ASSESSMENT REPORT

on the

DILLARD PROPERTY

MTO Events # 5404764 + 5411862

SIMILKAMEEN MINING DIVISION, British Columbia Latitude 49°45' N, Longitude 120°25' W

Prepared for Operator:

FJORDLAND EXPLORATION INC. 1100 – 1111 Melville Street Vancouver, B.C., Canada V6E 3V6

By:

L. John Peters, B.Sc., P .Geo.

22 October, 2012 Vancouver, B.C.

Та	ble of Co	ontents	page
1.	Summa	ry	1
2.	Property	/ Location, Size, Access and Physiography	2
3.	History		4
4.	Geologi	cal Setting	5
	4.1	Property Geology	7
	4.2	Mineralization	8
5.	2012 Ex	ploration Program	9
	5.1	Historic Drill Core	10
	5.2	Drill Core Susceptibility Survey	11
	5.3	Property Magnetics Survey	12
	5.4	IP Chargeability and Resistivity Surveys	15
6.	Interpret	tation and Conclusions	19
7.	Recomn	19	
8.	Stateme	20	
9.	Referen	Ces	21
10	. Authors	Statement of Qualifications	23

List of Tables

1.	List of Tenures	4
2.	Summary of Historic Exploration Surveys	4
3.	Minfile Occurrences	9
4.	Correlation Coefficients for Copper-Gold-Susceptibility of Drill Core	11
5.	Cost Estimate for Recommended Surveys	19
6.	Statement of Expenditures	20

List of Figures

1.	Location Map	2
2.	Claim Map	3
3.	Geology	6
4.	Property Geology Compilation	7
7.	Location of Geophysical Surveys	10
8.	X-Y Plot of Copper Distribution with Magnetic Susceptibility	11
9.	X-Y Plot of Copper and Gold Distribution	12
10.	Regional TF Magnetics	12
11.	2012 Ground Magnetics Survey	13
12.	Ground Magnetics (TF) Compilation	14
13.	IP Survey Location Showing Historic Chargeability Anomalies	15
14.	IP Pseudosections	16
15.	Chargeability Inversion Slices Plan	17
16.	Resistivity Inversion Slices Plan	18

Appendices

Appendix A: Susceptibility Survey Appendix B: Geophysical Logistics Report

1. SUMMARY

This report covers MTO Events 5404764 and 5411862 dated 12 September 2012 and 22 October 2012 respectively.

Between 12 June and 24 September 2012 programs consisting of prospecting, susceptibility survey on drill core, and geophysical surveys consisting of IP and Magnetics was completed on the Dillard Property. The total cost of the surveys was \$68,075.²⁸.

The Dillard Property is located 50 kilometres west of Peachland and 47 kilometres southeast of Merritt in south-central British Columbia. At the date of this report, the Property consists of 18 mineral tenures with a total area of 2,592.2 hectares.

The western portion of the property is underlain by Upper Triassic-aged Nicola Group intermediate to mafic volcanic rocks, with local interbeds of argillite and minor limestone. Granite and quartz diorite of the Middle Jurassic Osprey Lake batholith intrude the Nicola volcanic rocks at the eastern portion of the property. Various smaller plutonic plugs, dykes and sills composed of diorite, granite and monzonite intrude the volcanic rocks.

Several ground geophysical and geological surveys completed this summer, along with work compiled from previous exploration, have resulted in the identification of several anomalies that are ready for drill testing. The 2012 geophysical surveys have led to the identification of IP chargeability anomalies that are coincident with copper-gold soil anomalies and geologically mapped intrusive bodies. At this time two areas measuring approximately 2000 metres (m) by 800 m, and 1500 m by 1000 m are prospective for porphyry-style mineralization, the westernmost area having been confirmed through historic drilling.

The property has excellent potential to host economic deposits of porphyry-style mineralization.

An additional program of Induced Polarization and Magnetics to the north and east of the currently tested area is recommended. Data from the historic IP surveys in the western portion of the property should be inverted. Drill testing of the new chargeability anomaly as well as testing extensions and to depth of the western zone is also recommended.

The next phase of exploration is estimated to cost \$350,000.

2.0 PROPERTY LOCATION, SIZE, ACCESS AND PHYSIOGRAPHY

The Dillard Property is located 50 kilometres west of Peachland and 47 kilometres southeast of Merritt in south-central British Columbia (Figure 1). The Property is located in the Similkameen Mining Division of south-central British Columbia, centred on latitude 49°45'N and longitude 120°25' W within NTS map areas 92H/9W and 16W (Figure 2).

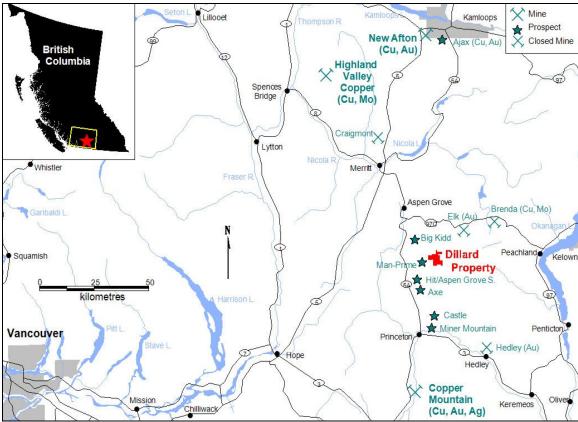


Figure 1: Location

Recently constructed gravel forest service roads (FSR) provide access from Princeton to the south and from Merritt to the north. Access from Merritt is 26 km south via the Princeton-Merritt highway (5A) to Hwy 97C, east 16 km to the Loon Lake Road exit, and south 17 km via the Shrimpton Creek FSR.

The claims cover an area of 2,592 hectares in rolling, hilly terrain on a broad uplands plateau. Elevations range from 1740 m asl in the center of the property to 1310 m in the southeast and 1430 m in the north. Small streams drain the property in all directions from the high elevation point in the centre of the property. Outcrop exposures are moderately abundant and till cover overall is relatively shallow. Mature stands of spruce, balsam, fir and pine have been recently logged over at least 50% of the property. Annual temperatures range from -20° to 30° C and precipitation is low to moderate. The area is basically snow-free from late June through October.

At the date of this report, the Dillard Property consists of 18 mineral tenures totaling 2,592 ha comprising two option agreements (Figure 2). The Dillard portion of the Property is owned by Mike Adam and Frank LaRoche of Kamloops B.C. The Dill portion of the Property is owned by Almaden Minerals of Vancouver, B.C. Both groups of claims are optioned to Fjordland. Fjordland is a public company incorporated in Canada, with offices at #1100-1111 Melville Street, Vancouver, BC, Canada, V6E 3V6.

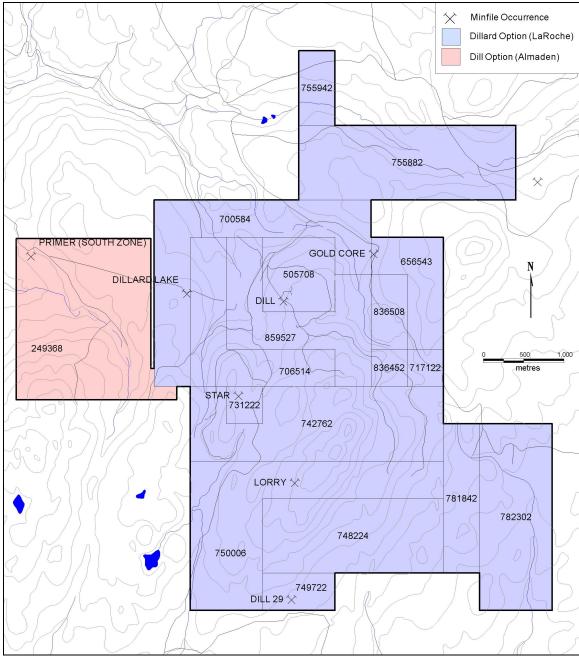


Figure 2: Claim Map

A listing of all tenures follows on Table 1. Expiry dates on tenures are currently valid pending the acceptance of this report.

Tenure	Issue Date	Good to	Name	Area (ha)	Owner
656543	20091021	Dec 31, 2017		83	FL+MA
700584	20100116	Dec 31, 2017		230	FL+MA
706514	20100218	Dec 31, 2017		146	FL+MA
717122	20100306	Dec 31, 2017	DRILL	21	FL+MA
731222	20100320	Dec 31, 2017		21	FL+MA
742762	20100407	Dec 31, 2017		271	FL+MA
748224	20100414	Dec 31, 2017		209	FL+MA
749722	20100416	Dec 31, 2017		42	FL+MA
750006	20100416	Dec 31, 2017		271	FL+MA
755882	20100424	Dec 31, 2017		250	FL+MA
755942	20100424	Dec 31, 2017		42	FL+MA
781842	20100530	Dec 31, 2017		84	FL+MA
782302	20100531	Dec 31, 2017		209	FL+MA
836452	20101022	Dec 31, 2017		21	FL+MA
836508	20101023	Dec 31, 2017		42	FL+MA
859527	20110626	Dec 31, 2017		167	FL+MA
505708	20050203	Dec 31, 2017		83	FL+MA
249368	19881013	Dec 31, 2017	Dill #2	400	Almaden

Table 1: List of Tenures

3.0 HISTORY

A summary of exploration available on the ARIS database follows on Table 2.

ARIS #	Year	Company	Description	Area
2354	1970	Pagent Mines	Compilation of 33 DDH (3744m) and Soils	Dill W
2355	1970	Pagent Mines	Airborne Magnetic Survey	Dill W
2356	1970	Pagent Mines	Photo-Geological Survey	Regional
4341	1972	Noranda Expl	Soil Geochemistry, Ground Mag	Dillard E
4491	1973	Noranda Expl	Soil Geochemistry	Dillard E
6877	1978	Atled Exploration	Trenching	Dill W
7340	1979	Atled Exploration	Ground Mag	Dill W
7521	1979	Atled Exploration	Geologic Mapping	Dill W
8364	1980	Atled Exploration	Geologic Mapping	Dill E+W
9429	1981	Cominco Ltd	Soil Geochemistry, Ground Mag + VLF-EM	Dillard E
11605	1983	Cominco Ltd	Soil Geochemistry	Dillard E
18410	1988	Fairfield Minerals	Soil Geochemistry	Dillard E
19335	1989	Harold Adams	2 BQ DDH (152.4m)	Dillard E
19593	1989	Fairfield Minerals/Placer Dome	Soil Geochemistry, IP, Trenching	Dillard E
21198	1990	Fairfield Minerals	Soil Geochemistry, IP, VLF-EM, Mag	Dill W
22220	1992	Fairfield Minerals	11 NQ DDH (2030m), IP	Dill W
25992	1999	Harold Adams	2 AQ DDH (183.5m)	Dillard E
29817	2008	John Kerr	Soil + Silt Geochemistry	Dillard E
30318	2008	Almaden Minerals	Stream Sed Sampling	Dill W

 Table 2: Summary of Historic Exploration Surveys

The Dill Property was explored for copper, gold and silver from 1963 through 1970 by several companies using soil sampling, geological mapping, trenching, IP, ground EM, airborne and ground magnetometer and percussion and diamond drilling. Intercepts from a 1969 drilling program on the property include 0.13% Cu over 296 m and 0.26% Cu over 207 m including 59 m of 0.37% Cu.

A 1990 program of IP, magnetometer and VLF-EM surveys identified two parallel high chargeability trends over the anomalous copper/gold soil geochemistry zone inside the Dill #2 claim. These were tested in 1991 with a program of eleven diamond drill holes totaling 2030 m. Intersections of significant chalcopyrite mineralization were hosted by monzonites, monzodiorites and diorites and andesitic volcanic rocks. Significant intercepts include 187.1 m of 0.24% Cu (D91-2), 48.2 m of 0.28% Cu (D91-5) and 180.4 m of 0.13% Cu (D93-8). Gold values were generally low with only one isolated intersection of 710 ppb Au over 3.1 m, leaving the source of numerous gold soil geochemical anomalies (>50 ppb Au) unexplained.

The area to the east of the Dill #2 property (Dillard) was explored for copper in the 1970's by Noranda and 1980's by Cominco. Geologic mapping, soil sampling and ground geophysics discovered disseminated chalcopyrite and chalcopyrite in quartz-calcite veins cutting volcanic rocks intruded by dykes of variable composition.

The entire claim area was staked by Fairfield Minerals in 1998 following a grid soil sampling program that identified areas of anomalous geochemistry. Placer Dome Inc. subsequently optioned the claim in 1989, staked several surrounding claims and conducted a program of soil sampling, IP, trenching and rock sampling. Continuous chip samples across quartz veins and altered wallrock from trenches on the Dillard claims yielded values up to 254.4 g/t Au over 0.5 metres.

On the eastern portion of the property, at the contact with the L Triassic-aged Nicola volcanic rocks and Jurassic-aged granitic rocks, a small property was owned and operated by Harold Adams. From 1989 to 1999, 2 drill programs completed a total of 4 diamond drill holes (335.9 m) testing the vein-style gold potential observed in trenches.

4.0 GEOLOGICAL SETTING

The Dill property is situated in the Intermontane tectonic belt in south-central British Columbia. The regional geology is from Open File 1996-20 compiled by Schiarizza, P. and Church, N. (1996). The west side of the property is underlain by the Nicola Group, a package of intermediate to mafic volcanic rocks with minor limestone and sandstone intruded by consanguineous bodies of monzonite, diorite, granodiorite and dacite. These rocks have a genetic association with tectonic activity along the Summer's Creek and Allison fault systems which dominated the geology of the region in Late Triassic geology of the region in Late Triassic time (Preto, 1979). To the east, these rocks are in contact with granite and granodiorite of the Upper Jurassic osprey Lake batholith (Figure 3).

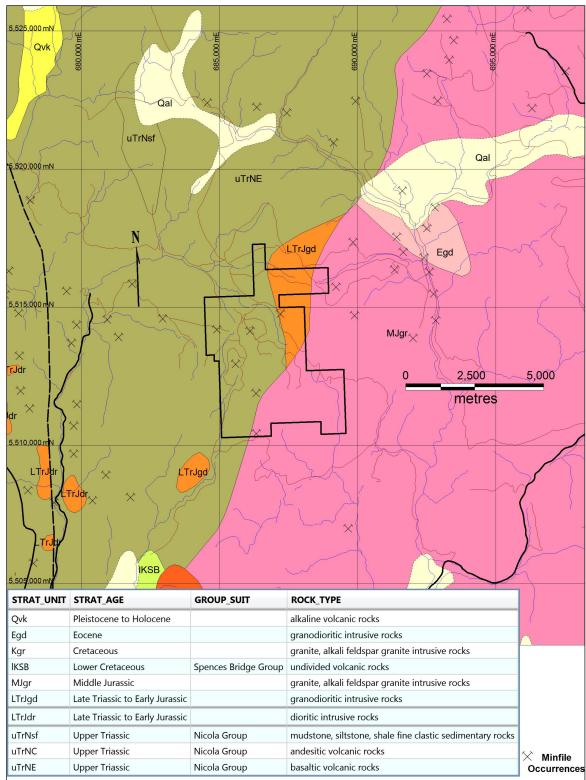


Figure 3: Geology (after Schiarizza, P. et al, 1996)

4.1 Property Geology

The current property geology map is compiled from historic mapping, trenching and drill data as well as recent prospecting (Figure 4).

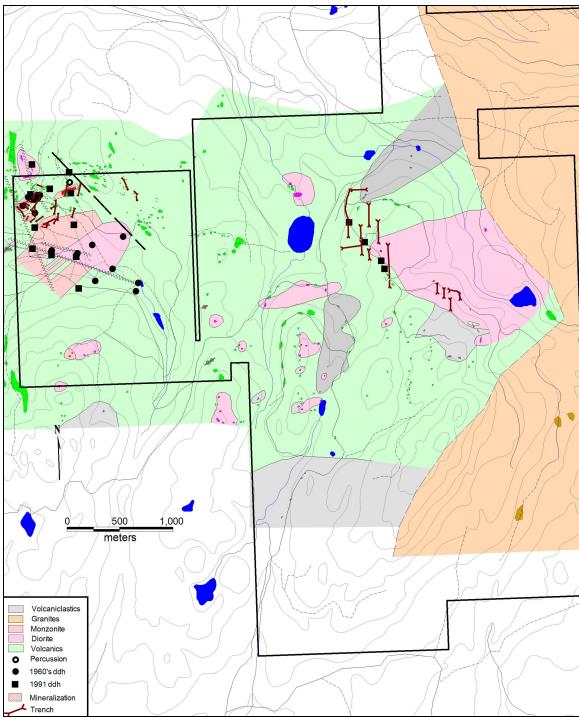


Figure 4: Property Geology Compilation (after Gutrath, G. et al)

The western portion of the property is underlain by Upper Triassic Nicola Group intermediate to mafic volcanic rocks, with local interbeds of argillite and minor limestone occupying a shallow embayment in a Jurassic-aged, reddish, coarse grained granite batholith which underlies the eastern part of the property.

