2010 DIAMOND DRILLING REPORT

ON THE

SHASTA MINERAL TENURES #: 505434 & 505436

OMINECA MINING DIVISION

NTS: 94E/2 7W; 3, 6E LAT: 57°15'N LONG: 127° 00'W

OWNER: SABLE RESOURCES LTD/MULTINATIONAL MINING #1290 – 625 Howe St Vancouver, BC, V6C 2T6

OPERATOR: SABLE RESOURCES LTD

REPORT PREPARED BY:

Joel Gillham

October 17, 2011

Distribution: Shasta mine: 1 copy Sable Resources office: 2 copies

Summary

The Shasta property consists of volcanic-hosted low-sulphidation style epithermal vein, stockwork, and breccia gold-silver mineralization in the Toodoggone district of north-central British Columbia.

Sable Resources is currently mining the Shasta deposit, which has seen on-and-off production since 1989, and is shipping the run-of-mine ore to the nearby Baker mill located approximately 9 kilometres to the west.

Exploration work described in this report consists of diamond drilling on the mineral tenures adjoining the Shasta mining lease to the north and east to test for the northerly extension to the Shasta fault, and for down-dip mineralization of a high-grade surface showing located to the southeast of the current deposit. The Shasta fault was extended to the north but drilling did not encounter any 'bonanza' grade mineralization of suitable tenor to consider mill feed.

Table of Contents

SUMMARY

1.0 INTRODUCTION

- 1.1 Location and Access
- 1.2 Claim Status
- 1.3 Physiography
- 1.4 Exploration History
- 1.5 Present Work

2.0 GEOLOGY

2.1 Regional Setting

2.2 Property Geology

3.0 DIAMOND DRILLING

- 3.1 General Description
- 3.2 Assays
- 3.3 Results & Discussion

4.0 REFERENCES

5.0 STATEMENT OF COSTS

6.0 STATEMENT OF QUALIFICATIONS

APPENDIX I: DRILL LOGS APPENDIX III: ASSAY DATA APPENDIX II: SECTIONS

LIST OF TABLES:

Table

- 1.1 Claims and status
- 3.1 Drill Hole Information

LIST OF FIGURES:

Figure

- 1.1 Location Map
- 3.1 Location of Drilling

1.0 INTRODUCTION

1.1 Location and Access

The Shasta claims are located in the Toodoggone River area, approximately 275 km north of Smithers BC (Fig 1.1). The property can be accessed by fixed-wing aircraft from Smithers or Prince George to the Sturdee River airstrip, which is connected to the property by a 10km gravel road. Alternatively, the property is accessible by road from Fort St. James, Mackenzie, or Prince George via the Finlay Forest Service Road, the Omineca Resource Road, and the Sturdee Valley Road.

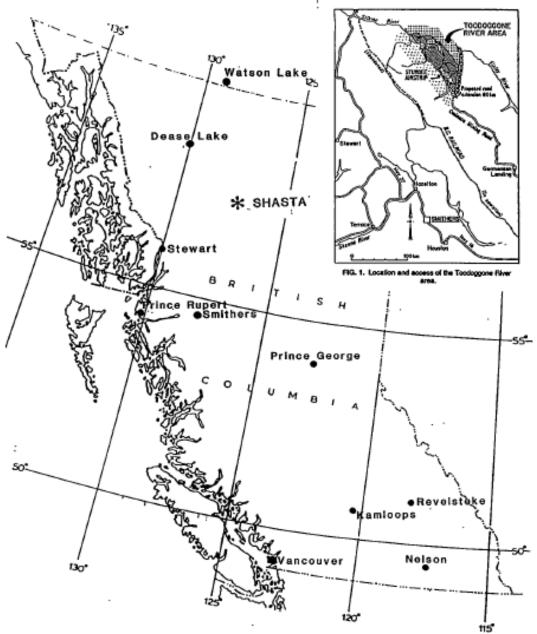


Figure 1.1 – Location map of the Shasta deposit

1.2 Claim Status

The work in this report occurs on mineral tenures 505434 & 505436 held by Multinational Mining Inc, a subsidiary of Sable Resources Ltd. These claims are part of a larger contiguous package (Table 1.1) that extends to the north and west of the current work past the historic Baker mine.

Tenure Number	Owner	Tenure Type	Tenure Sub Type	Good To Date	Area (ha)
243451	119151 (100%)	Mineral	Lease	2011/sep/10	157.8
243454	119151 (100%)	Mineral	Lease	2012/jun/13	100.0
245273	119151 (100%)	Mineral	Claim	2011/nov/30	25.0
245274	119151 (100%)	Mineral	Claim	2011/nov/30	25.0
350639	119151 (100%)	Mineral	Claim	2011/nov/30	450.0
505423	119151 (100%)	Mineral	Claim	2011/nov/30	69.984
505424	119151 (100%)	Mineral	Claim	2011/nov/30	69.969
505425	119151 (100%)	Mineral	Claim	2011/nov/30	69.953
505426	119151 (100%)	Mineral	Claim	2011/nov/30	69.953
505427	119151 (100%)	Mineral	Claim	2011/nov/30	577.469
505428	119151 (100%)	Mineral	Claim	2011/nov/30	69.984
505429	119151 (100%)	Mineral	Claim	2011/nov/30	612.271
505430	119151 (100%)	Mineral	Claim	2011/nov/30	559.951
505431	119151 (100%)	Mineral	Claim	2011/nov/30	437.658
505432	119151 (100%)	Mineral	Claim	2011/nov/30	175.129
505434	119151 (100%)	Mineral	Claim	2011/nov/30	105.026
505435	119151 (100%)	Mineral	Claim	2011/nov/30	280.196
505436	119151 (100%)	Mineral	Claim	2011/nov/30	245.097
505438	119151 (100%)	Mineral	Claim	2011/nov/30	34.992
505439	119151 (100%)	Mineral	Claim	2011/nov/30	52.488
505460	119151 (100%)	Mineral	Claim	2011/nov/30	69.937
505471	119151 (100%)	Mineral	Claim	2011/nov/30	87.421
505472	119151 (100%)	Mineral	Claim	2011/nov/30	17.485
505473	119151 (100%)	Mineral	Claim	2011/nov/30	69.937
505474	119151 (100%)	Mineral	Claim	2011/nov/30	69.946
505475	119151 (100%)	Mineral	Claim	2011/nov/30	17.483
505476	119151 (100%)	Mineral	Claim	2011/nov/30	34.973
505478	119151 (100%)	Mineral	Claim	2011/nov/30	69.947
505480	119151 (100%)	Mineral	Claim	2011/nov/30	52.459
505482	119151 (100%)	Mineral	Claim	2011/nov/30	69.962
505485	119151 (100%)	Mineral	Claim	2011/nov/30	52.467
505487	119151 (100%)	Mineral	Claim	2011/nov/30	34.987
505490	119151 (100%)	Mineral	Claim	2011/nov/30	17.493
505492	119151 (100%)	Mineral	Claim	2011/nov/30	17.495
505633	119151 (100%)	Mineral	Claim	2011/nov/30	69.97
505634	119151 (100%)	Mineral	Claim	2011/nov/30	17.493

