

ASSESSMENT REPORT TITLE PAGE AND SUMMARY

TITLE OF REPORT: Geochemical Report on the Pilot Soil / Till Heavy Metal Concentrating on the Bouleau Creek Gold Project

TOTAL COST: \$8,774.00

AUTHOR(S): Eugene A. Dodd SIGNATURE(S):

NOTICE OF WORK PERMIT NUMBER(S)/DATE(S): STATEMENT OF WORK EVENT NUMBER(S)/DATE(S): 5151691

YEAR OF WORK: 2011

UTM Zone:

PROPERTY NAME: Bouleau Creek Gold Project

CLAIM NAME(S) (on which work was done): T# 733522 Bouleau CK, T# 737043 Bouleau N, T#579151 Siwash, T#739282 Siwash 2

COMMODITIES SOUGHT: Au, Ag

MINERAL INVENTORY MINFILE NUMBER(S), IF KNOWN: 082LSW069, 082LSW073, 082LSW046

MINING DIVISION: Vernon Mining division

NTS / BCGS: 082L.022 and 082L.023 LATITUDE: ______50_°___16___'_22___" LONGITUDE: _____119___°_37___'_35____" (at centre of work)

312854 EASTING:

5572254 NORTHING:

OWNER(S):North Bay Resources Inc. (204090)

MAILING ADDRESS: PO Box 162 Skippack Pennsylvania 19474 USA

OPERATOR(S) [who paid for the work]: North Bay Resources Inc. (204090)

MAILING ADDRESS: PO Box 162 Skippack Pennsylvania 19474 USA

REPORT KEYWORDS (lithology, age, stratigraphy, structure, alteration, mineralization, size and attitude. **Do not use abbreviations or codes**) Jurassic, granodiorite, tertiary volcanics, epithermal, Gold, Silver, shears, and fault structures

REFERENCES TO PREVIOUS ASSESSMENT WORK AND ASSESSMENT REPORT NUMBERS:

AR# 28,177, AR# 25,351, AR# 21,877, AR# 25,600, AR# 18,998, AR# 15,296, AR# 17,870, AR#18,541, AR# 19,089

TYPE OF WORK IN THIS REPORT	EXTENT OF WORK (in metric units)	ON WHICH CLAIMS	PROJECT COSTS APPORTIONED (incl. support)
GEOLOGICAL (scale, area)			
Ground, mapping			
Photo interpretation			
GEOPHYSICAL (line-kilometres)			
Ground			
Magnetic			
Electromagnetic			
Induced Polarization			
Radiometric			
Seismic			
Other			
Airborne			
GEOCHEMICAL (number of sample	A		
Soil & Till 20 HMC HMC Samples	ALS Canada Ltd. Vancouver BC	Certificate # VA11265555	\$8,274.00
Silt		-	
Rock			
Other			
DRILLING (total metres, number of	holes, size, storage location)		
Core			
Non-core			
RELATED TECHNICAL			
Sampling / Assaying			
Petrographic			
Mineralographic			
Metallurgic			
PROSPECTING (scale/area)			
PREPATORY / PHYSICAL			
Line/grid (km)			
Topo/Photogrammetric (sca	le, area)		
Legal Surveys (scale, area)			
Road, local access (km)/trai	1		
Trench (number/metres)			
Underground development ((metres)		
Other - Report		TOTU CONT	\$500.00
		TOTAL COST	\$8,774.00

Page 2 of 2

Geochemical Report

on the

Pilot Soil / Till Heavy Metal Concentrating Program on the

Bouleau Creek Gold Project

Tenure #'s 733522, 578838, 601505, 737043, 579151, and 739282

Vernon Mining Division

British Columbia

N.T.S. 082L.022 and 082L.023

50° 16' 22" N, 119° 37' 35" W

11U 312854 E, 5572254 N

Owner: North Bay Resources Inc.,

PO Box 162, Skippack,

PA, 19474, USA.

Operator: North Bay Resources Inc.,

Contractor: Billiken Gold Ltd.,

561 Glenmary Road, Enderby,

BC, Canada, V0E 1V3

Author: Eugene A. Dodd, Project Manager

Date: February 24, 2012

Table of Contents

Figures	3
Illustrations	3
Appendices	3
Summary	4
Introduction	5
Physiography	5
Claim Information	7
Location and Access	7
History of Previous Relevant Work in the Area	9
Regional Geology	11
Property Geology	11
Glaciation	11
Sampling Method	12
Field Observations	15
Analytical Procedures	18
Discussion of Megascopy	18
Assay Results	23
ICP Interpretation	24
Discussion of Results	24
Case Histories	25
Conclusions	27
Recommendations	28
General Discussion	30
Statement of Qualifications	31
Bibliography	32

<u>Figures</u>

Figure 1 – Table of Claim Information	7
Figure 2 – Table of Soil Descriptions	15
Figure 3 – Table of Microscopic Results	16
Figure 4 – Table of Weights	17
Figure 5 – Siwash Megascopy	18
Figure 6 – Bouleau Main Megascopy	19
Figure 7 – Cut Block Megascopy	19
Figure 8 – Table of Assay Results	23
Figure 9 – Target Model Diagram	26

<u>Illustrations</u>

Property Location Map	 6
Claim Location Map	 8
Siwash Sample Location Map	 20
Bouleau Main Sample Location Map	 21
Cut Block Sample Location Map	 22

Appendices

Appendix A – Willard D. Tompson Letter Report October 31 2011	35
Appendix B – Willard D. Tompson Megascopy Results	37
Appendix C – Willard D. Tompson Letter Report February 24 2012	43
Appendix D – Detailed Cost Breakdown	46
Appendix E – Photographs	48
Appendix F – Billiken's HMC Flow Sheet	55
Appendix G – ALS Invoice VA11265555	61
Appendix H – ALS Certificate of Analysis VA11265555	63
Appendix I – ALS Table of Finalized Results VA11265555	68
Appendix J – ALS Fire Assay Procedure	75

Geochemical Report

on the

Pilot Soil / Till Heavy Metal Concentrating Program

on the

Bouleau Gold Project

Vernon M.D.

Bouleau Creek Area, British Columbia

Summary

The thin drift covering the upland plateau areas of the claim block provide an excellent medium for HMC methodology as these sediments likely reflect the last glaciation to affect the area. These thinner till deposits usually reflect a more proximal source area for the sediments.

A total of 20 HMC Soil / Till samples were gathered over various roads and trails on the Bouleau Creek Gold Property belonging to North Bay Resources Inc. between October 10th to 18th inclusive, 2011. The claims are located both south and north of Bouleau Creek and east of Bouleau Lake. They are situated about 25 km west of Vernon BC in the North Okanagan. Access is easily gained by two wheel drive vehicle via a series of logging roads that are in relatively good condition. The terrain consists of benches or plateaus at higher elevations with moderate to very steep slopes occurring along Bouleau Creek. Most parts of the property are easily traversed on foot except for parts of the Bouleau Creek canyon which cuts through the middle of the property. About 15 % of the property has been logged and replanted. The new trees are about 3 to 5 meters tall and can be very thick in places and difficult to navigate on foot. First growth timber is mainly mature Pine, Spruce, and Fir. The purpose of this Soil / Till HMC program is to try and locate an economic gold / silver deposit on the property and to delineate target areas worthy of further exploration.

The property is mainly underlain by Eocene volcanics on the west half of the property south of Bouleau Creek. The eastern half of the property south of Bouleau Creek is Jurassic granodiorite. The granodiorite

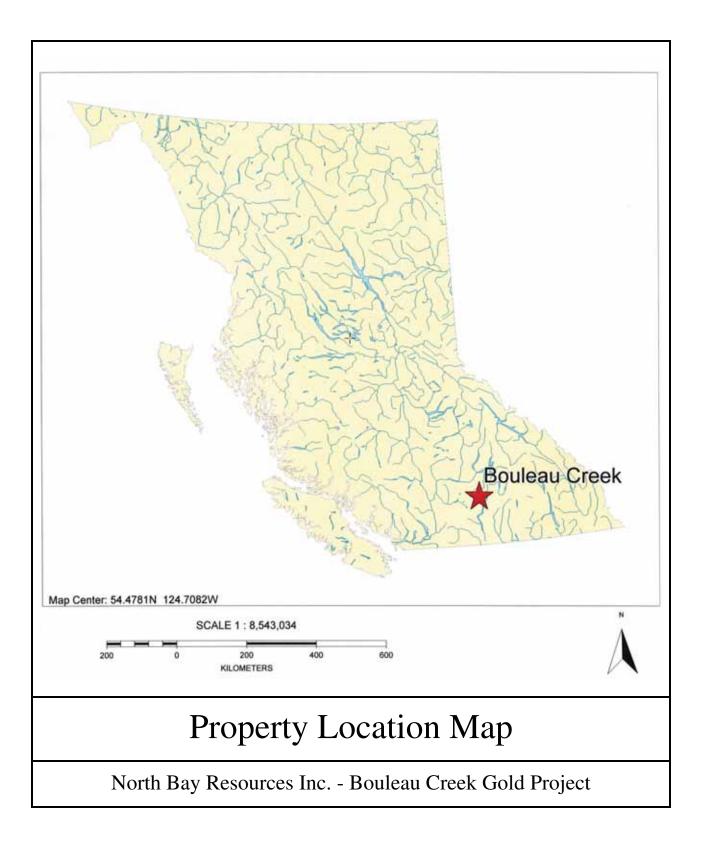
in this area is host to auriferous gold veins and spotty but widespread gold geochemical anomalies. North and east of Bouleau Creek the property is underlain by felsic tuffs and breccias, andesitic flows and pyroclastics. Of special interest is a body of trachytic tuff that lies northeasterly across the northern part of the claim block. Multiple stages of silicification are evident in this area and elevated to anomalous gold and silver values are known to occur. The area has seen a lot of exploration in the last 25 years. The area is prospective for epithermal gold.

Introduction

This report summarizes the Pilot Soil / Till Heavy Metal Concentrating (HMC) Program conducted during the months of October and November of 2011 by Billiken Gold Ltd on behalf of North Bay Resources Inc. on their Bouleau Gold Project situated near the headwaters of Bouleau Creek in the Vernon Mining Division of British Columbia.

The object of this HMC project is to try and locate an economic gold / silver deposit on North Bay Resources Inc.'s Bouleau Creek Property. The project is designed to delineate roughly areas of interest worthy of the high cost of geochemistry, geophysics and or trenching and drilling.

The program was largely successful in delineating two areas of interest to be followed up with further HMC sampling. These two preliminary targets are in areas of known gold values that have not been clearly understood. A follow up program will hopefully develop a dispersal plume that can lead to a blind or semi – hidden gold deposit.


Physiography

The Bouleau Gold Property lies at the southeast end of the major physiographic region known as the Thompson Plateau. The claim group is plateauish at higher elevations with moderate to very steep slopes occurring along Bouleau Creek.

Elevation on the property varies between 1100m where Bouleau Creek cuts through the eastern edge of the claim block to about 1750m at the south end of the property. Most areas can be easily traversed on foot but the canyon of Bouleau Creek can only be worked during ideal weather as there are some dangerous cliffs that severely restrict access.

The principal water sources would be Bouleau Lake and Bouleau Creek both of which are year round sources with ample water for mining purposes. Most of the claim block is well drained and is transected by several small creeks which would provide enough water for diamond drilling. The area in general is quite sensitive environmentally as Bouleau Creek drains into Whiteman Creek which in turn drains into Okanagan Lake after cutting through a small section of I.R. # 1 (Okanagan Indian Band).

About 15% of the claim block has been logged approximately 10 to 12 years ago and has been replanted with trees that are now 3 to 5 meters tall. This new growth is thick and sometimes difficult to navigate in places. First growth timber generally consists of mature Pine, Spruce and Fir and varies from close growing immature stands to more widely spaced mature trees, some are more than 1 meter at the butt.

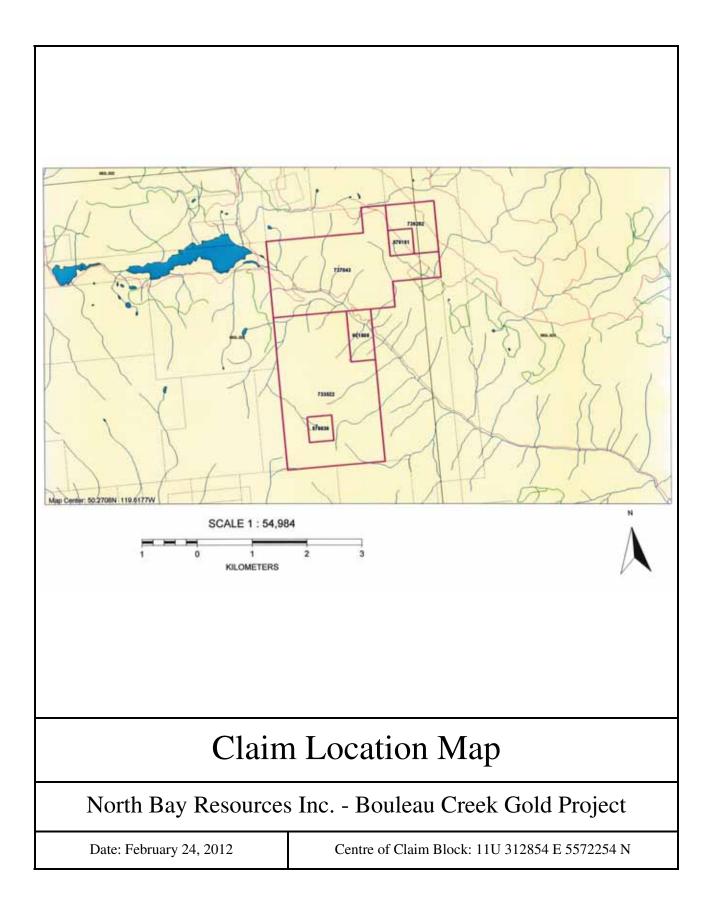
Figure 1 - Table of Claim Information

Tenure Number	<u>Type</u>	Claim Name	<u>Good Until</u>	<u>Area</u> (ha)
<u>578838</u>	Mineral	BOULEAU	20130801	20.6586
<u>579151</u>	Mineral	SIWASH	20130801	20.6461
<u>601505</u>	Mineral	BOULEAU 2	20130801	41.3046
733522	Mineral	BOULEAU CK	20130801	433.7778
737043	Mineral	BOULEAU N	20130801	371.657
739282	Mineral	SIWASH 2	20130801	61.9346

Total Area: 949.9787 ha

Claim Information

The property consists of six contiguous modified grid claims covering an area of 949.98 ha. The claims are situated within the Vernon Mining Division on NTS Map sheets 082L.022 and 082L.023.


The center of the property is located at approximately 50 ° 16' 22"N, 119 ° 37' 35"W 11U 312854 E, 5572254 N.

The claims are registered to North Bay Resources Inc. of Skippack, Pennsylvania USA and were either located or purchased by North Bay beginning as early as March 26 2008. The property has been maintained by paying cash in lieu of work. This pilot geochemical program is an effort to move the property data base ahead instead of paying cash in lieu of. The above mentioned expiry dates are dependent on this Pilot Soil / Till Heavy Metal Concentrating Program being accepted for assessment work credit.

Location and Access

The property is located in the North Okanagan Valley of British Columbia, Canada approximately 25 km west of the city of Vernon. Access to the property is gained by travelling around the North end of Okanagan Lake on Highway 97 and then down the west side of the lake on Westside Road approximately 19 km where Whiteman Main logging road branches off to the right. After traveling up Whiteman Main about 8 km the Bouleau Main forest access road forks off to the right. At about the 20 km point on the Bouleau Main forest access road you come onto the eastern edge of the property. From this point it is another 2 km to Bouleau Lake. Taking a left at Bouleau Lake you go another 300 meters along the south side of the lake where a haul road branches off to the left. These roads are in good condition and provide good access to the central and southern part of the property.

To gain access to the northeastern part of the property continue on to the right at Bouleau Lake for about another 2 km up this road to where a network of good logging roads cuts off to the right and takes you up to the north and eastern sections of the claim block.

History of Previous Relevant Work in the Area

Prior to 1898:

Limited exploration took place on the Klondike gold showings located on Whiteman Creek approximately 4 km west of where it drains into Okanagan Lake. There were also some failed attempts to recover placer gold on Whiteman Creek between 1915 and 1954. Three ounces were reported to have been produced in the late 1930's.

<u>1939</u>:

<u>Alf Brewer</u> discovered gold on what is now the Brett - 1 mineral claim located to the southwest of the North Bay property about 1 km. The Brett Property has since been the subject of some very extensive exploration work in the past 30 years, including soil geochemistry, diamond drilling, R. C. drilling, trenching, underground development and a substantial open cut culminating in a bulk shipment of 291 tonnes to the Cominco smelter at Trail BC in1996.

Recovery from this bulk sample apparently yielded 27.74 grams Au / ton and 63.7 grams Ag / ton. Recently, the expanded property now owned by Running Fox Resource Corp. has seen minor diamond drilling in the past couple of years. In 2004 a geochemical survey was conducted under the supervision of S. M. Dykes M.Sc., P.Eng., on behalf of Running Fox Resource Corp. This gold geochemical survey covering part of the Brett 5 mineral claim appears to infer the extension of a northeast striking anomalous gold trend onto North Bay's tenure # 733522.

<u> 1987</u>:

<u>Discovery Consultants</u> carried out Heavy Mineral sampling on several tributaries draining into Bouleau Creek from North Bay's Property. Anomalies of up to 57 ppm gold were returned from panned concentrates of stream samples. Claims were staked to cover some of the highland areas and anomalous tributaries draining the eastern portion of what is now North Bay's property.

<u>1988 - 1990</u>:

Several geochemical surveys were conducted over portions of the North Bay property by various companies which produced some rather widespread gold anomalies, but no zones of economic tonnage or grade were ever delineated.

January 01, 1989 Boul Claims:

<u>K. L. Daughtry and W. R. Gilmour</u> point out that "much of the property is covered by glacial overburden and that follow up of the soil anomalies will require careful attention to the difficulties inherent in exploration on till covered ground".

September 1989:

<u>Antelope Resources Inc.</u>, Bob Yorke - Hardy P.Eng., finds structures favorable to epithermal gold mineralization similar to those at the Brett occurrence. Mr. Yorke - Hardy also located jasperoid alteration and highly anomalous gold and arsenic values in creeks draining the eastern slopes of tenure # 733522.

