File Rec'd			
APR	1	2	2012
L.I.# VANCOUVER	, B.	c.	

Report

on the

BC Geological Survey Assessment Report 32971

Porphyry Project

Omineca Region, British Columbia Latitude 53° 21' N., Longitude 124° 37' W. NTS map sheet 93F/7E

by

James W. McLeod, P. Geo.

on behalf of

Jacqueline A. McLeod and Omega Exploration Services Inc.

> GEOLOGICAL SURVEY BRANCH ASSESSMENT REPORT

March 27, 2012 Savona, British Columbia

Table of Contents

Summary	4
Introduction	5
Location and Access	5
Topographical and Physical Environment	5
Property and Ownership	6
History	6
Regional Geology	7
Local Geology	8
Present Work Program	9
Conclusions	10
Recommendations	13
Cost Estimate	13
Statement of Costs	15
Certificate	16
References	17

Appendix

After

Page

Appendix 1 - IONIC Leach Results (MMI Soil Geochemistry 2010 - (VA 11006590)	18
Appendix 2 - Rock Exposure Samples - Multi-element and Whole Rock Analyses (VA 11233439, #575760-62)	1 9
Appendix 3 – Data Table for Profiles Fig. 3a, 3b and 3c	20

2

Illustrations

1.	Location Map - 1: 7,500,000	4
2.	Claim Map - 1: 100,000	5
3.	Sample Number Map - 1: 10,000	6
3a.	Line A Profiles - 1: 2,500	8
3b.	Line B Profiles - 1: 10,000	F.3a
3c.	Line C Profiles - 1: 10,000	F.3b
4.	Grid & Sample Locations - 1: 10,000	9
4a.	Magnetometer Survey – 1: 5,000	10
4b	Geology, Rock Sample & D. H. Locations - 1: 5,000	11

Summary

During the period June 2 - Nov. 30, 2011 exploration work was carried-out over portions of the Porphyry property. The area is situated in the Omineca Region in central British Columbia. The project area is located about 125 km. by good all weather, paved and mainly gravel road south of the Town of Vanderhoof, B.C. The exploration work described herein includes rock exposure mapping and sampling, H+ ion concentration from pH vs aqna regia soluble Ca, a magnetometer survey and a diamond core drill hole. The fieldwork conducted over portions of the property that are underlain by igneous rock and layered volcanic-(sedimentary) units have in places been affected by a quartz stockwork system that expresses itself at the adjacent Chu molybdenum-copper property. The current work area is seen to host porphyry copper-gold-zinc style mineralization is situated in the central part of the Porphyry #1 mineral claim. The emphasis of exploration work in this area has been on a younger, relatively large zone of mirco-porphyritic, alkalic intrusives or volcanics and especially on the contact between these and the igneous-volcanic rock units. Since 1970 much intermittent fieldwork has been carried-out on this zone especially as related to porphyry copper-gold-zinc exploration.

The Porphyry property appears underlain in part by a sequence of interlayered, metamorphosed volcano-sedimentary rocks that have in places been more strongly altered to a very hard, siliceous hornfels. The south central portion of the property is underlain by an intrusive unit, as a biotitehornblende-feldspar granodiorite porphyry which is seen in places to have undergone various degrees and types of rock alteration. The altered rock may be described as the "ghosting" of the mafic minerals, biotitehornblende and the partial potassium replacement of the plagioclase lathes.

The Porphyry property area has revealed some interesting MMI - ionic leach results and has undergone two phases of historical diamond core drill testing for copper, gold and zinc by Placer Dome in 1992 and Orvana Resources during 1995-98 (see History section and the Assessment Reports in References).

Introduction

The current fieldwork program was conducted by and under the supervision of the author during the period June 2 to Nov. 30, 2011 that consists of geological mapping, sampling 3 rock exposures and one core sample, soil geochemistry by treating material, obtained from a 25 sample soil survey conducted in 2010, for H+ ion concentration vs aqua regia soluble Ca% and a magnetometer survey about the core drill hole area (see Figure 4 and 4a).

The work program was conducted on behalf of J.A. McLeod and Omega Exploration Services Inc. of Savona, British Columbia.

Location and Access

The property may be located on NTS map sheet, 93F/7E at approximately latitude 53° 21' north and longitude 124° 37' west. It is situated approximately 80 air-kilometres south of the Town of Vanderhoof, B.C., at the southeast end of the Nechako Range. The property lies within the Omineca Region, British Columbia.

Access to the property is gained by traveling approximately 25 km. southwest of the Town of Vanderhoof, B.C. on the Kenney Dam road and then southerly for about 100 km. on the Kluskus-Ootsa road. This major logging, haul-road can be described as a wide, good all weather, gravel surfaced access road.

Just southwest of the cutoff to Chutanli Lake at 98.5 km., the Kluskus-Ootsa road branches off to the west. At 98.5 km. on the Kluskus-Ootsa road it enters the northeast corner of the Porphyry #1 mineral claim and diagonally traverses it and leaves it in the southwest corner (see Figure 2). A number of other gravel roads traverse much of the claim area.

Topographical and Physical Environment

The property lies within the Intermontane (physiographic) belt of the Interior Plateau. This regional area lies between the Coast Mountains on the west and the Columbia Mountains on the east. More particularly they are found to occur in the transition zone on the south end of what is called the Nechako Range between the northwesterly trending Nechako and Fraser

plateaux. The claim area is extensively fluvial-glacial overburden covered, rounded, mountainous terrain and the general area reflects many glacial effects, in particular many drumlin (moraine) features. The claim area ranges in elevation from approximately 1,050 metres (3,450') to 1,340 metres (4,400') mean sea level. The area is conifer covered with lodgepole pine and spruce. Much of the claim and general area has undergone extensive clearcut logging of the coniferous forest cover to try and salvage some goodness from the widespread and massive insect, pine beetle infestation. The general area lies within the sub-alpine biotic zone and experiences greater than 100 cm. of precipitation annually, of which 15%-25% may occur as a snow equivalent i.e. about 20 cm. The summers are generally mild with moderate precipitation and the winters can be very cold, but usually not for extended periods.

Property and Ownership

The property described in this report is the Porphyry area. The claim particulars are listed as follows:

Name	Tenure No.	Hectar	es (acres)	Good to Date			
Porphyry#1	527382	482	(1,191)	Feb. 10, 2014			
Au#1	533567	483	(1,193)	May 04, 2014			
N/N	533569	193	(476)	May 04, 2014			
N/N	533570	77	(190)	May 04, 2014			
		1,235	(3,050)	•			

*N/N - No name

The claim area totals approximately 1,235 hectares or 3,050 acres. The above listed lode mineral claims are owned by Jacqueline McLeod and Omega Exploration Services Inc. of Savona, British Columbia.

History

The recorded mining exploration history of the general property area dates from 1969-70 when several helicopter supported prospecting and regional geochemical silt survey programs found indications of anomalous copper, molybdenum and tungsten values in the general vicinity of Chutanli Lake.

Apparently, coincident reconnaissance silt surveys were conducted by Rio Tinto Canadian Explorations Ltd. and Asarco (American Smelting and Refining Company) during 1969-70 that led to a joint discovery of what is now known as the Chu molybdenum property.