505635	119151 (100%)	Mineral	Claim	2011/nov/30	34.99
505636	119151 (100%)	Mineral	Claim	2011/nov/30	69.962
505637	119151 (100%)	Mineral	Claim	2011/nov/30	52.482
505638	119151 (100%)	Mineral	Claim	2011/nov/30	17.495
505639	119151 (100%)	Mineral	Claim	2011/nov/30	52.466
505640	119151 (100%)	Mineral	Claim	2011/nov/30	69.969
505641	119151 (100%)	Mineral	Claim	2011/nov/30	34.99
505642	119151 (100%)	Mineral	Claim	2011/nov/30	34.975
505643	119151 (100%)	Mineral	Claim	2011/nov/30	34.98
505644	119151 (100%)	Mineral	Claim	2011/nov/30	69.977
505645	119151 (100%)	Mineral	Claim	2011/nov/30	17.487
505646	119151 (100%)	Mineral	Claim	2011/nov/30	34.988
505647	119151 (100%)	Mineral	Claim	2011/nov/30	34.986
505649	119151 (100%)	Mineral	Claim	2011/nov/30	52.474
505651	119151 (100%)	Mineral	Claim	2011/nov/30	34.984
505652	119151 (100%)	Mineral	Claim	2011/nov/30	34.984
505653	119151 (100%)	Mineral	Claim	2011/nov/30	17.495
527360	119151 (100%)	Mineral	Claim	2011/nov/30	17.497
535688	119151 (100%)	Mineral	Claim	2011/nov/30	104.877
845668	119151 (100%)	Mineral	Claim	2012/feb/07	17.4971
845669	119151 (100%)	Mineral	Claim	2012/feb/07	17.4952

Table 1.1 - Contiguous Mineral Tenures held by Multinational Mining

1.3 Physiography

The property is moderately rugged, with elevations ranging between 1250 and 1800 metres above sea-level (masl). Slope gradients commonly reach 60 percent. Most of the property is covered by a 50 year old burn, and forest regrowth is minimal. Treeline is at approximately 1600 masl. Drainage is provided by a number of small creeks which feed Jock creek, a tributary of the Finlay River. Jock Creek flows diagonally through the property in a northeast direction. Mean annual precipitation ranges from 50 to 75 cm, most of this occurring as rainfall during the summer months. Average temperatures vary from -20°C in winter to +12°C in the summer. The onset of winter conditions limits exploration past October, and snow can persist at higher elevations until late June. Overburden depth is variable, ranging from 0m (outcrop) to 20m depending on location, but averages somewhere between 1 and 4 m over much of the property. Bedrock surface below the overburden is glacially modified, being highly irregular or hummocky.

1.4 Exploration History

The original claims in the property area were staked in 1972 by Shasta Mines and Oil Ltd., who later changed their name to International Shasta Resources Ltd. Propsecting, soil and rock geochemical surveys, geological mapping and magnetometer surveys were

carried out between 1973 and 1975 by W Meyers and Associates Ltd on behalf othe owner. Most of this work was carried out on the south side of Jock Creek. In 1978, the property was optioned by Asarco Ltd. But due to poor results from resampling of old trenches, the option was terminated. Newmont Exploration Canada Ltd. Optioned the property in 1983 and during the next two years staked additional claims, conducted extensive soil geochemical, geological and geophysical surveys, and completed 2,675m of diamond drilling. Newmont's drilling identified the Creek Zone and two other mineralized structures, the Ranier and Jock zones.

Esso Minerals Canada Ltd. Optioned the property in 1987 and carried out two seasons of exploration consisting of geological mapping, soil geochemistry and VLF-R geophysical surveys, backhoe trenching and diamond drilling. The main result of this work was the discovery of the JM and O-zones.

Homestake Mining (Canada) Ltd purchased Esso's interest in the Shasta property in the spring of 1989, and continued exploration during the summer of 1989, with a program of exploration and delineation drilling as well as geochemical and geophysical surveys. By the end of the 1989 field season, total exploration work included 5,140 geochemical soil samples, 200 line km of VLF-R and 4.0 line km of IP geophysical surveys, 4.0 km of backhoe trenches, geological mapping at 1:10,000 and 1:1,000 scales, 13,774m exploration diamond drilling and 1,093m of delineation and condemnation diamond drilling. Cumulative expenditures by Newmont, Esso and Hoestake to the end of 1989 totalled approximately \$2.8 million.

In 1990, Homestake continued to work the property, and completed 9.27 km of geochemical soil sampling, 14.94 line km of VLF-R geophysical surveys, and 4,777m of BQ-thinwall diamond drilling in twenty seven holes. International Shasta and Sable Resources agreed Sable would mine 120,000 tonnes and process it at the Baker mill which Sable had recently acquired. Sable mined the JM and Creek zones, by both open pit and underground methods, and completed 285m of diamond drilling in 5 holes.

Following the exploration program in 1990, Homestake dropped the option, and Sable acquired the Shasta property from International Shasta.

1.5 Present Work

The 2010 drill program discussed here intended to test off-mining-lease targets adjacent to the operating Shasta Mine. Two drillholes, which are the subject of this report, were completed for a total of 324 meters. One drillhole was drilled to extend the strike-length of the Shasta Fault to the north, across Jock creek and the interpreted J1 fault structure that appears to offset the Shasta Fault. The other drillhole tested for the down-dip extension of a high grade surface showing located near the south-east corner of Mining Lease #243454.

