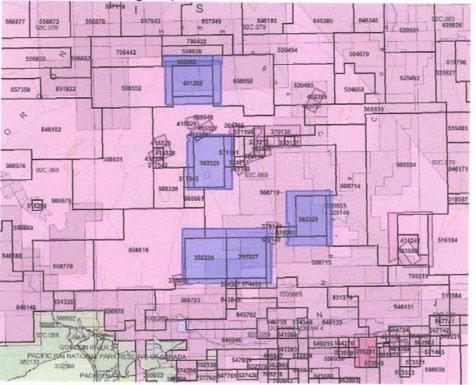
BRITISH COLUMBIA The Best Place on Earth		T Concert and
Jinistry of Energy and Mines BC Geological Survey		Assessment Report Title Page and Summary
YPE OF REPORT [type of survey(s)]: Geochemical Technical Asse	essment Report	TOTAL COST: \$81,120.00
итнок(s): Le Baron Prospecting - Scott Phillips	SIGNATURE(S):	State
IOTICE OF WORK PERMIT NUMBER(S)/DATE(S):		YEAR OF WORK: 2010
STATEMENT OF WORK - CASH PAYMENTS EVENT NUMBER(S)/DATE(S): event # 4506893, event	
event #4502231, event #4499272		File MINERAL F
PROPERTY NAME: The Golden and RNR Project		File Rec'd
CLAIM NAME(S) (on which the work was done): 392325 , 392326 , 392 , 392326 , 392	2327, 392328, 401285, 53	9952 MAY 1 6 2010
	2. S	VANCOUVER, B.C.
COMMODITIES SOUGHT: Fe, Ca		
	02C091, 092C110, 092C14	11, 092C146, 092C158
INERAL INVENTORY MINFILE NUMBER(S), IF KNOWN: 092C090, 09		
AINERAL INVENTORY MINFILE NUMBER(S), IF KNOWN: 092C090, 09	NTS/BCGS: M092C0	69
AINERAL INVENTORY MINFILE NUMBER(S), IF KNOWN: 092C090, 09 AINING DIVISION: Victoria ATITUDE: 48 ° 49 '38 " LONGITUDE: 124	NTS/BCGS: M092C0	
AINERAL INVENTORY MINFILE NUMBER(S), IF KNOWN: 092C090, 09	NTS/BCGS: M092C0	69
MINERAL INVENTORY MINFILE NUMBER(S), IF KNOWN: 092C090, 09 MINING DIVISION: Victoria ATITUDE: 48 ° 49 '38 " LONGITUDE: 124 WWNER(S):	<u>NTS/BCGS: M092C0</u> <u>19 '46</u> "	69
MINERAL INVENTORY MINFILE NUMBER(S), IF KNOWN: 092C090, 09 MINING DIVISION: Victoria ATITUDE: 48 ° 49 '38 " LONGITUDE: 124 WNER(S):) Scott Phillips Raymond Oshust	<u>мтя/всс</u> я: <u>М092С0</u> <u>19</u> '46 " 2) Marjorie Rooke	69
MINERAL INVENTORY MINFILE NUMBER(S), IF KNOWN: 092C090, 09 MINING DIVISION: Victoria ATITUDE: 48 ° 49 '38 " LONGITUDE: 124 WNER(S):) Scott Phillips Raymond Oshust	• NTS/BCGS: M092C0 • 19 '46 " • 2) Marjorie Rooke Gordon Saunders	69
MINERAL INVENTORY MINFILE NUMBER(S), IF KNOWN: 092C090, 09 MINING DIVISION: Victoria ATITUDE: 48 ° 49 '38 " LONGITUDE: 124 WNER(S):) Scott Phillips Raymond Oshust MAILING ADDRESS:	NTS/BCGS: M092C0 '19 '46 2) Marjorie Rooke Gordon Saunders Marjorie - 2918 Jack	69 (at centre of work)
MINERAL INVENTORY MINFILE NUMBER(S), IF KNOWN: 092C090, 05 MINING DIVISION: Victoria ATITUDE: 48 ° 49 '38 " LONGITUDE: 124 WNER(S):) Scott Phillips Raymond Oshust MAILING ADDRESS: Scott - 3317 Henry Rd Chemainus BC V0R-1K4	NTS/BCGS: M092C0 0 19 '46 " 2) Marjorie Rooke Gordon Saunders Marjorie - 2918 Jack Gordon - 2650 Ceda	69 (at centre of work) son Rd Duncan BC V9L-6N7
MINERAL INVENTORY MINFILE NUMBER(S), IF KNOWN: 092C090, 05 MINING DIVISION: Victoria ATITUDE: 48 ° 49 '38 " LONGITUDE: 124 WNER(S):) Scott Phillips Raymond Oshust MILING ADDRESS: Scott - 3317 Henry Rd Chemainus BC V0R-1K4 Raymond - General Delivery Port Renfrew BC V0S-1K0 PPERATOR(S) [who paid for the work]:	NTS/BCGS: M092C0 0 19 '46 " 2) Marjorie Rooke Gordon Saunders Marjorie - 2918 Jack Gordon - 2650 Ceda	69 (at centre of work) son Rd Duncan BC V9L-6N7 ar Hill Rd Victoria BC V8T-3H2
AINERAL INVENTORY MINFILE NUMBER(S), IF KNOWN: 092C090, 09 MINING DIVISION: Victoria ATITUDE: 48 ° 49 '38 "LONGITUDE: 124 DWNER(S):) Scott Phillips Raymond Oshust MAILING ADDRESS: Scott - 3317 Henry Rd Chemainus BC V0R-1K4 Raymond - General Delivery Port Renfrew BC V0S-1K0 DPERATOR(S) [who paid for the work]:) Gordon Saunders MAILING ADDRESS:	NTS/BCGS: M092C0 ° 19 '46 " 2) Marjorie Rooke Gordon Saunders Marjorie - 2918 Jack Gordon - 2650 Ceda 2)	69 (at centre of work) son Rd Duncan BC V9L-6N7 r Hill Rd Victoria BC V8T-3H2
INERAL INVENTORY MINFILE NUMBER(S), IF KNOWN: 092C090, 09 INING DIVISION: Victoria ATITUDE: 48 9 49 '38 " LONGITUDE: 124 WNER(S):)) Scott Phillips Raymond Oshust HAILING ADDRESS: Scott - 3317 Henry Rd Chemainus BC V0R-1K4 Raymond - General Delivery Port Renfrew BC V0S-1K0 PPERATOR(S) [who paid for the work]:) Gordon Saunders HAILING ADDRESS: Gordon - 2650 Cedar Hill Rd Victoria BC V8T-3H2 ROPERTY GEOLOGY KEYWORDS (lithology, age, stratigraphy, structu	NTS/BCGS: M092C0 ° 19 '46 " 2) Marjorie Rooke Gordon Saunders Marjorie - 2918 Jack Gordon - 2650 Ceda 2)	69 (at centre of work) son Rd Duncan BC V9L-6N7 ar Hill Rd Victoria BC V8T-3H2
INNERAL INVENTORY MINFILE NUMBER(S), IF KNOWN: 092C090, 09 INING DIVISION: Victoria ATITUDE: 48 • 49 '38 " LONGITUDE: 124 WNER(S):) Scott Phillips [Scott Phillips] Raymond Oshust [Scott - 3317 Henry Rd Chemainus BC V0R-1K4] [Scott - 3317 Henry Rd Chemainus BC V0R-1K4] PERATOR(S) [who paid for the work]:) [Gordon Saunders] IAILING ADDRESS: [Gordon Saunders] [Sordon - 2650 Cedar Hill Rd Victoria BC V8T-3H2] ROPERTY GEOLOGY KEYWORDS (lithology, age, stratigraphy, structu Value Robins	NTS/BCGS: M092C0 ° 19 '46 " 2) Marjorie Rooke Gordon Saunders Marjorie - 2918 Jack Gordon - 2650 Ceda 2)	69 (at centre of work) son Rd Duncan BC V9L-6N7 ar Hill Rd Victoria BC V8T-3H2 ize and attitude): assic Vancouver Group, Coast Crystalline Complex and the

Next Page


TYPE OF WORK IN THIS REPORT	EXTENT OF WORK (IN METRIC UNITS)	ON WHICH CLAIMS	PROJECT COSTS APPORTIONED (incl. support)
GEOLOGICAL (scale, area)			······································
Ground, mapping		392325, 392326, 392327	\$81,120.00
Photo interpretation		392328, 401285, 539952	
GEOPHYSICAL (line-kilometres)			
Ground			
Magnetic			····
			, ,
		-	
Radiometric			
Seismic		· [[
Other			
Airborne			
GEOCHEMICAL (number of samples analysed for)			
Soil		VA10045619 -RNR = 14 samples	
Silt		VA10045617 - Golden 5 = 20 samples	
Rock 62 rock chip samples for		VA10045188 - Golden 6+7 =16 sample	
Other		VA10045618 - Golden 8 = 12 samples	
DRILLING			
(total metres; number of holes, size)			
Core			
Non-core		·	
RELATED TECHNICAL			
Sampling/assaying 201 rock c	hip samples obtained	62 of the 201 samples were analyzed	
	· ·		
Mineralographic			
Metallurgic			
PROSPECTING (scale, area)			
PREPARATORY / PHYSICAL			
Line/grid (kilometres) <u>RNR = 4</u>	992 m, Golden 5 = 3020 m	Golden 6+7=3700m, Golden 8= 3736m	=15,448 GPS line meters
Topographic/Photogrammetric			
(scale, area)			
Legal surveys (scale, area)			
Road, local access (kilometres)/t	rail	by Pacific Iron Ore - within the tenure	
Trench (metres)		boundaries of the tenures within this	
Underground dev. (metres)		assessment report	
Other Investigation into the e	exploration work conducted	drilling x 4 and line mags x 2	
		TOTAL COST:	\$81,120.00

Technical and Geochemical Assessment Report

The Golden and RNR Project Tenures 392325, 392326, 392327, 392328, 401285, 508826

Victoria Mining Division NTS: M092C069 48 degrees, 49' 38"N x 124 degrees, 19' 46" W

BC Geological Survey Assessment Report 33022

GEOLOGICAL SURVEY BRANCH ASSESSMENT REPORT

Report By; Le Baron Prospecting Po Box 92 16977 Tsonaquay Dr Port Renfrew BC V0S-1K0 Author: Scott Phillips

2010

Table of Contents

Cover Page	
Table of contents	2
Executive Summary, note to reader	
Exploration in Port Renfrew	
Tenure ownership	.,,
Area history	
Geology	
Minfile occurances	
Tenure accessibility, area resouces	
Assessment report summary	
Author, disclaimer	
Reference information	
Area authors	
Appendix A and A-1	
RNR + Tracey technical information	15 to 22
- reference working mapsF	igure maps C to C-10.
 reference to certificates of analysis 	
- P-target reference information.	25 to 27
Appendix B to B-1	
Golden 5 technical information	
- reference working maps	Figure maps D to D-5
 reference to certificates of analysis 	
 investigation into drilling by Pacific Iron Ore into the Golden 5 	
Appendix C to C-1	
Golden 6 + 7 technical information	
- Reference working maps	Figure maps E to E-6
 reference to certificates of analysis 	
 investigation into geophysical line magnetics and drilling by Pacific I 	ron Ore into the
Golden 6+7 tenures	52 to 62
Appendix D	
Golden 8 technical information	63 to 68
- Reference working maps	Figure maps F to F-5
- Reference to certificates of analysis	69 to 70
Appendix E	
Summary of Emerald Fields Resource Corporation	
Aero magnetic survey of the area of Port Renfrew BC 2006	71 to 80
Summary, conclusions	
E-mail of conformation of event	

Executive Summary:

San Juan Marble Developments Ltd and Le Baron Prospecting hold strategic mineral tenures situated on Southwestern Vancouver Island, BC, in very close proximity to the community of Port Renfrew, which is located approximately100 kilometers west of Victoria BC. Exploration has been completed and is ongoing on these and other tenures held jointly by the associates of Le Baron Prospecting and San Juan Marble Developments.

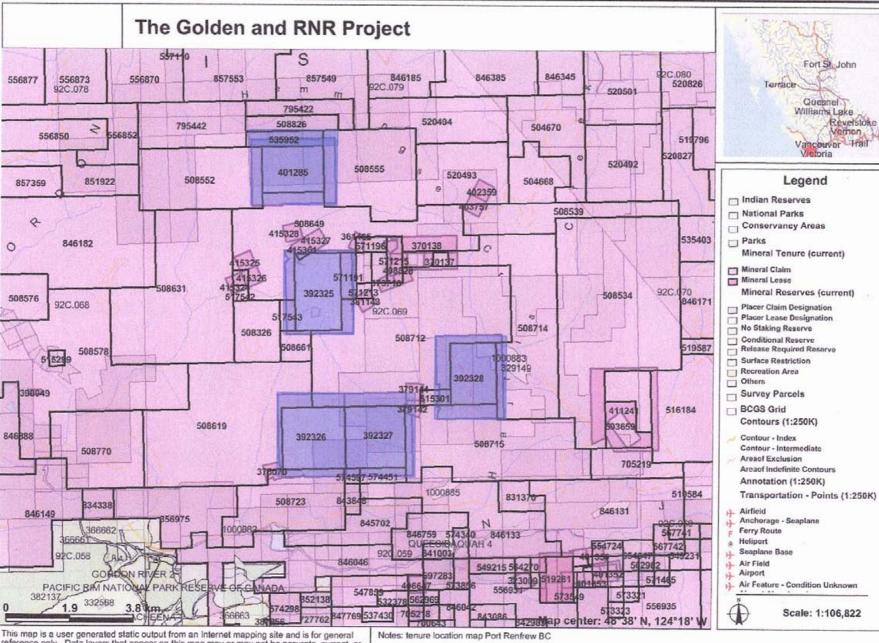
These mineral tenures are underlain by predominately metamorphosed intrusions of volcanic and mafic intrusions (diorites) of the West coast Crystalline Complex. The first detailed vertical gradient mapping and aeromagnetic surveying conducted by Emerald Field Resources Corporation was in 2006 and again in 2009 by Pacific Iron Ore indicated the area is of economic importance with two identified areas of significant interest, Bugaboo and Reko. Subsequent exploration which involved more drilling and a more detailed airborne magnetic resolution mapping has occurred.

There are documented anomalous Fe, Cu, Ni, and Au anomalies in this area, also identified is Cu-Ni-Co and PGE'S are present within the "Pearson Project".

Note to the reader:

The abundance of mineral tenures in the Port Renfrew area are a mixture of legacy and cell tenures, one must ensure they use a GPS when conducting exploration work as it is easy to traverse into another tenures without knowledge.

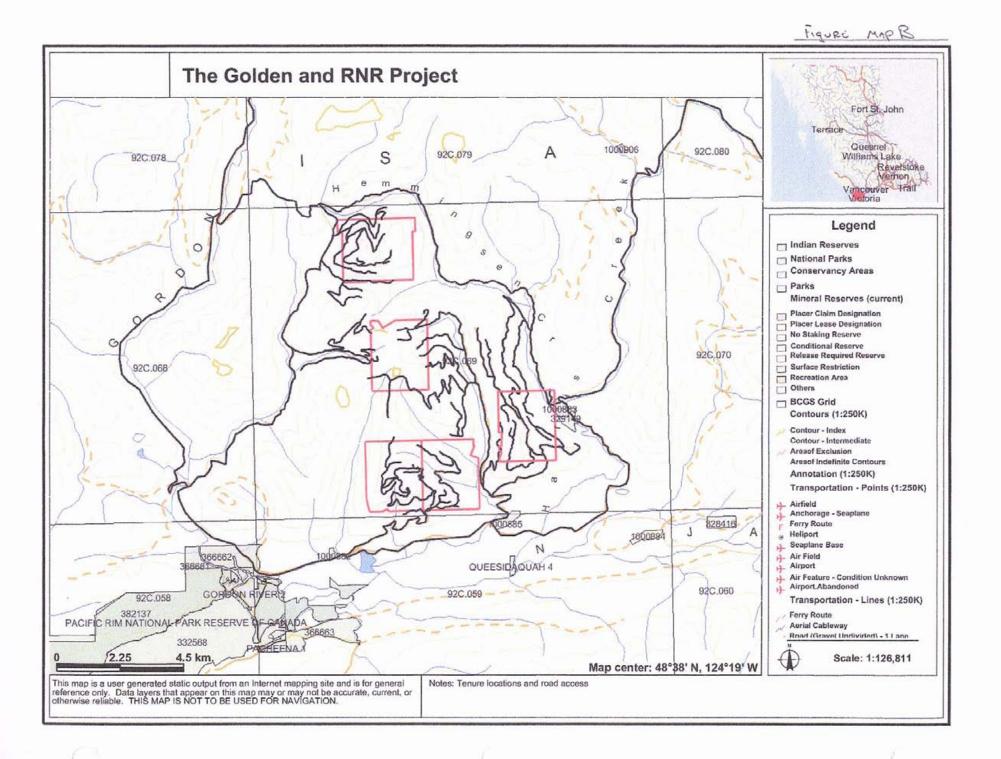
Pacific Iron Ore is currently conducting exploration within the Port Renfrew area. A lot of exploration work has been conducted at a huge pace, which has resulted in an unfortunately several incidents of trespass upon the tenures mentioned in this assessment report. Diamond drilling of four holes has occurred within our tenure boundaries, several other drill holes are present. Airborne magnetic and land line magnetic surveys have been conducted on these tenures in this report, yet filed as work completed by Pacific Iron, there is also is an area of trenching on our tenures which are not part of this assessment report.

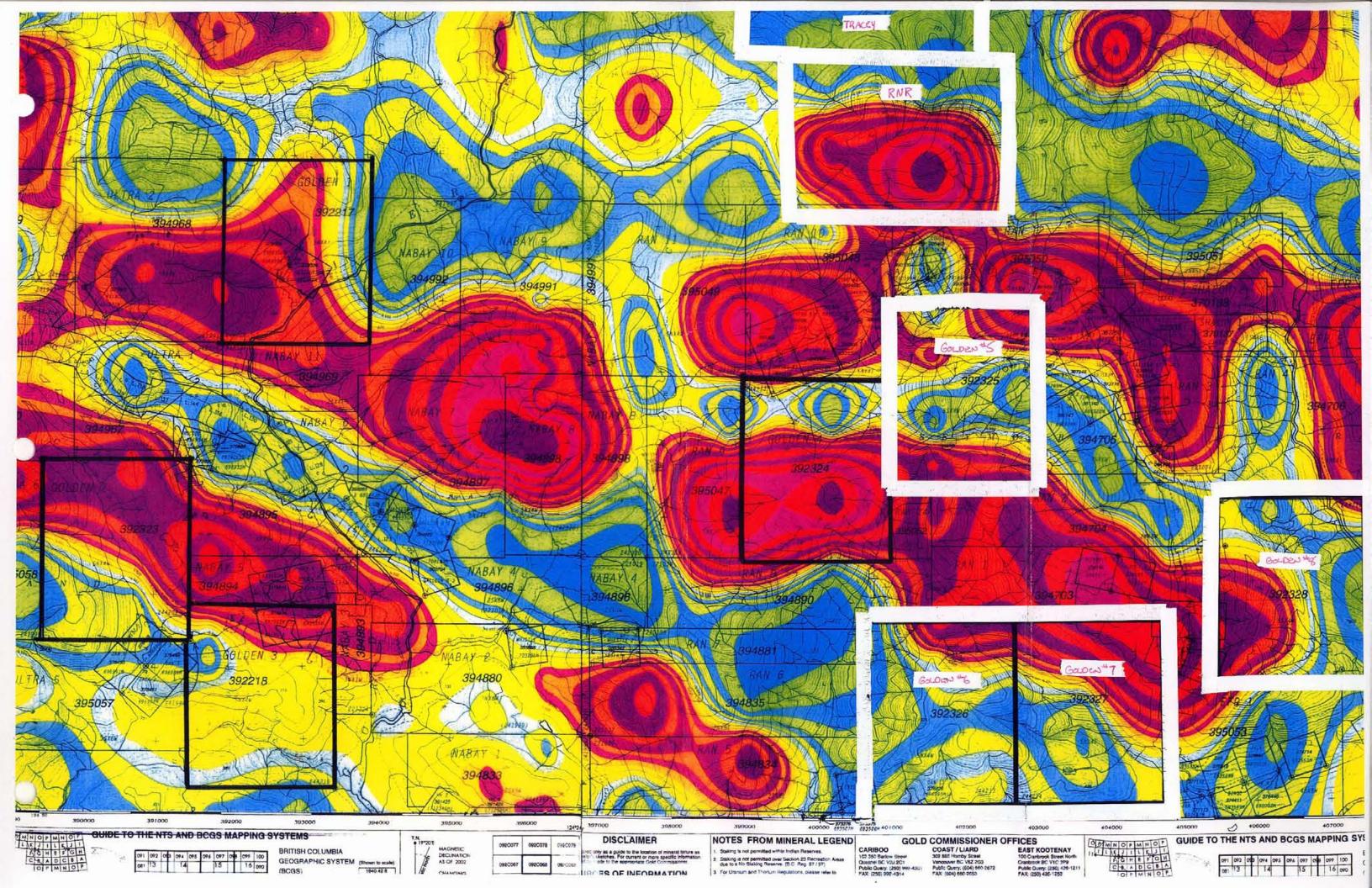

We have begun an investigation and will file a complaint to the ministry.

Information in this report will show the some of the areas of exploration within our tenure boundaries, however all communication with both the Ministry of Energy and Mines and Pacific Iron Ore will be censored to maintain privacy to those involved.

In short, the owners of these tenures have for the past several years conducted exploration, gathered information and observed the exploration of Pacific Iron in the immediate area. As a result of the exploration to date the owners of these tenures have secure their tenures long into the future.

Pacific Iron Ore has also conducted a significant amount of exploration in the Port Renfrew area and invested millions of dollars in their Pearson Project; this includes diamond drilling, geochemical analysis, airborne magnetic surveys, and line magnetic surveying, not to mention thousands of geochemical analysis of samples submitted. San Juan Marble Developments and Le Baron Prospecting on the other hand have used this information to further enhance their holdings within the Pearson Iron Ore Project.


Our strategically placed tenures are a great investment to any company wishing to add then to their portfolio



reference only. Data layers that appear on this map may or may not be accurate, current, or otherwise reliable. THIS MAP IS NOT TO BE USED FOR NAVIGATION.

n

FLAURE MAP A

Present Exploration in Port Renfrew:

In 1997, a local prospector first staked tenures on this West coast Crystalline Complex of ultramatic intrusions. The mineral exploration company Emerald Field Resources Corporation of Kenora, Ontario started staking in Port Renfrew in 2002. San Juan Marble Developments and Le Baron Prospecting have held tenures on this intrusion since 2000. Since this time, EFR has explored the area and named their project "The Pearson Project". This original block of tenures consists of 147 mineral tenures on this intrusion.

San Juan Marble Developments and Le Baron Prospecting hold strategic mineral tenures inside the "Pearson Project" fence, with a combined 118 mineral tenures or 17,067 ha of strategic mineral tenures in the Port Renfrew area.

In 2006, Emerald Field Resources, completed an airborne aeromagnetic survey conducted by Furgo Airborne Services over the Pearson Block of mineral tenures, [ARIS report #28751], this report covered the Pearson Block of 147 tenures of 36,345 ha of large tenures. The resulting study was summarized by Monika Sumara, a consulting geophysics, and Dr. Canil of the University of Victoria, and Dr. Richard Ernst of Ernst Geosciences BC, a copy of this report is included.

Several targets of interest, referred to as "P-targets" require follow up exploration based upon the aeromagnetic survey.

San Juan Developments and Le Baron Prospecting hold the mineral rights to several "P- Targets" of interest.

In 2008 / 2009 diamond drilling occurred on several tenures located next to and overtapping the Golden legacy tenures. That drilling also trespassed in the Golden tenures without permission or acknowledgment.

As a result of the merger of Klondike Capital in 2006/07 and the formation of Pacific Iron Ore vast amounts of mineral tenures were staked prior to this formation, this vast staking resulted in the Golden tenures and other subsequent tenures jointly owned by the owners of Le Baron Prospecting and San Juan Marble Developments to becoming completely encompassed in the Pearson Project.

The Pearson Iron Ore Project is of historic proportions, it is over 27 kilometers in length, and over 4 kilometers in width, and is of vast depth.

This deposit is proving to be of potential economic importance to the Province of British Columbia.

The Golden and RNR project tenures are legacy tenures encompassed in an extensive block of mineral tenures owned by Pacific Iron Ore. These tenures are five strategically placed tenures over previously identified PGE'S and a high grade iron skarn deposit. Many work reports (SOW 3191808 – 2003, 3206308 – 2004, 4024122 – 2004, 4073434 – 2006, 4136570 – 2007, 4199939 -2008, 4191232 – 2010) have been filed against these tenures. This means a vast amount of exploration utilizing all hand sampling has occurred while keeping our tenures current while observing the exploration of the surrounding tenures of Pacific Iron Ore.

Tenure Ownership:

These tenures are jointly owned by the following: Raymond Oshust: FMC #141465 – 25% Marjorie Rooke: FMC #208494 – 50%% Gordon Saunders: FMC #145703 – 10% Scott Phillips: FMC # 145817 – 10% Stewart MacDiarmid: FMC #208748 – 5%

Tenure	name	owner	issue date	good to date	status	area
392325	Golden 5	See above	2002/Mar/08	2013/Mar/08	good	500 ha
392326	Golden 6	See above	2002/Mar/10	2013/Mar/10	good	500 ha
392327	Golden 7	See above	2002/Mar/10	2013/Mar/10	good	500 ha
371459	Golden 8	See above	2002/Mar/09	2013/Mar/09	good	500 ha
401285	RNR	See above	2003/Mar/16	2013/Mar/16	good	500 ha
535952	Tracey 2	See above	2006/Jun/19	2013/Mar/16	good	106 ha

History:

The Port Renfrew area contains close to 50 mineral occurrences as documented in the British Columbia provincial mineral inventory database; reference MINFILE: (See Table 1) for MINFILE locations in the area that is subject of this report.

The most significant occurrences in the area are the historic Bugaboo iron (magnetite) skarn deposits which are located in the headwaters of Bugaboo Creek, and the Reko iron (magnetite) skarn deposits located within the headwaters of Granite / Renfrew Creek area. (The Golden # 5 – tenure #392325 is located here.)

Both the Bugaboo and Reko deposits contain historic reserves, and currently Pacific Iron Ore is completing further drilling upon the Bugaboo deposit (which it owns) to prove its reserves farther. More information on Pacific Iron's resource estimate can be found on their web site: www.pacificironorecorp.com

REKO Showing: - history

In the Granite Creek / Renfrew Creek area bulldozing and blasting by B.C. Forest Products roadbuilding crews during the summer of 1970 uncovered showings of magnetite and sulphides near the upper reaches of Renfrew Creek (Reko showings). The Reko 1-6 claims were staked on these showings in July 1970 by Mr. M. Levasseur, Sampling of the exposed minoralization was subsequently carried out. Levasseur and associates incorporated Reako Explorations Ltd. in July 1971. Further staking in 1971-72 expanded the property to 66 claims. The exploration work conducted during 1971 included x-ray diamond drilling totaling 37 meters in 6 holes and a limited magnetometer survey. During 1972-73, work included geological mapping, magnetometer surveys over 120 line-kilometers, an electromagnetic survey over 80 line-kilometers, an induced potential survey over 19 line kilometers, trenching, and 5300 meters of diamond drilling in 100 holes on Reko 3, 4, 9, 10 and 42. The adjoining Kestrel 1-15 claims were purchased from M. Dickens of Savona in January 1974. Work during the year included 89 meters of diamond drilling in 6 holes on Reko 37. Drilling in 1972 on the South Pit B zone indicated a magnetite bearing zone 94 meters long, over 30 meters wide and up to 50 meters deep. The average grade indicated by the core assay was 22.28% iron. In 1973-74, R.L. Roscoe estimated 1,111,242 tones in five combined zones (Zone 1, 2, 3, 5, and 8) without specifying grades. South Pit B zone (or Zone 2) contains 970,597 tones. See MINFILE occurrences for detailed descriptions

The tenures which were staked by REKO explorations were allowed to lapse for several years until a local prospector began staking tenures on what was thought as ultramatic intrusions and this began a subsequence staking rush of the area of the Golden and RNR and adjoining tenures staked in the area.

This resulted in Emerald Field Resources now referred to as Pacific Iron Ore staking and optioning other remaining tenures within the Port Renfrew area in 2004 to present. This has resulted in a continuous tenure block in which the tenures owned jointly by Le Baron Prospecting and San Juan Marble Developments being completely encompassed in is what is now known as the Pearson Project. Pacific Iron has completed several airbome aeromagnetic surveys over the entire area and resulting data reveals a great deal of structural variety compared to the widespread high level magnetic response visible on a regional scale.

