Ministry of Energy, Mines \& Petroleum Resources Mining \& Minerals Division

Assessment Report

 BC Geological SurveyCLAIM NAME(S) (on which the work was done): see attached list
commodities sought: $\mathrm{Au}, \mathrm{Ag}, \mathrm{Cu}, \mathrm{Pb}, \mathrm{Zn}$
mINERAL INVENTORY MINFILE NUMBER(S), IF KNOWN:

1) Anglo Swiss Resources Inc.
2) \qquad

MAILING ADDRESS:
309-837 West Hastings Street
Vancouver, BC, B6C 3N6
OPERATOR(S) [who paid for the work]:
1)
)
2) \qquad

MAILING ADDRESS:

\qquad
PROPERTY GEOLOGY KEYWORDS (ethology, age, stratigraphy, structure, alteration, mineralization, size and attitude):
Jurassic Rossiand Group sedimentary and mafic volcanic rocks intruded by Jurassic plutons. A multitude of skarn, Au-quartz vein, alkalic porphyry, polymetallic vein and possible vas showings, Kenvi(le Mine

CLAIM DATA

Tenure Number	Claim Name	Expiry Date	Anglo Swiss Ownership	Area
232819	REFER TO LOT TABLE	2016/Dec/31	60\%	25.0000
232820	REFER TO LOT TABLE	2016/Dec/31	60\%	25.0000
232821	REFER TO LOT TABLE	2016/Dec/31	60\%	25.0000
232834	REFER TO LOT TABLE	2016/Dec/31	60\%	25.0000
232835	REFER TO LOT TABLE	2016/Dec/31	60\%	25.0000
232836	REFER TO LOT TABLE	2016/Dec/31	60\%	25.0000
232839	RON \#1 FR.	2016/Dec/31	60\%	25.0000
232840	RON \#2 FR.	2016/Dec/31	60\%	25.0000
232841	RON \#4	2016/Dec/31	60\%	25.0000
232842	RON \#5	2016/Dec/31	60\%	25.0000
232843	RON \#6	2016/Dec/31	60\%	25.0000
232844	RON \#7	2016/Dec/31	60\%	25.0000
232845	RON \#8	2016/Dec/31	60\%	25.0000
232855	RON \#3 FR.	2016/Dec/31	60\%	25.0000
232883	REFER TO LOT TABLE	2016/Dec/31	100\%	25.0000
232884	REFER TO LOT TABLE	2016/Dec/31	100\%	25.0000
232885	REFER TO LOT TABLE	2016/Dec/31	100\%	25.0000
233098	TECGOLD	2016/Dec/31	100\%	400.0000
233099	TEC 1	2016/Dec/31	100\%	25.0000
233100	TEC 2	2016/Dec/31	100\%	25.0000
233101	TEC 3	2016/Dec/31	100\%	25.0000
233102	TEC 4	2016/Dec/31	100\%	25.0000
233103	TEC 5	2016/Dec/31	100\%	25.0000
233104	TEC 6	2016/Dec/31	100\%	25.0000
233105	TEC 7	2016/Dec/31	100\%	25.0000
233228	MAJESTIC FR.	2016/Dec/31	60\%	25.0000
233257	RON \#17 FR	2016/Dec/31	60\%	25.0000
233385	REFER TO LOT TABLE	2016/Dec/31	60\%	25.0000
233743	JOANIE \#3	2016/Dec/31	100\%	25.0000
233803	JOANIE \#4	2016/Dec/31	100\%	25.0000
233969	\#1 TEC FR.	2016/Dec/31	100\%	25.0000
234128	TECGOLD 102	2016/Dec/31	100\%	400.0000
300375	RON \#4 FR.	2016/Dec/31	60\%	25.0000
305573	LUCKY	2016/Dec/31	100\%	25.0000
305575	"LUCKY TYMES"	2016/Dec/31	100\%	25.0000
316100	JAMTT 5	2016/Dec/31	100\%	25.0000
316102	JAMTT 7	2016/Dec/31	100\%	25.0000
316105	TRMK 4-2	2016/Dec/31	100\%	25.0000
316106	TMRK 4-3	2016/Dec/31	100\%	25.0000
316554	GG 2	2016/Dec/31	100\%	25.0000
318959	RUTH 2	2016/Dec/31	100\%	25.0000
318960	RUTH 3	2016/Dec/31	100\%	25.0000
319690	RUTH 5	2016/Dec/31	100\%	25.0000
319692	RUTH 6	2016/Dec/31	100\%	25.0000
322437	P.B. \#1	2016/Dec/31	100\%	25.0000
322439	P.B. \#3	2016/Dec/31	100\%	25.0000
322440	P.B. \#4	2016/Dec/31	100\%	25.0000
322441	P.B. \#5	2016/Dec/31	100\%	25.0000

EQUITY

Tenure Number	Claim Name	Expiry Date	Anglo Swiss Ownership	Area
322443	P.B. \#7	2016/Dec/31	100\%	25.0000
322444	P.B. \#8	2016/Dec/31	100\%	25.0000
322445	J.D. \#1	2016/Dec/31	100\%	25.0000
322446	J.D. \#2	2016/Dec/31	100\%	25.0000
322447	J.D. \#3	2016/Dec/31	100\%	25.0000
322448	J.D. \#4	2016/Dec/31	100\%	25.0000
322450	J.D. \#6	2016/Dec/31	100\%	25.0000
324992	TMRK-3A	2016/Dec/31	100\%	25.0000
324994	TMRK-3C	2016/Dec/31	100\%	25.0000
324996	TMRK-3E	2016/Dec/31	100\%	25.0000
324998	TMRK 3-G	2016/Dec/31	100\%	25.0000
325462	RAM 1	2016/Dec/31	100\%	25.0000
325463	RAM 2	2016/Dec/31	100\%	25.0000
327227	R 1	2016/Dec/31	100\%	25.0000
327228	R2	2016/Dec/31	100\%	25.0000
327230	R 4	2016/Dec/31	100\%	25.0000
333280	GOLD HILL	2016/Dec/31	100\%	25.0000
337998	HOHO 1	2016/Dec/31	100\%	25.0000
337999	HOHO 2	2016/Dec/31	100\%	25.0000
338000	HOHO 3	2016/Dec/31	100\%	25.0000
338001	HOHO 4	2016/Dec/31	100\%	25.0000
338002	HOHO 7	2016/Dec/31	100\%	25.0000
338003	НОНО 8	2016/Dec/31	100\%	25.0000
338004	HOHO 9	2016/Dec/31	100\%	25.0000
338005	НОНО 10	2016/Dec/31	100\%	25.0000
338006	HOHO 11	2016/Dec/31	100\%	25.0000
338008	HEEHAW 1	2016/Dec/31	100\%	25.0000
338009	HEEHAW 2	2016/Dec/31	100\%	25.0000
338010	HEEHAW 3	2016/Dec/31	100\%	25.0000
338011	HEEHAW 4	2016/Dec/31	100\%	25.0000
338013	HEEHAW 6	2016/Dec/31	100\%	25.0000
338014	HEEHAW 7	2016/Dec/31	100\%	25.0000
338015	HEEHAW 8	2016/Dec/31	100\%	25.0000
338017	HEEHAW 10	2016/Dec/31	100\%	25.0000
338020	JD 5	2016/Dec/31	100\%	25.0000
338021	JD 7	2016/Dec/31	100\%	25.0000
338022	JD 8	2016/Dec/31	100\%	25.0000
338023	JD 9	2016/Dec/31	100\%	25.0000
338024	JD 10	2016/Dec/31	100\%	25.0000
338026	JD 12	2016/Dec/31	100\%	25.0000
338027	JD 13	2016/Dec/31	100\%	25.0000
338028	JD 14	2016/Dec/31	100\%	25.0000
338030	HOHO 5	2016/Dec/31	100\%	25.0000
338031	HOHO 6	2016/Dec/31	100\%	25.0000
338479	DYLANNI	2016/Dec/31	100\%	25.0000
338481	DYLANN 3	2016/Dec/31	100\%	25.0000
338816	R.C. 1	2016/Dec/31	100\%	25.0000
338817	R.C. 2	2016/Dec/31	100\%	25.0000
338978	R.C. 13	2016/Dec/31	100\%	25.0000
338979	R.C. 14	2016/Dec/31	100\%	25.0000

Tenure Number	Claim Name	Expiry Date	Anglo Swiss Ownership	Area
339285	R3	2016/Dec/31	100\%	25.0000
339576	SJ2	2016/Dec/31	100\%	25.0000
339582	SJ4	2016/Dec/31	100\%	25.0000
339584	SJ6	2016/Dec/31	100\%	25.0000
340027	SJ10	2016/Dec/31	100\%	25.0000
340029	SJ 12	2016/Dec/31	100\%	25.0000
340030	SJ 13	2016/Dec/31	100\%	25.0000
340031	SJ 14	2016/Dec/31	100\%	25.0000
341575	SJ 8	2016/Dec/31	100\%	25.0000
347153	DYLANN 5	2016/Dec/31	100\%	25.0000
347155	DYLANN 8	2016/Dec/31	100\%	25.0000
349881	DEB 2	2011/Dec/31	100\%	25.0000
349882	DEB 3	2011/Dec/31	100\%	25.0000
349883	DEB 4	2011/Dec/31	100\%	25.0000
350445	HOHO 12	2016/Dec/31	100\%	25.0000
358264	QUEEN	2011/Dec/31	100\%	25.0000
365594	PR - 11	2012/Apr/01	100\%	25.0000
365595	PR - 12	2012/Apr/01	100\%	25.0000
365596	PR - 13	2012/Apr/01	100\%	25.0000
365597	PR - 14	2012/Apr/01	100\%	25.0000
368294	VE-2	2012/Apr/01	100\%	25.0000
374494	ROYAL ARTHUR	2016/Dec/31	60\%	25.0000
378774	ART 2	2016/Dec/31	100\%	25.0000
378775	ART 3	2016/Dec/31	60\%	25.0000
378776	MONTY	2016/Dec/31	100\%	25.0000
380873	ROVER 7	2016/Dec/31	100\%	25.0000
381521	SILVER LYNX 3	2016/Dec/31	100\%	25.0000
381523	SILVER LYNX 5	2016/Dec/31	100\%	25.0000
381524	SILVER LYNX 6	2016/Dec/31	100\%	25.0000
381526	SILVER LYNX 8	2016/Dec/31	100\%	25.0000
382909	SILVER LYNX 12	2016/Dec/31	100\%	25.0000
382913	SILVER LYNX 16	2016/Dec/31	100\%	25.0000
386738	SILVER LYNXI	2016/Dec/31	100\%	500.0000
390701	HEEHAW 11	2016/Dec/31	100\%	25.0000
390702	HEEHAW 12	2016/Dec/31	100\%	25.0000
390703	HEEHAW 13	2016/Dec/31	100\%	25.0000
390704	HEEHAW 14	2016/Dec/31	100\%	25.0000
390705	HEEHAW 15	2016/Dec/31	100\%	25.0000
390706	HEEHAW 16	2016/Dec/31	100\%	25.0000
390886	S.J. 15	2016/Dec/31	100\%	25.0000
390887	S.J. 16	2016/Dec/31	100\%	25.0000
391367	MAJESTIC \#1	2016/Dec/31	60\%	25.0000
391368	MAJESTIC \#2	2016/Dec/31	60\%	25.0000
392164	MAJESTIC 3	2016/Dec/31	60\%	25.0000
393337	49ER	2016/Dec/31	100\%	25.0000
394694	JD 15	2016/Dec/31	100\%	25.0000
394695	JD 16	2016/Dec/31	100\%	25.0000
394697	JD 18	2016/Dec/31	100\%	25.0000
394700	JD 21	2016/Dec/31	100\%	25.0000
403796	RED TOP	2016/Dec/31	100\%	25.0000

Tenure			Anglo Swiss Number	Claim Name	\quad Expiry Date	
:---:						
507990						
508178						
509288						
509290						

Tenure Number	Claim Name	Expiry Date	Anglo Swiss Ownership	Area
538814	NELSON B	2016/Dec/31	100\%	21.0000
538815	NELSON C	2016/Dec/31	100\%	21.0010
538816	NELSON D	2016/Dec/31	100\%	42.0070
538868	NELSONE	2016/Dec/31	100\%	20.9987
538869	NELSON F	2016/Dec/31	100\%	21.0052
545408	RCARTER01	2011/Dec/31	100\%	42.0151
546651	RCARTER03	2011/Dec/31	100\%	63.0317
546657	RCARTER16	2011/Dec/31	100\%	84.0458
546882		2016/Dec/31	100\%	83.9649
546883		2016/Dec/31	100\%	83.9780
546884		2016/Dec/31	100\%	83.9642
546885		2016/Dec/31	100\%	83.9783
546886		2016/Dec/31	100\%	41.9827
546887		2016/Dec/31	100\%	41.9824
546888		2016/Dec/31	100\%	83.9911
546889		2016/Dec/31	100\%	20.9969
546890		2016/Dec/31	100\%	210.0120
546892		2016/Dec/31	100\%	84.0231
546893		2016/Dec/31	100\%	84.0234
546898		2016/Dec/31	100\%	20.9970
546899		2016/Dec/31	100\%	84.0042
546900		2016/Dec/31	100\%	84.0060
546902		2016/Dec/31	100\%	21.0003
546905		2016/Dec/31	100\%	84.0359
546907		2016/Dec/31	100\%	63.0280
546908		2016/Dec/31	100\%	42.0130
546909		2016/Dec/31	100\%	21.0082
546910		2016/Dec/31	100\%	63.0085
546911		2016/Dec/31	100\%	63.0128
546912		2016/Dec/31	100\%	42.0103
546914		2016/Dec/31	100\%	21.0052
546915	GOOD HOPE	2016/Dec/31	100\%	42.0086
546916	GOOD HOPE 2	2016/Dec/31	100\%	21.0034
546917		2016/Dec/31	100\%	42.0182
546918	GH EAST	2016/Dec/31	100\%	21.0036
546920		2016/Dec/31	100\%	84.0224
546922		2016/Dec/31	100\%	42.0136
546923		2016/Dec/31	100\%	42.0169
546924		2016/Dec/31	100\%	21.0068
546925		2016/Dec/31	100\%	21.0085
546933		2016/Dec/31	100\%	42.0392
546934		2016/Dec/31	100\%	63.0545
546935		2016/Dec/31	100\%	21.0205
546936		2016/Dec/31	100\%	84.0644
546939		2016/Dec/31	100\%	63.0388
546940		2016/Dec/31	100\%	63.0442
546942		2016/Dec/31	100\%	42.0182
546943		2016/Dec/31	100\%	42.0184
546944	GH SOUTH	2016/Dec/31	100\%	21.0067
560690	NEW PIPE	2016/Dec/31	100\%	147.3850

Tenure Number	Claim Name	Expiry Date	Anglo Swiss Ownership	Area
614063	KEEP THE DREAM 1	2011/Dec/31	100\%	62.9906
614064	KEEP THE DREAM 2	2011/Dec/31	100\%	41.9823
615003	SAVE THE DAY 3	2011/Dec/31	100\%	20.9953
615004	SAVE THE DAY 4	2011/Dec/31	100\%	20.9985
637284	CHERRY 1	2011/Dec/31	100\%	21.0170
658223	TEC 10	2011/Dec/31	100\%	84.0751
672703	DW 1	2011/Dec/31	100\%	21.0154
683323	SILVER LYNX SOUTH	2011/Dec/31	100\%	168.2030
684405	DW 2	2011/Dec/31	100\%	21.0082
686624	DW 4	2011/Dec/31	100\%	21.0065
686626		2011/Dec/31	100\%	21.0082
687463	DW 7	2011/Dec/31	100\%	21.0204
687465	DW 6	2011/Dec/31	100\%	21.0049
688623	DW 11	2011/Dec/31	100\%	42.0094
688643	DW 12	2011/Dec/31	100\%	21.0117
705537	SHIRLEY	2011/Dec/31	100\%	525.8070
705538	CHARLENE	2011/Dec/31	100\%	525.7790
705539	JESSICA	2011/Dec/31	100\%	504.9770
705540	BRITTANY	2011/Dec/31	100\%	462.8860
705541	MARISHA	2011/Dec/31	100\%	525.9570
705542	MARISHA 2	2011/Dec/31	100\%	294.5250
705543	ALICIA	2011/Dec/31	100\%	505.0440
705544	LISA	2011/Dec/31	100\%	441.9700
705545	LAURA	2011/Dec/31	100\%	526.2090
705653	TAHOE	2011/Dec/31	100\%	505.1460
706547	DW 10	2011/Dec/31	100\%	63.0065
706548	DW 11	2011/Dec/31	100\%	21.0050
706549	DW 12	2011/Dec/31	100\%	42.0081
708742	DW 20	2011/Dec/31	100\%	42.0019
712902	NELSON FRACTURE	2011/Mar/04	100\%	21.0083
772522	MOTH	2011/May/12	100\%	526.3010
772542	MAMM	2011/May/12	100\%	504.9600
772562	ASW	2011/May/12	100\%	105.1750
532615		2011/Feb/15		21.04
524721	MAMMOTH	2011/Feb/15		63.1125
601191	MONARCH	2011/Dec/31		105.192
				22898.4001

Crown-granted Claims (note that their areas are completely contained within other claims):

LOT\#	C.G. Name	Anglo Swiss Ownership
101	Poorman	100%
102	Hardscrabble	100%
2550	Granite	100%
2551	Red Rock Fr.	100%
2556	White	100%

LOT\#	C.G. Name	Anglo Swiss Ownership
2557	Hardup	100%
2559	Election	100%
3691	Greenhorn Fr.	100%
3926	Onix	100%
3927	C\&K	100%
3928	Freemont	100%
4757	Venango	100%
4758	Shenango	100%
4787	Greenwood Fr.	100%
4788	Greenwood	100%
4789	Jackpot Fr.	100%
976	Muldoon	60%

Anglo Swiss Resources Inc.

2010 DIAMOND DRILLING REPORT ON THE KENVILLE MINE PROPERTY

Located in the Nelson Area
Nelson Mining District
NTS 82F 06, 11 and 12
$49.45193^{\circ} \mathrm{N}$ Latitude; 117.4159° W Longitude

-Prepared by-

ANGLO SWISS RESOURCES INC.

Suite 309, 837 West Hastings Street
Vancouver, BC, Canada
V6C 3N6
-Prepared by-
Jari Paakki, P.Geo.
ANGLO SWISS RESOURCES INC.
Suite 309, 837 West Hastings Street
Vancouver, BC, Canada
V6C 3N6
January 29, 2012

TABLE OF CONTENTS

TABLE OF CONTENTS 1
LIST OF APPENDICES 1
LIST OF TABLES 1
LIST OF FIGURES 1
LIST OF MAPS AND SECTIONS 1
SUMMARY 2
INTRODUCTION 2
RELIANCE ON OTHER EXPERTS 2
PROPERTY DESCRIPTION AND LOCATION 2
ACCESSIBILITY, CLIMATE, LOCAL RESOURCES, INFRASTRUCTURE, PHYSIOGRAPHY 2
HISTORY 4
Kenville Mine Area Exploration History 4
REGIONAL GEOLOGY AND MINERALIZATION 5
Regional Geology 5
Structure 8
Regional Mineralization 8
Volcanic Massive Sulphide Deposits 8
Porphyry Copper Gold: Alkalic. 8
Skarn Deposits 9
Gold-Quartz Veins 9
Polymetallic Veins (Ag-Pb-Zn+/-Au) 9
PROPERTY GEOLOGY AND MINERALIZATION 9
2010 EXPLORATION PROGRAM 10
DISCUSSION AND CONCLUSIONS 12
LIST OF APPENDICES
Drill Logs/Sections, Certificates of Analysis, Geologist's Certificate
LIST OF TABLES
Table 1: Statement of Expenditures 10
Table 2: Drill Hole Collar Data 11
Table 3: Signficant Results 2010 Drilling 12
LIST OF FIGURES
Figure 1: Location Map. 2
Figure 2: Kenville Crown Grants 4
Figure 3: Regional Geology 6
Figure 4: Drill Hole Location Map Error! Bookmark not defined.

SUMMARY

The Kenville gold mine property consists of 15 Crown Granted mineral claims, 4 staked mineral claims and 4 parcels of deeded surface property encompassing a total of 563 hectares located eight kilometres west of the City of Nelson, British Columbia. The property includes the past producing Kenville gold mine, which has been in operation intermittently since 1889. The mine has produced 65,236 ounces of gold at a grade of 0.68 oz/ton, 27,686 ounces of silver, 51,782 pounds of lead and 33,398 pounds of zinc between 1890 and 1954.

The 2010 exploration program on the Kenville Mine Property was undertaken from November 1 to December $31^{\text {st }}, 2010$ on Crown Grants consisting 5 holes totaling 2,982 metres to test the southern extension of high-grade veins form the past-producing Kenville. The cost of this work amounted to \$298,990.81.

The drilling encountered numerous high-grade gold which warrants further drilling to continue to expand the high-grade gold vein system south of the past-producing Kenville Mine. A further 10,000 metres of drilling is recommended.

INTRODUCTION

During late 2010 Anglo Swiss completed 5 diamond drill holes testing the southern extension of highgrade veins form the past-producing Kenville. The goal was to determine the extent of high-grade gold veins.

The literature used in compiling this report consisted of assessment reports filed with the British Columbia Ministry of Energy and Mines, government reports, and maps and private information.

RELIANCE ON OTHER EXPERTS

The author has not relied on a report, opinion or statement of an expert for information concerning legal, environmental, political or other issues.

PROPERTY DESCRIPTION AND LOCATION

The 100% owned Kenville gold mine property consists of 15 Crown Granted mineral claims, 4 staked mineral claims and 4 parcels of deeded surface property encompassing a total of 563 hectares located eight kilometres west of the City of Nelson, British Columbia. The property includes the past producing Kenville gold mine, which has been in operation intermittently since 1889. The mine has produced 65,236 ounces of gold at a grade of $0.68 \mathrm{oz} /$ ton, 27,686 ounces of silver, 51,782 pounds of lead and 33,398 pounds of zinc between 1890 and 1954. The main mine workings consist of seven levels and are found on the Crown Granted claims. The Crown Grants have yearly lease payments to the British Columbia government. All claims are in good standing until March 9, 2016.

ACCESSIBILITY, CLIMATE, LOCAL RESOURCES, INFRASTRUCTURE, PHYSIOGRAPHY

From Nelson, road access to the Kenville gold mine property is west via Highway 3a for approximately 1.0 kilometre to Granite Road, then southwest along Granite Road for 4.4 kilometres to the town of Blewett and southwest on Blewett Road for 2.0 kilometres to the Kenville Mine Road. From this point numerous
forestry and unpaved municipal roads access all parts of the property, including the surrounding regional properties. The local regional airport is located in Castlegar, approximately 32 kilometres to the west. Should materials be needed by air support, they can be obtained from Vancouver and Calgary. By highway, the city of Nelson is 663 kilometres from Vancouver, 624 kilometres from Calgary, 237 kilometres from Spokane, Washington and 67 kilometres from the city of Trail, British Columbia. The region is well-developed with rail lines, hydro-electric power generation capacity and a highly skilled workforce.

Figure 1: Location Map

Figure 2: Kenville Crown Grants

HISTORY

Exploration in the Nelson area began in the late $19^{\text {th }}$ century with the discovery of placer gold in Fortynine Creek, leading to a modest gold rush. While prospecting for gold the Hall brothers discovered silver-rich galena veins on Toad Mountain (Silver King mine). The very rich Ag-Cu ore quickly became famous in North America and Britain. The staking rush that ensued led to the development of many exposed polymetallic and gold-quartz vein systems in the area, and several of them became major producers for the time. However, the Silver King deserves the royal moniker, having produced $4,443,703 \mathrm{oz} \mathrm{Ag}$ and $14,968,812 \mathrm{lbs} \mathrm{Cu}$ from intermittent operation between 1889 and 1949.

Kenville Mine Area Exploration History

Within the Nelson Mining Camp Project claims, past-producers from the early- to mid-century include the Kenville (65,236 oz Au), Eureka (36,161 oz Ag), Venango (378 oz Au), Royal Canadian (108 oz Au), May and Jennie (39 oz Au), Gold Hill (303 oz Au), Referendum (118 oz Au), Northern Light (59 oz Ag) and Good Hope (90 oz Au). The largest producer of these was the Kenville mine (formerly Granite-Poorman mine)
discovered in 1888. Milling of ore from five northwest trending veins began in 1889 by Eagle Creek Mining Co. Production continued as the mine changed ownership at least nine times during its operation until the last ounce of gold was produced in 1954. By the end of production the mine had yielded $65,236 \mathrm{oz} \mathrm{Au}, 27,686 \mathrm{oz}$ $\mathrm{Ag}, 51,782 \mathrm{lbs} \mathrm{Pb}$ and $33,398 \mathrm{lbs} \mathrm{Zn}$. Although W, Cu and Cd were known to be present in the ore, no significant amounts of these metals were extracted. At the end of its production life the mine was owned by Noranda Mines Ltd. who kept the mill operating on feed from small-scale miners working in the area until the mine was decommissioned by Noranda in 1962 and all useable equipment was removed from the site. Nearby, the Eureka workings produced $36,161 \mathrm{oz} \mathrm{Ag}$ and $350,910 \mathrm{lbs} \mathrm{Cu}$ from 1905 to 1954 under the direction of at least 12 different operators. The pre-1970 history of the remaining smaller past-producers is poorly documented.

In 1969 Algoma Industries and Resources Ltd. acquired the Kenville mine property and subsequently sold it to Coral Industries in 1987 after a failed attempt at re-opening the mine. Coral Industries exercised its right to operate the mine in 1989 at which time it began an assessment of the milling operations and care and maintenance program. At the same time they amalgamated the Kenville mine property with the Venango property.

The Venango veins lie 500 m to the west and are deemed to be similar to the parallel GranitePoorman veins. These veins were not exploited until 1939 at which time 439 oz Ag and 378 oz Au were recovered from a single adit; however production records are scant. In 1980 DeKalb Mining Corp. completed a $2,932 \mathrm{~m}$ diamond drilling program on the Venango-Shenango and Greenwood claims. No results from the program are available. Ownership of the Kenville Mine property, including the Venango adit, was taken over by Anglo Swiss in 1992.

In 1994 Teck Exploration Ltd. optioned the Kenville mine property from Anglo Swiss and amalgamated it with the adjacent Ron property under option from Eric and Jack Denny. Teck's focus at this time was exploring for a bulk minable copper-gold porphyry target. To this end Teck completed 3083 m in 16 diamond drill holes, along with induced polarity, resistivity, ground magnetometer and geochemical surveys. Low-grade porphyry-style mineralization and alteration was encountered over short intervals in diamond drill holes (Thomson, 1997). Teck Exploration dropped the option in 1997.

In 2007 and 2008, Anglo Swiss drilled 15,500 m in 50 holes near the Kenville mine to further define the Granite-Poorman vein system and continue exploration for porphyry style mineralization. Results of this drilling are unknown as no report is available for this work.

REGIONAL GEOLOGY AND MINERALIZATION

Regional Geology

The Nelson Project area lies within the southern Omineca Belt at the eastern margin of the cordilleran accreted terranes (Figure 3). The Omineca Belt straddles the boundary between allocthonous accreted terranes, autocthonous accreted terranes and the Ancestral North American Margin. In southern BC it is characterized by folded and overthrust Proterozoic to Cambrian sedimentary rocks of the Purcell anticlinorium, Lower Cambrian sedimentary rocks of the Kootenay Terrane and Mesozoic oceanic and volcanic island arc rocks of the Quesnellia Terrane. The belt was formed in Jurassic to Early Cretaceous time as Quesnellia was thrust eastward over the autocthonous Kootenay Terrane and Ancestral North America (Gabrielse et al., 1991). The Mesozoic compression was accompanied by extensive folding, faulting, and plutonism. Metamorphic grades are locally high due to deep burial beneath tectonically thickened crust. This was followed by a period of extension resulting in extensional faulting, unroofing of metamorphic core complexes (i.e. Valhalla and Shuswap) and further plutonism (Hoy and Dunne, 2001).

Figure 2: Regional Geology

A brief description of the different units present in the Nelson area is provided below from oldest to youngest. Unless otherwise stated, all unit descriptions are based on those provided by Hoy and Dunne (2001).

Quesnellia Terrane - Rossland Group

The Rossland Group includes clastic rocks of the Archibald Formation and correlative Ymir Group, dominantly mafic volcanic and volcaniclastic rocks of the Elise formation and fine-grained clastic rocks of the Hall Formation. In the Nelson area and south towards Ymir, these three formations form south to southeast trending belts. The Rossland Group is Early Jurassic, constrained by macrofossils present in both the basal Archibald and stratigraphically highest Hall formations as well as U-Pb zircon dates returned from volcanic rocks of the Elise Formation. The Rossland Group represents the easternmost occurrence of rocks assigned to the accreted terranes.

Archibald Formation

The Archibald Formation is dominated by clastic rocks ranging from argillite to thick successions of conglomerate. The thickness of the formation is up to 2550 m and is separated from underlying Permian
rocks by an unconformity. The Archibald Formation is in abrupt to gradational contact with the overlying Elise Formation. Rare lenses of basalt to andesite flows and lapilli tuff occur in the upper portions of the formation outcropping on the slopes east of Erie Creek. The Ymir Group is interpreted to be a lateral deep- water facies equivalent to the Archibald Formation and consists of argillite and deep-water turbidites. The age of the Archibald Formation is constrained by numerous fossil age dates. It records deposition of marine, and locally subaerial, clastic rocks during a period of active block faulting and uplift evident from rapid facies changes and debris flows.

In the Project area the Archibald Formation forms a north-south trending belt that extends from the south end of Fortynine Creek and extends the length of Erie Creek on its eastern side. Rocks assigned to the laterally equivalent Ymir Group occur in a similar trending belt extending from Kootenay Lake in the north to Porcupine creek in the south and underlie the Rover Creek watershed in the western portion of the project area.

Elise Formation

The Elise Formation is up to 5000 m thick and dominated by alkaline to subalkaline mafic volcanic flows, pyroclastic rocks, epiclastic rocks and minor intercalated sedimentary rocks. The formation has been subdivided into eight non-successive units or facies. It is in sharp to gradational contact with both the underlying Archibald and overlying Hall formations. Locally in southern exposures, it is bracketed by unconformities at both the upper and lower contacts. A U-Pb zircon age from a crystal tuff in the Copper Mountain area returned an age of $197.1+/-0.5 \mathrm{Ma}$. Trace and rare element data suggest a significant contribution of continental crust which has been interpreted to imply formation close to the North American continental margin on a thinned continental prism or thinned continental crust (Hoy and Dunne, 2001).

Hall Formation

The Hall Formation comprises a 2100 m thick succession of fine clastic rocks broadly divided into three members. These are (1) a basal rusty-weathering black siltstone and argillite overlain by (2) coarse sandstone and conglomerate overlain locally by (3) carbonaceous siltstone commonly referred to as the Upper Hall Formation. The Hall Formation has been observed to be in conformable and unconformable contact with the underlying Elise volcanic and volcaniclastic rocks. However, fossil ages in both the underlying Elise and Hall formations as well as the occurrence of Elise Formation derived clasts in a basal conglomerate assigned to the Hall Formation have been used as evidence of a several million year hiatus of deposition between the two formations.

Jurassic Plutons

Jurassic intrusive rocks can be divided into Early-, Early-Middle and Middle-Jurassic suites (Paradis and Underhill, 2009; Hoy and Dunne, 2001). The Early Jurassic suites include the Eagle Creek plutonic complex (Jrp) and various monzogabbro intrusions interpreted to be coeval with the Elise formation (e.g. Mammoth intrusions). The Eagle Creek plutonic complex underlies Eagle creek in the north of the project area occurring on both the north and south side of Kootenay Lake. The Eagle Creek plutonic complex is commonly referred to as a pseudodiorite after Mulligan (1952), however compositions within the coherent body are varied; major phases include gabbro and diorite but quartz monzonite to hornblende syenite phases are present also. All phase are typically medium to coarse-grained and may be locally gneissic. Ultramafic phases occur throughout the complex with clinopyroxenite common at the margins. Monzogabbro intrusions unrelated to the Eagle Creek plutonic complex are often sill-like or form small stocks throughout the Elise Formation. They are typically porphyritic with plagioclase crystals in a dark green aphanitic groundmass. The intrusions have been interpreted as high-level intrusions, locally breaching a paleo-surface to occur as pillowed lavas or flows.

Early-Middle Jurassic plutonism is represented by the Silver King intrusions (Jrsk). These are plagioclase-phyric mafic intrusions that petrographically resemble leucodiorite porphyry but have been characterized as quartz monzodiorite and granodiorite through whole rock geochemistry. The conflicting nomenclature is likely due to locally intense alteration and deformation related to syntectonic emplacement. The intrusive bodies occur throughout the Elise Formation south of Nelson. Most exposures have been
mapped in the eastern limb of the Hall Creek syncline however anecdotal reports indicate small bodies of the Silver King intrusions in the western limb.

Middle Jurassic plutons (Jrn) in the project area include the Nelson and Bonnington batholiths in the north and south respectively. They show a complex history of magmatism spanning 15 Ma with early alkaline evolving to calc-alkaline magmatism and followed by the formation of two-mica granite. In their entirety, they represent continental arc granitoids that have undergone abundant crustal contamination.

Eocene Plutons

Plutonic rocks of Eocene age are assigned to the Coryell Plutonic Suite (Ecc,) comprised of augite biotite monzonite and biotite - hornblende syenite. The intrusive bodies are generally small plugs that intrude all formations indiscriminately. They have been attributed to Eocene-age regional extension associated with normal faulting. In the study area the Coryell suite intrusions are most abundant in the Ymir Group underlying the Rover Creek area. In the northwest, a large, relative to other Eocene plugs, body of Coryell diorite intrudes volcaniclastic rocks of the Elise Formation and older plutonic rocks assigned to the Eagle Creek plutonic complex.

Structure

The dominant structural features in the area are broad north-trending and east-verging folds interpreted to be the first features resultant from east-directed compression. In the project area, this is the northeast to northwest-trending, south-plunging Hall Creek syncline. Sedimentary rocks of the Hall Formation core the syncline with rocks of the Elise and Archibald formations comprising the limbs. Deeper structural levels are exposed in the north at the closure of the Hall Formation where a series of northwest-striking shears form a 1 km wide zone referred to as the Silver King shear. This structural zone continues through the Elise Formation and into the Eagle Creek plutonic complex. The Silver King shear's continuity within the Eagle Creek plutonic complex is poorly documented. The maximum age of folding and metamorphism is constrained by the syn-tectonic Silver King intrusions (ca. 174-178 Ma.) and a minimum age from the Nelson batholith (ca. 167 Ma.$)$ that truncates folds in the Hall Creek syncline. The Mount Verde - Red Mountain normal fault on the western limb of the Hall Creek syncline and underlying portions of Fortynine Creek creates a repeating sequence of Archibald and Elise formations. This fault postdates folding but is stitched by the Bonnington pluton that is contemporaneous to the Nelson batholith at ca. 167 Ma .

Regional Mineralization

The Nelson area is host to numerous small to medium sized past producers.

Volcanic Massive Sulphide Deposits

Several showings in the area are classified as volcanic massive sulphide (VMS) deposits. These include the Hungry Man, Silver 1 and Silver Lynx. All occurrences are within the upper portions of the Ymir Group or lower Elise Formation in subaqueous mixed volcanic-sedimentary successions (Hoy and Dunne, 2001). The VMS designations are tentative, however, as both the Silver Lynx and Hungry Man are spatially associated with the contact between diorite and host sedimentary rocks and could reflect skarn mineralization.

Porphyry Copper Gold: Alkalic

The Shaft Cu-Au porphyry deposit is located 6 km south of Nelson and 6 km east of Anglo Swiss' property boundary. It is classified as an alkalic Cu-Au porphyry system hosted in Elise Formation volcanic rocks and syngenetic porphyry monzodiorite on the eastern limb of the Hall Creek syncline. Mineralization typically comprises up to 1% magnetite, 15% pyrite 3% chalcopyrite and rare pyrrhotite occurring as disseminated sulphides throughout all lithologies. At the Cat zone, sulphides occur in the matrix of a 9×5.5 m pod of crackle breccia. An alteration assemblage of chlorite-epidote-carbonate-sericite has been interpreted to be a propylitic overprint of earlier potassic alteration with a late sericite-carbonate-quartz alteration. The resulting alteration assemblage resembles regional greenschist facies metamorphism in the Nelson area but is more intense at the Shaft occurrence (Hoy and Dunne, 2001).

Skarn Deposits

The past producing Queen Victoria deposit is located across Kootenay Lake from Anglo Swiss's claim boundary and is classified as a Cu-skarn deposit. During production from 1907 to 1918 it produced 1,482,895 lbs of $\mathrm{Cu}, 30,544 \mathrm{oz}$ of Ag and 246 oz of Au . The deposit is hosted in limestone and limey argillite of the Ymir Formation at the margin of the Nelson batholith. Mineralization occurs as disseminated to irregular clusters of chalcopyrite, pyrite and minor bornite in irregular bands of garnet, epidote, actinolite, magnetite and pyrrhotite. The skarn bands are interlayered with quartzite and schist that, along with the skarn, are crosscut by small faults and feldspar porphyry dykes (Minfile, 1991b).

Gold-Quartz Veins

The past-producing Kenville (Granite-Poorman) mine is located within the Eagle Creek complex within Anglo Swiss's claims. It is classified as a Au-quartz vein deposit and consists of 5 north-northwest trending veins hosted in variably sheared mafic intrusive rocks of the Eagle Creek Plutonic complex. The veins comprise milky to glassy quartz with pyrite and chalcopyrite as the dominant sulphides. Minor amounts of galena, sphalerite, scheelite and visible gold occur within the veins and disseminated pyrite in the host rocks (Hoy and Dunne, 2001). Average grade of the veins is $16.73 \mathrm{~g} / \mathrm{t}$ and historical production is listed at 65,236 oz Au (Minfile, 1996).

Polymetallic Veins (Ag-Pb-Zn+/-Au)

The past-producing Silver King mine is located on the northeast side of Toad Mountain, approximately 4 km from Anglo Swiss's claims. Silver-copper mineralization is hosted in quartz-carbonate veins within the northwest-striking Silver King shear system. Historical production of 4,443,703 oz Ag and 14,968,812 lbs Cu was achieved from several different veins with grades ranging from 16 to $559 \mathrm{~g} / \mathrm{t}$ Ag and 0.08 to $5.02 \% \mathrm{Cu}$ (BC Minfile \#082FSW176). Sulphide minerals include pyrite, chalcopyrite, galena, sphalerite and locally trace tetrahedrite, stromeyerite, and bornite (Hoy and Dunne, 2001).

PROPERTY GEOLOGY AND MINERALIZATION

Kenville Area

The Kenville / Ron area is underlain by the Eagle Creek plutonic suite, which is mainly composed of gabbro and diorite but with quartz monzonite to hornblende syenite phases also present. All phases are typically medium to coarse-grained and may be locally gneissic. Ultramafic phases occur throughout the complex with clinopyroxenite common at the margins. Little petrographic work has been done on this complex suite and the following description is taken predominantly from Thomson (1997). All phases have undergone varying degrees of alteration. The strongly foliated rocks contain chlorite-retrograded biotite and moderately epidote-potassic altered feldspars. Potassic alteration is common; although typically cryptic, it may locally display a pinkish hue and is rarely associated with up to 1% pyrite and trace molybdenite mineralization. Carbonate-magnetite alteration appears to have a positive correlation with the intensity of foliation and fine-grained chalcopyrite mineralization.

Granite-Poorman Veins

The Granite-Poorman vein system is comprised of six main veins and several secondary or less continuous veins over a width of approximately 500 m . The veins strike 330 to 350 degrees and dip approximately 45 degrees northeast with an average thickness is 0.6 m (Thomson, 1997). From west to east they are referred to as Hardscrabble, Hardup, Poorman, Greenhorn, Granite (White) and Beelzebub veins. Texturally they are milky to glassy quartz containing pyrite and chalcopyrite with minor amounts of galena, sphalerite, scheelite and visible gold. A disseminated pyrite halo around the veins extends into the host plutonic rocks (Hoy and Dunne, 2001). The veins are traceable for at least 500 m with minor offsets typically located along lamprophyre dykes interpreted to have intruded along steeply-dipping faults.

A seventh "flat vein" was reported from underground workings and is described as flat-lying to shallowly-dipping with thicknesses of at least 1.5 m , defined over an area of $3700 \mathrm{~m}^{2}$ (Munroe, 2009). The Yule vein is a sub-vein adjacent and parallel to the Poorman vein.

Venango Veins

The Venango Au-Ag vein system is located on Anglo Swiss's property near the Kenville mine. It comprises two parallel veins that strike 330 to 350 degrees and dip 40 to 45 degrees to the north. The veins contain pyrite with lesser chalcopyrite, sphalerite, galena, free gold and scheelite (0.3 to $3.39 \% \mathrm{WO}_{3}$). Gold is contained in shoots that plunge approximately 30 degrees to the south. A total of $439 \mathrm{oz} \mathrm{Ag}, 378$ oz Au and over 100 kg of Pb and Zn were extracted from 809 tonnes of mined ore (Minfile, 2007).

2010 Exploration Program

The 2010 exploration program on the Kenville Mine Property was undertaken from November 1 to December $31^{\text {st }}, 2010$ consisting 5 holes totaling 2,982 metres. The drilling contractor was Full Force Drilling. Drill core was logged by M. Kiridzija and T. Schoettler. The program was supervised by G. Carter. The cost of this work amounted to $\$ 298,990.81$. Drilling was completed on Anglo Swiss Crown Grants. Drill hole collar locations are provided in the appended drill logs.

Table 1: 2010 Statement of Costs

PERIOD	Metres	OVERALL PERIOD COST PER METER	PERIOD TOTAL	DRILLING	LABOUR	EQUIPMENT	DIESEL FUEL	SUPPLIES	ASSAY COSTS
NOVEMBER $1-30$, 2010	924.4	\$133.04	\$122,985.49	\$81,914.02	\$8,607.17	\$11,228.77	\$7,037.38	\$5,650.55	\$6,162.60
DECEMBER $1-15$, 2010	1110.4	\$127.98	\$142,099.14	\$99,965.43	\$10,733.80	\$8,522.40	\$7,620.42	\$3,989.17	\$8,882.93
DECEMBER 16-31,	152.4	\$222.42	\$33,906.18	\$13,392.23	\$7,829.92	\$4,213.20	\$1,749.30	\$2,638.02	\$1,219.51
	2187.2		\$298,990.81						

Drill core was processed at the Kenville Mine. Drill core samples of half core were produced by an electric core saw. Sample intervals were laid out by the logging geologist and intervals delineated by sample tags stapled into core boxes. The remaining half core was cross-stacked at the Kenville Mine site (UTM coordinates 471800 mE 5480420 mN). Samples were shipped from site to ALS Chemex in Vancouver, British Columbia. Drill core samples were submitted for a multi-element analysis package that utilized an aqua regia digestion and ICP-MS techniques. Gold values were determined via fire assay and a gravimetric finish. Certificates of analysis are presented appended.

Figure 3: 2010 Drill Hole Location Map

Table 2: 2010 Diamond Drill Hole Collar Data

PAD \#	HOLE\#	STATUS	DATE	METERS
8	KE10-16	Finished	23-Nov-10	500.9
8	KE10-17	Finished	29-Nov-10	388.4
10	KE10-18	Aborted	02-Dec-10	90
10	KE10-19	Finished	12-Dec-10	619
10	KE10-20	Finished	06-Jan-11	652.4
10	KE10-21	Finished	13-Jan-11	731.7
			Total meters drilled	2982.4

Table 3: 2010 Significant Assay Results

Hole \#	From (\mathbf{m})	To (\mathbf{m})	Interval (\mathbf{m})	Au $(\mathrm{g} / \mathrm{t})$	Ag $(\mathrm{g} / \mathrm{t})$
KE10-16	263.5	264	0.5	111.5	58.1
KE10-16	274.8	275.08	0.28	47.2	51.4
KE10-16	335.16	335.56	0.4	20	28.2
KE10-16	361.86	362.74	0.88	88.1	130
KE10-17	353.57	354.15	0.58	26	16.2
KE10-17	372.16	372.62	0.46	59.8	31.8
KE10-19	323.15	323.26	0.11	17.6	18.2
KE10-19	426.05	426.5	0.45	84.5	22.3
KE10-19	547.38	547.7	0.32	15.4	4.1
KE10-20	128.28	128.54	0.26	23.6	14.6
KE10-20	350.52	350.64	0.12	23.6	29
KE10-20	499.2	499.89	0.69	34.8	34.5

DISCUSSION AND CONCLUSIONS

Based on results of the first phase of exploration drilling south of the past-producing Kenville Mine further drilling is recommended to continue to expand the high-grade gold vein system. A further 10,000 metres of drilling is recommended.

Respectfully submitted,

Jari Paakki, P.Geo.
ANGLO SWISS RESOURCES INC.
Vancouver, British Columbia
January 29th, 2012

REFERENCES

Augsten, B., 1999, Report on the Diamond Drilling Program on the Mammoth Property, B.C. Ministry of Energy Mines and Petroleum Resources, Assessment Report \#25874

Blanchflower, J.D., 1985a Geological, Geochemical and Geophysical Report on the May and Jennie Property, B.C. Ministry of Energy Mines and Petroleum Resources, Assessment Report \#14417

Blanchflower, J.D., 1985b Topographic Mapping, Trenching and Geochemical Report on the May and Jennie Property, B.C. Ministry of Energy Mines and Petroleum Resources, Assessment Report \#14429

Gabrielse, H., Monger, J. W. H., Wheeler, J., and Yorath, C. J., 1991, Tectonic Framework, in Gabrielse, H., and Yorath, C. J., eds., Geology of the Cordilleran Orogen in Canada, Geology of Canada, no. 4, Geological Survey of Canada, p. 15-28.

Hoy, T., and Dunne, P. E., 2001, Metallogeny and Mineral Deposits of the Nelson-Rossland Map Area: Part II: The Early Jurassic Rossland Group Southeastern British Columbia, Bulletin 109: Victoria, British Columbia Ministry of Energy and Mines, Energy and Minerals Division, p. 195.

Leighton, D. G., 1991, Geological and Geochemical Report on the Gold Hill Property, Ministry of Energy Mines and Petroleum Resources, Assessment Report \#21206

Leighton, D. G., 1992, Geophysical Report on the Referendum Property, Ministry of Energy Mines and Petroleum Resources, Assessment Report \#23084

Minfile, 1991a, Minfile 082FSW-091 (May and Jennie), British Columbia Ministry of Energy, Mines and Petroleum Resources.

Minfile, 1991b, Minfile Detail Report 082FSW-082 (Queen Victoria), British Columbia Ministry of Energy, Mines and Petroleum Resources.

Minfile, 1991c, Minfile Detail Report 082FSW-088 (Royal Canadian), British Columbia Ministry of Energy, Mines and Petroleum Resources.

Minfile, 1991d, Minfile Detail Report 082FSW-090 (Miracle), British Columbia Ministry of Energy, Mines and Petroleum Resources.

Minfile, 1991e, Minfile Detail Report 082FSW-092 (Gold Hill), British Columbia Ministry of Energy, Mines and Petroleum Resources.

Minfile, 1996, Minfile Detail Report 082FSW-086 (Kenville), British Columbia Ministry of Energy, Mines and Petroleum Resources.

Minfile, 2007, Minfile Detail Report 082FSW-087 (Venango), British Columbia Ministry of Energy, Mines and Petroleum Resources.

Price, B., 1984, Geological, Geochemical and Geophysical Report, Gold Hill Property, Nelson M.D. B.C. Ministry of Energy Mines and Petroleum Resources, Assessment Report \#12486

Thomson, G., 1997, Diamond Drilling and Geophysical Report on the Kenville Mine Property. B.C. Ministry of Energy, Mines and Petroleum Resources, Assessment Report \#24879.

Wells, R.C., and Wehrle, D.M., 1997, Geological and Geochemical Reports for the 1996 Exploration on the Mammoth Property, B.C. Ministry of Energy, Mines and Petroleum Resources, Assessment Report \#25144.

GEOLOGIST`S CERTIFICATE

I, Jari Paakki, P. Geo., do hereby certify:
THAT I am a Professional Geoscientist (Ontario) with offices at Suite 309-837 West Hastings Street, Vancouver, BC, V6C 3N6
THAT I am an author of the Assessment Report entitled "2010 Diamond Drilling Report on the Kenville Mine Property` dated January $29^{\text {th }}, 2012$.
THAT I am a member in good standing (\#230) of the Association of Professional Geoscientists of Ontario.
THAT I graduated from the Laurentian University In Sudbury Ontario in 1992 with an MSc in Geology.
THAT since 1992, I have been involved in mineral exploration for gold and base metals in Canada and Scandinavia.
THAT I am CEO of Anglo Swiss Resource Inc.

Dated at Sudbury, Ontario, this 29th day of January, 2012.

Jari Paakki, P. Geo.

HOLE ID	AZIMUTH		LENGTH	COORDINATES		SHORTLOG	LOG COMPLETE	Shipments
KE10-20	244	-72	655.33	EASTINGS:	472372	MK	09/01/2011	
				NORTHINGS:	5479250	DETAILLOG	DATUM	
	Drilling					\| MK	\| ${ }^{\text {Dad83 }}$ Zone 11	
AREA	Started:	19/12/2010	CORE SIZE	SECTION			Nau83 Zone 11	
Kenville SE	Finished:	09/01/2011	NQ	5479250			SAMPLER	
							Mkiridzija	

HOLE ID KE10-20
Page 1 of 22

Lithology				Assays								
From	To Lith	M Lith	Lithology Notes	Sample	From	To	Interva\|	Au g/t	Ag PPM	Cu PPM	Cu\%	Type
75.83	79.25 DIOR		Diorite. Same as 71.02-75.68.									
79.25	79.86 BZ	DIOR	Broken diorite. Fractured surfaces 45 or subperpendicular tca.									
79.86	85.34 DIOR		Diorite. Same as before; slightly sheared and foliated in sequences; short and rare lamprophyre dykes, <1cm wide.									
85.34	85.60 LAMP		Lamprophyre. Same as 70.87-71.02 except this interval is compact (not fractured) and less altered (not fragile). Very britle, sharp and direct contact with above diorite at 40tca; clean (no quartz veins); uniform appearance; visible phlogopite in greenish-grayish matrix.									
85.60	90.20 DIOR		Diorite. Same as before at 79.86-85.34.									
90.20	91.00 LAMP		Lamprophyre. Identical as 85.34-85.60; the same 40tca contact with diorite.									
91.00	91.74 SHR	DIOR	Sheared diorite. Shear followed by hairy veinlets of lamprophyre at 40tca; breakage of the core in the middle of the interval.									
91.74	99.49 DIOR		Diorite. Equigranular, coarse texture; wit shearing zones, 10 cm wide, subperpendicular tca; slight foliation subparalel tca; lamprophyre veinlets paralel tca in some sequences of this interval.	J294339	99.49	99.92	0.43	0.036	1.60	730	0.73	Core
99.49	99.92 ALT	DIOR	Altered diorite. Above shoulder; slightly bleached; disseminated pyrite rare.									
99.92	99.97 QMV		Mineralized quartz vein. Perpendicular tca; neclece of pyrite/chalco along sharp contact; low abundance of sulphide.	J294340	99.92	99.97	0.05	0.539	5.90	3150	3.15	Core
99.97	100.07 ALT	DIOR	Altered diorite. Below shoulder; disseminated pyrite/chalco; low abundance of sulphide.	J294341	99.97	100.07	0.10	0.021	0.90	236	0.24	Core
100.07	100.78 SHR	DIOR	Sheared diorite. Shear 45tca followed by quartz/calcite veinlets; bottom part of the interval breakage.									
100.78	102.90 DIOR		Diorite. Typical as before.									
102.90	103.02 QCV		Mineralized quartz carbonate and tourmaline vein. Subperpendicular tca; 5 cm wide, porous; contact sharp; mixture of tourmaline/quartz/calcite irregulary; pyrite clusters mixed with the vein.	J294342	102.9	103.02	0.12	0.028	1.30	2210	2.21	Core
103.02	104.00 DIOR		Diorite. Typical. Same as before.									
104.00	104.14 QMV		Mineralized quartz carbonate and tourmaline vein. Same as 102.90-103.02; vein is perpendicular tca and 6 cm wide, some alteration around;	J294343	104	104.14	0.14	0.021	0.60	892	0.89	Core
104.14	108.40 DIOR		Diorite. Typical.Same as before.	J294344	104.14	104.14	0.00	0.002	0.10	9	0.01	Blank

[^0]| | | | | | Lithology | Assays | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| From | To | Lith | M Lith | Lithology Notes | | Sample | From | To | \|Interval | Aug/t | Ag PPM | Cu PPM | Cu\% | Type |

112.78	115.86 DIOR		Diorite. Typical; coarse grained; few alteration bands, $<1 \mathrm{~cm}$; some foliation in short sequences.									
115.86	116.16 ALT	DIOR	Altered diorite. Bleached with disseminated pyrite; few quartz veinlets at the bottom; contact blurry.	J294345	115.86	116.16	0.30	0.363	0.90	205	0.21	Core
116.16	118.37 DIOR		Diorite. Typical; few quartz veinlets at 45 tca at the bottom.									
118.37	119.90 SHR	DIOR	Sheared diorite. Irregulat shear subparalel tca or 70tca; interval irregulary intersected with quartz veins, lamprophyre dykes and flames of volcanics; convoluted appearance.									
119.90	120.14 QCV		Quartz carbonate tourmaline vein. Mineralized; similar to 102.9-103.02; full of pyrite; flames of lamprophyre at 60tca; tourmaline vein subperpendisular tca; diorite altered/bleached around the contact.	J294346	119.9	120.14	0.24	0.070	6.60	3990	3.99	Core
120.14	127.32 DIOR		Diorite. Typical; same as before.									
127.32	127.47 ALT	DIOR	Altered diorite. Above shoulder; contact gradual.	J294347	127.32	127.47	0.15	0.105	1.40	442	0.44	Core
127.47	127.67 QMV		Mineralized quartz vein. Consists of 2 QMV at 50 tca and 30 tca; both 1 cm wide; mineralization low.	J294348	127.47	127.67	0.20	0.594	1.40	312	0.31	Core
127.67	128.02 ALT	DIOR	Altered diorite. Below shoulder; contact gradual.	J294349	127.67	128.02	0.35	0.015	1.00	238	0.24	Core
128.02	128.28 DIOR		Diorite. Typical; same as before.									
128.28	128.54 ALT	DIOR	Altered diorite. Above shoulder.	J294350	128.28	128.54	0.26	23.600	14.60	2180	2.18	Core
128.54	128.63 QMV		Mineralized quartz vein. With pyrite along contacts and inside vein;low mineralization.	J294351	128.54	128.63	0.09	1.100	14.90	7250	7.25	Core
128.63	128.78 ALT	DIOR	Altered diorite. Below shoulder for above QMV and above shoulder for below QMV. Overlaping; disseminated pyrite; bleached.	J294352	128.63	128.78	0.15	0.107	2.00	673	0.67	Core
128.78	128.90 QMV		Mineralized quartz vein. Perpendiculat tca; low mineralization.	J294353	128.78	128.9	0.12	0.237	0.80	165	0.17	Core
128.90	129.24 ALT	DIOR	Altered diorite. Below shoulder.	J294354	128.9	129.24	0.34	0.010	0.80	153	0.15	Core
129.24	129.38 QMV		Mineralized quartz vein. 3 cm wide and 80tca; sharp contact; low mineralization.	$\begin{aligned} & \hline \text { J294355 } \\ & \text { J294356 } \end{aligned}$	$\begin{aligned} & 129.24 \\ & 129.24 \end{aligned}$	$\begin{aligned} & 129.24 \\ & 129.38 \end{aligned}$	$\begin{aligned} & 0.00 \\ & 0.14 \end{aligned}$	$\begin{aligned} & 1.500 \\ & 0.148 \end{aligned}$	$\begin{aligned} & 4.90 \\ & 1.40 \end{aligned}$	$\begin{array}{r} 9920 \\ 319 \end{array}$	$\begin{aligned} & 9.92 \\ & 0.32 \end{aligned}$	$\begin{aligned} & \text { CM2 } \\ & \text { Core } \end{aligned}$
129.38	129.58 ALT	DIOR	Altered diorite. Below shoulder; slightly bleached; rere disseminated pyrite.	J294357	129.38	129.58	0.20	0.040	0.40	68	0.07	Core
129.58	129.77 QCV		Mineralized quartz calcite/tourmaline vein. Same as 102.90-103.02	J294358	129.58	129.77	0.19	0.674	13.40	5320	5.32	Core

$129.77 \quad 130.30$ DIOR \quad Diorite. Typical. As before

Lithology				Assays								
From	To ${ }^{\text {To }}$	M Lith	Lithology Notes	Sample	From	To	Interval	Au g/t	Ag PPM	Cu PPM	Cu\%	Type
130.30	130.50 ALT	DIOR	Altered diorite. With 3 short alteration bands full of pyrite/chalco; alteration bands are perpendiculat tca and $<1 \mathrm{~cm}$ wide;.	J294359	130.3	130.5	0.20	0.007	1.10	855	0.86	Core
130.50	133.55 DIOR		Diorite. With bullock quartz at 133.3 and few quartz veins, $<1 \mathrm{~cm}$ wide, perpendicular or 80tca; barren									
133.55	133.95 SHR	DIOR	Mineralized sheared diorite.Shear subparalel tca; mineralizetion along shear surface.	J294360	133.55	133.95	0.40	0.277	1.00	560	0.56	Core
133.95	134.59 ALT	DIOR	Altered diorite. Typical with quartz veinlet in the middle of the alteration zone and mineralization along quartz contact; pyrite/chalco in medium amount; rich mineralization in altered zone.	J294361	134.24	134.59	0.35	0.408	1.20	554	0.55	Core
134.59	134.85 DIOR		Diorite.With numerous short, <1cm alteration bands perpendicular tca.									
134.85	135.10 SHR	DIOR	Mineralized sheared diorite. Rich mineralizetion along shear surface, subparalel tca; lamprophyre flames along shear surface.	J294362	134.85	135.1	0.25	0.562	12.80	8600	8.60	Core
135.10	138.36 DIOR		Diorite.									
138.36	138.86 SHR	DIOR	Mineralized sheared diorite. Same as 134.85-135.10.	J294363	138.36	138.86	0.50	0.397	10.30	9580	9.58	Core
138.86	141.49 DIOR		Diorite.									
141.49	141.73 ALT	DIOR	Altered diorite. White alteration band in the middle; hardly visible quartz veinlet in the middle; low mineralization.	J294364	141.49	141.73	0.24	0.216	4.00	751	0.75	Core
141.73	143.85 DIOR		Diorite.	J294365	141.73	141.73	0.00	1.380	4.40	10000	0.97	CM2
143.85	144.14 ALT	DIOR	Altered diorite. With alteration bands in the middle.	J294366	143.85	144.14	0.29	0.058	0.60	245	0.25	Core
144.14	144.90 DIOR		Diorite.									
144.90	145.27 SHR	DIOR	Mineralized sheared diorite. Shear subparalel tca and thiny quartz venlets perpendicular tca; low mineralization along shear and quartz contact	J294367	144.9	145.27	0.37	0.059	1.60	485	0.49	Core
145.27	145.91 DIOR		Diorite.									
145.91	146.40 ALT	DIOR	Altered diorite. Bleached; few quartz veinlets intersected in all directions; very few pyrite disseminated.	J294368	145.91	146.4	0.49	0.072	2.70	785	0.79	Core
146.40	146.86 FOL	DIOR	Foliated diorite. Slightly foliated subparalel tca.									
146.86	147.15 ALT	DIOR	Altered diorite. With few alt bands perpendicular tca and $<1 \mathrm{~cm}$; low mineralizarion.	J294369	146.86	147.15	0.29	0.245	5.50	2570	2.57	Core
147.15	147.90 DIOR		Diorite.									

Lithology				Assays								
From	To ${ }^{\text {To }}$	M Lith	Lithology Notes	Sample	From	To	Interval	Au g/t	Ag PPM	Cu PPM	Cu\%	Type
147.90	148.16 ALT	DIOR	Altered diorite. 2 alteration bands perpendicular tca and 2 cm wide; medium abundance of sulphide.	J294370	147.9	148.16	0.26	0.098	4.40	2560	2.56	Core
148.16	150.31 DIOR		Diorite.									
150.31	150.83 ALT	DIOR	Altered diorite. Bleached; several undistinguishable alt bands overlaping; low mineralization	J294371	150.32	150.83	0.51	0.076	2.10	746	0.75	Core
150.83	151.55 FOL	DIOR	Foliated diorite. Foliation at 45-50tca; several short alteration bands with small quartz veinlets in the middle; no mineralization.									
151.55	151.68 ALT	DIOR	Altered diorite. Not visible quartz veins in the middle; low mineralization.	J294372	151.55	151.68	0.13	0.022	0.70	201	0.20	Core
151.68	153.26 FOL	DIOR	Foliated diorite. Similar to 150-151.55.									
153.26	156.43 DIOR		Diorite. Typical. Equigranular.									
156.43	158.50 SHR	DIOR	Sherared diorite. Foliated and sheared subparalel tca.									
158.50	159.06 DIOR		Diorite.									
159.06	159.68 ALT	DIOR	Altered diorite. Slightly bleached; LOW MINERALIZATION.	J294373	159.06	159.68	0.62	0.085	1.00	172	0.17	Core
159.68	160.14 SHR	DIOR	Sheared diorite. Same as above at 156.43-158.50.									
160.14	165.46 DIOR		Diorite.									
165.46	169.14 SHR	DIOR	Sheared diorite.									
169.14	172.94 DIOR		Diorite. With shear sequences and short alteration bands.									
172.94	173.28 ALT	DIOR	Altered diorite. With quartz veinlet in the middle; low mineralization.	J294374	172.94	173.28	0.34	0.006	1.40	100	0.10	Core
173.28	173.38 DIOR		Diorite.									
173.38	173.52 ALT	DIOR	Altered diorite. Bleached; with 2 quartz veinlets in the middle; disseminated coarse pyrite.	J294375	173.38	173.52	0.14	0.018	0.60	118	0.12	Core
173.52	174.00 FOL	DIOR	Foliated diorite.									
174.00	176.88 DIOR		Diorite.									
176.88	177.93 ALT	DIOR	Altered diorite. Bleached; contact with above diorite gradual;contact with below diorite sharp	J294376	176.88	177.93	1.05	0.096	0.50	62	0.06	Core

Lithology				Assays								
From	To Lith	M Lith	Lithology Notes	Sample	From	To	Interval	Au g/t	Ag PPM	Cu PPM	Cu\%	Type
and marked by short alteration bands perpendiculat tca; this interval consists of numerous short quartz veinlets with their alteration halos overlaping; disseminated pyrite all over interval; low mineralization.												
177.93	186.03 DIOR		Diorite. With few short alteration bands perpendicular tca, $\ I \backslash I \backslash, 5 \mathrm{~cm}$ wide but rare pyrite; equigranular texture; sheared in short sequences; barren quartz veins crossing perpendicular tca or 45tca at 183.53; breakage due to convolution of quartz/calcite/tourmaline veinlets causing porosity; barren.	J294377	177.93	177.93	0.00	0.444	0.90	67	0.07	Core Dupl
186.03	186.33 ALT	DIOR	Altered diorite. Consists of 2 alt bands perpendicular tca; at 186.06, 10 cm long alteration band with thiny quartz veinlet in the middle; at $186.25,4 \mathrm{~cm}$ long alteration band perpendicular tca with no quartz veinlet in the middle; low pyrite.	J294378	186.03	186.33	0.30	0.125	0.30	135	0.14	Core
186.33	190.28 DIOR		Diorite. Slightly epidotized inhomogeniously; slight short shear.									
190.28	190.68 SHR	DIOR	Sheared diorite. Shear influenced by lamprophyre intrusions along subparalel shear; change in texture and color along shear.									
190.68	192.12 DIOR		Diorite. Equigranular texture. Typical.									
192.12	193.33 SHR	DIOR	Sheared diorite. Interval starts with fragmented diorite sheared and slightly altered until 193.02; from 193.02-193.33 uniform, darker color, foliated subparalel tca.									
193.33	196.51 DIOR		Diorite. Coarse, equigranular; slightly foliated; slightly epidotized.									
196.51	197.72 SHR	DIOR	Sheared diorite. Darker color, fine grained, foliated, subparalel tca; lots of thiny, discontinious quartz veinlets.									
197.72	199.46 DIOR		Diorite. Typical.									
199.46	200.53 QV		Quartz vein. In diorite, subparalel tca; discontinous; breakage; barren; mixed with lamprophyre.									
200.53	204.37 EALT	DIOR	Epidotized diorite. Coarse grained; completely epidotized in interstitial space; light green and black color; equigranular texture.									
204.37	204.92 ALT	DIOR	Breakage; lots of thiny quartz veinlets at 45, 50 tca; probably several alteration bands succesivly; low pyrite amounts; above contact sharp; below contact gradual.	J294379	204.37	204.92	0.55	0.079	2.40	333	0.33	Core
204.92	207.62 FOL	DIOR	Foliated diorite. Darker color; finer grains; uniform interval;foliation paralel tca.									
207.62	208.27 QV	DIOR	Quartz veins in diorite. Quartz veins paralel tca, $1-3 \mathrm{~cm}$ wide, ribbony, wavy; barren; discontinious; calcite involved.									
208.27	218.00 DIOR		Diorite. Uniform; coarse grained; slightly epidotized; quartz veins perpendicular tca or 45tca.									
218.00	221.00 FOL	DIOR	Foliated diorite. Same as 204.92-207.62; uniform interval; shear subparalel tca; contact sharp.									
221.00	224.42 DIOR		Diorite. Coarse grained; slightly epidotized.									

Lithology				Assays								
From	To Lith	M Lith	Lithology Notes	Sample	From	To	Interval	Au g/t	Ag PPM	Cu PPM	Cu\%	Type
224.42	224.57 QCV		Mineralized quartz /calcite/tourmaline vein; At 80tca, 3cm wide; mixed tourmaline/quartz/calcite; contact sharp; porous; pyrite along vein; low mineralization	J294380	224.42	224.57	0.15	0.138	1.20	1540	1.54	Core
224.57	232.00 DIOR		Diorite. Coarse grained; slightly foliated in sequences up to 20 cm long; feldspatized; epidotized; more whitish color.									
232.00	232.43 ALT	DIOR	Altered diorite. Consists of 2 succesive alteration bands at 232.00-232.05 and 232.20-232.36; both alteration bands are perpendicular tca.	J294381	232	232.43	0.43	0.325	0.70	97	0.10	Core
232.43	232.63 DIOR		Diorite. Slightly foliated; whitish color.									
232.63	232.75 ALT	DIOR	Altered diorite; With thiny quartz veinlets in the middle filled with pyrite/chalco; low abundance of sulphide.	J294382	232.63	232.75	0.12	0.133	0.60	139	0.14	Core
232.75	233.25 DIOR		Diorite. Coarse grained; whitish color.									
233.25	234.80 FOL	DIOR	Foliated diorite. Same as above.									
234.80	238.18 DIOR		Diorite. Coarse grained.									
238.18	238.60 SHR	DIOR	Sheared diorite. With quartz, 1 cm wide, and thiny lamprophyre following sheare surface at 50tca.									
238.60	238.78 ALT	DIOR	Altered diorite. Typical with quartz veinlet in the middle; low pyrite abundance.	J294383	238.6	238.78	0.18	0.096	0.40	43	0.04	Core
238.78	241.12 DIOR		Diorite									
241.12	241.33 LAMP		Lamprophyre dyke. Perpendicular tca; fine aphanatic texture; dark color; slightly foliated at 45tca; contact with surronding diorite abrupt/sharp									
241.33	244.55 DIOR		Diorite. Coarse, whitish.									
244.55	245.30 ALT	DIOR	Altered diorite. Intensivly bleaches; unclear veinlets; disseminated pyrite/chalco through the whole interval; low to medium abundance of sulphide.	J294384	244.55	245.3	0.75	0.723	1.50	295	0.30	Core
245.30	248.70 DIOR		Diorite.									
248.70	248.94 ALT	DIOR	Altered diorite. Typical with quartz veinlet in the middle.	J294385	248.7	248.94	0.24	0.677	1.00	212	0.21	Core
248.94	250.00 DIOR		Diorite.									
250.00	250.16 LAMP		Lamprophyric dyke. Fine, aphanatic texture; contact at 40tca, contact shaer, britle; interval very magnetic.									
250.16	252.30 DIOR		Diorite. Few alteration bands at 40tca.									

Lithology				Assays								
From	To ${ }^{\text {To }}$ Lith	M Lith	Lithology Notes	Sample	From	To	Interval	Au g/t	Ag PPM	Cu PPM	Cu\%	Type
279.64	279.90 SHR	DIOR	Mineralized sheared diorite. Also altered; bleached; shear surface at 20tca carring pyrite.	J294395	279.64	279.9	0.26	0.011	0.50	52	0.05	Core
279.90	280.27 DIOR		Diorite									
280.27	280.77 SHR	DIOR	Mineralizeds sheared diorite. Same as 279.64-279.90 but shear is at 30tca.	J294396	280.27	280.77	0.50	0.046	1.30	282	0.28	Core
280.77	284.13 ALT	DIOR	Altered diorite. 4 small alteration bands succesivly.	J294397	280.77	281.13	0.36	0.113	0.50	87	0.09	Core
284.13	284.23 DIOR		Diorite. Coarse equigranular;slightly sheared.									
284.23	284.72 FOL	DIOR	Foliated diorite. Very uniform; foliation at 40tca.									
284.72	288.70 DIOR		Diorite. Coparse equigranular; alteration bands $<1 \mathrm{~cm}$ wide.									
288.70	288.85 DIOR		Mineralized diorite? On the fractured surface lots of pyrite; no alteration; tormaline veins, 3 cm wide, discontinious, at 45tca.	J294398	288.7	288.85	0.15	0.041	0.20	132	0.13	Core
288.85	297.00 DIOR		Diorite. Generally uniform but with short sequences of alteration bands, quartz veins, tourmaline veins and foliation; most of the interval is coarse equigranular and slighly epidotized.	J294399	288.85	288.85	0.00	0.629	2.80	4550	4.55	Core
297.00	297.40 LAMP		Lamprophyric dyke. Fine to porphyritic texture; dark green-grayish color; sandy look but compact; sharp/britle contact at 60tca below and 70tca above with surronding diorite.									
297.40	298.70 DIOR		Diorite. Equigranular.;coarse.									
298.70	299.17 LAMP		Lamprophyric dyke. Same as 297.00-297.40; exchanging fine and porphyritic texture; sharp contacts at 40tca.									
299.17	299.43 SHR	DIOR	Mineralized sheared diorite. Quartz vein, 1 cm wide, paralel tca; runs through diorite and partally lamprophyre and carry pyrite in clusters; quartc follows shear surface.	J294178	299.17	299.43	0.26	0.921	17.50	6710	0.67	Core
299.43	299.85 LAMP		Lamprophyre dyke. Same as before.									
299.85	303.10 DIOR		Diorite. Slightly foliated paralel tca; bullock quartz.									
303.10	304.60 LAMP		Lamprophyre dyke. Same as above.									
304.60	308.15 DIOR		Diorite. Typical.Same as above.									
308.15	311.20 FOL	DIOR	Foliated diorite. Foliation subparalel tca or 40tca,									
311.20	311.50 ALT	DIOR	Altered and foliated diorite. Bleached and foliated paralel tca; not visible quartz veinlet in the middle; pyrite disseminated in low abundance.	J294179	311.2	311.5	0.30	0.026	2.50	920	0.09	Core

Lithology				Assays								
From	To ${ }^{\text {Tith }}$	M Lith	Lithology Notes	Sample	From	To	Interval	Au g/t	Ag PPM	Cu PPM	Cu\%	Type
311.50	316.10 LAMP		Lamprophyre/Volcanic?? Sharp contact at 45tca; pophyritc texture; dark groundmass and amigdoly texture, almost vesiculas?									
316.10	318.49 SHR	DIOR	Sheared diorite. Shear at 45tca; foliated; comact interval;changing foliation from subperpendicular tp 45tca.									
318.49	318.70 LAMP		Lamprophyre/Volcanic?? Same as 311.50-316.10; contact at 45tca.									
318.70	320.76 FOL	DIOR	Foliated diorite. Subparalel tca.									
320.76	324.22 LAMP		Lamprophyre/Volcanic?? Same as above; changing size of vesiculas?/amigdole? From fine grained to coarse grained as gradual change; chloritized; core fragmented in same size sequences; pyrite present in disseminated crystals.									
324.22	324.28 DIOR		Diorite. Intruded into lamprophyre/volcanics?? At 45 tca									
324.28	328.36 LAMP		Lamprophyre/Volcanics?? Same as above intervals at 320.76-324.22.									
328.36	332.00 SHR	DIOR	Sheared diorite. Fragmented; heavily sheared sub paralel tca and 45 tca; altered epidotized; quartz veins along shear.									
332.00	333.30 LAMP		Lamprophyre/Volcanics?? Same as above; contact with diorite sharp and perpendicular tca.									
333.30	345.62 DIOR		Diorite. Many short alteration bands perpendicular tca and $<4 \mathrm{~cm}$; numerous quartz veins and veinlets perpendicular tca to 45 tca; sheared in few short sequences.									
345.62	346.07 ALT	DIOR	Altered diorite.With 5 succesive alteration bands; bleached; disseminated pyrite; quartz veinlets not visible.	J294180	345.62	346.07	0.45	0.142	0.80	171	0.02	Core
346.07	348.22 DIOR		Diorite. Same as 333.30-345.62.									
348.22	348.44 ALT	DIOR	Altered diorite. Bleached; quartz veins perpendicular tca.	J294181	348.22	348.44	0.22	0.015	0.60	43	0.00	Core
348.44	348.82 DIOR		Diorite.									
348.82	349.10 QMV	ALT	Mineralized quartz vein and altered diorite. Quartz vein in the middle of altered zone perpendicular tca and 5 cm wide; clear white quartz with patches of sphalerite/pyrite/chalcopyrite.	J294182	348.82	349.1	0.28	0.244	2.40	361	0.04	Core
349.10	349.72 DIOR		Diorite.									
349.72	350.52 ALT	DIOR	Altered diorite. Above shoulder; slightly bleached; dispersive pyrite; not visisble quartz veins in alteration bands.	J294183	349.72	350.52	0.80	0.088	0.80	200	0.02	Core
350.52	350.64 QMV		Mineralized quartz vein; Perpendicular tca; white with diorite impurites; massive pyrite/chalco perpendicular on the vein contact concentrated mainly toward the upper part of the vein; contact with altered diorite sharp.	J294184	350.52	350.64	0.12	23.600	29.00	1680	0.17	Core

Lithology				Assays								
From	To ${ }^{\text {Tith }}$	M Lith	Lithology Notes	Sample	From	To	Interval	Aug/t	Ag PPM	Cu PPM	Cu\%	Type
350.64	350.95 ALT	DIOR	Altered diorite; Below shoulder; bleached; disseminated pyrite.	J294185	350.64	350.95	0.31	0.151	0.90	181	0.02	Core
350.95	351.40 QMV	ALT	Altered diorite and mineralized quartz vein. Above and below shoulder of quartz vein in the middle of this interval; contact with quartz vein blurry, disspersive on the bottom and sharp at 45 tca above.	J294186	350.95	351.4	0.45	1.150	0.70	55	0.01	Core
351.40	352.18 DIOR		Diorite. Coarse equigranular; uniform; homogenious with several short alteration bands, quartz veins; no shear									
352.18	352.30 ALT	DIOR	Altered diorite. Typical with quartz in the middle and pyrite along the contact	J294187	352.18	352.3	0.12	3.700	2.70	1465	0.15	Core
352.30	357.30 DIOR		Diorite	J294188	352.3	352.3	0.00	0.005	0.10	7	0.00	Blank
357.30	357.48 QCV	DIOR	Quartz tourmaline vein. Mixture vein perpendicular tca; barren; contact marked by quartz vein above and dispersive below; short alteration band around contact.									
357.48	363.50 DIOR		Diorite.									
363.50	363.80 FOL	DIOR	Foliated diorite.									
363.80	368.78 DIOR		Diorite. Short alteration bands; short shear zones with sulphides along shear; bullock quartz with small cluster of pyrite; slightly foliated subparalel tca.									
368.78	369.70 FOL	DIOR	Foliated diorite. Foliation 45tca with quartz following shear or subparalel tca.									
369.70	372.35 DIOR		Diorite. Same as 363.80-368.78.									
372.35	372.85 ALT	DIOR	Altered diorite. With quartz veins at 45tca in the middle of the interval filled with pyrite; interval slightly bleached.	J294189	372.35	372.85	0.50	1.000	2.50	841	0.08	Core
372.85	373.22 DIOR		Diorite. Same as above.									
373.22	373.50 ALT	DIOR	Altered diorite. With 2 alteration bands perpendicular tca, 5 cm wide each.	J294190	373.22	373.5	0.28	0.257	0.70	122	0.01	Core
373.50	373.85 DIOR		Diorite. Same as above.									
373.85	374.10 ALT	DIOR	Altered diorite. With quartz in the middle at 80 tca.	J294191	373.85	374.1	0.25	0.583	0.50	78	0.01	Core
374.10	375.25 DIOR		Diorite.									
375.25	375.56 ALT	DIOR	Altered diorite. With 2 alteration bands, 1 cm wide each and perpendicular tca.	J294192	375.25	375.56	0.31	0.021	0.50	115	0.01	Core
375.56	378.50 DIOR		Diorite.									