2.0 GEOLOGY

2.1 Regional Setting

The Toodoggone River area lies within the Stikine Terrane on the eastern margin of the Intermontane Belt, in the Cassiar-Omineca Mountains. The oldest rocks in the area are Permian Asitka Group limestones and siltstones, which are in thrust contact with Upper Triassic Stuhini (Takla) Group volcanics. Stuhini Group rocks are dominantly alkaline to sub-alkaline, submarine, mafic flows and derived sediments. Unconformably overlying the Stuhini Group and Asitka Group are Lower to Middle Jurassic Hazelton Group rocks representing a probably island-arc sequence of volcanics and associated sediments. The Jurassic Toodoggone volcanic rocks represent a distinct quartz-bearing facies of the Hazelton Group and comprise dominantly calc-alkaline, intermediate to felsic subaerial volcanic, volcaniclastic, and sedimentary rocks. The youngest rocks in the area are chertpebble conglomerates and sandstones of the Cretaceous to Tertiary Sustut Group, which unconformably overlies the Toodoggone volcanics. Upper Triassic to Lower Jurassic Omineca plutonic rocks, consisting of granodiorites and quartz monzonites intrude the Stuhini and Toodoggone volcanics.

Structure of the Toodoggone area is dominated by trans-tensional faults of Lower Jurassic to Tertiary age which are first order northwest trending, and second order north to northeast trending. These regional scale structures are thought to have acted as conduits for mineralizing hydrothermal solutions.

2.2 Property Geology

The Shasta property is predominantly underlain by Toodoggone Formation flows, pyroclastic, and associated epiclastic rocks which appear to dip around 20 degrees to the north. These Toodoggone rocks are informally divided into three series (Holbek 1991); a basal series, a pyroclastic series, and an epiclastic series. The property is centered around a quartz-biotite-feldspar phyric dacite dome. The dome is associated with the pyroclastic series rocks, which are differentiated from the dome by occasional lapilli and broken crystals. The oldest rocks exposed on the property are Takla Group augite-feldspar phyric basalt flows located at the southern margin of the property. These rocks are unconformably overlain by the basal series rocks, followed by the pyroclastic, and then epiclastic series rocks of the Toodoggone formation (Marsden and Moore, 1990).

The largest structural feature in the area is the north-west striking Saunders fault, located to the northeast of the deposit and passing through Sable's tenure. It is interpreted as a right lateral fault with up to 5 km of displacement by Marsden and Moore (1990) composed of steep dipping fault strands in highly altered rock. Subsidiary faults splay off of the Saunders fault striking 160 to 190 degrees.

At the deposit scale, the Shasta fault is the most prominent structural feature and strikes roughly north-south with a dip between 50 and 60 degrees west, and may represent a

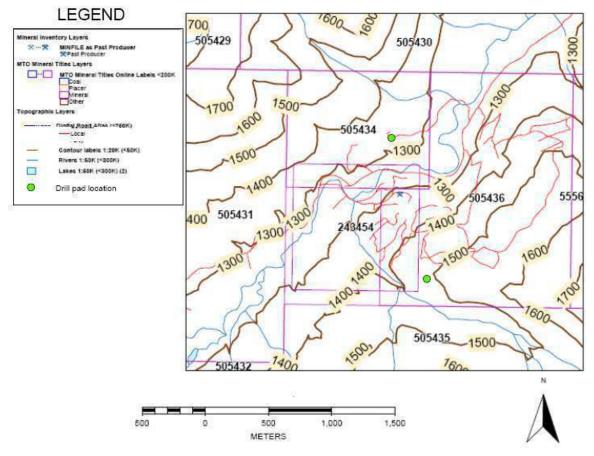
splay off the Saunders fault. The Shasta fault is interpreted as an early forming normal to normal oblique fault which separates barren hanging-wall epiclastic series from mineralized footwall pyroclastic series rocks at the Shasta mine. Post mineralization, compressive tectonic events have overprinted some earlier normal faulting, with reverse faulting fabrics, as on the Shasta Fault.

Mineralization occurs in steep dipping quartz, and quartz-carbonate veins, and zones of breccia and stockwork structures located in non-to-weakly-welded tuffs of the pyroclastic series. Economic grade is generally higher in the breccia zones, as compared to the stockwork zones. Economic mineralization consists primarily of electrum and acanthite (pseudomorph after argentite), with rare native silver. It is associated with trace amounts of chalcopyrite, galena, and sphalerite and minor pyrite. Wallrock alteration consists primarily of silica, K-feldspar, +/- sericite proximal to the vein structures, and grades away from the veins into a chlorite-clay propylitic assemblage. To the north of the property, in the area of the East zones, there is a change from silica-K-spar dominant alteration to silica-sericite alteration, with, or without epidote.

3.0 DIAMOND DRILLING

3.1 General Description

The diamond drilling program discussed here was conducted in conjunction with a program of diamond drilling on the mining lease. A total of 324 m of NQ diamond drilling was completed in 2 holes for the program outlined in this report. The drill rig used was an AR-125, contracted from DJ Drilling Ltd of Aldergrove BC. The drill pads were constructed using Sable's D6D Caterpillar dozer and 345B Caterpillar excavator, the drill rig was moved with the 345B excavator.


Drill core was logged at the Baker Mill site, and is stored there at the core-yard, with approximate coordinates of Lat 57.28° N and Long 127.11° W. Drill hole specifications are listed in Table 3.1 and drill logs are contained in Appendix I. Figure 3.1 shows a location plan map for all drill holes. All coordinates for drill holes are consistent with the Shasta mine grid, which is based loosely on the last four digits of a UTM grid referenced to NAD27. Drill core was split on-site and delivered to the Baker Mill Assay Lab for analysis by fire assay.

Assay sample numbers are made up from two digits for the year, another two digits for the hole number, and eight digits for the from and to interval (in metres) without decimals or dashes. For example, the sample # for the interval 99.2 to 101.0 from hole DD10-03 would be 100309921010.

						length
Drillhole	Easting	Northing	Elevation	Azimuth	Dip	(m)
DD10-08	1402	6589	1473	275	45	169.4
DD10-13	1090	7560	1300	75	50	154.6

Table 3.1 :Sable Resources Ltd – Diamond Drillhole Collars – Shasta Mine Grid

Fig 3.1 - Location of completed drilling – Tenures 505434 & 505436

3.2 Baker Mill Assay Lab

All assays for this drill program were completed at the Baker Mill Assay Lab. Delivered split-core was prepared in the lab for analysis by crushing with a bench-top jaw crusher. Crushed sample was then put through a riffle splitter to produce a 200 to 300 gram split, which was then pulped by a ring and puck pulveriser.