September 18, 1989:

<u>Stetson Resource Management Corp.</u>, J. F. Wetherill B.A., B.Sc., Geologist concludes in his report that the 1988 - 1989 exploration program has outlined a large tuffaceous zone containing anomalous gold and silver values and that further work is warranted. Sample #355418 for example ran 5550 ppb / Au. Sample #355425 also ran 960 ppb / Au.

<u> 1991</u>:

<u>Inco Exploration and Technical Services Ltd.</u> conducted a mapping and prospecting program over various locations on or near parts of the property which focused on areas with gold and or silver anomalies defined from 1988 to 1990.

<u>November 1991 Mark Slauenwhite Geologist (Inco)</u> states: "quartz, occurring as veins is the only lithology on the property that carries significant amounts of gold and silver. Wall rock adjacent to the veins is barren of gold and silver mineralization. Veins that sometimes form small stockworks contain less than 5 g/t gold. Veins that occasionally host more than 5 g/t gold invariably occur as lone entities". Mr. Slauenwhite goes on to say that "despite the high number of anomalous veins (>100ppb gold) it is concluded that the veins are sub economic and are not worthy of follow up". Mr. Slauenwhite also points out that the source of the gold in the soil (at least on the northwest half of the property) is explained by the anomalous quartz veins which invariably occur nearby. The soil anomalies on the southeast half of the roperty was derived from the northwest.

<u>2005</u>:

<u>S. M. Dykes M.Sc., P.Geo.</u>, states on page 6 of <u>ARIS Report # 28,177 dated October 05 2005</u> that in 1983 Charles Brett encountered significant concentrations of angular gold while panning the subsidiary tributaries of Whiteman Creek and subsequently staked the present (2005) claim group, transferring the claim group to Huntington Resources Inc. the same year.

Regional Geology

A detailed description of the Regional Geology is beyond the scope of the author so a more general description is given here. A lot of excellent work has been performed by very competent geologists, B. N. Church 1981 - 82 for example from which the following abbreviated version has in part been derived.

Okanagan Valley and Okanagan Lake are physical expressions of a major fault system which forms the boundary between the Omineca Tectonic Belt on the east and the Intermontane Belt on the west. The NE Bouleau Creek Gold Property is located near the southeast margin of the Intermontane Belt. This belt of rocks includes Paleozoic and Mesozoic layered rocks which have been intruded by granitic plutons and have been overlain by erosional remnants of Tertiary volcanics and lesser sedimentary rocks of Eocene age. A Syenitic stock on Whiteman Creek is believed to be a feeder for some of the Tertiary volcanics found in the area.

Epithermal gold and silver deposits and several occurrences in Tertiary volcanics have been the main focus of much recent exploration. Several significant deposits have been located in this geological setting in the North Okanagan. Near OK Falls: Dusty Mac Au / Ag, NW of OK Falls: The Vault – Au / Ag. One of the more important and significant recent discoveries, the Brett has been the stimulus for a considerable amount of exploration in the Whiteman Creek / Bouleau Lake area for the past 25 years. Exploration is still ongoing in the area by several companies including North Bay Resources Inc.

Property Geology

The property lying to the southwest of Bouleau Creek is primarily covered by Eocene volcanics on the western half with Jurassic granodiorite in the east and southeastern portion of the claim block. Quartz veins are hosted by granodiorites of the Okanagan batholith with little or no wall rock alteration. Mineralization is possibly structure controlled primarily by joints or shears with orientations of 30 degrees and 120 degrees. A geological map of the area south of Bouleau Creek can be found in the back pocket of <u>ARIS Report # 18,541.</u>

The portion of the property lying to the north and east of Bouleau Creek is underlain by felsic tuffs and breccias, andesitic flows and pyroclastics. A body of trachytic tuff lies north easterly across the northern part of the claim block. Multiple stages of silicification are evident within this sequence and elevated to anomalous gold and silver values occur, the highest being 5550 ppb Au and 16.6 ppm Ag. A geological map of the Siwash area can be found in <u>ARIS Report # 23,473 Figure 3</u>.

The property is considered to be prospective for epithermal gold (Church).

Glaciation

The Whiteman Creek Bouleau Creek area has seen at least four and possibly more periods of glaciation in the last two million years (Dr. Murray A. Roed May 2001). In a discussion with Dr. Roed he has stated that the most recent and important ice movement in the area of Whiteman and Bouleau Creek was definitely north to south.

In <u>ARIS Report # 21,877 written for Inco, dated November 1991</u> Mark Slauenwhite, geologist, indicates that the transport of till in the area was from northwest to southeast. In my discussion with Dr. Roed it was indicated that the movement from northwest to southeast took place about a million years ago therefore it would not have as much relevance as the more recent north to south direction.

Sampling Method

After becoming familiar with the property, roads and trails in areas to be tested are chosen that will give the best and most promising samples. Soil type and availability on different sections of roads and trails can be very important. Some properties are more suited than others for this type of sample program.

The ideal soil condition of course would be undisturbed residual soil; however, it should be kept in mind that soil cover forms the medium or carrier which could contain the particles of gold radiating from a lode deposit. The soil conditions therefore can be less than ideal for the sample program to be successful.

Quads are generally used to gain access and transport the samples. A crew of four men on two quads usually forms the sampling crew. A 20' construction trailer was used to transport the quads and the sampling gear. The trailer with both Quads and all the gear in it could not be left out over night because of thievery and the constant possibility of a heavy snowfall. They were hauled in and out on a daily basis. The program was under threat of heavy snowfall most of the time. On some mornings frozen ground threatened to be a sampling problem on north slopes. Some short flurries and high winds were also experienced. I wouldn't recommend trying to perform soil geochemical work in this area any later in the season.

Step 1 Taking the Sample

To produce a sample, soil is gathered along roads or skid trails by taking a shovel full of the most promising looking soil every 5 to 10 meters or so and placing it into a 30x30x50 cm plastic tote bin. The shovelsfull are generally taken as close to bedrock as possible and usually from the high side of the road. Some till covered areas have a small amount of residual soil development immediately above bedrock and this is what we try to sample when possible.

When the tote bin is full, (usually after a traverse of 200m or so depending on soil conditions) the end of the sample interval is marked on the ground and recorded on a tablet with GPS capabilities. To identify the sample bins a piece of flagging is marked with the sample number and dropped into the bottom of the bin before any sample is put in. When the bin is full another piece of numbered flagging is buried in the top of the sample as a further precaution. The sample number is also written on the bin with a permanent type felt pen.

Sometimes a full box of sample is taken all from one location (at a gossan zone or shear zone for example). This sample type we refer to as a **Spot Sample**. A sample taken along a section of road or trail is simply called a **Traverse Sample**.

Step 2 Screening the Bulk Sample

A tote bin of **Bulk Sample** begins processing with a brief description of the soil forming the sample. The remainder of the **Bulk Sample** is then vibrated through a 12.5 mm (1/2 inch) screen to remove any of the larger rocks. This **Plus 12.5 mm** fraction of rocks is discarded after a quick examination for anything of interest (i.e.: mineralization, vein material, alteration etc.). Any rocks of interest are put in a sample bag, labeled with the sample number and set aside for closer examination later. A representative **Soil Sample** is then taken and placed into a wet strength Kraft paper bag, and labeled(i.e.: NB - 35 Soil). This representative **Soil Sample** fraction is cataloged and put into storage for further examination or analysis if desired.

The **Minus 12.5 mm** fraction is then weighed and the weight recorded. At this stage the screened sample (**Minus 12.5 mm fraction**) usually weighs about 35 to 40 kg on average. After each sample is screened the screen is removed and pressure washed completely clean to avoid cross contamination between samples.

Step 3 Concentrating

The samples are then transported to the nearest small creek and put very slowly through a small sluice box. The sluice box is 21cm wide x 10cm deep and 125cm long (8" wide x 4" deep x 48" long) and is of wood construction lined with aluminum so that it can be completely cleaned out to eliminate cross contamination. The sluice box has been fitted with special rubber matting full of small pockets which are very effective at catching small gold particles. At the head or feed section of the sluice box there is a hopper fitted with a 6.3 mm (1/4 inch) stainless steel screen.

The ideal slope of the sluice box is about 10 to 12 degrees and the volume of water should be about 25 Liters per Minute (LPM). Here again consistency must be maintained between all samples to avoid varied results. The sample is slowly fed through the hopper using the water flow and a small garden shovel to create the slurry. Sluicing the sample has to be done very slowly. It usually takes a good hour to concentrate each sample. After each sample has been sluiced the plastic bin that held the sample is carefully rinsed into the sluice box in case any particles have worked their way to the bottom of the bin during transport.

The slow and careful completion of this and all steps in the concentrating process is crucial to ensure that very small particles of micron gold are not washed away. If for example there are only three small particles of "low transport gold" in an entire sample program one always has to be certain not to lose them by accident or sloppiness once they have been gathered in the field.

As the sample is being worked slowly through the screened hopper on the sluice box a careful watch is kept for vein material, mineralization, alteration etc.in the plus fraction. The **Plus 6.3 mm** fraction from the hopper is placed in a new plastic food container with a soft aluminum tag denoting the sample number and is further marked **Sluice Reject**. The lid is then placed on and duct taped in place to avoid accidental spillage. The lid of the container is then further marked with the sample number and "**Sluice Reject**". A small **Sluice Reject** sub sample is set aside for megascopy at a later date.

After all of the **Minus 12.5 mm** fraction has been put through the sluice box, the sluice concentrate is then rinsed thoroughly and completely out of the box and into a clean container. Pressurized water is used to clean out the sluice box and rubber matting as it must be absolutely clean. At this point, the sluice concentrate is washed through an 850 micron sieve (No. 20 ASTM). The **Plus 850 Micron** fraction is examined, labeled and set aside as **Pan Reject**.

All weights from here on are determined with a Fischer Scientific torsion balance.

The remaining **Minus 850 Micron** fraction is then panned down to 100 to 200 grams. The size depends on how much heavy fraction is layered in the pan. A course fraction (850 Micron) was chosen as we are looking for short transport gold such as that derived from disintegrated vein material.

This initial panning usually takes 1 to 1.5 hours to complete. The panning is done using clean water between each sample in a spotlessly clean plastic tote bin. A couple of drops of detergent are added to the water as a surfactant. The pan reject is thoroughly rinsed from the bin and added to the **Pan Reject** and the **Pan Con** is placed into a clean plastic container labeled with the sample number and "**Pan Con**". A careful watch is kept for particles of gold while this initial panning is taking place but closer inspection comes later.

Step 4 Pan Con Fractioning

This initial **Pan Con** sample is then examined wet under a microscope before being dried and the weight recorded. After being dried and weighed the next step is to remove the magnetic fraction carefully using a sheathed magnet. The **Pan Con Magnetic** fraction is then weighed, labeled and set aside. The remainder of the **Pan Con** is then passed through a 300 micron (Tyler 50 mesh) sieve. The plus fraction is labeled weighed and set aside for microscopy as the **Plus 300 Micron** fraction.

The remaining **Minus 300 Micron** fraction is then re - panned by an experienced and patient panner down to about 20 to 35 grams (It can take up to and sometimes more than an hour to do this careful panning). The panning is done in a thoroughly clean plastic tote bin using fresh clean water. During the re - panning the **Re Pan Reject** is thoroughly rinsed from the bin and then both **Re Pan Reject** and the **Re Pan Con** are thoroughly dried, and set aside. At this time 0.5 grams is removed from the **Re Pan Con** labeled and placed in inventory for further reference or examination if needed.

The **Re Pan Con** fraction is visually inspected for gold particles during the panning and again when panning is completed. Any particles spotted are examined under a Bausch & Lomb microscope and photographed.

Step 5 Analysis

Having reached this point you have nine fractions at the forefront namely:

- Soil Sample (representative 200 to 300 grams)
- Sluice Reject
- Sluice Reject Sub Sample that was sent for megascopic analysis and returned to inventory
- Pan Reject
- Pan Con Magnetic Fraction
- Plus 300 Micron Fraction (Pan Con Non magnetic Fraction)
- Re Pan Reject Fraction
- Re Pan Con Fraction
- O.5 grams of Re Pan Con in inventory

The fractions are photographed and decisions are made as to what analytical methods to proceed with.

Field Observations

One of the great things about this process is that a pretty good evaluation of the sample takes place on the spot, in the field after the first panning. This HMC method gives some results (i.e. visible gold or no visible gold in the field). With the aid of a microscope the colors that you find can be examined closely to determine whether they are low transport gold (pristine particles) or rounded off and hammered placer products. Survey grids and sample sites can be immediately adjusted in the field according to these results as they become available.

If for example, 15 sample intervals have no visible gold in them but the 16th one obviously has low transport gold then efforts can be concentrated uphill or up ice depending on soil type (i.e. residual or glacial till). Typically, more sampling followed by trenching takes place. If a Geochemical survey is chosen, then the grid and sample locations can at least be more wisely placed.

Sample Number	Description of Plus 12.5 mm
NB - 35	rusty looking, good soil 1 inch round rocks
NB - 36	sandy brown some rusty soil quite a few rocks
NB - 37	light gray sandy soil
NB - 38	sandy brown loam with 1 inch stones some roots
NB - 39	brown gravelly
NB - 40	gray sandy gravelly loam (good soil) 1 inch stones
NB - 41	light brown loam few 1 inch stones
NB - 42	quite rusty red soil few rocks
NB - 43	sandy gravelly till
NB - 44	gravelly 1 to 1+1/2 inch stones
NB - 45	grayish brown (good soil)
NB - 46	gravel
NB - 47	clay gravel humus
NB - 48	dark humus few stones
NB - 53	good dark brown
NB - 54	nice brown dirt very few stones
NB - 55	stone chips brown soil
NB - 56	gravelly sandy brown - good soil with granite and alt rocks in bin
NB - 57	gravelly sandy brown
NB - 58	gravelly sandy brown

Figure 2 - Table of Soil Description

Sample Number	Microscopy of Pan Con fraction	Microscopy of Plus 300 Micron fraction	Microscopy of Re Pan Con fraction
NB - 35	No visible gold	No visible gold	No visible gold
NB - 36	No visible gold	No visible gold	No visible gold
NB - 37	No visible gold	No visible gold	No visible gold
NB - 38	No visible gold	No visible gold	1 small grain visible gold - could not be recovered
NB - 39	No visible gold	No visible gold	No visible gold
NB - 40	No visible gold	No visible gold	No visible gold
NB - 41	No visible gold	No visible gold	No visible gold
NB - 42	No visible gold	Fine particles of gold??	No visible gold
NB - 43	No visible gold	No visible gold	No visible gold
NB - 44	No visible gold	No visible gold	No visible gold
NB - 45	No visible gold	No visible gold	No visible gold
NB - 46	No visible gold	No visible gold	No visible gold
NB - 47	No visible gold	No visible gold	No visible gold
NB - 48	No visible gold	No visible gold	No visible gold
NB - 53	No visible gold	No visible gold	No visible gold
NB - 54	No visible gold	No visible gold	No visible gold
NB - 55	No visible gold	No visible gold	No visible gold
NB - 56	No visible gold	No visible gold	No visible gold
NB - 57	No visible gold	No visible gold	No visible gold
NB - 58	No visible gold	No visible gold	Possibly 2 fine specks

Figure 3 - Table of Microscopic Results

Sample Number	Minus 12.5 mm fraction weight (kilograms)	Pan Con weight (grams)	Pan Con Magnetic fraction weight (grams)	Plus 300 Micron fraction weight (grams)	Re Pan Reject fraction weight (grams)	Re Pan Con fraction weight (grams)
NB - 35	36	100	9	19	40	31
NB - 36	37	126	6	61	39	19
NB - 37	36	164	5	68	61	29
NB - 38	37	161	5	68	59	26
NB - 39	35	81	12	10	31	27
NB - 40	37	77	13	20	18	27
NB - 41	32	74	12	15	19	28
NB - 42	40	102	20	35	15	32
NB - 43	36	140	36	37	29	37
NB - 44	39	78	30	9	11	30
NB - 45	39	164	39	51	47	25
NB - 46	38	117	35	12	33	26
NB - 47	32	119	35	22	37	26
NB - 48	31	129	44	29	37	19
NB - 53	22	115	22	13	57	21
NB - 54	41	131	35	26	51	20
NB - 55	40	115	21	32	35	27
NB - 56	12	98	10	31	34	24
NB - 57	15	99	9	33	33	23
NB - 58	14	87	12	22	32	22

Figure 4 – Table of Weights

Analytical Procedures

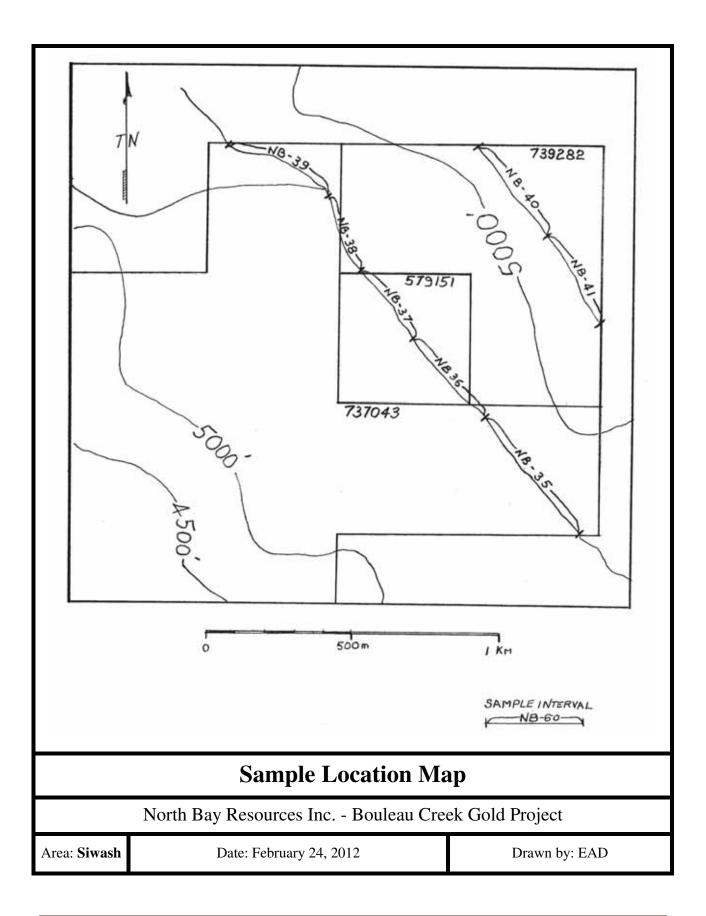
Samples were first pulverized to 85% passing 75 microns or better. Au values were determined by fire assay with A.A. finish. Samples were then analyzed for 35 elements by Aqua Regia Digestion – ICP – AES. Performed by ALS Canada Ltd. in Vancouver, British Columbia. Appendices G through I contain the following; invoice, Certificate of Analysis, and finalized results table.

