

ASSESSMENT REPORT TITLE PAGE AND SUMMARY

TITLE OF REPORT: Geochemical Sampling And Data Compilation Report Crest Project

TOTAL COST: \$5,774.68

AUTHOR(S): Bernie kreft SIGNATURE(S):

NOTICE OF WORK PERMIT NUMBER(S)/DATE(S): no surface disturbances STATEMENT OF WORK EVENT NUMBER(S)/DATE(S):

YEAR OF WORK: 2012 PROPERTY NAME: Crest CLAIM NAME(S) (on which work was done): Crest (652723)

COMMODITIES SOUGHT: Gold

MINERAL INVENTORY MINFILE NUMBER(S), IF KNOWN:

 MINING DIVISION: Nicola

 NTS / BCGS: 92h16/092H090

 LATITUDE: _____49___°___50___'____"

 LONGITUDE: _____120___°___03_____" (at centre of work)

 UTM Zone: 10
 EASTING: 711800
 NORTHING: 5525500

OWNER(S): Bernard kreft

MAILING ADDRESS: 1 Locust Place, Whitehorse YT, Y1A5G9

OPERATOR(S) [who paid for the work]: as above

MAILING ADDRESS: as above

REPORT KEYWORDS (lithology, age, stratigraphy, structure, alteration, mineralization, size and attitude. **Do not use abbreviations or codes**) Nicola Group Volcanics, Silicification, gold, bismuthinite, arsenopyrite, quartz veins, Brenda Mine Area, east-west trending

REFERENCES TO PREVIOUS ASSESSMENT WORK AND ASSESSMENT REPORT NUMBERS: 19899, 21058, 23923, 24468, 25043

TYPE OF WORK IN THIS REPORT	EXTENT OF WORK (in metric units)	ON WHICH CLAIMS	PROJECT COSTS APPORTIONED (incl. support)
GEOLOGICAL (scale, area)			
Ground, mapping			
Photo interpretation			
GEOPHYSICAL (line-kilometres)			
Ground			
Magnetic			
Electromagnetic			
Induced Polarization			
Radiometric			
Seismic			
Other			
Airborne			
GEOCHEMICAL (number of sample	es analysed for)		
62 Soil	Au-AA23 Me-ICP41	652723 Crest	\$5,774.68
Silt		000700	
13 Rock	Au-AA23 Me-ICP41	652723 Crest	Incl above
Other			
DRILLING (total metres, number of	holes, size, storage location)		
Core			
Non-core			
RELATED TECHNICAL			
Sampling / Assaying			
Petrographic			
Mineralographic			
Metallurgic			
PROSPECTING (scale/area)			
PREPATORY / PHYSICAL			
Line/grid (km)			
Topo/Photogrammetric (sca	le, area)		
Legal Surveys (scale, area)			
Road, local access (km)/trai			
Trench (number/metres)			
Underground development ((metres)		
Other			
		TOTAL COST	\$5,774.68

BC Geological Survey Assessment Report 33492

Assessment Report

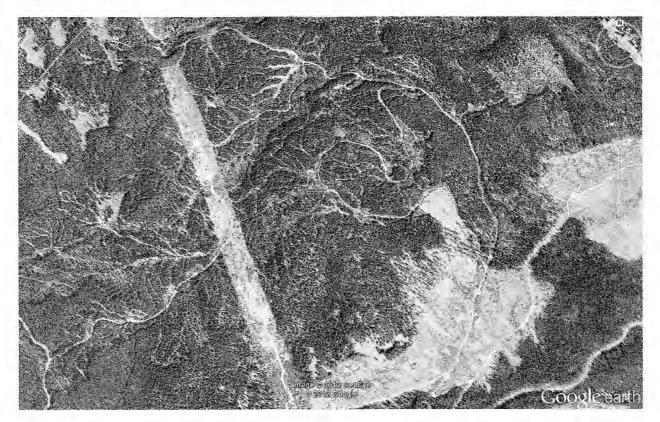
2012 Geochemical Sampling And Data Compilation Report On The Crest Project Tenure Worked On: 652723

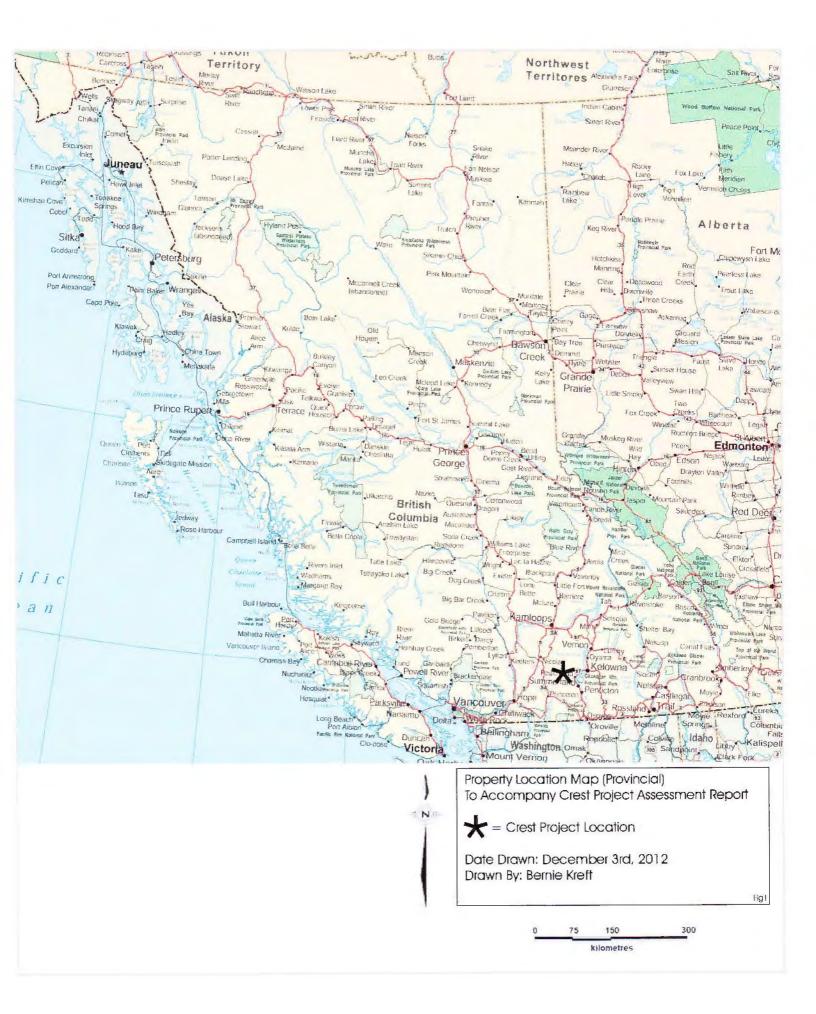
Located In The Trepanege Plateau Area Southern British Columbia Nicola Mining Division NTS: 092II16 BCGS: 092H090 Latitude 49° 50' North and Longitude 120° 03' West

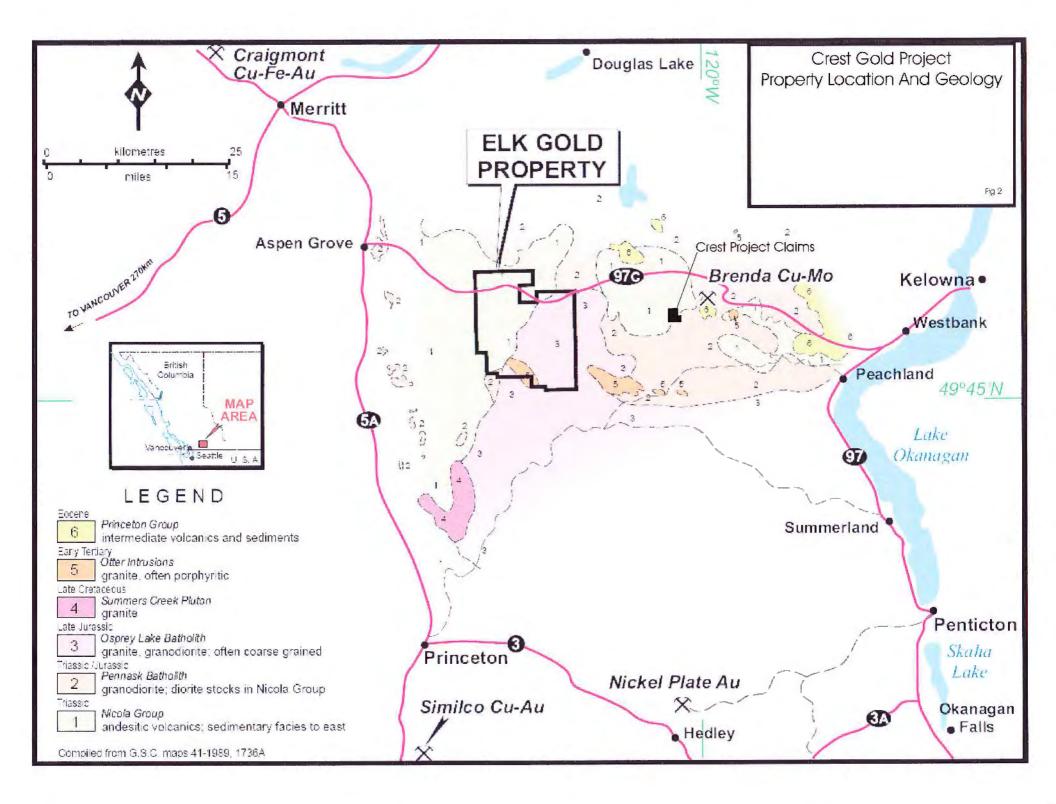
> By Bernie Kreft (owner, operator, author)

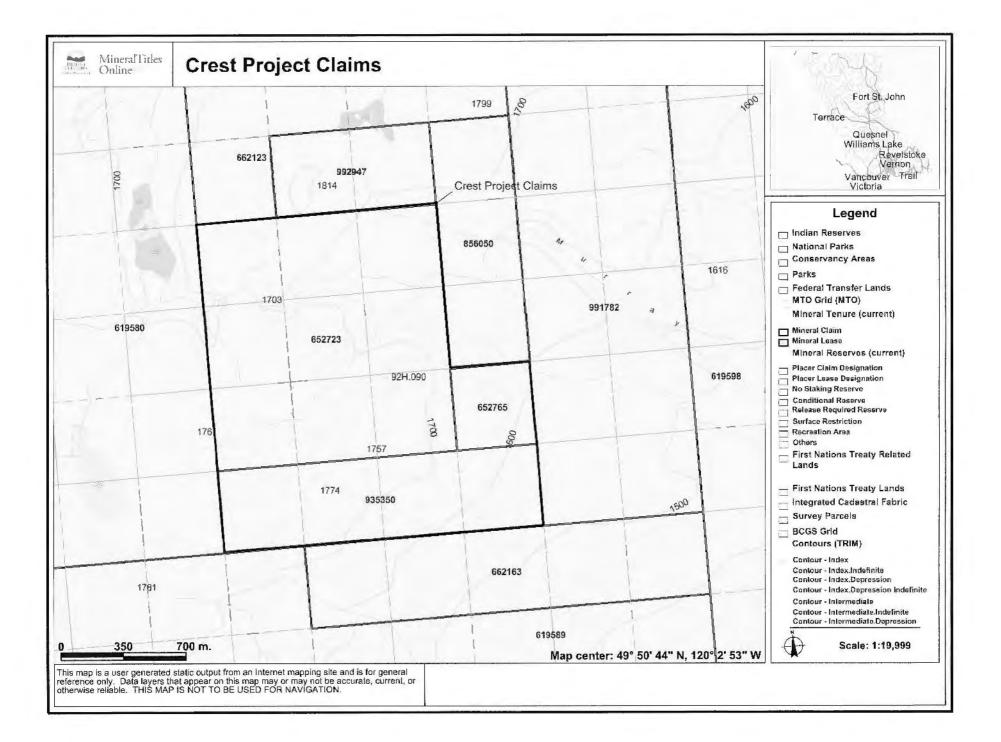
November 28th, 2012

Table Of Contents


Summary	1
Location And Access	2
Topography And Vegetation	2
Provincial Map Fig 1	3
Regional Map Plus Geology Fig 2	
Claim Map	
Property Title	
Property Exploration History	
Regional Geology	
Property Geology	
Current Work And Results	
Geochemical Exploration Methods	9
Sample Location Map Fig 3	
Conclusions	
Recommendations	11
Qualifications	
Statement Of Costs	
Geochemical Sample Table	
Assay Sheets At Ba	
*	


Summary – The Crest Project ("the Project") is located in southern British Columbia, approximately 40 kilometres west-southwest of Kelowna, approximately 4.5 kilometres southwest of the Brenda Mines open pit and 18 kilometres east of the Fairfield/Almadden Siwash/Ełk high-grade gold minc. A compilation of historical exploration data pertaining to the Project area shows numerous rock samples with values to 8.534 oz/T gold along with scattered gold in soil anomalies concentrated within the east-central portion of the current property. Trenching of several of the gold in soil anomalies encountered values of up to 8840 ppb Au over 1.0 meter and 0.145 oz/T over 4.0 meters. The 2012 soil geochemical sampling and prospecting program, conducted as an effort to verify and further define these historical results, resulted in the collection of 13 rock samples and 62 soil samples. Rock samples returned up to 4.15 ppm Au (along with weakly anomalous bismuth, silver and tungsten) from a grab sample of silicified volcanics cut by limonitic quartz veinlets, while soil sampling returned values of up to 1.125 ppm gold. Results are encouraging, and considering that many of the historical rock and soil samples with the highest gold grades remain to be sourced, a first phase program consisting of detailed prospecting and chip/channel sampling in conjunction with a soil orientation survey is recommended.


Location And Access – The Project is located in the Trepanege Plateau area of southern British Columbia near the headwaters of Murray Tree Creek, 3.5 kilometres northwest of Headwater Lakes and approximately 4.0 kilometres southwest of the open pit of the past producing Brenda Cu-Mo mine. The nearest community is Peachland located approximately 23 kilometres to the southeast. The 2012 work area is located in the northeast corner of the 1:250,000 Hope Mapsheet, on BCGS mapsheet 092-H-90 centred at approximate coordinates of latitude 49° 50' north and longitude 120° 03' west.


The Project is located 7.0 kilometres south of the Coquihalla Connector (Highway 97c). A well developed series of gravel logging roads provides ready access to all portions of the area. Several access routes are possible; the preferred method of access is to follow the Headwater Lakes FSR > Peachland FSR > Energizer FSR departing from the community of Peachland Creek, alternate access can be gained from highway 97c via the Sunshine Main logging road. A BC Hydro powerline cuts diagonally through the middle of the property.

Topography And Vegetation – Elevations range from 1790m near the peak of the hill at the north edge of the Project, to 1520 metres on the south edge of the Project. Slopes are generally moderate with some local, steeper sections. The Project is blanketed by glacial till, varying in depth from 1.0 to as much as 10 metres or more, the presence of which restricts bedrock exposures to local windows and patches. Glacial movement was generally from the north to south or southeast with minor local variations due to topography. The area is densely forested with pine, spruce, balsam, and fir, with a slight thiming of vegetation at higher elevations and in steeper areas. Variably aged clear-cut logging plots, many of which are covered with dense second growth, are scattered throughout the area. Annual temperatures range from -25° c to 30° C, precipitation is moderate, and the area is generally snow-free from June through mid October. See below for a Google Earth snapshot of the area.

