3 30.4 0.7 247.7 70.9 B875142 Rock 12 14 21 557.7 16.6 5.7 14.2 35.2 3.3 2.5 276.4 0.4 255.1 70.2																
B875129 Rock 20 18 576.6 18.7 6.8 11.5 33.2 1.2 3.0 300.3 0.4 245.3 70.3 B875130 Pulp 13 28 806.1 25.2 9.1 16.4 46.4 1.8 4.0 425.8 0.8 339.9 98.8 B875131 Rock 22 12 440.3 13.4 4.7 9.6 26.1 1.1 2.1 221.4 0.2 198.2 55.1 B875132 Rock 20 24 533.6 17.4 5.9 13.1 33.2 2.3 2.6 264.0 0.4 242.3 68.4 B875133 Rock 16 26 626.2 21.6 7.0 17.1 41.0 4.0 3.3 311.8 0.4 289.7 80.7 B875134 Rock 19 15 540.5 19.7 6.9 12.1 35.1 1.0 3.1 277.3 0.4 238.9<																
B875130 Pulp 13 28 806.1 25.2 9.1 16.4 46.4 1.8 4.0 425.8 0.8 339.9 98.8 B875131 Rock 22 12 440.3 13.4 4.7 9.6 26.1 1.1 2.1 221.4 0.2 198.2 55.1 B875132 Rock 20 24 533.6 17.4 5.9 13.1 33.2 2.3 2.6 264.0 0.4 242.3 68.4 B875133 Rock 16 26 626.2 21.6 7.0 17.1 41.0 4.0 3.3 311.8 0.4 289.7 80.7 B875134 Rock 19 15 540.5 19.7 6.9 12.1 35.1 1.0 3.1 277.3 0.4 238.9 68.0 B875135 Rock 22 13 489.1 14.5 4.8 10.6 29.2 1.4 2.2 248.4 0.3 216.9 60.8 B875136 Rock 13 14 652.6 19.1 6.7 12.8 37.4 0.9 2.9 345.6 0.5 283.0 80.9 B875137 Rock 31 35 742.6 18.8 5.5 14.7 40.4 4.2 2.5 374.2 0.3 329.9 94.9 B875138 Rock 26 27 613.2 17.9 5.2 14.2 39.7 4.9 2.7 314.3 0.3 299.3 80.2 B875140 Dup Rock 21 21 603.2 17.8 5.1 14.1 36.0 3.1 2.4 296.2 0.3 270.5 78.3 B875141 Rock 18 16 578.2 16.1 5.3 11.4 33.0 1.3 2.4 296.2 0.3 247.4 70.4 B875142 Rock 14 21 557.7 16.6 5.7 14.2 35.2 3.3 2.5 276.4 0.4 255.1 70.2																
B875131 Rock 22 12 440.3 13.4 4.7 9.6 26.1 1.1 2.1 221.4 0.2 198.2 55.1 B875132 Rock 20 24 533.6 17.4 5.9 13.1 33.2 2.3 2.6 264.0 0.4 242.3 68.4 B875133 Rock 16 26 626.2 21.6 7.0 17.1 41.0 4.0 3.3 311.8 0.4 289.7 80.7 B875134 Rock 19 15 540.5 19.7 6.9 12.1 35.1 1.0 3.1 277.3 0.4 238.9 68.0 B875135 Rock 22 13 489.1 14.5 4.8 10.6 29.2 1.4 2.2 248.4 0.3 216.9 60.8 B875136 Rock 13 14 652.6 19.1 6.7 12.8 37.4 0.9 2.9 345.6 0.5 283.0 80.9 B875137 Rock 31 35 742.6 18.8 5.5 14.7 40.4 4.2 2.5 374.2 0.3 329.9 94.9 B875138 Rock 56 8 62.6 3.2 1.9 1.5 4.6 3.7 0.6 33.8 0.2 26.6 7.6 B875139 Rock 26 27 613.2 17.9 5.2 14.2 39.7 4.9 2.7 314.3 0.3 299.3 80.2 B875140 Dup Rock 21 21 603.2 17.8 5.1 14.1 36.0 3.1 2.4 296.2 0.3 270.5 78.3 B875141 Rock 18 16 578.2 16.1 5.3 11.4 33.0 1.3 2.4 296.2 0.3 274.7 70.4 B875142 Rock 12 14 572.3 20.5 7.8 11.8 35.3 1.8 3.3 30.9.4 0.7 247.7 70.9 B875143 Rock 14 21 557.7 16.6 5.7 14.2 35.2 3.3 2.5 276.4 0.4 255.1 70.2																
B875132 Rock 20 24 533.6 17.4 5.9 13.1 33.2 2.3 2.6 264.0 0.4 242.3 68.4 B875133 Rock 16 26 626.2 21.6 7.0 17.1 41.0 4.0 3.3 311.8 0.4 289.7 80.7 B875134 Rock 19 15 540.5 19.7 6.9 12.1 35.1 1.0 3.1 277.3 0.4 238.9 68.0 B875135 Rock 22 13 489.1 14.5 4.8 10.6 29.2 1.4 2.2 248.4 0.3 216.9 60.8 B875136 Rock 13 14 652.6 19.1 6.7 12.8 37.4 0.9 2.9 345.6 0.5 283.0 80.9 B875137 Rock 31 35 742.6 18.8 5.5 14.7 40.4 4.2 2.5 374.2 0.3 329.9																
B875133 Rock 16 26 626.2 21.6 7.0 17.1 41.0 4.0 3.3 311.8 0.4 289.7 80.7 B875134 Rock 19 15 540.5 19.7 6.9 12.1 35.1 1.0 3.1 277.3 0.4 238.9 68.0 B875135 Rock 22 13 489.1 14.5 4.8 10.6 29.2 1.4 2.2 248.4 0.3 216.9 60.8 B875136 Rock 13 14 652.6 19.1 6.7 12.8 37.4 0.9 2.9 345.6 0.5 283.0 80.9 B875137 Rock 31 35 742.6 18.8 5.5 14.7 40.4 4.2 2.5 374.2 0.3 329.9 94.9 B875138 Rock 56 8 62.6 3.2 1.9 1.5 4.6 3.7 0.6 33.8 0.2 26.6 7.6 B875139 Rock 26 27 613.2 17.9 5.2 14.2 39.7 4.9 2.7 314.3 0.3 299.3 80.2 B875140 Dup Rock 21 21 603.2 17.8 5.1 14.1 36.0 3.1 2.4 296.2 0.3 270.5 78.3 B875141 Rock 18 16 578.2 16.1 5.3 11.4 33.0 1.3 2.4 314.4 0.3 247.4 70.4 B875142 Rock 12 14 572.3 20.5 7.8 11.8 35.3 1.8 3.3 309.4 0.7 247.7 70.9 B875143 Rock 14 21 557.7 16.6 5.7 14.2 35.2 3.3 2.5 276.4 0.4 255.1 70.2																30.2
B875134 Rock 19 15 540.5 19.7 6.9 12.1 35.1 1.0 3.1 277.3 0.4 238.9 68.0 B875135 Rock 22 13 489.1 14.5 4.8 10.6 29.2 1.4 2.2 248.4 0.3 216.9 60.8 B875136 Rock 13 14 652.6 19.1 6.7 12.8 37.4 0.9 2.9 345.6 0.5 283.0 80.9 B875137 Rock 31 35 742.6 18.8 5.5 14.7 40.4 4.2 2.5 374.2 0.3 329.9 94.9 B875138 Rock 56 8 62.6 3.2 1.9 1.5 4.6 3.7 0.6 33.8 0.2 26.6 7.6 B875139 Rock 26 27 613.2 17.9 5.2 14.2 39.7 4.9 2.7 314.3 0.3 299.3																
B875135 Rock 22 13 489.1 14.5 4.8 10.6 29.2 1.4 2.2 248.4 0.3 216.9 60.8 B875136 Rock 13 14 652.6 19.1 6.7 12.8 37.4 0.9 2.9 345.6 0.5 283.0 80.9 B875137 Rock 31 35 742.6 18.8 5.5 14.7 40.4 4.2 2.5 374.2 0.3 329.9 94.9 B875138 Rock 56 8 62.6 3.2 1.9 1.5 4.6 3.7 0.6 33.8 0.2 26.6 7.6 B875139 Rock 26 27 613.2 17.9 5.2 14.2 39.7 4.9 2.7 314.3 0.3 299.3 80.2 B875140 Dup Rock 21 21 603.2 17.8 5.1 14.1 36.0 3.1 2.4 296.2 0.3 270.5 78.3 B875141 Rock 18 16 578.2 16.1 5.3 11.4 33.0 1.3 2.4 314.4 0.3 247.4 70.4 B875142 Rock 12 14 572.3 20.5 7.8 11.8 35.3 1.8 3.3 309.4 0.7 247.7 70.9 B875143 Rock 14 21 557.7 16.6 5.7 14.2 35.2 3.3 2.5 276.4 0.4 255.1 70.2																
B875136 Rock 13 14 652.6 19.1 6.7 12.8 37.4 0.9 2.9 345.6 0.5 283.0 80.9 B875137 Rock 31 35 742.6 18.8 5.5 14.7 40.4 4.2 2.5 374.2 0.3 329.9 94.9 B875138 Rock 56 8 62.6 3.2 1.9 1.5 4.6 3.7 0.6 33.8 0.2 26.6 7.6 B875139 Rock 26 27 613.2 17.9 5.2 14.2 39.7 4.9 2.7 314.3 0.3 299.3 80.2 B875140 Dup Rock 21 21 603.2 17.8 5.1 14.1 36.0 3.1 2.4 296.2 0.3 270.5 78.3 B875141 Rock 18 16 578.2 16.1 5.3 11.4 33.0 1.3 2.4 31.4 0.3																
B875137 Rock 31 35 742.6 18.8 5.5 14.7 40.4 4.2 2.5 374.2 0.3 329.9 94.9 B875138 Rock 56 8 62.6 3.2 1.9 1.5 4.6 3.7 0.6 33.8 0.2 26.6 7.6 B875139 Rock 26 27 613.2 17.9 5.2 14.2 39.7 4.9 2.7 314.3 0.3 299.3 80.2 B875140 Dup Rock 21 21 603.2 17.8 5.1 14.1 36.0 3.1 2.4 296.2 0.3 270.5 78.3 B875141 Rock 18 16 578.2 16.1 5.3 11.4 33.0 1.3 2.4 31.4 0.3 247.4 70.4 B875142 Rock 12 14 572.3 20.5 7.8 11.8 35.3 1.8 3.3 309.4 0.7 247.7																
B875138 Rock 56 8 62.6 3.2 1.9 1.5 4.6 3.7 0.6 33.8 0.2 26.6 7.6 B875139 Rock 26 27 613.2 17.9 5.2 14.2 39.7 4.9 2.7 314.3 0.3 299.3 80.2 B875140 Dup Rock 21 21 603.2 17.8 5.1 14.1 36.0 3.1 2.4 296.2 0.3 270.5 78.3 B875141 Rock 18 16 578.2 16.1 5.3 11.4 33.0 1.3 2.4 314.4 0.3 247.4 70.4 B875142 Rock 12 14 572.3 20.5 7.8 11.8 35.3 1.8 3.3 309.4 0.7 247.7 70.9 B875143 Rock 14 21 557.7 16.6 5.7 14.2 35.2 3.3 2.5 276.4 0.4 255.1 <td></td>																
B875139 Rock 26 27 613.2 17.9 5.2 14.2 39.7 4.9 2.7 314.3 0.3 299.3 80.2 B875140 Dup Rock 21 21 603.2 17.8 5.1 14.1 36.0 3.1 2.4 296.2 0.3 270.5 78.3 B875141 Rock 18 16 578.2 16.1 5.3 11.4 33.0 1.3 2.4 314.4 0.3 247.4 70.4 B875142 Rock 12 14 572.3 20.5 7.8 11.8 35.3 1.8 3.3 309.4 0.7 247.7 70.9 B875143 Rock 14 21 557.7 16.6 5.7 14.2 35.2 3.3 2.5 276.4 0.4 255.1 70.2																
B875140 Dup Rock 21 21 603.2 17.8 5.1 14.1 36.0 3.1 2.4 296.2 0.3 270.5 78.3 B875141 Rock 18 16 578.2 16.1 5.3 11.4 33.0 1.3 2.4 314.4 0.3 247.4 70.4 B875142 Rock 12 14 572.3 20.5 7.8 11.8 35.3 1.8 3.3 309.4 0.7 247.7 70.9 B875143 Rock 14 21 557.7 16.6 5.7 14.2 35.2 3.3 2.5 276.4 0.4 255.1 70.2	I															
B875141 Rock 18 16 578.2 16.1 5.3 11.4 33.0 1.3 2.4 314.4 0.3 247.4 70.4 B875142 Rock 12 14 572.3 20.5 7.8 11.8 35.3 1.8 3.3 309.4 0.7 247.7 70.9 B875143 Rock 14 21 557.7 16.6 5.7 14.2 35.2 3.3 2.5 276.4 0.4 255.1 70.2																
B875142 Rock 12 14 572.3 20.5 7.8 11.8 35.3 1.8 3.3 309.4 0.7 247.7 70.9 B875143 Rock 14 21 557.7 16.6 5.7 14.2 35.2 3.3 2.5 276.4 0.4 255.1 70.2																
B875143 Rock 14 21 557.7 16.6 5.7 14.2 35.2 3.3 2.5 276.4 0.4 255.1 70.2																
10013177 NOON 13 32 121.1 27.0 3.1 11.0 44.0 3.0 4.1 311.3 0.6 342.3 32.2																
B875145 Rock 18 18 500.9 18.2 6.3 12.3 33.2 1.8 2.8 242.9 0.4 234.7 64.3																
B875146 Rock 15 30 518.5 25.7 10.5 13.9 39.5 3.0 4.6 262.6 0.8 248.6 67.0																
B875147 Rock 18 10 366.0 13.3 5.2 8.2 23.5 0.4 2.2 185.3 0.3 164.7 46.8																

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		Zn	Zr	Ce	Dy	Er	Eu	Gd	Hf	Но	La	Lu	Nd	Pr	Sm
		30-4A-TR	30-4A-TR	REE-LB-MS											
Sample	Sample	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Description	Type	2	1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
B875148	Rock	16	18	550.0	17.6	6.1	10.8	31.2	0.6	2.7	290.0	0.3	241.3	68.3	36.4
B875149	Rock	16	42	732.6	37.9	15.6	15.9	51.3	0.5	6.6	398.0	1.0	318.3	88.9	53.9
B875150	Pulp	470	61	>1000	16.8	5.7	15.2	46.0	0.3	2.3	>1000	0.5	475.1	168.9	50.2
B875151	Rock	21	21	653.7	21.3	8.6	9.8	34.8	0.2	3.6	363.6	0.5	267.3	78.2	39.0
B875152	Rock	17	41	755.4	31.5	12.8	13.7	45.1	3.9	5.5	430.0	0.8	308.5	89.3	47.4
B875153	Rock	13	20	816.8	22.4	8.6	12.6	41.4	1.4	3.7	471.6	0.7	318.1	96.9	45.2
B875154	Rock	15	16	>1000	24.4	7.8	18.3	64.9	1.2	3.5	>1000	0.5	607.9	204.9	72.5
B875155	Rock	11	24	>1000	29.9	12.2	16.7	52.6	1.9	5.1	892.3	0.9	399.3	131.9	52.6
B875156	Rock	7	24	684.0	26.2	10.1	14.6	44.0	3.0	4.3	370.1	0.9	304.1	86.2	47.4
B875157	Rock	64	46	494.9	17.6	7.3	9.7	27.8	2.0	3.0	285.1	0.6	197.9	58.3	31.0
B875158	Rock	20	12	>1000	18.2	6.6	10.6	35.9	0.1	2.9	764.7	0.4	289.7	99.6	35.5
B875159	Rock	14	19	>1000	31.5	11.8	19.3	66.0	1.4	5.1	>1000	0.9	554.0	189.5	65.5
B875160 Dup	Rock	12	19	>1000	30.2	11.3	18.7	63.9	1.6	4.9	>1000	0.8	549.2	188.4	64.5
B875161	Rock	7	22	>1000	59.8	17.9	40.0	157.7	1.8	8.2	>1000	1.2	>1000	507.3	156.2

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

			Tb	Tm	Yb	Y	Ta	Th	U
			REE-LB-MS	REE-LB-MS	REE-LB-MS	REE-LB-MS	Ta-4A-LL-MS	Th-4A-LL-MS	U-4A-LL-MS
	Sample	Sample	ppm	ppm	ppm	ppm	ppm	ppm	ppm
	Description	Type	0.1	0.1	0.1	0.10	0.05	0.2	0.1
ı	B875108	Rock	3.8	0.8	3.9	76.1	7.10	109.2	1.6
	B875109	Rock	6.2	1.2	5.9	122.1	5.14	189.2	2.1
	B875110	Pulp	4.8	1.0	5.2	86.3	23.97	168.7	9.8
	B875111	Rock	3.9	0.8	4.0	79.1	12.03	101.9	2.1
	B875112	Rock	4.3	0.8	4.3	82.8	38.72	168.4	8.4
İ	B875113	Rock	4.7	1.0	4.9	90.3	15.35	123.1	4.6
l .	B875114	Rock	4.8	1.0	5.5	99.0	11.58	138.3	5.2
1	B875115	Rock	6.9	1.4	7.2	139.8	37.38	170.0	14.4
	B875116	Rock	6.6	1.4	7.0	132.6	25.49	191.0	7.2
	B875117	Rock	6.8	1.6	8.2	146.1	20.11	164.0	3.0
l .	B875118	Rock	3.8	0.8	4.4	75.3	28.10	129.5	6.8
	B875119	Rock	4.6	1.0	5.6	93.7	28.30	157.7	9.1
	B875120 Dup	Rock	4.5	1.0	5.5	91.3	26.50	161.3	8.7
	B875121	Rock	3.9	0.9	4.9	80.8	19.85	116.0	3.6
	B875122	Rock	3.8	0.8	4.8	76.4	8.99	99.4	2.3
l .	B875123	Rock	3.4	0.8	4.6	68.0	19.83	107.8	2.8
	B875124	Rock	3.8	0.8	4.3	76.1	1.86	127.1	4.3
	B875125	Rock	3.8	0.7	3.8	70.5	10.00	86.4	3.4
	B875126	Rock	4.3	0.9	5.0	82.2	13.38	119.7	4.4
	B875127	Rock	3.5	0.9	4.9	74.5	9.22	79.8	2.9
	B875128	Rock	3.4	0.7	3.6	66.9	21.02	113.0	3.6
	B875129	Rock	3.6	0.8	4.2	71.7	16.69	117.0	7.2
	B875130	Pulp	5.0	1.2	6.7	100.0	1.00	137.7	2.5
	B875131	Rock	2.6	0.5	2.8	50.5	5.80	62.4	3.4
	B875132	Rock	3.4	0.6	3.5	64.6	8.44	91.1	2.8
	B875133	Rock	4.3	0.7	4.1	81.4	15.32	105.1	5.2
	B875134	Rock	3.9	0.7	4.3	74.3	8.04	105.7	3.1
	B875135	Rock	2.9	0.5	3.2	53.2	11.59	65.1	4.3
	B875136	Rock	3.6	0.8	4.3	72.4	10.66	76.2	3.9
	B875137	Rock	3.8	0.5	3.2	60.3	0.52	45.5	2.5
	B875138	Rock	0.5	0.2	1.9	19.4	1.52	12.0	5.9
	B875139	Rock	3.8	0.6	3.6	62.3	16.57	92.6	11.3
	B875140 Dup	Rock	3.4	0.5	2.9	61.3	16.91	90.4	11.4
	B875141	Rock	3.2	0.5	3.2	57.4	15.64	103.6	6.9
	B875142	Rock	3.9	0.9	5.4	76.4	15.62	99.0	4.5
	B875143	Rock	3.4	0.6	3.8	62.0	14.10	123.8	2.9
	B875144	Rock	5.0	1.1	5.7	99.2	31.89	221.3	6.5
	B875145	Rock	3.5	0.7	4.0	67.3	9.76	99.5	5.7
	B875146	Rock	4.9	1.3	6.5	103.9	29.67	198.3	18.5
	B875147	Rock	2.6	0.6	3.0	54.9	2.52	65.1	2.4

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

			Tb	Tm	Yb	Y	Ta	Th	U	
			REE-LB-MS	REE-LB-MS	REE-LB-MS	REE-LB-MS	Ta-4A-LL-MS	Th-4A-LL-MS [U-4A-LL-MS	
	Sample	Sample	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
	Description	Type	0.1	0.1	0.1	0.10	0.05	0.2	0.1	
	B875148	Rock	3.4	0.7	3.7	66.1	46.33	113.2	64.2	
	B875149	Rock	6.8	1.8	8.8	152.4	72.73	363.1	106.0	
ı	B875150	Pulp	3.0	0.7	4.2	62.8	5.94	56.6	32.8	
	B875151	Rock	3.8	0.9	4.6	83.9	23.82	191.9	32.5	
	B875152	Rock	5.6	1.5	7.3	126.7	105.81	284.3	136.1	
	B875153	Rock	4.1	1.0	5.5	90.8	25.65	174.1	20.0	
	B875154	Rock	4.6	0.8	4.8	84.4	29.10	124.0	35.2	
	B875155	Rock	5.4	1.4	7.6	126.7	23.16	208.3	19.4	
	B875156	Rock	5.0	1.3	6.7	106.0	51.66	133.5	25.8	
	B875157	Rock	3.2	0.9	4.9	75.9	13.14	122.9	9.0	
	B875158	Rock	3.3	0.7	3.7	72.9	2.06	155.2	3.8	
	B875159	Rock	5.8	1.4	7.3	124.8	22.49	169.4	25.9	
	B875160 Dup	Rock	5.6	1.4	7.2	119.5	22.45	174.1	25.5	
	B875161	Rock	11.6	2.1	10.5	216.8	11.82	316.8	15.3	

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		Nb2O5	A12O3	BaO	CaO	Cr2O3	Fe2O3	K2O	LOI	MgO	MnO	Na2O	P2O5	SiO2	TiO2
		Nb2O5-AD3-OR-ICP	WR-FS-ICP												
Sample	Sample	%	%	%	%	%	%	%	%	%	%	%	%	%	%
Description	Type	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
B875108	Rock	0.29													
B875108 Dup		0.32													
QCV1011-00253-0002-BLK		< 0.01													
STD-OKA-1 expected		0.53													
STD-OKA-1 result		0.54													
B875126	Rock	0.40													
B875126 Dup		0.40													
QCV1011-00253-0005-BLK		< 0.01													
STD-OKA-1 expected		0.53													
STD-OKA-1 result		0.54													
B875144	Rock	0.88													
B875144 Dup		0.91													
QCV1011-00253-0008-BLK		< 0.01													
STD-OKA-1 expected		0.53													
STD-OKA-1 result		0.54													
QCV1011-00253-0010-BLK		< 0.01													
STD-OKA-1 expected		0.53													
STD-OKA-1 result		0.54													
B875108	Rock		0.11	< 0.01	34.06	< 0.01	4.93	0.03	39.45	18.13	0.68	0.03	3.82	0.14	0.07
B875108 Dup			0.12	< 0.01	33.64	< 0.01	4.96	0.03	39.59	18.14	0.67	0.03	3.79	0.15	0.07
QCV1011-00257-0002-BLK			< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
B875126	Rock		0.22	< 0.01	33.07	< 0.01	5.18	0.07	39.69	18.01	0.51	0.03	3.02	1.04	0.12
B875126 Dup			0.21	< 0.01	31.25	< 0.01	5.06	0.08	39.68	18.49	0.49	0.03	3.04	1.00	0.11
QCV1011-00257-0005-BLK			< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
B875144	Rock		0.22	< 0.01	33.02	< 0.01	8.66	0.03	31.31	16.59	0.39	0.06	5.95	1.14	0.09
B875144 Dup			0.22	< 0.01	34.31	< 0.01	8.66	0.04	31.43	15.13	0.38	0.06	6.01	1.10	0.09
QCV1011-00257-0008-BLK			< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
QCV1011-00257-0010-BLK			< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
STD-SY-4 expected			20.69		8.05		6.21	1.66	4.56	0.54	0.11	7.10	0.13	49.90	0.29
STD-SY-4 result			20.63	0.04	7.95	< 0.01	6.35	1.78	4.50	0.59	0.11	7.42	0.14	50.23	0.30

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		Total	Ag	Al	As	Ba	Bi	Ca	Cd	Co	Cr	Cu	Fe	K	La
		WR-FS-ICP	30-4A-TR												
Sample	Sample	%	ppm	%	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%	%	ppm
Description	Type	0.01	0.5	0.01	5	10	2	0.01	0.5	1	1	1	0.01	0.01	10
B875108	Rock		1.4	0.06	7	60	<2	>10	< 0.5	5	11	24	3.32	0.01	277
B875108 Dup			1.3	0.07	6	61	<2	>10	< 0.5	5	11	21	3.26	0.01	280
QCV1011-00254-0002-BLK			< 0.5	< 0.01	<5	<10	<2	< 0.01	< 0.5	<1	<1	<1	< 0.01	< 0.01	<10
STD-CDN-ME-6 expected			101.0									6130			
STD-CDN-ME-6 result			98.3									6145			
B875126	Rock		< 0.5	0.12	12	46	<2	>10	< 0.5	8	13	35	3.34	0.05	395
B875126 Dup			< 0.5	0.11	11	43	<2	>10	< 0.5	8	12	36	3.32	0.05	387
QCV1011-00254-0005-BLK			< 0.5	< 0.01	<5	<10	<2	< 0.01	< 0.5	<1	<1	<1	< 0.01	< 0.01	<10
B875144	Rock		0.9	0.12	7	23	<2	>10	< 0.5	10	23	66	5.79	0.02	304
B875144 Dup			< 0.5	0.11	8	26	<2	>10	< 0.5	10	19	67	5.67	0.02	292
QCV1011-00254-0008-BLK			< 0.5	< 0.01	<5	<10	<2	< 0.01	< 0.5	<1	<1	<1	< 0.01	< 0.01	<10
STD-CDN-ME-6 expected			101.0									6130			
STD-CDN-ME-6 result			99.2									6212			
QCV1011-00254-0010-BLK			< 0.5	< 0.01	<5	<10	<2	< 0.01	< 0.5	<1	<1	<1	< 0.01	< 0.01	<10
STD-CDN-ME-8 expected			61.7									1030			
STD-CDN-ME-8 result			62.2									957			
B875108	Rock	101.46													
B875108 Dup		101.20													
QCV1011-00257-0002-BLK		< 0.01													
B875126	Rock	100.97													
B875126 Dup		99.45													
QCV1011-00257-0005-BLK		< 0.01													
B875144	Rock	97.48													
B875144 Dup		97.44													
QCV1011-00257-0008-BLK		< 0.01													
QCV1011-00257-0010-BLK		< 0.01													
STD-SY-4 expected															
STD-SY-4 result		100.06													

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		Mg	Mn	Mo	Na	Ni	P	Pb	Sb	Sc	Sr	Ti	Tl	V	W
		30-4A-TR													
Sample	Sample	%	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm
Description	Type	0.01	5	1	0.01	1	10	2	5	1	1	0.01	10	1	10
B875108	Rock	>10	4930	3	0.05	<1	>10000	82	<5	6	3250	0.01	<10	15	<10
B875108 Dup		>10	4855	3	0.04	<1	>10000	76	<5	6	3206	0.01	<10	15	<10
QCV1011-00254-0002-BLK		< 0.01	<5	<1	< 0.01	<1	<10	<2	<5	<1	<1	< 0.01	<10	<1	<10
STD-CDN-ME-6 expected								10200							
STD-CDN-ME-6 result								9987							
B875126	Rock	>10	3528	2	0.05	<1	>10000	98	<5	7	1867	0.03	<10	29	<10
B875126 Dup		>10	3497	2	0.05	<1	>10000	99	<5	7	1842	0.03	<10	28	<10
QCV1011-00254-0005-BLK		< 0.01	<5	<1	< 0.01	<1	<10	<2	<5	<1	<1	< 0.01	<10	<1	<10
B875144	Rock	8.90	2711	3	0.07	3	>10000	217	<5	6	1738	0.05	<10	135	<10
B875144 Dup		8.76	2667	2	0.07	<1	>10000	225	<5	6	1712	0.05	<10	136	<10
QCV1011-00254-0008-BLK		< 0.01	<5	<1	< 0.01	<1	<10	<2	<5	<1	<1	< 0.01	<10	<1	<10
QCV1011-00254-0010-BLK		< 0.01	<5	<1	< 0.01	<1	<10	<2	<5	<1	<1	< 0.01	<10	<1	<10

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		Zn	Zr	Ce	Dy	Er	Eu	Gd	Hf	Но	La	Lu	Nd	Pr	Sm
		30-4A-TR	30-4A-TR	REE-LB-MS											
Sample	Sample	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Description	Type	2	1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
B875108	Rock	23	20												
B875108 Dup		20	19												
QCV1011-00254-0002-BLK		<2	<1												
STD-CDN-ME-6 expected		5170													
STD-CDN-ME-6 result		5356													
B875126	Rock	13	21												
B875126 Dup		15	21												
QCV1011-00254-0005-BLK		<2	<1												
B875144	Rock	13	52												
B875144 Dup		13	52												
QCV1011-00254-0008-BLK		<2	<1												
STD-CDN-ME-6 expected		5170													
STD-CDN-ME-6 result		5317													
QCV1011-00254-0010-BLK		<2	<1												
B875108	Rock			561.5	20.4	7.0	12.2	34.5	2.2	3.2	305.2	0.4	247.8	71.0	39.2
B875108 Dup				578.3	20.5	7.1	12.6	35.3	2.2	3.2	314.7	0.4	255.6	72.5	39.6
QCV1011-00255-0002-BLK				< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
STD-CDN-ME-6 expected															
STD-CDN-ME-6 result				20.2	3.0	1.9	1.1	2.9	1.6	0.6	11.2	0.2	11.1	2.8	2.6
B875126	Rock			787.7	21.8	7.5	14.0	41.0	1.9	3.4	442.7	0.5	318.6	95.4	48.8
B875126 Dup				771.5	21.5	7.5	14.0	41.6	2.0	3.4	435.5	0.5	325.7	94.1	46.8
QCV1011-00255-0005-BLK				< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
STD-CDN-ME-6 expected															
STD-CDN-ME-6 result				20.2	3.1	2.0	1.1	2.7	2.0	0.6	11.1	0.2	11.3	2.6	2.5
B875144	Rock			727.1	24.6	9.1	17.8	44.6	5.0	4.1	377.5	0.8	342.5	92.2	54.4
B875144 Dup				773.1	25.9	9.5	19.2	47.9	6.0	4.1	396.8	0.7	350.3	97.8	55.5
QCV1011-00255-0008-BLK				< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
QCV1011-00255-0010-BLK				< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
STD-SY-4 expected				122.0	18.2	14.2	2.0	14.0	10.6	4.3		2.1	57.0	15.0	12.7
STD-SY-4 result				130.6	19.2	15.3	2.2	14.7	11.5	4.7		2.1	58.4	16.4	12.9

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		m	T	¥ 71	**		Tri .	**
		Tb	Tm	Yb	Y	Ta Ta-4A-LL-MS	Th	U
C1-	C1-		REE-LB-MS					U-4A-LL-MS
Sample	Sample	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Description	Туре	0.1	0.1	0.1	0.10	0.05	0.2	0.1
B875108	Rock	3.8	0.8	3.9	76.1			
B875108 Dup		3.8	0.7	3.8	77.0			
QCV1011-00255-0002-BLK		< 0.1	< 0.1	< 0.1	< 0.10			
STD-CDN-ME-6 expected		2.4	0.2		10.0			
STD-CDN-ME-6 result	n 1	0.4	0.2	1.9	18.0			
B875126	Rock	4.3	0.9	5.0	82.2			
B875126 Dup		4.1	0.9	4.9	81.8			
QCV1011-00255-0005-BLK		< 0.1	< 0.1	< 0.1	< 0.10			
STD-CDN-ME-6 expected		0.4	0.2	1.0	10.7			
STD-CDN-ME-6 result	D 1	0.4	0.2	1.8	18.7			
B875144	Rock	5.0	1.1	5.7	99.2			
B875144 Dup QCV1011-00255-0008-BLK		5.2	1.1	6.1	101.9			
		<0.1	<0.1	<0.1	<0.10			
QCV1011-00255-0010-BLK		<0.1	<0.1	<0.1	< 0.10			
STD-SY-4 expected		2.6	2.3	14.8	119.0			
STD-SY-4 result	Rock	2.7	2.4	14.7	123.8	7.10	109.2	1.6
B875108	ROCK					7.10	109.2	1.6
B875108 Dup QCV1103-01173-0002-BLK						6.80 <0.05	<0.2	<0.1
_	D1-							
B875126	Rock					13.38	119.7	4.4
B875126 Dup QCV1103-01173-0005-BLK						13.68 <0.05	124.3	4.4
-	D 1						<0.2	<0.1
B875144 B875144 Dup	Rock					31.89 33.66	221.3 230.1	6.5 6.9
QCV1103-01173-0008-BLK								
QCV1103-01173-0008-BLK QCV1103-01173-0010-BLK						< 0.05	<0.2	<0.1
QCV1103-011/3-0010-BLK						< 0.05	< 0.2	< 0.1

Certificate of Analysis

Inspectorate Exploration & Mining Services Ltd. #200 - 11620 Horseshoe Way

Date Received: 11/09/2010

Date Completed: 03/16/2011

Invoice:

Richmond, British Columbia V7A 4V5 Canada

Phone: 604-272-7818

Distribution List

Attention: Eric Titley

Suite 1020-800 West Pender St.

Vancouver, BC V6C 2V6

EMail: erictitley@hdimining.com

Attention: Jeremy Crozier

EMail: jeremycrozier@hdimining.com

Attention: T.Kodata

EMail: tkodata@hdimining.com

Submitted By: Aley Corporation

Suite 1020-800 West Pender St.

Vancouver, BC V6C 2V6

Attention: Eric Titley

Project: Aley 2010 Project

Purchase Order: **ALY 0002**Description: **Aley 2010-013**

Location	Samples	Type	Preparation Description
Vancouver, BC	4	Pulp	SP-PU/Pulp Handling, submitted pulps
Vancouver, BC	60	Rock	SP-RX-2K/Rock/Chips/Drill Core

Location	Method	Description
Vancouver, BC	REE-LB-MS	REE Group by ICP-MS
Vancouver, BC	Nb2O5-AD3-OR-ICP	Niobium by multi-acid digestion, ICP
Vancouver, BC	Ta-4A-LL-MS	Tantalum, 4 Acid, ICP
Vancouver, BC	Th-4A-LL-MS	Thorium, 4 Acid, Low Level
Vancouver, BC	30-4A-TR	30 Element, 4 Acid, ICP, Trace Level
Vancouver, BC	U-4A-LL-MS	Uraium, 4 Acid, Low Level
Vancouver, BC	WR-FS-ICP	Whole Rock, Lithium Borate Fusion, ICP

Submittal Information

Uranium (U), Tantalum (Ta), and Thorium (Th) numbers shown have been revised with accurate detection limits.

The results of this assay were based solely upon the content of the sample submitted. Any decision to invest should be made only after the potential investment value of the claim or deposit has been determined based on the results of assays of multiple samples of geologic materials collected by the prospective investor or by a qualified person selected by him and based on an evaluation of all engineering data which is available concerning any proposed project. For our complete terms and conditions please see our website at www.inspectorate.com.

By

Mike Caron, Lab Manager

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		Nb2O5	Al2O3	BaO	CaO	Cr2O3	Fe2O3	K2O	LOI	MgO	MnO	Na2O	P2O5	SiO2	TiO2
		Nb2O5-AD3-OR-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP
Sample	Sample	%	%	%	%	%	%	%	%	%	%	%	%	%	%
Description	Type	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
B875650	Pulp	0.78	0.56	0.02	28.39	< 0.01	16.68	0.09	31.05	13.98	0.49	0.05	5.72	2.05	0.57
B875651	Rock	0.43	0.19	< 0.01	31.01	< 0.01	4.39	0.02	39.72	20.36	0.38	0.02	3.93	0.03	0.03
B875652	Rock	0.54	0.18	< 0.01	30.77	< 0.01	4.99	< 0.01	38.65	19.34	0.36	0.03	4.51	0.04	0.03
B875653	Rock	0.35	0.15	< 0.01	30.58	< 0.01	5.21	0.01	39.34	19.15	0.46	0.03	3.25	0.05	0.04
B875654	Rock	1.17	0.23	0.03	27.85	< 0.01	30.06	0.06	22.04	8.38	0.51	0.07	6.23	2.52	0.29
B875655	Rock	0.43	0.17	< 0.01	30.74	< 0.01	5.88	< 0.01	38.80	19.73	0.32	0.02	3.35	0.05	0.05
B875656	Rock	0.59	0.17	< 0.01	33.26	< 0.01	7.69	0.02	30.95	15.61	0.35	0.03	9.04	0.04	0.14
B875657	Rock	0.02	0.06	< 0.01	32.45	< 0.01	5.41	< 0.01	36.24	17.34	0.55	0.03	6.66	< 0.01	0.01
B875658	Rock	0.01	0.09	< 0.01	29.25	< 0.01	6.22	0.01	40.92	18.92	0.72	0.02	3.65	< 0.01	< 0.01
B875659	Rock	0.17	0.10	< 0.01	30.08	< 0.01	6.13	0.01	40.23	18.71	0.71	0.03	3.63	< 0.01	0.01
B875660 Dup	Rock	0.18	0.12	< 0.01	30.62	< 0.01	6.18	0.01	41.05	17.91	0.65 0.37	0.03	3.73	< 0.01	0.03 0.09
B875661	Rock	0.54	0.32	< 0.01	31.92	< 0.01	5.04	0.01	36.35	17.87		0.03	6.67	0.18	
B875662 B875663	Rock Rock	0.34 0.74	0.12 0.25	<0.01 <0.01	33.08 31.97	<0.01 <0.01	5.38 7.10	<0.01 0.01	38.09 33.49	18.09 17.50	0.65 0.36	0.03 0.03	5.33 6.64	< 0.01	0.05 0.23
B875664	Rock	0.74	0.23	<0.01	33.37	<0.01	6.04	0.01	36.25	18.36	0.55	0.03		0.15 0.25	0.23
B875665	Rock	0.39	0.20	<0.01	32.88	<0.01	4.78	0.01	38.89	18.36	0.55	0.03	6.14 4.05	0.23	0.06
B875666	Rock	0.46	0.13	< 0.01	32.88	< 0.01	5.46	0.03	37.84	18.26	0.77	0.03	5.22	0.72	0.02
B875667	Rock	0.69	0.17	< 0.01	31.70	< 0.01	6.15	0.04	34.57	17.04	0.53	0.03	6.67	1.25	0.03
B875668	Rock	1.43	0.29	0.01	25.06	< 0.01	33.32	0.07	15.05	9.78	0.67	0.04	7.67	4.81	0.07
B875669	Rock	0.46	0.33	< 0.01	31.98	< 0.01	4.61	0.03	38.71	18.61	0.42	0.03	4.76	0.43	0.91
B875670	Pulp	0.79	0.20	0.01	28.53	< 0.01	16.88	0.03	30.97	14.51	0.03	0.03	5.78	2.12	0.03
B875671	Rock	0.40	0.37	< 0.02	32.03	< 0.01	5.09	0.11	39.13	17.83	0.49	0.03	4.41	0.34	0.06
B875672	Rock	0.36	0.20	< 0.01	32.08	< 0.01	5.50	0.02	38.22	17.79	0.62	0.03	4.62	1.00	0.07
B875673	Rock	0.22	0.13	< 0.01	32.54	< 0.01	3.88	0.02	39.91	19.18	0.02	0.03	4.15	0.45	0.07
B875674	Rock	0.59	0.82	0.04	24.90	< 0.01	29.45	0.60	20.01	11.06	0.50	0.06	8.22	2.93	0.55
B875675	Rock	0.47	0.25	< 0.01	31.75	< 0.01	5.70	0.05	36.98	17.26	0.53	0.03	5.44	1.26	0.07
B875676	Rock	0.49	0.36	< 0.01	30.88	< 0.01	5.43	0.02	36.79	18.07	0.54	0.03	5.16	1.17	0.09
B875677	Rock	0.33	0.42	< 0.01	33.47	< 0.01	5.20	0.02	35.42	17.52	0.58	0.04	7.31	1.31	0.07
B875678	Rock	0.36	0.17	< 0.01	33.95	< 0.01	4.87	< 0.01	37.38	18.82	0.59	0.03	5.20	0.38	0.03
B875679	Rock	0.33	0.36	< 0.01	34.24	< 0.01	6.67	0.06	33.37	16.55	0.49	0.05	7.80	1.19	0.10
B875680 Dup	Rock	0.32	0.37	< 0.01	33.96	< 0.01	7.02	0.06	32.46	17.01	0.49	0.04	7.85	1.33	0.11
B875681	Rock	0.35	3.07	< 0.01	26.45	< 0.01	5.87	0.02	31.77	20.21	0.42	0.03	4.49	7.96	0.42
B875682	Rock	0.36	0.47	0.01	33.21	0.01	6.06	0.06	35.41	17.96	0.54	0.04	6.04	0.52	0.11
B875683	Rock	0.13	0.11	< 0.01	32.22	< 0.01	5.09	0.02	39.43	18.66	0.67	0.03	3.58	< 0.01	0.04
B875684	Rock	0.37	0.18	< 0.01	31.99	< 0.01	4.89	0.02	38.03	18.14	0.48	0.03	4.37	0.58	0.02
B875685	Rock	0.37	0.58	< 0.01	29.23	< 0.01	6.32	0.10	32.77	16.73	0.44	0.07	5.07	7.25	0.10
B875686	Rock	0.22	0.27	< 0.01	34.99	< 0.01	4.43	0.02	35.93	17.07	0.43	0.03	6.65	0.97	0.04
B875687	Rock	0.27	0.15	< 0.01	33.65	< 0.01	4.22	0.01	39.22	19.62	0.53	0.03	3.82	0.03	0.02
B875688	Rock	< 0.01	14.35	0.12	4.24	0.04	3.91	3.35	1.07	1.60	0.12	2.90	0.28	66.11	0.43
B875689	Rock	0.41	0.24	< 0.01	33.88	< 0.01	2.75	0.01	39.07	20.07	0.34	0.04	4.52	0.18	0.02

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		Nb2O5	A12O3	BaO	CaO	Cr2O3	Fe2O3	K2O	LOI	MgO	MnO	Na2O	P2O5	SiO2	TiO2
		Nb2O5-AD3-OR-ICP	WR-FS-ICP												
Sample	Sample	%	%	%	%	%	%	%	%	%	%	%	%	%	%
Description	Type	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
B875690	Pulp	0.53	1.73	0.36	45.53	< 0.01	4.10	0.76	32.05	2.38	0.91	0.38	2.73	7.64	0.22
B875691	Rock	0.29	0.12	< 0.01	31.69	< 0.01	4.80	< 0.01	39.40	19.38	0.43	0.02	3.42	< 0.01	0.01
B875692	Rock	0.11	0.51	< 0.01	30.69	< 0.01	9.20	0.02	32.23	16.62	0.41	0.02	5.50	1.88	0.13
B875693	Rock	0.10	0.14	< 0.01	32.52	< 0.01	4.32	0.01	39.73	19.50	0.45	0.02	3.64	< 0.01	0.03
B875694	Rock	0.09	0.38	< 0.01	32.58	< 0.01	4.33	< 0.01	37.30	18.02	0.46	0.02	4.87	2.08	0.07
B875695	Rock	0.08	0.40	< 0.01	34.52	< 0.01	7.03	0.05	33.30	15.80	0.50	0.04	7.34	1.52	0.09
B875696	Rock	0.05	0.67	< 0.01	31.62	< 0.01	7.93	0.02	32.37	16.78	0.40	0.03	6.08	2.89	0.18
B875697	Rock	0.04	0.47	< 0.01	29.26	< 0.01	7.80	0.02	39.04	19.40	0.64	0.02	0.76	0.59	0.03
B875698	Rock	0.03	0.54	< 0.01	31.49	< 0.01	8.10	0.02	32.97	17.50	0.36	0.03	6.36	0.74	0.09
B875699	Rock	0.14	0.10	< 0.01	32.04	< 0.01	5.76	0.04	39.67	19.37	0.65	0.02	2.79	< 0.01	0.01
B875700 Dup	Rock	0.14	0.11	< 0.01	31.81	< 0.01	5.63	0.02	40.13	20.05	0.67	0.03	2.32	< 0.01	0.01
B875701	Rock	0.36	0.28	< 0.01	34.57	< 0.01	3.99	0.01	37.65	18.41	0.28	0.02	5.91	0.28	0.04
B875702	Rock	0.06	0.49	< 0.01	32.64	< 0.01	9.95	0.05	30.72	14.67	0.56	0.05	6.79	4.43	0.16
B875703	Rock	0.04	0.79	< 0.01	32.13	< 0.01	10.99	< 0.01	29.23	15.29	0.33	0.03	6.50	2.36	0.21
B875704	Rock	0.01	0.39	< 0.01	35.53	< 0.01	3.60	0.02	36.99	17.91	0.32	0.03	6.09	0.47	0.07
B875705	Rock	0.02	0.18	< 0.01	33.79	< 0.01	4.39	0.01	37.73	18.28	0.30	0.02	5.53	0.13	0.04
B875706	Rock	0.07	0.20	< 0.01	34.00	< 0.01	3.35	< 0.01	38.58	19.26	0.45	0.03	5.65	0.23	0.03
B875707	Rock	0.09	0.29	< 0.01	32.11	< 0.01	14.88	0.01	26.50	14.66	0.25	0.02	6.30	3.07	0.21
B875708	Rock	0.03	0.37	< 0.01	33.40	< 0.01	4.06	< 0.01	36.99	20.64	0.30	0.03	5.23	0.45	0.08
B875709	Rock	0.04	0.65	< 0.01	33.16	< 0.01	5.43	0.02	33.33	18.26	0.30	0.03	6.32	3.61	0.11
B875710	Pulp	0.41	0.31	< 0.01	34.12	< 0.01	5.70	0.07	38.01	16.77	0.54	0.04	4.22	1.58	0.12
B875711	Rock	0.08	0.16	< 0.01	34.86	< 0.01	5.23	0.01	35.41	16.37	0.53	0.03	6.86	0.92	0.10
B875712	Rock	0.17	0.15	< 0.01	35.66	< 0.01	3.36	0.03	37.92	18.31	0.63	0.03	5.43	0.20	0.02
B875713	Rock	0.19	0.28	< 0.01	34.57	< 0.01	3.98	0.02	35.06	18.45	0.48	0.03	6.67	1.82	0.15

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		Total	Ag	Al	As	Ba 20 44 TP	Bi 20.44 TP	Ca 30-4A-TR	Cd	Co	Cr	Cu	Fe 30-4A-TR	K 20.44 TP	La 30-4A-TR
Sample	Sample	WR-FS-ICP %	30-4A-TR	30-4A-TR %	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-1K %	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-1R %	30-4A-TR %	
Description	Type	0.01	ppm 0.5	0.01	ppm 5	ppm 10	ppm 2	0.01	ppm 0.5	ppm 1	ppm 1	ppm 1	0.01	0.01	ppm 10
B875650	Pulp	99.65	<0.5	0.24	<5	121	<2	>10	<0.5	12	4	69	>10	0.07	303
B875651	Rock	100.09	0.6	0.07	6	13	<2	>10	<0.5	5	9	34	2.98	0.01	321
B875652	Rock	98.91	< 0.5	0.07	7	13	<2	>10	< 0.5	4	8	43	3.37	< 0.01	371
B875653	Rock	98.29	0.7	0.05	<5	14	<2	>10	< 0.5	4	9	26	3.16	0.01	214
B875654	Rock	98.27	< 0.5	0.08	<5	223	<2	>10	< 0.5	13	11	<1	>10	0.05	218
B875655	Rock	99.12	0.6	0.06	<5	14	<2	>10	< 0.5	4	8	33	3.80	< 0.01	320
B875656	Rock	97.30	< 0.5	0.06	<5	24	<2	>10	< 0.5	5	13	51	4.98	0.01	342
B875657	Rock	98.76	1.1	0.01	56	13	<2	>10	< 0.5	3	8	2	3.41	< 0.01	2105
B875658	Rock	99.82	0.6	0.01	26	17	<2	>10	< 0.5	4	10	2	4.04	< 0.01	751
B875659	Rock	99.64	< 0.5	0.03	28	20	<2	>10	< 0.5	5	12	13	3.77	< 0.01	811
B875660 Dup	Rock	100.33	< 0.5	0.03	26	20	<2	>10	< 0.5	4	11	14	3.71	< 0.01	792
B875661	Rock	98.85	< 0.5	0.10	8	15	<2	>10	< 0.5	6	10	44	2.98	< 0.01	375
B875662	Rock	100.84	< 0.5	0.03	8	20	<2	>10	< 0.5	7	9	28	3.13	< 0.01	347
B875663	Rock	97.74	< 0.5	0.10	8	17	<2	>10	< 0.5	18	13	62	4.26	< 0.01	449
B875664	Rock	101.26	< 0.5	0.08	14	18	<2	>10	< 0.5	8	12	33	3.49	0.01	570
B875665	Rock	101.10	0.7	0.03	<5	26	<2	>10	< 0.5	5	9	26	2.86	0.04	255
B875666	Rock	99.95	0.8	0.06	12	30	<2	>10	< 0.5	9	9	40	3.54	0.03	408
B875667	Rock	98.54	1.4	0.11	<5	50	<2	>10	< 0.5	13	11	51	3.64	0.05	324
B875668	Rock	98.49	1.5	0.39	<5	88	<2	>10	< 0.5	49	13	15	>10	0.46	401
B875669	Rock	100.05	1.9	0.07	7	29	<2	>10	< 0.5	9	9	40	3.17	0.02	358
B875670	Pulp	100.63	2.1	0.25	<5	129	<2	>10	<0.5	14	5	34	>10	0.09	312
B875671	Rock	99.76	1.0	0.08	5	49	<2	>10	<0.5	11	10	28	3.20	0.04	258
B875672	Rock	100.16	1.2	0.06	<5	30	<2	>10	<0.5	9	9	24	2.69	0.02	204
B875673	Rock	101.05	1.3	0.05	5	27	<2	>10	<0.5	6	10	16	2.28	0.01	250
B875674	Rock	99.14	2.0	0.39	<5	261	<2	>10	<0.5	28	9	1	>10	0.47	315
B875675	Rock	99.33	1.7	0.09	9	30	<2	>10	<0.5	10	8	11	3.02	0.04	343
B875676	Rock	98.57	1.6	0.16	<5	25	<2	>10	<0.5	8	11	39	3.42	0.02	273
B875677	Rock	101.36	1.7	0.18	7	29	<2	>10	< 0.5	6 5	10 8	28 30	3.12	0.01	303
B875678 B875679	Rock	101.45 100.88	1.5 1.7	0.07	<5 6	27 45	<2 <2	>10	<0.5	8	15	26	2.95 4.40	<0.01 0.04	247
	Rock			0.16				>10	<0.5	9					348
B875680 Dup B875681	Rock Rock	100.69 100.73	1.7 2.1	0.16 1.63	<5 <5	41 28	<2 <2	>10 >10	<0.5 <0.5	9 11	15 26	24 28	4.44 3.73	0.05 0.02	344 306
B875682	Rock	100.73	1.5	0.19	17	70	<2	>10	<0.5	9	26 11	30	3.73	0.02	622
B875683	Rock	99.86	1.3	0.19	17	22	<2	>10	<0.5	6	9	30 11	3.36	0.03	757
B875684	Rock	98.74	1.9	0.03	<5	21	<2	>10	<0.5	9	11	29	3.43	0.02	267
B875685	Rock	98.69	2.3	0.07	7	57	<2	>10	<0.5	9	25	6	4.41	0.02	348
B875686	Rock	100.84	2.0	0.30	18	38	<2	>10	<0.5	4	12	17	3.08	0.08	743
B875687	Rock	101.30	2.3	0.06	9	16	<2	>10	<0.5	4	13	23	2.87	0.02	444
B875688	Rock	98.53	2.1	8.13	<5	876	<2	2.86	<0.5	9	213	3	2.66	2.64	40
B875689	Rock	101.11	1.9	0.10	6	15	<2	>10	<0.5	5	9	35	1.92	< 0.01	358

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		Total	Ag	Al	As	Ba	Bi	Ca	Cd	Co	Cr	Cu	Fe	K	La
		WR-FS-ICP	30-4A-TR												
Sample	Sample	%	ppm	%	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%	%	ppm
Description	Type	0.01	0.5	0.01	5	10	2	0.01	0.5	1	1	1	0.01	0.01	10
B875690	Pulp	98.80	2.5	0.93	29	2895	<2	>10	< 0.5	6	8	7	2.81	0.60	1006
B875691	Rock	99.28	2.0	0.04	7	15	<2	>10	< 0.5	3	12	23	3.25	< 0.01	388
B875692	Rock	97.23	2.4	0.26	9	21	<2	>10	< 0.5	14	25	9	6.35	0.02	457
B875693	Rock	100.35	2.2	0.06	11	15	<2	>10	< 0.5	5	8	10	2.88	< 0.01	463
B875694	Rock	100.13	2.4	0.19	7	32	<2	>10	< 0.5	6	13	7	2.87	< 0.01	314
B875695	Rock	100.59	2.4	0.19	10	77	<2	>10	< 0.5	8	12	5	4.60	0.04	508
B875696	Rock	98.98	3.0	0.34	55	95	<2	>10	< 0.5	10	21	3	5.30	0.01	2121
B875697	Rock	98.04	2.5	0.21	34	15	<2	>10	< 0.5	13	18	2	5.27	0.02	1367
B875698	Rock	98.21	2.6	0.26	23	15	<2	>10	< 0.5	18	21	4	5.62	0.02	893
B875699	Rock	100.47	2.8	0.02	42	15	<2	>10	< 0.5	3	11	11	3.66	0.03	1658
B875700 Dup	Rock	100.79	2.4	0.03	45	18	<2	>10	< 0.5	4	12	11	3.71	0.01	1619
B875701	Rock	101.45	3.1	0.12	11	34	<2	>10	< 0.5	4	12	33	2.64	0.01	421
B875702	Rock	100.52	2.3	0.23	12	75	<2	>10	< 0.5	9	17	3	6.63	0.04	618
B875703	Rock	97.87	2.2	0.37	7	22	<2	>10	< 0.5	13	28	<1	7.77	< 0.01	334
B875704	Rock	101.44	2.9	0.16	11	24	<2	>10	< 0.5	3	9	3	2.50	0.02	407
B875705	Rock	100.40	2.6	0.07	10	11	<2	>10	< 0.5	9	12	5	3.04	< 0.01	353
B875706	Rock	101.80	3.2	0.08	<5	16	<2	>10	< 0.5	4	10	6	2.26	< 0.01	245
B875707	Rock	98.32	3.1	0.13	<5	22	<2	>10	< 0.5	20	34	9	9.98	0.01	230
B875708	Rock	101.56	3.2	0.17	8	11	<2	>10	< 0.5	6	10	8	2.74	< 0.01	315
B875709	Rock	101.23	3.5	0.33	8	17	<2	>10	< 0.5	10	18	5	3.66	0.02	358
B875710	Pulp	101.48	2.8	0.11	6	42	<2	>10	< 0.5	6	4	36	3.86	0.06	340
B875711	Rock	100.48	2.9	0.06	9	23	<2	>10	< 0.5	10	13	8	3.65	< 0.01	282
B875712	Rock	101.75	2.6	0.06	<5	27	<2	>10	< 0.5	6	11	13	2.35	0.02	144
B875713	Rock	101.54	3.1	0.11	9	22	<2	>10	< 0.5	7	15	17	2.85	0.02	284

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		Mg	Mn	Mo	Na	Ni	P	Pb	Sb	Sc	Sr	Ti	Tl	V	W
		30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR
Sample	Sample	%	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm
Description B875650	Type	0.01 8.43	5 3506	3	0.01	3	>10000	2 176	5 <5	6	1617	0.01	10 <10	204	10 <10
B875651	Pulp Rock	8.43 >10	2785	3	0.03	<1	>10000	92	<5 <5	5	977	0.19	<10	204	<10
B875652	Rock	>10	2795	2	0.04	<1	>10000	115	<5	6	763	0.02	<10	31	<10
B875653	Rock	>10	3329	1	0.04	<1	9456	73	<5	5	1228	0.01	<10	43	<10
B875654	Rock	5.05	3648	2	0.05	3	>10000	13	<5	8	1822	0.02	<10	392	<10
B875655	Rock	>10	2426	2	0.03	<1	>10000	91	<5	6	572	0.07	<10	57	<10
B875656	Rock	9.41	2695	1	0.03	2	>10000	134	<5	7	906	0.02	<10	81	<10
B875657	Rock	>10	3983	3	0.03	<1	>10000	19	<5	9	855	< 0.01	<10	23	<10
B875658	Rock	>10	5433	2	0.03	<1	2065	12	<5	7	1262	< 0.01	<10	20	<10
B875659	Rock	>10	4843	2	0.04	<1	>10000	42	<5	7	1537	0.01	<10	16	<10
B875660 Dup	Rock	>10	4771	2	0.04	<1	>10000	46	<5	6	1571	0.01	<10	16	<10
B875661	Rock	>10	2928	2	0.04	<1	>10000	116	<5	6	1169	0.03	<10	25	<10
B875662	Rock	>10	4832	1	0.04	<1	>10000	74	<5	6	2240	0.02	<10	16	<10
B875663	Rock	>10	2772	3	0.04	<1	>10000	153	<5	8	868	0.08	<10	52	<10
B875664	Rock	>10	3885	3	0.04	<1	>10000	86	<5	9	1822	0.02	<10	24	<10
B875665	Rock	>10	5388	3	0.04	<1	>10000	70	<5	7	3194	< 0.01	<10	10	<10
B875666	Rock	>10	3885	3	0.04	<1	>10000	104	<5	8	2031	0.02	<10	23	<10
B875667	Rock	>10	4982	2	0.05	<1	>10000	139	<5	5	2961	0.03	<10	27	<10
B875668	Rock	5.90	3056	3	0.05	3	>10000	47	<5	3	2088	0.34	<10	424	<10
B875669	Rock	>10	4539	3	0.04	<1	>10000	106	<5	6	3014	0.03	<10	24	<10
B875670	Pulp	8.75	3466	3	0.05	2	>10000	69	<5	6	1625	0.16	<10	203	<10
B875671	Rock	>10	3841	3	0.04	<1	>10000	69	<5	6	2376	0.03	<10	32	<10
B875672	Rock	>10	4370	3	0.03	<1	>10000	66	<5	4	1989	0.03	<10	29	<10
B875673	Rock	>10	5088	2	0.04	<1	>10000	48	<5	6	3606	0.01	<10	10	<10
B875674	Rock	6.67	3481	2	0.06	2	>10000	23	<5	3	2879	0.21	<10	380	<10
B875675	Rock	>10	3933	2	0.04	<1	>10000	31	<5	5	1742	0.02	<10	38	<10
B875676	Rock	>10	3959	3	0.04	<1	>10000	107	<5	6	2603	0.03	<10	41	<10
B875677	Rock	>10	4210	3	0.05	1	>10000	80	<5	6	2629	0.02	<10	22	<10
B875678	Rock	>10	4344	3	0.04	<1	>10000	80	<5	6	2351	0.01	<10	23	<10
B875679	Rock	9.98	3597	1	0.05	<1	>10000	76	<5	8	2417	0.05	<10	81	<10
B875680 Dup	Rock	>10	3478	1	0.05	<1	>10000	72	<5	8	2409	0.06	<10	85	<10
B875681	Rock	>10	2989	3	0.04	8	>10000	79	<5	11	1831	0.16	<10	66	<10
B875682	Rock	>10	3690	1	0.04	2	>10000	77	<5	6	1922	0.03	<10	27	<10
B875683	Rock	>10	4758	2	0.04	<1	>10000	34	<5	6	2299	0.01	<10	21	<10
B875684	Rock	>10	3311	3	0.04	<1	>10000	87	<5	6	1847	< 0.01	<10	17	<10
B875685	Rock	>10	3033	2	0.07	2	>10000	17	<5	8	1564	0.03	<10	79	<10
B875686	Rock	>10	2777	2	0.04	<1	>10000	55	<5	8	1195	0.02	<10	21	<10
B875687	Rock	>10	3534	2	0.04	<1	>10000	70	<5	6	1272	< 0.01	<10	17	<10
B875688	Rock	0.96	883	4	2.57	7	1075	7	<5	6	676	0.28	<10	58	<10
B875689	Rock	>10	2399	2	0.04	<1	>10000	106	<5	5	683	0.01	<10	25	<10

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		Mg	Mn	Мо	Na	Ni	Р	Pb	Sb	Sc	Sr	Ti	Tl	V	W
		30-4A-TR													
Sample	Sample	%	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm
Description	Type	0.01	5	1	0.01	1	10	2	5	1	1	0.01	10	1	10
B875690	Pulp	1.44	6227	14	0.33	<1	9898	73	<5	4	>10000	0.12	<10	186	<10
B875691	Rock	>10	2896	2	0.03	<1	>10000	75	<5	5	1171	< 0.01	<10	12	<10
B875692	Rock	>10	2832	2	0.04	<1	>10000	35	<5	10	1523	0.05	<10	52	<10
B875693	Rock	>10	3139	3	0.03	<1	>10000	27	<5	7	1411	0.01	<10	20	<10
B875694	Rock	>10	3160	1	0.04	<1	>10000	26	<5	8	1898	0.03	<10	36	<10
B875695	Rock	9.53	3472	2	0.05	<1	>10000	26	<5	7	2360	0.05	<10	48	<10
B875696	Rock	>10	2723	3	0.04	<1	>10000	20	<5	15	874	0.07	<10	68	<10
B875697	Rock	>10	4251	3	0.03	<1	2522	17	<5	11	955	0.01	<10	32	<10
B875698	Rock	>10	2652	2	0.04	2	>10000	15	<5	13	763	0.05	<10	52	<10
B875699	Rock	>10	4621	4	0.03	<1	9340	43	<5	9	1337	< 0.01	<10	18	<10
B875700 Dup	Rock	>10	4730	4	0.03	<1	9201	44	<5	10	1304	< 0.01	<10	19	<10
B875701	Rock	>10	2016	<1	0.03	<1	>10000	79	<5	6	543	0.02	<10	34	<10
B875702	Rock	8.85	3666	2	0.05	<1	>10000	17	<5	13	1544	0.07	<10	77	<10
B875703	Rock	9.22	2240	3	0.04	1	>10000	15	<5	12	957	0.09	<10	73	<10
B875704	Rock	>10	2200	1	0.03	<1	>10000	10	<5	9	550	0.03	<10	29	<10
B875705	Rock	>10	2135	2	0.03	<1	>10000	13	<5	6	525	0.01	<10	20	<10
B875706	Rock	>10	3025	2	0.03	<1	>10000	22	<5	4	1917	0.01	<10	16	<10
B875707	Rock	8.84	1841	2	0.03	5	>10000	34	<5	13	864	0.12	<10	125	<10
B875708	Rock	>10	2152	2	0.03	<1	>10000	15	<5	6	720	0.03	<10	26	<10
B875709	Rock	>10	2150	2	0.04	<1	>10000	20	<5	12	940	0.05	<10	50	<10
B875710	Pulp	>10	3509	4	0.05	<1	>10000	101	<5	7	2057	0.04	<10	43	<10
B875711	Rock	9.87	3475	3	0.04	<1	>10000	28	<5	9	2300	0.04	<10	36	<10
B875712	Rock	>10	4256	3	0.04	<1	>10000	42	<5	5	3016	< 0.01	<10	11	<10
B875713	Rock	>10	3279	2	0.04	<1	>10000	50	<5	7	2182	0.05	<10	38	<10

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		Zn	Zr	Ce	Dy	Er	Eu	Gd	Hf	Но	La	Lu	Nd	Pr	Sm
Sample	Sample	30-4A-TR		REE-LB-MS	REE-LB-MS		REE-LB-MS		REE-LB-MS				REE-LB-MS		REE-LB-MS
Description	Type	ppm 2	ppm 1	ppm 0.1	ppm 0.1	ppm 0.1	ppm 0.1	ppm 0.1	ppm 0.1	ppm 0.1	ppm 0.1	ppm 0.1	ppm 0.1	ppm 0.1	ppm 0.1
B875650	Pulp	60	60	846.4	20.3	6.4	13.7	41.6	7.3	2.8	387.7	0.4	333.3	95.2	50.5
B875651	Rock	8	22	755.5	18.0	6.5	11.2	36.9	2.0	2.5	377.4	0.5	289.5	84.0	44.9
B875652	Rock	9	36	873.0	24.7	9.3	14.0	44.9	4.2	3.8	463.8	0.7	328.4	93.6	52.7
B875653	Rock	11	24	587.2	19.1	7.2	11.7	34.6	2.8	2.8	282.5	0.5	233.0	65.2	38.7
B875654	Rock	112	137	641.9	17.6	5.9	13.4	36.1	15.9	2.4	275.8	0.3	270.4	73.9	44.8
B875655	Rock	7	36	773.0	23.9	8.8	12.4	40.6	4.3	3.5	395.7	0.7	300.1	85.3	46.8
B875656	Rock	12	57	>1000	60.0	23.4	23.8	78.5	5.7	9.7	546.4	1.3	442.7	122.9	83.5
B875657	Rock	13	17	>1000	36.4	7.2	30.7	133.6	< 0.1	3.7	>1000	0.4	>1000	485.7	200.9
B875658	Rock	16	3	>1000	11.7	2.3	11.6	49.8	< 0.1	1.0	856.8	< 0.1	644.9	189.0	73.0
B875659	Rock	15	10	>1000	29.7	8.7	19.3	73.5	0.5	3.9	>1000	0.4	797.2	232.0	101.9
B875660 Dup	Rock	15	10	>1000	31.3	9.4	19.6	75.0	0.5	4.2	>1000	0.5	803.4	231.6	104.4
B875661	Rock	10	26	>1000	34.0	13.2	17.2	56.6	2.6	5.3	487.9	0.9	414.8	115.7	68.2
B875662	Rock	15	18	906.9	21.8	7.7	12.5	41.6	1.4	3.1	443.6	0.4	348.9	101.9	50.7
B875663	Rock	8	33	>1000	33.9	12.8	20.1	62.6	6.1	5.2	676.4	0.9	525.9	151.9	75.9
B875664	Rock	14	22	>1000	26.3	8.7	16.4	55.5	2.2	3.7	697.6	0.5	479.1	141.6	70.4
B875665	Rock	23	13	645.5	16.8	5.5	10.1	32.3	2.9	2.3	300.0	0.2	247.3	71.5	37.5
B875666	Rock	15	25	924.9	28.2	9.7	15.9	50.2	3.1	4.1	462.5	0.6	362.3	103.9	57.8
B875667	Rock	20	22	896.0	25.5	8.1	18.5	49.7	5.6	3.5	409.9	0.4	368.0	103.3	60.3
B875668	Rock	62	49	>1000	22.2	6.8	17.6	50.9	29.3	2.9	494.1	0.4	427.7	122.8	64.0
B875669	Rock	17	15	838.4	19.2	6.2	12.1	39.2	2.4	2.5	394.8	0.3	328.4	95.8	48.6
B875670	Pulp	61	58	830.9	20.2	6.8	14.1	42.0	9.0	2.9	376.3	0.4	338.7	93.0	50.4
B875671 B875672	Rock Rock	15 12	13 10	671.1 688.2	15.0 15.6	4.9 5.0	10.9	32.3 33.6	2.9 2.7	2.0 2.1	312.2 325.8	0.3	266.2 273.4	77.0 79.4	39.5
B875673	Rock	18	10	623.1	11.2	3.2	11.4 9.0	28.8	1.2	1.4	323.8	<0.1	240.4	68.8	41.7 34.8
B875674	Rock	111	44	832.4	18.4	4.9	14.4	44.9	8.3	2.3	353.7	0.1	365.4	99.0	56.2
B875675	Rock	15	16	969.9	19.7	6.4	14.3	42.4	3.6	2.6	497.2	0.4	358.3	105.6	51.5
B875676	Rock	17	22	687.5	17.7	5.6	12.8	36.1	2.4	2.4	316.4	0.4	285.6	78.0	44.1
B875677	Rock	18	21	905.6	21.4	7.1	14.9	46.1	1.3	2.9	414.7	0.3	376.5	104.5	56.7
B875678	Rock	15	25	670.0	18.5	6.1	11.1	35.1	2.4	2.6	313.4	0.4	278.0	76.7	42.5
B875679	Rock	15	35	928.9	24.6	8.1	15.9	49.1	4.2	3.4	429.0	0.4	385.9	107.5	59.0
B875680 Dup	Rock	15	33	906.0	23.4	7.7	15.5	48.0	4.0	3.3	427.0	0.4	376.1	106.0	58.0
B875681	Rock	16	26	846.6	21.0	7.5	12.9	40.8	1.8	3.0	413.8	0.4	331.2	95.8	49.5
B875682	Rock	14	23	>1000	34.3	12.0	19.4	65.6	1.9	5.0	752.9	0.6	589.4	172.9	82.8
B875683	Rock	18	10	>1000	23.1	7.2	15.2	59.9	< 0.1	3.1	854.4	0.4	648.7	192.0	80.7
B875684	Rock	14	24	763.2	20.3	7.5	12.1	38.9	2.0	3.1	358.7	0.5	305.4	85.6	47.1
B875685	Rock	28	28	727.9	26.3	10.1	14.4	43.1	3.4	4.1	346.3	0.7	303.5	83.7	50.8
B875686	Rock	10	22	>1000	28.4	9.7	19.0	65.2	1.9	4.1	730.3	0.7	616.3	173.3	86.2
B875687	Rock	11	24	971.7	20.9	7.6	12.9	43.7	1.4	3.1	474.5	0.5	406.1	113.4	59.1
B875688	Rock	52	9	82.1	3.1	1.7	1.6	4.7	3.7	0.5	44.2	0.1	31.2	8.8	5.1
B875689	Rock	5	55	765.3	22.6	8.2	13.0	43.2	2.5	3.5	361.8	0.6	314.3	89.8	50.9

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		Zn	Zr	Ce	Dy	Er	Eu	Gd	Hf	Но	La	Lu	Nd	Pr	Sm
		30-4A-TR	30-4A-TR	REE-LB-MS											
Sample	Sample	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Description	Type	2	1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
B875690	Pulp	450	71	>1000	15.6	5.0	13.7	43.7	0.3	2.0	992.1	0.4	513.8	174.6	53.4
B875691	Rock	9	27	798.9	20.4	7.8	10.6	38.2	1.4	3.1	386.3	0.5	326.8	93.4	47.0
B875692	Rock	17	25	940.6	23.0	7.7	13.2	45.2	2.8	3.2	478.5	0.5	377.4	106.3	56.1
B875693	Rock	12	15	875.0	19.2	6.9	10.1	37.2	1.6	2.8	465.8	0.5	326.2	94.2	45.6
B875694	Rock	11	39	643.7	17.6	6.2	10.3	35.3	1.8	2.6	317.3	0.4	258.1	72.4	41.2
B875695	Rock	35	63	979.5	20.1	6.6	13.3	42.8	3.2	2.8	538.4	0.3	351.4	101.4	52.2
B875696	Rock	15	31	>1000	26.4	8.7	19.2	77.0	7.9	3.6	>1000	0.6	803.2	282.6	81.8
B875697	Rock	21	6	>1000	14.4	4.7	10.8	38.6	0.4	1.9	>1000	0.2	408.5	161.5	34.9
B875698	Rock	11	21	>1000	22.4	8.1	13.7	46.8	1.5	3.3	>1000	0.5	407.0	138.8	48.9
B875699	Rock	16	11	>1000	21.0	6.3	15.0	57.3	0.3	2.7	>1000	0.3	602.9	222.2	59.1
B875700 Dup	Rock	17	12	>1000	19.3	5.5	14.6	54.3	0.2	2.5	>1000	0.3	592.2	222.4	56.3
B875701	Rock	7	44	845.1	29.0	11.7	12.3	40.3	1.2	4.9	481.8	0.8	270.4	83.1	39.5
B875702	Rock	37	25	>1000	17.9	6.2	12.0	40.9	5.7	2.5	671.0	0.4	384.3	123.8	47.2
B875703	Rock	15	57	908.2	25.9	10.0	13.6	44.4	6.9	4.1	427.7	0.9	368.2	107.0	49.4
B875704	Rock	9	23	858.1	22.0	8.7	10.9	40.0	1.3	3.5	423.2	0.6	337.0	96.7	47.5
B875705	Rock	6	14	912.5	21.8	8.1	11.4	41.3	1.0	3.3	442.7	0.6	362.6	104.6	52.2
B875706	Rock	10	10	582.3	17.0	6.3	9.4	31.2	< 0.1	2.6	270.2	0.4	247.6	67.2	37.9
B875707	Rock	12	185	519.1	22.9	8.9	14.3	39.0	6.5	3.8	235.9	0.6	233.8	62.7	43.1
B875708	Rock	9	29	682.7	23.0	8.6	11.3	39.8	1.1	3.5	322.4	0.6	295.6	80.2	46.2
B875709	Rock	16	47	798.3	23.9	8.4	13.9	44.8	4.5	3.6	376.4	0.5	340.6	93.6	53.5
B875710	Pulp	23	33	798.3	21.7	7.3	13.8	42.0	2.5	3.2	393.1	0.4	316.9	88.4	51.3
B875711	Rock	13	40	718.5	34.1	14.1	12.2	45.5	3.5	5.8	348.8	0.8	280.9	80.2	45.2
B875712	Rock	14	16	389.3	20.7	8.2	8.7	29.5	0.5	3.4	163.9	0.4	175.1	46.2	30.8
B875713	Rock	10	30	735.6	24.4	8.8	12.9	43.2	1.8	3.7	328.0	0.5	306.1	85.5	47.4

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

5			Tb						
2				Tm REE-LB-MS	Yb REE-LB-MS	Y REE-LB-MS	Ta Ta-4A-LL-MS	Th Th-4A-LL-MS	U U-4A-LL-MS
	Sample	Sample	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Desc	cription	Туре	0.1	0.1	0.1	0.10	0.05	0.2	0.1
	875650	Pulp	3.7	0.7	4.5	73.9	29.52	283.5	7.8
B	875651	Rock	3.2	0.7	4.8	66.1	19.04	102.2	4.0
B	875652	Rock	4.5	1.0	6.9	93.0	35.74	173.6	4.6
B	875653	Rock	3.3	0.8	5.0	75.1	23.53	105.0	3.3
B	875654	Rock	3.2	0.6	3.9	63.4	0.81	300.7	5.8
B	875655	Rock	4.1	0.9	6.0	91.8	40.53	174.5	5.7
B!	875656	Rock	10.4	2.5	13.1	208.5	67.51	309.0	18.1
B!	875657	Rock	6.5	0.7	4.8	91.4	0.43	237.4	1.4
B!	875658	Rock	2.0	0.2	1.9	28.9	0.22	46.7	1.0
B	875659	Rock	5.1	0.9	5.2	94.8	2.13	97.0	2.5
B87566	60 Dup	Rock	5.2	1.0	6.0	101.1	2.25	95.4	2.6
B	875661	Rock	6.0	1.5	8.6	137.8	12.28	137.3	8.1
B	875662	Rock	3.6	0.8	5.2	81.1	7.27	99.2	3.9
B	875663	Rock	5.7	1.5	9.0	133.5	20.55	158.5	10.8
B	875664	Rock	4.7	0.9	5.6	92.9	11.36	157.7	6.4
B:	875665	Rock	3.0	0.5	3.2	58.6	3.49	59.0	1.4
B	875666	Rock	4.9	1.1	6.1	101.4	12.44	150.3	4.2
B:	875667	Rock	4.6	0.8	5.0	89.9	10.49	100.4	4.2
B:	875668	Rock	4.1	0.7	4.5	73.5	0.62	172.8	6.6
B:	875669	Rock	3.3	0.6	4.1	66.2	6.73	71.0	3.6
B:	875670	Pulp	3.6	0.7	4.5	73.7	6.55	264.3	7.8
	875671	Rock	2.7	0.4	3.3	53.3	1.48	72.8	4.2
B:	875672	Rock	2.8	0.5	3.5	54.6	16.20	40.7	6.6
B!	875673	Rock	2.1	0.2	1.8	36.6	11.98	33.1	5.7
B ²	875674	Rock	3.3	0.4	2.8	56.3	1.79	159.2	64.9
	875675	Rock	3.5	0.7	4.7	70.2	1.27	76.4	8.4
	875676	Rock	3.1	0.6	3.7	62.5	16.58	118.8	5.6
B:	875677	Rock	4.0	0.7	4.3	74.3	21.90	72.0	13.8
	875678	Rock	3.3	0.6	4.1	67.5	32.29	114.6	33.3
B ²	875679	Rock	4.4	0.8	5.1	86.3	89.11	116.4	120.9
B87568		Rock	4.2	0.7	5.0	83.3	87.51	119.5	112.5
	875681	Rock	3.7	0.7	4.9	78.1	11.61	95.7	10.4
	875682	Rock	5.9	1.3	7.2	124.8	13.10	158.2	5.9
	875683	Rock	3.9	0.8	4.9	79.3	2.16	108.1	2.3
	875684	Rock	3.6	0.8	5.3	77.5	14.43	145.4	5.3
	875685	Rock	4.6	1.2	7.1	103.7	13.01	226.8	27.4
	875686	Rock	5.0	1.1	7.1	103.1	23.43	133.6	19.7
	875687	Rock	3.7	0.8	5.6	78.9	23.40	130.7	8.4
	875688	Rock	0.4	0.1	1.9	18.5	1.77	11.1	4.5
	875689	Rock	4.0	0.9	6.1	87.7	81.04	282.9	26.9

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

			Tb	Tm	Yb	Y	Ta	Th	U
			REE-LB-MS	REE-LB-MS	REE-LB-MS	REE-LB-MS	Ta-4A-LL-MS	Th-4A-LL-MS	U-4A-LL-MS
	Sample	Sample	ppm	ppm	ppm	ppm	ppm	ppm	ppm
	Description	Type	0.1	0.1	0.1	0.10	0.05	0.2	0.1
	B875690	Pulp	2.4	0.6	4.4	58.0	1.97	62.9	31.9
	B875691	Rock	3.3	0.9	5.6	76.2	25.47	157.3	7.0
	B875692	Rock	4.0	0.8	5.2	83.6	28.89	177.1	14.7
	B875693	Rock	3.3	0.7	4.8	72.8	3.90	84.4	2.9
	B875694	Rock	3.1	0.6	4.1	68.0	42.36	68.8	49.7
	B875695	Rock	3.6	0.6	4.2	74.5	6.87	111.9	3.5
1	B875696	Rock	4.5	0.9	5.9	98.2	16.27	108.3	3.4
ĺ	B875697	Rock	2.2	0.4	2.9	52.4	10.46	53.0	2.7
	B875698	Rock	3.8	0.8	5.3	85.4	17.10	161.9	10.0
	B875699	Rock	3.4	0.6	4.1	70.3	3.46	74.0	4.8
	B875700 Dup	Rock	3.0	0.5	3.7	62.8	3.38	79.0	4.8
	B875701	Rock	4.9	1.3	7.6	110.3	57.73	356.1	22.8
	B875702	Rock	2.9	0.6	4.4	65.8	4.41	77.2	2.9
	B875703	Rock	4.7	1.3	7.3	93.4	14.89	94.5	4.1
	B875704	Rock	3.7	1.0	6.3	86.4	6.22	182.7	1.9
	B875705	Rock	3.8	0.9	5.7	82.9	11.67	81.3	9.0
	B875706	Rock	2.9	0.6	4.2	67.5	6.68	81.0	4.3
	B875707	Rock	4.3	1.0	6.2	112.6	148.61	127.0	144.4
	B875708	Rock	4.0	0.9	5.9	87.4	13.40	100.3	11.6
	B875709	Rock	4.4	0.9	5.6	93.8	45.27	99.9	41.5
	B875710	Pulp	4.0	0.8	5.1	81.3	26.20	170.9	12.0
	B875711	Rock	5.8	1.5	8.3	148.1	72.92	262.2	68.5
	B875712	Rock	3.5	0.8	5.0	91.0	3.07	114.6	10.4
	B875713	Rock	4.4	0.9	5.8	97.6	12.89	210.4	11.1

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		Nb2O5	Al2O3	BaO	CaO	Cr2O3	Fe2O3	K2O	LOI	MgO	MnO	Na2O	P2O5	SiO2	TiO2
g 1		Nb2O5-AD3-OR-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP
Sample	Sample	%	%	%	%	%	%	%	%	%	%	%	%	%	%
Description	Туре	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
B875650	Pulp	0.78													
B875650 Dup		0.77													
QCV1011-00312-0002-BLK		<0.01													
STD-OKA-1 expected		0.53													
STD-OKA-1 result	D 1	0.51													
B875668	Rock	1.43													
B875668 Dup		1.38													
QCV1011-00312-0005-BLK		<0.01													
STD-OKA-1 expected		0.53													
STD-OKA-1 result	D 1	0.52													
B875686	Rock	0.22 0.20													
B875686 Dup															
QCV1011-00312-0008-BLK		<0.01													
STD-OKA-1 expected		0.53													
STD-OKA-1 result	D 1	0.51													
B875704	Rock	0.01 0.02													
B875704 Dup OCV1011-00312-0011-BLK															
QCV1011-00312-0011-BLK QCV1011-00312-0012-BLK		<0.01													
-		<0.01													
STD-OKA-1 expected		0.53													
STD-OKA-1 result B875650	Pulp	0.54	0.56	0.02	28.39	< 0.01	16.68	0.09	31.05	13.98	0.49	0.05	5.72	2.05	0.57
	Puip		0.56	0.02	28.39				30.96	13.98	0.49		5.72		
B875650 Dup QCV1011-00316-0002-BLK			< 0.01	< 0.02	< 0.01	<0.01 <0.01	16.95 <0.01	0.11 <0.01	< 0.01	< 0.01	< 0.01	0.05 <0.01	< 0.01	1.96 <0.01	0.58 <0.01
B875668	Rock		0.83	0.01	25.06	< 0.01	33.32	0.58	15.05	9.78	0.42	0.01	7.67	4.81	0.01
B875668 Dup	KOCK		0.83	0.01	25.08	< 0.01	33.34	0.58	15.03	9.78	0.42	0.03	7.60	4.81	0.91
OCV1011-00316-0005-BLK			< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.03	< 0.01	< 0.01	< 0.01
B875686	Rock		0.01	< 0.01	34.99	< 0.01	4.43	0.01	35.93	17.07	0.43	0.01	6.65	0.01	0.01
B875686 Dup	KOCK		0.27	< 0.01	34.99	< 0.01	4.43	0.02	35.93 35.97	17.07	0.43	0.03	6.64	0.97	0.04
QCV1011-00316-0008-BLK			< 0.01	<0.01	<0.01	< 0.01	< 0.01	< 0.02	< 0.01	< 0.01	< 0.01	< 0.03	< 0.04	< 0.01	< 0.04
B875704	Rock		0.39	< 0.01	35.53	< 0.01	3.60	0.01	36.99	17.91	0.32	0.01	6.09	0.01	0.01
B875704 Dup	NOCK		0.39	< 0.01	35.50	< 0.01	3.57	0.02	36.99	17.91	0.32	0.03	6.09	0.47	0.07
OCV1011-00316-0011-BLK			< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.02	< 0.07	< 0.43	<0.07
QCV1011-00316-0012-BLK			<0.01	< 0.01	<0.01	< 0.01	<0.01	<0.01	< 0.01	<0.01	<0.01	< 0.01	<0.01	< 0.01	<0.01
STD-SY-4 expected			20.69	<0.01	8.05	\0.01	6.21	1.66	4.56	0.54	0.01	7.10	0.01	49.90	0.29
STD-SY-4 result			20.53	0.04	8.14	< 0.01	6.19	1.80	4.56	0.54	0.11	6.84	0.13	50.31	0.29
31D-31-4 lesuit			20.55	0.04	6.14	<0.01	0.19	1.80	4.30	0.01	0.12	0.84	0.14	30.31	0.29

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

			Total	Ag	Al	As	Ba	Bi	Ca	Cd	Co	Cr	Cu	Fe	K	La
			WR-FS-ICP	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR
	Sample	Sample	%	ppm	%	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%	%	ppm
	Description	Type	0.01	0.5	0.01	5	10	2	0.01	0.5	1	1	1	0.01	0.01	10
	B875650	Pulp		< 0.5	0.24	<5	121	<2	>10	< 0.5	12	4	69	>10	0.07	303
	B875650 Dup			< 0.5	0.24	<5	130	<2	>10	< 0.5	12	5	79	>10	0.08	319
	QCV1011-00313-0002-BLK			< 0.5	< 0.01	<5	<10	<2	< 0.01	< 0.5	<1	<1	<1	< 0.01	< 0.01	<10
	-OREAS-45P-4A expected			0.3												
5	TD-OREAS-45P-4A result			<0.5												
	B875668	Rock		1.5	0.39	<5	88	<2	>10	<0.5	49	13	15	>10	0.46	401
	B875668 Dup			1.4	0.37	<5	81	<2	>10	<0.5	48	13	14	>10	0.45	386
	QCV1011-00313-0005-BLK	ъ		<0.5	< 0.01	<5	<10	<2	< 0.01	<0.5	<1	<1	<1	<0.01	< 0.01	<10
	B875686	Rock		2.0	0.12	18	38	<2	>10	<0.5	4	12	17	3.08	0.02	743
	B875686 Dup			2.0	0.12	17	15	<2	>10	<0.5	4	12	16	3.01	0.02	749
	QCV1011-00313-0008-BLK	D 1		<0.5 2.9	<0.01	<5	<10	<2	< 0.01	<0.5	<1	<1	<1	<0.01	< 0.01	<10 407
	B875704	Rock			0.16	11	24	<2	>10	<0.5	3	9	3	2.50	0.02	
	B875704 Dup QCV1011-00313-0011-BLK			2.9 <0.5	0.16 <0.01	11	24 <10	<2	>10	<0.5 <0.5	3	9	3	2.49 <0.01	0.01 <0.01	412 <10
	QCV1011-00313-0011-BLK QCV1011-00313-0012-BLK			<0.5	<0.01	<5 <5	<10	<2 <2	<0.01 <0.01	<0.5	<1	<1	<1 <1	<0.01	<0.01	<10
	STD-CDN-ME-8 expected			<0.5 61.7	<0.01	< 5	<10	<2	<0.01	<0.5	<1	<1	1030	<0.01	<0.01	<10
	STD-CDN-ME-8 expected STD-CDN-ME-8 result			64.6									1030			
	B875650	Pulp	99.65	04.0									1023			
	B875650 Dup	ruip	99.60													
	OCV1011-00316-0002-BLK		< 0.01													
	B875668	Rock	98.49													
	B875668 Dup	ROCK	98.34													
	OCV1011-00316-0005-BLK		< 0.01													
	B875686	Rock	100.84													
	B875686 Dup		100.54													
	QCV1011-00316-0008-BLK		< 0.01													
	B875704	Rock	101.44													
	B875704 Dup		101.20													
	QCV1011-00316-0011-BLK		< 0.01													
	QCV1011-00316-0012-BLK		< 0.01													
	STD-SY-4 expected															
	STD-SY-4 result		99.59													

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		Mg	Mn	Mo	Na	Ni	P	Pb	Sb	Sc	Sr	Ti	Tl	V	W
		30-4A-TR													
Sample	Sample	%	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm
Description	Type	0.01	5	1	0.01	1	10	2	5	1	1	0.01	10	1	10
B875650	Pulp	8.43	3506	3	0.05	3	>10000	176	<5	6	1617	0.19	<10	204	<10
B875650 Dup		8.48	3485	3	0.05	2	>10000	194	<5	6	1667	0.19	<10	215	<10
QCV1011-00313-0002-BLK		< 0.01	<5	<1	< 0.01	<1	<10	<2	<5	<1	<1	< 0.01	<10	<1	<10
B875668	Rock	5.90	3056	3	0.05	3	>10000	47	<5	3	2088	0.34	<10	424	<10
B875668 Dup		5.81	2905	4	0.05	4	>10000	43	<5	3	2028	0.28	<10	415	<10
QCV1011-00313-0005-BLK		< 0.01	<5	<1	< 0.01	<1	<10	<2	<5	<1	<1	< 0.01	<10	<1	<10
B875686	Rock	>10	2777	2	0.04	<1	>10000	55	<5	8	1195	0.02	<10	21	<10
B875686 Dup		>10	2779	2	0.04	<1	>10000	52	<5	8	1163	0.02	<10	22	<10
QCV1011-00313-0008-BLK		< 0.01	<5	<1	< 0.01	<1	<10	<2	<5	<1	<1	< 0.01	<10	<1	<10
B875704	Rock	>10	2200	1	0.03	<1	>10000	10	<5	9	550	0.03	<10	29	<10
B875704 Dup		>10	2220	<1	0.03	<1	>10000	11	<5	9	549	0.03	<10	29	<10
QCV1011-00313-0011-BLK		< 0.01	<5	<1	< 0.01	<1	<10	<2	<5	<1	<1	< 0.01	<10	<1	<10
QCV1011-00313-0012-BLK		< 0.01	<5	<1	< 0.01	<1	<10	<2	<5	<1	<1	< 0.01	<10	<1	<10

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		Zn	Zr	Ce	Dy	Er	Eu	Gd	Hf	Но	La	Lu	Nd	Pr	Sm
		30-4A-TR	30-4A-TR	REE-LB-MS											
Sample	Sample	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Description	Type	2	1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
B875650	Pulp	60	60												
B875650 Dup		62	67												
QCV1011-00313-0002-BLK		<2	<1												
B875668	Rock	62	49												
B875668 Dup		62	45												
QCV1011-00313-0005-BLK		<2	<1												
B875686	Rock	10	22												
B875686 Dup		10	22												
QCV1011-00313-0008-BLK		<2	<1												
B875704	Rock	9	23												
B875704 Dup		9	23												
QCV1011-00313-0011-BLK		<2	<1												
QCV1011-00313-0012-BLK		<2	<1												
B875650	Pulp			846.4	20.3	6.4	13.7	41.6	7.3	2.8	387.7	0.4	333.3	95.2	50.5
B875650 Dup				828.0	20.3	6.5	13.8	41.7	7.3	2.7	390.4	0.4	335.1	94.4	51.0
QCV1011-00314-0002-BLK				< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
B875668	Rock			>1000	22.2	6.8	17.6	50.9	29.3	2.9	494.1	0.4	427.7	122.8	64.0
B875668 Dup				>1000	21.4	6.7	16.7	49.4	28.6	2.8	469.8	0.4	417.8	117.8	61.9
QCV1011-00314-0005-BLK				< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
B875686	Rock			>1000	28.4	9.7	19.0	65.2	1.9	4.1	730.3	0.7	616.3	173.3	86.2
B875686 Dup				>1000	28.3	9.8	19.1	64.4	1.8	4.0	739.5	0.7	606.1	172.2	86.1
QCV1011-00314-0008-BLK				< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
B875704	Rock			858.1	22.0	8.7	10.9	40.0	1.3	3.5	423.2	0.6	337.0	96.7	47.5
B875704 Dup				861.5	22.3	8.8	11.2	40.2	1.4	3.5	426.4	0.7	337.3	96.8	47.9
QCV1011-00314-0011-BLK				< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
QCV1011-00314-0012-BLK				< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
STD-SY-4 expected				122.0	18.2	14.2	2.0	14.0	10.6	4.3	58.0	2.1	57.0	15.0	12.7
STD-SY-4 result				132.5	18.1	14.5	1.9	14.8	11.5	4.3	60.7	1.9	58.9	15.6	13.1

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		Tb	Tm	Yb	Y	Ta	Th	U
		REE-LB-MS	REE-LB-MS	REE-LB-MS	REE-LB-MS	Ta-4A-LL-MS	Th-4A-LL-MS	U-4A-LL-MS
Sample	Sample	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Description	Type	0.1	0.1	0.1	0.10	0.05	0.2	0.1
B875650	Pulp	3.7	0.7	4.5	73.9			
B875650 Dup		3.6	0.6	4.5	70.7			
QCV1011-00314-0002-BLK		< 0.1	< 0.1	< 0.1	< 0.10			
B875668	Rock	4.1	0.7	4.5	73.5			
B875668 Dup		3.8	0.7	4.5	71.6			
QCV1011-00314-0005-BLK		< 0.1	< 0.1	< 0.1	< 0.10			
B875686	Rock	5.0	1.1	7.1	103.1			
B875686 Dup		5.1	1.1	6.8	102.0			
QCV1011-00314-0008-BLK		< 0.1	< 0.1	< 0.1	< 0.10			
B875704	Rock	3.7	1.0	6.3	86.4			
B875704 Dup		3.8	1.0	6.4	88.8			
QCV1011-00314-0011-BLK		< 0.1	< 0.1	< 0.1	< 0.10			
QCV1011-00314-0012-BLK		< 0.1	< 0.1	< 0.1	< 0.10			
STD-SY-4 expected		2.6	2.3	14.8	119.0			
STD-SY-4 result		2.4	2.1	14.5	122.4			
B875650	Pulp					29.52	283.5	7.8
B875650 Dup						34.12	305.5	8.4
QCV1103-01174-0002-BLK						< 0.05	< 0.2	< 0.1
B875668	Rock					0.62	172.8	6.6
B875668 Dup						0.67	166.7	6.5
QCV1103-01174-0005-BLK						< 0.05	< 0.2	< 0.1
B875686	Rock					23.43	133.6	19.7
B875686 Dup						23.96	141.0	21.1
QCV1103-01174-0008-BLK						< 0.05	< 0.2	< 0.1
B875704	Rock					6.22	182.7	1.9
B875704 Dup						5.83	189.9	1.9
QCV1103-01174-0011-BLK						< 0.05	< 0.2	< 0.1
QCV1103-01174-0012-BLK						< 0.05	< 0.2	< 0.1

Certificate of Analysis

Inspectorate Exploration & Mining Services Ltd. #200 - 11620 Horseshoe Way

Date Received: 11/10/2010

Date Completed: 03/16/2011

Invoice:

Richmond, British Columbia V7A 4V5 Canada

Phone: 604-272-7818

Distribution List

Attention: Eric Titley

Suite 1020-800 West Pender St.

Vancouver, BC V6C 2V6

EMail: erictitley@hdimining.com

Attention: Jeremy Crozier

EMail: jeremycrozier@hdimining.com

Attention: T.Kodata

EMail: tkodata@hdimining.com

Submitted By: Aley Corporation

Suite 1020-800 West Pender St.

Vancouver, BC V6C 2V6

Attention: Eric Titley

Project: Aley 2010 Project

Purchase Order: **ALY 0002**Description: **Aley 2010-025**

Location	Samples	Type	Preparation Description
Vancouver, BC	4	Pulp	SP-PU/Pulp Handling, submitted pulps
Vancouver, BC	70	Rock	SP-RX-2K/Rock/Chips/Drill Core

Location	Method	Description
Vancouver, BC	REE-LB-MS	REE Group by ICP-MS
Vancouver, BC	Nb2O5-AD3-OR-ICP	Niobium by multi-acid digestion, ICP
Vancouver, BC	Ta-4A-LL-MS	Tantalum, 4 Acid, ICP
Vancouver, BC	Th-4A-LL-MS	Thorium, 4 Acid, Low Level
Vancouver, BC	30-4A-TR	30 Element, 4 Acid, ICP, Trace Level
Vancouver, BC	U-4A-LL-MS	Uraium, 4 Acid, Low Level
Vancouver, BC	WR-FS-ICP	Whole Rock, Lithium Borate Fusion, ICP

Submittal Information

Uranium (U), Tantalum (Ta), and Thorium (Th) numbers shown have been revised with accurate detection limits.

The results of this assay were based solely upon the content of the sample submitted. Any decision to invest should be made only after the potential investment value of the claim or deposit has been determined based on the results of assays of multiple samples of geologic materials collected by the prospective investor or by a qualified person selected by him and based on an evaluation of all engineering data which is available concerning any proposed project. For our complete terms and conditions please see our website at www.inspectorate.com.