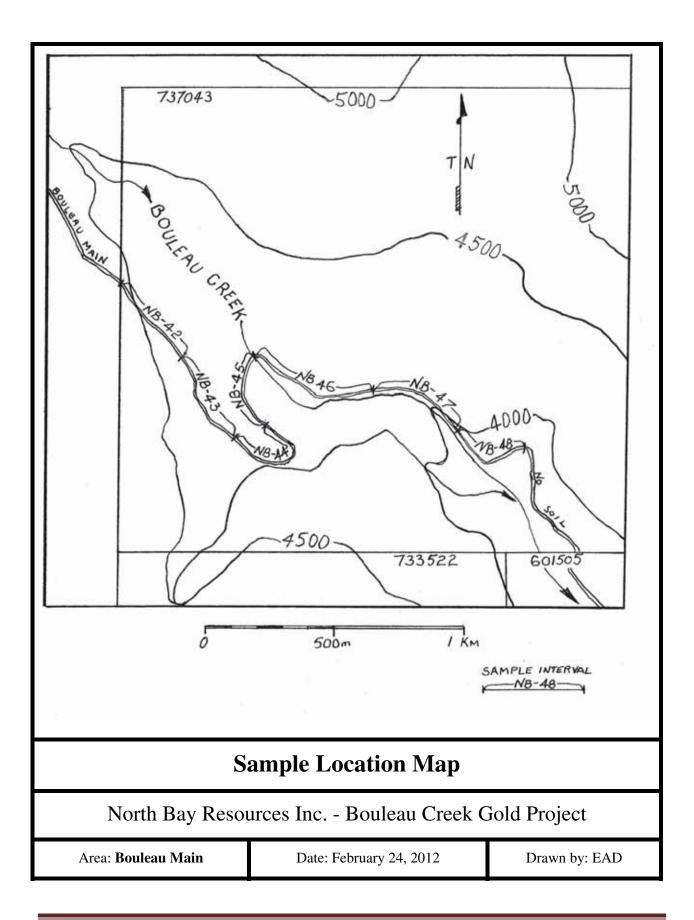
Discussion of Megascopy

Mr. Willard D. Tompson P.Geo., completed megascopic examination of the selected Sluice Reject samples as they contain important information about both the composition of the bulk HMC samples and their origins. However, it is beyond the scope of this report to interpret the meaning of these observations. Prior to any further exploration programs this megascopic information should be fully understood and considered. Mr. Tompson P.Geo., did a very careful and thorough examination of these samples and has presented some detailed and very useful descriptions.

The following three tables (Figure 5, Figure 6, and Figure 7) are extracts from the <u>Report of Megascopic</u> <u>Examination Sluice Reject Samples, Whiteman Creek – Bouleau Area, Vernon Mining Division, British</u> <u>Columbia</u> by Mr. Willard D. Tompson P.Geo.,. The entire original document is in Appendix B.

Sample Number	Megascopic - Description of Rock
NB – 35	Most grains are rounded, but a few are angular to sub - angular. Rocks are mostly dacite with a few andesite grains. There are a few quartz grains and one grain of calcite $\pm 3/8$ ". Most grains are about 1/8" to 3/8".
NB - 36	Several grains of andesitic tuff. Most grains are angular. Very few are rounded. Some small grains of vein quartz. A single bright green chalcedony grain. Minor limonite grains. One 1/2" grain vein quartz with red jasperoid lining a small vug. Most of the provide the
NB - 36A	Most of the rocks are intermediate volcanic flow rocks and a few tuffs. The single rock specimen is slightly vuggy rhyolite porphyry. The rock is fresh and unaltered.
NB – 37	Nearly all the grains are rounded to sub - rounded. Few are angular. Grain size varies from about 1/8" to 3/8". There are a few small rhyolite grains. One grain altered basalt (?). Most grains look like andesite.
NB - 38	About 1/4 of the sample grains are rounded and are pebbles. Minor gray - whitish clay adhering to some grains. One grain of black coal. About half the grains are andesite and half are rhyolite.
NB – 39	Grains are sub - angular and a few are sub - rounded. Rocks are mostly andesite to dacitic; a few grains appear to be sericitized (?). Several grains of clay with tiny black rock fragments; may be glacial clay. Clay adheres to some rock grains.
NB - 40	Felsic to intermediate volcanic rocks; 95% rounded to sub - rounded. No sulfides, no limonite. Look like stream deposit.
NB – 41	Angular grains. Quartz - sericite rock; white sericite grains. Tan chalcedony grain. Most grains are sub - angular, felsic to intermediate volcanic rock.


Figure 5 – Siwash Megascopy


Figure 6	– Roules	u Main N	/legascopy
riguie o	- Doule	iu Iviaiii N	regascopy

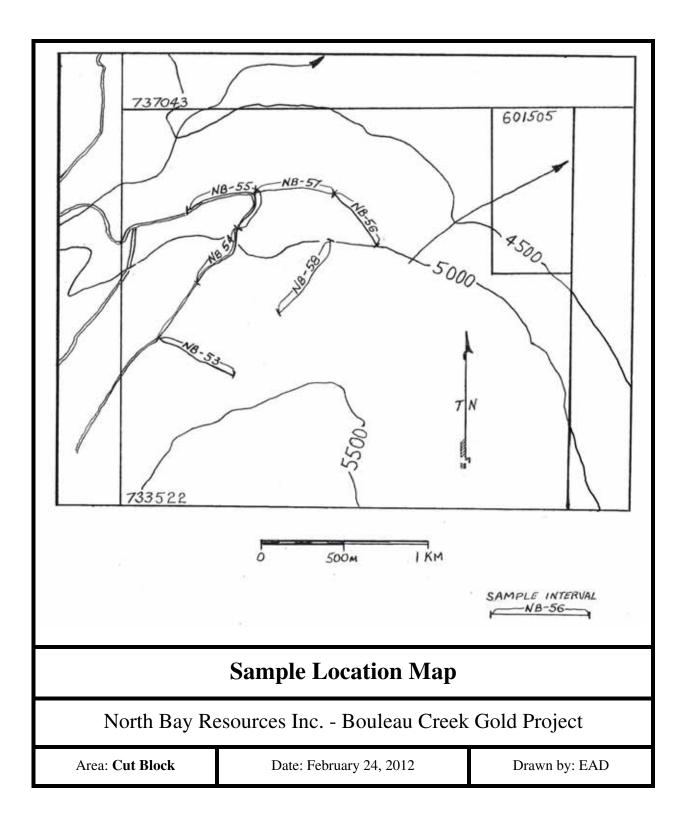

Sample Number	Megascopic - Description of Rock
	Trace of magnetite. Nearly all grains are sharp and angular with few rounded grains. All are volcanic
NB – 42	rock. Mostly blackish crystalline porphyritic rock which appears to be porphyritic andesite. A few
	rhyolite grains.
	All rock fragments are sharp and angular. Mostly $\pm 1/8$ ". Rocks are andesite porphyry. Abundant
NB – 43	plagioclase phenocrysts. Single calcite cleavage grain. Single muscovite cleavage plate, A few grains
	are white, sericitized andesite. A few grains of reddish - brown jasperoid. One grain pyrolusite.
	Most grains are large, $\pm 1/4$ " - $1/2$ " and most are sub - rounded to round and a few are sub angular.
NB – 44	Most appear to be dacitic with a few andesitic. Several grains dacite porphyry with about half content
ND - 44	phenocrysts. One small grain quartz with limonite. Significant dacite porphyry with res jasperoid
	replacing (?) plagioclase. Petrographic problem.
NB – 45	About half the grains are rounded. Balance contains abundant red hematite and jasperoid grains, up to
ND - 45	15% total. Balance, e.g.35% are andesite porphyry
	Nearly all grains of rock are sharp and angular, excepting rare rounded grains. Rock types vary from,
NB – 46	andesite to dacite to rhyolite. One grain looks like gabbro (?). A few of the grains display clay
	alteration.
	Nearly all of the grains are sharp and angular and only a few are rounded. The rocks are mostly dacite
NB – 47	porphyry with abundant, prominent plagioclase phenocrysts. There are a few grains of rhyolite and
	rare andesite grains.
NB – 48	Virtually all rocks fragments are sharp and angular and are about 90% intermediate volcanic rocks, 9%
10D - 40	felsic volcanic rocks and 1% mafic volcanic rocks.

Figure 7 – Cut Block Megascopy

Sample Number	Megascopic - Description of Rock				
NB – 53	Rock grains are nearly all angular with a few sub - rounded. The rocks are felsic volcanic lavas and some are porphyritic. There are a few grains of tuff. None of the rocks appear to be chemically altered.				
NB – 54	Rock grains mostly angular. Rocks are intermediate volcanic rocks, andesitic mostly. Two angular pieces of brown jasperoid. Rocks vary in size from about 1/8" to 1/2". There are a few tiny quartz fragments.				
NB – 55	All rock grains are angular and most are 1/4" to 1/2". The rocks are felsic lavas and a few are andesitic to dacitic dike rocks, e.g. they are coarse grained. There are a few grains of andesite.				
NB – 56	About 1/4 of the grains are round to sub - round. Of the balance, the rocks are felsic volcanic rocks and coarse grained granite – about 10% are granite. There are a few grains of felsic tuff.				
NB – 56A	The rocks are slightly weathered granite. Alteration is weathering only. A fragment of vein quartz is included with the rock specimens and it is stained with limonite and has small vugs with subhedral quartz crystals.				
NB – 57	About 1/3 of the grains are sub - round. Most have minor clay adhering. Mostly felsic rocks and a few grains of andesite. One grain of pyrolusite(?). A few grains are felsic tuff. There is one quartz grain.				
NB - 58	About 1/4 of the grains are round to sub - round. Most are felsic volcanic lavas and a bit of tuff. A single grain of muscovite rock as from a mica schist. Several grains of quartz and a few small grains that look a b like granite, but could be of gneissic origin.				

Sample Number	Au ppm	Type of Sample	UTM Start	UTM Finish
NB – 35	0.475	Traverse	E315031 N5572892	E314769 N5573276
NB – 36	<mark>*0.558</mark>	Traverse	E314769 N5573276	E314509 N5573595
NB – 37	0.177	Traverse	E314509 N5573595	E314314 N5573867
NB – 38	0.377	Traverse	E314314 N5573867	E314145 N5574213
NB – 39	0.301	Traverse	E313929 N5574305	E314145 N5574213
NB – 40	<mark>*1.82</mark>	Traverse	E314760 N5574260	E314951 N5573977
NB-41	0.223	Traverse	E314951 N5573977	E315111 N5573674
NB – 42	<0.005	Traverse	E312040 N5573320	E312221 N5573125
NB – 43	0.048	Traverse	E312221 N5573125	E312389 N5572842
NB – 44	0.131	Traverse	E312389 N5572842	E312499 N5572856
NB – 45	0.032	Traverse	E312499 N5572856	E312420 N5573115
NB – 46	0.007	Traverse	E312449 N5573082	E312799 N5572890
NB – 47	0.145	Traverse	E312799 N5572890	E313041 N5572834
NB – 48	0.123	Traverse	E313041 N5572834	E313300 N5572774
NB – 53	<mark>*0.864</mark>	Traverse	E312264 N5571117	E312060 N5571250
NB – 54	0.256	Traverse	E312212 N5571520	E312394 N5571883
NB – 55	0.407	Traverse	E312394 N5571883	E312258 N5572000
NB – 56	0.529	Traverse	E312904 N5571806	E312825 N5572016
NB – 57	<mark>*0.826</mark>	Traverse	E312825 N5572016	E312427 N5572035
NB – 58	<mark>*2.09</mark>	Traverse	E312505 N5571363	E312709 N5571763

Figure 8 - Table of Assay Results

* Indicates the highest values

Assay Results

Siwash Zone NE of Bouleau Creek

Both NB -40 (1.280 ppm) and NB -36 (0.558ppm) occur down slope from a previously determined target area referred to as the Siwash.

Bouleau Main Zone

NB - 42 to 48 inclusive did not yield any interesting results. However, this does not indicate low potential in light of the fact that R. W. Yorke - Hardy P.Geo., attained anomolous (1070 ppb) gold values in a HMC sample taken from a creek draining into Bouleau Creek from the east side of the property (ARIS Report # 19,089 September 14 1989).

Cut Block Zone SW of Bouleau Creek

The highest values in the Cut Block zone; 2.09 ppm (NB – 58) and 0.864 (NB – 53) as well as 0.826 (NB – 57) all occur adjacent to each other in an area where narrow but auriferous quartz veins are known to occur. A geochemical survey completed by Chevron Minerals Ltd. and covered in a report by K. L. Daughtry and W. R. Gilmour dated January 1, 1989 shows a fairly large (398) ppb gold anomaly upslope a rise of 200meters in 600meters from this sample area.

This anomaly appears to be incorrectly plotted as 398 ppb (highest on the property – page 5 of their report) but on close examination of the assay sheets station 46 south 23 east should actually be 95 ppb instead of 398 ppb. This anomalous up slope area could still possibly be the source of these higher values.

ICP Interpretation

<u>Mr. Willard D. Tompson P.Geo., letter report of February 24, 2012</u> after examining the Certificates of ICP Analysis Mr. Tompson states "there were no anomalies in the 30 elements which were tested by ICP analysis".

Discussion of Results

The five highest assay results of samples taken in the survey, occur in areas of know mineralization.

Both the <u>Siwash</u> and <u>Cut Block</u> zones need to be further explored with a systematic sampling program followed by trenching in the most anomalous areas. The <u>Bouleau Main</u> drainages should be HMC sampled on creeks draining the east side of the property.

Exposed areas of outcrop have likely been fairly closely examined in most cases by several very competent geologists in the past. If there is an economic deposit in the above mentioned areas it is likely masked by overburden.

Conventional geochemical surveys in the general area of the Brett and surrounding area has not given definitive results but seem to point at widespread spotty and poorly developed gold anomalies. Considering the geological history of the area and the number of possible sources of these spotty results is in my opinion difficult if not impossible to determine the source of these gold anomalies. Soil / Till HMC creates meaningful target definition in these environments because of its ability to moderate the nugget effect that plagues conventional soil sampling methods.

A previous test run was made on the Brett main shear zone to see in fact if a signature does exist using our HMC method. Our case history test in close proximity to the main shear zone of the Brett deposit yielded definite signatures.

Case Histories

Of relevant interest are two HMC case history signatures of mesothermal / epithermal gold occurrences in the Vernon camp from our previous studies.

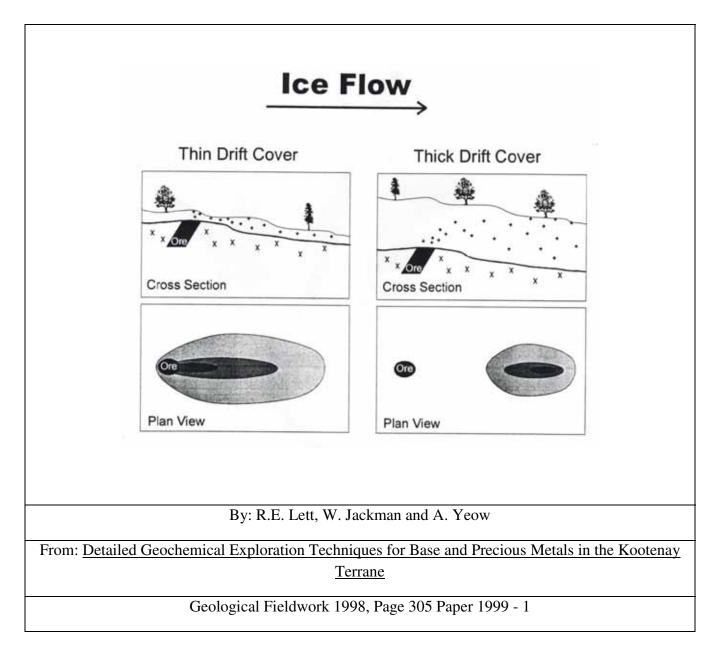
Kalamalka Mine Site

<u>ARIS Report # 21,454 dated April 20 1991</u> the author conducted a test to see if a geochemical signature exists using Soil / Till HMC on the Kalamalka gold deposit east of Vernon BC. Traverse HMC samples were taken immediately down slope from the main occurrence and yielded high gold values.

It is important to note that these traverse samples from the Kalamalka were about 75kg or twice the size of the ones from the Brett.

- Sample # 1 90 ppm
- Sample # 2 1000 ppm (included some soil from right below the dump likely contaminated by mine muck)
- Sample # 7 32 ppm
- Sample # 8 23 ppm

Brett Main Shear Zone


Our case history test was conducted in close proximity to the main shear zone of the Brett deposit and produced definite signatures. The results are listed below. These traverse samples weighed about 35kg. or half the weight of the ones from the Kalamalka.

Sample # 1124 (traverse sample): Some very fine particles of gold were seen in the **Re Pan Con.** This sample was taken immediately above the main shear zone and assayed 11.15 ppm in a 30 gram fire assay with a gravimetric finish.

Sample # 1125 (traverse sample): This sample covered a distance of about 75m and was taken 50m downslope from the main shear zone of the Brett deposit. Visible particles of gold could be seen in the **Re Pan Con**. Total metallic analysis was chosen for this sample which yielded 10.05 ppm in the total metallic plus fraction.

Sample # 1126 (traverse sample): Taken along the east side (not downslope) of open cut and assayed 4.28 ppm in a 30 gram fire assay with a gravimetric finish.

"The average gold content of most soils is low, but the element is enriched in certain types of soils and in a variety of glacial and weathered products in the vicinity of gold – bearing rocks or auriferous deposits" (Boyle, 1979).