A detailed compilation of at least 19 anomalies throughout the surveyed area (see table 2)

Geology setting:

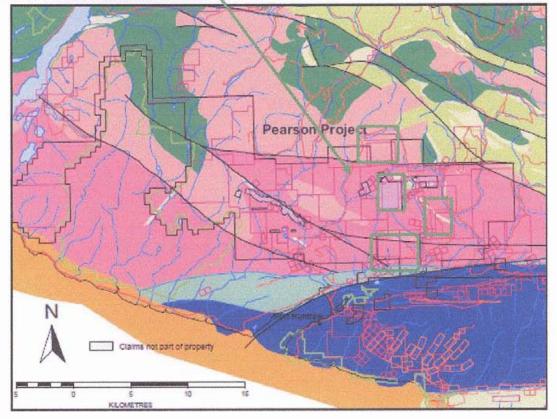
Much of the information in this section has been sourced from Geological Survey of Canada Open File 821 (Muller, 1982), Assessment Reports 5029, 25877, 27246, 27280, 27517 And various reports conducted by Pacific Iron Ore.

According to the Survey of Canada, these tenures lie in the Insular Tectonic Belt where three distinct terranes occur. In the north are Paleozoic to Mesozoic rocks of the Wrangell Terrane consisting of Lower Jurassic Bonanza Group calc-alkaline and volcanic rocks, Middle to Upper Triassic Vancouver Group basaltic volcanio rocks and limestone's, Early to Middle Jurassic Island Plutonic Suite quartz monzonitic to granodiorite intrusive rocks, and Paleozoic to Jurassic

The West coast Crystalline Complex diorite intrusive rocks include the younger sedimentary and volcanic rocks of the Pacific Rim Terrane which are thrust beneath the southern and western edges of the Wrangellia rocks along the San Juan and Survey Mountain faults. The San Juan Fault extends from near Port Renfrew to beyond Cobble Hill and for much of its length separates Pacific Rim Terrane from Wrangellia. Pacific Rim Terrane rocks consist of Jurassic to Cretaceous Leech River Complex greenstone, green schist metamorphic rocks, sedimentary rocks and bimodal volcanic rocks. In the south, just below the property boundary, Crescent Terrane basaltic volcanic rocks belonging to the Paleocene to Eocene Metchosin Igneous Complex are emplaced beside and beneath the Pacific Rim Terrane along the Leech River Fault. Sedimentary rocks of the Upper Eocene to Oligocene Carmanah Group accumulated on the Crescent and Pacific Rim terranes.

Numerous north-northwest and east-west faults transect the area (Table 2 map).

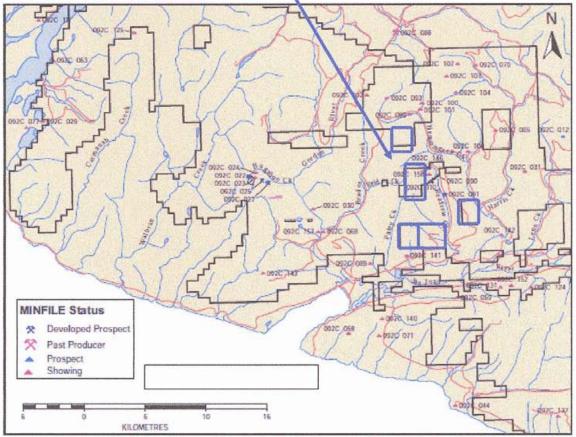
Previously un-mapped ultramafic rocks have recently been discovered and identified in the area and are variously comprised of peridotile, serpentinized peridotile, gabbros, pyroxenite and hornblendite.


Property Geology:

The Reko iron (magnetite) skarn deposit (Golden 5 tenure) is an area which has been variously described by Menzies and Nicolls (1960), Young and Uglow (1926), Roscoe (1973), Eastwood (1974) and McKinley (2003) where the following information has been taken from the British Columbia mineral inventory database, MINFILE, document Reko, 092C 090, 91, 110, 146 See (Table 1).

The Granite / Renfrew Creek area is generally underlain by dioritic rocks of the West coast Crystalline Complex in contact along irregular boundaries with limestone probably belonging to the Upper Triassic Quatsino Formation (Vancouver Group). The massive limestone bodies strike in a generat north-northwest direction, and where bedding is evident. Dip at various angles to the north and south. The limestone varies from dark grey to blue to white and in some localities has been altered to marble. Most limestone bodies have been successively intruded by andesitic (greenstone) and fine-grained diorite dikes. The dioritic rocks include fine grained, mafic rich and leucocratic diorite, medium to coarse-grained quartz diorite, and quartz diorite breccias containing fragments of fine-grained mafic diorite. The breccias locally grades to massive dionte. A set of long, narrow, fine grained grey dikes strike consistently at 020 degrees, transect all other rocks, and probably follow late fractures. Massive iron (magnetite) skarn deposits are developed near diorite and recrystallized limestone (marble) contacts and along zones of garnet-pyroxene skarn. The magnetite occurs as large fine to coarse grained massive bodies bounded by marble and/or diorite.

Geological reference map: Pearson Project ARIS #31,531 Table 2 – Golden and RNR tenures


GEOLOGICAL LEGEND

IC SUITE:
Contraction of the second
OMPLEX:
Petrokum
App and Notes
N

Le Baron Prospecting Port Renfrew, BC

Area Minfile reference map: (Table 1) – Golden and RNR tenure locations

•

MINFILE OCCURRENCES

092C	012	Red Dog	092C 099	Dore 52
092C	022	Bugaboo	092C 100	Dore 99
092C	023	David	092C 101	Dore 97
092C	024	Elijah	092C 102	TL 5798
092C	025	Sirdar	092C 103	Polly
092C	027	Baden Powell	092C 104	DL
092C	029	Tide	092C 106	Dore 162
092C	030	Rose	092C 107	Harris
092C	031	Tally	092C 110	Reko 38
092C	044	Sombrio Placers	092C 111	Fitinat
092C	058	Kinsley	092C 124	Gad
092C	059	Ox	092C 125	Lori
092C	063	Mai	092C 131	3 x 3
092C	068	Alfreda	092C 137	Ren
092C	071	Spanish	092C 140	Murton
092C	077	Ebb 1-12	092C 141	Ebb
092C	079	Nan	092C 142	Lizard
092C	085	Harris Creek	092C 143	Rat
092C	086	Gordon River	092C 146	Reko North
092C	089	Val	092C 152	New World Slate
092C	090	Reko 3	092C 157	Baird Creek Marble
092C	091	Reko 10	092C 158	Hemm
092C	093	Dore 30		

Accessibility, climate and infrastructure:

The Golden and RNR Project group of tenures are situated in the Victoria Mining Division on Vancouver Island, these tenures are located northwest of Victoria, British Columbia (Figure 1). The main service community is presently Port Renfrew, about 100 km west-northwest of Victoria. The claim tenures that are the subject of this report are located entirely on NTS map sheet 092C069 and have a rough center of 48.7105 north latitude and 124.5901 west longitude. Access to the claims, where the present work focus is, is via Highway 14 to west Port Renfrew and thence by a considerable network of active and non-active logging roads located north of the Harris Creek Mainline.

The overall the Golden and RNR Project is underlain by moderately rugged and steep terrain Topography consists of regions of protruding and steeply sloped bluffs incised by numerous, north and northwest trending creeks and rivers (e.g. Gordon River, Renfrew Creek, and Hemmingsen Creek). Elevations range from 200 to 1200 meters above sea level.

The property is located within an exceptionally wet and mild rainforest climate region with cool summers and mild winters. In Port Renfrew, the main access community, there is an average of approximately 12 days of snowfall and only 15 days of snow cover over the year but at higher elevations regular winter snow conditions exist. Mean average daily temperatures range from a low of 3.2°C in January to 14.9°C in August. The area receives an impressive amount of rain, with a mean total rainfall of 64.1 mm in July, and 561.8 mm in November. The annual average total for rainfall is 3.6 meters.

Fieldwork in this area can be performed year round except at higher elevations where winter conditions prevail. Access to and on the preperty is excellent using an expansive and well developed network of logging roads. Other than road access, there is no significant infrastructure on the property. The community of Port Renfrew, population 180, is 10 kilometers south of the properties and is a source for fuel, groceries, accommodation, etc.

Port Renfrew is accessed by a 1% hour drive via Highway 14 from Victoria in the southeast or by all-weather logging roads from Lake Cowichan and Duncan in the northeast.

All of these tenures described in this assessment report are located upon crown land, in some areas the logging roads are gated however we retain the keys form the logging companies.

These claims also lie within the traditional territory of the Pacheedaht First Nations of Port Renfrew.

Assessment Report Summary:

This assessment report contains separate appendixes, each appendix will report on the separate legacy tenures within this report, as the tenures are located very close to each other yet only two of the tenures are joining. Each appendix will report on the exploration work conducted and will deal briefly with the issue of exploration conducted within the tenures boundaries and related information as reported in Pacific Iron Ore's assessment reports.

Exploration Program

This exploration program was commenced over the six tenures as reported commencing in 2008 over various dates and completing in 2010. This exploration involved hand sampling and geochemical analysis of rock chip samples taken in areas of interest which were previously identified in assessment reports on these tenures filed in 2007/ 08. It also involves reference to investigative assessments into the trespass of Pacific Iron Ore. A huge amount of time has been logged in field in which GPS and field plotting of work which was conducted and reports filed by Pacific Iron Ore on exploration work which was conducted upon tenures jointly owned in this assessment report.

Geochemical analysis:

All rock chip samples were sent to ALS Chemex of Vancouver for analysis. Samples were sieved to -80 meshes with a fraction of each being digested in hot aqua regia with 51 elements determined by the ME-ICP41 package utilizing inductively coupled plasma-atomic emission spectrometry. Gold, platinum and palladium were determined by the PGM-ICP23 package utilizing fire assay fusion. ME-OG62 and Fe-OG62 were analytical methods used to test the purity of the iron samples collected on the Golden 5 tenure, and analytical method. ME-MS41 a 35 element aqua region digestion and ME-MS81 which is a 38 element fusion method was used on the rock chip samples collected from the Golden 6 + 7 and RNR tenures. Ca-VOL70 was used to test the CaCO3 in the Lirnestone rock chip samples collected from the Golden 8 tenure.

Partial samples are kept for future reference and the returned samples are in storage in our holding facility in Port Repfrew and Chemainus.

Sampling methods:

All exploration has been conducted infield utilizing hand tools such as hammers, chisels, several GPS's, cameras, and surveyor tape. Field maps utilized by various employees have been stored and referenced for this assessment report. Pacific Iron Ore's assessment reports have been utilized as part of the trespass on our tenures the information was resourced and then transferred to field maps for field inspection and re-plotting to verify the trespass.

Trespass review:

Pacific Iron Ore's assessment reports review for trespass are as follows: ARIS # 28,751 #30,394 #30,337A + #30,337B #30,640 #31,260 #31,531A + #31,531B

Author and Terms of Reference:

I, Scott Phillips of Le Baron Prospecting and San Juan Marble Development Ltd am the author of this report. I hold key interests in all of the tenures referred to in this technical report. This report of the tenures (properties) follows all guidelines in reference to technical report writing, also I am a "grass roots" local prospector who was born and raised in Port Renfrew and who has a vast knowledge of geological structure of the area.

Author Disclaimer:

- I, Scott Phillips have a valued interest in the tenures that is mentioned in this report.
- 1 have verified some of the field work to date, since becoming co-owner in February 2008.
- I consent to the use of the material within this prospecting report to further enhance the
 exploration and development of the subject tenure(s). This report is correct in the
 information within and any use of this information to a second or third party is the
 responsibilities of those parties.

Author:

- Scott Phillips [FMC # 145817]
- Many years experience prospecting the Port Renfrew area.

۰,

- Member in good standing with VIPMA. [Vancouver Island Miners Assn].
- Owns several mineral and placer tenures within the Port Renfrew Area.
- Author of many prospecting reports accepted within the Ministry standards.
- Is presently studying the formation of Wrangell, West Coast Crystalline Complex and the Leech River Complex.

044 Date 06-03-2010 Author

Reference information:

Le Baron Prospecting Reports:

28756, 28759, 27971, 27973, 29512, 28061, 28108, 28347, 28348, 28426, 28427, 28478, 28488, 28505, 28572, 28668, 28952, 28953, 29217, 29228, 29291, 29292, 29293, 29317

Emerald Field Resources Corporation

#28715, #28059, #27517, #27246,

Pacific Iron Ore

28,751, #30,394, #30,337A + #30,337B, #30,640 , #31,260, #31,531A + #31,531B

•

Galleon Gold Tenures: 25697, 25877,

Other tenures:

Hemm – 26093, 26464, 27081, Ren / Lizard, 14968, 14686, Lizard, 12184 Beau pre ex, 14565, 16184, Doc, 28075 Spanish, 11322 Reko, 05029 San Juan, 04359, 04940, 04941, 03672, 01656, Ren, 00549 Stella, 00169

Minfile Reports:

092C012, 022, 023, 024, 025, 027, 030, 031, 068, 079, 085, 090, 091, 093, 099, 100, 101, 102, 103, 104, 106, 107, 110, 141, 142, 146, 147, 157, 158

Area Authors:

Eastwood, G.E.P. (1974): Reko Property Description: British Columbia Ministry of Energy, Mines and Petroleum Resources. Geology, Exploration and Mining in British Columbia, pp. 166-170.

Eastwood, G.E.P. (1977): Notes, maps and sketches; Brinsh Columbia Ministry of Energy, Mines and Petroleum Resources Library. Property File – 092C 090

George Cross News Letter (1972-73, 1975): No. 147.235, 1972. No. 20.21.26.43.69.117.143.148.212, 1973. No. 207. 1975; British Columbia Ministry of Energy, Mines and Petroleum Resources Library. Property File - 092C 090.

McKinley, S. and Gilmour, W.R. (2003): Geological, Geochemical and Geophysical Assessment Report on the Pearson Property: British Columbia Ministry of Energy, Mines and Petroleton Resources, Assessment Report 27246, 136 pp.

McKinley, S. (2003): Geological Description of Port Renfrew, B.C. Ni-PGE Property: British Columbia Ministry of Energy, Mines and Petroleum Resources Library, Property File – 092C 025.

McKinley, S. and Gilmour, W.R. (2003): Geochemical Report on the Karen Property: British Columbia Ministry of Energy, Mines and Petroleum Resources, Assessment Report 27280, 136 pp.

Menzies, M.M. and Nicolls, O.W. (1960): Final Report for 1960 on the Port Renfrew Iron Property. Noranda Exploration Company. Limited and International Iron Mines Ltd.: British Columbia Ministry of Energy, Mines and Petroleum Resources Library. Property File - 092C 022.

Muller, J.E. (1982): Geology, Nitinat Lake, British Columbia, Map and Notes; *Geological Survey of Canada*, Open File 821, scale 1:250 000.

Roscoe, R.L. (1972): Report on the Renfrew Creek Claim Group. Port San Juan Area, January 21, 1972 in Prospectus, Reako Explorations Ltd., April 12, 1972; British Columbia Ministry of Energy, Mines and Petroleum Resources Library, Property File – 092C 091.

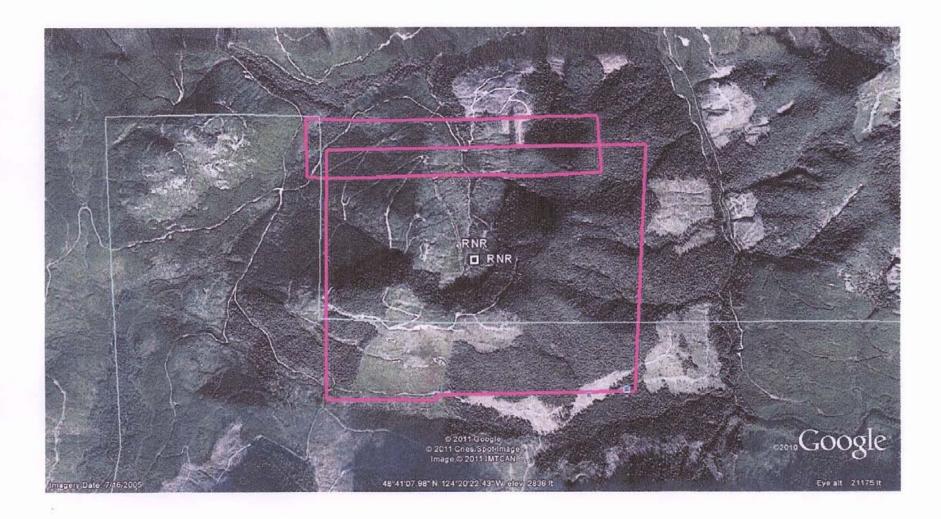
Roscoe, R.L. (1973): Diamond Drilling Report on the Reko 38. Granite Creek. Port Renfrew Area: British Columbia Ministry of Energy, Mines and Petroleum Resources. Assessment Report 5029, 32 pp.

Tavela, M. (1980): Report on Exploration Ebb Claims: British Columbia Ministry of Energy, Mines and Petroleum Resources. Assessment Report \$278, 39 pp.

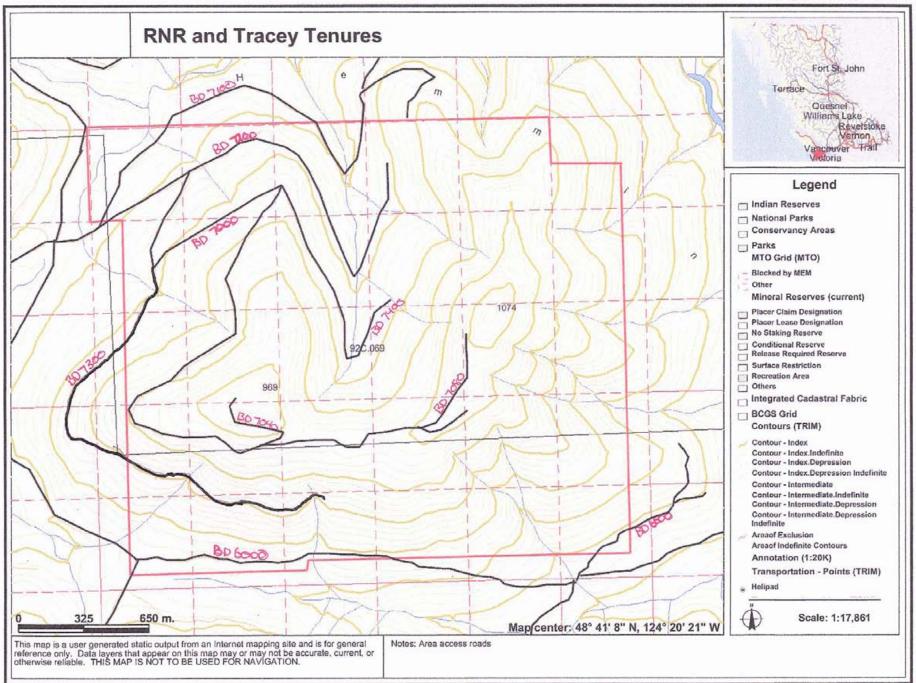
Appendix A

•

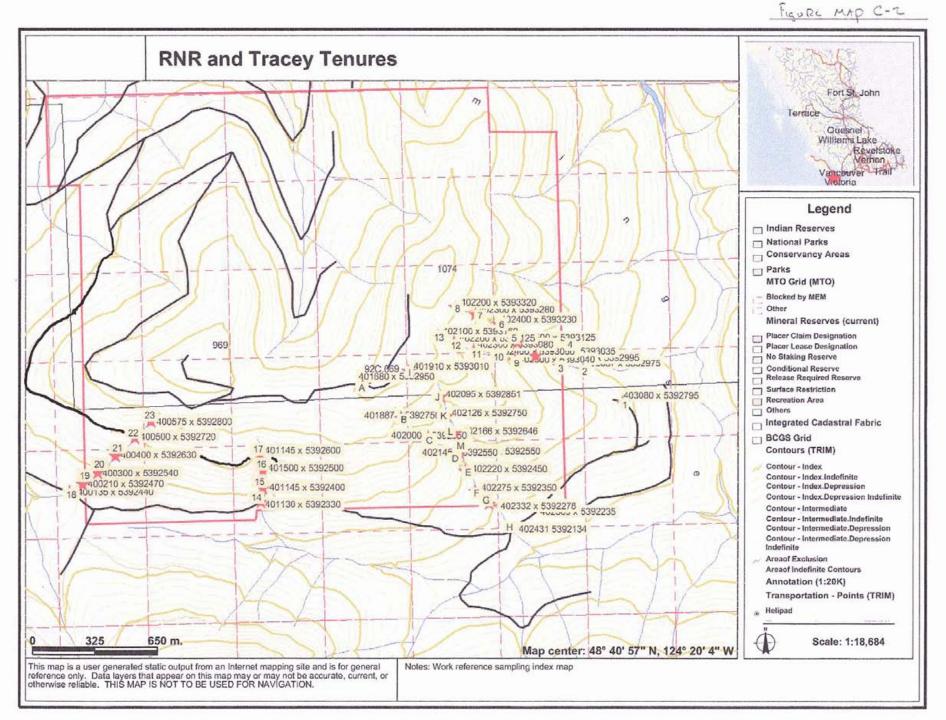
RNR and Tracey tenures


401285 and 535952

Technical information


Rock chip and stream sediment sampling

Related Airborne magnetic assessment On the Pearson Project Emerald Field Resources - 2006 P-Target reference (Appendix A-1)


FIQURE MAP C

.

.

.

Introduction:

The RNR and Tracy Tenures are located north / east of Port Renfrew BC. (See figure map A to B for tenure locations). The legacy tenure; RNR is 500 ha and the adjoining cell tenure of Tracey is 101 ha respectively. These tenures have been explored by this group over the years utilizing hand tools, several areas of interest have been identified in years past and are the continuation of exploration for this program.

•

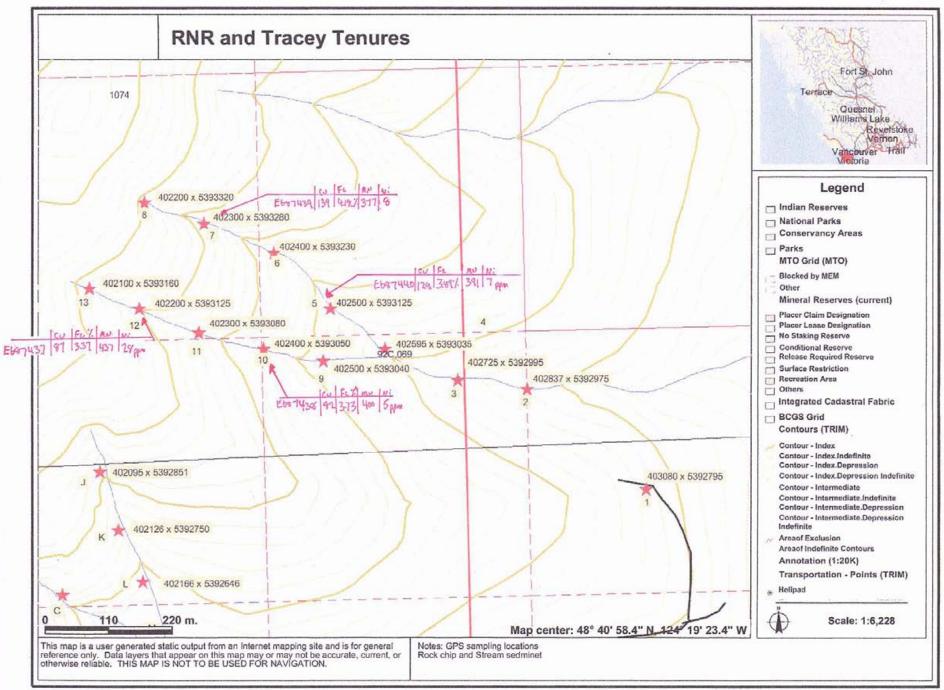
Several exploration programs have occurred, those were stream sediment and rock chip sampling program and also a roadside rock chip sampling program on the main road through the tenure.

Geochemical analysis was conducted of several rock chip samples submitted for analysis. (See related certificate of analysis)

Also include in this appendix is the reference to Emerald Field Resource Corporation (prior to Pacific Iron Ore) assessment of the airborne magnetic survey which was conducted in 2006 by Fugro Airborne Surveys over the entire area of what is now identified as the Pearson Project. Fugro was contracted to fly low magnetometer survey by helicopter over the area. The airborne magnetic survey is included as part of this appendix because of the reference to the RNR tenure. See ARIS #28715 – 2006 – Emerald Field Resources.

Statement of costs: Dates: 2009 – March 21 st to 23 rd , May 4 th to 6 th , June 4 th to 20 th , October 4 th 2010 – February 7 th to 28 th , March 6 th to 10 th	th to 7 th
Raymond Oshust (FMC #141465) Field supervisor / labor / owner 38 days @ \$300.00 / day	. =\$11,400.00
Gordon Saunders (FMC #145703) Field assistant / labor / owner 18 days @ \$300.00 / day	.=\$5,400.00
Scott Phillips (FMC #145817) Field assistant / labor / owner 4 days @ \$300.00 / day	=\$1,200.00
Stewart MacDiarmid Field assistant / labor / owner 4 days @ \$300.00 / day	=\$1,200.00
Robert Bradshaw Field labor 7 days @ \$200.00 / day	=\$1,400.00
Transportation Ray - Truck @ \$50.00 / day x 38 days Scott - Truck @ \$50.00 / day x 4 days Gord - Car @ \$30.00 / day x 18 days	= \$200.00
Accommodations Gordon - \$70.00 / day x 18 days Scott - \$70.00 / day x 4 days= \$280.00 Robert - \$70.00 / day x 7 days	
ALS Laboratory services 14 rock chip samples (not included at	time of filing)
Le Baron Prospecting Report data compilation and report preparation \$350.00 / day x 2 days	.=\$700.00
Total exploration on RNR and Tracey	=\$25,970.00

Technical Information: (See Figure maps C to C-10)


BD 6600 spur road

Summary;

Stream sediment samples were collected from in the creek and where bed rock was exposed rock chip samples were collected utilizing a hammer and chisel.

