

ASSESSMENT REPORT TITLE PAGE AND SUMMARY

TITLE OF REPORT: Geological, Geochemical and Prospecting Report - Rugged Mt. Shake and Shake West

TOTAL COST: \$3,750

AUTHOR(S): Alan Raven SIGNATURE(S):

NOTICE OF WORK PERMIT NUMBER(S)/DATE(S): N/A STATEMENT OF WORK EVENT NUMBER(S)/DATE(S):5152333

YEAR OF WORK:2011

PROPERTY NAME: Rugged Mt. Shake

CLAIM NAME(S) (on which work was done): Rugged Mt Shake (tenure # 840670)

COMMODITIES SOUGHT: copper, gold

MINERAL INVENTORY MINFILE NUMBER(S), IF KNOWN: 104G 150, 104G 155

MINING DIVISION: Liard NTS / BCGS: NTS 104 G/13E

LATITUDE: 57° 49"

LONGITUDE: 132° 02(at centre of work)

UTM Zone: 9 EASTING: 345500 NORTHING: 6410500

OWNER(S): P. A. Walker

MAILING ADDRESS:

15781 Quick Road West, Telkwa, BC, V0J 2X2

OPERATOR(S) [who paid for the work]: Serengeti Resources Inc

MAILING ADDRESS:

Suite 1700 - 750 West Pender St, Vancouver, BC, V6C 2T8

REPORT KEYWORDS (lithology, age, stratigraphy, structure, alteration, mineralization, size and attitude. Do not use abbreviations or codes)

Copper, gold, silver, malachite, pyrite, vein, disseminated, porphyry, Stuhini, syenite, volcanic, sedimentary, syenite dykes, hornfelsed sedimentary, Stikine, Taku plateau, Early Jurassic.

REFERENCES TO PREVIOUS ASSESSMENT WORK AND ASSESSMENT REPORT NUMBERS: AR #s - 253, 1893, 20154 and 20414

TYPE OF WORK IN THIS REPORT	EXTENT OF WORK (in metric units)	ON WHICH CLAIMS	PROJECT COSTS APPORTIONED (incl. support)
GEOLOGICAL (scale, area): Mapping: 1.5 by 2 km	1:10000 1:20000	840670	\$1,475
Dhata interestation			
GEOPHYSICAL (line-kilometres)			
Ground			
Magnetic			
Electromagnetic			
Induced Polarization			
Radiometric			
Seismic			
Other			
Airborne			
GEOCHEMICAL (number of sample	es analysed for)		
Soil			
Silt			
Rock: 22	38 elements	840670	
Other			
DRILLING (total metres, number of	f holes, size, storage location)		
Core			
Non-core			
RELATED TECHNICAL			\$550
Sampling / Assaying			\$
Petrographic			
Mineralographic			management of the second
Metallurgic	1.5 1:10,000 1:20,000	840670	\$1,300
PROSPECTING (scale/area):	1.5 1:10,000 1:20,000 by 2 km		\$ 1,000
PREPATORY / PHYSICAL			
Line/grid (km)			
Topo/Photogrammetric (sc	ale, area)		name
Legal Surveys (scale, area)		· · · · · · · · · · · · · · · · · · ·
Road, local access (km)/tra	ail		
Trench (number/metres)			
Underground development	(metres)		
Other		TOTAL	\$3,325
		COST	Page 2 of 2

BC Geological Survey Assessment Report 33249

Geological, Geochemical and Prospecting Report

Rugged Mt. Shake (840670) and Shake West (840677)

Mining Division - Liard

NTS - 104 G/13E

Lat/Long - 57° 49′ N, 132° 2′ W

Owner - P. Walker

15781 Quick Road West Telkwa, BC VOJ 2X2

Operator – Serengeti Resources

Suite 1700 – 750 West Pender St, Vancouver, BC V6C 2T8

Table of contents

Summary	3
Conclusions	3
Recommendations	3
Introduction	4
Location and access	4
Topography, vegetation and climate	
Exploration history	4
Claim status	. 7
Geology	
Regional geology	7
Property geology	7
Geochemistry	
Rock samples	_ 1
Statement of costs	_ 1
Bibliography	_ 1
Statement of Qualifications – A. Raven	_ 1
Figures	
Figure 1 – Location Map Figure 2 – Claim Map Figure 3 – Regional Geology Figure 4 – Property Geology and sample location and ID numbers Figure 5 – Copper in rocks with anomalous values at 1:10,000 Figure 6 – Copper with selected gold values at 1:10,000	- - -
Appendix A – Rock sample descriptions and analytical results (Serengeti)	

Appendix B – Analytical certificates and methodology (Acme Labs)

Summary

The objective of this survey was to determine if economic copper mineralization was evident and could be located in the area of the syenite intrusive into the overlying package of volcaniclastic/sedimentary rocks within the boundaries of the Walker claims (840670 and 840677).

A Serengeti Resources Inc field team, two geologist and three assistants, carried out a one day sampling and geological mapping reconnaissance program on the Walker claims during the exploration program on their adjoining claims. A total of 22 rock samples were collected from the Walker claims during the mapping, prospecting traverses. This reconnaissance traverse was carried out on July 25, 2011 from the Serengeti fly camp.

Serengeti's crew located low grade copper mineralization and anomalous gold values in some of the rock samples collected from the Walker claims. These anomalous samples were located within the structurally deformed syenites.

Rock samples of interest range from 1015 ppm to 2845 ppm copper with two samples weakly anomalous in gold - 76 and 107 ppb - and two samples weakly anomalous in silver - 2.6 and 3.3 ppm. See appendix A - Rock sample descriptions - for details.

Conclusions

On the portion of the Rugged Mt Shake examined by the Serengeti crew, they did not locate any copper mineralization of economic interest. The syenites are locally mineralized with copper along what appear to be structural zones, generally 1 to 3 metres in width. Further prospecting may be warranted in the southern portion of tenure 840670 and the western portion of tenure 840677 as these were not visited by the crew. There is potential to discover new mineral occurrences in these unvisited areas.

Recommendations

Further prospecting in the southern portion of tenure 840670 and the western portion of tenure 840677 as these were not visited by the crew to locate any new mineralization of interest (Serengeti). Research has shown that the mineralization of interest, primarily copper, is structurally controlled therefore the use of remote sensing (air photography) to delineate structure before further prospecting is carried may be useful.

Introduction

The Rugged Mt Shake (840670) and Shake West (840677) claims, located in northwestern BC, cover a gossan in the Stuhini Group volcanic and sediments associated with syenite intrusions. The project area was prospected extensively in the past for gold vein and porphyryr mineralization. This program was to prospect, map and locate any mineralization of interest be it gold or copper in an area within close proximity to the base camp. The areas targeted are within the contact areas of various syenite dykes into the volcanic/sedimentary rocks. A Serengeti Resources Inc field team, two geologist and three assistants, carried out a one day sampling and geological mapping reconnaissance program on the Walker claims during their exploration program on their adjoining claims. A total of 22 rock samples were collected during the mapping, prospecting traverses and sent for analysis to Acme Laboratories located in Vancouver BC.