Lithology				Assays								
From	To ${ }^{\text {To }}$	M Lith	Lithology Notes	Sample	From	To	Interva\|	Au g/t	Ag PPM	Cu PPM	Cu\%	Type
393.69	394.28 FOL	DIOR	Foliated diorite. Foliation at 40tca, uniform; compact interval;contact with above/below non foliated diorite sharp and sudden.									
394.28	397.42 DIOR		Diorite. On each 10-40 cm quartz vein <1cm wide and at 50tca.									
397.42	400.36 SIL	DIOR	Silicified diorite. White color, slightly bleached; slightly foliated; not uniform; quartz veins perpendicular and 45 tca ; clear, 1 cm wide quartz vein at 397.66 , perpendicular tca and barren									
400.36	404.35 DIOR		Diorite									
404.35	405.00 ALT	DIOR	Slightly altered diorite. No visible quartz vein; slightly foliated; barren.									
405.00	407.02 DIOR	DIOR	Diorite. Coarse equigranular; quartz veinlets at 70tca.									
407.02	407.63 ALT		Altered diorite. Above shoulder for the below QMV; Bleached, homogeniouly; clear quartz vein in the middle; contact gradual with above diorite; disseminated pyrite in low abundance.	J294198	407.02	407.63	0.61	0.615	2.60	846	0.08	Core
407.63	408.51 QMV		Mineralized quartz vein. White with diorite impurites; patches of pyrite; contact with altered diorite gradual; medium to high abundance of sulphide.	$\begin{aligned} & \hline \text { J294199 } \\ & \text { J294400 } \end{aligned}$	$\begin{aligned} & \hline \hline 407.63 \\ & 407.63 \end{aligned}$	$\begin{aligned} & 407.63 \\ & 408.51 \end{aligned}$	$\begin{aligned} & \hline 0.00 \\ & 0.88 \end{aligned}$	$\begin{aligned} & \hline 0.557 \\ & 9.610 \end{aligned}$	$\begin{aligned} & \hline 2.90 \\ & 8.00 \end{aligned}$	$\begin{array}{r} \hline 4610 \\ 411 \end{array}$	$\begin{aligned} & \hline \hline 0.46 \\ & 0.41 \end{aligned}$	Core Core
408.51	408.85 ALT	DIOR	Altered diorite. Typical with quartz vein in the middle; this interval is below shoulder for the above QMV and also a new alteration sequence.	J294401	408.51	408.85	0.34	9.930	16.60	388	0.39	Core
408.85	409.00 QMV		Mineralized quartz vein. 2 QMV at 408.90, 4cm wide and perpendicular tca and at 409.00, $<1 \mathrm{~cm}$ wide and at 80 tca ; low pyrite abundance.	J294402	408.85	409	0.15	11.550	11.60	434	0.43	Core
409.00	409.23 ALT	DIOR	Altered diorite. Bleached; below shoulder for above QMv; dispersive pyrite; gradual contact below; neclece of pyrite at 409.13 at 85 tca.	J294403	409	409.23	0.23	0.667	0.80	214	0.21	Core
409.23	409.63 DIOR	Diorite. With unclear, $<0.5 \mathrm{~cm}$ and perpendicular tca alteration band; barren										
409.63	410.06 ALT	DIOR	Altered diorite. Slightly foliated; lamprophyre veins are at 50 tca; quartz veins bulky intersected with lamprophyritic hairy veinlets; each contact filled with pyrite; bleached diorite; low pyrite abindance.	J294404	409.63	410.06	0.43	0.179	1.10	441	0.44	Core
410.06	410.60 FOL	DIOR	Foliated diorite. The same alteration as above but not bleached.									
410.60	412.76 DIOR	Diorite.										
412.76	413.14 FOL	DIOR	Foliated diorite									
413.14	414.20 DIOR	LAMP	Diorite intersected with lamprophyre/quartz veinlets and bleached. Veinlets subparalel tca or 20tca, discontinious, interrupted, barren									
414.20	415.80 SIL	DIOR	Slightly silicified diorite; Intersected with dark lamprophyre vienlets at 80tca.									
415.80	417.30 FOL	DIOR	Foliated and silicified diorite. Foliation at 40tca; silicified in $10-20 \mathrm{~cm}$ patches along foliation.									

Lithology				Assays								
From	To Lith	M Lith	Lithology Notes	Sample	From	To	Interval	Au g/t	Ag PPM	Cu PPM	Cu\%	Type
417.30	417.91 SIL	DIOR	Silicified and altered diorite; Slightly bleached; discontinious quartz veins subparalel tca.									
417.91	422.75 DIOR		DIORITE. Coarse equigranular; more white than dark.									
422.75	423.00 ALT	DIOR	Altered diorite. At 425.80 alteration band perpendicular tca, 3 cm wide with pyrite disseminated; after that second alteration band, few mm wide, 70tca with pyrite along contact; low abundance.	J294405	422.75	423	0.25	0.371	3.10	3140	3.14	Core
423.00	424.55 DIOR		Diorite. Equigranular; only two quartz veinlets.									
424.55	425.04 ALT	DIOR	Altered diorite. Intensivly bleached, almost white color; contact with quartz vein sharp; several quartz veinlets dissolved in alteration zone; bottom part of the interval darker color and less bleached; dispersive pyrite in low abundance.	J294406	424.55	425.04	0.49	0.042	0.10	28	0.03	Core
425.04	425.64 DIOR		Diorite.									
425.64	425.98 SIL	DIOR	Altered and silicified diorite. Also epidotized; very rare pyrite; intensivly bleached with interstitial epidotizetion	J294407	425.64	425.98	0.34	0.002	0.20	41	0.04	Core
425.98	426.17 DIOR		Diorite.									
426.17	426.26 SIL	DIOR	Silicified/altered/epidotized diorite. Same as at 428.64-428.98; very rare pyrite.	J294408	426.17	426.26	0.09	0.002	0.20	28	0.03	Core
426.26	426.65 DIOR		Diorite									
426.65	426.80 ALT	DIOR	Altered diorite. Typical with quartz vein in the middle.	J294409	426.65	426.8	0.15	0.014	0.10	8	0.01	Core
426.80	429.20 DIOR		Diorite.									
429.20	429.40 SIL	DIOR	Silicified/altered/epidotized diorite. Same as 428.64-428.98 and 429.17-429.26; no pyrite.									
429.40	431.00 DIOR		Diorite. Intersected with quartz veins at 80tca at the bottom of the interval; similar interval as at 432.20-432.40.									
431.00	431.44 SIL	DIOR	Silicified/altered/epidotized diorite. Same as above.									
431.44	431.82 DIOR		Diorite.									
431.82	432.11 QMV		Mineralized quartz vein. Subparalel tca; wavy; ribbony; 1 cm wide; some mineralization inside and along contacta; weak alteration zone around.	J294410	431.82	432.11	0.29	2.490	0.10	71	0.07	Core
432.11	435.81 DIOR		Diorite.	J294411	432.11	432.11	0.00	1.530	4.80	9990	1.00	CM2

Lithology				Assays								
From	To ${ }^{\text {Tith }}$	M Lith	Lithology Notes	Sample	From	To	Interval	Au g/t	Ag PPM	Cu PPM	Cu\%	Type
435.81	436.80 EALT DIOR Epidotized and foliated diorite; Epidote in patches, irregular, darker color; influence of lamprophyre; foliation at 45tca followed by epidote and lamprophyre.											
436.80	440.95 DIOR		Diorite; foliated in sequences; equigranular in sequences; quartyz veins 30-30tca.									
440.95	441.05 ALT	DIOR	Altered diorite.Typical with quartz vein in the middle.	J294412	440.95	441.05	0.10	0.033	0.10	35	0.04	Core
441.05	443.35 DIOR		Diorite.									
443.35	443.50 ALT	DIOR	Altered diorite. Typical with quartz vein in the middle.	J294413	443.35	443.5	0.15	0.105	0.40	189	0.19	Core
443.50	443.73 DIOR		Diorite.									
443.73	444.30 SHR	DIOR	Mineralized sheared diorite. Shear at 80tca, folliated by quartz, lamprophyre, ortoclas and pyrite/chalco.	J294414	443.73	444.3	0.57	0.185	6.40	7160	7.16	Core
444.30	447.20 DIOR		Diorite. With silicification and epidot patches 10 cm wide.									
447.20	447.32 ALT	DIOR	Altered diorite. Typical with quartz vein in the middle.	J294415	447.2	447.32	0.12	0.135	0.80	171	0.17	Core
447.32	451.57 DIOR		Diorite. With freequent alteration bands silicifized $<10 \mathrm{~cm}$ wide at $451.55,451.79$ and 452.00 ; low pyrite abundans.									
451.57	452.11 ALT	DIOR	Altered diorite. At 454.72 first quartz veinlet perpendicular tca and 1 cm wide; at 455.00 second quartz veinlet 45 tca and $0,5 \mathrm{~cm}$ wide.	J294416	451.57	452.11	0.54	0.208	0.30	35	0.04	Core
452.11	452.70 DIOR		Diorite. With several alteration bands, $<1 \mathrm{~cm}$ wide.									
452.70	453.09 ALT	DIOR	Altered diorite. At 455.80 quartz vein subperpendicular and full iof pyrite/chalco along contact; bleached zone below tha quartz vein but very few disseminated pyrite .	J294417	452.7	453.09	0.39	0.024	0.10	40	0.04	Core
453.09	458.02 DIOR		Diorite. Several quartz veins at 70 tca but not alteration zones or pyrite; barren									
458.02	458.50 ALT	DIOR	Altered diorite. Bleached; at 461.40 broken core at 45 tca; pyrite sparkled but mostly around 461.40	J294418	458.25	458.5	0.25	0.445	0.50	112	0.01	Core
458.50	458.94 SHR	DIOR	Sheared diorite. Lamprophyre material along shear; shear at 45tca; slightly bleached.									
458.94	462.97 DIOR		Diorite.									
462.97	463.24 ALT	DIOR	Altered diorite. With 2 small alteration bands perpendicular tca.	J294419	462.97	463.24	0.27	0.020	0.10	941	0.09	Core
463.24	463.88 DIOR		Diorite.									
463.88	464.27 ALT	DIOR	Altered diorite. Bleached intensivly; with quartz/lamprophyre veinlets in the middle.	J294420	463.88	464.27	0.39	0.878	4.90	1415	0.14	Core

Lithology				Assays								
From	To ${ }^{\text {To }}$ Lith	M Lith	Lithology Notes	Sample	From	To	Interva\|	Au g/t	Ag PPM	Cu PPM	Cu\%	Type
464.27	464.60 ALT	DIOR	Altered diorite. Consists of 2 short alteration bands perpendicular tca.	J294421	464.27	464.6	0.33	0.079	1.00	506	0.05	Core
464.60	465.63 DIOR		Diorite.	J294422	464.6	464.6	0.00	0.438	1.30	5920	0.59	CM3
465.63	466.04 ALT	DIOR	Altered diorite. Gradually toward the center of interval more bleached but no visible quartz veinlets in the middle.	J294423	465.63	466.04	0.41	0.080	0.70	62	0.01	Core
466.04	469.34 DIOR		Diorite. With several short alteration bands; coarse; slightly bleached and epidotized.									
469.34	470.11 ALT	DIOR	Altered diorite. At 472.34-472.73 intensivly bleached almost white with disseminated pyrite; from 472.73-473.11 there are 3 short alteration bands perpendicular tca and $5 \mathrm{~cm}, 2 \mathrm{~cm}$ and 1 cm wide; low abundance of disseminated pyrite.	J294424	469.34	470.11	0.77	0.056	0.50	30	0.00	Core
470.11	472.00 DIOR		Diorite.									
472.00	473.25 ALT	DIOR	Altered diorite. More tha 10 short alteration bands one after the other; they are $0 .-8 \mathrm{~cm}$ wide and all perpendicular tca; looks as overlaping alteration interval.	J294425	472	473.25	1.25	0.165	1.40	770	0.08	Core
473.25	475.66 DIOR		Diorite.									
475.66	475.99 FOL	DIOR	Foliated diorite. Foliation at 80tca followed by lamprophyre and quartz.									
475.99	479.29 DIOR		Diorite. Intersected with white, clean quartz veins, $<1 \mathrm{~cm}$ wide, sub paralel tca that have no alteration zones neither pyrite; diorite slightly foliated; few short alteration bands.									
479.29	479.50 ALT	DIOR	Altered diorite. Typical bleached more toward the center but no visible quartz vein in the middle; disseminated pyrite in low abundance.	J294426	479.29	479.5	0.21	0.297	0.60	72	0.01	Core
479.50	482.20 DIOR		Diorite.									
482.20	482.97 ALT	DIOR	Altyered diorite. At $485.59,0.5 \mathrm{~cm}$ wide quartz vein perpendicular tca with pyrite.	J294427	482.2	482.97	0.77	0.507	0.70	109	0.01	Core
482.97	483.28 DIOR		Diorite.									
483.28	483.42 ALT	DIOR	Altered diorite. Typical; at 486.34 quartz vein1cm wide and perpendicular tca with pyrite along contact; photo taken!	J294428	483.28	483.42	0.14	0.138	1.00	223	0.02	Core
483.42	483.74 DIOR		Diorite									
483.74	483.87 ALT	DIOR	Altered diorite. Typical with quartz vein in the middle and pyrite.	J294429	483.74	483.84	0.10	0.025	0.70	148	0.01	Core
483.87	484.00 DIOR		Diorite. With clean quartz veins with no alterations or pyrite.									
484.00	484.07 ALT	DIOR	Altered diorite. With garnet lamprophire veinlets <2cm in the middle.	J294430	484	484.07	0.07	0.137	0.70	194	0.02	Core

Lithology				Assays								
From	To ${ }^{\text {Tith }}$	M Lith	Lithology Notes	Sample	From	To	Interval	Au g/t	Ag PPM	Cu PPM	Cu\%	Type
504.52	505.30 ALT	DIOR	Altered diorite. Bleached in sequences; consists of alteration zones at 507.52-507.60 with not visible quartz; at 507.90-508.24 sheared and bleached diorite with quartz veins sub perpendicular tca; fragmentation along shear.	J294441	504.52	505.3	0.78	0.369	0.80	129	0.01	Core
505.30	505.83 EALT	DIOR	Epidotized diorite. Interstitial space is pistacio green suggesting intensive epidotization.									
505.83	506.70 ALT	DIOR	Altered diorite.At 509.92 quartz vein perpendicular tca, 3 cm wide; at $509.21-509.70$ sheared and bleached diorite with disseminated pyrite.	J294442	505.83	506.7	0.87	0.110	0.80	106	0.01	Core
506.70	509.75 FOL	DIOR	Foliated diorite. Foliation 45tca, uniform; at 507.20-507.37 quartz vein at 45 tca following foliation									
509.75	521.80 EALT	DIOR	Epidotized diorite. Interstitial spece completely replaced by epidote; coarse equigranular texture;intersected with $<0.5 \mathrm{~cm}$ quartz veinlets mainly perpendicular tca but also 45tca.									
521.80	525.53 FOL	DIOR	Foliated diorite. Foliation at 45tca; uniform.									
525.53	531.27 EALT	DIOR	Epidotized diorite. Same as previous interval of epidotized diorite.									
531.27	531.49 ALT	DIOR	Altered diorite. With quartz vein at 534.39 at 80 tca, 2 cm wide,; short bleached intervals around; low pyrite abundance.	J294443	531.27	531.49	0.22	0.031	0.70	312	0.03	Core
531.49	536.50 EALT	DIOR	Epidotized diorite. Coarse equigranular texture with completely epidotized interstitial space; quartz vein subperpendicular or 45 tca; core broken every $10-40 \mathrm{~cm}$ at 90 tca or 45 tca ; slight shear present	J294444	531.49	531.49	0.00	0.011	0.20	11	0.00	Blank
536.50	539.54 DIOR	EALT	Diorite. Epidotized. Coarse, equigranular; sporadically quartz veins perpendiculat tca or 80tca; interstitial space light green due to epidotization; few bands of epidote perpendicular tca and curvy.									
539.54	541.40 SHR	DIOR	Sheared diorite. Shear at 50tca; starts slowly and fradually and intensify toward the middle of the interval; at the bottom bulky quartz and quartz bands perpendicular tca; all quartz barren on sulphide.									
541.40	544.14 EALT	DIOR	Epidotized diorite. Equigranular, coarse with epidotized interstitial space; frequent barren and irregular quartz/calcite veins, 1 cm wide, and $30-50 \mathrm{tca}$.	J294447	541.63	541.8	0.17	0.017	1.20	913	0.09	Core
544.14	546.63 SHR	DIOR	Sheared diorite. Shear 30tca; compact core; slightly foliated.									
546.63	546.80 QMV	SHR	Mineralized sheared quartz vein. Contact at 50tca; contact irregular and discontinious and 5 cm wide vein with sharp contact with diorite and absence of alteration zone; patches of pyrite/chalcopyrite/arsenopyrite?									
546.80	552.31 DIOR		Diorite. Uneven texture; coarse and fine grained are exchanging in short intervals; quartz veins, $<1 \mathrm{~cm}$ wide, paralel or 50 or perpendicular tca; epidotized interstitial space but only in some partz.									
552.31	553.60 SHR	DIOR	Sheared diorite. Shear 20tca followed by lens-shaped quartz and dispersive purite; contact between sheared and non-sheared diorite very sharp.									

Lithology				Assays								
From	To Lith	M Lith	Lithology Notes	Sample	From	To	Interval	Aug/t	Ag PPM	Cu PPM	Cu\%	Type
585.60	588.40 DIOR	SHR	Slightly sheared diorite. Short altered bands, 1 cm wide, above are perpendicular tca and shear 40 tca; at 590.37 bulky quartz vein paralel tca irregular and barren.									
588.40	588.49 QMV		Mineralized quartz vein. 2cm wide and perpendicular tca; no alteration zone; low pyrite dispersed along contact; contact sharp.	J294453	588.4	588.49	0.09	0.018	0.60	303	0.03	Core
588.49	591.16 DIOR	LAMP	Diorite. Intersected with tuffistic (volcanic?) and lamprophyric veinlets, 1 cm wide perpendicular tca and 50tca with epidote patches on contact between these dikes and surronding diorite.									
591.16	591.50 ALT	DIOR	Altered diorite. With 3 altered bands, 2-4cm wide and perpendicular tca: typical; low abundance of dispersed pyrite.	J294454	591.16	591.5	0.34	0.095	1.40	485	0.05	Core
591.50	596.31 DIOR		Diorite. Coarse, uniform, epidotized in interstitial space.	J294455	591.5	591.5	0.00	1.440	5.30	9890	0.99	CM2
596.31	597.35 DIOR	ALT	Sheared and altered diorite. Maybe above shoulder for the below sequence; shear 10tca with few short alteratin bands.									
597.35	597.76 ALT	DIOR	Altered diorite. Bleached; probably few altered bands but not visible quartz; pyrite dispersed throughout in low abundance.	J294456	597.35	597.76	0.41	0.010	0.50	177	0.02	Core
597.76	600.50 DIOR		Diorite. Few barren quartz veins, <1cm wide and perpendicular tca; few, 1 cm wide alteration bands.									
600.50	603.55 SHR	DIOR	Sheared diorite. Shear at 30tca; coarse foliated diorite.									
603.55	603.95 DIOR	EALT	Diorite epidotized. Coarse grained; frequently intersected with thiny quartz veinlets at 70tca or perpendicular tca.									
603.95	606.08 ALT	DIOR	Altered diorite. Bleached; disseminated pyrite in low abundance.	J294457	605.95	606.08	0.13	0.020	0.70	68	0.01	Core
606.08	612.86 DIOR	EALT	Diorite epidotized. Few short, <2cm, and perpendicular tca altered bands with quartz veinlets; quartz veins sporadicaly; epidote bands sporadicaly; barren bulky quartz at 615.70.									
612.86	612.93 ALT	DIOR	Altered diorite. Typical alteration band with quartz veinlet in the middle; low amount disseminated pyrite.	J294458	612.86	612.93	0.07	0.087	0.60	35	0.00	Core
612.93	616.71 DIOR		Diorite. Equigranular, coarse, uniform.									
616.71	617.02 ALT	SHR	Mineralized altered and sheared diorite. Shear at 20tca followed by disseminated pyrite; at the bottom of this interval 12 cm wide typical altered band perpendicular tca, bleached with diffusive quartz veinlets in the middle and disseminated pyrite.	J294459	616.71	617.02	0.31	0.252	0.70	121	0.01	Core
617.02	619.63 DIOR	FOL	Diorite. Slightly sheared paralel tca or 10-20tca; folliated									
619.63	620.22 ALT	SHR	Mineralized altered and sheared diorite. Same as 619.71-620.02; starts with shear 20tca with pyrite; at 623.12 qyartz vein perpendicular tca and altered zone with disseminated pyrite in low abundance.	J294460	619.63	620.22	0.59	0.080	0.60	195	0.02	Core
620.22	622.12 DIOR		Diorite. Slightly sheared 30tca; short altered bands; inconsistent texture: coarse and fine									

Lithology				Assays								
From	To ${ }^{\text {T }}$ Lith	M Lith	Lithology Notes	Sample	From	To	Interva\|	Aug/t	Ag PPM	Cu PPM	Cu\%	Type
grained.												
622.12	623.35 ALT	DIOR	Altered diorite. Slightly bleached and slightly foliated at 30tca; several quartz bands perpendicular tca; pyrite disseminated along folliation; similar to 619.71-620.02 or above shoulder for the below sequence?	J294461	622.12	623.35	1.23	0.247	0.80	129	0.01	Core
623.35	624.84 QMV	SHR	Mineralized sheared diorite with quartz vein. Quartz vein lens-shapped follow shear at 20tca and carry pyrite; along the whole interval disseminated pyrite in low abundance.	J294462	623.35	624.84	1.49	0.121	4.30	4020	0.40	Core
624.84	625.84 SHR	DIOR	Mineralized sheared diorite. Shear 40tca; slightly bleached diorite; disseminated pyrite in low abundance; maybe below shoulder for the above sequence?	J294463	624.84	625.84	1.00	0.023	1.00	1260	0.13	Core
625.84	627.25 DIOR		Diorite. Slightly sheared; equigranular and coarse and fine grained; more fine grained toward the bottom.									
627.25	627.70 SHR	DIOR	Sheared coarse grained diorite. Shear 40tca; coarse, lens-shaped plagioclase; contact with above fine grained diorite sharp; along interval fine quartz/calcite veins paralel tca; core fractured at the bottom.									
627.70	629.23 DIOR	POR	Super coarse grained diorite. Almost pegmatitic texture. Slightly sheared paralel tca and foliated; chilled margin??									
629.23	630.21 QV	DIOR	Sheared quartz veins in fine grained diorite. Quartz veins, $2-4 \mathrm{~cm}$ wide and perpendicular tca, barren, in fine grained dark colored epidotized diorite/laprophyre mixture; discontinious, convoluted veinlets; this interval looks as mixture of melted country rocks (xenoliths0 in the dioritic melt - chilled margins xenoliths.									
630.21	630.80 DIOR		Contact of fine grained and super coarse diorite. Possible mixture with volcanics? Again chilled margins with xenoliths melted in the dioritic magma; fine and coarse grained diorite exchange with sharp contacts (xenoliths); some quartz veinlets perpendicular tca.									
630.80	631.41 DIOR	POR	Super coarse grained diorite. Probably mixed with lamprophyre and/or other textural variation of diorite.									
631.41	633.47 DIOR		Contact of fine grained and super coarse diorite. Similar to 633.21-633.80, chilled margins?contact sharp and sudden.									
633.47	633.68 DIOR	POR	Super coarse grained diorite. Uniform, equigranular but almost pegmatitic texture, slow crystalization due to volatiles or depth of intrusion?possible tourmaline crystals?									
633.68	634.58 DIOR		Fine grained diorite. Quartz veilets 50tca, 1cm wide, barren; finr equigranular texture of diorite; dark green color.									
634.58	636.20 DIOR	POR	Super coarse grained diorite. Same as 636.47-636.68.									
636.20	637.60 DIOR	SHR	Sheared coarse/fine grained diorite; Shear 30tca; above mostly fine grained diorite then fine/coarse mixed and discontinious; at the bottom super coarse and uniform diorite.									
637.60	638.48 DIOR	POR	Super coarse grained diorite. Same as 636.47-636.68.									
638.48	639.20 DIOR		Mixture of fine and coarse grained diorite. Intersected with thiny quartz veinlets mainly perpendicular tca; contacts quartz and diorite sharo.									

LITH_MINZ_ASSAY DRILL LOG

HOLE ID	AZIMUTH	DIP	LENGTH	COORDINATES		SHORTLOG	LOG COMPLETE
KE10-19	244	-58	619.36	EASTINGS:	472372	MK	19/12/2010
	Drilling			NORTHINGS:	5479250	DETAILLOG	DATUM
AREA	Started:	15/12/2010	CORE SIZE	SECTION		MK	Nad83 Zone 11
Kenville SE	Finished:	19/12/2010	NQ	5479250			SAMPLER

HOLE ID KE10-19

Lithology				Assays								
From	To ${ }^{\text {Tith }}$	M Lith	Lithology Notes	Sample	From	To	Interval	Au g/t	Ag PPM	Cu PPM	Cu\%	Type
9.90	97.66 OB GRA		Overburden. Crumbles of core, muddy from 9.90-43.70 with sparce fragments of granite; from 43.-97.66 more grantite core, up to30cm long.									
97.66	104.23 DIOR	LAMP	Diorite with lamprophyre dyke. Equigranular and interstitial texture, homogenous appearence through the whole interval; from 97.66-97.76 laprophyre dyke with fine (non porpyritic) texture; contact between diorite and this lamprophyre dyke unclear but visible fracture at 50 tca									
104.23	106.46 SHR	DIOR	Sheared diorite. Sporadic, few mm wide quartz/carbonate veinlets $50-60 \mathrm{tca}$; after 0.34 m the shearing gradually increase. From 104.92-105.42 more intensive shearing 30-40tca with porosity along the shearing plates. The similar strong shear zone appear again from 105.56106.46 with subparalel tca and more porosity along the shear plates;									
106.46	107.58 ALT	DIOR	Altered diorite (bleached). Not clear how previous shear zone stops and interstitial diorite appear at 106.71; shear, subparalel tca from 106.80-107.50; bleached diorite with gradual increase of white minerals. At 107.10 quartz/calcite veinlet, $10-20 \mathrm{~cm}$ wide and 50 tca with no mineralization	J294079	106.46	107.58	1.12	0.036	0.40	47	0.00	Core
107.58	107.68 QMV	QCFV	Mineralized quartz/carbonate vein. Contact with surronding diorite is sharp with pyrite along the contact plane; contact at 60 tca, vein is ribbony, brecciated with one $2 \times 2 \mathrm{~cm}$ chunk of pyrite and oxidized fracture plane; minerals present aremostly pyrite, few chacopyrite andfew galena; minerals are irregulary distributed, mixed with hornblende and quartz, often halo of hornblende (reaction rim?) around mineralized clusters; vein has low mineralization.	J294080	107.58	107.68	0.10	1.510	22.50	5390	0.54	Core
107.68	108.20 ALT	DIOR	Altered diorite (bleached). Conract with above quartz vein is sharp but curved and perpendicular tca with pyrite along the contact plane; altered diorite has chlorite, sericite, hematite suggesting slight oxidation	J294081	107.68	108.2	0.52	0.002	0.70	154	0.02	Core
108.20	113.65 SHR	DIOR	Sheared diorite. Similar to previous shear interval at 104.23-106-46. Sequences of strong, subparallel foliation together with $1-4 \mathrm{~cm}$ wide quartz/calcite veinlets at 108.86-109.42, 110.52110.79 and 111.86-112.67. Quartz/calcite veinlets are wavy, ribbony or patchy and surronded with thin films of sericite/chlorite, but no mineralization. In between these shear intervalsare equigranular and interstitial diorites									
113.65	114.00 LAMP		Lamprophyre. Fine matrix supported with orienteted, subparallel tca phlogopite; oxidazed and unoxidized contact, looks like volcanic flow?									
114.00	122.83 SHR	DIOR	Sheared diorite.Similar to previously described shear intervals at 104.23-106.46 and 108.20113.65; dark minerals (biotite, hornblende) are lineated parallel or subparalel tca; at the begining of this interval tiny quartz/quartzite veinlets, 1 cm wide with 60 tca ; later in this interval,									

Lithology				Assays								
From	To ${ }^{\text {T }}$	M Lith	Lithology Notes	Sample	From	To	Interval	Au g/t	Ag PPM	Cu PPM	Cu\%	Type
			quartz/calcite veinlets, less than 1 cm wide start appearing perpendicular tca at 118.70, 120.00 and 122.10									
122.83	123.13 ALT	DIOR	Altered diorite (bleached). Silicified, chloritized, slightly magnetic with disseminated pyrite and magnetite crystals start appearing at 123.05; the amount of pyrite gradually increase toward contact with quartz vein; the amount of magnetite gradually decrease toward the contact with quartz vein.	J294082	122.83	123.13	0.30	0.044	0.60	35	0.00	Core
123.13	123.24 QMV		Mineralized quartz vein. Sharp, perpendicular contact with altered diorite; undulatory quartz with patches of mineralization; minerals present are mainly pyrite, less sphalerite, minor chalcopyrite and galena; hairy sulphides parallel tca and discontinious;vein has medium mineralization.	J294083	123.13	123.24	0.11	3.720	18.80	4490	0.45	Core
123.24	124.18 ALT	DIOR	Altered diorite(bleached). Silicified, chloritized, slightly magnetic with disseminated pyrite up to 123.66 and after that no pyrite present; at 123.44 quartz veinlet, 1 cm wide perpendicular tca; graduate transition toward darker and slightly sheared diorite; shearing is wavy and irregular, turbulent.	J294084	123.24	123.76	0.52	0.244	1.30	49	0.00	Core
124.18	129.34 DIOR		Diorite. Uniform interval with equigranular and interstitial texture, waek lineation of black minerals; sporadically small pistacio greeen, surficial patches (secondary epidote?)									
129.34	132.16 SHR	DIOR	Sheared diorite. Similar to above intervals of shear diorite; mineral lineation 60 tca; fractures along the core; parts with convolutions and hairy veinlets of chlorite and quartz.	J294085	132	132.26	0.26	0.423	1.10	262	0.03	Core
132.16	132.26 ALT	DIOR	Altered diorite (bleached). Above sheared diorite abruprtly transfer into bleached sheared diorite; disseminated pyrite and magnetite gradually increasetoward contact with quartz vein; slightly magnetic									
132.26	132.50 QMV	BZ	Mineralized quartz vein completely broken. Sparcely mineralized with only pyrite visible; sharp contact, irregular and 70-80 tca, with above and below altered diorite; undulatory quartz with some chlorite; pyrite appears as disseminated and in patches; this quartz vein is completely broken in small fragments $2-6 \mathrm{~cm}$ long.	J294086	132.26	132.5	0.24	1.470	2.60	626	0.06	Core
132.50	133.00 ALT	DIOR	Altered diorite (bleached) .From 132.50-132.60 disseminated pyrite but rare; subparallel foliation; silicified with some calcite; gradational transition to diorite.	J294087	132.5	133	0.50	0.016	1.20	237	0.02	Core
133.00	144.54 DIOR	EALT	Diorite. Slightly sheared with frequent, irregular patches, up to $5 \times 6 \mathrm{~cm}$ of pistacio green mineral (epidote?); furter in this interval small dyke, 1 cm wide and 40-50tca; sporadic quartz veinlets, 3 cm wide, 45 tca and with sharp contacts; few faults perpendicular and 45 tca	J294088	133	133	0.00	0.553	1.20	5740	0.57	CM3
144.54	145.02 LAMP	ALT	Lamprophyre. Intensively altered with phlogopite and disseminated pyrite. Pyrite appears in hairy, wavy lines perpendicular tca.	J294089	144.54	145.02	0.48	0.148	0.70	122	0.01	Core
145.02	158.13 DIOR	LAMP	Diorite. Slightly altered and sheared with lamprophyric dyke. Alteration sequances are thin, band shape, $2-6 \mathrm{~cm}$ wide, perpendicular on tca, visible at 145.54, 147.52 and 150.58 ; disseminated or hairy lined pyrite are associated with these alted sequences. Sheared zones are subparallel on tca, $20-30 \mathrm{~cm}$ wide, visible at 149.35 and 153.65 ; some disseminated pyrite is present on the shear planes. Epidote patches present; quartz veinlets are wavy and parallel tca. Lamprophyre dyke at 49.00 and 45 tca with sharp but wavy contact with surronding diorite.									
158.13	159.23 SHR	LAMP	Sheared and altered lamprophyre/diorite. Looks as intensively sheared mixture of diorite and lamprophyre with foliation 45 tca and strongly magnetic; minerals present: biotite, phlogopite,	J294090	158.92	159.23	0.31	0.520	1.40	329	0.03	Core

Lithology				Assays								
From	To ${ }^{\text {To }}$ Lith	M Lith	Lithology Notes	Sample	From	To	Interval	Au g/t	Ag PPM	Cu PPM	Cu\%	Type
			feldspate?; looks as lamprophyre dykes intrusions into diorite; from 159.00-159.17 altered lamprophyre with quartz vein 15 tca with pyrite along the contact; at 159.23 sharp contact with diorite below marked by quartz infilling perpendiculat tca									
159.23	161.19 DIOR		Diorite. Equigranular, fine grained, slightly bleached, no mineralization									
161.19	162.08 ALT	LAMP	Altered lamprophyre. It could be a mixture of lamprophyre and diorite; intensively altered, bleached with phlogopite lineated parallel to tca; white minerals (plagioclas/ortoclas?) have granular appearence; minor amounts of disseminated pyrite all over this area.	J294091	161.44	162.08	0.64	0.078	1.30	133	0.01	Core
162.08	162.71 DIOR		Diorite. Same as interval of diorite at 159.23-161.19									
162.71	163.02 ALT	DIOR	Altered diorite. With 2-3 quartz veins up to 1 cm wide and perpendicular tca; bleached diorite; disseminated pyrite; gradual transition to below diorite.	J294092	162.71	163.02	0.31	2.860	4.20	83	0.01	Core
163.02	183.71 DIOR	SHR	Diorite. With short intervals, $<20 \mathrm{~cm}$, of shear and alteration and sporadicaly epidote patches; very weak pyrite mineralization in altered or shear intervals ; at 171.07-171.27 shearinterval with bornite? and pyrite along shear plane; shear planes are subparalel tca.	J294093	171.07	171.27	0.20	0.056	1.00	369	0.04	Core
183.71	183.92 ALT	DIOR	Altered diorite. Bleached with 0.5 cm wide quartz vein 80 tca; disseminated and hairy lined pyrite along vein and parallel with vein contact; interval starts with disseminated magnetite which slowly dissapear while disseminated pyrite increasing toward the quartz vein.	J294094	183.71	183.92	0.21	0.174	1.10	377	0.04	Core
183.92	191.22 DIOR	LAMP	Diorite with lamprophyre dykes. Equigranular and interstitial texture; lamprophyre dykes, 0.5 cm wide, intruded subpralel tca at 185.21 and 185.64 as $14-16 \mathrm{~cm}$ long dykes; barren bull quartz as well as veiny quartz, $0.5-2.0 \mathrm{~cm}$ wide, perpendicular tca or 45 tca ; few patches of epidote.									
191.22	192.52 ALT	DIOR	Altered diorite. Bleached with grayish convoluted calcite? veins; thiny lamprophyric dyke, 0.5 cm wide, irregular, wavy, hairy, paralel tca and highly magnetic; it seems that this interval is mixture of diorite, quartz, calcite and lamprophyre; disseminated pyrite in low to moderate abundance.	J294095	191.22	192.52	1.30	0.005	1.20	327	0.03	Core
192.52	197.16 DIOR	SHR	Diorite. Equigranular texture; slightly sheared from 192.72-194.78; at 195.29 band of alteration, 1 cm wide, with mediumabundance of disseminated pyrite.									
197.16	197.88 ALT	DIOR	Altered diorite. Bleached, disseminated pyrite and magnetite; short quartzite/calcite veinlets perpendicular tca; contact with above and below dioritegradational.	J294096	197.16	197.88	0.72	0.151	2.40	722	0.07	Core
197.88	205.19 DIOR		Diorite. Interstitial, weakly shear; at 198.80, 1 cm wide band of altered rock, bleached and disseminated pyrite; at 204.13 tiny lamprophyre dyke parallel tca with minor pyrite and bornite along contact.									
205.19	205.34 ALT	DIOR	Altered diorite. At 205.24 quartz band perpendicular tca; sharp contact; disseminated pyrite	J294097	205.19	207.26	2.07	0.010	2.20	203	0.02	Core
205.34	207.26 DIOR		Diorite. Equigranular and interstital texture; no mineralization.									
207.26	207.76 ALT	DIOR	Altered diorite. Bleached; at 207.41 and 207.58 quartz veins, 1 cm wide; contact between vein and alteration sharp and perpendicular tca marked by black hornblende and calcite; pyrite and	J294098	207.26	207.76	0.50	0.176	1.50	54	0.01	Core

Lithology				Assays								
From	To ${ }^{\text {T }}$	M Lith	Lithology Notes	Sample	From	To	Interval	Au g/t	Ag PPM	Cu PPM	Cu\%	Type
magnetite disseminated.												
207.76	211.81 DIOR		Diorite. Equigranular and interstitial; slightly sheared parallel tca.	J294099	207.76	207.76	0.00	0.511	1.80	90	0.01	Core Dupl
211.81	212.17 ALT	DIOR	Altered diorite. First 0.16 m strong shear zone 60tca gradually transfer into bleached diorite with disseminated pyrite and magnetite while shear still exist.	J294200	211.81	212.17	0.36	0.081	1.00	19	0.00	Core
212.17	212.35 QV		Quartz vein.Solid quartz vein with sharp contacts 70tca;calcite, phlogopite and strings of pyrite along the contact; stripes of darker and lighter parts of the vein suggesting some mixing with diorite.	J294201	212.17	212.35	0.18	2.090	11.20	94	0.01	Core
212.35	212.68 ALT	DIOR	Altere diorite. Bleached with some disseminated pyrite Altered diorite. Bleached; with disseminated pyreite	J294202	212.35	212.68	0.33	0.069	2.30	553	0.06	Core
212.68	219.46 DIOR	SHR	Diorite. Equigranular and interstitial texture; few strips of quartz/calcite bands, <1cm wide, 6089tca; from 219.06 starts shear 60 to and transfer to subparalel tca at the end of the interval.									
219.46	219.56 QMV	QCV	Mineralized quartz/calcite vein. This interval includes 4 cm wide quartz/calcite vein 40tca and the rest is alteration zone. Mineralized with pyrite, chalcopyrite and bornite in medium abundance and un clustering appearence.Contact vein alteration discontinous and fussy.	J294203	219.46	219.56	0.10	0.331	7.80	5750	0.58	Core
219.56	224.39 DIOR	EALT	Diorite. Equigranular and interstitial texture, epidote patches up to $3 x 6 \mathrm{~cm}$ irregular; only few tiny, $<0,3 \mathrm{~cm}$ wide quartz veinlets perpendicular and 70tca									
224.39	224.61 ALT	DIOR	Altered diorite. Altered, slightly bleached diorite; the color slightly changes from less to intensively bleached; contact with quartz vein 70tca and appearence of pyrite; at 224.50 quartz vein 1 cm wide perpendicular tca, contact with above and below diorite marked by stripes of calcite and lamprophyre strings.	J294204	224.39	224.61	0.22	0.002	1.30	413	0.04	Core
224.61	231.05 DIOR		Diorite. Few quartz bands, $<3 \mathrm{~cm}$, perpendicular and 50 tca									
231.05	231.11 QCV		Quartz/Calcite bullock vein.Barren, 6 cm wide, 80 tca ; mixture of quartz/calcite; solid, broken, fragmented; contact sharp, clear with no alteration zone									
231.11	232.33 DIOR		Diorite. Few quartz/calcite bands, 0.3 cm and perpendicular tca									
232.33	235.83 SHR	LAMP	Sheared lamprophyre dyke in diorite. Extremely sheared parallel and subparallel tca; phlogopite strained and lineated parallel tca; bornite and pyrite clustering along shear line; quartz/calcite strings follow shear planes; quartz/calcite veins parallel tca and slightly mineralized with pyrite.									
235.83	236.25 ALT	DIOR	Altered diorite. Gradual transition from shear to alter diorite; major mineralization: pyrite, bornite, galena; at 235.00 few quartz.calcite veinlets 70 tca; mixture of different materia, lamprophire and diorite but not visible contact; Intensively altered and mixed interval.	J294205	235.83	236.25	0.42	0.017	2.20	167	0.02	Core
236.25	238.78 SHR	DIOR	Sheared diorite. Slightly sheared, darker color, maybe lamprophyric mixture									
238.78	243.54 DIOR		Diorite. Lighter color than previous interval; equigranular texture; patches of epidote; few quartz/calcite bands perpendicular tca and $<0.3 \mathrm{~cm}$ wide.	J294206	243.5	244.15	0.65	2.330	4.10	1015	0.10	Core

Lithology				Assays								
From	To ${ }^{\text {To }}$	M Lith	Lithology Notes	Sample	From	To	Interva\|	Au g/t	Ag PPM	Cu PPM	Cu\%	Type
243.54	244.15 ALT	DIOR	Altered diorite. at 243.19 quartz ven, perpendicular tca with high pyrite abundance; at 244.04, quartz vein 45tca medium pyrite abundance.									
244.15	244.43 DIOR		Diorite. Equigranular texture; thiny veinlets 45tca; no mineralization.									
244.43	245.11 ALT	DIOR	Altered diorite.Slightly sheared with pyrite along shear surface, subparallel tca; pyrite, chalcopyrite.	J294207	244.43	245.11	0.68	2.090	16.10	4380	0.44	Core
245.11	245.28 DIOR	BZ	Diorite. Broken fragments									
245.28	245.38 ALT	DIOR	Short altered diorite. Mineralization: disseminated pyrite	J294208	245.28	245.38	0.10	0.108	1.50	926	0.09	Core
245.38	248.61 DIOR	EALT	Diorite. Equigranular and interstitial texture; patches of epidote sporadically.									
248.61	248.92 ALT	DIOR	Altered diorite. Contact with above diorite abrupt; disseminated pyrite and magnetite; thiny veinlets of quartz intersect; pyrite, chalcopyrite, sphalerite clustering around quartz veinlets.	J294209	248.61	248.92	0.31	0.343	1.00	193	0.02	Core
248.92	249.32 DIOR		Diorite. Not altered; equigranular and interstitial texture. Diorite. Equigranular texture.									
249.32	250.54 ALT	DIOR	Altered diorite. Bleached; contact with diorite gradual. compact interva, no broken fragments; not many veinlets, at 249.80 quartz vein, $<0.2 \mathrm{~cm}$, with some pyrite/chalcopyrite; at 250.28 and 25038 thiny quartz veinlets, $<0.3 \mathrm{~cm}$, perpendicular tca.	$\begin{aligned} & \hline \text { J294210 } \\ & \text { J294211 } \end{aligned}$	$\begin{aligned} & 249.32 \\ & 249.32 \end{aligned}$	$\begin{aligned} & 250.54 \\ & 249.32 \end{aligned}$	$\begin{aligned} & \hline 1.22 \\ & 0.00 \end{aligned}$	$\begin{aligned} & \hline 0.536 \\ & 1.535 \end{aligned}$	$\begin{aligned} & \hline 1.30 \\ & 4.40 \end{aligned}$	$\begin{array}{r} 243 \\ 10100 \end{array}$	$\begin{aligned} & \hline 0.02 \\ & 1.01 \end{aligned}$	$\begin{array}{r} \hline \hline \text { Core } \\ \text { M2 } \end{array}$
250.54	258.38 DIOR	QV	Diorite. Sheared at 254.00 quartz/calcite wavy veins parallel tca, discontinious; at 255.30 shear part 50 cm long parallel tca									
258.38	259.08 SHR	DIOR	Sheared diorite. With ripped quartz/calcite veins parallel tca; broken rock fragments; sharp shards broken along shear; thiny strypes of lamprophyre parallel tca and wavy.	J294212	259.06	260.96	1.90	0.318	1.80	429	0.04	Core
259.08	262.26 ALT	DIOR	Altered diorite. Intersected with short quartz veins mineralized with pyrite, chalcopyrite, sphalerite and bornite; quartz veins perpendicular tca at $262.00,4 \mathrm{~cm}, 262.13,3 \mathrm{~cm}$, at 261.62, $1 \mathrm{~cm}, 261.290 .5 \mathrm{~cm}, 260.38,3 \mathrm{~cm}, 250.80,0.2 \mathrm{~cm}$ and $252.4,1 \mathrm{~cm}$; interval is bleach with disseminated magnetite.	J294213	260.96	262.96	2.00	0.376	1.20	143	0.01	Core
262.26	282.26 DIOR	ALT	Diorite.Equigranular texture and not altered but intersected with short alteration bands with qurtz veinlets in middle and low abundance of pyrite. Alteration bands are perpendicular tca at 266.65 , 5 cm wide, at 268.25 , 5 cm wide, at $270,30,4 \mathrm{~cm}$ wide, at $240.24,2 \mathrm{~cm}$ wide, at 240.87 0.3 cm wide, at $272.42,4 \mathrm{~cm}$ wide, at $272.46,13 \mathrm{~cm}$ wide, at $274,32,5 \mathrm{~cm}$ wide, at 278.242 cm wide and 282.009 cm wide	J294214	272.42	274.32	1.90	0.589	0.60	110	0.01	Core
282.26	283.00 ALT	DIOR	Altered diorite. Bleached, silicified; quartz vein at $282.51 \mathrm{~m}, 3 \mathrm{~cm}$ wide and perpendiculartca with low to medium pyrite in clusters.	J294215	282.26	283	0.74	0.855	7.70	765	0.08	Core
283.00	293.46 DIOR	ALT	Diorite. With short altered bands and some shear parallel tca. altered bands at $284.83,4 \mathrm{~cm}$ wide, 284.85 , 2 cm wide, 289.6012 cm wide, $292.00,20 \mathrm{~cm}$ wide and $293.32,7 \mathrm{~cm}$ wide with or without quartz veinlets but slightly bleached and with disseminated pyrite and magnetite; weak shear zone at 285.68, 37 cm long with small lamprophyre and pyrite intruded along the shear	J294216	292	292.39	0.39	0.092	1.10	490	0.05	Core
293.46	293.87 SHR	DIOR	Shear diorite with mixed lamprophyre. Intensive shear subparalel tca or 20-30 tca; lamprophyric material is mixed but recognized by darker color and phlogopite; fractured and	J294217	293.46	293.87	0.41	0.187	2.10	2350	0.24	Core

Lithology				Assays								
From	To ${ }^{\text {T }}$ Lith	M Lith	Lithology Notes	Sample	From	To	Interval	Au g/t	Ag PPM	Cu PPM	Cu\%	Type
fragile interval with porous texture and crumbles along shear lines; clusters of pyrite along shear; highly magnetic interval.												
293.87	295.06 DIOR		Diorite. Equigranular and interstitial texture, black and white color. No shear.									
295.06	295.56 ALT	DIOR	Weakly altered diorite. Still visible granular texture but slightly bleached. Intersected with fine, thiny veinlets of calcite, quartz and lamprophyre; disseminated pyrite in low abundance.	J294218	295.06	295.56	0.50	0.002	0.10	162	0.02	Core
295.56	296.73 DIOR		Diorite. Equigranular and interstitial texture; black and white color; no shear.									
296.73	297.77 FOL	DIOR	Foliated diorite. Foliation 20-30 tca or paralel tca; uniform foliation through interval; quartz/calcite veinlets follow and mark foliation; not as strong as 293.46-293.87.									
297.77	309.05 DIOR	EALT	Equigranular and interstitial texture uniform throug interval; few patches of epidote, $1-3 \mathrm{~cm}$; discontinious thiny quartz veinlets perpendicular tca and few mm wide; slight change in coloration of diorite from darker to slightly lighter (light bleach).									
309.05	309.77 ALT	DIOR	Altered diorite. Bleached slightly, intersected with lots of hairy veinlets of quartz and calcite; disseminated pyrite on the fractured surfaces; at 309.57 shear zone 20 cm long subparalel tca or 30 tca with lamprophyre, calcite and quartz along shear lines; contact above gradual and below unclear.	J294219	309.05	309.77	0.72	0.026	0.90	1360	0.14	Core
309.77	314.36 DIOR		Diorite. Equigranular and interstitial; some thiny quartz veinlets perpendicular tca									
314.36	316.40 ALT	DIOR	Altered diorite. Contact above gradual; interval is fragmented due to abundant thint quartz veinlets perpendicular tca or sub perpenducular tca; disseminated pyrite along veinlets; at 316.14 shear zone 20 cm long with quartz along shear lines.	J294220	314.36	316.4	2.04	0.578	2.30	1280	0.13	Core
316.40	323.15 DIOR		Diorite. Equigranular and interstitial texture with altered band perpendicular tca at $316.60,2 \mathrm{~cm}$ wide, few bullock quartz and quartz/calcite veinlets, few mm wide, perpendicular, subperpendicular and paralel tca; no pyrite found.									
323.15	323.26 ALT	DIOR	Altere diorite.Quartz vein, 1 cm wide at 323.23 with massive pyrite along the bottom side of the quartz vein; contact between vein and altered diorite sharp below; pyrite masses irregular inside the vein but sharp on the contact with altered diorite; altered diorite with disseminated pyrite and magnetite.	$\begin{aligned} & \hline \text { J294221 } \\ & \text { J294222 } \end{aligned}$	$\begin{aligned} & \hline 323.15 \\ & 323.15 \end{aligned}$	$\begin{aligned} & \hline 323.26 \\ & 323.15 \end{aligned}$	$\begin{aligned} & 0.11 \\ & 0.00 \end{aligned}$	$\begin{array}{r} \hline \hline 17.600 \\ 0.441 \end{array}$	$\begin{array}{r} \hline 18.20 \\ 1.20 \end{array}$	$\begin{array}{r} 331 \\ 5520 \end{array}$	$\begin{aligned} & \hline 0.03 \\ & 0.55 \end{aligned}$	$\begin{array}{r} \hline \hline \text { Core } \\ \text { M3 } \end{array}$
323.26	323.38 DIOR		Diorite. Equigranular and interstitial texture; uniform through interval. Diorite. Equigranular and interstitial texture; uniform through the interval.									
323.38	325.43 BZ	DYKE	Shear and altered diorite/lamprophyre/volcanic? Crumbled and dissentigrated; porous; quartz crystals in cavites; lamprophyre dyke intruded 60tca; contact sharp, abruptive; whole interval is altered and sheared due to mixture of different material: quartz, calcite, lamprophyre, diorite and shear; lamprophyre appear as fine tuff material with flow texture; the interval has clayish appearence; very low pyrite mineralization.	J294223	323.38	325.43	2.05	0.033	0.40	501	0.05	Core
325.43	326.24 DIOR		Diorite. Equigranular and interstitial texture; uniform.									
326.24	327.67 DYKE LAMP Altere lamprophyre dyke. Less fragile, fractured and altered than interval 323.38-325.43; fime											

Lithology				Assays								
From	To Lith	M Lith	Lithology Notes	Sample	From	To	Interval	Au g/t	Ag PPM	Cu PPM	Cu\%	Type
tuffistic material intruded in diorite 30-30 tca;sharp contact with diorite; flow texture/ or phlogopite lineation? Hairy and short quartz veinlets; weakly magnetic.												
327.67	328.19 DIOR		Diorite. Equigranular and interstitial texture. Uniform throug interval.									
328.19	330.71 SHR	DIOR	Shered diorite. Unifrmely sheared parallel and subparalel tca; contact with above diorite sharp and marked by calcite/quartz or film, lamprophiritic material and neklace of pyrite									
330.71	330.95 ALT	DIOR	Altered diorite. Slightly bleached; no distinctive quartc veins; low mineralization with pyrite.	J294224	330.71	330.95	0.24	0.207	0.20	69	0.01	Core
330.95	331.17 SHR	DIOR	Sheared diorite. Same as 328.19-330.71.									
331.17	331.67 ALT	DIOR	Altered diorite. Slightly bleached; at 331.40 quartz vein, 1 cm wide, wavy, almost perpendicular tca, with massive pyritealong contact with altered diorite.	J294225	331.17	331.67	0.50	0.430	0.90	124	0.01	Core
331.67	332.54 DIOR		Diorite. Intersected with abundant fine lines perpendiculat tca of quartz veinlets; no mineralization.									
332.54	333.04 ALT	DIOR	Altered diorite. Slightly bleached with one thin quartz vein at 332.95 , perpendicular tca with pyrite along the vein.	J294226	332.54	333.04	0.50	0.222	0.20	37	0.00	Core
333.04	333.35 DIOR	LAMP	Diorite. With 2 thin, 0.2 cm wide, and discontinous lamprophyric dykes 45tca									
333.35	333.52 LAMP		Lamprophyric dyke. Subparalel tca; fine texture with phlogopite lineation paralel tca.									
333.52	335.28 SHR	DIOR	Sheared diorite. With lamprophyric dyke intruded subparalel tca; contact with diorite sharp.									
335.28	335.80 DYKE	LAMP	Altered lamprophyric dyke. Intruded subparalel tca; contact with diorite sharp.									
335.80	336.64 SHR	DIOR	Shered diorite. Compact interval; shear at 50tca.									
336.64	336.76 LAMP		Lamprophyric dyke. Dark colored, fine texture with phlogopite.									
336.76	337.29 SHR	DIOR	Sheared diorite. With quartz veinlets at 50tca; shear subparalel tca.									
337.29	337.64 ALT	DIOR	Altered diorite. Some pyrite along thiny qurtz vein at 337.39; above contact gradual; below contact sharp; at 337.49 shear with quartz veinlets 45 tca.	J294227	337.29	337.64	0.35	0.069	0.10	89	0.01	Core
337.64	339.31 SHR	DIOR	Sheared diorite. With bands of lamprophyre and quartz at 60tca.									
339.31	341.39 DIOR		Diorite. Equigranular and interstitial. Uniform through interval.									
341.39	341.59 ALT	DIOR	Altered diorite. Bleached; at 341.50 quartz vein, 1 cm wide, perpendicular tca with pyrite in low abundance.	J294228	341.39	341.59	0.20	0.234	0.40	148	0.01	Core

Lithology				Assays								
From	To ${ }^{\text {Lith }}$	M Lith	Lithology Notes	Sample	From	To	Interval	Au g/t	Ag PPM	Cu PPM	Cu\%	Type
341.59	344.10 DIOR		Diorite. Equigranular and interstitial texture; uniform though the interval.									
344.10	344.20 ALT	DIOR	Altered diorite. Thiny veinlets perpendicular tca, low pyrite abundance.	J294229	344.1	344.2	0.10	0.728	0.20	372	0.04	Core
344.20	344.80 DIOR	SHR	Diorite. Slightly sheared									
344.80	345.07 ALT	DIOR	Altered diorite. Includes 2 altered bands: at 344.80-344.87, contact with surronding diorite perpendicular tca, with thiny, few mm , quartz/calcite veinlets which are perpendicular and 45 tca, low content of pyrite; at 344.94-345.07, contact with surronding diorite perpendicular, with quartz vein, 4 mm wide, perpendicular tca and with clusters ofpyrite in the medium abundance along vein diorite contact; calcite on the contact with veinlets; altered diorite above has disseminated pyrite. Low to medium pyrite.	J294230	344.8	345.07	0.27	3.740	1.70	252	0.03	Core
345.07	349.14 DIOR	SHR	Diorite. Slightly sheared, paralel tca; shear visible by slight lineation of minerals; compact rock; no breakage.									
349.14	349.37 SHR	DIOR	Sheared diorite. Shear is subparallel tca, marked by infil of quartz/calcite veinlets, pinkish granite?? (K altered diorite?); few pyrite disseminated.	J294231	349.14	349.37	0.23	0.047	3.10	953	0.10	Core
349.37	350.57 DIOR	EALT	slightly epidotized but not sheared; equigranular texture.									
350.57	350.72 SHR	DIOR	Sheared diorite. Same as 349.14-349.37	J294232	350.57	350.72	0.15	0.011	0.10	28	0.00	Core
				J294233				0.018		149		Core Dupl
350.72	351.15 DIOR	FOL	Diorite. Slightly foliated 40tca.									
351.15	351.70 SHR	DIOR	Sheared diorite. Same as 349.14-349.37 and 350.57-350.72; mixture of pinkish ortoclase? (K feldspatization?), quartc/calcite veins and some thiny, hairy lamprophyre; porosity 50tca; quartz/calcite veinlets perpendicular or 80tca; epidote patches on few places.	J294234	351.15	351.7	0.55	0.229	5.40	2450	0.25	Core
351.70	352.08 EALT	DIOR	Epidotized and sheared diorite. Veinlets of lamprophyre sub paralel tca, epidotized; dark and slightly green appearance; flow texture?									
352.08	352.30 ALT	DIOR	Altered diorite. Bleached, almost yellowish/white; probably silicifikation and epidotization; abrupt and sharp contact with surronding unaltered diorite; above contact not clear; below contact 60tca; pyrite, chalcopyrite, bornite in medium abundance; toward the bottom more dark and mixture with below diorite.	J294235	352.08	352.3	0.22	0.023	0.30	658	0.07	Core
352.30	355.72 DIOR		Diorite. Uniform interval; equigranular texture; few veinlets, <1cm wide ; lamprophyre 30-60tca									
355.72	356.05 ALT	DIOR	Altered diorite. Silicification; very similar to 352.08-352.3; starts with bullock quartz vein, 1 cm wide, and continious as bleached with low pyrite content.	J294236	355.72	356.05	0.33	0.015	0.20	233	0.02	Core
356.05	356.78 DIOR		Diorite. With 3-4 thin, 2-3mmwide, calcite veinlets crossing at 80-90tca.									
356.78	357.18 ALT	DIOR	Altered diorite. Above contact 40tca; below contact perpendicular tca; this interval consists of several alteration bands, $1-5 \mathrm{~cm}$ wide, and changing angle from 40tca to perpendiculat tca; at 357.02 quartz vein, 1 cm wide, bearing clusters of pyrite and chalcopyrite.	J294237	356.78	357.18	0.40	0.616	0.20	66	0.01	Core

Lithology				Assays								
From	To ${ }^{\text {Lith }}$	M Lith	Lithology Notes	Sample	From	To	Interval	Au g/t	Ag PPM	Cu PPM	Cu\%	Type
357.18	358.12 DIOR		Diorite. Few very thiny and discontinious quartz/calcite veinslets, perpendicular tca; uniform interval.									
358.12	358.62 ALT	DIOR	Altered diorite. Typical altered interval with quartz vein in the middle; quartz vein at 358.24358.36, 12 cm wide, perpendiculat tca with sharp contact toward altered zone; impured with material from altered zone; medium mineralization; pyerite, chalcopyrite, sphalerite; in altered zone disseminated pyrite and magnetite	$\begin{aligned} & \hline \text { J294238 } \\ & \text { J294239 } \\ & \text { J294240 } \end{aligned}$	$\begin{aligned} & \hline \hline 358.12 \\ & 358.23 \\ & 358.35 \end{aligned}$	$\begin{aligned} & \hline \hline 358.23 \\ & 358.35 \\ & 358.62 \end{aligned}$	$\begin{aligned} & \hline \hline 0.11 \\ & 0.12 \\ & 0.27 \end{aligned}$	$\begin{aligned} & \hline 0.583 \\ & 8.530 \\ & 0.144 \end{aligned}$	$\begin{aligned} & \hline \hline 1.20 \\ & 8.70 \\ & 0.20 \end{aligned}$	$\begin{array}{r} \hline \hline 497 \\ 2150 \\ 138 \end{array}$	$\begin{aligned} & \hline \hline 0.05 \\ & 0.22 \\ & 0.01 \end{aligned}$	Core Core Core
358.62	359.53 DIOR		Diorite.. At 359.20-359.66 slight foliation 40tca and darker color.									
359.53	359.61 ALT	DIOR	Altered diorite. Typical altered interval with quartz vein in the middle at 359.56-359.57, perpendiculat tca; low content of pyrite and chalcopyrite.	J294241	359.53	359.61	0.08	0.036	0.60	426	0.04	Core
359.61	362.54 DIOR		Diorite. Equigranular texture; typical.									
362.54	362.87 ALT	DIOR	Altered diorite. Typical with quartz vein at the 362.68 , perpendicular tca, 4 cm wide; disseminated pyrite in altered zone; low pyrite abundance.	J294242	362.54	362.87	0.33	2.700	3.10	978	0.10	Core
362.87	363.13 DIOR		Diorite. Equigranular texture. Typical.									
363.13	363.33 DIOR	SHR	Slightly sheared diorite. Shear parallel tca with pyrite along shear surface; slight alteration possible as disseminated pyrite present through the interval	$\begin{aligned} & \hline \text { J294243 } \\ & \text { J294244 } \end{aligned}$	$\begin{aligned} & 363.13 \\ & 363.13 \end{aligned}$	$\begin{aligned} & 363.33 \\ & 363.13 \end{aligned}$	$\begin{aligned} & 0.20 \\ & 0.00 \end{aligned}$	$\begin{aligned} & 0.094 \\ & 0.013 \end{aligned}$	$\begin{aligned} & 3.40 \\ & 0.10 \end{aligned}$	$\begin{array}{r} 2680 \\ 22 \end{array}$	$\begin{aligned} & 0.27 \\ & 0.00 \end{aligned}$	Core Blank
363.33	363.77 DIOR		Diorite. Equigranular texture. Typical. Diorite. Equigranular texture; typical.									
363.77	363.97 ALT	DIOR	Altered diorite. Typical with quartz vein at $363.87,1 \mathrm{~cm}$ wide, 80 tca, sharp contact; along the contact clusters of pyrite, bornite, chalcopyrite; medium abundance.	J294245	363.77	363.97	0.20	1.595	4.10	416	0.04	Core
363.97	373.04 DIOR	SHR	Diorite. Few slightly sheared zones with some pyrite along shear surface; few qyartz veinlets, $<1 \mathrm{~cm}$ wide, 60 or perependicular tca; uniform color through the interval.									
373.04	373.62 SHR	DIOR	Sheared diorite. Similar to $349.14-349.37$ and $350.57-350.72$ with pinkish ortoclas??(K alteration??); shearing marked by quartz/calcite discontinious and turbulent veinlets; pyritization along shear surface.	J294246	373.04	373.62	0.58	0.426	13.70	9910	0.99	Core
373.62	374.25 DIOR FOL		Diorite. Slightly foliated paralel tca.									
374.25	374.57 SHR	DIOR	Sheared diorite. Fragmented and porous along foliation paralel tca; clusters of pyrite in the pores and along foliation; pyrite, chalcopyrite, bornite in medium abundance.	J294247	374.25	374.57	0.32	0.263	13.20	8170	0.82	Core
374.57	382.75 DIOR		Diorite. With short, <1cm, bullock quartz; barren.									
382.75	382.87 ALT	DIOR	Altered diorite. Two very short altered zones with quartz veinlets in the middle: at 382.75382.78 , perpendiculat tca, 0.5 cm wide and at $382.85-382.87$, perpendiculat tca a, 2 mm wide; low abundance of pyrite, chalco.	J294248	382.75	382.87	0.12	1.685	3.60	718	0.07	Core
382.87	384.37 DIOR		Diorite. Uniform interval.									

			Lithology	Assays								
From	To ${ }^{\text {To }}$	M Lith	Lithology Notes	Sample	From	To	Interval	Au g/t	Ag PPM	Cu PPM	Cu\%	Type
384.37	384.67 SHR	DIOR	Sheared diorite. Similar to 373.04-373.62; intrusion of slightly bleached diorite; no mineralization; contact at 60tca; bottom part pinkish ortoclas??									
384.67	384.85 DIOR		Diorite. Uniform; typical.									
384.85	384.90 ALT	DIOR	Altered diorite. Alteration band with disseminated pyrite and not visible quartz veinlets in the middle.	J294249	384.85	384.9	0.05	0.065	0.80	589	0.06	Core
384.90	392.39 DIOR	ALT	Diorite. With few short alt bands, <1cm wide, with pyrite; few sheared zones, $<10 \mathrm{~cm}$ long; few quartz veins, $<1 \mathrm{~cm}$ wide, 45 tca , barren; patches of epidote, $4 \times 5 \mathrm{~cm}$.									
392.39	392.94 SHR	DIOR	Sheared diorite. Similar to 384.37-384.67 with intrusions of bleached diorite; quartz along the contact; pyrite along quartz contact.	J294250	392.39	392.94	0.55	0.055	1.00	1160	0.12	Core
392.94	396.63 DIOR		Diorite. With few bullock quartz; uniform texture and color.									
396.63	397.55 ALT	DIOR	Altered diorite.It is actually diorite with many short alteration bands, $<1 \mathrm{~cm}$ wide and perpendicular tca; typical with thiny quartz veinlets in the middle and pyrite clustering along quartz contact or disseminated in alteration shoulders.	J294251	396.63	397.55	0.92	0.506	0.10	224	0.02	Core
397.55	397.89 DIOR		Diorite. Few short, few mm, quartz but no alteration.									
397.89	397.99 ALT	DIOR	Altered diorite. Quartz veins, 2 cm wide in the middle; disseminated pyrite.	J294252	397.89	397.99	0.10	0.683	0.20	531	0.05	Core
397.99	400.60 DIOR		Diorite. Typical; uniform.									
400.60	402.60 SHR	DIOR	Sheared diorite. Foliated paralel tca; fractured paralel tca; fragmented rock; very few quartz veins paralel to foliation.									
402.60	408.53 SHR	DIOR	Sheared diorite. Very similar to previous sheared interval; barren.									
408.53	408.73 DIOR		Diorite. Typical.									
408.73	409.11 SHR	DIOR	Sheared diorite. With pyrite along shear surface.	J294253	408.73	409.11	0.38	0.069	3.30	1595	0.16	Core
409.11	416.17 DIOR		Diorite. Slight foliation; very few quartz veinlets; epidote patches.									
416.17	416.51 ALT	DIOR	Slightly altered diorite. Intruded 50 tca into unaltered diorite; contact marked by oxidized layer; very few disseminated pyrite; no visible quartz veinlets.	$\begin{aligned} & \hline \text { J294254 } \\ & \text { J294255 } \end{aligned}$	$\begin{aligned} & 416.17 \\ & 416.17 \end{aligned}$	$\begin{aligned} & 416.51 \\ & 416.17 \end{aligned}$	$\begin{aligned} & 0.34 \\ & 0.00 \end{aligned}$	$\begin{aligned} & 0.005 \\ & 1.520 \end{aligned}$	$\begin{aligned} & 1.00 \\ & 4.40 \end{aligned}$	$\begin{array}{r} 126 \\ 9810 \end{array}$	$\begin{aligned} & 0.01 \\ & 0.98 \end{aligned}$	Core CM2

416.51	419.03 DIOR	Diorite. Few epidote patches; few quartz veinlets, few mm wide, discontinious, perpendiculat tca or subparalel tca or 30 tca.

419.03 419.70 FOL DIOR Foliated diorite. Very compact interval; possible intrusion of lamprophyre, paralel or 20tca; contact sharp; lineation 20-30 tca; looks as flow texture?
419.70 423.36 DIOR \quad Diorite. Same as 416.51-419.03.

Lithology				Assays								
From	To ${ }^{\text {To }}$	M Lith	Lithology Notes	Sample	From	To	Interval	Au g/t	Ag PPM	Cu PPM	Cu\%	Type
423.36	423.53 ALT	DIOR	Altered diorite. At 423.47, at 80tca, 4 mm wide, quartz vein; clusters of chalcopyrite and pyrite in the and along the contact with quartz; disseminated pyrite in the altered zone.	J294256	423.36	423.53	0.17	0.685	1.90	900	0.09	Core
423.53	424.35 DIOR		Diorite. With short alteration band at $423.67,2 \mathrm{~cm}$ wide, with 3 mm wide quartz veinlets subparaleltca and pyrite; at 424.03 also 2 cm wide alteration with thiny quartz hair in the middle.									
424.35	426.05 ALT	DIOR	Altered diorite. Bleached interval with several , 1 cm wide, quartz veins at 424.53, 424.99 and 425.57; this interval consists of 3 alteration zones around mentioned quartz veins and very shor intervals of unaltered diorite in between them;all intervals are enriched with pyrite and chalcopyrite, specialy around quartz veins, along their contact and as disseminated pyrite; in alteration zones disseminated magnetite.	J294257	424.35	426.05	1.70	0.308	1.30	248	0.02	Core
426.05	426.50 QMV		Mineralized quartz vein. Vein is pure white quartz with small impurites of diorite; perpendicular tca; up to 426.20 solid quartz after 426.20 fractured quartz; at 426.1-426.13 band of pyrite and chacopyrite, massive, irregular, perpendicular tca; at 426.27 band of pyrite and chalco, perpend tca, 2 mm wide; at 426.45 band of pyrite and chalco at 80 tca	J294258	426.05	426.5	0.45	84.500	22.30	1070	0.11	Core
426.50	427.33 ALT	DIOR	Altered diorite. Mixed with irregular, wavy quartz veins, paralel tca; pyrite in clusters around quartz contact or along shear surface; shear 60tca.	J294259	426.5	427.33	0.83	0.635	2.20	427	0.04	Core
427.33	431.67 DIOR		Diorite. At 427.83-428.00 wavy, pinkish vein, subparalel tca; interval compact and uniform; typical equigranular and interstitial texture.									
431.67	432.19 ALT	DIOR	Altered diorite. Mixture of several small quartz veinlets of unclear orientations mixed with hairy lamprophyre?; pyrite clustered around these veinlets; low abundance of pyrite;	J294260	431.67	432.19	0.52	0.246	1.60	283	0.03	Core
432.19	432.52 DIOR		Diorite. Typical; uniform.									
432.52	433.12 ALT	DIOR	Altered diorite. Slightly altered and sheared due to quartz veins and lamprophyre hairyintrusions irregulary distributed through out the interval. Slightly bleached' no sulfide.									
433.12	448.93 DIOR		Diorite. At 434.49, 3cm altered band; patches of epidote sporadically distributed through interval; from 446.06-447.51 foliation with darker bands, 30tca									
448.93	449.34 QV	LAMP	Quartz and lamprophyre intrusions. Subparalel tca, very irregular; producing very little strain on diorite.									
449.34	453.85 DIOR		Diorite. Few quartz veins. From 452.22-452.55 foliation sub paralel tca and after that typical diorite.									
453.85	454.19 ALT	DIOR	Altered diorite. Consists of 3 altered bands at $454.02=$ quartz veinlets, 4 mm wide perpendicular tca; at 454.06=quartz veinlets, 3 mm wide, 45 tca ; at $454.13=$ quartz veinlet, 2 mm wide, 45 tca; low abundance of disseminated pyrite	J294261	453.85	454.19	0.34	0.387	0.90	152	0.02	Core
454.19	454.82 DIOR		Diorite. Typical.									
454.82	454.89 ALT	DIOR	Altered diorite. At 455.57 clear quartz vein, 3 mm wide, perpendicular tca; very few pyrite.	J294262	454.82	454.89	0.07	0.526	0.60	41	0.00	Core
454.89	455.27 DIOR		Diorite. Typical									

Lithology				Assays								
From	To Lith	M Lith	Lithology Notes	Sample	From	To	Interval	Au g/t	Ag PPM	Cu PPM	Cu\%	Type
479.63	480.22 QV	LAMP	Quartz vein. Similar to 463.46-463.76; followed by irregular intrusion of lamprophyre at 40-60 tca; interval compact, no breakage as in 463.46-463.76; instead of big quartz vein this interval is marked by lots of small veins mixed with calcite and lamprophyre; low pyrite content.	J294270	479.63	480.22	0.59	0.148	3.80	2340	0.23	Core
480.22	485.02 DIOR		Diorite. Typical.									
485.02	485.98 SHR	DIOR	Sheared diorite. Shear paraleltca, followed by quartz/calcite veins; bleached, wavy; tails of lamprophyre.									
485.98	491.27 DIOR		Diorite. Slightly foliated 30tca, patches of epidote; short alteration bands at 487.48, 2 cm wide.									
491.27	491.37 ALT	DIOR	Altered diorite band. It consists of 2 slightly bleached bands; no quartz veilets visible; on the broken core, perpendicular tca, chalcopyrite, bornite, pyrite clusters; medium abundancy of sulphide.	J294271	491.27	491.37	0.10	0.010	0.50	95	0.01	Core
491.37	492.31 DIOR	LAMP	Diorite. Equigranular texture; at 491.8 intruded lamprophyre at 45tca for about 15 cm									
492.31	492.61 DIOR	QMV	Mineralized diorite. On the core fracture surface massive pyrite cluster at 492.40; diorite in this interval is not altered, bleached or intersected with veins; it is typical equigranular textured diorite; fracture with pyrite is sub perpendicular tca; thiny intrusions of lamprophyre hairs at 492.48 at 45 tca; this intrusion is also loaded with pyrite; there is no differense in appearence of diorite in this interval, it is visually the same as above interval except for mineralization?; possibly mineralization brought by intersected lamprophyre???	J294272	492.31	492.61	0.30	0.059	5.40	3060	0.31	Core
492.61	493.32 DIOR	QMV	Mineralized diorite. Again, no alteration but massive pyrite enrichment found on 2 fractured surfaces; pyrite infil interstitial space of diorite; agressive calcitization also noted in the interstitial space; maybe calcitization caused pyrite mineralization??	J294273	492.61	493.32	0.71	0.131	1.30	896	0.09	Core
493.32	494.86 DIOR		Diorite. With thiny lamprophyric haire at 30tca									
494.86	495.13 EALT	DIOR	Epidotized and chloritized diorite. With dissolved patches of bleached, calcitized epidote; unclear; disolved calcite/quartz veins; no mineralization found.									
495.13	496.72 DIOR		Diorite. Typical									
496.72	496.89 ALT	DIOR	Altered diorite. Alteration band is 1 cm wide; bleached; no visible vein; some pyrite disseminated on the fractured surface.	J294274	496.72	496.89	0.17	0.091	0.50	96	0.01	Core
496.89	497.08 DIOR		Diorite. Typical									
497.08	497.25 ALT	DIOR	Altered diorite. Slightly sheared subparalel tca; sharp vein 45tca, 3mm wide, oxidized; possible lamprophyre; few pyrite disseminated	J294275	497.08	497.25	0.17	0.002	0.30	55	0.01	Core
497.25	499.35 DIOR		Diorite. Few quartz veins 45tca, 2cm wide; barren.									
499.35	499.55 LAMP		Lamprophyre dyke. At 45tca, dark color, fine foliated texture; sharp contact above and dissolved contact below.									

