ASSESSMENT REPORT

Bralorne Area Exploration Project

Gun Lake, Bridge River, Bralorne Area

Lillooet Mining Division, British Columbia

LOCATED:

Within 15 km radius Gold Bridge 50°55'North Latitude, and 123°25' West Longitude NTS: 92J/13E,14W BCGS: 92J.083, .084, .093, .094

WRITTEN FOR:

Wild West Gold Corp. 60562 Granville Park, Vancouver, British Columbia V6H 4B9

WRITTEN BY:

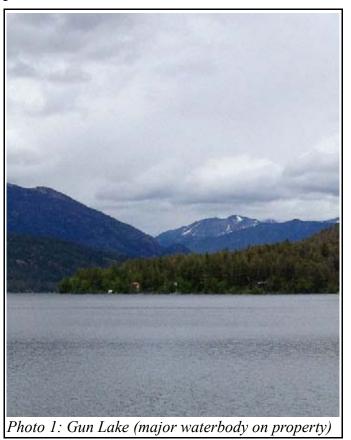
M.Warwick Vancouver, British Columbia

DATED:

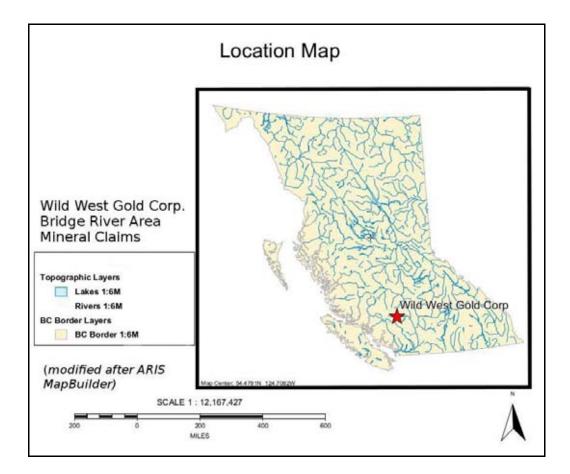
July 16, 2012

Table of Contents

1 - Introduction	1
2 - Location Map	2
3 - Property	3
Ownership	
4 - Claim Map.	4
5 - Location, Access and Description	5
Physiography:	5
History Of The Area:	
6 -Work Program	7
Physical Work	
Geochemical Sampling Programs	7
Soils	
Stream Sediments	
Suction Sampling Technique	
Stream sediment sampling	
Gold Results from Stream sediment program	
Outcrop Mapping	
7 -Literature Search	
Min File Search:	
ARIS Reports:	.19
Government Reports and Maps:	
Metallogeny of the Bridge River Mining Camp (092J10, 15 &	
092002)	.21
Figure 4. Generalized geological map Bridge River mining camp	.22
Bedded Rocks	
Figure 5. Lithology of Stikine & Cache Creek terranes	.23
Igneous Intrusions	
Structural Geology	
Figure 6. Major tectonic belts and terranes	
8 -Conclusions	
9 -Recommendations.	
10 -References	
11 -Appendices	
Statement of Expenditure (pg 1 of 3)	
Affidavit	
CERTIFICATE	.33
	~ .
Table 1 – Sample Assays	


1 - Introduction

In 2011, Wild West Gold Corp. staked 260 units claim group in the Gold Bridge area Lillooet Mining District of British Columbia.


The object of this program was to evaluate the exploration history and geological understanding on the claims for the purpose of renewed exploration for gold mineralization as found in the Bralorne Mining Camp.

The region has an active mining history for precious metals. Exploration work has been sporadic since the mid 1980's. The extensive area Wild West Gold Corp. staked includes numerous assessment reports which describe previous gold exploration programs.

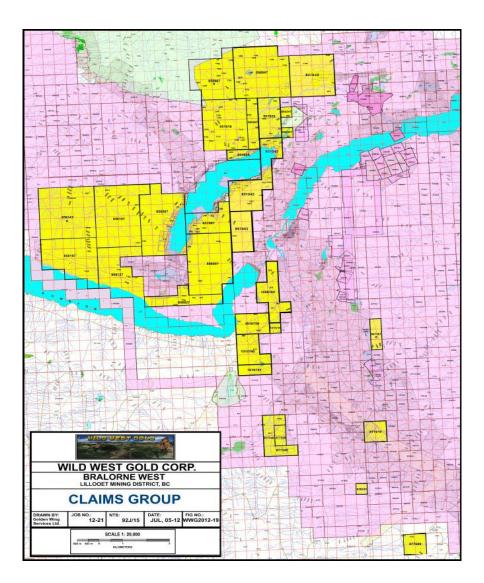
Geological mapping and sampling surveys were undertaken to establish and evaluate techniques to identify mineralizations located on the properties. Geological and geochemical traverses were undertaken on the property by consultants for the company during 2012 at a cost of \$18,477.81.

2 - Location Map

3 - Property

The property consists of 24 claims and 2 fractions totalling 260 units covering 5650 hectacres. The claims are listed in the following table.

Tenure Number	<u>Type</u>	Claim Name	Good Until	<u>Area</u> (ha)
<u>836245</u>	Mineral	BRALORNE	20130615	20.4553
<u>847591</u>	Mineral	FRACTION 3	20130615	61.2702
<u>847648</u>	Mineral		20130615	326.0193
<u>851542</u>	Mineral	CARPENTER	20130615	326.2801
<u>851543</u>	Mineral	CARPENTER1	20130615	163.2123
<u>857987</u>	Mineral		20130615	183.5968
<u>858007</u>	Mineral		20130615	469.3572
<u>858027</u>	Mineral		20130615	163.3018
<u>858067</u>	Mineral		20130615	387.5813
<u>858107</u>	Mineral		20130615	509.9563
<u>858127</u>	Mineral		20130615	306.1178
<u>858147</u>	Mineral		20130615	509.9384
<u>858167</u>	Mineral		20130615	387.7034
<u>858947</u>	Mineral		20130615	488.9837
<u>858967</u>	Mineral		20130615	325.9872
<u>860267</u>	Mineral		20130615	101.9133
<u>860327</u>	Mineral		20130615	20.3857
<u>860347</u>	Mineral		20130615	20.3819
<u>877210</u>	Mineral		20130615	81.7585
<u>877509</u>	Mineral		20130615	40.872
<u>877549</u>	Mineral		20130615	143.0547
<u>951918</u>	Mineral		20130615	407.6569
<u>951920</u>	Mineral		20130615	163.0536
<u>954826</u>	Mineral		20130615	40.7763


Ownership

All mineral claims are owned outright by:

Wild West Gold Corporation of 60562 Granville Park, Vancouver, British Columbia V6H 4B9 Total Area: 5649.614 ha

Section - Claim Map

4 - Claim Map

5 - Location, Access and Description

The geographical coordinates are 50°49' N latitude and 122°52' W longitude.

Access to area is gained by traveling on Highway 99 north from Vancouver through Squamish until Pemberton is reached. From May to November, turn left through Pemberton and right along Pemberton Meadows Road for 23 km to Hurley River Road. Follow this road for 50 km to Highway 40. From December to February continue on Highway 99 past Pemberton until Lillooet is reached, then go 110 km along Highway 40 (Carpenter Lake Road) to Gold Bridge.

Access to the properties can be gained by a network of 2 and 4 -wheel drive roads from Gold Bridge which circle Gun Lake.

Physiography:

The property lies at the southeastern part of the Pacific Ranges which is a physiographic division of the Coast Mountains. The terrain is, in general, steep and mountainous.

The property is significant in size and covers a wide range of conditions.

Elevations vary from 700 metres ASL (Above Sea Level) just below Downton Lake Hydro Electric Dam, to 2,600 metres ASL at the peak of Mount Penrose.

The forest cover consists primarily of fir and spruce, moderate in density and with light to moderate undergrowth.

History Of The Area:

"The history of the area is centred around the Bralorne and the Pioneer Mines where lode gold production was carried on from the early 1900's.

The Bralorne and Pioneer situated on Cadwallader Creek, ... in addition to other significant former properties such as the Ben d'Or and the Wayside are located within a mineralized belt on the western flank of the Ben d'Or mountains.¹

Gold Bridge Property, Climex Minng of B.C. Ltd

¹ Sookochoff, L., Geological Report,

BC. Assessment Report: 8234, Lillooet Mining Division, B.C., January 11, 1980.