Property Title – The Project consists of 3 mineral claims; tenure numbers 652723, 652765 and 935350, totalling 291.66 hectares staked using the BC Government's Mineral Titles Online (MTO) staking system. Bernard Kreft owns a 100% interest in and to these claims with no underlying royalties, option agreements or other encumbrances.

Claim Number	Claim Name	Lapse Date	Hectares	Owner FMC
652723	Crest	2015/Dec/27	187.49	114661
652765	Crest South	2014/Dec/27	20.83	114661
935350	Crest South	2014/Dec/27	83.34	114661

Property Exploration History – Mineral exploration and development in the vicinity of the Project has been dominated by the exploration and development of porphyry copper-molybdenum deposits and vein or shear hosted gold targets best exemplified by Brenda Mines and Siwash/Elk respectively.

At Brenda Mines, a copper-molybdenum porphyry deposit saw production totalling 177 million tonnes grading 0.169 % Cu and 0.043 % Mo, between 1970 and 1990. The deposit is hosted by quartz diorite of the Brenda Stock, which is part of the much larger Pennask Batholith. It has been described as a belt of Cu-Mo mineralization extending north-easterly from the Nicola volcanic-Brenda stock contact and reaching depths of more than 300 metres below surface. Chalcopyrite and molybdenite are the principal sulphide minerals and are found almost entirely in fine, fracture-filling veinlets accompanied by minor pyrite. The Brenda deposit, unlike most porphyry copper systems, exhibits only weak hydrothermal alteration and low sulphide mineral content, comprising 1.0 to 1.5% metallic mineralization (MinFile Report 92HNE047).

At Siwash/Elk, (located 18 km to the west) open pit and underground mining from 1992 to 1995 produced 51,750 ounces of gold from 18,400 tons of ore averaging about 2.8 oz/ton gold (Almaden Minerals Ltd website). The property is underlain by Upper Triassic volcanics and sediments of the Nicola Group and by Middle Jurassic granite and granodiorite of the Osprey Lake Batholith. Gold-silver mineralization is hosted primarily by pyritic quartz veins and stringers 5-70 centimetres thick cutting scricitic to phyllic altered granite and in some cases volcanic rocks. Gold occurs primarily in its native form and is commonly found in association with pyrite along with anomalous amounts of bismuth and copper. Mineralized features generally strike ENE and dip moderately or steeply to the south. Mineralization is thought to be related to Tertiary tectonic and intrusive events as inferred from cross-cutting relationship, assuming the veins are indeed Tertiary in age, late stage Otter intrusive (early tertiary) activity may have acted as the heat source to drive the mineralizing fluids (AR# 29009).

Other than Fairfield's regional gold exploration activities (unpublished reports) which started in 1986, the only documented previous mineral exploration in the area of the Crest Project occurred in the late 1960's and revolved around the search for copper-molybdenum mineralization similar to Brenda Mines. A chronological summary of publicly available exploration data subsequent to the staking of the project by Fairfield Minerals in 1990 is as follows:

Fairfield Metals – Crest Claims – AR#19899 – 1989 – This report provides a rough description of regional activities by Fairfield during the period 1986-89. Work consisted of regional scale soil sampling and prospecting highlighted by the identification of 8 rock samples with greater than 1g/t gold to a high of 8650 ppb gold, 7 of which were sourced from the current Project area. Based on these highly anomalous rock sample results and previously defined (but not reported on) soil anomalies, further work consisting of mapping, prospecting, VLF geophysical surveying, and trenching was recommended.

Fairfield Metals – Crest Claims – AR#21058 – 1990 – A large-scale property wide program yielded over 5500 soil samples the analyses of which returned numerous gold in soil anomalies to 680 ppb Au, many of which were located within the current Project area. Prospecting and rock sampling was also undertaken, with rock sample values of up to 8.534 oz/T Au and 35.7 oz/T Ag from pieces of hematitic and drusy quartz vein float with traces of pyrite and galena (possibly bismuthinite?). Further work including overburden drilling and associated deep soil sampling to be followed by trenching was recommended.

Fairfield Metals – Pen Claims – AR#23923 – 1994 – Further prospecting and rock sampling was conducted throughout the Project area and helped better define several gold in soil anomalies. Two of these anomalous areas were trenched, resulting in the identification of numerous areas of bedrock gold mineralization grading up to 0.145 oz/T over 4.0 meters and 0.258 oz/T over 1.0 meter. The best gold values are associated with variably anomalous tungsten, bismuth, arsenic and molybdenum and were found within east-west trending veins and shears cutting silicified and skarnified volcanic rocks. A total of 594 metres of trench were cut, yielding 230 total samples. Bedrock was found to be covered by as much as 1.5 metres of till.

Fairfield Metals – Crest Claims – AR#24468 - 1995 – Soil sampling was conducted in an effort to better define existing anomalies, while further trenching totalling 111 meters in 2 trenches was completed. Sporadic mineralization grading up to 0.056 oz/T was returned from a 0.5 x 0.5 meter trench panel sample and the source(s) for the highest grade soil and rock float samples remained to be defined. Further trenching was recommended to follow up the yet to be sourced anomalous samples.

Fairfield Metals – Crest Claims – AR#25043 – 1996 – Further trenching totalling 243 linear metres and yielding 100 total samples was conducted just north of the existing Project boundary. Best results were 1687 ppb Au over a 3.0 meter section of veins and shears within silicified and skarnified volcanics. The overall results from the Project were thought to be encouraging, with bedrock sources for some of the strongest gold soil anomalies and best-grade float occurrences remaining to be determined, and continuity of mineralization remaining to be established.

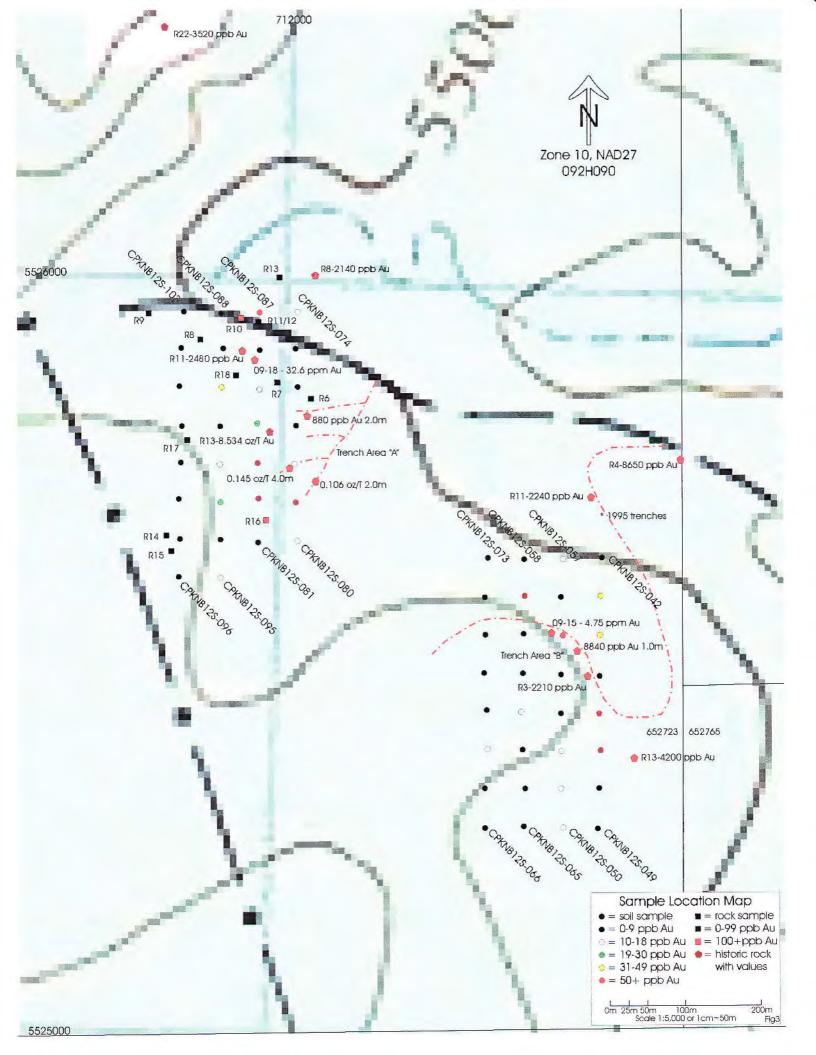
Kreft – Current Claims – Private Data – 2009 – A one day prospecting and mapping reconnaissance was undertaken to assess the potential of the property, yielding a total of 23 rock samples from the various trench areas and along the main access road. Results verified the presence of anomalous gold values within all trenched areas and appeared to suggest bulk tonnage potential based on the presence of anomalous gold values from samples of altered rock with no veining or from samples of only weakly altered rock with hairline fractures lined with quartz and limonite. Potential for new discoveries was proven by the discovery of a 4 centimetre wide east-west striking podiform quartz vein mineralized with trace pyrite and bismuthinite and hosted by silicified volcanics, a 10 centimetre wide chip sample of which returned 32.6 ppm gold.

This synopsis of historical exploration data suggests that the gold mineralization located within the Crest Project claims is concentrated within a series of shears and structurally controlled quartz veins similar to Elk/Siwash, possibly existing as part of a more widespread intrusive related system characterized by silicification, skarn alteration, quartz veining, visible gold, anomalous tungsten, bismuth, arsenic and molybdenum but otherwise limited amounts of sulphides. It may also be that the Elk/Siwash style Au-Bi-As veins and shears are best developed within the brittle hornfels aureole of the local intrusive bodies, with the molybdenum and tungsten existing as a by-product of the hornfelsing as opposed to being a part of the gold mineralizing event.

Regional Geology – Regional geology in the area of the Crest Project is shown on the northcast part of GSC Map 41-1989, Hope, by J.W.H. Monger, 1989 and the northwest part of GSC Map 1736A, Penticton, by D.J. Templeman-Kluit, 1989 which are condensed on Figure 2. The area is underlain predominantly by a large pendant consisting of volcanic and sedimentary rocks of the Upper Triassic Nicola Group in contact to the east with granodiorite of the Late Triassic to Early Jurassic Pennask Batholith. Nicola Group lithologies consist of felsic to mafic flows and tuffs interspersed with argillite, siltstone and limestone units. The batholith is comprised of white to grey, medium to fine grained granodiorite. Widespread silicification and bleaching of argillite and volcanic rocks is present near intrusive contacts. Quartz veining is locally abundant, and is generally concentrated near the edges of the batholith and within the adjacent silicified volcanics and to a lesser extent the sediments. Early Tertiary feldspar porphyry stocks and dykes of the Otter Intrusions occur throughout the area. Porphyry style copper-molybdenum mineralization has been mined from Pennask Batholith intrusive rocks at the Brenda deposit near the east contact of the Nicola pendant, immediately east of the Project claim, while high grade gold veins, best developed within an intrusive and adjacent silicified volcanics, have been exploited on the Elk/Siwash property located approximately 18 kilometres to the west.

Property Geology – The property is predominantly underlain by Nicola group volcanics and lesser sediments which are variably silicified, with occasionally abundant disseminated pyrite and pyrrhotite and local calc-silicate or skarn development. Within the Project locally abundant quartz veins and stringers have been found cutting siliceous volcanics and argillite. The quartz is glassy grey to opaque white or dark rosy with generally sparse disseminated pyrite and minor fine black grains, possibly specular hematite. Veins located to date appear to be irregular and discontinuous, with variable attitudes, and widths generally less than 10 centimeters. Some of the larger veins are pegmatitic and contain coarse intergrown micas and feldspar. Grab and chip samples from individual veins and from altered rock with stringers has returned numerous gold analyses of greater than 1000 ppb gold, up to 32.6 ppm gold. Also, a sample of hematitic quartz chips in overburden yielded assays of 8.534 oz/ton Au, 35.72 oz/ton Ag (C90-R13/1990). The style and distribution of mineral showings found to date suggests the presence of a substantial mineralized system, with significant gold grades returned from samples of sulphide-lean quartz veins, sheeted vein sets and stockworks. The overall geological environment at is similar to that on the Elk/Siwash property 18 km to the west where high-grade gold quartz vein structures are hosted by granitic batholith and adjacent Nicola volcanic rocks. Although most of the veins at Elk/Siwash contain abundant sulphides (mainly as pyrite), extensive ore sampling results also show a significant goldbismuth correlation similar to the mineralization found on the Crest Project.

Current Work and Results – Work consisted of soil sampling and prospecting designed as a test of the potential of the property within the immediate area of trench areas "A" and "B" from 1994 as well as the 2009 rock sample that returned 32.6 ppm gold. A total of 62 soil samples, averaging 0.41kg in weight, were taken from two areas on lines spaced 50 meters with sample intervals of 50 meters. Sampled material consisted of B horizon, found at depths of from 10-25 centimetres. A total of 13 rock samples averaging 2.49 kilograms in weight were taken. Samples were sent to Chemex in Vancouver, with rocks prepared using Prep Code 31 and soils using Prep Code 41, all samples were analyzed using their Au-AA23 (30g gold fire assay with AA finish) and ME-ICP41 (41 elements via aqua regia digestion) packages. CJGreig And Associates, based in Penticton BC, conducted the fieldwork portion of this program.


Results from the analyses of soil samples from trench area "B" show several moderate to highly anomalous values of up to 0.161 ppm gold forming a rough northwest trend partially coincident with the previously defined bedrock gold values. The trend of the soils is in contradiction with the general eastwest trend of the veining and mineralization defined by 2009 mapping undertaken in this area. This discrepancy may be due to auriferous east-west mineralization being best developed in a northwest trending belt of rocks that is more suitable to fracturing and mineralization than adjacent units, or it may be due to variations in overburden depth brought about by the effects of glaciation which moved generally parallel to the trend of the 2012 soil anomaly. Irrespective of the reasons for the anomaly orientation, more work is recommended to follow-up the various soil sample sites with anomalous gold that are not directly related to known bedrock mineralization.

Results from the analyses of soil samples from trench area "A" include a 3-sample cluster of highly anomalous values, with up to 1.125 ppm gold, located around the southwest end of trench area "A". The location and tenor of these anomalous sites suggests the presence of significant nearby in-situ mineralization possibly occurring as extensions to the mineralization previously encountered by trenching. Results from soil sampling conducted around the 2009 rock sample with 32.6 ppm gold, as well as the historical float sample grading 8.534 oz/T gold, returned only background to moderately anomalous gold values. The lack of significantly anomalous gold results from soils taken in the vicinity of these high grade rock samples may be due to either glacial processes and till providing a masking effect over the area or the bedrock samples represent structures of insufficient size to form a significant soil anomaly. Further detailed prospecting and rock sampling is recommended to try and expand upon the known bedrock results.

Results show widespread anomalous to ore-grade gold in rock values but only scattered semi-coherent gold in soil anomalies. Although the lack of widespread soil anomalies may be due to the bedrock zones being restricted in size or extent, the author's exploration experiences in the region suggest that the ubiquitous till cover is an effective mask over much of the area bedrock.