Lithology				Assays								
From	To ${ }^{\text {To }}$ Lith	M Lith	Lithology Notes	Sample	From	To	Interva\|	Au g/t	Ag PPM	Cu PPM	Cu\%	Type
499.55	501.37 DIOR		Diorite. Same as at 497.25-499.35; epidotized vein at 45tca; same quartz veins perpendiculat tca or 50 tca.									
501.37	501.50 ALT	DIOR	Altered diorite band. Bleached, perpendicular tca; thiny quartz vein in the middle; medium abundancy of pyrite/chalco on the fractured surface	J294276	501.37	501.5	0.13	0.067	6.60	4430	0.44	Core
501.50	503.46 DIOR		Diorite. Epidotized and chloritized; interstitial space is light green color.	J294277	501.5	501.5	0.00	0.051	3.00	1225	0.12	Core Dupl
503.46	503.99 QV		Quartz vein. Barren; at 503.46 , 2 cm wide white quartz vein subparalel tca; ribbony, wavy, epidotized; no mineralization.									
503.99	507.47 DIOR		Diorite. Typical.									
507.47	508.20 DIOR	QMV	Mineralized diorite. White and epidotized quartz/calcite veins 45tca; core fractured at 3 places and pyrite found on the fractured surfaces; no bleaching but epidotization; slight shear at the bottom with foliation paralel tca.	J294278	507.47	508.2	0.73	0.013	1.10	585	0.06	Core
508.20	508.76 ALT	DIOR	Altered diorite. 3 altered bands, $3-5 \mathrm{~cm}$ wide and perpendicular tca.	J294279	508.2	508.76	0.56	0.498	6.40	2480	0.25	Core
508.76	509.06 SHR	DIOR	Mineralized shear zone. Subparalel shear with massive suphidization along shear surface.	J294280	508.76	509.06	0.30	0.419	16.80	7720	0.77	Core
509.06	509.16 DIOR		Diorite. Typical									
509.16	509.33 ALT	DIOR	Altered diorite. Typical with 2 quartz veins at $509.25,1 \mathrm{~cm}$ wide and $509.30,1 \mathrm{~cm}$ wide; the first alt band has massive pyrite clustering along contact quartz and alt zone; contact with above and below diorite abrupt.	J294281	509.16	509.33	0.17	1.125	1.70	278	0.03	Core
509.33	510.15 DIOR		Diorite. Typical									
510.15	510.50 SHR	DIOR	Mineralized shear zone. Similar to 508.76-509.06; Shear 50 or subparalel tca; massive pyritization along shear surfaces;compact core;epidotized quart paralel tca; altered band at the bottom, 10 cm wide;pyrite dispersed in the calcite veins and at the shear surfaces	J294282	510.15	510.5	0.35	0.184	14.90	7660	0.77	Core
510.50	512.62 DIOR		Diorite.Typical.									
512.62	513.29 SHR	DIOR	Mineralized shear zone. Similar to 508.76-509.60 and 510.15-510.50 except it is massive pyritization 3 cm wide along shear paraleltca; shear is wavy, ribbony, marked by quartz/calcite/lamprophyre (dark color); also noted intensive epidotization; euhedral calcite crystals suggest secondary calcite.	J294283	512.62	513.29	0.67	0.104	18.20	1.09	1.09	Core
513.29	514.79 DIOR		Diorite. Typical									
514.79	515.05 ALT	DIOR	Altered diorite. Typical with quartz vein in the middle; this quartz vein, 1 cm wide and 45 tca is slightly sheared with lamprophyre following contact; sharp contact quartz and altered zone; gradual contact alt zone and diorite above and below.	J294284	514.79	515.05	0.26	0.105	1.30	184	0.02	Core

Lithology				Assays								
From	To Lith	M Lith	Lithology Notes	Sample	From	To	Interval	Aug/t	Ag PPM	Cu PPM	Cu\%	Type
532.67	533.66 ALT	DIOR	Altered diorite. Bleached. At 533.07 quartz veinlet, 1 cm wide, 45 tca full of pyrite; at 533.14 quartz veinlet, 3 mm wide, perpendicular tca, low abundant pyrite;contact with unaltered diorite above and below gradual.	J294296	532.67	533.66	0.99	0.992	3.60	744	0.07	Core
				J294297	536.45	536.68	0.23	0.071	1.00	393	0.04	Core
533.66	536.45 DIOR		Diorite. Typical.									
536.45	536.68 ALT	DIOR	Altered diorite.Many quartz veinlets, $<2 \mathrm{~cm}$ wide, perpendicular tca; at 534.70 alt band, 8 cm wide with pyrite; patches of epidote.									
536.68	537.98 DIOR		Diorite									
537.98	538.18 ALT	DIOR	Altered diorite. Consists of 3 alt bands, 2 cm wide and perpendicular tca; low pyrite abundance.	J294298	537.98	538.18	0.20	0.032	0.60	183	0.02	Core
538.18	541.54 DIOR		Diorite. Typical.	J294299	538.18	538.18	0.00	0.486	3.10	4850	0.49	CGS15
541.54	541.79 ALT	DIOR	Altered diorite. With 2 alt bands, perpendicular tca.	J294300	541.54	541.71	0.17	0.140	0.90	291	0.03	Core
541.79	542.71 DIOR		Diorite. Huge epidote patches									
542.71	542.85 ALT	DIOR	Altered diorite. Typical with quartz veinlet in the middle.	J294301	542.71	542.85	0.14	0.299	1.00	125	0.01	Core
542.85	546.23 DIOR		Diorite. With patch of epidote, 12 cm long at the bottom of the interval									
546.23	546.38 ALT	DIOR	Altered diorite. 2 alt bands.	J294302	546.23	546.38	0.15	0.177	0.40	76	0.01	Core
546.38	547.38 DIOR		Diorite. Typical.									
547.38	547.70 ALT	DIOR	Altered diorite. Rich in mineralization.	J294303	547.38	547.7	0.32	15.450	4.10	769	0.08	Core
547.70	548.82 DIOR		Diorite. Typical.									
548.82	549.62 SHR	DIOR	Sheared diorite.									
549.62	550.00 DIOR		Diorite. Few mini quartz veins; no pyrite.									
550.00	550.27 ALT	DIOR	Altered diorite. With 2 alt bands with quartc veinlet in the middle; neclece of pyrite along quartz contact.	J294304	550	550.27	0.27	0.275	0.60	123	0.01	Core
550.27	554.20 DIOR		Diorite. Equigranular; coarse grained; quartz veins $40-50$ tca, few mm wide,; no mineralization; silification/epidotization in patches.									
554.20	554.32 ALT	DIOR	Altered diorite. Typical with quartz veinlets in the middle and pyrite along the quartz contact.	J294305	554.2	554.32	0.12	0.165	1.70	753	0.08	Core

Lithology				Assays								
From	To ${ }^{\text {Tith }}$	M Lith	Lithology Notes	Sample	From	To	Interval	Au g/t	Ag PPM	Cu PPM	Cu\%	Type
569.70	569.85 QMV		Mineralized quartz vein. Loaded with pyrope/chalco; mixed with diorite.	J294319	569.7	569.85	0.15	31.700	24.70	1135	0.11	Core
569.85	570.05 ALT	DIOR	Altered diorite. Shoulder below quartz vein.	J294320	569.85	570.05	0.20	0.021	0.70	94	0.01	Core
570.05	570.83 DIOR	Diorite. With few short alt bands 60tca.										
570.83	571.07 ALT	DIOR	Altered diorite. Shoulder above quartz vein; very gradual transition from above unbleached to this bleached interval; disseminated pyrite.	J294321	570.83	571.07	0.24	0.208	1.50	209	0.02	Core
571.07	571.18 QMV		Mineralized quartz vein.. 80tca; mixed with diorite; contact with above and below alt diorite unclear; full of chalco and pyrite in the equal amounta; high mineralization.	$\begin{aligned} & \hline J 294322 \\ & \text { J294323 } \end{aligned}$	$\begin{aligned} & 571.07 \\ & 571.07 \end{aligned}$	$\begin{aligned} & 571.07 \\ & 571.18 \end{aligned}$	$\begin{aligned} & 0.00 \\ & 0.11 \end{aligned}$	$\begin{aligned} & \hline 0.449 \\ & 4.830 \end{aligned}$	$\begin{aligned} & 1.30 \\ & 7.30 \end{aligned}$	$\begin{aligned} & \hline 5700 \\ & 1270 \end{aligned}$	$\begin{aligned} & \hline 0.57 \\ & 0.13 \end{aligned}$	$\begin{aligned} & \text { CM3 } \\ & \text { Core } \end{aligned}$
571.18	571.38 ALT	DIOR	Altered diorite. Shoulder below; less bleached than above shoulder; disseminated pyrite; contact with quartz vein dissolved. Low mineralization abundance.	J294324	571.18	571.38	0.20	2.380	1.90	575	0.06	Core
571.38	571.83 ALT	DIOR	Altered diorite. One more shoulder below further down from the quartz vein; could be another alt interval with thin quartz veinlets in the middle of this interval; low mineralization.	J294325	571.38	571.83	0.45	0.035	0.10	96	0.01	Core
571.83	573.02 FOL	DIOR	Foliated diorite. Slightly foliated at 45tca; compact									
573.02	575.82 DIOR	Diorite. Typical										
575.82	575.98 ALT	DIOR	Altered diorite. Typical with quartz vei in the middle and low mineralization.	J294326	575.82	575.93	0.11	0.143	0.30	168	0.02	Core
575.98	579.66 DIOR	Diorite. Typical.										
579.66	579.92 DIOR	QMV	Mineralized diorite.Similar to 492.31-493.32. No bleaching or alteration; equigranular diorite with 0.5 cm wide white quartz band at 579.68 ; patches of pyrite found along quartz and through unaltered diorite; mineralization appears in patches or as disseminated.	J294327	579.66	579.92	0.26	0.028	1.00	762	0.08	Core
579.92	580.99 DIOR	Diorite. Few alt bands $<1 \mathrm{~cm}$ wide.										
580.99	581.21 ALT	DIOR	Altered diorite. Typical with quartz vein in the middle but this interval has network of quartz veinlets instead of one compact vein; contact between alt zone and quartz veinlets zone dissolved; gradual transition and bleaching from alterd to unalterd diorite; quartz veinlets loaded with chalco/pyrite/galena. High abundance of sulphide.	J294328	580.99	581.21	0.22	0.244	1.60	1075	0.11	Core
581.21	585.23 FOL	DIOR	Foliated diorite. Foliation paralel tca; comapct intercal;discoloration through the intervalslight silicification.									
585.23	594.86 LAMP		Lamprophyre. Dark colored with porphyritic almost lapillitic texture typical for volcanic rocks; fine grained matrix with white lapilis??; calcite is in the center of the lapilli? coated whith black material; phlogopite in matrix; disseminated pyrite in low abundance; at 586.22 clayish material, 10 cm long, probably due to alteration and shear; completely dissentigrated; at 588.84-589.37 heavily altered and bleached lamprophyre due to numerous quartz veinlets network, dissentigrated; at 591.70-591.96 dissentigrated, clayish, altered and bleached interval.									

Lithology				Assays								
From	To Lith	M Lith	Lithology Notes	Sample	From	To	Interval	Au g/t	Ag PPM	Cu PPM	Cu\%	Type
594.86 597.61 FOL DIOR Foliated diorite. Foliation paralel tca; slightly sheared and fractured; bullock quartz.												
597.61	597.81 ALT	DIOR	Altered diorite. Typical with 3mm quartz vein in the middle. Pyrite along quartz and disseminated in alt zone.	J294329	597.61	597.81	0.20	1.285	1.80	843	0.08	Core
597.81	602.27 DIOR		Diorite. Few quartz bands perpendicular tca.									
602.27	602.70 ALT	DIOR	Altered and sheared diorite. Quartz vein in the middle with pyrite; slightly bleached and slifhtly sheared.	J294330	602.27	602.7	0.43	0.060	0.90	882	0.09	Core
602.70	606.85 DIOR		Diorite. Typical									
606.85	608.75 SHR	DIOR	Sheared diorite. Shear at 40-50tca or subparalel tca; bottom part, last 40 cm fragmented due to strong shear; clay material along shear surface; short alt bands perpendicular tca; oxidized along shear.									
608.75	609.90 DIOR		Diorite. Compact; intersected with thiny quartz/calcite veinlets in all directions.									
609.90	610.30 LAMP	KALT	Altered lamprophyre. Intruded clayish material 50tca; light green color; probably completely altered and disentigrated lamprophyre.									
610.30	612.45 BZ	DIOR	Disentigrated and fragile diorite. Light green color; fragmented; very fragile; probably very altered.									
612.45	618.85 QCFV	DIOR	Oxidized diorite. The same as 610.30-612.45 but completely oxidized ; reddish color; fragile; fragmented.									
618.85	619.35 DIOR	EALT	Diorite. Altered but compact; slightly greenish color; probably heavily epidotized.									
619.35	619.36		END OF THE CORE at 619.35									

Hole ID	KE10-18		Drilling	Started		
East	472372			Finished		
North	5479250		Logging	Logged by	T.Schoettler	
Elevation	1090		Sampling	Total		
Grid	UTM-Nad83			Sequence		
Location	Kenville East					
Pad	10				*hole abandoned in overburden	
Az	270					
Dip	-60					
Size	NQ2					
EOH	101.50					
Interval		Nested interval				
from	to	from	to	Overview	Comments	Sample \#
0	10				Casing, no recovery	
10	101.5				Casing, very limited recovery, >50\% lost core. Overburden: Mix of muddy - silty - sandy - gravely, earthy material and gravely boulder sized granitoid material approx at 50:50 ratio. Granitoid material comprises predomiantly dioritic, non- to moderately magnetic, partially altered intrusive, +/- reminiscent to diorite described at KE10-16 and KE10-17. Rarely < 30cm rock pieces. Over the last approx 5 m portions of the material are weathered to highly incompetent, presumably highly clay mineral bearing, discretely relict intrusive textured (medium grained diorite), pale - dirty olive green grey substance, seperated by predominantly medium - coarse sandy seams and/ or grading to medium - coarse sandy seams, which may be interpreted as incipient, weathered bedrock? Hole abandoned due to technical problems accessing bedrock. EOH at 101.5 m .	
EOH						

HOLE ID	AZIMUTH	DIP	LENGTH	COORDINATES		SHORTLOG	LOG COMPLETE
KE10-17	270	-74	387.92	EASTINGS:	472336	Tobias	08/12/2010
				NORTHINGS:	5479452		
	Drilling					DETAILLOG	DATUM
AREA	Started:	29/11/2010	CORE SIZE	SECTION		Tobias	Nad83 Zone 11
Kenville SE	Finished:	01/12/2010	NQ	S16			SAMPLER
							Tobias

HOLE ID KE10-17
Page 1 of 11

Lithology				Assays								
From	To	M Lith	Lithology Notes	Sample	From	To	Interval	Au g/t	Ag PPM	Cu PPM	Cu\%	Type
48.95	48.98 QCV		Tourmaline Qz veining - Approx 2 cm wide, predominantly turmaline comprising, +/- calcite bearing (few mm wide calcite seams along UC and LC @ 70 deg to CA) black and white vein. Locally both calcite and turmaline are bleeding out into host rock over few cm .									
48.98	49.62 DIOR		Diorite - Undifferenciated as above 32-387.92m - large unit- still in pev rusty coloured-									
49.62	49.67 BZ		Broken core. As far as detectable quartz-, calcite veining bears few, < 5 mm , rusty sulphide clots?									
49.67	49.71 DIOR		Diorite as above									
49.71	49.73 QCV		1.5 cm white quartz vein bears 2 mm calcite seam along UC (@ 75 deg to CA) and few mm turmaline seam along LC, grading to massive turmaline vein steep to CA.									
49.73	50.30 DIOR		Dirorite as above	J294144	50.26	50.55	0.29	0.100	1.40	2570	0.26	Core
50.30	50.50 QMV		Mineralized QV ; +/- broken core: Two veins in this intercept: The upper one can only be described as strongly rusty, quartz bearing, highly calcareous, relict sulphide- and weakly malachite bearing due to core fracturing and weathering. The lower one is an approx 5 cm wide?, dirty pale quartz vein, that bears a < 2cm chalcopyrite clot. Vein is only clipped, not pierced by drill? or patchy vein?									
50.50	59.00 DIOR		Diorite as above	J294145	58.68	59	0.32	0.025	0.10	28	0.00	Core
59.00	59.47 QCFV		Tourmalinized w minz vein - Moderately broken core: Very dirty appearing, zoned quartz-, turmaline-, +/- calcite vein @ steep angle to CA? Quartz (vuggy - foamy over approx 8cm near UC) and turmaline alternate and establish < cm to > dm wide, very crude - irregular bands/ zones @ 55 deg to CA. Calcite predomiantly as hairlines, also +/- @ 55 deg to CA. Weak moderate rusty stain. Trace malachite specks. Underlying diorite is bleached over several dm.	J294146	59	59.47	0.47	0.180	3.40	1855	0.19	Core
59.47	60.07 DIOR		Diorite as above	$\begin{aligned} & \hline \text { J294147 } \\ & \text { J294148 } \end{aligned}$	$\begin{array}{r} \hline 59.47 \\ 59.8 \end{array}$	$\begin{array}{r} 59.8 \\ 60.24 \end{array}$	$\begin{aligned} & \hline 0.33 \\ & 0.44 \end{aligned}$	$\begin{aligned} & 0.480 \\ & 0.370 \end{aligned}$	$\begin{aligned} & 1.20 \\ & 2.40 \end{aligned}$	$\begin{aligned} & \hline 240 \\ & 933 \end{aligned}$	$\begin{aligned} & \hline 0.02 \\ & 0.09 \end{aligned}$	Core Core
60.07	60.17 QCFV		Relict, strongly weathered (grading to earthy - sandy - fine gravely) vein. Near LC strongly rusty coloured, foamy quartz patch with pinching and swelling, approx cm scale, inconsistant turmaline seam, orientated steep to CA?									
60.17	63.64 DIOR		Diorite as above									
63.64	63.74 QCFV		Rusty coloured, clayey, soft, 5 mm wide seam (weathered vein, clay mineral? and ilmenite? bearing) @ 25 deg to CA, hosted by +/- rusty stained (patchy) diorite.									
63.74	64.00 DIOR		Diorite as above									
64.00	64.20 QCFV		Pale, irregular, patchy, +/- vuggy, +/- quartz-, +/- calcite veining associated with rusty stain of hosting diorite.									
64.20	64.40 DIOR		Diorite as above									

Lithology				Assays								
From	To ${ }^{\text {To }}$ Lith	M Lith	Lithology Notes	Sample	From	To	Interval	Au g/t	Ag PPM	Cu PPM	Cu\%	Type
64.40	64.70 QCFV	Reminiscent to 64-64,2.										
64.70	67.38 DIOR		Diorite as above									
67.38	67.39 QMV	QCFV	Pale, weakly rusty coloured, cm scale quartz vein @ steep angle to CA bears few, scattered pyrite specks and < 5 mm clots. Vein is enveloped by bleached halo from 67,34-67,43 (soft, non magnetic, weakly pyrite bearing (dissemianted - speckled and one inconsitant pyrite hairline subvertical to CA).									
67.39	81.50 DIOR		Diorite as above									
81.50	81.55 QMV	QCV	Veinlet - Minz - Carb - Dirty white, weakly pinkish (hematite?), calcareous veinlet @ 30 deg to CA bears $<\mathrm{cm}$, anhedral chalcopyrite clots									
81.55	82.14 DIOR		Diorite as above	J294149	81.82	82.46	0.64	0.780	2.10	567	0.06	Core
82.14	82.24 QV	QCFV	Broken core. Pale - white - weakly dirty - locally weakly rusty - locally pinkish tinted (Kfeldspar?), cm - 5cm scale, sheeted quartz-, +/- very minor calcite veins are seperated by < cm - few cm wide host rock intercepts. Minor speckled - hairline (subparallel to vein orientation @ steep angle to CA) pyrite in a portion of the veins. Albite is associated with assumed K-feldspar? Veining is enveloped by bleached halo (soft, partially non magnetic, weakly dissemianted - speckled pyrite bearing, rusty coloured patches bearing) from 81.77 82.85 m . Over 10 cm this halo displays a discrete foliation @ approx 35 deg to CA. The bleached intercept hosts few (4) more (amounting to weak - moderate) approx cm scale, pale quartz veins @ steep angle to CA, that bear minor - moderate, variably anhedral - euhedral pyrite specks and < few cm clots, that locally grade to inconsitant bands (establishing zoning).									
82.24	87.30 DIOR		Diorite as above									
87.30	87.75 FOL	QCV	Approx $2,5 \mathrm{~cm}$ wide band (moderately - strongly magnetic, fine grained) orientated subparallel to CA displays prominent foliation subparallel to CA and is sandwiched betweeen medium grained diorite. At approx 87.3 m a cm scale calcite seam (vein?) is aligned to foliation?/ banding?. To be interpreted as flow banding?/ priamry texture?/ foliation?/ secundary texture?									
87.75	89.04 DIOR		Diorite as above									
89.04	89.07 BZ		Broken core. Remnants of a dirty white quartz vein @ steep angle to CA? Vein is enveloped by bleached diorite (priamry textures obliterated) from 88.7-89.35m.									
89.07	89.35 DIOR		Diorite									
89.35	89.55 FOL	QMV	Reminiscent to/ same as? 87.3 - 87.75 m , but cut @ a different angle? and resulting in 20cm swirl texture. Associated with a prominently clacareous and trace malachite bearing outer seam.									
89.55	93.90 DIOR		Diorite - getting cclose to base of rusty ox zone									

Lithology				Assays								
From	To ${ }^{\text {To }}$ Lith	M Lith	Lithology Notes	Sample	From	To	Interval	Aug/t	Ag PPM	Cu PPM	Cu\%	Type
93.90	93.91 QMV		Mineralized QV - Pale dirty, approx cm wide, minor turmaline- and minor malachite specks bearing quartz vein @ 50 deg to CA.									
94.89	94.91 QCV		Turmaline-, +/- calcite vein @ steep angle to CA.									
94.91	96.65 DIOR		Diorite									
96.65	96.95 QMV		Mineralized QV -White - rusty - locally weakly pinkish, approx cm wide, highly vuggy (< several cm sized cavities, unknown amount of pyrite bearing (locally mm scale euhedral pyrite crystals growing into open spaces), minor chalcopyrite bearing, sheeted quartz-, calcite veins @ 50 deg to CA. Fresh appearing hosting diorite bears trace wispy - hairline sulphides (pyrite and chalcopyrite) near UC.	J294150	96.6	96.95	0.35	0.100	1.70	2700	0.27	Core
96.95	99.10 DIOR		Diorite									
99.10	99.30 QMV		Mineralized QV - Indistinct, indiscript, pale coloured and minor speckled - wispy malachite bearing quartz?/ feldspar? and locally clacite bearing patchy appearing veinlet (due to being cut @ oblique angle). Locally vuggy and associated with dirty appearing hairline/ veinlet subparallel to CA. "Lost water here?"									
99.30	99.77 DIOR		Diorite	J294151	99.67	99.97	0.30	0.025	0.20	78	0.01	Core
99.77	99.82 QCV		Tourmaline QV - cm - 5 cm , black and white, anastomosing, banded/ zoned quartz-, turmaline, calcite veining approx @ 70 deg to CA. Contacts are partially poorly defined/ blurry, grading to relict dioritic texture, indicating +/- alteration (flooding) to be associated with veining? Sample J294151 includes cm wide, reminiscent, quartz-, calcite-, turmaline vein at 99.94m @ 70 deg to CA.									
99.82	100.63 DIOR		Diorite	J294152	100.62	100.82	0.20	0.025	0.20	170	0.02	Core
100.63	100.70 QMV		White - weakly dirty - weakly rusty, quartz vein. Orientation unknown (broken core) bears > cm , rusty pyrite clot and trace malachite specks. Vein is enveloped by weakly bleached, \%range dissemianted - speckled pyrite bearing halo from 100.45-100.76m.									
100.70	100.75 QCV		QZ carb vein - White - moderately dirty, 5cm quartz vein @ 70 deg to CA bears several cm sized, irregualr, weakly calcareous turmaline patch.									
100.75	104.10 DIOR		Diorite	J294153	103.5	103.75	0.25	0.540	0.90	111	0.01	Core
104.10	104.35 QMV		2 veins, $<2 \mathrm{~cm}$, predomiantly turmaline bearing (approx cm wide turmaline band/ zone establishes center of veins) @ 45 deg to CA. The upper vein bears an elongate (aligned to vein contacts/ vein zoning), < cm wide, pyrite-, chalcopyrite clot embedded in turmaline.	J294154	104.06	104.38	0.32	0.170	2.90	2960	0.30	Core
104.35	107.85 ALT	DIOR	Meterage is approximate because of indistinct feature: Diorite and veins hosted by diorite +/bear trace - minor K-feldspar resulting in faint - weak, pinkish tint?									
107.85	107.91 QCV		QZ carb vein- Poorly defined, weakly pinkish tinted, prominently zoned/ banded turmaline (1.5 cm band/ zone establishes center of vein), quartz-, +/- calcite-, +/- K-feldspar baring vein @ steep angle to CA									

					Lithology	Assays								
From	To	Lith	M Lith	Lithology Notes		Sample	From	To	Interval	Aug/t	Ag PPM	Cu PPM	Cu\%	Type

107.91	108.73 ALT	DIOR	Meterage is approximate because of indistinct feature: Diorite and veins hosted by diorite +/bear trace - minor K-feldspar resulting in faint - weak, pinkish tint?	J294155	108.6	108.9	0.30	0.025	0.10	170	0.02	Core
108.73	108.78 QCV	DIOR	Toumaline QV - Very remiscent to $107.87-107.91 \mathrm{~m}$ bears a 2.5 cm wide turmaline band/ zone establishing the center of the vein.									
108.78	109.36 DIOR		Diorite									
109.36	109.58 QMV		Indistinct and indiscript, approx 2 cm scale, pale - rusty, malachite bearing, +/- vuggy bands/ veins @ 25 deg to CA. Reminiscent to 99.1 - 99.3 m .									
109.58	113.50 DIOR		Diorite									
113.50	118.00 EALT	DIOR	Meterage is approximate. Trace - minor epidote disseminated in diorite and as disseminated vein constituent.									
118.00	123.30 DIOR		Diorite									
123.30	126.30 FLT		Fault zone?: Moderately - strongly fractured core grading to dm wide silty - fine gravely gouge seam at 126m.									
126.30	130.00 DIOR		Diorite									
130.00	137.00 EALT	DIOR	Weakly yellow tint of feldspar grains/ crystals is interpreted as weak epidote/ saussuritation? Few discretely foliated patches/ small subsections (foliation @ shallow angle to approx 45 deg to CA) +/- reminiscent to $87.3-87.75 \mathrm{~m}$?									
137.00	139.20 CALT	DIOR	Abrupt change to predomiantly medium grey and fine grained, dense, +/- massive and aphanitic texture. Patches and subsections with weak expression of relict diorite texture suggests alteration as cause for textural change? Moderate magnetism and hardness are reminiscent to overlying and underlying diorite; calcite content appears to be significantly higher.									
139.20	140.70 ALT	DIOR	Abrupt change to pale dirty greenish grey colour, associated with calcite decreasing to none. LC: Broken core, incipient diorite texture.									
140.70	146.15 DIOR		Diorite									
146.15	150.52 KALT	DIOR	Meterage is approximate. Weak, pinkish tint suggests faint - weak K-feldspar content? Partially weakly pinkish tinted veins/ veinlets suggest alteration as cause for the K-feldspar content? rather than primary K-feldspar? Associated with partial obliteration of primary textures: Patches and up to $>\mathrm{m}$ wide subsections. Magnetism remains uneffected (moderate), calcite is +/- increased (and patchy). Features are +/- cryptic and indiscript.	J294156	150.43	150.73	0.30	0.850	0.60	193	0.02	Core

150.52 150.53 QMV Pale - dirty light grey, cm wide, zoned quartz-, pyrite vein (approx 3mm wide, inconsistant, Pale - dirty light grey, cm wide, zoned quartz-, pyrite vein (approx 3 mm wide, inconsistant,
pinching and swelling, undulating pyrite stringer/ zone $+/-$ near center of vein) is embedded in pinching and swelling, undulating pyrite stringer/ zone + /- near center of vein) is embedded in modere veinls with variable orientation from pprox $150-151.7 \mathrm{~m}$. Minor disceminated speckled pyrite is detectable from $150.4-151.2 \mathrm{~m}$ and preferrably associated with the chlorite.

Lithology				Assays								
From	To ${ }^{\text {L }}$ Lith	M Lith	Lithology Notes	Sample	From	To	Interval	Aug/t	Ag PPM	Cu PPM	Cu\%	Type
+/- weak - moderate, patchy silicifcation? . It remains undetermined, if and how these features are gentically related to the features (especially the alleged K-feldspar, calcite and bleaching) described at 146.15-156.												
150.53	156.00 KALT	DIOR	Meterage is approximate. Weak, pinkish tint suggests faint - weak K-feldspar content? Partially weakly pinkish tinted veins/ veinlets suggest alteration as cause for the K-feldspar content? rather than primary K-feldspar? Associated with partial obliteration of primary textures: Patches and up to $>\mathrm{m}$ wide subsections. Magnetism remains uneffected (moderate), calcite is +/- increased (and patchy). Features are +/- cryptic and indiscript.									
156.00	164.00 DIOR		Diorite									
164.00	184.43 EALT	DIOR	Meterage is approximate, feature(s) are indistinct: The majority of this weakly veined diorite displays a weak - partially moderate, light green (pistacio green) - yellowish tint of its plagioclase crystals/ grains, interpreted as faint - weak epidote/ saussuritation. Also epidote locally detectable as constitutent of veining. Locally (patches, sections) a weak, pinkish reddish tint (reddish tinted veins as well as reddish tinted dioritic host) indicate very weak Kfeldspar? and/ or hematite? Both epidote and K-feldspar are preferrably associated with quartz (in contrary to the more common, calcareous vein material) in case they are detectable as predomaintly trace - minor vein constitutent.									
184.43	184.44 QMV		cm wide, porly defined, blurry, pale - pinkish - light grey quartz-, +/- minor epidote, +/- trace Kfeldspar? (dissemianted?), +/- trace hematite? (red specks?) vein @ 50 deg to CA.									
184.44	186.90 EALT	DIOR	as 164-184.44									
186.90	187.50 QMV	KALT	Intercept bears five, $\mathrm{cm}-2 \mathrm{~cm}$ scale, poorly defined, blurry, pale - pinkish - light grey, quartz-, +/- calcite-, +/- trace - minor epidote, +/- trace - minor K-feldspar?, +/- trace - minor hematite?, +/- trace turmaline, +/- minor sulphides (chalcopyrite is identifiable: Specks grade to $<\mathrm{cm}$ clots) bearing, variably orientated (50 deg - steep to CA) veins amounting to weak moderate.									
187.50	188.62 EALT	DIOR	as 164-184.44									
188.62	188.64 QV		2 cm wide,predomiantly quartz bearing vein, reminiscent to " 184.43 - 184.44m" and "186.9187.5 m ". is orientated steep to CA. No sulphides dietected.									
188.64	191.54 EALT	DIOR	as 164-184.44	J294157	191.38	191.7	0.32	0.240	0.70	70	0.01	Core
191.54	191.57 QMV		White, quartz-, +/- calcite vein bears unknown, grey, < cm inclusions and anhedral subhedral, <cm pyrite clots (amounting to approx 5%) and minor, wispy chlorite. Steep oprientation to CA. Poorly developed bleached halo from approx 191.4-191.7m.									
191.57	207.32 EALT	DIOR	as 164-184.44									
207.32	209.93 FOL	CALT	Prominently foliated @ 20 deg to CA, elevated calcite content. UC and LC: Abrupt changes.	J294158	209.74	210.31	0.57	1.380	1.30	169	0.02	Core
209.93	209.97 QCV	KALT	3 cm wide, white calcite vein @ 60 deg to CA is enveloped by bleached halo, that bears approx 2% speckled, partially euhedral pyrite, locally grading to mm wide pyrite wisps and few mm									

Lithology						Assays								
From	To	Lith	M Lith	Lithology Notes		Sample	From	To	Interval	Au g/t	Ag PPM	Cu PPM	Cu\%	Type

209.97	211.00 DIOR		Diorite									
211.00	214.00 FOL	QCV	Variably textured intercept: Large portions of the material are prominently foliated @ 40-60 deg to CA, grading to dm scale, softer, pale grey bleached patches with primary textures completely obliterated. Calcite bearing patches. Particularly near UC pale - dirty, +/- zoned, variably orientated (preferrably @ approx 45 deg to CA) veinlets of unknown composition (presuambly 2 veinlet generations/ types of differing composition?) $+/$ - enveloped by few cm wide, pale bleached halos. At $212.4-212.5$ and $213.8 \mathrm{~m} \mathrm{~cm}-$ few cm wide, poorly defined, blurry, +/- inconsistant, pale - pinkish - dirty light grey, predomiantly quartz bearing (+/- Kfledspar and/ or hematite bearing?) veins @ 40 deg to CA, very reminiscent to veins described at $184.43-184.44 ; 186.9-187.5 ; 188.62-188.64 \mathrm{~m}$. At $213-213.1 \mathrm{~m}$: Blebby - patchy inconsistant, pale - weakly reddish tinted, predominantly quartz- and calcite bearing veining is prominently truncated along hairline @ 20 deg to CA (few cm offset), associated with wispy chlorite and minor, speckled - wispy pyrite. Enveloped by medium green grey (chlorite) halo from 212.9-213.3 with primary textures obliterated and locally minor - speckled - wispy pyrite.									
214.00	215.57 DIOR		Diorite	J294159	215.45	215.8	0.35	1.010	34.90	9999	4.14	Core
215.57	215.80 FOL	CALT	Blebby quartz grades to pale - weakly reddish tinted (trace K-fledspar?) quartz-, carbonate veining associated with wispy chalcopyrite grading to chalcopyrite clots and predomaintly chalcopyrite patches. Large portions of the underlying material to approx 217.75 m with primary textures +/- obliterated by bleaching/ alteration (patchy - sections: +/- dirty olive green grey, associated with elevated, patchy, weak - moderate calcite, +/- minor chlorite [altered mafics, hairlines, wisps]) and few dm, intercalation of relict dioritic and prominently foliated (@ $40-50$ deg to CA) material. \%-range speckled - wispy pyrite (locally trace chalcopyrite) from 215.45 approx 216.35 m . Scattered, < few cm epidotic patches from 214 -218.2m.									
215.80	219.70 ALT	DIOR	Alt diorite - Primary textures are +/- obliterated to dirty medium grey and discretely foliated @ 35 deg to CA.	J294160	215.8	216.33	0.53	0.025	0.40	301	0.03	Core
219.70	224.80 DIOR		Diorite									

224.80 228.80 KALT DIOR Bleaching alteration-Very reminscent to material underlying veining at $215.75-215.8 \mathrm{~m}$: Up to approx m wide sections and patches with primary textures completely obliterated by weakly moderately calcite bearing alteration/ bleaching to medium - light grey and +/- dense, massive and aphanitic texture. Locally associated with sheeted, chlorite bearing hairlines and veinlets @ 40-45 deg to CA and trace - minor speckled - wispy chlorite. UC: Abrupt, assocaited with moderately fractured core over approx 20 cm . LC: Abrupt, sharp, distinct, approx 45 deg to CA.
$228.80 \quad$ 230.00 DIOR Diorite
230.00 232.00 CALT DIOR Patchy calcite bearing alteration results in obliteration or primary textures, medium grey colour, +/- massive - weakly mottled (relict diorite textures) appearance. Minor wispy chlorite (see 224.8-228.8m).

Lithology						Assays								
From	To	Lith	M Lith	Lithology Notes		Sample	From	To	Interval	Au g/t	Ag PPM	Cu PPM	Cu\%	Type
232.6	233.67 DIOR		Diorite			J294161	233.48	233.85	0.37	0.170	2.80	1685	0.17	Core

233.67 233.70 QMV White - dirty, 3 cm wide, few pinkish patches bearing (indicating minor K-feldspar?), minor chlorite stringer bearing (wispy - mm scale, inconsistant and +/- aligned to vein contacts @ 60 deg to CA), +-- vuggy (few, < cm fluid cavities) weakly chalcopyrite bearing (wispy, specks and clot growing into fluid cavity) quartz vein. UC is associated with obliteration of primary textures and foliation subparallel to vein over few cm . LC associated with broken core, few cm wide K-feldspar alteration and chlorite stringer grading to few mm veinlets @ shallow angle to CA. Underlain by medium grey, finely foliated material over few cm , reminiscent to UC. Traceminor, speckled - wispy chalcopyrite detectable from approx $233.5-233.67 \mathrm{~m}$.

| 233.70 | 235.00 DIOR \quad Diorite |
| :--- | :--- | :--- |

 contorted, +/- inconsistant, +/- patchy, +/- planar, < mm - cm scale calcite-, quartz veining amounts to moderate; weak crackle brecciation. At 238.6-238.61m a cm wide quartz vein @ steep angle to CA enveloped by bleached, weakly speckled - hairline pyrite bearing halo from 238.5 - 238.7m. Foliated (@ 35 deg to CA) patch.
241.80 257.00 FOL ALT Fol alteration - Portions of the material (patches - <m subsections) are prominently foliated @ 40 deg to CA (as described before) One approx 70 cm wide subsection, + - dense, $+/-$ massive, fine grained, +/- aphanitic appearance, presumably as a result of alteration. +/ moderately fractured core.

FOL Moderately - strongly fractured core. Preferred orientation of fracture plane is shallow subparallel to CA. Prominently foliated material (foliation @ subparallel orientation to CA) grades to fine grained and medium grey appearance (smeared out grains/ cystals?)
Moderately magnetic. Locally contact (@ subparallel orientation to CA) to medium grained diorite is detectable. Very reminscent to 87.3-87.75m. Locally + /- weakly pinkish tinted (K eldspar?), predominantly white - pale calcite-, quartz veins (granular - blebby - nodular rregualr quartz is embedded in calcite) are orientated subparallel to CA and are clipped by drill string resulting in dirty, irregualr vein patches (only few mm thickness in core, true thickness unknown) locally displayed. Vein material is weakly - moderately chalcopyrite bearing ($<5 \mathrm{~mm}$, rarely $>\mathrm{cm}$, irregular specks). Not sampled due to low/ non representative volume of relevant vein material.

258.90	263.50 DIOR	Diorite

$263.50 \quad 268.00 \mathrm{BZ}$
Fracturing +/- moderately, locally strongly fractured core.
268.00 268.55 DIOR

Diorite
268.55 268.56 QV ALT 1 cm Qz vein + alt - White, < cm wide quartz vein is enveloped by weakly - moderately
bleached, trace - minor speckled pyrite bearing halo from 268.51-268.58m and is orientated approx @ 70 deg to CA

296.56 296.59 QMV White, 3cm quartz vein is orientated subvertical to CA and bears inconsistant, approx 3mm appearing, mottled, moderately bleached and trace pyrite bearing halo from 296.5-296.69m

296.59	297.65 DIOR		Diorite									
297.65	309.00 QMV	ALT	Material is moderately magnetic throughout and comprises > 50\% medium grained diorite, as described for main interval, alteranting with pale olive green grey, bleached patches and up to $>\mathrm{m}$ wide, bleached, $+/-$ weakly relict dioritic textured, + /- dense, $+/$ - massive, + /- aphanitic and homogenous subsections, that +/- bear trace - minor dissemianted - speckled pyrite, calcite is +/- lacking, locally pinkish, presuambly K-feldspar bearing patches. Bleaching is interpreted as alteration halos enveloping white, $\mathrm{mm}->6 \mathrm{~cm}$, partially inconsistant and irregular, predominantly planar veinlets and veins (which bear quartz, +/- patchy albite, +/- wispy stringer pyrite, that is aligned to vein contacts) that are variably orientated to CA (shallow steep) and somewaht preferrably @ 70 deg to CA. The two largest veins of this type are at 301 - 301.07m: 4cm wide veins @ 30 deg to CA and 302.13-302.2: 6.5cm vein @ 65 deg to CA. At $308.63-308.65$ a white, 2 cm wide quartz vein @ subvertical oriention to CA bears $>20 \%$, $>\mathrm{cm}$, subhedral pyrite clots. At $308.84-308.87$ a white, 3cm wide quartz vein @ subvertical orientation to CA bears minor calcite, minor chlorite (wispy, aligned to vein contacts) and minor, < few mm, anhedral pyrite-, +/- chalcopyrite specks.	J294167	297.7	298.07	0.37	0.880	1.00	152	0.02	Core
				J294168	298.8	299.25	0.45	0.680	0.50	95	0.01	Core
				J294169	300.88	301.24	0.36	0.830	0.80	124	0.01	Core
				J294170	301.98	302.37	0.39	0.800	1.30	237	0.02	Core
				J294171	303.27	303.62	0.35	2.560	3.50	267	0.03	Core
				J294172	308.53	308.94	0.41	5.610	11.60	338	0.03	Core
				J294332	307.03	308.53	1.50	0.091	1.50	636	0.64	Core
				J294333	307.03	307.03	0.00	0.054	1.00	343	0.34	Core Dup
				J294334	308.94	309.39	0.45	0.170	1.10	232	0.23	Core
				J294335	303.07	303.27	0.20	0.013	1.30	285	0.29	Core
				J294336	303.62	303.87	0.25	0.007	1.40	321	0.32	Core

					Lithology	Assays								
From	To	Lith	M Lith	Lithology Notes		Sample	From	To	Interval	Au g/t	Ag PPM	Cu PPM	Cu\%	Type

$\left.\begin{array}{lll}\hline 323.10 & 323.23 \text { QCV } & \begin{array}{l}\text { Quartz veining - Three, cm scale, white, +/- irregualr, }+/ \text { - minor, wispy chlorite bearing, }+/- \\ \text { trace pyrite bearing (one euhedral, } 5 \mathrm{~mm} \text { sized crystal) quartz veins are associated with dirty } \\ \text { green grey, few } \% \text { speckled }- \text { wispy pyrite bearing, moderately - strongly calcareous halo, with } \\ \text { primary textures obliterated from } 323.1-323.4 \mathrm{~m} .\end{array} \\ \hline 323.23 & 326.00 \text { DIOR } & \text { Diorite } \\ \hline 326.00 & 344.00 \text { EALT } & \text { DIOR }\end{array} \begin{array}{l}\text { Meterage is approximate. Weak - discrete, yellowish - pistacio green tint of palgioclase } \\ \text { crystals/ grains and local epidote as vein constituent is interpreted as weak- to moderate } \\ \text { epidote alteration/ +/- sausseritation? }\end{array}\right]$
347.00 350.00 EALT DIOR Meterage is approximate. Weak - discrete, yellowish - pistacio green tint of palgioclase crystals/ grains and local epidote as vein constituent is interpreted as weak- to moderate epidote alteration/ +/- sausseritation?
350.00 353.50 QCV Meterage is approximate. Patches with white, sheeted, calcareous veinlets and isolated calcareous veinlets throughout are preferrably orientated @ steep angles to CA. Reminiscent to $344-347 \mathrm{~m}$.
353.50 354.15 QCV ALT Predominantly non magnetic and moderately - strongly calcareous, bleached (to dirty light green grey), +/- dense, massive and $+/$ - aphanitic appearing, strongly altered intercept bears few \% dissemianted - speckled pyrite and two, > 5cm quartz veins: 353.71-353.77: White, 6 cm wide quartz vein bears approx 12% euhedral, $<\mathrm{cm}$ pyrite crystals, $+/-$ grading to several cm , subhedral pyrite clots, is slightly irregular and orientated subvertical to CA. 353.9-353.96: White and green, $+/-$ zoned quartz-, chlorite- $(10 \%+/$ - contorted - planar, $+/$ - inconsistant patchy spotty, $\mathrm{mm}-<\mathrm{cm}$ bands/ stringer are crudely aligned to vein contacts), pyrite (approx 15% pyrite is asssociated with chlorite: Anhedral - euhedral specks grade to wisps/ stringer/ < 2 cm wide, crude bands associated with or proximal to chlorite and crudely aligned to vein contacts) vein is 5 cm wide and orientated @ 60 deg to CA.
354.15 355.20 DIOR Diorite
355.20 355.69 KALT 5cm pinkish, K-feldspar alterad seam @ 40 deg to CA.
355.69 364.00 FLT Fault zone - Moderately fractured core. AT 356.42 m a cm wide, clayey seam with polished surfaces is aligned @ 60-70 deg to CA? and interpreted as gouge: Weak indication of faulting.
$364.00 \quad 365.00$ DIOR Diorite

Lithology				Assays								
From	To Lith	M Lith	Lithology Notes	Sample	From	To	Interval	Au g/t	Ag PPM	Cu PPM	Cu\%	Type
epidote bearing, strongly altered patch with primary textures +/- entirely lacking.												
365.30	369.30 DIOR		Diorite									
369.30	369.90 ALT	DIOR	Pinkish pale bleached mottled, dissemianted K-feldspar bearing?, weakly calcareous (few weakly calcareous patches and locally white, patchy calcite-, +/- chlorite veining), locally magnetic (patchy), trace dissemianted - speckled pyrite bearing, weakly wispy chlorite bearing strongly altered subsections with primary textures +/- entirely lacking. No disseminated turmaline detected. 5 mm veinlet, dark green - black, hard, @ 30 deg to CA: Composition unknown, possibly turmaline? UC and LC abrupt and associated with $10-20 \mathrm{~cm}$ wide, prominently foliated host rock (approx @ 30 deg to CA).									
369.90	371.80 FOL	DIOR	Discretely foliated patches and sections approx @ 35 deg to CA.									
371.80	372.16 DIOR		Diorite	J294175	371.8	372.16	0.36	1.080	1.20	387	0.04	Core
372.16	372.62 QMV		White - dirty quartz vein bears $<5 \%$ chlorite (wispy - patchy - hairline chlorite crudely aligned @ 60 deg - subvertical to CA), approx 8% sulphides (pyrite and chalcopyrite at $50: 50$? and showing as specks, cm scale clots and up to $>4 \mathrm{~cm}$ patches) and is orientated steep to subvertical to CA. Vein is enveloped by altered (primary textures overprinted), +/- bleached (to light green grey - medium green grey mottled), + /- non magnetic (only proximal to vein and < 10 cm distance), non- to moderately calcareous, minor dissemianted - speckled pyrite bearing (rarely euhedral crystals identifiable) halo from 371.8-373.25.	J294176	372.16	372.62	0.46	59.800	31.80	6420	0.64	Core
372.62	373.25 DIOR		diorite	J294177	372.62	373.05	0.43	0.025	0.50	184	0.02	Core
373.25	387.92 FOL	ALT	Fol alt veining. The majority of the diorite is discretly foliated @ 30 deg - 40 deg to CA and weakly crackle brecciated as a result of weak - locally moderate, white, predominantly calcareous, variably orientated veinlets. At 378.2-378.3 pinkish, presuambly K-feldspar bearing patch reminiscent to $369.3-369.9 \mathrm{~m}$. From $381-382.3$ bleached to olive green grey and $+/$ - lacking primary textures associated with pinkish and presumably K-feldspar (+/chlorite) bearing patches and $<30 \mathrm{~cm}$ subsections (reminiscent to $369.3-369.9 \mathrm{~m}$), patchy magnetism and moderate patchy calcite. EOH 387.92 Lost hole.									

HOLE ID	AZIMUTH	DIP	LENGTH	COORDINATES		SHORTLOG	LOG COMPLETE
KE10-16	244	-58	506.05	EASTINGS:	472336	Tobias	
				NORTHINGS:	5479452	DETAILLOG	DATUM
	Drilling					DETAILLOG	\| ${ }^{\text {DATUd83 Zone } 1}$
AREA	Started:		CORE SIZE	SECTION		Tobias	Nad83 Zone 1
Kenville SE	Finished:		NQ	S16			SAMPLER
							Tobias

Shipments	
ShipmentID	Shipment Date
$2010 / 12 / 06$	$06 / 12 / 2010$
$2010 / 12 / 29$	$29 / 12 / 2010$
$2010 / 11 / 30$	$29 / 12 / 2010$

Page 1 of 12

Lithology				Assays						
From	To ${ }^{\text {Lith }}$	M Lith	Lithology Notes	Sample	From	To	Interval	Au PPM	Ag PPM	Cu \%
angle to CA.										
45.46	45.88 DIOR		Diorite - usual - see large text 34.5 to 35.66	J294100	47.60	47.85	0.25	0.260	2.6	
45.88 45.90 QCV Pale whitish, dirty, +/- moderately scratch resistant - soft veining as described at 35.66-35.85										
45.90	47.73 DIOR		Diorite - usual - see large text 34.5 to 35.66	J294000	46.50	47.50	1.00	0.064	0.5	
47.73 47.76 QV Approx 3cm wide, dirty pale quartz vein @ STEEP angle to CA.										
47.76	54.20 DIOR		Diorite - usual - see large text 34.5 to 35.66	J294001	47.85	48.85	1.00	0.023	0.3	
54.20 54.22 QV Dirty pale, 2cm quartz vein presuambly orientated STEEP to CA: Broken core.										
54.22	54.60 DIOR		Diorite - usual - see large text 34.5 to 35.66							
54.60	54.61 QV		5 mm , dirty pale, weakly rusty quartz vein is orientated STEEP to CA.							
54.61	58.10 DIOR		Diorite - usual - see large text 34.5 to 35.66							
58.10	58.75 FLT		Fault: Moderately - strongly fractured core. Slickensides on fracture planes with preferred orientation @ 20 deg to CA - subparallel to CA. Foliation subparallel to preferred fracture orientation assoicated with +/- absence of of granular (interlocking) texture: Material is dirty grey and faintly mottled.							
58.75	59.37 DIOR		Diorite - usual - see large text 34.5 to 35.66	J294002	58.10	59.28	1.18	0.099	0.7	
59.37	59.46 QV		Approx dm wide, white and rusty coloured quartz vein bears few $\mathrm{mm}-\mathrm{cm}$ wide, pinching and swelling, inconsistant sulphide bands (pyrite, +/- chalcopyrite) and is orientated STEEP to CA.	J294101	59.28	59.53	0.25	2.840	6.7	
59.46	62.71 DIOR		Diorite - usual - see large text 34.5 to 35.66	J294003	59.53	60.80	1.27	0.112	0.3	
62.71	62.72 QV		Dirty pale, 1 cm wide quartz vein is orientated STEEP to CA.							
62.72	63.13 DIOR		Diorite - usual - see large text 34.5 to 35.66	J294004	61.93	63.13	1.20	0.032	0.3	
63.13	63.37 QCV		Subsection bears 3 quartz veins @ STEEP angle to CA: Pale, +/- inconsistant, pinching and swelling, orientated STEEP to CA. Vein material bears bears minor speckled pyrite and speckled sphalerite?	J294102	63.13	63.40	0.27	2.070	1.1	
63.37	67.50 DIOR		Diorite - usual - see large text 34.5 to 35.66	J294005	63.40	64.48	1.08	0.010	0.2	
67.50	70.70 QCV		Pale whitish coloured, mm - few mm scale, moderately scratch resistant - soft veinlets and veins amount to moderate (approx dm spacing), are +/- inconsistant and preferrably orientated @ 50 deg - subvertical to CA.							

99.50	99.55 QV	Weakly - moderately rusty tinted (base colour is pale - white), 2cm wide, vuggy quartz vein is orientated @ approx 55 deg to CA, bears minor sulphide specks (chalcopyrite, $+/$ - pyrite?). Prominent sulphide specks, grading to $<\mathrm{cm}$ clots on fracture planes detectable.						
99.55	103.80 DIOR	Diorite - usual - see large text 34.5 to 35.66	J294019	99.65	100.20	0.55	0.024	0.3
103.80	104.70 QCTV	This subsection bears 8 white or pale, $+/-$ vuggy, cm to $<3 \mathrm{~cm}$ wide quartz-, $+/-$ calcite veins, which are orientated @ 60 deg to subvertical to CA. Locally weak, rusty stain. Prominently turmaline bearing: Amount varies from trace to abundant (as vein constituent) and frequently the turmaline establishes zoning (cm scale turmaline bands establish centre of veins).	J294107	103.80	104.70	0.90	0.025	0.1
104.70	114.55 DIOR	Diorite - usual - see large text 34.5 to 35.66						
114.55	114.58 QCTV	Pale - white, +/- irregualr, approx 2 cm wide, vuggy quartz-, calcite-, turmaline vein (reminiscent to 103.8 -104.7) @ 55 deg to CA.						
114.58	118.70 DIOR	Diorite - usual - see large text 34.5 to 35.66						
118.70	119.70 QCV	This subsection bears patchy - swirly - planar (and then somewaht preferrably orientated @ shallow angle to CA), moderately scratch resistant - soft, calcareous veinlets and veins, that are rarely > cm wide and amount to moderate. Very reminiscent to previously described non- or weakly quartz bearing veinlets/ veins, but bears a pistacio green mineral: Epidote?						
119.70	125.08 DIOR	Diorite - usual - see large text 34.5 to 35.66						
125.08	125.11 QCTV	Turmaline-, +/- quartz-, +/- carboante vein @ subvertical orientation to CA. More than 66% of the vein material comprises turmaline.						
125.11	127.43 DIOR	Diorite - usual - see large text 34.5 to 35.66	J294108	127.34	127.54	0.20	0.150	3
127.43	127.44 QCTV	Turmaline bearing veining: Anastomosing, +/- irregualr, < cm - approx 2 cm scale. Bears finely speckled chalcopyrite grading to elongate chalcopyrite clots, that are $+/$ - aligned to vein contacts.						
127.44	127.71 DIOR	Diorite - usual - see large text 34.5 to 35.66						
127.71	130.05 QCTV	Primary textures are $+/$ - obliterated by bleaching within this subsection, resulting in a pale grey, dirty mottled appearance. Material is weakly crackle brecciated with + /- inconsistant, + /- wispy and variably orientated + /- quartz-,+/- calcite-, +/- carboante, +/- turmaline veins (as described before).	J294020	129.95	130.45	0.50	0.015	0.3
130.05	130.60 DIOR	Diorite - usual - see large text 34.5 to 35.66	J294109	130.45	130.75	0.30	3.100	23.7
130.60	130.70 SV	Variably orientated, +/- inconsistant, anastomosing chalcopyrite-, bornite? (prominently purple tarnished metal sulphide) hairlines and veinlets. Preferred orientation @ $20-30$ deg to CA.						
130.70	132.40 DIOR	Diorite - usual - see large text 34.5 to 35.66	$\begin{aligned} & \hline \text { J294021 } \\ & \text { J294023 } \end{aligned}$	$\begin{aligned} & \hline \hline 130.75 \\ & 131.20 \end{aligned}$	$\begin{aligned} & \hline \hline 131.20 \\ & 131.85 \end{aligned}$	$\begin{aligned} & \hline \hline 0.45 \\ & 0.65 \end{aligned}$	$\begin{aligned} & \hline \hline 0.002 \\ & 0.235 \end{aligned}$	$\begin{aligned} & \hline \hline 0.1 \\ & 4.8 \end{aligned}$

| 132.50 | 145.03 DIOR | Diorite - usual - see large text 34.5 to 35.66 | 0.85 | 0.033 | 0.1 | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

145.03 145.05 QV Approx 2 cm wide quartz-, calcite vein @ subvertical orientation to CA bears minor turmaline? and inconsistant pyrite stringer along vein contacts. Vein is enveloped by approx dm wide bleached halo on each side, obliterating primnary textures.

145.05	158.20 DIOR	Diorite - usual - see large text 34.5 to 35.66	J294110	144.92	145.20	0.28	0.070	0.4
			J294026	157.60	158.03	0.43	0.100	1
158.20	158.30 QCTV	Black (turmaline) - pinkish (K-feldspar?) - p	J294111	158.03	159.03	1.00	0.190	0.3

158.30 158.84 DIOR Diorite - usual - see large text 34.5 to 35.66
158.84 158.87 QCTV Black (turmaline) - pinkish (K-feldspar?) - pale light grey (quartz) and calcite bearing, +/- poorly defined, nconsistant, approx 3cm wide vein @ approx 60 deg to CA. Weak - moderate speckled sulphides (pyrite, chalcopyrite) are detectable on fracture planes (weak fracturing subparallel to CA with very weak expression of slickednsides). Vein is underlain by approx 20 cm wide, bleached halo with primary textures obliterated by alteration (as described before).
158.87 165.25 DIOR

Diorite - usual - see large text 34.5 to 35.66
J294027
159.03
159.60
0.57
0.002
0.1
165.25 165.62 ALT Medium grey mottled intercept. Mottled texture is presumably the result of alteration, rather than the material being an intrusion? (dyke?) UC: sharp, distinct, @ 60 deg to CA. LC: Broken core.
165.62 166.30 DIOR Diorite - usual - see large text 34.5 to 35.66
166.30 167.00 QCV Pale coloured, highly vuggy calcite-, and $+/-$ quartz-, + /- sulphide-, ($+/-$ other minerals?) bearing, $<\mathrm{cm}$ wide, $+/-$ irregualr, +/- pinching and swelling, wavy vein is orientated@ shallow angle to CA. Locally modrately sulphide

294113	166.30	167.12	0.82	0.100

168.90 173.60 DIOR Medium grained diorite, weakly - moderately vein bearing with veins comprising +/- quartz, +/- calcite, +/carbonate? (other than calcite) + -- turmaline (as described for main interval). The pale coloured plagioclase crystals/ grains display a weakly pistacio green colour, presumably as a result of epidote alteration. Similar colour/ crystals/ grains display a weakly pistacio green colour, presumably as a result of epidote alteration. Similar colour alteration/ metamorphism? has been observed in overlying portions of this drill hole, but less pronounced and slightly irregualr approx @ 60 deg to CA, chosen to be coincident with intrusive contact.

Lithology				Assays						
From	To ${ }^{\text {To }}$	M Lith	Lithology Notes	Sample	From	To	Interval	Au PPM	Ag PPM	Cu \%
173.60	174.00 QCV		Intercept bears $4+/-$ quartz, $+/-$ calcite-, +/- sulfate? (gypsum?), +/- trace other, unindentified minerals bearing veinlets/ veins as described before: Width varies from $<5 \mathrm{~mm}->\mathrm{cm}$, orientation varies from 50 deg to CA to subervertical to CA.							
174.00	174.20 DIOR	EALT	Diorite - m grained - see large text 168.9-173.6							
174.20	174.50 QCV		Primary textures are somewhat obliterated by alteration, resulting in grey mottled appearance. Weak crackle brecciation with inconsistant, irregualr - patchy - wispy, pale - weakly reddish tinted (K-feldspar?, rose quartz?) +/- quartz-, +/- calcite-, +/- carbonate?-, +/- gypsum? hairlines/ veinlets/ veins. Locally minor chalcopyrite as part of vein material: Specks, small clots.	J294115	174.20	174.50	0.30	0.025	0.7	
174.50	179.22 DIOR		Diorite - m grained - see large text 168.9-173.6	$\begin{array}{\|l\|} \hline \text { J294028 } \\ \text { J294114 } \end{array}$	$\begin{aligned} & 178.75 \\ & 179.09 \end{aligned}$	$\begin{aligned} & 179.07 \\ & 179.38 \end{aligned}$	$\begin{aligned} & \hline 0.32 \\ & 0.29 \end{aligned}$	$\begin{aligned} & \hline 0.008 \\ & 3.530 \end{aligned}$	$\begin{aligned} & \hline 0.1 \\ & 2.9 \end{aligned}$	
179.22	179.25 QV		5 cm wide quartz vein (@ STEEP anlgle to CA?: Broken core) bears trace chlorite and weak - moderate pyrite (wisps grading to stringer and clots and establishing zoning subparallel to veins contacts). Chlorite and pyrite are closely associated.							
179.25	184.90 DIOR		Diorite - m grained - see large text 168.9-173.6	J294029	179.38	179.74	0.36	0.008	0.1	
				J294030	179.74	180.15	0.41	0.007	0.2	
				J294031	180.15	180.85	0.70	0.007	0.1	
184.90	185.02 QCV		Broken core. Few mm wide, highly calcareous, highly vuggy, weakly sulphide bearing (speckled pyrite and/ or chalcopyrite) veinlet @ 30 deg to CA.	J294116	184.80	185.10	0.30	0.140	0.1	
185.02	185.30 DIOR		Diorite - m grained - see large text 168.9-173.6							
185.30	186.35 QCV		Primary textures +/- obliterated by bleaching, resulting in a pale grey colour and weakly, finely mottled texture. Bears < mm to $>\mathrm{cm}$ wide, pale - white quartz-, carboante veins as described before. Vein orientation is variable, locally grading to weak crackle texture. From 185.57-188.66 a fragmental appearing texture is interpreted as pseudo fragmental, with UC and LC sharp along fracture planes @ 35-40 deg to CA.							
186.35	192.21 DIOR		Diorite - m grained - see large text 168.9-173.6	J294032	191.41	192.00	0.59	0.006	0.8	
192.21	192.31 QV		White quartz-, +/- calcite vein (calcite as sheeted wisps). Lower portion of vein bears < few cm, light- to medium grey inclusions subparallel to vein contacts: Possibly host rock inclusions? Trace subhedral pyrite specks. Sulphide mineralisation extends into underlying 30 cm wide, bleached halo: Minnor dissemiantions/ specks and stringer: Chalcopyrite and pyrite.	J294117	192.00	192.70	0.70	1.150	0.9	
192.31	201.33 DIOR		Diorite - m grained - see large text 168.9-173.6	$\begin{aligned} & \hline \text { J294034 } \\ & \text { J294118 } \end{aligned}$	$\begin{array}{r} 192.70 \\ 201.25 \\ \hline \end{array}$	$\begin{aligned} & \hline 193.63 \\ & 201.65 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.93 \\ & 0.40 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.002 \\ & 0.025 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.5 \\ & 0.1 \\ & \hline \end{aligned}$	
201.33	201.43 QCV		White - very weakly reddish tinted, anastomosing, cm - dm scale quartz-, calcite vein(s) @ $55-80$ deg to CA, associated with underlying, patchy veining of same composition at 201.6 m .							
201.43	214.48 DIOR		Diorite - m grained - see large text 168.9-173.6							
214.48	217.65 LAMP		Light- to medium grey, dense, massive, aphanitic intrusion (dyke or sill) is moderately - strongly magnetic and bears few cm to $>30 \mathrm{~cm}$ sized inclusions of host rock indicating xenoliths, fingering contact or contact very oblique to orientation of drill hole? For the sake of consistancy this interval is tentatively and reluctantly identified as a lamprohyre even though composition is presumably close to/ same as host rock and porphyritic texture is +/-							

Lithology				Assays						
From	To ${ }^{\text {L }}$ Lith	M Lith	Lithology Notes	Sample	From	To	Interval	Au PPM	Ag PPM	Cu \%
entirely lacking. UC: Sharp, distinct, somewhat irregualr, approx $60-7 \beta$ deg to CA. LC: Lost in broken core.										
217.65	221.55 DIOR		Diorite - usual - see large text 34.5 to 35.66	$\begin{aligned} & \hline \text { J294036 } \\ & \text { J294035 } \end{aligned}$	$\begin{aligned} & \hline 219.98 \\ & 221.04 \end{aligned}$	$\begin{aligned} & \hline 221.04 \\ & 221.40 \end{aligned}$	$\begin{aligned} & \hline \hline 1.06 \\ & 0.36 \end{aligned}$	$\begin{aligned} & \hline 0.007 \\ & 0.007 \end{aligned}$	$\begin{array}{r} 1 \\ 0.8 \end{array}$	
221.55	221.70 QV		White quartz-, +/-minor calcite vein bears sulphides: Pyrite, chalcopyrite and trace galena show as wisps, grading to clots and establishing and inconsistant, irregualr, approx cm wide band subparallel to vein contacts. UC: Sharp, distinct, 70 deg to CA. LC: Sharp, distinct, 75 deg to CA.	J294119	221.40	221.89	0.49	5.810	12.1	
221.70	250.05 DIOR		Diorite - usual - see large text 34.5 to 35.66	$\begin{aligned} & \hline \text { J294037 } \\ & \text { J294038 } \\ & \text { J294039 } \end{aligned}$	$\begin{aligned} & 221.89 \\ & 222.15 \\ & 222.59 \end{aligned}$	$\begin{aligned} & 222.15 \\ & 222.59 \\ & 223.59 \end{aligned}$	$\begin{aligned} & \hline 0.26 \\ & 0.44 \\ & 1.00 \end{aligned}$	$\begin{aligned} & \hline 0.014 \\ & 0.123 \\ & 0.157 \end{aligned}$	$\begin{aligned} & \hline 1.2 \\ & 4.3 \\ & 1.3 \end{aligned}$	
250.05	251.60 LAMP		Dark grey, moderately scratch resistant - soft, moderately magnetic, aphanitic intrusion (dyke or sill). $<7 \%,<\mathrm{mm}$ - rarely few mm sized, pale - white, +/- calcareous, rarely epidote bearig, rarely trace pyrite bearing, predomiantly subround - round, very rarely square - lath shaped outlines, that locally cluster to clouds are interpreted as vesicles, +/- minor, altered feldspar phenocrysts? UC and LC: Broken core, no plane. This interval is hosted by discretely darker appearing, discretely foliated (25 deg to shallow to CA) diorite from $244.45-257.15$. It is undetermined if the darker colour is the result of a higher amount of mafics and/ or the darker colour may be the result of dirty grey felsic minerals. Foliation of the hosting diorite and dirty grey appearance of its felsic minerals is possibly related to the intrusion of the dyke/ sill?							
251.60	263.68 DIOR		Diorite - usual - see large text 34.5 to 35.66	$\begin{aligned} & \hline \text { J294042 } \\ & \text { J294041 } \\ & \text { J294040 } \end{aligned}$	$\begin{aligned} & \hline 258.47 \\ & 259.50 \\ & 263.38 \end{aligned}$	$\begin{aligned} & \hline 259.50 \\ & 263.38 \\ & 264.00 \end{aligned}$	$\begin{aligned} & \hline 1.03 \\ & 3.88 \\ & 0.62 \end{aligned}$	$\begin{aligned} & 0.016 \\ & 0.015 \\ & 0.301 \end{aligned}$	$\begin{aligned} & 0.3 \\ & 0.8 \\ & 0.7 \end{aligned}$	
263.68	263.78 QV		Pale coloured, weakly dirty quartz vein subvertical to CA bears $>15 \%$ subhedral - anhedral, $<\mathrm{mm}$ - few mm sized pyrite specks grading to $>4 \mathrm{~cm}$ pyrite clots, that are associated with green grey - dirty grey material (chlorite and inclusions of host rock?) and together establish $<\mathrm{cm}$ to $>3 \mathrm{~cm}$ wide bands subparallel to vein contacts. Vein is enveloped by bleached, massive and aphanitic appearing alteration halo (as described before) from 263.4 264.1, bearing few \% finely disseminated pyrite.	J294121	263.50	264.00	0.50	111.500	58.1	
263.78	272.31 DIOR		Diorite - usual - see large text 34.5 to 35.66	$\begin{aligned} & \hline \text { J294043 } \\ & \text { J294044 } \end{aligned}$	$\begin{aligned} & \hline 264.00 \\ & 264.28 \end{aligned}$	$\begin{aligned} & \hline 264.28 \\ & 265.49 \end{aligned}$	$\begin{aligned} & \hline 0.28 \\ & 1.21 \end{aligned}$	$\begin{aligned} & \hline 0.006 \\ & 0.016 \end{aligned}$	$\begin{aligned} & 0.8 \\ & 0.6 \\ & \hline \end{aligned}$	
272.31	273.33 LAMP		Dark grey intrsusion (dyke/ sill), locally non- to predomiantly moderately magnetic. Very reminiscent to/ same as 250.05 - 251.6, but with an indistinct, dark spotted texture indicating mafic (and completely chloritises) phenocrysts (amounting to > 10\%), possibly indicating a lamprophyre? UC: Sharp, distinct, @ 40 deg to CA. LC: Sharp, distinct, @ 45 deg to CA.	J294048	272.34	273.35	1.01	0.002	0.4	
273.33	274.26 DIOR		Diorite - usual - see large text 34.5 to 35.66	$\begin{aligned} & \text { J294047 } \\ & \text { J294046 } \end{aligned}$	$\begin{aligned} & \hline 273.35 \\ & 273.71 \end{aligned}$	$\begin{aligned} & \hline 273.71 \\ & 274.18 \end{aligned}$	$\begin{aligned} & \hline 0.36 \\ & 0.47 \end{aligned}$	$\begin{aligned} & \hline 0.032 \\ & 0.069 \end{aligned}$	$\begin{aligned} & 0.8 \\ & 0.1 \end{aligned}$	
274.26	274.32 QV		White, slightly irregualr quartz vein is orientated @ 70 deg to subvertical to CA, bears chlorite wisps and $<5 \mathrm{~cm}$ pyrite (amounting to 7%), +/- sphalerite (amounting to 3%) clots.both sulphides and chlorite are aligned subparallel to contacts.							
274.32	274.77 DIOR		Diorite - usual - see large text 34.5 to 35.66							
274.77	274.93 QV		Immideately underlying a slickenside bearing fracture plane @ 40 deg to CA with slickensides, a white quartz vein is orientated subvertical to CA, bears minor chlorite wisps associated with < few cm sulphide clots (approx 5% pyrite, approx 7% prominent sphalerite! and minor chalcopyrite are associated with minor chlorite) grading to +/consistant, irregualr, $<3 \mathrm{~cm}$ wide sulphide bands.	J294122	274.80	275.08	0.28	47.200	51.4	

Lithology				Assays						
From	To Lith	M Lith	Lithology Notes	Sample	From	To	Interval	Au PPM	Ag PPM	Cu\%
274.93	278.30 DIOR		Diorite - usual - see large text 34.5 to 35.66	$\begin{aligned} & \hline \text { J294049 } \\ & \text { J294050 } \end{aligned}$	$\begin{aligned} & \hline 275.08 \\ & 275.44 \end{aligned}$	$\begin{aligned} & \hline 275.44 \\ & 276.22 \end{aligned}$	$\begin{aligned} & \hline 0.36 \\ & 0.78 \end{aligned}$	$\begin{aligned} & \hline 0.061 \\ & 0.040 \end{aligned}$	$\begin{aligned} & \hline 0.4 \\ & 0.5 \end{aligned}$	
278.30	279.00 ECV		2 discretetely epidote bearing and $+/$ - calcareous veinlets @ 30 deg to CA within this subsection are approx cm wide, inconsistant, pinching and swelling.							
279.00	286.60 DIOR		Diorite - usual - see large text 34.5 to 35.66							
286.60	296.30 FLT	ALT	Faultzone(?): Moderately, locally strongly fractured core. Fracture planes are variably orientated, locally slickensides on fracture planes subparallel to CA and therefore this subsection tentatively interpreted as fault zone. Portions of the material with discrete foliation @ 50 deg to CA - preferrably shallow to CA - subparallel to CA, bending, weakly contorted. From 288.5-290.9: Pale - pinkish tinted (K-feldspar?, Fe bearing carbonate?, rose quartz?) , patchy - irregualr (and locally weakly aligned to foliation) quartz-, carbonate bearing veining amounts to moderate and is associated with partial obliteration of primary textures by alteration. From 295.85 296.3: Pale - pinkish tinted, patchy, irregualr veining is reminiscent to $288.5-290.9$ but less calcareous. This intercept bears minor sulphides (speckled pyrite - small pyrite clots as part of vein material and weakly extending into host rock) and immideately overlies a +/- cryptic contact/ transition zone from diorite to dark grey intrusion (dyke or sill) from 296.3-297.55m, that is defined by an intrusive contact subparallel to CA.	$\begin{array}{\|l\|} \hline \text { J294123 } \\ \text { J294052 } \\ \text { J294051 } \\ \text { J294124 } \\ \hline \end{array}$	$\begin{aligned} & 288.50 \\ & 295.13 \\ & 295.32 \\ & 295.86 \end{aligned}$	$\begin{aligned} & 290.80 \\ & 295.32 \\ & 295.86 \\ & 296.35 \end{aligned}$	$\begin{aligned} & 2.30 \\ & 0.19 \\ & 0.54 \\ & 0.49 \end{aligned}$	$\begin{array}{r} 0.300 \\ 0.006 \\ 0.007 \\ 13.600 \\ \hline \end{array}$	$\begin{array}{r} 0.7 \\ 0.7 \\ 0.5 \\ 11.2 \end{array}$	
296.30	297.55 LAMP		Contact zone/ transition zone defined by intrusive contact between overlying diorite and underlying dyke or sill: Cryptic, and obliterated by moderately - strongly fractured core, +/- slickensides on fracture planes ssubparallel to CA. and therefore also included in a.m. fault (see 286.6-297.8) It is assumed, that emplacement of dyke/ sill and faulting are genetically related?	$\begin{aligned} & \hline \text { J294053 } \\ & \text { J294054 } \end{aligned}$	$\begin{aligned} & \hline 296.35 \\ & 296.95 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 296.95 \\ & 297.60 \end{aligned}$	$\begin{aligned} & \hline 0.60 \\ & 0.65 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.289 \\ & 0.036 \\ & \hline \end{aligned}$	$\begin{array}{r} \hline 1.3 \\ 1 \end{array}$	
297.55	304.00 LAMP		Medium - dark grey, variably aphanitic and massive - indistinctly dark spotted texture (presumably as a result of > 20% chloritised mafics?; see 272.31-273.33m). The transitions between the relict ghranular and the masssive aphanitic texture are typically abrupt, defined by indistinct, sharp contacts, result in an indistinct, patchy appearance and are the result of multiphase intrusion?, slushy consistance at the time of deposition? Overall this interval is reminiscent to previously described lamprophyres: Moderately scratch resistant, moderately - strongly magnetic, prominently amygdaloid subsections (white, calcareous, rarely > 5 mm and locally amounting to approx 15%). 1 eliptic, $<2 \mathrm{~cm}$, epidotic outline: Amygdule?, alteration patch? Weak disseminated calcite. LC: Broken core and cryptic, presumably very shallow to $C A$.	J294056	297.60	298.31	0.71	0.099	0.7	
304.00	308.16 DIOR		Diorite - usual - see large text 34.5 to 35.66							
308.16	311.70 LAMP		Very reminiscent to/ same as 297.55 - 304m. UC: Sharp, distinct, @ 25 deg to CA. LC: Sharp, distinct subparallel to CA.							
311.70	320.75 DIOR		Diorite - usual - see large text 34.5 to 35.66							
320.75	323.34 LAMP		Very reminiscent to/ same as 297.55 - 304m. UC: Sharp, distinct, presumably @ 40 deg to CA: Broken core. LC: Sharp, distinct @ 25 deg to CA.							
323.34	325.58 DIOR		Diorite - usual - see large text 34.5 to 35.66							
325.58	328.45 LAMP		Very reminiscent to/ same as 297.55 - 304. UC: Distinct, sharp, @ 60 deg to CA. LC: Distinct, sharp, @ 33 deg to CA.							
328.45	329.17 DIOR		Diorite - usual - see large text 34.5 to 35.66	$\begin{aligned} & \text { J294057 } \\ & \text { J294125 } \end{aligned}$	$\begin{aligned} & \hline 328.47 \\ & 328.85 \end{aligned}$	$\begin{aligned} & \hline 328.85 \\ & 329.50 \end{aligned}$	$\begin{aligned} & \hline 0.38 \\ & 0.65 \end{aligned}$	$\begin{aligned} & \hline 1.375 \\ & 0.400 \\ & \hline \end{aligned}$	$\begin{array}{r} 1.1 \\ 2 \end{array}$	

Lithology				Assays						
From	To ${ }^{\text {To }}$ Lith	M Lith	Lithology Notes	Sample	From	To	Interval	Au PPM	Ag PPM	Cu \%
329.17	329.48 QV		Predomiantly white quartz vein. Upper portion zoned: 1.5 cm wide band of grey quartz and chloritic stringer are aligned subparallel to vein contact. Green grey chloritic inclusions near LC establish inconsistant, $\mathrm{cm}-4 \mathrm{~cm}$ wide band, very reminiscent to host rock immideately at LC and interpreted as host rock inclusion. Trace calcite. Trace pyrite associated with chloritic inclusions. Minor disseminated - finely speckled - rarely wispy (aligned to foliation) pyrite in strongly foliated (@30 deg to CA), non magneitc diorite overlying the vein. Minor disseminated to finely speckled - wispy pyrite in underlying, moderately quartz vein bearing diorite (see below). UC: Distinct, sharp, subervertical to CA. LC: Irregualr, no plane.							
329.48	329.60 DIOR		Diorite - usual - see large text 34.5 to 35.66	J294126	329.50	330.40	0.90	0.620	0.9	
329.60	330.25 QV		This intercept moderately quartz vein bearing: $+/-$ white,$<\mathrm{cm}-4 \mathrm{~cm}$ wide, $+/-$ zoned, very reminiscent to and presumably genetically related to $329.17-329.48$, minor chlorite bearing, non- to minor K-feldspar? bearing (locally a hard, pinkish mineral), trace- to minor pyrite bearing (dissemiantions, specks, wisps) +/- minor calcite bearing, varialby orientated (preferrably +/- STEEP/ subvertical to CA - rarely @ 15 deg to CA) predomiantly tabular - rarely inconsistant and anastomosing. Analougous to $329.17-329.48$ the hosting diorite is non- to only weakly magnetic and bears \%-range disseminated - speckled - wispy pyrite.							
330.25	332.80 DIOR		Diorite - usual - see large text 34.5 to 35.66							
332.80	332.90 ALT		Pinkish pale, K-feldspar bearing (+/- quartz?, +/- silicification?) patch envelopes few mm wide quartz-, +/- minor chlorite, +/- pyrite (few small clots) bearing, < cm wide veinlet @ STEEP orientation to CA. Underlying host rock (363.9 m : with primary textues +/- obliterated by alteration/ mild bleaching) bears trace - minor, dissemianted speckled pyrite and few (2) approx cm scale, +/- zoned, white - grey quartz (+/- minor chlorite, +/- minor pyrite) veins. (reminiscent to $329.17-329.48$ and 329.6-330.25).	J294127	332.74	333.50	0.76	0.310	1.8	
332.90	334.34 DIOR		Diorite - usual - see large text 34.5 to 35.66	J294059	333.83	335.03	1.20	0.039	1.3	
334.34	334.46 QV		Predomiantly white quartz vein bears minor, wispy chlorite aligned to vein contacts (zoned) and two irregualr, inconsistant sulphide bands aligned to vein contacts (zoned): $\mathrm{A}<2 \mathrm{~cm}$ wide pyrite band and a $<5 \mathrm{~mm}$ wide sphalerite-, +/- pyrite band/ stringer. UC Sharp, distinct, @ 70 deg to CA. LC: Sharp, distinct, @ 60 deg to CA.							
334.46	334.75 DIOR		Diorite - usual - see large text 34.5 to 35.66							
334.75	335.05 QCV		Weakly quartz-, chlorite-, pyrite- veinlet bearing material. Veinlets are preferrably @ STEEP angle to CA. Associated with minor dissemianted pyrite in the host rock and locally detectable weak K-feldspar alteration. Reminiscent to 332.8-332.9m.							
335.05	345.78 DIOR		Diorite - usual - see large text 34.5 to 35.66	J294058	335.03	335.16	0.13	0.093	0.7	
				J294128	335.16	335.56	0.40	19.950	28.2	
				J294060	335.56	335.96	0.40	0.212	1.2	
				J294061	335.96	337.01	1.05	0.012	0.6	
				J294062	345.14	345.62	0.48	1.485	1.3	
			White quartz vein bears minor chloritic wisps/ hairlines, that are crudely aligned to vein contacts (+/- as described before: Weak zoning) and few scattered chalcopyrite specks and < 2cm clots. From 145.55-146.2 the hosting diorite has primary textures +/- obliterated by alteration/ mild bleaching and bears trace dissemianted pyrite (as described before). UC: Sharp, distinct, approx @ 75 deg to CA; LC: Sharp, distinct, subvertical to CA.	J294129	345.62	346.15	0.53	1.280	3.7	
345.78	345.97 QV									

