

Ministry of Energy, Mines & Petroleum Resources Mining & Minerals Division BC Geological Survey Michael
Anthony
Pond

Digitally signed by: Michael Anthony Pond
DN: CN = Michael Anthony Pond C = CA
0 = Thompson Greek Mining Ltd. OU =
Endako Mines
Date: 2012.08.15 10:09:51 -08'00'
Reason: Assessment report digital filing
requirement
Location: Endako Mines, Fraser Lake, BC

TYPE OF REPORT [type	of survey(s)]:	Diamond Drilling			TOTAL COST:	CAD\$33,569.56
AUTHOR(S):	Michael Pond, F	P.Geo.		SIGNATURE(S):	miland	Pond
NOTICE OF WORK PERI	MIT NUMBER(S)/DATE(S):		F	FUP #M-4 2011		YEAR OF WORK: 2011
STATEMENT OF WORK	- CASH PAYMENTS EVEN	NUMBER(S)/DATE(S):		statement of work	- event # 53908	13
PROPERTY NAME:		End	dako	Minesite - Mine #0	200478	
CLAIM NAME(S) (on whi	ch the work was done):			507222		
COMMODITIES SOUGHT	r:			lybdenum		
	MINFILE NUMBER(S), IF KN		093	3K/006		
MINING DIVISION:	Ominica o 03 ' 37 "	4	_		Trim 093K 005	
OWNER(S):	mpson Creek Mining Lt	400 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			(at centre of work) Sojitz Canada Co	
MAILING ADDRESS:	Bag 4001			5	Suite 2624, 1055	Dunsmuir St.
	Fraser Lake, BC				ancouver, BC	V7X1L3
OPERATOR(S) [who paid 1) Thor	d for the work]: mpson Creek Mining Lt	d.	2) _			
MAILING ADDRESS:	3ag 4001		_			
F	raser Lake, BC V0J	1S0	_			
PROPERTY GEOLOGY R Commodities: Molyb	KEYWORDS (lithology, age denum Significant	, stratigraphy, structure, Minerals: Molybdenit	altera e, Py	tion, mineralization, s rrite, Magnetite, Ch	ize and attitude): alcopyrite, Sphal	erite, Bornite, Scheelite
Alteration: Sericite, F	Kaolinite, K-Feldspar, S	pecularite, Pyrite		Alteration Type:	Argillic, Potassic,	Oxidation
				Tuna: LOE: Darnh	way Mo /I ow E. t	vne)
Classification: Stock	work, Vein, Porphyry, I	Hydrothermal, Epigen	etic	Type: L05: Porph	INTY INIO (LOW I'- I	ype

TYPE OF WORK IN THIS REPORT	EXTENT OF WORK (IN METRIC UNITS)	ON WHICH CLAIMS	PROJECT COSTS APPORTIONED (incl. support)
GEOLOGICAL (scale, area)			
Ground, mapping			
Photo interpretation			
GEOPHYSICAL (line-kilometres)			
Ground			
Magnetic			
Electromagnetic			
Induced Polarization			
Radiometric			
Seismic			
Other			
Airborne			
GEOCHEMICAL (number of samples analysed for)			
Soil			
Silt			
Rock			
Other			
DRILLING (total metres; number of holes, size	\$4.5 miles		0.4.00.00.00.00.00.00.00
Core 501m in 2 No		507222	CAD\$30,593.04
Non-core 9m in 2 hole	s (NW casing)	507222	CAD\$521.68
RELATED TECHNICAL			
Sampling/assaying 123 s	plit-core 10ft samples	507222	CAD\$2,454.83
Petrographic			
Mineralographic			
PROSPECTING (scale, area)			
PREPARATORY / PHYSICAL			
Line/grid (kilometres)			
Topographic/Photogrammetric (scale, area)			
Road, local access (kilometres)/trail		
Trench (metres)			
0.11		4	
8 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 -		TOTAL COST:	CAD\$33,569.56
		e a medit of direct, in registrational and	

BC Geological Survey Assessment Report 33201

Assessment Report

Endako Mine 2011 Exploration Diamond Drill Program Phase II

Omineca Mining Division

N.T.S. 93K/3ELatitude 54° 02' N Longitude 125° 07' W

Owner/Operator:

Thompson Creek Mining Ltd. Endako Mines

> Bag 4001 Fraser Lake, B.C. V0J 1S0

> > Prepared for

Ministry of Energy, Mines, & Petroleum Resources Mining & Minerals Division

by

Michael Pond, P. Geo. Endako Mines Ltd.

August 15, 2012

Table of Contents

	Asse	ssment Form Submission Title Page	I
	Repo	rt Title Page	iii
	Table	e of Contents	iv
1.0	Sumn	nary	1
2.0	Introd	luction	2
	2.1	Terms of Reference	2
	2.2	Property Description and Location	2
	2.3	Accessibility, Climate, Local Resources, Infrastructure and Physiography	2
	2.4	Property History	3
3.0	Geol	ogical Setting	8
	3.1	Regional Geology	8
	3.2	Property Geology	
		3.2.1 Lithology	
		3.2.2 Structure	
		3.2.3 Mineralization and Alteration	9
4.0	Diam	ond Drilling Program	
	4.1	Contracts	
		4.1.1 LDS Diamond Drilling Ltd	
		4.1.2 Taiga Consultants Ltd.	
	4.2	Drill Program Parameters	11
5.0	Diam	ond Drilling Results	14
6.0	Interp	pretation and Recommendations	16
7.0	Refer	'ences	17

List of Figures and Tables

Figure 1	Property Location Map	
Figure 2	Endako Mine – Land Tenure	
Figure 3	Tenure 507222	7
Figure 4	Endako Mine Regional Geology	
Figure 5	Denak Extension Drillhole Location Map	
Table 1	2011 Diamond Drill Hole summary	12
Table 2	Geological Codes	13
	Appendices	
Appendix 1	Program Expenditures	A1-1
Appendix 2	Statement of Author's Qualifications	
Appendix 3	Tenure Information	
Appendix 4	Mineral Titles Online – Event 5390813	A4-1
Appendix 5	Drill Hole List	A5-1
Appendix 6	Drill Hole Descriptive Logs	A6-1
Appendix 7	Drill Hole Assay List	A7-1
Appendix 8	Endako Lab Assay Certificates	
Appendix 9	Drill Hole Cross Sections	
Appendix 10	Software List	A10-1

1.0 Summary

The Endako porphyry molybdenite deposit is located 160 kilometres west of Prince George in central British Columbia. The property consists of 43 claims and 25 mineral leases covering approximately 9,777 hectares. Thompson Creek Mining Ltd. owns 75% of the operation and Sojitz Moly Resources Inc. owns 25%. The Endako Mine consists of three different open pits: the Endako, Denak East, and Denak West, with a total proven and probable reserve of 340.26 million tonnes grading 0.046% molybdenum as of June 01, 2011, and is currently operating at a rate of approximately 52,000 tonnes per day.

The 2011 diamond drill program was conducted from April 26 to September 20, 2011 and was comprised of several phases. This document reports on the late summer drilling on the Denak Extension area of the Endako Mine land tenure. This phase comprised of 1,670 feet, (509.02m) NQ diamond drilling in 2 holes completed between August 4 and August 30, 2011. The total drilling costs for this program assessment was CAD\$33,569.56

Located to the northwest of the Denak West Pit, the 'Denak Extension' has a defined reserve in the "Proven and Probable" category. The 2011 program was designed to infill and increase the reserve tonnes.

Anomalous molybdenite mineralization, with minor K-feldspar alteration and moderate to intense argilic alteration was encountered in veins/veinlets and on fracture surfaces in the holes of the 2011 drill program. The Denak Extension is interpreted to be a continuation of the major porphyry system of the Denak West Pit.

Minable widths were intersected in both holes for this project. In hole 11A-049 the 44 foot composite 289.64 to 333.64 feet, (Bench 2618), was 0.082% MoS_2 . Individual assay intervals included 310-313'@0.33, 321-327'@0.148, 327-337'@0.139, and 361-363'@0.232% MoS_2 .

In hole 11A-052 the 44 foot composite 504.20 to 548.20 feet, (Bench 2398), was 0.093% MoS₂. Individual assay intervals include 507-517'@0.167, and 537-547'@0.206% MoS₂.

No exploration program is planned for 2012. Mineralization is still open to the north and west of the Denak Extension, and may be open to the east. Continued exploration programs are recommended as budgets permit, to close the current open defined mineralization.

2.0 Introduction

2.1 Terms of Reference

The diamond drill exploration program completed on the Denak Extension in 2010 met the primary objective of increasing the mineral reserve to a "Probable" category. The program in 2011 continued with a program to further extend the reserve by step out drilling and targeting several well defined soil geochemical anomalies similar to anomalies proven during the 2010 drill program.

This report documents the results of 1,670 feet (509.02 metres) of diamond drilling in 2 holes completed between August 04 and August 30, 2011, and fulfills the reporting requirements for filing the assessment work dated July 04, 2012, (event 5390813). Endako personnel were responsible for spotting the drill holes and for supervision of the drill program. Geological core logging was carried out in part by contract with Taiga Consultants Ltd.

Overall project management was supervised by the author including custody of the core and supervision of assay core sampling and co-ordination with the Mine assay lab.

The work was conducted under work approval for Mines Act Permit M-4 and by Free Use Permit FUP# M-4 2011; April 15, 2011.

2.2 Property Description and Location

The Endako porphyry molybdenite deposit is located 160 kilometres west of Prince George in central British Columbia (Figure 1). The centre of the property sits at 54° 02'N and 125° 07'W, or 5990212mN and 362020mE, UTM Zone 10, NAD 83 (Figure 1).

The property consists of 43 legacy and converted legacy claims and 25 mineral leases covering an area of approximately 9,777 hectares (Figure 2). Appendix 3 contains information on each individual claim and lease. The expiry dates, (event 5390813) for the 4 highlighted claims shown in Figure 2 and Appendix 3, are pending acceptance of this report. The property is 75% owned by Thompson Creek Mining Ltd and 25% by Sojitz Moly Resources Inc. Figure 3 shows the tenure detail for this reporting phase of the 2011 drilling area.

The Endako Mine consists of three different open pits: the Endako, Denak East, and Denak West, with a total proven and probable reserve of 340.26 Million Tonnes grading 0.046% molybdenum as of June 01, 2011, and is currently operating at a rate of approximately 52,000 tonnes per day.

2.3 Accessibility, Climate, Local Resources, Infrastructure and Physiography

The Endako Mine Property lies within the Interior Plateau, characterized by broad valleys, flat-topped hills, and generally gently rolling terrain. Glaciation moved across the area from the west leaving a distinct east-west grain. Elevations range from 670 metres at Endako village to 1,070 metres at the crest of the Endako Pit. Vegetation consists of relatively open pine forests.

Access to the mine is via 10 kilometres of paved road from the Village of Endako located on Highway 16 northeast of the mine. A network of mine roads provides excellent access to most parts of the property. Prince George, the largest service centre in northern British Columbia, is 160 kilometres east along Highway 16. Fraser Lake, 20 kilometres to the northeast, is the nearest significant community to the mine.

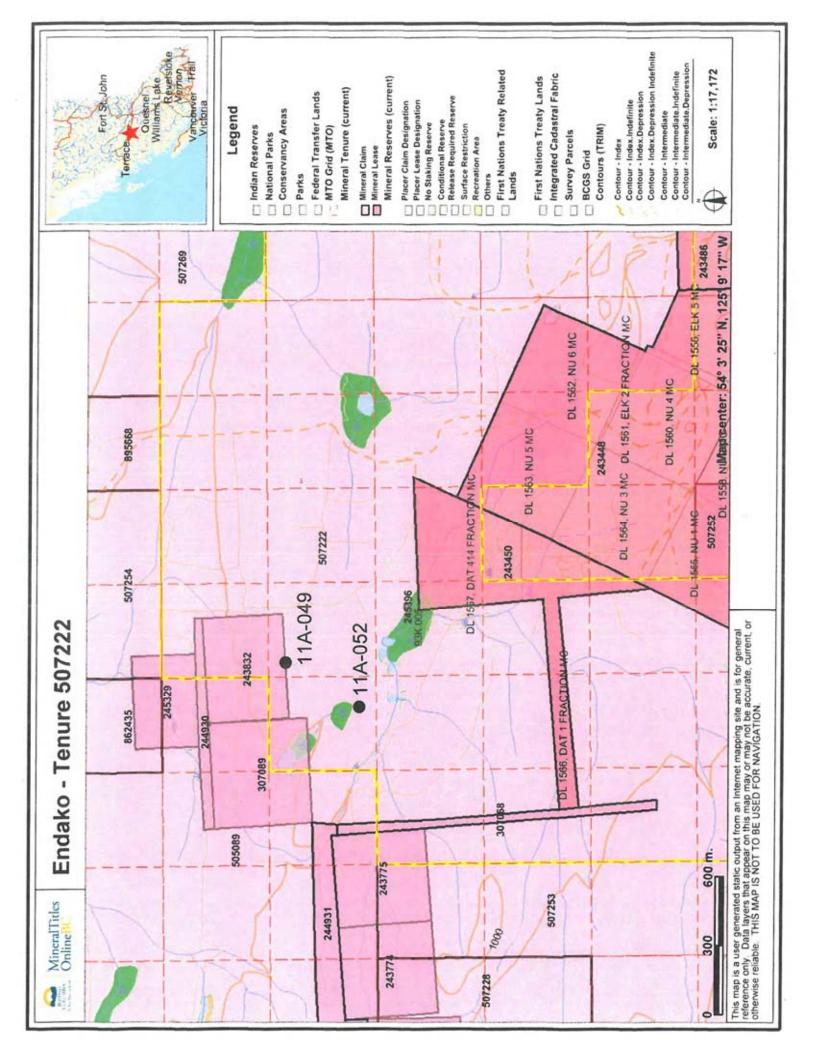
2.4 Property History

The Endako deposit was discovered in 1927 by local prospectors and explored with a short shaft and tunnel. The leached nature of the mineralization, extensive overburden, low grades, and lack of precious metals led to the claims being dropped in 1958. In 1962, R and P Metals Corporation acquired the property and after encouraging diamond drilling results incorporated Endako Mines Ltd. Further diamond drilling and bulk sampling led to a positive production decision in 1964 and official mine opening on June 8, 1965. Production was expanded from 9,070 tonnes per day to 24,500 tpd in 1967, 27,000 tpd by 1980, and 30,000 tpd in 1993.

Exploration has been ongoing from the mid-sixties to the present, including geochemical sampling, diamond and percussion drilling. Recent work included 14 diamond drill holes in 1989, 22 more in 1992, 44 in 1993, and 19 in 1994. Placer Dome Inc. conducted all these programs. In 1997, Endako was sold to Thompson Creek Mining Ltd. (75%) and Nissho Iwai Moly Resources Inc. (25%). A modest drill program and geophysical survey were carried out in 1997.

The following drill programs have occurred since 2001:


- 2001: five holes for 2,535 ft (772.7 m) were drilled three in the water tank area east of the mine and two in the southeast dump area. An intercept of 0.132% MoS2 over 10 ft (3.05 m) in the water tank area was recommended for follow up.
- 2002: 14 holes for 5,166 ft (1,574.6 m) were drilled seven of which were in the south wall of the Endako pit to test below the pit bottom and improve prospects for a pushback. All core was sent for metallurgical tests. There was 12,200 ft (3,719 m) of pole-dipole IP (N=1 to 4) completed on three lines spaced at 200 ft (60 m). Lines were located 3,000 ft (915 m) east of the Endako pit.
- 2004: IP chargeability anomaly tested by three holes, with 1,581 ft (482 m) drilled; anomalous but subeconomic MoS₂ was found in two holes. Three holes were drilled in the Denak East pit north wall to fill in the gap in the existing drilling. Grades were near economic.
- 2006: in January and February of 2006, 16,870 ft (512 m) in 35 NQ surface holes were diamond drilled. The purpose was to find additional molybdenite resources on the mine property. Eight holes were collared just west of the north end of the Denak West pit and inclined -60° to 75° to the north. Five holes were drilled north and east of the Denak West pit and seven holes that intersected generally low-grade molybdenite were drilled east of the Endako East pit. A fence of six holes was completed in the Casey Zone


approximately one mile (1.75 km) east of the Endako East pit.

- **2007**: 66 holes drilled for a total of 10,926m. 33 holes were placed in the Casey Zone, 17 holes in the Denak Area, 6 holes in Endako, and 10 holes for condemnation drilling.
- **2008**: An initial exploration drilling phase placed 18 holes at multiple areas on the property. A subsequent infill drill phase placed 34 holes primarily in the Denak Extension area.
- 2009: No exploration drill program completed in 2009.
- 2010: Conducted from April 19 to August 25, the 2010 drill program comprised of 45,202 feet in a total of 91 NQ holes. Most holes were completed in the Denak Extension area (82), the remaining 9 holes were completed on the Denak East Pit south wall.

Figure 1 Property Location Map

3.0 Geological Setting¹

3.1 Regional Geology

The composite Endako batholith stretches from Burns Lake southeast to the Nechako River and is divided into three distinct magmatic suites, covering a time period from 220 to 145 million years ago, with several noted periods of quiescence. The oldest, the Stern Creek Suite, recently dated at 219.3 Ma (Villeneuve et al, 2001), consists of foliated gabbros and diorites within the northern and eastern part of the batholith. The Stag Lake Suite consists of mafic to intermediate plutons ranging in age from 180 – 161 Ma and forms the western, northeastern and eastern margins of the Endako batholith. The Francois Lake Suite is divided into the older Glenannan subsuite (157 – 155 Ma) and the Endako subsuite (149 – 145 Ma), and consists of mainly felsic plutons. The Endako orebody is hosted in the Endako phase quartz monzonite and is genetically associated with the terminal stages of magmatic activity, the Casey monzogranite, dated at 145 Ma. (Villeneuve et al, 2001).

3.2 Property Geology

The Endako molybdenite deposit is hosted within the Endako Quartz Monzonite, bound by younger Casey Alaskite (monzogranite) and Francois Granite to the north and south, respectively. In the mine area, Endako Quartz Monzonite has been intruded by pre-ore aplite, andesite, quartz-feldspar porphyry and porphyritic granite dykes and post-ore basaltic dykes.

The deposit is aligned to the northwest with a maximum length of 4800 metres, a width of 750 metres and a maximum depth of 282 metres. Four structurally distinct zones have been identified from east to west, as Endako East, Endako West, Denak East, and Denak West (Bysouth and Wong, 1996). Five major fault trends have also been identified: the South Boundary Fault to the south, the Casey Fault further to the northeast, the north-trending Tailings Creek Fault also to the northeast, the West Basalt Fault at the west end of the Endako Pit and the Denak West Fault between the Denak East and Denak West Pits (Figure 4).

3.2.1 Lithology

Endako Quartz Monzonite

Pink to orange-pink Endako Quartz Monzonite is the dominant rock type encountered in diamond drilling in the Endako Pit. This phase is equigranular to weakly porphyritic with grain-size typically 3-4mm with K-feldspar crystals ranging up to 7mm. Its composition is typically 30% quartz, 35% K-feldspar, 30% plagioclase and 5-10% variably chloritized biotite. In the ore zone, the unit is variably kaolinized ranging in colour from pale greenish to creamy white.

