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EXECUTIVE SUMMARY

INTRODUCTION

A Titan-24 DCIP survey was undertaken on behalf of Gold Mountain Mining Corporation, Vancouver,
Canada, from September 24th to October 10™, 2011, over the EIk Gold Project property.

The survey is located approximately 45 km Southeast of Merritt, British Columbia, and includes two lines
with azimuth 0°. Each line was surveyed using 3 spreads, for a total length of 7.1km each. For each
spread, the DC-IP utilized a pole-dipole configuration with 100m dipoles. Current and station overlap
were used to ensure better continuity between spreads. The magnetotelluric data were collected using
the same DCIP dipoles, plus another set of 100m dipoles oriented perpendicular to the profile, for
frequencies ranging from 10kHz down to 0.01Hz. The final coverage of the survey is 14.1km of DCIP, and
14.1km on MT, without current extensions and overlap.

SURVEY OBIJECTIVES

The main objective of the survey is to detect gold-bearing quartz veins to depth for drill targeting, and
delineation of mineralization and alteration.

RESULTS

The data were inverted using 2D inversion algorithms to produce sections of the resistivity and
chargeability distributions of the subsurface. The final interpretation is based on the integration and
comparison of the IP, the DC, and the MT results.

The MT inversion results highlight on the two profiles a deep conductive structure at depth located
between 5523500N and 5525500N. The results on the first hundreds of meters display a relative good
correlation between the MT and the DC results, delineating several structural contacts along the two
profiles. Two strong IP zones located on the northern end of the two profiles have been identified. It is
not clear what can be the cause of these anomalies and ground sampling or DDH follow is
recommended to better identify these structures. Except these IP zones, only a few weak to medium
chargeability high zones were identified. We note however that these IP weak anomalies delineate
some gradient zones on the IP models that correlate with the more conductive zones that are associated
with the structural zones.

From the analysis of all the results, a total of 16 targets zones had been identified along the two profiles,
with 6 as high priority, 6 as medium priority, and 4 as low priority. It is important to note here that
several of the target zones identified here have already DDH information over them. It will be them
important to complete the integration of the Titan-24 results with the known geology, the existing
drilling information, and other geophysical results (i.e., magnetics, ground or airborne EM) to further
enhance the interpretation and drill targeting.

We also recommend future follow up over the property with Titan-24 profiles east and west of the
current profiles, at regular 200m line spacing, and then consideration for 3D inversion of the data to
better delineate the geometry of the main target zone. A more detailed and high resolution survey over
the Pit Outline zone might be also considered on the exploration program.
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1 INTRODUCTION

This report presents the logistics and the results of the analysis of the Titan-24 DC - IP - MT data
acquired from 2011/09/24 to 2011/10/10 over the Elk Gold Project, on behalf of Gold Mountain Mining

Corporation.

The first part of this report presents the inversion results, their geophysical interpretation, and some
recommendations for future follow-up on the property.

The second part of the report presents the logistics of the survey, including the survey parameters and
methodology, and the survey results (data) in digital documents.

1.1 SURVEY OBIJECTIVES

The exploration objectives of the Titan 24 DCIP & MT survey at Elk Gold Project are to detect gold-
bearing quartz veins to depth for drill targeting, and delineation of mineralization and alteration.

The Titan 24 Distributed Acquisition System (DAS; Sheard, 1998) employs a combination of multiplicity
of sensors, 24-bit digital sampling, and advanced signal processing. It provides three in-dependent
datasets capable of measuring subsurface resistivity’s (structure, alteration & lithology) and
chargeability (mineralization) to depth.

The DC/IP component of the survey should provide an excellent means of delineating target
mineralization within the top 500m to 750m pending geologic and cultural environment. The MT
resistivity provides additional resistivity information from surface to depths beyond 1km. The MT
resistivity is useful for mapping geological contacts with resistivity contrasts and deep conductors that
may potentially represent alteration or mineralization.

1.2 GENERAL SURVEY INFORMATION

Quantec Project No.: CA00900T
Client: Gold Mountain Mining Corporation
Client Address: Suite 1700 — 700 West Pender Street,

Vancouver, British Columbia,
Canada V6C 1G8

Client representative: Peter Thiersch
Phone: (604) 558 4653 x237
Email: PeterT@aumtn.com

Project Name: Elk Gold Project
Survey Type: Titan-24 DC- IP - MT
Project Survey Period: 2011/09/24 to 2011/10/10



QUANTEC GEOSCIENCE LTD

General Location: Approximately 45 km Southeast of Merritt

Province British Columbia

Nearest Settlement: Merritt

Datum & Projection: NAD83 — Zone 10 North Hemisphere

Latitude & Longitude: Approx. 49°48'24”N, 120°19'13"W

UTM position: Approx. 692800m E, 5525150m N

List of Claims Surveyed 516755; 516750; 516740; 516743; 517116;
308695

Figure 1-1: General Project Location”.

! Image from Google Earth
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Figure 1-2: Surveyed Location Map with Property Claims’.

% {2011/10/31} Google Earth with Claim map from GeoBC-Information Services
[http://archive.ilmb.gov.bc.ca/dm/wms/index.html]
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Figure 1-3: Detailed Surveyed Location Map.
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2 PREVIOUS WORK & GEOLOGY

2.1 GEOLOGY OF THE AREA®

The Elk Property lies within the Intermontane tectonic belt of south-central British Columbia. Upper
Triassic magmatic arc sequence volcanic rocks and sediments of the Nicola Group cover the western
third of the project area. The eastern two-thirds is covered by Middle Jurassic age intrusive rocks of the
Osprey Lake Batholith (see Figure 2-1). The contact between the Nicola andesite and basalt and the
Osprey Lake granite and granodiorite trends NNE across the western part of the claim block. Early
Tertiary quartz-feldspar-porphyry dykes and stocks from the Otter Intrusive occur within the property.
The youngest units mapped are andesite dykes which cross cut all other lithologies.
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Figure 2-1: Property location and geology.

3 R.Pooley, s-Lomas, G-Hawthorn, and RB-Alexander; NI 43-101 Technical Report for a Preliminary Economic Assessment on the
Elk Gold Project, Merritt, British Columbia, Canada, for almaden Minerals. January, 2011.
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Figure 2-2: Detail view of the Geology over the open pit zone — Elk Property”.
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The Elk project is a gold-bearing mesothermal® quartz + sulphide vein deposit. This depositional

environment is characterised by deep circulation and evolution of meteoric water in structures
associated with major, strike-slip fault zones.

The B and WD Vein Complex (historically called the Siwash Vein, AlImaden Minerals) is emplaced within a
fault / fracture zone that strikes east-northeast and dips moderately to steeply southward. Most of the
previous mine production occurs within the granodiorite border phase of the batholiths (Lewis, 2000).

Gold mineralization occurs within quartz-sulphide veins and stringers most often within altered granite
and occasionally within the adjacent volcanics. Vein widths range from a few centimetres to several

meters wide. Pyrite is the most common sulphide (Conroy, 1994), ranging from 5 to 80% with higher
grades associated with chalcopyrite and tetrahedrite.

2.2 OTHER GEOLOGICAL/GEOPHYSICAL/DDH

Collar information on a total of 52 drill holes located along the two surveyed profiles over the survey

area had been provided. Figure 2-3 present the plan maps of the collars of these DDH. No assay
information along these DDH had been provided.

Trace of these DDH will be included in the 2D sections.

Images from Almaden Mineral web site: http://www.almadenminerals.com/Projects/Siwash.html

> See Dubé et al, 2007 for a review of mesothermal gold deposit type.

10
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Figure 2-3: Collar information of the DDH —over the two Titan24 profiles.
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3 RESULTS AND INTERPRETATION

This section presents the results of the 2D inversion of the Titan-24 data and interpretation in context
with the survey objectives and significance to future exploration at Elk Gold Project.

The Titan-24 system acquires three types of geophysical data — magnetotelluric (MT), direct current
resistivity (DC), and induced polarization (IP).

The MT and DC methods are used to resolve the resistivity distribution of the subsurface by measuring
the electric potential (DC) and the variation of natural source electric and magnetic fields (MT).
Resistivity can be an indicator of metallic mineralization, but is more often than not controlled by rock
porosity and is therefore an indirect indicator of alteration and mineral grain fabric.

In the induced polarization method, electrical capacitance or chargeability of the subsurface is
measured. Chargeability is a near-direct indicator of the presence of sulphide mineralization, in both
massive and disseminated forms. Chargeable mineralization is most commonly various sulphides and
graphite, but also includes clay-type minerals potentially making it a useful tool for base-metals
exploration.

For each line surveyed, the DC-IP utilized a pole-dipole configuration with 100m dipoles with the current
injection points located at every 100m between the potential dipoles along the lines. Each profile was
surveyed using 3 spreads. Current overlap and station overlap was used between the spreads to assure
continuity over the measurement.

The MT utilized the same DC-IP dipoles, plus another set of 100m dipoles oriented perpendicular to the
profile at every second site to acquire electric field data. One set of high-frequency and one set of low
frequency magnetic sensors was used on the line. A remote site with the same magnetic sensor
configuration was used to improve processing of the MT data.

Detailed information on the survey logistics, acquisition parameters and screen capture of the acquired
data for the survey are provided in appendices at the end of this report.

The final inversion models are presented graphically in Geosoft plot format along with an interpretation
overlay and comments on the most significant results and recommended targets. Scaled sections and
plan maps of the resistivity (DC and MT) and of the chargeability models are also provided at the end of
this report.

Detail results, i.e. observed DC-IP-MT data and equivalent calculated responses for each model, are
presented on a line per line basis in PowerPoint (PDF) documents delivered in the digital archive
(CD/DVD) attached to this report.

3.1 OVERVIEW OF INVERSION PROCEDURE

3.1.1 DCRESISTIVITY & INDUCED POLARIZATION INVERSIONS

DC-IP is an electrical method that uses the injection of current and the measurement of voltage
difference along with its rate of decay to determine the subsurface resistivity and chargeability,
respectively. Depth of investigation is mainly controlled by the array geometry, but may also be limited
by the received signal, which is dependent on transmitted current, and ground resistivity. The
chargeability parameter is particularly susceptible to cases with a low signal-to-noise ratio. In its

12
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standard configuration (a=100m / n=0.5-23.5) the Titan-24 surveys typically image DC resistivity to
depths of 500-750m, and the IP typically images to 500-750m, in sub-vertical tabular geologic settings
and up to 50% more for sub-horizontal. The differences in penetration are a function of the relative
property contrasts and relative signal-to-noise levels between the two measurements. decreases or
increases proportionally to the dipole-size (i.e., 300-500m for 50m dipoles, and 1000-1500m for 200m
dipoles). A detailed introduction to DC-IP is given in Telford, et al. (1976).

The primary tool for evaluating the Titan-24 data is through the inversion of the data in two-dimensions
(2D). An inversion model depends not only on the data collected, but also on the associated data errors
in the reading and the “model norm”. Inversion models are not unique and may contain “artefacts” from
the inversion process. The inversion model may not accurately reflect all of the information apparent in
the actual data. Inversion models must be reviewed in context with the observed data, model fit, and
with an understanding of the model norm used.

The Titan-24 DC and IP data were inverted to produce cross-sections of the resistivity and chargeability
variations along the survey lines. The UBC DCIP2D inversion code (Oldenburg & Li, 1994) was used for
the 2D inversion of the DC and IP data.

Potential difference (voltage) and phase values were used as input data in the DC and IP inversions,
respectively. DC Resistivity and induced polarization (IP) data are first pre-conditioned; the error of each
data point is adjusted for the inversion process using a general error equation similar to:

V
errors P =A% P
IP IP

with the set of parameters {A, B,C} adjusted (and large errors data points removed) for each dataset

until we achieve convergence with relaxation of the DC or IP models (see example of Model Norm fit
curve on Figure 3-1).

Vp
+BxAcqg_Erro P +C (floor)

iterations done: 40

P22 Y 100000
- o
24 S

i,
o %o,
" M s S0 S AP

100000 J

orm

| 1000

d i | 100

g 17 25 33
Iteration #

10000

Data misfit

Model N

Figure 3-1: Example of DC-IP misfit curves showing relaxation of the model after
iteration #40.

Three 2D inversions were carried out along each line.

The DC data was inverted using an unconstrained 2D inversion with a homogenous half-space of average
input data as starting model. The DC models are labelled as ‘smDC'.

13
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Two IP inversions are calculated from the same data set and parameters, but they use a different
reference model®. The first inversion of the IP data uses the previously calculated DC model as the
reference model, and is labelled the ‘IP dcref model’. The second IP inversion uses a homogeneous half-
space resistivity model as the reference model and is labelled ‘IP hsref model’ or ‘IP nullcon’ model. This
model is included to test the validity of chargeability anomalies, and to limit the possibility of inversion
artefacts in the IP model due to the use of the DC model as a reference.

The DC and IP inversion use the same mesh. The horizontal mesh was set as 2 cells between electrodes
on the double spread lines, and as 3 cells between electrodes on the single spread lines. The vertical
mesh was designed with a cell thickness from 10 to 15m for the first 200-300m to accommodate the
topographic variation along the profile, and then it increases from 20 to 100m with depth. The
inversions were generally run for a maximum of 50 iterations.

3.1.2 AUDIO-MAGNETOTELLURIC INVERSIONS

The Audio-Magnetotelluric (AMT) method is a natural source method that measures the variation of
both the electric (E) and magnetic (H) field on the surface of the earth in order to determine the
distribution at depth of the resistivity of the underlying rocks. A complete review of the method is
presented in Vozoff (1972) and Orange (1989).

The measured MT impedance Z, defined by the ratio between the E and H fields, is a tensor of complex
numbers. This tensor is generally represented by its two off-diagonal elements. In a 1D earth model, i.e.
the resistivity varies only with depth, there is no strike direction and the two off-diagonal impedances
are equal. In the 2D case, i.e. when the resistivity varies with depth and perpendicularly to the strike,
and when the profile is set perpendicular to the strike direction, the two off-diagonal elements are not
equal but reflect the variation of the resistivity along two directions, one parallel and the other
perpendicular to the strike, i.e., the TE (Transverse Electric; E parallel to the strike) and the TM
(Transverse Magnetic; E perpendicular to the strike) modes.

Both TE and TM impedances are represented by an apparent resistivity (a parameter proportional to the
modulus of Z) and a phase (argument of Z). The variation of those parameters with frequency relates the
variations of the resistivity with depth, the high frequencies sampling the sub-surface and the low
frequencies the deeper part of the earth. However the apparent resistivity and the phase have an
opposite behaviour. An increase of the phase indicates a more conductive zone than the host rocks, and
is associated with a decrease of the apparent resistivity. The objective of the inversion of MT data is to
compute a distribution of the resistivity of the surface that explains the variations of the MT parameters,
i.e. the response of the model that fits the observed data. The solution however is not unique and
different inversions must be performed (different programs, different conditions) in order to test and
compare solutions for artefacts versus a target anomaly.

The primary tool for evaluating the Spartan MT data is 1D, 2D, and 3D inversion.

The depth of investigation is determined primarily by the frequency content of the measurement. Depth
estimates from any individual sounding may easily exceed 20 km. However, the data can only be
confidently interpreted when the aperture of the array is comparable to the depth of investigation.