Geochemical Exploration Methods – Soil geochemistry is generally an excellent tool for locating and defining mineralized zones on a property scale, and as such has been the main method of exploration used in the Crest Project area, however there are issues with conducting soil geochemistry programs in glaciated terrain. In glaciated terrain the soil parent material type is far more important than the soil horizon information. Soil derived from locally weathered bedrock is excellent material for assaying, however it can be assumed that in glaciated terrain there will be some variance in the amount of this material from sample to sample and a wide variance from different topographical regions. Glacial processes can increase the size of the exploration targets, both in length and width, by dispersing material down-icc from mineralized zones, but they also reduce the grade of the mineralized material very rapidly through dilution with surrounding un-mineralized material. Highly anomalous to ore grade metal levels in rock may translate as only a very slight enrichment in till. To help alleviate the problems of sampling till it is recommended to use a power auger to obtain samples closer to the base of the overburden, as samples derived from deeper in the soil column will have a higher component of locally derived sediment and provide a data set that is more meaningful for identifying local mineralization. Notes on soil parent material as well as estimations on the amount of locally derived material present will further enhance the data set. A less common method of "seeing" through till involves the use of biogeochemical sampling methods. Various field studies have recommended the sampling of tree tops, bark, or decomposed organics found at the base of the A horizon, with all methods showing some promise and applicability for gold exploration in this terrain.

In summary, soil sampling has been a common exploration method used in the exploration of the Crest Project area, but results to date have had variable success in identifying the known mineralization. To enhance the value of subsequent soil sampling programs in this area, significant consideration will need to be given to surficial geology when designing, undertaking and interpreting results there from. A

recommended first step in the further exploration of this property will be a small orientation survey designed to test the applicability of various geochemical sampling methods in an effort to define a method that most rapidly and effectively identifies the known areas of auriferous bedrock mineralization.

Conclusions – Although a significant amount of work including trenching and widespread soil sampling has been completed on the Project claims to date, exploration upside still exists due to the fact that many of the highest grade soil and rock samples remain to be sourced. Further testament of the exploration upside are the successes of the one day prospecting program in 2009 where the highest bedrock gold value (32.6 ppm Au) to date was discovered and the one day 2012 program where the highest grade soil sample (1.125 ppm Au) to date was encountered. Mineralization appears to be similar of similar style and nature as the nearby high-grade Elk/Siwash deposit and similar exploration is therefore inferred to exist on the Crest Project. Exploration upside still exists due to the ubiquitous area till hindering exploration efforts to date.

Recommendations – Further work is recommended. The initial phase should consist of detailed prospecting and chip/channel sampling concentrated in the area of the known showings, along with a geochemical sampling orientation survey designed to test the suitability of various sampling methods in this terrain. Pending favourable results from the prospecting and sampling portion of first phase, a moderate scale trenching and sampling program is recommended to test for extensions to mineralization exposed on surface. Pending the identification of a geochemical sampling method that can successfully and reliably detect bedrock mineralization, the property should be covered by a sampling grid with samples at 25 meter intervals on north-south lines 50 meters apart.

Statement Of Qualifications

I, Bernie Kreft, directed the exploration work described herein.

I have over 25 years prospecting experience in the Yukon and British Columbia.

This report is based on fieldwork directed by the author and conducted by CJGreig And Associates, and includes information from various publicly available assessment reports.

This report is based on fieldwork completed during the 2012 field season.

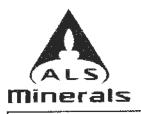
This report is based on fieldwork completed in the Brenda Mines area.

Respectfully Submitted,

mie Keet

Bernie Kreft

Statement Of Costs


CJGreig And Associates (field crew, travel, sample collec	tion etc)	\$1,507.80
CJGreig And Associates (truck plus kilometres charge)		\$235.00
ALS Minerals (Au-AA23 and ME-ICP41 on 75 samples)		\$2,256.90
Report Preparation (Bernie Kreft)		<u>\$1,500.00</u>
	Total =	= \$5,499.70
5% management fee		<u>\$274.98</u>
(Grand Total =	\$5,774.68

Invoices and receipts to support this statement of costs are held on file at my office. If you require copies of this data please contact the author.

Station	Property	Туре	UTME	UTMN	Note	Weigh	Au	Au Grav	Ag	As	Bi	Cu	Мо	Pb	Sb	w
RGNB12R006	Crest	Rock	711920	5526058	GRAB - mod silicic rx w/ diss sulph	1.62	0.322		2.1	3	2	62	4	13	<2	510
RGNB12R007	Crest	Rock	711875	5526077	GRAB - silicic + cut by qz veinlets, w/ sulph diss + frac	2.24	0.005		0.2	2	<2	13	<1	7	<2	<10
RGNB12R008	Crest	Rock	711772	5526132	GRAB - silicic pebble cg w/ dissem/blebby po (?)	3.3	0.022		0.2	4	<2	93	<1	4	<2	<10
RGNB12R009	Crest	Rock	711705	5526166	FLOAT - silicic banded sediments w/ dissem sulph	1.96	< 0.005		0.3	8	<2	73	1	4	<2	<10
RGNB12R010	Crest	Rock	711827	5526161	GRAB - limonitic veinlets in mod silicic fine grain rx	3.82	4.15		3.9	16	13	44	1	7	3	20
RGNB12R011	Crest	Rock	711848	5526156	GRAB - silicic + bleached fine grain rx w/ limonitic veinlets	2.14	0.011		0.5	19	<2	6	13	8	3	<10
RGNB12R012	Crest	Rock	711853	5526160	GRAB - moderately silicic fine grain rx w/ diss sulph	1.2	0.011		<0.2	6	<2	6	<1	3	<2	<10
RGNB12R013	Crest	Rock	711877	5526214	GRAB - silicic fine grain rx w/ 1cm wide sulph vn; bleached part	4.06	0.022		2.1	5	<2	67	<1	5	<2	490
RGNB12R014	Crest	Rock	711731	5525877	GRAB - mod silicic fine grain rx w/ sulph dissem + on fracture	2.48	<0.005		0.3	3	<2	65	<1	<2	<2	<10
RGNB12R015	Crest	Rock	711738	5525857	GRAB - mod silicic fine grain rx w/ sulph dissem + on fracture	1.98	0.006		0.2	5	<2	77	<1	<2	<2	<10
RGNB12R016	Crest	Rock	711860	5525899	FLOAT - mod silicic fine grainrx w/ 1cm wide qz py and cal vns	2.4	0.162		1.7	2	<2	43	8	5	<2	10
RGNB12R017	Crest	Rock	711761	5526003	GRAB - mod silicified fine grain rx w/ dissem po (?)	3.08	0.009		0.5	4	<2	115	1	2	<2	<10
RGNB12R018	Crest	Rock	711820	5526086	GRAB - bleached + silicified fine grain rx w/ limon fractures	2.06	<0.005		0.5	8	<2	8	1	39	2	<10
CPKNB12S042	Crest	Soil	712300	5525852		0.36	0.007		0.2	19	3	23	2	6	<2	<10
CPKNB12S043	Crest	Soil	712299	5525801		0.4	0.034		0.2	14	2	12	2	5	<2	<10
CPKNB12S044	Crest	Soil	712299	5525751		0.48	0.038		0.4	19	<2	14	2	7	<2	<10
CPKNB12S045	Crest	Soil	712298	5525698		0.44	0.008	-	0.2	25	2	14	3	8	<2	<10
CPKNB12S046	Crest	Soil	712298	5525649		0.4	0.084		0.3	22	З	22	2	11	<2	<10
CPKNB12S047	Crest	Soil	712300	5525600		0.48	0.119		0.4	30	З	23	1	12	<2	<10
CPKNB12S048	Crest	Soil	712299	5525551		0.44	0.006		0.3	23	2	18	2	16	2	<10
CPKNB12S049	Crest	Soil	712297	5525498		0.4	0.006		0.2	74	3	22	5	12	<2	<10
CPKNB125050	Crest	Soil	712252	5525499		0.46	0.014		<0.2	99	<2	34	3	12	4	<10
CPKNB125051	Crest	Soil	712249	5525550		0.4	0.01		0.3	30	2	18	2	9	<2	<10
CPKNB12S052	Crest	Soil	712249	5525599		0.52	0.013		<0.2	26	<2	23	1	6	<2	<10
CPKNB12S053	Crest	Soil	712249	5525648		0.4	0.008		<0.2	23	2	18	1	5	<2	<10
CPKNB125054	Crest	Soil	712248	5525699		0.48	0.007		0.2	41	<2	19	3	7	3	<10
CPKNB125055	Crest	Soil	712251	5525749		0.34	0,161		0.4	41	3	15	3	9	<2	<10
CPKNB125056	Crest	Soil	712248	5525800		0.38	0.008		<0.2	31	2	16	1	6	<2	<10
CPKNB12S057	Crest	Soil	712250	5525849		0.44	0.012		0.2	24	<2	23	2	5	<2	<10
CPKNB12S058	Crest	Soil	712199	5525849		0.4	<0.005		0.3	66	<2	32	8	7	3	<10
CPKNB125059	Crest	Soil	712200	5525801		0.5	0.132		1.6	112	2	50	11	23	3	20

Station	Property	Туре	UTME	UTMN	Note	Weigh	Au	Au Grav	Ag	As	Bi	Cu	Мо	Pb	Sb	W
CPKNB12S060	Crest	Soil	712199	5525752		0.52	0.009		0.5	123	<2	54	6	11	7	<10
CPKNB12S061	Crest	Soil	712198	5525700		0.34	<0.005		0.4	373	2	35	7	13	10	<10
CPKNB12S062	Crest	Soil	712197	5525650		0.44	0.013		0.5	40	<2	44	7	13	2	<10
CPKNB12S063	Crest	Soil	712198	5525600		0.44	0.007		0.2	30	<2	22	1	6	2	<10
CPKNB12S064	Crest	Soil	712202	5525550		0.46	0.006		0.2	20	<2	18	1	7	<2	<10
CPKNB12S065	Crest	Soil	712201	5525500		0.5	0.008		0.2	15	<2	18	1	5	2	<10
CPKNB12S066	Crest	Soil	712149	5525498		0.4	<0.005		0.7	245	<2	23	6	46	5	<10
CPKNB12S067	Crest	Soil	712149	5525549		0.38	<0.005		0.2	123	<2	19	5	10	5	<10
CPKNB12S068	Crest	Soil	712151	5525601		0.4	0.012		0.5	38	<2	29	4	13	2	<10
CPKNB12S069	Crest	Soil	712150	5525652		0.44	0.009		0.3	47	<2	34	5	13	2	<10
CPKNB12S070	Crest	Soil	712147	5525700		0.42	0.007		0.2	95	2	33	6	11	4	<10
CPKNB12S071	Crest	Soil	712148	5525750		0.42	<0.005		0.4	102	<2	35	7	11	4	<10
CPKNB12S072	Crest	Soil	712148	5525799		0.44	<0.005		0.4	146	<2	35	4	10	6	<10
CPKNB12S073	Crest	Soil	712151	5525850		0.32	<0.005		0.3	42	<2	28	5	10	2	<10
CPKNB12S074	Crest	Soil	711900	5526169		0.38	0.015		0.4	8	<2	7	1	7	<2	<10
CPKNB12S075	Crest	Soil	711898	5526121		0.4	0.008		0.3	18	<2	18	1	7	<2	<10
CPKNB12S076	Crest	Soil	711901	5526071		0.36	<0.005		0.2	14	<2	19	1	7	<2	<10
CPKNB12S077	Crest	Soil	711899	5526021		0.4	0.009		0.2	17	2	17	1	10	<2	<10
CPKNB12S078	Crest	Soil	711898	5525971		0.44	0.017		0.2	15	<2	17	3	9	2	<10
CPKNB12S079	Crest	Soil	711900	5525921		0.5	0.094		0.5	16	<2	30	2	8	2	20
CPKNB12S080	Crest	Soil	711902	5525871		0.42	0.018	-	1.1	13	<2	21	5	9	2	<10
CPKNB12S081	Crest	Soil	711851	5525868		0.36	0.005		0.4	10	<2	13	3	7	2	<10
CPKNB12S082	Crest	Soil	711851	5525925		0.32	1.125	0.481	0.5	12	5	12	3	11	<2	<10
CPKNB125083	Crest	Soil	711849	5525971		0.4	0.084		0.3	12	<2	19	2	11	<2	<10
CPKNB12S084	Crest	Soil	711849	5526023		0.34	0.022		0.2	20	2	16	2	13	<2	<10
CPKNB12S085	Crest	Soil	711851	5526068		0.44	0.013		0.2	14	<2	18	1	8	<2	<10
CPKNB12S086	Crest	Soil	711851	5526119		0.32	0.005		0.2	12	<2	12	1	7	<2	<10
CPKNB125087	Crest	Soil	711851	5526168		0.4	0.074		0.2	16	<2	17	1	6	2	<10
CPKNB12S088	Crest	Soil	711801	5526167		0.34	0.006		0.2	13	<2	10	2	8	<2	<10
CPKNB12S089	Crest	Soil	711803	5526122		0.4	0.009		0.2	17	<2	18	1	10	<2	<10
CPKNB12S090	Crest	Soil	711801	5526071		0.36	0.043		0.4	28	<2	15	1	14	<2	<10

Station	Property	Туре	UTME	UTMIN	Note	Weigh	Au	Au Grav	Ag	As	Bi	Cu	Мо	Pb	Sb	W
CPKNB12S091	Crest	Soil	711800	5526020		0.44	0.005		0.2	9	<2	16	1	7	<2	<10
CPKNB12S092	Crest	Soil	711800	5525970		0.4	0.013		0.4	22	<2	33	4	17	3	<10
CPKNB12S093	Crest	Soil	711802	5525920		0.46	0.02		0.4	25	<2	24	4	14	2	<10
CPKNB12S094	Crest	Soil	711800	5525872		0.4	0.005		0.3	20	<2	23	2	8	2	<10
CPKNB12S095	Crest	Soil	711801	5525821		0,46	0.014		0.3	17	<2	21	1	7	<2	<10
CPKNB12S096	Crest	Soil	711747	5525822		0.36	<0.005		<0.2	14	<2	20	2	5	2	<10
CPKNB12S097	Crest	Soil	711748	5525872		0.42	<0.005		0.3	12	<2	23	2	5	<2	<10
CPKNB12S098	Crest	Soil	711746	5525924		0.38	<0.005		0.3	36	2	18	4	11	3	<10
CPKNB12S099	Crest	Soil	711749	5525972		0.4	<0.005		0.3	22	<2	34	3	6	<2	<10
CPKNB12S100	Crest	Soil	711749	5526019		0.38	0.007		0.4	19	<2	27	3	8	<2	<10
CPKNB12S101	Crest	Soil	711746	5526071		0.42	<0.005		0.3	11	<2	27	3	5	2	<10
CPKNB12S102	Crest	Soil	711748	5526121		0.34	0.005		0.4	33	<2	25	1	7	<2	<10
CPKNB125103	Crest	Soil	711751	5526169		0.38	<0.005		0.2	27	<2	19	2	5	2	<10

ALS Canada Ltd.

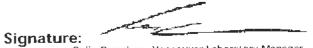
2103 Doharton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com To: KREFT, BERNIE #1 LOCUST PLACE WHITEHORSE YT Y1A 5C4 Page: 1 Finalized Date: 31-OCT-2012 Account: KREBER

CERTIFICATE VA12246991

Project: P.O. No.:

This report is for 17 Rock samples submitted to our lab in Vancouver, BC, Canada on 18-OCT 2012.