Conclusions

The Brett occurrence was initially indicated by highly anomalous HMC samples found in tributaries of Whiteman Creek. The main shear zone on the Brett and the RW vein were both discovered during road construction (<u>ARIS Report # 28,177 page 6</u>) and not while trenching a high definition gold anomaly per se. The often intense exploration of the Whiteman / Bouleau Creek areas in the last 25 years has not been particularly productive to date. Many thousands of dollars have been spent on conventional soil geochemical surveys and the follow up thereof without the discovery of an economically viable deposit of any sort or even a close call.

Exposed areas of outcrop have likely been adequately explored, in most cases by some very competent geologists in the past. If there is an economically viable gold deposit in the above mentioned areas it is likely completely masked by overburden.

In <u>ARIS Report # 18,541 dated January 31 1989</u>, K.L. Daughtry and W.R. Gilmour point out that "much of the property is covered by glacial overburden and that follow up of the soil anomalies will require careful attention to the difficulties inherent in exploration on till covered ground". Taking this statement and other factors into consideration there is a strong possibility that most of the widespread, spotty gold anomalies found to date originate from a previously glaciated gold deposit or any number of other models that would explain such a pattern.

This Soil / Till HMC method hopes to bring a new set of useful information to the present data base. The strong case history signatures of the main shear on the Brett and the Kalamalka, increase the possibility of following a Soil / Till HMC lead to a previously undiscovered blind gold deposit and is a reasonable expectation in spite of the widespread spotty gold values. Concentration of our bulk HMC samples tends to reduce the nugget effect and therefore the possibility of being misled by the many problems inherent with gold geochemistry in areas covered by glacial till.

Additional Sample Information

Some **Pan Con** samples only had a small amount of magnetic fraction whereas others had much more. The difference in appearance and proportion of the various fractions, from each sample after processing, holds a lot of information.

The case history samples from the main shear on the Brett produced a distinct buff colored **Plus 300 Micron** fraction. Samples taken near alteration zones on the rest of the property produced a distinctly buff colored **Plus 300 Micron** fraction as well. This correlation leads me to propose that the buff colored **Plus 300 Micron** fractions may be a useful indicator of blind alteration zones.

<u>Mr. Willard D. Tompson P. Eng.</u>, during a personal discussion on his completion of the megascopic examination of our samples he said he was "impressed with how different the pebbles in the **Sluice Reject** sub samples were from each other in some cases". This would indicate a wide range of information exists. Some of it may be very useful, and our process will move further in that direction as time goes on.

All of the higher values in this survey occur in areas of known mineralization. The higher values should be expanded upon with further HMC sampling.

Recommendations

Siwash

See Figure 3 – Siwash Sample Location Map

The areas around NB - 36 and NB - 40 should be prospected and remapped again with any promising looking samples analyzed to try and determine what has caused these higher gold values. Additional HMC samples should be taken in any areas that are accessible to try and get onto a lead or dispersal plume followed by trenching. Alteration zones should be sampled and thin sections should be prepared and studied to try and determine areas where both alteration and mineralizing events have taken place.

Bouleau Main

See Figure 4 – Bouleau Main Sample Location Map

NB – 42 to 48 inclusive did not yield any interesting results. However, this does not indicate low potential in light of the fact that R. W. Yorke - Hardy P.Geo., attained anomolous (1070 ppb) gold values in a HMC sample taken from a creek draining into Bouleau Creek from the east side of the property (<u>ARIS Report # 19,089 September 14 1989</u>). Detailed HMC sampling of these drainages should be done using our methodology when weather conditions permit.

Cut Block

See Figure 5 – Cut Block Sample Location Map

<u>Mr. Willard D. Tompson P.Geo., letter report of October 31 2011</u> (Appendix A) In this letter report he refers to page 16 of Dykes 2005 report (<u>ARIS Report # 28,177</u>) wherein he mentions prominent NNE striking gold anomalies, which occur in areas underlain by older volcanics over a strike length of some 2,500 meters. "This zone is a likely area to be searching for a larger structure which may have concentrated a larger tonnage of gold values". The area referred to in this letter report is the Cut Block.

The cut block area should be the subject of an extensive sampling program followed by trenching in target areas. Gold particles of unknown origin seem to be widespread as indicated in previous geochemical surveys. In order to accomplish this next sampling program some access trails will need to be cleared out sufficiently for quads to get in and out in order to transport the HMC samples to the road.

The purpose of this sampling program is to try and identify a dispersal plume such as that found immediately downslope from the Main Shear on the Brett. Particular attention should be paid to all areas where bedrock is masked by overburden as well as the hillside directly south of the cut block. Assays of **Re Pan Con** obtained in the order of > 4 ppm should be HMC sampled in detail followed by trenching.

Alteration zones should be sampled and thin sections should be prepared and studied to try and determine areas where both alteration and mineralizing events have taken place.

<u>Mr. Willard D. Tompson P.Geo., letter report of February 24, 2012.</u> Mr. Tompson recommends that "structural geological interpretation and studies of host rock alteration in conjunction with aerial photograph information may help to identify fracture systems in the andesites which could have functioned as conduits for mineralizing hydrothermal solutions". These recommendations could be very useful in delineating targets for future HMC sampling.

Follow Up Assaying

For both the <u>Siwash and Cut Block Zones</u> (NB – 36, NB - 40, NB - 53, NB – 57, and NB – 58) the **Plus 6.3 mm** sub sample of the **Sluice Reject** from the megascopy by Mr. Willard D. Tompson P.Geo., should be reexamined and possibly fire assayed.

General Discussion

I first began using Soil / Till HMC about 1981. This process provided a way to explore gold properties when there were little or no funds to pay for assaying. Originally we used to run about 75kgs of soil sample through a sluice box. Over time we concluded that 75kg of sample was just too heavy to handle and we gradually (but reluctantly) reduced the size of our sample down to about 35kgs (the size of our samples today).

Samples sometimes have to be carried a long way out on foot and consequently these samples range from 5 to 10 kgs. They are generally called a "**post - hole**" sample. Post - holing is an Australian method whereby the sampler digs a hole with a shovel about 0.5 to 1 m deep (depending on conditions) and then takes all of the sample from the very bottom of the hole.

After sluicing the sample, the sluice con was then carefully panned and visually inspected. If we thought we could see minute gold particles and could afford to assay the sample we would. With some samples it became obvious that there was absolutely no gold in the sample and with other samples you could say for sure you were seeing gold particles. Originally, we didn't realize the importance of determining whether the particles were low transport or placer.

In short, every time we conduct a HMC program changes are being made. We try to reduce the enormous amount of labour involved, speed things up, and continue to derive meaningful data, while keeping the process cost effective. Certainly, more improvements can and will be made as we continue to conduct HMC programs. I know that there is more information that we can glean from this process as we spend more time and energy on each fraction.

In the area of the Brett deposit we have established that our **Plus 300 Micron** fraction shows up as a very distinct "Buff" colour. This has also proven to be true throughout the sample area whenever we were near alteration zones. From this I believe we are able to surmise that we can detect alteration zones even when they are completely masked by overburden. I know of no other tool in use at present that can do this. In all environments locating alteration zones is very useful, especially if the alteration zone proves to be gold bearing.

There are many people who specialize in the science of gold particles, glaciation, heavy minerals, etc. Their understanding of certain aspects of this methodology far surpasses my ability to do so. I welcome any comments, questions or concerns that the reader may have about our HMC process. Any further discussion can only help us to continue to improve our methodology.

This HMC process may change the previous idea that soil samples are just gathered and sent to the lab. By processing the soil sample, and separating out the fractions before assaying a whole new level of information is being revealed. I believe the whole story may be hidden in these soils once we have learnt how to read it.

My official duty on this and past programs is that of a data gatherer. The samples in this program were gathered and carefully processed to the very best of my ability. My conclusions and recommendations come from the experiences gained from each of the many HMC projects completed to date.

Statement of Qualifications

I Eugene Allan Dodd of Enderby, British Columbia do hereby certify that:

- I am an experienced prospector having commenced prospecting professionally full time in the North West Territories on February 15 1968.
- I am both President and Chief Exploration Manager for Billiken Gold Ltd. A position I have held for the past year.
- I am both President and Chief Exploration Manager for Trans Arctic Explorations Ltd. A
 position I have held for more than 44 years.
- I was Chief Instrument Operator and then President for Columbia Airborne Geophysical Services Ltd, for 7 years. Specializing in detailed low level combined airborne geophysical surveys in rugged terrain.
- I have successfully completed at UBC, a course titled: Geophysics in Mineral Exploration. The course included detailed technical aspects of most types of geophysical surveys including some practical interpretation.
- I have operated and understand the principles of conducting a wide variety of ground and airborne geophysical surveys. I have experience as both an instrument operator and helper on I.P surveys and S.P. surveys.
- I have gained my experience by conducting numerous exploration programs for a wide variety of mining companies, oil and gas companies and consulting geologists and geophysicists.
- I have supervised projects in the North West Territories, British Columbia, Ontario, Quebec, Labrador, Yukon, Washington, Oregon, Alaska, California, Idaho, Nevada, and Montana.
- For 10 years I owned and operated a contract drilling division in Matheson Ontario. We operated two medium depth unitized drill rigs for a variety of mining companies.
- As well as my practical experience I am constantly reading and researching technical aspects of exploration (geological, geophysical and geochemical).
- I am the Author of this report, which is primarily based on my personal observations made while in the field.

Dated at Enderby B.C.

This 24th day of February 2012

Respectfully submitted Eugene A. Dodd, President Billiken Gold Ltd.

BIBLIOGRAPHY

Belik, G.D., M.Sc., <u>Geochemical Report on the Bolo Claims Vernon and Nicola Mining Divisions</u>, <u>British Columbia</u>. For Prebble Resources Inc. ARIS Report # 15,296.

Boyle, R.W., 1979, <u>The Geochemistry of Gold and its Deposits pages 50 to 57.</u> For Energy Mines and Resources Canada. Geological Survey Bulletin 280.

Butrenchuk, S.B., <u>Geochemical Assessment Report on the Heavy Property (Heavy 1 and 2) Whiteman</u> <u>Creek Area Vernon Mining Division, British Columbia.</u> For Chevron Minerals Ltd. ARIS Report # 18,998.

Carter, N.C., P. Eng., <u>Geochemical Report on the Nash Property Vernon Mining Division</u>, British <u>Columbia</u>. For Prosperity Gold Corporation. ARIS Report # 23,473.

Carter, N.C., P. Eng., <u>Geological Report on the Nash Property Vernon Mining Division</u>, British <u>Columbia</u>. For Prosperity Gold Corporation. ARIS Report # 20,226.

Casselman, S.G., <u>1988 – 1989 Exploration Program On the Whiteman Creek Property Nicola and Vernon</u> <u>Mining Division, British Columbia.</u> For Western Canadian Mining Corporation. ARIS Report # 18,884.

Daughtry, and Gilmour, <u>Geochemical Assessment Report on the Boul Property (Boul 1, Boul 4, Boul 5, Boul 1 Fr, Boul 2 Fr, Boul 3 Fr, Boul 4 Fr, Mess Fr, Boul 5 Fr, more Boul Fr) Bouleau Creek Area Vernon Mining Division, British Columbia.</u> For Chevron Minerals Ltd. ARIS Report #18,541.

Daughtry, K.L., <u>Geochemical & Prospecting Assessment Report on the Gold Star Claim Whiteman Creek</u> <u>Vernon Mining Division, British Columbia.</u> For Brican Resources Ltd. ARIS Report # 12,854.

Dykes, S.M., P.Geo., <u>2004 Exploration Program Assessment Report for 514526 Formerly Brett #5 Claim</u> <u>Brett gold Property Vernon Mining Division, British Columbia.</u> For Running fox Resources Corp. ARIS Report # 28,177.

Fairbairn, D., April 1985, <u>Cutting the Nugget Effect: sacred cows are led to slaughter.</u> Canadian Mining Journal.

Geological Survey Bulletin, 1359, <u>Geology and Mineral Resources of the Northern Part of the North</u> <u>Cascades National Park, Washington.</u> "Mineral Resources". http://www.cr.nps.gov/history/online_books/geology/publications/bul/1359/sec2b.htm

Gilmour, W.R., P.Geo., <u>Geophysical Assessment Report on the Wedge Property (Wedge, Wedge 1-8</u> <u>Claims) Vernon Mining Division, British Columbia.</u> For K.L. Daughtry. ARIS Report # 26,450.

Gilmour, B., P.Geo., <u>The Use of Heavy Minerals in Mineral Exploration</u>. http://www.discoveryconsultants.com/heavy-minerals.html

Gruenwald, W. B.Sc., <u>Summary Report on the Brett Gold Project Vernon Mining Division</u>. For Explore BC Program and Huntington Resources Inc. ARIS Report # 25,351.

Jenkins, D.M., P.Geo., <u>Geological and Geochemical Report on the Lark1 and Lark2 Mineral Claims</u> <u>Vernon Mining Division, British Columbia.</u> For Commonwealth Gold Corp. ARIS Report # 20,359.

Johnson, J.C.F., F.G.S, 1898, <u>Getting Gold: A Practical Treatise for Prospectors, Miners and Students.</u> Chapter I and II. <u>http://geology.com/publications/getting-gold/</u>

Kelowna Geology Committee Geology of the Kelowna Area and Origin of the Okanagan Valley British Columbia

Kyba, B.W., Daughtry, K.L., <u>Geochemical Assessment Report on the Gold Star Claim Whiteman Creek</u> <u>Vernon Mining Division, British Columbia.</u> For Brican Resources Ltd. ARIS Report # 15,394.

Leishman, D.A., B.SC., <u>Geophysical and Geochemical Report on the Bolo Claims Vernon and Nicola</u> <u>Mining Divisions, British Columbia.</u> For Getchell Resources Inc. ARIS Report # 17,870.

Lett, Jackaman, and Yeow, 1999, <u>Detailed Geochemical Exploration Techniques for Base and Precious</u> <u>Metals in the Kootenay Terrane.</u> British Columbia Geological Survey Branch, Eagle Bay Project.

Lett, Bobrowsky, Cathro, and Yeow, 1998, <u>Geochemical Pathfinders for Massive Sulphide Deposits in</u> <u>The Southern Kootenay Terrane.</u> British Columbia Geological Survey Branch.

Matich, T.R., B.Sc., <u>Appendix Report on Geophysical Surveys on the Nash Group Claims Vernon Mining</u> <u>Division, British Columbia.</u> For Stetson Resource Management Corp. ARIS Report # 19,100.

Morrison, M.S., B.Sc., <u>Reverse Circulation Drilling Assessment Report on the Gold Star Claim Group</u> <u>Whiteman Creek Area Vernon Mining Division, British Columbia.</u> For Doublestar Resources Ltd. ARIS Report # 25,600.

Morrison, M.S., B.Sc., <u>Geochemical Assessment Report on the Gold Star Claim Group Whiteman Creek</u> <u>Area Vernon Mining Division, British Columbia.</u> For Southern Gold Resources Ltd. ARIS Report # 24,634.

Nelles, D.M., B.Sc., <u>Assessment Report on Geological</u>, <u>Prospecting and Geochemical Surveys Nash</u> <u>Claim Group Vernon Mining Division</u>, <u>British Columbia</u>. For Golden Porphyrite LTD. ARIS Report # 12,030.

Paulen, Bobrowsky, Lett, Bichler and Wingerter, 1999, <u>Till Geochemistry in the Kootenay, Slide</u> <u>Mountain and Quesnel Terranes.</u> British Columbia Geological Survey Branch, Eagle Bay Project.

Plouffe, Bednarski, Huscroft and Mccuaig, 2009, <u>Gold Grain Content of Till in the Bonaparte Lake Map</u> <u>Area South Central British Columbia (NTS 92P).</u> Geological Survey of Canada. Open File 6047.

Roed, M.A., PhD., <u>Geological History of Okanagan Valley and Origin of Lake Okanagan, British</u> <u>Columbia.</u> http://www.geoscapes.ca/pov/okhistory.html

Slauenwhite, M., Geologist, <u>Report of Mapping and Prospecting on the Bouleau Property Vernon Mining</u> <u>Division, British Columbia.</u> For Inco Exploration and Technical Services Inc. ARIS Report # 21,877.

Theobald, P.K.JR., May 1956, <u>The Gold Pan as a Quantitative Tool.</u> For the United States Department of the Interior Geological survey.

Wetherill, J.F., B.A., B.Sc., <u>Geological, geophysical and Geochemical Report on the Nash Property</u> <u>Vernon Mining Division, British Columbia.</u> For Prosperity Gold Corporation. ARIS Report # 19,100.

Yorke-Hardy, R.W., A.Sc.T, <u>1989 Exploration Program Prospecting & Sampling on the Moby Claim</u> <u>Group Vernon Mining Division, British Columbia.</u> For Antelope Resources Inc. ARIS Report # 19,089.

Appendix A

Willard D. Tompson, Ltd. Consulting Geologist #10-4210 Alexis Park Drive Vernon, B.C. V1T 6H3 Ph. 250-549-7180 FAX 250-549-7180 e-mail: willtompson@shaw.ca

October 31, 2011

Mr. Gene Dodd Billiken Gold Ltd. 1561 Glenmary Rd. Enderby, B.C, V0E 1V3

Dear Mr. Dodd;

I have read the reports which you provided for me regarding the gold prospects in the Whiteman Creek Area, Vernon Mining Division, B.C. They are;

Morrison, Murray S. 1997; Reverse circulation assessment report, Gold Star Claim Group, Whiteman Creek Area, Vernon Mining Division: Geol. Sur. Branch Assess. Rept. 25,600.

Slauenwhite, Mark, 1991; Report on mapping and prospecting on the Bouleau Property, Vernon Mining Division: Geol. Br. Assess. Rept. 21,877.

Gruenwald, W., 1996; Summary report on the Brett Gold Prospect, Vernon Mining Division, B.C.: Geol. Sur. Assess. Rept. 25,351.

Dykes, Shaun M., 2005; 2004 exploration program assessment report for 514526 formerly Brett #5 claim, Brett gold property, Vernon, B.C.: Geol. Sur. Branch Assess. Rept. 28,177.

In their lists of references both Dykes and Gruenwald refer to a report by Duba in 1988 which indicates that he conducted geological mapping of the Whiteman Creek area. This information would be very useful in trying to plan an exploration program on those gold occurrences. Geologists at Discovery Consultants in Vernon have first hand knowledge regarding the prospects at Whiteman Creek and Bouleau Creek as Duba was a geologist for Discovery Consultants Ltd.