Aplite Dykes

Aplites are typically pink and fine to medium-grained quartz-K-feldspar-rich dykes. These dykes range up to several metres thick, show sharp contacts with host rocks, and exhibit no chilled selvages. In the ore zone, aplite dykes are

_

¹ Wild, C.J. and Thompson, I., 2004

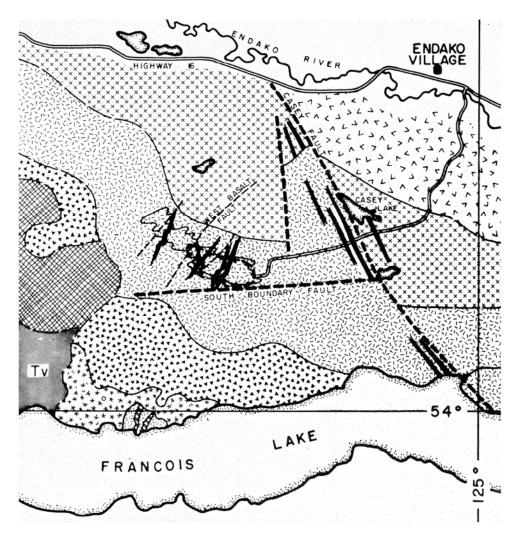
often mineralized with thin stockwork quartz-molybdenite veinlets. Above the South Basalt Fault, aplite often hosts quartz-pyrite stringers.

Basalt (Andesite) Dykes

Basaltic dykes are dark greenish grey, fine-grained and locally porphyritic in the Endako Pit, and often associated with major fault systems. The South Basalt Fault is the best exposed fault-basalt dyke structure.

3.2.2 Structure

Pre-ore dykes associated with the Endako deposit strike to the northeast with vertical to steep westerly dips. These dykes have sharp contacts with little evidence of any deformation during intrusion. Post-ore basaltic dykes are marked by extensive gouge and brecciation, associated with major structures that likely predate ore deposition. The South Boundary Fault appears to be a major controlling structure for both subsidiary structures and later hydrothermal activity (Bysouth and Wong, 1996).


As mentioned above, four structurally distinct zones have been identified from east to west: Endako East, Endako West, Denak East, and Denak West (Bysouth and Wong, 1996). These zones are separated by steep northeast-trending structures including the eastern pre-ore dyke swarm (between Endako East and West), West Basalt Fault, and Denak West Fault (Figure 4). The Endako East zone hosts veins that dip shallowly to the northwest. Endako West veins dip to the south; the South Basalt Fault appears to be a post-ore component of this south vein system (Bysouth and Wong, 1996). Ore structures in the Denak East dip southwesterly, turning abruptly to westerly dips in Denak West. Secondary controls include northeast trending structures with moderate southeast dips.

3.2.3 Mineralization and Alteration

Mineralization consists of molybdenite, pyrite, magnetite, minor chalcopyrite, and rare bornite, bismuthinite, scheelite, and specularite. The orebody consists of a series of subparallel or en echelon quartz-molybdenite-pyrite veins and stockworks of thin veins, veinlets and mineralized fractures. Mineralization occurs in milky white to banded or ribboned quartz veins that are often brecciated and healed by quartz and late-stage calcite and minor chalcedony. Molybdenite varies in grain size from very coarse and greasy to microscopic grains in quartz, referred to as "black quartz ore". A pyrite zone lies to the south of and adjacent to the orebody, with a transitional boundary in the immediate hanging wall of the South Basalt Fault.

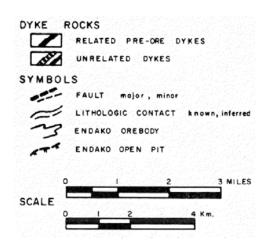

Hydrothermal alteration occurs in three phases within the Endako ore zone. K-feldspar bearing envelopes develop around quartz-molybdenite veins and on barren quartz veins in the footwall of the deposit. Sericite envelopes, consisting of quartz, sericite and pyrite, are developed around quartz-molybdenite and quartz-magnetite veinlets in the orebody, and quartz-pyrite veins in the pyrite zone. Kaolinization is pervasive throughout the orebody, ranging from weak to intense.

Figure 4 Endako Mine Regional Geology

LEGEND

4.0 Diamond Drilling Program

4.1 Contracts

4.1.1 LDS Diamond Drilling Ltd.

LDS Diamond Drillers of Kamloops BC was the drilling contractor for the 2011 exploration project. LDS mobilized equipment and crews to the Endako Minesite on April 26. Equipment consisted of two Longyear Super 38 Drill Rigs, D6-C CAT dozer, Arctic Cat Quad, two Unitized Water Pump houses, two drill rod sloops, and support & parts Drill Shack. Only one drill, water pump, and rod sloop supported the drilling described in this report.

The drilling team comprised of a party chief and two crews consisting of a driller and helper.

Drilling commenced August 04 on the first hole of this report – 11A-049. After a two week drilling break following phase I, (August 06 to 22), hole 11A-049 was completed. The second hole, 11A-052 was completed August 30 after 2 holes were completed on an adjoining land tenure, (Option Agreement with Georgia West Resources Ltd.). Equipment was mobilized and continued to drill additional holes on the Option under another phase of drilling.

4.1.2 Taiga Consultants Ltd.

Taiga Consultants Ltd. was contracted to provide geologists to conduct the geological core logging for the drill program. Taiga was able to provide a geologist to help cover core logging from May 08th to September 25th. Core logging spreadsheet templates, unit lithology codes, alteration codes, structure, and other feature types were reviewed with the author prior to, and during the extents of the program. Table 2 details the geological codes used during the program and referenced by the core logs in Appendix 6.

4.2 Drill Program Parameters

Table 1 below summarizes the main phases of the 2011 drill program. This report describes Phase II of the drill program, a total of 1,670 feet (509.02 metres) of NQ core was drilled. Total casing (NW diameter), through overburden was 28 feet (8.5 metres). Overburden depth varies from 10 to 91 feet, averaging 40 feet through most of the Denak Extension area.

The core was logged for lithology, mineralization, alteration, recovery, RQD and structure at the Endako Minesite core shack. Detailed descriptive logs are included in Appendix 6. All core was photographed and was sampled in five or ten foot intervals.

The core sampled at 10 foot intervals was split using a manual splitter with half the core put in plastic bags for delivery to the assay lab and the other half retained for future reference. All core boxes were labelled in felt pen by the drill crew and additionally

labelled with aluminum tags at the core shack. Core is stored in a covered outside core storage area on site. Sample rejects have been sealed in drums and also stored at the onsite core storage area. Sample pulps are stored in the core shack and in the mine administration building. All core samples were analyzed for MoS₂ at the on-site assay lab. Assay reports are included in Appendix 7 and Appendix 8.

Quality assurance and quality control, (QA/QC) measures were implemented throughout the 2011 drill program both by the core shack sampling procedures and by the Endako Assay Lab. Approximately 15% of samples were QA/QC checks using blank (< 0.002 %MoS₂, detection), low grade (0.037 %MoS₂), high grade (0.099 %MoS₂), and super high grade (0.148 %MoS₂) standards.

Additionally, sample duplicates of reject and pulps were completed.

Table 1 - 2011 Diamond Drill Hole Summary

	Description / Location		Date:	Holes:				
		Start:	End:	Start:	End:	(#)		
Phase IA	Denak Extension	April 27, 2011	August 4, 2011	11A-001	11A-048	48		
Phase IB	Endako Pit South Wall	April 27, 2011	July 16, 2011	11B-001	11B-013	13		
Phase IIA	Denak Extension	August 4, 2011	August 30, 2011	11A-049	11A-052	2		
Phase IIB	Endako Pit North Wall	July 14, 2011	August 17, 2011	11B-014	11B-022	9		
Phase III	Georgia West Option	August 23, 2011	September 20, 2011	11A-053	11A-067	17		

Table 2 - Geological Codes

Lithology

EOM Endako Quartz Monzonite

EQM w Aply | Endako Quartz | Monzonite with aplite "veins" or stringers that are generally < 30 mm in

width

 B.
 Basalt

 Apl.
 Aplite dyke

 Aply
 Aplite-vein

QFP : Quartz-feldspar Porphyry dyke FP : Feldspar Porphyry Dyke

Alteration

Argillic

Progressive kaolinite replacement of feldspars, beginning with plagioclase and eventually replacing the whole rock in very intense alteration. This type of alteration has the characteristic of also destroying the magnetic signature of the host rock.

<u>A1</u>.

Weak, varying amounts of plagioclase have green cores and white rims

A2

Weak to moderate kaolinization of plagioclase feldspar, green cores to chalky white plag but potassium feldspar still present

A3

Intense kaplinization but some orthoclase still present

A4 most all plagioclase replaced by kaolinite, brotite altered to chlorite, overall soft texture

Potassic Alteration

P1

Potassium feldspar envelopes on veins and fractures

<u>P2</u>

Intense replacement of groundmass by potassium feldspar +/- secondary biotite

Other afteration types that may be present

Propylitic

Pyrite-hematite-chlorite on fractures. Distal alteration phase

QSP

Quartz-sericite-pyrite envelopes on veins or fractures

Structure Codes

E : fracture

 $\underline{\mathsf{F1}}$: shared fracture (slickensides)

 $\underline{\mathsf{F2}}$; gouge – can be blocky tectonized rock or clay with rock fragments

 $\underline{V1}$. vein

V2 partial vein

V3 Comb Quartz vein

Bx breccia

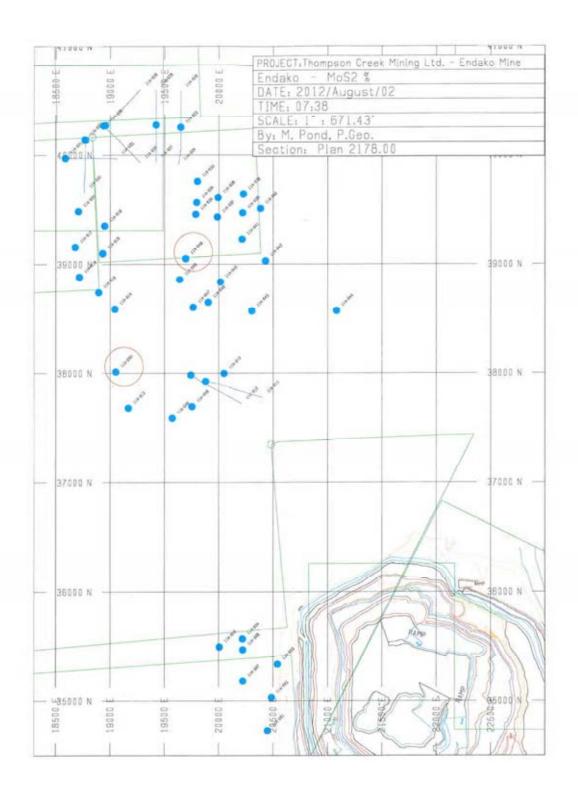
Lct / uct : lower contact, upper contact

Mineralization

Mo molybdenite
Mag magnetite
Hem hematite
Py pyrite
Otz quartz

5.0 Diamond Drilling Results

Drilling in the Denak Extension confirmed previous diamond drilling results both in typical grade and continuity. The altered and mineralized zone is flat to gently dipping to the west. Over the extents of the drill area, high grade mineralization was encountered essentially at surface.


On section 39,050N (Hole 11A-049), two minable bench widths were identified at surface and at 289.64 feet, (benches 2926 @ 0.0629 %MoS $_2$ and 2618 @ 0.0823 %MoS $_2$ respectfully). Individual high assays include intervals 10-17' @ 0.213, 310-313' @ 0.330, and 361-363' @ 0.232 %MoS $_2$.

On section 38,000N (Hole 11A-052), three minable bench widths were identified at 108.2, 328.2, and 504.2 feet. Grades respectfully were, bench 2794 @ 0.0506, bench 2574 @ 0.0584, and bench 2398 @ 0.0931 %MoS₂.

(note: The Endako Mine bench height is 44 feet).

Figure 5 shows the detail plan map of drill holes in the Denak Extension. The two holes for the drilling phase described in this report are circled in red. Appendix 9 shows drill hole cross sections.

Figure 5 - Denak Extension - 2011 Drill Hole Location Map

6.0 Interpretation and Recommendations

- Anomalous molybdenite mineralization, with minor K-feldspar alteration and moderate to intense argilic alteration was encountered in veins/veinlets and on fracture surfaces in all holes of the 2011 drilling program. The Denak Extension is interpreted to be a continuation of the major porphyry system of the Denak West Pit.
- 2. Mineable widths were intersected in both holes drilled in phase II of the 2011 Denak Extension program. The results of this program combined with results of phase I drilling have increased the resource estimate in this area. The most significant bench composites were: In hole 11A-049 the 2618 bench composite (44 feet), was 0.082% MoS₂. In hole 11A-052 the 2398 bench composite was 0.0931 MoS₂.
- 3. No exploration diamond drill program is planned for 2012. Mineralization is still open to the north, and west of the Denak Extension, and may be open to the east. Continued exploration is recommended to completely define mineralization and to follow up untested geochemical soil anomalies in the area. Recommended holes depths to vary from 400 to 1000 feet deep.

Respectfully submitted,

Michael Pond, P.Geo.

milenel Park

Thompson Creek Mining Ltd - Endako Mines

August 15, 2012

7.0 References

Bysouth, G.D. and Buckley, P., (1977): Possible Ore Extensions to the Endako Orebody, Confidential Report, Canex Placer Inc., Endako Mines Division.

Bysouth, G.D. and Wong, G.Y., (1995): The Endako molybdenum mine, central British Columbia: An update, *in* Schroeter T., ed.; Porphyry Deposits of the Northwestern Cordillera of North America, Canadian Institute of Mining and Metallurgy Special Volume 46, pp 697-703.

Hanson, D.J., (2005): Endako East Drilling, Ominica Mining Division; British Columbia Ministry of Energy and Mines Assessment Report, 23p.

Kimura, E.T., Bysouth, G.D. and Drummond, A.D., (1976): Endako, *in* Sutherland-Brown, A., ed., Porphyry Deposits of the Canadian Cordillera, Canadian Institute of Mining and Metallurgy Special Volume 15, pp 444-454.

Marek, J.M., (2010): Interim Report – Endako Block Model and Long Range Mine Plan, Independent Mining Consultants Inc.

Mosher, G.Z. and Vicentijevic, M., (2010): Technical Report – Endako Mine Reserve Estimate 2009, Wardrop Engineering Inc.

Villeneuve, M., Whalen J.B., Anderson, R.G., and Struik, L.C., (2001): The Endako Batholith: Episodic Plutonism Culminating in Formation of the Endako Porphyry Molybdenite Deposit, North-Central British Columbia; Economic Geology, v. 96, pp 171-196.

Wild, C.J. and Thompson, I., (2004): Induced Polarization Survey and Diamond Drilling at the Endako Mine, Omineca Mining Division; British Columbia Ministry of Energy and Mines Assessment Report, 15p.

Appendix 1

Program Expenditures

samples and consumables calculations:

based on all 2011 diamond drilling phases by Endako

68,131 feet drilled

3,888 core boxes

18 ft/core box

(core box and core storage

\$13.15 per box lumber)

			-	Invoice -		Expenditure
Expenditure Drill Contract	Company LDS Diamond Drilling Ltd.	Invoice # 11-220	Detail	Amoun \$68,46		Amount
			hole 11A-049			\$2,370.13
			hole 11A-052			\$27,846.05
Core Boxes	Nithi Mtn. Log Homes	76		\$7,89	6.00	
			unit cost /box	\$1	1.75	
Storage Lumber	Nithi Mtn. Log Homes	66		\$2,40	7.00	
(4"x4"x12")			unit cost / piece	\$1	4.58	
	combined core box/storage cost					
			unit cost per box (18ft)	\$1	3.15	
			# boxes	68		
			combined expenditure			\$893.38
Core Assays	Endako Mine Assay Lab	none				
			unit cost	\$2	0.00	
			# samples	123		
			assay expenditure			\$2,460.00
						\$33,569.56

Appendix 2

Statement of Author's Qualifications

- I, Michael Pond, P.Geo. do hereby certify that:
- 1. I am currently employed as Chief Geologist by:

Thompson Creek Mining Ltd Endako Mine Bag 4001, Fraser Lake, BC V0J1S0

- I graduated from the University of British Columbia with a Bachelors of Science, Geology in 1982
- I graduated from the British Columbia Institute of Technology with a Diploma of Technology, CAD/CAM in 1986
- I am a Registered Professional Geologist with the Association of Professional Engineers and Geoscientists of BC. Registration # 18735
- 5. I have worked as a Geologist for a total of 24 years since my graduation from university.
- 6. I am responsible for all sections of this report.
- I am not aware of any material fact or material change with respect to the subject matter of the Technical Report that is not reflected in the Technical Report, the omission to disclose which makes the Technical Report misleading.

Dated 15th day of August, 2012.

milesel Port

M. Pond, P.Geo.

Appendix 3

Tenure Information

Note: July 25, 2012 Mineral Titles online report date. Mineral Titles updated by this report are highlighted in yellow.