6 - Work Program

Physical Work

The following physical work was completed:

Minimal brushing out of old logging roads with 4 x 4's. Both chainsaw and axes would be required to gain additional access by removing windfall trees blocking roads and deciduous and evergreen trees from roadways. Where underbrush is removed alongside existing roads it should be stacked in old cleared log dump areas. Numerous minor washouts need repair with shovels or small excavators.

The use of 'quads' or four-wheeler all-terrain vehicles (ATV), would dramatically improve access to the properties. An extensive network of small, old logging roads and trails, visible on satellite imagery, extend throughout the properties.

Geochemical Sampling Programs

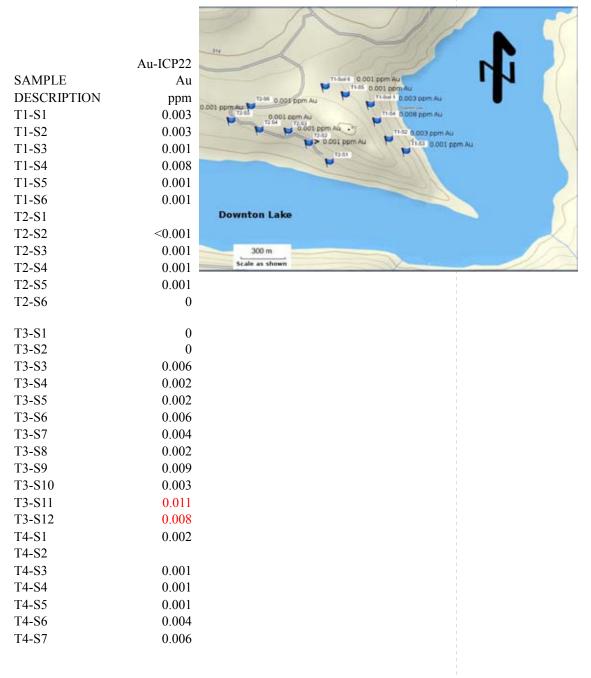
The objectives of the field sampling program were to:

- 1. Determine access to obtain necessary coverage of the large geographic area the properties occupy,
- 2. Test different techniques to obtain the most representative samples possible,
- 3. Evaluate the environment from which future samples will be taken,
- 4. Determine schedules to allow for complete coverage.

Soils

Mount Meager, west of the area in the upper Lillooet River valley, erupted about 2,120-2,670 years ago sending ash in a northeasterly to southeasterly direction. The measurable white ash layer is now known as Bridge Creek ash and where it occurs, it modifies the soils through podsolisation.

Section -Work Program


The following photo shows the light coloured ash horizon spread across soils in a road cut exposure. An orientation study collected road cut soil samples below ash horizon.

Prior to future geochemical soil surveys, it is recommended that test pits be dug to collect local soil profile information. The location, depth and thickness of the ash layer varies throughout the region. Southwestern facing slopes tend to have thicker layers of ash while northeasterly slopes were shadowed from the eruption site and have thin or no ash layers.

In the Bridge River area, the ash occurs as a coarse-textured deposit with blocks of pumice up to 10 cm (3.9 in) in diameter. The largest fraction of ash observed by the writer were white blocks less than 1 cm in diameter. The texture rapidly becomes finer eastward from the Bridge River.

Table of Gold Results from Soil Sampling program

Sampling traverses to collect soils below the ash layer proved effective. This orientation study confirmed the need to sample below the ash horizon for reliable gold detection.

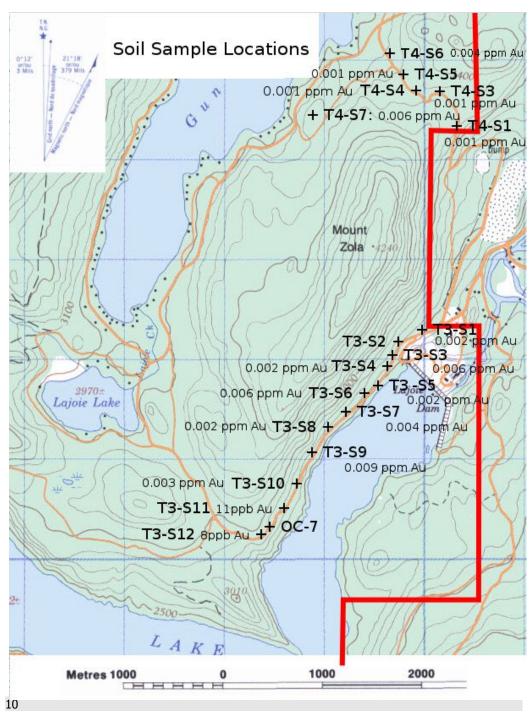


Photo 3: Stream Sampling on Lick Creek

Stream Sediments

Description Of The Methods

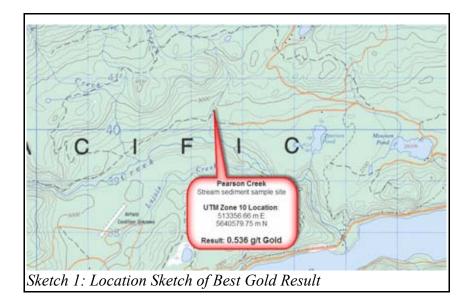
Two types of stream sediment sampling techniques were tested on the property: classic stream sediment sampling and a suction sampling techique.

Suction Sampling Technique

"This suction sampling technique is a geochemical method employed in the discovery and exploration of lode gold and sulphide deposits; and for diamond indicator minerals. Metals being shed by these deposits can be detected in glacial deposits and streams which are down ice or stream from the deposits. This method is designed primarily to pick up mechanically-transported indicator minerals for diamonds; or metals (e.g. gold, platinum, lead, zinc, tungsten) rather than ions transported in solution.

It is a superior method to classical till or esker sampling for stream sediment ("silt") sampling, hand-panning, moss mat sampling, or "heavy" sampling for metals. A larger volume of material (commonly up to 1.0 m3) is processed to a concentrate. The choice of an appropriate sample site and the use of a suction nozzle ensures that a geochemically valid sample of sediment is collected."²

² Alex Burton, private notes: File: BCI\bcirpt4.doc


Stream sediment sampling

Stream sampling surveys encompass a wide variety of environments found on the property, from large gravel bars in rivers, to tiny pools of sediment in rocky narrow creeks, to dry washes in arid climates. It is paramount to conscientiously choose an appropriate sample site. If a sand or gravel bar is present, a concentration of gold typically occurs in specific areas of high energy environments within the sediments and provide the best material for sampling. This contrasts to the classic base metal silt sampling procedure, where very fine grained particles of silt or clay are collected from quiet water sedimentation.

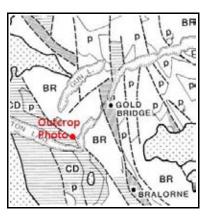
The preferred procedure is to wet-sieve the sample by carefully shovelling the sediments through a -10 mesh stainless steel sieve

	Au-ICP22
SAMPLE	Au
DESCRIPTION	ppm
Dry Gulch	0.002
Upper Lick Cr Suction Strm	0.003
Lower Lick Cr Suction Strm	0.003
Cattle Xring (Pearson Creek)	0.178
Gun Lake Outlet	0.001
Upper LickCr June 15	0.005
Cattle Xing Suctn Strm	0.536
Delta 3	0.008

Gold Results from Stream sediment program

Outcrop Mapping

Photo 4: Roadside Outcrop on Southern Shore on Downton Lake


This part of this exploration program was designed to locate potential mapping sites and check the utility of available geologic maps when used in conjunction with GPS and topograhic maps to locate historic showings.

GPS, outcrop location and photo control confirmed a new level of confidence for ungridded prospecting and mapping throughout the property.

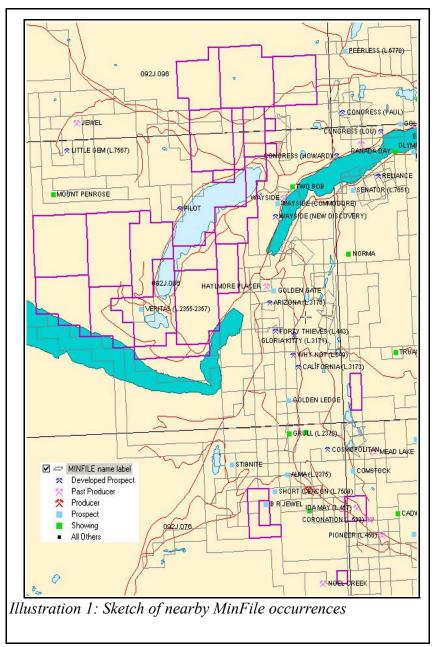
Along where the Gun Lake road cuts through southern parts of the property, a sequence of mixed sandstone, siltstone and carbonate rich conglomerate with minor thin rhyolite/dacite volcanic members trending NW and dipping SW occur.