Location and access

The Rugged Mt Shake (840670) and Shake West (840677) claims are located approximately 28 kilometres southwest of Telegraph Creek on Rugged Mountain, in northwestern BC (see figure 1). Access to the property was by helicopter from Telegraph Creek to a fly camp located on Rugged Mountain

Topography, vegetation and climate

The claims are located on Rugged Mountain and topography is very steep and rugged, ranging from 635 metres to 1823 metres. The majority of the claims is above tree-line and is outcrop, talus or alpine vegetation. The lower elevations are covered with a dense growth of slide alder, bracken and devil's club. On the north slope of Rugged Mountain there are minor patches of permanent snow.

The property is in the Coast Mountain rain shadow and has a mild, relatively dry climate. Exploration can be carried out from May to October.

Exploration history

Considerable detailed prospecting was carried out in the Rugged Mount Shake claim area beginning in the 1860's when placer gold was discovered in the Stikine River between Telegraph Creek and Glenora. At that time roads were built up the Chutine and Barrington Rivers to support the large placer operations. An assumption is made that the large gossan visible on Rugged Mountain would have been examined by the prospectors of the era. Additional prospecting was carried out in the 1890's, 1920's, 1930's and 1940's. Porphyry copper exploration in the 1950's and 1960's led to a number of claims being staked in the area. No written records of this work are available.

Rugged Mt. Shake. Location Map

Rugged Mt. Shake. Claim Map

Figure 2 - Claim map

The present claims were staked by P. Walker in December of 2010 and an agreement was reached with Serengeti Resources to carry out a property examination while their crew was working in the area. A letter agreement was signed between Walker and Serengeti regarding this work where Serengeti would carry out the exploration work and supply Walker with the details of the work which they did less the proportionate allocation of the mobilization/de-mobilization cost of the crew. Within the letter agreement Serengeti agreed to file the assessment work which they did not do thus Walker has hired me to write this report.

Serengeti carried out a program of geological mapping and rock sampling using a five man crew on the Walker claims. Low grade copper mineralization and anomalous gold values were obtained from some of the rock samples.

Claim status

Tenure #	Claim Name	Record date	Good to date*	Area (ha)
840670	Rugged Mt Shake	2010/Dec/12	2013/Dec/12	431.0
840677	Shake West	2010/Dec/12	2013/Dec/12	206.9

^{*-} assuming acceptance of this report.

Geology

Regional geology

The Rugged Mt Shake project area is on the eastern flank of the main belt of the Coast Plutonic Complex and on the western margin of the Intermontane Belt within the Stikine Arch. The Stikine Arch consists of Permian to Middle Triassic oceanic sediments unconformably overlain by rocks equivalent to Upper Triassic Stuhini Group island arc volcanic and sediments. These volcanics and sediments have been intruded by syenitic stocks and by quartz diorite and granodiorite plutons of the Coast Complex, these being of post Lower Triassic age (Souther, 1971)

Property geology

The Rugged Mt Shake area is underlain by volcanic and sedimentary rocks of the Upper Triassic Stuhini Group. These rocks have been intruded by a differentiated syenite intrusive with the centre of this intrusive located on the southern flank of Rugged Mountain.

Volcanic members of the Stuhini Group consist of dark green, mafic volcaniclastics and minor augite porphyry flows. Overlying the volcanic rocks is a mixed sedimentary package of laminated siltstone,

Regional Geology Rugged Mt. Shake Project Area

greywacke, argillite and thin discontinuous limestone horizons. This package contains 1 to 5% diagenetic pyrite and is largely un-deformed with bedding striking east-west with moderate northerly dips.

Serengeti notes on property geology

"The geological reconnaissance yielded the following observations (see geological map for reference): the dominant lithologies occurring on the property are tuffs and flows of the andesitic volcanic, presumed to be part of the upper Triassic aged Stuhini Group. The andesites are unaltered and contain no economic mineralization. In the vicinity of Rugged Mtn, the andesites are intruded by several fresh feldspar porphyry dykes. The contacts between the dykes and the country andesites are weakly hornfelsed and pyritic. While the hornfelsing creates small gossans at the dyke contact zones, no mineralization was observed either in hand sample or in the assays of the hornfelsed material. In addition, several syenite bodies (lower Jurassic aged?) locally intrude the andesite country rock. The syenites are locally copper mineralized along what appear to be structural zones, generally 1 to 3 metre in width. The surrounding syenite is fresh and unmineralized."

Rock Samples

A total of 22 rock samples were collected by the Serengeti crew while completing a general geological reconnaissance of the Walker claims (see appendix A) for rock sample descriptions and for a map (figure 4) indicating the location of the samples. Analytical certificates are in appendix B.

Anomalous rock samples:

```
#537407 – 1058 ppm Cu, 537410 – 3.3 ppm Ag, #541881 – 2845 ppm Cu, #541882 – 2168 ppm Cu, 76 ppb Au, #541885 – 1570 ppm Cu, #541887 – 103 ppm Mo, 2.6 ppm Ag, 107 ppb Au #6410039 – 1015 ppm Cu
```

The rock samples collected in the field were placed in plastic sample bags with an identifying "assay" tag, transported to the field camp and from there shipped to Acme Analytical Laboratories of Vancouver where they were analyzed using the Acme 1DX3 analytical package. A permanent field marker was left at the sample site for relocation of the site if necessary; field notes were taken including the UTM location using handheld GPS units set to the NAD 83 data base and the descriptions of the rocks sampled were recorded in field notes. See appendix A for descriptions and analytical results.

Statement of costs

Serengeti costs

July 2011 work program – Walker claims one day with 5 man field crew July 25, 2011

Serengeti staff

Senior geologist	1 day at \$425/day		425.00
Junior geologist	1 day at \$300/day		300.00
Field assistants (3)	3 man/days at \$250/r	man/day	750.00
Camp costs – fly camp	5 man/days at \$40/m	an/day	200.00
Analytical costs	22 samples at \$25/sa	mple (Acme lab)	550.00
Report – Serengeti notes and r	maps only - 1 day	at \$425	425.00
Total a	as supplied by Serengeti	to Walker	2,650.00
Helicopter support to mob/de	mob the fly camp from	Telegraph Creek	
		Estimated at 1/6 of total	600.00
Mobilization/demobilization o	f Serengeti crew to Tele	graph Creek	
	Estim	ated at 1/6 of total	500.00
Report by A. Raven 3 days	at \$300/day		900.00
		Grand total	\$3,750.00

Bibliography

Allen, D.G., A. Panteleyev and A.T. Armstrong (1976): Galore Creek in CIM Special Volume 15 pp 402-414

BCDM (1963 to 66) – Annual Reports; BC Department of Mines

Brown, D.A. and Greig, C.J. (1990) – Geology of the Stikine River-Yehiniko Lake Area, Northwestern BC (104G/11W and 12E): British Columbia MEMPR, Geological Fieldwork 1989, Paper 1990-1, pp 141-151

Dawson, G,J. (1988): Barrington River Prospecting Report.