Вv

Mike Caron, Lab Manager

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		Nb2O5 Nb2O5-AD3-OR-ICP	Al2O3	BaO	CaO	Cr2O3 WR-FS-ICP	Fe2O3	K2O	LOI	MgO	MnO	Na2O	P2O5 WR-FS-ICP	SiO2	TiO2
Sample	Comple	% % % % % % % % % % % % % % % % % % %	WR-FS-ICP %	WR-FS-ICP %	WR-FS-ICP %	WK-FS-ICP %	WR-FS-ICP %	WR-FS-ICP %	WR-FS-ICP %	WR-FS-ICP %	WR-FS-ICP %	WR-FS-ICP %	WK-FS-ICP %	WR-FS-ICP %	WR-FS-ICP %
Description	Sample Type	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
B875162	Rock	0.21	0.16	< 0.01	35.50	< 0.01	4.87	0.01	39.02	13.99	0.77	0.04	5.59	< 0.01	0.03
B875163	Rock	0.34	0.89	0.02	35.11	< 0.01	4.96	0.22	34.94	12.12	0.55	0.04	8.38	2.39	0.36
B875164	Rock	0.18	0.88	0.01	32.66	< 0.01	5.31	0.23	37.66	13.24	0.69	0.12	4.30	4.46	0.15
B875165	Rock	0.15	2.66	0.03	27.67	0.01	5.11	0.95	31.92	11.45	0.57	0.59	2.30	16.85	0.21
B875166	Rock	0.07	3.10	0.05	24.84	< 0.01	5.83	1.38	24.60	11.66	0.45	1.28	3.69	22.41	0.23
B875167	Rock	0.23	0.78	0.01	31.22	< 0.01	5.21	0.30	34.57	12.45	0.60	0.33	4.04	10.00	0.08
B875168	Rock	0.34	0.24	0.04	37.99	< 0.01	4.65	0.04	38.18	11.71	0.93	0.11	4.78	2.21	0.05
B875169	Rock	0.15	0.28	0.01	37.42	< 0.01	4.66	0.05	38.97	12.19	0.87	0.04	5.06	0.76	0.08
B875170	Pulp	0.39	0.32	< 0.01	33.75	< 0.01	5.92	0.06	38.84	13.70	0.59	0.07	4.40	1.40	0.12
B875171	Rock	0.12	2.86	0.03	25.86	< 0.01	6.52	1.54	31.86	14.42	0.62	0.37	2.82	12.10	0.57
B875172	Rock	0.19	1.12	< 0.01	31.68	< 0.01	6.08	0.18	38.17	13.56	0.74	0.07	3.87	3.58	0.22
B875173	Rock	0.22	2.57	0.02	27.23	< 0.01	9.10	0.58	28.04	11.58	0.41	0.06	4.12	16.10	0.35
B875174	Rock	0.15	0.23	< 0.01	32.64	< 0.01	5.72	0.06	40.50	14.49	0.72	0.04	2.42	2.97	0.08
B875175	Rock	0.06	0.56	0.05	25.83	< 0.01	4.68	0.99	22.05	12.15	0.39	2.63	2.64	27.34	0.12
B875176	Rock	0.17	0.07	< 0.01	32.79	< 0.01	4.01	0.02	40.17	16.07	0.73	0.04	4.67	1.24	0.03
B875177	Rock	0.17	0.70	0.02	30.09	< 0.01	4.55	0.65	33.74	14.35	0.59	0.45	3.47	10.96	0.08
B875178	Rock	0.40	0.13	< 0.01	33.52	< 0.01	5.31	0.03	39.12	15.47	0.57	0.03	4.88	0.64	0.07
B875179	Rock	0.14	0.26	< 0.01	32.72	< 0.01	4.37	0.07	39.37	15.56	0.35	0.03	5.15	1.80	0.03
B875180 Dup	Rock	0.14	0.25	< 0.01	33.39	< 0.01	4.32	0.07	39.31	15.47	0.36	0.03	5.32	1.77	0.03
B875181	Rock	0.24	0.16	< 0.01	33.87	< 0.01	4.57	0.02	40.42	15.34	0.68	0.03	4.31	0.79	0.04
B875182	Rock	0.14	0.52	0.02	38.84	< 0.01	8.31	0.12	33.88	8.65	0.85	0.03	5.08	4.61	0.09
B875183	Rock	0.07	0.36	< 0.01	33.97	< 0.01	14.43	0.05	32.22	10.27	0.43	0.03	8.03	1.84	0.24
B875184	Rock	0.12	0.26	< 0.01	34.78	< 0.01	5.98	0.01	37.62	13.14	0.52	0.03	5.79	2.72	0.09
B875185	Rock	0.05	0.30	0.02	38.03	< 0.01	5.01	< 0.01	37.59	10.76	0.43	0.03	5.63	2.08	0.24
B875186 B875187	Rock Rock	0.06 0.04	0.51 0.97	<0.01	37.01 38.90	<0.01 <0.01	5.25 5.68	0.02	37.05 34.48	11.86 9.16	0.38 0.45	0.03	5.84 6.87	2.92 4.44	0.26 0.13
B875188	Rock	0.04	0.97	0.01	37.68	< 0.01	7.12	0.03	38.35	10.73	0.43	0.02	3.65	0.64	0.13
B875189	Rock	0.09	0.19	0.02	41.82	< 0.01	9.19	0.03	31.20	6.70	0.87	0.02	9.16	1.51	0.03
B875190	Pulp	0.80	0.50	0.02	29.81	< 0.01	19.28	0.02	31.19	11.54	0.79	0.02	6.19	1.79	0.02
B875191	Rock	0.17	0.22	0.02	36.66	< 0.01	8.85	0.08	38.33	11.02	0.62	0.02	3.71	0.65	0.02
B875192	Rock	0.08	0.20	< 0.01	31.93	< 0.01	8.61	0.05	41.23	14.69	0.82	0.02	1.13	1.03	0.04
B875193	Rock	0.20	0.38	0.02	26.44	< 0.01	23.12	0.05	27.81	12.54	0.69	0.02	6.41	3.61	0.22
B875194	Rock	0.04	0.12	< 0.01	30.50	< 0.01	6.98	0.02	38.37	15.15	0.77	0.04	3.25	4.30	0.02
B875195	Rock	0.26	0.33	< 0.01	32.65	< 0.01	6.01	0.11	35.89	14.18	0.65	0.11	6.57	3.07	0.14
B875196	Rock	0.10	0.32	< 0.01	32.95	< 0.01	7.93	0.07	34.94	14.49	0.50	0.07	6.14	2.48	0.13
B875197	Rock	0.13	0.20	< 0.01	32.55	< 0.01	6.63	0.05	38.01	15.16	0.52	0.08	5.34	1.47	0.05
B875198	Rock	0.32	0.14	< 0.01	33.40	< 0.01	5.68	0.04	37.90	15.79	0.63	0.07	4.25	1.23	0.04
B875199	Rock	0.03	0.21	< 0.01	33.13	< 0.01	5.30	0.06	39.19	15.57	0.52	0.08	3.80	2.06	0.05
B875200 Dup	Rock	0.03	0.22	< 0.01	33.55	0.01	5.12	0.06	39.11	16.01	0.53	0.08	4.04	2.01	0.05
B875201	Rock	0.02	0.31	< 0.01	33.77	< 0.01	4.58	0.07	36.52	14.93	0.47	0.16	6.78	2.33	0.06

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

Description T	Nb205-AD3-OR-ICP Sample % Type 0.01 Rock 0.12 Rock 0.47 Rock 0.14 Rock 0.20 Rock 0.04	WR-FS-ICP % 0.01 0.17 0.14 0.18 0.08 0.08	WR-FS-ICP % 0.01 <0.01 <0.01 0.01 <0.01	WR-FS-ICP % 0.01 34.46 34.00 35.27	WR-FS-ICP % 0.01 <0.01 <0.01	WR-FS-ICP % 0.01 4.82	WR-FS-ICP % 0.01 0.05	WR-FS-ICP % 0.01						
Description T	Type 0.01 Rock 0.12 Rock 0.08 Rock 0.47 Rock 0.14 Rock 0.20	0.01 0.17 0.14 0.18 0.08	0.01 <0.01 <0.01 0.01	0.01 34.46 34.00	0.01 <0.01	0.01 4.82	0.01	0.01						
B875202 F B875203 F B875204 F B875205 F	Rock 0.12 Rock 0.08 Rock 0.47 Rock 0.14 Rock 0.20	0.17 0.14 0.18 0.08	<0.01 <0.01 0.01	34.46 34.00	< 0.01	4.82			0.01	0.01	0.01	0.01	0.01	
B875203 F B875204 F B875205 F	Rock 0.08 Rock 0.47 Rock 0.14 Rock 0.20	0.14 0.18 0.08	<0.01 0.01	34.00			0.05							
B875204 F B875205 F	Rock 0.47 Rock 0.14 Rock 0.20	0.18 0.08	0.01		< 0.01		0.00	37.04	14.42	0.73	0.07	6.31	1.40	0.05
B875205 F	Rock 0.14 Rock 0.20	0.08		35.27	0.01	5.57	0.02	38.50	14.49	0.72	0.03	4.42	1.25	0.03
	Rock 0.20				< 0.01	5.78	< 0.01	37.31	13.96	0.72	0.03	6.09	1.49	0.08
				34.80	< 0.01	3.69	0.02	41.03	15.65	0.81	0.04	4.17	0.43	0.02
	ROCK 0.04		< 0.01	34.34	< 0.01	4.29	0.02	39.65	15.51	0.67	0.04	4.39	0.53	0.03
I	D 1 0.11	0.06	< 0.01	33.56	< 0.01	2.66	< 0.01	42.65	17.28	0.76	0.03	2.88	0.19	< 0.01
I	Rock 0.11	0.16	< 0.01	34.68	< 0.01	4.76	0.03	37.18	15.14 15.82	0.55	0.04	6.53	1.13 0.97	0.04
I	Rock 0.16	0.08	<0.01 0.38	34.31 48.31	< 0.01	3.74	0.01 0.79	41.63 32.10	2.09	0.80 1.02	0.03	3.38	5.68	0.02 0.25
	Pulp 0.53	1.67			< 0.01	4.68					0.46	2.86 2.03	0.32	
	Rock 0.05	0.06	< 0.01	34.23	< 0.01	5.33	< 0.01	42.51	15.26	1.15	0.03			< 0.01
1	Rock 0.29 Rock 0.58	0.13 0.27	<0.01 <0.01	35.11 35.16	< 0.01	4.87	0.01 0.03	38.66 33.87	14.96 15.08	0.77	0.04 0.04	5.71 7.31	1.28 3.47	0.04 0.06
1					< 0.01	6.30				0.62				
1	Rock 0.10 Rock 0.34	0.13 0.09	<0.01 <0.01	35.08 31.87	<0.01 <0.01	3.33	0.01 0.02	40.60 38.23	16.66 16.32	0.82 0.70	0.04	4.29 2.25	1.08 3.49	0.01 0.03
		0.09	<0.01	34.40	<0.01	6.36 5.71	0.02	36.94	14.92	0.70	0.03	3.61	2.67	0.03
	Rock 0.45 Rock <0.01	14.64	0.13	4.24	0.01	4.30	3.92	1.37	1.53	0.42	3.89	0.26	66.17	0.49
	Rock 0.32	0.24	< 0.01	32.80	0.04	6.40	0.06	36.58	1.33	0.13	0.04	3.62	3.91	0.49
	Rock 0.32	0.24	< 0.01	35.44	< 0.01	5.44	0.08	36.59	14.23	0.72	0.04	5.72	0.93	0.33
	Rock 0.32 Rock 0.30	0.16	<0.01	34.90	<0.01	5.44	0.03	36.39 36.41	14.40	0.50	0.04	6.08	1.00	0.05
•	Rock 0.30	0.17	<0.01	37.46	<0.01	4.61	0.03	36.83	13.12	0.51	0.04	6.45	2.09	0.03
	Rock 0.23	0.70	0.03	27.45	< 0.01	31.77	0.03	20.51	8.99	0.55	0.04	7.94	4.93	0.36
	Rock 0.19	0.70	0.03	35.97	< 0.01	19.14	0.29	24.46	8.82	0.50	0.09	9.47	3.94	0.30
	Rock 0.10	0.42	< 0.04	35.89	< 0.01	4.50	0.21	39.58	15.83	0.50	0.07	4.20	0.64	0.03
	Rock 0.36	0.12	< 0.01	35.33	< 0.01	3.65	0.03	39.56	15.47	0.37	0.03	4.32	0.89	0.03
	Rock 0.25	0.31	< 0.01	36.67	< 0.01	4.07	0.04	40.29	15.57	0.68	0.04	3.66	0.54	0.02
	Rock 0.15	0.44	0.04	50.47	< 0.01	3.28	0.04	36.31	6.61	0.34	0.04	4.37	0.85	0.02
	Rock 0.11	0.29	0.04	47.17	< 0.01	3.39	0.10	37.53	8.78	0.54	0.04	4.40	0.53	0.03
	Rock 0.02	0.47	< 0.01	34.89	< 0.01	2.78	0.07	42.22	16.38	0.56	0.04	2.78	0.94	< 0.01
	Pulp 0.75	0.19	0.02	37.16	< 0.01	5.14	0.04	37.95	11.34	0.45	0.10	4.18	2.94	0.15
	Rock 0.02	0.13	< 0.02	34.03	< 0.01	2.72	0.04	40.87	15.68	0.45	0.10	3.68	1.40	<0.01
	Rock 0.07	0.43	< 0.01	34.21	< 0.01	2.72	0.04	42.75	16.19	0.73	0.05	2.40	0.15	<0.01
	Rock 0.07	0.28	< 0.01	34.11	< 0.01	3.82	0.05	41.28	16.11	0.73	0.03	1.98	0.71	0.01
	Rock 0.17	0.19	< 0.01	33.62	0.01	4.09	0.05	41.99	16.81	0.66	0.05	1.67	0.52	0.01
	Rock 0.32	0.19	< 0.01	34.07	< 0.01	4.24	0.03	38.72	16.62	0.66	0.05	4.22	0.86	0.01

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		Total	Ag	Al	As	Ba	Bi	Ca	Cd	Со	Cr	Cu	Fe	K	La
g 1	G 1	WR-FS-ICP	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR
Sample Description	Sample Type	% 0.01	ppm 0.5	% 0.01	ppm 5	ppm 10	ppm 2	% 0.01	ppm 0.5	ppm	ppm	ppm	% 0.01	% 0.01	ppm 10
B875162	Rock	99.98	<0.5	0.01	52	61	<2	>10	<0.5	6	13	34	3.33	<0.01	485
B875163	Rock	99.98	<0.5	0.47	87	163	<2	>10	<0.5	8	11	51	3.40	0.19	443
B875164	Rock	99.71	< 0.5	0.46	39	83	<2	>10	< 0.5	5	9	27	3.46	0.20	232
B875165	Rock	100.32	< 0.5	1.52	32	214	<2	>10	<0.5	6	14	26	3.29	0.79	130
B875166	Rock	99.53	< 0.5	1.71	20	330	<2	>10	< 0.5	7	18	16	3.85	1.02	147
B875167	Rock	99.60	< 0.5	0.41	12	101	<2	>10	< 0.5	7	13	37	3.37	0.22	189
B875168	Rock	100.94	< 0.5	0.10	20	307	<2	>10	< 0.5	5	6	54	3.03	0.03	189
B875169	Rock	100.40	< 0.5	0.11	11	104	<2	>10	< 0.5	3	4	22	3.07	0.03	419
B875170	Pulp	99.18	< 0.5	0.15	8	45	<2	>10	< 0.5	7	<1	73	4.06	0.04	322
B875171	Rock	99.59	< 0.5	1.50	17	223	<2	>10	< 0.5	14	18	33	4.25	1.14	132
B875172	Rock	99.28	< 0.5	0.55	8	49	<2	>10	< 0.5	5	9	28	3.94	0.13	444
B875173	Rock	100.17	< 0.5	1.40	28	142	<2	>10	< 0.5	10	17	38	5.92	0.43	201
B875174	Rock	99.90	< 0.5	0.12	<5	65	<2	>10	< 0.5	7	6	25	3.64	0.05	183
B875175	Rock	99.45	< 0.5	0.30	<5	376	3	>10	< 0.5	5	9	10	3.02	0.75	158
B875176	Rock	99.84	< 0.5	0.03	<5	41	<2	>10	< 0.5	6	9	28	2.58	0.02	216
B875177	Rock	99.67	< 0.5	0.39	12	117	<2	>10	< 0.5	5	9	29	2.87	0.46	181
B875178	Rock	99.78	< 0.5	0.08	23	47	<2	>10	< 0.5	8	4	65	3.41	0.02	203
B875179	Rock	99.71	< 0.5	0.14	7	37	<2	>10	< 0.5	5	7	25	2.76	0.05	357
B875180 Dup	Rock	100.32	< 0.5	0.14	8	39	<2	>10	< 0.5	5	10	24	2.77	0.05	368
B875181	Rock	100.25	< 0.5	0.08	9	36	<2	>10	< 0.5	9	5	43	2.82	0.02	149
B875182	Rock	100.99	<0.5	0.29	34	93	<2	>10	< 0.5	10	3	31	5.19	0.07	2703
B875183	Rock	101.89	<0.5	0.19	55	66	<2	>10	<0.5	48	<1	60	9.14	0.04	377
B875184	Rock	100.95	<0.5	0.14	10	64	<2	>10	<0.5	5	4	21	3.80	0.01	348
B875185	Rock	100.13	<0.5	0.17	9	174	<2	>10	<0.5	5	2	7	3.24	< 0.01	397
B875186	Rock	101.13	<0.5	0.31	11	60	<2	>10	<0.5	5	6	9	3.35	0.01	443
B875187	Rock	101.16	<0.5	0.52	15	92 108	<2 10	>10	<0.5	6 7	5 2	2 10	3.63	0.02	811
B875188 B875189	Rock	99.32 100.70	<0.5 <0.5	0.11 0.12	8 41	108	<2	>10 >10	<0.5 <0.5	8	4	52	4.49 5.74	0.03 0.02	>10000 2390
B875190	Rock Pulp	101.71	<0.5	0.12	16	173	<2	>10	<0.5	13	<1	155	>10	0.02	286
B875190 B875191	Rock	100.21	<0.5	0.12	25	146	<2	>10	<0.5	10	5	29	5.47	0.09	2404
B875191 B875192	Rock	99.77	<0.5	0.12	9	49	10	>10	<0.5	10	3	16	5.40	0.07	4853
B875193	Rock	101.43	<0.5	0.12	11	120	<2	>10	<0.5	16	2	37	>10	0.03	203
B875194	Rock	99.53	<0.5	0.22	6	23	8	>10	< 0.5	7	12	10	4.43	0.03	2758
B875195	Rock	99.73	< 0.5	0.19	14	39	<2	>10	< 0.5	8	8	46	3.93	0.10	814
B875196	Rock	100.03	<0.5	0.18	12	23	<2	>10	< 0.5	11	7	18	5.14	0.06	279
B875197	Rock	100.05	2.4	0.10	10	22	<2	>10	<0.5	9	6	21	4.33	0.05	1784
B875198	Rock	99.16	< 0.5	0.07	8	23	<2	>10	< 0.5	6	8	54	3.72	0.03	490
B875199	Rock	99.99	< 0.5	0.11	5	21	<2	>10	< 0.5	7	11	6	3.33	0.03	502
B875200 Dup	Rock	100.80	< 0.5	0.12	6	21	<2	>10	< 0.5	6	10	6	3.19	0.04	504
B875201	Rock	100.00	< 0.5	0.17	6	24	<2	>10	< 0.5	6	7	3	2.87	0.05	383

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		Total	Ag	Al	As	Ba	Bi	Ca	Cd	Co	Cr	Cu	Fe	K	La
		WR-FS-ICP	30-4A-TR												
Sample	Sample	%	ppm	%	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%	%	ppm
Description	Type	0.01	0.5	0.01	5	10	2	0.01	0.5	1	1	1	0.01	0.01	10
B875202	Rock	99.53	< 0.5	0.10	<5	31	<2	>10	< 0.5	4	8	17	2.96	0.04	294
B875203	Rock	99.19	< 0.5	0.07	14	40	<2	>10	< 0.5	7	7	13	3.44	0.03	501
B875204	Rock	100.93	< 0.5	0.09	28	102	<2	>10	< 0.5	4	4	76	3.63	< 0.01	1354
B875205	Rock	100.74	< 0.5	0.03	<5	45	<2	>10	< 0.5	3	5	22	2.38	0.01	306
B875206	Rock	99.56	< 0.5	0.03	6	27	<2	>10	< 0.5	7	6	32	2.69	0.01	228
B875207	Rock	100.09	< 0.5	0.02	<5	36	<2	>10	< 0.5	3	5	6	1.70	0.03	115
B875208	Rock	100.26	< 0.5	0.08	6	28	<2	>10	< 0.5	8	6	17	2.99	0.03	1154
B875209	Rock	100.79	< 0.5	0.04	<5	47	<2	>10	< 0.5	3	4	25	2.29	0.02	292
B875210	Pulp	100.30	< 0.5	0.88	29	2900	<2	>10	< 0.5	5	5	25	2.90	0.64	872
B875211	Rock	100.94	< 0.5	0.03	<5	53	<2	>10	< 0.5	3	4	7	3.18	0.01	2095
B875212	Rock	101.58	< 0.5	0.07	6	34	<2	>10	< 0.5	5	4	49	2.98	0.01	793
B875213	Rock	102.23	< 0.5	0.16	10	54	<2	>10	< 0.5	15	7	97	3.77	0.02	340
B875214	Rock	102.05	< 0.5	0.07	<5	53	<2	>10	< 0.5	2	6	15	2.04	0.01	397
B875215	Rock	99.40	< 0.5	0.05	8	37	<2	>10	< 0.5	15	13	58	3.96	0.02	884
B875216	Rock	99.06	< 0.5	0.14	<5	32	<2	>10	< 0.5	10	14	69	3.51	0.04	3990
B875217	Rock	101.11	< 0.5	8.10	75	947	<2	2.92	< 0.5	9	153	1	2.61	2.94	38
B875218	Rock	98.99	< 0.5	0.13	<5	41	<2	>10	< 0.5	7	16	49	3.82	0.05	1304
B875219	Rock	99.32	< 0.5	0.08	6	34	<2	>10	< 0.5	9	12	51	3.33	0.03	209
B875220 Dup	Rock	99.32	< 0.5	0.09	6	34	<2	>10	< 0.5	8	10	49	3.22	0.03	212
B875221	Rock	101.53	< 0.5	0.19	5	68	<2	>10	< 0.5	5	6	37	2.79	0.03	261
B875222	Rock	103.61	< 0.5	0.39	9	249	<2	>10	< 0.5	17	<1	27	>10	0.22	238
B875223	Rock	103.28	< 0.5	0.24	7	296	<2	>10	< 0.5	12	<1	15	>10	0.18	258
B875224	Rock	101.43	< 0.5	0.06	<5	30	<2	>10	< 0.5	8	6	62	2.30	0.04	245
B875225	Rock	100.09	< 0.5	0.19	6	24	<2	>10	< 0.5	8	7	43	2.29	0.04	266
B875226	Rock	101.91	< 0.5	0.16	<5	43	<2	>10	< 0.5	4	4	29	2.61	0.04	474
B875227	Rock	102.89	< 0.5	0.23	9	307	4	>10	< 0.5	6	4	1	2.03	0.09	220
B875228	Rock	102.85	< 0.5	0.14	6	337	<2	>10	< 0.5	6	4	18	2.12	0.09	216
B875229	Rock	101.13	< 0.5		<5	48	3	>10	< 0.5	4	7	<1	1.74	0.07	375
B875230	Pulp	99.65	< 0.5	0.11	<5	176	<2	>10	0.9	28	<1	102	3.14	0.02	355
B875231	Rock	99.27	< 0.5	0.23	24	17	<2	>10	< 0.5	17	11	<1	1.66	0.02	257
B875232	Rock	99.45	< 0.5	0.03	18	49	<2	>10	< 0.5	8	7	<1	1.85	< 0.01	261
B875233	Rock	98.98	< 0.5	0.16	30	33	<2	>10	0.6	26	<1	33	2.24	0.02	307
B875234	Rock	99.68	< 0.5	0.10	<5	38	<2	>10	0.6	10	3	13	2.62	< 0.01	632
B875235	Rock	99.68	< 0.5	0.11	<5	32	<2	>10	0.6	24	4	30	2.49	< 0.01	335

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		Mg	Mn	Mo	Na	Ni	P	Pb	Sb	Sc	Sr	Ti	Tl	V	W
		30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR
Sample	Sample	%	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm
Description	Туре	0.01	5	1	0.01	1	10	2	5	1	1	0.01	10	1	10
B875162	Rock	8.37	4991	<1	0.02	<1	>10000	95	<5	6	3907	< 0.01	<10	8	<10
B875163	Rock	7.69	3571	<1	0.03	1	>10000	137	<5	8	3011	0.06	<10	28	<10
B875164	Rock	8.26	4446	<1	0.08	1	>10000	76	<5	8	2849	0.03	<10	19	<10
B875165	Rock	7.55	3695	<1	0.42	1	9408	64	<5	11	2640	0.06	<10	43	<10
B875166	Rock	7.49	3032	<1	0.94	2	>10000	32	<5	12	2313	0.12	<10	51	<10
B875167	Rock	7.56	3981	1	0.19	<1	>10000	91	<5	8	2840	0.03	<10	47	<10
B875168	Rock	6.82	6100	<1	0.06	<1	>10000	140	<5	6	2721	0.02	<10	32	<10
B875169	Rock	7.49	5652	<1	0.02	<1	>10000	72	<5	6	2928	< 0.01	<10	12	<10
B875170	Pulp	8.14	3910	2	0.04	<1	>10000	192	<5	7	2250	0.03	<10	37	<10
B875171	Rock	8.14	4062	<1	0.24	8	>10000	53	<5	9	2746	0.23	<10	38	<10
B875172	Rock	8.41	4856	<1	0.04	<1 2	>10000	86	<5	7	1837	0.04	<10	22	<10
B875173	Rock	6.81	2891	<1	0.03		>10000	93	<5	16	1665	0.09	<10	54	<10
B875174	Rock	8.91	4826	2	0.03	<1	9926	71	<5	8	2843	0.01	<10	13	<10
B875175	Rock	7.33	2707	<1	1.88	<1	>10000	29	<5	22 6	2438	0.05	<10	75	<10
B875176	Rock	8.53	5027	<1	0.03	<1	>10000	76	<5	-	4120	< 0.01	<10	8	<10
B875177	Rock	8.10	3908	<1	0.31	<1	>10000	74	<5	18	3255	0.03	<10	27	<10
B875178	Rock	8.72	3971	<1	0.02	<1	>10000	165	<5	6 4	2969	0.03	<10	51	<10
B875179	Rock	8.94	2412	<1	0.02	<1	>10000	68	<5	4	591	0.01	<10	24	<10
B875180 Dup	Rock	9.04	2437	<1	0.02	<1	>10000	68	<5 <5	5	598	0.01	<10	24 17	<10
B875181	Rock	8.76	4421	<1	0.02	<1	>10000	110			3070	0.02	<10		<10
B875182 B875183	Rock	4.96	5628	3 4	0.01 0.02	<1	>10000 >10000	74	<5 <5	13 8	1449 1381	0.03 0.08	<10	35 72	<10 <10
B875184	Rock Rock	5.51 7.61	3014 3509	<1	0.02	<1 <1	>10000	36 54	<5 <5	8 7	1917	0.08	<10 <10	20	<10
B875185	Rock	6.46	2888	<1	0.02	<1	>10000	29	<5 <5	6	1369	0.02	<10	30	<10
B875186	Rock	6.91	2566	<1	0.02	<1	>10000	33	<5	5	620	0.03	<10	29	<10
B875187	Rock	4.86	3043	1	0.02	<1	>10000	14	<5	8	757	0.00	<10	17	<10
B875188	Rock	6.26	5803	4	0.02	<1	>10000	65	<5	19	890	< 0.02	<10	19	<10
B875189	Rock	3.68	5387	4	0.02	<1	>10000	139	<5	11	1426	0.01	<10	21	<10
B875190	Pulp	7.35	3578	<1	0.02	<1	>10000	320	<5	6	1919	0.01	<10	194	<10
B875191	Rock	6.55	4165	2	0.01	<1	>10000	76	<5	15	446	<0.01	<10	30	<10
B875192	Rock	8.71	5462	4	0.02	<1	4163	48	<5	17	593	0.01	<10	39	<10
B875193	Rock	7.34	4561	<1	0.02	<1	>10000	92	<5	11	2503	0.10	<10	129	<10
B875194	Rock	8.76	5049	5	0.02	<1	>10000	29	<5	9	1738	< 0.01	<10	14	<10
B875195	Rock	8.22	4375	5	0.02	<1	>10000	118	<5	8	1981	0.05	<10	46	<10
B875196	Rock	8.32	3258	1	0.05	<1	>10000	58	<5	6	1333	0.03	<10	58	<10
B875197	Rock	8.57	3402	5	0.05	<1	>10000	64	<5	9	910	0.02	<10	37	<10
B875198	Rock	8.96	4167	4	0.03	<1	>10000	139	<5	6	1896	0.02	<10	29	<10
B875199	Rock	9.05	3469	1	0.05	<1	>10000	21	<5	5	1188	0.01	<10	16	<10
B875200 Dup	Rock	8.79	3450	<1	0.05	<1	>10000	18	<5	5	1198	0.01	<10	18	<10
B875201	Rock	8.33	3149	<1	0.10	<1	>10000	13	<5	6	1677	< 0.01	<10	15	<10

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		Mg	Mn	Mo	Na	Ni	P	Pb	Sb	Sc	Sr	Ti	Tl	V	W
		30-4A-TR													
Sample	Sample	%	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm
Description	Type	0.01	5	1	0.01	1	10	2	5	1	1	0.01	10	1	10
B875202	Rock	8.72	4754	2	0.05	<1	>10000	51	<5	6	2478	< 0.01	<10	14	<10
B875203	Rock	9.13	4570	3	0.02	<1	>10000	38	<5	6	2066	< 0.01	<10	15	<10
B875204	Rock	8.82	4501	2	0.02	<1	>10000	195	<5	8	2348	0.02	<10	20	<10
B875205	Rock	9.76	5209	2	0.03	<1	>10000	67	<5	5	3023	< 0.01	<10	13	<10
B875206	Rock	9.28	4310	<1	0.03	<1	>10000	82	<5	6	2545	0.01	<10	13	<10
B875207	Rock	9.66	4983	<1	0.02	<1	>10000	19	<5	4	4056	< 0.01	<10	1	<10
B875208	Rock	8.20	3598	<1	0.03	<1	>10000	51	<5	8	2025	0.01	<10	21	<10
B875209	Rock	9.05	5225	1	0.03	<1	>10000	65	<5	6	3666	< 0.01	<10	8	<10
B875210	Pulp	1.19	6676	12	0.32	<1	>10000	75	<5	3	>10000	0.14	<10	156	<10
B875211	Rock	8.74	7339	1	0.03	<1	8099	28	<5	8	3443	< 0.01	<10	2	<10
B875212	Rock	8.65	4980	1	0.03	<1	>10000	123	<5	8	2823	0.02	<10	17	<10
B875213	Rock	8.10	3966	1	0.03	<1	>10000	218	<5	11	3037	0.03	<10	42	<10
B875214	Rock	8.98	5198	<1	0.03	<1	>10000	41	<5	6	3976	< 0.01	<10	7	<10
B875215	Rock	>10	4546	7	0.03	<1	9154	135	<5	10	2658	< 0.01	<10	24	<10
B875216	Rock	9.43	2677	6	0.03	<1	>10000	177	<5	23	949	0.02	<10	69	<10
B875217	Rock	0.84	745	<1	2.53	5	1095	6	7	6	736	0.26	<10	5	<10
B875218	Rock	8.85	4457	11	0.03	<1	>10000	118	<5	10	2061	0.06	<10	29	<10
B875219	Rock	8.90	3229	4	0.03	<1	>10000	126	<5	6	1913	0.02	<10	29	<10
B875220 Dup	Rock	8.43	3276	2	0.03	<1	>10000	123	<5	6	1972	0.02	<10	27	<10
B875221	Rock	7.78	3178	<1	0.03	<1	>10000	95	<5	5	2233	0.02	<10	28	<10
B875222	Rock	4.71	3602	<1	0.06	<1	>10000	71	<5	9	2275	0.17	<10	264	<10
B875223	Rock	4.72	3309	<1	0.05	<1	>10000	44	<5	6	3190	0.11	<10	164	<10
B875224	Rock	9.88	2390	<1	0.03	<1	>10000	147	<5	5	817	0.01	<10	15	<10
B875225	Rock	9.10	2376	<1	0.03	<1	>10000	113	<5	4	660	0.01	<10	16	<10
B875226	Rock	9.58	4160	2	0.03	<1	>10000	66	<5	5	1924	< 0.01	<10	9	<10
B875227	Rock	3.41	2032	<1	0.03	<1	>10000	12	<5	3	3629	0.01	<10	49	<10
B875228	Rock	4.32	3298	2	0.04	<1	>10000	51	<5	4	4469	0.01	<10	42	<10
B875229	Rock	9.01	3565	<1	0.03	<1	>10000	9	<5	4	1737	< 0.01	<10	1	<10
B875230	Pulp	8.26	2890	<1	0.07	<1	>10000	315	<5	8	2279	0.07	<10	94	<10
B875231	Rock	>10	2252	<1	0.03	<1	>10000	<2	57	3	487	< 0.01	<10	<1	<10
B875232	Rock	>10	4824	1	0.03	<1	9620	52	<5	6	3430	< 0.01	<10	38	<10
B875233	Rock	>10	3427	2	0.03	<1	7547	117	<5	7	1758	< 0.01	<10	26	<10
B875234	Rock	>10	4137	<1	0.03	<1	6942	74	<5	16	1877	< 0.01	<10	41	<10
B875235	Rock	>10	3686	<1	0.03	<1	>10000	128	<5	6	2329	< 0.01	<10	27	<10

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		Zn	Zr	Ce	Dy	Er	Eu	Gd	Hf	Но	La	Lu	Nd	Pr	Sm
		30-4A-TR	30-4A-TR	REE-LB-MS	REE-LB-MS	REE-LB-MS	REE-LB-MS	REE-LB-MS	REE-LB-MS	REE-LB-MS	REE-LB-MS	REE-LB-MS	REE-LB-MS	REE-LB-MS	REE-LB-MS
Sample	Sample	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Description	Type	2	1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
B875162	Rock	29	68	>1000	22.2	7.5	15.8	50.6	1.0	3.3	642.0	0.4	403.7	118.3	57.0
B875163	Rock	24	101	>1000	40.6	13.7	23.3	73.4	3.4	6.3	506.9	0.9	487.1	130.8	83.9
B875164	Rock	32	67	590.4	31.3	11.8	14.8	45.5	2.3	5.3	295.0	0.6	259.4	70.4	47.6
B875165	Rock	55	78	344.4	11.4	4.4	8.3	21.7	2.9	1.8	170.2	0.3	147.5	40.9	24.8
B875166	Rock	93	131	364.9	11.1	3.9	7.7	22.4	3.0	1.7	177.6	0.3	159.7	43.9	26.1
B875167	Rock	42	82	473.3	14.6	5.1	10.7	30.2	1.3	2.3	225.7	0.3	213.5	57.3	35.9
B875168	Rock	29	58	481.0	17.2	6.6	11.7	31.8	1.5	2.8	230.7	0.5	213.9	59.3	36.5
B875169	Rock	29	62	941.0	33.3	11.3	18.1	62.0	0.6	5.1	468.8	0.6	449.6	117.7	76.9
B875170	Pulp	26	73	756.8	20.7	7.6	14.5	42.5	2.6	3.2	404.1	0.6	308.3	88.2	49.5
B875171	Rock	71	112	366.8	11.5	4.4	7.7	22.9	0.6	1.8	173.8	0.3	160.0	44.0	27.0
B875172	Rock	31	130	988.6	27.7	10.2	18.2	59.9	1.8	4.3	505.6	0.7	487.6	125.7	78.7
B875173	Rock	61	187	499.1	16.0	6.1	11.3	30.6	5.5	2.6	242.1	0.5	218.3	59.6	36.4
B875174	Rock	33	65	462.0	17.6	6.3	9.9	32.4	1.0	2.8	224.3	0.4	214.0	57.0	38.6
B875175	Rock	74	158	377.8	12.8	4.9	8.2	22.9	6.7	2.0	195.5	0.4	159.4	44.0	26.7
B875176	Rock	27	44	573.8	12.7	3.9	10.2	29.4	1.0	1.8	300.5	0.2	236.0	66.1	36.3
B875177	Rock	41	85	420.5 525.9	11.7	4.4	8.1	23.9	2.4 1.3	1.8 2.6	212.6	0.3	175.9	48.4	28.9
B875178 B875179	Rock	21 13	64 67	525.9 874.3	16.7 21.8	6.2 8.5	12.0 15.1	32.1	0.9	3.4	247.3 435.4	0.4 0.7	232.7 364.7	63.6	39.1 56.4
B875180 Dup	Rock Rock	13	69	874.3 858.9	21.8	8.5 8.9	14.9	46.0 46.9	0.9	3.4	433.4	0.7	359.4	101.8 97.9	57.0
В875181	Rock	18	98	422.1	13.4	5.2	11.0	26.5	1.6	2.1	199.2	0.7	189.3	51.5	31.7
B875182	Rock	35	129	>1000	27.2	7.6	27.5	104.9	3.1	3.4	>1000	0.5	>1000	405.6	105.8
B875183	Rock	22	207	829.2	27.2	10.6	18.8	51.7	4.0	4.6	440.2	0.8	368.9	99.8	62.1
B875184	Rock	19	92	735.9	32.5	13.1	17.5	53.7	2.0	5.6	390.4	0.9	334.4	89.0	60.7
B875185	Rock	14	82	951.5	30.8	11.7	18.7	59.7	3.3	5.1	479.8	0.9	439.1	118.1	70.2
B875186	Rock	13	158	>1000	32.5	12.4	20.6	65.8	1.1	5.2	514.7	1.0	488.8	128.6	77.1
B875187	Rock	16	101	>1000	36.9	13.4	24.8	83.4	2.2	5.6	890.5	1.0	728.1	196.6	109.5
B875188	Rock	23	144	>1000	78.1	14.0	103.1	409.6	1.4	7.3	>1000	0.8	>1000	>1000	485.0
B875189	Rock	24	161	>1000	41.8	15.2	32.8	109.7	3.1	6.4	>1000	1.1	>1000	333.5	119.2
B875190	Pulp	58	207	833.1	22.0	7.7	16.8	46.4	8.9	3.4	424.8	0.6	353.1	99.4	55.5
B875191	Rock	15	117	>1000	35.4	9.5	30.8	114.9	0.9	4.5	>1000	0.6	>1000	371.9	155.8
B875192	Rock	22	102	>1000	39.2	4.4	53.4	249.2	3.1	2.6	>1000	0.2	>1000	897.0	361.2
B875193	Rock	154	421	562.8	18.2	6.6	13.0	35.5	14.1	3.0	296.1	0.4	248.7	67.0	42.5
B875194	Rock	20	83	>1000	20.9	4.3	22.9	100.9	0.7	2.1	>1000	0.3	>1000	416.8	104.3
B875195	Rock	19	151	>1000	33.3	11.4	28.6	77.8	3.2	5.0	>1000	0.8	661.5	204.6	91.2
B875196	Rock	31	162	931.5	22.7	8.3	15.6	45.9	2.6	3.6	580.9	0.7	354.8	101.9	54.3
B875197	Rock	18	96	>1000	31.0	8.9	27.6	90.5	0.8	4.0	>1000	0.6	900.5	301.5	104.0
B875198	Rock	18	81	>1000	21.4	8.1	15.9	47.9	2.5	3.3	771.2	0.6	424.8	127.1	58.5
B875199	Rock	16	68	>1000	17.8	6.5	13.3	43.7	0.3	2.7	657.0	0.5	396.4	117.8	53.3
B875200 Dup	Rock	13	68	>1000	18.0	6.4	13.7	44.8	0.3	2.6	711.5	0.5	409.9	123.6	55.2
B875201	Rock	15	58	915.7	22.6	8.7	14.8	46.9	0.2	3.5	515.6	0.7	379.3	104.9	56.5

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		Zn	Zr	Ce	Dy	Er	Eu	Gd	Hf	Но	La	Lu	Nd	Pr	Sm
		30-4A-TR	30-4A-TR	REE-LB-MS											
Sample	Sample	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Description	Type	2	1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
B875202	Rock	23	75	>1000	29.0	12.7	16.4	51.4	1.3	5.0	660.4	0.9	393.2	115.0	58.2
B875203	Rock	19	70	>1000	27.0	10.8	17.4	57.1	0.9	4.5	842.3	0.8	519.8	150.4	70.7
B875204	Rock	18	73	>1000	29.8	11.8	22.0	72.0	3.4	4.9	>1000	0.8	683.0	217.2	81.3
B875205	Rock	28	61	682.6	14.1	5.2	9.9	28.6	2.8	2.1	414.4	0.4	247.5	73.7	35.1
B875206	Rock	17	58	659.2	16.4	6.2	10.9	32.4	2.2	2.5	370.4	0.4	270.2	75.0	40.7
B875207	Rock	20	31	285.1	8.1	3.0	5.5	15.9	< 0.1	1.2	142.7	< 0.1	121.6	32.9	19.4
B875208	Rock	13	94	>1000	24.4	8.0	23.2	70.8	1.4	3.4	>1000	0.7	686.1	224.0	83.9
B875209	Rock	22	42	578.1	12.5	4.2	8.9	28.5	1.0	1.8	331.2	0.2	239.9	65.8	38.2
B875210	Pulp	470	103	>1000	17.1	5.8	15.6	48.0	< 0.1	2.3	>1000	0.5	521.3	174.6	56.6
B875211	Rock	28	53	>1000	13.8	2.8	15.9	59.5	< 0.1	1.5	>1000	< 0.1	712.6	253.2	70.1
B875212	Rock	21	67	>1000	18.0	6.4	13.6	43.3	1.4	2.7	864.8	0.4	399.2	128.2	50.2
B875213	Rock	18	102	755.9	23.2	8.8	16.3	44.7	4.6	3.7	394.0	0.6	339.0	91.9	55.8
B875214	Rock	21	41	802.8	15.9	5.4	12.1	38.1	0.3	2.3	451.0	0.3	340.8	94.6	50.0
B875215	Rock	20	70	>1000	19.5	5.7	16.6	56.5	0.9	2.7	>1000	0.3	555.5	166.0	71.3
B875216	Rock	13	71	>1000	41.2	9.0	40.0	167.1	2.3	4.5	>1000	0.5	>1000	554.2	224.1
B875217	Rock	58	111	99.9	3.3	1.9	1.6	5.1	2.1	0.6	59.2	0.2	37.6	10.6	6.1
B875218	Rock	22	88	>1000	26.8	8.9	20.9	67.2	3.5	4.0	>1000	0.5	688.7	207.8	86.2
B875219	Rock	14	110	534.6	25.8	11.1	14.2	37.7	4.7	4.6	265.0	0.9	227.5	62.1	40.7
B875220 Dup	Rock	13	110	496.3	24.4	10.6	13.5	34.8	4.7	4.4	269.4	0.9	211.4	57.4	38.9
B875221	Rock	16	127	663.3	22.4	8.9	14.5	40.7	2.5	3.7	322.4	0.7	291.5	78.4	47.9
B875222	Rock	190	463	601.1	16.3	5.6	12.7	35.4	12.1	2.6	287.9	0.4	271.6	72.4	43.6
B875223	Rock	110	235	647.2	19.7	6.9	14.2	41.4	13.3	3.1	304.2	0.5	304.2	80.4	49.5
B875224	Rock	13	54	688.0	17.2	6.4	12.1	35.1	3.1	2.7	345.9	0.5	288.6	79.8	42.6
B875225	Rock	6	117	606.2	20.3	7.9	13.4	37.2	1.8	3.3	307.6	0.7	261.8	71.8	43.8
B875226	Rock	16	88	917.5	18.1	7.0	12.0	39.3	1.4	2.8	534.7	0.6	336.0	98.2	46.2
B875227	Rock	14	44	564.7	19.5	7.9	11.6	35.5	0.9	3.2	283.9	0.6	243.6	66.3	39.9
B875228	Rock	18	47	522.2	16.5	6.6	10.4	30.7	0.5	2.7	261.2	0.5	219.9	61.7	36.4
B875229	Rock	11	32	792.7	15.4	6.1	10.3	35.1	< 0.1	2.4	440.3	0.5	300.4	88.3	43.0
B875230	Pulp	37	196	846.4	22.7	9.5	15.9	48.8	1.0	3.5	405.9	0.4	351.0	95.0	57.3
B875231	Rock	11	251	566.6	14.3	5.8	8.3	30.5	< 0.1	2.0	293.3	0.2	229.3	63.1	36.6
B875232	Rock	21	243	486.6	12.9	4.6	8.1	28.2	< 0.1	1.7	247.2	< 0.1	205.5	54.2	35.6
B875233	Rock	14	214	710.3	16.4	6.6	9.6	33.4	< 0.1	2.4	358.0	0.1	271.5	77.5	40.5
B875234	Rock	17	277	>1000	14.4	4.5	10.4	45.4	< 0.1	1.7	586.5	< 0.1	450.0	130.7	58.2
B875235	Rock	15	237	823.9	20.4	8.1	12.9	40.0	< 0.1	2.9	397.6	< 0.1	332.3	93.2	48.8

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		Tb	Tm	Yb	Y	Ta	Th	U
			REE-LB-MS			Ta-4A-LL-MS		U-4A-LL-MS
Sample	Sample	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Description	Type	0.1	0.1	0.1	0.10	0.05	0.2	0.1
 B875162	Rock	4.7	0.8	4.3	84.7	27.11	103.7	9.0
B875163	Rock	8.5	1.5	7.8	155.4	38.60	218.7	11.4
B875164	Rock	6.2	1.2	5.9	129.4	5.02	136.4	3.5
B875165	Rock	2.4	0.5	3.2	47.6	14.62	58.8	4.6
B875166	Rock	2.3	0.4	2.7	43.7	12.43	29.3	4.3
B875167	Rock	3.1	0.6	3.3	58.1	7.52	78.3	3.6
B875168	Rock	3.5	0.7	4.2	75.1	9.10	151.6	4.8
B875169	Rock	7.1	1.2	6.0	121.9	8.50	129.4	5.2
B875170	Pulp	4.3	0.8	5.0	77.9	20.87	157.8	9.9
B875171	Rock	2.3	0.4	2.9	44.9	5.44	41.4	3.6
B875172	Rock	5.9	1.1	6.3	108.8	59.70	191.0	22.4
B875173	Rock	3.3	0.7	4.4	68.9	171.76	225.1	31.8
B875174	Rock	3.7	0.6	3.8	69.5	9.08	94.9	4.7
B875175	Rock	2.5	0.5	3.8		20.43	45.9	25.6
B875176	Rock	2.7	0.4	2.4	44.5	1.43	43.7	1.8
B875177	Rock	2.3	0.4	3.1	46.6	10.93	63.7	7.3
B875178	Rock	3.6	0.7	3.9		3.35	130.3	6.4
B875179	Rock	4.3	1.0	6.1	90.3	46.99	268.8	6.7
B875180 Dup	Rock	4.7	1.1	5.9	93.5	44.21	272.5	7.1
B875181	Rock	2.8	0.5	3.2		122.70	271.7	109.4
B875182	Rock	5.2	0.8	5.1	87.8	47.68	104.0	15.9
B875183	Rock	5.8	1.3	6.9	115.5	67.52	172.4	33.9
B875184	Rock	6.5	1.5	8.1	141.3	8.70	270.7	7.8
B875185	Rock	6.2	1.3	7.1	125.1	5.96	117.3	5.2
B875186	Rock	6.7	1.5	8.5		6.84	195.6	5.3
B875180		7.5	1.6	8.8		1.64	242.1	
B875188	Rock Rock	16.7	1.5	8.9	173.1	17.62	122.6	7.6 13.5
B875189	Rock	8.0	1.8	9.6		26.95	417.7	15.5
B875190	Pulp	4.5	0.9	5.4	85.6	30.29	290.4	8.4
B875191	Rock	7.2	1.1	6.2		65.97	261.4	13.5
B875192	Rock	8.5	0.4	3.9	70.8	22.42	46.8	15.0
B875193	Rock	3.9	0.7	4.2		160.94	143.5	138.0
B875194	Rock	3.8	0.5	3.2		9.53	43.5	10.5
B875195	Rock	6.8	1.3	7.3		130.66	170.2	50.8
B875196	Rock	4.6	1.0	5.9		126.94	137.3	99.3
B875197	Rock	6.1	1.0	5.7		64.61	155.7	27.5
B875198	Rock	4.2	0.9	5.5	83.0	13.60	144.1	9.5
B875199	Rock	3.5	0.8	4.9	65.6	9.19	70.6	9.5
B875200 Dup	Rock	3.5	0.7	4.9	66.1	9.25	76.9	9.6
B875201	Rock	4.5	1.1	6.0	88.7	3.73	145.0	4.4

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		Tb	Tm	Yb	Y	Ta	Th	U
			REE-LB-MS	REE-LB-MS	REE-LB-MS	Ta-4A-LL-MS	Th-4A-LL-MS	U-4A-LL-MS
Sample	•	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Description		0.1	0.1	0.1	0.10	0.05	0.2	0.1
B875202		5.5	1.5	8.4	124.6	6.98	191.8	15.4
B875203		5.0	1.3	7.1	110.3	13.88	143.8	11.9
B875204		5.6	1.4	8.0	120.3	12.79	255.1	28.3
B875205		2.6	0.6	3.6	55.0	0.62	88.5	3.4
B875206	6 Rock	3.1	0.7	4.4	66.4	0.59	76.2	3.5
B875207	7 Rock	1.6	0.2	1.8	32.7	0.28	48.0	1.0
B875208	8 Rock	5.0	0.9	5.7	89.3	2.34	107.6	5.6
B875209	9 Rock	2.5	0.4	2.3	47.3	2.22	69.1	3.9
B875210		3.1	0.7	4.7	66.1	36.01	43.1	27.9
B875211		2.5	0.2	2.0	37.5	1.16	54.1	2.7
B875212		3.5	0.7	4.2	68.1	3.00	138.1	5.5
B875213		4.6	1.0	5.9	92.1	5.77	128.8	8.7
B875214		3.3	0.5	3.4	57.9	1.08	68.2	2.1
B875215		3.9	0.6	3.5	71.0	4.82	102.6	4.7
B875216		8.8	0.9	5.6	123.3	6.30	77.0	5.8
B875217		0.5	0.9	2.1	19.5	1.41	10.0	3.9
B875218		5.3	1.0	5.6	96.1	4.91	148.8	5.8
B875219								
		5.0	1.3	7.5	116.9	16.58	196.8	21.4
B875220 Dup		4.6	1.2	7.0	112.5	17.30	201.7	22.0
B875221		4.6	1.0	6.0	93.9	93.94	189.9	94.2
B875222		3.5	0.6	3.8	66.3	102.91	188.2	81.7
B875223		4.2	0.7	4.5	75.7	21.85	147.8	187.7
B875224		3.4	0.7	4.6	69.3	6.63	138.1	5.4
B875225		4.0	0.9	6.0	86.4	186.10	237.7	110.8
B875226		3.4	0.8	5.1	76.5	105.62	196.9	63.6
B875227		3.9	1.0	5.5	82.7	0.30	39.6	10.9
B875228	8 Rock	3.4	0.7	4.6	69.8	8.97	67.8	13.9
B875229	9 Rock	3.0	0.6	4.2	62.5	9.32	41.3	3.6
B875230	O Pulp	4.3	0.8	5.9	103.7	44.04	183.7	2.3
B875231	l Rock	2.1	0.3	3.8	62.4	10.12	33.8	5.6
B875232	2 Rock	2.2	0.1	2.6	56.8	2.03	72.0	2.5
B875233		2.7	0.3	3.9	70.2	17.60	160.3	6.3
B875234		2.4	< 0.1	2.9	55.1	25.34	203.6	12.9
B875235		3.2	0.5	4.9	89.9	34.39	282.0	18.2

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		Nb2O5 Nb2O5-AD3-OR-ICP	Al2O3 WR-FS-ICP	BaO WR-FS-ICP	CaO WR-FS-ICP	Cr2O3 WR-FS-ICP	Fe2O3 WR-FS-ICP	K2O WR-FS-ICP	LOI WR-FS-ICP	MgO WR-FS-ICP	MnO WR-FS-ICP	Na2O WR-FS-ICP	P2O5 WR-FS-ICP	SiO2 WR-FS-ICP	TiO2 WR-FS-ICP
Sample	Sample	%	WK-13-ICI %	WK-13-ICI %	% K-13-1C1	WK-13-ICI %	WK-1-5-1C1 %	WK-1-5-1C1 %	WK-1-5-1C1 %	WK-13-1C1 %	WK-13-ICI %	WK-13-1C1 %	WK-1-5-1C1 %	WK-13-ICI %	WK-13-1C1 %
Description	Туре	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
B875162	Rock	0.21													
B875162 Dup		0.20													
QCV1011-00355-0002-BLK		< 0.01													
STD-OKA-1 expected		0.53													
STD-OKA-1 result		0.56													
B875180 Dup	Rock	0.14													
B875180 Dup Dup		0.13													
QCV1011-00355-0005-BLK		< 0.01													
STD-OKA-1 expected		0.53													
STD-OKA-1 result		0.53													
B875198	Rock	0.32													
B875198 Dup		0.34													
QCV1011-00355-0008-BLK		< 0.01													
STD-OKA-1 expected		0.53													
STD-OKA-1 result		0.54													
B875216	Rock	0.45													
B875216 Dup		0.44													
QCV1011-00355-0011-BLK		< 0.01													
STD-OKA-1 expected		0.53													
STD-OKA-1 result		0.53													
B875234	Rock	0.17													
B875234 Dup		0.18													
QCV1011-00355-0014-BLK		< 0.01													
STD-OKA-1 expected		0.53													
STD-OKA-1 result		0.54													
B875162	Rock		0.16	< 0.01	35.50	< 0.01	4.87	0.01	39.02	13.99	0.77	0.04	5.59	< 0.01	0.03
B875162 Dup			0.15	< 0.01	35.52	< 0.01	4.92	0.01	39.06	13.91	0.77	0.04	5.60	< 0.01	0.02
QCV1011-00359-0002-BLK			< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
B875180 Dup	Rock		0.25	< 0.01	33.39	< 0.01	4.32	0.07	39.31	15.47	0.36	0.03	5.32	1.77	0.03
B875180 Dup Dup			0.25	< 0.01	33.39	< 0.01	4.33	0.07	39.36	15.36	0.36	0.03	5.29	1.74	0.03
QCV1011-00359-0005-BLK			< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
B875198	Rock		0.14	< 0.01	33.40	< 0.01	5.68	0.04	37.90	15.79	0.63	0.07	4.25	1.23	0.04
B875198 Dup			0.14	< 0.01	33.58	< 0.01	5.72	0.04	37.96	15.43	0.63	0.07	4.31	1.24	0.04
QCV1011-00359-0008-BLK			< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
B875216	Rock		0.24	< 0.01	34.40	< 0.01	5.71	0.04	36.94	14.92	0.42	0.04	3.61	2.67	0.06
B875216 Dup			0.25	< 0.01	34.46	0.01	5.87	0.07	36.95	14.67	0.42	0.04	3.76	2.55	0.07
QCV1011-00359-0011-BLK			< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
B875234	Rock		0.19	< 0.01	33.62	0.01	4.09	0.05	41.99	16.81	0.66	0.05	1.67	0.52	0.01
B875234 Dup			0.17	< 0.01	33.18	< 0.01	4.04	0.03	41.83	16.90	0.65	0.04	1.70	0.54	< 0.01
QCV1011-00359-0014-BLK			< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

			Nb2O5	Al2O3	BaO	CaO	Cr2O3	Fe2O3	K2O	LOI	MgO	MnO	Na2O	P2O5	SiO2	TiO2
			Nb2O5-AD3-OR-ICP	WR-FS-ICP												
	Sample	Sample	%	%	%	%	%	%	%	%	%	%	%	%	%	%
	Description	Type	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
STD	D-SY-4 expected			20.69		8.05		6.21	1.66	4.56	0.54	0.11	7.10	0.13	49.90	0.29
S	STD-SY-4 result			20.89	0.04	8.12	< 0.01	6.63	1.76	4.48	0.54	0.13	7.60	0.14	50.15	0.31

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

			Total	Ag	Al	As	Ba	Bi	Ca	Cd	Co	Cr	Cu	Fe	K	La
	C1-	C1-	WR-FS-ICP %	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR
	Sample Description	Sample Type	0.01	ppm 0.5	% 0.01	ppm 5	ppm 10	ppm 2	% 0.01	ppm 0.5	ppm 1	ppm 1	ppm 1	% 0.01	% 0.01	ppm 10
	B875162	Rock	0.01	<0.5	0.01	52	61	<2	>10	<0.5	6	13	34	3.33	< 0.01	485
	B875162 Dup			<0.5	0.08	50	60	<2	>10	< 0.5	7	13	34	3.27	< 0.01	535
	QCV1011-00356-0002-BLK			< 0.5	< 0.01	<5	<10	<2	< 0.01	< 0.5	<1	<1	<1	< 0.01	< 0.01	<10
STE	-OREAS-45P-4A expected			0.3							122	1103	749			
S	TD-OREAS-45P-4A result			< 0.5							118	1090	704			
	B875180 Dup	Rock		< 0.5	0.14	8	39	<2	>10	< 0.5	5	10	24	2.77	0.05	368
	B875180 Dup Dup			< 0.5	0.13	5	38	<2	>10	< 0.5	5	8	24	2.71	0.06	358
	QCV1011-00356-0005-BLK			<0.5	< 0.01	<5	<10	<2	< 0.01	< 0.5	<1	<1	<1	< 0.01	< 0.01	<10
	STD-CDN-ME-8 expected			61.7									1030			
	STD-CDN-ME-8 result B875198	Rock		61.5 <0.5	0.07	8	23	<2	>10	<0.5	-	8	1061 54	3.72	0.03	400
	B875198 Dup	ROCK		<0.5 <0.5	0.07	8	23	<2	>10	<0.5 <0.5	6 6	8 9	54 53	3.72	0.03	490 511
	OCV1011-00356-0008-BLK			<0.5	< 0.01	<5	<10	<2	< 0.01	<0.5	<1	<1	<1	< 0.01	< 0.01	<10
	B875216	Rock		<0.5	0.14	<5	32	<2	>10	< 0.5	10	14	69	3.51	0.04	3990
	B875216 Dup			< 0.5	0.15	7	25	<2	>10	< 0.5	11	11	71	3.57	0.04	3341
	QCV1011-00356-0011-BLK			< 0.5	< 0.01	<5	<10	<2	< 0.01	< 0.5	<1	<1	<1	< 0.01	< 0.01	<10
	STD-CDN-ME-8 expected			61.7									1030			
	STD-CDN-ME-8 result			62.3									1082			
	B875234	Rock		< 0.5	0.10	<5	38	<2	>10	0.6	10	3	13	2.62	< 0.01	632
	B875234 Dup			< 0.5	0.08	<5	34	<2	>10	< 0.5	4	<1	17	2.44	< 0.01	568
	QCV1011-00356-0014-BLK			< 0.5	< 0.01	<5	<10	<2	< 0.01	< 0.5	<1	<1	<1	< 0.01	< 0.01	<10
	STD-CDN-ME-6 expected			101.0									6130			
	STD-CDN-ME-6 result	ъ	00.00	97.1									6074			
	B875162	Rock	99.98													
	B875162 Dup QCV1011-00359-0002-BLK		100.01													
	B875180 Dup	Rock	100.32													
	B875180 Dup Dup	ROCK	100.21													
	QCV1011-00359-0005-BLK		< 0.01													
	B875198	Rock	99.16													
	B875198 Dup		99.16													
	QCV1011-00359-0008-BLK		< 0.01													
	B875216	Rock	99.06													
	B875216 Dup		99.12													
	QCV1011-00359-0011-BLK		<0.01													
	B875234	Rock	99.68													
	B875234 Dup QCV1011-00359-0014-BLK		99.10													
	STD-SY-4 expected		< 0.01													
	STD-SY-4 expected STD-SY-4 result		100.80													
	STD-ST-4 lesuit		100.60													

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		Mg	Mn	Мо	Na	Ni	P	Pb	Sb	Sc	Sr	Ti	Tl	V	W
		30-4A-TR													
Sample	Sample	%	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm
Description	Type	0.01	5	1	0.01	1	10	2	5	1	1	0.01	10	1	10
B875162	Rock	8.37	4991	<1	0.02	<1	>10000	95	<5	6	3907	< 0.01	<10	8	<10
B875162 Dup		8.47	4893	<1	0.02	<1	>10000	93	<5	6	3841	< 0.01	<10	7	<10
QCV1011-00356-0002-BLK		< 0.01	<5	<1	< 0.01	<1	<10	<2	<5	<1	<1	< 0.01	<10	<1	<10
TD-OREAS-45P-4A expected					0.08	385	454	22							
STD-OREAS-45P-4A result					0.08	347	471	18							
B875180 Dup	Rock	9.04	2437	<1	0.02	<1	>10000	68	<5	4	598	0.01	<10	24	<10
B875180 Dup Dup		9.26	2415	<1	0.02	<1	>10000	66	<5	4	586	0.01	<10	24	<10
QCV1011-00356-0005-BLK		< 0.01	<5	<1	< 0.01	<1	<10	<2	<5	<1	<1	< 0.01	<10	<1	<10
B875198	Rock	8.96	4167	4	0.04	<1	>10000	139	<5	6	1896	0.01	<10	29	<10
B875198 Dup		8.91	4178	4	0.04	<1	>10000	141	<5	6	1898	0.01	<10	28	<10
QCV1011-00356-0008-BLK		< 0.01	<5	<1	< 0.01	<1	<10	<2	<5	<1	<1	< 0.01	<10	<1	<10
B875216	Rock	9.43	2677	6	0.03	<1	>10000	177	<5	23	949	0.02	<10	69	<10
B875216 Dup		9.60	2732	6	0.03	<1	>10000	177	<5	22	944	0.02	<10	70	<10
QCV1011-00356-0011-BLK		< 0.01	<5	<1	< 0.01	<1	<10	<2	<5	<1	<1	< 0.01	<10	<1	<10
B875234	Rock	>10	4137	<1	0.03	<1	6942	74	<5	16	1877	< 0.01	<10	41	<10
B875234 Dup		>10	3827	2	0.03	<1	6465	59	<5	15	1730	< 0.01	<10	49	<10
QCV1011-00356-0014-BLK		< 0.01	<5	<1	< 0.01	<1	<10	<2	<5	<1	<1	< 0.01	<10	<1	<10
STD-CDN-ME-6 expected								10200							
STD-CDN-ME-6 result								9856							

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

			Zn	Zr	Ce	Dy	Er	Eu	Gd	Hf	Но	La	Lu	Nd	Pr	Sm
			30-4A-TR		REE-LB-MS											REE-LB-MS
	Sample	Sample	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
	Description	Туре	2	1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
	B875162	Rock	29	68												
	B875162 Dup QCV1011-00356-0002-BLK		28 <2	67												
CTD	-OREAS-45P-4A expected		142	<1												
	TD-OREAS-45P-4A result		141													
	B875180 Dup	Rock	13	69												
	B875180 Dup Dup	ROCK	13	68												
	QCV1011-00356-0005-BLK		<2	<1												
	B875198	Rock	18	81												
	B875198 Dup		18	90												
	QCV1011-00356-0008-BLK		<2	<1												
	B875216	Rock	13	71												
	B875216 Dup		13	74												
	QCV1011-00356-0011-BLK		<2	<1												
	B875234	Rock	17	277												
	B875234 Dup		15	243												
	QCV1011-00356-0014-BLK		<2	<1												
	STD-CDN-ME-6 expected		5170													
	STD-CDN-ME-6 result		5443													
	B875162	Rock			>1000	22.2	7.5	15.8	50.6	1.0	3.3	642.0	0.4	403.7	118.3	57.0
	B875162 Dup				>1000	21.3	7.2	15.5	47.2	1.0	3.3	638.2	0.4	399.2	115.9	54.2
	QCV1011-00357-0002-BLK	D 1			<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
	B875180 Dup B875180 Dup Dup	Rock			858.9 856.6	22.5 22.2	8.9 8.6	14.9 14.9	46.9 45.4	0.9 0.9	3.6 3.7	431.7 426.6	0.7 0.7	359.4 362.4	97.9 99.6	57.0 56.1
	OCV1011-00357-0005-BLK				<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
	B875198	Rock			>1000	21.4	8.1	15.9	47.9	2.5	3.3	771.2	0.6	424.8	127.1	58.5
	B875198 Dup	NOCK			>1000	22.2	8.2	16.5	49.3	2.5	3.4	777.6	0.6	431.2	130.7	59.6
	OCV1011-00357-0008-BLK				<0.1	< 0.1	<0.1	<0.1	<0.1	< 0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
	B875216	Rock			>1000	41.2	9.0	40.0	167.1	2.3	4.5	>1000	0.5	>1000	554.2	224.1
	B875216 Dup				>1000	42.8	9.3	41.2	172.8	2.4	4.8	>1000	0.5	>1000	572.1	230.1
	QCV1011-00357-0011-BLK				< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
	B875234	Rock			>1000	14.4	4.5	10.4	45.4	< 0.1	1.7	586.5	< 0.1	450.0	130.7	58.2
	B875234 Dup				>1000	14.2	4.1	10.3	44.8	< 0.1	1.5	578.3	< 0.1	449.6	129.0	57.8
	QCV1011-00357-0014-BLK				< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
	STD-SY-4 expected				122.0	18.2	14.2	2.0	14.0	10.6	4.3	58.0	2.1	57.0	15.0	12.7
	STD-SY-4 result				126.9	18.7	15.0	2.2	14.9	11.3	4.5	61.3	2.2	60.7	15.7	13.2

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		Tb	Tm	Yb	Y	Ta	Th	U
		REE-LB-MS	REE-LB-MS	REE-LB-MS	REE-LB-MS	Ta-4A-LL-MS	Th-4A-LL-MS	U-4A-LL-MS
Sample	Sample	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Description	Type	0.1	0.1	0.1	0.10	0.05	0.2	0.1
B875162	Rock	4.7	0.8	4.3	84.7			
B875162 Dup		4.4	0.7	4.3	78.4			
QCV1011-00357-0002-BLK		< 0.1	< 0.1	< 0.1	< 0.10			
B875180 Dup	Rock	4.7	1.1	5.9	93.5			
B875180 Dup Dup		4.5	1.0	6.1	92.6			
QCV1011-00357-0005-BLK		< 0.1	< 0.1	< 0.1	< 0.10			
B875198	Rock	4.2	0.9	5.5	83.0			
B875198 Dup		4.5	0.9	5.7	86.1			
QCV1011-00357-0008-BLK		< 0.1	< 0.1	< 0.1	< 0.10			
B875216	Rock	8.8	0.9	5.6	123.3			
B875216 Dup		9.1	1.0	6.0	126.0			
QCV1011-00357-0011-BLK		< 0.1	< 0.1	< 0.1	< 0.10			
B875234	Rock	2.4	< 0.1	2.9	55.1			
B875234 Dup		2.3	< 0.1	3.2	56.3			
QCV1011-00357-0014-BLK		< 0.1	< 0.1	< 0.1	< 0.10			
STD-SY-4 expected		2.6	2.3	14.8	119.0			
STD-SY-4 result		2.8	2.4	15.7	124.7			
B875162	Rock	2.0	2	-5.7	,	27.11	103.7	9.0
B875162 Dup						26.22	120.5	9.0
QCV1103-01175-0002-BLK						< 0.05	<0.2	<0.1
B875180 Dup	Rock					44.21	272.5	7.1
B875180 Dup Dup	ROCK					43.02	273.8	6.5
QCV1103-01175-0005-BLK						< 0.05	<0.2	<0.1
B875198	Rock					13.60	144.1	9.5
B875198 Dup	NOCK					13.43	158.9	9.9
QCV1103-01175-0008-BLK						< 0.05	<0.2	<0.1
B875216	Rock					6.30	77.0	5.8
B875216 Dup	NOCK					6.40	69.0	6.1
QCV1103-01175-0011-BLK						< 0.05	<0.2	<0.1
B875234	Rock					25.34	203.6	<0.1 12.9
	KOCK							
B875234 Dup						26.10	194.6	13.5
QCV1103-01175-0014-BLK						< 0.05	< 0.2	< 0.1

Inspectorate Exploration & Mining Services Ltd. #200 - 11620 Horseshoe Way

Date Received: 11/12/2010

Date Completed: 03/16/2011

Invoice:

Richmond, British Columbia V7A 4V5 Canada

Phone: 604-272-7818

Distribution List

Attention: Eric Titley

Suite 1020-800 West Pender St.

Vancouver, BC V6C 2V6

EMail: erictitley@hdimining.com

Attention: Jeremy Crozier

EMail: jeremycrozier@hdimining.com

Attention: T.Kodata

EMail: tkodata@hdimining.com

Submitted By: Aley Corporation

Suite 1020-800 West Pender St.

Vancouver, BC V6C 2V6

Attention: Eric Titley

Project: Aley 2010 Project

Purchase Order: **ALY 0002**Description: **Aley 2010-026**

LocationSamplesTypePreparation DescriptionVancouver, BC72RockSP-RX-2K/Rock/Chips/Drill Core

Location	Method	Description
Vancouver, BC	REE-LB-MS	REE Group by ICP-MS
Vancouver, BC	Nb2O5-AD3-OR-ICP	Niobium by multi-acid digestion, ICP
Vancouver, BC	Ta-4A-LL-MS	Tantalum, 4 Acid, ICP
Vancouver, BC	Th-4A-LL-MS	Thorium, 4 Acid, Low Level
Vancouver, BC	30-4A-TR	30 Element, 4 Acid, ICP, Trace Level
Vancouver, BC	U-4A-LL-MS	Uraium, 4 Acid, Low Level
Vancouver, BC	WR-FS-ICP	Whole Rock, Lithium Borate Fusion, ICP

Submittal Information

Uranium (U), Tantalum (Ta), and Thorium (Th) numbers shown have been revised with accurate detection limits.

The results of this assay were based solely upon the content of the sample submitted. Any decision to invest should be made only after the potential investment value of the claim or deposit has been determined based on the results of assays of multiple samples of geologic materials collected by the prospective investor or by a qualified person selected by him and based on an evaluation of all engineering data which is available concerning any proposed project. For our complete terms and conditions please see our website at www.inspectorate.com.

By

Mike Caron, Lab Manager

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		Nb2O5	Al2O3	BaO	CaO	Cr2O3	Fe2O3	K2O	LOI	MgO	MnO	Na2O	P2O5	SiO2	TiO2
		Nb2O5-AD3-OR-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP
Sample	Sample	%	%	%	%	%	%	%	%	%	%	%	%	%	%
Description	Туре	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
B875236	Rock	0.43	0.30	< 0.01	32.75	< 0.01	4.58	0.02	38.77	14.81	0.70	0.04	5.39	1.16	0.07
B875237	Rock	0.55	0.28	< 0.01	35.17	< 0.01	5.03	0.02	37.29	12.10	0.78	0.04	6.49	1.45	0.03
B875238 B875239	Rock	0.52	0.22 0.28	< 0.01	34.07 36.90	<0.01 <0.01	4.45	0.03	39.00	14.22 12.88	0.81 0.90	0.04	5.61	0.49	0.01 0.07
	Rock	0.41		< 0.01		<0.01	5.21	0.04	37.84		0.90	0.04	5.58	0.82 0.74	0.07
B875240 Dup	Rock	0.42	0.27	< 0.01	33.91		5.20	0.03	38.89	12.12		0.04	5.36		
B875241 B875242	Rock	0.67 0.49	0.38 0.44	<0.01 <0.01	36.01 33.52	<0.01 0.01	7.94 8.78	0.04 0.09	34.44 36.42	12.16 12.94	0.75 0.74	0.05 0.05	6.34	1.31 1.65	0.19 0.27
	Rock												5.33		0.27
B875243 B875244	Rock Rock	<0.01 0.44	16.12 0.55	0.13 <0.01	4.24 31.82	0.03 <0.01	3.70 7.05	3.82 0.16	1.16	1.48 15.40	0.13 0.45	3.71 0.11	0.32	66.09	0.45
B875245	Rock	0.44	0.33	<0.01	33.90	<0.01	5.94	0.16	35.57 37.62	14.54	0.43	0.11	5.43 4.94	2.25 1.07	0.28
B875246	Rock	0.64	0.31	<0.01	32.60	< 0.01	7.20	0.08	34.75	14.34	0.70	0.08	6.98	1.07	0.08
B875247	Rock	0.53	0.40	< 0.01	33.07	< 0.01	4.59	0.10	34.73	16.15	0.65	0.09	5.32	0.41	0.12
B875248	Rock	0.29	0.23	< 0.01	34.44	< 0.01	4.10	0.04	38.40	14.96	0.55	0.07	5.16	1.47	0.05
B875249	Rock	0.29	0.44	< 0.01	37.78	< 0.01	4.10	0.06	36.46	12.91	0.66	0.10	7.17	0.61	0.05
B875250 Dup	Rock	0.34	0.31	<0.01	36.99	<0.01	4.66	0.04	36.09	14.23	0.64	0.07	7.17	0.61	0.05
B875251	Rock	0.36	0.31	< 0.01	35.09	< 0.01	4.66	0.04	38.61	13.56	0.68	0.07	4.86	0.02	0.03
B875252	Rock	0.47	0.22	< 0.01	35.59	< 0.01	4.88	0.03	37.30	13.82	0.08	0.05	6.33	0.93	0.03
B875253	Rock	0.47	0.27	< 0.01	32.87	< 0.01	4.41	0.02	39.80	16.98	0.52	0.03	3.57	0.72	0.03
B875254	Rock	0.59	0.22	< 0.01	34.33	< 0.01	5.40	0.03	36.44	15.08	0.58	0.04	6.28	0.04	0.03
B875255	Rock	0.48	0.30	<0.01	34.33	< 0.01	5.12	0.04	37.04	14.29	0.58	0.00	5.82	0.93	0.03
B875256	Rock	0.48	0.27	< 0.01	34.78	< 0.01	4.70	0.04	37.04	14.23	0.83	0.03	6.42	0.72	0.03
B875257	Rock	0.13	1.47	< 0.01	30.39	< 0.01	5.31	0.02	37.50	14.23	0.83	0.03	3.66	4.78	0.02
B875258	Rock	0.12	0.41	< 0.01	32.43	< 0.01	5.23	0.11	36.99	15.45	0.71	0.04	5.90	1.58	0.25
B875259	Rock	0.10	0.41	< 0.01	34.99	< 0.01	4.91	0.03	37.71	14.07	0.03	0.04	6.01	0.53	0.03
B875260 Dup	Rock	0.11	0.40	< 0.01	33.57	< 0.01	4.64	0.03	37.71	14.34	0.55	0.04	5.68	0.55	0.03
B875261	Rock	0.17	0.88	0.01	34.71	< 0.01	6.64	0.03	33.76	14.20	0.33	0.03	7.01	1.20	0.03
B875262	Rock	0.25	0.34	< 0.01	36.34	< 0.01	6.09	0.06	34.35	13.94	0.42	0.04	7.81	0.29	0.05
B875263	Rock	0.77	0.48	< 0.01	34.38	< 0.01	7.41	0.04	32.63	12.83	0.39	0.05	7.41	2.94	0.09
B875264	Rock	0.80	0.37	0.03	37.75	< 0.01	13.48	0.07	31.22	10.00	0.45	0.07	5.56	2.11	0.14
B875265	Rock	0.45	0.49	< 0.01	34.84	< 0.01	7.94	0.09	33.02	13.63	0.39	0.06	6.87	2.18	0.12
B875266	Rock	0.12	0.51	< 0.01	32.06	< 0.01	4.57	0.06	37.36	17.33	0.40	0.07	4.67	2.14	0.10
B875267	Rock	0.07	0.31	< 0.01	32.82	< 0.01	4.58	0.03	32.88	15.39	0.36	0.11	8.19	5.20	0.06
B875268	Rock	0.01	0.42	< 0.01	33.46	< 0.01	4.07	0.04	36.03	16.17	0.35	0.13	6.96	2.10	0.04
B875269	Rock	0.21	0.64	< 0.01	34.77	< 0.01	4.15	0.05	36.80	14.70	0.37	0.14	5.81	3.03	0.12
B875270 Dup	Rock	0.17	0.57	< 0.01	32.32	< 0.01	3.78	0.05	36.86	15.02	0.35	0.13	5.42	2.77	0.12
B875271	Rock	0.10	1.93	0.05	31.77	< 0.01	6.59	0.91	31.39	13.98	0.94	1.04	2.03	14.04	0.12
B875272	Rock	0.06	0.48	< 0.01	33.59	< 0.01	3.22	0.03	38.58	14.97	0.35	0.11	4.52	2.48	0.15
B875273	Rock	0.08	0.77	< 0.01	33.43	< 0.01	2.43	0.05	38.36	15.31	0.36	0.09	4.05	5.41	0.07
B875274	Rock	0.01	0.68	< 0.01	36.07	< 0.01	2.83	0.04	37.42	14.00	0.34	0.14	5.15	4.48	0.05
B875275	Rock	0.04	0.56	< 0.01	36.25	< 0.01	2.32	0.04	39.08	14.47	0.30	0.11	4.61	3.39	0.07

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		Nb2O5	A12O3	BaO	CaO	Cr2O3	Fe2O3	K2O	LOI	MgO	MnO	Na2O	P2O5	SiO2	TiO2
		Nb2O5-AD3-OR-ICP	WR-FS-ICP												
Samp	ole Sample	%	%	%	%	%	%	%	%	%	%	%	%	%	%
Description	on Type	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
B8752		0.06	0.75	< 0.01	32.14	< 0.01	3.41	0.04	37.51	17.65	0.33	0.06	4.64	3.65	0.21
B8752	77 Rock	0.05	8.49	0.13	15.84	0.02	11.07	1.55	15.19	10.76	0.41	1.94	0.92	33.93	1.97
B8752		0.03	1.91	0.03	28.10	< 0.01	5.21	0.20	31.52	13.98	0.45	0.64	1.69	15.76	0.22
B8752	79 Rock	0.09	0.74	< 0.01	35.67	< 0.01	4.85	0.03	31.07	13.23	0.33	0.06	8.94	3.21	0.27
B875280 Dr	•	0.11	0.77	< 0.01	37.35	< 0.01	4.96	0.02	31.57	13.07	0.36	0.06	9.32	3.29	0.26
B8752		0.10	0.45	< 0.01	34.95	< 0.01	4.24	0.02	39.13	16.69	0.47	0.04	4.49	1.15	0.10
B8752		0.10	0.32	< 0.01	32.46	< 0.01	6.38	0.03	38.66	16.42	0.70	0.03	2.77	0.75	0.06
B8752		0.06	7.32	0.04	15.00	0.01	9.96	0.54	19.12	13.25	0.45	0.82	1.02	31.02	1.82
B8752		0.09	9.99	0.01	12.86	0.01	9.71	0.12	18.08	15.26	0.24	0.15	1.38	31.54	2.07
B87528		0.10	3.81	< 0.01	28.06	0.01	6.54	0.04	26.20	15.07	0.31	0.04	8.34	12.28	0.72
B87528		0.07	6.56	0.08	19.84	0.01	9.05	1.51	18.94	10.98	0.39	1.48	1.67	27.43	1.63
B87528		0.09	0.75	< 0.01	32.88	< 0.01	4.31	0.02	37.68	16.65	0.38	0.06	3.11	5.42	0.09
B87528		0.06	0.52	0.06	47.87	< 0.01	2.58	0.20	36.72	6.57	0.37	0.14	4.10	2.50	0.08
B8752		0.08	0.36	0.05	46.67	< 0.01	4.00	0.16	34.12	7.02	0.33	0.23	5.90	3.18	0.16
B875290 D	•	0.09	0.39	0.05	44.81	< 0.01	4.40	0.16	34.16	7.09	0.36	0.23	6.02	3.35	0.18
B87529		0.11	1.58	0.07	33.08	< 0.01	6.04	1.09	24.57	11.03	0.53	1.63	5.50	16.17	0.25
B87529		0.35	1.75	0.03	32.71	< 0.01	5.53	0.35	25.08	10.53	0.39	0.52	8.35	16.13	0.23
B87529		0.28	0.43	< 0.01	34.45	< 0.01	3.91	0.03	38.41	16.55	0.42	0.05	4.79	2.31	0.03
B87529		0.09	0.31	< 0.01	36.24	< 0.01	2.76	0.05	39.32	15.38	0.67	0.08	4.11	2.79	0.02
B87529		0.11	2.18	0.08	25.85	< 0.01	6.08	1.94	13.98	11.06	0.39	3.38	3.76	33.49	0.26
B87529		0.03	2.50	0.06	21.31	< 0.01	6.59	1.47	9.00	11.53	0.44	3.87	1.89	43.37	0.25
B87529		0.12	3.25	0.02	30.82	0.01	6.50	0.86	30.54	11.28	0.74	0.54	2.73	14.13	0.43
B87529		0.18	2.46	0.08	42.52	< 0.01	5.22	0.71	30.21	5.57	0.38	1.01	3.32	10.16	0.39
B87529		0.24	0.50	< 0.01	37.63	< 0.01	4.50	0.02	37.33	14.19	0.41	0.04	5.35	1.58	0.05
B875300 D	•	0.25	0.51	< 0.01	38.45	< 0.01	4.81	0.02	36.24	13.50	0.41	0.04	5.48	1.79	0.05
B87530		0.06	0.79	< 0.01	36.85	< 0.01	3.78	< 0.01	36.81	13.73	0.29	0.05	6.73	2.80	0.04
B87530		0.05	0.54	< 0.01	34.40	< 0.01	3.83	0.01	36.83	15.18	0.28	0.04	6.52	2.40	0.06
B87530		0.07	4.63	< 0.01	23.05	0.01	6.62	0.03	29.61	14.14	0.28	0.04	2.03	18.84	0.81
B87530		0.07	2.45	< 0.01	30.20	< 0.01	5.55	0.13	32.90	13.94	0.33	0.17	4.83	9.01	0.25
B87530		0.13	4.94	0.05	25.01	< 0.01	6.41	1.26	26.64	12.63	0.39	0.57	3.01	18.14	0.68
B87530		0.06	2.83	0.08	21.74	< 0.01	6.63	0.97	21.35	9.51	0.46	1.25	2.15	32.64	0.22
B87530	07 Rock	0.09	1.95	0.06	29.91	< 0.01	4.59	0.99	21.80	11.44	0.38	1.36	5.25	22.30	0.15

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		Total	Ag	Al	As	Ba	Bi	Ca	Cd	Co	Cr	Cu	Fe	K	La
C1-	C 1 -	WR-FS-ICP	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR
Sample Description	Sample Type	% 0.01	ppm 0.5	% 0.01	ppm 5	ppm 10	ppm 2	% 0.01	ppm 0.5	ppm 1	ppm	ppm 1	% 0.01	% 0.01	ppm 10
B875236	Rock	98.60	0.8	0.01	10	35	<2	>10	<0.5	9	12	66	3.43	<0.01	296
B875237	Rock	98.69	<0.5	0.11	6	37	<2	>10	<0.5	5	8	83	3.78	< 0.01	292
B875238	Rock	98.96	< 0.5	0.07	5	36	<2	>10	<0.5	4	5	75	3.58	0.01	286
B875239	Rock	100.57	< 0.5	0.12	7	46	<2	>10	< 0.5	6	7	63	3.88	0.02	374
B875240 Dup	Rock	97.52	< 0.5	0.13	6	46	<2	>10	< 0.5	6	6	61	3.87	0.02	386
B875241	Rock	99.61	< 0.5	0.19	9	48	<2	>10	< 0.5	18	8	106	5.51	0.02	357
B875242	Rock	100.24	< 0.5	0.21	8	39	<2	>10	< 0.5	9	11	80	6.13	0.05	249
B875243	Rock	101.37	< 0.5	8.30	72	811	<2	3.04	< 0.5	9	149	4	2.75	3.20	22
B875244	Rock	99.08	0.7	0.28	16	32	<2	>10	< 0.5	10	8	88	5.53	0.09	271
B875245	Rock	99.25	< 0.5	0.12	8	34	<2	>10	< 0.5	14	9	49	4.28	0.05	280
B875246	Rock	98.79	0.6	0.20	19	44	<2	>10	< 0.5	8	7	95	5.26	0.07	313
B875247	Rock	98.42	< 0.5	0.13	8	30	<2	>10	< 0.5	7	6	76	3.48	0.02	261
B875248	Rock	99.80	< 0.5	0.23	10	27	<2	>10	< 0.5	8	8	46	2.99	0.03	270
B875249	Rock	100.74	< 0.5	0.12	11	30	<2	>10	< 0.5	9	8	54	3.20	0.03	260
B875250 Dup	Rock	101.13	< 0.5	0.12	14	29	<2	>10	< 0.5	10	8	53	3.20	0.03	243
B875251	Rock	98.76	< 0.5	0.10	7	26	<2	>10	< 0.5	8	7	54	3.30	0.01	246
B875252	Rock	99.93	< 0.5	0.10	<5	31	<2	>10	< 0.5	5	7	67	3.40	< 0.01	287
B875253	Rock	99.13	0.8	0.09	5	20	<2	>10	< 0.5	10	7	57	3.10	0.01	255
B875254	Rock	99.50	1.0	0.11	11	28	<2	>10	< 0.5	10	10	91	3.87	0.02	328
B875255	Rock	99.04	1.0	0.10	5	32	<2	>10	< 0.5	7	23	79	3.78	0.03	293
B875256	Rock	99.54	< 0.5	0.09	5	56	<2	>10	< 0.5	6	6	40	3.25	< 0.01	252
B875257	Rock	98.68	0.6	0.78	15	66	<2	>10	< 0.5	11	11	26	3.72	0.08	259
B875258	Rock	98.78	< 0.5	0.21	10	66	<2	>10	< 0.5	14	8	27	3.87	0.02	447
B875259	Rock	99.32	< 0.5	0.20	8	24	<2	>10	< 0.5	8	11	18	3.26	0.02	386
B875260 Dup	Rock	97.67	< 0.5	0.18	9	23	<2	>10	< 0.5	8	13	16	3.44	0.02	373
B875261	Rock	99.12	0.9	0.44	16	95	<2	>10	< 0.5	11	8	25	4.71	0.08	559
B875262	Rock	99.94	0.9	0.17	9	29	<2	>10	< 0.5	8	16	38	4.09	0.03	415
B875263	Rock	98.67	0.7	0.24	10	26	<2	>10	<0.5	7	11	110	4.72	0.02	243
B875264	Rock	101.24	0.7	0.19	42	198	<2	>10	<0.5	11	5	114	9.19	0.04	265
B875265	Rock	99.64	0.7	0.23	10	33	<2	>10	<0.5	11	11	66	5.22	0.05	322
B875266	Rock	99.27	< 0.5	0.27	6	19	5	>10	<0.5	6 7	10	18	3.28	0.04	1431
B875267	Rock	99.93	1.3	0.13	7	26	<2	>10	<0.5	•	17	10	3.28	0.02	374
B875268	Rock	99.80	0.7	0.21	5	26	5	>10	<0.5	8	12	3	3.01	0.03	280
B875269	Rock	100.59	<0.5	0.32	8	24	<2	>10	<0.5	8	13	30	2.77	0.04	235
B875270 Dup	Rock	97.41	<0.5	0.30	-	24	<2	>10	<0.5	8 7	17	24	2.75	0.04	227
B875271 B875272	Rock	104.84	1.0	1.04	12 10	330	<2	>10	<0.5 <0.5	7	16 9	16 7	4.57	0.65 0.02	366 133
	Rock	98.50	<0.5	0.23	9	18	<2 5	>10		3		8	2.14		347
B875273 B875274	Rock Rock	100.33 101.21	0.5 <0.5	0.38 0.33	5	19 13	9	>10 >10	<0.5 <0.5	2	12 14	8	1.65 1.80	0.03 0.03	274
B875274 B875275	Rock	101.21	<0.5 0.7	0.33	> <5	15	4	>10	<0.5 <0.5	5	14	3	1.53	0.03	159
D6/32/3	KOCK	101.20	0.7	0.28	<>>	15	4	>10	<0.5	3	12	3	1.33	0.02	139

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		Total	Ag	Al	As	Ba	Bi	Ca	Cd	Co	Cr	Cu	Fe	K	La
		WR-FS-ICP	30-4A-TR												
Sample	Sample	%	ppm	%	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%	%	ppm
Description	Type	0.01	0.5	0.01	5	10	2	0.01	0.5	1	1	1	0.01	0.01	10
B875276	Rock	100.40	< 0.5	0.36	6	27	4	>10	< 0.5	6	34	7	2.44	0.03	141
B875277	Rock	102.21	0.5	4.02	43	930	<2	>10	< 0.5	33	89	45	7.61	1.31	261
B875278	Rock	99.72	0.7	1.00	11	203	11	>10	< 0.5	7	21	4	3.54	0.14	2694
B875279	Rock	98.42	1.0	0.39	8	19	<2	>10	< 0.5	7	18	9	3.17	< 0.01	349
B875280 Dup	Rock	101.05	0.7	0.39	9	21	<2	>10	< 0.5	7	21	13	3.36	< 0.01	342
B875281	Rock	101.74	0.6	0.23	<5	19	<2	>10	< 0.5	8	10	14	2.99	< 0.01	280
B875282	Rock	98.59	0.6	0.15	6	22	8	>10	< 0.5	10	12	11	4.42	< 0.01	239
B875283	Rock	100.37	< 0.5	3.68	37	311	<2	>10	< 0.5	27	46	17	7.20	0.41	538
B875284	Rock	101.44	0.8	4.67	48	74	<2	8.70	< 0.5	31	76	14	6.89	0.09	109
B875285	Rock	101.43	< 0.5	1.98	24	35	<2	>10	< 0.5	14	235	39	4.74	0.03	167
B875286	Rock	99.57	0.8	3.29	36	604	<2	>10	< 0.5	28	37	22	6.59	1.33	172
B875287	Rock	101.35	0.7	0.35	7	23	<2	>10	< 0.5	6	18	11	2.88	0.01	223
B875288	Rock	101.70	< 0.5	0.23	<5	391	5	>10	< 0.5	6	7	9	1.53	0.14	233
B875289	Rock	102.18	< 0.5	0.19	<5	369	<2	>10	< 0.5	7	7	5	2.95	0.11	283
B875290 Dup	Rock	101.20	< 0.5	0.19	<5	366	<2	>10	< 0.5	7	7	6	2.93	0.11	305
B875291	Rock	101.54	0.8	0.88	9	463	<2	>10	< 0.5	7	6	22	4.12	0.82	216
B875292	Rock	101.59	< 0.5	0.90	12	180	<2	>10	< 0.5	7	15	47	3.94	0.26	294
B875293	Rock	101.40	1.1	0.21	5	34	<2	>10	< 0.5	9	8	37	2.75	0.01	315
B875294	Rock	101.74	< 0.5	0.14	<5	75	<2	>10	< 0.5	4	7	11	2.03	0.04	161
B875295	Rock	102.44	< 0.5	1.13	8	533	<2	>10	< 0.5	8	13	27	4.14	1.69	154
B875296	Rock	102.29	< 0.5	1.12	11	409	5	>10	< 0.5	7	18	5	4.31	1.21	82
B875297	Rock	101.86	< 0.5	1.59	16	135	<2	>10	< 0.5	13	23	36	4.22	0.62	233
B875298	Rock	102.04	< 0.5	1.13	13	581	<2	>10	< 0.5	14	19	25	3.60	0.52	255
B875299	Rock	101.60	< 0.5	0.23	<5	23	<2	>10	< 0.5	7	9	34	2.95	< 0.01	234
B875300 Dup	Rock	101.30	< 0.5	0.23	<5	25	<2	>10	< 0.5	8	7	35	2.89	< 0.01	202
B875301	Rock	101.87	< 0.5	0.42	5	15	<2	>10	< 0.5	7	8	7	2.39	< 0.01	274
B875302	Rock	100.11	< 0.5	0.29	<5	13	<2	>10	< 0.5	6	9	6	2.67	< 0.01	310
B875303	Rock	100.09	0.8	2.35	23	31	<2	>10	< 0.5	16	33	24	4.49	0.02	215
B875304	Rock	99.79	1.0	0.90	11	59	<2	>10	< 0.5	8	24	10	3.78	0.09	431
B875305	Rock	99.74	1.3	2.53	25	360	<2	>10	< 0.5	16	34	34	4.53	0.90	246
B875306	Rock	99.84	0.9	1.36	12	489	<2	>10	< 0.5	8	27	13	4.26	0.65	277
B875307	Rock	100.19	0.9	1.03	12	410	<2	>10	< 0.5	5	16	15	3.20	0.71	208

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		Mg	Mn	Mo	Na	Ni	P	Pb	Sb	Sc	Sr	Ti	Tl	V	W
		30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR
Sample	Sample	%	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm
Description	Type	0.01	5	1	0.01	1	10	2	5	1	1	0.01	10	1	10
B875236	Rock	8.15	5616	<1	0.02	<1	>10000	236	<5	6	3175	0.02	<10	18	<10
B875237	Rock	7.93	6267	<1	0.02	<1	>10000	320	<5	7	3660	0.02	<10	23	<10
B875238	Rock	8.15	6800	<1	0.02	<1	>10000	292	<5	6	3954	< 0.01	<10	8	<10
B875239	Rock	8.15	6869	<1	0.02	<1	>10000	218	<5	6	4165	0.02	<10	16	<10
B875240 Dup	Rock	7.98	6819	<1	0.02	<1	>10000	218	<5	6	4054	0.02	<10	17	<10
B875241	Rock	7.94	5327	<1	0.03	<1	>10000	369	<5	6	3503	0.08	<10	77	<10
B875242	Rock	8.24	5392	<1	0.03	<1	>10000	265	<5	5	3058	0.09	<10	78	<10
B875243	Rock	1.14	742	<1	2.65	5	1076	10	7	5	619	0.26	<10	6	<10
B875244	Rock	8.09	3729	<1	0.06	<1	>10000	248	<5	5	1815	0.09	<10	77	<10
B875245	Rock	8.38	5507	<1	0.04	<1	>10000	183	<5	6	3438	0.03	<10	26	<10
B875246	Rock	7.87	5089	<1	0.06	<1	>10000	362	<5	6	3503	0.06	<10	67	<10
B875247	Rock	8.37	4328	<1	0.04	<1	>10000	289	<5	6	3069	0.02	<10	38	<10
B875248	Rock	8.52	4516	<1	0.06	<1	>10000	176	<5	6	3020	0.02	<10	13	<10
B875249	Rock	8.34	4626	<1	0.04	<1	>10000	206	<5	6	3625	0.02	<10	17	<10
B875250 Dup	Rock	7.96	4440	<1	0.04	<1	>10000	199	<5	5	3531	0.02	<10	17	<10
B875251	Rock	8.55	4939	<1	0.03	<1	>10000	212	<5	6	3426	0.01	<10	13	<10
B875252	Rock	8.30	6606	<1	0.03	<1	>10000	274	<5	5	4835	0.01	<10	13	<10
B875253	Rock	8.56	3952	<1	0.03	<1	>10000	217	<5	6	2047	0.01	<10	29	<10
B875254	Rock	8.27	4396	<1	0.04	<1	>10000	355	<5	7	2897	0.02	<10	30	<10
B875255	Rock	8.27	4670	<1	0.02	<1	>10000	277	<5	6	2525	0.01	<10	25	<10
B875256	Rock	8.39	6071	<1	0.03	<1	>10000	92	<5	4	4052	< 0.01	<10	7	<10
B875257	Rock	8.31	5459	<1	0.02	2	>10000	77	<5	8	3506	0.07	<10	17	<10
B875258	Rock	8.09	5215	<1	0.02	<1	>10000	109	<5	8	3131	0.02	<10	32	<10
B875259	Rock	8.37 8.17	4119	<1	0.02	<1	>10000	68	<5	6	2316 2290	0.01	<10	13	<10
B875260 Dup B875261	Rock	7.99	4141 3057	<1 10	0.02	<1	>10000 >10000	72 113	<5 <5	10	1580	0.01	<10	14 34	<10
B875262	Rock Rock	7.99 7.91	4394	<1	0.02	<1 <1	>10000	152	<5 <5	7	2149	0.03 0.02	<10 <10	3 4 19	<10 <10
B875263	Rock	7.66	2624	<1	0.02	<1	>10000	440	<5	8	895	0.02	<10	86	<10
B875264	Rock	5.79	3380	<1	0.03	<1	>10000	426	<5	8	2518	0.04	<10	137	<10
B875265	Rock	7.82	2743	<1	0.03	<1	>10000	250	<5	8	852	0.04	<10	79	<10
B875266	Rock	8.26	3086	<1	0.05	<1	>10000	67	<5	7	610	0.02	<10	22	<10
B875267	Rock	7.62	2737	<1	0.07	<1	>10000	48	<5	6	874	0.02	<10	17	<10
B875268	Rock	8.45	2762	<1	0.07	<1	>10000	13	<5	6	849	0.02	<10	23	<10
B875269	Rock	8.42	2592	<1	0.08	<1	>10000	119	<5	4	709	0.02	<10	23	<10
B875270 Dup	Rock	8.57	2621	<1	0.08	<1	>10000	107	<5	4	722	0.04	<10	21	<10
B875271	Rock	6.56	6789	<1	0.65	<1	7645	64	<5	8	2764	0.06	<10	64	<10
B875272	Rock	8.55	2394	<1	0.07	<1	>10000	45	<5	4	492	0.05	<10	41	<10
B875273	Rock	8.74	2563	1	0.05	<1	>10000	50	<5	3	365	0.02	<10	13	<10
B875274	Rock	8.39	2225	<1	0.03	<1	>10000	18	<5	3	283	< 0.01	<10	12	<10
B875275	Rock	8.78	2056	<1	0.07	<1	>10000	30	<5	3	404	0.02	<10	12	<10

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		Mg	Mn	Мо	Na	Ni	P	Pb	Sb	Sc	Sr	Ti	Tl	V	W
		30-4A-TR													
Sample	Sample	%	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm
Description	Type	0.01	5	1	0.01	1	10	2	5	1	1	0.01	10	1	10
B875276	Rock	8.69	2387	<1	0.04	5	>10000	37	<5	5	549	0.04	<10	27	<10
B875277	Rock	6.43	2961	2	1.37	36	2893	22	<5	22	870	0.87	<10	148	<10
B875278	Rock	8.71	3236	2	0.46	3	6474	29	<5	12	534	0.04	<10	39	<10
B875279	Rock	7.91	2387	<1	0.04	<1	>10000	55	<5	7	867	0.04	<10	28	<10
B875280 Dup	Rock	8.10	2508	<1	0.04	<1	>10000	64	<5	7	891	0.04	<10	28	<10
B875281	Rock	8.75	3419	4	0.02	<1	>10000	63	<5	5	1743	0.02	<10	19	<10
B875282	Rock	8.61	4887	16	0.02	<1	>10000	55	<5	5	2856	< 0.01	<10	13	<10
B875283	Rock	7.61	3379	28	0.60	15	3493	27	<5	20	618	0.49	<10	119	<10
B875284	Rock	8.72	1790	1	0.09	24	4612	36	<5	17	687	0.58	<10	78	<10
B875285	Rock	8.29	2288	6	0.02	81	>10000	52	<5	16	673	0.15	<10	57	<10
B875286	Rock	6.69	3004	2	1.09	13	7172	39	<5	14	1573	0.72	<10	84	<10
B875287	Rock	8.88	2679	2	0.04	<1	>10000	58	<5	5	609	0.02	<10	29	<10
B875288	Rock	4.23	2322	<1	0.08	<1	>10000	43	<5	4	4717	0.03	<10	14	<10
B875289	Rock	4.60	2576	<1	0.15	<1	>10000	45	<5	4	4442	0.07	<10	55	<10
B875290 Dup	Rock	4.57	2504	<1	0.14	<1	>10000	43	<5	4	4300	0.07	<10	57	<10
B875291	Rock	6.16	3840	1	1.09	<1	>10000	77	<5	9	4438	0.13	<10	79	<10
B875292	Rock	6.77	2945	3	0.36	1	>10000	211	<5	13	1956	0.08	<10	72	<10
B875293	Rock	8.52	3139	4	0.03	<1	>10000	176	<5	5	686	0.02	<10	19	<10
B875294	Rock	7.96	5095	3	0.05	<1	>10000	57	<5	5	3628	< 0.01	<10	8	<10
B875295	Rock	7.04	2851	5	2.43	3	>10000	93	<5	21	2534	0.14	<10	114	<10
B875296	Rock	7.39	3062	<1	2.68	<1	7391	30	<5	13	831	0.14	<10	126	<10
B875297	Rock	7.25	4975	46	0.35	8	>10000	75	<5	9	1727	0.12	<10	48	<10
B875298	Rock	3.63	2871	1	0.69	6	>10000	61	<5	8	4581	0.20	<10	50	<10
B875299	Rock	8.40	2693	<1	0.02	<1	>10000	143	<5	4	747	0.02	<10	42	<10
B875300 Dup	Rock	8.25	2578	<1	0.03	<1	>10000	151	<5	4	777	0.02	<10	42	<10
B875301	Rock	8.44	1923	<1	0.03	<1	>10000	44	<5	6	479	0.02	<10	26	<10
B875302	Rock	8.59	2061	3	0.02	<1	>10000	39	<5	5	444	0.02	<10	24	<10
B875303	Rock	8.87	2014	6	0.02	10	8072	40	<5	16	343	0.22	<10	77 25	<10
B875304	Rock	8.30	2380	3	0.10	4	>10000	46	<5	10	643	0.05	<10	35	<10
B875305	Rock	1.18	2920	8	0.32	12	>10000	72	<5	11	991	0.23	<10	64	<10
B875306	Rock	1.24	3150	2	0.68	<1	8362	44	<5	21	911	0.07	<10	88	<10
B875307	Rock	7.37	2761	<1	0.99	1	>10000	61	<5	13	2307	0.06	<10	54	<10

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		Zn	Zr	Ce	Dy	Er	Eu	Gd	Hf	Но	La	Lu	Nd	Pr	· · ·
		30-4A-TR		REE-LB-MS				REE-LB-MS							REE-LB-MS
Sample	Sample	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Description	Туре	2	1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	
B875236	Rock	15	37	877.0	20.4 19.9	6.8	19.5	44.8	<0.1	2.5	460.7 407.3	<0.1	364.1	101.5	
B875237	Rock	18	55	815.3		6.0	19.6	44.4	<0.1	2.5		<0.1	336.6	96.6	
B875238 B875239	Rock Rock	20 21	48 47	722.1 >1000	17.9 18.1	5.1 4.4	17.1 18.2	40.3 44.8	<0.1 <0.1	1.9 1.5	356.7 537.4	<0.1 <0.1	313.2 415.6	87.1 120.8	
B875240 Dup		20	47	985.8	17.4	4.4	17.6	44.8	<0.1	1.5	515.7	<0.1	395.5	116.2	
В875241	Rock	24	69	900.6	17.4	5.9	20.5	44.3	1.6	2.3	453.1	<0.1	369.2		
B875241	Rock Rock	24 25	80	735.4	17.5	5.4	16.3	37.7	0.7	2.3	376.7	<0.1	301.9	101.6 86.8	
B875243	Rock	53	109	66.6	2.9	1.2	0.8	3.5	1.3	<0.1	36.5	<0.1	27.5	7.1	
B875244	Rock	35 15	86	636.2	22.3	7.2	18.1	42.5	1.5	2.7	320.8	<0.1	270.9	77.1	
B875245	Rock	18	51	640.6	15.9	4.6	14.5	33.3	<0.1	1.6	327.2	<0.1	270.9	76.2	
B875246	Rock	22	74	756.0	20.6	6.4	20.2	42.6	1.1	2.3	369.9	<0.1	330.4	91.5	
B875247	Rock	16	46	683.2	18.1	5.2	18.3	36.9	<0.1	2.0	337.8	<0.1	292.7	81.3	
B875247	Rock	14	42	711.1	20.8	6.4	17.8	39.9	<0.1	2.5	350.7	<0.1	301.9	86.0	
B875249	Rock	14	52	709.7	24.5	7.5	19.8	44.4	0.9	3.0	340.9	<0.1	315.5	86.2	
B875250 Dup	Rock	14	52	717.2	22.2	7.4	19.8	43.5	0.7	2.9	351.0	<0.1	325.4	88.2	
B875251	Rock	15	47	570.0	18.8	6.1	14.6	33.6	<0.1	2.0	287.3	<0.1	240.9	68.7	
B875252	Rock	21	45	641.6	15.0	4.1	15.3	33.9	<0.1	1.5	314.0	<0.1	273.5	76.7	
B875253	Rock	10	51	648.5	19.5	6.6	16.2	35.8	<0.1	2.2	332.3	<0.1	278.3	77.0	
B875254	Rock	14	52	750.5	22.7	7.1	21.4	43.4	<0.1	2.7	383.1	<0.1	329.5	88.8	
B875255	Rock	15	50	711.7	26.0	9.0	20.5	45.0	<0.1	3.5	356.9	<0.1	311.5	87.3	
B875256	Rock	29	41	698.9	14.7	4.4	14.6	34.2	<0.1	1.5	371.0	<0.1	292.7	81.7	
B875257	Rock	27	59	561.7	12.7	3.8	11.8	28.1	<0.1	1.3	301.4	< 0.1	234.5	66.0	
B875258	Rock	19	72	947.0	18.0	5.3	18.3	42.0	0.4	1.9	583.9	< 0.1	353.8	104.4	
B875259	Rock	16	63	874.4	21.7	6.9	17.8	42.8	< 0.1	2.6	455.0	< 0.1	363.6	103.8	
B875260 Dup	Rock	12	63	892.4	21.8	7.2	17.6	44.2	< 0.1	2.8	469.2	< 0.1	380.5	106.4	57.6
B875261	Rock	14	75	>1000	35.8	12.4	25.2	67.7	< 0.1	5.3	744.3	< 0.1	570.3	161.8	86.6
B875262	Rock	15	65	991.0	32.9	12.7	19.3	49.2	< 0.1	5.2	541.0	< 0.1	386.0	112.6	60.4
B875263	Rock	11	117	979.8	34.9	13.0	31.9	61.4	5.4	5.5	516.7	< 0.1	422.3	116.7	71.7
B875264	Rock	55	200	717.1	22.1	7.5	18.0	40.1	10.4	2.7	375.4	< 0.1	303.8	83.5	49.8
B875265	Rock	12	108	996.9	26.2	9.0	22.8	51.0	5.1	3.7	588.8	< 0.1	382.4	110.2	59.3
B875266	Rock	9	55	>1000	24.6	6.6	24.1	70.0	< 0.1	2.7	>1000	< 0.1	742.7	270.8	77.4
B875267	Rock	9	76	>1000	33.8	13.9	20.0	52.7	< 0.1	5.1	780.8	0.3	393.8	124.6	57.2
B875268	Rock	8	51	797.3	19.8	7.2	12.9	36.9	< 0.1	2.6	481.9	< 0.1	297.6	87.3	44.5
B875269	Rock	7	56	>1000	27.9	10.1	20.9	48.3	< 0.1	4.2	570.2	< 0.1	379.5	114.4	59.0
B875270 Dup	Rock	8	58	982.3	27.3	9.5	18.9	46.9	0.1	3.9	563.2	< 0.1	332.3	98.4	51.9
B875271	Rock	57	124	>1000	13.4	3.4	11.7	31.8	< 0.1	1.1	932.4	< 0.1	340.5	117.6	37.1
B875272	Rock	6	60	737.5	21.7	7.8	15.8	37.6	< 0.1	3.0	404.6	< 0.1	299.1	84.6	49.5
B875273	Rock	5	59	>1000	21.2	7.3	18.1	43.1	< 0.1	2.8	776.6	< 0.1	367.7	115.5	48.8
B875274	Rock	5	32	>1000	20.4	6.9	18.4	51.1	< 0.1	2.6	>1000	< 0.1	531.7	177.4	62.0
B875275	Rock	5	30	871.0	22.0	7.7	16.2	44.3	< 0.1	2.9	503.4	< 0.1	343.5	98.9	52.9

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		Zn	Zr	Ce	Dy	Er	Eu	Gd	Hf	Но	La	Lu	Nd	Pr	Sm
		30-4A-TR	30-4A-TR	REE-LB-MS											
Sample	Sample	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Description	Type	2	1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
B875276	Rock	9	42	930.2	25.3	8.7	18.6	45.6		3.5	515.1	< 0.1	370.5	105.1	58.4
B875277	Rock	109	198	881.0	10.1	3.6	8.6	25.4	2.4	0.8	590.1	< 0.1	245.1	84.0	
B875278	Rock	31	91	>1000	18.9	2.9	26.1	83.6	< 0.1	1.3	>1000	< 0.1	>1000	481.5	80.7
B875279	Rock	9	51	861.9	31.7	12.2	18.7	46.2	0.3	4.8	463.8	< 0.1	332.2	97.7	53.1
B875280 Dup	Rock	9	52	902.1	32.4	11.6	18.9	49.5	0.3	4.7	490.3	< 0.1	355.5	103.6	54.7
B875281	Rock	10	40	>1000	20.4	6.4	15.2	43.3	< 0.1	2.3	892.2	< 0.1	433.8	145.7	50.3
B875282	Rock	15	49	>1000	16.1	5.0	14.2	38.6	< 0.1	1.6	807.5	< 0.1	409.1	134.6	
B875283	Rock	132	140	>1000	10.1	2.4	11.2	30.9	2.9	0.4	789.9	< 0.1	426.6	141.1	42.8
B875284	Rock	30	127	346.3	12.1	4.6	7.4	20.2	3.1	1.2	176.7	< 0.1	148.4	40.9	22.9
B875285	Rock	15	83	425.6	55.9	23.7	17.9	49.9	0.3	10.0	229.3	0.8	188.2	50.3	40.7
B875286	Rock	116	196	496.9	13.7	4.8	10.3	25.6	2.0	1.5	256.5	< 0.1	198.8	55.6	
B875287	Rock	9	43	720.4	23.7	8.8	16.7	41.0	< 0.1	3.1	378.9	< 0.1	304.4	84.0	
B875288	Rock	15	32	701.0	22.4	7.8	16.9	40.6	< 0.1	2.8	371.0	<0.1	298.7	82.3	47.2
B875289	Rock	28	89	797.8	26.0	9.3	19.7	48.0	< 0.1	3.6	411.5	< 0.1	347.9	95.1	55.7
B875290 Dup	Rock	27	83	801.5	26.3	9.3	19.4	46.1	< 0.1	3.6	406.9	< 0.1	346.4	95.2	56.3
B875291	Rock	73	193	542.8	15.9	4.8	14.0	32.5	1.6	1.7	270.4	<0.1	236.2	65.2	39.5
B875292	Rock	43	127	761.4	28.3	9.3	22.6	51.8	1.4	3.8	366.1	< 0.1	354.2	95.5	62.0
B875293	Rock	8	60	791.3	29.7	11.2	23.4	50.7	< 0.1	4.3	402.3	<0.1	346.5	95.1	59.0
B875294	Rock	14	34	432.6	17.5	6.1	12.0	28.8	<0.1	2.3	210.3	<0.1	188.5	51.7	33.9
B875295	Rock	97	305	407.1	14.1	4.6	11.1	25.1	4.3	1.3	201.7	<0.1	181.7	48.6	
B875296	Rock	102	324	227.5	9.7	2.8	6.9	15.9	<0.1	0.6	112.6	<0.1	107.5	27.9	20.3
B875297	Rock	29	78	775.9	21.5	6.9	17.4	39.6		2.5	411.9	<0.1	304.6	88.5	49.7
B875298	Rock	41	98	703.5	22.1	7.2	15.9	39.2	<0.1	2.7	363.6	<0.1	288.0	81.3	
B875299	Rock	6	53	799.1	26.5	9.0	19.2	44.8	<0.1	3.6	430.9	<0.1	328.2	91.8	
B875300 Dup	Rock	7	57	785.2	27.0	9.6	19.3	44.6		3.5	413.4	<0.1	316.5	89.5	52.2
B875301	Rock	5	66	742.8	27.2	9.8	18.6	47.8	<0.1	4.1	397.7	<0.1	324.2	89.6	
B875302	Rock	5	61	>1000	27.9	9.7	20.3	54.5	< 0.1	3.8	532.6	<0.1	437.2	120.1	72.7
B875303	Rock	17	91	>1000	24.3	7.1	18.6	54.9	<0.1	2.8	680.2	<0.1	545.4	154.0	
B875304	Rock	17	62	>1000	40.4	12.2	29.1	76.6		5.4	876.0	<0.1	627.5	174.9	
B875305	Rock	67	111	792.4	17.0	5.4	15.7	35.2	0.3	1.9	434.7	<0.1	300.9	89.8	
B875306	Rock	97	181	619.9	11.3	3.2	11.3	25.6		0.8	361.3	<0.1	237.7	69.0	
B875307	Rock	76	197	588.2	17.7	5.4	14.0	33.2	1.4	1.9	302.1	<0.1	248.4	70.3	42.0

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		T	T.	X71	77		TP1	¥ Y
		Tb	Tm DEE I D MS	Yb	Y DEE I D MC	Ta Ta-4A-LL-MS	Th	U U-4A-LL-MS
Sample	Sample		REE-LB-MS					
Description	Type	ppm 0.1	ppm 0.1	ppm 0.1	ppm 0.10	ppm 0.05	ppm 0.2	ppm 0.1
B875236	Rock	4.3	<0.1	3.8	70.0	15.31	63.7	4.3
B875237	Rock	4.0	<0.1	3.7	66.8	37.01	158.8	7.0
B875238	Rock	3.5	<0.1	3.3	57.0	29.21	118.5	3.7
B875239	Rock	3.1	<0.1	2.4	52.4	13.76	62.6	4.3
B875240 Dup	Rock	3.3	<0.1	2.7	51.8	13.84	59.6	4.3
B875241	Rock	4.2	<0.1	3.7	63.1	18.14	94.6	7.1
B875242	Rock	3.3	<0.1	3.3	55.5	27.01	91.5	10.2
B875243	Rock	<0.1	<0.1	1.3	15.5	1.76	8.8	4.0
B875244	Rock	4.1	<0.1	5.4	77.1	136.08	142.9	33.6
B875245	Rock	2.9	<0.1	2.8	50.7	10.21	61.4	2.8
B875246	Rock	4.0	<0.1	3.7	63.3	26.52	137.5	4.7
B875247	Rock	3.4	< 0.1	3.5	60.5	14.54	116.5	3.1
B875248	Rock	4.0	<0.1	3.7	68.1	38.74	57.2	16.4
B875249	Rock	4.6	< 0.1	4.0	76.2	49.00	79.1	13.2
B875250 Dup	Rock	4.7	< 0.1	3.4	76.0	51.00	74.5	17.6
B875251	Rock	3.3	< 0.1	3.3	63.4	15.31	108.4	4.3
B875252	Rock	2.7	<0.1	1.8	47.5	11.31	88.7	5.8
B875253	Rock	3.5	< 0.1	4.6	65.4	16.49	107.4	5.3
B875254	Rock	4.3	< 0.1	4.4	75.7	35.28	186.0	15.4
B875255	Rock	4.6	0.3	5.9	88.1	16.20	138.4	4.8
B875256	Rock	2.8	< 0.1	2.3	48.0	9.92	49.7	3.8
B875257	Rock	2.3	< 0.1	1.9	43.9	36.30	96.9	8.7
B875258	Rock	3.3	< 0.1	3.2	55.6	154.02	116.3	82.2
B875259	Rock	4.0	< 0.1	4.3	69.6	120.80	105.9	100.1
B875260 Dup	Rock	3.9	< 0.1	4.6	73.3	117.50	101.9	101.9
B875261	Rock	7.4	0.9	8.0	120.0	111.17	326.6	57.4
B875262	Rock	6.2	1.0	7.7	116.0	72.07	302.7	66.2
B875263	Rock	7.4	1.0	8.6	132.5	118.40	266.7	101.4
B875264	Rock	3.9	0.2	4.5	77.1	97.66	349.7	22.9
B875265	Rock	5.4	0.2	5.3	93.6	175.69	198.4	152.0
B875266	Rock	4.3	0.2	4.8	79.8	18.32	36.8	7.4
B875267	Rock	6.1	1.2	9.9	131.0	109.85	129.9	95.6
B875268	Rock	3.7	< 0.1	4.5	70.8	8.37	49.4	5.4
B875269	Rock	5.6	0.7	6.2	107.6	86.58	107.3	53.5
B875270 Dup	Rock	5.2	0.5	6.3	99.9	72.42	107.3	46.5
B875271	Rock	1.7	< 0.1	2.1	41.3	52.87	88.5	23.1
B875272	Rock	4.2	0.2	5.1	81.0	101.54	36.2	126.4
B875273	Rock	3.9	< 0.1	5.1	80.0	79.53	54.4	60.7
B875274	Rock	3.6	< 0.1	4.6	75.7	27.50	10.3	41.2
B875275	Rock	4.5	0.3	5.2	85.3	84.45	16.9	140.5