The inversion model is dependent on the data, but also on the associated data errors and the model
norm. The inversion models are not unique, may contain artefacts of the inversion process and may not
therefore accurately reflect all of the information apparent in the actual data. Inversion models need to

® The reference model is used to calculate the sensitivity matrix used at each iteration for the IP inversion.

14
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be reviewed in context with the observed data, model fit. They must have an understanding of the
model norm used and if the model is geologically plausible.

For this study, 1D and 2D inversions were performed on the data.

A 1D model at each MT site and for each mode (TE, TM, and DET-determinant’) has been calculated as a
QA/QC tool using a Occam layered inversion program. This inversion calculates a 1D resistivity earth
model (i.e., the resistivity varies only with depth) that best fits the data. Geosoft plot of the Stitched 1D
models calculated from the determinant of the impedances is presented in the Appendix |.

The 2D inversions were completed on each profile using the “un-rotated” data which assumes the strike
direction is perpendicular to the profile for all sites: the TM mode is then defined by the inline E-field
(and cross line H-field), and the TE mode is defined by the cross line E-field (and inline H-field) data.

Two different 2D inversion algorithms were used to invert the MT data. The first inversion procedure
was carried out using the Quantec proprietary Phil Wannamaker inversion algorithm (PWm). The second
inversion was carried out using the Randy Mackie inversion code (RLM). From previous work, we noticed
that the PWm code has a tendency to accentuate anomalies with sharp vertical boundaries and to
locate these anomalies at a greater depth than the RLM code. In contrast, the RLM code has a tendency
to accentuate anomalies with a layered (horizontal) aspect resulting in a smooth lateral variation and
lower depth to top of the anomalous bodies. Therefore, the choice of the inversion algorithm and the
inversion results to be used in interpretation is generally dataset definitive and must confirm with the
geological setting of the survey area.

All inversions used the TE and TM resistivity and phase from 10kHz to 0.01Hz and 10kHz to 0.1Hz (b
models), interpolated at 6 frequencies per decade, assuming 5% error for the resistivity and 3 degrees
error for the phase.

The different models calculated are:

The inversion model MUH4b and PUH4 were derived from inverting the TE and TM apparent
resistivity and phase MT data starting from a half space model of 100 Ohm-m, no topography,
using the RLM and PWM program respectively.

The PWm inversion model PUTH4 and PUTH4b were derived from inverting the TE and TM
apparent resistivity and phase MT data starting from a half space model of 100 Ohm-m,
including topography. The model PUTH4b is the inversion completed using data between 10kHz
to 0.1Hz.

Finally, the model PUTD4b was derived from inverting the TE and TM apparent resistivity and
phase MT data starting from the smooth stitched 1D DET inversion model (model m1d).

” The determinant of the impedances is defined as: DET= ,nyzyx —ZXXZyy

15
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3.2 DiscuUsSION OF RESULTS

The interpretation results described and presented in this section are interpreted as the most significant
geophysical anomalies and potential targets from the final DC, IP, and MT inversion models. The DC
model, IP (DC referenced) model, and the MT PUTH4b models are used for presenting the interpretation
results. These inversion models were found to produce consistent results along the survey lines and
illustrate the resistivity and chargeability distribution of subsurface structures and occurrence of
potential mineralized zones in the property.

On the graphics, variations of the geophysical parameters are:
> IP Chargeability model Values from 0 to 60mrads;
» DC & MT Resistivity models Values from 10 to 1000 Ohm-m.

The main objective of the survey is to detect gold-bearing quartz veins to depth for drill targeting, and
delineation of mineralization and alteration.

The zones of anomalous resistivity and chargeability are classified and assigned a target type according
to amplitude, size and IP Chargeability and DC Resistivity association as follows:

T1: Strong IP response located coincidently with DC resistivity low, interpreted to be consistent
with sulphide mineralization;

T2: Moderate to high IP response located at the edges and/or over DC resistivity moderate to
high gradient zones, interpreted to be consistent with geological structures and represent
disseminated mineralization and/or alteration zones;

T3: Weak IP response coincident with DC resistivity high, interpreted to be consistent with the
leached cap consisting of remnant silicification.

Analysis of the 2D results with the DDH information tend to indicate that main target type, as delineated
by the results over the current open pit zone, seem to be correlated to type T2, with a resistivity low
associated with a weak or gradient chargeability zone. Other type or association should be reviewed,
and analysed, accordingly to local geology.
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3.2.1 L28000E
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Figure 3-2: DC-IP-MT 2D results over line L28000E, with interpretation.

Figure 3-2 presents the DC and MT (resistivity) and IP (chargeability) results on line L28000E.

We observe that the MT and DC sections display lateral variation of the resistivity; such variations are
interpreted as potential contact or faults between geological units. We note that there is a good
correlation regarding the location of these structural features labelled from F1 to F12 on Figure 3-2.

We are able to characterize on the DC and MT models several more conductive zones. They are
delineated by the inferred structural features.

A first deep conductive zone C15 is characterized between 5523500N and 5525500N; it is surrounded by
two more resistive zones located at the southern and northern end of the profile. That structure is
delineated by the contacts F2 on the south and by F9+F12 on the north. We want to indicate here that a
similar structure is also observed on the profile L32000E (e.g., €25 on L32000E). The southern more
resistive unit is well defined on the DC model. The characterization of the northern resistive unit is
however not well resolved on the DC model as its depth is at the limit of penetration of the DC method.
This feature might represent a main but deep shear zone or other structural feature, or alteration zone.

Zone C1 corresponds to a near surface more conductive zone located on top of two contacts F1 and F2.
The conductive zones C2 (not well defined on the DC) and €3 seem to be correlated with the structural
zone F2, while the conductive zones C4 and C5 are apparently associated with the contact F4. The more
conductive zones €6 and C7 are associated with the contacts F5 and F6. We note that the DC model
present a stronger signature for C7 than the MT, suggesting that C7 has to be taken with care.

In that area, we can identify a weak IP zone IP1, but it appear more like formational, i.e., a variation
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between the overburden and the deeper geological units. We note however gradient on the IP model
near F3 and F4, that can be associated with the more conductive zones C3 (F3) and C4 (F4); that could
represent potential area of interest, but may be with low priority. It is important to indicate here the
conductive zone C3 corresponds to an anomaly already sampled by DDH. So a review of the DDH
information over C3 might refine priority of the more conductive zones over that area.

Another weak IP zone IP2 is identified between F4 and F5; that IP gradient zone seems to correlate with
two more conductive zones. The first conductive zone C5 is a small conductive zone located near
surface, and so might not represent a principal target. The second more conductive zone C6 is well
defined on both the DC and MT models, and it is located near a weak IP gradient zone; C6 might
represent a potential target zone, but as a medium priority. Following results over C6, the deeper
conductive zone C7 might be considered as a deep target zone, knowing that C7 is associated with a no
chargeable zone.

The conductive zone C8 is located at the edge of the structural zone F7. It is also located near a week IP
zone IP3 located between F6 and F7. The conductive zone C8 is the southern of a set of more conductive
zones (€9, €10, and C11) located between 5523750N and 5526000N, an area delineated by the
structural feature F10. That zone includes the open pit zone (5525000N to 5526000N). Anomaly C9 is
located near a weak IP gradient IP4, and seems to be associated with a structural feature F8. The more
conductive zone €10 and C11 are well defined on the MT model, but are ‘known’ zone as they are
located in the Pit Outline zone, and so, already ‘sampled’ by numerous drill holes. The more conductive
zones C8, C9 represent potential target zones, and will be rank as first priority target due to their
potential (structural) association with C10 and C11.

The conductive zone C12 is located just north of the Pit Outline zone. It is clearly associated with the
structural zone F9, and can also be associated with the strong IP anomaly IP5. F9, as F2, might represent
a main structural feature in the area. The conductive zone C12 represents a first priority target due to
the association conductive and chargeable.

The conductive zone C13 is located at the northern end of the profile. It is located on top of a strong but
near surface IP high zone (IP6). It is not clear what can be the cause of the strong IP response IP6, and
so, C13 remain a potential target, but as a medium to low priority: IP6 need to be clarified.

Finally, we would like to mention a potential more conductive zone C14. It is located below the strong IP
zone IP6, but at the northern end of the profile; it remains so not well resolved. We will recommend,
after IP6 being explained, to re-evaluate C14 as potential deep target.
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3.2.2 L32000E
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Figure 3-3: DC-IP-MT 2D results over line L32000E, with interpretation

Figure 3-3 presents the DC and MT (resistivity) and IP (chargeability) results on line L32000E.

We observe that the MT and DC sections display lateral variation of the resistivity; such variations are
interpreted as potential contact or faults between geological units. We note that there is a good
correlation regarding the location of these structural features labelled from F13 to F22 on Figure 3-3.

We are able to characterize on the DC and MT models several more conductive zones. They are
delineated by the inferred structural features.

We first note a deep conductive zone C25 centered near 5524500N. That feature is surrounded by two
more resistive zones located at the southern and northern end of the profile, delineating the structural
features F14 (south) and F22 (north). The two more resistive units are well defined on both the MT and
DC models. That structure is clearly associated with the deep conductive feature C15 observed on
L28000E. The geometry of the C25 conductive zone seems to indicate that we might be close to the
eastern extend of that deep structure. This feature might represent a main but deep shear zone or other
structural feature, or alteration zone.

The conductive zone C16 is associated with the structural feature F15. That conductive zone appears
well defined on both the DC and MT models. There is no clear IP high zone near that conductive zone,
but we can note a gradient of the IP north of the IP weak high zone IP8. C16 might represent a potential
target zone, but as a medium priority.
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The more conductive zone C17 and the deeper but less well resolved C18 one are located between two
structural features: F16, and F17. These conductive zones are located, as C16, at the edge between a
weak IP zone, IP9, and a no chargeable zone. C17 might represent a potential target zone, but as a
medium priority.

The more conductive zone C19 is associated with the structural feature F18. That feature is better
defined on the MT model. There are no clear association between C19 and an IP high, or a gradient of
the IP. C19 might represent a potential target zone, but as a low priority. We would like to indicate there
is a DDH located just north of that conductive zone. Results on that DDH should be review prior follow
up on that conductive zone.

The more conductive zones C20 and C21 are located near the structural feature F19. It seems to be
located near a weak IP anomaly (IP11), and so near a gradient of the IP. C20 and €21 might represent
potential target zones, but as a medium priority. There is DDH information over C21. Results on those
DDH should be reviewed prior follow up on the conductive zone.

The more conductive zone C22 is located in the center of a weak IP zone IP11. There is no clear evidence
for a structural zone associated to that conductive feature. However, it is located just south of the Pit
Outline zone. It might represent potential target zones, but as a low priority.

The more conductive zone €23 is located near the structural feature F20. That area is well defined on
the DC and MT model, and seems associated with a small variation of the IP between IP11 and IP12,
coincident with F20. This conductive zone is located in the Pit Outline zone, and so, already ‘sampled’ by
numerous drill holes.

The more conductive unit C24 is a near surface zone delineated by F21 that extends from the north limit
of the Pit Outline zone to the northern end of the profile. We identify a high IP zone IP13 below that
conductive unit, just at the edge of the profile, dipping to the south. That IP zone IP13 seems to
correlate with the IP high zones IP5-6 observed on L28000E. It could be of interest to test that strong IP
zone on L32000E (IP5 on L28000E), as it seems to extend below the current Pit Outline zone.
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4 CONCLUSIONS AND RECOMMENDATIONS

This report presents the logistics and the results of the analysis of the Titan-24 DC - IP - MT data
acquired from 2011/09/24 to 2011/10/10 over the Elk Gold Project property, on behalf of Gold
Mountain Mining Corporation.

The exploration objectives of the Titan 24 DCIP & MT survey at Elk Gold Project are to detect gold-
bearing quartz veins to depth for drill targeting, and delineation of mineralization and alteration.

The survey is located approximately 45 km Southeast of Merritt, British Columbia, and includes two lines
with azimuth 0°. Each line was surveyed using 3 spreads, for a total length of 7.1km each. For each
spread, the DC-IP utilized a pole-dipole configuration with 100m dipoles. Current and station overlap
were used to ensure better continuity between spreads. The magnetotelluric data were collected using
the same DCIP dipoles, plus another set of 100m dipoles oriented perpendicular to the profile, for
frequencies ranging from 10kHz down to 0.01Hz. The final coverage of the survey is 14.1km of DCIP, and
14.1km on MT, without current extensions and overlap.

The data were inverted using 2D inversion algorithms to produce sections of the resistivity and
chargeability distributions of the subsurface. The final interpretation is based on the integration and
comparison of the IP, the DC, and the MT results.

The MT inversion results highlight on the two profiles a deep conductive structure at depth located
between 5523500N and 5525500N. The results on the first hundreds of meters display a relative good
correlation between the MT and the DC results, delineating several structural contacts along the two
profiles. Two strong IP zones located on the northern end of the two profiles have been identified. It is
not clear what can be the cause of these anomalies and ground sampling or DDH follow is
recommended to better identify these structures. Except these IP zones, only a few weak to medium
chargeability high zones were identified. We note however that these IP weak anomalies delineate
some gradient zones on the IP models that correlate with the more conductive zones that are associated
with the structural zones.

From the analysis of all the results, a total of 16 targets zones had been identified along the two profiles,
with 6 as high priority, 6 as medium priority, and 4 as low priority. It is important to note here that
several of the target zones identified here have already DDH information over them. It will be them
important to complete the integration of the Titan-24 results with the known geology, the existing
drilling information, and other geophysical results (i.e., magnetics, ground or airborne EM) to further
enhance the interpretation and drill targeting.

We also recommend future follow up over the property with Titan-24 profiles east and west of the
current profiles, at regular 200m line spacing, and then consideration for 3D inversion of the data to
better delineate the geometry of the main target zone. A more detailed and high resolution survey over
the Pit Outline zone might be also considered on the exploration program.
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Table 4-1: Summary of tarqget zones over the Elk Property.

Profile Station Conductive Zone Priority
(UTM north/depth)
L28000E 5522500N / 100m C3 (DDH available) Low
5522800N / 300m C4
5523300 / 200m C6 Medium
5526750/ 170m C13
5524000N / 275m C8 High
5524550N / 250m C9
5525250N / 170m C10 (DDH available)*
5525500N / 160m C11 (DDH available)*
5526100N / 160m C12
L32000E 5523750N / 175m C19 (DDH available) Low
5525000N / C22
5522300N / 360m C16 Medium
5523250N / 220m C17
5524300N / 275m C20
5524650N / 181m C21 (DDH available)
5525425N / 200m C23 (DDH available)*  High
Note 1: conductive zones located in the Pit Outline Zone

Respectfully Submitted
Toronto, ON, the 08/11/2011,

Benoit Tournerie Wade Lee
Quantec Geoscience Ltd Quantec Geoscience Ltd
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5 STATEMENT OF QUALIFICATIONS

BENOIT TOURNERIE

|, Benoit Tournerie, declare that:

| am a Geophysicist with residence in Toronto, Ontario and am presently employed in this
capacity with Quantec Geoscience Ltd., Toronto, Ontario;

| obtained a License (equivalent to B.Sc.) in 1989, a DEA (equivalent to M.Sc.) in 1991, and a
Doctorate with Honours (equivalent to Ph.D.) in December 1995, in Earth Sciences, option
geophysics, from the University of Rennes 1, Rennes, France;

| am a registered geophysicist, since 2008, with license to practice in the Province of Ontario
(APGO member # 1609); a registered geoscientist, since 2008 with a license to practice in the
Province of Quebec (0OGQ #1322); a registered geoscientist, since 2009 with a license to practice
in the Province British Columbia (APEG-BC #33786);

| have practiced my profession continuously since April, 1996 in North and South America, in
Europe, and in Oceania;

| am a member of the Society of Exploration Geophysicists (SEG), the European Association of
Geoscientist and Engineers (EAGE), and the Canadian Exploration Geophysics Society (KEGS);

| have no interest, nor do | expect to receive any interest in the properties or securities of Gold
Mountain Mining Corporation, its subsidiaries or its joint-venture partners;

| am the Professional Geophysicist responsible for this project and have authored this
Geophysical Report;

| was in charge of the Quality Control and Assurance of the acquired data; | have reviewed the
survey results and the logistics sections of the report, and can attest that these accurately and
faithfully reflect the data acquired on site;

| undertook the MT inversions of the data, and have compiled the final processed data,
inversions and interpretation results contained in the Geophysical Report.