During this early period, both companies undertook some shallow diamond core drilling. The author, during a fieldwork program he was conducting in 2003 located the remains of some of the drill core from Rio Tinto's 1969-70 diamond drilling program.

The construction of the Kluskus-Ootsa logging road in the 1970's saw Asarco consolidate the project areas and carry-out a number of geological, geochemical, geophysical surveys and some shallow diamond core drilling. They were joined by Armco Mineral Exploration Ltd. in a joint venture in 1979 which Armco managed. They conducted core drilling programs in 1980: DDH 1-3, 1981: DDH 1-7 and 1982: DDH 1-2. This fieldwork had partially outlined a large northwest-southeast trending zone of strong molybdenum-bearing mineralization in an interlayered meta-conglomerate and granodiorite quartz stockwork.

During 2006, TTM Resources Inc. (TTMRI) of Vancouver, B.C. acquired ownership of the Chu molybdenite deposit and undertook a large and extensive fieldwork program that led to the first NI 43-101 resource estimate for the property being filed by TTMRI in February, 2008.

Regional Geology

The oldest rocks in the general area are volcanic and sedimentary units which have been assigned to the Hazelton Group of Jurassic age. These rocks in places have been intruded by late Jurassic and early Cretaceous aged Coast Range plutonic rocks of granitic to dioritic composition that on the Chu molybdenum property generally occur as granodiorite, which are referred to in the property area as the Nechako intrusions. More than one period of intrusive activity appears to have affected the area. Some intrusive rocks observed in the general area appear to be younger than the Nechako intrusions and may be more alkalic in composition. These rock units appear to have in some places a close proximity to the stronger molybdenite, MoS2, mineralized zones. The youngest rocks observed in the area are the andesite to basalt flow volcanics which are thought to be of Oligocene age.

Local Geology

The different rock units are found to occur as northwesterly striking and northeasterly dipping sediments and volcanics. The oldest underlying bedded rocks that are found to occur in the central area of the property as hornfelsed conglomerate, mudstone and quartzite and conformably overlain on the northeast side by northeasterly dipping clastic andesitic tuffs. These units appear to trend through the property in a northwest-southeast direction. The bedded sediments and volcanics are intrusive contacted with granitic rocks thought to be Coast Range intrusions of Jurassic age. The mineral host units appear to occur as a large package of older rocks that may represent a roof pendant lying on the intruding and somewhat interlayered granodiorite and being cut in places by the still younger alkalic (dyke) rocks.

The molybdenum mineralization is related to a quartz vein stockwork that is best developed in the hornfelsed (conglomerate) that have undergone varying degrees of biotitization following structural preparation (brittle fracturing) and subsequent quartz-welding. Pyrite and pyrrhotite are found widespread throughout the molybdenite (MoS2) mineralized zones and the core in general. The iron minerals on contacts of the hornfels unit appear to have undergone moderately strong oxidation.

The copper-gold-zinc porphyry area appears to have undergone some silicification and possibly a stronger contact metamorphic effect than the molybdenum zone that may be explained by its closer proximity to the igneous contact.

Present Work Program

The present fieldwork program was undertaken during the period June 2-Nov. 30, 2011 in the Porphyry project (PP) area. A total of three MMI soil sample grids that were sampled in 2010 (25 samples) underwent the following procedure that is described in some detail in articles by Barry W. Smee (see References). He describes the procedure for handling and treating soil samples taken, using the mobile metal ion (MMI) theory, from the "micro-layer" that may be described as the depositional site of ions by a vertical transfer from some depth of an oxidizing mineral occurrence. The procedure followed here involves mixing (slurrying) of an individual soil sample with distilled water and recording of each pH (H+ ion concentration) measurement with a hand held, Hanna Instruments, model 98128 - pH meter reading to 1/100th (two decimal places). *Note - the instrument instructions should be conscientiously followed especially not handling the glass detection bulb as they are fragile, sensitive and often hard to find replacements. These same slurries were each acidified with a drop of 10% hydrochloric acid and the pH of each re-mixed, acidified sample was then recorded. Both sets of pH readings were then converted from pH to (H+ in moles) using the defining formula of, $pH = \log 1/[H+]$. The non-acidified log values were assigned a designation of "a" and the acidified log values a designation of "b". These readings were then converted to inverse difference hydrogen (IDH) values using the formula 1/a-b. These determinations were plotted against the aqua regia soluble calcium (Ca) percentages which are usually calculated from Ionic Leach analyses quoted in parts per million (ppm). The method may offer a way to recognize underlying zones of structure, alteration and mineralization such as those determined by mobile metal ion (MMI) soil geochemistry by sampling the soil "micro-layer". Acidic areas, pH of <7 can exhibit depletions of Ca and possibly Fe. A decrease in H+ ion concentration causes an increase in pH, it becomes less acidic.

Included in the current work was a three line, magnetometer survey that appears to outline some interesting features. The instrument used in the survey is a Sharpe of Canada fluxgate magnetometer, model MF-1 321, serial no. 609235. The unit of measure is a gamma (see Figure 4a).

The current fieldwork also includes undertaking a hand held, core drill hole using a JKS 4M Packsack drill of size XRP. A drill site was prepared at L2 -

between stations #7 - #8 (see Figure 4 – 4a) and a water hole was dug at L2 - station #9 on the south side of the line. Both the drill site and water hole were prepared by hand. The drill site location was chosen because of abundant pyrite, limonite-hematite (Fe oxide), altered and mineralized host.

The current work programs combined with the historical information from the property offer sufficient encouragement to recommend a drilling program on the property.

Conclusions

The data obtained from the property illustrate a number of possible characterizations as follows:

a) Soil geochemistry on the property exhibit some anomalous values and results such as:

Porphyry Area (VA11006590)

Element	Anomalous	Station Numbers
Gold	>1.8 ppb	(9), 10, 19M, 21M
Copper	>625 ppb	(10), (19M), (21M)
Zinc	>525 ppb	11, 10M, (11M), 12M, 13M, 17M, 20M, 21M, 22M, 23M, 24M, 13, (14), 25M
Arsenic	>7.5 ppb	11, 10M, 11M, 12M, 13M, 14M, 15M, 16M, 18M, 19M, 20M, 21M, 22M, 23M, 24M, 13, 25M

(*) - denotes a sample result that is close to the anomalous value and/or treated as anomalous by its relationship within or adjacent to another anomalous sample group of samples.

b) The pH as IDH (inverse difference hydrogen vs. Ca% graphs were prepared from the calculated values listed in Table 1 (see Appendix 3). The following profiles are for lines A, B and C and Figures 3, 3a, 3b and 3c, respectively (see Appendices 1 and 3):

Line A - the profile shows that between samples 15M and 12M the samples exhibit minor calcium concentration reduction and between samples 12M and 16M there is a minor increase then reduction in H+ concentration and what appears to be a very slight increase or replenishment in calcium.