Lithology				Assays						
From	To ${ }^{\text {To }}$ Lth	M Lith	Lithology Notes	Sample	From	To	Interval	Au PPM	Ag PPM	Cu \%
345.97	361.86 DIOR		Diorite - usual - see large text 34.5 to 35.66	J294065 J294064 J294130	$\begin{aligned} & 359.05 \\ & 360.60 \\ & 361.40 \end{aligned}$	$\begin{aligned} & \hline 360.66 \\ & 361.40 \\ & 361.86 \end{aligned}$	$\begin{aligned} & \hline 1.61 \\ & 0.80 \\ & 0.46 \end{aligned}$	$\begin{aligned} & \hline 0.019 \\ & 1.290 \\ & 5.790 \end{aligned}$	$\begin{aligned} & \hline 0.7 \\ & 1.7 \\ & 5.4 \end{aligned}$	
361.86	362.74 QV		White quartz vein bears estimated 10\% sulphides (predominantly pyrite, \%range sphalerite, < 1% ? chalcopyrite and trace - minor galena are identifiable). Sulphides show as wisps and specks, grading to predominatly < several cm clots, that $+/$ - establish crude, irregualr, inconsistant, $<\mathrm{cm}->\mathrm{cm}$ bands, that are crudely aligned to vein contacts. UC: Sharp, distinct @ 75 deg to CA. LC: Sharp, distinct, @ 75 deg to CA. The overlying diorite is weakly bleached/ altered with primary textures +/- obliterated over approx m width (as described before), bears approx 2%, dissemianted - speckled - wispy pyrite, is non magnetic and soft. This halo is moderately - strongly veined with < cm to approx 3cm wide quartz-, +/- minor sulphide (pyrite) veins @ +/- steep - subvertical (rarely 40 - 50 deg to CA and crosscutting) orientation to CA. The underlying diorite displays very little indication of alteration: Approx 20 cm wide, very weakly bleached halo with few, variably orientated and variably composed (+/- quartz, +/calcite, +/- pyrite, +/- chalcopyrite) +/- inconsistant- +/- patchy hairlines and veinlets. Possibly a few m wide, very weak crackle breccia established by predomiantly calcite bearing (+/- quartz?, +/- gypsum?), variably orientated veinlets? Weak K-feldspar as minor vein constituent and dissemianted in diorite.	J294131	361.86	362.74	0.88	88.100	130	1.70
362.74	382.94 DIOR		Diorite - usual - see large text 34.5 to 35.66	$\begin{aligned} & \hline \text { J294132 } \\ & \text { J294067 } \end{aligned}$	$\begin{aligned} & 362.74 \\ & 363.10 \end{aligned}$	$\begin{aligned} & 363.10 \\ & 364.08 \end{aligned}$	$\begin{aligned} & \hline 0.36 \\ & 0.98 \end{aligned}$	$\begin{aligned} & \hline 0.070 \\ & 0.010 \end{aligned}$	$\begin{aligned} & 3.4 \\ & 0.6 \end{aligned}$	
382.94	384.65 LAMP		Dark grey, fine grained, +/- porphyritic (chlorite altered mafic phenocrysts, as described before) - aphanitic, calcareous, moderately - strongly magnetic, +/- vesicular/ amydaloid intrusion. Remniscent to/ same as previosusly described lamprohyre. UC: Indistinct, sharp, along fracture plane @ 40 deg to CA, associated with approx mm scale gouge seam and weak slickensides; fading out of vesicles to approx 15 cm down of contact; overlying diorite with priamry textures obliterated over 0.4 m (presumably as a result of contact metamorphism?) and trace- to minor, wispy - speckled - dissemianted pyrite bearing. LC: Associated with $<3 \mathrm{~cm}$ wide chill margin, indistinct, sharp, along fracture plane @ 35 deg to CA, that is coated with < mm, pale - whitish, soft, weakly calcareous, predomiantly gypsum? comprising seam (hairline). Underlying diorite with primary textures obliterated over < 30cm and approx 3% dissemianted - finely speckled, subhedral - euhedral pyrite; associated with moderate veining: Dirty pale, planar - pinching and swelling, paritally inconsistant, +/- quartz, +/- calcite, +/epidote?, +/- chlorite,+/- minor chalcopyrite, +/- pyrite? bearing, few mm - approx $2 \mathrm{~cm},+/-$ zoned veinlets/ veins subvertical and subparallel to CA over 0.6 m .							
384.65	388.50 DIOR		Diorite - usual - see large text 34.5 to 35.66	J294133	384.56	385.26	0.70	1.360	1.4	
388.50	390.50 EALT		Epidote, together with quartz and calcite as constituent of variably orientated, $+/-$ inconsistant, $+/-\mathrm{cm}$ scale weakly - moderately abundant veins.							
390.50	400.25 DIOR		Diorite - usual - see large text 34.5 to 35.66							
400.25	400.85 LAMP		Non- to very weakly amygdaloid lamprophyre as described before. UC: Distinct, sharpp, @ 40 deg to CA. LC, distinct, sharp, @ 40 deg to CA. Both contacts along fracture planes with < mm scale gouge seams and weak slickensides.							
400.85	411.77 DIOR		Diorite - usual - see large text 34.5 to 35.66							
411.77	411.89 QV		2 pale white, $<\mathrm{cm}->2 \mathrm{~cm}$ wide, quartz-, +/- minor chlorite-, +/- pyrite bearing, +/-zoned (as described before) veins are orientated steep to CA and enveloped by bleached (primary textures obliterated), minor dissemianted speckled - hairline pyrite bearing, partially non magneitc, partially soft halo from $411.7-412.4 \mathrm{~m}$. Overlying and underlying material (vein bearing diorite) is very weakly K-feldspar- and epidote beaing (from approx $404-414 \mathrm{~m}$?)	J294134	411.70	412.10	0.40	0.550	3.1	

Lithology				Assays						
From	To ${ }^{\text {To }}$	M Lith	Lithology Notes	Sample	From	To	Interval	Au PPM	Ag PPM	Cu \%
425.00	430.30 SIL		Moderate, patchy bleaching, predominantly hard, locally soft grades to vein reminiscent outlines ($\mathrm{cm}-\mathrm{few} \mathrm{cm}$ wide bands) with variable orientation and predomiantly comprising quartz?, +/- calcite, a pale, soft unknown mineral (possibly gypsum?) and +/- minor K-feldspar.							
430.30	432.15 DIOR		Diorite - usual - see large text 34.5 to 35.66	$\begin{aligned} & \hline \text { J294069 } \\ & \text { J294068 } \end{aligned}$	$\begin{aligned} & 430.85 \\ & 431.69 \end{aligned}$	$\begin{aligned} & 431.69 \\ & 432.10 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.84 \\ & 0.41 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.018 \\ & 0.009 \end{aligned}$	$\begin{aligned} & 0.2 \\ & 0.4 \\ & \hline \end{aligned}$	
432.15	432.33 QCV		Diorite is moderately - strongly veined with < 2cm wide, calcite veins, quartz veins and quartz-, calcite veins @ 60 deg to CA - subvertical to CA. A portion of the veins is prominently pyrite bearing: Wisps grading to clots and iregualr bands/ stringer (up to cm scale and subparallel to vein contacts). Pyrite appears to be preferrably associated with quartz rather than calcite, locally grading to zoned, $<\mathrm{cm}$ wide pyrite-, quartz vein. Primary textures of hosting diorite are +/- obliterated by K-feldspar bearing, patchy - stringer reminiscent alteration (for example a 3 cm wide, bleached, K-feldspar bearing halo enveloping a pale hairline @ oblique angle to CA) and material bears trace - minor, dissemianted - speckled pyrite. Weak slickensides on fracture plane coincident with LC of white, barren quartz veins @ 70 deg to CA?	J294135	432.10	432.41	0.31	6.910	4.1	
432.33	436.26 DIOR		Diorite - usual - see large text 34.5 to 35.66	$\begin{aligned} & \hline \text { J294070 } \\ & \text { J294071 } \end{aligned}$	$\begin{aligned} & 432.41 \\ & 433.11 \end{aligned}$	$\begin{aligned} & 433.11 \\ & 435.01 \end{aligned}$	$\begin{aligned} & \hline 0.70 \\ & 1.90 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.002 \\ & 0.017 \end{aligned}$	$\begin{aligned} & 0.2 \\ & 0.2 \\ & \hline \end{aligned}$	
436.26	464.00 LAMP		Lamprophyre, reminiscent to previoulsly described, presuambly mafic? intrusions (magnetic, calcareous): Within large portions of this itnerval the dark coloured, indistinct spots (amounting to $>25 \%$) may be $>5 \mathrm{~mm}$, resulting in a relatively (in comparison to previously described lamprophyres) coarse appearing texture. A portion of the dark coloured outlines is concentrically zoned, with palish, $+/-$ calcareous, $+/-$ minor clay mineral bearing? centers. Locally similar?/ same? outlines display a reverse zoning with dark coloured centers and pale, predomiantly non calcareous, very soft, presumably clay mineral bearing halos: Altered mineral grains?, vesicles? Few scattered inclusions of host rock: Xenoliths?, clipping fingering contact? or contact subparallel to CA? Locally slickensides on fracture planes for example at 449.8 m : @ 10 deg to CA; at 454.15 m : subparallel to CA; 455.9 m : @ 35 deg to CA with minor, < mm, pale, highly calcareous gouge. UC: Sharp, distinct, extends from 436.26-438m subparallel to CA, associated with slickensides and < mm, calcareous gouge seam on fracture plane subparallel to CA. LC: Sharp, distinct, @ 75 deg to CA.	J294063	346.15	346.32	0.17	0.032	0.6	
464.00	467.83 DIOR		Diorite - usual - see large text 34.5 to 35.66	J294073	466.45	467.65	1.20	0.029	0.5	
467.83	467.87 QV		Quartz- (white), chlorite-, pyrite vein @ +/- subvertical (slighly wavy) orientation to CA. Green clorite establishes inconsistant, irregualr, $<1 \mathrm{~cm}$ to $<2 \mathrm{~cm}$ wide, coarse angular appearing, band near the center of the vein, subparallel to vein contacts and sandwiched betweeen overlying and underlying, cm scale, white quartz (i.e. prominetly zoned). Vein is enveloped by bleached halo (minor, disseminated - speckled - wispy - hairline pyrite bearing) from 467.77 - 468.03, that bears another two +/- quartz, +/- chlorite, +/- calcite, +/- pyrite bearing veins: < 5 mm and orientated subvertical to 50 deg to CA.	J294072	467.65	467.77	0.12	0.301	0.6	
467.87	470.67 DIOR		Diorite - usual - see large text 34.5 to 35.66	$\begin{aligned} & \hline \text { J294136 } \\ & \text { J294074 } \\ & \text { J294075 } \\ & \text { J294137 } \end{aligned}$	$\begin{aligned} & 467.77 \\ & 468.03 \\ & 468.27 \\ & 470.37 \end{aligned}$	$\begin{aligned} & 468.03 \\ & 468.27 \\ & 468.70 \\ & 470.67 \end{aligned}$	$\begin{aligned} & \hline \hline 0.26 \\ & 0.24 \\ & 0.43 \\ & 0.30 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \hline 3.080 \\ & 0.098 \\ & 0.022 \\ & 0.460 \end{aligned}$	$\begin{aligned} & \hline \hline 1.7 \\ & 0.6 \\ & 0.5 \\ & 1.2 \end{aligned}$	
470.67	471.06 QV		White quartz vein bears minor, wispy chlorite, +/- aligned to vein contacts and minor pyrite:Wisps, grading to small clots are +/- associated with chlorite. UC and LC: Distinct, subvertical to CA. Vein is enveloped by weakly moderately bleached halo (non- to weakly magnetic, minor dissemianted - speckled, + /- euhedral - subhedral pyrite bearing from approx 470.2 - approx 471.5 m	J294138	470.67	471.06	0.39	0.070	0.6	
471.06	472.00 DIOR		Diorite - usual - see large text 34.5 to 35.66	$\begin{aligned} & \hline \text { J294139 } \\ & \text { J294076 } \\ & \text { J294078 } \end{aligned}$	$\begin{aligned} & 471.06 \\ & 471.36 \\ & 471.83 \end{aligned}$	$\begin{aligned} & \hline \hline 471.36 \\ & 471.83 \\ & 472.56 \end{aligned}$	$\begin{aligned} & \hline 0.30 \\ & 0.47 \\ & 0.73 \end{aligned}$	$\begin{aligned} & \hline 7.230 \\ & 1.420 \\ & 0.191 \end{aligned}$	$\begin{aligned} & \hline 1.4 \\ & 2.1 \\ & 1.2 \end{aligned}$	

Lithology					Assays						
From	To Lith	M Lith	Lithology Notes		Sample	From	To	Interval	Au PPM	Ag PPM	Cu \%
472.00	478.00 KALT		Weak K-feldspar alteration detectable: Trace - minor disseminated K-feldspar dissemianted in diorite, pinkish tinted veins indicate minor K-feldspar as constituent of $+/-$ quartz-, $+/$ - calcite veins.								
478.00	481.50 DIOR		Diorite - usual - see large text 34.5 to 35.66								
481.50	486.00 EALT		Weak - locally moderate epidote (+/- K-feldspar) as constituent of patchy, +/- inconsistant veins and dissemianted as constituent of diorite. A portion of the alleged veins display weak relict dioritic texture indicating at least partially patchy - vein reminiscent alteration rather than open fracture filling.								
486.00	490.40 DIOR		Diorite - usual - see	. 5 to 35.66							
490.40	490.60 FLT		Slickensides on fracture plane subparallel to CA.								
490.60	493.33 DIOR		Diorite - usual - see large text 34.5 to 35.66								
493.33	497.50 LAMP		Fine grained, +/- massive, +/- aphanitic, very finely dark spotted (< mm, chlorite altered mafics? as described before), calcareous, moderately magnetic, vesicular/ amygdaloid lamprophyre as described before. UC: Sharp, distinct, along slickenside bearing fracture plane subparallel to CA. LC: Sharp, distinct, along slickenside bearing and shiny polished fracture plane @ 30 deg to CA.								
497.50	499.00 DIOR		Diorite - usual - see large text 34.5 to 35.66								
499.00	504.40 LAMP		Lamprophyre, as described before: Very prominetly amygdaloid near UC over approx 30 cm (displays > 15\%?, < 1.5 cm , pale beige greenish amygdules: Filled with quartz-, epidote? Moderately magnetic, non calcareous (the hosting diorite is still very weakly clacite beraring) UC: Sharp, distinct, weakly irregualr, approx @ 25 deg to CA. Sharp, distinct, @ 35 deg to CA.								
504.40	505.80 DIOR		Diorite - usual - see large text 34.5 to 35.66								
505.80	506.05 LAMP		Clipping lamprophyre: Lamprophyre inclusion indicating nearby lamprophyre. 506.05 is EOH								

To:ANGLO SWISS RESOURCES INC

CERTIFICATE VA10178746

Project: Kenville Mine

P.O. No.:

This report is for 41 Drill Core samples submitted to our lab in Vancouver, BC. Canaca on 30-NOV-2010
The following have access to data associated with this certificate: ANGLO SWISS RESOURCES \qquad LLOVD PENNER

TO: ANCLO SWISS RESOURCES INC.
309-837 W HASTINGS ST.
VANCOUVER BC V6C 3N6

SAMPLE PREPARATION		
ALS CODE	DESCRIPTION	
WEL-21	Received Sample Weight	
LOC-21	Sample logging - ClientBarCode	
CRU-QC	Crushing QC Test	
PUL-QC	Pulverizing QC Test	
CRU- 31	Fine crushing - $70 \%<2 \mathrm{~mm}$	
SPL-21	Split sample-riffle splituer	
Pul. 31		
	Pulp Login - Revd with Barcode	
ANALYTICAL PROCEDURES		
ALS CODE	DESCRIPTION	INSTRUMENT
	Ore Grade Ag Aqua Regia	Variable
ME. OG46	Ore Grade Elements - AquaRegia	1CP. AES
Cu -OC46	Ore Crade Cu - Aqua Regia	VARIABLE
$\mathrm{Pb} \text { - OG46 }$	Ore Grade Pb- Aqua Regia	VARIABLE
Zn -OG46	Ore Grade Zn - Aqua Regia	Vartable
Al-Graz 1	Au 30 g FA-GRAV finish	WST- SIM
ME- 1CP41	35 Element Aqua Regia ICP.AES	ICP-AES

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been cheched and approved for release.

Colin Ramshaw, Vancouver Laboratory Manager

Project: Kenville Mine
minerals

Sample DescriptionMethod Analyte Units LOR	WE-21 Recved wh. 1 g 602	$\begin{gathered} \text { Au-GRA21 } \\ \text { Au } \\ \text { ppm } \\ 0.05 \end{gathered}$	$\begin{gathered} \text { MF. } 10941 \\ \text { Ag } \\ \text { ppm } \\ 0.2 \end{gathered}$	$\begin{gathered} \text { ME ICPA1 } \\ \text { A1 } \\ \text { * } \\ \text { OO1 } \end{gathered}$	$\begin{gathered} \text { AE KCPMI } \\ \text { As } \\ \text { ppm } \\ \frac{2}{2} \end{gathered}$	$\begin{gathered} \text { ME- IC24 } \\ 8 \\ \text { gpmit } \\ 10 \end{gathered}$	$\begin{gathered} \text { ME. }\|C P Q\| \\ \mathrm{Bz} \\ \text { ppon } \\ 10 \end{gathered}$	$\begin{gathered} \text { ME ICP4] } \\ \text { Be } \\ \text { ppm } \\ 0.5 \end{gathered}$	$\begin{gathered} \text { ME CPA1 } \\ 3 \\ \text { ppn } \\ 2 \end{gathered}$	$\begin{gathered} \text { ME ICPA1 } \\ \mathrm{Ca} \\ \mathrm{x} \\ 0.01 \end{gathered}$	$\begin{aligned} & \text { ME. } 15841 \\ & \text { Cd } \\ & \text { pom } \\ & 0.5 \end{aligned}$	$\begin{gathered} \text { ME CP41 } \\ \text { Co } \\ \text { ppm } \\ 1 \end{gathered}$	$\begin{gathered} \text { ME ICTM1 } \\ C r \\ \text { DSm } \\ 1 \end{gathered}$	$\begin{gathered} \text { ME ICP41 } \\ \text { Cu } \\ \text { ppm } \\ 1 \end{gathered}$	$\begin{gathered} \text { ME. ICP4I } \\ \text { Fo } \\ x \\ 801 \end{gathered}$
1294100 J294101 J294102 1294103 J294104	$\begin{aligned} & 0.90 \\ & 0.66 \\ & 0.64 \\ & 1.02 \\ & 0.74 \end{aligned}$	$\begin{aligned} & 026 \\ & 284 \\ & 207 \\ & 077 \\ & 022 \end{aligned}$	$\begin{aligned} & 2.6 \\ & 6.7 \\ & 1.1 \\ & 62 \\ & 0.7 \end{aligned}$	$\begin{aligned} & 1.30 \\ & 0.77 \\ & 1.54 \\ & 1.42 \\ & 1.19 \end{aligned}$	$\begin{aligned} & <2 \\ & 3 \\ & 2 \\ & 4 \\ & 2 \end{aligned}$	$\begin{aligned} & <10 \\ & <10 \\ & <10 \\ & <10 \\ & <10 \end{aligned}$	$\begin{aligned} & 90 \\ & 40 \\ & 30 \\ & 60 \\ & 50 \end{aligned}$	$\begin{gathered} 0.6 \\ <0.5 \\ 0.6 \\ 0.5 \\ 0.5 \end{gathered}$	<2 e <2 <2	$\begin{aligned} & 1.50 \\ & 180 \\ & 350 \\ & 216 \\ & 4.33 \end{aligned}$	$\begin{gathered} 69 \\ 32.6 \\ 152.5 \\ 14 \\ 26 \end{gathered}$	$\begin{aligned} & 13 \\ & 11 \\ & 15 \\ & 120 \\ & 11 \end{aligned}$	$\begin{aligned} & 4 \\ & 3 \\ & 2 \\ & 3 \\ & 2 \end{aligned}$	$\begin{gathered} 823 \\ 2160 \\ 127 \\ 2930 \\ 215 \end{gathered}$	$\begin{aligned} & 2.83 \\ & 3.84 \\ & \$.52 \\ & 5.87 \\ & 8.00 \end{aligned}$
$\begin{aligned} & 1294105 \\ & 1294106 \\ & 1294107 \\ & 1294108 \\ & 1294109 \end{aligned}$	$\begin{aligned} & 1.56 \\ & 0.68 \\ & 2.30 \\ & 0.50 \\ & 0.82 \end{aligned}$	$\begin{gathered} 0.34 \\ 0.25 \\ 00.06 \\ 015 \\ 3.10 \end{gathered}$	$\begin{aligned} & 119 \\ & 27 \\ & 002 \\ & 30 \\ & 257 \end{aligned}$	$\begin{aligned} & \hline 0.59 \\ & 1.43 \\ & 1.80 \\ & 1.38 \\ & 1.38 \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \\ & 3 \\ & 2 \\ & 3 \end{aligned}$	$\begin{aligned} & <10 \\ & <10 \\ & <10 \\ & <10 \\ & <10 \end{aligned}$	$\begin{aligned} & 50 \\ & 60 \\ & 50 \\ & 90 \\ & 50 \end{aligned}$	$\begin{aligned} & 0.5 \\ & 0.5 \\ & <0.5 \\ & 0.5 \\ & 0.5 \end{aligned}$	$\begin{aligned} & <2 \\ & <2 \\ & <2 \\ & <2 \\ & 6 \end{aligned}$	$\begin{aligned} & 2.86 \\ & 204 \\ & 3.27 \\ & 303 \\ & 1.71 \end{aligned}$	$\begin{aligned} & 67 \\ & 09 \\ & 005 \\ & 05 \\ & 12 \end{aligned}$	$\begin{aligned} & 10 \\ & 13 \\ & 13 \\ & 20 \\ & 14 \end{aligned}$	$\begin{aligned} & 3 \\ & 2 \\ & 2 \\ & 3 \\ & 2 \\ & 2 \end{aligned}$	$\begin{gathered} \hline 6690 \\ 1680 \\ 61 \\ 3150 \\ >10000 \end{gathered}$	$\begin{aligned} & 3.28 \\ & 3.11 \\ & 3.27 \\ & 3.52 \\ & 3.84 \end{aligned}$
$\begin{aligned} & 1294110 \\ & 1294111 \\ & 1294112 \\ & 1294113 \\ & 1294114 \end{aligned}$	$\begin{aligned} & 0.74 \\ & 2.56 \\ & 110 \\ & 2.06 \\ & 0.72 \end{aligned}$	$\begin{aligned} & 0.07 \\ & 0.19 \\ & 0.40 \\ & 0.10 \\ & 353 \end{aligned}$	$\begin{aligned} & 04 \\ & 0.3 \\ & 3.9 \\ & 2.5 \\ & 2.8 \end{aligned}$	$\begin{aligned} & 1.06 \\ & 1.62 \\ & 0.88 \\ & 1.29 \\ & 1.69 \end{aligned}$	$\begin{aligned} & \hline 2 \\ & 2 \\ & <2 \\ & 3 \\ & 3 \\ & 3 \end{aligned}$	$\begin{aligned} & \text { c10 } \\ & <10 \\ & =10 \\ & <10 \\ & <10 \end{aligned}$	$\begin{aligned} & 50 \\ & 30 \\ & 120 \\ & 20 \\ & 40 \end{aligned}$	$\begin{gathered} 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \end{gathered}$	$\begin{aligned} & <2 \\ & <2 \\ & <2 \\ & <2 \\ & 4 \end{aligned}$	$\begin{aligned} & 456 \\ & 292 \\ & 414 \\ & 3.33 \\ & 3.99 \end{aligned}$	$\begin{aligned} & 0.6 \\ & 0.5 \\ & 18 \\ & 00.5 \\ & 07 \end{aligned}$	$\begin{aligned} & 11 \\ & 14 \\ & 13 \\ & 14 \\ & 15 \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \\ & 1 \\ & 2 \\ & 3 \end{aligned}$	$\begin{gathered} 302 \\ 568 \\ 1275 \\ 1540 \\ 308 \end{gathered}$	3.05 3.45 3.56 3.57 3.82
$\begin{aligned} & 1294115 \\ & 1294116 \\ & 1294117 \\ & 1294118 \\ & 1294119 \end{aligned}$	$\begin{aligned} & 0.78 \\ & 0.76 \\ & 1.82 \\ & 1.12 \\ & 1.02 \end{aligned}$	$\begin{aligned} & \hline 0.05 \\ & 0.14 \\ & 1.15 \\ & 2005 \\ & 5.81 \end{aligned}$	0.7 <02 0.8 42 121	$\begin{aligned} & 168 \\ & 211 \\ & 0.97 \\ & 2.04 \\ & 0.74 \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \\ & <2 \\ & 2 \\ & 3 \\ & 2 \end{aligned}$	$\begin{aligned} & <10 \\ & <10 \\ & <10 \\ & <10 \\ & <10 \end{aligned}$	$\begin{aligned} & 10 \\ & 50 \\ & 10 \\ & 50 \\ & 30 \end{aligned}$	$\begin{aligned} & 0.5 \\ & 0.5 \\ & 00.5 \\ & <0.5 \\ & 0.5 \end{aligned}$	$\begin{aligned} & <2 \\ & <2 \\ & 2 \\ & 2 \\ & 17 \end{aligned}$	$\begin{aligned} & 440 \\ & 312 \\ & 531 \\ & 309 \\ & 266 \end{aligned}$	$\begin{gathered} <0.5 \\ <0.5 \\ 07 \\ 20.5 \\ 36 \end{gathered}$	$\begin{aligned} & 13 \\ & 16 \\ & 15 \\ & 15 \\ & 11 \end{aligned}$	$\begin{aligned} & 3 \\ & 3 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$	$\begin{aligned} & \hline 666 \\ & 68 \\ & 269 \\ & 22 \\ & 819 \end{aligned}$	$\begin{aligned} & 3.62 \\ & 4.10 \\ & 274 \\ & 3.69 \\ & 2.91 \end{aligned}$
1294120 1294121 1294122 1294123 1294124	$\begin{aligned} & 0.08 \\ & 1.14 \\ & 2.40 \\ & 6.18 \\ & 1.12 \end{aligned}$	$\begin{gathered} 064 \\ 111.5 \\ 47.2 \\ 0.30 \\ 13.60 \end{gathered}$	$\begin{gathered} \hline 24 \\ 58.1 \\ 51.4 \\ 0.7 \\ 11.2 \end{gathered}$	$\begin{aligned} & 1.31 \\ & 1.30 \\ & 1.17 \\ & 1.67 \\ & 1.35 \end{aligned}$	$\begin{aligned} & 64 \\ & 4 \\ & 2 \\ & <2 \\ & 4 \end{aligned}$	$\begin{aligned} & <10 \\ & <10 \\ & <10 \\ & <10 \\ & <10 \end{aligned}$	$\begin{aligned} & 80 \\ & 60 \\ & 40 \\ & 40 \\ & 40 \end{aligned}$	$\begin{gathered} 00.5 \\ 0.5 \\ 0.5 \\ 0.0 \\ 00.5 \end{gathered}$	$\begin{gathered} k 2 \\ 242 \\ 76 \\ 2 \\ 2 \\ 16 \end{gathered}$	$\begin{aligned} & 3.73 \\ & 311 \\ & 2.96 \\ & 5.23 \\ & 3.98 \end{aligned}$	$\begin{aligned} & 18 \\ & 57 \\ & 664 \\ & 11 \\ & 67.5 \end{aligned}$	$\begin{aligned} & 16 \\ & 21 \\ & 13 \\ & 13 \\ & 17 \end{aligned}$	$\begin{aligned} & 24 \\ & 2 \\ & 4 \\ & 2 \\ & 1 \end{aligned}$	$\begin{gathered} 4540 \\ 541 \\ 1.455 \\ 130 \\ 149 \end{gathered}$	$\begin{aligned} & 496 \\ & 607 \\ & 400 \\ & 374 \\ & 4.24 \end{aligned}$
1294125 1294126 1294127 1294128 1294129	$\begin{aligned} & 1.74 \\ & 2.38 \\ & 2.02 \\ & 1.02 \\ & 1.32 \end{aligned}$	$\begin{aligned} & \hline 0.81 \\ & 0.82 \\ & 0.31 \\ & 19.95 \\ & 1.28 \end{aligned}$	$\begin{gathered} 20 \\ 09 \\ 1.8 \\ 28.2 \\ 3.7 \end{gathered}$	$\begin{aligned} & 1.28 \\ & 1.51 \\ & 1.10 \\ & 1.23 \\ & 0.82 \end{aligned}$	$\begin{aligned} & 3 \\ & 3 \\ & <2 \\ & 4 \\ & 4 \\ & <2 \end{aligned}$	$\begin{aligned} & <10 \\ & <10 \\ & k 10 \\ & <10 \\ & <10 \end{aligned}$	$\begin{aligned} & 6 C \\ & 60 \\ & 50 \\ & 6 C \\ & 40 \end{aligned}$	$\begin{aligned} & c 0.5 \\ & 0.6 \\ & 0.6 \\ & 20.5 \\ & <0.5 \end{aligned}$	$\begin{gathered} \times 2 \\ \times 2 \\ 2 \\ 2 \\ 46 \\ 4 \end{gathered}$	$\begin{aligned} & 299 \\ & 387 \\ & 371 \\ & 313 \\ & 275 \end{aligned}$	25 20 08 1870 14	$\begin{gathered} 11 \\ 13 \\ 12 \\ 12 \\ 8 \end{gathered}$	$\begin{aligned} & 5 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 5 \end{aligned}$	$\begin{aligned} & 357 \\ & 276 \\ & 453 \\ & 410 \\ & 1115 \end{aligned}$	$\begin{aligned} & 237 \\ & 289 \\ & 3.30 \\ & 6.07 \\ & 2.06 \end{aligned}$
1294130 1294131 1294132 1294133 1294134	$\begin{aligned} & 1.22 \\ & 2.42 \\ & 0.94 \\ & 1.82 \\ & 1.10 \end{aligned}$	$\begin{aligned} & 579 \\ & 88.1 \\ & 0.07 \\ & 1.36 \\ & 0.55 \end{aligned}$	$\begin{gathered} 54 \\ >100 \\ 3.4 \\ 1.4 \\ 31 \end{gathered}$	$\begin{aligned} & 1.56 \\ & 0.09 \\ & 1.15 \\ & 211 \\ & 1.57 \end{aligned}$	$\begin{aligned} & <2 \\ & 2 \\ & <2 \\ & 3 \\ & 3 \end{aligned}$	$\begin{aligned} & <10 \\ & <10 \\ & <10 \\ & <10 \\ & <10 \end{aligned}$	$\begin{aligned} & 86 \\ & 10 \\ & 100 \\ & 80 \\ & 70 \end{aligned}$	$\begin{gathered} 0.5 \\ 80.5 \\ 0.5 \\ 0.5 \\ 0.5 \end{gathered}$	$\begin{gathered} 8 \\ 238 \\ \times 2 \\ 2 \\ \times 2 \end{gathered}$	$\begin{aligned} & 371 \\ & 011 \\ & 365 \\ & 474 \\ & 3.26 \end{aligned}$	$\begin{aligned} & 42 \\ & 556 \\ & 23 \\ & 37 \\ & 13 \end{aligned}$	$\begin{gathered} 12 \\ 7 \\ 10 \\ 13 \\ 12 \end{gathered}$	$\begin{aligned} & 2 \\ & 9 \\ & 2 \\ & 1 \\ & 41 \end{aligned}$	$\begin{aligned} & 1480 \\ & 8030 \\ & 1545 \\ & 342 \\ & 1565 \end{aligned}$	$\begin{aligned} & 2.37 \\ & 7.52 \\ & 270 \\ & 3.24 \\ & 2.65 \end{aligned}$
1294135 1294136 1294137 1294138 1294139	0.86 0.66 0.82 0.96 0.78	$\begin{aligned} & 6.91 \\ & 3.08 \\ & 0.26 \\ & 0.07 \\ & 7.23 \end{aligned}$	$\begin{aligned} & \hline 41 \\ & 1.7 \\ & 1.2 \\ & 0.6 \\ & 1.4 \end{aligned}$	$\begin{aligned} & 1.41 \\ & 1.20 \\ & 1.51 \\ & 0.16 \\ & 1.36 \end{aligned}$	$\begin{aligned} & 4 \\ & <2 \\ & <2 \\ & <2 \\ & 4 \end{aligned}$	$\begin{aligned} & c 10 \\ & <10 \\ & <10 \\ & <10 \\ & <10 \end{aligned}$	$\begin{aligned} & 70 \\ & 70 \\ & 76 \\ & 10 \\ & 70 \end{aligned}$	$\begin{aligned} & 20.5 \\ & 0.5 \\ & 0.5 \\ & <0.5 \\ & 0.5 \end{aligned}$	$\begin{aligned} & 12 \\ & \times 2 \\ & \times 2 \\ & 2 \\ & 2 \\ & <2 \end{aligned}$	$\begin{aligned} & 3.53 \\ & 4.14 \\ & 458 \\ & 0.32 \\ & 4.56 \end{aligned}$	$\begin{aligned} & 61 \\ & 08 \\ & 10 \\ & 05 \\ & 33 \end{aligned}$	$\begin{gathered} 12 \\ 12 \\ 13 \\ 2 \\ 17 \end{gathered}$	$\begin{aligned} & 2 \\ & 2 \\ & 1 \\ & 8 \\ & 1 \end{aligned}$	$\begin{aligned} & 721 \\ & 372 \\ & 306 \\ & 24 \\ & 286 \end{aligned}$	$\begin{aligned} & 3.35 \\ & 3.96 \\ & 3.15 \\ & 0.79 \\ & 3.11 \end{aligned}$

Sample DescriptionMethod Analybe Units LOR	$\begin{gathered} \mathrm{u}=-\mathrm{CDN} 1 \\ \mathrm{Ca} \\ \mathrm{ppm} \\ 10 \end{gathered}$	$\begin{gathered} \text { ME } \text { CCP41 } \\ \text { Hg } \\ \text { pom } \\ 1 \end{gathered}$	$\begin{gathered} \text { ME. } C P 41 \\ K \\ K \\ 0.01 \end{gathered}$	$\begin{gathered} \text { M5. }\|C P \&\| \\ L 4 \\ \text { ppm } \\ 10 \end{gathered}$	$\begin{gathered} \text { ME } \mathrm{KCP4}) \\ \mathrm{Mg} \\ \mathrm{~K} \\ 0.01 \end{gathered}$	$\begin{aligned} & \text { ME-KCP I } \\ & \text { Mn } \\ & \text { PDM } \\ & 5 \end{aligned}$	$\begin{gathered} \text { ME- KCF41 } \\ \text { Mo } \\ \text { porn } \\ 1 \end{gathered}$	$\begin{gathered} \text { ME KCR41 } \\ \text { Ma } \\ \% \\ 0.01 \end{gathered}$	$\begin{gathered} \text { ME ICP41 } \\ \text { Ni } \\ \text { ppm } \\ 1 \end{gathered}$	$\begin{gathered} \text { NE XCP41 } \\ \mu \\ \text { pem } \\ 15 \end{gathered}$	$\begin{gathered} \text { ME-ICP41 } \\ \text { Pb } \\ \text { Ppmin } \\ 2 \end{gathered}$	$\begin{gathered} \text { ME. CP41 } \\ 5 \\ 5 \\ 0,01 \end{gathered}$	$\begin{gathered} \text { ME-iCP4] } \\ \text { Sb } \\ \text { ppm } \\ 2 \end{gathered}$	$\begin{gathered} \text { ME [CPMI } \\ \text { s } \\ \text { oom } \\ 1 \end{gathered}$	$\begin{gathered} \text { ME: CPal } \\ \text { Se } \\ \text { ppen } \\ 1 \end{gathered}$
$\begin{aligned} & 1294100 \\ & 1294101 \\ & 1294102 \\ & 1294103 \\ & 1294104 \end{aligned}$	$\begin{aligned} & <10 \\ & <10 \\ & <10 \\ & <10 \\ & <10 \end{aligned}$	$\begin{aligned} & c 1 \\ & c 1 \\ & k 1 \\ & k 1 \\ & c 1 \end{aligned}$	$\begin{aligned} & 0.71 \\ & 0.33 \\ & 0.57 \\ & 0.79 \\ & 0.64 \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \\ & 10 \\ & <10 \\ & 10 \end{aligned}$	$\begin{aligned} & 0.75 \\ & 0.53 \\ & 1.07 \\ & 0.84 \\ & 0.95 \end{aligned}$	$\begin{aligned} & 1262 \\ & 1409 \\ & 1805 \\ & 832 \\ & 1855 \\ & 185 \end{aligned}$	$\begin{aligned} & <1 \\ & 4 \\ & c 1 \\ & 15 \end{aligned}$	0.04 0.04 0.04 0.06 0.04	$\begin{aligned} & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & 1630 \\ & 1230 \\ & 1810 \\ & 1540 \\ & 1440 \end{aligned}$	$\begin{gathered} 45 \\ 291 \\ 13 \\ 3 \\ 7 \end{gathered}$	$\begin{aligned} & 0.03 \\ & 1.40 \\ & 1.79 \\ & 3.99 \\ & 0.80 \end{aligned}$	$\begin{aligned} & <2 \\ & <2 \\ & <2 \\ & <2 \\ & <2 \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \\ & 3 \\ & 2 \\ & 3 \end{aligned}$	$\begin{aligned} & 111 \\ & -45 \\ & 446 \\ & 120 \\ & 431 \end{aligned}$
$\begin{aligned} & 1294105 \\ & 1294106 \\ & 1294107 \\ & 1294108 \\ & 1294109 \end{aligned}$	$\begin{aligned} & <10 \\ & <10 \\ & 10 \\ & <10 \\ & <10 \end{aligned}$	$\begin{aligned} & \hline \alpha 1 \\ & c 1 \\ & <1 \\ & <1 \\ & <1 \end{aligned}$	$\begin{aligned} & 0.41 \\ & 0.86 \\ & 1.15 \\ & 0.61 \\ & 0.67 \end{aligned}$	$\begin{aligned} & 10 \\ & <10 \\ & \kappa 10 \\ & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & 0.78 \\ & 0.90 \\ & 107 \\ & 0.56 \\ & 1.0 \end{aligned}$	$\begin{gathered} 1305 \\ 835 \\ 1239 \\ 1005 \\ 903 \end{gathered}$	$\begin{aligned} & 1 \\ & 2 \\ & <1 \\ & <1 \\ & 4 \end{aligned}$	0.04 0.00 0.00 0.07 0.07	$\begin{aligned} & 1 \\ & 2 \\ & 2 \\ & 3 \\ & 2 \end{aligned}$	$\begin{aligned} & 1530 \\ & 1570 \\ & 1750 \\ & 1840 \\ & 1630 \end{aligned}$	$\begin{aligned} & \hline 56 \\ & 3 \\ & 3 \\ & 2 \\ & 3 \\ & 6 \end{aligned}$	$\begin{aligned} & 0.90 \\ & 0.21 \\ & 20.01 \\ & 0.43 \\ & 0.79 \end{aligned}$	$\begin{aligned} & <2 \\ & <2 \\ & <2 \\ & <2 \\ & <2 \end{aligned}$	$\begin{aligned} & 2 \\ & 3 \\ & 2 \\ & 3 \\ & 2 \end{aligned}$	$\begin{aligned} & 320 \\ & 164 \\ & 144 \\ & 163 \\ & 106 \end{aligned}$
$\begin{aligned} & 1294110 \\ & 1294111 \\ & 1294112 \\ & 1294113 \\ & 1294114 \end{aligned}$	$\begin{gathered} <10 \\ 10 \\ <10 \\ 10 \\ <10 \\ \hline \end{gathered}$	$\begin{aligned} & k 1 \\ & k 1 \\ & k 1 \\ & -1 \\ & -1 \end{aligned}$	$\begin{aligned} & 0 . \overline{66} \\ & 0.86 \\ & 0.61 \\ & 0.62 \\ & 1.08 \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \\ & 10 \\ & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & 0.90 \\ & 107 \\ & 0.78 \\ & 1.03 \\ & 166 \end{aligned}$	$\begin{aligned} & 1695 \\ & 1195 \\ & 1620 \\ & 1310 \\ & 1355 \end{aligned}$	$\begin{aligned} & \text { s } \\ & <1 \\ & 10 \\ & \$ 1 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.07 \\ & 0.07 \\ & 0.03 \\ & 0.04 \\ & 0.06 \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \\ & 1 \\ & 2 \\ & 3 \\ & 3 \end{aligned}$	$\begin{aligned} & 1630 \\ & 1750 \\ & 1720 \\ & 1630 \\ & 1540 \end{aligned}$	$\begin{gathered} 3 \\ <2 \\ 4 \\ 42 \\ 11 \end{gathered}$	$\begin{aligned} & 0.51 \\ & 0.07 \\ & 1.20 \\ & 0.14 \\ & 1.01 \end{aligned}$	$\begin{aligned} & <2 \\ & <2 \\ & <2 \\ & <2 \\ & <2 \end{aligned}$	$\begin{aligned} & 3 \\ & 4 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$	$\begin{aligned} & 407 \\ & 187 \\ & 335 \\ & 189 \\ & 296 \end{aligned}$
$\begin{aligned} & 1294115 \\ & 1294116 \\ & 1294117 \\ & 1294118 \\ & 1294119 \end{aligned}$	$\begin{gathered} 10 \\ 10 \\ <10 \\ 10 \\ <10 \end{gathered}$	$\begin{aligned} & <1 \\ & <1 \\ & <1 \\ & k 1 \\ & <1 \end{aligned}$	$\begin{aligned} & 0.44 \\ & 1.15 \\ & 0.30 \\ & 1.48 \\ & 0.47 \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \\ & <10 \\ & <10 \\ & <10 \end{aligned}$	$\begin{aligned} & 1.17 \\ & 1.43 \\ & 0.91 \\ & 1.47 \\ & 0.76 \end{aligned}$	$\begin{aligned} & 1603 \\ & 1225 \\ & 2281 \\ & 1510 \\ & 1051 \\ & 1051 \end{aligned}$	$\begin{aligned} & \kappa 1 \\ & <1 \\ & 4 \\ & <1 \\ & <1 \end{aligned}$	$\begin{aligned} & 0.07 \\ & 0.10 \\ & 0.03 \\ & 0.09 \\ & 0.04 \end{aligned}$	$\begin{aligned} & 3 \\ & 4 \\ & 1 \\ & 4 \\ & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & 1620 \\ & 1840 \\ & 1390 \\ & 1630 \\ & 1180 \end{aligned}$	$\begin{gathered} 3 \\ <2 \\ 8 \\ 2 \\ 2 \\ 1250 \end{gathered}$	$\begin{aligned} & 0.06 \\ & 0.03 \\ & 1.24 \\ & <0.01 \\ & 1.11 \end{aligned}$	$\begin{aligned} & <2 \\ & <2 \\ & <2 \\ & <2 \\ & <2 \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \\ & 3 \\ & 3 \\ & 3 \\ & 2 \end{aligned}$	$\begin{aligned} & 377 \\ & 232 \\ & 621 \\ & 121 \\ & 271 \end{aligned}$
$\begin{aligned} & 1294120 \\ & 1294121 \\ & 1294122 \\ & 1294123 \\ & 1294124 \end{aligned}$	$\begin{aligned} & c \neq 0 \\ & <10 \\ & <10 \\ & 10 \\ & <10 \end{aligned}$	$\begin{aligned} & k 1 \\ & \& 1 \\ & k 1 \\ & k 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 0.23 \\ & 0.58 \\ & 0.60 \\ & 0.68 \\ & 0.31 \end{aligned}$	$\begin{aligned} & 10 \\ & <10 \\ & <10 \\ & <10 \\ & 10 \end{aligned}$	$\begin{aligned} & 119 \\ & 0.74 \\ & 0.70 \\ & 1.26 \\ & 1.05 \end{aligned}$	$\begin{gathered} 718 \\ 1585 \\ 1060 \\ 1785 \\ 17245 \end{gathered}$	$\begin{gathered} \hline 35 \\ 2 \\ -1 \\ 3 \\ 17 \end{gathered}$	$\begin{aligned} & 0.08 \\ & 0.02 \\ & 0.05 \\ & 0.08 \\ & 0.09 \end{aligned}$	$\begin{gathered} 18 \\ 1 \\ 1 \\ 1 \\ 5 \\ 1 \end{gathered}$	$\begin{aligned} & 1130 \\ & 1530 \\ & 1450 \\ & 1550 \\ & 1540 \end{aligned}$	$\begin{gathered} 27 \\ 507 \\ 681 \\ 8 \\ 196 \end{gathered}$	$\begin{aligned} & \hline 211 \\ & 6.5 \\ & 330 \\ & 0.06 \\ & 1.68 \end{aligned}$	$\begin{gathered} 7 \\ <2 \\ <2 \\ <2 \\ <2 \\ <2 \end{gathered}$	$\begin{aligned} & 8 \\ & 2 \\ & 2 \\ & 6 \\ & 6 \end{aligned}$	$\begin{aligned} & 141 \\ & 328 \\ & 322 \\ & 314 \\ & 337 \end{aligned}$
1294125 1294126 1294127 1294128 1294129	$\begin{aligned} & <10 \\ & <10 \\ & <10 \\ & <10 \\ & <10 \end{aligned}$	$\begin{aligned} & c 1 \\ & c 1 \\ & 1 \\ & 1 \\ & 1 \\ & <1 \end{aligned}$	$\begin{aligned} & 0.82 \\ & 0.83 \\ & 0.66 \\ & 0.76 \\ & 0.42 \end{aligned}$	$\begin{aligned} & \text { स10 } \\ & 10 \\ & 10 \\ & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & 0.68 \\ & 0.50 \\ & 0.58 \\ & 0.80 \\ & 0.54 \end{aligned}$	$\begin{aligned} & 1260 \\ & 1630 \\ & 1420 \\ & 14150 \\ & 106 \end{aligned}$	$\begin{gathered} \hline 23 \\ 2 \\ <1 \\ 2 \\ <1 \end{gathered}$	0.06 0.03 0.06 0.06 0.05	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 2 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1160 \\ & 1610 \\ & 1680 \\ & 1350 \\ & 1000 \end{aligned}$	$\begin{gathered} 10 \\ 13 \\ 7 \\ 33 \\ 10 \end{gathered}$	$\begin{aligned} & 0.89 \\ & 1.30 \\ & 0.51 \\ & 4.68 \\ & 0.62 \end{aligned}$	$\begin{aligned} & <2 \\ & <2 \\ & <2 \\ & 2 \\ & 2 \\ & <2 \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \\ & 3 \\ & 3 \\ & 1 \end{aligned}$	$\begin{aligned} & 222 \\ & 333 \\ & 439 \\ & 499 \\ & 234 \end{aligned}$
$\begin{aligned} & 1294130 \\ & 1294131 \\ & 1294132 \\ & 1294133 \\ & 1294134 \end{aligned}$	$\begin{aligned} & <10 \\ & <10 \\ & <10 \\ & <10 \\ & <10 \end{aligned}$	$\begin{aligned} & \text { ब1 } \\ & \text {-1 } \\ & \text { \&1 } \\ & \text { \&1 } \end{aligned}$	$\begin{aligned} & 0.77 \\ & 0.05 \\ & 0.69 \\ & 1.27 \\ & 0.67 \end{aligned}$	$\begin{aligned} & 10 \\ & =10 \\ & 10 \\ & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & 0.68 \\ & 0.03 \\ & 0.74 \\ & 0.99 \\ & 0.86 \end{aligned}$	$\begin{gathered} 1670 \\ 107 \\ 1198 \\ 1710 \\ 1310 \end{gathered}$	$\begin{gathered} 3 \\ 4 \\ 19 \\ <1 \\ 32 \end{gathered}$	$\begin{aligned} & 0.02 \\ & 0.00 \\ & 0.06 \\ & 0.09 \\ & 0.04 \end{aligned}$	$\begin{gathered} \text { स1 } \\ <1 \\ 1 \\ 1 \\ <1 \end{gathered}$	$\begin{gathered} 1670 \\ 30 \\ 1520 \\ 1700 \\ 1650 \end{gathered}$	$\begin{gathered} 31 \\ >10000 \\ 42 \\ 108 \\ 18 \end{gathered}$	$\begin{aligned} & 205 \\ & 89 \\ & 0.69 \\ & 100 \\ & 078 \end{aligned}$	$\begin{aligned} & <2 \\ & <2 \\ & <2 \\ & <2 \\ & <2 \end{aligned}$	$\begin{gathered} 1 \\ <1 \\ 2 \\ 2 \\ 3 \\ 2 \end{gathered}$	$\begin{aligned} & 369 \\ & 11 \\ & 956 \\ & 382 \\ & 365 \end{aligned}$
1294135 1294136 1294137 1294138 1294139	$\begin{aligned} & <10 \\ & <10 \\ & <10 \\ & <10 \\ & <10 \end{aligned}$	$\begin{aligned} & <1 \\ & <1 \\ & <1 \\ & <1 \\ & <1 \end{aligned}$	$\begin{aligned} & 0.90 \\ & 0.59 \\ & 0.63 \\ & 0.08 \\ & 0.75 \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \\ & 10 \\ & <10 \\ & 10 \end{aligned}$	$\begin{aligned} & 0.74 \\ & 1.37 \\ & 0.83 \\ & 0.06 \\ & 0.81 \end{aligned}$	$\begin{aligned} & 1125 \\ & 1815 \\ & 1775 \\ & 166 \\ & 1830 \end{aligned}$	$\begin{gathered} 32 \\ 3 \\ 2 \\ 18 \\ 2 \end{gathered}$	0.06 0.04 0.04 0.04 0.04	$\begin{gathered} \hline 1 \\ 1 \\ 1 \\ c \mid \\ 1 \end{gathered}$	$\begin{gathered} 1270 \\ 1480 \\ 1780 \\ 100 \\ 1770 \end{gathered}$	$\begin{gathered} 24 \\ 8 \\ 8 \\ 8 \\ 6 \\ 14 \end{gathered}$	$\begin{aligned} & 1.26 \\ & 1.58 \\ & 1.04 \\ & 0.30 \\ & 2.23 \end{aligned}$	$\begin{aligned} & 42 \\ & <2 \\ & <2 \\ & <2 \\ & <2 \end{aligned}$	$\begin{gathered} 3 \\ 2 \\ 2 \\ 41 \\ 2 \end{gathered}$	$\begin{aligned} & 268 \\ & 372 \\ & 435 \\ & 27 \\ & 601 \end{aligned}$

Sample DescriptionMethod Analyte Units LOR	$\begin{gathered} \text { ME. CCP4 } \\ \text { Th } \\ \text { ppm } \\ 20 \end{gathered}$	$\begin{gathered} \text { ME [CP41 } \\ n \\ 5 \\ 0.01 \end{gathered}$	$\begin{gathered} \text { ME }-C^{2} \neq \mid \\ \pi \\ \mathrm{ppm} \\ 10 \end{gathered}$	$\begin{gathered} \text { Me. } \mathrm{cco41} \\ u \\ \text { pom } \\ 10 \end{gathered}$	ME ICP4I \checkmark ppm 1	$\begin{gathered} \text { Mf. cad } \\ W \\ \text { Wom } \\ 10 \end{gathered}$	$\begin{gathered} \text { ME. ICAU } \\ 2 n \\ \text { pkn } \\ 2 \end{gathered}$	$\begin{gathered} \text { Ag-OC45 } \\ \text { Ag } \\ \text { ppm } \\ 1 \end{gathered}$	$\begin{gathered} \mathrm{Cu}_{4}-\mathrm{CO} 46 \\ \mathrm{Cu}_{0} \\ x \\ 0.001 \end{gathered}$	$\begin{gathered} \text { Pb. OC46 } \\ \text { Ps } \\ \mathbf{N} \\ 0.001 \end{gathered}$	$\begin{gathered} \mathrm{Zn}-\mathrm{OC} 46 \\ \mathrm{Zn} \\ \mathrm{x} \\ 0.001 \end{gathered}$
1294100 1294101 1294102 1294103 1294104	$\begin{aligned} & <20 \\ & <20 \\ & <20 \\ & <20 \\ & <20 \end{aligned}$	$\begin{aligned} & 0.04 \\ & 0.01 \\ & 0.07 \\ & 0.10 \\ & 0.04 \end{aligned}$	$\begin{aligned} & <10 \\ & <10 \\ & <10 \\ & <10 \\ & <10 \end{aligned}$	$\begin{aligned} & <10 \\ & <10 \\ & <10 \\ & <10 \\ & <10 \end{aligned}$	$\begin{aligned} & 54 \\ & 31 \\ & 50 \\ & 78 \\ & 40 \end{aligned}$	$\begin{aligned} & 10 \\ & <10 \\ & <10 \\ & 10 \\ & <10 \end{aligned}$	$\begin{gathered} 194 \\ 767 \\ 3360 \\ 61 \\ 82 \end{gathered}$				
$\begin{aligned} & 1294105 \\ & 1294106 \\ & 1294107 \\ & 1294108 \\ & 1294109 \end{aligned}$	$\begin{aligned} & <20 \\ & <20 \\ & <20 \\ & <20 \\ & <20 \end{aligned}$	$\begin{aligned} & 0.01 \\ & 010 \\ & 0.20 \\ & 0.02 \\ & 0.07 \end{aligned}$	$\begin{aligned} & <10 \\ & <10 \\ & <10 \\ & <10 \\ & <10 \end{aligned}$	$\begin{aligned} & k 10 \\ & k 10 \\ & <10 \\ & <10 \\ & <10 \end{aligned}$	$\begin{gathered} 31 \\ 95 \\ 115 \\ 67 \\ 103 \end{gathered}$	$\begin{aligned} & <10 \\ & <10 \\ & <10 \\ & <10 \\ & <10 \end{aligned}$	$\begin{aligned} & 88 \\ & 63 \\ & 44 \\ & 52 \\ & 62 \end{aligned}$		1.770		
$\begin{aligned} & 1294110 \\ & 1294111 \\ & 1294112 \\ & 1294713 \\ & 1294114 \end{aligned}$	$\begin{aligned} & <20 \\ & <20 \\ & <20 \\ & <20 \\ & <20 \end{aligned}$	$\begin{aligned} & 0.02 \\ & 0.09 \\ & 0.07 \\ & 0.09 \\ & 0.12 \end{aligned}$	$\begin{aligned} & <10 \\ & <10 \\ & <10 \\ & <10 \\ & <10 \end{aligned}$	$\begin{aligned} & <10 \\ & <10 \\ & 10 \\ & <10 \\ & * 10 \end{aligned}$	$\begin{gathered} 32 \\ 117 \\ 36 \\ 122 \\ 30 \end{gathered}$	$\begin{aligned} & <10 \\ & <10 \\ & <10 \\ & <10 \\ & 10 \end{aligned}$	$\begin{gathered} \hline 43 \\ 65 \\ 47 \\ 65 \\ 166 \end{gathered}$				
$\begin{aligned} & 1294115 \\ & 1294116 \\ & 1294117 \\ & 1294118 \\ & 1294119 \end{aligned}$	$\begin{aligned} & <20 \\ & <20 \\ & <20 \\ & <20 \\ & <20 \end{aligned}$	$\begin{aligned} & 003 \\ & 015 \\ & 001 \\ & 027 \\ & 001 \end{aligned}$	$\begin{aligned} & <10 \\ & <10 \\ & <10 \\ & <10 \\ & <10 \end{aligned}$	$\begin{aligned} & <10 \\ & <10 \\ & <10 \\ & <10 \\ & <10 \end{aligned}$	$\begin{aligned} & \hline 114 \\ & 168 \\ & 37 \\ & 157 \\ & 36 \end{aligned}$	$\begin{aligned} & \text { < } 81 \\ & 10 \\ & 10 \\ & <10 \\ & <10 \end{aligned}$	$\begin{aligned} & 60 \\ & 79 \\ & 38 \\ & 72 \\ & 47 \end{aligned}$				
1294120 1294121 1294122 1294123 1294124	$\begin{aligned} & <20 \\ & <20 \\ & <20 \\ & <20 \\ & <20 \end{aligned}$	$\begin{aligned} & 0.01 \\ & 0.01 \\ & 0.04 \\ & 0.15 \\ & 0.15 \end{aligned}$	$\begin{aligned} & \ll 10 \\ & <10 \\ & <10 \\ & <10 \\ & <10 \end{aligned}$	$\begin{aligned} & \text { <10 } \\ & <10 \\ & <10 \\ & <10 \\ & <10 \end{aligned}$	$\begin{aligned} & \hline 84 \\ & 31 \\ & 51 \\ & 147 \\ & 123 \end{aligned}$	$\begin{aligned} & <10 \\ & <10 \\ & <10 \\ & <10 \\ & <10 \end{aligned}$	$\begin{gathered} 168 \\ 54 \\ >10 c 00 \\ 96 \\ 1180 \\ \hline \end{gathered}$				1.578
1294125 1294126 1294127 1294128 1294129	$\begin{aligned} & <20 \\ & <20 \\ & <20 \\ & <20 \\ & <20 \end{aligned}$	$\begin{aligned} & 0.07 \\ & 0.05 \\ & 0.03 \\ & 0.06 \\ & 0.01 \end{aligned}$	$\begin{aligned} & \text { c } 10 \\ & \times 10 \\ & <10 \\ & <10 \\ & <10 \end{aligned}$	$\begin{aligned} & <10 \\ & <10 \\ & <10 \\ & <10 \\ & <10 \end{aligned}$	$\begin{aligned} & 52 \\ & 44 \\ & 56 \\ & 73 \\ & 26 \\ & \hline \end{aligned}$	$\begin{aligned} & c 10 \\ & 20 \\ & <>0 \\ & <10 \\ & \text { c } 10 \\ & \hline \end{aligned}$	$\begin{gathered} 102 \\ 78 \\ 61 \\ 3820 \\ 51 \\ \hline \end{gathered}$				
1294130 1294131 1294132 1294133 1294134	$\begin{aligned} & <20 \\ & <20 \\ & <20 \\ & <20 \\ & <20 \end{aligned}$	$\begin{aligned} & 0.01 \\ & 6001 \\ & 0.05 \\ & 0.10 \\ & 0.02 \end{aligned}$	$\begin{aligned} & \text { र0 } \\ & =10 \\ & <10 \\ & <10 \\ & <10 \end{aligned}$	$\begin{aligned} & =10 \\ & k 10 \\ & <10 \\ & <10 \\ & <10 \end{aligned}$	$\begin{aligned} & 28 \\ & 3 \\ & 50 \\ & 90 \\ & 42 \end{aligned}$	$\begin{aligned} & 610 \\ & 10 \\ & 320 \\ & 10 \\ & 20 \\ & \hline \end{aligned}$	$\begin{gathered} 120 \\ 3350 \\ 65 \\ 103 \\ 65 \\ \hline \end{gathered}$	132		1.695	
1294135 1294136 1294137 1294138 1294139	$\begin{aligned} & <20 \\ & <20 \\ & <20 \\ & <20 \\ & <20 \end{aligned}$	$\begin{aligned} & 0.11 \\ & 0.01 \\ & 0.01 \\ & 0.01 \\ & 0.01 \end{aligned}$	$\begin{aligned} & \text { स } 10 \\ & \leqslant 10 \\ & \leqslant 10 \\ & \times 10 \\ & \leqslant 10 \end{aligned}$	$\begin{aligned} & <10 \\ & <10 \\ & <10 \\ & <10 \\ & <10 \end{aligned}$	$\begin{aligned} & 77 \\ & 46 \\ & 51 \\ & 4 \\ & 40 \end{aligned}$	$\begin{aligned} & <10 \\ & <10 \\ & <10 \\ & <10 \\ & <90 \end{aligned}$	$\begin{aligned} & \hline 132 \\ & 98 \\ & 801 \\ & 11 \\ & 62 \end{aligned}$				

TO: ANGLO SWISS RESOURCES INC.
309-837 W HASTINCS ST
VANCOUVER BC V6C 3N6

Page: 3 - A
Total \#Pages: 3 (A - C) Finalized Date: 6-DEC- 2010 Account: ANSWRE

Project: Kenville Mine
CERTIFICATE OF ANALYSIS VA10178746

A15 Canada lid.
TO:ANGLO SWISS RESOURCES INC. 309-837 W HASTINCS ST

Page: 3 - C
2103 Dellarton Hwy
North Vancouver BC V7H 0A7
Phone: 6049840221 Fax: 6049840218 www alsglobal.com

Project: Kenville Mine
CERTIFICATE OF ANALYSIS VA10178746

CERTIFICATE VA10183856

Project: Kenville Mine
P.O. No.:

This report is for 37 Drill Core samples submitted to our lab in Vancouver BC,
Canada on 7- DEC- 2010.
The following have access to data associated with this certificate: ANGLO SWISS RESOURCES

LLOYD PENNER

SAMPLE PREPARATION		
ALS CODE	DESCRIPTION	
WEl-21	Received Sample Weight	
LOG-21	Sample logging- ClientBarCode	
CRU- QC	Crushing QC Test	
PUL-QC	Pulverizing QC Test	
CRU- 31	Fine crushing - $70 \%<2 \mathrm{~mm}$	
SPL-21	Split sample - riffle splitter	
PUL-31	Pulverize split to $85 \%<75 \mathrm{um}$	
LOG- 23	Pulp Login - Revd with Barcode	
ANALYTICAL PROCEDURES		
ALS CODE	DESCRIPTION	INSTRUMENT
ME- OG46	Ore Grade Elements - AquaRegia	ICP-AES
Cu- OG46	Ore Grade Cu - Aqua Regia	VARIABLE
Au- GRA21	Au 30 g FA- GRAV finish	WST- SIM
ME- ICP41	35 Element Aqua Regia ICP-AES	ICP-AES

SAMPLE PREPARATION		
ALS CODE	DESCRIPTION	
WEl-21	Received Sample Weight	
LOG-21	Sample logging. ClientBarCode	
CRU- QC	Crushing QC Test	
PUL-QC	Pulverizing QC Test	
CRU- 31	Fine crushing - $70 \%<2 \mathrm{~mm}$	
SPL-21	Split sample - riffle splitter	
PUL-31	Pulverize split to $85 \%<75$ um	
LOG- 23	Pulp Login - Revd with Barcode	
ANALYTICAL PROCEDURES		
ALS CODE	DESCRIPTION	INSTRUMENT
ME- OG46	Ore Grade Elements - AquaRegia	ICP-AES
Cu- OG46	Ore Grade Cu - Aqua Regia	VARIABLE
Au- GRA21	Au 30 g FA- GRAV finish	WST- SIM
ME- ICP41	35 Element Aqua Regia ICP-AES	ICP-AES

SAMPLE PREPARATION

ANALYTICAL PROCEDURES

To: ANGLO SWISS RESOURCES INC.
309-837 W HASTINGS ST
VANCOUVER BC V6C 3N6

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

Signature:
Colin Ramshaw, Vancouver Laboratory Manager

Als Canada Ltd.

CERTIFICATE OF ANALYSIS VA10183856

Sample Description	Method Analyte Units LOR	$\begin{gathered} M E=1 C P C 1 \\ C a \\ \text { Ppm } \\ 10 \end{gathered}$	$\begin{gathered} \text { ME- } \mathrm{ICP4} 4 \\ \mathrm{Hg} \\ \mathrm{ppm} \\ 1 \end{gathered}$	$\begin{gathered} \text { ME-ICP41 } \\ K \\ \% \\ 0.01 \end{gathered}$	$\begin{gathered} \text { ME. ICP4 } \\ \text { La } \\ \text { ppm } \\ 10 \end{gathered}$	$\begin{gathered} \text { ME- ICP41 } \\ \mathrm{Mg} \\ \% \\ 0.01 \end{gathered}$	$\begin{gathered} \text { ME. ICP41 } \\ \text { Mn } \\ \text { ppm } \\ 5 \end{gathered}$	$\begin{gathered} \text { ME. ICP41 } \\ \text { Mo } \\ \text { pprn } \\ 1 \\ \hline \end{gathered}$	$\begin{gathered} \text { ME-ICP41 } \\ \mathrm{Na} \\ \% \\ 0.01 \\ \hline \end{gathered}$	$\begin{gathered} \text { ME } \operatorname{CPP41} \\ \mathrm{Ni} \\ \mathrm{ppm} \\ 1 \\ \hline \end{gathered}$	$\begin{gathered} \text { ME. } 1 C P 41 \\ p \\ \text { PFm } \\ 10 \end{gathered}$	$\begin{gathered} \text { ME- ICP41 } \\ \text { Fb } \\ \text { ppm } \\ 2 \end{gathered}$	$\begin{gathered} \text { ME- } \text { CP41 } \\ 5 \\ \% \\ 0.01 \end{gathered}$	$\begin{gathered} \text { ME- }[C P 4 \mid \\ 5 b \\ \text { ppm } \\ 2 \end{gathered}$	$\begin{gathered} \text { ME- } \mathbf{I C P 4 \}} \\ \text { Sc } \\ \text { ppm } \\ 1 \end{gathered}$	$\begin{gathered} \text { ME. } \operatorname{ICP41} \\ \mathrm{Sr} \\ \text { ppmt } \\ 1 \end{gathered}$
$\begin{aligned} & J 294141 \\ & \mathrm{~J} 294142 \\ & \mathrm{~J} 294143 \\ & \mathrm{~J} 294144 \\ & \mathrm{~J} 294145 \end{aligned}$		$\begin{aligned} & <10 \\ & <10 \\ & <10 \\ & 10 \\ & <10 \end{aligned}$	$\begin{aligned} & <1 \\ & <1 \\ & <1 \\ & <1 \\ & <1 \end{aligned}$	$\begin{aligned} & 0.77 \\ & 1.00 \\ & 0.90 \\ & 0.90 \\ & 0.99 \end{aligned}$	$\begin{aligned} & 10 \\ & <10 \\ & 10 \\ & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & 0.89 \\ & 0.87 \\ & 0.94 \\ & 1.03 \\ & 1.24 \end{aligned}$	$\begin{aligned} & 1370 \\ & 908 \\ & 862 \\ & 880 \\ & 1435 \end{aligned}$	$\begin{aligned} & <1 \\ & 2 \\ & 31 \\ & <1 \\ & <1 \end{aligned}$	$\begin{aligned} & 0.05 \\ & 0.05 \\ & 0.05 \\ & 0.05 \\ & 0.04 \end{aligned}$	$\begin{gathered} 1 \\ <1 \\ 2 \\ 1 \\ 1 \\ 1 \end{gathered}$	$\begin{aligned} & 1820 \\ & 1740 \\ & 1550 \\ & 1610 \\ & 2050 \end{aligned}$	$\begin{aligned} & 7 \\ & 5 \\ & 5 \\ & 5 \\ & 4 \end{aligned}$	$\begin{aligned} & 0.01 \\ & 0.03 \\ & 0.11 \\ & 0.11 \\ & 0.01 \end{aligned}$	$\begin{aligned} & <2 \\ & <2 \\ & <2 \\ & <2 \\ & <2 \end{aligned}$	$\begin{aligned} & 3 \\ & 2 \\ & 3 \\ & 3 \\ & 3 \end{aligned}$	$\begin{gathered} 125 \\ 86 \\ 118 \\ 76 \\ 125 \end{gathered}$
$J 294146$ $J 294147$ $J 294148$ $J 294149$ $J 294150$		$\begin{aligned} & <10 \\ & <10 \\ & <10 \\ & <10 \\ & 10 \end{aligned}$	$\begin{aligned} & <1 \\ & <1 \\ & <1 \\ & <1 \\ & <1 \end{aligned}$	$\begin{aligned} & 0.19 \\ & 0.43 \\ & 0.32 \\ & 0.35 \\ & 1.02 \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \\ & 10 \\ & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & 0.06 \\ & 0.81 \\ & 0.48 \\ & 0.72 \\ & 1.21 \end{aligned}$	$\begin{aligned} & \hline 752 \\ & 1660 \\ & 1305 \\ & 1610 \\ & 1105 \end{aligned}$	$\begin{gathered} 2 \\ 1 \\ 1 \\ 1 \\ 1 \\ 19 \end{gathered}$	$\begin{aligned} & 0.01 \\ & 0.03 \\ & 0.02 \\ & 0.02 \\ & 0.05 \end{aligned}$	$\begin{aligned} & <1 \\ & <1 \\ & <1 \\ & <1 \\ & 6 \end{aligned}$	$\begin{aligned} & 1470 \\ & 1900 \\ & 1940 \\ & 1560 \\ & 1810 \end{aligned}$	$\begin{gathered} \hline 8 \\ 7 \\ 9 \\ 15 \\ 6 \end{gathered}$	$\begin{aligned} & \hline 0.01 \\ & 0.54 \\ & 0.53 \\ & 1.31 \\ & 0.33 \end{aligned}$	$\begin{aligned} & <2 \\ & <2 \\ & <2 \\ & <2 \\ & <2 \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \\ & 1 \\ & 2 \\ & 3 \end{aligned}$	$\begin{gathered} 33 \\ 266 \\ 176 \\ 265 \\ 111 \end{gathered}$
$\begin{aligned} & \mathrm{J} 294151 \\ & \mathrm{~J} 294152 \\ & \mathrm{~J} 294153 \\ & \mathrm{~J} 294154 \\ & \mathrm{~J} 294155 \end{aligned}$		$\begin{aligned} & <10 \\ & <10 \\ & <10 \\ & <10 \\ & 10 \end{aligned}$	$\begin{aligned} & c 1 \\ & 1 \\ & <1 \\ & <1 \\ & <1 \end{aligned}$	$\begin{aligned} & 0.71 \\ & 0.62 \\ & 0.30 \\ & 0.82 \\ & 0.84 \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \\ & 10 \\ & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & 0.81 \\ & 0.87 \\ & 0.75 \\ & 0.85 \\ & 0.98 \end{aligned}$	$\begin{aligned} & 2330 \\ & 1110 \\ & 1570 \\ & 1120 \\ & 1065 \end{aligned}$	$\begin{aligned} & 1 \\ & <1 \\ & <1 \\ & <1 \\ & <1 \end{aligned}$	$\begin{aligned} & 0.04 \\ & 0.04 \\ & 0.02 \\ & 0.07 \\ & 0.07 \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \\ & 1 \\ & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & 1540 \\ & 1530 \\ & 1430 \\ & 1630 \\ & 1730 \end{aligned}$	$\begin{gathered} \hline 3 \\ 3 \\ 16 \\ 3 \\ 3 \end{gathered}$	$\begin{aligned} & \hline 0.07 \\ & <C .01 \\ & 0.89 \\ & 0.32 \\ & 0.01 \end{aligned}$	$\begin{aligned} & <2 \\ & <2 \\ & <2 \\ & <2 \\ & <2 \end{aligned}$	$\begin{aligned} & 3 \\ & 2 \\ & 1 \\ & 3 \\ & 2 \end{aligned}$	$\begin{aligned} & 331 \\ & 120 \\ & 365 \\ & 135 \\ & 117 \end{aligned}$
$\begin{aligned} & 1294156 \\ & J 294157 \\ & J 294158 \\ & 1294159 \\ & 1294160 \end{aligned}$		$\begin{aligned} & <10 \\ & <10 \\ & <10 \\ & 10 \\ & <10 \end{aligned}$	$\begin{aligned} & <1 \\ & <1 \\ & <1 \\ & <1 \\ & 1 \end{aligned}$	$\begin{aligned} & 0.27 \\ & 0.78 \\ & 0.50 \\ & 0.64 \\ & 0.72 \end{aligned}$	$\begin{aligned} & <10 \\ & 10 \\ & 10 \\ & <10 \\ & <10 \end{aligned}$	$\begin{aligned} & \hline 0.87 \\ & 1.01 \\ & 0.93 \\ & 0.81 \\ & 0.81 \end{aligned}$	$\begin{aligned} & 1550 \\ & 1785 \\ & 1985 \\ & 1185 \\ & 856 \end{aligned}$	$\begin{gathered} c 1 \\ 1 \\ 1 \\ 33 \\ 14 \end{gathered}$	$\begin{aligned} & \hline 0.08 \\ & 0.05 \\ & 0.04 \\ & 0.05 \\ & 0.09 \end{aligned}$	$\begin{gathered} 1 \\ 2 \\ 1 \\ 11 \\ 2 \end{gathered}$	$\begin{aligned} & 1540 \\ & 1650 \\ & 1650 \\ & 1160 \\ & 1670 \end{aligned}$	$\begin{gathered} 7 \\ 7 \\ 11 \\ 5 \\ 3 \end{gathered}$	$\begin{gathered} \hline 1.06 \\ 0.93 \\ 1.18 \\ 8.1 \\ 1.57 \end{gathered}$	$\begin{aligned} & <2 \\ & <2 \\ & <2 \\ & <2 \\ & <2 \end{aligned}$	$\begin{aligned} & 3 \\ & 3 \\ & 2 \\ & 4 \\ & 4 \end{aligned}$	$\begin{aligned} & 389 \\ & 498 \\ & 449 \\ & 172 \\ & 94 \end{aligned}$
$\begin{aligned} & J 294161 \\ & J 294162 \\ & 1294163 \\ & J 294164 \\ & 1294165 \end{aligned}$		$\begin{aligned} & 10 \\ & <10 \\ & <10 \\ & <10 \\ & <10 \end{aligned}$	$\begin{aligned} & <1 \\ & <1 \\ & <1 \\ & 1 \\ & <1 \end{aligned}$	$\begin{aligned} & 1.07 \\ & 0.75 \\ & 0.93 \\ & 0.63 \\ & 0.14 \end{aligned}$	$\begin{aligned} & <10 \\ & 10 \\ & 10 \\ & 10 \\ & <10 \end{aligned}$	$\begin{aligned} & 1.28 \\ & 1.13 \\ & 0.98 \\ & 0.97 \\ & 0.84 \end{aligned}$	$\begin{aligned} & 1225 \\ & 1710 \\ & 1975 \\ & 1975 \\ & 650 \end{aligned}$	$\begin{gathered} 24 \\ 3 \\ <1 \\ 4 \\ 202 \end{gathered}$	$\begin{aligned} & \hline 0.08 \\ & 0.06 \\ & 0.05 \\ & 0.04 \\ & 0.10 \end{aligned}$	$\begin{gathered} 2 \\ 1 \\ <1 \\ 1 \\ 23 \end{gathered}$	$\begin{aligned} & 1800 \\ & 1930 \\ & 1730 \\ & 1830 \\ & 630 \end{aligned}$	$\begin{gathered} \hline 4 \\ 4 \\ 5 \\ 10 \\ 14 \end{gathered}$	$\begin{aligned} & 0.26 \\ & 0.37 \\ & 1.24 \\ & 1.94 \\ & 0.71 \end{aligned}$	$\begin{aligned} & <2 \\ & <2 \\ & <2 \\ & <2 \\ & 3 \end{aligned}$	$\begin{aligned} & -4 \\ & 3 \\ & 3 \\ & 2 \\ & 5 \end{aligned}$	$\begin{aligned} & 145 \\ & 406 \\ & 493 \\ & 630 \\ & 41 \end{aligned}$
$\begin{aligned} & 1294166 \\ & J 294167 \\ & J 294168 \\ & 1294169 \\ & J 294170 \end{aligned}$		$\begin{aligned} & <10 \\ & <10 \\ & <10 \\ & <10 \\ & <10 \end{aligned}$	$\begin{aligned} & <1 \\ & <1 \\ & <1 \\ & <1 \\ & <1 \end{aligned}$	$\begin{aligned} & 0.87 \\ & 0.59 \\ & 0.59 \\ & 0.52 \\ & 0.39 \end{aligned}$	$\begin{aligned} & \hline 10 \\ & 10 \\ & 10 \\ & 10 \\ & <10 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.94 \\ & 0.91 \\ & 0.89 \\ & 0.78 \\ & 0.81 \end{aligned}$	$\begin{aligned} & 1405 \\ & 1725 \\ & 1565 \\ & 1445 \\ & 1940 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 2 \\ & 1 \end{aligned}$	$\begin{aligned} & 0.05 \\ & 0.05 \\ & 0.05 \\ & 0.05 \\ & 0.04 \end{aligned}$	$\begin{gathered} 1 \\ <1 \\ 1 \\ 1 \\ 1 \\ 1 \end{gathered}$	$\begin{aligned} & 1760 \\ & 1840 \\ & 1850 \\ & 1570 \\ & 1590 \end{aligned}$	$\begin{gathered} 5 \\ 10 \\ 7 \\ 12 \\ 16 \end{gathered}$	$\begin{aligned} & 0.53 \\ & 0.68 \\ & 0.87 \\ & 0.66 \\ & 0.82 \end{aligned}$	$\begin{aligned} & <2 \\ & <2 \\ & <2 \\ & <2 \\ & <2 \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & 758 \\ & 890 \\ & 818 \\ & 303 \\ & 586 \end{aligned}$
$\begin{aligned} & 1294171 \\ & \mathrm{~J} 294172 \\ & \mathrm{~J} 294173 \\ & \mathrm{~J} 294174 \\ & \mathrm{~J} 294175 \end{aligned}$		$\begin{aligned} & <10 \\ & <10 \\ & <10 \\ & <10 \\ & <10 \end{aligned}$	$\begin{aligned} & 1 \\ & <1 \\ & <1 \\ & <1 \\ & <1 \end{aligned}$	$\begin{aligned} & 0.54 \\ & 0.62 \\ & 0.68 \\ & 0.38 \\ & 0.78 \end{aligned}$	$\begin{gathered} <10 \\ <10 \\ 10 \\ <10 \\ 10 \end{gathered}$	$\begin{aligned} & 0.89 \\ & 0.86 \\ & 1.86 \\ & 1.42 \\ & 1.29 \end{aligned}$	$\begin{aligned} & 2540 \\ & 1465 \\ & 1835 \\ & 1515 \\ & 2140 \end{aligned}$	$\begin{array}{r} 17 \\ 2 \\ 3 \\ 3 \\ 2 \end{array}$	$\begin{aligned} & 0.02 \\ & 0.04 \\ & 0.03 \\ & 0.02 \\ & 0.02 \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \\ & 8 \\ & 7 \\ & 3 \end{aligned}$	$\begin{aligned} & 1800 \\ & 1650 \\ & 2040 \\ & 1670 \\ & 2150 \end{aligned}$	$\begin{gathered} 15 \\ 48 \\ 9 \\ 27 \\ 9 \end{gathered}$	$\begin{aligned} & \hline 2.17 \\ & 1.38 \\ & 1.38 \\ & 4.05 \\ & 1.39 \end{aligned}$	$\begin{aligned} & <2 \\ & <2 \\ & <2 \\ & <2 \\ & <2 \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \\ & 5 \\ & 3 \\ & 2 \end{aligned}$	$\begin{aligned} & 446 \\ & 471 \\ & 669 \\ & 595 \\ & 550 \end{aligned}$
$\begin{aligned} & \mathrm{J} 294176 \\ & \mathrm{~J} 294177 \end{aligned}$		$\begin{aligned} & <10 \\ & <10 \end{aligned}$	$\begin{aligned} & <1 \\ & <1 \end{aligned}$	$\begin{aligned} & 0.07 \\ & 0.98 \end{aligned}$	$\begin{gathered} <10 \\ 10 \end{gathered}$	$\begin{aligned} & 0.02 \\ & 1.13 \end{aligned}$	$\begin{gathered} 81 \\ 1345 \end{gathered}$	$\begin{gathered} 7 \\ <1 \end{gathered}$	$\begin{aligned} & 0.01 \\ & 0.03 \end{aligned}$	$\begin{aligned} & 3 \\ & 2 \end{aligned}$	$\begin{aligned} & 100 \\ & 1930 \end{aligned}$	$\begin{gathered} \hline 193 \\ 6 \end{gathered}$	$\begin{gathered} >10.0 \\ 0.39 \end{gathered}$	$\begin{aligned} & <2 \\ & <2 \end{aligned}$	$\begin{gathered} <1 \\ 2 \end{gathered}$	$\begin{gathered} 14 \\ 687 \end{gathered}$