Tenure Number	Claim Name	Owner	Tenure Type	Tenure Sub Type	Map Number		Good To Date	Ştatus	Area (ha)
243445		140107 (100%)	Mineral	Lease	793K005	1977/may/05	2014/may/55	GCCD	164 53
243450		140102 (100%)	Minera	Lesse	0934005	1975/sep/06	2013/585/06	GCCD	36 33
743457		140102 (100%)	Mineral	Lease	0934005	1964/sep/23	2018/885/73	GCOR	19.55
243458		140102 (190%)	Mineral	Le256	293 4005	1984/sep/28	2019/580/23	GOOD	18 12
243459		140162 (193%)	Mineral	Lease	293 < 005	1964/sep/23	2013/885/23	GOOD	19.75
248450		140162 (190%)	Minoral	1 0850	203K005	1964/sep/23	2019/805/23	GG00	20.9
243451		140162 (100%)	Mineral	L9359	053K0K5	1964/sep/23	2013/580/23	GGOU	20 81
243452		140 (62 (100%)	Minnes	Lesse	003 K005	(964/sep.23	2019/sea/23	GCOD	r: 73
243453		140102 (100%)	Minera	Lease	090 K005	:964/sep/23	2010/505/23	GOOD	18:9
243454		140102 (100%)	Minera	Lease	093 K005	1964/sep.23	2015/865/23	GOOD	18.84
243455		140162 (100%)	Minera	Listse	093 K005	1964/sep#13	2015/scot/23	0000	2.05
243456		146102 (100%)	Minera	Lease	098 K005	1964.sep/23	2012/565,23	GCOL	/ 12
243457		140102 (100%)	Mineral	Lesse	093 (005	1964/sep/23	2013/889/33	GCQD	16.78
243455		145102 (100%)	Mineral Mineral	Leasc	093 K005	1964/sep/23	2013/815/23	GCCD	17.25
243459		140102 (100%)	Mineral	Lease	253 K005	1964/sep/23	2013/sep/23	GOOD	0.2
943470 0.00410		140162 (00%)	Wineral Mineral	Lease	093-005	1967/arv05	7014/jan/95	ocon	20.19
243475		140107 (100%)	Minara	Lassa	39.3 K00.5	1967(ar/05	2014/jan/25	GCOD	16.25
243470		140102 (100%)	Minera	Lesse	093 K005	1967/jan/05	2014/jan/06	GOÇD	0.09
243473		146162 (100%)	Mineral	Lease	003K005	1967/jan/05	2014/jan/05	GCOD	15.3
243474		140102 (100%)	Mineral	Lease	2934005	1967(Jan/05	2014/jan/05	GOOD	2.05
743487		140162 (100%)	Mineral	Lease	0934005	19/1/ANZ9	2014/je/729	GCON	7 /7
243483		140162 (190%)	Mineral	resse	293 4005	19/1/an/29	2014/jan/29	GOOD	15.08
243464		140102 (150%)	Wirners)	Lease	263 K005	1971/arv29	2014/jan/29	GOOD	1858
245495		140192 (100%)	Minoral	l nasc	013 K005	1971/arv29	2014/jan/20	COOL	20.86
243486	B.41.44.5	140102 (100%)	Mirrerat	F889	090 K005	19/1(art/29	2010/jan/29	GCOU	20 -
243774	DIS #35	140192 (100%)	Mimerat	Szimi -	083 K005	(982/)729	2016/fet:/:5	GOOD	25
243775	DI\$ #36	140102 (100%)	Minera	Cramin	393K065	1962/,07/29	2016/96/95	G000	25
243832	DAT #410	140102 (100%)	Minera	C-aim	093 K005	1962/16//19	2016/46/:5	GCOD	25
244777	\$AM 15	140162 (100%)	Mineral	Cann	093 (005	19 6 9/ap//17	2016/eb/15	GCCD	25
244//4	SAM 20	140102 (100%)	Minera	Caim	093 K005	1969/ap/17	2016/46/15	GCOD	25
244778 	SAM 22	140102 (100%)	Mineral	D'aim	093 K005	1969/2017	2016/eb/15	GCCD	25
244778	SAM 24	140102 (100%) 140102 (100%)	Minoral Manager	C'aim	093 K 0 05 093 K005	1969/apv17	2016/f2b/15	G000	25 25
244780	SAM 26		Mineræ	Craim a		1965.apv17	2016-feb/15	GCOD	25
244613	SAM BO	140162 (100%)	Minera	Count	0934005	1969/sep/12	2016//eb/15	000D	25
244915 244930	SAM BS DATIS FR	140102 (100%) 140102 (100%)	Minera Mineral	Craim	253K005 253K005	1969/sep/12	2016/feb/15 2016/feb/15	GCQD GCQD	25
244830 244831	DATER		Viinera Viinera	Çamı Clamı	093K005	1969/set/31 1969/set/31	2016/feb/15	GCCD	25
24 4 05. 245329	CORA#6	149162 (100%)			263,4005	19/1/may/03	2016/36/15	GOOD	25
245529 245294	DAT 1	140102 (190%) 140162 (190%)	Mineral Mineral	Craim Craim	2935005	(971/jan/23	2016/ Eb/ 5 7016/ Eb/ 5	GCON	25
	DAT 2								25
245395		140107 (100%)	Minera Minera	Croim	05.3 K00.5	19/1(s/v23	2016/06/05 2016/06/05	6000 60 0 0	25
245398	DAT 9 FR DIS 2 FRAC	140102 (100%)	Minera Mineral	Çizim Elevia	093 K005 093 K005	1971/js/19	2016/eb/-5		25 75
307055 307089	DAT #409	140102 (100%)		Craim Craim		19 6 9/ju/75	2016/06/05 2016/05/05	GCOD GCOD	25
	D41 #409	140102 (100%)	Virieral		0934005	1962/nov/19	2016/eb/15		
507153 507104		140162 (100%)	Mineral	Chairn Chairn	0635	2005/leb/15	7016765/15 2016/6605	GCON	41,1698
507165		140162 (190%)	Minoral	Claim Claim	293K	2005/feb/15	2016/25/15	GOOD	455 721 151 905
507167		140102 (100%)	Mineral Mineral	Claim	093K	2005/feb/15	2016/feb/15 2016/feb/15	GOOD	
		140102 (100%)				2005/160/15			170.921
507168		140102 (100%)	Mineral	Claim	093K	2005/feb/15	2016/feb/15	G000	76.962
507169 507170		140102 (100%)	Mineral	Claim	083K	2005/165/15	2017/feb/15 2016/feb/15	G000	170.049
		140102 (100%)			093K	2005/feb/15		GOOD	18,995
507182 507188		140102 (100%)	Mineral	Claim	093F	2005/feb/15	2016/feb/15	GOOD	1615.209
		140102 (100%)	Mineral	Claim	093K	2005/feb/15	2016/feb/15 2016/feb/15	GOOD	740,978 75,968
507191		140102 (100%)	Mineral	Claim	093K	2005/feb/15		GOOD	
807222		140102 (100%)	Mineral	Claim	093K	2006/feb/15	2017/feb/15	GOOD	864 346
507227 507228		140102 (100%)	Minoral	Claim	0934	2005/66/45	2016/46/15	G000	97 984
		140102 (100%)	Mirreral Mirreral	Ciaum Norman	053K	2005/Jah/15	2016/96/16	GCO0	226 - 61
507230		140 (92 1100%)	Mirrerat	Seminaria de la companya della companya della companya de la companya de la companya della compa	069K	2005#eb/15	2016/fet/15	GCOD	37,963
507232		140102 (100%)	Minera	Cramin	39.3 K	2005/feh/15	2016/96/95	GCOD	16 59
607245		140162 (195%)	Mineral	C'aim	053 \	2005/feb/15	2016neb/15	GCOD	4/4 925
507246		140162 (190%)	Minoral	Çigini O	969K	2005#eb/15	2016/96/05	G000	898-653
50/249		140162 (100%)	Witters:	Claim	093K	2005/leb/15	2016/reb/16	GGOD	740 202
507250		140102 (100%)	Mineral	Claim	093K	2005/feb/15	2016/feb/15	GOOD	834.877
507252		140102 (100%)	Mineral	Claim	093K	2005/feb/15	2017/leb/15	GOOD	37.981
507253		140102 (100%)	Mineral	Claim	093K	2005/16b/15	2016/febr15	GOOD	132.91
507254		140102 (100%)	Mineral	Claim	093K	2005/feb/15	2016/feb/15	GOOD	37.956
507269		140102 (100%)	Mineral	Claim	093K	2005/feb/15	2016/feb/15	GOOD	815,973
532729		140102 (100%)	Mineral	Claim	093K	2006/apr/20	2016/feb/15	G000	18.993
- C						2011/6/4/22			228.0162

Appendix 4Mineral Titles Online – Event 5390813

Print and Close

Cancel

Mineral Titles Online

Mineral Claim Exploration and Development Work/Expiry Date Change

Confirmation

Recorder: THOMPSON CREEK MINING LTD (140102)

THOMPSON CREEK MINING

Submitter: LTD (140102)

Recorded: 2012/JUL/04 D/E Date: 2012/JUL/04 Effective: 2012/JUL/04

Confirmation

If you have not yet submitted your report for this work program, your technical work report is due in 90 days. The Exploration and Development Work/Expiry Date Change event number is required with your report submission. Please attach a copy of this confirmation page to your report. Contact Mineral Titles Branch for more information.

Event Number:

5390813

Work Type:

Technical Work

Technical Items:

Drilling

Work Start Date: Work Stop Date:

2011/AUG/4 2011/AUG/30

Total Value of Work: Mine Permit No:

\$ 33569.56 0200478

Summary of the work value:

Tenure Number	Claim Name/Property	Issue Date	Good To Date	New Good To Date	# of Days For- ward	Area in Ha	Applied Work Value	Sub- mission Fee
507222		2005/feb/15	2016/feb/15	2017/feb/15	366	854.35	\$ 4271.73	\$ 0.00
507252		2005/feb/15	2016/feb/15	2017/feb/15	366	37.98	\$ 189.91	\$ 0.00
507169		2005/feb/15	2016/feb/15	2017/feb/15	366	170.95	\$ 854.75	\$ 0.00
867201	SATELLITE	2011/jul/22	2012/jul/22	2021/jul/22	3287	228.02	\$ 27361.82	\$ 0.00

Financial Summary:

Total applied work value:\$ 32678.21

PAC name:

Thompson Creek Mining Ltd.

Debited PAC amount: Credited PAC amount:

\$ 0.0 \$ 891.35

Total Submission Fees: \$ 0.0

Total Paid:

\$ 0.0

Please print this page for your records.

The event was successfully saved.

Click here to return to the Main Menu.

Appendix 5 2011 Drill Hole List

Hole:	Easting:	Northing:	Elevation:	Length:	Azimuth:	Dip:	Overburden
11A-049	19694.9889	39050.6508	2951.6376	486	0	-90	10
11A-052	19052.8675	38012.5382	2946.2008	1184	0	-90	18

Appendix 6Drill Hole Descriptive Logs

11A-049

11A-052

		Eı	ndako M	ines, Tho	mpson C	reek Min	ing Ltd.			Loc	ation	UTM NAD 83 Zone 10	Drill C	o.		LDS Diam	ond Drilli	ng
Hole	∍ID:	DDH 1	.1A-049	Azin	nuth:		Cas/Rds	from(ft)	to(ft)	Easting			start da	ate:				
Logge	ed by:	R. S	eifert	Di	p:		HQ	0	10	Northing			finish d	ate:				
Samp	led by:			Total De	epth (ft):	486	NQ	10		Elevation			date log	ged:		27-7	\ug-11	1
	Geote	chnical				Lithology	/			Alteratio	n	Notes:				Assay D	ata	
From	То	REC	RQD	From	То	Interval	LITHO	Litho	From	То	Type &	·		From	То	interval	Sample	
(ft)	(ft)	%	T(<.4ft)	(ft)	(ft)	(ft)	Code	Modifier	(ft)	(ft)	Intensity	Comments		(ft)	(ft)	(ft)	Number	MoS2%
10	17	77	31.2	10	137.8	127.8	EQM		10	14.5	A2, P1							
17	27	102	50.4	137.8	138	0.2	Apl		14.5	20.2	A3, P1							
27	37	96	18	138	171.9		EQM		20.2		A2a, P1							
37	47	94	51.6	171.9	172.4	0.5	Apl		85.8	114.8	A2b, P2							
47	57	95	37.2	172.4	250.1	77.7	EQM		114.8		A2, P1							
57	67	96	44.4	250.1	250.4	0.3	Apl		137.8	138	P2							
67	77	95	62.4	250.4	271.6		EQM		138	147	A2, P1							
77	87	100	42	271.6	272.9	1.3	Apl		147	171.9	A2a, P1							
87	97	100	43.2	272.9	309.6	36.7	EQM		171.9	172.4	P2							
97	107	95	43.2	309.6	312	2.4	Apl		172.4		A2a, P1							
107	117	100	70.8	312	397.4		EQM		176.5		A3, P1	chloritic sections	5					
117	127	100	61.2	397.4	401.9	4.5	В		189.3		A2, P1							
127	137	98	50.4	401.9	486	84.1	EQM		250.1	250.4	P2							
137	147	102	63.6	486	E.O.H.				250.4	271.6	A2, P1							
147	157	98	43.2						271.6	272.9	P2							
157	167	98	67.2						272.9	309.6	A2b, P1							
167	177	100	79.2						309.6	312	P2							
177	187	97	49.2						312	362.9	A3, P2							
187	197	98	45.6						362.8	397.4	A2b, P2							
197	207	102	24						394.7									
207	217	100	43.2						401.9	421.7	A3, P2							
217	227	96	54						421.7	437.5	A2b, P1							
227	237	97	5						437.5	461.9	A2a, P1							
237	247	100	39.6						461.9	479.9	A2b, P2							
247	257	88	9.6						479.9	486	A, P2							
257	267	100	18						486	E.O.H.								
267	277	103	40.8															

Hole	∍ID:	DDH 1	1A-049	Azin	nuth:		Cas/Rds	from(ft)	to(ft)	Easting		start o	ate:			
Logg	ed by:	R. S	eifert	Di	ip:		HQ	0	10	Northing		finish o	date:			
Samp	led by:			Total D	epth (ft):	486	NQ	10	486	Elevation		date lo	gged:	27-	\ug-11	
277	287	100	38.4													
287	297	103	26.4													
297	307	98	32.4													
307	317	96	12													
317	327	98	1284.2													
327	337	98	58.8													
337	347	100														
347	357	98	48													
357	367	94	24													
367	377	96	20.4													
377	387	95	19.2													
387	397	99	43.2													
397	407	102	91.2													
407	417	98	52.8													
417	427	99	50.4													
427	437	94	64.8													
437	447	100	22.8													
447	457	96	0													
457	467	98	38.4													
467	477	100	33.6													
477	486	93	15.6													
486	E.O.H.															

	Drill Hole	:	DDH:	11A-049			
						Structure and Mineralization	
From	To	Depth	width	angle to	Structure		
(ft)	(ft)	(ft)	(ft)	core axis	Code	Mineralization	Comments
10	23		13		F, F2		moderate fracture with occ minor gouge
23	63.9		40.9		F		moderate fracture
63.9	64.3		0.4		F2		gouge, friable
64.3	176.5		112.2		F		moderate fracture
176.5	187		10.5		F, F2		moderate fracture with sections of A4/P2 soft gouges
187	224.4		37.4		F		moderate fracture
224.4	320.2		95.8		F2		heavy fracture, blocky core
320.2	326.5		6.3		F2		section soft friable core, A4/P2 gouge
326.5	341.7		15.2		F		moderate fracture
341.7	362.9		21.2		F		heavy fracture, sections of highly fragmental core
362.9	390		27.1		F		moderate fracture, blocky core
390	407		17		F		weak fracture with large section of basalt
407	467		60		F, F2		moderate to heavy fracture, blocky core
467	486		19		F2		heavy fracture, sections of blocky fragmental core
486	E.O.H.						
Start lo	g @ 10 fe	et depth	1				
		11			V1	tr mo, 0.1% mag, tr py	fine q vn, smeared mo, minor blebs of mag and py
12.6	13.8		1.2	80/90	F2		gouge, ground-up friable EQM
							within the above gouge are x-cut q vn with smeared mo +
							multi metallic luster mo stringers, partial py stringers, x-cut by
13.3	13.6		0.3	80/80	V1, UC/LC	20-40mm mo, 3% py	carb vns
		16.7		70	V1	tr mo, mag, py	q vn, smeared mo, rare minor blebs mag, speck py
		17.8			V2	tr mo	fragment of metallic luster mo stringer, cut by fractures
19.8	20.2		0.4	90/85	F2	tr mo	gouge, ground-up EQM with tr smeared dull mo
		22.7			V1	tr mo, mag, py	fine mo + mag stringer with minor blebs py
		23		75		tr mo	fracture coating, smeared dull mo
		23.7		75	V1	tr mo, 0.1% py	fine q vn, smeared mo, partial hairline stringer py

Drill Hole	:	DDH 11A-049			
	24.7	85	V1	tr mo	fine q vn, smeared mo
	25.6	85	F	0.1mm mo	fracture coating, patches smeared metallic luster mo
	30	85	V1	tr mo	fine smeared dull mo stringer
	32.2	80	V1	tr mo	hairline smeared mo stringer
	36.3	90	F	0.1mm mo	fracture coating, patches of f.g. metallic luster mo
	36.5	65	V1	tr mo	parallel fine smeared mo stringers
	36.8		V1	0.1mm mo	partial fine metallic luster mo stringer
	36.9	90	F	0.3mm mo	fracture coating, smeared metallic luster mo
					3 vns, fine metallic luster mo stringer and fine q vn with
	37.9	75, 85	V1	0.3-0.4mm mo	smeared mo
	38.7	85	F	0.1mm mo	fracture with patches of f.g. metallic luster mo
					broken core with vns of smeared mo with blebs metallic luste
					mo and fracture coating of smeared metallic luster mo, partia
	40	90-65	V2, F	0.5-1mm mo	q vn
	41.6	80	V1	tr mo, py	fine q vn, smeared mo, minor rare blebs py
					fracture through q vn with smeared mo with rare minor bleb:
	42.4	70	V1, F	tr mo, py	ру
					fracture with patches of metallic luster mo and fine carb
	42.5	55	F	0.3mm mo	coating
	42.9	55	V1	tr mo	q vn, smeared mo
	43.2	55	V1, F	tr mo, hem	fracture through fine q vn, smeared mo + hem
	43.9	60	V1	tr mo	q vn, smeared mo
	44.4	60	V1, F	tr mo	fracture along q vn with smeared mo
	44.8	70	V1	0.1mm mo	fine q vn with blebs metallic luster mo
	45.1		V1	tr-0.1mm mo	fine q vn with specks metallic luster mo
	45.6		V1	tr mo	fine q vn, smeared mo
	48.2	60		0.1mm mo	fracture with blebs smeared metallic luster mo
	61.4	35	F	tr mo, hem	fracture coating, streaks smeared mo + hem + chl
	62.9	75	V1	0.1-0.3mm mo	2 q vns with fine metallic luster mo stringers
	63.3	75, 65	V1		2 q vns
					gouge, friable EQM with band of soft dark smeared massive
63.6 64.1			F2, UC/LC	5-8mm mo	mo along UC
	67.4	45	V1	tr mo, py	fine q vn, smeared mo, rare minor blebs py

Drill Hole :	DDH 11A-049	1			
69.4			0.3mm mo	fracture coating, smeared metallic luster mo	
74.3	80	F	0.2mm mo	fracture coating, smeared metallic luster mo	
				fracture coating of streaks of smeared dull mo + streaks of	
74.8		F	tr-0.1mm mo	carb	
77.6	85	V1	tr mo, py	fine q vn, smeared mo, minor blebs py	
77.9	85	V1	tr mo	fine q vn, smeared mo	
80.4	90	V1	tr mo	hairline smeared mo stringer	
80.6	35	F	0.1mm mo, tr hem	fracture coating, smeared dull mo + blebs smeared hem	
90.2	60	V2	tr mo, mag, py	fine mo + mag stringer, cut by carb vn @ 10 TCA	
90.8	30	V1, F	tr mo, hem , mag	half fractured along fine vn of smeared mo + hem + mag	
91.8	70	F	0.1mm mo	fracture coating smeared dull mo mixed with carb	
93.3	90	F	0.2-0.3mm mo	fracture coating smeared metallic luster mo	
94.7	80	F	tr-0.1mm mo	fracture coating, blebs metallic luster mo	
101.7	25	F	1-3mm mo	fracture coating, smeared dull dark soft mo	
102	70	V1	tr mo	fine q vn, smeared mo	
				broken core with multi fracture coatings of blebs of dark dull	
103.4		F	0.5mm mo	smeared mo + chl	
104.6	35	F	0.4mm mo	fracture coating, smeared dull soft mo	
105	5	F	0.3mm mo	fracture coating, smeared dull mo	
105.8		F1	0.5mm mo	slickensided fracture coating, smeared metallic luster mo	
106.2			0.3mm mo	fracture coating, smeared dull mo	
106.7		V1	tr-0.1mm mo	3 parallel q vns, smeared mo	
107.1			0.3mm mo	fracture coating, metallic luster mo	
107.4		V1	tr mo	q vn, smeared mo	
107.6			0.3mm mo	fracture coating, smeared metallic luster mo	
107.7			0.5mm mo	fracture coating, smeared dull soft mo	
107.9	15	F	1mm mo	fracture coating, smeared dull soft mo	
108.2		V1	1mm mo	x-cut q vns with fine metallic luster mo stringers	
108.6	35	V1	tr mo, py	q vn, smeared mo, rare specks py	
				fine smoky q vns with smeared mo + partial fine metallic luste	
109.3		V1	0.2-0.4mm mo	mo stringers	
111.3	70	V1	tr mo, 0.2% mag	pinch/swell q vn, smeared mo with hairline mag stringer	

	rill Hole	:	DDH :	11A-049			
		112.1		50		tr-0.1mm mo	fracture coating with blebs smeared metallic luster mo
		112.7		75	V1	tr mo, mag, py	hairline mo + mag stringer
		113.5		25	V1	tr mo	fine q vn, smeared mo
		114.9		60	V1	tr mo	q vn, smeared mo
		115.3		45	V1	tr mo	hairline mo stringer
		115.8		80	V1	tr mo	fine q vn with specks metallic luster mo
		116.4		40	V1	tr mo, mag	fine mo + mag stringer
		117.2		50-55	V1	tr mo, mag	3 fine smeared mo stringers with rare minor blebs mag
							fine mag stringer with rare minor blebs metallic luster mo and
		119.2		50	V1	tr-0.1mm mo, 0.2% mag, tr py	rare minor blebs py
		120.5		75	F	0.4mm mo	fracture coating, smeared dark mo with carb vn
		120.9		35	V1	tr-0.1mm mo, 0.4% mag	parallel fine mo + mag stringers
		122.8		80	V1	0.1mm mo	smeared mo stringer with specks metallic luster mo
							fracture along carb vn with fine smeared metallic luster mo
		123.5		55	F	1mm mo	stringers along contacts
							fracture coating, smeared metallic luster mo with minor blebs
		124.4		60	F	0.4mm mo, tr py	py
		124.7		40	V1	tr mo, mag	2 parallel fine mo + mag stringers
		125.8		60	V1	tr mo, mag	fine smeared mo + mag
		127.3		60	V1	tr mo	smeared dull mo stringer
127.9	129.6		1.7	10	F	0.2mm mo	wavy fracture with patches of smeared dull mo
		130.9		80	V1	tr mo, mag	fine mo + mag stringer
							fine q vn, smeared mo, with rare blebs py, cut by fracture @
		131.5		80	V2	tr mo, py	40 TCA
		132		85	V1	tr mo	hairline mo stringer
		132.6		75	F	0.1mm mo	fracture coating with blebs metallic luster mo
							fine smeared mo stringers with partial fine metallic luster mo
		132.9		70-80	V1	0.2-0.4mm mo	stringers
		133.1		40	F	0.1mm mo	fracture coating with blebs smeared metallic luster mo
		133.5		75	F	tr mo	fracture coating, blebs smeared dull mo
	j	134.7		65	V1	tr mo	2 fine parallel q vns, smeared mo
137.8	138		0.2	75/55	V1, UC/LC		Apl vn
		142.3		70		tr mo	fracture coating, smeared dull mo with fine carb coating