GPS				
100000 5000705	description			
403080 x 5392795	End of logging spur BD6600 – start of trail to creek			
402837x 5392975	MTO grid line - no sample - outside of tenure - in creek			
402725 x 5392995	Eastern tenure boundary of RNR – 1 sediment			
402595 x 5393035	Creek junction, 1 rock chip Peridotite – 1 sediment			
402500 x 5393125	rock chip, chalcopyrite, sulfides - ALS E687440 - 1 sediment			
404400 x 5393230	rock chip, chalcopyrite and iron sulphides - 1 sediment			
404300 x 5393280	rock chip, dark green serpentine – 1 sediment			
404200 x 5393320	rock chip, dark green serpentine - 1 sediment			
402500 x 5393040	rock chip, soft, crumbly magnetic peridotite - 1 sediment			
402400 x 5393050	rock chip, chalcopyrite, sulfides - ALS E687438 - 1 sediment			
402300 x 5393080	rock chip, chalcopyrite and iron sulphides - 1 sediment			
402200 x 5393125	rock chip chalcopyrite, sulfide, - ALS E687437 - 1 sediment			
402200 x 5393125 rock chip chalcopyrite, sulfide, - ALS E687437 – 1 sedimen 402100 x 5393160 rock chip, dark green serpentine – 1 sediment				
Summary:				
Ten rock chip sample	s – almost all samples were chalcopyrite and iron sulphides or			
peridotite with the exc	ception of dark serpentine, in origin. The sediment samples			
contained a lot of blac	ck magnetic material.			
p				
This area is highly min	neralized and it warrants further sampling outside of the creek			
within the old growth t				
This part of the tenure	e is currently being surveyed by the logging company,			
	he surveyors indicated that road construction and logging will			
-	,			
	$\begin{array}{r} 402725 \times 5392995 \\ 402595 \times 5393035 \\ 402500 \times 5393125 \\ 404400 \times 5393230 \\ 404300 \times 5393280 \\ 404200 \times 5393320 \\ 402500 \times 5393040 \\ 402400 \times 5393050 \\ 402300 \times 5393050 \\ 402200 \times 5393125 \\ 402100 \times 5393160 \\ \\ \text{Summary:} \\ Ten rock chip sample periodite with the exc contained a lot of black of the samples \\ \text{This area is highly minimised in the old growth of the tenurous of the tenur$			

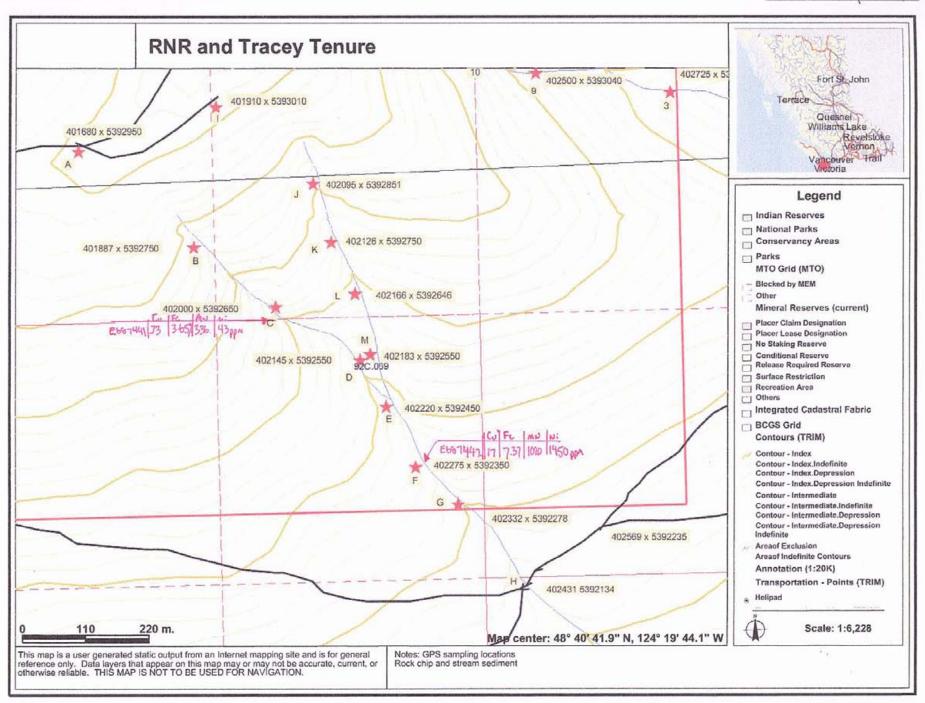
Reference figure map C-3

Technical Information: (See Figure maps C to C-10)

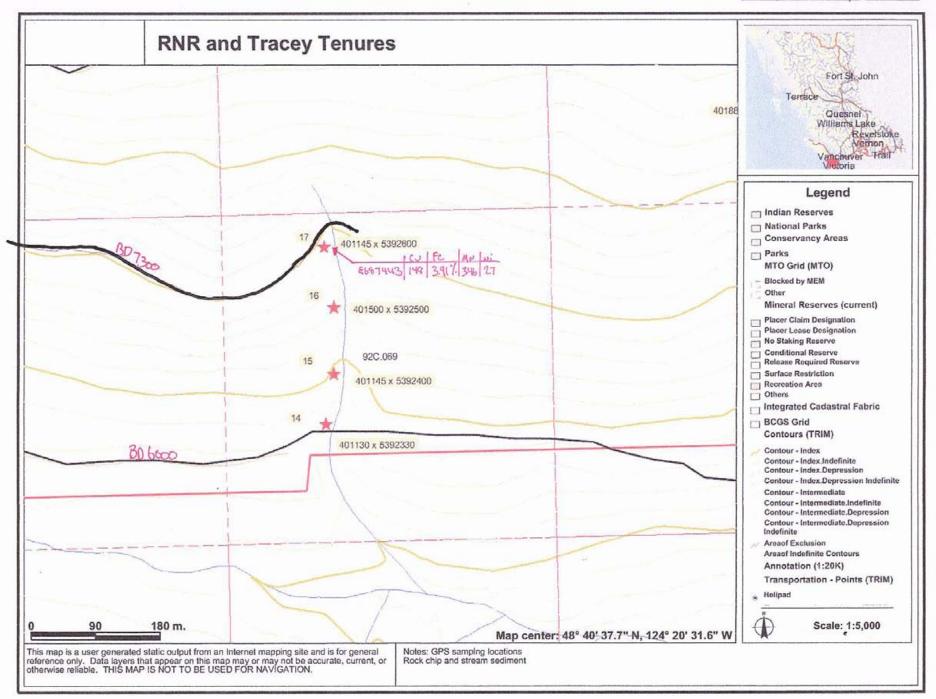
Summary;

Stream sediment samples were collected from in the creek and where bed rock was exposed rock chip samples were collected utilizing a hammer and chisel.

Access was from BD7080 (quad only) south through timber into creek and south to a bridge located on BD6000


#	GPS	description			
A	401680 x 5392950	Logging spur road junction – BD7070 and spur BD7080			
В	401887 x 5392750	rock chip, soft, crumbly magnetic peridotite - 1 sediment			
С	402000 x 5392650	rock chip, magnetic serpentine - ALS E687441 - 1 sediment			
D	402145 x 5392550	rock chip, dark green serpentine – 1 sediment			
E	402220 x 5392450	rock chip, dark green serpentine - 1 sediment - creek junctions			
F	402275 x 5392350	rock chip, ultramafic intrusion - ALS E687442- 1 sediment			
G	402332 x 5392278	South tenure boundary			
н	402431 x 5392134	Bridge on BD 6000			
1	401910 x 5393010	End of spur BD7080			
J	402095 x 5392851	rock chip, dark green serpentine – 1 sediment			
К	402126 x 5392646	rock chip, dark green serpentine – 1 sediment			
L	402183 x 5392646	rock chip, dark green serpentine – 1 sediment			
M	402183 x 5392550	rock chip, dark green serpentine – 1 sediment			
	Summary				
	Nine rock chip sampi	es collected in this area are mostly serpentine, dark green in			
•	color.				
	Nine stream sedimen	ts samples were collected			
	This area is highly mineralized and warrants further field exploration				

Reference figure map C-4


Reference figure map C-5

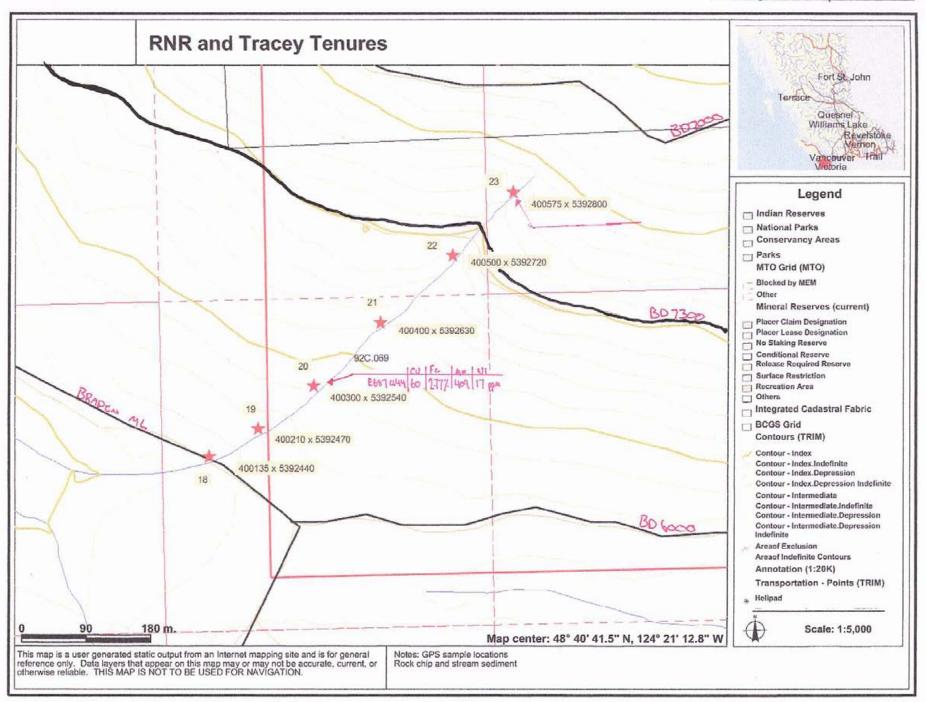
#	GPS	description
14	401130 x 5392330	Logging road BD6000
15	401145 x 5392400	rock chip, skarn near pyrrotite mafic rock – 1 sediment
16	401500 x 5392500	rock chip, dark green serpentine - 1 sediment
17	401145 x 5392600	rock chip, pyrrhotite in skarn - ALS E687443 - 1 sediment
	examples of the igne	d in the creek and the few samples collected are and excellent ous rocks in the area. ent samples were collected

FIGURE MAP C-4

FRORE MAP C-5

Technical Information: (See Figure maps C to C-10)

Summary;


Stream sediment samples were collected from in the creek and where bed rock was exposed rock chip samples were collected utilizing a hammer and chisel.

Access was from BD7080 (quad only) south through timber into creek and south to a bridge located on BD6000

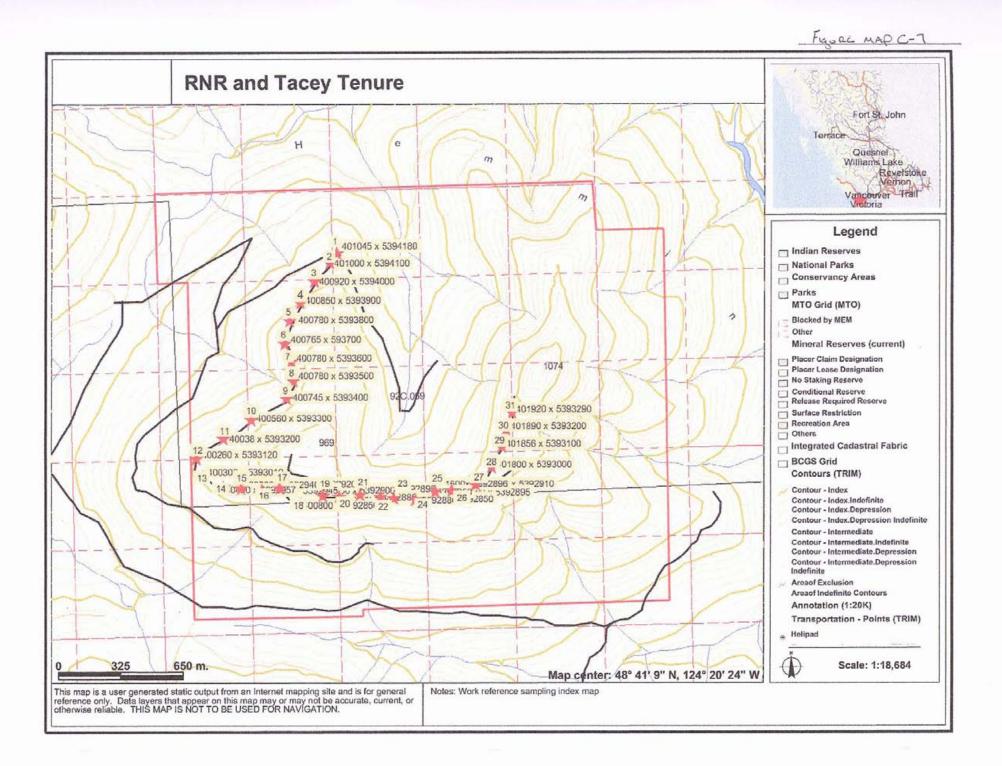
#	GPS	description
18	400135 x 5392440	Logging road BD 6000
19	400210 x 5392470	Western tenure boundary - 1 rock chip, Soft, crumbly magnetic peridotite - 1 sediment
20	400300 x 5392540	rock chip, minor chalcopyrite - ALS E687444 - 1 sediment
21	400400 x 5392630	rock chip, magnetite, some iron sulphides - 1 sediment
22	400500 x 5392720	rock chip, magnetite – 1 sediment
23	400600 × 5392800	rock chip, magnetite, highly magnetic – 1 sediment ALS E687450
		les were collected. d in the creek and the few samples collected are and excellent yous rocks in the area.

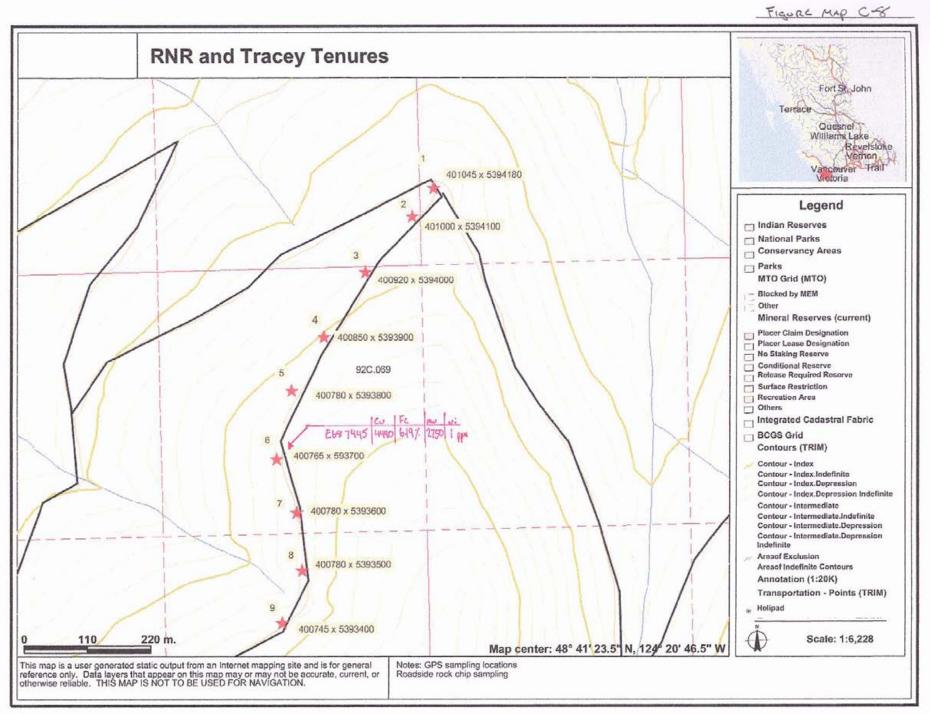
Reference figure map C-6

Figure MAP C-6

Technical Information: (See Figure maps C to C-10)

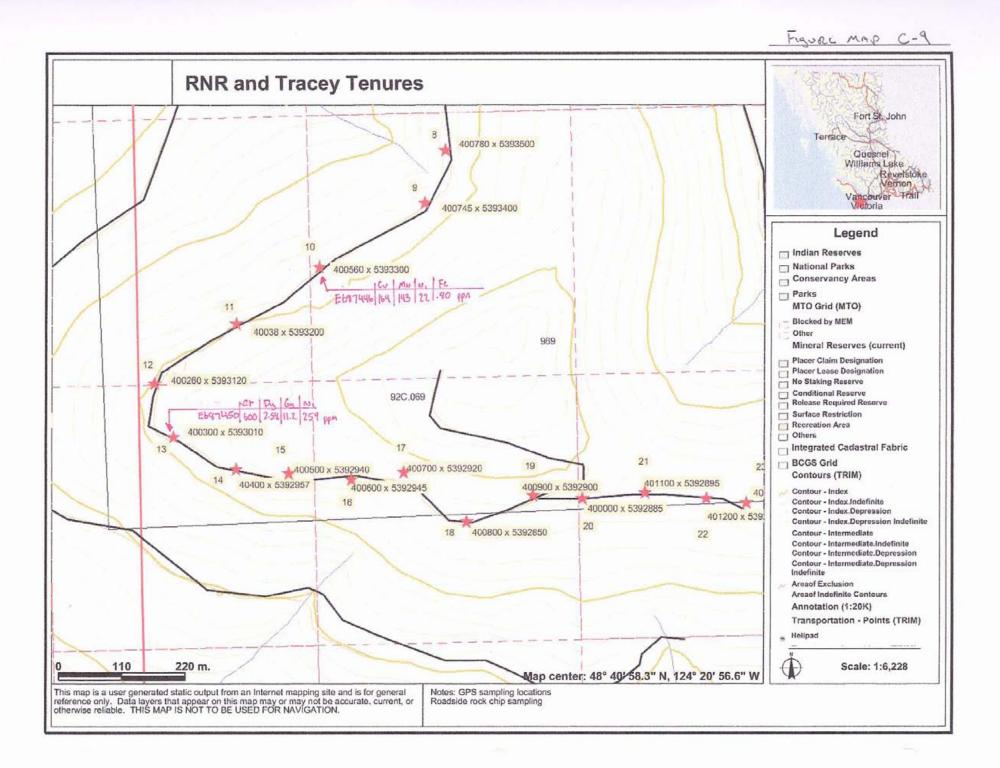
Summary;


Roadside samples were obtained where bed rock was exposed; rock chip samples were collected utilizing a hammer and chisel. Access was from BD7000 (quad only)


Reference	figure	map	C-8
Reference	ngais	map	~ ~

#	GPS	description
1	401045 x 5394180	Logging spur road junction - BD7000 and spur BD7200
2	401000 x 5394100	rock chip, Soft, crumbly magnetite, roadside alluvial
3	401920 x 5394000	rock chip, Soft, crumbly magnetite, roadside alluvial
4	401850 x 5393900	rock chip, Soft, crumbly magnetile, roadside alluvial
5	401780 x 5393800	rock chip, light green, grainy, serpentine, roadside alluvial
6	401765 x 5393700	rock chip, serpentine - ALS E687445
7	401780 x 5393600	rock chip, Soft, crumbly possible disseminated peridotite
8	401780 x 5393500	rock chip, Soft, crumbly magnetite, roadside alluvial
9	401745 x 5393400	rock chip, Soft, crumbly magnetite, roadside alluvial
	Summary: The BD7000 spur road is the start of the mineralization within the area, logging some time ago has exposed bedrock above the road, the indicators from roadside sampling are excellent, and this area warrants further exploration in the future.	

Reference figure map C-9


#	GPS	description
10	400560 x 5393300	rock chip, serpentine - ALS E687446
11	400380 x 5393200	rock chip, Soft, crumbly magnetite, roadside alluvial
12	400260 x 5393120	rock chip, Soft, crumbly possible diseminated peridotite
13	400300 x 5393010	rock chip, ultramafic intrusion - ALS E687450
14	400400 x 5392957	rock chip, magnetite, some iron sulfides
15	400500 x 5392940	rock chip, magnetite, some iron sulfides
16	400600 x 5392945	rock chip, skarn near pyrrotite mafic rock
17	400700 x 5392920	rock chip, skarn near pyrrotite mafic rock
18	400800 x 5392850	rock chip, skarn near pyrrotite mafic rock
19	400900 x 5392900	Road junction BD7000 and BD7040
20	400000 x 5392885	rock chip, skarn near pyrrotite mafic rock
21	401100 x 5392895	rock chip, skarn near pyrrotite mafic rock
	Summary: The BD7000 location here is a continuation of the mineralization within the area, logging some time ago has exposed bedrock above the road, the indicators from roadside sampling are excellent with the area samples turning to disseminated	
	peridiotite, some sulfides exposed. This area warrants further exploration in the future.	

-

-

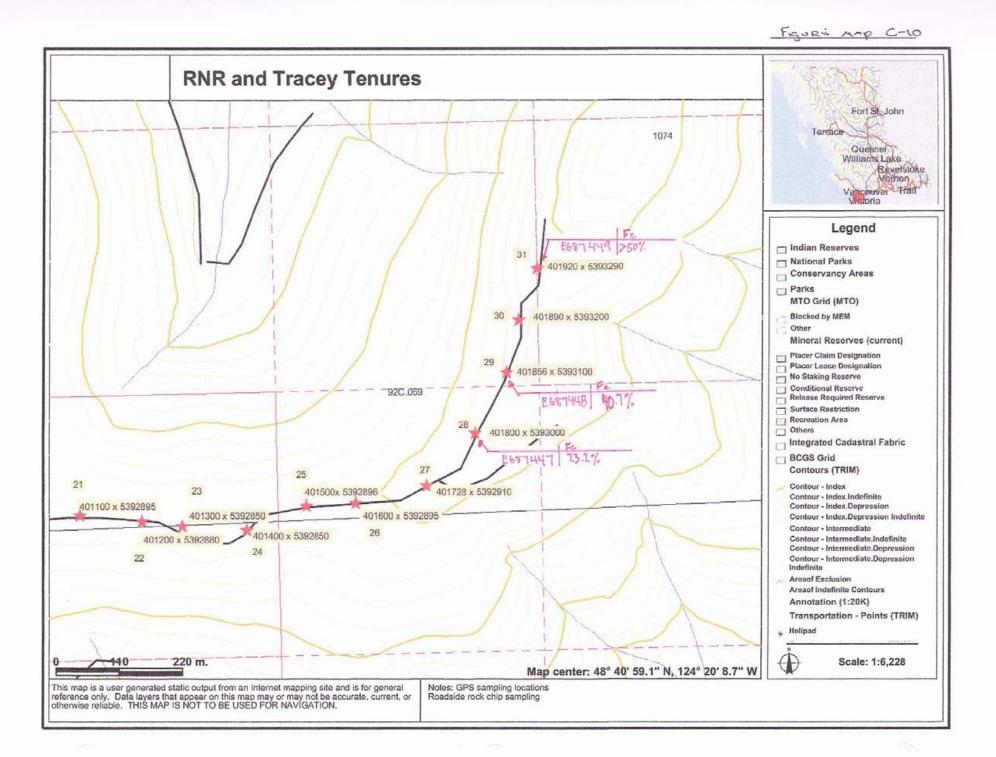
Technical Information: (See Figure maps C to C-10)

Summary;

Roadside samples were obtained where bed rock was exposed; rock chip samples were collected utilizing a hammer and chisel. Access was from BD7000 (quad only)

Reference figure map C-10

#	GPS	description
22	401200 x 5392880	rock chip, magnetite, some iron sulfides
23	401300 x 5392850	rock chip, pyrrhotite in skarn near mafic rock
24	401400 x 5392850	rock chip, pyrrhotite in skarn near mafic rock
25	401500 x 5392896	rock chip, dark green serpentine
26	401600 x5392895	rock chip, dark green serpentine
27	401728 x 5392910	Road junction BD7000 and BD7080
28	401800 x 5393000	rock chip, magnetite, massive chalcopyrite - ALS E687447
29	401856 x 5393100	rock chip, magnetite, minor chalcopyrite - ALS E687448
30	401890 x 5393200	rock chip, magnetite
31	401920 x 5393300	rock chip, massive magnetite - ALS E687449
	logging some time ag roadside sampling ar peridiotite, more sulfi	here is a continuation of the mineralization within the area, to has exposed bedrock above the road, the indicators from e excellent with the area samples turning to disseminated des are exposed along roadside. In the rexploration in the future.


Summary of exploration

During the exploration program conducted which was conducted sporadically over a period of time upon the RNR tenure, 57 rock chip samples were collected and 27 stream sediment samples were collected.

14 of the 57 rock chip samples were sent for analyses.

GPS survey lines in the creeks were flagged and sampled at 100 meter intervals in the areas sampled. 4992 GPS meters of survey lines

From field observations and samples obtained and assays analyzed that this tenure is of importance. The extent of the mineralization is a clear indicator that below at depth is a body of mineralization worthy of note. Certain areas above the BD 7000 logging road require a GPS ground sampling survey, also a detailed ground line magnetic survey should be considered in the future based upon samples obtained infield.

Technical Information: Analytical Methods ALS Laboratory Services Vancouver BC

Certificate of Analysis

VA100456619

The RNR Project

Technical Information:

Analytical Methods ALS Laboratory Services Vancouver BC

Platinum, Palladium & Other Precious Metals

Analyte	Range (ppm)	Description	Code	Price per Sample (S)
Trace Leve	1			
Pt Pd Au	0.005-10 0.001-10 0.001-10	Pt, Pd and Au by fire assay and ICP-AES finish. 30g nominal sample weight 50g nominal sample weight	PGM-ICP23 PGM-ICP24	18.25 21.00

An	alytes & Rai	nges	(ppm)					Code	Price per Sample (\$)
Ag	0.01-100	Cs	0.05-500	Мо	0.05-10,000	Sr	0.2-10,000	ME-MS41	21.00
AI	0.01-25%	Cu	0.2-10,000	Na	0.01%-10%	Та	0.01-500		(Sold only as
As	0.1-10,000	Fe	0.01%-50%	Nb	0.05-500	Те	0.01-500		a complete
Au	0.2-25	Ga	0.05-10,000	Ni	0.2-10,000	Th	0.2-10,000		package).
в	10-10,000	Ge	0.05-500	P	10-10,000	Ti	0.005%-10%		
Ba	10-10,000	HI	0.02-500	Pb	0.2-10,000	TI	0.02-10,000	Sec. Sec.	
Be	0.05-1,000	Hg	0.01-10,000	Rb	0.1-10,000	U	0.05-10.000		
Bi	0.01-10,000	In	0.005-500	Re	0.001-50	V	1-10,000		
Ca	0.01%-25%	к	0.01%-10%	S	0.01%-10%	W	0.05-10,000		
Cd	0.01-1,000	La	0.2-10,000	Sb	0.05-10,000	Y	0.05-500		
Ce	0.02-500	LI	0.1-10,000	Sc	0.1-10,000	Zn	2-10,000		
Co	0.1-10,000	Mg	0.01%-25%	Se	0.1-1,000	Zr	0.5-500		
Cr	1-10,000	Mn	5-50,000	Sn	0.2-500	13/12			

II.	lytes & Ran	ATT IN	S Fulles					Code	Price per Sample (\$)
Ag	1-1,000	Ga	0.1-1,000	Pb	5-10,000	Tm	0.01-1,000	ME-MS81	28.50
Ba	0.5-10,000	Gd	0.05-1,000	Pr	0.03-1,000	U	0.05-1,000		(Sold only as a
Ce	0.5-10,000	Hf	0.2-10,000	Rb	0.2-10,000	V	5-10,000		complete package)
Co	0.5-10,000	Ho	0.01-1,000	Sm	0.03-1,000	W	1-10,000		
Cr	10-10,000	La	0.5-10,000	Sn	1-10,000	Y	0.5-10,000	and a second second	
Cs	0.01-10,000	Lu	0.01-1,000	Sr	0.1-10,000	Yb	0.03-1,000		
Cu	5-10,000	Mo	2-10,000	Та	0.1-10,000	Zn	5-10,000		
Dy	0.05-1,000	Nb	02-10,000	Tb	0.01-1,000	Zr	2-10,000	网络管路系统	and the second second
Er	0.03-1,000	Nd	0.1-10,000	Th	0.05-1,000	dinas		Autor Contract	The second second
Eu	0.03-1,000	NI	5-10,000	TI	0.5-1,000	i Xita			A STREET BALLER
	bination of Rare age by method M			nts from	method ME-MS	S81 plu	s whole rock	ME-MS81D	39.30 (Sold only as a complete package)

ALS Chemex

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd. 2103 Doltarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax, 604 984 0218 www.alschemex.com

To: SAUNDERS, GORDON 2650 CEDAR HILL ROAD VICTORIA BC V8T 3H2

PGM-ICP23

ME-MS81

ME-ICP41

Pt, Pd, Au 30g FA ICP

38 element fusion ICP-MS

35 Element Aqua Regia ICP-AES

Page: 1 Finalized Date: 21-APR-2010 Account: SAUGOR

ICP-AES

ICP-MS

ICP-AES

C	ERTIFICATE VA10045	519		SAMPLE PREPARA	TION
· · · · · · · · ·		· · · · ·	ALS CODE	DESCRIPTION	• • • • • • • • • • • • • • • •
Project: RNR Project			WEI-21	Received Sample Weight	
P.O. No.:			LOG-21	Sample logging - ClientBarCode	
			PUL-QC	Pulverizing QC Test	
16-APR-2010.	imples submitted to our lab in Var	icouver, BC, Canada on	CRU-31	Fine crushing - 70% <2mm	
	s to data associated with this	certificate:	PUL-31	Pulverize split to 85% <75 um	
RAY OSHUST	SCOTT PHILLIPS	GORDON SAUNDERS		ANALYTICAL PROCE	DURES
		•	ALS CODE	DESCRIPTION	INSTRUMENT

To: SAUNDERS, GORDON ATTN: SCOTT PHILLIPS 9298 CHESTNUT ROAD CHEMAINUS BC VOR 1K5

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

Signature:

Colin Ramshaw, Vancouver Laboratory Manager

ALS Chemex

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd 2103 Dotlarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