The Nicola Group volcanic rocks are comprised of predominantly light green to almost black, fine grained andesite to basaltic flows and fragmental units containing up to 70% augite \pm hornblende and plagioclase phenocrysts which are contemporaneous with zones of diorite to granodiorite composition, considered to be sub-volcanic feeders.. Less common volcanic breccia consists of sparse to concentrated clasts of granodiorite, monzonite, syenite and volcanic rock up to 15 cm, but typically 0.5 - 3 cm, with diffuse margins supported by a dark green to black fine-grained matrix with local augite \pm hornblende phenocrysts. Coarse grained andesites, trachyandesites and fine-grained tuffs are locally present.

The volcanic rocks are massive, non-foliated and weakly metamorphosed, locally grading into greenschist facies. Weak sericitic and propylitic alteration is common, with plagioclase phenocryst cores replaced by sericite ± calcite and mafic minerals altered to chlorite ± epidote, carbonate, biotite and secondary amphibole. Zones of intense argillic and carbonate alteration are locally developed around faults or areas of intense fracturing; primary textures are destroyed resulting in an orange to green incompetent aggregate of sericite, K-feldspar and clay minerals. Secondary guartz and wispy narrow veinlets of MnO(3) are common. Potassic alteration occurs as locally pervasive pink Kfeldspar flooding of the volcanic rock, as thin K-feldspar alteration selvedges along carbonate ± epidote stringers and as K-feldspar filling microfractures. Silicification is confined to rare guartz ± calcite ± epidote veins and stringers. Extensive hematite probably resulted from near-surface oxidation of magnetite and as a by-product of hydrothermal alteration at depth. Silicification is typically confined to guartz + calcite, epidote veins and stringers, however, local increases in hardness of host rocks have been observed over narrow widths. Local albite flooding occurs proximal to carbonate and epidote stringers.

The volcanic rocks are intruded by predominantly monzonites and monzodiorites with lesser diorites and dacites. Porphyritic textures are common, with 1 to 3 mm hornblende and plagioclase phenocrysts in a groundmass that varies from aphanitic to medium-grained interlocking crystals. Post-mineralization porphyritic dykes indicate multiple intrusive events.

Granite and quartz diorite of the Middle Jurassic-aged Osprey Lake batholith bound the Nicola volcanic rocks at the eastern portion of the property. A number of fine grained siliceous dykes may represent a marginal feature of the Osprey Lake batholith.

4.2 Mineralization

Two modes of mineralization are evident on the property.

Porphyry style mineralization is present as chalcopyrite in fracture coatings, fine veinlets, disseminations, and masses. Significant concentrations of chalcopyrite (up to 1% locally) is hosted by both intrusive and volcanic rocks. Pyrite occurs in veinlets ± carbonate, sericite, epidote, quartz) and as fine to medium-grained disseminations. Mineralization is associated with early carbonate-sericite-(quartz) filled breccia. Local

potassic alteration coincides with high chalcopyrite concentrations. Enriched gold values (up to 710 ppb over 3.1 m) correlate well with increased quartz + calcite, epidote veinlets. Significant samples taken during the 2011 prospecting program included a sample grading 1.6% Cu and 11 additional samples grading > 0.1% Cu from fractured, silicified volcanics in the eastern portion of the property.

Mineralization occurs in the eastern portion of the property that is typical of Mesothermal-type vein gold deposits similar in nature to Almaden Minerals' Siwash vein deposit. This type of deposit is possibly indicated by gold-in-soils geochemistry in the eastern portion of the claims. Historic drilling in the area delineated white carbonate altered zones and silicified zones with quartz-carbonate veinlets ± breccia containing 1-5% pyrite and traces of galena. Historic drilling from these zones did not contain anomalous gold or silver values, but several samples gave weak arsenic, copper, lead and zinc values. A rock sample from the 2011 prospecting program returned 3.3 g/t Au and 28.9 g/t Au from two locations hosting small quartz veins in diorite.

A total of 7 MINFILE occurrences are located on the property as shown on Table 3.

Minfile #	Name	Туре	Commodity
092HNE191	DILL	Prospect	Au, Cu, Ag
092HNE246	DILL 29	Showing	Cu
092HNE244	DILLARD LAKE	Showing	Cu
092HNE245	GOLD CORE	Showing	Zn, Pb, Ag
092HNE112	LORRY	Showing	Cu
092HNE124	STAR	Showing	Cu
092HNE055	PRIMER	Prospect	Cu, Au

Table 3: Minfile Occurrences

5.0 2012 EXPLORATION PROGRAM

Several visits were made to the property by the author. Initial exploration included discovery, retrieval, restoration and reboxing of much of the 2,020 m of core drilled on the Dill property by Placer Dome Inc. in 1991. A susceptibility survey was then completed over the remaining reconditioned core by the author. Historic drill hole locations were established on the ground by use of old air photos and ground disturbance remnants.

Ground geophysical surveys were completed including 23.3 line-kilometres (km) of ground magnetic surveying and 11 line-km of induced polarization (IP) surveying over selected areas on the Dillard property (Figure 5). The surveys were completed by Scott Geophysics Ltd of Vancouver, BC.

Historic geological, geochemical, and geophysical surveys were compiled into databases and integrated with recent surveys for analyses of search vectors and generation of drill targets.

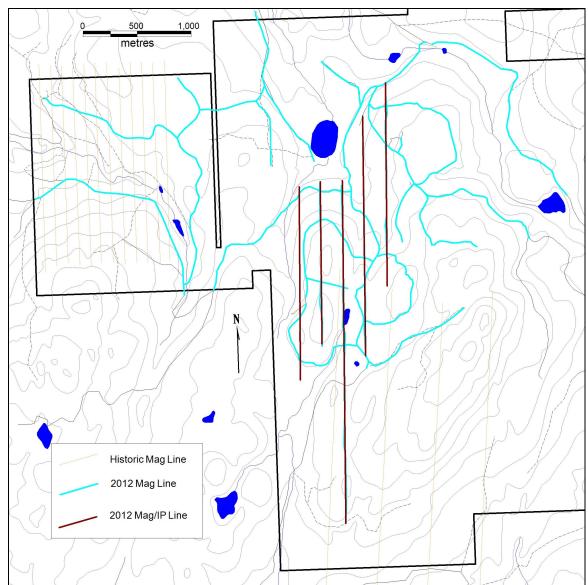


Figure 5: Location of Geophysical Surveys

5.1 Historic Drill Core

A compilation of the 1960's and 1991 historic drillhole locations and results was created from the ARIS database. All hole locations were reported relative to historic roads and reference points, however, recent logging had obliterated all traces of previous access trails and collar locations. Utilizing several generations of air photos, taken prior to logging activities and subsequent to drilling, it was possible to ascertain the locations of all historic drill collars to a high degree of certainty.

A search was made for previous core, believed to be stored on site. The camp area for the 1960's vintage drilling was devoid of all core and it is believed that the core was removed when it was re-logged in 1970 by Pagent Mines Ltd. The core from the 1991 drilling was discovered cached north of the property along Dillard Creek. The core had been vandalized over the years and attempts were made to salvage what remained.

A total of 43% of the core was recovered and placed into new core boxes and transferred to the property. Work was completed by F. LaRoche and B. LaRoche of Kamloops, BC. The core is currently located at UTM coordinates 686100E, 5514270N.

5.2 Drill Core Susceptibility Survey

A susceptibility survey was completed on the core by the author to ascertain the relationships between magnetite distribution and copper mineralization. Readings were taken from all recovered core at ~ 1.3 m intervals using a Terraplus KT-10 Susceptibility Meter. Results from the susceptibility survey cross-indexed with historically reported grades for each area measured are located in Appendix A.

Results for the susceptibility survey are graphically presented with copper distribution and shown on Figure 6.

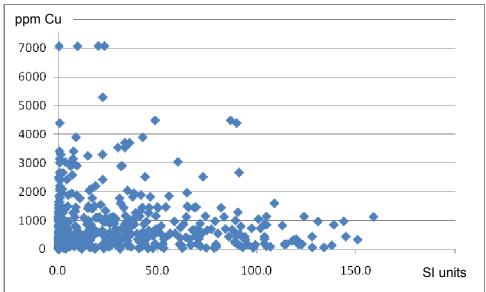


Figure 6: X-Y plot of Copper Distribution with Magnetic Susceptibility

Correlation coefficients were calculated for magnetic susceptibility and copper-gold distribution and shown on Table 4. Copper vs gold showed fairly good correlation (Figure 7), however, magnetic susceptibility did not exhibit any discernable pattern with gold or copper distribution. Communication with P. Holbec of Copper Mountain Mining Corp related that the Copper Mountain Mine had similar relationships.

	Cu	Au
Suscept	-0.040	-0.074
Au	0.371	

Table 4: Correlation Coefficients for Copper-Gold-Susceptibility of Drill Core

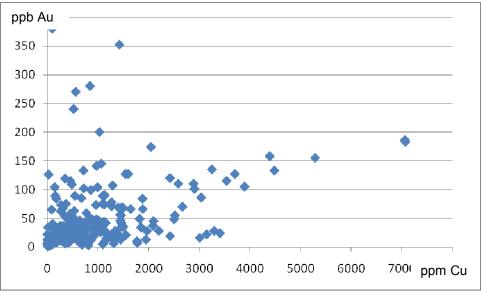


Figure 7: X-Y Plot of Copper and Gold Distribution

5.3 Property Magnetics Survey

Regionally, the known mineralization at the Dillard Property is associated with a low magnetic signature. A linear north-south trending magnetic high located just west of the property is associated with a regional-scaled structural zone (Figure 8).

Historically, several magnetic surveys were completed on portions of the property. A magnetic survey was completed in 2012 along newly created forest service roads on the property, along lines created for the 2012 IP survey, and across the previous survey lines in an attempt to incorporate the previous surveys into a common database.

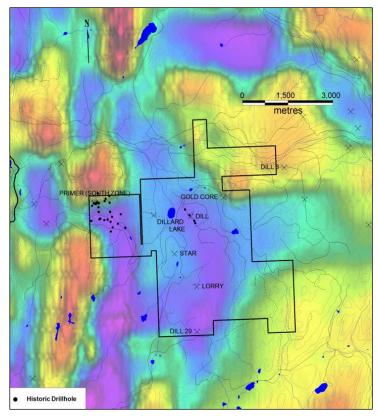
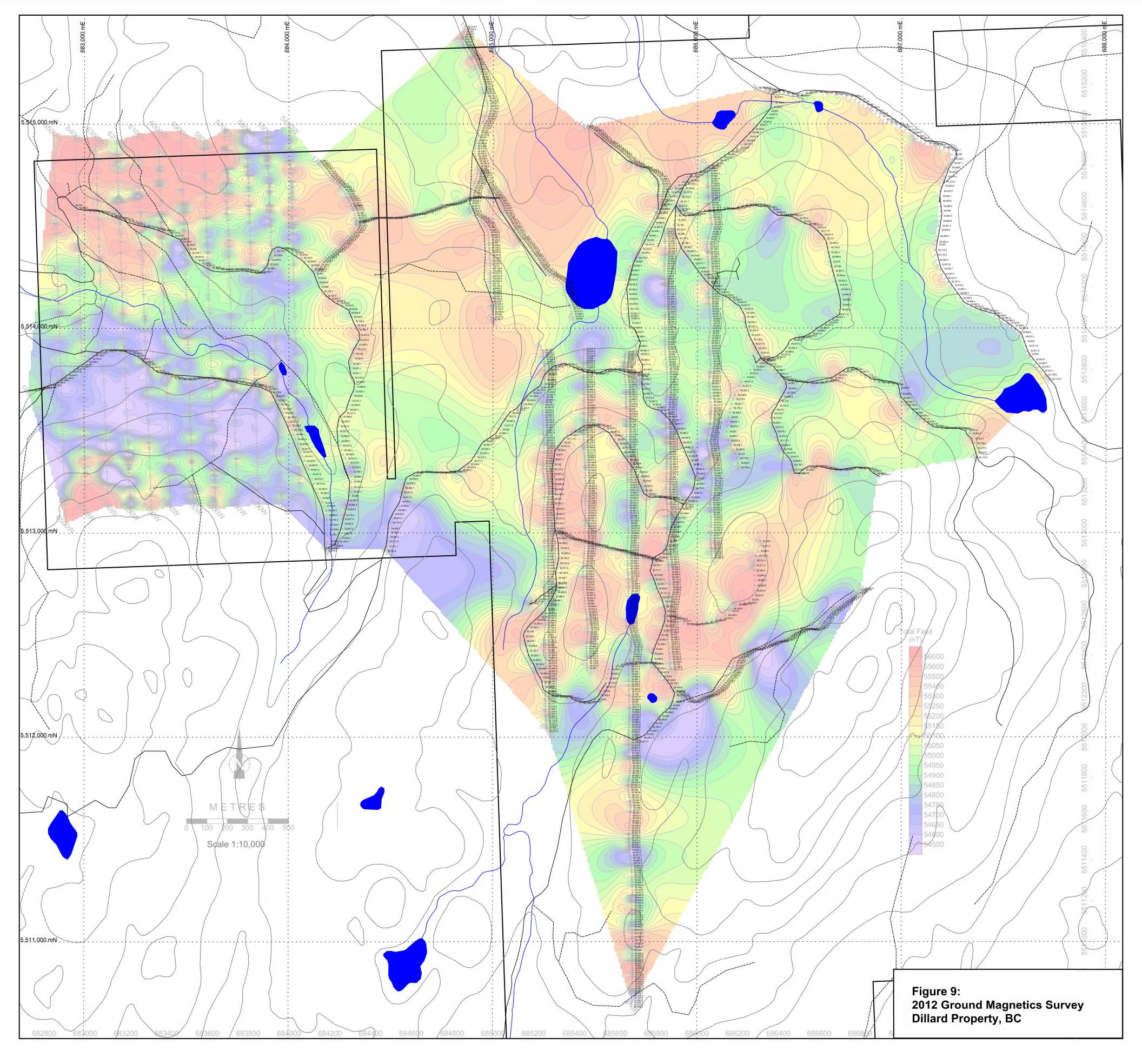



Figure 8:Regional TF Magnetics - Government Web Portal (1971)

The survey was completed in two stages July 31-August 1 and September 18-24, 2012 by Scott Geophysics Ltd of Vancouver, BC. Readings were collected at 25 m intervals over areas known to contain surface copper mineralization. Results from the survey are

located on Figure 9. Survey procedures and a description of equipment used are located in Appendix B.

Attempts were made to incorporate three historic surveys with the 2012 results into a common database. The 1981 survey completed by Cominco Ltd (Mehner, D.) produced results that were incomparable with the 2012 survey and were rejected. A survey completed by Noranda in 1972 was done utilizing a fluxgate magnetometer and was measuring the vertical component of the magnetic field. The newer surveys are done with proton precession magnetometers measuring the total field strength. A 1990 survey was completed in the western portion of the property on behalf of Placer Dome (Cormier, J.) by Scott Geophysics Ltd, the 2012 operator. This survey was normalized and incorporated into a common database with the 2012 results and presented on Figure 10.

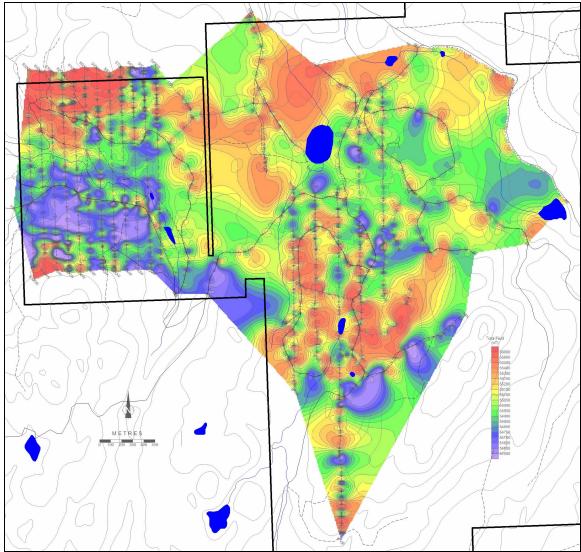


Figure 10: Ground Magnetics (TF) Compilation

The surveys delineated numerous magnetic anomalies occurring coincident with geologically mapped intrusive bodies and copper-in-soil geochemical anomalies.