Geological Survey of Canada (1988): RGS, Sumdum – Telegraph Creek, BC – GSC Open File 1646.

Hachey, P.O. (1958) Geology Report, Conwest-Balsam Group Assessment report #253

Marud, Darcy (1990): Report of the Activities on the Rugged Mountain Property (Canyon 25) Assessment Report 20154

Roberts, W.J. and C.L. Smith (1968) – Assessment report #1893

Souther, J.G. (1959): Chutine Map Area, Cassiar District, BC; GSC preliminary Map 7-1959

Souther, J.G. (1971): Telegraph Creek Map Area, BC; GSC Paper 71-44

St. Clair Dunn, David (1990): Shake Project – report on the Geological and Geochemical Programs on the Shake 1 – 4 Claims, Liard MD; Assessment Report# 20414

Statement of Qualifications

ALAN R. RAVEN

I have been directly involved in the mineral exploration industry as a prospector and exploration field manager since 1969.

Between 1972 and 2011 I have taken a variety of prospector's courses and exploration short courses.

My field exploration experience includes geochemical and geophysical surveying, diamond drilling, prospecting, mapping, crew training and exploration program design, implementation and management in British Columbia and the Western United States (Washington, California, Nevada, Arizona and Utah)

I do not hold any interest in Tenure #840670 or 840677 – Rugged Mt Shake and Shake West referred to in this report.

I authored this report using data supplied by Serengeti Resources Inc, P. Walker and my own research

This Assessment Report is an accurate account of the 2011 exploration program as carried out by Serengeti crew in July of 2011.

Dated at Smithers, B. C this 17 of February, 2012

Alan R. Raven

Box 722, Smithers, BC VOJ 2NO

Phone: 250-847-2560 Email: hirange@telus.net

Appendix A

Rock sample descriptions and analytical results

										Type of Sample						
			Easting	Northing						(Outcrop, subcrop, float,		ACME Job #	Sample#	Wgt (KG)	Mo (ppm)	Cu (ppm)
Property	Sample #	Zone	(NAD83)	(NAD83)	Elevation	Date	Lithology	Sampler	Notes	talus)	Width					
6	507406	•	245556	6440644		25 /27 /2044	mafic 	-	mafic syenite w potassic veining and tr mal/cpy. 1m							
Stikine	537406	9	345556	6410611		25/07/2011	syenite	DP	chip	outcrop	1m	SMI11000338	537406	0.85	0.9	811.3
Stikine	537407	9	345536	6410588		25/07/2011	mafic syenite	DP	10m chip in mafic phase of sy w tr-1% mal and k-spar veining	outcrop	10m	SMI11000338	537407	1.39	1.4	1058.2
Stikine	537407	9	345364	6410730		25/07/2011	tuff	DP	10m chip in pyriticn tyff with mod sil and lim	outcrop	10m	SMI11000338	537407	1.00	3.2	
Stikine	537409	9	345249	6410740		25/07/2011	hornfels	DP	10m chip in pyritic/lim stained hornfels	outcrop	10m	SMI11000338	537409	0.76	9.6	
						, ,				'						
Stikine	537410	9	345112	6410708		25/07/2011	syenite	DP	2m chip across arg/lim/py structure (95) in syenite	outcrop	2m	SMI11000338	537410	0.49	31.2	676.3
									med grained ultramafic w mal on fractures and tr							
									diss cpy along syenite veinlets. 20m comnp grab							
Stikine	537411	9	345996	6409997		25/07/2011	ultramafic	DP	along riudge	outcrop	20m	SMI11000338	537411	0.66	0.5	348.3
									follow up of homestake (31019) no evidence of							
Stikine	537412	9	345796	6409782		25/07/2011	syenite	DP	anything repeatable. No visible sulfides/mal. Comp grab. Not altered	outcrop		SMI11000338	537412	0.62	0.3	98.1
JUKITE	337412		343730	0403762		23/07/2011	Syemite	Di	composite grab over 5 m OC of strongly limonite	Outcrop		3WIT 1000330	337412	0.02	0.3	90.1
									stained and weathered volcanic. Sulfides weathered							
									out. Looks like zone is 15-25 m, strikes over ~500 m							
Stikine	540471	9	345468	6410724	1763 m	26/07/2011	and	HS	@ 270 deg.	outcrop		SMI11000338	540471	1.33	49.0	286.2
							pyrox-		pyroxenite-phyric syenite. Trace to 2% py. Comp							
Stikine	540472	9	345440	6410752	1762 m	26/07/2011	syenite	HS	grab 5 m.	outcrop		SMI11000338	540472	1.16	1.3	86.0
									comp grab over 5 m of strongly gossaneous py+/-sil							
Catilatina a	F 40 472	0	245427	C440702	1767	26/07/2011		LIC.	altd volcanics. The gossans are samller, but							
Stikine	540473	9	345427	6410793	1/6/ M	26/07/2011	and	HS	sporadically cover the peak. comp grab over 5 m of strongly gossaneous py+/-sil	outcrop		SMI11000338	540473	1.45	14.8	110.5
									altd volcanics. The gossans are samller, but							
Stikine	540474	9	345402	6410761	1731 m	26/07/2011	and	HS	sporadically cover the peak.	outcrop		SMI11000338	540474	1.32	13.8	82.2
									comp grab of k-felds porph dyke which is the likely							
Stikine	540477	9	345260	6411333	1515 m	26/07/2011	fpy	HS	cause of extensive hornfels on cliff.	talus		SMI11000338	540477	1.04	3.0	31.1
									2m chip across tr py and minor lim stained andesite							
Stikine	541880	9	345634	6410651		25/07/2011	andesite	DP	ос	outcrop	2m	SMI11000338	541880	0.68	7.0	87.6
						/ /	mafic		10m chip in mafic phase of sy w tr-1% mal and k-spar							
Stikine	541881	9	345536	6410588		25/07/2011	syenite	DP	veining	outcrop	10m	SMI11000338	541881	0.92	0.2	2845.5
Stikine	541882	9	345536	6410588		25/07/2011	mafic syenite	DP	10m chip in mafic phase of sy w tr-1% mal and k-spar veining	outeron	10m	CM144000220	544000	0.00	0.0	2460.6
Stikille	341002	9	343330	0410366		23/07/2011	Syemite	DF	10m chip in hornblende granodiorite w tr cpy and	outcrop	10111	SMI11000338	541882	0.93	0.3	2168.6
Stikine	541883	9	345361	6410740		25/07/2011	granodi	DP	1% py.	outcrop	10m	SMI11000338	541883	0.68	1.7	90.5
Stikine	541884	9	345230	6410700		25/07/2011	hornfels	DP	10m chip in pyritic/lim stained hornfels	outcrop	10m	SMI11000338	541884	0.86	5.0	
										'						
							mafic		mafic intrusive w e-w structure (2m) running							
Stikine	541885	9	345172	6410757		25/07/2011	syenite	DP	through it. 5m wide chip including wall rock. Tr mal	outcrop	5m	SMI11000338	541885	1.36	2.9	1570.7
									follow up of homestake (31019) no evidence of							
C+:1.:	F.4400C	0	245700	C400703		25/07/2044	0.45m!±-	00	anything repeatable. No visible sulfides/mal. Comp			011144000000				,
Stikine	541886	9	345796	6409782		25/07/2011	syenite	DP	grab. Not altered	outcrop		SMI11000338	541886	0.64	0.1	102.4