Sample DescriptionMethod Analyte Units LOR	$\begin{gathered} \text { ME- }-1 C P 4] \\ \text { Th } \\ \mathrm{ppm} \\ 20 \end{gathered}$	$\begin{gathered} \text { ME- }-\left[C_{4}\right] \\ T \\ \% \\ 0.01 \end{gathered}$	$\begin{gathered} \text { ME- ICP41 } \\ \text { TI } \\ \mathrm{ppm} \\ 10 \end{gathered}$	$\begin{gathered} \text { ME- ICP41 } \\ U \\ \text { Ppm } \\ 10 \end{gathered}$	$\begin{gathered} \text { ME- }-1 C P_{4} \mid \\ V \\ \mathrm{ppm} \\ 1 \end{gathered}$	$\begin{gathered} \text { ME. } \mathrm{ICP}_{41} \\ \mathrm{~W} \\ \mathrm{ppm} \\ 10 \end{gathered}$	$\begin{gathered} \text { ME- ICP41 } \\ \mathrm{Zn} \\ \mathrm{ppm} \\ 2 \end{gathered}$	$\begin{gathered} \mathrm{Cu}-\mathrm{OC} 46 \\ \mathrm{Cu} \\ \% \\ 0.001 \end{gathered}$
$\begin{aligned} & J 294141 \\ & J 294142 \\ & J 294143 \\ & J 294144 \\ & \mathrm{~J} 294145 \end{aligned}$	$\begin{aligned} & <20 \\ & <20 \\ & <20 \\ & <20 \\ & <20 \end{aligned}$	0.11 0.18 0.13 0.14 0.15	$\begin{aligned} & <10 \\ & <10 \\ & <10 \\ & <10 \\ & <10 \end{aligned}$	$\begin{aligned} & <10 \\ & <10 \\ & <10 \\ & <10 \\ & <10 \end{aligned}$	$\begin{gathered} 97 \\ 69 \\ 86 \\ 109 \\ 124 \end{gathered}$	$\begin{gathered} <10 \\ 90 \\ <10 \\ 30 \\ <10 \end{gathered}$	$\begin{aligned} & 95 \\ & 32 \\ & 41 \\ & 40 \\ & 72 \end{aligned}$	
$\begin{aligned} & 1294146 \\ & 1294147 \\ & 1294148 \\ & 1294149 \\ & 1294150 \end{aligned}$	$\begin{aligned} & <20 \\ & <20 \\ & <20 \\ & <20 \\ & <20 \end{aligned}$	$\begin{gathered} <0.01 \\ 0.01 \\ 0.01 \\ <0.01 \\ 0.17 \end{gathered}$	$\begin{aligned} & <10 \\ & <10 \\ & <10 \\ & <10 \\ & <10 \end{aligned}$	$\begin{aligned} & <10 \\ & <10 \\ & <10 \\ & <10 \\ & <10 \end{aligned}$	$\begin{aligned} & 16 \\ & 19 \\ & 18 \\ & 18 \\ & 125 \end{aligned}$	$\begin{aligned} & 10 \\ & <10 \\ & <10 \\ & <10 \\ & 10 \end{aligned}$	$\begin{aligned} & 25 \\ & 33 \\ & 35 \\ & 54 \\ & 59 \end{aligned}$	
$J 294151$ $J 294152$ $J 294153$ $J 294154$ $J 294155$	$\begin{aligned} & <20 \\ & <20 \\ & <20 \\ & <20 \\ & <20 \end{aligned}$	$\begin{aligned} & 0.11 \\ & 0.14 \\ & 0.02 \\ & 0.14 \\ & 0.15 \end{aligned}$	$\begin{aligned} & <10 \\ & <10 \\ & <10 \\ & <10 \\ & <10 \end{aligned}$	$\begin{aligned} & <10 \\ & <10 \\ & <10 \\ & <10 \\ & <10 \end{aligned}$	$\begin{gathered} 80 \\ 88 \\ 24 \\ 88 \\ 107 \end{gathered}$	$\begin{aligned} & <10 \\ & <10 \\ & <10 \\ & 50 \\ & <10 \end{aligned}$	$\begin{gathered} 40 \\ 52 \\ 1055 \\ 36 \\ 50 \end{gathered}$	
1294156 $J 294157$ $J 294158$ 1294159 $J 294160$	$\begin{aligned} & <20 \\ & <20 \\ & <20 \\ & <20 \\ & <20 \end{aligned}$	$\begin{aligned} & 0.02 \\ & 0.07 \\ & 0.02 \\ & 0.08 \\ & 0.11 \end{aligned}$	$\begin{aligned} & <10 \\ & <10 \\ & <10 \\ & <10 \\ & <10 \end{aligned}$	$\begin{aligned} & <10 \\ & <10 \\ & <10 \\ & <10 \\ & <10 \end{aligned}$	$\begin{aligned} & 65 \\ & 65 \\ & 51 \\ & 77 \\ & 75 \end{aligned}$	$\begin{aligned} & <10 \\ & <10 \\ & <10 \\ & 10 \\ & 40 \end{aligned}$	$\begin{gathered} 98 \\ 64 \\ 55 \\ 311 \\ 54 \end{gathered}$	4.14
J294161 J294162 1294163 $J 294164$ $J 294165$	$\begin{aligned} & <20 \\ & <20 \\ & <20 \\ & <20 \\ & <20 \end{aligned}$	019 006 009 002 014	$\begin{aligned} & <10 \\ & <10 \\ & <10 \\ & <10 \\ & <10 \end{aligned}$	$\begin{aligned} & <10 \\ & <10 \\ & <10 \\ & <10 \\ & <10 \end{aligned}$	$\begin{aligned} & 152 \\ & 73 \\ & 55 \\ & 38 \\ & 59 \end{aligned}$	$\begin{gathered} <10 \\ 40 \\ 10 \\ <10 \\ <10 \end{gathered}$	$\begin{aligned} & 107 \\ & 71 \\ & 94 \\ & 51 \\ & 76 \end{aligned}$	
1294166 $J 294167$ $J 294168$ $J 294169$ 1294170	$\begin{aligned} & <20 \\ & <20 \\ & <20 \\ & <20 \\ & <20 \end{aligned}$	$\begin{aligned} & 0.07 \\ & 0.02 \\ & 0.01 \\ & 0.01 \\ & 0.01 \end{aligned}$	$\begin{aligned} & \quad<10 \\ & <10 \\ & <10 \\ & <10 \\ & <10 \end{aligned}$	$\begin{aligned} & <10 \\ & <10 \\ & <10 \\ & <10 \\ & <10 \end{aligned}$	$\begin{aligned} & 56 \\ & 40 \\ & 36 \\ & 35 \\ & 27 \end{aligned}$	$\begin{aligned} & <10 \\ & <10 \\ & <10 \\ & <10 \\ & 10 \end{aligned}$	$\begin{aligned} & \hline 72 \\ & 497 \\ & 61 \\ & 45 \\ & 67 \end{aligned}$	
$\begin{aligned} & 1294171 \\ & 1294172 \\ & J 294173 \\ & 1294174 \\ & 1294175 \end{aligned}$	$\begin{aligned} & <20 \\ & <20 \\ & <20 \\ & <20 \\ & <20 \end{aligned}$	$\begin{aligned} & 0.01 \\ & 0.06 \\ & 0.06 \\ & 0.03 \\ & 0.07 \end{aligned}$	$\begin{aligned} & <10 \\ & <10 \\ & <10 \\ & <10 \\ & <10 \end{aligned}$	$\begin{aligned} & <10 \\ & <10 \\ & <10 \\ & <10 \\ & <10 \end{aligned}$	$\begin{aligned} & 27 \\ & 52 \\ & 56 \\ & 45 \\ & 31 \end{aligned}$	$\begin{aligned} & <10 \\ & <10 \\ & <10 \\ & <10 \\ & <10 \end{aligned}$	$\begin{gathered} \hline 50 \\ 89 \\ 160 \\ 111 \\ 89 \end{gathered}$	
$\begin{aligned} & J 294176 \\ & J 294177 \end{aligned}$	$\begin{aligned} & <20 \\ & <20 \end{aligned}$	$\begin{gathered} <0.01 \\ 0.11 \end{gathered}$	$\begin{aligned} & <10 \\ & <10 \end{aligned}$	$\begin{aligned} & \text { < } 10 \\ & <10 \end{aligned}$	$\begin{gathered} \hline 2 \\ 39 \end{gathered}$	$\begin{gathered} 10 \\ <10 \end{gathered}$	$\begin{aligned} & 111 \\ & 71 \end{aligned}$	

CERTIFICATE VA11001920

Project: Kenville Mine

P.O. No.:

This report is for 253 Drill Core samples submitted to our lab in Vancouver, BC, Canada on 29- DEC-2010.
The following have access to data associated with this certificate: ANGLO SWISS RESOURCES LLOYD PENNE

	SAMPLE PREPARATION
ALS CODE	DESCRIPTION
WEI-21	Received Sample Weight
LOG-21	Sample logging - ClientBarCode
CRU-QC	Crushing QC Test
PUL-QC	Pulverizing QC Test
CRU-31	Fine crushing $-70 \%<2 \mathrm{~mm}$
SPL-21	Split sample - riffle splitter
PUL-31	Pulverize split to $85 \%<75$ um
LOG-23	Pulp Login - Rcvd with Barcode

				ANALYTICAL PROCEDURES
ALS CODE	DESCRIPTION	INSTRUMENT		
ME-ICP41	35 Element Aqua Regia ICP-AES	ICP- AES		
ME-OG46	Ore Grade Elements - AquaRegia	ICP- AES		
Cu-OG46	Ore Grade Cu-Aqua Regia	VARIABLE		
Au- AA23	Au 30g FA-AA finish	AAS		
Au- GRA21	Au 30g FA- GRAV finish	WST-SIM		

To: ANGLO SWISS RESOURCES INC.
309-837 W HASTINGS ST.
VANCOUVER BC V6C 3N6

Signature:
Colin Ramshaw, Vancouver Laboratory Manager

Sample Description	Method Analyte Units LOR	WEF-21 Recvd Wt kg 0.02	$\begin{gathered} \mathrm{Au} \cdot \mathrm{AA} .23 \\ \mathrm{Au} \\ \mathrm{ppm} \\ 0.005 \end{gathered}$	$\begin{gathered} \mathrm{Au}-\text { CRA21 } \\ \mathrm{Au} \\ \mathrm{ppm} \\ 0.05 \end{gathered}$	$\begin{gathered} \text { ME-ICP41 } \\ \mathrm{Ag} \\ \mathrm{Ppm} \\ 0.2 \end{gathered}$	$\begin{gathered} \text { ME- ICP41 } \\ \text { AI } \\ \% \\ 0.01 \end{gathered}$	$\begin{gathered} \text { ME ICP41 } \\ \text { As } \\ \text { ppm } \\ 2 \end{gathered}$	$\begin{gathered} \text { ME-ICP41 } \\ \text { B } \\ \text { ppm } \\ 10 \end{gathered}$	$\begin{gathered} \text { ME- }\|C P 4\| \\ \mathrm{Ba} \\ \mathrm{ppm} \\ 10 \end{gathered}$	$\begin{gathered} \text { ME- ICP41 } \\ \text { Be } \\ \text { ppm } \\ 0.5 \end{gathered}$	$\begin{gathered} \text { ME- ICP4 } \\ \mathrm{Bi} \\ \mathrm{ppm} \\ 2 \end{gathered}$	$\begin{gathered} \text { ME- ICP41 } \\ \text { Ca } \\ \% \\ 0.01 \end{gathered}$	$\begin{gathered} \text { ME- } \mathrm{CCP} 41 \\ \mathrm{Cd} \\ \mathrm{ppm} \\ 0.5 \end{gathered}$	$\begin{gathered} \text { ME- [CP4] } \\ \text { Co } \\ \text { ppm } \\ 1 \end{gathered}$	ME- ICP41 Cr ppm 1	$\begin{gathered} \text { ME-KCP41 } \\ \mathrm{Cu} \\ \mathrm{ppm} \\ 1 \end{gathered}$
$\begin{aligned} & J 294000 \\ & J 294001 \\ & J 294002 \\ & J 294003 \\ & J 294004 \end{aligned}$		$\begin{aligned} & 2.80 \\ & 2.52 \\ & 2.66 \\ & 3.26 \\ & 2.90 \\ & \hline \end{aligned}$	0.064 0.023 0.099 0.112 0.032		$\begin{aligned} & 0.5 \\ & 0.3 \\ & 0.7 \\ & 0.3 \\ & 0.3 \end{aligned}$	$\begin{aligned} & 1.43 \\ & 1.40 \\ & 1.45 \\ & 1.14 \\ & 1.48 \end{aligned}$	$\begin{aligned} & <2 \\ & <2 \\ & <2 \\ & <2 \\ & <2 \end{aligned}$	$\begin{aligned} & <10 \\ & <10 \\ & <10 \\ & <10 \\ & <10 \end{aligned}$	$\begin{aligned} & 70 \\ & 60 \\ & 60 \\ & 60 \\ & 40 \end{aligned}$	$\begin{gathered} 0.5 \\ 0.5 \\ 0.6 \\ <0.5 \\ 0.5 \end{gathered}$	$\begin{gathered} <2 \\ <2 \\ <2 \\ 2 \\ <2 \end{gathered}$	$\begin{aligned} & 3.17 \\ & 2.63 \\ & 2.54 \\ & 3.66 \\ & 3.69 \end{aligned}$	$\begin{gathered} 0.7 \\ 1.3 \\ 1.6 \\ 5.2 \\ <0.5 \end{gathered}$	$\begin{aligned} & 16 \\ & 15 \\ & 14 \\ & 14 \\ & 14 \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \\ & 2 \\ & 1 \\ & 1 \end{aligned}$	$\begin{gathered} 279 \\ 292 \\ 313 \\ 66 \\ 107 \end{gathered}$
$J 294005$ $J 294006$ $J 294007$ $J 294008$ $J 294009$		$\begin{aligned} & 2.84 \\ & 3.60 \\ & 2.92 \\ & 1.86 \\ & 1.16 \\ & \hline \end{aligned}$	$\begin{gathered} \hline 0.010 \\ 0.014 \\ <0.005 \\ 0.080 \\ 0.017 \end{gathered}$		$\begin{gathered} \hline 0.2 \\ <0.2 \\ <0.2 \\ 0.5 \\ 0.6 \end{gathered}$	$\begin{aligned} & 1.46 \\ & 1.70 \\ & 1.63 \\ & 1.74 \\ & 0.56 \end{aligned}$	$\begin{aligned} & <2 \\ & <2 \\ & <2 \\ & <2 \\ & <2 \end{aligned}$	$\begin{aligned} & <10 \\ & <10 \\ & <10 \\ & <10 \\ & <10 \end{aligned}$	30 80 40 60 30	$\begin{gathered} \hline 0.5 \\ 0.5 \\ <0.5 \\ 0.5 \\ <0.5 \end{gathered}$	$\begin{aligned} & <2 \\ & <2 \\ & <2 \\ & <2 \\ & <2 \end{aligned}$	$\begin{aligned} & 3.36 \\ & 3.43 \\ & 3.05 \\ & 3.54 \\ & 4.04 \end{aligned}$	$\begin{aligned} & <0.5 \\ & <0.5 \\ & <0.5 \\ & <0.5 \\ & <0.5 \end{aligned}$	$\begin{aligned} & 16 \\ & 14 \\ & 16 \\ & 15 \\ & 12 \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 1 \end{aligned}$	$\begin{array}{r} 78 \\ 84 \\ 64 \\ 220 \\ 367 \end{array}$
$J 294010$ $J 294011$ $J 294012$ $J 294013$ $J 294014$		$\begin{aligned} & 2.32 \\ & 3.36 \\ & 1.36 \\ & 1.34 \\ & 0.08 \end{aligned}$	$\begin{gathered} 0.010 \\ <0.005 \\ 0.025 \\ 0.038 \\ 1.505 \end{gathered}$		$\begin{gathered} <0.2 \\ <0.2 \\ <0.2 \\ 1.7 \\ 4.6 \end{gathered}$	$\begin{aligned} & 1.63 \\ & 1.59 \\ & 1.68 \\ & 1.54 \\ & 1.28 \end{aligned}$	$\begin{aligned} & <2 \\ & <2 \\ & <2 \\ & <2 \\ & 37 \end{aligned}$	$\begin{aligned} & <10 \\ & <10 \\ & <10 \\ & <10 \\ & <10 \end{aligned}$	$\begin{aligned} & 50 \\ & 40 \\ & 60 \\ & 40 \\ & 90 \end{aligned}$	$\begin{aligned} & <0.5 \\ & <0.5 \\ & <0.5 \\ & <0.5 \\ & <0.5 \end{aligned}$	$\begin{gathered} 2 \\ <2 \\ <2 \\ <2 \\ 6 \end{gathered}$	$\begin{aligned} & 3.16 \\ & 2.98 \\ & 3.41 \\ & 2.16 \\ & 1.43 \end{aligned}$	$\begin{aligned} & <0.5 \\ & <0.5 \\ & <0.5 \\ & <0.5 \\ & 2.2 \end{aligned}$	$\begin{aligned} & 14 \\ & 15 \\ & 15 \\ & 15 \\ & 19 \end{aligned}$	$\begin{gathered} 1 \\ 2 \\ 2 \\ 1 \\ 59 \end{gathered}$	$\begin{gathered} \hline 121 \\ 116 \\ 98 \\ 1020 \\ >10000 \end{gathered}$
$\begin{aligned} & \mathrm{J} 294015 \\ & \mathrm{~J} 294016 \\ & \mathrm{~J} 294017 \\ & \mathrm{~J} 294018 \\ & \mathrm{~J} 294019 \end{aligned}$		$\begin{aligned} & 2.82 \\ & 1.60 \\ & 3.24 \\ & 0.82 \\ & 1.16 \end{aligned}$	$\begin{aligned} & 0.008 \\ & 0.937 \\ & 0.077 \\ & 0.193 \\ & 0.024 \end{aligned}$		$\begin{aligned} & 0.2 \\ & 1.1 \\ & 0.3 \\ & 0.5 \\ & 0.3 \end{aligned}$	$\begin{aligned} & 1.79 \\ & 0.46 \\ & 1.72 \\ & 0.58 \\ & 1.47 \end{aligned}$	$\begin{aligned} & <2 \\ & <2 \\ & <2 \\ & <2 \\ & <2 \end{aligned}$	$\begin{aligned} & <10 \\ & <10 \\ & <10 \\ & <10 \\ & <10 \end{aligned}$	$\begin{aligned} & 50 \\ & 50 \\ & 50 \\ & 40 \\ & 50 \end{aligned}$	$\begin{aligned} & 0.5 \\ & <0.5 \\ & <0.5 \\ & <0.5 \\ & <0.5 \end{aligned}$	$\begin{aligned} & <2 \\ & <2 \\ & <2 \\ & <2 \\ & <2 \end{aligned}$	$\begin{aligned} & 2.92 \\ & 4.29 \\ & 236 \\ & 3.81 \\ & 2.62 \end{aligned}$	$\begin{gathered} <0.5 \\ 1.5 \\ <0.5 \\ 0.5 \\ <0.5 \end{gathered}$	$\begin{aligned} & 15 \\ & 16 \\ & 16 \\ & 13 \\ & 14 \end{aligned}$	$\begin{aligned} & 2 \\ & 1 \\ & 2 \\ & 7 \\ & 1 \end{aligned}$	$\begin{aligned} & 138 \\ & 176 \\ & 234 \\ & 225 \\ & 168 \end{aligned}$
$\begin{aligned} & \mathrm{J} 294020 \\ & \mathrm{~J} 294021 \\ & 1294022 \\ & \mathrm{~J} 294023 \\ & \mathrm{~J} 294024 \end{aligned}$		$\begin{aligned} & 1.24 \\ & 1.20 \\ & 0.08 \\ & 1.64 \\ & 1.02 \end{aligned}$	$\begin{gathered} \hline 0.015 \\ <0.005 \\ 0.437 \\ 0.235 \\ <0.005 \end{gathered}$		$\begin{gathered} \hline 0.3 \\ <0.2 \\ 1.2 \\ 4.8 \\ <0.2 \end{gathered}$	$\begin{aligned} & 1.15 \\ & 1.83 \\ & 1.95 \\ & 1.43 \\ & 1.32 \end{aligned}$	$\begin{aligned} & <2 \\ & <2 \\ & 6 \\ & <2 \\ & <2 \end{aligned}$	$\begin{aligned} & <10 \\ & <10 \\ & <10 \\ & <10 \\ & <10 \end{aligned}$	$\begin{aligned} & 50 \\ & 50 \\ & 90 \\ & 50 \\ & 60 \end{aligned}$	$\begin{aligned} & <0.5 \\ & <0.5 \\ & <0.5 \\ & <0.5 \\ & 0.5 \end{aligned}$	$\begin{aligned} & <2 \\ & <2 \\ & <2 \\ & <2 \\ & <2 \end{aligned}$	$\begin{aligned} & 2.54 \\ & 2.51 \\ & 0.73 \\ & 3.45 \\ & 3.11 \end{aligned}$	$\begin{aligned} & <0.5 \\ & <0.5 \\ & <0.5 \\ & <0.5 \\ & <0.5 \end{aligned}$	$\begin{aligned} & 14 \\ & 16 \\ & 12 \\ & 15 \\ & 15 \end{aligned}$	$\begin{gathered} \hline 1 \\ 2 \\ 33 \\ 1 \\ 1 \end{gathered}$	$\begin{gathered} 562 \\ 117 \\ 5590 \\ 2290 \\ 37 \end{gathered}$
1294025 1294026 1294027 $J 294028$ 1294029		$\begin{aligned} & 1.74 \\ & 1.20 \\ & 1.38 \\ & 1.02 \\ & 0.90 \end{aligned}$	$\begin{gathered} 0.033 \\ 0.100 \\ <0.005 \\ 0.008 \\ 0.008 \end{gathered}$		$\begin{gathered} <0.2 \\ 1.0 \\ <0.2 \\ <0.2 \\ <0.2 \end{gathered}$	$\begin{aligned} & 1.22 \\ & 1.74 \\ & 1.37 \\ & 2.08 \\ & 1.83 \end{aligned}$	$\begin{aligned} & <2 \\ & <2 \\ & <2 \\ & <2 \\ & <2 \end{aligned}$	$\begin{aligned} & <10 \\ & <10 \\ & <10 \\ & <10 \\ & <10 \end{aligned}$	$\begin{aligned} & 50 \\ & 40 \\ & 20 \\ & 50 \\ & 40 \end{aligned}$	$\begin{aligned} & <0.5 \\ & <0.5 \\ & <0.5 \\ & 0.5 \\ & <0.5 \end{aligned}$	$\begin{aligned} & <2 \\ & <2 \\ & <2 \\ & <2 \\ & <2 \\ & 2 \end{aligned}$	$\begin{aligned} & 3.24 \\ & 2.69 \\ & 3.13 \\ & 2.61 \\ & 2.64 \end{aligned}$	$\begin{aligned} & <0.5 \\ & <0.5 \\ & <0.5 \\ & <0.5 \\ & <0.5 \end{aligned}$	$\begin{aligned} & 14 \\ & 19 \\ & 15 \\ & 17 \\ & 16 \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \\ & 1 \\ & 1 \\ & 3 \\ & 3 \end{aligned}$	$\begin{aligned} & 71 \\ & 895 \\ & 31 \\ & 41 \\ & 44 \end{aligned}$
$\begin{array}{\|l\|} \hline 1294030 \\ J 294031 \\ J 294032 \\ J 294033 \\ J 294034 \\ \hline \end{array}$		$\begin{aligned} & 1.10 \\ & 1.80 \\ & 0.72 \\ & 0.70 \\ & 1.48 \\ & \hline \end{aligned}$	$\begin{gathered} \hline 0.007 \\ 0.007 \\ 0.006 \\ 0.006 \\ <0.005 \end{gathered}$		$\begin{gathered} \hline 0.2 \\ <0.2 \\ 0.8 \\ 0.5 \\ 0.5 \end{gathered}$	$\begin{aligned} & 1.91 \\ & 1.76 \\ & 1.82 \\ & 1.61 \\ & 1.87 \end{aligned}$	$\begin{aligned} & <2 \\ & <2 \\ & 2 \\ & <2 \\ & <2 \end{aligned}$	$\begin{aligned} & <10 \\ & <10 \\ & <10 \\ & <10 \\ & <10 \end{aligned}$	$\begin{aligned} & 40 \\ & 40 \\ & 70 \\ & 40 \\ & 50 \end{aligned}$	$\begin{aligned} & 0.5 \\ & 0.5 \\ & 0.6 \\ & 0.5 \\ & 0.5 \end{aligned}$	$\begin{aligned} & <2 \\ & <2 \\ & <2 \\ & <2 \\ & <2 \end{aligned}$	$\begin{aligned} & 2.64 \\ & 2.65 \\ & 3.93 \\ & 3.63 \\ & 3.67 \end{aligned}$	$\begin{aligned} & <0.5 \\ & <0.5 \\ & <0.5 \\ & <0.5 \\ & <0.5 \end{aligned}$	$\begin{aligned} & 17 \\ & 15 \\ & 15 \\ & 14 \\ & 15 \end{aligned}$	$\begin{aligned} & 3 \\ & 3 \\ & 2 \\ & 2 \\ & 2 \end{aligned}$	$\begin{gathered} 16 \\ 24 \\ 152 \\ 157 \\ 63 \end{gathered}$
J 294035 J 294036 J 294037 J 294038 J 294039		$\begin{aligned} & 0.94 \\ & 1.76 \\ & 1.02 \\ & 1.02 \\ & 2.42 \end{aligned}$	0.007 0.007 0.014 0.123 0.157		$\begin{aligned} & 0.8 \\ & 1.0 \\ & 1.2 \\ & 4.3 \\ & 1.3 \end{aligned}$	$\begin{aligned} & 0.93 \\ & 1.57 \\ & 0.90 \\ & 1.54 \\ & 1.64 \end{aligned}$	$\begin{gathered} <2 \\ 2 \\ 3 \\ <2 \\ 2 \end{gathered}$	$\begin{aligned} & <10 \\ & <10 \\ & <10 \\ & <10 \\ & <10 \end{aligned}$	$\begin{gathered} 50 \\ 100 \\ 70 \\ 100 \\ 40 \end{gathered}$	$\begin{gathered} <0.5 \\ 0.5 \\ <0.5 \\ <0.5 \\ <0.5 \end{gathered}$	$\begin{aligned} & <2 \\ & <2 \\ & <2 \\ & <2 \\ & <2 \end{aligned}$	$\begin{aligned} & 3.87 \\ & 3.92 \\ & 4.24 \\ & 6.08 \\ & 4.40 \end{aligned}$	$\begin{aligned} & <0.5 \\ & <0.5 \\ & 0.5 \\ & 1.3 \\ & <0.5 \end{aligned}$	$\begin{aligned} & 14 \\ & 15 \\ & 15 \\ & 18 \\ & 16 \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \\ & 1 \\ & 2 \\ & 2 \end{aligned}$	$\begin{gathered} 95 \\ 52 \\ 190 \\ 2180 \\ 1355 \end{gathered}$

Comments: Additional Au- AA23 check results for sample J294262 are 0.145 ppm and 0.321 ppm .

Project: Kenville Mine
CERTIFICATE OF ANALYSIS VA11001920

Sample Description	Method Analyte Units LOR	$\begin{gathered} \text { ME- } 1 \mathrm{CP} 41 \\ \mathrm{Fe} \\ \% \\ \% \\ 0.01 \end{gathered}$	$\begin{gathered} \text { ME- } 1 C P 41 \\ \mathrm{Ca} \\ \text { ppm } \\ 10 \end{gathered}$	$\begin{gathered} \text { ME- } \mathrm{CCP41} \\ \mathrm{Hg} \\ \mathrm{ppm} \\ 1 \end{gathered}$	$\begin{gathered} \text { ME- ICP41 } \\ K \\ \% \\ 0.01 \end{gathered}$	$\begin{gathered} \text { ME. ICP4] } \\ \text { La } \\ \text { ppm } \\ 10 \end{gathered}$	$\begin{gathered} \text { ME- KCP41 } \\ \mathrm{Mg} \\ \propto \\ \alpha .01 \end{gathered}$	$\begin{gathered} \text { ME-ICP41 } \\ \text { Mn } \\ \mathrm{ppm} \\ 5 \end{gathered}$	$\begin{gathered} \text { ME- } \operatorname{CCP41} \\ \text { Mo } \\ \text { Ppm } \\ 1 \end{gathered}$	$\begin{gathered} \text { ME ICP41 } \\ \mathrm{Na} \\ \% \\ 0.01 \end{gathered}$	$\begin{gathered} \text { ME- }-1 C P 41 \\ \text { Ni } \\ \text { ppm } \\ 1 \end{gathered}$	$\begin{gathered} \text { ME- } 1 C P 41 \\ p \\ \text { ppm } \\ 10 \end{gathered}$	$\begin{gathered} \text { ME-ICP41 } \\ \text { Pb } \\ \text { ppm } \\ 2 \end{gathered}$	$\begin{gathered} \text { ME- [CP41 } \\ \text { S } \\ \% \\ 0.01 \end{gathered}$	$\begin{gathered} \text { ME - ICP4 } \\ \text { Sb } \\ \text { ppm } \\ 2 \end{gathered}$	ME- ICP41 Sc ppm 1
J294000 J294001 J294002 J294003 J294004		$\begin{aligned} & 3.42 \\ & 3.54 \\ & 3.33 \\ & 3.24 \\ & 3.32 \end{aligned}$	$\begin{aligned} & <10 \\ & 10 \\ & <10 \\ & <10 \\ & <10 \end{aligned}$	$\begin{aligned} & <1 \\ & <1 \\ & <1 \\ & <1 \\ & <1 \end{aligned}$	$\begin{aligned} & 0.76 \\ & 0.60 \\ & 0.56 \\ & 0.46 \\ & 0.58 \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \\ & 10 \\ & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & 1.02 \\ & 1.07 \\ & 0.90 \\ & 0.98 \\ & 1.05 \end{aligned}$	$\begin{aligned} & 1330 \\ & 1225 \\ & 1250 \\ & 1305 \\ & 1385 \end{aligned}$	$\begin{aligned} & <1 \\ & <1 \\ & 1 \\ & 6 \\ & 1 \end{aligned}$	$\begin{aligned} & 0.07 \\ & 0.05 \\ & 0.06 \\ & 0.05 \\ & 0.06 \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \\ & 1 \\ & 2 \\ & 1 \end{aligned}$	$\begin{aligned} & 1740 \\ & 1740 \\ & 1770 \\ & 1730 \\ & 1810 \end{aligned}$	$\begin{gathered} 5 \\ 6 \\ 12 \\ 7 \\ 5 \end{gathered}$	$\begin{aligned} & 0.01 \\ & <0.01 \\ & 0.13 \\ & 0.38 \\ & 0.18 \end{aligned}$	$\begin{gathered} <2 \\ <2 \\ <2 \\ 2 \\ <2 \end{gathered}$	$\begin{aligned} & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \end{aligned}$
J294005 J294006 J294007 J294008 J294009		$\begin{aligned} & 3.78 \\ & 3.37 \\ & 3.58 \\ & 3.60 \\ & 3.11 \end{aligned}$	$\begin{aligned} & \hline 10 \\ & <10 \\ & 10 \\ & 10 \\ & <10 \end{aligned}$	$\begin{aligned} & <1 \\ & <1 \\ & <1 \\ & <1 \\ & <1 \end{aligned}$	$\begin{aligned} & \hline 0.63 \\ & 1.11 \\ & 0.90 \\ & 0.97 \\ & 0.30 \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \\ & 10 \\ & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & 1.16 \\ & 1.05 \\ & 1.16 \\ & 1.10 \\ & 0.40 \end{aligned}$	$\begin{aligned} & 1315 \\ & 1220 \\ & 1210 \\ & 1320 \\ & 1075 \end{aligned}$	$\begin{gathered} \hline<1 \\ 2 \\ <1 \\ <1 \\ 2 \end{gathered}$	$\begin{aligned} & 0.06 \\ & 0.07 \\ & 0.05 \\ & 0.08 \\ & 0.04 \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \\ & 2 \\ & 3 \\ & 1 \end{aligned}$	$\begin{aligned} & 1880 \\ & 1800 \\ & 1780 \\ & 1780 \\ & 1770 \end{aligned}$	$\begin{aligned} & 4 \\ & 5 \\ & 3 \\ & 7 \\ & 6 \end{aligned}$	$\begin{aligned} & 0.03 \\ & 0.16 \\ & 0.01 \\ & 0.16 \\ & 0.05 \end{aligned}$	$\begin{gathered} <2 \\ 2 \\ 2 \\ <2 \\ <2 \end{gathered}$	$\begin{aligned} & 4 \\ & 3 \\ & 3 \\ & 3 \\ & 2 \end{aligned}$
$\begin{aligned} & J 294010 \\ & J 294011 \\ & J 294012 \\ & J 294013 \\ & J 294014 \end{aligned}$		$\begin{aligned} & 3.34 \\ & 3.59 \\ & 3.57 \\ & 3.52 \\ & 4.56 \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \\ & <10 \\ & 10 \\ & <10 \end{aligned}$	$\begin{aligned} & <1 \\ & <1 \\ & <1 \\ & <1 \\ & <1 \end{aligned}$	$\begin{aligned} & 0.89 \\ & 1.02 \\ & 1.05 \\ & 1.02 \\ & 0.44 \end{aligned}$	$\begin{aligned} & \hline 10 \\ & 10 \\ & 10 \\ & <10 \\ & 20 \end{aligned}$	$\begin{aligned} & 1.05 \\ & 1.17 \\ & 1.09 \\ & 1.11 \\ & 0.76 \end{aligned}$	$\begin{aligned} & 1210 \\ & 1245 \\ & 1245 \\ & 988 \\ & 337 \end{aligned}$	$\begin{aligned} & <1 \\ & <1 \\ & <1 \\ & <1 \\ & 236 \end{aligned}$	$\begin{aligned} & \hline 0.07 \\ & 0.07 \\ & 0.07 \\ & 0.05 \\ & 0.05 \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \\ & 2 \\ & 1 \\ & 1 \\ & 31 \end{aligned}$	$\begin{gathered} 1760 \\ 1750 \\ 1840 \\ 1820 \\ 680 \end{gathered}$	$\begin{gathered} 4 \\ 3 \\ 5 \\ 5 \\ 69 \end{gathered}$	$\begin{aligned} & <0.01 \\ & <0.01 \\ & 0.01 \\ & 0.06 \\ & 2.60 \end{aligned}$	$\begin{aligned} & <2 \\ & <2 \\ & <2 \\ & <2 \\ & 19 \end{aligned}$	$\begin{aligned} & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 2 \\ & 5 \end{aligned}$
$\begin{aligned} & \mathrm{J} 294015 \\ & \text { J294016 } \\ & \text { J294017 } \\ & \text { J294018 } \\ & \text { J294019 } \end{aligned}$		$\begin{aligned} & 3.55 \\ & 2.92 \\ & 3.62 \\ & 3.18 \\ & 3.17 \end{aligned}$	$\begin{gathered} 10 \\ <10 \\ 10 \\ <10 \\ <10 \end{gathered}$	$\begin{aligned} & <1 \\ & <1 \\ & <1 \\ & <1 \\ & <1 \end{aligned}$	$\begin{aligned} & \hline 0.91 \\ & 0.29 \\ & 1.00 \\ & 0.35 \\ & 0.86 \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \\ & 10 \\ & 10 \\ & <10 \end{aligned}$	$\begin{aligned} & 1.15 \\ & 0.74 \\ & 1.20 \\ & 0.97 \\ & 0.96 \end{aligned}$	$\begin{aligned} & 1195 \\ & 1870 \\ & 1105 \\ & 1505 \\ & 1020 \end{aligned}$	$\begin{gathered} c 1 \\ 1 \\ <1 \\ <1 \\ <1 \end{gathered}$	$\begin{aligned} & 0.09 \\ & 0.03 \\ & 0.09 \\ & 0.06 \\ & 0.07 \end{aligned}$	$\begin{aligned} & 2 \\ & 1 \\ & 2 \\ & 2 \\ & 3 \\ & 2 \end{aligned}$	$\begin{aligned} & 1780 \\ & 1800 \\ & 1780 \\ & 1570 \\ & 1650 \end{aligned}$	$\begin{gathered} 4 \\ 25 \\ 4 \\ 6 \\ 4 \end{gathered}$	$\begin{aligned} & <0.01 \\ & 0.45 \\ & <0.01 \\ & 0.13 \\ & 0.15 \end{aligned}$	$\begin{aligned} & <2 \\ & <2 \\ & <2 \\ & <2 \\ & <2 \end{aligned}$	$\begin{aligned} & \hline 3 \\ & 2 \\ & 3 \\ & 2 \\ & 3 \end{aligned}$
$\begin{aligned} & \mathrm{J} 294020 \\ & \mathrm{~J} 294021 \\ & \mathrm{~J} 294022 \\ & \mathrm{~J} 294023 \\ & \mathrm{~J} 294024 \end{aligned}$		$\begin{aligned} & 3.56 \\ & 3.72 \\ & 3.90 \\ & 4.07 \\ & 4.10 \end{aligned}$	$\begin{gathered} <10 \\ 10 \\ 10 \\ <10 \\ <10 \end{gathered}$	$\begin{aligned} & <1 \\ & <1 \\ & <1 \\ & <1 \\ & <1 \end{aligned}$	$\begin{aligned} & \hline 0.55 \\ & 0.93 \\ & 0.13 \\ & 0.67 \\ & 0.66 \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \\ & <10 \\ & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & 1.06 \\ & 1.13 \\ & 0.80 \\ & 1.01 \\ & 0.93 \end{aligned}$	$\begin{aligned} & 1155 \\ & 1245 \\ & 638 \\ & 1390 \\ & 1195 \end{aligned}$	$\begin{gathered} <1 \\ <1 \\ 200 \\ 2 \\ <1 \end{gathered}$	$\begin{aligned} & 0.05 \\ & 0.07 \\ & 0.10 \\ & 0.05 \\ & 0.06 \end{aligned}$	$\begin{gathered} \hline 2 \\ 1 \\ 24 \\ 1 \\ 1 \end{gathered}$	1750 1760 610 1670 1680	$\begin{gathered} \hline 5 \\ 3 \\ 14 \\ 5 \\ 4 \end{gathered}$	$\begin{aligned} & \hline 0.06 \\ & <0.01 \\ & 0.68 \\ & 0.15 \\ & 0.02 \end{aligned}$	$\begin{gathered} <2 \\ <2 \\ 4 \\ <2 \\ <2 \end{gathered}$	$\begin{aligned} & 2 \\ & 2 \\ & 2 \\ & 5 \\ & 2 \\ & 3 \end{aligned}$
$\begin{aligned} & \mathrm{J} 294025 \\ & \mathrm{~J} 294026 \\ & \mathrm{~J} 294027 \\ & \mathrm{~J} 294028 \\ & \mathrm{~J} 294029 \end{aligned}$		$\begin{aligned} & 3.34 \\ & 3.78 \\ & 3.32 \\ & 3.88 \\ & 3.84 \end{aligned}$	$\begin{aligned} & <10 \\ & 10 \\ & 10 \\ & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & <1 \\ & <1 \\ & <1 \\ & <1 \\ & <1 \end{aligned}$	$\begin{aligned} & 0.78 \\ & 0.89 \\ & 0.27 \\ & 1.42 \\ & 1.21 \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \\ & 10 \\ & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & 1.00 \\ & 1.15 \\ & 1.06 \\ & 1.39 \\ & 1.33 \end{aligned}$	$\begin{aligned} & 1395 \\ & 1280 \\ & 1250 \\ & 1100 \\ & 1100 \end{aligned}$	$\begin{aligned} & 1 \\ & <1 \\ & <1 \\ & <1 \\ & 1 \\ & 2 \end{aligned}$	$\begin{aligned} & 0.05 \\ & 0.08 \\ & 0.05 \\ & 0.09 \\ & 0.06 \end{aligned}$	$\begin{aligned} & \hline 1 \\ & 1 \\ & 1 \\ & 4 \\ & 3 \end{aligned}$	$\begin{aligned} & \hline 1730 \\ & 1750 \\ & 1700 \\ & 1730 \\ & 1670 \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 3 \end{aligned}$	$\begin{aligned} & 0.08 \\ & 0.09 \\ & 0.03 \\ & <0.01 \\ & 0.01 \end{aligned}$	$\begin{aligned} & <2 \\ & <2 \\ & <2 \\ & <2 \\ & <2 \end{aligned}$	$\begin{aligned} & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 4 \\ & 5 \end{aligned}$
$\begin{aligned} & \mathrm{J} 294030 \\ & \mathrm{~J} 294031 \\ & \mathrm{~J} 294032 \\ & \mathrm{~J} 294033 \\ & \mathrm{~J} 294034 \end{aligned}$		$\begin{aligned} & 4.01 \\ & 4.16 \\ & 3.95 \\ & 3.78 \\ & 3.93 \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \\ & 10 \\ & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & <1 \\ & <1 \\ & <1 \\ & <1 \\ & <1 \end{aligned}$	$\begin{aligned} & 1.22 \\ & 1.05 \\ & 0.80 \\ & 0.64 \\ & 0.82 \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \\ & 10 \\ & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & 1.36 \\ & 1.37 \\ & 1.40 \\ & 1.39 \\ & 1.31 \end{aligned}$	$\begin{aligned} & 1165 \\ & 1150 \\ & 1380 \\ & 1310 \\ & 1220 \end{aligned}$	$\begin{gathered} c \\ 2 \\ 2 \\ 1 \\ <1 \\ <1 \end{gathered}$	$\begin{aligned} & 0.09 \\ & 0.07 \\ & 0.05 \\ & 0.03 \\ & 0.05 \end{aligned}$	$\begin{aligned} & 3 \\ & 6 \\ & 4 \\ & 3 \\ & 4 \end{aligned}$	$\begin{aligned} & \hline 1680 \\ & 1910 \\ & 1860 \\ & 1790 \\ & 1790 \end{aligned}$	$\begin{aligned} & \hline 4 \\ & 4 \\ & 4 \\ & 2 \\ & 3 \end{aligned}$	$\begin{aligned} & <0.01 \\ & <0.01 \\ & 0.05 \\ & 0.02 \\ & 0.01 \end{aligned}$	$\begin{gathered} <2 \\ 2 \\ <2 \\ <2 \\ <2 \end{gathered}$	$\begin{aligned} & \hline 5 \\ & 5 \\ & 6 \\ & 6 \\ & 5 \\ & 5 \end{aligned}$
$\begin{aligned} & J 294035 \\ & J 294036 \\ & J 294037 \\ & J 294038 \\ & j 294039 \end{aligned}$		$\begin{aligned} & 3.59 \\ & 3.78 \\ & 3.49 \\ & 3.75 \\ & 3.76 \end{aligned}$	$\begin{aligned} & <10 \\ & <10 \\ & <10 \\ & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & <1 \\ & <1 \\ & <1 \\ & <1 \\ & <1 \end{aligned}$	$\begin{aligned} & 0.49 \\ & 0.81 \\ & 0.50 \\ & 0.82 \\ & 0.88 \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \\ & 10 \\ & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & 1.24 \\ & 1.24 \\ & 1.18 \\ & 1.07 \\ & 1.22 \end{aligned}$	$\begin{aligned} & 1280 \\ & 1265 \\ & 1435 \\ & 2410 \\ & 1665 \end{aligned}$	$\begin{gathered} \hline<1 \\ <1 \\ 1 \\ 1 \\ 1 \\ 1 \end{gathered}$	$\begin{aligned} & 0.04 \\ & 0.05 \\ & 0.03 \\ & 0.04 \\ & 0.03 \end{aligned}$	$\begin{aligned} & \hline 3 \\ & 3 \\ & 2 \\ & 2 \\ & 3 \end{aligned}$	$\begin{aligned} & 1790 \\ & 1730 \\ & 1770 \\ & 1600 \\ & 1730 \end{aligned}$	$\begin{aligned} & \hline 5 \\ & <2 \\ & 5 \\ & 5 \\ & 5 \\ & 2 \end{aligned}$	$\begin{aligned} & 0.07 \\ & 0.09 \\ & 0.13 \\ & 0.43 \\ & 0.15 \end{aligned}$	$\begin{aligned} & <2 \\ & <2 \\ & <2 \\ & <2 \\ & <2 \end{aligned}$	$\begin{aligned} & 3 \\ & 4 \\ & 3 \\ & 4 \\ & 4 \end{aligned}$

Comments: Additional Au- AA23 check results for sample J294262 are 0.145 ppm and 0.321 ppm .

CERTIFICATE OF ANALYSIS VA11001920

Comments: Additional Au- AA23 check results for sample J294262 are 0.145 ppm and 0.321 ppm .

CERTIFICATE OF ANALYSIS VA11001920

Sample Description	Method Analyte Units LOR	WEF 21 Recved Wt. kg 0.02	$\begin{gathered} \mathrm{Au}-\mathrm{AA} 23 \\ \mathrm{Au} \\ \mathrm{ppm} \\ 0.005 \end{gathered}$	$\begin{gathered} \mathrm{Au}-\mathrm{CRA} \mathrm{Cl} \\ \mathrm{~A} u \\ \mathrm{ppm} \\ 0.05 \end{gathered}$	$\begin{gathered} \text { ME-ICP4 } \\ \text { Ag } \\ \text { ppm } \\ 0.2 \end{gathered}$	$\begin{gathered} \text { ME. ICP41 } \\ \text { Al } \\ \% \\ 0.01 \end{gathered}$	$\begin{gathered} \text { ME. ICP41 } \\ \text { As } \\ \text { ppm } \\ 2 \end{gathered}$	$\begin{gathered} \text { ME- ICP41 } \\ \text { B } \\ \text { ppm } \\ 10 \end{gathered}$	$\begin{gathered} \text { ME- } \mathrm{ICP41} \\ \mathrm{Ba} \\ \mathrm{ppm} \\ 10 \end{gathered}$	$\begin{gathered} \text { ME- ICP41 } \\ \text { Be } \\ \mathrm{ppm} \\ 0.5 \end{gathered}$	$\begin{gathered} \text { ME- ICP41 } \\ \text { Bi } \\ \mathrm{ppm} \\ 2 \end{gathered}$	$\begin{gathered} \text { ME- } 1 C P 41 \\ C a \\ \% \\ 0.01 \end{gathered}$	$\begin{gathered} \text { ME-ICP41 } \\ \text { Cd } \\ \text { ppm } \\ 0.5 \end{gathered}$	$\begin{gathered} \text { ME- }-\mathrm{CP} 41 \\ \text { Co } \\ \mathrm{ppm} \\ 1 \end{gathered}$	$\begin{gathered} \text { ME-ICP4 } \\ \mathrm{Cr} \\ \mathrm{ppm} \\ 1 \end{gathered}$	$\begin{gathered} \text { ME- ICP41 } \\ \mathrm{Cu} \\ \mathrm{ppm} \\ 1 \end{gathered}$
$\begin{aligned} & 1294040 \\ & \mathrm{~J} 294041 \\ & \mathrm{~J} 294042 \\ & \mathrm{~J} 294043 \\ & \mathrm{~J} 294044 \end{aligned}$		$\begin{aligned} & 0.56 \\ & 2.10 \\ & 2.40 \\ & 0.78 \\ & 3.16 \end{aligned}$	$\begin{aligned} & 0.301 \\ & 0.015 \\ & 0.016 \\ & 0.006 \\ & 0.016 \end{aligned}$		$\begin{aligned} & 0.7 \\ & 0.8 \\ & 0.3 \\ & 0.8 \\ & 0.6 \end{aligned}$	$\begin{aligned} & 1.38 \\ & 1.40 \\ & 1.85 \\ & 1.24 \\ & 1.68 \end{aligned}$	$\begin{gathered} <2 \\ 2 \\ <2 \\ <2 \\ <2 \end{gathered}$	$\begin{aligned} & <10 \\ & <10 \\ & <10 \\ & <10 \\ & <10 \end{aligned}$	$\begin{aligned} & 60 \\ & 40 \\ & 50 \\ & 50 \\ & 50 \end{aligned}$	$\begin{gathered} <0.5 \\ <0.5 \\ 0.5 \\ <0.5 \\ <0.5 \end{gathered}$	$\begin{aligned} & <2 \\ & <2 \\ & <2 \\ & <2 \\ & <2 \end{aligned}$	$\begin{aligned} & 3.77 \\ & 3.14 \\ & 2.60 \\ & 3.96 \\ & 3.26 \end{aligned}$	$\begin{aligned} & <0.5 \\ & <0.5 \\ & <0.5 \\ & <0.5 \\ & <0.5 \end{aligned}$	$\begin{aligned} & 13 \\ & 14 \\ & 15 \\ & 13 \\ & 13 \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \\ & 2 \\ & 1 \\ & 1 \end{aligned}$	$\begin{gathered} 114 \\ 147 \\ 85 \\ 83 \\ 214 \end{gathered}$
$\begin{aligned} & 1294045 \\ & J 294046 \\ & J 294047 \\ & J 294048 \\ & J 294049 \end{aligned}$		$\begin{aligned} & 0.08 \\ & 1.04 \\ & 1.02 \\ & 2.72 \\ & 0.92 \end{aligned}$	$\begin{gathered} \hline 1.560 \\ 0.069 \\ 0.032 \\ <0.005 \\ 0.061 \end{gathered}$		$\begin{aligned} & \hline 5.0 \\ & <0.2 \\ & 0.8 \\ & 0.4 \\ & 0.4 \end{aligned}$	$\begin{aligned} & 1.35 \\ & 1.27 \\ & 1.81 \\ & 3.42 \\ & 1.49 \end{aligned}$	$\begin{aligned} & 41 \\ & <2 \\ & <2 \\ & <2 \\ & <2 \end{aligned}$	$\begin{aligned} & <10 \\ & <10 \\ & <10 \\ & <10 \\ & <10 \end{aligned}$	$\begin{gathered} 40 \\ 30 \\ 70 \\ 1960 \\ 50 \end{gathered}$	$\begin{gathered} <0.5 \\ <0.5 \\ 0.5 \\ 0.6 \\ 0.5 \end{gathered}$	$\begin{aligned} & <2 \\ & <2 \\ & <2 \\ & <2 \\ & <2 \end{aligned}$	$\begin{aligned} & 1.48 \\ & 3.30 \\ & 3.58 \\ & 2.55 \\ & 3.57 \end{aligned}$	$\begin{aligned} & 2.3 \\ & <0.5 \\ & <0.5 \\ & <0.5 \\ & <0.5 \end{aligned}$	$\begin{aligned} & 18 \\ & 14 \\ & 14 \\ & 32 \\ & 14 \end{aligned}$	$\begin{gathered} \hline 63 \\ 1 \\ 2 \\ 128 \\ 2 \end{gathered}$	>10000 54 162 57 103
$J 294050$ $J 294051$ $J 294052$ $J 294053$ $J 294054$		$\begin{aligned} & 1.66 \\ & 1.36 \\ & 0.62 \\ & 1.42 \\ & 1.66 \end{aligned}$	0.040 0.007 0.006 0.289 0.036		$\begin{aligned} & 0.5 \\ & 0.5 \\ & 0.7 \\ & 1.3 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 1.58 \\ & 1.60 \\ & 1.43 \\ & 1.16 \\ & 2.79 \end{aligned}$	$\begin{gathered} \hline 2 \\ <2 \\ <2 \\ <2 \\ <2 \end{gathered}$	$\begin{aligned} & <10 \\ & <10 \\ & <10 \\ & <10 \\ & <10 \end{aligned}$	$\begin{aligned} & 40 \\ & 40 \\ & 20 \\ & 30 \\ & 560 \end{aligned}$	$\begin{aligned} & <0.5 \\ & 0.6 \\ & 0.5 \\ & 0.6 \\ & 1.0 \end{aligned}$	$\begin{gathered} <2 \\ <2 \\ <2 \\ 2 \\ <2 \end{gathered}$	$\begin{aligned} & 3.36 \\ & 2.97 \\ & 4.62 \\ & 3.66 \\ & 4.18 \end{aligned}$	$\begin{gathered} <0.5 \\ <0.5 \\ 1.8 \\ 8.0 \\ <0.5 \\ \hline \end{gathered}$	$\begin{gathered} 14 \\ 14 \\ 8 \\ 14 \\ 23 \\ \hline \end{gathered}$	$\begin{gathered} \hline 2 \\ 1 \\ 1 \\ 1 \\ 113 \end{gathered}$	$\begin{gathered} \hline 144 \\ 93 \\ 24 \\ 249 \\ 297 \end{gathered}$
$J 294055$ $J 294056$ $J 294057$ $J 294058$ $J 294059$		$\begin{aligned} & 0.08 \\ & 1.48 \\ & 0.90 \\ & 3.78 \\ & 3.34 \end{aligned}$	$\begin{aligned} & \hline 0.446 \\ & 0.099 \\ & 1.375 \\ & 0.093 \\ & 0.039 \end{aligned}$		$\begin{aligned} & 1.3 \\ & 0.7 \\ & 1.1 \\ & 0.7 \\ & 1.3 \end{aligned}$	$\begin{aligned} & 2.12 \\ & 2.69 \\ & 1.57 \\ & 1.32 \\ & 1.15 \end{aligned}$	$\begin{gathered} 10 \\ 2 \\ 2 \\ <2 \\ <2 \end{gathered}$	$\begin{aligned} & <10 \\ & <10 \\ & <10 \\ & <10 \\ & <10 \end{aligned}$	$\begin{gathered} 100 \\ 1040 \\ 60 \\ 50 \\ 60 \end{gathered}$	$\begin{gathered} <0.5 \\ 1.1 \\ 0.5 \\ 0.5 \\ <0.5 \end{gathered}$	$\begin{aligned} & <2 \\ & <2 \\ & <2 \\ & <2 \\ & <2 \end{aligned}$	$\begin{aligned} & 0.82 \\ & 4.28 \\ & 3.95 \\ & 3.41 \\ & 3.48 \end{aligned}$	$\begin{aligned} & <0.5 \\ & <0.5 \\ & 0.5 \\ & <0.5 \\ & <0.5 \end{aligned}$	$\begin{aligned} & 12 \\ & 29 \\ & 14 \\ & 12 \\ & 13 \end{aligned}$	$\begin{gathered} 36 \\ 113 \\ 6 \\ 2 \\ 1 \\ \hline \end{gathered}$	$\begin{array}{r} 5940 \\ 181 \\ 239 \\ 179 \\ 273 \end{array}$
$\begin{aligned} & \mathrm{J} 294060 \\ & \text { J294061 } \\ & \text { J294062 } \\ & \text { J294063 } \\ & \text { J294064 } \end{aligned}$		$\begin{aligned} & \hline 0.98 \\ & 2.68 \\ & 1.16 \\ & 0.54 \\ & 1.92 \end{aligned}$	$\begin{aligned} & 0.212 \\ & 0.012 \\ & 1.485 \\ & 0.032 \\ & 1.290 \end{aligned}$		$\begin{aligned} & 1.2 \\ & 0.6 \\ & 1.3 \\ & 0.6 \\ & 1.7 \end{aligned}$	$\begin{aligned} & 1.22 \\ & 1.49 \\ & 0.62 \\ & 1.30 \\ & 0.92 \end{aligned}$	$\begin{gathered} \hline<2 \\ 2 \\ <2 \\ 2 \\ <2 \end{gathered}$	$\begin{aligned} & <10 \\ & <10 \\ & <10 \\ & <10 \\ & <10 \end{aligned}$	$\begin{aligned} & 30 \\ & 40 \\ & 40 \\ & 50 \\ & 40 \end{aligned}$	$\begin{aligned} & <0.5 \\ & <0.5 \\ & <0.5 \\ & <0.5 \\ & <0.5 \end{aligned}$	$\begin{aligned} & <2 \\ & <2 \\ & <2 \\ & <2 \\ & <2 \end{aligned}$	$\begin{aligned} & 3.94 \\ & 3.15 \\ & 3.58 \\ & 3.35 \\ & 4.10 \end{aligned}$	$\begin{aligned} & <0.5 \\ & <0.5 \\ & 2.5 \\ & <0.5 \\ & 0.7 \end{aligned}$	$\begin{aligned} & 15 \\ & 13 \\ & 12 \\ & 13 \\ & 12 \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 229 \\ & 179 \\ & 219 \\ & 124 \\ & 647 \\ & \hline \end{aligned}$
$\begin{aligned} & \text { J294065 } \\ & \text { J294066 } \\ & \text { J294067 } \\ & \text { J294068 } \\ & \text { J294069 } \end{aligned}$		$\begin{aligned} & 2.00 \\ & 1.64 \\ & 2.24 \\ & 1.08 \\ & 1.72 \end{aligned}$	$\begin{aligned} & 0.019 \\ & 0.016 \\ & 0.010 \\ & 0.009 \\ & 0.018 \end{aligned}$		$\begin{aligned} & 0.7 \\ & 0.6 \\ & 0.6 \\ & 0.4 \\ & 0.2 \end{aligned}$	$\begin{aligned} & 1.42 \\ & 1.37 \\ & 1.36 \\ & 1.41 \\ & 1.55 \end{aligned}$	$\begin{gathered} 2 \\ <2 \\ 2 \\ 3 \\ 3 \\ <2 \end{gathered}$	$\begin{aligned} & <10 \\ & <10 \\ & <10 \\ & <10 \\ & <10 \end{aligned}$	$\begin{aligned} & 50 \\ & 50 \\ & 40 \\ & 50 \\ & 40 \end{aligned}$	$\begin{aligned} & <0.5 \\ & <0.5 \\ & <0.5 \\ & <0.5 \\ & <0.5 \end{aligned}$	$\begin{aligned} & <2 \\ & <2 \\ & <2 \\ & <2 \\ & <2 \end{aligned}$	$\begin{aligned} & 3.63 \\ & 3.07 \\ & 3.13 \\ & 3.16 \\ & 3.22 \end{aligned}$	$\begin{aligned} & <0.5 \\ & <0.5 \\ & <0.5 \\ & <0.5 \\ & <0.5 \end{aligned}$	$\begin{aligned} & 14 \\ & 13 \\ & 14 \\ & 13 \\ & 14 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 2 \\ & 1 \\ & 2 \end{aligned}$	89 90 318 45 7
$\begin{aligned} & \mathrm{J} 294070 \\ & \mathrm{~J} 294071 \\ & \mathrm{~J} 294072 \\ & \mathrm{~J} 294073 \\ & \mathrm{~J} 294074 \end{aligned}$		$\begin{aligned} & 1.68 \\ & 4.66 \\ & 0.32 \\ & 2.98 \\ & 0.54 \end{aligned}$	$\begin{aligned} & \hline<0.005 \\ & 0.017 \\ & 0.301 \\ & 0.029 \\ & 0.098 \end{aligned}$		$\begin{aligned} & \hline 0.2 \\ & 0.2 \\ & 0.6 \\ & 0.5 \\ & 0.6 \end{aligned}$	$\begin{aligned} & 1.68 \\ & 1.77 \\ & 1.41 \\ & 1.69 \\ & 1.27 \end{aligned}$	$\begin{aligned} & <2 \\ & <2 \\ & 3 \\ & 2 \\ & <2 \end{aligned}$	$\begin{aligned} & <10 \\ & <10 \\ & <10 \\ & <10 \\ & <10 \end{aligned}$	$\begin{aligned} & 50 \\ & 50 \\ & 40 \\ & 40 \\ & 40 \end{aligned}$	$\begin{aligned} & <0.5 \\ & <0.5 \\ & <0.5 \\ & <0.5 \\ & <0.5 \end{aligned}$	$\begin{aligned} & <2 \\ & <2 \\ & <2 \\ & <2 \\ & <2 \end{aligned}$	$\begin{aligned} & 3.46 \\ & 2.64 \\ & 3.47 \\ & 3.08 \\ & 3.64 \end{aligned}$	$\begin{aligned} & <0.5 \\ & <0.5 \\ & <0.5 \\ & <0.5 \\ & <0.5 \end{aligned}$	$\begin{aligned} & 13 \\ & 14 \\ & 12 \\ & 14 \\ & 13 \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \\ & 1 \\ & 2 \\ & 1 \end{aligned}$	$\begin{gathered} 21 \\ 30 \\ 107 \\ 111 \\ 59 \end{gathered}$
$\begin{aligned} & \mathrm{J} 294075 \\ & \mathrm{~J} 294076 \\ & \mathrm{~J} 294077 \\ & \mathrm{~J} 294078 \\ & \mathrm{~J} 294079 \end{aligned}$		$\begin{aligned} & \hline 0.94 \\ & 1.26 \\ & 0.08 \\ & 1.84 \\ & 2.78 \end{aligned}$	$\begin{aligned} & \hline 0.022 \\ & 1.420 \\ & 1.375 \\ & 0.191 \\ & 0.036 \end{aligned}$		$\begin{aligned} & 0.5 \\ & 2.1 \\ & 4.7 \\ & 1.2 \\ & 0.4 \end{aligned}$	$\begin{aligned} & 1.66 \\ & 1.20 \\ & 1.34 \\ & 1.12 \\ & 1.42 \end{aligned}$	$\begin{aligned} & <2 \\ & <2 \\ & 45 \\ & <2 \\ & 4 \end{aligned}$	$\begin{aligned} & <10 \\ & <10 \\ & <10 \\ & <10 \\ & <10 \end{aligned}$	$\begin{aligned} & 50 \\ & 40 \\ & 50 \\ & 40 \\ & 40 \end{aligned}$	$\begin{aligned} & <0.5 \\ & <0.5 \\ & <0.5 \\ & <0.5 \\ & 0.5 \end{aligned}$	$\begin{aligned} & <2 \\ & <2 \\ & <2 \\ & <2 \\ & <2 \end{aligned}$	$\begin{aligned} & 2.96 \\ & 3.90 \\ & 1.47 \\ & 4.42 \\ & 3.94 \end{aligned}$	$\begin{gathered} c 0.5 \\ 0.6 \\ 2.2 \\ 0.6 \\ <0.5 \end{gathered}$	$\begin{aligned} & 14 \\ & 14 \\ & 18 \\ & 12 \\ & 15 \end{aligned}$	$\begin{gathered} 2 \\ <1 \\ 62 \\ 62 \\ 1 \\ 17 \end{gathered}$	$\begin{gathered} 71 \\ 120 \\ >10000 \\ 259 \\ 47 \end{gathered}$

Comments: Additional Au- AA23 check results for sample J294262 are 0.145 ppm and 0.321 ppm .

CERTIFICATE OF ANALYSIS VA11001920

Sample Description	Method Analyte Units LOR	$\begin{gathered} \text { ME- ICP41 } \\ \mathrm{Fe} \\ \% \\ 0.01 \end{gathered}$	$\begin{gathered} \text { ME- } \mathrm{CCP41} \\ \mathrm{Ca} \\ \mathrm{ppm} \\ 10 \end{gathered}$	$\begin{gathered} M E-\mid C P 41 \\ \mathrm{Hg} \\ \mathrm{ppm} \\ 1 \end{gathered}$	$\begin{gathered} \text { ME- ICP41 } \\ K \\ K \\ 0.01 \end{gathered}$	$\begin{gathered} \text { ME- }\|C P 4\| \\ \text { La } \\ \mathrm{ppm} \\ 10 \end{gathered}$	$\begin{gathered} \text { ME- ICP41 } \\ M_{g} \\ \% \\ 0.01 \end{gathered}$	$\begin{gathered} \text { ME. ICP41 } \\ \text { Mn } \\ \text { ppm } \\ 5 \end{gathered}$	$\begin{gathered} \text { ME- ICP41 } \\ \text { Mo } \\ \text { ppm } \\ 1 \end{gathered}$	$\begin{gathered} \text { ME. }[C P 41 \\ \mathrm{Na} \\ \% \\ 0.01 \end{gathered}$	$\begin{gathered} \text { ME- ICP41 } \\ \mathrm{Ni} \\ \mathrm{ppm} \\ 1 \end{gathered}$	$\begin{gathered} \text { ME. ICP41 } \\ \text { P } \\ \text { ppm } \\ 10 \end{gathered}$	$\begin{gathered} \text { ME-ICP41 } \\ \mathrm{Pb} \\ \mathrm{ppm} \\ 2 \end{gathered}$	$\begin{gathered} \text { ME- ICP41 } \\ \text { S } \\ \% \\ 0.01 \end{gathered}$	$\begin{gathered} \text { ME- } \text { [CP41 } \\ \text { Sb } \\ \text { ppm } \\ 2 \end{gathered}$	$\begin{gathered} \text { ME- } 1 C P 41 \\ \text { Sc } \\ \text { ppm } \\ 1 \end{gathered}$
$\begin{aligned} & J 294040 \\ & J 294041 \\ & J 294042 \\ & J 294043 \\ & J 294044 \end{aligned}$		$\begin{aligned} & 3.34 \\ & 3.67 \\ & 3.83 \\ & 3.24 \\ & 3.58 \end{aligned}$	$\begin{aligned} & <10 \\ & 10 \\ & 10 \\ & <10 \\ & 10 \end{aligned}$	$\begin{aligned} & <1 \\ & <1 \\ & <1 \\ & <1 \\ & <1 \end{aligned}$	$\begin{aligned} & 0.66 \\ & 0.55 \\ & 1.14 \\ & 0.62 \\ & 0.85 \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \\ & 10 \\ & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & 0.99 \\ & 1.13 \\ & 1.27 \\ & 0.99 \\ & 1.13 \end{aligned}$	$\begin{aligned} & 1415 \\ & 1205 \\ & 1215 \\ & 1425 \\ & 1290 \end{aligned}$	$\begin{gathered} 1 \\ <1 \\ 1 \\ 1 \\ <1 \\ 2 \end{gathered}$	$\begin{aligned} & 0.05 \\ & 0.04 \\ & 0.08 \\ & 0.03 \\ & 0.05 \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \\ & 2 \\ & 1 \\ & 2 \end{aligned}$	$\begin{aligned} & 1750 \\ & 1840 \\ & 1850 \\ & 1800 \\ & 1810 \end{aligned}$	$\begin{gathered} 2 \\ <2 \\ <2 \\ <2 \\ <2 \end{gathered}$	$\begin{gathered} 0.23 \\ 0.03 \\ <0.01 \\ 0.06 \\ 0.04 \end{gathered}$	$\begin{aligned} & <2 \\ & <2 \\ & <2 \\ & <2 \\ & <2 \end{aligned}$	$\begin{aligned} & 3 \\ & 3 \\ & 3 \\ & 2 \\ & 4 \end{aligned}$
$\begin{aligned} & 1294045 \\ & J 294046 \\ & J 294047 \\ & J 294048 \\ & J 294049 \end{aligned}$		$\begin{aligned} & 4.60 \\ & 3.17 \\ & 3.77 \\ & 5.07 \\ & 3.43 \end{aligned}$	$\begin{aligned} & <10 \\ & <10 \\ & 10 \\ & 10 \\ & <10 \end{aligned}$	$\begin{aligned} & \text { <1 } \\ & <1 \\ & <1 \\ & <1 \\ & <1 \end{aligned}$	$\begin{aligned} & \hline 0.47 \\ & 0.59 \\ & 0.91 \\ & 3.28 \\ & 0.79 \end{aligned}$	$\begin{aligned} & 20 \\ & 10 \\ & 10 \\ & 50 \\ & 10 \end{aligned}$	$\begin{aligned} & 0.81 \\ & 1.06 \\ & 1.18 \\ & 4.51 \\ & 1.08 \end{aligned}$	$\begin{gathered} 343 \\ 1100 \\ 1220 \\ 827 \\ 1260 \end{gathered}$	$\begin{gathered} 252 \\ 1 \\ <1 \\ 1 \\ <1 \end{gathered}$	$\begin{aligned} & 0.04 \\ & 0.05 \\ & 0.08 \\ & 0.07 \\ & 0.06 \end{aligned}$	$\begin{gathered} 30 \\ 1 \\ 2 \\ 179 \\ 2 \end{gathered}$	$\begin{aligned} & \hline 690 \\ & 1730 \\ & 1740 \\ & 5900 \\ & 1830 \end{aligned}$	$\begin{aligned} & 69 \\ & <2 \\ & 4 \\ & 3 \\ & 2 \end{aligned}$	$\begin{aligned} & 2.71 \\ & 0.12 \\ & 0.14 \\ & 0.06 \\ & 0.08 \end{aligned}$	$\begin{aligned} & 16 \\ & <2 \\ & <2 \\ & <2 \\ & <2 \end{aligned}$	$\begin{aligned} & \hline 6 \\ & 3 \\ & 5 \\ & 3 \\ & 4 \end{aligned}$
$J 294050$ J 294051 J 294052 J 294053 J 294054		$\begin{aligned} & 3.81 \\ & 3.76 \\ & 4.59 \\ & 3.53 \\ & 4.93 \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \\ & 10 \\ & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & <1 \\ & <1 \\ & <1 \\ & <1 \\ & 1 \end{aligned}$	$\begin{aligned} & 0.90 \\ & 0.99 \\ & 0.34 \\ & 0.48 \\ & 2.40 \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \\ & 10 \\ & 10 \\ & 30 \end{aligned}$	$\begin{aligned} & 1.16 \\ & 1.17 \\ & 1.32 \\ & 1.03 \\ & 3.17 \end{aligned}$	$\begin{aligned} & 1250 \\ & 1140 \\ & 1695 \\ & 1340 \\ & 1665 \end{aligned}$	$\begin{gathered} <1 \\ 4 \\ <1 \\ 1 \\ 1 \\ 1 \end{gathered}$	$\begin{aligned} & 0.05 \\ & 0.04 \\ & 0.02 \\ & 0.04 \\ & 0.05 \end{aligned}$	$\begin{gathered} \hline 2 \\ 2 \\ <1 \\ 3 \\ 89 \end{gathered}$	$\begin{aligned} & 1820 \\ & 1790 \\ & 1650 \\ & 1790 \\ & 3270 \end{aligned}$	$\begin{gathered} \hline 2 \\ 3 \\ 26 \\ 5 \\ 2 \end{gathered}$	$\begin{aligned} & \hline 0.04 \\ & 0.05 \\ & 0.03 \\ & 0.47 \\ & 0.30 \end{aligned}$	$\begin{aligned} & <2 \\ & <2 \\ & <2 \\ & <2 \\ & <2 \end{aligned}$	$\begin{aligned} & 4 \\ & 5 \\ & 4 \\ & 3 \\ & 8 \end{aligned}$
1294055 $J 294056$ $J 294057$ $J 294058$ $J 294059$		$\begin{aligned} & 4.14 \\ & 5.01 \\ & 3.19 \\ & 3.27 \\ & 3.19 \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \\ & <10 \\ & 10 \\ & <10 \end{aligned}$	$\begin{aligned} & <1 \\ & <1 \\ & <1 \\ & <1 \\ & <1 \end{aligned}$	$\begin{aligned} & 0.15 \\ & 2.70 \\ & 1.03 \\ & 0.82 \\ & 0.73 \end{aligned}$	$\begin{aligned} & 10 \\ & 50 \\ & 10 \\ & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & 0.89 \\ & 3.71 \\ & 1.11 \\ & 0.99 \\ & 0.92 \end{aligned}$	$\begin{gathered} \hline 685 \\ 1455 \\ 1565 \\ 1220 \\ 1215 \end{gathered}$	$\begin{gathered} 219 \\ 1 \\ 1 \\ 1 \\ 1 \end{gathered}$	$\begin{aligned} & \hline 0.09 \\ & 0.04 \\ & 0.03 \\ & 0.04 \\ & 0.03 \end{aligned}$	$\begin{gathered} 23 \\ 116 \\ 5 \\ 2 \\ 2 \end{gathered}$	$\begin{aligned} & \hline 670 \\ & 4390 \\ & 1890 \\ & 1700 \\ & 1730 \end{aligned}$	$\begin{gathered} \hline 10 \\ 5 \\ 9 \\ 3 \\ 3 \end{gathered}$	$\begin{aligned} & 0.76 \\ & 0.41 \\ & 1.28 \\ & 0.21 \\ & 0.22 \end{aligned}$	$\begin{gathered} 4 \\ 3 \\ <2 \\ <2 \\ <2 \end{gathered}$	$\begin{aligned} & 5 \\ & 7 \\ & 4 \\ & 3 \\ & 3 \end{aligned}$
$\begin{aligned} & J 294060 \\ & J 294061 \\ & J 294062 \\ & J 294063 \\ & J 294064 \end{aligned}$		$\begin{aligned} & 3.31 \\ & 3.43 \\ & 2.89 \\ & 3.08 \\ & 3.05 \end{aligned}$	$\begin{aligned} & <10 \\ & 10 \\ & <10 \\ & <10 \\ & <10 \end{aligned}$	$\begin{aligned} & <1 \\ & <1 \\ & <1 \\ & <1 \\ & <1 \end{aligned}$	$\begin{aligned} & 0.73 \\ & 1.04 \\ & 0.46 \\ & 0.79 \\ & 0.33 \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \\ & 10 \\ & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & \hline 0.94 \\ & 1.07 \\ & 0.91 \\ & 0.93 \\ & 0.86 \end{aligned}$	$\begin{aligned} & 1385 \\ & 1205 \\ & 1215 \\ & 1215 \\ & 1445 \end{aligned}$	$\begin{gathered} \hline 2 \\ <1 \\ 1 \\ 2 \\ 2 \\ <1 \end{gathered}$	$\begin{aligned} & 0.03 \\ & 0.03 \\ & 0.02 \\ & 0.03 \\ & 0.02 \end{aligned}$	$\begin{gathered} c 1 \\ 1 \\ 1 \\ 2 \\ 1 \end{gathered}$	$\begin{aligned} & 1670 \\ & 1700 \\ & 1620 \\ & 1790 \\ & 1700 \end{aligned}$	$\begin{gathered} \hline 8 \\ <2 \\ 3 \\ 4 \\ 4 \\ 4 \end{gathered}$	$\begin{aligned} & 0.40 \\ & 0.06 \\ & 0.48 \\ & 0.13 \\ & 0.52 \end{aligned}$	$\begin{aligned} & <2 \\ & <2 \\ & <2 \\ & <2 \\ & <2 \end{aligned}$	$\begin{aligned} & 3 \\ & 3 \\ & 2 \\ & 2 \\ & 2 \end{aligned}$
$\begin{aligned} & \mathrm{J} 294065 \\ & \mathrm{~J} 294066 \\ & \mathrm{~J} 294067 \\ & \mathrm{~J} 294068 \\ & \mathrm{~J} 294069 \end{aligned}$		$\begin{aligned} & 3.39 \\ & 3.30 \\ & 3.05 \\ & 3.44 \\ & 3.60 \end{aligned}$	$\begin{gathered} 10 \\ <10 \\ 10 \\ 10 \\ 10 \end{gathered}$	$\begin{aligned} & <1 \\ & <1 \\ & <1 \\ & <1 \\ & <1 \end{aligned}$	$\begin{aligned} & 0.95 \\ & 0.92 \\ & 0.79 \\ & 0.93 \\ & 0.76 \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \\ & 10 \\ & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & 1.07 \\ & 1.02 \\ & 0.90 \\ & 1.09 \\ & 1.14 \end{aligned}$	$\begin{aligned} & 1330 \\ & 1150 \\ & 1075 \\ & 1120 \\ & 1090 \end{aligned}$	$\begin{gathered} <1 \\ <1 \\ 3 \\ <1 \\ <1 \\ <1 \end{gathered}$	$\begin{aligned} & 0.03 \\ & 0.03 \\ & 0.05 \\ & 0.04 \\ & 0.06 \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & 1750 \\ & 1720 \\ & 1590 \\ & 1790 \\ & 1850 \end{aligned}$	$\begin{aligned} & <2 \\ & <2 \\ & 2 \\ & 2 \\ & 2 \\ & <2 \end{aligned}$	$\begin{aligned} & 0.08 \\ & 0.06 \\ & 0.21 \\ & 0.22 \\ & 0.10 \end{aligned}$	$\begin{aligned} & <2 \\ & <2 \\ & <2 \\ & <2 \\ & <2 \end{aligned}$	$\begin{aligned} & 3 \\ & 3 \\ & 2 \\ & 3 \\ & 5 \end{aligned}$
$\begin{aligned} & \mathrm{J} 294070 \\ & \mathrm{~J} 294071 \\ & \mathrm{~J} 294072 \\ & \mathrm{~J} 294073 \\ & \mathrm{~J} 294074 \end{aligned}$		$\begin{aligned} & 3.49 \\ & 3.41 \\ & 3.36 \\ & 3.60 \\ & 3.05 \end{aligned}$	$\begin{gathered} 10 \\ 10 \\ <10 \\ 10 \\ <10 \end{gathered}$	$\begin{aligned} & <1 \\ & <1 \\ & <1 \\ & <1 \\ & <1 \end{aligned}$	$\begin{aligned} & 1.23 \\ & 1.27 \\ & 0.48 \\ & 1.00 \\ & 0.72 \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \\ & 10 \\ & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & 1.10 \\ & 1.18 \\ & 1.04 \\ & 1.21 \\ & 0.96 \end{aligned}$	$\begin{aligned} & 1275 \\ & 1120 \\ & 1260 \\ & 1240 \\ & 1220 \end{aligned}$	$\begin{aligned} & <1 \\ & <1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 0.06 \\ & 0.06 \\ & 0.04 \\ & 0.06 \\ & 0.03 \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \\ & 2 \\ & 1 \\ & 2 \end{aligned}$	$\begin{aligned} & 1850 \\ & 1770 \\ & 1860 \\ & 1820 \\ & 1750 \end{aligned}$	$\begin{gathered} \hline 2 \\ <2 \\ 3 \\ 3 \\ 3 \\ 3 \end{gathered}$	$\begin{aligned} & \hline 0.10 \\ & 0.12 \\ & 0.27 \\ & 0.06 \\ & 0.19 \end{aligned}$	$\begin{gathered} <2 \\ 2 \\ <2 \\ <2 \\ <2 \\ <2 \end{gathered}$	$\begin{aligned} & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \end{aligned}$
$\begin{aligned} & \mathrm{J} 294075 \\ & J 294076 \\ & J 294077 \\ & J 294078 \\ & J 294079 \end{aligned}$		$\begin{aligned} & 3.46 \\ & 3.13 \\ & 4.55 \\ & 2.82 \\ & 3.49 \end{aligned}$	$\begin{aligned} & \begin{array}{c} 10 \\ <10 \\ <10 \\ <10 \\ 10 \end{array} \end{aligned}$	$\begin{aligned} & <1 \\ & <1 \\ & 1 \\ & <1 \\ & <1 \end{aligned}$	$\begin{aligned} & 1.18 \\ & 0.51 \\ & 0.47 \\ & 0.38 \\ & 0.56 \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \\ & 20 \\ & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & 1.14 \\ & 0.93 \\ & 0.80 \\ & 0.98 \\ & 1.19 \end{aligned}$	$\begin{aligned} & 1135 \\ & 1330 \\ & 341 \\ & 1425 \\ & 1315 \end{aligned}$	$\begin{gathered} 1 \\ 1 \\ 247 \\ 1 \\ <1 \end{gathered}$	$\begin{aligned} & \hline 0.05 \\ & 0.04 \\ & 0.05 \\ & 0.04 \\ & 0.05 \end{aligned}$	$\begin{gathered} \hline 2 \\ <1 \\ 29 \\ 1 \\ 8 \end{gathered}$	$\begin{gathered} 1840 \\ 1770 \\ 700 \\ 1790 \\ 1850 \end{gathered}$	$\begin{gathered} c 2 \\ 4 \\ 71 \\ 5 \\ 4 \\ 4 \end{gathered}$	$\begin{aligned} & 0.06 \\ & 0.74 \\ & 2.67 \\ & 0.30 \\ & 0.13 \end{aligned}$	$\begin{aligned} & <2 \\ & <2 \\ & 16 \\ & <2 \\ & <2 \end{aligned}$	$\begin{aligned} & 3 \\ & 2 \\ & 6 \\ & 2 \\ & 4 \end{aligned}$

Comments: Additional Au- AA23 check results for sample J294262 are 0.145 ppm and 0.321 ppm .