The geological sketch map is a small extract from Figure 4: *Generalized geological map.* The red dot indicates the approximate location of the following photo.

The following outcrop photo shows a probable contact between the Cadwallader terrane and the Bridge River terrane. The contact is unconformable.

GPS located outcrop and feature photography shows great promise for locating and tying together previous work and assessment reports within the extensive area covered by Wild West Gold Corp. Bridge River area claim holdings.

7 - Literature Search


Min File Search:

There are many Minfile occurrences nears the claims. The producing occurrence are summarized on the following Table:

MINFILE	Name	Mined	Gold	Silver	Copper	Lead	Zinc	Other	First	Last
Number		(tonnes)	(gra	ms)	(kilograms)		Year Y			
092JNE001	Bralorne	4981419	87643244	21969603		157	157		1900	1980
092JNE002	Ida May (L.457)	145	2581	311					1918	1919
092JNE004	Pioneer (L.456)	2314459	41525831	7611999		59	139		1908	1983
092JNE007	Coronation (L.539)	11155	219339	31227					1899	1927
092JNE022	Gloria Kitty (L.3171)	4343	467	311					1938	1938
092JNE029	Congress	943	2582	1306	38				1937	1937
092JNE030	Wayside	39109	166122	26064					1915	1937
092JNE045	Lucky Strike (L.6828)	4	217	2116		336	31		1981	1981
092JNE066	Gray Rock	7	Ž1					Antimony: 3765	1951	1951
092JNE075	Minto Mine (L.5601)	80650	546106	1573314	9673	56435			1934	1940
092JNE108	Jewel	51	3732	404	199				1938	1940
092JNE122	Mead Lake	23						Limestone: 22680	1932	1932
0920 012	Elizabeth	8	156	156	0	24	8		1958	1958
<u>0920 017</u>	Silverquick Mine	1						Mercury: 3247	1965	1965
<u>0920 018</u>	Tungsten Queen	55						Tungsten: 7896	1953	1953
0920 023	Manitou	141						Mercury: 543	1939	1939
0920 026	Robson	34	2208	18071	193	2640			1939	194
Totals		7432547	130115229	31234882	10103	59651	335	Tungsten: 338363 Mercury: 3790	1899	1983

Table 1: Local Minfile Occurrences

The following sketch locates nearby MinFile occurrences. The claims are outlined in purple.

There is one MinFile occurrence that lies within Wild West Gold's claims. Noel Creek was a Jade quarry.

MINFILE Number: 092JNE118 Name: NOEL CREEK					Status: Past Producer
Ore Zone/ Year/Report Or	Tonna Catego		Commodity	Grade	Reference/ Comments
QUARRY	525 Combined	t	Jade/Nephrite	100.0000 %	Possible and probable reserves in rejected 13.5 tonne block-cuttings and boulders.
1972 Y					Geological Survey of Canada Paper 78-19.

Congress (Paul) MinFile occurrence although not on the property lies roughly 1 km SE of Pearson Creek stream sediment 0.5g/t gold result.

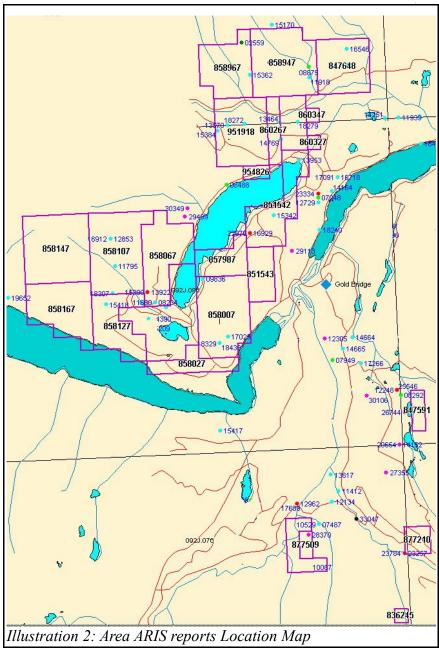
SUMMARY

		NMI	092J15 Au1
Name	CONGRESS	Mining Division	Lillooet
	(PAUL), PAUL,		
	SLIDE		
		BCGS Map	092J097
Status	Developed Prospect	NTS Map	092J15W
Latitude	<u>50° 54' 18" N</u>	UTM	10 (NAD 83)
Longitude	<u>122° 47' 35" W</u>	Northing	5639281
		Easting	514551
Commodities	Gold, Silver, Copper,	Deposit Types	I09 : Stibnite veins
	Antimony		and disseminations
Tectonic Belt	Coast Crystalline	Terrane	Bridge River
Concula	The Congress (Deul) of	ourrance is on the	porth side of Cun

CapsuleThe Congress (Paul) occurrence is on the north side of GunGeologyCreek, two kilometres northwest of its mouth.

The Paul zone consists of a number of west trending quartz veins following shears in greenstones of the Mississippian to Jurassic Bridge River Complex (Group). Tertiary feldspar porphyry dykes trend north across the sheared strata. Potassium/argon analysis of the dykes suggests an age date of 67.1 Ma +/- 2.2 Ma (Fieldwork 1985).

The Slide zone, just northwest of the Paul zone, follows a sheared contact between basalt and argillite of the Bridge River Complex west of a porphyry dyke. The shear is believed to splay out as it enters the incompetent sediments to the north.


The quartz veins contain disseminated to banded pyrite, arsenopyrite, tetrahedrite and stibnite, surrounded by quartzankerite alteration.

The Paul zone contains inferred reserves (possible underground reserves) of 83,444 tonnes grading 9.6 grams per tonne gold (George Cross News Letter #26, 1986). Drill hole intersections from the Slide zone grade up to 11.3 grams per tonne gold across 2 metres (Mineral Exploration Group Meeting (Vancouver) - B.J. Cooke, 1986).

Bibliography EMPR AR 1934-F30; 1936-F10; 1948-A106; 1961-25; 1964-80 EMPR ASS RPT *<u>14251</u>, <u>18439</u> EMPR BULL 20 (Part IV), p. 31 EMPR EXPL 1977-E170; 1978-E179; 1980-261; 1983-316; *1985-B10 EMPR FIELDWORK 1974, p. 35; 1985, pp. 303-310; 1986, pp. 23-29; 1987, pp. 93-130; 1988, pp. 105-152; 1989, pp. 45-72; 1990, pp. 75-83 EMPR GEM 1972-283 EMPR GEOLOGY 1975, p. G58 EMPR OF 1987-11; 1988-3; 1989-4; 1990-10 EMPR PF (Company Rpts.: T. Hawkins and J. Sawyer, Dec. 1979, Report on the Howard Property (Sawyer Consultants); R. Seraphim, Feb. 1983, Progress Report Bridge River Claims for Congress Operating Corp. (Levon-Veronex); Rpt. by H. Brodie Hicks, 1971) GSC MEM 130, pp. 41,73; 213, p. 102 GSC OF 482 GSC P 43-15 GSC SUM RPT 1915, p. 84 CJES Vol.24 (1987), pp. 2279-2291 GAC Geoexpo/86, p. 77

ARIS Reports:

The following sketch locates Assessment Reports by number. The claims are outlined in purple.

Section -Literature Search

Study of Assessment Reports prior to ground access to the claims proved most useful.

For example:

Inspecting the adjacent detail of Illustration 2, we can locate Sample Assessment Report 15632

From BC ARIS website, <u>http://aris.empr.gov.bc.ca/</u>

we can generate the following listing and download a PDF version of the report.

Report	Claim Names	Preparty Name	Mining Divisions	NTN Mapr (pre 1999)	BCGS Maps	MINPILE	Letitule/ Longitule (SAB(1)	General Work	Off Confidential	Minding Camp	View PDF Report	Pages	File Sire NB
15362	AU 2-3		Lilloost	092/15W	0923096		50.54.54 122.51.53	Geochemical	1987-12-05		15362.PDF	26	849

The report contains geological and geochemical information pertinent to Wild West Gold Corp. property.

In addition to gaining a preview of the geology on the claims.

"The area is characterized by small to medium-sized intrusive plugs which may be related to the main Coast Range Batholith which lies 20 kilometers to the northwest. These bodies intrude a series of thin-bedded cherts, argillites and andesitic volcanics characterized by pillows and amygdules that has been called the Fergusson Series. Mineralization has been found both in the intrusives and the Fergusson series."³

The reader learns that the designers of previous soil sampling program were apparently unaware of the impact the Bridge Creek ash layer may have had on their survey results.