The statements made in this report represent my professional opinion in consideration of the
information available to me at the time of writing this report.

Toronto, Ontario, the 08/11/2011

Benoit Tournerie, D. Sc., P.Geo.
Quantec Geoscience Ltd.
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JIMMY STEPHEN

I, Jimmy Stephen, declare that:

| am a Geophysicist with residence in Toronto, Ontario and am presently employed in this
capacity with Quantec Geoscience Ltd., Toronto, Ontario;

| obtained my Bachelor of Science Degree (B.Sc.), Physics from Mahatma Gandhi University,
India in 1994, a Master of Science and Technology Degree (M.Sc.Tech.), Marine Geophysics from
Cochin University of Science and Technology, India in 1998, and Doctor of Philosophy (PhD),
Geophysics from Swami Ramanand Teerth Marathwada University, India in 2004;

| have practiced my profession continuously since November 1998 in India, Middle East and
North America.

| am a member of the Society of Exploration Geophysicists (SEG), and the American Geophysical
Union (AGU);

| have no interest, nor do | expect to receive any interest in the properties or securities of Gold
Mountain Mining Corporation, its subsidiaries or its joint-venture partners;

| undertook the 2D DC-IP inversions. The statements made in this report represent my
professional opinion based on my consideration of the information available to me at the time
of writing this report.

Toronto, Ontario, the 08/11/2011

Jimmy Stephen, PhD

Quantec Geoscience Ltd.
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WADE LEE

I, Wade Lee, declare that

| am a data processor with residence in Toronto, Ontario and am presently employed in this
capacity with Quantec Geoscience Ltd., Toronto, Ontario.

| obtained a Bachelor of Applied Science Degree in Chemical Engineering (B.Sc.) at Queen’s
University,Kingston, ON, in spring of 2009.

| have practiced my profession continuously since February, 2011 in North America, Europe and
South America.

| have no interest, nor do | expect to receive any interest in the properties or securities of Gold
Mountain Mining Corporation, its subsidiaries or its joint-venture partners;

| was the data processor on site, responsible for the quality control of data acquired throughout
the survey. | compiled and edited the logistics report. The statements made in this report
represent my professional opinion based on my consideration of the information available to
me at the time of writing this report.

Toronto, ON, the 08/11/2011,

Wade Lee, B.Sc.

Quantec Geoscience Ltd.

25



QUANTEC GEOSCIENCE LTD

6 DIGITAL ARCHIVE

The CD or DVD attached to this report contains a copy of all the inversion results, final processed data,
including the survey files, the daily processing (and field) notes, and an electronic copy of this report
(with all appendices).

General Description of the CD/DVD Structure

Folder Sub level 1 Sub level 2 Description

Contract and Client Contract, technical reports,
Info images, and other documents

Fields Results Final field results CSV, EDI,
surveyFiles, and Processing
Notes

Presentation of Power Points, PDF, and

Results documents presented or
emailed to client

Geosoft Geosoft Files

Base Maps Base maps, location, etc
DDH DDH info (if applicable)
Interpretation Interpretation

Sections 2D sections

Gocad Gocad Project
ClientData Client Gocad Files
QuantecTSfiles Quantec Gocad Files

invDCIP DC IP inversion

Line ## data raw data and error conditioning

smDC DC inversion
smlIP_dcref IP with DC reference
smlIP_hsref IP with Half-space reference

invMT MT inversions

Data, 1D and 2D models are
included in the geotools db's
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A PRODUCTION SUMMARY
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Date

Field
Activities and Observations

Line Spread

Line
Start

Line
End

Tx
Start

Tx End

Read
MT
(km)

Read
IP
(km)

Read IP
Current
Extension

(km)

23/09/2011

Mobilization to Kamloops and to Merrit
(BC)

24/09/2011

Moved all equipment to Grid, completed
site orientation. Performed PST and
Remote Site set up and tested. Infinite
was laid out and Line 93200e was partially
setup.

93200E_sp1

25100N

27600N

24050N

27650N

0.0

0.0

0.0

25/09/2011

Finished setup Line 93200E Spread 1. Long
troubleshooting due to high contacts to
be bought down using salt water. IP Test
readings were positive. Client was moving
drills and equipment around all day, had
to disconnect and reconnect all (10) of the
road crossings several times. Surveyed MT
on line.

93200E_sp1l

25100N

27600N

24050N

27650N

2.5

0.0

0.0

26/09/2011

Due to severe geo-magnetic storm active
all day and weather (heavy rain and snow
during the day), no valid IP data could be
acquired. Data were affected by strong
Telluric noise overpowering the IP signal
and by power leaks. To be considered a
weather day.

93200E_sp1l

25100N

27600N

24050N

27650N

0.0

0.0

0.0
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Date

Field
Activities and Observations

Line Spread

Line
Start

Line
End

Tx
Start

Tx End

Read
MT
(km)

Read
IP
(km)

Read IP
Current
Extension
(km)

27/09/2011

IP completed on Line 93200E Spread 1.
Due to unknown problem with doghouse
location and/or infinite the data were not
good enough and IP reacquisition is
necessary.

93200E_sp1

25100N

27600N

24050N

27650N

0.0

0.0

0.0

28/09/2011

Resurveyed IP on line 93200E Spread 1;
moved to Line 92800E (Spread 1); unable
to survey MT due to incomplete
troubleshooting and high contacts.

93200E_sp1l

25100N

27600n

24050N

27650N

0.0

2.5

1.0

29/09/2011

Completed setup of line 92800E Spread 1.
Surveyed IP and MT

92800E_sp1

25100N

27600N

24050N

27650N

2.5

2.5

1.0

30/09/2011

Due to harvesting issues at remote site,
the MT was reacquired. Day shift
prepared the next line, moving all power
wire, rerouting the infinite wire and
swapping out all discharged batteries on
the line.

92800E_sp1l

25100N

27600N

24050N

27650N

0.0

0.0

0.0

01/10/2011

Moved to Line 92800E Spread 2. Attempt
to survey IP was not successful due to LF
tellurics; MT was surveyed

92800E_sp2

22800N

25300N

21750N

26350N

2.5

0.0

0.0

02/09/2011

Surveyed IP on Line 92800E Spread 2;
picked up gear and started preparation of
next line; coils were moved to new line.

92800E_sp2

22800N

25300N

21750N

26350N

0.0

2.5

2.0

03/10/2011

Moved to Line 93200E Spread 2; surveyed
MT.

93200E_sp2

22800N

25300N

21750N

26350N

2.5

0.0

0.0
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Date

Field
Activities and Observations

Line Spread

Line
Start

Line
End

Tx
Start

Tx End

Read
MT
(km)

Read
IP
(km)

Read IP
Current
Extension
(km)

04/10/2011

Surveyed IP on Line 92800E Spread 2;
problems with power leaks due to wet
weather (rain in the afternoon); 0.9Km of
IP will be reacquired the next morning;
surveyed more LF events for MT.

93200E_sp2

22800N

25300N

21750N

26350N

0.0

2.5

1.0

05/10/2011

Attempt to complete IP on line 93200E
Spread 2 failed due to bad weather;
doghouse was moved to south end of line
to eliminate running power through entire
array; several leaks along infinite wire.

93200E_sp2

22800N

25300N

21750N

26350N

0.0

0.0

0.0

06/10/2011

IP completed on line 93200E Spread 2;
moved to Line to 93200E Spread 3 and
surveyed MT

93200E_sp2
93200E_sp3

20500N

22900N

20350N

23950N

2.4

1.0

1.0

07/10/2011

Surveyed only 1.8km of IP due to declined
permission by the Ministry of
Transportation to cross the highway
through the culver; the infinite wire
needed to be rerouted and the search of
access was time consuming; leaks in the
line due to bad weather; extra HF events
were acquired for MT.

93200E_sp3

20500N

22900N

20450N

23950N

0.0

1.8

0.0

08/10/2011

Completed IP on line 93200E Spread 3;
moved to Line 92800E Spread 3 and
surveyed MT.

93200E_sp3
92800E_sp3

20500n

22900N

20450N

23950N

2.4

0.6

1.0

09/10/2011

Surveyed IP on line 92800E Spread 3; pick
up gear. End of Acquisition.

92800E_sp3

20500N

22900N

20450N

23950N

2.4

1.0

29




QUANTEC GEOSCIENCE LTD

Read IP
Read | Read | Current
Field Line Line Tx mMT IP Extension
Date Activities and Observations Line Spread | Start End Start TxEnd | (km) | (km) [ (km)
10/10/2011 | Picked up all Titan equipment and
performed inventory and packing. Job is
completed.
TOTAL 14.8 14.8 8.0
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B SURVEY LOGISTICS
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B.1 AcCCESS
Base of Operation: Merritt, British Columbia
Mode of Access to Grid: Truck
Mode of Access to Lines: ATV, by foot
B.2  SURVEY GRID AREA
Established by: Gold Mountain Mining Corporation.
Coordinate Reference System: Grid referenced to UTM Coordinates
Datum & Projection: NADS83 / Zone 10U
Grid Azimuth: 0°
Magnetic Declination: 17°E
Station Interval: 100 m
Method of Chaining: Metric, slope distance, pickets GPS surveyed
Surveyed Line-start and -end point coordinates.
_ Grid Coordinate UTM Coordinate Start UTM Coordinate End
Line Start End Easting Northing Easting Northing
L92800E 20500 27600 692800 5520500 692800 5527600
L93200E 20500 27600 693200 5520500 693200 5527600
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B.3 PRODUCTION AND COVERAGE

Survey Period/days:

Survey Days (read time):

Mob/Demob:

Parallel Sensor Test:

Weather/Down Days:

Number of Spreads surveyed:

Number of Lines surveyed:

DCIP Survey Coverage:

MT Survey Coverage:

QUANTEC GEOSCIENCE LTD

September 24™ — October 10", 2011

17 days
13 days
2 days
1 day

1 day

6

2

23.4 km (with overlap and current extensions)

14.8 km

Max and Min Pole (Tx) and Potential (P1-P2) Electrode Position.

Line Setup | MinP1 | Max P2 | Min Tx | Max Tx | Line Coverage (km) [ Total Coverage (km)
s1 25100 | 27600 | 24050 | 27650 2.5 3.6
L92800E S2 22800 | 25300 | 21750 | 26350 2.5 4.6
S3 20500 | 22900 | 20450 | 23950 2.4 35
s1 25100 | 27600 | 24050 | 27650 2.5 3.6
L93200E S2 22800 | 25300 | 21750 | 26350 2.5 4.6
S3 20500 22900 20450 23950 2.4 3.5
TOTAL 14.8 23.4
MT Survey Coverage (Electrode to Electrode).
Line Setup Min Extent (m) Max Extent (m) Coverage (km)
s1 25100 27600 2.5
L92800E S2 22800 25300 25
S3 20500 22900 24
S1 25100 27600 2.5
L93200E S2 22800 25300 2.5
S3 20500 22900 2.4
TOTAL 14.8
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B.4 PERSONNEL

Project Manager:
Responsible Geophysicist:

Data Processing (in field):

Crew Chief & IP Operator:
MT operator:

Remote Operator:

Field Technicians:

INSTRUMENTATION

Receiver System:

Transmitter (DCIP Surveys):

Power Supply (DCIP Surveys):

Transmit Electrodes

Receiver Electrodes:

QUANTEC GEOSCIENCE LTD

Kevin Blackshaw
Benoit Tournerie

Wade Lee
William Xu

Nick Hnotchuk

Warren Gregory
Steven Kana
Allen Boissoneau

Matthew Cousineau

Ryan Foyle

John Mantyla
Luc Lafond

Matt King

Brian Commanda
Chad Commanda
Thomas Reid
Luchin Thagya
Steve Zuniga

Quantec Distributed Array Acquisition System:

- 61 channels max. per system (55ch operationally with
internal A/D conversion (24bit @120db / dual speed
@120-48kHz), and buffer memory (6Mb).

24 x 2-channel Acquisition Modules (AMs)
13 x 1-channel Acquisition Modules (AMs)
AM data transmission using LAN cabling

- 2 Central Recording Units (CRU; 140 Gb data storage)
at base & at MT remote reference (MT survey)

- 2 GPS synchronization clocks
(10nsec precision /12.3MHz clock-speed),
at base & at MT remote reference (MT survey)

- 2 PC-based Central Processing Units (CPU)
at base & at MT remote reference (MT survey)

GDD (5kW) with frequency/waveform
control, using CRU and Current Monitor (CM)

Honda 6500W generator
4 x 1.2cm diameter 1 meter long stainless steel rods

Ground contacts using stainless steel rods
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Receiver Coils (MT Surveys): Low Frequency Range (0.0001Hz to 1kHz):
4 Magnetometers (P50 model)
{2 at base & 2 at remote}
Base: P50-2114, P50-2130
Remote: P50-2131, P50-2203

Mid to High Frequency Range (1Hz to 25kHz)
4 Magnetometers (BF-6 model)
{4 at base & 2 at remote}

Base: (Set 1) BF6-5009, BF6-6176
(Set 2) BF6-6179, BF6-6277
Remote: BF6-5007, BF6-5008

Titan 24 Distributed
Acquisition System

— current electrode (mobile)
50m i indinepotential electrode (fixed)
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Titan-24 DCIP and MT Schematic Survey Layout.
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B.6 DCIP SURVEY SPECIFICATION

B.6.1 GEOMETRY
Survey Array: Dipole-Pole-Dipole Array

Receiver Configuration: 23-24 Ex = Continuous In-line voltages,
12-13 Ey = Alternating (2-stations) cross-line voltages®.

Array Length: 2.4 km
Number of Arrays/line: 3 arrays/line
Dipole length: Ex = 100metres
Ey = 100 metres
Sampling Interval: Ex = 100 metres
Ey = 200 metres
Rx-Tx Separation: N-spacing (Pn-Cn min)° = 0.5 to 23.5
Infinite Pole Location: L92800E S1, S2 & L93200E S1, S2

Grid Coordinate: 96461m E, 31958m N
696457m E, 5531959m N (WGS 84)

L92800E S3 & L93200E S3
Grid Coordinate: 93205m E, 27678m N
693201m E, 5527679m N (WGS 84)

I ¥

- pole - pole Ul
- pole - dipole (PDR) - 7"

- pole - dipole (PDL) N B i

- dipole - dipole Y e LI e

- pole - dipole - dipole 0¥ L )¢

Common DCIP Survey Layouts.