CERTIFICATE OF ANALYSIS VA11001920

Comments: Additional Au-AA23 check results for sample J294262 are 0.145 ppm and 0.321 ppm .

CERTIFICATE OF ANALYSIS VA11001920

Sample Description	Method Analyte Units LOR	WEF-21	Au- AA23	Au-CRA21	ME- ICP41	ME-ICP41	ME. ICP4 ${ }_{\text {As }}$	$\text { ME- } \operatorname{ICP4}$	$M E-1 C P 41$	$\text { ME. } 1 \subset P 41$	$\text { ME- } \mid C P 41$	ME-ICP41	ME- ICP41	ME. ICP41	ME-ICP41	ME- ICP41
		kg	ppm	$\begin{gathered} \mathrm{Au} \\ \mathrm{ppm} \end{gathered}$	$\begin{gathered} \mathrm{Ag} \\ \mathrm{ppm} \end{gathered}$	$\begin{aligned} & \mathrm{Al} \\ & \mathrm{x} \end{aligned}$	$\begin{aligned} & \text { As } \\ & \text { ppm } \end{aligned}$	$\begin{gathered} \mathrm{B} \\ \mathrm{ppm} \end{gathered}$	$\begin{gathered} \mathrm{Ba} \\ \mathrm{ppm} \end{gathered}$	$\begin{gathered} \mathrm{Be} \\ \mathrm{ppm} \end{gathered}$	ppm	$\begin{aligned} & \mathrm{Ca} \\ & \% \end{aligned}$	$\begin{gathered} \mathrm{Cd} \\ \mathrm{ppm} \end{gathered}$	Co ppm	$\begin{gathered} \mathrm{Cr} \\ \mathrm{ppm} \end{gathered}$	$\begin{gathered} \mathrm{Cu} \\ \text { pom } \end{gathered}$
		0.02	0.005	0.05	0.2	0.01	2	10	10	0.5	2	0.01	0.5	1	1	1
J294080		0.52	1.510		22.5	1.25	<2	<10	60	0.5	12	6.94	4.4	24	1	5390
J 294081		1.14	<0.005		0.7	1.13	2	<10	30	<0.5	<2	4.82	<0.5	8	1	154
1294082		0.72	0.044		0.6	0.56	<2	<10	30	<0.5	<2	4.19	0.8	12	1	35
J 294083		0.32	3.72		18.8	0.08	<2	<10	10	<0.5	8	0.87	50.8	4	5	4490
J294084		1.56	0.244		1.3	0.44	<2	<10	40	<0.5	2	3.56	0.6	14	1	49
J294085		0.82	0.423		1.1	0.70	<2	<10	50	<0.5	<2	3.75	0.5	14	1	262
J294086		0.62	1.470		2.6	0.37	4	<10	40	<0.5	2	214	0.7	11	3	626
J 294087		1.44	0.016		1.2	0.52	<2	<10	70	<0.5	<2	5.28	<0.5	7	1	237
J294088		0.08	0.553		1.2	2.06	5	<10	90	<0.5	<2	0.81	<0.5	11	35	5740
J 294089		1.02	0.148		0.7	1.49	<2	<10	50	0.5	<2	4.80	<0.5	15	1	122
1294090		0.78	0.520		1.4	1.06	<2	<10	30	0.5	<2	3.95	1.0	17	1	329
J294091		1.58	0.078		1.3	1.18	<2	<10	50	<0.5	<2	4.02	<0.5	14	1	133
1294092		0.74	2.86		4.2	0.61	7	<10	30	<0.5	7	4.93	1.6	19	<1	83
J 294093		0.46	0.056		1.0	1.26	3	<10	30	<0.5	<2	5.73	<0.5	12	2	369
J294094		0.72	0.174		1.1	0.64	<2	<10	40	<0.5	<2	3.99	<0.5	16	1	377
J294095		2.96	0.005		1.2	1.35	<2	<10	20	<0.5	<2	5.28	<0.5	13	1	327
J294096		1.74	0.151		2.4	0.66	<2	<10	140	<0.5	<2	4.06	0.5	14	1	722
J 294097		0.44	0.010		22	1.02	<2	<10	150	<0.5	<2	4.02	<0.5	15	1	203
J294098		0.54	0.176		1.5	0.44	<2	<10	200	<0.5	<2	3.74	0.8	15	1	54
J294099		0.60	0.511		1.8	0.48	<2	<10	200	<0.5	<2	4.10	1.1	16	1	90
J294178		0.94	0.921		17.5	2.37	<2	<10	240	1.0	<2	5.59	3.7	19	71	6710
1294179		0.76	0.026		2.5	1.19	<2	<10	30	<0.5	<2	15.3	<0.5	10	1	920
J294180		1.12	0.142		0.8	1.47	2	<10	70	0.5	<2	3.00	<0.5	14	2	171
J294181		0.74	0.015		0.6	1.34	<2	<10	100	0.5	<2	3.12	<0.5	15	2	43
J294182		0.70	0.244		2.4	1.03	<2	<10	40	<0.5	7	3.40	4.5	11	2	361
J294183		2.16	0.088		0.8	1.13	<2	<10	40	0.5	<2	3.45	<0.5	12	1	200
J294184		0.34	>10.0	23.6	29.0	0.53	2	<10	30	<0.5	67	0.91	2.7	15	3	1680
J294185		0.80	0.151		0.9	1.08	<2	<10	40	0.5	2	3.52	0.7	13	2	181
J294186		1.22	1.150		0.7	1.14	<2	<10	60	0.5	3	3.42	<0.5	13	1	55
1294187		0.28	3.70		2.7	1.43	<2	<10	40	<0.5	3	3.41	1.0	17	2	1465
J294188		1.88	0.005		<0.2	1.62	<2	<10	90	<0.5	3	0.50	<0.5	4	7	7
J294189		1.34	1.000		25	1.18	<2	<10	40	0.6	3	3.59	0.8	13	1	841
J294190		0.72	0.257		0.7	1.50	<2	<10	40	0.7	<2	3.63	<0.5	16	1	122
J294191		0.76	0.583		0.5	1.32	<2	<10	30	0.6	2	2.80	<0.5	14	1	78
1294192		0.78	0.021		0.5	1.42	<2	<10	40	0.5	<2	2.40	<0.5	14	2	115
J294193		0.28	0.016		0.5	1.62	<2	<10	40	<0.5	<2	3.42	<0.5	14	1	226
J 294194		0.52	0.092		2.0	1.65	2	<10	50	<0.5	3	2.37	0.8	16	2	1320
J294195		0.56	274		1.4	1.51	<2	<10	60	<0.5	2	3.13	<0.5	11	2	273
J294196		1.64	0.079		1.0	1.34	2	<10	40	<0.5	<2	5.89	<0.5	13	1	25
1294197		0.28	0.077		0.5	1.78	2	<10	50	<0.5	2	3.60	<0.5	21	2	30

Comments: Additional Au- AA23 check results for sample J 294262 are 0.145 ppm and 0.321 ppm .

CERTIFICATE OF ANALYSIS VA11001920

Sample Description	Method Analyte Units LOR	$\begin{gathered} \text { ME- ICP41 } \\ \mathrm{Fe} \\ \% \\ 0.01 \end{gathered}$	$\begin{gathered} \text { ME- ICP41 } \\ \text { Ca } \\ \text { ppm } \\ 10 \end{gathered}$	$\begin{gathered} \mathrm{ME}-\mathrm{ICP41} \\ \mathrm{Hg} \\ \mathrm{ppm} \\ 1 \end{gathered}$	$\begin{gathered} \text { ME- ICP41 } \\ \text { K } \\ \% \\ 0.01 \end{gathered}$	$\begin{gathered} \text { ME. ICP41 } \\ \text { La } \\ \text { ppm } \\ 10 \end{gathered}$	$\begin{gathered} \text { ME. ICP41 } \\ \text { Mg } \\ \% \\ 0.01 \end{gathered}$	$\begin{gathered} \text { ME- ICP41 } \\ \mathrm{Mn} \\ \mathrm{ppm} \\ 5 \end{gathered}$	$\begin{gathered} \text { ME-ICP41 } \\ \text { M0 } \\ \text { ppm } \\ 1 \end{gathered}$	$\begin{gathered} \text { ME-ICP41 } \\ \mathrm{Na} \\ \% \\ 0.01 \end{gathered}$	$\begin{gathered} \text { ME- } \operatorname{ICP41} \\ \mathrm{Ni} \\ \mathrm{ppm} \\ 1 \end{gathered}$	$\begin{gathered} \text { ME- }-1 C P 41 \\ P \\ \text { ppm } \\ 10 \end{gathered}$	$\begin{gathered} \text { ME- } \operatorname{ICP41} \\ \text { Pb } \\ \text { ppm } \\ 2 \end{gathered}$	$\begin{gathered} \text { ME- ICP41 } \\ \text { S } \\ \% \\ 0.01 \end{gathered}$	$\begin{gathered} \text { ME. } \operatorname{ICP4\|} \\ \text { Sb } \\ \text { ppm } \\ 2 \end{gathered}$	$\begin{gathered} \text { ME. } \mathrm{ICP41} \\ \mathrm{Sc} \\ \mathrm{ppm} \\ 1 \end{gathered}$
$\begin{aligned} & J 294080 \\ & J 294081 \\ & J 294082 \\ & J 294083 \\ & J 294084 \end{aligned}$		$\begin{aligned} & 5.78 \\ & 1.92 \\ & 3.11 \\ & 1.98 \\ & 3.07 \end{aligned}$	$\begin{aligned} & <10 \\ & <10 \\ & <10 \\ & <10 \\ & <10 \end{aligned}$	$\begin{aligned} & <1 \\ & <1 \\ & <1 \\ & <1 \\ & <1 \end{aligned}$	$\begin{aligned} & 0.12 \\ & 0.50 \\ & 0.41 \\ & 0.06 \\ & 0.28 \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \\ & 10 \\ & <10 \\ & 10 \end{aligned}$	$\begin{aligned} & 1.66 \\ & 1.03 \\ & 1.00 \\ & 0.21 \\ & 0.94 \end{aligned}$	$\begin{gathered} 3000 \\ 1215 \\ 1550 \\ 555 \\ 1520 \end{gathered}$	$\begin{gathered} 3 \\ <1 \\ <1 \\ 1 \\ 2 \end{gathered}$	0.04 0.05 0.04 0.02 0.03	$\begin{gathered} 1 \\ 1 \\ <1 \\ 1 \\ 1 \\ 1 \end{gathered}$	$\begin{aligned} & 1390 \\ & 1820 \\ & 1790 \\ & 210 \\ & 1740 \end{aligned}$	$\begin{gathered} 117 \\ 4 \\ 5 \\ 108 \\ 15 \end{gathered}$	$\begin{aligned} & 4.36 \\ & 0.02 \\ & 0.32 \\ & 1.57 \\ & 0.58 \end{aligned}$	$\begin{aligned} & <2 \\ & <2 \\ & <2 \\ & <2 \\ & <2 \end{aligned}$	$\begin{aligned} & 7 \\ & 4 \\ & 2 \\ & 1 \\ & 2 \end{aligned}$
$\begin{aligned} & J 294085 \\ & J 294086 \\ & J 294087 \\ & J 294088 \\ & J 294089 \end{aligned}$		$\begin{aligned} & 3.31 \\ & 2.08 \\ & 2.53 \\ & 3.97 \\ & 3.99 \end{aligned}$	$\begin{gathered} \hline<10 \\ <10 \\ <10 \\ 10 \\ <10 \end{gathered}$	$\begin{aligned} & <1 \\ & <1 \\ & <1 \\ & <1 \\ & <1 \\ & <1 \end{aligned}$	$\begin{aligned} & \hline 0.39 \\ & 0.18 \\ & 0.32 \\ & 0.14 \\ & 0.79 \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \\ & 10 \\ & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & 0.96 \\ & 0.40 \\ & 0.47 \\ & 0.86 \\ & 1.29 \end{aligned}$	$\begin{gathered} 1275 \\ 716 \\ 1200 \\ 656 \\ 1685 \end{gathered}$	$\begin{gathered} 1 \\ 3 \\ 10 \\ 212 \\ 1 \end{gathered}$	$\begin{aligned} & \hline 0.04 \\ & 0.04 \\ & 0.05 \\ & 0.10 \\ & 0.04 \end{aligned}$	$\begin{gathered} \hline<1 \\ 1 \\ <1 \\ 23 \\ 2 \end{gathered}$	$\begin{aligned} & \hline 1790 \\ & 1010 \\ & 1880 \\ & 640 \\ & 2100 \end{aligned}$	$\begin{gathered} \hline 3 \\ 11 \\ 3 \\ 12 \\ 4 \end{gathered}$	$\begin{aligned} & \hline 0.69 \\ & 1.21 \\ & 0.12 \\ & 0.73 \\ & 0.50 \end{aligned}$	$\begin{gathered} <2 \\ <2 \\ <2 \\ 2 \\ <2 \end{gathered}$	$\begin{aligned} & \hline 3 \\ & 1 \\ & 2 \\ & 5 \\ & 3 \end{aligned}$
$J 294090$ $J 294091$ $J 294092$ $J 294093$ $J 294094$		$\begin{aligned} & 3.24 \\ & 3.16 \\ & 4.20 \\ & 3.71 \\ & 3.73 \end{aligned}$	$\begin{aligned} & <10 \\ & <10 \\ & <10 \\ & 10 \\ & <10 \end{aligned}$	$\begin{aligned} & <1 \\ & <1 \\ & <1 \\ & <1 \\ & <1 \end{aligned}$	$\begin{aligned} & 0.56 \\ & 0.55 \\ & 0.27 \\ & 0.69 \\ & 0.48 \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \\ & 10 \\ & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & 0.92 \\ & 0.99 \\ & 0.66 \\ & 0.99 \\ & 0.78 \end{aligned}$	$\begin{aligned} & 1635 \\ & 1430 \\ & 1770 \\ & 2030 \\ & 1460 \end{aligned}$	$\begin{gathered} \hline 3 \\ 1 \\ 2 \\ <1 \\ 1 \end{gathered}$	$\begin{aligned} & \hline 0.03 \\ & 0.04 \\ & 0.03 \\ & 0.05 \\ & 0.04 \end{aligned}$	$\begin{gathered} \hline<1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{gathered}$	$\begin{aligned} & \hline 1870 \\ & 1870 \\ & 1710 \\ & 1620 \\ & 1740 \end{aligned}$	$\begin{gathered} \hline 6 \\ 8 \\ 29 \\ 2 \\ 3 \\ \hline \end{gathered}$	$\begin{aligned} & 1.26 \\ & 0.25 \\ & 3.29 \\ & 0.05 \\ & 0.62 \end{aligned}$	$\begin{aligned} & <2 \\ & <2 \\ & <2 \\ & <2 \\ & <2 \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \\ & 2 \\ & 4 \\ & 3 \end{aligned}$
$\begin{aligned} & \mathrm{J} 294095 \\ & \mathrm{~J} 294096 \\ & \mathrm{~J} 294097 \\ & \mathrm{~J} 294098 \\ & \mathrm{~J} 294099 \end{aligned}$		$\begin{aligned} & 4.78 \\ & 3.10 \\ & 3.44 \\ & 3.38 \\ & 3.25 \end{aligned}$	$\begin{aligned} & \hline 10 \\ & <10 \\ & <10 \\ & <10 \\ & <10 \end{aligned}$	$\begin{gathered} 1 \\ <1 \\ <1 \\ <1 \\ <1 \\ <1 \end{gathered}$	$\begin{aligned} & \hline 0.20 \\ & 0.41 \\ & 0.57 \\ & 0.34 \\ & 0.35 \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \\ & 10 \\ & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & 1.15 \\ & 0.90 \\ & 1.05 \\ & 1.03 \\ & 0.82 \end{aligned}$	$\begin{aligned} & 2060 \\ & 1395 \\ & 1450 \\ & 1505 \\ & 1485 \end{aligned}$	$\begin{gathered} \hline 1 \\ 2 \\ <1 \\ <1 \\ <1 \end{gathered}$	$\begin{aligned} & 0.04 \\ & 0.04 \\ & 0.05 \\ & 0.04 \\ & 0.05 \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1630 \\ & 1680 \\ & 1800 \\ & 1830 \\ & 1960 \end{aligned}$	$\begin{gathered} c 2 \\ 6 \\ <2 \\ 4 \\ 4 \end{gathered}$	$\begin{aligned} & \hline 0.05 \\ & 0.89 \\ & 0.33 \\ & 0.78 \\ & 1.08 \end{aligned}$	$\begin{aligned} & <2 \\ & <2 \\ & <2 \\ & <2 \\ & <2 \end{aligned}$	$\begin{aligned} & \hline 6 \\ & 2 \\ & 4 \\ & 2 \\ & 2 \end{aligned}$
$\begin{aligned} & J 294178 \\ & J 294179 \\ & J 294180 \\ & J 294181 \\ & J 294182 \end{aligned}$		$\begin{aligned} & 4.85 \\ & 2.95 \\ & 3.36 \\ & 3.45 \\ & 2.78 \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \\ & <10 \\ & <10 \\ & <10 \end{aligned}$	$\begin{aligned} & <1 \\ & <1 \\ & <1 \\ & <1 \\ & <1 \\ & <1 \end{aligned}$	$\begin{aligned} & 2.29 \\ & 0.83 \\ & 1.03 \\ & 0.94 \\ & 0.50 \end{aligned}$	$\begin{aligned} & 40 \\ & 10 \\ & 10 \\ & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & \hline 2.42 \\ & 0.81 \\ & 1.04 \\ & 0.95 \\ & 0.86 \end{aligned}$	$\begin{aligned} & 1565 \\ & 2160 \\ & 1170 \\ & 1155 \\ & 1365 \end{aligned}$	$\begin{gathered} 23 \\ 18 \\ 1 \\ 1 \\ 1 \end{gathered}$	$\begin{aligned} & \hline 0.06 \\ & 0.04 \\ & 0.05 \\ & 0.06 \\ & 0.03 \end{aligned}$	$\begin{gathered} \hline 55 \\ 2 \\ 1 \\ 4 \\ 1 \end{gathered}$	3560 1100 1750 1760 1650	$\begin{gathered} \hline 112 \\ 6 \\ 3 \\ 6 \\ 10 \end{gathered}$	$\begin{aligned} & 1.07 \\ & 1.12 \\ & 0.29 \\ & 0.39 \\ & 0.46 \end{aligned}$	$\begin{aligned} & <2 \\ & <2 \\ & <2 \\ & <2 \\ & <2 \end{aligned}$	$\begin{aligned} & 9 \\ & 2 \\ & 3 \\ & 3 \\ & 2 \end{aligned}$
$\begin{aligned} & \mathrm{J} 294183 \\ & \mathrm{~J} 294184 \\ & \mathrm{~J} 294185 \\ & \mathrm{~J} 294186 \\ & \mathrm{~J} 294187 \end{aligned}$		$\begin{aligned} & 3.01 \\ & 4.31 \\ & 2.71 \\ & 2.94 \\ & 3.36 \end{aligned}$	$\begin{aligned} & <10 \\ & <10 \\ & <10 \\ & <10 \\ & 10 \end{aligned}$	$\begin{aligned} & <1 \\ & <1 \\ & <1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & \hline 0.56 \\ & 0.29 \\ & 0.56 \\ & 0.67 \\ & 0.64 \end{aligned}$	$\begin{gathered} \hline 10 \\ <10 \\ 10 \\ 10 \\ 10 \end{gathered}$	$\begin{aligned} & \hline 0.92 \\ & 0.23 \\ & 0.88 \\ & 0.90 \\ & 0.98 \end{aligned}$	$\begin{gathered} \hline 1325 \\ 455 \\ 1245 \\ 1210 \\ 1415 \end{gathered}$	$\begin{gathered} \hline<1 \\ 12 \\ 2 \\ 1 \\ 1 \end{gathered}$	$\begin{aligned} & 0.04 \\ & 0.01 \\ & 0.02 \\ & 0.04 \\ & 0.04 \end{aligned}$	$\begin{aligned} & \hline 2 \\ & 1 \\ & 1 \\ & 2 \\ & 2 \end{aligned}$	$\begin{gathered} 1680 \\ 730 \\ 1890 \\ 1800 \\ 1730 \end{gathered}$	$\begin{gathered} \hline 4 \\ 296 \\ 7 \\ 6 \\ 5 \end{gathered}$	$\begin{aligned} & 0.17 \\ & 4.39 \\ & 0.70 \\ & 0.48 \\ & 1.23 \end{aligned}$	$\begin{aligned} & <2 \\ & <2 \\ & <2 \\ & <2 \\ & <2 \end{aligned}$	$\begin{aligned} & 2 \\ & 1 \\ & 2 \\ & 2 \\ & 3 \end{aligned}$
$\begin{aligned} & \mathrm{J} 294188 \\ & \mathrm{~J} 294189 \\ & \mathrm{~J} 294190 \\ & \mathrm{~J} 294191 \\ & \mathrm{~J} 294192 \end{aligned}$		$\begin{aligned} & 2.68 \\ & 3.27 \\ & 4.19 \\ & 3.35 \\ & 3.22 \end{aligned}$	$\begin{aligned} & 10 \\ & <10 \\ & <10 \\ & 10 \\ & 10 \end{aligned}$	$\begin{gathered} c 1 \\ 1 \\ <1 \\ <1 \\ 1 \end{gathered}$	$\begin{aligned} & 1.06 \\ & 0.56 \\ & 0.92 \\ & 0.33 \\ & 0.81 \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \\ & 10 \\ & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & 0.70 \\ & 0.99 \\ & 1.24 \\ & 0.96 \\ & 1.00 \end{aligned}$	$\begin{aligned} & \hline 553 \\ & 1520 \\ & 1475 \\ & 1175 \\ & 1060 \end{aligned}$	$\begin{gathered} \hline 1 \\ 1 \\ 1 \\ 2 \\ 2 \\ 10 \end{gathered}$	$\begin{aligned} & 0.10 \\ & 0.03 \\ & 0.04 \\ & 0.04 \\ & 0.06 \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & \hline 730 \\ & 1830 \\ & 2140 \\ & 1700 \\ & 1610 \end{aligned}$	$\begin{aligned} & \hline 3 \\ & 6 \\ & 4 \\ & 5 \\ & 6 \end{aligned}$	$\begin{aligned} & 0.03 \\ & 0.47 \\ & 0.64 \\ & 0.66 \\ & 0.24 \end{aligned}$	$\begin{aligned} & <2 \\ & <2 \\ & <2 \\ & <2 \\ & <2 \end{aligned}$	$\begin{aligned} & \hline 2 \\ & 3 \\ & 4 \\ & 3 \\ & 3 \end{aligned}$
$\begin{aligned} & \mathrm{J} 294193 \\ & \mathrm{~J} 294194 \\ & \mathrm{~J} 294195 \\ & \mathrm{~J} 294196 \\ & \mathrm{~J} 294197 \end{aligned}$		$\begin{aligned} & 3.55 \\ & 3.33 \\ & 2.87 \\ & 3.50 \\ & 3.97 \end{aligned}$	$\begin{gathered} 10 \\ 10 \\ <10 \\ 10 \\ 10 \end{gathered}$	$\begin{gathered} c< \\ 1 \\ <1 \\ <1 \\ 1 \end{gathered}$	$\begin{aligned} & \hline 0.87 \\ & 1.13 \\ & 0.75 \\ & 0.16 \\ & 1.27 \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \\ & 10 \\ & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & 1.13 \\ & 1.11 \\ & 1.03 \\ & 1.10 \\ & 1.26 \end{aligned}$	$\begin{aligned} & 1290 \\ & 1015 \\ & 1290 \\ & 1585 \\ & 1430 \end{aligned}$	$\begin{gathered} 1 \\ 6 \\ 2 \\ <1 \\ 1 \end{gathered}$	$\begin{aligned} & 0.05 \\ & 0.05 \\ & 0.04 \\ & 0.06 \\ & 0.04 \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \\ & 2 \\ & 1 \\ & 2 \end{aligned}$	$\begin{aligned} & 1750 \\ & 1760 \\ & 1640 \\ & 1450 \\ & 1600 \end{aligned}$	$\begin{aligned} & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 6 \\ & 4 \end{aligned}$	$\begin{aligned} & 0.20 \\ & 0.56 \\ & 0.54 \\ & 0.96 \\ & 0.73 \end{aligned}$	$\begin{aligned} & <2 \\ & <2 \\ & <2 \\ & <2 \\ & <2 \end{aligned}$	$\begin{aligned} & 4 \\ & 3 \\ & 3 \\ & 3 \\ & 4 \\ & 4 \end{aligned}$

Comments: Additional Au- AA23 check results for sample J294262 are 0.145 ppm and 0.321 ppm .

CERTIFICATE OF ANALYSIS VA11001920

Sample DescriptionMethod Analyte Units LOR	$\begin{gathered} \text { ME- ICP41 } \\ \text { Sr } \\ \text { ppm } \\ 1 \end{gathered}$	$\begin{gathered} \text { ME-ICP4 } \\ \text { Th } \\ \text { ppm } \\ 20 \end{gathered}$	$\begin{gathered} \text { ME- ICP41 } \\ \mathrm{Ti} \\ \% \\ 0.01 \end{gathered}$	$\begin{gathered} \text { ME- } \operatorname{ICP4} 1 \\ \mathrm{TI} \\ \mathrm{ppm} \\ 10 \end{gathered}$	$\begin{gathered} \text { ME- ICP41 } \\ U \\ \text { ppm } \\ 10 \end{gathered}$	$\begin{gathered} \text { ME- ICP4 } \\ V \\ \mathrm{ppm} \\ 1 \end{gathered}$	$\begin{gathered} \text { ME- ICP41 } \\ \text { W } \\ \text { ppm } \\ 10 \end{gathered}$	$\begin{gathered} \text { ME- ICP41 } \\ \mathrm{Zn} \\ \mathrm{ppm} \\ 2 \end{gathered}$	$\begin{gathered} \mathrm{Cu} \cdot \mathrm{OC} 46 \\ \mathrm{Cu} \\ \% \\ 0.001 \end{gathered}$
$\begin{aligned} & J 294080 \\ & J 294081 \\ & J 294082 \\ & J 294083 \\ & J 294084 \end{aligned}$	$\begin{gathered} 749 \\ 241 \\ 326 \\ 85 \\ 253 \end{gathered}$	$\begin{aligned} & <20 \\ & <20 \\ & <20 \\ & <20 \\ & <20 \end{aligned}$	$\begin{aligned} & 0.02 \\ & 0.07 \\ & 0.02 \\ & <0.01 \\ & 0.01 \end{aligned}$	$\begin{aligned} & <10 \\ & <10 \\ & <10 \\ & <10 \\ & <10 \end{aligned}$	$\begin{aligned} & <10 \\ & <10 \\ & <10 \\ & <10 \\ & <10 \end{aligned}$	$\begin{gathered} 42 \\ 65 \\ 43 \\ 3 \\ 34 \end{gathered}$	$\begin{gathered} 10 \\ <10 \\ <10 \\ <10 \\ <10 \end{gathered}$	$\begin{aligned} & 81 \\ & 42 \\ & 52 \\ & 810 \\ & 42 \end{aligned}$	
$J 294085$ $J 294086$ $J 294087$ $J 294088$ $J 294089$	$\begin{gathered} \hline 395 \\ 171 \\ 755 \\ 43 \\ 526 \end{gathered}$	$\begin{aligned} & <20 \\ & <20 \\ & <20 \\ & <20 \\ & <20 \end{aligned}$	$\begin{aligned} & \hline 0.03 \\ & 0.01 \\ & 0.05 \\ & 0.14 \\ & 0.07 \end{aligned}$	$\begin{aligned} & <10 \\ & <10 \\ & <10 \\ & <10 \\ & <10 \end{aligned}$	$\begin{aligned} & <10 \\ & <10 \\ & <10 \\ & <10 \\ & <10 \end{aligned}$	$\begin{aligned} & 48 \\ & 18 \\ & 60 \\ & 62 \\ & 69 \end{aligned}$	$\begin{aligned} & <10 \\ & <10 \\ & <10 \\ & <10 \\ & <10 \end{aligned}$	$\begin{aligned} & 40 \\ & 25 \\ & 24 \\ & 77 \\ & 66 \end{aligned}$	
$J 294090$ $J 294091$ $J 294092$ $J 294093$ $J 294094$	$\begin{aligned} & 479 \\ & 483 \\ & 343 \\ & 280 \\ & 502 \end{aligned}$	$\begin{aligned} & <20 \\ & <20 \\ & <20 \\ & <20 \\ & <20 \end{aligned}$	$\begin{aligned} & 0.05 \\ & 0.05 \\ & 0.01 \\ & 0.14 \\ & 0.05 \end{aligned}$	$\begin{aligned} & <10 \\ & <10 \\ & <10 \\ & <10 \\ & <10 \end{aligned}$	$\begin{aligned} & <10 \\ & <10 \\ & <10 \\ & <10 \\ & <10 \end{aligned}$	$\begin{gathered} 43 \\ 58 \\ 14 \\ 141 \\ 59 \end{gathered}$	$\begin{aligned} & <10 \\ & <10 \\ & <10 \\ & <10 \\ & <10 \end{aligned}$	$\begin{aligned} & \hline 41 \\ & 64 \\ & 46 \\ & 53 \\ & 51 \end{aligned}$	
J294095 J294096 J294097 J294098 J294099	$\begin{aligned} & \hline 545 \\ & 1625 \\ & 1885 \\ & 1310 \\ & 1290 \end{aligned}$	$\begin{aligned} & <20 \\ & <20 \\ & <20 \\ & <20 \\ & <20 \end{aligned}$	$\begin{aligned} & \hline 0.08 \\ & 0.02 \\ & 0.06 \\ & 0.02 \\ & 0.01 \end{aligned}$	$\begin{aligned} & <10 \\ & <10 \\ & <10 \\ & <10 \\ & <10 \end{aligned}$	$\begin{aligned} & <10 \\ & <10 \\ & <10 \\ & <10 \\ & <10 \end{aligned}$	$\begin{gathered} 185 \\ 45 \\ 74 \\ 33 \\ 31 \end{gathered}$	$\begin{aligned} & <10 \\ & <10 \\ & <10 \\ & <10 \\ & <10 \end{aligned}$	$\begin{aligned} & 60 \\ & 41 \\ & 56 \\ & 54 \\ & 56 \end{aligned}$	
$J 294178$ $J 294179$ $J 294180$ $J 294181$ $J 294182$	$\begin{gathered} \hline 810 \\ 1665 \\ 408 \\ 701 \\ 492 \end{gathered}$	$\begin{aligned} & <20 \\ & <20 \\ & <20 \\ & <20 \\ & <20 \end{aligned}$	$\begin{aligned} & \hline 0.41 \\ & 0.09 \\ & 0.13 \\ & 0.12 \\ & 0.05 \end{aligned}$	$\begin{aligned} & <10 \\ & <10 \\ & <10 \\ & <10 \\ & <10 \end{aligned}$	$\begin{gathered} <10 \\ 10 \\ <10 \\ <10 \\ <10 \end{gathered}$	$\begin{aligned} & \hline 151 \\ & 98 \\ & 91 \\ & 95 \\ & 43 \end{aligned}$	$\begin{aligned} & <10 \\ & <10 \\ & 10 \\ & <10 \\ & <10 \end{aligned}$	$\begin{gathered} \hline 133 \\ 50 \\ 62 \\ 73 \\ 156 \end{gathered}$	
$J 294183$ $J 294184$ $J 294185$ $J 294186$ $J 294187$	$\begin{gathered} 464 \\ 79 \\ 437 \\ 493 \\ 275 \end{gathered}$	$\begin{aligned} & <20 \\ & <20 \\ & <20 \\ & <20 \\ & <20 \end{aligned}$	$\begin{gathered} 0.04 \\ <0.01 \\ 0.04 \\ 0.07 \\ 0.08 \end{gathered}$	$\begin{aligned} & <10 \\ & <10 \\ & <10 \\ & <10 \\ & <10 \end{aligned}$	$\begin{aligned} & <10 \\ & <10 \\ & <10 \\ & <10 \\ & <10 \end{aligned}$	$\begin{aligned} & 55 \\ & 12 \\ & 37 \\ & 53 \\ & 95 \end{aligned}$	$\begin{aligned} & <10 \\ & <10 \\ & <10 \\ & <10 \\ & <10 \end{aligned}$	$\begin{aligned} & 59 \\ & 26 \\ & 40 \\ & 38 \\ & 52 \end{aligned}$	
$\begin{aligned} & 1294188 \\ & J 294189 \\ & J 294190 \\ & 1294191 \\ & \mathrm{~J} 294192 \end{aligned}$	$\begin{gathered} 30 \\ 529 \\ 468 \\ 224 \\ 244 \end{gathered}$	$\begin{aligned} & \hline<20 \\ & <20 \\ & <20 \\ & <20 \\ & <20 \end{aligned}$	$\begin{aligned} & \hline 0.21 \\ & 0.05 \\ & 0.11 \\ & 0.09 \\ & 0.16 \end{aligned}$	$\begin{aligned} & <10 \\ & <10 \\ & <10 \\ & <10 \\ & <10 \end{aligned}$	$\begin{aligned} & <10 \\ & <10 \\ & <10 \\ & <10 \\ & <10 \end{aligned}$	$\begin{gathered} \hline 36 \\ 67 \\ 114 \\ 106 \\ 111 \end{gathered}$	$\begin{aligned} & <10 \\ & <10 \\ & <10 \\ & <10 \\ & <10 \end{aligned}$	$\begin{aligned} & \hline 77 \\ & 52 \\ & 81 \\ & 57 \\ & 66 \end{aligned}$	
$\begin{aligned} & J 294193 \\ & J 294194 \\ & J 294195 \\ & J 294196 \\ & J 294197 \end{aligned}$	$\begin{gathered} \hline 221 \\ 262 \\ 289 \\ 1190 \\ 347 \end{gathered}$	$\begin{aligned} & <20 \\ & <20 \\ & <20 \\ & <20 \\ & <20 \end{aligned}$	$\begin{aligned} & \hline 0.18 \\ & 0.19 \\ & 0.11 \\ & 0.10 \\ & 0.20 \end{aligned}$	$\begin{aligned} & <10 \\ & <10 \\ & <10 \\ & <10 \\ & <10 \end{aligned}$	$\begin{aligned} & <10 \\ & <10 \\ & <10 \\ & <10 \\ & <10 \end{aligned}$	$\begin{gathered} \hline 141 \\ 127 \\ 91 \\ 142 \\ 146 \end{gathered}$	$\begin{aligned} & <10 \\ & 10 \\ & <10 \\ & <10 \\ & <10 \end{aligned}$	$\begin{aligned} & 75 \\ & 75 \\ & 82 \\ & 65 \\ & 101 \end{aligned}$	

Comments: Additional Au- AA23 check results for sample J294262 are 0.145 ppm and 0.321 ppm .

Sample Description	Method Analyte Units LOR	WEF- 21 Recvd Wt: kg 0.02	$\begin{gathered} \mathrm{Au} \cdot \mathrm{AA} 23 \\ \mathrm{Au} \\ \mathrm{ppm} \\ 0.005 \end{gathered}$	$\begin{gathered} \mathrm{Au}-\mathrm{CRA} 21 \\ \mathrm{Au} \\ \mathrm{ppm} \\ 0.05 \end{gathered}$	$\begin{gathered} \text { ME- ICP4 } \\ \text { Ag } \\ \mathrm{ppm} \\ 0.2 \end{gathered}$	$\begin{gathered} \text { ME- ICP41 } \\ \text { A] } \\ \% \\ 0.01 \end{gathered}$	$\begin{gathered} \text { ME- ICP41 } \\ \text { As } \\ \text { ppm } \\ 2 \end{gathered}$	$\begin{gathered} \text { ME. ICP41 } \\ \text { B } \\ \text { ppm } \\ 10 \end{gathered}$	$\begin{gathered} \text { ME- } 1 C P 41 \\ 8 \mathrm{Ba} \\ \mathrm{ppm} \\ 10 \end{gathered}$	$\begin{gathered} \text { ME- ICP41 } \\ \text { Be } \\ \text { ppm } \\ 0.5 \end{gathered}$	$\begin{gathered} \text { ME: ICP41 } \\ \mathrm{Bi} \\ \mathrm{ppm} \\ 2 \end{gathered}$	$\begin{gathered} \text { ME- ICP41 } \\ \text { Ca } \\ \% \\ 0.01 \end{gathered}$	$\begin{gathered} \text { ME- }- \text { CP4 } \\ \text { Cd } \\ \text { ppm } \\ 0.5 \end{gathered}$	$\begin{gathered} \text { ME- ICP41 } \\ \text { Co } \\ \text { ppm } \\ 1 \end{gathered}$	$\begin{gathered} \text { ME- } 1 C P 41 \\ \text { Cr } \\ \text { ppm } \\ 1 \end{gathered}$	$\begin{gathered} \text { ME- } 1 C P 41 \\ \mathrm{Cu} \\ \text { ppm } \\ 1 \end{gathered}$
$\begin{aligned} & \mathrm{J} 294198 \\ & \mathrm{~J} 294199 \\ & \mathrm{~J} 294200 \\ & \mathrm{~J} 294201 \\ & \mathrm{~J} 294202 \end{aligned}$		$\begin{aligned} & 1.68 \\ & 0.08 \\ & 0.94 \\ & 0.50 \\ & 0.82 \end{aligned}$	$\begin{aligned} & 0.615 \\ & 0.557 \\ & 0.081 \\ & 2.09 \\ & 0.069 \end{aligned}$		$\begin{gathered} \hline 26 \\ 2.9 \\ 1.0 \\ 11.2 \\ 2.3 \end{gathered}$	$\begin{aligned} & 0.52 \\ & 1.34 \\ & 0.50 \\ & 0.10 \\ & 0.45 \end{aligned}$	$\begin{aligned} & <2 \\ & 70 \\ & <2 \\ & <2 \\ & <2 \end{aligned}$	$\begin{aligned} & <10 \\ & <10 \\ & <10 \\ & <10 \\ & <10 \end{aligned}$	$\begin{gathered} 70 \\ 50 \\ 100 \\ 10 \\ 120 \end{gathered}$	$\begin{aligned} & <0.5 \\ & <0.5 \\ & <0.5 \\ & <0.5 \\ & <0.5 \end{aligned}$	$\begin{gathered} \hline 3 \\ <2 \\ <2 \\ 31 \\ <2 \end{gathered}$	$\begin{aligned} & 4.04 \\ & 3.84 \\ & 3.71 \\ & 0.62 \\ & 3.88 \end{aligned}$	$\begin{aligned} & 0.6 \\ & 1.9 \\ & 0.5 \\ & 0.7 \\ & 1.0 \end{aligned}$	$\begin{gathered} 11 \\ 17 \\ 15 \\ 6 \\ 15 \end{gathered}$	$\begin{gathered} 1 \\ 24 \\ 1 \\ 5 \\ 2 \end{gathered}$	$\begin{gathered} 846 \\ 4610 \\ 19 \\ 94 \\ 553 \end{gathered}$
$J 294203$ $J 294204$ $J 294205$ $J 294206$ $J 294207$		$\begin{aligned} & \hline 0.26 \\ & 0.66 \\ & 2.80 \\ & 2.12 \\ & 1.60 \end{aligned}$	$\begin{gathered} \hline 0.331 \\ <0.005 \\ 0.017 \\ 2.33 \\ 2.09 \end{gathered}$		$\begin{gathered} \hline 7.8 \\ 1.3 \\ 2.2 \\ 4.1 \\ 16.1 \end{gathered}$	$\begin{aligned} & 1.22 \\ & 1.26 \\ & 1.48 \\ & 0.88 \\ & 1.40 \end{aligned}$	$\begin{aligned} & <2 \\ & <2 \\ & 2 \\ & 2 \\ & 3 \end{aligned}$	$\begin{aligned} & <10 \\ & <10 \\ & <10 \\ & <10 \\ & <10 \end{aligned}$	$\begin{gathered} 30 \\ 180 \\ 110 \\ 50 \\ 100 \end{gathered}$	$\begin{gathered} <0.5 \\ <0.5 \\ 0.5 \\ <0.5 \\ <0.5 \end{gathered}$	$\begin{gathered} c 2 \\ 2 \\ <2 \\ 3 \\ 3 \\ 11 \end{gathered}$	$\begin{aligned} & 12.7 \\ & 3.73 \\ & 3.58 \\ & 3.72 \\ & 4.60 \end{aligned}$	$\begin{gathered} \hline 0.5 \\ <0.5 \\ <0.5 \\ 1.1 \\ 1.6 \end{gathered}$	$\begin{aligned} & 10 \\ & 14 \\ & 15 \\ & 14 \\ & 15 \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \\ & 2 \\ & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \hline 5750 \\ 413 \\ 167 \\ 1015 \\ 4380 \end{gathered}$
$J 294208$ $J 294209$ $J 294210$ $J 294211$ $J 294212$		$\begin{aligned} & 0.40 \\ & 0.98 \\ & 2.56 \\ & 0.08 \\ & 4.62 \end{aligned}$	0.108 0.343 0.536 1.535 0.318		$\begin{aligned} & 1.5 \\ & 1.0 \\ & 1.3 \\ & 4.4 \\ & 1.8 \end{aligned}$	$\begin{aligned} & 1.49 \\ & 0.58 \\ & 0.46 \\ & 1.31 \\ & 0.71 \end{aligned}$	$\begin{aligned} & <2 \\ & <2 \\ & <2 \\ & 41 \\ & <2 \end{aligned}$	$\begin{aligned} & <10 \\ & <10 \\ & <10 \\ & <10 \\ & <10 \end{aligned}$	$\begin{aligned} & 30 \\ & 50 \\ & 90 \\ & 80 \\ & 130 \end{aligned}$	$\begin{aligned} & <0.5 \\ & <0.5 \\ & <0.5 \\ & <0.5 \\ & <0.5 \end{aligned}$	$\begin{gathered} <2 \\ <2 \\ 2 \\ <2 \\ 2 \\ 2 \end{gathered}$	$\begin{aligned} & 4.34 \\ & 3.80 \\ & 3.97 \\ & 1.41 \\ & 4.02 \end{aligned}$	$\begin{gathered} <0.5 \\ 1.0 \\ 0.7 \\ 2.3 \\ 0.6 \end{gathered}$	$\begin{aligned} & 15 \\ & 14 \\ & 13 \\ & 18 \\ & 12 \end{aligned}$	$\begin{gathered} 2 \\ 1 \\ 1 \\ 63 \\ 2 \end{gathered}$	$\begin{gathered} 926 \\ 193 \\ 243 \\ >10000 \\ 429 \end{gathered}$
$\begin{aligned} & J 294213 \\ & J 294214 \\ & J 294215 \\ & J 294216 \\ & J 294217 \end{aligned}$		$\begin{aligned} & 3.48 \\ & 0.96 \\ & 1.70 \\ & 1.32 \\ & 0.98 \end{aligned}$	0.376 0.589 0.855 0.092 0.187		$\begin{aligned} & 1.2 \\ & 0.6 \\ & 7.7 \\ & 1.1 \\ & 2.1 \end{aligned}$	0.46 1.47 0.88 1.18 1.38	$\begin{aligned} & <2 \\ & <2 \\ & 2 \\ & 2 \\ & <2 \end{aligned}$	$\begin{aligned} & <10 \\ & <10 \\ & <10 \\ & <10 \\ & <10 \end{aligned}$	$\begin{gathered} 100 \\ 50 \\ 240 \\ 40 \\ 60 \end{gathered}$	$\begin{aligned} & <0.5 \\ & <0.5 \\ & <0.5 \\ & <0.5 \\ & <0.5 \end{aligned}$	$\begin{gathered} <2 \\ 2 \\ 5 \\ 2 \\ <2 \end{gathered}$	$\begin{aligned} & \hline 3.67 \\ & 3.69 \\ & 10.4 \\ & 4.01 \\ & 12.7 \end{aligned}$	$\begin{aligned} & \hline 4.8 \\ & 0.8 \\ & 3.4 \\ & 0.7 \\ & 0.7 \end{aligned}$	$\begin{aligned} & 12 \\ & 14 \\ & 13 \\ & 14 \\ & 14 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 2 \end{aligned}$	$\begin{aligned} & \hline 143 \\ & 110 \\ & 765 \\ & 490 \\ & 2350 \end{aligned}$
J 294218 J 294219 J 294220 J 294221 J 294222		$\begin{aligned} & 1.14 \\ & 1.84 \\ & 5.04 \\ & 0.40 \\ & 0.08 \end{aligned}$	$\begin{gathered} \hline<0.005 \\ 0.026 \\ 0.578 \\ >10.0 \\ 0.441 \end{gathered}$	17.60	$\begin{gathered} c 0.2 \\ 0.9 \\ 2.3 \\ 18.2 \\ 1.2 \end{gathered}$	$\begin{aligned} & \hline 1.61 \\ & 0.71 \\ & 1.16 \\ & 1.18 \\ & 2.00 \end{aligned}$	$\begin{aligned} & <2 \\ & <2 \\ & <2 \\ & 19 \\ & 10 \end{aligned}$	$\begin{aligned} & <10 \\ & <10 \\ & <10 \\ & <10 \\ & <10 \end{aligned}$	$\begin{gathered} 40 \\ 30 \\ 100 \\ 50 \\ 110 \end{gathered}$	$\begin{gathered} <0.5 \\ <0.5 \\ 0.5 \\ 0.5 \\ <0.5 \end{gathered}$	$\begin{aligned} & <2 \\ & <2 \\ & <2 \\ & 49 \\ & <2 \end{aligned}$	3.05 4.68 4.75 3.44 0.80	$\begin{gathered} c 0.5 \\ <0.5 \\ 1.7 \\ 83.9 \\ 0.8 \end{gathered}$	$\begin{gathered} \hline 17 \\ 8 \\ 16 \\ 23 \\ 12 \end{gathered}$	$\begin{aligned} & \hline 2 \\ & 2 \\ & 1 \\ & 1 \\ & 34 \end{aligned}$	$\begin{gathered} \hline 162 \\ 1360 \\ 1280 \\ 331 \\ 5520 \end{gathered}$
J 294223 J 294224 J 294225 J 294226 J 294227		$\begin{aligned} & 4.50 \\ & 0.68 \\ & 1.46 \\ & 1.48 \\ & 0.98 \end{aligned}$	$\begin{aligned} & 0.033 \\ & 0.207 \\ & 0.430 \\ & 0.222 \\ & 0.069 \end{aligned}$		$\begin{gathered} \hline 0.4 \\ 0.2 \\ 0.9 \\ 0.2 \\ <0.2 \end{gathered}$	$\begin{aligned} & 1.49 \\ & 0.58 \\ & 1.18 \\ & 1.53 \\ & 0.62 \end{aligned}$	$\begin{gathered} <2 \\ 5 \\ 4 \\ <2 \\ <2 \end{gathered}$	$\begin{aligned} & <10 \\ & <10 \\ & <10 \\ & <10 \\ & <10 \end{aligned}$	$\begin{gathered} 250 \\ 80 \\ 60 \\ 90 \\ 140 \end{gathered}$	$\begin{gathered} \hline 0.5 \\ <0.5 \\ 0.6 \\ 0.6 \\ <0.5 \end{gathered}$	$\begin{aligned} & <2 \\ & <2 \\ & <2 \\ & <2 \\ & <2 \end{aligned}$	$\begin{aligned} & 3.34 \\ & 4.60 \\ & 5.86 \\ & 5.41 \\ & 4.08 \end{aligned}$	$\begin{gathered} <0.5 \\ 0.9 \\ 1.1 \\ 0.7 \\ <0.5 \end{gathered}$	$\begin{aligned} & 14 \\ & 16 \\ & 16 \\ & 18 \\ & 15 \end{aligned}$	$\begin{gathered} \hline 56 \\ 1 \\ 1 \\ 1 \\ 2 \end{gathered}$	$\begin{gathered} \hline 501 \\ 69 \\ 124 \\ 37 \\ 89 \end{gathered}$
$\begin{aligned} & 1294228 \\ & J 294229 \\ & J 294230 \\ & 1294231 \\ & J 294232 \end{aligned}$		$\begin{aligned} & 0.56 \\ & 0.30 \\ & 0.76 \\ & 0.60 \\ & 0.18 \end{aligned}$	$\begin{aligned} & 0.234 \\ & 0.728 \\ & 3.74 \\ & 0.047 \\ & 0.011 \end{aligned}$		$\begin{aligned} & \hline 0.4 \\ & 0.2 \\ & 1.7 \\ & 3.1 \\ & <0.2 \end{aligned}$	$\begin{aligned} & 0.82 \\ & 1.56 \\ & 1.41 \\ & 1.69 \\ & 1.93 \end{aligned}$	$\begin{gathered} \hline 3 \\ <2 \\ 4 \\ 3 \\ 3 \\ <2 \end{gathered}$	$\begin{aligned} & \quad<10 \\ & <10 \\ & <10 \\ & <10 \\ & <10 \end{aligned}$	$\begin{gathered} 80 \\ 100 \\ 90 \\ 40 \\ 50 \end{gathered}$	$\begin{aligned} & <0.5 \\ & <0.5 \\ & <0.5 \\ & 0.6 \\ & <0.5 \end{aligned}$	$\begin{gathered} <2 \\ <2 \\ 2 \\ <2 \\ <2 \end{gathered}$	$\begin{aligned} & 4.55 \\ & 4.72 \\ & 5.40 \\ & 3.88 \\ & 4.51 \end{aligned}$	$\begin{aligned} & \hline 0.7 \\ & 0.7 \\ & 1.3 \\ & <0.5 \\ & <0.5 \end{aligned}$	$\begin{aligned} & 16 \\ & 17 \\ & 19 \\ & 17 \\ & 18 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 3 \\ & 3 \end{aligned}$	$\begin{aligned} & 148 \\ & 372 \\ & 252 \\ & 953 \\ & 28 \end{aligned}$
$\begin{aligned} & \mathrm{J} 294233 \\ & \mathrm{~J} 294234 \\ & \mathrm{~J} 294235 \\ & \mathrm{~J} 294236 \\ & \mathrm{~J} 294237 \end{aligned}$		$\begin{aligned} & 0.18 \\ & 1.40 \\ & 0.60 \\ & 0.78 \\ & 0.94 \end{aligned}$	$\begin{aligned} & 0.018 \\ & 0.229 \\ & 0.023 \\ & 0.015 \\ & 0.616 \end{aligned}$		$\begin{aligned} & \hline 0.2 \\ & 5.4 \\ & 0.3 \\ & 0.2 \\ & 0.2 \end{aligned}$	$\begin{aligned} & 1.72 \\ & 1.23 \\ & 0.71 \\ & 0.86 \\ & 1.67 \end{aligned}$	$\begin{gathered} 3 \\ <2 \\ 2 \\ <2 \\ 5 \end{gathered}$	$\begin{aligned} & <10 \\ & <10 \\ & <10 \\ & <10 \\ & <10 \end{aligned}$	$\begin{aligned} & 50 \\ & 50 \\ & 40 \\ & 50 \\ & 70 \end{aligned}$	$\begin{aligned} & <0.5 \\ & <0.5 \\ & <0.5 \\ & <0.5 \\ & <0.5 \end{aligned}$	$\begin{aligned} & <2 \\ & <2 \\ & <2 \\ & <2 \\ & <2 \end{aligned}$	$\begin{aligned} & 3.17 \\ & 2.68 \\ & 3.12 \\ & 1.79 \\ & 4.53 \end{aligned}$	$\begin{aligned} & <0.5 \\ & <0.5 \\ & <0.5 \\ & <0.5 \\ & 0.5 \end{aligned}$	$\begin{gathered} \hline 17 \\ 12 \\ 6 \\ 7 \\ 7 \\ 15 \end{gathered}$	$\begin{aligned} & 2 \\ & 2 \\ & 1 \\ & 1 \\ & 1 \\ & 2 \end{aligned}$	$\begin{gathered} 149 \\ 2450 \\ 658 \\ 233 \\ 66 \end{gathered}$

Comments: Additional Au- AA23 check results for sample J294262 are 0.145 ppm and 0.321 ppm .

CERTIFICATE OF ANALYSIS VA11001920

Sample Description	Method Analyte Units LOR	$\begin{gathered} \text { ME- ICP41 } \\ \mathrm{Fe} \\ \% \\ 0.01 \end{gathered}$	$\begin{gathered} \text { ME- } 1 \mathrm{CP} 41 \\ \mathrm{Ca} \\ \mathrm{ppm} \\ 10 \end{gathered}$	$\begin{gathered} \text { ME-ICP41 } \\ \mathrm{Hg} \\ \mathrm{ppm} \\ 1 \end{gathered}$	$\begin{gathered} \text { ME-ICP41 } \\ K \\ \% \\ 0.01 \end{gathered}$	$\begin{gathered} \text { ME- ICP41 } \\ \text { La } \\ \text { ppm } \\ 10 \end{gathered}$	$\begin{gathered} \text { ME- ICP41 } \\ \text { Mg } \\ \% \\ 0.01 \end{gathered}$	$\begin{gathered} \text { ME- } C \text { CP4 } \\ \text { Mn } \\ \mathrm{ppm} \\ 5 \end{gathered}$	$\begin{gathered} \text { ME. ICP4 } \\ \text { Mo } \\ \text { ppm } \\ 1 \end{gathered}$	$\begin{gathered} \text { ME - ICP41 } \\ \mathrm{Na} \\ \% \\ 0.01 \end{gathered}$	$\begin{gathered} \text { ME. } \mathbf{I C P 4 1} \\ \mathrm{Ni} \\ \text { ppm } \\ 1 \end{gathered}$	$\begin{gathered} \text { ME- ICP4 } 1 \\ \text { P } \\ \text { ppm } \\ 10 \end{gathered}$	$\begin{gathered} \text { ME- ICP41 } \\ \text { Pb } \\ \mathrm{ppm} \\ 2 \end{gathered}$	$\begin{gathered} \text { ME- ICP41 } \\ \text { S } \\ \% \\ 0.01 \end{gathered}$	$\begin{gathered} \text { ME. ICP41 } \\ \text { Sb } \\ \text { ppm } \\ 2 \end{gathered}$	$\begin{gathered} \text { ME- KCP41 } \\ \mathrm{Sc} \\ \mathrm{ppm} \\ 1 \end{gathered}$
$\begin{aligned} & \mathrm{J} 294198 \\ & \mathrm{~J} 294199 \\ & \mathrm{~J} 294200 \\ & \mathrm{~J} 294201 \\ & \mathrm{~J} 294202 \end{aligned}$		$\begin{aligned} & 2.71 \\ & 4.97 \\ & 3.18 \\ & 1.89 \\ & 3.79 \end{aligned}$	$\begin{aligned} & <10 \\ & <10 \\ & <10 \\ & <10 \\ & <10 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & <1 \\ & <1 \\ & <1 \end{aligned}$	$\begin{aligned} & 0.35 \\ & 0.22 \\ & 0.37 \\ & 0.08 \\ & 0.32 \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \\ & 10 \\ & <10 \\ & 10 \end{aligned}$	$\begin{aligned} & 0.75 \\ & 1.20 \\ & 1.05 \\ & 0.09 \\ & 0.96 \end{aligned}$	$\begin{gathered} 1605 \\ 719 \\ 1475 \\ 254 \\ 1450 \end{gathered}$	$\begin{aligned} & 11 \\ & 37 \\ & <1 \\ & 1 \\ & 2 \end{aligned}$	$\begin{aligned} & 0.03 \\ & 0.07 \\ & 0.03 \\ & 0.01 \\ & 0.03 \end{aligned}$	$\begin{gathered} <1 \\ 18 \\ 1 \\ <1 \\ 4 \end{gathered}$	$\begin{gathered} 1740 \\ 1130 \\ 1830 \\ 210 \\ 1910 \end{gathered}$	$\begin{gathered} 16 \\ 28 \\ 4 \\ 64 \\ 8 \end{gathered}$	$\begin{aligned} & 0.87 \\ & 2.14 \\ & 0.38 \\ & 1.67 \\ & 0.45 \end{aligned}$	$\begin{gathered} <2 \\ 9 \\ <2 \\ <2 \\ <2 \end{gathered}$	$\begin{gathered} 1 \\ 8 \\ 2 \\ 2 \\ <1 \\ 2 \end{gathered}$
J294203 J294204 J294205 J294206 J294207		$\begin{aligned} & 2.76 \\ & 2.96 \\ & 3.84 \\ & 3.08 \\ & 3.93 \end{aligned}$	$\begin{gathered} <10 \\ <10 \\ 10 \\ <10 \\ <10 \end{gathered}$	$\begin{aligned} & <1 \\ & <1 \\ & <1 \\ & <1 \\ & <1 \end{aligned}$	$\begin{aligned} & 0.99 \\ & 0.68 \\ & 0.32 \\ & 0.53 \\ & 0.50 \end{aligned}$	$\begin{aligned} & \mathrm{k} 10 \\ & 10 \\ & 10 \\ & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & \hline 0.85 \\ & 0.95 \\ & 1.23 \\ & 0.89 \\ & 1.04 \end{aligned}$	$\begin{aligned} & \hline 3800 \\ & 1335 \\ & 1335 \\ & 1435 \\ & 1675 \\ & \hline \end{aligned}$	$\begin{gathered} \hline 4 \\ <1 \\ 1 \\ 1 \\ 1 \\ 3 \end{gathered}$	$\begin{aligned} & 0.03 \\ & 0.05 \\ & 0.04 \\ & 0.03 \\ & 0.04 \end{aligned}$	$\begin{aligned} & 1 \\ & 3 \\ & 3 \\ & 2 \\ & 1 \end{aligned}$	$\begin{aligned} & 1180 \\ & 1650 \\ & 1880 \\ & 1750 \\ & 1630 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 4 \\ & 3 \\ & 2 \\ & 4 \\ & 7 \end{aligned}$	$\begin{aligned} & \hline 0.28 \\ & 0.16 \\ & 0.15 \\ & 0.65 \\ & 0.69 \end{aligned}$	$\begin{aligned} & <2 \\ & <2 \\ & <2 \\ & <2 \\ & <2 \end{aligned}$	$\begin{aligned} & 4 \\ & 3 \\ & 4 \\ & 4 \\ & 2 \\ & 3 \end{aligned}$
$J 294208$ $J 294209$ $J 294210$ $J 294211$ $J 294212$		$\begin{aligned} & 3.67 \\ & 3.12 \\ & 2.90 \\ & 4.41 \\ & 2.99 \end{aligned}$	$\begin{gathered} \hline 10 \\ <10 \\ <10 \\ <10 \\ <10 \end{gathered}$	$\begin{aligned} & <1 \\ & <1 \\ & <1 \\ & <1 \\ & 1 \end{aligned}$	$\begin{aligned} & \hline 0.61 \\ & 0.39 \\ & 0.33 \\ & 0.46 \\ & 0.32 \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \\ & 10 \\ & 20 \\ & 10 \end{aligned}$	$\begin{aligned} & 1.13 \\ & 0.97 \\ & 0.90 \\ & 0.77 \\ & 0.87 \end{aligned}$	$\begin{gathered} 1675 \\ 1545 \\ 1470 \\ 333 \\ 1305 \end{gathered}$	$\begin{gathered} \hline<1 \\ 1 \\ 1 \\ 237 \\ 2 \end{gathered}$	$\begin{aligned} & \hline 0.04 \\ & 0.03 \\ & 0.03 \\ & 0.04 \\ & 0.03 \end{aligned}$	$\begin{gathered} 1 \\ 1 \\ 1 \\ 32 \\ 1 \end{gathered}$	$\begin{gathered} 1680 \\ 1760 \\ 1700 \\ 670 \\ 1770 \\ \hline \end{gathered}$	$\begin{gathered} 3 \\ 4 \\ 5 \\ 65 \\ 6 \end{gathered}$	$\begin{aligned} & \hline 0.11 \\ & 0.69 \\ & 0.57 \\ & 2.64 \\ & 0.52 \end{aligned}$	$\begin{aligned} & <2 \\ & <2 \\ & <2 \\ & 14 \\ & <2 \end{aligned}$	$\begin{aligned} & \hline 4 \\ & 2 \\ & 2 \\ & 6 \\ & 2 \end{aligned}$
1294213 $J 294214$ $J 294215$ $J 294216$ $J 294217$		$\begin{aligned} & 2.80 \\ & 3.34 \\ & 3.21 \\ & 3.23 \\ & 3.86 \end{aligned}$	$\begin{aligned} & <10 \\ & <10 \\ & <10 \\ & <10 \\ & 10 \end{aligned}$	$\begin{aligned} & <1 \\ & <1 \\ & <1 \\ & <1 \\ & <1 \end{aligned}$	$\begin{aligned} & 0.33 \\ & 1.02 \\ & 0.21 \\ & 0.56 \\ & 0.95 \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \\ & 10 \\ & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & 0.91 \\ & 1.05 \\ & 0.80 \\ & 1.00 \\ & 1.08 \end{aligned}$	$\begin{aligned} & 1345 \\ & 1545 \\ & 2630 \\ & 1540 \\ & 3170 \end{aligned}$	$\begin{gathered} 1 \\ <1 \\ <1 \\ 14 \\ <1 \\ 15 \end{gathered}$	$\begin{aligned} & \hline 0.03 \\ & 0.04 \\ & 0.03 \\ & 0.04 \\ & 0.04 \end{aligned}$	$\begin{aligned} & 1 \\ & 3 \\ & 1 \\ & 2 \\ & 6 \end{aligned}$	$\begin{aligned} & 1790 \\ & 1790 \\ & 1360 \\ & 1800 \\ & 1140 \end{aligned}$	$\begin{gathered} \hline 4 \\ 5 \\ 23 \\ 4 \\ 4 \end{gathered}$	$\begin{aligned} & \hline 0.48 \\ & 0.58 \\ & 1.38 \\ & 0.45 \\ & 0.27 \\ & \hline \end{aligned}$	$\begin{aligned} & <2 \\ & <2 \\ & <2 \\ & <2 \\ & <2 \end{aligned}$	$\begin{aligned} & 2 \\ & 3 \\ & 2 \\ & 2 \\ & 3 \end{aligned}$
$\begin{aligned} & \mathrm{J} 294218 \\ & \mathrm{~J} 294219 \\ & \mathrm{~J} 294220 \\ & \mathrm{~J} 294221 \\ & \mathrm{~J} 294222 \end{aligned}$		$\begin{aligned} & 3.88 \\ & 2.58 \\ & 3.98 \\ & 5.55 \\ & 4.02 \end{aligned}$	$\begin{aligned} & \hline 10 \\ & <10 \\ & <10 \\ & <10 \\ & 10 \end{aligned}$	$\begin{aligned} & <1 \\ & <1 \\ & <1 \\ & <1 \\ & <1 \\ & <1 \end{aligned}$	$\begin{aligned} & 0.20 \\ & 0.18 \\ & 0.33 \\ & 0.34 \\ & 0.14 \end{aligned}$	$\begin{gathered} 10 \\ <10 \\ 10 \\ 10 \\ 10 \end{gathered}$	$\begin{aligned} & 1.38 \\ & 0.55 \\ & 0.96 \\ & 0.96 \\ & 0.84 \end{aligned}$	$\begin{aligned} & 1260 \\ & 1335 \\ & 1405 \\ & 1075 \\ & 660 \end{aligned}$	$\begin{gathered} \hline<1 \\ 19 \\ 3 \\ <1 \\ 208 \\ \hline \end{gathered}$	$\begin{aligned} & 0.05 \\ & 0.07 \\ & 0.05 \\ & 0.04 \\ & 0.10 \end{aligned}$	$\begin{aligned} & 3 \\ & 2 \\ & 2 \\ & 1 \\ & 23 \end{aligned}$	1960 1210 1840 1660 620	$\begin{gathered} \hline 3 \\ 2 \\ 12 \\ 67 \\ 13 \end{gathered}$	$\begin{aligned} & 0.02 \\ & 0.16 \\ & 1.02 \\ & 4.62 \\ & 0.74 \end{aligned}$	$\begin{aligned} & <2 \\ & <2 \\ & <2 \\ & <2 \\ & 3 \end{aligned}$	$\begin{aligned} & 6 \\ & 2 \\ & 3 \\ & 1 \\ & 5 \\ & \hline \end{aligned}$
$\begin{aligned} & \mathrm{J} 294223 \\ & \mathrm{~J} 294224 \\ & \mathrm{~J} 294225 \\ & \mathrm{~J} 294226 \\ & \mathrm{~J} 294227 \end{aligned}$		$\begin{aligned} & 3.44 \\ & 3.55 \\ & 4.44 \\ & 4.17 \\ & 3.73 \end{aligned}$	$\begin{aligned} & \hline 10 \\ & <10 \\ & <10 \\ & <10 \\ & <10 \end{aligned}$	$\begin{gathered} <1 \\ <1 \\ <1 \\ 1 \\ <1 \end{gathered}$	$\begin{aligned} & 0.30 \\ & 0.30 \\ & 0.46 \\ & 0.37 \\ & 0.40 \end{aligned}$	$\begin{aligned} & 40 \\ & 10 \\ & 10 \\ & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & 1.57 \\ & 1.26 \\ & 1.20 \\ & 1.45 \\ & 1.21 \end{aligned}$	$\begin{aligned} & 1035 \\ & 1795 \\ & 2530 \\ & 2180 \\ & 1640 \end{aligned}$	$\begin{aligned} & \hline 5 \\ & 1 \\ & 3 \\ & 1 \\ & <1 \end{aligned}$	$\begin{aligned} & 0.05 \\ & 0.04 \\ & 0.04 \\ & 0.03 \\ & 0.04 \end{aligned}$	$\begin{aligned} & \hline 35 \\ & 2 \\ & 3 \\ & 3 \\ & 2 \end{aligned}$	$\begin{aligned} & 2280 \\ & 1830 \\ & 1920 \\ & 2300 \\ & 1820 \end{aligned}$	$\begin{gathered} \hline 4 \\ 5 \\ 10 \\ 8 \\ 4 \end{gathered}$	$\begin{aligned} & \hline 0.16 \\ & 0.57 \\ & 2.16 \\ & 0.80 \\ & 0.56 \end{aligned}$	$\begin{aligned} & <2 \\ & <2 \\ & <2 \\ & <2 \\ & <2 \end{aligned}$	$\begin{aligned} & \hline 3 \\ & 2 \\ & 3 \\ & 3 \\ & 2 \\ & \hline \end{aligned}$
$\begin{aligned} & J 294228 \\ & J 294229 \\ & J 294230 \\ & J 294231 \\ & J 294232 \end{aligned}$		$\begin{aligned} & 3.85 \\ & 3.77 \\ & 3.97 \\ & 4.57 \\ & 4.15 \end{aligned}$	$\begin{aligned} & <10 \\ & <10 \\ & <10 \\ & 10 \\ & 10 \end{aligned}$	$\begin{gathered} c 1 \\ 1 \\ <1 \\ <1 \\ 1 \end{gathered}$	$\begin{aligned} & 0.49 \\ & 0.63 \\ & 0.70 \\ & 0.38 \\ & 1.08 \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \\ & <10 \\ & 10 \\ & 10 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.18 \\ & 1.30 \\ & 1.25 \\ & 1.42 \\ & 1.51 \\ & \hline \end{aligned}$	$\begin{aligned} & 1695 \\ & 1755 \\ & 1920 \\ & 1240 \\ & 1545 \end{aligned}$	$\begin{gathered} <1 \\ <1 \\ 1 \\ 1 \\ 1 \\ <1 \end{gathered}$	0.04 0.04 0.04 0.04 0.06	$\begin{aligned} & 3 \\ & 2 \\ & 3 \\ & 4 \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & 1790 \\ & 2010 \\ & 1710 \\ & 1900 \\ & 1610 \end{aligned}$	$\begin{gathered} 5 \\ 3 \\ 3 \\ 10 \\ 5 \\ 3 \\ \hline \end{gathered}$	$\begin{aligned} & \hline 0.97 \\ & 0.68 \\ & 1.70 \\ & 0.13 \\ & 0.03 \\ & \hline \end{aligned}$	$\begin{aligned} & <2 \\ & <2 \\ & <2 \\ & <2 \\ & <2 \end{aligned}$	$\begin{aligned} & 3 \\ & 2 \\ & 3 \\ & 5 \\ & 4 \end{aligned}$
$\begin{aligned} & \mathrm{J} 294233 \\ & \mathrm{~J} 294234 \\ & \mathrm{~J} 294235 \\ & \mathrm{~J} 294236 \\ & \mathrm{~J} 294237 \end{aligned}$		$\begin{aligned} & 4.43 \\ & 4.63 \\ & 1.68 \\ & 1.84 \\ & 3.85 \end{aligned}$	$\begin{aligned} & \hline 10 \\ & 10 \\ & <10 \\ & <10 \\ & <10 \end{aligned}$	$\begin{gathered} <1 \\ 1 \\ <1 \\ <1 \\ <1 \end{gathered}$	$\begin{aligned} & \hline 0.90 \\ & 0.72 \\ & 0.23 \\ & 0.33 \\ & 0.76 \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \\ & <10 \\ & <10 \\ & 10 \end{aligned}$	$\begin{aligned} & 1.29 \\ & 0.96 \\ & 0.46 \\ & 0.50 \\ & 1.28 \end{aligned}$	$\begin{gathered} 1190 \\ 1010 \\ 905 \\ 563 \\ 1660 \end{gathered}$	$\begin{aligned} & <1 \\ & <1 \\ & 1 \\ & <1 \\ & <1 \end{aligned}$	$\begin{aligned} & 0.07 \\ & 0.05 \\ & 0.06 \\ & 0.06 \\ & 0.04 \end{aligned}$	$\begin{aligned} & \hline 3 \\ & 2 \\ & 1 \\ & 1 \\ & 3 \end{aligned}$	$\begin{gathered} \hline 1370 \\ 1110 \\ 700 \\ 900 \\ 1980 \end{gathered}$	$\begin{aligned} & 3 \\ & 5 \\ & 3 \\ & 3 \\ & 5 \end{aligned}$	$\begin{aligned} & 0.03 \\ & 0.15 \\ & 0.08 \\ & 0.02 \\ & 0.82 \end{aligned}$	$\begin{aligned} & <2 \\ & <2 \\ & <2 \\ & <2 \\ & <2 \end{aligned}$	$\begin{aligned} & 3 \\ & 3 \\ & 1 \\ & 1 \\ & 1 \\ & 3 \end{aligned}$

Comments: Additional Au- AA23 check results for sample J294262 are 0.145 ppm and 0.321 ppm .