The individual samples reveal some anomalous responses from all seven stations (see Figure 3a). The seven stations results are summaries as follows:

15M (for 15MMI) through 12M and including 10M exhibit apparently anomalous responses in the porphyry pathfinder suite (PPS) which include arsenic (As), mercury (Hg), antimony (Sb), molybdenum (Mo), selenium (Se) and iron (Fe). In samples 13M, and 11M-10M include apparently anomalous results in the gold exploration suite (GES) which includes cobalt (Co), gold (Au), nickel (Ni), palladium (Pd) and silver (Ag). 10M – 14M appear to be possibly anomalous in all four elements which occur in the base metal suite (BMS) comprised of cadmium (Cd), copper (Cu), lead (Pb) and zinc (Zn). In the stations 15M, 13M, 11M-16M apparently anomalous results of rubidium (Rb) which are likely found substituting for potassium (K). A number of other elements showing apparently anomalous results are listed. Barium (Ba), whose primary mineral is barite (BaSO4), is possibly derived from a hydrothermal source and may have substituted for potassium in biotite or potassium feldspar.

The remainder of the elements found on this line as anomalous appearing elements are cerium (Ce), a rare earth element (REE); cesium (Cs); chromium (Cr); erbium (Er); titanium (Ti); tantalum (Ta) and thorium (Th).

Trying to assign the occurrences of all the apparently anomalous behaviors encountered in the three groups of samples i.e. Line A, Line B and Line C seems onerous when considering each element on its own. Assisting in this endeavor is the recognition of groups of elements that have been found to occur together all or in part in various settings. To be effective the data has

undergone descriptive statistical testing, of even a small sample population, that may reveal the anomalous affinities within a specific group. The geochemical data from a mobile metal ion (MMI) soil survey that is conducted within a specific "micro-layer" that is believed to receive ascending H+ accumulates from an oxidizing mineral occurrence of variable vertical depth by electrochemical transport. The analytical process (possibly the IONIC Leach) among other proprietary methods attains such low detectable values for many elements that it may be very close to being reliably quantitative.

Line B – the profile shows that between samples 9 to 12 they exhibit a small decrease in calcium concentration and between samples 12 to 17 they exhibit a general maintenance of slightly undulating calcium values. The H+ concentration shows an increase between samples 12 to 14 which moves to the maintenance of H+ concentration between samples 14 to 17. This latter event may actually show an overall replenishment of calcium concentration.

The PPS exhibits limited occurrence at samples 9, 10 and 13. The GES exhibits anomalous results at samples 9, 10 and 17. The three preceding samples may exhibit coincidence between silver and gold that in most instances seems to be necessary. The BMS show limited occurrence at samples 10 and possibly 17, if dysprosium exhibit an affinity with copper. This line of samples exhibits two stations, 10 and 17 that show a lot of REE presence.

Line C – the profile exhibits calcium replenishment from station 17M to 19M. The interval of reduction from 19M to 22M, followed by a possible zone of calcium replenishment from 22M to 25M.

The individual samples returned some anomalous responses from eight of nine stations, 18M to 25M (see Figure 3c).

The GES is represented at stations 18M to 21M and 24M to 25M. At station 19M and 21M gold, silver and arsenic are coincident. Other GES elements are represented at station 18M to 22M and 24M to 25M. The BMS is represented at 18M to 21M and 23M to 25M and a total coincidence of the four elements is encountered at 21M and 25M. Zinc is very anomalous at stations 21M, 24M and 25M.

Other elemental occurrences observed at station 25M, but not including the GES and BMS are seen to be mainly REE.

c) The three line magnetometer survey was conducted over the south-end of what appears to be a younger igneous rock units that appears to host the copper-gold-zinc porphyry mineral occurrences. The analyses of the drilled off material, sludge and some rock particles, from the abandoned DDH 11-1 appears to be a grey colored, fine grained, highly fractured and altered feldspar porphyry of possibly a rhyolite composition (see Sa #575760-62 in Appendix 2). The total length of the three sub-parallel lines is approximately 2.5 km. The station interval varied between 25m, 50 mainly and 70m depending on the terrain.

The north trending features illustrated in L1 are thought to be due to intense fracturing. The suggested mineralization encountered in the drill hole is pyrite, magnetite, chalcopyrite, sphalerite, galena and minor gold values (see Appendix 2).

Recommendations

The current and historical data from the Porphyry project area leads the author to recommend a percussion drilling program initially concentrating in the area between historical drill holes 97-1 and 97-7 and in the vicinity of Sa # 575761. Depending on the results obtained from the Phase 1 program additional drilling could well be undertaken.

Further MMI soil sampling and IONIC leach geochemistry may be undertaken as fill-in sampling around all potentially anomalous samples.

Cost Estimate

The writer recommends the following programs on the Porphyry project area. The cost estimate for the project is included as follows:

Geologist and supervision for 20 days	\$ 10,000
Field assistants (2) for 20 days	8,000
Room and board for 60 person-days	6,000

Transportation and travel, including 4x4 truck, fuel and oil and living expenses traveling	4,000
Equipment and supplies - including Four Trac, utility trailer, chain saws and Bushwacker	3,000
Geochemical IONIC leach analyses and MMI soil geochemical survey costs, including pH	5,000
1,200 meters @ \$60/meter, all inclusive	72,000
Maps and reports	5,000
Contingency @ 20%	22,600
Total	\$ 130,600

Respectfully submitted, W. McLeod, P. Geo. James

Statement of Costs

J.W. McLeod, P. Geo., geology and supervision, period	
Aug. 7-16, 2011(10 days) @ \$450	\$ 4,050
Assistants: J.A. McLeod @ \$200 and S.C. McLeod	
@ \$150 for the period Aug. 7-16, 2011(10 days)	3,500
Camp and board, 30 mandays at \$50/manday	1,500
Transportation, 4x4, Four Trac, utility trailer	1,150
Equipment rental: magnetometer, chainsaw, water pump	550
Rock analyses and shipping	350
JKS Boyles Packsack Drill and accessories, 3 days @ \$150	450
pH program and calculations, Nov. 28-30, 2011	750
Report and maps	<u>1,542</u>

Total \$13,842

Certificate

- 1) I, James Wayne McLeod, of the Village of Savona, Province of British Columbia, hereby certify as follows:
- 2) I am a Consulting Geologist with an office at P.O. Box 216, 6857 Valley Road, Savona, B.C., V0K 2J0.
- 3) I am a Professional Geoscientist registered in the Province of British Columbia and a Fellow of the Geological Association of Canada.
- 4) I graduated with a degree of Bachelor of Science, Major Geology from The University of British Columbia in 1969.
- 5) I have practiced my profession since 1969.
- 6) I have a direct interest in both the Porphyry copper-gold project because of the ownership of the Porphyry #1 mineral claim by my wife, Jacqueline A. McLeod. We are also Officers and Directors of Omega Exploration Services Inc.
- 7) The above report is based on personal field experience gained by the author during the period 2001-11. I have also conducted research, both private and public on the Porphyry project area and discussed these properties in detail with knowledgeable parties.

Dated at Savona, Province of British Columbia this 27th day of March, 2012.

James W. McLever P. Geo. Consulting Geologist

References

British Columbia Ministry of Energy, Mines and Petroleum Resources Assessment Reports on the Porphyry Project area.

McLeod, J.W., 2002-10. Assessment Reports on the Chu and Porphyry area.

Mann, A.W., Birrell, R.D., Mann, A.T., Humphreys, D.B. and Perdrix, J.L., 1998. Application of mobile metal ion technique to routine geochemical exploration. Journal of Geochemical Exploration, **61**, pp. 87-102.