The prospects at Whiteman Creek and Bouleau Creek certainly constitute a viable gold target, as has been shown by promising gold values identified both in prospecting, diamond drilling and in underground work over a period of about 30 years. That's not very long in the history of the life of a mine. The geochemical map by Dykes (2005, p. 16) shows prominent NNE striking gold anomalies, which occur in areas underlain by "older volcanic rocks" over a strike length of some 2,500 meters. Lacking other detailed geological or geochemical knowledge of the prospect area, I suggest this zone is a likely area to be searching for a larger structure which may have concentrated a larger tonnage of gold values.

Sincerely yours? W. D. TOMPSON InGeo. Willard D. Tompson, P. Geo.

Appendix B

Report of Megascopic Examination Sluice Reject Samples, Whiteman Creek-Bouleau Creek Area, Vernon Mining Division, British Columbia Sample Number Description of Sample NB-40 Felsic to intermediate volcanic rocks; 95% are rounded to sub rounded. No sulfides, no limonite. Look like stream deposit. NB-41 Angular grains. Quartz-sericite rock; white sericite grains. Tan chalcedony grain. Most grains are sub-angular, felsic to intermediate volcanic rock. NB-42 Trace of magnetite. Nearly all grains are sharp and angular with few rounded grains. All are volcanic rock. Mostly blackish crystalline porphyritic rock which appears to be porphyritic andesite. A few rhyolite grains. NB-43 All rock fragments are sharp and angular. Mostly $\pm 1/8$ ". Rocks are andesite porphyry. Abundant plagioclase phenocrysts. Single calcite cleavage grain. Single muscovite cleavage plate. A few grains are white, sericitized andesite, A few grains of reddish-brown jasperoid. One grain pyrolusite. NB-48 Virtually all rock fragments are sharp and angular and are about 90% intermediate volcanic rocks, 9% felsic volcanic rocks and 1% mafic volcanic rocks. NB-45 About half the grains are rounded. Balance contains abundant red hematite and jasperoid grains, up to 15% total. Balance, e.g. 35% are andesite porphyry. NB-54 Rock grains mostly angular. Rocks are intermediate volcanic rocks, andesitic mostly. Two angular pieces of brown jasperoid. Rocks vary in size from about 1/8" to 1/2". There are a few tiny quartz fragments. NB-61 Nearly all grains are angular. Most rocks are fine to medium grained felsic to intermediate intrusive rocks, e.g., granitic to dioritic in composition and grain size. Volcanic grains are andesite. NB-62 Mix of rounded and angular grains. There are a few grains of quartz. Rocks are mixed intermediate volcanic rocks and felsic intrusives. Intrusive content is minor. There is a rounded grain of muscovite schist. NB-63 Mixed rounded and sub-angular grains. Mostly intermediate volcanic rocks. There are a few quartz grains. A single grain of altered andesite(?) with psuedomorph of limonite replacing cubic pyrite.

- Willard D. Tompson, P. Geo. -Consulting Geologist

	-2-
Sample Number	Description of Sample
NB-68	Rock fragments are angular. There is a mix of intermediate flow volcanic rocks and tuffs. There are a few granitic to dioritic grains. Also a single grain of hemetite (red) and a grain of andesite with limonite replacing pyrite.
NB-70	The rock grains are of various sizes, from 1/8" to 3/4". Most are angular. The rocks are mostly intermediate volcanic rocks, e.g. andesite. There are a couple of grains of fine grained granite. Also several quartz grains. Some rocks contain adhering vein quartz.
NB-35	Most grains are rounded, but a few are angular to sub-angular. Rocks are mostly dacite with a few andesite grains. There are a few quartz grains and one grain of calcite $\pm 3/8$ ". Most grains are about $1/8$ " to $3/8$ ". Several grains of andesitic tuff
NB-36	Most grains are angular. Very few are rounded. Some small grains of vein quartz. A single bright green chalcedony grain. Minor limonite grains. One 1/2" grain vein quartz with red jasperoid lining a small vug. Most of the rocks are intermediate volcanic flow rocks and a few tuffs.
NB-37	Nearly all the grains are rounded to sub-rounded. Few are angular. Grain size varies from about 1/8" to 3/8". There are a few small rhyolite grains. One grain altered basalt(?). Most grains look like and site.
NB-38	About 1/4 of the sample grains are rounded and are pebbles. Minor gray-whitish clay adhering to some grains. One grain of black coal. About half the grains are andesite and half are rhyolite.
NB-51	About 1/4 of the grains are rounded to sub-rounded. Some clay adhering to the grains of rock. There are a few grains of vein quartz. Most grains are andesite as well as a few grains of andesite porphyry. There is one grain of coal.
NB-69	The majority of the grains of rock are angular with a few rounded grains. The rocks are intermediate volcanic rocks, e.g. they are believed to be mostly dacite. There is one grain of granite and a few grains of quartz which are not necessarily vein quartz, but may have come from granite.
NB-39	Grains are sub-angular and a few are sub-rounded. Rocks are mostly andesitic to dacitic; a few grains appear to be sericitized(?). Several grains of clay with tiny black rock fragments; may be glacial clay. Clay adheres to some rock grains.
	Willard D. Tompson, P. Geo
	Consulting Geologist

	-3-
Sample Number	Description of Sample
NB-44	Most grains are large, $\pm 1/4$ "- $1/2$ " and most are sub rounded to round and a few are sub angular. Most appear to be dacitic with a few andesitic. Several grains dacite porphyry with about half content phenocrysts. One small grain quartz with limonite. Significant dacite porphyry with red jasperoid replacing(?) plagioclase. Petrographic problem.
NB-46	Nearly all grains of rock are sharp and angular, excepting rare rounded grains. Rock types vary from andesite to dacite to rhyolite. One grain looks like gabbro(?). A few of the grains display clay alteration.
NB-47	Nearly all of the grains are sharp and angular and only a few are rounded. The rocks are mostly dacite porphyry with abundant, prominent plagioclase phenocrysts. There are a few grains of rhyolite and rare andesite grains.
NB-49	About 1/4 of the grains are rounded to sub-rounded. Nearly all are of felsic volcanic composition with a few grains of coarse grained granite or granodiorite.
NB-50	The grains are mostly angular to sub-angular with a few round to sub- round grains. The rocks are mostly felsic and look to be mostly dacite and dacite porphyry. A few grains are granite. There is minor clay alteration in a few grains.
NB-52	About 1/4 of the grains are rounded. The rocks are mostly felsic and appear to be dacite and rhyolite and some are porphyritic. One grain of basalt.
NB-53	Rock grains are nearly all angular with a few sub-rounded. The rocks are felsic volcanic lavas and some are porphyritic. There are a few grains of tuff. None of the rocks appear to be chemically altered.
NB-55	All rock grains are angular and most are 1/4" to 1/2". The rocks are felsic lavas and a few are andesitic to dacitic dike rocks, e.g. they are coarser grained. There are a few grains of andesite.
NB-56	About 1/4 of the grains are round to sub-round. Of the balance, the rocks are felsic volcanic rocks and coarse grained granite-about 10% are granite. There are a few grains of felsic tuff.
NB-57	About 1/3 of the grains are sub-round. Most have minor clay adhering. Mostly felsic rocks and a few grains of andesite. One grain of pyrolusite(?). A few grains are felsic tuff. There is one quartz grain.
	Willard D. Tompson, P. Ge Consulting Geologist

	-4-
Sample Number	Description of Sample
NB-58	About 1/4 of the grains are round to sub-round. Most are felsic volcanic lavas and a bit of tuff. A single grain of muscovite rock as from a mica schist. Several grains of quartz and a few small grains that look a bit like granite, but could be of gneissic origin.
NB-60	All rocks are angular and from size 1/8" to 1". Larger than most of the samples. About 1/4 of the grains are granite and granodiorite. The remainder are light colored felsic volcanic lavas and are probably dacite.
NB-66	The rocks in the sample are large, mostly 1'2" to 1" and larger and are angular. Most are felsic and are both lavas and tuffs. Also a few fragments of granite.
NB-67	All rock fragments are 1/4" to 1 1/4". About one third are granite and the balance are felsic volcanic rocks.
NB-71	The rocks are mostly angular with rare rounded pieces. They are felsic volcanic rocks and include a few grains of granite. There are several quartz grains and three tiny grains of black coal.

– Willard D. Tompson, P. Geo. – Consulting Geologist

Report on Megascopic Examination Rock Specimens Broken from Outcrop Whiteman Creek-Bouleau Creek Area, Vernon Mining Division, British Columbia

Sample Number	Description of Rock
NB-56A	The rocks are slightly weathered granite. Alteration is weathering only. A fragment of vein quartz is included with the rock specimens and it is stained with limonite and has small vugs with subhedral quartz crystals.
NB-36A	The single rock specimen is slightly vuggy rhyolite porphyry. The rock is fresh and unaltered.
NB-65	The rock is hydrothermally altered coarse grained granite. Some K-spars look fresh and tiny biotites are black and glossy, but plagioclase and many K-spar grains are sericitized and/or argillized. These characteristics may reflect hydrothermal K-spar metasomatism of the granite. This type of rock alteration may accompany the introduction of sulfide mineralization. Recommend petrographic analysis of NB-65.
NB-64	The rock is difficult to identify. It appears to be strongly hydrothermally altered and may be an altered, crushed granite or perhaps a strongly altered porphyritic felsic lava. There are small vugs with quartz and limonite and the rock is generally limonite stained and whitish to cream- colored on fresh breaks. Recommend petrographic analysis of NB-64 .
NB-66A	
Three rock specime	
	One of the rock specimens is a whitish-colored coarse grained granite. It is fresh and unaltered. The other two rock specimens are gravish in color and

fresh and unaltered. The other two rock specimens are grayish in color and are felsic lavas. One is probably rhyolite porphyry with visible K-spar phenocrysts. The other appears to be possibly dacitic and is not porphyritic and distinctly grayish in color. It has a 1/8" stringer of quartz along one surface.

. Willard D. Tompson, P. Geo. – Consulting Geologist

Appendix C

Willard D. Tompson, Ltd. Consulting Geologist #10-4210 Alexis Park Drive Vernon, B.C. V1T 6H3 Ph. 250-549-7180 FAX 250-549-7180 e-mail: willtompson@shaw.ca

Feb. 24, 2012

Mr. Gene Dodd Billiken Gold Ltd. 1561 Glenmary Rd. Enderby, B.C. V0E 1V3

Dear Mr. Dodd;

I have read the Geological Branch Assessment Report No. 13,471 by W. Gruenwald, dated January 7, 1985 concerning the geology of the Brett Nos. 1 and 2 mineral claims in the Vernon Mining Division and I have reviewed the assay and ICP results of the samples which you submitted.

Gruenwald described six principal rock units which occur in the district where gold mineralization is known to exist. The oldest are andesites and basalts which are believed to be Upper Triassic in age. These rocks display alteration typical of chloritization and epidotization. They are pre-intrusive in age and could function as host rocks for metallic mineralization, provided hydrothermal solutions were introduced and adequate ("plumbing") fracture systems occured in the volcanic rocks.

A scattered assemblage of green to gray volcaniclastics occur in the northern part of the Brett claims. There is no reported association of these rocks with the known gold occurrences.

Two intrusive rock types occur which are considered to belong to the Okanagan Batholith, a large intrusive complex that lies west of Kalamalka and Okanagan Lakes. It is Jurassic and/or Cretaceous in age and thus post-dates the andesites. Gruenwald describes two distinct rock types;

- Pale green to buff feldspar ± hornblende porphyry. These rocks are thought to be dikes and may contain zones of hydrothermal alteration.
- Dioritic rocks, mostly lacking in hydrothermal alteration and mineralization. Minor pyrite occurs and small pyrite-galena-chalcopyrite veins occur.

A rock unit described as Unit 6 is a hydrothermally altered andesite, a likely host rock for metallic mineralization in this geological environment. The rocks are variously described as pale yellow, limonitic, bleached, epidotized, chloritized and pyritic.

I have examined the Certificates of Analysis of the 36 pan concentrate samples which you submitted for analysis. There were no anomalies in the 30 elements which were tested by ICP analysis.

The samples were analyzed for gold content by AA techniques. Assay values for the 36 pan concentrate samples varied from less than .005 parts per billion to 2,090 parts per billion, with 75 percent of the samples assaying greater than 100 parts per billion. These values may be considered to be anomalous values in this area where gold occurrences are known to exist.

It is established by Gruenwald that Upper Triassic andesites are the host rocks for gold mineralization in the Whiteman Creek area. A reasonable approach for continued exploration in the prospect area should include detailed geological mapping in order to define the position of the andesites with respect to known gold occurrences. Structural geological interpretation and studies of host rock alteration in conjunction with aerial photograph information may help to identify fracture systems in the andesites which could have functioned as conduits for mineralizing hydrothermal solutions. Follow-up geochemical and geophysical surveys would then be employed if geological targets were identified.

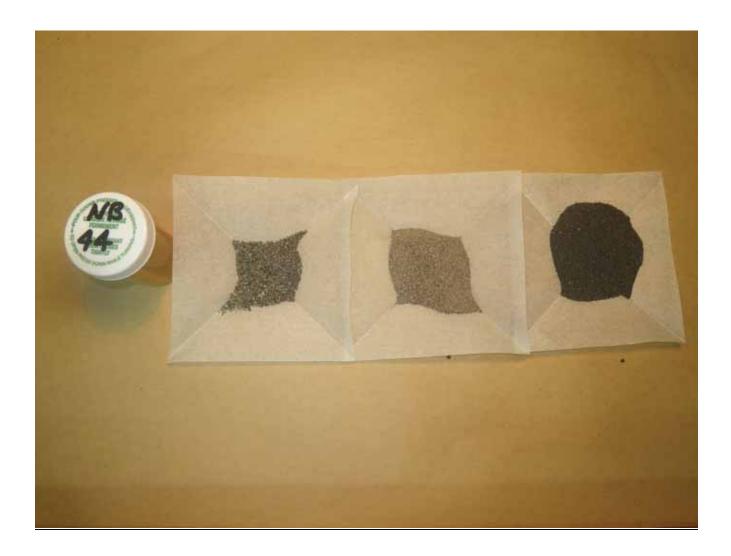
Sincerely yours Willard D. Tompson, P. Geo.

Appendix D

Detailed Cost Breakdown Bouleau Creek Gold Project

Soil / Till Heavy Metal Concentrating	
Bouleau Gold Project	
Labour	
0 / 1 / 10 2011	
October 10 2011	¢250.00
E. Dodd (Supervisor)	\$250.00
D.Goossen (Crew Chief)	\$250.00
October 13 2011 E. Dodd (Supervisor)	¢250.00
	\$250.00 \$250.00
D.Goossen (Crew Chief)	\$250.00
J.Cross (Sampler)	\$200.00
October 14 2011	¢250.00
E. Dodd (Supervisor)	\$250.00 \$250.00
	\$250.00
J.Cross (Sampler)	\$200.00
October 17 2011	¢250.00
D.Goossen (Crew Chief)	\$250.00
G. Reimer (Helper)	\$125.00
October 18 2011	¢250.00
D.Goossen (Crew Chief)	\$250.00
S. Janzen (Sampler)	\$200.00 \$2,725.00
Sub total	\$2,725.00
Sample Processing	* 4 77 0 00
238.5 hours @ \$20.00 / hour	\$4,770.00
Willard D. Tompson P.Geo.	
Megascopy \$13.90 per sample x 20 samples	\$278.00
ICP Interpretation \$11.12 per sample x 20 samples	\$222.40
<u>Report</u>	\$500.00
Miscellaneous	
Bins, containers, etc.	\$259.00
Shipping	\$19.60
Total	\$8,774.00
(Taxes not included)	
Dated: February 24, 2012	
Respectfully submittee	
Eugene A. Dodd, Pres	ident
Billiken Gold Ltd.	

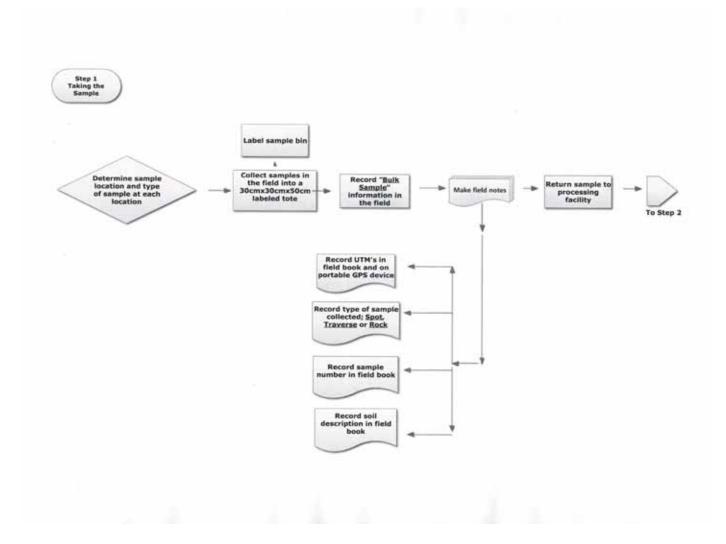
Appendix E

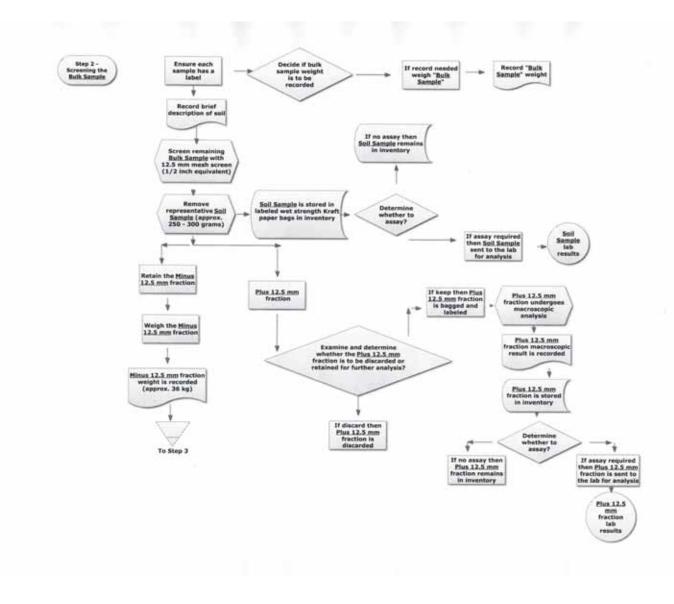

Line up of fractions showing **Sluice Reject**, **Pan Reject**, **Pan Con**, and **Soil Samples** (at far rear right).