The following have access to data associated with this certificate:


BERNIE KREFT

	SAMPLE PREPARATION
ALS CODE	DESCRIPTION
WEI-21	Received Sample Weight
LOG-22	Sample login – Red w/o BarCode
CRU-31	Fine crushing - 70% <2mm
SPL-21	Split sample riffle splitter
PUL-31	Pulverize split to 85% <75 um

	ANALYTICAL PROCEDUR	ES
ALS CODE	DESCRIPTION	INSTRUMENT
Au-AA23	Au 30g FA-AA finish	AAS
Au-GRA21	Au 30g FA-GRAV finish	WST-SIM
ME-ICP41	35 Element Aqua Regia ICP-AES	ICP-AES

To: KREFT, BERNIE #1 LOCUST PLACE WHITEHORSE YT Y1A 5C4

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

Colin Ramshaw, Vancouver Laboratory Manager

ALS Canada Lto

2103 Dollarton Hwy North Vancouver BC V7H 0A7

Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: KREFT, BERNIE #1 LOCUST PLACE WHITEHORSE YT Y1A 5C4

Page: 2 - A Total # Pages: 2 (A - C) Finalized Date: 31-OCT-2012 Account: KREBER

CERTIFICATE OF ANALYSIS VA12246991

																•
Sample Description	Method Analyte Units LOR	WEI-21 Recyd Wt. Kg 0.02	۸u AA23 ۸u חמק 0.005	Ац-GRA21 Ас ррт 0.05	ME-ICP41 Ag opm 0.2	ME-ICP41 Al % 0.01	ME-ICP41 As ppm 2	MEHCP41 B opm 10	ME-ICP41 Ba ppm 10	ME_ICP41 Be opm 0.5	ME-KCP4n Bi plom 2	ME-ICP41 Cc % 0.01	ME-ICP41 Cd ppm 0.5	ME-ICP41 Co ppm T	ME ICP41 C1 ppm 1	ME-ICP41 Cu ppm 1
RGNB12-R001 RGNB12-R002 RGNB12-R003 RGNB12-R004 RGNB12-R006		3.00 1 78 2 96 4.24 1.62	<0.005 0.006 0.099 >10.0 0.322	12 25	02 02 <02 1.0 2.1	1 01 1.35 0.90 0 48 0 35	4 20 <2 16 3	<10 <10 <10 <10 <10	100 110 130 70 50	<0.5 <0.5 <0.5 <0.5 <0.5	<2 <2 <2 40 2	0.24 1.58 0.28 0.06 0.07	<0.5 <0.5 <0.5 <0.6 <0.6	3 7 7 3 1	9 13 29 14 7	16 89 141 73 62
RGNB12-R007 RGNB12-R008 RGNB12-R009 RGNB12-R010 RGNB12-R010 RGNB12-R011		2 24 3 30 1 96 3.82 2.14	0.005 0.022 <0.005 4.15 0.011		0.2 0.2 0.3 3.9 0.5	C 59 1.67 2.81 1.02 0.20	2 4 8 16 19	<10 <10 <10 <10 <10	60 60 10 50 60	<0.5 <0.5 <0.5 <0.5 <0.5	<2 <2 <2 13 <2	0 55 2 10 1.49 0.31 0 14	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5	1 11 18 7 1	15 22 144 7 9	13 93 73 44 5
RGNB12-R012 RGNB12-R013 RGNB12-R014 RGNB12-R015 RGNB12-R016		1.20 4.06 2.48 1.98 2.40	0.011 0.022 <0.005 0.006 0.162		<0.2 2.1 0.3 0.2 1.7	0.35 0.41 1.94 1.20 0.51	6 5 3 5 2	<10 <10 <10 <10 <10 <10	50 30 100 260 40	<0.5 <0.5 <0.5 <0.5 <0.5	<2 <2 <2 <2 <2 <2 <2	0.39 0.22 1.55 0.61 3.12	<(1.5 <().5 <0.5 <0.5 ().7	1 3 12 12 3	16 7 33 49 *5	6 67 65 77 43
RGNB12-R017 RGNB12-R018		3.08 2.06	0.009 <0.005		0 5 0.5	1.22 0.24	4 8	<10 <10	40 70	<0.5 <0.5	≈2 <2	1.53 0.05	<0.5 <0.5	15 <1	2? 3	115 8

ALS Ceniada Utd.

2103 Dollarton Hwy North Vancouver BC V7H 0A7

Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: KREFT, BERNIE #1 LOCUST PLACE WHITEHORSE YT Y1A 5C4

Page: 2 - B Total # Pages: 2 (A - C) Finalized Date: 31-OCT-2012 Account: KREBER

Minera	IS								С	ERTIFIC	ATE O	F ANAL	YSIS	VA122	246991	
Sample Description	Method Analyte Units LOR	ME-ICP41 Fe % 0.01	ME-ICP41 Ga ppm 10	ME-IC ⁵ 41 Hg pprii 1	ME-ICP41 K % 0.01	ME-ICP41 La ppm 10	ME_ICP41 Mg % 0.01	ME-BOP41 Min ppm 5	ME ICP41 Mo ppm 1	ME-#CP41 Na % 0.01	ME ICP41 Ni ppm 1	ME-ICP41 P ppm TO	ME-ICP41 Pb ppm 2	MF-JCP41 5 % 0.01	ME KOP41 Sti ppm 2	ME-ICP41 Sc ppin 1
RGNB12-R001 RGNB12-R002 RGNB12-R003 RGNB12-R004 RGNB12-R005		2.16 2.39 2.05 2.20 1.24	10 <10 <10 <10 <10	<1 1 <1 <1 <1 <1	0.56 0.17 0.36 0.11 0.15	10 <10 <10 <10 <10	0.42 0.28 0.38 0.15 0.10	261 361 178 109 73	1 3 1 6 4	0.06 0.04 0.07 0.03 0.04	2 2 1 1	280 350 290 120 140	15 2 <2 <2 13	0.25 0.56 0.48 0.10 0.17	<2 <2 <2 <2 <2 <2	7 3 4 2 2
RGNB12-R007 RGNB12-R008 RGNB12-R009 RGNB12-R010 RGNB12-R010 RGNB12-R011		1 51 1.45 2.66 2.55 2.28	<10 <10 10 10 <10	<1 <1 <1 <1 <1 <1	0 23 0 07 0 81 0.19 0 06	10 10 10 <10 10	0 20 0 19 0 86 0.16 0.04	217 149 171 94 212	<1 <1 1 1 13	0.05 0.24 0.25 0.08 0.05	2 26 74 <1 <1	250 1350 680 190 260	7 4 4 7 8	0 12 0 47 0.47 0.17 0.70	<2 <2 <br 3 3	5 2 3 3
RGNB12-R012 RGNB12-R013 RGNB12-R014 RGNB12-R014 RGNB12-R015 RGNB12-R016		1 72 3 34 1 68 2 58 2 25	<10 <10 <10 <10 <10 <10	<1 <1 <1 <1 <1	0.06 0.07 0.28 0.54 0.17	10 <10 10 10 10	0 18 0 08 0.63 0.69 0 18	377 60 174 269 510	<1 <1 <1 <1 <1 8	0.05 0.08 0.22 0.07 0.06	<1 26 17 1	240 230 1000 1220 240	3 ~ <2 <2 5 2	0.92 1.59 0.27 0.10 0.91 0.66	<pre></pre>	4 2 3 4 2
RGNB12-R017 RCNB12 R018		1 GG 1.01	<10 <^0	<1 <1	005	10 10	5 11 0 04	94 35	1	0,06	<1	-/0	39	0 15	2	2

ALS Canada Lto

2103 Dollarton Hwy North Vancouver BC V7H 0A7

Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: KREFT, BERNIE #1 LOCUST PLACE WHITEHORSE YT Y1A 5C4

Page: 2 - C Total # Pages: 2 (A - C) Finalized Date: 31-OCT-2012 Account: KREBER

Minera	ls								CE	RTIFICATE OF	ANALYSIS	VA12246991	
Sample Description	Method Analyte Units LOR	ME-ICP41 Sr ppm 1	ME -JCP41 To ppm 20	ME-ICP41 Ti % 0.01	ME-ICF41 TI ppm 30	MF-ICP41 U ppr: 10	ME-ICP41 V ppm 1	ME-ICP41 W ppm 10	ME-ICP41 Zr ppm 2				
RGNB12-R001 RGNB12-R002 RGNB12-R003 RGNB12-R004 RGNB12-R006		7 22 10 6 4	<20 <20 <20 <20 <20 <20	0 09 0 11 0 11 0.02 0.02	<10 <10 <10 <10 <10	<10 <10 <10 <10 <10	13 40 33 19 14	<10 450 <10 90 510	71 22 29 8 23				
RGNB12-R007 RGNB12-R008 RGNB12-R009 RGNB12-R010 RGNB12-R010 RGNB12-R011		7 149 170 13 4	<20 <20 <20 <20 <20 <20	0.05 0.12 0.19 0.04 0.07	<10 <10 <10 <10 <10 <10	<10 <10 <10 <10 <10 <10	5 32 74 6 11	<10 <10 <10 <10 20 <10	54 20 43 25 15				
RGNB12-R012 RGNB12-R013 RGNB12-R014 RGNB12-R014 RGNB12-R015 RGNB12-R016		4 12 172 27 53	<20 <20 <20 <20 <20 <20	0.05 0.08 0.15 0.18 0.06	<10 <10 <10 <10 <10 <30	<10 <10 <10 <10 <10	5 4 55 93 1	<10 490 <10 <10 10	36 19 30 40 45 10				
RCNB12_R017 RGNB12-R018		111 9	<20 <20	0 12 0.05	<10	<10	5	<1Ü	13				

ALS Canado I td.

2103 Doilarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Eax: 604 984 0218 www.alsglobal.com To: KREFT, BERNIE #1 LOCUST PLACE WHITEHORSE YT Y1A 5C4 Page: 1 Finalized Date: 30-OCT-2012 Account: KREBER

CERTIFICATE VA12246990

Project:

P.O. No.:

This report is for 146 Soil samples submitted to our lab in Vancouver, BC, Canada on 18-OCT-2012.

The following have access to data associated with this certificate:

BERNIE KREFI

	SAMPLE PREPARATION	
ALS CODE	DESCRIPTIÓN	
WEI-21	Received Sample Weight	
LOG-22	Sample login - Red w/o BarCode	
SCR-41	Screen to -180um and save both	·
	ANALYTICAL PROCEDUR	ES
ALS CODF	DESCRIPTION	INSTRUMENT
Au-AA23	Au 30g FA-AA finish	AAS
ME-ICP41	35 Element Aqua Regia ICP-AES	ICP-AES

To: KREFT, BERNIE #1 LOCUST PLACE WHITEHORSE YT Y1A 5C4

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

Colin Ramshaw, Vancouver Laboratory Manager

ALS Canada Utd.

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: KREFT, BERNIE #1 LOCUST PLACE WHITEHORSE YT Y1A 5C4

Page: 2 - A Total # Pages: 5 (A - C) Finalized Date: 30-OCT-2012 Account: KREBER

Minera	IS								C	ERTIFIC	CATE O	F ANAL	YSIS	VA122	46990	
Sample Description	Method Analyte Units LOR	WEI-21 Recvd Wt. Rg 0.02	Au-AA23 Au ppm 0.005	Au-AA23 Au Check ppm 0.005	ME-ICP41 Ag ျာခ္ကm ႐ 2	ME-ICP41 AJ % 0.0)	ME ICP41 As ppm 2	ME-ICP41 B ppm 10	ME-ICP41 Ba ppm 10	MIC-TCP41 Be ppm 015	ME ICP41 Bi ppm 2	ME-ICP41 Ca % 0:01	ME-ICP41 Cd ppm 0.5	ME-ICP41 Co ppm 1	ME-ICP41 Cr ppm 1	ME-RCF41 C∟ ppm 1
CPKNB12-S001 CPKNB12-S002 CPKNB12-S003 CPKNB12-S004 CPKNB12-S005		0 36 0.38 0 36 0 40 0 30	<0.005 <0.005 0.010 <0.005 <0.005		0.2 U.5 U 3 D 2 O 5	2.06 3.26 1.48 1.99 1.55	8 15 9 8 14	<10 <10 <10 <10 <10 <10	80 170 80 80 100	<0.5 0.6 <0.5 <0.5 <0.5	<2 2 2 <2 <2 <2	0.08 0.18 0.08 0.09 0.16	<0.5 <0.5 <0.5 <0.5 0.5	1 4 2 1 3	16 25 14 16 14	16 24 14 16 15
CPKNB12-S006 CPKNB12-S007 CPKNB12-S008 CPKNB12-S009 CPKNB12-S010		0.34 0.50 0.36 0.40 C.38	<0.005 <0.005 <0.005 0.020 0.021		0.7 0.2 0.2 0.3 0.2	2.89 1.65 1.91 2.25 1.46	3 7 7 4 4	<10 <10 <10 <10 <10	160 80 100 90 90	0.6 <0.5 <0.5 <0.5 <0.5	<2 <2 2 <2 <2 <2	0.36 0.13 0.11 0.10 0.25	<0.5 <0.5 <0.5 <0.5 <0.5	8 3 4 5 6	17 17 16 19 18	34 11 15 19 17
CPKNB12-S011 CPKNB12-S012 CPKNB12-S013 CPKNB12-S014 CPKNB12-S015		0.34 0.38 0.32 0.42 0.34	<0.005 <0.005 <0.005 0.012 0.005		03 <0.2 0.2 0.3 0.2	1.86 2.04 2.28 1.85 2.45	4 2 5 14 6	<10 <10 <10 <10 <10	60 90 80 80 70	<0.5 <0.5 <0.5 <0.5 <0.5	2 <br 2 2 2 2 2	0.08 0.29 0.09 0.13 0.09	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5	3 2 5 4	14 8 15 17 13	14 18 18 14 22
CPKNB12-S016 CPKNB12 S017 CPKNB12-S018 CPKNB12-S019 CPKNB12-S020		0.32 0.34 0.36 0.38 0.34	<0.005 0.008 0.016 0.005 0.023	** ******	<0.2 0.2 0.3 0.4	1.80 1.67 1.61 2.34 1.54	2 2 6 6 5	<10 <10 <10 <10 <10 <10	70 70 70 70 70 100	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5	<2 <2 2 2 <2	0.08 0.13 0.14 0.12 0.17	<() 5 <0.5 <0.5 <0.5 <0.5	5 6 4 6 4	15 16 15 17 13	17 15 15 19 11
CPKNB12_S021 CPKNB12-S022 CPKNB12-S023 CPKNB12-S024 CPKNB12-S025		0.34 0.36 0.42 0.44 0.36	0.006 0.009 0.005 0.005 <0.005		04 05 05 <02 02	1.63 2.38 1.78 2.68 1.43	6 6 14 23 13	<10 <10 <10 <10 <10 <10	70 110 90 130 70	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5	<2 <2 <2 <2 <2 <2 <2	0.11 0.15 0.08 0.10 0.10 0.10	<0.5 <0.5 <0.5 <0.5 0.6	4 6 4 7 2	14 19 17 26 15	12 25 11 27 13
CPKNB12-S026 CPKNB12-S027 CPKNB12-S028 CPKNB12-S029 CPKNB12-S030		0.42 0.36 0.36 0.34 0.40	0.007 0.006 0.007 <0.005 0.006		0.3 0.3 0.2 0.2 0.2	2 37 1 62 2 04 1.81 1.66	24 9 6 9	<10 <10 <10 <10 <10 < ⁴ 0	150 120 110 70 80	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5	2 <2 2 3 <2	0 19 0.11 0.25 0.22 0.21	0.5 <0.5 <0.5 <0.5 <0.5	6 5 7 5 6	28 16 18 18 16 17	53 17 17 16 14
CPKNB12-S031 CPKNB12-S032 CPKNB12-S033 CPKNB12-S034 CPKNB12-S035		0 44 0.40 0 42 0.34 0.40	<0.005 <0.005 0.005 <0.005 <0.005 <0.005		<0.2 D 2 <0.2 <0.2 <0.2 <0.2	1 82 1.60 1 70 1.89 2.36	9 8 9 9 13	<10 <10 <10 <10 <10	80 90 80 100 70	<0.5 <0.5 <0.5 <0.5 <0.5	2 <2 <2 2 2 <2	0.15 0.24 0.22 0.27 0.14	<0.5 <0.5 <0.5 <0.5 <0.5	6 6 7 6	19 19 18 16 17	16 47 12 15 22
CPKNB12-S036 CPKNB12-S037 CPKNB12-S038 CPKNB12-S039 CPKNB12-S040		0 36 0.34 0 34 0 42 0 40	0.005 0.009 <0.005 <0.005 <0.005		<0.2 <0.2 <0.2 <0.2 0.3	2 19 1 95 1.24 1.70 1.85	5 7 3 5 5	<10 <10 <10 <10 <10 <10	60 70 60 60 90	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5	<2 2 2 2 2 2 <2 <2 <2	5 09 0,08 0,10 0,09 0,15	<0.5 <0.5 <0.5 <0.5 <0.5	4 3 4 6	17 14 12 17 15	16 13 10 15 14

ALS Canada Ltd.