To:ANGLO SWISS RESOURCES INC. 309-837 W HASTINGS ST. VANCOUVER BC V6C 3N6
minerals
Project: Kenville Mine
CERTIFICATE OF ANALYSIS VA11001920

 Sample Description Method Analyte Units LOR	$\begin{gathered} \text { ME- ICP4I } \\ \text { Sr } \\ \mathrm{ppm} \\ 1 \end{gathered}$	$\begin{gathered} \text { ME-ICP41 } \\ \text { Th } \\ \text { ppm } \\ 20 \end{gathered}$	$\begin{gathered} \text { ME- ICP4 } \\ T i \\ \% \\ 0.01 \end{gathered}$	ME- ICP41 TI ppm 10	$\begin{gathered} \text { ME-ICP41 } \\ U \\ \text { Ppm } \\ 10 \end{gathered}$	$\begin{gathered} \text { ME- ICP41 } \\ V \\ \text { ppm } \\ 1 \end{gathered}$	$\begin{gathered} \text { ME-ICP41 } \\ \text { W } \\ \text { ppm } \\ 10 \end{gathered}$	$\begin{gathered} \text { ME- } \operatorname{ICP41} \\ \mathrm{Zn} \\ \mathrm{ppm} \\ 2 \end{gathered}$	$\begin{gathered} \mathrm{Cu}-\mathrm{OC}_{46} \\ \mathrm{Cu} \\ \% \\ 0.001 \end{gathered}$
$J 294198$ $J 294199$ $J 294200$ $J 294201$ $J 294202$	$\begin{gathered} 590 \\ 138 \\ 1020 \\ 61 \\ 1310 \end{gathered}$	$\begin{aligned} & <20 \\ & <20 \\ & <20 \\ & <20 \\ & <20 \end{aligned}$	0.01 0.01 0.03 <0.01 0.01	$\begin{aligned} & <10 \\ & <10 \\ & <10 \\ & <10 \\ & <10 \end{aligned}$	$\begin{aligned} & <10 \\ & <10 \\ & <10 \\ & <10 \\ & <10 \end{aligned}$	$\begin{gathered} 27 \\ 85 \\ 42 \\ 4 \\ 47 \end{gathered}$	$\begin{aligned} & <10 \\ & <10 \\ & <10 \\ & <10 \\ & <10 \end{aligned}$	$\begin{gathered} 40 \\ 170 \\ 47 \\ 11 \\ 46 \end{gathered}$	
$\begin{aligned} & 1294203 \\ & \mathrm{~J} 294204 \\ & \mathrm{~J} 294205 \\ & \mathrm{~J} 294206 \\ & \mathrm{~J} 294207 \end{aligned}$	$\begin{gathered} \hline 585 \\ 1410 \\ 2710 \\ 394 \\ 1180 \end{gathered}$	$\begin{aligned} & <20 \\ & <20 \\ & <20 \\ & <20 \\ & <20 \end{aligned}$	$\begin{aligned} & 0.15 \\ & 0.09 \\ & 0.04 \\ & 0.04 \\ & 0.08 \end{aligned}$	$\begin{aligned} & <10 \\ & <10 \\ & <10 \\ & <10 \\ & <10 \end{aligned}$	$\begin{aligned} & <10 \\ & <10 \\ & <10 \\ & <10 \\ & <10 \end{aligned}$	$\begin{gathered} \hline 106 \\ 76 \\ 126 \\ 40 \\ 116 \\ \hline \end{gathered}$	$\begin{aligned} & <10 \\ & <10 \\ & <10 \\ & <10 \\ & <10 \end{aligned}$	$\begin{aligned} & 40 \\ & 55 \\ & 70 \\ & 65 \\ & 69 \end{aligned}$	
$J 294208$ $J 294209$ $J 294210$ $J 294211$ $J 294212$	$\begin{gathered} \hline 268 \\ 470 \\ 762 \\ 57 \\ 1540 \end{gathered}$	$\begin{aligned} & <20 \\ & <20 \\ & <20 \\ & <20 \\ & <20 \end{aligned}$	$\begin{aligned} & 0.12 \\ & 0.02 \\ & 0.01 \\ & 0.04 \\ & 0.01 \end{aligned}$	$\begin{aligned} & <10 \\ & <10 \\ & <10 \\ & <10 \\ & <10 \end{aligned}$	$\begin{aligned} & <10 \\ & <10 \\ & <10 \\ & <10 \\ & 10 \end{aligned}$	$\begin{gathered} 136 \\ 36 \\ 32 \\ 54 \\ 39 \\ \hline \end{gathered}$	$\begin{aligned} & <10 \\ & <10 \\ & <10 \\ & <10 \\ & <10 \end{aligned}$	$\begin{aligned} & \hline 76 \\ & 62 \\ & 44 \\ & 119 \\ & 44 \end{aligned}$	1.010
$\begin{aligned} & \mathrm{J} 294213 \\ & \mathrm{~J} 294214 \\ & \mathrm{~J} 294215 \\ & \mathrm{~J} 294216 \\ & \mathrm{~J} 294217 \end{aligned}$	$\begin{gathered} 1010 \\ 357 \\ 6290 \\ 441 \\ 1430 \end{gathered}$	$\begin{aligned} & <20 \\ & <20 \\ & 20 \\ & <20 \\ & <20 \end{aligned}$	$\begin{aligned} & 0.01 \\ & 0.13 \\ & 0.01 \\ & 0.05 \\ & 0.12 \end{aligned}$	$\begin{aligned} & <10 \\ & <10 \\ & <10 \\ & <10 \\ & <10 \end{aligned}$	$\begin{aligned} & <10 \\ & <10 \\ & 30 \\ & <10 \\ & 10 \end{aligned}$	$\begin{gathered} 25 \\ 86 \\ 32 \\ 55 \\ 113 \end{gathered}$	$\begin{aligned} & <10 \\ & <10 \\ & <10 \\ & <10 \\ & <10 \end{aligned}$	$\begin{gathered} \hline 144 \\ 134 \\ 80 \\ 67 \\ 67 \end{gathered}$	
$J 294218$ $J 294219$ $J 294220$ $J 294221$ $J 294222$	$\begin{gathered} \hline 223 \\ 202 \\ 547 \\ 198 \\ 42 \end{gathered}$	$\begin{aligned} & <20 \\ & <20 \\ & <20 \\ & <20 \\ & <20 \end{aligned}$	$\begin{aligned} & 0.10 \\ & 0.06 \\ & 0.02 \\ & 0.01 \\ & 0.14 \end{aligned}$	$\begin{aligned} & <10 \\ & <10 \\ & <10 \\ & <10 \\ & <10 \end{aligned}$	$\begin{aligned} & <10 \\ & <10 \\ & <10 \\ & <10 \\ & <10 \end{aligned}$	$\begin{gathered} \hline 148 \\ 86 \\ 75 \\ 53 \\ 59 \\ \hline \end{gathered}$	$\begin{aligned} & <10 \\ & <10 \\ & <10 \\ & <10 \\ & <10 \end{aligned}$	$\begin{gathered} 82 \\ 32 \\ 83 \\ 1895 \\ 81 \end{gathered}$	
$\begin{aligned} & \mathrm{J} 294223 \\ & \mathrm{~J} 294224 \\ & \mathrm{~J} 294225 \\ & \mathrm{~J} 294226 \\ & \mathrm{~J} 294227 \end{aligned}$	$\begin{aligned} & 340 \\ & 516 \\ & 550 \\ & 320 \\ & 852 \end{aligned}$	$\begin{aligned} & <20 \\ & <20 \\ & <20 \\ & <20 \\ & <20 \end{aligned}$	$\begin{aligned} & 0.06 \\ & 0.01 \\ & 0.02 \\ & 0.02 \\ & 0.02 \end{aligned}$	$\begin{aligned} & <10 \\ & <10 \\ & <10 \\ & <10 \\ & <10 \end{aligned}$	$\begin{aligned} & <10 \\ & <10 \\ & <10 \\ & <10 \\ & <10 \end{aligned}$	$\begin{aligned} & 83 \\ & 30 \\ & 41 \\ & 45 \\ & 40 \\ & \hline \end{aligned}$	$\begin{aligned} & <10 \\ & <10 \\ & <10 \\ & <10 \\ & <10 \end{aligned}$	$\begin{aligned} & \hline 75 \\ & 50 \\ & 59 \\ & 54 \\ & 44 \end{aligned}$	
$J 294228$ $J 294229$ $J 294230$ $J 294231$ $J 294232$	$\begin{aligned} & 561 \\ & 860 \\ & 709 \\ & 354 \\ & 350 \end{aligned}$	$\begin{aligned} & <20 \\ & <20 \\ & <20 \\ & <20 \\ & <20 \end{aligned}$	$\begin{aligned} & 0.03 \\ & 0.06 \\ & 0.06 \\ & 0.03 \\ & 0.13 \end{aligned}$	$\begin{aligned} & <10 \\ & <10 \\ & <10 \\ & <10 \\ & <10 \end{aligned}$	$\begin{aligned} & <10 \\ & <10 \\ & <10 \\ & 10 \\ & <10 \end{aligned}$	$\begin{gathered} 42 \\ 51 \\ 49 \\ 127 \\ 149 \\ \hline \end{gathered}$	$\begin{aligned} & <10 \\ & <10 \\ & <10 \\ & <10 \\ & <10 \end{aligned}$	$\begin{aligned} & 52 \\ & 78 \\ & 90 \\ & 89 \\ & 91 \end{aligned}$	
$\begin{aligned} & \mathrm{J} 294233 \\ & \mathrm{~J} 294234 \\ & \mathrm{~J} 294235 \\ & \mathrm{~J} 294236 \\ & \mathrm{~J} 294237 \end{aligned}$	$\begin{aligned} & 298 \\ & 249 \\ & 272 \\ & 124 \\ & 633 \end{aligned}$	$\begin{aligned} & <20 \\ & <20 \\ & <20 \\ & <20 \\ & <20 \end{aligned}$	$\begin{aligned} & 0.13 \\ & 0.12 \\ & 0.04 \\ & 0.08 \\ & 0.08 \end{aligned}$	$\begin{aligned} & <10 \\ & <10 \\ & <10 \\ & <10 \\ & <10 \end{aligned}$	$\begin{gathered} <10 \\ 20 \\ <10 \\ <10 \\ <10 \end{gathered}$	$\begin{aligned} & \hline 148 \\ & 144 \\ & 54 \\ & 54 \\ & 74 \end{aligned}$	$\begin{aligned} & <10 \\ & <10 \\ & <10 \\ & <10 \\ & <10 \end{aligned}$	$\begin{aligned} & \hline 77 \\ & 55 \\ & 24 \\ & 24 \\ & 77 \end{aligned}$	

Comments: Additional Au- AA23 check results for sample J294262 are 0.145 ppm and 0.321 ppm .

CERTIFICATE OF ANALYSIS VA11001920

Sample Description	Method Analyte Units LOR	WER-21 Recvd Wt kg 0.02	Au- AA 23 Au ppm 0.005	$\begin{gathered} \mathrm{Au}-\mathrm{CRA} \mathrm{C}_{1} \\ \mathrm{Au} \\ \mathrm{ppm} \\ 0.05 \end{gathered}$	$\begin{gathered} \text { ME-ICP4 }] \\ \text { Ag } \\ \mathrm{ppm} \\ 0.2 \end{gathered}$	$\begin{gathered} \text { ME- ICP41 } \\ \text { Al } \\ \% \\ 0.01 \end{gathered}$	$\begin{gathered} \text { ME- ICP41 } \\ \text { As } \\ \text { ppm } \\ 2 \end{gathered}$	$\begin{gathered} \text { ME- ICP41 } \\ 8 \\ \text { ppm } \\ 10 \end{gathered}$	$\begin{gathered} \text { ME- }\|C P 4\| \\ \text { Ba } \\ \mathrm{ppm} \\ 10 \end{gathered}$	$\begin{gathered} \text { ME- ICP4 } \\ \text { Be } \\ \text { ppm } \\ 0.5 \end{gathered}$	$\begin{gathered} \text { ME- ICP4] } \\ \text { Bi } \\ \text { ppm } \\ 2 \end{gathered}$	$\begin{gathered} \text { ME- ICP41 } \\ \text { Ca } \\ \% \\ 0.01 \end{gathered}$	$\begin{gathered} \text { ME- ICP4I } \\ \text { Cd } \\ \mathrm{ppm} \\ 0.5 \end{gathered}$	$\begin{gathered} \text { ME- ICP41 } \\ \text { Co } \\ \text { ppm } \\ 1 \end{gathered}$	$\begin{gathered} \text { ME: ICP41 } \\ \text { Cr } \\ \text { ppm } \\ 1 \end{gathered}$	$\begin{gathered} \text { ME- ICP41 } \\ \text { Cu } \\ \text { ppm } \\ 1 \end{gathered}$
$\begin{aligned} & \mathrm{J} 294238 \\ & \mathrm{~J} 294239 \\ & \mathrm{~J} 294240 \\ & \mathrm{~J} 294241 \\ & \mathrm{~J} 294242 \end{aligned}$		$\begin{aligned} & 0.32 \\ & 0.32 \\ & 0.78 \\ & 0.40 \\ & 0.80 \end{aligned}$	0.583 8.53 0.144 0.036 2.70		$\begin{aligned} & 1.2 \\ & 8.7 \\ & 0.2 \\ & 0.6 \\ & 3.1 \end{aligned}$	$\begin{aligned} & 0.93 \\ & 0.19 \\ & 0.84 \\ & 1.86 \\ & 0.62 \end{aligned}$	$\begin{gathered} 2 \\ <2 \\ 3 \\ 4 \\ 3 \end{gathered}$	$\begin{aligned} & <10 \\ & <10 \\ & <10 \\ & <10 \\ & <10 \end{aligned}$	$\begin{gathered} 60 \\ 30 \\ 90 \\ 50 \\ 120 \end{gathered}$	$\begin{aligned} & <0.5 \\ & <0.5 \\ & <0.5 \\ & <0.5 \\ & <0.5 \end{aligned}$	$\begin{gathered} <2 \\ 9 \\ <2 \\ <2 \\ 11 \end{gathered}$	$\begin{aligned} & 4.00 \\ & 1.01 \\ & 4.51 \\ & 3.26 \\ & 4.32 \end{aligned}$	$\begin{gathered} 0.9 \\ 1.2 \\ 0.8 \\ <0.5 \\ 24.4 \end{gathered}$	$\begin{gathered} 19 \\ 6 \\ 16 \\ 19 \\ 13 \end{gathered}$	$\begin{aligned} & 1 \\ & 8 \\ & 1 \\ & 3 \\ & 1 \end{aligned}$	$\begin{gathered} 497 \\ 2150 \\ 138 \\ 426 \\ 978 \end{gathered}$
J 294243 J 294244 J 294245 J 294246 J 294247		$\begin{aligned} & \hline 0.56 \\ & 1.58 \\ & 0.60 \\ & 1.40 \\ & 0.78 \end{aligned}$	0.094 0.013 1.595 0.426 0.263		$\begin{gathered} 3.4 \\ <0.2 \\ 4.1 \\ 13.7 \\ 13.2 \end{gathered}$	$\begin{aligned} & 1.84 \\ & 1.79 \\ & 0.93 \\ & 1.07 \\ & 2.07 \end{aligned}$	$\begin{gathered} <2 \\ <2 \\ 4 \\ <2 \\ 3 \end{gathered}$	$\begin{aligned} & <10 \\ & <10 \\ & <10 \\ & <10 \\ & <10 \end{aligned}$	$\begin{gathered} 60 \\ 120 \\ 80 \\ 30 \\ 80 \end{gathered}$	$\begin{aligned} & \hline 0.5 \\ & <0.5 \\ & <0.5 \\ & <0.5 \\ & <0.5 \end{aligned}$	$\begin{aligned} & <2 \\ & <2 \\ & 11 \\ & <2 \\ & 14 \end{aligned}$	$\begin{gathered} \hline 3.74 \\ 0.68 \\ 4.95 \\ 8.6 \\ 3.04 \end{gathered}$	$\begin{gathered} \hline 0.5 \\ <0.5 \\ 1.5 \\ 1.3 \\ 0.8 \end{gathered}$	$\begin{gathered} 19 \\ 5 \\ 18 \\ 10 \\ 22 \end{gathered}$	$\begin{aligned} & \hline 8 \\ & 8 \\ & 2 \\ & 1 \\ & 2 \end{aligned}$	$\begin{gathered} \hline 2680 \\ 22 \\ 416 \\ 9910 \\ 8170 \end{gathered}$
$\begin{aligned} & J 294248 \\ & J 294249 \\ & J 294250 \\ & J 294251 \\ & J 294252 \end{aligned}$		$\begin{aligned} & \hline 0.42 \\ & 0.16 \\ & 1.52 \\ & 2.32 \\ & 0.30 \end{aligned}$	1.685 0.065 0.055 0.506 0.683		$\begin{gathered} 3.6 \\ 0.8 \\ 1.0 \\ <0.2 \\ 0.2 \end{gathered}$	$\begin{aligned} & 1.82 \\ & 1.49 \\ & 1.54 \\ & 1.51 \\ & 1.08 \end{aligned}$	$\begin{gathered} 2 \\ <2 \\ 3 \\ <2 \\ <2 \\ <2 \end{gathered}$	$\begin{aligned} & <10 \\ & <10 \\ & <10 \\ & <10 \\ & <10 \end{aligned}$	$\begin{gathered} 90 \\ 50 \\ 50 \\ 140 \\ 160 \end{gathered}$	$\begin{aligned} & <0.5 \\ & <0.5 \\ & <0.5 \\ & 0.5 \\ & 0.5 \end{aligned}$	$\begin{aligned} & <2 \\ & <2 \\ & <2 \\ & <2 \\ & <2 \end{aligned}$	$\begin{aligned} & 4.35 \\ & 3.41 \\ & 4.89 \\ & 4.11 \\ & 3.82 \end{aligned}$	$\begin{aligned} & \hline 0.7 \\ & <0.5 \\ & <0.5 \\ & <0.5 \\ & <0.5 \end{aligned}$	$\begin{aligned} & 21 \\ & 15 \\ & 17 \\ & 15 \\ & 17 \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \end{aligned}$	$\begin{gathered} \hline 718 \\ 589 \\ 1160 \\ 224 \\ 531 \end{gathered}$
$\begin{aligned} & 1294253 \\ & \mathrm{~J} 294254 \\ & \mathrm{~J} 294255 \\ & \mathrm{~J} 294256 \\ & \mathrm{~J} 294257 \end{aligned}$		$\begin{aligned} & \hline 0.98 \\ & 1.02 \\ & 0.08 \\ & 0.48 \\ & 4.14 \end{aligned}$	$\begin{aligned} & 0.069 \\ & 0.005 \\ & 1.520 \\ & 0.685 \\ & 0.308 \end{aligned}$		$\begin{aligned} & 3.3 \\ & 1.0 \\ & 4.4 \\ & 1.9 \\ & 1.3 \end{aligned}$	$\begin{aligned} & 1.39 \\ & 1.56 \\ & 1.30 \\ & 1.28 \\ & 0.89 \end{aligned}$	$\begin{gathered} \hline 2 \\ 3 \\ 43 \\ 2 \\ <2 \end{gathered}$	$\begin{aligned} & <10 \\ & <10 \\ & <10 \\ & <10 \\ & <10 \end{aligned}$	$\begin{aligned} & 20 \\ & 40 \\ & 40 \\ & 90 \\ & 80 \end{aligned}$	$\begin{gathered} <0.5 \\ <0.5 \\ <0.5 \\ 0.5 \\ <0.5 \end{gathered}$	$\begin{gathered} <2 \\ <2 \\ 3 \\ <2 \\ <2 \end{gathered}$	5.03 4.30 1.42 4.41 4.10	$\begin{aligned} & <0.5 \\ & <0.5 \\ & 2.2 \\ & 0.5 \\ & 0.6 \end{aligned}$	$\begin{aligned} & 16 \\ & 15 \\ & 18 \\ & 14 \\ & 14 \end{aligned}$	$\begin{gathered} \hline 2 \\ 2 \\ 61 \\ 1 \\ 1 \end{gathered}$	$\begin{aligned} & \hline 1595 \\ & 126 \\ & 9810 \\ & 900 \\ & 248 \end{aligned}$
$\begin{aligned} & \mathrm{J} 294258 \\ & \mathrm{~J} 294259 \\ & \mathrm{j} 294260 \\ & \mathrm{~J} 294261 \\ & \mathrm{~J} 294262 \end{aligned}$		$\begin{aligned} & 1.80 \\ & 2.38 \\ & 1.42 \\ & 0.90 \\ & 0.18 \end{aligned}$	$\begin{aligned} & >10.0 \\ & 0.635 \\ & 0.246 \\ & 0.387 \\ & 0.526 \end{aligned}$	84.5	$\begin{gathered} 22.3 \\ 2.2 \\ 1.6 \\ 0.9 \\ 0.6 \end{gathered}$	$\begin{aligned} & \hline 0.55 \\ & 1.20 \\ & 1.22 \\ & 0.95 \\ & 1.42 \end{aligned}$	$\begin{gathered} \hline 2 \\ <2 \\ 6 \\ <2 \\ 5 \end{gathered}$	$\begin{aligned} & <10 \\ & <10 \\ & <10 \\ & <10 \\ & <10 \end{aligned}$	$\begin{gathered} 20 \\ 130 \\ 80 \\ 60 \\ 60 \end{gathered}$	$\begin{gathered} <0.5 \\ <0.5 \\ 0.5 \\ <0.5 \\ <0.5 \end{gathered}$	$\begin{gathered} 120 \\ <2 \\ 3 \\ <2 \\ <2 \end{gathered}$	2.31 4.20 5.03 4.23 4.41	$\begin{aligned} & 3.1 \\ & <0.5 \\ & <0.5 \\ & 0.8 \\ & <0.5 \end{aligned}$	$\begin{aligned} & 23 \\ & 11 \\ & 15 \\ & 16 \\ & 14 \end{aligned}$	$\begin{aligned} & 4 \\ & 2 \\ & 2 \\ & 2 \\ & 1 \end{aligned}$	$\begin{gathered} 1070 \\ 427 \\ 283 \\ 152 \\ 41 \end{gathered}$
$\begin{aligned} & 1294263 \\ & 1294264 \\ & 1294265 \\ & 1294266 \\ & 1294267 \end{aligned}$		$\begin{aligned} & 1.36 \\ & 0.18 \\ & 0.08 \\ & 2.18 \\ & 0.68 \end{aligned}$	$\begin{aligned} & 0.101 \\ & 0.099 \\ & 0.486 \\ & 0.167 \\ & 0.027 \end{aligned}$		$\begin{aligned} & \hline 2.4 \\ & 1.8 \\ & 1.2 \\ & 9.8 \\ & 1.4 \end{aligned}$	$\begin{aligned} & \hline 0.91 \\ & 1.36 \\ & 1.97 \\ & 0.77 \\ & 1.26 \end{aligned}$	$\begin{gathered} c 2 \\ 6 \\ 9 \\ c 2 \\ 2 \end{gathered}$	$\begin{aligned} & <10 \\ & <10 \\ & <10 \\ & <10 \\ & <10 \end{aligned}$	$\begin{gathered} 210 \\ 50 \\ 100 \\ 20 \\ 30 \end{gathered}$	$\begin{aligned} & <0.5 \\ & <0.5 \\ & <0.5 \\ & <0.5 \\ & <0.5 \end{aligned}$	$\begin{gathered} <2 \\ <2 \\ <2 \\ 8 \\ <2 \end{gathered}$	$\begin{gathered} \hline 4.56 \\ 4.32 \\ 0.77 \\ 10.8 \\ 7.5 \end{gathered}$	$\begin{gathered} \hline 0.6 \\ 0.6 \\ <0.5 \\ 0.8 \\ <0.5 \end{gathered}$	$\begin{gathered} \hline 16 \\ 14 \\ 11 \\ 9 \\ 14 \end{gathered}$	$\begin{gathered} \hline 2 \\ 1 \\ 33 \\ 1 \\ 2 \end{gathered}$	$\begin{aligned} & 525 \\ & 335 \\ & 5530 \\ & 6940 \\ & 995 \end{aligned}$
$\begin{aligned} & \mathrm{J} 294268 \\ & \mathrm{~J} 294269 \\ & \mathrm{~J} 294270 \\ & \mathrm{~J} 294271 \\ & \mathrm{~J} 294272 \end{aligned}$		$\begin{aligned} & 0.20 \\ & 0.16 \\ & 1.18 \\ & 0.26 \\ & 0.80 \end{aligned}$	$\begin{aligned} & \hline 0.009 \\ & 5.64 \\ & 0.148 \\ & 0.010 \\ & 0.059 \end{aligned}$		$\begin{aligned} & \hline 0.6 \\ & 7.4 \\ & 3.8 \\ & 0.5 \\ & 5.4 \end{aligned}$	$\begin{aligned} & 1.76 \\ & 1.22 \\ & 1.21 \\ & 1.34 \\ & 1.72 \end{aligned}$	$\begin{gathered} <2 \\ 4 \\ 2 \\ 2 \\ 5 \\ <2 \end{gathered}$	$\begin{aligned} & <10 \\ & <10 \\ & <10 \\ & <10 \\ & <10 \end{aligned}$	$\begin{gathered} 50 \\ 160 \\ 60 \\ 50 \\ 60 \end{gathered}$	$\begin{aligned} & <0.5 \\ & <0.5 \\ & <0.5 \\ & <0.5 \\ & <0.5 \end{aligned}$	$\begin{aligned} & <2 \\ & <2 \\ & <2 \\ & <2 \\ & 2 \end{aligned}$	$\begin{gathered} \hline 4.97 \\ 3.33 \\ 7.6 \\ 4.54 \\ 2.08 \end{gathered}$	$\begin{aligned} & <0.5 \\ & 2.0 \\ & <0.5 \\ & <0.5 \\ & <0.5 \end{aligned}$	$\begin{aligned} & 15 \\ & 23 \\ & 13 \\ & 15 \\ & 17 \end{aligned}$	$\begin{aligned} & \hline 2 \\ & 1 \\ & 5 \\ & 1 \\ & 2 \end{aligned}$	$\begin{gathered} \hline 74 \\ 1275 \\ 2340 \\ 95 \\ 3060 \end{gathered}$
$\begin{aligned} & J 294273 \\ & J 294274 \\ & J 294275 \\ & J 294276 \\ & \mathrm{~J} 294277 \end{aligned}$		$\begin{aligned} & 2.10 \\ & 0.56 \\ & 0.54 \\ & 0.22 \\ & 0.22 \end{aligned}$	$\begin{gathered} \hline 0.131 \\ 0.091 \\ <0.005 \\ 0.067 \\ 0.051 \end{gathered}$		$\begin{aligned} & 1.3 \\ & 0.5 \\ & 0.3 \\ & 6.6 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 1.83 \\ & 1.70 \\ & 1.61 \\ & 1.20 \\ & 1.41 \end{aligned}$	$\begin{gathered} 5 \\ 3 \\ <2 \\ 4 \\ 5 \end{gathered}$	$\begin{aligned} & <10 \\ & <10 \\ & <10 \\ & <10 \\ & <10 \end{aligned}$	$\begin{aligned} & 60 \\ & 60 \\ & 40 \\ & 70 \\ & 80 \end{aligned}$	$\begin{aligned} & <0.5 \\ & <0.5 \\ & <0.5 \\ & <0.5 \\ & <0.5 \end{aligned}$	$\begin{aligned} & <2 \\ & <2 \\ & <2 \\ & <2 \\ & <2 \end{aligned}$	$\begin{aligned} & 2.90 \\ & 3.92 \\ & 3.98 \\ & 4.11 \\ & 3.39 \end{aligned}$	$\begin{aligned} & <0.5 \\ & <0.5 \\ & <0.5 \\ & 2.4 \\ & 0.9 \end{aligned}$	$\begin{aligned} & 15 \\ & 15 \\ & 14 \\ & 12 \\ & 13 \end{aligned}$	$\begin{aligned} & 2 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	896 96 55 4430 1225

Comments: Additional Au- AAZ3 check results for sample J294262 are 0.145 ppm and 0.321 ppm .

TO: ANGLO SWISS RESOURCES INC.
309-837 W HASTINGS ST.
VANCOUVER BC V6C 3N6

CERTIFICATE OF ANALYSIS VA11001920

Sample Description	Method Analyte Units LOR	$\begin{gathered} \text { ME-ICP4] } \\ \mathrm{Fe} \\ \% \\ 0.01 \end{gathered}$	$\begin{gathered} \text { ME- } 1 C P 41 \\ \text { Ca } \\ \text { ppm } \\ 10 \end{gathered}$	$\begin{gathered} \text { ME-ICP4 } \\ \mathrm{Hg} \\ \mathrm{ppm} \\ 1 \end{gathered}$	$\begin{gathered} \text { ME. ICP4 } \\ K \\ \% \\ \% \\ 0.01 \end{gathered}$	$\begin{gathered} \text { ME- } \text { [CP4 } \\ \text { La } \\ \text { ppm } \\ 10 \end{gathered}$	$\begin{gathered} \text { ME. ICP41 } \\ \text { Mg } \\ \% \\ 0.01 \end{gathered}$	$\begin{gathered} \text { ME. ICP4 } \\ \text { Mn } \\ \text { ppm } \\ 5 \end{gathered}$	$\begin{gathered} \text { ME- ICP41 } \\ \text { Mo } \\ \text { Ppm } \\ 1 \end{gathered}$	$\begin{gathered} \text { ME- ICP41 } \\ \mathrm{Na} \\ \% \\ 0.01 \end{gathered}$	$\begin{gathered} \text { ME- ICP41 } \\ \text { Ni } \\ \text { ppm } \\ 1 \end{gathered}$	$\begin{gathered} \text { ME- ICP41 } \\ p \\ \text { ppm } \\ 10 \end{gathered}$	$\begin{gathered} \text { ME- } 1 \mathrm{CP4} 41 \\ \mathrm{~Pb} \\ \mathrm{ppm} \\ 2 \end{gathered}$	$\begin{gathered} \text { ME- ICP41 } \\ \text { S } \\ \% \\ 0.01 \end{gathered}$	$\begin{gathered} \text { ME- ICP4] } \\ \text { Sb } \\ \text { ppm } \\ 2 \end{gathered}$	$\begin{gathered} \text { ME- ICP4I } \\ \text { Sc } \\ \mathrm{ppm} \\ 1 \end{gathered}$
$\begin{aligned} & J 294238 \\ & J 294239 \\ & \mathrm{~J} 294240 \\ & \mathrm{~J} 294241 \\ & \mathrm{~J} 294242 \end{aligned}$		$\begin{aligned} & 3.49 \\ & 2.21 \\ & 3.37 \\ & 4.28 \\ & 3.20 \end{aligned}$	$\begin{aligned} & <10 \\ & <10 \\ & <10 \\ & 10 \\ & <10 \end{aligned}$	$\begin{gathered} <1 \\ <1 \\ <1 \\ 1 \\ <1 \end{gathered}$	$\begin{aligned} & 0.54 \\ & 0.13 \\ & 0.46 \\ & 0.64 \\ & 0.43 \end{aligned}$	$\begin{aligned} & 10 \\ & <10 \\ & 10 \\ & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & 1.17 \\ & 0.24 \\ & 1.14 \\ & 1.61 \\ & 1.01 \end{aligned}$	$\begin{gathered} 1665 \\ 637 \\ 1900 \\ 1375 \\ 1730 \end{gathered}$	$\begin{gathered} 3 \\ 14 \\ 1 \\ <1 \\ 3 \end{gathered}$	$\begin{aligned} & 0.03 \\ & 0.02 \\ & 0.03 \\ & 0.05 \\ & 0.03 \end{aligned}$	$\begin{gathered} 3 \\ <1 \\ 1 \\ 4 \\ 2 \\ 2 \end{gathered}$	$\begin{gathered} 2310 \\ 330 \\ 1910 \\ 1890 \\ 1740 \end{gathered}$	$\begin{gathered} 9 \\ 28 \\ 6 \\ 3 \\ 20 \end{gathered}$	$\begin{aligned} & 1.33 \\ & 1.93 \\ & 0.78 \\ & 0.04 \\ & 1.01 \end{aligned}$	$\begin{aligned} & <2 \\ & <2 \\ & <2 \\ & <2 \\ & <2 \end{aligned}$	$\begin{aligned} & 2 \\ & 1 \\ & 2 \\ & 5 \\ & 2 \end{aligned}$
$J 294243$ $J 294244$ $J 294245$ $J 294246$ $J 294247$		$\begin{aligned} & 4.74 \\ & 2.84 \\ & 4.18 \\ & 5.53 \\ & 6.03 \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \\ & <10 \\ & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & <1 \\ & <1 \\ & <1 \\ & <1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1.06 \\ & 1.13 \\ & 0.58 \\ & 0.19 \\ & 1.45 \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \\ & 10 \\ & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & 1.38 \\ & 0.73 \\ & 1.23 \\ & 0.83 \\ & 1.50 \end{aligned}$	$\begin{gathered} 1380 \\ 598 \\ 1975 \\ 2170 \\ 1170 \end{gathered}$	$\begin{gathered} \hline 2 \\ 1 \\ 1 \\ 46 \\ 27 \end{gathered}$	$\begin{aligned} & \hline 0.04 \\ & 0.11 \\ & 0.03 \\ & 0.04 \\ & 0.06 \end{aligned}$	$\begin{aligned} & 4 \\ & 1 \\ & 2 \\ & 2 \\ & 4 \end{aligned}$	$\begin{gathered} 1910 \\ 750 \\ 1710 \\ 1250 \\ 2020 \end{gathered}$	$\begin{gathered} 4 \\ 3 \\ 26 \\ 18 \\ 6 \end{gathered}$	$\begin{aligned} & 0.38 \\ & 0.04 \\ & 1.72 \\ & 1.02 \\ & 0.79 \end{aligned}$	$\begin{aligned} & <2 \\ & <2 \\ & <2 \\ & <2 \\ & <2 \end{aligned}$	$\begin{aligned} & 4 \\ & 4 \\ & 2 \\ & 5 \\ & 4 \end{aligned}$
$J 294248$ $J 294249$ $J 294250$ $J 294251$ $J 294252$		$\begin{aligned} & 4.14 \\ & 4.02 \\ & 4.45 \\ & 3.87 \\ & 2.64 \end{aligned}$	$\begin{gathered} 10 \\ 10 \\ 10 \\ <10 \\ <10 \end{gathered}$	$\begin{aligned} & <1 \\ & <1 \\ & <1 \\ & <1 \\ & <1 \end{aligned}$	$\begin{aligned} & 1.17 \\ & 0.68 \\ & 0.73 \\ & 1.00 \\ & 0.50 \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \\ & 10 \\ & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & 1.41 \\ & 1.09 \\ & 1.21 \\ & 1.21 \\ & 0.82 \end{aligned}$	$\begin{aligned} & 1750 \\ & 1115 \\ & 1330 \\ & 1430 \\ & 1285 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 8 \\ & 1 \\ & 2 \end{aligned}$	$\begin{aligned} & 0.06 \\ & 0.07 \\ & 0.06 \\ & 0.05 \\ & 0.04 \end{aligned}$	$\begin{aligned} & 4 \\ & 3 \\ & 3 \\ & 3 \\ & 2 \end{aligned}$	$\begin{aligned} & 1940 \\ & 1270 \\ & 1770 \\ & 1780 \\ & 1520 \end{aligned}$	$\begin{aligned} & \hline 5 \\ & 5 \\ & 6 \\ & 5 \\ & 5 \end{aligned}$	0.95 0.12 0.12 0.34 0.89	$\begin{aligned} & <2 \\ & <2 \\ & <2 \\ & <2 \\ & <2 \end{aligned}$	$\begin{aligned} & \hline 6 \\ & 3 \\ & 4 \\ & 4 \\ & 2 \end{aligned}$
$\begin{aligned} & J 294253 \\ & J 294254 \\ & J 294255 \\ & 1294256 \\ & J 294257 \end{aligned}$		$\begin{aligned} & \hline 4.41 \\ & 3.84 \\ & 4.44 \\ & 3.73 \\ & 3.47 \end{aligned}$	$\begin{aligned} & \hline 10 \\ & 10 \\ & <10 \\ & <10 \\ & <10 \end{aligned}$	$\begin{aligned} & <1 \\ & <1 \\ & <1 \\ & <1 \\ & <1 \end{aligned}$	$\begin{aligned} & 0.21 \\ & 0.57 \\ & 0.45 \\ & 0.37 \\ & 0.33 \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \\ & 20 \\ & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & 1.28 \\ & 1.42 \\ & 0.81 \\ & 1.30 \\ & 1.14 \end{aligned}$	$\begin{gathered} 1315 \\ 1510 \\ 332 \\ 1680 \\ 1355 \end{gathered}$	$\begin{gathered} \hline 4 \\ 1 \\ 236 \\ 1 \\ 2 \end{gathered}$	$\begin{aligned} & \hline 0.04 \\ & 0.04 \\ & 0.04 \\ & 0.03 \\ & 0.03 \end{aligned}$	$\begin{gathered} 6 \\ 4 \\ 30 \\ 2 \\ 2 \end{gathered}$	$\begin{aligned} & \hline 1620 \\ & 1730 \\ & 660 \\ & 1810 \\ & 1730 \end{aligned}$	$\begin{gathered} 6 \\ 4 \\ 45 \\ 65 \\ <2 \end{gathered}$	$\begin{aligned} & 1.00 \\ & 0.09 \\ & 2.59 \\ & 0.32 \\ & 0.42 \end{aligned}$	$\begin{aligned} & <2 \\ & <2 \\ & 14 \\ & <2 \\ & <2 \end{aligned}$	$\begin{aligned} & \hline 5 \\ & 5 \\ & 6 \\ & 2 \\ & 3 \end{aligned}$
$\begin{aligned} & J 294258 \\ & J 294259 \\ & J 294260 \\ & J 294261 \\ & J 294262 \end{aligned}$		$\begin{aligned} & 5.17 \\ & 3.36 \\ & 3.54 \\ & 3.59 \\ & 3.55 \end{aligned}$	$\begin{aligned} & <10 \\ & <10 \\ & <10 \\ & <10 \\ & <10 \end{aligned}$	$\begin{aligned} & <1 \\ & <1 \\ & <1 \\ & <1 \\ & <1 \end{aligned}$	$\begin{aligned} & \hline 0.14 \\ & 0.49 \\ & 0.40 \\ & 0.73 \\ & 0.68 \end{aligned}$	$\begin{aligned} & <10 \\ & 10 \\ & 10 \\ & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & \hline 0.50 \\ & 1.04 \\ & 1.09 \\ & 1.22 \\ & 1.20 \end{aligned}$	$\begin{gathered} \hline 741 \\ 1210 \\ 1580 \\ 1655 \\ 1660 \end{gathered}$	$\begin{aligned} & 12 \\ & 3 \\ & 2 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & \hline 0.02 \\ & 0.04 \\ & 0.04 \\ & 0.03 \\ & 0.03 \end{aligned}$	$\begin{aligned} & 2 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \end{aligned}$	640 2050 1750 1780 1790	$\begin{aligned} & \hline 39 \\ & 3 \\ & 4 \\ & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & \hline 4.94 \\ & 0.54 \\ & 0.78 \\ & 0.66 \\ & 0.62 \end{aligned}$	$\begin{aligned} & <2 \\ & <2 \\ & <2 \\ & <2 \\ & <2 \end{aligned}$	$\begin{aligned} & 1 \\ & 4 \\ & 4 \\ & 3 \\ & 2 \end{aligned}$
J294263 J294264 $J 294265$ $J 294266$ $J 294267$		$\begin{aligned} & 3.35 \\ & 3.12 \\ & 3.83 \\ & 3.13 \\ & 3.53 \end{aligned}$	$\begin{gathered} <10 \\ <10 \\ 10 \\ <10 \\ 10 \end{gathered}$	$\begin{aligned} & <1 \\ & <1 \\ & <1 \\ & <1 \\ & <1 \end{aligned}$	$\begin{aligned} & \hline 0.63 \\ & 0.58 \\ & 0.13 \\ & 0.44 \\ & 0.63 \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \\ & 10 \\ & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & 1.13 \\ & 1.01 \\ & 0.85 \\ & 0.65 \\ & 1.06 \end{aligned}$	$\begin{aligned} & \hline 1460 \\ & 1560 \\ & 634 \\ & 701 \\ & 765 \end{aligned}$	$\begin{gathered} 1 \\ 1 \\ 201 \\ 6 \\ 2 \end{gathered}$	$\begin{aligned} & 0.04 \\ & 0.03 \\ & 0.09 \\ & 0.01 \\ & 0.02 \end{aligned}$	$\begin{gathered} 2 \\ 2 \\ 23 \\ 2 \\ 2 \\ 3 \end{gathered}$	$\begin{aligned} & \hline 1600 \\ & 1550 \\ & 600 \\ & 850 \\ & 1450 \end{aligned}$	$\begin{gathered} \hline 4 \\ 5 \\ 12 \\ 7 \\ <2 \end{gathered}$	$\begin{aligned} & 0.60 \\ & 0.75 \\ & 0.70 \\ & 9.5 \\ & 5.9 \end{aligned}$	$\begin{aligned} & <2 \\ & <2 \\ & <2 \\ & <2 \\ & <2 \end{aligned}$	$\begin{aligned} & 3 \\ & 2 \\ & 5 \\ & 5 \\ & 1 \\ & 2 \end{aligned}$
$J 294268$ $J 294269$ $J 294270$ $J 294271$ $J 294272$		$\begin{aligned} & 3.70 \\ & 4.03 \\ & 3.25 \\ & 3.45 \\ & 3.81 \end{aligned}$	$\begin{aligned} & <10 \\ & <10 \\ & 10 \\ & <10 \\ & 10 \end{aligned}$	$\begin{aligned} & <1 \\ & <1 \\ & <1 \\ & <1 \\ & <1 \end{aligned}$	$\begin{aligned} & \hline 0.92 \\ & 0.55 \\ & 0.67 \\ & 0.79 \\ & 1.32 \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \\ & 20 \\ & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & 1.36 \\ & 0.92 \\ & 1.06 \\ & 1.08 \\ & 1.23 \end{aligned}$	$\begin{aligned} & 1570 \\ & 1125 \\ & 1995 \\ & 1710 \\ & 1105 \end{aligned}$	$\begin{gathered} 1 \\ 1 \\ 52 \\ 1 \\ 2 \end{gathered}$	$\begin{aligned} & 0.03 \\ & 0.04 \\ & 0.04 \\ & 0.04 \\ & 0.05 \end{aligned}$	$\begin{aligned} & \hline 2 \\ & 2 \\ & 4 \\ & 1 \\ & 2 \end{aligned}$	$\begin{aligned} & 1820 \\ & 1680 \\ & 1490 \\ & 1770 \\ & 1800 \end{aligned}$	$\begin{gathered} \hline 2 \\ 24 \\ 3 \\ <2 \\ <2 \end{gathered}$	$\begin{aligned} & 0.62 \\ & 2.36 \\ & 0.66 \\ & 0.38 \\ & 0.59 \end{aligned}$	$\begin{aligned} & <2 \\ & <2 \\ & <2 \\ & <2 \\ & <2 \end{aligned}$	$\begin{aligned} & 4 \\ & 3 \\ & 4 \\ & 3 \\ & 1 \end{aligned}$
$\begin{aligned} & 1294273 \\ & J 294274 \\ & j 294275 \\ & j 294276 \\ & j 294277 \end{aligned}$		$\begin{aligned} & 3.93 \\ & 3.61 \\ & 3.57 \\ & 3.20 \\ & 3.26 \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \\ & 10 \\ & <10 \\ & <10 \end{aligned}$	$\begin{aligned} & <1 \\ & <1 \\ & <1 \\ & <1 \\ & <1 \end{aligned}$	$\begin{aligned} & 1.46 \\ & 1.36 \\ & 0.79 \\ & 0.71 \\ & 0.91 \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \\ & 10 \\ & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & 1.32 \\ & 1.20 \\ & 1.27 \\ & 0.88 \\ & 1.03 \end{aligned}$	$\begin{aligned} & 1425 \\ & 1545 \\ & 1555 \\ & 1430 \\ & 1305 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 0.06 \\ & 0.05 \\ & 0.05 \\ & 0.04 \\ & 0.05 \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \\ & 3 \\ & 3 \\ & 2 \\ & 1 \end{aligned}$	$\begin{aligned} & 1810 \\ & 1820 \\ & 1850 \\ & 1470 \\ & 1750 \end{aligned}$	$\begin{gathered} \hline<2 \\ 2 \\ 2 \\ 3 \\ 3 \end{gathered}$	$\begin{aligned} & 0.16 \\ & 0.22 \\ & 0.05 \\ & 1.16 \\ & 0.39 \end{aligned}$	$\begin{aligned} & <2 \\ & <2 \\ & <2 \\ & <2 \\ & <2 \end{aligned}$	$\begin{aligned} & 2 \\ & 3 \\ & 4 \\ & 3 \\ & 3 \end{aligned}$

Comments: Additional Au- AA23 check results for sample J 294262 are 0.145 ppm and 0.321 ppm

Project: Kenville Mine

CERTIFICATE OF ANALYSIS VA11001920

Comments: Additional Au-AA23 check results for sample J294262 are 0.145 ppm and 0.321 ppm .

Project: Kenville Mine
minerals
CERTIFICATE OF ANALYSIS VA11001920

Sample Description	Method Analyte Units LOR	WEF-21 Recvd WI kg 0.02	Au- AA23 Au ppm 0.005	Aur-CRA21 Au ppm 0.05	ME-ICP41 Ag ppm 0.2	$\begin{gathered} \text { ME- ICP41 } \\ \text { A1 } \\ \% \\ 0.01 \end{gathered}$	$\begin{gathered} \text { ME. ICP4 } \\ \text { As } \\ \text { ppm } \\ 2 \end{gathered}$	$\begin{gathered} \text { ME. ICP41 } \\ \mathrm{B} \\ \text { ppm } \\ 10 \end{gathered}$	$\begin{gathered} \text { ME- } 1 C P_{41} \\ \text { Ba } \\ \text { ppm } \\ 10 \end{gathered}$	ME - [CP4 Be ppm 0.5	$\begin{gathered} \text { ME- ICP41 } \\ \text { Bi } \\ \text { ppm } \\ 2 \end{gathered}$	$\begin{gathered} \text { ME- ICP41 } \\ \text { Ca } \\ \% \\ 0.01 \end{gathered}$	$\begin{gathered} \text { ME. ICP41 } \\ \text { Cd } \\ \text { ppm } \\ 0.5 \end{gathered}$	$\begin{gathered} \text { ME- ICP41 } \\ \text { Co } \\ \text { ppm } \\ 1 \end{gathered}$	$\begin{gathered} \text { ME- ICP41 } \\ \text { Cr } \\ \text { ppm } \\ 1 \end{gathered}$	$\begin{gathered} \text { ME- ICP41 } \\ \mathrm{Cu} \\ \mathrm{ppm} \\ 1 \end{gathered}$
$\begin{aligned} & \mathrm{J} 294278 \\ & \mathrm{~J} 294279 \\ & \mathrm{~J} 294280 \\ & \mathrm{~J} 294281 \\ & \mathrm{~J} 294282 \end{aligned}$		$\begin{aligned} & 2.34 \\ & 1.36 \\ & 1.02 \\ & 0.44 \\ & 0.86 \end{aligned}$	0.013 0.498 0.419 1.125 0.184		$\begin{gathered} \hline 1.1 \\ 6.4 \\ 16.8 \\ 1.7 \\ 14.9 \end{gathered}$	$\begin{aligned} & 1.50 \\ & 1.15 \\ & 1.23 \\ & 1.22 \\ & 1.49 \end{aligned}$	$\begin{gathered} 2 \\ <2 \\ <2 \\ 3 \\ <2 \end{gathered}$	$\begin{aligned} & <10 \\ & <10 \\ & <10 \\ & <10 \\ & <10 \end{aligned}$	$\begin{gathered} 60 \\ 120 \\ 110 \\ 80 \\ 50 \end{gathered}$	$\begin{aligned} & <0.5 \\ & <0.5 \\ & <0.5 \\ & <0.5 \\ & <0.5 \end{aligned}$	$\begin{aligned} & <2 \\ & <2 \\ & 11 \\ & <2 \\ & <2 \end{aligned}$	$\begin{aligned} & 3.20 \\ & 3.86 \\ & 3.91 \\ & 3.78 \\ & 3.36 \end{aligned}$	$\begin{aligned} & <0.5 \\ & 1.2 \\ & 2.2 \\ & <0.5 \\ & 2.4 \end{aligned}$	$\begin{aligned} & 16 \\ & 17 \\ & 23 \\ & 19 \\ & 21 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{gathered} 585 \\ 2480 \\ 7720 \\ 278 \\ 7660 \end{gathered}$
$J 294283$ $J 294284$ $J 294285$ $J 294286$ $J 294287$		$\begin{aligned} & 2.10 \\ & 0.82 \\ & 0.72 \\ & 1.40 \\ & 0.58 \end{aligned}$	$\begin{aligned} & \hline 0.104 \\ & 0.105 \\ & 0.115 \\ & 0.040 \\ & 0.315 \end{aligned}$		$\begin{aligned} & 18.2 \\ & 1.3 \\ & 4.4 \\ & 23 \\ & 4.6 \end{aligned}$	$\begin{aligned} & 1.65 \\ & 0.67 \\ & 1.65 \\ & 1.66 \\ & 1.42 \end{aligned}$	$\begin{aligned} & <2 \\ & <2 \\ & 2 \\ & 3 \\ & 3 \\ & 3 \end{aligned}$	$\begin{aligned} & <10 \\ & <10 \\ & <10 \\ & <10 \\ & <10 \end{aligned}$	$\begin{aligned} & 30 \\ & 90 \\ & 50 \\ & 50 \\ & 60 \end{aligned}$	$\begin{aligned} & <0.5 \\ & <0.5 \\ & <0.5 \\ & <0.5 \\ & <0.5 \end{aligned}$	$\begin{aligned} & \hline 6 \\ & <2 \\ & <2 \\ & <2 \\ & <2 \end{aligned}$	$\begin{aligned} & 3.61 \\ & 4.57 \\ & 2.44 \\ & 2.74 \\ & 3.44 \end{aligned}$	$\begin{gathered} 0.6 \\ 1.0 \\ <0.5 \\ <0.5 \\ 0.7 \end{gathered}$	$\begin{aligned} & 22 \\ & 14 \\ & 25 \\ & 19 \\ & 15 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 2 \\ & 2 \\ & 1 \end{aligned}$	>10000 184 2740 1895 3330
1294288 $J 294289$ $J 294290$ $J 294291$ $J 294292$		$\begin{aligned} & \hline 2.08 \\ & 1.34 \\ & 1.34 \\ & 0.72 \\ & 0.46 \end{aligned}$	$\begin{gathered} <0.005 \\ 1.310 \\ 0.057 \\ 0.693 \\ 2.93 \end{gathered}$		$\begin{aligned} & \hline<0.2 \\ & 1.2 \\ & 1.4 \\ & 3.0 \\ & 2.1 \end{aligned}$	$\begin{aligned} & 1.71 \\ & 1.62 \\ & 1.07 \\ & 0.82 \\ & 0.49 \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \\ & <2 \\ & <2 \\ & <2 \end{aligned}$	$\begin{aligned} & <10 \\ & <10 \\ & <10 \\ & <10 \\ & <10 \end{aligned}$	$\begin{aligned} & \hline 100 \\ & 60 \\ & 60 \\ & 40 \\ & 40 \end{aligned}$	$\begin{aligned} & <0.5 \\ & <0.5 \\ & <0.5 \\ & <0.5 \\ & <0.5 \end{aligned}$	$\begin{gathered} c 2 \\ 2 \\ <2 \\ 3 \\ 3 \\ 6 \end{gathered}$	$\begin{aligned} & \hline 0.54 \\ & 3.37 \\ & 3.54 \\ & 3.90 \\ & 2.46 \end{aligned}$	$\begin{aligned} & <0.5 \\ & <0.5 \\ & <0.5 \\ & 1.0 \\ & 1.3 \end{aligned}$	$\begin{aligned} & \hline 5 \\ & 17 \\ & 16 \\ & 15 \\ & 11 \end{aligned}$	$\begin{aligned} & \hline 7 \\ & 3 \\ & 2 \\ & 1 \\ & 4 \end{aligned}$	$\begin{gathered} 17 \\ 170 \\ 433 \\ 1050 \\ 135 \end{gathered}$
$\begin{aligned} & 1294293 \\ & \mathrm{~J} 294294 \\ & \mathrm{~J} 294295 \\ & \mathrm{~J} 294296 \\ & \mathrm{~J} 294297 \end{aligned}$		$\begin{aligned} & 1.88 \\ & 0.28 \\ & 0.32 \\ & 2.52 \\ & 0.56 \end{aligned}$	$\begin{aligned} & 0.212 \\ & 0.073 \\ & 0.447 \\ & 0.992 \\ & 0.071 \end{aligned}$		$\begin{aligned} & 3.1 \\ & 1.6 \\ & 1.7 \\ & 3.6 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 0.63 \\ & 1.37 \\ & 1.24 \\ & 0.98 \\ & 1.41 \end{aligned}$	$\begin{aligned} & <2 \\ & 2 \\ & <2 \\ & <2 \\ & 3 \end{aligned}$	$\begin{aligned} & <10 \\ & <10 \\ & <10 \\ & <10 \\ & <10 \end{aligned}$	$\begin{gathered} 80 \\ 100 \\ 170 \\ 300 \\ 40 \end{gathered}$	$\begin{aligned} & <0.5 \\ & <0.5 \\ & <0.5 \\ & <0.5 \\ & <0.5 \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \\ & 3 \\ & 3 \\ & 2 \end{aligned}$	$\begin{aligned} & 3.89 \\ & 3.70 \\ & 4.09 \\ & 4.41 \\ & 3.97 \end{aligned}$	$\begin{aligned} & 1.6 \\ & <0.5 \\ & <0.5 \\ & 0.9 \\ & <0.5 \end{aligned}$	$\begin{aligned} & 14 \\ & 16 \\ & 16 \\ & 16 \\ & 17 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{gathered} 1210 \\ 209 \\ 137 \\ 744 \\ 393 \end{gathered}$
$\begin{aligned} & J 294298 \\ & J 294299 \\ & J 294300 \\ & J 294301 \\ & J 294302 \end{aligned}$		$\begin{aligned} & 0.56 \\ & 0.08 \\ & 0.66 \\ & 0.40 \\ & 0.38 \end{aligned}$	$\begin{aligned} & \hline 0.032 \\ & 0.486 \\ & 0.140 \\ & 0.299 \\ & 0.177 \end{aligned}$		$\begin{aligned} & \hline 0.6 \\ & 3.1 \\ & 0.9 \\ & 1.0 \\ & 0.4 \end{aligned}$	$\begin{aligned} & 1.52 \\ & 1.41 \\ & 1.45 \\ & 1.32 \\ & 1.60 \end{aligned}$	$\begin{gathered} \hline 2 \\ 71 \\ 2 \\ 2 \\ <2 \end{gathered}$	$\begin{aligned} & <10 \\ & <10 \\ & <10 \\ & <10 \\ & <10 \end{aligned}$	$\begin{aligned} & 50 \\ & 70 \\ & 60 \\ & 50 \\ & 60 \end{aligned}$	$\begin{gathered} <0.5 \\ 0.5 \\ <0.5 \\ <0.5 \\ <0.5 \end{gathered}$	$\begin{gathered} \hline<2 \\ 3 \\ 2 \\ 2 \\ <2 \end{gathered}$	$\begin{aligned} & 3.97 \\ & 4.24 \\ & 4.12 \\ & 4.19 \\ & 3.66 \end{aligned}$	$\begin{aligned} & <0.5 \\ & 1.9 \\ & 0.5 \\ & <0.5 \\ & <0.5 \end{aligned}$	$\begin{aligned} & 14 \\ & 18 \\ & 16 \\ & 15 \\ & 11 \end{aligned}$	2 25 1 33 2	$\begin{gathered} \hline 183 \\ 4850 \\ 291 \\ 125 \\ 76 \end{gathered}$
$J 294303$ $J 294304$ $J 294305$ $J 294306$ $J 294307$		$\begin{aligned} & \hline 0.88 \\ & 0.80 \\ & 0.32 \\ & 0.36 \\ & 1.62 \end{aligned}$	$\begin{aligned} & >10.0 \\ & 0.275 \\ & 0.165 \\ & 0.007 \\ & 0.049 \end{aligned}$	15.45	$\begin{aligned} & 4.1 \\ & 0.6 \\ & 1.7 \\ & 0.6 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 1.23 \\ & 1.21 \\ & 1.68 \\ & 1.84 \\ & 0.99 \end{aligned}$	$\begin{gathered} \hline 3 \\ <2 \\ 2 \\ <2 \\ 2 \end{gathered}$	$\begin{aligned} & <10 \\ & <10 \\ & <10 \\ & <10 \\ & <10 \end{aligned}$	$\begin{aligned} & 50 \\ & 50 \\ & 70 \\ & 50 \\ & 20 \end{aligned}$	$\begin{gathered} <0.5 \\ <0.5 \\ 0.5 \\ <0.5 \\ <0.5 \end{gathered}$	$\begin{aligned} & \hline 8 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & 4.30 \\ & 3.76 \\ & 3.21 \\ & 2.80 \\ & 11.5 \end{aligned}$	$\begin{aligned} & 1.5 \\ & <0.5 \\ & <0.5 \\ & <0.5 \\ & 0.8 \end{aligned}$	$\begin{aligned} & 15 \\ & 12 \\ & 17 \\ & 18 \\ & 14 \end{aligned}$	$\begin{aligned} & \hline 1 \\ & 1 \\ & 1 \\ & 2 \\ & 1 \end{aligned}$	$\begin{aligned} & 769 \\ & 123 \\ & 753 \\ & 431 \\ & 4920 \end{aligned}$
$J 294308$ $J 294309$ $J 294310$ $J 294311$ $J 294312$		$\begin{aligned} & 2.00 \\ & 1.80 \\ & 0.70 \\ & 0.08 \\ & 0.60 \end{aligned}$	0.095 0.035 0.191 1.430 0.263		$\begin{aligned} & 1.6 \\ & 1.2 \\ & 0.7 \\ & 4.6 \\ & 20 \end{aligned}$	$\begin{aligned} & 1.33 \\ & 1.42 \\ & 1.47 \\ & 1.40 \\ & 1.39 \end{aligned}$	$\begin{gathered} <2 \\ <2 \\ 2 \\ 44 \\ <2 \end{gathered}$	$\begin{aligned} & <10 \\ & <10 \\ & <10 \\ & <10 \\ & <10 \end{aligned}$	$\begin{aligned} & 30 \\ & 20 \\ & 50 \\ & 60 \\ & 80 \end{aligned}$	$\begin{gathered} <0.5 \\ <0.5 \\ 0.5 \\ <0.5 \\ <0.5 \end{gathered}$	$\begin{aligned} & 2 \\ & 2 \\ & 2 \\ & 4 \\ & 3 \end{aligned}$	$\begin{aligned} & 2.88 \\ & 5.20 \\ & 3.71 \\ & 1.46 \\ & 3.86 \end{aligned}$	$\begin{aligned} & <0.5 \\ & <0.5 \\ & <0.5 \\ & 22 \\ & 0.6 \end{aligned}$	$\begin{aligned} & 16 \\ & 16 \\ & 15 \\ & 19 \\ & 15 \end{aligned}$	$\begin{gathered} \hline 2 \\ 2 \\ 1 \\ 64 \\ 1 \end{gathered}$	$\begin{gathered} \hline 790 \\ 573 \\ 258 \\ >10000 \\ 597 \end{gathered}$
$J 294313$ $J 294314$ $J 294315$ $J 294316$ $J 294317$		$\begin{aligned} & \hline 0.16 \\ & 0.70 \\ & 0.86 \\ & 0.40 \\ & 0.68 \end{aligned}$	$\begin{gathered} 4.03 \\ 0.118 \\ 0.087 \\ 3.56 \\ 0.114 \end{gathered}$		$\begin{aligned} & 4.0 \\ & 4.6 \\ & 1.6 \\ & 4.2 \\ & 1.8 \end{aligned}$	$\begin{aligned} & 0.39 \\ & 1.17 \\ & 1.22 \\ & 0.13 \\ & 1.09 \end{aligned}$	$\begin{aligned} & <2 \\ & 2 \\ & <2 \\ & <2 \\ & <2 \end{aligned}$	$\begin{aligned} & <10 \\ & <10 \\ & <10 \\ & <10 \\ & <10 \end{aligned}$	$\begin{gathered} 20 \\ 170 \\ 70 \\ 20 \\ 50 \end{gathered}$	$\begin{gathered} <0.5 \\ <0.5 \\ 0.5 \\ <0.5 \\ 0.5 \end{gathered}$	$\begin{gathered} \hline 8 \\ 2 \\ 2 \\ 7 \\ \hline<2 \end{gathered}$	$\begin{aligned} & 1.79 \\ & 3.91 \\ & 3.65 \\ & 0.45 \\ & 3.75 \end{aligned}$	$\begin{gathered} 1.1 \\ 1.2 \\ <0.5 \\ 0.9 \\ 0.7 \end{gathered}$	$\begin{gathered} 14 \\ 13 \\ 13 \\ 3 \\ 12 \end{gathered}$	$\begin{aligned} & 2 \\ & 1 \\ & 1 \\ & 4 \\ & 1 \end{aligned}$	$\begin{gathered} \hline 185 \\ 1890 \\ 383 \\ 764 \\ 536 \end{gathered}$

Comments: Additional Au- AA23 check results for sample J 294262 are 0.145 ppm and 0.321 ppm .

ALS Canada Ltd.

CERTIFICATE OF ANALYSIS VA11001920

Comments: Additional Au- AA23 check results for sample J294262 are 0.145 ppm and 0.321 ppm .

ALS Canada Ltd.
2103 Dollarton Hw
North Vancouver BC V7H OA7
Phone: 6049840221 Fax: 6049840218 www.alsglobal.com

TO: ANGLO SWISS RESOURCES INC.
309-837 W HASTINGS ST VANCOUVER BC V6C 3N6

CERTIFICATE OF ANALYSIS VA11001920

Comments: Additional Au- AA23 check results for sample J294262 are 0.145 ppm and 0.321 ppm

Als Canada Ltd.
2103 Doliarton Hwy
North Vancouver BC V7H 0A7
Phone: 6049840221
H OA7
Fax: 6049840218 www.alsglobal.com

TO: ANGLO SWISS RESOURCES INC.
309-837 W HASTINGS ST VANCOUVER BC V6C 3N6

Page: 8 - A
Total \# Pages: 8 (A - C) Finalized Date: 16-JAN-2011 Account: ANSWRE

Project: Kenville Mine
CERTIFICATE OF ANALYSIS VA11001920

[^1]Project: Kenville Mine

[^2]| Sample Description | Method Analyte Units LOR | $\begin{gathered} \text { ME. ICP41 } \\ \text { Sr } \\ \text { ppm } \\ 1 \end{gathered}$ | $\begin{gathered} \text { ME. ICP41 } \\ \text { Th } \\ \text { ppm } \\ 20 \end{gathered}$ | $\begin{gathered} \text { ME- } 1 C P 41 \\ T i \\ \% \\ 0.01 \end{gathered}$ | $\begin{gathered} \text { ME- } 1 C P 4\} \\ \mathrm{TI} \\ \mathrm{ppm} \\ 10 \end{gathered}$ | $\begin{gathered} \text { ME- ICP4] } \\ U \\ \text { ppm } \\ 10 \end{gathered}$ | $\begin{gathered} \text { ME- }-1 C P 41 \\ \checkmark \\ \mathrm{ppm} \\ 1 \end{gathered}$ | $\begin{gathered} \text { ME-ICP4] } \\ \text { W } \\ \text { ppm } \\ 10 \end{gathered}$ | $\begin{gathered} \text { ME- ICP4 } \mid \\ \mathrm{Zn} \\ \mathrm{ppm} \\ 2 \end{gathered}$ | $\begin{gathered} \mathrm{Cu}-0 \subset 46 \\ \mathrm{Cu} \\ \% \\ 0.001 \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| J294318
 J294319
 J294320
 J294321
 J 294322 | | $\begin{aligned} & 376 \\ & 345 \\ & 414 \\ & 864 \\ & 42 \end{aligned}$ | $\begin{aligned} & <20 \\ & <20 \\ & <20 \\ & <20 \\ & <20 \end{aligned}$ | $\begin{aligned} & 0.01 \\ & 0.01 \\ & 0.03 \\ & 0.03 \\ & 0.15 \end{aligned}$ | $\begin{aligned} & <10 \\ & <10 \\ & <10 \\ & <10 \\ & <10 \end{aligned}$ | $\begin{aligned} & <10 \\ & 10 \\ & <10 \\ & <10 \\ & <10 \end{aligned}$ | $\begin{aligned} & 46 \\ & 11 \\ & 76 \\ & 56 \\ & 61 \end{aligned}$ | $\begin{aligned} & <10 \\ & 320 \\ & <10 \\ & <10 \\ & <10 \end{aligned}$ | $\begin{aligned} & 84 \\ & 62 \\ & 71 \\ & 69 \\ & 77 \end{aligned}$ | |
| $\begin{aligned} & \mathrm{J} 294323 \\ & \mathrm{~J} 294324 \\ & \mathrm{~J} 294325 \\ & \mathrm{~J} 294326 \\ & \mathrm{~J} 294327 \end{aligned}$ | | $\begin{aligned} & 473 \\ & 650 \\ & 418 \\ & 411 \\ & 210 \end{aligned}$ | $\begin{aligned} & <20 \\ & <20 \\ & <20 \\ & <20 \\ & <20 \end{aligned}$ | $\begin{aligned} & \hline 0.02 \\ & 0.03 \\ & 0.07 \\ & 0.17 \\ & 0.19 \end{aligned}$ | $\begin{aligned} & <10 \\ & <10 \\ & <10 \\ & <10 \\ & <10 \end{aligned}$ | $\begin{aligned} & <10 \\ & <10 \\ & <10 \\ & <10 \\ & <10 \end{aligned}$ | $\begin{gathered} \hline 27 \\ 54 \\ 95 \\ 129 \\ 163 \end{gathered}$ | $\begin{aligned} & <10 \\ & <10 \\ & <10 \\ & <10 \\ & <10 \end{aligned}$ | $\begin{aligned} & \hline 629 \\ & 216 \\ & 99 \\ & 77 \\ & 90 \end{aligned}$ | |
| $\begin{aligned} & J 294328 \\ & J 294329 \\ & J 294330 \end{aligned}$ | | $\begin{aligned} & \hline 213 \\ & 519 \\ & 180 \end{aligned}$ | $\begin{aligned} & <20 \\ & <20 \\ & <20 \end{aligned}$ | $\begin{aligned} & 0.06 \\ & 0.03 \\ & 0.07 \end{aligned}$ | $\begin{aligned} & <10 \\ & <10 \\ & <10 \end{aligned}$ | $\begin{aligned} & <10 \\ & <10 \\ & <10 \end{aligned}$ | $\begin{gathered} \hline 144 \\ 53 \\ 158 \end{gathered}$ | $\begin{aligned} & <10 \\ & 150 \\ & <10 \end{aligned}$ | $\begin{aligned} & 75 \\ & 60 \\ & 76 \end{aligned}$ | |

Comments: Additional Au- AA23 check results for sample J294262 are 0.145 ppm and 0.321 ppm .