5.4 IP Chargeability and Resistivity Surveys

Historically, two IP surveys have been completed on the property. In 1989 Placer Dome completed 2 grids of IP in the eastern portion of the property using a dipole-dipole array using mainly 25 m electrode spacing. The survey was comprised of 3.93 line-kilometres in 5 lines and 1.35 line-kilometres in 3 lines, lines spaced 100 m apart. Several chargeability anomalies were delineated by the survey in an area coincident with copper and gold soil geochemical anomalies.

In 1990 Placer Dome completed 21.75 line-kilometres of IP in a grid consisting of twelve 1.8 km north-south lines spaced 100 m apart. A pole-dipole array was used with an electrode spacing of 50 m. Two large chargeability anomalies were delineated by the survey. An additional 4.4 line-kilometres were added to the western extent of the grid in 1991.

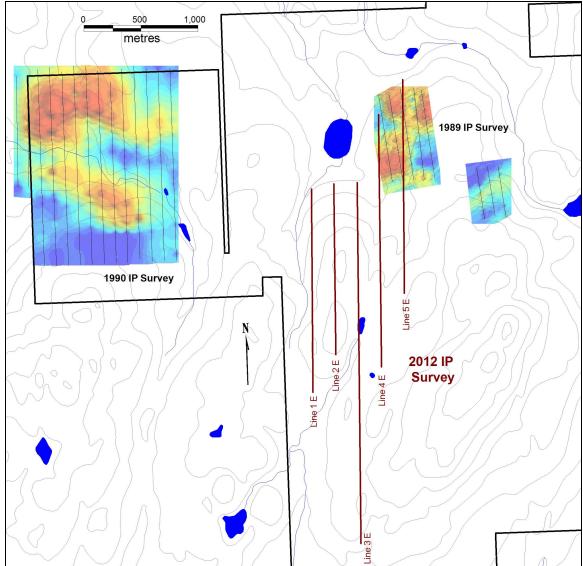


Figure 11: IP Survey Location Showing Historic Chargeability Anomalies

The 2012 IP survey consisted of 5 north-south lines spaced 200 m apart totaling 11 linekilometres (Figure 11). The lines covered areas containing high copper-in-soils and known copper mineralization in outcrop. The objective of the survey was to delineate moderate to high chargeability areas that may contain porphyry-style mineralization for drill testing. A pole-dipole array was used with readings taken with an "a" spacing of 100 m. Survey procedures, equipment and results are presented in Appendix B.

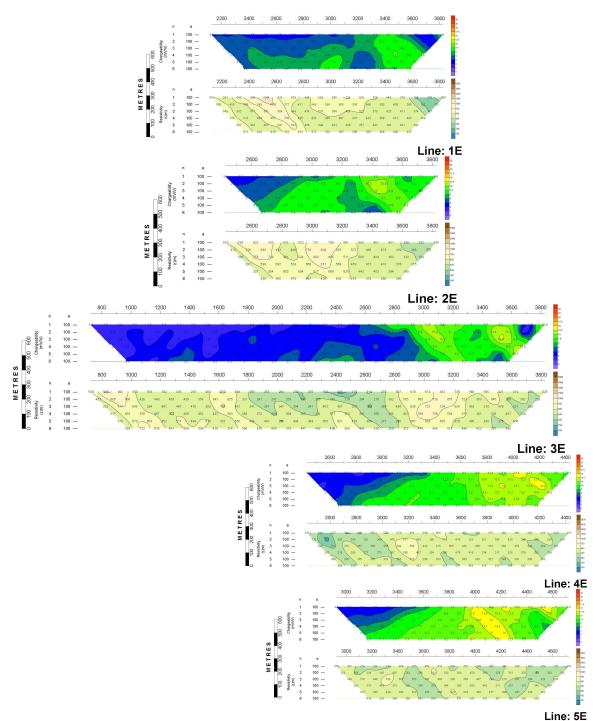


Figure 12: IP Pseudosections

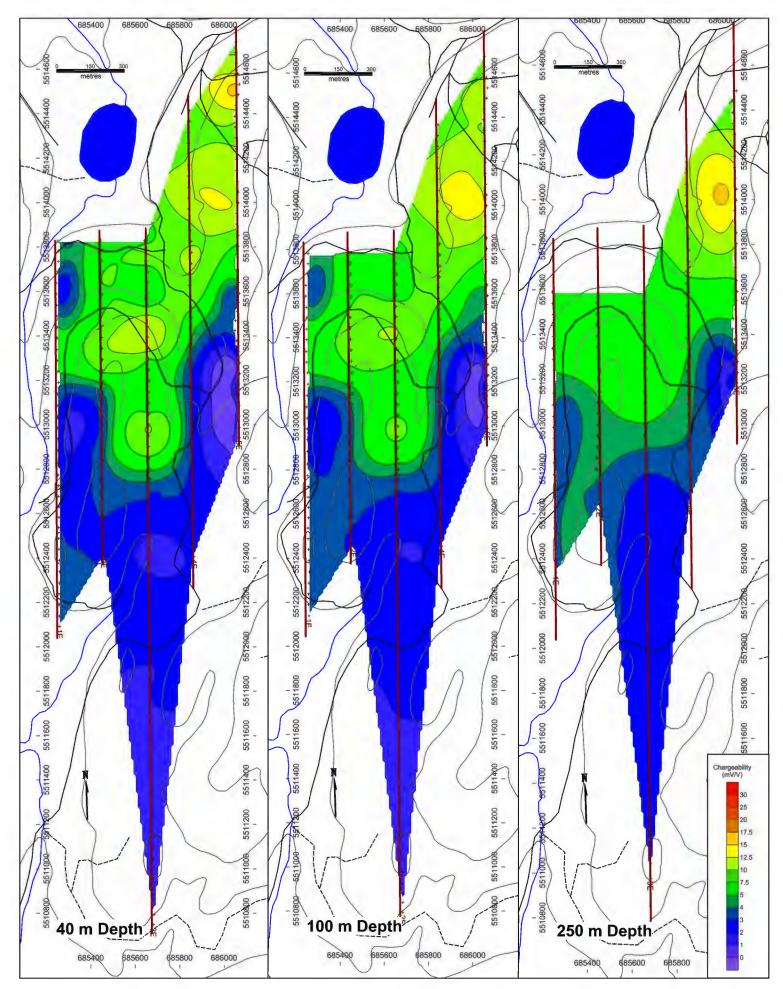


Figure 13: Chargeability Inversion Slices Plan

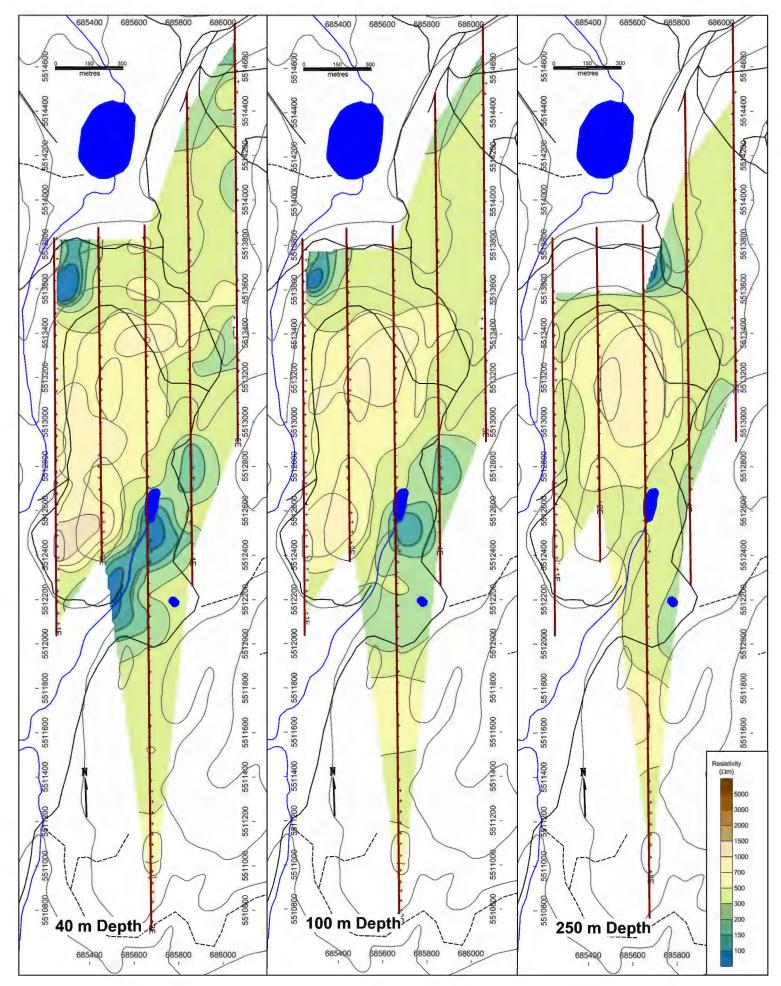


Figure 14: Resistivity Inversion Slices Plan

Pseudosections were created for chargeability and resistivity measurements (Figure 12). Data from the surveys were inverted and presented as cross-sections. Inverted results for chargeability and resistivity were contoured and presented in plan view as 40, 100, and 250 m depth slices (Figures 13-14).

The results from the IP survey show a large (600 m wide) moderate intensity resistivity feature trending northeast through the grid area with the highest intensity region coinciding with a high topographical feature. Results from the chargeability survey show a near surface string of 4 moderate intensity anomalies that mimics the resistivity's northeasterly trend, however, the chargeability anomalies are located on the northeast flank of the chargeability high. At depth, the chargeability anomaly to the north intensifies whereas the southern anomalies appear to diminish.

The chargeability anomalies all occur in locations where plutonic bodies have been mapped intruding the Nicola volcanics and at occurrences of copper-in-soil anomalies. Of note is the low magnetic signature associated with the chargeability anomalies in an area of otherwise elevated magnetics, likely resultant of alteration. This is consistent with the Susceptibility survey completed over the 1990's drill core.

6.0 INTERPRETATION AND CONCLUSIONS

Several ground geophysical and geological surveys completed this summer, along with work compiled from previous exploration, have resulted in the identification of several anomalies that are ready for drill testing. The 2012 geophysical surveys have led to the identification of coincident copper-gold soil and IP anomalies. At this time two areas measuring approximately 2000 metres (m) by 800 m, and 1500 m by 1000 m are prospective for porphyry-style mineralization, the westernmost area having been confirmed through historic drilling.

The property has excellent potential to host economic deposits of porphyry-style mineralization additional to that already tested.

7.0 RECOMMENDATIONS

A program of additional Induced Polarization and Magnetics to the north and east of the currently tested area is recommended. Data from the historic IP surveys in the western portion of the property should be inverted. Drill testing of the new chargeability anomaly as well as testing extensions and to depth of the western zone is also recommended.

The next phase of exploration is estimated to cost \$350,000.

Item	Description	Cost
IP	25 line-kilometres	\$ 75,000.00
Drilling	1100 metres @ \$250/m	\$ 275,000.00
Total		\$ 350,000.00

Table 5: Cost Estimate for Recommended Surveys

8.0 STATEMENT OF EXPENDITURES

A total of 70 man-days worke	ed.
------------------------------	-----

Item	Description	Total	Mandays	Dates
J Peters	Geological Support	\$ 14,500.00	29	Jun 12-13, Jul 28-Aug 6, Aug 14-27
F LaRoche	Core Reconditioning	\$ 2,640.00	9	July 23-31
B LaRoche	Core Reconditioning	\$ 380.00	2	July 30-31
Scott Geophysics	IP/Magnetics Survey	\$ 35,360.22	30	July 31-Aug 1, Sep 18-24
Supplies		\$ 1,840.17		
Petrographic		\$ 525.76		
Food		\$ 457.05		
Accommodation		\$ 483.00		
Vehicle		\$ 2,700.42		
Report Writing		\$ 3,000.00	_	
Subtotal		\$ 61,886.62		
Office Overhead (10%)		\$ 6,188.66		
Total		\$ 68,075.28	70	
MTO Event #5404764	Sep 12/2012	\$ 19,094.76		
MTO Event #5411862	Oct 22/2012	\$ 48,980.52		

Table 6: Statement of Expenditures

9.0 REFERENCES

Chapman, D.A. (1970): Tectonic Analysis of Fracture Density to accompany Geological Survey Report by Western Geological Services Ltd. Geochemical Survey Report by D. A. Chapman & Associates Ltd. Photogeological Report. Assessment Report 02356.

Cochrane, D.R. (1969): Geophysical Report on an Airborne Magnetometer Survey. Assessment Report 02355.

Cormier, J. (1989): 1989 Geochemical, Geophysical & Trenching Report on the Dill Claim Group. Fairfield Minerals Ltd. Assessment Report 19593.

Cormier, J. (1990): 1990 Geochemical and Geophysical Report on the Dill Claim Group. Fairfield Minerals Ltd. Assessment Report 21198.

Cormier, J. (1991): 1991 Geochemical and Drilling Report on the Dill Claim Group. Fairfield Minerals Ltd. Assessment Report 22220.

Crooker, G.F. (1989): Diamond Drilling Report on the GOLD CORE 1 CLAIM. Assessment Report 19335.

Crooker, G.F. (1999): Diamond Drilling Report on the Gold Core 1 and Gold Core A and B Mineral Claims. Assessment Report 25992.

Gutrath, G. (1978): Outcrop Geology Trenched Area, Prime 2 Claim. Assessment Report 06877.

Gutrath, G. (1979): Geophysical and Preliminary Geological Report on the Prime Claim Group. Assessment Report 07340.

Gutrath, G. (1979): Outcrop Geology Report on the Prime Claim Group. Assessment Report 07521.

Gutrath, G. (1980): Outcrop Geology Report on the Prime 2 Claim. Assessment Report 08364.

Heim, R.C. et al (1972): Combined Geochemical and Geophysical Report on t h e Lorry 1-9, 11, 13, 15, 17-32; SP 1-20 and SP 1-7 Fractional Mineral Claims. Noranda Exploration Company Ltd. Assessment Report 04341.

Heim, R.C. et al (1973): Combined Geochemical and Geological Report on the Star 1-2, 9-16, 17-18, 50, 52, 54, 57-59, 61-63, 65 and Star 45 Fraction Mineral Claims. Noranda Exploration Company Ltd. Assessment Report 04491.

Kerr, J.R. (2008): Geochemical Report, 2008 on the Geoff Claims, Nicola M.D., BC. Assessment Report 29817.

Mehner, D.T. (1981): Assessment Report on a Soil Geochemical, Ground Magnetic, VLF and Geological Mapping Survey of the Toba Property. Cominco Ltd. Assessment Report 09429.

Mehner, D.T. (1983): Assessment Report on a Soil Geochemical Survey of the Toba Seven Mineral Claim. Cominco Ltd. Assessment Report 11605.

Mehner, D.T. (1983): Assessment Report on a Soil Geochemical Survey of the Toba Seven Mineral Claim, Toba Property. Cominco Ltd. Assessment Report 11605.

Peters, L.J. (2011): Assessment Report on the Dillard Property, MTO Events # 5010962 + 5146768.

Poliquin, M.J. and Ullrich, T.D., (2008): 2008 Report on Exploration Activities. Rock and Stream Sediment Sampling and Geochemistry, Dill#2 Property. Assessment Report 30318.

Reinertson, L.C. et al (1973): Combined Geochemical and Geological Report on the Star Mineral Claims. Assessment Report 04491.

Rowe, J.D. (1989): Geochemical Report On the DILL #1 Mineral Claim. Fairfield Minerals Ltd. Assessment Report 18410.

Tully, D.W. (1970): Report on Diamond Drill and Geochemical Results for Pageant Mines Ltd and Primer Group Minerals Ltd. Assessment Report 02354.

10.0 AUTHOR'S STATEMENT OF QUALIFICATIONS – L. John Peters

I, L. John Peters, P.Geo do hereby certify that:

- a. I am a consulting geologist with addresses at 6549 Portland Street, Burnaby, BC, Canada, V5E 1A1.
- b. I graduated with a Bachelor of Science degree (Geology) from the University of Western Ontario in 1984.
- c. I am a Professional Geoscientist (P.Geo.) in good standing with the Association of Professional Engineers and Geoscientists of British Columbia (#19010).
- d. I have worked as a geologist for a total of 27 years since my graduation from university.
- e. I am responsible for the preparation of all sections of the technical report titled "Assessment Report on the Dillard Property" and dated 22 October 2012 relating to the Dillard Property. Work on the Dillard Property was completed by experienced contractors under my supervision and I represent Fjordland as Exploration Manager.
- f. I was not involved in any of the historic work programs on the Dillard Property, however, I have been involved in all aspects of Fjordland's exploration activities on the Property since 2011.
- g. I am not aware of any material fact or material change with respect to the subject matter of the Technical Report that is not reflected in the Technical Report, the omission to disclose which makes the Technical Report misleading.

Dated this 22th day of October 2012.