Drill Hole :		:	DDH 11A-049			
						fracture coating with bleb of smeared dull mo + fine cab
		143		50 F	tr mo	coating
		143.3		50 V1	tr mo	q vn, smeared mo
						fracture with rare minor blebs metallic luster mo, + patches o
		144		45 F	tr mo, mag, py	mag + minor blebs py
		145		65 V1	tr mo	fine q vn, smeared mo
		145.1		V2	tr mo	partial hairline metallic luster mo stringer
		146.5		55 F	tr-0.1mm mo	fracture with blebs of metallic luster mo
						smoky q vn with smeared dark mo, diss specks of metallic
						luster, band of smeared dark mo, + hairline metallic luster mo
147	147.1		0.1 65/60	V1, UC/LC	15-25mm mo	stringers parallel to LC
		147.4		20 F	tr mo	fracture with streaks of smeared dull mo + streaks of carb
		147.4		2017	ti ilio	fracture coating, blebs smeared metallic luster mo + minor
		148.2		80 F	trmo ny	streaks py
		148.7		85 V1	tr mo, py tr mo, mag	hairline mo + mag stringer
		152.1		25 F	tr mo	fracture with rare bleb smeared metallic luster mo
		153.3		diss	0.1mm mo	patch of diss metallic luster mo in EQM
		154.5		50 V1	0.1-0.2mm mo	fine metallic luster mo stringer
		154.5		15 V2	tr mo	fine q vn, smeared mo
		133		13 72	ti illo	fracture coating with blebs of smeared dull mo + fine layer dis
		155.2		45 F	tr mo, 0.2% py	_ ·
		133.2		431	ti 1110, 0.276 py	py split bands of smeared dark soft massive mo with minor
		156.3	40, 10	F2	25-35mm mo	fragments of EQM
		156.7		55 F	0.1mm mo	fracture coating, smeared dull mo mixed with carb
		157.5	55. 45	V1	tr mo, 0.2% mag	2 sub-parallel mo + mag stringers
		158.3		40 F	tr mo	fracture with rare streaks metallic luster mo
		158.5		50 V1	tr mo, py	hairline q vn with smeared mo and rare tiny blebs py
		160.4		60 F	tr mo	fracture coating, smeared dull mo with 2mm carb coating
						5.
		161.5		65 F	tr-0.1mm mo	fracture coating, blebs metallic luster mo + fine coating of car
		163.7		30 F	tr mo	fracture coating, smeared dull mo mixed with carb
		163.9		60 F	tr mo, 0.3% mag	fracture coating with smeared dark mo + mag

D	rill Hole	:	DDH :	L1A-049			
165.4	166		0.6		F2		gouge, ground-up soft EQM
		170.6		40	V1	tr mo	q vn, smeared mo + chl
		171.7		30	V1		8mm q vn
171.9	172.4		0.5	45/30	UC/LC		Apl
		173.2		30	V1	tr mo	3 parallel fine q vns, smeared mo with chl
		174.6			V1	tr mo	fine q vn, smeared mo
		176.3		15	F	0.5-1mm mo	fracture coating, smeared earthy luster soft mo
		176.5		55	V1	0.3mm mo	fine metallic luster mo stringers
176.6	177.8		1.2	55/75	F2	tr-0.2mm mo	gouge, soft ground-up fragments of EQM gouge, chloritic, minor blebs metallic luster mo
178.6	179.1		0.5	80/35	F2		gouge, friable EQM, chloritic
		180			V1	0.2mm mo	smeared dark mo stringer
		181.9			V1	tr mo, mag	fine q vn with hairline mo + mag stringer
		183.1			V1	0.1mm mo	fine dark smeared mo stringer
183.2	183.4		0.2	60			minor friable chloritic gouge
		184.7		65		tr mo, hem	fracture coating, smeared dull mo + hem
		185.1		15		tr mo	smeared mo in microfracture
		186.1		50	F	0.3mm mo	fracture coating, smeared dark dull mo mixed with chl
		186.6		45	V1	0.3mm mo	band of dark smeared mo along UC of gouge
186.6	187		0.4	45/65	F2	8-15mm mo	friable chloritic gouge with veins of smeared dark mo near LC with smeared metallic luster mo along LC
		188.6			V1, F	2-3mm mo, tr py	fracture along q vn with multi fine metallic luster mo, rare blebs py
		188.9			V1	0.2mm mo	q vn with fine metallic luster mo stringer
		189.1		65		0.3mm mo	fracture coating, smeared dark dull mo
		189.2			V1	tr mo	fine smeared dark mo stringer
		189.7			V1	tr mo	hairline smeared mo stringer
		190.8		90	V1	tr mo	q vn, smeared mo
		191.1		70	V1	0.1mm mo	hairline metallic luster mo stringer
		192.6		75	V1	0.2-0.3mm mo, tr py	3 parallel fine smoky q vns with smeared mo, diss specks of metallic luster mo + tiny rare blebs py
<u> </u>		193.7			V2	0.1-0.2mm mo	fine q vn with hairline metallic luster mo stringer

D	rill Hole :	DDH 11A-049			
	194.3	75	F	tr-0.1mm mo	fracture coating, blebs of smeared metallic luster mo + fine coating of chl + carb
	194.6	70	V1, F	1-3mm mo	fracture along q vn with multi fine metallic luster mo stringers + smeared soft earthy luster mo along fracture face
	195.5	85	V2	0.1-0.2mm mo	fractured 11mm q vn with hairline metallic luster mo stringers along contacts
	196.2	65	V2 tr mo	0.1mm mo, tr mag, tr py	fracture coating with blebs of metallic luster mo + blebs of mag and py
	197.1				fine smeared mo stringer
	197.2	65		0.5mm mo	fracture coating, smeared metallic luster mo
	197.4	70		0.1-0.2mm mo	fracture coating, smeared earthy luster mo
	198		V1	tr mo	fine q vn, smeared mo
	199.5	80	V1	tr mo	q vn, smeared mo
					fracture coating, smeared dull mo with rare minor blebs
	200.2	85		0.1mm mo	smeared metallic luster mo, smeared chl
	200.3	60		0.1mm mo	fracture coating, metallic luster mo
	202.3		V2	tr mo, mag	parallel fine mo + mag stringers
	203.5	80	V1	0.1-0.2mm mo	fine metallic luster mo stringer
	204.3	80	V2	tr mo	fine q vn, with minor blebs metallic luster mo
	205.2	40	V2	tr mo	q vn, smeared mo with rare specks metallic luster mo
	205.5	65	V2	tr mo	partial q vn with hairline metallic luster mo stringer
	205.9	75	F	0.3mm mo	q vn with fine metallic luster mo stringer
	206.3	50	F2	20-30mm mo	band of smeared dark earthy luster soft mo
	207.5	5	V2	tr mo, mag	fine mo + mag stringer
	207.8	65	F	tr mo	fracture with rare minor streaks metallic luster mo
	208.2	55	V1	tr mo	fine dark smeared mo stringer
	211.4	20	F	tr mo, hem	fracture coating of blebs of dark smeared mo + hem + carb
	212.5	60	F	tr mo	fracture with diss specks metallic luster mo
	213	65	F	0.2-0.3mm mo	fracture coating, smeared shinny metallic luster mo
	216.5	55	F	tr mo	fracture with minor blebs metallic luster mo

	rill Hole	:	DDH 1	1A-049			
							fine q vn with flakes metallic luster mo and partial hairline
		216.7		70	V1	tr mo, mag	stringer of mag
		217.6		65	V1	0.1-0.2mm mo	fine q vn with hairline stringer metallic luster mo
		220		60	F	0.1mm mo	fracture coating, blebs smeared metallic luster mo
		224.2		40	F	0.1mm mo	fracture coating, patches metallic luster mo
224.3	267.4		43.1		F2		highly fracture fragmental core
		226.5		65	V2	tr mo, mag	hairline stringer of blebs of metallic luster mo + hairline mag
		227		55	V2	tr mo, mag	2 parallel partial fine mo + mag stringers
		234.2		45	V2	tr mo, mag	fine q vn, smeared mo, + blebs mag
		235.9		40	V2	tr mo	fine q vn, smeared mo
		237.5		35	V2	tr mo, mag	fine q vn, smeared mo, partial hairline mag stringer
		238.6		35	V1	tr-0.1mm mo	fine q vn, smeared mo
		444.4		45	V1	tr mo	fine q vn, smeared mo
		248.9		50	V1	0.1-0.2mm mo	q vn with blebs metallic luster mo
250.1	250.4		0.3	60	UC/LC		Apl vn
		256.7		40	F	1-2mm mo	parallel fracture coatings of smeared metallic luster mo
		257.2		45	V1	1mm mo, tr py	vn of dark smeared mo with rare tiny blebs py
		258.5			F	1mm mo	broken fracture coating of smeared dark metallic luster mo
							parallel fracture with smeared dark dull mo + patches of
		261.1		60	F	0.2mm mo, 0.2% py	smeared py
		264.5		75	V2	tr-0.1mm mo	partial q vn with tiny blebs of metallic luster mo
							fracture coating, streaks of smeared mo + hem + mag, with
		265.7		15		tr mo, hem, mag	fine carb coating
		267.2		65	F	1mm mo	fracture coating, smeared dark soft mo
		268.4		65	F	0.3mm mo	fracture coating, patches of smeared metallic luster mo
							fracture coating with blebs of smeared dull mo and rare tiny
		268.9		50	F	0.1mm mo, tr py	blebs py
							Apl with 4 fractures @ 90 TCA with coatings of smeared dull mo mixed with carb + 3 fracture s @ 90 TCA with fracture
271.6	272.9		1.3	80/90	UC/LC	3-6mm mo	coatings of smeared metallic luster mo

	rill Hole	:	DDH :	11A-049									
		273.9		30	С	tr-0.1mm mo, tr hem	fracture coating of smeared dull mo, streaks of hem and carb						
		273.3		30		ti-o.1iiiii iiio, ti neiii	gouge, soft friable core with minor band of dark smeared mo						
							along LC with q vn with fine metallic luster mo stringers along						
274.1	274.5		0.4	90/70	F2	1-2mm mo	contacts along LC						
27 112	27 110		011	30/10	-	1 2	partial stringer of dark smeared mo, cut by healed fracture @						
		275.7		70	V2	0.1-0.2mm mo	40 TCA fracture coating, streaks of smeared dull mo + hem slickensided fracture with streaks of smeared dull mo + hem						
		276		30		tr mo, hem							
						,							
		277.4		20	F1	tr mo, hem	carb						
	277.4				,	slickensided fracture with streaks of smeared dull mo + hem +							
		277.7		40	F	tr mo, hem	carb						
						·							
		281		5	F	tr mo, 0.2% hem	wavy fracture with coating of smeared dull mo + hem + chl						
281.6	283.1		1.5	5	V1	tr-0.1mm mo, 0.2% hem	wavy fine vein of smeared dull mo + hem + chl						
		284.6		60	F	tr mo, hem	fracture with rare streaks smeared dull mo + hem						
		284.8			F	tr mo, hem	fracture with streaks smeared dull mo + hem						
		285.8		70	V1	tr-0.1mm mo	q vn, smeared mo						
							fracture coating of streaks of smeared dull mo + chl + carb in						
		286.4			F	tr mo	broken core						
		289.2		80		0.1mm mo	partial fracture coating of blebs smeared metallic luster mo						
		290.4		75		0.5mm mo	fracture coating, smeared dark metallic luster mo						
		290.6		55		tr mo, 0.4% hem	fracture coating, smeared dull mo + hem						
		291.4		80	F	1mm mo	fracture coating, smeared dark metallic luster mo						
		294.2		55	V1	0.1-0.2mm mo	fine q vn with hairline metallic luster mo stringer along contact						
	297			35	F	2-3mm mo	fracture coating, smeared dark metallic luster mo						
	297.9 45, 6			45, 60	V1	0.2-0.3mm mo	sub-parallel fine smeared dark mo stringers						
							partial fine q vn with partial hairline metallic luster mo						
				65	V2	0.1mm mo	stringers along contacts						
				35, 5	V1	tr-0.1mm mo	x-cut hairline stringers of smeared dull mo + chl						

[Orill Hole	:	DDH :	11A-049			
							gouge, soft ground-up EQM with fine dark smeared mo
300.8	301.9		1.1	40/70	F2	1-2mm mo	stringers and smeared dark soft mo along LC
							fine metallic luster mo stringer -cutting fracture with smeared
		302.5		50, 15	V1, F	0.5-1mm mo	metallic luster mo coating
		303.4		60	F	1mm mo	fracture coating, smeared metallic luster
		303.7		30	F	0.4mm mo	fracture coating with blebs of smeared metallic luster mo
		304.4		50	V1	tr mo	fine q vn, smeared mo
		308.9		45	V1	tr-0.1mm mo	fine smeared dark mo stringer
		309		50	V1	tr mo	fine q vn with smeared mo
							Apl, fracture with minor gouges, fine metallic luster mo parallel above UC, 25mm gouge along UC with smeared dark dull mo with bad of soft dull massive mo along lower contact of gouge, fracture coating of a layer of smeared dull soft mo, gouges with smeared dull mo, fracture coatings of smeared
309.6	312		2.4	45/75	UC/LC	30-45mm mo	metallic luster mo
		314.7		85	F	0.2mm mo	fracture coating, smeared dull dark mo
		315		80	F	tr mo	fracture coating, blebs smeared dull mo
		315.6		70	F	0.4mm mo	fracture coating, smeared metallic luster mo
		316.2		70	F	tr mo, py	fracture coating with streaks of smeared dull mo and py with fine smeared layer of carb + chl
		316.4		65	F	1-1.5mm mo	fracture coating, smeared dark metallic luster mo + parallel partial fine smeared dark mo stringers
		317.5		20	F	0.3mm mo, tr py	fracture coating, smeared dull soft mo with rare minor blebs py + fine carb coating
		317.8		70	F	0.2mm mo	fracture coating, smeared metallic luster mo
		318.2		45, 30	F	0.5-1mm mo	sub-parallel fracture coatings smeared dark mo
		319.4		45		tr-0.1mm mo, tr py	fracture coating, smeared dull mo, diss specks py, smeared chl
		320.6		20	V1	0.1-0.2mm mo	parallel fine dark smeared mo stringers
321	326.8		5.8	40/55	F2, V1	60-90mm mo	soft friable with ground-up sections chloritic gouge with multi bands of smeared dark dull massive mo @ 30-85 TCA, fragments Apl, fragments of carb vns, vns of chlorite

D	rill Hole	:	DDH :	11A-049			
		327.8		60	V1	tr mo	fine smeared dull mo + chl stringer
		328.8		80	V1	tr mo	partial fine smeared dull mo + chl stringer
		330.2		20	V1	tr-0.1mm mo	parallel fine smeared dull mo + chl stringers
		331.6			F1	tr mo, hem	slickensided fracture coating, steaks smeared mo + hem + chl
		333.2			V1		40mm Apl vn
		333.7		40	V1		40mm Apl vn
		334.5		80	F	0.5-0.8mm mo	fracture coating, smeared metallic luster mo
		334.6		40-80	V1	0.1-0.3mm mo	multi fine smeared fine dull mo + chl stringers
		335.6		60	V1	tr mo	fine smeared dull mo mixed with chl
		336		25	F	tr mo, 0.1% py	healed fracture with smeared dull mo + fine py stringer
							band of: multi fine dark smeared mo stringers with rare specks
							py + fine metallic luster mo stringers + vns of carb + fracture
		336.8		75	V1, F	2-4mm mo	coating of smeared metallic luster mo
337.6	337.8		0.2	60-80	V1	0.1-0.3mm mo	multi fine stringers of smeared dull mo + chl
		339.7		45	V1	tr-0.2mm mo	vn of smeared dull mo + chl
		340.7		65, 85	V1	0.1-0.3mm mo, tr py	2 fine smeared dull dark mo stringers with rare specks py
		342.3		35	F	tr mo	fracture coating with smeared mo + chl + carb
		345.3		30	Bx	tr mo	bx, fragments of EQM, with vns of smeared dull mo + chl
		347.5		60	V1	0.1-0.3mm mo	fine smeared dark mo stringer
		349.3			F	tr mo	smeared dark dull mo fracture coating in broken core
		351.6		65	F	tr mo	fracture coating, smeared dull mo mixed with chl
		352.1		70, 15	V1	tr mo	x-cut stringers of smeared mo + chl
		355.1		80	V2	tr -0.1mm mo	fine smeared dark dull mo stringer
355.5	362.1		6.6		F2		highly fractured, soft fragmental core
		358.8		30	F	tr mo, hem	fracture coating, smeared dull mo + hem + chl
		360		70	F	tr mo, hem	fracture coating, smeared dull mo + hem
		362			V2	tr mo	q vn in broken core with blebs smeared mo
362.3	362.6		0.3	45/35	V1, UC/LC	75-95mm mo	band of smeared dark soft massive mo with rare minor fragments of EQM
		363.3			V1 ,	0.2-0.3mm mo	fine metallic luster mo stringer
		363.7		40	F	tr-0.1mm mo, tr py	fracture coating, patches smeared dull mo + diss minor blebs of py

