Ainsworth Property

ASSESSMENT REPORT ON THE GEOCHEMICAL, AND PROSPECTING THE AINSWORTH MINERAL CLAIMS

Tenures

706662, 706664, 701143, 773786, 793949, 794002, 857002, 881169, 881489, 930172

Slocan Mining Division

Property Location

South Eastern British Columbia

BCGS 82F.078

UTM Map 082F/10

UTM Coordinates [NAD 83, Zone 5]:

504876.11 m E 5507820.52 m N

S.O.W. Event # 5397479

By David A. Wallach

For

Shane Smith

October 13, 2012

Table of Content

1.0	Introduction	3
2.0	Summery	3
3.0	Property Description and Location	3
4.0	List of Mineral Tenures and Status	3
5.0	Accessibility and Infrastructure	4
6.0	Regional and Local Geology	4
7.0	Physiography, Vegetation and Climate	4
8.0	Mineralization and Alteration	4
9.0	Exploration	4
10.0	Prospecting	4
11.0	Access Road Map	5
12.0	Sampling	5
13.0	Sampling Method and Approach	5
14.0	Data Verification	5
15.0	Location	6
16.0	Claim Map	7
17.0	Sample Location Map	8
18.0	Sample Analysis Map	9
19.0	Certificates of Analysis	10
20.0	Conclusion	31
21.0	Statement of Cost	31
22.0	References	32
23.0	Qualifications	33

1 INTRODUCTION

The Ainsworth silver camp property located in the Slocan Mining Division in south eastern British Columbia. The Ainsworth claims are owned by Shane Smith. The following report outlines the results of the geochemical sampling Road access, and prospecting that was carried out between July 23 and July 29, 2012.

2 SUMMARY

The objective of the 2012 exploration program was to locate a source for a potential bulk sample program and establish a Magnetics grid. Due to non-cooperation from the new owner of the Krao crown grant, we were unable to set out the grid. Instead a total of 33 rock samples were taken between July 23 to July 29, 2012. The July 2012 exploration program samples 1986601 through 1986633 had been taken with some promising returns. In July 2012 several exposed areas on the access roads were encountered from the Loon lake area had values of up to and over > 100,000 ppb silver, >10,000 ppm Zinc, >10,000 ppm Lead. The event number is; 5397479. Further work in the area is warranted. A follow-up exploration program will commence in the summer of 2013.

3 PROPERTY DESCRIPTION AND LOCATION

The Ainsworth property is located in the Slocan mining division of south eastern British Columbia. Good access roads for the property are found 45 km North of Nelson along Provincial Highway 3A. 1200 hectares consisting of 9 claims make up the total inventory of the Ainsworth Property, which are owned by Can-West Exploration.

Accessibility to the area is quite good with plenty of logging roads throughout. Infrastructure in the area is excellent with Ainsworth less than a kilometer away and Nelson being 45 km to the south. Railway and hydro lines follow the highway #3A/31 corridors. Numerous old and abandoned processing buildings are scattered throughout the property as well as abundant outcropping, old ore piles, and adits.

Tenure Number 706662	Claim Name	Tenure Type Mineral	Map Number 082F	Issue Date 2010/feb/20	Good To Date 2013/sep/15	Status GOOD	Area (ha) 522.1797
706664	KENS 1 QUEENS	Mineral	082F	2010/feb/20	2013/sep/15	GOOD	459.2567
773786	COFFEE COFFEE CREEK	Mineral	082F	2010/may/15	2013/sep/15	GOOD	81.6885
793949	3 COFFEE CREEK	Mineral	082F	2010/jun/17	2013/sep/15	GOOD	41.7941
794002	4 JOKERS ARE	Mineral	082F	2010/jun/17	2013/sep/15	GOOD	125.0126
857022	WILD	Mineral	082F	2011/jun/16	2014/feb/15	GOOD	83.4789
930172	DAVID MILL	Mineral	082F	2011/nov/23	2013/nov/23	GOOD	62.6732
881489	AINSWORTH CC	Mineral	082F	2011/aug/04	2013/sep/15	GOOD	20.8938
701143	AINSWORTH 10	Mineral	082F	2010/jan/18	2013/sep/15	GOOD	104.3532

4 LIST OF MINERAL TENURES AND STATUS

:

5 ACCESSIBILITY AND INFRASTRUCTURE (Buss, 2008)

Accessibility to the area is quite good with plenty of logging roads throughout. Infrastructure in the area is excellent with Ainsworth less than a kilometer away and Nelson being 45 km to the south (Figure 1). Railway and hydro lines follow the highway

#3A/31 corridor. Numerous old and abandoned processing buildings are scattered throughout the property as well as abundant outcropping, old ore piles, and adits.

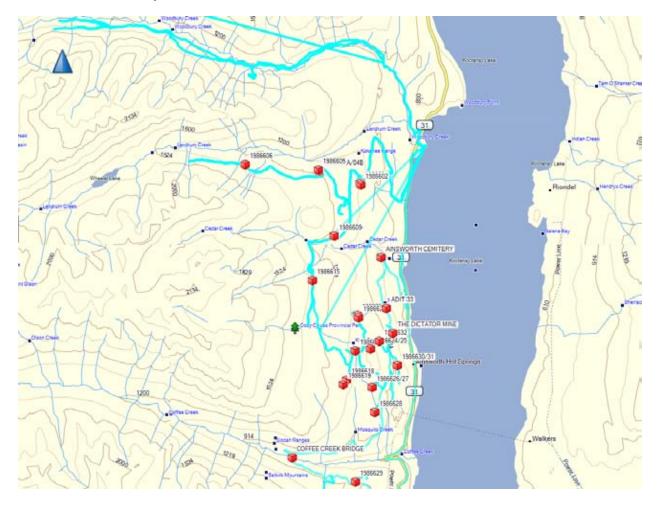
6 REGIONAL GEOLOGY AND LOCAL GEOLOGY (Buss,2008)

The Ainsworth tenure package is underlain by metamorphosed, Lower Cambrian to Upper Triassic, volcanic and sedimentary rocks (Dr. P.W. Richardson, P. Eng., 1981). The area lies Within the western limb of the Purcell Anticlinorium and butts up against the eastern edge Of the Nelson Batholith. The major metamorphosed units, from east to west, include the Ainsworth limestone, Star limestone, interlayered mica schist and hornblende schist. "Grey Knotted schist" rests against the batholith (Fyles, 1967, bulletin #53). Numerous elongated Granite pegmatites and granitic sills occur in conjunction with a lesser amount of lamprophyre dikes. There are generally three northerly trending strike---- slip faults that Divide the region into four parallel slices. They generally dip westerly and have numerous, Smaller fault, off shoots, sub parallel to the main faults.

7 Mineralization and Alteration (Buss, 2008)

Mineralization of the property consists of galena, sphalerite, and pyrite, with a lesser amount of chalcopyrite. A majority of the mineralization occurs in the hornblende schist Unit which is highly silicified.

8 PHYSIOGRAPHY, VEGETATION AND CLIMATE


The geography of the area is a series of stepped ridges extending upwards to the west and Parallel to Kootenay Lake. There are numerous cliffs with abundant pine forest growth. The Region experiences average snowfall amounts for the area while summers are warm with Extended fall seasons. The high elevation and lake moisture effects may limit year round access during the winter months.

9 Exploration

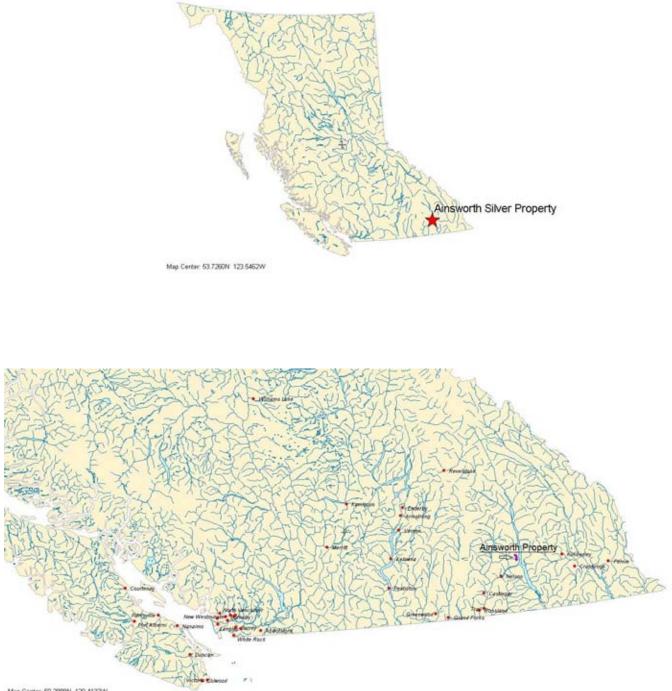
10 Prospecting

33 samples were taken throughout the property in close proximity to the past producing mines. Of the 33 samples 3 were taken from of the claim boundaries. Because of the many new and old roads that exist on the property, using a side x side and dirt bike with a GPS, we were able to map the roads for future programs.