Stikine	541887	9	346073	6410039	25/07/2011	syenite	DP	comp grab (10m) in syenetic structure within hornfeld. Minor cpy/lim	outcrop	10m	SMI11000338	541887	0.81	103.7	683.4
Stikine	541901	9	345521	6410594	25/07/2011	syenite	DP	3m chip across heavily arg altered structure in syenite (100). 1% mal and alt does not extend into wall rock but there is tr cpy in wallrock as well	outcrop	3m	SMI11000338	541901	0.80	3.2	1015.6
Stikine	1111891	9	345659	6410679	25/07/2011	andesite	DP	2m chip across 1% py and strongly limonite stained andesite o/c	outcrop	2m	SMI11000338	1111891	0.59	1.8	161.0

Pb (ppm)	Zn (ppm)	Ag (ppn	n) N	li (ppm)	Co (ppm)	Mn (ppm)	Fe (%)	As (ppm)	Au (ppb)	Th (ppm)	Sr (ppm)	Cd (ppm)	Sb (ppm)	Bi (ppm)	V (ppm)	Ca (%)	P (%)	La (ppm)	Cr (ppm)	Mg	Ba (ppm)	Ti (%)
6.3	33	().4	21.3	15.0	398	3.69	0.7	19.7	1.3	105	0.1	<0.1	0.1	157	2.98	0.214	7	37	0.62	26	0.112
3.0	51	().7	30.9	21.4	554	5.40	1.4	23.4	1.5	152	0.2	<0.1	<0.1	247	3.06	0.469	15	42	1.06	72	0.107
14.0	35	<0.1		15.6	15.6	739	4.03	5.3	6.6	1.9	137	0.1	0.4	<0.1	137	4.03	0.128	9	30	0.98	24	0.147
3.4	32	<0.1		27.2	16.7	706	4.48	9.0	9.5	1.0	55	<0.1	0.5	0.3	114	3.64	0.111	6	34	1.24	14	0.175
20.2	39	;	3.3	15.5	25.2	148	11.37	8.1	58.6	1.8	61	0.2	0.4	<0.1	134	0.43	0.171	7	30	0.16	54	0.353
3.0	72	().2	15.8	23.4	776	6.02	1.7	10.8	2.1	232	0.2	<0.1	<0.1	326	2.86	0.336	15	46	1.27	127	0.142
8.5	74	<0.1		1.6	8.9	1015	2.79	1.2	2.3	3.0	282	0.2	0.2	<0.1	131	2.93	0.074	13	3	0.49	48	0.153
35.0	56	(0.8	6.6	9.3	482	4.81	9.8	20.0	5.4	80	0.4	0.6	0.2	. 124	1.76	0.099	14	18	0.76	81	0.096
11.4	60	<0.1		10.4	15.8	958	3.91	3.8	5.2	4.1	90	<0.1	0.2	<0.1	148	3.67	0.116	11	23	1.32	31	0.176
9.7	82	().2	27.6	15.5	493	4.49	17.3	10.6	0.8	167	0.9	0.9	0.1	117	4.90	0.112	6	38	0.91	14	0.182
19.6	79	(0.1	29.0	18.5	721	3.41	7.5	7.5	1.1	137	0.5	0.4	0.1	120	4.31	0.123	6	35	0.88	53	0.146
13.0	27	().2	0.6	2.4	247	1.24	6.3	29.3	1.9	70	0.2	0.2	0.3	36	1.54	0.013	6	3	0.15	40	0.012
15.4	61	().1	23.8	16.3	687	3.64	4.4	2.5	1.3	84	0.4	0.2	0.6	108	5.09	0.120	12	27	0.63	15	0.134
4.7	61	•	.3	24.9	24.2	583	6.31	1.0	55.4	1.5	152	0.4	0.1	0.1	301	2.62	0.414	14	58	1.14	34	0.095
12.8	69	•	.6	29.1	27.6	647	6.67	1.2	76.3	1.7	172	0.4	<0.1	0.3	313	2.73	0.438	15	46	1.24	52	0.097
8.4		<0.1		5.2			2.65				158			<0.1	127		0.104					
2.2	25	<0.1		24.3	17.0	437	3.67	3.1	6.2	1.1	78	<0.1	0.4	0.2	120	2.31	0.133	7	35	1.23	30	0.215
2.5	42	().9	25.9	19.0	440	5.47	2.4	20.1	0.7	131	0.2	0.1	<0.1	223	2.11	0.259	10	63	0.84	58	0.172
7.9	70	<0.1		1.5	9.2	958	2.81	1.7	1.9	3.3	261	0.1	0.2	<0.1	134	2.62	0.071	14	3	0.47	69	0.176

24.7	59	2.6	17.7	61.5	987	12.52	15.0	107.0	1.3	188	0.3 1	1 <0.1	171	6.47	0.253	12	18	0.72	112	0.015
3.2	46	0.5	27.1	28.0	680	4.48	6.4	14.5	1.3	117 <0.1	0	2 <0.1	173	1.93	0.155	8	64	1.23	24	0.071
1.0	17	0.1	25.5	14.9	127	3.11	1.2	4.2	0.8	97 <0.1	0	1 <0.1	95	1.62	0.127	6	28	0.38	28	0.148

B (ppm)	AI (%)	Na (%)	K (%)	W (ppm)	Hg (ppm)	Sc (ppm)	TI (ppm)	S (%)	Ga (ppm)	Se (ppm)	Te (ppm)
8	1.89	0.028	0.07	0.5	0.01	5.0	<0.1	0.08	7	1.1	<0.2
3	1.26	0.036	0.06	0.3	0.02	8.0	<0.1	0.09	6	1.2	<0.2
7	2.09	0.062	0.11	0.7	0.02		<0.1	0.84	9		<0.2
5	2.11	0.053	0.10	0.9	0.02		<0.1	1.16			<0.2
2	0.23	0.017	0.29	<0.1	0.10	8.4	<0.1	2.39	5	8.8	<0.2
8	1.91	0.028	0.15	0.5	0.03	6.1	<0.1	<0.05	6	0.8	<0.2
2	1.12	0.037	0.21	0.2	0.05	2.2	<0.1	<0.05	6	<0.5	<0.2
3	1.65	0.011	0.33	0.2	0.07	4.9	0.2	0.73	10	3.3	<0.2
6	2.67	0.035	0.19	0.4	0.05	6.6	<0.1	0.40	11	0.7	<0.2
4	2.08	0.036	0.07	0.7	0.03	8.3	0.2	1.16	10	4.2	<0.2
5	1.63	0.041	0.09	1.0	0.02	9.0	<0.1	0.85	8	3.8	<0.2
3	0.72	0.064	0.16	<0.1	<0.01	0.4	<0.1	0.29	4	<0.5	<0.2
11	2.40	0.034	0.04	1.1	0.02	6.9	<0.1	1.17	8	3.2	<0.2
2	0.96	0.042	0.04	0.3	0.06	7.9	<0.1	<0.05	6	1.8	<0.2
3	1.07	0.043	0.06	0.2	0.05	8.8	<0.1	<0.05	7	1.2	<0.2
5	1.42	0.115	0.20	0.2	0.01	4.6	<0.1	0.40	9	0.9	<0.2
6	2.11	0.081	0.17								<0.2
4	1.24	0.036	0.19	0.2	0.02	5.6	<0.1	0.49	6	3.9	<0.2
3	1.17	0.040	0.41	0.2	0.04		<0.1	<0.05		<0.5	<0.2