A 30 gram sample of the pulverised pulp was weighed on a triple beam balance and added to a crucible along with the assay flux (borax, soda ash, silica and litharge) and known quantity of silver (inquart). The crucible is then fused at 1060 °C for about 60 minutes before being poured into a mould to separate the slag from the gold-silver containing lead button. The lead button is then cupelled at 950 °C to remove the lead

leaving a Au-Ag dore prill. The dore prill is weighed on a microbalance before being parted with nitric acid to produce gold flake, which is then annealed and weighed gravimetrically on the microbalance.

3.3 Results & Discussion

DD 10-08

No significant mineralization was encountered in this hole, although a hydrothermal alteration zone was intercepted with what could at best be considered weakly anomalous.

Although this drill hole did not encounter any mineralization at depth, the potential remains that this zone may represent a shallow, small-tonnage, high-grade target appropriate for supplementing run-of-mine feed for the Baker mill, and as such, should be further developed by stripping the area around the surface showing to bedrock, and blast trench a small bulk sample. It is not considered likely that a large in-situ vein is present at this target at depth.

DD10-13

Mapping by Marsden & Moore 1990, indicates that to the north of Jock creek, the current workings, and the mining lease, the Shasta fault shows apparent right-lateral, horizontal displacement along a structure mapped as the J1 fault, of approximately 150 metres. No drillhole had previously tested this apparent segment of the Shasta fault, though drillholes have been collared in the footwall, further to the east. The drillhole intersected a wide zone of discrete faults marked by clay gouge between 34.0 and 49.0 metres, ending with a 40 cm wide band of gouge, separating unaltered to weakly altered epiclastic series rocks in the hanging wall from potasic altered volcanic tuffs in the footwall, consistent with the Shasta fault. The hole encountered a broad zone of low grade mineralization associated with quartz, potassium feldspar, calcite and epidote alteration and veining extending from the fault zone to the bottom of the hole. The veining was not as voluminous, and there was a lack of visible sulphides and an increase in epidote compared to mill-feed extracted from the Shasta mine. The hole was terminated as it had passed through the target and did not encounter any of the 'bonanza' grade mineralization that would be of interest for ongoing mining activities. It should be noted that the highestgrade assay from this hole, between 142.7 and 143.7 metres grading 1.2 ppm Au and 121 ppm Ag, was encountered near the bottom of the hole.

The wide, low-grade mineralization found in the fault and footwall zone of the hole is consistent with results obtained along the Shasta fault to the south and represents underexplored potential for a low-grade resource at the Shasta deposit. 'Ore' grade mineralization occurring adjacent and proximal to the Shasta fault at the Shasta mine is associated with the steep dipping quartz veins that comprise the creek zone intersecting the Shasta fault. The alteration accompanying the low-grade mineralization suggests that the drillhole penetrated a weakly developed section of the hydrothermal system. Further drilling should continue to test for higher grade mineralized veins/zones below the Shasta fault extension. A geophysical program to assist in drill-target definition should be completed prior to further drilling.

3.0 REFERENCES

Diakow, L.J., Panteleyev, A. and Schroeter, T.G, (1993): Geology of the early Jurassic Toodoggone Formation and gold-silver deposits in the Toddoggone River Map Area, Northern British Columbia. B.C.E.M.P.R. Bulletin 86, 72 pp.

Holbek, P.M., (1991): 1990 Exploration Report on the Shasta Claim Group; an in house report for Esso Minerals Canada Ltd.

Holbek, P.M., (1990): 1989 Exploration Report on the Shasta Claim Group; an in house report for Esso Minerals Canada Ltd.

Holbek, P.M., (1989): 1988 Exploration Report on the Shasta Claim Group; an in house report for Esso Minerals Canada Ltd.

Kraft, E.M., (2004): Report on the 2004 Exploration Program; a report for Sable Resources Ltd.

Marsden, H.M., Moore, J.M., (1988): Geological Fieldwork, Paper 1989-1

Marsden, H.M., and Moore, J.M., (1990): Stratigraphic and Structural Setting of the Shasta Silver-Gold Deposit, North-Central, B.C.; B.C.E.M.P.R. Geological Fieldwork 1989, Paper 1990-1, pp. 305-3 14.

McPherson, M.D., Oiye, M., Holbek, P.M., (1991): 1990 Exloration report on the Shasta Claim Group; A report for International Shasta Resources Ltd. and Homestake Canada Ltd.

Panteleyev, A., (1982): Geology between Toodoggone and Sturdee Rivers, B.C.; B.C. Ministry of Energy, Mines and Petroleum Resources, Geological Fieldwork 1982, Paper 1983-1, pp. 143-148.

Schroeter, T.G., (1982): Toodoggone River, B.C.; B.C. Ministry of Energy, Mines and Petroleum Resources, Geological Fieldwork 1981, Paper 1982-1, pp. 122-1331

4.0 STATEMENT OF COSTS

Field Personnel		
Rob Williams – operator (Oct 10, 11, 12, 16, 17)	5 days @ \$350/day	\$1750.00
Rick Solmenson – sample (October 24, 25)	prep 2 days @ \$350/day	\$700.00
Consultants		
Joel Gillham (geo) (October 11, 12, 16, 17, 21, 23)	6 days @ \$400/day	\$2400.00
Food & Accommodation		
	@ \$50/day Oct 16 x 6; Oct 17 x 6; Oct 21 x1; Oct 23 x 1; Oct 24	\$1450.00 \$ x 1; Oct 25 x 1)
Flights		* = = 0.00
Via Kemess-Vancouver	2 @ \$275/flight	\$550.00
Vehicles		
Onsite travel/rental	6 days @ \$100/day	\$600.00
Equipment & Supplies		
Fuel	2000 litres @ \$1.15/litre	\$2300.00
Excavator – Cat 345B	5 days @ \$2000/day	\$10,000.00
Dozer – Cat D6D	1 day @ \$2000/day	\$2000.00
Assays	45 @ \$30/sample	\$1350.00
Surface Drilling:		
casing	6.1m @\$75.00/m	\$457.50
core to 150m	239.9m @ \$68.00/m	\$16,313.20
core over 150m	22.2m @ \$73.00/m	\$1,620.60
labour/setup/delays	61h @ \$60.00/h	\$3,660.00
Mobilization/Demobilizati		\$13,000.00
Drilling muds & lubricants		\$1730.00
Report Preparation		\$2000.00
Total Cost		\$61,881.30

5.0 STATEMENT OF QUALIFICATION

I, Joel Gillham, of #1607-438 Seymour St, Vancouver, British Columbia, Canada, hereby certify that:

I graduated from Simon Fraser University with a Bachelor of Science degree in Earth Sciences (2007);

I have been continuously employed as a geoscientist in the mineral exploration industry since 2005;

I have been involved in the exploration, development and mining of the property that is the subject of this report since 2006.