11 Assess Road Map

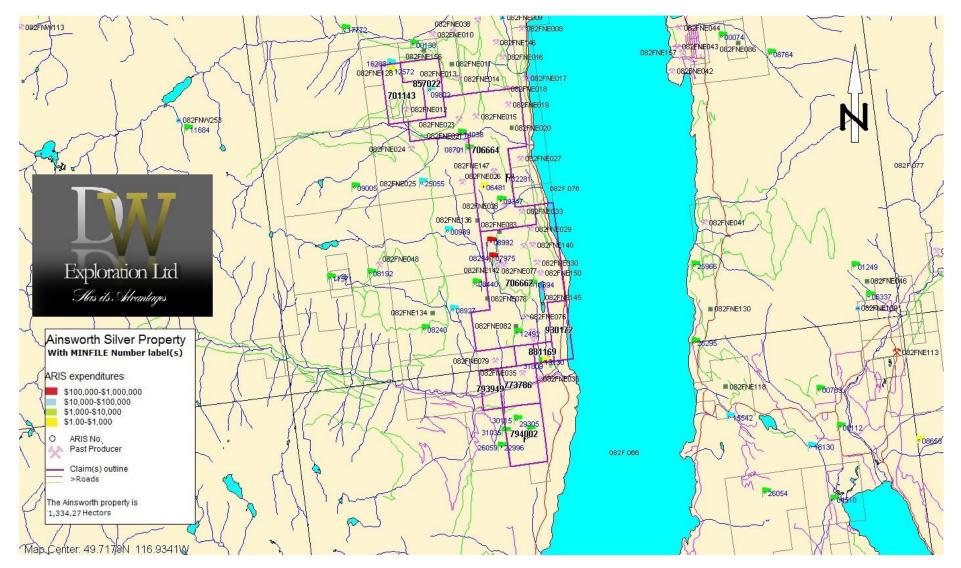
12 Sampling

13 Sampling Method and Approach

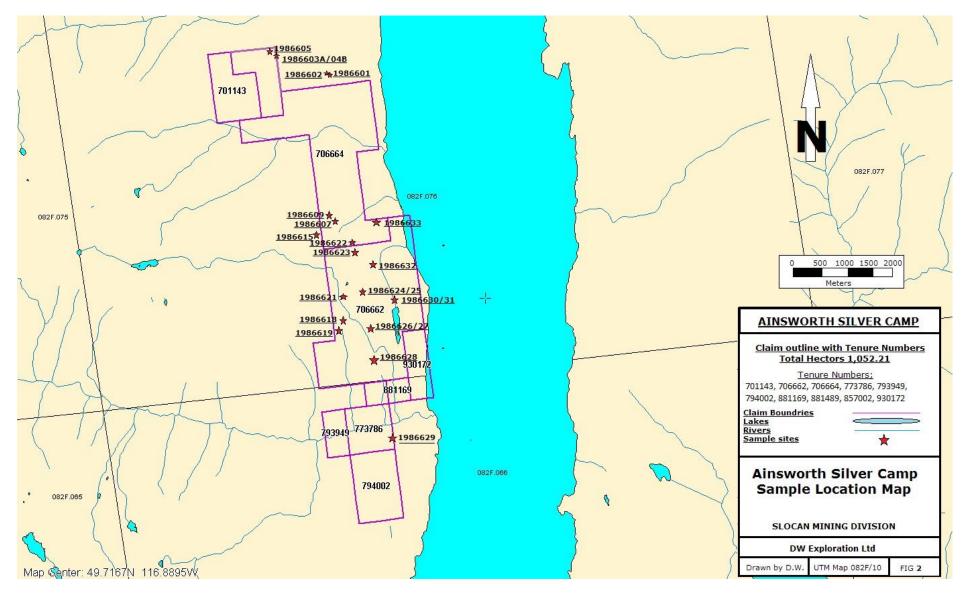

Rock grab and chip samples were taken in nineteen locations close to the old Hector, Spokane, Krao, and Danira showings/mines in the hopes of proving historical assay results.

14 Data Verification

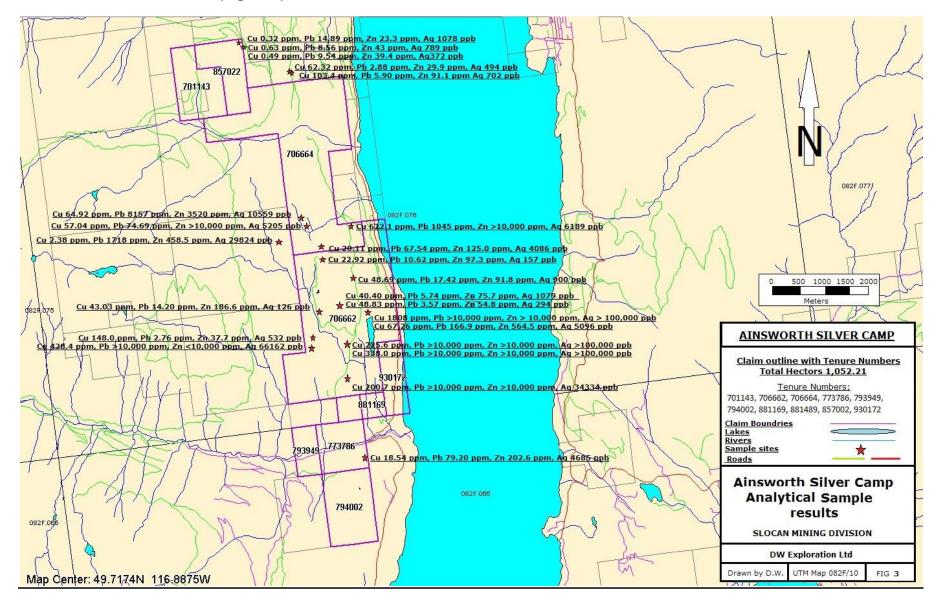
See Appendix A for Certificates of Analysis from Acme Analytical Laboratories. Please visit Acme's website for complete descriptions of their analytical procedures: <u>www.acmelab.com</u>.


15 LOCATION

The Ainsworth project is in the Slocan Mining division, east of the Kokanee Glacier Park, and north of Nelson B.C. in the Kootaney's.



Map Center: 50 2989N 120 4132W


16 CLAIM MAP (Figure 1)

17 SAMPLE LOCATIONS MAP (Figure 2)

18 SAMPLE ANALYSIS MAP (Figure 3)

19 CERTIFICATES OF ANALYSIS

DW Exploration 5241 Cobble Crescent Kelowna BC V1W 5C3 Canada

WWW.	acme	lab.c	om

Submitted By:	Dave Wallach
Receiving Lab:	Canada-Vancouver
Received:	August 22, 2012
Report Date:	September 17, 2012
Page:	1 of 2

CERTIFICATE OF ANALYSIS

Ainsworth

17

SAMPLE PREPARATION AND ANALYTICAL PROCEDURES

Method Code	Number of Samples	Code Description	Test Wgt (g)	Report Status	Lab
R200-250	17	Crush, split and pulverize 250 g rock to 200 mesh			VAN
G603	17	lead collection fire-assay fusion -AAS finish +7AR Ag	30	Completed	VAN
1F01	17	1:1:1 Aqua Regia digestion Ultratrace ICP-MS analysis	0.5	Completed	VAN
G6Gr	2	Lead collection fire assay 30G fusion - Grav finish	30	Completed	VAN

SAMPLE DISPOSAL

PICKUP-PLP Client to Pickup Pulps PICKUP-RJT Client to Pickup Rejects

CLIENT JOB INFORMATION

ADDITIONAL COMMENTS

Acme does not accept responsibility for samples left at the laboratory after 90 days without prior written instructions for sample storage or return.

Invoice To:

Project:

Shipment ID:

P.O. Number

Number of Samples:

DW Exploration 5241 Cobble Crescent Kelowna BC V1W 5C3 Canada

CC:

VAN12003937.1

This report supersedes all previous preliminary and final reports with this file number dated prior to the date on this certificate. Signature indicates final approval; preliminary reports are unsigned and should be used for reference only. All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of analysis only. Results apply to samples as submitted. *** asterisk indicates that an analytical result could not be provided due to unsually high levels of interference from other elements.

Project:

Page:

DW Exploration 5241 Cobble Crescent Kelowna BC V1W 5C3 Canada

Ainsworth

2 of 2

Report Date:

September 17, 2012

Part: 1 of 3

CERTIFICATE OF ANALYSIS

Phone (604) 253-3158 Fax (604) 253-1716

VAN12003937.1

	Method	WGHT	G6	7AR	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F
	Analyte	Wgt	Au	Ag	Мо	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	U	Au	Th	Sr	Cd	Sb	Bi
	Unit	kg	ppm	gm/t	ppm	ppm	ppm	ppm	ppb	ppm	ppm	ppm	%	ppm	ppm	ppb	ppm	ppm	ppm	ppm	ppm
	MDL	0.01	0.005	2	0.01	0.01	0.01	0.1	2	0.1	0.1	1	0.01	0.1	0.1	0.2	0.1	0.5	0.01	0.02	0.02
G1 Pre	ep Blank	<0.01	<0.005	<2	0.11	1.53	2.40	43.6	16	4.0	4.0	557	1.87	0.3	1.2	1.2	4.7	58.2	0.01	<0.02	<0.02
G1 Pre	ep Blank	<0.01	< 0.005	<2	0.10	1.55	2.59	46.5	9	3.9	4.4	559	1.86	0.3	1.2	<0.2	4.7	68.3	<0.01	<0.02	< 0.02
1986617 Ro	ock	0.85	0.008	<2	0.61	1.75	5.42	16.8	17	4.6	1.1	136	0.42	0.5	0.5	<0.2	0.4	5476	0.34	0.04	0.34
1986618 Ro	ock	1.34	0.006	<2	0.81	148.0	2.76	37.7	532	17.0	13.3	343	6.14	0.2	1.3	7.0	5.0	161.1	0.12	0.02	8.35
1986619 Ro	ock	1.57	0.079	67	2.72	428.4	>10000	>10000	66162	7.3	25.5	>10000	29.99	18.0	9.1	46.7	0.4	173.0	940.4	18.80	0.25
1986620 Ro	ock	0.90	0.170	18	1.57	180.4	4071	>10000	18670	14.3	15.3	>10000	17.59	9.1	3.5	141.5	1.5	77.5	687.8	5.84	0.05
1986621 Ro	ock	0.84	0.006	<2	1.94	43.03	14.20	186.8	126	32.2	27.1	1185	3.31	2.4	<0.1	2.3	<0.1	134.9	1.54	0.08	<0.02
1986622 Ro	ock	0.51	< 0.005	4	3.81	20.11	67.54	125.0	4086	14.2	3.8	209	1.46	8.7	0.4	0.5	2.5	4.0	0.91	0.08	6.85
1986623 Ro	ock	1.22	0.006	<2	1.90	22.92	10.62	97.3	157	42.8	29.3	699	4.88	4.5	1.1	<0.2	7.9	230.1	0.40	0.06	0.43
1986624 Ro	ock	0.76	<0.005	<2	0.16	40.40	5.74	75.7	1079	3.0	4.2	67	2.52	<0.1	<0.1	<0.2	0.3	4.9	0.54	0.06	3.12
1986625 Ro	ock	0.87	<0.005	<2	0.67	48.83	3.57	54.8	294	66.9	40.2	1282	5.93	1.6	<0.1	<0.2	0.2	9.4	0.24	<0.02	1.92
1986626 Ro	ock	2.12	0.005	>300	0.94	225.6	>10000	>10000>	100000	8.5	10.0	>10000	8.26	25.5	1.9	1.6	0.6	524.0	249.8	9.61	0.19
1986627 Ro	ock	4.81	0.053	>300	1.69	338.0	>10000	>10000>	100000	32.0	26.3	>10000	21.95	131.8	1.8	36.1	0.6	56.2	447.2	94.08	0.17
1986628 Ro	ock	1.28	0.131	32	3.19	200.7	>10000	>10000	34334	7.9	7.8	>10000	10.99	139.3	0.8	92.7	0.2	543.8	484.3	20.48	0.04
1986629 Ro	ock	0.93	<0.005	4	1.83	18.54	79.20	202.6	4685	28.4	4.2	797	1.30	19.7	0.6	<0.2	1.4	344.2	2.64	1.95	0.17
1986630 Ro	ock	0.72	0.175	184	0.88	1808	>10000	>10000>	100000	11.1	161.8	>10000	31.45	495.8	0.3	194.1	0.1	<0.5	488.4	8.80	65.97
1986631 Ro	ock	0.86	<0.005	5	0.45	67.26	166.9	564.5	5096	1.2	0.9	289	1.09	4.9	<0.1	0.9	0.1	4.2	1.89	0.15	3.60
1986632 Ro	ock	1.72	<0.005	<2	7.19	48.69	17.42	91.8	900	16.3	3.7	211	1.61	0.5	1.8	0.2	4.9	15.0	0.56	<0.02	1.72
1986633 Ro	ock	3.03	0.009	6	2.78	622.1	1045	>10000	6189	31.8	44.5	2459	5.35	61.9	<0.1	5.0	0.8	33.4	113.7	0.81	1.80

www.acmelab.com

Project:

Page:

Report Date:

DW Exploration 5241 Cobble Crescent Kelowna BC V1W 5C3 Canada

Kelowna BC V1W 5C3 Car

September 17, 2012

Ainsworth

2 of 2

1020 Cordova St. East Vancouver BC V6A 4A3 Canada Phone (604) 253-3158 Fax (604) 253-1716

www.acmelab.com

Part: 2 of 3

CERTIFICATE OF ANALYSIS

VAN12003937.1

	Method	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F
	Analyte	v	Ca	Р	La	Cr	Mg	Ba	Ti	в	AI	Na	к	w	Sc	TI	S	Hg	Se	Те	Ga
	Unit	ppm	%	%	ppm	ppm	%	ppm	%	ppm	%	%	%	ppm	ppm	ppm	%	ppb	ppm	ppm	ppm
	MDL	2	0.01	0.001	0.5	0.5	0.01	0.5	0.001	20	0.01	0.001	0.01	0.1	0.1	0.02	0.02	5	0.1	0.02	0.1
G1	Prep Blank	30	0.41	0.071	9.9	6.8	0.57	212.7	0.123	<20	0.91	0.070	0.48	<0.1	2.3	0.28	< 0.02	<5	<0.1	<0.02	4.7
G1	Prep Blank	29	0.44	0.075	10.4	6.9	0.56	226.2	0.126	<20	0.93	0.082	0.48	<0.1	2.5	0.28	< 0.02	<5	<0.1	0.04	5.2
1986617	Rock	3	32.43	0.055	0.7	2.3	0.20	6.1	0.006	<20	0.09	0.003	0.07	<0.1	1.1	0.04	0.23	<5	<0.1	0.20	0.3
1986618	Rock	41	1.22	0.134	23.2	10.7	0.59	169.2	0.090	<20	1.23	0.065	0.55	0.2	5.1	0.39	1.31	<5	1.5	0.11	4.8
1986619	Rock	<2	0.22	0.043	14.7	0.6	0.08	36.1	<0.001	<20	0.05	<0.001	0.02	0.3	0.4	0.22	0.09	498	8.5	0.03	4.3
1986620	Rock	6	0.12	0.037	10.2	1.6	0.03	62.7	<0.001	<20	0.07	<0.001	0.05	0.1	0.9	0.18	0.10	554	4.6	<0.02	3.6
1986621	Rock	106	17.24	0.056	0.8	48.4	0.62	103.5	0.100	<20	0.37	0.015	0.15	<0.1	16.2	<0.02	2.14	<5	<0.1	<0.02	2.3
1986622	Rock	16	0.09	0.042	5.6	17.5	0.11	37.7	0.001	<20	0.36	0.002	0.15	<0.1	1.1	0.18	0.03	<5	2.1	0.24	1.5
1986623	Rock	91	2.82	0.264	54.2	69.9	2.68	84.6	0.361	<20	2.86	0.184	1.22	0.4	3.8	0.39	1.10	<5	<0.1	0.04	9.3
1986624	Rock	<2	0.05	0.004	<0.5	2.8	0.02	7.5	0.002	54	0.07	0.007	<0.01	0.2	0.4	0.03	<0.02	<5	2.1	0.10	0.3
1986625	Rock	163	0.21	0.060	2.2	75.1	1.50	327.0	0.066	<20	1.92	0.041	0.75	<0.1	22.4	1.06	<0.02	<5	0.3	0.04	7.1
1986626	Rock	<2	20.79	0.072	9.9	1.0	3.81	27.4	<0.001	<20	0.04	0.003	0.03	<0.1	1.1	0.18	1.13	64	3.8	<0.02	1.2
1986627	Rock	<2	4.10	0.022	14.3	4.1	1.36	28.9	<0.001	<20	0.04	0.001	0.03	0.2	1.1	0.48	3.07	452	4.1	0.04	3.1
1986628	Rock	<2	18.03	0.005	10.9	1.3	3.03	55.7	<0.001	<20	0.02	0.002	0.01	<0.1	1.5	0.07	2.26	689	9.6	0.02	1.0
1986629	Rock	2	3.36	0.101	8.9	15.5	1.12	51.9	<0.001	<20	0.10	0.002	0.05	0.1	2.4	0.03	0.39	<5	2.6	0.04	0.4
1986630	Rock	<2	0.03	0.009	0.6	3.8	0.03	16.8	<0.001	<20	0.09	0.003	0.09	<0.1	2.3	0.21	>10	710	19.0	0.48	4.1
1986631	Rock	<2	0.05	0.007	0.9	2.8	<0.01	6.2	<0.001	<20	0.03	0.005	0.02	<0.1	0.2	<0.02	<0.02	6	0.4	0.19	0.3
1986632	Rock	21	0.49	0.285	13.1	44.0	0.32	353.6	0.025	<20	0.55	0.011	0.15	0.4	2.9	0.10	0.06	<5	1.6	0.19	2.5
1986633	Rock	20	0.81	0.030	4.0	12.5	0.55	9.4	0.001	<20	0.85	0.001	0.08	0.1	2.8	0.11	4.46	22	6.8	0.37	3.7

	Client:
AcmeLabs Acme Analytical Laboratories (Vancouver) Ltd.	Project:
1020 Cordova St. East Vancouver BC V6A 4A3 Canada Phone (604) 253-3158 Fax (604) 253-1716	Report Date:
www.acmelab.com	
	Page:

CERTIFICATE OF ANALYSIS

	Method	G6Gr
	Analyte	Ag
	Unit	gm/t
	MDL	50
G1	Prep Blank	
G1	Prep Blank	
1986617	Rock	
1986618	Rock	
1986619	Rock	
1986620	Rock	
1986621	Rock	
1986622	Rock	
1986623	Rock	
1986624	Rock	
1986625	Rock	
1986626	Rock	394
1986627	Rock	1824
1986628	Rock	
1986629	Rock	
1986630	Rock	
1986631	Rock	
1986632	Rock	
1986633	Rock	