Mann, A.W., Birrell, R.D., Fedikow, M.A.F. and de Souza, H.A.F., 2005. Vertical ionic migration: mechanisms, soil anomalies and sampling depth for mineral exploration. Geochemistry: Exploration, Environment, Analysis, Vol. **5**, 2005, pp. 201-210.

Smee, B.W., 2009. Soil micro-layer, airborne particles, and pH: The Govett Connection. International Applied Geochemical Symposium.

Washington, Henry S., 1917. Chemical Analyses of Igneous Rocks. USGS, Professional Paper 99.

Appendix 1

IONIC Leach Results (MMI Soil Geochemistry 2010 – VA11006590)

ALS Canada Ltd. 2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

fo: WESTERN MINERALS INC PO BOX 216 SAVONA BC VOK 2J0

CERTIFICATE VA11006590

Project: CP

P.O. No.:

This report is for 25 Soil samples submitted to our lab in Vancouver, BC, Canada on 13-JAN-2011.

The following have access to data associated with this certificate:

JIM MCLEOD

SAMPLE PREPARATION								
ALS CODE	DESCRIPTION	······································						
WEI- 21	Received Sample Weight	······································						
EXTRA-01	Extra Sample received in Shipment							
	ANALYTICAL PROCEDUR	RES						
ALS CODE	DESCRIPTION	INSTRUMENT						
ME- MS23 pH- MS23	IONIC Leach - Complete PKG. MS23 Leach pH	ICP- MS						

To: WESTERN MINERALS INC ATTN: JIM MCLEOD PO BOX 216 SAVONA BC VOK 2J0

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

Signature:

W.allt

Wayne Abbott, Operations Manager, Western Australia

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

Fo: WESTERN MINERALS INC PO BOX 216 SAVONA BC VOK 2J0

Page: 2 - A Total # Pages: 2 (A - E) Finalized Date: 30- JAN- 2011 Account: WEMINC

Project: CP

Sample Description	Method	WEŀ-21	ME-MS23	ME- MS23	ME- MS23	ME-MS23	ME-MS23	ME-MS23	ME-MS23	ME- MS23	ME-MS23	ME-MS23	ME- MS23	ME-MS23	ME- MS23	ME-MS23
	Analyte	Recvd Wt.	Ag	As	Au	Ba	Be	Bi	Br	Ca	Cd	Ce	Co	Cr	Cs	Cu
	Units	kg	ppb	ppb	ppb	ppb	ppb	ppb	ppm	ppm	ppb	ppb	ppb	ppb	ppb	ppb
	LOR	0.02	0.1	2	0.02	10	0.2	3	0.05	0.2	1	0.1	0.3	1	0.1	1
Sa 9		0.48	18.4	5	1.18	980	2.4	<3	0.08	154.5	6	20.4	80.8	11	1.9	211
Sa 10		0.44	12.4	4	3.04	660	3.8	<3	0.07	125.0	2	192.0	51.2	10	3.4	603
Sa 11		0.60	11.2	9	0.10	1400	3.0	<3	0.08	73.0	7	31.1	68.6	32	1.7	145
Sa 10MMI		0.62	67.1	20	0.25	690	3.4	<3	0.13	97.6	28	61.3	95.6	40	2.1	349
Sa 11MMI		0.66	35.0	8	0.13	940	4.9	<3	0.09	110.5	19	36.7	153.0	22	2.4	233
Sa 12MMI		0.54	11.4	10	0.05	880	5.0	<3	0.12	103.0	33	43.2	82.7	79	0.9	124
Sa 13MMI		0.46	37.3	41	0.18	620	4,2	<3	0.13	33.4	67	77.0	109.5	58	3.8	324
Sa 14MMI		0.80	18.9	41	0.41	2250	3.6	<3	0.05	130.0	5	49.0	63.7	31	4.8	272
Sa 15MMI		0.66	33.7	34	0.27	1070	2.5	<3	0.06	87.9	10	28.8	51.2	11	6.6	156
Sa 16MMI		0.64	13.6	11	0.16	2000	2.4	<3	0.07	96.1	1	101.0	33.3	26	2.8	164
Sa 17MMI Sa 18MMI		0.96 0.54	16.4 91.3	3 13	0.39 0.31	1010 980	4.5 3.4	<3 <3	0.11	124.0 169.0	6 26	38.5 28.5	74.0 39.8	23 8	5.7 5.6	242 341
Sa 19MMI		0.60	136.5	53	5.11	1120	0.6	<3	0.06	283	41	18.6	47.7	2	3.3	558
Sa 20MMI		0.42	7.6	15	0.08	2200	8.5	5	0.11	164.5	23	16.3	268	24	2.8	149
Sa 21MMI		0.56	79.7	386	1.77	1270	0.7	<3	0.21	360	784	42.7	157.5	15	1.2	550
Sa 22MMI		0.74	74.9	14	0.39	1050	4.2	<3	0.08	143.5	28	97,6	65.6	23	5.1	261
Sa 23MMI		0.68	63.6	15	0.21	1840	5.2	<3	0.11	108.5	16	63,3	92.4	52	5.5	263
Sa 24MMI		0.52	15.8	27	0.11	1350	5.3	<3	0.10	87.0	115	85.6	144.0	63	1.6	145
Sa 12		0.48	9.4	4	0.08	940	5.1	<3	0.10	43.0	7	71,7	41.6	18	5.9	148
Sa 13		0.36	3.6	8	0.06	2110	7.9	<3	0.08	87.2	7	83,1	77.1	45	1.0	250
Sa 14		0.50	5.8	4	0.05	860	5.2	<3	0.09	50.8	8	50.9	28.2	18	3.7	94
Sa 15		0.66	4.8	7	0.04	940	4.8	<3	0.06	75.3	5	75.4	23.1	21	3.1	123
Sa 16		0.66	3.0	7	0.24	1230	4,7	<3	0.05	42.1	2	56.7	15.9	20	3.3	98
Sa 17		0.72	15.2	5	0.67	8590	0.2	<3	<0.05	122.0	4	118.0	17.6	1	2.9	219
Sa 25MMI		0.28	32.0	28	0.34	1150	7.2	<3	0.08	160.5	122	120.0	216	25	1.2	456
									400							

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: WESTERN MINERALS INC PO BOX 216 SAVONA BC VOK 2J0

Page: 2 - B Total # Pages: 2 (A - E) Finalized Date: 30- JAN- 2011 Account: WEMINC

