BC Geological Survey Assessment Report 33037

Prospecting Report

JOCELYN CLAIM

NTS 082F03SW N49° 09′ 51″ W 117° 14′ 04″ 11U 482906E 5445737N

NELSON MINING DIVISION

PROSPECTING REPORT JOCELYN MINERAL CLAIM

Table of Contents

	Page
INTRODUCTION	1
PROPERTY LOCATION AND ACCESS	1
TENURE	1
HISTORY	1
GEOLOGY	1
Regional	2
Property	2
Mineralization	2
EXPLORATION	2
Sample Preparation, Analyses	2
CONCLUSIONS	2
REFERENCES	3
AUTHOR'S QUALIFICATIONS	4
Tables	
Tenure and Property	1
Sample Result	2
Illustrations & Photos	
Property and Claim Location	5
Claim Map	6
Property Geology	7
Appendices	
Annondiv	الم
Appendix I Assay Resu Appendix II Photos	11.5
Appendix II	of Costs
Appendix iii	UI CUSIS

INTRODUCTION

The claim lies adjacent to the HB Mine (082FSW009) an important lead-zinc producer in the Salmo Belt. A new forest service road was constructed along Woodchuck Creek opening up rock cuts for inspection. The rock cuts were prospected; various areas of mineralization were viewed and sampled for assaying.

PROPERTY LOCATION AND ACCESS

Proceed 5.6 kilometers south of Salmo BC on Airport Road. Turn left on Sheep Creek Road for 2.5 kilometers easterly. Sheep Creek Road is an all-weather gazetted gravel road with year round access to the new Woodchuck FSR. Proceed 550 meters northwesterly along the Woodchuck FSR to the southern boundary of the claim. The Woodchuck FSR extends for the full length of the claim.

The claim lies at the western edge of the Salmo Belt within the famed Kootenay Arc to the west of the HB Mine and northwest of the Canex Mine.

TENURE

Table 1. Tenure and Property

Tenure Number	Tenure Type	Owner	Map Number	Good to Date	Status	Mining Division	Area (ha)
845525	Mineral	203025	82F	2013/FEB/05	GOOD	Nelson	211.1

HISTORY

Due to the claim's proximity to both the mines of the Salmo Belt and Sheep Creek Gold camp the area has been heavily prospected. The northern two thirds of the claim is heavily covered in overburden with no rock outcrops which would have severely limited any finds in earlier prospecting attempts. Review of historical references has turned up no information pertaining to exploration activity within the claim boundaries.

GEOLOGY

REGIONAL

Regional mapping depicts the claim area largely within an assumed area of the Upper Laib Formation of the Cambrian period. The formation is sedimentaries consisting of mica schist, micaceous quartzite, calcareous phylitte and minor limestone. The property is bordered to the north, northwest and south by the granodiorite of the Cretaceous Anstey Pluton. To the east lies the Laib formation, sedimentaries with phylitte, limestone and dolomite.

A thrust fault generally extends north, south along Woodchuck creek.

PROPERTY

The claim is covered in heavy overburden except for an area in the southeast of the claim. Road construction cut numerous upturned layered units of varying rock types. A lower elevation area of siliceous argillite rock cut contained swarms of sub-centimeter and centimeter narrow quartz veining. Two areas viewed consisted of highly oxidized, fractured and sheared zones of siliceous rock. Exposed in the bank cut of the road, both extended for of 100-125 meters and trended east west. Generally it appeared as an argillized phyllite with numerous centimeter wide quartz veins swarming throughout. Another unit 30 meters in width was comprised of fine bedded pyrites in dolomite exposed at a switchback.

MINERALIZATION

At the lower site, siliceous argillite had fine pyrites visible. Assays returned anomalous amounts of some Rare Earth Elements (REEs), although a full rare earth element analysis was not completed. Visible mineralization in the rusty sheared and fractured areas consisted of pyrite in the quartz veining. No notable values were returned from sampling of this unit. Fine pyrite was evident in the dolomite. No notable values were returned from sampling of this unit.

Table 2. **Sample Result** (ppm or %)

Element	Ва	Ce	Co	Cr	Cs	La	Li	Ni	Р	Rb	Sc	Sr	V	Υ	Zr
Sample	414.2	200.3	59.4	160.5	2.41	106.4	21.4	400	.809%	10.0	14.7	557.9	72	17.8	4.0
106414															

EXPLORATION

The various cut bank areas exposing rock were prospected and samples taken. As some samples fluoresced under UV light a reconnaissance of these sample areas was made at night with a portable UV light to note areas of particular interest for sampling. Mr. E. A. Lawrence of Emerals Mining Services attended. The full extent of the FSR has not been prospected and when active logging occurs further rock cuts are expected.

SAMPLE PREPARATION AND ANALYSES

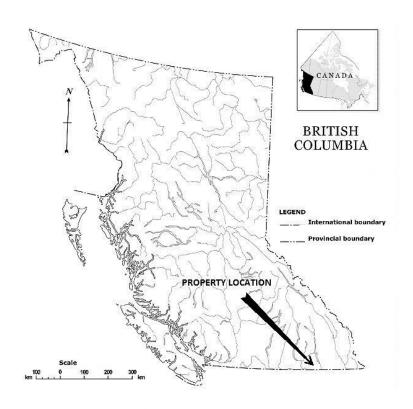
Rock samples were collected in sealable plastic bags, tagged and sent via priority post to Acme Laboratories (Vancouver) Ltd. Geochemical analyses were conducted using ICP and fire assay techniques. A detailed description of analysis techniques is provided in Appendix III.