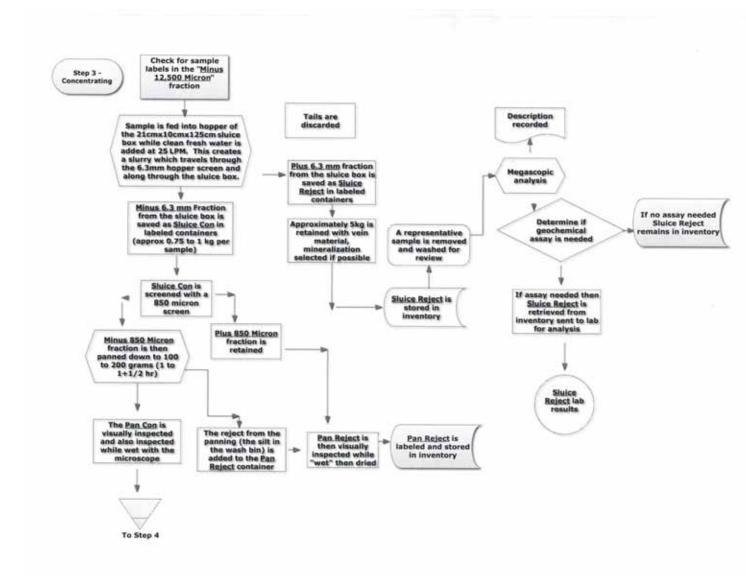
All North Bay fractions and microscopic examination in progress

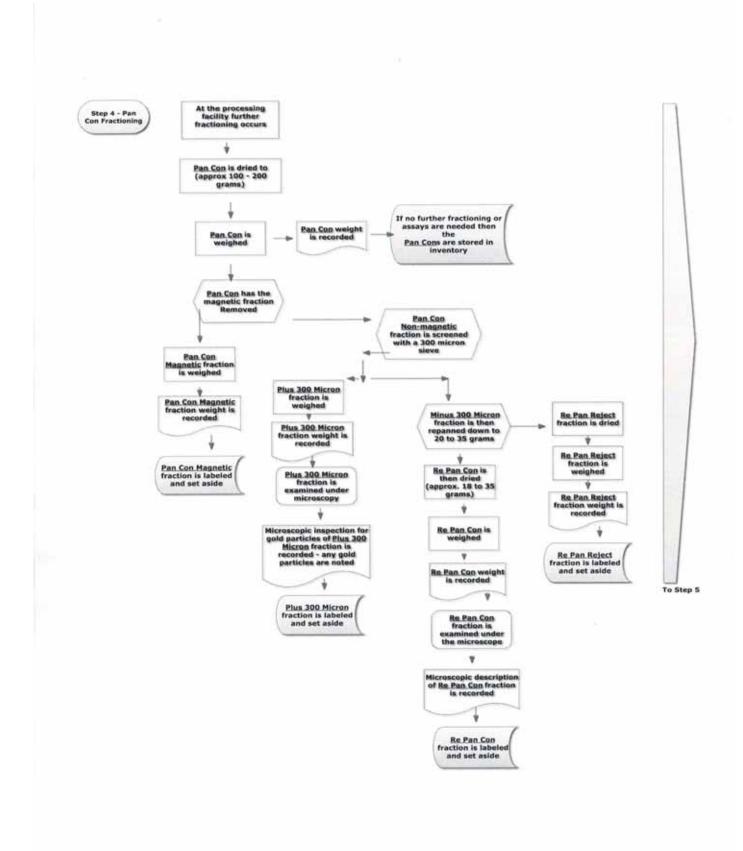
NB – 40 (Siwash) showing all four fractions (**Re Pan Con** in the Vial, **Plus 300Micron** fraction, **Re Pan Reject** fraction, **Pan Con Magnetic** fraction)

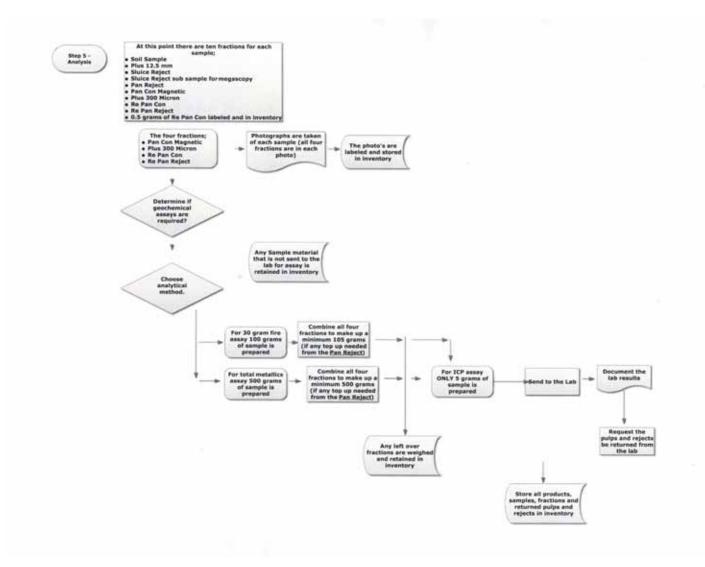
NB – 44 (Bouleau Main) showing all four fractions (**Re Pan Con** in the Vial, **Plus 300Micron** fraction, **Re Pan Reject** fraction, **Pan Con Magnetic** fraction)




NB – 58 (Cut Block) showing all four fractions (**Re Pan Con** in the Vial, **Plus 300Micron** fraction, **Re Pan Reject** fraction, **Pan Con Magnetic** fraction)




Example of microscope view of insolubles in Plus 300 Micron fraction


Appendix F

Appendix G

Page 1 of 1

ALS Canada (td. 2103 Dallarton Haw Notel Vancover BC VPI GA? Piecer: 664 984 0221 Fac: 604 984 0218 WWW.alsglobal.com

To: BILLIKEN GOLD LTD 561 GLENMARY RD ENDERBY BC VOE 1V3

Minerals

	BILLING INFORMATION		QUANTITY	ANALYSED FOR CODE - DES	ED FOR DESCRIPTION		UNIT	TOTAL
Certificate.	WATTOFFEE		-	BAT-01	Administration Fee		31.50	31.50
contract.	CCCC0711NA		36	LOG-22	Sample login - Rcd w/o BarCode		1.15	41.40
partiple Lype.	Sand		35	PUL-31	Pulverize split to 85% <75 um		4.10	143.50
Account:	BILGOL		-	PUL-32	Pulverize 1000g to 85% < 75 um		5.90	5.90
Date:	20- IAN- 2012		35	Au- AA23	Au 30g FA- AA finish		15.30	535,50
Project-			-	Au-SCR21	Au Screen Fire Assay - 100 um		15.90	15.90
1000			-	Au- AA25	Ore Grade Au 30g FA AA finish		15.90	15.90
P.O. No.:			-	Au- AA25D	Ore Grade Au 30g FA AA Dup		15.90	15.90
Quote:		_	36	ME-ICP41	35 Element Aqua Regia ICP- AES		7,10	255.60
Terms:	Due on Receipt	C	36	GEO-AR01	Aqua regia digestion		3.50	126.00
Comments:		Ľ,	-	BAG-01	Bulk Master for Storage		1.20	1.20
			5	CRU-31	Fine crushing - 70% < 2mm		2.65	5.30
			1.04	CRU-31	Weight Charge (kg) - Fine crushing - 70% < 2mm	70% < 2mm	0.45	0.47
			2	SPL-21	Split sample - riffle splitter		1.80	3.60
			1.04	SPL-21	Weight Charge (kg) - Split sample - riffle splitter	iffle splitter	0.35	0.36
			-	SCR- 21	Screen to + 100 um		5.30	5.30
]				SUBTOTAL (CAD)	~	1,203.33
To: B	BILLIKEN GOLD LTD				R	R100938885 HST BC	5	144.40
	ATTN: GENE DODD 561 GLENMARY RD ENDERBY BC VOE 1V3				TOT	TOTAL PAYABLE (CAD)	1	1,347.73
			ő.	tyment may be ma	Payment may be made by: Cheque or Bank Transfer			
			ស ស ស	Beneficiary Name: Bank: SWIFT:	ALS Canada Ltd. Royal Bank of Canada ROYCCAT2			
	Please Remit Payments To : ALS Canada Ltd. 2103 Dollarton Hwy North Vancouver BC V7H 0A7		<<₽	Address: Account Please send paymen	Address: Vancouver, BC, CAN Account: 003-00010-1001098 Account info to accounting canusa@alsglobal.com	com		

Appendix H

To: BILLIKEN GOLD LTD 561 GLENMARY RD ENDERBY BC VOE 1V3

Page: 1 Finalized Date: 20- JAN- 2012 This copy reported on 23-JAN-2012 Account: BILGOL

Project: P.O. No .: This report is for 36 Sand samples submitted to our lab in Vancouver, BC, Canada on 20- DEC- 2011. The following have access to data associated with this certificate:

	SAMPLE PREPARATION	
ALS CODE	DESCRIPTION	
WEI-21	Received Sample Weight	
LOG- 22	Sample login - Rcd w/o BarCode	
CRU- 31	Fine crushing - 70% < 2mm	
SCR- 21	Screen to - 100 um	
SPL-21	Split sample - riffle splitter	
8AG-01	Bulk Master for Storage	
PUL- 31	Pulverize split to 85% < 75 um	
PUL- 32	Pulverize 1000g to 85% < 75 um	

	ANALYTICAL PROCEDUR	ES
ALS CODE	DESCRIPTION	INSTRUMENT
Au- SCR21	Au Screen Fire Assay + 100 um	WST- SIM
Au- AA25	Ore Grade Au 30g FA AA finish	AAS
Au- AA25D	Ore Grade Au 30g FA AA Dup	AAS
ME-ICP41	35 Element Aqua Regia ICP- AES	ICP- AES
Au- AA23	Au 30g FA- AA finish	AAS

To: BILLIKEN GOLD LTD ATTN: GENE DODD 561 GLENMARY RD ENDERBY BC VOE 1V3

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

inger . Signature:

Colin Ramshaw, Vancouver Laboratory Manager

To: BILLIKEN GOLD LTD S61 GLENMARY RD ENDERBY BC VOE 1V3

Page: 2 - A Total # Pages: 2 (A - C) Finalized Date: 20- JAN- 2012 Account: BILGOL

								C	ERTIFIC	CATE O	F ANAL	YSIS	VA112			
Sample Description	Method Analyte Units LOR	WEF-21 Recvd Wt. kg 0.02	Au- AA23 Au ppm 0.005	Au-SCR21 Au Total ppm 0.05	Au-SCR21 Au (+) F ppm 0.05	Au-SCR21 Au (-) F ppm 0.05	Au-SCR21 Au (+) m mg 0.001	Au-SCR21 WT. + Fr g 0.01	Au-SCR21 WT Fr g 0.1	Au- AA25 Au ppm 0.01	Au- AA25D Au ppm 0.01	ME-ICP41 Ag ppm 0.2	ME-ICP41 Al N 0.01	ME-ICP41 As ppm 2	ME-1CP41 B ppm 10	ME- ICP4 Ba ppm 10
NB-35		0.12	0.475									0.4	1.08	5	<10	90
NB-36		0.12	0.558									1.4	0.96	6	<10	100
NB-37		0.12	0.177									<0.2	0.63	4	<10	100
NB-38		0.10	0.377									0.3	0.59	5	<10	80
NB- 39		0.12	0.301								_	0.4	0.55	<2	<10	110
NB- 40		0.10	1.820									0.3	0.67	4	<10	110
NB-41		0.10	0.223									0.3	0.60	4	<10	60
NB- 42 NB- 43		0.12	<0.005									<0.2	0.67	<2	<10	190
NB-43 NB-44		0.12	0.048									0.3	0.64	<2	<10	270
5357-1007		0.12	0,131									<0.2	0.73	<2	<10	190
NB- 45 NB- 46		0.12	0.032									0.2	0.57	<2	<10	190
NB-40 NB-47		0.10	0.007									0.2	0.63	<2	<10	210
NB- 47 NB- 48		0.12	0.145									<0.2	0.57	<2	<10	220
NB- 49		0.12	0.507									<0.2	0.84	<2	<10	150
												0,7	0.54	<2	<10	100
NB- 50 NB- 51		0.12	0.369									0.2	0.48	<2	<10	70
NB-51 NB-52		0.12	0.322									0.4	0.62	3	<10	70
NB- 53		0.10	0.030									0.2	0.66	<2	<10	90
NB- 53 NB- 54		0.12	0.256									2.3	0.60	<2	<10	160
								-				0,3	0.68	<2	<10	100
NB- 55 NB- 56		0.12	0.407								10-11	1.1	1.46	3	<10	110
NB- 50 NB- 57		0.12	0.529									<0.2	1.53	<2	<10	80
NB- 57 NB- 58		0.10	0.826									<0.2	1.96	4	<10	90
NB- 60		0.12	2.09	0.77								1,1	1.08	<2	<10	90
				0.77	95,6	0.24	0.282	2.95	527.6	0,25	0.22	<0.2	0.80	3	<10	150
NB-61		0.10	0.097									<0.2	0.99	14	<10	160
NB-62 NB-63		0.10	0.455									<0.2	0.74	8	<10	110
N8-64		0.12 0.50	0.212									<0.2	0.70	6	<10	110
NB-65		0.54	<0.005									<0.2	0.68	20	<10	100
N8-66												0.2	0.39	21	<10	30
NB-67		0.10	0.192									<0.2	0.64	30	<10	780
NB- 68	- 1	0.12	0.035									<0.2	0.79	<2	<10	120
NB- 69		0.12	0.333									<0.2	1.07	19	<10	630
N8-70		0.12	0.346									<0.2	1.28	17	<10	660
18-71				_						_		<0.2	0,70	4	<10	100
(6-7)	8	0.12	0,312									<0.2	0.70	5	<10	100

Page 65

•
(ALS) Minerals
minerais

To: BILLIKEN GOLD LTD 561 GLENMARY RD ENDERBY BC VOE 1V3 Page: 2 - B Total # Pages: 2 (A - C) Finalized Date: 20- JAN- 2012 Account: BILGOL

Minera	15								C	ERTIFIC	CATE O	F ANAL	YSIS	VA112	65555	
Sample Description	Method Analyte Units LOR	ME-ICP41 Be ppm 0.5	ME-ICP41 Bi ppm 2	ME-ICP41 Ca N 0.01	ME-8CP41 Cd ppm 0.5	ME-ICP41 Co ppm 1	ME-ICP41 Cr ppm 1	ME-1CP41 Cu ppm 1	ME-1CP41 Fe N 0.01	ME-1CP41 Ga ppm 10	ME-ICP41 Hg ppm 1	ME- ICP41 K N 0.01	ME-ICP41 La ppm 10	ME-ICP41 Mg N 0.01	ME-ICP41 Mn ppm 5	ME-ICP4 Ma ppm 1
NB- 35 NB- 36 NB- 37 NB- 38 NB- 39		0.6 0.6 <0.5 <0.5 <0.5	8 8 N 8 8	0.50 0.34 0.29 0.35 0.41	<0.5 <0.5 <0.5 <0.5	11 8 9	124 50 25 33	12 21 10 42	6.17 4,48 4.23 5.01	10 10 <10 <10	***	0.13 0.14 0.10 0.10	30 30 30 50	0.43 0.30 0.23 0.25	694 627 681 582	2 3 2 3
NB- 39 NB- 40 NB- 41 NB- 42 NB- 43 NB- 44		0.5 0.5 <0.5 <0.5 <0.5 <0.5	00000	0.41 0.42 0.32 0.57 0.83 0.63	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	12 11 7 17 19 22	39 46 40 81 104 147	14 11 11 7 6 9	7.03 7.70 8.38 12.35 19.2 15.6	10 10 10 10 10	र र र र र र र	0.08 0.12 0.13 0.12 0.16 0.13	60 90 50 60 40	0.28 0.29 0.19 0.28 0.32 0.40	965 856 954 749 950 1050	2 2 2 2 2 2 2
NB- 45 NB- 46 NB- 47 NB- 48 NB- 49		<0.5 <0.5 <0.5 0.6 <0.5	99949	0.76 0.85 0.99 0.88 0.49	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5	26 21 21 21 21 25	161 125 120 330 158	10 8 6 9 11	18.6 21.2 15.3 18.3 17.6	10 10 10 20 10	4 4 1 1	0.10 0.14 0.14 0.12 0.06	50 50 70 50 30	0.39 0.36 0.39 0.49 0.32	1200 911 1170 1980 1060	2 3 2 1 2
NB- 50 NB- 51 NB- 52 NB- 53 NB- 54		<0.5 <0.5 <0.5 <0.5 <0.5	00000	0.43 0.38 0.25 0.47 0.55	<0.5 <0.5 <0.5 <0.5 <0.5	30 30 21 17 23	183 176 102 84 142	10 10 8 8 9	23.8 22.4 15.1 11.40 16.1	20 20 10 10		0.04 0.04 0.07 0.10 0.08	30 30 20 40 40	0.26 0.26 0.28 0.26 0.45	1200 1180 809 723 863	3 2 2 2
NB-55 NB-56 NB-57 NB-58 NB-60		0.6 <0.5 0.5 <0.5 <0.5	<2 <2 3 3 2	0.50 0.35 0.38 0.35 0.48	2.6 1.3 1.1 1.7 1.1	26 15 18 17 11	116 63 68 71 35	7 7 7 11 12	10.60 5.59 5.47 7.16 5.16	10 10 10 10	5 5 5 7 5 5 7 7 5	0.09 0.11 0.10 0.08 0.16	30 10 10 20 30	0.85 0.79 1.09 0.55 0.35	661 551 532 493 437	1
NB- 61 NB- 62 NB- 63 NB- 64 NB- 65		1.0 0.7 0.7 <0.5 <0.5	2 4 3 3 3	0.53 0.47 0.47 0.10 0.04	2.5 3.4 2.8 <0.5 <0.5	25 31 25 2 1	124 189 198 2 3	11 12 7 6 1	10.35 13.4 12.40 1.96 0.61	10 10 <10 <10	ব ব 1 ব ব	0.11 0.08 0.09 0.17 0.21	20 20 30 90 70	0.53 0.91 0.72 0.05 0.11	566 721 734 53 73	2 1 1 2 1
NB-65 NB-67 NB-68 NB-69 NB-70	2	0.7 <0.5 0.9 0.7 <0.5	3 2 2 3 2	0.57 0.27 0.64 0.48 0.32	1.2 1.1 2.5 2.1 2.1	15 12 25 21 17	15 47 82 89 63	8 5 8 8 4	4.61 5.49 9.81 8.99 9.38	<10 10 10 10 10	<1 <1 <1 <1 <1	0.11 0.11 0.18 0.18 0.09	70 20 20 20 20	0.18 0.20 0.39 0.53 0.24	870 400 506 563 514	4 1 2 1 1
NB-71		0.5	4	0.33	2.8	21	75	4	11.55	10	<1	0.08	30	0.23	586	1