"Lawrence John Peters"

Appendix A: Susceptibility Survey

2012 Susceptibility Survey on Historic Drill Core

Hole-ID	Depth	From	То	Susc	Cu ppm	Au ppb
D91-01	4.3	4.1	4.6	2.7	47	3
D91-01	5.6	5.4	5.9	11.8	47	3
D91-01	6.9	6.7	7.2	9.7	156	14
D91-01	8.2	8.0	8.5	12.2	156	14
D91-01	10.2	10.0	10.5	0.3	271	22
D91-01	11.5	11.3	11.8	0.6	271	22
D91-01	12.8	12.6	13.1	0.8	130	33
D91-01	14.1	13.9	14.4	0.3	130	33
D91-01	15.0	14.8	15.3	13.6	205	27
D91-01	16.3	16.1	16.6	6.8	205	27
D91-01	17.6	17.4	17.9	3.1	161	24
D91-01	18.9	18.7	19.2	9.6	170	14
D91-01	20.1	19.9	20.4	9.4	170	14
D91-01	21.4	21.2	21.7	14.5	205	20
D91-01	22.7	22.5	23.0	1.9	205	20
D91-01	24.0	23.8	24.3	12.5	120	17
D91-01	25.2	25.0	25.5	1.3	120	21
D91-01	26.5	26.3	26.8	0.6	120	21
D91-01	27.8	27.6	28.1	35.1	120	21
D91-01	29.1	28.9	29.4	2.2	119	16
D91-01	31.1	30.9	31.4	4.2	106	12
D91-01	36.9	36.7	37.2	26.1	106	10
D91-01	38.2	38.0	38.5	36.6	81	8
D91-01	39.5	39.3	39.8	10.6	81	8
D91-01	40.8	40.6	41.1	1.8	81	8
D91-01	41.8	41.6	42.1	29.3	144	13
D91-01	145.0	144.8	145.3	0.8	150	30
D91-01	146.3	146.1	146.6	2.2	150	30
D91-01	147.6	147.4	147.9	5.0	272	62
D91-01	148.9	148.7	149.2	2.7	272	62
D91-01	150.0	149.8	150.3	11.8	272	62
D91-03	19.3	19.1	19.6	26.0	890	48
D91-03	20.6	20.4	20.9	28.3	890	48
D91-03	21.9	21.7	22.2	71.5	890	48
D91-03	23.2	23.0	23.5	15.5	686	24
D91-03	24.6	24.4	24.9	29.2	686	24
D91-03	25.9	25.7	26.2	54.1	414	20
D91-03	27.2	27.0	27.5	64.4	414	20
D91-03	28.5	28.3	28.8	23.6	400	22
D91-03	30.0	29.8	30.3	61.4	400	22
D91-03	31.3	31.1	31.6	25.3	970	48
D91-03	32.6	32.4	32.9	22.5	970	48
D91-03	33.9	33.7	34.2	33.8	902	34
D91-03	35.4	35.2	35.7	1.3	902	34

Hole-ID	Depth	From	То	Susc	Cu ppm	Au ppb
D91-03	36.7	36.5	37.0	4.1	977	28
D91-03	38.0	37.8	38.3	79.1	977	28
D91-03	39.3	39.1	39.6	89.4	1001	43
D91-03	40.8	40.6	41.1	15.2	1001	43
D91-03	42.1	41.9	42.4	1.0	484	28
D91-03	43.4	43.2	43.7	10.7	484	28
D91-03	44.7	44.5	45.0	4.2	515	30
D91-03	46.2	46.0	46.5	5.1	515	30
D91-03	47.5	47.3	47.8	44.4	441	16
D91-03	48.8	48.6	49.1	17.2	441	16
D91-03	50.1	49.9	50.4	50.3	1440	56
D91-03	51.2	51.0	51.5	0.5	1440	56
D91-03	52.5	52.3	52.8	68.6	1455	55
D91-03	53.8	53.6	54.1	42.4	1455	55
D91-03	57.0	56.8	57.3	66.2	348	10
D91-03	58.3	58.1	58.6	40.1	348	20
D91-03	59.6	59.4	59.9	51.8	533	20
D91-03	60.9	60.7	61.2	36.9		20
D91-03	62.3	62.1	62.6	34.1	342	10
D91-03	63.6	63.4	63.9	31.6		10
D91-03	64.9	64.7	65.2	69.2		
D91-03	66.2	66.0	66.5	47.8		
D91-03	67.7	67.5	68.0	74.2	1152	
D91-03	69.0	68.8	69.3	41.1	1152	27
D91-03	70.3	70.1	70.6	80.5		
D91-03	71.6	71.4	71.9	47.1		
D91-03	73.1	72.9	73.4	58.9	551	
D91-03	74.4	74.2	74.7	72.4	551	
D91-03	75.7	75.5	76.0	56.4	551	
D91-03	77.0	76.8	77.3	0.2		
D91-03	78.3	78.1	78.6	0.2		
D91-03	79.6	79.4	79.9	0.2	_	
D91-03	83.8	83.6	84.1	0.2		
D91-03	85.1	84.9	85.4	0.3		
D91-03	86.4	86.2	86.7	4.3		
D91-03	89.1	88.9	89.4	0.3		
D91-03	90.4	90.2	90.7	0.4		
D91-03	91.7	91.5	92.0	0.2		
D91-03	94.3	94.1	94.6	0.1		
D91-03	95.6 06.0	95.4	95.9	0.2		
D91-03	96.9	96.7	97.2	0.2		
D91-03	98.2	98.0	98.5 99.8	0.1		
D91-03	99.5	99.3 100.6		0.3		
D91-03	100.8	100.6	101.1	0.2		
D91-03	102.1	101.9	102.4	0.2		
D91-03	103.4	103.2	103.7	0.2	8	4

Hole-ID	Depth	From	То	Susc	Cu ppm	Au ppb
D91-03	104.9	104.7	105.2	0.3	8	4
D91-03	106.2	106.0	106.5		8	4
D91-03	107.5	107.3	107.8	0.2	12	6
D91-03	108.8	108.6	109.1			6
D91-03	110.3	110.1	110.6		50	6
D91-03	111.6	111.4	111.9			
D91-03	112.9	112.7	113.2			
D91-03	114.2	114.0	114.5			
D91-03	115.4	115.2	115.7			
D91-03	116.7	116.5	117.0			
D91-03	118.0	117.8	118.3			
D91-03	119.3	119.1	119.6	_		
D91-03	121.1	120.9	121.4			
D91-03	122.4	122.2	122.7			
D91-03	123.7	123.5	124.0			
D91-03	125.0	124.8	125.3			
D91-03	125.4	125.2	125.7		2424	120
D91-03	126.7	126.5	127.0		2424	120
D91-03	128.0	127.8	128.3		2424	120
D91-03	129.3	129.1	129.6		2504	48
D91-03	131.7	131.5	132.0		1425	
D91-03	133.0	132.8	133.3		1425	20
D91-03 D91-03	134.3 135.6	134.1 135.4	134.6 135.9	_	2090 2090	37 37
D91-03 D91-03	135.0	135.4 136.7	135.9		1107	27
D91-03 D91-03	130.9	142.3	142.8		3041	86
D91-03	142.5	142.5	142.0	_	3041	86
D91-03	145.1	144.9	145.4	60.3	3041	86
D91-03	146.4	146.2	146.7		2890	110
D91-03	147.6	147.4	147.9		2890	110
D91-03	157.9	157.7	158.2		_	84
D91-03	159.2	159.0	159.5		_	84
D91-03	160.5	160.3	160.8	_	_	
D91-03	161.8	161.6	162.1			
D91-03	163.1	162.9	163.4	_	_	
D91-03	164.4	164.2	164.7	82.1	1446	46
D91-03	165.7	165.5	166.0	33.0	1446	46
D91-03	167.0	166.8	167.3	46.4	1824	49
D91-03	168.6	168.4	168.9	37.5	1824	49
D91-03	185.1	184.9	185.4	54.2	1470	69
D91-03	186.4	186.2	186.7	50.0	1470	69
D91-03	187.7	187.5	188.0	23.9	1092	75
D91-03	189.0	188.8	189.3	0.2	1092	75
D91-03	190.7	190.5	191.0	41.7	1886	66
D91-04	1.8	1.6	2.1	74.6	47	3
D91-04	3.1	2.9	3.4	78.6	47	3

Hole-ID	Depth	From	То	Susc	Cu ppm	Au ppb
D91-04	4.4	4.2	4.7	98.3	47	3
D91-04	5.7	5.5	6.0	43.7	190	22
D91-04	7.6	7.4	7.9	69.9	190	22
D91-04	8.9	8.7	9.2	99.4	158	26
D91-04	10.2	10.0	10.5	95.6	158	26
D91-04	11.5	11.3	11.8	14.0	157	30
D91-04	12.8	12.6	13.1	6.3	157	30
D91-04	14.1	13.9	14.4	52.8	179	23
D91-04	15.4	15.2	15.7	122.0	179	23
D91-04	16.7	16.5	17.0	123.0	179	23
D91-04	18.3	18.1	18.6	22.3		
D91-04	19.6	19.4	19.9	79.5		15
D91-04	20.9	20.7	21.2	120.0		27
D91-04	24.0	23.8	24.3	145.0		29
D91-04	25.3	25.1	25.6	128.0		29
D91-04	26.6	26.4	26.9	92.5		
D91-04	27.9	27.7	28.2	51.7		
D91-04	29.6	29.4	29.9	71.8		6
D91-04	30.9	30.7	31.2	48.8		
D91-04	32.2	32.0	32.5	90.0		
D91-04	33.5	33.3	33.8	41.6		
D91-04	35.3	35.1	35.6	105.0		
D91-04	36.6	36.4	36.9	107.0		
D91-04	37.9	37.7	38.2	25.2		
D91-04	39.2	39.0	39.5	91.4		30
D91-04	40.4	40.2	40.7	62.2		30
D91-04	41.7	41.5	42.0	66.8		30
D91-04	43.0	42.8	43.3	1.4	1424	352
D91-04	44.3	44.1	44.6	138.0		
D91-04	45.7	45.5	46.0	134.0		
D91-04	47.0	46.8	47.3	128.1		
D91-04	48.3	48.1	48.6	14.5		
D91-04	51.2	51.0	51.5			
D91-04	52.5	52.3	52.8	86.0		50
D91-04	53.8	53.6	54.1	94.1		
D91-04	55.1	54.9	55.4	104.0		50
D91-04	55.7	55.5	56.0	118.0		
D91-04	57.0	56.8	57.3	34.9		
D91-04	58.3	58.1	58.6	30.9		
D91-04	59.6	59.4	59.9	5.8		
D91-04	61.7	61.5	62.0	121.0		
D91-04	63.0	62.8	63.3	115.0		
D91-04	64.3	64.1	64.6	119.0		
D91-04	65.6	65.4	65.9	94.4		
D91-04	67.0	66.8	67.3	114.0		
D91-04	68.3	68.1	68.6	61.1	171	8

Hole-ID	Depth	From	То	Susc	Cu ppm	Au ppb
D91-04	69.6	69.4	69.9	9.3	368	12
D91-04	70.9	70.7	71.2	70.9	368	12
D91-04	72.3	72.1	72.6	0.7	394	15
D91-04	73.6	73.4	73.9	1.2	394	15
D91-04	74.9	74.7	75.2	0.4	332	21
D91-04	76.2	76.0	76.5	0.4	332	21
D91-04	77.4	77.2	77.7	34.5	171	8
D91-04	78.7	78.5	79.0	0.2	171	8
D91-04	80.0	79.8	80.3	0.4	55	9
D91-04	81.3	81.1	81.6	16.0	55	9
D91-04	82.5	82.3	82.8	0.6	307	67
D91-04	83.8	83.6	84.1	0.4	307	67
D91-04	85.1	84.9	85.4	0.4	282	27
D91-04	86.4	86.2	86.7	1.2	282	27
D91-04	87.7	87.5	88.0	1.1	282	27
D91-04	89.0	88.8	89.3	0.9	159	27
D91-04	90.3	90.1	90.6	66.9	159	27
D91-04	91.6	91.4	91.9	13.0	340	19
D91-04	93.2	93.0	93.5	10.9	340	19
D91-04	94.5	94.3	94.8	0.4	478	32
D91-04	95.8	95.6	96.1	0.3	478	32
D91-04	97.1	96.9	97.4	10.8	330	18
D91-04	98.5	98.3	98.8			18
D91-04	99.8	99.6	100.1	93.0	64	3
D91-04	101.1	100.9	101.4	18.9	64	
D91-04	102.4	102.2	102.7			3
D91-04	103.2	103.0	103.5	62.6		
D91-04	104.5	104.3	104.8	47.7		
D91-04	105.8	105.6	106.1	53.2		
D91-04	107.1	106.9	107.4	77.2		
D91-04	108.8	108.6	109.1			
D91-04	110.1	109.9	110.4	25.7	_	
D91-04	111.4	111.2	111.7	89.3		
D91-04	112.7	112.5	113.0	56.2		240
D91-04	114.5	114.3	114.8	35.4		240
D91-04	115.8	115.6	116.1	8.8	1459	42
D91-04	117.1	116.9	117.4	65.7	1459	
D91-04	118.4	118.2	118.7	6.6		
D91-04	120.0	119.8	120.3	151.0		
D91-04	121.3	121.1	121.6	88.8		
D91-04	122.6	122.4	122.9	30.3		
D91-04	123.9	123.7	124.2	67.9		
D91-04	125.3	125.1	125.6	75.1		
D91-04	135.5	135.3	135.8	0.9		59
D91-04	136.8	136.6	137.1	8.3	1120	
D91-04	138.1	137.9	138.4	20.8	1120	44

Hole-ID	Depth	From	То	Susc	Cu ppm	Au ppb
D91-04	139.4	139.2	139.7	22.9	33	9
D91-04	141.0	140.8	141.3	40.7	33	9
D91-04	142.3	142.1	142.6	45.2	33	9
D91-04	143.6	143.4	143.9	17.3		
D91-04	144.9	144.7	145.2	0.5		
D91-04	146.4	146.2	146.7	15.1		
D91-04	147.7	147.5	148.0	20.0		
D91-04	149.0	148.8	149.3	0.4		
D91-04	150.3	150.1	150.6	1.1		
D91-04	151.5	151.3	151.8	0.5		
D91-04	152.8	152.6	153.1	27.8		
D91-04	154.1	153.9	154.4	37.4		
D91-04	155.4	155.2	155.7	33.9		
D91-04	156.8	156.6	157.1	44.3		
D91-04	158.1	157.9	158.4	32.7		
D91-04	159.4	159.2	159.7	40.5		
D91-04	160.7	160.5	161.0	11.8	14	1
D91-04	162.2	162.0	162.5	31.2	14	1
D91-04	163.5	163.3	163.8	5.0	1880	84
D91-04	164.8	164.6	165.1	9.3	1880	84
D91-04	166.1	165.9	166.4	0.8	1498	68
D91-04	167.4	167.2	167.7	4.7	1498	68
D91-04	168.7	168.5	169.0	65.1	1498	68
D91-04	170.0	169.8	170.3	92.1	797	30
D91-04	171.3	171.1	171.6	36.7	797	30
D91-04	172.8	172.6	173.1	28.5	1016	46
D91-04	174.1	173.9	174.4	35.7	1016	46
D91-04	175.4	175.2	175.7	7.4	1268	71
D91-04	176.7	176.5	177.0	39.0	1268	71
D91-04	177.4	177.2	177.7	45.5	1268	71
D91-05	44.8	44.6	45.1	1.1		
D91-05	46.1	45.9	46.4	0.2		
D91-05	47.4	47.2	47.7	0.3		
D91-05	48.7	48.5	49.0	0.3		
D91-05	50.5	50.3	50.8	0.4		
D91-05	51.8	51.6	52.1	0.4		
D91-05	53.1	52.9	53.4	0.4		
D91-05	54.4	54.2	54.7	0.5		
D91-05	55.5	55.3	55.8	0.3	_	
D91-05	112.5	112.3	112.8		952	
D91-05	113.8	113.6	114.1	32.2	2907	101
D91-05	115.1	114.9	115.4	9.4	2907	101
D91-05	116.4	116.2	116.7		7072	183
D91-05	117.7	117.5	118.0	20.2	7072	183
D91-05	119.0	118.8	119.3	42.6	3895	105
D91-05	120.3	120.1	120.6	8.9	3895	105