& Note: Cross-Line (Ey) voltages obtained for future reference purposes — not presented in cross-sectional plots.
® Current electrodes at midpoints between potential electrodes.
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B.6.2 AcQUISITION & PROCESSING

Spectral Domain: Tx = Frequency-domain square-wave current
Rx = Full waveform time-series acquisition
Data processing/output in frequency-domain.

Spectral Chargeability Model™: Halverson-Wait

Transmitter Waveform: 30/256 Hz square waves at 100% duty cycle
(~4sec Pos./Neg.)

Transmitter Output Current: min 0.47 Amperes to max 4.93 Amperes

Receiver Sampling Speed: 240 samples/second

(24 bit A/D @ 120 db dynamic range)

Tx-Rx Synchronization: using current monitor (10 psec time-accuracy)
Time-Series Stacking: 20 cycles (full-waveform)
Read Time: approx 3.0 minutes per event

Time-Domain Decay Window:
Integration Start Time: Ty = 0.8 seconds
Integration End Time: T:=1.9 seconds

Post-Processing: using Quantec proprietary Quicklay v.2.30.14
1) Time-series stacking
2) Robust statistics
3) Current waveform deconvolution
4) Digital filtering (60Hz + harmonics)
5) Spectral model decay-curve fitting

65 {a Ta: Tx21050 Rac Ex20950
5.0 Phase: 2.81 £0.03 mrad

W -1068.43 & 0.02 rrividy
5.5 Rha: 503 ohrr-r|

Current: -3.99 A

= = m
o m o
| | |

Decay Amplitude (my/)
= MM W W
(i) (o] (i) (o] (i)
[ T |
L

=

Spectral Chargeability Model and Calculated Halverson-Wait Decays™’.

% The Halverson-Wait model chargeability (Halverson et al., 1981) is similar to and improves upon the frequency-domain Cole-
Cole model (Pelton et el., 1978) described in the time-domain by Johnson (1984).
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B.6.3 DATA PRESENTATION

Accuracy and Repeatability Measured Data average error (from CSV files)
using Halverson-Wait model calculation:
Voltage Errors 0.00061mV/V (average)
Phase Errors 93.5% less than 1.0 mrad
Pseudo-Section Plots: In-line DC Resistivity and IP Chargeability

pseudo sections, posted, contoured (equal area zoning)
and plotted in ground units using QuickLay viewer.

Raw Data (digital): (external Hard Drive)
Raw Event Log File Folders (eg. Eventxxxx.dat).
Also contains AU.txt and Event.log files which contain
information on the location and time of the event in
QuickLay digital format
(Raw data output to Matlab format upon request).

Processed Data (digital): DC/IP Data in ASCII CSV (comma delimited) file format
from QuickLay, containing final processed voltage and
phase data.

CSV File Format:

Line 1: Column headings

Column1 Event name/number (e.g., Eventxxxx)
Column 2: Transmitter site ID (e.g., Tx150)
Column 3: Receiver site ID (e.g., Rx150)
Column 4-11: C1-C2/P1-P2 positions in X and Y (m)
Column 12: Current (Amperes)

Column 13: Current error (Amperes)

Column 14: Normalized voltage (Volts/Ampere)
Column 15: Voltage error (Volts/Ampere)
Column 16: Phase (milliradians)

Column 17: Phase error (milliradians)

Column 18: Apparent resistivity (Ohm-m)*

B.6.4 DATA QA/QC COMMENTS

Some spread acquisitions encountered geomagnetic storms resulting in higher IP errors in respective
pseudo sections. Several event repeats were done throughout survey period to minimize any possible
errors such as current leakages and local station disturbances. Overall the data for the all spreads read
have low errors with majority below 2 mrad.

' Halverson-Wait (HW) model parameters calculated in frequency domain, with hatched green lines corresponding to
theoretical HW decay with spectral r-factors of 0.1, 1.0 (default) & 10, k-factor of 0.2 (default).

2 Cross-line (Ey) values not shown for presentation purposes.

13 Apparent resistivity’s are calculated in 2D space using the 4 electrodes general array configuration (as per XY electrode
positioning in columns 4-11 of CSV file) — not based on pole-dipole calculations (K. Nurse, QGL, pers. comm., 07-2004).
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B.7 MT SURVEY SPECIFICATION

B.7.1 GEOMETRY
Technique:

Line Configuration:

Remote Configuration:

Array Length:
Number of Arrays/line:

Dipole size:

Sampling Interval:

Ex/Ey sampling Ratio
E/H sampling Ratio

Remote Reference Position:

B.7.2 AcCQUISITION & PROCESSING

Data Acquisition:

Remote-Base Synchronization:

Frequency Bandwidth:

Time-series Sampling:

Time-Series Stacking:

Sample/Record Time:

QUANTEC GEOSCIENCE LTD

Tensor soundings, remote-referenced

23-24 Ex = Continuous In-line voltages,

12-13 Ey = Alternating (2-stations) cross-line E-fields
1 pair Low Frequency coils

1 pair High Frequency coils

1 Ex = in line E-fields

1 Ey = cross-line E fields

1 pair Low Frequency coils
1 pair High Frequency coils

2.4 km
3 spreads/line

Ex = 100 metres
Ey = 100 metres

Ex = 100 metres
Ey = 200 metres

2/1

Ex: 23-24/2
Ey: 12-13/2

Grid Coordinates: 56682E, 106685N
UTM: 656678 mE , 5606686 mN (WGS 84 / Zone 10U)

Full-waveform time-series acquisition
Data processing/output in frequency-domain.

GPS clocks (10usec time-accuracy)

Operating: 0.01 to 48000 Hz
Effective: 0.1 to 20000 Hz

High Range: 48000 samples/sec
Mid-Range: 12000 samples/sec
Low Range: 120 samples/sec

High Range: 1,534,999 samples
Mid-Range: 2%°(1,048,576) samples
Low Range:  2'°(524,288) samples

High Range: min. 2 events @ 30 seconds per event
Mid Range: min. 2 events @ 2.0 minutes per event
Low Range: 1.5 - 3 events @ 80 minutes for a full
event (total recording and retrieving time approx. 7 hrs)
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Post-Processing: using Quantec proprietary QuickLay v.4.00.10
1) Coherent noise rejection using remote-reference
2) Proprietary digital filtering (scrubbing)
3) Coherency sorting
4) Impedance estimate stacking

B.7.3 DATA PRESENTATION

Parallel Sensor Test: Result of the test of the equipment (PST) is presented in
detail in Appendix Parallel Sensor Test.

Data Error: Apparent Resistivity =<1/20™ decade average.
Phase =<3 degrees average

Sounding Curves: Apparent resistivity and phase (XY and YX) sounding

curves versus the frequency (8 pts. per decade) using
Geotools™ viewer.

Pseudo-Section Plots: MT Apparent Resistivity and Phase Pseudo-Sections
(XY, and YX) posted, contoured (equal area zoning)
and plotted in grid units using Geotools™ viewer.

Raw Data (digital): (external Hard Drive)
Base and Remote Raw Event Log File Folders
(i.e. Base-Eventxxx.dat; Remote-Eventxxxx.dat).
Also contains AU.txt and Event.log files, which contain
information on the location and time of the event in
QuickLay digital format (external Hard Drive).
(Raw data output to Matlab format upon request)

Processed Data (digital): MT DATA in EDI (Electronic Data Interchange) file
created in Geotools™ containing Auto and Cross-
power Spectral estimates for individual stations (sites)
and profiles (site-sets);

Spectra are in Right Hand positive down co-ordinate
system, and for profiles, EDI files are created with X as
the profile direction.

For this study, final EDI have X at 90deg (ROTSPEC= 90)
EDI is a format conforming to SEG standard for the
storage of magnetotelluric (MT) data

(Wight, D. E., 1987).

B.7.4 DATA QA/QC COMMENTS

Two sets of high frequency coils were used on the survey line to maximize signals acquired on either end
of the line. MT data in general look good with minor scatterings in 48,000 Hz band.
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Apparent Resistivity 193200e_22050x
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Example of Apparent Resistivity and Phase (XY and YX) Sounding Curves.

40




QUANTEC GEOSCIENCE LTD

C DC-IP PSEUDO-SECTIONS OF FINAL PROCESSED DATA
C.1 LINE92800E_S1

IP Pseudo-sectio 00E_S1_Run1

Parameter Options Window
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Line 92800E S1 — Observed Apparent Resistivity Raw Data (Ohm.m) & Voltage Errors
(%)-Tx Pole Leading.

O Tx with more than one event
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IP Pseudo-section: L92800E_S1_Run1

Parameter Options Window

HAFhER @@ E R T S H
|ApparentResistivity ﬂ |T)(PD|B Lagging ﬂ
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Line 92800E S1 — Observed Apparent Resistivity Raw Data (Ohm.m) & Voltage Errors

(%)-Tx Pole Lagging.
O Tx with more than one event
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IP Pseudo-section: L92800E_S1_Run1

Parameter Options Window
MEHER @ L 2
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Line 92800E S1 — Observed IP Raw Data (mrad) & IP Errors (mrads)-Tx Pole Leading.

O Tx with more than one event
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IP Pseudo-section: L92800E_S1_Run1

Parameter Options Window
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Line 92800E S1 — Observed IP Raw Data (mrad) & IP Errors (mrads)-Tx Pole Lagging.

O Tx with more than one event
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C.2  LINE928BOOE_S2

IP Pseudo-section: L92800E_S2_Run1

Parameter Options Window
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Line 92800E S2 — Observed Apparent Resistivity Raw Data (Ohm.m) & Voltage Errors
(%)-Tx Pole Leading.

O Tx with more than one event
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IP Pseudo-section: L92800E_S2_Run1 M=

Parameter Options Window
PEHEID @ ik @
Ak H R @@ R R QT SS B
|Apparent Fesistivity ﬂ |Tx Fole Lagging ﬂ
Tx23050%23150
0 1600
1 i
200 — 1300
4 .20
110U
400 1000=
3 500 £
< 600 800 =
2 700 2
B00 >
% E BDDE
Z1000 5003
iz} 0
200 S
3 o
o
_ 300
1400 1 §
1600
1 200
1800 -
T T T T T T T 1
22000 22500 23000 23500 24000 24500 25000 25500
Station
T Tx23050 Rx: Ex23150; 500.705575chm-m
Ak H R @@ R R QT SS B
|ApparentResistivityErﬂ |T)(PD|B Lagging ﬂ |
B A L L g s s e s e A R R R R
0 ST, .
200 012e
1 .
400 0102
1 i
+= 600
= ] 008
() 500 =
g 4 o
1000 0.065
[ —]
200 = 0.04=
1400 - 5]
1 0.028
1600 &
1800 - o.oo
T T T T T T T 1
22000 22500 23000 23500 24000 24500 25000 25500
Station

Line 92800E S2 — Observed Apparent Resistivity Raw Data (Ohm.m) & Voltage Errors
(%)-Tx Pole Lagging.

O Tx with more than one event
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Line 92800E S2 — Observed IP Raw Data (mrad) & IP Errors (mrads)-Tx Pole Lagging.

O Tx with more than one event
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LiNne 92800E_S3

IP Pseudo-section: L92800E_S3_Run1
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Line 92800E S3 — Observed Apparent Resistivity Raw Data (Ohm.m) & Voltage Errors
(%)-Tx Pole Leading.

O Tx with more than one event
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Line 92800E S3 — Observed Apparent Resistivity Raw Data (Ohm.m) & Voltage Errors
(%)-Tx Pole Lagging.
O Tx with more than one event
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IP Pseudo-section: L92800E_S3_Run1
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Line 92800E S3 — Observed IP Raw Data (mrad) & IP Errors (mrads)-Tx Pole Lagging.

O Tx with more than one event
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C.4 LINE93200E_S1
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Line 93200E S1 — Observed Apparent Resistivity Raw Data (Ohm.m) & Voltage Errors

(%)-Tx Pole Leading.

O Tx with more than one event
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IP Pseudo-section: L93200E_Run4 M=

Parameter Options Window
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Line 93200E S1 — Observed Apparent Resistivity Raw Data (Ohm.m) & Voltage Errors
(%)-Tx Pole Lagging.
O Tx with more than one event
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IP Pseudo-section: L93200E_Run4
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Line 93200E S1 — Observed IP Raw Data (mrad) & IP Errors (mrads)-Tx Pole Leading.

O Tx with more than one event
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IP Pseudo-section: L93200E_Run4 M=

Parameter Options Window
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Line 93200E S1 — Observed IP Raw Data (mrad) & IP Errors (mrads)-Tx Pole Lagging.

O Tx with more than one event
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C.5 LINE93200E_S2

IP Pseudo-section: L93200E_S2_Run2

Parameter Options Window
PEHEID @ ik @
B QA@ R E k@R R AT &S E
|Apparent Fesistivity ﬂ |Tx Fole Leading ﬂ
v ovdvdvivdrdvdvivivivivivivd wwwwwwwwwww&w el
1 o E
200 . 1500,
1 S Y [P
°°°°°°°°° 11U 1
400 — L 1DDEE
4 °°°°°°°°°°°° QDD%
L 600~ OO 800 =
8 1 ¢°¢°o°¢°¢ ?DD}:)\
2 800 . BO0 S
(=] 4 ¢°o°¢ w
Siono e 5003
& e i
ol a
200 400 =
_ 300
1400 1 §
1600
1 200
1800 -
T T T T T T T T
23000 23500 24000 24500 25000 25500 26000 26500
Station
T Tx24550 Rx: Ex25250; 751.4807920hm-m
B QA@ R E k@R R AT &S E
|ApparentResistivityErﬂ |T)(PD|B Leading ﬂ
S T s s s R E s R RS T T T 2 T A A A A T A T
0 . .
200 oy 0%
400 0102
£ 600 SEIEIE -
T i SR 0.082
() 500 =
g 4 e o G DDBL_?
gDDD—_ ]
(1200 oo . -
] I I U-U‘i*g
1400 — R =
E 00000000000‘ DDZ%
1600—_ g S
1800 : 0.00
T T T T T T T T
23000 23500 24000 24500 25000 25500 26000 26500
Station
Pare: 0

Line 93200E S2 — Observed Apparent Resistivity Raw Data (Ohm.m) & Voltage Errors
(%)-Tx Pole Leading.

O Tx with more than one event
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IP Pseudo-section: L93200E_S2_Run2 M=

Parameter Options Window
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Line 93200E S2 — Observed Apparent Resistivity Raw Data (Ohm.m) & Voltage Errors
(%)-Tx Pole Lagging.
O Tx with more than one event
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Line 93200E S2 — Observed IP Raw Data (mrad) & IP Errors (mrads)-Tx Pole Lagging.
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C.6 LINE93200E_S3

IP Pseudo-section: L93200E_S3_Run2
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Line 93200E S3 — Observed Apparent Resistivity Raw Data (Ohm.m) & Voltage Errors
(%)-Tx Pole Leading.

O Tx with more than one event
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IP Pseudo-section: L93200E_S3_Run2

Parameter Options Window
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Line 93200E S3 — Observed Apparent Resistivity Raw Data (Ohm.m) & Voltage Errors
(%)-Tx Pole Lagging.
O Tx with more than one event
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Line 93200E S3 — Observed IP Raw Data (mrad) & IP Errors (mrads)-Tx Pole Leading.

O Tx with more than one event
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IP Pseudo-section: L93200E_S3_Run2

Parameter Options Window
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Line 93200E S3 — Observed IP Raw Data (mrad) & IP Errors (mrads)-Tx Pole Lagging.