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

			Tb	Tm	Yb	Y	Ta	Th	U
			REE-LB-MS	REE-LB-MS	REE-LB-MS	REE-LB-MS	Ta-4A-LL-MS	Th-4A-LL-MS	U-4A-LL-MS
	Sample	Sample	ppm	ppm	ppm	ppm	ppm	ppm	ppm
	Description	Type	0.1	0.1	0.1	0.10	0.05	0.2	0.1
	B875276	Rock	5.0	0.3	5.6	91.5	76.39	37.1	72.2
	B875277	Rock	1.4	< 0.1	2.5	38.9	6.96	30.2	8.7
	B875278	Rock	1.8	< 0.1	2.2	47.0	22.30	30.1	21.7
	B875279	Rock	5.8	1.0	7.9	118.9	15.76	164.5	20.8
	B875280 Dup	Rock	5.9	0.8	8.1	117.5	17.48	171.5	21.5
	B875281	Rock	3.1	< 0.1	4.3	72.5	3.08	32.6	2.8
í	B875282	Rock	2.5	< 0.1	2.5	57.9	1.25	19.6	2.0
ı	B875283	Rock	0.8	< 0.1	2.1	32.7	4.52	31.1	6.6
	B875284	Rock	1.9	< 0.1	3.4	51.0	2.91	41.4	5.2
	B875285	Rock	11.0	2.5	14.6	234.8	14.24	609.0	18.4
	B875286	Rock	2.3	< 0.1	3.4	52.0	11.57	43.2	9.5
	B875287	Rock	4.3	0.4	6.3	90.1	17.74	74.5	8.8
ı	B875288	Rock	4.1	0.1	4.9	83.4	41.22	15.8	33.2
	B875289	Rock	5.2	0.3	6.1	94.1	78.69	105.3	158.8
	B875290 Dup	Rock	5.0	0.4	6.3	92.8	82.57	100.9	153.7
	B875291	Rock	2.9	< 0.1	3.7	56.9	118.79	91.3	162.5
	B875292	Rock	5.8	0.4	5.9	98.1	205.54	231.3	240.8
	B875293	Rock	5.8	0.6	7.7	114.0	182.43	332.0	83.9
	B875294	Rock	3.1	< 0.1	3.8	69.0	14.72	73.2	16.5
	B875295	Rock	2.3	< 0.1	2.9	51.1	45.32	88.9	42.5
	B875296	Rock	1.4	< 0.1	2.4	33.2	15.32	27.2	13.5
	B875297	Rock	3.8	< 0.1	3.9	79.9	32.90	79.1	30.8
	B875298	Rock	4.3	0.2	5.5	83.9	14.18	101.8	67.0
	B875299	Rock	4.8	0.4	6.1	104.4	79.49	228.7	61.0
	B875300 Dup	Rock	4.9	0.7	6.1	101.6	83.76	217.4	64.7
	B875301	Rock	5.7	0.4	6.4	107.0	104.80	124.2	137.2
	B875302	Rock	5.8	0.5	6.4	101.9	88.24	136.4	110.4
	B875303	Rock	4.6	0.2	5.1	81.9	22.41	70.4	27.8
	B875304	Rock	8.6	0.8	7.2	132.3	45.15	118.1	44.5
	B875305	Rock	3.2	<0.1	3.6	62.1	58.56	104.4	60.9
	B875306	Rock	1.5	<0.1	2.6	38.5	45.76	94.9	55.0
	B875307	Rock	3.2	<0.1	3.8	61.8	115.42	97.6	149.8
	B673307	KUCK	3.2	<0.1	3.0	01.0	113.42	97.0	149.0

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		Nb2O5	A12O3	BaO	CaO	Cr2O3	Fe2O3	K2O	LOI	MgO	MnO	Na2O	P2O5	SiO2	TiO2
C1-	C1-	Nb2O5-AD3-OR-ICP	WR-FS-ICP												
Sample	Sample	% 0.01	% 0.01	% 0.01	% 0.01	% 0.01	% 0.01	% 0.01	% 0.01	% 0.01	% 0.01	% 0.01	% 0.01	% 0.01	0.01
Description B875236	Type Rock	0.43	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
B875236 Dup	ROCK	0.43													
QCV1011-00409-0002-BLK		< 0.01													
STD-OKA-1 expected		0.53													
STD-OKA-1 expected STD-OKA-1 result		0.53													
B875254	Rock	0.59													
B875254 Dup	ROCK	0.62													
QCV1011-00409-0005-BLK		< 0.01													
STD-OKA-1 expected		0.53													
STD-OKA-1 result		0.52													
B875272	Rock	0.06													
B875272 Dup	ROCK	0.06													
QCV1011-00409-0008-BLK		< 0.01													
STD-OKA-1 expected		0.53													
STD-OKA-1 result		0.52													
B875290 Dup	Rock	0.09													
B875290 Dup Dup	110011	0.08													
QCV1011-00409-0011-BLK		< 0.01													
STD-OKA-1 expected		0.53													
STD-OKA-1 result		0.52													
QCV1011-00409-0013-BLK		< 0.01													
STD-OKA-1 expected		0.53													
STD-OKA-1 result		0.53													
B875236	Rock		0.30	< 0.01	32.75	< 0.01	4.58	0.02	38.77	14.81	0.70	0.04	5.39	1.16	0.07
B875236 Dup			0.30	< 0.01	33.80	< 0.01	4.84	0.02	38.71	13.36	0.73	0.04	5.55	1.24	0.07
QCV1011-00413-0002-BLK			< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
B875254	Rock		0.30	< 0.01	34.33	< 0.01	5.40	0.04	36.44	15.08	0.58	0.06	6.28	0.95	0.03
B875254 Dup			0.30	< 0.01	34.16	< 0.01	5.34	0.03	36.41	14.97	0.57	0.06	6.19	0.94	0.03
QCV1011-00413-0005-BLK			< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
B875272	Rock		0.48	< 0.01	33.59	< 0.01	3.22	0.03	38.58	14.97	0.35	0.11	4.52	2.48	0.15
B875272 Dup			0.47	< 0.01	33.62	< 0.01	3.11	0.04	38.49	15.03	0.35	0.11	4.48	2.51	0.15
QCV1011-00413-0008-BLK			< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
B875290 Dup	Rock		0.39	0.05	44.81	< 0.01	4.40	0.16	34.16	7.09	0.36	0.23	6.02	3.35	0.18
B875290 Dup Dup			0.38	0.05	44.85	< 0.01	4.58	0.15	34.28	7.05	0.36	0.22	6.09	3.33	0.18
QCV1011-00413-0011-BLK			< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
QCV1011-00413-0013-BLK			< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
STD-SY-4 expected			20.69		8.05		6.21	1.66	4.56	0.54	0.11	7.10	0.13	49.90	0.29
STD-SY-4 result			20.75	0.04	7.90	< 0.01	6.28	1.65	4.48	0.54	0.12	7.13	0.18	49.95	0.30

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

			Total	Ag	Al	As	Ba	Bi	Ca	Cd	Co	Cr	Cu	Fe	K	La
		~ .	WR-FS-ICP	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR						
	Sample	Sample	%	ppm	%	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%	%	ppm
	Description B875236	Type Rock	0.01	0.5	0.01	5 10	35	2 <2	>10	0.5 <0.5	9	1 12	66	3.43	0.01 <0.01	10 296
	B875236 Dup	KOCK		0.8	0.14	10	33 34	<2	>10	<0.5 <0.5	10	12	69	3.43	< 0.01	311
	OCV1011-00410-0002-BLK			<0.5	< 0.12	<5	<10	<2	< 0.01	<0.5	<1	<1	<1	< 0.01	< 0.01	<10
STI	OREAS-45P-4A expected			0.3	<0.01	9	<10	~2	<0.01	<0.5	122	1103	749	<0.01	<0.01	<10
	TD-OREAS-45P-4A result			< 0.5							128	1124	690			
	B875254	Rock		1.0	0.11	11	28	<2	>10	< 0.5	10	10	91	3.87	0.02	328
	B875254 Dup			1.3	0.11	11	27	<2	>10	<0.5	10	9	90	3.74	0.02	325
	QCV1011-00410-0005-BLK			< 0.5	< 0.01	<5	<10	<2	< 0.01	< 0.5	<1	<1	<1	< 0.01	< 0.01	<10
STE	-OREAS-45P-4A expected			0.3							122	1103	749			
5	TD-OREAS-45P-4A result			< 0.5							123	1088	686			
	B875272	Rock		< 0.5	0.23	10	18	<2	>10	< 0.5	7	9	7	2.14	0.02	133
	B875272 Dup			< 0.5	0.23	10	18	<2	>10	< 0.5	7	13	7	2.22	0.02	139
	QCV1011-00410-0008-BLK			< 0.5	< 0.01	<5	<10	<2	< 0.01	< 0.5	<1	<1	<1	< 0.01	< 0.01	<10
STL	-OREAS-45P-4A expected			0.3							122	1103	749			
5	TD-OREAS-45P-4A result			< 0.5							123	1118	682			
	B875290 Dup	Rock		< 0.5	0.19	<5	366	<2	>10	< 0.5	7	7	6	2.93	0.11	305
	B875290 Dup Dup			1.0	0.19	<5	356	<2	>10	< 0.5	6	9	3	2.96	0.10	301
	QCV1011-00410-0011-BLK			< 0.5	< 0.01	<5	<10	<2	< 0.01	< 0.5	<1	<1	<1	< 0.01	< 0.01	<10
	-OREAS-45P-4A expected			0.3												
5	TD-OREAS-45P-4A result			0.7												
	QCV1011-00410-0013-BLK			< 0.5	< 0.01	<5	<10	<2	< 0.01	< 0.5	<1	<1	<1	< 0.01	< 0.01	<10
	-OREAS-45P-4A expected			0.3												
5	TD-OREAS-45P-4A result			1.1												
	B875236	Rock	98.60													
	B875236 Dup		98.68													
	QCV1011-00413-0002-BLK	Rock	<0.01													
	B875254	Rock	99.50													
	B875254 Dup QCV1011-00413-0005-BLK		99.01 <0.01													
	B875272	Rock	98.50													
	B875272 Dup	NOCK	98.38													
	QCV1011-00413-0008-BLK		< 0.01													
	B875290 Dup	Rock	101.20													
	B875290 Dup Dup	ROCK	101.54													
	QCV1011-00413-0011-BLK		< 0.01													
	QCV1011-00413-0013-BLK		< 0.01													
	STD-SY-4 expected															
	STD-SY-4 result		99.33													

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

			Mg	Mn	Mo	Na	Ni	P	Pb	Sb	Sc	Sr	Ti	Tl	V	W
			30-4A-TR													
	Sample	Sample	%	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm
	Description	Type	0.01	5	1	0.01	1	10	2	5	1	1	0.01	10	1	10
	B875236	Rock	8.15	5616	<1	0.02	<1	>10000	236	<5	6	3175	0.02	<10	18	<10
	B875236 Dup		8.21	5350	<1	0.02	<1	>10000	242	<5	6	3205	0.02	<10	18	<10
	QCV1011-00410-0002-BLK		< 0.01	<5	<1	< 0.01	<1	<10	<2	<5	<1	<1	< 0.01	<10	<1	<10
STD	OREAS-45P-4A expected					0.08	385	454								
s'	ΓD-OREAS-45P-4A result		0.30			0.07	391	491								
	B875254	Rock	8.27	4396	<1	0.04	<1	>10000	355	<5	7	2897	0.02	<10	30	<10
	B875254 Dup		8.25	4199	<1	0.03	<1	>10000	347	<5	6	2869	0.02	<10	30	<10
	QCV1011-00410-0005-BLK		< 0.01	<5	<1	< 0.01	<1	<10	<2	<5	<1	<1	< 0.01	<10	<1	<10
STD-	OREAS-45P-4A expected					0.08	385	454								
s	ΓD-OREAS-45P-4A result					0.07	385	448								
	B875272	Rock	8.55	2394	<1	0.07	<1	>10000	45	<5	4	492	0.05	<10	41	<10
	B875272 Dup		8.56	2507	<1	0.06	<1	>10000	44	<5	4	491	0.05	<10	41	<10
	QCV1011-00410-0008-BLK		< 0.01	<5	<1	< 0.01	<1	<10	<2	<5	<1	<1	< 0.01	<10	<1	<10
STD-	OREAS-45P-4A expected					0.08	385	454								
s'	ΓD-OREAS-45P-4A result					0.07	379	466								
	B875290 Dup	Rock	4.57	2504	<1	0.14	<1	>10000	43	<5	4	4300	0.07	<10	57	<10
	B875290 Dup Dup		4.42	2497	<1	0.14	<1	>10000	30	<5	4	4242	0.07	<10	57	<10
	QCV1011-00410-0011-BLK		< 0.01	<5	<1	< 0.01	<1	<10	<2	<5	<1	<1	< 0.01	<10	<1	<10
	QCV1011-00410-0013-BLK		< 0.01	<5	<1	< 0.01	<1	<10	<2	<5	<1	<1	< 0.01	<10	<1	<10

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

			Zn	Zr	Ce	Dy	Er	Eu	Gd	Hf	Но	La	Lu	Nd	Pr	Sm
			30-4A-TR			REE-LB-MS								REE-LB-MS		
	Sample	Sample	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
	Description	Type	2	1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
	B875236	Rock	15	37												
	B875236 Dup		16	41												
CUTTO	QCV1011-00410-0002-BLK		<2	<1												
	-OREAS-45P-4A expected		142													
2	TD-OREAS-45P-4A result B875254	Rock	143 14	50												
	B875254 Dup	KOCK	14	52 54												
	QCV1011-00410-0005-BLK		<2	<1												
STD	-OREAS-45P-4A expected		142	<1												
	TD-OREAS-45P-4A result		144													
	B875272	Rock	6	60												
	B875272 Dup	ROCK	5	58												
	QCV1011-00410-0008-BLK		<2	<1												
STD	-OREAS-45P-4A expected		142													
S	TD-OREAS-45P-4A result		143													
	B875290 Dup	Rock	27	83												
	B875290 Dup Dup		27	65												
	QCV1011-00410-0011-BLK		<2	<1												
	QCV1011-00410-0013-BLK		<2	<1												
	B875236	Rock			877.0	20.4	6.8	19.5	44.8	< 0.1	2.5	460.7	< 0.1	364.1	101.5	56.5
	B875236 Dup				822.6	20.3	6.0	19.1	44.4	< 0.1	2.3	432.4	< 0.1	346.8	97.0	54.7
	QCV1011-00411-0002-BLK				< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
	B875254	Rock			750.5	22.7	7.1	21.4	43.4	< 0.1	2.7	383.1	< 0.1	329.5	88.8	55.6
	B875254 Dup				785.4	23.7	7.1	22.3	45.9	0.2	3.0	394.4	< 0.1	345.3	96.3	58.4
	QCV1011-00411-0005-BLK				< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
	B875272	Rock			737.5	21.7	7.8	15.8	37.6	< 0.1	3.0	404.6	< 0.1	299.1	84.6	49.5
	B875272 Dup				761.6	22.0	7.9	16.0	39.4	< 0.1	2.9	409.6	< 0.1	304.8	84.9	46.7
	QCV1011-00411-0008-BLK				< 0.1	< 0.1	< 0.1	<0.1	< 0.1	< 0.1	<0.1	< 0.1	< 0.1	<0.1	< 0.1	<0.1
	B875290 Dup	Rock			801.5	26.3	9.3	19.4	46.1	<0.1	3.6	406.9	<0.1	346.4	95.2	56.3
	B875290 Dup Dup				732.8	26.2	9.0	18.7	43.1	<0.1	3.0	388.4	<0.1	321.3	88.6	53.3
	QCV1011-00411-0011-BLK				<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
	QCV1011-00411-0013-BLK				<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
	STD-SY-4 expected STD-SY-4 result				122.0 129.6	18.2 19.7	14.2 14.7	2.0 1.8	14.0 15.1	10.6 11.1	4.3 4.0	58.0 63.3	2.1 1.9	57.0 59.8	15.0 15.8	12.7
	STD-SY-4 result				129.6	19./	14./	1.8	15.1	11.1	4.0	03.3	1.9	59.8	15.8	13.0

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		Tb	Tm	Yb	Y	Ta	Th	U
		REE-LB-MS	REE-LB-MS	REE-LB-MS	REE-LB-MS	Ta-4A-LL-MS	Th-4A-LL-MS [J-4A-LL-MS
Sample	Sample	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Description	Type	0.1	0.1	0.1	0.10	0.05	0.2	0.1
B875236	Rock	4.3	< 0.1	3.8	70.0			
B875236 Dup		4.0	< 0.1	3.9	66.3			
QCV1011-00411-0002-BLK		< 0.1	< 0.1	< 0.1	< 0.10			
B875254	Rock	4.3	< 0.1	4.4	75.7			
B875254 Dup		4.7	< 0.1	4.3	79.3			
QCV1011-00411-0005-BLK		< 0.1	< 0.1	< 0.1	< 0.10			
B875272	Rock	4.2	0.2	5.1	81.0			
B875272 Dup		4.2	0.3	5.9	84.2			
QCV1011-00411-0008-BLK		< 0.1	< 0.1	< 0.1	< 0.10			
B875290 Dup	Rock	5.0	0.4	6.3	92.8			
B875290 Dup Dup		4.7	0.3	5.0	86.2			
QCV1011-00411-0011-BLK		< 0.1	< 0.1	< 0.1	< 0.10			
QCV1011-00411-0013-BLK		< 0.1	< 0.1	< 0.1	< 0.10			
STD-SY-4 expected		2.6	2.3	14.8	119.0			
STD-SY-4 result		2.4	2.1	15.9	121.9			
B875236	Rock					15.31	63.7	4.3
B875236 Dup						14.67	74.7	4.2
QCV1103-01176-0002-BLK						< 0.05	< 0.2	< 0.1
B875254	Rock					35.28	186.0	15.4
B875254 Dup						36.94	180.3	16.0
QCV1103-01176-0005-BLK						< 0.05	< 0.2	< 0.1
B875272	Rock					101.54	36.2	126.4
B875272 Dup						94.94	36.1	121.9
QCV1103-01176-0008-BLK						< 0.05	< 0.2	< 0.1
B875290 Dup	Rock					82.57	100.9	153.7
B875290 Dup Dup						87.29	97.5	143.4
QCV1103-01176-0011-BLK						< 0.05	< 0.2	< 0.1
QCV1103-01176-0013-BLK						< 0.05	< 0.2	< 0.1

Certificate of Analysis

Inspectorate Exploration & Mining Services Ltd. #200 - 11620 Horseshoe Way

Date Received: 11/15/2010

Date Completed: 05/10/2011

Invoice:

Richmond, British Columbia V7A 4V5 Canada

Phone: 604-272-7818

Distribution List

Attention: Eric Titley

Suite 1020-800 West Pender St.

Vancouver, BC V6C 2V6

EMail: erictitley@hdimining.com

Attention: Jeremy Crozier

EMail: jeremycrozier@hdimining.com

Attention: T.Kodata

EMail: tkodata@hdimining.com

Submitted By: Aley Corporation

Suite 1020-800 West Pender St.

Vancouver, BC V6C 2V6

Attention: Eric Titley

Project: Aley 2010 Project

Purchase Order: **ALY 0002**Description: **Aley 2010-027**

Location	Samples	Type	Preparation Description
Vancouver, BC	3	Pulp	SP-PU/Pulp Handling, submitted pulps
Vancouver, BC	67	Rock	SP-RX-2K/Rock/Chips/Drill Core

Location	Method	Description
Vancouver, BC	Ta-4A-LL-MS	Tantalum, 4 Acid, ICP
Vancouver, BC	REE-LB-MS	REE Group by ICP-MS
Vancouver, BC	U-4A-LL-MS	Uraium, 4 Acid, Low Level
Vancouver, BC	Nb2O5-AD3-OR-ICP	Niobium by multi-acid digestion, ICP
Vancouver, BC	Th-4A-LL-MS	Thorium, 4 Acid, Low Level
Vancouver, BC	WR-FS-ICP	Whole Rock, Lithium Borate Fusion, ICP
Vancouver, BC	30-4A-TR	30 Element, 4 Acid, ICP, Trace Level

Submittal Information

Ta, Th, and U results shown have been revised with accurate detection limits.

The results of this assay were based solely upon the content of the sample submitted. Any decision to invest should be made only after the potential investment value of the claim or deposit has been determined based on the results of assays of multiple samples of geologic materials collected by the prospective investor or by a qualified person selected by him and based on an evaluation of all engineering data which is available concerning any proposed project. For our complete terms and conditions please see our website at www.inspectorate.com.

В

Mike Caron, Lab Manager

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		Nb2O5	Al2O3	BaO	CaO	Cr2O3	Fe2O3	K2O	LOI	MgO	MnO	Na2O	P2O5	SiO2	TiO2
		Nb2O5-AD3-OR-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP
Sample	Sample	%	%	%	%	%	%	%	%	%	%	%	%	%	%
Description	Type	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
912536 912537	Rock	0.33 0.30	0.22 0.19	<0.01 <0.01	33.01 33.66	<0.01 <0.01	3.79 3.13	0.02 0.05	40.16 39.73	17.18 15.34	0.54 0.68	0.04 0.04	5.01 5.93	0.44 0.18	0.02 0.01
912538	Rock		0.19	< 0.01	33.47		3.13	0.03	38.53	15.34	0.08	0.04	6.20		0.01
912539	Rock Rock	0.64 0.42	0.10	< 0.01	33.47	<0.01 <0.01	3.38	0.02	39.61	15.54	0.78	0.04	5.69	0.61 0.13	0.03
912540 Dup	Rock	0.42	0.12	<0.01	33.64	<0.01	3.33	0.02	39.38	16.59	0.76	0.03	5.77	0.13	0.01
912541	Rock	0.43	0.12	< 0.01	33.31	< 0.01	3.96	0.02	39.38	17.28	0.78	0.03	5.53	0.11	0.01
912542	Rock	0.50	0.10	< 0.01	33.49	< 0.01	5.24	0.02	38.74	16.11	0.78	0.04	6.18	0.08	0.02
912543	Rock	0.12	0.21	< 0.01	35.23	< 0.01	3.24	0.04	38.51	15.39	0.78	0.03	7.00	< 0.13	0.02
912544	Rock	0.12	0.09	< 0.01	32.67	< 0.01	4.52	0.01	43.06	16.39	0.78	0.03	1.65	0.49	0.01
912545	Rock	0.23	0.45	0.01	35.79	< 0.01	5.86	0.01	38.59	13.39	0.92	0.02	4.48	1.39	0.02
912546	Rock	0.23	0.19	< 0.01	32.79	< 0.01	4.75	0.02	41.45	16.22	0.82	0.03	3.15	0.88	0.02
912547	Rock	0.54	0.21	0.01	36.42	< 0.01	5.14	0.02	37.47	13.15	0.74	0.03	6.37	0.55	0.05
912548	Rock	0.43	0.55	< 0.01	33.02	< 0.01	4.53	0.03	38.51	15.77	0.72	0.05	5.30	1.61	0.07
912549	Rock	0.22	0.24	< 0.01	32.32	< 0.01	4.35	0.04	38.99	15.92	0.72	0.04	5.46	1.70	0.05
912550	Pulp	0.68	0.20	0.02	36.68	< 0.01	4.74	0.05	37.96	11.98	0.45	0.09	4.38	2.98	0.12
912551	Rock	0.19	0.44	< 0.01	31.07	< 0.01	5.66	0.10	35.87	14.71	0.71	0.35	4.76	6.09	0.08
912552	Rock	0.37	0.19	< 0.01	33.91	< 0.01	4.10	0.03	36.88	14.42	0.61	0.06	7.66	1.55	0.06
912553	Rock	0.18	0.20	< 0.01	33.07	< 0.01	4.04	0.03	37.80	16.29	0.69	0.07	6.64	1.97	0.04
912554	Rock	0.14	0.34	0.01	31.87	< 0.01	4.58	0.07	36.46	15.87	0.53	0.23	4.69	6.89	0.08
912555	Rock	0.30	0.34	< 0.01	32.93	< 0.01	4.95	0.03	37.30	16.97	0.56	0.04	5.88	3.48	0.11
912556	Rock	0.27	0.24	< 0.01	31.63	< 0.01	4.71	0.02	38.34	17.45	0.73	0.03	4.64	4.39	0.03
912557	Rock	0.21	0.24	< 0.01	30.95	< 0.01	5.74	0.03	40.56	16.16	0.85	0.02	2.69	2.54	0.03
912558	Rock	0.21	0.16	< 0.01	31.63	< 0.01	4.73	0.02	41.19	18.10	0.87	0.03	3.06	1.49	0.01
912559	Rock	0.23	0.24	< 0.01	33.18	< 0.01	3.71	0.01	39.63	16.25	0.76	0.03	5.25	1.33	0.03
912560 Dup	Rock	0.22	0.22	< 0.01	32.74	< 0.01	3.70	0.01	39.52	16.44	0.75	0.03	5.34	1.26	0.03
912561	Rock	0.17	0.27	0.01	36.26	< 0.01	3.96	0.08	37.53	14.18	0.74	0.03	6.47	1.97	0.03
912562	Rock	0.04	0.94	0.04	32.20	< 0.01	5.28	0.21	29.81	7.10	0.73	0.17	2.39	22.44	0.10
912563	Rock	0.15	0.44	0.02	32.71	0.01	5.66	0.04	33.69	11.77	0.87	0.03	5.76	9.81	0.05
912564	Rock	0.26	0.40	< 0.01	32.56	0.01	3.88	0.08	36.71	14.70	0.69	0.09	5.31	5.02	0.03
912565	Rock	0.18	0.11	< 0.01	31.41	< 0.01	4.42	0.02	42.74	17.51	0.86	0.03	1.80	0.72	< 0.01
912566	Rock	0.07	0.08	< 0.01	32.28	< 0.01	1.93	0.03	44.38	20.78	0.68	0.02	1.77	< 0.01	< 0.01
912567	Rock	0.08	1.67	< 0.01	26.00	0.01	4.61	0.07	36.34	16.19	0.77	0.03	1.29	11.98	0.15
912568	Rock	0.10	0.08	< 0.01	31.28	< 0.01	5.76	0.01	38.78	17.28	0.95	0.03	4.75	0.68	0.02
912569	Rock	0.56	0.16	< 0.01	32.67	< 0.01	6.83	0.02	37.36	15.90	0.75	0.03	6.31	0.53	0.09
912570	Pulp	0.53	1.84	0.37	46.07	< 0.01	4.12	0.73	31.95	2.22	1.03	0.43	2.88	7.42	0.22
912571	Rock	0.39	0.20	< 0.01	32.04	< 0.01	5.96	0.02	38.06	17.63	0.74	0.04	5.49	1.97	0.08
912572	Rock	1.04	0.41	0.01	28.37	< 0.01	18.84	0.08	29.49	11.92	0.61	0.05	7.27	1.58	0.32
912573	Rock	1.17	0.40	0.02	23.82	< 0.01	33.47	0.21	21.38	8.55	0.58	0.05	7.99	2.21	0.51
912574	Rock	1.55	0.70	0.02	25.66	< 0.01	27.62	0.19	19.79	8.41	0.50	0.06	11.59	3.73	0.70
912575	Rock	0.02	15.06	0.12	4.00	0.04	4.21	3.63	1.05	1.47	0.13	3.37	0.43	66.07	0.43

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		Nb2O5	A12O3	BaO	CaO	Cr2O3	Fe2O3	K2O	LOI	MgO	MnO	Na2O	P2O5	SiO2	TiO2
		Nb2O5-AD3-OR-ICP	WR-FS-ICP												
Sample	Sample	%	%	%	%	%	%	%	%	%	%	%	%	%	%
Description	Type	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
912576	Rock	1.45	0.85	0.06	22.65	< 0.01	35.90	0.45	16.54	6.52	0.60	0.07	10.31	4.20	0.69
912577	Rock	0.56	2.14	< 0.01	27.10	< 0.01	8.93	0.02	32.36	16.52	0.48	0.03	4.99	6.52	0.40
912578	Rock	0.59	2.18	0.01	28.17	< 0.01	10.83	0.31	30.13	12.94	0.61	0.06	5.08	8.45	0.48
912579	Rock	0.45	0.20	< 0.01	33.27	< 0.01	5.32	0.02	38.50	16.64	0.68	0.03	5.18	0.84	0.04
912580 Dup	Rock	0.44	0.20	< 0.01	32.17	< 0.01	5.37	0.02	38.44	16.97	0.70	0.03	5.23	0.86	0.05
912581	Rock	0.26	0.25	< 0.01	32.06	< 0.01	6.32	0.01	38.73	18.90	0.63	0.03	4.54	0.57	0.06
912582	Rock	0.25	0.31	< 0.01	34.85	< 0.01	6.65	< 0.01	31.67	13.11	0.50	0.04	11.63	1.72	0.17
912583	Rock	0.18	0.09	< 0.01	32.05	< 0.01	6.25	0.02	39.96	19.20	0.83	0.03	2.82	0.68	0.04
912584	Rock	1.05	0.12	< 0.01	36.47	< 0.01	6.55	0.01	32.94	14.55	0.58	0.03	6.77	0.89	0.06
912585	Rock	0.20	0.74	0.03	27.42	< 0.01	4.91	0.49	33.94	16.83	0.62	0.44	3.36	10.98	0.08
912586	Rock	0.41	0.50	< 0.01	30.62	< 0.01	4.88	0.09	40.09	16.34	0.73	0.03	2.22	3.48	0.06
912587	Rock	0.25	0.62	0.01	33.72	< 0.01	5.30	0.12	37.11	14.68	0.64	0.03	4.39	2.97	0.12
912588	Rock	0.22	0.08	0.01	32.29	< 0.01	4.65	0.02	39.17	18.41	0.70	0.03	4.98	0.07	0.02
912589	Rock	0.16	1.10	0.03	30.51	< 0.01	4.62	0.58	36.96	15.73	0.55	0.19	3.58	5.78	0.10
912590	Pulp	0.40	0.25	< 0.01	32.39	< 0.01	5.71	0.05	39.08	15.03	0.57	0.05	4.79	1.33	0.11
912591	Rock	0.50	0.48	< 0.01	32.37	< 0.01	6.53	0.07	37.78	14.33	1.06	0.04	3.30	2.93	0.05
912592	Rock	0.24	1.25	0.01	28.46	< 0.01	4.76	0.54	32.89	15.03	0.60	0.41	4.22	11.13	0.08
912593	Rock	0.37	0.30	0.01	34.51	< 0.01	5.70	0.10	38.18	12.81	0.91	0.05	3.54	3.59	0.04
912594	Rock	0.27	0.19	0.02	36.36	< 0.01	4.21	0.02	37.18	13.44	0.90	0.05	6.62	1.54	0.04
912595	Rock	0.21	0.56	0.01	27.22	< 0.01	5.68	0.30	34.86	15.26	0.78	0.77	1.83	11.87	0.10
912596	Rock	0.09	2.33	0.08	22.47	< 0.01	6.98	1.02	16.43	12.61	0.59	2.59	2.61	33.26	0.25
912597	Rock	0.86	0.38	0.01	30.90	< 0.01	11.94	0.07	33.72	13.34	0.82	0.10	5.62	2.80	0.23
912598	Rock	0.24	2.09	< 0.01	30.53	0.01	5.21	0.04	34.26	14.16	0.60	0.03	4.81	7.83	0.18
912599	Rock	0.11	0.23	< 0.01	31.99	< 0.01	6.66	0.02	39.46	14.52	1.09	0.02	2.01	3.05	0.03
912600 Dup	Rock	0.10	0.24	< 0.01	31.67	< 0.01	6.78	0.03	39.63	14.41	1.04	0.02	2.09	2.62	0.03
912601	Rock	0.10	0.39	< 0.01	33.00	< 0.01	4.56	0.02	37.23	14.18	0.54	0.03	5.36	3.77	0.13
912602	Rock	0.06	0.20	< 0.01	33.80	< 0.01	6.01	0.01	36.33	13.63	0.84	0.03	6.30	2.02	0.03
912603	Rock	0.11	0.19	< 0.01	32.50	< 0.01	3.78	0.01	39.88	17.07	0.62	0.03	4.44	1.78	0.04
912604	Rock	0.06	0.25	< 0.01	33.37	< 0.01	4.94	< 0.01	37.01	14.94	0.47	0.03	5.87	2.60	0.07
912605	Rock	0.10	0.13	< 0.01	33.36	< 0.01	6.24	0.01	38.14	15.60	0.70	0.03	3.73	1.05	0.05

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		Total	Ag	Al	As	Ba	Bi	Ca	Cd	Co	Cr	Cu	Fe	K	La
		WR-FS-ICP	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR
Sample	Sample	%	ppm	%	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%	%	ppm
Description	Туре	0.01	0.5	0.01	5	10	2	0.01	0.5	1	1	1	0.01	0.01	10
912536	Rock	100.43	1.7	0.11	21	39	<2	>10	<0.5	5	8	19	2.60	0.01	710
912537	Rock	98.96	1.0	0.09	<5	41	<2	>10	<0.5	2	9	17	2.03	0.02	195
912538	Rock	99.05	1.4	0.09	<5	44	<2	>10	<0.5	3 2	9	34 24	2.55	0.01	267
912539	Rock	99.07	0.6	0.05	<5	38	<2	>10	<0.5	2	9		2.09	< 0.01	225
912540 Dup	Rock	99.77	0.7	0.06	<5	38	<2	>10	<0.5	=		26	2.11	< 0.01	240
912541 912542	Rock	101.11 100.76	1.5 0.7	0.04 0.11	<5 7	42 35	<2 <2	>10 >10	<0.5 <0.5	3 8	8	15 32	2.52 3.69	0.01 0.02	238 247
912543	Rock Rock	101.01	<0.5	0.11	10	33 49	<2	>10	<0.5	6	10	9	2.89	< 0.02	276
912544	Rock	99.81	1.5	0.03	7	49	<2	>10	<0.5	7	10	15	3.07	< 0.01	230
912545	Rock	100.97	1.0	0.02	13	91	<2	>10	<0.5	8	11	21	4.24	0.01	328
912546	Rock	100.37	1.0	0.10	9	34	<2	>10	<0.5	5	9	14	3.44	0.02	371
912547	Rock	100.18	<0.5	0.10	11	80	<2	>10	<0.5	6	10	29	3.36	0.01	305
912548	Rock	100.17	0.8	0.26	<5	49	<2	>10	<0.5	5	12	25	3.05	0.02	284
912549	Rock	99.84	0.8	0.13	6	33	<2	>10	< 0.5	6	11	16	3.05	0.01	243
912550	Pulp	99.67	1.3	0.10	6	166	<2	>10	< 0.5	4	5	39	3.52	0.03	246
912551	Rock	99.85	0.8	0.22	<5	60	<2	>10	< 0.5	9	10	12	3.97	0.06	253
912552	Rock	99.47	1.6	0.09	7	42	<2	>10	< 0.5	7	9	23	2.89	0.02	359
912553	Rock	100.85	1.8	0.12	9	39	<2	>10	< 0.5	5	10	12	2.90	0.02	372
912554	Rock	101.63	1.0	0.17	14	96	<2	>10	< 0.5	6	11	9	3.36	0.04	498
912555	Rock	102.60	1.3	0.18	14	33	<2	>10	< 0.5	7	10	19	3.38	< 0.01	545
912556	Rock	102.21	0.9	0.11	<5	36	<2	>10	< 0.5	5	13	17	3.43	0.01	234
912557	Rock	99.82	0.9	0.12	9	31	<2	>10	< 0.5	7	12	12	3.90	0.02	267
912558	Rock	101.30	1.3	0.08	<5	33	<2	>10	< 0.5	5	20	15	3.22	0.01	206
912559	Rock	100.44	0.7	0.13	<5	32	<2	>10	< 0.5	4	8	14	2.71	< 0.01	228
912560 Dup	Rock	100.04	0.8	0.12	5	32	<2	>10	< 0.5	4	9	14	2.51	< 0.01	235
912561	Rock	101.54	1.3	0.14	11	97	<2	>10	< 0.5	6	11	12	2.94	0.05	225
912562	Rock	101.42	< 0.5	4.61	14	294	<2	>10	< 0.5	5	34	2	4.04	0.15	349
912563	Rock	100.87	< 0.5	0.23	17	117	<2	>10	< 0.5	6	25	11	4.06	0.03	560
912564	Rock	99.49	1.0	0.21	5	68	<2	>10	< 0.5	5	21	17	2.98	0.06	237
912565	Rock	99.64	1.6	0.06	5	39	<2	>10	< 0.5	7	10	11	2.95	0.01	270
912566	Rock	101.98	1.2	0.03	<5	37	<2	>10	< 0.5	1	9	5	1.30	< 0.01	125
912567	Rock	99.10	0.9	0.85	<5	41	<2	>10	< 0.5	5	29	6	3.31	0.04	136
912568	Rock	99.63	< 0.5	0.04	25	38	<2	>10	< 0.5	8	10	8	4.23	< 0.01	972
912569	Rock	100.65	0.5	0.10	20	28	<2	>10	< 0.5	11	9	34	4.89	< 0.01	822
912570	Pulp	99.28	1.4	0.94	24	2755	<2	>10	< 0.5	4	8	19	2.90	0.56	951
912571	Rock	102.23	1.2	0.10	32	31	<2	>10	< 0.5	16	11	37	4.10	0.01	1326
912572	Rock	98.96	1.2	0.22	<5	89	<2	>10	< 0.5	22	8	84	>10	0.06	542
912573	Rock	99.20	1.8	0.22	<5	148	<2	>10	< 0.5	35	9	78	>10	0.15	520
912574	Rock	99.00	1.5	0.41	6	138	<2	>10	< 0.5	53	12	151	>10	0.14	763
912575	Rock	100.03	1.3	7.84	<5	792	<2	3.21	< 0.5	10	122	54	3.21	3.09	40

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		Total	Ag	Al	As	Ba	Bi	Ca	Cd	Co	Cr	Cu	Fe	K	La
		WR-FS-ICP	30-4A-TR												
Sample	Sample	%	ppm	%	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%	%	ppm
Description	Type	0.01	0.5	0.01	5	10	2	0.01	0.5	1	1	1	0.01	0.01	10
912576	Rock	98.85	0.7	0.44	<5	457	<2	>10	< 0.5	28	12	63	>10	0.34	787
912577	Rock	99.51	1.5	1.14	9	49	<2	>10	< 0.5	19	19	48	6.54	0.01	581
912578	Rock	99.27	1.8	1.10	16	111	<2	>10	< 0.5	29	22	83	7.36	0.23	819
912579	Rock	100.72	0.6	0.11	13	33	<2	>10	< 0.5	8	10	40	3.71	0.02	530
912580 Dup	Rock	100.06	0.7	0.10	11	34	<2	>10	< 0.5	7	10	46	3.72	0.01	486
912581	Rock	102.11	1.1	0.12	11	27	<2	>10	< 0.5	5	8	46	4.44	< 0.01	487
912582	Rock	100.68	1.1	0.17	16	29	<2	>10	< 0.5	10	9	39	4.86	< 0.01	614
912583	Rock	101.98	< 0.5	0.03	17	33	<2	>10	< 0.5	7	9	23	4.46	< 0.01	686
912584	Rock	99.00	< 0.5	0.06	<5	41	<2	>10	< 0.5	12	10	84	4.83	< 0.01	346
912585	Rock	99.85	< 0.5	0.36	5	196	<2	>10	< 0.5	6	14	18	3.39	0.39	311
912586	Rock	99.04	< 0.5	2.51	20	57	<2	>10	< 0.5	6	16	37	3.40	0.07	788
912587	Rock	99.70	< 0.5	0.31	20	73	<2	>10	< 0.5	5	12	23	3.64	0.09	724
912588	Rock	100.43	< 0.5	0.04	<5	84	<2	>10	< 0.5	4	9	18	3.26	0.01	262
912589	Rock	99.73	< 0.5	0.57	<5	189	<2	>10	< 0.5	6	18	17	3.18	0.45	271
912590	Pulp	99.37	< 0.5	0.12	8	43	<2	>10	< 0.5	6	7	32	3.88	0.03	365
912591	Rock	98.96	< 0.5	0.26	80	42	<2	>10	< 0.5	7	13	35	4.60	0.05	3873
912592	Rock	99.39	< 0.5	0.65	11	108	<2	>10	< 0.5	4	11	17	3.27	0.42	514
912593	Rock	99.74	< 0.5	0.15	54	101	<2	>10	< 0.5	4	10	24	3.82	0.08	2382
912594	Rock	100.58	< 0.5	0.10	13	147	<2	>10	< 0.5	3	10	22	3.03	0.01	555
912595	Rock	99.24	< 0.5	0.27	8	87	<2	>10	< 0.5	5	13	15	4.04	0.22	365
912596	Rock	101.23	< 0.5	1.27	21	578	<2	>10	< 0.5	7	15	6	4.75	0.86	885
912597	Rock	99.94	< 0.5	0.23	45	94	<2	>10	< 0.5	18	11	67	8.86	0.05	1974
912598	Rock	99.76	< 0.5	1.11	18	54	<2	>10	< 0.5	8	25	21	3.65	0.03	653
912599	Rock	99.11	< 0.5	0.12	123	34	<2	>10	< 0.5	6	15	9	4.67	< 0.01	6031
912600 Dup	Rock	98.58	< 0.5	0.12	145	33	<2	>10	< 0.5	6	16	7	4.54	< 0.01	6088
912601	Rock	99.21	< 0.5	0.21	44	47	<2	>10	< 0.5	6	11	3	3.00	< 0.01	1995
912602	Rock	99.21	< 0.5	0.11	80	29	<2	>10	< 0.5	7	12	5	4.50	< 0.01	3643
912603	Rock	100.35	0.5	0.10	10	29	<2	>10	< 0.5	5	9	10	2.67	< 0.01	429
912604	Rock	99.58	< 0.5	0.13	17	23	<2	>10	< 0.5	8	13	4	3.65	< 0.01	708
912605	Rock	99.05	< 0.5	0.07	31	34	<2	>10	< 0.5	7	13	5	4.30	< 0.01	1420

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		Mg	Mn	Mo	Na	Ni	P	Pb	Sb	Sc	Sr	Ti	Tl	V	W
		30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR
Sample	Sample	%	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm
Description	Туре	0.01	5	1	0.01	1	10	2	5	1	1	0.01	10	1	10
912536	Rock	>10	3600	3	0.03	<1	>10000	24	<5	8 4	2401	< 0.01	<10	21	<10
912537	Rock	>10	4707	2 2	0.03	<1	>10000	19	<5	•	3769	< 0.01	<10	11 4	<10
912538 912539	Rock Rock	9.98 >10	5329 5445	2	0.03 0.03	<1 <1	>10000 >10000	16 17	<5 <5	5 6	4684 4774	0.02 <0.01	<10 <10	2	<10 <10
912539 912540 Dup	Rock	>10	5342	3	0.03	<1	>10000	17	<5 <5	6	4666	<0.01	<10	2	<10
912541	Rock	>10	5490	3	0.03	<1	>10000	17	<5	7	3866	< 0.01	<10	6	<10
912541	Rock	9.79	3539	2	0.03	<1	>10000	22	<5	10	2037	< 0.01	<10	41	<10
912543	Rock	9.61	5301	2	0.03	<1	>10000	22	<5	7	3176	< 0.01	<10	<1	<10
912544	Rock	>10	5892	2	0.02	<1	5521	24	<5	9	3298	< 0.01	<10	<1	<10
912545	Rock	8.25	6081	2	0.02	<1	>10000	22	<5	13	2335	0.01	<10	12	<10
912546	Rock	9.72	5145	2	0.02	<1	>10000	17	<5	10	2879	< 0.01	<10	10	<10
912547	Rock	7.82	4713	2	0.03	<1	>10000	16	<5	6	3420	0.02	<10	24	<10
912548	Rock	>10	4983	2	0.03	<1	>10000	18	<5	8	4229	0.02	<10	21	<10
912549	Rock	>10	4980	2	0.02	<1	>10000	21	<5	7	3438	0.02	<10	12	<10
912550	Pulp	8.07	3247	3	0.06	<1	>10000	19	<5	7	2439	0.06	<10	71	<10
912551	Rock	9.06	4663	3	0.28	<1	>10000	16	<5	7	3064	0.03	<10	30	<10
912552	Rock	>10	4498	2	0.04	<1	>10000	17	<5	7	3664	0.03	<10	19	<10
912553	Rock	9.50	4645	2	0.05	<1	>10000	18	<5	7	3159	0.01	<10	10	<10
912554	Rock	9.03	3771	2	0.20	<1	>10000	16	<5	8	2193	0.03	<10	26	<10
912555	Rock	8.81	3593	2	0.03	<1	>10000	18	<5	7	1687	0.03	<10	29	<10
912556	Rock	9.88	4909	2	0.02	<1	>10000	15	<5	8	2832	0.01	<10	13	<10
912557	Rock	9.57	5308	2	0.02	<1	9024	16	<5	8	1832	0.01	<10	12	<10
912558	Rock	9.83	5438	2	0.02	<1	>10000	17	<5	6	3070	< 0.01	<10	3	<10
912559	Rock	>10	5014	2	0.02	<1	>10000	15	<5	7	3565	0.01	<10	6	<10
912560 Dup	Rock	9.41	4597	1	0.02	<1	>10000	14	<5	7	3259	0.01	<10	6	<10
912561	Rock	8.91	5246	2	0.02	<1	>10000	21	<5	8	3389	0.01	<10	8	<10
912562	Rock	4.21	4947	2	0.13	<1	8565	17	<5	24	1450	0.04	<10	66	<10
912563	Rock	6.94	5718	2	0.02	2	>10000	23	<5	21	2080	0.02	<10	34	<10
912564	Rock	9.69	4904	2	0.06	<1	>10000	15	<5	11	3387	0.01	<10	15	<10
912565	Rock	>10	5598	2	0.02	<1	6353	18	<5	9	2830	< 0.01	<10	4	<10
912566	Rock	>10	4247	1	0.02	<1	6323	18	<5	7	3230	< 0.01	<10	<1	<10
912567	Rock	>10	5018	3	0.02	2	4412	16	<5	12	2717	0.03	<10	29	<10
912568	Rock	9.69	6254	3	0.02	<1	>10000	21	<5	11	2390	< 0.01	<10	20	<10
912569	Rock	9.00	4975	1	0.03	<1	>10000	20	<5	8	2572	0.04	<10	39	<10
912570	Pulp	1.28	6711	15	0.33	<1	9976	76	<5	4	>10000	0.15	<10	162	<10
912571	Rock	8.94	4474	2	0.02	<1	>10000	27	<5	10	2532	0.03	<10	27	<10
912572	Rock	7.06	3775	3	0.03	1	>10000	24	<5	6	2411	0.17	<10	184	<10
912573	Rock	5.37	4126	2	0.04	2	>10000	22	<5	5	2960	0.22	<10	321	<10
912574	Rock	5.34	3552	3	0.05	2	>10000	31	<5	5	3326	0.19	<10	239	<10
912575	Rock	0.86	734	3	2.73	5	1586	32	<5	5	649	0.28	<10	57	<10

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		Mg	Mn	Мо	Na	Ni	P	Pb	Sb	Sc	Sr	Ti	Tl	V	W
		30-4A-TR													
Sample	Sample	%	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm
Description	Type	0.01	5	1	0.01	1	10	2	5	1	1	0.01	10	1	10
912576	Rock	4.00	3898	3	0.06	6	>10000	28	<5	4	2516	0.21	<10	394	<10
912577	Rock	>10	3381	3	0.02	6	>10000	18	<5	11	1788	0.14	<10	88	<10
912578	Rock	7.53	4056	3	0.05	7	>10000	27	<5	12	1739	0.17	<10	105	<10
912579	Rock	9.80	4675	3	0.02	<1	>10000	28	<5	8	2711	0.01	<10	15	<10
912580 Dup	Rock	>10	4691	2	0.02	<1	>10000	23	<5	8	2954	0.01	<10	15	<10
912581	Rock	>10	4144	3	0.02	<1	>10000	29	<5	10	2284	0.01	<10	22	<10
912582	Rock	7.90	3106	2	0.03	<1	>10000	28	<5	11	1936	0.04	<10	33	<10
912583	Rock	>10	5255	5	0.02	2	9881	23	<5	10	2073	< 0.01	<10	14	<10
912584	Rock	8.80	3645	2	0.03	8	>10000	22	<5	6	3100	0.04	<10	43	<10
912585	Rock	9.72	3993	3	0.35	1	>10000	20	<5	18	2731	0.04	<10	39	<10
912586	Rock	9.69	4631	4	0.02	2	8130	24	<5	9	2389	0.03	<10	14	<10
912587	Rock	>10	4485	5	0.02	3	>10000	29	<5	9	2415	0.03	<10	21	<10
912588	Rock	>10	4939	3	0.02	<1	>10000	16	<5	4	3825	< 0.01	<10	24	<10
912589	Rock	9.77	3564	3	0.15	2	>10000	18	<5	7	2203	0.05	<10	27	<10
912590	Pulp	>10	4153	4	0.04	<1	>10000	17	<5	7	2291	0.03	<10	36	<10
912591	Rock	9.98	7611	5	0.03	<1	>10000	26	<5	11	2601	0.03	<10	17	<10
912592	Rock	>10	4281	1	0.36	<1	>10000	21	<5	10	2912	0.04	<10	33	<10
912593	Rock	8.18	6167	5	0.04	<1	>10000	21	<5	10	2255	0.02	<10	16	<10
912594	Rock	8.51	6070	7	0.04	<1	>10000	20	<5	7	3539	0.01	<10	17	<10
912595	Rock	9.43	4985	4	0.61	<1	6531	20	<5	12	2124	0.04	<10	69	<10
912596	Rock	7.38	3663	2	2.15	<1	9509	26	<5	16	1710	0.15	<10	125	<10
912597	Rock	7.96	5598	7	0.08	<1	>10000	22	<5	9	2661	0.14	<10	143	<10
912598	Rock	8.84	3735	4	0.02	5	>10000	20	<5	10	2052	0.05	<10	38	<10
912599	Rock	9.46	7550	17	0.02	<1	7193	32	<5	13	1638	0.01	<10	16	<10
912600 Dup	Rock	9.62	7486	15	0.02	<1	7185	33	<5	14	1590	0.01	<10	15	<10
912601	Rock	9.69	3664	3	0.02	<1	>10000	21	<5	8	1469	0.03	<10	23	<10
912602	Rock	9.50	6009	5	0.02	<1	>10000	28	<5	11	1848	0.01	<10	10	<10
912603	Rock	>10	4020	3	0.02	<1	>10000	19	<5	6	2477	0.02	<10	14	<10
912604	Rock	>10	3271	2	0.02	<1	>10000	25	<5	7	868	0.02	<10	23	<10
912605	Rock	9.64	4356	6	0.03	<1	>10000	26	<5	8	1518	0.01	<10	15	<10

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		Zn	Zr	Ce	Dy	Er	Eu	Gd	Hf	Но	La	Lu	Nd	Pr	Sm
		30-4A-TR		REE-LB-MS	REE-LB-MS	REE-LB-MS	REE-LB-MS		REE-LB-MS	REE-LB-MS		REE-LB-MS	REE-LB-MS		REE-LB-MS
Sample	Sample	ppm 2	ppm	ppm	ppm	ppm 0.1	ppm 0.1	ppm 0.1	ppm 0.1	ppm 0.1	ppm 0.1	ppm 0.1	ppm 0.1	ppm 0.1	ppm 0.1
Description 912536	Type Rock	11	24	>1000	21.1	7.1	18.3	46.3	<0.1	2.8	>1000	<0.1	401.0	137.2	51.6
912537	Rock	12	16	588.6	19.5	7.1	14.8	33.5	<0.1	2.8	298.1	<0.1	249.6	71.4	39.4
912538	Rock	16	40	591.5	22.0	6.8	16.3	34.5	<0.1	2.9	290.8	<0.1	263.0	74.2	42.7
912539	Rock	16	39	461.0	31.8	12.6	13.9	33.6	<0.1	5.7	218.5	<0.1	205.8	58.1	35.2
912540 Dup	Rock	16	41	491.2	31.9	12.2	14.3	34.2	<0.1	5.8	230.0	<0.1	219.7	61.9	37.3
912541	Rock	18	26	568.0	40.1	18.3	15.0	37.3	<0.1	7.6	308.7	0.2	233.8	67.0	39.2
912542	Rock	12	47	520.1	34.4	12.9	16.3	40.8	< 0.1	6.1	270.5	< 0.1	236.3	64.5	40.2
912543	Rock	15	39	678.5	45.1	17.1	16.7	46.4	< 0.1	7.8	347.1	0.3	292.6	84.1	47.6
912544	Rock	18	16	419.7	24.3	10.8	11.9	29.8	< 0.1	4.4	223.0	< 0.1	178.4	51.3	30.2
912545	Rock	21	55	656.7	64.6	29.1	22.7	58.4	0.4	13.0	350.8	1.3	287.5	82.8	55.5
912546	Rock	19	29	762.3	28.5	10.0	14.1	40.6	< 0.1	4.7	385.4	< 0.1	339.6	95.1	50.0
912547	Rock	19	40	642.2	24.0	8.4	16.8	39.0	< 0.1	3.7	307.4	< 0.1	282.0	79.3	44.7
912548	Rock	18	42	728.4	19.1	6.1	14.8	33.4	< 0.1	2.5	389.3	< 0.1	298.8	87.6	43.6
912549	Rock	16	32	577.0	28.6	12.1	14.9	36.8	< 0.1	5.4	294.8	< 0.1	253.7	71.9	40.9
912550	Pulp	10	40	873.5	25.2	8.5	20.7	45.8	< 0.1	3.6	442.6	< 0.1	355.6	104.9	56.4
912551	Rock	26	34	554.0	18.4	7.5	12.6	29.6	< 0.1	2.8	277.9	< 0.1	240.6	69.0	35.2
912552	Rock	16	29	744.6	23.1	8.4	18.0	41.5	< 0.1	3.3	365.9	< 0.1	339.8	93.8	52.5
912553	Rock	20	30	789.9	20.5	7.8	16.6	38.4	< 0.1	3.2	418.7	< 0.1	333.4	97.6	48.8
912554	Rock	25	29	948.0	20.6	7.0	17.0	41.6	< 0.1	2.8	577.4	< 0.1	346.0	105.0	48.7
912555	Rock	15	26	>1000	23.4	7.2	21.1	48.9	< 0.1	2.9	812.0	< 0.1	433.8	138.0	58.0
912556	Rock	20	24	686.5	18.3	8.2	12.4	29.7	< 0.1	2.7	405.1	< 0.1	255.7	77.2	34.9
912557	Rock	20	22	545.7	13.1	5.8	11.1	23.8	< 0.1	1.7	319.0	< 0.1	200.4	60.8	28.2
912558	Rock	22	23	459.9	12.1	4.0	8.8	21.0	<0.1	1.1	239.7	<0.1	195.5	56.7	27.8
912559	Rock	18	22	488.6	18.7	7.4	12.4	29.7	<0.1	2.7	249.4	<0.1	225.2	61.2	35.1
912560 Dup	Rock	17	23	474.7	18.6	7.7	12.7	29.7	<0.1	2.8	236.7	<0.1	217.4	59.8	34.1
912561	Rock	21	43	444.3	21.9	10.2	13.1	29.3	<0.1	3.8	225.0	<0.1	201.7	55.2	34.1
912562	Rock	62	45	661.0	16.7	7.4	12.7	29.5	2.1	2.3	371.4	<0.1	267.5	77.3	37.7
912563 912564	Rock Rock	33 22	63 37	>1000 564.2	39.8 25.3	21.3 11.3	24.0 16.3	58.7 37.3	<0.1 <0.1	7.7 4.5	736.1 288.6	0.9 <0.1	572.9 260.6	166.0 73.4	78.6 43.0
912565	Rock	23	22	748.0	13.9	5.8	10.5	28.9	<0.1	1.7	412.0	<0.1	299.8	86.9	39.2
912566	Rock	17	11	318.6	10.5	4.0	5.4	15.7	<0.1	0.9	160.0	<0.1	133.9	37.8	19.7
912567	Rock	23	17	640.9	25.8	11.5	13.1	34.3	<0.1	4.5	368.9	<0.1	259.1	74.6	39.9
912568	Rock	29	24	>1000	72.2	29.9	54.0	153.4	<0.1	13.2	>1000	1.6	>1000	532.6	186.5
912569	Rock	22	32	>1000	33.9	13.2	28.7	68.6	1.2	5.6	>1000	<0.1	698.8	238.1	81.3
912570	Pulp	426	88	>1000	14.6	4.9	17.2	41.7	<0.1	1.2	981.7	<0.1	471.0	166.6	52.1
912571	Rock	22	58	>1000	33.4	15.2	24.4	56.0	<0.1	6.3	>1000	0.4	515.4	173.1	63.2
912572	Rock	65	76	>1000	21.4	8.2	18.9	43.7	8.2	2.8	625.0	<0.1	391.8	121.3	52.4
912573	Rock	115	81	938.6	19.0	4.9	18.7	41.5	11.2	2.1	508.6	<0.1	388.2	112.8	55.1
912574	Rock	78	45	>1000	24.0	6.2	27.5	61.5	14.6	2.9	776.9	<0.1	559.4	163.8	78.1
912575	Rock	66	9	86.1	2.7	1.2	1.1	4.2	0.2	<0.1	47.1	<0.1	34.7	9.2	4.8

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		Zn	Zr	Ce	Dy	Er	Eu	Gd	Hf	Но	La	Lu	Nd	Pr	Sm
		30-4A-TR	30-4A-TR	REE-LB-MS											
Sample	Sample	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Description	Type	2	1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
912576	Rock	149	64	>1000	22.3	6.0	24.9	59.0	7.4	2.7	790.0	< 0.1	579.5	173.1	76.6
912577	Rock	21	49	>1000	23.8	8.9	22.3	45.8	4.1	3.5	682.1	< 0.1	406.9	124.0	56.7
912578	Rock	35	44	>1000	17.5	6.2	16.3	41.7	4.2	2.1	806.3	< 0.1	441.9	140.6	52.3
912579	Rock	23	48	847.2	20.8	9.3	14.0	34.7	< 0.1	3.4	510.2	< 0.1	310.3	96.8	39.9
912580 Dup	Rock	25	47	833.6	20.1	9.6	13.5	32.1	< 0.1	3.3	491.2	< 0.1	299.8	87.3	37.0
912581	Rock	30	70	776.5	24.9	12.1	13.6	34.8	0.8	4.7	493.7	< 0.1	274.4	84.8	37.5
912582	Rock	26	77	>1000	60.7	28.2	25.6	66.1	2.1	12.7	679.3	1.3	423.7	127.4	65.4
912583	Rock	23	21	>1000	15.9	6.0	12.0	34.6	< 0.1	2.0	714.0	< 0.1	361.7	116.1	41.1
912584	Rock	17	59	760.2	21.3	7.3	22.1	41.8	1.8	3.2	395.8	< 0.1	325.9	92.8	51.2
912585	Rock	40	41	577.1	11.2	3.8	10.2	24.7	1.0	0.9	323.0	< 0.1	225.6	66.8	31.7
912586	Rock	27	26	>1000	14.7	5.1	15.7	39.8	< 0.1	1.6	845.2	< 0.1	388.3	126.2	47.7
912587	Rock	32	30	>1000	18.1	6.3	15.0	39.5	0.4	2.2	805.5	< 0.1	388.9	126.4	49.4
912588	Rock	25	19	483.2	11.9	3.3	10.8	26.1	< 0.1	1.0	266.5	< 0.1	209.1	58.9	33.4
912589	Rock	36	37	507.8	14.5	5.4	10.8	25.4	< 0.1	1.7	289.8	< 0.1	202.2	58.8	31.6
912590	Pulp	23	34	756.0	20.1	6.6	18.3	40.9	< 0.1	2.5	404.3	< 0.1	317.4	91.3	51.5
912591	Rock	41	37	>1000	18.2	4.4	25.1	71.0	< 0.1	1.7	>1000	< 0.1	928.0	352.8	82.5
912592	Rock	50	55	856.9	12.3	3.3	13.7	31.5	1.6	1.0	547.1	< 0.1	298.9	92.3	39.7
912593	Rock	37	24	>1000	16.3	4.2	20.1	53.8	0.4	1.5	>1000	< 0.1	640.8	236.0	64.5
912594	Rock	29	26	856.6	15.8	4.6	15.3	35.4	< 0.1	1.5	552.2	< 0.1	310.9	93.9	45.2
912595	Rock	52	87	607.0	8.3	2.5	7.4	20.3	< 0.1	0.4	378.6	< 0.1	206.7	65.7	26.2
912596	Rock	114	247	>1000	10.3	3.0	11.6	31.2	0.5	0.7	883.6	< 0.1	357.3	121.0	40.3
912597	Rock	48	45	>1000	19.5	4.9	27.3	67.7	12.4	1.9	>1000	< 0.1	753.8	259.7	85.2
912598	Rock	25	49	992.6	16.3	5.4	15.0	35.3	< 0.1	2.1	681.1	< 0.1	313.9	101.1	42.0
912599	Rock	30	9	>1000	19.2	2.6	34.0	98.5	< 0.1	0.9	>1000	< 0.1	>1000	567.6	108.4
912600 Dup	Rock	29	10	>1000	18.7	2.4	36.5	103.3	< 0.1	1.0	>1000	< 0.1	>1000	587.2	110.2
912601	Rock	20	16	>1000	27.1	8.2	27.1	71.0	< 0.1	3.4	>1000	< 0.1	700.1	237.9	83.0
912602	Rock	31	24	>1000	24.8	6.8	29.5	77.9	< 0.1	3.0	>1000	< 0.1	941.3	364.7	87.8
912603	Rock	20	18	720.2	15.2	5.5	12.5	29.6	< 0.1	1.7	467.4	< 0.1	245.7	76.5	35.6
912604	Rock	15	25	>1000	21.2	7.3	21.5	50.9	< 0.1	2.8	>1000	< 0.1	524.6	181.9	63.6
912605	Rock	15	20	>1000	22.4	6.8	20.3	56.1	< 0.1	3.0	>1000	< 0.1	587.9	207.2	67.7

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

			Tb	Tm	Yb	Y	Ta	Th	U
				REE-LB-MS			Ta-4A-LL-MS		U-4A-LL-MS
	Sample	Sample	ppm	ppm	ppm	ppm	ppm	ppm	ppm
	Description	Туре	0.1	0.1	0.1	0.10	0.05	0.20	0.10
	912536	Rock	3.7	0.2	4.2	75.1	26.56	107.50	4.21
	912537	Rock	3.5	< 0.1	3.9	73.9	35.19	93.41	4.76
	912538	Rock	3.5	< 0.1	3.7	83.4	9.82	135.05	2.58
	912539	Rock	5.1	0.7	6.4	135.6	6.06	176.79	2.41
ç	912540 Dup	Rock	5.6	1.0	6.8	136.7	6.60	192.16	2.48
	912541	Rock	6.7	1.9	11.1	185.9	7.33	102.46	3.78
	912542	Rock	6.3	1.0	7.7	133.4	30.54	308.46	3.75
	912543	Rock	8.1	1.7	9.9	177.4	0.76	134.33	2.51
	912544	Rock	4.4	0.6	6.6	129.6	0.43	80.76	2.19
	912545	Rock	11.4	4.0	17.8	295.4	9.90	330.81	6.29
	912546	Rock	4.8	0.6	6.8	115.8	1.41	112.76	2.30
	912547	Rock	4.4	0.4	4.9	102.0	4.29	130.44	3.05
	912548	Rock	3.1	< 0.1	3.8	78.6	22.00	125.52	20.60
	912549	Rock	5.0	0.9	6.8	131.0	10.38	117.27	6.79
	912550	Pulp	4.5	0.3	6.2	95.2	41.62	153.79	2.28
	912551	Rock	2.9	< 0.1	3.6	80.3	8.95	85.01	3.98
	912552	Rock	4.3	< 0.1	4.3	91.8	10.70	102.63	3.58
	912553	Rock	3.8	0.1	4.2	85.5	4.52	128.78	2.98
	912554	Rock	3.9	0.1	4.9	80.3	10.18	85.26	2.57
	912555	Rock	4.1	< 0.1	4.8	80.2	20.19	107.38	7.59
	912556	Rock	2.9	0.2	5.6	83.2	10.71	101.66	8.88
	912557	Rock	2.0	< 0.1	4.2	62.3	40.41	113.17	15.58
	912558	Rock	1.6	< 0.1	2.8	48.5	30.47	114.58	13.31
	912559	Rock	2.9	< 0.1	5.6	79.3	3.98	98.96	2.79
ç	912560 Dup	Rock	3.0	0.1	5.5	83.7	3.78	97.63	2.60
	912561	Rock	3.3	0.7	6.6	99.3	18.23	168.68	5.46
	912562	Rock	2.6	< 0.1	5.0	73.7	1.29	76.89	2.80
	912563	Rock	6.5	3.0	15.7	190.5	12.36	316.82	4.48
	912564	Rock	4.5	1.0	7.9	120.0	1.33	128.97	2.41
	912565	Rock	2.0	< 0.1	3.9	65.7	1.28	70.80	2.34
	912566	Rock	0.9	< 0.1	2.3	44.7	0.75	51.85	0.63
	912567	Rock	4.5	0.7	6.8	115.7	3.14	64.25	2.72
	912568	Rock	13.4	4.4	19.5	293.5	1.83	65.95	3.86
	912569	Rock	5.9	1.1	8.3	138.3	5.54	72.32	3.07
	912570	Pulp	2.1	< 0.1	3.3	56.0	41.64	52.77	26.80
	912571	Rock	6.0	1.7	11.5	151.7	6.65	259.96	5.39
	912572	Rock	4.0	< 0.1	4.6	81.7	8.00	227.58	4.07
	912573	Rock	3.7	< 0.1	2.9	62.8	0.16	158.15	3.93
	912574	Rock	5.0	< 0.1	3.4	76.9	0.46	138.59	6.22
	912575	Rock	< 0.1	< 0.1	1.3	16.7	1.68	10.89	3.63

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		Tb	Tm	Yb	Y	Ta	Th	U
		REE-LB-MS	REE-LB-MS	REE-LB-MS	REE-LB-MS	Ta-4A-LL-MS	Th-4A-LL-MS	U-4A-LL-MS
Sample	Sample	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Description	Type	0.1	0.1	0.1	0.10	0.05	0.20	0.10
912576	Rock	4.6	< 0.1	3.8	74.1	0.44	160.53	9.21
912577	Rock	4.3	0.3	5.7	94.0	44.60	166.17	20.31
912578	Rock	3.0	< 0.1	4.3	68.0	3.88	178.65	24.62
912579	Rock	3.3	0.5	6.1	99.1	5.05	173.65	5.39
912580 Dup	Rock	3.1	0.4	5.8	94.4	5.54	187.33	5.14
912581	Rock	4.1	1.0	7.7	124.9	5.48	194.75	5.69
912582	Rock	11.2	3.5	17.3	287.0	10.41	367.20	9.92
912583	Rock	2.4	< 0.1	3.5	63.8	1.34	108.77	3.20
912584	Rock	4.1	< 0.1	4.0	82.6	13.24	148.58	3.68
912585	Rock	1.6	< 0.1	2.2	45.6	5.49	58.51	4.31
912586	Rock	2.3	< 0.1	2.9	60.3	55.08	111.86	63.12
912587	Rock	3.2	< 0.1	4.1	72.8	11.45	98.89	8.28
912588	Rock	1.9	< 0.1	1.9	45.5	1.36	50.41	2.44
912589	Rock	2.3	< 0.1	4.4	59.5	7.41	89.84	4.33
912590	Pulp	4.1	< 0.1	3.9	76.5	23.57	160.34	9.69
912591	Rock	2.4	< 0.1	3.0	58.5	5.74	139.74	3.34
912592	Rock	2.0	< 0.1	2.0	45.0	15.34	61.70	8.22
912593	Rock	2.2	< 0.1	2.8	52.7	8.47	125.30	6.34
912594	Rock	3.0	< 0.1	2.5	55.1	3.14	60.43	5.36
912595	Rock	0.8	< 0.1	2.0	30.9	20.98	47.18	4.35
912596	Rock	1.2	< 0.1	2.3	38.1	13.31	45.91	8.80
912597	Rock	3.4	< 0.1	3.5	63.7	4.57	133.10	9.69
912598	Rock	2.7	< 0.1	3.2	64.0	54.88	128.05	10.58
912599	Rock	1.9	<0.1	1.8	49.6	10.67	17.14	7.18
912600 Dup	Rock	1.9	< 0.1	1.4	50.3	11.51	16.98	7.61
912601	Rock	5.5	0.3	6.2	100.6	0.11	83.12	4.74
912602	Rock	4.0	< 0.1	4.4	79.6	9.04	105.01	6.99
912603	Rock	2.6	<0.1	3.0	57.7	4.66	57.80	5.20
912604	Rock	3.6	0.2	5.3	79.4	38.59	93.92	27.56
912605	Rock	4.1	< 0.1	4.2	78.1	30.88	105.85	29.00

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		Nb2O5	Al2O3	BaO	CaO	Cr2O3	Fe2O3	K2O	LOI	MgO	MnO	Na2O	P2O5	SiO2	TiO2
		Nb2O5-AD3-OR-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP
Sample	Sample	%	%	%	%	%	%	%	%	%	%	%	%	%	%
Description	Туре	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
912536	Rock	0.33													
912536 Dup		0.33													
QCV1011-00491-0002-BLK		< 0.01													
STD-OKA-1 expected		0.53													
STD-OKA-1 result		0.55													
912554	Rock	0.14													
912554 Dup		0.13													
QCV1011-00491-0005-BLK		< 0.01													
STD-OKA-1 expected		0.53													
STD-OKA-1 result		0.55													
912572	Rock	1.04													
912572 Dup		1.08													
QCV1011-00491-0008-BLK		< 0.01													
STD-OKA-1 expected		0.53													
STD-OKA-1 result		0.53													
912590	Pulp	0.40													
912590 Dup		0.40													
QCV1011-00491-0011-BLK		< 0.01													
STD-OKA-1 expected		0.53													
STD-OKA-1 result		0.54													
QCV1011-00491-0013-BLK		< 0.01													
STD-OKA-1 expected		0.53													
STD-OKA-1 result		0.56													
912536	Rock		0.22	< 0.01	33.01	< 0.01	3.79	0.02	40.16	17.18	0.54	0.04	5.01	0.44	0.02
912536 Dup			0.22	< 0.01	33.02	< 0.01	3.80	0.03	40.19	16.94	0.53	0.04	5.07	0.42	0.02
QCV1011-00495-0002-BLK			< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
STD-SY-4 expected			20.69		8.05		6.21	1.66	4.56	0.54		7.10		49.90	0.29
STD-SY-4 result			19.77	0.04	8.06	< 0.01	6.44	1.78	4.50	0.53		6.82		51.74	0.29
912554	Rock		0.34	0.01	31.87	< 0.01	4.58	0.07	36.46	15.87	0.53	0.23	4.69	6.89	0.08
912554 Dup			0.35	0.01	31.96	< 0.01	4.58	0.07	36.32	15.91	0.54	0.24	4.76	7.01	0.08
QCV1011-00495-0005-BLK			< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
912572	Rock		0.41	0.01	28.37	<0.01	18.84	0.01	29.49	11.92	0.61	0.01	7.27	1.58	0.32
912572 Dup	ROCK		0.41	0.01	28.60	< 0.01	18.85	0.08	29.49	12.41	0.61	0.05	7.27	1.51	0.32
QCV1011-00495-0008-BLK			< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.03	< 0.01	< 0.01	< 0.01
912590	Pulp		0.01	<0.01	32.39	<0.01	5.71	0.01	39.08	15.03	0.57	0.01	4.79	1.33	0.01
912590 Dup	ruip		0.25	< 0.01	32.59	< 0.01	5.56	0.03	38.92	15.05	0.57	0.05	4.79	1.33	0.11
OCV1011-00495-0011-BLK			< 0.01	<0.01	<0.01	<0.01	< 0.01	< 0.04	< 0.01	< 0.01	< 0.01	< 0.03	< 0.01	< 0.01	<0.11
OCV1011-00495-0013-BLK			< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
STD-SY-4 expected			20.69	<0.01	<0.01 8.05	<0.01	6.21	1.66	4.56	0.54	<0.01	7.10	<0.01	49.90	0.29
•			20.69	0.04	8.08	< 0.01	6.28	1.00	4.56	0.54		7.10 7.11		50.01	0.29
STD-SY-4 result			20.75	0.04	8.08	<0.01	0.28	1.70	4.51	0.54		/.11		30.01	0.29

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		Total	Ag	Al	As	Ba	Bi	Ca	Cd	Co	Cr	Cu	Fe	K	La
	_	WR-FS-ICP	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR
	Sample	%	ppm	%	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%	%	ppm
Description	Туре	0.01	0.5	0.01	5	10	2	0.01	0.5	<u> </u>	1	10	0.01	0.01	10
912536	Rock		1.7	0.11	21	39	<2	>10	<0.5	5	8	19	2.60	0.01	710 729
912536 Dup QCV1011-00492-0002-BLK			1.1	0.11	21	39 <10	<2 <2	>10	<0.5 <0.5	5	8	18	2.50	0.01	<10
			< 0.5	< 0.01	<5	<10	<2	< 0.01	<0.5	<1	<1	<1 6130	< 0.01	< 0.01	<10
STD-CDN-ME-6 expected			101 >100									6346			
STD-CDN-ME-6 result	D1-			0.17	1.4	06	2	- 10	-0.5	-	1.1		2.26	0.04	400
912554 912554 Dup	Rock		1.0 0.9	0.17	14 12	96 97	<2 <2	>10 >10	<0.5 <0.5	6 6	11 13	9 9	3.36 3.08	0.04	498 486
QCV1011-00492-0005-BLK			<0.5	< 0.18	<5	<10	<2	< 0.01	<0.5	<1	<1	<1	< 0.01	< 0.03	<10
STD-CDN-ME-6 expected			101	<0.01	< >	<10	<2	<0.01	<0.5	<1	<1	6130	<0.01	<0.01	<10
STD-CDN-ME-6 expected STD-CDN-ME-6 result			>101									6077			
912572	Rock		1.2	0.22	<5	89	<2	>10	< 0.5	22	8	84	>10	0.06	542
912572 912572 Dup	ROCK		1.2	0.22	<5	93	<2	>10	<0.5	22 22	8	99	>10	0.06	575
QCV1011-00492-0008-BLK			<0.5	< 0.16	<5	<10	<2	< 0.01	<0.5	<1	<1	<1	< 0.01	< 0.00	<10
STD-CDN-ME-8 expected			61.7	<0.01	0	<10	<2	<0.01	<0.5	<1	<1	1030	<0.01	<0.01	<10
STD-CDN-ME-8 result			62.0									973			
912590	Pulp		<0.5	0.12	8	43	<2	>10	< 0.5	6	7	32	3.88	0.03	365
912590 Dup	ruip		<0.5	0.12	8	44	<2	>10	<0.5	6	6	32	3.90	0.03	361
QCV1011-00492-0011-BLK			<0.5	< 0.01	<5	<10	<2	<0.01	<0.5	<1	<1	<1	< 0.01	< 0.01	<10
STD-CDN-ME-8 expected			61.7	<0.01	9	<10	~2	<0.01	<0.5	<u></u>	\1	1030	<0.01	<0.01	10
STD-CDN-ME-8 result			61.3									978			
OCV1011-00492-0013-BLK			<0.5	< 0.01	<5	<10	<2	< 0.01	< 0.5	<1	<1	<1	< 0.01	< 0.01	<10
STD-OREAS-45P-4A expected			0.3	<0.01	9	<10	~	<0.01	<0.5	122	1103	749	<0.01	<0.01	<10
STD-OREAS-45P-4A result			< 0.5							125	1084	700			
912536	Rock	100.43	₹0.5							123	1004	700			
912536 Dup	ROCK	100.28													
OCV1011-00495-0002-BLK		< 0.01													
STD-SY-4 expected		(0.01													
STD-SY-4 result		100.26													
912554	Rock	101.63													
912554 Dup	room	101.83													
QCV1011-00495-0005-BLK		< 0.01													
912572	Rock	98.96													
912572 Dup		99.73													
QCV1011-00495-0008-BLK		< 0.01													
912590	Pulp	99.37													
912590 Dup		100.22													
QCV1011-00495-0011-BLK		< 0.01													
QCV1011-00495-0013-BLK		< 0.01													
STD-SY-4 expected															
STD-SY-4 result		99.56													

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		Mg	Mn	Mo	Na	Ni	P	Pb	Sb	Sc	Sr	Ti	Tl	V	W
		30-4A-TR													
Sample	Sample	%	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm
Description	Type	0.01	5	1	0.01	1	10	2	5	1	1	0.01	10	1	10
912536	Rock	>10	3600	3	0.03	<1	>10000	24	<5	8	2401	< 0.01	<10	21	<10
912536 Dup		>10	3750	3	0.03	<1	>10000	20	<5	8	2484	< 0.01	<10	21	<10
QCV1011-00492-0002-BLK		< 0.01	<5	<1	< 0.01	<1	<10	<2	<5	<1	<1	< 0.01	<10	<1	<10
ΓD-CDN-ME-6 expected								10200							
STD-CDN-ME-6 result								9986							
912554	Rock	9.03	3771	2	0.20	<1	>10000	16	<5	8	2193	0.03	<10	26	<10
912554 Dup		8.28	3446	1	0.18	<1	>10000	15	<5	8	2009	0.03	<10	27	<10
QCV1011-00492-0005-BLK		< 0.01	<5	<1	< 0.01	<1	<10	<2	<5	<1	<1	< 0.01	<10	<1	<10
ΓD-CDN-ME-6 expected								10200							
STD-CDN-ME-6 result								>10000							
912572	Rock	7.06	3775	3	0.03	1	>10000	24	<5	6	2411	0.17	<10	184	<10
912572 Dup		7.51	3986	2	0.03	1	>10000	26	<5	6	2562	0.18	<10	187	<10
QCV1011-00492-0008-BLK		< 0.01	<5	<1	< 0.01	<1	<10	<2	<5	<1	<1	< 0.01	<10	<1	<10
912590	Pulp	>10	4153	4	0.04	<1	>10000	17	<5	7	2291	0.03	<10	36	<10
912590 Dup		>10	4068	5	0.04	<1	>10000	20	<5	7	2280	0.03	<10	34	<10
QCV1011-00492-0011-BLK		< 0.01	<5	<1	< 0.01	<1	<10	<2	<5	<1	<1	< 0.01	<10	<1	<10
QCV1011-00492-0013-BLK		< 0.01	<5	<1	< 0.01	<1	<10	<2	<5	<1	<1	< 0.01	<10	<1	<10
OREAS-45P-4A expected					0.08	385	454	22							
D-OREAS-45P-4A result					0.08	375	432	19							

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

			Zn	Zr	Ce	Dy	Er	Eu	Gd	Hf	Но	La	Lu	Nd	Pr	Sm
	G 1	G 1	30-4A-TR						REE-LB-MS					REE-LB-MS		
	Sample Description	Sample	ppm 2	ppm 1	ppm	ppm 0.1	ppm 0.1	ppm 0.1	ppm 0.1							
	912536	Type Rock	11	24	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
	912536 Dup	NOCK	13	23												
	OCV1011-00492-0002-BLK		<2	<1												
	STD-CDN-ME-6 expected		5170	1												
	STD-CDN-ME-6 result		5185													
	912554	Rock	25	29												
	912554 Dup		25	28												
	QCV1011-00492-0005-BLK		<2	<1												
	STD-CDN-ME-6 expected		5170													
	STD-CDN-ME-6 result		5187													
	912572	Rock	65	76												
	912572 Dup		67	77												
	QCV1011-00492-0008-BLK		<2	<1												
	912590	Pulp	23	34												
	912590 Dup		22	33												
	QCV1011-00492-0011-BLK		<2	<1												
ame	QCV1011-00492-0013-BLK		<2	<1												
	-OREAS-45P-4A expected		142 133													
2	TD-OREAS-45P-4A result 912536	Rock	133		>1000	21.1	7.1	18.3	46.3	<0.1	2.8	>1000	< 0.1	401.0	137.2	51.6
	912536 Dup	ROCK			>1000	20.8	7.1	17.8	46.3	<0.1	3.1	>1000	<0.1	398.5	137.2	52.4
	QCV1011-00493-0002-BLK				<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
	STD-SY-4 expected				122.0	18.2	14.2	2.0	14.0	10.6	4.3	58.0	\0.1	57.0	15.0	12.7
	STD-SY-4 result				122.6	19.5	14.6	1.8	14.8	10.6	4.2	59.7		60.0	15.6	13.0
	912554	Rock			948.0	20.6	7.0	17.0	41.6	<0.1	2.8	577.4	< 0.1	346.0	105.0	48.7
	912554 Dup				998.4	23.1	8.0	18.5	44.7	< 0.1	3.1	612.0	< 0.1	368.3	111.0	51.8
	QCV1011-00493-0005-BLK				< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
	912572	Rock			>1000	21.4	8.2	18.9	43.7	8.2	2.8	625.0	< 0.1	391.8	121.3	52.4
	912572 Dup				>1000	21.3	7.3	19.1	44.3	8.9	3.1	624.8	< 0.1	394.2	120.6	52.0
	QCV1011-00493-0008-BLK				< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
	912590	Pulp			756.0	20.1	6.6	18.3	40.9	< 0.1	2.5	404.3	< 0.1	317.4	91.3	51.5
	912590 Dup				773.6	22.0	6.5	20.1	43.9	< 0.1	2.9	422.0	< 0.1	325.8	93.0	54.7
	QCV1011-00493-0011-BLK				< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
	QCV1011-00493-0013-BLK				< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
	STD-SY-4 expected				122.0	18.2	14.2	2.0	14.0	10.6	4.3	58.0		57.0	15.0	12.7
	STD-SY-4 result				128.5	19.1	14.8	1.8	15.0	10.4	4.4	62.0		62.4	16.4	13.6

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		Tb	Tm	Yb	Y	Ta	Th	U
		REE-LB-MS	REE-LB-MS	REE-LB-MS	REE-LB-MS	Ta-4A-LL-MS	Th-4A-LL-MS	U-4A-LL-MS
Sample	Sample	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Description	Type	0.1	0.1	0.1	0.10	0.05	0.20	0.10
912536	Rock	3.7	0.2	4.2	75.1			
912536 Dup		3.6	< 0.1	3.9	76.4			
QCV1011-00493-0002-BLK		< 0.1	< 0.1	< 0.1	< 0.10			
STD-SY-4 expected		2.6	2.3	14.8	119.0			
STD-SY-4 result		2.4	2.1	14.7	116.2			
912554	Rock	3.9	0.1	4.9	80.3			
912554 Dup		4.2	0.1	4.7	85.7			
QCV1011-00493-0005-BLK		< 0.1	< 0.1	< 0.1	< 0.10			
912572	Rock	4.0	< 0.1	4.6	81.7			
912572 Dup		4.2	0.2	5.5	84.5			
QCV1011-00493-0008-BLK		< 0.1	< 0.1	< 0.1	< 0.10			
912590	Pulp	4.1	< 0.1	3.9	76.5			
912590 Dup		4.5	< 0.1	4.6	79.9			
QCV1011-00493-0011-BLK		< 0.1	< 0.1	< 0.1	< 0.10			
QCV1011-00493-0013-BLK		< 0.1	< 0.1	< 0.1	< 0.10			
STD-SY-4 expected		2.6	2.3	14.8	119.0			
STD-SY-4 result		2.5	2.3	15.5	122.3			
912536	Rock					26.56	107.50	4.21
912536 Dup						27.85	100.60	4.41
QCV1105-00511-0002-BLK						< 0.05	< 0.20	< 0.10
912554	Rock					10.18	85.26	2.57
912554 Dup						10.74	95.56	2.96
QCV1105-00511-0005-BLK						< 0.05	< 0.20	< 0.10
912572	Rock					8.00	227.58	4.07
912572 Dup						9.00	225.55	3.90
QCV1105-00511-0008-BLK						< 0.05	< 0.20	< 0.10
912590	Pulp					23.57	160.34	9.69
912590 Dup	•					23.78	153.01	11.77
QCV1105-00511-0011-BLK						< 0.05	< 0.20	< 0.10
QCV1105-00511-0013-BLK						< 0.05	< 0.20	< 0.10

Certificate of Analysis

Inspectorate Exploration & Mining Services Ltd. #200 - 11620 Horseshoe Way

Date Received: 11/16/2010

Date Completed: 05/06/2011

Invoice:

Richmond, British Columbia V7A 4V5 Canada

Phone: 604-272-7818

Distribution List

Attention: Eric Titley

Suite 1020-800 West Pender St.

Vancouver, BC V6C 2V6

EMail: erictitley@hdimining.com

Attention: Jeremy Crozier

EMail: jeremycrozier@hdimining.com

Attention: T.Kodata

EMail: tkodata@hdimining.com

Submitted By: Aley Corporation

Suite 1020-800 West Pender St.

Vancouver, BC V6C 2V6

Attention: Eric Titley

Project: Aley 2010 Project

Purchase Order: ALY 0002

Description: ALEY 2010-029

Location	Samples	Type	Preparation Description
Vancouver, BC	4	Pulp	SP-PU/Pulp Handling, submitted pulps
Vancouver, BC	68	Rock	SP-RX-2K/Rock/Chips/Drill Core

Location	Method	Description
Vancouver, BC	Ta-4A-LL-MS	Tantalum, 4 Acid, ICP
Vancouver, BC	REE-LB-MS	REE Group by ICP-MS
Vancouver, BC	U-4A-LL-MS	Uraium, 4 Acid, Low Level
Vancouver, BC	Nb2O5-AD3-OR-ICP	Niobium by multi-acid digestion, ICP
Vancouver, BC	Th-4A-LL-MS	Thorium, 4 Acid, Low Level
Vancouver, BC	WR-FS-ICP	Whole Rock, Lithium Borate Fusion, ICP
Vancouver, BC	30-4A-TR	30 Element, 4 Acid, ICP, Trace Level

Submittal Information

Ta, Th, and U results shown have been revised with accurate detection limits.

The results of this assay were based solely upon the content of the sample submitted. Any decision to invest should be made only after the potential investment value of the claim or deposit has been determined based on the results of assays of multiple samples of geologic materials collected by the prospective investor or by a qualified person selected by him and based on an evaluation of all engineering data which is available concerning any proposed project. For our complete terms and conditions please see our website at www.inspectorate.com.

By

Mike Caron, Lab Manager

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		Nb2O5	Al2O3	BaO	CaO	Cr2O3	Fe2O3	K2O	LOI	MgO	MnO	Na2O	P2O5	SiO2	TiO2
_		Nb2O5-AD3-OR-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP
	mple Sampl		%	%	%	%	%	%	%	%	%	%	%	%	%
Descri			0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
	2919 Rock2921 Rock		0.11 0.21	<0.01 <0.01	33.13 32.83	<0.01 <0.01	2.92 3.46	0.02 0.02	41.66 41.30	16.97 17.29	0.73 0.71	0.05 0.04	3.33 3.37	0.16 0.39	0.01
					32.83	<0.01				17.29	0.71				
	2922 Rock 2923 Rock		0.09 0.13	<0.01 <0.01	32.74	<0.01	3.62 4.15	0.01 0.01	41.27 40.74	17.86	0.71	0.04 0.04	3.61 3.56	0.31 0.54	0.02
	2923 Rock 2924 Rock		0.13	<0.01	31.26	<0.01	11.81	0.01	33.57	14.27	0.72	0.04	5.86	1.52	0.02
	2924 Rock 2925 Rock		14.37	0.01	4.30	0.01	3.84	3.26	1.39	14.27	0.63	3.37	0.29	66.58	0.11
	2925 Rock 2926 Rock		0.22	< 0.13	34.99	< 0.04	6.09	0.04	35.98	15.03	0.12	0.06	6.95	0.94	0.43
	2920 Rock 2927 Rock		0.22	< 0.01	31.42	< 0.01	14.10	0.04	31.59	12.76	0.59	0.05	6.45	1.89	0.09
	2927 Rock 2928 Rock		0.43	< 0.01	33.39	< 0.01	3.90	< 0.11	40.85	16.12	0.39	0.03	4.07	0.08	0.04
	2929 Rock	0.63	0.25	< 0.01	34.42	< 0.01	3.22	< 0.01	39.75	16.12	0.47	0.04	4.74	0.00	0.01
	2930 Pulp	0.03	0.33	0.01	37.46	< 0.01	4.62	0.04	38.06	11.40	0.47	0.04	3.80	3.24	0.01
	2930 Tulp 2931 Rock		0.20	< 0.02	34.36	< 0.01	2.97	0.04	41.66	17.03	0.42	0.06	3.73	< 0.01	<0.13
	2932 Rock		0.13	< 0.01	34.28	< 0.01	3.03	0.02	41.70	16.07	0.78	0.05	3.63	< 0.01	<0.01
	2933 Rock		0.12	< 0.01	35.12	< 0.01	3.40	0.02	38.06	15.24	0.76	0.03	6.06	0.29	0.03
	2934 Rock		0.42	< 0.01	31.87	< 0.01	10.58	0.17	33.35	15.02	0.69	0.06	6.32	1.84	0.15
	2935 Rock		0.17	< 0.01	34.94	< 0.01	3.42	0.01	38.97	16.74	0.69	0.04	5.71	0.63	0.02
	2936 Rock		0.20	< 0.01	33.33	< 0.01	6.89	0.01	37.23	14.30	0.67	0.05	5.57	0.19	0.02
	2937 Rock		0.16	< 0.01	32.10	< 0.01	4.64	0.02	40.01	15.75	0.73	0.03	3.86	1.68	0.02
	2938 Rock	0.35	0.15	< 0.01	35.41	< 0.01	4.61	0.02	35.26	14.03	0.69	0.06	9.08	0.09	0.03
	2939 Rock		0.77	< 0.01	31.03	< 0.01	5.69	0.03	38.70	16.54	0.68	0.05	3.26	3.98	0.04
	2941 Rock		0.49	< 0.01	36.06	< 0.01	3.79	0.03	33.36	13.43	0.64	0.07	9.03	1.93	0.05
	2942 Rock		2.52	< 0.01	29.94	< 0.01	6.59	0.03	31.20	15.99	0.49	0.05	7.15	5.50	0.13
	2943 Rock		0.25	< 0.01	34.44	< 0.01	5.62	0.02	36.46	14.13	0.65	0.04	6.89	0.76	0.08
	2944 Rock		0.20	< 0.01	33.18	< 0.01	5.72	0.02	38.42	16.05	0.81	0.03	5.19	0.81	0.02
91	2945 Rock	0.14	0.09	< 0.01	35.36	< 0.01	4.01	0.01	37.48	15.55	0.77	0.03	5.67	1.23	< 0.01
	2946 Rock		0.36	< 0.01	33.37	< 0.01	5.38	0.02	34.74	15.21	0.44	0.04	5.77	5.11	0.24
91	2947 Rock		0.24	< 0.01	35.23	< 0.01	4.81	0.01	34.86	14.60	0.63	0.05	7.15	1.63	0.05
91	2948 Rock	0.37	0.31	< 0.01	32.38	< 0.01	5.12	0.02	38.07	15.74	0.54	0.04	5.01	2.07	0.08
91	2949 Rock	0.44	0.11	0.01	39.29	< 0.01	4.48	0.03	37.28	12.21	0.80	0.04	4.93	0.51	0.04
91	2950 Pulp	0.78	0.55	0.02	29.56	< 0.01	17.22	0.10	31.32	11.86	0.49	0.06	5.36	2.02	0.60
91	2951 Rock	0.35	0.16	< 0.01	34.73	< 0.01	5.38	0.02	39.37	13.74	0.61	0.03	4.46	0.36	0.06
91	2952 Rock	0.30	0.36	< 0.01	34.25	< 0.01	5.03	0.04	36.44	15.48	0.50	0.04	6.36	0.65	0.10
91	2953 Rock	0.48	0.10	< 0.01	33.35	< 0.01	4.79	0.02	39.57	16.44	0.78	0.04	4.45	0.34	0.05
91	2954 Rock	0.28	0.18	< 0.01	34.47	< 0.01	4.64	0.04	36.74	15.41	0.69	0.03	5.94	1.07	0.06
91	2955 Rock	0.14	0.11	< 0.01	34.98	< 0.01	4.49	< 0.01	39.72	13.66	0.68	0.03	4.47	0.71	0.02
91	2956 Rock	0.60	0.64	< 0.01	33.85	< 0.01	6.46	0.09	35.08	13.62	0.55	0.08	6.51	2.75	0.12
91	2957 Rock	0.65	0.69	< 0.01	34.59	< 0.01	7.93	0.05	32.48	10.93	0.51	0.04	8.49	3.26	0.20
91	2958 Rock	0.47	0.30	< 0.01	33.88	< 0.01	5.81	0.03	39.63	13.25	0.85	0.03	2.97	2.13	0.04
91	2959 Rock	0.25	1.57	< 0.01	29.56	< 0.01	4.85	0.14	36.10	14.22	0.74	0.03	3.37	8.92	0.06
912960	Dup Rock	0.26	1.49	< 0.01	29.69	< 0.01	4.78	0.14	36.52	14.07	0.74	0.03	3.42	8.68	0.06

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		Nb2O5	Al2O3	BaO	CaO	Cr2O3	Fe2O3	K2O	LOI	MgO	MnO	Na2O	P2O5	SiO2	TiO2
		Nb2O5-AD3-OR-ICP	WR-FS-ICP												
Sample	Sample	%	%	%	%	%	%	%	%	%	%	%	%	%	%
Description	Type	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
912961	Rock	0.14	0.19	< 0.01	31.92	< 0.01	4.52	0.02	40.73	16.59	0.83	0.03	3.01	2.23	0.02
912962	Rock	0.15	1.16	< 0.01	29.57	< 0.01	4.37	0.07	36.75	16.15	0.70	0.03	4.12	6.64	0.19
912963	Rock	0.16	0.88	< 0.01	29.94	< 0.01	4.27	0.04	34.66	15.00	0.65	0.03	4.83	9.67	0.06
912964	Rock	0.32	1.55	< 0.01	28.27	< 0.01	5.64	0.04	32.63	14.92	0.52	0.04	4.12	13.27	0.11
912965	Rock	0.14	0.14	< 0.01	35.47	< 0.01	5.30	0.02	34.50	14.32	0.76	0.03	8.02	1.71	0.05
912966	Rock	0.04	0.05	< 0.01	33.84	< 0.01	5.68	0.03	37.10	15.48	0.98	0.04	4.96	1.17	0.01
912967	Rock	0.08	0.12	< 0.01	32.48	< 0.01	6.39	0.02	41.07	16.06	1.04	0.03	2.05	0.95	0.01
912968	Rock	0.16	0.21	< 0.01	33.47	< 0.01	4.69	0.03	39.93	16.10	0.69	0.03	4.04	1.22	0.06
912969	Rock	0.14	0.36	0.01	34.76	< 0.01	3.94	0.03	37.44	13.70	0.56	0.04	5.68	2.87	0.18
912970	Pulp	0.53	1.74	0.36	45.83	< 0.01	4.13	0.70	31.95	2.18	0.91	0.44	2.51	8.45	0.24
912971	Rock	0.45	0.45	< 0.01	31.67	< 0.01	4.18	0.15	40.30	16.42	0.80	0.06	2.82	2.63	0.03
912972	Rock	0.15	1.54	0.02	27.25	< 0.01	5.23	0.63	34.61	14.38	0.70	0.30	2.62	11.31	0.23
912973	Rock	0.18	1.41	0.02	30.51	< 0.01	4.62	0.34	36.67	14.32	0.63	0.24	4.33	5.44	0.19
912974	Rock	0.18	1.06	0.02	31.86	< 0.01	4.20	0.28	37.63	15.93	0.69	0.11	4.51	4.19	0.13
912975	Rock	0.03	0.14	< 0.01	32.49	< 0.01	4.52	< 0.01	41.40	16.41	0.95	0.04	2.58	1.37	0.01
912976	Rock	0.11	0.37	< 0.01	31.48	< 0.01	4.20	0.02	40.45	15.76	0.80	0.07	2.52	3.94	0.03
912977	Rock	0.05	0.11	< 0.01	32.92	< 0.01	3.19	0.01	42.90	18.13	0.85	0.04	2.18	< 0.01	< 0.01
912978	Rock	0.19	0.11	< 0.01	36.15	< 0.01	3.58	0.01	40.19	14.29	0.85	0.03	4.09	0.23	0.02
912979	Rock	0.25	0.14	0.01	37.44	< 0.01	5.72	0.01	40.52	12.17	0.97	0.02	2.37	0.33	0.03
912980 Dup	Rock	0.22	0.14	0.01	37.10	< 0.01	5.72	0.02	40.54	11.84	0.96	0.02	2.34	0.29	0.03
912981	Rock	0.11	0.12	< 0.01	34.63	< 0.01	4.09	0.02	39.78	15.72	0.81	0.04	4.65	< 0.01	0.01
912982	Rock	0.13	0.13	0.01	33.56	< 0.01	4.51	0.03	40.97	16.67	0.82	0.05	3.12	0.33	0.01
912983	Rock	0.17	0.06	0.01	34.94	0.01	3.52	0.06	38.85	18.33	0.83	0.06	4.26	0.26	0.01
912984	Rock	0.13	0.24	< 0.01	34.83	< 0.01	4.09	0.02	37.29	15.67	0.81	0.04	4.78	0.71	0.03
912985	Rock	0.07	0.19	< 0.01	34.76	< 0.01	3.70	0.01	39.70	17.32	0.85	0.04	3.88	0.59	0.02
912986	Rock	0.17	0.08	< 0.01	33.49	< 0.01	4.28	0.01	41.55	16.69	0.87	0.04	2.76	0.46	0.02
912987	Rock	0.07	0.06	< 0.01	34.14	< 0.01	6.77	< 0.01	40.85	13.78	1.05	0.02	2.00	0.61	0.05
912988	Rock	0.05	0.06	< 0.01	32.67	< 0.01	5.01	< 0.01	43.19	16.42	0.98	0.02	0.99	0.13	< 0.01
912989	Rock	0.13	0.13	< 0.01	35.07	< 0.01	5.29	< 0.01	38.73	14.27	0.73	0.03	4.79	0.87	0.05
912990	Pulp	0.71	0.20	0.02	37.05	< 0.01	4.78	0.04	37.83	11.75	0.42	0.10	3.89	3.19	0.14
912991	Rock	0.10	0.10	< 0.01	33.96	< 0.01	5.23	< 0.01	41.40	15.78	0.96	0.02	2.18	1.21	0.02
912992	Rock	0.26	0.21	0.01	35.77	< 0.01	5.86	< 0.01	37.95	12.35	0.76	0.03	3.68	3.39	0.12

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		Total	Ag	Al	As	Ba 20 44 TP	Bi	Ca	Cd	Co	Cr 30-4A-TR	Cu	Fe 20 44 TP	K 20.44 TP	La 30-4A-TR
Sample	Sample	WR-FS-ICP %	30-4A-TR	30-4A-TR %	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR %	30-4A-TR	30-4A-TR		30-4A-TR	30-4A-TR %	30-4A-TR %	
Description	Type	0.01	ppm 0.5	0.01	ppm 5	ppm 10	ppm 2	0.01	ppm 0.5	ppm 1	ppm 1	ppm 1	0.01	0.01	ppm 10
912919	Rock	99.10	1.5	0.05	<5	36	<2	>10	<0.5	3	10	19	1.98	0.01	158
912921	Rock	99.65	1.7	0.12	<5	34	<2	>10	< 0.5	3	9	26	2.36	0.01	193
912922	Rock	100.28	1.4	0.03	<5	32	<2	>10	< 0.5	3	9	17	2.43	< 0.01	182
912923	Rock	99.00	1.3	0.06	<5	37	<2	>10	< 0.5	5	9	30	2.77	0.01	188
912924	Rock	99.41	1.2	0.10	<5	42	<2	>10	< 0.5	9	11	51	8.46	0.06	269
912925	Rock	99.61	1.0	8.10	<5	877	<2	3.40	< 0.5	9	160	<1	2.88	3.08	32
912926	Rock	100.99	1.7	0.12	<5	39	<2	>10	< 0.5	6	9	55	4.30	0.03	305
912927	Rock	99.74	1.0	0.21	<5	50	<2	>10	< 0.5	8	12	60	9.90	0.09	308
912928	Rock	99.17	2.3	0.12	<5	23	<2	>10	< 0.5	4	9	20	2.65	< 0.01	209
912929	Rock	99.36	1.6	0.16	<5	24	<2	>10	< 0.5	1	9	43	2.25	< 0.01	273
912930	Pulp	99.48	1.7	0.10	11	164	<2	>10	<0.5	6	7	24	3.24	0.03	378
912931	Rock	100.79	2.3	0.06	7	48	<2	>10	<0.5	2	9	11	1.91	< 0.01	348
912932	Rock	99.68	2.2	0.06	5	46	<2	>10	<0.5	1	9	18	2.16	< 0.01	327
912933	Rock	99.12	2.3	0.11	<5	58	<2	>10	<0.5	3	10	46	2.35	< 0.01	261
912934	Rock	100.47	1.4	0.22	<5	63	<2	>10	<0.5	8	10	65	7.04	0.13	459
912935 912936	Rock	101.35 98.48	2.3 2.2	0.09 0.11	6 159	33 44	<2 <2	>10 >10	<0.5 <0.5	5 10	9	26 12	2.11 4.64	<0.01 <0.01	292 6323
912937	Rock Rock	99.01	2.2	0.11	139	30	<2	>10	<0.5	7	12	20	3.24	< 0.01	459
912937	Rock	99.45	1.9	0.08	13	75	<2	>10	<0.5	9	13	10	3.24	0.01	491
912939	Rock	100.77	2.5	0.09	14	36	<2	>10	<0.5	11	13	8	3.74	0.01	383
912941	Rock	98.88	2.6	0.38	6	41	<2	>10	<0.5	<1	11	59	2.71	0.02	411
912942	Rock	99.58	2.6	1.32	11	31	<2	>10	<0.5	4	19	47	4.57	0.02	662
912943	Rock	99.37	1.9	0.10	9	31	<2	>10	<0.5	7	12	44	3.92	0.02	385
912944	Rock	100.45	1.8	0.10	12	36	<2	>10	<0.5	12	11	18	3.86	0.01	365
912945	Rock	100.21	1.9	0.05	<5	30	<2	>10	< 0.5	3	12	11	2.66	< 0.01	271
912946	Rock	100.69	1.8	0.21	12	23	<2	>10	< 0.5	9	13	33	3.53	< 0.01	459
912947	Rock	99.27	2.0	0.09	8	31	<2	>10	< 0.5	6	12	46	3.29	< 0.01	336
912948	Rock	99.38	1.9	0.17	<5	28	<2	>10	< 0.5	7	11	25	3.56	< 0.01	341
912949	Rock	99.75	1.8	0.05	<5	71	<2	>10	< 0.5	4	10	29	2.97	< 0.01	281
912950	Pulp	99.16	2.1	0.26	<5	135	<2	>10	< 0.5	12	8	62	>10	0.07	353
912951	Rock	98.94	1.4	0.09	10	35	<2	>10	< 0.5	11	11	26	3.77	< 0.01	348
912952	Rock	99.25	2.1	0.18	12	28	<2	>10	< 0.5	9	13	25	3.47	0.02	376
912953	Rock	99.95	2.4	0.05	10	36	<2	>10	< 0.5	7	11	35	3.47	0.01	418
912954	Rock	99.28	1.9	0.09	9	44	<2	>10	< 0.5	7	12	20	3.19	0.02	323
912955	Rock	98.88	3.0	0.05	22	58	<2	>10	< 0.5	5	11	9	2.98	< 0.01	809
912956	Rock	99.77	3.1	0.30	27	47	<2	>10	< 0.5	9	12	38	4.44	0.07	890
912957	Rock	99.19	3.1	0.32	16	66	<2	>10	< 0.5	10	10	43	5.35	0.04	533
912958	Rock	98.95	3.3	0.17	32	69	<2	>10	< 0.5	4	13	28	3.91	0.02	1320
912959	Rock	99.57	3.3	0.84	9	65	<2	>10	<0.5	5	24	17	3.46	0.11	368
912960 Dup	Rock	99.64	3.2	0.79	8	62	<2	>10	<0.5	4	21	17	3.26	0.10	357

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		Total	Ag	Al	As	Ba	Bi	Ca	Cd	Co	Cr	Cu	Fe	K	La
		WR-FS-ICP	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR
Sample	Sample	%	ppm	%	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%	%	ppm
Description	Type	0.01	0.5	0.01	5	10	2	0.01	0.5	1	1	1	0.01	0.01	10
912961	Rock	100.09	3.3	0.09	9	42	<2	>10	< 0.5	6	12	9	3.03	0.02	328
912962	Rock	99.75	3.2	0.60	9	35	<2	>10	< 0.5	7	20	11	3.01	0.05	301
912963	Rock	100.04	3.6	0.45	11	45	<2	>10	< 0.5	6	18	11	3.11	0.03	405
912964	Rock	101.12	3.5	0.83	8	36	<2	>10	< 0.5	13	26	20	3.84	0.03	326
912965	Rock	100.31	3.7	0.07	16	94	<2	>10	< 0.5	10	12	9	3.62	< 0.01	457
912966	Rock	99.34	< 0.5	0.02	36	32	<2	>10	< 0.5	8	16	5	3.95	< 0.01	1655
912967	Rock	100.22	< 0.5	0.06	51	31	<2	>10	< 0.5	9	12	2	4.47	< 0.01	2226
912968	Rock	100.49	< 0.5	0.12	14	70	<2	>10	< 0.5	8	10	11	3.07	0.02	394
912969	Rock	99.59	0.6	0.19	21	90	<2	>10	< 0.5	6	10	9	2.65	0.02	367
912970	Pulp	99.44	0.8	0.91	23	2859	<2	>10	< 0.5	4	10	37	2.82	0.53	944
912971	Rock	99.53	0.8	0.23	19	59	<2	>10	<0.5	4	11	34	2.83	0.11	685
912972	Rock	98.82	0.6	0.80	19	131	<2	>10	<0.5	7	26	14	3.65	0.46	375
912973	Rock	98.72	0.7	0.79	30	146	<2	>10	<0.5	6	14	16	3.20	0.25	378
912974	Rock	100.61	<0.5	0.50	17	149	<2	>10	<0.5	6	14	13	2.87	0.21	327
912975	Rock	99.92	1.3	0.07	14	58	<2	>10	<0.5	5	10	4	3.01	< 0.01	284
912976	Rock	99.66	<0.5	0.17	13	68	<2	>10	<0.5	3	14	8	3.14	0.02	402
912977	Rock	100.36	0.8	0.07	11 7	67	<2	>10	<0.5	3	16	5	2.33	< 0.01	406
912978 912979	Rock	99.57 99.75	0.6	0.06 0.08	8	70 90	<2	>10 >10	<0.5 <0.5	5	10 10	16	3.25 3.85	<0.01 <0.01	261
912979 912980 Dup	Rock Rock	99.73	1.1 0.9	0.08	9	98	<2 <2	>10	<0.5	5	10	13 13	4.06	<0.01	252 265
912980 Dup 912981	Rock	99.01	1.2	0.08	10	98 67	<2	>10	<0.5	5	10	10	2.81	0.01	386
912982	Rock	100.20	1.2	0.06	20	95	<2	>10	<0.5	13	9	10	3.20	0.01	606
912983	Rock	101.21	0.9	0.07	9	55	<2	>10	<0.5	5	11	13	2.43	< 0.02	372
912984	Rock	98.53	0.9	0.04	15	61	<2	>10	<0.5	5	9	13	2.79	0.01	539
912985	Rock	101.08	1.3	0.12	19	63	<2	>10	<0.5	3	11	7	2.55	< 0.01	680
912986	Rock	100.27	1.4	0.04	38	85	<2	>10	<0.5	3	10	13	2.92	< 0.01	1684
912987	Rock	99.34	1.8	0.02	133	75	<2	>10	<0.5	5	11	4	4.58	< 0.01	5540
912988	Rock	99.49	0.9	0.02	39	42	<2	>10	<0.5	5	10	4	3.22	< 0.01	1629
912989	Rock	99.97	1.4	0.06	22	68	<2	>10	<0.5	8	11	11	3.90	< 0.01	710
912990	Pulp	99.42	1.5	0.10	12	165	<2	>10	<0.5	5	7	46	3.52	0.03	373
912991	Rock	100.88	1.8	0.04	23	49	<2	>10	<0.5	6	11	7	3.74	< 0.01	778
912992	Rock	100.15	1.6	0.11	33	86	<2	>10	<0.5	11	13	18	4.15	< 0.01	884