To: SAUNDERS, GORDON 2650 CEDAR HILL ROAD VICTORIA BC V8T 3H2

Page: 2 - A Total # Pages: 2 (A - F) Finalized Date: 21-APR-2010 Account: SAUGOR

Project: RNR Project

CERTIFICATE OF ANALYSIS VA10045619

																•••
Sample Description	Method Analyte Units LOR	WEI-21 Recvd WL kg 0 02	ME-:CP41 .Ag .ppm 0.2	ME-ICP41 Al % 201	MEHCP41 As opm 2	ME-ICP41 B թթու 10	ME-:CP41 Ba ppin 10	ME-ICP41 Be ppin 0.5	ME-ICP4 ! Bi ppm 2	ME-JCIP41 Ca % 0.01	ME-ICP41 Cat ppm 0.5	ME-ICP41 Co ppm 1	ME-ICP41 Gr ppin 1	ME-ICP41 Cu ppm 1	ME-ICP41 Fe % 0.01	ME-iCP41 Ga ppm 10
£687 <i>4</i> 37		Q 12	<0.2	1.95	3	<10	70	<0.5	<2	1.48	<0.5	15	39	87	3.37	10
E687438		0.16	<0.2	2 31	<2	<10	60	<0.5	<2	212	<0.5	13	21	82	3.73	10
E687439		C 14	<0.2	4.5C	4	<10	60	<0.5	<2	3 33	<0.5	16	35	139	4.18	10
E687440		0 14	< 0.2	4 62	<2	<10	190	< 0.5	s2	3.09	<0.5	15	35	129	3.89	10
E687441		0 20	<0.2	2 54	2	<10	40	<0.5	<2	1.61	<0.5	18	28	73	3.65	10
Ê687442		0 14	<0.2	0.89	<2	20	30	<0.5	<2	C 45	<0.5	162	447	17	7.37	<10
E687443	1	0.12	<0.2	2.23	2	<10	40	< 0.5	<2	1,94	<c 5<="" td=""><td>17</td><td>30</td><td>148</td><td>3.91</td><td>10</td></c>	17	30	148	3.91	10
E687444		0.14	<0.2	5.81	<2	10	60	< 0.5	<2	4.00	<05	15	59	60	2.77	10
E687445		0.14	1,9	0.20	67	<10	40	<0.5	<2	7.81	0.6	39	3	4400	6.19	<10
E687446		0.14	<0.2	194	<2	<10	10	<0.5	<2	1.90	<0.5	7	32	164	0.80	<10
E687447	- 1	0.18	1.7	0.36	44	<10	<10	<0.5	<2	13.45	<0.5	102	2	5470	23.2	<10
E687448		0.22	0.2	0.21	9	<10	<10	<0.5	<2	0.54	<0.5	65	2	409	40 7	<10
E687449		0.22	<0.2	0.16	6	<10	<10	<0.5	<2	013	<0.5	67	1	30	>50	10
E687450		0 20	3.L	=	-											

ALS Chemex EXCELLENCE IN ANALYTICAL CHEMISTRY

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone 604 984 0221 Fax: 604 984 0218 www.alschemex.com

ALS Canada Ltd

To: SAUNDERS, GORDON 2650 CEDAR HILL ROAD VICTORIA BC V8T 3H2

Page: 2 - B Total # Pages: 2 (A - F) Finalized Date: 21-APR-2010 Account: SAUGOR

Project: RNR Project

										CERTIF	ICATE (OF ANA	LYSIS	VA100	45619	
Sample Description	Method Analyte Units LOR	ME-ICP41 Hg ppm 1	ME-ICP41 K % 0.01	ME-ICP41 La ppm 10	MÉ ICP41 149 19, 0 01	ME-ICP41 Min ppm 5	ME-ICP41 Mo ppm 1	ME-ICF41 Na % 0.01	ME-ICP41 Ni ppm 1	ME-:CP41 P pp/n 10	ME-ICP41 Pb ppm 2	ME-(CP41 S % 0.01	ME-ICP41 Sic ppn: 2	ME-ICP41 Sc ppm 1	ME-ICP41 Sr ppm 1	ME-ICP41 Th ppm 20
E687437		<1	0.19	<10	1 34	437	<1	0 0 9	28	1380	3	0 15	<2	6	23	<20
E687438	1	<1	0.08	<10	0.85	400	< 1	0 21	5	700	2	0.12	<2	9	66	<20
E687439		<1	011	<10	0.86	377	<1	0.53	8	1050	<2	0.20	<2	9	258	<20
E 5 87440		<1	0.08	<10	6 91	391	<1	0.39	\overline{i}	950	<2	0 19	<2	8	197	<20
E687441	1	<1	6.05	<10	1 14	336	<1	0 18	43	480	<2	0.02	<2	3	96	<20
E687442		<1	0.08	<10	15 90	1020	<1	0.04	1450	240	<2	C.02	<2	6	28	<20
E687443		<1	0.09	<16	C 78	346	<1	0.30	27	1270	<2	C 23	<2	8	97	< 20
E687444		1	0 06	<10	1.42	469	<1	0.28	17	430	<2	0 04	<2	9	183	<20
E687445		<1	0.01	<10	0.20	2750	<1	0.02	1	30	2	3.28	<2	<1	31	<20
E687446		<1	0.02	<10	0.61	143	<1	0.05	22	60	4	0.02	<2	.4	6	<20
E687447	1	<†	<0.01	<10	C.05	1845	5	0.02	81	8C	<2	2.71	<2	<1	1	<20
E687448	{	<1	<0.01	<10	0.12	1020	<1	0.01	14	630	<2	0.03	<2	<1	6	<20
E667449	1	<1	<0.01	~10	0.13	2400	<1	0.01	99	200	<2	0.01	<2	<1	4	<20
E667450																

ALS Chemex EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd. 2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone 604 984 0221 Fax: 604 984 0218 www.alschemex.com

To: SAUNDERS, GORDON 2650 CEDAR HILL ROAD VICTORIA BC V8T 3H2

Page: 2 - C Total # Pages: 2 (A - F) Finalized Date: 21-APR-2010 Account: SAUGOR

Project: RNR Project

CERTIFICATE OF ANALYSIS VA10045619

Sample Description	Method Analyte Units LOR	ME-IC⊋41 Ti % 0.01	ME-ICP41 TI ppm 10	ME-!CP4 : U ppm 10	ME-ICP41 V open 1	ME-ICP41 VV ppm 10	ME-ICP41 Zo ppm 2	PGM-ICP23 Au ppm 0.001	PGM-ICP23 Pt ppm 0.005	PGM-ICP23 Pd ppm 0.001	ME-MS81 Ag ppm 1	ME-14581 Ba ppm 0.5	ME-MS81 Ce gpm 0.5	ME-MS81 Co pom 0.5	ME-MS31 Cr ppm 10	ME-MS81 Cs ppm C 01
E687437 E687438 E687439 E687440 E687441	:	0 27 0 15 0 15 0 16 0 33	<10 <10 <10 <10 <10	<10 <10 <10 <10 <10 <10	109 155 192 180 125	<10 <10 <10 <10 <10 <10	47 37 33 34 36									. <u>.</u> .
E687442 E667443 E687444 E687445 E687446		0 07 0 13 0 12 <0.01 0 05	<10 <10 <10 <10 <10	<10 <10 <10 <10 <10 <10	32 160 80 3 19	<10 <10 <10 10 <10	45 29 28 131 10									
E687447 E687448 E687449 E687450		0.01 0.02 0.01	<10 10 20	<10 <10 <10	10 72 42	20 <10 <10	144 66 55	<0.801	0 007	0 002	<1	71.8	46	41 2	600	2 26
1																

ALS Canada Etd 2103 Dellarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax 604 984 0218 www.alschemex.com

To: SAUNDERS, GORDON 2650 CEOAR HILL ROAD VICTORIA BC V8T 3H2

Page: 2 - D Total # Pages: 2 (A - F) Finalized Date: 21-APR-2010 Account: SAUGOR

Project: RNR Project

										CERTIF	ICATE (OF ANA	LYSIS	VA100)45619	
Sample Description	Method Analyte Units LOR	ME-MS81 Co ppm 5	ME-MS81 Dy pom 0.05	ME-MSB: Er ppm 0.02	ME-M581 Eu pom 0 03	мЕ-MS81 Ga ppm 0 1	ME-MSS1 Gd ppm 0.05	ME-MS81 H! ppm 0.2	ME-MS81 Ho ppm 0.01	ME-MS81 La ppm 0.5	МЕ-М931 Со ррт 0 D1	ME-MIS81 Mo ppm 2	ME-M\$81 Nb ppm 0.2	ME-M581 Not ppm 0.1	ME M581 N: ppm S	ME-MS81 Ръ ррт. 5
E687437 E687438 E687439 E687440 E687441																
E687442 E687443 E687444 E687445 E687446																
E687447 E6874 48 E687449 E687450		<5	2 54	1 /1	0 69	11 2	1 92	08	0 57	16	0 27	<2	1.1	বাৰ্	259	<5

ALS Chemex

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax. 604 984 0218 www.alsohemex.com

To: SAUNDERS, GORDON 2650 CEDAR HILL ROAD VICTORIA BC V8T 3H2

Page: 2 - E Total # Pages: 2 (A - F) Finalized Date: 21-APR-2010 Account: SAUGOR

Project: RNR Project

CERTIFICATE OF ANALYSIS VA10045619

Sample Description	Methodi Analyte Units 1.0R	ME-MS81 루(ppm 0.03	ME-MS81 Rb ppm 0 2	ME-MS81 Sm ppm 0 03	ME-MS81 Sn ppm 1	ME-MS81 Sr ppm 0 1	ME-MS31 Ta ppm 0 1	ME-MS81 To ppm 0.01	ME-MS81 Th ppm 005	ME-MS81 Ti ppm 05	ME-MS8† Tm ppm 0 01	ME-MS81 U ppm 0.05	ME-MS81 V ррп 5	ME-MSծ1 W ppտ 1	ME-MS21 Y ppm 0,5	ME-MS81 Y5 ppm 0.03
E687437 E687438 E687439 E687440 E687440																
E687442 E687443 E687444 E687445 E687446																
E687447 E687448 E687449 E687450		J 79	99 0	1 38	1	150 5	01	0.39	0 26	<0.5	0.24	0.36	195	1	15.4	1.56
		2 														
									_							

ALS Chemex EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd. 2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

To: SAUNDERS, GORDON 2650 CEDAR HILL ROAD VICTORIA BC V8T 3H2

Page: 2 - F Total # Pages: 2 (A - F) Finalized Date: 21-APR-2010 Account: SAUGOR

Project: RNR Project

CERTIFICATE OF ANALYSIS VA10045619

		ME-MS81	ME-MS81			-			
	Method		Zr						
	Analyte	Zn	21						
Sample Description	Units LOR	ppm	ppm						
and to rescribtion	LOK	5	2						
E637437							• •	•	 <u> </u>
E687438									
E007430									
E687439	1								
E687440									
E687441									
E687442				 	 			 	
E687443									
E007445									
E687444									
E687445									
E687446									
E687447				 	 	··· ·		 	
E687448									
E687449									
E687450		74	29						
E067400		/4	28						
	1								
	i								
	1								
	1								
	l								
	ļ								
	ł								
	ļ								
	}								
	1								
	1								
	Ì								

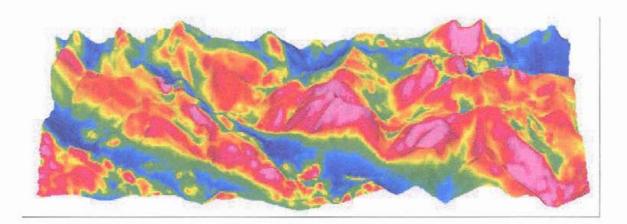
Appendix A - 1

RNR and Tracey tenure

401285 and 535952

Technical information

Airborne magnetic assessment On the Pearson Project Emerald Field Resources - 2006 (P-Target reference)



Technical Information: The RNR P-Target Reference information

ARIS # 28751

Special Information to the reader: This is only a part of the magnetic survey completed over the Pearson Property, for more information see Appendix E

REVIEW OF AEROMAGNETIC DATA OVER THE PEARSON PROPERTY ON BEHALF OF EMERALD FIELDS RESOURCE CORPORATION

REPORT BY MONIKA SUMARA August 25th, 2006

Technical Information: The RNR P-Target

Anomaly P13

The P13 anomaly is located at the NE end of the survey block and has a very strong response at 1400nT.

It's approximately 3000m by 830m in dimension and trends NW though not as strongly as the previous anomalies. Based on the large size and strength of the magnetic response, this anomaly merits further exploration. EM and geological recon are recommended.

Based upon the information provided on the referenced P-13 target this is the largest magnetic anomaly in the entire area. Based upon GPS coordinates and field maps and when cross referencing the airborne magnetic maps and all applicable information the P-13 target is <u>100% our RNR tenure # 401285</u>.

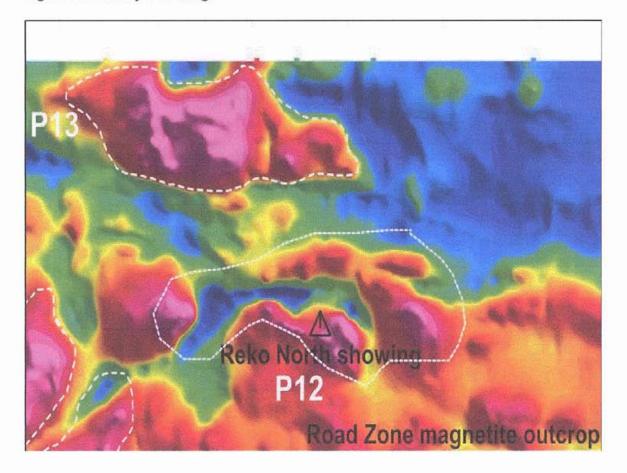


Figure 6: Anomaly P-13 Image

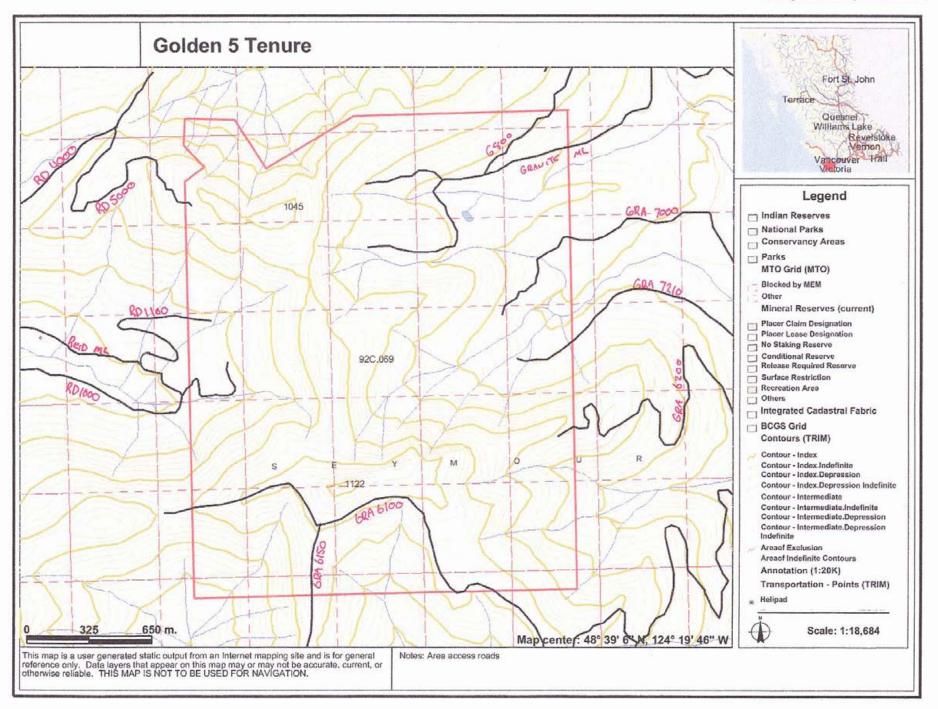
Appendix B

Golden 5

392325

Technical Information

Field assessment work Rock chip sampling


And the

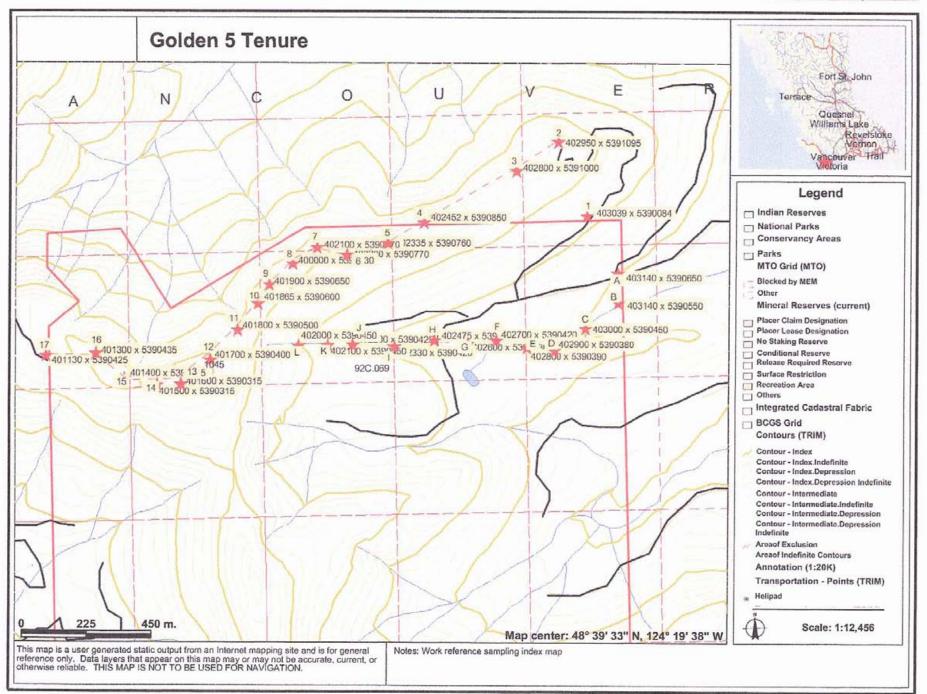

Investigative summary on the exploration conducted by Pacific Iron Ore within the tenure boundary of the Golden 5 tenure (Appendix B-1)

FIGURE MAP D

C

Introduction:

The Golden 5 tenure is located north / east of Port Renfrew BC. (see figure map – tenure locations). The legacy tenure Golden 5 is 500 ha in size and since it is legacy tenure mineral rights supersede any cell tenures which may overlap. This tenure has been explored by this group over the yeas utilizing hand tools several areas of interest have been identified in years past and are the continuation of exploration for this program.

A lot of exploration time has gone into the Golden 5 mineral tonure, from field exploration in which a GPS survey sampling line was established traversing the peak of the mountain trending westerly towards the Reid Creek. A stream sediment sampling GPs survey line was also established infield is a creek which is considered to be the headwaters of the Granite Creek. In this creek bed, several areas where bedrock was exposed there were many high areas of mineralization which will require further exploration.

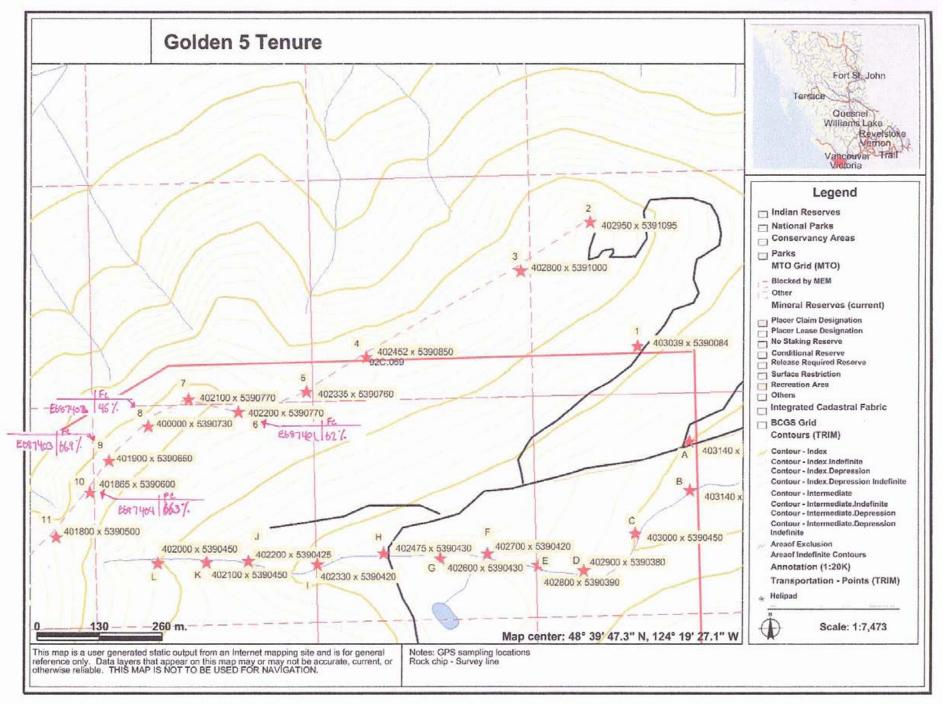
Also within this appendix is a partial summary of the exploration which was conducted and acknowledged by Pacific Iron Ore. (ARIS #31,531 assessment report). This exploration was conducted without our consultation or permission. A complaint has been submitted to the Ministry of Energy and Mines for follow up at the time of this assessment report. Several diamond drill holes are collared along with some excavator work which was conducting roadside test pits and drill pad preparation within the northern boundary of the Golden 5 tenure #392325. Also in reference to this tenure is a series of road side ground geophysical line magnetic which were also conducted by Pacific Iron Ore within the northern tenure boundary of the Golden 5 tenure. More information can be found within ARIS #31,260 assessment report. That is the geophysical ground line magnetic that were established upon the P-12 Targef.

Most of this information about the exploration work conducted will be omitted for confidentially reasons.

Statement of costs: Golden 5 Dates: 2008 – June 16 th to 19 th , August 26 th to 29 th , September 19 th to 21st 2009 – October 21 st to 24 th , November 15 th to 17 th	
Raymond Oshust (FMC #141465) Field supervisor / labor / owner 18 days @ \$300.00 / day=	\$5,400.00
Gordon Saunders (FMC #145703) Field assistant / labor / owner 11 days @ \$300.00 / day=\$	\$3,300.00
Scott Phillips (FMC #145817) Field assistant / labor / owner 7 days @ \$300.00 / day=\$2	2,100.00
Transportation Ray - Truck @ \$50.00 / day x 18 days= Scott - Truck @ \$50.00 / day x 7 days= Gord - Car @ \$30.00 / day x 11 days=	\$350.00
Accommodations Gordon - \$70.00 / day x 11 days= \$ Scott - \$70.00 / day x 7 days= \$490.00	\$770.00
ALS Laboratory services 20 rock chip samples	of filing)
Le Baron Prospecting Report data compilation and report preparation \$350.00 / day x 2 days=\$	\$700.00
Total exploration on RNR and Tracey=\$	14,340.00

Technical information:

Granite 800 spur


Summary;

A GPS survey line was established upon the peak of the Golden 5 tenure. Access to this area is off of the Granite ML and turn onto the G 800 spur, at the end of this spur road is a steep exploration road which was built by Pacific Iron Ore. At the peak of this mountain the area is highly mineralized. A trail was intermediately flagged until reaching the northern tenure boundary of the Golden 5. The area is heavily timbered with minimal under brush, bedrock is exposed throughout the entire area.

#	GPS description					
1	403039 x 5390084	Tenure boundary – G800 spur road				
2	402950 x 5391095	End of exploration road				
3	402800 x 5391000	x 5391000 MTO grid line				
4	402452 x 5390850	Tenure boundary – northern boundary Golden 5				
5	402335 x 5390760	Rock chip, massive magnetite				
6	402200 x 5390770 Rock chip, massive magnetite - ALS E687401					
7	402100 x 5390770	Rock chip, magnetite				
8	400000 x 5390730					
9	401900 x 5390650 Rock chip, massive magnetite – ALS E687403					
10	401865 x 5390600	390600 Rock chip, massive magnetite - ALS E687404				
11	401800 x 5390500	Rock chip, magnetite - ALS 687405				
	Golden 5 tenure. This mountain, and in area bedrock is exposed u	ampling survey line was established within the boundary of the s GPS sampling survey line traverses the highest peak of the as it was possible to look down either side of the peak. The under minimal overburden. This area is highly mineralized. warranted in this area.				

Reference figure map D-3

FIGURE MAP D-3

-

Technical information:

Granite 800 spur

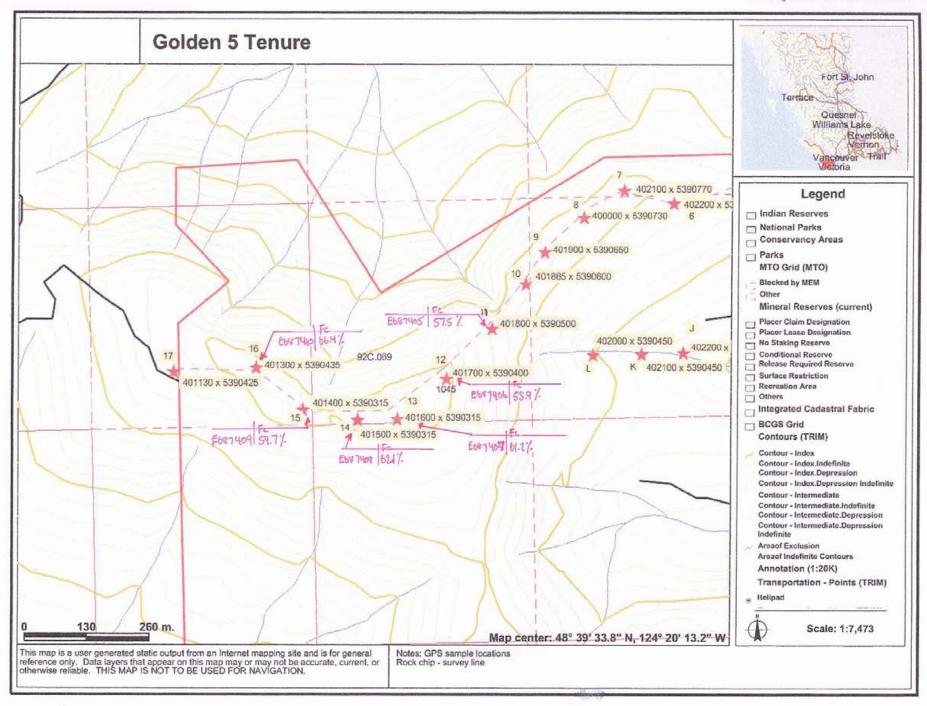
Summary;

This is the continuation of the GPS survey line that was established upon the peak of the Golden 5 tenure. Access to this area is off of the Granite ML and turn onto the G 800 spur, at the end of this spur road is a steep exploration road which was built by Pacific Iron Ore. At the peak of this mountain the area is highly mineralized. A trail was intermediately flagged until reaching the northern tenure boundary of the Golden 5. The area is heavily timbered with minimal under brush, bedrock is exposed throughout the entire area.

#	GPS				
12	401700 x 5390400	Rock chip, magnetite – ALS E678406			
13	401600 x 5390315	Rock chip, massive magnetite - ALS E687407			
14	401500 x 5390315	101500 x 5390315 Rock chip, massive magnetite - ALS E687408			
15	401400 x 5390315 Rock chip, massive magnetite – ALS E687409				
16	401300 x 5390435 Rock chip, massive magnetite – ALS E687410				
17	401130 x 5390425	Tenure boundary – north eastern golden 5 – logging spurs nearby.			
	established within the traverses the highest either side of the pea is highly mineralized.	ampling survey line is a continuation of a survey line which was e boundary of the Golden 5 tenure. This GPS sampling survey line peak of the mountain, and in areas it was possible to look down ik. The bedrock is exposed under minimal overburden. This area swarranted in this area.			