I am a member of the Association of Mineral Exploration British Columbia in good standing;

Dated at Vancouver, BC this 16th day of October 2011

Jendom

Joel Gillham, B.Sc

APPENDIX I

DIAMOND DRILL LOGS

PROPERTY: Shasta

HOLE No.: DD10-08

Hole No. DD10-08	Sheet No	Total Depth: 169.4m
Section:	Latitude: 6589	Logged By: Joel Gillham
Date Begun: October 11, 2010	Departure: 1402	Dip: -45
Date Finished: October 12, 2010	Elevation: 1473	Core Size: NQ
Date Logged: October 23, 2010	Bearing: 065	

Depth	1	Rec	Description	Sample	From	То	Sample		As	say	
From	То			No	(m)	(m)	Width	Au ppm	Ag ppm		
0	3.1		Casing								
3.1	122.2		Purple-Red-Brown lapilli tuff. Lapilli		84.8	84.9	0.1	0.87	7.83		
			fragments account for ~10% of interval,		120.1	120.7	0.6	0.1	1.9		
			are dominantly composed of		147.4	148.9	1.5	0.17	4.5		
			chloritized-feldspar tuff less than 1cm		148.9	150.4	1.5	0.27	7.4		
			with rounded margins. Middle of the		158.8	159.4	0.6	0.2	2.17		
			interval, the frequency of larger		159.4	161.4	2	0.03	0.64		
			fragments increases. Calcite +/- quartz-		161.4	162.4	1	0.13	3.87		
			adularia stockwork (mm to 1cm) are		162.4	163.4	1	0.23	6.87		
			less than 1-2% of interval.		163.4	166.7	3.3	0.03	0.54		
76.4	76.5		3cm calcite-epidote vein, & minor								
			quartz-chlorite								
84.8	84.9		5cm epidote-calcite vein @ 60 deg to								
			core axis. 10cm alteration halo either								
			side of vein – lighter buff colour &								
			kspar alt of lapilli margin.								
118.5	118.7		Gouge at start and end of interval @								
			90degrees t ocore acis. Chlorite breccia								
			in between. No obvious lithology								
			change across structure.								
120.1	120.7		Two narrow 1cm and 3cm veins at start								
			& end of interval. 1 st quartz-chlorite-								

		calcite-grey mineral; 2 nd is quartz- calcite-chlorite-epidote @ 45deg to core axis, and has light pink (kspar?) to buff alteration halo.			
122.2	122.4	Chlorite gouge breccia/fault. 4cm @ 20deg to core axis			
		Light brown-grey Lapilli tuff. Top few meters has a greenish tinge. Lapilli from 4cm down to sub mm. Chlorite altered feldspar phenos in the lapilli, some with notable pyrite alteration.Generally a fine grained looking rock with weakly kspar altered feldspars in the matrix and small chloritic fragments. Two stockwork vein-types are present in roughly equal proportions. Adularia-quartz-calcite, and quartz-pyrite-chlorite. Both are mm's thick, and account for less than 1% of interval.			
	150.4	Quartz-calcite-chlorite breccias. Zones roughly 10cm wide, increasing towards bottom of interval. Approximately 10% vein/gangue at bottom, 5% near top. Some light green sericite, +/- a dark grey mineral (chlorite?) intergrown with calcite.			
158.9	159.1	Clay gouge. Irregular margins ~45deg to core axis.			
159.5	159.7	Very fine grained grey-green interval			

		with adularia stringers.				
160.8	161.4	Alteration as next interval, but much				
		less intense.				
161.4	162.4	10cm clay fault gouge @ 45 degrees to				
		core axis at start of secion. Quartz-				
		pyrite replacement of Kspar altered				
		wallrock. Discernable wallrock				
		remnants less than 10%, with mottled				
		edges. Late calcite microveins (mm's)				
		cut earlier alteration. 10 cm quartz vein				
		at bottom of section @ 45 degrees to				
		core axis, but rotated 30deg counter- clockwise to above fault.				
		clockwise to above fault.				
162.4	163.4	Two faults mark the beginning and end				
		of this interval. Similar alteration to				
		above. Upper fault contact is 35 deg to				
		core axis, lower is 45 deg to core axis.				
		Wallrock is bleached and phenos				
		variably kspar altered. Adularia				
		microveinlets. Chlorite-Quartz-Pyrite				
		replacement of wallrock.				
162 4	160.4					
163.4	169.4	Light brown-grey Lapilli tuff – same as				
		122.4-161.4m interval.				
		End of Hole				

PROPERTY:_Shasta

Hole DD10-13

Hole No. DD10-13	Sheet No	Total Depth: 154.6m
Section:	Latitude: 7560	Logged By Joel Gillham
Date Begun: October 16, 2010	Departure: 1090	Dip: -50
Date Finished: October 17, 2010	Elevation: 1300m	Core Size: NQ
Date Logged: October 21, 2010	Bearing: 075	

Depth		Rec	Description	Sample	From	То	Sample		As	say	
From	То			No	(m)	(m)	Width	Au ppm	Ag ppm		
0	3.1		Casing		30.2	33.8	3.6	0.23	7.54		
					33.8	34.6	0.8	0.97	7.4		
3.1	34.0	good	Purple-green volcanic-derived		34.6	35.7	1.1	2.53	7.2		
			epiclastic. Matrix looks similar to the		35.7	36.2	0.5	0.3	8.47		
			feldspar crystal tuff encountered lower		41.2	42.3	1.1	0.03	2.3		
			in the hole and in other drill holes on		42.3	43.4	1.1	0.13	3.57		
			the property – purple to green, with		43.4	44.4	1	1.9	3.8		
			white plagioclase crystals accounting		44.4	45.4	1	2.2	7.63		
			for ~30%. Clasts are rounded to		45.4	46.6	1.2	0.07	2.6		
			subrounded, with purple-red hematitic		46.6	47.7	1.1	0.03	2.3		
			alteration, commonly 5-10 cm and		47.7	48.6	0.9	0.07	2.53		
			comprise up to 40% of interval. Looks		48.6	49	0.4	0.3	13.2		
			clast supported for most of interval.		49	49.9	0.9	0.2	13.8		
					49.9	50.9	1	0.53	21.53		
30.3	30.4		10 cm patch of light green sericite with		50.9	52.1	1.2	0.2	10.43		
			up to 30% fine-grained grey mineral.		52.1	53.2	1.1	0.67	29.39		
			Traces of pyrite.		53.2	54.2	1	1.87	82.82		
					54.2	55.3	1.1	0.63	24.7		
34.0	35.7		Lapilli feldspar-crystal tuff. Potassium		55.3	56.5	1.2	0.3	9.73		
			feldspar (Kspar) altered plagioclase		56.5	57.5	1	0.17	12.6		
			crystals, and chloritic altered lapilli.		57.5	58.6	1.1	2.2	36.43		
			Upper contact with epiclastics is a 10		58.6	59.8	1.2	0.43	9.37		
			cm clay/fault gouge zone. 2, 10cm		59.8	60.8	1	0.5	10.1		
			wide epidote alteration zones/bands		60.8	61.9	1.1	0.13	4.1		
			60deg to core axis at 34.6 and 35.2m		61.9	63.1	1.2	0.07	2.63		
					74.2	75.3	1.1	0.33	3.47		
					86.3	87	0.7	0.9	35.9		