"4.1 Soil Sampling Methods

Soil samples were obtained by digging holes with a shovel to a depth of 30 to 50 em."

The following conclusion can be drawn from information gathered from Assessment Report 15632. Previous soil geochemical work from the region may not be valid. Sample results from the region's assessment reports need to be checked to see if the effects of Bridge Creek ash layer were taken into account.

³ Les Demczuk, M.Sc., Geologist & J. Paul Sorbara, M.Sc., F.G.A.C. (1986)BC Assessment Report: 15362

Government Reports and Maps:

Metallogeny of the Bridge River Mining Camp (092J10, 15 & 092O02)⁴

Bridge River mining camp is known principally for gold-quartz mineralization. Similarities are noted comparing the Bridge River camp with the Mother Lode camp of California. The two camps are remarkably similar in ore mineralogy, wallrock alteration and geological setting. In both camps the ore veins occur on major fault zones in belts of elongated serpentinite bodies flanked by granitic plutons.

The Bridge River camp encompasses five former mines including two large gold producers, Bralorne and Pioneer; three small producers, Wayside, Minto and Congress and more than 60 surrounding mineral prospects.

The rocks of the area comprise a variety of Paleozoic, Mesozoic and Tertiary volcanic and sedimentary beds and igneous intrusions of about the same age. The Bralorne intrusions and Pioneer volcanic rocks are the most consistently mineralized rocks in the area.

^{4 &}lt;u>http://www.empr.gov.bc.ca/Mining/Geoscience/MINFILE/ProductsDownloads/Publications</u> <u>List/Pages/bridge.aspx</u>

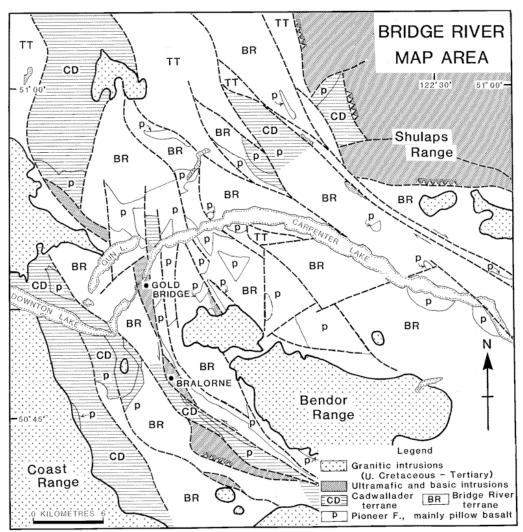


Figure 4. Generalized geological map Bridge River mining camp.

Bedded Rocks

The names Fergusson, Cadwallader, Relay Mountain and Taylor Creek and Chilcotin are retained for the principal stratigraphic divisions although knowledge of some of the constituent units is incomplete. For example the lithology of the Fergusson assemblage (Paleozoic) is not readily distinguished from younger ocean floor rocks in the area. Also, there is some uncertainty regarding the constitution and structural relations of many of the other major units.

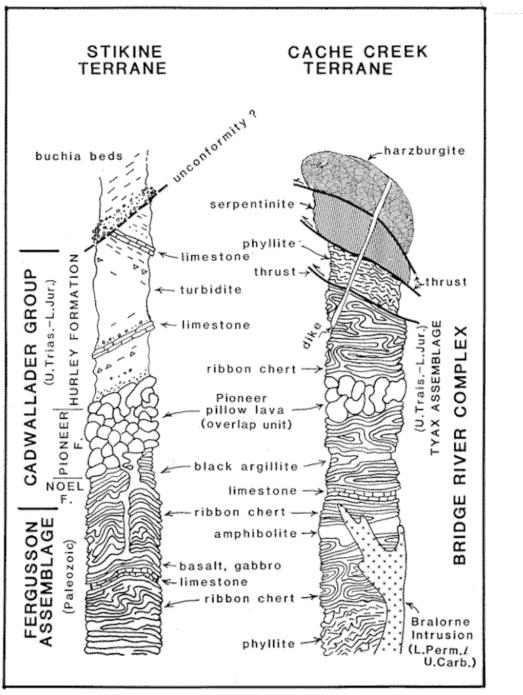


Figure 5. Lithology of Stikine & Cache Creek terranes

Igneous Intrusions

The main igneous intrusions are the Bralorne intrusions (Paleozoic), the Shulaps and President ultramafic rocks and a variety of granitic intrusions including the Coast Plutonic Complex (Mesozoic). In addition there is a variety of small felsic to basic Mesozoic and Tertiary stocks, sills and dikes scattered across the map area.

The Bralorne Intrusions

The 'Bralorne Intrusives' were mapped by Cairnes (1937)⁵ as relatively small Jurassic(?) stocks occurring mostly along the Cadwallader break in the Bralorne-Pioneer belt. The range of rock types comprising these stocks includes gabbro, augite diorite, hornblende diorite, amphibolite, soda granite and aplite. Although the relationships of these rocks are not fully understood, it is generally recognized from crosscutting relationships that the granite and aplite are younger than the gabbro and diorite.

Structural Geology

The geology of the Bridge River mining camp records repeated cycles of deformation. The total effect of this is manifested by the oldest units of the Bridge River complex that are commonly steeply dipping and intricately folded. The younger Cadwallder beds, recording only part of this history, are clearly less deformed, although numerous slices and wedges of these rocks are found throughout the map area testifying to a complicated tectonic history.

It is believed that the mixing of rocks from diverse terranes occurred at the time of plate collision by steep reverse faulting, imbricate thrusting and stacking of various oceanic and ocean margin lithologies with lenses of underlying gabbroic and ultramafic rocks.

The Bridge River mining camp is on the boundary between the Stikine and Cache Creek Terranes in the western part of the Intermountain belt of southwestern BC . The structural setting and history of the area has been reviewed by Price et al. $(1985)^6$,

⁵ **Cairnes, C.E.** (1943): Geology and Mineral Deposits of the Tyaughton Lake Map Area, British Columbia; Geological Survey of Canada, Paper 43-15, 39 pages.

⁶ Price, R.A., Monger, J.W.H. and Roddick, J.A. (1985): Cordilleran Cross-Section; Calgary to Vancouver, in Field Guides to Geology and Mineral Deposits in the Southern Canadian Cordillera; Geological Society of America, Cordilleran Section Meeting, Vancouver, B.C., pages 3-1 to 3-85

Potter (1986)⁷, Schiarizza et al. (1997)⁸ and Rusmore and Woodsworth (1991)⁹.

"The Intermontane tectonic belt is underlain by at least four allochthonous oceanic and off-shore island-arc terranes that evolved separately in middle and late Paleozoic and early Mesozoic time and were subsequently accreted to the North American craton. These are Stikinia and Cache Creek on the west and Quesnellia and Slide Mountain terranes on the east. Although knowledge of the temporal and spatial conditions of accretion is incomplete, it is known that the eastern terranes onlap the continental rocks and that this onlapping or docking was mostly achieved by middle Mesozoic" (Price et al., 1985)¹⁰.

In the map area the Bridge River complex comprises multiple slabs of oceanic and transitional crust (Cache Creek equivalent) partly delaminated from the mantle and lithospheric base and stacked against the continental margin together with units of the Cadwallader group (Stikine terrane). Middle Jurassic has been proposed by Potter (1986)¹¹ as the most probable time of docking of these western terranes (Figure 6). It is agreed that by mid-early Cretaceous no major sutures remained between the terranes east of the Coast Plutonic Complex (Armstrong, 1988)¹².

- 10 Price, R.A., Monger, J.W.H. and Roddick, J.A. (1985): Cordilleran Cross-Section; Calgary to Vancouver, in Field Guides to Geology and Mineral Deposits in the Southern Canadian Cordillera; Geological Society of America, Cordilleran Section Meeting, Vancouver, B.C., pages 3-1 to 3-85
- 11 **Potter, C.J.** (1986): Origin, Accretion and Post-accretionary Evolution of the Bridge River Terrane, Southwest British Columbia, Tectonics, Volume 5, Number 7, pages 1027-1041.
- 12 Armstrong, R.L. (1988): Mesozoic and Early Cenozoic Magmatic Evolution of the Canadian Cordillera; Geological Society of America, Special Paper 218, pages 55-91.