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		Mg	Mn	Mo	Na	Ni	P	Pb	Sb	Sc	Sr	Ti	Tl	V	W
		30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR
Sample	Sample	%	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm
Description	Type	0.01	5	1	0.01	1	10	2	5	1	1	0.01	10	1	10
912919	Rock	>10	5039	2	0.03	<1	>10000	75	<5	4	4888	< 0.01	<10	6	<10
912921	Rock	>10	4925	5	0.03	<1	>10000	106	<5	6	4470	< 0.01	<10	9	<10
912922	Rock	>10	4969	2	0.03	<1	>10000	72	<5	5	4028	< 0.01	<10	13	<10
912923	Rock	>10	5103	2	0.03	<1	>10000	114	<5	5	3869	< 0.01	<10	13	<10
912924	Rock	9.57	4723	2	0.04	<1	>10000	205	<5	4	4117	0.05	<10	124	<10
912925	Rock	0.99	718	3	2.77	5	1150	10	<5	5	677	0.29	<10	54	<10
912926	Rock	9.84	4235	4	0.04	<1	>10000	193	<5	5	3702	0.04	<10	54	<10
912927	Rock	8.55	4160	14	0.04	2	>10000	248	<5	6	3654	0.19	<10	214	<10
912928	Rock	>10	3174	2	0.03	<1	>10000	72	<5	9	1868	< 0.01	<10	23	<10
912929	Rock	>10	3328	2	0.03	<1	>10000	164	<5	8	2194	< 0.01	<10	18	<10
912930	Pulp	7.77	2920	2	0.06	<1	>10000	98	<5	7	2250	0.05	<10	74	<10
912931	Rock	>10	5066	2	0.03	<1	>10000	48	<5	5	3765	< 0.01	<10	7	<10
912932	Rock	>10	5488	3	0.03	<1	>10000	72	<5	5	4136	< 0.01	<10	9	<10
912933	Rock	>10	4497	3	0.03	<1	>10000	180	<5	6	4274	0.02	<10	17	<10
912934	Rock	8.85	4544	2	0.04	<1	>10000	249	<5	4	4263	0.07	<10	97	<10
912935	Rock	9.45	4140	3	0.03	<1	>10000	102	<5	5	3730	< 0.01	<10	10	<10
912936	Rock	8.68	4380	7	0.03	<1	>10000	69	<5	15	2062	< 0.01	<10	23	<10
912937	Rock	>10	5174	2	0.02	<1	>10000	83	<5	7	3317	< 0.01	<10	15	<10
912938	Rock	9.07	4789	3	0.04	<1	>10000	22	<5	4	3931	< 0.01	<10	13	<10
912939	Rock	>10	4637	10	0.03	<1	>10000	41	<5	9	2730	< 0.01	<10	22	<10
912941	Rock	9.11	4660	2	0.05	<1	>10000	233	<5	9	4239	0.03	<10	18	<10
912942	Rock	9.66	3505	2	0.03	1	>10000	184	<5	13	2980	0.04	<10	68	<10
912943	Rock	9.40	4617	2	0.03	<1	>10000	162	<5	8	2862	0.03	<10	48	<10
912944	Rock	9.83	5647	2	0.02	<1	>10000	68	<5	7	3119	< 0.01	<10	25	<10
912945	Rock	>10	5150	2	0.02	<1	>10000	45	<5	6	3162	< 0.01	<10	15	<10
912946	Rock	9.14	2879	2	0.03	<1	>10000	109	<5	8 7	1403	0.08	<10	48	<10
912947	Rock	9.24	4168	2	0.03	<1	>10000	185	<5	8	2586	0.03	<10	18	<10
912948	Rock	9.62	3728	4	0.03	<1	>10000	109	<5	8 10	2510	0.04	<10	53	<10
912949	Rock	7.99	5423 3422	3	0.03 0.04	<1 2	>10000	122	<5		3684 1815	0.02	<10	21 209	<10
912950 912951	Pulp	7.75 9.93	4449	2	0.04		>10000 >10000	209	<5 <5	6 10	2576	0.16 0.02	<10	209	<10
912951	Rock Rock	9.93 9.75	3533	1	0.02	<1 3	>10000	98 86	<5	10 14	2018	0.02	<10 <10	54	<10 <10
912953			5747	2						8	3793				
912953	Rock Rock	>10 9.73	4993	2	0.03 0.02	<1 <1	>10000 >10000	129 78	<5 <5	8 7	2732	0.02 0.01	<10 <10	16 21	<10 <10
912954	Rock	9.73	4993	2	0.02	<1	>10000	78 52	<5 <5	9	1987	< 0.01	<10	21	<10
912956	Rock	9.33	3920	2	0.02	<1	>10000	164	<5	10	1810	0.01	<10	48	<10
912956	Rock	9.37 8.27	3433	2	0.06	1	>10000	181	<5	10	1810	0.04	<10	48 83	<10
912958	Rock	9.27	5687	3	0.03	<1	>10000	131	<5 <5	10	1854	0.03	<10	24	<10
912959	Rock	9.27	5165	3 1	0.02	1	>10000	75	<5 <5	10	2490	0.02	<10	29	<10
912960 Dup	Rock	9.39	4971	2	0.02	<1	>10000	76	<5	12	2418	0.02	<10	28	<10

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		Mg	Mn	Mo	Na	Ni	P	Pb	Sb	Sc	Sr	Ti	Tl	V	W
		30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR
Sample	Sample	%	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm
Description	Type	0.01	5	1	0.01	1	10	2	5	1	1	0.01	10	1	10
912961	Rock	>10	5696	1	0.02	<1	>10000	46	<5	7	2895	< 0.01	<10	15	<10
912962	Rock	>10	4995	1	0.02	<1	>10000	54	<5	8	2658	0.04	<10	30	<10
912963	Rock	9.85	4733	2	0.02	<1	>10000	51	<5	13	2835	0.02	<10	28	<10
912964	Rock	9.03	3529	2	0.03	3	>10000	91	<5	10	2111	0.03	<10	65	<10
912965	Rock	8.93	5301	2	0.02	<1	>10000	35	<5	7	2612	0.01	<10	21	<10
912966	Rock	9.99	6876	2	0.02	<1	>10000	27	<5	9	2688	< 0.01	<10	18	<10
912967	Rock	>10	7408	3	0.02	<1	8067	23	<5	9	3144	< 0.01	<10	21	<10
912968	Rock	>10	4689	2	0.02	<1	>10000	50	<5	7	2654	0.02	<10	26	<10
912969	Rock	9.17	3874	2	0.03	<1	>10000	42	<5	8	2640	0.04	<10	32	<10
912970	Pulp	1.33	6481	13	0.32	<1	>10000	74	<5	4	>10000	0.14	<10	172	<10
912971 912972	Rock	>10 9.70	5539 5012	2 2	0.04 0.21	<1	>10000 >10000	127 48	<5	6	3520 3069	0.01	<10	13	<10 <10
912972	Rock		4582	4	0.21	4			<5	13 9	3253	0.08	<10	51 41	<10
912973	Rock Rock	9.58 9.46	4582 4748	4	0.17	3 2	>10000 >10000	56 53	<5 <5	10	3253 3445	0.05 0.04	<10 <10	35	<10
912974	Rock	9.46	6381	6	0.07	<1	>10000	20	<5	8	3878	< 0.04	<10	13	<10
912976	Rock	>10	5967	8	0.05	<1	>10000	39	<5	11	3789	< 0.01	<10	24	<10
912977	Rock	>10	6251	7	0.03	<1	8793	26	<5	8	4378	< 0.01	<10	12	<10
912978	Rock	>10	6467	3	0.03	<1	>10000	62	<5	7	4134	< 0.01	<10	12	<10
912979	Rock	8.16	7256	6	0.02	<1	9079	58	<5	9	2261	< 0.01	<10	25	<10
912980 Dup	Rock	8.26	7172	5	0.02	<1	9390	56	<5	9	2449	< 0.01	<10	26	<10
912981	Rock	9.91	5663	4	0.03	<1	>10000	43	<5	7	3762	< 0.01	<10	15	<10
912982	Rock	>10	5914	6	0.03	<1	>10000	47	<5	9	3745	< 0.01	<10	11	<10
912983	Rock	>10	5760	2	0.03	<1	>10000	52	<5	7	4218	< 0.01	<10	9	<10
912984	Rock	>10	5568	2	0.03	<1	>10000	51	<5	8	3705	< 0.01	<10	15	<10
912985	Rock	>10	5791	2	0.03	<1	>10000	28	<5	9	3575	< 0.01	<10	18	<10
912986	Rock	>10	6060	3	0.03	<1	>10000	60	<5	10	3126	< 0.01	<10	15	<10
912987	Rock	9.56	7253	6	0.02	<1	8012	43	<5	15	2138	< 0.01	<10	24	<10
912988	Rock	>10	6571	3	0.01	<1	3867	28	<5	10	3432	< 0.01	<10	16	<10
912989	Rock	>10	5494	2	0.02	<1	>10000	52	<5	8	3212	0.02	<10	36	<10
912990	Pulp	8.50	3204	3	0.06	<1	>10000	180	<5	8	2461	0.06	<10	76	<10
912991	Rock	>10	7002	3	0.02	<1	8419	36	<5	8	3283	< 0.01	<10	19	<10
912992	Rock	8.36	5548	4	0.02	<1	>10000	74	<5	9	2629	0.03	<10	43	<10

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		Zn	Zr	Ce	Dy	Er	Eu	Gd	Hf	Но	La	Lu	Nd	Pr	Sm
9 1	G 1	30-4A-TR		REE-LB-MS	REE-LB-MS	REE-LB-MS						REE-LB-MS	REE-LB-MS		REE-LB-MS
Sampl	•	ppm	ppm 1	ppm	ppm	ppm	ppm	ppm 0.1	ppm 0.1	ppm	ppm	ppm	ppm	ppm	ppm
Description 91291		2 16	17	0.1 375.9	0.1 8.4	0.1	5.9	19.8	<0.1	<0.1	0.1 165.7	<0.1	0.1 166.4	0.1 45.2	0.1 25.3
91291		18	23	422.5	10.9	2.5	7.7	23.9	<0.1	0.1	193.2	<0.1	190.4	51.9	33.2
91292		16	22	362.0	10.9	2.5	6.4	20.8	<0.1	0.1	167.3	<0.1	155.6	43.3	26.0
91292		16	26	409.8	9.6	3.2	6.6	20.8	<0.1	0.4	191.3	<0.1	165.1	47.3	26.2
91292		45	78	618.1	14.1	3.1	10.6	31.8	2.4	0.2	278.6	<0.1	269.0	74.8	41.4
91292		54	8	69.2	1.4	0.5	<0.1	3.1	<0.1	<0.1	35.4	<0.1	27.9	6.8	3.6
91292		22	66	698.8	21.0	7.0	12.8	40.8	2.0	2.4	314.7	<0.1	296.1	82.6	50.3
91292		53	47	773.4	25.8	9.1	14.2	42.9	2.8	3.5	350.8	<0.1	339.2	93.0	54.8
91292		11	41	550.7	24.0	9.4	8.5	31.8	<0.1	3.8	260.4	<0.1	221.4	63.5	36.2
91292		11	67	591.2	20.9	7.9	11.0	34.9	<0.1	2.9	279.6	<0.1	248.1	68.7	42.2
91293		12	36	852.7	20.8	8.5	13.9	43.1	<0.1	2.9	403.0	<0.1	345.1	96.9	53.4
91293	•	16	19	722.9	11.6	3.0	7.2	27.1	<0.1	0.4	350.7	<0.1	276.0	81.2	38.2
91293		16	29	691.5	11.8	2.9	6.7	27.3	<0.1	0.5	373.8	<0.1	255.3	75.5	34.4
91293		14	56	701.4	22.6	8.2	13.8	42.9	<0.1	3.5	304.1	< 0.1	305.9	84.5	51.1
91293		42	85	>1000	16.1	3.9	13.8	42.4	3.2	1.2	577.8	< 0.1	388.0	114.0	56.1
91293		16	27	733.9	15.3	4.5	10.8	35.0	< 0.1	1.5	376.0	< 0.1	294.5	83.7	44.7
91293		16	30	>1000	41.0	9.4	45.3	163.1	< 0.1	4.5	>1000	< 0.1	>1000	740.7	197.1
91293	7 Rock	18	29	981.8	21.2	8.5	13.1	43.6	0.7	3.1	573.5	< 0.1	350.3	103.6	52.1
91293		17	25	>1000	39.6	16.3	21.1	68.0	< 0.1	6.9	574.4	< 0.1	482.8	134.9	80.2
91293	9 Rock	20	38	905.5	18.2	6.3	11.2	40.9	1.6	2.0	472.4	< 0.1	350.6	103.6	55.0
91294	1 Rock	20	44	>1000	36.3	11.4	23.7	72.3	< 0.1	5.3	593.9	< 0.1	550.5	156.5	89.6
91294	2 Rock	21	38	>1000	42.0	14.2	27.7	87.3	12.1	6.0	>1000	< 0.1	748.0	223.3	111.3
91294	3 Rock	19	63	>1000	36.3	16.3	19.2	59.8	4.8	6.6	483.5	0.1	433.5	123.8	74.4
91294	4 Rock	21	85	903.3	20.0	7.7	11.1	40.7	0.5	2.7	468.1	< 0.1	358.0	104.2	52.5
91294	5 Rock	20	71	672.3	18.4	7.4	9.4	34.9	< 0.1	2.1	331.5	< 0.1	280.5	78.3	44.0
91294	6 Rock	15	31	>1000	25.9	10.3	17.2	55.4	5.4	3.8	550.4	< 0.1	456.8	129.3	71.3
91294	7 Rock	17	54	815.0	27.1	10.7	16.9	49.7	0.6	4.3	379.8	< 0.1	353.9	98.6	60.2
91294	8 Rock	14	43	726.3	15.6	5.3	12.1	37.9	2.0	1.6	355.2	< 0.1	291.2	82.3	44.3
91294	9 Rock	21	21	716.6	17.4	5.0	12.7	36.7	< 0.1	1.8	325.9	< 0.1	308.5	86.0	47.5
91295	0 Pulp	58	62	863.0	21.9	6.6	14.9	44.9	4.6	2.6	416.5	< 0.1	360.0	101.2	56.9
91295	1 Rock	17	29	748.8	19.9	6.9	12.7	39.8	1.8	2.4	385.4	< 0.1	296.3	86.7	47.0
91295	2 Rock	17	26	889.0	22.6	8.3	15.3	43.9	1.8	3.0	460.1	< 0.1	351.7	101.9	55.2
91295		21	35	886.1	17.6	6.3	12.4	37.4	< 0.1	2.0	463.5	< 0.1	341.7	98.9	49.4
91295		19	65	755.4	19.6	7.6	11.4	37.0	1.2	2.6	392.4	< 0.1	299.5	86.1	45.1
91295	5 Rock	19	56	>1000	24.9	8.8	18.2	67.6	1.3	3.1	>1000	< 0.1	689.3	208.8	92.2
91295		18	54	>1000	38.8	13.5	30.9	96.8	2.5	6.0	>1000	< 0.1	958.4	290.3	125.2
91295		20	64	>1000	48.6	19.4	30.9	84.1	14.3	8.2	915.1	0.1	634.5	187.9	100.8
91295		19	55	>1000	16.6	4.6	15.9	53.2	< 0.1	1.4	>1000	< 0.1	637.3	212.8	70.3
91295	9 Rock	24	35	767.2	18.2	7.0	11.5	36.0	2.3	2.2	405.9	< 0.1	297.6	85.8	43.7
912960 Du	p Rock	22	35	753.2	17.7	6.1	11.2	34.1	2.2	2.2	398.9	< 0.1	284.6	84.7	43.4

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		Zn	Zr	Ce	Dy	Er	Eu	Gd	Hf	Но	La	Lu	Nd	Pr	Sm
		30-4A-TR	30-4A-TR	REE-LB-MS	REE-LB-MS	REE-LB-MS	REE-LB-MS	REE-LB-MS	REE-LB-MS	REE-LB-MS	REE-LB-MS	REE-LB-MS	REE-LB-MS	REE-LB-MS	REE-LB-MS
Sample	Sample	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Description	Type	2	1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
912961	Rock	18	38	661.3	10.9	3.4	7.5	26.0	< 0.1	0.5	349.3	< 0.1	247.5	72.8	33.5
912962	Rock	20	52	610.9	15.4	6.0	8.3	26.5	< 0.1	1.6	332.8	< 0.1	226.1	66.0	33.1
912963	Rock	23	42	918.2	17.3	6.3	11.8	38.7	0.7	1.7	479.5	< 0.1	343.6	101.1	49.7
912964	Rock	24	36	868.1	16.5	5.0	12.0	39.0	2.2	1.7	429.7	< 0.1	345.4	100.6	50.3
912965	Rock	21	115	985.0	33.3	15.0	17.1	55.3	1.0	5.7	519.6	< 0.1	402.8	113.7	62.9
912966	Rock	24	83	>1000	34.3	13.1	23.1	84.0	< 0.1	5.2	>1000	< 0.1	964.6	296.2	121.8
912967	Rock	24	17	>1000	33.9	12.9	18.9	72.4	< 0.1	5.2	>1000	< 0.1	760.7	269.9	79.3
912968	Rock	16	35	823.8	17.6	6.4	10.5	34.6	< 0.1	2.1	454.9	< 0.1	297.9	88.5	41.7
912969	Rock	15	19	853.8	20.8	6.5	12.9	43.6	0.2	2.2	448.5	< 0.1	338.0	96.9	51.7
912970	Pulp	433	87	>1000	14.1	4.6	14.3	45.1	< 0.1	1.1	>1000	< 0.1	525.3	182.7	58.3
912971	Rock	25	22	>1000	11.3	2.7	8.9	30.0	< 0.1	0.3	774.9	< 0.1	291.8	100.8	34.3
912972	Rock	37	27	719.7	12.5	3.5	7.2	26.9	< 0.1	0.8	398.8	< 0.1	264.9	78.7	38.3
912973	Rock	27	16	711.1	13.9	4.3	9.5	30.9	0.2	1.1	390.0	<0.1	258.8	77.6	38.1
912974	Rock	25	24	673.1	15.4	5.1	10.1	31.9	<0.1	1.6	351.3	<0.1	259.4	76.7	37.7
912975	Rock	19	10	631.9	9.3	2.1	6.4	24.1	<0.1	<0.1	322.3	<0.1	241.9	71.6	31.2
912976	Rock	23	15	>1000	13.5	3.5	11.1	37.6	<0.1	0.7	541.0	<0.1	369.2	111.0	50.7
912977	Rock	23	12	874.2	11.8	3.1	8.4	31.7	<0.1	0.4	478.2	<0.1	301.3	93.3	40.0
912978	Rock	20	19	635.5	14.3	4.8	8.7	32.0	<0.1	1.2	301.0	<0.1	258.4	75.0	38.8
912979	Rock	25	36	583.8	18.4	7.3	8.4	30.7	<0.1	2.6	301.9	<0.1	228.6	66.3	35.3
912980 Dup	Rock	26	38	628.7	19.2	7.1	8.3	32.4	<0.1	2.6	323.1	<0.1	244.9	71.4	38.9
912981	Rock	24	36	815.0	22.5	8.5	10.8	39.4	<0.1	3.2	439.0	<0.1	310.9	91.2	47.7
912982	Rock	21	16	>1000	16.1	4.4	12.4	44.0	<0.1	1.1	800.6	<0.1	431.1	141.2	56.5
912983	Rock	20	20	872.0	15.1	4.0	10.4	36.6	<0.1	1.2	444.3	<0.1	321.0	98.7	44.9
912984	Rock	18	40	>1000	20.3	6.6	13.7	44.2	<0.1	2.4	634.0	<0.1	391.9	120.2	54.4
912985	Rock	20	27	>1000	17.9	5.9	10.9	40.5	<0.1	1.9	833.9	<0.1	402.9	131.2	48.6
912986	Rock	21	35	>1000	20.3	6.3	13.8	52.6	<0.1	2.1	>1000	<0.1	613.1	227.9	60.1
912987	Rock	23	46	>1000	29.9	6.7	27.9	112.9	<0.1	2.7	>1000	<0.1	>1000	614.7	136.6
912988	Rock	22	22	>1000	11.3	2.1	13.2	48.0	<0.1	0.1	>1000	<0.1	637.1	228.8	59.7
912989	Rock	21 12	61	>1000 925.7	22.0	8.6	10.9	38.0 49.2	0.1 <0.1	2.9	827.3 440.4	<0.1	337.9	112.9 105.3	42.3 57.7
912990	Pulp		42		23.4	8.0	15.3			2.9		<0.1	366.0		
912991 912992	Rock Rock	23 20	25 33	>1000 >1000	12.1 21.6	3.1 8.2	7.6 14.2	27.2 43.0	<0.1	0.6 2.8	920.6 >1000	<0.1	325.6 429.6	115.9 149.6	32.7 46.4
912992	KOCK	20	33	>1000	21.6	8.2	14.2	43.0	0.3	2.8	>1000	< 0.1	429.6	149.6	40.4

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

			Tb	Tm	Yb	Y	Ta	Th	U
				REE-LB-MS			Ta-4A-LL-MS		U-4A-LL-MS
San	nple Sar	mple	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Descript	•	ype	0.1	0.1	0.1	0.10	0.05	0.20	0.10
912		ock	0.5	< 0.1	0.4	30.4	6.01	44.31	1.00
912	2921 Ro	ock	0.8	< 0.1	1.0	39.3	6.75	97.07	1.93
912	2922 Re	ock	0.7	< 0.1	1.2	40.4	7.76	96.26	1.29
912	2923 Ro	ock	0.6	< 0.1	1.4	42.7	6.00	106.97	1.34
912	2924 Ro	ock	1.6	< 0.1	1.5	50.1	12.19	169.37	2.23
912	2925 Ro	ock	< 0.1	< 0.1	0.5	15.2	1.69	10.15	4.07
912	2926 Re	ock	3.0	< 0.1	3.8	82.5	14.57	192.70	4.25
912	2927 Re	ock	3.4	< 0.1	5.5	105.4	14.58	229.22	4.49
912	2928 Re	ock	2.7	< 0.1	6.9	100.6	37.74	250.84	5.28
912	2929 Ro	ock	2.7	< 0.1	5.6	92.4	100.21	554.43	13.00
912	2930 Pi	ulp	3.1	< 0.1	5.9	91.6	2.06	186.24	2.12
912		ock	0.9	< 0.1	2.1	45.0	8.24	154.61	1.32
		ock	1.0	< 0.1	1.5	49.9	8.01	190.17	1.36
912		ock	3.1	< 0.1	4.9	99.5	12.94	253.61	2.70
912		ock	2.1	<0.1	1.8	57.3	18.19	218.70	2.97
912		ock	2.0	<0.1	2.4	62.0	11.52	120.55	3.09
		ock	5.7	<0.1	7.5	136.5	1.77	260.01	8.53
912		ock	2.8	<0.1	5.8	96.2	2.16	216.70	4.69
912		ock	6.1	0.9	9.9	171.1	2.26	209.18	9.44
912		ock	2.4	<0.1	3.7	76.1	58.47	202.79	29.01
912		ock	5.6	0.1	8.2	140.2	6.01	205.93	6.59
912		ock	6.5	0.1	9.3	158.6	5.27	117.95	6.40
912		ock	5.1	1.0	11.6	168.3	4.84	347.49	9.61
912		ock	2.3	<0.1	6.7	92.4	2.62	354.81	5.65
912		ock	2.3	<0.1	5.9	82.7	1.41	271.61	4.30
		ock	4.0	<0.1	6.9	116.3		120.05	4.08
912		ock	3.8	0.1	8.1	128.1	6.01 3.37	264.59	8.08
		ock	2.0	<0.1	3.0	65.3	31.91	91.48	6.22
912		ock	2.0	<0.1	2.9	71.0	1.51	70.45	4.09
		ulp	3.1	<0.1	4.2	82.0	37.05	316.91	9.26
912		ock	2.6	<0.1	4.9	87.7	28.99	156.02	7.77
912		ock	3.2	<0.1	5.9	96.6	13.35	116.44	8.37
912		ock	2.0	<0.1	4.6	76.0	5.38	182.26	8.49
912		ock	2.4	< 0.1	5.7	89.1	1.80	221.41	8.73
912		ock	3.5	< 0.1	8.2	100.2	1.29	206.07	6.48
		ock	5.8	0.5	10.7	150.6	37.16	256.40	14.55
912		ock	7.5	1.6	13.3	199.6	37.14	397.93	12.89
912		ock	1.7	< 0.1	3.5	68.1	40.56	427.33	10.48
912	2959 R	ock	2.1	< 0.1	5.1	85.2	6.17	196.54	7.15
912960 I	Dup Ro	ock	1.9	< 0.1	5.3	80.4	5.78	190.25	6.80

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		Tb	Tm	Yb	Y	Ta	Th	U
		REE-LB-MS	REE-LB-MS	REE-LB-MS	REE-LB-MS	Ta-4A-LL-MS	Th-4A-LL-MS	U-4A-LL-MS
Sample	Sample	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Description	Type	0.1	0.1	0.1	0.10	0.05	0.20	0.10
912961	Rock	0.9	< 0.1	2.0	50.2	13.27	165.55	17.78
912962	Rock	1.7	< 0.1	4.7	72.0	9.70	216.91	12.12
912963	Rock	2.1	< 0.1	4.4	71.9	9.75	217.54	8.76
912964	Rock	2.3	< 0.1	3.8	67.0	12.07	125.04	10.24
912965	Rock	4.8	0.9	11.8	152.6	2.75	533.56	20.20
912966	Rock	4.7	0.4	8.8	138.2	1.58	761.79	11.44
912967	Rock	4.1	0.3	8.2	145.5	0.63	160.76	7.82
912968	Rock	2.0	< 0.1	4.0	75.6	58.30	155.45	10.93
912969	Rock	2.7	< 0.1	4.2	81.1	15.02	99.76	6.80
912970	Pulp	1.3	< 0.1	3.7	62.8	44.94	60.30	32.43
912971	Rock	0.8	< 0.1	0.9	46.0	11.33	139.66	6.25
912972	Rock	1.1	< 0.1	1.9	51.6	10.58	186.84	7.07
912973	Rock	1.6	< 0.1	2.5	57.3	8.06	128.33	7.84
912974	Rock	1.7	<0.1	2.7	65.7	11.77	107.52	10.81
912975	Rock	0.6	<0.1	0.6	34.4	2.81	100.42	4.71
912976	Rock	1.6	<0.1	1.9	50.2	6.63	155.15	4.74
912977	Rock	1.2	<0.1	1.3	46.3	0.39	140.15	1.72
912978	Rock	1.5	<0.1	2.3	61.7	18.36	119.40	4.31
912979	Rock	2.0	<0.1	4.3	83.7	0.40	339.27	5.49
912980 Dup	Rock	1.9	<0.1	4.6	85.1	0.29	327.38	5.30
912981	Rock	2.8	<0.1	4.6	97.0	9.78	331.09	4.64
912982	Rock	1.9	<0.1	2.2	61.0	3.02	118.71	2.86
912983	Rock	1.8	<0.1	2.0	60.3	8.16	154.82	5.66
912984	Rock	2.7	<0.1	3.9	79.5	49.37	269.76	17.98
912985	Rock	2.1	<0.1	3.4	72.3	9.31	209.13	4.97
912986	Rock	2.0	<0.1	4.5	80.8	5.94	269.25	6.04
912980	Rock	2.0	<0.1	4.3	99.1	0.29	399.97	4.88
912987	Rock	0.8	<0.1	1.1	44.2	0.29	164.01	2.67
912988	Rock		<0.1	5.8	98.7	11.77	275.67	5.66
912989		2.2 3.3	<0.1	6.7	98.7 97.0	47.24	207.49	2.55
	Pulp							
912991	Rock	0.6	<0.1	1.9	49.2	12.82	158.29	5.86
912992	Rock	2.3	< 0.1	5.4	98.4	21.72	218.02	11.37

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		Nb2O5	Al2O3	BaO	CaO	Cr2O3	Fe2O3	K2O	LOI	MgO	MnO	Na2O	P2O5	SiO2	TiO2
		Nb2O5-AD3-OR-ICP	WR-FS-ICP												
Sample	Sample	%	%	%	%	%	%	%	%	%	%	%	%	%	%
Description	Туре	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
912919	Rock	0.27													
912919 Dup		0.28													
QCV1011-00526-0002-BLK		<0.01													
STD-OKA-1 expected		0.53													
STD-OKA-1 result		0.55													
912938	Rock	0.35													
912938 Dup		0.35													
QCV1011-00526-0005-BLK		<0.01													
STD-OKA-1 expected		0.53													
STD-OKA-1 result		0.52													
912957	Rock	0.65													
912957 Dup		0.67													
QCV1011-00526-0008-BLK		< 0.01													
STD-OKA-1 expected		0.53													
STD-OKA-1 result		0.52													
912975	Rock	0.03													
912975 Dup		0.03													
QCV1011-00526-0011-BLK		< 0.01													
STD-OKA-1 expected		0.53													
STD-OKA-1 result		0.52													
QCV1011-00526-0013-BLK		< 0.01													
STD-OKA-1 expected		0.53													
STD-OKA-1 result		0.55													
912919	Rock		0.11	< 0.01	33.13	< 0.01	2.92	0.02	41.66	16.97	0.73	0.05	3.33	0.16	0.01
912919 Dup			0.11	< 0.01	33.18	< 0.01	2.92	0.02	41.71	17.03	0.72	0.04	3.34	0.17	0.01
QCV1011-00537-0002-BLK			< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
STD-CDN-ME-6 expected															
STD-CDN-ME-6 result											0.26	2.44	0.09		
912938	Rock		0.15	< 0.01	35.41	< 0.01	4.61	0.02	35.26	14.03	0.69	0.06	9.08	0.09	0.03
912938 Dup			0.15	< 0.01	35.34	< 0.01	4.54	0.02	35.36	13.97	0.68	0.06	8.93	0.10	0.02
QCV1011-00537-0005-BLK			< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
STD-CDN-ME-6 expected															
STD-CDN-ME-6 result											0.27	2.48	0.10		
912957	Rock		0.69	< 0.01	34.59	< 0.01	7.93	0.05	32.48	10.93	0.51	0.04	8.49	3.26	0.20
912957 Dup			0.70	< 0.01	34.85	< 0.01	7.81	0.05	32.51	11.04	0.52	0.04	8.41	3.37	0.19
QCV1011-00537-0008-BLK			< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
STD-CDN-ME-6 expected															
STD-CDN-ME-6 result											0.25	2.37	0.10		
912975	Rock		0.14	< 0.01	32.49	< 0.01	4.52	< 0.01	41.40	16.41	0.95	0.04	2.58	1.37	0.01
912975 Dup			0.13	< 0.01	33.08	< 0.01	4.56	< 0.01	41.38	16.29	0.97	0.04	2.57	1.34	0.01

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		Nb2O5	Al2O3	BaO	CaO	Cr2O3	Fe2O3	K2O	LOI	MgO	MnO	Na2O	P2O5	SiO2	TiO2
		Nb2O5-AD3-OR-ICP	WR-FS-ICP												
Sample	Sample	%	%	%	%	%	%	%	%	%	%	%	%	%	%
Description	Type	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
QCV1011-00537-0011-BLK			< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
STD-CDN-ME-6 expected															
STD-CDN-ME-6 result											0.26	2.46	0.10		
QCV1011-00537-0013-BLK			< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
STD-SY-4 expected			20.69		8.05		6.21	1.66	4.56	0.54	0.11	7.10	0.13	49.90	0.29
STD-SY-4 result			20.19	0.04	8.21	< 0.01	6.37	1.60	4.58	0.53	0.12	7.60	0.14	50.08	0.31

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		Total	Ag	Al	As	Ba	Bi	Ca	Cd	Co	Cr	Cu	Fe 20 44 TP	K	La
0 1	G 1	WR-FS-ICP	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR
Sample Description	Sample	% 0.01	ppm 0.5	% 0.01	ppm 5	ppm 10	ppm 2	% 0.01	ppm 0.5	ppm	ppm 1	ppm 1	% 0.01	% 0.01	ppm 10
912919	Type Rock	0.01	1.5	0.01		36	<2	>10	<0.5	3	10	19	1.98	0.01	158
912919 912919 Dup	KUCK		1.5	0.05	<5	37	<2	>10	<0.5	3	10	18	1.90	0.01	163
OCV1011-00527-0002-BLK			< 0.5	< 0.01	<5	<10	<2	< 0.01	<0.5	<1	<1	<1	< 0.01	< 0.01	<10
STD-OREAS-45P-4A expected			νο.5	(0.01	~	(10	~2	VO.01	(0.5	122	1103	749	(0.01	(0.01	(10
STD-OREAS-45P-4A result										119	1006	661			
912938	Rock		1.9	0.09	13	75	<2	>10	< 0.5	9	13	10	3.11	0.01	491
912938 Dup			2.0	0.08	14	74	<2	>10	< 0.5	7	11	12	3.25	0.01	494
QCV1011-00527-0005-BLK			< 0.5	< 0.01	<5	<10	<2	< 0.01	< 0.5	<1	<1	<1	< 0.01	< 0.01	<10
STD-CDN-ME-8 expected			61.7									1030			
STD-CDN-ME-8 result			63.7									988			
912957	Rock		3.1	0.32	16	66	<2	>10	< 0.5	10	10	43	5.35	0.04	533
912957 Dup			3.2	0.32	22	90	<2	>10	< 0.5	10	10	42	5.24	0.04	710
QCV1011-00527-0008-BLK			< 0.5	< 0.01	<5	<10	<2	< 0.01	< 0.5	<1	<1	<1	< 0.01	< 0.01	<10
STD-CDN-ME-6 expected			101.0									6130			
STD-CDN-ME-6 result			99.1									6234			
912975	Rock		1.3	0.07	14	58	<2	>10	< 0.5	5	10	4	3.01	< 0.01	284
912975 Dup			1.1	0.07	14	62	<2	>10	< 0.5	5	10	3	3.17	< 0.01	280
QCV1011-00527-0011-BLK			<0.5	< 0.01	<5	<10	<2	< 0.01	< 0.5	<1	<1	<1	< 0.01	< 0.01	<10
STD-CDN-ME-8 expected			61.7									1030			
STD-CDN-ME-8 result QCV1011-00527-0013-BLK			62.9 <0.5	< 0.01	.~	.10	2	< 0.01	< 0.5	.1	.1	971	< 0.01	< 0.01	<10
STD-CDN-ME-8 expected			<0.5 61.7	<0.01	<5	<10	<2	<0.01	<0.5	<1	<1	<1 1030	<0.01	<0.01	<10
STD-CDN-ME-8 expected STD-CDN-ME-8 result			64.3									1003			
912919	Rock	99.10	04.3									1003			
912919 Dup	ROCK	99.26													
QCV1011-00537-0002-BLK		< 0.01													
912938	Rock	99.45													
912938 Dup		99.17													
QCV1011-00537-0005-BLK		< 0.01													
912957	Rock	99.19													
912957 Dup		99.50													
QCV1011-00537-0008-BLK		< 0.01													
912975	Rock	99.92													
912975 Dup		100.38													
QCV1011-00537-0011-BLK		< 0.01													
QCV1011-00537-0013-BLK		< 0.01													
STD-SY-4 expected															
STD-SY-4 result		99.77													

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		Mg	Mn	Mo	Na	Ni	P	Pb	Sb	Sc	Sr	Ti	Tl	V	W
		30-4A-TR													
Sample	Sample	%	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm
Description	Type	0.01	5	1	0.01	1	10	2	5	1	1	0.01	10	1	10
912919	Rock	>10	5039	2	0.03	<1	>10000	75	<5	4	4888	< 0.01	<10	6	<10
912919 Dup		>10	4869	3	0.03	<1	>10000	73	<5	5	4726	< 0.01	<10	6	<10
QCV1011-00527-0002-BLK		< 0.01	<5	<1	< 0.01	<1	<10	<2	<5	<1	<1	< 0.01	<10	<1	<10
STD-OREAS-45P-4A expected					0.08	385	454								
STD-OREAS-45P-4A result					0.08	355	448								
912938	Rock	9.07	4789	3	0.04	<1	>10000	22	<5	4	3931	< 0.01	<10	13	<10
912938 Dup		9.45	5007	2	0.04	<1	>10000	62	<5	5	4109	0.01	<10	14	<10
QCV1011-00527-0005-BLK		< 0.01	<5	<1	< 0.01	<1	<10	<2	<5	<1	<1	< 0.01	<10	<1	<10
912957	Rock	8.27	3433	2	0.03	1	>10000	181	<5	10	1889	0.05	<10	83	<10
912957 Dup		8.07	3345	3	0.03	1	>10000	182	<5	11	1843	0.06	<10	86	<10
QCV1011-00527-0008-BLK		< 0.01	<5	<1	< 0.01	<1	<10	<2	<5	<1	<1	< 0.01	<10	<1	<10
STD-CDN-ME-6 expected								10200							
STD-CDN-ME-6 result								9962							
912975	Rock	9.88	6381	6	0.03	<1	>10000	20	<5	8	3878	< 0.01	<10	13	<10
912975 Dup		>10	6781	6	0.02	<1	>10000	21	<5	8	4060	< 0.01	<10	13	<10
QCV1011-00527-0011-BLK		< 0.01	<5	<1	< 0.01	<1	<10	<2	<5	<1	<1	< 0.01	<10	<1	<10
QCV1011-00527-0013-BLK		< 0.01	<5	<1	< 0.01	<1	<10	<2	<5	<1	<1	< 0.01	<10	<1	<10

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		Zn	Zr	Ce	Dy	Er	Eu	Gd	Hf	Но	La	Lu	Nd	Pr	Sm
		30-4A-TR	30-4A-TR	REE-LB-MS											
Sample	Sample	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Description	Type	2	1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
912919	Rock	16	17												
912919 Dup		16	16												
QCV1011-00527-0002-BLK		<2	<1												
TD-OREAS-45P-4A expected		142													
STD-OREAS-45P-4A result		143													
912938	Rock	17	25												
912938 Dup		17	34												
QCV1011-00527-0005-BLK	ъ. т	<2	<1												
912957	Rock	20	64												
912957 Dup		20	70												
QCV1011-00527-0008-BLK		<2 5170	<1												
STD-CDN-ME-6 expected STD-CDN-ME-6 result		5267													
912975	Rock	5267 19	10												
912975 Dup	KOCK	19	10												
OCV1011-00527-0011-BLK		<2	<1												
QCV1011-00527-0013-BLK		<2	<1												
QCV1011-00529-0001-BLK		\ <u>2</u>	\1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
912919	Rock			375.9	8.4	1.6	5.9	19.8	<0.1	<0.1	165.7	<0.1	166.4	45.2	
912919 Dup	rtoen			356.7	7.8	1.7	5.9	18.9	<0.1	<0.1	157.4	<0.1	155.2	42.0	26.1
912938	Rock			>1000	39.6	16.3	21.1	68.0	<0.1	6.9	574.4	<0.1	482.8	134.9	80.2
912938 Dup				>1000	39.2	15.0	19.7	64.8	<0.1	6.3	557.7	<0.1	464.5	132.8	76.2
912957	Rock			>1000	48.6	19.4	30.9	84.1	14.3	8.2	915.1	0.1	634.5	187.9	100.8
912957 Dup				>1000	46.6	18.6	31.0	84.5	13.5	8.2	913.0	0.1	638.7	187.7	100.4
912975	Rock			631.9	9.3	2.1	6.4	24.1	< 0.1	< 0.1	322.3	< 0.1	241.9	71.6	31.2
912975 Dup				637.9	9.3	2.1	6.4	24.8	< 0.1	< 0.1	321.2	< 0.1	244.6	71.8	32.1
QCV1011-00529-0010-BLK				< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
STD-SY-4 expected				122.0	18.2	14.2	2.0	14.0	10.6	4.3	58.0	2.1	57.0	15.0	12.7
STD-SY-4 result				124.1	17.8	14.0	1.6	14.1	9.8	4.0	57.5	1.9	57.1	14.2	11.8

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		Tb	Tm	Yb	Y	Ta	Th	U
		REE-LB-MS	REE-LB-MS	REE-LB-MS	REE-LB-MS	Ta-4A-LL-MS	Th-4A-LL-MS U	J-4A-LL-MS
Sample	Sample	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Description	Type	0.1	0.1	0.1	0.10	0.05	0.20	0.10
QCV1011-00529-0001-BLK		< 0.1	< 0.1	< 0.1	< 0.10			
912919	Rock	0.5	< 0.1	0.4	30.4			
912919 Dup		0.4	< 0.1	0.4	30.9			
912938	Rock	6.1	0.9	9.9	171.1			
912938 Dup		5.7	0.9	9.6	158.6			
912957	Rock	7.5	1.6	13.3	199.6			
912957 Dup		7.3	1.4	14.0	199.5			
912975	Rock	0.6	< 0.1	0.6	34.4			
912975 Dup		0.5	< 0.1	0.5	34.2			
QCV1011-00529-0010-BLK		< 0.1	< 0.1	< 0.1	< 0.10			
STD-SY-4 expected		2.6	2.3	14.8	119.0			
STD-SY-4 result		2.4	2.2	14.4	117.8			
912919	Rock					6.01	44.31	1.00
912919 Dup						5.46	44.20	1.03
QCV1105-00527-0002-BLK						< 0.05	< 0.20	< 0.10
912938	Rock					2.26	209.18	9.44
912938 Dup						2.30	212.24	9.85
QCV1105-00527-0005-BLK						< 0.05	< 0.20	< 0.10
912957	Rock					37.14	397.93	12.89
912957 Dup						36.27	416.11	12.28
QCV1105-00527-0008-BLK						< 0.05	< 0.20	< 0.10
912975	Rock					2.81	100.42	4.71
912975 Dup						3.02	97.68	4.70
QCV1105-00527-0011-BLK						< 0.05	< 0.20	< 0.10
QCV1105-00527-0013-BLK						< 0.05	< 0.20	< 0.10

Certificate of Analysis

Inspectorate Exploration & Mining Services Ltd. #200 - 11620 Horseshoe Way

Date Received: 11/16/2010

Date Completed: 05/06/2011

Invoice:

Richmond, British Columbia V7A 4V5 Canada

Phone: 604-272-7818

Distribution List

Attention: Eric Titley

Suite 1020-800 West Pender St.

Vancouver, BC V6C 2V6

EMail: erictitley@hdimining.com

Attention: Jeremy Crozier

EMail: jeremycrozier@hdimining.com

Attention: T.Kodata

EMail: tkodata@hdmining.com

Submitted By: Aley Corporation

Suite 1020-800 West Pender St.

Vancouver, BC V6C 2V6

Attention: Eric Titley

Project: Aley 2010 Project

Purchase Order: ALY 0002

Description: ALEY 2010-030

Location	Samples	Type	Preparation Description
Vancouver, BC	3	Pulp	SP-PU/Pulp Handling, submitted pulps
Vancouver, BC	74	Rock	SP-RX-2K/Rock/Chips/Drill Core

Location	Method	Description
Vancouver, BC	Ta-4A-LL-MS	Tantalum, 4 Acid, ICP
Vancouver, BC	REE-LB-MS	REE Group by ICP-MS
Vancouver, BC	Th-4A-LL-ICP	Thorium, 4 Acid, Low Level by ICP
Vancouver, BC	U-4A-LL-MS	Uraium, 4 Acid, Low Level
Vancouver, BC	Nb2O5-AD3-OR-ICP	Niobium by multi-acid digestion, ICP
Vancouver, BC	Th-4A-LL-MS	Thorium, 4 Acid, Low Level
Vancouver, BC	WR-FS-ICP	Whole Rock, Lithium Borate Fusion, ICP
Vancouver, BC	30-4A-TR	30 Element, 4 Acid, ICP, Trace Level

Submittal Information

Ta, Th, and U results shown have been revised with accurate detection limits.

The results of this assay were based solely upon the content of the sample submitted. Any decision to invest should be made only after the potential investment value of the claim or deposit has been determined based on the results of assays of multiple samples of geologic materials collected by the prospective investor or by a qualified person selected by him and based on an evaluation of all engineering data which is available concerning any proposed project. For our complete terms and conditions please see our website at www.inspectorate.com.

By

Mike Caron, Lab Manager

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		Nb2O5	A12O3	BaO	CaO	Cr2O3	Th	Fe2O3	K2O	LOI	MgO	MnO	Na2O	P2O5	SiO2
a .		Nb2O5-AD3-OR-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP	Th-4A-LL-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP
Sample	Sample	%	%	%	%	%	ppm	%	%	%	%	%	%	%	%
Description 875308	Type	0.01	0.01	0.01	32.68	<0.01	102.68	0.01	0.01	0.01 40.67	0.01	0.01	0.01	0.01	0.01
875308 875309	Rock Rock	0.18 0.22	0.10 0.08	<0.01 <0.01	31.88	<0.01	240.71	4.29 5.34	0.04	40.67	18.16 17.90	0.75	0.05	3.62 3.33	0.31
875310	Pulp	0.47	0.08	0.02	34.92	< 0.01	210.52	5.07	0.04	36.94	13.46	0.39	0.04	3.90	3.13
875310 875311	Rock	0.47	0.18	< 0.02	31.96	< 0.01	65.98	5.13	0.05	39.14	18.31	0.39	0.05	4.27	0.24
875311	Rock	0.31	0.12	< 0.01	32.09	<0.01	74.10	4.44	0.03	38.56	18.70	0.58	0.05	4.27	0.24
875312 875313	Rock	0.22	0.11	< 0.01	30.31	0.01	68.94	5.31	0.04	40.36	18.18	0.58	0.05	3.61	0.19
875313 875314	Rock	0.20	0.12	< 0.01	32.32	< 0.01	111.17	4.48	0.04	39.34	17.97	0.64	0.03	4.46	0.27
875315	Rock	0.43	0.07	< 0.01	31.82	< 0.01	207.38	5.01	0.03	38.68	17.55	0.67	0.04	4.42	0.23
875316	Rock	0.60	0.10	< 0.01	29.51	< 0.01	239.84	10.78	0.03	35.39	15.81	0.50	0.04	5.22	1.24
875317	Rock	0.25	0.11	0.01	30.84	< 0.01	271.99	5.82	0.03	40.78	17.58	0.70	0.03	2.33	0.23
875318	Rock	0.29	0.08	< 0.01	31.72	< 0.01	129.43	4.67	0.03	40.21	17.55	0.74	0.05	4.20	0.27
875319	Rock	0.24	0.14	< 0.01	31.06	< 0.01	129.05	4.40	0.04	40.83	18.93	0.60	0.05	3.83	0.23
875320 Dup	Rock	0.26	0.14	< 0.01	31.29	< 0.01	129.47	4.38	0.05	39.77	19.36	0.60	0.05	3.87	0.27
875321	Rock	0.19	0.07	< 0.01	33.03	< 0.01	108.82	4.73	0.03	40.87	18.51	0.77	0.05	2.79	0.05
875322	Rock	0.19	0.11	< 0.01	33.38	< 0.01	201.22	4.23	0.03	39.48	17.93	0.65	0.05	4.02	0.18
875323	Rock	0.36	0.08	< 0.01	33.22	< 0.01	363.61	3.93	0.02	39.05	17.61	0.65	0.05	5.21	< 0.01
875324	Rock	0.16	0.06	< 0.01	31.92	< 0.01	244.87	4.17	0.02	39.53	19.68	0.69	0.05	3.80	0.15
875325	Rock	0.33	0.16	< 0.01	34.13	< 0.01	433.63	5.69	0.04	39.58	16.48	0.63	0.04	3.19	0.23
875326	Rock	0.36	0.17	0.01	35.44	0.01	492.74	5.00	0.10	36.84	15.87	0.65	0.06	6.21	0.25
875327	Rock	0.36	0.14	< 0.01	30.75	< 0.01	261.84	4.57	0.04	41.05	17.68	0.65	0.05	2.80	0.22
875328	Rock	0.12	0.06	0.01	32.48	< 0.01	207.09	3.77	0.04	42.12	18.08	0.80	0.07	3.29	< 0.01
875329	Rock	0.57	0.36	< 0.01	32.66	< 0.01	280.09	5.40	0.05	35.74	16.38	0.63	0.08	6.74	0.93
875330	Pulp	0.47	0.23	< 0.01	31.83	< 0.01	166.22	6.06	0.05	38.22	16.58	0.48	0.06	4.03	1.37
875331	Rock	0.73	0.45	< 0.01	32.57	< 0.01	370.69	6.17	0.05	34.69	15.57	0.59	0.05	6.94	0.93
875332	Rock	0.63	0.11	< 0.01	31.87	< 0.01	200.27	5.16	0.03	38.12	16.59	0.71	0.05	5.32	0.21
875333	Rock	0.78	0.25	< 0.01	32.45	< 0.01	273.11	5.82	0.05	37.64	15.99	0.70	0.05	5.47	0.67
875334	Rock	0.54	0.45	< 0.01	32.04	< 0.01	200.63	7.14	0.08	35.10	14.77	0.61	0.05	6.38	1.17
875335	Rock	0.44	0.14	< 0.01	32.72	< 0.01	259.05	5.37	0.04	32.93	14.75	0.45	0.06	9.97	1.62
875336	Rock	0.43	0.28	0.04	33.58	< 0.01	31.32	28.03	0.17	19.17	4.48	0.34	0.11	10.21	3.81
875337	Rock	0.65	0.12	0.01	34.83	< 0.01	126.04	14.37	0.03	27.05	11.77	0.34	0.06	8.13	1.11
875338	Rock	0.64	0.10	< 0.01	32.57	< 0.01	227.87	6.39	0.02	36.40	16.33	0.53	0.04	4.97	0.32
875339	Rock	0.44	0.15	< 0.01	35.95	< 0.01	145.26	5.37	0.03	37.34	14.64	0.51	0.04	4.95	1.08
875340 Dup	Rock	0.41	0.17	< 0.01	35.88	< 0.01	132.11	5.42	0.03	37.54	14.26	0.53	0.05	4.88	1.16
875341	Rock	0.44	0.17	< 0.01	32.12	< 0.01	237.61	5.67	0.02	36.76	16.06	0.54	0.04	5.31	1.01
875342	Rock	0.29	0.09	< 0.01	30.65	< 0.01	71.31	5.74	< 0.01	40.62	18.41	0.45	0.03	0.93	3.28
875343	Rock	0.26	0.20	< 0.01	32.27	0.02	100.48	5.62	0.08	38.22	18.35	0.40	0.04	3.27	1.23
875344	Rock	0.76	0.14	< 0.01	32.49	< 0.01	292.82	11.86	0.04	31.28	14.93	0.46	0.04	6.24	0.49
875345	Rock	0.93	0.16	< 0.01	31.73	< 0.01	192.69	6.89	0.05	34.10	16.02	0.56	0.05	5.68	2.10
875346	Rock	0.68	0.33	< 0.01	32.61	< 0.01	240.37	9.29	0.06	33.07	14.97	0.32	0.05	5.60	0.96
875347	Rock	0.50	0.19	< 0.01	32.86	< 0.01	118.99	5.60	0.03	37.96	17.12	0.39	0.03	3.75	1.85

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		Nb2O5	Al2O3	BaO	CaO	Cr2O3	Th	Fe2O3	K2O	LOI	MgO	MnO	Na2O	P2O5	SiO2
		Nb2O5-AD3-OR-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP	Th-4A-LL-ICP	WR-FS-ICP							
Sample	Sample	%	%	%	%	%	ppm	%	%	%	%	%	%	%	%
Description	Type	0.01	0.01	0.01	0.01	0.01	4	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
875348	Rock	0.60	0.34	< 0.01	32.29	< 0.01	200.71	8.42	0.04	34.02	15.22	0.40	0.04	5.63	0.91
875349	Rock	0.35	0.13	< 0.01	35.15	< 0.01	158.64	6.44	0.01	36.46	15.02	0.49	0.05	5.07	1.00
912500 Dup	Rock	0.35	0.13	< 0.01	32.84	< 0.01	162.72	6.00	0.01	37.37	16.92	0.45	0.04	4.96	0.91
912501	Rock	1.03	0.32	< 0.01	31.94	< 0.01	288.24	9.61	0.04	32.66	14.94	0.32	0.04	4.73	2.97
912502	Rock	0.60	0.19	< 0.01	31.80	< 0.01	127.76	10.02	0.03	31.36	14.41	0.50	0.05	5.92	3.58
912503	Rock	1.47	0.33	< 0.01	27.81	< 0.01	73.96	25.39	0.13	22.69	10.71	0.45	0.06	7.18	3.03
912504	Rock	0.05	15.17	0.11	4.72	0.02	12.57	4.62	3.63	1.77	1.75	0.12	3.28	0.54	62.99
912505	Rock	1.25	0.27	< 0.01	33.13	< 0.01	95.28	13.89	0.10	28.76	12.58	0.32	0.06	7.72	2.20
912506	Rock	0.39	0.67	< 0.01	32.19	< 0.01	326.34	4.97	0.16	36.11	17.10	0.60	0.04	6.06	1.50
912507	Rock	0.70	0.23	< 0.01	31.28	< 0.01	318.68	7.82	0.02	34.67	17.77	0.47	0.04	5.51	0.34
912508	Rock	1.28	0.37	< 0.01	33.21	< 0.01	335.50	6.54	0.05	33.79	16.02	0.61	0.05	6.61	0.62
912509	Rock	0.52	0.19	< 0.01	34.35	< 0.01	241.87	5.90	0.01	37.64	16.21	0.68	0.04	5.11	0.19
912510	Pulp	0.79	0.65	0.02	29.11	0.01	308.75	17.91	0.17	30.27	13.27	0.50	0.07	6.07	2.31
912511	Rock	0.31	0.11	< 0.01	32.04	< 0.01	197.57	7.12	0.05	37.87	17.88	0.67	0.04	3.70	0.18
912512	Rock	0.23	0.11	< 0.01	33.30	< 0.01	223.82	5.51	0.03	39.01	17.89	0.75	0.04	3.37	0.20
912513	Rock	0.43	0.14	< 0.01	34.07	< 0.01	307.50	4.65	0.01	38.25	17.26	0.78	0.04	4.33	0.08
912514	Rock	1.38	0.69	< 0.01	35.06	< 0.01	249.61	7.81	0.06	29.92	13.06	0.45	0.07	8.96	1.43
912515	Rock	0.66	0.35	< 0.01	33.27	< 0.01	276.86	10.17	0.02	31.99	13.61	0.58	0.05	6.67	0.59
912517	Rock	0.66	0.27	< 0.01	33.81	< 0.01	253.71	8.17	0.01	32.41	15.24	0.63	0.05	6.51	0.57
912518	Rock	0.23	0.07	< 0.01	32.16	< 0.01	198.32	5.95	< 0.01	39.28	17.21	0.74	0.03	3.55	0.03
912519	Rock	0.16	0.05	< 0.01	31.96	< 0.01	381.21	5.40	0.01	40.41	17.45	0.74	0.03	3.38	< 0.01
912520	Rock	0.15	0.05	< 0.01	31.85	< 0.01	445.55	5.43	< 0.01	40.29	17.26	0.72	0.03	3.55	< 0.01
912521	Rock	0.35	0.12	< 0.01	34.20	< 0.01	348.23	6.51	< 0.01	37.58	16.44	0.57	0.04	4.74	0.61
912522	Rock	0.38	0.14	< 0.01	33.74	< 0.01	398.03	7.07	0.01	37.13	16.42	0.65	0.04	5.57	0.25
912523	Rock	0.37	0.21	< 0.01	32.09	< 0.01	314.12	6.04	0.02	38.15	18.37	0.90	0.04	4.63	0.65
912524	Rock	0.72	0.24	< 0.01	32.60	< 0.01	294.43	6.48	0.01	35.94	16.13	0.79	0.04	6.63	0.50
912525	Rock	0.04	0.04	< 0.01	30.31	< 0.01	194.22	5.84	< 0.01	42.15	18.06	0.94	0.04	1.64	1.26
912526	Rock	0.17	0.15	< 0.01	34.65	< 0.01	202.83	5.85	0.02	38.08	14.47	0.78	0.04	5.13	1.71
912527	Rock	0.73	0.23	0.01	39.13	< 0.01	100.06	8.66	0.02	32.91	10.55	0.72	0.05	7.32	0.57
912528	Rock	0.22	0.14	0.01	36.89	0.01	163.85	3.86	0.07	40.18	15.30	0.78	0.04	3.60	0.09
912529	Rock	0.34	0.51	0.01	36.94	< 0.01	159.92	5.39	0.11	35.62	13.35	0.67	0.17	5.16	3.86
912530	Rock	0.72	0.19	0.02	36.65	< 0.01	209.22	4.68	0.06	37.02	14.35	0.42	0.10	3.89	3.50
912531	Rock	0.14	0.88	0.01	33.50	< 0.01	115.52	5.59	0.18	32.48	12.88	0.50	0.39	5.99	9.28
912532	Rock	0.18	4.23	0.08	23.60	0.01	56.82	6.70	2.43	27.34	14.75	0.48	0.84	2.69	17.29
912533	Rock	0.34	0.12	< 0.01	32.28	< 0.01	178.06	3.90	0.03	40.34	18.11	0.58	0.04	4.42	0.59
912534	Rock	0.20	0.17	< 0.01	34.21	< 0.01	189.40	5.14	0.04	38.27	14.56	0.58	0.04	5.87	1.91
912535	Rock	0.73	0.35	< 0.01	32.25	< 0.01	205.40	7.19	0.02	32.32	13.10	0.52	0.06	8.99	2.54

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		TiO2	Total	Ag	Al	As	Ba	Bi	Ca	Cd	Со	Cr	Cu	Fe	K
	a 1	WR-FS-ICP	WR-FS-ICP	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR
Sample Description	Sample Type	% 0.01	% 0.01	ppm 0.5	% 0.01	ppm 5	ppm 10	ppm 2	% 0.01	ppm 0.5	ppm	ppm	ppm	% 0.01	0.01
875308	Rock	0.01	100.71	<0.5	0.01		42	<2	>10	<0.5	3	3	28	2.69	< 0.01
875309	Rock	0.04	100.71	<0.5	0.03	<5	41	<2	>10	<0.5	3	6	30	3.56	<0.01
875310	Pulp	0.13	98.30	<0.5	0.10	7	42	<2	>10	<0.5	6	2	37	3.80	0.02
875311	Rock	0.16	100.12	< 0.5	0.06	<5	57	<2	>10	< 0.5	4	3	51	3.33	0.03
875312	Rock	0.03	99.64	< 0.5	0.06	5	58	<2	>10	<0.5	6	2	52	2.92	0.02
875313	Rock	0.09	99.01	< 0.5	0.07	6	53	<2	>10	< 0.5	5	3	40	3.42	0.03
875314	Rock	0.04	99.63	< 0.5	0.04	<5	43	<2	>10	< 0.5	5	13	34	3.05	0.02
875315	Rock	0.07	98.94	< 0.5	0.09	14	47	<2	>10	< 0.5	8	4	77	3.29	0.02
875316	Rock	0.16	99.03	1.5	0.13	18	59	<2	>10	< 0.5	11	3	97	7.08	0.07
875317	Rock	0.03	98.51	< 0.5	0.06	7	83	<2	>10	< 0.5	5	3	37	3.83	0.02
875318	Rock	0.02	99.57	< 0.5	0.04	<5	44	<2	>10	< 0.5	6	3	47	3.08	0.02
875319	Rock	0.05	100.15	< 0.5	0.07	7	39	<2	>10	< 0.5	5	3	44	2.95	0.03
875320 Dup	Rock	0.05	99.83	< 0.5	0.07	6	39	<2	>10	< 0.5	5	4	44	3.07	0.03
875321	Rock	< 0.01	100.92	< 0.5	0.04	<5	46	<2	>10	< 0.5	3	2	33	2.97	0.02
875322	Rock	0.02	100.08	< 0.5	0.06	<5	36	<2	>10	< 0.5	4	5	29	2.49	0.02
875323	Rock	0.02	99.87	< 0.5	0.04	6	40	<2	>10	< 0.5	4	3	51	2.61	0.01
875324	Rock	0.03	100.09	< 0.5	0.03	<5	37	<2	>10	< 0.5	5	2	31	2.80	< 0.01
875325	Rock	0.04	100.23	< 0.5	0.09	10	33	<2	>10	< 0.5	7	4	52	3.46	0.02
875326	Rock	0.10	100.71	< 0.5	0.09	13	34	<2	>10	< 0.5	7	4	51	3.14	0.01
875327	Rock	0.04	97.99	< 0.5	0.08	6	51	<2	>10	< 0.5	4	5	62	3.10	0.01
875328	Rock	0.02	100.74	< 0.5	0.03	<5	94	<2	>10	< 0.5	2	4	17	2.41	0.01
875329	Rock	0.17	99.16	< 0.5	0.20	11	50	<2	>10	< 0.5	12	5	87	3.45	0.02
875330	Pulp	0.12	99.05	< 0.5	0.13	7	42	<2	>10	< 0.5	6	3	38	3.76	0.02
875331	Rock	0.15	98.18	< 0.5	0.23	11	38	<2	>10	< 0.5	11	4	107	4.09	0.03
875332	Rock	0.06	98.23	< 0.5	0.06	9	38	<2	>10	< 0.5	9	4	91	3.46	0.02
875333	Rock	0.05	99.15	< 0.5	0.13	15	42	<2	>10	< 0.5	9	3	114	3.91	0.03
875334	Rock	0.11	97.91	< 0.5	0.24	12	39	<2	>10	< 0.5	16	4	138	4.60	0.04
875335	Rock	0.10	98.15	< 0.5	0.07	9	25	<2	>10	< 0.5	10	4	60	3.78	0.02
875336	Rock	0.56	100.78	< 0.5	0.15	<5	284	<2	>10	< 0.5	21	<1	36	>10	0.09
875337	Rock	0.19	98.02	< 0.5	0.06	9	97	<2	>10	< 0.5	21	10	102	8.37	0.01
875338	Rock	0.09	97.77	<0.5	0.05	8	29	<2	>10	< 0.5	12	5	93	4.55	0.01
875339	Rock	0.06	100.14	<0.5	0.08	6	20	<2	>10	< 0.5	7	6	68	3.23	0.01
875340 Dup	Rock	0.06	99.98	<0.5	0.09	6	20	<2	>10	<0.5	7	6	63	3.19	0.01
875341	Rock	0.06	97.77	<0.5	0.09	7	23	<2	>10	<0.5	9	6	66	3.73	< 0.01
875342	Rock	0.03	100.24	<0.5	0.05	8	20	<2	>10	<0.5	13	13	46	3.77	< 0.01
875343	Rock	0.06	99.79	<0.5	0.11	8	16	<2	>10	<0.5	14	7	45	3.55	0.01
875344	Rock	0.19	98.18	<0.5	0.07	13	35	<2	>10	<0.5	15	9	116	7.35	<0.01
875345	Rock	0.10	97.44	<0.5	0.08	11	33	<2	>10	<0.5	10	10	138	4.48	0.02
875346	Rock	0.20	97.47	<0.5	0.17	13	25	<2	>10	<0.5	19	10	104	6.07	0.04
875347	Rock	0.11	99.90	<0.5	0.10	7	25	<2	>10	<0.5	10	10	77	3.73	0.02

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		TiO2	Total	Ag	Al	As	Ba	Bi	Ca	Cd	Co	Cr	Cu	Fe	K
		WR-FS-ICP	WR-FS-ICP	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR
Sample	Sample	%	%	ppm	%	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%	%
Description	Type	0.01	0.01	0.5	0.01	5	10	2	0.01	0.5	1	1	1	0.01	0.01
875348	Rock	0.22	97.54	< 0.5	0.17	11	24	<2	>10	< 0.5	14	8	92	5.47	0.02
875349	Rock	0.07	99.88	< 0.5	0.07	7	21	<2	>10	< 0.5	8	10	54	4.13	< 0.01
912500 Dup	Rock	0.07	99.72	< 0.5	0.07	7	22	<2	>10	< 0.5	8	8	56	4.04	< 0.01
912501	Rock	0.34	97.91	< 0.5	0.17	13	28	<2	>10	< 0.5	9	15	155	6.33	0.03
912502	Rock	0.22	98.08	< 0.5	0.10	9	39	<2	>10	< 0.5	12	13	101	6.36	0.01
912503	Rock	0.54	98.34	< 0.5	0.17	8	78	<2	>10	< 0.5	23	<1	119	>10	0.07
912504	Rock	0.45	99.17	< 0.5	7.87	62	817	<2	3.15	< 0.5	8	84	15	2.77	2.76
912505	Rock	0.27	99.32	< 0.5	0.14	7	88	<2	>10	< 0.5	20	3	103	8.80	0.06
912506	Rock	0.09	99.51	< 0.5	0.35	11	50	<2	>10	< 0.5	6	5	60	3.31	0.11
912507	Rock	0.07	98.23	< 0.5	0.12	13	24	<2	>10	< 0.5	11	5	116	5.36	0.01
912508	Rock	0.06	97.95	< 0.5	0.19	14	39	<2	>10	< 0.5	17	5	182	4.67	0.03
912509	Rock	0.07	100.40	< 0.5	0.10	8	53	<2	>10	<0.5	8	3	72	3.73	< 0.01
912510	Pulp	0.63	101.01	0.5	0.34	15	148	<2	>10	<0.5	13	<1	144	>10	0.06
912511	Rock	0.05	99.72	<0.5	0.06	10	34	<2	>10	<0.5	8	5	51	4.86	< 0.01
912512	Rock	0.03	100.24	< 0.5	0.06	10	27	<2	>10	<0.5	9	4	44	3.79	< 0.01
912513	Rock	0.03	99.65	< 0.5	0.07	6	52	<2	>10	< 0.5	4	4	69	3.27	< 0.01
912514	Rock	0.13	97.65	< 0.5	0.36	17	34	<2	>10	<0.5	14	7	222	5.38	0.04
912515	Rock	0.20	97.52	<0.5	0.18	15	33	<2	>10	<0.5	24	5	17	6.58	< 0.01
912517	Rock	0.19	97.88	<0.5	0.14	14	35	<2	>10	<0.5	20	5	99	5.88	< 0.01
912518	Rock	0.06	99.10	< 0.5	0.04	7	29	<2	>10	<0.5	11	4	36	4.19	< 0.01
912519	Rock	0.03	99.47	<0.5	0.03	7	19	<2	>10	<0.5	6	4	25	3.11	< 0.01
912520	Rock	0.03	99.22	<0.5	0.03	<5	19	<2	>10	<0.5	7	4	26	3.65	< 0.01
912521	Rock	0.02	100.83	<0.5	0.06	8	54	<2	>10	<0.5	9	3	58	4.22	<0.01
912522	Rock	0.02	101.05	<0.5	0.07	13	29	<2	>10	<0.5	11	2	64	4.83	< 0.01
912523	Rock	0.05	101.15	<0.5	0.11		40	<2	>10	<0.5	12	3	59	4.30	0.01
912524	Rock	0.06	99.43	<0.5	0.12	8	39	<2	>10	< 0.5	14 6	3 4	107	4.54	<0.01
912525	Rock	0.15	100.43	<0.5	0.02	<5 7	41	<2	>10	<0.5	10	3	5	4.14	<0.01
912526 912527	Rock Rock	0.03 0.15	100.90 100.32	<0.5 <0.5	0.08 0.12	11	32 90	<2 <2	>10 >10	<0.5 <0.5	9	2	27 56	4.02 5.95	<0.01 <0.01
912528		0.13	100.32	<0.5	0.12	8	76	<2	>10	<0.5	3	3	82	8.99	
	Rock										_				<0.01
912529 912530	Rock	0.06	101.85	<0.5 <0.5	0.27 0.10	8 14	66 161	<2 <2	>10 >10	<0.5 <0.5	4 5	6 1	101	3.60	0.06 0.03
912530	Rock Rock	0.13 0.12	101.00	<0.5 <0.5	0.10	9	75	<2	>10	<0.5 <0.5	9	12	139 62	3.36 3.72	0.03
912531	Rock	0.12	101.80 100.95	<0.5 <0.5	2.24	22	75 594	<2	>10	<0.5 <0.5	9 16	35	82 82	4.60	2.01
912532	Rock	0.03	100.93	<0.5	0.06	5	43	<2	>10	<0.5	4	2	85 85	2.66	0.02
912534	Rock	0.03	100.43	<0.5	0.08	<5	45	<2	>10	<0.5	5	3	61	3.24	0.02
912535	Rock	0.09	97.55	<0.5	0.09	8	51	<2	>10	<0.5	5	3	93	3.24 4.94	<0.02
912333	NUCK	0.20	71.33	<0.3	0.16		31	<2	>10	<0.3	3	3	93	4.74	<0.01

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		La	Mg	Mn	Mo	Na	Ni	P	Pb	Sb	Sc	Sr	Ti	Tl	V
		30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR
Sample	Sample	ppm	%	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm
Description	Type	10	0.01	5	1	0.01	1	10	2	5	1	1	0.01	10	1
875308	Rock	190	9.89	5942	<1	0.03	<1	>10000	97	<5	6	4586	< 0.01	<10	7
875309	Rock	520	9.74	6827	9	0.02	<1	>10000	105	<5	7	3919	< 0.01	<10	16
875310	Pulp	318	9.33	3140	<1	0.06	<1	>10000	34	<5	7	2408	0.06	<10	32
875311	Rock	186	9.96	5603	<1	0.03	<1	>10000	171	<5	5	4715	0.04	<10	31
875312	Rock	203	>10	4704	<1	0.03	<1	>10000	171	<5	5	4494	0.01	<10	22
875313	Rock	162	9.90	5119	<1	0.04	<1	>10000	127	<5 .5	5	4553	0.02	<10	38
875314	Rock	284	9.78	5273	<1	0.03	<1	>10000	108	<5	6	4404	< 0.01	<10	17
875315	Rock	214	9.55	5281	<1	0.03	<1	>10000	237	<5	7 6	4304	0.02	<10	32 100
875316	Rock	197	8.60	4101	<1 54	0.03	<1	>10000	298	<5	8	3571	0.05	<10	
875317 875318	Rock	376 191	9.57	5554 5943	2	0.02 0.03	<1 <1	9943 >10000	128 147	<5 <5	6	3457 4388	< 0.01	<10	21
875318 875319	Rock Rock	191 167	9.56 >10	3943 4917	1	0.03	<1 <1	>10000	147	<5	7	4388 4255	<0.01 0.01	<10 <10	15 22
875320 Dup	Rock	165	>10	5129	1	0.03	<1	>10000	140	<5	7	4441	0.01	<10	21
875320 Dup 875321	Rock	143	>10	6119	4	0.03	<1	>10000	108	<5	6	4362	< 0.01	<10	7
875321 875322	Rock	178	9.76	4830	<1	0.03	<1	>10000	103	<5	6	3977	<0.01	<10	8
875323	Rock	205	9.59	5221	<1	0.03	<1	>10000	178	<5	6	4283	<0.01	<10	8
875324	Rock	204	>10	5741	4	0.03	<1	>10000	108	<5	6	4493	< 0.01	<10	11
875325	Rock	643	8.97	4608	4	0.02	<1	>10000	169	<5	9	2830	0.01	<10	20
875326	Rock	318	8.64	4963	2	0.03	<1	>10000	171	<5	7	3488	0.02	<10	15
875327	Rock	221	9.62	5478	<1	0.03	<1	>10000	159	<5	6	3524	0.01	<10	13
875328	Rock	194	9.84	6524	1	0.04	<1	>10000	61	<5	5	4660	< 0.01	<10	7
875329	Rock	274	8.92	5064	<1	0.05	<1	>10000	247	<5	5	4121	0.04	<10	30
875330	Pulp	308	9.03	3957	2	0.04	<1	>10000	37	<5	6	2187	0.03	<10	34
875331	Rock	326	8.47	4723	2	0.03	<1	>10000	320	<5	5	3602	0.05	<10	47
875332	Rock	395	9.03	5744	3	0.03	<1	>10000	286	<5	5	4178	0.02	<10	20
875333	Rock	336	8.70	5408	2	0.03	<1	>10000	365	<5	5	3794	0.03	<10	22
875334	Rock	468	8.04	4694	<1	0.03	<1	>10000	432	<5	5	3622	0.04	<10	39
875335	Rock	423	8.03	3834	<1	0.03	<1	>10000	193	<5	12	2947	0.03	<10	34
875336	Rock	478	2.44	2712	<1	0.07	<1	>10000	65	<5	20	4604	0.21	<10	398
875337	Rock	353	6.41	2750	<1	0.04	<1	>10000	278	<5	12	3181	0.08	<10	203
875338	Rock	274	8.89	4487	<1	0.02	<1	>10000	272	<5	6	2796	0.04	<10	49
875339	Rock	352	7.97	3819	<1	0.03	<1	>10000	214	<5	9	2105	0.02	<10	40
875340 Dup	Rock	344	7.76	3819	<1	0.03	<1	>10000	201	<5	8	2090	0.02	<10	40
875341	Rock	331	8.74	4270	<1	0.03	<1	>10000	211	<5	8	2350	0.03	<10	46
875342	Rock	237	>10	3523	<1	0.02	3	3693	139	<5	9	868	0.01	<10	17
875343	Rock	278	9.99	3049	<1	0.02	11	>10000	128	<5	10	1460	0.02	<10	43
875344	Rock	272	8.13	3530	<1	0.02	<1	>10000	348	<5	9	2058	0.08	<10	125
875345	Rock	371	8.72	4512	<1	0.03	<1	>10000	431	<5	14	3546	0.05	<10	71
875346	Rock	297	8.15	2529	<1	0.03	<1	>10000	320	<5	10	949	0.06	<10	116
875347	Rock	484	9.32	3068	<1	0.02	<1	>10000	238	<5	7	1564	0.05	<10	71

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		La	Mg	Mn	Mo	Na	Ni	P	Pb	Sb	Sc Sc	Sr	Ti	TI	V
C1-	C1-	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR
Sample Description	Sample Type	ppm 10	% 0.01	ppm 5	ppm	% 0.01	ppm	ppm 10	ppm 2	ppm 5	ppm	ppm	% 0.01	ppm 10	ppm
875348	Rock	336	8.29	3039	<1	0.01	<1	>10000	283	<5	8	1563	0.01	<10	96
875349	Rock	246	8.17	3591	<1	0.02	<1	>10000	172	<5	11	1884	0.03	<10	34
912500 Dup	Rock	255	8.21	3516	<1	0.03	<1	>10000	191	<5	12	1910	0.02	<10	35
912501	Rock	373	8.13	2600	<1	0.03	<1	>10000	471	<5	21	879	0.09	<10	163
912502	Rock	321	7.84	3995	<1	0.03	<1	>10000	301	<5	17	3266	0.08	<10	121
912503	Rock	326	5.83	3575	<1	0.04	<1	>10000	345	<5	14	3073	0.21	<10	290
912504	Rock	31	0.95	816	<1	2.46	4	2091	40	<5	6	703	0.25	<10	12
912505	Rock	349	6.85	2495	<1	0.04	<1	>10000	293	<5	8	2202	0.10	<10	152
912506	Rock	259	9.31	4770	<1	0.03	<1	>10000	184	<5	8	3450	0.02	<10	19
912507	Rock	287	9.67	3671	<1	0.03	<1	>10000	342	<5	7	1849	0.03	<10	42
912508	Rock	292	8.72	4740	<1	0.03	<1	>10000	547	<5	6	3679	0.03	<10	35
912509	Rock	258	8.82	4882	<1	0.02	<1	>10000	226	<5	6	3481	0.02	<10	21
912510	Pulp	290	7.22	3836	<1	0.04	<1	>10000	373	<5	6	1932	0.16	<10	188
912511	Rock	248	9.73	5235	<1	0.02	<1	>10000	153	<5	6	3293	0.01	<10	20
912512	Rock	295	9.74	5839	<1	0.02	<1	>10000	120	<5	7	3286	< 0.01	<10	15
912513	Rock	282	9.40	6113	<1	0.02	<1	>10000	211	<5	7	3686	0.01	<10	11
912514	Rock	428	7.11	3432	<1	0.04	<1	>10000	659	<5	7	2767	0.06	<10	64
912515	Rock	406	7.41	4231	<1	0.03	<1	>10000	57	<5	6	2854	0.04	<10	53
912517	Rock	339	8.30	5071	<1	0.03	<1	>10000	310	<5	6	3482	0.08	<10	84
912518	Rock	258	9.37	6159	<1	0.02	<1	>10000	118	<5	6	3284	0.02	<10	16
912519	Rock	1134	9.50	4912	1	0.02	<1	>10000	86	<5	9	1361	< 0.01	<10	27
912520	Rock	1351	9.39	5659 4299	<1	0.02	<1	>10000	84	<5	9	1602	< 0.01	<10	27 44
912521 912522	Rock Rock	516 357	8.95 8.94	5130	<1 <1	0.02 0.02	<1 <1	>10000 >10000	174 200	<5 <5	7	1469 2219	<0.01 <0.01	<10 <10	31
912523	Rock	1600	10.00	7144	<1	0.02	<1	>10000	191	<5	8	3136	0.01	<10	20
912524	Rock	2138	8.78	6111	<1	0.02	<1	>10000	332	<5	8	2722	0.02	<10	25
912525	Rock	3442	9.83	7427	3	0.02	<1	7483	30	<5	10	2681	< 0.02	<10	23
912526	Rock	308	7.87	5944	<1	0.02	<1	>10000	81	<5	7	3032	< 0.01	<10	16
912527	Rock	500	5.75	5737	3	0.03	<1	>10000	36	<5	4	2973	0.03	<10	73
912528	Rock	265	8.33	6282	<1	0.02	<1	>10000	109	<5	7	3670	< 0.01	<10	9
912529	Rock	273	7.26	5067	<1	0.11	<1	>10000	165	<5	11	3139	0.02	<10	25
912530	Rock	333	7.81	3187	<1	0.06	<1	>10000	308	<5	7	2423	0.06	<10	70
912531	Rock	353	7.01	3758	<1	0.27	<1	>10000	72	<5	10	1892	0.04	<10	40
912532	Rock	281	8.03	3906	<1	0.60	12	>10000	85	<5	12	2257	0.24	<10	50
912533	Rock	263	9.86	4689	1	0.02	<1	>10000	143	<5	5	3058	0.01	<10	13
912534	Rock	757	7.92	4389	<1	0.03	<1	>10000	90	<5	6	2705	0.02	<10	37
912535	Rock	728	7.13	4354	<1	0.04	<1	>10000	144	<5	6	2804	0.04	<10	71

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		W	Zn	Zr	Ce	Dy	Er	Eu	Gd	Hf	Но	La	Lu	Nd	Pr
0 1	G 1	30-4A-TR	30-4A-TR		REE-LB-MS		REE-LB-MS		REE-LB-MS			REE-LB-MS	REE-LB-MS		
Sample Description	Sample Type	ppm 10	ppm 2	ppm 1	ppm 0.1	ppm 0.1	ppm 0.1	ppm 0.1	ppm 0.1	ppm 0.1	ppm 0.1	ppm 0.1	ppm 0.1	ppm 0.1	ppm 0.1
875308	Rock	<10	22	36	522.8	15.6	5.9	9.6	37.8	0.1	2.3	244.2	0.1	220.4	59.9
875309	Rock	<10	25	54	>1000	19.3	7.5	13.0	59.0	1.6		654.6	0.3	373.7	109.9
875310	Pulp	<10	12	46	919.8	24.7	10.5	15.1	61.2	0.6	3.8	409.0	0.9	325.0	94.3
875311	Rock	<10	47	53	529.9	11.5	4.3	8.2	33.3	1.1	1.6	234.9	0.2	210.1	55.3
875312	Rock	<10	23	57	559.5	13.6	4.8	9.7	38.0	0.8	1.8	255.1	0.2	245.6	62.0
875313	Rock	<10	26	55	436.8	11.6	4.3	8.2	30.8	1.4	1.6	191.4	0.2	193.1	50.4
875314	Rock	<10	18	47	735.2	16.2	6.2	11.8	48.9	1.1	2.3	344.8	0.3	280.2	76.6
875315	Rock	<10	16	52	604.0	21.7	8.3	12.9	47.3	0.6	3.4	264.0	0.4	251.9	68.4
875316	Rock	<10	35	117	587.0	18.1	6.7	12.0	42.6	4.9	2.7	248.1	0.4	244.5	64.1
875317	Rock	<10	22	55	835.7	22.1	7.7	18.6	65.7	1.1	3.0	454.4	0.4	316.9	89.1
875318	Rock	<10	19	50	555.7	18.0	6.5	11.1	43.4	0.8	2.6	237.9	0.4	236.0	63.0
875319	Rock	<10	17	57	447.0	16.8	6.2	9.8	37.9	0.9	2.4	197.3	0.4	203.6	52.3
875320 Dup	Rock	<10	16	53	451.8	16.3	6.0	10.0	36.5	1.0	2.4	200.1	0.4	209.5	53.7
875321	Rock	<10	20	40	389.0	13.6	5.3	7.5	29.4	0.6	2.1	185.0	0.3	158.7	43.0
875322	Rock	<10	15	56	478.3	22.5	9.0	11.1	42.1	0.9	3.7	220.4	0.6	212.8	56.9
875323	Rock	<10	17	43	573.2	37.5	14.8	15.6	56.9	0.7	6.1	248.3	0.9	238.5	68.3
875324	Rock	<10	18	41	518.0	24.3	9.5	11.2	44.0	1.0	3.9	251.8	0.5	207.9	55.9
875325	Rock	<10	18	58	>1000	32.1	12.5	20.8	85.7	1.3		829.6	0.8	463.8	137.4
875326	Rock	<10	31	81	868.7	51.5	21.5	19.3	74.8	1.5	8.5	408.0	1.5	334.6	90.1
875327	Rock	<10	86	67	561.3	21.9	8.8	11.0	41.7	0.9	3.3	292.5	0.6	222.4	61.6
875328	Rock	<10	32	51	508.9	24.7	10.1	10.0	41.3	1.2		246.5	0.7	215.0	56.1
875329	Rock	<10	27	63	794.4	29.0	11.2	15.3	55.2	1.2		356.4	0.7	301.8	84.7
875330	Pulp	<10	23	55	894.0	20.9	8.2	14.0	56.4	1.1	3.1	428.1	0.6	327.9	91.9
875331	Rock	<10	21	66	919.5	41.9	16.8	20.8	72.9	1.4	6.6	408.6	1.1	361.3	99.3
875332	Rock	<10	21	59	>1000	26.1	10.2	15.5	67.8	0.8	3.8	493.2	0.6	393.0	113.4
875333	Rock	<10	20	69	898.0	30.8	13.0	16.4	63.3	0.9	4.7	387.6	0.8	347.9	100.3
875334	Rock	<10	22	55	>1000	34.4	14.2	21.8	84.4	0.9	5.0	643.8	0.8	490.6	146.4
875335	Rock	<10	14	66	>1000	38.3	15.6	21.1	86.1	2.2		603.1	1.1	503.0	139.4
875336	Rock	<10	101	196	>1000	27.7	10.5	20.5	81.2	2.9	3.6	640.9	0.6	498.7	141.4
875337	Rock	<10	29	102	>1000	29.4	12.1	19.9	69.9	10.3	4.4	450.3	0.9	406.2	110.6
875338	Rock	<10	17	84	812.0	26.3	12.1	13.6	53.7	1.3	4.4	357.4	0.8	325.3	86.7
875339	Rock	<10	13	46	976.4	25.1	10.8	13.7	58.4	0.7	3.9	462.6	0.9	353.6	106.4
875340 Dup 875341	Rock Rock	<10 <10	13 15	45 68	990.8 966.3	26.0 25.1	11.0 11.3	13.5 13.8	57.4 55.8	0.9 1.6	3.9 3.9	464.0 445.3	0.8 0.8	373.7 365.3	105.2 98.5
875341 875342	Rock	<10	13	48	660.5	16.7	7.6	9.7	38.7	1.6	2.7	311.6	0.8	247.0	69.5
875342 875343	Rock	<10	13	48	788.9	20.7	9.1	11.8	38.7 47.6	1.8	3.4	363.5	0.8	304.6	82.4
875343 875344	Rock	<10 <10	17	112	833.5	30.5	13.2	11.8	57.4	6.5	5.1	354.8	1.0	311.2	82.4 88.2
875344 875345	Rock	<10	20	52	997.4	26.0	11.2	18.2	58.9	2.0		474.3	0.7	364.0	107.0
875346 875346	Rock	<10	13	32 88	997.4 828.3	32.6	13.5	22.3	68.0	5.5		391.1	0.7	346.4	96.5
875347	Rock	<10	12	55	>1000	26.7	11.0	16.7	64.1	1.2		640.7	0.9	402.4	121.3
013341	NOCK	<10	12	33	>1000	20.7	11.0	10.7	04.1	1.2	4.0	040./	0.8	404.4	141.3

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		W	Zn	Zr	Ce	Dy	Er	Eu	Gd	Hf	Но	La	Lu	Nd	
		30-4A-TR	30-4A-TR	30-4A-TR	REE-LB-MS	REE-LB-MS	REE-LB-MS	REE-LB-MS			REE-LB-MS	REE-LB-MS			
Sample	Sample	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Description	Type	10	2	1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
875348	Rock	<10	15	74	>1000	27.0	11.9	16.5	58.5	2.6	4.3	483.7	0.9	335.5	
875349	Rock	<10	18	65	878.4	29.5	13.7	15.8	65.1	2.2	4.7	413.3	1.1	377.6	
912500 Dup	Rock	<10	18	61	921.3	29.8	14.1	15.5	63.7	2.4	5.1	432.1	1.0	364.2	
912501	Rock	<10	18	86	>1000	36.0	15.7	20.8	74.4	3.2	5.7	487.1	1.2	449.9	
912502	Rock	<10	23	72	914.2	22.4	8.9	16.6	58.7	2.8	3.2	422.5	0.6	367.0	
912503 912504	Rock	<10	56	169	>1000 98.4	21.1 3.7	8.6 2.1	17.3	61.2 7.4	10.7 2.4	3.0 0.7	453.8 49.3	0.5	420.6	
912504	Rock	<10	61	103	>1000	27.7	11.0	2.1		2.4 4.4	3.9	49.3 516.5	0.3	41.4 464.5	
912506	Rock Rock	<10 <10	30 23	107 69	735.5	33.3	14.9	18.9 14.0	73.1 54.0	1.6	5.5	342.4	0.8 0.9	311.1	134.6 89.3
912507	Rock	<10	18	90	943.1	34.2	15.9	19.5	65.5	4.1	5.7	433.3	1.1	364.9	
912508	Rock	<10	23	81	863.7	29.3	13.9	17.9	62.0	2.0	4.5	397.7	0.9	380.0	
912509	Rock	<10	32	69	760.8	28.5	13.0	14.0	54.4	1.6	4.3	340.0	0.9	337.4	
912510	Pulp	<10	55	140	866.7	21.5	8.7	15.1	55.4	10.3	3.1	400.6	0.6	352.8	
912511	Rock	<10	19	70	675.4	22.6	9.8	11.9	45.9	3.0	3.6	313.2	0.7	279.5	
912512	Rock	<10	22	62	821.1	19.1	8.5	10.7	46.0	1.4	3.1	381.4	0.5	322.2	
912513	Rock	<10	20	58	727.6	29.7	14.2	12.7	50.7	0.8	5.2	342.7	0.9	298.2	
912514	Rock	<10	14	60	>1000	44.3	17.5	28.1	92.1	3.6	6.4	654.9	1.0	554.1	161.7
912515	Rock	<10	19	90	>1000	44.5	21.0	21.0	80.2	8.0	7.6	511.9	1.3	460.9	
912517	Rock	<10	18	91	>1000	34.5	15.1	19.5	71.2	9.0	5.6	458.5	0.9	408.6	117.8
912518	Rock	<10	24	70	645.0	28.5	13.2	12.2	49.4	2.3	4.9	323.1	0.8	282.8	78.9
912519	Rock	<10	20	98	>1000	34.5	14.9	28.1	132.1	2.3	4.5	>1000	0.8	>1000	318.8
912520	Rock	<10	21	95	>1000	33.7	15.1	27.3	136.2	2.5	4.6	>1000	0.8	>1000	324.3
912521	Rock	<10	14	73	>1000	29.2	13.1	17.9	71.6	1.7	4.6	673.2	0.9	494.6	150.7
912522	Rock	<10	15	84	978.6	30.7	14.3	16.2	62.1	2.8	5.1	513.2	0.9	348.3	105.3
912523	Rock	<10	21	90	>1000	29.9	14.0	19.2	91.5	1.7	4.7	>1000	0.8	600.0	213.1
912524	Rock	<10	19	98	>1000	42.3	19.9	29.6	131.2	2.5	6.6	>1000	1.1	954.1	306.9
912525	Rock	<10	23	81	>1000	25.4	12.8	23.9	134.2	1.4	3.5	>1000	0.6	>1000	380.7
912526	Rock	<10	20	70	778.2	19.9	9.7	10.9	43.9	3.5	3.4	413.1	0.6	272.4	
912527	Rock	<10	40	76	>1000	18.1	7.9	13.2	51.8	7.3	2.8	643.3	0.5	329.9	
912528	Rock	<10	511	109	705.8	13.3	5.7	8.6	32.8	0.7	2.0	361.4	0.4	206.4	60.1
912529	Rock	<10	36	82	745.7	16.2	7.3	10.7	39.0	1.0	2.6	347.5	0.5	238.7	70.6
912530	Rock	<10	20	59	944.2	23.0	9.7	13.7	53.9	0.7	3.5	425.9	0.8	310.3	
912531	Rock	<10	35	80	847.5	19.7	8.4	12.0	46.5	3.1	3.0	413.1	0.6	281.2	
912532	Rock	<10	91	135	659.3	10.5	4.6	7.5	31.7	2.6	1.5	329.0	0.3	210.0	
912533	Rock	<10	23	58	684.9	14.3	6.3	9.2	34.5	0.8	2.2	329.1	0.4	223.0	
912534	Rock	<10	28	71	>1000	17.8	7.4	12.6	59.5	2.2	2.5	975.5	0.4	367.3	
912535	Rock	<10	41	95	>1000	23.3	10.5	15.2	67.4	6.5	3.6	975.4	0.7	466.5	146.1

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		Sm	Tb	Tm	Yb	Y	Ta	Th	U	
			REE-LB-MS				Ta-4A-LL-MS		U-4A-LL-MS	
Sample	Sample	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Description	Туре	0.1	0.1	0.1	0.1	0.10	0.05	0.20	0.10	
875308	Rock	36.2	3.6	0.6	2.9	57.0	2.84	102.68	0.99	
875309	Rock	53.2	5.0	0.7	3.4	70.1	2.85	240.71	2.11	
875310	Pulp	55.5	5.7	1.2	6.4	102.1	27.00	210.52	2.60	
875311	Rock	31.7	2.9	0.4	2.0	44.3	2.66	65.98	1.04	
875312	Rock	37.2	3.4	0.4	2.2	49.6	3.36	74.10	0.57	
875313	Rock	29.8	2.9	0.4	2.0	43.2	3.34	68.94	0.83	
875314	Rock	44.9	4.2	0.6	2.9	65.3	2.62	111.17	1.31	
875315	Rock	43.4	5.0	0.8	4.1	93.0	23.43	207.38	4.89	
875316	Rock	42.0	4.2	0.7	3.5	76.3	39.85	239.84	9.57	
875317	Rock	68.2	5.5	0.7	3.7	83.3	3.34	271.99	2.27	
875318	Rock	40.4	4.1	0.6	3.2	72.0	4.82	129.43	1.47	
875319	Rock	35.2	3.7	0.6	3.2	64.6	7.48	129.05	2.95	
875320 Dup	Rock	35.1	3.8	0.6	3.2	66.9	7.52	129.47	2.97	
875321	Rock	26.4	3.0	0.5	2.5	59.2	3.63	108.82	1.88	
875322	Rock	36.7	4.8	1.0	5.2	101.4	33.32	201.22	12.90	
875323	Rock	50.4	7.1	1.6	8.1	160.2	4.46	363.61	6.99	
875324	Rock	36.9	4.9	1.0	4.7	107.0	1.98	244.87	3.36	
875325	Rock	87.4	7.8	1.2	6.4	124.1	7.66	433.63	4.92	
875326	Rock	59.5	9.6	2.5	11.9	242.7	38.37	492.74	19.61	
875327	Rock	36.6	4.4	1.0	5.2	91.2	50.59	261.84	21.77	
875328	Rock	36.0	4.9	1.2	6.1	113.3	8.38	207.09	3.44	
875329	Rock	50.3	5.9	1.2	6.2	121.4	14.14	280.09	8.42	
875330	Pulp	51.7	5.2	0.8	4.8	82.5	23.73	166.22	11.14	
875331	Rock	61.7	8.1	1.8	9.4	192.5	16.63	370.69	12.93	
875332	Rock	60.8	6.3	1.0	5.4	115.8	4.65	200.27	4.13	
875333 875334	Rock Rock	57.4 76.0	6.6 7.6	1.3 1.4	6.8 7.1	124.6 149.3	14.24 10.81	273.11 200.63	5.91 6.99	
875335	Rock	82.7	8.4	1.4	9.3	154.6	2.82	259.05	6.95	
875336	Rock	76.8	7.1	0.9	5.3	102.1	0.13	31.32	3.78	
875337	Rock	65.3	6.8	1.3	7.2	123.2	0.13	126.04	3.67	
875338	Rock	49.0	5.5	1.3	7.2	117.3	2.85	227.87	7.29	
875339	Rock	54.0	5.5	1.2	6.4	104.4	0.82	145.26	4.01	
875340 Dup	Rock	54.2	5.5	1.2	6.7	109.5	0.73	132.11	3.84	
875341	Rock	52.2	5.2	1.2	6.6	115.1	1.88	237.61	8.15	
875342	Rock	36.3	3.8	0.8	4.7	75.6	0.97	71.31	1.99	
875343	Rock	43.7	4.6	1.0	5.4	91.5	0.53	100.48	2.50	
875344	Rock	51.3	6.5	1.4	7.8	141.2	7.58	292.82	8.91	
875345	Rock	54.5	5.7	1.1	5.8	111.4	3.30	192.69	5.28	
875346	Rock	69.2	7.1	1.5	8.0	141.6	6.59	240.37	8.22	
875347	Rock	55.9	5.9	1.4	6.8	107.8	2.25	118.99	3.17	

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		Sm	Tb	Tm	Yb	Y	Ta	Th	U
		REE-LB-MS	REE-LB-MS	REE-LB-MS	REE-LB-MS	REE-LB-MS	Ta-4A-LL-MS	Th-4A-LL-MS	U-4A-LL-MS
Sample	Sample	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Description	Type	0.1	0.1	0.1	0.1	0.10	0.05	0.20	0.10
875348	Rock	53.4	5.8	1.3	7.3	126.0	2.41	200.71	8.55
875349	Rock	58.2	6.5	1.6	8.3	124.7	0.84	158.64	9.28
912500 Dup	Rock	56.8	6.4	1.5	8.4	136.8	0.92	162.72	9.34
912501	Rock	70.2	7.8	1.8	10.0	156.9	2.23	288.24	11.75
912502	Rock	53.8	5.3	0.9	4.8	90.9	1.79	127.76	4.89
912503	Rock	57.9	5.6	0.8	4.3	73.1	0.16	73.96	1.87
912504	Rock	6.6	0.8	0.3	1.9	20.5	1.68	12.57	4.83
912505	Rock	71.2	6.8	1.1	5.9	99.6	0.10	95.28	2.04
912506	Rock	50.2	6.4	1.6	7.7	145.9	5.79	326.34	14.10
912507	Rock	61.5	7.1	1.8	9.4	157.9	15.93	318.68	11.46
912508	Rock	58.0	6.3	1.4	7.4	123.0	23.28	335.50	14.56
912509	Rock	50.7	5.6	1.4	6.9	122.0	9.05	241.87	7.68
912510	Pulp	51.0	5.0	0.8	4.8	74.3	35.22	308.75	8.59
912511	Rock	42.5	5.0	1.2	5.5	95.3	18.65	197.57	6.82
912512	Rock	41.2	4.2	0.9	4.5	82.2	2.33	223.82	4.84
912513	Rock	44.2	5.7	1.5	7.8	142.0	5.11	307.50	6.26
912514	Rock	86.9	9.3	1.8	9.4	168.3	16.41	249.61	12.84
912515	Rock	72.8	9.0	2.3	11.9	199.7	0.18	276.86	10.79
912517	Rock	64.8	7.5	1.6	8.2	156.4	10.95	253.71	7.64
912518	Rock	43.4	5.6	1.4	7.0	119.7	4.28	198.32	6.18
912519	Rock	130.3	9.5	1.3	6.8	114.9	2.07	381.21	5.25
912520	Rock	131.2	9.7	1.3	7.0	119.0	2.15	445.55	5.39
912521	Rock	69.7	6.7	1.4	7.0	110.8	6.89	348.23	6.34
912522	Rock	55.0	6.7	1.6	7.8	128.2	6.07	398.03	8.29
912523	Rock	68.2	7.0	1.4	6.8	124.1	2.41	314.12	7.98
912524	Rock	101.2	10.0	1.8	9.5	172.5	28.35	294.43	17.12
912525	Rock	96.7	7.8	0.9	4.8	90.3	0.55	194.22	2.97
912526	Rock	38.7	4.4	1.1	5.6	87.2	2.80	202.83	5.11
912527	Rock	46.0	4.3	0.8	4.0	80.0	0.14	100.06	9.48
912528	Rock	30.2	3.1	0.6	3.1	61.8	10.86	163.85	4.61
912529	Rock	36.8	3.9	0.8	3.9	73.8	3.88	159.92	5.27
			5.3	1.1		73.8 96.5	3.86 45.85	209.22	2.30
912530	Rock	49.3			6.1				
912531	Rock	43.9	4.6	0.9	4.9	85.6	6.73	115.52	3.45
912532	Rock	28.3	2.6	0.5	2.8	43.7	5.22	56.82	3.58
912533	Rock	32.8	3.3	0.7	3.5	59.1	20.08	178.06	7.67
912534	Rock	46.5	4.5	0.7	3.7	68.7	21.36	189.40	41.16
912535	Rock	59.4	5.8	1.0	5.8	99.2	4.44	205.40	13.01

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		Nb2O5	A12O3	BaO	CaO	Cr2O3	Th	Fe2O3	K2O	LOI	MgO	MnO	Na2O	P2O5	SiO2
		Nb2O5-AD3-OR-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP	Th-4A-LL-ICP	WR-FS-ICP							
Sample	Sample	%	%	%	%	%	ppm	%	%	%	%	%	%	%	%
Description	Type	0.01	0.01	0.01	0.01	0.01	4	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
875308	Rock						102.68								
875308 Dup							106.05								
QCV1011-00538-0002-BLK							<4								
875326	Rock						492.74								
875326 Dup							496.18								
QCV1011-00538-0005-BLK							<4								
875344	Rock						292.82								
875344 Dup							303.21								
QCV1011-00538-0008-BLK							<4								
912512	Rock						223.82								
912512 Dup							194.11								
QCV1011-00538-0011-BLK							<4								
912531	Rock						115.52								
912531 Dup							115.47								
QCV1011-00538-0014-BLK							<4								
875308	Rock	0.18													
875308 Dup		0.17													
QCV1011-00539-0002-BLK		< 0.01													
STD-OKA-1 expected		0.53													
STD-OKA-1 result		0.52													
875326	Rock	0.36													
875326 Dup		0.37													
QCV1011-00539-0005-BLK		<0.01													
STD-OKA-1 expected		0.53													
STD-OKA-1 result	ъ.	0.52													
875344 875344 Davis	Rock	0.76													
875344 Dup QCV1011-00539-0008-BLK		0.75													
STD-OKA-1 expected		<0.01 0.53													
STD-OKA-1 expected STD-OKA-1 result		0.53													
912512	Rock	0.33													
912512 912512 Dup	ROCK	0.23													
QCV1011-00539-0011-BLK		<0.01													
912531	Rock	0.14													
912531 Dup	NOCK	0.14													
QCV1011-00539-0014-BLK		< 0.01													
STD-OKA-1 expected		0.53													
STD-OKA-1 expected STD-OKA-1 result		0.53													
875308	Rock	0.55	0.10	< 0.01	32.68	< 0.01		4.29	0.04	40.67	18.16	0.75	0.05	3.62	0.31
875308 Dup	NOCK		0.10	0.01	32.68	0.01		4.29	0.04	40.65	18.18	0.79	0.05	3.63	0.31

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		Nb2O5	A12O3	BaO	CaO	Cr2O3	Th	Fe2O3	K2O	LOI	MgO	MnO	Na2O	P2O5	SiO2
		Nb2O5-AD3-OR-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP	Th-4A-LL-ICP	WR-FS-ICP							
Sample	Sample	%	%	%	%	%	ppm	%	%	%	%	%	%	%	%
Description	Type	0.01	0.01	0.01	0.01	0.01	4	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
QCV1011-00542-0002-BLK			< 0.01	< 0.01	< 0.01	< 0.01		< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
875326	Rock		0.17	0.01	35.44	0.01		5.00	0.10	36.84	15.87	0.65	0.06	6.21	0.25
875326 Dup			0.16	< 0.01	35.99	< 0.01		5.12	0.06	36.86	15.12	0.65	0.05	6.26	0.09
QCV1011-00542-0005-BLK			< 0.01	< 0.01	< 0.01	< 0.01		< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
875344	Rock		0.14	< 0.01	32.49	< 0.01		11.86	0.04	31.28	14.93	0.46	0.04	6.24	0.49
875344 Dup			0.14	< 0.01	32.61	< 0.01		11.87	0.03	30.94	14.96	0.46	0.04	6.24	0.50
QCV1011-00542-0008-BLK			< 0.01	< 0.01	< 0.01	< 0.01		< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
912512	Rock		0.11	< 0.01	33.30	< 0.01		5.51	0.03	39.01	17.89	0.75	0.04	3.37	0.20
912512 Dup			0.11	< 0.01	33.94	< 0.01		5.58	0.02	38.93	17.34	0.77	0.04	3.42	0.19
QCV1011-00542-0011-BLK			< 0.01	< 0.01	< 0.01	< 0.01		< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
912531	Rock		0.88	0.01	33.50	< 0.01		5.59	0.18	32.48	12.88	0.50	0.39	5.99	9.28
912531 Dup			0.86	0.01	32.33	< 0.01		5.34	0.18	32.33	13.82	0.48	0.40	5.86	9.13
QCV1011-00542-0014-BLK			< 0.01	< 0.01	< 0.01	< 0.01		< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
STD-SY-4 expected			20.69		8.05			6.21	1.66	4.56	0.54	0.11	7.10	0.13	49.90
STD-SY-4 result			20.62	0.04	7.71	< 0.01		6.27	1.67	4.48	0.54	0.11	7.10	0.14	50.18

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		TiO2	Total	Ag	Al	As	Ba	Bi	Ca	Cd	Co	Cr	Cu	Fe	K
		WR-FS-ICP	WR-FS-ICP	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR
Sampl	•		%	ppm	%	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%	%
Descriptio 87530		0.01	0.01	0.5 <0.5	0.01	5 <5	10 42	2 <2	>10	0.5 <0.5	3	3	28	0.01 2.69	<0.01
875308 Du				<0.5 <0.5	0.05	<5 <5	42	<2 <2	>10	<0.5 <0.5	3	3	28 27	2.69	<0.01
QCV1011-00540-0002-BL	1			<0.5	< 0.00	<5	<10	<2	< 0.01	<0.5	<1	<1	<1	< 0.01	<0.01
STD-CDN-ME-6 expecte				101.0	<0.01	9	<10	\2	<0.01	<0.5	\1	\1	6130	<0.01	<0.01
STD-CDN-ME-6 resu				97.1	5.94	269	515	<2	1.34	3.2	1	54	5815	6.26	1.16
87532				< 0.5	0.09	13	34	<2	>10	<0.5	7	4	51	3.14	0.01
875326 Du				<0.5	0.09	13	35	<2	>10	<0.5	7	4	54	3.20	0.02
QCV1011-00540-0005-BL	•			< 0.5	< 0.01	<5	<10	<2	< 0.01	< 0.5	<1	<1	<1	< 0.01	< 0.01
STD-CDN-ME-6 expecte	d			101.0									6130		
STD-CDN-ME-6 resu	lt			99.5	5.77	281	466	<2	1.37	4.8	2	53	6017	6.01	1.15
87534	4 Rock			< 0.5	0.07	13	35	<2	>10	< 0.5	15	9	116	7.35	< 0.01
875344 Du	p			< 0.5	0.07	13	33	<2	>10	< 0.5	15	9	114	7.45	< 0.01
QCV1011-00540-0008-BL	K			< 0.5	< 0.01	<5	<10	<2	< 0.01	< 0.5	<1	<1	<1	< 0.01	< 0.01
STD-OREAS-45P-4A expecte	d			0.3		13		0			122	1103	749		
STD-OREAS-45P-4A resu	lt			< 0.5	5.79	72	264	<2	0.25	< 0.5	116	1056	681	>10	0.30
91251				< 0.5	0.06	10	27	<2	>10	< 0.5	9	4	44	3.79	< 0.01
912512 Du	•			< 0.5	0.06	9	26	<2	>10	< 0.5	9	4	40	3.75	< 0.01
QCV1011-00540-0011-BL				< 0.5	< 0.01	<5	<10	<2	< 0.01	< 0.5	<1	<1	<1	< 0.01	< 0.01
STD-CDN-ME-6 expecte				101.0									6130		
STD-CDN-ME-6 resu				95.5	5.91	278	162	<2	1.38	3.4	2	55	6177	6.34	1.16
91253				< 0.5	0.46	9	75	<2	>10	<0.5	9	12	62	3.72	0.12
912531 Du	1			< 0.5	0.46	9	75	<2	>10	< 0.5	9	11	67	3.69	0.12
QCV1011-00540-0014-BL				<0.5	< 0.01	<5 12	<10	<2	< 0.01	< 0.5	<1	<1	<1	< 0.01	< 0.01
STD-OREAS-45P-4A expecte				0.3	6.55	13 67	270	0	0.26	0.5	122	1103	749	. 10	0.20
STD-OREAS-45P-4A resu 87530		0.02	100.71	< 0.5	6.55	6/	270	<2	0.26	< 0.5	110	1061	719	>10	0.30
875308 Du		0.02	100.71												
QCV1011-00542-0002-BL	•	< 0.01	< 0.01												
87532		0.10	100.71												
875326 Du		0.10	100.47												
QCV1011-00542-0005-BL	•	<0.01	< 0.01												
87534		0.19	98.18												
875344 Du		0.19	98.01												
QCV1011-00542-0008-BL	•	< 0.01	< 0.01												
91251	2 Rock	0.03	100.24												
912512 Du	р	0.03	100.37												
QCV1011-00542-0011-BL		< 0.01	< 0.01												
91253	1 Rock	0.12	101.80												
912531 Du	p	0.12	100.87												
QCV1011-00542-0014-BL	K	< 0.01	< 0.01												

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		TiO2	Total	Ag	Al	As	Ba	Bi	Ca	Cd	Co	Cr	Cu	Fe	K
		WR-FS-ICP	WR-FS-ICP	30-4A-TR											
Sample	Sample	%	%	ppm	%	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%	%
Description	Type	0.01	0.01	0.5	0.01	5	10	2	0.01	0.5	1	1	1	0.01	0.01
STD-SY-4 expected		0.29													
STD-SY-4 result		0.30	99.16												

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		La	Mg	Mn	Mo	Na	Ni	P	Pb	Sb	Sc	Sr	Ti	Tl	V
		30-4A-TR													
Sample	Sample	ppm	%	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm
Description	Type	10	0.01	5	1	0.01	1	10	2	5	1	1	0.01	10	1
875308	Rock	190	9.89	5942	<1	0.03	<1	>10000	97	<5	6	4586	< 0.01	<10	7
875308 Dup		199	9.90	5929	1	0.03	<1	>10000	90	<5	6	4602	< 0.01	<10	7
QCV1011-00540-0002-BLK		<10	< 0.01	<5	<1	< 0.01	<1	<10	<2	<5	<1	<1	< 0.01	<10	<1
STD-CDN-ME-6 expected									10200						
STD-CDN-ME-6 result		<10	1.22	2044	25	1.69	26	466	>10000	404	10	182	0.23	<10	31
875326		318	8.64	4963	2	0.03	<1	>10000	171	<5	7	3488	0.02	<10	15
875326 Dup		311	8.23	5080	3	0.03	<1	>10000	169	<5	7	3464	0.02	<10	16
QCV1011-00540-0005-BLK		<10	< 0.01	<5	<1	< 0.01	<1	<10	<2	<5	<1	<1	< 0.01	<10	<1
STD-CDN-ME-6 expected									10200						
STD-CDN-ME-6 result		<10	1.23	2001	26	1.67	27	488	>10000	413	10	187	0.23	<10	33
875344		272	8.13	3530	<1	0.02	<1	>10000	348	<5	9	2058	0.08	<10	125
875344 Dup		271	8.14	3586	<1	0.02	<1	>10000	356	<5	9	2080	0.08	<10	125
QCV1011-00540-0008-BLK		<10	< 0.01	<5	<1	< 0.01	<1	<10	<2	<5	<1	<1	< 0.01	<10	<1
STD-OREAS-45P-4A expected						0.08	385	454	22	1					
STD-OREAS-45P-4A result		10	0.24	1367	<1	0.07	365	491	15	<5	55	34	1.04	<10	175
912512		295	9.74	5839	<1	0.02	<1	>10000	120	<5	7	3286	< 0.01	<10	15
912512 Dup		279	9.44	5808	<1	0.02	<1	>10000	108	<5	6	3244	< 0.01	<10	15
QCV1011-00540-0011-BLK		<10	< 0.01	<5	<1	< 0.01	<1	<10	<2	<5	<1	<1	< 0.01	<10	<1
STD-CDN-ME-6 expected									10200						
STD-CDN-ME-6 result		<10	1.25	2072	26	1.68	27	481	>10000	409	10	189	0.23	<10	34
912531	Rock	353	7.01	3758	<1	0.27	<1	>10000	72	<5	10	1892	0.04	<10	40
912531 Dup		344	7.52	3761	<1	0.27	<1	>10000	69	<5	10	1875	0.04	<10	40
QCV1011-00540-0014-BLK		<10	< 0.01	<5	<1	< 0.01	<1	<10	<2	<5	<1	<1	< 0.01	<10	<1
STD-OREAS-45P-4A expected						0.08	385	454	22	1					
STD-OREAS-45P-4A result		11	0.24	1036	<1	0.07	348	440	22	<5	56	35	1.07	<10	177

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

			W	Zn	Zr	Ce	Dy	Er	Eu	Gd	Hf	Но	La	Lu	Nd	Pr
			30-4A-TR	30-4A-TR		REE-LB-MS	-	REE-LB-MS			REE-LB-MS					
	Sample	Sample	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
	Description	Туре	10	2	1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
	875308	Rock	<10	22	36											
	875308 Dup		<10	21	35											
	QCV1011-00540-0002-BLK		<10	<2	<1											
S	TD-CDN-ME-6 expected			5170												
	STD-CDN-ME-6 result		<10	5248	135											
	875326	Rock	<10	31	81											
	875326 Dup		<10	32	89											
	QCV1011-00540-0005-BLK		<10	<2	<1											
S	TD-CDN-ME-6 expected			5170												
	STD-CDN-ME-6 result		<10	5092	132											
	875344	Rock	<10	17	112											
	875344 Dup		<10	19	104											
	QCV1011-00540-0008-BLK		<10	<2	<1											
	OREAS-45P-4A expected			142												
ST	D-OREAS-45P-4A result		<10	143	387											
	912512	Rock	<10	22	62											
	912512 Dup		<10	20	55											
	QCV1011-00540-0011-BLK		<10	<2	<1											
S	TD-CDN-ME-6 expected			5170												
	STD-CDN-ME-6 result		<10	5256	136											
	912531	Rock	<10	35	80											
	912531 Dup		<10	34	83											
CTD	QCV1011-00540-0014-BLK		<10	<2	<1											
	OREAS-45P-4A expected TD-OREAS-45P-4A result		<10	142 140	393											
31	QCV1011-00543-0001-BLK		<10	140	393	< 0.1	< 0.1	< 0.1	<0.1	<0.1	< 0.1	< 0.1	<0.1	< 0.1	< 0.1	-0.1
	875308	Rock				522.8	15.6	5.9	9.6	37.8	<0.1 0.9	2.3	244.2	0.1	220.4	<0.1 59.9
	875308 Dup	ROCK				530.2	14.9	5.7	8.8	35.7	0.9	2.3	247.6	0.3	208.8	55.5
	875326 875326	Rock				868.7	51.5	21.5	19.3	74.8	1.5	8.5	408.0	1.5	334.6	90.1
	875326 Dup	Rock				837.3	50.6	21.2	19.0	74.7	1.4	8.4	388.9	1.3	334.4	92.0
	875344	Rock				833.5	30.5	13.2	16.1	57.4	6.5	5.1	354.8	1.0	311.2	88.2
	875344 Dup	Rock				805.5	31.7	13.9	16.3	59.2	6.7	5.2	356.1	1.0	337.0	95.5
	912512	Rock				821.1	19.1	8.5	10.7	46.0	1.4	3.1	381.4	0.5	322.2	90.8
	912512 Dup	Hoon				816.9	19.3	8.8	10.4	45.7	1.3	3.1	384.5	0.5	294.9	92.1
	912531	Rock				847.5	19.7	8.4	12.0	46.5	3.1	3.0	413.1	0.6	281.2	81.1
	912531 Dup					822.2	21.0	9.1	13.1	50.1	3.2	3.2	399.9	0.6	289.8	84.5
	QCV1011-00543-0011-BLK					< 0.1	<0.1	<0.1	<0.1	<0.1	<0.1	< 0.1	< 0.1	<0.1	<0.1	<0.1
	STD-SY-4 expected					122.0	18.2	14.2	2.0	14.0	10.6	4.3	58.0	2.1	57.0	15.0
	STD-SY-4 result					124.0	16.9	13.2	1.8	15.3	10.7	3.9	56.6	1.9	52.4	14.2

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		Sm	Tb	Tm	Yb	Y	Ta	Th	U	
		REE-LB-MS	REE-LB-MS	REE-LB-MS	REE-LB-MS	REE-LB-MS	Ta-4A-LL-MS	Th-4A-LL-MS [U-4A-LL-MS	
Sample	Sample	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Description	Type	0.1	0.1	0.1	0.1	0.10	0.05	0.20	0.10	
QCV1011-00543-0001-BLK		< 0.1	< 0.1	< 0.1	< 0.1	< 0.10				
875308	Rock	36.2	3.6	0.6	2.9	57.0				
875308 Dup		33.2	3.4	0.6	2.8	60.9				
875326	Rock	59.5	9.6	2.5	11.9	242.7				
875326 Dup		59.2	9.9	2.3	11.7	232.0				
875344	Rock	51.3	6.5	1.4	7.8	141.2				
875344 Dup		53.5	6.4	1.5	8.3	136.9				
912512	Rock	41.2	4.2	0.9	4.5	82.2				
912512 Dup		42.8	4.2	0.9	4.7	82.7				
912531	Rock	43.9	4.6	0.9	4.9	85.6				
912531 Dup		46.7	4.7	0.9	5.2	85.6				
QCV1011-00543-0011-BLK		< 0.1	< 0.1	< 0.1	< 0.1	< 0.10				
STD-SY-4 expected		12.7	2.6	2.3	14.8	119.0				
STD-SY-4 result		11.6	2.5	2.1	13.5	119.3				
875308	Rock						2.84	102.68	0.99	
875308 Dup							2.57	106.05	1.13	
QCV1105-00530-0002-BLK							< 0.05	< 0.20	< 0.10	
875326	Rock						38.37	492.74	19.61	
875326 Dup							42.01	496.18	20.63	
QCV1105-00530-0005-BLK							< 0.05	< 0.20	< 0.10	
875344	Rock						7.58	292.82	8.91	
875344 Dup							8.08	303.21	9.26	
QCV1105-00530-0008-BLK							< 0.05	< 0.20	< 0.10	
912512	Rock						2.33	223.82	4.84	
912512 Dup							2.60	194.11	4.66	
QCV1105-00530-0011-BLK							< 0.05	< 0.20	< 0.10	
912531	Rock						6.73	115.52	3.45	
912531 Dup							6.89	115.47	3.54	
QCV1105-00530-0014-BLK							< 0.05	< 0.20	< 0.10	

Certificate of Analysis

Inspectorate Exploration & Mining Services Ltd. #200 - 11620 Horseshoe Way

Date Received: 11/17/2010

Date Completed: 05/06/2011

Invoice:

Richmond, British Columbia V7A 4V5 Canada

Phone: 604-272-7818

Distribution List

Attention: Eric Titley

Suite 1020-800 West Pender St.