14	1.48	0.003	0.23	0.4	0.36	19.0	<0.1	0.36	5	6.6	1.4
1	1.94	0.012	0.07	<0.1	0.03	12.8	<0.1	0.13	10	2.0	<0.2
7	1.44	0.082	0.14	0.2	0.01	2.4	<0.1	1.02	6	4.2	<0.2

Appendix B

Analytical certificates and methodology (Acme Labs)

METHOD SPECIFICATIONS GROUP 1D AND 1F – GEOCHEMICAL AQUA REGIA DIGESTION

Package Codes: 1D01 to 1D03, 1DX1 to 1DX3, 1F01 to 1F07

Sample Digestion: HNO3-HCl acid digestion Instrumentation Method: ICP-ES (1D), ICP-MS (1DX, 1F)

Applicability: Sediment, Soil, Non-mineralized Rock and Drill Core

Method Description:

Prepared sample is digested with a modified Aqua Regia solution of equal parts concentrated HCl, HNO3 and DI H2O for one hour in a heating block of hot water bath. Sample is made up to volume with dilute HCl. Sample splits of 0.5g, 15g or 30g can be analyzed.

For 1F07, Lead isotopes (Pb₂₀₄, Pb₂₀₆, Pb₂₀₇, Pb₂₀₈) are suitable for geochemical exploration of U and other commodities where gross differences in natural to radiogenic Pb ratios, is a benefit. Isotope values can be reported in both concentrations and intensities. Sample splits of 0.25g, 0.5g, 15g or 30g can be analyzed.

Element	Group 1D Detection	Group 1DX Detection	Group 1F Detection	Upper Limit
Ag	0.3 ppm	0.1 ppm	2 ppb	100 ppm
Al*	0.01%	0.01%	0.01%	10%
As	2 ppm	0.5 ppm	0.1 ppm	10000 ppm
Au	2 ppm	0.5 ppb	0.2 ppb	100 ppm
B*^	20 ppm	20 ppm	20 ppm	2000 ppm
Ba*	1 ppm	1 ppm	0.5 ppm	10000 ppm
Bi	3 ppm	0.1 ppm	0.02 ppm	2000 ppm
Ca*	0.01%	0.01%	0.01%	40%
Cd	0.5 ppm	0.1 ppm	0.01 ppm	2000 ppm
Со	1 ppm	0.1 ppm	0.1 ppm	2000 ppm
Cr*	1 ppm	1 ppm	0.5 ppm	10000 ppm
Cu	1 ppm	0.1 ppm	0.01 ppm	10000 ppm
Fe*	0.01%	0.01%	0.01%	40%
Ga*	-	1 ppm	0.1 ppm	1000 ppm
Hg	1 ppm	0.01 ppm	5 ppb	50 ppm
K*	0.01%	0.01%	0.01%	10%
La*	1 ppm	1 ppm	0.5 ppm	10000 ppm
Mg*	0.01%	0.01%	0.01%	30%
Mn*	2 ppm	1 ppm	1 ppm	10000 ppm
Мо	1 ppm	0.1 ppm	0.01 ppm	2000 ppm

Element	Group 1D Detection	Group 1DX Detection	Group 1F Detection	Upper Limit
Na*	0.01%	0.001%	0.001%	5%
Ni	1 ppm	0.1 ppm	0.1 ppm	10000 ppm
P*	0.001%	0.001%	0.001%	5%
Pb	3 ppm	0.1 ppm	0.01 ppm	10000 ppm
S	0.05%	0.05%	0.02%	10%
Sb	3 ppm	0.1 ppm	0.02 ppm	2000 ppm
Sc	-	0.1 ppm	0.1 ppm	100 ppm
Se	-	0.5 ppm	0.1 ppm	100 ppm
Sr*	1 ppm	1 ppm	0.5 ppm	10000 ppm
Te	-	0.2 ppm	0.02 ppm	1000 ppm
Th*	2 ppm	0.1 ppm	0.1 ppm	2000 ppm
Ti*	0.01%	0.001%	0.001%	5%
TI	5 ppm	0.1 ppm	0.02 ppm	1000 ppm
U*	8 ppm	0.1 ppm	0.05 ppm	2000 ppm
V*	1 ppm	2 ppm	2 ppm	10000 ppm
W*	2 ppm	0.1 ppm	0.05 ppm	100 ppm
Zn	1 ppm	1 ppm	0.1 ppm	10000 ppm
Be*	-	-	0.1 ppm	1000 ppm
Ce*	-	-	0.1 ppm	2000 ppm
Cs*	-	-	0.02 ppm	2000 ppm
Ge*	-	-	0.1 ppm	100 ppm
Hf*	-	-	0.02 ppm	1000 ppm
In	-	-	0.02 ppm	1000 ppm
Li*	-	-	0.1 ppm	2000 ppm
Nb*	-	-	0.02 ppm	2000 ppm
Rb*	-	-	0.1 ppm	2000 ppm
Re	-	-	1 ppb	1000 ppb
Sn*	-	-	0.1 ppm	100 ppm
Ta*	-	-	0.05 ppm	2000 ppm
Υ*	-	-	0.01 ppm	2000 ppm
Zr*	-	-	0.1 ppm	2000 ppm
Pt*	-	-	2 ppb	100 ppm
Pd*	-	-	10 ppb	100 ppm
Pb ₂₀₄	-	-	0.01 ppm	10000 ppm
Pb ₂₀₆	-	-	0.01 ppm	10000 ppm
Pb ₂₀₇	-	-	0.01 ppm	10000 ppm
Pb ₂₀₈	-	-	0.01 ppm	10000 ppm

^{*} Solubility of some elements will be limited by mineral species present.

^Detection limit = 1 ppm for 15g / 30g analysis.

Limitations:

Au solubility can be limited by refractory and graphitic samples.