Reference figure map D-4

Summary of the Exploration


The area in which this GPS rock chip sampling survey line was established is highly mineralized. This information is backed by samples obtained, field observations and information obtained in the (ARIS 31, 260)

The M7 target is referenced as follows;

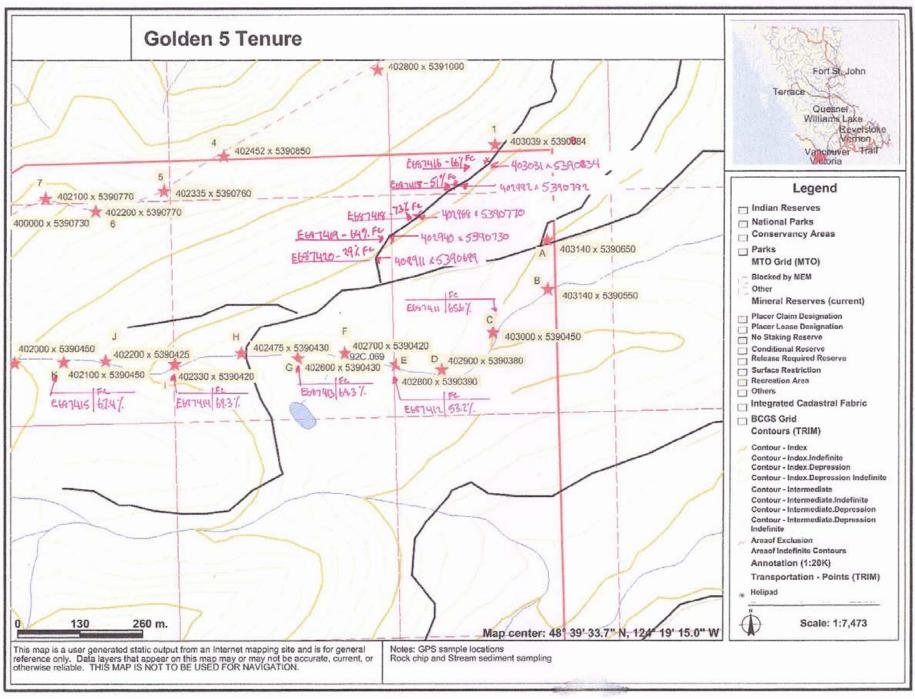
This anomaly is associated with several exposures of massive magnetite and seems to follow a recessive area that runs across the ridge. It is ~100m in width and >150m along strike. It contains both positive and negative components. Readings were not possible over much of the area were polarity was reversed probably due to a magnetic gradient exceeding the magnetometer's tolerance.

This are requires further exploration, however due to topographic conditions that may be limited.

FIQURE MAD P-4

.

Technical information: Stream sediment and rock chip sampling


Summary;

A GPS survey line was established within the creek which is considered to be the source of the Granite Creek and within the tenure boundary of the Golden 5 tenure. Access to this area is off of the Granite ML opposite the G 700 spur. A trail was intermediately flagged along the eastern tenure boundary south until reaching the creek. The area contains a young second growth forest and underbrush is thick. Within the creek in certain areas bed rock was exposed rock chip samples were obtained, however there is an abundance of alluvial gravel which consists of a lot of heavily mineralized rocks. Also soil sediment samples were obtained from in the creek; samples were hand panned into a concentrate.

#	GPS description					
A	403140 x 5390650	Granite ML – eastern tenure boundary – Golden 5				
В	403140 x 53900550	in creek – eastern tenure boundary				
С	403000 x 5390450	Rock chip float in stream bed magnetite, sulfides, magnetic sand – ALS E687411				
D	402900 x 5390380	Rock chip float in stream bed chalcopyrite, sulfides, magnetic sand.				
E	402800 x 5390390	Rock chip float in stream bed, minor magnetite, sulfides, magnetic sand – ALS E687412				
F	402700 x 5390420	Rock chip float in stream bed magnetite, sulfides, magnetic sand.				
G	402600 x 5390430	Rock chip, float in stream bed sulfides, magnetic sand – ALS E687413				
н	402475 x 5390430	Rock chip, float in stream bed sulfides, magnetic sand - roadside				
1	402330 x 5390420	Rock chip float in stream bed chalcopyrite, sulfides, strong magnetic sand – ALS E687414				
J	402200 x 5390425	Rock chip float in stream bed, magnetite, sulfides, strong magnetic sand.				
к	402100 x 5390450					
L	402000 x 5390450	Rock chip float in stream bed; altered rock strong magnetic sand				
	Summary; This GPS rock chip and stream sediment sampling survey line was established within the boundary of the Golden 5 tenure. This GPS sampling survey line traverses the creek as identified on field maps, within this creek there is highly mineralized float, the sediment samples obtained were hand panned into a concentrate and the concentrate was examined and tested utilizing field magnets to test the magnetic of the concentrate. The exploration within the creek bed suggests the area is highly mineralized. Further exploration is warranted in this area.					

Reference figure map D-5

FIGURE MAP P-5

Technical information:

Granite 800 spur

Summary;

This is the continuation of the GPS survey line that was established upon the peak of the Golden 5 tenure. Access to this area is off of the Granite ML and turn onto the G 800 spur. This is the area within our tenure that Pacific Iron Ore conducted excavator test pits beside the road exposing the magnetite and also prepared and collared several DDH's. We have commenced and investigation into this matter. (See Appendix B-1 for details)

#	GPS	description			
1	403039 x 5390084	Tenure boundary – G800 spur road			
2	403031 x 5390834 DDH 09-13G location - massive magnetite - ALS E6874				
3	402992 x 5390782	DDH 09-14G location – massive magnetite – ALS E687417			
4	402988 x 5390770	Excavator test pit – massive magnetite – ALS E687418			
5	402940 x 5390730 Excavator test pit – massive magnetite – ALS E687419				
6	402911 x 5390699	Excavator DDH pad – magnetite – ALS E687420			
	Summary The G800 spur road is an excellent showing of magnetite exposures, exploration work conducted by Pacific Iron Ore within our tenure boundary of the Golden 5 shows that a massive magnetite ore body may be present in the area. There is a massive mineralized body in this area. Refer to airborne magnetic maps (P-12 anomaly)				
	More exploration work is required in this area.				

Reference figure map D-3

Summary of exploration

During the exploration program conducted which was conducted sporadically over a period of time upon the Golden 5 tenure, 45 rock chip samples were collected and 12 stream sediment samples were collected.

20 of the 45 rock chip samples were sent for analyses.

GPS survey lines in the creeks were flagged and sampled at 100 meter intervals in the areas sampled. 3020 GPS meters of survey lines.

Technical Information: Analytical Methods ALS Laboratory Services Vancouver BC

Certificate of Analysis

VA10045617

The Golden 5 Project

Technical Information:

Analytical Methods ALS Laboratory Services Vancouver BC

Magnetite Analysis - Davis Tube Recovery (DTR)

The preparation of magnetite rich ores requires a rigid and complex protocol involving a staged wet sieving process and the use of a Davis Tube to provide a beneficiated sample that represents the large scale metallurgical process. This procedure is often very specific to the individual ore types encountered. Prior to commencement of any project, it is highly recommended and encouraged that clients discuss their requirements with ALS to determine the optimum protocol for their particular ore type.

Analyte	Code	Price per Sample (\$)
Customised sample preparation protocol Includes drying, crushing, homogenising (mat rolling), multi stage wet sleving and pulverising followed by Davis Tube Recovery (DTR)		By quotation
FeO (0.01%) - HCI-HF acid digestion, titrimetric finish	OA-VOL06	40.00

ALS Chemex EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd 2103 Dottarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alschernex.com

To: SAUNDERS, GORDON 2650 CEDAR HILL ROAD VICTORIA BC V8T 3H2

Fe-OG62

ME-OG62

Ore Grade Fe - Four Acid

Ore Grade Elements - Four Acid

Page: 1 Finalized Date: 22-APR-2010 Account: SAUGOR

VARIABLE

ICP-AES

CERTIFICATE VA10045617			SAMPLE PREPARATION			
		· · · · · · · · · · · · · · · · · · ·	ALS CODE	DESCRIPTION		
Project: Golden #5			WEI-21	Received Sample Weight		
			LOG-21	Sample logging - ClientBarCode		
This report is for 20 Rock samples submitted to our lab in Vancouver, BC, Canada on			CRU-31	Fine crushing - 70% <2mm		
	mples submitted to our lab in val	ncouver, BC, Canada on	PUL-31	Pulverize split to 85% <75 um		
16-APR-2010.			PUL-QC	Pulverizing QC Test		
The following have acces	s to data associated with this	certificate:				
RAY OSHUST	SCOTT FHILLIFS	GORDON SAUNDERS		ANALYTICAL PROCEDU	RES	
			ALS CODE	DESCRIPTION	INSTRUMENT	

To: SAUNDERS, GORDON ATTN: SCOTT PHILLIPS 9298 CHESTNUT ROAD CHEMAINUS BC VOR 1K5

Signature:

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

Colin Ramshaw, Vancouver Laboratory Manager

Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

ALS Canada Ltd.

2103 Dollarton Hwy North Vancouver BC V7H 0A7 To: SAUNDERS, GORDON 2650 CEDAR HILL ROAD VICTORIA BC V8T 3H2

Page: 2 - A Total # Pages: 2 (A) Finalized Date: 22-APR-2010 Account: SAUGOR

Project: Golden #5

CERTIFICATE OF ANALYSIS VA10045617

Method Analyte Units LOR	WEI-21 Recvd Wt. kg 0.02	Fe-OG52 Fe % 0.01	
:	C 18 O 20 O 16 O 18 O 20	82.2 45.4 66.9 66 3 57 5	
	0 28 0 16 0 22 0 20 0 18	55.9 61 2 62.1 59.7 66 4	
	0 22 0 24 0 20 0 24 0 24 0 16	65.6 53.2 64.3 69.3 67.4	
	0 30 0 22 0 26 0.16 0.18	56 6 51 2 73 1 64.8 29 1	
	Analyte Units	Recvd Wt. Analyte Recvd Wt. Unks x9 LOR 0.02 0 18 0 20 0 16 0 20 0 20 0 20 0 20 0 20 0 20 0 20 0 23 0 16 0 22 0 23 0 18 0 20 0 18 0 22 0 23 0 18 0 24 0 22 0 24 0 22 0 22 0 22 0 22 0 24 0 22 0 25 0 16 <td>Analyte Recvd Wt. Fe Jnaks xg % LOR 0.02 0.01 C 18 32.2 0.20 0 20 45.4 0.16 0 16 66.9 0.18 0 20 57.5 0.22 0 20 57.5 0 25 35.9 0 16 61.2 D 22 62.1 C 20 59.7 0 18 66.4 0 20 57.5 0 21 52.1 0 22 65.6 0 24 53.2 0 20 57.4 0 30 56.6 0 22 51.2 0 30 56.6 0 22 51.2 0 23 51.2 0 26 7.31 0.16 64.8</td>	Analyte Recvd Wt. Fe Jnaks xg % LOR 0.02 0.01 C 18 32.2 0.20 0 20 45.4 0.16 0 16 66.9 0.18 0 20 57.5 0.22 0 20 57.5 0 25 35.9 0 16 61.2 D 22 62.1 C 20 59.7 0 18 66.4 0 20 57.5 0 21 52.1 0 22 65.6 0 24 53.2 0 20 57.4 0 30 56.6 0 22 51.2 0 30 56.6 0 22 51.2 0 23 51.2 0 26 7.31 0.16 64.8

Appendix B - 1

Golden 5

392325

Technical Information

Field assessment work

Investigative summary on the exploration conducted by Pacific Iron Ore within the tenure boundary of the Golden 5 tenure

Technical Information: Trespass and field investigation: ARIS #31,531 - drilling

Introduction:

A considerable amount of time has gone into the investigation of trespass by Pacific Iron Ore onto the Golden 5 tenure.

Diamond drilling commenced by Pacific Iron Ore in September of 2009 on this tenure. It was perceived by the drilling crew and directed by the field personal of Pacific Iron Ore to conduct several DDH'S on the Golden 5 tenure.

Spur Rd Granite 800 (see reference maps) was the area of trespass. The Golden 5 is a legacy tenure, which means it holds mineral rights over any overlapping cell tenures which may be in located in the area. In this instance Pacific Iron's tenure # 508649 overlaps the Golden 5 tenure. We believe that this trespass was not intentional but upon field investigations the first areas of disturbance (excavator work) was a considerable distance inside of the north /eastern tenure boundary.

At 180 meters from the common tenure boundary an excavator was used to open up the roadside material to expose a sulfide exposure.

At 140 meters from the common tenure boundary an excavator was used to prepare a drilling pad, upon communication with Pacific Iron this was a pad prepared but never collared.

At 100 metes from the common tenure boundary an excavator was used to expose another roadside sulfide exposure.

At 70 meters inside the common tenure boundary an excavator was used to prepare a drill pad, upon investigation two possible DDH's were collared here. (ARIS #31,531)

09-14G 402992 5390782 681 414.528 345 45 This hole has been acknowledged by Pacific Iron Ore as collared on our tenure, we have been promised the top 70 meters of core to be turned over. To date we have received no core. DDH 09-14G is recorded and reported in Pacific Iron Ore's assessment report #31,531.

At this location of DDH 09-14G there may be another DDH collared. See investigation below.

At our common tenure boundary between the Golden tenure 392325 and Pacific Iron's cell tenure # 508649 there is another DDH

09-13G 403031 5390834 681 326.136 354 -45

This hole after field investigations and talks with Pacific Iron Ore it was agreed upon that even though this DDH is collared mere meters inside our tenure, it is agreed to be our common tenure boundary. We seek no core from this DDH.

Technical Information: - continued Trespass and field investigation: ARIS #31,531 - drilling

At 70 meters inside the common tenure boundary an excavator was used to prepare a drill pad, upon investigation two possible DDH's were collared here. (ARIS #31,531)

At this location of DDH 09-14G there is a documented DDH, however there may be another DDH collared here.

We have referred to this mysterious DDH B we have yet to uncover to prove the azimuth and dip. Pacific Iron Ore Refuses to release this information and also has not logged its core within the ARIS report #31,531.

We have spoke to the drillers when we confronted them at a different location within the Granite Creek and they said that one of the DDH's located upon the G800 spur is the deepest they had ever drilled. We have yet to prove this assumption.

This DDH location as we refer to it as DDHB is the only DDH location in the entire drilling program conducted by Pacific Iron Ore to be buried when we begun questioning it s existence.

We have a permit from the Ministry to uncover this location, we tried twice in 2010 utilizing a small excavator, but due to recent rains, we did not want chance causing erosion, we will try in 2011.

See below investigation.

Drilling by Pacific Iron Ore on Le Baron Claims January 23, 2010 – 10am DDH 09-13G – trends 345 +/- N/W (compass floating due to magnetic in area) Standing on northern boundary line looking directly 270' west, ribbon line indicating tenure boundary is on right side of photo, DDH 09-13G in left side of photo.

DDH 09-13G trending 245 + / - N/W

Ditch along road trends 0' north

DDH 09-14G – October 10th 2009 – hole trends at 270' N/W, ditch trends 0' N DDH B – 270' N/W – (hard to see in photo)

January 23, 2010, 10:15am

DDH 09-14G is now covered up as of this morning by excavator Hole indicator peg is removed and collar is covered, peg in back ground indicates 270' N/W

January 23, 2010 – 10:18 am Operator of excavator on the G-800 spur road – looking south from DDH 09-13G

20 minutes prior to photo taken DDH 09-14G was covered up, operator indicated that this was a rush job to complete and covered entire DDH B drill area with debris and removed indicator peg. Looking south down G-800 at DDH B location.

Looking north up G-800 spur - 10:30 am

Technical Information: - continued Trespass and field investigation: ARIS #31,531 - drilling

Summary:

For what ever reason Pacific Iron Ore completed this exploration work within our Golden 5 tenure boundary.

Could it be a communication problem between the geologist who put this exploration program together and the field crew who conducted the drilling, however one looks at this situation the work was conducted within the legacy Golden tenure #392325 boundary. This exploration work was conducted without our consultation or permission and an as a result an investigation has commenced.

We have taken extensive photographs of the DDH site in dispute, and we even have photographs from a Ministry of Forests officer which clearly show that the DDH 09-14G may be collared according to the Indicator peg in the ground at an azimuth of 270 degree west, meaning the entire hole (if it exists) will be 100/% in the Golden 5 tenure.

We have a permission letter from the Ministry of Energy and Mines to remove the overburden from this site, however we tried twice in 2010 and due to environmental condition (heavy rain) removal of the material would pose a great risk of erosion. We will try in 2011 to complete this task.

We retain a letter dated January 22, 2010. in which Pacific Iron Ore admits that upon review of the information presented, Pacific Iron Ore admits fault to conducting exploration within our tenure boundaries.

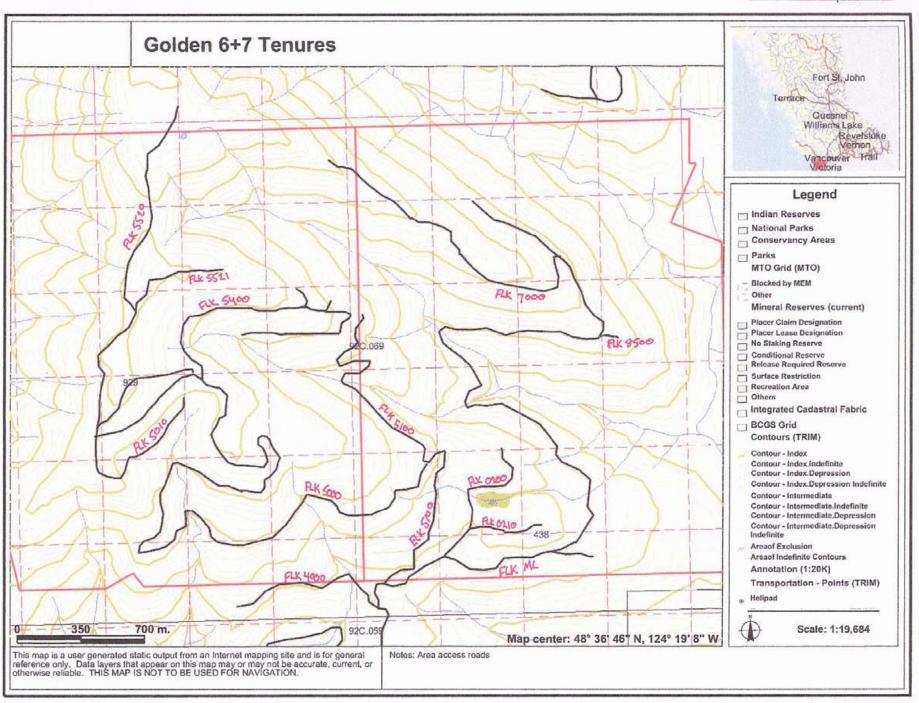
We also have a lot of communication, in which we relentlessly tried to get answers to why this work was done on our tenures. However at the of this assessment report this issue remains unresolved. We have a large amount of documentation on this matter, specific information will remain confidential.

Appendix C

Golden 6 & 7

392326, 392327

Technical Information


Field assessment work Rock chip sampling

Investigative summary on the exploration work conducted by Pacific Iron Ore

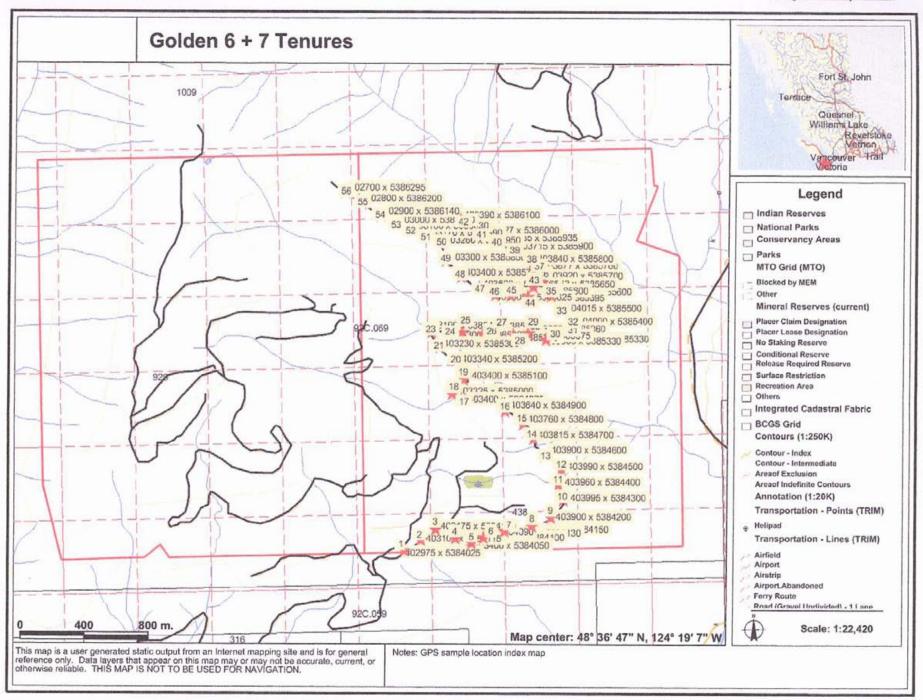

within the tenure boundary of the Golden 6+7 tenures (Appendix C-1)

Figure MAP E

Fiquer MAD E-2

Introduction:

The Golden 6 + 7 tenures are located north / east of Port Renfrew BC. (see figure map – tenure locations). The legacy tenure Golden 6 + 7 tenures are 500 ha in size and since they are legacy tenures their mineral rights supersede any cell tenures which may overlap. These tenures have been explored by this group over the years utilizing hand tools, several areas of interest have been identified in years past and are the continuation of exploration for this program.

A lot of exploration time has gone into the Golden 6+7 mineral tenures, from field exploration to the investigation of the trespass (line magnetic survey) by Pacific Iron Ore.

Mapping of the Golden 6+7 mineral tenures an airborne geophysical anomaly which was revealed and identified by Pacific fron Ore (ARIS # 28751), the road side rock chip sampling did however revealed minor magnetite bearing serpentines. Small pods of pyrite, pyrrhotite and chalcopyrite occur within the serpentines.

The geophysical anomalies which were identified in the (ARIS #28751) are concurrent in field samples by the presence of magnetite bearing serpentines.

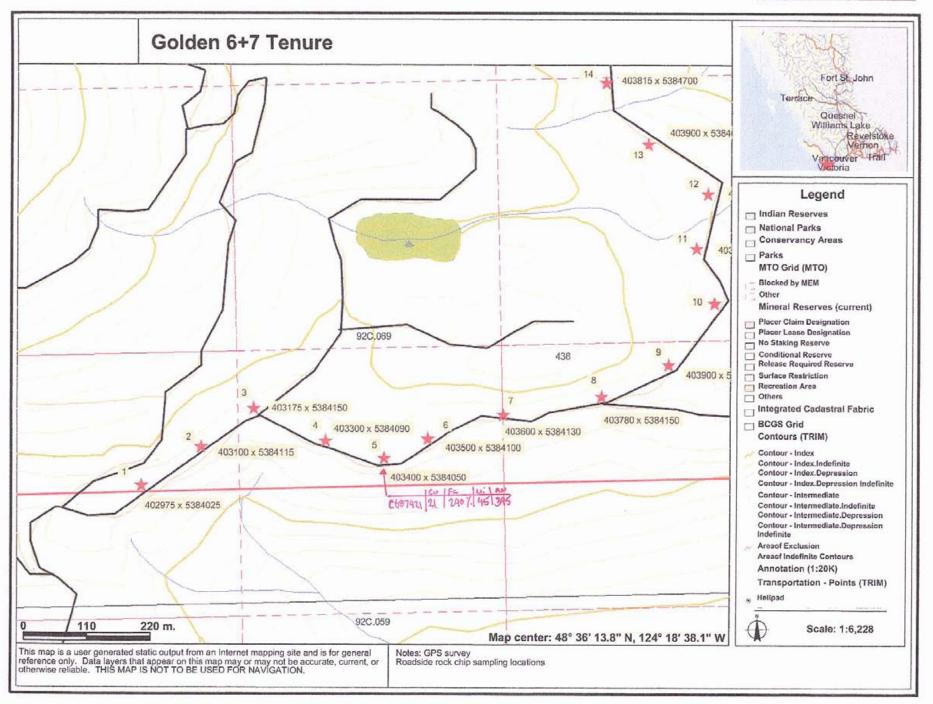
Rock chip samples collected along the Fairy Main line throughout the exploration area are relatively unaltered, intermediate to mafic intrusive intercalated with gneisses of a similar composition. These rocks vary from 30 to 90% mafics which include biotite, chlorite, pyroxene and possibly actinolite. These more mafic sections generally contain disseminated pyrite and are weakly magnetic.

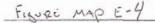
Alteration of the intrusive and gneiss increases in the southern parts of the tenures roadside as the rocks become more sheared and fractured, making recognition of the original rock type difficult. Much of the central portion of Golden 7 tenure is underlain by dark green, mafic intrusive that is sheared with predominantly polished with slick sided fracture surfaces, locally being limonitic. Pyrite is present in trace amounts.

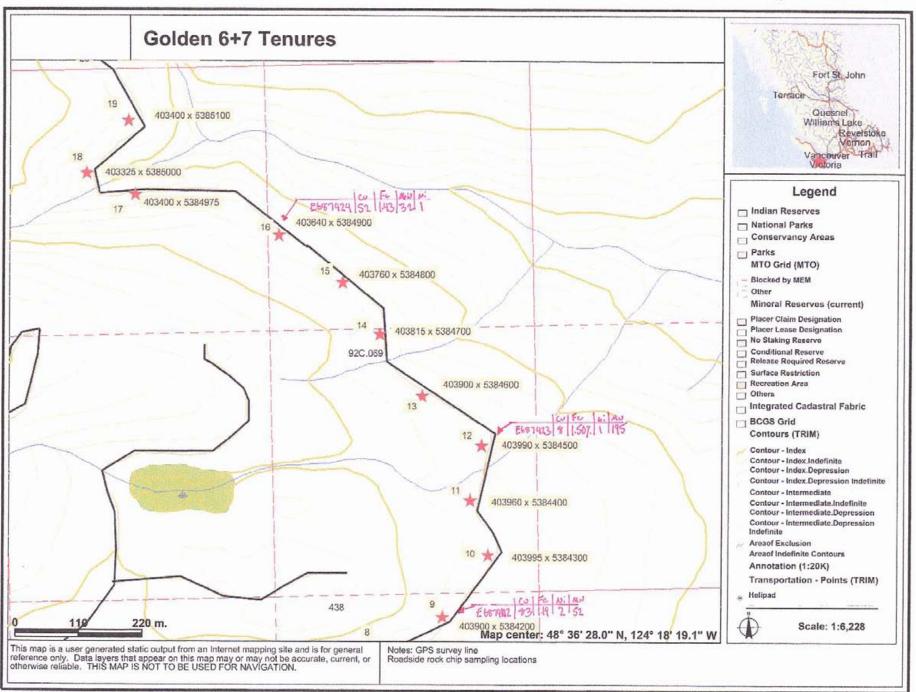
Also within this appendix a considerable amount of time has gone into an investigation which has been ongoing to the exploration work which was conducted by Pacific Iron Ore within the tenure boundaries of the Golden 6+7 mineral tenures. A ground geophysical line magnetic survey which was conducted by Pacific Iron Ore on a= significant portion of the Golden 7 tenure. Also included is reference to a DDH which also intersected minerals within the tenure boundary of the Golden 7. This DDH was collared on a tenure situated directly north of the Golden 7 tenure but however the bottom portion of the DDH intersects within the northern tenure boundary.

This exploration work was conducted without our consultation or permission, and was conducted for unknown reasons. At the time of this report an investigation has commenced.

Statement of costs: Golden 6+7 Dates: 2009 – April 4 th to 5 th , 12 th to 13 th , 18 th to 20 th , 30 th to 31 st 2009 – May 17 th to 20 th , 22 nd , 28 th to 30 th 2009 – September 20 th to 26 th October – 14 th to 17 th
Raymond Oshust (FMC #141465) Field supervisor / labor / owner 29 days @ \$300.00 / day=\$8,700.00
Gordon Saunders (FMC #145703) Field assistant / labor / owner 18 days @ \$300.00 / day=\$5,400.00
Scott Phillips (FMC #145817) Field assistant / labor / owner 4 days @ \$300.00 / day=\$1,200.00
Robert Bradshaw Field labor 7 days @ \$200.00 / day=\$1,400.00
Thompson and sons Field survey crew x 2 workers 7 days @ \$300.00 / day x 2 workers=\$4,200.00
Transportation Ray - Truck @ \$50.00 / day x 29 days
Accommodations Gordon - \$70.00 / day x 18 days= \$1,200.00 Scott - \$70.00 / day x 4 days= \$280.00 Robert - \$70.00 / day x 7 days= \$490.00 Survey crew - \$70.00 / day x 2 workers x 7 days= \$980.00
ALS Laboratory services 16 rock ohip samples
Le Baron Prospecting Report data compilation and report preparation \$350.00 / day x 2 days=\$700.00
Total exploration on RNR and Tracey=\$27,350.00

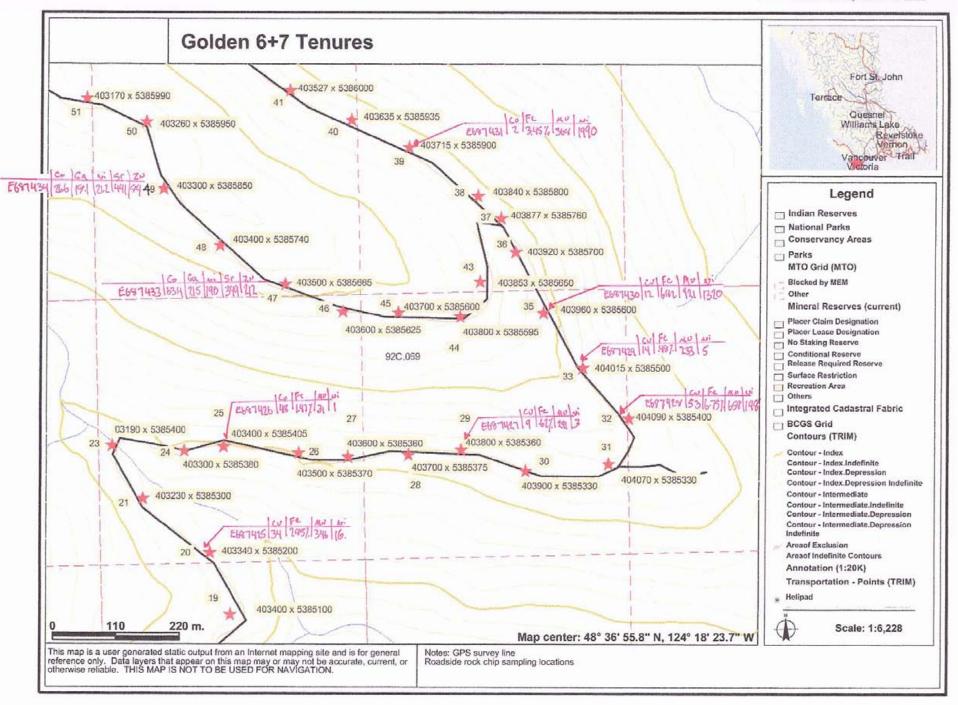

Technical Information: (See Figure Maps E to E-6)


Summary;


A GPS roadside rock chip sampling program was conducted to redefine the roadside rock chip sampling that occurred only on a partial portion of the FL Main logging road in 2009. This exploration took in new data and looked deeper into the presence of possible ultramafic rocks in the area, rock chip samples were collected utilizing a hammer and chisel.