[rill Hole :		DDH 11A-049									
		365	75	V2	tr mo	fine smeared dull mo stringer						
		367.2	60	F	tr mo	fracture coating, blebs smeared dull mo						
		368.8	70/90	F2		50mm gouge, sandy EQM						
						fracture coating, minor blebs of smeared dull mo mixed with						
		371.1	70	F	tr mo	chl						
		371.2	50	F	0.1mm mo	fracture coating of smeared dull soft mo						
		372	70, 75	V1	0.1-0.4mm mo	x-cut dull mo stringers mixed with chl						
		373.6	40	F	0.1-0.2mm mo	fracture coating with patches of smeared metallic luster m						
		373.7	70	V1	0.3mm mo	q vn with fine metallic luster mo stringer						
	376.2 376.2 378.2 379.2		75	F	tr mo, hem	fracture coating, smeared dull mo + hem + chl						
			25	F	0.5mm hem	fracture coating of smeared hem						
			10	V1	tr mo, 0.1% mag	q vn, smeared mo, minor blebs mag						
			55	F	0.1-0.2mm mo	fracture coating, smeared metallic luster mo						
		382.3	60	F	tr mo, hem	fracture coating, smeared dull mo + hem + chl						
		383.7	45	F	1mm mo	fracture coating, smeared dark metallic luster mo						
		385.2	50	F	tr mo	fracture coating, smeared dull mo + chl + carb						
		388.5	85	V2	0.1mm mo	q vn with diss tiny blebs metallic luster mo						
		389	40	F	tr mo, py	fracture coating, smeared dull mo + diss specks py						
		389.8	35	F	tr mo	fracture coating, blebs smeared mo + fine carb coating						
		393.9	50	F	tr mo	rare bleb smeared mo along fracture						
394.7	401.9		7.2 35/40	B, UC/LC		basalt						
						fine smeared dark mo stringer, cut by fractures @ 30 and 35						
		403	60	V2	tr mo	TCA						
						q vn, smeared mo, rare specks metallic luster mo, minor blebs						
		404.8	75	V1	tr mo, py	ру						
		405.2	70	V1	tr mo	fine smeared mo + chl vn						
		405.7	50	V1	tr mo	smeared dull mo stringer						
		407.7	65, 70, 55	V1	tr-0.1mm mo, tr py	3 fine q vns with rare blebs metallic luster mo, blebs py						
		408.2	90	V1	0.5-1mm mo	fine metallic luster mo stringer						
		411.1	75	V1	tr mo	fine q vn with rare flakes metallic luster mo						
						fracture with layer of smeared chl with smeared mo + rare						
		411.7	55	F	tr mo, py	specks py						

	Orill Hole	:	DDH 11A-0	49									
		414.2		35	V1	0.1mm mo	parallel fine dark smeared mo stringers						
		414.8		25	V1	tr-0.1mm mo	vn of smeared mo + chl						
		417.2		75	V2	0.2mm mo	2 fine metallic luster mo stringers						
		417.5		35	V1	tr-0.1mm mo	2 parallel smeared dark mo stringers						
		418.8	35-5!	5	V1	tr-0.1mm mo	branching smeared dull mo + chl						
		419.5		30	V2	tr mo	hairline smeared dull mo stringer						
		419.7		55	V1	tr mo	hairline smeared mo stringer						
		420			V1 tr mo		hairline smeared dull mo stringer						
		420.4	50, 5	5	V1	tr mo	3 x-cut hairline to fine smeared dull mo + chl stringers						
		422.2		25	V1	tr mo	2 parallel smeared dark mo stringers						
		423.3		25	Bx, V2		band of bx Apl						
		423.6		50	F	tr mo	fracture coating, streaks of smeared dull mo + carb						
			85	V1	tr mo, mag	hairline smeared mo + mag stringer							
	423.7				V1	tr mo, py	parallel hairline dull smeared mo stringers with rare specks py						
		424.3		40		tr mo	fracture coating, smeared dull mo + chl						
		424.6		60		tr mo	fracture coating, smeared dull mo						
		426.1			V1	tr mo	hairline stringer smeared mo						
		426.9		70		tr mo	slickensided fracture coating, streaks smeared mo + carb						
		427.1		50	V1	tr mo	fine smeared mo + chl stringer						
		427.3		40	F	tr-0.1mm mo	2 fracture coatings of smeared dull mo + chl						
430.1	431.4		1.3 20-40)	V1	0.1-0.3mm mo	section of core with multi x-cut fine smeared dull stringers						
		432.2		35	V1	tr mo	x-cut hairline smeared mo stringers						
		432.8		55	F	tr-0.1mm mo, tr hem	fracture coating of smeared dark mo + hem with parallel hairline smeared mo + hem stringers						
	434.3	434.3 45		F	tr mo, py	fracture coating, rare minor blebs smeared mo with diss specks py							
	435.9			30	F	tr mo	fracture coating, streaks of smeared dull mo + chl + carb						
	436.6			35 F		tr mo	fracture coating, smeared bleb of dull mo + chl						
		437.4		40	F	tr mo, hem	fracture coating, smeared dull mo + hem						

	Orill Hole	:	DDH :	L1A-049			
		444.3		60	F, V1	0.2mm mo, 0.1% py	fracture along q vn with patches of smeared shinny metallic luster mo along fracture face with diss specks of py
		444.4		60	F2, V1	1mm mo	10mm minor gouge with bands of dark soft smeared mo along contacts
		444.5		65		0.2mm mo	fracture coating, smeared patches of metallic luster mo
		445		50		tr-0.1mm mo	fracture coating with streaks of smeared dull mo + carb
		446.2			V1	tr mo, py	fine q vn, smeared mo, rare specks py
		448.9		85, 10	V1, V2	tr mo	x-cut q vns, smeared mo
450.5	451.5				V1	tr-0.1mm mo	5 fine to 2mm q vns, smeared mo
		453.7		80	F1	tr mo	slickensided fracture with streaks smeared dull mo
		457.2		50		tr mo	fracture coating, blebs smeared dull mo mixed with chl
		458.5		45	V2	tr mo	fine q vn, smeared mo
		463.2		55	V1	0.1mm , tr py	q vn with diss blebs metallic luster mo, rare minor blebs of py
				(section of A4/P2 altered core, soft, contains partial q vn with
464	465.4				UC/LC	tr mo	smeared mo and bands of smeared mo + chl
466.9	467		0.1		V1		vn of Apl
		649.8			V1	tr-0.1mm mo	fine dark smeared mo stringer
		650.8			V1	tr mo, mag	fine q vn with minor blebs of smeared dull mo + mag
		477.9		25		tr mo, hem	fracture coating, streaks of smeared dull mo + hem + carb
		480		45		tr mo	fracture coating, smeared dull mo + carb
		483.5		10	F	tr mo	fracture coating, smeared dull + carb + chl
		485.5		15	V1		15mm Apl vn
486	E.O.H.						

	Endako Mines, Thompso			ompson (Creek Mir	ing Ltd.			Location		UTM NAD 83 Zone 10				LDS Dian	nond Drilliı	ng	
Hol	e ID :	11A	-052	Azir	nuth:		Cas/Rds	from(ft)	to(ft)	Easting			start da	ate:		07	7-Dec	
Logg	ed by:	K.Fr	rank		ip:		HQ	0		Northing			finish da	ate:		14	1-Dec	
Samp	oled by:			Total D	epth (ft):	1184	NQ			Elevation			date log	ged:				
	Geote					Lithology				Alteratio	n	Notes:				Assay [
						Interval	LITHO	Litho	From	То	Type &			From			Sample	
(ft)	(ft)	%	(in)	(ft)	(ft)	(ft)	Code	Modifier	(ft)	(ft)	Intensity	Comments		(ft)	(ft)	(ft)	Number	MoS2%
10		OVB		18	131.5	113.5	EQM		18		A1,P1	**casing 18ft**	•					
18		86			133.6	2.1	Apl		35.5		A2,P1							
27		101	20				EQM		53.3		A1-2,P1	**reads "mislatch, los	t core"					
37		99	57		139.2		Apl		97.7		A2,P1	at 967 ft**						
47		94	95		396.7	257.5	EQM		133.8		A1,P1							
57		100			396.8		EQM	Aplv	155.5		A1-2,P1							
67	77	101	94	396.8	421.8				238.5		A3,P1							
77		100	101	421.8	423.4				241.5		A1,P1							
87		104	103		446.4	23			428.5		A2-3,P1							
97		103	100		446.7	0.3			442.1		A1-2,P1							
107	117	101	15		576.9				457.5		A1,P1							
117	127	103	45		577.2				510.6		A2,P1							
127	137	100			584		EQM		516.3		A1,P1							ļ
137	147	100			584.3				540		A2,P1							
147		104	28		595.8		EQM		546.1		A1-2,P1							
157		104	27		595.9		EQM	Aplv	562		A1,P1							
167	177	98	44		621.6		EQM		609.8		A1-2,P1							
177	187	100			621.9				629.6		A2,P1							ļ
187		100			661.9		EQM		735.3		A1,P1							
197		101	32		662.4				864.4		A1-2,P1							
207	217	102	44		664.3		EQM		952.7		A1,P1							igsquare
217		100	61	664.3	664.6				982.4		A2,P1							
227		100	54		877.9				986.5	1023.9								
237	247	104	52		878.3			Peg	1023.9		A1-2,P1							igwdown
247		100	65		885.1		EQM		1099.9	1184	A2,P1							
257	267	101	69		887.4		Apl											
267	277	98	84	887.4	970.3	82.9	EQM											

			ndako M	ines, Th	ompson (Creek Mir	ing Ltd.			Loc	ation	UTM NAD 83 Zone 10				LDS Dian	nond Drilli	ng
Hol	e ID :	11A	-052	Azir	nuth:		Cas/Rds	from(ft)	to(ft)	Easting			start date:			07	7-Dec	
Logg	ed by:	K.Fr	rank		ip:		HQ	0		Northing			finish d	ate:		14	1-Dec	
Samp	led by:			Total D	epth (ft):	1184	NQ			Elevation			date log	ged:				
	Geote	chnical				Lithology				Alteratio	n	Notes:				Assay [Data	
						Interval		Litho	From	То	Туре &			From			Sample	
(ft)	(ft)	%	(in)	(ft)	(ft)	(ft)	Code	Modifier	(ft)	(ft)	Intensity	Comments		(ft)	(ft)	(ft)	Number	MoS2%
277	287	100	75	970.3	970.8	0.5	Apl											
287	297	101	86		974.3		EQM											
297	307	103	87		974.4			Aplv										
307	317	100	74	974.4	995.3		EQM											
317	327	102	86		999.1		QFP											
327	337	100			1014		EQM											
337	347	103	48															
347	357	98	33				EQM											
357	367	99		1049.4			EQM	Aplv										
367	377	103		1049.5			EQM											
377	387	102		1057.6														
387	397	98					EQM											
397	407	102	43		1093.3		QFP											
407	417	102		1093.3			EQM											
417	427	101		1127.6			_			1								
427	437	100			1130		EQM											
437	447	102	29			3.1	-			<u> </u>								
447	457	100		1133.1	1184	50.9	EQM	-		<u> </u>						-		-
457	467	102	58															
467	477	100	74															
477	487	99	52 36													1		
487	497 507	102 103	53 53															\vdash
497 507	507	103								+						1		++
517	527	96								+								\vdash
527	537	95								+						1		\vdash
537		104								+						1		\vdash
53/	547	104	58					l								1	1	

			ndako M	lines, Th	ompson (Creek Mir	ning Ltd.			Location		UTM NAD 83 Zone 10				LDS Dian	nond Drilliı	ng
Hol	e ID :	11A	-052	Azir	nuth:		Cas/Rds	from(ft)	to(ft)	Easting			start da	ate:		07	7-Dec	
Logg	ed by:	K.Fı	rank		ip:		HQ	0		Northing			finish d	ate:		14	1-Dec	
Samp	led by:			Total D	epth (ft):	1184	NQ			Elevation			date log	ged:				
	Geote	chnical				Litholog	У		Alteration			Notes:				Assay D)ata	
From			RQD	From	То	Interval	LITHO	Litho	From	То	Туре &			From	То	interval	Sample	
(ft)	(ft)	%	(in)	(ft)	(ft)	(ft)	Code	Modifier	(ft)	(ft)	Intensity	Comments		(ft)	(ft)	(ft)	Number	MoS2%
547	557	100	36															
557	567	102																
567	577	101	35															
577	587	101	49															
587	597	98																
597	607	100																
607	617	101	77															
617	627	100																
627	637	100																
637	647	99																
647	657	97																
657	667	101	26															
667	677	78																
677	687	76																
687	697	86																
697	707	98																igsquare
707	717	99																
717	727	98																
727	737	107	52															
737	747	97																
747	757	100																
757	767	100																igsquare
767	777	100														1		igspace
777	787	97														1		igwdot
787	797	103																igsquare
797	807	100								1						1		igsquare
807	817	98	45															

	Endako Mines, Thompson Creek Mining Ltd.								Loc	ation	UTM NAD 83 Zone 10	Drill C	o.	LDS Diamond Drilling					
Hol	e ID :	11A	-052	Azir	nuth:		Cas/Rds	from(ft)	to(ft)	Easting			start da	ate:		07	7-Dec		
Logg	ed by:	K.Fı	rank		Dip:		HQ 0			Northing			finish date:		14-Dec				
Samp	led by:			Total D	Total Depth (ft):		4 NQ			Elevation			date logged:						
	Geotechnical			Litholog				Alteratio	n	Notes:				Assay [Data				
									From	То	Type &			From			Sample		
(ft)	(ft)	%	(in)	(ft)	(ft)	(ft)	Code	Modifier	(ft)	(ft)	Intensity	Comments		(ft)	(ft)	(ft)	Number	MoS2%	
817	827																		
827	837	100																	
837	847	102																	
847	857	98																	
857	867	91																	
867	877	78																	
877	887	102																	
887	897	76																	
897	907	100																	
907	917	103																	
917	927	94																	
927	937	89																	
937	947	102																	
947	957	100																	
957		41**	9																
967	977	103																	
977	987	103																	
987	997	94																	
997	1007	80																	
1007	1017	95																	
1017	1027	100																	
1027	1037	99																	
1037		99																	
1047	1057	84																	
1057	1067	87																	
1067	1077	98																	
1077	1087	89	22																

		Er	ndako M	ines, Th	ompson (Creek Mir	ing Ltd.			Loc	ation	UTM NAD 83 Zone 10	Drill C	o.		LDS Diam	ond Drillir	ng
Hol	le ID :	11A	-052	Azir	muth:		Cas/Rds	from(ft)	to(ft)	t) Easting			start date:		07-Dec			
Logg	ed by:	K.Fı	rank	D	ip:		HQ	0		Northing			finish da	ate:	14-Dec			
Samp	oled by:			Total D	epth (ft):	1184	NQ			Elevation			date log	ged:				
	Geote	chnical				Litholog	У			Alteratio	1	Notes:				Assay D	ata	
From	То	REC	RQD	From	То	Interval	LITHO	Litho	From	То	Type &			From	То	interval	Sample	
(ft)	(ft)	%	(in)	(ft)	(ft)	(ft)	Code	Modifier	(ft)	(ft)	Intensity	Comments		(ft)	(ft)	(ft)	Number	MoS2%
1087	1097	82	0															
1097	1107	96	28															
1107	1117	62	17															
1117	1127	96	39															
1127	1137	104	13															
1137	1147	100	27															
1147	1157	100	9															
1157	1167	106	30															
1167	1177	100	33															
1177	1184	100	4															
EOH																		

	rill Hole :		11/	A-052			
						Structure	e and Mineralization
From	То	Depth	width	angle to	Structure		
(ft)	(ft)	(ft)	(ft)	core axis	Code	Mineralization	Comments
		29.4		70	V1	1-2mm mo	3mm wide mo grtz vein
31.8	32.6		0.8		F2		blocky gouge
36.2	37.2		1		F2	5mm mo? Clay	potential mo with clay in clay gouge, unsure of content, 2mm wide mo clay seam at lower edge
38.5	38.6		0.1		F2	3-4mm mo, clay	small gouge with mo rich clay
		40.9		62	V1	1-2mm mo	3mm wide mo qrtz vein
43.1	43.9		0.8		F2		·
		44.3		47	V1	2-3mm mo	6mm wide mo qrtz ribbon vein
47.6	49.1		1.5		F,V1	10mm mo	three 2-5mm wide mo qrtz veins, two fractures with lustrous mo on faces
49.6	53.9		4.3		F2,F	2mm mo, clay	mo and clay on fracture face at 50.1 ft in blocky gouge
55.9	58.9		3		F2		blocky gouge
66.1	68.1		2		F2		blocky gouge
		74.9		45	V1	tr mo, mag	1mm wide mag vein with tr mo
		76.7		55	F	1mm mo, clay	mo rich clay on fracture face
		81.1		60	F	1mm mo, clay	mo rich clay on fracture face
81.1	98.3		17.2		F		section very fractured, appears to be barren of mo
100.8	100.9		0.1		F1	2-3mm mo, clay	mo with clay in clay gouge
		101.2		68	V1	1-2mm mo	3mm wide mo qrtz vein
		101.9			F1	tr mo, chl, cla	chl/clay/tr mo shear fracture
102.8	104.3		1.5		F2,V1	2-3mm mo	clay gouge with strongly altered qrtz mo vein through gouge
		104.6			V1,F1	5-6mm mo	10-12mm wide mo qrtz vein, has been strongly sheared
		105.5		52	V1	2-3mm mo	6mm wide mo qrtz ribbon vein
106.3	107.8		1.5		V1,F	10-15mm mo	heavily fractured core with stockwork of mo veins and fractures throughout section, core is
							slightly P2 altered
		108.4		67		1-2mm mo	2mm wide mo qrtz vein
		108.7			V1	5-6mm mo	two parallel mo qrtz veins 8-11mm wide
		110.3		63-75	V1	4-8mm mo	four parallel qrtz mo veins from 1-5mm wide
		110.9		70	V1,V2	2-4mm mo	two parallel 5mm wide mo qrtz veins, one is only partial
111.4	112.9		1.5		F2		clay gouge
113.6	114.6		1		F2,V1	10-12mm mo, clay	clay gouge with altered mo qrtz vein at upper edge, surrounding clay is mixed with mo,
							lower half of gouge appears barren
		118.1		63		1-2mm mo	2mm wide mo qrtz vein
		119.5		62	F	3mm mo, clay	5mm of mo rich clay in fracture
		120.3		86	V1	2mm mo, Py	4mm wide mo qrtz vein, coarse Py on intersecting fractures
		120.9		38	F	2-3mm mo, Py	lustrous metallic mo on fracture face with dss fine grained Py