Hole-ID	Depth	From	То	Susc	Cu ppm	Au ppb
D91-05	121.6	121.4	121.9	22.4	5288	155
D91-05	123.9	123.7	124.2	9.7	7064	186
D91-05	125.2	125.0	125.5	0.4	7064	186
D91-05	126.5	126.3	126.8	0.6		
D91-05	127.8	127.6	128.1	0.9		
D91-05	128.9	128.7	129.2			380
D91-05	130.2	130.0	130.5			380
D91-05	131.5	131.3	131.8	1.7		380
D91-05	132.8	132.6	133.1	0.9		104
D91-05	134.0	133.8	134.3	2.9	148	104
D91-05	135.3	135.1	135.6	0.9		
D91-05	136.6	136.4	136.9	0.5		
D91-05	137.9	137.7	138.2	0.5		
D91-05	139.1	138.9	139.4	0.3		
D91-05	140.4	140.2	140.7	0.5		
D91-05	141.7	141.5	142.0	0.3		
D91-05	143.0	142.8	143.3	0.4		
D91-05	144.4	144.2	144.7	0.3		
D91-05	145.7	145.5	146.0	0.2		
D91-05	147.0	146.8	147.3	0.4		
D91-05	148.3	148.1	148.6	0.5		
D91-05	150.0	149.8	150.3	0.3		
D91-05	151.3	151.1	151.6	104.0		
D91-05	152.6	152.4	152.9	0.4		
D91-05	155.4	155.2	155.7	0.4		
D91-05	156.7	156.5	157.0			73
D91-05	158.0	157.8	158.3	44.5	962	73
D91-05	159.3	159.1	159.6		1399	69
D91-05	160.6	160.4	160.9		2587	110
D91-05	166.1	165.9	166.4	_	3251	135
D91-05	167.4	167.2	167.7	33.6	3704	127
D91-05	168.7	168.5	169.0	35.9	3704	127
D91-05	170.0	169.8	170.3	43.8	2520	55
D91-05	171.4	171.2	171.7	73.0	2520	55
D91-05 D91-05	172.7	172.5	173.0	64.6	1126	74
D91-05 D91-05	174.0	173.8 175.1	174.3	159.0	1126	74
	175.3		175.6 177.3	83.6 30.1	1126	74
D91-05 D91-05	177.0	176.8	177.3		3541 3541	115
	178.3	178.1		33.6		115
D91-05 D91-05	179.6 180.9	179.4 180.7	179.9 181.2	86.9 48.8	4484 4484	133 133
D91-05 D91-05			181.2	48.8		133
	182.6	182.4 182.7	182.9		4392	
D91-05 D91-05	183.9 185.2	183.7 185.0		0.7	4392	158 70
D91-05 D91-05	185.2 186 5	185.0 186.2	185.5 186.8	91.2	2669	
	186.5	186.3	_	2.3	2669	70
D91-05	188.0	187.8	188.3	0.7	2669	70

 Hole-ID	Depth	From	То	Susc	Cu ppm	Au ppb
 D91-06	104.7	104.5	105.0	42.6	597	30
D91-06	106.0	105.8	106.3	49.7	597	30
D91-06	107.3	107.1	107.6	29.3	472	24
D91-06	108.6	108.4	108.9	1.4	472	24
D91-06	110.0	109.8	110.3	1.3	416	19
D91-06	111.3	111.1	111.6	44.8	416	19
D91-06	112.6	112.4	112.9	45.3	416	19
D91-06	113.9	113.7	114.2	17.8	508	16
D91-06	114.8	114.6	115.1	1.4	508	16
D91-06	116.1	115.9	116.4	28.8	707	19
D91-06	117.4	117.2	117.7	3.2	707	19
D91-06	118.7	118.5	119.0	2.2		
D91-06	119.8	119.6	120.1	0.2	611	20
D91-06	121.1	120.9	121.4	0.4		
D91-06	122.4	122.2	122.7	0.8		
D91-06	123.7	123.5	124.0	0.5		
D91-06	124.9	124.7	125.2	0.3		
D91-06	146.3	146.1	146.6	0.3		
D91-06	147.6	147.4	147.9	0.3		29
D91-06	148.9	148.7	149.2	0.3		
D91-06	150.2	150.0	150.5	0.2		
D91-06	151.6	151.4	151.9	0.3		
D91-06	152.9	152.7	153.2	0.4		
D91-06	154.2	154.0	154.5	0.2		
D91-06	155.5	155.3	155.8	15.2		
D91-06	157.0	156.8	157.3	8.5		
D91-06	158.3	158.1	158.6	13.5		44
D91-06	159.6	159.4	159.9	7.8		44
D91-06	160.9	160.7	161.2	0.3		32
D91-06	162.4	162.2	162.7	0.2		
D91-06	173.4	173.2	173.7	0.3		
D91-06	174.7	174.5	175.0			
D91-06	176.0	175.8	176.3	0.7		
D91-06	177.3	177.1	177.6	0.2		
D91-06	178.9	178.7	179.2			
D91-06	180.2	180.0	180.5	28.4		39
D91-06	181.5	181.3	181.8	33.7		
D91-06	182.8	182.6	183.1	22.1	_	
D91-06	183.5	183.3	183.8	33.9		45
 D91-07	36.5	36.3	36.8	29.7	_	39
D91-07	37.8	37.6	38.1	43.1		
D91-07	39.1	38.9	39.4	0.4		
D91-07	40.4	40.2	40.7			
D91-07	41.8	41.6	42.1			
D91-07	43.1	42.9	43.4	3.6		
D91-07	44.4	44.2	44.7			
0,				5.5	20	120

Hole-I	D Depth	From	То	Susc	Cu ppm	Au ppb
D91-0	7 45.7	45.5	46.0	3.5	26	126
D91-0	7 47.1	46.9	47.4	11.7	26	126
D91-0	7 48.4	48.2	48.7	9.9	456	115
D91-0	7 49.7	49.5	50.0	12.5	456	115
D91-0	7 51.0	50.8	51.3	13.7	483	109
D91-0	7 52.4	52.2	52.7	6.6	483	109
D91-0	7 53.7	53.5	54.0	8.0	483	109
D91-0	7 55.0	54.8	55.3	13.2	158	89
D91-0	7 56.3	56.1	56.6	3.0	158	89
D91-0	7 57.6	57.4	57.9	10.5	85	65
D91-0	7 58.9	58.7	59.2	11.8	85	65
D91-0	7 62.1	61.9	62.4	20.1	590	42
D91-0	7 63.4	63.2	63.7	79.8	88	39
D91-0	7 64.7	64.5	65.0	42.1	88	39
D91-0	7 66.0	65.8	66.3	27.1	407	27
D91-0	7 106.7	106.5	107.0	2.0	973	141
D91-0	7 108.0	107.8	108.3	144.0	973	141
D91-0	7 109.3	109.1	109.6	104.0	353	119
D91-0	7 110.6	110.4	110.9	53.2	353	119
D91-0	7 112.0	111.8	112.3	91.5	533	63
D91-0	7 144.4	144.2	144.7	0.5	715	133
D91-0	7 145.7	145.5	146.0	0.8	715	133
D91-0	7 147.0	146.8	147.3	90.6	1290	107
D91-0	7 148.3	148.1	148.6	0.9	1290	107
D91-0	7 149.7	149.5	150.0	0.8	1271	78
D91-0	7 155.2	155.0	155.5	67.8	674	85
D91-0	7 156.5	156.3	156.8	69.1	674	85
D91-0	7 157.8	157.6	158.1	0.8	674	85
D91-0	7 159.1	158.9	159.4	31.4	1599	127
D91-0	7 160.6	160.4	160.9	109.0	1599	127
D91-0	8 30.5	30.3	30.8	38.4	864	12
D91-0	8 31.8	31.6	32.1	16.5	864	12
D91-0	8 33.1	32.9	33.4	12.9	1097	5
D91-0	8 34.4	34.2	34.7	0.7	1097	5
D91-0	8 35.3	35.1	35.6	18.9	1097	5
D91-0	8 41.1	40.9	41.4	3.2	1377	17
D91-0	8 42.4	42.2	42.7	87.7	685	4
D91-0	8 44.0	43.8	44.3	70.9	685	4
D91-0	8 45.3	45.1	45.6	35.2	912	19
D91-0	8 48.6	48.4	48.9	33.9	1163	15
D91-0	8 52.2	52.0	52.5	0.4	1267	19
D91-0	8 53.5	53.3	53.8	2.3	1267	19
D91-0	8 54.8	54.6	55.1	30.9	1771	10
D91-0	8 56.1	55.9	56.4	10.9	1771	10
D91-0	8 58.0	57.8	58.3	41.2	1312	6
D91-0	8 63.7	63.5	64.0	17.1	1778	7

Hole-ID	Depth	From	То	Susc	Cu ppm	Au ppb
D91-08	65.0	64.8	65.3	0.8	1778	7
D91-08	66.3	66.1	66.6	0.7	1550	21
D91-08	67.6	67.4	67.9	21.4	1550	21
D91-08	68.2	68.0	68.5	0.8	1550	21
D91-08	69.5	69.3	69.8	0.3	1449	13
D91-08	70.8	70.6	71.1	45.8	1449	13
D91-08	72.1	71.9	72.4	8.5	1320	11
D91-08	73.7	73.5	74.0	0.2	1320	11
D91-08	75.0	74.8	75.3	0.3	1320	11
D91-08	76.3	76.1	76.6	0.2	1233	18
D91-08	77.6	77.4	77.9	0.7	1233	18
D91-08	79.0	78.8	79.3	0.6	3409	24
D91-08	80.3	80.1	80.6	7.7	3409	24
D91-08	81.6	81.4	81.9	7.4	3149	22
D91-08	82.9	82.7	83.2	0.7	3149	22
D91-08	84.5	84.3	84.8	0.7	3010	16
D91-08	89.8	89.6	90.1	22.4	2425	19
D91-08	91.1	90.9	91.4	38.1	1948	13
D91-08	92.4	92.2	92.7	6.8	1948	13
D91-08	93.7	93.5	94.0	22.3	3297	28
D91-08	95.3	95.1	95.6	1.3	3297	28
D91-08	96.6	96.4	96.9	64.9	1968	28
D91-08	97.9	97.7	98.2	1.8	1968	28
D91-08	99.2	99.0	99.5	18.8	2203	28
D91-08	100.8	100.6	101.1	0.7	2203	28
D91-08	102.1	101.9	102.4	55.8	1853	34
D91-08	103.4	103.2	103.7	0.4	1853	34
D91-08	104.7	104.5	105.0	0.5	1853	34
D91-08	105.9	105.7	106.2	2.0	2097	45
D91-08	107.2	107.0	107.5	16.5	2097	45
D91-08	108.5	108.3	108.8	0.6	1156	42
D91-08	109.8	109.6	110.1	0.4	1156	42
D91-08	111.0	110.8	111.3	49.2	1156	42
D91-08	112.3	112.1	112.6	97.5	728	25
D91-08	113.6	113.4	113.9	102.0	728	25
D91-08	114.9	114.7	115.2	101.0	1049	33
D91-08	116.4	116.2	116.7	37.8	1049	33
D91-08	117.7	117.5	118.0	15.2	1502	35
D91-08	119.0	118.8	119.3	18.3	1502	35
D91-08	120.3	120.1	120.6	0.9	1467	35
D91-08	121.9	121.7	122.2	69.5	1467	35
D91-08	123.2	123.0	123.5	37.5	968	27
D91-08	124.5	124.3	124.8	58.6	968	27
D91-08	125.8	125.6	126.1	131.0	968	27
D91-08	127.1	126.9	127.4	84.3	707	28
D91-08	128.4	128.2	128.7	49.2	707	28