⁷ **Potter, C.J.** (1986): Origin, Accretion and Post-accretionary Evolution of the Bridge River Terrane, Southwest British Columbia, Tectonics, Volume 5, Number 7, pages 1027-1041.

⁸ Schiarizza, P., Gaba, R.G., Glover, J.K., Gaver, J.I. and Umhoefer, P.J. (1997): Geology and Mineral Occurrences of the Taseko - Bridge River Area; B.C. Ministry of Employment and Investment, Bulletin 100, 292 pages

⁹ Rusmore, M.E., and Woodsworth, G.J. (1991): Distribution and Tectonic Significance of Upper Triassic Terranes in the Eastern Coast Mountains and Adjacent Intermountane Belt, British Columbia; Canadian Journal of Earth Science, Volume 28, pages 532-541.

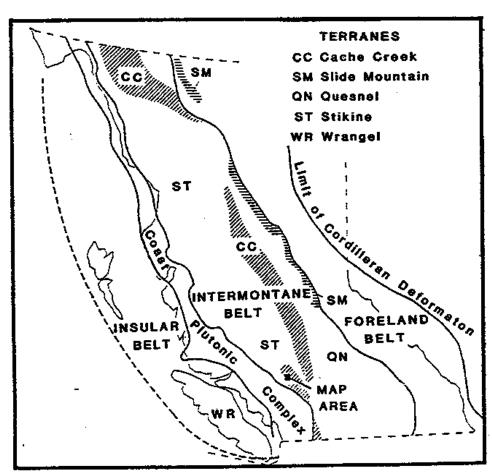


Figure 6. Major tectonic belts and terranes

in the Canadian Cordillera, simplified from Monger and Berg (1984)¹³.

¹³ Monger, J.W.H. and Berg, H.C. (1984): Lithotectonic Terrane Map of Western Canada and Southeastern Alaska; U.S. Geological Survey, Open-file Report 84-523, Part B.

8 - Conclusions

Tested sampling techniques are effective and suitable for use across the large area and varied geography of the properties.

The half gram gold anomaly from stream sediments on Claim 847648 needs followup.

Recommend the use of ATV's to better access the properties.

Previous soil geochemical work may not be valid. Assessment reports need to be checked to see if the effects of Bridge Creek ash layer were taken into account

9 - Recommendations

The gold anomalies on Pearson Creek require follow up.

Pearson Creek

Stream sediment sample site

UTM Zone 10 Location:

513356.66 m E 5640579.75 m N

Result: 0.536 g/t Gold

Further work near this gold finding is required to verify it and to determine the extent of possible associated gold mineralization .

10 - References

This section contain references to other documents, book, web pages, etc.

Sookochoff, L. (1988), Geological Report, Gold Bridge Property, Climex Minng of B.C. Ltd BC. Assessment Report: 8234, Lillooet Mining Division, B.C.,

Armstrong, R.L. (1988): Mesozoic and Early Cenozoic Magmatic Evolution of the Canadian Cordillera; Geological Society of America, Special Paper 218, pages 55-91.

Cairnes, C.E. (1943): Geology and Mineral Deposits of the Tyaughton Lake Map Area, British Columbia; Geological Survey of Canada, Paper 43-15, 39 pages.

Monger, J.W.H. and Berg, H.C. (1984): Lithotectonic Terrane Map of Western Canada and Southeastern Alaska; U.S. Geological Survey, Open-file Report 84-523, Part B.

Potter, C.J. (1986): Origin, Accretion and Post-accretionary Evolution of the Bridge River Terrane, Southwest British Columbia, Tectonics, Volume 5, Number 7, pages 1027-1041.

Price, R.A., Monger, J.W.H. and Roddick, J.A. (1985): Cordilleran Cross-Section; Calgary to Vancouver, in Field Guides to Geology and Mineral Deposits in the Southern Canadian Cordillera; Geological Society of America, Cordilleran Section Meeting, Vancouver, B.C., pages 3-1 to 3-85

Schiarizza, P., Gaba, R.G., Glover, J.K., Gaver, J.I. and Umhoefer, P.J. (1997): Geology and Mineral Occurrences of the Taseko - Bridge River Area; B.C. Ministry of Employment and Investment, Bulletin 100, 292 pages

Rusmore, M.E., and Woodsworth, G.J. (1991): Distribution and Tectonic Significance of Upper Triassic Terranes in the Eastern Coast Mountains and Adjacent Intermountane Belt, British Columbia; Canadian Journal of Earth Science, Volume 28, pages 532-541.

11 - Appendices

Statement of Expenditure (pg 1 of 3)

Exploration Work type	Comment	Days		_	Totals
Personnel (Name)* / Position	Field Days (list actual days)	Days	Pate S	ubtotal*	
A. Burton, Geologist	June 12,13,14,15,16, 2012	Days	\$672.00	\$3,360.00	
M. Warwick, Geologist	June 12,13,14,15,16, 2012	9	\$448.00	\$4,032.00	
L. Katan, Geologist	June 12,13,14,15,16, 2012	8	\$240.00	\$1,920.00	
	June 12,13,11,13,10, 2012	0	\$0.00	\$0.00	
			\$0.00	\$0.00	
			\$0.00	\$0.00	
			\$0.00	\$9,312.00	\$9,312.00
Office Studies	List Personnel (note - Office on	lv do not	include field		\$9, 512.00
Literature search	List Fersonner (note - once on	iy, do not	\$0.00	\$0.00	
Letter to Land Owners			\$0.00	\$1,185.09	
Computer modelling			\$0.00 \$0.00	\$1,105.09 \$0.00	
Reprocessing of data	C. Burton		\$0.00 \$0.00	\$134.33	
General research	C. Buiton		\$0.00 \$0.00	\$0.00	
Report preparation	M. Warwick	2.0	\$0.00 \$448.00	\$896.00	
Report preparation	A. Burton		\$ 11 8.00 \$672.00	\$336.00	
Report preparation	A. Buiton	0.5	\$072.00	\$2,551.42	\$2,551.42
Airborne Exploration Surveys	line Kilometree / Enterstetelinerie			şΖ,551. 4 Ζ	\$Z,551.4Z
Aeromagnetics	Line Kilometres / Enter total invoice	ed amount	\$0.00	\$0.00	
Radiometrics			\$0.00 \$0.00	\$0.00 \$0.00	
Electromagnetics			\$0.00 \$0.00	\$0.00 \$0.00	
Gravity			\$0.00 \$0.00	\$0.00 \$0.00	
Digital terrain modelling			\$0.00 \$0.00	\$0.00 \$0.00	
Other (specify)			\$0.00 \$0.00	\$0.00 \$0.00	
Other (specify)			\$0.00	\$0.00	\$0.00
Remote Sensing	Anna in Hantana (Enter Antal invai			•	\$0.00
Aerial photography	Area in Hectares / Enter total invoic	ed amount	or list person \$0.00	s0.00	
LANDSAT			\$0.00 \$0.00	\$0.00 \$0.00	
Other (specify)			\$0.00 \$0.00	\$0.00 \$0.00	
Other (specify)			\$0.00	\$0.00	\$0.00
Ground Exploration Surveys	Area in Hostares (List Dersonnel			ф0.00	φ 0.00
Geological mapping	Area in Hectares/List Personnel				
Regional		nota: avi	oenditures he	aro	
Reconnaissance			e captured in		
Prospect			enditures abo		
Underground	Define by length and width	neiu exp	chultul CS dDC	JVC	
Trenches	Define by length and width			\$0.00	\$0.00
	Define by length and width			φ 0.00	φ 0.00

Statement of Expenditure (pg 2 of 3)

Ground geophysics	Line Kilometres / Enter total amou	nt inv	oiced	list personn	el	
Radiometrics						
Magnetics Gravity						
Digital terrain modelling						
Electromagnetics	note: expenditures for your crew	in tha	fiald			
SP/AP/EP	should be captured above in Perso		neiu			
IP	field expenditures above	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				
AMT/CSAMT	nela experialares above					
Resistivity						
Complex resistivity						
Seismic reflection						
Seismic refraction						
Well logging	Define by total length					
Geophysical interpretation	- ,					
Petrophysics						
Other (specify)						
				<u>.</u> .	\$0.00	\$0.0
Geochemical Surveying	Number of Samples	No).	Rate	Subtotal	
Drill (cuttings, core, etc.)				\$0.00	\$0.00	
Stream sediment		6	6.0	-		
Soil		42	42.0			
Rock		1	1.0			
Water				\$0.00		
Biogeochemistry				\$0.00		
Whole rock				\$0.00		
Petrology				\$0.00		
Other (specify) Sample Delivery	A. Burton – Flat Charge			\$0.00		
- ····				. .	\$1,808.86	\$1,808.8
Drilling	No. of Holes, Size of Core and Metre	es No).	Rate	Subtotal	
Diamond				\$0.00		
Reverse circulation (RC) Rotary air blast (RAB)				\$0.00		
				\$0.00 \$0.00		
Other (specify)				\$0.00	\$0.00	
Other Operations	Clarify	No		Rate	Subtotal	φυ. υ
Trenching	Clarify			\$0.00		
Bulk sampling				\$0.00		
Underground development				\$0.00		
Other (specify)				\$0.00		
(00000077				40.00		
					\$0.00	\$0.00