CONCLUSIONS

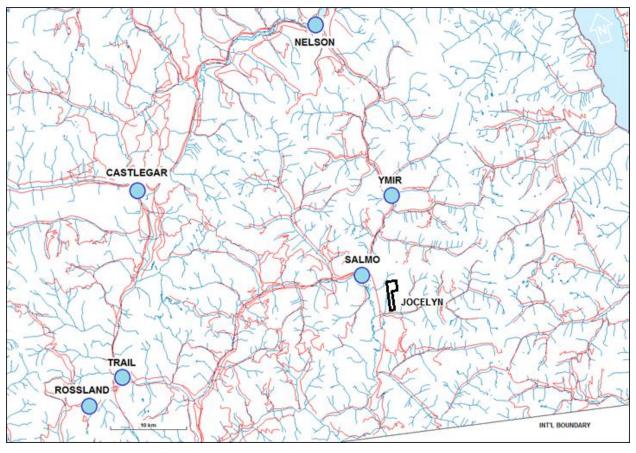
The claim area lies within the assumed boundaries of the Upper Laib formation the northern portion includes a contact with the Anstey Pluton. Due to heavy overburden most of the claim area has not been well prospected, but recent road construction has allowed for numerous rock cuts to be made visible. Geology is indicative of both Upper Laib and Laib formations. A sample site at the southern boundary of the property in an oxidized area has produced anomalous results of Rare Earth Elements (REEs). Road construction and logging activities will further exposed bedrock allowing for further prospecting opportunities.

REFERENCES

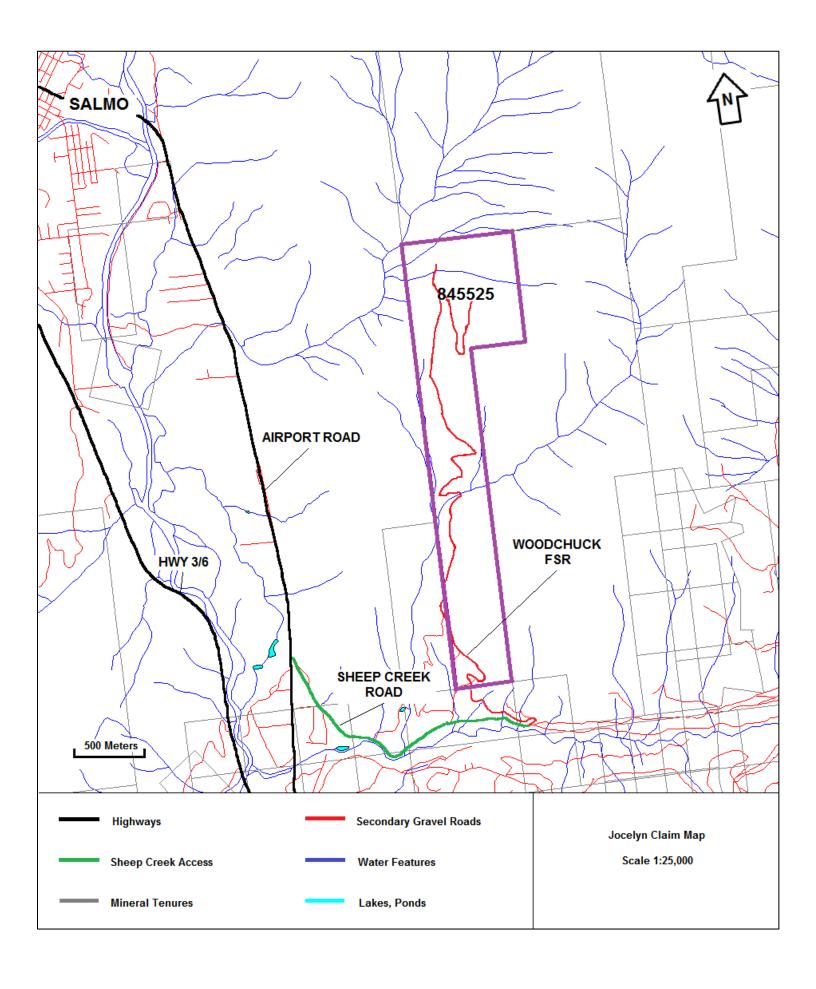
- **Fyles, J.T. and Hewlett, C.G.** (1959) Stratigraphy and Structure of the Salmo Lead-Zinc Area, Bulletin No. 41
- Little, H.W.- (1965) Geological Survey of Canada, Map 1145A, Geology Salmo British Columbia
- Mathews, W.H.- (1953) Geology of the Sheep Creek Camp. British Columbia Department of Mines, Bulletin No. 31
- Paradis, S., MacLeod, R.F. and Emperingham, R. (Compilers)- (2009): Bedrock Geology, Salmo, British Columbia. Geological Survey of Canada, Open File 6048
- **Walker, J.F.** (1934) Geology and Mineral Deposits of Salmo Map-area, British Columbia. Geological Survey of Canada, Memoir 172
- **Walker, J.F. and Steeves, S.M.** (1934) Geological Survey of Canada, Map 299A, Salmo Sheet, Kootenay District, British Columbia