O Tx with more than one event
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D MT SounDINGS CURVES OF FINAL AND MERGED PROCESSED DATA

Line Spread

92800E MERGED 20550 27550
S1 25150 27550
S2 22850 25250
S3 20550 22850

93200E MERGED 20550 27550
S1 25150 27550
S2 22850 25250
S3 20550 22850

MODE XY (GREEN) DENOTES ELECTRICAL (EX) FIELD AND ORTHOGONAL MAGNETIC (HY) FIELD (=EX/HY)
MODE YX (ORANGE) DENOTES ELECTRICAL (EY) FIELD AND ORTHOGONAL MAGNETIC (HX) FIELD (=EY/HX)
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Line 92800E — Apparent Resistivity Sounding Curves vs Frequency (1 of 8).

MODE XY (GREEN) DENOTES ELECTRICAL (EX) FIELD AND ORTHOGONAL MAGNETIC (HY) FIELD (=EX/HY)
MODE YX (ORANGE) DENOTES ELECTRICAL (EY) FIELD AND ORTHOGONAL MAGNETIC (HX) FIELD (=EY/HX)
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Line 92800E — Apparent Resistivity Sounding Curves vs Frequency (2 of 8).

MODE XY (GREEN) DENOTES ELECTRICAL (EX) FIELD AND ORTHOGONAL MAGNETIC (HY) FIELD (=EX/HY)
MODE YX (ORANGE) DENOTES ELECTRICAL (EY) FIELD AND ORTHOGONAL MAGNETIC (HX) FIELD (=EY/HX)
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Line 92800E — Apparent Resistivity Sounding Curves vs Frequency (3 of 8).

MODE XY (GREEN) DENOTES ELECTRICAL (EX) FIELD AND ORTHOGONAL MAGNETIC (HY) FIELD (=EX/HY)
MODE YX (ORANGE) DENOTES ELECTRICAL (EY) FIELD AND ORTHOGONAL MAGNETIC (HX) FIELD (=EY/HX)
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Line 92800E — Apparent Resistivity Sounding Curves vs Frequency (4 of 8).

MODE XY (GREEN) DENOTES ELECTRICAL (EX) FIELD AND ORTHOGONAL MAGNETIC (HY) FIELD (=EX/HY)
MODE YX (ORANGE) DENOTES ELECTRICAL (EY) FIELD AND ORTHOGONAL MAGNETIC (HX) FIELD (=EY/HX)
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Line 92800E — Apparent Resistivity Sounding Curves vs Frequency (5 of 8).

MODE XY (GREEN) DENOTES ELECTRICAL (EX) FIELD AND ORTHOGONAL MAGNETIC (HY) FIELD (=EX/HY)
MODE YX (ORANGE) DENOTES ELECTRICAL (EY) FIELD AND ORTHOGONAL MAGNETIC (HX) FIELD (=EY/HX)
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Line 92800E — Apparent Resistivity Sounding Curves vs Frequency (6 of 8).

MODE XY (GREEN) DENOTES ELECTRICAL (EX) FIELD AND ORTHOGONAL MAGNETIC (HY) FIELD (=EX/HY)
MODE YX (ORANGE) DENOTES ELECTRICAL (EY) FIELD AND ORTHOGONAL MAGNETIC (HX) FIELD (=EY/HX)
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Line 92800E — Apparent Resistivity Sounding Curves vs Frequency (7 of 8).

MODE XY (GREEN) DENOTES ELECTRICAL (EX) FIELD AND ORTHOGONAL MAGNETIC (HY) FIELD (=EX/HY)
MODE YX (ORANGE) DENOTES ELECTRICAL (EY) FIELD AND ORTHOGONAL MAGNETIC (HX) FIELD (=EY/HX)
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Line 92800E — Apparent Resistivity Sounding Curves vs Frequency (8 of 8).

MODE XY (GREEN) DENOTES ELECTRICAL (EX) FIELD AND ORTHOGONAL MAGNETIC (HY) FIELD (=EX/HY)
MODE YX (ORANGE) DENOTES ELECTRICAL (EY) FIELD AND ORTHOGONAL MAGNETIC (HX) FIELD (=EY/HX)
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Line 92800E — Phase Sounding Curves vs Frequency (1 of 8).

MODE XY (GREEN) DENOTES ELECTRICAL (EX) FIELD AND ORTHOGONAL MAGNETIC (HY) FIELD (=EX/HY)
MODE YX (ORANGE) DENOTES ELECTRICAL (EY) FIELD AND ORTHOGONAL MAGNETIC (HX) FIELD (=EY/HX)
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Line 92800E — Phase Sounding Curves vs Frequency (2 of 8).

MODE XY (GREEN) DENOTES ELECTRICAL (EX) FIELD AND ORTHOGONAL MAGNETIC (HY) FIELD (=EX/HY)
MODE YX (ORANGE) DENOTES ELECTRICAL (EY) FIELD AND ORTHOGONAL MAGNETIC (HX) FIELD (=EY/HX)
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Line 92800E — Phase Sounding Curves vs Frequency (3 of 8).

MODE XY (GREEN) DENOTES ELECTRICAL (EX) FIELD AND ORTHOGONAL MAGNETIC (HY) FIELD (=EX/HY)
MODE YX (ORANGE) DENOTES ELECTRICAL (EY) FIELD AND ORTHOGONAL MAGNETIC (HX) FIELD (=EY/HX)
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Line 92800E — Phase Sounding Curves vs Frequency (4 of 8).

MODE XY (GREEN) DENOTES ELECTRICAL (EX) FIELD AND ORTHOGONAL MAGNETIC (HY) FIELD (=EX/HY)
MODE YX (ORANGE) DENOTES ELECTRICAL (EY) FIELD AND ORTHOGONAL MAGNETIC (HX) FIELD (=EY/HX)
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Line 92800E — Phase Sounding Curves vs Frequency (5 of 8).

MODE XY (GREEN) DENOTES ELECTRICAL (EX) FIELD AND ORTHOGONAL MAGNETIC (HY) FIELD (=EX/HY)
MODE YX (ORANGE) DENOTES ELECTRICAL (EY) FIELD AND ORTHOGONAL MAGNETIC (HX) FIELD (=EY/HX)
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Line 92800E — Phase Sounding Curves vs Frequency (6 of 8).

MODE XY (GREEN) DENOTES ELECTRICAL (EX) FIELD AND ORTHOGONAL MAGNETIC (HY) FIELD (=EX/HY)
MODE YX (ORANGE) DENOTES ELECTRICAL (EY) FIELD AND ORTHOGONAL MAGNETIC (HX) FIELD (=EY/HX)
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Line 92800E — Phase Sounding Curves vs Frequency (7 of 8).

MODE XY (GREEN) DENOTES ELECTRICAL (EX) FIELD AND ORTHOGONAL MAGNETIC (HY) FIELD (=EX/HY)
MODE YX (ORANGE) DENOTES ELECTRICAL (EY) FIELD AND ORTHOGONAL MAGNETIC (HX) FIELD (=EY/HX)
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Line 92800E — Phase Sounding Curves vs Frequency (8 of 8).

MODE XY (GREEN) DENOTES ELECTRICAL (EX) FIELD AND ORTHOGONAL MAGNETIC (HY) FIELD (=EX/HY)
MODE YX (ORANGE) DENOTES ELECTRICAL (EY) FIELD AND ORTHOGONAL MAGNETIC (HX) FIELD (=EY/HX)
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Line 93200E — Apparent Resistivity Sounding Curves vs Frequency (1 of 8).

MODE XY (GREEN) DENOTES ELECTRICAL (EX) FIELD AND ORTHOGONAL MAGNETIC (HY) FIELD (=EX/HY)
MODE YX (ORANGE) DENOTES ELECTRICAL (EY) FIELD AND ORTHOGONAL MAGNETIC (HX) FIELD (=EY/HX)
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Line 93200E — Apparent Resistivity Sounding Curves vs Frequency (2 of 8).

MODE XY (GREEN) DENOTES ELECTRICAL (EX) FIELD AND ORTHOGONAL MAGNETIC (HY) FIELD (=EX/HY)
MODE YX (ORANGE) DENOTES ELECTRICAL (EY) FIELD AND ORTHOGONAL MAGNETIC (HX) FIELD (=EY/HX)
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Line 93200E — Apparent Resistivity Sounding Curves vs Frequency (3 of 8).

MODE XY (GREEN) DENOTES ELECTRICAL (EX) FIELD AND ORTHOGONAL MAGNETIC (HY) FIELD (=EX/HY)
MODE YX (ORANGE) DENOTES ELECTRICAL (EY) FIELD AND ORTHOGONAL MAGNETIC (HX) FIELD (=EY/HX)
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Line 93200E — Apparent Resistivity Sounding Curves vs Frequency (4 of 8).

MODE XY (GREEN) DENOTES ELECTRICAL (EX) FIELD AND ORTHOGONAL MAGNETIC (HY) FIELD (=EX/HY)
MODE YX (ORANGE) DENOTES ELECTRICAL (EY) FIELD AND ORTHOGONAL MAGNETIC (HX) FIELD (=EY/HX)
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Line 93200E — Apparent Resistivity Sounding Curves vs Frequency (5 of 8).

MODE XY (GREEN) DENOTES ELECTRICAL (EX) FIELD AND ORTHOGONAL MAGNETIC (HY) FIELD (=EX/HY)
MODE YX (ORANGE) DENOTES ELECTRICAL (EY) FIELD AND ORTHOGONAL MAGNETIC (HX) FIELD (=EY/HX)
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Line 93200E — Apparent Resistivity Sounding Curves vs Frequency (6 of 8).

MODE XY (GREEN) DENOTES ELECTRICAL (EX) FIELD AND ORTHOGONAL MAGNETIC (HY) FIELD (=EX/HY)
MODE YX (ORANGE) DENOTES ELECTRICAL (EY) FIELD AND ORTHOGONAL MAGNETIC (HX) FIELD (=EY/HX)
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Line 93200E — Apparent Resistivity Sounding Curves vs Frequency (7 of 8).

MODE XY (GREEN) DENOTES ELECTRICAL (EX) FIELD AND ORTHOGONAL MAGNETIC (HY) FIELD (=EX/HY)
MODE YX (ORANGE) DENOTES ELECTRICAL (EY) FIELD AND ORTHOGONAL MAGNETIC (HX) FIELD (=EY/HX)
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Line 93200E — Apparent Resistivity Sounding Curves vs Frequency (8 of 8).
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MODE XY (GREEN) DENOTES ELECTRICAL (EX) FIELD AND ORTHOGONAL MAGNETIC (HY) FIELD (=EX/HY)
MODE YX (ORANGE) DENOTES ELECTRICAL (EY) FIELD AND ORTHOGONAL MAGNETIC (HX) FIELD (=EY/HX)
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Line 93200E — Phase Sounding Curves vs Frequency (1 of 8).

MODE XY (GREEN) DENOTES ELECTRICAL (EX) FIELD AND ORTHOGONAL MAGNETIC (HY) FIELD (=EX/HY)
MODE YX (ORANGE) DENOTES ELECTRICAL (EY) FIELD AND ORTHOGONAL MAGNETIC (HX) FIELD (=EY/HX)
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Line 93200E — Phase Sounding Curves vs Frequency (2 of 8).

MODE XY (GREEN) DENOTES ELECTRICAL (EX) FIELD AND ORTHOGONAL MAGNETIC (HY) FIELD (=EX/HY)
MODE YX (ORANGE) DENOTES ELECTRICAL (EY) FIELD AND ORTHOGONAL MAGNETIC (HX) FIELD (=EY/HX)
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Line 93200E — Phase Sounding Curves vs Frequency (3 of 8).

MODE XY (GREEN) DENOTES ELECTRICAL (EX) FIELD AND ORTHOGONAL MAGNETIC (HY) FIELD (=EX/HY)
MODE YX (ORANGE) DENOTES ELECTRICAL (EY) FIELD AND ORTHOGONAL MAGNETIC (HX) FIELD (=EY/HX)
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Line 93200E — Phase Sounding Curves vs Frequency (4 of 8).

MODE XY (GREEN) DENOTES ELECTRICAL (EX) FIELD AND ORTHOGONAL MAGNETIC (HY) FIELD (=EX/HY)
MODE YX (ORANGE) DENOTES ELECTRICAL (EY) FIELD AND ORTHOGONAL MAGNETIC (HX) FIELD (=EY/HX)
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Line 93200E — Phase Sounding Curves vs Frequency (5 of 8).

MODE XY (GREEN) DENOTES ELECTRICAL (EX) FIELD AND ORTHOGONAL MAGNETIC (HY) FIELD (=EX/HY)
MODE YX (ORANGE) DENOTES ELECTRICAL (EY) FIELD AND ORTHOGONAL MAGNETIC (HX) FIELD (=EY/HX)
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Line 93200E — Phase Sounding Curves vs Frequency (6 of 8).

MODE XY (GREEN) DENOTES ELECTRICAL (EX) FIELD AND ORTHOGONAL MAGNETIC (HY) FIELD (=EX/HY)
MODE YX (ORANGE) DENOTES ELECTRICAL (EY) FIELD AND ORTHOGONAL MAGNETIC (HX) FIELD (=EY/HX)
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Line 93200E — Phase Sounding Curves vs Frequency (7 of 8).

MODE XY (GREEN) DENOTES ELECTRICAL (EX) FIELD AND ORTHOGONAL MAGNETIC (HY) FIELD (=EX/HY)
MODE YX (ORANGE) DENOTES ELECTRICAL (EY) FIELD AND ORTHOGONAL MAGNETIC (HX) FIELD (=EY/HX)
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Line 93200E — Phase Sounding Curves vs Frequency (8 of 8).