Statement of Expenditure (pg 3 of 3)

After drilling Monitoring			\$0.00 \$0.00		
Other (specify)			\$0.00		
Transportation		No.	Rate	Subtotal	
Airfare			\$0.00		
Taxi			\$0.00		
truck rental	Warwick 9*50 Burton 5*51	14.00		\$784.00	
kilometers	Burton	1249.70	+		
ATV			\$0.00		
fuel				\$613.50	
Helicopter (hours)			\$0.00		
Fuel (litres/hour) Other			\$0.00	\$0.00	
				\$1,817.40	\$1,817.40
Accommodation & Food	Rates per day				
Hotel				\$1,754.51	
Camp				\$0.00	
Meals + food	actual costs			\$692.46	
			•	\$2,446.97	\$2,446.97
Miscellaneous					
Telephone			\$0.00		
Other (Specify)	Batteries (\$58.16) + Repairs (\$35)			\$93.16	
				\$93.16	\$93.16
Equipment Rentals					
Field Gear (Specify)	Dredge, Auger, Tools (flat rate)			\$448.00	
Other (Specify)					
				\$448.00	\$448.00
Freight, rock samples					
			\$0.00		
			\$0.00		
				\$0.00	\$0.00

TOTAL Expenditures

\$18,477.81

Affidavit

CERTIFICATE

I, Malcolm Warwick, of the city of Vancouver, in the Province of British Columbia, do hereby certify:

That I am an Consulting Geologist .

I further certify that:

- 1. I am a graduate of the University of Western Ontario (1981) and hold a Honours B.Sc. degree in Geology.
- 2. I have been practising my profession for the past thirty years. The information for the accompanying report is based on pertinent publications and from the writer's examination of the property on June 10-18, 2012
- 3. I do not have direct or indirect interest in the property described herein, or in the securities of Wild West Gold Corp.

Malcolm Warwick B.Sc. Consulting Geologist

July 20, 2012 Vancouver, B.C.

ALS Minerals

ALS Canada Ltd. 2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com To: BURTON CONSULTING INC. 1408 7TH AVE W NEW WESTMINSTER BC V3M 2K3 Page: 1 Finalized Date: 8- JUL- 2012 Account: CM

CERTIFICATE VA12145747

Project: BRALORNE

P.O. No .:

This report is for 50 Soil samples submitted to our lab in Vancouver, BC, Canada on 26- ${\sf JUN}{-}$ 2012.

The following have access to data associated with this certificate:

ALS CODE	DESCRIPTION	
WEI-21	Received Sample Weight	
LOG-22	Sample login - Rcd w/o BarCode	
SCR-41	Screen to - 180um and save both	
EXTRA-01	Extra Sample received in Shipment	
	ANALYTICAL PROCEDUR	ES
ALS CODE	DESCRIPTION	INSTRUMENT
ME-ICP41	35 Element Aqua Regia ICP- AES	ICP-AES
Au-ICP22	Au 50g FA ICP- AES finish	ICP-AES

SAMPLE PREPARATION

12 - TABLES

Table 1 – Sample Assays

To: BURTON CONSULTING INC. ATTN: ALEX BURTON 1408 7TH AVE W NEW WESTMINSTER BC V3M 2K3

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

Signature:

Colin Ramshaw, Vancouver Laboratory Manager

ALS Canad a Ltd .		
2103 Dollarton Hwy		
North Vancouver BC V7H	1 0A7	
Phone: 604 984 0221	Fax: 604 984 0218	www.alsglobal.com

To: BURTON CONSULTING INC. 1408 7TH AVE W NEW WESTMINSTER BC V3M 2K3 Page: 2 - A Total # Pages: 3 (A - C) Finalized Date: 8- JUL- 2012 Account: CM

Project: BRALORNE

Minera	Is							CERTIFICATE OF ANALYSIS VA12145747								
								0	C	ERTIFIC	CATEO	FANAL	-YSIS	VA121	45/4/	
Sample Description	Method Analyte Units LOR	WEI-21 Recvd Wt. kg .02	Au-ICP22 Au ppm 0.001	ME-ICP41 Ag ppm 0.2	ME-ICP41 Al % 0.01	M 5-ICP41 As ppm 2	ME-ICP41 B ppm 10	ME-ICP41 Ba ppm 10	ME-ICP41 Be ppm 0.5	M E-ICP41 Bi ppm 2	ME-ICP41 Ca % 0.01	ME-ICP41 Cd ppm 0.5	ME ICP41 Co ppm 1	ME-ICP41 Cr ppm 1	ME-ICP41 Cu ppm 1	MI5-ICP41 Fe % 0.01
T1-S1 T1-S2 T1-S3 T1-S4 T1-S5		Not Recvd Not Recvd Not Recvd Not Recvd Not Recvd														
T1-S6 T2-S1 T2-S2 T2-S3 T2-S4		Not Recvd Not Recvd 0.58 0.84 0.90	<0.001 0.001 0.001	≪0.2 ≪0.2 ≪0.2	1.02 0.70 1.51	3 7 4	<10 <10 <10	60 50 80	<0.5 <0.5 ⊲0.5	<2 <2 <2	0.16 0.27 0.21	<0.5 <0.5 <0.5	8 6 8	17 27 28	13 19 23	1.85 1.81 2.34
T2-S5 T2-S6 T3-S1 T3-S2 T3-S3		1.08 1.08 0.74 1.00 0.70	0.001 0.001 0.002 0.004 0.006	0.2 <0.2 <0.2 0.3 0.3	1.05 0.89 1.73 3.80 3.07	4 4 7 13 16	<10 <10 <10 <10 <10 <10	70 50 80 110 160	<0.5 <0.5 <0.5 0.9 0.8	<2 <2 <2 <2 <2 <2	0.18 0.18 0.34 0.71 0.69	<0.5 <0.5 <0.5 <0.5 <0.5	7 7 13 38 31	21 22 1 10 555 309	13 13 35 94 120	1.84 1.46 3.28 5.98 5.29
T3-S4 T3-S5 T3-S6 T3-S7 T3-S7		1.18 1.08 1.34 1.38 0.88	0.002 0.002 0.006 0.004 0.002	0.2 0.2 0.2 0.4 <0.2	1.46 2.02 2.42 2.01 2.24	7 11 40 35 18	<10 <10 <10 <10 <10	80 140 160 190 120	<0.5 <0.5 <0.5 <0.5 <0.5	<2 <2 <2 <2 <2	0.45 0.41 0.46 0.46 0.35	<0.5 <0.5 <0.5 <0.5 <0.5	12 11 20 17 14	47 59 83 64 49	38 45 84 68 52	3.06 2.96 3.92 3.73 3.04
T3-S9 T3-S10 T3-S11 T3-S12 T4-S1		0.78 1.68 0.96 0.88 1.14	0.009 0.003 0.011 0.008 0.002	0.3 <0.2 <0.2 0.2 0.2 0.2	2.60 1.38 1.87 1.68 1.64	90 23 10 44 9	<10 <10 10 <10 <10	190 120 50 90 80	0.6 <0.5 <0.5 <0.5 <0.5	<2 <2 <2 <2 <2 <2	0.48 0.30 0.44 0.32 0.39	0.6 <0.5 <0.5 <0.5 <0.5	28 13 32 13 13	357 64 351 39 77	133 42 29 50 40	4.63 2.79 3.41 3.09 3.16
T4-S2 T4-S3 T4-S4 T4-S5 T4-S5		Not Recvd 1.10 0.86 0.88 0.42	0.001 0.001 0.001 0.004	0.2 ≪0.2 ≪0.2 0.3	1.40 1.10 1.13 2.28	6 5 4 14	<10 <10 <10 <10	100 70 70 130	<0.5 <0.5 <0.5 <0.5	<2 <2 <2 2	0.23 0.25 0.27 0.67	<0.5 <0.5 <0.5 <0.5	10 11 9 22	36 93 46 153	26 16 18 64	2.87 2.56 2.15 4.00
T4-S7 Upper Lick Cr Auger S Dry Gulch Upper Lick Cr Suction Strm Lower Lick Cr Suction Strm	3 rm	0.56 1.04 1.26 1.50 1.08	0.006 0.006 0.002 0.003 0.003	<0.2 0.3 0.2 0.3 <0.2	2.79 2.48 1.67 2.42 2.34	22 3 3 9 9	<10 10 10 20 10	170 420 160 530 420	<0.5 0.5 <0.5 0.5 0.5	<2 <2 <2 <2 <2 <2	0.50 0.85 0.70 0.75 0.76	<0.5 <0.5 <0.5 <0.5 <0.5	17 27 18 29 28	125 276 175 319 324	64 56 46 62 61	3.90 4.16 3.03 4.56 4.31
Cattle Xring Gun Lake Outlet Upper Lick Or June 15 Lower Lick Or gattle crossing Delta 3		0.50 2.12 0.84 1.32 0.70	0.178 0.001 0.005 0.536 0.008	0.3 ≪0.2 ≪0.2 ≪0.2 ≪0.2	1.82 1.52 2.42 2.02 1.47	21 5 3 7 8	30 <10 10 40 <10	920 60 590 420 170	<0.5 <0.5 <0.5 <0.5 <0.5	<2 <2 <2 <2 <2 <2	0.67 0.57 0.79 0.74 0.37	<0.5 <0.5 <0.5 <0.5 <0.5	38 11 30 36 7	475 76 325 447 25	49 12 61 53 36	6.08 2.63 4.76 5.22 3.78