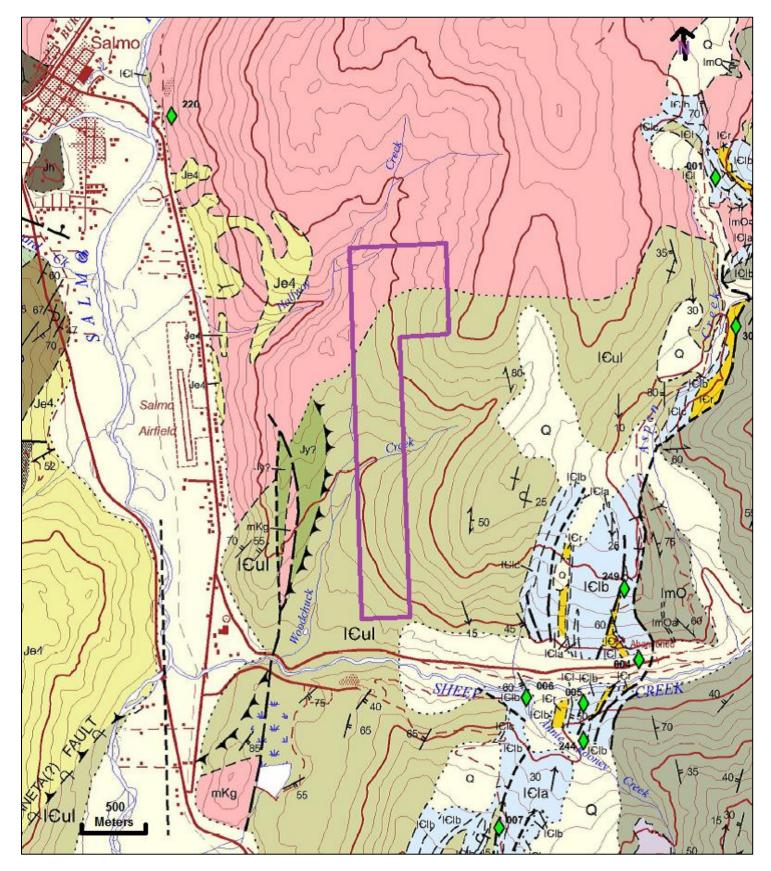

AUTHOR'S QUALIFICATIONS

I MARTIN ROSS residing at 20 Nasa Villas, Dubai, United Arab Emirates, certify as author of this report:


- 1) I am tenure holder of the Jocelyn Claim (845525);
- 2) I have prepared the report: "Prospecting Report, Jocelyn Mineral Claim, Nelson Mining Division" dated Jan 2012 and am responsible for its content;
- 2) I have been an active prospector for 9 years and was directly involved in the 2011 exploration of the Jocelyn Claim;
- 3) I am a graduate of Selkirk College with a diploma in Aviation Technology;
- 4) I am a graduate of the Rossland School of Mining with a certificate in Underground Mining.

This day the 01st Jan 2012...


Martin Ross



JOCELYN MINERAL CLAIM
PROPERTY AND CLAIM LOCATION

REGIONAL VIEW Scale 1:500,000

PROPERTY GEOLOGY Scale 1:33,000

Acme Analytical Laboratories (Vancouver) Ltd.

www.acmelab.com

1020 Cordova St. East Vancouver BC V6A 4A3 Canada

Client: Lawrence, Ed

Westbank BC V4T 1Z2 Canada

Submitted By: Ed Lawrence

Receiving Lab: Canada-Vancouver

Received: August 26, 2011 Report Date: September 28, 2011

Page: 1 of 2

CERTIFICATE OF ANALYSIS

VAN11004245.1

CLIENT JOB INFORMATION

Project: Woodchuck

Shipment ID: P.O. Number

Number of Samples:

SAMPLE PREPARATION AND ANALYTICAL PROCEDURES

Number of Method Code Description Test Report Lab Code Samples Wgt (g) Status R200-250 3 Crush, split and pulverize 250 g rock to 200 mesh VAN 1F06 1:1:1 Agua Regia digestion Ultratrace ICP-MS analysis Completed VAN

SAMPLE DISPOSAL

STOR-PLP Store After 90 days Invoice for Storage DISP-RJT Dispose of Reject After 90 days

Acme does not accept responsibility for samples left at the laboratory after 90 days without prior written instructions for sample storage or return.