D	rill Hole :		11/	A-052			
						Structur	e and Mineralization
From	То	Depth	width	angle to	Structure		
(ft)	(ft)	(ft)	(ft)	core axis	Code	Mineralization	Comments
		122.1		53	V1	3-4mm mo	6mm wide mo qrtz vein, with intersecting mo stringer
		123.4			V1,F1	5mm mo	20mm wide mo vein, has been strongly sheared
124.1	125		0.9		F2	10mm mo	clay gouge, top of gouge is a rich mo/clay mixture, lower half is strongly chloritized
125.5	126.3		0.8		F2	2-3mm mo, clay	clay gouge with 3mm wide band of mo/clay running through clay gouge
		126		63	V1	1-2mm mo	4mm wide mo qrtz vein
		126.3		55	V1	1-2mm mo	4mm wide mo qrtz vein
		127.2		65	V1	2-3mm mo	6mm wide mo qrtz vein
133.3	134.2		0.9		F2	1-2mm mo, clay	clay gouge, some mo with clay in gouge
		134.2		55	V1	5-6mm mo	15mm wide mo qrtz ribbon vein at lower seam of clay gouge
		143.1		63	V1	tr mo, mag	1mm wide mag vein with tr mo
		149.2		81	V1	1mm mo	1mm wide mo qrtz vein
156.1	158.4		2.3		F2		
		164.1		83	F	1mm mo, clay	mo and clay on fracture face
		175.2		72	V1	tr mo, mag	4mm wide qrtz mag vein with tr mo
		189.8		81	F	tr mo, mag, Py	mag on fracture with tr mo and Py
		190.6		67	V1	1mm mo, Py	1mm wide mo vein with tr Py
		210.4		30	F	1-2mm mo, clay	mo rich clay on fracture face
		215.6		77	V1	1mm mo	1mm wide mo vein
		217.6		68	V1	10mm mo, cal, chl	70mm wide mo qrtz ribbon vein, largely replaced with calcite and slightly chloritized,
							several lustrous mo laminations
		218.2		50		1mm mo	1mm wide mo vein
		221.1		70	V1	1mm mo	1mm wide mo qrtz vein
				72	V1	10-15mm mo, clay	50mm wide mo qrtz ribbon vein, several lustrous mo laminations throughout, small gap of mo
							rich clay
		227		31	F	1-2mm mo, clay	very mo rich clay covering fracture face
237	237.1		0.1		F2	3-4mm mo, clay	clay gouge with mo rich clay seams at upper and lower edges
237.1	238.5		1.4		F1, V1	3-5mm mo, cla, chl	slightly sheared and chloritized section with several altered qrtz veins, mo laminations
							follow qrtz mineralization
238.5	240.4		1.9		F2		clay gouge, barren
240.4	240.7		0.3		F2	10-15mm mo?, clay	clay gouge continues, filled with very black mo rich clay
241.6	242.2		0.6		V1	5-7mm mo	six mo qrtz vein 1-5mm wide
		243.5		65		1-2mm mo	4mm wide mo qrtz vein
	, i	259.6		38	F	1-2mm mo, clay	fracture with mo rich clay on face

	Drill Hole		11/	A-052			
						Structur	e and Mineralization
From				angle to	Structure		
(ft)	(ft)	(ft)	(ft)	core axis	Code	Mineralization	Comments
		264.6		67	F	tr mo, chl, clay	tr mo with chl and clay
		274.9		64	V1	tr mo, mag	5mm wide qrtz mag vein with tr mo
		282.4		78	V1	1mm mo	1mm wide mo qrtz vein
		292.6		60	V1	tr mo, mag	1mm wide mag vein with tr mo
		296.6		33	F1	tr mo, Py, clay	fine grained Py with clay and tr mo? On shear fracture
		307.6		70	V1	2mm mo, mag, cal	two 1mm wide mo mag vein with minor calcite, mo is very lustrous
		308.6		73	V1	3mm mo	7mm wide mo qrtz vein
		310.4		65	V1	1-2mm mo, Py	3mm wide mo qrtz vein with coarse Py along vein
		311.5		77	F	1mm mo	very lustrous mo on fracture face
		314.3		78	F	1mm mo, mag	lustrous mo on fracture with mag
		318.9		55	F	1-2mm mo	lustrous mo on fracture
		325.1		64	V1	1-2mm mo, cal	3mm wide vein with calcite mineralization
		327.6		88	V1	2-3mm mo, Py	3mm wide mo vein with coarse dss Py
327.9	328.7		0.8		F1	4-6mm mo, clay	four 1-2mm wide shear fractures filled with rich mo/clay
		330.4		58	F	1-2mm mo, clay	very lustrous mo on fracture face with small amount of clay
		332		60	F	1-2mm mo, cal	lustrous mo on fracture with tr cal
		335.4		60	F	1-2mm mo, clay	very mo rich clay filling fracture
337.2	337.5		0.3		F	10-15mm mo, clay	three fractures in section of core, all with very mo rich clay
		340.2		68	V1	tr mo, mag	1mm wide mag qrtz vein with tr mo
		344.4		51	V1	tr mo, mag	5mm wide mo/qrtz/mag vein
		346.6		58	V1	1mm mo, mag	3mm wide mo qrtz vein with mag
350	352.4		2.4		F2,F	1-2mm mo	lustrous mo on fracture face in blocky gouge
		353.1		62, 50	V1	3-4mm mo	two mo qrtz veins, 2-4mm wide
		355.3		62	V1	20mm mo	50mm wide mo qrtz ribbon vein, mo laminations throughout vein, very lustrous and metallic
355.5	356.4		0.9		F2		clay gouge
		356.5		40	F1	2-3mm mo	two intersecting mo shear fractures
		359.8		44	V1	1-2mm mo	30mm wide qrtz vein with two 1mm wide mo laminations
359.9	361		1.1		F2		clay gouge
		362.3		45	F	2-3mm mo, clay	very mo rich clay filling fracture
		364.5		33	V1	3-5mm mo	5mm wide mo qrtz vein, mo is very high grade/metallic
		365.1		50	V1	3mm mo	6mm wide mo qrtz vein
366.5	367.2		0.7	58	V1	10mm mo	lustrous mo laminations/veins/fractures through qrtz vein (entire section is one large qrtz vein)
		368.9		32	F	0.5mm mo	lustrous mo grains sprinkled on fracture face

	rill Hole :		11/	A-052			
	IT- Donath loo					Structur	e and Mineralization
From		Depth	width	angle to	Structure		
(ft)	(ft)	(ft)	(ft)	core axis	Code	Mineralization	Comments
		376.5		30, 45	V1,F	10mm mo	8mm wide mo grtz vein with calcite lined with mo rich clay at 45, intersected by 3mm wide
							mo qrtz vein at 30, and an intersecting mo covered fracture
		380.4		27	F	tr mo	tr mo on fracture face
403.8	405.6		1.8		F2,F	2-3mm mo	lustrous mo on two fractures in blocky gouge
		408.6		50	V1	mag, tr mo	2mm wide qrtz mag vein with tr mo
		409.4		48	V1	2-3mm mo	3mm wide mo qrtz vein, metallic mo blebs along vein
		427.1		47	V1	1mm mo	1mm wide mo vein
		430.2		60	V1	1-2mm mo	3mm wide mo qrtz vein
		430.8		40	F	2-3mm mo	very metallic lustrous mo coating fracture face, surrounding core is very chloritized
430.8	434.5		3.7			chl, clay	core is very strongly chloritized, and altered, appears barren
437.6	440.7		3.1		F2	2-3mm mo, clay	clay gouge, small amount of mo with clay at lower edge of gouge
		452.3		48	F	1-2mm mo, clay	mo and clay on fracture face
454.4	457.2		2.8		F2,F	2-3mm mo, clay	mo with clay on two fractures in blocky gouge
		457.8			F1	1-2mm mo, clay	mo/clay shear fracture
		459.5		70	F	1-2mm mo	lustrous mo covered fracture
		467.8		63	V1	tr mo, mag	1mm wide mag vein with tr mo
		478.3		50,60,70	V1	10mm mo	three mo qrtz veins, 2,3, and 20mm wide. The large vein contains large amount of high grade mo
		486.2		87	V1	tr mo	2mm wide mo qrtz vein
		489.1			V1	1mm mo	1mm wide mo vein
		489.9		62	V1	1mm mo	1mm wide m qrtz vein
		501.5		57	F	1-2mm mo, chl, clay	lustrous mo with clay and chl on fracture
513.1	516.3		3.2		F2,F1	50-70mm mo??? More	clay gouge/shear zone, upper half contains several mo qrtz veins which have been strongly
							sheared, from 515.1-516.3 is a gouged section of mo with calcite, very high % of mo to
							calcite, mo appears high grade/rich throughout
523.9	525		1.1		F2,F	1-2mm mo	lustrous mo on fractures in blocky gouge
		540		67	V1	2-3mm mo, clay	3mm wide mo qrtz vein lined with mo rich clay
540.7	541.3		0.6		F1,V1	5-10mm mo, chl, clay	4-5 1mm wide mo/clay shear fractures, 10-15mm wide mo qrtz vein heavily sheared in section
542.8	543.1		0.3		F2	10-20mm mo, clay	clay gouge completely filled with black mo rich clay
543.6	543.9		0.3		F2,V1	2-3mm mo, clay	clay gouge with sheared/altered mo qrtz vein running through gouge
		544.2		70	V1	3-4mm mo, calcite	12mm wide mo qrtz vein with minor calcite mineralization
543.4	545.6		2.2		F2	Py, chl	clay gouge, strongly chloritized with Py grains dss throughout
552	552.3		0.3		F2	3-4mm mo, clay	clay gouge with 10mm wide mo rich clay seam at lower edge of gouge
		560.1			F1	2-3mm mo, chl, clay	two mo/chl intersecting shear fractures

	rill Hole :		11/	A-052			
						Structure	e and Mineralization
From			width	angle to	Structure		
(ft)	(ft)	(ft)	(ft)	core axis	Code	Mineralization	Comments
		564.9		60	V1	1mm mo, mag	2mm wide mo qrtz mag vein
572.1	572.6		0.5		F2,V1	2-3mm mo	two fractured mo qrtz veins in gouge
581.9	582.6		0.7		F1	5mm mo, clay	shear zone with 9mm wide mo rich clay seam at lower edge of shear zone
		583.3		22	V1	5-10mm PY	intense massive sulphide mineralization along a 12mm wide qrtz vein
598.5	600.3		1.8		F,F1	2-3mm mo, chl, clay	three fractures with small amount of mo on each, with chl and clay, core is slightly sheared
601.9	603.1		1.2		F2,F		block gouge
		610.5		38	F	tr mo, chl, clay	tr mo on fracture face with chl and clay
614.5	614.8		0.3		F2		gouge
		615.9		34	V1	mag, Py	30mm wide qrtz mag vein with minor Py along vein,
		624.9		30	V1		12mm wide mo qrtz vein, altered and mineralized with calcite, bx texture is seen with mo/clay
							matrix, as well as a caclite matrix in some portions of vein. Vein is lined with 2-3mm of mo
							rich clay
		630.4		58	V1	5mm mo	very lustrous metallic mo laminations in a 6mm wide mo grtz vein
634.8	635.7		0.9		F2		·
638.2	639		0.8		F2		
		647.2		66	F	tr mo, mag	tr mo with mag on fracture
		648.6		52-55	F	4-5mm mo, clay	three intersecting mo fractures filled with mo rich clay
649.2	650.1		0.9		F2,F	5mm mo, clay	blocky gouge with mo/clay on fractures
		670.9		28	V1	1mm mo	4mm wide mo grtz vein
674.5	675.3		0.8		F2		·
680.6	681.8		1.2		F2		
689.3	690.1		0.8		F2		
705.6	706		0.4		F2		clay gouge
706	716.4		10.4		F1,F	mag, chl, clay	stongly fractured section, slightly sheared, shear fractures thoughout, appears barren of mo
717	717.4		0.4		F2		clay gouge
		735.6			F1,V1	5-10mm mo, chl, clay	60mm wide mo/qrtz/smokey qrtz vein, lined with mo rich clay, has been slightly sheared
		762.4		70	V1	2-3mm mo	6mm wide mo qrtz vein
		770.3		75	F	1mm mo	lustrous mo on fracture face
783.4	783.7		0.3		F2		clay gouge
		792.3		67	F	tr mo, tr Py, cal	fracture with tr lustrous mo, tr Py and calcite
		795.2		55	F	1mm mo, clay	1mm mo with clay on fracture
797.5	798.4		0.9		F	1-2mm mo	lustrous mo on fractures in blocky gouge

	rill Hole :	:	11/	A-052			
	IT IS 3					Struct	ure and Mineralization
From	То	Depth	width	angle to	Structure		
(ft)	(ft)	(ft)	(ft)	core axis	Code	Mineralization	Comments
810.7	812.8		2.1		F2		
827.9	828.5		1.5		F1	chl, clay	shear zone, chloritized, appears barren
		838.8		65	V1	tr mo	7mm wide qrtz vein with tr metallic mo
840.2	842.3		2.1		F2,F	2mm mo	very rich mo on fracture in blocky gouge
845.6	846.7		1.1		F2		blocky gouge
876.3	876.5		0.2		F2	tr mo? Clay	clay gouge, may be tr mo along upper seam with clay
904.3	905.7		1.4		F1	chl, clay	shear zone, heavily chloritized
		975.7		62	F,Dss	2-3mm mo, Tr Py	lustrous mo on fracture face with tr Py, mo grains dss in core surrounding fracture, follows small
							envelope of P2 alteration
		976.7			DSS	tr mo	tr dss mo bleb in core
		978.6			DSS	tr mo	tr dss mo blebs in core
		980.8			DSS	tr mo	tr dss mo blebs in core
983.2	985.2		2			chl	stongly chloritized section of core
995.3	999.1		3.8		F,V1	carbonate	heavily fractured QFP, fractures and veins have strong carbonate mineralization
		1010.1			F	2-3mm mo, chl	strongly chloritized mo mineralized disc in fractured core
1014.1	1015.7		1.7		F2,F		blocky gouge
		1022.5		74	F	1mm mo, chl	mo on fracture face with chl
1026.3	1026.5		0.2		F2		clay gouge
1029.4	1029.7		0.3		F2		clay gouge
1023.2	1023.8		0.6		F2		
1039	1039.3		0.3		F2		clay gouge
1041.6	1041.7		0.1		F2	1mm mo, clay	clay gouge with 3mm wide band of mo/clay at lower seam
1045.4	1046.2		0.8		F2		clay gouge
1049.9	1051.6		1.7		F2,F		blocky gouge
1055.6	1056.3		0.7		F2		clay gouge
1088.2	1093.3		5.1		F, V1	cal, clay	QFP, heavily fractured with calcite veins and fractures throughout, Fractured Qrtz vein at lower edge
	1105.6		1.1		F2,F		blocky gouge
1106.8	1108.6		1.8		F2, F		blocky gouge
1110.4	1112.1		1.7		F2		
1119.7	1120.6		0.9		F2		clay gouge
1120.6	1130		9.4		F1		core is lightly sheared, appears barren of mo
		1137.6			F1	1mm mo	1mm wide mo shear fracture
		1139.5		40	F	tr mo? Chl, clay	fracture covered with chl/clay, may be tr mo

	Drill Hole : 11A-052						
						Structui	re and Mineralization
From	То	Depth	width	angle to	Structure		
(ft)	(ft)	(ft)	(ft)	core axis	Code	Mineralization	Comments
		1147.5		30	F1	tr mo, chl	slicken fracture with tr mo grains and chl
		1163.3			DSS	1mm mo	lustrous metallic dss mo grains
1163.3	1175.8		12.5		F1		core is lightly sheared, appears barren of mo

Appendix 7Drill Hole Assay List

11A-049

11A-052

Company: Endako Mines

% MoS2

Drillhole, Survey and Assay 2011 - Denak Extension

Drillhole Name: 11A-049

Type: Location: (19694.99, 39050.65, 2951.64)

Area: Length: 486.00 Unit: Foot

Coordinate system: Master Date:

Comment:

Drillhole Surveys

Dip	Azimuth	Depth
-90.00	0.00	0.00

Coverage: Assays; Sample Program: Original

From - To	MoS2
10.0 - 17.0	0.2130
17.0 - 27.0	0.0140
27.0 - 37.0	0.0100
37.0 - 47.0	0.0170
47.0 - 57.0	0.0010
57.0 - 67.0	0.0120
67.0 - 77.0	0.0010
77.0 - 87.0	0.0010
87.0 - 97.0	0.0010
97.0 - 107.0	0.0210
107.0 - 117.0	0.0530
117.0 - 127.0	0.0070
127.0 - 137.0	0.0240
137.0 - 147.0	0.0040
147.0 - 157.0	0.1300
157.0 - 167.0	0.0050
167.0 - 177.0	0.0220
177.0 - 187.0	0.0240
187.0 - 197.0	0.0380
197.0 - 207.0	0.0400

Printed: 07/24/2012 10:06:26 AM

From - To	MoS2
207.0 - 217.0	0.0040
217.0 - 227.0	0.0100
227.0 - 237.0	0.0030
237.0 - 247.0	0.0070
247.0 - 252.0	0.0060
252.0 - 257.0	0.0540
257.0 - 262.0	0.0180
262.0 - 267.0	0.0010
267.0 - 277.0	0.0250
277.0 - 287.0	0.0030
287.0 - 297.0	0.0050
297.0 - 307.0	0.0360
307.0 - 310.0	0.0420
310.0 - 313.0	0.3300
313.0 - 317.0	0.0560
317.0 - 321.0	0.0180
321.0 - 327.0	0.1480
327.0 - 337.0	0.1390
337.0 - 347.0	0.0080
347.0 - 357.0	0.0020
357.0 - 361.0	0.0020
361.0 - 363.0	0.2320
363.0 - 367.0	0.0040
367.0 - 377.0	0.0010
377.0 - 387.0	0.0100
387.0 - 397.0	0.0020
397.0 - 407.0	0.0010
407.0 - 417.0	0.0120
417.0 - 427.0	0.0010
427.0 - 437.0	0.0010
437.0 - 447.0	0.0010
447.0 - 457.0	0.0010
457.0 - 467.0	0.0030
467.0 - 477.0	0.0010
477.0 - 486.0	0.0010

Printed: 07/24/2012 10:06:26 AM Page 2 of 3

Printed: 07/24/2012 10:06:26 AM Page 3 of 3

Hole:	Tag:	MoS2 (%)	From:	To:	Detail:
11A-049	110498	0.213	10	17	case to 10
11A-049	110499	0.014	17	27	
11A-049	110500	0.019	17	27	dup of 110499
11A-049	110601	0.01	27	37	
11A-049	110602	0.017	37	47	
11A-049	110603	<.002	47	57	
11A-049	110604	0.012	57	67	
11A-049	110605	<.002	67	77	
11A-049	110606	<.002	77	87	
11A-049	110607	<.002	87	97	
11A-049	110608	0.021	97	107	
11A-049	110609	0.053	107	117	
11A-049	110610	<.002			blank
11A-049	110611	0.007	117	127	
11A-049	110612	0.024	127	137	
11A-049	110613	0.004	137	147	
11A-049	110614	0.13	147	157	
11A-049	110615	0.005	157	167	
11A-049	110616	0.022	167	177	
11A-049	110617	0.024	177	187	
11A-049	110618	0.038	187	197	
11A-049	110619	0.04	197	207	
11A-049	110620	0.004	207	217	
11A-049	110621	0.034			LG std.
11A-049	110622	0.01	217	227	
11A-049	110623	0.003	227	237	
11A-049	110624			12.02	blank
11A-049	110625	0.007	237	247	
11A-049	110626	0.006	247		whole core
11A-049	110627		247		dup of 110626
11A-049	110628	0.054	252		whole core
11A-049	110629	0.018	257		whole core
11A-049	110630		262		whole core
11A-049	110631	0.025	267	277	
11A-049	110632	0.003	277	287	
11A-049	110633	0.005	287	297	
11A-049	110634		207		blank
11A-049	110635	0.036	297	307	to to see
11A-049	110636	0.042	307		whole core
11A-049	110637	0.33	310		whole core
11A-049	110638	0.056	313		whole core
11A-049	110639	0.018	317		whole core
11A-049	110640	0.148	321		whole core
11A-049	110641	0.139	327	337	
11A-049	110642	0.008	337	347	
11A-049	110643	0.002	347	357	