Acme Analytical Laboratories (Vancouver) Ltd.

www.acmelab.com

ADDITIONAL COMMENTS

1020 Cordova St. East Vancouver BC V6A 4A3 Canada

Serengeti Resources

1700 - 750 W. Pender Street Vancouver BC V6C 2T8 Canada

Submitted By: Receiving Lab:

Client:

Hugh Samson Canada-Smithers

Received:

August 24, 2011

Report Date:

September 18, 2011

Page: 1 of 4

CERTIFICATE OF ANALYSIS

SMI11000338.1

CLIENT JOB INFORMATION

Project: Stikine Rocks
Shipment ID: Aug-01

P.O. Number

Number of Samples: 61

SAMPLE PREPARATION AND ANALYTICAL PROCEDURES

Method Code	Number of Samples	Code Description	Test Wgt (g)	Report Status	Lab
R200-250	61	Crush, split and pulverize 250 g rock to 200 mesh			SMI
1DX3	61	1:1:1 Aqua Regia digestion ICP-MS analysis	30	Completed	VAN

SAMPLE DISPOSAL

STOR-PLP Store After 90 days Invoice for Storage
DISP-RJT Dispose of Reject After 90 days

Acme does not accept responsibility for samples left at the laboratory after 90 days without prior written instructions for sample storage or return.

Invoice To: Serengeti Resources

1700 - 750 W. Pender Street Vancouver BC V6C 2T8

Canada

CC: Dave Moore

Dustin Perry

This report supersedes all previous preliminary and final reports with this file number dated prior to the date on this certificate. Signature indicates final approval; preliminary reports are unsigned and should be used for reference only. All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of analysis only. Results apply to samples as submitted.

"*" asterisk indicates that an analytical result could not be provided due to unusually high levels of interference from other elements.

Acme Analytical Laboratories (Vancouver) Ltd.

1020 Cordova St. East Vancouver BC V6A 4A3 Canada Phone (604) 253-3158 Fax (604) 253-1716

Client:

Serengeti Resources

1700 - 750 W. Pender Street Vancouver BC V6C 2T8 Canada

Project:

Stikine Rocks

Report Date:

September 18, 2011

www.acmelab.com

Page:

2 of 4

Part 1

CERTIFICATE	OF AN	VALY	′SIS													SN	<i>/</i> II11	000	338.	1	
	Method Analyte	WGHT Wgt	1DX30 Mo	1DX30 Cu	1DX30 Pb	1DX30 Zn	1DX30 Ag	1DX30 Ni	1DX30 Co	1DX30 Mn	1DX30 Fe	1DX30 As	1DX30 Au	1DX30 Th	1DX30 Sr	1DX30 Cd	1DX30 Sb	1DX30 Bi	1DX30 V	1DX30 Ca	1DX30 P
	Unit MDL	kg 0.01	ppm 0.1	ppm 0.1	ppm 0.1	ppm 1	ppm 0.1	ppm 0.1	ppm 0.1	ppm 1	% 0.01	ppm 0.5	ppb 0.5	ppm 0.1	ppm 1	ppm 0.1	ppm 0.1	ppm 0.1	ppm 2	% 0.01	% 0.001
537406 R	ock	0.85	0.9	811.3	6.3	33	0.4	21.3	15.0	398	3.69	0.7	19.7	1.3	105	0.1	<0.1	0.1	157	2.98	0.214
537407 R	ock	1.39	1.4	1058	3.0	51	0.7	30.9	21.4	554	5.40	1.4	23.4	1.5	152	0.2	<0.1	<0.1	247	3.06	0.469
537408 F	ock	1.00	3.2	104.5	14.0	35	<0.1	15.6	15.6	739	4.03	5.3	6.6	1.9	137	0.1	0.4	<0.1	137	4.03	0.128
537409 R	ock	0.76	9.6	126.6	3.4	32	<0.1	27.2	16.7	706	4.48	9.0	9.5	1.0	55	<0.1	0.5	0.3	114	3.64	0.111
537410 R	ock	0.49	31.2	676.3	20.2	39	3.3	15.5	25.2	148	11.37	8.1	58.6	1.8	61	0.2	0.4	<0.1	134	0.43	0.171
537411 R	ock	0.66	0.5	348.3	3.0	72	0.2	15.8	23.4	776	6.02	1.7	10.8	2.1	232	0.2	<0.1	<0.1	326	2.86	0.336
537412 F	ock	0.62	0.3	98.1	8.5	74	<0.1	1.6	8.9	1015	2.79	1.2	2.3	3.0	282	0.2	0.2	<0.1	131	2.93	0.074
540471 F	ock	1.33	49.0	286.2	35.0	56	0.8	6.6	9.3	482	4.81	9.8	20.0	5.4	80	0.4	0.6	0.2	124	1.76	0.099
540472 F	ock	1.16	1.3	86.0	11.4	60	<0.1	10.4	15.8	958	3.91	3.8	5.2	4.1	90	<0.1	0.2	<0.1	148	3.67	0.116
540473 F	ock	1.45	14.8	110.5	9.7	82	0.2	27.6	15.5	493	4.49	17.3	10.6	0.8	167	0.9	0.9	0.1	117	4.90	0.112
540474 R	ock	1.32	13.8	82.2	19.6	79	0.1	29.0	18.5	721	3.41	7.5	7.5	1.1	137	0.5	0.4	0.1	120	4.31	0.123
540477 R	ock	1.04	3.0	31.1	13.0	27	0.2	0.6	2.4	247	1.24	6.3	29.3	1.9	70	0.2	0.2	0.3	36	1.54	0.013
541880 R	ock	0.68	7.0	87.6	15.4	61	0.1	23.8	16.3	687	3.64	4.4	2.5	1.3	84	0.4	0.2	0.6	108	5.09	0.120
541881 R	ock	0.92	0.2	2846	4.7	61	1.3	24.9	24.2	583	6.31	1.0	55.4	1.5	152	0.4	0.1	0.1	301	2.62	0.414
541882 R	ock	0.93	0.3	2169	12.8	69	1.6	29.1	27.6	647	6.67	1.2	76.3	1.7	172	0.4	<0.1	0.3	313	2.73	0.438
541883 F	ock	0.68	1.7	90.5	8.4	35	<0.1	5.2	8.9	484	2.65	3.2	13.5	5.4	158	0.1	0.3	<0.1	127	2.40	0.104
541884 R	ock	0.86	5.0	93.5	2.2	25	<0.1	24.3	17.0	437	3.67	3.1	6.2	1.1	78	<0.1	0.4	0.2	120	2.31	0.133
541885 F	ock	1.36	2.9	1571	2.5	42	0.9	25.9	19.0	440	5.47	2.4	20.1	0.7	131	0.2	0.1	<0.1	223	2.11	0.259
541886 F	ock	0.64	0.1	102.4	7.9	70	<0.1	1.5	9.2	958	2.81	1.7	1.9	3.3	261	0.1	0.2	<0.1	134	2.62	0.071
541887 F	ock	0.81	103.7	683.4	24.7	59	2.6	17.7	61.5	987	12.52	15.0	107.0	1.3	188	0.3	1.1	<0.1	171	6.47	0.253
541901 F	ock	0.80	3.2	1016	3.2	46	0.5	27.1	28.0	680	4.48	6.4	14.5	1.3	117	<0.1	0.2	<0.1	173	1.93	0.155
1111891 F	ock	0.59	1.8	161.0	1.0	17	0.1	25.5	14.9	127	3.11	1.2	4.2	8.0	97	<0.1	0.1	<0.1	95	1.62	0.127