D91-08 129.7 129.5 130.0 48.8 567 16 D91-08 131.0 130.8 131.3 10.8 567 16 D91-08 132.1 131.9 132.4 45.5 642 16 D91-08 134.7 134.5 135.0 45.5 642 16 D91-08 136.0 135.8 136.3 51.9 813 3 D91-08 137.5 137.3 137.3 15.8 642 16 D91-08 140.1 139.9 140.4 4.6 710 16 D91-08 144.4 141.2 141.7 1.1 1340 28 D91-08 144.4 143.9 144.4 23.8 1340 28 D91-08 145.4 145.7 104.0 870 14 D91-08 146.7 146.5 147.0 14.4 870 14 D91-08 145.4 147.8 1.4 1116 29	Hole-ID	Depth	From	То	Susc	Cu ppm	Au ppb
D91-08 132.1 131.9 132.4 45.5 642 16 D91-08 133.4 133.2 133.7 16.3 642 16 D91-08 136.0 135.8 136.3 51.9 81.3 3 D91-08 137.5 137.3 137.8 8.6 81.3 3 D91-08 140.1 139.9 140.4 4.6 710 16 D91-08 140.4 141.7 1.1 1340 28 D91-08 142.8 142.6 143.1 1.0.0 870 14 D91-08 144.7 144.5 144.7 144 23.8 1340 28 D91-08 145.4 145.2 145.7 104.0 870 14 D91-08 145.4 145.2 147.7 144 873 18 D91-08 145.1 147.8 1.4 1116 29 D91-08 155.5 155.3 155.8 113.0 827 <td>D91-08</td> <td>129.7</td> <td>129.5</td> <td>130.0</td> <td>48.8</td> <td>567</td> <td>16</td>	D91-08	129.7	129.5	130.0	48.8	567	16
D91-08 133.4 133.2 133.7 16.3 642 16 D91-08 136.0 135.8 135.0 45.5 642 16 D91-08 137.5 137.3 137.8 8.6 813 3 D91-08 138.1 136.6 139.1 5.0 710 16 D91-08 140.1 139.9 140.4 4.6 710 16 D91-08 141.4 141.2 141.7 1.1 1340 28 D91-08 144.1 143.9 144.4 23.8 1340 28 D91-08 145.4 145.2 145.7 104.0 870 14 D91-08 146.7 146.5 147.0 144.4 870 14 D91-08 150.1 149.9 150.4 63.2 873 18 D91-08 150.5 155.3 155.8 113.0 827 14 D91-08 156.6 157.1 69.8 462 <td>D91-08</td> <td>131.0</td> <td>130.8</td> <td>131.3</td> <td>10.8</td> <td>567</td> <td>16</td>	D91-08	131.0	130.8	131.3	10.8	567	16
D91-08 134.7 134.5 135.0 45.5 642 16 D91-08 136.0 135.8 136.3 51.9 813 3 D91-08 137.5 137.3 137.8 8.6 813 3 D91-08 140.1 139.9 140.4 4.6 710 16 D91-08 141.4 141.2 141.7 1.1 1340 28 D91-08 142.8 142.6 143.1 1.0 1340 28 D91-08 144.4 145.2 145.7 104.0 870 14 D91-08 145.4 145.5 147.0 14.4 870 14 D91-08 146.5 147.0 14.4 870 14 D91-08 146.5 147.0 14.4 870 14 D91-08 150.1 149.9 150.4 63.2 873 18 D91-08 154.2 154.0 154.5 1.7 827 14	D91-08	132.1	131.9	132.4	45.5	642	16
D91-08 136.0 135.8 136.3 51.9 813 3 D91-08 137.5 137.3 137.8 8.6 813 3 D91-08 138.8 138.6 139.1 5.0 710 16 D91-08 140.1 139.9 140.4 4.6 710 16 D91-08 141.4 141.2 141.7 1.1 1340 28 D91-08 142.8 142.6 143.1 1.0 1340 28 D91-08 146.7 146.5 147.0 144.4 870 144 D91-08 146.7 146.5 147.0 144.4 1116 29 D91-08 147.5 147.3 147.8 1.4 1116 29 D91-08 150.1 149.9 150.4 63.2 873 18 D91-08 155.5 155.3 155.8 113.0 827 14 D91-08 156.8 156.6 157.1 69.8<	D91-08	133.4	133.2	133.7	16.3	642	16
D91-08 137.5 137.3 137.8 8.6 813 3 D91-08 138.8 138.6 139.1 5.0 710 16 D91-08 140.1 139.9 140.4 4.6 710 16 D91-08 142.8 142.6 143.1 1.0 1340 28 D91-08 142.8 142.6 143.1 1.0 1340 28 D91-08 144.1 143.9 144.4 23.8 1340 28 D91-08 145.4 145.2 145.7 104.0 870 14 D91-08 147.5 147.3 147.8 1.4 870 14 D91-08 150.1 149.9 150.4 63.2 873 18 D91-08 153.0 152.8 153.3 43.2 873 18 D91-08 154.2 154.0 154.5 1.7 827 14 D91-08 156.8 156.6 157.1 69.8	D91-08	134.7	134.5	135.0	45.5	642	16
D91-08 138.8 138.6 139.1 5.0 710 16 D91-08 140.1 139.9 140.4 4.6 710 16 D91-08 141.4 141.2 141.7 1.1 1340 28 D91-08 142.8 142.6 143.1 1.0 1340 28 D91-08 144.4 143.9 144.4 23.8 1340 28 D91-08 145.4 145.7 104.0 870 14 D91-08 146.7 146.5 147.0 14.4 870 14 D91-08 147.5 147.3 147.8 1.4 1116 29 D91-08 150.1 149.9 150.4 63.2 873 18 D91-08 153.0 152.8 153.3 43.2 873 18 D91-08 155.5 155.3 155.8 113.0 827 14 D91-08 156.8 156.6 157.1 69.8 462 </td <td>D91-08</td> <td>136.0</td> <td>135.8</td> <td>136.3</td> <td>51.9</td> <td>813</td> <td>3</td>	D91-08	136.0	135.8	136.3	51.9	813	3
D91-08 140.1 139.9 140.4 4.6 710 16 D91-08 141.4 141.2 141.7 1.1 1340 28 D91-08 142.8 142.6 143.1 1.0 1340 28 D91-08 144.1 143.9 144.4 23.8 1340 28 D91-08 145.4 145.2 145.7 104.0 870 14 D91-08 147.5 147.3 147.8 1.4 1116 29 D91-08 147.5 147.3 147.8 1.4 1116 29 D91-08 150.1 149.9 150.4 63.2 873 18 D91-08 155.5 155.3 155.8 113.0 827 14 D91-08 156.8 156.6 157.1 69.8 462 11 D91-08 158.3 158.4 159.9 124.0 1138 10 D91-08 166.7 161.7 161.2 1	D91-08	137.5	137.3	137.8	8.6	813	3
D91-08 141.4 141.2 141.7 1.1 1340 28 D91-08 142.8 142.6 143.1 1.0 1340 28 D91-08 144.1 143.9 144.4 23.8 1340 28 D91-08 145.4 145.2 145.7 104.0 870 14 D91-08 147.5 147.3 147.8 1.4 1116 29 D91-08 148.8 148.6 149.1 0.7 1116 29 D91-08 148.8 148.6 149.1 0.7 1116 29 D91-08 150.1 149.9 150.4 63.2 873 18 D91-08 153.0 152.8 153.3 43.2 873 18 D91-08 155.5 155.3 155.8 113.0 827 14 D91-08 156.8 156.6 157.1 69.8 462 11 D91-08 156.3 158.4 159.9 124.0 1138 10 D91-08 166.7 167.1 16.2	D91-08	138.8	138.6	139.1	5.0	710	16
D91-08 142.8 142.6 143.1 1.0 1340 28 D91-08 144.1 143.9 144.4 23.8 1340 28 D91-08 145.4 145.2 145.7 104.0 870 14 D91-08 146.7 146.5 147.0 14.4 870 14 D91-08 147.5 147.3 147.8 1.4 1116 29 D91-08 148.8 148.6 149.1 0.7 1116 29 D91-08 153.0 152.8 153.3 43.2 873 18 D91-08 154.2 154.0 154.5 1.7 827 14 D91-08 155.5 155.3 155.8 113.0 827 14 D91-08 156.8 156.6 157.1 69.8 462 11 D91-08 156.8 156.6 157.1 69.8 462 11 D91-08 162.2 162.0 162.5 61.6 753 17 D91-08 163.5 163.3 163.8	D91-08	140.1	139.9	140.4	4.6	710	16
D91-08 144.1 143.9 144.4 23.8 1340 28 D91-08 145.4 145.2 145.7 104.0 870 14 D91-08 146.7 146.5 147.0 14.4 870 14 D91-08 147.5 147.3 147.8 1.4.4 870 14 D91-08 148.8 148.6 149.1 0.7 1116 29 D91-08 150.1 149.9 150.4 63.2 873 18 D91-08 155.5 155.3 155.8 113.0 827 14 D91-08 156.8 156.6 157.1 69.8 462 11 D91-08 156.8 156.6 157.1 69.8 462 11 D91-08 158.3 158.1 158.6 89.9 462 11 D91-08 160.9 160.7 161.2 105.0 1138 100 D91-08 162.2 162.0 162.5 <t< td=""><td>D91-08</td><td>141.4</td><td>141.2</td><td>141.7</td><td>1.1</td><td>1340</td><td>28</td></t<>	D91-08	141.4	141.2	141.7	1.1	1340	28
D91-08 145.4 145.2 145.7 104.0 870 14 D91-08 146.7 146.5 147.0 14.4 870 14 D91-08 147.5 147.3 147.8 1.4 1116 29 D91-08 148.8 148.6 149.1 0.7 1116 29 D91-08 150.1 149.9 150.4 63.2 873 18 D91-08 153.0 152.8 153.3 43.2 873 18 D91-08 155.5 155.3 155.5 17.7 827 14 D91-08 156.8 156.6 157.1 69.8 462 11 D91-08 158.3 158.1 158.6 89.9 462 111 D91-08 160.9 160.7 161.2 105.0 1138 10 D91-08 162.2 162.0 162.5 61.6 753 17 D91-08 163.5 163.3 163.8 9	D91-08	142.8	142.6	143.1	1.0	1340	28
D91-08 146.7 146.5 147.0 14.4 870 14 D91-08 147.5 147.3 147.8 1.4 1116 29 D91-08 150.1 149.9 150.4 63.2 873 18 D91-08 150.1 149.9 150.4 63.2 873 18 D91-08 153.0 152.8 153.3 43.2 873 18 D91-08 154.2 154.0 154.5 1.7 827 14 D91-08 155.5 155.3 155.8 113.0 827 14 D91-08 156.8 156.6 157.1 69.8 462 11 D91-08 158.3 158.1 158.6 89.9 462 11 D91-08 160.9 160.7 161.2 105.0 1138 10 D91-08 162.2 162.0 162.5 61.6 753 17 D91-08 164.8 164.6 165.1 139.0 853 49 D91-08 167.4 167.2 167.7	D91-08	144.1		144.4		1340	28
D91-08 147.5 147.3 147.8 1.4 1116 29 D91-08 148.8 148.6 149.1 0.7 1116 29 D91-08 150.1 149.9 150.4 63.2 873 18 D91-08 153.0 152.8 153.3 43.2 873 18 D91-08 154.2 154.0 154.5 1.7 827 14 D91-08 155.5 155.3 155.8 113.0 827 14 D91-08 156.8 156.6 157.1 69.8 462 11 D91-08 158.3 158.4 158.6 89.9 462 11 D91-08 159.6 159.4 159.9 124.0 1138 10 D91-08 160.7 161.2 105.0 1138 10 D91-08 162.2 162.0 162.5 61.6 753 17 D91-08 166.1 165.9 166.4 105.0 853 49 D91-08 166.1 165.9 166.4 105.0	D91-08	145.4	145.2			870	14
D91-08 148.8 148.6 149.1 0.7 1116 29 D91-08 150.1 149.9 150.4 63.2 873 18 D91-08 153.0 152.8 153.3 43.2 873 18 D91-08 154.2 154.0 154.5 1.7 827 14 D91-08 155.5 155.3 155.8 113.0 827 14 D91-08 156.8 156.6 157.1 69.8 462 11 D91-08 158.3 158.4 158.6 89.9 462 11 D91-08 159.6 159.4 159.9 124.0 1138 10 D91-08 160.7 161.2 105.0 1138 10 D91-08 162.2 162.0 162.5 61.6 753 17 D91-08 164.8 166.4 105.0 853 49 D91-08 167.4 167.2 167.7 0.6 853 49 D91-08 167.4 167.2 167.7 0.6 853 <t< td=""><td>D91-08</td><td>146.7</td><td>146.5</td><td></td><td>14.4</td><td>870</td><td>14</td></t<>	D91-08	146.7	146.5		14.4	870	14
D91-08 150.1 149.9 150.4 63.2 873 18 D91-08 153.0 152.8 153.3 43.2 873 18 D91-08 154.2 154.0 154.5 1.7 827 14 D91-08 155.5 155.3 155.8 113.0 827 14 D91-08 156.8 156.6 157.1 69.8 462 11 D91-08 158.3 158.1 158.6 89.9 462 11 D91-08 159.6 159.4 159.9 124.0 1138 10 D91-08 160.9 160.7 161.2 105.0 1138 10 D91-08 162.2 162.0 162.5 61.6 753 17 D91-08 164.8 164.6 165.1 139.0 853 49 D91-08 167.4 167.2 167.7 0.6 853 49 D91-08 167.4 167.2 167.7 0.6 853 49 D91-08 170.2 170.0 170.5							
D91-08 153.0 152.8 153.3 43.2 873 18 D91-08 154.2 154.0 154.5 1.7 827 14 D91-08 155.5 155.3 155.8 113.0 827 14 D91-08 156.8 156.6 157.1 69.8 462 11 D91-08 158.3 158.1 158.6 89.9 462 11 D91-08 159.6 159.4 159.9 124.0 1138 10 D91-08 160.9 160.7 161.2 105.0 1138 10 D91-08 162.2 162.0 162.5 61.6 753 17 D91-08 164.8 164.6 165.1 139.0 853 49 D91-08 166.1 165.9 166.4 105.0 853 49 D91-08 167.4 167.2 167.7 0.6 853 49 D91-08 170.2 170.0 170.5 0.3 793 43 D91-08 172.8 172.6 173.1							
D91-08154.2154.0154.51.782714D91-08155.5155.3155.8113.082714D91-08156.8156.6157.169.846211D91-08158.3158.1158.689.946211D91-08159.6159.4159.9124.0113810D91-08160.9160.7161.2105.0113810D91-08162.2162.0162.561.675317D91-08163.5163.3163.89.275317D91-08166.1165.9166.4105.085349D91-08166.1165.9166.4105.085349D91-08167.4167.2167.70.685349D91-08170.2170.0170.50.379343D91-08172.8172.6173.10.3104926D91-08175.5175.3175.82.977214D91-08176.8176.6177.11.577214D91-08176.8176.6177.11.577214D91-08178.1177.9178.40.36279D91-08178.1177.9178.40.36279D91-08178.1177.9178.40.36279D91-08180.9180.7181.21.44429 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>							
D91-08155.5155.3155.8113.082714D91-08156.8156.6157.169.846211D91-08158.3158.1158.689.946211D91-08159.6159.4159.9124.0113810D91-08160.9160.7161.2105.0113810D91-08162.2162.0162.561.675317D91-08163.5163.3163.89.275317D91-08164.8164.6165.1139.085349D91-08166.1165.9166.4105.085349D91-08167.4167.2167.70.685349D91-08167.4167.2167.70.685349D91-08170.2170.0170.50.379343D91-08171.5171.3171.80.4104926D91-08172.8172.6173.10.3104926D91-08175.5175.3175.82.977214D91-08176.8176.6177.11.577214D91-08178.1177.9178.40.36279D91-08178.1177.9178.40.36279D91-08178.1179.4179.90.56279D91-08178.1179.4179.90.56279<							
D91-08156.8156.6157.169.846211D91-08158.3158.1158.689.946211D91-08160.9160.7161.2105.0113810D91-08162.2162.0162.561.675317D91-08163.5163.3163.89.275317D91-08166.1165.9166.4105.085349D91-08166.1165.9166.4105.085349D91-08166.1165.9166.4105.085349D91-08167.4167.2167.70.685349D91-08170.2170.0170.50.379343D91-08170.2170.0170.50.379343D91-08172.8172.6173.10.3104926D91-08174.2174.0174.50.777214D91-08175.5175.3175.82.977214D91-08178.1177.9178.40.36279D91-08178.1177.9178.40.36279D91-08188.5183.3183.80.36328D91-08185.0184.8185.30.56328D91-08185.0184.8185.30.56328D91-08185.0184.8185.30.56328D91							
D91-08158.3158.1158.689.946211D91-08159.6159.4159.9124.0113810D91-08160.9160.7161.2105.0113810D91-08162.2162.0162.561.675317D91-08163.5163.3163.89.275317D91-08166.1165.9166.4105.085349D91-08166.1165.9166.4105.085349D91-08167.4167.2167.70.685349D91-08168.9168.7169.20.479343D91-08170.2170.0170.50.379343D91-08172.8172.6173.10.3104926D91-08174.2174.0174.50.777214D91-08175.5175.3175.82.977214D91-08176.8176.6177.11.577214D91-08179.6179.4179.90.56279D91-08180.9180.7181.21.44429D91-08185.0184.8185.30.56328D91-08185.0184.8185.30.56328D91-08185.0184.8185.30.56328D91-08185.0184.8185.30.56328D91							
D91-08159.6159.4159.9124.0113810D91-08160.9160.7161.2105.0113810D91-08162.2162.0162.561.675317D91-08163.5163.3163.89.275317D91-08166.1165.9166.4105.085349D91-08166.1165.9166.4105.085349D91-08167.4167.2167.70.685349D91-08168.9168.7169.20.479343D91-08170.2170.0170.50.379343D91-08171.5171.3171.80.4104926D91-08172.8172.6173.10.3104926D91-08175.5175.3175.82.977214D91-08176.8176.6177.11.577214D91-08178.1177.9178.40.36279D91-08179.6179.4179.90.56279D91-08188.9180.7181.21.44429D91-08185.0184.8185.30.56328D91-08185.0184.8185.30.56328D91-08186.3186.1186.60.36328D91-08187.6187.4187.90.397524D91							
D91-08160.9160.7161.2105.0113810D91-08162.2162.0162.561.675317D91-08163.5163.3163.89.275317D91-08164.8164.6165.1139.085349D91-08166.1165.9166.4105.085349D91-08167.4167.2167.70.685349D91-08168.9168.7169.20.479343D91-08170.2170.0170.50.379343D91-08171.5171.3171.80.4104926D91-08172.8172.6173.10.3104926D91-08174.2174.0174.50.777214D91-08175.5175.3175.82.977214D91-08176.8176.6177.11.577214D91-08178.1177.9178.40.36279D91-08180.9180.7181.21.44429D91-08185.0184.8185.30.56328D91-08185.0184.8185.30.56328D91-08186.3186.1186.60.36328D91-08187.6187.4187.90.397524D91-08186.3186.1186.60.36328D91-08							
D91-08162.2162.0162.561.675317D91-08163.5163.3163.89.275317D91-08164.8164.6165.1139.085349D91-08166.1165.9166.4105.085349D91-08167.4167.2167.70.685349D91-08168.9168.7169.20.479343D91-08170.2170.0170.50.379343D91-08171.5171.3171.80.4104926D91-08172.8172.6173.10.3104926D91-08174.2174.0174.50.777214D91-08176.8176.6177.11.577214D91-08176.8176.6177.11.577214D91-08179.6179.4179.90.56279D91-08180.9180.7181.21.44429D91-08185.0184.8185.30.56328D91-08185.0184.8185.30.56328D91-08185.0184.8185.30.56328D91-08186.3186.1186.60.36328D91-08187.6187.4187.90.397524D91-08189.6189.4189.90.597524							
D91-08163.5163.3163.89.275317D91-08164.8164.6165.1139.085349D91-08166.1165.9166.4105.085349D91-08167.4167.2167.70.685349D91-08168.9168.7169.20.479343D91-08170.2170.0170.50.379343D91-08171.5171.3171.80.4104926D91-08172.8172.6173.10.3104926D91-08174.2174.0174.50.777214D91-08175.5175.3175.82.977214D91-08176.8176.6177.11.577214D91-08178.1177.9178.40.36279D91-08179.6179.4179.90.56279D91-08180.9180.7181.21.44429D91-08185.0184.8185.30.56328D91-08185.0184.8185.30.56328D91-08185.0184.8185.30.56328D91-08187.6187.4187.90.397524D91-08187.6187.4187.90.397524D91-08189.6189.4189.90.597524							
D91-08164.8164.6165.1139.085349D91-08166.1165.9166.4105.085349D91-08167.4167.2167.70.685349D91-08168.9168.7169.20.479343D91-08170.2170.0170.50.379343D91-08171.5171.3171.80.4104926D91-08172.8172.6173.10.3104926D91-08175.5175.3175.82.977214D91-08176.8176.6177.11.577214D91-08178.1177.9178.40.36279D91-08179.6179.4179.90.56279D91-08180.9180.7181.21.44429D91-08185.0184.8185.30.56328D91-08185.0184.8185.30.56328D91-08185.0184.8185.30.56328D91-08185.0184.8185.30.56328D91-08186.3186.1186.60.36328D91-08187.6187.4187.90.397524D91-08186.3186.1186.60.36328D91-08186.3186.1186.60.36328D91-08 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>							
D91-08166.1165.9166.4105.085349D91-08167.4167.2167.70.685349D91-08168.9168.7169.20.479343D91-08170.2170.0170.50.379343D91-08171.5171.3171.80.4104926D91-08172.8172.6173.10.3104926D91-08174.2174.0174.50.777214D91-08175.5175.3175.82.977214D91-08176.8176.6177.11.577214D91-08178.1177.9178.40.36279D91-08179.6179.4179.90.56279D91-08180.9180.7181.21.44429D91-08182.2182.0182.50.24429D91-08183.5183.3183.80.36328D91-08185.0184.8185.30.56328D91-08185.0184.8185.30.56328D91-08187.6187.4187.90.397524D91-08189.6189.4189.90.597524							
D91-08167.4167.2167.70.685349D91-08168.9168.7169.20.479343D91-08170.2170.0170.50.379343D91-08171.5171.3171.80.4104926D91-08172.8172.6173.10.3104926D91-08174.2174.0174.50.777214D91-08175.5175.3175.82.977214D91-08176.8176.6177.11.577214D91-08176.8176.6177.11.577214D91-08178.1177.9178.40.36279D91-08179.6179.4179.90.56279D91-08180.7181.21.44429D91-08188.5183.3183.80.36328D91-08183.5184.8185.30.56328D91-08185.0184.8185.30.56328D91-08186.3186.1186.60.36328D91-08187.6187.4187.90.397524D91-08189.6189.4189.90.597524							
D91-08168.9168.7169.20.479343D91-08170.2170.0170.50.379343D91-08171.5171.3171.80.4104926D91-08172.8172.6173.10.3104926D91-08174.2174.0174.50.777214D91-08175.5175.3175.82.977214D91-08176.8176.6177.11.577214D91-08178.1177.9178.40.36279D91-08179.6179.4179.90.56279D91-08180.9180.7181.21.44429D91-08182.2182.0182.50.24429D91-08185.0184.8185.30.56328D91-08185.0184.8185.30.56328D91-08186.3186.1186.60.36328D91-08187.6187.4187.90.397524D91-08189.6189.4189.90.597524							
D91-08170.2170.0170.50.379343D91-08171.5171.3171.80.4104926D91-08172.8172.6173.10.3104926D91-08174.2174.0174.50.777214D91-08175.5175.3175.82.977214D91-08176.8176.6177.11.577214D91-08178.1177.9178.40.36279D91-08179.6179.4179.90.56279D91-08180.9180.7181.21.44429D91-08185.0184.8185.30.36328D91-08185.0184.8185.30.56328D91-08186.3186.1186.60.36328D91-08187.6187.4187.90.397524D91-08189.6189.4189.90.597524							
D91-08171.5171.3171.80.4104926D91-08172.8172.6173.10.3104926D91-08174.2174.0174.50.777214D91-08175.5175.3175.82.977214D91-08176.8176.6177.11.577214D91-08178.1177.9178.40.36279D91-08179.6179.4179.90.56279D91-08180.9180.7181.21.44429D91-08182.2182.0182.50.24429D91-08183.5183.3183.80.36328D91-08185.0184.8185.30.56328D91-08186.3186.1186.60.36328D91-08186.3186.1186.60.36328D91-08186.3186.1186.60.36328D91-08186.3186.1186.60.36328D91-08186.3186.1186.60.36328D91-08187.6187.4187.90.397524D91-08189.6189.4189.90.597524				_			
D91-08172.8172.6173.10.3104926D91-08174.2174.0174.50.777214D91-08175.5175.3175.82.977214D91-08176.8176.6177.11.577214D91-08178.1177.9178.40.36279D91-08179.6179.4179.90.56279D91-08180.9180.7181.21.44429D91-08182.2182.0182.50.24429D91-08183.5183.3183.80.36328D91-08185.0184.8185.30.56328D91-08186.3186.1186.60.36328D91-08187.6187.4187.90.397524D91-08189.6189.4189.90.597524					_		
D91-08174.2174.0174.50.777214D91-08175.5175.3175.82.977214D91-08176.8176.6177.11.577214D91-08178.1177.9178.40.36279D91-08179.6179.4179.90.56279D91-08180.9180.7181.21.44429D91-08182.2182.0182.50.24429D91-08183.5183.3183.80.36328D91-08185.0184.8185.30.56328D91-08186.3186.1186.60.36328D91-08187.6187.4187.90.397524D91-08189.6189.4189.90.597524				_			
D91-08175.5175.3175.82.977214D91-08176.8176.6177.11.577214D91-08178.1177.9178.40.36279D91-08179.6179.4179.90.56279D91-08180.9180.7181.21.44429D91-08182.2182.0182.50.24429D91-08183.5183.3183.80.36328D91-08185.0184.8185.30.56328D91-08186.3186.1186.60.36328D91-08187.6187.4187.90.397524D91-08189.6189.4189.90.597524					_		
D91-08176.8176.6177.11.577214D91-08178.1177.9178.40.36279D91-08179.6179.4179.90.56279D91-08180.9180.7181.21.44429D91-08182.2182.0182.50.24429D91-08183.5183.3183.80.36328D91-08185.0184.8185.30.56328D91-08186.3186.1186.60.36328D91-08187.6187.4187.90.397524D91-08189.6189.4189.90.597524							
D91-08178.1177.9178.40.36279D91-08179.6179.4179.90.56279D91-08180.9180.7181.21.44429D91-08182.2182.0182.50.24429D91-08183.5183.3183.80.36328D91-08185.0184.8185.30.56328D91-08186.3186.1186.60.36328D91-08187.6187.4187.90.397524D91-08189.6189.4189.90.597524							
D91-08179.6179.4179.90.56279D91-08180.9180.7181.21.44429D91-08182.2182.0182.50.24429D91-08183.5183.3183.80.36328D91-08185.0184.8185.30.56328D91-08186.3186.1186.60.36328D91-08187.6187.4187.90.397524D91-08189.6189.4189.90.597524							
D91-08180.9180.7181.21.44429D91-08182.2182.0182.50.24429D91-08183.5183.3183.80.36328D91-08185.0184.8185.30.56328D91-08186.3186.1186.60.36328D91-08187.6187.4187.90.397524D91-08189.6189.4189.90.597524				_			
D91-08182.2182.0182.50.24429D91-08183.5183.3183.80.36328D91-08185.0184.8185.30.56328D91-08186.3186.1186.60.36328D91-08187.6187.4187.90.397524D91-08189.6189.4189.90.597524				_			
D91-08183.5183.3183.80.36328D91-08185.0184.8185.30.56328D91-08186.3186.1186.60.36328D91-08187.6187.4187.90.397524D91-08189.6189.4189.90.597524				_			
D91-08185.0184.8185.30.56328D91-08186.3186.1186.60.36328D91-08187.6187.4187.90.397524D91-08189.6189.4189.90.597524					_		
D91-08186.3186.1186.60.36328D91-08187.6187.4187.90.397524D91-08189.6189.4189.90.597524				_			
D91-08187.6187.4187.90.397524D91-08189.6189.4189.90.597524							
D91-08 189.6 189.4 189.9 0.5 975 24							
				_			
	D91-09					_	