Vancouver, BC V6C 2V6

EMail: erictitley@hdimining.com

Attention: Jeremy Crozier

EMail: jeremycrozier@hdimining.com

Attention: T.Kodata

EMail: tkodata@hdimining.com

Submitted By: Aley Corporation

Suite 1020-800 West Pender St.

Vancouver, BC V6C 2V6

Attention: Eric Titley

Project: Aley 2010 Project

Purchase Order: ALY 0002

Description: ALEY 2010-031

Location	Samples	Type	Preparation Description
Vancouver, BC	4	Pulp	SP-PU/Pulp Handling, submitted pulps
Vancouver, BC	66	Rock	SP-RX-2K/Rock/Chips/Drill Core

Location	Method	Description
Vancouver, BC	Ta-4A-LL-MS	Tantalum, 4 Acid, ICP
Vancouver, BC	REE-LB-MS	REE Group by ICP-MS
Vancouver, BC	U-4A-LL-MS	Uraium, 4 Acid, Low Level
Vancouver, BC	Nb2O5-AD3-OR-ICP	Niobium by multi-acid digestion, ICP
Vancouver, BC	Th-4A-LL-MS	Thorium, 4 Acid, Low Level
Vancouver, BC	WR-FS-ICP	Whole Rock, Lithium Borate Fusion, ICP
Vancouver, BC	30-4A-TR	30 Element, 4 Acid, ICP, Trace Level

Submittal Information

Ta, Th, and U results shown have been revised with accurate detection limits.

The results of this assay were based solely upon the content of the sample submitted. Any decision to invest should be made only after the potential investment value of the claim or deposit has been determined based on the results of assays of multiple samples of geologic materials collected by the prospective investor or by a qualified person selected by him and based on an evaluation of all engineering data which is available concerning any proposed project. For our complete terms and conditions please see our website at www.inspectorate.com.

By

Mike Caron, Lab Manager

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		Nb2O5	Al2O3	BaO	CaO	Cr2O3	Fe2O3	K2O	LOI	MgO	MnO	Na2O	P2O5	SiO2	TiO2
		Nb2O5-AD3-OR-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP
Sample	Sample	%	%	%	%	%	%	%	%	%	%	%	%	%	%
Description	Туре	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
912606 912607	Rock Rock	0.40 0.17	0.08 0.10	<0.01 <0.01	35.86 32.40	<0.01 <0.01	4.42 4.22	0.02 0.03	39.76 42.09	15.25 16.86	0.56 0.67	0.03 0.04	4.55 2.57	0.69 0.46	0.04 0.03
912607					34.94	<0.01 0.01					0.67				
912609	Rock Rock	0.28 0.25	0.27 0.10	<0.01 <0.01	34.47	< 0.01	5.47 4.68	0.10 0.05	39.77 40.63	14.53 14.85	0.76	0.04 0.03	4.15 3.55	1.19 1.06	0.06 0.04
912610	Pulp	0.23	0.10	<0.01	34.47	<0.01	5.61	0.05	38.85	13.80	0.70	0.03	4.24	1.45	0.04
912611	Rock	0.44	0.20	< 0.01	35.69	< 0.01	4.74	0.05	40.74	14.96	0.53	0.03	3.67	0.54	0.17
912612	Rock	1.69	0.16	0.01	22.75	< 0.01	45.42	0.03	14.09	5.20	0.61	0.03	7.57	3.53	1.13
912613	Rock	0.67	0.51	< 0.03	27.53	< 0.01	24.33	0.28	27.60	11.60	0.40	0.07	5.54	2.71	0.64
912614	Rock	< 0.01	15.46	0.01	4.36	0.01	3.84	3.17	1.30	1.60	0.33	3.21	0.30	66.07	0.04
912615	Rock	0.50	0.20	< 0.12	34.03	< 0.03	6.25	0.06	37.78	14.33	0.12	0.05	5.38	0.84	0.48
912616	Rock	0.81	0.29	< 0.01	33.71	< 0.01	11.79	0.16	31.32	12.99	0.71	0.06	7.62	1.70	0.12
912617	Rock	1.57	0.29	0.01	31.08	< 0.01	23.77	0.10	21.71	7.64	0.40	0.07	10.60	2.49	0.33
912618	Rock	0.45	0.10	< 0.01	31.74	< 0.01	9.50	0.01	36.67	14.85	0.58	0.04	4.82	1.72	0.09
912619	Rock	0.20	0.07	< 0.01	33.16	< 0.01	4.63	0.01	41.01	14.56	0.69	0.04	3.43	1.07	0.02
912620 Dup	Rock	0.19	0.07	< 0.01	33.20	< 0.01	4.41	< 0.01	41.30	14.79	0.66	0.04	3.37	0.92	0.02
912621	Rock	0.34	0.09	< 0.01	34.44	< 0.01	4.01	< 0.01	39.89	15.02	0.57	0.04	4.51	0.58	0.03
912622	Rock	0.19	0.05	< 0.01	33.65	< 0.01	3.87	< 0.01	41.71	16.33	0.71	0.03	3.03	0.40	0.02
912623	Rock	0.19	0.04	< 0.01	32.58	< 0.01	3.79	< 0.01	42.11	16.02	0.76	0.03	2.70	0.61	0.01
912624	Rock	0.16	0.05	< 0.01	33.94	< 0.01	3.61	< 0.01	41.80	15.00	0.77	0.03	3.16	0.44	0.01
912625	Rock	< 0.01	0.08	0.01	33.47	0.02	3.14	0.08	43.99	16.37	0.78	0.05	1.62	< 0.01	0.01
912626	Rock	0.11	0.12	0.01	34.68	0.01	3.29	0.05	41.43	14.43	0.73	0.05	3.74	0.14	0.01
912627	Rock	0.40	0.10	< 0.01	33.29	0.01	6.00	0.04	39.62	14.42	0.72	0.04	3.98	0.22	0.05
912628	Rock	0.42	0.09	< 0.01	34.85	< 0.01	4.46	0.02	37.93	14.87	0.66	0.04	5.94	0.33	0.03
912629	Rock	0.34	0.34	< 0.01	33.57	< 0.01	4.99	0.04	38.10	15.05	0.67	0.04	4.92	0.70	0.03
912630	Pulp	0.70	0.16	0.02	36.32	< 0.01	4.68	0.04	37.98	12.42	0.40	0.08	3.69	3.00	0.12
912631	Rock	0.36	0.41	< 0.01	34.47	< 0.01	4.69	0.01	36.15	14.23	0.68	0.04	6.82	0.89	0.06
912632	Rock	0.46	0.15	< 0.01	34.96	< 0.01	5.43	< 0.01	37.97	13.38	0.73	0.04	5.37	0.75	0.04
912633	Rock	0.48	0.18	< 0.01	35.02	< 0.01	5.14	< 0.01	38.70	14.04	0.61	0.04	5.08	0.39	0.07
912634	Rock	0.36	0.09	< 0.01	33.20	< 0.01	5.99	< 0.01	39.18	14.84	0.69	0.03	4.38	0.41	0.05
912635	Rock	0.29	0.06	< 0.01	34.14	< 0.01	3.72	< 0.01	39.58	15.26	0.67	0.04	4.85	0.11	0.02
912636	Rock	0.39	0.15	< 0.01	34.10	< 0.01	4.14	0.01	39.94	15.42	0.60	0.04	4.10	0.83	0.03
912637	Rock	0.89	0.55	< 0.01	32.78	< 0.01	7.84	0.07	34.78	13.57	0.54	0.05	6.63	1.44	0.23
912638	Rock	0.32	0.10	< 0.01	33.81	< 0.01	3.38	< 0.01	40.27	16.33	0.69	0.04	4.54	0.11	0.02
912639	Rock	0.22	0.07	< 0.01	33.35	< 0.01	3.81	< 0.01	40.35	15.76	0.69	0.04	4.40	0.17	0.03
912640 Dup	Rock	0.25	0.08	< 0.01	33.20	< 0.01	3.72	0.02	40.13	15.50	0.70	0.05	4.37	0.24	0.03
912641	Rock	0.48	0.15	< 0.01	34.37	< 0.01	5.26	0.01	38.86	14.61	0.58	0.04	4.38	0.36	0.04
912642	Rock	0.88	0.29	< 0.01	32.58	< 0.01	9.95	0.01	35.28	13.24	0.47	0.05	5.52	0.86	0.19
912643	Rock	0.56	0.22	< 0.01	33.77	0.01	7.38	0.07	37.68	13.57	0.39	0.05	4.91	0.84	0.13
912644	Rock	0.54	0.25	< 0.01	33.73	< 0.01	5.59	0.03	38.50	15.00	0.49	0.04	4.48	1.18	0.07
912645	Rock	0.68	0.43	0.01	31.42	< 0.01	14.94	0.12	32.94	12.15	0.57	0.04	4.62	1.46	0.27

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

Name																
Sample S																
Description Type 0.01			Nb2O5-AD3-OR-ICP	WR-FS-ICP												
912446 Rock 0.81 0.30 <0.01 \$5.27	Sample	Sample	%													
912647 Rock 0.80 0.35 0.01 35.37 0.01 5.22 0.09 36.87 13.30 0.67 0.05 5.62 1.11 0.08 912648 Rock 0.83 0.26 0.01 36.46 0.01 9.79 0.02 35.47 10.98 0.53 0.03 4.92 0.58 0.25 0.03 912649 Rock 0.40 0.09 0.01 34.18 0.01 0.41 0.01 40.11 15.22 0.39 0.03 4.13 0.31 0.03 0.01 912651 Rock 0.21 0.03 0.01 34.18 0.01 4.02 0.01 34.13 0.50 0.06 3.84 1.48 0.11 0.10 0.	Description	Type	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	
912648 Rock 0.83 0.26 0.01 36.46 0.01 9.79 0.02 35.47 10.98 0.53 0.03 4.92 0.58 0.26 912649 Rock 0.40 0.09 0.01 34.18 0.01 4.41 0.01 4.011 15.22 0.39 0.03 4.13 0.31 0.03 912650 Pulp 0.43 0.25 0.01 34.34 0.01 5.35 0.04 38.94 14.43 0.50 0.06 3.84 1.48 0.11 912651 Rock 0.21 0.03 0.01 34.01 33.08 0.01 4.02 0.01 4.015 16.57 0.69 0.03 4.09 0.55 0.03 912652 Rock 0.50 0.17 0.01 34.71 0.01 33.71 0.01 4.01 40.15 16.57 0.69 0.03 4.09 0.55 0.03 14.99 12.653 Rock 0.21 0.03 0.01 37.13 0.01 6.74 0.01 27.38 12.44 0.47 0.07 11.99 1.17 0.38 12.654 Rock 0.42 0.04 0.05 0.05 0.05 0.05 0.05 0.05 0.05	912646	Rock	0.81	0.30	< 0.01	35.27	< 0.01	5.14	< 0.01	35.94	13.80	0.55	0.05	6.75	0.65	
912699 Rock 0.40 0.09 <0.01 34.18 <0.01 44.1 <0.01 44.11 15.22 0.39 0.03 4.13 0.31 0.03	912647	Rock	0.80	0.35	< 0.01	35.37	< 0.01	5.22	0.09	36.87	13.30	0.67	0.05	5.62		
912650 Pulp 0.43 0.25 0.01 34.34 0.01 5.35 0.04 38.94 14.43 0.50 0.06 3.84 1.48 0.11	912648	Rock	0.83	0.26	0.01	36.46	< 0.01	9.79	0.02	35.47	10.98	0.53	0.03	4.92	0.58	0.26
912651 Rock 0.21 0.03 <0.01 33.08 <0.01 4.02 <0.01 40.15 16.57 0.69 0.03 4.09 0.55 0.03 912652 Rock 0.50 0.17 <0.01 34.71 <0.01 33.36 0.01 37.66 15.53 0.54 0.05 0.03 4.09 0.55 0.03 912652 Rock 0.50 0.17 <0.01 34.71 <0.01 34.71 <0.01 37.66 0.01 37.66 15.53 0.54 0.05 0.03 14.09 0.55 0.04 0.04 912654 Rock 0.42 0.43 <0.01 37.13 <0.01 6.74 0.01 37.66 15.53 0.54 0.07 11.99 1.17 0.38 11.24 0.43 <0.01 11.24 0.43 <0.01 37.13 <0.01 6.74 0.01 36.77 15.13 0.58 0.04 0.07 11.99 1.17 0.38 0.05 0.07 912655 Rock 0.42 0.16 <0.01 35.38 <0.01 4.02 0.01 36.97 15.13 0.58 0.04 6.28 0.25 0.07 912655 Rock 0.47 3.30 0.03 27.81 <0.01 6.10 1.04 28.24 12.96 0.47 0.30 4.58 13.48 0.54 912657 Rock 0.26 0.11 <0.01 33.83 <0.01 4.38 0.01 41.82 14.83 0.56 0.47 0.30 4.58 13.48 0.54 912658 Rock 0.28 1.17 <0.01 31.98 <0.01 4.38 0.01 41.82 14.83 0.56 0.03 2.92 0.53 0.05 912659 Rock 0.26 0.12 0.01 35.05 <0.01 4.23 0.01 4.20 0.02 38.33 15.30 0.62 0.04 3.97 0.22 0.53 0.05 912660 Rock 0.26 0.12 0.01 35.05 <0.01 4.20 0.05 40.04 14.25 0.73 0.03 3.98 0.46 0.02 912660 Rock 0.25 0.18 0.01 35.69 <0.01 4.20 0.05 40.04 14.25 0.73 0.66 0.04 4.01 0.48 0.03 912661 Rock 0.52 0.18 0.01 35.69 <0.01 4.86 0.05 36.95 13.37 0.66 0.04 4.01 0.48 0.03 912664 Rock 0.05 0.18 0.01 34.33 <0.01 4.97 0.04 37.48 14.19 0.59 0.04 5.56 1.71 0.06 912664 Rock 0.05 0.05 0.05 0.05 36.95 13.37 0.66 0.04 4.51 0.49 0.04 0.49 0.49 0.49 0.49 0.49 0.49	912649	Rock	0.40	0.09	< 0.01	34.18	< 0.01	4.41	< 0.01	40.11		0.39	0.03	4.13	0.31	
912652 Rock 0.50 0.17 <0.01 34.71 <0.01 33.6 0.01 37.66 15.53 0.54 0.05 6.43 0.42 0.04 912653 Rock 1.21 0.43 <0.01 37.13 <0.01 6.74 0.01 27.38 12.44 0.47 0.07 11.99 1.17 0.38 912654 Rock 0.42 0.16 <0.01 35.38 <0.01 4.02 0.01 36.97 15.13 0.58 0.04 6.28 0.02 0.05 0.05 0.01 34.51 <0.01 2.97 <0.01 41.20 15.45 0.62 0.04 3.78 0.08 0.03 912655 Rock 0.22 0.05 <0.01 34.51 <0.01 2.97 <0.01 41.20 15.45 0.62 0.04 3.78 0.08 0.03 192656 Rock 0.47 0.30 0.35 3.83 0.01 4.38 0.01 4.38 0.01 4.82 14.83 0.56 0.03 0.29 0.53 0.05 1912658 Rock 0.26 0.11 <0.01 33.83 0.01 4.38 0.01 4.38 0.01 41.82 14.83 0.56 0.03 0.29 0.53 0.05 1912659 Rock 0.26 0.11 <0.01 33.83 0.01 4.42 0.02 38.43 15.30 0.62 0.04 3.97 0.26 0.13 912659 Rock 0.26 0.12 0.01 35.05 0.01 4.23 0.01 42.3 0.01 40.04 14.25 0.73 0.03 3.98 0.46 0.02 912660 Dup Rock 0.26 0.13 0.02 35.02 0.01 4.20 0.05 40.04 14.59 0.76 0.04 4.01 0.48 0.03 1912661 Rock 0.25 0.18 0.01 35.69 0.01 4.86 0.05 36.95 13.37 0.66 0.04 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.	912650	Pulp	0.43	0.25	< 0.01	34.34	< 0.01	5.35	0.04	38.94	14.43	0.50	0.06	3.84	1.48	
912653 Rock 0.42 0.16 0.01 37.13 0.01 6.74 0.01 27.38 12.44 0.47 0.07 11.99 1.17 0.38 912654 Rock 0.42 0.16 0.01 35.38 0.01 4.02 0.01 35.697 115.13 0.58 0.04 6.28 0.25 0.07 0.07 912655 Rock 0.22 0.05 0.01 34.51 0.01 2.97 0.01 41.20 15.45 0.62 0.04 3.78 0.08 0.03 912656 Rock 0.47 3.30 0.03 27.81 0.01 0.610 1.04 28.24 12.96 0.47 0.30 4.58 13.48 0.54 912657 Rock 0.26 0.11 0.01 33.83 0.01 4.38 0.01 4.42 0.02 38.43 15.30 0.62 0.04 3.97 2.62 0.13 912658 Rock 0.26 0.11 0.01 33.83 0.01 4.38 0.01 4.42 0.02 38.43 15.30 0.62 0.04 3.97 2.62 0.13 912659 Rock 0.26 0.12 0.01 35.05 0.01 4.20 0.05 40.04 14.25 0.73 0.03 3.98 0.46 0.02 912660 Pup Rock 0.26 0.13 0.02 35.02 0.01 4.20 0.05 40.04 14.59 0.76 0.04 4.01 0.48 0.03 912660 Pup Rock 0.26 0.13 0.02 35.02 0.01 4.20 0.05 40.04 14.59 0.76 0.04 4.01 0.48 0.03 912660 Rock 0.25 0.18 0.01 35.69 0.01 4.86 0.05 36.95 13.37 0.66 0.04 0.45 0.84 0.04 912662 Rock 0.52 0.10 0.01 34.33 0.01 4.86 0.05 36.95 13.37 0.66 0.04 0.45 0.84 0.04 912662 Rock 0.52 0.10 0.01 34.33 0.01 4.97 0.04 37.48 14.19 0.59 0.04 5.56 1.71 0.06 912664 Rock 0.09 0.13 0.01 35.00 0.01 35.00 0.01 3.77 0.03 36.03 13.82 0.59 0.03 8.14 1.09 0.04 912666 Rock 0.09 0.13 0.01 35.00 0.01 35.00 0.01 3.77 0.03 36.03 13.82 0.59 0.03 8.14 1.09 0.04 912666 Rock 0.09 0.13 0.01 35.00 0.01 35.00 0.01 3.70 0.03 36.03 13.82 0.59 0.03 8.14 1.09 0.04 912666 Rock 0.28 0.35 0.01 32.22 0.01 33.98 0.01 3.60 0.35 36.03 13.82 0.59 0.03 8.14 1.09 0.04 912666 Rock 0.28 0.35 0.00 0.33 3.98 0.01 36.90 0.01 3.60 0.03 36.03 13.82 0.59 0.03 8.14 0.09 0.04 0.05 0.00 0.00 0.00 0.00 0.00 0.00	912651	Rock	0.21	0.03	< 0.01	33.08	< 0.01	4.02	< 0.01	40.15	16.57	0.69	0.03	4.09	0.55	
912654 Rock 0.42 0.16 < 0.01 35.38 < 0.01 4.02 0.01 36.97 15.13 0.58 0.04 6.28 0.25 0.07 912655 Rock 0.22 0.05 < 0.01 34.51 < 0.01 2.97 < 0.01 41.20 15.45 0.62 0.04 3.78 0.08 0.03 912656 Rock 0.47 3.30 0.03 27.81 < 0.01 6.10 1.04 28.24 12.96 0.47 0.30 4.58 13.48 0.54 912657 Rock 0.26 0.11 < 0.01 33.83 < 0.01 43.88 < 0.01 41.82 14.83 0.56 0.03 0.56 0.03 2.92 0.53 0.05 912658 Rock 0.28 1.17 < 0.01 31.98 < 0.01 44.2 0.02 38.43 15.30 0.62 0.04 3.97 2.62 0.13 912659 Rock 0.26 0.12 0.01 35.05 < 0.01 4.23 0.01 40.04 14.25 0.73 0.03 3.98 0.46 0.02 912660 Dup Rock 0.26 0.13 0.02 35.02 0.01 4.20 0.05 40.04 14.59 0.76 0.04 4.01 0.48 0.03 912661 Rock 0.25 0.18 0.01 35.69 < 0.01 4.86 0.05 36.95 13.37 0.66 0.04 4.01 0.48 0.03 912662 Rock 0.52 0.10 0.01 34.33 < 0.01 4.97 0.04 37.48 14.19 0.59 0.04 5.56 1.71 0.06 912663 Rock 0.05 0.05 0.01 34.30 < 0.01 34.00 < 0.01 34.30 0.01 37.77 0.03 36.03 13.82 0.59 0.03 8.14 1.09 0.04 912664 Rock 0.09 0.13 < 0.01 35.09 < 0.01 35.00 < 0.01 3.93 0.01 37.57 14.68 0.72 0.05 0.03 8.14 1.09 0.04 912666 Rock 0.09 0.13 0.01 35.00 < 0.01 35.00 0.01 3.93 0.01 37.57 14.68 0.72 0.05 0.83 0.48 0.01 912666 Rock 0.09 0.13 0.01 35.00 < 0.01 35.28 0.01 3.39 3.31 31.10 0.62 0.03 5.59 0.03 8.14 1.09 0.04 912666 Rock 0.06 0.16 < 0.01 35.28 0.01 5.28 0.03 37.33 13.10 0.62 0.03 5.59 0.03 8.14 1.09 0.04 912666 Rock 0.24 0.09 0.01 35.28 0.01 35.89 0.01 38.9 0.01 39.90 15.23 0.82 0.05 0.03 5.59 0.03 0.03 912669 Rock 0.24 0.09 0.06 0.01 35.28 0.01 3.89 0.01 39.90 15.23 0.82 0.05 0.09 3.85 7.28 0.11 912669 Rock 0.25 0.35 0.92 0.01 31.02 0.01 34.84 0.01 3.89 0.01 39.90 15.23 0.82 0.05 0.05 3.85 7.28 0.11 912670 Pulp 0.71 0.17 0.02 37.55 0.01 4.85 0.04 3.89 0.01 3.99 0.15 3.08 0.05 0.05 3.85 7.28 0.11 912670 Pulp 0.71 0.17 0.02 37.55 0.01 4.85 0.04 3.85 0.04 3.80 10.73 0.42 0.09 3.62 3.32 0.13 912669 Rock 0.03 5.59 0.03 3.84 0.01 3.84 0.01 3.53 0.03 37.70 14.16 0.62 0.05 4.87 2.24 0.04 912672 Rock 0.01 16.6 0.01 28.67 0.01 34.84 0.01 3.53 0.03 37.70 14.16 0.62 0.05 4.87 2.24 0.04 912672 Rock 0.01 16.6 0.01 28.67 0.01	912652	Rock	0.50	0.17	< 0.01	34.71	< 0.01	3.36	0.01	37.66	15.53	0.54	0.05	6.43	0.42	0.04
912655 Rock 0.22 0.05 <0.01 34.51 <0.01 2.97 <0.01 41.20 15.45 0.62 0.04 3.78 0.08 0.03 912656 Rock 0.47 3.30 0.03 27.81 <0.01 6.10 1.04 28.24 12.96 0.47 0.30 4.58 13.48 0.54 912657 Rock 0.26 0.11 <0.01 33.83 <0.01 43.8 <0.01 41.82 11.83 0.56 0.03 2.92 0.53 0.05 912658 Rock 0.28 1.17 <0.01 31.98 <0.01 44.2 0.02 38.43 15.30 0.62 0.04 3.97 2.62 0.13 912659 Rock 0.26 0.12 0.01 35.05 <0.01 4.23 0.01 40.04 14.25 0.73 0.03 3.98 0.46 0.02 912660 Dup Rock 0.26 0.13 0.02 35.02 0.01 4.20 0.05 40.04 14.25 0.73 0.03 3.98 0.46 0.02 912661 Rock 0.25 0.18 0.01 35.69 <0.01 4.26 0.05 40.04 14.25 0.73 0.06 0.04 4.01 0.48 0.03 912662 Rock 0.52 0.18 0.01 35.69 <0.01 4.90 0.05 40.04 14.59 0.76 0.04 4.01 0.48 0.03 912662 Rock 0.52 0.10 <0.01 33.43 <0.01 4.97 0.04 37.48 14.19 0.59 0.04 5.56 1.71 0.06 912663 Rock 0.01 0.00 0.01 34.33 <0.01 4.97 0.04 37.48 14.19 0.59 0.04 5.56 1.71 0.06 912664 Rock 0.09 0.13 <0.01 35.09 <0.01 35.09 0.01 3.93 0.01 37.57 14.68 0.72 0.05 6.83 0.48 0.01 912665 Rock 0.09 0.13 <0.01 35.09 0.01 35.09 0.01 3.77 0.03 36.03 13.82 0.59 0.03 8.14 1.09 0.04 912665 Rock 0.60 0.16 <0.01 35.09 0.01 35.09 0.01 3.77 0.03 36.03 13.82 0.59 0.03 5.59 0.84 0.07 912666 Rock 0.60 0.16 <0.01 35.28 <0.01 5.28 0.01 3.69 0.02 40.91 17.00 0.70 0.04 3.71 0.36 0.03 912669 Rock 0.29 0.06 <0.01 33.98 0.01 3.89 0.01 39.9 15.23 0.82 0.05 0.03 5.59 0.84 0.07 912666 Rock 0.29 0.06 <0.01 33.98 <0.01 33.98 0.01 39.9 0.15 2.3 0.82 0.05 0.05 4.09 1.27 0.03 912669 Rock 0.35 0.92 0.01 31.02 0.01 34.84 0.01 4.85 0.04 38.05 10.73 0.42 0.09 3.62 3.32 0.13 912669 Rock 0.28 0.35 0.92 0.01 34.84 0.01 3.53 0.03 37.70 14.16 0.62 0.05 0.38 2.50 17.11 0.09 912672 Rock 0.10 1.66 0.01 28.67 0.01 4.74 0.06 35.13 15.50 0.62 0.05 4.87 2.42 0.04 912672 Rock 0.10 1.66 0.01 28.67 0.01 34.84 0.01 3.53 0.03 31.50 13.64 0.53 0.31 2.51 15.89 0.08 912672 Rock 0.10 1.66 0.01 1.66 0.01 27.43 0.01 50.01 37.1 0.01 41.99 16.20 0.74 0.03 0.31 2.51 15.89 0.08 912674 Rock 0.06 0.06 0.04 0.01 32.69 0.001 32.69 0.001 3.71 0.01 41.99 16.20 0.74 0.03 0.31 2.51 15.89 0.08	912653	Rock	1.21	0.43	< 0.01	37.13	< 0.01	6.74	0.01	27.38	12.44	0.47	0.07	11.99	1.17	
912656 Rock 0.47 3.30 0.03 27.81 <0.01 6.10 1.04 28.24 12.96 0.47 0.30 4.58 13.48 0.54 912657 Rock 0.26 0.11 <0.01 33.83 0.01 4.38 <0.01 4.182 14.83 0.56 0.03 2.92 0.53 0.05 912658 Rock 0.28 1.17 <0.01 31.98 0.01 4.23 0.01 4.04 14.25 0.73 0.03 3.98 0.46 0.02 912659 Rock 0.26 0.12 0.01 35.05 <0.01 4.23 0.01 4.04 14.25 0.73 0.03 3.98 0.46 0.02 912660 Dup Rock 0.26 0.13 0.02 35.02 0.01 4.20 0.05 40.04 14.59 0.76 0.04 4.01 0.48 0.03 912661 Rock 0.25 0.18 0.01 35.05 0.01 4.97 0.04 37.48 14.19 0.59 0.04 5.56 1.71 0.06 912662 Rock 0.52 0.10 0.01 34.33 0.01 4.97 0.04 37.48 14.19 0.59 0.04 5.56 1.71 0.06 912663 Rock 0.11 0.03 0.01 34.60 0.01 3.93 0.01 37.57 14.68 0.72 0.05 6.83 0.48 0.01 912664 Rock 0.09 0.13 0.001 35.08 0.001 35.08 0.001 37.57 14.68 0.72 0.05 6.83 0.48 0.01 912664 Rock 0.09 0.13 0.001 35.08 0.001 35.08 0.001 3.77 0.03 36.03 13.82 0.59 0.03 8.14 1.09 0.04 912666 Rock 0.60 0.16 0.01 35.28 0.01 5.28 0.03 37.33 13.10 0.62 0.03 5.59 0.84 0.07 912666 Rock 1.28 0.38 0.01 35.28 0.01 5.28 0.03 37.33 13.10 0.62 0.03 5.59 0.84 0.07 912666 Rock 0.24 0.09 0.01 3.22 0.01 33.98 0.01 3.89 0.01 3.99 0.15.23 0.82 0.05 4.09 1.27 0.03 912669 Rock 0.24 0.09 0.001 33.98 0.01 3.89 0.01 3.89 0.01 3.99 0.15.23 0.82 0.05 4.09 1.27 0.03 912669 Rock 0.35 0.92 0.01 31.02 0.01 4.86 0.01 3.89 0.01 3.99 0.15.23 0.82 0.05 4.09 1.27 0.03 912669 Rock 0.35 0.92 0.01 31.02 0.01 4.74 0.06 35.13 15.50 0.62 0.06 3.85 7.28 0.11 912670 Pulp 0.71 0.17 0.02 37.55 0.001 4.85 0.04 38.05 10.73 0.42 0.09 3.62 0.05 4.87 0.24 0.09 912672 Rock 0.10 1.66 0.01 28.67 0.01 4.85 0.04 4.90 3.35 0.03 37.70 14.16 0.62 0.05 4.87 0.24 0.09 912672 Rock 0.10 1.66 0.01 28.67 0.01 4.71 0.39 30.66 12.74 0.56 0.38 2.50 17.11 0.09 912672 Rock 0.10 1.66 0.01 28.67 0.01 32.69 0.01 3.71 0.01 41.99 16.20 0.75 0.05 0.35 0.31 2.51 15.89 0.08 912674 Rock 0.06 0.04 0.01 1.83 0.01 27.43 0.001 3.71 0.01 41.99 16.20 0.75 0.05 0.75 0.001 2.53 0.00	912654	Rock	0.42	0.16	< 0.01	35.38	< 0.01	4.02	0.01	36.97	15.13	0.58	0.04	6.28	0.25	0.07
912657 Rock 0.26 0.11 < 0.01 33.83 < 0.01 4.38 < 0.01 41.82 14.83 0.56 0.03 2.92 0.53 0.05 912658 Rock 0.28 1.17 < 0.01 31.98 < 0.01 4.42 0.02 38.43 15.30 0.62 0.04 3.97 2.62 0.13 912659 Rock 0.26 0.12 0.01 35.05 < 0.01 4.23 0.01 40.04 14.25 0.73 0.03 3.98 0.46 0.02 912660 Dup Rock 0.26 0.13 0.02 35.02 0.01 4.20 0.05 40.04 14.25 0.73 0.03 3.98 0.46 0.02 912661 Rock 0.25 0.18 0.01 35.09 0.01 4.20 0.05 40.04 14.25 0.76 0.04 4.01 0.48 0.03 912662 Rock 0.52 0.18 0.01 35.09 0.01 4.86 0.05 36.95 13.37 0.66 0.04 6.45 0.84 0.04 912663 Rock 0.51 0.03 0.01 34.30 0.01 34.30 0.01 34.37 0.01 37.57 14.68 0.72 0.05 6.83 0.48 0.01 912664 Rock 0.09 0.13 0.01 35.00 0.01 33.93 0.01 37.77 0.03 36.03 13.82 0.59 0.03 8.14 1.09 0.04 912665 Rock 0.06 0.16 0.01 35.28 0.01 5.28 0.03 37.33 13.10 0.62 0.03 5.59 0.84 0.07 912666 Rock 0.24 0.09 0.01 35.28 0.01 5.28 0.03 37.33 13.10 0.62 0.03 5.59 0.84 0.07 912666 Rock 0.24 0.09 0.01 32.22 0.01 36.9 0.02 40.91 17.00 0.70 0.04 3.71 0.36 0.03 912668 Rock 0.29 0.06 0.01 33.98 0.01 33.89 0.01 33.99 0.01 37.00 0.70 0.04 3.71 0.36 0.03 912668 Rock 0.29 0.06 0.01 33.98 0.01 33.98 0.01 38.9 0.01 39.90 15.23 0.82 0.05 0.03 3.57 0.03 3.62 3.32 0.13 912670 Pulp 0.71 0.17 0.02 37.55 0.01 4.85 0.04 38.05 0.03 37.0 14.16 0.62 0.05 4.87 2.42 0.04 912672 Rock 0.03 0.58 0.35 0.02 0.01 34.84 0.01 3.59 0.01 3.59 0.01 3.50 0.03 37.0 14.16 0.62 0.05 4.87 2.42 0.04 912672 Rock 0.05 0.05 0.05 0.05 0.01 34.84 0.01 3.59 0.01 3.59 0.01 3.59 0.01 3.50 0.03 3.70 14.16 0.62 0.05 4.87 2.42 0.04 912672 Rock 0.05 0.05 0.05 0.05 0.01 34.84 0.01 3.59 0.01 3.53 0.03 37.70 14.16 0.62 0.05 4.87 2.42 0.04 912672 Rock 0.01 1.66 0.01 28.67 0.01 34.84 0.01 5.00 0.33 31.50 13.64 0.53 0.31 2.51 15.89 0.08 912674 Rock 0.06 0.06 0.04 0.01 32.69 0.01 32.69 0.01 3.71 0.01 41.99 16.20 0.74 0.03 2.53 0.76 0.01	912655	Rock	0.22	0.05	< 0.01	34.51	< 0.01	2.97	< 0.01	41.20	15.45	0.62	0.04	3.78	0.08	0.03
912658 Rock 0.28 1.17 < 0.01 31.98 < 0.01 4.42 0.02 38.43 15.30 0.62 0.04 3.97 2.62 0.13 912669 Rock 0.26 0.12 0.01 35.05 < 0.01 4.23 0.01 40.04 14.25 0.73 0.03 3.98 0.46 0.02 912660 Dup Rock 0.26 0.13 0.02 35.02 0.01 4.20 0.05 40.04 14.25 0.73 0.03 3.98 0.46 0.02 912660 Rock 0.25 0.18 0.01 35.69 < 0.01 4.86 0.05 36.95 13.37 0.66 0.04 4.01 0.48 0.04 912662 Rock 0.52 0.10 < 0.01 34.33 < 0.01 4.97 0.04 37.48 14.19 0.59 0.04 5.56 1.71 0.06 912663 Rock 0.11 0.03 < 0.01 34.60 < 0.01 35.00 < 0.01 3.93 0.01 37.77 14.68 0.72 0.05 6.83 0.48 0.01 912664 Rock 0.09 0.13 < 0.01 35.08 < 0.01 35.28 < 0.01 5.28 0.03 37.33 13.10 0.62 0.03 8.14 1.09 0.04 912666 Rock 0.24 0.09 0.16 < 0.01 35.28 < 0.01 5.28 0.03 37.33 13.10 0.62 0.03 5.59 0.03 5.51 1.54 0.07 912667 Rock 0.24 0.09 < 0.01 32.22 < 0.01 34.60 0.03 36.90 0.2 40.91 17.00 0.70 0.04 3.71 0.36 0.03 912668 Rock 0.24 0.09 < 0.01 33.98 < 0.01 33.98 0.01 38.99 0.01 39.90 15.23 0.82 0.05 4.09 1.27 0.03 912668 Rock 0.24 0.09 < 0.01 33.98 < 0.01 33.98 0.01 38.99 0.01 39.90 15.23 0.82 0.05 4.09 1.27 0.03 912669 Rock 0.35 0.92 < 0.01 31.02 < 0.01 37.55 < 0.01 4.85 0.04 38.05 10.73 0.42 0.09 3.62 3.32 0.13 912667 Rock 0.28 0.35 0.92 < 0.01 31.02 < 0.01 4.74 0.06 35.13 15.50 0.62 0.06 3.85 7.28 0.11 912670 Pulp 0.71 0.17 0.02 37.55 < 0.01 4.85 0.01 4.85 0.04 38.05 10.73 0.42 0.09 3.62 3.32 0.13 912671 Rock 0.28 0.35 0.92 < 0.01 34.84 0.01 3.53 0.03 37.70 14.16 0.62 0.05 4.87 2.42 0.04 912672 Rock 0.11 1.83 < 0.01 2.867 0.01 4.71 0.39 30.66 12.74 0.56 0.38 2.50 17.11 0.05 0.08 912674 Rock 0.06 0.04 0.01 1.83 0.01 28.67 0.01 5.00 0.33 31.50 13.64 0.53 0.31 2.51 15.89 0.08 912674 Rock 0.06 0.06 0.04 0.01 32.69 0.01 32.69 0.01 3.71 0.01 41.99 16.20 0.74 0.03 2.53 0.76 0.01	912656	Rock	0.47	3.30	0.03	27.81	< 0.01	6.10	1.04	28.24	12.96	0.47	0.30	4.58	13.48	0.54
912659 Rock 0.26 0.12 0.01 35.05 <0.01 4.23 0.01 40.04 14.25 0.73 0.03 3.98 0.46 0.02 912660 Dup Rock 0.26 0.13 0.02 35.02 0.01 4.20 0.05 40.04 14.59 0.76 0.04 4.01 0.48 0.03 912661 Rock 0.25 0.18 0.01 35.09 <0.01 4.86 0.05 36.95 13.37 0.66 0.04 4.01 0.48 0.03 912662 Rock 0.52 0.10 <0.01 34.33 <0.01 4.97 0.04 37.48 14.19 0.59 0.04 5.56 1.71 0.06 912663 Rock 0.09 0.11 0.03 <0.01 34.60 <0.01 3.93 0.01 3.77 0.03 36.03 13.82 0.59 0.03 8.14 1.09 0.04 912665 Rock 0.60 0.16 <0.01 35.28 <0.01 5.28 0.03 37.33 13.10 0.62 0.03 5.59 0.84 0.07 912666 Rock 0.24 0.09 <0.01 35.28 <0.01 5.28 0.03 37.33 13.10 0.62 0.03 5.59 0.84 0.07 912667 Rock 0.24 0.09 <0.01 32.22 <0.01 36.99 0.02 40.91 17.00 0.70 0.04 37.1 0.36 0.03 912668 Rock 0.29 0.06 <0.01 33.98 <0.01 34.80 0.01 3.89 0.01 39.90 15.23 0.82 0.05 4.09 1.27 0.03 912669 Rock 0.35 0.92 <0.01 31.02 <0.01 31.02 <0.01 4.74 0.06 35.13 15.50 0.62 0.05 4.87 2.42 0.04 912671 Rock 0.28 0.35 0.92 <0.01 34.84 <0.01 3.85 0.04 38.05 10.73 0.42 0.09 3.62 3.32 0.13 912671 Rock 0.28 0.35 0.01 28.67 <0.01 4.85 0.04 38.05 10.73 0.42 0.09 3.62 3.32 0.13 912671 Rock 0.28 0.35 0.01 28.67 <0.01 34.84 <0.01 3.59 0.03 31.0 14.16 0.62 0.05 4.87 2.42 0.04 912672 Rock 0.10 1.66 <0.01 28.67 <0.01 4.71 0.39 30.66 12.74 0.56 0.38 2.50 17.11 0.09 912674 Rock 0.06 0.04 <0.01 32.69 <0.01 32.69 <0.01 4.71 0.39 30.66 12.74 0.56 0.38 2.50 17.11 0.09 912674 Rock 0.06 0.04 <0.01 32.69 <0.01 32.69 <0.01 3.71 0.01 41.99 16.20 0.74 0.03 2.53 0.76 <0.01	912657	Rock	0.26	0.11	< 0.01	33.83	< 0.01	4.38	< 0.01	41.82	14.83	0.56	0.03	2.92	0.53	0.05
912660 Dup Rock 0.26 0.13 0.02 35.02 0.01 4.20 0.05 40.04 14.59 0.76 0.04 4.01 0.48 0.03 912661 Rock 0.25 0.18 0.01 35.69 <0.01 4.86 0.05 36.95 13.37 0.66 0.04 6.45 0.84 0.04 912662 Rock 0.52 0.10 <0.01 34.33 <0.01 4.97 0.04 37.48 14.19 0.59 0.04 5.56 1.71 0.06 912663 Rock 0.11 0.03 <0.01 34.60 <0.01 3.93 0.01 3.77 0.03 36.03 13.82 0.59 0.03 8.14 1.09 0.04 912664 Rock 0.09 0.13 <0.01 35.00 <0.01 3.77 0.03 36.03 13.82 0.59 0.03 8.14 1.09 0.04 912665 Rock 0.60 0.16 <0.01 35.28 <0.01 5.28 0.03 37.33 13.10 0.62 0.03 5.59 0.84 0.07 912666 Rock 0.24 0.09 <0.01 35.28 <0.01 5.28 0.03 37.33 13.10 0.62 0.03 5.59 0.84 0.07 912666 Rock 0.24 0.09 <0.01 33.22 <0.01 36.99 0.01 4.46 0.03 36.68 13.78 0.59 0.03 5.01 1.54 0.07 912667 Rock 0.24 0.09 <0.01 33.22 <0.01 36.99 0.01 3.69 0.02 40.91 17.00 0.70 0.04 3.71 0.36 0.03 912668 Rock 0.29 0.06 <0.01 33.98 <0.01 33.99 0.01 38.99 0.01 39.90 15.23 0.82 0.05 4.09 1.27 0.03 912669 Rock 0.35 0.92 <0.01 31.02 <0.01 4.74 0.06 35.13 15.50 0.62 0.06 3.85 7.28 0.11 912670 Pulp 0.71 0.17 0.02 37.55 <0.01 4.85 0.04 38.05 10.73 0.42 0.09 3.62 3.32 0.13 912671 Rock 0.28 0.35 <0.01 34.84 <0.01 3.53 0.03 37.70 14.16 0.62 0.05 0.38 2.50 17.11 0.09 912672 Rock 0.10 1.66 <0.01 28.67 <0.01 4.71 0.39 30.66 12.74 0.56 0.38 2.50 17.11 0.09 912673 Rock 0.11 1.83 <0.01 27.43 <0.01 5.00 0.33 11.00 14.19 16.20 0.74 0.03 2.53 0.76 <0.01	912658	Rock	0.28	1.17	< 0.01	31.98	< 0.01	4.42	0.02	38.43	15.30	0.62	0.04	3.97	2.62	0.13
912661 Rock 0.25 0.18 0.01 35.69 <0.01 4.86 0.05 36.95 13.37 0.66 0.04 6.45 0.84 0.04 912662 Rock 0.52 0.10 <0.01 34.33 <0.01 4.97 0.04 37.48 14.19 0.59 0.04 5.56 1.71 0.06 912663 Rock 0.11 0.03 <0.01 34.60 <0.01 3.93 0.01 37.57 14.68 0.72 0.05 6.83 0.48 0.01 912664 Rock 0.09 0.13 <0.01 35.00 <0.01 35.00 <0.01 3.77 0.03 36.03 13.82 0.59 0.03 8.14 1.09 0.04 912665 Rock 0.60 0.16 <0.01 35.28 <0.01 5.28 0.03 37.33 13.10 0.62 0.03 5.59 0.03 8.14 1.09 0.04 912666 Rock 1.28 0.38 <0.01 36.39 <0.01 446 0.03 36.68 13.78 0.59 0.03 5.01 1.54 0.07 912667 Rock 0.24 0.09 <0.01 32.22 <0.01 3.69 0.02 40.91 17.00 0.70 0.04 3.71 0.36 0.03 912668 Rock 0.35 0.92 <0.01 33.98 <0.01 38.9 0.01 38.90 15.23 0.82 0.05 4.09 1.27 0.03 912669 Rock 0.35 0.92 <0.01 31.02 <0.01 4.74 0.06 35.13 15.50 0.62 0.06 3.85 7.28 0.11 912671 Rock 0.28 0.35 <0.01 34.84 <0.01 3.53 0.03 37.70 14.16 0.62 0.05 3.82 2.00 9 3.62 3.32 0.13 912671 Rock 0.28 0.35 <0.01 34.84 <0.01 35.59 <0.01 4.85 0.04 38.05 10.73 0.42 0.09 3.62 3.32 0.13 912673 Rock 0.10 1.66 <0.01 28.67 <0.01 4.71 0.39 30.66 12.74 0.56 0.38 2.50 17.11 0.09 912673 Rock 0.11 1.83 <0.01 27.43 <0.01 5.00 1.371 0.01 41.99 16.20 0.74 0.03 2.53 0.76 <0.01	912659	Rock	0.26	0.12	0.01	35.05	< 0.01	4.23	0.01	40.04	14.25	0.73	0.03	3.98	0.46	0.02
912662 Rock 0.52 0.10 <0.01 34.33 <0.01 4.97 0.04 37.48 14.19 0.59 0.04 5.56 1.71 0.06 912663 Rock 0.11 0.03 <0.01 34.60 <0.01 3.93 0.01 37.57 14.68 0.72 0.05 6.83 0.48 0.01 912664 Rock 0.09 0.13 <0.01 35.00 <0.01 35.00 <0.01 3.77 0.03 36.03 13.82 0.59 0.03 8.14 1.09 0.04 912665 Rock 0.60 0.16 <0.01 35.28 <0.01 5.28 0.03 37.33 13.10 0.62 0.03 5.59 0.84 0.07 912666 Rock 1.28 0.38 <0.01 35.29 <0.01 4.46 0.03 36.68 13.78 0.59 0.03 5.51 1.54 0.07 912667 Rock 0.24 0.09 <0.01 32.22 <0.01 36.99 0.01 4.46 0.03 36.68 13.78 0.59 0.03 5.01 1.54 0.07 912668 Rock 0.24 0.09 <0.01 32.22 <0.01 36.99 0.02 40.91 17.00 0.70 0.04 3.71 0.36 0.03 912669 Rock 0.35 0.92 <0.01 31.02 <0.01 34.84 0.01 38.99 0.01 39.90 15.23 0.82 0.05 4.09 1.27 0.03 912669 Rock 0.35 0.92 <0.01 31.02 <0.01 4.74 0.06 35.13 15.50 0.62 0.06 3.85 7.28 0.11 912670 Pulp 0.71 0.17 0.02 37.55 <0.01 4.85 0.04 38.05 10.73 0.42 0.09 3.62 3.32 0.13 912671 Rock 0.28 0.35 <0.01 34.84 <0.01 3.53 0.03 37.70 14.16 0.62 0.05 4.87 2.42 0.04 912672 Rock 0.10 1.66 <0.01 28.67 <0.01 4.71 0.39 30.66 12.74 0.56 0.38 2.50 17.11 0.09 912673 Rock 0.10 1.66 <0.01 28.67 <0.01 4.71 0.39 0.03 31.50 13.64 0.53 0.31 2.51 15.89 0.08 912674 Rock 0.06 0.06 0.04 <0.01 32.69 <0.01 37.71 0.01 41.99 16.20 0.74 0.03 2.53 0.76 <0.01	912660 Dup	Rock	0.26	0.13	0.02	35.02	0.01	4.20	0.05	40.04	14.59	0.76	0.04	4.01	0.48	0.03
912663 Rock 0.11 0.03 <0.01 34.60 <0.01 3.93 0.01 37.57 14.68 0.72 0.05 6.83 0.48 0.01 912664 Rock 0.09 0.13 <0.01 35.00 <0.01 3.77 0.03 36.03 13.82 0.59 0.03 8.14 1.09 0.04 912665 Rock 0.60 0.16 <0.01 35.28 <0.01 5.28 0.03 37.33 13.10 0.62 0.03 5.59 0.84 0.07 912666 Rock 1.28 0.38 <0.01 36.39 <0.01 4.46 0.03 36.68 13.78 0.59 0.03 5.01 1.54 0.07 912667 Rock 0.24 0.09 <0.01 32.22 <0.01 3.69 0.02 40.91 17.00 0.70 0.04 3.71 0.36 0.03 912668 Rock 0.29 0.06 <0.01 33.98 <0.01 38.99 0.01 39.90 15.23 0.82 0.05 4.09 1.27 0.03 912669 Rock 0.35 0.92 <0.01 31.02 <0.01 4.74 0.06 35.13 15.50 0.62 0.06 3.85 7.28 0.11 912670 Pulp 0.71 0.17 0.02 37.55 <0.01 4.85 0.04 38.05 10.73 0.62 0.06 0.38 2.50 17.11 0.09 912672 Rock 0.10 1.66 <0.01 28.67 <0.01 4.71 0.39 30.66 12.74 0.56 0.38 2.50 17.11 0.09 912673 Rock 0.10 1.83 <0.01 27.43 <0.01 5.00 0.371 0.01 41.99 16.20 0.74 0.03 2.53 0.76 <0.01	912661	Rock	0.25	0.18	0.01	35.69	< 0.01	4.86	0.05	36.95	13.37	0.66	0.04	6.45	0.84	0.04
912664 Rock 0.09 0.13 <0.01 35.00 <0.01 3.77 0.03 36.03 13.82 0.59 0.03 8.14 1.09 0.04 912665 Rock 0.60 0.16 <0.01 35.28 <0.01 5.28 0.03 37.33 13.10 0.62 0.03 5.59 0.84 0.07 912666 Rock 1.28 0.38 <0.01 36.39 <0.01 4.46 0.03 36.68 13.78 0.59 0.03 5.01 1.54 0.07 912667 Rock 0.24 0.09 <0.01 32.22 <0.01 3.69 0.02 40.91 17.00 0.70 0.04 3.71 0.36 0.03 912668 Rock 0.29 0.06 <0.01 33.98 <0.01 33.99 0.01 39.90 15.23 0.82 0.05 4.09 1.27 0.03 912669 Rock 0.35 0.92 <0.01 31.02 <0.01 4.74 0.06 35.13 15.50 0.62 0.06 3.85 7.28 0.11 912670 Pulp 0.71 0.17 0.02 37.55 <0.01 4.85 0.04 38.05 10.73 0.42 0.09 3.62 3.32 0.13 912671 Rock 0.28 0.35 <0.01 34.84 <0.01 3.53 0.03 37.70 14.16 0.62 0.05 4.87 2.42 0.04 912672 Rock 0.10 1.66 <0.01 28.67 <0.01 4.71 0.39 30.66 12.74 0.56 0.38 2.50 17.11 0.09 912673 Rock 0.11 1.83 <0.01 27.43 <0.01 5.00 0.371 0.01 41.99 16.20 0.74 0.03 2.53 0.76 <0.01	912662	Rock	0.52	0.10	< 0.01	34.33	< 0.01	4.97	0.04	37.48	14.19	0.59	0.04	5.56	1.71	0.06
912665 Rock 0.60 0.16 <0.01 35.28 <0.01 5.28 0.03 37.33 13.10 0.62 0.03 5.59 0.84 0.07 912666 Rock 1.28 0.38 <0.01 36.39 <0.01 4.46 0.03 36.68 13.78 0.59 0.03 5.01 1.54 0.07 912667 Rock 0.24 0.09 <0.01 32.22 <0.01 3.69 0.02 40.91 17.00 0.70 0.04 3.71 0.36 0.03 912668 Rock 0.29 0.06 <0.01 33.98 <0.01 33.98 0.01 33.99 0.01 39.90 15.23 0.82 0.05 4.09 1.27 0.03 912669 Rock 0.35 0.92 <0.01 31.02 <0.01 4.74 0.06 35.13 15.50 0.62 0.06 3.85 7.28 0.11 912670 Pulp 0.71 0.17 0.02 37.55 <0.01 4.85 0.04 38.05 10.73 0.42 0.09 3.62 3.32 0.13 912671 Rock 0.28 0.35 <0.01 34.84 <0.01 3.53 0.03 37.70 14.16 0.62 0.05 4.87 2.42 0.04 912672 Rock 0.10 1.66 <0.01 28.67 <0.01 4.71 0.39 30.66 12.74 0.56 0.38 2.50 17.11 0.09 912673 Rock 0.11 1.83 <0.01 27.43 <0.01 5.00 0.33 31.50 13.64 0.53 0.31 2.51 15.89 0.08 912674 Rock 0.06 0.06 0.04 <0.01 32.69 <0.01 37.1 0.01 41.99 16.20 0.74 0.03 2.53 0.76 <0.01	912663	Rock	0.11	0.03	< 0.01	34.60	< 0.01	3.93	0.01	37.57	14.68	0.72	0.05	6.83	0.48	0.01
912666 Rock 1.28 0.38 <0.01 36.39 <0.01 4.46 0.03 36.68 13.78 0.59 0.03 5.01 1.54 0.07 912667 Rock 0.24 0.09 <0.01 32.22 <0.01 3.69 0.02 40.91 17.00 0.70 0.04 3.71 0.36 0.03 912668 Rock 0.29 0.06 <0.01 33.98 <0.01 33.98 0.01 33.99 0.01 39.90 15.23 0.82 0.05 4.09 1.27 0.03 912669 Rock 0.35 0.92 <0.01 31.02 <0.01 4.74 0.06 35.13 15.50 0.62 0.06 3.85 7.28 0.11 912670 Pulp 0.71 0.17 0.02 37.55 <0.01 4.85 0.04 38.05 10.73 0.42 0.09 3.62 3.32 0.13 912671 Rock 0.28 0.35 <0.01 34.84 <0.01 3.53 0.03 37.70 14.16 0.62 0.05 4.87 2.42 0.04 912672 Rock 0.10 1.66 <0.01 28.67 <0.01 4.71 0.39 30.66 12.74 0.56 0.38 2.50 17.11 0.09 912673 Rock 0.11 1.83 <0.01 27.43 <0.01 5.00 0.33 31.50 13.64 0.53 0.31 2.51 15.89 0.08 912674 Rock 0.06 0.06 0.04 <0.01 32.69 <0.01 37.1 0.01 41.99 16.20 0.74 0.03 2.53 0.76 <0.01	912664	Rock	0.09	0.13	< 0.01	35.00	< 0.01	3.77	0.03	36.03	13.82	0.59	0.03	8.14	1.09	0.04
912667 Rock 0.24 0.09 <0.01 32.22 <0.01 3.69 0.02 40.91 17.00 0.70 0.04 3.71 0.36 0.03 912668 Rock 0.29 0.06 <0.01 33.98 <0.01 3.89 0.01 39.90 15.23 0.82 0.05 4.09 1.27 0.03 912669 Rock 0.35 0.92 <0.01 31.02 <0.01 4.74 0.06 35.13 15.50 0.62 0.06 3.85 7.28 0.11 912670 Pulp 0.71 0.17 0.02 37.55 <0.01 4.85 0.04 38.05 10.73 0.42 0.09 3.62 3.32 0.13 912671 Rock 0.28 0.35 <0.01 34.84 <0.01 3.53 0.03 37.70 14.16 0.62 0.05 4.87 2.42 0.04 912672 Rock 0.10 1.66 <0.01 28.67 <0.01 4.71 0.39 30.66 12.74 0.56 0.38 2.50 17.11 0.09 912673 Rock 0.11 1.83 <0.01 27.43 <0.01 5.00 0.33 31.50 13.64 0.53 0.31 2.51 15.89 0.08 912674 Rock 0.06 0.06 0.04 <0.01 32.69 <0.01 3.71 0.01 41.99 16.20 0.74 0.03 2.53 0.76 <0.01	912665	Rock	0.60	0.16	< 0.01	35.28	< 0.01	5.28	0.03	37.33	13.10	0.62	0.03	5.59	0.84	0.07
912668 Rock 0.29 0.06 <0.01 33.98 <0.01 3.89 0.01 39.90 15.23 0.82 0.05 4.09 1.27 0.03 912669 Rock 0.35 0.92 <0.01 31.02 <0.01 4.74 0.06 35.13 15.50 0.62 0.06 3.85 7.28 0.11 912670 Pulp 0.71 0.17 0.02 37.55 <0.01 4.85 0.04 38.05 10.73 0.42 0.09 3.62 3.32 0.13 912671 Rock 0.28 0.35 <0.01 34.84 <0.01 3.53 0.03 37.70 14.16 0.62 0.05 4.87 2.42 0.04 912672 Rock 0.10 1.66 <0.01 28.67 <0.01 4.71 0.39 30.66 12.74 0.56 0.38 2.50 17.11 0.09 912673 Rock 0.11 1.83 <0.01 27.43 <0.01 5.00 0.33 31.50 13.64 0.53 0.31 2.51 15.89 0.08 912674 Rock 0.06 0.06 0.04 <0.01 32.69 <0.01 3.71 0.01 41.99 16.20 0.74 0.03 2.53 0.76 <0.01	912666	Rock	1.28	0.38	< 0.01	36.39	< 0.01	4.46	0.03	36.68	13.78	0.59	0.03	5.01	1.54	0.07
912669 Rock 0.35 0.92 <0.01 31.02 <0.01 4.74 0.06 35.13 15.50 0.62 0.06 3.85 7.28 0.11 912670 Pulp 0.71 0.17 0.02 37.55 <0.01 4.85 0.04 38.05 10.73 0.42 0.09 3.62 3.32 0.13 912671 Rock 0.28 0.35 <0.01 34.84 <0.01 3.53 0.03 37.70 14.16 0.62 0.05 4.87 2.42 0.04 912672 Rock 0.10 1.66 <0.01 28.67 <0.01 4.71 0.39 30.66 12.74 0.56 0.38 2.50 17.11 0.09 912673 Rock 0.11 1.83 <0.01 27.43 <0.01 5.00 0.33 31.50 13.64 0.53 0.31 2.51 15.89 0.08 912674 Rock 0.06 0.06 0.04 <0.01 32.69 <0.01 3.71 0.01 41.99 16.20 0.74 0.03 2.53 0.76 <0.01	912667	Rock	0.24	0.09	< 0.01	32.22	< 0.01	3.69	0.02	40.91	17.00	0.70	0.04	3.71	0.36	0.03
912670 Pulp 0.71 0.17 0.02 37.55 <0.01 4.85 0.04 38.05 10.73 0.42 0.09 3.62 3.32 0.13 912671 Rock 0.28 0.35 <0.01 34.84 <0.01 3.53 0.03 37.70 14.16 0.62 0.05 4.87 2.42 0.04 912672 Rock 0.10 1.66 <0.01 28.67 <0.01 4.71 0.39 30.66 12.74 0.56 0.38 2.50 17.11 0.09 912673 Rock 0.11 1.83 <0.01 27.43 <0.01 5.00 0.33 31.50 13.64 0.53 0.31 2.51 15.89 0.08 912674 Rock 0.06 0.06 0.04 <0.01 32.69 <0.01 3.71 0.01 41.99 16.20 0.74 0.03 2.53 0.76 <0.01	912668	Rock	0.29	0.06	< 0.01	33.98	< 0.01	3.89	0.01	39.90	15.23	0.82	0.05	4.09	1.27	0.03
912671 Rock 0.28 0.35 <0.01 34.84 <0.01 3.53 0.03 37.70 14.16 0.62 0.05 4.87 2.42 0.04 912672 Rock 0.10 1.66 <0.01 28.67 <0.01 4.71 0.39 30.66 12.74 0.56 0.38 2.50 17.11 0.09 912673 Rock 0.11 1.83 <0.01 27.43 <0.01 5.00 0.33 31.50 13.64 0.53 0.31 2.51 15.89 0.08 912674 Rock 0.06 0.04 <0.01 32.69 <0.01 3.71 0.01 41.99 16.20 0.74 0.03 2.53 0.76 <0.01	912669	Rock	0.35	0.92	< 0.01	31.02	< 0.01	4.74	0.06	35.13	15.50	0.62	0.06	3.85	7.28	0.11
912672 Rock 0.10 1.66 <0.01	912670	Pulp	0.71	0.17	0.02	37.55	< 0.01	4.85	0.04	38.05	10.73	0.42	0.09	3.62	3.32	0.13
912673 Rock 0.11 1.83 <0.01	912671	Rock	0.28	0.35	< 0.01	34.84	< 0.01	3.53	0.03	37.70	14.16	0.62	0.05	4.87	2.42	0.04
912674 Rock 0.06 0.04 <0.01 32.69 <0.01 3.71 0.01 41.99 16.20 0.74 0.03 2.53 0.76 <0.01	912672	Rock	0.10	1.66	< 0.01	28.67	< 0.01	4.71	0.39	30.66	12.74	0.56	0.38	2.50	17.11	0.09
	912673	Rock	0.11	1.83	< 0.01	27.43	< 0.01	5.00	0.33	31.50	13.64	0.53	0.31	2.51	15.89	0.08
912675 Rock 0.31 0.15 <0.01 33.41 <0.01 4.37 0.02 39.85 15.65 0.79 0.04 3.30 1.17 0.03	912674	Rock	0.06	0.04	< 0.01	32.69	< 0.01	3.71	0.01	41.99	16.20	0.74	0.03	2.53	0.76	< 0.01
712010 ROUR 0.31 0.13 \(\cdot \).01 33.41 \(\cdot \).01 4.31 0.02 37.03 13.03 0.19 0.04 3.30 1.17 0.03	912675	Rock	0.31	0.15	< 0.01	33.41	< 0.01	4.37	0.02	39.85	15.65	0.79	0.04	3.30	1.17	0.03

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		Total	Ag	Al	As	Ba	Bi	Ca	Cd	Co	Cr	Cu	Fe	K	La
C1-	C1-	WR-FS-ICP	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR
Sample Description	Sample Type	% 0.01	ppm 0.5	% 0.01	ppm 5	ppm 10	ppm 2	% 0.01	ppm 0.5	ppm 1	ppm 1	ppm 1	% 0.01	% 0.01	ppm 10
912606	Rock	101.28	<0.5	0.04	8	40	<2	>10	<0.5	4	9	65	2.97	0.02	405
912607	Rock	99.48	< 0.5	0.05	12	38	<2	>10	<0.5	5	8	34	2.73	0.02	504
912608	Rock	101.30	< 0.5	0.12	14	48	<2	>10	< 0.5	11	7	30	3.44	0.06	647
912609	Rock	100.17	< 0.5	0.04	16	38	<2	>10	< 0.5	5	12	25	2.95	0.02	675
912610	Pulp	99.91	< 0.5	0.12	<5	48	<2	>10	< 0.5	4	4	36	3.61	0.03	424
912611	Rock	101.26	< 0.5	0.11	11	39	<2	>10	< 0.5	7	7	28	2.94	0.04	554
912612	Rock	101.17	< 0.5	0.32	<5	228	<2	>10	< 0.5	22	5	167	>10	0.26	478
912613	Rock	101.30	< 0.5	0.26	<5	84	<2	>10	< 0.5	26	6	75	>10	0.22	384
912614	Rock	100.04	< 0.5	8.09	<5	871	<2	3.34	< 0.5	9	94	9	2.65	2.52	30
912615	Rock	99.77	< 0.5	0.10	7	74	<2	>10	< 0.5	9	15	39	4.03	0.03	455
912616	Rock	100.38	< 0.5	0.16	<5	67	<2	>10	< 0.5	7	5	19	7.40	0.16	428
912617	Rock	98.56	< 0.5	0.21	<5	109	<2	>10	< 0.5	24	6	28	>10	0.07	528
912618	Rock	100.13	< 0.5	0.06	<5	50	<2	>10	< 0.5	9	7	15	6.23	< 0.01	400
912619	Rock	98.71	< 0.5	0.04	<5	47	<2	>10	< 0.5	5	6	16	2.97	< 0.01	272
912620 Dup	Rock	98.79	< 0.5	0.03	<5	45	<2	>10	< 0.5	5	6	16	3.02	< 0.01	257
912621	Rock	99.18	< 0.5	0.05	7	34	<2	>10	< 0.5	4	5	27	2.51	< 0.01	445
912622	Rock	99.80	<0.5	0.02	5	45	<2	>10	<0.5	4	5	16	2.36	< 0.01	271
912623	Rock	98.67	<0.5	0.02	<5	39	<2	>10	<0.5	4	6	15	2.32	< 0.01	160
912624	Rock	98.84	<0.5	0.02	<5	39	<2	>10	<0.5	2	6	12	2.34	< 0.01	238
912625	Rock	99.63	<0.5	<0.01	<5	54	<2	>10	<0.5	3	6	4	2.09	< 0.01	183
912626	Rock	98.71	<0.5	0.05	7	54	<2	>10	<0.5	1 9	6 7	12	2.20	< 0.01	336 1840
912627	Rock	98.50	<0.5	0.08 0.04	35	43	<2	>10	<0.5 <0.5	4	6	31 29	4.12	0.01	417
912628 912629	Rock Rock	99.24 98.45	<0.5 <0.5	0.04	6 35	45 36	<2 <2	>10 >10	<0.5 <0.5	5	5	30	3.03 3.42	0.01 0.03	2201
912630	Pulp	98.43	<0.5	0.19	10	185	<2	>10	<0.5	4	4	31	3.42	0.03	471
912631	Rock	98.47	<0.5	0.09	8	40	<2	>10	<0.5	6	7	34	3.19	0.03	522
912632	Rock	98.84	<0.5	0.22	<5	39	<2	>10	<0.5	6	6	38	3.61	< 0.01	395
912633	Rock	99.28	<0.5	0.09	5	35	<2	>10	<0.5	7	5	40	3.39	< 0.01	397
912634	Rock	98.88	<0.5	0.03	<5	37	<2	>10	<0.5	4	6	26	2.89	< 0.01	334
912635	Rock	98.46	< 0.5	0.03	5	28	<2	>10	< 0.5	5	5	54	3.06	< 0.01	297
912636	Rock	99.35	< 0.5	0.07	6	44	<2	>10	< 0.5	12	5	89	5.61	< 0.01	426
912637	Rock	98.49	< 0.5	0.30	<5	35	<2	>10	< 0.5	8	6	30	4.22	0.06	318
912638	Rock	99.30	< 0.5	0.05	<5	39	<2	>10	< 0.5	3	6	24	2.37	< 0.01	333
912639	Rock	98.69	< 0.5	0.04	5	37	<2	>10	< 0.5	5	7	21	2.78	0.01	265
912640 Dup	Rock	98.04	< 0.5	0.04	<5	37	<2	>10	< 0.5	5	6	21	2.72	0.01	274
912641	Rock	98.69	< 0.5	0.08	<5	41	<2	>10	< 0.5	4	5	35	3.92	0.01	263
912642	Rock	98.43	< 0.5	0.13	<5	37	<2	>10	< 0.5	7	5	54	6.93	0.02	369
912643	Rock	99.03	< 0.5	0.09	5	29	<2	>10	< 0.5	12	5	46	5.33	0.02	352
912644	Rock	99.38	< 0.5	0.12	5	25	<2	>10	< 0.5	8	6	39	4.43	< 0.01	336
912645	Rock	98.96	< 0.5	0.23	<5	101	<2	>10	< 0.5	20	6	50	>10	0.09	248

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		Total	Ag	Al	As	Ba	Bi	Ca	Cd	Co	Cr	Cu	Fe	K	La
		WR-FS-ICP	30-4A-TR												
Sample	Sample	%	ppm	%	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%	%	ppm
Description	Type	0.01	0.5	0.01	5	10	2	0.01	0.5	1	1	1	0.01	0.01	10
912646	Rock	98.53	< 0.5	0.16	<5	50	<2	>10	< 0.5	4	6	56	4.07	< 0.01	329
912647	Rock	98.72	< 0.5	0.17	<5	56	<2	>10	< 0.5	4	6	53	3.87	0.07	337
912648	Rock	99.32	< 0.5	0.14	<5	90	<2	>10	< 0.5	12	6	50	7.37	0.02	424
912649	Rock	98.91	< 0.5	0.05	<5	26	<2	>10	< 0.5	6	5	32	3.31	< 0.01	322
912650	Pulp	99.35	< 0.5	0.13	7	50	<2	>10	< 0.5	5	4	32	4.08	0.03	414
912651	Rock	99.26	< 0.5	0.03	<5	43	<2	>10	< 0.5	5	6	19	2.80	< 0.01	338
912652	Rock	98.93	< 0.5	0.09	5	36	<2	>10	< 0.5	3	6	39	2.46	< 0.01	362
912653	Rock	98.22	< 0.5	0.22	6	61	<2	>10	< 0.5	8	7	75	4.71	< 0.01	578
912654	Rock	98.91	< 0.5	0.08	9	35	<2	>10	< 0.5	2	7	36	2.88	< 0.01	582
912655	Rock	98.74	< 0.5	0.03	<5	45	<2	>10	< 0.5	1	6	19	2.09	< 0.01	194
912656	Rock	98.86	< 0.5	1.93	<5	267	<2	>10	< 0.5	10	14	50	4.26	0.83	391
912657	Rock	99.07	< 0.5	0.06	<5	32	<2	>10	< 0.5	6	7	23	3.08	< 0.01	315
912658	Rock	98.72	< 0.5	0.66	<5	49	<2	>10	< 0.5	4	8	18	3.15	0.02	312
912659	Rock	98.93	< 0.5	0.05	6	94	<2	>10	< 0.5	3	7	17	3.05	< 0.01	327
912660 Dup	Rock	99.38	< 0.5	0.05	7	97	<2	>10	< 0.5	4	5	17	3.08	< 0.01	327
912661	Rock	99.15	< 0.5	0.09	18	81	<2	>10	< 0.5	5	7	19	3.51	0.02	901
912662	Rock	99.06	< 0.5	0.06	12	37	<2	>10	< 0.5	8	16	40	3.57	0.02	615
912663	Rock	98.93	< 0.5	0.02	11	46	<2	>10	< 0.5	3	7	13	2.83	< 0.01	761
912664	Rock	98.67	< 0.5	0.07	25	44	<2	>10	< 0.5	5	7	11	2.60	0.04	643
912665	Rock	98.33	< 0.5	0.10	6	56	<2	>10	< 0.5	4	6	40	3.80	0.02	329
912666	Rock	98.99	< 0.5	0.21	16	73	<2	>10	< 0.5	<1	14	77	3.32	0.03	1220
912667	Rock	98.75	< 0.5	0.05	6	42	<2	>10	< 0.5	4	7	19	2.66	0.02	331
912668	Rock	99.33	< 0.5	0.03	<5	46	<2	>10	<0.5	4	8	30	2.97	0.01	335
912669	Rock	99.29	< 0.5	0.52	7	46	<2	>10	< 0.5	6	15	28	3.42	0.06	369
912670	Pulp	99.00	< 0.5	0.09	10	192	<2	>10	< 0.5	2	4	49	3.43	0.03	402
912671	Rock	98.61	< 0.5	0.19	6	42	<2	>10	< 0.5	6	7	22	2.61	0.02	285
912672	Rock	99.48	<0.5	0.95	<5	88	<2	>10	<0.5	7	22	10	3.36	0.35	233
912673	Rock	99.06	<0.5	1.17	6	74	<2	>10	<0.5	7	28	12	3.61	0.28	355
912674	Rock	98.70	<0.5	0.02	5	41	<2	>10	<0.5	4	7	8	2.50	< 0.01	248
912675	Rock	98.78	< 0.5	0.09	<5	50	<2	>10	< 0.5	3	8	23	2.98	0.02	341

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		Mg	Mn	Мо	Na	Ni	P	Pb	Sb	Sc	Sr	Ti	Tl	V	W
C1-	C1-	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR
Sample Description	Sample Type	% 0.01	ppm 5	ppm 1	% 0.01	ppm 1	ppm 10	ppm 2	ppm 5	ppm 1	ppm 1	% 0.01	ppm 10	ppm 1	ppm 10
912606	Rock	9.08	3654	<1	0.01	2	>10000	171	<5	7	2405	0.01	<10	253	<10
912607	Rock	8.95	4776	5	0.02	1	>10000	76	<5	9	3176	< 0.01	<10	260	<10
912608	Rock	8.46	5345	<1	0.02	2	>10000	135	<5	8	3160	0.02	<10	256	<10
912609	Rock	8.75	4899	<1	0.02	2	>10000	110	<5	8	2872	< 0.01	<10	255	<10
912610	Pulp	8.49	3654	6	0.04	2	>10000	180	<5	8	2028	0.04	<10	274	<10
912611	Rock	9.11	4094	<1	0.03	2	>10000	140	<5	6	2614	0.02	<10	268	<10
912612	Rock	3.16	2994	<1	0.05	7	>10000	351	<5	4	2438	0.48	<10	608	<10
912613	Rock	6.43	3620	<1	0.03	4	>10000	148	<5	4	2479	0.28	<10	446	<10
912614	Rock	1.04	758	<1	2.84	6	1107	22	5	5	586	0.34	<10	93	<10
912615	Rock	8.31	4830	2	0.03	4	>10000	189	<5	6	3748	0.06	<10	279	<10
912616	Rock	7.14	3560	<1	0.04	3	>10000	94	<5	4	3729	0.08	<10	321	<10
912617	Rock	4.53	2921	<1	0.05	4	>10000	34	<5	4	2917	0.14	<10	402	<10
912618	Rock	7.92	4278	<1	0.03	2	>10000	68	<5	10	2855	0.04	<10	295	<10
912619	Rock	9.18	5067	1	0.03	1	>10000	90	<5	9	4060	< 0.01	<10	260	<10
912620 Dup	Rock	9.54	5149	1	0.03	2	>10000	86	<5	8	4230	< 0.01	<10	254	<10
912621	Rock	8.75	4030	<1	0.03	2	>10000	149	<5	6	3281	0.01	<10	254	<10
912622	Rock	9.46	4953	2	0.02	1	>10000	75	<5	7	4024	< 0.01	<10	254	<10
912623	Rock	9.41	5291	3	0.02	1	>10000	70	<5	6	4101	< 0.01	<10	252	<10
912624	Rock	>10	5657	5	0.02	1	>10000	65	<5	7	4517	< 0.01	<10	249	<10
912625	Rock	9.82	6077	4	0.03	1	6951	12	<5	6	4304	< 0.01	<10	275	<10
912626	Rock	9.41	5741	<1	0.04	1	>10000	49	<5	7	4147	< 0.01	<10	270	<10
912627	Rock	8.47	5645	19	0.03	3	>10000	159	<5	11	3031	0.02	<10	248	<10
912628	Rock	8.59	5101	2	0.03	2	>10000	166	<5	8	3594	0.01	<10	240	<10
912629	Rock	8.50	5097	2	0.03	2	>10000	149	<5	10	2910	0.01	<10	244	<10
912630	Pulp	6.98	2994	1	0.06	3	>10000	177	<5	9	2277	0.07	<10	254	<10
912631	Rock	8.70	4894	3	0.03	2	>10000	158	<5	7	3429	0.02	<10	234	<10
912632	Rock	9.11	5318	<1	0.03	2	>10000	191	<5	7	4152	0.02	<10	247	<10
912633	Rock	8.92	4355	<1	0.03	2	>10000	195	<5	7	2976	0.02	<10	247	<10
912634	Rock	9.86	5644	<1	0.02	2	>10000	121	<5	6	4483	0.01	<10	253	<10
912635	Rock	9.56	4918	<1	0.02	2	>10000	152	<5	8	3335	0.02	<10	259	<10
912636	Rock	8.17	4283	2	0.03	4	>10000	304	<5	9 7	2829	0.13	<10	295	<10
912637	Rock	8.77	5266	<1	0.02	2	>10000	148	<5	,	3384	0.02	<10	262	<10
912638 912639	Rock	9.16	5588	1	0.03	2	>10000	116	<5 <5	8 7	4526	< 0.01	<10	255	<10
	Rock	9.63	5838 5776	<1	0.03	2 2	>10000	83		7	4969	0.01	<10	262	<10
912640 Dup	Rock	9.30	5776	<1	0.03	2	>10000	88	<5	7	4955 4224	0.01	<10	254	<10
912641 912642	Rock	9.22 8.55	4773 3628	<1	0.03 0.03	4	>10000 >10000	181 291	<5 <5	10	4224 2708	0.02 0.07	<10	276 294	<10 <10
912642	Rock Rock	8.55 8.66	3028	<1	0.03	2		198	<5 <5	10	2708 1565		<10	294 267	<10
912643		8.66 >10	3098 4375	<1 <1	0.03	2	>10000 >10000	198 191	<5 <5	10	1565 2642	0.05 0.04	<10 <10	267	<10 <10
912645	Rock	>10 7.36	4625	<1 <1	0.03	4	>10000	231	<5	6	3497	0.04	<10	346	<10
912645	Rock	7.36	4025	<1	0.03	4	>10000	231	<>>	6	3497	0.19	<10	346	<10

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		Mg	Mn	Mo	Na	Ni	P	Pb	Sb	Sc	Sr	Ti	Tl	V	W
		30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR
Sample	Sample	%	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm
Description	Type	0.01	5	1	0.01	1	10	2	5	1	1	0.01	10	1	10
912646	Rock	9.36	4822	<1	0.03	4	>10000	292	<5	9	3823	0.04	<10	267	<10
912647	Rock	9.37	5527	<1	0.03	3	>10000	299	<5	8	4407	0.05	<10	264	<10
912648	Rock	6.58	4339	2	0.02	4	>10000	262	<5	11	2004	0.13	<10	256	<10
912649	Rock	9.39	3195	<1	0.02	3	>10000	152	<5	10	1635	0.02	<10	261	<10
912650	Pulp	9.10	4053	4	0.05	3	>10000	166	<5	8	2175	0.04	<10	272	<10
912651	Rock	9.43	5247	<1	0.03	2	>10000	93	<5	10	4341	0.01	<10	262	<10
912652	Rock	9.48	4222	<1	0.03	2	>10000	205	<5	7	3990	0.02	<10	248	<10
912653	Rock	7.06	3443	<1	0.04	4	>10000	368	<5	7	3612	0.17	<10	337	<10
912654	Rock	8.83	4487	<1	0.03	2	>10000	178	<5	8	3167	0.03	<10	246	<10
912655	Rock	9.51	4876	<1	0.03	1	>10000	100	<5	6	3289	< 0.01	<10	253	<10
912656	Rock	7.54	3672	2	0.24	10	>10000	182	<5	16	2280	0.34	<10	287	<10
912657	Rock	9.75	4482	<1	0.02	3	>10000	101	<5	6	2573	0.01	<10	263	<10
912658	Rock	9.68	4972	<1	0.03	4	>10000	105	<5	9	3055	0.02	<10	268	<10
912659	Rock	9.03	5912	<1	0.02	2	>10000	100	<5	9	3199	0.01	<10	242	<10
912660 Dup	Rock	9.26	5885	<1	0.02	2	>10000	105	<5	9	3247	0.01	<10	244	<10
912661	Rock	9.01	5254	<1	0.02	3	>10000	99	<5	9	2712	0.02	<10	224	<10
912662	Rock	9.39	4741	<1	0.02	3	>10000	190	<5 	9	2925	0.03	<10	251	<10
912663 912664	Rock	9.26 8.39	5939 4607	<1	0.04 0.03	2 2	>10000 >10000	59 51	<5 <5	8	4089 3099	<0.01 <0.01	<10 <10	233 227	<10
912665	Rock Rock	8.39	4975	<1 <1	0.03	4	>10000	221	<5	9	2586	0.01	<10	235	<10 <10
912666	Rock	7.97	4702	<1	0.02	7	>10000	440	<5	14	1766	0.03	<10	233	<10
912667	Rock	9.55	5572	<1	0.02	3	>10000	98	<5 <5	8	3974	0.03	<10	262	<10
912668	Rock	9.92	6790	<1	0.03	2	>10000	115	<5	9	5299	0.02	<10	253	<10
912669	Rock	8.36	4787	<1	0.04	4	>10000	113	<5	15	3580	0.01	<10	267	<10
912670	Pulp	7.37	3219	1	0.04	3	>10000	271	<5	9	2393	0.03	<10	266	<10
912671	Rock	9.14	5042	<1	0.04	2	>10000	116	<5	9	4106	0.08	<10	256	<10
912672	Rock	8.60	4523	<1	0.04	6	>10000	54	<5	15	3271	0.02	<10	286	<10
912673	Rock	8.78	4353	2	0.29	4	>10000	50	<5	15	2696	0.03	<10	269	<10
912674	Rock	9.52	5794	1	0.02	2	>10000	44	<5	8	3810	< 0.04	<10	273	<10
912675	Rock	9.24	6083	2	0.02	2	>10000	142	<5	6	4222	0.02	<10	268	<10

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

			Zn	Zr	Ce	Dy DEE LD MG	Er	Eu	Gd	Hf	Ho	La	Lu	Nd PEE I P MG	Pr	Sm
	Sample	Sample	30-4A-TR ppm	30-4A-1R ppm	REE-LB-MS ppm	REE-LB-MS ppm	ppm	REE-LB-MS ppm	ppm	REE-LB-MS ppm	ppm	ppm		REE-LB-MS ppm	ppm	
	ription	Type	рріп 2	ррш 1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	ppm 0.1	0.1	0.1	ppm 0.1
	12606	Rock	21	39	779.8	23.1	11.1	12.9	44.9	1.1	3.9	389.9	0.7	293.4	81.6	46.6
	12607	Rock	21	20	944.9	18.6	7.8	11.8	45.6	1.1	2.5	492.3	0.5	324.7	95.2	50.5
9	12608	Rock	22	32	>1000	17.9	7.5	12.6	43.1	1.9	2.6	622.0	0.5	325.8	98.3	43.1
9	12609	Rock	21	28	>1000	16.9	7.4	11.5	45.1	1.4	2.5	685.2	0.5	339.7	103.2	42.8
9	12610	Pulp	25	35	794.5	22.3	8.9	13.8	47.6	2.4	3.4	404.5	0.6	298.9	86.1	49.1
9	12611	Rock	17	23	941.5	16.9	7.2	11.8	39.3	1.0	2.5	546.7	0.5	293.6	88.7	42.2
9	12612	Rock	138	97	920.2	20.0	7.4	15.3	52.6	15.3	2.7	421.7	0.4	371.2	101.7	57.4
9	12613	Rock	79	44	789.2	18.6	7.1	12.8	42.0	8.4	2.6	381.0	0.5	315.4	86.1	48.2
9	12614	Rock	59	8	73.4	3.2	1.9	1.6	4.7	2.4	0.6	40.6	0.3	27.4	8.0	5.1
9	12615	Rock	24	34	924.7	25.8	10.5	17.8	58.6	3.6	3.9	425.2	0.6	386.2	106.9	67.2
9	12616	Rock	49	48	872.5	20.2	7.6	14.5	49.8	7.3	2.8	395.4	0.4	346.6	92.7	52.9
9	12617	Rock	68	86	>1000	29.4	11.5	20.7	69.8	33.0	4.2	512.3	0.7	478.6	132.1	75.9
	12618	Rock	43	52	777.3	16.6	7.2	11.6	41.1	4.6	2.6	398.2	0.5	280.5	80.7	43.5
9	12619	Rock	26	16	516.9	12.5	5.2	8.8	30.7	1.4	1.8	251.4	0.4	223.5	60.8	34.6
91262	20 Dup	Rock	25	15	526.8	12.8	5.0	8.8	29.4	1.1	1.8	243.9	0.3	211.0	60.9	34.1
	12621	Rock	18	28	838.0	16.4	6.8	12.5	45.3	0.7	2.5	413.6	0.4	337.8	94.6	
	12622	Rock	22	17	504.5	12.8	5.1	8.4	31.0	1.0	1.9	251.6	0.3	207.6	57.3	34.3
	12623	Rock	24	18	295.9	14.2	5.9	6.8	25.0	1.0	2.2	136.3	0.3	143.0	37.4	23.9
	12624	Rock	24	16	429.8	17.3	7.6	8.9	30.1	0.7	2.8	212.7	0.4	199.2	50.3	35.4
	12625	Rock	25	7	330.6	9.3	4.1	5.1	19.5	0.1	1.5	165.5	0.3	138.1	36.6	22.7
	12626	Rock	28	28	605.2	35.0	15.9	13.2	49.2	1.1	6.3	305.4	1.1	284.9	78.6	46.8
	12627	Rock	33	46	>1000	49.3	23.0	29.2	127.6	2.5	7.7	>1000	1.3	>1000	300.2	138.4
	12628	Rock	28	63	772.8	40.5	18.9	17.8	59.1	1.8	6.9	380.9	1.3	359.6	98.6	58.1
	12629	Rock	33	49	>1000	41.0	17.9	30.7	119.6	1.9	5.9	>1000	1.1	>1000	297.7	131.5
	012630	Pulp	16	38	817.3	23.9	10.8	15.5	54.4	0.8	3.8	396.6	0.9	358.7	101.4	56.5
	12631	Rock	27	78	944.1	46.4	21.5	19.5	66.7	2.3	7.9	481.5	1.5	419.0	114.6	65.6
	12632	Rock	25	47	772.7	20.9	8.9	15.0	50.3	2.2	3.2	369.4	0.5	357.6	98.0	52.8
	12633	Rock	27	65	685.0	22.8	9.2	13.7	44.9	1.8	3.4	321.6	0.7	302.7	81.9	46.6
	12634	Rock	25	34	586.9	16.3	7.5	9.6	33.7	2.9	2.6	295.5	0.5	223.2	61.7	34.1
	012635	Rock	22	39	580.6	17.6	7.8	10.8	37.7	1.1	2.8	280.2	0.5	260.6	70.8	38.6
	12636	Rock	31	103	584.5	16.5	7.2	11.0	35.7	1.0	2.6	279.7	0.5	240.6	65.5	36.7
	12637	Rock	27 20	50	830.9	36.5 19.1	17.7 9.0	16.8	56.3 37.9	6.2 0.6	6.4	385.9 314.3	1.2 0.6	348.1	96.1	56.3 39.1
	012638 012639	Rock Rock	20 21	27 12	673.7 507.8	19.1	9.0 6.5	10.3 9.4	37.9	1.0	3.2 2.4	226.9	0.6	285.2 233.2	74.4 63.8	34.4
	12039 10 Dup	Rock	23	13	517.3	17.2	7.1	9.4	35.5	1.0	2.4	236.5	0.4	233.2	64.1	35.8
	12641	Rock	23	45	517.3	17.2	6.5	10.2	35.3	1.2	2.7	230.5	0.4	240.9	61.1	35.8
	12641	Rock	30	45 59	747.2	26.2	11.2	15.9	50.7	6.5	4.1	348.5	0.4	337.3	89.5	52.5
	12642	Rock	23	45	747.2	34.3	16.2	14.2	51.3	3.9	6.1	330.4	1.2	314.9	82.3	48.0
	012644	Rock	19	43	647.8	33.0	15.4	14.2	47.6	1.3	5.8	308.1	1.2	296.1	75.7	46.3
	012645	Rock	59	42	575.2	17.7	7.2	11.9	37.5	4.6	2.5	249.8	0.5	243.7	65.4	38.8
9	12043	KOCK	39	42	3/3.2	1/./	1.2	11.9	31.3	4.0	2.5	249.8	0.5	243.7	05.4	38.8

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		Zn	Zr	Ce	Dy	Er	Eu	Gd	Hf	Но	La	Lu	Nd	Pr	Sm
		30-4A-TR	30-4A-TR	REE-LB-MS											
Sample	Sample	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Description	Type	2	1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
912646	Rock	17	38	726.5	29.6	11.7	17.4	53.2	1.2	4.8	312.1	0.7	307.1	83.1	50.1
912647	Rock	24	29	683.7	22.2	8.7	13.5	46.6	0.7	3.2	309.6	0.6	303.3	79.1	46.8
912648	Rock	30	49	807.3	38.8	17.3	15.8	55.6	5.7	6.5	391.7	1.4	313.1	92.5	52.9
912649	Rock	14	48	622.1	30.8	14.7	11.7	42.3	1.2	5.4	301.2	1.2	275.3	68.6	41.9
912650	Pulp	26	32	874.0	22.8	9.2	15.0	57.3	1.4	3.3	482.8	0.7	379.9	109.1	57.3
912651	Rock	24	15	624.7	17.1	6.6	9.8	38.1	1.6	2.4	301.4	0.4	272.1	76.8	
912652	Rock	22	42	690.3	25.9	11.4	13.5	47.6	0.8	4.3	307.2	0.8	315.0	81.9	47.7
912653	Rock	25	57	>1000	60.9	27.2	29.6	94.9	7.1	10.7	521.2	1.8	553.0	139.3	90.4
912654	Rock	25	49	>1000	26.9	11.7	15.8	57.8	1.0	4.1	541.8	0.8	376.1	113.4	57.1
912655	Rock	28	43	339.7	17.0	8.0	7.7	28.7	0.9	3.0	167.6	0.6	173.5	45.6	
912656	Rock	61	101	631.8	21.8	10.4	11.1	40.5	8.6	3.6	347.9	0.7	273.4	75.5	40.1
912657	Rock	25	31	528.2	15.5	6.7	8.6	31.6	1.2	2.4	293.5	0.5	206.5	59.0	
912658	Rock	29	43	571.2	21.0	9.5	10.9	39.5	1.1	3.3	279.0	0.7	253.1	71.9	
912659	Rock	28	50	620.5	20.4	8.9	11.2	38.2	1.4	3.2	299.3	0.6	262.5	75.4	40.1
912660 Dup	Rock	28	53	604.0	19.4	7.8	10.2	38.3	1.5	3.0	297.2	0.6	245.6	71.3	39.8
912661	Rock	31	87	>1000	27.2	11.7	17.3	64.3	3.4	4.2	854.6	0.9	458.9	140.6	
912662	Rock	26	65	>1000	51.2	23.5	24.4	83.8	1.5	8.8	537.9	1.8	490.3	129.9	79.6
912663	Rock	29	49	>1000	36.9	16.8	21.4	85.8	1.4	5.8	744.3	1.1	626.6	169.4	90.9
912664	Rock	28	77	>1000	27.8	12.2	18.0	69.2	3.0	4.1	607.2	1.0	499.7	141.0	74.9
912665	Rock	28	65	642.2	24.1	10.7	14.5	46.0	1.7	3.9	290.2	0.8	282.6	73.2	
912666	Rock	30	95	>1000	36.9	15.0	29.9	103.7	0.9	5.2	883.6	0.9	770.7	211.3	117.9
912667	Rock	24	25	664.0	18.5	7.6	11.6	41.0	1.4	2.8	292.5	0.5	262.2	73.0	
912668	Rock	25	11	683.7	15.6	6.0	10.8	40.3	1.0	2.2	303.0	0.3	279.2	74.4	42.6
912669	Rock	27	20	787.5	18.8	7.6	13.4	45.3	1.0	2.7	361.0	0.5	328.4	84.7	48.7
912670	Pulp	15	42	948.0	25.0	10.7	15.3	56.3	0.8	4.0	433.4	0.9	365.8	99.1	58.2
912671	Rock	22	24	630.5	18.8	7.9	11.2	37.6	0.8	2.8	291.7	0.6	244.7	67.7	40.1
912672	Rock	40	57	432.1	13.6	5.8	7.7	29.3	5.1	2.1	207.8	0.4	205.7	52.9	29.5
912673	Rock	37	46	707.7	17.2	7.7	10.1	39.1	2.6	2.7	342.0	0.6	280.2	75.1	40.0
912674	Rock	26	20	468.1	16.9	7.7	6.9	27.4	1.2	2.8	239.2	0.5	188.5	49.2	
912675	Rock	26	22	721.4	21.4	9.0	12.5	45.9	1.0	3.4	325.9	0.5	295.2	83.6	45.8

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		Tb	Tm	Yb	Y	Ta	Th	U
				REE-LB-MS		Ta-4A-LL-MS		U-4A-LL-MS
Sample	Sample	ppm	ppm	ppm	ppm	ppm	ppm	
Description	Туре	0.1	0.1	0.1	0.10	0.05	0.20	
912606	Rock	4.9	1.2	6.4	91.4	7.92	159.65	3.45
912607	Rock	4.3	0.8	4.1	67.7	2.60	130.02	1.60
912608	Rock	4.0	0.8	4.3	68.5	14.97	136.38	4.23
912609	Rock	3.9	0.8	4.2	65.7	6.24	125.57	2.57
912610	Pulp	5.1	1.0	5.5	79.0	22.21	136.59	7.34
912611	Rock	3.7	0.7	4.1	71.4	16.34	126.22	2.78
912612	Rock	5.1	0.7	3.9	68.4	11.65	274.42	7.49
912613	Rock	4.2	0.7	4.2	68.1	1.94	154.47	4.99
912614	Rock	0.6	0.3	1.9	17.6	2.05	8.01	2.80
912615	Rock	5.7	1.0	5.1	93.8	8.16	172.55	4.72
912616	Rock	4.9	0.8	3.9	80.0	0.98	100.74	1.67
912617	Rock	7.0	1.1	6.3	104.1	0.54	178.89	10.67
912618	Rock	3.8	0.7	4.1	65.9	0.50	171.64	3.33
912619	Rock	2.9	0.5	2.8	45.8	3.42	74.61	1.50
912620 Dup	Rock	3.0	0.5	2.6	46.1	3.13	73.73	1.29
912621	Rock	4.2	0.7	3.7	57.9	6.26	81.07	
912622	Rock	3.1	0.5	2.8	48.0	2.13	76.66	
912623	Rock	2.9	0.6	3.0	58.0	1.44	94.02	
912624	Rock	3.4	0.9	4.0	78.0	1.80	98.43	1.07
912625	Rock	2.0	0.5	2.2	37.7	0.25	64.25	0.41
912626	Rock	6.3	1.8	9.4	154.3	3.59	153.76	1.53
912627	Rock	11.1	2.3	11.6	192.3	6.74	241.68	2.73
912628	Rock	7.7	2.1	10.8	183.6	11.33	268.29	3.60
912629	Rock	10.3	1.7	8.4	149.0	7.72	253.96	3.60
912630	Pulp	5.7	1.2	6.8	91.4	4.68	206.34	2.14
912631	Rock	8.2	2.5	13.0	194.4	23.97	317.53	9.86
912632	Rock	5.0	0.9	4.8	77.9	13.03	200.96	4.12
912633	Rock	5.0	1.0	5.7	87.8	48.13	253.17	7.61
912634	Rock	3.6	0.8	4.4	74.6	3.96	132.99	1.92
912635	Rock	3.8	0.8	4.4	69.7	7.24	146.55	1.93
912636	Rock	3.8	0.8	4.5	70.0	19.24	413.54	5.34
912637	Rock	6.8	2.0	10.2	156.6	7.65	175.57	3.51
912638	Rock	4.1	1.0	4.6	86.8	4.36	131.99	1.56
912639	Rock	3.6	0.7	3.3	59.5	2.31	48.91	0.89
912640 Dup	Rock	3.7	0.7	3.4	57.1	2.62	50.72	1.01
912641	Rock	3.5	0.7	3.4	58.1	5.92	110.64	1.67
912642	Rock	5.5	1.2	6.5	102.0	5.67	261.89	3.62
912643	Rock	6.1	1.8	10.0	137.9	3.71	214.10	2.59
912644	Rock	6.2	1.8	9.4	147.9	4.64	187.26	2.22
912645	Rock	3.8	0.7	4.0	64.1	7.86	91.06	4.61

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		Tb	Tm	Yb	Y	Ta	Th	U
			REE-LB-MS			Ta-4A-LL-MS		U-4A-LL-MS
Sample	Sample	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Description	Type	0.1	0.1	0.1	0.10	0.05	0.20	0.10
912646	Rock	6.2	1.2	6.0	113.0	4.98	120.03	2.05
912647	Rock	4.9	0.9	4.6	78.9	5.29	99.77	1.81
912648	Rock	6.8	2.0	10.6	156.5	1.81	223.14	4.11
912649	Rock	5.4	1.7	9.6	126.9	4.05	154.40	1.94
912650	Pulp	5.4	1.0	5.5	72.4	20.74	139.93	7.55
912651	Rock	3.8	0.7	3.5	52.8	1.17	66.86	1.62
912652	Rock	5.3	1.3	6.4	104.6	5.04	110.25	2.97
912653	Rock	11.1	3.0	15.4	261.7	11.39	204.06	12.91
912654	Rock	6.0	1.2	6.6	107.6	2.88	157.47	4.82
912655	Rock	3.2	0.9	5.0	63.1	1.35	88.93	2.25
912656	Rock	4.2	1.2	6.0	86.1	6.33	88.45	3.14
912657	Rock	3.4	0.7	4.3	63.4	16.19	97.75	5.20
912658	Rock	4.4	1.0	5.6	74.3	17.61	150.17	6.24
912659	Rock	4.3	0.9	5.0	71.4	30.05	137.20	6.04
912660 Dup	Rock	4.0	0.9	5.1	67.8	31.22	144.88	6.49
912661	Rock	6.1	1.2	6.6	104.1	57.44	188.82	8.68
912662	Rock	10.0	2.6	14.6	218.9	5.53	159.79	5.59
912663	Rock	8.2	1.9	9.9	150.2	0.68	271.60	2.78
912664	Rock	6.8	1.4	7.4	99.4	4.33	262.20	4.68
912665	Rock	5.0	1.2	6.8	94.2	9.85	166.48	8.70
912666	Rock	9.2	1.5	8.0	131.5	41.88	369.98	30.57
912667	Rock	4.2	0.8	4.2	66.3	12.95	97.69	5.88
912668	Rock	3.6	0.6	2.8	51.8	1.98	58.83	2.08
912669	Rock	4.4	0.8	4.0	68.4	17.39	105.99	8.03
912670	Pulp	5.6	1.2	6.6	96.7	46.55	190.28	2.16
912671	Rock	3.9	0.9	4.9	77.0	5.70	91.87	5.11
912672	Rock	3.0	0.7	3.4	50.2	2.32	42.42	2.91
912673	Rock	3.8	0.9	4.5	69.1	6.53	63.06	3.99
912674	Rock	3.1	0.8	4.0	71.5	1.64	137.10	1.84
912675	Rock	4.6	1.0	4.7	79.7	33.82	122.28	26.62

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		Nb2O5	A12O3	BaO	CaO	Cr2O3	Fe2O3	K2O	LOI	MgO	MnO	Na2O	P2O5	SiO2	TiO2
Commis	Comm10	Nb2O5-AD3-OR-ICP	WR-FS-ICP %	WR-FS-ICP %	WR-FS-ICP %	WR-FS-ICP %	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP %	WR-FS-ICP %	WR-FS-ICP %	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP
Sample Description	Sample Type	% 0.01	0.01	0.01	0.01	0.01	% 0.01	% 0.01	0.01	0.01	0.01	0.01	% 0.01	% 0.01	0.01
912606	Rock	0.40	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
912606 Dup	ROCK	0.40													
QCV1011-00577-0002-BLK		< 0.01													
STD-OKA-1 expected		0.53													
STD-OKA-1 expected STD-OKA-1 result		0.56													
912624	Rock	0.16													
912624 Dup	NOCK	0.16													
QCV1011-00577-0005-BLK		<0.01													
STD-OKA-1 expected		0.53													
STD-OKA-1 result		0.55													
912642	Rock	0.88													
912642 Dup	ROCK	0.87													
QCV1011-00577-0008-BLK		< 0.01													
STD-OKA-1 expected		0.53													
STD-OKA-1 result		0.56													
912660 Dup	Rock	0.26													
912660 Dup Dup	110011	0.26													
QCV1011-00577-0011-BLK		< 0.01													
STD-OKA-1 expected		0.53													
STD-OKA-1 result		0.51													
QCV1011-00577-0013-BLK		< 0.01													
STD-OKA-1 expected		0.53													
STD-OKA-1 result		0.56													
912606	Rock		0.08	< 0.01	35.86	< 0.01	4.42	0.02	39.76	15.25	0.56	0.03	4.55	0.69	0.04
912606 Dup			0.09	< 0.01	34.69	< 0.01	4.31	0.02	39.90	15.42	0.55	0.03	4.49	0.68	0.04
QCV1011-00580-0002-BLK			< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
912624	Rock		0.05	< 0.01	33.94	< 0.01	3.61	< 0.01	41.80	15.00	0.77	0.03	3.16	0.44	0.01
912624 Dup			0.04	< 0.01	33.94	< 0.01	3.58	< 0.01	41.84	14.91	0.77	0.03	3.17	0.49	0.01
QCV1011-00580-0005-BLK			< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
912642	Rock		0.29	< 0.01	32.58	< 0.01	9.95	0.01	35.28	13.24	0.47	0.05	5.52	0.86	0.19
912642 Dup			0.30	0.01	31.87	0.02	10.19	0.09	35.34	13.75	0.49	0.06	5.58	0.91	0.20
QCV1011-00580-0008-BLK			< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
912660 Dup	Rock		0.13	0.02	35.02	0.01	4.20	0.05	40.04	14.59	0.76	0.04	4.01	0.48	0.03
912660 Dup Dup			0.11	0.01	34.99	< 0.01	4.18	0.05	40.04	14.54	0.74	0.04	3.98	0.44	0.03
QCV1011-00580-0011-BLK			< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
QCV1011-00580-0013-BLK			< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
STD-SY-4 expected			20.69		8.05		6.21	1.66	4.56	0.54	0.11	7.10	0.13	49.90	0.29
STD-SY-4 result			20.74	0.05	8.09	0.01	6.25	1.65	4.54	0.54	0.12	6.93	0.15	50.06	0.31

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		Total	Ag	Al	As	Ba	Bi	Ca	Cd	Со	Cr	Cu	Fe	K	La
C1-	C1-	WR-FS-ICP	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR
Sample Description	Sample Type	% 0.01	ppm 0.5	% 0.01	ppm 5	ppm 10	ppm 2	% 0.01	ppm 0.5	ppm 1	ppm 1	ppm 1	% 0.01	% 0.01	ppm 10
912606	Rock	0.01	<0.5	0.04	8	40	<2	>10	<0.5	4	9	65	2.97	0.02	405
912606 Dup			< 0.5	0.05	10	39	<2	>10	< 0.5	4	9	62	3.02	0.02	415
QCV1011-00578-0002-BLK			< 0.5	< 0.01	<5	<10	<2	< 0.01	< 0.5	<1	<1	<1	< 0.01	< 0.01	<10
STD-CDN-ME-6 expected			101.0									6130			
STD-CDN-ME-6 result			97.4									6133	5.66	1.34	
912624	Rock		< 0.5	0.02	<5	39	<2	>10	< 0.5	2	6	12	2.34	< 0.01	238
912624 Dup QCV1011-00578-0005-BLK			<0.5	0.02	<5	40	<2	>10	<0.5	3	5	14	2.35	<0.01	236
STD-CDN-ME-6 expected			<0.5 101.0	< 0.01	<5	<10	<2	< 0.01	< 0.5	<1	<1	<1 6130	< 0.01	< 0.01	<10
STD-CDN-ME-6 expected			97.1									6535	6.23	1.34	
912642	Rock		<0.5	0.13	<5	37	<2	>10	< 0.5	7	5	54	6.93	0.02	369
912642 Dup			< 0.5	0.13	<5	37	<2	>10	<0.5	8	5	55	7.06	0.02	361
QCV1011-00578-0008-BLK			< 0.5	< 0.01	<5	<10	<2	< 0.01	< 0.5	<1	<1	<1	< 0.01	< 0.01	<10
STD-CDN-ME-6 expected															
STD-CDN-ME-6 result													6.00	1.37	
912660 Dup	Rock		< 0.5	0.05	7	97	<2	>10	< 0.5	4	5	17	3.08	< 0.01	327
912660 Dup Dup			< 0.5	0.04	8	95	<2	>10	< 0.5	3	6	17	3.02	< 0.01	337
QCV1011-00578-0011-BLK			<0.5 0.3	< 0.01	<5	<10	<2	< 0.01	< 0.5	<1 122	<1 1103	<1 749	< 0.01	< 0.01	<10
STD-OREAS-45P-4A expected STD-OREAS-45P-4A result			<0.5							122	103	690	>10	0.34	
OCV1011-00578-0013-BLK			<0.5	< 0.01	<5	<10	<2	< 0.01	<0.5	<1	<1	<1	< 0.01	< 0.01	<10
STD-OREAS-45P-4A expected			0.3	₹0.01	\(\)	<10	\ <u>2</u>	₹0.01	₹0.5	122	1103	749	₹0.01	₹0.01	<10
STD-OREAS-45P-4A result			< 0.5							123	1151	708	>10	0.34	
912606	Rock	101.28													
912606 Dup		100.23													
QCV1011-00580-0002-BLK		< 0.01													
912624	Rock	98.84													
912624 Dup		98.78													
QCV1011-00580-0005-BLK 912642	Rock	<0.01 98.43													
912642 Dup	ROCK	98.43 98.80													
OCV1011-00580-0008-BLK		< 0.01													
912660 Dup	Rock	99.38													
912660 Dup Dup		99.15													
QCV1011-00580-0011-BLK		< 0.01													
QCV1011-00580-0013-BLK		< 0.01													
STD-SY-4 expected															
STD-SY-4 result		99.47													

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		Mg	Mn	Mo	Na	Ni	P	Pb	Sb	Sc	Sr	Ti	Tl	V	W
		30-4A-TR													
Sample	Sample	%	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm
Description	Type	0.01	5	1	0.01	1	10	2	5	1	1	0.01	10	1	10
912606	Rock	9.08	3654	<1	0.03	2	>10000	171	<5	7	2405	0.01	<10	253	<10
912606 Dup		8.94	3672	<1	0.03	2	>10000	171	<5	7	2420	0.02	<10	263	<10
QCV1011-00578-0002-BLK		< 0.01	<5	<1	< 0.01	<1	<10	<2	<5	<1	<1	< 0.01	<10	<1	<10
STD-CDN-ME-6 expected								10200							
STD-CDN-ME-6 result		1.31	1783					9857							
912624	Rock	>10	5657	5	0.02	1	>10000	65	<5	7	4517	< 0.01	<10	249	<10
912624 Dup		9.55	5648	5	0.02	1	>10000	64	<5	7	4456	< 0.01	<10	263	<10
QCV1011-00578-0005-BLK		< 0.01	<5	<1	< 0.01	<1	<10	<2	<5	<1	<1	< 0.01	<10	<1	<10
STD-CDN-ME-6 expected								10200							
STD-CDN-ME-6 result		1.34	1976					>10000							
912642	Rock	8.55	3628	<1	0.03	4	>10000	291	<5	10	2708	0.07	<10	294	<10
912642 Dup		8.50	3656	<1	0.03	3	>10000	289	<5	10	2746	0.07	<10	300	<10
QCV1011-00578-0008-BLK		< 0.01	<5	<1	< 0.01	<1	<10	<2	<5	<1	<1	< 0.01	<10	<1	<10
STD-CDN-ME-6 expected															
STD-CDN-ME-6 result		1.32	1887												
912660 Dup	Rock	9.26	5885	<1	0.02	2	>10000	105	<5	9	3247	0.01	<10	244	<10
912660 Dup Dup		9.13	5837	<1	0.02	3	>10000	93	<5	9	3220	0.01	<10	241	<10
QCV1011-00578-0011-BLK		< 0.01	<5	<1	< 0.01	<1	<10	<2	<5	<1	<1	< 0.01	<10	<1	<10
ΓD-OREAS-45P-4A expected					0.08	385	454	22							
STD-OREAS-45P-4A result		0.26	1363		0.08	374	452	21							
QCV1011-00578-0013-BLK		< 0.01	<5	<1	< 0.01	<1	<10	<2	<5	<1	<1	< 0.01	<10	<1	<10
ΓD-OREAS-45P-4A expected					0.08	385	454	22							
STD-OREAS-45P-4A result		0.28	1518		0.08	376	456	22							

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		Zn	Zr	Ce	Dy	Er	Eu	Gd	Hf	Но	La	Lu	Nd	Pr	Sm
		30-4A-TR			REE-LB-MS				REE-LB-MS				REE-LB-MS		
Sample	Sample	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Description	Туре	2	1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
912606	Rock	21	39												
912606 Dup QCV1011-00578-0002-BLK		21	42												
STD-CDN-ME-6 expected		<2 5170	<1												
STD-CDN-ME-6 expected STD-CDN-ME-6 result		5106													
912624	Rock	24	16												
912624 912624 Dup	ROCK	24 24	16 16												
OCV1011-00578-0005-BLK		<2	<1												
STD-CDN-ME-6 expected		5170	<1												
STD-CDN-ME-6 result		5397													
912642	Rock	30	59												
912642 Dup	ROCK	30	56												
OCV1011-00578-0008-BLK		<2	<1												
912660 Dup	Rock	28	53												
912660 Dup Dup	House	27	52												
QCV1011-00578-0011-BLK		<2	<1												
STD-OREAS-45P-4A expected		142													
STD-OREAS-45P-4A result		148													
QCV1011-00578-0013-BLK		<2	<1												
STD-OREAS-45P-4A expected		142													
STD-OREAS-45P-4A result		148													
QCV1011-00581-0001-BLK				< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
912606	Rock			779.8	23.1	11.1	12.9	44.9	1.1	3.9	389.9	0.7	293.4	81.6	46.6
912606 Dup				802.9	23.7	10.7	12.5	43.9	1.1	3.8	398.7	0.8	283.4	81.3	44.8
912624	Rock			429.8	17.3	7.6	8.9	30.1	0.7	2.8	212.7	0.4	199.2	50.3	35.4
912624 Dup				427.7	18.6	8.0	9.0	33.4	1.1	3.1	203.7	0.5	199.9	54.3	36.6
912642	Rock			747.2	26.2	11.2	15.9	50.7	6.5	4.1	348.5	0.8	337.3	89.5	52.5
912642 Dup				716.5	26.2	11.7	15.5	52.8	6.8	4.1	338.6	0.8	336.5	88.7	50.7
912660 Dup	Rock			604.0	19.4	7.8	10.2	38.3	1.5	3.0	297.2	0.6	245.6	71.3	39.8
912660 Dup Dup				633.8	18.6	8.5	10.3	38.0	1.6	3.0	298.4	0.6	256.4	71.2	39.3
QCV1011-00581-0010-BLK				< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
STD-SY-4 expected				122.0	18.2	14.2	2.0	14.0	10.6	4.3	58.0	2.1	57.0	15.0	12.7
STD-SY-4 result				123.3	18.8	13.7	1.9	14.8	11.0	4.3	57.0	2.1	55.8	14.0	13.0

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		Tb	Tm	Yb	Y	Ta	Th	U
		REE-LB-MS	REE-LB-MS	REE-LB-MS	REE-LB-MS	Ta-4A-LL-MS	Th-4A-LL-MS	J-4A-LL-MS
Sample	Sample	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Description	Type	0.1	0.1	0.1	0.10	0.05	0.20	0.10
QCV1011-00581-0001-BLK		< 0.1	< 0.1	< 0.1	< 0.10			
912606	Rock	4.9	1.2	6.4	91.4			
912606 Dup		4.8	1.2	6.5	97.9			
912624	Rock	3.4	0.9	4.0	78.0			
912624 Dup		3.7	0.9	4.5	78.2			
912642	Rock	5.5	1.2	6.5	102.0			
912642 Dup		5.3	1.3	6.8	98.5			
912660 Dup	Rock	4.0	0.9	5.1	67.8			
912660 Dup Dup		4.1	0.9	4.9	71.4			
QCV1011-00581-0010-BLK		< 0.1	< 0.1	< 0.1	< 0.10			
STD-SY-4 expected		2.6	2.3	14.8	119.0			
STD-SY-4 result		2.6	2.4	15.1	118.8			
912606	Rock					7.92	159.65	3.45
912606 Dup						7.39	174.43	3.69
QCV1105-00535-0002-BLK						< 0.05	< 0.20	< 0.10
912624	Rock					1.80	98.43	1.07
912624 Dup						1.77	103.60	1.14
QCV1105-00535-0005-BLK						< 0.05	< 0.20	< 0.10
912642	Rock					5.67	261.89	3.62
912642 Dup						5.85	245.98	3.64
QCV1105-00535-0008-BLK						< 0.05	< 0.20	< 0.10
912660 Dup	Rock					31.22	144.88	6.49
912660 Dup Dup						30.15	138.54	6.22
QCV1105-00535-0011-BLK						< 0.05	< 0.20	< 0.10
QCV1105-00535-0013-BLK						< 0.05	< 0.20	< 0.10

Certificate of Analysis

Inspectorate Exploration & Mining Services Ltd. #200 - 11620 Horseshoe Way

Date Received: 11/17/2010

Date Completed: 05/06/2011

Invoice:

Richmond, British Columbia V7A 4V5 Canada

Phone: 604-272-7818

Distribution List

Attention: Eric Titley

Suite 1020-800 West Pender St.