Project: CP

Sample Description	Method	ME-MS23	ME- MS23	ME- MS23	ME-MS23	ME- MS23	ME- MS23	ME-MS23	ME-MS23	ME-MS23	МЕ- MS23	ME- MS23	ME-MS23	ME- MS23	ME- MS23	ME- MS23
	Analyte	Dy	Er	Eu	Fe	Ga	Gd	Ge	Hf	Hg	Но	I	In	La	Li	Lu
	Units	ppb	ppb	ppb	ppm	ppb	ppb	ppb	ppb	ppb	ррЬ	ppm	ppb	ppb	ppb	ppb
	LOR	0.1	0.1	0.1	0.1	0.5	0.1	0.1	0.5	0.1	0.1	0.01	0.1	0.1	0.2	0.1
Sa 9		4.0	2.5	1.2	37.8	28.5	3.8	0.2	<0.5	0.5	0.9	0.05	0.1	8.9	0.5	0.3
Sa 10		32.6	16.0	10.6	26.6	18.9	37.4	0.8	2.9	0.6	6.5	0.05	0.1	77.9	<0.2	1.3
Sa 11		4.0	2.7	1.4	68.2	40.8	3.9	0.3	1.1	0.6	0.9	0.06	0.1	12.4	0.9	0.3
Sa 10MMI		6.7	4.0	2.3	52.7	20.9	7.4	0.3	1.4	0.7	1.4	0.10	0.1	26.6	<0.2	0.4
Sa 11MMI		6.3	4.2	1.6	90.0	30.7	5.8	0.3	1.0	0.4	1.5	0.06	0.1	16.7	0.4	0.5
Sa 12MM Sa 13MM Sa 14MM Sa 14MM Sa 15MM Sa 16MM		4.3 9.5 5.2 4.7 8.5	2.5 6.4 3.0 2.8 5.0	1.4 2.9 2.0 1.6 2.7	132.5 114.5 47.3 35.0 20.6	31.9 27.2 57.2 32.7 53.1	4.6 10.2 5.9 5.0 9.4	0.3 0.5 0.2 0.2 0.2 0.2	1.6 1.8 1.1 0.5 2.1	0.7 0.4 0.4 0.4 0.4 0.3	0.9 2.1 1.1 1.0 1.8	0.07 0.11 0.06 0.07 0.08	0.2 0.2 0.1 0.1 <0.1	20.7 30.6 20.0 13.7 33.2	0.6 0.7 0.2 1.3 <0.2	0.3 0.7 0.3 0.3 0.5
Sa 17MMI Sa 18MMI Sa 19MMI Sa 20MMI Sa 21MMI		5.7 5.9 7.0 2.5 7.9	3.5 4.0 5.2 2.2 4.9	1.7 1.6 2.1 1.1 2.5	41.4 33.1 11.7 91.1 13.5	29.8 26.1 28.2 59.5 31.4	5.3 4.8 5.5 2.0 7.6	0.2 0.2 0.2 0.2 0.2 0.3	0.8 0.6 <0.5 0.8 0.7	0.4 0.3 0.2 0.3 0.6	1.3 1.4 1.8 0.6 1.7	0.09 0.05 0.03 0.05 0.07	0.1 0.2 0.1 0.4 0.1	16.7 10.4 6.3 6.1 13.3	<0.2 <0.2 0.3 0.7 <0.2	0.4 0.4 0.5 0.6 0.5
Sa 22MMI		9.0	5.3	2.7	28.1	30.9	9.8	0.3	1.1	0.5	1.9	0.06	0.1	26.4	<0.2	0.5
Sa 23MMI		7.6	4.6	2.6	70.4	54.5	8.0	0.3	1.5	0.6	1.7	0.09	0.1	24.6	0.2	0.5
Sa 24MMI		10.9	6.8	2.9	122.5	42.1	10.9	0.4	1.8	0.8	2.4	0.06	0.2	33.9	0.6	0.7
Sa 12		7.6	4.3	2.9	24.1	29.9	8.7	0.3	1.3	0.6	1.6	0.13	0.1	34.7	0.3	0.4
Sa 13		9.2	5.5	3.3	159.0	78.4	10.1	0.6	1.5	0.7	2.0	0.05	0.2	45.3	0.8	0.6
Sa 14		5.5	3.4	1.9	31.5	28.8	5.9	0.3	1.2	0.5	1.2	0.09	0.1	23.3	0.4	0.3
Sa 15		6.8	4.0	2.4	34.5	28.2	8.0	0.3	1.7	0.6	1.5	0.08	0.1	36.6	0.3	0.4
Sa 16		4.3	2.3	1.8	31.6	39.2	5.5	0.3	1.4	0.4	0.9	0.06	0.1	27.3	0.2	0.2
Sa 17		16.9	9.1	7.2	3.9	271	21.4	0.5	0.7	0.3	3.5	0.06	<0.1	61.3	<0.2	0.8
Sa 25MMI		31.8	22.6	7.1	77.1	32.4	24.2	0.6	1.3	0.4	7.8	0.05	0.2	41.2	0.4	2.1
						<u>,</u>				 	, , , , , , , , , , , , , , , , , , ,					

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: WESTERN MINERALS INC PO BOX 216 SAVONA BC VOK 2J0

Page: 2 - C Total # Pages: 2 (A - E) Finalized Date: 30- JAN- 2011 Account: WEMINC

Project: CP

Sample Description	Method Analyte Units LOR	ME-MS23 Mg ppm 0.01	ME- MS23 Mn ppm 0.01	ME-MS23 Mo ppb 0.5	ME- MS23 Nb ppb 0.1	ME-MS23 Nd ppb 0.1	ME-MS23 Ni ppb 1	ME- MS23 Pb ppb 1	ME- MS23 Pb 206 ppb 1	ME- MS23 РЬ 207 ррЪ 1	ME- MS23 Рb 208 ррb 1	ME-MS23 Pd ppb 0.1	ME- MS23 Pr ppb 0.1	ME- MS23 Pt ppb 0,1	ME-MS23 Rb ppb 0.1	ME- MS23 Re ppb 0.1
Sa 9 Sa 10 Sa 11 Sa 10MMI Sa 11MMI		11.70 16.40 5.70 9.84 14.50	5.77 1.67 4.70 4.69 4.89	6.0 5.6 5.5 20.9 4.5	0.7 0.6 2.3 1.3 1.5	12.5 137.5 15.3 31.4 21.0	40 29 42 270 180	19 13 15 28 64	5 3 4 7 17	4 3 3 6 13	10 7 8 15 34	0.6 5.1 1.4 1.9 1.3	2.7 28.3 3.3 7.0 4.6	<0.1 <0.1 <0.1 <0.1 <0.1	111.5 88.0 128.5 176.5 207	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1
Sa 12MMI Sa 13MMI Sa 14MMI Sa 15MMI Sa 16MMI		7.74 2.84 9.35 5.89 8.87	6.00 2.20 1.46 3.80 0.64	4.5 7.8 5.5 3.4 4.6	3.3 2.7 1.3 1.1 0.7	20.7 43.9 24.5 17.8 38.3	88 121 105 43 25	28 80 63 35 36	7 20 16 9 9	6 17 13 7 7	15 42 33 18 19	1.9 2.2 1.5 0.8 3.0	4.8 9.1 5.4 3.8 8.5	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1	80.0 187.0 134.0 224 148.5	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1
Sa 17MMI Sa 18MMI Sa 19MMI Sa 20MMI Sa 21MMI		6.27 10.30 22.7 28.1 33.8	0.62 0.84 6.42 7.80 32.7	7.8 4.1 4.2 0.7 5.7	0.5 0.3 0.2 0.8 0.4	20.9 15.0 13.8 7.8 25.2	102 116 67 61 233	95 606 549 51 6010	24 156 143 13 1540	20 126 115 11 1250	49 316 284 27 3130	1.1 0.8 0.5 1.1 <0.1	4.6 3.1 2.4 1.8 5.0	<0.1 <0.1 <0.1 <0.1 <0.1	235 296 135.0 191.0 270	<0.1 <0.1 <0.1 <0.1 <0.1
Sa 22MMI Sa 23MMI Sa 24MMI Sa 12 Sa 13		5.20 10.85 11.90 2.76 14.45	2.92 2.30 11.50 5.24 6.96	7.1 5.6 4.9 8.6 6.8	0.8 1.5 3.0 0.8 8.5	37.7 32.4 43.9 37.9 43.4	75 109 142 48 84	397 101 110 80 102	102 26 29 20 26	86 21 23 17 21	203 53 57 42 53	1.8 2.2 2.3 1.8 2.2	8.0 7.1 9.8 8.5 9.9	<0.1 <0.1 <0.1 <0.1 <0.1	165.5 177.0 106.0 153.5 81.1	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1
Sa 14 Sa 15 Sa 16 Sa 17 Sa 25MMI		3.57 4,50 3.59 9.13 32.1	14.55 7.24 4.08 0.55 19.50	5.4 6.0 4.2 3.6 2.4	0.9 1.4 1.2 0.2 0.9	25.7 36.4 27.9 88.2 75.8	83 74 43 10 161	63 46 42 16 640	16 12 11 4 166	13 10 9 3 132	33 24 22 8 333	1.4 2.2 1.8 1.2 2.1	5.8 8.5 6.4 17.5 15.4	<0.1 <0.1 <0.1 <0.1 <0.1	143.5 168.5 134.5 141.0 123.0	<0.1 <0.1 <0.1 <0.1 <0.1
	· · · · · · · · · · · · · · · · · · ·								<u> </u>					······		