Hole-ID	Depth	From	То	Susc	Cu ppm	Au ppb
D91-09	137.9	137.7	138.2	0.4	761	34
D91-09	139.2	139.0	139.5	0.5	819	49
D91-09	140.5	140.3	140.8	0.5	819	49
D91-09	141.9	141.7	142.2	0.2	819	49
D91-09	174.6	174.4	174.9	28.0		
D91-09	175.9	175.7	176.2	0.8		
D91-09	177.2	177.0	177.5	33.7	484	38
D91-09	178.5	178.3	178.8	0.5	484	38
D91-09	180.3	180.1	180.6	0.3	420	24
D91-09	181.6	181.4	181.9	7.5	420	24
D91-09	182.9	182.7	183.2	0.5	499	30
D91-09	184.2	184.0	184.5	3.0	499	30
D91-09	185.6	185.4	185.9	0.4	638	46
D91-09	186.9	186.7	187.2	0.5	638	46
D91-09	188.2	188.0	188.5	0.3	561	30
D91-09	189.6	189.4	189.9	0.3	561	30
D91-11	26.6	26.4	26.9	0.3	1030	200
D91-11	27.9	27.7	28.2	0.5	641	31
D91-11	29.2	29.0	29.5	0.3	641	31
D91-11	30.5	30.3	30.8	14.4	561	270
D91-11	31.7	31.5	32.0	9.2	561	270
D91-11	33.0	32.8	33.3	0.2	371	75
D91-11	34.3	34.1	34.6	0.3	371	75
D91-11	35.6	35.4	35.9	0.2	843	280
D91-11	37.1	36.9	37.4	34.7	843	280
D91-11	38.4	38.2	38.7	0.2	353	53
D91-11	39.7	39.5	40.0	0.2	353	53
D91-11	41.0	40.8	41.3	0.1	353	53
D91-11	42.2	42.0	42.5	0.4		
D91-11	43.5	43.3	43.8	0.2		
D91-11	44.8	44.6	45.1	0.2		
D91-11	46.1	45.9	46.4	0.3		
D91-11	46.6	46.4	46.9	0.2		
D91-11	47.9	47.7	48.2	0.2		
D91-11	49.2	49.0	49.5	0.2		
D91-11	50.5	50.3	50.8	0.2		
D91-11	51.6	51.4	51.9	0.2		
D91-11	52.9	52.7	53.2	0.4		
D91-11	54.2	54.0	54.5	0.3		
D91-11	55.5	55.3	55.8	0.3		
D91-11	56.3	56.1	56.6	0.3		
D91-11	61.7	61.5	62.0	0.4	930	42
D91-11	63.0	62.8	63.3	0.6	930	42
D91-11	64.3	64.1	64.6	9.2	444	51
D91-11	65.6	65.4	65.9	35.6	444	51
D91-11	66.9	66.7	67.2	1.1	444	51

Hole-ID	Depth	From	То	Susc	Cu ppm	Au ppb
D91-11	68.2	68.0	68.5	0.3	1543	127
D91-11	69.5	69.3	69.8	0.3	1543	127
D91-11	70.8	70.6	71.1	0.3	992	104
D91-11	71.6	71.4	71.9	0.2	992	104
D91-11	72.9	72.7	73.2	0.4	258	37
D91-11	74.2	74.0	74.5	18.2	621	40
D91-11	75.5	75.3	75.8	46.0	621	40
D91-11	77.5	77.3	77.8	3.5	860	99
D91-11	78.8	78.6	79.1	0.7	860	99
D91-11	80.1	79.9	80.4	27.6	1135	90
D91-11	81.4	81.2	81.7	0.5	1135	90
D91-11	82.5	82.3	82.8	0.1	1135	90
D91-11	83.8	83.6	84.1	0.4	1098	89
D91-11	85.1	84.9	85.4	26.1	1098	89
D91-11	86.4	86.2	86.7	34.9	2046	174
D91-11	88.0	87.8	88.3	15.6	2046	174
D91-11	89.3	89.1	89.6	39.8	546	39
D91-11	90.6	90.4	90.9	0.2	546	39
D91-11	91.9	91.7	92.2	29.6	520	51
D91-11	93.3	93.1	93.6	35.6	520	51
D91-11	132.3	132.1	132.6	0.5		
D91-11	133.6	133.4	133.9	27.1	457	58
D91-11	134.9	134.7	135.2	0.3	457	58
D91-11	136.2	136.0	136.5	0.7	721	102
D91-11	138.9	138.7	139.2	31.8	721	102
D91-11	140.2	140.0	140.5	28.3	307	37
D91-11	141.5	141.3	141.8	29.7	307	37
D91-11	142.8	142.6	143.1	0.4	275	73
D91-11	144.4	144.2	144.7	40.7	275	73
D91-11	145.7	145.5	146.0	0.3	546	89
D91-11	147.0	146.8	147.3	36.1	546	89
D91-11	148.3	148.1	148.6	28.9	1067	145
D91-11	149.5	149.3	149.8	0.2	1067	145

Appendix B: Geophysical Logistics Report

LOGISTICAL REPORT

INDUCED POLARIZATION SURVEY

DILLARD PROPERTY, MERRITT AREA, BC

on behalf of

FJORDLAND EXPLORATION LTD. 1111 Melville Street, Suite 1100 Vancouver, B.C. V6E 3V6

Survey performed: July 31-August 1 and September 18-24, 2012

by

Brad Scott, Geologist (GIT) SCOTT GEOPHYSICS LTD. 4013 West 14th Avenue Vancouver, B.C. V6R 2X3

October 10, 2012

TABLE OF CONTENTS

1	Introduction	page 1		
2	Survey coverage and procedures	1		
3.	Personnel	2		
4.	Instrumentation	2		
	Appendix			
Stat	tement of Qualifications	rear of report		
	Accompanying Maps (all at 1:10 000 scale)	Map roll and CD		
	rgeability/resistivity pseudosections Lines 1E, 2E, 3E, 4E, 5E			
Chargeability contour plan – Triangular-Filtered Values (UTM coordinates) Resistivity contour plan – Triangular-Filtered Values (UTM coordinates) Magnetometer contour plan (UTM coordinates)				

Accompanying Data Files

One (1) CD-ROM with all survey data and plots in Surfer 9, jpeg, and pdf formats rear of report

1. INTRODUCTION

Induced polarization (IP) and magnetometer (mag) surveys were performed at the Dillard Property, Canim Lake area, B.C. within the periods July 31-August 1 and September 18-24, 2012. In addition, the grid was established concurrently with the IP survey, and non-differential GPS readings were taken at each station and at all remote ("infinite") current locations.

The survey was performed by Scott Geophysics Ltd. on behalf of Fjordland Exploration Ltd. This report describes the instrumentation and procedures, and presents the results of the survey.

2. SURVEY COVERAGE AND PROCEDURES

The pole-dipole array was used. Readings were taken with an "a" spacing of 100 metres and at "n" separations of 1 to 6. The on line current electrode was located to the north of the electrodes.

For lines 1-11, total field magnetometer readings were taken at 25 metre intervals along a network of logging roads. For lines IP-1E to IP-5E, total field magnetometer readings were taken at 12.5 metre intervals in conjunction with the IP survey. For lines 12-18, total field magnetometer readings were taken at 12.5 metre intervals along a network of logging roads.

GPS readings were taken at each station subject to satellite reception. Elevation measurements are barometric altimeter readings, calibrated to GPS altitude at the beginning of each line.

A total 11 kilometres of IP survey, 23.25 kilometres of mag survey at 25 metre intervals, and 16.975 kilometres of mag survey at 12.5 metre intervals were performed.

The chargeability and resistivity results are presented on the accompanying pseudosections and triangular-filtered plan maps. The magnetometer survey results are presented on the accompanying profiles and plans. All survey data are archived to the accompanying CD-ROM.

3. PERSONNEL

Brad Scott and Lise Gagnon were the crew chiefs on the survey on behalf of Scott Geophysics Ltd. John Peters was the representative on behalf of Fjordland Exploration Ltd.

4. INSTRUMENTATION

A GDD GRx8 receiver and a 5000 watt GDD TxII transmitter were used for the IP survey. Readings were taken in the time domain using a 2 second on/2 second off alternating square wave. The chargeability values plotted on the accompanying pseudosections and plan maps are for the interval 690 to 1050 msec after shutoff.

Scintrex ENVI proton precession magnetometers were used for both field and base units for the magnetometer survey.

GPS readings were taken with a Garmin GPSMap 60CSx GPS receiver.