Vancouver, BC V6C 2V6

EMail: erictitley@hdimining.com

Attention: Jeremy Crozier

EMail: jeremycrozier@hdimining.com

Attention: T.Kodata

EMail: tkodata@hdimining.com

Submitted By: Aley Corporation

Suite 1020-800 West Pender St.

Vancouver, BC V6C 2V6

Attention: Eric Titley

Project: Aley 2010 Project

Purchase Order: **ALY 0002**Description: **Aley 2010-032**

LocationSamplesTypePreparation DescriptionVancouver, BC3PulpSP-PU/Pulp Handling, submitted pulpsVancouver, BC67RockSP-RX-2K/Rock/Chips/Drill Core

Location	Method	Description
Vancouver, BC	Ta-4A-LL-MS	Tantalum, 4 Acid, ICP
Vancouver, BC	REE-LB-MS	REE Group by ICP-MS
Vancouver, BC	U-4A-LL-MS	Uraium, 4 Acid, Low Level
Vancouver, BC	Nb2O5-AD3-OR-ICP	Niobium by multi-acid digestion, ICP
Vancouver, BC	Th-4A-LL-MS	Thorium, 4 Acid, Low Level
Vancouver, BC	WR-FS-ICP	Whole Rock, Lithium Borate Fusion, ICP
Vancouver, BC	30-4A-TR	30 Element, 4 Acid, ICP, Trace Level

Submittal Information

Ta, Th, and U results shown have been revised with accurate detection limits.

The results of this assay were based solely upon the content of the sample submitted. Any decision to invest should be made only after the potential investment value of the claim or deposit has been determined based on the results of assays of multiple samples of geologic materials collected by the prospective investor or by a qualified person selected by him and based on an evaluation of all engineering data which is available concerning any proposed project. For our complete terms and conditions please see our website at www.inspectorate.com.

Βı

Mike Caron, Lab Manager

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		Nb2O5	A12O3	BaO	CaO	Cr2O3	Fe2O3	K2O	LOI	MgO	MnO	Na2O	P2O5	SiO2	TiO2
	~ .	Nb2O5-AD3-OR-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP
Sample	Sample	%	%	%	%	%	%	%	%	%	%	%	%	%	%
Description 912676	Type Rock	0.01	0.01	<0.01	0.01 34.48	<0.01	0.01 5.64	0.01	38.41	0.01	0.01	0.01	0.01 4.61	0.01	0.01
912677	Rock	0.56	0.22	< 0.01	34.48	< 0.01	3.04 4.41	0.04	38.35	16.52	0.64	0.03	4.61	< 0.03	0.07
912678	Rock	0.58	0.18	< 0.01	33.76	< 0.01	5.30	0.03	38.65	15.87	0.57	0.04	4.79	0.01	0.04
912679	Rock	0.45	0.21	< 0.01	34.59	0.01	6.49	0.03	37.62	15.10	0.70	0.04	4.80	0.17	0.08
912680 Dup	Rock	0.45	0.19	< 0.01	34.26	< 0.01	6.65	0.03	37.33	14.67	0.70	0.04	4.97	0.12	0.08
912681	Rock	0.35	0.16	< 0.01	33.93	< 0.01	5.46	0.03	38.82	15.58	0.66	0.03	4.45	< 0.01	0.06
912682	Rock	1.01	0.38	< 0.01	36.73	< 0.01	4.84	0.08	36.34	14.15	0.67	0.04	5.67	0.39	0.07
912683	Rock	0.98	0.51	< 0.01	35.84	< 0.01	7.37	0.08	33.33	13.07	0.55	0.04	7.40	0.59	0.21
912684	Rock	0.60	0.39	< 0.01	35.68	< 0.01	6.09	0.06	36.52	14.18	0.61	0.04	5.69	0.65	0.17
912685	Rock	0.78	0.33	< 0.01	34.47	< 0.01	8.01	0.03	34.93	13.73	0.68	0.04	6.38	0.24	0.23
912686	Rock	1.12	1.05	< 0.01	30.21	< 0.01	15.38	0.16	29.78	13.48	0.48	0.05	5.99	1.95	1.39
912687	Rock	0.25	0.46	< 0.01	33.27	< 0.01	5.78	0.09	38.09	15.77	0.60	0.03	4.77	0.47	0.14
912688	Rock	0.29	0.22	< 0.01	37.26	< 0.01	5.48	0.05	34.07	13.67	0.49	0.03	8.86	0.11	0.04
912689	Rock	0.18	0.15	< 0.01	35.11	< 0.01	4.12	0.02	38.89	14.94	0.69	0.03	5.17	< 0.01	0.02
912690	Pulp	0.50	0.30	< 0.01	33.21	< 0.01	5.58	0.04	38.70	15.47	0.51	0.06	3.74	1.53	0.12
912691	Rock	0.27	0.15	< 0.01	34.03	< 0.01	4.10	0.03	40.33	16.01	0.62	0.03	3.82	0.03	0.02
912692	Rock	0.26	0.22	< 0.01	35.66	< 0.01	4.05	0.05	38.28	15.02	0.59	0.04	5.21	0.21	0.04
912693	Rock	0.19	0.15	< 0.01	33.84	< 0.01	3.87	0.03	39.81	16.42	0.54	0.03	4.45	< 0.01	0.03
912694	Rock	0.16	0.58	< 0.01	33.79	< 0.01	3.59	0.11	40.06	16.01	0.64	0.03	3.83	0.54	0.06
912695	Rock	0.34	0.12	< 0.01	32.65	< 0.01	4.28	0.02	42.30	16.87	0.80	0.03	1.81	< 0.01	0.02
912696	Rock	0.16	0.13	< 0.01	32.40	< 0.01	4.97	0.02	42.59	16.71	0.89	0.05	1.47	< 0.01	0.03
912697	Rock	0.19	0.12	< 0.01	33.10	< 0.01	3.88	0.02	42.49	17.64	0.77	0.04	1.81	< 0.01	0.02
912698	Rock	0.78	0.39	< 0.01	37.87	< 0.01	3.68	0.10	35.34	13.28	0.58	0.05	7.93	0.33	0.04
912699	Rock	0.35	0.19	< 0.01	35.00	< 0.01	4.28	0.03	39.27	15.80	0.65	0.04	4.17	< 0.01	0.03
912700 Dup	Rock	0.36	0.20	< 0.01	34.80	< 0.01	4.48	0.03	39.12	15.98	0.63	0.04	4.39	< 0.01	0.03
912701	Rock	0.10	0.13	< 0.01	33.66	< 0.01	4.74	0.02	42.43	16.86	0.93	0.03	1.65	< 0.01	0.01
912702	Rock	0.77	0.38	< 0.01	35.40	< 0.01	6.25	0.05	36.39	14.12	0.61	0.04	5.30	0.30	0.12
912703	Rock	0.66	0.31	< 0.01	35.51	< 0.01	6.69	0.05	36.61	14.53	0.61	0.04	4.91	0.29	0.12
912704	Rock	0.36	0.41	<0.01	35.55	<0.01	5.64	0.06	38.12	14.33	0.62	0.03	4.22	0.37	0.40
912705 912707	Rock	0.32	2.42	< 0.01	30.69	< 0.01	4.98	0.24	36.77	16.98	0.55	0.03	3.53	3.46	0.18
912707	Rock Rock	0.75 0.19	0.18 2.44	<0.01 0.01	36.07 26.34	<0.01 <0.01	3.84 4.76	0.04 0.23	37.14 30.94	15.64 12.51	0.54 0.36	0.05 0.50	5.33 2.88	0.06 17.73	0.05 0.27
912708	Rock	0.19	0.70	< 0.01	35.27	< 0.01	4.76	0.23	39.58	12.51	0.50	0.50	3.37	0.98	0.27
912709	Pulp	0.80	0.70	0.01	31.22	< 0.01	16.80	0.20	39.38	12.43	0.50	0.03	3.37 4.81	2.04	0.13
912711	Rock	0.35	0.37	< 0.02	36.01	< 0.01	5.42	0.09	37.11	13.99	0.43	0.00	5.14	0.44	0.39
912711	Rock	0.41	0.37	< 0.01	34.43	< 0.01	4.73	0.07	37.33	16.06	0.56	0.03	5.25	0.44	0.11
912712	Rock	0.34	1.03	0.01	35.19	< 0.01	4.00	0.00	36.66	15.01	0.53	0.04	5.28	1.30	0.08
912714	Rock	0.21	0.31	0.01	33.61	< 0.01	4.70	0.10	39.32	15.84	0.68	0.04	3.49	0.86	0.05
912715	Rock	0.15	0.11	< 0.01	34.40	< 0.01	3.42	0.02	40.95	16.88	0.65	0.03	3.38	< 0.01	0.03
912716	Rock	0.83	0.20	< 0.01	35.99	< 0.01	3.84	0.04	37.04	15.65	0.56	0.05	5.79	0.04	0.06

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		Nb2O5	Al2O3	BaO	CaO	Cr2O3	Fe2O3	K2O	LOI	MgO	MnO	Na2O	P2O5	SiO2	TiO2
		Nb2O5-AD3-OR-ICP	WR-FS-ICP												
Sample	Sample	%	%	%	%	%	%	%	%	%	%	%	%	%	%
Description	Type	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
912717	Rock	0.14	3.55	0.02	28.49	0.01	4.50	0.36	35.79	16.38	0.57	0.05	3.08	5.72	0.50
912718	Rock	0.32	0.17	< 0.01	32.14	< 0.01	3.64	0.03	41.83	18.20	0.63	0.03	2.25	< 0.01	0.04
912719	Rock	0.13	0.50	< 0.01	31.47	< 0.01	4.73	0.12	39.68	16.93	0.65	0.04	2.73	2.80	0.06
912720 Dup	Rock	0.13	0.50	< 0.01	31.35	< 0.01	4.82	0.10	39.49	16.46	0.64	0.04	2.94	2.87	0.05
912721	Rock	0.44	0.23	< 0.01	34.26	< 0.01	5.28	0.04	39.22	15.60	0.65	0.04	3.43	0.21	0.26
912722	Rock	0.48	0.12	< 0.01	34.14	< 0.01	3.80	0.02	41.80	16.30	0.69	0.03	2.22	< 0.01	0.03
912723	Rock	0.14	0.12	< 0.01	34.63	< 0.01	3.80	0.02	40.09	15.91	0.72	0.05	4.05	< 0.01	< 0.01
912724	Rock	0.42	0.20	< 0.01	35.87	< 0.01	3.89	0.05	39.40	15.61	0.57	0.04	4.05	< 0.01	0.04
912725	Rock	0.22	0.21	< 0.01	34.42	< 0.01	3.99	0.05	40.01	16.23	0.59	0.04	3.77	< 0.01	0.05
912726	Rock	0.22	0.19	< 0.01	34.03	< 0.01	3.39	0.04	41.13	16.85	0.64	0.04	2.85	< 0.01	0.03
912727	Rock	0.14	0.14	< 0.01	34.44	< 0.01	3.57	0.03	41.47	15.96	0.77	0.04	2.49	0.17	0.02
912728	Rock	0.44	0.21	0.02	39.30	< 0.01	3.60	0.04	37.40	12.70	0.69	0.04	5.16	0.21	0.03
912729	Rock	0.35	0.23	0.01	37.17	< 0.01	3.97	0.03	38.66	14.26	0.71	0.05	4.39	0.24	0.06
912730	Pulp	0.45	0.30	< 0.01	34.75	< 0.01	5.42	0.04	38.94	14.46	0.49	0.06	3.67	1.41	0.12
912731	Rock	0.46	0.19	0.01	33.25	< 0.01	12.88	0.05	35.44	12.92	0.65	0.05	3.48	0.41	0.26
912732	Rock	0.06	0.09	< 0.01	34.50	< 0.01	3.17	< 0.01	40.76	16.22	0.73	0.05	3.72	< 0.01	< 0.01
912733	Rock	0.05	0.08	< 0.01	33.70	< 0.01	2.98	0.01	42.26	16.95	0.75	0.03	2.35	< 0.01	< 0.01
912734	Rock	0.08	0.08	< 0.01	34.11	< 0.01	3.27	< 0.01	41.88	17.18	0.81	0.04	2.73	< 0.01	< 0.01
912735	Rock	0.36	0.23	0.01	36.70	< 0.01	4.47	0.05	37.14	13.99	0.73	0.06	5.58	0.23	0.04
912736	Rock	0.23	0.17	< 0.01	36.21	< 0.01	4.40	0.04	39.95	15.22	0.74	0.04	3.72	< 0.01	0.03
912737	Rock	0.11	0.11	< 0.01	33.91	< 0.01	3.50	0.02	41.34	16.62	0.81	0.04	2.91	< 0.01	0.01
912738	Rock	0.24	0.17	< 0.01	34.77	< 0.01	3.92	0.04	40.86	16.03	0.66	0.04	3.07	< 0.01	0.02
912739	Rock	0.13	0.13	0.01	35.35	< 0.01	4.33	0.02	40.64	16.27	0.76	0.03	2.21	< 0.01	0.01
912740 Dup	Rock	0.13	0.12	0.01	35.03	< 0.01	4.36	0.02	40.80	16.22	0.74	0.03	2.20	< 0.01	0.01
912741	Rock	0.30	0.17	< 0.01	35.09	< 0.01	4.01	0.04	40.42	16.32	0.70	0.03	3.50	< 0.01	0.05
912742	Rock	0.29	0.22	< 0.01	33.56	< 0.01	4.34	0.05	39.99	16.44	0.51	0.03	3.81	< 0.01	0.06
912743	Rock	0.31	0.19	< 0.01	33.91	< 0.01	3.94	0.04	40.64	17.08	0.61	0.03	3.42	< 0.01	0.02
912744	Rock	0.65	0.33	< 0.01	31.91	< 0.01	10.57	0.11	35.47	15.20	0.61	0.05	4.56	0.86	0.16
912745	Rock	0.01	15.18	0.11	4.04	0.03	3.82	3.56	1.07	1.45	0.11	3.43	0.24	65.98	0.45
912746	Rock	0.09	0.28	< 0.01	33.07	< 0.01	3.66	0.06	40.77	18.05	0.54	0.04	3.49	0.14	0.05

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		Total	Ag	Al	As	Ba	Bi	Ca	Cd	Co	Cr	Cu	Fe	K	La
~ .		WR-FS-ICP	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR
Sample	Sample	%	ppm	%	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%	%	ppm
Description	Туре	0.01	0.5	0.01	5	10	2	0.01	0.5	1	1	1	0.01	0.01	10
912676	Rock	99.04	<0.5	0.09	11	47	<2	>10	< 0.5	8	8	24	3.96	0.03	310
912677	Rock	99.65	<0.5	0.08	10	37	<2	>10	<0.5	3	8	40	3.06	0.02	435
912678 912679	Rock	99.64 99.79	<0.5 <0.5	0.10 0.08	17	38	<2 <2	>10 >10	<0.5	5 16	6 6	44 35	3.96 4.27	0.02 0.02	726 310
	Rock	99.79	<0.5	0.08	<5 6	53 52	<2		<0.5 <0.5	16	5	33	4.27	0.02	320
912680 Dup 912681	Rock		<0.5	0.08	10	36	<2	>10 >10	<0.5	7	5	26	3.57	0.02	379
912682	Rock Rock	99.20 99.37	<0.5	0.06	7	51	<2	>10	<0.5	3	5	69	3.37	0.02	381
912683	Rock	99.00	<0.5	0.19	9	55	<2	>10	<0.5	11	5	73	5.26	0.06	406
912684	Rock	100.10	1.0	0.27	10	41	<2	>10	<0.5	12	6	48	4.10	0.00	321
912685	Rock	99.07	<0.5	0.17	11	44	<2	>10	<0.5	19	5	62	5.25	0.04	307
912686	Rock	99.94	0.6	0.63	<5	66	<2	>10	<0.5	24	6	90	>10	0.13	396
912687	Rock	99.47	< 0.5	0.25	19	62	<2	>10	< 0.5	6	7	18	3.70	0.13	671
912688	Rock	100.29	< 0.5	0.10	11	43	<2	>10	< 0.5	8	5	22	3.71	0.03	359
912689	Rock	99.15	1.0	0.06	10	42	<2	>10	< 0.5	4	6	14	2.67	0.02	360
912690	Pulp	99.28	1.0	0.15	5	43	<2	>10	< 0.5	5	3	33	3.60	0.03	310
912691	Rock	99.17	0.6	0.07	8	42	<2	>10	< 0.5	4	5	20	2.82	0.02	303
912692	Rock	99.38	0.7	0.12	9	44	<2	>10	< 0.5	5	6	20	2.83	0.03	290
912693	Rock	99.17	< 0.5	0.06	14	30	<2	>10	< 0.5	3	5	14	2.69	0.02	506
912694	Rock	99.25	< 0.5	0.30	7	55	<2	>10	< 0.5	3	8	12	2.45	0.08	308
912695	Rock	98.92	< 0.5	0.05	6	40	<2	>10	< 0.5	3	5	24	2.78	0.02	285
912696	Rock	99.26	< 0.5	0.04	8	57	<2	>10	< 0.5	5	7	11	3.51	0.01	239
912697	Rock	99.90	< 0.5	0.04	6	43	<2	>10	< 0.5	3	5	13	2.84	0.01	257
912698	Rock	99.60	< 0.5	0.18	11	58	<2	>10	< 0.5	2	8	54	2.70	0.07	474
912699	Rock	99.46	0.7	0.08	10	46	<2	>10	< 0.5	4	7	28	3.09	0.02	301
912700 Dup	Rock	99.72	0.8	0.09	7	45	<2	>10	< 0.5	4	6	27	3.11	0.02	309
912701	Rock	100.47	0.7	0.04	14	49	<2	>10	< 0.5	4	8	7	3.16	< 0.01	505
912702	Rock	98.96	< 0.5	0.21	9	41	<2	>10	< 0.5	14	5	56	4.19	0.03	405
912703	Rock	99.68	< 0.5	0.14	7	57	<2	>10	< 0.5	9	6	48	4.28	0.03	299
912704	Rock	99.76	0.7	0.20	5	47	<2	>10	< 0.5	8	9	24	3.79	0.04	254
912705	Rock	99.86	< 0.5	1.27	7	79	<2	>10	< 0.5	4	30	23	3.57	0.18	343
912707	Rock	98.97	0.7	0.10	9	41	<2	>10	< 0.5	4	6	27	2.62	0.03	399
912708	Rock	98.97	< 0.5	1.26	<5	102	<2	>10	< 0.5	6	48	12	3.27	0.18	279
912709	Rock	100.61	< 0.5	0.43	8	57	<2	>10	< 0.5	4	10	25	3.02	0.16	367
912710	Pulp	99.79	< 0.5	0.30	<5	138	<2	>10	< 0.5	12	4	67	>10	0.07	340
912711	Rock	99.27	< 0.5	0.19	16	91	<2	>10	< 0.5	5	6	24	3.56	0.05	492
912712	Rock	99.37	2.2	0.20	11	59	<2	>10	< 0.5	8	7	29	3.15	0.04	388
912713	Rock	99.30	0.8	0.56	9	111	<2	>10	< 0.5	2	12	24	2.84	0.11	429
912714	Rock	99.02	0.9	0.15	13	112	<2	>10	< 0.5	4	8	14	3.26	0.06	475
912715	Rock	99.87	< 0.5	0.04	<5	45	<2	>10	< 0.5	2	6	10	2.55	0.01	252
912716	Rock	99.25	0.9	0.09	<5	38	<2	>10	< 0.5	2	6	51	2.80	0.03	307

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		Total	Ag	Al	As	Ba	Bi	Ca	Cd	Co	Cr	Cu	Fe	K	La
		WR-FS-ICP	30-4A-TR												
Sample	Sample	%	ppm	%	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%	%	ppm
Description	Type	0.01	0.5	0.01	5	10	2	0.01	0.5	1	1	1	0.01	0.01	10
912717	Rock	99.00	0.6	1.78	<5	140	<2	>10	< 0.5	7	35	8	3.02	0.26	182
912718	Rock	98.96	1.1	0.07	<5	40	<2	>10	< 0.5	4	6	23	2.62	0.03	229
912719	Rock	99.71	1.0	0.23	6	49	<2	>10	< 0.5	10	9	13	3.19	0.08	191
912720 Dup	Rock	99.26	1.6	0.22	8	50	<2	>10	< 0.5	11	10	14	3.45	0.08	196
912721	Rock	99.23	1.3	0.09	<5	55	<2	>10	< 0.5	8	6	30	3.68	0.03	254
912722	Rock	99.15	1.0	0.03	8	39	<2	>10	< 0.5	3	6	30	2.78	0.01	444
912723	Rock	99.41	0.5	0.03	10	42	<2	>10	< 0.5	4	8	9	2.63	< 0.01	434
912724	Rock	99.72	0.8	0.08	<5	38	<2	>10	< 0.5	5	6	29	2.91	0.03	313
912725	Rock	99.37	0.7	0.07	6	56	<2	>10	< 0.5	6	7	16	2.90	0.04	275
912726	Rock	99.20	1.1	0.08	<5	47	<2	>10	< 0.5	4	7	16	2.48	0.03	238
912727	Rock	99.10	0.9	0.06	<5	74	<2	>10	< 0.5	3	7	11	2.75	0.02	286
912728	Rock	99.40	1.0	0.09	6	146	<2	>10	< 0.5	4	6	34	2.61	0.03	305
912729	Rock	99.79	1.1	0.10	<5	88	<2	>10	< 0.5	6	6	28	2.88	0.03	281
912730	Pulp	99.67	1.1	0.15	8	48	<2	>10	< 0.5	6	7	40	3.79	0.03	399
912731	Rock	99.59	< 0.5	0.10	<5	93	<2	>10	< 0.5	14	8	30	9.03	0.04	216
912732	Rock	99.26	< 0.5	0.02	5	45	<2	>10	< 0.5	4	6	6	2.21	< 0.01	250
912733	Rock	99.14	0.9	0.02	<5	53	<2	>10	< 0.5	3	9	8	2.13	< 0.01	177
912734	Rock	100.13	0.5	0.02	6	46	<2	>10	< 0.5	3	7	10	2.47	< 0.01	299
912735	Rock	99.25	0.7	0.10	5	95	<2	>10	< 0.5	7	6	29	3.28	0.04	338
912736	Rock	100.54	1.1	0.10	<5	56	<2	>10	< 0.5	6	6	20	3.06	0.02	234
912737	Rock	99.27	1.6	0.03	<5	51	<2	>10	< 0.5	3	7	10	2.50	< 0.01	192
912738	Rock	99.59	0.5	0.07	6	55	<2	>10	< 0.5	3	6	20	2.73	0.02	321
912739	Rock	99.77		0.05	8	94	<2	>10	< 0.5	3	7	13	2.97	0.02	369
912740 Dup	Rock	99.55	< 0.5	0.04	10	97	<2	>10	< 0.5	3	7	12	3.02	0.02	391
912741	Rock	100.33	< 0.5	0.07	<5	49	<2	>10	< 0.5	3	6	25	2.76	0.03	278
912742	Rock	99.01	0.9	0.11	6	35	<2	>10	< 0.5	4	6	22	3.01	0.04	322
912743	Rock	99.89	< 0.5	0.09	8	44	<2	>10	< 0.5	3	6	25	2.63	0.03	394
912744	Rock	99.84	0.7	0.18	<5	51	<2	>10	< 0.5	4	7	43	6.59	0.08	356
912745	Rock	99.46	< 0.5	7.01	<5	903	<2	3.21	< 0.5	10	122	2	2.60	2.97	38
912746	Rock	100.16	0.5	0.15	6	48	<2	>10	< 0.5	4	6	9	2.54	0.04	282

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		Mg	Mn	Mo	Na	Ni	P	Pb	Sb	Sc	Sr	Ti	Tl	V	W
		30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR
Sample	Sample	%	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm
Description	Type	0.01	5	1	0.01	1	10	2	5	1	1	0.01	10	1	10
912676	Rock	8.89	5433	3	0.02	<1	>10000	14	<5	8	2938	0.02	<10	32	<10
912677	Rock	9.19	5009	3	0.02	<1	>10000	13	<5	7	3381	0.02	<10	14	<10
912678	Rock	9.72	4824	2	0.02	<1	>10000	13	<5	8	2690	0.03	<10	26	<10
912679	Rock	8.49	5197	4	0.03	<1	>10000	13	<5	6	3759	0.03	<10	42	<10
912680 Dup	Rock	8.14	4960	4	0.03	<1	>10000	14	<5	6	3601	0.03	<10	42	<10
912681	Rock	9.10	4939	2	0.02	<1	>10000	14	<5	7	3086	0.02	<10	27	<10
912682	Rock	8.72	5095	2	0.03	<1	>10000	10	<5	7	3471	0.04	<10	36	<10
912683	Rock	8.30	4396	2	0.03	<1	>10000	15	<5	8	2883	0.08	<10	125	<10
912684	Rock	8.72	4574	2	0.03	<1	>10000	15	<5	7	2939	0.06	<10	74	<10
912685	Rock	8.17	5010	2	0.03	<1	>10000	17	<5	10	3073	0.06	<10	63	<10
912686	Rock	7.07	3557	4	0.03	4	>10000	11	<5	9	1835	0.40	<10	233	<10
912687	Rock	8.89	4314	4	0.02	<1	>10000	23	<5	23	1579	0.02	<10	52	<10
912688 912689	Rock	8.28	3733	4 3	0.02 0.02	<1	>10000	20	<5	10 7	1960 3270	0.01	<10	20	<10
912690	Rock	9.06 9.10	5049 3865	4	0.02	<1 <1	>10000 >10000	17 13	<5 <5	7	2107	<0.01	<10 <10	7 32	<10 <10
912691	Pulp Rock	>10	4930	4	0.04	<1	>10000	17	<5	9	3216	< 0.03	<10	13	<10
912691	Rock	>10 9.90	4930 4722	3	0.02	<1 <1	>10000	17	<5 <5	7	3216	0.01	<10	16	<10
912693	Rock	9.71	4234	1	0.02	<1	>10000	17	<5	9	1967	0.02	<10	11	<10
912694	Rock	>10	5135	2	0.02	<1	>10000	16	<5	8	3258	0.01	<10	7	<10
912695	Rock	9.61	5977	3	0.02	<1	8547	18	<5	7	3553	<0.01	<10	2	<10
912696	Rock	>10	7100	8	0.02	<1	6671	13	<5	7	4540	<0.01	<10	4	<10
912697	Rock	>10	6343	4	0.03	<1	8008	13	<5	8	4066	< 0.01	<10	4	<10
912698	Rock	8.66	4785	4	0.02	<1	>10000	14	<5	8	3041	0.02	<10	13	<10
912699	Rock	9.84	5388	3	0.03	<1	>10000	17	<5	7	3570	0.02	<10	13	<10
912700 Dup	Rock	9.53	5145	3	0.02	<1	>10000	17	<5	7	3412	0.02	<10	15	<10
912701	Rock	>10	7134	3	0.02	<1	7022	18	<5	8	4032	< 0.01	<10	<1	<10
912702	Rock	8.34	4676	4	0.03	2	>10000	17	<5	6	3142	0.05	<10	56	<10
912703	Rock	8.31	4599	3	0.02	1	>10000	8	<5	5	3607	0.05	<10	70	<10
912704	Rock	8.47	4821	3	0.02	2	>10000	11	<5	6	3272	0.11	<10	136	<10
912705	Rock	9.95	4497	3	0.02	9	>10000	13	<5	12	2515	0.04	<10	42	<10
912707	Rock	8.64	4085	2	0.03	<1	>10000	21	<5	6	3265	0.03	<10	28	<10
912708	Rock	7.97	2770	2	0.35	10	>10000	15	<5	12	767	0.09	<10	95	<10
912709	Rock	9.76	4277	2	0.02	1	>10000	16	<5	8	2782	0.04	<10	59	<10
912710	Pulp	6.67	3337	3	0.04	2	>10000	13	<5	6	1740	0.14	<10	208	<10
912711	Rock	7.44	4232	3	0.02	<1	>10000	14	<5	13	1811	0.03	<10	40	<10
912712	Rock	8.53	4240	4	0.02	<1	>10000	16	<5	10	3028	0.06	<10	27	<10
912713	Rock	8.64	4441	3	0.02	<1	>10000	12	<5	10	2729	0.02	<10	31	<10
912714	Rock	8.87	5451	5	0.02	<1	>10000	16	<5	11	3014	0.01	<10	14	<10
912715	Rock	>10	5710	5	0.02	<1	>10000	15	<5	8	3928	< 0.01	<10	3	<10
912716	Rock	8.97	4540	3	0.03	<1	>10000	8	<5	9	3507	0.03	<10	25	<10

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		Mg	Mn	Мо	Na	Ni	P	Pb	Sb	Sc	Sr	Ti	Tl	V	W
		30-4A-TR													
Sample	Sample	%	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm
Description	Type	0.01	5	1	0.01	1	10	2	5	1	1	0.01	10	1	10
912717	Rock	9.49	4395	3	0.03	12	>10000	10	<5	15	2990	0.09	<10	55	<10
912718	Rock	>10	5164	3	0.02	<1	>10000	10	<5	8	3276	0.02	<10	14	<10
912719	Rock	9.34	5001	6	0.03	<1	>10000	14	<5	10	2948	0.02	<10	18	<10
912720 Dup	Rock	9.81	5295	7	0.03	2	>10000	16	<5	10	3137	0.02	<10	18	<10
912721	Rock	9.37	5289	4	0.02	<1	>10000	9	<5	6	3658	0.06	<10	35	<10
912722	Rock	>10	5833	4	0.02	<1	>10000	12	<5	8	3259	0.01	<10	5	<10
912723	Rock	9.78	5715	7	0.03	<1	>10000	17	<5	8	4307	< 0.01	<10	<1	<10
912724	Rock	9.91	4848	5	0.03	<1	>10000	10	<5	7	3463	0.02	<10	17	<10
912725	Rock	9.95	4941	7	0.02	<1	>10000	13	<5	8	2900	0.02	<10	25	<10
912726	Rock	>10	5327	3	0.03	<1	>10000	12	<5	8	3893	0.01	<10	9	<10
912727	Rock	>10	6626	4	0.03	<1	>10000	14	<5	7	4220	< 0.01	<10	<1	<10
912728	Rock	7.66	5456	3	0.03	<1	>10000	16	<5	7	3745	0.01	<10	6	<10
912729	Rock	8.90	5959	2	0.03	<1	>10000	17	<5	6	3885	0.03	<10	26	<10
912730	Pulp	9.42	3998	5	0.05	<1	>10000	71	<5	7	2162	0.03	<10	35	<10
912731	Rock	8.11	5269	3	0.03	1	>10000	11	<5	6	3650	0.15	<10	147	<10
912732	Rock	>10	5779	3	0.03	<1	>10000	17	<5	8	4419	< 0.01	<10	<1	<10
912733	Rock	>10	6209	2	0.02	<1	>10000	17	<5	6	4716	< 0.01	<10	<1	<10
912734	Rock	>10	6837	2	0.02	<1	>10000	17	<5	7	4578	< 0.01	<10	<1	<10
912735	Rock	9.05	6115	2	0.04	<1	>10000	15	<5	6	4695	0.02	<10	10	<10
912736	Rock	>10	5835	3	0.03	<1	>10000	15	<5	7	4097	0.01	<10	9	<10
912737	Rock	>10	6703	3	0.03	<1	>10000	16	<5	7	5000	< 0.01	<10	<1	<10
912738	Rock	>10	5217	3	0.02	<1	>10000	14	<5	7	2979	< 0.01	<10	3	<10
912739	Rock	9.99	5908	3	0.02	<1	9836	15	<5	9	2668	< 0.01	<10	11	<10
912740 Dup	Rock	9.89	5914	3	0.02	<1	9955	18	<5	9	2641	< 0.01	<10	11	<10
912741	Rock	>10	5461	3	0.02	<1	>10000	16	<5	7	3509	0.02	<10	12	<10
912742	Rock	>10	4069	2	0.02	<1	>10000	16	<5	7	1918	0.02	<10	27	<10
912743	Rock	>10	4762	3	0.02	<1	>10000	16	<5	8	2398	0.01	<10	8	<10
912744	Rock	8.59	4622	4	0.04	<1	>10000	13	<5	9	3377	0.07	<10	146	<10
912745	Rock	0.86	772	4	2.79	7	1166	20	<5	5	723	0.28	<10	54	<10
912746	Rock	>10	4540	3	0.03	<1	>10000	20	<5	7	2629	0.01	<10	12	<10

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

			Zn	Zr	Ce	Dy DEE LD MG	Er	Eu	Gd	Hf	Ho PEE I D MG	La	Lu	Nd PEE I P MG	Pr	17
	Sample	Sample	30-4A-TR					REE-LB-MS		REE-LB-MS				REE-LB-MS		
1	Description	Type	ppm 2	ppm 1	ppm 0.1	ppm 0.1	ppm 0.1	ppm 0.1	ppm 0.1	ppm 0.1	ppm 0.1	ppm 0.1	ppm 0.1	ppm 0.1	ppm 0.1	ppm 0.1
-	912676	Rock	19	58	721.6	20.3	8.0	11.5	37.8	2.8	3.0	382.5	0.3	278.5	77.8	
	912677	Rock	18	51	968.8	23.5	8.3	16.4	49.5	< 0.1	3.5	500.0	0.3	367.8	103.4	57.4
	912678	Rock	19	44	>1000	27.4	7.0	23.4	73.1	0.1	3.3	921.7	0.2	628.8	177.4	93.3
	912679	Rock	25	30	722.3	17.8	5.6	12.0	37.7	3.6	2.2	345.4	0.1	303.9	83.0	45.3
9	12680 Dup	Rock	25	32	720.6	17.7	5.7	12.4	38.2	3.9	2.4	361.0	< 0.1	293.1	81.0	44.7
	912681	Rock	20	45	771.2	18.4	6.3	11.5	36.2	2.1	2.5	402.3	0.1	297.0	84.6	44.4
	912682	Rock	19	87	875.5	22.3	7.4	17.2	45.8	< 0.1	2.8	443.8	0.2	319.2	92.1	50.4
	912683	Rock	17	73	964.1	31.0	10.9	19.1	53.7	7.7	4.4	462.8	0.5	375.2	108.7	59.0
	912684	Rock	17	57	688.8	23.6	9.0	13.3	38.1	3.4	3.7	344.4	0.3	286.0	77.5	46.3
	912685	Rock	21	61	820.0	25.1	9.6	14.3	42.5	4.8	4.0	388.9	0.4	319.8	91.9	48.4
	912686	Rock	51	74	985.6	26.2	8.9	18.3	51.2	14.5	3.7	481.8	0.5	358.5	107.7	
	912687	Rock	27	46	>1000	25.9	10.0	13.1	48.4	2.7	4.1	749.3	0.5	402.4	123.6	51.3
	912688	Rock	15	61	706.5	37.8	16.6	14.8	50.0	1.9	6.6	395.9	0.7	262.0	72.4	
	912689	Rock	18	39	691.7	19.1	8.1	10.4	35.4	0.8	2.9	381.7	0.1	262.0	73.1	39.5
	912690	Pulp	21	32	782.7	19.0	6.5	13.4	40.3	1.0	2.6	411.4	0.2	293.4	82.3	
	912691	Rock	18	31	653.4	17.6	6.2	9.9	31.4	< 0.1	2.5	334.0	0.1	245.6	71.1	
	912692	Rock	16	50	619.1	20.1	7.5	11.4	35.1	0.3	3.1	320.0	0.2	239.9	66.9	
	912693	Rock	14	54	>1000	23.0	8.3	12.8	45.5	0.4	3.4	583.9	0.4	365.6	107.9	
	912694	Rock	18	54	624.9	17.1	5.3	9.2	30.5	<0.1	2.1	330.1	0.1	236.5	67.4	
	912695	Rock	23	33	579.3	14.7	4.5	8.9	27.3	<0.1	1.9	307.4	<0.1	233.2	64.5	
	912696	Rock	23	17	432.8	10.1	3.4	6.7	21.9	<0.1	1.4	244.3	<0.1	159.7	44.4	
	912697 912698	Rock	21	17 77	461.4 945.4	11.0 33.5	3.9 11.8	6.5	21.0 52.8	<0.1 <0.1	1.4 4.9	261.3 496.1	<0.1 0.5	174.6 370.0	49.5 105.2	
	912698	Rock Rock	16 22	39	607.2	22.5	7.5	17.6 11.9	38.4	<0.1	3.2	319.8	0.5	232.8	66.1	38.4
0	12700 Dup	Rock	21	46	641.9	23.0	7.3	12.8	40.5	<0.1	3.2	333.4	0.2	232.3	67.1	
,	912701	Rock	23	13	887.9	10.5	3.2	8.5	30.1	<0.1	1.2	543.0	<0.1	305.5	90.1	40.9
	912701	Rock	22	50	914.4	22.2	7.2	18.5	49.3	4.1	2.8	493.6	0.2	327.2	94.6	
	912702	Rock	18	46	629.6	18.5	6.7	16.4	36.9	4.6	2.7	322.6	0.1	269.8	72.5	
	912704	Rock	20	32	532.6	15.1	5.6	10.9	30.0	2.2	2.1	278.1	0.1	219.5	59.2	
	912705	Rock	24	55	699.4	18.4	6.3	10.3	33.5	3.0	2.6	393.6	0.2	239.4	71.2	
	912707	Rock	19	48	848.5	20.4	7.4	15.6	46.4	<0.1	2.8	452.8	0.2	305.2	87.9	
	912708	Rock	32	49	537.3	13.6	5.5	10.9	30.2	4.5	1.9	301.9	0.2	210.1	56.9	
	912709	Rock	22	25	793.2	15.5	5.0	10.6	35.1	0.1	2.0	442.6	0.1	259.6	79.7	37.7
	912710	Pulp	54	65	785.4	19.9	6.3	13.4	40.5	7.3	2.7	372.8	0.3	312.2	88.1	47.9
	912711	Rock	17	68	>1000	30.6	13.8	16.5	56.1	3.8	4.9	656.3	0.8	363.8	112.4	56.4
	912712	Rock	19	55	834.2	22.8	9.2	15.2	45.4	1.1	3.5	448.2	0.4	321.3	89.8	49.6
	912713	Rock	18	45	>1000	26.7	9.1	14.8	49.5	0.2	3.6	612.7	0.4	377.3	115.9	53.3
	912714	Rock	28	32	974.3	21.4	7.6	13.9	44.7	1.7	3.0	555.3	0.2	334.4	97.4	49.6
	912715	Rock	19	20	575.7	15.5	5.1	8.3	27.9	0.6	1.9	277.8	0.1	213.9	63.0	32.7
	912716	Rock	16	42	789.4	27.1	9.6	18.8	51.7	< 0.1	3.8	356.0	0.4	321.0	87.5	52.8

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		Zn	Zr	Ce	Dy	Er	Eu	Gd	Hf	Но	La	Lu	Nd	Pr	Sm
		30-4A-TR	30-4A-TR	REE-LB-MS											
Sample	Sample	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Description	Type	2	1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
912717	Rock	22	53	403.6	13.1	3.5	7.8	24.6	3.2	1.5	181.1	< 0.1	166.8	45.7	27.0
912718	Rock	17	25	495.7	15.2	5.7	9.8	31.4	< 0.1	2.2	253.2	0.2	183.0	51.9	30.9
912719	Rock	20	35	380.6	11.3	4.2	6.4	20.7	0.5	1.5	187.4	< 0.1	156.8	44.3	24.8
912720 Dup	Rock	20	40	405.2	11.5	3.8	6.2	21.3	0.6	1.4	192.2	0.1	158.1	44.0	22.2
912721	Rock	22	32	500.2	13.7	4.6	8.8	25.8	1.8	1.7	235.7	< 0.1	213.4	57.3	33.7
912722	Rock	17	32	835.9	13.3	4.3	9.7	31.1	< 0.1	1.6	456.1	< 0.1	311.4	90.7	41.8
912723	Rock	18	14	934.5	12.1	3.5	11.4	37.3	0.1	1.3	535.5	< 0.1	365.9	99.8	52.1
912724	Rock	16	20	628.7	15.9	5.4	12.2	33.9	< 0.1	2.1	304.2	< 0.1	262.9	72.9	42.8
912725	Rock	15	40	551.4	19.9	6.7	11.3	33.0	0.7	2.7	272.8	0.2	239.7	63.9	39.0
912726	Rock	17	23	536.2	13.1	3.7	9.9	30.3	< 0.1	1.5	246.3	< 0.1	205.0	59.4	33.4
912727	Rock	23	15	589.2	12.2	3.2	7.9	26.7	< 0.1	1.4	296.8	< 0.1	230.6	64.5	31.4
912728	Rock	21	28	750.8	22.9	6.2	14.7	45.2	< 0.1	2.8	325.1	0.2	312.9	89.1	51.0
912729	Rock	24	29	643.8	18.5	6.5	14.4	38.3	< 0.1	2.6	313.1	0.2	286.3	74.6	47.7
912730	Pulp	27	35	844.2	24.0	7.9	15.2	49.2	0.9	3.4	442.9	0.4	303.6	86.9	52.0
912731	Rock	58	13	508.3	13.0	3.6	9.4	27.6	2.2	1.5	239.6	< 0.1	211.3	59.2	31.6
912732	Rock	19	7	597.2	13.3	2.9	9.9	31.7	< 0.1	1.2	279.0	< 0.1	227.4	65.4	37.2
912733	Rock	22	10	415.2	9.6	2.4	6.1	20.5	< 0.1	1.0	186.4	< 0.1	172.4	47.7	24.7
912734	Rock	24	11	689.9	11.9	3.6	9.9	31.9	<0.1	1.3	341.1	<0.1	269.9	74.8	40.9
912735	Rock	24	16	874.5	20.0	4.9	15.4	46.6	<0.1	2.4	400.8	0.1	338.1	95.6	52.5
912736	Rock	20	15	593.8	15.4	4.5	10.2	30.8	<0.1	1.7	255.4	0.1	234.1	66.9	35.6
912737	Rock	23	13	478.1	11.8	2.7	7.5	26.4	0.1	1.3	210.3	<0.1	193.6	54.0	28.6
912738	Rock	17	21	713.4	17.1	5.1	11.4	37.3	< 0.1	2.0	361.8	0.1	274.4	74.9	45.2
912739	Rock	20	17	834.7	14.3	3.8	8.6	33.2	<0.1	1.6	415.5	<0.1	304.9	87.9	39.7
912740 Dup	Rock	20	17	832.4	14.6	4.2	9.7	34.1	<0.1	1.7	434.8	0.1	313.3	94.0	42.4
912741	Rock	18	27	629.7	16.1	5.2	11.7	34.1	<0.1	2.0	305.3	0.1	263.9	70.3	43.1
912742	Rock	12	35	800.8	19.8	7.3	14.0	44.0	<0.1	2.7	404.4	0.4	316.0	86.3	53.1
912743	Rock	16	34	821.5	16.9	5.9	12.0	39.5	<0.1	2.3	457.8	0.2	278.6	81.3	43.7
912744	Rock	38	21	868.7	17.2	4.1	13.4	40.6	2.9	1.8	415.0	<0.1	312.7	92.6	45.2
912745	Rock	60	8	78.6	3.3	1.7	1.1	4.5	1.6	0.4	39.1	<0.1	32.2	8.9	5.0
912746	Rock	16	19	631.2	17.9	5.6	10.3	31.3	< 0.1	2.4	298.2	0.2	266.5	74.0	40.3

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

			E.	¥ 74	**	Tr.	and a	**
		Tb	Tm REE-LB-MS	Yb	Y	Ta Ta-4A-LL-MS	Th-4A-LL-MS	U U-4A-LL-MS
Sample	Sample							
Description	Type	ppm 0.1	ppm 0.1	ppm 0.1	ppm 0.10	ppm 0.05	ppm 0.20	ppm 0.10
912676	Rock	3.4	0.1	4.9	86.3	3.90	70.23	2.60
912677	Rock	4.1	0.8	5.2	95.8	5.43	88.11	2.14
912678	Rock	5.3	0.6	4.7	89.7	7.53	81.56	3.21
912679	Rock	3.0	0.4	3.4	64.7	3.85	60.89	2.08
912680 Dup	Rock	3.1	0.3	3.1	67.4	3.91	60.93	2.08
912681	Rock	3.0	0.4	4.4	72.3	3.49	77.26	2.20
912682	Rock	3.8	0.5	4.3	91.0	36.25	179.76	10.38
912683	Rock	5.3	1.1	7.3	124.0	18.18	206.21	5.73
912684	Rock	3.8	0.8	5.3	101.8	9.09	118.99	3.19
912685	Rock	4.2	0.8	6.1	109.5	10.53	155.33	4.37
912686	Rock	4.6	1.0	7.1	110.1	80.01	204.10	7.75
912687	Rock	4.1	0.9	7.6	110.1	4.51	187.08	2.99
912688	Rock	6.2	1.8	10.0	175.9	2.56	271.83	3.34
912689	Rock	3.2	0.6	4.5	86.9	2.50	121.04	2.31
912690	Pulp	3.4	0.6	5.0	75.4	19.39	142.93	8.33
912691	Rock	2.9	0.6	3.7	70.4	7.63	118.26	2.16
912692	Rock	3.6	0.4	5.2	87.1	24.84	126.95	5.69
912693	Rock	3.8	0.7	5.9	99.5	13.94	131.84	6.59
912693	Rock	2.7	0.8	3.9	66.3	33.61	102.30	14.54
912694	Rock	2.7	0.3	3.0		4.45	93.53	2.18
					61.2			
912696	Rock	1.6	0.1	2.6	44.3	0.46	62.29	1.43
912697	Rock	1.6	0.2	2.4	46.4	0.74	61.97	1.07
912698	Rock	5.6	1.0	7.5	141.6	11.89	234.69	7.34
912699	Rock	4.0	0.7	4.9	91.4	2.60	89.00	2.77
912700 Dup	Rock	4.3	0.8	5.7	91.1	2.72	90.93	2.97
912701	Rock	1.7	0.1	1.8	38.8	0.71	53.14	0.85
912702	Rock	4.2	0.6	5.2	90.0	6.24	119.88	2.94
912703	Rock	3.1	0.5	4.0	82.9	8.75	94.99	4.23
912704	Rock	2.5	0.5	3.9	67.9	3.62	77.58	2.83
912705	Rock	3.1	0.6	4.4	72.8	7.61	88.44	4.24
912707	Rock	3.9	0.7	5.2	85.9	0.14	140.88	2.27
912708	Rock	2.4	0.4	4.6	62.2	12.64	67.39	3.91
912709	Rock	2.7	0.4	4.4	65.9	7.53	96.82	3.15
912710	Pulp	3.5	0.5	4.5	73.9	32.78	297.57	7.73
912711	Rock	5.5	1.8	10.1	143.9	3.44	283.50	5.33
912712	Rock	3.8	0.9	6.4	104.3	5.35	190.54	4.54
912713	Rock	4.6	0.8	6.2	100.7	12.63	108.61	5.29
912714	Rock	3.6	0.7	5.0	91.5	3.74	179.75	2.33
912715	Rock	2.3	0.2	2.9	56.5	0.55	97.58	0.98
912716	Rock	5.0	0.9	7.0	112.8	2.18	121.57	2.24

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		Tb	Tm	Yb	Y	Ta	Th	U
			REE-LB-MS			Ta-4A-LL-MS		U-4A-LL-MS
Sampl	le Sample	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Descriptio	-	0.1	0.1	0.1	0.10	0.05	0.20	0.10
91271		2.2	0.2	3.0	50.4	16.50	57.15	7.13
91271		2.6	0.5	4.0	72.1	2.58	64.92	3.54
91271	19 Rock	1.7	0.2	2.3	48.7	1.50	72.45	2.11
912720 Du	ıp Rock	1.8	0.2	2.7	46.6	1.49	74.39	2.59
91272	21 Rock	2.1	0.3	2.9	54.9	3.83	86.49	3.26
91272	22 Rock	2.0	0.2	2.9	52.1	7.82	92.46	3.27
91272		2.0	0.1	2.1	46.3	1.37	20.06	1.07
91272	24 Rock	2.7	0.3	3.6	62.0	6.11	67.70	2.71
91272		3.3	0.5	4.8	80.8	27.57	89.95	5.51
91272	26 Rock	2.6	0.1	3.1	49.0	2.84	41.64	1.83
91272	27 Rock	2.0	< 0.1	2.1	42.7	2.20	50.98	1.88
91272	28 Rock	4.4	0.5	3.9	78.5	3.09	71.41	3.08
91272	29 Rock	3.5	0.5	4.5	77.2	3.43	77.87	2.37
91273	30 Pulp	4.4	0.7	5.4	88.7	21.96	142.36	10.73
91273	31 Rock	2.4	0.1	2.6	44.1	7.37	45.15	2.09
91273	32 Rock	2.5	0.1	2.3	42.6	0.57	15.02	0.51
91273	33 Rock	1.6	< 0.1	1.4	31.0	0.71	22.44	0.89
91273	34 Rock	2.1	< 0.1	2.5	41.9	0.92	34.15	1.80
91273	35 Rock	3.9	0.3	3.7	67.9	6.04	59.54	2.39
91273	36 Rock	2.8	0.2	3.0	51.6	7.12	39.30	3.38
91273	37 Rock	2.0	0.1	1.9	39.2	1.98	36.00	1.74
91273	38 Rock	2.9	0.4	3.8	65.5	8.41	122.20	2.42
91273	39 Rock	2.4	0.1	2.8	47.5	2.07	86.27	2.40
912740 Du	ip Rock	2.4	0.2	3.0	48.6	1.93	85.43	2.36
91274	41 Rock	2.9	0.3	3.6	63.3	30.69	82.75	6.99
91274	42 Rock	3.6	0.7	5.9	82.6	33.33	140.26	13.41
91274	43 Rock	3.0	0.4	4.7	67.1	31.02	187.55	7.27
91274	14 Rock	3.3	0.1	2.9	54.1	5.92	79.96	4.11
91274	45 Rock	0.1	< 0.1	1.7	18.6	1.57	9.30	4.40
91274	46 Rock	2.9	0.3	3.6	63.8	25.47	46.88	8.95

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		Nb2O5	Al2O3	BaO	CaO	Cr2O3	Fe2O3	K2O	LOI	MgO	MnO	Na2O	P2O5	SiO2	TiO2
		Nb2O5-AD3-OR-ICP	WR-FS-ICP												
Sample	Sample	%	%	%	%	%	%	%	%	%	%	%	%	%	%
Description	Type	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
912676	Rock	0.27													
912676 Dup		0.28													
QCV1011-00583-0002-BLK		< 0.01													
STD-OKA-1 expected		0.53													
STD-OKA-1 result		0.53													
912694	Rock	0.16													
912694 Dup		0.17													
QCV1011-00583-0005-BLK		< 0.01													
STD-OKA-1 expected		0.53													
STD-OKA-1 result		0.52													
912713	Rock	0.34													
912713 Dup		0.33													
QCV1011-00583-0008-BLK		< 0.01													
STD-OKA-1 expected		0.53													
STD-OKA-1 result		0.52													
912731	Rock	0.46													
912731 Dup		0.41													
QCV1011-00583-0011-BLK		< 0.01													
STD-OKA-1 expected		0.53													
STD-OKA-1 result		0.53													
QCV1011-00583-0013-BLK		< 0.01													
STD-OKA-1 expected		0.53													
STD-OKA-1 result		0.52													
912676	Rock		0.22	< 0.01	34.48	< 0.01	5.64	0.04	38.41	14.79	0.68	0.03	4.61	0.05	0.07
912676 Dup			0.21	< 0.01	34.50	< 0.01	5.65	0.05	38.40	14.80	0.69	0.03	4.56	0.05	0.07
QCV1011-00586-0002-BLK			< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
912694	Rock		0.58	< 0.01	33.79	< 0.01	3.59	0.11	40.06	16.01	0.64	0.03	3.83	0.54	0.06
912694 Dup			0.60	< 0.01	33.04	< 0.01	3.58	0.11	39.99	16.62	0.65	0.04	3.80	0.65	0.06
QCV1011-00586-0005-BLK			< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
912713	Rock		1.03	0.01	35.19	< 0.01	4.00	0.16	36.66	15.01	0.53	0.04	5.28	1.30	0.08
912713 Dup			1.05	0.01	35.21	< 0.01	3.97	0.16	36.87	14.91	0.53	0.04	5.30	1.34	0.08
QCV1011-00586-0008-BLK			< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
912731	Rock		0.19	0.01	33.25	< 0.01	12.88	0.05	35.44	12.92	0.65	0.05	3.48	0.41	0.26
912731 Dup			0.19	0.01	32.66	< 0.01	12.87	0.04	35.42	13.12	0.65	0.05	3.53	0.38	0.26
QCV1011-00586-0011-BLK			< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
QCV1011-00586-0013-BLK			< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
STD-SY-4 expected			20.69	\0.01	8.05	νο.01	6.21	1.66	4.56	0.54	0.11	7.10	0.13	49.90	0.29
STD-SY-4 result			20.69	0.04	8.10	< 0.01	6.26	1.71	4.45	0.54	0.11	7.16	0.13	50.23	0.30
51D-51-4 ICsult			20.09	0.04	6.10	<u> </u>	0.20	1./1	7.73	0.54	0.11	7.10	0.13	30.23	0.30

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		Total	Ag	Al	As	Ba	Bi	Ca	Cd	Co	Cr	Cu	Fe	K	La
		WR-FS-ICP	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR
Sample	Sample	%	ppm	%	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%	%	ppm
Description	Туре	0.01	0.5	0.01	5	10	2	0.01	0.5	1	1	1	0.01	0.01	10
912676	Rock		< 0.5	0.09	11	47	<2	>10	< 0.5	8	8	24	3.96	0.03	310
912676 Dup			< 0.5	0.09	10	47	<2	>10	< 0.5	8	8	21	3.79	0.03	325
QCV1011-00584-0002-BLK			< 0.5	< 0.01	<5	<10	<2	< 0.01	< 0.5	<1	<1	<1	< 0.01	< 0.01	<10
STD-CDN-ME-8 expected			61.7									1030			
STD-CDN-ME-8 result	D 1		64.3	0.20	-			10	0.5		0	979	2.15	0.00	200
912694	Rock		<0.5 <0.5	0.30 0.34	7 7	55 55	<2 <2	>10 >10	<0.5 <0.5	3	8	12 12	2.45 2.54	0.08 0.08	308 307
912694 Dup QCV1011-00584-0005-BLK			<0.5	< 0.01	<5	<10	<2	<0.01	<0.5	<1	<1	<1	< 0.01	< 0.01	<10
STD-CDN-ME-8 expected			<0.5 61.7	<0.01	<>>	<10	<2	<0.01	<0.5	<1	<1	1030	<0.01	<0.01	<10
STD-CDN-ME-8 expected STD-CDN-ME-8 result			63.7									990			
912713	Rock		03.7	0.56	9	111	<2	>10	< 0.5	2	12	24	2.84	0.11	429
912713 Dup	ROCK		0.8	0.56	10	111	<2	>10	<0.5	2	29	22	2.74	0.11	439
QCV1011-00584-0008-BLK			< 0.5	< 0.01	<5	<10	<2	< 0.01	<0.5	<1	<1	<1	<0.01	< 0.01	<10
STD-CDN-ME-6 expected			101.0	<0.01)	<10	~2	<0.01	<0.5	\1	\1	6130	<0.01	<0.01	<10
STD-CDN-ME-6 result			98.7									6335			
912731	Rock		<0.5	0.10	<5	93	<2	>10	< 0.5	14	8	30	9.03	0.04	216
912731 Dup	ROCK		<0.5	0.09	<5	93	<2	>10	<0.5	14	8	30	8.86	0.04	217
QCV1011-00584-0011-BLK			<0.5	< 0.01	<5	<10	<2	< 0.01	<0.5	<1	<1	<1	< 0.01	< 0.01	<10
OCV1011-00584-0013-BLK			<0.5	< 0.01	<5	<10	<2	< 0.01	< 0.5	<1	<1	<1	< 0.01	< 0.01	<10
STD-OREAS-45P-4A expected			0.3							122	1103	749			
STD-OREAS-45P-4A result			< 0.5							122	1025	719			
912676	Rock	99.04													
912676 Dup		99.03													
QCV1011-00586-0002-BLK		< 0.01													
912694	Rock	99.25													
912694 Dup		99.14													
QCV1011-00586-0005-BLK		< 0.01													
912713	Rock	99.30													
912713 Dup		99.49													
QCV1011-00586-0008-BLK		< 0.01													
912731	Rock	99.59													
912731 Dup		99.21													
QCV1011-00586-0011-BLK		< 0.01													
QCV1011-00586-0013-BLK		< 0.01													
STD-SY-4 expected															
STD-SY-4 result		99.74													

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		Mg	Mn	Mo	Na	Ni	P	Pb	Sb	Sc	Sr	Ti	Tl	V	W
		30-4A-TR													
Sample	Sample	%	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm
Description	Type	0.01	5	1	0.01	1	10	2	5	1	1	0.01	10	1	10
912676	Rock	8.89	5433	3	0.02	<1	>10000	14	<5	8	2938	0.02	<10	32	<10
912676 Dup		8.49	5491	2	0.02	<1	>10000	14	<5	8	2811	0.02	<10	32	<10
QCV1011-00584-0002-BLK		< 0.01	<5	<1	< 0.01	<1	<10	<2	<5	<1	<1	< 0.01	<10	<1	<10
912694	Rock	>10	5135	2	0.02	<1	>10000	16	<5	8	3258	0.01	<10	7	<10
912694 Dup		>10	5320	2	0.02	<1	>10000	16	<5	8	3384	0.01	<10	6	<10
QCV1011-00584-0005-BLK		< 0.01	<5	<1	< 0.01	<1	<10	<2	<5	<1	<1	< 0.01	<10	<1	<10
912713	Rock	8.64	4441	3	0.02	<1	>10000	12	<5	10	2729	0.02	<10	31	<10
912713 Dup		8.24	4222	3	0.02	<1	>10000	13	<5	10	2595	0.02	<10	32	<10
QCV1011-00584-0008-BLK		< 0.01	<5	<1	< 0.01	<1	<10	<2	<5	<1	<1	< 0.01	<10	<1	<10
STD-CDN-ME-6 expected								10200							
STD-CDN-ME-6 result								9998							
912731	Rock	8.11	5269	3	0.03	1	>10000	11	<5	6	3650	0.15	<10	147	<10
912731 Dup		7.99	5220	3	0.03	1	>10000	14	<5	6	3611	0.15	<10	146	<10
QCV1011-00584-0011-BLK		< 0.01	<5	<1	< 0.01	<1	<10	<2	<5	<1	<1	< 0.01	<10	<1	<10
QCV1011-00584-0013-BLK		< 0.01	<5	<1	< 0.01	<1	<10	<2	<5	<1	<1	< 0.01	<10	<1	<10
STD-OREAS-45P-4A expected					0.08	385	454	22							
STD-OREAS-45P-4A result					0.08	379	455	20							

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		Zn	Zr	Ce	Dy	Er	Eu	Gd	Hf	Но	La	Lu	Nd	Pr	Sm
		30-4A-TR	30-4A-TR	REE-LB-MS											
Sample	Sample	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Description	Type	2	1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
912676	Rock	19	58												
912676 Dup		19	57												
QCV1011-00584-0002-BLK		<2	<1												
912694	Rock	18	54												
912694 Dup		18	52												
QCV1011-00584-0005-BLK		<2	<1												
912713	Rock	18	45												
912713 Dup		19	48												
QCV1011-00584-0008-BLK		<2	<1												
STD-CDN-ME-6 expected		5170													
STD-CDN-ME-6 result		5169													
912731	Rock	58	13												
912731 Dup		57	13												
QCV1011-00584-0011-BLK		<2	<1												
QCV1011-00584-0013-BLK		<2	<1												
STD-OREAS-45P-4A expected		142													
STD-OREAS-45P-4A result		143													
QCV1011-00587-0001-BLK				< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	<0.1
912676	Rock			721.6	20.3	8.0	11.5	37.8	2.8	3.0	382.5	0.3	278.5	77.8	44.7
912676 Dup				697.4	20.0	7.7	11.6	35.3	2.7	3.1	371.7	0.3	275.3	75.8	42.8
912694	Rock			624.9	17.1	5.3	9.2	30.5	< 0.1	2.1	330.1	0.1	236.5	67.4	35.0
912694 Dup				651.9	15.7	5.3	9.7	31.8	<0.1	2.2	346.3	0.1	228.9	67.3	33.7
912713	Rock			>1000	26.7	9.1	14.8	49.5	0.2	3.6	612.7	0.4	377.3	115.9	53.3
912713 Dup	. .			>1000	24.6	9.8	15.6	50.3	<0.1	3.9	621.9	0.3	367.4	105.6	55.5
912731	Rock			508.3	13.0	3.6	9.4	27.6	2.2	1.5	239.6	<0.1	211.3	59.2	31.6
912731 Dup				506.3	12.4	3.8	9.3	26.0	2.1	1.5	219.2	<0.1	210.2	57.8	31.9
QCV1011-00587-0010-BLK				<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
STD-SY-4 expected				122.0	18.2	14.2	2.0	14.0	10.6	4.3	58.0	2.1	57.0	15.0	12.7
STD-SY-4 result				120.6	18.7	14.3	1.9	14.0	10.7	4.0	57.3	1.9	59.6	14.3	13.2

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		Tb	Tm	Yb	Y	Ta	Th	U
		REE-LB-MS	REE-LB-MS	REE-LB-MS	REE-LB-MS	Ta-4A-LL-MS	Th-4A-LL-MS [J-4A-LL-MS
Sample	Sample	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Description	Type	0.1	0.1	0.1	0.10	0.05	0.20	0.10
QCV1011-00587-0001-BLK		< 0.1	< 0.1	< 0.1	< 0.10			
912676	Rock	3.4	0.8	4.9	86.3			
912676 Dup		3.1	0.7	4.8	84.9			
912694	Rock	2.7	0.5	3.7	66.3			
912694 Dup		2.8	0.4	3.4	67.4			
912713	Rock	4.6	0.8	6.2	100.7			
912713 Dup		4.3	0.8	6.2	105.6			
912731	Rock	2.4	0.1	2.6	44.1			
912731 Dup		2.0	0.2	2.2	46.0			
QCV1011-00587-0010-BLK		<0.1	<0.1	<0.1	< 0.10			
STD-SY-4 expected		2.6	2.3	14.8	119.0			
STD-SY-4 result		2.4	2.1	13.9	122.6			
912676	Rock					3.90	70.23	2.60
912676 Dup QCV1105-00539-0002-BLK						3.97 <0.05	76.75	2.49
-	D1-						<0.20	< 0.10
912694 912694 Dup	Rock					33.61 32.98	102.30 99.17	14.54 14.76
QCV1105-00539-0005-BLK						<0.05	<0.20	< 0.10
912713	Rock					12.63	108.61	5.29
912713 912713 Dup	KOCK					12.03	108.01	5.79
QCV1105-00539-0008-BLK						< 0.05	<0.20	< 0.10
912731	Rock					7.37	45.15	2.09
912731 Dup	ROCK					7.56	46.73	2.17
OCV1105-00539-0011-BLK						< 0.05	< 0.20	< 0.10
OCV1105-00539-0013-BLK						< 0.05	< 0.20	<0.10

Certificate of Analysis

Inspectorate Exploration & Mining Services Ltd. #200 - 11620 Horseshoe Way

Date Received: 11/18/2010

Date Completed: 05/06/2011

Invoice:

Richmond, British Columbia V7A 4V5 Canada

Phone: 604-272-7818

Distribution List

Attention: Eric Titley

Suite 1020-800 West Pender St.

Vancouver, BC V6C 2V6

EMail: erictitley@hdimining.com

Attention: Jeremy Crozier

EMail: jeremycrozier@hdimining.com

Attention: T.Kodata

EMail: tkodata@hdimining.com

Submitted By: Aley Corporation

Suite 1020-800 West Pender St.

Vancouver, BC V6C 2V6

Attention: Eric Titley

Project: Aley 2010 Project

Purchase Order: **ALY 0002**Description: **Aley 2010-034**

Location	Samples	Type	Preparation Description
Vancouver, BC	4	Pulp	SP-PU/Pulp Handling, submitted pulps
Vancouver, BC	65	Rock	SP-RX-2K/Rock/Chips/Drill Core

Location	Method	Description
Vancouver, BC	Ta-4A-LL-MS	Tantalum, 4 Acid, ICP
Vancouver, BC	REE-LB-MS	REE Group by ICP-MS
Vancouver, BC	U-4A-LL-MS	Uraium, 4 Acid, Low Level
Vancouver, BC	Nb2O5-AD3-OR-ICP	Niobium by multi-acid digestion, ICP
Vancouver, BC	Th-4A-LL-MS	Thorium, 4 Acid, Low Level
Vancouver, BC	WR-FS-ICP	Whole Rock, Lithium Borate Fusion, ICP
Vancouver, BC	30-4A-TR	30 Element, 4 Acid, ICP, Trace Level

Submittal Information

Ta, Th, and U results shown have been revised with accurate detection limits.

The results of this assay were based solely upon the content of the sample submitted. Any decision to invest should be made only after the potential investment value of the claim or deposit has been determined based on the results of assays of multiple samples of geologic materials collected by the prospective investor or by a qualified person selected by him and based on an evaluation of all engineering data which is available concerning any proposed project. For our complete terms and conditions please see our website at www.inspectorate.com.

By

Mike Caron, Lab Manager

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		Nb2O5	A12O3	BaO	CaO	Cr2O3	Fe2O3	K2O	LOI	MgO	MnO	Na2O	P2O5	SiO2	TiO2
		Nb2O5-AD3-OR-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP
Sample	Sample	%	%	%	%	%	%	%	%	%	%	%	%	%	%
Description 912761	Type Rock	0.01	0.01	<0.01	35.80	<0.01	3.50	0.01	39.04	0.01 14.80	0.01	0.01	0.01 4.81	0.01	0.01
912762	Rock	0.26	0.16	< 0.01	36.02	< 0.01	3.38	0.04	41.14	15.98	0.63	0.03	2.50	< 0.20	0.02
912763	Rock	0.29	0.11	< 0.01	36.57	< 0.01	4.13	0.02	39.94	15.16	0.65	0.03	2.93	< 0.01	0.01
912764	Rock	0.29	0.12	< 0.01	37.43	< 0.01	3.45	0.02	39.59	14.40	0.68	0.04	3.87	< 0.01	0.02
912765	Rock	0.26	0.12	< 0.01	36.19	< 0.01	3.95	< 0.01	39.51	15.08	0.64	0.03	3.44	< 0.01	0.02
912766	Rock	0.38	0.11	< 0.01	36.42	< 0.01	4.11	0.01	39.47	15.25	0.69	0.03	3.31	< 0.01	0.02
912767	Rock	0.30	0.25	< 0.01	37.32	< 0.01	3.57	0.02	39.22	14.58	0.65	0.03	3.54	0.25	0.33
912768	Rock	0.11	0.13	< 0.01	36.03	< 0.01	3.94	0.02	41.90	15.43	0.63	0.03	1.57	< 0.01	0.03
912769	Rock	0.28	0.19	< 0.01	37.12	< 0.01	3.73	< 0.01	38.91	14.41	0.56	0.05	3.76	0.20	0.21
912770	Pulp	0.71	0.23	0.02	39.01	< 0.01	4.55	0.04	38.78	10.38	0.40	0.09	3.24	2.95	0.12
912771	Rock	0.29	0.14	< 0.01	36.94	< 0.01	3.77	< 0.01	39.31	14.43	0.57	0.03	4.32	< 0.01	0.02
912772	Rock	0.44	0.17	< 0.01	36.63	< 0.01	4.22	0.02	40.37	14.53	0.45	0.03	3.12	0.09	0.05
912773	Rock	0.32	0.15	< 0.01	36.89	< 0.01	4.29	0.01	39.82	13.79	0.59	0.03	3.50	< 0.01	0.04
912774	Rock	0.44	0.18	< 0.01	36.10	< 0.01	4.59	0.01	39.55	14.97	0.61	0.03	3.73	< 0.01	0.05
912775	Rock	0.53	0.19	< 0.01	36.03	< 0.01	4.94	0.02	38.05	14.65	0.45	0.04	4.99	< 0.01	0.07
912776	Rock	0.35	0.22	< 0.01	39.44	< 0.01	6.02	0.02	38.11	11.59	0.74	0.04	4.44	< 0.01	0.08
912777	Rock	0.48	0.28	< 0.01	38.33	< 0.01	8.24	0.01	34.65	12.52	0.58	0.03	5.22	0.31	0.27
912778	Rock	0.32	0.18	< 0.01	34.07	< 0.01	4.11	0.01	40.69	16.62	0.60	0.03	2.78	< 0.01	0.04
912779	Rock	0.37	0.21	< 0.01	36.22	< 0.01	3.52	0.02	39.04	14.96	0.65	0.04	5.00	< 0.01	0.03
912781	Rock	0.34	0.16	< 0.01	36.25	< 0.01	3.81	0.02	39.78	14.72	0.68	0.03	3.98	< 0.01	0.02
912782	Rock	0.56	0.27	< 0.01	37.92	< 0.01	5.21	0.04	37.98	12.89	0.58	0.03	5.22	0.09	0.06
912783	Rock	0.50	0.22	< 0.01	35.81	< 0.01	3.93	0.03	40.65	15.36	0.62	0.03	3.03	0.06	0.03
912784	Rock	0.42	0.24	< 0.01	35.17	< 0.01	4.01	0.02	39.23	15.41	0.69	0.03	4.01	0.04	0.07
912785	Rock	0.13	0.10	< 0.01	34.65	< 0.01	3.56	< 0.01	40.83	16.35	0.78	0.02	3.34	< 0.01	0.01
912786	Rock	0.23	0.14	< 0.01	38.89	< 0.01	3.81	< 0.01	35.42	12.60	0.59	0.03	8.01	< 0.01	0.02
912787	Rock	0.22	0.11	< 0.01	35.27	< 0.01	3.99	0.01	40.93	14.81	0.83	0.03	3.21	< 0.01	0.01
912788	Rock	0.33	0.18	< 0.01	36.81	< 0.01	4.31	< 0.01	39.19	14.21	0.69	0.03	4.26	0.05	0.04
912789	Rock	0.68	0.24	< 0.01	33.72	< 0.01	5.11	0.02	39.34	16.20	0.75	0.04	3.55	0.04	0.07
912790	Pulp	0.45	0.32	< 0.01	38.91	< 0.01	6.66	0.05	37.77	11.98	0.60	0.06	3.93	1.52	0.14
912791 912792	Rock	0.49	0.16	< 0.01	35.98	< 0.01	4.66	0.02	36.88	13.87	0.66	0.04	6.68	< 0.01	0.02
912792	Rock Rock	0.26 0.42	0.18 0.92	<0.01 <0.01	36.09 35.19	<0.01 <0.01	3.55 4.44	0.02 0.06	40.89 36.94	15.21 16.63	0.75 0.64	0.03 0.03	3.11 4.55	<0.01 1.12	0.02 0.09
912793	Rock	0.42	0.92	< 0.01	35.19	< 0.01	4.79	< 0.00	41.61	14.52	0.89	0.03	2.10	< 0.01	0.09
912794	Rock	0.24	0.14	<0.01	34.89	< 0.01	4.79	<0.01 0.01	40.22	14.52	0.89	0.03	3.38	<0.01	0.02
912793	Rock	0.27	0.14	<0.01	36.24	<0.01	4.19	0.01	38.20	13.50	0.77	0.03	4.51	0.01	0.02
912797	Rock	0.32	0.32	< 0.01	36.05	< 0.01	4.93	0.08	39.82	14.88	0.85	0.07	3.71	< 0.01	0.07
912798	Rock	0.23	0.10	< 0.01	37.43	< 0.01	3.42	0.01	38.26	14.00	0.63	0.04	5.13	0.07	0.02
912799	Rock	0.40	0.22	< 0.01	36.91	< 0.01	3.68	0.01	37.96	14.50	0.55	0.03	5.19	0.07	0.02
912801	Rock	0.27	0.19	< 0.01	39.22	< 0.01	3.76	0.02	37.53	13.63	0.66	0.04	5.66	< 0.01	0.03
912802	Rock	0.38	0.24	< 0.01	38.92	< 0.01	4.14	0.02	38.76	13.03	0.65	0.04	4.27	0.04	0.02

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		Nb2O5	A12O3	BaO	CaO	Cr2O3	Fe2O3	K2O	LOI	MgO	MnO	Na2O	P2O5	SiO2	TiO2
		Nb2O5-AD3-OR-ICP	WR-FS-ICP												
Sample	Sample	%	%	%	%	%	%	%	%	%	%	%	%	%	%
Description	Type	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
912803	Rock	0.54	0.23	< 0.01	38.36	< 0.01	6.08	0.04	37.61	11.86	0.74	0.05	4.77	0.11	0.06
912804	Rock	0.22	0.19	< 0.01	35.59	< 0.01	4.02	0.02	41.36	14.81	0.76	0.04	3.09	0.09	0.03
912805	Rock	0.43	0.15	< 0.01	37.67	< 0.01	4.56	0.02	40.02	12.32	0.71	0.04	4.10	< 0.01	0.06
912806	Rock	0.33	0.20	< 0.01	39.28	< 0.01	4.39	0.04	38.46	12.25	0.73	0.04	4.65	0.03	0.03
912807	Rock	0.42	0.19	< 0.01	35.97	< 0.01	4.16	0.03	39.56	14.95	0.66	0.04	3.79	< 0.01	0.03
912808	Rock	0.54	0.33	0.01	41.82	< 0.01	4.70	0.04	37.51	10.36	0.64	0.04	4.73	0.30	0.05
912809	Rock	0.25	0.26	< 0.01	36.16	< 0.01	3.69	0.03	40.30	14.83	0.67	0.04	3.23	0.55	0.03
912810	Pulp	0.77	0.22	0.02	37.84	< 0.01	4.92	0.04	37.88	11.75	0.42	0.08	3.24	3.05	0.13
912811	Rock	0.30	2.37	0.02	31.19	0.01	4.78	0.65	34.20	14.61	0.58	0.11	3.07	7.51	0.14
912812	Rock	0.21	0.10	< 0.01	35.95	< 0.01	3.76	0.02	40.63	15.36	0.71	0.04	3.24	< 0.01	0.02
912813	Rock	0.50	0.32	< 0.01	35.34	< 0.01	4.23	0.02	40.10	15.21	0.66	0.04	2.82	0.29	0.33
912814	Rock	0.19	0.17	< 0.01	35.77	< 0.01	4.70	0.03	39.49	15.55	0.68	0.03	3.43	< 0.01	0.07
912815	Rock	0.29	0.25	< 0.01	36.64	< 0.01	4.20	0.02	39.96	14.32	0.74	0.04	3.43	0.13	0.05
912816	Rock	0.16	0.12	< 0.01	36.59	< 0.01	3.81	0.02	41.16	15.44	0.73	0.04	2.64	< 0.01	0.02
912817	Rock	0.41	0.39	< 0.01	33.95	< 0.01	4.81	0.08	38.71	13.60	0.75	0.07	3.73	3.20	0.04
912818	Rock	0.17	0.12	< 0.01	36.84	< 0.01	4.52	0.02	39.15	13.78	0.71	0.04	3.86	0.22	0.02
912819	Rock	0.19	0.11	< 0.01	37.10	< 0.01	4.16	0.02	40.27	14.69	0.77	0.05	3.10	< 0.01	0.02
912821	Rock	0.19	0.91	< 0.01	33.06	< 0.01	4.64	0.08	39.34	17.07	0.72	0.04	2.12	2.23	0.12
912822	Rock	0.46	0.19	< 0.01	36.85	< 0.01	6.52	0.06	38.75	12.86	0.63	0.04	2.79	0.28	0.08
912823	Rock	0.31	4.11	0.03	29.04	0.02	4.71	0.88	27.42	10.24	0.47	0.85	3.46	19.03	0.16
912824	Rock	0.33	2.06	0.02	32.82	< 0.01	4.42	0.46	33.91	12.73	0.51	0.42	3.23	9.10	0.09
912825	Rock	0.27	0.12	< 0.01	36.11	< 0.01	4.98	0.03	39.47	15.13	0.70	0.05	2.89	0.06	0.03
912826	Rock	0.20	0.18	< 0.01	36.47	< 0.01	3.74	0.03	39.50	15.33	0.67	0.04	3.64	0.03	0.04
912827	Rock	0.18	0.09	< 0.01	36.25	< 0.01	4.43	0.02	39.63	15.36	0.72	0.05	2.88	< 0.01	0.02
912828	Rock	0.10	0.30	< 0.01	37.62	< 0.01	4.57	0.02	38.77	13.46	0.70	0.05	4.47	0.15	0.04
912829	Rock	0.08	0.26	< 0.01	38.11	< 0.01	4.54	0.02	39.57	12.74	0.74	0.04	3.66	0.07	0.04
912830	Pulp	0.79	0.56	0.02	32.53	< 0.01	17.51	0.09	30.69	10.48	0.48	0.06	4.66	2.13	0.65
912831	Rock	0.39	2.20	0.03	33.27	< 0.01	5.44	1.21	33.75	12.75	0.60	0.15	2.15	7.56	0.32
912832	Rock	0.23	2.20	0.02	34.07	< 0.01	5.08	0.81	33.04	12.70	0.49	0.11	2.67	7.58	0.32

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		Total	Ag	Al	As	Ba	Bi	Ca	Cd	Co	Cr	Cu	Fe	K	La
		WR-FS-ICP	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR
Sample	Sample	%	ppm	%	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%	%	ppm
Description	Туре	0.01	0.5	0.01	5	10	2	0.01	0.5	3	1	1	0.01	0.01	10 267
912761 912762	Rock Rock	99.08 99.82	<0.5 <0.5	0.03 0.02	<5 <5	46 44	<2 <2	>10 >10	<0.5 <0.5	3	16 4	55 45	2.36 2.60	0.02 0.01	267
912762	Rock	99.82	<0.5	0.02	<5	44	<2	>10	<0.5	5	3	53	2.85	< 0.01	279
912763	Rock	99.59	<0.5	0.03	<5	43 37	<2	>10	<0.5	4	3 4	63	2.83	< 0.01	229
912765	Rock	98.99	0.6	0.03	<5	31	<2	>10	<0.5	4	4	50	2.42	<0.01	359
912766	Rock	99.43	<0.5	0.03	6	33	<2	>10	<0.5	5	15	65	2.94	<0.01	211
912767	Rock	99.79	<0.5	0.02	<5	37	<2	>10	<0.5	4	4	50	2.47	0.01	297
912768	Rock	99.72	0.7	0.04	<5	51	5	>10	<0.5	5	10	22	2.80	< 0.01	236
912769	Rock	99.15	< 0.5	0.06	<5	54	<2	>10	< 0.5	5	4	45	2.64	< 0.01	257
912770	Pulp	99.82	<0.5	0.07	11	165	<2	>10	< 0.5	6	2	106	3.35	0.02	343
912771	Rock	99.56	<0.5	0.04	6	41	<2	>10	< 0.5	4	3	59	2.72	< 0.01	207
912772	Rock	99.69	< 0.5	0.05	<5	25	<2	>10	< 0.5	4	3	72	3.22	< 0.01	271
912773	Rock	99.13	< 0.5	0.04	<5	48	<2	>10	< 0.5	6	4	60	3.06	< 0.01	254
912774	Rock	99.84	< 0.5	0.05	7	35	<2	>10	< 0.5	4	3	70	3.12	< 0.01	361
912775	Rock	99.43	< 0.5	0.06	8	26	<2	>10	< 0.5	6	2	92	3.69	< 0.01	380
912776	Rock	100.69	< 0.5	0.05	7	41	<2	>10	< 0.5	7	2	63	3.50	< 0.01	263
912777	Rock	100.46	< 0.5	0.09	13	60	<2	>10	< 0.5	10	3	87	5.41	< 0.01	240
912778	Rock	99.15	1.0	0.05	8	43	<2	>10	< 0.5	6	2	54	2.85	< 0.01	181
912779	Rock	99.69	< 0.5	0.06	6	41	<2	>10	< 0.5	2	2	59	2.15	< 0.01	248
912781	Rock	99.47	< 0.5	0.04	<5	40	<2	>10	< 0.5	4	2	59	2.49	0.01	192
912782	Rock	100.32	< 0.5	0.08	7	39	<2	>10	< 0.5	9	3	89	3.28	0.02	254
912783	Rock	99.78	< 0.5	0.07	<5	44	<2	>10	< 0.5	4	2	72	2.59	0.02	205
912784	Rock	98.92	< 0.5	0.08	5	35	<2	>10	< 0.5	4	3	62	2.68	< 0.01	284
912785	Rock	99.65	< 0.5	0.01	<5	41	4	>10	< 0.5	2	3	19	2.37	< 0.01	302
912786	Rock	99.52	< 0.5	0.03	6	25	<2	>10	< 0.5	4	7	30	2.52	< 0.01	717
912787	Rock	99.22	< 0.5	0.02	<5	35	3	>10	< 0.5	3	2	34	2.71	< 0.01	185
912788	Rock	99.80	< 0.5	0.05	<5	46	<2	>10	< 0.5	4	3	63	2.95	< 0.01	209
912789	Rock	99.08	0.8	0.08	8	37	<2	>10	< 0.5	6	5	114	3.57	< 0.01	215
912790	Pulp	101.94	< 0.5	0.10	8	46	<2	>10	< 0.5	6	2	74	4.17	0.03	333
912791	Rock	98.98	0.7	0.04	11	37	<2	>10	< 0.5	5	3	88	3.24	< 0.01	329
912792	Rock	99.86	0.6	0.04	<5	36	<2	>10	< 0.5	4	4	41	2.30	< 0.01	187
912793	Rock	100.63	< 0.5	0.40	12	47	<2	>10	< 0.5	6	4	65	3.23	0.04	286
912794	Rock	99.12	<0.5	0.03	<5	38	4	>10	<0.5	5	2	43	3.16	< 0.01	287
912795	Rock	99.70	<0.5	0.04	5	44	<2	>10	<0.5	4	5	44	2.92	< 0.01	189
912796	Rock	99.37	<0.5	0.11	6	76	<2	>10	<0.5	5	4	53	3.32	0.06	248
912797	Rock	99.84	0.8	0.04	<5	42	<2	>10	<0.5	3	2	45	2.92	< 0.01	301
912798	Rock	99.33	0.8	0.07	<5	32	<2	>10	<0.5	2	4	50	2.41	< 0.01	665
912799	Rock	99.40	0.9	0.11	6	32	<2	>10	<0.5	5	3	69	2.75	0.01	414
912801	Rock	100.72	<0.5	0.04	<5	28	6	>10	<0.5	3	3	43	2.22	< 0.01	281
912802	Rock	100.33	< 0.5	0.07	5	29	<2	>10	< 0.5	4	12	57	2.70	0.01	350

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		Total	Ag	Al	As	Ba	Bi	Ca	Cd	Co	Cr	Cu	Fe	K	La
		WR-FS-ICP	30-4A-TR												
Sample	Sample	%	ppm	%	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%	%	ppm
Description	Type	0.01	0.5	0.01	5	10	2	0.01	0.5	1	1	1	0.01	0.01	10
912803	Rock	99.92	< 0.5	0.06	5	35	<2	>10	< 0.5	7	11	83	3.63	0.02	710
912804	Rock	99.99	0.7	0.04	<5	38	<2	>10	< 0.5	3	3	31	2.54	< 0.01	312
912805	Rock	99.66	1.0	0.03	<5	32	<2	>10	< 0.5	4	4	62	3.06	< 0.01	253
912806	Rock	100.12	1.3	0.04	<5	37	<2	>10	< 0.5	4	4	49	2.66	0.02	586
912807	Rock	99.38	0.8	0.05	5	38	<2	>10	< 0.5	5	3	66	2.86	0.02	551
912808	Rock	100.53	1.0	0.10	10	77	<2	>10	< 0.5	4	3	84	3.04	0.02	342
912809	Rock	99.81	< 0.5	0.07	<5	47	4	>10	< 0.5	4	4	41	2.58	0.02	444
912810	Pulp	99.60	1.0	0.06	13	161	<2	>10	< 0.5	6	1	112	3.33	0.03	335
912811	Rock	99.21	1.1	1.28	14	114	<2	>10	< 0.5	7	29	51	3.23	0.51	330
912812	Rock	99.85	0.8	0.02	<5	48	6	>10	< 0.5	4	4	35	2.57	< 0.01	270
912813	Rock	99.37	0.8	0.11	<5	36	<2	>10	< 0.5	5	4	75	2.94	< 0.01	246
912814	Rock	99.93	0.8	0.05	<5	42	6	>10	< 0.5	5	4	34	3.04	< 0.01	260
912815	Rock	99.81	0.9	0.06	<5	43	<2	>10	< 0.5	4	20	49	2.70	0.01	272
912816	Rock	100.58	0.8	0.02	<5	44	6	>10	< 0.5	4	2	28	2.55	0.01	246
912817	Rock	99.36	0.6	0.13	7	62	<2	>10	< 0.5	7	6	57	3.17	0.05	341
912818	Rock	99.29	< 0.5	0.02	<5	56	7	>10	< 0.5	4	4	28	3.04	< 0.01	772
912819	Rock	100.30	0.8	0.02	<5	57	<2	>10	< 0.5	6	5	33	2.85	< 0.01	250
912821	Rock	100.34	0.6	0.38	8	50	6	>10	< 0.5	8	5	33	3.18	0.06	151
912822	Rock	99.07	0.8	0.05	5	67	<2	>10	< 0.5	9	4	72	4.20	0.04	331
912823	Rock	100.42	0.6	2.00	22	222	<2	>10	< 0.5	9	52	51	3.02	0.69	276
912824	Rock	99.77	< 0.5	0.89	12	137	<2	>10	< 0.5	8	28	49	2.86	0.37	307
912825	Rock	99.58	0.5	0.02	<5	43	<2	>10	< 0.5	6	5	44	3.38	0.01	219
912826	Rock	99.69	0.6	0.05	<5	44	7	>10	< 0.5	5	4	32	2.65	0.02	231
912827	Rock	99.45	0.8	0.01	<5	50	4	>10	< 0.5	6	10	30	3.03	< 0.01	304
912828	Rock	100.15	0.9	0.09	<5	36	6	>10	< 0.5	5	5	16	3.07	< 0.01	262
912829	Rock	99.81	1.0	0.06	<5	42	7	>10	< 0.5	4	6	13	2.75	0.01	978
912830	Pulp	99.87	1.4	0.23	18	178	<2	>10	< 0.5	13	<1	159	>10	0.06	305
912831	Rock	99.43	0.7	0.95	15	253	<2	>10	< 0.5	11	14	87	3.66	0.80	474
912832	Rock	99.10	0.9	1.14	15	150	6	>10	< 0.5	11	12	45	3.64	0.64	164

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

			Mg	Mn	Мо	Na	Ni	P	Pb	Sb	Sc	Sr	Ti	Tl	V	W
			30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR
S	Sample	Sample	%	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm
Desc	ription	Type	0.01	5	1	0.01	1	10	2	5	1	1	0.01	10	1	10
9	912761	Rock	6.89	4602	10	0.03	<1	>10000	157	<5	6	4465	< 0.01	<10	6	<10
9	912762	Rock	7.22	5280	5	0.02	<1	>10000	134	<5	6	4335	< 0.01	<10	6	<10
	912763	Rock	7.04	5153	7	0.02	<1	>10000	154	<5	7	4590	0.01	<10	19	<10
	912764	Rock	6.90	5294	<1	0.02	<1	>10000	183	<5	8	4740	< 0.01	<10	6	<10
	912765	Rock	6.96	5410	1	0.02	<1	>10000	129	<5	9	3938	< 0.01	<10	10	<10
	912766	Rock	6.84	5583	<1	0.02	<1	>10000	175	<5	8	4392	< 0.01	<10	6	<10
	912767	Rock	6.96	5089	<1	0.02	<1	>10000	151	<5	7	4617	0.05	<10	10	<10
	912768	Rock	7.25	5033	<1	0.02	<1	8329	55	<5	7	4199	< 0.01	<10	9	<10
	912769	Rock	6.96	4365	1	0.03	<1	>10000	125	<5	8	4149	0.03	<10	15	<10
	912770	Pulp	5.74	3131	<1	0.06	<1	>10000	317	<5	7	2494	0.06	<10	72	<10
	912771	Rock	6.80	4517	5	0.02	<1	>10000	132	<5	7	3827	< 0.01	<10	15	<10
	912772	Rock	7.04	3930	<1	0.02	<1	>10000	204	<5	7	2459	0.03	<10	36	<10
	912773	Rock	6.88	4924	2	0.02	<1	>10000	151	<5	8	3674	0.02	<10	25	<10
	912774	Rock	6.89	4874	<1	0.02	<1	>10000	196	<5	8	3421	0.02	<10	30	<10
	912775	Rock	6.68	3912	<1	0.02	<1	>10000	262	<5	7	2339	0.03	<10	45	<10
	912776	Rock	6.85	4953	<1	0.02	<1	>10000	176	<5	7 7	3516	0.03	<10	34	<10
	912777	Rock	5.93	4419	<1	0.02	<1	>10000	217	<5		3297	0.09	<10	83	<10
	912778	Rock	7.14	4512	<1	0.02	<1	>10000	173	<5	8	3689	0.02	<10	23	<10
	912779	Rock	6.93	4316	<1	0.02	<1	>10000	185	<5	7	4049	0.01	<10	26	<10
	912781	Rock	6.95	5013	<1	0.02	<1	>10000	184	<5	6	4147	0.01	<10	18	<10
	912782	Rock	6.64	4151	<1	0.02	<1	>10000	265	<5	7	2813	0.03	<10	34	<10
	912783	Rock	7.14	4715	<1	0.02	<1	>10000	208	<5	7 7	3515	0.01	<10	25	<10
	912784 912785	Rock	6.88	5271	<1	0.02 0.02	<1	>10000 >10000	195 68	<5		3625 3662	0.03	<10	32 7	<10
	912786	Rock Rock	6.96 6.31	5846 4323	<1 <1	0.02	<1 <1	>10000	114	<5 <5	6 7	2439	<0.01 <0.01	<10 <10	11	<10 <10
	912780	Rock	7.00	6153	<1	0.02	<1	>10000	114	<5	6	3875	< 0.01	<10	6	<10
	912788	Rock	6.76	5115	<1	0.02	<1	>10000	173	<5 <5	6	3392	0.01	<10	19	<10
	912789	Rock	6.80	5597	<1	0.02	<1	>10000	326	<5	6	3544	0.02	<10	34	<10
	912790	Pulp	6.71	4228	2	0.02	<1	>10000	220	<5	7	2305	0.04	<10	37	<10
	912791	Rock	6.58	5098	<1	0.04	<1	>10000	274	<5	8	3308	0.04	<10	16	<10
	912792	Rock	7.05	5431	<1	0.02	<1	>10000	128	<5	6	4102	< 0.01	<10	3	<10
	912793	Rock	6.76	5298	<1	0.02	<1	>10000	196	<5	7	3527	0.03	<10	11	<10
	912794	Rock	6.94	6899	1	0.02	<1	>10000	134	<5	6	3945	< 0.03	<10	6	<10
	912795	Rock	6.78	6082	2	0.02	<1	>10000	134	<5	5	3919	0.01	<10	7	<10
	912796	Rock	6.44	6275	2	0.02	<1	>10000	153	<5	6	3533	0.01	<10	14	<10
	912797	Rock	6.83	6438	6	0.02	<1	>10000	138	<5	6	3676	< 0.03	<10	5	<10
	912798	Rock	6.75	4933	<1	0.02	<1	>10000	154	<5	7	2958	0.01	<10	5	<10
	912799	Rock	6.84	4444	<1	0.02	<1	>10000	207	<5	6	3360	0.01	<10	10	<10
	912801	Rock	6.85	4305	<1	0.03	<1	>10000	137	<5	6	3198	< 0.02	<10	3	<10
	912802	Rock	7.00	4673	<1	0.02	4	>10000	176	<5	6	2623	0.01	<10	5	<10

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		Mg	Mn	Mo	Na	Ni	P	Pb	Sb	Sc	Sr	Ti	Tl	V	W
		30-4A-TR													
Sample	Sample	%	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm
Description	Type	0.01	5	1	0.01	1	10	2	5	1	1	0.01	10	1	10
912803	Rock	6.72	4715	<1	0.03	<1	>10000	242	<5	6	3166	0.03	<10	28	<10
912804	Rock	7.05	5137	3	0.02	<1	>10000	101	<5	5	3986	< 0.01	<10	9	<10
912805	Rock	6.93	4984	<1	0.02	<1	>10000	194	<5	7	3394	0.02	<10	16	<10
912806	Rock	6.90	4663	<1	0.02	<1	>10000	150	<5	7	3290	0.01	<10	12	<10
912807	Rock	6.72	4832	<1	0.02	<1	>10000	194	<5	6	3419	0.01	<10	12	<10
912808	Rock	5.84	4522	<1	0.02	<1	>10000	258	<5	7	2828	0.02	<10	18	<10
912809	Rock	6.88	5135	2	0.02	<1	>10000	123	<5	6	3689	< 0.01	<10	6	<10
912810	Pulp	5.74	3117	<1	0.06	<1	>10000	343	<5	7	2488	0.06	<10	72	<10
912811	Rock	6.86	4321	<1	0.08	10	>10000	152	<5	6	3429	0.05	<10	4	<10
912812	Rock	7.05	5351	<1	0.03	<1	>10000	107	<5	6	4462	< 0.01	<10	6	<10
912813	Rock	6.89	4869	<1	0.02	<1	>10000	227	<5	7	3289	0.06	<10	11	<10
912814	Rock	6.92	4849	<1	0.02	<1	>10000	100	<5	8	3409	0.02	<10	22	<10
912815	Rock	6.79	5148	<1	0.02	<1	>10000	144	<5	7	4006	0.02	<10	13	<10
912816	Rock	6.98	5277	<1	0.02	<1	>10000	81	<5	7	4027	< 0.01	<10	6	<10
912817	Rock	6.65	5250	4	0.05	<1	>10000	164	<5	10	3847	0.01	<10	20	<10
912818	Rock	6.77	5089	1	0.02	<1	>10000	88	<5	8	2847	< 0.01	<10	9	<10
912819	Rock	6.95	5632	<1	0.03	<1	>10000	101	<5	6	3806	< 0.01	<10	9	<10
912821	Rock	7.02	5204	<1	0.03	<1	>10000	96	<5	4	3688	0.04	<10	18	<10
912822	Rock	6.60	4315	<1	0.03	<1	>10000	215	<5	5	2646	0.03	<10	40	<10
912823	Rock	5.75	3134	<1	0.65	1	>10000	147	<5	6	1974	0.07	<10	16	<10
912824	Rock	6.38	3595	<1	0.34	<1	>10000	148	<5	6	2017	0.04	<10	16	<10
912825	Rock	6.86	5088	<1	0.03	<1	>10000	128	<5	6	3426	0.02	<10	32	<10
912826	Rock	6.96	5144	2	0.03	<1	>10000	101	<5	6	3731	0.01	<10	10	<10
912827	Rock	7.00	5345	<1	0.03	<1	>10000	92	<5	6	3778	0.01	<10	17	<10
912828	Rock	6.85	5064	<1	0.03	<1	>10000	54	<5	11	3193	0.01	<10	12	<10
912829	Rock	6.92	4882	1	0.02	<1	>10000	49	<5	8	3046	< 0.01	<10	15	<10
912830	Pulp	5.59	3706	<1	0.04	<1	>10000	415	<5	6	1926	0.16	<10	193	<10
912831	Rock	6.68	4331	2	0.10	3	>10000	197	<5	8	2435	0.13	<10	17	<10
912832	Rock	6.58	3906	<1	0.08	4	>10000	118	<5	7	2800	0.06	<10	22	<10