2103 Dollarton Hwy North Vancouver BC V7H 0A7

Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: WESTERN MINERALS INC PO BOX 216 SAVONA BC VOK 2J0

Page: 2 - D Total # Pages: 2 (A - E) Finalized Date: 30- JAN- 2011 Account: WEMINC

Project: CP

Sample Description	Method Anaiyte Units LOR	ME-MS23 Sb ppb 0.5	ME- MS23 Sc ppb 1	ME- MS23 Se ppb 2	ME- MS23 Sm ppb 0.1	ME-MS23 Sn ppb 0.2	ME- MS23 Sr ppb 1	ME- MS23 Ta ppb 1	ME-MS23 Tb ppb 0.1	ME-MS23 Te ppb 1	ME- MS23 Th ppb 0.02	ME-MS23 Ti ppb 5	ME- MS23 Tl ppb 0.5	ME- MS23 Tm ppb 0.1	ME- MS23 U ppb 0.1	ME- MS23 W ppb 1
Sa 9 Sa 10 Sa 11 Sa 10MMI Sa 11MMI		16.7 20.5 6.5 5.4 2.5	13 48 28 19 20	3 17 4 7 5	3.5 34.9 3.8 7.4 5.3	<0.2 <0.2 0.4 <0.2 <0.2 <0.2	730 980 379 435 776	<1 <1 <1 <1 <1 <1	0.7 6.5 0.7 1.3 1.1	<1 <1 <1 <1 <1 <1	2.44 44.4 4.96 6.33 5.52	261 212 1290 289 320	<0.5 1.2 <0.5 <0.5 <0.5	0.3 1.9 0.4 0.5 0.6	4.3 42.9 4.6 5.9 7.4	<1 <1 1 1 <1
Sa 12MMI Sa 13MMI Sa 14MMI Sa 15MMI Sa 16MMI		0.7 1.8 1.3 1.1 1.2	21 28 14 16 18	4 8 7 5 9	4.8 10.4 6.0 4.8 9.1	0.2 0.3 <0.2 <0.2 <0.2	669 195 1220 512 846	<1 <1 <1 <1 <1 <1	0.8 1.7 1.0 0.9 1.6	<1 <1 <1 <1 <1 <1	11.65 8.46 8.15 4.37 13.00	1260 951 343 403 197	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5	0.3 0.9 0.4 0.4 0.7	12.1 7.0 5.2 4.4 7.7	<1 <1 <1 <1 <1 <1
Sa 17MMI Sa 18MMI Sa 19MMI Sa 20MMI Sa 21MMI		<0.5 1.3 0.6 0.7 1.2	18 18 20 22 14	4 4 4 2 3	5.2 4.2 4.6 2.0 7.3	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2	544 819 1490 1650 2030	<1 <1 <1 <1 <1 <1	1.0 1.0 1.1 0.4 1.4	<1 <1 <1 <1 <1 <1	5.41 3.50 1.09 7.93 4.19	121 103 51 185 129	<0.5 <0.5 <0.5 0.6 0.5	0.5 0.6 0.7 0.4 0.6	7.2 10.8 5.3 10.1 8.3	<1 <1 <1 <1 <1 <1
Sa 22MMI Sa 23MMI Sa 24MMI Sa 12 Sa 13		0.6 0.6 0.7 0.7 0.6	16 25 30 20 30	7 6 8 9 7	9.4 7.9 10.7 8.8 9.9	<0.2 <0.2 <0.2 <0.2 <0.2 1.1	753 844 654 206 705	<1 <1 <1 <1 <1 1	1.7 1.4 1.9 1.5 1.8	<1 <1 <1 <1 <1 <1	7.89 8.39 10.65 8.61 12.55	190 521 803 214 3420	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5	0.7 0.6 0.9 0.5 0.7	7.2 10.3 8.6 11.4 9.8	<1 <1 <1 <1 <1 1
Sa 14 Sa 15 Sa 16 Sa 17 Sa 25MMI		<0.5 <0.5 <0.5 <0.5 1.1	16 15 12 12 46	8 4 3 8 9	5.9 8.2 6.0 20.7 21.7	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2	170 262 224 2110 1370	<1 <1 <1 <1 <1 <1	1.0 1.3 0.9 3.4 5.0	<1 <1 <1 <1 <1 <1	7.72 14.30 14.50 3.25 9.91	357 363 354 32 381	<0.5 <0.5 <0.5 0.5 0.7	0.4 0.5 0.3 1.1 3.1	6.1 8.6 6.2 9.3 17.9	<1 <1 1 <1 <1 <1
													<u> </u>		<u></u>	
	-															

ALS Canada Ltd. 2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: WESTERN MINERALS INC PO BOX 216 SAVONA BC VOK 2J0

Page: 2 - E Total # Pages: 2 (A - E) Finalized Date: 30- JAN- 2011 Account: WEMINC

Project: CP

Sample Description	Method Analyte Units	ME-MS23 Y ppb	ME-MS23 Yb ppb	ME-MS23 Zn ppb	ME-MS23 Zr ppb	pH- MS23 Final pH Unity	
Sample Description	LOR	0.1	0.1	10	0.1	0.1	
Sa 9		19.5	1.9	390	7.4	7.7	
Sa 10		151.5	9.6	100	57.5	7.7	
Sa 11		18.0	2.2	540	18.7	7.9	
Sa 10MMI		29.1	3.0	910	25.0	7.7	
Salimmi		32.5	3.2	520	16.7	6.5	
Sa 12MMI		16.7	1.8	1480	27.2	6.5	
Sa 13MMI		44.7	4.9	720	31.5	6.8	
Sa 14MMI		22.7	2.3	110	19.6	7.9	
Sa 15MMI		19.8	2.0	210	9.0	7.9	
Sa 16MMI		35,3	3.5	20	39,9	8,3	
Sa 17MMI		26.7	2.6	570	14.0	6.8	
Sa 18MMI		28.2	2.8	230	10.0	6.5	
Sa 19MMI		35.1	3.9	460	4.5	7.7	
Sa 20MMI		11.2	3.4	/10	14.1	6.5	
Sa Z I MMI		31.5	3.4	6470	13.8	0.8	
Sa 22MMI		40.6	3.8	600	21.4	7.7	
Sa 23MMI		33.9	3.3	1200	28.3	7.1	
Sa 24MMI		45.3	4.9	2920	32.3	6.5	
Sa 12		31,9	2.9	310	23.9	1.1	
3413		43.0	4.1	970	20,5	0.5	
Sa 14	1	24.6	2.4	510	20.3	7.1	
5a 15		29.1	2.9	220	29.3	7.9	
Sa 10		79.7	5.5	10	25.5	87	
Sa 25MML		136.0	15.6	3750	21.3	7.1	