MODE XY (GREEN) DENOTES ELECTRICAL (EX) FIELD AND ORTHOGONAL MAGNETIC (HY) FIELD (=EX/HY)
MODE YX (ORANGE) DENOTES ELECTRICAL (EY) FIELD AND ORTHOGONAL MAGNETIC (HX) FIELD (=EY/HX)
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E MT PSEUDO-SECTIONS OF FINAL PROCESSED DATA

IMPORTANT

XIS THE DIRECTION ALONG THE PROFILE; Y IS PERPENDICULAR TO X
(RIGHT HAND POSITIVE DOWN COORDINATE SYSTEM)

GRAPHICS DISPLAYED

(top) Strip 1 | Rho XY

Strip 2 | Phase XY

Strip 3 | Rho YX

(bottom) Strip 4 | Phase YX

where XY denotes
Electrical (Ex) field and orthogonal Magnetic (Hy) field (=Ex/Hy)

and YX denotes
Electrical (Ey) field and orthogonal Magnetic (Hx) field (=Ey/Hx)

STRIP 1 (TOP): RHO XY — STRIP 2: PHASE XY — STRIP 3: RHO YX — STRIP 4 (BOTTOM): PHASE YX
WHERE XY DENOTES ELECTRICAL (EX) FIELD AND ORTHOGONAL MAGNETIC (HY) FIELD (=EX/HY)
AND YX DENOTES ELECTRICAL (EY) FIELD AND ORTHOGONAL MAGNETIC (HX) FIELD (=EY/HX)
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LINE 92800E

E.1

METERS,

u 20 |4 9 |u 9| |w
[=] z 2 z f=] z t=1
& & & &
3 3 b = 3 ¢
[ BEEEERREEREEELEE:

o [oF] o og
3 Qf B s s s ssns s 161 seamnng DE|sroes oo s s pssniis
< <4 S R £ £ R R RE E R £ A £ S B
~ ~ I B rterrterres 4 £46 4 440 b 11 S EEEEEE S EHE L ERE TS HE T I Bl bibteasasnt + 441 4500 4+ 404 B RRE 1 £ HHR IR TE +
N N 4+ N R L N | R R R b R R R bt Fa e
o ) S T SH BT,
o o] o5 iy~ 7 SRR T ) i GIOOMORNI | SR DO
© © [ (o] 8 PUar S S e b (o] 4 B IS TS S
N N ONE | rsree s tar e et 1 B s aree s R3] M hUOmOwIR I | DI J1 |
° ° o | At e OB R EE
3 3 e I . ininaet QU BT R S
~ < = <= S S b b .
© O [{e} e PN . Oz
N N NNE | N
o o [=F] o
Yo} 0 g 0
[ e8! o S| N I
[Te) Yol [Tok 2| Yol
N s N s & | A N
o o g of Al e
n wn [Tolkal wn
< < = <= <
[Te) [Tel [Te) [Tel
N N NE| N
o o (=X ] (=]
Yo} 0 g 0
=) oo Rl 2
< < <2 <
Y ol | N g ONE sl |
o Nl o 8 ol o
Ty} 0 g n
< <2 5] @
3 3 N J
o o o o
n wn s wn
[+)] o 0] o
™ » ™ " Mz ” ™
N gell | fe NE gl | N
Q E< o 2" of] ER o
Y9} n [Tokal n
< < <= <
[s2] o ™| o
N N N N
o o og] o
[Te) 0 [Te) 0
=2} oo Rl ®
N N NS N
« ol | N g NE] gl |
o = o g ol g °
Y9} 0 Ty} n
< < <= <
(] N [NER N
N N ONE | o~
o o [=F] o
Yo} 0 Yokl 0
)] o 0] o
— — — —
[aV) N ONE | o~
o o Og| o
n wn n wn
< < <= <
— — 2 —
[aV) N o~ o~

o X0z o
g 2 g 2
L= o =H o
N N NE] «
2 SR CUIS S &
5 R B S g
g g
1] W N W
£ £ jééé%jéjés g &
w o uw o
z PR S z g
] ]
@ o '3 =3
< g < g
5 i g £
= L) = o
a 7] 8 @
g (zH) Aouanbali4 901 £ (zH) Aousnbai4 507 g (zH) Aousnbaig 507 £ (zH) Aousnbai4 901

N-S

PHASE YX
Ex/HY)
EY/HX)

4000

RHO YX — STRIP 4 (BOTTOM)

WHERE XY DENOTES ELECTRICAL (EX) FIELD AND ORTHOGONAL MAGNETIC (HY) FIELD (

ty and Phase (XY & YX) Pseudo-Section.
100

tivi

IS
PHASE XY —STRIP 3

Apparent Res

RHO XY — STRIP 2

92800E

ine

L
AND YX DENOTES ELECTRICAL (EY) FIELD AND ORTHOGONAL MAGNETIC (HX) FIELD (

STRIP 1 (TOP)




QUANTEC GEOSCIENCE LTD

E.2 LINE93200E
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Line 93200E — Apparent Resistivity and Phase (XY & YX) Pseudo-Section.

STRIP 1 (TOP): RHO XY — STRIP 2: PHASE XY — STRIP 3: RHO YX — STRIP 4 (BOTTOM): PHASE YX
WHERE XY DENOTES ELECTRICAL (EX) FIELD AND ORTHOGONAL MAGNETIC (HY) FIELD (=EX/HY)
AND YX DENOTES ELECTRICAL (EY) FIELD AND ORTHOGONAL MAGNETIC (HX) FIELD (=EY/HX)
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F PARALLEL SENSOR TEST
Project
Date:
Report by:
Staff:

QuickLay Version

Common folder

Datum:

Station:

Coil Azimuth:

Declination
Results:

All coils tracking good.

QUANTEC GEOSCIENCE LTD

CA00900T
September 25, 2011
Wade Lee

William Xu

Warren Gregory

Matt Cousineau

4.00.010

V1.50

UTM WGS 84 / Zone 10U
656678 m E, 5606686 m N
0° true

17°E
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F.1 Low FREQUENCY CoILS

QUANTEC GEOSCIENCE LTD

Available Coils:

TS Strip | Manufacture | Serial # Task for

1 Phoenix P50-1963 Spare

2 Phoenix P50-1969 Spare

3 Phoenix P50-2114 Line Lnx

4 Phoenix P50-2130 Line Lny

5 Phoenix P50-2131 Remote Rmx

6 Phoenix P50-2203 Remote Rmy

Processing Parameters:

Parameters Values
PSD Method Welch
Window Hanning
Window Length 2048
Segment Overlap 50%
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F.1.1 TEST RESULTS: 120sPs

Titan NetEvent: 9032.000037

Sample Rate: 120sps

TS Length: 80,000 samples (~11min)
Results:

All low frequency coils are tracking well and have good coherency

Time Series

* Timeseries Viewer: Directory: "E:\CA00900T - Elk Gold Project\PST\PST\PST... [= [BX]
View Tools Window

e e
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p 24 2017 Time p 24

Complete time series @ 120sps
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Low Frequency Coil Results Coherency to P50-1963(Blue)

TS Coherency: DAU 122 - P50-1963 to Many
Plot  Properties  Window
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T T T T T T
o 5000000 10.000000 15000000 20,000000 25000000 30000000 = oo 40000 P - -
Frequency (Hz)

Srip 2 (xy) = (62,931.785105m)

From top to bottom: PSD of channels and Coherency and Response Function (Amplitude and Phase)

compared to Reference Channel — Linear frequency scale

106



QUANTEC GEOSCIENCE LTD

Low Frequency Coil Results (continued)

Coherency to P50-1963 (Blue)

TS Coherency: DAU 122 - P50-1963 to Many

Plot Properties  Window
QeREREEREARBLR
TS
1 0e-005 -
1 DuO04 =

Ahijll

;&V\M\Jx.;\ "l‘”' ;'t'l

¥

e it S i oy WA a’l\

VA b

i |rr‘FL||“{l;|
“‘“ 1\' i 'i*.lllﬂ'.liu‘

i Lilite TRV T iy 1\
s \u.‘ AR q,'-d.' W] oo J,,}H.|Mum“am‘°‘ f"‘ﬁ‘*‘l"'hﬂlq'lﬁffl\‘,ﬁ‘r

bl L b

-.nmm

T
.00go0n
-regquency [Hz)

Srip 2: (xy) = (67,905.871833m)

From top to bottom: PSD of channels and Coherency and Response Function
(Amplitude and Phase) compared to Reference Channel — Logarithmic frequency scale

Colour Channel Notes
Blue P50-1963 All OK
Green P50-1969
Red P50-2114
Cyan P50-2130
Magenta P50-2131
Yellow P50-2203
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F.2 HiGH FREQUENCY CoILS

Available Coils:

TS Strip | Manufacture | Serial # Task for
1 EMI BF6-5007 Remote Rmx
2 EMI BF6-5008 Remote Rmy
3 EMI BF6-5009 Spare
4 EMI BF6-6176 Spare
5 EMI BF6-6179 Line Lx
6 EMI BF6-6277 Line Ly
Processing Parameters:
Parameters Values
PSD Method Welch
Window Hanning
Window Length 2048
Segment Overlap 50%
Colour Channel Notes
Blue P50-1963 All OK
Green P50-1969
Red P50-2114
Cyan P50-2130
Magenta P50-2131
Yellow P50-2203
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F.2.1 TEeST RESULTS: 48KSPS
Titan NetEvent: 9032.000025
Sample Rate: 48k sps
TS Length: 1,500,000 samples (~31s)
Results:

All coils tracking good.

Time Series

* Timeseries Viewer: Directory: "E:\CA00900T - Elk Gold Project\PST\PST\PST. .. [= [BX]
View Tools Window
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Complete time series at 48ksps.
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* Timeseries Viewer: Directory: "E:\CA00900T - Elk Gold Project\PST\PST\PST... [= [B/X]
View Tools Window
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Strip 10 DAU 122 - BF6-5007 - (x,v) = (2011.09.24 21:45:04.12280,2723881Counts) Index: 1109894 - 1109939 Cdc: 2721564.169326 C

Time series focused in on ~1s at 48ksps.
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High Frequency (48k) Coil Results

Coherency to BF6-5007 (Blue)

TS Coherency: DAU 122 - BF6-5007 to Many

Plot Properties  Window
QeREREEREARBLR

1. 0e+002
1 0e+001
1 o +K0
100001
1 0002 -

oo |
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Srip 2: (x,y) = (24693975904, 751 644681 m)

T T T T T T T T T T T
a 10000 12000 16000 15000 000 2000
Frequancy (Hz)

From top to bottom: PSD of channels and Coherency and Response Function
(Amplitude and Phase) compared to Reference Channel — Linear frequency scale.

Colour Channel Notes
Blue BF6-5007 All OK
Green BF6-5008
Red BF6-5009
Cyan BF6-6176
Magenta BF6-6179
Yellow BF6-6277
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High Frequency (48k) Coil Results (Continued) Coherency to BF6-5007 (Blue)

TS Coherency: DAU 122 - BF6-5007 to Many
Plot Properties  Window
QARBRAREREERBOL
100002 4
1 0e+001
1 Oe+000 -

100001
1 (1812

i

Feget, |

TR —— R

" T T T
100 000000 1000, 000000 10000, 000000
@ Freguency [Hz)

Srip 1: Gy = (25630.1599416,10.994141p)

From top to bottom: PSD of channels and Coherency and Response Function
(Amplitude and Phase) compared to Reference Channel — Logarithmic frequency scale.

Colour Channel Notes
Blue BF6-5007 All OK
Green BF6-5008
Red BF6-5009
Cyan BF6-6176
Magenta BF6-6179
Yellow BF6-6277
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F.2.2 TEST RESULTS: 12K SPS

Titan NetEvent: 9032.000023

Sample Rate: 12k sps

TS Length: 1,500,000 samples (~2min)
Results:

All coils tracking good.

Time Series

* Timeseries Viewer: Directory: "E:\CA00900T - Elk Gold Project\PST\PST\PST... [= [BX]
View Tools Window
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* Timeseries Viewer: Directory: "E:\CA00900T - Elk Gold Project\PST\PST\PST... [= [B/X]

View Tools Window
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Focus on 1s of the time series 12ksps
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High Frequency (12k) Coil Results Coherency to BF6-5007 (Blue)
TS Coherency: DAU 122 - BF6-5007 to Many

Plot Properties  Window
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From top to bottom: PSD of channels and Coherency and Response Function
(Amplitude and Phase) compared to Reference Channel — Linear frequency scale

Colour Channel Notes
Blue BF6-5007 All OK
Green BF6-5008
Red BF6-5009
Cyan BF6-6176
Magenta BF6-6179
Yellow BF6-6277
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High Frequency (12k) Coil Results (Continued) Coherency to BF6-5007 (Blue)

TS Coherency: DAU 122 - BF6-5007 to Many

Plot  Properties  Window
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From top to bottom: PSD of channels and Coherency and Response Function
(Amplitude and Phase) compared to Reference Channel — Logarithmic frequency scale

Colour Channel Notes
Blue BF6-5007 All OK
Green BF6-5008
Red BF6-5009
Cyan BF6-6176
Magenta BF6-6179
Yellow BF6-6277
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G MT REMOTE — UNREFERENCED DATA

Project CA00900T
Date: September 25, 2011
Report by: Wade Lee
QuickLay Version 4.00.010
Common folder V1.50
Remote Location: 656678 mE / 5606686 mN (WGS 84 / Zone 10U)
(approx. 60 km N from Merritt)
Mag Declination: 17° East
Sensor Azimuth: Ex 00°North dipole = 100m
Ey 270° West dipole = 100m
Hx 00° North
Hy 270° West
Culture: N/A
Details below ALL the data used and processed for the test
TITAN DATA
Sample Rate Net Events TS Length Observations
48ksps 9032.000049 1,500,000 N/A
12ksps 9032.000050 1,500,000 N/A
120sps 9032.000051 80,000 Scattering below 1 Hz
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Apparent resistivity, phases, magnetic signal amplitude and off-diagonal coherences

of the MT remote, data processed unreferenced.
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View Tools Window

R BERE BEL Bh &

Screen Capture of MT time series, sample rate at 12ksps.
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‘Timeseries Viewer: Directory: "E:\CA00900T - Elk Gold Project\PST\PSTAPST... [_ (B /%]
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Screen Capture of MT time series, sample rate at 120ksps.
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H [INSTRUMENTS SPECIFICATIONS

H.1 REFTEK-120 DATA ACQUISITION SYSTEM

Refraction Technology Inc. — Plano, Texas

Specifications:

Physical
Size: 267 x 248 x 184 mm
10.5x9.75x 7.25in.
Weight: 3.7kg
305¢g
8 Ibs (2-Channels maximum weight))
T b'é T Ty operat - g -~ nge U
Environmental: Operates in 1m of water without leaking for 48 hours.
Airtight to 1.0 psi.
Shock: Remains operational after 1m drop (any corner) onto cement floor.
Connectors
Line A & Line B: A pair of identical 10 pin U77/U style connectors.
Each connector provides 3 pairs of lines (+):
A (+)/B (-) Receive telemetry data and/or commands
C(+)/D () Transmit telemetry data and/or commands
E (+)/F (-) Sync
Power: PTO7A12-8S style connector.
Provides input +12 VDC supplied from battery.
Sensor: PU283/U style connector.
Provides for a direct connection from the AM to the sensor.
Power Requirements
Battery: Two 12 volt lead acid battery (7 Ah).
Signal Input
Input Impedance: 10 megohms, 330pF, differential
Broadband
Dynamic Range: 130dB (noise power ratio test @ 125 sample per second [sps])
ADC Type: Delta-sigma modulation
Sample Rage: Multiple 50 to 48,000
Gain Settings: Four — programmable for 1, 4, 16 and 64.
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Sensor Input Signal 24-Bit High Speed 24-Bit Low Speed

Range: A/D A/D
Gain Actual Reported Actual Reported
1 1.192pVv 78.12mV 1.907pvV 125.0mV
4 298.0nV 19.53mV 476.8nV 31.25mV
16 74.51nV 4.883mV 119.2nV 7.812mV
64 18.63nV 1.221mVv 29.80nV 1.953mV

Data Storage

Data Size: 32-bit two’s compliment.

Base Memory: 128K EPROM
6.5Mb SRAM

Base Capacity: Better than 1.5 million samples or approximately 3 hours 10 minutes continuous
data @ 125 sps.

AM Telemetry

Protocol: Full duplex synchronous data link control (SDLC).
Error Correction: Packet acknowledge with modulo 8 sliding window.
Speed 3.072Mb/second

Encoding: Bi-phase pulse = 1, missing pulse =0

Line Impedance: 100 Ohm

Synchronization

T|m|ng e vy synch T S T mpImg e
1.50 psecond.

Protection
Electrical Line A and Line B signals circuits are protect by:
Protection: - A surge arrestor located on the RT514 board (SS1-14).