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		Zn	Zr	Ce	Dy DEF LD MG	Er	Eu	Gd	Hf	Ho PEE I D MG	La	Lu	Nd PEE I P MG	Pr	Sm
Sample	Sample	30-4A-TR		REE-LB-MS			REE-LB-MS		REE-LB-MS				REE-LB-MS		
Description	Туре	ppm 2	ppm 1	ppm 0.1	ppm 0.1	ppm 0.1	ppm 0.1	ppm 0.1	ppm 0.1	ppm 0.1	ppm 0.1	ppm 0.1	ppm 0.1	ppm 0.1	ppm 0.1
912761	Rock	20	39	788.3	21.3	8.2	15.5	49.2	0.7	3.1	360.9	0.4	370.9	103.4	59.5
912762	Rock	20	39	722.9	18.0	7.4	13.2	45.4	0.7	2.5	367.0	0.4	370.4	100.2	56.3
912763	Rock	22	52	630.8	15.6	6.2	12.7	41.9	1.0	2.2	305.5	0.3	323.2	89.3	49.0
912764	Rock	20	59	586.5	18.0	6.6	13.5	40.8	0.8	2.6	282.2	0.4	301.3	82.3	48.8
912765	Rock	19	57	960.0	16.6	6.8	12.3	45.0	1.2	2.3	486.8	0.4	411.5	115.7	54.1
912766	Rock	23	57	542.6	19.8	7.5	13.0	39.0	1.1	2.8	265.8	0.4	280.9	76.2	45.9
912767	Rock	21	46	733.0	16.3	6.1	13.1	42.1	1.1	2.3	388.2	0.3	327.3	92.2	47.4
912768	Rock	26	39	516.2	7.9	3.3	7.0	24.6	0.5	1.1	317.3	0.2	225.8	61.7	28.6
912769	Rock	22	43	656.4	16.6	6.4	13.2	39.2	1.0	2.3	323.2	0.3	302.2	83.5	47.0
912770	Pulp	12	65	907.0	25.6	11.3	17.4	52.5	0.8	4.1	424.9	1.0	379.5	114.1	61.4
912771	Rock	22	55	522.0	19.9	7.8	12.2	37.8	1.1	3.0	263.8	0.5	288.1	73.5	45.5
912772	Rock	13	73	684.3	20.5	8.4	13.9	42.4	1.2	2.9	336.9	0.7	306.7	89.1	50.5
912773	Rock	25	60	592.3	19.9	8.9	11.5	37.9	1.2	3.2	307.9	0.5	265.1	77.2	44.4
912774	Rock	23	60	840.6	24.9	9.8	15.3	50.9	1.0	3.7	424.5	0.6	366.6	105.8	59.3
912775	Rock	15	74	876.1	24.3	10.6	17.5	53.3	1.8	3.7	449.5	0.7	406.6	118.9	62.1
912776	Rock	23	71	660.8	19.1	7.5	12.9	39.1	1.9	2.7	327.8	0.5	278.6	82.0	45.9
912777	Rock	37	93	619.8	18.1	7.1	14.1	40.6	3.2	2.5	306.5	0.4	294.2	81.4	48.4
912778	Rock	28	54	436.2	12.9	4.9	9.7	29.0	0.7	1.8	229.8	0.3	219.2	57.8	33.7
912779	Rock	21	51	636.2	15.6	6.1	14.0	39.0	0.6	2.1	300.1	0.3	312.6	82.0	47.4
912781	Rock	19	49	470.9	13.9	5.4	10.6	31.9	0.8	2.1	232.2	0.3	237.8	64.1	38.3
912782	Rock	16	75	639.9	18.8	7.7	13.3	40.9	1.0	2.9	296.3	0.6	297.8	82.2	48.7
912783	Rock	20	59	535.4	14.2	5.5	10.2	32.1	0.6	2.0	267.4	0.3	260.5	71.5	39.0
912784	Rock	20	58	682.4	19.8	8.3	13.2	43.8	0.9	2.9	343.5	0.5	334.8	90.9	51.1
912785	Rock	24	51	671.5	13.7	5.8	8.4	32.9	1.3	2.0	361.5	0.4	280.9	82.3	38.3
912786	Rock	16	69	>1000	34.7	16.3	20.7	80.9	2.9	5.5	878.5	1.2	637.3	194.4	96.8
912787	Rock	22	51	393.5	14.6	6.8	7.8	26.6	1.2	2.4	219.5	0.5	188.5	50.6	28.8
912788	Rock	29	60	483.5	16.3	6.7	10.8	34.5	1.1	2.4	237.4	0.5	247.8	67.1	39.0
912789 912790	Rock	22 25	72 71	523.5 755.8	15.8 21.7	6.7 8.6	12.3 14.3	35.1 46.4	1.0 1.9	2.3 3.1	271.4 399.0	0.4 0.6	283.2 328.2	76.6 93.9	41.7 51.6
912790	Pulp Rock	19	65	774.9	21.7	8.7	13.6	45.2	1.9	3.0	388.3	0.6	339.0	95.6	54.1
912791	Rock	19	38	440.5	9.5	3.9	7.2	23.7	0.7	1.3	230.7	0.6	196.5	54.2	27.4
912792	Rock	21	56	714.4	9.3 17.9	7.1	12.3	42.1	1.0	2.6	352.6	0.2	310.3	87.2	46.3
912794	Rock	23	52	653.0	11.9	4.9	9.2	33.5	0.8	1.6	352.0	0.4	260.2	77.9	38.1
912794	Rock	23	51	404.6	12.9	4.9	8.6	26.8	1.4	1.8	224.8	0.3	184.5	50.8	29.9
912796	Rock	23	63	608.9	14.7	5.9	9.0	28.8	1.4	2.3	340.2	0.4	216.5	57.5	32.4
912797	Rock	22	57	722.3	15.1	6.2	9.4	30.7	1.4	2.3	435.6	0.5	244.8	70.1	37.0
912798	Rock	16	56	>1000	19.5	8.1	15.9	55.4	0.8	2.7	>1000	0.6	499.9	153.7	69.1
912799	Rock	14	43	>1000	20.3	7.6	15.5	47.7	0.8	2.9	600.2	0.5	386.1	104.3	58.6
912801	Rock	15	45	745.2	16.7	6.6	11.6	36.0	1.1	2.5	399.7	0.5	280.7	73.5	42.9
912802	Rock	12	42	957.3	19.7	7.8	13.0	40.6	0.8	3.0	510.3	0.6	308.0	87.8	48.2

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		Zn	Zr	Ce	Dy	Er	Eu	Gd	Hf	Но	La	Lu	Nd	Pr	Sm
		30-4A-TR	30-4A-TR	REE-LB-MS											
Sample	Sample	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Description	Type	2	1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
912803	Rock	19	56	>1000	39.8	15.6	33.8	109.5	2.8	5.5	>1000	1.1	809.5	274.0	117.8
912804	Rock	19	37	722.6	10.6	4.0	8.1	25.5	0.9	1.5	472.9	0.2	222.7	63.7	29.2
912805	Rock	17	53	696.9	18.1	6.7	11.8	34.9	0.9	2.6	372.1	0.5	260.4	70.7	40.6
912806	Rock	18	44	>1000	18.7	7.4	14.0	45.3	1.1	2.6	881.3	0.5	349.9	115.0	50.5
912807	Rock	19	49	>1000	16.4	6.3	13.2	43.8	0.9	2.3	813.5	0.4	345.5	107.1	47.9
912808	Rock	16	47	854.6	22.7	8.7	15.3	47.1	0.9	3.3	456.2	0.6	319.0	89.8	54.3
912809	Rock	19	40	729.2	12.8	4.7	10.4	31.3	0.8	1.7	443.6	0.3	252.2	70.5	37.3
912810	Pulp	12	67	937.0	23.1	9.8	14.9	44.7	0.7	3.7	470.3	0.8	299.9	90.2	51.6
912811	Rock	32	63	708.5	11.9	4.5	9.6	29.6	0.9	1.7	470.2	0.3	261.1	70.3	34.9
912812	Rock	20	36	649.5	11.0	4.2	9.0	29.5	0.8	1.5	377.3	0.2	251.4	68.5	34.3
912813	Rock	19	42	616.5	14.5	5.4	13.4	30.4	0.8	2.2	339.0	0.4	247.4	65.8	38.0
912814	Rock	21	57	636.8	12.9	4.9	9.4	28.4	1.8	2.0	375.0	0.3	233.1	62.1	33.2
912815	Rock	21	43	654.7	14.2	5.1	11.5	32.3	1.1	2.0	364.5	0.3	265.9	69.2	40.1
912816	Rock	21	36	598.1	10.4	4.0	8.5	26.6	1.1	1.5	345.4	0.2	212.6	59.1	31.3
912817	Rock	24	51	805.9	15.0	5.4	11.8	34.9	1.1	2.1	484.7	0.4	281.5	82.4	42.5
912818	Rock	18	47	>1000	17.8	7.2	15.1	51.7	1.3	2.4	>1000	0.5	476.9	148.9	60.2
912819	Rock	17	38	600.5	10.4	4.0	8.3	25.4	1.2	1.5	342.4	0.3	222.9	62.8	30.9
912821	Rock	20	47	419.8	8.8	3.5	7.1	19.8	1.3	1.4	211.6	0.3	154.9	43.1	24.3
912822	Rock	24	57	902.9	18.3	7.6	11.5	36.1	1.4	2.8	465.4	0.6	281.3	82.2	44.2
912823	Rock	25	69	740.5	16.3	6.7	11.4	35.5	3.1	2.4	400.4	0.5	276.2	77.6	42.2
912824	Rock	17	51	922.3	16.1	6.8	11.8	37.6	1.0	2.5	474.9	0.5	287.9	87.6	45.9
912825	Rock	19	59	558.6	10.5	4.3	8.1	24.3	1.5	1.5	305.0	0.3	210.7	57.8	30.7
912826	Rock	18	40	608.6	15.0	5.9	10.3	31.6	1.3	2.2	315.2	0.4	251.9	69.4	38.5
912827	Rock	18	44	708.8	13.6	4.9	9.3	31.0	1.7	1.9	410.8	0.3	260.2	71.8	36.7
912828	Rock	17	43	692.3	15.5	6.1	10.1	33.7	1.9	2.4	392.9	0.5	283.6	76.5	39.7
912829	Rock	20	46	>1000	16.5	6.4	13.9	53.8	1.1	2.2	>1000	0.3	477.9	175.3	55.1
912830	Pulp	62	177	793.0	19.5	8.0	13.1	40.2	11.2	2.9	405.6	0.6	295.3	85.5	47.1
912831	Rock	119	81	>1000	13.6	5.8	10.5	35.0	1.7	2.1	690.9	0.4	302.3	103.8	38.8
912832	Rock	45	65	468.6	13.2	5.3	8.7	25.8	3.0	2.0	233.6	0.4	197.9	52.0	30.8

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

			Tb	Tm	Yb	Y	Ta	Th	U
				REE-LB-MS			Ta-4A-LL-MS		U-4A-LL-MS
	Sample	Sample	ppm	ppm	ppm	ppm	ppm	ppm	ppm
	Description	Type	0.1	0.1	0.1	0.10	0.05	0.20	0.10
·	912761	Rock	5.3	0.8	3.6	72.1	4.90	50.64	0.81
	912762	Rock	4.5	0.7	3.3	63.2	2.77	48.73	0.53
	912763	Rock	4.2	0.6	2.7	52.6	12.74	75.03	1.73
	912764	Rock	4.5	0.7	3.4	63.7	43.33	136.17	7.38
	912765	Rock	4.3	0.6	3.2	61.5	26.99	113.46	4.75
	912766	Rock	4.6	0.7	3.3	69.9	24.05	76.36	4.31
	912767	Rock	4.1	0.6	2.8	58.9	9.77	41.67	4.12
	912768	Rock	2.2	0.3	1.5	30.1	0.70	23.82	0.27
	912769	Rock	4.2	0.6	2.8	60.2	10.58	52.41	4.91
	912770	Pulp	6.0	1.3	6.8	100.2	48.04	224.85	2.35
	912771	Rock	4.4	0.8	3.9	71.8	4.86	74.84	0.63
	912772	Rock	4.8	1.0	4.9	73.5	4.13	100.51	0.72
	912773	Rock	4.6	0.9	4.4	75.7	4.62	94.89	1.38
	912774	Rock	5.7	1.0	5.2	87.8	2.08	106.36	0.60
	912775	Rock	5.7	1.1	5.8	86.2	3.78	103.39	0.74
	912776	Rock	4.3	0.8	4.0	70.0	2.49	93.45	0.70
	912777	Rock	4.6	0.7	3.1	61.1	8.89	119.45	2.38
	912778	Rock	3.2	0.5	2.2	48.5	2.09	76.13	0.85
	912779	Rock	4.2	0.5	2.4	54.9	1.61	98.89	0.28
	912781	Rock	3.5	0.5	2.5	51.8	2.79	75.94	0.41
	912782	Rock	4.6	0.9	4.3	75.2	7.84	103.76	1.23
	912783	Rock	3.4	0.5	2.5	47.8	4.04	96.80	0.89
	912784	Rock	4.9	0.8	3.9	75.7	5.99	60.14	1.57
	912785	Rock	3.3	0.6	2.8	52.1	0.65	44.27	0.47
	912786	Rock	8.2	1.8	9.2	132.4	4.08	88.97	1.46
					3.8	63.1	2.22	46.02	0.78
	912787 912788	Rock Rock	3.2 3.7	0.8 0.7	3.8	57.6	5.06	62.18	1.61
	912789	Rock	3.6	0.7	3.3 4.8	58.4 72.2	8.91	83.86 172.93	1.41 10.36
	912790	Pulp	5.1	0.9			28.25		
	912791	Rock	5.0	0.9	4.4	72.2	5.69	124.50	1.06
	912792	Rock	2.4	0.4	1.8	34.3	6.24	33.90	1.92
	912793	Rock	4.4	0.7	3.3	58.4	5.65	49.35	1.73
	912794	Rock	3.3	0.4	2.2	40.7	2.29	45.97	0.82
	912795	Rock	2.9	0.5	2.7	45.7	2.53	50.66	0.98
	912796	Rock	3.4	0.7	3.6	69.9	2.36	40.65	1.16
	912797	Rock	3.7	0.7	3.6	69.6	3.18	45.63	0.96
	912798	Rock	5.2	0.8	4.4	84.7	3.16	50.43	1.18
	912799	Rock	5.1	0.8	4.0	89.9	5.39	55.66	1.41
	912801	Rock	4.1	0.8	3.7	76.8	4.01	37.02	1.30
	912802	Rock	4.7	0.9	4.4	86.0	5.15	53.26	1.43

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		Tb	Tm	Yb	Y	Ta	Th	U
				REE-LB-MS	REE-LB-MS	Ta-4A-LL-MS	Th-4A-LL-MS	U-4A-LL-MS
Sample	Sample	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Description	Type	0.1	0.1	0.1	0.10	0.05	0.20	0.10
912803	Rock	10.3	1.6	8.5	160.3	5.61	47.21	1.30
912804	Rock	2.7	0.4	1.9	43.9	0.71	23.92	0.38
912805	Rock	4.0	0.7	3.6	73.2	1.39	42.63	0.57
912806	Rock	4.6	0.7	3.7	68.7	20.41	88.49	1.56
912807	Rock	4.2	0.7	3.2	66.6	5.55	39.75	1.66
912808	Rock	5.3	0.9	4.7	88.5	10.05	57.80	3.73
912809	Rock	3.2	0.4	2.2	49.6	2.97	34.51	1.31
912810	Pulp	5.2	1.2	6.1	104.9	50.37	211.34	2.13
912811	Rock	3.2	0.5	2.2	44.0	3.46	34.96	1.10
912812	Rock	3.0	0.4	1.8	37.0	0.50	20.11	0.47
912813	Rock	3.5	0.6	3.1	56.5	3.58	27.04	1.18
912814	Rock	3.2	0.5	2.6	49.3	22.39	30.46	9.81
912815	Rock	3.6	0.5	2.5	51.4	11.17	36.53	5.45
912816	Rock	2.7	0.4	2.0	37.5	3.30	19.65	2.96
912817	Rock	3.7	0.5	2.6	53.5	13.24	51.60	7.63
912818	Rock	4.8	0.7	3.9	67.8	14.03	34.89	6.54
912819	Rock	2.7	0.4	2.2	39.4	2.85	28.21	2.71
912821	Rock	2.2	0.4	2.0	35.4	1.30	25.94	0.36
912822	Rock	4.3	0.9	4.6	76.2	5.35	55.57	1.70
912823	Rock	3.8	0.7	4.0	71.1	3.75	50.09	2.90
912824	Rock	4.0	0.7	4.1	68.8	3.57	49.23	2.27
912825	Rock	2.5	0.5	2.4	40.6	1.22	44.73	0.31
912826	Rock	3.5	0.6	3.0	54.4	4.17	24.58	1.64
912827	Rock	3.2	0.5	2.8	50.3	0.92	40.32	0.55
912828	Rock	3.7	0.7	3.7	56.7	11.22	26.33	4.85
912829	Rock	4.5	0.6	2.9	55.5	10.02	44.18	6.82
912830	Pulp	4.3	0.8	4.4	73.3	38.49	307.92	7.69
912831	Rock	3.4	0.6	3.0	54.5	21.50	120.18	4.85
912832	Rock	3.0	0.6	3.5	53.1	2.45	22.82	1.49

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		Nb2O5	A12O3	BaO	CaO	Cr2O3	Fe2O3	K2O	LOI	MgO	MnO	Na2O	P2O5	SiO2	TiO2
0 1	C 1	Nb2O5-AD3-OR-ICP	WR-FS-ICP												
Sample	Sample	% 0.01	%	%	%	% 0.01	% 0.01	% 0.01	% 0.01	%	%	% 0.01	% 0.01	%	%
Description 912761	Type Rock	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
912761 912761 Dup	Rock	0.30													
QCV1011-00623-0002-BLK		< 0.01													
STD-OKA-1 expected		0.53													
STD-OKA-1 expected STD-OKA-1 result		0.56													
912779	Rock	0.36													
912779 912779 Dup	ROCK	0.38													
QCV1011-00623-0005-BLK		< 0.01													
STD-OKA-1 expected		0.53													
STD-OKA-1 expected STD-OKA-1 result		0.54													
912798	Rock	0.31													
912798 Dup	NOCK	0.31													
QCV1011-00623-0008-BLK		< 0.01													
STD-OKA-1 expected		0.53													
STD-OKA-1 result		0.53													
912817	Rock	0.41													
912817 Dup	ROCK	0.38													
QCV1011-00623-0011-BLK		< 0.01													
STD-OKA-1 expected		0.53													
STD-OKA-1 result		0.52													
QCV1011-00623-0013-BLK		< 0.01													
STD-OKA-1 expected		0.53													
STD-OKA-1 result		0.53													
912761	Rock		0.16	< 0.01	35.80	< 0.01	3.50	0.04	39.04	14.80	0.63	0.05	4.81	0.20	0.02
912761 Dup			0.15	< 0.01	35.80	< 0.01	3.50	0.03	39.05	14.78	0.59	0.05	4.82	0.20	0.02
QCV1011-00626-0002-BLK			< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
912779	Rock		0.21	< 0.01	36.22	< 0.01	3.52	0.02	39.04	14.96	0.65	0.04	5.00	< 0.01	0.03
912779 Dup			0.19	< 0.01	36.21	< 0.01	3.51	0.02	39.05	14.99	0.58	0.04	4.91	< 0.01	0.03
QCV1011-00626-0005-BLK			< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
912798	Rock		0.22	< 0.01	37.43	< 0.01	3.42	0.01	38.26	14.11	0.63	0.03	5.13	0.07	0.02
912798 Dup			0.26	< 0.01	35.95	< 0.01	3.85	0.02	38.33	13.45	0.70	0.04	6.64	0.08	0.02
QCV1011-00626-0008-BLK			< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
912817	Rock		0.39	< 0.01	33.95	< 0.01	4.81	0.08	38.71	13.60	0.75	0.07	3.73	3.20	0.04
912817 Dup			0.37	< 0.01	33.95	< 0.01	4.75	0.08	38.67	13.65	0.71	0.07	3.70	3.20	0.04
QCV1011-00626-0011-BLK			< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
QCV1011-00626-0013-BLK			< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
STD-SY-4 expected			20.69		8.05		6.21	1.66	4.56	0.54	0.11	7.10	0.13	49.90	0.29
STD-SY-4 result			20.82	0.04	8.12	< 0.01	6.25	1.70	4.52	0.55	0.12	7.10	0.13	50.29	0.31

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

			Total	Ag	Al	As	Ba	Bi	Ca	Cd	Co	Cr	Cu	Fe	K	La
			WR-FS-ICP	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR
	Sample	Sample	%	ppm	%	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%	%	ppm
	Description	Type	0.01	0.5	0.01	5	10	2	0.01	0.5	1	1	1	0.01	0.01	10
	912761	Rock		< 0.5	0.03	<5	46	<2	>10	< 0.5	3	16	55	2.36	0.02	267
	912761 Dup			< 0.5	0.04	<5	48	<2	>10	<0.5	3	16	56	2.31	0.02	287
	QCV1011-00624-0002-BLK			<0.5	< 0.01	<5	<10	<2	< 0.01	< 0.5	<1	<1	<1	< 0.01	< 0.01	<10
	STD-CDN-ME-8 expected			61.7									1030			
	STD-CDN-ME-8 result 912779	Rock		61.8 <0.5	0.06	-	41	2	>10	<0.5	2	2	1001 59	2.15	< 0.01	249
	912779 912779 Dup	ROCK		<0.5 <0.5	0.06	6 <5	41 42	<2 <2	>10	<0.5 <0.5	2 2	2 2	59 61	2.15	< 0.01	248 252
	QCV1011-00624-0005-BLK			<0.5	< 0.01	<5	<10	<2	<0.01	<0.5	<1	<1	<1	< 0.01	< 0.01	<10
STD	-OREAS-45P-4A expected			₹0.5	<0.01	9	<10	~2	₹0.01	₹0.5	122	1103	749	₹0.01	<0.01	<10
	TD-OREAS-45P-4A result										117	1127	694			
	912798	Rock		0.8	0.07	<5	32	<2	>10	< 0.5	2	4	50	2.41	< 0.01	665
	912798 Dup			0.7	0.07	<5	31	<2	>10	< 0.5	2	4	51	2.30	< 0.01	646
	QCV1011-00624-0008-BLK			< 0.5	< 0.01	<5	<10	<2	< 0.01	< 0.5	<1	<1	<1	< 0.01	< 0.01	<10
STD	-OREAS-45P-4A expected										122	1103	749			
S,	ΓD-OREAS-45P-4A result										115	1065	701			
	912817	Rock		0.6	0.13	7	62	<2	>10	< 0.5	7	6	57	3.17	0.05	341
	912817 Dup			0.5	0.13	6	62	<2	>10	< 0.5	7	6	58	3.00	0.05	341
	QCV1011-00624-0011-BLK			< 0.5	< 0.01	<5	<10	<2	< 0.01	< 0.5	<1	<1	<1	< 0.01	< 0.01	<10
	QCV1011-00624-0013-BLK			< 0.5	< 0.01	<5	<10	<2	< 0.01	< 0.5	<1	<1	<1	< 0.01	< 0.01	<10
	STD-CDN-ME-8 expected			61.7									1030			
	STD-CDN-ME-8 result 912761	Rock	99.08	61.6									1049			
	912761 Dup	ROCK	99.08 99.00													
	QCV1011-00626-0002-BLK		< 0.01													
	912779	Rock	99.69													
	912779 Dup	KOCK	99.52													
	QCV1011-00626-0005-BLK		< 0.01													
	912798	Rock	99.33													
	912798 Dup		99.35													
	QCV1011-00626-0008-BLK		< 0.01													
	912817	Rock	99.36													
	912817 Dup		99.20													
	QCV1011-00626-0011-BLK		< 0.01													
	QCV1011-00626-0013-BLK		< 0.01													
	STD-SY-4 expected															
L	STD-SY-4 result		99.94													

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

			Mg	Mn	Mo	Na	Ni	P	Pb	Sb	Sc	Sr	Ti	Tl	V	W
			30-4A-TR													
	Sample	Sample	%	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm
	Description	Type	0.01	5	1	0.01	1	10	2	5	1	1	0.01	10	1	10
	912761	Rock	6.89	4602	10	0.03	<1	>10000	157	<5	6	4465	< 0.01	<10	6	<10
	912761 Dup		6.94	4555	10	0.03	<1	>10000	156	<5	7	4492	< 0.01	<10	7	<10
	QCV1011-00624-0002-BLK		< 0.01	<5	<1	< 0.01	<1	<10	<2	<5	<1	<1	< 0.01	<10	<1	<10
	912779	Rock	6.93	4316	<1	0.02	<1	>10000	185	<5	7	4049	0.01	<10	26	<10
	912779 Dup		6.95	4460	<1	0.02	<1	>10000	194	<5	7	4078	0.01	<10	27	<10
	QCV1011-00624-0005-BLK		< 0.01	<5	<1	< 0.01	<1	<10	<2	<5	<1	<1	< 0.01	<10	<1	<10
STE	-OREAS-45P-4A expected					0.08	385		22							
S	TD-OREAS-45P-4A result					0.08	356		20							
	912798	Rock	6.75	4933	<1	0.02	<1	>10000	154	<5	7	2958	0.01	<10	5	<10
	912798 Dup		6.73	4655	<1	0.02	<1	>10000	160	<5	7	2944	0.01	<10	6	<10
	QCV1011-00624-0008-BLK		< 0.01	<5	<1	< 0.01	<1	<10	<2	<5	<1	<1	< 0.01	<10	<1	<10
STE	-OREAS-45P-4A expected					0.08	385	454	22							
5	TD-OREAS-45P-4A result					0.07	350	469	21							
	912817	Rock	6.65	5250	4	0.05	<1	>10000	164	<5	10	3847	0.01	<10	20	<10
	912817 Dup		6.72	4977	4	0.05	<1	>10000	171	<5	10	3841	0.02	<10	21	<10
	QCV1011-00624-0011-BLK		< 0.01	<5	<1	< 0.01	<1	<10	<2	<5	<1	<1	< 0.01	<10	<1	<10
	QCV1011-00624-0013-BLK		< 0.01	<5	<1	< 0.01	<1	<10	<2	<5	<1	<1	< 0.01	<10	<1	<10

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		Zn	Zr	Ce	Dy	Er	Eu	Gd	Hf	Но	La	Lu	Nd	Pr	Sm
		30-4A-TR	30-4A-TR	REE-LB-MS											
Sample	Sample	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Description	Type	2	1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
912761	Rock	20	39												
912761 Dup		20	44												
QCV1011-00624-0002-BLK		<2	<1												
912779	Rock	21	51												
912779 Dup		21	50												
QCV1011-00624-0005-BLK		<2	<1												
STD-OREAS-45P-4A expected		142													
STD-OREAS-45P-4A result		144													
912798	Rock	16	56												
912798 Dup		16	45												
QCV1011-00624-0008-BLK		<2	<1												
STD-OREAS-45P-4A expected		142													
STD-OREAS-45P-4A result		140													
912817	Rock	24	51												
912817 Dup		25	48												
QCV1011-00624-0011-BLK		<2	<1												
QCV1011-00624-0013-BLK		<2	<1												
QCV1011-00627-0001-BLK				< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
912761	Rock			788.3	21.3	8.2	15.5	49.2	0.7	3.1	360.9	0.4	370.9	103.4	59.5
912761 Dup				749.2	20.1	8.0	15.6	48.6	0.8	2.9	342.1	0.4	366.8	99.1	57.9
912779	Rock			636.2	15.6	6.1	14.0	39.0	0.6	2.1	300.1	0.3	312.6	82.0	47.4
912779 Dup				631.1	15.9	5.9	14.5	39.7	0.6	2.2	302.5	0.3		82.8	49.0
912798	Rock			>1000	19.5	8.1	15.9	55.4	0.8	2.7	>1000	0.6		153.7	69.1
912798 Dup				>1000	20.2	8.3	15.7	55.2	0.7	2.8	972.7	0.6		148.8	69.4
912817	Rock			805.9	15.0	5.4	11.8	34.9	1.1	2.1	484.7	0.4	281.5	82.4	42.5
912817 Dup				810.1	14.1	5.0	11.2	33.3	0.9	1.9	444.8	0.3	257.1	78.1	40.7
QCV1011-00627-0010-BLK				<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
STD-SY-4 expected				122.0	18.2	14.2	2.0	14.0	10.6	4.3	58.0	2.1	57.0	15.0	12.7
STD-SY-4 result				124.1	19.1	14.7	2.1	13.9	11.0	4.5	59.6	2.2	58.3	14.9	13.3

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		Tb	Tm	Yb	Y	Ta	Th	U
		REE-LB-MS	REE-LB-MS	REE-LB-MS	REE-LB-MS	Ta-4A-LL-MS	Th-4A-LL-MS [J-4A-LL-MS
Sample	Sample	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Description	Type	0.1	0.1	0.1	0.10	0.05	0.20	0.10
QCV1011-00627-0001-BLK		< 0.1	< 0.1	< 0.1	< 0.10			
912761	Rock	5.3	0.8	3.6	72.1			
912761 Dup		5.4	0.8	3.5	75.4			
912779	Rock	4.2	0.5	2.4	54.9			
912779 Dup		4.1	0.5	2.5	54.9			
912798	Rock	5.2	0.8	4.4	84.7			
912798 Dup		5.1	0.8	4.4	81.3			
912817	Rock	3.7	0.5	2.6	53.5			
912817 Dup		3.6	0.5	2.5	50.4			
QCV1011-00627-0010-BLK		< 0.1	< 0.1	< 0.1	< 0.10			
STD-SY-4 expected		2.6	2.3	14.8	119.0			
STD-SY-4 result		2.7	2.4	15.2	121.0			
912761	Rock					4.90	50.64	0.81
912761 Dup						4.25	57.23	0.77
QCV1105-00555-0002-BLK						< 0.05	< 0.20	< 0.10
912779	Rock					1.61	98.89	0.28
912779 Dup						1.62	103.15	0.29
QCV1105-00555-0005-BLK						< 0.05	< 0.20	< 0.10
912798	Rock					3.16	50.43	1.18
912798 Dup						3.29	49.37	1.19
QCV1105-00555-0008-BLK						< 0.05	< 0.20	< 0.10
912817	Rock					13.24	51.60	7.63
912817 Dup						13.12	51.21	7.63
QCV1105-00555-0011-BLK						< 0.05	< 0.20	< 0.10
QCV1105-00555-0013-BLK						< 0.05	< 0.20	< 0.10

Certificate of Analysis

Inspectorate Exploration & Mining Services Ltd. #200 - 11620 Horseshoe Way

Date Received: 11/18/2010

Date Completed: 05/06/2011

Invoice:

Richmond, British Columbia V7A 4V5 Canada

Phone: 604-272-7818

Distribution List

Attention: Eric Titley

Suite 1020-800 West Pender St.

Vancouver, BC V6C 2V6

EMail: erictitley@hdimining.com

Attention: Jeremy Crozier

EMail: jeremycrozier@hdimining.com

Attention: T.Kodata

EMail: tkodata@hdimining.com

Submitted By: Aley Corporation

Suite 1020-800 West Pender St.

Vancouver, BC V6C 2V6

Attention: Eric Titley

Project: Aley 2010 Project

Purchase Order: **ALY 0002**Description: **Aley 2010-033**

Location	Samples	Type	Preparation Description
Vancouver, BC	4	Pulp	SP-PU/Pulp Handling, submitted pulps
Vancouver, BC	66	Rock	SP-RX-2K/Rock/Chips/Drill Core

Location	Method	Description
Vancouver, BC	Ta-4A-LL-MS	Tantalum, 4 Acid, ICP
Vancouver, BC	REE-LB-MS	REE Group by ICP-MS
Vancouver, BC	U-4A-LL-MS	Uraium, 4 Acid, Low Level
Vancouver, BC	Nb2O5-AD3-OR-ICP	Niobium by multi-acid digestion, ICP
Vancouver, BC	Th-4A-LL-MS	Thorium, 4 Acid, Low Level
Vancouver, BC	WR-FS-ICP	Whole Rock, Lithium Borate Fusion, ICP
Vancouver, BC	30-4A-TR	30 Element, 4 Acid, ICP, Trace Level

Submittal Information

Ta, Th, and U results shown have been revised with accurate detection limits.

The results of this assay were based solely upon the content of the sample submitted. Any decision to invest should be made only after the potential investment value of the claim or deposit has been determined based on the results of assays of multiple samples of geologic materials collected by the prospective investor or by a qualified person selected by him and based on an evaluation of all engineering data which is available concerning any proposed project. For our complete terms and conditions please see our website at www.inspectorate.com.

В

Mike Caron, Lab Manager

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

			Nb2O5	Al2O3	BaO	CaO	Cr2O3	Fe2O3	K2O	LOI	MgO	MnO	Na2O	P2O5	SiO2	TiO2
		_	Nb2O5-AD3-OR-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP
	Sample	Sample	%	%	%	%	%	%	%	%	%	%	%	%	%	%
De	escription	Туре	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
	912747 912748	Rock	1.01	0.14	0.01	36.28	< 0.01	5.70	0.02	35.46	13.77	0.54	0.05	7.00	0.91	0.05 0.52
		Rock	0.82	0.32	0.01	27.98	< 0.01	23.48	0.20	27.24	11.50	0.57	0.05	6.46	1.53	
	912749 912850	Rock	0.75 0.39	0.22 0.24	0.01 <0.01	33.42 31.43	< 0.01	7.47 5.30	0.05	35.98 39.07	13.75 16.51	0.59 0.48	0.05 0.06	6.53	0.84	0.12 0.12
	912851	Pulp Rock	1.35	0.24	0.01	28.37	<0.01 <0.01	24.17	0.04 0.14	25.38	9.95	0.48	0.06	4.48 7.41	1.28 3.05	0.12
		Rock	0.76	0.27	0.02	32.80	<0.01	10.24	0.14	34.22	13.22	0.33	0.23	6.95	1.23	0.13
	912852 912853	Rock	1.06	0.13	0.01	35.00	< 0.01	5.58	0.03	34.22	13.65	0.74	0.03	8.38	0.93	0.09
	912854	Rock	0.21	0.21	< 0.01	32.71	< 0.01	4.35	0.00	40.95	16.84	0.72	0.03	3.70	0.93	<0.03
	912855	Rock	1.13	0.65	0.01	33.51	< 0.01	6.19	0.02	32.61	13.70	0.67	0.03	8.91	2.64	0.01
	912856	Rock	0.41	0.03	< 0.01	31.97	0.01	5.97	0.28	39.26	16.58	0.56	0.07	4.34	1.38	0.05
	912857	Rock	0.35	0.16	< 0.01	31.44	< 0.01	5.50	0.04	40.22	17.28	0.43	0.03	3.60	1.76	0.05
	912858	Rock	0.80	0.10	0.01	32.12	< 0.01	9.16	0.05	35.78	14.62	0.45	0.05	5.72	1.61	0.03
	912859	Rock	0.60	0.23	< 0.01	32.68	< 0.01	5.48	0.06	36.94	16.07	0.49	0.05	6.08	1.22	0.06
	912861	Rock	0.80	0.10	< 0.01	34.12	< 0.01	7.84	0.04	33.91	14.46	0.49	0.06	7.08	0.93	0.07
	912862	Rock	0.46	0.05	< 0.01	33.35	< 0.01	4.51	0.02	39.01	16.97	0.63	0.04	4.48	0.44	0.06
	912863	Rock	0.35	0.05	< 0.01	33.45	< 0.01	4.64	0.02	38.84	17.33	0.62	0.04	4.85	0.59	0.04
	912864	Rock	0.40	0.14	< 0.01	33.12	< 0.01	6.44	0.03	38.18	16.25	0.59	0.06	4.71	0.97	0.15
	912865	Rock	0.75	0.31	0.02	22.82	< 0.01	37.76	0.22	21.63	9.12	0.60	0.05	4.66	1.70	0.69
	912866	Rock	0.02	16.19	0.13	3.89	0.03	3.91	3.74	1.17	1.60	0.12	3.71	0.28	67.19	0.47
	912867	Rock	0.88	0.47	0.01	24.97	< 0.01	31.77	0.21	23.61	9.76	0.48	0.08	5.45	2.33	0.69
	912868	Rock	0.58	0.18	< 0.01	33.87	< 0.01	6.73	0.02	37.16	15.02	0.59	0.05	4.55	1.34	0.12
	912869	Rock	0.25	0.16	< 0.01	32.47	< 0.01	5.59	0.02	37.48	16.24	0.59	0.04	4.36	2.39	0.03
	912870	Pulp	0.72	0.17	0.02	35.81	< 0.01	4.60	0.05	37.89	12.99	0.38	0.09	3.95	3.08	0.13
	912871	Rock	0.91	0.20	0.02	27.52	< 0.01	31.20	0.09	21.99	10.36	0.50	0.05	5.68	1.84	0.33
	912872	Rock	1.25	0.19	0.03	35.62	< 0.01	15.04	0.11	27.42	9.18	0.49	0.09	8.74	1.81	0.20
	912873	Rock	0.80	0.14	0.03	31.31	0.01	14.38	0.08	31.76	12.96	0.48	0.12	5.87	2.12	0.14
	912874	Rock	0.67	0.19	< 0.01	32.67	< 0.01	6.25	0.03	37.51	15.44	0.54	0.05	5.19	1.12	0.09
	912875	Rock	0.57	0.26	0.03	34.56	< 0.01	11.75	0.15	34.27	11.91	0.58	0.06	4.79	1.23	0.20
	912876	Rock	0.82	0.32	0.01	31.38	< 0.01	14.84	0.07	33.51	12.31	0.67	0.04	5.27	1.50	0.69
	912877	Rock	0.42	0.15	< 0.01	32.28	< 0.01	6.70	0.02	40.05	16.00	0.55	0.03	3.75	0.75	0.10
	912878	Rock	0.85	0.45	< 0.01	29.84	< 0.01	16.26	0.12	30.32	13.56	0.53	0.05	6.22	1.87	0.45
	912879	Rock	1.70	0.73	0.01	25.42	< 0.01	34.55	0.39	16.12	8.12	0.35	0.08	9.84	2.93	0.74
912	2880 Dup	Rock	1.77	0.74	0.01	25.83	< 0.01	34.35	0.42	15.81	8.00	0.35	0.08	9.97	3.00	0.75
	912881	Rock	0.31	0.18	< 0.01	32.82	< 0.01	6.30	0.03	38.83	15.37	0.57	0.04	4.27	1.45	0.11
	912882	Rock	0.78	0.27	< 0.01	33.07	< 0.01	9.68	0.07	34.03	13.85	0.53	0.05	6.46	1.54	0.18
	912883	Rock	0.67	0.28	< 0.01	29.89	< 0.01	15.65	0.14	30.56	13.11	0.58	0.05	6.94	1.32	0.41
	912884	Rock	1.63	0.77	0.01	29.34	< 0.01	26.93	0.37	21.16	8.23	0.46	0.07	8.92	2.64	0.70
	912885	Rock	1.77	0.54	< 0.01	38.35	< 0.01	9.95	0.02	29.72	8.97	0.45	0.05	9.51	1.23	0.37
	912886	Rock	1.04	0.17	< 0.01	35.17	< 0.01	9.99	0.01	31.81	12.32	0.43	0.05	8.80	1.03	0.14
	912887	Rock	0.65	0.17	< 0.01	32.92	< 0.01	5.77	0.01	36.25	14.82	0.59	0.04	6.79	1.67	0.10

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		Nb2O5	A12O3	BaO	CaO	Cr2O3	Fe2O3	K2O	LOI	MgO	MnO	Na2O	P2O5	SiO2	TiO2
		Nb2O5-AD3-OR-ICP	WR-FS-ICP												
San	nple Sample	%	%	%	%	%	%	%	%	%	%	%	%	%	%
Descrip	tion Type	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
912	888 Rock	0.19	0.06	< 0.01	33.41	< 0.01	4.55	< 0.01	42.37	16.14	0.83	0.03	1.45	0.97	0.02
912	889 Rock	0.48	0.18	< 0.01	32.54	< 0.01	5.11	0.05	41.13	16.62	0.74	0.04	2.68	0.59	0.09
912	890 Pulp	0.53	1.89	0.35	46.89	< 0.01	4.02	0.75	31.95	2.36	0.88	0.45	2.64	6.45	0.22
912	891 Rock	0.27	0.19	< 0.01	32.59	< 0.01	3.86	0.05	40.94	17.11	0.76	0.04	3.65	0.38	0.03
912	892 Rock	0.29	0.10	< 0.01	33.22	< 0.01	2.98	0.02	40.06	16.85	0.70	0.04	4.69	0.21	0.02
912	893 Rock	0.43	0.15	< 0.01	32.71	< 0.01	3.82	0.02	40.66	16.91	0.78	0.04	3.24	1.34	0.02
912	894 Rock	1.34	0.45	< 0.01	35.65	< 0.01	6.81	0.02	36.38	12.79	0.77	0.04	4.46	1.81	0.12
912	895 Rock	0.62	0.31	< 0.01	33.07	< 0.01	4.79	0.02	37.85	15.59	0.57	0.05	5.45	1.85	0.10
912	896 Rock	0.55	0.15	< 0.01	32.73	< 0.01	6.96	0.03	36.91	15.36	0.68	0.05	5.78	0.99	0.13
912	897 Rock	1.26	0.59	< 0.01	25.65	< 0.01	29.45	0.42	21.57	10.83	0.45	0.07	6.93	2.48	0.75
912		1.07	0.23	0.01	31.10	< 0.01	16.33	0.12	30.28	13.10	0.52	0.06	5.59	1.45	0.23
912	899 Rock	0.16	0.05	< 0.01	31.63	< 0.01	3.81	0.01	40.98	17.66	0.69	0.04	3.43	0.72	0.03
912		0.56	0.14	< 0.01	34.22	< 0.01	4.14	0.02	37.51	15.93	0.61	0.05	5.83	1.00	0.04
912		0.44	0.20	< 0.01	26.84	< 0.01	22.57	0.16	30.48	13.00	0.60	0.05	3.53	1.06	0.50
912		0.10	0.02	< 0.01	32.85	< 0.01	3.14	< 0.01	42.32	17.79	0.67	0.03	2.93	< 0.01	< 0.01
912		0.18	0.04	< 0.01	32.83	< 0.01	3.52	0.02	41.06	17.68	0.62	0.04	3.36	0.10	0.01
912		0.48	0.13	< 0.01	35.44	< 0.01	7.37	0.03	34.59	14.77	0.59	0.04	6.34	0.39	0.16
912		0.35	0.07	< 0.01	33.30	< 0.01	3.92	0.03	38.81	16.73	0.65	0.04	5.59	0.22	0.03
912		0.22	0.09	< 0.01	33.16	< 0.01	3.44	0.03	39.36	17.45	0.62	0.03	4.93	0.24	0.02
912		0.46	0.15	< 0.01	34.24	< 0.01	4.34	0.05	38.46	17.08	0.47	0.05	4.40	0.38	0.04
912		0.52	0.30	< 0.01	33.70	< 0.01	3.95	0.11	37.56	16.58	0.50	0.04	4.81	1.55	0.05
912	•	0.44	0.23	< 0.01	33.83	< 0.01	5.12	0.05	38.83	15.37	0.49	0.06	4.11	1.27	0.11
912		0.17	0.08	< 0.01	31.89	< 0.01	3.11	0.04	41.52	18.18	0.69	0.05	3.31	0.10	< 0.01
912		0.29	0.12	< 0.01	31.76	< 0.01	3.77	0.04	41.26	18.10	0.76	0.05	2.94	0.07	0.02
912		0.20	0.06	< 0.01	32.49	< 0.01	3.07	0.03	41.53	17.81	0.80	0.07	3.53	0.07	< 0.01
912		0.52	0.20	< 0.01	35.31	< 0.01	3.40	0.07	37.42	16.05	0.49	0.05	6.35	0.50	0.02
912		0.50	0.58	< 0.01	34.29	< 0.01	3.03	0.20	36.69	15.57	0.67	0.07	6.86	1.78	0.05
912		0.41	0.15	< 0.01	35.23	< 0.01	2.97	0.05	37.34	15.34	0.69	0.06	7.45	0.48	0.01
912		0.41	0.09	< 0.01	34.22	< 0.01	5.28	0.04	36.85	15.63	0.36	0.04	6.28	0.68	0.03
912	918 Rock	0.30	0.07	< 0.01	32.61	< 0.01	4.02	0.03	39.68	17.13	0.54	0.04	5.21	0.17	0.01

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		Total	Ag	Al	As	Ba and TR	Bi	Ca	Cd	Co	Cr	Cu	Fe 20 44 FP	K	La
Sample	Sample	WR-FS-ICP %	30-4A-TR	30-4A-TR %	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR %	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR %	30-4A-TR %	30-4A-TR
Description	Type	0.01	ppm 0.5	0.01	ppm 5	ppm 10	ppm 2	0.01	ppm 0.5	ppm 1	ppm 1	ppm 1	0.01	0.01	ppm 10
912747	Rock	99.92	<0.5	0.08	73	103	<2	>10	<0.5	8	6	45	3.94	0.01	351
912748	Rock	99.86	0.7	0.18	49	94	<2	>10	< 0.5	20	6	64	>10	0.15	288
912749	Rock	99.02	< 0.5	0.12	24	96	<2	>10	< 0.5	10	6	55	5.01	0.03	424
912850	Pulp	99.00	< 0.5	0.14	<5	52	<2	>10	< 0.5	7	4	34	3.84	0.03	322
912851	Rock	99.68	< 0.5	0.14	<5	160	<2	>10	< 0.5	14	12	71	>10	0.10	448
912852	Rock	99.75	< 0.5	0.08	12	108	<2	>10	< 0.5	8	7	54	6.73	0.03	987
912853	Rock	99.26	< 0.5	0.11	9	102	<2	>10	< 0.5	4	10	63	3.63	0.05	953
912854	Rock	99.76	< 0.5	0.03	26	44	<2	>10	< 0.5	4	6	16	3.00	< 0.01	1603
912855	Rock	99.30	< 0.5	0.34	74	72	<2	>10	< 0.5	7	6	69	4.10	0.20	4810
912856	Rock	100.45	< 0.5	0.10	28	41	<2	>10	< 0.5	10	9	37	3.90	0.04	1431
912857	Rock	100.52	< 0.5	0.06	16	29	<2	>10	< 0.5	11	13	32	3.68	0.02	743
912858	Rock	99.91	< 0.5	0.09	11	81	<2	>10	< 0.5	12	7	23	5.89	0.02	829
912859	Rock	99.36	<0.5	0.06	<5	41	<2	>10	<0.5	9	9	43	3.75	0.02	355
912861	Rock	99.10	<0.5	0.06	<5	60	<2	>10	<0.5	6	7	54	5.21	0.02	531
912862	Rock	99.57	<0.5	0.03	<5	52	<2	>10	<0.5	6	7	33	2.95	0.01	249
912863	Rock	100.49	<0.5	0.03	<5	46	<2	>10	<0.5	6 7	7 8	24	2.89	0.01	248
912864	Rock	100.65	<0.5	0.07	8	33	<2	>10	<0.5	•	8 6	33	4.15	0.02	558
912865 912866	Rock Rock	99.59 102.45	<0.5 <0.5	0.15 9.69	<5 <5	158 1221	<2 <2	>10 3.54	<0.5 <0.5	28	138	27 6	>10 2.60	0.15 3.41	241 35
912867	Rock	99.84	<0.5	0.24	<5	131	<2	>10	<0.5	19	9	26	>10	0.15	316
912868	Rock	99.62	<0.5	0.24	<5	53	<2	>10	<0.5	19	12	36	4.42	0.13	345
912869	Rock	99.36	<0.5	0.09	16	39	<2	>10	<0.5	13	15	18	3.44	< 0.01	900
912870	Pulp	99.16	<0.5	0.09	12	200	<2	>10	<0.5	4	4	44	2.86	0.04	406
912871	Rock	99.79	< 0.5	0.11	<5	128	<2	>10	< 0.5	84	17	83	>10	0.07	406
912872	Rock	98.92	<0.5	0.10	<5	246	<2	>10	<0.5	18	7	10	9.85	0.08	427
912873	Rock	99.41	< 0.5	0.07	<5	225	<2	>10	< 0.5	13	9	31	9.45	0.04	309
912874	Rock	99.10	< 0.5	0.10	<5	49	<2	>10	< 0.5	5	8	42	4.18	0.01	325
912875	Rock	99.81	< 0.5	0.13	<5	213	<2	>10	< 0.5	15	6	21	7.59	0.10	299
912876	Rock	100.61	< 0.5	0.17	<5	101	<2	>10	< 0.5	24	7	42	8.90	0.04	336
912877	Rock	100.40	< 0.5	0.08	<5	32	<2	>10	< 0.5	11	7	32	4.16	< 0.01	317
912878	Rock	99.66	< 0.5	0.25	<5	73	<2	>10	< 0.5	18	9	66	>10	0.09	275
912879	Rock	99.29	< 0.5	0.37	<5	114	<2	>10	< 0.5	32	8	47	>10	0.30	416
912880 Dup	Rock	99.31	< 0.5	0.38	<5	116	<2	>10	< 0.5	34	8	42	>10	0.32	412
912881	Rock	99.97	< 0.5	0.09	<5	43	<2	>10	< 0.5	10	8	28	4.20	0.01	331
912882	Rock	99.74	< 0.5	0.14	<5	48	<2	>10	< 0.5	16	6	15	6.16	0.05	323
912883	Rock	98.93	< 0.5	0.15	<5	49	<2	>10	< 0.5	20	6	12	9.79	0.09	334
912884	Rock	99.61	< 0.5	0.41	<5	110	<2	>10	< 0.5	27	5	39	>10	0.26	370
912885	Rock	99.18	< 0.5	0.28	19	84	<2	>10	<0.5	35	6	17	6.23	< 0.01	484
912886	Rock	99.92	<0.5	0.08	<5	50	<2	>10	<0.5	13	5	10	6.29	< 0.01	419
912887	Rock	99.14	< 0.5	0.08	7	33	<2	>10	< 0.5	10	8	13	3.74	< 0.01	640

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		Total	Ag	Al	As	Ba	Bi	Ca	Cd	Co	Cr	Cu	Fe	K	La
		WR-FS-ICP	30-4A-TR												
Sample	Sample	%	ppm	%	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%	%	ppm
Description	Type	0.01	0.5	0.01	5	10	2	0.01	0.5	1	1	1	0.01	0.01	10
912888	Rock	99.85	< 0.5	0.04	<5	69	<2	>10	< 0.5	5	7	6	2.93	< 0.01	139
912889	Rock	99.76	< 0.5	0.10	<5	59	<2	>10	< 0.5	7	6	11	3.28	0.03	206
912890	Pulp	98.86	< 0.5	0.93	15	3057	<2	>10	< 0.5	4	7	23	2.81	0.62	1028
912891	Rock	99.60	< 0.5	0.11	<5	46	<2	>10	< 0.5	3	6	22	2.45	0.03	201
912892	Rock	98.90	< 0.5	0.05	<5	45	<2	>10	< 0.5	1	6	20	1.98	< 0.01	229
912893	Rock	99.70	< 0.5	0.08	<5	41	<2	>10	< 0.5	2	7	29	2.54	< 0.01	233
912894	Rock	99.30	< 0.5	0.25	35	72	<2	>10	< 0.5	8	6	17	4.59	< 0.01	1682
912895	Rock	99.65	< 0.5	0.17	<5	35	<2	>10	< 0.5	6	7	7	3.19	< 0.01	333
912896	Rock	99.78	< 0.5	0.09	7	43	<2	>10	< 0.5	10	9	36	4.63	0.02	338
912897	Rock	99.20	< 0.5	0.32	<5	76	<2	>10	< 0.5	18	8	37	>10	0.31	329
912898	Rock	99.03	< 0.5	0.12	<5	126	<2	>10	< 0.5	24	7	16	>10	0.08	274
912899	Rock	99.04	< 0.5	0.02	<5	33	<2	>10	< 0.5	5	7	17	2.62	< 0.01	212
912901	Rock	99.48	< 0.5	0.08	<5	40	<2	>10	< 0.5	6	10	38	2.79	< 0.01	289
912902	Rock	99.01	< 0.5	0.10	<5	65	<2	>10	< 0.5	13	7	19	>10	0.11	165
912903	Rock	99.78	< 0.5	0.01	<5	39	<2	>10	< 0.5	2	7	13	2.16	< 0.01	185
912904	Rock	99.28	< 0.5	0.02	<5	36	<2	>10	< 0.5	2	7	16	2.48	< 0.01	380
912905	Rock	99.85	< 0.5	0.07	<5	41	<2	>10	< 0.5	9	13	34	5.09	0.02	308
912906	Rock	99.40	< 0.5	0.04	6	38	<2	>10	< 0.5	4	7	25	2.65	0.02	347
912907	Rock	99.38	< 0.5	0.05	10	33	<2	>10	< 0.5	5	8	20	2.30	0.02	554
912908	Rock	99.68	< 0.5	0.07	<5	42	<2	>10	< 0.5	7	11	36	2.99	0.02	476
912909	Rock	99.17	< 0.5	0.17	7	48	<2	>10	< 0.5	8	10	37	2.64	0.07	380
912910	Pulp	99.48	< 0.5	0.12	6	53	<2	>10	< 0.5	5	4	35	3.54	0.03	375
912911	Rock	98.99	< 0.5	0.04	9	60	<2	>10	< 0.5	2	8	15	2.11	0.02	497
912912	Rock	98.88	< 0.5	0.06	<5	74	<2	>10	< 0.5	2	5	21	2.52	0.03	235
912913	Rock	99.48	< 0.5	0.03	<5	64	<2	>10	< 0.5	2	7	3	2.05	0.02	206
912914	Rock	99.87	< 0.5	0.11	<5	49	<2	>10	< 0.5	3	8	33	2.26	0.05	242
912915	Rock	99.80	<0.5	0.32	<5	85	<2	>10	< 0.5	2	15	31	1.97	0.15	346
912916	Rock	99.79	< 0.5	0.08	<5	60	<2	>10	<0.5	<1	8	27	1.94	0.04	345
912917	Rock	99.50	<0.5	0.05	26	29	<2	>10	< 0.5	8	9	31	3.56	0.02	1763
912918	Rock	99.52	< 0.5	0.04	<5	50	<2	>10	< 0.5	4	7	21	2.60	0.02	239

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		Mg	Mn	Mo	Na	Ni	P	Pb	Sb	Sc	Sr	Ti	Tl	V	W
	~ .	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR
Sample	Sample	% 0.01	ppm 5	ppm 1	% 0.01	ppm 1	ppm 10	ppm 2	ppm	ppm 1	ppm	% 0.01	ppm 10	ppm 1	ppm
Description 912747	Type Rock	7.28	4096	<u> </u>	0.01	2	>10000	140	5 <5	7	3541	0.01	<10	275	10 <10
912748	Rock	6.96	4482	<1	0.03	5	>10000	158	<5	4	3758	0.02	<10	518	<10
912749	Rock	7.87	4688	<1	0.03	3	>10000	186	<5	6	3860	0.25	<10	294	<10
912850	Pulp	9.24	3642	2	0.04	2	>10000	106	<5	8	2446	0.03	<10	343	<10
912851	Rock	5.77	4142	<1	0.21	9	>10000	224	<5	16	3172	0.05	<10	346	<10
912852	Rock	7.44	5461	<1	0.04	2	>10000	176	<5	11	3687	0.03	<10	306	<10
912853	Rock	7.72	5533	<1	0.04	2	>10000	216	<5	8	4338	0.02	<10	281	<10
912854	Rock	9.78	6330	1	0.02	1	>10000	61	<5	9	3873	< 0.01	<10	324	<10
912855	Rock	8.08	4836	2	0.05	2	>10000	252	<5	9	4325	0.03	<10	264	<10
912856	Rock	9.22	4195	<1	0.02	2	>10000	108	<5	10	2204	0.02	<10	335	<10
912857	Rock	9.66	2868	<1	0.02	2	>10000	94	<5	10	1238	0.02	<10	348	<10
912858	Rock	7.87	3271	<1	0.03	2	>10000	64	<5	10	2016	0.03	<10	351	<10
912859	Rock	8.37	3859	<1	0.03	2	>10000	136	<5	9	3271	0.02	<10	335	<10
912861	Rock	7.90	3866	<1	0.04	2	>10000	188	<5	13	3423	0.03	<10	347	<10
912862	Rock	9.17	4284	<1	0.03	1	>10000	111	<5	8	4071	0.02	<10	344	<10
912863	Rock	8.73	4404	<1	0.03	1	>10000	83	<5	8	4132	0.01	<10	325	<10
912864	Rock	8.70	5403	<1	0.03	2	>10000	105	<5	8	2182	0.02	<10	311	<10
912865	Rock	4.79	4315	<1	0.03	5	>10000	33	<5	3	2927	0.26	<10	517	<10
912866	Rock	0.99	846	<1	3.00	7	1226	18	<5	6	774	0.29	<10	107	<10
912867	Rock	5.66	3493	<1	0.04	5	>10000	56	<5	6	2091	0.16	<10	640	<10
912868	Rock	8.33	4242	<1	0.03	1	>10000	129	<5	8	3180	0.04	<10	341	<10
912869	Rock	8.47	4424	1	0.02	2	>10000	68	<5	11	2913	< 0.01	<10	315	<10
912870	Pulp	6.96	2986	<1	0.06	2	>10000	163	<5	9	2420	0.05	<10	308	<10
912871	Rock	6.04	3710	<1	0.03	6	>10000	185	<5	5	3133	0.17	<10	415	<10
912872	Rock	5.30	3914	<1	0.06	3	>10000	25	<5	8	4705	0.06	<10	310	<10
912873	Rock	7.16	3226	<1	0.07	3	>10000	114	<5	10	2785	0.05	<10	356	<10
912874	Rock	8.43	3794	<1	0.03	2	>10000	157	<5	7	3341	0.03	<10	332	<10
912875	Rock	6.28	4312	<1	0.03	2 3	>10000	16	<5	6	4501	0.06	<10	324	<10
912876 912877	Rock	6.59 8.44	4903 4003	<1 <1	0.03 0.02	2	>10000 >10000	127 98	<5 <5	6 7	3044 2440	0.16 0.03	<10 <10	361 339	<10 <10
912878	Rock				0.02	4	>10000				2852			450	<10
912878	Rock Rock	7.32 4.57	3662 2690	<1 <1	0.03	6	>10000	187 50	<5 <5	6 5	2852 2233	0.19 0.24	<10 <10	450 574	<10 <10
912880 Dup	Rock	4.56	2596	<1	0.05	6	>10000	36	<5	5	2270	0.24	<10	575	<10
912880 Dup 912881	Rock	4.36 8.80	4299	<1	0.03	2	>10000	84	<5 <5	8	2951	0.21	<10	373	<10
912882	Rock	7.65	3451	<1	0.02	2	>10000	25	<5	8	3090	0.05	<10	372	<10
912883	Rock	7.03	4209	<1	0.03	3	>10000	24	<5	9	3393	0.05	<10	459	<10
912884	Rock	4.47	3247	<1	0.03	5	>10000	28	<5	5	2801	0.13	<10	549	<10
912885	Rock	4.61	3903	2	0.03	3	>10000	33	<5	7	2396	0.05	<10	293	<10
912886	Rock	6.19	3800	1	0.03	3	>10000	25	<5	7	2138	0.03	<10	306	<10
912887	Rock	8.08	5148	<1	0.03	2	>10000	24	<5	9	2895	0.02	<10	309	<10

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		Mg	Mn	Mo	Na	Ni	P	Pb	Sb	Sc	Sr	Ti	Tl	V	W
		30-4A-TR													
Sample	Sample	%	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm
Description	Type	0.01	5	1	0.01	1	10	2	5	1	1	0.01	10	1	10
912888	Rock	8.70	5977	1	0.02	2	6279	24	<5	10	3979	< 0.01	<10	324	<10
912889	Rock	8.72	5253	<1	0.02	1	>10000	25	<5	6	3601	0.01	<10	358	<10
912890	Pulp	1.33	6497	14	0.35	1	>10000	77	<5	3	>10000	0.14	29	190	<10
912891	Rock	9.03	5893	<1	0.02	1	>10000	74	<5	8	4159	0.01	<10	347	<10
912892	Rock	8.78	6048	<1	0.02	<1	>10000	74	<5	7	4757	< 0.01	<10	326	<10
912893	Rock	9.02	5773	<1	0.02	1	>10000	108	<5	7	4672	0.01	<10	327	<10
912894	Rock	7.50	5018	2	0.02	2	>10000	53	<5	11	2813	0.04	<10	283	<10
912895	Rock	8.68	3930	1	0.03	2	>10000	20	<5	7	3129	0.02	<10	318	<10
912896	Rock	8.60	4613	<1	0.03	3	>10000	115	<5	10	4099	0.04	<10	358	<10
912897	Rock	5.81	3348	<1	0.04	5	>10000	23	<5	5	3134	0.16	<10	646	<10
912898	Rock	6.80	3428	<1	0.03	3	>10000	26	<5	6	3487	0.07	<10	382	<10
912899	Rock	9.63	5264	<1	0.02	1	>10000	47	<5	10	4475	< 0.01	<10	343	<10
912901	Rock	8.50	4509	<1	0.03	2	>10000	137	<5	7	4276	0.02	<10	327	<10
912902	Rock	7.36	4883	<1	0.03	4	>10000	49	<5	6	3721	0.21	<10	492	<10
912903	Rock	9.96	5328	<1	0.02	<1	>10000	42	<5	8	4534	< 0.01	<10	342	<10
912904	Rock	>10	4813	<1	0.03	1	>10000	55	<5	9	4306	< 0.01	<10	348	<10
912905	Rock	8.78	4315	<1	0.03	2	>10000	117	<5	6	4339	0.06	<10	373	<10
912906	Rock	9.19	4885	1	0.02	1	>10000	79	<5	7	3985	0.01	<10	318	<10
912907	Rock	9.41	4936	<1	0.02	2	>10000	61	<5	7	3992	< 0.01	<10	327	<10
912908	Rock	9.68	4171	<1	0.03	2	>10000	122	<5	7	2354	0.02	<10	328	<10
912909	Rock	9.21	4342	2	0.03	1	>10000	126	<5	7	3012	0.02	<10	320	<10
912910	Pulp	9.13	3884	3	0.03	2	>10000	120	<5	8	2264	0.03	<10	333	<10
912911	Rock	9.78	5003	6	0.03	1	>10000	47	<5	6	4599	< 0.01	12	342	<10
912912	Rock	9.42	5408	8	0.03	1	>10000	74	<5	8	4882	< 0.01	<10	349	<10
912913	Rock	9.38	5602	3	0.04	<1	>10000	20	<5	4	5571	< 0.01	51	342	<10
912914	Rock	8.76	3425	2	0.03	1	>10000	120	<5	6	3097	< 0.01	<10	333	<10
912915	Rock	8.38	4663	<1	0.04	2	>10000	124	<5	6	5111	0.02	15	306	<10
912916	Rock	8.52	6186	<1	0.04	1	>10000	108	<5	6	4835	< 0.01	<10	303	<10
912917	Rock	8.91	2502	<1	0.02	2	>10000	119	<5	11	1391	0.01	<10	345	<10
912918	Rock	9.04	3722	9	0.03	2	>10000	84	<5	8	3120	< 0.01	<10	341	<10

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		Zn	Zr	Ce	Dy	Er	Eu	Gd	Hf	Но	La	Lu	Nd	Pr	Sm
		30-4A-TR	30-4A-TR	REE-LB-MS	REE-LB-MS	REE-LB-MS	REE-LB-MS	REE-LB-MS	REE-LB-MS	REE-LB-MS	REE-LB-MS	REE-LB-MS	REE-LB-MS	REE-LB-MS	REE-LB-MS
Sample	Sample	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Description	Type	2	1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	
912747	Rock	28	57	844.7	23.3	7.4	17.4	43.3	2.2	3.5	386.0	0.4	404.9	104.2	
912748	Rock	116	37	737.9	17.4	5.1	12.5	37.4	4.5	2.4	333.9	< 0.1	341.9	88.7	
912749	Rock	34	40	993.1	21.9	6.8	14.0	42.9	5.1	3.1	472.7	0.3	403.4	112.2	
912850	Pulp	26	29	908.6	21.7	7.4	14.6	45.6	1.0	3.3	469.3	0.2	356.8	97.9	
912851	Rock	140	143	>1000	22.5	6.7	15.7	49.3	22.4	3.1	555.9	0.2	413.9	117.8	
912852	Rock	55	77	>1000	21.3	7.2	16.7	54.3	7.3	3.0	>1000	0.1	555.8	159.2	
912853	Rock	34	84	>1000	24.3	7.4	21.0	62.7	1.2	3.5	991.2	0.1	644.5	171.8	
912854	Rock	26	12	>1000	16.3	4.3	12.3	43.2	<0.1	1.9	>1000	<0.1	580.4	182.4	
912855	Rock	33 23	71	>1000	34.0	6.6	28.3	109.9	1.8	3.5	>1000	<0.1	>1000	481.9	
912856 912857	Rock	17	29 27	>1000	21.7 23.2	8.0 9.0	17.8	62.0 52.0	1.6	3.0	>1000 826.4	0.3	622.9 474.2	190.3	
912858	Rock Rock	35	81	>1000 >1000	23.2	8.3	16.2 16.5	54.3	0.6 7.3	3.4	820.4 851.8	0.4	577.2	135.7 166.2	
912859	Rock	20	37	842.9	19.3	6.5	13.2	37.6	0.7	2.8	399.2	0.3	360.9	97.9	
912861	Rock	33	92	>1000	23.1	7.6	19.0	51.0	7.7	3.4	545.8	0.2	498.4	121.3	
912862	Rock	24	34	569.6	15.5	5.1	11.2	31.4	<0.1	2.2	256.1	<0.1	269.3	68.7	
912863	Rock	26	29	544.8	13.8	4.5	10.6	31.4	0.3	1.7	269.6	<0.1	235.2	61.2	
912864	Rock	23	29	>1000	16.8	6.5	13.5	38.2	2.2	2.5	607.2	0.2	399.6	110.5	
912865	Rock	128	45	678.3	14.8	4.2	10.3	30.4	7.2	2.0	310.3	0.1	288.0	78.3	
912866	Rock	57	7	77.7	2.9	1.5	1.3	4.7	2.7	0.3	41.2	<0.1	31.2	8.4	
912867	Rock	132	54	711.0	22.0	8.2	12.9	36.4	5.3	3.8	353.4	0.2	324.5	82.7	
912868	Rock	25	58	771.6	22.6	7.4	13.6	38.9	2.4	3.4	355.4	0.2	336.3	88.4	
912869	Rock	26	46	>1000	34.9	10.5	25.9	77.3	1.0	5.2	901.0	0.2	614.0	157.0	
912870	Pulp	16	40	821.4	25.1	9.6	15.5	43.4	< 0.1	3.9	403.2	0.5	374.0	94.6	58.5
912871	Rock	114	41	914.0	16.9	5.1	15.1	44.0	14.9	2.2	494.4	0.1	363.2	98.4	56.6
912872	Rock	80	37	985.7	23.4	6.6	16.6	50.3	8.2	3.1	461.0	0.2	436.1	115.1	65.1
912873	Rock	74	80	733.9	16.7	5.4	13.4	38.2	7.5	2.2	356.9	0.1	313.8	82.5	46.9
912874	Rock	29	48	706.9	16.9	5.4	11.6	31.9	0.9	2.3	324.5	0.1	318.7	82.3	45.4
912875	Rock	70	27	683.6	15.2	5.5	11.3	33.1	3.8	2.3	335.2	< 0.1	311.3	79.3	46.1
912876	Rock	58	35	778.4	19.2	7.2	12.9	36.5	8.7	3.0	365.8	0.2	349.6	92.9	51.5
912877	Rock	19	23	691.9	18.5	7.7	13.3	37.8	1.3	2.8	356.6	0.3	297.9	76.6	48.8
912878	Rock	59	69	723.1	22.2	8.0	15.5	42.5	6.8	3.4	339.4	0.3	305.0	81.5	
912879	Rock	126	104	>1000	30.1	9.2	20.5	60.8	14.0	4.4	484.0	0.2	480.5	127.0	
912880 Dup	Rock	128	99	985.9	26.5	9.5	21.7	59.5	12.2	4.0	472.7	0.2	472.7	116.2	
912881	Rock	23	37	810.3	22.0	7.0	13.3	42.0	2.1	3.2	398.3	0.2	337.4	91.3	
912882	Rock	34	20	817.5	18.0	6.3	15.5	41.7	5.2	2.8	412.6	0.2	347.2	90.8	
912883	Rock	61	6	911.8	22.1	6.9	16.1	46.1	5.4	3.1	443.9	0.1	397.5	107.5	
912884	Rock	96	46	>1000	24.4	7.4	18.5	56.9	13.0	3.3	499.2	0.2	440.6	118.4	
912885	Rock	25	19	>1000	46.1	16.1	31.5	88.2	18.6	7.4	687.5	1.0	651.0	171.4	
912886	Rock	36	12	>1000	35.5	13.2	25.2	70.0	16.1	5.6	626.1	0.7	595.1	156.4	
912887	Rock	23	23	>1000	35.9	15.6	27.0	86.6	3.0	5.9	859.5	0.8	690.8	182.3	110.8

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		Zn	Zr	Ce	Dy	Er	Eu	Gd	Hf	Но	La	Lu	Nd	Pr	Sm
		30-4A-TR	30-4A-TR	REE-LB-MS											
Sample	Sample	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Description	Type	2	1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
912888	Rock	32	12	336.1	11.4	4.1	6.7	21.5	< 0.1	1.5	183.6	0.1	137.2	35.4	24.6
912889	Rock	27	10	535.0	13.3	4.4	9.0	28.1	< 0.1	1.8	267.7	0.1	203.4	57.4	32.3
912890	Pulp	469	87	>1000	16.4	5.4	14.4	47.0	< 0.1	2.1	>1000	0.2	569.0	192.4	58.5
912891	Rock	26	20	451.4	16.0	5.3	8.7	26.2	< 0.1	2.2	203.1	< 0.1	212.9	55.4	35.4
912892	Rock	23	18	510.7	16.4	5.9	10.9	30.8	< 0.1	2.5	235.2	< 0.1	251.9	64.7	41.3
912893	Rock	25	22	478.0	10.9	3.6	8.5	23.9	< 0.1	1.3	225.8	< 0.1	228.5	58.8	34.8
912894	Rock	30	53	>1000	29.3	9.0	27.6	79.1	< 0.1	4.1	>1000	0.3	857.2	246.0	112.0
912895	Rock	24	24	603.6	22.3	9.7	13.1	35.9	< 0.1	3.9	291.3	0.4	284.9	73.1	47.2
912896	Rock	29	47	710.6	24.2	10.1	13.5	41.2	2.5	3.9	345.7	0.5	292.8	78.3	46.9
912897	Rock	78	20	785.1	19.8	5.7	12.7	38.1	2.9	2.6	354.3	0.1	351.8	94.2	49.5
912898	Rock	64	35	684.8	15.0	4.8	12.5	36.1	6.0	2.1	322.6	0.1	274.7	74.9	44.9
912899	Rock	20	17	494.2	11.6	3.8	7.0	23.3	0.5	1.6	226.5	< 0.1	202.8	55.6	29.2
912901	Rock	21	43	664.6	18.9	5.2	11.9	36.4	< 0.1	2.5	295.5	0.1	276.1	76.9	41.5
912902	Rock	80	14	433.9	11.5	3.6	8.4	23.8	0.7	1.6	190.8	< 0.1	206.5	53.6	32.9
912903	Rock	23	14	376.3	13.3	5.0	7.3	22.3	< 0.1	2.1	179.3	< 0.1	187.2	46.2	31.3
912904	Rock	20	22	755.3	19.8	6.5	9.8	35.1	< 0.1	2.8	355.1	0.1	371.2	94.0	52.0
912905	Rock	21	40	748.5	24.6	10.2	15.0	43.6	3.5	3.8	355.8	0.4	309.3	82.4	48.9
912906	Rock	20	44	769.2	22.8	8.8	12.1	41.5	< 0.1	3.8	355.9	0.5	323.1	88.2	49.9
912907	Rock	16	44	>1000	20.6	6.5	12.9	47.8	< 0.1	2.7	632.9	0.3	404.3	116.6	57.8
912908	Rock	13	38	980.1	26.3	10.0	15.1	47.2	< 0.1	4.1	535.3	0.5	385.6	107.9	57.8
912909	Rock	13	42	863.7	25.6	9.8	14.3	44.7	< 0.1	4.2	438.3	0.4	327.6	95.6	49.0
912910	Pulp	23	30	997.3	22.8	7.0	15.4	49.0	< 0.1	3.3	508.2	0.3	356.7	104.2	54.9
912911	Rock	22	19	854.5	16.9	5.2	10.6	34.9	< 0.1	2.1	523.3	0.1	274.2	83.0	41.9
912912	Rock	23	27	491.8	25.0	8.9	9.0	32.0	< 0.1	4.0	241.1	0.3	185.4	52.7	32.6
912913	Rock	21	8	452.8	10.8	3.7	6.8	23.9	< 0.1	1.5	224.5	< 0.1	171.8	48.1	26.6
912914	Rock	12	37	621.5	22.8	9.3	12.8	39.6	< 0.1	3.8	308.8	0.4	252.1	67.6	43.2
912915	Rock	18	34	702.2	20.9	7.6	13.9	37.2	< 0.1	3.2	342.4	0.2	289.7	77.5	45.7
912916	Rock	19	52	645.8	20.0	8.3	11.0	34.2	< 0.1	3.3	339.4	0.3	241.3	66.7	38.5
912917	Rock	10	52	>1000	31.0	11.2	21.1	74.1	0.1	4.4	>1000	0.7	632.0	229.2	76.0
912918	Rock	14	44	556.7	16.2	7.2	10.2	32.1	< 0.1	2.7	279.4	0.4	218.0	59.8	35.8

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

			Tb	Tm	Yb	Y	Ta	Th	U
				REE-LB-MS			Ta-4A-LL-MS		U-4A-LL-MS
	Sample	Sample	ppm	ppm	ppm	ppm	ppm	ppm	ppm
	Description	Туре	0.1	0.1	0.1	0.10	0.05	0.20	0.10
	912747	Rock	4.3	0.6	4.7	77.9	17.31	158.47	5.71
	912748	Rock	3.2	0.3	3.1	57.2	9.41	114.48	4.64
	912749	Rock	3.9	0.5	4.1	71.4	18.10	140.36	2.81
	912850	Pulp	4.6	0.4	4.7	76.5	37.13	159.57	9.33
	912851	Rock	4.4	0.5	4.0	73.6	46.70	378.26	9.40
	912852	Rock	3.7	0.4	3.7	80.4	26.87	174.09	3.37
	912853	Rock	4.2	0.4	3.3	79.9	37.74	171.32	4.62
	912854	Rock	2.4	0.1	2.6	47.6	3.97	45.91	1.30
	912855	Rock	5.6	0.4	3.3	81.9	27.83	205.92	5.11
	912856	Rock	4.1	0.6	5.4	82.0	8.27	91.69	2.04
	912857	Rock	4.3	0.8	5.9	94.9	4.94	91.43	1.59
	912858	Rock	4.8	0.6	5.1	91.2	0.41	206.83	4.25
l	912859	Rock	3.6	0.3	3.3	71.4	10.34	119.48	2.05
1	912861	Rock	4.1	0.5	3.7	87.1	42.52	293.23	7.00
	912862	Rock	2.8	0.2	2.6	61.8	6.95	93.95	1.54
	912863	Rock	2.8	0.2	2.9	57.3	7.44	90.29	1.83
	912864	Rock	2.9	0.4	4.1	71.4	12.06	96.34	3.77
	912865	Rock	2.7	0.1	2.6	48.3	3.09	112.34	1.26
	912866	Rock	0.2	< 0.1	1.7	19.0	1.91	9.48	3.48
	912867	Rock	3.7	0.5	4.2	91.9	0.23	172.48	1.95
	912868	Rock	3.9	0.5	4.0	86.5	8.39	143.10	2.76
	912869	Rock	7.7	0.7	4.8	126.0	8.42	234.89	2.84
	912870	Pulp	4.4	0.7	5.4	101.6	46.24	187.79	2.01
	912871	Rock	3.4	0.3	3.0	61.7	2.11	130.57	2.07
	912872	Rock	4.9	0.5	3.8	77.5	0.42	138.68	3.91
	912873	Rock	3.3	0.3	3.8	63.7	0.94	173.20	2.03
	912874	Rock	3.0	0.3	3.5	60.4	11.70	144.21	2.32
	912875	Rock	2.7	0.3	3.2	59.1	0.41	90.38	7.39
	912876	Rock	3.4	0.5	3.7	75.6	0.82	158.56	3.81
	912877	Rock	3.4	0.6	4.9	84.3	10.76	99.88	1.85
	912878	Rock	4.4	0.7	4.9	95.0	35.40	234.24	7.07
	912879	Rock	6.1	0.7	4.5	106.6	1.06	371.96	12.64
	912880 Dup	Rock	5.3	0.5	4.3	106.2	1.35	351.41	12.50
	912880 Dup	Rock	4.0	0.5	4.7	82.5	7.83	112.11	2.41
	912882	Rock	3.7	0.5	4.2	74.3	0.24	83.21	2.55
	912883	Rock	4.1	0.5	3.4	77.2	0.10	107.00	3.05
	912884	Rock	5.5	0.5	4.7	87.2	0.10	220.04	11.15
	912885								
	912886	Rock Rock	9.5 7.0	1.6 1.2	9.8 7.5	173.3 133.8	0.43 0.20	136.22 69.91	11.46 3.86
				1.4					
	912887	Rock	7.7	1.4	9.0	158.2	0.17	144.59	5.11

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		Tb	Tm	Yb	Y	Ta	Th	U	
		REE-LB-MS	REE-LB-MS	REE-LB-MS	REE-LB-MS	Ta-4A-LL-MS	Th-4A-LL-MS	U-4A-LL-MS	
Sample	Sample	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Description	Type	0.1	0.1	0.1	0.10	0.05	0.20	0.10	
912888	Rock	2.1	0.2	3.1	49.3	0.11	81.58	2.15	
912889	Rock	2.6	0.3	4.0	54.1	0.13	83.26	2.97	
912890	Pulp	2.0	0.4	4.1	63.2	41.81	54.15	27.25	
912891	Rock	2.9	0.3	2.6	57.7	3.46	102.23	1.89	
912892	Rock	2.9	0.3	2.9	66.3	5.26	77.81	1.95	
912893	Rock	2.0	< 0.1	1.6	44.6	10.85	89.43	3.67	
912894	Rock	5.2	0.7	4.1	112.4	0.44	274.55	10.93	
912895	Rock	4.0	0.8	5.7	106.5	0.08	122.29	2.91	
912896	Rock	4.6	0.9	6.5	117.9	2.77	209.78	2.24	
912897	Rock	3.7	0.3	3.0	67.3	0.33	136.54	11.29	
912898	Rock	3.1	0.3	3.4	58.9	0.36	150.02	2.89	
912899	Rock	2.3	0.1	2.0	41.7	1.36	80.64	1.13	
912901	Rock	3.8	0.3	3.2	63.7	8.19	153.03	2.75	
912902	Rock	2.2	< 0.1	1.7	41.2	0.18	90.81	0.92	
912903	Rock	2.1	0.2	2.4	58.2	0.79	79.55	0.64	
912904	Rock	3.0	0.3	3.4	71.4	1.44	112.92	1.39	
912905	Rock	4.5	0.9	5.7	106.9	6.97	164.16	3.90	
912906	Rock	4.5	0.7	6.3	91.1	1.67	160.42	2.80	
912907	Rock	4.1	0.4	4.7	74.2	4.44	152.32	2.92	
912908	Rock	5.0	0.8	6.5	101.8	5.40	149.85	2.68	
912909	Rock	4.8	0.9	5.9	105.8	8.47	124.31	3.56	
912910	Pulp	4.9	0.6	5.3	79.7	26.53	146.78	8.89	
912911	Rock	2.9	0.3	3.1	64.8	0.69	147.62	0.93	
912912	Rock	4.6	0.6	5.5	103.0	2.50	142.08	1.32	
912913	Rock	2.0	0.1	2.4	43.7	0.31	48.65	3.46	
912914	Rock	4.3	0.8	5.7	103.7	15.90	197.22	5.99	
912915	Rock	3.8	0.5	4.2	85.8	62.94	111.81	29.82	
912916	Rock	3.6	0.8	4.9	87.9	5.93	228.45	3.49	
912917	Rock	5.9	1.1	8.2	125.6	9.26	158.31	4.81	
912918	Rock	3.3	0.6	5.4	75.5	8.34	134.47	2.83	

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		Nb2O5	Al2O3	BaO	CaO	Cr2O3	Fe2O3	K2O	LOI	MgO	MnO	Na2O	P2O5	SiO2	TiO2
C1-	C1-	Nb2O5-AD3-OR-ICP	WR-FS-ICP												
Sample Description	Sample Type	% 0.01	% 0.01	% 0.01	% 0.01	% 0.01	% 0.01	% 0.01	% 0.01	% 0.01	% 0.01	% 0.01	% 0.01	% 0.01	% 0.01
912747	Rock	1.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
912747 912747 Dup	KOCK	1.00													
OCV1011-00629-0002-BLK		< 0.01													
STD-OKA-1 expected		0.53													
STD-OKA-1 expected STD-OKA-1 result		0.53													
912866	Rock	0.02													
912866 Dup	KOCK	0.02													
QCV1011-00629-0005-BLK		< 0.01													
STD-OKA-1 expected		0.53													
STD-OKA-1 result		0.53													
912884	Rock	1.63													
912884 Dup	Rock	1.62													
QCV1011-00629-0008-BLK		< 0.01													
STD-OKA-1 expected		0.53													
STD-OKA-1 result		0.52													
912903	Rock	0.10													
912903 Dup		0.11													
QCV1011-00629-0011-BLK		< 0.01													
STD-OKA-1 expected		0.53													
STD-OKA-1 result		0.52													
QCV1011-00629-0013-BLK		< 0.01													
STD-OKA-1 expected		0.53													
STD-OKA-1 result		0.53													
912747	Rock		0.14	0.01	36.28	< 0.01	5.70	0.02	35.46	13.77	0.54	0.05	7.00	0.91	0.05
912747 Dup			0.13	0.01	36.30	< 0.01	5.71	0.02	35.42	13.62	0.54	0.05	7.07	0.88	0.05
QCV1011-00632-0002-BLK			< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
912866	Rock		16.19	0.13	3.89	0.03	3.91	3.74	1.17	1.60	0.12	3.71	0.28	67.19	0.47
912866 Dup			16.44	0.12	3.81	0.03	3.78	3.79	1.13	1.62	0.11	3.83	0.30	67.35	0.46
QCV1011-00632-0005-BLK			< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
912884	Rock		0.77	0.01	29.34	< 0.01	26.93	0.37	21.16	8.23	0.46	0.07	8.92	2.64	0.70
912884 Dup			0.74	0.01	28.83	< 0.01	27.57	0.35	21.02	8.30	0.47	0.07	9.12	2.56	0.71
QCV1011-00632-0008-BLK			< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
912903	Rock		0.02	< 0.01	32.85	< 0.01	3.14	< 0.01	42.32	17.79	0.67	0.03	2.93	< 0.01	< 0.01
912903 Dup			0.02	< 0.01	32.91	< 0.01	3.15	0.01	42.29	17.89	0.67	0.03	2.89	< 0.01	< 0.01
QCV1011-00632-0011-BLK			< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
QCV1011-00632-0013-BLK			< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
STD-SY-4 expected			20.69		8.05		6.21	1.66	4.56	0.54	0.11	7.10	0.13	49.90	0.29
STD-SY-4 result			20.86	0.04	8.05	< 0.01	6.27	1.71	4.52	0.55	0.11	7.10	0.14	50.14	0.31

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		Total	Ag	Al	As	Ba	Bi	Ca	Cd	Со	Cr	Cu	Fe	K	La
Sample	Sample	WR-FS-ICP %	30-4A-TR	30-4A-TR %	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR %	30-4A-TR %	30-4A-TR
Description	Type	0.01	ppm 0.5	0.01	ppm 5	ppm 10	ppm 2	% 0.01	ppm 0.5	ppm 1	ppm 1	ppm 1	0.01	0.01	ppm 10
912747	Rock	0.01	<0.5	0.08	73	103	<2	>10	<0.5	8	6	45	3.94	0.01	351
912747 Dup			< 0.5	0.07	71	99	<2	>10	< 0.5	10	6	44	3.66	0.01	331
QCV1011-00630-0002-BLK			< 0.5	< 0.01	<5	<10	<2	< 0.01	< 0.5	<1	<1	<1	< 0.01	< 0.01	<10
STD-CDN-ME-8 expected			61.7									1030			
STD-CDN-ME-8 result			59.9									1082			
912866 912866 Dup	Rock		<0.5 <0.5	9.69 9.73	<5 <5	1221 1242	<2 <2	3.54 3.50	<0.5 <0.5	9 9	138 144	6 7	2.60 2.57	3.41 3.54	35 35
QCV1011-00630-0005-BLK			<0.5	< 0.01	<5	<10	<2	< 0.01	<0.5	<1	<1	<1	< 0.01	< 0.01	<10
STD-CDN-ME-6 expected			101.0	<0.01	\()	<10	\ <u>2</u>	₹0.01	₹0.5	\1	\1	6130	₹0.01	₹0.01	10
STD-CDN-ME-6 result			96.7									6569			
912884	Rock		< 0.5	0.41	<5	110	<2	>10	< 0.5	27	5	39	>10	0.26	370
912884 Dup			< 0.5	0.40	<5	110	<2	>10	< 0.5	27	5	40	>10	0.26	375
QCV1011-00630-0008-BLK			< 0.5	< 0.01	<5	<10	<2	< 0.01	< 0.5	<1	<1	<1	< 0.01	< 0.01	<10
STD-CDN-ME-6 expected			101.0									6130			
STD-CDN-ME-6 result	Rock		99.3 <0.5	0.01	.=	39	2	>10	<0.5	2	7	6585 13	2.16	< 0.01	105
912903 912903 Dup	ROCK		<0.5 <0.5	0.01	<5 <5	39 39	<2 <2	>10	<0.5 <0.5	2 2	7 6	13	2.16	< 0.01	185 183
OCV1011-00630-0011-BLK			<0.5	< 0.01	<5	<10	<2	< 0.01	<0.5	<1	<1	<1	< 0.01	< 0.01	<10
STD-OREAS-45P-4A expected							_			122	1103	749		1010	
STD-OREAS-45P-4A result										121	1115	717			
QCV1011-00630-0013-BLK			< 0.5	< 0.01	<5	<10	<2	< 0.01	< 0.5	<1	<1	<1	< 0.01	< 0.01	<10
STD-CDN-ME-6 expected			101.0									6130			
STD-CDN-ME-6 result			94.7									6468			
912747 912747 Dup	Rock	99.92 99.81													
QCV1011-00632-0002-BLK		< 0.01													
912866	Rock	102.45													
912866 Dup		102.77													
QCV1011-00632-0005-BLK		< 0.01													
912884	Rock	99.61													
912884 Dup		99.76													
QCV1011-00632-0008-BLK	ъ	< 0.01													
912903 912903 Dup	Rock	99.78 99.88													
QCV1011-00632-0011-BLK		< 0.01													
QCV1011-00632-0013-BLK		< 0.01													
STD-SY-4 expected															
STD-SY-4 result		99.82													

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		Mg	Mn	Mo	Na	Ni	P	Pb	Sb	Sc	Sr	Ti	Tl	V	W
		30-4A-TR													
Sample	Sample	%	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm
Description	Type	0.01	5	1	0.01	1	10	2	5	1	1	0.01	10	1	10
912747	Rock	7.28	4096	<1	0.03	2	>10000	140	<5	7	3541	0.02	<10	275	<10
912747 Dup		7.18	3927	<1	0.03	2	>10000	152	<5	6	3362	0.01	<10	261	<10
QCV1011-00630-0002-BLK		< 0.01	<5	<1	< 0.01	<1	<10	<2	<5	<1	<1	< 0.01	<10	<1	<10
912866	Rock	0.99	846	<1	3.00	7	1226	18	<5	6	774	0.29	<10	107	<10
912866 Dup		0.96	880	<1	3.06	7	1226	15	<5	6	768	0.29	<10	107	<10
QCV1011-00630-0005-BLK		< 0.01	<5	<1	< 0.01	<1	<10	<2	<5	<1	<1	< 0.01	<10	<1	<10
STD-CDN-ME-6 expected								10200							
STD-CDN-ME-6 result								9896							
912884	Rock	4.47	3247	<1	0.04	5	>10000	28	<5	5	2801	0.21	<10	549	<10
912884 Dup		4.88	3910	<1	0.04	5	>10000	28	<5	5	2971	0.21	<10	540	<10
QCV1011-00630-0008-BLK		< 0.01	<5	<1	< 0.01	<1	<10	<2	<5	<1	<1	< 0.01	<10	<1	<10
STD-CDN-ME-6 expected								10200							
STD-CDN-ME-6 result								>10000							
912903	Rock	9.96	5328	<1	0.02	<1	>10000	42	<5	8	4534	< 0.01	<10	342	<10
912903 Dup		>10	5437	<1	0.02	<1	>10000	33	<5	8	4438	< 0.01	<10	346	<10
QCV1011-00630-0011-BLK		< 0.01	<5	<1	< 0.01	<1	<10	<2	<5	<1	<1	< 0.01	<10	<1	<10
TD-OREAS-45P-4A expected					0.08	385	454	22							
STD-OREAS-45P-4A result					0.07	375	488	22							
QCV1011-00630-0013-BLK		< 0.01	<5	<1	< 0.01	<1	<10	<2	<5	<1	<1	< 0.01	<10	<1	<10
STD-CDN-ME-6 expected								10200							
STD-CDN-ME-6 result								>10000							

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		Zn	Zr	Ce	Dy	Er	Eu	Gd	Hf	Но	La	Lu	Nd	Pr	Sm
		30-4A-TR		REE-LB-MS				REE-LB-MS					REE-LB-MS		
Sample	Sample	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Description	Type	2	1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
912747	Rock	28	57												
912747 Dup		26	44												
QCV1011-00630-0002-BLK	ъ.	<2	<1												
912866	Rock	57	7												
912866 Dup		56	7												
QCV1011-00630-0005-BLK		<2	<1												
STD-CDN-ME-6 expected		5170													
STD-CDN-ME-6 result 912884	Rock	4885 96	46												
	ROCK		46												
912884 Dup QCV1011-00630-0008-BLK		96 <2	44 <1												
STD-CDN-ME-6 expected		5170	<1												
STD-CDN-ME-6 result		5192													
912903	Rock	23	14												
912903 Dup	ROCK	23	15												
QCV1011-00630-0011-BLK		<2	<1												
STD-OREAS-45P-4A expected		142	\1												
STD-OREAS-45P-4A result		139													
QCV1011-00630-0013-BLK		<2	<1												
STD-CDN-ME-6 expected		5170	\1												
STD-CDN-ME-6 result		5123													
QCV1011-00633-0001-BLK		0120		< 0.1	< 0.1	< 0.1	< 0.1	<0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
912747	Rock			844.7	23.3	7.4	17.4	43.3	2.2	3.5	386.0	0.4	404.9	104.2	62.2
912747 Dup				853.9	23.5	7.2	15.5	44.2	2.2	3.5	375.8	0.2	389.8	101.3	57.3
912866	Rock			77.7	2.9	1.5	1.3	4.7	2.7	0.3	41.2	< 0.1	31.2	8.4	4.8
912866 Dup				73.8	2.9	1.8	1.3	4.2	2.5	0.3	40.2	< 0.1	32.9	8.1	5.0
912884	Rock			>1000	24.4	7.4	18.5	56.9	13.0	3.3	499.2	0.2	440.6	118.4	68.0
912884 Dup				>1000	28.6	8.6	21.4	62.8	14.7	4.0	552.8	0.3	515.0	136.5	78.6
912903	Rock			376.3	13.3	5.0	7.3	22.3	< 0.1	2.1	179.3	< 0.1	187.2	46.2	31.3
912903 Dup				391.7	13.4	4.3	6.6	20.4	< 0.1	1.8	175.4	< 0.1	184.6	47.1	27.0
QCV1011-00633-0010-BLK				< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
STD-SY-4 expected				122.0	18.2	14.2	2.0	14.0	10.6	4.3	58.0	2.1	57.0	15.0	12.7
STD-SY-4 result				122.6	17.7	14.4	1.6	14.9	10.1	4.0	59.3	1.9	53.3	14.0	12.0

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		Tb	Tm	Yb	Y	Ta	Th	U
		REE-LB-MS	REE-LB-MS	REE-LB-MS	REE-LB-MS	Ta-4A-LL-MS	Th-4A-LL-MS U	-4A-LL-MS
Sample	Sample	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Description	Type	0.1	0.1	0.1	0.10	0.05	0.20	0.10
QCV1011-00633-0001-BLK		< 0.1	< 0.1	< 0.1	< 0.10			
912747	Rock	4.3	0.6	4.7	77.9			
912747 Dup		4.3	0.4	4.0	75.7			
912866	Rock	0.2	< 0.1	1.7	19.0			
912866 Dup		0.1	< 0.1	1.5	19.3			
912884	Rock	5.5	0.6	4.7	87.2			
912884 Dup		5.9	0.6	4.8	97.6			
912903	Rock	2.1	0.2	2.4	58.2			
912903 Dup		2.1	0.1	2.0	51.6			
QCV1011-00633-0010-BLK		<0.1	<0.1	<0.1	< 0.10			
STD-SY-4 expected		2.6	2.3	14.8	119.0			
STD-SY-4 result		2.4	2.1	14.7	115.2			
912747	Rock					17.31	158.47	5.71
912747 Dup						17.15	156.39	5.63
QCV1105-00546-0002-BLK	D 1					< 0.05	< 0.20	< 0.10
912866	Rock					1.91 1.87	9.48 9.31	3.48 3.21
912866 Dup QCV1105-00546-0005-BLK						< 0.05	<0.20	<0.10
912884	Rock					0.85	220.04	<0.10 11.15
912884 Dup	KUCK					0.83	223.54	10.66
QCV1105-00546-0008-BLK						< 0.05	< 0.20	< 0.10
912903	Rock					0.79	79.55	0.10
912903 Dup	ROCK					0.86	78.25	0.69
OCV1105-00546-0011-BLK						< 0.05	<0.20	< 0.10
QCV1105-00546-0013-BLK						< 0.05	<0.20	<0.10

Inspectorate Exploration & Mining Services Ltd. #200 - 11620 Horseshoe Way

Date Received: 02/17/2011

Date Completed: 05/13/2011

Invoice:

Richmond, British Columbia V7A 4V5 Canada Phone: 604-272-7818

Distribution List

Attention: Eric Titley

Suite 1020-800 West Pender St.

Vancouver, BC V6C 2V6

EMail: erictitley@hdimining.com

Attention: Jeremy Crozier

EMail: jeremycrozier@hdimining.com

Attention: T.Kodata

EMail: tkodata@hdimining.com

Submitted By: Aley Corporation

Suite 1020-800 West Pender St.

Vancouver, BC V6C 2V6

Attention: Eric Titley

Project: Aley 2010 Project

Client Reference: 907550-907587,285054 Description: **Rerun for job 10-360-03594-01**

Location	Samples	Type	Preparation Description
Vancouver, BC	39	Pulp	SP-PU/Pulp Handling, submitted pulps

Location	Method	Description
Vancouver, BC	Ta-4A-LL-MS	Tantalum, 4 Acid, ICP
Vancouver, BC	REE-LB-MS	REE Group by ICP-MS
Vancouver, BC	Y-LB-MS	Ytrrium by Lithium metaborate Fusion, ICP-MS
Vancouver, BC	U-4A-LL-MS	Uraium, 4 Acid, Low Level
Vancouver, BC	Nb2O5-AD3-OR-ICP	Niobium by multi-acid digestion, ICP
Vancouver, BC	Th-4A-LL-MS	Thorium, 4 Acid, Low Level
Vancouver, BC	WR-FS-ICP	Whole Rock, Lithium Borate Fusion, ICP
Vancouver, BC	30-4A-TR	30 Element, 4 Acid, ICP, Trace Level

Submittal Information

Ta, Th, and U results shown have been revised with accurated detection limits.

The results of this assay were based solely upon the content of the sample submitted. Any decision to invest should be made only after the potential investment value of the claim or deposit has been determined based on the results of assays of multiple samples of geologic materials collected by the prospective investor or by a qualified person selected by him and based on an evaluation of all engineering data which is available concerning any proposed project. For our complete terms and conditions please see our website at www.inspectorate.com.