ALC Considerated

ALD Gallad a Ltd .		
2103 Dollarton Hwy		
North Vancouver BC V7H	0A7	
Phone: 604 984 0221	Fax: 604 984 0218	www.alsglobal.com

To: BURTON CONSULTING INC. 1408 7TH AVE W NEW WESTMINSTER BC V3M 2K3 Page: 2 - B Total # Pages: 3 (A - C) Finalized Date: 8- JUL- 2012 Account: CM

Project: BRALORNE

CERTIFICATE OF ANALYSIS VA12145747

Sample Description	Method Analyte Units LOR	ME-ICP41 Ga ppm 10	ME-ICP41 Hg ppm 1	ME-ICP41 K % 0.01	ME-ICP41 La ppm 10	ME-ICP41 Mg % 0.01	ME-ICP41 Mn ppm 5	ME-ICP41 Mo ppm 1	M5-ICP41 Na % 0.01	ME-ICP41 Ni ppm 1	ME-ICP41 P ppm 10	ME-ICP41 Pb ppm 2	ME-ICP41 S % 0.01	ME-ICP41 So ppm 2	ME-ICP41 Sc ppm 1	ME-ICP41 Sr ppm 1
T1-S1 T1-S2 T1-S3 T1-S4 T1-S5	8															
T1-S6 T2-S1 T2-S2 T2-S3 T2-S4	r T	<10 <10 <10	<1 <1 <1	0.09 0.12 0.14	<10 <10 <10	0.29 0.32 0.44	176 166 203	<1 <1 <1	0.03 0.04 0.03	23 10 23	450 230 350	<2 <2 <2	0.01 0.01 0.01	<2 <2 <2	2 2 3	13 23 28
T2-S4 T2-S5 T2-S6 T3-S1 T3-S2 T3-S2 T3-S3		<10 <10 <10 <10 10 10	<1 1 <1 1 1	0.08 0.08 0.19 0.15 0.21	10 <10 10 20 20	0.33 0.42 1.05 5.33 2.70	207 172 373 1060 1180	<1 <1 <1 2 5	0.03 0.03 0.03 0.03 0.03 0.03	22 21 103 495 227	430 210 370 800 820	<2 <2 <2 7 11	0.01 <0.01 0.01 0.02 0.03	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	2 2 6 13 13	18 15 25 41 43
T3-S4 T3-S5 T3-S6 T3-S7 T3-S7 T3-S8		<10 10 10 10 10	<1 1 <1 <1 <1	0.18 0.32 0.24 0.14 0.25	10 10 10 10 10	0.87 0.87 1.17 1.05 0.78	422 355 636 602 348	<1 <1 <1 <1 <1	0.04 0.04 0.04 0.04 0.03	42 44 85 72 49	620 410 610 630 450	4 4 5 5 4	0.02 0.01 0.01 0.02 0.01	<2 <2 <2 <2 <2 <2	5 6 8 7 5	44 46 50 33 37
T3-S9 T3-S10 T3-S11 T3-S12 T4-S1		10 <10 <10 <10 <10	1 <1 <1 <1 1	0.12 0.14 0.11 0.12 0.12	20 10 10 10 10	2.44 0.69 4.41 0.66 1.01	711 474 525 456 390	3 <1 <1 <1 <1	0.03 0.04 0.04 0.03 0.03	327 67 548 43 80	440 830 330 410 550	9 10 5 4 3	0.02 0.01 0.01 0.01 0.01	<2 <2 <2 <2 <2 <2	12 4 6 4 5	56 26 22 30 20
T4-S2 T4-S3 T4-S4 T4-S5 T4-S5		<10 <10 <10 10	<1 <1 <1 1	0.09 0.06 0.13 0.19	10 <10 10 10	0.59 0.85 0.64 2.18	230 231 247 650	<1 <1 <1 <1	0.03 0.03 0.03 0.07	46 81 39 212	640 390 350 630	<2 2 <2 4	0.01 0.01 0.01 0.01	<2 <2 <2 <2	2 3 3 8	16 18 17 37
T4-S7 Upper Lick Cr Auger S Dry Gulch Upper Lick Cr Suction Strm Lower Lick Cr Suction Strm	3.rm	10 10 <10 10 10	1 <1 1 1	0.20 0.10 0.10 0.12 0.10	10 10 10 10 10	1.38 3.44 1.70 4.02 4.00	534 834 611 1210 1080	<1 <1 <1 1 <1	0.05 0.04 0.05 0.03 0.03	140 243 321 316 290	440 540 470 650 590	4 7 4 6 5	0.01 0.03 0.02 0.04 0.03	<2 <2 <2 <2 <2 <2	9 9 6 9 8	39 45 46 39 34
Cattle Xring Gun Lake Outlet Upper Lick Cr June 15 Lower Lick Cr aattle crossing Delta 3		<10 <10 10 10 <10	20 <1 <1 <1 <1	0.08 0.04 0.10 0.07 0.28	10 <10 10 10 <10	5.83 1.26 3.87 6.00 0.69	890 344 1175 918 271	<1 <1 2 2 2	0.03 0.03 0.02 0.01 0.04	490 80 328 516 15	620 390 640 640 800	5 3 8 6 3	0.12 0.03 0.04 0.09 0.10	<2 <2 <2 <2 <2 <2 <2	8 4 9 8 5	35 21 37 33 46

ALS Canada Ltd.		
2103 Dollarton Hwy		
North Vancouver BC V7H	1 0A7	
Phone: 604 984 0221	Fax: 604 984 0218	www.alsglobal.com

To: BURTON CONSULTING INC. 1408 7TH AVE W NEW WESTMINSTER BC V3M 2K3 Page: 2 - C Total # Pages: 3 (A - C) Finalized Date: 8- JUL- 2012 Account: CM