- Alline isolation transformer located on the RT514 board (T1-6) with over-voltage
diodes (D1-4) on both sides of each secondary windings

State-of-Health

Information The AM reports information on battery status, clock setting, gain setting,
Provided: calibration mode and the communications link.
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Acquisition Parameters

Acquisition parameters include the sample rate, transmitter frequency and number of samples desired.
The operator can also determine whether the AMs calibration signal is activated during data collection.

In typical use, the acquisition parameters are set according to the specific application configuration and
event type. For each event type, several recording sessions are made, each at a different transmitter
frequency and sample rate. The recording period is set based on event type and transmitter frequency.

The listing below shows several examples of event type, typical transmitter frequency (Hz), sample rates
(with applicable ADC resolution) and the corresponding number of samples (record period).

Event Tvoe Transmit Sample Rate ADC Number of
P Frequency P Resolution Sample

' Geophysical Response 375 Hz 48,000 24 124,032
Gain Test 375 48,000 24 65,536
Geophysical Response 75 9,600 24 130,176
Gain Test 75 9,600 24 65,536 E
Geophysical Response 25/8 3,200 24 - 139,264 _
Gain Test 25/8 3,200 24 32,768
Sensor Impedance N/A 1,600 24 8,704
Ambient Noise N/A 1,600 24 8,192
Geophysical Response 25/128 800 24 147,456
Gain Test 25/128 800 24 16,384
Geophysical Response 25/2048 100 24 212,992
Gain Test 25/256 100 24 4,096
Gain Test N/A 50 24 4,096
Geophysical Response N/A 50 24 ' 65,536 '
Sensor Calibration

The AM can source a 12.5Hz, 50uA signal to the sensor input for measuring the source impedance of the
attached sensor. The user can also specify frequency in amplitude of calibration signal.

Telemetry Cable

The telemetry cable is a Category V specification cable and is supplied by the customer.

Sample Rates

The following table shows all available sample rates, based on a 12.288 Mhz oscillator. A 24-bit
resolution ADC is used for sample rates 48000 through 4800 and a 24-bit resolution ADC is used for
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sample rates 3200 and below. The correct ADC is selected automatically by the AM, based on the
sample rate.

Typically, different sample rates and transmitter frequencies are used in 50 Hz and 60 Hz power
environments to minimize AC power effects on the data. In the table, the shaded areas indicate the
sample rates typically used in a 60 Hz power environment. A few rates are typically used in both
environments.

Sample Rate | Power Line 7

48000 : 50 & 60
24000 50 & 60
19200 60
16000 - 50
12000 50 & 60
9600 | 50 & 60
6400 | 50
4800 : 60
3200 50
1920 - 60
1600 = 50
960 : 60
800 | 50
480 © 60
400 50
240 60
200 50
120 | 60
100 : 50
60 60
50 50
60/2 60
50/2 50
60/4 60
50/4 | 50
60/8 60
50/8 50
60/16 = 60
50/16 = 50
60/32 60
50/32 | 50
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H.2 BF-6 MAGNETIC FIELD INDUCTION SENSOR
Schlumberger —EMI (Electromagnetic Instruments Inc.)Technology Center

The BF-6 sensor utilizes a magnetic feedback design to provide a stable flat response over several
decades of frequency. The sensors respond as a B field detector over the flat band regions. Both the
amplitude and phase responses are highly stable with variations of less than 0.1dB in amplitude and +/-
one degree in phase between sensors. For the frequencies below the flat response region, the sensor
response is proportional to signal frequency so that the sensor acts as a dB/dt detector. The coil is
potted with epoxy and housed inside a rugged impact-resistant ABS tube. A matched low noise
preamplifier is connected to the coil in a waterproof case and powered by an external +/- 12V power

supply.

BF-6 Frequency Response

BF-6 Sensor Noise
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Frequency (Hz) Frequency (Hz)
Features Applications

High sensitivity

Very low noise

Magnetic feedback design
Ruggedized and waterproof

Light weight and compact

Low power consumption (210 mW)
Stable phase response

Performance

Frequency Range: 1 Hz to -100 kHz or 1 Hz to 25
kHz

3 dB frequency corners: 10 Hz, 25 kHz or 10 Hz,
100 kHz

Sensitivity (flat region): 0.3 V/nT (standard)
Power consumption: 9mA at +/-12V

Magnetotellurics
Audiomagnetotellurics
Controlled-source electromagnetics
Magnetometric resistivity

Time domain electromagnetics

Physical

Housing: High Impact ABS Straight Tube
Length: 73 cm (29 inches)

Diameter: 5 cm (2 inches)

Weight: 1.7 kg (3.7 lbs)

Connector: 8-pin Tajimi
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H.3 MTC50 (P50) SERIES MAGNETIC SENSORS
Phoenix Geophysics Ltd

MTC-50 magnetic sensor coils weigh just over 10 kg, and measure only 141 cm. They provide
magnetotelluric data at frequencies between 400 Hz to 0.00002 Hz.

m':'f' S S e S
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Phase Response
; Technical Specifications
107}
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Outside Diameter : 6.0 cm
Weight : 10.5 kg
. Frequency Range (for MT) :
E 400 Hz to 0.00002 Hz
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GEOSOFT SECTIONS OF THE 2D MODELS

F 1TEnQ
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.1 LiNe 28000E

LINE 02B00E
UBC F0 DC Rasistidny
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LINE 02B00E
UBC 20 IF Chargeabiity (DC Referenced)
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LIKE 93500E
Pilim 20 TM-TE from Homogenacus Hall-Spece model - BT_PU_H4
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LIKE 93800E
Mifim 20 TM-TE wi tepo from Hemogenacws Half-Saete model - BMT_PUTHY
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LINE B2B00E
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LIKE 93800E
RLM 20 TM-TE (k) fram Homegeneous Hall-Space modal - MT_MU_His
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LIKE 93800E
A0 DET Saitchad models
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1.2 LINE32000E

LINE D3200E
WBC 30 DC Resistiviny
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LINE D3200E
UBC 20 IF Chargeabiity (DG Referenced)
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Pilim 20 TM-TE from Homogenacus Hall-Space model - BT_PU_H4
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LIKE 933006
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LIKE 93300E
P#im 20 TM-TE (B] wi bapo Ensn Homogeneous Hall-Space modal - MT_PUTH4L
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LIKE 93300E
RLM 20 TM-TE (k) fram Homegeneous Hall-Space modal - MT_MU_His
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LIKE 935300€
A0 DET Saitchad models
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J AN INTRODUCTION TO TITAN-24 DIRECT CURRENT (DC) RESISTIVITY AND INDUCED
POLARISATION (IP) METHODS

J.1 INTRODUCTION

Titan-24 is a 24-bit multi-channel, distributed acquisition system that allows for the collection of high
quality Direct Current (DC) Resistivity and Induced Polarization (IP) data (Sheard 1998). The system
provides high multiplicity data sets and records full-waveform time-series utilizing 24-bit Sigma Delta
Analog to Digital (A/D) conversion. Like other conventional resistivity methods, acquisition is performed
by the injection of an artificial controlled source of current, usually a series of full duty cycle square
pulses, into the ground through the transmitter electrode. The voltages, normalized by the injected
current, are measured at the receiver electrodes as time series.

The use of 24-bit A/D converter allows the Titan-24 system to record the full waveform at the receivers,
thus permitting the accurate removal or deconvolution of the source effects from the recorded time
series. What is left of the time series after the deconvolution consist of mainly the responses of the
ground and noise.

DC resistivity method is quite sensitive to small variations in resistivity near surface, and its effectiveness
will be limited by high level of noise in the presence of a shallow conductive layer in the ground. On the
other hand, in the desert or coarse-grained sandy environments, DC resistivity method can suffer from
poor electrical contact with the ground. As a result, very little or no current can be injected into the
ground, and no meaningful data can be collected.

The resistivity is among the most variable of all geophysical parameters, with a range exceeding 10°
ohm-m. The resistivity of rocks depends primarily on their porosity, permeability and particularly the
salinity of fluids contained, according to Archie’s Law. Therefore, DC resistivity method can be utilized in
a wide variety of applications in mineral exploration, mainly for mapping of resistivity structures and
locating of conductive targets.

The chargeability responds to the presence of polarisable minerals (metals, sub-metallic sulphides and
oxides, and graphite), in minute amounts. Both the quantity of individual chargeable grains present and
their distributions within subsurface current flow paths are significant in controlling the level of
response. The IP method can be used to directly detect disseminated to massive sulphides.

More detailed descriptions on the theory and application of the DCIP method can be found in Telford et
al. (1976).

1 Duty cycle is the ratio between the pulse duration and the period of a square waveform.
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J.2 TiTAN-24 DCIP SURVEY

Titan-24 is a distributed DCIP acquisition system. A typical survey layout, or spread, is 2400m long and
has 25 inline (Ex) 100m potential dipoles and the current injections sites. With current extensions, a
typical Titan-24 spread can be stretched to 3600m. If requested, the dipole length can be changed to
50m or 200m, and the resulting length Titan-24 spread will be 1200m or 4800m. Also, cross line dipoles

(Ey) can be deployed as well.

am WL Titan-24 (IP Only) Distributed

il Acquisition System

2400m

¢ currentelectrode(mokile)
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Titan-24 Distributed Acquisition System (IP-only) layout.

clurrentelectrode (fixed)

In a normal Titan-24 survey, the transmitter (Tx) and receiver (Rx) configuration is the pole-dipole-dipole
array, combining pole-dipole right (PDR) and pole-dipole left (PDL). The current is injected at the mid-
point between two potential electrodes. However, with special safety arrangements made to the

system, the current can be injected at the potential electrode locations.

1 v

- pole - pole ! 8 LA

- pole - dipole (PDR) JEP

- pole - dipole (PDL) DRSSy

- dipole - dipole S5

- pole - dipole - dipole [TV ' []Y

Titan-24 Transmitter (Tx) and Receivers (Rx) confiqurations.
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J.3  TitAN-24 DCIP DATA PROCESSING

For one potential electrode pair, the data acquired with one current injection event is a time series of
measured voltages at the electrodes normalized by the current, Vp in mV/A. A typical Titan-24 time
series are shown below.

3000 ~a | 1
2000 - 1

dipole normalized by current.

1500 = 1 i |
Sl ' ! ' i | <« A typical Titan-24 (pole-dipole)
g mo | : ! : | Vp time series (8.5s duration)
2 o | ! Pl —_—
%l ! i ! A
el i i i Vp: voltage measured by the receiver (Rx)
i i

@it

Vp of one current cycle.

The data in the time window
between the dash lines are
used for IP processing.

Dy Banpltud (mvivy

Typical Titan-24 DCIP time series.

A single injection event usually lasts approximately three minutes. The time series of an event are
stacked twenty times per second in order to increase the signal to noise (S/N) ratio. The data processing
is done in the frequency domain. Current waveform deconvolution and digital filtering of power line
noise (60/50Hz, and their harmonics) are applied to the frequency domain data.

J.4 HALVERSON-WAIT CHARGEABILITY

Titan-24 IP chargeability are described using the Halverson-Wait spectral model (Halverson et al., 1981),
which is not well known, but is similar to the Cole-Cole model proposed by Pelton et al. (1978) which is a
simple relaxation model that fits complex (frequency-dependant) resistivity results.

The time domain chargeability, originally proposed by Siegel (1959), is defined (Telford et al., 1976) as:
1 t2

M = = [V (t)dt
VC t1

where V (t) is the residual or secondary voltage at a time t that is decaying after the current is cut off,

between time t; and t, with the steady voltage V, during the current flow interval. The ratio V(t)/\/C

is expressed in millivolts per volts (mV/V).
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In the frequency domain, the “frequency effect” is defined as:

FE = (IODC _IOAC)

Pac
where p,c and p,. are the apparent resistivity’s measured at DC and “very high” frequency, usually in
the 0.1 to 10 Hz range.

The Cole-Cole model for the chargeability m, as defined by Pelton et al. (1978) is given by the following:

]

where Z(a)) is the complex impedance with @ the angular frequency in Hz, R, the DC resistivity, m

the chargeability in volts per volt, 7 the time constant in seconds, and C is the frequency dependence
(unit less). The latter two physical properties describe the shape of the decay curve in time domain or
the phase spectrum in frequency domain, and commonly range between 0.01s to +100s and 0.1 to +0.5,
respectively (Johnson, 1984).

The Halverson-Wait model was proposed by Halverson et al. (1981) as an extension to the Wait (1959)
model of the impedance of “volume loading” of spheres, given by:

Z(0) = 5{1—3%1——13?5)}

where G is a geometric factor, o the resistivity of the media, v the volume loading (the volume
fraction of chargeable “spheres”), 6 the sphere surface impedance. The Wait model was designed to
provide an explanation of the differences in the shape of decay curves from different polarisable targets,
but does not describe very well the physical attributes of the rocks.

The Halverson-Wait model expands the Wait coated sphere IP model to include a new formulation of
the sulphide-rock interface impedance, based on field studies and laboratory tests on samples. It is
closely correlated to the Pelton et al. (1978) Cole-Cole model and is given by:

3
a2
Z(@)=L11-3v1 o AL

where I is the sphere radius and is equivalent to 7 - the Cole-Cole time constant (I = TK ). The volume
loading v compares well to m, the Cole-Cole chargeability (see equation below), and the exponent K
is equal to C, the Cole-Cole frequency dependence (Halverson et al., 1981). For sulphide systems, the I
-factor reflects the size or inter-connectedness of the sulphide grains and the K -factor reflects the
electrical characteristics of the sulphide surfaces.
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An example of time domain Halverson-Wait model responses is shown below:

Time-Domain Halverson-Wait Response Showing WITH and WITHOUT Volume Loading

T T T T T T
—— 12% Vol. Loading
— — No Vol. Loading

Response (v/amp)
o
=)
T
|

0.4 —

0.2 -
I
I

I \ 1 i t
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
Normalized Time (sec/period)

Polarisable versus Non-Polarisable TD-IP response usinqg Halverson-Wait Model.

In the Halverson-Wait model the theoretical Percentage Frequency Effect (PFE)™ (for infinite
bandwidth), which equates to the theoretical chargeability in the Cole-Cole equation, is thereby defined
by the volume loading:

PFE; _ _ v
100 ° (2+3v)

and M is output in units of milliradians (mrads).

J.5 TITAN-24 IP CHARGEABILITY DEFINITION (QTNO0O1)

Quantec prefers to estimate IP responses using a time domain half-duty square-wave excitation
standard, but convert those chargeability results to units of phase. The specific procedure and algorithm
is as follows:

1. Determine the earliest time for which EM coupling has died out sufficiently. This time is
called the averaging or integration start time t, A typical value for {; is 0.8s;

2. Determine the latest charge/decay time that is minimally affected by sigma-delta and low-
pass (usually Hanning window moving average) filtering, called the averaging or integration

end time 1, . A typicalvalue for t, is 1.95s;

3. Adjust the start time (1;) so that {, —t, (equated to number of samples) exactly spans an
integer number of power-line signal periods. This can only be done for transmitted
(fundamental) frequencies that are much lower than the power-line frequency;

4. Using the charge and decay sample numbers that equate to the averaging window®®
defined by t; and t;, calculates the average charge and decay voltages. This average may

> The classical definition of PFE is 100 x (Po -p. )/Po .