Mike Caron, Lab Manager

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		Nb2O5	A12O3	BaO	CaO	Cr2O3	Fe2O3	K2O	LOI	MgO	MnO	Na2O	P2O5	SiO2	TiO2
		Nb2O5-AD3-OR-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP	WR-FS-ICP
	nple Sample		%	%	%	%	%	%	%	%	%	%	%	%	%
Descrip		0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
	550 Pulp	0.55	1.80	0.39	46.10	< 0.01	5.20	0.66	32.01	2.13	1.03	0.41	2.94	5.90	0.25 0.02
	551 Pulp	0.02	0.05	< 0.01	32.25	< 0.01	6.42	0.15	40.36	13.30	1.12	0.41	3.54	0.19	
907	•	0.02	0.04	< 0.01	32.03 27.27	< 0.01	6.87 10.70	0.17	40.96	13.35 9.60	1.19	0.39	2.57 7.66	0.22	0.03 0.29
	•	0.04	0.06	0.05 0.04	32.51	<0.01	6.98	0.30 0.35	23.38 38.48	14.66	0.64 0.76	0.50 0.74	2.80	1.50 2.54	0.29
907	•		0.33	0.04	33.19	< 0.01	9.52	0.33		14.00	0.76	0.74		3.09	0.10
	 555 Pulp 556 Pulp 	0.21 0.06	0.24	< 0.01	33.93	< 0.01	5.83	0.23	36.66 35.31	14.34	0.83	0.46	2.66 6.45	3.09	0.10
	557 Pulp	0.00	0.16	< 0.01	33.58	< 0.01	6.68	0.20	38.77	14.80	0.94	0.37	2.01	2.40	0.22
907		0.08	0.10	< 0.01	32.99	< 0.01	6.15	0.19	39.47	14.78	1.15	0.32	3.66	1.73	0.04
	559 Pulp	0.16	0.09	< 0.01	33.68	< 0.01	4.28	0.10	38.67	14.00	0.67	0.32	5.87	2.66	0.04
907560		0.14	0.12	< 0.01	35.39	0.03	4.31	0.05	38.15	12.61	0.67	0.03	5.52	2.88	0.05
	561 Pulp	0.06	1.32	0.03	27.85	< 0.01	26.36	0.31	27.30	6.44	0.71	0.03	4.00	7.22	0.41
	562 Pulp	0.19	0.20	< 0.01	34.91	< 0.01	6.09	0.07	36.46	12.44	0.82	0.02	6.58	2.14	0.15
	563 Pulp	0.09	0.24	< 0.01	34.41	0.02	6.17	0.06	36.28	13.12	0.74	0.03	5.96	2.24	0.13
	564 Pulp	0.11	0.24	< 0.01	34.72	< 0.01	4.65	0.11	38.44	13.61	0.57	0.04	4.82	1.36	0.05
	565 Pulp	0.40	0.25	< 0.01	34.99	< 0.01	4.53	0.06	37.05	13.45	0.62	0.03	7.24	1.25	0.07
	566 Pulp	0.13	0.16	< 0.01	33.77	< 0.01	5.99	0.04	37.28	14.30	0.61	0.02	5.76	1.74	0.10
907	-	0.09	0.11	< 0.01	31.93	< 0.01	6.23	0.03	39.63	14.97	0.84	0.04	4.52	1.02	0.04
	568 Pulp	0.14	0.11	< 0.01	32.31	< 0.01	6.81	0.02	38.78	14.04	0.81	0.03	4.71	1.46	0.04
907	569 Pulp	0.12	0.12	< 0.01	32.58	< 0.01	6.11	0.04	39.80	14.21	1.03	0.02	3.62	1.38	0.04
907570	Dup Pulp	0.14	0.10	< 0.01	32.84	0.02	6.49	0.05	39.67	14.28	1.06	0.03	3.46	1.61	0.04
285	054 Pulp	0.43	0.30	0.01	33.55	0.03	5.58	0.11	38.92	14.46	0.58	0.05	4.87	1.60	0.13
907	571 Pulp	0.11	0.25	0.01	34.79	0.03	5.43	0.11	37.47	13.48	0.78	0.04	5.47	3.07	0.07
907	572 Pulp	0.12	0.08	< 0.01	32.83	< 0.01	4.82	0.07	40.98	15.17	0.81	0.03	3.31	0.91	0.05
907	573 Pulp	0.07	0.16	< 0.01	33.21	< 0.01	3.93	0.03	40.49	15.78	0.53	0.03	3.94	1.68	0.09
907	574 Pulp	0.02	0.34	< 0.01	33.79	< 0.01	3.40	0.12	38.90	14.97	0.37	0.03	6.01	1.98	0.12
907	575 Pulp	0.02	0.13	< 0.01	35.17	< 0.01	3.65	0.04	37.73	14.37	0.41	0.02	6.56	3.45	0.13
	576 Pulp	0.03	0.27	< 0.01	34.32	< 0.01	3.30	0.07	38.75	14.88	0.53	0.04	5.52	2.85	0.05
907		0.02	0.26	< 0.01	33.70	< 0.01	2.84	0.10	40.92	15.70	0.39	0.02	4.25	1.31	0.05
907		0.04	0.14	< 0.01	33.81	< 0.01	4.40	0.05	40.54	13.75	0.75	0.02	4.30	1.04	0.03
	579 Pulp	0.01	0.19	< 0.01	32.91	0.02	5.63	< 0.01	40.28	13.34	0.89	0.03	4.14	0.43	< 0.01
907580		0.01	0.16	< 0.01	32.22	< 0.01	5.87	0.02	40.23	14.13	0.92	0.03	4.11	0.42	0.03
	581 Pulp	0.08	0.21	< 0.01	34.08	< 0.01	4.28	0.03	39.40	14.06	0.58	0.02	4.75	1.32	0.04
	582 Pulp	0.17	0.55	0.05	24.83	< 0.01	31.40	0.14	24.92	11.05	0.69	0.07	4.08	4.13	0.33
	583 Pulp	0.25	0.55	0.08	25.86	0.01	32.66	0.16	19.14	8.43	0.58	0.16	7.91	5.79	0.31
	584 Pulp	0.16	0.28	< 0.01	33.71	< 0.01	7.21	0.04	33.57	12.93	0.64	0.04	9.15	1.00	0.12
	585 Pulp	0.23	0.38	0.02	29.67	0.04	22.29	0.18	26.58	10.33	0.58	0.25	6.62	4.02	0.20
907	•	0.12	0.47	0.05	28.82	< 0.01	26.95	0.16	22.47	8.09	0.56	0.20	8.95	4.37	0.24
907	587 Pulp	0.08	0.13	0.02	33.50	< 0.01	4.76	0.13	39.50	14.87	0.75	0.04	4.82	0.95	0.06

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		Total	Ag	Al	As	Ba	Bi	Ca	Cd	Со	Cr	Cu	Fe	K	La
0 1	C 1	WR-FS-ICP	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR
Sample	Sample	% 0.01	ppm 0.5	% 0.01	ppm	ppm 10	ppm 2	% 0.01	ppm 0.5	ppm	ppm	ppm	% 0.01	% 0.01	ppm 10
Description 907550	Type Pulp	98.82	1.4	0.01	5 22	2732	<2	>10	<0.5	6	6	15	3.27	0.61	940
907551	Pulp	97.81	1.4	0.92	21	42	<2	>10	<0.5	6	9	4	4.24	< 0.01	851
907552	Pulp	97.83	1.3	0.03	12	41	<2	>10	<0.5	4	9	3	5.41	0.01	545
907553	Pulp	81.95	1.3	0.47	<5	369	<2	>10	< 0.5	22	5	3	7.05	0.22	216
907554	Pulp	100.40	0.5	0.19	11	46	<2	>10	<0.5	9	10	9	4.30	0.02	270
907555	Pulp	101.36	1.1	0.13	36	83	<2	>10	< 0.5	8	13	15	6.72	0.06	1384
907556	Pulp	100.81	1.4	0.30	24	37	<2	>10	< 0.5	7	9	7	4.01	0.09	727
907557	Pulp	99.93	1.7	0.09	50	36	<2	>10	< 0.5	7	10	12	4.54	0.03	2370
907558	Pulp	100.48	1.4	0.05	22	40	<2	>10	< 0.5	6	11	7	4.14	0.01	802
907559	Pulp	100.41	1.2	0.07	6	53	<2	>10	< 0.5	6	11	13	3.01	0.02	205
907560Dup	Pulp	99.82	1.0	0.08	6	60	<2	>10	< 0.5	6	10	13	3.13	0.02	210
907561	Pulp	101.98	0.8	0.62	<5	259	<2	>10	< 0.5	21	4	3	>10	0.17	205
907562	Pulp	99.89	2.4	0.10	29	42	<2	>10	< 0.5	7	9	15	4.76	0.02	1363
907563	Pulp	99.40	2.2	0.10	12	31	<2	>10	< 0.5	9	8	8	4.50	0.02	4372
907564	Pulp	98.61	2.2	0.13	17	35	<2	>10	< 0.5	7	7	11	3.46	0.04	622
907565	Pulp	99.55	2.5	0.13	10	51	<2	>10	< 0.5	5	6	60	3.19	0.04	417
907566	Pulp	99.78	2.5	0.08	47	26	<2	>10	< 0.5	14	9	23	4.31	0.01	1465
907567	Pulp	99.36	1.7	0.05	27	36	<2	>10	< 0.5	7	8	28	4.84	0.02	1278
907568	Pulp	99.14	1.3	0.07	77	39	<2	>10	< 0.5	10	12	31	4.99	0.01	3371
907569	Pulp	98.96	1.4	0.07	74	40	<2	>10	< 0.5	6	8	20	4.61	0.02	3754
907570 Dup	Pulp	99.65	2.5	0.06	75	42	<2	>10	< 0.5	7	8	21	4.89	0.02	3733
285054	Pulp	100.19	< 0.5	0.16	7	46	<2	>10	< 0.5	5	3	36	4.29	0.03	319
907571	Pulp	101.01	1.5	0.13	33	45	<2	>10	<0.5	7	9	20	4.09	0.05	1440
907572	Pulp	99.08	2.8	0.05	34	42	<2	>10	<0.5	7	7	21	3.49	0.02	1460
907573	Pulp	99.88	1.7	0.09	7	41	<2	>10	<0.5	9	6	18	3.02	0.04	262
907574	Pulp	100.04	1.6	0.19	10	37	<2	>10	<0.5	10 7	10 7	17	2.59	0.08	329
907575	Pulp	101.67	2.0	0.07	10 8	30	<2	>10	<0.5		•	16	2.57	0.03	396
907576 907577	Pulp	100.58	2.0	0.15 0.14	8 6	34 28	<2	>10	<0.5 <0.5	6 5	11 8	18 12	2.68	0.04	329 483
907578	Pulp	99.54 98.84	2.8 <0.5	0.14	7	46	<2 <2	>10 >10	<0.5	5	7	13	2.11 3.19	0.03	555
907579	Pulp	97.87	2.6	0.08	6	51	<2	>10	<0.5	7	7	11	4.18	0.01	851
907580 Dup	Pulp Pulp	98.15	2.7	0.08	6	53	<2	>10	<0.5	6	8	11	4.15	0.01	836
907580 Dup 907581	Pulp	98.78	<0.5	0.09	7	31	<2	>10	1.3	7	9	25	3.08	0.01	320
907582	Pulp	102.24	1.7	0.12	9	366	<2	>10	<0.5	18	8	58	>10	0.01	215
907583	Pulp	101.64	2.6	0.25	10	594	<2	>10	<0.5	21	10	27	>10	0.13	221
907584	Pulp	98.70	3.5	0.23	24	74	<2	>10	<0.5	18	7	20	5.77	0.14	366
907585	Pulp	101.16	2.7	0.17	6	140	<2	>10	<0.5	11	6	16	>10	0.01	307
907586	Pulp	101.32	2.2	0.26	9	354	<2	>10	<0.5	14	7	13	>10	0.13	325
907587	-	99.53	2.8	0.08	<5	43	<2	>10	< 0.5	6	6	16	3.65	0.13	657
907587	Pulp	99.53	2.8	0.08	<5	43	<2	>10	<0.5	6	6	16	3.65	0.01	65

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		Mg	Mn	Мо	Na	Ni	P	Pb	Sb	Sc	Sr	Ti	Tl	V	W
		30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR	30-4A-TR
Sample	Sample	%	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm
Description	Type	0.01	5	1	0.01	1	10	2	5	1	1	0.01	10	1	10
907550	Pulp	1.23	7395	14	0.36	<1	>10000	83	<5	4	>10000	0.12	<10	167	<10
907551	Pulp	6.18	8047	1	0.02	<1	>10000	29	<5	10	2578	< 0.01	<10	17	<10
907552	Pulp	6.10	9348	1	0.02	<1	>10000	24	<5	9	2882	< 0.01	<10	18	<10
907553	Pulp	5.08	5364	1	0.06	4	>10000	29	<5	16	3091	0.19	<10	144	<10
907554	Pulp	6.36	6008	2	0.02	<1	>10000	54	<5	10	3217	0.04	<10	48	<10
907555	Pulp	6.36	7169	2	0.03	1	>10000	121	<5	13	2635	0.03	<10	51	<10
907556	Pulp	6.22	4351	1	0.08	<1	>10000	42	<5	9	1777	0.03	<10	44	<10
907557	Pulp	6.58	7714	2	0.03	<1	8420	103	<5	12	2790	0.01	<10	31	<10
907558	Pulp	6.39	9255	2	0.02	<1	>10000	58	<5	9	3199	< 0.01	<10	24	<10
907559	Pulp	6.46	4711	1	0.02	<1	>10000	102	<5	8	3026	0.01	<10	15	<10
907560Dup	Pulp	6.40	5216	1	0.02	<1	>10000	84	<5	8	3092	0.01	<10	15	<10
907561	Pulp	4.10	5548	10	0.02	4	>10000	39	<5	16	961	0.14	<10	108	<10
907562	Pulp	6.30	6309	2	0.02	<1	>10000	106	<5	9	2718	0.02	<10	24	<10
907563	Pulp	6.38	5416	2	0.02	<1	>10000	60	<5	19	1460	0.02	<10	29	<10
907564	Pulp	6.71	3942	<1	0.03	1	>10000	66	<5	7	1537	0.01	<10	23	<10
907565	Pulp	6.60	5028	<1	0.03	1	>10000	189	<5	6	3300	0.02	<10	24	<10
907566	Pulp	6.94	4257	4	0.02	<1	>10000	87	<5	9	1218	0.02	<10	34	<10
907567	Pulp	7.12	6480	5	0.03	<1	>10000	63	<5	9	2195	< 0.01	<10	14	<10
907568	Pulp	6.59	5844	11	0.02	<1	>10000	93	<5	13	1527	< 0.01	<10	22	<10
907569	Pulp	6.81	7591	3	0.02	<1	>10000	79	<5	13	2404	< 0.01	<10	17	<10
907570 Dup	Pulp	6.41	8093	2	0.03	<1	>10000	85	<5	13	2551	< 0.01	<10	19	<10
285054	Pulp	8.08	3541	4	0.04	<1	>10000	187	<5	7	2211	0.04	<10	41	<10
907571	Pulp	6.22	5602	2	0.03	<1	>10000	61	<5	10	1742	0.01	<10	25	<10
907572	Pulp	6.67	5604	2	0.02	<1	>10000	79	<5	9	2465	< 0.01	<10	16	<10
907573	Pulp	6.49	3922	1	0.02	<1	>10000	44	<5	6	2136	0.03	<10	32	<10
907574	Pulp	6.66	2700	2	0.02	<1	>10000	16	<5	5 7	746	0.04	<10	39	<10 <10
907575	Pulp	6.72	2756	1	0.03	<1	>10000	19	<5	7	838	0.05	<10	31	
907576	Pulp	6.42	3753	<1	0.03	<1	>10000	24	<5	•	1810	0.01	<10	20	<10
907577	Pulp	7.08	2769	2	0.02	<1	>10000 >10000	23	<5	5 6	810	0.01	<10	17 11	<10 <10
907578	Pulp	6.45	5121	4		<1		36	<5	_	2558	< 0.01	<10		
907579	Pulp	6.66	6338 6378	4	0.03 0.03	<1	>10000 >10000	16 23	<5 <5	8	2264 2255	< 0.01	<10	18	<10 <10
907580 Dup	Pulp	6.82		•		<1						< 0.01	<10	18	<10
907581 907582	Pulp	6.99 5.72	4002	2	0.02	<1 7	>10000	56 93	<5	6 14	2044 2020	0.01	<10	20 279	
	Pulp		4835	<1	0.06		>10000		<5		2020 1697	0.15	<10		<10
907583	Pulp	4.05	3298	-	0.14	5	>10000	58	<5	16		0.11	<10	282	<10
907584	Pulp	5.99	4450	2	0.04	1 4	>10000	96	<5	19	2813	0.04	<10	88	<10 <10
907585	Pulp	5.10	4211	2	0.21	•	>10000	93	<5	18	2340	0.08	<10	187	
907586	Pulp	4.16	3987	2	0.18	4	>10000	44	<5	15 8	2702	0.09	<10	208	<10
907587	Pulp	6.59	5122	2	0.03	<1	>10000	53	<5	8	2052	0.01	<10	30	<10

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		Zn	Zr	Ce	Dy	Er	Eu	Gd	Hf	Но	La	Lu	Nd	Pr	Sm
_		30-4A-TR		REE-LB-MS			REE-LB-MS		REE-LB-MS						
Samp	•	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Description		2	1	>1000	0.1 15.4	0.1	0.1	0.1	0.1	2.0	>1000	0.1	0.1	0.1	0.1 52.5
9075. 9075.		471 21	86 79	>1000	31.3	5.5 13.2	15.6 19.1	44.2 67.2	1.4	4.6	934.9	0.5 0.8	489.1 700.3	169.7 207.2	90.4
9075	•	25	44	>1000	29.0	7.9	11.4	40.8	1.4	2.8	612.0	0.5	404.8	123.0	52.5
9075	•	186	144	>1000	18.2	5.4	11.4	32.9	10.7	2.0	256.3	0.3	246.1	68.3	41.2
9075		28	55	641.1	14.4	6.1	8.6	25.3	5.6	2.2	334.3	0.3	221.7	69.6	32.2
9075		51	48	>1000	21.3	7.3	16.5	54.3	2.7	2.8	>1000	0.5	605.5	211.8	62.3
9075		22	61	>1000	26.8	10.5	18.9	57.7	3.0	3.8	>1000	0.9	527.0	171.3	68.9
9075	•	24	23	>1000	24.4	8.3	20.2	70.9	1.4	3.1	>1000	0.5	794.4	295.0	80.2
9075		25	33	>1000	21.7	7.7	13.3	42.7	1.6	3.0	>1000	0.5	426.5	147.9	48.7
9075	59 Pulp	20	38	529.3	18.1	7.5	9.1	28.2	3.3	2.7	250.7	0.5	206.6	58.4	32.6
907560D	ıp Pulp	21	41	530.3	17.9	7.0	10.1	28.2	2.2	2.6	253.8	0.5	203.1	59.3	33.8
9075	51 Pulp	214	77	647.5	15.6	6.3	11.2	32.2	17.9	2.3	295.3	0.5	249.9	71.1	38.3
9075	52 Pulp	28	80	>1000	24.9	8.8	18.3	54.3	3.3	3.6	>1000	0.8	517.0	178.4	58.2
9075	53 Pulp	22	61	>1000	44.8	13.1	51.6	161.6	2.9	5.3	>1000	0.9	>1000	671.4	183.9
9075	54 Pulp	15	56	>1000	23.9	10.1	15.7	42.0	1.6	3.6	844.6	0.7	373.7	124.1	45.1
9075		23	94	925.5	22.8	8.8	16.4	40.5	3.8	3.3	522.1	0.5	329.1	100.0	47.9
9075	•	15	100	>1000	29.3	10.0	22.8	64.1	2.9	4.0	>1000	0.8	622.9	224.0	68.2
9075	•	22	49	>1000	17.9	6.4	15.9	51.3	1.9	2.2	>1000	0.5	531.8	181.0	61.1
9075		20	38	>1000	35.4	9.8	43.4	129.3	2.1	3.9	>1000	0.7	>1000	493.3	152.5
9075		23	24	>1000	24.6	7.4	28.5	94.9	0.8	2.8	>1000	0.4	>1000	407.5	100.1
907570 D		25	16	>1000	26.2	6.9	28.2	94.5	1.0	2.8	>1000	0.4	>1000	411.6	100.3
2850		24	30	793.5	20.2	6.9	14.8	41.3	3.3	3.4	410.6	0.5	321.0	95.7	51.4
9075		23	41	>1000	27.1	10.3	20.1	62.8	1.2	3.8	>1000	0.8	626.0	211.8	71.6
9075		24	37	>1000	22.9	8.1	19.2	59.9	1.4	2.9	>1000	0.6	686.4	233.3	72.5
9075	•	17	19	715.0	16.3	6.2	11.5	32.5	0.9	2.4	357.4	0.4	261.9	76.9	39.2
9075° 9075°	•	15	24	881.8	26.8	10.2	15.5	47.5	0.8	4.0	421.0	0.7	351.8	99.3	55.3
		20	39	>1000	25.9	9.7	18.2	52.8	2.1	3.8	495.8	0.7	411.3	118.1	61.2
9075° 9075°	•	18 12	22 33	858.5 >1000	22.3 20.5	8.2 8.1	15.3 15.0	44.1 46.9	1.3 0.6	3.3 2.9	411.3 564.7	0.6 0.6		97.3 122.4	54.0 59.3
9075		24	30	>1000	20.5	7.7	13.8	38.2	0.8	2.9	659.0	0.6	351.0	110.7	46.7
9075	•	27	47	>1000	21.6	7.7	17.3	53.5	1.2	2.9	>1000	0.3	557.9	172.3	67.2
907580 D		43	48	>1000	22.1	8.5	16.2	50.3	1.1	3.2	952.0	0.7	525.0	161.6	66.0
90758		60	45	696.9	21.4	9.9	11.1	31.0	1.5	3.5	393.2	0.7	228.4	69.8	34.2
9075	•	196	110	537.6	13.0	5.3	9.4	24.6	11.2	1.8	273.3	0.6	189.7	57.9	29.4
9075		191	331	628.4	19.8	6.9	14.5	37.5	25.7	2.7	261.7	0.5	271.8	74.5	45.2
9075		30	139	863.4	48.1	22.6	18.1	51.5	9.4	8.4	423.2	1.8	329.1	97.4	52.9
9075		147	121	708.2	17.5	6.2	12.6	33.5	13.1	2.3	366.2	0.4	259.8	76.3	40.1
9075		163	110	787.1	18.9	7.3	14.4	38.3	15.2	2.8	380.0	0.5	302.8	87.8	48.2
9075	•	34	58	>1000	21.9	9.5	13.9	43.7	1.8	3.5	829.1	0.7	399.1	133.0	52.1

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		Tb	Tm	Yb	Ta	Th	U	Y
			REE-LB-MS		Ta-4A-LL-MS	Th-4A-LL-MS U		Y-LB-MS
Sample	Sample	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Description	Type	0.1	0.1	0.1	0.05	0.20	0.10	0.1
907550	Pulp	2.5	0.6	4.1	20.00	50.00	28.00	58.8
907551	Pulp	5.1	1.6	8.0	3.00	401.00	7.00	137.8
907552	Pulp	3.2	0.9	5.0	2.00	293.00	4.00	78.3
907553	Pulp	3.0	0.6	3.4	31.00	71.00	4.00	56.4
907554	Pulp	2.3	0.7	3.7	15.00	174.00	7.00	65.8
907555	Pulp	3.5	0.8	4.9	8.00	200.00	5.00	84.3
907556	Pulp	4.6	1.4	7.8	8.00	308.00	9.00	112.3
907557	Pulp	4.1	0.9	5.2	5.00	216.00	5.00	95.3
907558	Pulp	3.4	0.9	4.9	2.00	299.00	5.00	82.5
907559	Pulp	2.9	0.9	5.4	4.00	192.00	4.00	76.0
907560Dup	Pulp	3.0	0.8	4.5	4.00	178.00	4.00	71.5
907561	Pulp	2.7	0.7	4.3	34.00	124.00	34.00	61.5
907562	Pulp	4.0	1.2	7.0	19.00	323.00	13.00	98.8
907563	Pulp	7.8	1.7	8.7	8.00	114.00	9.00	145.7
907564	Pulp	3.9	1.2	6.0	84.00	175.00	62.00	97.0
907565	Pulp	3.8	0.9	4.9	137.00	343.00	106.00	88.0
907566	Pulp	4.8	1.2	6.9	50.00	258.00	21.00	109.0
907567	Pulp	3.1	0.8	4.7	3.00	176.00	5.00	66.1
907568	Pulp	6.1	1.2	7.1	2.00	257.00	5.00	114.3
907569	Pulp	4.1	0.8	4.5	6.00	214.00	5.00	87.8
907570 Dup	Pulp	4.3	0.8	4.2	5.00	201.00	4.00	87.2
285054	Pulp	4.7	0.8	4.6	26.00	165.00	12.00	75.1
907571	Pulp	4.4	1.2	6.5	5.00	217.00	6.00	112.2
907572	Pulp	3.6	0.9	4.9	1.00	248.00	4.00	89.8
907573	Pulp	3.0	0.7	4.1	3.00	86.00	2.00	67.2
907574	Pulp	4.6	1.3	6.4	6.00	124.00	3.00	119.8
907575	Pulp	4.8	1.1	6.4	6.00	124.00	3.00	104.2
907576	Pulp	4.0	0.9	5.3	9.00	95.00	4.00	86.8
907577	Pulp	3.7	0.9	5.7	9.00	138.00	3.00	88.0
907578	Pulp	3.3	0.9	5.2	21.00	165.00	10.00	82.6
907579	Pulp	3.7	1.0	5.7	10.00	271.00	5.00	83.5
907580 Dup	Pulp	3.7	1.1	6.0	10.00	272.00	5.00	87.8
907581	Pulp	3.7	1.2	6.7	35.00	149.00	26.00	96.1
907582	Pulp	2.3	0.6	3.5	186.00	164.00	143.00	54.9
907583	Pulp	3.4	0.7	4.2	9.00	307.00	398.00	73.9
907584	Pulp	7.2	2.9	14.2	112.00	559.00	46.00	230.0
907585	•	3.0	0.6	3.7	22.00		22.00	64.5
	Pulp					120.00		
907586	Pulp	3.4	0.8	4.9	49.00	157.00	33.00	74.5
907587	Pulp	3.6	1.2	6.4	41.00	235.00	24.00	98.6

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		Nb2O5	Al2O3	BaO	CaO	Cr2O3	Fe2O3	K2O	LOI	MgO	MnO	Na2O	P2O5	SiO2	TiO2
		Nb2O5-AD3-OR-ICP	WR-FS-ICP												
Sample	Sample	%	%	%	%	%	%	%	%	%	%	%	%	%	%
Description	Type	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
QCV1102-01049-0002-BLK		< 0.01													
STD-OKA-1 expected		0.53													
STD-OKA-1 result		0.52													
QCV1102-01049-0005-BLK		< 0.01													
STD-OKA-1 expected		0.53													
STD-OKA-1 result		0.52													
QCV1102-01049-0008-BLK		< 0.01													
STD-OKA-1 expected		0.53													
STD-OKA-1 result		0.52													
QCV1102-01053-0002-BLK			< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
QCV1102-01053-0008-BLK			< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
STD-SY-4 expected			20.69		8.05		6.21	1.66	4.56	0.54	0.11	7.10	0.13	49.90	0.29
STD-SY-4 result			20.81	0.04	8.02	< 0.01	6.30	1.83	4.52	0.55	0.14	7.13	0.22	50.20	0.30

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

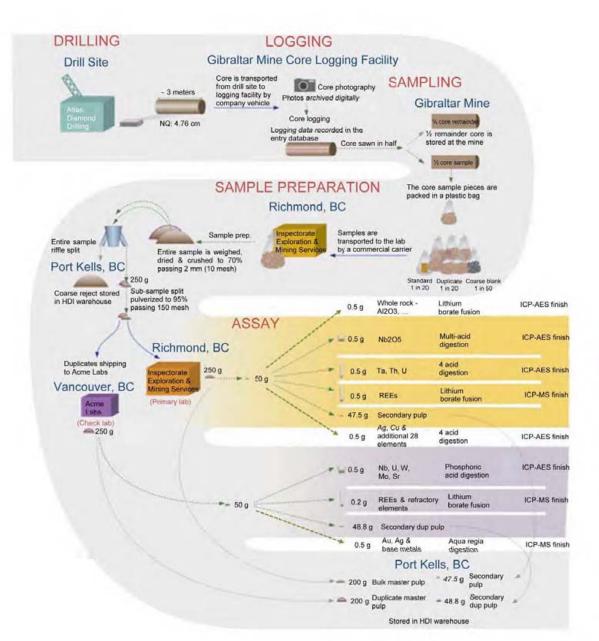
		Total	Ag	Al	As	Ba	Bi	Ca	Cd	Co	Cr	Cu	Fe	K	La
		WR-FS-ICP	30-4A-TR												
Sample	Sample	%	ppm	%	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%	%	ppm
Description	Type	0.01	0.5	0.01	5	10	2	0.01	0.5	1	1	1	0.01	0.01	10
QCV1102-01050-0002-BLK			< 0.5	< 0.01	<5	<10	<2	< 0.01	< 0.5	<1	<1	<1	< 0.01	< 0.01	<10
QCV1102-01050-0005-BLK			< 0.5	< 0.01	<5	<10	<2	< 0.01	< 0.5	<1	<1	<1	< 0.01	< 0.01	<10
QCV1102-01050-0008-BLK			< 0.5	< 0.01	<5	<10	<2	< 0.01	< 0.5	<1	<1	<1	< 0.01	< 0.01	<10
STD-DS-1 expected			0.5	4.48	6930					10		27			
STD-DS-1 result			0.5	4.86	6949					9		29			
QCV1102-01053-0002-BLK		< 0.01													
QCV1102-01053-0008-BLK		< 0.01													
STD-SY-4 expected															
STD-SY-4 result		100.06													

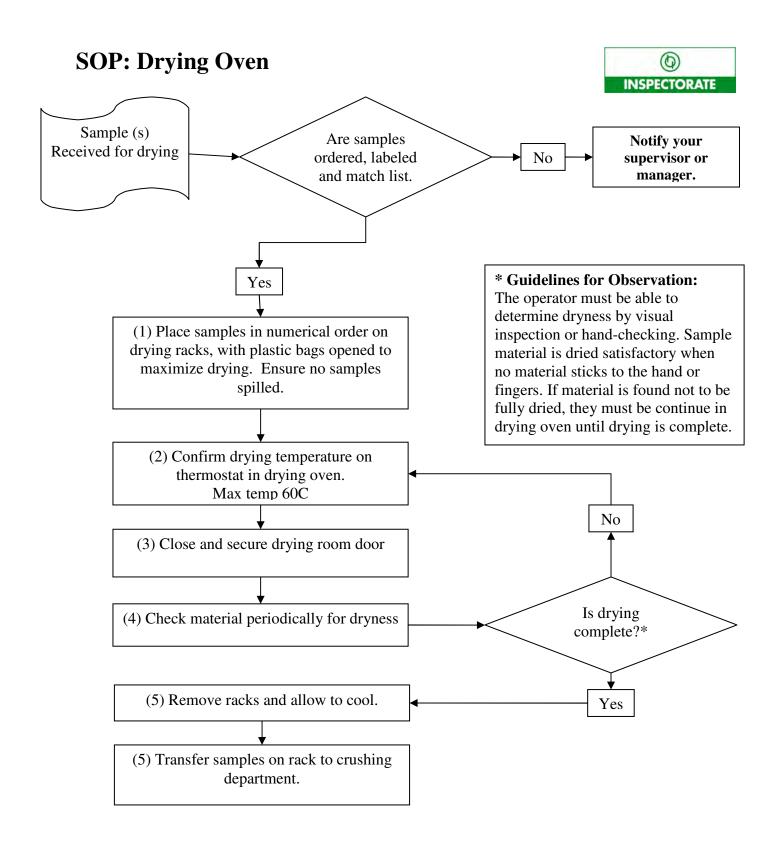
Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		Mg	Mn	Mo	Na	Ni	P	Pb	Sb	Sc	Sr	Ti	Tl	V	W
		30-4A-TR													
Sample	Sample	%	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm
Description	Type	0.01	5	1	0.01	1	10	2	5	1	1	0.01	10	1	10
QCV1102-01050-0002-BLK		< 0.01	<5	<1	< 0.01	<1	<10	<2	<5	<1	<1	< 0.01	<10	<1	<10
QCV1102-01050-0005-BLK		< 0.01	<5	<1	< 0.01	<1	<10	<2	<5	<1	<1	< 0.01	<10	<1	<10
QCV1102-01050-0008-BLK		< 0.01	<5	<1	< 0.01	<1	<10	<2	<5	<1	<1	< 0.01	<10	<1	<10
STD-DS-1 expected		2.76	437			49	340	14							
STD-DS-1 result		2.76	464			50	352	13							

Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6

		Zn	Zr	Ce	Dy	Er	Eu	Gd	Hf	Но	La	Lu	Nd	Pr	Sm
		30-4A-TR	30-4A-TR	REE-LB-MS											
Sample	Sample	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Description	Type	2	1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
QCV1102-01050-0002-BLK		<2	<1												
QCV1102-01050-0005-BLK		<2	<1												
QCV1102-01050-0008-BLK		<2	<1												
STD-DS-1 expected		206													
STD-DS-1 result		205													
QCV1102-01051-0008-BLK				< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
STD-SY-4 expected				122.0	18.2	14.2	2.0	14.0	10.6	4.3	58.0	2.1	57.0	15.0	12.7
STD-SY-4 result				128.6	18.2	14.1	2.2	14.2	10.4	4.3	62.0	2.0	58.3	16.0	12.7


Aley Corporation Suite 1020-800 West Pender St. Vancouver, BC V6C 2V6


		Tb	Tm	Yb	Ta	Th	U	Y
		REE-LB-MS	REE-LB-MS	REE-LB-MS	Ta-4A-LL-MS	Th-4A-LL-MS	-4A-LL-MS	Y-LB-MS
Sample	Sample	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Description	Type	0.1	0.1	0.1	0.05	0.20	0.10	0.1
QCV1102-01051-0008-BLK		< 0.1	< 0.1	< 0.1				< 0.1
STD-SY-4 expected		2.6	2.3	14.8				119.0
STD-SY-4 result		2.5	2.2	14.4				124.2
QCV1105-01148-0002-BLK					< 0.05	< 0.20	< 0.10	
QCV1105-01148-0005-BLK					< 0.05	< 0.20	< 0.10	
QCV1105-01148-0008-BLK					< 0.05	< 0.20	< 0.10	

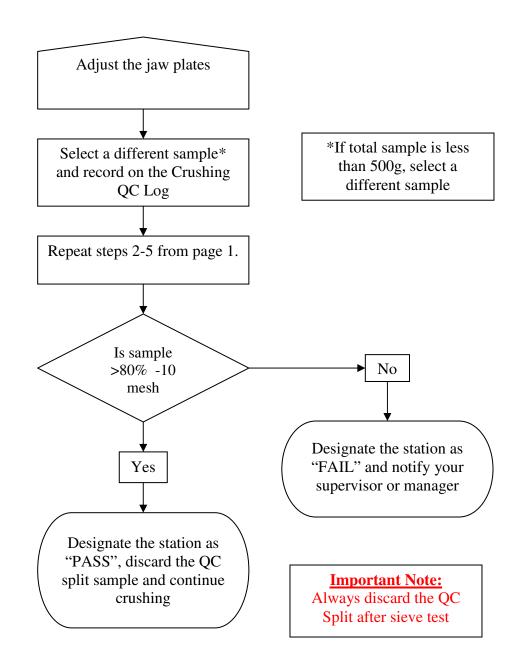
APPENDIX D

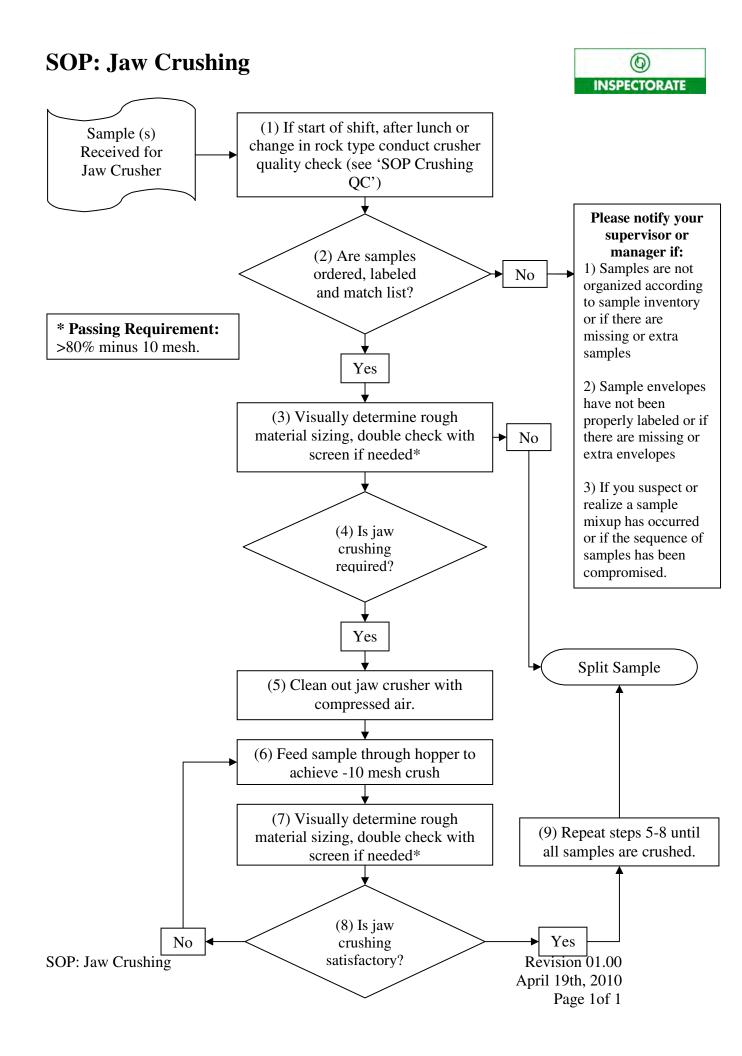
ANALYTICAL PROCEDURES

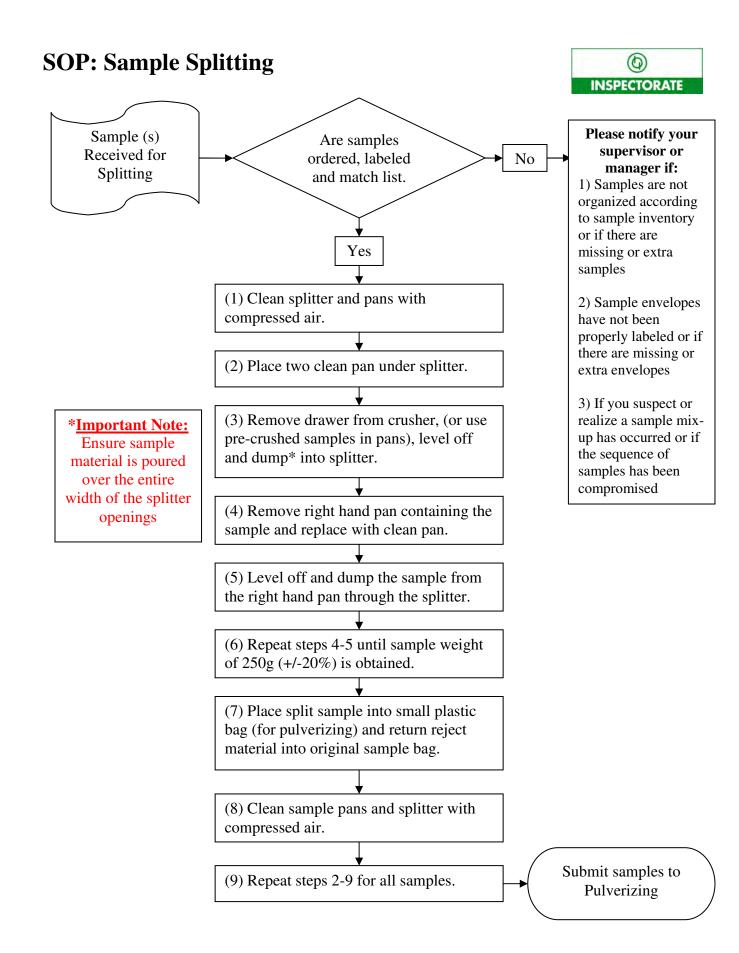
August 17, 2008 Appendix D



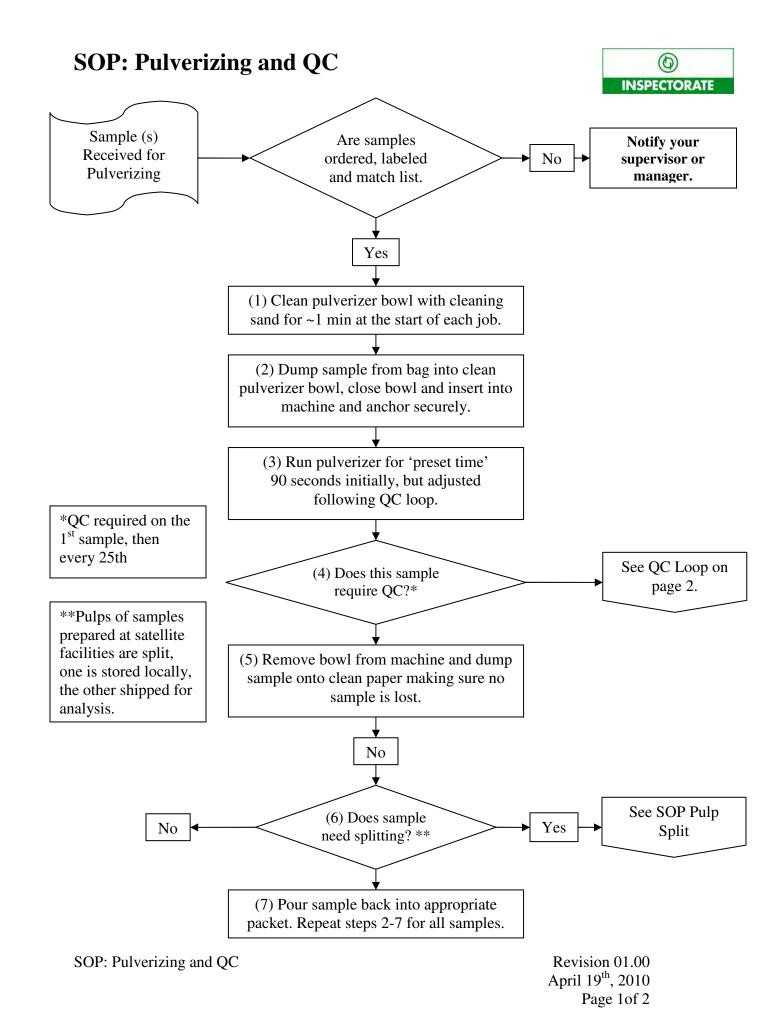
SOP: Crushing QC

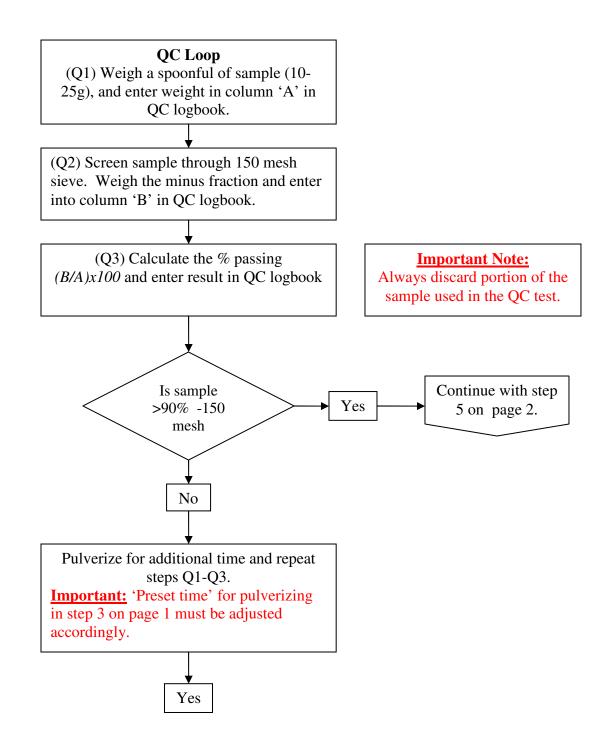

Sample Crushing QC must be checked:


- 1) At the beginning of each shift for each crusher that may be used.
- 2) After Lunch
- 3) When there is a significant change in rock type



SOP: Crushing QC




SOP: Sample Splitting

Revision 01.00 April 19th, 2010 Page 1of 1

SOP: Pulverizing and QC

Method of Multi-element analysis a by Multi-acid digestion/ICP-MS

- (a) A measured portion of sample was mixed with lithium metaborate and fused in high temperature furnace for an hour, removed and leached in weakly diluted HNO3 acid, cooled, then bulked up to a fixed volume with de-mineralized water, and thoroughly mixed.
- (b) The specific elements are determined using an Inductively Coupled Plasma Mass Spec (MS) spectrophotometer. All elements are corrected for inter-element interference. All data are subsequently stored in LIMS.

QUALITY CONTROL

The ICP Spectrometer analysis is first calibrated using three sets of Certified Standards and a blank. The test samples are then run in batches.

A batch of sample consists of 38 or less. An In-house standard and an acid blank are placed in-front of each set, which are both digested along with the samples. A known standard with characteristics best matching the samples is chosen and placed after every fifteenth sample, and again at the end of every batch. Every 20th sample is re-assayed using a new sample cut, weighed, digested placed at end of the batch. The results from these know standards are closely examined to detect any calibration drift.

Method of Whole rock analyses by ICP

- (a) A measured portion of the sample is mixed with lithium metaborate and fused in high temperature furnace for an hour, removed and leached in weakly diluted HNO3 acid, cooled, then bulked up to a fixed volume with di-mineralized water, and thoroughly mixed.
- (b) The specific elements were determined using a Inductivity Coupled Argon Plasma Spectrophotometer. All major interfering, as well as trace, elements are inter-element corrected. All data is subsequently stored in LIMS.
- (b) Loss of Ignition (LOI) is perform separately by weighing 1.0 grams of sample in a clay crucible and ignited at 1000C, the weight loss in percent is reported as LOI.
- * The whole rock package includes following elements: Al2O3, BaO, CaO, Fe2O3, K2O, LOI, MgO, MnO, Na2O, P2O5, SiO2 and TiO2

QUALITY CONTROL

The ICP instrument is first calibrated using six certified standards and a blank. The test samples are then run in batches. A sample batch consists of 38 or less samples. Two solutions are placed before a batch. These are in-house standard and acid blank, which are both digested along with the samples. A known standard with characteristics best matching the samples is chosen and placed after every fifteenth sample. After every 38th sample (not including standards), two samples, chosen at random, are re-weighed and analyzed. At the end of a batch, the standard and blank used at the beginning is re-analyzed. Results from both sets of standards are compared to detect any calibration drift.

A Certified Reference Standard is carried through with the analysis and a duplicate analysis is done for every 20 samples. The acceptance level is within 5% relative difference in both cases.

Method of Nb and Ta analysis a by HF-HCl-H3PO4 digestion/ICP-MS

A measured portion of sample is weighed and transferred into a Teflon test tube, HF, HCl, and H3PO4 acids are added and digested on hot plate until strong H3PO4 fumes persisted and color change takes place. The solution is left to cool and re-boiled with a known amount of diluted HCl then left to cool. Once cool it is bulked up to a fixed volume with de-mineralized water, and thoroughly mixed. This process takes approximately 7 hours.

(b) The specific elements in solution are determined using an Inductively Coupled Plasma Mass Spec (MS) spectrophotometer. All elements are corrected for interelement interference. All data are subsequently stored into LIMS.

QUALITY CONTROL

The ICP Spectrometer analysis is first calibrated using three sets of Certified Standards and a blank. The test samples are then run in batches.

A batch of sample consists of 38 or less. An In-house standard and an acid blank are placed in-front of each set, which are both digested along with the samples. A known standard with characteristics best matching the samples is chosen and placed after every fifteenth sample, and again at the end of every batch. Every 20th sample is re-assayed using a new sample cut, weighed, digested placed at end of the batch. The results from these know standards are closely examined to detect any calibration drift.

I:\analytical method\icpmuac-ms

Method study on the analysis of Fluoride in ore samples

Introduction

When found in nature, fluorspar is known by the mineral name *fluorite*. Fluorspar (fluorite) is calcium fluoride (CaF₂). It is found in a variety of geologic environments. Fluorspar is found in granite (igneous rock), it fills cracks and holes in sandstone, and it is found in large deposits in limestone (sedimentary rock). The term fluorspar, when used as a commodity name, also refers to calcium fluoride formed as a byproduct of industrial processes.

Chemical Properties Available:

- 1 Crude ore- 25 to 30%
- 2 Metallurgical grade- 75 to 82%
- 3 Ceramic grade- 94 to 96%
- 4 Acid grade- 97%
- 5 Crystalline grade- 99%

There are two main grades of Fluorspar in industrial production:

- 1. Acid grade (95 ~ 98%) which is applicable to fiberglass, ceramic, welding rod, glass, blending with burned lime & dolomite for steel industry and most commonly in the manufacturing of Hydrofluoric acid.
- 2. Metallurgical grade (~ or > 80%) gravel Fluorspar for the steel industry

There are various standard methods in the analysis of both grade of Fluorspar:

ASTM E815 – 99	Standard test method for determination of Calcium Fluoride in
	Flurospar by complexometric titration

ASTM E1506 – 97 Standard test methods for analysis of acid-grade calcium fluoride (Fluorspar)

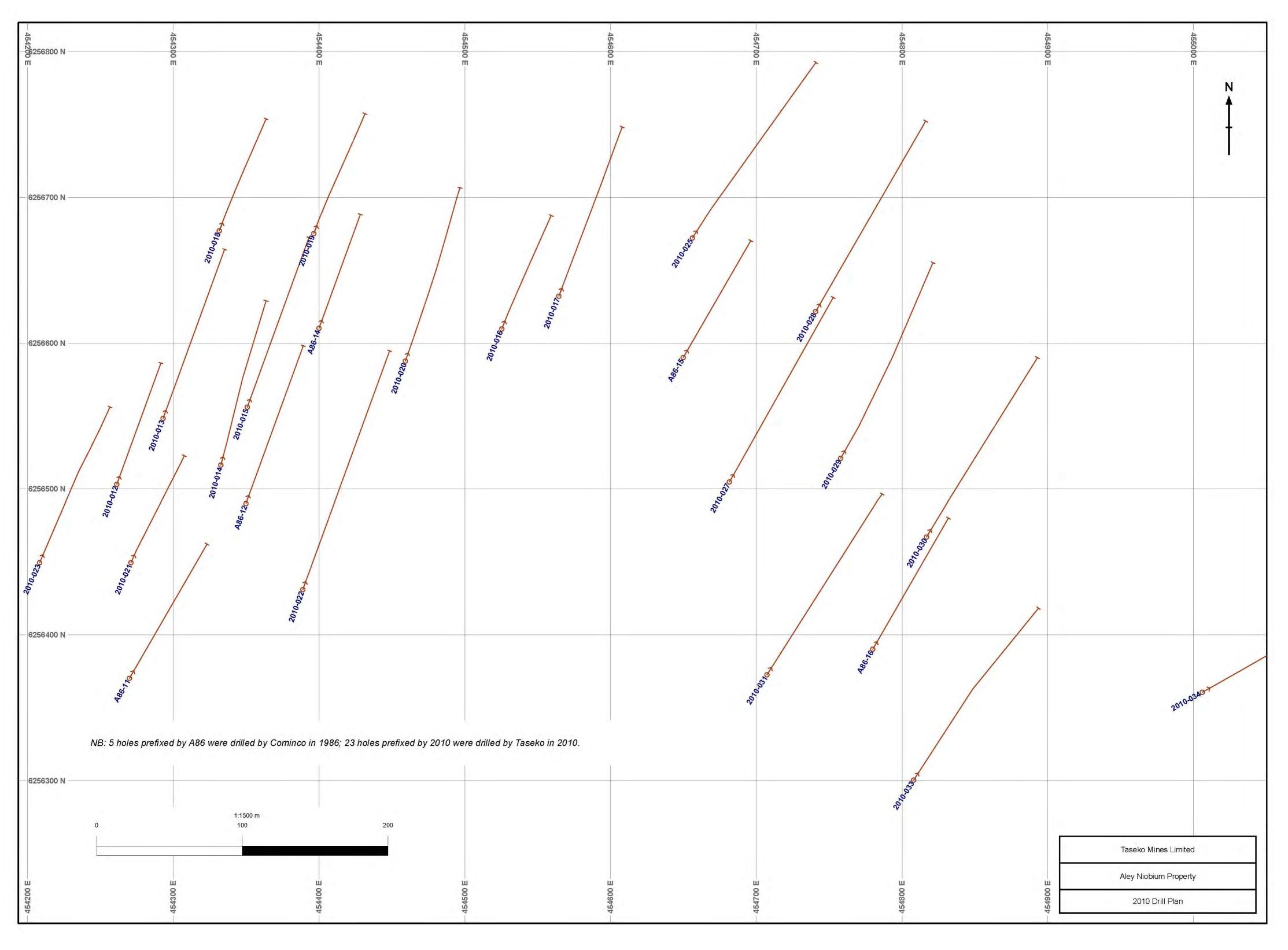
However, these methods are targeted on Fluorspar specifically, which may mean that they are good for the quality control or specification variation of Fluorspar only. The theme is to analyze the calcium content and then compute the CaF2 by applying a factor.

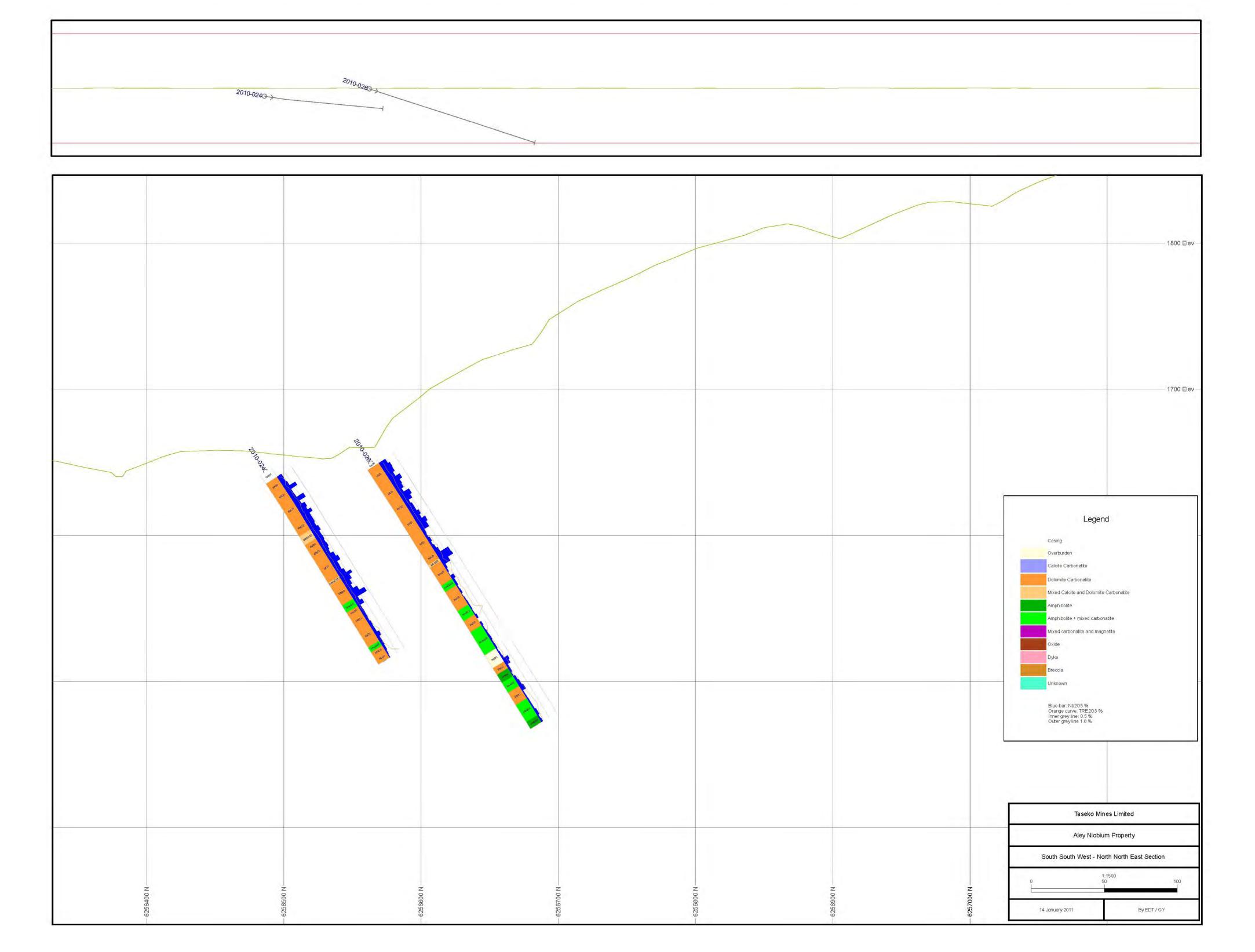
Obviously that may not be applicable to natural crude sample, which may contain some other calcium constituents like CaCO3 and CaO.

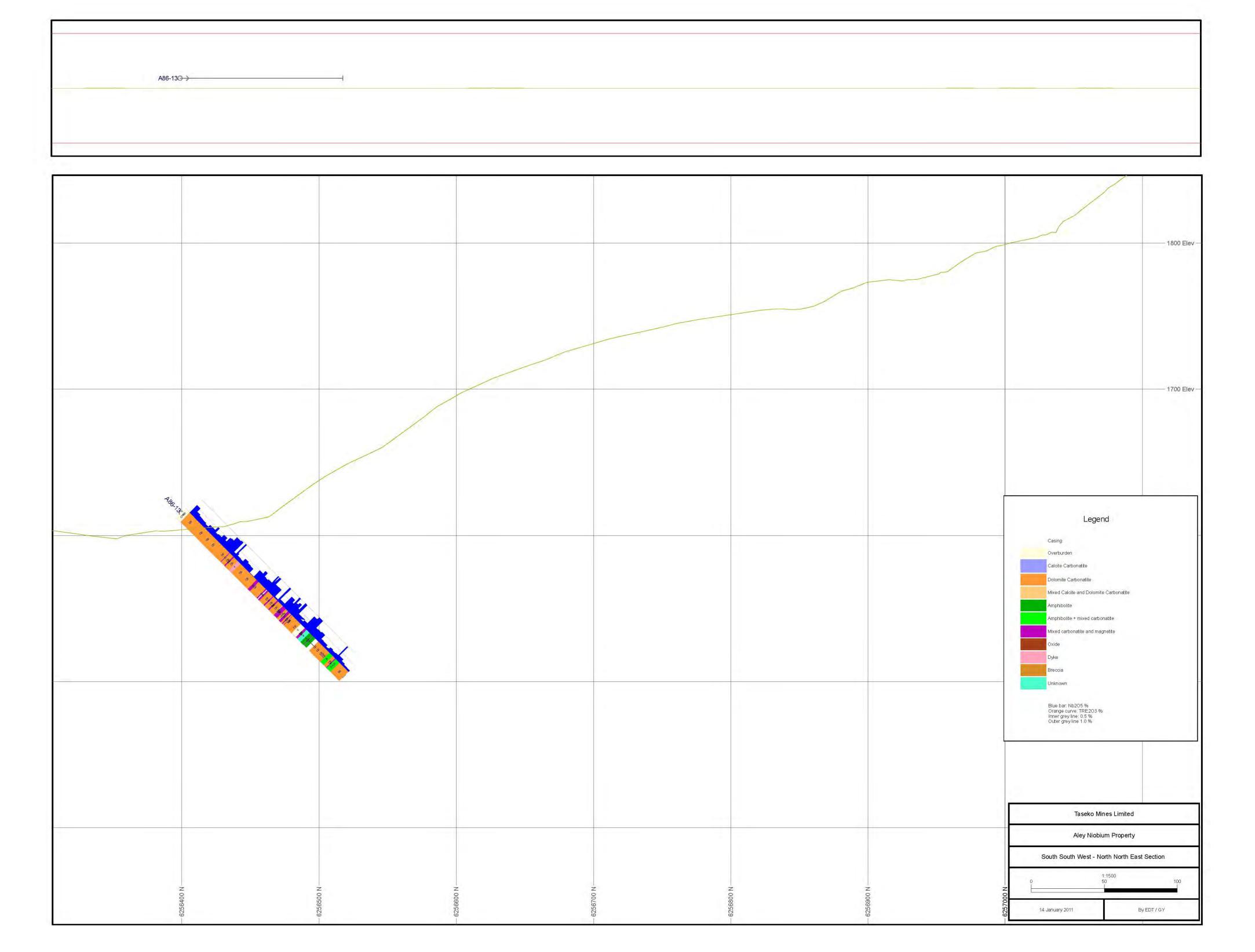
The following paragraphs are focused on the analysis of Fluoride content in such samples.

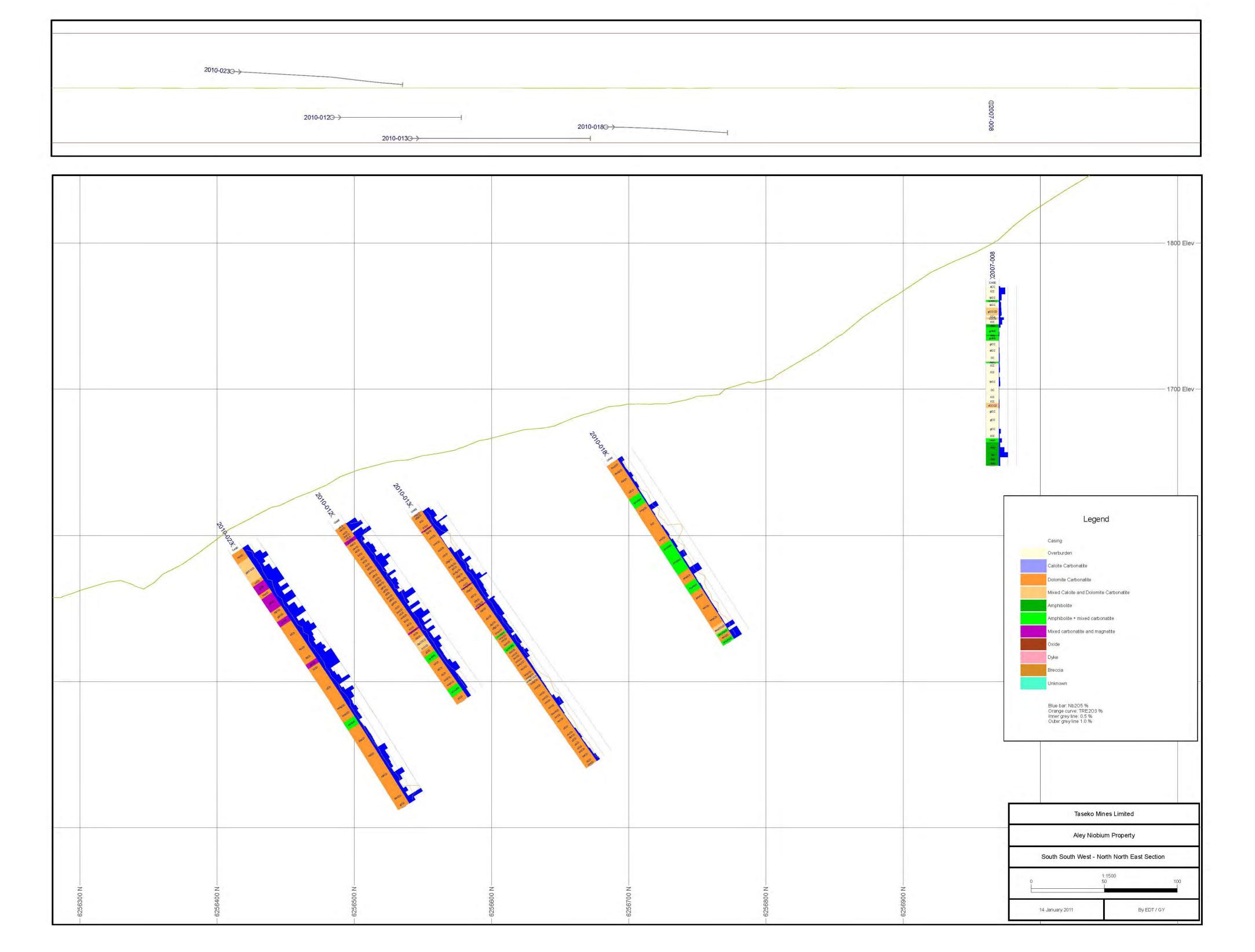
Summary of test method

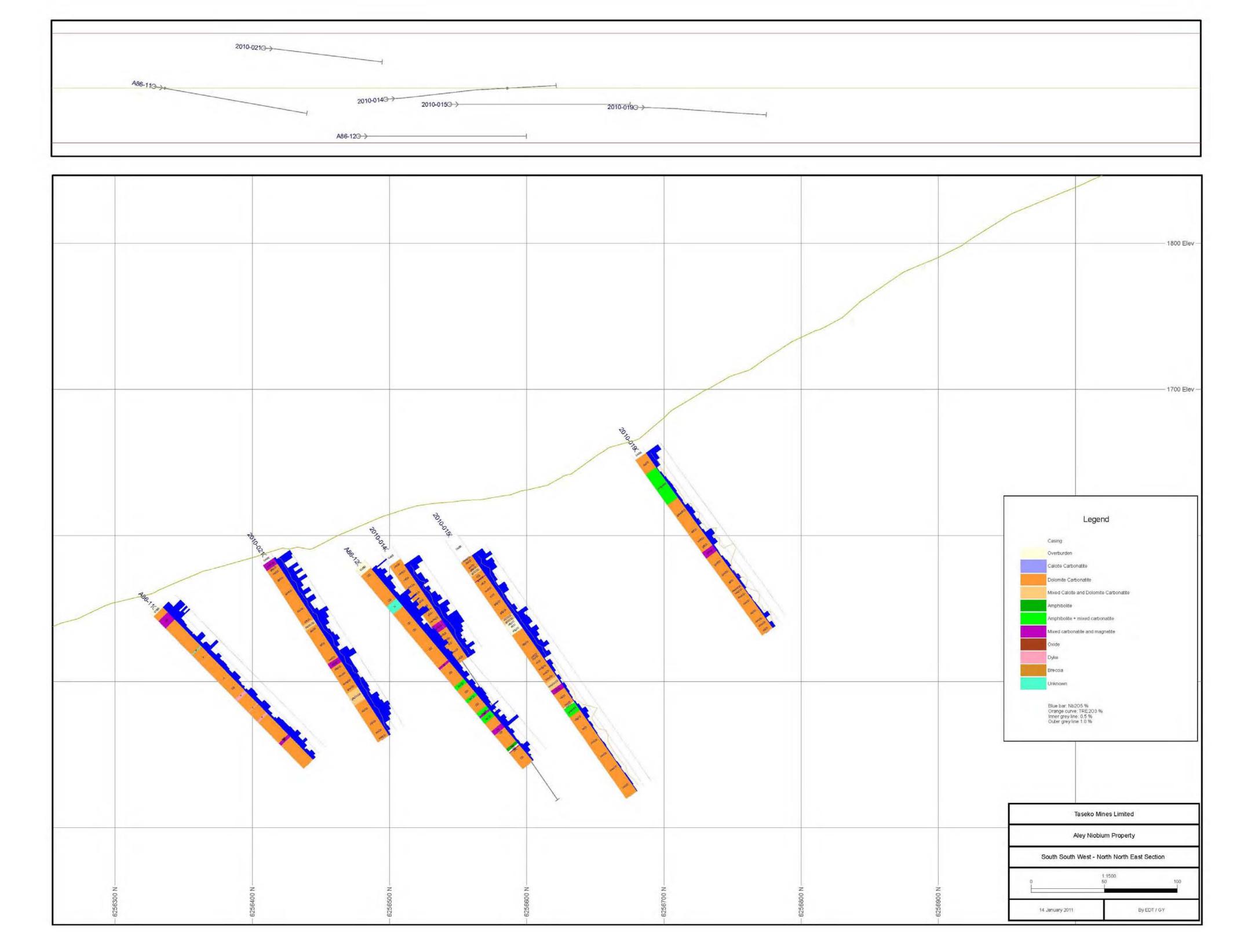
A measured portion of sample is mixed with a known amount of LiBO2. The mixture is transferred into a graphite crucible and fused at 700°C for 15 min. The molten material is poured into a 150 mL Polypropylene beaker containing 80 mL of 4% HNO3. The mixture is shaken for 30 min to complete dissolution. Make up to 100 mL with distilled water.

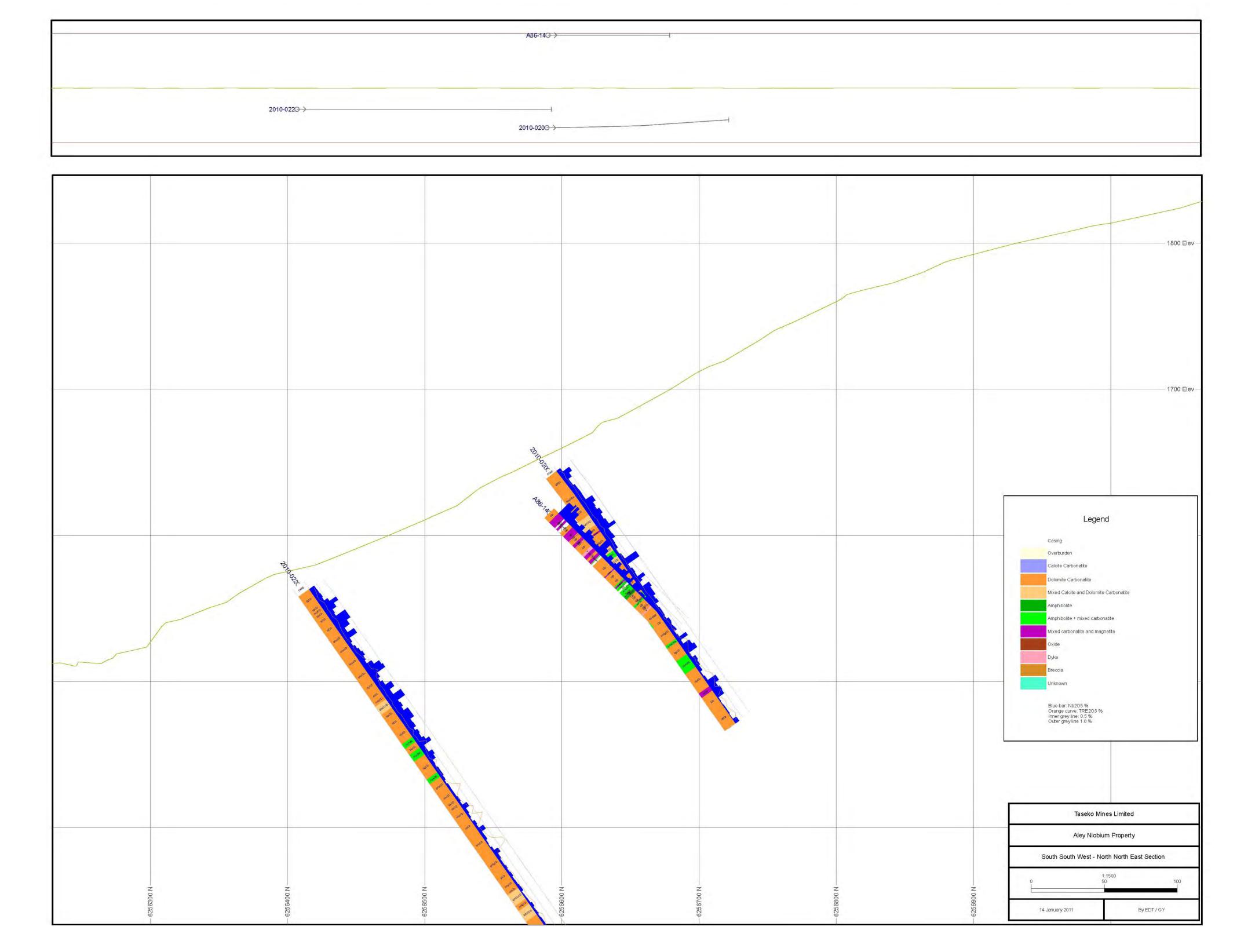

Transfer 20 mL aliquot into a polypropylene beaker containing 2 mL of TISAB with magnetic stirring bar. Measuring the Fluoride content with ion-selective electrode method.

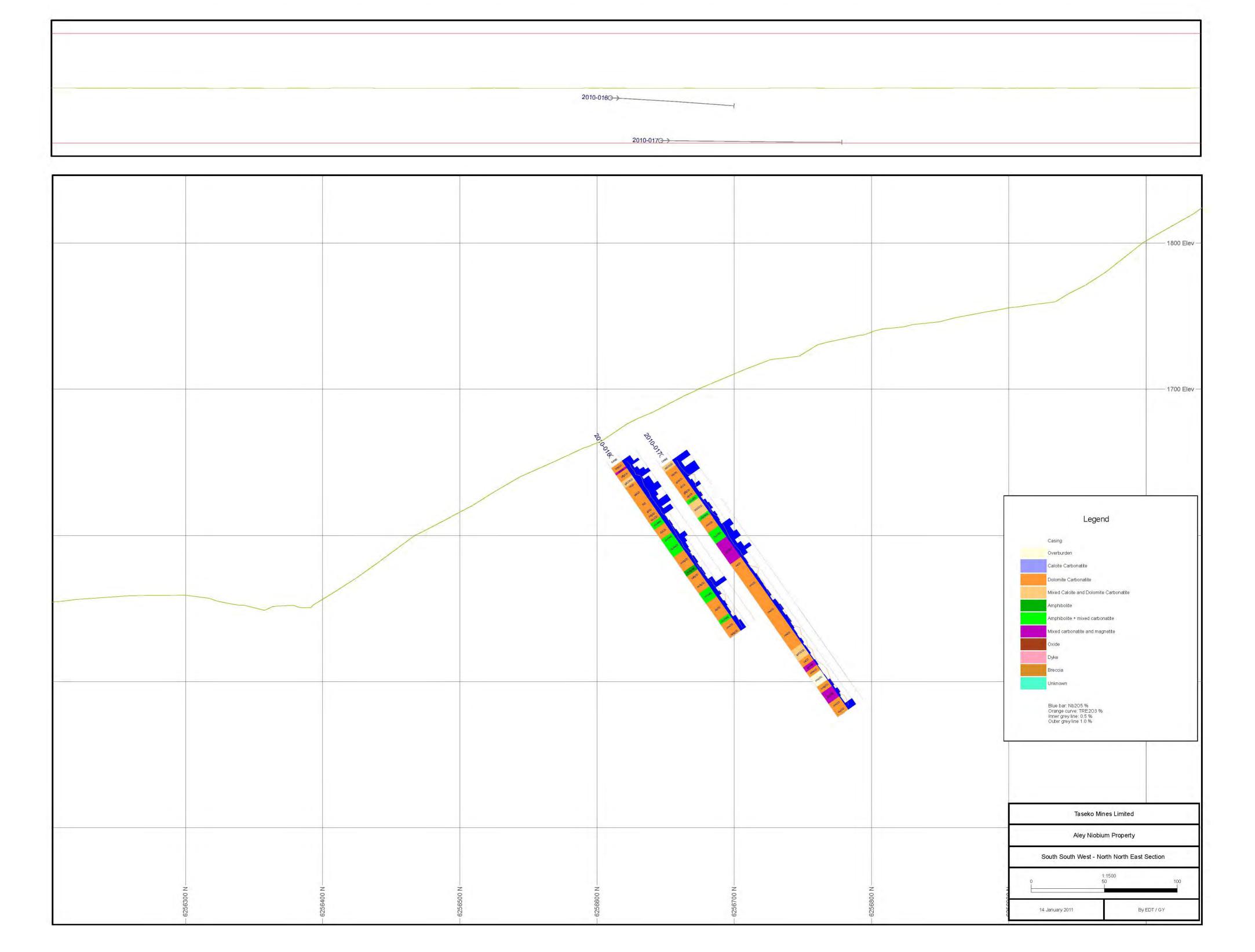

The actual fluoride content is calculated taking the sample volume and weight into account.

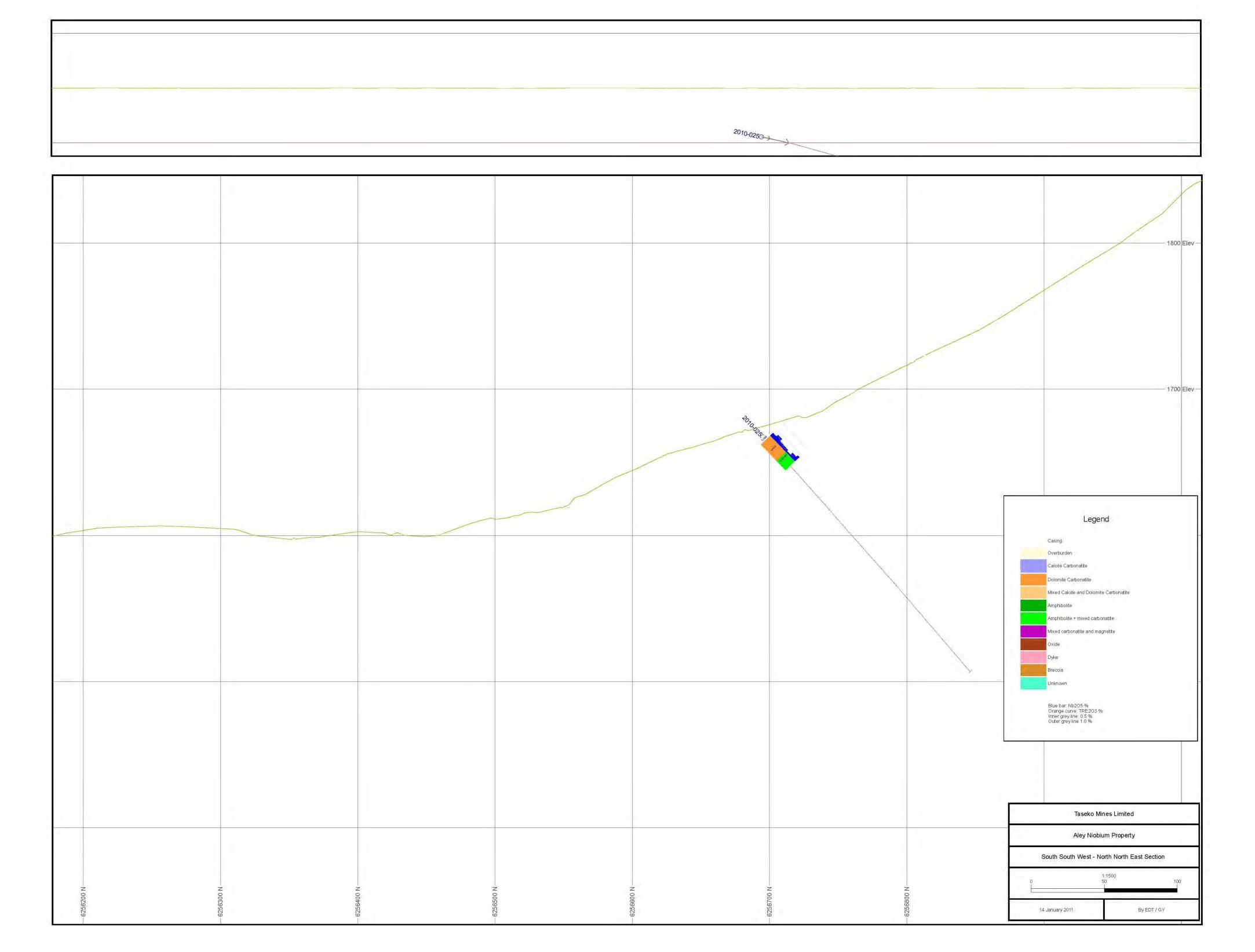

APPENDIX E

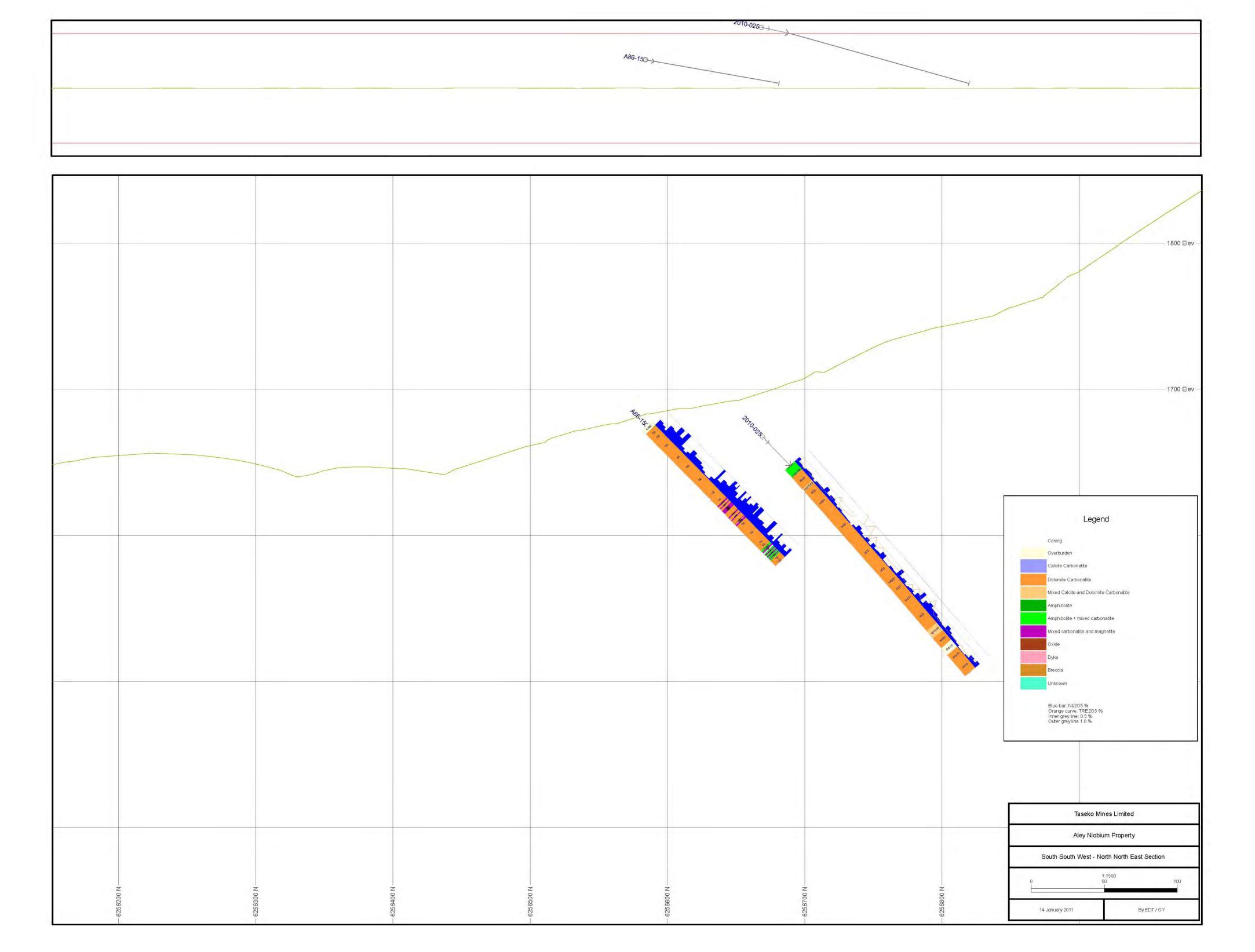

DRILL SECTIONS

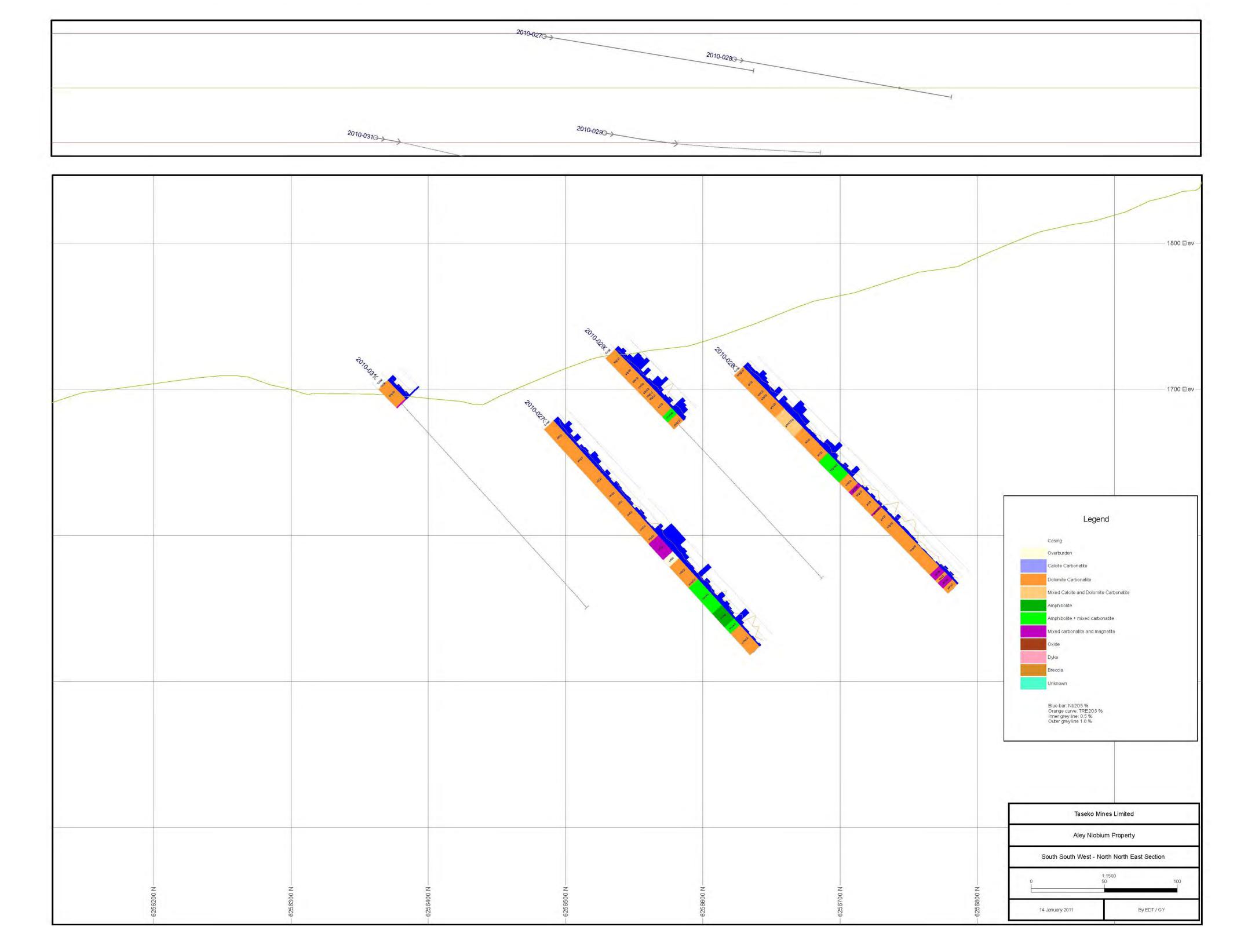

August 17, 2008 Appendix D

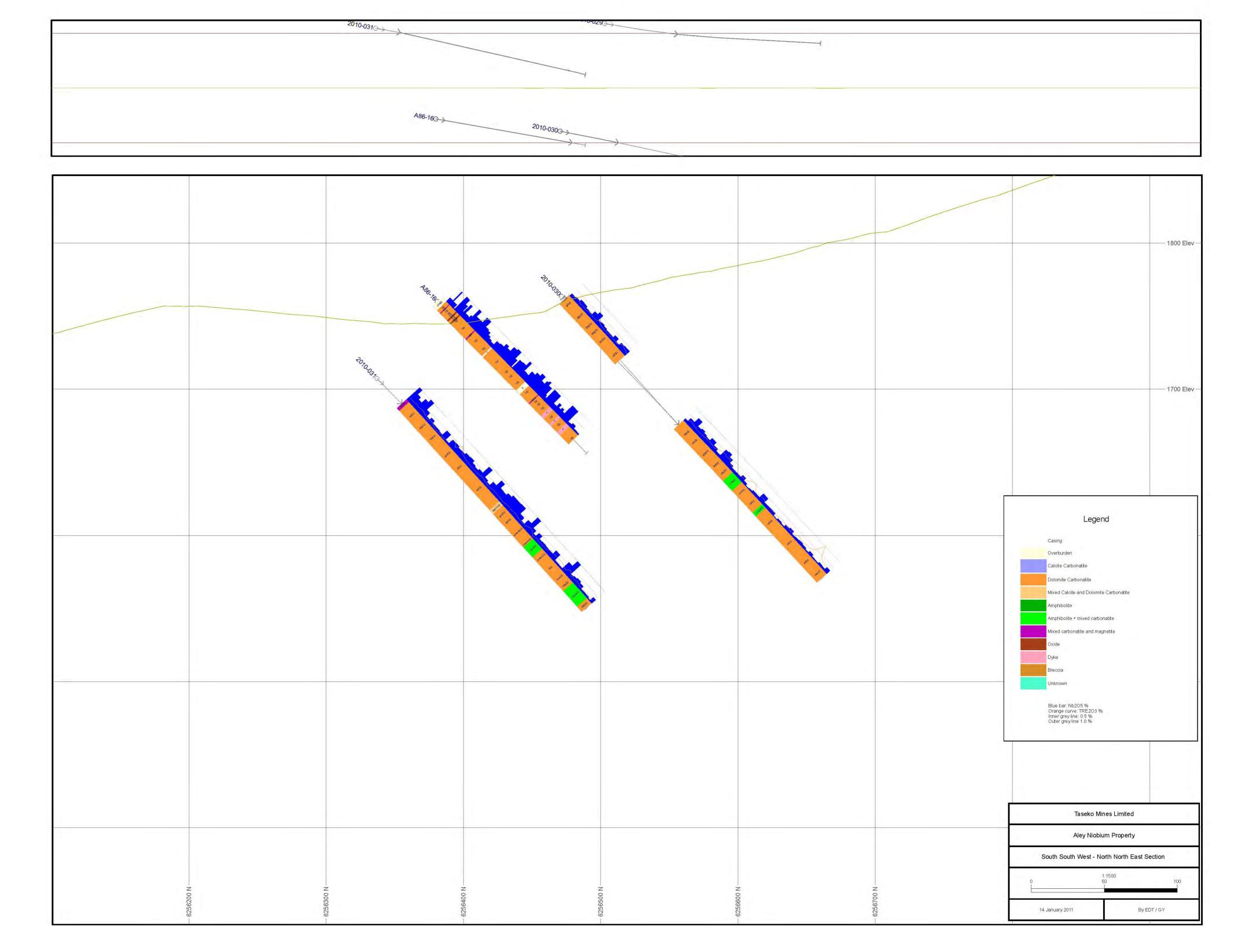


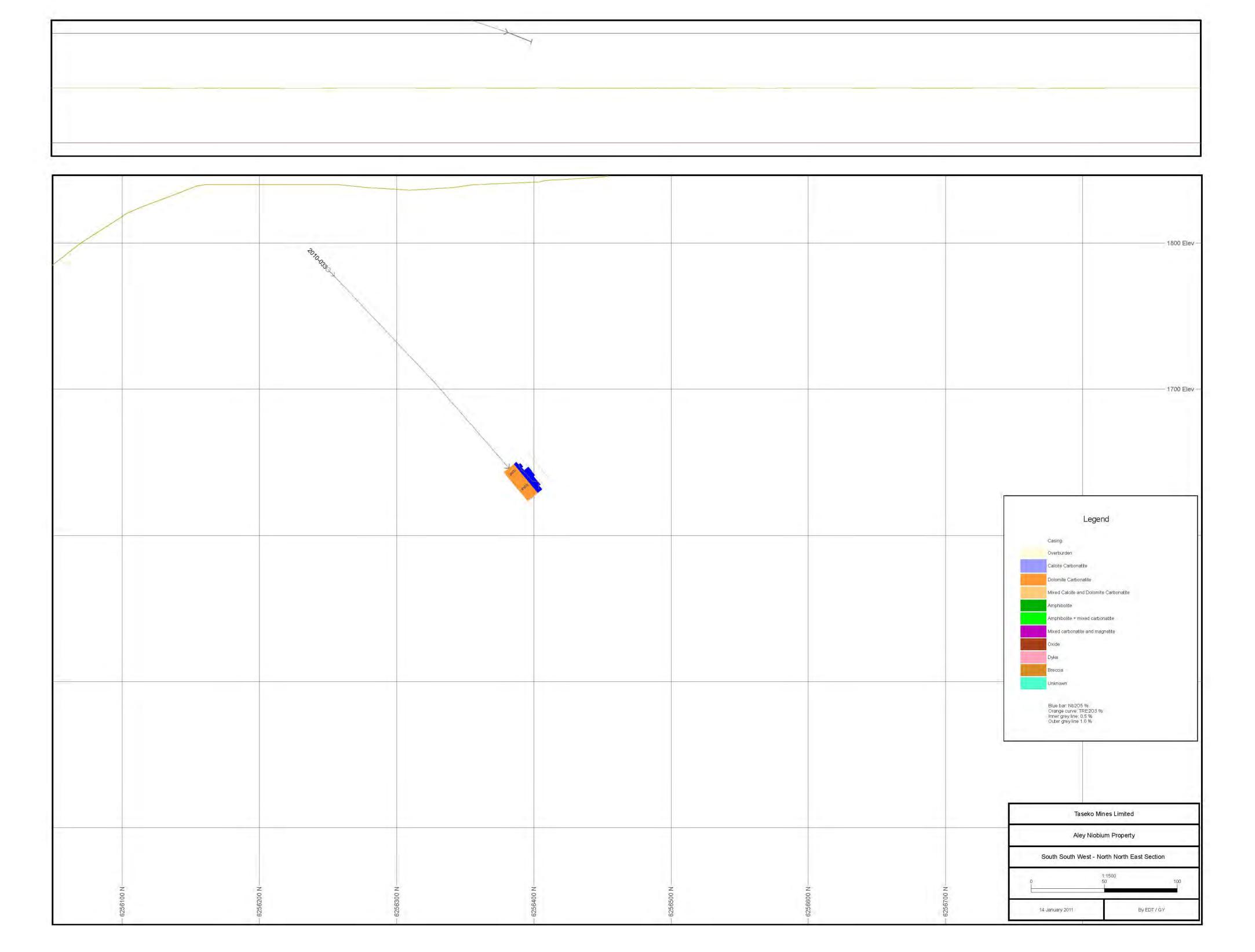


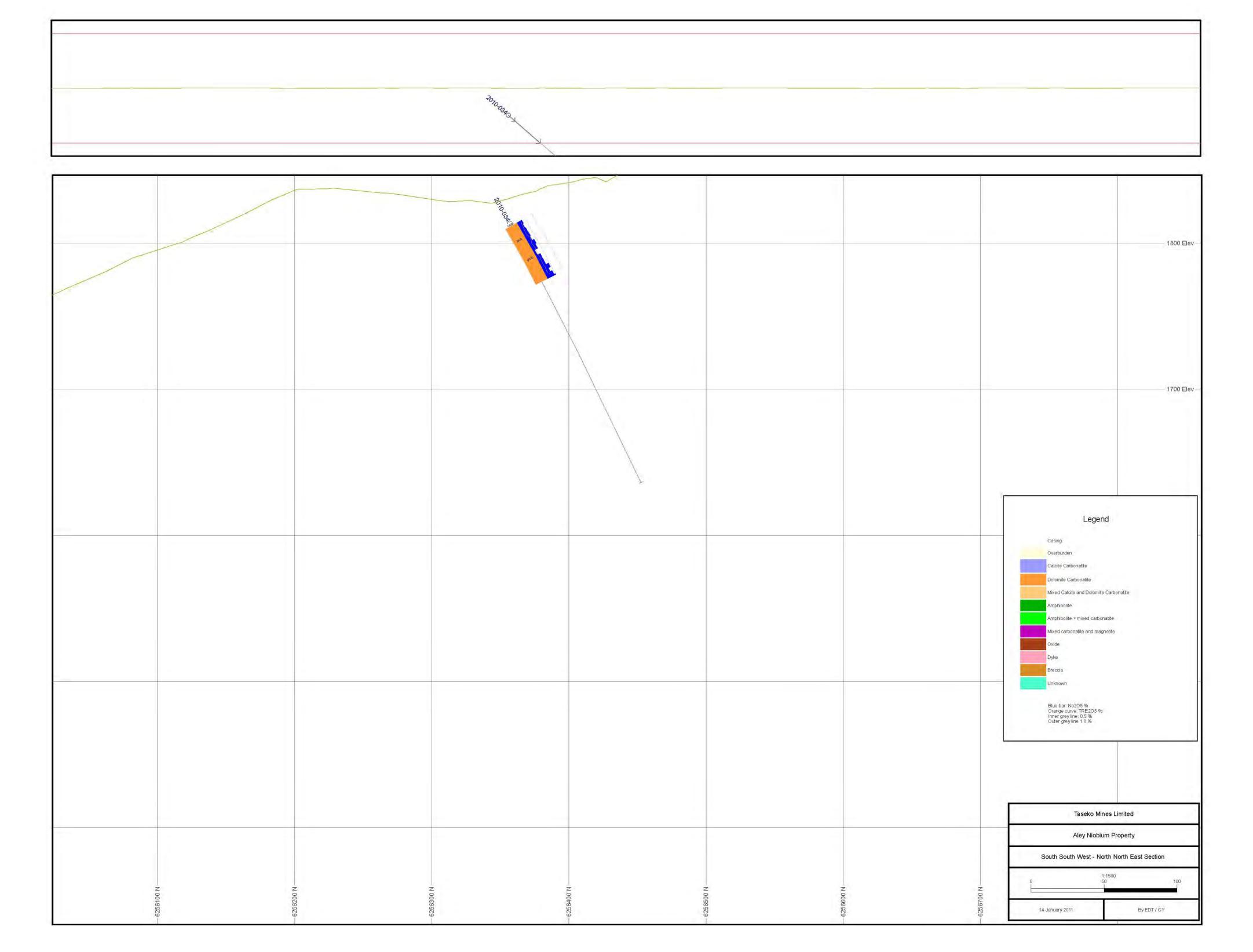


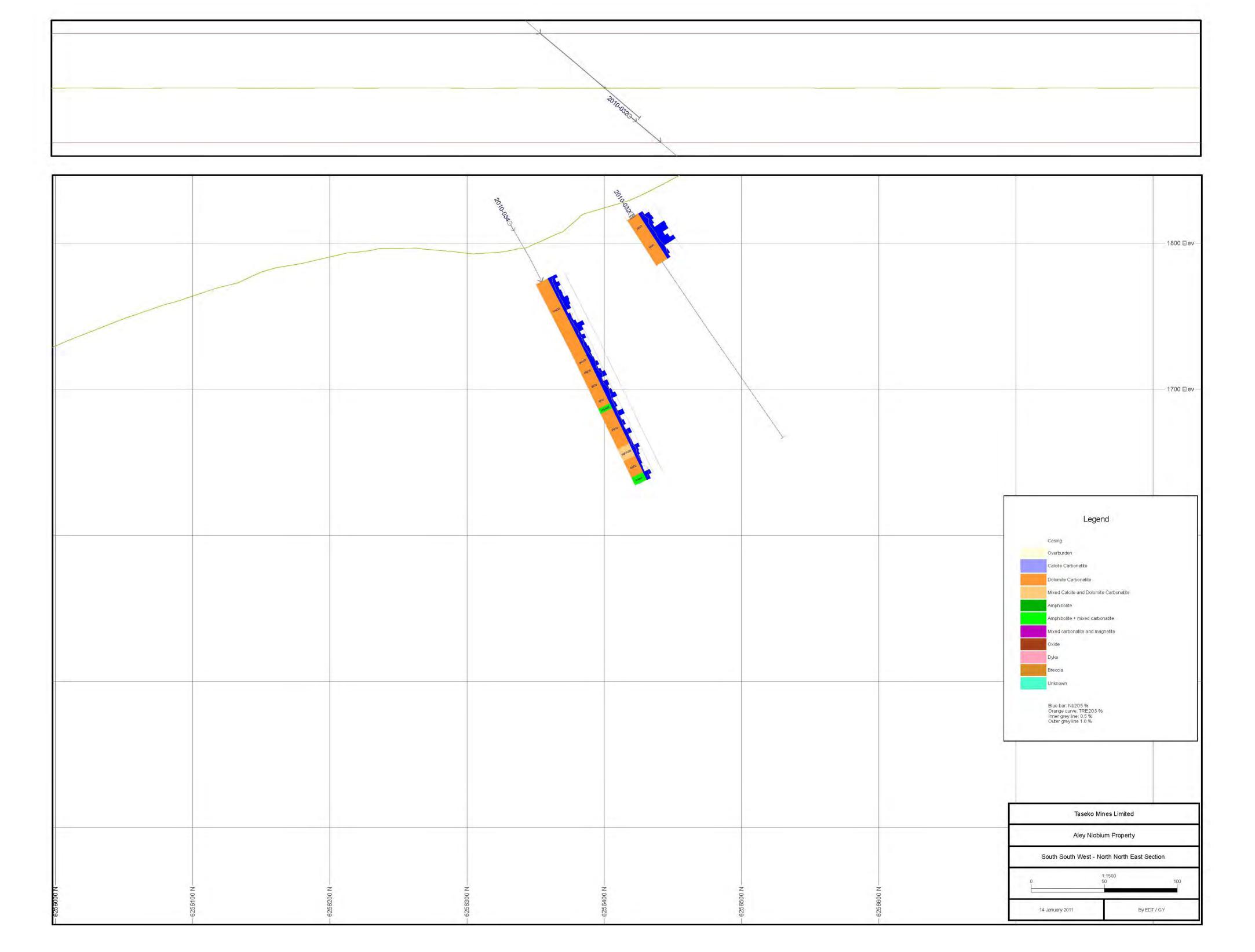


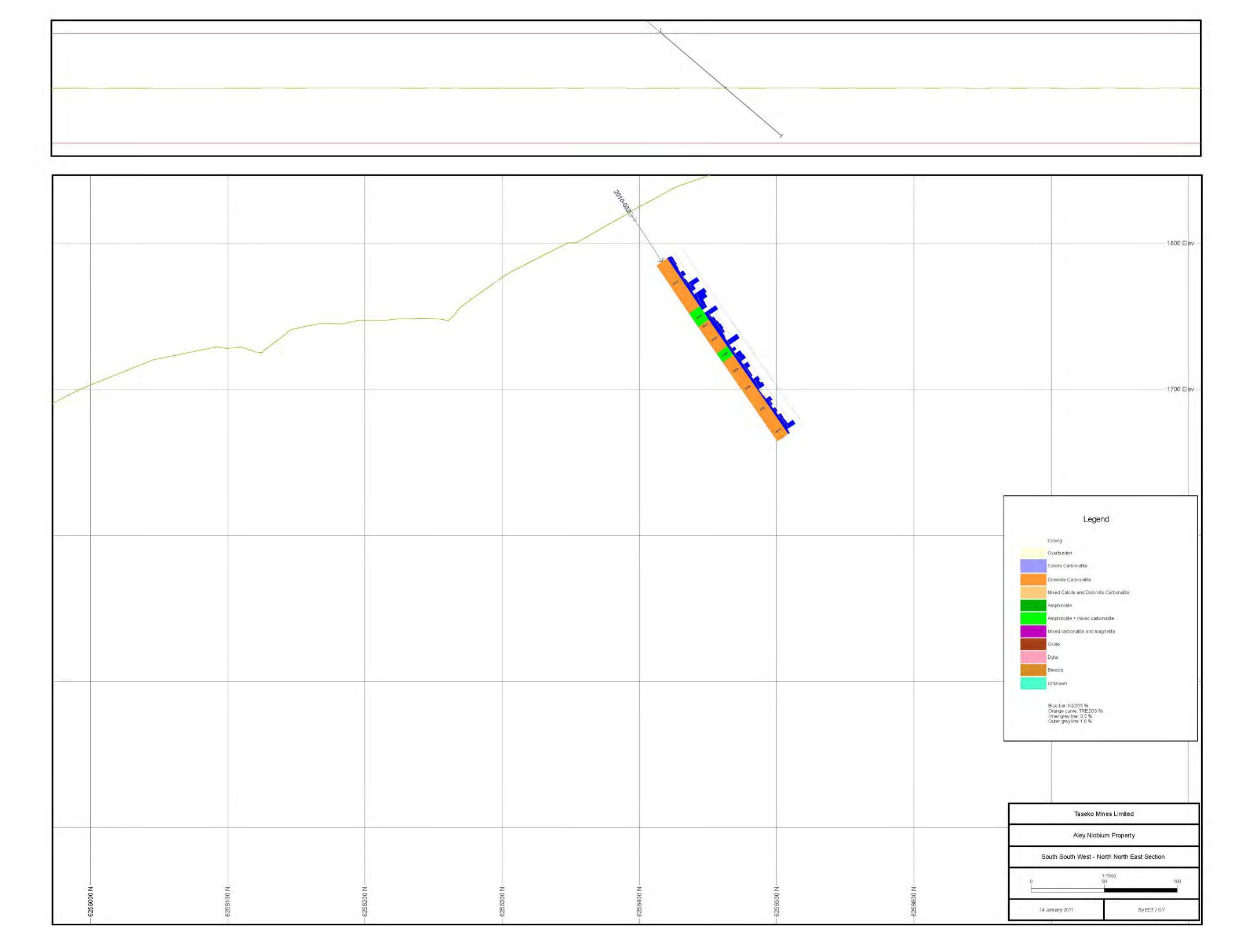


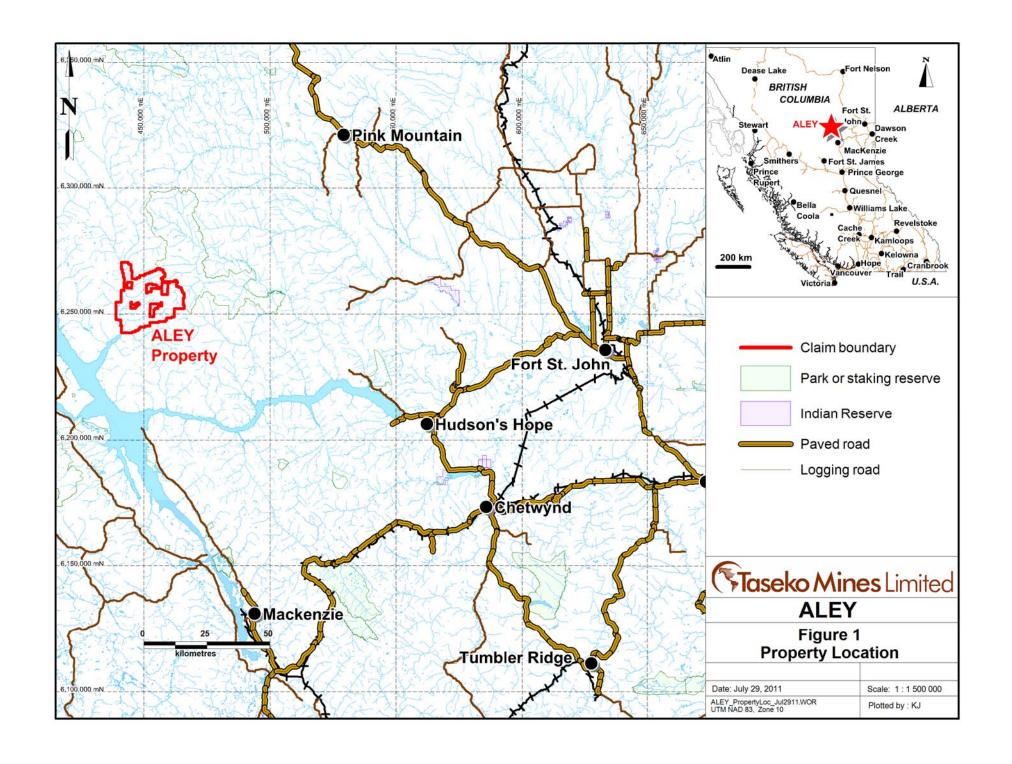


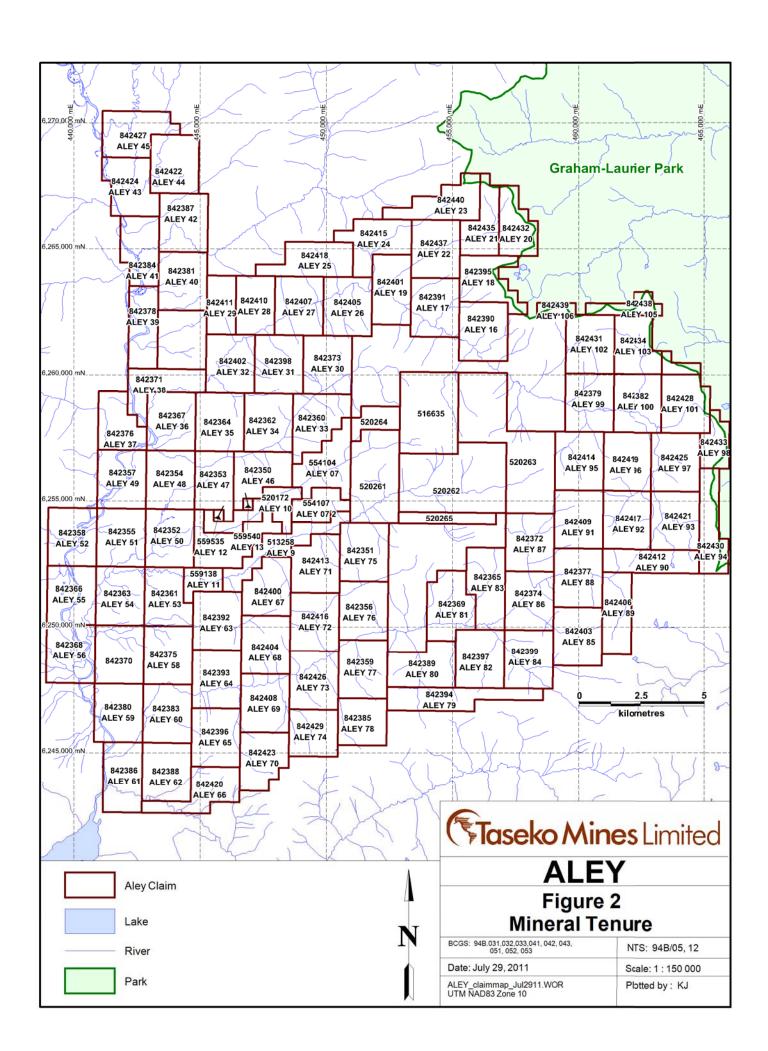


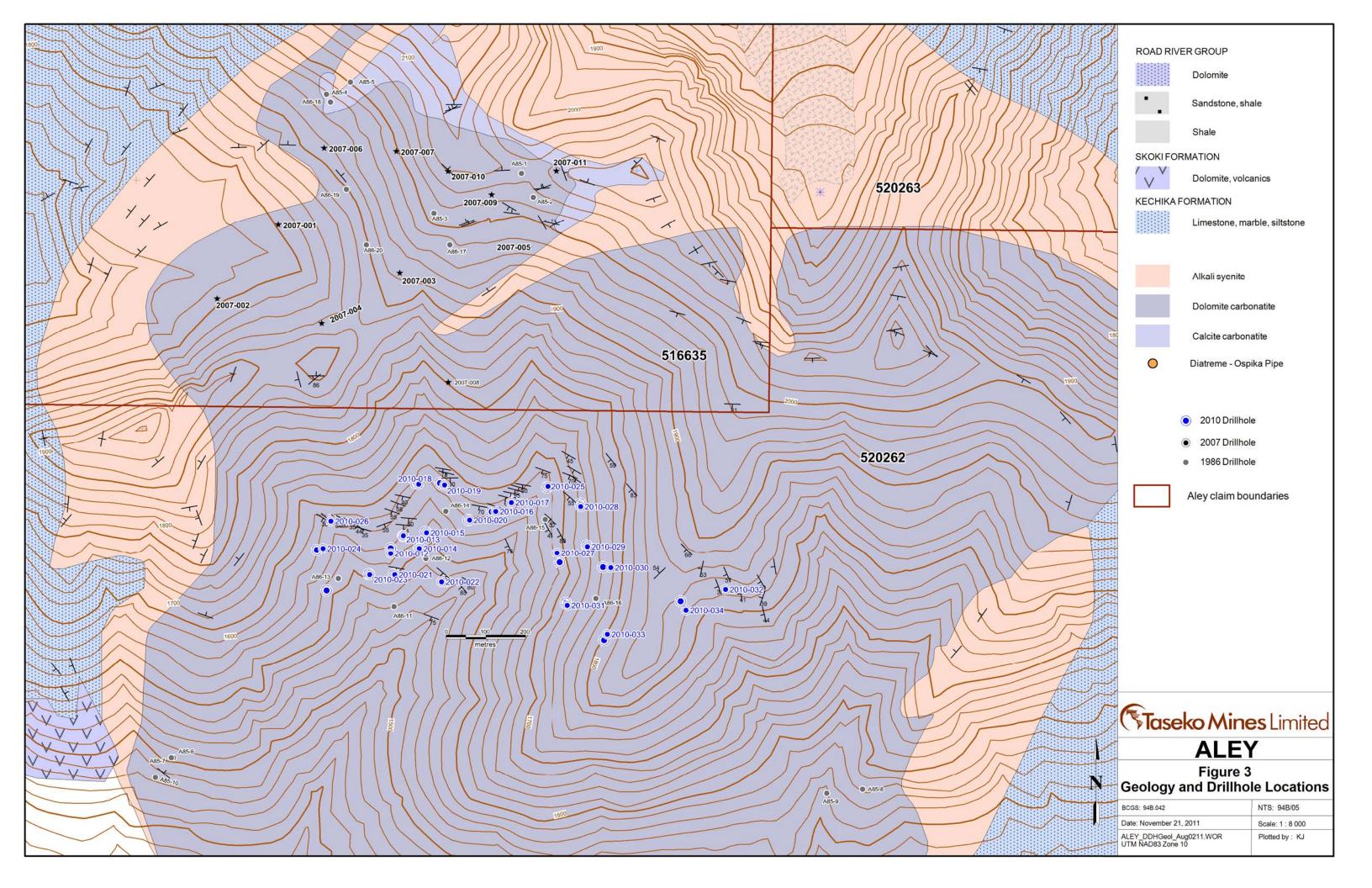


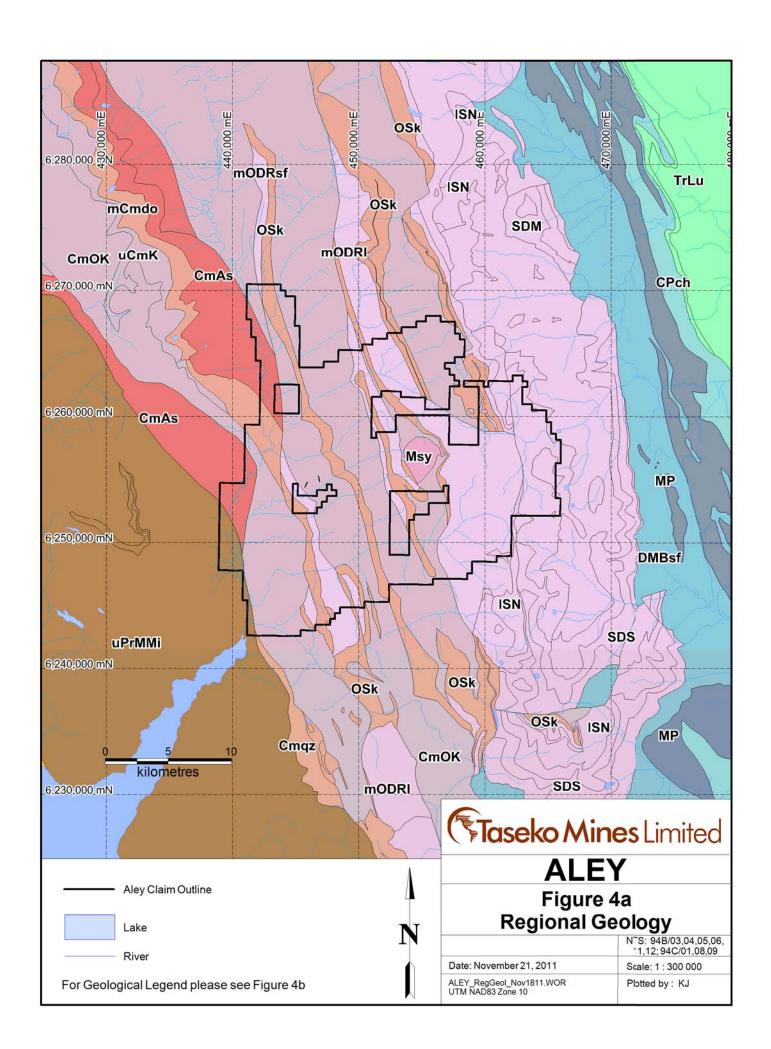









APPENDIX F


FIGURES AT THEIR ORIGINAL SCALE

August 17, 2008 Appendix D