#	GPS	description
1	409975 x 5384025	FL main – southern tenure boundary – Golden 7
2	403100 x 5384115	rock chip, slate with minor quartz veins
3	403175 x 5384150	Junction FL ML and FL 5100, rock chip, minor chalcopyrite
4	403300 x 5384090	rock chip slate with quartz vein
5	403400 x 5384050	rock chip, minor chalcopyrite, sulfide - ALS E687421
6	403500 x 5384100	rock chip, slate, greasy serpentine alteration
7	403600 x 5384130	rock chip, dark green serpentine
8	403780 x 5384150	Junction FL ML and FM 8000
9	403900 x 5384200	rock chip, minor pyrite, magnetic serpentine - ALS E687422
10	403995 x 5384300	rock chip, chalcopyrite and iron sulfides
11	403995 x 5384400	rock chip, chalcopyrite and iron sulfides
12	403960 x 5384500	rock chip magnetic serpentine alteration - ALS E687423
13	403900 x 5384600	rock chip, dark green serpentine
14	403815 x 5384700	rock chip, greasy serpentine.
15	403760 x 5384800	rock chip, dark green serpentine
16	403640 x 5384900	rock chip, chalcopyrite, serpentine alteration - ALS E687424
17	403400 x 5384975	rock chip peridotite
18	403325 x 5385000	rock chip, dark green serpentine - creek crossing, panning
19	403400 x 5385100	rock chip peridotite
	serpentine that is exp located in the souther As one travels farther predominate.	samples collected showed the presence of minor sulfides and bosed in bedrock located madside. Sample location 1 to 10 m portion of the tenure indicate more shearing and fracturing. r along the FL main the mafic intrusions become more bre detailed exploration program

Reference figure maps E-3 to E-6


Technical Information: (See Figure Maps E to E-6)

Summary;

A GPS roadside rock chip sampling program was conducted to redefine the roadside rock chip sampling that occurred only on a partial portion of the FL Main logging road in 2009. This exploration took in new data and looked deeper into the presence of possible ultramafic rocks in the area, rock chip samples were collected utilizing a hammer and chisel. Reference figure maps E-5

#	ence figure maps E-5	description
20	403340 x 5385200	rock chip, minor chalcopyrite, serpentine alteration – ALS E687425
21	403230 x 5385300	rock chip, chalcopyrite and minor iron sulfides
22		
23	403190 x 5385400	rock chip minor chalcopyrite, panning in creek
24	403300 x 5385380	rock chip, soft crumbly slate, quartz vein
25	403400 x 5385405	rock chip, minor chalcopyrite – ALS E687426
26	403500 x 5385370	rock chip, skarn / altered gabbros
27	403600 x 5385360	rock chip, skarn / altered gabbros
28	403700 x 5385375	rock chip, skam / altered gabbros
29	403800 x 5385360	rock chip, serpentine - ALS E687427
30	403900 x 5385330	rock chip, gabbros: medium-grained.
31	404070 x 5385330	junction – FL ML and Spur F6500
32	404090 x 5385400	rock chip, dark green serpentine - ALS E687428
33	404015 x 5385500	rock chip, dark green serpentine - ALS E687429
34		
35	403960 x 5385600	rock chip, magnetic serpentine - ALS E687430
36	403920 x 5385700	rock chip, skam / altered gabbros
37	403877 x 5385760	junction – FL ML and F7000
38	403840 x 5385800	rock chip, minor sulfide, magnetic serpentine - ALS E687431
39	403715 x 5385900	rock chip, skarn / altered gabbros
40	403635 x 5385935	rock chip, chalcopyrite and minor iron sulfides
41	403527 x 5386000	rock chip, magnetite, serpentine alteration - ALS E687432
42	403390 x 5386100	rock chip, soft crumbly white quartz vein
43	403853 x 5385650	rock chip, dark green serpentine
45	403700 x 5385600	rock chip, skarn / altered gabbros
46	403600 x 5385625	rock chip, skarn / altered gabbros
47	403500 x 5385665	rock chip, skarn / altered gabbros
48	403400 × 5385740	rock chip, ultramafic, peridotite - ALS E687433
49	403300 × 5385850	rock chip, chalcopyrite and minor iron sulfides
50	403260 × 5385950	rock chip, chalcopyrite and minor iron sulfides
51	403170 x 5385990	rock chip, chalcopyrite and minor iron sulfides
	Summary;	complex collected showed the processes of minor culfider and
		samples collected showed the presence of minor sulfides and boosed in bedrock located roadside. Serpentine exposures had
	minor magnetic qualit	
		r along the FL main the mafic intrusions become more
		ith sulfide exposures.
		pre detailed exploration program
	Linis area requires mo	pre detailed exploration program

FIGURE MAP E-5

Technical Information: (See Figure Maps E to E-6)

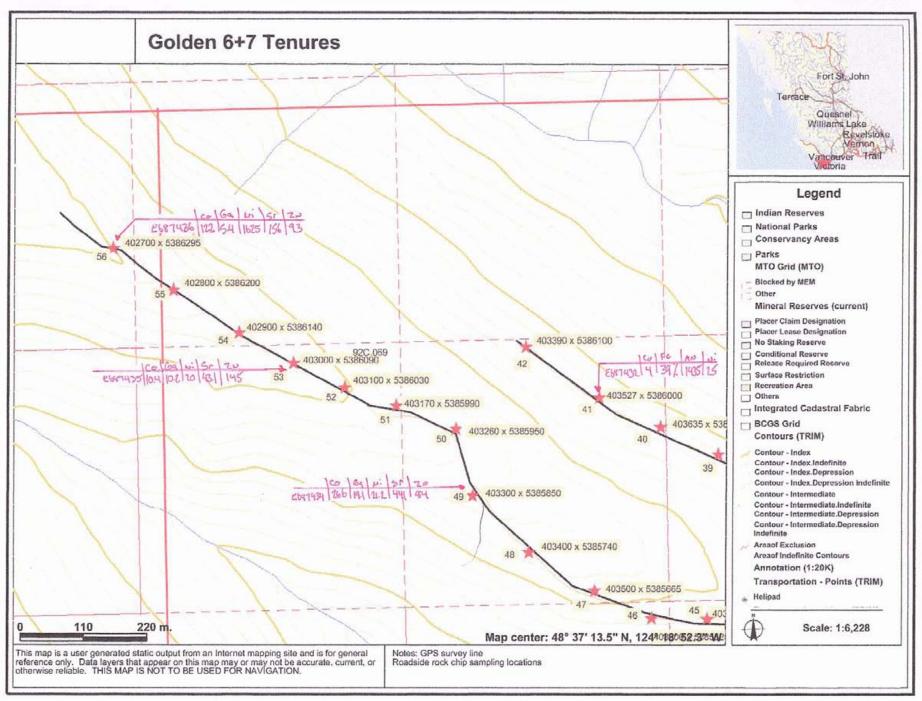
Summary;

A GPS roadside rock chip sampling program was conducted to redefine the roadside rock chip sampling that occurred only on a partial portion of the FL Main logging road in 2009. This exploration took in new data and looked deeper into the presence of possible ultramafic rocks in the area, rock chip samples were collected utilizing a hammer and chisel.

#	GPS	description
52	403100 x 5386030	rock chip, chalcopyrite and minor iron sulfides
53	403000 x 5386090	rock chip, ultramafic intrusion, sulfide – ALS E687435
54	402900 x 5386140	rock chip, chalcopyrite and minor iron sulfides
55	402800 x 5386200	rock chip, chalcopyrite and minor iron sulfides
56	402700 x 5386295	rock chip, ultramafic intrusion, sulfide – ALS E687435 End of roadside rock chip sampling
	serpentine that is exp was obvious the mor magnetic study and t As one travels farthe predominate along w	samples collected showed the presence of minor sulfides and bosed in bedrock located roadside. Sample location 52 to 56 it e sulfides are exposed. This may be in relation to the airborne he possible presence of an ore bedy below. r along the FL main the mafic intrusions become more ith sulfide exposures. ore detailed exploration program

Reference figure maps E-6

Summary;


54 locations were sampled along the Fairly Lake Mainline; at each location a large number of samples were obtained utilizing hand tools.

The lower part of these tenures along the Fairy Lake ML the geology is more sheared and highly folded than one will find in the higher portions of the tenure. As one gets higher the geology alters significantly with mafic intrusions and less shearing, very little sediment rocks are present. The geology is relevant with the existence of the San Juan Fault which traverses the southern most portions of these tenures.

GPS survey lines in the creeks were flagged and sampled at 100 meter intervals in the areas sampled. 3700 GPS meters of survey lines

More exploration is required in these tenures in the future. A GPS grid survey is required in the higher portions of the tenures especially along the sample locations 37 to 56 / FL 7000 spur.

FIGURE MAP E-6

Technical Information: Analytical Methods ALS Laboratory Services Vancouver BC

Certificate of Analysis

VA10045188

The Golden 6+7 Project

Technical Information:

Analytical Methods ALS Laboratory Services Vancouver BC

An	alytes & Rai	nges	(ppm)					Code	Price per Sample (\$
Ag	0.01-100	Cs	0.05-500	Mo	0.05-10,000	Sr	0.2-10,000	ME-MS41	21.00
AI	0.01-25%	Cu	0.2-10,000	Na	0.01%-10%	Та	0.01-500	an Bag Street	(Sold only as
As	0.1-10,000	Fe	0.01%-50%	Nb	0.05-500	Te	0.01-500		a complete
Au	0.2-25	Ga	0.05-10,000	Ni	0.2-10,000	Th	0.2-10,000		package).
в	10-10,000	Ge	0.05-500	P	10-10,000	Ti	0.005%-10%	188 / R. S. S. S.	
Ba	10-10,000	Hf	0.02-500	Pb	0.2-10,000	TI	0.02-10,000		
Be	0.05-1,000	Hg	0.01-10,000	Rb	0.1-10,000	U	0.05-10.000		
Bi	0.01-10,000	In	0.005-500	Re	0.001-50	V	1-10,000		
Ca	0.01%-25%	K	0.01%-10%	S	0.01%-10%	W	0.05-10,000		
Cd	0.01-1,000	La	0.2-10,000	Sb	0.05-10,000	Y	0.05-500	- 10 S	
Ce	0.02-500	LI	0.1-10,000	Sc	0.1-10,000	Zn	2-10,000	A CONTRACTOR	
Co	0.1-10,000	Mg	0.01%-25%	Se	0.1-1,000	Zr	0.5-500		
Cr	1-10,000	Mn	5-50,000	Sn	0.2-500	1.5			

Ag	1-1,000	Ga	0.1-1,000	Pb	5-10,000	Tm	0.01-1,000	ME-MS81	28.50
Ва	0.5-10,000	Gd	0.05-1,000	Pr	0.03-1,000	U	0.05-1,000		(Sold only as a
Ce	0.5-10,000	Hſ	0.2-10,000	Rb	0.2-10,000	V	5-10,000		complete package)
Co	0.5-10,000	Ho	0.01-1,000	Sm	0.03-1,000	W	1-10,000		
Cr	10-10,000	La	0.5-10,000	Sn	1-10,000	Y	0.5-10,000		STORE SET
Çs	0.01-10,000	Lu	0.01-1,000	Sr	0.1-10,000	Yb	0.03-1,000		
Cu	5-10,000	Mo	2-10,000	Ta	0.1-10,000	Zn	5-10,000		1. Summer as
Dy	0.05-1,000	Nb	02-10,000	Tb	0.01-1,000	Zr	2-10,000		
Er	0.03-1,000	Nd	0.1-10,000	Th	0.05-1,000	30			
Eu	0.03-1,000	NI	5-10,000	TI	0.5-1,000	200			
	bination of Rare age by method N			nts from	method ME-MS	S81 plu	s whole rock	ME-MS81D	39.30 (Sold only as a complete package)

RAY OSHUST

ALS Chemex EXCELLENCE IN ANALYTICAL CHEMISTRY

SCOTT PHILLIPS

ALS Canada Ltd 2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone 604 984 0221 Fax 604 984 0218 www.alschemex.com To: SAUNDERS, GORDON 2650 CEDAR HILL ROAD VICTORIA BC V8T 3H2

л г

Page: 1 Finalized Date: 24-APR-2010 This copy reported on 26-APR-2010 Account: SAUGOR

CERTIFICATE VA10045188		SAMPLE PREPARATION
	ALS CODE	DESCRIPTION
Project: Golden 6+7	WEI-21	Received Sample Weight
PO No:	PUL-QC	Pulverizing QC Test
	LOG-21	Sample logging - ClientBarCode
This report is for 16 Rock samples submitted to our lab in Vancouver, BC, Canada on 16-APR-2010	CRU-31	Fine crushing - 70% <2mm
	PUL-31	Pulverize split to 85% <75 um
The following have access to data associated with this certificate:		· · · · · · · · · · · · · · · · · · ·

GORDON SAUNDERS

	ANALYTICAL PROCEDUR	ES
ALS CODE	DESCRIPTION	INSTRUMENT
ME-MS81	38 element fusion ICP-MS	ICP-MS
ME-ICP41	35 Element Aqua Regia ICP-AES	ICP-AES

To: SAUNDERS, GORDON ATTN: SCOTT PHILLIPS 9298 CHESTNUT ROAD CHEMAINUS BC VOR 1K5

Signature:

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

Colin Ramshaw, Vancouver Laboratory Manager

ALS Chemex

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd

2103 Dollarton Hwy North Vancouver BC V7H 0A7

Phone 604 984 0221 Fax 604 984 0218 www.alschemex.com

To: SAUNDERS, GORDON 2650 CEDAR HILL ROAD VICTORIA BC V8T 3H2

Page: 2 - A Total # Pages: 2 (A - E) Finalized Date: 24-APR-2010 Account: SAUGOR

Project: Golden 6+7

CERTIFICATE OF ANALYSIS VA10045188

		WEI-21	ME-ICP41	ME-ICP41	MEHCP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-CP41	ME-ICP41	ME-ICP4:	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41
	Method					B		Be	8:	Ca	Çd	Co	Gr Cr	Cu	Fe	Ga
	Analyte	Recvd WL	Ag	A!	As		Ba									
	Units	kg	ppm	r X1	ppm	pp m	рра	ppm	ppm	%	ppm	port	ppm	ppm	%	pom
Sample Description	LON	0.02	02	0.01	2	10	10	0.5	2	0.01	05	1	1	1	0.01	10
E687421		0 14	<0 2	2.25	<2	<10	40	<0.5	<2	1.66	<0.5	15	47	21	2 90	10
E687422		0.20	<0.2	0 28	2	<10	<10	<05	<2	0 65	<0 5	6	3	83	1 19	<10
E687423		0 12	<0 2	1 12	<2	<10	40	07	<2	0.57	<0.5	4	3	8	1 50	<10
E687424		016	< 0.2	0.28	2	<10	<10	<c.5< td=""><td><2</td><td>0.80</td><td><0.5</td><td>9</td><td>3</td><td>52</td><td>1 43</td><td><10</td></c.5<>	<2	0.80	<0.5	9	3	52	1 43	<10
E687425		J.16	<02	2 38	<2	<10	90	06	<2	2.03	<0.5	11	27	34	2.85	10
E687426		0.16	<0.2	0 22	<2	<10	<10	<0.5	<2	0.75	<0.5	ī	2	48	1 17	<10
E687427		0 18	<0.2	0.61	<2	<10	<10	<0.5	<2	2 02	<0.5	1	2	9	0.62	<10
E687428		0.20	<0.2	4 04	<2	<10	10	<0.5	<2	1 71	<0.5	35	104	53	6.75	10
E687429		0.24	<0.2	0.50	<2	<10	<10	<c 5<="" td=""><td><2</td><td>1.21</td><td><0 5</td><td>2</td><td>3</td><td>54</td><td>0.48</td><td><10</td></c>	<2	1.21	<0 5	2	3	54	0.48	<10
E687 430		0 18	<0.2	1 11	<2	10	20	<0.5	<2	0 42	<05	98	340	12	6 82	<10
								<0.5	<'2	0 42	<0.5	76	595	2	3 45	<10
E667431 E687432		0 20 C 32	<0.2 <0.2	0.05 0.18	<2 164	40 1750	<10 <10	<0.5 <0.5	~2	1 26	<0.5	151	- 13	4	3 43 39.0	<10
E687433		0.32	<0.Z	3.0	104	1750	× ; 0	-0.0	,	20	••••		13	'	20.0	
E687434		0 12														
E687435		\$1 J														
E687436		0 20														
í		1														
		1														
]														

ALS Chemex EXCELLENCE IN ANALYTICAL CHEMISTRY

2650 CEDAR HILL ROAD VICTORIA BC V8T 3H2 Page: 2 - B Total # Pages: 2 (A - E) Finalized Date: 24-APR-2010 Account: SAUGOR

ALS Canada Ltd 2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone 604 984 0221 Fax, 604 984 0216 www.alschemex.com

Project: Golden 6+7

To: SAUNDERS, GORDON

CERTIFICATE OF ANALYSIS VA10045188

Sample Description	Method Analyte VnHs LOR	ME-ICP41 Hg ppm 1	ME-iCP41 K % 001	ME-:CP41 La ppn; 10	ME-ICP41 Mg % 0.01	МЕ-⊧СР41 М∩: ppm 5	ME-ICP41 Mo ppm 1	ME-'CP41 NB %, 0 01	ME×ICP41 Ni ppm 1	ME-ICP41 Р ррт 10	ME-ICP41 Pb ppm 2	ME-ICP41 S % 0.01	ME-ICP41 Sb ppm 2	ME-ICP41 Sc ppm 1	ME-ICP41 Sr ppm 1	ME-iCP4) Th ppm 20
E687421 E687422 E687423 E687424 E687425		< <1 <1 <1 <1	0,15 0 03 0,10 0 04 0 11	<10 10 20 10 <10	1 44 0 09 0 36 0 05 0 97	395 52 1 95 32 343	<1 8 <1 6 <1	0.05 0.04 0.06 0.05 0.04	45 2 1 1 13	1350 1770 330 1730 900	4 3 5 3 4	0 02 0 65 0 01 1 20 C 04	<2 <2 <2 <2 <2 <2	5 1 3 1 6	19 29 34 30 15	<20 <29 <20 <20 <20
E687426 E687427 E687428 E687429 E687430		<1 <1 <1 <1 <1 <1 <1	0 04 <0.01 0.04 <0.01 0.07	10 <10 <10 <10 <10	0 08 0 29 3 20 0 37 15.15	31 291 658 233 921	1 < ⁻ <1 <1 <1	0.95 0.01 0.20 0.01 0.05	1 3 148 5 1320	1740 110 1030 30 140	2 6 2 4 <2	C 90 C 02 C 01 C 01 C 03	<2 <2 <2 <2 <2 <2	1 <1 5 <1 4	28 30 56 6 35	<20 <20 <20 <20 <20
E687431 E687432 E687433 E687434 E687434		<1 <1	<0.01 <0.01	<10 <10	18.95 7 14	368 1435	<1 <1	<0.01 0.01	1990 25	10 270	<2 <2	0.19 0.01	6 2	2 <1	11 79	<20 <20
E687436																
	1															
			_													

ALS Chemex EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd. 2193 Dollarton Hwy North Vancouver BC V7H 0A7 Phone 604 984 0221 Fax 604 984 0218 www.alschernex.com

To: SAUNDERS, GORDON 2650 CEDAR HILL ROAD VICTORIA BC V8T 3H2

Page: 2 - C Total # Pages: 2 (A - E) Finalized Date: 24-APR-2010 Account: SAUGOR

Project; Golden 6+7

									l	CERTIF	ICATE	OF ANA	LYSIS	VA100	45188	
Sample Description	Method Analyte Units LOR	ME-:CP41 Ti % 0.01	ME-/CP41 Ti opro 10	ME-ICP41 U ppm 10	ME-ICP41 V paת 1	ME-ICP41 W ppm 10	ME-ICP41 Zo ppm 2	ME-MS81 Ag ppm 1	мЕ-MS81 Ва ррт 0 5	ME-MS31 Ce pom 0.5	ME-MS81 Co ppm 05	MÉ-MŠ81 Cr pom 10	ME-MS81 Cs ppm 0 01	ME-MS81 Cu ppm 5	ME-MS81 Dy pom 0.05	ME-MS31 Er ppm 0.03
2687421 E687422 E687423		0 25 0 17 0.09	<10 <10 <10	<10 <10 <10	96 11 20	<10 <10 <10	45 9 20									
E687424 E687425	:	0 16 0 21	<10 <10	<10 <10	8 83	<10 <10	6 32									
E687426 E687427 E687428 E687429 E687430		0 15 0 02 0 64 0 02 0 03	<10 <10 <10 <10 <10	<10 <10 <10 <10 <10	9 9 163 8 22	<10 <10 <10 <10 <10 <10	5 38 72 54 32									
E687431 E687432 E687433 E687433		<0.03 <0.01 0.01	<10 <10 <10	<10 <10 10	4 10	<10 <10 <10	24 114	<1 <1	- 77 9 340	22.5 36.0	63 4 26 6	240 50	0 45 0 68	178 56	4 78 4 93	2.58 3 01
E687435 E687436								<1 <1	6 4 53.7	7.3	10.4 122.0	30 3190	<0.01	6 9	3 07 0.54	2 13 0 33
								·								<u>.</u>

ALS Canada Ltd. 2103 Dolla ton Hwy North Vancouver BC V7H 0A7 Phone 604 984 0221 Fax: 604 984 0218 www.alschemex.com

To: SAUNDERS, GORDON 2650 CEDAR HILL ROAD VICTORIA BC V81 3H2

Page: 2 - D Total # Pages: 2 (A - E) Finalized Date: 24-APR-2010 Account: SAUGOR

Project: Golden 6+7

									(CERTIF		OF ANA	LYSIS	VA100	45188	
Sample Description	Method Analyte Linits LOR	ME-MS81 Eu pom 0 03	ME-MS81 Ga ppm 0.1	ME-MS81 Gd ppm 0.05	ME-MS81 Hf gpm 0.2	ME-MS81 Ho ppm 0.01	ME-MS81 La ppm 0.5	ME-MS&1 La ppm 0.01	ME-MS81 Mo ppm 2	ME-MS81 N5 ppm 0 2	ME-MS81 Na ppm 0 1	MÊ-MS81 Ni ppm S	ME-MS81 Pb ppm 5	ME-MS81 Pr ppm 0 03	ME-MS81 Rb ppm 0 2	ME-MS81 Sm ppm 0.03
E687421 E687422 E687423 E687424 E687424 E687425																
E687426 E687427 ÷6 57 428 E687429 E687430																
E687431 E687432 E687433 E687434 E687435		1 49 1 48 C 74	21.5 18 1 10.2	4 75 4 81 2 68	3.4 5.5 2.1	0.99 1.07 0.71	8.6 16 4 3.1	0 33 0 47 0 39	<2 <2 <2	10.0 65 20	16 4 21 2 7 5	190 36 20	<5 <5 <5	3 60 4 98 1 29	64 408 04	4 61 5 14 2 69
E687436		C.22	54	0.55	Q3	0.11	18	0.05	</td <td>04</td> <td>22</td> <td>1625</td> <td><5</td> <td>0.55</td> <td>28</td> <td>0 57</td>	04	22	1625	<5	0.55	28	0 57
			<u> </u>													

ALS Chemex EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Lto. 2103 Dellarton Hwy North Vancouver EC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

To: SAUNDERS, GORDON 2650 CEDAR HILL ROAD VICTORIA BC V81 3H2

Page: 2 - E Total # Pages: 2 (A - E) Finalized Date: 24-APR-2010 Account: SAUGOR

Project: Golden 6+7

										CERTIFICATE OF ANAL			LYSIS	SIS VA10045188		
Sample Description	Method Analyte Units LOR	ME-MS81 Sn ppm 1	ME-MS81 Sr ppm 01	ME-MS81 Ta ppm 0.1	ME-MS81 To ppm 001	ME-M\$81 Th pom 0.05	ME-MS81 Ti pom 0.5	ME-M\$81 Tm ppm 0.01	ME-MS81 U ppm 0.05	ME-MS81 V ppm 6	ME-MS81 W opm 1	ΜΕ-MS81 Υ ρρπ. 0.5	ME-MS81 Үс прт 0 03	ME-MS81 Zn ppm 5	M⊊-MS8t Zr ppm 2	
E687421 E687422 E687423 E687423 E687424 E687425											. ==					
E687426 E687427 E687428 E687428 E687429 E687430																
E687431 E687432 E687433 E687434 E687434 E687435		1 1 5	349 441 43 1	07 03 02	0 79 0 80 0 49	081 097 105	<0.5 <0.5 <0.6	0 38 0.46 0 34	0 27 0 51 1 73	305 237 101	<1 <1 1	24.6 27.6 20.4	2 42 2.94 2.58	212 84 145	129 248 80	
E687436		<1	156 5	<0 1	3 08	0.23	<05	0.03	0 07	18	<1	29	0.35	93	9	
																_

Appendix C-1

Golden 6 & 7

392326, 392327

Technical Information

Investigative summary

on the exploration work conducted by Pacific Iron Ore

within the tenure boundary of the Golden 6+7 tenures

Introduction:

A considerable amount of time has gone into the investigation of exploration work which was conducted by Pacific Iron Ore within the tenure boundaries of the Golden 6 & 7 tenures. For unknown reasons Pacific Iron Ore conducted exploration work within the tenure boundary of our Golden 7 tenure #392327. They conducted a geophysical ground magnetic survey in which a traverse line when calculated is over 1150m south / west into our tenure, yet they reported and filed that work as their assessment on their property. We have launched an investigation into the matter.

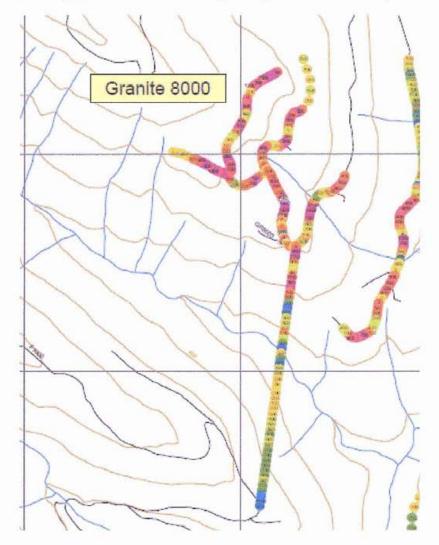
Trespass and field investigation: Line Magnetic Survey:

Overview:

In 2008, ARIS # 30,394 a line magnetic survey was conducted on the Granite Creek area in several locations. There were two areas of trespass which occurred on the Golden 7 tenure and as a subsequent investigation occurred which included reviewing assessment reports and a detailed field inspection. This work was recorded and reported as work conducted by and reported by Pacific Iron Ore.