DW Exploration 5241 Cobble Crescent Kelowna BC V1W 5C3 Canada

Ainsworth September 17, 2012

2 of 2

VAN12003937.1

Part: 3 of 3

MDL 0.01 0.09 2 0.01 0.01 0.1 1 0.01 0.1 <th>Acr</th> <th></th> <th>h</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>Client</th> <th>::</th> <th>5241 C</th> <th>obble Cr</th> <th>ration escent W 5C3 C</th> <th></th> <th></th> <th></th> <th></th> <th></th>	Acr		h										Client	::	5241 C	obble Cr	ration escent W 5C3 C					
Page: 1 of 2 Part: 1 of 3 Contraction Contractic Contraction Contractic Contractin Contrecontected Contractic Contractic Contracting Contractic	1020 Cordova	St. East Vanco	uver BC	V6A 4A		-	ical Lab	oratori	ies (Van	couver)	Ltd.						2012					
OUDLITY CONTROL REPORT VAN12003937.1 Method Analyte Uuti Ng ppm gram gram gram ppm ppm ppm ppm ppm ppm ppm ppm ppm p							ww	w.acm	nelab.co	m					1.40					D. d		
Method Analyte Unit Wgt WGHT Wgt G6 Au 7AR Au 1F Ag 1F Ag 1F F 1F F 1F As 1F F 1F As 1F B 1F F 1F As 1F B 1F F 1F As 1F B 1B 1C 1C 0.1 1 0.1 1 0.1 1 0.1 1 0.1 1 0.1 1 0.1 1 0.1 1 0.1 1 0.1 1 0.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1													Page:		1 of 2							3
Analyte Unit Wigt Au Ag Mo Cu Pb Zn Ag Ni Co Mn Fe As U Au Th Sr Cd Sb MoL 0.01 0.05 2 0.01 0.01 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.01 0	QUALITY CC	ONTROL	REP	ORT													VAI	N12	003	937.1	1	
And bit Mug Au Au Mug Point Point </th <th></th> <th>Method</th> <th>WGHT</th> <th>G6</th> <th>7AR</th> <th>1F</th>		Method	WGHT	G6	7AR	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F
MDL 0.01 0.02 2 0.01 0.01 0.1 2 0.1 1 0.01 0.1 0.2 0.1 0.5 0.01 0.02 1 Core Reject Duplicates I I I I 0.01 0.1 0.1 0.5 0.01 0.05 0.01 0.05 0.01 0.05 0.01 0.05 0.01 0.05 0.01 0.05 0.01 0.05 0.01 0.05 0.01 0.05 0.01 0.05 0.01 0.05 0.01 0.01 0.05 0.01 0.05 0.01 0.05 0.01 0.05 0.01 0.05 0.01 0.05 0.01		Analyte																				Bi
Core Reject Duplicates Rock 0.90 0.170 18 1.57 180.4 4071 >10000 18670 14.3 15.3 >10000 17.59 9.1 3.5 141.5 1.5 77.5 687.8 5.84 0.00 DLP 1986820 QC 40.01 0.185 21 1.98 182.4 4330 >10000 24045 13.8 14.8< >10000 16.98 3.1 27.3 1.5 77.5 687.8 5.84 0.7 Reference Materials STD CON-ME-9A Standard 4 STD CDN-ME-9A Standard 44 12.10 104.9 124.4 299.5 1924 39.0 7.7 566 2.21 24.5 2.8 119.8 6.1 74.4 2.24 3.85 0.10 0.1 <th></th> <th>Unit</th> <th>-</th> <th>ppm</th> <th>-</th> <th>ppm</th> <th>ppm</th> <th>ppm</th> <th>ppm</th> <th>-</th> <th>ppm</th> <th>ppm</th> <th>ppm</th> <th>%</th> <th>ppm</th> <th>ppm</th> <th>ppb</th> <th>ppm</th> <th>ppm</th> <th>ppm</th> <th>ppm</th> <th>ppm</th>		Unit	-	ppm	-	ppm	ppm	ppm	ppm	-	ppm	ppm	ppm	%	ppm	ppm	ppb	ppm	ppm	ppm	ppm	ppm
198620 Rock 0.90 0.170 18 1.57 180.4 4071 >10000 18670 14.3 15.3 >1000 13.5 141.5 1.5 77.5 687.8 5.84 0 DUP 1986620 QC <0.01		MDL	0.01	0.005	2	0.01	0.01	0.01	0.1	2	0.1	0.1	1	0.01	0.1	0.1	0.2	0.1	0.5	0.01	0.02	0.02
DUP 1986620 QC <0.01 0.185 21 1.86 182 4030 >10000 24045 13.8 14.8 >10000 16.88 13.1 227.3 1.5 72.3 747.4 5.77 (Reference Materials	Core Reject Duplicates																					
Reference Materials International of the second of the secon	1986620	Rock	0.90	0.170	18	1.57	180.4	4071	>10000	18670	14.3	15.3	>10000	17.59	9.1	3.5	141.5	1.5	77.5	687.8	5.84	0.05
STD AGPROOF Standard 4 STD CDN.ME-9A Standard 44 STD CON-ME-14A Standard 12.10 104.9 124.4 299.5 1924 39.0 7.7 566 2.21 24.5 2.8 119.8 6.1 74.4 2.24 3.85 6.0 STD DS9 Standard 11.60 111.9 117.1 314.0 1730 40.8 7.5 662 2.29 26.3 2.9 109.3 6.2 66.4 0.44 0.40 6.1 74.4 2.24 3.85 6.1 74.4 2.24 3.85 6.1 74.4 2.24 3.85 6.0 75 602 2.29 26.3 2.9 109.3 6.2 66.4 0.14 0.10 0.0 0.00 </td <td>DUP 1986620</td> <td>QC</td> <td><0.01</td> <td>0.185</td> <td>21</td> <td>1.98</td> <td>188.2</td> <td>4030</td> <td>>10000</td> <td>24045</td> <td>13.8</td> <td>14.8</td> <td>>10000</td> <td>16.98</td> <td>18.3</td> <td>3.1</td> <td>227.3</td> <td>1.5</td> <td>72.3</td> <td>747.4</td> <td>5.77</td> <td>0.04</td>	DUP 1986620	QC	<0.01	0.185	21	1.98	188.2	4030	>10000	24045	13.8	14.8	>10000	16.98	18.3	3.1	227.3	1.5	72.3	747.4	5.77	0.04
STD CDN-ME-9A Standard 4 STD CDN-ME-14A Standard 44 STD DS9 Standard 12.10 104.9 124.4 299.5 1924 39.0 7.7 566 2.21 24.5 2.8 119.8 6.1 74.4 2.24 3.85 6.2 108.3 6.2 66.2 2.30 4.02 6.5 2.30 4.02 66.2 2.30 4.02 66.2 2.30 4.02 66.2 2.30 4.02 66.2 2.45 2.8 119.8 6.1 74.4 2.24 3.85 6.9 15.0 0.14 0.10 0.0 STD OREAS4SCA Standard 0.80 494.1 21.62 60.2 316 241.1 91.5 959 15.6 3.0 1.3 37.6 7.6 16.4 0.14 0.10 0.0 STD OX699 Standard 0.916	Reference Materials																					
STD CDN-ME-14A Standard 44 STD DS9 Standard 12.10 104.9 124.4 299.5 192.4 39.0 7.7 566 2.21 24.5 2.8 119.8 6.1 74.4 2.24 3.85 6 STD DS9 Standard 11.60 111.9 117.1 314.0 1730 40.8 7.5 602 2.29 26.3 2.9 109.3 6.2 66.2 2.30 4.02 6 STD OREAS45CA Standard 0.84 491.1 21.62 60.2 316 241.1 91.5 959 15.68 3.0 1.3 37.6 16.4 0.14 0.10 0.8 STD OREAS45CA Standard 0.916 575 272 244.4 89.7 914 15.03 2.9 1.2 38.6 6.9 15.0 0.12 0.08 0.8 STD OX699 Standard 0.916 5 5 5 11.1 91.5 5 5 1.2 38.6 6.9 15.0 0.12 0.08 1.0 1.5 1.5 </td <td>STD AGPROOF</td> <td>Standard</td> <td></td>	STD AGPROOF	Standard																				
STD DS9 Standard 12.10 104.9 124.4 299.5 1924 39.0 7.7 566 2.21 24.5 2.8 119.8 6.1 74.4 2.24 3.85 60 STD DS9 Standard 111.0 111.9 117.1 134.0 1730 40.8 7.5 602 2.29 26.3 2.9 109.3 6.2 66.2 2.30 40.2 60 STD OREAS45CA Standard 0.80 494.1 21.62 60.2 316 241.1 91.5 959 15.6 3.0 1.3 37.6 7.6 16.4 0.14 0.10 0 STD OREAS45CA Standard 0.916 0.3 497.6 19.87 67.8 272 244.4 89.7 914 15.03 2.9 1.2 38.6 6.9 15.0 0.12 0.08 0 STD OXG99 Standard 0.916	STD CDN-ME-9A	Standard			4																	
STD DS9 Standard 11.60 111.9 117.1 314.0 1730 40.8 7.5 602 2.9 109.3 6.2 66.2 2.30 4.02 6 STD OREAS45CA Standard 0.80 494.1 21.62 60.2 316 241.1 91.5 959 15.6 3.0 1.3 37.6 7.6 16.4 0.14 0.10 0 STD OREAS45CA Standard 0.83 497.6 19.87 67.8 272 244.4 89.7 914 15.03 2.9 1.2 38.6 6.9 15.0 0.12 0.08 0 STD OXG99 Standard 0.916	STD CDN-ME-14A	Standard			44																	
STD OREAS45CA Standard 0.80 494.1 21.62 60.2 316 241.1 91.5 959 15.56 3.0 1.3 37.6 7.6 16.4 0.14 0.10 0.00 STD OREAS45CA Standard 0.916 0.83 497.6 19.87 67.8 272 244.4 89.7 914 15.03 2.9 1.2 38.6 6.9 15.0 0.12 0.08 0.08 STD OXG99 Standard 0.916 0.916 0.916 0.916 0.917 0.916 0.917 0.967	STD DS9	Standard				12.10	104.9	124.4	299.5	1924	39.0	7.7	566	2.21	24.5	2.8	119.8	6.1	74.4	2.24	3.85	6.16
STD OREAS4SCA Standard 0.83 497.6 19.87 67.8 272 244.4 89.7 914 15.03 2.9 1.2 38.6 6.9 15.0 0.12 0.08 0.03 STD OXG99 Standard 0.916	STD DS9	Standard				11.60	111.9	117.1	314.0	1730	40.8	7.5	602	2.29	26.3	2.9	109.3	6.2	66.2	2.30	4.02	6.38
STD OXG99 Standard 0.916 STD OXG99 Standard 0.916 STD OXG99 Standard 0.967 STD OXK94 Standard 3.675 STD OXK94 Standard 3.631 STD OXK94 Standard 3.631 STD OXK94 Standard 3.631 STD OXK94 Standard 3.621 STD OXK94 Standard 42 STD OXK94 Standard 0.932 STD OXG99 Standard 0.932 STD SP49 0.932 Standard STD OXG99 Expected 0.932 STD SP49 Expected 0.932 STD SP49 Expected 0.932 STD OXG99 Expected 1 494 20 60 275 240 92 943 15.69 3.8 1.2 43 7 15 0.1 0.13 0 STD DSP49 Expected 1 494 20 60 275 240 92 943 15.69 3.8 1.2 43 7 15 0.1 0.13 0	STD OREAS45CA	Standard				0.80	494.1	21.62	60.2	316	241.1	91.5	959	15.56	3.0	1.3	37.6	7.6	16.4	0.14	0.10	0.16
STD OXG99 Standard 0.916 STD OXG99 Standard 0.967 STD OXK94 Standard 3.675 STD OXK94 Standard 3.631 STD OXK94 Standard 3.631 STD OXK94 Standard 3.631 STD OXK94 Standard 3.631 STD OXK94 Standard 42 STD OXK94 Expected 42 STD OXK94 Expected 3.562 STD OXK94 Expected 0.932 STD OXG99 Expected 0.932 STD OXG99 Expected 0.932 STD OXG99 Expected 0.932 STD DAGPROOF Expected 1 STD DXGPA Expected 1 STD DSP Expected 1	STD OREAS45CA	Standard				0.83	497.6	19.87	67.8	272	244.4	89.7	914	15.03	2.9	1.2	38.6	6.9	15.0	0.12	0.08	0.21
STD OXG899 Standard 0.967 STD OXK94 Standard 3.675 STD OXK94 Standard 3.631 STD OXK94 Standard 3.631 STD OXK94 Standard 3.631 STD OXK94 Standard 3.631 STD OXME4 Standard 42 STD OXM94 Expected 3.562 STD OXG99 Expected 0.932 STD OXG99 Expected 0.932 STD SP49 Expected 0.932 STD OXG89 Expected 0.932 STD AGPROOF Expected 510 OREAS45CA Expected STD DSP49 Expected 1 494 20 60 275 240 92 943 15.69 3.8 1.2 43 7 15 0.1 0.13 0 STD DSP Expected 1 494 20 60 275 240 92 943 15.69 3.8 1.2 43 7 15 0.1 0.13 0 STD DS9 Expected 1 1.494 20 60 275 2.40 92 943 15.69	STD OXG99	Standard		0.916																		
STD OXK94 Standard 3.675 STD OXK94 Standard 3.631 STD OXK94 Standard 3.631 STD SP49 Standard STD CDN-ME-14A Expected 42 STD OXK94 Expected 3.562 STD OXG99 Expected 0.932 STD OXG99 Expected 0.932 STD AGPROOF Expected 0.932 STD AGPROOF Expected 1 STD OXG94 Expected 1 STD DSP Expected 1 BLK Blank <0.005	STD OXG99	Standard		0.916																		
STD OXK94 Standard 3.631 STD SP49 Standard STD CDN-ME-14A Expected 42 STD OXK94 Expected 3.562 STD OXG99 Expected 0.932 STD AGPROOF Expected 0.932 STD AGPROOF Expected 1 494 20 60 275 240 92 943 15.69 3.8 1.2 43 7 15 0.1 0.13 0 STD OXEAS45CA Expected 1 494 20 60 275 240 92 943 15.69 3.8 1.2 43 7 15 0.1 0.13 0 STD DSP Expected 1 494 20 60 275 240 92 943 15.69 3.8 1.2 43 7 15 0.1 0.13 0 STD DSP Expected 12.84 108 126 317 1830 40.3 7.6 575 2.33 25.5 2.69 118 6.38 69.6 2.4 4.94 6 BLK Blank <0.005	STD OXG99	Standard		0.967																		
STD SP49 Standard STD CDN-ME-14A Expected 42 STD OXK94 Expected 3.562 STD OXG99 Expected 0.932 STD SP49 Expected 0.932 STD AGPROOF Expected 1 STD OXEAS4SCA Expected 1 494 20 60 275 240 92 943 15.69 3.8 1.2 43 7 15 0.1 0.13 0.01 STD OX59 Expected 1 494 20 60 275 240 92 943 15.69 3.8 1.2 43 7 15 0.1 0.13 0.01 0.13 0.01 0.13 0.01 0.13 0.01 0.13 0.01 0.13 0.01 0.14																						
STD CDN-ME-14A Expected 42 STD OXK94 Expected 3.562 STD OXG99 Expected 0.932 STD SP49 Expected				3.631																		
STD OXK94 Expected 3.562 STD OXG99 Expected 0.932 STD SP49 Expected																						
STD OXG99 Expected 0.932 STD SP49 Expected	-	ed			42																	
STD SP49 Expected STD AGPROOF Expected STD AGPROOF Expected 1 494 20 60 275 240 92 943 15.69 3.8 1.2 43 7 15 0.1 0.13 0 STD OREAS45CA Expected 12.84 108 126 317 1830 40.3 7.6 575 2.33 25.5 2.69 118 6.38 69.6 2.4 4.94 0 BLK Blank <0.005																						
STD AGPROOF Expected 1 494 20 60 275 240 92 943 15.69 3.8 1.2 43 7 15 0.1 0.13 0 STD OREAS45CA Expected 12.84 108 126 317 1830 40.3 7.6 575 2.33 25.5 2.69 118 6.38 69.6 2.4 4.94 6 BLK Blank <0.005				0.932																		
STD OREAS4SCA Expected 1 494 20 60 275 240 92 943 15.69 3.8 1.2 43 7 15 0.1 0.13 0 STD DS9 Expected 12.84 108 126 317 1830 40.3 7.6 575 2.33 25.5 2.69 118 6.38 69.6 2.4 4.94 6 BLK Blank <0.005 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>																						
STD DS9 Expected 12.84 108 126 317 1830 40.3 7.6 575 2.33 25.5 2.69 118 6.38 69.6 2.4 4.94 6 BLK Blank <0.005		4								070	240		0.40	45.00			40	-	45	0.4	0.40	0.40
BLK Blank <0.005 BLK Blank <0.005		a																				0.19
BLK Blank <0.005 BLK Blank <0.005		Blook		<0.005		12.84	108	126	317	1830	40.3	1.6	5/5	2.33	25.5	2.69	118	6.38	69.6	2.4	4.94	6.32
BLK Blank <0.005																						
BLK Blank <2				~0.005	~																	