11A-049	110644	0.106		HG s	td.
11A-049	110645	0.002	357	361	
11A-049	110646	0.232	361	363	
11A-049	110647	0.004	363	367	
11A-049	110648 <.	002	367	377	
11A-049	110649	0.01	377	387	
11A-049	110650	0.002	387	397	
11A-049	110651 <.	002	397	407	
11A-049	110652	0.012	407	417	
11A-049	110653 <.	002	417	427	
11A-049	110654 <.	002	427	437	
11A-049	110655 <.	002	437	447	
11A-049	110656 <.	002		blank	<
11A-049	110657 <.	002	447	457	
11A-049	110658	0.003	457	467	
11A-049	110659 <.	002	467	477	
11A-049	110660 <.	002	477	486 eoh	

Company: Endako Mines

% MoS2

Drillhole, Survey and Assay 2011 - Denak Extension

Drillhole Name: 11A-052

Type: Location: (19052.87, 38012.54, 2946.20)

Area: Length: 1184.00 Unit: Foot

Coordinate system: Master Date:

Comment:

Drillhole Surveys

Dip	Azimuth	Depth
-90.00	0.00	0.00

Coverage: Assays; Sample Program: Original

37.0 - 47.0	From - To	MoS2
37.0 - 47.0	18.0 - 27.0	0.0110
47.0 - 57.0 0.0370 57.0 - 67.0 0.0110 67.0 - 77.0 0.0110 77.0 - 87.0 0.0080 87.0 - 97.0 0.0090 97.0 - 107.0 0.0320 107.0 - 117.0 0.0870 117.0 - 127.0 0.0950 127.0 - 137.0 0.0350 137.0 - 147.0 0.0100 147.0 - 157.0 0.0120 157.0 - 167.0 0.0060 167.0 - 177.0 0.0090 177.0 - 187.0 0.0080 197.0 - 207.0 0.0070	27.0 - 37.0	0.0230
57.0 - 67.0 0.0110 67.0 - 77.0 0.0110 77.0 - 87.0 0.0080 87.0 - 97.0 0.0090 97.0 - 107.0 0.0320 107.0 - 117.0 0.0870 117.0 - 127.0 0.0950 127.0 - 137.0 0.0350 137.0 - 147.0 0.0100 147.0 - 157.0 0.0120 157.0 - 167.0 0.0060 167.0 - 177.0 0.0090 177.0 - 187.0 0.0060 187.0 - 197.0 0.0080 197.0 - 207.0 0.0070	37.0 - 47.0	0.0370
67.0 - 77.0 0.0110 77.0 - 87.0 0.0080 87.0 - 97.0 0.0090 97.0 - 107.0 0.0320 107.0 - 117.0 0.0870 117.0 - 127.0 0.0950 127.0 - 137.0 0.0350 137.0 - 147.0 0.0100 147.0 - 157.0 0.0120 157.0 - 167.0 0.0060 167.0 - 177.0 0.0090 177.0 - 187.0 0.0060 187.0 - 197.0 0.0080 197.0 - 207.0 0.0070	47.0 - 57.0	0.0370
77.0 - 87.0 0.0080 87.0 - 97.0 0.0090 97.0 - 107.0 0.0320 107.0 - 117.0 0.0870 117.0 - 127.0 0.0950 127.0 - 137.0 0.0350 137.0 - 147.0 0.0100 147.0 - 157.0 0.0120 157.0 - 167.0 0.0060 167.0 - 177.0 0.0090 177.0 - 187.0 0.0080 197.0 - 207.0 0.0070	57.0 - 67.0	0.0110
87.0 - 97.0 0.0090 97.0 - 107.0 0.0320 107.0 - 117.0 0.0870 117.0 - 127.0 0.0950 127.0 - 137.0 0.0350 137.0 - 147.0 0.0100 147.0 - 157.0 0.0120 157.0 - 167.0 0.0060 167.0 - 177.0 0.0090 177.0 - 187.0 0.0060 187.0 - 197.0 0.0080 197.0 - 207.0 0.0070	67.0 - 77.0	0.0110
97.0 - 107.0 0.0320 107.0 - 117.0 0.0870 117.0 - 127.0 0.0950 127.0 - 137.0 0.0350 137.0 - 147.0 0.0100 147.0 - 157.0 0.0120 157.0 - 167.0 0.0060 167.0 - 177.0 0.0090 177.0 - 187.0 0.0060 187.0 - 197.0 0.0080 197.0 - 207.0 0.0070	77.0 - 87.0	0.0080
107.0 - 117.0 0.0870 117.0 - 127.0 0.0950 127.0 - 137.0 0.0350 137.0 - 147.0 0.0100 147.0 - 157.0 0.0120 157.0 - 167.0 0.0060 167.0 - 177.0 0.0090 177.0 - 187.0 0.0060 187.0 - 197.0 0.0080 197.0 - 207.0 0.0070	87.0 - 97.0	0.0090
117.0 - 127.0 0.0950 127.0 - 137.0 0.0350 137.0 - 147.0 0.0100 147.0 - 157.0 0.0120 157.0 - 167.0 0.0060 167.0 - 177.0 0.0090 177.0 - 187.0 0.0060 187.0 - 197.0 0.0080 197.0 - 207.0 0.0070	97.0 - 107.0	0.0320
127.0 - 137.0 0.0350 137.0 - 147.0 0.0100 147.0 - 157.0 0.0120 157.0 - 167.0 0.0060 167.0 - 177.0 0.0090 177.0 - 187.0 0.0060 187.0 - 197.0 0.0080 197.0 - 207.0 0.0070	107.0 - 117.0	0.0870
137.0 - 147.0 0.0100 147.0 - 157.0 0.0120 157.0 - 167.0 0.0060 167.0 - 177.0 0.0090 177.0 - 187.0 0.0060 187.0 - 197.0 0.0080 197.0 - 207.0 0.0070	117.0 - 127.0	0.0950
147.0 - 157.0 0.0120 157.0 - 167.0 0.0060 167.0 - 177.0 0.0090 177.0 - 187.0 0.0060 187.0 - 197.0 0.0080 197.0 - 207.0 0.0070	127.0 - 137.0	0.0350
157.0 - 167.0	137.0 - 147.0	0.0100
167.0 - 177.0 0.0090 177.0 - 187.0 0.0060 187.0 - 197.0 0.0080 197.0 - 207.0 0.0070	147.0 - 157.0	0.0120
177.0 - 187.0 0.0060 187.0 - 197.0 0.0080 197.0 - 207.0 0.0070	157.0 - 167.0	0.0060
187.0 - 197.0	167.0 - 177.0	0.0090
197.0 - 207.0 0.0070	177.0 - 187.0	0.0060
	187.0 - 197.0	0.0080
207.0 - 217.0 0.0080	197.0 - 207.0	0.0070
	207.0 - 217.0	0.0080

Printed: 07/24/2012 10:07:52 AM Page 1 of 5

From - To	MoS2
217.0 - 227.0	0.0520
227.0 - 237.0	0.0090
237.0 - 247.0	0.0670
247.0 - 257.0	0.0080
257.0 - 267.0	0.0100
267.0 - 277.0	0.0100
277.0 - 287.0	0.0150
287.0 - 297.0	0.0120
297.0 - 307.0	0.0100
307.0 - 317.0	0.0220
317.0 - 327.0	0.0200
327.0 - 337.0	0.0290
337.0 - 347.0	0.0420
347.0 - 357.0	0.1100
357.0 - 367.0	0.0650
367.0 - 377.0	0.0280
377.0 - 387.0	0.0150
387.0 - 397.0	0.0110
397.0 - 407.0	0.0120
407.0 - 417.0	0.0240
417.0 - 427.0	0.0080
427.0 - 437.0	0.0180
437.0 - 447.0	0.0100
447.0 - 457.0	0.0060
457.0 - 467.0	0.0120
467.0 - 477.0	0.0120
477.0 - 487.0	0.0860
487.0 - 497.0	0.0110
497.0 - 507.0	0.0110
507.0 - 517.0	0.1670
517.0 - 527.0	0.0190
527.0 - 537.0	0.0120
537.0 - 547.0	0.2060
547.0 - 557.0	0.0230
557.0 - 567.0	0.0150
567.0 - 577.0	0.0140

Printed: 07/24/2012 10:07:52 AM Page 2 of 5

From - To	MoS2
577.0 - 587.0	0.0100
587.0 - 597.0	0.0140
597.0 - 607.0	0.0090
607.0 - 617.0	0.0070
617.0 - 627.0	0.0070
627.0 - 637.0	0.0660
637.0 - 647.0	0.0070
647.0 - 657.0	0.0170
657.0 - 667.0	0.0060
667.0 - 677.0	0.0070
677.0 - 687.0	0.0070
687.0 - 697.0	0.0080
697.0 - 707.0	0.0060
707.0 - 717.0	0.0060
717.0 - 727.0	0.0080
727.0 - 737.0	0.0110
737.0 - 747.0	0.0050
747.0 - 757.0	0.0080
757.0 - 767.0	0.0110
767.0 - 777.0	0.0060
777.0 - 787.0	0.0050
787.0 - 797.0	0.0080
797.0 - 807.0	0.0090
807.0 - 817.0	0.0070
817.0 - 827.0	0.0090
827.0 - 837.0	0.0070
837.0 - 847.0	0.0190
847.0 - 857.0	0.0070
857.0 - 867.0	0.0070
867.0 - 877.0	0.0070
877.0 - 887.0	0.0080
887.0 - 897.0	0.0070
897.0 - 907.0	0.0070
907.0 - 917.0	0.0050
917.0 - 927.0	0.0070
927.0 - 937.0	0.0060

Printed: 07/24/2012 10:07:52 AM Page 3 of 5

From - To	MoS2
937.0 - 947.0	0.0120
947.0 - 957.0	0.0050
957.0 - 967.0	0.0210
967.0 - 977.0	0.0550
977.0 - 987.0	0.0130
987.0 - 997.0	0.0060
997.0 - 1007.0	0.0060
1007.0 - 1017.0	0.0100
1017.0 - 1027.0	0.0060
1027.0 - 1037.0	0.0060
1037.0 - 1047.0	0.0070
1047.0 - 1057.0	0.0070
1057.0 - 1067.0	0.0060
1067.0 - 1077.0	0.0070
1077.0 - 1087.0	0.0050
1087.0 - 1097.0	0.0130
1097.0 - 1107.0	0.0060
1107.0 - 1117.0	0.0100
1117.0 - 1127.0	0.0060
1127.0 - 1137.0	0.0100
1137.0 - 1147.0	0.0090
1147.0 - 1157.0	0.0090
1157.0 - 1167.0	0.0090
1167.0 - 1177.0	0.0090
1177.0 - 1184.0	0.0060

Printed: 07/24/2012 10:07:52 AM Page 4 of 5

Printed: 07/24/2012 10:07:52 AM Page 5 of 5

Hole:	Tag:	MoS2 (%)	From:	То:	Detail:
11A-052	113921	0.011	18	27	case to 18
11A-052	113922	0.023	27	37	
11A-052	113923	0.037	37	47	
11A-052	113924	0.037	47	57	
11A-052	113925	0.011	57	67	
11A-052	113926	0.011	67	77	
11A-052	113927	0.008	77	87	
11A-052	113928	0.009	87	97	
11A-052	113929	0.032	97	107	
11A-052	113930	0.087	107	117	
11A-052	113931	0.095	117	127	
11A-052	113932	0.035		137	
11A-052	113933	0.01	137	147	
11A-052	113934		147	157	
11A-052	113935		157	167	
11A-052	113936	0.009	167	177	
11A-052	113937		177	187	
11A-052	113938		187	197	
11A-052	113939		197	207	
11A-052	113940	0.099			HG std.
11A-052	113941	0.008	207	217	
11A-052	113942	0.052	217	227	
11A-052	113943	0.009	227	237	
11A-052	113944	0.067	237	247	
11A-052	113945	0.008	247	257	
11A-052	113946	0.01	257	267	
11A-052	113947		267	277	
11A-052	113948	0.015	277	287	
11A-052	113949	0.012	287	297	
11A-052	113950			307	
11A-052	113951	0.022	307	317	
11A-052	113952	0.02	317	327	
11A-052	113953	0.029	327	337	
11A-052	113954	0.042	337	347	
11A-052	113955	0.11	347	357	
11A-052	113956	0.065	357	367	
11A-052	113957	0.028	367	377	
11A-052	113958	0.015	377	387	
11A-052	113959	0.011	387	397	J £ 442050
11A-052	113960	0.011	387		dup of 113959
11A-052	113961	0.012	397	407	
11A-052	113962	0.024	407	417	
11A-052	113963	0.008	417	427	
11A-052	113964	0.018	427	437	
11A-052	113965	0.01	437	447	
11A-052	113966	0.006	447	457	

11A-052	113967	0.012	457	467
11A-052	113968	0.012	467	477
11A-052	113969	0.086	477	487
11A-052	113970	0.011	487	497
11A-052	113971	0.011	497	507
11A-052	113972	0.167	507	517
11A-052	113973	0.019	517	527
11A-052	113974	0.012	527	537
11A-052	113975	0.206	537	547
11A-052	113976	0.023	547	557
11A-052	113977	0.015	557	567
11A-052	113978	0.014	567	577
11A-052	113979	0.01	577	587
11A-052	113980	0.014	587	597
11A-052	113981	0.097		HG std.
11A-052	113982	0.009	597	607
11A-052	113983	0.007	607	617
11A-052	113984	0.007	617	627
11A-052	113985	0.066	627	637
11A-052	113986	0.007	637	647
11A-052	113987	0.017	647	657
11A-052	113988	0.006	657	667
11A-052	113989	0.007	667	677
11A-052	113990	0.007	677	687
11A-052	113991	0.008	687	697
11A-052	113992	0.006	697	707
11A-052	113993	0.006	707	717
11A-052	113994	0.008	717	727
11A-052	113995	0.011	727	737
11A-052	113996	0.005	737	747
11A-052	113997	0.008	747	757
11A-052	113998	0.011	757	767
11A-052	113999	0.006	767	777
11A-052	114000	0.005	777	787
11A-052	114001	0.008	787	797
11A-052	114002	0.009	797	807
11A-052	114003	0.007	807	817
11A-052	114004	0.009	817	827
11A-052	114005	0.007	827	837
11A-052	114006	0.019	837	847
11A-052	114007	0.007	847	857
11A-052	114008	0.007	857	867
11A-052	114009	0.007	867	877
11A-052	114010	0.008	877	887
11A-052	114011	0.007	887	897
11A-052	114012	0.007	897	907
11A-052	114013	0.005	907	917

11A-052	114014	0.007	917	927	
11A-052	114015	0.006	927	937	
11A-052	114016	0.012	937	947	
11A-052	114017	0.005	947	957	
11A-052	114018	0.021	957	967	mis-latch,lost core
11A-052	114019	0.055	967	977	
11A-052	114020	0.064	967	977	dup of 114019
11A-052	114021	0.013	977	987	
11A-052	114022	0.006	987	997	
11A-052	114023	0.006	997	1007	
11A-052	114024	0.01	1007	1017	
11A-052	114025	0.006	1017	1027	
11A-052	114026	0.006	1027	1037	
11A-052	114027	0.007	1037	1047	
11A-052	114028	0.007	1047	1057	
11A-052	114029	0.006	1057	1067	
11A-052	114030	0.007	1067	1077	
11A-052	114031	0.005	1077	1087	
11A-052	114032	0.013	1087	1097	
11A-052	114033	0.006	1097	1107	
11A-052	114034	0.01	1107	1117	
11A-052	114035	0.006	1117	1127	
11A-052	114036	0.01	1127	1137	
11A-052	114037	0.009	1137	1147	
11A-052	114038	0.009	1147	1157	
11A-052	114039	0.009	1157	1167	
11A-052	114040	0.096			HG std.
11A-052	114041	0.009	1167	1177	
11A-052	114042	0.006	1177	1184	eoh

Appendix 8Endako Lab Assay Certificates

DATE:

	sept0711	С				
	SAMPLE NO.	MoS ₂		SAMPLE NO.	MoS ₂	
1	110483	0.053	1	110513	0.012	
2	110484	0.075	2	110514	0.035	
3	110485	0.067	3	110515	0.017	
4	110486	0.043	4	110516	0.005	
5	110487	0.051	5	110517	0.002	
6	110488	0.161	6	110518	0.016	
7	110489	0.022	7			
8	110490	0.063	8			
9	110491	0.032	9			
10	110492	0.109	10			
11	110493	0.469	11			
12	110494	0.034	12			
13	110495	<.002	13			
14	110496	0.007	14			
15	110497	0.050	15			
16	110498	0.213	16			
17	110499	0.014	17			
18	110500	0.019	18			
19	110501	<.002	19			
20	110502	0.006	20			
21	110503	<.002	21			
22	110504	0.035	22			
23	110505	0.003	23			
24	110506	0.174	24			
25	110507	0.020	25			
26	110508	0.004	26			
27	110509	0.179	27			
28	110510	0.002	28			
29	110511	<.002	29			
30	110512	<.002	30			

DATE:

sept0911b					
SAMPLE NO.	MoS ₂		SAMPLE NO.	MoS ₂	
110587	0.101	1	110617	0.024	
110588	0.048	2	110618	0.038	
110589	0.124	3	110619	0.040	
110590	0.026	4	110620	0.004	
110591	0.104	5	110621	0.034	
110592	0.082	6	110622	0.010	
110593	0.086	7			
110594	0.028	8			
110595	0.029	9			
110596	0.103	10			
110597	0.012	11			
110598	0.033	12			
110599	0.115	13			
110600	0.037	14	11 1 11 11 11 11 11 11 11 11 11 11 11 1		
110601	0.010	15			
110602	0.017	16			
110603	<.002	17			
110604	0.012	18			
110605	<.002	19			
110606	<.002	20			
110607	<.002	21			
110608	0.021	22			
110609	0.053	23			
110610	<.002	24			
110611	0.007	25			
110612	0.024	26			
110613	0.004	27			
110614	0.130	28			
110615	0.005	29			
110616	0.022	30			
	SAMPLE NO. 110587 110588 110589 110590 110591 110592 110593 110594 110595 110596 110597 110598 110599 110600 110601 110602 110603 110604 110605 110606 110607 110608 110609 110610 110611 110612 110613 110614 110615	SAMPLE NO. MoS2 110587 0.101 110588 0.048 110589 0.124 110590 0.026 110591 0.104 110592 0.082 110593 0.086 110594 0.028 110595 0.029 110596 0.103 110597 0.012 110598 0.033 110599 0.115 110600 0.037 110601 0.010 110602 0.017 110603 <.002	SAMPLE NO. MoS2 110587 0.101 1 110588 0.048 2 110589 0.124 3 110590 0.026 4 110591 0.104 5 110592 0.082 6 110593 0.086 7 110594 0.028 8 110595 0.029 9 110596 0.103 10 110597 0.012 11 110598 0.033 12 110599 0.115 13 110600 0.037 14 110601 0.010 15 110602 0.017 16 110603 <.002	SAMPLE NO. MoS ₂ SAMPLE NO. 110587 0.101 1 110617 110588 0.048 2 110618 110589 0.124 3 110619 110590 0.026 4 110620 110591 0.104 5 110621 110592 0.082 6 110622 110593 0.086 7 110594 0.028 8 110595 0.029 9 110596 0.103 10 110597 0.012 11 110598 0.033 12 110599 0.115 13 110600 0.037 14 110601 0.010 15 110602 0.017 16 110603 <.002	SAMPLE NO. MoS2 SAMPLE NO. MoS2 110587 0.101 1 110617 0.024 110588 0.048 2 110618 0.038 110589 0.124 3 110619 0.040 110590 0.026 4 110620 0.004 110591 0.104 5 110621 0.034 110592 0.082 6 110622 0.010 110593 0.086 7 7 7 110594 0.028 8 110592 0.010 110595 0.029 9 110596 0.103 10 110596 0.103 10 11059 11059 0.012 11 110599 0.115 13 110600 0.037 14 110600 0.037 14 110601 0.010 15 110601 10 15 110604 0.012 18 110604 0.012 18 110606 0.