Invoice To: Lawrence, Ed

Westbank BC V4T 1Z2

Canada

ADDITIONAL COMMENTS

Client

Lawrence, Ed Westbank BC V4T 1Z2 Canada

1020 Cordova St. East Vancouver BC V6A 4A3 Canada Phone (604) 253-3158 Fax (604) 253-1716

Project: Report Date: Woodchuck

September 28, 2011

www.acmelab.com

Page:

														2012		art					
CERTIFIC	CATE OF AN	IALY	SIS													VA	N11	004	245	.1	
	Method	WGHT	1F30	1F30	1F30	1F30	1F30	1F30	1F30	1F30	1F30	1F30	1F30	1F30	1F30	1F30	1F30	1F30	1F30	1F30	1F30
	Analyte	Wgt	Mo	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	U	Au	Th	Sr	Cd	Sb	Bi	V	Ca
	Unit	kg	ppm	ppm	ppm	ppm	ppb	ppm	ppm	ppm	%	ppm	ppm	ppb	ppm	ppm	ppm	ppm	ppm	ppm	%
200	MDL	0.01	0.01	0.01	0.01	0.1	2	0.1	0.1	1	0.01	0.1	0.1	0.2	0.1	0.5	0.01	0.02	0.02	2	0.01
																					0.00
106412	Rock	0.40	0.35	42.52	116.4	26.6	877	12.7	7.4	460	1.74	3.1	0.9	1.0	7.3	5.0	0.13	0.12	1.93	5	0.02
106412	Rock Rock	0.40	1.30	42.52 80.68	116.4 25.88	26.6 78.3	877 371	37.0	7.4	500	5.69	36.1	4.7	3.2	7.3 16.0	6.1	0.13	0.12	0.52	31	0.02

Client Lawrence, Ed Westbank BC V4T 1Z2 Canada

Project:

Woodchuck

Report Date:

September 28, 2011

www.acmelab.com

Page:

Part 2

											, aga		2 01 2		art 2					
CATE OF AN	ALY	SIS													VA	N11	004	245	.1	
Method Analyte	1F30 P	1F30 La	1F30 Cr	1F30 Mg	1F30 Ba	1F30 Ti	1F30 B	1F30	1F30 Na	1F30 K	1F30 W	1F30 Sc	1F30 TI	1F30 S	1F30 Hg	1F30 Se	1F30 Te	1F30 Ga	1F30 Cs	1 F30 Ge
Unit	0.001	ppm	ppm	%	ppm 0.5	0.001	ppm	%	0.001	%	ppm 0.1	ppm	ppm	%	ppb	ppm 0.1	ppm	ppm 0.1	ppm	ppm 0.1
							<1								<5					<0.1
Rock	0.056	36.1	35.3	0.59	40.2	0.002	<1	1.29	0.006	0.20	0.8	4.6	0.10	0.09	<5	0.7	0.13	3.7	3.18	<0.1
Rock	0.809	106.4	160.5	0.59	414.2	0.012	<1	0.95	0.015	0.22	0.2	14.7	0.08	0.11	<5	0.4	0.06	3.7	2.41	0.1
	Method Analyte Unit MDL Rock Rock	Method 1F30 Analyte P Unit % MDL 0.001 Rock 0.023 Rock 0.056	Method 1F30 1F30 Analyte P La Unit % ppm MDL 0.001 0.5 Rock 0.023 11.5 Rock 0.056 36.1	Analyte P La Cr Unit % ppm ppm MDL 0.001 0.5 0.5 Rock 0.023 11.5 5.6 Rock 0.056 36.1 35.3	Method Analyte 1F30 1F30 1F30 1F30 1F30 Unit MDL 0.001 % ppm ppm ppm % % MDL 0.0023 11.5 5.6 0.17 Rock 0.056 36.1 35.3 0.59	Method 1F30 <	Method Analyte 1F30 1F30	Method Analyte 1F30 1F30	Method Analyte 1F30 1F30	Method Analyte 1F30 1F30	Method Analyte 1F30 1F30	Method 1F30 1F30	Method 1F30 1F30	Method Analyte P La Cr Mg Ba Ti B Al Na K W Sc Ti Unit % ppm ppm % ppm % ppm % ppm % % % % ppm ppm	Method 1F30 1F30	Method 1F30 1F30 1F30 1F30 1F30 1F30 1F30 1F30	Method 1F30 1F30 1F30 1F30 1F30 1F30 1F30 1F30	Method 1F30 1F30 1F30 1F30 1F30 1F30 1F30 1F30	Method 1F30 1F30 1F30 1F30 1F30 1F30 1F30 1F30	Method 1F30 1F30 1F30 1F30 1F30 1F30 1F30 1F30

Client

Lawrence, Ed Westbank BC V4T 1Z2 Canada

Project:

Woodchuck

Report Date:

September 28, 2011

www.acmelab.com

Page:

2 of 2

Part 3

CEDT	FIC	A T	nd and		AK	IAI	VOIO
CERT	1216	$A \sqcup$		8) H	AN	JAL	Y 515

VAN11004245.1

	Method	1F30	1F30	1F30	1F30	1F30	1F30	1F30	1F30	1F30	1F30	1F30	1F30	1F30	1F30
	Analyte	Hf ppm	ppm	Rb ppm	Sn ppm	Ta ppm	Zr ppm	ppm	ppm	ppm	Re	ppm	ppm	Pd ppb	ppt
	MDL	0.02	0.02	0.1	0.1	0.05	0.1	0.01	0.1	0.02	ୀ	0.1	0.1	10	- 2
106412	Rock	<0.02	0.02	4.2	0.1	< 0.05	1.1	1.95	22.7	0.02	- 1	0.2	4.6	<10	<2
106413	Rock	0.05	0.02	9.5	0.6	< 0.05	2.1	10.03	65.0	0.08	<1	1.0	16.6	<10	<2
106414	Rock	0.09	0.14	10.0	0.2	< 0.05	4.0	17.82	200.3	0.08	<1	1.4	21.4	<10	3