Respectfully Submitted,

Kg

Brad Scott, Geologist (GIT)

Statement of Qualifications

for

Brad Scott, Geologist (GIT)

of

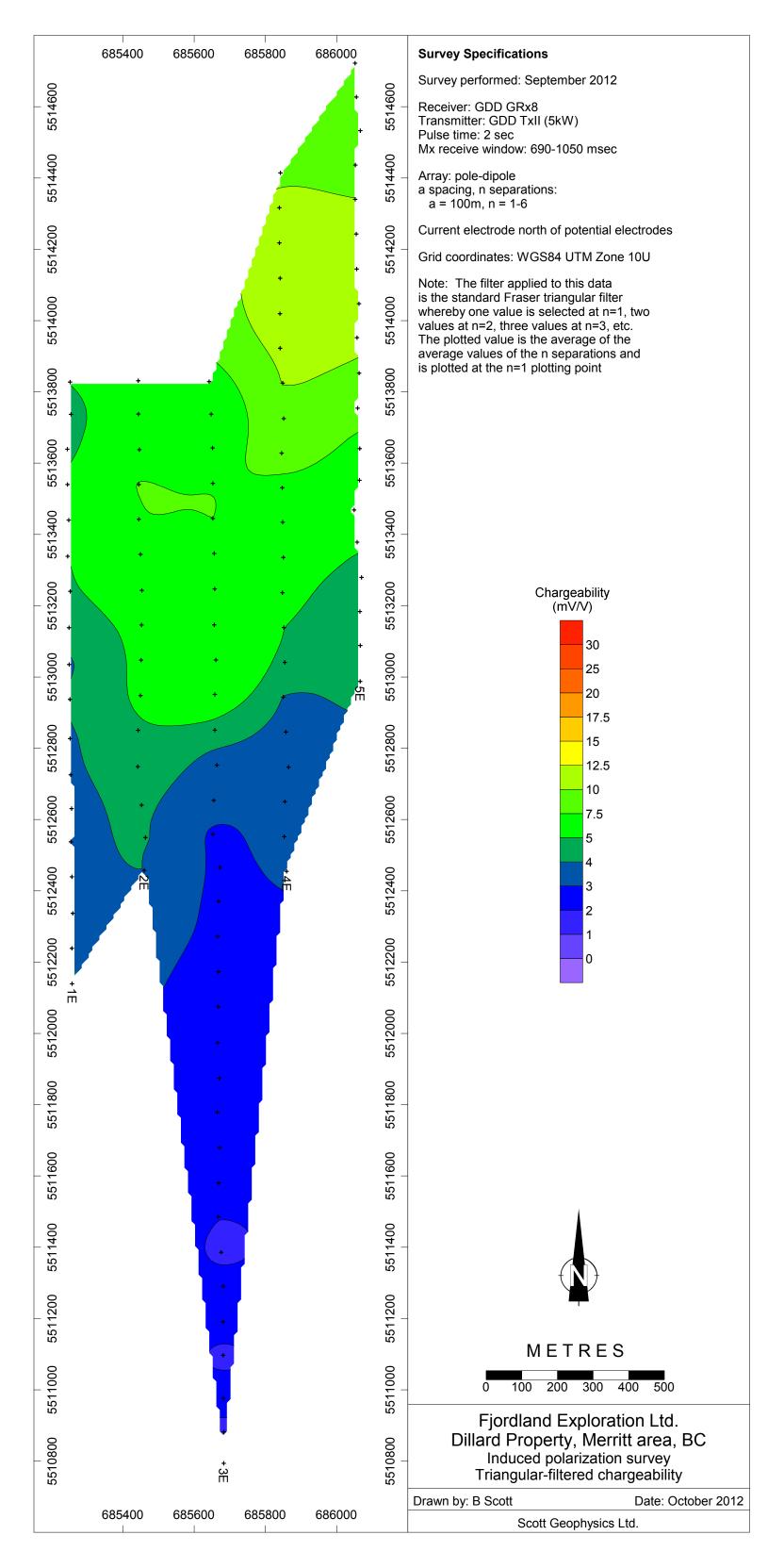
1230 Harrison Way, Gabriola, B.C. VOR 1X2

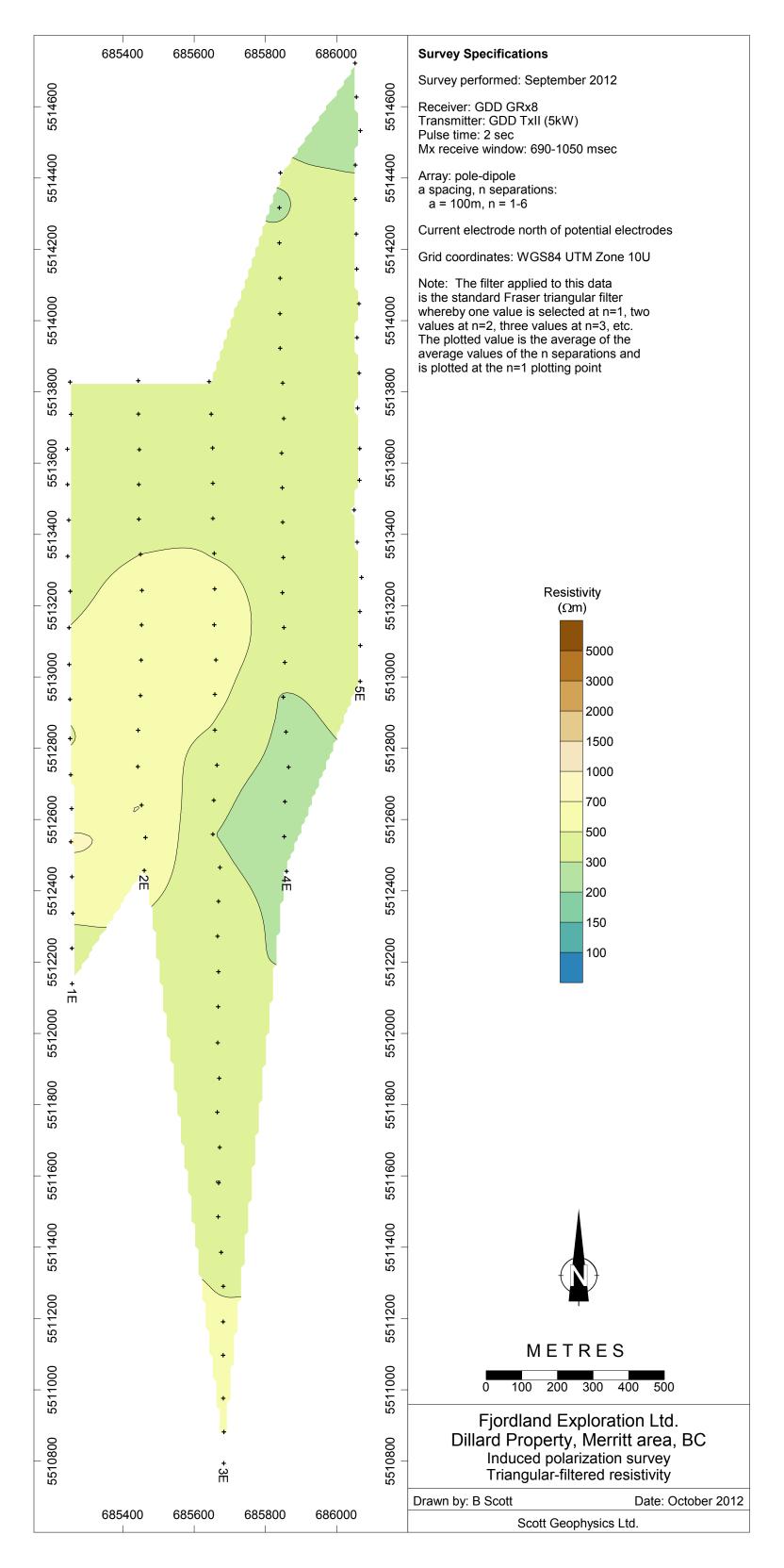
I, Brad Scott, hereby certify the following statements regarding my qualifications and involvement in the program of work on behalf of Fjordland Exploration Ltd. at the Dillard Project, Merritt area, B.C. as presented in this report October 10, 2012.

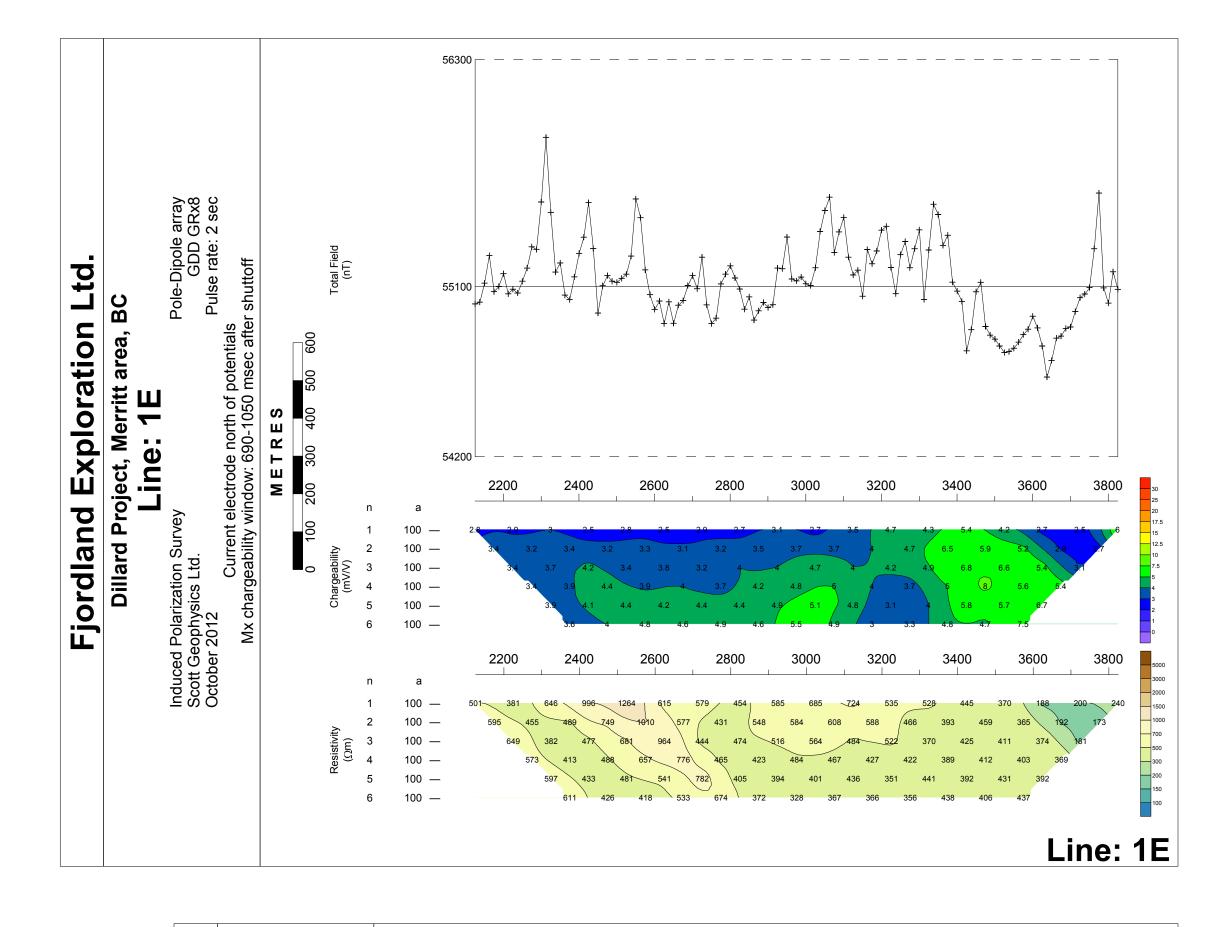
The work was performed by individuals trained and qualified for its performance.

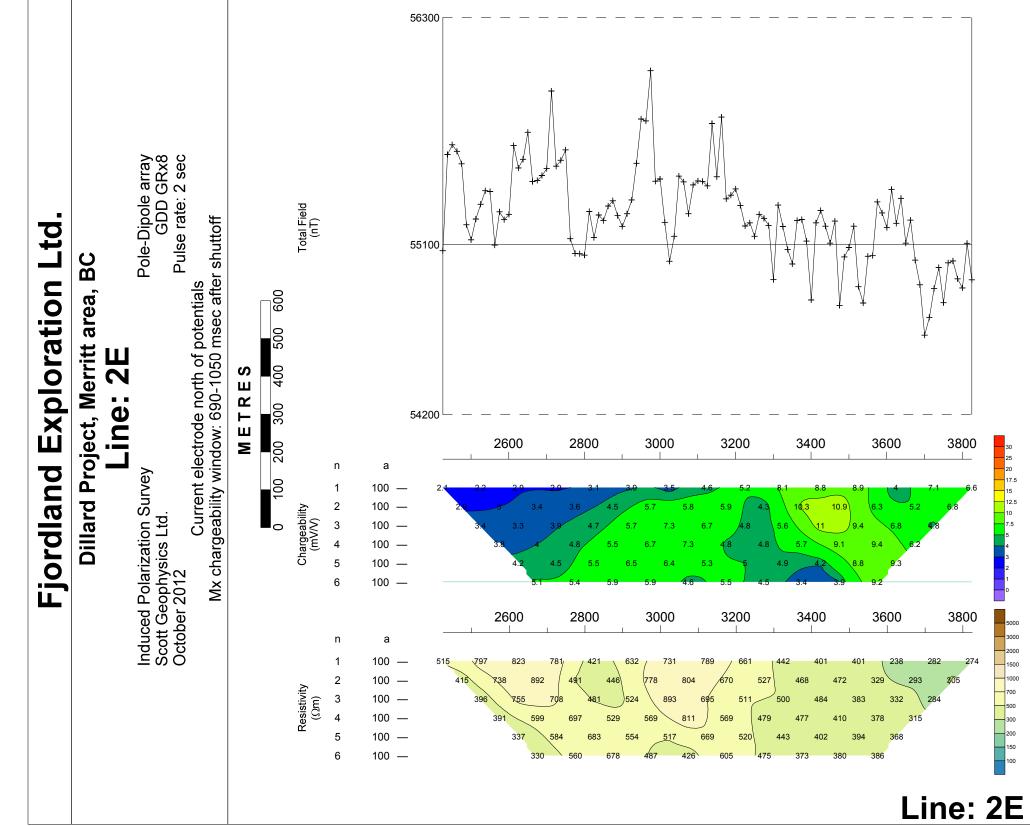
I have no material interest in the property under consideration in this report.

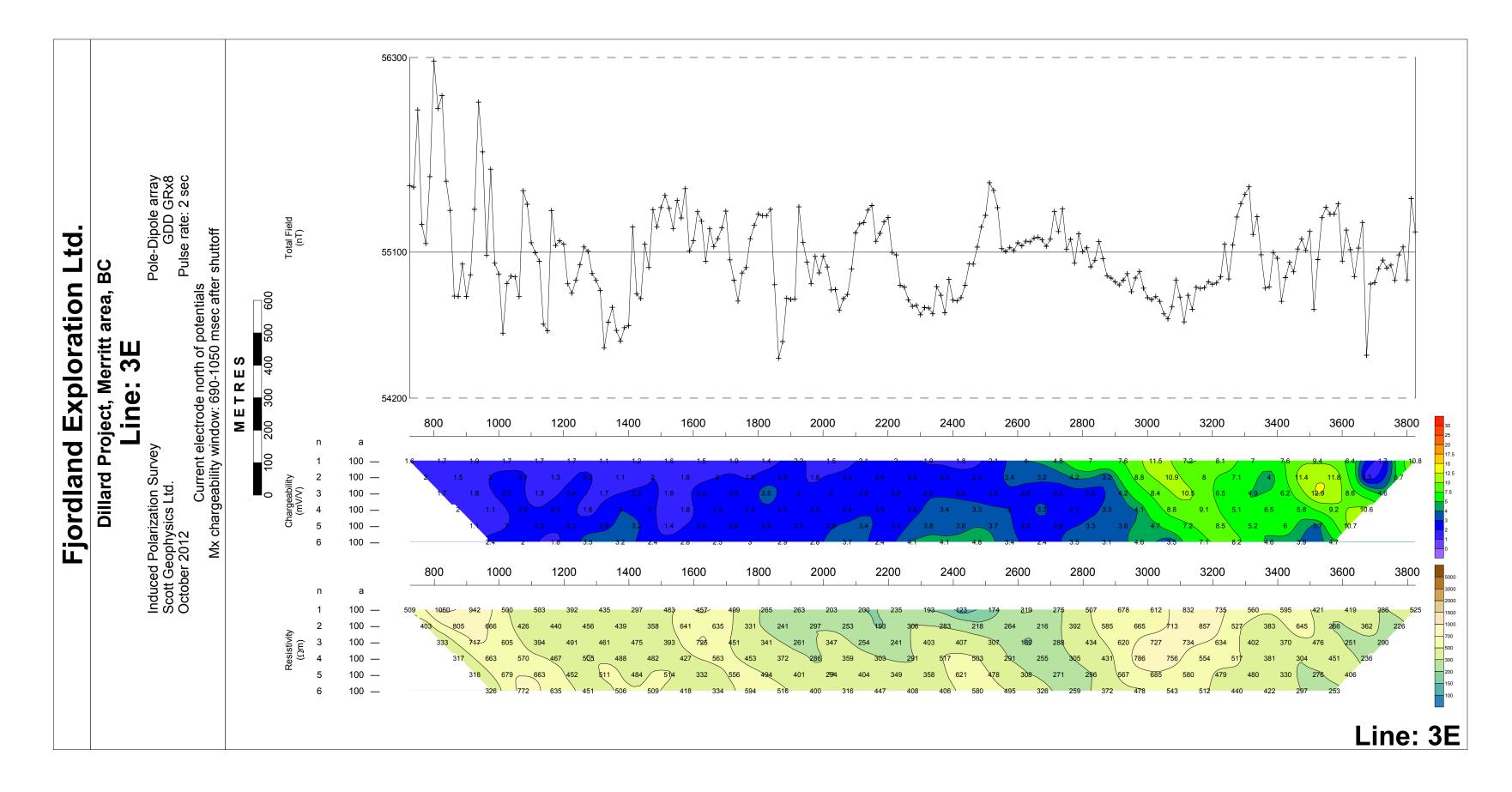
I graduated from the University of British Columbia with a Bachelor of Science degree (Geology) in 2000.


I am a member-in-training of the Association of Professional Engineers and Geoscientists of the Province of British Columbia.


I have been practising my profession in the field of Mineral Exploration since 2000.


Respectfully submitted,


KA


Brad Scott