Acn		٦ŀ										Clien	t:	5241 C	Explo Cobble Cr na BC V1	escent					
1020 Cordova S Phone (604) 25	St. East Vanco	uver BC	V6A 4			ical Lat	ooratorie	es (Var	icouver)	Ltd.		Projec Report		Ainswo Septen	orth nber 17, 2	2012					
						ww	w.acm	elab.co	m			Page:		1 of 2					Part	2 of	2
		DED		т								Fage.		1012		1/0		000			3
QUALITY CO	NIROL	REP	ŰΚ	l i												VA	N12	003	937.	1	
	Method	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F
	Analyte	v	Ca	Р	La	Cr	Mg	Ba	Ti	в	AI	Na	к	w	Sc	TI	s	Hg	Se	Те	Ga
	Unit	ppm	%	%	ppm	ppm	%	ppm	%	ppm	%	%	%	ppm	ppm	ppm	%	ppb	ppm	ppm	ppm
	MDL	2	0.01	0.001	0.5	0.5	0.01	0.5	0.001	20	0.01	0.001	0.01	0.1	0.1	0.02	0.02	5	0.1	0.02	0.1
Core Reject Duplicates																					
1986620	Rock	6	0.12	0.037	10.2	1.6	0.03	62.7	<0.001	<20	0.07	<0.001	0.05	0.1	0.9	0.18	0.10	554	4.6	<0.02	3.6
DUP 1986620	QC	<2	0.13	0.039	9.7	2.0	0.03	58.4	< 0.001	<20	0.07	0.001	0.05	0.1	0.8	0.17	0.10	667	5.9	<0.02	4.1
Reference Materials																					
STD AGPROOF	Standard																				
STD CDN-ME-9A	Standard																				
STD CDN-ME-14A	Standard																				
STD DS9	Standard	31	0.69	0.080	12.4	109.3	0.60	311.0	0.110	<20	0.93	0.081	0.39	2.8	2.5	5.18	0.16	219	4.7	4.42	4.4
STD DS9	Standard	38	0.69	0.080	12.4	107.0	0.60	308.1	0.107	<20	0.90	0.076	0.39	3.0	2.6	5.23	0.16	223	4.3	4.80	4.3
STD OREAS45CA	Standard	182	0.44	0.037	16.8	666.6	0.13	168.2	0.132	<20	3.25	0.014	0.07	<0.1	45.1	0.07	< 0.02	20	<0.1	0.04	20.2
STD OREAS45CA	Standard	221	0.43	0.039	15.9	618.8	0.13	170.5	0.132	<20	3.52	0.006	0.07	<0.1	44.3	0.05	0.02	32	<0.1	0.05	17.3
STD OXG99	Standard																				
STD OXG99	Standard																				
STD OXG99	Standard																				
STD OXK94	Standard																				
STD OXK94	Standard																				
STD SP49	Standard																				
STD CDN-ME-14A Expected	i																				
STD OXK94 Expected																					
STD OXG99 Expected																					
STD SP49 Expected																					
STD AGPROOF Expected																					
STD OREAS45CA Expected		215	0.4265	0.0385	15.9	709	0.1358	164	0.128		3.592	0.0075	0.0717		39.7	0.07	0.021	30	0.5	0.06	18.4
STD DS9 Expected		40	0.7201	0.0819	13.3	121	0.6165	330	0.1108		0.9577	0.0853	0.395	2.89	2.5	5.3	0.1615	200	5.2	5.02	4.59
BLK	Blank																				
BLK	Blank																				
BLK	Blank																				
BLK	Blank																				
BLK	Blank																				

AcmeLabs	Acme Analytical Laboratories (Vancouver) Ltd.
1020 Cordova St. East Vancouver BC V6A 4	A3 Canada

Page:

www.acmelab.com

DW Exploration 5241 Cobble Crescent Kelowna BC V1W 5C3 Canada

Project: Ainsworth Report Date: September 17, 2012

1 of 2

VAN12003937.1

Part: 3 of 3

QUALITY CONTROL REPORT

Phone (604) 253-3158 Fax (604) 253-1716

Method G6Gr Analyte Ag Unit gm/t MDL 50 Core Reject Duplicates 1986620 Rock DUP 1986620 QC Reference Materials STD AGPROOF Standard 97 STD CDN-ME-9A Standard STD CDN-ME-14A Standard STD DS9 Standard STD DS9 Standard STD OREAS45CA Standard STD OREAS45CA Standard STD OXG99 Standard STD OXG99 Standard STD OXG99 Standard STD OXK94 Standard STD OXK94 Standard STD SP49 Standard 57 STD CDN-ME-14A Expected STD OXK94 Expected STD OXG99 Expected STD SP49 Expected 60.2 STD AGPROOF Expected 9/ STD OREAS45CA Expected STD DS9 Expected BLK Blank BLK Blank BLK Blank BLK Blank BLK Blank

	ah	١C									Client	:	5241 C	Exploi obble Cro a BC V1	escent					
	ar	5	Acme	Analyti	ical Lab	oratorie	es (Vano	couver)	Ltd.		Project		Ainswo	rth						
1020 Cordova St. East. Vanco	uver BC	V64 44	3 Cana	she							Report	Date:		1ber 17, 2	0012					
Phone (604) 253-3158 Fax (6			o oune										Septen	1001 17,2	2012					
1 Holic (004) 200 0100 1 ux (0	04)200				14/14	wacme	elab.cor	-												
											Page:		2 of 2					Part:	: 1 of	3
QUALITY CONTROL REPORT															VA	N12	003	937.	1	
	WGHT	G6	7AR	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F
	Wgt	Au	Ag	Мо	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	U	Au	Th	Sr	Cd	Sb	Bi
	kg	ppm	gm/t	ppm	ppm	ppm	ppm	ppb	ppm	ppm	ppm	%	ppm	ppm	ppb	ppm	ppm	ppm	ppm	ppm
	0.01	0.005	2	0.01	0.01	0.01	0.1	2	0.1	0.1	1	0.01	0.1	0.1	0.2	0.1	0.5	0.01	0.02	0.02
BLK Blank		<0.005																		
BLK Blank		<0.005																		
BLK Blank																				
BLK Blank																				
BLK Blank				<0.01	0.03	<0.01	<0.1	3	<0.1	<0.1	<1	<0.01	0.2	<0.1	<0.2	<0.1	<0.5	<0.01	<0.02	< 0.02
BLK Blank				<0.01	<0.01	<0.01	<0.1	3	<0.1	<0.1	<1	<0.01	<0.1	<0.1	<0.2	<0.1	<0.5	<0.01	<0.02	<0.02
Prep Wash																				
G1 Prep Blank	<0.01	<0.005	<2	0.11	1.53	2.40	43.6	16	4.0	4.0	557	1.87	0.3	1.2	1.2	4.7	58.2	0.01	<0.02	<0.02
G1 Prep Blank	<0.01	<0.005	<2	0.10	1.55	2.59	46.5	9	3.9	4.4	559	1.86	0.3	1.2	<0.2	4.7	68.3	<0.01	<0.02	< 0.02

	cme L	ab)S	Acme	Analyti	cal Lab	oratorie	es (Var	lcouver) Ltd.		Client		5241 C	obble Cr a BC V1	ration rescent W 5C3 C					
	Cordova St. East. Vanco											Report			nun nber 17. :	2012					
	(604) 253-3158 Fax (6				auu									Septen		2012					
	((-	- ,				ww	w.acm	elab.co	m												
												Page:		2 of 2					Part:	2 of	3
QUALITY CONTROL REPORT															VA	N12(0039	937.	1		
		1F	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F
		v	Ca	Р	La	Cr	Mg	Ba	Ti	в	AI	Na	к	w	Sc	TI	s	Hg	Se	Те	Ga
		ppm	%	%	ppm	ppm	%	ppm	%	ppm	%	%	%	ppm	ppm	ppm	%	ppb	ppm	ppm	ppm
-		2	0.01	0.001	0.5	0.5	0.01	0.5	0.001	20	0.01	0.001	0.01	0.1	0.1	0.02	0.02	5	0.1	0.02	0.1
BLK	Blank																				
BLK	Blank																				
BLK	Blank																				
BLK	Blank																				
BLK	Blank	<2		< 0.001	<0.5	<0.5	<0.01			<20	<0.01	< 0.001	<0.01	<0.1	<0.1	< 0.02	<0.02	<5	<0.1	< 0.02	<0.1
BLK	Blank	<2	<0.01	<0.001	<0.5	<0.5	<0.01	<0.5	<0.001	<20	<0.01	<0.001	<0.01	<0.1	<0.1	<0.02	<0.02	<5	<0.1	<0.02	<0.1
Prep Wash	D. Dist			0.074			0.67	040.7	0.400			0.070					0.00	-			
G1	Prep Blank	30	0.41	0.071	9.9	6.8	0.57	212.7	0.123	<20	0.91	0.070	0.48	<0.1	2.3	0.28	<0.02	<5	<0.1	< 0.02	4.7
G1	Prep Blank	29	0.44	0.075	10.4	6.9	0.56	226.2	0.126	<20	0.93	0.082	0.48	<0.1	2.5	0.28	<0.02	<5	<0.1	0.04	5.2