Client

Lawrence, Ed Westbank BC V4T 1Z2 Canada

Project:

Woodchuck

Report Date:

September 28, 2011

www.acmelab.com

Page 1 of 1 Part 1

												Page:		1 01 1	Pa	art.					
QUALITY C	ONTROL	REP	OR'	Τ												VA	N11	0042	245.	1	
	Method Analyte Unit MDL	WGHT Wgt kg 0.01	Mo ppm 0.01	1F30 Cu ppm 0.01	1F30 Pb ppm 0.01	1F30 Zn ppm 0.1	1F30 Ag ppb 2	1F30 Ni ppm 0.1	1F30 Co ppm 0.1	Mn ppm	1F30 Fe % 0.01	1F30 As ppm 0.1	1F30 U ppm 0.1	1F30 Au ppb 0.2	1F30 Th ppm 0.1	1F30 Sr ppm 0.5	1F30 Cd ppm 0.01	1F30 Sb ppm 0.02	1F30 Bi ppm 0.02	1F30 V ppm 2	1F3
Pulp Duplicates																					
106414	Rock	0.24	1.61	91.43	17.73	107.1	254	400.7	59.4	1655	8.25	5.3	1.9	2.1	10.8	557.9	0.21	0.50	0.10	72	1.8
REP 106414	QC		1.54	90.69	18,14	107.6	245	390.2	56.1	1619	8.01	5.0	1.8	1.0	10.2	554.9	0.19	0.46	0.10	69	1.7
Reference Materials																					
STD DS8	Standard		12.23	113.3	125.5	315.9	1704	39.1	7.7	602	2.45	26.2	2.7	107.5	6.9	62.5	2.24	5.73	6.69	42	0.6
STD DS8 Expected	9		13.44	110	123	312	1690	38.1	7.5	615	2.46	26	2.8	107	6.89	67.7	2.38	5.7	6.67	41.1	0.
BLK	Blank		<0.01	<0.01	< 0.01	<0.1	<2	< 0.1	< 0.1	<1	< 0.01	< 0.1	< 0.1	<0.2	<0.1	< 0.5	<0.01	< 0.02	< 0.02	<2	<0.0
Prep Wash																					
G1	Prep Blank	< 0.01	0.08	9.57	2.42	42.3	13	2.5	3.6	523	1.82	< 0.1	1.7	0.7	4.7	50.2	0.03	0.05	0.03	34	0.4

Client

Lawrence, Ed Westbank BC V4T 1Z2 Canada

Project:

Report Date:

Woodchuck

September 28, 2011

www.acmelab.com

1 of 1 Part 2 Page

												raye.		1.01	Fa	11. e					
QUALITY C	ONTROL	REP	OR'	Ī												VAI	N11	0042	245.	1	
	Method Analyte	1F30 P	1F30 La	1F30 Cr	1F30 Mg	1F30 Ba	1F30 Ti	1F30 B	1F30 Al	1F30 Na	1F30 K	1F30 W	1F30 Sc	1F30 TI	1F30 S	1F30 Hg	1F30 Se	1F30 Te	1F30 Ga	1F30 Cs	1F3 G
	MDL	0.001	ppm 0.5	ppm 0.5	0.01	ppm 0.5	0.001	ppm 1	0.01	0.001	0.01	ppm 0.1	ppm 0.1	ppm 0.02	0.02	ppb 5	ppm 0.1	ppm 0.02	0.1	0.02	ppn 0.
Pulp Duplicates																					
106414	Rock	0.809	106.4	160.5	0.59	414.2	0.012	<1	0.95	0.015	0.22	0.2	14.7	0.08	0.11	<5	0.4	0.06	3.7	2.41	0.
REP 106414	QC	0.804	99.2	145.9	0.57	382.7	0.011	<1	0.88	0.014	0,20	0.2	14.1	0.07	0.11	<5	0.3	0.08	3.3	2.18	0.2
Reference Materials	9																				
STD DS8	Standard	0.082	14.8	117.5	0.61	261.7	0.117	2	0.89	0.081	0.40	3.1	2.1	5.28	0.17	194	4.9	4.68	4.5	2.41	< 0.1
STD DS8 Expected		0.08	14.6	115	0.6045	279	0.113	2.6	0.93	0.0883	0.41	3	2.3	5.4	0.1679	192	5.23	5	4.7	2.48	0.13
BLK	Blank	< 0.001	< 0.5	< 0.5	<0.01	<0.5	<0.001	<1	<0.01	< 0.001	< 0.01	<0.1	< 0.1	<0.02	< 0.02	<5	< 0.1	<0.02	< 0.1	< 0.02	<0.1
Prep Wash																					
G1	Prep Blank	0.082	8.8	5.2	0.48	157.8	0.102	<1	0.80	0.064	0.42	0.2	1.6	0.30	< 0.02	<5	< 0.1	0.04	4.2	2.59	0.1

G1

1020 Cordova St. East Vancouver BC V6A 4A3 Canada Phone (604) 253-3158 Fax (604) 253-1716

Prep Blank

0.06

0.33

38.6

Client Lawrence, Ed Westbank BC V4T 1Z2 Canada

Project:

Woodchuck

Report Date:

September 28, 2011

www.acmelab.com

Page:

1 of 1

Part 3 VAN11004245.1

	Method Analyte Unit	1F30 Hf ppm	1F30 Nb ppm	1F30 Rb ppm	1F30 Sn ppm	1F30 Ta ppm	1F30 Zr ppm	1F30 Y ppm	1F30 Ce ppm	1F30 In ppm	1F30 Re ppb	1F30 Be ppm	1F30 Li ppm	Pd ppb	1F30 Pt ppb
	MDL	0.02	0.02	0.1	0.1	0.05	0.1	0.01	0.1	0.02	1	0.1	0.1	10	2
Pulp Duplicates															
106414	Rock	0.09	0.14	10.0	0.2	< 0.05	4.0	17.82	200.3	0.08	<1	1.4	21.4	<10	3
REP 106414	QC	0.08	0.16	9.0	0.2	< 0.05	4.0	17.10	183,8	0.09	<1	1.0	20.3	<10	<2
Reference Materials															
STD DS8	Standard	0.08	1.19	36.5	7.0	< 0.05	1.9	5.66	25.2	2.30	61	4.9	26.3	86	326
STD DS8 Expected		0.08	1.65	39	6.7	0.003	2.3	6.1	29.8	2.19	55	5.2	26.34	110	339
BLK	Blank	< 0.02	< 0.02	< 0.1	< 0.1	< 0.05	<0.1	< 0.01	< 0.1	<0.02	<1	< 0.1	<0.1	<10	<2
Prep Wash															

0.5 < 0.05

8.0

3.50

15.6

0.03

<1

0.3

30.7

<10

Acme Analytical Laboratories (Vancouver) Ltd.

1020 Cordova St. East Vancouver BC V6A 4A3 Canada

www.acmelab.com

Client

Ross, Martin

P.O. Box 323

Salmo BC V0G 1Z0 Canada

Submitted By: N

Martin Ross

Receiving Lab: Received:

Canada-Vancouver September 16, 2011

Report Date:

October 13, 2011

Page:

1 of 2

CERTIFICATE OF ANALYSIS

VAN11004765.1

CLIENT JOB INFORMATION

Project: None Given

Shipment ID: P.O. Number

Number of Samples:

SAMPLE DISPOSAL

DISP-PLP Dispose of Pulp After 90 days
DISP-RJT Dispose of Reject After 90 days

Acme does not accept responsibility for samples left at the laboratory after 90 days without prior written instructions for sample storage or return.

Invoice To:

Ross, Martin P.O. Box 323

Salmo BC V0G 1Z0

Canada

SAMPLE PREPARATION AND ANALYTICAL PROCEDURES

Method	Number of	Code Description	Test	Report	Lab
Code	Samples	32 432 F. 2015 1 T S. 2015	Wgt (g)	Status	distilled
R200-500	2	Crush, split and pulverize 500 g rock to 200 mesh			VAN
G601	2	Fire Assay fusion Au by ICP-ES	30	Completed	VAN
1F06	2	1:1:1 Aqua Regia digestion Ultratrace ICP-MS analysis	30	Completed	VAN

ADDITIONAL COMMENTS

CC:

Ross, Martin

P.O. Box 323

Salmo BC V0G 1Z0 Canada

Project: Report Date:

Client

None Given October 13, 2011

www.acmelab.com

Page:

CERTI	FICATE OF AN	NAL Y	/SIS											2012		VA	N11	004	765	.1	
	Method Analyte Unit MDL	WGHT Wgt kg 0.01	G6 Au gm/t 0.005	Mo ppm 0.01	1F30 Cu ppm 0.01	1F30 Pb ppm 0.01	1F30 Zn ppm 0.1	1F30 Ag ppb 2	1F30 Ni ppm 0.1	1F30 Co ppm 0.1	1F30 Mn ppm	1F30 Fe % 0.01	1F30 As ppm 0.1	1F30 U ppm 0.1	1F30 Au ppb 0.2	1F30 Th ppm 0.1	1F30 Sr ppm 0.5	1F30 Cd ppm 0.01	1F30 Sb ppm 0.02	1F30 Bi ppm 0.02	1F30 V ppm 2
WC1	Rock	2.19	<0.005	1.21	74.82	21.41	78.6	283	53.9	28.3	750	4.65	4.4	0.9	5.0	3.4	9.6	0.28	0.14	0.43	38
WC2	Rock	1.73	0.006	1.77	80.37	31.93	82.2	364	50.3	25.5	686	4.89	4.5	1.1	2.3	4.5	10.1	0.21	0.31	0.42	38