35.7	36.0	Quartz-Kspar alteration of matrix,	110.6	112.4	1.8	0.8	32.2	
		Quartz Calcite stockwork. Same	137.4	139.2	1.8	0.6	22.86	
		lithology as above. Epidote alteration as	139.2	140	0.8	0.37	15.66	
		above at end of interval	142.7	143.7	1	1.23	121.86	
36.0	41.3	Green-Grey Lapilli feldspar crystal tuff.						
		Same lapilli crystal tuff as above. Mild						
		'pinking' of the feldspar crystals. Lapilli						
		of same composition as matrix, but						
		slightly less green. Lower contact is						
		gradational. Epidote alteration increases						
		from 40.0 to end of interval						
41.3	42.4	Bleached-buff coloured quartz-epidote						
		healed zone.						
42.4	43.4	Epidote-clay fault zone. Lithology as						
		above. 20 cm of Epidote						
		laminations/bands at 85 deg to core						
		axis, followed by 8cm of clay, then						
		broken, dull grey-buff lapilli crystal tuff						
		with clay seams to end of interval						
43.4	45.3	Buff coloured lapilli crystal tuff. Lower						
		contact is 2 cm of clay gouge at 45 deg						
		to core axis.						
45.3	48.6	Grey-green lapilli feldspar crystal tuff.						
		Mild to no kspar alteration of feldspar						
		crystals. Epidote alteration of feldspars						
		and fractures. 1cm quartz-calcite						
		stringer with Kspar alteration halo @						
		47.9m @ 25deg to core axis. 10cm clay						
		gouge at 47.7m @ 25deg to core axis.						
48.6	49.0	40 cm of clay gouge (lower Shasta fault						

		contact?) at 50-60 degrees to core axis.					
49.0	65.3	Kspar altered Lapilli-feldspar crystal					
		tuff (lithology as above). Classic quartz-					
		adularia-calcite stockwork and					
		alteration as seen in JM and creek zones					
		of the Shasta deposit. Some epidote.					
		Feldspar phenocrysts kspar altered.					
		Stockwork generally less than 2%. 5cm					
		quartz breccia, 30deg to core axis at					
		54.5m – not a very distinct zone.					
		Quartz stockwork to 10% from 58.0 to					
		61.0m. Kspar alteration decreases after					
		62.5m and gradational to next interval.					
65.3	EOH	Grey lapilli feldspar crystal tuff. Similar					
05.5	LOII	to above lithology. Quartz eye phenos			_		
		to a couple mm's comprise 1-2% of					
		matrix. Variable weak to moderate					
		kspar and epidote alteration to 30%.		 			
		Lapilli comprise 10%, usually sub cm,		 			
		chloritic fragments or same as matrix.	 		_		
		emonue magments of same as matrix.	 		_		
	0 7 7		 				
74.2	87.5	Weak kspar and epidote alteration					
86.3	86.8	5 cm of alow gouge at 20 day to some avia					
80.5	80.8	5cm of clay gouge at 30deg to core axis	 				
		followed by 10cm of calcite vein at					
		same angle.					
111.0	111.0		 		_		
111.0	111.2	Calcite-chlorite-epidote vein @ 30deg		 			
		to core axis. Pinches from 1 to 4cm.					
111.9	112.3	6 cm Calcite-chlorite-epidote vein as					
111.9	112.3	above, same angle					
137.4	140.4	Moderate-weak kspar altered feldspar					
		crystal tuff. Some quartz-stockwork @				+	
		erystar turi. Some quartz-stockwolk @					

		137.5-138.0. Calcite-chlorite-epidote vein, 4cm, @ 20deg to core axis from				
		138.2-139.2, and @ 139.5-140.4m				
142.7	143.7	Moderate kspar alteration. 20cm				
172.7	143.7	Calcite-chlorite-epidote vein/breccia @				
		25deg to core axis.				
		End of Hole				

APPENDIX II

ASSAY DATA

Sable Resources Ltd Baker Mill Assay Lab

Assay Report

#	Sample descr	iption		Weight (g)	Inquart	Dore wt (µg)	Dore wtg/t	Au (µg)	Au g/t	Ag g/t	Date
1	DD10-08	84.8	84.9	30	yes	0.261	8.70	0.026	0.87	7.83	2010-10-30
2	DD10-08	120.1	12.7	30	yes	0.060	2.00	0.003	0.10	1.90	2010-10-30
3	DD10-08	147.4	148.9	30	yes	0.140	4.67	0.005	0.17	4.50	2010-10-30
4	DD10-08	148.9	150.4	30	yes	0.230	7.67	0.008	0.27	7.40	2010-10-30
5	DD10-08	158.8	159.4	30	yes	0.071	2.37	0.006	0.20	2.17	2010-10-30
6	DD10-08	159.4	161.4	30	yes	0.020	0.67	0.001	0.03	0.64	2010-10-30
7	DD10-08	161.4	162.4	30	yes	0.120	4.00	0.004	0.13	3.87	2010-10-30
8	DD10-08	162.4	163.4	30	yes	0.213	7.10	0.007	0.23	6.87	2010-10-30
9	DD10-08	163.4	166.7	30	yes	0.017	0.57	0.001	0.03	0.54	2010-10-30
10											
11	Duplicates										
12	DD10-08	84.8	84.9	30	yes	0.264	8.80	0.024	0.80	8.00	2010-10-28
13											
14											
15											
16											
17											
18											
19											
20											
21											
22											
23											
24											
25											
26											
27											
28											
29											
30											
31											
32											
33											
34											
35											
36											
37											