CERTIFICATE VA11000829

Project: Kenville Mine

P.O. No.:

This report is for 115 Drill Core samples submitted to our lab in Vancouver, BC Canada on 29- DEC-2010.
The following have access to data associated with this certificate: ANGLO SWISS RESOURCES
λ

To: ANGLO SWISS RESOURCES INC
309-837 W HASTINGS ST.
VANCOUVER BC V6C 3N6

LLOYD PENNER
\square
\qquad

SAMPLE PREPARATION		
ALS CODE	DESCRIPTION	
WE1-21	Received Sample Weight	
LOG. 21	Sample logging - ClientBarCode	
LOC. 23	Pulp Login - Rcvd with Barcode	
CRU- QC	Crushing QC Test	
PUL- QC	Pulverizing QC Test	
CRU- 31	Fine crushing - $70 \%<2 \mathrm{~mm}$	
SPL- 21	Split sample - riffle splitter	
PUL-31	Pulverize split to $85 \%<75$ um	
	ANALYTICAL PROCEDURES	
ALS CODE	DESCRIPTION	INSTRUMENT
ME- ICP4 1	35 Element Aqua Regia ICP- AES	ICP-AES
ME- OG46	Ore Grade Elements - AquaRegia	ICP-AES
Cu-OG46	Ore Grade Cu - Aqua Regia	VARIABLE
Au- AA23	Au 30g FA- AA finish	AAS
Au-GRA21	Au 30g FA- GRAV finish	WST-SIM

Phone: 604984022

Signature:

Colin Ramshaw, Vancouver Laboratory Manager

Sample Description	Method Analyte Units LOR	WEL- 21 Recvd Wt: kg 0.02	$\begin{gathered} \mathrm{Au}-\mathrm{AA}, 23 \\ \mathrm{Au} \\ \mathrm{ppm} \\ 0.005 \end{gathered}$	$\begin{gathered} \mathrm{Au}-\mathrm{GRA} 21 \\ \mathrm{Au} \\ \mathrm{ppm} \\ 0.05 \end{gathered}$	$\begin{gathered} \text { ME- } \operatorname{ICP4} 4 \\ \mathrm{Ag} \\ \mathrm{ppm} \\ 0.2 \end{gathered}$	$\begin{gathered} \text { ME-ICP41 } \\ \text { Al } \\ \% \\ 0.01 \end{gathered}$	$\begin{gathered} \text { ME- ©CP41 } \\ \text { As } \\ \text { ppm } \\ 2 \end{gathered}$	$\begin{gathered} \text { ME- KCP41 } \\ \text { B } \\ \text { ppm } \\ 10 \end{gathered}$	$\begin{gathered} \text { ME- ICP41 } \\ \text { Ea } \\ \text { ppm } \\ 10 \end{gathered}$	$\begin{gathered} \text { ME - CPP41 } \\ \text { Be } \\ \text { ppm } \\ 0.5 \end{gathered}$	$\begin{gathered} \text { ME. ICP41 } \\ \text { Bi } \\ \text { ppm } \\ 2 \end{gathered}$	$\begin{gathered} \text { ME-[CP4] } \\ \mathrm{Ca} \\ \% \\ 0.01 \end{gathered}$	$\begin{gathered} \text { ME- }\{C P 4\} \\ \text { Cd } \\ \text { pom } \\ 0.5 \end{gathered}$	$\begin{gathered} \text { ME. ICPC1 } \\ \text { Co } \\ \text { Ppm } \\ 1 \end{gathered}$	$\begin{gathered} \text { ME- ICP4I } \\ \text { Cr } \\ \text { fpm } \\ 1 \end{gathered}$	$\begin{gathered} \text { ME. ICP41 } \\ \mathrm{Cu} \\ \mathrm{ppm} \\ 1 \end{gathered}$
$\begin{aligned} & j 294331 \\ & j 294332 \\ & j 294333 \\ & j 294334 \\ & j 294335 \end{aligned}$		$\begin{aligned} & 0.86 \\ & 0.20 \\ & 0.14 \\ & 1.08 \\ & 0.56 \end{aligned}$	0.132 0.091 0.054 0.170 0.013		$\begin{aligned} & 1.7 \\ & 1.5 \\ & 1.0 \\ & 1.1 \\ & 1.3 \end{aligned}$	$\begin{aligned} & 0.55 \\ & 1.22 \\ & 1.20 \\ & 1.14 \\ & 1.01 \end{aligned}$	$\begin{gathered} 3 \\ 3 \\ <2 \\ 2 \\ <2 \end{gathered}$	$\begin{aligned} & <10 \\ & <10 \\ & <10 \\ & <10 \\ & <10 \end{aligned}$	$\begin{gathered} 80 \\ 80 \\ 60 \\ 110 \\ 180 \end{gathered}$	$\begin{gathered} <0.5 \\ 0.5 \\ 0.5 \\ <0.5 \\ <0.5 \end{gathered}$	$\begin{aligned} & <2 \\ & 2 \\ & <2 \\ & <2 \\ & <2 \end{aligned}$	$\begin{aligned} & 1.84 \\ & 3.46 \\ & 3.73 \\ & 3.74 \\ & 3.78 \end{aligned}$	$\begin{aligned} & 0.5 \\ & 0.5 \\ & 0.5 \\ & 0.5 \\ & 0.5 \end{aligned}$	$\begin{gathered} 9 \\ 9 \\ 15 \\ 15 \\ 17 \\ 14 \end{gathered}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 431 \\ & 636 \\ & 343 \\ & 232 \\ & 285 \end{aligned}$
$j 294336$ $j 294337$ $j 294338$ $j 294339$ $j 294340$		$\begin{aligned} & \hline 0.58 \\ & 1.34 \\ & 0.28 \\ & 1.20 \\ & 0.12 \end{aligned}$	$\begin{gathered} 0.007 \\ 0.259 \\ <0.005 \\ 0.036 \\ 0.539 \end{gathered}$		$\begin{aligned} & 1.4 \\ & 4.1 \\ & 0.3 \\ & 1.6 \\ & 5.9 \end{aligned}$	$\begin{aligned} & 1.05 \\ & 1.23 \\ & 1.43 \\ & 1.05 \\ & 0.56 \end{aligned}$	$\begin{aligned} & <2 \\ & <2 \\ & <2 \\ & <2 \\ & 2 \end{aligned}$	$\begin{aligned} & <10 \\ & <10 \\ & <10 \\ & <10 \\ & <10 \end{aligned}$	200 70 30 60 20	$\begin{gathered} <0.5 \\ <0.5 \\ <0.5 \\ 0.7 \\ <0.5 \end{gathered}$	$\begin{gathered} c 2 \\ 4 \\ 4 \\ <2 \\ <2 \\ 4 \end{gathered}$	$\begin{aligned} & 3.33 \\ & 1.02 \\ & 1.66 \\ & 3.52 \\ & 1.31 \end{aligned}$	$\begin{gathered} <0.5 \\ <0.5 \\ <0.5 \\ 0.5 \\ 3.1 \end{gathered}$	$\begin{aligned} & 14 \\ & 14 \\ & 16 \\ & 15 \\ & 10 \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \\ & 2 \\ & 1 \\ & 4 \end{aligned}$	$\begin{gathered} 321 \\ 6030 \\ 136 \\ 730 \\ 3150 \end{gathered}$
$\begin{aligned} & 1294341 \\ & J 294342 \\ & 1294343 \\ & J 294344 \\ & 1294345 \end{aligned}$		$\begin{aligned} & 0.32 \\ & 0.34 \\ & 0.32 \\ & 1.70 \\ & 0.86 \end{aligned}$	0.021 0.023 0.021 <0.005 0.363		$\begin{gathered} 0.9 \\ 1.3 \\ 0.6 \\ <0.2 \\ 0.9 \end{gathered}$	$\begin{aligned} & 1.06 \\ & 1.02 \\ & 0.96 \\ & 1.49 \\ & 0.56 \end{aligned}$	$\begin{gathered} <2 \\ 2 \\ <2 \\ <2 \\ <2 \end{gathered}$	$\begin{aligned} & <10 \\ & 10 \\ & 10 \\ & <10 \\ & <10 \end{aligned}$	$\begin{aligned} & 30 \\ & 40 \\ & 40 \\ & 30 \\ & 20 \end{aligned}$	$\begin{aligned} & 0.6 \\ & <0.5 \\ & <0.5 \\ & <0.5 \\ & <0.5 \end{aligned}$	$\begin{aligned} & <2 \\ & <2 \\ & <2 \\ & <2 \\ & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & 4.03 \\ & 1.18 \\ & 3.97 \\ & 0.47 \\ & 3.87 \end{aligned}$	$\begin{aligned} & <0.5 \\ & <0.5 \\ & <0.5 \\ & <0.5 \\ & 1.1 \end{aligned}$	14 18 12 5 16	$\begin{aligned} & 1 \\ & 2 \\ & 2 \\ & 7 \\ & 1 \end{aligned}$	$\begin{gathered} 236 \\ 2210 \\ 892 \\ 9 \\ 205 \end{gathered}$
$\begin{array}{\|l\|} \hline J 294346 \\ J 294347 \\ J 294348 \\ J 294349 \\ J 294350 \end{array}$		$\begin{aligned} & 0.66 \\ & 0.40 \\ & 0.80 \\ & 0.70 \\ & 0.64 \end{aligned}$	$\begin{aligned} & 0.070 \\ & 0.105 \\ & 0.594 \\ & 0.015 \\ & >100 \end{aligned}$	23.6	$\begin{gathered} 6.6 \\ 1.4 \\ 1.4 \\ 1.0 \\ 14.6 \end{gathered}$	$\begin{aligned} & 1.14 \\ & 0.61 \\ & 0.37 \\ & 0.66 \\ & 0.60 \end{aligned}$	$\begin{aligned} & <2 \\ & <2 \\ & 2 \\ & 2 \\ & <2 \end{aligned}$	$\begin{aligned} & <10 \\ & <10 \\ & <10 \\ & <10 \\ & <10 \end{aligned}$	$\begin{aligned} & 50 \\ & 60 \\ & 30 \\ & 60 \\ & 100 \end{aligned}$	$\begin{aligned} & <0.5 \\ & <0.5 \\ & <0.5 \\ & <0.5 \\ & <0.5 \end{aligned}$	$\begin{gathered} 3 \\ 2 \\ 3 \\ <2 \\ 10 \end{gathered}$	$\begin{aligned} & 3.98 \\ & 4.10 \\ & 3.03 \\ & 3.97 \\ & 3.34 \end{aligned}$	$\begin{aligned} & 0.9 \\ & 1.1 \\ & 1.2 \\ & <0.5 \\ & 1.9 \end{aligned}$	$\begin{aligned} & 15 \\ & 15 \\ & 17 \\ & 13 \\ & 16 \end{aligned}$	$\begin{gathered} 1 \\ 1 \\ 24 \\ 2 \\ 1 \end{gathered}$	$\begin{array}{r} \hline 3990 \\ 442 \\ 312 \\ 238 \\ 2180 \end{array}$
$J 294351$ $J 294352$ $J 294353$ 1294354 $J 294355$		$\begin{aligned} & 0.32 \\ & 0.40 \\ & 0.36 \\ & 1.00 \\ & 0.08 \end{aligned}$	$\begin{aligned} & 1.100 \\ & 0.107 \\ & 0.237 \\ & 0.010 \\ & 1.500 \end{aligned}$		$\begin{gathered} 14.9 \\ 2.0 \\ 0.8 \\ 0.8 \\ 4.9 \end{gathered}$	0.30 0.46 0.27 0.40 1.30	$\begin{gathered} <2 \\ 2 \\ <2 \\ <2 \\ 39 \end{gathered}$	$\begin{aligned} & <10 \\ & <10 \\ & <10 \\ & <10 \\ & <10 \end{aligned}$	$\begin{aligned} & 100 \\ & 70 \\ & 30 \\ & 40 \\ & 80 \end{aligned}$	$\begin{aligned} & <0.5 \\ & <0.5 \\ & <0.5 \\ & <0.5 \\ & <0.5 \end{aligned}$	$\begin{gathered} 2 \\ <2 \\ 2 \\ <2 \\ <2 \end{gathered}$	$\begin{aligned} & 2.47 \\ & 3.76 \\ & 2.25 \\ & 3.51 \\ & 1.45 \end{aligned}$	$\begin{aligned} & 5.1 \\ & 1.8 \\ & 1.1 \\ & 0.7 \\ & 2.2 \end{aligned}$	$\begin{aligned} & 16 \\ & 13 \\ & 10 \\ & 12 \\ & 20 \end{aligned}$	$\begin{gathered} 1 \\ 1 \\ <1 \\ 2 \\ 1 \\ 60 \end{gathered}$	$\begin{gathered} 7250 \\ 673 \\ 165 \\ 153 \\ 9920 \end{gathered}$
$\begin{aligned} & 1294356 \\ & J 294357 \\ & 1294358 \\ & 1294359 \\ & 1294360 \end{aligned}$		$\begin{aligned} & 0.42 \\ & 0.52 \\ & 0.52 \\ & 0.50 \\ & 1.04 \end{aligned}$	$\begin{aligned} & 0.143 \\ & 0.040 \\ & 0.674 \\ & 0.007 \\ & 0.277 \end{aligned}$		$\begin{gathered} 1.4 \\ 0.4 \\ 13.4 \\ 1.1 \\ 1.0 \end{gathered}$	0.46 0.20 0.36 1.43 1.15	$\begin{aligned} & <2 \\ & 2 \\ & <2 \\ & <2 \\ & <2 \end{aligned}$	$\begin{aligned} & <10 \\ & <10 \\ & <10 \\ & <10 \\ & <10 \end{aligned}$	$\begin{gathered} 40 \\ 20 \\ 180 \\ 50 \\ 30 \end{gathered}$	$\begin{aligned} & <0.5 \\ & <0.5 \\ & <0.5 \\ & <0.5 \\ & 0.5 \end{aligned}$	$\begin{array}{r} 2 \\ 2 \\ 3 \\ 3 \\ <2 \\ <2 \end{array}$	$\begin{aligned} & 3.58 \\ & 1.95 \\ & 4.26 \\ & 3.71 \\ & 3.82 \end{aligned}$	$\begin{gathered} 1.1 \\ <0.5 \\ 2.7 \\ 0.5 \\ 0.7 \end{gathered}$	$\begin{gathered} 13 \\ 7 \\ 73 \\ 14 \\ 15 \end{gathered}$	$\begin{aligned} & 1 \\ & <1 \\ & <1 \\ & 2 \\ & 1 \end{aligned}$	$\begin{gathered} 319 \\ 68 \\ 5320 \\ 855 \\ 560 \end{gathered}$
$J 294361$ $J 294362$ $J 294363$ $J 294364$ $J 294365$		$\begin{aligned} & 0.96 \\ & 0.56 \\ & 1.24 \\ & 0.78 \\ & 0.08 \end{aligned}$	0.403 0.562 0.397 0.216 1.380		$\begin{gathered} 1.2 \\ 12.8 \\ 10.3 \\ 4.0 \\ 4.4 \end{gathered}$	$\begin{aligned} & 1.10 \\ & 1.09 \\ & 1.29 \\ & 1.47 \\ & 1.30 \end{aligned}$	$\begin{aligned} & <2 \\ & <2 \\ & <2 \\ & <2 \\ & 38 \end{aligned}$	$\begin{aligned} & <10 \\ & <10 \\ & <10 \\ & <10 \\ & <10 \end{aligned}$	$\begin{aligned} & 30 \\ & 40 \\ & 40 \\ & 40 \\ & 60 \end{aligned}$	$\begin{aligned} & 0.5 \\ & <0.5 \\ & <0.5 \\ & <0.5 \\ & <0.5 \end{aligned}$	$\begin{gathered} 2 \\ <2 \\ <2 \\ <2 \\ <2 \\ <2 \end{gathered}$	$\begin{aligned} & 3.81 \\ & 2.82 \\ & 2.64 \\ & 3.73 \\ & 1.44 \end{aligned}$	$\begin{gathered} \hline 0.6 \\ 1.1 \\ 1.9 \\ <0.5 \\ 2.2 \end{gathered}$	$\begin{aligned} & 14 \\ & 18 \\ & 21 \\ & 15 \\ & 19 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 60 \end{aligned}$	$\begin{gathered} \hline 554 \\ 8600 \\ 9580 \\ 751 \\ 10000 \end{gathered}$
$J 294366$ $J 294367$ $J 294368$ $j 294369$ $J 294370$		$\begin{aligned} & \hline 0.72 \\ & 0.94 \\ & 1.24 \\ & 0.58 \\ & 0.74 \end{aligned}$	$\begin{aligned} & \hline 0.053 \\ & 0.059 \\ & 0.072 \\ & 0.245 \\ & 0.098 \end{aligned}$		$\begin{aligned} & 0.6 \\ & 1.6 \\ & 2.7 \\ & 5.5 \\ & 4.4 \end{aligned}$	$\begin{aligned} & 1.54 \\ & 1.16 \\ & 0.69 \\ & 1.46 \\ & 1.46 \end{aligned}$	$\begin{aligned} & <2 \\ & 2 \\ & 4 \\ & 3 \\ & <2 \end{aligned}$	$\begin{aligned} & <10 \\ & <10 \\ & <10 \\ & <10 \\ & <10 \end{aligned}$	$\begin{aligned} & 50 \\ & 40 \\ & 60 \\ & 80 \\ & 60 \end{aligned}$	$\begin{gathered} <0.5 \\ <0.5 \\ <0.5 \\ 0.5 \\ <0.5 \end{gathered}$	$\begin{aligned} & <2 \\ & <2 \\ & <2 \\ & <2 \\ & <2 \end{aligned}$	$\begin{aligned} & 3.34 \\ & 4.72 \\ & 3.11 \\ & 3.30 \\ & 3.43 \end{aligned}$	$\begin{gathered} <0.5 \\ <0.5 \\ 0.5 \\ 0.6 \\ 0.6 \end{gathered}$	$\begin{aligned} & 13 \\ & 12 \\ & 13 \\ & 17 \\ & 15 \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \\ & 1 \\ & 1 \\ & 2 \end{aligned}$	$\begin{gathered} 245 \\ 485 \\ 785 \\ 2570 \\ 2560 \end{gathered}$

CERTIFICATE OF ANALYSIS VA11000829

Sample DescriptionMethod Analyte Units LOR	$\begin{gathered} \text { ME. CCF41 } \\ \text { Fe } \\ \% \\ 0.01 \end{gathered}$	$\begin{gathered} \text { ME- } 1 \mathrm{CP4} 4 \\ \mathrm{Ca} \\ \mathrm{ppm} \\ 10 \end{gathered}$	$\begin{gathered} \text { ME-- } C P \text { Pl } \\ \mathrm{Hg} \\ \mathrm{ppm} \\ 1 \end{gathered}$	$\begin{gathered} M E-\mid C P 41 \\ K \\ \% \\ 0.01 \end{gathered}$	$\begin{gathered} \text { ME. ICP41 } \\ \text { La } \\ \text { ppm } \\ 10 \end{gathered}$	$\begin{gathered} \text { ME-ECP41 } \\ N_{G} \\ \% \\ 0.01 \end{gathered}$	$\begin{gathered} \text { ME-ICP41 } \\ \text { Mn } \\ \text { ppm } \\ \overline{5} \end{gathered}$	$\begin{gathered} \text { ME- } 1 C P 41 \\ \text { Mo } \\ \text { ppm } \\ 1 \end{gathered}$	$\begin{gathered} \text { ME- ICP41 } \\ \mathrm{Na} \\ \% \\ 0.01 \end{gathered}$	$\begin{gathered} \text { ME. }-1 C P 41 \\ \mathrm{Ni} \\ \text { ppm } \\ 1 \end{gathered}$	$\begin{gathered} \text { ME- KCP4 } \\ p \\ \text { ppm } \\ 10 \end{gathered}$	$\begin{gathered} \text { ME-ICP41 } \\ \text { Pb } \\ \text { ppm } \\ 2 \end{gathered}$	$\begin{gathered} \text { ME ICP41 } \\ \text { S } \\ \% \\ 0.01 \end{gathered}$	$\begin{gathered} \text { ME- ICP4 } \\ \text { Sb } \\ \text { ppm } \\ 2 \end{gathered}$	$\begin{gathered} \text { ME- }- \text { CP4 } \\ \text { Sc } \\ \text { ppm } \\ 1 \end{gathered}$
$\begin{aligned} & J 294331 \\ & j 294332 \\ & j 294333 \\ & j 294334 \\ & J 294335 \end{aligned}$	$\begin{aligned} & 1.82 \\ & 3.21 \\ & 3.14 \\ & 3.30 \\ & 3.33 \end{aligned}$	$\begin{aligned} & <10 \\ & <10 \\ & <10 \\ & <10 \\ & <10 \end{aligned}$	$\begin{gathered} <1 \\ 1 \\ <1 \\ 1 \\ 1 \end{gathered}$	$\begin{aligned} & 0.35 \\ & 0.94 \\ & 0.90 \\ & 0.93 \\ & 0.56 \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \\ & 10 \\ & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & 0.26 \\ & 0.78 \\ & 0.71 \\ & 0.78 \\ & 0.96 \end{aligned}$	$\begin{aligned} & 605 \\ & 1280 \\ & 1320 \\ & 1400 \\ & 1670 \end{aligned}$	$\begin{aligned} & 7 \\ & 3 \\ & 4 \\ & 2 \\ & 3 \end{aligned}$	0.03 0.04 0.04 0.04 0.04	$\begin{aligned} & 5 \\ & 1 \\ & 2 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 480 \\ & 1560 \\ & 1600 \\ & 1730 \\ & 1850 \end{aligned}$	$\begin{aligned} & 6 \\ & 5 \\ & 6 \\ & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & 0.66 \\ & 0.50 \\ & 0.52 \\ & 0.54 \\ & 0.17 \end{aligned}$	$\begin{aligned} & <2 \\ & <2 \\ & <2 \\ & <2 \\ & <2 \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \end{aligned}$
$J 294336$ $J 294337$ $J 294338$ $J 294339$ $J 294340$	$\begin{aligned} & 3.27 \\ & 3.33 \\ & 3.90 \\ & 3.56 \\ & 3.05 \end{aligned}$	$\begin{aligned} & <10 \\ & <10 \\ & 10 \\ & <10 \\ & <10 \end{aligned}$	$\begin{aligned} & 1 \\ & <1 \\ & <1 \\ & <1 \\ & <1 \\ & <1 \end{aligned}$	$\begin{aligned} & 0.69 \\ & 0.75 \\ & 0.69 \\ & 0.47 \\ & 0.18 \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \\ & <10 \\ & 10 \\ & <10 \end{aligned}$	$\begin{aligned} & 0.98 \\ & 0.82 \\ & 1.13 \\ & 1.09 \\ & 0.46 \end{aligned}$	$\begin{gathered} 1470 \\ 850 \\ 1060 \\ 1440 \\ 577 \end{gathered}$	$\begin{aligned} & \hline 2 \\ & 2 \\ & <1 \\ & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & 0.03 \\ & 0.04 \\ & 0.04 \\ & 0.03 \\ & 0.05 \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 3 \end{aligned}$	$\begin{aligned} & 1800 \\ & 1810 \\ & 1760 \\ & 1770 \\ & 710 \end{aligned}$	$\begin{aligned} & 5 \\ & 4 \\ & 4 \\ & 4 \\ & 5 \\ & 35 \end{aligned}$	$\begin{aligned} & 0.15 \\ & 0.29 \\ & 0.01 \\ & 0.19 \\ & 1.86 \end{aligned}$	$\begin{aligned} & <2 \\ & <2 \\ & <2 \\ & <2 \\ & <2 \end{aligned}$	$\begin{aligned} & 3 \\ & 2 \\ & 2 \\ & 3 \\ & 2 \end{aligned}$
$j 294341$ $j 294342$ $j 294343$ $j 294344$ $j 294345$	$\begin{aligned} & 3.39 \\ & 2.34 \\ & 2.02 \\ & 2.75 \\ & 3.29 \end{aligned}$	$\begin{aligned} & <10 \\ & <10 \\ & <10 \\ & <10 \\ & <10 \end{aligned}$	$\begin{gathered} 1 \\ <1 \\ <1 \\ 1 \\ <1 \end{gathered}$	$\begin{aligned} & 0.29 \\ & 0.85 \\ & 0.82 \\ & 1.00 \\ & 0.36 \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \\ & 10 \\ & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & 1.06 \\ & 0.67 \\ & 0.60 \\ & 0.69 \\ & 1.00 \end{aligned}$	$\begin{gathered} 1360 \\ 483 \\ 1060 \\ 540 \\ 1500 \end{gathered}$	$\begin{gathered} 1 \\ 2 \\ 43 \\ 1 \\ 1 \end{gathered}$	$\begin{aligned} & 0.03 \\ & 0.03 \\ & 0.03 \\ & 0.09 \\ & 0.02 \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \\ & 1 \\ & 2 \\ & 1 \end{aligned}$	$\begin{gathered} 1830 \\ 1990 \\ 1740 \\ 700 \\ 1630 \end{gathered}$	6 3 4 4 11	$\begin{aligned} & 0.24 \\ & 0.26 \\ & 0.15 \\ & 0.04 \\ & 0.66 \end{aligned}$	$\begin{aligned} & <2 \\ & <2 \\ & <2 \\ & <2 \\ & <2 \end{aligned}$	$\begin{aligned} & 3 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \\ & \hline \end{aligned}$
J 294346 $J 294347$ $J 294348$ $J 294349$ $J 294350$	$\begin{aligned} & 3.36 \\ & 3.05 \\ & 2.72 \\ & 3.39 \\ & 4.00 \end{aligned}$	$\begin{aligned} & <10 \\ & <10 \\ & <10 \\ & <10 \\ & <10 \end{aligned}$	$\begin{aligned} & 1 \\ & <1 \\ & <1 \\ & <1 \\ & <1 \\ & <1 \end{aligned}$	0.65 0.48 0.27 0.48 0.40	$\begin{aligned} & 10 \\ & 10 \\ & 10 \\ & 10 \\ & 40 \end{aligned}$	$\begin{aligned} & 0.83 \\ & 1.05 \\ & 0.69 \\ & 0.95 \\ & 0.72 \end{aligned}$	$\begin{aligned} & 1270 \\ & 1470 \\ & 1390 \\ & 1490 \\ & 1290 \end{aligned}$	$\begin{gathered} 13 \\ 1 \\ 37 \\ 1 \\ 54 \end{gathered}$	$\begin{aligned} & 0.04 \\ & 0.02 \\ & 0.01 \\ & 0.03 \\ & 0.02 \end{aligned}$	$\begin{aligned} & 3 \\ & 2 \\ & 8 \\ & 8 \\ & 2 \end{aligned}$	$\begin{aligned} & 1820 \\ & 1880 \\ & 1430 \\ & 1910 \\ & 1720 \end{aligned}$	9 7 7 14 6 90	$\begin{aligned} & 0.48 \\ & 0.40 \\ & 1.40 \\ & 0.08 \\ & 0.83 \end{aligned}$	$\begin{aligned} & <2 \\ & <2 \\ & <2 \\ & <2 \\ & <2 \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \\ & 1 \\ & 2 \\ & 1 \end{aligned}$
$J 294351$ $J 294352$ $J 294353$ $j 294354$ $J 294355$	$\begin{aligned} & 4.75 \\ & 2.86 \\ & 2.07 \\ & 2.96 \\ & 4.75 \end{aligned}$	$\begin{aligned} & <10 \\ & <10 \\ & <10 \\ & <10 \\ & <10 \end{aligned}$	$\begin{gathered} <1 \\ <1 \\ <1 \\ <1 \\ 1 \end{gathered}$	$\begin{aligned} & 0.26 \\ & 0.37 \\ & 0.22 \\ & 0.33 \\ & 0.47 \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \\ & 10 \\ & 10 \\ & 20 \end{aligned}$	$\begin{aligned} & 0.60 \\ & 0.97 \\ & 0.57 \\ & 0.94 \\ & 0.79 \end{aligned}$	$\begin{gathered} 968 \\ 1400 \\ 945 \\ 1280 \\ 341 \end{gathered}$	$\begin{gathered} \hline 20 \\ 4 \\ 7 \\ 1 \\ 245 \end{gathered}$	$\begin{aligned} & 0.02 \\ & 0.02 \\ & 0.03 \\ & 0.02 \\ & 0.04 \end{aligned}$	$\begin{gathered} \hline 2 \\ 1 \\ 1 \\ 1 \\ 32 \end{gathered}$	$\begin{gathered} \hline 970 \\ 1770 \\ 890 \\ 1770 \\ 660 \end{gathered}$	44 9 7 5 71	2.74 0.54 0.80 0.08 2.66	$\begin{aligned} & <2 \\ & <2 \\ & <2 \\ & <2 \\ & 14 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 6 \end{aligned}$
J 294356 J 294357 J 294358 J 294359 J 294360	$\begin{aligned} & 2.88 \\ & 1.54 \\ & 2.59 \\ & 3.52 \\ & 3.19 \end{aligned}$	$\begin{aligned} & <10 \\ & <10 \\ & <10 \\ & <10 \\ & <10 \end{aligned}$	$\begin{aligned} & <1 \\ & <1 \\ & <1 \\ & <1 \\ & <1 \end{aligned}$	$\begin{aligned} & \hline 0.36 \\ & 0.17 \\ & 0.27 \\ & 0.99 \\ & 0.49 \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \\ & 10 \\ & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & \hline 0.92 \\ & 0.44 \\ & 0.57 \\ & 1.03 \\ & 1.05 \end{aligned}$	$\begin{aligned} & 1470 \\ & 698 \\ & 1220 \\ & 1330 \\ & 1440 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 6 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 0.03 \\ & 0.01 \\ & 0.02 \\ & 0.03 \\ & 0.03 \end{aligned}$	$\begin{gathered} 1 \\ <1 \\ 1 \\ 1 \\ 2 \\ 2 \end{gathered}$	$\begin{gathered} 1650 \\ 860 \\ 1740 \\ 1750 \\ 1790 \end{gathered}$	$\begin{gathered} 6 \\ 3 \\ 14 \\ 3 \\ 3 \end{gathered}$	$\begin{aligned} & 0.59 \\ & 0.07 \\ & 1.38 \\ & 0.13 \\ & 0.46 \end{aligned}$	$\begin{aligned} & <2 \\ & <2 \\ & <2 \\ & <2 \\ & <2 \end{aligned}$	$\begin{aligned} & \hline 2 \\ & 1 \\ & 1 \\ & 3 \\ & 2 \end{aligned}$
$\begin{aligned} & 1294361 \\ & 1294362 \\ & 1294363 \\ & 1294364 \\ & 1294365 \end{aligned}$	$\begin{aligned} & 3.78 \\ & 3.69 \\ & 5.82 \\ & 3.55 \\ & 4.66 \end{aligned}$	$\begin{aligned} & <10 \\ & <10 \\ & 10 \\ & <10 \\ & <10 \end{aligned}$	$\begin{gathered} <1 \\ 1 \\ <1 \\ <1 \\ <1 \end{gathered}$	$\begin{aligned} & 0.37 \\ & 0.80 \\ & 0.75 \\ & 1.02 \\ & 0.47 \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \\ & 20 \\ & 10 \\ & 20 \end{aligned}$	$\begin{aligned} & 1.13 \\ & 0.76 \\ & 1.08 \\ & 1.11 \\ & 0.79 \end{aligned}$	$\begin{gathered} 1500 \\ 590 \\ 1120 \\ 1350 \\ 335 \end{gathered}$	$\begin{gathered} \hline 1 \\ 1 \\ 13 \\ 1 \\ 239 \end{gathered}$	$\begin{aligned} & 0.03 \\ & 0.04 \\ & 0.04 \\ & 0.03 \\ & 0.04 \end{aligned}$	$\begin{gathered} 1 \\ 3 \\ 2 \\ 3 \\ 32 \end{gathered}$	$\begin{aligned} & 1850 \\ & 1510 \\ & 1620 \\ & 1840 \\ & 650 \end{aligned}$	4 3 6 7 68	0.60 1.16 0.99 0.28 2.63	$\begin{aligned} & <2 \\ & <2 \\ & <2 \\ & <2 \\ & 14 \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \\ & 3 \\ & 3 \\ & 6 \end{aligned}$
$J 294366$ $j 294367$ $J 294368$ $J 294369$ $J 294370$	$\begin{aligned} & 3.46 \\ & 3.33 \\ & 4.03 \\ & 3.82 \\ & 3.51 \end{aligned}$	$\begin{aligned} & 10 \\ & <10 \\ & <10 \\ & <10 \\ & <10 \end{aligned}$	$\begin{aligned} & <1 \\ & <1 \\ & <1 \\ & <1 \\ & <1 \end{aligned}$	$\begin{aligned} & 1.18 \\ & 0.72 \\ & 0.37 \\ & 0.97 \\ & 1.00 \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \\ & 10 \\ & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & 1.15 \\ & 1.06 \\ & 1.04 \\ & 1.19 \\ & 1.15 \end{aligned}$	$\begin{aligned} & 1210 \\ & 1585 \\ & 1335 \\ & 1200 \\ & 1280 \end{aligned}$	$\begin{aligned} & 1 \\ & 3 \\ & 3 \\ & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & 0.04 \\ & 0.04 \\ & 0.03 \\ & 0.04 \\ & 0.03 \end{aligned}$	$\begin{aligned} & 3 \\ & 2 \\ & 2 \\ & 3 \\ & 2 \end{aligned}$	$\begin{aligned} & 1740 \\ & 1580 \\ & 1810 \\ & 1860 \\ & 1780 \end{aligned}$	$\begin{aligned} & \hline 4 \\ & 3 \\ & 5 \\ & 3 \\ & 3 \end{aligned}$	$\begin{aligned} & 0.15 \\ & 0.13 \\ & 0.36 \\ & 0.28 \\ & 0.33 \end{aligned}$	$\begin{aligned} & <2 \\ & <2 \\ & <2 \\ & <2 \\ & <2 \end{aligned}$	$\begin{aligned} & 4 \\ & 4 \\ & 3 \\ & 4 \\ & 3 \end{aligned}$

Project: Kenville Mine
CERTIFICATE OF ANALYSIS VA11000829

Sample DescriptionMethod Analyte Units LOR	$\begin{gathered} \text { ME- } 1 \mathrm{CP} 41 \\ \mathrm{Sr} \\ \mathrm{ppm} \\ 1 \end{gathered}$	$\begin{gathered} \text { ME- ICP41 } \\ \text { Th } \\ \text { pprn } \\ 20 \end{gathered}$	$\begin{gathered} \text { ME- } 1 C^{2} 41 \\ T i \\ \% \\ 0.01 \end{gathered}$	$\begin{gathered} \text { ME- ICP4 } \\ \mathrm{TI} \\ \mathrm{Ppm} \\ 10 \end{gathered}$	$\begin{gathered} \text { ME. ICP41 } \\ U \\ \text { ppm } \\ 10 \end{gathered}$	$\begin{gathered} \text { ME. ICP41 } \\ V \\ p p m \\ 1 \\ \hline \end{gathered}$	$\begin{gathered} \text { ME-KCP41 } \\ \text { W } \\ \text { Ppm } \\ 10 \end{gathered}$	$\begin{gathered} \text { ME- ICP4 } 1 \\ 2 \mathrm{n} \\ \mathrm{ppm} \\ 2 \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{Cu}-\mathrm{OC} 46 \\ \mathrm{CL} \\ \% \\ 0.001 \\ \hline \end{gathered}$
$\begin{aligned} & \mathrm{J} 294331 \\ & \mathrm{j} 294332 \\ & \mathrm{~J} 294333 \\ & \mathrm{~J} 294334 \\ & \mathrm{~J} 294335 \end{aligned}$	$\begin{aligned} & 684 \\ & 314 \\ & 249 \\ & 761 \\ & 944 \end{aligned}$	$\begin{aligned} & 30 \\ & <20 \\ & <20 \\ & <20 \\ & <20 \end{aligned}$	$\begin{aligned} & 0.01 \\ & 0.11 \\ & 0.10 \\ & 0.11 \\ & 0.04 \end{aligned}$	$\begin{aligned} & <10 \\ & <10 \\ & <10 \\ & <10 \\ & <10 \end{aligned}$	$\begin{aligned} & 10 \\ & <10 \\ & <10 \\ & <10 \\ & <10 \end{aligned}$	$\begin{aligned} & 27 \\ & 75 \\ & 66 \\ & 78 \\ & 58 \end{aligned}$	$\begin{aligned} & <10 \\ & <10 \\ & <10 \\ & <10 \\ & <10 \end{aligned}$	$\begin{aligned} & 24 \\ & 77 \\ & 73 \\ & 89 \\ & 80 \end{aligned}$	
$\begin{aligned} & 1294336 \\ & J 294337 \\ & J 294338 \\ & J 294339 \\ & J 294340 \end{aligned}$	$\begin{gathered} \hline 1040 \\ 65 \\ 82 \\ 359 \\ 167 \end{gathered}$	$\begin{aligned} & <20 \\ & <20 \\ & <20 \\ & <20 \\ & <20 \end{aligned}$	$\begin{aligned} & 0.08 \\ & 0.15 \\ & 0.14 \\ & 0.07 \\ & 0.03 \end{aligned}$	$\begin{aligned} & <10 \\ & <10 \\ & <10 \\ & <10 \\ & <10 \end{aligned}$	$\begin{aligned} & <10 \\ & <10 \\ & <10 \\ & <10 \\ & <10 \end{aligned}$	$\begin{gathered} 75 \\ 79 \\ 123 \\ 66 \\ 23 \end{gathered}$	$\begin{aligned} & <10 \\ & <10 \\ & <10 \\ & <10 \\ & 20 \end{aligned}$	$\begin{aligned} & 86 \\ & 40 \\ & 72 \\ & 64 \\ & 40 \end{aligned}$	
$\begin{aligned} & J 294341 \\ & J 294342 \\ & J 294343 \\ & J 294344 \\ & J 294345 \end{aligned}$	$\begin{gathered} \hline 421 \\ 67 \\ 144 \\ 29 \\ 364 \end{gathered}$	$\begin{aligned} & <20 \\ & <20 \\ & <20 \\ & <20 \\ & <20 \end{aligned}$	$\begin{aligned} & 0.08 \\ & 0.15 \\ & 0.14 \\ & 0.19 \\ & 0.02 \end{aligned}$	$\begin{aligned} & <10 \\ & <10 \\ & <10 \\ & <10 \\ & <10 \end{aligned}$	$\begin{aligned} & <10 \\ & <10 \\ & <10 \\ & <10 \\ & <10 \end{aligned}$	$\begin{aligned} & 63 \\ & 63 \\ & 54 \\ & 33 \\ & 38 \end{aligned}$	$\begin{aligned} & <10 \\ & <10 \\ & 20 \\ & <10 \\ & <10 \end{aligned}$	$\begin{aligned} & 49 \\ & 35 \\ & 26 \\ & 69 \\ & 50 \end{aligned}$	
$\begin{aligned} & J 294346 \\ & J 294347 \\ & J 294348 \\ & J 294349 \\ & J 294350 \end{aligned}$	$\begin{aligned} & 182 \\ & 382 \\ & 277 \\ & 512 \\ & 861 \end{aligned}$	$\begin{aligned} & <20 \\ & <20 \\ & <20 \\ & <20 \\ & <20 \end{aligned}$	$\begin{aligned} & 0.09 \\ & 0.02 \\ & 0.01 \\ & 0.03 \\ & 0.01 \end{aligned}$	$\begin{aligned} & <10 \\ & <10 \\ & <10 \\ & <10 \\ & <10 \end{aligned}$	$\begin{aligned} & <10 \\ & <10 \\ & <10 \\ & <10 \\ & 40 \end{aligned}$	$\begin{aligned} & 81 \\ & 27 \\ & 17 \\ & 52 \\ & 45 \end{aligned}$	$\begin{aligned} & <10 \\ & <10 \\ & <10 \\ & <10 \\ & <10 \end{aligned}$	$\begin{aligned} & 49 \\ & 52 \\ & 36 \\ & 49 \\ & 46 \end{aligned}$	
$\begin{aligned} & J 294351 \\ & j 294352 \\ & j 294353 \\ & j 294354 \\ & J 294355 \end{aligned}$	$\begin{aligned} & 739 \\ & 489 \\ & 217 \\ & 377 \\ & 59 \end{aligned}$	$\begin{aligned} & <20 \\ & <20 \\ & <20 \\ & <20 \\ & <20 \end{aligned}$	$\begin{aligned} & 0.01 \\ & 0.01 \\ & <0.01 \\ & 0.01 \\ & 0.04 \end{aligned}$	$\begin{aligned} & <10 \\ & <10 \\ & <10 \\ & <10 \\ & <10 \end{aligned}$	$\begin{aligned} & 30 \\ & <10 \\ & <10 \\ & <10 \\ & <10 \end{aligned}$	$\begin{gathered} 24 \\ 13 \\ 8 \\ 25 \\ 52 \\ \hline \end{gathered}$	$\begin{aligned} & 140 \\ & <10 \\ & <10 \\ & <10 \\ & <10 \end{aligned}$	$\begin{array}{r} \hline 48 \\ 53 \\ 34 \\ 52 \\ 116 \\ \hline \end{array}$	
$\begin{aligned} & 1294356 \\ & 1294357 \\ & 1294358 \\ & 1294359 \\ & 1294360 \end{aligned}$	$\begin{aligned} & 387 \\ & 200 \\ & 413 \\ & 252 \\ & 262 \end{aligned}$	$\begin{aligned} & <20 \\ & <20 \\ & <20 \\ & <20 \\ & <20 \end{aligned}$	$\begin{aligned} & 0.01 \\ & 0.01 \\ & 0.01 \\ & 0.14 \\ & 0.04 \end{aligned}$	$\begin{aligned} & <10 \\ & <10 \\ & <10 \\ & <10 \\ & <10 \end{aligned}$	$\begin{aligned} & <10 \\ & <10 \\ & <10 \\ & <10 \\ & <10 \end{aligned}$	$\begin{aligned} & 19 \\ & 13 \\ & 17 \\ & 96 \\ & 43 \\ & \hline \end{aligned}$	$\begin{aligned} & <10 \\ & <10 \\ & <10 \\ & <10 \\ & <10 \end{aligned}$	$\begin{aligned} & 46 \\ & 16 \\ & 40 \\ & 78 \\ & 60 \end{aligned}$	
$\begin{aligned} & 1294361 \\ & J 294362 \\ & 1294363 \\ & j 294364 \\ & J 294365 \end{aligned}$	$\begin{aligned} & 236 \\ & 128 \\ & 150 \\ & 275 \\ & 58 \end{aligned}$	$\begin{aligned} & <20 \\ & <20 \\ & <20 \\ & <20 \\ & <20 \end{aligned}$	$\begin{aligned} & 0.02 \\ & 0.12 \\ & 0.15 \\ & 0.14 \\ & 0.04 \end{aligned}$	$\begin{aligned} & <10 \\ & <10 \\ & <10 \\ & <10 \\ & <10 \end{aligned}$	$\begin{aligned} & <10 \\ & <10 \\ & 30 \\ & <10 \\ & <10 \end{aligned}$	$\begin{gathered} \hline 46 \\ 73 \\ 167 \\ 105 \\ 53 \end{gathered}$	$\begin{gathered} <10 \\ <10 \\ 10 \\ <10 \\ <10 \end{gathered}$	$\begin{aligned} & \hline 52 \\ & 45 \\ & 69 \\ & 69 \\ & 113 \end{aligned}$	0.973
$\begin{aligned} & 1294366 \\ & j 294367 \\ & j 294363 \\ & 1294369 \\ & 1294370 \end{aligned}$	$\begin{aligned} & 228 \\ & 471 \\ & 565 \\ & 502 \\ & 290 \end{aligned}$	$\begin{aligned} & <20 \\ & <20 \\ & <20 \\ & <20 \\ & <20 \end{aligned}$	$\begin{aligned} & 0.17 \\ & 0.10 \\ & 0.03 \\ & 0.12 \\ & 0.13 \end{aligned}$	$\begin{aligned} & <10 \\ & <10 \\ & <10 \\ & <10 \\ & <10 \end{aligned}$	$\begin{aligned} & <10 \\ & <10 \\ & <10 \\ & <10 \\ & <10 \end{aligned}$	$\begin{gathered} \hline 121 \\ 101 \\ 69 \\ 101 \\ 94 \end{gathered}$	$\begin{aligned} & <10 \\ & <10 \\ & <10 \\ & <10 \\ & <10 \end{aligned}$	$\begin{aligned} & 72 \\ & 61 \\ & 50 \\ & 78 \\ & 83 \end{aligned}$	

ALS Canada Ltd.

CERTIFICATE OF ANALYSIS VA11000829

Sample DescriptionMethod Analyte Units LOR	WE- 21 Recvd Wt. kg 0.02	$\begin{gathered} \mathrm{Au}-\mathrm{AA} A 3 \\ \mathrm{Au} \\ \mathrm{ppm} \\ 0.005 \end{gathered}$	$\begin{gathered} \mathrm{Au}-\mathrm{GRA} 21 \\ \mathrm{Au} \\ \mathrm{ppm} \\ 0.05 \end{gathered}$	ME-ICP41 Ag Ppm 0.2	$\begin{gathered} \text { ME- ICP41 } \\ \text { Al } \\ \% \\ 0.01 \end{gathered}$	$\begin{gathered} \text { ME- ICP41 } \\ \text { As } \\ \text { ppm } \\ 2 \end{gathered}$	$\begin{gathered} \text { ME. ICP41 } \\ 8 \\ \mathrm{ppm} \\ 10 \end{gathered}$	$\begin{gathered} \text { ME- } 1 \mathrm{CP41} \\ \mathrm{Ba} \\ \mathrm{ppm} \\ 10 \end{gathered}$	$\begin{gathered} \text { ME ICP41 } \\ \text { Be } \\ \text { ppm } \\ 0.5 \end{gathered}$	$\begin{gathered} \text { ME. ICP4 } \\ \mathrm{Bi} \\ \mathrm{ppm} \\ 2 \end{gathered}$	$\begin{gathered} \text { ME- ICP41 } \\ \text { Ca } \\ \% \\ 0.01 \end{gathered}$	$\begin{gathered} \text { ME. ICP41 } \\ \text { Cd } \\ \text { ppm } \\ 0.5 \end{gathered}$	$\begin{gathered} \text { ME- ICP4I } \\ \text { Co } \\ \text { ppm } \\ 1 \end{gathered}$	$\begin{gathered} \text { ME- ICP41 } \\ \text { Cr } \\ \mathrm{fpm} \\ 1 \end{gathered}$	$\begin{gathered} \text { ME- }-1 C P 41 \\ \mathrm{Cu} \\ \mathrm{ppm} \\ \mathrm{~T} \end{gathered}$
$\begin{aligned} & J 294371 \\ & J 294372 \\ & \mathrm{~J} 294373 \\ & \mathrm{~J} 294374 \\ & \mathrm{~J} 294375 \end{aligned}$	$\begin{aligned} & 1.50 \\ & 0.34 \\ & 1.48 \\ & 0.84 \\ & 0.34 \end{aligned}$	$\begin{aligned} & 0.076 \\ & 0.022 \\ & 0.085 \\ & 0.006 \\ & 0.018 \end{aligned}$		$\begin{aligned} & 2.1 \\ & 0.7 \\ & 1.0 \\ & 1.4 \\ & 0.6 \end{aligned}$	$\begin{aligned} & 0.79 \\ & 1.17 \\ & 0.59 \\ & 0.88 \\ & 1.35 \end{aligned}$	$\begin{gathered} c 2 \\ 3 \\ 4 \\ <2 \\ 2 \end{gathered}$	$\begin{aligned} & <10 \\ & <10 \\ & <10 \\ & <10 \\ & <10 \end{aligned}$	$\begin{gathered} 50 \\ 50 \\ 50 \\ 110 \\ 50 \end{gathered}$	$\begin{aligned} & <0.5 \\ & <0.5 \\ & <0.5 \\ & <0.5 \\ & 0.5 \end{aligned}$	$\begin{aligned} & <2 \\ & <2 \\ & <2 \\ & <2 \\ & <2 \end{aligned}$	$\begin{aligned} & 4.08 \\ & 3.96 \\ & 3.35 \\ & 4.16 \\ & 2.88 \end{aligned}$	$\begin{gathered} 0.5 \\ <0.5 \\ 0.9 \\ 0.7 \\ <0.5 \end{gathered}$	$\begin{aligned} & 13 \\ & 13 \\ & 12 \\ & 13 \\ & 13 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 746 \\ & 201 \\ & 172 \\ & 100 \\ & 118 \end{aligned}$
$\begin{aligned} & j 294375 \\ & j 294377 \\ & j 294378 \\ & j 294379 \\ & J 294380 \end{aligned}$	$\begin{aligned} & 1.38 \\ & 1.42 \\ & 0.78 \\ & 1.60 \\ & 0.36 \end{aligned}$	$\begin{aligned} & 0.096 \\ & 0.444 \\ & 0.125 \\ & 0.079 \\ & 0.138 \end{aligned}$		$\begin{aligned} & 0.5 \\ & 0.9 \\ & 0.3 \\ & 2.4 \\ & 1.2 \end{aligned}$	$\begin{aligned} & \hline 0.62 \\ & 0.58 \\ & 1.83 \\ & 0.99 \\ & 1.75 \end{aligned}$	$\begin{aligned} & \hline 3 \\ & 2 \\ & <2 \\ & <2 \\ & <2 \end{aligned}$	$\begin{aligned} & <10 \\ & <10 \\ & <10 \\ & <10 \\ & <10 \end{aligned}$	$\begin{aligned} & 30 \\ & 30 \\ & 50 \\ & 50 \\ & 50 \end{aligned}$	$\begin{aligned} & <0.5 \\ & <0.5 \\ & <0.5 \\ & <0.5 \\ & <0.5 \end{aligned}$	$\begin{aligned} & <2 \\ & <2 \\ & <2 \\ & 3 \\ & <2 \end{aligned}$	$\begin{aligned} & 4.49 \\ & 4.31 \\ & 3.93 \\ & 4.01 \\ & 1.89 \end{aligned}$	$\begin{gathered} 0.9 \\ 1.1 \\ <0.5 \\ 1.5 \\ \infty .5 \end{gathered}$	$\begin{aligned} & 14 \\ & 14 \\ & 16 \\ & 13 \\ & 16 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 2 \\ & 1 \\ & 2 \end{aligned}$	$\begin{gathered} \hline 62 \\ 67 \\ 135 \\ 333 \\ 1540 \end{gathered}$
1294381 $J 294382$ 1294383 $J 294384$ $J 294385$	$\begin{aligned} & 1.24 \\ & 0.32 \\ & 0.54 \\ & 2.00 \\ & 0.56 \end{aligned}$	$\begin{aligned} & 0.325 \\ & 0.133 \\ & 0.096 \\ & 0.723 \\ & 0.677 \end{aligned}$		$\begin{aligned} & 0.7 \\ & 0.6 \\ & 0.4 \\ & 1.5 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 0.75 \\ & 1.31 \\ & 1.49 \\ & 0.47 \\ & 1.05 \end{aligned}$	$\begin{gathered} c 2 \\ 3 \\ <2 \\ 2 \\ 3 \\ 3 \end{gathered}$	$\begin{aligned} & <10 \\ & <10 \\ & <10 \\ & <10 \\ & <10 \end{aligned}$	$\begin{gathered} 40 \\ 40 \\ 50 \\ 100 \\ 50 \end{gathered}$	$\begin{gathered} <0.5 \\ 0.5 \\ <0.5 \\ <0.5 \\ <0.5 \end{gathered}$	$\begin{aligned} & <2 \\ & <2 \\ & <2 \\ & <2 \\ & 2 \end{aligned}$	$\begin{aligned} & 3.46 \\ & 3.50 \\ & 3.19 \\ & 3.69 \\ & 3.88 \end{aligned}$	$\begin{aligned} & 1.9 \\ & <0.5 \\ & <0.5 \\ & 3.0 \\ & 0.7 \end{aligned}$	$\begin{aligned} & 14 \\ & 14 \\ & 14 \\ & 12 \\ & 12 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{gathered} 97 \\ 139 \\ 43 \\ 295 \\ 212 \end{gathered}$
$\begin{aligned} & \hline 1294386 \\ & J 294387 \\ & 1294388 \\ & 1294389 \\ & J 294390 \end{aligned}$	$\begin{aligned} & 0.92 \\ & 1.64 \\ & 2.14 \\ & 1.74 \\ & 1.22 \end{aligned}$	$\begin{gathered} 5.59 \\ 3.09 \\ <0.005 \\ 1.105 \\ 0.340 \end{gathered}$		$\begin{aligned} & 9.7 \\ & 7.6 \\ & <0.2 \\ & 2.2 \\ & 1.1 \end{aligned}$	$\begin{aligned} & 1.41 \\ & 1.53 \\ & 1.60 \\ & 0.63 \\ & 0.77 \end{aligned}$	$\begin{gathered} 8 \\ <2 \\ <2 \\ <2 \\ 2 \\ 2 \end{gathered}$	$\begin{aligned} & <10 \\ & <10 \\ & <10 \\ & <10 \\ & <10 \end{aligned}$	$\begin{gathered} 70 \\ 190 \\ 90 \\ 60 \\ 50 \end{gathered}$	$\begin{gathered} <0.5 \\ 0.8 \\ <0.5 \\ <0.5 \\ <0.5 \end{gathered}$	$\begin{gathered} 7 \\ 3 \\ <2 \\ <2 \\ 2 \end{gathered}$	$\begin{aligned} & 2.92 \\ & 3.81 \\ & 0.54 \\ & 3.90 \\ & 3.51 \end{aligned}$	$\begin{gathered} 2.4 \\ 1.4 \\ <0.5 \\ 0.9 \\ 3.4 \end{gathered}$	$\begin{gathered} 16 \\ 13 \\ 4 \\ 12 \\ 13 \end{gathered}$	$\begin{gathered} 22 \\ 23 \\ 8 \\ 1 \\ 1 \end{gathered}$	$\begin{gathered} 2410 \\ 2040 \\ 15 \\ 473 \\ 186 \end{gathered}$
$\begin{aligned} & \mathrm{J} 294391 \\ & \mathrm{~J} 294392 \\ & \mathrm{~J} 294393 \\ & \mathrm{~J} 294394 \\ & \mathrm{~J} 294395 \end{aligned}$	$\begin{aligned} & 1.12 \\ & 1.98 \\ & 0.80 \\ & 2.24 \\ & 0.80 \end{aligned}$	$\begin{aligned} & 0.344 \\ & 0.344 \\ & 0.313 \\ & 0.195 \\ & 0.011 \end{aligned}$		$\begin{aligned} & 1.1 \\ & 1.7 \\ & 0.9 \\ & 0.7 \\ & 0.5 \end{aligned}$	$\begin{aligned} & 0.60 \\ & 0.65 \\ & 0.83 \\ & 0.60 \\ & 1.11 \end{aligned}$	$\begin{gathered} 2 \\ <2 \\ <2 \\ 2 \\ <2 \end{gathered}$	$\begin{aligned} & <10 \\ & <10 \\ & <10 \\ & <10 \\ & <10 \end{aligned}$	$\begin{aligned} & 40 \\ & 30 \\ & 40 \\ & 30 \\ & 30 \end{aligned}$	$\begin{aligned} & <0.5 \\ & <0.5 \\ & <0.5 \\ & <0.5 \\ & <0.5 \end{aligned}$	$\begin{aligned} & <2 \\ & <2 \\ & <2 \\ & <2 \\ & <2 \end{aligned}$	3.82 3.33 3.97 3.72 4.54	$\begin{gathered} \hline 0.9 \\ 4.1 \\ 0.7 \\ 1.0 \\ <0.5 \end{gathered}$	$\begin{aligned} & 13 \\ & 11 \\ & 11 \\ & 13 \\ & 13 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 277 \\ & 607 \\ & 110 \\ & 134 \\ & 52 \end{aligned}$
$\begin{aligned} & \hline J 294396 \\ & J 294397 \\ & J 294398 \\ & J 294399 \\ & J 294400 \end{aligned}$	$\begin{aligned} & 0.82 \\ & 0.86 \\ & 0.40 \\ & 0.08 \\ & 2.06 \end{aligned}$	$\begin{gathered} \hline 0.046 \\ 0.113 \\ 0.041 \\ 0.629 \\ 9.61 \end{gathered}$		$\begin{aligned} & 1.3 \\ & 0.5 \\ & 0.2 \\ & 2.8 \\ & 8.0 \end{aligned}$	$\begin{aligned} & 1.21 \\ & 1.30 \\ & 1.55 \\ & 1.37 \\ & 0.23 \end{aligned}$	$\begin{aligned} & \hline 4 \\ & 2 \\ & 3 \\ & 65 \\ & <2 \end{aligned}$	$\begin{aligned} & <10 \\ & <10 \\ & <10 \\ & <10 \\ & <10 \end{aligned}$	$\begin{aligned} & 50 \\ & 50 \\ & 50 \\ & 50 \\ & 30 \end{aligned}$	$\begin{aligned} & <0.5 \\ & <0.5 \\ & <0.5 \\ & <0.5 \\ & <0.5 \end{aligned}$	$\begin{aligned} & <2 \\ & <2 \\ & <2 \\ & <2 \\ & 14 \end{aligned}$	$\begin{aligned} & 4.12 \\ & 3.65 \\ & 3.04 \\ & 4.18 \\ & 0.95 \end{aligned}$	$\begin{aligned} & <0.5 \\ & <0.5 \\ & <0.5 \\ & 1.8 \\ & 4.9 \end{aligned}$	$\begin{gathered} 13 \\ 12 \\ 12 \\ 17 \\ 8 \end{gathered}$	$\begin{gathered} 1 \\ 1 \\ 2 \\ 24 \\ 4 \end{gathered}$	$\begin{gathered} 282 \\ 87 \\ 132 \\ 4550 \\ 411 \end{gathered}$
$\begin{aligned} & \mathrm{J} 294401 \\ & \mathrm{~J} 294402 \\ & \mathrm{~J} 294403 \\ & \mathrm{~J} 294404 \\ & \mathrm{~J} 294405 \end{aligned}$	$\begin{aligned} & 1.00 \\ & 0.44 \\ & 0.68 \\ & 1.26 \\ & 0.60 \end{aligned}$	$\begin{aligned} & 9.93 \\ & >10.0 \\ & 0.667 \\ & 0.179 \\ & 0.371 \end{aligned}$	11.55	$\begin{gathered} \hline 16.6 \\ 11.6 \\ 0.8 \\ 1.1 \\ 3.1 \end{gathered}$	$\begin{aligned} & 0.62 \\ & 0.62 \\ & 1.01 \\ & 1.12 \\ & 1.71 \end{aligned}$	$\begin{gathered} <2 \\ 2 \\ <2 \\ 2 \\ 2 \end{gathered}$	$\begin{aligned} & <10 \\ & <10 \\ & <10 \\ & <10 \\ & <10 \end{aligned}$	$\begin{aligned} & 30 \\ & 20 \\ & 30 \\ & 30 \\ & 90 \end{aligned}$	$\begin{aligned} & <0.5 \\ & <0.5 \\ & <0.5 \\ & <0.5 \\ & <0.5 \end{aligned}$	$\begin{aligned} & 49 \\ & 17 \\ & <2 \\ & <2 \\ & 4 \end{aligned}$	$\begin{aligned} & 2.19 \\ & 3.02 \\ & 4.12 \\ & 3.36 \\ & 3.41 \end{aligned}$	$\begin{gathered} 23.1 \\ 30.6 \\ 0.5 \\ <0.5 \\ 0.5 \end{gathered}$	$\begin{aligned} & 20 \\ & 14 \\ & 13 \\ & 13 \\ & 21 \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \\ & 2 \\ & 1 \\ & 2 \end{aligned}$	$\begin{aligned} & 388 \\ & 434 \\ & 214 \\ & 441 \\ & 3140 \end{aligned}$
$J 294406$ $J 294407$ J 294408 J 294409 J 294410	$\begin{aligned} & 1.38 \\ & 0.82 \\ & 0.28 \\ & 0.42 \\ & 0.84 \end{aligned}$	$\begin{gathered} 0.042 \\ <0.005 \\ <0.005 \\ 0.014 \\ 2.49 \end{gathered}$		$\begin{gathered} <0.2 \\ 0.2 \\ 0.2 \\ <0.2 \\ <0.2 \end{gathered}$	$\begin{aligned} & 0.72 \\ & 0.54 \\ & 0.67 \\ & 1.68 \\ & 1.47 \end{aligned}$	$\begin{gathered} \hline 2 \\ 2 \\ <2 \\ 4 \\ 3 \end{gathered}$	$\begin{aligned} & <10 \\ & <10 \\ & <10 \\ & <10 \\ & <10 \end{aligned}$	$\begin{aligned} & 50 \\ & 20 \\ & 30 \\ & 80 \\ & 60 \end{aligned}$	$\begin{aligned} & <0.5 \\ & <0.5 \\ & <0.5 \\ & <0.5 \\ & <0.5 \end{aligned}$	$\begin{aligned} & <2 \\ & <2 \\ & <2 \\ & <2 \\ & <2 \end{aligned}$	$\begin{aligned} & 2.34 \\ & 0.86 \\ & 2.58 \\ & 3.43 \\ & 4.80 \end{aligned}$	$\begin{aligned} & <0.5 \\ & <0.5 \\ & <0.5 \\ & <0.5 \\ & <0.5 \end{aligned}$	$\begin{gathered} \hline 8 \\ 5 \\ 6 \\ 14 \\ 17 \end{gathered}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 2 \\ & 2 \\ & 2 \end{aligned}$	$\begin{gathered} 28 \\ 41 \\ 28 \\ 8 \\ 71 \end{gathered}$

CERTIFICATE OF ANALYSIS VA11000829

Sample DescriptionMethod Analyte Units LOR	$\begin{gathered} \text { ME- } \mathrm{CCF} 41 \\ \mathrm{Fe} \\ \% \\ 0.01 \end{gathered}$	$\begin{gathered} \text { ME- } \mathrm{CP} 41 \\ \mathrm{Ca} \\ \mathrm{ppm} \\ 10 \end{gathered}$	$\begin{gathered} \text { ME- }-\mathrm{CCP}_{4} \mathrm{HI} \\ \mathrm{Hg} \\ \mathrm{ppm} \\ 1 \end{gathered}$	$\begin{gathered} \text { ME. ICF41 } \\ K \\ \% \\ 0.01 \end{gathered}$	$\begin{gathered} \text { ME- KCP41 } \\ \text { Lo } \\ \text { ppm } \\ 10 \end{gathered}$	$\begin{gathered} \text { ME- KCP41 } \\ M_{G} \\ \% \\ 0.01 \end{gathered}$	$\begin{gathered} \text { ME-ICP41 } \\ \text { Mn } \\ \text { ppm } \\ 5 \end{gathered}$	$\begin{gathered} \text { ME- ICP41 } \\ \text { Mo } \\ \mathrm{ppn} \\ 1 \end{gathered}$	$\begin{gathered} \text { ME - ICP41 } \\ \mathrm{Na} \\ \% \\ 0.01 \end{gathered}$	$\begin{gathered} \text { ME- } 1 C P 41 \\ N i \\ \text { Ppm } \\ 1 \end{gathered}$	$\begin{gathered} \text { ME: } \mathbf{C P P 4 1} \\ P \\ \mathrm{ppm} \\ 10 \end{gathered}$	$\begin{gathered} \text { ME- ICP41 } \\ \text { Pb } \\ \text { Ppm } \\ 2 \end{gathered}$	$\begin{gathered} \text { ME- ICP41 } \\ \text { S } \\ \% \\ 0.01 \end{gathered}$	$\begin{gathered} \text { ME. ICP4 } \\ \text { Sb } \\ \text { Ppm } \\ 2 \end{gathered}$	$\begin{gathered} \text { ME- }\|C P 4\| \\ \text { Sc } \\ \text { ppm } \\ 1 \end{gathered}$
$\begin{aligned} & j 294371 \\ & j 294372 \\ & j 294373 \\ & j 294374 \\ & j 294375 \end{aligned}$	$\begin{aligned} & 3.28 \\ & 3.26 \\ & 2.99 \\ & 3.56 \\ & 3.41 \end{aligned}$	$\begin{aligned} & <10 \\ & <10 \\ & <10 \\ & <10 \\ & 10 \end{aligned}$	$\begin{aligned} & <1 \\ & <1 \\ & <1 \\ & <1 \\ & <1 \end{aligned}$	$\begin{aligned} & 0.60 \\ & 0.93 \\ & 0.40 \\ & 0.64 \\ & 0.87 \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \\ & 10 \\ & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & 1.03 \\ & 1.04 \\ & 0.84 \\ & 1.24 \\ & 1.15 \end{aligned}$	$\begin{aligned} & 1475 \\ & 1415 \\ & 1225 \\ & 1385 \\ & 1140 \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \\ & 2 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 0.03 \\ & 0.03 \\ & 0.03 \\ & 0.03 \\ & 0.04 \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \\ & 2 \\ & 3 \\ & 3 \end{aligned}$	$\begin{aligned} & 1790 \\ & 1790 \\ & 1590 \\ & 1680 \\ & 1630 \end{aligned}$	$\begin{gathered} 2 \\ <2 \\ 9 \\ 5 \\ 2 \end{gathered}$	$\begin{aligned} & 0.23 \\ & 0.11 \\ & 0.52 \\ & 0.21 \\ & 0.12 \end{aligned}$	$\begin{aligned} & <2 \\ & <2 \\ & <2 \\ & <2 \\ & <2 \end{aligned}$	$\begin{aligned} & 3 \\ & 3 \\ & 2 \\ & 4 \\ & 4 \end{aligned}$
$\begin{aligned} & J 294376 \\ & J 294377 \\ & J 294378 \\ & J 294379 \\ & j 294380 \end{aligned}$	$\begin{aligned} & 3.38 \\ & 3.38 \\ & 4.09 \\ & 3.16 \\ & 3.64 \end{aligned}$	$\begin{aligned} & <10 \\ & <10 \\ & 10 \\ & <10 \\ & 10 \end{aligned}$	$\begin{aligned} & <1 \\ & <1 \\ & <1 \\ & <1 \\ & <1 \end{aligned}$	$\begin{aligned} & 0.38 \\ & 0.38 \\ & 1.23 \\ & 0.57 \\ & 1.46 \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \\ & 10 \\ & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & 1.21 \\ & 1.20 \\ & 1.43 \\ & 1.06 \\ & 1.17 \end{aligned}$	$\begin{aligned} & 1560 \\ & 1550 \\ & 1455 \\ & 1355 \\ & 945 \end{aligned}$	$\begin{aligned} & 2 \\ & 1 \\ & 2 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 0.03 \\ & 0.02 \\ & 0.04 \\ & 0.03 \\ & 0.04 \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \\ & 3 \\ & 2 \\ & 3 \end{aligned}$	$\begin{aligned} & 1710 \\ & 1760 \\ & 1850 \\ & 1680 \\ & 1790 \end{aligned}$	$\begin{gathered} 4 \\ 3 \\ 2 \\ 20 \\ <2 \end{gathered}$	$\begin{aligned} & 0.44 \\ & 0.59 \\ & 0.12 \\ & 0.23 \\ & 0.29 \end{aligned}$	$\begin{aligned} & <2 \\ & <2 \\ & <2 \\ & <2 \\ & <2 \end{aligned}$	$\begin{aligned} & 3 \\ & 3 \\ & 4 \\ & 4 \\ & 3 \\ & 2 \end{aligned}$
$\begin{aligned} & j 294381 \\ & j 294382 \\ & j 294383 \\ & j 294384 \\ & 1294385 \end{aligned}$	$\begin{aligned} & 3.31 \\ & 3.56 \\ & 3.54 \\ & 2.79 \\ & 2.99 \end{aligned}$	$\begin{aligned} & <10 \\ & <10 \\ & <10 \\ & <10 \\ & <10 \end{aligned}$	$\begin{aligned} & <1 \\ & <1 \\ & <1 \\ & <1 \\ & <1 \end{aligned}$	$\begin{aligned} & \hline 0.61 \\ & 0.95 \\ & 1.09 \\ & 0.35 \\ & 0.74 \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \\ & 10 \\ & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & 1.01 \\ & 1.05 \\ & 1.12 \\ & 0.85 \\ & 0.80 \end{aligned}$	$\begin{aligned} & 1415 \\ & 1390 \\ & 1255 \\ & 1345 \\ & 1365 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 7 \\ & 2 \end{aligned}$	$\begin{aligned} & 0.03 \\ & 0.04 \\ & 0.03 \\ & 0.03 \\ & 0.03 \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \\ & 1 \\ & 1 \\ & 1 \\ & 2 \end{aligned}$	$\begin{aligned} & 1700 \\ & 1770 \\ & 1770 \\ & 1770 \\ & 1750 \end{aligned}$	$\begin{aligned} & 3 \\ & 3 \\ & 4 \\ & 4 \\ & 4 \end{aligned}$	$\begin{aligned} & 0.52 \\ & 0.52 \\ & 0.35 \\ & 0.90 \\ & 0.74 \end{aligned}$	$\begin{aligned} & <2 \\ & <2 \\ & <2 \\ & <2 \\ & <2 \end{aligned}$	$\begin{aligned} & 2 \\ & 3 \\ & 3 \\ & 1 \\ & 2 \\ & 2 \end{aligned}$
$\begin{aligned} & J 294386 \\ & J 294387 \\ & j 294388 \\ & j 294389 \\ & 1294390 \end{aligned}$	$\begin{aligned} & 4.13 \\ & 3.33 \\ & 2.70 \\ & 3.20 \\ & 3.01 \end{aligned}$	$\begin{aligned} & 10 \\ & <10 \\ & 10 \\ & <10 \\ & <10 \end{aligned}$	$\begin{aligned} & <1 \\ & <1 \\ & <1 \\ & <1 \\ & <1 \end{aligned}$	$\begin{aligned} & 1.02 \\ & 0.89 \\ & 1.03 \\ & 0.41 \\ & 0.51 \end{aligned}$	$\begin{aligned} & 10 \\ & 20 \\ & 10 \\ & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & 0.94 \\ & 1.31 \\ & 0.74 \\ & 1.03 \\ & 0.90 \end{aligned}$	$\begin{gathered} 1080 \\ 1600 \\ 557 \\ 1540 \\ 1265 \end{gathered}$	$\begin{aligned} & 4 \\ & 2 \\ & 2 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 0.04 \\ & 0.03 \\ & 0.08 \\ & 0.03 \\ & 0.03 \end{aligned}$	$\begin{gathered} 8 \\ 18 \\ 2 \\ 4 \\ 41 \end{gathered}$	$\begin{gathered} 1680 \\ 2060 \\ 740 \\ 1720 \\ 1690 \end{gathered}$	$\begin{aligned} & 21 \\ & 13 \\ & <2 \\ & 6 \\ & 4 \end{aligned}$	$\begin{aligned} & 1.73 \\ & 1.30 \\ & 0.02 \\ & 0.52 \\ & 0.57 \end{aligned}$	$\begin{aligned} & <2 \\ & <2 \\ & <2 \\ & <2 \\ & <2 \end{aligned}$	$\begin{aligned} & 3 \\ & 4 \\ & 3 \\ & 2 \\ & 2 \\ & 2 \end{aligned}$
$\begin{aligned} & \mathrm{J} 294391 \\ & \mathrm{~J} 294392 \\ & \mathrm{~J} 294393 \\ & \mathrm{~J} 294394 \\ & \mathrm{~J} 294395 \end{aligned}$	$\begin{aligned} & 2.95 \\ & 2.89 \\ & 2.57 \\ & 3.18 \\ & 3.54 \end{aligned}$	$\begin{aligned} & <10 \\ & <10 \\ & <10 \\ & <10 \\ & <10 \end{aligned}$	$\begin{aligned} & <1 \\ & <1 \\ & <1 \\ & <1 \\ & <1 \end{aligned}$	$\begin{aligned} & 0.40 \\ & 0.35 \\ & 0.36 \\ & 0.34 \\ & 0.47 \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \\ & 10 \\ & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & 0.97 \\ & 0.84 \\ & 0.69 \\ & 1.04 \\ & 1.09 \end{aligned}$	$\begin{aligned} & 1390 \\ & 1230 \\ & 1335 \\ & 1455 \\ & 1570 \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \\ & 6 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 0.03 \\ & 0.03 \\ & 0.03 \\ & 0.03 \\ & 0.03 \end{aligned}$	$\begin{aligned} & <1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	1780 1650 1540 1710 1720	$\begin{gathered} \hline 4 \\ 8 \\ 16 \\ 6 \\ 5 \end{gathered}$	$\begin{aligned} & 0.52 \\ & 0.45 \\ & 0.41 \\ & 0.43 \\ & 0.20 \end{aligned}$	$\begin{aligned} & <2 \\ & <2 \\ & <2 \\ & <2 \\ & <2 \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 3 \end{aligned}$
$\begin{aligned} & J 294396 \\ & J 294397 \\ & J 294398 \\ & J 294399 \\ & J 294400 \end{aligned}$	$\begin{aligned} & 3.42 \\ & 3.35 \\ & 3.27 \\ & 5.14 \\ & 2.06 \end{aligned}$	$\begin{aligned} & 10 \\ & <10 \\ & 10 \\ & 10 \\ & <10 \end{aligned}$	$\begin{aligned} & <1 \\ & <1 \\ & <1 \\ & <1 \\ & <1 \end{aligned}$	$\begin{aligned} & 0.30 \\ & 0.53 \\ & 1.19 \\ & 0.23 \\ & 0.19 \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \\ & 10 \\ & 10 \\ & <10 \end{aligned}$	$\begin{aligned} & 1.10 \\ & 1.09 \\ & 1.07 \\ & 1.27 \\ & 0.13 \end{aligned}$	$\begin{aligned} & 1325 \\ & 1225 \\ & 1175 \\ & 725 \\ & 445 \end{aligned}$	$\begin{gathered} 1 \\ 1 \\ 1 \\ 3 \\ 40 \\ 10 \end{gathered}$	$\begin{aligned} & 0.04 \\ & 0.03 \\ & 0.05 \\ & 0.08 \\ & 0.01 \end{aligned}$	$\begin{gathered} \hline 2 \\ 2 \\ 3 \\ 18 \\ <1 \end{gathered}$	$\begin{gathered} 1720 \\ 1770 \\ 1820 \\ 1150 \\ 630 \end{gathered}$	$\begin{gathered} \hline 3 \\ 2 \\ <2 \\ 31 \\ 64 \end{gathered}$	$\begin{aligned} & 0.07 \\ & 0.14 \\ & 0.12 \\ & 2.17 \\ & 1.87 \end{aligned}$	$\begin{gathered} <2 \\ <2 \\ <2 \\ 8 \\ <2 \end{gathered}$	$\begin{gathered} \hline 3 \\ 2 \\ 3 \\ 8 \\ <1 \end{gathered}$
$\begin{aligned} & 1294401 \\ & 1294402 \\ & 1294403 \\ & 1294404 \\ & 1294405 \end{aligned}$	$\begin{aligned} & 4.27 \\ & 2.51 \\ & 2.96 \\ & 3.27 \\ & 3.96 \end{aligned}$	$\begin{aligned} & <10 \\ & <10 \\ & <10 \\ & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & <1 \\ & 1 \\ & <1 \\ & <1 \\ & <1 \end{aligned}$	$\begin{aligned} & 0.29 \\ & 0.26 \\ & 0.35 \\ & 0.22 \\ & 1.30 \end{aligned}$	$\begin{gathered} 10 \\ <10 \\ 10 \\ <10 \\ <10 \end{gathered}$	$\begin{aligned} & 0.49 \\ & 0.50 \\ & 0.93 \\ & 0.98 \\ & 1.23 \end{aligned}$	$\begin{aligned} & 841 \\ & 1220 \\ & 1565 \\ & 1320 \\ & 1360 \end{aligned}$	$\begin{gathered} 15 \\ 9 \\ 1 \\ 2 \\ 2 \\ 43 \end{gathered}$	$\begin{aligned} & 0.02 \\ & 0.01 \\ & 0.02 \\ & 0.03 \\ & 0.04 \end{aligned}$	$\begin{gathered} 1 \\ 1 \\ 1 \\ 1 \\ <1 \\ 1 \end{gathered}$	$\begin{aligned} & 990 \\ & 1300 \\ & 1760 \\ & 1610 \\ & 1980 \end{aligned}$	$\begin{gathered} 118 \\ 198 \\ 6 \\ 3 \\ 4 \end{gathered}$	$\begin{aligned} & 4.06 \\ & 1.92 \\ & 0.64 \\ & 0.67 \\ & 0.87 \end{aligned}$	$\begin{aligned} & <2 \\ & <2 \\ & <2 \\ & <2 \\ & <2 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 2 \\ & 3 \\ & 3 \\ & 3 \end{aligned}$
$\begin{aligned} & J 294406 \\ & J 294407 \\ & J 294408 \\ & J 294409 \\ & J 294410 \end{aligned}$	$\begin{aligned} & 1.98 \\ & 1.33 \\ & 1.85 \\ & 3.66 \\ & 3.48 \end{aligned}$	$\begin{aligned} & <10 \\ & <10 \\ & <10 \\ & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & <1 \\ & <1 \\ & <1 \\ & 1 \\ & <1 \end{aligned}$	$\begin{aligned} & 0.50 \\ & 0.38 \\ & 0.49 \\ & 1.17 \\ & 0.99 \end{aligned}$	$\begin{aligned} & <10 \\ & <10 \\ & <10 \\ & <10 \\ & <10 \end{aligned}$	$\begin{aligned} & \hline 0.43 \\ & 0.23 \\ & 0.36 \\ & 1.19 \\ & 1.07 \end{aligned}$	$\begin{aligned} & 792 \\ & 361 \\ & 739 \\ & 1425 \\ & 17 \angle 5 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 0.05 \\ & 0.04 \\ & 0.03 \\ & 0.03 \\ & 0.04 \end{aligned}$	$\begin{aligned} & <1 \\ & <1 \\ & <1 \\ & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & \hline 670 \\ & 440 \\ & 610 \\ & 2010 \\ & 1690 \end{aligned}$	$\begin{aligned} & 4 \\ & 3 \\ & 3 \\ & 6 \\ & 4 \end{aligned}$	$\begin{aligned} & 0.18 \\ & 0.15 \\ & 0.80 \\ & 0.36 \\ & 0.47 \end{aligned}$	$\begin{aligned} & <2 \\ & <2 \\ & <2 \\ & <2 \\ & <2 \end{aligned}$	$\begin{gathered} 1 \\ c \\ <1 \\ 1 \\ 3 \\ 3 \end{gathered}$

CERTIFICATE OF ANALYSIS VA11000829

Project: Kenville Mine

Project: Kenville Mine

Sample DescriptionMethod Analyte Units LOR	$\begin{gathered} \text { ME- ICP41 } \\ \mathrm{Fe} \\ \% \\ 0.01 \end{gathered}$	$\begin{gathered} \text { ME- }[C P 41 \\ \text { Ga } \\ \text { ppm } \\ 10 \end{gathered}$	$\begin{gathered} \text { ME- ICP41 } \\ \mathrm{Hg} \\ \mathrm{ppm} \\ 1 \end{gathered}$	$\begin{gathered} \text { ME- ICP41 } \\ K \\ \% \\ 0.01 \end{gathered}$	$\begin{gathered} \text { ME. KCP4] } \\ \text { La } \\ \mathrm{ppm} \\ 10 \end{gathered}$	$\begin{gathered} \text { ME- KCP41 } \\ \text { M9 } \\ \% \\ 0.01 \end{gathered}$	$\begin{gathered} \text { ME. ICP4 } \\ \text { Mn } \\ \text { ppm } \\ 5 \end{gathered}$	$\begin{gathered} \text { ME-ICP41 } \\ \text { Mo } \\ \text { ppm } \\ 1 \end{gathered}$	$\begin{gathered} M E-C P 41 \\ \mathrm{Na} \\ \% \\ 0.01 \end{gathered}$		$\begin{gathered} \text { ME- ICP41 } \\ P \\ \text { ppm } \\ 10 \end{gathered}$	$\begin{gathered} \text { ME- [CP4 } \\ \text { Pb } \\ \text { ppm } \\ 2 \end{gathered}$	$\begin{gathered} \text { ME-KP41 } \\ 5 \\ \% \\ 0.01 \end{gathered}$	$\begin{gathered} \text { ME- }[C P 41 \\ \text { Sb } \\ \text { Opm } \\ 2 \end{gathered}$	$\begin{gathered} \text { ME. } \mid C P 41 \\ \text { Sc } \\ \text { ppm } \\ 1 \end{gathered}$
$\begin{aligned} & \mathrm{J} 294411 \\ & \mathrm{~J} 294412 \\ & \mathrm{~J} 294413 \\ & \mathrm{~J} 294414 \\ & \mathrm{~J} 294415 \end{aligned}$	$\begin{aligned} & 4.80 \\ & 3.45 \\ & 3.46 \\ & 7.30 \\ & 3.07 \end{aligned}$	$\begin{aligned} & <10 \\ & <10 \\ & <10 \\ & 10 \\ & <10 \end{aligned}$	$\begin{aligned} & <1 \\ & <1 \\ & <1 \\ & <1 \\ & <1 \end{aligned}$	$\begin{aligned} & 0.48 \\ & 0.82 \\ & 0.96 \\ & 0.42 \\ & 0.79 \end{aligned}$	$\begin{aligned} & 20 \\ & <10 \\ & <10 \\ & <10 \\ & 10 \end{aligned}$	$\begin{aligned} & 0.83 \\ & 1.18 \\ & 1.00 \\ & 0.70 \\ & 1.09 \end{aligned}$	$\begin{gathered} 356 \\ 2200 \\ 1990 \\ 1960 \\ 2330 \end{gathered}$	$\begin{gathered} 258 \\ <1 \\ 3 \\ 140 \\ 1 \end{gathered}$	$\begin{aligned} & 0.04 \\ & 0.05 \\ & 0.02 \\ & 0.03 \\ & 0.03 \end{aligned}$	$\begin{gathered} 31 \\ 2 \\ 1 \\ <1 \\ 1 \end{gathered}$	$\begin{gathered} 690 \\ 1900 \\ 1840 \\ 750 \\ 1810 \end{gathered}$	$\begin{gathered} 71 \\ 6 \\ 3 \\ 2 \\ 4 \end{gathered}$	$\begin{aligned} & 2.70 \\ & 1.06 \\ & 0.80 \\ & 1.54 \\ & 0.51 \end{aligned}$	$\begin{aligned} & 16 \\ & <2 \\ & <2 \\ & <2 \\ & <2 \end{aligned}$	$\begin{aligned} & 6 \\ & 3 \\ & 2 \\ & 2 \\ & 3 \end{aligned}$
J294416 J 294417 J294418 1294419 1294420	$\begin{aligned} & 3.39 \\ & 1.63 \end{aligned}$	$\begin{aligned} & <10 \\ & <10 \end{aligned}$	$\begin{aligned} & <1 \\ & <1 \end{aligned}$	$\begin{aligned} & 0.56 \\ & 0.34 \end{aligned}$	$\begin{gathered} 10 \\ <10 \end{gathered}$	$\begin{aligned} & 1.08 \\ & 0.41 \end{aligned}$	$\begin{gathered} 2110 \\ 894 \end{gathered}$	$\begin{aligned} & 5 \\ & 1 \end{aligned}$	$\begin{aligned} & 0.03 \\ & 0.04 \end{aligned}$	$\begin{aligned} & <1 \\ & <1 \end{aligned}$	$\begin{gathered} 1720 \\ 810 \end{gathered}$	$\begin{aligned} & 6 \\ & 3 \end{aligned}$	$\begin{aligned} & 0.84 \\ & 0.23 \end{aligned}$	$\begin{aligned} & <2 \\ & <2 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$
$J 294421$ $J 294422$ 1294423 $j 294424$ $j 294425$														6	
$\begin{aligned} & 1294426 \\ & J 294427 \\ & J 294428 \\ & 1294429 \\ & 1294430 \end{aligned}$															
$J 294431$ $J 294432$ $J 294433$ $J 294434$ $J 294435$															
$\begin{aligned} & J 294436 \\ & J 294437 \\ & J 294438 \\ & J 294439 \\ & J 294440 \end{aligned}$	6.05	<10	<1	0.46	<10	0.76	1910	3	0.02	2	1450	31	5.4	<2	2
$\begin{array}{\|l\|} \hline J 294441 \\ J 294442 \\ J 294443 \\ J 294444 \\ J 294447 \\ \hline \end{array}$															

ALS Canada Ltd.
2103 Dollarton Hwy
North Vancouver BC V7H OA7
Phone: 6049840221 Fax: 6049840218 www.alsglobal com

TO: ANGLO SWISS RESOURCES INC. 309-837 W HASTINGS ST VANCOUVER BC V6C 3N6

Page: 4-C
Total \# Pages: 4 (A - C) Finalized Date: 14-JAN-2011 Account: ANSWRE

Project: Kenville Mine
CERTIFICATE OF ANALYSIS VA11000829

[^0]: 108.40 112.78 SHR DIOR Sheared diorite. Shear sub paralel tca; uniform shearing

[^1]: Comments: Additional Au- AA23 check results for sample J 294262 are 0.145 ppm and 0.321 ppm .

[^2]: Comments: Additional Au- AA23 check results for sample 1294262 are 0.145 ppm and 0.321 ppm