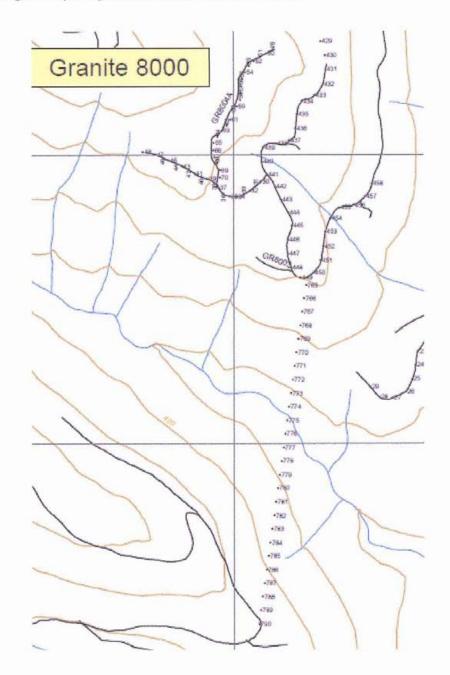
This assessment report (ARIS # 30,394) was filed by Pacific Iron Ore refers to a ground geophysical assessment with geochemical analysis of samples obtained.

There is a ground control magnetic survey line (Granite 8000) which is initiated on the tenure # 508712 which is owned by Pacific Iron Ore and trends south / west into the Golden 7 tenure #392327 which is owned by our group


This field work was conducted by field workers according to cost statements. This exploration field line is a combination of soil sediment and a ground geophysical line magnetic survey.

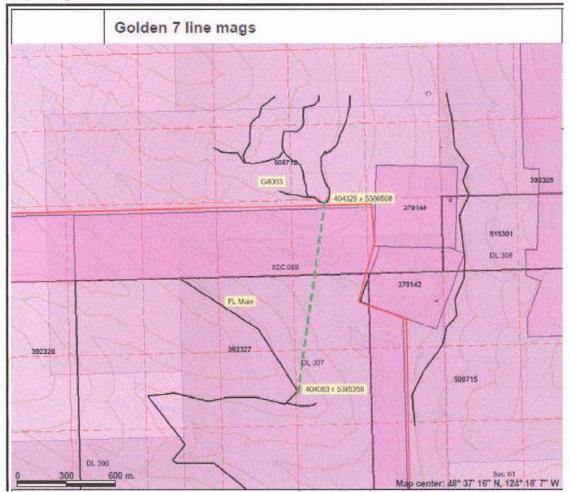
We re-traced the applicable traverse line established by Pacific Iron Ore and confirmed its existence infield and have referenced that investigative exploration work as part of our assessment of these tenures.

We have included our maps as cross reference information.


The Granite 8000 magnetic line reference map; as reported in ARIS # 30,394

The Granite 8000 magnetic line reference map; as reported in ARIS # 30,394 This is the reported co-ordinates and sample related information numbers to cross reference geochemical analysis of the (Granite 8000) magnetic survey line.

This sampling and reporting was conducted within our tenure.


Starting at 765 and ending at 790 as reported in their assessment report.

Sample Index #	Sampre#
748	GMN 21+50 S
749	GMN-22+00 5
750	GMN-23+00 S
751	GMN-23+50 \$
752	GMN-24+00 S
753	GMN-24+50 S
754	GMN-25+00 S
755	GRM 0+50 W
756	GRM 1+00 W
757	GRM 1+50 W
758	GRM 2+00 W
759	GRM 2+50 W
76D	GRM 3+00 W
761	GRM 3+50 W
762	GRM 4+00 W
763	GRM 4+50 W
764	GRM 5+00 W
765	4K 12+50 N
766	4K 12+00 N
767	4K ±1+50 N
768	4K 11-00 N
769	4K 10+50 N
770	4K 10+00 N
771	4K 9+50 N
772	4K 9÷00 N
773	4K 8+50 N
774	4K 8+00 N
775	4K 7+30 N
776	4K 7+00 N
777	4K 6+50 N
778	4K 6+00 N
779	4K 5+50 N
780	4K 5+00 N
781	4K 4÷50 N
782	4K 4+00 N
783	4K 3+50 N
784	4K 3+00 N
785	4K 2+50 N
786	4K 2+00 N
787	4K 1+50 N
788	4K 1+00 N
789	4K 0+50 N
79D	4K 0+00 N
791	MAG L2+205-0+10E

SAMPLE INDEX NUMBER - SAMPLE LABEL CROSSREFERENC

This is our Golden 7 tenure #392327 which if cross referenced to the above information within the ARIS report 30,394, and related mapping within that report clearly shows a magnetic survey line trespassing into the Golden 7 tenure.

This magnetic ground survey line is reported for a distance of 1150 meters into our tenure. It records 26 soil sample locations in which there is related geochemical analysis, and many different magnetic reference points are also related to this survey line. (See related magnetic maps within ARIS # 30,394

57

In closing;

For unknown reasons we can not figure out why Pacific Iron Ore would not ensure complete compliance and practice diligence within the Mineral Tenure Act when it comes to conducting diamond drilling. Precise calculations are a must to ensure one does not drill into the opposing tenures, especially when permission has not been granted by the opposing tenure owner.

This magnetic ground survey line is reported for a distance of 1150 meters into our tenure. It records 26 soil sample locations in which there is related geochemical analysis, and many different magnetic reference points are also related to this survey line. (See related magnetic maps within ARIS # 30,394

Clearly with the information provided within assessment report #30,394 this exploration work has clearly been conducted by Pacific Iron Ore within our tenure boundary, we have commenced a large investigation into this matter.

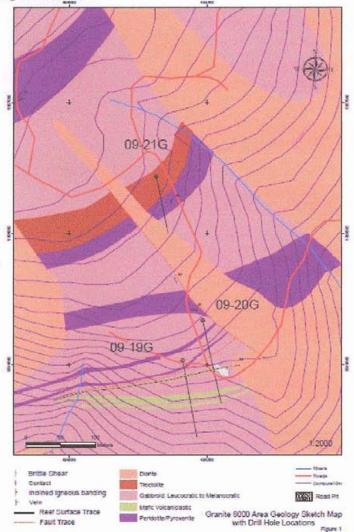
Technical information: Field investigation: ARIS #31,531 - drilling

Introduction:

A considerable amount of time has gone into the investigation of exploration work which was conducted by Pacific Iron Ore within the tenure boundaries of the Golden 6 & 7 tenures. Pacific Iron Ore conducted a diamond drilling program in the Granite 8000 area, the diamond drill locations can be found on logging spur roads GR 100 and GR 105, these drill locations are collared is just north of our northern tenure boundary of the Golden 7 tenure #392327.

Pacific Iron Ore collared three holes in this area, one of which enters into the Golden 7 tenure boundary. Upon calculations provided in ARIS #31,531, report on the Granite Creek 8000 it would appear clearly the DDH 09-19G would intersect the minerals within our tenure.

We have cross referenced all of the applicable data in reference to DDH 09-19G from ARIS 31,531 and included maps and photos of that drill location and confirmed its existence infield and have referenced that investigative exploration work as part of our assessment of these tenures.



Technical information: Field investigation: ARIS #31,531 - drilling

Pacific Iron Ore also conducted a drilling program assessment report (ARIS #31,531) was filed by Pacific Iron Ore. It contains several identified DDH's which if the GPS co-ordinates are cross referenced to MTO maps it would clearly appear that they are indeed either collared or drilled within our tenure boundaries.

We knew from field inspections and from the GPS coordinates taken infield we knew that these DDH's were very close to our northern tenure boundary of our Golden 7 #392327 tenure. We were seeking for months the information on each DDH, (we already knew azimuth, and dip, (we needed depth) to ensure these DDH's did not enter within the tenure boundary. We also have photographic evidence of those holes too.

Granite 8000 drilling locations;

Le Baron Prospecting Port Renfrew, BC Technical information: Field investigation: ARIS #31,531 - drilling This is the Mineral Titles Online map It identifies three DDH's in this location referred to as The Granite 8000 area. In reference to DDH 09-19G – this DDH enters within the boundary of our tenure. 09-19G 404165 5386606 531 237.744 170 -60

If you take into the factors of azimuth, dip, and depth this DDH 09-19G clearly intersects our legacy tenure the Golden #7 #392327.

We consider this DDH (09-19G) to enter within the boundary of our tenure. DDH09-20G is collared and comes within meters of the Golden tenure boundary DDH 09-21G is collared and does not enter the tenure of Golden #7 DDH 09-19G –G8105 spur DDH 09-20G – G8100 spur

Technical information: Field investigation: ARIS #31,531 - drilling

In closing;

For unknown reasons we can not figure out why Pacific Iron Ore would not ensure complete compliance and practice diligence within the Mineral Tenure Act when it comes to conducting diamond drilling. Precise calculations are a must to ensure one does not drill into the opposing tenures, especially when permission has not been granted by the opposing tenure owner.

By our calculations based upon the information provide by ARIS #31,531 in specific to; DDH 09-19G

	09-19G	404165	5386606	531	237,744	170	-60
--	--------	--------	---------	-----	---------	-----	-----

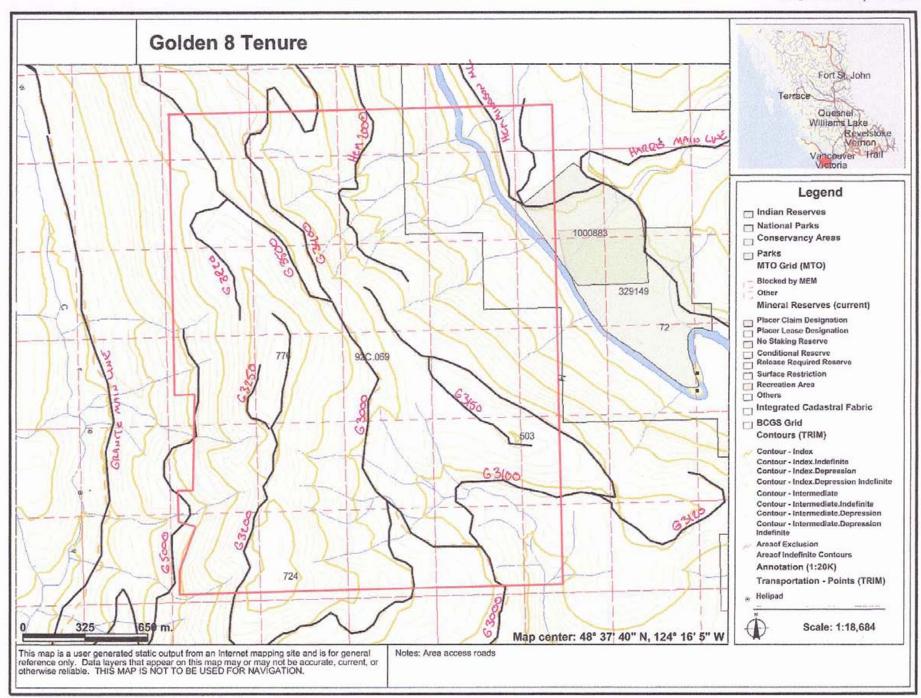
We calculate that this DDH hole intersects our tenure by 78 meters. So that would make the bottom 78 meters of core and all applicable information as ours.

Clearly with the information provided within assessment report #31,531 this exploration work has clearly been conducted by Pacific Iron Ore within our tenure boundary, we have commenced a large investigation into this matter.

Appendix D

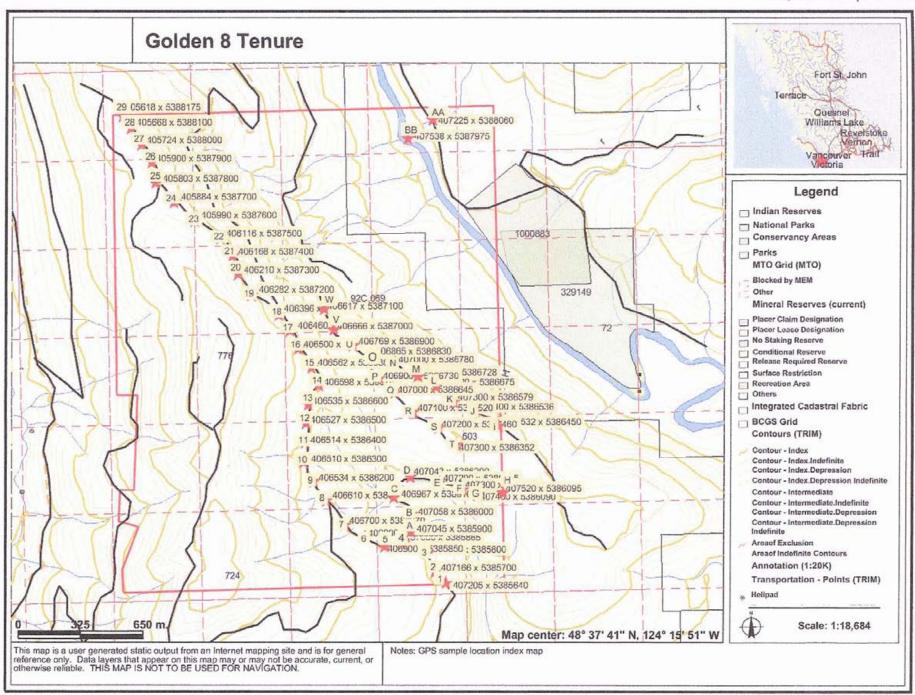
Golden 8

392328


Technical Information

Field assessment work

The continuation of sampling of the Limestone for dimension stone


Figure MAP F

-

FIGURE MAP F-Z

-

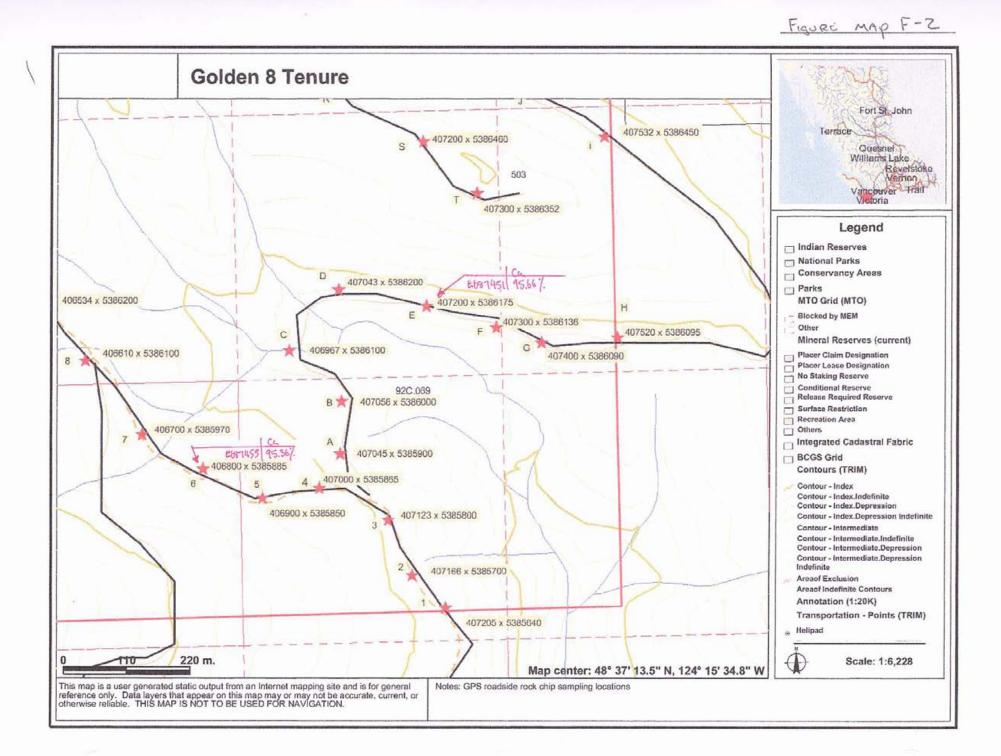
Introduction:

The Golden 8 tenure is located north / east of Port Renfrew BC. (See figure map – tenure locations). The legacy tenure Golden 8 is 500 ha in size and since it is legacy tenure its mineral rights supersede any cell tenures which may overlap. This tenure has been explored by this group over the yeas utilizing hand tools; several areas of interest have been identified in years past and are the continuation of exploration for this program.

A lot of exploration time has gone into the Golden 8 mineral tenure, from field exploration to the continuation of sampling the high grade calcium deposit for the purpose of dimension stone.

Statement of costs: Golden 8 Dates: $2009 - May 9^{th}$ to 13^{th} $2009 - June 23^{rd}$ to 25^{th} $2009 - August 22^{nd}$ to 23^{rd} $2009 - October 4^{th}$ to 7^{th} , 14^{th} to 17^{th} $2010 - Feb 16^{th}$ to 17^{th} $2010 - March 2^{nd}$ to 4^{th}
Raymond Oshust (FMC #141465) Field supervisor / labor / owner 23 days @ \$300.00 / day=\$6,900.00
Gordon Saunders (FMC #145703) Field assistant / labor / owner 10 days @ \$300.00 / day=\$3,000.00
Robert Bradshaw Field labor 8 days @ \$200.00 / day=\$1,600.00
Transportation Ray - Truck @ \$50.00 / day x 23 days (Not included?)= \$1,150.00 Gord - Car @ \$30.00 / day x 10 days (Not included?)= \$300.00
Accommodations Gordon - \$70.00 / day x 10 days= \$700.00 Robert - \$70.00 / day x 8 days= \$560.00
ALS Laboratory services 12 rock chip samples
Le Baron Prospecting Report data compilation and report preparation \$350.00 / day x 2 days=\$700.00
Total exploration on RNR and Tracey=\$13,460.00

Technical information: Roadside rock chip sampling See reference maps

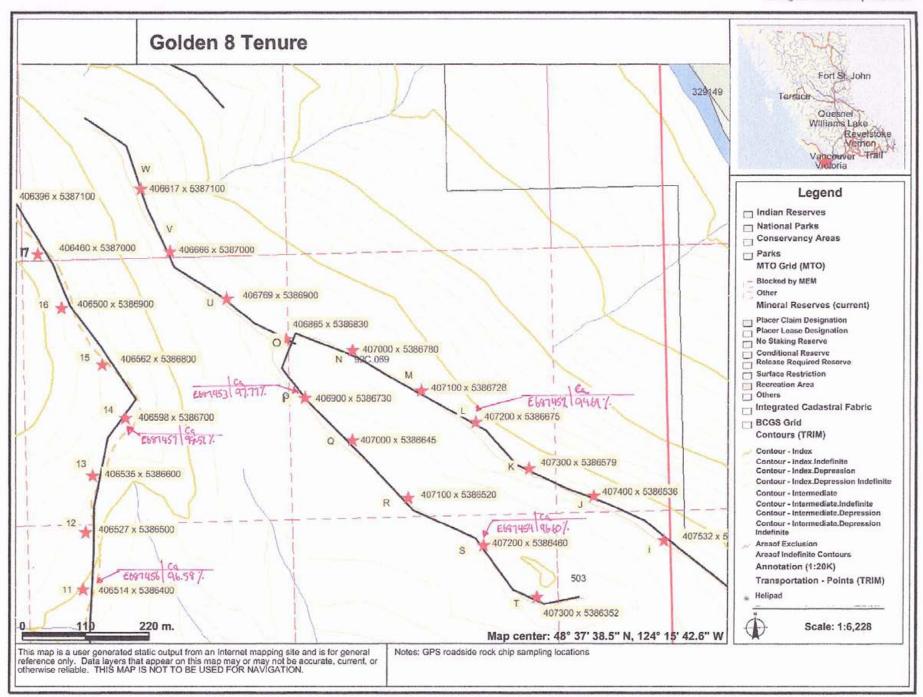

Summary;

A GPS roadside rock chip sampling program was conducted to redefine the roadside rock chip sampling that occurred only on a partial portion of the Granite 3000 spur road 2009. In the previous exploration we were preparing to establish a quarry permit for the northern end of the Golden 5 tenure, systematic exploration was established and lines were plotted in field in preparation for the application. More follow up is required before we move ahead with that application.

This exploration took in new data and looked deeper into the presence of possible ultramafic rocks exposed in the lower portion of the Golden 8 tenure, however the main focus is still on the vast amounts of white limestone, and rock chip samples were collected utilizing a haramer and chisel.

#	GPS	description
1	407205 x 5385640	South eastern tenure boundary – G3000
2	407166 x 5385700	rock chip, limestone, black streaks
3	407123 x 5385800	rock chip, limestone, black streaks
4	407000 x 5385865	rock chip, limestone, black streaks
5	406900 x 5385850	rock chip, limestone, black streaks
6	406800 x 5385885	rock chip, massive limestone, black streaks - ALS E687455
7	406700 x 5385970	rock chip, limestone, black streaks
8	406610 x 5385100	rock chip, limestone, black streaks
A	407045 x 5385900	Junction G3000 and G3100
В	407058 x 5386000	rock chip, limestone, black streaks
С	407697 x 5386100	rock chip, limestone, black streaks
D	407043 x 5386200	rock chip, limestone, black streaks
Ē	407200 x 5386175	rock chip, massive limestone, black streaks - ALS E687451
F	407300 x 5386136	rock chip, limestone, black streaks
G	407400 x 5386090	rock chip, limestone, black streaks
Н	407520 x 5386095	South eastern tenure boundary – G3000
I	407532 x 5386450	South eastern tenure boundary – G3000
S	407200 x 5386480	rock chip, massive limestone – ALS E687454
T	407300 x 5386352	rock chip, limestone – end of sampling
	Summary;	
		is a massive white limestone deposit. In the lower portions of the
	tenure rock out crops	of pure white limestone with mafic dykes cutting the intrusions.
l	⊥	

Reference figure maps F-2


Technical Information: (See Figure Maps F to F5)

Summary;

A GPS roadside rock chip sampling program was conducted to redefine the roadside rock chip sampling that occurred only on a partial portion of the FL Main logging road in 2009. This exploration took in new data and looked deeper into the presence of possible ultramafic rocks in the area, rock chip samples were collected utilizing a hammer and chisel. Reference figure maps F-3

#	GPS	description
1	407532 x 5386450	South eastern tenure boundary - G3000
Ĵ	407400 x 5386536	rock chip, limestone, black streaks
Κ	407300 x 5386579	rock chip, limestone, black streaks
L	407200 x 5386675	rock chip, massive limestone, black streaks – ALS E687452
M	407100 x 5386728	rock chip, limestone, black streaks
Ν	407000 x 5386780	rock chip, limestone, black streaks
0	406900 x 5386830	Junction G3100 and G3152
Р	406800 x 5386730	rock chip, massive limestone, black streaks - ALS E687453
Q	407000 x 5386645	rock chip, limestone, black streaks
R	407100 x 5386520	rock chip, limestone, black streaks
S	407200 x 5386460	rock chip, limestone, black streaks,
Т	407300 x 5386352	rock chip, limestone, black streaks
ป	406666 x 5386900	rock chip, limestone, black streaks
V	406769 x 5387000	rock chip, limestone, black streaks
W	406617 x 5387100	rock chip, limestone – end of sampling
11	406514 x 5386400	rock chip, massive limestone, black streaks – ALS E687456
12	406527 x 5386500	rock chip, limestone, black streaks
13	406535 x 5386600	rock chip, limestone, black streaks
14	406598 x 5386700	rock chip, massive limestone, black streaks - ALS E687457
15	406562 x 5386800	rock chip, limestone, black streaks
16	406500 x 5386900	rock chip, limestone, black streaks
17	406460 x 5387000	rock chip, limestone, black streaks
		get in this tenure the more massive the limestone deposit ut crops are abundant and are excellent examples of the deposit

FIGURE MAP F-3

Technical Information: (See Figure Maps F to F5)

Summary;

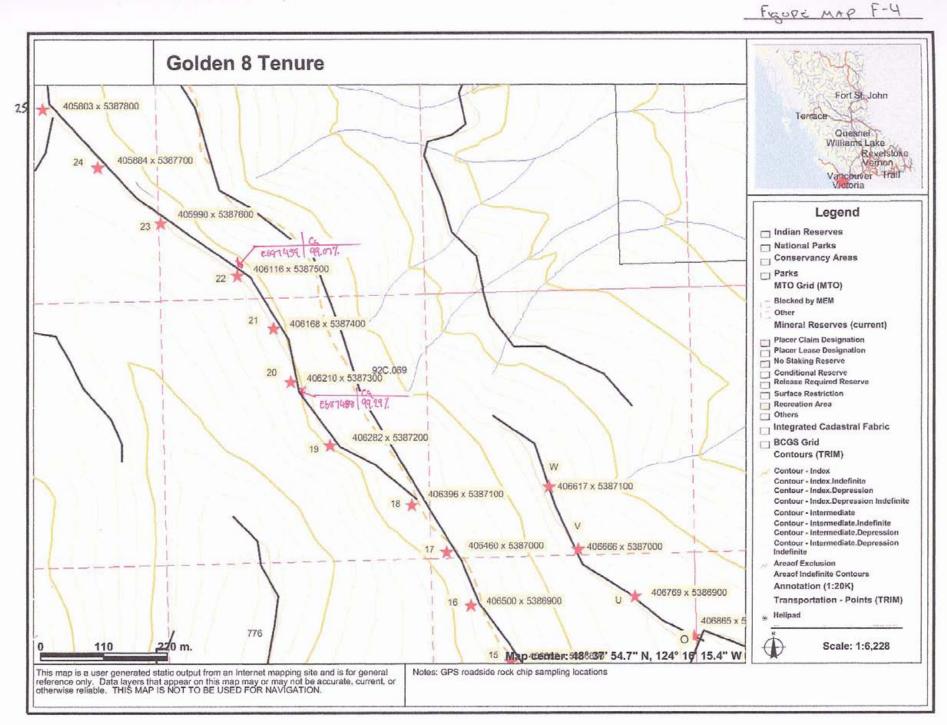
A GPS roadside rock chip sampling program was conducted to redefine the roadside rock chip sampling that occurred only on a partial portion of the FL Main logging road in 2009. This exploration took in new data and looked deeper into the presence of possible ultramafic rocks in the area, rock chip samples were collected utilizing a hammer and chisel.

06562 x 5386800 06500 x 5386900 06460 x 5387000 06396 x 5387100 06282 x 5387200 06210 x 5387300 06168 x 5387400	rock chip, limestone rock chip, limestone rock chip, limestone rock chip, limestone rock chip, limestone rock chip, massive limestone – ALS E687458 rock chip, limestone
06460 x 5387000 06396 x 5387100 06282 x 5387200 06210 x 5387300 06168 x 5387400	rock chip, limestone rock chip, limestone rock chip, limestone rock chip, massive limestone – ALS E687458 rock chip, limestone
06396 x 5387100 06282 x 5387200 06210 x 5387300 06168 x 5387400	rock chip, limestone rock chip, limestone rock chip, massive limestone – ALS E687458 rock chip, limestone
06282 x 5387200 06210 x 5387300 06168 x 5387400	rock chip, limestone rock chip, massive limestone – ALS E687458 rock chip, limestone
06210 x 5387300 06168 x 5387400	rock chip, massive limestone – ALS E687458 rock chip, limestone
06168 x 5387400	rock chip, limestone
10110 E207E00	
06116 x 5387500	rock chip, massive limestone – ALS E687459
05990 x 5387600	rock chip, limestone
05884 x 5387700	rock chip, limestone
05803 x 5387800	rock chip, limestone
•	u get in this tenure the more massive the limestone deposit but crops are abundant and are excellent examples of the deposit
h	mmary; e farther north you

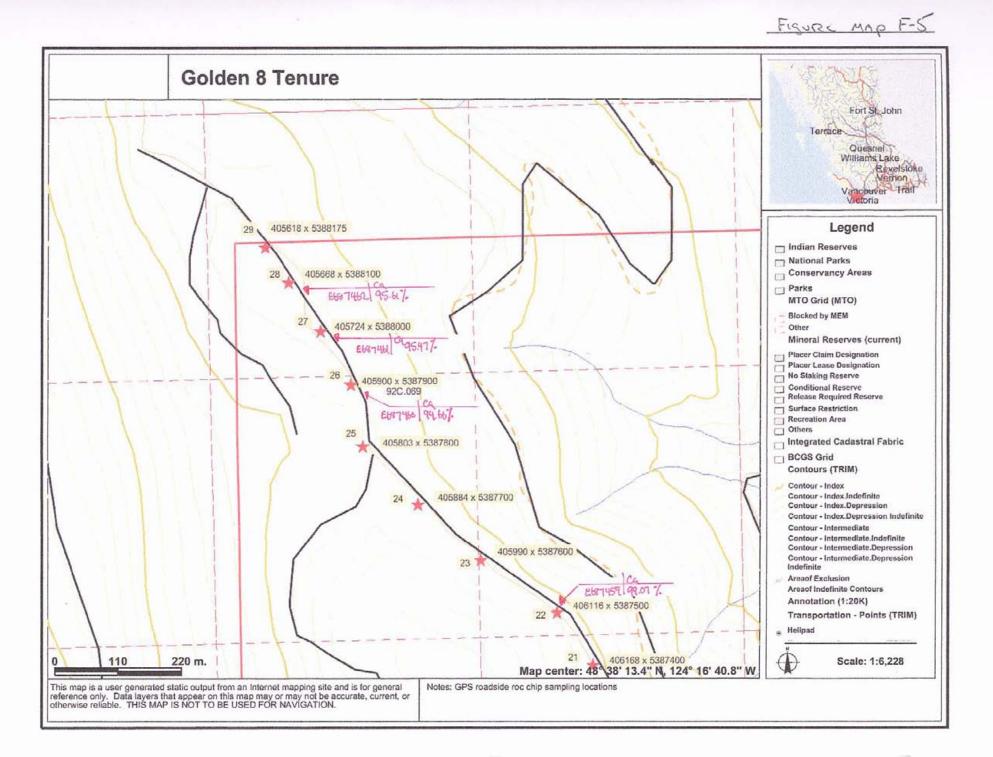
Reference figure maps F-4

Reference figure maps F-5

#	GPS	description
26	405900 x 5387900	rock chip, massive limestone - ALS E687460
27	405724 x 5388000	rock chip, massive limestone - ALS E687461
28	405668 x 5388100	rock chip, massive limestone - ALS E687462
29	405618 x 5388175	rock chip, limestone – north western tenure boundary, end of sampling
		sit here is massive, roadside out crops are abundant and are of the deposit, and logging in the area has exposed massive white


Summary;

The Golden 8 tenure is a massive mountain of almost pure white limestone.