Appendix 2

Rock Exposure Samples – Multi-element and Whole Rock Analyses (VA11233439, #575760-62)

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: OMEGA SERVICES 6857 VALLEY ROAD PO BOX 216 SAVONA BC VOK 2J0

Page: 1 Finalized Date: 1- DEC- 2011 Account: OMESER

CERTIFICATE VA11233439

Project: CAN		
P.O. No.: ->		
This report is for JZ Rock sar 9- NOV- 2011.	nples submitted to our lab in V	ancouver, BC, Canada on
The following have access	to data associated with this	certificate:
JIM MCLEOD		

SAMPLE PREPARATION										
ALS CODE	DESCRIPTION									
WEI- 21	Received Sample Weight									
LOG- 22	Sample login - Rcd w/o BarCode									
PUL- QC	Pulverizing QC Test									
CRU- 31	Fine crushing - 70% < 2mm									
SPL- 21	Split sample - riffle splitter									
PUL- 31	Pulverize split to 85% < 75 um									

ANALYTICAL PROCEDURES ALS CODE DESCRIPTION INSTRUMENT ME- ICP41 35 Element Agua Regia ICP- AES ICP- AES ME- XRF06 Whole Rock Package - XRF XRF OA- GRA06 LOI for ME-XRF06 WST- SIM Au-AA23 Au 30g FA- AA finish AAS

To: OMEGA SERVICES ATTN: JIM MCLEOD 6857 VALLEY ROAD PO BOX 216 SAVONA BC VOK 2J0

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

Colin Ramshaw, Vancouver Laboratory Manager

ALS) Minerals

.

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: OMEGA SERVICES 6857 VALLEY ROAD PO BOX 216 SAVONA BC VOK 2J0

Page: 2 - A Total # Pages: 2 (A - D) Finalized Date: 1- DEC- 2011 Account: OMESER

Project: CAN

Sample Description	Method Analyte Units LOR	WEI- 21 Recvd Wt. kg 0.02	Au- AA23 Au ppm 0.005	ME- ICP41 Ag ppm 0.2	ME- ICP41 Al % 0.01	ME- ICP41 As ppm 2	ME-ICP41 B ppm 10	ME- ICP41 Ba ppm 10	ME- ICP4 1 Be ppm 0.5	ME- ICP4 1 Bi ppm 2	ME- ICP41 Ca % 0.01	ME-ICP41 Cd ppm 0.5	ME- ICP4 1 Co ppm 1	ME- ICP41 Cr ppm 1	ME-ICP41 Cu ppm 1	ME- ICP41 Fe % 0.01
575760		0.32	0.012	0.4	3.17	6	<10	120	<0.5	<2	1.08	0.7	14	33	81	5.20
575761		1.26	<0.005	0.5	1,54	5	<10	100	<0.5	<2	0.16	<0.5	4	4.	19	2.29
.575762		0.64	0.025	2.4	0,73	70	<10	210	<0.5	2	0.17	2.3	21	43	788	2.53
\$75763		0.70	0.006	0.2	2.57	3	<10	100	<0.5	<2	1.19	<0.5	24	51	77	4.08
\$75764	and a subsection of the sector	0.28	0.006	0.7	4.28	830	<10	90	0.5	<2	4.01	13.8	24		80	5.24
575765		1.80	<0.005	0:4	2.68	10	<10	100	<0.5	<2	0.83	<0.5	18	23	42	4.50
575766		0.66	<0.005	0.2	2.04		<10	40		<2	1.96	<0.5	17	58	66	3.20
575767		0.24	<0.005	0.3	2.35	8	<10	110	<0.5	<2	0.92	<0.5	16	21	28	3.64
575768		0.28	<0.005	0.3	3.46	3	<10	30	<0.5	<2	1.17	<0.5	28	14	11	5.47
575769		0.96	<0.005	0.2	0.80	33	<10	10	<0.5	<2	7.10	<0.5	7	18	37	2.96
575770		0.76	0.020	0.2	0.08	49	<10	40	<0.5	<2	13.2	0.5	1	······································	3	1.34
525771		0.20	<0.005	0.2	0.83	17	10	90	<0.5	<2	1.53	<0.5	3	6	5	2.51

ALS) Minerals

ALS Canada Ltd.

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: OMEGA SERVICES 6857 VALLEY ROAD PO BOX 216 SAVONA BC VOK 2J0

Page: 2 - B Total # Pages: 2 (A - D) Finalized Date: 1- DEC- 2011 Account: OMESER

Project: CAN

Sample Description	Method Analyte Units LOR	ME-ICP41 Ga ppm 10	ME-ICP41 Hg ppm 1	ME- ICP41 K % 0.01	ME-ICP41 La ppm 10	ME- ICP4 } Mg % 0.01	ME- ICP41 Mn ppm 5	ME- ICP41 Mo ppm 1	ME- ICP41 Na % 0.01	ME- ICP41 Ni ppm 1	ME- ICP41 P ppm 10	ME- ICP41 Pb ppm 2	ME- ICP4 1 S % 0.01	ME- ICP41 Sb ppm 2	ME- ICP41 Sc ppm 1	ME- ICP4 1 Sr ppm 1
575760 575761		10 10	<1 <1	1,84 0.85	<10 10	2.80 1.16	690 1555	8 2	0.18 0.07	9 2	630 270	21 2	0.77 0.19	2 <2	22 5	196 13
575762 575763 575764		<u><10</u> 10 -10	1 <1 <1	0.32 0.03 0.29	<u>10</u> <10 <10	0.23 2.95 0,58	<u>966</u> 1105 794	<u>12</u> <1 3	0,01 0,08 0,42	<u>88</u> 16 45	<u>440</u> 810 1440	<u>152</u> 2 11	0.09 0.01 3.02	14 2 2	<u> 4 </u>	11 70 186
575765 575766 575767 575768		10 10 10 10	<1 <1 <1 1	0.11 0.15 0.12 0.02	10 <10 <10 <10	1.86 1.49 1.62 3.03	916 651 811 1185	<1 <1 <1 <1	0.05 0.17 0.05 0.06	13 24 10 13	830 630 710 1030	6 <2 3 <2	0.03 0.01 0.03 0.01	2 <2 2 <2	7 10 6 6	42 69 58 67
575769 575770 575771	a 1947 - 1949 - 1949 - 1947 - 1947 - 1947 - 1947 - 1947 - 1947 - 1947 - 1947 - 1947 - 1947 - 1947 - 1947 - 1947 -	<10 <10 <10	6 <1 1	0.03 0.01 0.12	<10 <10 <10	2.63 4.07 0.60	802 549 379	<1 1 1	0.02 0.02 0.08	19 2 6	50 320 1350	<2 4	0.02 0.04 0.03	10 	5 <1 2	91 59 97
						- •			•							
				5 94 1											.	- 1