2103 Doharton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

fo: KREFT, BERNIE #1 LOCUST PLACE WHITEHORSE YT Y1A 5C4

Page: 2 - B Total # Pages: 5 (A - C) Finalized Date: 30-OCT-2012 Account: KREBER

Minera	IS								C	ERTIFIC	CATE O	F ANAL	.YSIS	VA122	46990	
Sample Description	Method Analyte Units LOR	ME-ICP41 Fe % 0.01	ME-ICP41 Ga ppm 10	ME (ICP41 Hg ppm 1	ME-ICP41 K % 0.03	ME-ICP41 ل م الم 10	ME-ICP41 Mg % D.01	ME-ICP41 Mo ppm 5	ME-ICP41 Mo ppm 1	ME-ICP41 Na % 0.01	ME-ICP41 Ni ppm 1	ME-ICP41 ອຸກ ການ 10	ME-ICP41 Pb ppm 2	ME-IC ⁹⁴ 1 S % 0.01	ME-JCP41 Sb ppm 2	ME-ICP41 Sc ppm 1
CPKNB12-S001 CPKNB12-S002 CPKNB12-S003 CPKNB12-S004 CPKNB12-S005		1 95 1 77 1.56 1.75 1.53	10 10 10 10 10	<1 <1 <1 <1 <1	0 03 0.04 0 04 0.03 0.04	<10 10 <10 10 10	0.22 0.35 0.14 0.19 0.15	170 90 109 100 84 814	1 4 2 1 2	0 01 0 02 0 01 0.01 0.01 0.01	7 11 4 7 6	540 370 590 700 510 500	11 10 7 10 9	0 02 0 03 0 02 0 01 0 02 0 02	3 2 <2 2 <2 2	2 3 1 2 1 3
CPKN812-S006 CPKN812-S007 CPKN812-S008 CPKN812-S009 CPKN812-S010		2.37 1.62 1.88 2.32 2.00	10 <10 10 10 10	<1 <1 <1 <1 <1	0.05 0.04 0.04 0.05 0.04	30 <10 <10 10 10	0.38 0.17 0.22 0.37 0.38	814 149 170 165 409	2 1 1 1	0 01 0 02 0.01 0 02	6 7 9 8	760 710 420 330	5 7 6 5	0.01 0.01 0.01 0.01	2 <2 2 <2	1 2 3 2
CPKNB12_S011 CPKNB12-S012 CPKNB12-S013 CPKNB12-S014 CPKNB12-S015		2.06 0.60 2.18 2.07 2.08	10 10 10 10 10 10	<1 <1 <1 <1 <1 <1	0.03 0.02 0.04 0.04 0.04 0.04	<10 30 <10 <10 <10	0.20 0.15 0.27 0.25 0.28	*05 50 102 267 209	1 <1 1 1 1	0.01 0.02 0.01 0.01 0.01	5 4 6 5	320 730 280 420 770	5 5 7 6	0.01 0.05 0.01 0.01 0.01 0.02	<2 <2 2 <2 <2 <2	2 1 2 2 3
CPKNB12-S016 CPKNB12-S017 CPKNB12-S018 CPKNB12-S019 CPKNB12-S020		2 14 2 11 2 04 2.10 1 70	10 10 10 10 10	<1 <1 <1 <1 <1 <1	0.05 0.04 0.04 0.04 0.04	<10 10 10 10 10	0 33 0 48 0 34 0.36 0.22	321 427 367 303 120	1 2 1 1 1	0 01 0 02 0 01 0.01 0.01 0.01	6 6 6 4	550 350 430 510 450	5 4 5 7 6	0.01 0.01 0.01 0.01 0.01	2 <2 <2 <2 <2	2 3 2 3 2
CPKNB12-S021 CPKNB12-S022 CPKNB12-S023 CPKNB12-S024 CPKNB12-S025		1 81 2 17 1.97 2 48 1.26	10 10 10 10 10 10	<1 <1 <1 1 1	0 05 0.05 0 03 0 09 0 03	<10 10 <10 10 <10	0.22 0 33 0 20 0 41 0 12	170 236 82 199 42	1 2 3 2 3	0 01 0 01 0 01 0 01 0 01 0.01	5 8 6 13 2	620 460 530 720 320	6 10 8 10 8	0.01 0.01 0.02 0.02 0.02	<2 2 2 2 2 2 2 2 2 2	2 3 4 1
CPKNB12-S026 CPKNB12-S027 CPKNB12-S028 CPKNB12-S029 CPKNB12-S030		2.46 1.73 2.25 1.97 2.13	10 10 10 10 10 10	<1 <1 <1 <1 <1	0.10 0.03 0.05 0.04 0.04	10 <10 10 10 10	0.37 0.28 0.44 0,36 0.34	355 96 424 353 327	13 1 2 2 2	0.02 0.02 0.02 0.02 0.02 0.02	10 6 5 4 6	830 420 340 390 410	28 10 7 7 5	0.02 0,0h 0,01 0,01 0,01	<2 <2 <2 <2 <2 <2	3 2 3 2 2
CPKNB12-S031 CPKNB12-S032 CPKNB12-S033 CPKNB12-S033 CPKNB12-S035		2 23 2 20 2 14 2 20 2.34	10 10 10 10 10 10	<1 <1 <1 <1 <1 <1	0.06 0.04 0.03 0.05 0.05	10 10 10 10 10 10	0.40 0.36 0.38 0.52 0.43	183 437 371 516 229	2 2 2 3 3	0.02 0.02 0.02 0.02 0.02 0.02	6 8 5 5 5	400 380 440 450 510	6 10 6 8 5	<0.01 0.01 0.01 0.02 0.02	<2 <2 <2 <2 <2 <2 <2 <2	3 3 2 2 3
CPKNB12-S036 CPKNB12-S037 CPKNB12-S038 CPKNB12-S039 CPKNB12-S040		2 13 2 07 1 56 2 40 2 00	10 10 10 10 10	<1 <1 1 1 <1	0,04 0,03 0.03 0.05 0.03	10 10 <10 <10 10	0.27 0.25 0.25 0.44 0.30	157 146 107 150 525	1 1 1 1 2	0.01 0.02 0.02 0.02 0.02 0.02	5 5 3 5 5	530 700 350 480 460	5 6 5 7	0.01 0.01 0.02 0.01 0.01	<2 <2 <2 <2 <2 <2 <2	2 2 1 2 2

AUS Canada Ltd.

2103 Dollarton Hwy North Vancouver BC V/H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: KREFT, BERNIE #1 LOCUST PLACE WHITEHORSE YT Y1A 5C

Page: 2 - C Total # Pages: 5 (A - C) Finalized Date: 30-OCT-2012 Account: KREBER

CERTIFICATE OF ANALYSIS VA12246990

WHITEHORSE YT Y1A 5C4

										RTIFICATE OF ANALTSIS	VA12240330
Sample Description	Method Analyte Units LOR	ME-ICP41 Sr ppm 1	ME-ICP41 Th ppm 20	ME-IC ⁰ 41 Ti % 6.01	ME-ICP41 Ti ppm 10	ME-ICP41 L: ppm 10	MS-ICP41 V ppm 1	MERCP41 W ppm 10	ME-ICP41 Zn ppm 2		
CPKNB12-S001		11	<20	0.10	<10	<10	53	<1()	49		
CPKNB12 5002		25	<20	0.09	<10	<10	58	<10	71		
CPKNB12-S003		12	<20	0 07	<10	<10	45	<10	40		
CPKNB12-S004		11	<20	0.09	<10	< 10	50	<10	40		
CPKNB12-S005		21	<20	0.06	<10	<10	44	<10	40		
PKNB12-S005		25	<20	0.11	<10	<10	56	<10	76		
:PKNB12-S007	-	12	<20	0.07	<10	<10	52	<10	33		
PKNB12-S008		11	<20	0.10	<10	<10	52	<10	51		
CPKNB12-S009		9	<20	0.11	<10	<10	62	<10	60		
CPKNB12-5010		17	<20	0 11	<10	<10	56	<10	63		
CPKNB12-SO11		9	<20	0.12	<10	<10	56	<10	31		
CPKNB12-S012		15	<20	0.07	< 10	<10	16	<10	15		
CPKNB12-S013		8	<20	0.11	<10	<10	57	<10	42		
CPKNB12-S014		-1	<20	0.10	<1()	<10	56	<10	52		
CPKNB12-SO15		10	<20	0.13	<10	<10	55	<10	44		
CPKNB12-S015		9	<20	0,10	<10	<10	50	<10	49		
CPKNB12-S017		10	<20	0.11	<10	<10	4â	<10	47		
CPKNB12 SO18		11	<20	0.10	<10	<10	54	<10	43		
CPKNB12 \$019		11	<20	010	<10	<10	54	<10	51		
CPKN812-S020		15	<20	0 09	<10	<10	42	<10	45		
CPKNB12-\$021		9	<20	0.09	<10	<10	48	<10	48		
CPKNB12-S022		15	<20	D,11	<10	<10	58	<10	65		
CPKNB12-S023		16	<20	0.11	<10	<10	57	<10	60		
CPKNB12-SO24		29	<20	0.12	<10	<10	76	<10	104		
CPKNB12-SO25		18	<20	0,06	<10	<10	50	<*0	27	· · · · · · · · · · · · · · · · · · ·	. <u></u>
CPKNB12-S026		25	<20	0.10	<10	<10	81	<10	107		
CPKNB12-S027		20	<20	0.10	<10	<10	51	<10	46		
CPKNB12-SO28		19	<20	0.13	<10	<10	57	<10	64		
CPKNB12-S029		17	<20	0.11	<10	<10	51	<10	59		
CPKNB12-S030		17	<20	0.10	<10	<10	58	<10	60		
CPKNB12-5031		14	<20	042	<10	<10	62	<10	63		
CPKNB12-SO32		18	<20	0.10	<10	<10	62	<10	65		
CPKNB12 SO33		15	<20	Ŭ.11	<10	e10	69	<10	55		
CPKNB12_SO34		16	<20	0.12	<10	< 10	57	<10	57		
CPKNB12-S035		11	<20	0.13	<10	<10	60	<10	52		
CPKNB12-S036		10	<20	C.11	<10	<10	55	<10	42		
CPKNB12 S037		10	<20	0.11	<10	<10	54	<1()	38		
CPKNB12~\$038		10	<20	U 10	<10	<10	43	<10	30		
CPKNB12-S039		9	<20	0.12	<10	<10	56	<10	44		
CPKNB12-S040		14	<20	0.11	<10	<10	51	<10	53		

ALS Canada Ltd.

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com To: KREFT, BERNIE #1 LOCUST PLACE WHITEHORSE YT Y1A 5C4

Page: 3 - A Total # Pages: 5 (A - C) Finalized Date: 30-OCT-2012 Account: KREBER

Minera	IS								С	ERTIFIC	ATE O	F ANAL	YSIS	VA122	46990	
Sample Description	Method Analyte Units LOR	WEI 21 Record Wt. kg 0.02	Au-AA23 Au ppm 0.005	Au-AA23 Au Check pptn 0.005	МЕ-ЮРИ1 Ад ррт 0.2	ME IC ⁵ 41 Al % 0.01	ME-ICP41 As ppm 2	M£-ICP41 B ppm 10	ME-ICP41 Ba ppm 10	ME-ICPan Be ppm 0.5	ME-ICP41 Bi ppm 2	ME-3CP41 Ca % 0.01	ME-ICP41 Cd ppm 0.5	ME ICP41 Co pper 1	ME-ICP41 Cr ppm 1	ME-tCP41 Cu ppm T
CPKNB12-S041 CPKNB12-S042 CPKNB12-S043 CPKNB12-S044 CPKNB12-S045		0.40 0.36 0.40 0.48 0.44	<0.005 0.007 0.034 0.038 0.008		<0.2 0.2 0.2 0.4 0.2	1 72 2.29 1.74 1.78 1 66	19 19 14 19 25	<10 <10 <10 <10 <10	+00 70 40 70 70	<0.5 <0.5 <0.5 <0.5 <0.5	2 3 2 <2 2	0 24 0.15 0.17 0.19 0.22	<0.5 C 5 <0.5 0.7 1.2	4 7 5 5 6	20 19 13 14 15	23 23 12 14 14
CPKNB12-S046 CPKNB12 S047 CPKNB12-S048 CPKNB12-S049 CPKNB12-S050		0.40 U 48 C 44 0.40 0.46	0.084 0.119 0.006 0.006 0.014		0.3 0.4 0.3 0.2 <0.2	2 35 2.47 2 30 3.31 2.37	22 30 23 74 99	<10 <10 <10 <10 <10 <10	110 100 110 150 160	06 <0.5 <05 06 <0.5	3 3 2 3 <2	0.24 0.16 0.15 0.29 0.50	06 06 05 06 21	7 6 7 9	22 18 19 24 30	22 23 18 22 34
CPKNB12-S051 CPKNB12-S052 CPKNB12-S053 CPKNB12-S054 CPKNB12-S055		0.40 0.52 0.40 0.48 0.34	0.010 0.013 0.008 0.007 0.161		0.3 <0.2 <0.2 0.2 0.2 0.4	2 09 2 25 2.48 2.15 2 48	30 26 23 41 41	<10 <10 <10 <10 <10	150 90 80 80 110	<0.5 <0.5 <0.5 <0.5 <0.5	2 <2 2 <2 3	0.19 0.13 0.10 0.14 0.44	1.5 0.5 <0.5 0.5 0.8	6 6 6 6	24 23 19 19 19	18 23 18 19 15
CPKNB12-S056 CPKNB12-S057 CPKNB12-S058 CPKNB12-S059 CPKNB12-S060		0.38 0.44 0.40 0.50 0.52	0 008 0 012 <0.005 0.132 0.009		<0.2 0.2 0.3 1.6 0.5	2 38 2.36 2.55 3 02 2.50	31 24 60 112 123	<10 <10 <10 <10 <10 <10	70 60 70 60 100	<0.5 0.5 0.7 0.5	2 <2 <2 2 2 <2	0.11 () 16 () 23 () 30 6.41	<0.5 0.5 3.5 6.0 10.1	6 7 7 10 9	17 19 20 23 15	16 23 32 50 54
CPKNB12-S061 CPKNB12-S062 CPKNB12-S063 CPKNB12-S064 CPKNB12-S065		0.34 0.44 0.44 0.46 0.50	<0.005 0.013 0.007 0.006 0.006		0 4 0.5 0.2 0 2 0.2	2.75 2.64 2.39 1.91 1.84	373 40 30 20 15	<10 <10 <10 <10 <10 <10	70 100 120 110 120	0.5 0.6 <0.5 <0.5 <0.5	2 <2 <2 <2 <2 <2	0.70 0.46 0.17 0.12 0.17	7.3 6.3 0.5 <0.5 0.7	9 8 6 6	19 18 25 19 20	35 44 22 18 18
CPKNB12-S065 CPKNB12-S067 CPKNB12-S068 CPKNB12-S069 CPKNB12-S070		C 40 O 38 O.40 O.44 O.42	<0.005 <0.005 0.012 0.039 0.007		0.7 0.2 0.5 0.3 0.2	2.21 2.61 2.30 2.70 3.15	245 123 38 47 95	<10 <10 <10 <10 <10 <10	150 110 70 100 90	05 05 <0.5 0.5 0.5	<br <2 <2 <2 <2 2	0.67 0.61 1.24 0.53 0.25	4.4 6.6 4.6 5.4 3.5	6 C 7 8 8	23 18 16 21 18	23 19 29 34 33
CPKNB12-S071 CPKNB12-S072 CPKNB12-S073 CPKNB12-S074 CPKNB12-S075		0.42 0 44 0 32 0 38 0 40	<0.005 <0.005 <0.005 0.015 0.008		U.4 0.4 0.3 0.4 0.3	2 88 3 15 2.83 1.32 2 14	102 146 42 8 18	<10 <10 <10 <10 <10	130 180 120 60 90	0.6 0.5 0.5 <0.5 <0.5	<2 <2 <2 <2 <2 <2	0.61 0.99 0.27 0.06 0.09	4.8 6.1 4 0 <0 5 <0.5	ອ 10 8 1 ຮ	17 15 19 9 18	35 36 28 7 18
CPKNB12-S076 CPKNB12-S077 CPKNB12-S078 CPKNB12-S079 CPKNB12-S080		0.36 0.40 0.44 0.50 0.42	<0.005 0.009 0.017 0.094 0.018		0 2 0 2 0.2 0.5 1 1	2.15 2 23 2 48 3 05 2.24	14 17 15 16 13	<10 <10 <10 <10 <10 <10	100 80 80 130 70	<0.5 <0.5 <0.5 0.6 0.5	<2 2 <2 <2 <2 <2 <2	0 11 0 09 0 13 0.24 0,31	<0.5 <0.5 <0.5 <0.5 <0.5 1.2	5 4 6 7 6	19 17 16 7 16	19 17 17 30 21