55 roadside sample locations occurred in each area several rock chip samples were obtained and in a few areas large pure white limestone rocks were collected, and Dioritic intrusive can found in the southern portions of the tenure where there is contact between the limestone and mafic intrusion. Geochemical analysis were conducted from several rock chip samples obtained, the results were impressive.

GPS survey lines were flagged and sampled at 100 meter intervals in the areas sampled. 3736 GPS meters of survey lines established

This tenure requires ongoing explorations

Technical Information: Analytical Methods ALS Laboratory Services Vancouver BC

Certificate of Analysis

VA10045618

The Golden 8 Project

Technical Information:

Analytical Methods ALS Laboratory Services Vancouver BC

Note:

Single element CaCO3 was used as a single element utilizing this fusion. Ca-VOL70

Limestone, Dolomite,	CaO, MgO, Al ₂ O ₃	Fe203, SiO2, LOI***	Fusion, ICP-AES	ME-ICP86	44.00
Magnesite, Magnesia					

ALS Chemex EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd 2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

To: SAUNDERS, GORDON 2650 CEDAR HILL ROAD VICTORIA BC V8T 3H2

Ca-VOI 70

CaCO3 in Limestone

Page: 1 Finalized Date: 22-APR-2010 This copy reported on 26-APR-2010 Account: SAUGOR

С	ERTIFICATE VA100456	18		SAMPLE PREPARATION	
			ALS CODE	DESCRIPTION	
Project: Golden #8 Project P.O. No.: This report is for 12 Rock so 16-APR-2010.	imples submitted to our lab in Vand	couver, BC, Canada on	WEI-21 LOG-21 PUL-31 CRU-31	Received Sample Weight Sample logging - ClientBarCode Pulverize split to 85% <75 um Fine crushing - 70% <2mm	
The following have acces RAY OSHUST	is to data associated with this c SCOTT PHILLIPS	GORDON SAUNDERS	ALS CODE	ANALYTICAL PROCEDURES	

To: SAUNDERS, GORDON ATTN: SCOTT PHILLIPS 9298 CHESTNUT ROAD CHEMAINUS BC VOR 1K5

Signature:

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

Colin Ramshaw, Vancouver Laboratory Manager

ALS Chemex EXCELLENCE IN ANALYTICAL CHEMISTRY

North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0213 www.alschemex.com

ALS Canada Ltd.

2103 Dollarton Hwy

To: SAUNDERS, GORDON 2650 CEDAR HILL ROAD VICTORIA BC V8T 3H2

Page: 2 - A Total # Pages: 2 (A) Finalized Date: 22-APR-2010 Account: SAUGOR

Project: Golden #8 Project

CERTIFICATE OF ANALYSIS VA10045618

Sample Description	Klethod Analyte Units LOR	WEI-21 Recvol WL ×g 0.02	C≇-VCL70 C≊CO3 % 0.01						
E687 461 E687 452 E687 453 E687 454 E687 454		0.24 0 16 0 20 0 24 0 24	95 66 94 69 97 77 96 60 95 36						
E687456 E687457 E687458 E687459 E687460		0 18 0 16 0 30 0 24 0 30	96 58 98 52 99 29 99 07 94 66			 			
E687461 E687462		0 18 C 19	95 47 95.61	 		 	 		
	:								

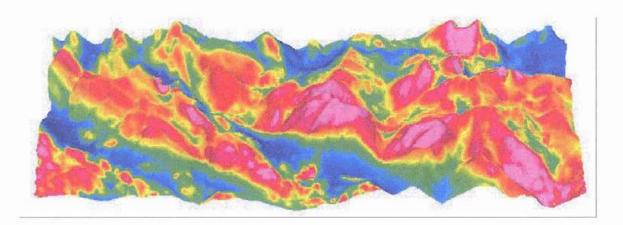
Appendix E

Airborne Magnetic Survey Reference Information

Over the Pearson Project

Note to the reader;

This information is provided as reference to the airborne magnetic study conducted by Emerald Field Resources, (now called Pacific Iron Ore Corporation). It is part of this assessment report for information only because of our tenures which are located within the boundaries of the airborne magnetic study area known as the "Pearson Project"


This airborne magnetic survey was conducted in 2006 by Fugro, it was the very first airborne magnetic study in detail which provided clear color images of the magnetic anomalies in the study area in Port Renfrew.

The airborne magnetic flights were conducted over our tenures within the area. Some of the P-targets referenced within the ARIS #28,715 are our tenures completely or our tenures are located very close to the P-Targets.

Technical Information Note to reader; This is for information only. Please reference ARIS #28,715

REVIEW OF AEROMAGNETIC DATA OVER THE PEARSON PROPERTY ON BEHALF OF EMERALD FIELDS RESOURCE CORPORATION

REPORT BY MONIKA SUMARA August 25th, 2006

Technical Information This is for information only - Please reference ARIS #28,715

Pearson Project - Emerald Fields Resource Corporation Aeromagnetic Interpretation Report

INTRODUCTION

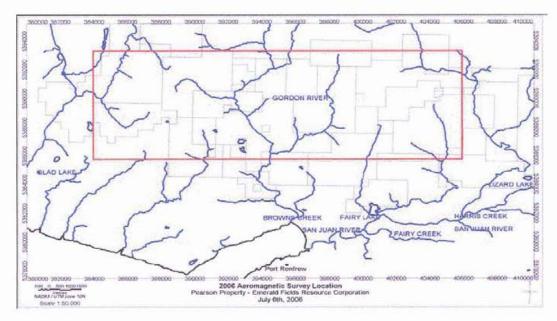
This report describes the data obtained from the airborne magnetometer survey as pertaining to the geology of the Pearson claim block for Emerald Field Resource Corporation on Southwestern Vancouver Island, BC. In June 2006, Fugro was contracted to fly a low altitude, magnetometer survey with their helicopter based, stinger mounted single sensor system over the key area of interest on the Pearson property.

MAGNETIC SURVEY

Survey Specification

The helicopter based magnetometer survey was flown by Fugro and was completed over a period spanning between Jun 12, 2006 and June 20, 2006. The grid measured 22km by 7km and consisted of N-S lines at 100m spacing and E-W tie lines at 500m spacing for a total distance of 1972 line kilometers.

Altitude


Altitude control was accomplished via onboard helicopter altimeter. The target elevation of 60m average altitude was achieved with a mean variation of 15m. This was deemed acceptable for the rugged terrain of the southern part of Vancouver Island.

Magnetic Noise

A fourth difference filter was applied to the diurnally corrected data to inspect the level of noise. The noise envelope was at an acceptable level well below 0.1nT, and overall the magnetic data was very clean.

SURVEY LOCATION

The 2006 Aeromagnetic survey was flown over a portion of the Pearson claim block located on SW Vancouver Island, BC, as seen on the map bellow.

Technical Information This is for information only - Please reference ARIS #28,715

MAGNETIC MAPS

A total magnetic field map was made over the entire survey area and contoured at an interval of 100nT. Also provided are the vertical derivative and the analytic signal grids showing the locations of historical drill holes and mineral showings. Where magnetic anomalies of interest were noted, further zoomed images of the area of interest were created. These maps and figures are included as an appendix to this report.

DATA PROCESSING AND PRESENTATION

All data was collected and processed in the NAD 83, Zone 10 projection. A standard sequence of Geophysical processing was applied to the aeromagnetic data as described in the steps below. The aeromagnetic data was girded using the bi-directional method with a 25m cell size, and a Total Magnetic Field image was created. In addition, two other grids were created which included the Vertical Derivative and Analytics Signal in order to investigate the magnetic characteristics of the geology in this area.

The Vertical Derivative is commonly applied to total magnetic field data to enhance the shallowest Geological sources. Isolating short wavelength magnetic features enhances the response of near surface features at the expense of deeper sources and provides a more direct correlation between magnetic anomalies and geological map units.

The Analytic Signal grid is a valuable geophysical interpretation tool in locating the edges of magnetic source bodies, particularly where reminisce complicates interpretation. The analytic signal is the square root of the sum of the squares of the derivatives in the x, y, and z directions.

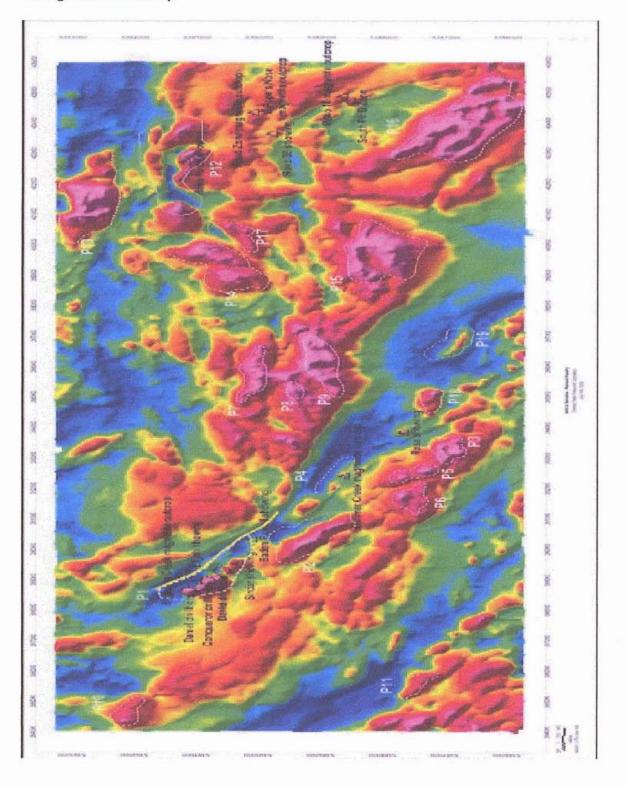
Corrections

Base-mag readings were carried out by Fugro as was the diurnal correction of the raw data.

Lag Correction

A lag shift of -5 fiducially was used in the lag correction.

Heading Correction


Heading corrections were performed by the survey data acquisition system as part of the aircraft compensation system. The correction parameters were determined by a heading test flight at the start of the survey.

Statistical Leveling of Total Magnetic Field

A statistical leveling of the magnetic data was done first on the tie lines, and then a full level was done on all lines. A least-squares trend line was calculated through an error channel to derive a trend error curve, which was then added to the channel to be leveled. The trend curve was then saved for later inspection.

Technical Information This is for information only - Please reference ARIS #28,715 P-Target Reference Map

75

Technical Information: - Please reference ARIS #28,715 Airborne Magnetic Survey Reference Information Le Baron Prospecting and San Juan Marble Developments Ltd Interpretation of the Aeromagnetic Data

This is our interpretation of the above mention summary "review of Aero Magnetic Data Report". In 2006 Emerald Field Resources Corporation has conducted a systematic and very detailed aero magnetic study of a small portion of their property: "The Pearson Project".

However within the EFR report there is failure to communicate information to the readers that there are other mineral tenure owners in the immediate area. (See tenure reference maps)

The below mentioned information was obtained from the above mentioned summary report.

The below mentioned **P-Targets** are areas where **m**ineral tenures are owned by **Le Baron Prospecting and San Juan Marble Developments Ltd**, yet referred to as **m**ineral tenures and targets requiring further geological study by **Emerald Field Resources**.

Referenced from page 13 - 14 of the Review of Aero Magnetic Data Report
P Targets;

P-2 = NTS: 390184 x 5389236 / magnetic high of 1200 / area are 1900 x 900 / description is a substantial magnetic high, south of the Braden Powell showing.

- This is our Cypress fraction tenure in this area

P-5 + 6 = NTS: 391731×5387702 / magnetic high of 900 / area are 800 x 500 / description is the west of the Rose showing / strong magnetic signal

- This is our Princess and Rachel 1 + 2 fractions are located in this area.

P-12 = NTS: 402919 x 5391192 / magnetic high of 1275 / area are 3100 x 900 / description is a large E-W trending structure that encompasses Reko North showing. -This is our Golden 5 and surrounding Le Baron tenures and the historic **Reko property**.

P-13 = NTS: 401507 5392669 / magnetic high of 1400 / area is 3000 x 830 / description is a large E-W trending structure, strong mag high, requires further geological recon - This is our RNR and Tracey tenures

P-16 = NTS: 403327 5386898 / magnetic high of 1300 / area is 2700 x 1200 / description is a Broad anomaly, analytic signal indicates the source is many small parts rather than one large structure

- This is the north end of the Golden 6 & 7 tenures in the area.

P-17 = NTS: 400592 5390486 / magnetic high of 700 / area is 1130 x 500 / description is a Moderate mag high, N-E trending structure, further geological recon recommended - *This is the area of the Spring tenures in this area*.

Technical Information - Please reference ARIS #28,715 Airborne Magnetic Survey Reference Information P-13 anomaly

Anomaly P13

Anomaly P13 is located at the NE end of the survey block and has a very strong response at 1400nT. It's approximately 3000m by 830m in dimension and trends NW though not as strongly as the previous anomalies. Based on the large size and strength of the magnetic response, this anomaly merits further exploration. EM and geological recon are recommended.

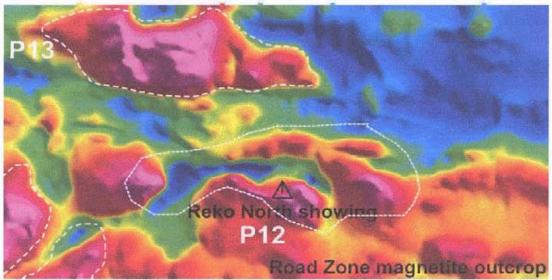
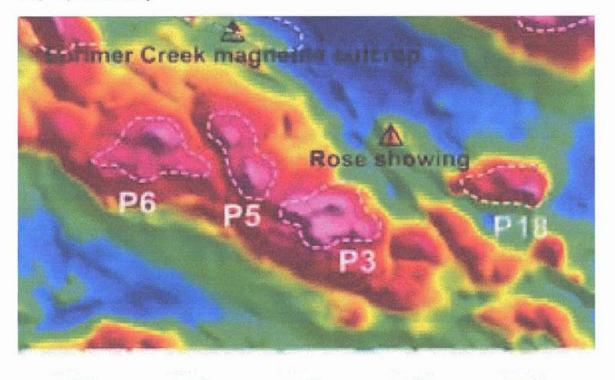


Figure 6: Anomaly P13 Image

The source of the other mineral showings in the eastern section of the survey including the Road Zone magnetite outcrop, Pope's Nose Zone magnetite outcrop, Reko 38 showing and Reko 10 magnetite outcrop, do not appear to have very deep sources as shown in the vertical derivative and analytic signal grids, and therefore show less potential as economic ore bodies.

The P-13 anomaly when cross referencing the GPS co-ordinates it clearly defines the GPS coordinates of our RNR tenure # 401285


		3000 x 830	large E-W trending structure, strong mag high, requires further geological recon	

Technical Information - Please reference ARIS #28,715 Airborne Magnetic Survey Reference Information P-3, P-4, P-6 anomaly

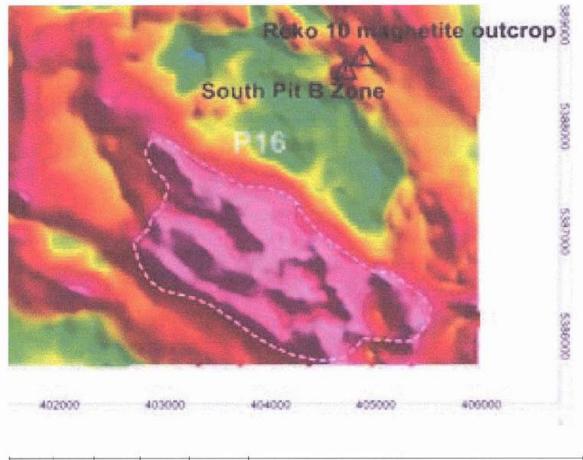
392000

391000

Wartictal Damaster Patarane Pr

395000

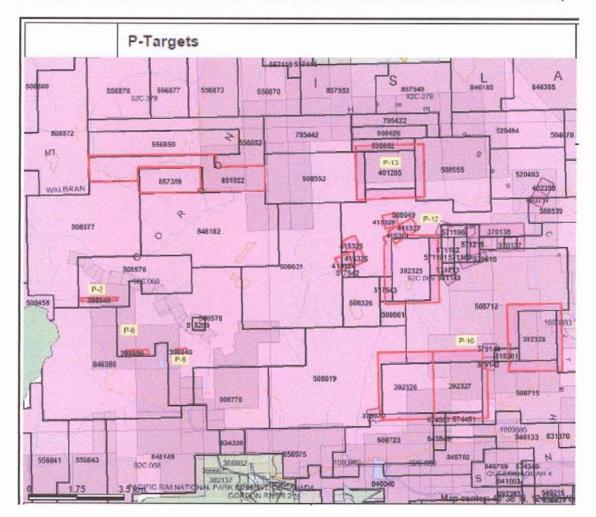
P3	393023	5386974	1380	900 x 560	Mag high structure South of Rose showing
P5	392550	5387326	900	820 x 300	West of Rose showing, same response as anomaly P6 directly west, size decreases in analytic signal
	1000000				


393000

394000

The P-3, P-5 and P-6 anomalies are identified as very defined anomalies, with a magnetic response of 900 Nt. Our fraction tenures are located upon these anomalies. Cypress: # 398948 Princess 1: #398949 Rachel 1; #398949 Rachel 2: #398950

Technical Information - Please reference ARIS #28,715 Airborne Magnetic Survey Reference Information P-16 anomaly



	P16	403327	5386898	1300	2700 x 1200	Broad anomaly, analytic signal indicates the source is many small parts rather than one large structure
- 2						

The majority of southern portion of the P-16 magnetic anomaly is the northern portions of our Golden 6 #392326, and Golden 7 #392327 mineral tenures.

Technical Information: Airborne Magnetic Survey Reference Information

P-Targets in relation to Le Baron and associated tenures in the Port Renfrew Area map

In closing:

We are not aware of any legislation in reference to an airborne magnetic surveying over mineral bearing ground. However, within this ARIS assessment (#28751) the reader is under the impression that the airborne magnetic survey over the "project area" and the tenures within and P-targets referenced are that of Emerald Field Resources.

Emerald Field Resources knowing identified several P-Targets and referred to them as their P-Targets of interest, there is no legislation under the Mineral Tenure Act in which we have control over what happens in relation to airborne magnetic surveys over our tenures, however when referencing specific areas of interest one must include cross reference maps which indicate opposing tenures in the study area.

Summary and conclusions of exploration (by tenure)

The RNR and Tracey tenures (401285, 535952) contain small volumes of magnetite, these tenures host more magnetic serpentine and ultra mafic rocks, the airborne magnetic study (ARIS #28,751) identified the RNR tenure as the largest magnetic anomaly in the entire area. More exploration is required on these tenures.

Within the Golden 5 tenure (392325) exposures of massive magnetite are found mostly middle to the northern part of this tenure. It is apparent that a massive band of magnetite traverses east to west through this area. The thickness of this band is unknown, but based upon the airborne magnetic maps and the partial drilling conducted within the tenure boundary by Pacific Iron Ore and also the vast exposures show this tenure is of significant importance. Further exploration is required in this tenure.

Within the Golden 6 \pm 7 tenures (392326, 392327) there appears to be exposures of ultramafic origin. Since these tenures lie on the edge of the San Juan Fault and the rocks within the southern portion of the tenure show shearing and folding, exposing serpentine with periditite in areas, in the northern part of these tenures magnetite exposures are present and it is a direct relation to the airborne magnetic survey.

Further exploration is required in these tenures.

The Golden 8 tenure (392328) is just simply outstanding in that it is one large massive mountain of white limestone, especially in the northern portion of the tenure where massive exposure of the limestone is present and the geochemical analysis suggested that the purity is 90%+ Ca in all samples submitted.

Further exploration is required within this tenure.

The exploration which Pacific Iron Ore has conducted within our tenures is also a helpful resource to us and the readers in reference to (airborne magnetic survey – P-Targets) and the geophysical ground line magnetic surveys which were conducted both in the Golden 7 and the Golden 5 mineral tenures. What is most helpful is the diamond drilling which was conducted within our tenure boundaries of the Golden 5 tenure, the Golden 7 tenure and other tenures not part of this assessment report.

We are, however, still uncertain as to why Pacific Iron Ore conducted this exploration within our tenure boundaries, we are certain that they never referenced the Mineral Titles Online reference maps, it would have been clear as to where the GPS coordinates of opposing tenure boundary lines are located.

As the time of this assessment an investigation has commenced and is ongoing into the exploration work within our tenure boundary. We will submit our investigation to the Ministry of Energy and Mines to seek a resolution.

The reader of this assessment report can see that indeed exploration was conducted within our tenure boundaries and the reader if they require more information can reference the applicable assessment reports filed by Pacific fron Ore and referenced in this assessment report.

Summary and conclusions - continued

More exploration work is recommended on these and surrounding tenures in the immediate area. That exploration should be done in stages with full documentation.

- GPS Grid sampling in areas identified in this assessment report
- A geophysical ground line magnetic survey within the Golden 5 tenure
- Diamond Drilling utilizing a small "Shaw Back Pack" drill on order
- Sectional sampling cross cut sampling of areas identified within the RNR tenure on the ultramafic exposures
- Further sampling of the white limestone in the Golden 8 tenure.
- Geochemical analysis of rock chip samples obtained
- Ensure that anyone conducting exploration work within the area of these specific tenures does not conduct or report further on exploration within our tenure boundaries.
- Ensure compliance of all exploration

With all of the exploration which has occurred within our tenure boundaries, one of our main purposes is to ensure that the Ministry of Energy and Mines follows up on our investigation into unlawful exploration conducted by Pacific Iron Ore on tenures within this assessment report.

Pacific Iron Ore was issued a exploration or Mining Permit for the Granite Creek area, we are unsure as to why the Ministry would issue and approve such a permit without cross referencing exploration areas to ensure opposing tenures were not part of the exploration area. We know the Permitting did not discuss this Permit with Titles and we area seeking a copy of the exploration permit.

We are looking forwards to what ever outcome may be decided within the legislation of the Mineral Tenure Act and all other legal means which are available to us to ensure our rights as tenure owners are protected.

Conformation of event - RNR and Tracey

Event Number: 4506893 Event Type: Exploration and Development Work / Expiry Date Change

Work Type Description: Technical Work Work Type Code: T Technical Items: Geochemical

Financial Summary: Total Required Work Amount: 17420.62 PAC Name: G.Saunders PAC Debit: 0.00 PAC Credit: 8549.38 Total Submission Fees: 871.84

Total Paid: 871.84 Work Start Date: 2009/MAR/21 Work Stop Date: 2010/MAR/10 Total Value of Work: \$25970.00 Mine Permit No:

Summary of the work value:

Tenure Number: 508826 Tenure Type: M Tenure Subtype: C Claim Name/Property: Tracey Issue Date: 2005/mar/11 Old Good To Date: 2010/mar/11 New Good To Date: 2013/mar/16 # of Days Forward: 1101 Area in Ha: 127.92 Tenure Required Work Amount: 3084.03 Tenure Submission Fee: 154.34

Tenure Number: 401285 Tenure Type: M Tenure Subtype: C Claim Name/Property: RNR Issue Date: 2003/mar/16 Old Good To Date: 2010/mar/16 New Good To Date: 2013/mar/16 # of Days Forward: 1096 Area in Ha: 500.00 Tenure Required Work Amount: 12000.00 Tenure Submission Fee: 600.55

Conformation of event - RNR and Tracey - continued

Tenure Number: 535952 Tenure Type: M Tenure Subtype: C Claim Name/Property: TRACEY # 2 Issue Date: 2006/jun/19 Old Good To Date: 2010/jun/19 New Good To Date: 2013/mar/16 # of Days Forward: 1001 Area in Ha: 106.61 Tenure Required Work Amount: 2336.59 Tenure Submission Fee: 116.95

Conformation of event - Golden 5

Event Number: 4491032 Event Type: Exploration and Development Work / Expiry Date Change

Work Type Description: Technical Work Work Type Code: T Technical Items: Geochemical

Financial Summary:

Total Required Work Amount: 12000.00

PAC Name: G. Saunders PAC Debit: 0.00 PAC Credit: 2340.00

Total Submission Fees: 600.55

Total Paid: 600.55

Work Start Date: 2008/JUN/16 Work Stop Date: 2009/NOV/17 Total Value of Work: \$14340.00 Mine Permit No:

Summary of the work value:

Tenure Number: 392325 Tenure Type: M Tenure Subtype: C Claim Name/Property: GOLDEN 5 Issue Date: 2002/mar/08 Old Good To Date: 2010/mar/08 New Good To Date: 2013/mar/08 # of Days Forward: 1096 Area in Ha: 500.00 Tenure Required Work Amount: 12000.00 Tenure Submission Fee: 600.55

Conformation of event - Golden 6+7

Event Number: 4502231 Event Type: Exploration and Development Work / Expiry Date Change

Work Type Description: Technical Work Work Type Code: T Technical Items: Geochemical

Financial Summary:

Total Required Work Amount: 24000.00

PAC Name: G.Saunders PAC Debit: 0.00 PAC Credit: 3350.00

Total Submission Fees: 1201.1

Total Paid: 1201.1

Work Start Date: 2009/APR/04 Work Stop Date: 2009/OCT/17 Total Value of Work: \$27350.00 Mine Permit No:

Summary of the work value:

Tenure Number: 392326 Tenure Type: M Tenure Subtype: C Claim Name/Property: GOLDEN 6 Issue Date: 2002/mar/10 Old Good To Date: 2010/mar/10 New Good To Date: 2013/mar/10 # of Days Forward: 1096 Area in Ha: 500.00 Tenure Required Work Amount: 12000.00 Tenure Submission Fee: 600.55

Tenure Number: 392327 Tenure Type: M Tenure Subtype: C Claim Name/Property: GOLDEN 7 Issue Date: 2002/mar/10 Old Good To Date: 2010/mar/10 New Good To Date: 2013/mar/10 # of Days Forward: 1096 Area in Ha: 500.00 Tenure Required Work Amount: 12000.00 Tenure Submission Fee: 600.55

Conformation of event - Golden 8

Event Number: 4499272 Event Type: Exploration and Development Work / Expiry Date Change

Work Type Description: Technical Work Work Type Code: T Technical Items: Geochemical

Financial Summary:

Total Required Work Amount: 12000.00

PAC Name: G.Saunders PAC Debit: 0.00 PAC Credit: 1460.00

Total Submission Fees: 600.55

Total Paid: 600.55

Work Start Date: 2009/MAY/09 Work Stop Date: 2010/MAR/04 Total Value of Work: \$13460.00 Mine Permit No:

Summary of the work value:

Tenure Number: 392328 Tenure Type: M Tenure Subtype: C Claim Name/Property: GOLDEN 8 Issue Date: 2002/mar/09 Old Good To Date: 2010/mar/09 New Good To Date: 2013/mar/09 # of Days Forward: 1096 Area in Ha: 500.00 Tenure Required Work Amount: 12000.00 Tenure Submission Fee: 600.55