Project: BRALORNE

Minera	15							riojeci	
innera	.3							6 17	CERTIFICATE OF ANALYSIS VA12145747
Sample Description	Method Analyte Units LOR	ME-ICP41 Th ppm 20	ME-ICP41 Ti % 0.01	ME-ICP41 Ti ppm 10	ME-ICP41 U ppm 10	ME-ICP41 V ppm 1	ME-ICP41 W ppm 10	ME-ICP41 Zn ppm 2	
T1-S1 T1-S2 T1-S3 T1-S4 T1-S5	2								
T1-S6 T2-S1 T2-S2 T2-S3 T2-S4		<20 <20 <20	0.09 0.09 0.11	<10 <10 <10	<10 <10 <10	39 61 58	<10 <10 <10	37 21 32	
T2-S5 T2-S6 T3-S1 T3-S2 T3-S3		<20 <20 <20 <20 <20 <20	0.10 0.11 0.16 0.28 0.23	<10 <10 <10 <10 <10	<10 <10 <10 <10 <10	42 35 59 105 89	<10 <10 <10 <10 <10	49 49 73 134 159	
T3-S4 T3-S5 T3-S6 T3-S7 T3-S8		<20 <20 <20 <20 <20 <20	0.15 0.14 0.16 0.14 0.14	<10 <10 <10 <10 <10	<10 <10 <10 <10 <10	59 64 76 66 60	<10 <10 <10 <10 <10	82 56 88 102 93	
T3-S9 T3-S10 T3-S11 T3-S12 T4-S1		<20 <20 <20 <20 <20 <20 <20	0.09 0.11 0.13 0.10 0.16	<10 <10 <10 <10 <10 <10	<10 <10 <10 <10 <10 <10	71 60 52 61 55	<10 <10 <10 <10 <10 <10	191 84 58 84 75	
T4-S2 T4-S3 T4-S4 T4-S5 T4-S5		<20 <20 <20 <20 <20	0.11 0.12 0.13 0.17	<10 <10 <10 <10	<10 <10 <10 <10	68 51 45 77	<10 <10 <10 <10	46 48 54 69	
T4-S7 Upper Lick Cr Auger S Dry Gulch Upper Lick Cr Suction Strm Lower Lick Cr Suction Strm	trm	<20 <20 <20 <20 <20 <20	0.19 0.26 0.16 0.26 0.26	<10 <10 <10 <10 <10	<10 <10 <10 <10 <10	80 78 56 74 74	<10 <10 <10 <10 <10	73 88 69 100 99	
Cattle Xring Gun Lake Outlet Upper Lick Or June 15 Lower Lick Or cattle crossing Delta 3		<20 <20 <20 <20 <20 <20	0.19 0.16 0.27 0.17 0.13	<10 <10 <10 <10 <10	<10 <10 <10 <10 <10	89 61 86 73 85	<10 <10 <10 <10 <10	92 57 102 93 71	

Minerals

38

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: BURTON CONSULTING INC. 1408 7TH AVE W NEW WESTMINSTER BC V3M 2K3 Page: 3 - A Total # Pages: 3 (A - C) Finalized Date: 8- JUL- 2012 Account: CM

Project: BRALORNE CEDTIFICATE OF ANALVOID VAADAAE747

								<u>,</u>	C	ERTIFIC	CATEO	FANAL	YSIS	VA121	45747	
Sample Description	Method Analyte Units LOR	WE-21 Recvd Wt. kg .02	Au-ICP2 2 Au pp m 0.001	ME-ICP41 Ag ppm 0.2	ME-ICP41 AI % 0.01	M 5-ICP41 As ppm 2	ME-ICP41 B pp m 10	ME-ICP41 Ba ppm 10	ME-ICP41 Be ppm 0.5	M 5-ICP41 Bi ppm 2	ME-ICP41 Ca % 0.01	ME-ICP41 Cd ppm 0.5	ME-ICP41 Co ppm 1	ME-ICP41 Cr ppm 1	ME-ICP41 Cu ppm 1	ME-ICP41 Fe % 0.01
Delta 2 Delta 1 Ault Cr.	8	2.06 0.98	0.002	≪0.2 ≪0.2	1.32 1.15	5 <2	<10 <10	60 70	≪0.5 ≪0.5	<2 <2	0.33 0.51	<0.5 <0.5	11 12	69 97	27 22	4.17 3.81
N. Downton Soil 01		1.04	0.002	<0.2	2.09	171	<10	90	<0.5	<2	0.18	<0.5	14	33	53	3.35
Downton LK Soil 02		0.62	0.003	<0.2	2.35	8	<10	90	<0.5	<2	0.55	<0.5	24	30	96	4.20
N. Downton LK Soil 03		1.32	0.001	⊲0.2	2.09	4	<10	130	⊲0.5	<2	0.30	<0.5	10	28	32	3.00
I. Downton LK Soil 04		0.74	0.008	<0.2	1.20	22	<10	30	⊲0.5	<2	0.31	<0.5	13	22	93	4.28
I. Downton LK Soil 05		1.20	0.001	<0.2	1.48	11	<10	70	<0.5	<2	0.18	<0.5	9	26	22	2.41
I. Downton Soil 06		1.22	0.001	<0.2	0.95	4	<10	40	<0.5	<2	0.23	< 0.5	8	35	29	2.61
Downton Soil Sample		1.24	0.002	<0.2	2.35	5	<10	120	<0.5	<2	0.32	< 0.5	16	46	50	3.46
Oownton LK Traverse 2 Soil L2	01	0.66	0.003	≪0.2	2.13	5	10	610	⊲0.5	<2	0.69	<0.5	27	302	52	4.63

Г

ALS Canad a Ltd. 2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: BURTON CONSULTING INC. 1408 7TH AVE W NEW WESTMINSTER BC V3M 2K3 Page: 3 - B Total # Pages: 3 (A - C) Finalized Date: 8- JUL- 2012 Account: CM

Project: BRALORNE

IIIInera	IS								CERTIFICATE OF ANALYSIS VA1214574							
Sample Description	Method Analyte Units LOR	ME-ICP41 Ga ppm 10	ME-ICP41 Hg pp m 1	ME-ICP41 K % 0.01	ME-ICP41 La ppm 10	ME-ICP41 Mg % 0.01	ME-ICP41 Mn pp m 5	ME-ICP41 Mo ppm 1	M5-ICP41 Na % 0.01	ME-ICP41 Ni ppm 1	ME-ICP41 P ppm 10	ME-ICP41 Po pp.m 2	ME-ICP41 S % 0.01	ME-ICP41 Sb ppm 2	ME-ICP41 Sc ppm 1	ME-ICP41 Sr ppm 1
Delta 2 Delta 1 Ault Cr. N. Downton Soil 0 1 N. Downton LK Soil 02 N. Downton LK Soil 03		<10 <10 <10 10 <10	<1 <1 <1 <1 <1	0.12 0.10 0.08 0.10 0.09	<10 <10 10 10 10	0.77 1.45 0.64 0.89 0.52	236 368 318 413 227	<1 <1 1 <1	0.02 0.03 0.01 0.03 0.02	31 101 41 40 26	720 660 540 400 280	<2 2 4 5 4	0.01 0.02 0.01 0.01 0.01	<2 <2 2 <2 <2 <2	3 3 5 8 4	14 31 18 34 33
N. Downton LK Soil 04 N. Downton LK Soil 05 N. Downton Soil 06 Downton Soil Sample (Downton LK Traverse 2 Soil 120	6	<10 <10 <10 10 10	<1 <1 <1 <1 <1	0.03 0.07 0.06 0.14 0.08	10 <10 <10 10 10	0.54 0.30 0.65 0.74 3.44	597 233 203 593 973	1 <1 1 2	0.02 0.01 0.02 0.02 0.02	27 36 40 58 267	410 540 490 360 620	5 3 6 7	0.01 0.01 <0.01 0.01 0.04	3 <2 <2 <2 <2 <2	10 2 2 5 8	15 14 20 22 35

ALS Canada Ltd. 2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com To: BURTON CONSULTING INC. 1408 7TH AVE W NEW WESTMINSTER BC V3M 2K3 Page: 3 - C Total # Pages: 3 (A - C) Finalized Date: 8- JUL-2012 Account: CM

Project: BRALORNE

Minera								Troject	DITLEONTE	
minera	13							6 2	CERTIFICATE OF ANALYSIS	VA12145747
Sample Description	Method Analyte Units LOR	ME-ICP41 Th ppm 20	M5-ICP41 Ti % 0.01	ME-ICP41 Ti ppm 10	ME-ICP41 U ppm 10	ME-ICP41 V ppm 1	ME-ICP41 W ppm 10	ME-ICP41 Zn ppm 2		
Delta 2 Delta 1 Ault Cr. N. Downton Soil 0 1 N. Downton LK Soil 02 N. Downton LK Soil 03		<20 <20 <20 <20 <20 <20	0.13 0.12 0.13 0.14 0.16	<10 <10 <10 <10 <10	<10 <10 <10 <10 <10	119 94 67 82 70	<10 <10 <10 <10 <10	46 57 85 119 58		
N. Downton LK Soil 04 N. Downton LK Soil 05 N. Downton Soil 06 Downton Soil Sample (Downton LK Traverse 2 Soil L20	5	<20 <20 <20 <20 <20 <20	0.10 0.11 0.08 0.15 0.22	<10 <10 <10 <10 <10	<10 <10 <10 <10 <10	54 52 61 69 94	<10 <10 <10 <10 <10	47 117 30 115 95		