DATE: DD CORE ASSAYS

	sept0911	С				
	SAMPLE NO.	MoS ₂		SAMPLE NO.	MoS ₂	
1	110623	0.003	1			
2	110624	<.002	2			
3	110625	0.007	3			
4	110626	0.006	4			
5	110627	0.011	5			
6	110628	0.054	6			
7	110629	0.018	7			
8	110630	<.002	8			
9	110631	0.025	9			
10	110632	0.003	10			
11	110633	0.005	11			
12	110634	<.002	12			
13	110635	0.036	13			
14	110636	0.042	14			
15	110637	0.330	15			
16	110638	0.056	16			
17	110639	0.018	17			
18	110640	0.148	18			
19			19			
20			20			
21			21			
22			22			
23			23			
24			24			
25			25			
26			26			
27			27			
28			28			
29			29			
30			30			

DATE: DD CORE ASSAYS

	sept1311					
	SAMPLE NO.	MoS ₂		SAMPLE NO.	MoS ₂	
1	110641	0.139	1	110671	0.017	
2	110642	0.008	2	110672	0.034	
3	110643	0.002	3	110673	0.071	
4	110644	0.106	4	110674	0.034	
5	110645	0.002	5	110675	<.002	
6	110646	0.232	6	110676	0.053	
7	110647	0.004	7			
8	110648	<.002	8			
9	110649	0.010	9			
10	110650	0.002	10			
11	110651	<.002	11			
12	110652	0.012	12			
13	110653	<.002	13			
14	110654	<.002	14			
15	110655	<.002	15			
16	110656	<.002	16			
17	110657	<.002	17			
18	110658	0.003	18			
19	110659	<.002	19			
20	110660	<.002	20			
21	110661	0.046	21			
22	110662	0.038	22			
23	110663	0.023	23			
24	110664	0.057	24			
25	110665	0.265	25			
26	110666	0.051	26			
27	110667	0.046	27			
28	110668	0.087	28			
29	110669	0.082	29			
30	110670	0.030	30			

DATE:

	jan0512					
	SAMPLE NO.	MoS ₂		SAMPLE NO.	MoS ₂	
1	113899	0.008	1	113929	0.032	
2	113900	0.011	2	113930	0.087	
3	113901	0.005	3	113931	0.095	
4	113902	0.054	4	113932	0.035	
5	113903	0.020	5	113933	0.010	
6	113904	0.013	6	113934	0.012	
7	113905	0.010	7			
8	113906	0.024	8			
9	113907	0.024	9			
10	113908	0.015	10			
11	113909	0.009	11			
12	113910	0.010	12			
13	113911	0.067	13			
14	113912	0.018	14			
15	113913	0.048	15			
16	113914	0.025	16			
17	113915	0.016	17			
18	113916	0.040	18			
19	113917	0.012	19			
20	113918	0.019	20			
21	113919	0.010	21			
22	113920	0.009	22			
23	113921	0.011	23			
24	113922	0.023	24			
25	113923	0.037	25			
26	113924	0.037	26			
27	113925	0.011	27			
28	113926	0.011	28			
29	113927	0.008	29			
30	113928	0.009	30			

DATE:

	jan0612						
	SAMPLE NO.	MoS ₂		SAMPLE NO.	MoS ₂		
1	113935	0.006	1	113965	0.010		
2	113936	0.009	2	113966	0.006		
3	113937	0.006	3	113967	0.012		
4	113938	0.008	4	107136	0.008		
5	113939	0.007	5	107137	0.013		
6	113940	0.099	6	107138	0.014		
7	113941	0.008	7				
8	113942	0.052	8				
9	113943	0.009	9				
10	113944	0.067	10				
11	113945	0.008	11				
12	113946	0.010	12				
13	113947	0.010	13				
14	113948	0.015	14				
15	113949	0.012	15				
16	113950	0.010	16				
17	113951	0.022	17				
18	113952	0.020	18				
19	113953	0.029	19				
20	113954	0.042	20				
21	113955	0.110	21				
22	113956	0.065	22				
23	113957	0.028	23				
24	113958	0.015	24				
25	113959	0.011	25				
26	113960	0.011	26				
27	113961	0.012	27				
28	113962	0.024	28				
29	113963	0.008	29				
30	113964	0.018	30				

DATE:

	jan0612t					
	SAMPLE NO.	MoS ₂		SAMPLE NO.	MoS ₂	
1	113968	0.012	1	113998	0.011	
2	113969	0.086	2	113999	0.006	
3	113970	0.011	3	114000	0.005	
4	113971	0.011	4	114001	0.008	
5	113972	0.167	5	114002	0.009	
6	113973	0.019	6	114003	0.007	
7	113974	0.012	7			
8	113975	0.206	8			
9	113976	0.023	9			
10	113977	0.015	10			
11	113978	0.014	11			
12	113979	0.010	12			
13	113980	0.014	13			
14	113981	0.097	14			
15	113982	0.009	15			
16	113983	0.007	16	3		
17	113984	0.007	17			
18	113985	0.066	18			
19	113986	0.007	19			
20	113987	0.017	20			
21	113988	0.006	21			
22	113989	0.007	22			
23	113990	0.007	23	_		
24	113991	0.008	24			
25	113992	0.006	25			
26	113993	0.006	26			
27	113994	0.008	27			
28	113995	0.011	28			
29	113996	0.005	29			
30	113997	0.008	30			

DATE:

	jan06120				
	SAMPLE NO.	MoS ₂		SAMPLE NO.	MoS ₂
1	114004	0.009	1	0	
2	114005	0.007	2		
3	114006	0.019	3		
4	114007	0.007	4		
5	114008	0.007	5		
6	114009	0.007	6		
7	114010	0.008	7		
8	114011	0.007	8		
9	114012	0.007	9		
10	114013	0.005	10		
11	114014	0.007	11		
12	114015	0.006	12		
13	114016	0.012	13		
14	114017	0.005	14		
15	114018	0.021	15		
16	114019	0.055	16	-	
17	114020	0.064	17		
18	114021	0.013	18		
19	114022	0.006	19		
20	114023	0.006	20		
21	114024	0.010	21		
22	114025	0.006	22		
23	114026	0.006	23		
24	114027	0.007	24		
25	114028	0.007	25		
26	114029	0.006	26		
27	114030	0.007	27		1000
28			28		
29			29		
30			30		

DATE:

	jan0712				
	SAMPLE NO.	MoS ₂		SAMPLE NO.	MoS ₂
1	107139	0.037	1		
2	107140	0.021	2		
3	107141	0.069	3		
4	107142	0.144	4		
5	107143	0.103	5		
6	107144	0.054	6		
7	107145	0.010	7		
8	107146	0.012	8		
9	114031	0.005	9		
10	114032	0.013	10		
11	114033	0.006	11		
12	114034	0.010	12		
13	114035	0.006	13	-	
14	114036	0.010	14		
15	114037	0.009	15		
16	114038	0.009	16		
17	114039	0.009	17		
18	114040	0.096	18		
19			19		
20			20		
21	13.74.54.7.55.74.30		21		
22			22		
23			23		
24			24		
25			25		
26			26		
27			27		
28			28		
29			29		
30			30		

DATE:

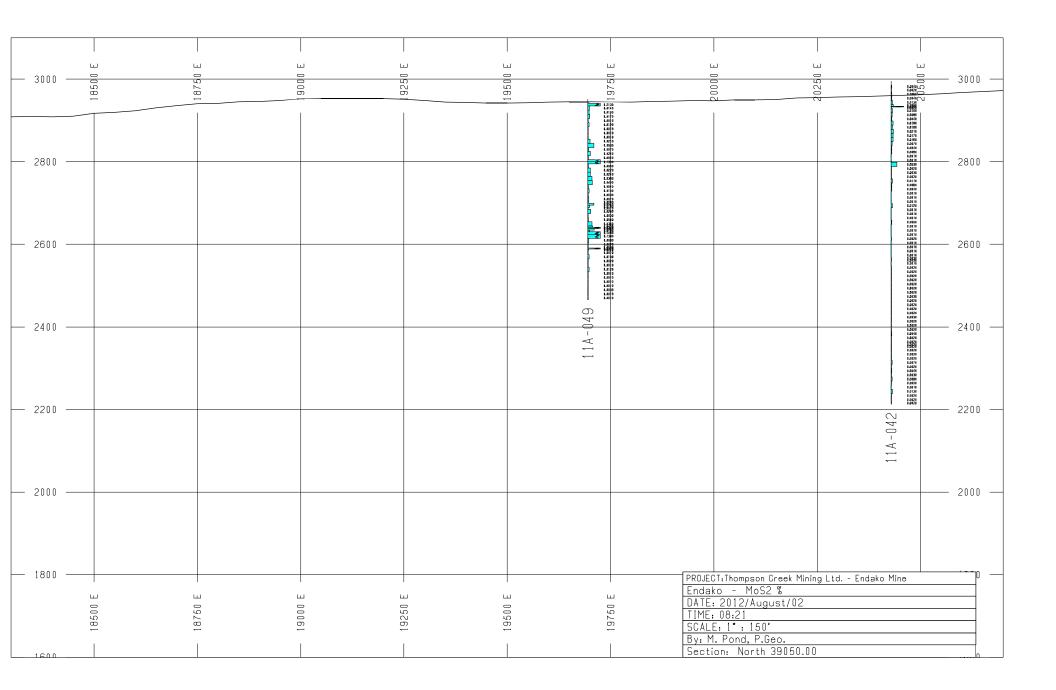
	jan1012					
	SAMPLE NO.	MoS ₂		SAMPLE NO.	MoS ₂	
1	114041	0.009	1			
2	114042	0.006	2			
3	114043	0.004	3			
4	114044	0.009	4			
5	114045	0.013	5			
6	114046	0.006	6			
7	114047	0.006	7			
8	114048	0.004	8			
9	114049	0.007	9			
10	114050	0.005	10			
11	114051	0.005	11			
12	114052	0.008	12			
13	114053	0.008	13			
14	114054	0.009	14			
15	114055	0.006	15			
16	114056	0.006	16			
17	114057	0.009	17			
18	114058	0.010	18			
19			19			
20			20			
21			21			
22			22			
23			23			
24			24			
25			25			
26			26			
27			27			
28			28			
29			29			
30			30			

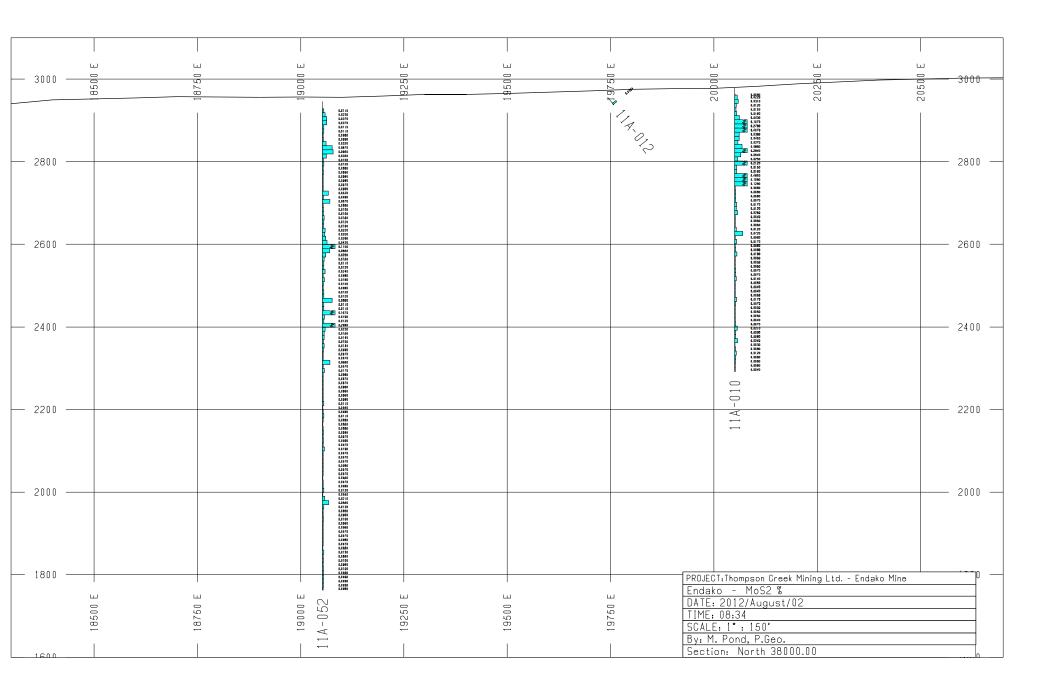
Appendix 8Endako Lab Assay Certificates

QA / QC Sample Duplicates

DATE: DD CORE ASSAYS

jan0912		jan0912			
SAMPLE NO.	MoS ₂		SAMPLE NO.	MoS ₂	
113895	0.044	1			
113896	0.053	2			
113954	0.039	3			
113962	0.014	4			
113968	0.011	5			
113969	0.165	6			
113970	0.011	7			
113971	0.013	8			
113972	0.154	9			
113856	0.029	10			
113857	0.008	11			
113870	0.012	12			
113878	0.005	13			
113879	0.011	14			
113881	0.030	15			
113882	0.028	16			
113883	0.041	17			
113894	0.043	18			
113973	0.037	19			
113974	0.011	20			
113975	0.150	21			
113976	0.038	22			
		23			
		24			
		25			
		26			
		27			
		28			
		29			
		30			
	SAMPLE NO. 113895 113896 113954 113962 113968 113969 113970 113971 113972 113856 113857 113870 113878 113879 113881 113882 113883 113894 113973 113974 113975	SAMPLE NO. MoS2 113895 0.044 113896 0.053 113954 0.039 113962 0.014 113968 0.011 113970 0.165 113971 0.013 113972 0.154 113856 0.029 113877 0.008 113878 0.005 113879 0.011 113881 0.030 113882 0.028 113883 0.041 113894 0.043 113973 0.037 113974 0.011 113975 0.150	SAMPLE NO. MoS2 113895 0.044 1 113896 0.053 2 113954 0.039 3 113962 0.014 4 113968 0.011 5 113969 0.165 6 113970 0.011 7 113971 0.013 8 113972 0.154 9 113856 0.029 10 113877 0.008 11 113870 0.012 12 113878 0.005 13 113879 0.011 14 113881 0.030 15 113882 0.028 16 113883 0.041 17 113894 0.043 18 113973 0.037 19 113974 0.011 20 113975 0.150 21 113976 0.038 22 25 26 27 28 29	SAMPLE NO. MoS2 SAMPLE NO. 113895 0.044 1 113896 0.053 2 113954 0.039 3 113962 0.014 4 113968 0.011 5 113969 0.165 6 113970 0.011 7 113971 0.013 8 113972 0.154 9 113856 0.029 10 113877 0.008 11 113878 0.005 13 113879 0.011 14 113881 0.030 15 113882 0.028 16 113883 0.041 17 113894 0.043 18 113973 0.037 19 113974 0.011 20 113975 0.150 21 113976 0.038 22 26 27 28 29	


DATE:


	apr1712					
	SAMPLE NO.	MoS ₂		SAMPLE NO.	MoS ₂	
1	113874	<.002	1	113822	0.031	
2	113875	<.002	2	113823	0.006	
3	113876	<.002	3	113824	<.002	
4	113877	<.002	4	113825	0.002	
5	113878	<.002	5	113826	0.009	
6	113879	0.006	6	113827	0.003	
7	113881	0.028	7			
8	113882	0.018	8			
9	113883	0.030	9			
10	113884	0.009	10			
11	113885	0.003	11			
12	113886	0.004	12			
13	113887	0.011	13			
14	113888	0.003	14			
15	107330	0.040	15			
16	107331	0.002	16			
17	107128	0.010	17			
18	107129	0.018	18			
19	107130	0.035	19			
20	107131	0.005	20			
21	107132	0.006	21			
22	107133	0.006	22			
23	107134	0.027	23			
24	107135	0.017	24			
25	113816	0.002	25			
26	113817	0.006	26			
27	113818	0.008	27			
28	113819	0.003	28			
29	113820	0.002	29			
30	113821	0.002	30			

DATE:

	apr1712b						
	SAMPLE NO.	MoS ₂		SAMPLE NO.	MoS ₂		
1	113828	0.002	1	113867	0.002		
2	113829	0.003	2	113868	<.002		
3	113830	0.021	3	113869	<.002		
4	113831	0.004	4	113870	0.009		
5	113832	0.048	5	113871	<.002		
6	113833	0.002	6	113872	0.002	9.	
7	113838	0.003	7	113873	0.005		
8	113839	0.005	8				
9	113841	0.006	9				
10	113842	0.006	10				
11	113843	0.004	11				
12	113844	0.002	12				
13	113845	0.002	13				
14	113846	0.003	14				
15	113847	0.004	15				
16	113848	0.010	16				
17	113849	0.036	17				
18	113850	0.004	18				
19	113851	0.004	19				
20	113852	0.002	20				
21	113853	0.002	21				
22	113854	0.002	22				
23	113855	0.002	23				
24	113856	0.027	24				
25	113857	0.003	25				
26	113858	0.002	26				
27	113859	0.006	27				
28	113860	0.004	28				
29	113865	0.002	29				
30	113866	0.003	30				

Appendix 9Drill Hole Cross Sections

Appendix 10

Computer Software List

- 1. Project locations were accurately sited using a Trimble GPS system. Data input and output functions used "Trimble Geomatics Office", version 1.60.
- 2. Inclined diamond drill holes were downhole surveyed using the Jexplore Inc. "PeeWee" system. Data input and output functions used the "DevSoft6 Office", version 6.0.8.
- 3. Many plotting and drafting functions were done with the Autodesk "Autocad 2000" program.
- 4. Drill hole and mine planning functions have been maintained with Mintec Inc. systems. "Minsite 3D", version 6.00-01.
- 5. General report and documentation has been done using the "Microsoft Office Suite". Version 2007 SP2. (Word, Excell, Outlook)
- 6. Document PDF file creation and edits have been done using Nuance "PDF Converter Professional 6.0".
- 7. PDF document review and collaboration have also used the Adobe Systems Inc, "Adobe Reader 9", version 9.4.0.
- 8. Simple text data file edits and review used the Helios Software Solutions "TextPad" program, version 5.3.1.
- 9. Map GIS and coordinate translations were done with "MapInfo" version 8.5.2.
- 10. Regional and detailed locations and imagery were plotted from "Google Earth", version 5.2.1.1588.