1020 Cordova St. East Vancouver BC V6A 4A3 Canada Phone (604) 253-3158 Fax (604) 253-1716

Serengeti Resources

1700 - 750 W. Pender Street Vancouver BC V6C 2T8 Canada

Project:

Client:

Stikine Rocks

Report Date:

September 18, 2011

www.acmelab.com

Page:

2 of 4

Part 2

CERTIFICATE OF ANALYSIS

SMI11000338.1

		Method	1DX30																
		Analyte	La	Cr	Mg	Ва	Ti	В	Al	Na	K	W	Hg	Sc	TI	S	Ga	Se	Te
		Unit	ppm	ppm	%	ppm	%	ppm	%	%	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm
		MDL	1	1	0.01	1	0.001	1	0.01	0.001	0.01	0.1	0.01	0.1	0.1	0.05	1	0.5	0.2
537406	Rock		7	37	0.62	26	0.112	8	1.89	0.028	0.07	0.5	0.01	5.0	<0.1	0.08	7	1.1	<0.2
537407	Rock		15	42	1.06	72	0.107	3	1.26	0.036	0.06	0.3	0.02	8.0	<0.1	0.09	6	1.2	<0.2
537408	Rock		9	30	0.98	24	0.147	7	2.09	0.062	0.11	0.7	0.02	8.5	<0.1	0.84	9	2.8	<0.2
537409	Rock		6	34	1.24	14	0.175	5	2.11	0.053	0.10	0.9	0.02	6.3	<0.1	1.16	10	2.8	<0.2
537410	Rock		7	30	0.16	54	0.353	2	0.23	0.017	0.29	<0.1	0.10	8.4	<0.1	2.39	5	8.8	<0.2
537411	Rock		15	46	1.27	127	0.142	8	1.91	0.028	0.15	0.5	0.03	6.1	<0.1	<0.05	6	8.0	<0.2
537412	Rock		13	3	0.49	48	0.153	2	1.12	0.037	0.21	0.2	0.05	2.2	<0.1	<0.05	6	<0.5	<0.2
540471	Rock		14	18	0.76	81	0.096	3	1.65	0.011	0.33	0.2	0.07	4.9	0.2	0.73	10	3.3	<0.2
540472	Rock		11	23	1.32	31	0.176	6	2.67	0.035	0.19	0.4	0.05	6.6	<0.1	0.40	11	0.7	<0.2
540473	Rock		6	38	0.91	14	0.182	4	2.08	0.036	0.07	0.7	0.03	8.3	0.2	1.16	10	4.2	<0.2
540474	Rock		6	35	0.88	53	0.146	5	1.63	0.041	0.09	1.0	0.02	9.0	<0.1	0.85	8	3.8	<0.2
540477	Rock		6	3	0.15	40	0.012	3	0.72	0.064	0.16	<0.1	<0.01	0.4	<0.1	0.29	4	<0.5	<0.2
541880	Rock		12	27	0.63	15	0.134	11	2.40	0.034	0.04	1.1	0.02	6.9	<0.1	1.17	8	3.2	<0.2
541881	Rock		14	58	1.14	34	0.095	2	0.96	0.042	0.04	0.3	0.06	7.9	<0.1	<0.05	6	1.8	<0.2
541882	Rock		15	46	1.24	52	0.097	3	1.07	0.043	0.06	0.2	0.05	8.8	<0.1	<0.05	7	1.2	<0.2
541883	Rock		20	9	0.65	57	0.136	5	1.42	0.115	0.20	0.2	0.01	4.6	<0.1	0.40	9	0.9	<0.2
541884	Rock		7	35	1.23	30	0.215	6	2.11	0.081	0.17	0.6	0.02	5.9	0.1	0.60	9	2.0	<0.2
541885	Rock		10	63	0.84	58	0.172	4	1.24	0.036	0.19	0.2	0.02	5.6	<0.1	0.49	6	3.9	<0.2
541886	Rock		14	3	0.47	69	0.176	3	1.17	0.040	0.41	0.2	0.04	2.5	<0.1	<0.05	6	<0.5	<0.2
541887	Rock		12	18	0.72	112	0.015	14	1.48	0.003	0.23	0.4	0.36	19.0	<0.1	0.36	5	6.6	1.4
541901	Rock		8	64	1.23	24	0.071	1	1.94	0.012	0.07	<0.1	0.03	12.8	<0.1	0.13	10	2.0	<0.2
1111891	Rock		6	28	0.38	28	0.148	7	1.44	0.082	0.14	0.2	0.01	2.4	<0.1	1.02	6	4.2	<0.2
																			$\overline{}$

Phone (604) 253-3158 Fax (604) 253-1716

Project:

Serengeti Resources 1700 - 750 W. Pender Street Vancouver BC V6C 2T8 Canada

Client:

Stikine Rocks

Report Date:

September 18, 2011

www.acmelab.com

Page:

1 of 1

Part 1

												i ago.		. 0							
QUALITY (JALITY CONTROL REPORT														SMI11000338.1						
	Method	WGHT	1DX30	1DX30	1DX30	1DX30	1DX30	1DX30	1DX30	1DX30	1DX30	1DX30									
	Analyte	Wgt	Мо	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	Au	Th	Sr	Cd	Sb	Bi	V	Ca	Р
	Unit	kg	ppm	%	ppm	ppb	ppm	ppm	ppm	ppm	ppm	ppm	%	%							
	MDL	0.01	0.1	0.1	0.1	1	0.1	0.1	0.1	1	0.01	0.5	0.5	0.1	1	0.1	0.1	0.1	2	0.01	0.001
Pulp Duplicates																					
REP G1	QC		<0.1	1.8	3.3	46	<0.1	2.9	4.3	584	2.04	<0.5	2.8	6.4	66	<0.1	<0.1	<0.1	38	0.50	0.075
541887	Rock	0.81	103.7	683.4	24.7	59	2.6	17.7	61.5	987	12.52	15.0	107.0	1.3	188	0.3	1.1	<0.1	171	6.47	0.253
REP 541887	QC		104.5	694.1	25.4	60	2.8	17.7	61.6	1001	12.71	14.8	113.1	1.4	199	0.2	1.2	<0.1	172	6.56	0.257
Reference Materials																					
STD DS8	Standard		12.6	117.1	122.1	309	1.7	37.3	7.5	609	2.38	24.3	98.8	7.2	66	2.5	5.4	6.8	40	0.66	0.074
STD DS8	Standard		13.4	113.8	127.9	310	1.7	41.1	8.1	639	2.59	23.9	108.2	7.8	73	2.2	5.8	7.2	44	0.76	0.076
STD DS8 Expected			13.44	110	123	312	1.69	38.1	7.5	615	2.46	26	107	6.89	67.7	2.38	5.7	6.67	41.1	0.7	0.08
BLK	Blank		<0.1	1.3	<0.1	<1	<0.1	<0.1	<0.1	<1	<0.01	<0.5	<0.5	<0.1	<1	<0.1	<0.1	<0.1	<2	<0.01	<0.001
BLK	Blank		<0.1	0.2	<0.1	<1	<0.1	<0.1	<0.1	<1	<0.01	<0.5	<0.5	<0.1	<1	<0.1	<0.1	<0.1	<2	<0.01	<0.001
Prep Wash																					
G1	Prep Blank		0.1	2.1	3.0	46	<0.1	2.8	4.3	563	2.00	<0.5	5.2	6.0	69	<0.1	<0.1	<0.1	37	0.48	0.076
G1	Prep Blank																				
G1	Prep Blank		0.1	1.9	3.1	45	<0.1	3.4	4.4	581	2.04	<0.5	3.8	6.3	67	<0.1	<0.1	<0.1	38	0.52	0.074