No Samples9Sample TypeCoreAnalysis by Fire Assay – Gravimetric

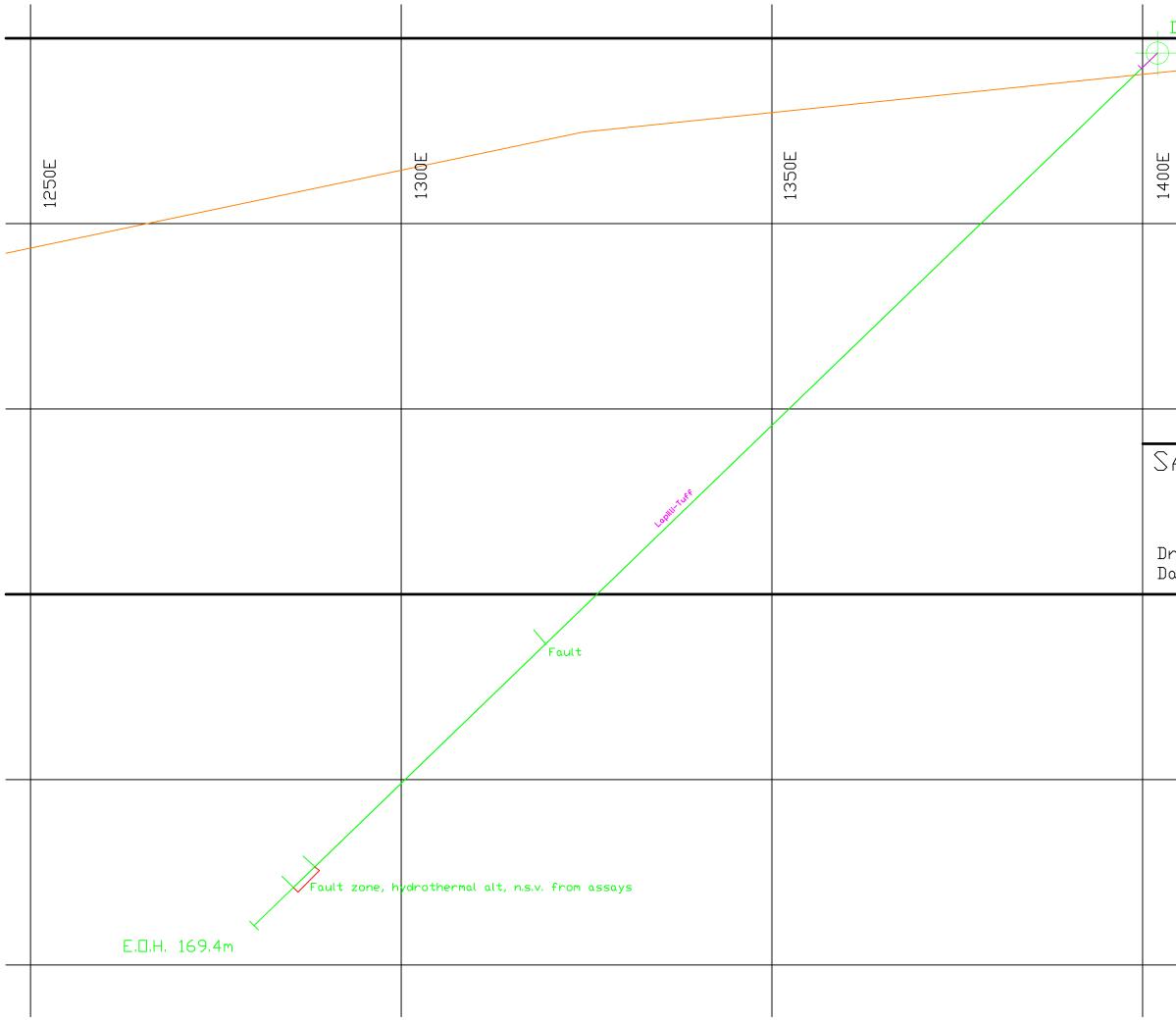
"Deane Slade"

Baker Mill Assay Lab Deane Slade Chief Assayer

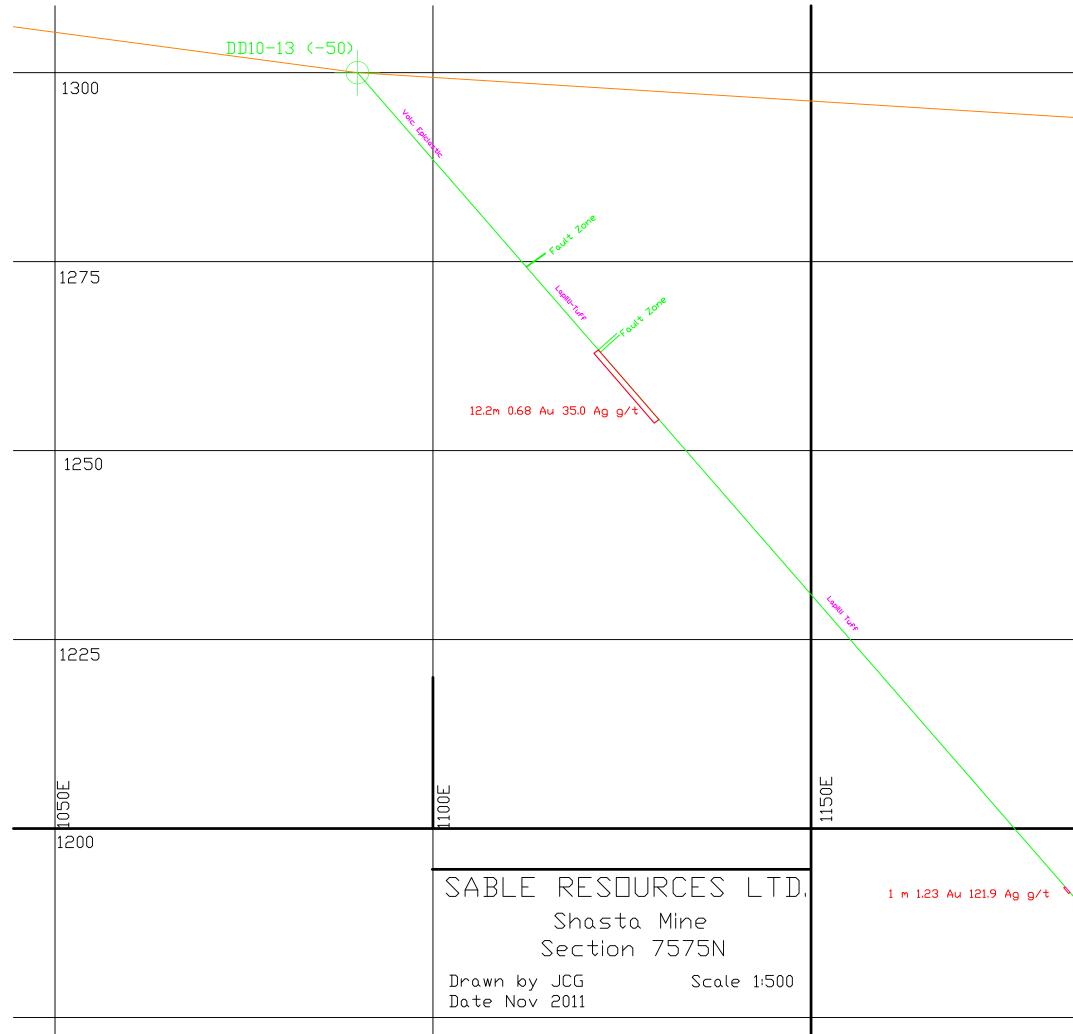
Sable Resources Ltd Baker Mill Assay Lab