Client Ross, Martin

P.O. Box 323

Salmo BC V0G 1Z0 Canada

Project: Report Date: None Given October 13, 2011

www.acmelab.com

Page: Part 2

														2012		art -					
CE	RTIFICATE OF AN	IALY	'SIS													VA	N11	004	765	.1	
	Method Analyte	1F30 Ca	1F30	1F30 La	1F30 Cr	1F30 Mg	1F30 Ba	1F30	1F30 B	1F30 Al	1F30 Na	1F30 K	1F30 W	1F30 Sc	1F30 TI	1F30 S	1F30 Hg	1F30 Se	1F30 Te	1F30 Ga	1F30 Cs
	Unit	0.01	0.001	ppm 0.5	0.5	0.01	0.5	0.001	ppm 1	0.01	0.001	0.01	0.1	0.1	0.02	0.02	ppb 5	0.1	0.02	0.1	0.02
WC	Rock	0.07	0.025	5.8	32.5	0.95	43.4	0.019	2	1.78	0.017	0.44	<0.1	4.1	0.26	2.42	9	1.4	0.11	5.3	7.17
WC2	Rock	0.07	0.040	7.1	31.4	1.07	53.1	0.017	2	2.07	0.017	0.47	< 0.1	4.3	0.27	2.45	11	2.2	0.11	5.9	9.22

Client

Ross, Martin

P.O. Box 323

Salmo BC V0G 1Z0 Canada

Project: Report Date: None Given

October 13, 2011

www.acmelab.com

Page:

2 of 2

Part 3

CERT	E	CAT	EC	YE /	VIA	IV	210
CERT	L SEE	\cup AI	mq1/4)			

	THE RESERVE	The second second	W-10-1	SECTION 1	-	
-0.4		I BC BC	E O T O	W. Dor J	65	
	20 A B P.	100	E 80 1 80	F 4 10F A	0.50	

	Method	1F30	1F30	1F30	1F30	1F30	1F30	1F30	1F30	1F30	1F30	1F30	1F30	1F30	1F30	1F30
	Analyte	Ge	Hf	Nb	Rb	Sn	Ta	Zr	Y	Ce	In	Re	Be	Li	Pd	Pt
	Unit	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppb	ppm	ppm	ppb	ppb
ν.	MDL	0.1	0.02	0.02	0.1	0.1	0.05	0.1	0.01	0.1	0.02	1	0.1	0.1	10	2
WC1	Rock	< 0.1	0.03	0.03	31.3	0.9	< 0.05	1.5	2.93	12.7	0.06	4	0.9	40.0	<10	<2
WC2	Rock	< 0.1	0.06	0.03	35.7	0.5	< 0.05	2.0	3.59	14.7	0.05	6	0.6	48.9	<10	<2

Ross, Martin

P.O. Box 323

Salmo BC V0G 1Z0 Canada

Project:

Client

None Given

Report Date:

October 13, 2011

www.acmelab.com

Page: Part 1

QUALITY CO	ONTROL	REP	OR'	T												VAI	N11	004	765.	1	
	Method Analyte	WGHT Wgt	G6	1F30 Mo	1F30 Cu	1F30 Pb	1F30 Zn	1F30	1F30 Ni	1F30 Co	1F30 Mn	1F30	1F30 As	1F30 U	1F30	1F30 Th	1F30 Sr	1F30 Cd	1F30 Sb	1F30 Bi	1F3
	Unit	kg 0.01	gm/t 0.005	ppm 0,01	ppm 0.01	ppm 0.01	ppm 0.1	Ag ppb	ppm 0.1	ppm 0.1	ppm 1	% 0.01	ppm 0.1	ppm 0.1	ppb 0.2	ppm 0.1	ppm 0.5	ppm 0.01	ppm 0.02	ppm 0.02	ppr
Pulp Duplicates																					
WC1	Rock	2.19	< 0.005	1.21	74.82	21.41	78.6	283	53.9	28.3	750	4.65	4.4	0.9	5.0	3.4	9.6	0.28	0.14	0.43	3
REP WC1	QC		< 0.005																		
Reference Materials	*																				
STD DS8	Standard			13.29	107.5	140.9	330.2	1958	38.5	7.8	644	2.60	29.0	3.1	131.3	7.5	66.2	2.71	5.84	7.44	42
STD OXH82	Standard		1.285																		
STD OXK79	Standard		3.659																		
STD DS8 Expected				13.44	110	123	312	1690	38.1	7.5	615	2.46	26	2.8	107	6.89	67.7	2.38	5.7	6.67	41,1
STD OXH82 Expected			1.278																		
STD OXK79 Expected			3.532																		
BLK	Blank			<0.01	< 0.01	< 0.01	< 0.1	<2	< 0.1	<0.1	<1	<0.01	< 0.1	<0.1	<0.2	<0.1	< 0.5	< 0.01	< 0.02	< 0.02	<2
BLK	Blank		< 0.005							-11-2			11.711								
BLK	Blank		< 0.005																		
Prep Wash	1211-22		- CALLETT																		
G1	Prep Blank		< 0.005	0.05	6.18	4.59	46.0	22	2.3	3.7	555	2.08	0.2	1.4	3.2	5.1	52.2	0.02	< 0.02	0.06	35

Client Ross, Martin

P.O. Box 323

Salmo BC V0G 1Z0 Canada

Project:

None Given

Report Date:

October 13, 2011

www.acmelab.com

Part 2 Page: 1 of 1

												rayo.		1.01		CII L					
QUALITY CO	ONTROL	REF	PORT													VAI	N11	004	765.	1	
	Method	1F30	1F30	1F30	1F30	1F30	1F30	1F30	1F30	1F30		1F30	1F30	1F30	1F30	1F30	1F30	1F30	1F30	1F30	1F3
	Analyte Unit	Ca %	- 1	La	Cr	Mg %	Ba	Ti	В	AI	Na	K	W	Sc	П	S	Hg	Se	Te	Ga	(
	MDL	0.01	0.001	ppm 0.5	ppm 0.5	0.01	ppm 0.5	0.001	ppm 1	0.01	0.001	0.01	ppm 0.1	ppm 0.1	0.02	0.02	ppb 5	ppm 0.1	0.02	ppm 0.1	0.0
Pulp Duplicates																					
WC1	Rock	0.07	0.025	5.8	32.5	0.95	43.4	0.019	2	1.78	0.017	0.44	< 0.1	4.1	0.26	2.42	9	1.4	0.11	5.3	7.1
REP WC1	QC																				
Reference Materials	3																				
STD DS8	Standard	0.72	0.093	14.8	126.4	0.63	295.2	0.109	3	0.92	0.091	0.43	3.4	2.2	6.23	0.17	206	5.3	5.47	4.9	2.7
STD OXH82	Standard																				
STD OXK79	Standard																				
STD DS8 Expected		0.7	0.08	14.6	115	0.6045	279	0,113	2.6	0.93	0.0883	0.41	3	2.3	5.4	0.1679	192	5.23	5	4.7	2.4
STD OXH82 Expected																					
STD OXK79 Expected																					
BLK	Blank	< 0.01	<0.001	< 0.5	< 0.5	< 0.01	<0.5	<0.001	<1	<0.01	< 0.001	< 0.01	< 0.1	< 0.1	< 0.02	< 0.02	<5	< 0.1	<0.02	<0.1	<0.0
BLK	Blank														11						1
BLK	Blank																				
Prep Wash	200																				
G1	Prep Blank	0.42	0.082	10.7	5.6	0.47	162.9	0.091	- 1	0.89	0.078	0.46	< 0.1	1.7	0.35	< 0.02	15	< 0.1	<0.02	4:3	3.2

Client Ross, Martin

P.O. Box 323

Salmo BC V0G 1Z0 Canada

Project: None Given

October 13, 2011 Report Date:

www.acmelab.com

Page: 1 of 1

QUALITY CC	NTROL	REP	OR'	Ţ												VA	N11004765.
	Method Analyte Unit MDL	1F30 Ge ppm 0.1	1F30 Hf ppm 0.02	1F30 Nb ppm 0.02	1F30 Rb ppm 0.1	1F30 Sn ppm 0.1	1F30 Ta ppm 0.05	1F30 Zr ppm 0.1	1F30 Y ppm 0.01	1F30 Ce ppm 0.1	1F30 In ppm 0.02	1F30 Re ppb	1F30 Be ppm 0.1	1F30 Li ppm 0.1	1F30 Pd ppb 10	1F30 Pt ppb	
Pulp Duplicates			0.02	0.02	011	0.1	0.00		0.01	0.1	0.02					7	
WC1	Rock	<0.1	0.03	0.03	31.3	0.9	< 0.05	1.1	2.93	12.7	0.06	4	0.9	40.0	<10	<2	
REP WC1	QC																
Reference Materials																	
STD DS8	Standard	0.1	0.10	1.31	39.0	7.5	< 0.05	2.3	6.24	28.4	2.29	66	5.3	32,3	115	401	
STD OXH82	Standard																
STD OXK79	Standard																
STD DS8 Expected		0.13	0.08	1.65	39	6.7	0.003	2.3	6.1	29.8	2.19	55	5.2	26,34	110	339	
STD OXH82 Expected																	
STD OXK79 Expected																	
BLK	Blank	<0.1	< 0.02	< 0.02	< 0.1	<0.1	< 0.05	< 0.1	<0.01	< 0.1	< 0.02	<1	< 0.1	< 0.1	<10	<2	
BLK	Blank																
BLK	Blank																
Prep Wash																	
G1	Prep Blank	<0.1	0.06	0.32	39.3	0.4	< 0.05	0.9	3.88	20.6	< 0.02	<1	0.2	31.0	<10	<2	

Plate 1. Grant Crookes, Woodchuck FSR (110 meter oxidized rock cut)

Plate 2. Typical Narrow Quartz Veining with Pyrite

Jocelyn Claim Statement of Costs 2011

Salaries

Prospecting & Soil Sample Collection	(2 @ \$325 per day/2day)	\$1300.00
Emerald Mining Service		\$450.00
Rentals		
Kentais		
Truck	(2 day @ \$100 per day)	\$200.00
Assays		\$338.52
TOTAL		\$2288.52

WOODCHUCK FOREST ROAD SAMPLE SUMMARY SHEET

Sample #	Tag #	Date	Location	UTM East	UTM North	UTM Elevn	Width	Commen
A1	106,412	30-Jul-11	Α	482,598	5,444,328	2840	grab	silic,frac,sh
B1	106,413	30-Jul-11	В	482,590	5,444,342	2870	grab	
C1	106,414	II	С	482,585	5,444,429	2885	grab	finebdd pyr
D1	106,415	II	D	482,849	5,446,827	3866	grab	dark seds a
H1	106,416	"	Н	482,637	5,444,275	2804	grab	26m alongo

ts Ultraviolet

ear

· dolo bove intrus? ox frac zone