AcmeLabs Acme Analytical Laboratories (Vancouver) Ltd.	Client:	DW Exploration 5241 Cobble Crescent Kelowna BC V1W 5C3 Canada	
Acme Analytical Laboratories (Vancouver) Ltd. 1020 Cordova St. East Vancouver BC V6A 4A3 Canada Phone (604) 253-3158 Fax (604) 253-1716	Project: Report Date:	Ainsworth September 17, 2012	
www.acmelab.com	Page:	2 of 2	Part: 3 of 3
	· - -		003937.1
GoGi Ag gm/t 50			

BLK

BLK

BLK

BLK

BLK

BLK

G1

Prep Wash G1 Blank

Blank

Blank

Blank

Blank

Blank

Prep Blank

Prep Blank

<50 <50

DW Exploration 5241 Cobble Crescent Kelowna BC V1W 5C3 Canada

Submitted By: Dave Wallach

www.acmelab.com

ADDITIONAL COMMENTS

Receiving Lab:	Canada-Vancouver
Received:	August 16, 2012
Report Date:	August 30, 2012
Page:	1 of 2

CERTIFICATE OF ANALYSIS

Ainsworth

16

SAMPLE PREPARATION AND ANALYTICAL PROCEDURES

Method Code	Number of Samples	Code Description	Test Wgt (g)	Report Status	Lab
R200-250	16	Crush, split and pulverize 250 g rock to 200 mesh			VAN
1F01	16	1:1:1 Aqua Regia digestion Ultratrace ICP-MS analysis	0.5	Completed	VAN
G603	16	lead collection fire-assay fusion -AAS finish +7AR Ag	30	Completed	VAN
G6Gr	1	Lead collection fire assay 30G fusion - Grav finish	30	Completed	VAN

SAMPLE DISPOSAL

Project:

Shipment ID:

P.O. Number

Number of Samples:

PICKUP-PLP Client to Pickup Pulps PICKUP-RJT Client to Pickup Rejects

CLIENT JOB INFORMATION

Acme does not accept responsibility for samples left at the laboratory after 90 days without prior written instructions for sample storage or return.

Invoice To:

DW Exploration 5241 Cobble Crescent Kelowna BC V1W 5C3 Canada

CC:

VAN12003832.1

This report supersedes all previous preliminary and final reports with this file number dated prior to the date on this certificate. Signature indicates final approval; preliminary reports are unsigned and should be used for reference only. All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of analysis only. Results apply to samples as submitted. "" asterisk indicates that an analytical result could not be provided due to unusually high levels of interference from other elements.

Project:

DW Exploration 5241 Cobble Crescent Kelowna BC V1W 5C3 Canada

Ainsworth

Report Date: August 30, 2012

1020 Cordova St. East Vancouver BC V6A 4A3 Canada Phone (604) 253-3158 Fax (604) 253-1716

www.acmelab.com

Page: 2 of 2

Part: 1 of 3

CERTIFICATE OF ANALYSIS

VAN12003832.1

	Method	WGHT	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F
	Analyte	Wgt	Mo	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	U	Au	Th	Sr	Cd	Sb	Bi	v	Ca
	Unit	kg	ppm	ppm	ppm	ppm	ppb	ppm	ppm	ppm	%	ppm	ppm	ppb	ppm	ppm	ppm	ppm	ppm	ppm	%
	MDL	0.01	0.01	0.01	0.01	0.1	2	0.1	0.1	1	0.01	0.1	0.1	0.2	0.1	0.5	0.01	0.02	0.02	2	0.01
G1	Prep Blank	<0.01	0.05	1.94	2.96	49.0	17	3.6	4.6	571	1.87	0.3	1.3	<0.2	4.9	52.3	0.02	<0.02	<0.02	34	0.70
G1	Prep Blank	<0.01	0.03	1.74	2.65	47.0	16	3.7	4.4	552	1.80	0.1	1.2	<0.2	4.4	46.1	0.01	<0.02	0.02	33	0.59
1986601	Rock	0.97	0.26	102.4	5.90	91.1	702	9.0	5.3	205	4.04	0.4	<0.1	1.7	<0.1	9.0	0.15	0.05	1.23	84	0.24
1986602	Rock	1.20	0.21	62.32	2.88	29.9	494	14.8	10.0	166	3.36	0.3	<0.1	0.7	<0.1	4.4	0.12	0.03	1.54	49	0.38
1986603A	Rock	1.50	<0.01	0.63	8.56	43.0	789	2.5	1.1	1407	0.10	<0.1	0.4	0.5	<0.1	833.9	0.34	0.31	<0.02	<2	35.70
1986604B	Rock	2.39	<0.01	0.49	9.54	39.4	372	<0.1	0.9	597	0.09	0.2	0.5	<0.2	<0.1	1839	0.87	0.21	<0.02	<2	33.63
1986605C	Rock	1.78	0.08	0.32	14.89	23.3	1078	<0.1	1.0	519	0.09	<0.1	1.1	<0.2	0.1	4877	0.22	0.16	<0.02	<2	30.78
1986606	Rock	0.80	1.82	76.38	7.76	26.2	742	23.8	42.9	228	5.77	34.1	2.8	5.0	13.2	45.8	0.30	0.60	0.50	36	0.34
1986607	Rock	1.61	0.17	57.04	74.69	>10000	5205	15.3	8.5 >	>10000	4.51	14.1	2.8	0.6	0.1	100.8	374.3	0.46	<0.02	<2	11.26
1986608	Rock	2.15	0.17	131.0	986.9	>10000	12139	10.9	10.1 >	>10000	12.19	100.9	2.4	47.8	0.2	149.6	443.6	1.99	0.03	<2	8.67
1986609	Rock	1.70	0.17	64.92	8157	3520	10559	1.0	0.9	6869	0.72	2.9	0.1	3.7	<0.1	314.7	18.82	7.94	0.41	<2	7.01
1986610	Rock	0.39	0.50	9.47	53.08	240.1	1099	29.2	13.1	6281	3.77	25.2	1.1	3.2	9.0	149.1	1.26	0.32	0.91	5	4.35
1986611	Rock	0.57	0.72	0.97	26.92	432.9	144	11.5	1.6 >	>10000	0.50	7.5	0.3	0.9	0.3	455.5	0.73	0.49	0.03	2	36.74
1986612	Rock	1.00	8.66	406.3	>10000	>10000	22529	29.8	24.6 >	>10000	15.65	156.8	6.4	176.8	0.1	181.2	557.6	12.91	0.73	<2	5.40
1986613	Rock	0.96	21.12	113.7	5822	>10000	13363	14.8	8.4 >	>10000	18.50	238.3	9.8	55.5	0.5	471.6	120.3	13.12	0.31	<2	11.24
1986614	Rock	2.27	1.05	2.23	35.75	405.0	381	7.8	1.8 >	>10000	0.88	10.7	1.0	3.6	0.3	606.7	1.93	2.45	0.08	4	35.22
1986615	Rock	0.78	1.18	2.38	1718	458.5	29824	<0.1	1.0 >	>10000	1.14	95.4	1.6	7.4	<0.1	1079	3.06	19.84	0.03	<2	35.20
1986616	Rock	0.90	2.65	72.47	9816	3495>	100000	0.3	2.2 >	>10000	3.76	2968	3.8	37.2	0.5	656.2	32.73	71.97	0.06	5	24.55

Project:

DW Exploration 5241 Cobble Crescent Kelowna BC V1W 5C3 Canada

Ainsworth

Report Date: August 30, 2012

2 of 2

1020 Cordova St. East Vancouver BC V6A 4A3 Canada Phone (604) 253-3158 Fax (604) 253-1716

www.acmelab.com

Page:

Part: 2 of 3

CERTIFICATE OF ANALYSIS

VAN12003832.1

	Method	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F	G6	7AR
	Analyte	Р	La	Cr	Mg	Ba	Ti	в	AI	Na	к	w	Sc	TI	s	Hg	Se	Те	Ga	Au	Ag
	Unit	%	ppm	ppm	%	ppm	%	ppm	%	%	%	ppm	ppm	ppm	%	ppb	ppm	ppm	ppm	ppm	gm/t
	MDL	0.001	0.5	0.5	0.01	0.5	0.001	20	0.01	0.001	0.01	0.1	0.1	0.02	0.02	5	0.1	0.02	0.1	0.005	2
G1	Prep Blank	0.078	9.1	8.4	0.73	245.8	0.130	<20	1.00	0.098	0.52	<0.1	2.1	0.34	< 0.02	<5	<0.1	< 0.02	5.2	<0.005	<2
G1	Prep Blank	0.073	7.8	8.5	0.66	220.1	0.124	<20	0.95	0.086	0.48	<0.1	2.1	0.31	<0.02	<5	<0.1	< 0.02	4.9	<0.005	<2
1986601	Rock	0.044	0.5	62.8	0.75	98.4	0.302	<20	0.99	0.036	0.10	<0.1	5.7	0.16	0.18	<5	0.9	0.04	4.2	<0.005	<2
1986602	Rock	0.054	<0.5	27.4	0.49	67.0	0.183	<20	0.68	0.056	0.06	<0.1	4.2	0.08	0.06	<5	1.2	0.07	2.6	<0.005	<2
1986603A	Rock	0.008	<0.5	1.4	0.69	12.8	0.001	<20	0.01	0.001	<0.01	0.6	0.3	0.03	<0.02	<5	0.1	< 0.02	0.2	<0.005	<2
1986604B	Rock	0.025	0.8	2.9	2.19	16.0	<0.001	<20	0.02	0.002	<0.01	0.7	0.4	0.02	<0.02	<5	0.1	<0.02	0.2	<0.005	<2
1986605C	Rock	0.029	0.6	3.0	3.31	19.9	<0.001	<20	0.02	0.004	<0.01	0.6	0.4	<0.02	< 0.02	<5	0.1	0.13	0.1	<0.005	<2
1986606	Rock	0.109	44.8	4.4	0.68	50.2	0.004	<20	1.63	0.056	0.16	<0.1	2.9	0.07	0.03	<5	8.2	0.05	8.5	0.009	<2
1986607	Rock	0.020	2.2	8.4	2.19	2.0	<0.001	<20	0.02	0.004	<0.01	0.1	0.5	0.06	2.30	103	2.5	<0.02	1.1	<0.005	5
1986608	Rock	0.043	7.3	2.5	1.90	5.0	<0.001	<20	0.02	0.003	<0.01	0.3	0.6	0.06	5.85	93	4.8	<0.02	1.4	0.040	12
1986609	Rock	<0.001	1.6	2.7	0.13	5.1	<0.001	<20	0.02	0.002	<0.01	<0.1	0.3	0.03	0.47	<5	4.6	0.05	0.3	<0.005	9
1986610	Rock	0.059	5.1	2.4	0.80	20.5	<0.001	<20	0.77	0.003	0.14	0.2	2.4	0.28	2.26	208	1.2	0.03	2.1	0.009	<2
1986611	Rock	0.009	2.6	8.1	0.12	4.9	<0.001	<20	0.02	<0.001	<0.01	0.1	1.1	0.08	<0.02	8	0.2	<0.02	0.4	<0.005	<2
1986612	Rock	0.036	8.6	2.3	0.05	66.3	<0.001	<20	0.06	0.003	0.01	0.2	0.8	0.74	0.30	98	7.4	0.03	1.9	0.234	21
1986613	Rock	0.035	6.6	8.2	0.10	64.7	<0.001	<20	0.05	0.003	0.02	0.5	1.2	0.71	1.02	144	6.3	<0.02	1.3	0.071	13
1986614	Rock	0.023	3.6	6.5	0.62	16.2	<0.001	<20	0.02	0.002	0.01	0.4	1.6	0.24	0.20	12	0.4	<0.02	0.5	<0.005	<2
1986615	Rock	0.008	4.3	1.9	0.15	27.4	<0.001	<20	0.02	0.001	<0.01	<0.1	0.8	0.04	< 0.02	31	0.2	0.03	0.8	0.008	28
1986616	Rock	0.023	4.4	6.3	0.18	121.0	<0.001	<20	0.06	0.002	0.02	0.2	2.0	0.07	0.06	93	0.4	0.02	0.8	0.026	>300

Acme Analytical Laboratories (Vancouver) Ltd.	Client: Project: Report Date:	DW Exploration 5241 Cobble Crescent Kelowna BC V1W 5C3 Canada Ainsworth		
Phone (604) 253-3158 Fax (604) 253-1716	Report Date.	August 30, 2012		
www.acmelab.com				
	Page:	2 of 2	Part:	3 of 3
CERTIFICATE OF ANALYSIS		VAN120	03832.1	

	Method	G6Gr
	Analyte	Ag
	Unit	gm/t
-	MDL	50
G1	Prep Blank	
G1	Prep Blank	
1986601	Rock	
1986602	Rock	
1986603A	Rock	
1986604B	Rock	
1986605C	Rock	
1986606	Rock	
1986607	Rock	
1986608	Rock	
1986609	Rock	
1986610	Rock	
1986611	Rock	
1986612	Rock	
1986613	Rock	
1986614	Rock	
1986615	Rock	
1986616	Rock	322

Acr	mol	ch)C									Client	:	5241 C	obble Cr	ration rescent W 5C3 (
1020 Cordova	A St. East Vanco 253-3158 Fax (6	uver BC	V6A 4/		-	ical Lab	oratori	es (Van	couver)	Ltd.		Project: Report		Ainswo August	orth t 30, 201:	2					
		·				ww	w.acm	elab.co	m												
												Page:		1 of 2					Part:	1 of	3
QUALITY CO		RED	OR.	г												\/Δ	N12	იივ	832.	1	
QUALITIO																٧A		005	052.	1	
	Method	WGHT	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F
	Analyte	Wgt	Mo	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	U	Au	Th	Sr	Cd	Sb	Bi	v	Ca
	Unit	kg	ppm	ppm	ppm	ppm	ppb	ppm	ppm	ppm	%	ppm	ppm	ppb	ppm	ppm	ppm	ppm	ppm	ppm	%
	MDL	0.01	0.01	0.01	0.01	0.1	2	0.1	0.1	1	0.01	0.1	0.1	0.2	0.1	0.5	0.01	0.02	0.02	2	0.01
Pulp Duplicates																					
1986601	Rock	0.97	0.26	102.4	5.90	91.1	702	9.0	5.3	205	4.04	0.4	<0.1	1.7	<0.1	9.0	0.15	0.05	1.23	84	0.24
REP 1986601	QC																				
1986607	Rock	1.61	0.17	57.04	74.69	>10000	5205	15.3	8.5 :	>10000	4.51	14.1	2.8	0.6	0.1	100.8	374.3	0.46	<0.02	<2	11.26
REP 1986607	QC																				
Reference Materials																					
STD AGPROOF	Standard																				
STD CDN-ME-14A	Standard																				
STD CDN-ME-9A	Standard																				
STD DS9	Standard		12.56	113.0	126.4	316.9	1966	42.7	7.9	590	2.27	24.7	3.1	106.5	6.7	65.1	2.33	4.63	5.92	39	0.70
STD OREAS45CA	Standard		0.83	515.4	20.04	56.6	269	249.0	93.7	945	15.09	3.6	1.2	40.5	7.1	14.5	0.09	0.11	0.16	216	0.43
STD OXG99	Standard																				
STD OXG99	Standard																				
STD OXG99	Standard																				
STD OXK94	Standard																				
STD OXK94	Standard																				
STD OXK94	Standard																				
STD SP49	Standard																				
STD CDN-ME-14A Expect	ed																				
STD DS9 Expected			12.84	108	126	317	1830	40.3	7.6	575	2.33	25.5	2.69	118	6.38	69.6	2.4	4.94	6.32	40	0.7201
STD OREAS45CA Expecte	ed		1	494	20	60	275	240	92	943	15.69	3.8	1.2	43	7	15	0.1	0.13	0.19	215	0.4265
STD OXK94 Expected																					
STD OXG99 Expected																					
STD SP49 Expected																					
STD AGPROOF Expected																					
BLK	Blank																				
BLK	Blank																				
BLK	Blank																				
BLK	Blank		< 0.01	<0.01	0.10	0.8	10	<0.1	<0.1	<1	<0.01	<0.1	<0.1	<0.2	<0.1	<0.5	<0.01	<0.02	< 0.02	<2	<0.0

Acn 1020 Cordova S Dears (604) 25	t. East Vanco	uver BC	V6A 4/			ical Lat	ooratorie	es (Van	couver) Ltd.		Client Project: Report		5241 (Kelowi Ainswe	Exploi Cobble Cra na BC V11 orth t 30, 2012	escent W 5C3 Ca	anada				
Phone (604) 253	-3130 Fax (0	04) 203-	1/16			ww	/w.acme	elab co	m												
												Page:		1 of 2					Part:	2 of 3	3
QUALITY CO	NTROI	RFP	OR ⁻	Г												VA	V12	0038	332	1	
			<u> </u>															0000		•	
	Method	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F	G6	7AR
	Analyte	P	La	Cr	Mg	Ba	Ti	В	AI	Na	K	W	Sc	TI	s	Hg	Se	Те	Ga	Au	Ag
	Unit	%	ppm	ppm	%	ppm	%	ppm	%	%	%	ppm	ppm	ppm	%	ppb	ppm	ppm	ppm	ppm	gm/t
Dula Dualizatas	MDL	0.001	0.5	0.5	0.01	0.5	0.001	20	0.01	0.001	0.01	0.1	0.1	0.02	0.02	5	0.1	0.02	0.1	0.005	
Pulp Duplicates 1986601	Rock	0.044	0.5	62.8	0.75	98.4	0.302	<20	0.99	0.036	0.10	<0.1	5.7	0.16	0.18	<5	0.9	0.04	4.2	<0.005	<2
REP 1986601	QC	0.044	0.5	02.0	0.75	90.4	0.302	<20	0.99	0.036	0.10	<0.1	5.7	0.10	U.10	<0	0.9	0.04	4.2	0.005	<2
1986607	Rock	0.020	2.2	8.4	2.19	2.0	< 0.001	<20	0.02	0.004	<0.01	0.1	0.5	0.06	2.30	103	2.5	< 0.02	1.1	<0.005	5
REP 1986607	QC	0.020	2.2	0.4	2.10	2.0	~0.001	~20	0.02	0.004	-0.01	0.1	0.0	0.00	2.00	105	2.0	~0.02		-0.000	6
Reference Materials	40																				—
STD AGPROOF	Standard																				
STD CDN-ME-14A	Standard																				45
STD CDN-ME-9A	Standard																				3
STD DS9	Standard	0.080	12.3	114.2	0.62	312.3	0.108	<20	0.94	0.075	0.39	2.8	2.4	5.68	0.17	207	5.4	5.37	4.7		
STD OREAS45CA	Standard	0.039	16.2	683.9	0.13	164.9	0.130	<20	3.50	0.008	0.07	<0.1	42.6	0.11	<0.02	26	0.3	0.06	19.0		
STD OXG99	Standard																			0.937	
STD OXG99	Standard																			0.942	
STD OXG99	Standard																			0.930	
STD OXK94	Standard																			3.493	
STD OXK94	Standard																			3.440	
STD OXK94	Standard																			3.447	
STD SP49	Standard																				
STD CDN-ME-14A Expected																					42
STD DS9 Expected		0.0819	13.3	121	0.6165	330	0.1108		0.9577	0.0853	0.395	2.89	2.5	5.3	0.1615	200	5.2	5.02	4.59		
STD OREAS45CA Expected		0.0385	15.9	709	0.1358	164	0.128		3.592	0.0075	0.0717		39.7	0.07	0.021	30	0.5	0.06	18.4		
STD OXK94 Expected																				3.562	
STD OXG99 Expected																				0.932	
STD SP49 Expected																					
STD AGPROOF Expected																					
BLK	Blank																				<2
BLK	Blank																			0.009	
BLK	Blank	-0.004	-0.5	-0.5	-0.01	.0.5	-0.004	-00	.0.01	-0.001	-0.04	-0.4	-0.4	-0.00	-0.02			-0.02		0.011	
BLK	Blank	<0.001	<0.5	<0.5	<0.01	<0.5	<0.001	<20	<0.01	<0.001	<0.01	<0.1	<0.1	<0.02	<0.02	<5	<0.1	<0.02	<0.1		