Project:

Client:

Stikine Rocks

Report Date:

September 18, 2011

Serengeti Resources 1700 - 750 W. Pender Street Vancouver BC V6C 2T8 Canada

Phone (604) 253-3158 Fax (604) 253-1716

www.acmelab.com

Page:

1 of 1 Part 2

QUALITY CONTROL REPORT

SMI11000338.1

	1DX30	1DX30	1DX30	1DX30	1DX30	1DX30	1DX30	1DX30	1DX30	1DX30	1DX30	1DX30	1DX30	1DX30	1DX30	1DX30	1DX30
Analyte	La	Cr	Mg	Ва	Ti	В	Al	Na	K	w	Hg	Sc	TI	s	Ga	Se	Te
Unit	ppm	ppm	%	ppm	%	ppm	%	%	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm
MDL	1	1	0.01	1	0.001	1	0.01	0.001	0.01	0.1	0.01	0.1	0.1	0.05	1	0.5	0.2
	11	13	0.56	203	0.138	1	1.00	0.095	0.49	<0.1	<0.01	2.0	0.2	<0.05	5	<0.5	<0.2
ck	12	18	0.72	112	0.015	14	1.48	0.003	0.23	0.4	0.36	19.0	<0.1	0.36	5	6.6	1.4
	13	19	0.72	113	0.015	14	1.51	0.003	0.23	0.4	0.38	19.4	<0.1	0.36	5	5.8	1.0
ndard	15	115	0.61	259	0.121	2	0.92	0.091	0.41	2.9	0.21	2.1	4.9	0.16	4	4.8	4.3
ndard	16	120	0.63	275	0.130	4	0.95	0.093	0.42	3.0	0.20	2.4	5.1	0.17	5	5.4	4.7
	14.6	115	0.6045	279	0.113	2.6	0.93	0.0883	0.41	3	0.192	2.3	5.4	0.1679	4.7	5.23	5
nk	<1	<1	<0.01	<1	<0.001	<1	<0.01	<0.001	<0.01	<0.1	<0.01	<0.1	<0.1	<0.05	<1	<0.5	<0.2
nk	<1	<1	<0.01	<1	<0.001	<1	<0.01	<0.001	<0.01	<0.1	<0.01	<0.1	<0.1	<0.05	<1	<0.5	<0.2
p Blank	11	12	0.56	203	0.133	3	0.97	0.087	0.48	<0.1	<0.01	1.9	0.2	<0.05	5	<0.5	<0.2
p Blank																	
p Blank	11	13	0.56	204	0.137	3	0.99	0.092	0.48	<0.1	<0.01	1.9	0.3	<0.05	5	<0.5	<0.2
r	MDL k Indard Indard Ink	Unit MDL 1 11 k 12 13 14.6 14.6 1k <1 D Blank 11 D Blank 11	Unit MDL 1 1 11 13 k 12 18 13 19 Indard 15 115 Indard 16 120 14.6 115 Ink <1 <1 Ink <1 <1	Unit MDL ppm ppm % MDL 1 1 0.01 11 13 0.56 k 12 18 0.72 13 19 0.72 14 115 0.61 0.63 14.6 115 0.6045 0.6045 14 <1	Unit MDL 1 1 0.01 1 1 1 0.01 1 1 1 0.01 1 1 1 0.01 1 1 1 0.01 1 1 1 0.01 1 1 1 0.01 1 1 1 0.01 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Unit MDL 1 1 0.01 % ppm % MDL 1 1 0.001 1 1 0.01 1 0.001 11 13 0.56 203 0.138 k 12 18 0.72 112 0.015 13 19 0.72 113 0.015 Indard 15 115 0.61 259 0.121 Indard 16 120 0.63 275 0.130 14.6 115 0.6045 279 0.113 Ink <1 <1 <0.01 <1 <0.001 Ink <1 <1 <0.01 <1 <0.001 Ink <1 <1 <0.001 <1 <0.001	Unit MDL ppm ppm % ppm % ppm % ppm mpm mpm	Unit MDL ppm ppm % ppm % ppm % MDL 1 1 0.01 1 0.001 1 0.01 11 13 0.56 203 0.138 1 1.00 12 18 0.72 112 0.015 14 1.48 13 19 0.72 113 0.015 14 1.51 14 15 0.61 259 0.121 2 0.92 14 146 120 0.63 275 0.130 4 0.95 14.6 115 0.6045 279 0.113 2.6 0.93 10k <1	Unit MDL 1 1 0.01 1 0.001 1 0.001 1 0.001 1 1 0.01 1 0.001 1 0.001 1 1 0.01 1 0.001 1 1 0.001 1 0.001 1 1 0.001 1 0.001 1 1 0.001 0.001 1 1 0.001 0.001 1 1 0.001 0.001 1 1 0.001 0.001 1 1 0.001 0.001 1 1 0.001 0.001 1 1 0.001 0.001 1 1 0.001 0.001 1 1 0.001 0.001 1 1 0.001 0.001 1 1 0.001 0.001 1 1 0.001 0.001 1 1 0.001 0.001 1 1 0.001 0.001 1 1 0.001 0.001 1 1 0.001 0.001 1 1 0.001 0.001 1 0 0.001 1 0 0.001 1 0 0.001 1 0 0.001 1 0 0.001 1 0 0.001 1 0 0.001 1 0 0.001 1 0 0.001	Unit MDL ppm ppm % ppm % ppm %	Unit MDL ppm ppm % ppm % ppm % ppm % % % % ppm ppm % ppm % % % ppm ppm % ppm % % % % ppm ppm Mode ppm % ppm % ppm ppm % ppm ppm % ppm % ppm % % % ppm ppm ppm Mode Mode No.01 0.001 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.00 0.02 0.001 0.01 0.00	Unit MDL ppm ppm % ppm % ppm % ppm % % ppm ppm	Unit MDL ppm ppm % ppm % ppm % ppm % ppm ppm	Unit MDL ppm ppm % ppm % ppm % % % % ppm ppm	Unit MDL ppm ppm % ppm % ppm % % % ppm ppm	Unit MDL 1 1 0.01 % ppm % ppm % % ppm % % % % % ppm ppm p	Unit MDL 1 0.01 % ppm % ppm % ppm % % ppm % % % % % ppm ppm