Assay Report

#				Weight (g)	Inquart	Dore wt(µg)	Dore w t g/t	Au (µg)	Au g/t	Ag g/t	Date
1	DD10-13	30.2	33.8	30	yes	0.233	7.77	0.007	0.23	7.54	2010-10-28
2	DD10-13	33.8	34.6	30	yes	0.251	8.37	0.029	0.97	7.4	2010-10-28
3	DD10-13	34.6	35.7	30	yes	0.292	9.73	0.076	2.53	7.2	2010-10-28
4	DD10-13	35.7	36.2	30	yes	0.263	8.77	0.009	0.3	8.47	2010-10-28
5	DD10-13	41.2	42.3	30	yes	0.07	2.33	0.001	0.03	2.3	2010-10-28
6	DD10-13	42.3	43.4	30	yes	0.111	3.7	0.004	0.13	3.57	2010-10-28
7	DD10-13	43.4	44.4	30	yes	0.171	5.7	0.057	1.9	3.8	2010-10-28
8	DD10-13	44.4	45.4	30	yes	0.295	9.83	0.066	2.2	7.63	2010-10-28
9	DD10-13	45.4	46.6	30	yes	0.080	2.67	0.002	0.07	2.6	2010-10-28
10	DD10-13	46.6	47.7	30	yes	0.070	2.33	0.001	0.03	2.3	2010-10-28
11	DD10-13	47.7	48.6	30	yes	0.078	2.6	0.002	0.07	2.53	2010-10-28
12	DD10-13	48.6	49	30	yes	0.405	13.5	0.009	0.3	13.2	2010-10-28
13	DD10-13	49	49.9	30	yes	0.420	14	0.006	0.2	13.8	2010-10-28
14	DD10-13	49.9	50.9	30	yes	0.662	22.06	0.016	0.53	21.53	2010-10-28
15	DD10-13	50.9	52.1	30	yes	0.319	10.63	0.006	0.2	10.43	2010-10-28
16	DD10-13	52.1	53.2	30	yes	0.902	30.06	0.020	0.67	29.39	2010-10-28
17	DD10-13	53.2	54.2	30	yes	2.541	84.69	0.056	1.87	82.82	2010-10-28
18	DD10-13	54.2	55.3	30	yes	0.760	25.33	0.019	0.63	24.7	2010-10-28
19	DD10-13	55.3	56.5	30	yes	0.301	10.03	0.009	0.3	9.73	2010-10-28
20	DD10-13	56.5	57.5	30	yes	0.383	12.77	0.005	0.17	12.6	2010-10-28
21	DD10-13	57.5	58.6	30	yes	1.159	38.63	0.066	2.2	36.43	2010-10-28
22	DD10-13	58.6	59.8	30	yes	0.294	9.8	0.013	0.43	9.37	2010-10-28
23	DD10-13	59.8	60.8	30	yes	0.318	10.6	0.015	0.5	10.1	2010-10-28
24	DD10-13	60.8	61.9	30	yes	0.127	4.23	0.004	0.13	4.1	2010-10-28
25	DD10-13	61.9	63.1	30	yes	0.081	2.7	0.002	0.07	2.63	2010-10-28
26	DD10-13	74.2	75.3	30	yes	0.114	3.8	0.010	0.33	3.47	2010-10-28
27	DD10-13	86.3	87	30	yes	11.040	368	0.027	0.9	35.9	2010-10-28
28	DD10-13	110.6	112.4	30	yes	0.990	33	0.024	0.8	32.2	2010-10-28
29	DD10-13	137.4	139.2	30	yes	0.704	23.46	0.018	0.6	22.86	2010-10-28
30	DD10-13	139.2	140	30	yes	0.481	16.03	0.011	0.37	15.66	2010-10-28
31	DD10-13	142.7	143.7	30	yes	3.693	123.09	0.037	1.23	121.86	2010-10-28
32											
33	Duplicates										
34	DD10-13	139.2	140.4	30	yes	0.544	18.13	0.014	0.47	17.66	2010-10-28
35	DD10-13	41.2	42.3	30	yes	0.066	2.2	0.001	0.03	2.17	2010-10-28
36	DD10-13	45.4	46.6	30	yes	0.083	2.77	0.002	0.07	2.7	2010-10-28
37	DD10-13	33.8	34.6	30	yes	0.303	10.1	0.030	1	9.1	2010-10-28


No Samples	31
Sample Type	Core
Analysis by Fi	e Assay – Gravimetric

"Deane Slade"


Baker Mill Assay Lab Deane Slade Chief Assayer

APPENDIX III

SECTIONS

DD10-08 (-45)	
	1475
	1450E
	14
	1450
ABLE RESOURCES LTD,	1425
Shasta Mine	
Section 6600N	
	1400
	1400
	1400
	1400
	1400
	1400
rawn by JCG Scale 1:500 ate Nov 2011	

	JE
	1200E
E.O.H. 154.6m	
	l