ALS Canada Ltd.

2103 Dollarton Hwy North Vancouver BC V7H OA7 Phone: 604 984 0221 — Fax: 604 984 0218 — www.alsglobal.com

To: KREFT, BERNIE #1 LOCUST PLACE WHITEHORSE YT Y1A 5C4

Page: 3 - B Total # Pages: 5 (A - C) Finalized Date: 30-OCT-2012 Account: KREBER

Minera	Is								C	ERTIFIC	ATE O	F ANAL	YSIS	VA122	46990	
Sample Description	Method Analyte Units LOR	ME-ICP41 Fe % 0.01	ME-ICP41 Ga ppm 10	ME-ICP41 Hg ppm 1	ME-CP41 K % 0.01	ME-ICP41 La ppm 10	ME-ICP41 Mg % 0.01	ME-ICP41 Mn ppm 5	ME-IC®+1 Мо рртт 1	ME-ICP41 Na % 0,01	VE 10241 Ni ppm 1	ME-ICP41 P ppm 10	MEHCP41 PD ppm 2	ME-ICP41 S % 0,01	ME ICP41 Sb ppm 2	ME-ICP41 Sc ppni 3
CPKNB12-S041 CPKNB12-S042 CPKNB12-S043 CPKNB12-S044 CPKNB12-S044		1.87 2.53 2.05 2.34 2.16	10 10 10 10 10	<1 <1 <1 1 1	0.04 0.06 0.03 0.07 0.04	10 10 10 10 10 10	0 32 0.41 0.25 0 29 0 24	158 219 350 429 1380	3 2 2 2 3	0 01 0 02 0 02 0.02 0.02 0.02	9 *4 7 8 9	460 440 420 440 520	9 6 7 8	0.02 0.01 0.01 0.01 0.01 0.01	<2 <2 <2 <2 <2 <2	2 3 2 3 2
CPKNB12-S046 CPKNB12-S047 CPKNB12-S048 CPKNB12 S049 CPKNB12 S049 CPKNB12-S050		2 21 2 35 2 26 2.69 2.82	10 10 10 10 10	1 <1 1 <1 <1	0.10 0.06 0.05 0.09 0.10	10 10 10 10 10 10	0.32 0.26 0.27 0.33 0.51	573 234 145 174 298	2 1 2 5 5	0,02 0,02 0,02 0,02 0,03 0,04	12 13 16 17 34	920 630 780 210 400	11 12 16 12 12	0 0? 0 01 0.01 0.01 0 01 <0 01	<2 <2 ? <br 4	3 3 4 6
CPKNB12-S051 CPKNB12-S052 CPKNB12-S053 CPKNB12-S054 CPKNB12-S055		2.16 2.41 2.35 2.25 2.61	10 10 10 10 10	<1 <1 <1 <1 <1 <1	0 07 0.08 0.06 0.04 0 12	<10 10 <10 10 10	0 33 0.39 0.29 0.31 0.54	384 244 251 217 629	2 1 1 3 3	0.01 0.02 0.02 0.02 0.02 0.02	20 20 12 15 9	710 500 860 490 500	9 6 5 7 9	0.01 0.01 0.01 0.01 0.01	<2 <2 <2 3 <2	8 4 3 3 4
CPKNB12-S056 CPKNB12-S057 CPKNB12-S058 CPKNB12-S059 CPKNB12-S060		2.70 2 53 2 99 3 40 3 06	10 10 10 10 10 10	<1 <1 <1 <1 <1 1	0.08 0.05 0.03 0.04 0.03	<10 10 10 10 10 10	0.37 0.34 0.31 0.32 0.32	157 191 171 307 431	1 2 8 11 6	0.02 0.02 0.04 0.03 0.03 0.08	11 13 44 91 56	440 510 960 840 780	6 5 7 23 11	0.01 0.01 0.01 0.01 0.01 0.04	<2 <2 3 3 7	3 3 2 4 3
CPKNB12-S061 CPKNB12-S062 CPKNB12-S063 CPKNB12-S064 CPKNB12-S064 CPKNB12 S065		3.49 2.96 2.60 2.12 2.06	10 10 10 10 <10	<1 <1 <1 <1 <1	0.03 0.04 0.08 0.05 0.05	10 10 <10 <10 <10	0.31 0 33 0.47 0.27 0 29	647 342 250 187 206	7 7 1 1 1	0.10 0.07 0.03 0.03 0.03	56 60 22 19 17	107C 77C 480 500 500	13 13 6 7 5	0 04 0.02 0.02 0 02 0.02	10 2 2 <2 2	3 3 3 3 2
CPKNB12-S066 CPKNB12-S067 CPKNB12 S068 CPKNB12 S069 CPKNB12-S070		2,70 2,53 2,60 3,02 3,05	10 10 10 10 10 10	<1 <1 1 <1 <1	0.09 0.03 0.03 0.04 0.04 0.03	10 10 10 10 10	0.27 0.28 0.32 0.37 0.32	529 217 408 390 416	6 5 4 5 6	0.03 0.03 0.05 0.06 0.05	53 66 41 47 45	710 580 630 760 1CSD	46 10 13 13	0.07 0.03 0.03 0.03 0.03 0.03	5 5 2 4	3 3 2 4 3
CPKNB12-S071 CPKNB12-S072 CPKNB12-S073 CPKNB12-S074 CPKNB12-S075		3 14 3 72 2.90 1.85 2 21	10 10 10 10 10 10	<1 <1 <1 <1 <1 <1	0.05 0.13 0.03 0.03 0.04	10 10 10 <10 <10	0.33 0 59 0 27 0 09 0 23	446 567 246 69 302	7 4 5 1 1	0.04 0.05 0.06 0.02 0.02	54 45 40 4 13	740 940 930 310 620	11 10 10 7 7	0 03 0 03 0.03 0.02 0.02	4 6 2 <2 <2	3 5 3 1 3
CPKNB12-S076 CPKNB12-S077 CPKNB12-S078 CPKNB12-S079 CPKNB12-S080		2.09 2.21 2.51 4.23 2 39	10 10 10 10 10 10	<1 <1 <1 1 <1	0.04 0.05 0.06 0.91 0.05	10 <10 10 20 20	0.24 0.21 0.27 0.83 0.30	212 127 141 420 554	1 3 2 5	0.02 0.02 0.03 0.02 0.04	14 11 12 7 11	610 430 280 370 380	7 10 9 8 9	0,03 0,02 0.02 0.04 0.03	<2 <2 2 2 2	

ALS Canada Ltd

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

D 11

<20

32

CPKNB12-S080

<10

<10

To: KREFT, BERNIE #1 LOCUST PLACE WHITEHORSE YT Y1A 5C4

Page: 3 - C Total # Pages: 5 (A - C) Finalized Date: 30-OCT-2012 Account: KREBER

Minera	IS								CEI	RTIFICATE OF ANALY	SIS VA12246990
Sample Description	Method Analyte Units LOR	ME-ICP41 Sr ppm 1	ME-ICP41 Th ppm 20	ME-ICP41 Ti % 0.01	ME-ICP41 TI ppm 10	ME-ICP41 U ppm 10	ME-ICP41 V ppm 1	МЕ IC ⁹ 41 W рріп 10	ME-ICP41 Zn ppn 2		
CPKNB12-S041 CPKNB12-S042 CPKNB12-S043 CPKNB12-S044 CPKNB12-S045		37 17 16 25 18	<20 <20 <20 <20 <20 <20	0.07 0.12 0.15 0.10 0.09	<10 <10 <10 <10 <10 <10	<10 <10 <10 <10 <10 <10	65 62 51 51 56	<10 <10 <10 <10 <10 <10	96 139 77 124 141		
CPKNB12-S046 CPKNB12-S047 CPKNB12-S048 CPKNB12-S049 CPKNB12-S050		25 23 72 52 73	<20 <20 <20 <20 <20 <20	0.09 0.11 0.11 0.14 0.12	<10 <10 <10 <10 <10	<10 <10 <10 <10 <10 <10	60 59 60 75 85	<10 <10 <10 <10 <10	99 115 141 128 244		
CPKNB12-S051 CPKNB12-S052 CPKNB12-S053 CPKNB12-S054 CPKNB12-S055		52 23 14 19 69	<20 <20 <20 <20 <20 <20	0.10 0.10 0.12 0.11 0.12	<10 <10 <10 <10 <10 <10	<10 <10 <10 <10 <10 <10	70 66 67 65 43	<10 <10 <10 <10 <10 <10	230 132 107 119 168		
CPKNB12-S055 CPKNB12-S057 CPKNB12-S058 CPKNB12-S059 CPKNB12-S060		28 19 212 202 1220	<20 <20 <20 <20 <20 <20	0.14 0.12 0.08 0.09 0.38	<10 <10 <10 <10 <10	<10 <10 <10 <10 <10 <10	66 64 109 150 76	<10 <10 <10 20 <10	109 124 693 765 859		
CPKNB12-S061 CPKNB12-S062 CPKNB12-S063 CPKNB12-S064 CPKNB12-S065	<u>u-u-</u>	407 280 38 22 20	<20 <20 <20 <20 <20 <20	0.08 0.10 0.13 0.10 0.09	<10 <10 <10 <10 <10 <10	<10 <10 <10 <10 <10 <10	133 104 75 64 63	<10 <10 <10 <10 <10	781 932 160 127 125		
CPKNB12-S066 CPKNB12-S067 CPKNB12-S068 CPKNB12-S069 CPKNB12-S070		194 139 270 439 130	<20 <20 <20 <20 <20 <20	0.08 0.07 0.07 0.09 0.09	20 <10 <10 <10 <10	<10 <10 <10 <10 <10 <10	93 112 79 111 104	<10 <10 <10 <10 <10	1160 880 580 774 742	10,47, MA & He	
CPKNB12-S070 CPKNB12-S071 CPKNB12-S072 CPKNB12-S073 CPKNB12-S074 CPKNB12-S075		238 493 183 12 *2	<20 <20 <20 <20 <20 <20 <20	0.07 0.11 0.09 0.09 0.09 0.10	<10 <10 <10 <10 <10 <10	<10 <10 <10 <10 <10 <10	85 96 85 47 61	<10 <10 <10 <10 <10 <10	671 761 565 56 112		
CPKNB12-S076 CPKNB12-S077 CPKNB12-S077 CPKNB12-S078 CPKNB12-S079		14 11 19 81	<20 <20 <20 <20 <20 <20	0 10 0 10 0 13 0 13 0 13	<10 <10 <10 <10 <10 <10	<10 <10 <10 <10 <10 <10	69 57 58 32 55	<10 <10 <10 20 <10	64 76 116 126 123		

ALS Canada Ltd.