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: OMEGA SERVICES 6857 VALLEY ROAD PO BOX 216 SAVONA BC VOK 2J0

Page: 2 - C Total # Pages: 2 (A - D) Finalized Date: 1- DEC- 2011 Account: OMESER

Project: CAN

Sample Description	Method Analyte Units LOR	ME-ICP41 Th ppm 20	ME- ICP41 Ti % 0.01	ME-ICP41 Tl ppm 10	ME- ICP41 U ppm 10	ME-ICP41 V ppm 1	ME-ICP41 W ppm 10	ME- ICP41 Zn ppm 2	ME- XRF06 SiO2 % 0.01	ME- XRF06 Al2O3 % 0.01	ME- XRF06 Fe2O3 % 0.01	ME- XRF06 CaO % 0.01	ME- XRF06 MgO % 0.01	ME- XRF06 Na2O % 0.01	ME- XRF06 K2O % 0.01	ME- XRF06 Cr2O3 % 0.01
575760 575761 <u>575762</u> 575763 575764		<20 <20 <20 <20 <20 <20	0.29 0.17 0.01 0.33 	<10 <10 <10 <10 <10	<10 <10 <10 <10 <10 <10	173 51 28 163 93	<10 <10 10 <10 <10	223 61 309 88 1000	52.37 68.77 74.85 49.84 56.38	18.62 14.67 11.70 17.54 13.63	7.54 3.27 4.13 9.54 8.47	2.98 1.05 0.39 6.92 9.88	4.91 2.12 1.01 5.97 2.68	4.47 4.32 0.13 4.77 1.30	2.90 3.18 3.34 0.09 2.19	<0.01 <0.01 0.03 0.01 <0.01
575765 575766 575767 575768 575769		<20 <20 <20 <20 <20	0.18 0.33 0.21 0.51 <0.01	<10 <10 <10 <10 <10	<10 <10 <10 <10 <10	105- 100 84 171 56	<10 <10 <10 <10 <10	95 71 85 141 45	51.00 56.32 49.25 50.44	13.93 16.47 19.11 10.54	11.10 7.69 10.07 4,08	9.97 4.72 6.22 10.31	6.33 3.52 5.02 4.63	1.94 2.94 4.80 0.04	1.01 1.44 0.16 0.15	0.02 <0.01 <0.01 <0.01
575770 575774	Shi ng ng ng ng ng ng	<20 <20	0.01 0.12	<10 <10	<10 <10	62 80	<10 <10	34 34					<u></u>			
				ی اور در	,											·
				-	٩										. •	

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: OMEGA SERVICES 6857 VALLEY ROAD PO BOX 216 SAVONA BC VOK 2J0

Page: 2 - D Total # Pages: 2 (A - D) Finalized Date: 1- DEC- 2011 Account: OMESER

Project: CAN

Sample Description	Method Analyte Units LOR	ME- XRF06 TiO2 % 0.01	ME- XRF06 MnO % 0.01	ME- XRF06 P2O5 % 0.001	ME- XRF06 SrO % 0.01	ME- XRF06 BaO % 0.01	ME- XRF06 LOI % 0.01	ME- XRF06 Total % 0.01					
575760 575761 <u>575762</u> 575763 575764	No The Party of	0.99 0.50 0.50 1.36 0.76	0.09 0.28 0.13 0.23 0.35	0.145 0.118 0.115 0.181 0.319	0.06 0.02 <0.01 0.04 0.03	0.75 0.08 0.15 0.02 0.09	3.83 1.23 <u>3.39</u> <u>3.23</u> 3.69	99.65 99.60 99.87 99.74 99.77					
575765 575766 575767 575768 575769		1.46 0.93 1.40 0.33	0.23 0.15 0.19 0.10	0.152 0.175 0.233 0.090	0.03 0:03 0.04 0.03	0.01 0.10 0.02 <0.01	2.52 5.54 3.41 18.45	99.71 100.00 99.92 99.17	<u>,</u>				
575770 575 771											 		
									•	·			
				्र • i इ									
					·								

Appendix 3

Data Table for Profiles Figures 3a, 3b and 3c

Table 1 (PPpHTVA11006590)

		a)		b)			
MMI Sample #	<u>pH</u>	<u>Log of pH</u>	<u>Acid pH</u>	Log Ac. pH	<u>a-b</u>	<u>1/a-b</u> *	
Sa 9	5.98	.7767	2.82	.4502	.3265	3.06	
Sa 10	5.62	.7497	2.72	.4346	.3151	3.17	
Sa 11	5.70	.7559	2.72	.4346	.3213	3.11	
Sa 12	5.58	.7466	2.61	.4166	.3300	3.03	
Sa 13	5.25	.7202	2.72	.4346	.2856	3.50	
Sa 14	5.74	.7589	2.63	.4199	.3390	2.95	
Sa 15	5.94	.7738	2.71	.4330	.3408	2.93	
Sa 16	5.80	.7634	2.65	.4232	.3402	2.94	
Sa 17	6.02	.7796	2.75	.4393	.3403	2.94	
Sa 10MMI	6.07	.7832	3.35	.5250	.2582	3.87	
Sa 11MMI	6.05	.7818	3.69	.5670	.2148	4.66	
Sa 12MMI	5.64	.7513	3.25	.5119	.2394	4.18	
Sa13MMI	5.78	.7619	2.79	.4456	.3161	3.16	
Sa14MMI	5.84	.7764	3.06	.4857	.2811	3.56	
Sa15MMI	5.91	.7716	2.93	.4669	.3047	3.28	
Sa16MMI	6.12	.7868	2.97	.4728	.3143	3.18	
Sa17MMI	6.34	.8021	3.41	.5328	.2693	3.71	
Sa18MMI	6.46	.8102	3.80	.5798	.2304	4.34	
Sa19MMI	6.58	.8182	3.50	.5441	.2741	3.65	
Sa20MMI	5.72	.7574	3.30	.5185	.2389	4.19	

Cont'd

MMI Sample #	<u>pH</u>	a) <u>Log of pH</u>	<u>Acid pH</u>	b) <u>Log Ac. pH</u>	<u>a-b</u>	<u>1/a-b</u>	
Sa21MMI	7.30	.8633	4.60	.6628	.2005	4.99	
Sa22MMI	6.20	.7924	2.79	.4456	.3468	2.88	
Sa23MMI	5.90	.7708	2.85	.4548	.3159	3.16	
Sa24MMI	5.58	.7766	3.20	.5051	.2415	4.14	
Sa25MMI	6.14	.7882	3.30	.5185	.2697	3.71	

• 1/a-b has been termed the "inverse difference" that produce "positive peaks" which when plotted produce an "eye pleasing" that may produce anomalies whicht are called the Inverse Difference Hydrogen (IDH) anomalies (see References, B.W. Smee, 2009).

20f 2