% practice this averaging window is tapered slightly to widen the stop-band notches and thereby provide enhanced power-
line noise rejection.
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involve a non-uniform weighting to further improve rejection of power-line noise;

5. Calculate the theoretical Halverson-Wait half-duty time-domain response using identical
filtering to that applied to the measured data response estimate, and presuming the
following spectral parameters:

a. volume loading: 0.125 (this value is not important)
b. r—value: 1.0
c. k—value: 0.2

6. For the standard Halverson-Wait spectral parameters mentioned, the synthesized time-
domain response and the t, —t, averaging window, convert all estimated/measured

charge and decay voltages (using the specified averaging window) to chargeability
(millivolts/volt) and then to phase (milliradians).

This is the algorithm used in the Titan-24 data processing. The relationship between Titan-24
chargeability unit, phase in milliradians, and other frequency domain systems is straightforward —
Quantec’s time-domain based phase equates to frequency domain based phase, see figures below.

f, =30/64 Hz, PFE = -0.0066(¢ 2) + 1.2474(6) f, =30/256 Hz, PFE = -0.0059(¢ 2) + 1.2410(6)
35 . ! !
| | )
30— ——--- [ < nE——
25 - - - - —
20 - T ] S
i s
e i b e s
10-----g----——-1-———-—--=——--—--+
(f |
5--47-----| O theoretical (exact) H S5F- &7~ —} -—| O theoretical (exact) B
I — formula (approximation) I — formula (approximation)
0 1 1 1 0 1 1 1
0 10 20 30 40 0 10 20 30 40
PHASE (mRad) PHASE (mRad)
f, =30/1024 Hz, PFE = -0.0055(¢ 2) + 1.2829(6) f, =30/4096 Hz, PFE =-0.0055(¢ 2) + 1.3764(6)
35 . . . 35 . ! .
| | | | | |
0f - 1 S - 30f -~ - : R
| | |
2Bp - EEEEEEe P R -
| | |
$20F--------- o e $20F------ = SRR
L | w | |
e e : ——————— B 15— e : ———————
| |
10F---—gF------ T - 10F---g—------ T -
| | | |
5r- 2 -—-| O theoretical (exact) H 5F-g&~-----| O theoretical (exact) B
I — formula (approximation) I — formula (approximation)
0 1 1 1 0 1 1 1
0 10 20 30 40 0 10 20 30 40
PHASE (mRad) PHASE (mRad)

Phase vs. PFE for various pulse lengths and presuming standard Halverson-Wait
spectral parameters (r-value = 1.0 and k-value = 0.2).
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Phase vs. Chargeability (full decay) Phase vs. Chargeability (last 1/2 decay)

20

20

=
(6]
T

15+

10+

Phase (mRad)
=
o
Phase (mRad)

phase = 1.36*chargeability phase = 2.37*chargeability

of
o

5 10 15 5 10 15
Chargeability (mV/V) Chargeability (mV/V)

Phase vs. Chargeability (last 1/4 decay) Phase vs. Chargeability (last 1/8 decay)

20

20

15+ ] 15+

10+

Phase (mRad)
=
o
Phase (mRad)

phase = 2.75*chargeability phase = 2.93*chargeability

o
o

5 10 15 5 10 15
Chargeability (mV/V) Chargeability (mV/V)

lllustration of the proportional relationship between phase (mrad) and chargeability
(mV/V) for various charge/decay averaging windows
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J.6  DCIP2D INVERSION

An excellent overview and introduction to both the theory and use of inversions in geophysics is
available on the University of British Columbia (UBC) website (Oldenburg et al., 1998).

The DCIP2D inversion algorithms are developed by UBC-Geophysical Inversion Facility.

Mathematically, inversion is the process of fitting the observed data to a model through minimizing a
function. The choice of which function to minimize ultimately defines the inversion model. In the
inversion algorithm developed by UBC, this function is:

s —_— e ok N N o SR P ey |
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The function to be minimized consists of a function, (I)d, that minimizes the data misfit, and a function

d)m that finds a “smooth” model. Beta, the regularization parameter, represents a relative weighting
between fitting the data and smoothing the model.

Clearly, the data misfit function must be defined in more detail. One approach might be

Y (F[m)-d™
b, = Z

=1\ &;

I
This function defines the data misfit as the sum of the individual misfits squared (L2 norm), normalized
by the errors associated with each data point. It is the least-squares definition of the data misfit.

The model misfit function must also be defined in more detail. One of the most flexible definitions is the
one used by UBC

qiﬂm(rmn[})=(;££_[(m—mo)gdv-l-(;;‘_j [’(L;:%J dv—l-._r;gz_[ m dv

974

vol Vo o 1)

In this definition there are three components to the “model norm” (or “smoothness” constraint, or
“regularization”), each of which contains an a constant (o, o, o,) that are commonly referred to as
“alpha parameters”, and a fourth variable m, that refers to the starting or reference model — either a
half-space or geophysical constraint — that also has a profound influence on the model-misfit.

The three “alpha” parameters represent a relative weighting of each component:

e the first component is simply an overall difference between the model and a “target”
model;

e the second component is a horizontal smoothness;

e the third component is a vertical smoothness.
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J.7  APPARENT RESISTIVITY OF UNIFORM HALF SPACE

From p.636, Telford et al. 1976, the apparent resistivity p, is given as:

2N

where G, is the geometric factor defined as:

6 (1 1) (1 1

r r, Iy r,

I, the distance between current electrode P1 and potential electrode C1;
r, the distance between current electrode P1 and potential electrode C2;
I; the distance between current electrode P2 and potential electrode C1;

r, the distance between current electrode P2 and potential electrode C2;

J.8 DCINVERSION USING A SYNTHETIC MODEL

A synthetic resistivity model and its apparent resistivity pseudo section based on Titan-24 configuration
are shown here. The model consists of a background of 1,000 ohm-m and a vertical dyke of 1 ohm-m.
The synthetic DC data, V,’s, are computed using UBC’s 2D forward modeling tool DCIPF2D

Resistivity Model

0

I

663

Depth {m)

994 _
6870 7420 7970 8520 9070 9620 10170
X (m)

1,000 ohm-m background and 1 ohm-m vertical conductor

DC Resistivity Pseudo Section
Titan-24 pole-dipole with 500m current extensions

A synthetic model and its apparent resistivity pseudo section

153



QUANTEC GEOSCIENCE LTD

The inverted resistivity model and the convergence curves are displayed below.

Resistivity Model

1000

I 316.2
100
31.62
10
3.162

0

331

663

Depth (m)

994 .
6870 7420 7970 8520 9070 9620 10170 Ohm -m

X (m)

N (iteration) = 18
N (data) = 837

Data misfit = 836.9

Inversion model, convergence curves and inversion statistics

J.9 IPINVERSIONS

For IP inversions, the apparent chargeability n is computed by carrying out two DC resistivity forward
modeling with conductivity distributions o(x;,z;) and (1-7)o(x;,z;) (Oldenburg and Li, 1994),

where (X;,Z;) specifies the location in a 2D mesh.

The conductivity distributions used in IP inversions can be the inverted DC model or a half space of
uniform conductivity. The IP inversion, generated through the use of a half space, is called the “NullCon”
or “HSref” IP model
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K INTRODUCTION TO THE MAGNETOTELLURIC METHOD

K.1 INTRODUCTION

The magnetotelluric (MT) method utilizes time-variations in the Earth’s natural electric (E) and magnetic
(H) fields to image the resistivity of the subsurface structure. The natural electromagnetic (EM) signals
are assumed to be of plane-wave source over the frequency range with which the MT surveys are
usually carried out. The plane-wave source is simpler to model compared with the complex transmitter
geometries and signals used in the other EM methods. It makes the MT responses easier to understand
and interpret with respect to the subsurface resistivity variations.

The E and H fields are measured over a broad range of frequencies. Typically, the frequencies can range
from above 10 kHz to below 0.001Hz. Considering the conductivity of the Earth’s materials and the
frequency range over which the MT data are measured, the EM fields propagate in a diffusive regime.
High frequency signals are attenuated more rapidly in the subsurface. Therefore, high frequency data
are indicative of shallow resistivity structure while low frequency data are indicative of deep resistivity
structure.

At frequencies below 1Hz the EM signal source is due to oscillations of the Earth’s ionosphere as it
interacts with the solar wind. At frequencies above 1Hz the signal source is due to worldwide lightning
activities. There is a lack of natural signal around 1Hz, often referred to as the “hole”. Modern 24-bit
recording hardware and signal processing techniques, however, have largely eliminated the data quality
degradations that have been traditionally seen around the 1Hz signal hole.

Between about 8Hz and 300Hz the signal from worldwide lightning activity propagates in a “resonant”
cavity (the resistive atmosphere) between the conductive ionosphere and the conductive Earth’s
surface. Above 3 kHz the signal propagates as a ground wave. Between 300Hz and 3 kHz there is a
“dead-band” where the signal does not propagate well. Despite hardware and signal processing
improvements this dead-band remains problematic. When signal (atmospheric activity) is present within
several hundreds of miles of the survey area the data quality improves. When no signal is being
generated in the vicinity of the survey area the data quality is poor.

Source Bands

Dheadd

Band Lishtoim:

S
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K.2 MEASUREMENTS

Both the electric and magnetic fields are measured at each site. The measured field strengths depend on
the ionosphere and lightning activities and are essentially of random nature. While the E and H field
strengths are random the ratio of these two fields depends on the frequency and the subsurface
resistivity structure. For a homogeneous and a 1D earth resistivity structures, the magnetic field is
perpendicular to the electric field. However, it is possible for a complex subsurface resistivity structure
to rotate the fields. Therefore, full tensor data, including two perpendicular electric and two
perpendicular magnetic fields, are usually measured.

In the field surveys, the electric and magnetic fields are measured as a function of time. The electric field
is measured using two orthogonal grounded dipoles. The magnetic field is also measured using induction
coils parallel to the electric dipoles.

Sample Time Series
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K.3 DATA PROCESSING

Extracting the subsurface resistivity structure from the measured magnetic and electric fields is a multi-
step process. First, time series are transformed into frequency domain and sophisticated processing
techniques are used to estimate the MT impedance tensor from the electric and magnetic fields. The
impedance tensor is then used to calculate the apparent resistivity and phase data. In interpretation
stage, inversion techniques are used to invert the apparent resistivity and phase data in to the
subsurface true resistivity image. Finally, the resistivity image must be interpreted in terms of geologic
units.

In time series processing, the measured magnetic and electric fields are Fourier transformed into the
frequency domain. Calibration curves are applied to the measured fields to remove the acquisition
system response. The Fourier coefficients represent the amplitude and phase of the electric and
magnetic fields as a function of frequency.
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Processing and Interpretation Flow

Timeseries

Hesistivily

A variety of complex signal processing techniques are used to minimize noise and bias in the estimation
of geophysical parameters from the measured fields. The approaches include:

e Spatial isolation of noise. A remote reference magnetic station is used to separate signal
from local noise in the magnetic field data;

e Coherency sieves to find coherent signal. First the local and remote magnetic field
measurements are compared and coherent signal are kept. Then the local magnetic and
electric fields are compared for coherency;

e Frequency isolation of noise. Long Fourier transforms are used to provide extremely sharp
isolation of noise in frequency;

e Time isolation of noise. Short Fourier transforms are used to remove noise that is isolated
in time (noise spikes, or noise that is randomly turning off and on);

e Robust statistics that minimize biasing effects of a few isolated measurements.

The geophysical parameters are estimated after the processing is completed. In frequency domain, the
ratio between the two measured components (E and H) is called electrical impedance (Z) and is defined
as |Z|= | E/H | . The primary geophysical parameters are usually represented as plots of the apparent
resistivity versus frequency and the phase versus frequency. The impedance values are used to calculate
apparent resistivity and phase data as follows:

p,(Qm) = i|Z|2 and ¢ =arg (Z)
)

The apparent resistivity is a function of the frequency. The apparent resistivity can be considered as a
volumetric weighted average of the resistivity and thickness of the rocks being sampled. Consequently,
it is a smoothly varying function of the frequency. It can be shown theoretically that on a log-log plot of
the apparent resistivity vs. frequency the curve cannot exceed a slope of +/- 45 degrees for a layered
earth model. For a homogenous half-space or a one-dimensional (1D) earth the phase is related to the
apparent resistivity through the Hilbert transform. This association does not exist for the 2D and the 3D
earth models.
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K.4 INTERPRETATION

Plots of apparent resistivity and phase data versus frequency in a log-log scale are a conventional way of
looking at the data before interpretation. If the survey involves several MT sites located along a line
pseudo-sections of the apparent resistivities and phases in both components provides a first impression
of the resistivity variation of the subsurface along the survey line.

The depth of penetration of the EM signal depends on the frequency of the data and the resistivity of
the subsurface. The depth at which the signal amplitude attenuates to 37% (1/e) of its initial value is
called the electromagnetic skin depth (8) and is defined as:

o(m) = L =503 (\/EJ
HOT f

where & (m) is the skin depth, u the magnetic permeability, ¢ (S5/m) the conductivity (1/resistivity), o the
angular frequency (=2xf), f (Hz) the frequency, and p ((Qm) the resistivity (1/conductivity)

The skin depth concept provides an estimation of the maximum depth of investigation of the MT data.

The following plots illustrate example of the apparent resistivity curves for two MT sites as well as the
apparent resistivity cross-sections along a MT line over a simple geological model.
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Interpretation of the MT data is performed using the maps of true resistivity of the subsurface. Inversion
algorithms in one-dimension (1D), two-dimension (2D), and three-dimension (3D) are used to invert the
apparent resistivity and phase data in to the maps of true resistivity of the subsurface. A simple layered
subsurface structure generally can adequately be reproduced using the 1D inversion. In the case of more
complex 2D or 3D structures, the MT response will be affected by lateral variations in resistivity.
Consequently, a 2D or 3D inversion algorithm is required to allow the lateral resistivity variations.

In 1D earth assumption, off-diagonal elements of the impedance tensor are equal and of opposite signs
and the diagonal elements are zero. The 1D inversion of the MT data produces a resistivity-depth profile
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for each MT site. The results represent a first order approximation of the resistivity variations with
depth using a layered-earth model.

If there are lateral variations in the resistivity of the subsurface along one direction only (perpendicular
to the strike) then a 2D inversion and interpretation is required. In this case, for a data rotated to the
strike direction, off-diagonal elements of the impedance tensor are of opposite signs but not equal and
the diagonal elements are zero. Because the electrical conductivity is constant along the strike direction
(for example x-direction) all derivatives with respect to x will be zero. Therefore, Maxwell’s equations
are simplified and can be separated into two distinct modes so-called Transverse Electric (TE) and
Transverse Magnetic (TM). The TE-mode represents the condition where the electric field is parallel to
the strike direction while the TM-mode represents the condition where the magnetic field is parallel to
the strike direction.

A cross-section of the true resistivity variations perpendicular to the assumed strike direction is created
in the 2D inversion and is used in interpretation. For more complex geological structures a 3D inversion
is essential to adequately describe the resistivity variation of the subsurface. In this case, none of the
elements in the impedance tensor are equal or zero.

One of the factors that can affect the multi-dimensional MT data and interpretation is “static shift”. The
apparent resistivity curves can be biased (shifted up or down) by lateral resistivity contrasts with
dimensions smaller than the minimum wavelength of the EM fields. These small features cannot be
resolved by the MT data and they introduce a DC shift on the log-log apparent resistivity plots. This
effect can be recognized by examining the sounding resistivity curves from the neighbouring MT sites
and most be treated before the interpretation. Note that there are no static shift effects in the phase
data.
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