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.atsglobal.com

fo: KREFT, BERNIE #1 LOCUST PLACE WHITEHORSE YT Y1A 5C4

Page: 4 - A Total # Pages: 5 (A - C) Finalized Date: 30-OCT-2012 Account: KREBER

Minera	IS								C	ERTIFIC	CATE O	F ANAI	YSIS	VA122	246990	
Sample Description	Method Analyte Units LOR	WEI-21 Recyd Wt. kg 0.02	Au-AA23 Au ppm p.0005	Al _e - AA23 Au Chock ppm 0.005	ME-ICF41 Ag ppm 0.2	ME-ICP41 Al % 0.01	ME-(CP41 As ppm 2	МЕ-ІС⊭4т В ррт 10	ME-ICP41 Ba pom 10	ME-IC941 Bc ppm 0.5	ME-ICP41 Bi opm 2	ME-ICP41 Ca % 0.01	ME-ICP41 Cd ຄຸຍາກ 0.5	ME-ICP41 Co ppm 1	ME-ICP41 Cr ppm 1	ME-ICP41 Cu ppm 1
CPKNB12-S081 CPKNB12-S082 CPKNB12-S083 CPKNB12-S084 CPKNB12-S085		C 36 0 32 0.40 0.34 0.44	0.005 1 125 0 084 0 022 0.013	C 461	0.4 05 03 02 0.2	1 98 1.78 2.33 2 31 2 56	10 12 12 20 14	<10 <10 <10 <10 <10	80 70 90 70 80	<05 <05 <05 <05 <05	<2 5 <2 2 <2	013 0.12 0.10 0.09 0.09	0.5 <0.5 <0.5 <0.5 <0.5	5 3 4 4 4	16 12 14 14 15	13 12 19 16 18
CPKNB12-S086 CPKNB12-S087 CPKNB12-S088 CPKNB12-S089 CPKNB12-S090		0.32 0.40 0.34 0.40 C 36	0.005 0.074 0.005 0.009 0.043		0.2 0.2 0.2 0.2 0.2 0.4	1.92 1 34 1 42 1 95 2.23	12 16 13 17 28	<10 <10 <10 <10 <10	70 100 60 90 70	<0.5 <0.5 <0.5 <0.5 <0.5	<2 <2 <2 <2 <2 <2	0.07 0.15 0.15 0.20 0.08	<0,5 <05 09 07 <05	3 य 2 5 3	14 20 12 16 11	12 17 10 18 15
CPKNB12-S091 CPKNB12-S092 CPKNB12-S093 CPKNB12-S093 CPKNB12 S094 CPKNB12 S095		0 44 0.40 0.46 0.40 0.40 0 46	0 005 0.013 0 020 0 005 0.014		02 04 04 03 0.3	2.30 2.81 2.67 2.34 2.57	9 22 25 20 17	<10 <10 <10 <10 <10	90 80 80 100 120	<0.5 0.5 0.5 <0.5 <0.5	<2 <2 <2 <2 <2 <2 <2	0.42 0.65 0.45 0.16 0.12	<0.5 3.1 2.9 0.7 0.6	5 8 6 6	16 22 22 20 18	16 33 24 23 21
CPKNB12-S096 CPKNB12-S097 CPKNB12-S098 CPKNB12-S099 CPKNB12-S099 CPKNB12-S100		0.36 0.42 0.38 0.40 0.38	<0.005 <0.005 <0.005 <0.005 0.007		<0.2 0.3 0.3 0.3 0.4	2.53 2.47 2.88 2.76 2.24	14 12 36 22 19	<10 <10 <10 <10 <10	80 70 60 50 80	<0.5 <0.5 <0.5 <0.5 <0.5	<2 <2 2 <2 <2	0 09 0 08 0 97 0 24 0.12	<0.5 0.5 4.1 1 0 <0 5	5 6 9 8 6	21 17 28 22 21	20 23 18 34 27
CPKNB12-S101 CPKNB12-S102 CPKNB12-S103 RGNB12-S001 RGNB12-S002		0 42 0.34 0.38 0 44 0 40	<0.005 0.005 <0.005 <0.005 <0.005		03 04 02 <0.2 0.3	2.16 2.22 2.19 1.56 1.78	11 33 27 4 5	<10 <10 <10 <10 <10	90 60 70 80 70	<05 <05 <05 <05 <05	<2 <2 <2 <2 <2 <2 <2	0.13 0.12 0.12 0.22 0.23	<0.5 <0.5 <0.5 <0.5 <0.5	7 7 5 5	23 13 16 20 48	27 25 19 14 12
RGNB12-S003 RGNB12-S004 RGNB12-S005 RGNB12-S006 RGNB12-S007		0.46 0.38 0.42 0.36 0.46	<0.005 <0.005 <0.005 <0.005 <0.005 <0.005		0.2 <0.2 <0.2 <0.2 <0.2 <0.2	2.12 1 59 1 42 1 90 1 35	6 3 3 4 2	<10 <10 <10 <10 <10	80 60 60 50 60	<0.5 <0.5 <0.5 <0.5 <0.5	<br <2 <2 <2 <2 <2 <2	0.18 0.09 0.10 0.08 0.11	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5	6 5 4 4 3	19 16 13 15 14	15 14 17 14 11
RGNB12-S008 RGNB12-S009 RGNB12-S030 RGNB12-S031 RGNB12-S011 RGNB12-S012		0 40 0.36 0.40 0 34 0.36	<0.005 <0.005 <0.005 <0.005 0.005 0.005		<0.2 0.2 <0.2 <0.2 <0.2 0.3	1 53 1.55 2.15 1.58 2.44	2 5 3 <2 27	<10 <10 <10 <10 <10 <10	70 4() 60 60 60	<0.5 <0.5 <0.5 <0.5 <0.5	<2 <2 <2 <2 <2 <2	0,25 0.05 0.07 0.20 0.27	<0.5 <0.5 <0.5 <0.5 <0.5	4 2 3 4 8	13 9 15 14 16	11 10 13 21 17
RGNB12-S013 RGNB12-S014 RGNB12-S015 RGNB12-S016 RGNB12-S017		0.56 0.40 0.38 0.42 0.40	0.039 <0.005 <0.005 <0.005 0.024		0 2 0.2 0 2 0.3 0.2	2.13 1.23 1.76 2.12 1.60	31 3 11 56 71	<10 <10 <10 <10 <10 <10	90 70 70 80 60	<0.5 <0.5 <0.5 <0.5 <0.5	<2 <2 <2 <2 <2 <2 <2	0.27 0.22 0.12 0.10 0.22	<0.5 <0.5 <0.5 <0.5 <0.5	6 4 4 4	19 13 15 15 14	21 16 12 16 19

ALS Canada Ltd.

2103 Dollarton Hwy North Vancouver BC V7110A7

Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: KREFT, BERNIE #1 LOCUST PLACE WHITEHORSE YT Y1A 5C4

Page: 4 - B Total # Pages: 5 (A - C) Finalized Date: 30-OCT-2012 Account: KREBER

Minera	IS								CI	ERTIFIC	ATE O	F ANAL	YSIS	VA122	246990	
Sample Description	Method Analyte Units LOR	ME-ICP41 Fe % 0.03	ME-ICP41 Ga ppm F0	ME-ICP41 Hg ppm 1	ME-ICP41 K % 0.01	ME-ICP41 La ppm 10	ME-ICP41 Mg % 0.01	ME-ICP41 Min ppm 5	ME-ICP41 Mo ppm 1	ME-ICP41 Na % 0.01	ME ICP41 Ni ppm 1	ME-ICP41 P ppm 10	ME-ICP41 Pb ppm 2	ME-JCP41 5 % 0.01	ME-ICP41 Sb ppm z	ME 10:P43 Sc ppm 1
CPKNB12-S08* CPKNB12-S082 CPKNB12-S083 CPKNB12-S084 CPKNB12-S085		2.22 2.51 2.30 2.39 2.62	10 10 10 10 10	<1 <1 <1 <1 <1	0.04 0.04 0.06 0.06 0.09	<10 <10 10 10 10	0.21 0.18 0.24 0.20 0.26	158 142 141 108 159	3 3 2 2 1	0.03 0.02 0.02 0.03 0.03	12 7 10 9 9	380 310 460 270 440	7 11 11 13 8	0.03 0.02 0.03 0.03 0.02	2 <2 <2 <2 <2 <2	2 2 3 3 3
CPKNB: 2-S086 CPKNB12-S087 CPKNB12-S088 CPKNB12-S089 CPKNB12-S090		2.08 2.34 1.85 2.13 2.38	10 10 10 10 10	<1 <1 <1 <1 <1	0 03 0 05 0.03 0.04 0.04	<10 <10 <10 10 <10	0 16 0 29 0.13 0.23 0.23 0.15	141 345 249 262 182	1 2 1 1	0.02 0.02 0.03 0.03 0.03	8 11 6 12 6	440 600 490 460 420	7 6 8 10 14	0.02 0.02 0.03 0.03 0.02	<2 2 <2 <2 <2 <2 <2	2 3 1 2 2
CPKNB12-S091 CPKNB12-S092 CPKNB12-S093 CPKNB12-S094 CPKNB12-S095		2 52 2.59 2.59 2.47 2.44	10 10 10 10 10	<1 <1 <1 <1 <1 <1	0.07 0.05 0.04 0.05 0.05	<10 10 10 <10 10	031 037 038 029 028	165 714 407 298 227	1 4 4 2 1	0 03 0 C5 0 05 0 03 0 03	10 27 24 20 17	500 340 460 640 570	7 17 14 8 7	0 C2 0 03 0 02 0 02 0.02	<2 3 2 2 <2 <2	3 4 3 3 3
CPKNB12-S096 CPKNB12-S097 CPKNB12-S098 CPKNB12-S099 CPKNB12-S099 CPKNB12-S100		2 11 2.23 2.60 2.40 2 31	10 10 10 10 10 10	<1 <1 <1 <1 <1	0.03 0.03 0.04 0.03 0.03 0.04	<10 <10 <10 10 10 <10	0 25 0.22 0.48 0.33 0.27	110 146 837 216 126	2 2 4 3 3	0.03 0.03 0.07 0.04 0.03	14 16 38 27 19	530 1010 490 350 490	5 5 11 6 8	0.02 0.02 C D3 0.02 0.02	2 <2 3 <2 <2	2 2 3 3 2
CPKNB12-S101 CPKNB12-S102 CPKNB12-S103 RCNB12-S001 RCNB12-S002		2.23 2 16 2 12 1.98 1.91	10 *0 10 <10 10	<1 <1 <1 <1 <1 <5	0,04 0.02 0.03 0.03 0.03	<10 <10 <10 10 10	0.31 D *8 0 20 0.29 0.27	152 202 305 242 266	3 1 2 1	0.03 0.03 0.03 0.02 0.02 0.03	22 14 13 8 7	440 750 620 410 340	5 7 5 5 6	0 02 0.02 0.03 0 02 0.02	2 <2 2 <2 <2 <7	3 2 2 2 2
RGNB12-\$003 RGNB12-\$004 RGNB12-\$005 RGNB12-\$005 RGNB12-\$006 RGNB12-\$007		2.09 2.16 1.73 2.31 4.81	10 10 1C 10 10 10	<1 <1 <1 <1 <1	0.04 0.04 0.04 0.04 0.04 0.03	10 <10 <10 <10 <10 <10	0,33 0,30 0,27 0,31 0,22	311 179 152 136 147	1 1 1 1 1	0.03 0.03 0.03 0.03 0.03	8 7 6 6	400 420 270 420 440	7 6 9 6 8	0,02 0.02 0.02 0.02 0.02 0.02 0.02	2 2 2 2 2 2	2 2 2 2 2 2
RGNB12 S008 RGNB12-S009 RGNB12-S010 RGNB12-S011 RGNB12-S012		1.58 1.66 2.05 1.89 2.57	10 10 10 10 10 10	<1 <1 <1 <1 <1 <'	0.02 0.02 0.03 0.03 0.03	10 <10 <10 10 10 10	0.24 0.11 0.19 0.30 0.47	326 68 178 202 556	1 1 1 2 2	0.03 0.03 0.03 0.03 0.03 0.04	6 3 6 7 7	350 360 670 660 430	7 7 8 6 8	0 03 0 02 0,02 0,05 0,05	<2 <2 <2 <2 <2 <2 <2 <2 <2	1 1 2 1 3
RGNB12-S013 RGNB12-S014 RGNB12-S015 RGNB12-S015 RGNB12-S016 RGNB12-S017		2.30 1.58 1.95 1.95 1.89	10 10 10 10 10 10	<1 <1 <1 <1 <1 <1	0.05 0.03 0.03 0.03 0.03 0.03	10 <10 <10 10 10	0.33 0.24 0.22 0.21 0.20	379 337 173 131 297	2 3 1 2 3	0.03 0.03 0.03 0.03 0.03 0.03	9 6 7 8 6	520 480 410 400 370	7 9 8 7 10	0.03 0.02 0.02 0.02 0.02 0.02	<2 <2 <2 2 2 <2	3 1 2 2 2

AUS Canada Ltd.

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: KREFT, BERNIE #1 LOCUST PLACE WHITEHORSE YT Y1A 5C4

Page: 4 - C Total # Pages: 5 (A - C) Finalized Date: 30-OCT-2012 Account: KREBER

VA12246990

CERTIFICATE OF ANALYSIS

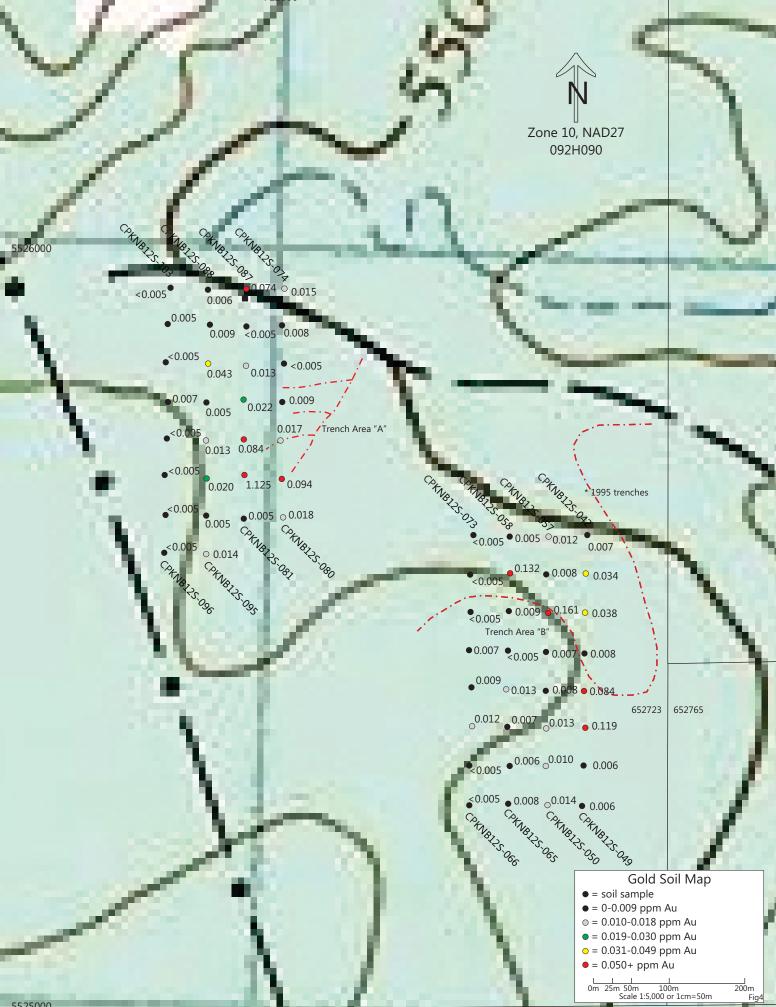
		ME-1CP4 1	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME ICP41	ME-ICP41				
	Method	Sr	Th	μι <u>ε</u> ι (γ. 41) Γι	TI	U	V	W	7n				
	Analyte			7. %	יי	ppm	ppm	ppm	ppm				
Sample Description	Units LOR	րրո 1	ррт 20	0.01	10	10	1	10	2				
	LUR	'	20	0.01	10	177				 	 		
CPKNB12-S081		20	<20	011	<10	<10	64	<10	120				
CPKNB12-5082		16	<20	0.12	<10	<10	53	<10	89				1
CPKNB12-S083		16	<20	0.11	<10	<10	50	<10	84				1
CPKNB12-S084		12	<20	0.12	<10	<10	55	<10	86				
CPKNB12_S085		14	<20	0.12	<10	<10	55	<10	95	 			
CPKNB12S086		10	<20	0.10	<10	<10	55	<10	74				
CPKNB12-S087		22	<20	0.08	<10	<1C	64	<10	102				I
CPKNB12-S088		16	<20	0.07	<10	<10	5C	<10	78				
CPKNB12 SO89		24	<20	0.09	<10	<10	59	<1()	95				
CPKN812-5090		13	<20	D 12	<10	<10	48	<10	80				
CPKNB12-S091		21	<20	0.12	<10	<10	53	<10	91				
CPKNB12-S092		87	<20	0.14	<10	<10	69	<10	290				
CPKNB12 S093		67	<20	0.13	<10	<10	76	<10	262				
CPKNB12-S093		24	<20	0.10	<10	<10	72	<10	165				
CPKNB12-S094		23	<20	0.10	<10	<10	67	<10	146				
		32	<20	0.12	<10	<10	63	<10	94				
CPKNB12-S096			<20	0.1⊉ 0.11	<10	<10	69	<10	190				
CPKNB12-S097		16	<20	0.11	<10	<10	65	<10	1030				
CPKNB12-S098		164			<10	<10	71	<10	189				
CPKNB12-S099		49	<20	0.12		<10	66	<10	93				
CPKNB12-S100		55	<20	0 11	<10								
CPKNB12-\$101		20	<20	0.11	<10	<10	67	<10	90 50				
CPKNB12-\$102		30	<20	0.09	<10	<10	55	<10					
CPKNB12-\$103		24	<20	80,0	<10	<10	58	<10	81				
RGNB12-S001		16	<20	0.08	<10	<10	59	<1()	48				
RGNB12-S002		16	<20	0.10	<10	<10	50	<10	52	 <u> </u>	 	 	
RGNB12-S003		14	<20	0.11	<10	<10	57	<10	54				
RGNB12-S004		9	<20	0.10	<10	<10	60	<10	44				
RGNB12-S005		10	<20	0.11	<10	<10	47	<10	46				
RGNB12-S006		9	<20	013	<10	<10	61	<10	50				
RGNB12-S007		12	<20	0.08	<10	<10	51	<10	38	 	 	 	
RGNB12-S008		. 15	<20	0 08	<10	<10	45	<1()	4C	 	 		
RGNB12-5009		6	<20	0.11	<10	<10	42	<10	24				
RGNB12-S010		8	<20	0.11	<10	<10	52	<10	47				
RGNB12-S011		15	<20	0.06	<10	< 10	55	<10	4 <i>ī</i>				
RGNB12-S012		14	<20	0.14	<10	<10	59	<10	107		 	 	
RGNB12-S013		16	<20	0.10	<10	<10	59	<10	83				
RGNB12-S014		15	<20	0.09	<10	<10	45	<10	50				
RGNB12-S015		11	<20	0.10	<10	~10	55	<10	55				
RGNB12-3015		14	<20	0.10	<10	<10	50	<1()	61				
RGNB12-3010		16	<20	2.08	<10	<10	50	<10	51				
KONDIA SOLA		<u> </u>			· · · · ·					 			