ALS
Mineral

To: BILLIKEN GOLD LTD 561 GLENMARY RD ENDERBY BC VOE 1V3 Page: 2 - C Total # Pages: 2 (A - C) Finalized Date: 20- JAN- 2012 Account: BILGOL

Minera			CERTIFICATE OF ANALYSIS VA							VA112	A11265555					
Sample Description	Method Analyte Units LOR	ME-1CP41 Na N 0.01	ME-ICP41 Ni ppm 1	ME-1CP41 P ppm 10	ME-ICP41 Pb ppm 2	ME-0CP41 S N 0.01	ME-ICP41 Sb ppm 2	ME-ICP41 Sc ppm 1	ME-ICP41 Sr ppm 1	ME-ICP41 Th ppm 20	ME-ICP41 Ti N 0.01	ME-3CP41 TI ppm 10	ME-ICP41 U ppm 10	ME-ICP41 V ppm 1	ME-ICP41 W ppm 10	ME-JCP4 Zn ppm 2
N8-35		0.07	30	1010	11	<0.01	3	4	54	<20	0.32	<10	<10	248	<10	125
NB-36		0.06	15	680	11	<0.01	2	3	38	<20	0.27	<10	<10	159	<10	106
NB-37		0.04	11	660	18	<0.01	5	3	32	<20	0.24	<10	<10	139	<10	97
NB-38		0.04	13	670	22	<0.01	11	з	37	<20	0.27	<10	<10	165	<10	108
N8-39		0.05	16	910	16	<0.01	3	4	34	<20	0.39	<10	<10	240	<10	137
N8-40		0.04	14	910	20	0.01	5	3	41	<20	0.32	<10	<10	225	<10	233
N8-41		0.03	9	810	26	<0.01	10	3	34	<20	0.28	<10	<10	207	<10	223
NB-42	I	0.04	13	2010	46	<0.01	3	4	53	<20	0.28	<10	<10	416	<10	88
N8-43		0.03	11	2980	18	<0.01	<2	4	65	<20	0.27	<10	<10	584	<10	125
N8-44		0.04	26	1850	15	<0.01	<2	4	63	<20	0.39	<10	<10	558	<10	146
N8-45		0.03	29	2230	20	< 0.01	<2	5	60	<20	0.41	<10	<10	664	<10	195
N8-46		0.03	18	3040	16	<0.01	<2	4	59	<20	0.35	<10	<10	685	<10	122
NB- 47		0.03	18	3290	16	<0.01	5	4	60	<20	0.44	<10	<10	531	<10	143
NB-48		0.04	56	2610	22	<0.01	4	5	90	<20	1.13	<10	<10	835	<10	418
NB- 49		0.03	28	1580	17	<0.01	2	4	40	<20	0.47	<10	<10	627	<10	200
N8-50		0.02	29	1450	17	<0.01	<2	4	33	<20	0.51	<10	<10	833	<10	227
NB-51		0.02	26	1270	16	<0.01	2	5	30	<20	0.57	<10	<10	795	<10	223
NB-52		0.05	21	520	10	<0.01	<2	3	34	<20	0.53	<10	<10	529	<10	166
NB- 53		0.04	14	1400	9	<0.01	<2	3	42	<20	0.35	<10	<10	392	<10	118
NB- 54		0.03	30	1820	13	<0.01	2	4	39	<20	0.31	<10	<10	565	<10	129
N8-55		0.03	41	1440	3	0.09	-2	4	46	<20	0.27	<10	<10	374	<10	107
NB-56		0.04	36	890	<2	0.07	9	3	35	<20	0.20	<10	<10	165	<10	81
NB-57		0.04	42	940	<2	0.08	<2	5	37	<20	0.24	<10	<10	169	<10	84
NB-58		0.03	25	1070	<2	0.05	2	3	33	<20	0.21	<10	<10	235	<10	78
NB- 60		0.07	10	1260	2	0.05	<2	3	61	<20	0.18	<10	<10	149	<10	67
NB-61		0.02	22	1550	9	0.28	~2	4	57	<20	0.19	<10	<10	270	<10	98
NB-62		0.03	61	1350	2	0.37	<2	4	46	<20	0.24	<10	<10	385	<10	110
NB-63		0.03	51	1460	2	0.12	<2	4	51	<20	0.24	<10	<10	399	<10	112
NB-64		0.03	3	1110	18	0.03	<2	1	35	<20	<0.01	<10	<10	8	<10	8
N8-65		<0.01	2	150	17	0.09	2	1	18	20	0.01	<10	<10	10	<10	26
NB- 66		0.04	13	2540	13	0.13	2	2	92	<20	0.05	<10	<10	60	<10	89
NB-67		0.04	13	1010	<2	0.07	<2	2	44	<20	0.21	<10	<10	171	<10	82
NB-68		0.03	19	1660	15	0.44	2	3	117	<20	0.17	<10	<10	224	<10	87
NB-69		0.03	24	1600	4	0.35	2	3	82	<20	0.17	<10	<10	239	<10	93
NB-70		0.03	14	1000	<2	0.05	<2	2	37	<20	0.23	<10	<10	294	<10	98
NB-71		0.03	17	1050	<2	0.04	<2	2	35	<20	0.30	<10	<10	371	<10	126
19050 9 (964-5)															CHER	0.22

Appendix I

VA11265555 - Finalized					
CLIENT : "BILGOL - Billiken Gold Ltd"					
# of SAMPLES : 36	-				
DATE RECEIVED : 2011-12-20 DATE FINALIZED :					
2012-01-20					
SECTOR RECEIV. CONS.		Au-AA23	Au-SCR21	Au-SCR21	Au-SCR21
			Au Total		
			(+)(-)	Au (+)	Au (-)
	SAMPLE	Au	Combined	Fraction	Fraction
	DESCRIPTION	ppm	ppm	ppm	ppm
	NB-35	0.475			
	NB-36	0.558			
	NB-37	0.177			
	NB-38	0.377			
	NB-39	0.301			
	NB-40	1.82			
	NB-41	0.223			
	NB-42	< 0.005			
	NB-43	0.048			
	NB-44	0.131			
	NB-45	0.032			
	NB-46	0.007			
	NB-47	0.145			
	NB-48	0.123			
	NB-49	0.507			
	NB-50	0.369			
	NB-51	0.322			
	NB-52	0.03			
	NB-53	0.864			
	NB-54	0.256			
	NB-55	0.407			
	NB-56	0.529			
	NB-57	0.826			
	NB-58	2.09			
	NB-60		0.77	95.6	0.
	NB-61	0.097			
	NB-62	0.455			
	NB-63	0.212			
	NB-64	< 0.005			
	NB-65	< 0.005			
	NB-66	0.192			
	NB-67	0.035			
	NB-68	0.335			
	NB-69	0.333			
	NB-70	0.346			
	NB-71	0.312		Q	
			0		

Page 1 VA11265555 NB Results from ALS sent jan 23 2012

							-	
	Au-SCR21	Au-SCR21	Au-SCR21	Au-AA25	Au-AA25D	ME-ICP41	ME-ICP41	ME-ICP41
		WT. + Frac	WT Frac					
SAMPLE	Au (+) mg	Entire	Entire	Au	Au	Ag	Al	As
DESCRIPTION	mg	g	g	ppm	ppm	ppm	%	ppm
NB-35	-					0.4		
NB-36						1.4	the second se	
NB-37			3			<0.2	0.63	
NB-38						0.3		
NB-39						0.4		<2
NB-40						0.3		
NB-41	-		-			0.3	and the second se	
NB-42	-					<0.2	0.67	
NB-43						0.3	_	
NB-44						<0.2	0.73	
NB-45			14		-	0.2		
NB-46			1		5	0.2		
NB-47		· · · · · · · · · · · · · · · · · · ·				<0.2	0.57	
NB-48						<0.2	0.84	<2
NB-49			-			0.7		
NB-50	7.6		3	Ö		0.2	0.48	<2
NB-51						0.4	0.62	-
NB-52						0.2	0.66	<2
NB-53						2.3	0.6	<2
NB-54						0.3	0.68	<2
NB-55						1.1	1.46	
NB-56						<0.2	1.53	<2
NB-57						<0.2	1.96	
NB-58						1.1	1.08	<2
NB-60	0.282	2.95	527.6	0.25	0.22	<0.2	0.8	
NB-61	1		2			<0.2	0.99	1
NB-62						<0.2	0.74	
NB-63						<0.2	0.7	
NB-64	-					<0.2	0.68	2
NB-65			2			0.2	0.39	2
NB-66						<0.2	0.64	3
NB-67						<0.2	0.79	
NB-68		-				<0.2	1.07	1
NB-69						<0.2	1.28	
NB-70			-			<0.2	0.7	
NB-71						<0.2	0.7	
			0					

Page 2 VA11265555 NB Results from ALS sent jan 23 2012

-				-				
	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41
					1			
SAMPLE	в	Ва	Be	Bi	Ca	Cd	Co	Cr
DESCRIPTION	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm
NB-35	<10	90		<2	-	<0.5	11	12
NB-36	<10	100		<2		<0.5	8	5
NB-37	<10		<0.5	2		<0.5	9	2
NB-38	<10		<0.5	<2	0.35	<0.5	9	3
NB-39	<10		<0.5	<2		<0.5	12	3
NB-40	<10	110	0.5	<2		<0.5	11	4
NB-41	<10	60	0.5			<0.5	7	4
NB-42	<10		<0.5	<2		<0.5	17	8
NB-43	<10		<0.5	<2		<0.5	19	10
NB-44	<10		<0.5	<2		<0.5	22	14
NB-45	<10		<0.5	<2	and the second s	<0.5	26	16
NB-46	<10	and the second se	<0.5	<2	a construction of the second sec	<0.5	21	12
NB-47	<10	and the second se	<0.5	<2	and the second se	<0.5	21	12
NB-48	<10	150	0.6			<0.5	21	33
NB-49	<10	100	<0.5	<2	0.49	<0.5	25	15
NB-50	<10		<0.5	<2		<0.5	30	18
NB-51	<10		<0.5	<2	0.38	<0.5	30	17
NB-52	<10	90	<0.5	<2	0.25	<0.5	21	10
NB-53	<10	160	<0.5	2	0.47	<0.5	17	8
NB-54	<10	100	<0.5	2		Two is not a company of the local data and the loca	23	14
NB-55	<10	110	0.6	<2	0.5	2.6		11
NB-56	<10	80	<0.5	<2	0.35	1.3	15	6
NB-57	<10	90	0.5	3	0.38	1.1	18	6
NB-58	<10	90	< 0.5	3		1.7	17	7
NB-60	<10	150	< 0.5			1.1	11	3
NB-61	<10	160	1	2	0.53	2.5	25	12
NB-62	<10	110	0.7	4	0.47	3.4	31	18
NB-63	<10	110	0.7	3		2.8	26	19
NB-64	<10	100	<0.5	3		<0.5	2	-
NB-65	<10		<0.5	3		<0.5	1	
NB-66	<10	780	0.7	3		1.2	15	1
NB-67	<10	120	<0.5	2		1.1	12	4
NB-68	<10	630	0.9			2.5	25	8
NB-69	<10	660		3	0.48			8
NB-70	<10	100	<0.5	2	0.32	2.1		
NB-71	<10	100	0.5	4	0.33	2.8	21	7