	Client:	DW Exploration 5241 Cobble Crescent Kelowna BC V1W 5C3 Canada	
Acme Analytical Laboratories (Vancouver) Ltd. 1020 Cordova St. East Vancouver BC V6A 4A3 Canada Phone (604) 253-3158 Fax (604) 253-1716	Project: Report Date:	Ainsworth August 30, 2012	
www.acmelab.com			
	Page:	1 of 2	Part: 3 of 3
QUALITY CONTROL REPORT		VAN12003	832.1
Method G6Gr			

	Analyte Unit	Aç gm/
	MDL	50
Pulp Duplicates		
1986601	Rock	
REP 1986601	QC	
1986607	Rock	
REP 1986607	QC	
Reference Materials		
STD AGPROOF	Standard	92
STD CDN-ME-14A	Standard	
STD CDN-ME-9A	Standard	
STD DS9	Standard	
STD OREAS45CA	Standard	
STD OXG99	Standard	
STD OXG99	Standard	
STD OXG99	Standard	
STD OXK94	Standard	
STD OXK94	Standard	
STD OXK94	Standard	
STD SP49	Standard	5
STD CDN-ME-14A Expected		
STD DS9 Expected		
STD OREAS45CA Expected		
STD OXK94 Expected		
STD OXG99 Expected		
STD SP49 Expected		60.
STD AGPROOF Expected		9
BLK	Blank	

	ah	20									Client	:	5241 C	Exploi Cobble Cr na BC V1	escent					
	un.	5	Acme	Analyti	cal Lab	oratorie	es (Vano	couver)	Ltd.		Project:		Ainswo	orth						
	1020 Cordova St. East Vancouver BC V6A 4A3 Canada Phone (604) 253-3158 Fax (604) 253-1716									Report [Date:	August 30, 2012								
					ww	w.acme	elab.co	m			Page:		2 of 2					Part:	1 of	3
QUALITY CONTROL	REP	ORT													VA	N12	0038	332.1	1	
	WGHT	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F
	Wgt	Мо	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	U	Au	Th	Sr	Cd	Sb	Bi	V	Ca
	kg	ppm	ppm	ppm	ppm	ppb	ppm	ppm	ppm	%	ppm	ppm	ppb	ppm	ppm	ppm	ppm	ppm	ppm	%
	0.01	0.01	0.01	0.01	0.1	2	0.1	0.1	1	0.01	0.1	0.1	0.2	0.1	0.5	0.01	0.02	0.02	2	0.01
BLK Blank																				
BLK Blank																				
BLK Blank																				
BLK Blank																				
BLK Blank																				
Prep Wash																				
G1 Prep Blank	<0.01	0.05	1.94	2.96	49.0	17	3.6	4.6	571	1.87	0.3	1.3	<0.2	4.9	52.3	0.02	<0.02	<0.02	34	0.70
G1 Prep Blank			1.74	2.65	47.0		3.7	44	552	1.80		1.2	<0.2			0.01			33	0.59

	cme L					cal Lab	Client: DW Exploration 5241 Cobble Crescent Kelowna BC V1W 5C3 Canada														
	1020 Cordova St. East Vancouver BC V6A 4A3 Canada							Кероп і	Jate:	August 30, 2012											
Phone ((604) 253-3158 Fax (6	04) 253-1	1/16					elab.com													
						ww	w.acme	elab.cor	n			Page:		2 of 2					Part	: 2 of	3
																					-
NUALITY	CONTROL	RFP	ORT													VA	N12	0038	332.	1	
	CONTROL		• • • •																		
		1 K.E.I	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F	G6	74
SCALITI					1F Mg	1F Ba	1F Ti	1F B	1F Al	1F Na	1F K	1F W	1F Sc	1F TI	1F S	1F Hg	1F Se	1F Te	1F Ga	G6 Au	
SCORETT I		1F	1F	1F																	7AF Ag gm/
		1F P	1F La	1F Cr	Mg	Ba	Ti	в	AI	Na	к	w	Sc	ті	s	Hg	Se	Те	Ga	Au	A
BLK	Blank	1F P %	1F La ppm	1F Cr ppm	Mg %	Ba ppm	Ti %	B	AI %	Na %	K %	W	Sc ppm	TI	s %	Hg ppb	Se ppm	Te ppm	Ga ppm	Au ppm	A
		1F P %	1F La ppm	1F Cr ppm	Mg %	Ba ppm	Ti %	B	AI %	Na %	K %	W	Sc ppm	TI	s %	Hg ppb	Se ppm	Te ppm	Ga ppm	Au ppm 0.005	A
BLK	Blank	1F P %	1F La ppm	1F Cr ppm	Mg %	Ba ppm	Ti %	B	AI %	Na %	K %	W	Sc ppm	TI	s %	Hg ppb	Se ppm	Te ppm	Ga ppm	Au ppm 0.005 <0.005	A
BLK BLK	Blank Blank	1F P %	1F La ppm	1F Cr ppm	Mg %	Ba ppm	Ti %	B	AI %	Na %	K %	W	Sc ppm	TI	s %	Hg ppb	Se ppm	Te ppm	Ga ppm	Au ppm 0.005 <0.005 <0.005	A
BLK BLK BLK	Blank Blank Blank Blank	1F P %	1F La ppm	1F Cr ppm	Mg %	Ba ppm	Ti %	B	AI %	Na %	K %	W	Sc ppm	TI	s %	Hg ppb	Se ppm	Te ppm	Ga ppm	Au ppm 0.005 <0.005 <0.005	A
BLK BLK BLK BLK	Blank Blank Blank Blank Blank	1F P %	1F La ppm	1F Cr ppm	Mg %	Ba ppm	Ti %	B	AI %	Na %	K %	W	Sc ppm	TI	s %	Hg ppb	Se ppm	Te ppm	Ga ppm	Au ppm 0.005 <0.005 <0.005	Α
BLK BLK BLK BLK BLK	Blank Blank Blank Blank Blank	1F P %	1F La ppm	1F Cr ppm	Mg %	Ba ppm	Ti %	B	AI %	Na %	K %	W	Sc ppm	TI	s %	Hg ppb	Se ppm	Te ppm	Ga ppm 0.1	Au ppm 0.005 <0.005 <0.005	Α

AcmeLabs Acme Analytical Laboratories (Vancouver) Ltd.	Client:	DW Exploration 5241 Cobble Crescent Kelowna BC V1W 5C3 Canada		
Acme Analytical Laboratories (Vancouver) Ltd. 1020 Cordova St. East Vancouver BC V6A 4A3 Canada Phone (604) 253-3158 Fax (604) 253-1716	Project: Report Date:	Ainsworth August 30, 2012		
www.acmelab.com	Page:	2 of 2	Part:	3 of 3
QUALITY CONTROL REPORT		VAN12003	832.1	
G6Gr Ag gm/t 50 BLK Blank				

BLK

BLK

BLK

BLK

G1

Prep Wash G1 Blank

Blank

Blank

Blank

Prep Blank

Prep Blank

<50

20 CONCLUSION

GRAND TOTAL:

The 2012 exploration program was a modest program due to funds available along with a late spring thaw. A program will be set up for the summer of 2013 to complete a magnetic grid on the south end of the property.

21 STATEMENT OF COST

Exploration Work type	Comment	Days		
Personnel (Name)* / Position	Field Days (list actual days)	Days	Rate	Subtotal*
David A. Wallach		7	\$600.00	\$4,200.00
Mark Peabody		7	\$180.00	\$1,200.00
Report preparation		1.0	\$220.00	\$220.00
Transportation		No.	Rate	Subtotal
Truck rental	1 F350 Crew Cab truck	7.00	\$50.00	\$350.00
Fuel (litres/hour)	247.71 Leters of fuel used	258.71	\$1.32	\$341.50
side x side		7.00	\$66.00	\$462.00
Accommodation & Food	Rates per day	No.	Rate	Subtotal
Base Camp	31 foot trailer	7.00	\$100.00	\$700.00
Camp			\$0.00	\$0.00
Meals	day rate or actual costs-specify	7.00	\$106.00	\$742.00
Equipment Rentals				
Field Gear (Specify)	Chain saw, GPS x2, Hip Chain, ect	7.00	\$61.00	\$427.00
Geochemical Surveying	Number of Samples	No.	Rate	Subtotal
Rock	laboratory costs	33.0	\$34.93	\$1,907.95
Freight, rock samples		1.0	\$48.00	\$48.00

\$10,598.45

22 REFERENCES

Buss, L. (2008). Geological Exploration Summary Report on the Kootney Arc Land Holdings, SE Portion of British Columbia, Canada For Liberty International Minerals Corp. Website Publication for Liberty Minerals: www.libmin.com/pdfs/Regional_Exploration_Report_Dec1508.pdf

MINFILE 082FNE034

Putt, D.J. (1977). Report on the Bounty Claim, Ainsworth, BC. BC Ministry of Energy and Mines Assessment Report # 6481.

23 QUALIFICATIONS

David A. Wallach is a 4th generation miner and prospector with 24 years experience from the ground up in open pit & underground drill/blasting, heavy equipment operator, timber man, prospector, geo technical field work, project management, tenure management, general manager, and President/director of a few small private exploration companies.

Experience:

- Informing the shareholders of decisions made to move forward, writing annual newsletters.
- Communications with investors and board members.
- Oversee operations including promotions and investor relations.
- Prospecting (recognisance), Grid lay out and sampling.
- Oversee all Tenure management and Mineral Claim Registration (acquisition); write Tenure management reports and recommendations.
- Tenure management reports and recommendations, (3700 Tenures in total, 3.7 million acres).
- Communications with CEO, President, Vice President, Geologists, Contractors, and Directors.
- Oversee all employees and or contractors (Canadian projects) with safety procedures, Employee ethics and morale.
- Write Mine Emergency Response Plans (MERP) for each project, (8 projects in total)
- Budget preparation and allowance.
- Coordinate all contractors and employees, according to project requirements, wail working within due dates required by projects in order to stay within the aloud budget.
- Write technical & physical reports (SOW) and submit to the Ministry of Mines and Petroleum.
- Oversee all Supplies, equipment and tools need for field work, IE, Gridding & sampling, Line cutting, Prep for IP or Titan 24, Trenching, Road building, and Diamond drilling.
- Oversee soil/rock sample preparation for shipping to assay lab.
- Coordinate and oversee all communications and supplies for base camp and workshops.
- Stocking and taking inventory of supplies.
- Due diligents for property acquisition and or purchase.
- Apply for permits for various projects.
- Attend and man booth for trade shows.
- NWT Blasting ticket.
- Driller/ Blaster (Long hole, Drift, Raze).
- Timberman.
- Driller Helper (Underground, Open Pit /Tank drill).
- Diamond driller Helper (Underground & Surface).
- Heavy Equipment Operator (Rock Truck, Scoop, Tank Drill).