Page 3 VA11265555 NB Results from ALS sent jan 23 2012

	3 10 3 10 3 10 3 10 3 10 3 10 3 10 3 10 3 10 3 10 3 10 3 10 3 10 3 10 3 10 3 20 3 20 3 10 3 20 3 10 3 20 3 10 3 10	1 <1 <1 <1 <1	0.12 0.06 0.04 0.04 0.07 0.1	ME-ICP41 La ppm 30 30 30 30 50 60 50 60 60 50 60 50 50 60 30 30 30 30 30 30 30 30 30 30 30 30 30	0.3 0.25 0.28 0.29 0.19 0.28 0.32 0.32 0.4	91 117 198 106 120 118 80
Fe % 2 6.17 4.448 0 4.23 2 5.01 4 7.03 1 7.7 8.38 7 12.35 5 19.2 9 15.6 9 18.6 8 21.2 9 15.6 9 18.6 8 21.2 9 15.6 9 18.6 9 23.8 9 22.4 8 15.1 9 23.8 9 22.4 9 11.4 9 16.1 1 0.6	Ga ppm 7 10 8 10 8 10 9 1	Hg ppm <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	к % 0.13 0.14 0.1 0.1 0.1 0.12 0.13 0.12 0.16 0.13 0.12 0.14 0.14 0.14 0.14 0.12 0.06 0.04 0.04 0.07 0.07	La ppm 30 30 30 50 60 50 50 50 50 50 50 50 30 30 30 30 20	Mg % 0.43 0.23 0.25 0.28 0.29 0.19 0.28 0.32 0.32 0.32 0.39 0.39 0.39 0.32 0.32 0.32 0.26 0.26 0.28	Mn ppm 69 62 68 96 86 95 74 95 105 120 91 117 198 106 120 118 80
% 2 6.17 4 4.48 0 4.23 2 5.01 4 7.03 4 7.03 4 7.03 4 7.03 4 7.03 4 7.03 5 19.2 5 19.2 0 15.6 0 18.6 2 15.3 0 18.3 0 23.8 0 23.8 0 22.4 15.1 11.4 16.1 10.6	ppm 7 10 3 10 3 10 3 10 3 10 3 10 3 10 3 10 3 10 3 10 3 10 3 10 3 10 3 10 3 10 3 10 3 20 3 10 3 20 3 10 3 20 3 10 3 10	ppm <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	% 0.13 0.14 0.1 0.1 0.12 0.13 0.12 0.13 0.12 0.16 0.13 0.14 0.14 0.14 0.14 0.12 0.06 0.04 0.04 0.04 0.07 0.07	ppm 30 30 50 60 50 90 50 60 40 50 50 50 30 30 30 20	% 0.43 0.23 0.25 0.28 0.29 0.19 0.28 0.32 0.32 0.32 0.39 0.39 0.39 0.39 0.32 0.32 0.26 0.26 0.28	ppm 69 62 68 96 86 95 74 95 105 120 91 117 198 106 120 118 80
% 2 6.17 4 4.48 0 4.23 2 5.01 4 7.03 4 7.03 4 7.03 4 7.03 4 7.03 4 7.03 5 19.2 5 19.2 0 15.6 0 18.6 2 15.3 0 18.3 0 23.8 0 23.8 0 22.4 15.1 11.4 16.1 10.6	ppm 7 10 3 10 3 10 3 10 3 10 3 10 3 10 3 10 3 10 3 10 3 10 3 10 3 10 3 10 3 10 3 10 3 20 3 10 3 20 3 10 3 20 3 10 3 10	ppm <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	% 0.13 0.14 0.1 0.1 0.12 0.13 0.12 0.13 0.12 0.16 0.13 0.14 0.14 0.14 0.14 0.12 0.06 0.04 0.04 0.04 0.07 0.07	ppm 30 30 50 60 50 90 50 60 40 50 50 50 30 30 30 20	% 0.43 0.23 0.25 0.28 0.29 0.19 0.28 0.32 0.32 0.32 0.39 0.39 0.39 0.39 0.32 0.32 0.26 0.26 0.28	ppm 69 62 68 96 86 95 74 95 105 120 91 117 198 106 120 118 80
% 2 6.17 4 4.48 0 4.23 2 5.01 4 7.03 4 7.03 4 7.03 4 7.03 4 7.03 4 7.03 5 19.2 5 19.2 0 15.6 0 18.6 2 15.3 0 18.3 0 23.8 0 23.8 0 22.4 15.1 11.4 16.1 10.6	ppm 7 10 3 10 3 10 3 10 3 10 3 10 3 10 3 10 3 10 3 10 3 10 3 10 3 10 3 10 3 10 3 10 3 20 3 10 3 20 3 10 3 20 3 10 3 10	ppm <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	% 0.13 0.14 0.1 0.1 0.12 0.13 0.12 0.13 0.12 0.16 0.13 0.14 0.14 0.14 0.14 0.12 0.06 0.04 0.04 0.04 0.07 0.07	ppm 30 30 50 60 50 90 50 60 40 50 50 50 30 30 30 20	% 0.43 0.23 0.25 0.28 0.29 0.19 0.28 0.32 0.32 0.32 0.39 0.39 0.39 0.39 0.32 0.32 0.26 0.26 0.28	ppm 69 62 68 96 86 95 74 95 105 120 91 117 198 106 120 118 80
2 6.17 4.448 0 4.23 2 5.01 4 7.03 1 7.7 1 8.38 7 12.35 5 19.2 0 15.6 0 18.6 8 21.2 5 15.3 0 18.3 1 7.6 0 23.8 0 22.4 8 15.1 1 4.48 0 4.23 1 7.7 1 8.38 7 12.35 1 9.2 0 15.6 0 18.6 8 21.2 1 1.4 0 23.8 0 22.4 1 1.4 0 23.8 0 20.4 1 1.4 0 20.6 1 1.4 0 2.5 1 1.5 1 1.4 0 2.5 1 1.5 1 1.4 0 2.5 1 1.5 1	7 10 8 10 8 10 1 <10 8 10 7 10 8 10 7 10 8 10 7 10 8 10 7 10 8 10 10 8 10 10 8 10 10 8 10 10 10 10 10 10 10 10 10 10	<1	0.13 0.14 0.1 0.1 0.12 0.13 0.12 0.13 0.12 0.16 0.13 0.14 0.14 0.14 0.14 0.12 0.06 0.04 0.04 0.04 0.07 0.1	30 30 50 60 50 90 50 60 40 50 50 70 50 30 30 30 20	0.43 0.23 0.25 0.28 0.29 0.19 0.28 0.32 0.32 0.32 0.39 0.39 0.39 0.39 0.32 0.32 0.26 0.26 0.28	69 62 68 96 86 95 74 95 105 120 91 117 198 106 120 118 80
1 4.44 0 4.23 2 5.01 4 7.03 1 7.7 1 8.38 7 12.35 5 19.2 9 15.6 9 15.6 9 18.8 2 15.3 9 18.3 17.6 23.8 9 22.4 8 11.4 9 16.1 10.6 10.6	3 10 3 10 3 10 3 10 3 10 3 10 3 10 3 10 3 10 3 10 3 10 3 10 3 10 3 10 3 10 3 20 3 20 3 10 3 20 3 10 3 20 3 10 3 10	<1	0.14 0.1 0.1 0.12 0.13 0.12 0.16 0.13 0.14 0.14 0.14 0.14 0.12 0.06 0.04 0.04 0.04 0.07 0.1	30 30 50 50 90 50 50 50 50 70 50 30 30 30 20	0.3 0.25 0.28 0.29 0.19 0.28 0.32 0.32 0.39 0.36 0.39 0.39 0.32 0.32 0.26 0.26 0.28	62 68 58 96 86 95 74 95 105 120 91 117 198 106 120 118 80
0 4.23 2 5.01 4 7.03 4 7.03 4 7.03 4 7.03 4 7.03 4 7.03 1 7.7 8 8.38 7 12.35 9 15.6 9 15.6 9 18.6 9 18.3 9 18.3 9 23.8 9 22.4 8 11.4 9 16.1 10.6 10.6	<10	<1	0.1 0.1 0.08 0.12 0.13 0.12 0.16 0.13 0.14 0.14 0.14 0.14 0.12 0.06 0.04 0.04 0.04 0.07 0.1	30 50 60 90 50 60 40 50 50 70 50 30 30 30 20	0.23 0.25 0.28 0.29 0.19 0.28 0.32 0.32 0.39 0.36 0.39 0.32 0.32 0.26 0.26 0.28	68 58 96 86 95 74 95 105 120 91 117 198 106 120 118 80
2 5.01 4 7.03 1 7.7 1 8.38 7 12.35 5 19.2 9 15.6 9 18.6 8 21.2 9 15.6 9 18.6 8 21.2 9 15.6 9 18.6 9 23.8 9 22.4 8 15.1 9 23.8 9 22.4 9 11.4 9 16.1 1 0.6	<10 3 10 3 10 4 10 5 10 6 10 6 10 7 10 6 10 7 10 8 10 9 10 10 10 10 20 10 20 10 20 10 20 10 10 10 10	<1	0.1 0.08 0.12 0.13 0.12 0.16 0.13 0.14 0.14 0.14 0.14 0.12 0.06 0.04 0.04 0.07 0.1	50 60 50 90 50 60 40 50 50 70 50 30 30 30 20	0.25 0.28 0.29 0.19 0.28 0.32 0.49 0.39 0.39 0.39 0.39 0.49 0.32 0.26 0.26 0.28	58 96 86 95 74 95 105 120 91 117 198 106 120 118 80
4 7.03 1 7.7 1 8.38 7 12.35 5 19.2 6 15.6 0 18.6 8 21.2 5 15.3 0 18.3 0 18.3 0 23.8 0 22.4 1 15.1 1 14.4 1 10.6	3 10 10 10 3 10 4 10 5 10 6 10 6 10 6 10 6 10 7 10 8 20 10 20 10 20 10 20 10 20 10 10 10 10	<1	0.08 0.12 0.13 0.12 0.16 0.13 0.14 0.14 0.14 0.14 0.12 0.06 0.04 0.04 0.07 0.1	60 50 90 50 60 40 50 50 70 50 30 30 30 20	0.28 0.29 0.19 0.28 0.32 0.4 0.39 0.36 0.39 0.49 0.32 0.26 0.26 0.28	96 86 95 74 95 105 120 91 117 198 106 120 118 80
1 7.7 8.38 12.35 9 15.6 9 15.6 9 15.6 9 15.3 9 18.3 9 15.3 9 18.3 17.6 23.8 9 22.4 11.4 16.1 10.6 10.6	10 10	<1 <1 <1 <1 <1 <1 <1 <1 1 <1 1 <1 1 <1	0.12 0.13 0.12 0.16 0.13 0.1 0.14 0.14 0.14 0.12 0.06 0.04 0.04 0.04 0.07 0.1	50 90 50 40 50 50 70 50 30 30 30 20	0.29 0.19 0.28 0.32 0.4 0.39 0.39 0.39 0.39 0.49 0.32 0.26 0.26 0.28	86 95 74 95 105 120 91 117 198 106 120 118 80
8.38 12.35 19.2 15.6 18.6 21.2 15.6 18.6 21.2 15.3 18.3 17.6 23.8 22.4 11.4 16.1 10.6	8 10 5 10 6 10 6 10 7 10 7 10 7 10 8 20 8 20 9 20 9 20 9 20 10 10 10 10 10 10 10 10 10 1	<1 <1 <1 <1 <1 <1 1 <1 1 <1 1 <1 1 <1	0.13 0.12 0.16 0.13 0.1 0.14 0.14 0.14 0.12 0.06 0.04 0.04 0.04 0.07 0.1	90 50 60 50 50 70 50 30 30 30 20	0.19 0.28 0.32 0.4 0.39 0.36 0.39 0.49 0.32 0.26 0.26 0.28	95 74 95 105 120 91 117 198 106 120 118 80
12.35 19.2 15.6 18.6 18.6 18.7 15.3 18.3 17.6 23.8 22.4 15.1 11.4 16.1 10.6	5 10 2 10 5 10 6 10 7 10	<1 <1 <1 <1 1 <1 1 <1 1 <1 1 <1 (1) <1 (1) <1 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1	0.12 0.16 0.13 0.1 0.14 0.14 0.14 0.12 0.06 0.04 0.04 0.04 0.07 0.1	50 60 50 50 70 50 30 30 30 20	0.28 0.32 0.4 0.39 0.36 0.39 0.49 0.32 0.26 0.26 0.28	74 95 105 120 91 117 198 106 120 118 80
5 19.2 9 15.6 9 15.6 9 18.6 8 21.2 9 18.3 9 18.3 9 18.3 9 22.4 9 22.4 8 15.1 9 11.4 9 16.1 10.6	2 10 5 10 6 10 7 10 7 10 7 10 7 20 7 20 7 20 7 20 7 20 7 10 7 10 7 10 7 10 7 10 7 10 7 10 7 1	<1 <1 <1 1 <1 1 <1 1 <1 <1 <1 <1 <1 <1 <	0.16 0.13 0.1 0.14 0.14 0.14 0.12 0.06 0.04 0.04 0.07 0.1	60 40 50 70 50 30 30 30 20	0.32 0.4 0.39 0.36 0.39 0.49 0.32 0.26 0.26 0.28	95 105 120 91 117 198 106 120 118 80
15.6 18.6 18.6 15.3 15.3 18.3 17.6 23.8 22.4 15.1 11.4 16.1 10.6	5 10 5 10 7 10 7 10 7 10 7 10 7 10 7 10 7 10 7	<1 <1 1 <1 1 <1 1 <1 <1 <1 <1 <1 <1	0.13 0.1 0.14 0.14 0.12 0.06 0.04 0.04 0.04 0.07 0.1	40 50 70 50 30 30 30 20	0.4 0.39 0.36 0.39 0.49 0.32 0.26 0.26 0.28	105 120 91 117/ 198 106 120 118 80
18.6 21.2 15.3 18.3 17.6 23.8 22.4 15.1 11.4 16.1 10.6	5 10 10 200 10 200 200 200 10 200 10 10 10	<1 <1 1 <1 1 <1 <1 <1 <1 <1 <1	0.1 0.14 0.14 0.12 0.06 0.04 0.04 0.07 0.1	50 50 50 30 30 30 20	0.39 0.36 0.39 0.49 0.32 0.26 0.26 0.28	120 91 117 198 106 120 118 80
8 21.2 9 15.3 9 18.3 17.6 9 23.8 9 22.4 8 15.1 8 11.4 9 16.1 10.6	2 10 10 200 10 200 200 10 10 10 10	<1 1 <1 1 <1 <1 <1 <1 <1 <1	0.14 0.12 0.06 0.04 0.04 0.07 0.1	50 70 50 30 30 30 20	0.36 0.39 0.49 0.32 0.26 0.26 0.28	91 117 198 106 120 118 80
5 15.3 9 18.3 17.6 9 23.8 9 22.4 8 15.1 8 11.4 9 16.1 10.6	10 200 200 200 100 100 100	1 <1 <1 <1 <1 <1	0.14 0.12 0.06 0.04 0.04 0.07 0.1	70 50 30 30 30 20	0.39 0.49 0.32 0.26 0.26 0.28	1170 1980 1060 1200 1180 809
18.3 17.6 23.8 22.4 15.1 11.4 16.1 10.6	20 10 20 20 10 10 10	1 <1 1 <1 <1 <1	0.12 0.06 0.04 0.04 0.07 0.1	50 30 30 30 20	0.49 0.32 0.26 0.26 0.28	198 106 120 118 80
17.6 23.8 22.4 15.1 3 11.4 9 16.1 7 10.6	0 10 20 20 10 10 10	<1 <1 <1 <1 <1 <1	0.06 0.04 0.04 0.07 0.1	30 30 30 20	0.32 0.26 0.28 0.28	106 120 118 80
23.8 22.4 15.1 11.4 16.1 10.6	20 20 10 10 10	1 <1 <1 <1	0.04 0.04 0.07 0.1	30 30 20	0.26 0.26 0.28	120 118 80
22.4 3 15.1 3 11.4 9 16.1 7 10.6	20 10 10 10	<1 <1 <1	0.04 0.07 0.1	30 20	0.26 0.28	118 80
15.1 11.4 16.1 10.6	10 10 10	<1 <1	0.07	20	0.28	809
8 11.4 9 16.1 7 10.6	10	<1	0.1	and the second se	and the second se	72
16.1	. 10					
10.6			0.08	40	0.45	86
	10	<1	0.09	30	0.85	66
		<1	0.11	10	0.79	55
5.47	the second se	<1	0.1	10	1.09	53
7.16				20	0.55	493
5.16		<1	0.16	30	0.35	43
10.35		<1	0.11	20	0.53	560
		and the second se				72
					a second s	734
		<1			in the second seco	53
	<10	<1		a second s		73
		<1			and the second se	870
	and the second data was not as a se	the local division of			the second s	400
						500
8.99	10	<1		20		563
						514
			0.08	30	0.23	58
76185884	7 12.4 6 1.96 1 0.61 8 4.61 5 5.49 8 9.81 8 8.99 4 9.38	7 12.4 10 6 1.96 <10	7 12.4 10 1 6 1.96 <10	7 12.4 10 1 0.09 6 1.96 <10	7 12.4 10 1 0.09 30 6 1.96 <10	7 12.4 10 1 0.09 30 0.72 6 1.96 <10

Page 4 VA11265555 NB Results from ALS sent jan 23 2012

	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41
CANADIC	140	10		P	Db.	c	Ch.	5.
DESCRIPTION	Mo	Na %	Ni	-	Pb	S %	Sb	Sc
NB-35	ppm 2		ppm 30	ppm 1010	ppm 11	< 0.01	ppm 3	ppm
NB-36	3	0.06	15	680		<0.01	2	-
NB-37	2	and the second s	11	660		<0.01	5	
NB-38	3		13	670		<0.01	11	
NB-39	1		16			<0.01	3	
NB-40	2		14	910	20	0.01	5	
NB-41	2		9			<0.01	10	
NB-42	2		13	2010		<0.01	3	
NB-43	2	0.04	11	2980	the second se	<0.01	<2	
NB-44	2		26	1850		<0.01	<2	
NB-45	2		29	2230		<0.01	<2	
NB-46	3		18	3040		<0.01	<2	-
NB-47	2		18	3290	a second s	<0.01	5	
NB-48	1	0.04	56	2610	and the second se	<0.01	4	
NB-49	2		28	1580		<0.01	2	-
NB-50	3		29	1450		<0.01	<2	
NB-51	3		26	1270		<0.01	2	
NB-52	2		21	520	and the second se	< 0.01	<2	-
NB-53	2		14	1400	the second s	<0.01	<2	
NB-54	2	0.03	30	1820		<0.01	<2	-
NB-55	1	0.03	41	1440	3	0.09	the second s	
NB-56	1	0.04	36	890		0.07	and the second se	
NB-57	1	0.04	42	940		0.08		
NB-58	1	0.03	25	1070		0.05		-
NB-60	1	0.07	10	1260	2	0.05	and the second se	
NB-61	2	0.02	22	1550	9	0.28		-
NB-62	1	0.03	61	1350	2	0.37		
NB-63	1	0.03	51	1460	2	0.12		
NB-64	2		3	1110	18	0.03		
NB-65		<0.01	2	150	17	0.09	2	
NB-66	4	0.04	13	2540	13	0.13		
	1	0.04	13	1010		0.07		
						0.44		
NB-67	2					0.35		
NB-67 NB-68	2	0.03	24	1600		0.33	52	
NB-67	2	0.03	24 14			0.35	<2	

Page 5 VA11265555 NB Results from ALS sent jan 23 2012

	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41
· · · · · · · · · · · · · · · · · · ·	MIC-ICF41	WICHUPHI	WIC-ICF41	WIE-ICF41	WIE-ICF41	MC-ICF41	WICHCP41	WIE-ICF41
SAMPLE	Sr	Th	Ti	TI	U	v	W	Zn
DESCRIPTION	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm
NB-35		<20	0.32	<10	<10	248	<10	12
NB-36		<20	0.27	<10	<10		<10	10
NB-37		<20	0.24	<10	<10	139	<10	9
NB-38		<20			<10		<10	10
NB-39		<20		<10	<10		<10	13
NB-40		<20	0.32		<10		<10	23
NB-41		<20	0.28		<10	and the second se	<10	22
NB-42		<20		<10	<10	-	<10	8
NB-43		<20		<10	<10		<10	12
NB-44		<20		<10	<10	558	<10	14
NB-45		<20	0.41	and the second se	<10		<10	19
NB-46		<20	0.35		<10		<10	12
NB-47		<20	0.44		<10		<10	14
NB-48		<20	1.13		<10		<10	41
NB-49		<20	0.47	<10	<10	627	<10	20
NB-50		<20	0.51		<10		<10	22
NB-51		<20	0.57		<10		<10	22
NB-52		<20	0.53		<10		<10	16
NB-53		<20	0.35		<10	392	<10	11
NB-54	39	<20	0,31	and the second se	<10	566	<10	12
NB-55		<20	0.27	<10	<10		<10	10
NB-56		<20	0.2	<10	<10	166	<10	8
NB-57		<20	0.24	the second se	<10		<10	8
NB-58		<20	0.21		<10		<10	7
NB-60	61	<20	0.18	Contraction of the local division of the loc	<10		<10	6
NB-61		<20	0.19	<10	<10		<10	9
NB-62		<20	0.24	<10	<10		<10	11
NB-63	51	<20	0.24	<10	<10	-	<10	11
NB-64	35	<20	<0.01	<10	<10	8	<10	
NB-65	18	20	0.01	<10	<10		<10	2
NB-66		<20	0.05		<10		<10	8
NB-67			0.21		<10		<10	8
NB-68		<20	0.17		<10		<10	8
NB-69		<20	0.17		<10		<10	9
NB-70		<20	0.23		<10		<10	9
NB-71	35	<20	0.3	<10	<10	371	<10	12

Page 6 VA11265555 NB Results from ALS sent jan 23 2012

Appendix J

Fire Assay Procedure

Au-SCR21 Precious Metals Analysis – Screen Metallics Gold, Double Minus

Sample Decomposition:

Fire Assay Fusion (FA-FUS05)

Analytical Method:

Gravimetric

The sample pulp (1000 g) is passed through a 100 m (Tyler 150 mesh) stainless steel screen. Any material remaining on the screen (+) 100 m is retained and analyzed in its entirety by fire assay with gravimetric finish and reported as the Au (+) fraction. The material passing through the screen () 100 m fraction) is homogenized and two sub-samples are analyzed by fire assay with AAS finish (AuAA25 and AuAA25D). The average of the two AAS results is taken and reported as the Au (-) fraction result. All three values are used in calculating the combined gold content of the plus and minus fractions.

The gold values for both the (+) 100 and (-) 100 micron fractions are reported together with the weight of each fraction as well as the calculated total gold content of the sample.

Calculations:

 $Au^{-}avg(ppm) = \frac{Au^{-}(1) + Au^{-}(2)}{2}$

 $\begin{aligned} \mathsf{AuTotal}(\mathsf{ppm}) = \frac{(\mathsf{Au}^-\mathsf{avg}(\mathsf{ppm}) \times \mathsf{Wt}.\mathsf{Minus}(g)) + (\mathsf{Au}^+(\mathsf{ppm}) \times \mathsf{Wt}.\mathsf{Plus}(g))}{(\mathsf{Wt}.\mathsf{Minus}(g) + \mathsf{Wt}.\mathsf{Plus}(g))} \end{aligned}$

Fire Assay Procedure

Determination Reported	Description	Units	Lower Limit	Upper Limit
Au Total (+)(-) Combined	Total gold content of sample as determined by metallics calculation above.	ppm	0.05	1,000
Au (+) Fraction	Gold content of plus fraction determined by Au- GRA21.	ppm	0.05	100,000
Au (-) Fraction	Gold content of minus fraction. Reported as average of two subsamples.	ppm	0.05	1000
Au-AA25	Gold content of first minus fraction subsample.	ppm	0.05	1000
Au-AA25D	Gold content of second minus fraction subsample.	ppm	0.05	1000
Au (+) mg	Weight of gold in plus fraction.	mg	0.001	1000
WT. (+) Fraction Entire	Weight of plus fraction.	g	0.01	1000
WT. (-) Fraction Entire	Weight of minus fraction.	g	0.1	100,000

RIGHT SOLUTIONS RIGHT PARTNER

www.alsglobal.com