Al S Canada Ltd.

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com To: KREFT, BERNIE #1 LOCUST PLACE WHITEHORSE YT Y1A 5C4 Page: 5 - A Total # Pages: 5 (A - C) Finalized Date: 30-OCT-2012 Account: KREBER

Minera	IS								С	ERTIFIC	CATE O	F ANAI	YSIS	VA122	246990	
Sample Description	Method Analyte Units LOR	WEI-21 Reovd WL kg 0.02	An-AA23 Au ρμm 0,005	Au-AA23 Au Check ppm 0.005	ME-ICP41 Ag ρρτη 0.2	ME-ICP41 Al % 0.01	ME-ICP41 As ppm 2	ME-ICP41 B ppm 10	ME-IC943 Ba ppm 10	ME-ICP41 Be ppm 0.5	ME-IC941 Bi ppm 2	МЕ КСР41 Са % 0.01	ME-1CP41 Cd ppm 0.5	ME-ICP41 Ca ppm 1	ME ICP41 Cr ppm 1	ME-ICP41 Cu ppm 1
RGNB12-S018 RGNB12-S019 RGNB12-S020 RGNB12-S021 RGNB12-S021 RGNB12-S022		0.40 0.46 0.38 0.40 0.42	<0.005 <0.005 <0.005 <0.005 0.006		0.2 0.3 0.5 <0.2 <0.2	1 75 1 40 2 01 1.74 1.50	35 114 362 202 31	<10 <10 <10 <10 <10 <10	60 60 70 70 80	<0.5 <0.5 0.6 <0.5 <0.5	<2 <2 <2 <2 <2 <2 <2	0.09 0.22 0.43 0.16 0.54	<0.5 <0.5 1.1 <0.5 <0.5	3 4 5 5 2	15 13 14 17 16	18 15 38 17 12
RGNB12-S023 RGNB12-S024 RGNB12-S025 RGNB12-S026 RGNB12-S026 RGNB12-S027		0.40 0.36 0.40 0.42 0.34	<0.005 <0.005 <0.005 0.008 0.008 0.006		<0.2 <0.2 0.2 0.3 <0.2	1 47 1 52 1 94 1.88 1.66	3 6 13 14 19	<10 <10 <10 <10 <10	70 70 110 120 100	<0.5 <0.5 <0.5 <0.5 <0.5	<2 <2 <2 <2 <2 <2	0.11 0.15 0.13 0.20 0.27	<0.5 <0.5 <0.5 <0.5 <0.5	2 3 6 7	13 15 16 16 17	10 13 16 18 17
RGNB12-S028 RGNB12-S029 RGNB12-S030 RGNB12-S031 RGNB12-S032		0.30 0.36 0.44 0.42 0.44	0.005 0.012 <0.005 <0.005 0.010		0.4 0.3 0.2 0.3 0.5	1.88 1.93 1.83 1.47 1.62	22 8 14 5 9	<10 <10 <10 <10 <10 <10	80 60 70 50 90	<0.5 <0.5 <0.5 <0.5 <0.5	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2	0.27 0.15 0.13 0.06 0.33	<0.5 <0.5 <0.5 <0.5 <0.5	5 3 3 3 3	15 16 14 12 15	21 22 16 10 17
RGNB12-S033 RGNB12 S034 RGNB12 S035 RGNB12 S035 RGNB12-S036 RGNB12-S037		0 34 0 28 0.34 0 40 0.32	<0.005 0.009 <0.005 0.013 <0.005		07 0.6 03 05 <0.2	1.69 1.70 1.75 2.32 1.64	8 4 6 9 9	<10 <10 <10 <10 <10	90 110 90 100 80	<0.5 <0.5 <0.5 <0.5 <0.5	2 2 <2 <2 <2	0.32 0.35 0.27 0.25 0.21	<0.5 <0.5 <0.5 <0.5 <0.5	4 4 6 6	12 13 12 16 12	19 20 14 17 15
RGNB12-S038 RGNB12-S039 RGNB12-S040 RGNB12-S041 RGNB12-S042	<u>,</u>	0 40 0 38 0 30 0.28 0.34	<0.005 0.005 0.034 0.006 <0.005		<0.2 <0.2 <0.2 <0.2 <0.2 0.2	1.26 2.67 2.30 1.18 1.64	8 4 13 2 2	<10 <10 <10 <10 <10 <10	50 100 80 70 80	<05 <0.5 <0.5 <05 <05	<br <2 <2 <2 <2 <2	0.08 0.13 0.24 0.10 0.16	<0.5 <0.5 <0.5 <0.5 <0.5	3 4 4 2 6	11 17 15 12 16	13 16 19 11 14
RGNB ⁻ 2-S043		0.36	0,006		0.5	2 10	8	<10	60	<0.5	<2	0.08	<0.5	3	16	13

ALS Canada Ltri,


2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: KREFT, BERNIE #1 LOCUST PLACE WHITEHORSE YT Y1A 5C4

Page: 5 - B Total # Pages: 5 (A - C) Finalized Date: 30-OCT-2012 Account: KREBER

CERTIFICATE OF ANALYSIS VA12246990

Method Barryle Description Method Barryle Description <th< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></th<>																	
LOR 0.01 10 1 0.01 10 0.01 0.03 5 560 9 0.02 <2		Analyte	Γc	Ga	Hg	К	La	Mg %	Mn ppm	Мо pom	Na %	Ni ppm	م ppm	Po ppm	s %	ppm	ME-ICP41 Sc ppm 1
RcN812-S018 166 10 c1 0.05 c10 0.32 224 1 0.03 5 350 9 0.02 <22	ample Description	LOR	0.01	10	1	0.01	10	0.01	5	1	0.01	1	10	2	0.01	2	i
Kennel 2.5019 1.92 ·0 ·1 0.03 10 0.32 324 1 0.03 5 350 9 0.02 <2 Kennel 2.5020 1.09 10 ·1 0.04 50 0.28 406 2 0.03 8 650 9 0.02 <2	CN812_S019		1.86	10	<1	0.03	<10	0.19	251	3	D 03						2
Head Head <th< td=""><td></td><td></td><td></td><td></td><td><1</td><td>0.03</td><td>10</td><td>0 32</td><td>324</td><td>1</td><td>0.03</td><td></td><td></td><td></td><td></td><td></td><td>2</td></th<>					<1	0.03	10	0 32	324	1	0.03						2
RCNB12-S021 2.02 10 <1				10	<1	0.04	30	0.26	406								1
RGNB12-S022 2 U1 10 <1 0.04 <10 0.30 364 3 0.03 7 430 6 0.02 <2 RCNB12-S023 1.50 10 <1			2.02	10	<1	0.05	10	0.25	221								2
RCNB12 5023 1.50 10 <1 0.00 <10 0.14 0.00 <10 0.26 185 1.00 301 8 0.02 <22 RGNB12 5025 2.06 10 <1			2 01	10	<1	0.04	<10	0.30	364	3	0.03	7	340	8	0.02		2
RKBB12-S024 1 93 10 <1	CNR12-S023		1.50	10	<1	0.03	<10	0.14	65	1							1
2 06 10 <1 0.04 <10 0.33 368 1 0.03 7 5.30 5 0.01 <2 RGNB12 S026 2.13 10 <1			1.93	10	<1	0.04	<10	0.26	183								2
RGNB12 SO26 2.13 10 <1 0.06 <10 0.33 220 2 0.03 6 0.30 5 0.03 <2 RGNB12 SO27 2.06 10 <1			2.06	10	<1	() 04	<10	0.33	368								2
GGNB12-S027 2.06 10 41 0.04 610 630 201 1 0.03 7 440 7 0.03 <2 GGNB12-S028 1.86 10 <1			2.13	10	<1	D 06	<10										2
RCNB12-S028 1 86 10 <1 0.03 10 0.02 133 1 0.02 7 410 8 0.03 <2 RCNB12 S029 1 86 10 <1 0.03 10 0.22 133 1 0.02 7 410 8 0.03 <2 RCNB12 S030 2 02 10 <1 0.03 <10 0.21 226 5 0.01 4 380 7 0.02 <2 RGNB12-S031 1 80 10 <1 0.03 <10 0.29 170 2 0.02 6 360 11 0.05 <2 RGNB12-S032 1 80 10 <1 0.03 10 0.26 5C 2 0.02 6 460 11 0.05 <2 RGNB12-S033 1 46 10 <1 0.03 10 0.26 5C 2 0.02 5 530 8 0.04 <2 RGNB12-S034 1.73 10 <1 0.03 10 0.25 273 2	GNB12-S027		2.08	10	<1	0.04	<10	0.35	367	2	0.03	7	420		0.02		2
RCNB12 S029 1 86 10 <1 0.03 10 0.22 133 1 0.02 7 410 8 0.03 <22 RCNB12 S030 2 02 10 <1	CNR12-\$028		1.86	10	<1	0,03	10	0.32	515	2	0.03	7	440				2
RCNB12 S030 2 02 10 <1 0.05 <10 0 21 226 3 0.01 6 620 75 0.03 <22 RCNB12 S031 194 10 <1 0.03 <10 0.15 128 2 0.01 4 380 7 0.02 <2 RGNB12 S032 1 80 10 <1 0.03 10 0.29 170 2 0.02 6 360 6 0.03 <2 RGNB12 S033 1 46 10 <1 0.03 10 0.26 SC 2 0.02 6 460 11 0.05 <2 RGNB12 S034 1.73 10 <1 0.03 10 0.26 273 2 0.02 5 530 8 0.04 <2 RGNB12 S036 2.32 10 <1 0.03 10 0.25 273 2 0.02 7 440 7 0.03 <2 RGNB12 S036 2.32 10 <1 0.04 10 0.28 373 3					<1	0.03	10	0.22	133	1	0.02						2
RGNB12-S031 1 54 10 <1 0.03 <10 0 15 128 2 0.01 4 380 7 0.02 <2 RGNB12-S032 1 80 10 <1 0.04 10 0.29 170 2 0.02 6 360 6 0.03 <2 RGNB12-S033 1 46 10 <1 0.03 10 0.26 SC 2 0.02 6 360 6 0.03 <2 RGNB12-S033 1 46 10 <1 0.03 10 0.26 SC 2 0.02 6 460 11 0.05 <2 RGNB12-S034 1.73 10 <1 0.03 10 0.26 SC 2 0.02 7 460 7 0.03 <2 RGNB12-S036 2.32 10 <1 0.04 10 0.38 373 3 0.02 7 440 7 0.03 <2 RGNB12-S036 1.94 10 1 0.04 <10 0.29 289 3 <					<1	0.05	<10	0.21	226		0.01						2
RGNB12-S032 1 80 10 <1 0.04 10 0.29 170 2 0.02 6 360 6 0.03 <2 RGNB12-S033 1 46 10 <1			1 94	10	<1	0.03	<10	0.15	128				-				2
RGNB12-S033 1 46 10 <1 0.03 10 0.26 30 2 0.02 5 530 8 0.04 <2 RGNB12-S034 1.73 10 <1			180	10	<1	0.04	10	0.29	170	2	0.02	6	360	6	0.03		2
RGNB12-S034 1.73 10 <1	CN812-S033		1 4fi	10	<1	0.03	10	0.26	SC	2	0 C2	6					1
RGNB12-S035 1 84 10 <1 0.03 10 0 25 273 2 0 02 5 460 7 0.03 <2 RGNB12-S035 2.32 10 <1 0.04 10 0.38 373 3 0.02 7 440 7 0.03 <2 RGNB12-S036 2.32 10 <1 0.04 10 0.38 373 3 0.02 7 440 7 0.03 <2 RGNB12-S037 1.91 10 <1 0.04 10 0.24 136 2 0.02 7 440 7 0.03 <2 RGNB12-S038 1.94 10 1 0.04 <10 0.24 136 2 0.02 4 630 6 0.02 <2 RGNB12-S039 2.61 10 1 0.06 <10 0.27 230 4 0.02 7 470 7 0.04 <2 RGNB12-S040 1.99 10 1 0.04 10 0.27 230 4 <			1			0.03	10	D 25	304	2	0.02						1
RGNB12-S036 2.32 10 <4 0.04 10 0.38 37.3 3 0.02 7 440 7 0.03 <2 RGNB12-S037 1.91 10 <1 0.04 10 0.38 37.3 3 0.02 7 440 7 0.03 <2 RGNB12-S037 1.91 10 <1 0.04 10 0.29 289 3 0.02 7 440 7 0.03 <2 RGNB12-S038 1.94 10 1 0.04 <10 0.24 136 2 0.02 4 530 6 0.02 <2 RGNB12-S039 2.61 10 1 0.06 <10 0.27 230 4 0.02 7 470 7 0.04 <2 RGNB12-S040 1.99 10 1 0.04 10 0.27 230 4 0.02 7 470 7 0.04 <2 RGNB12-S041 1.73 10 <1 0.03 <10 0.24 97 1			1		<1	0.03	10	0.25	273	2	0.02						1
RGNB12-S03 / 1.91 10 <1 0.04 10 0.29 289 3 0.02 5 270 5 0.03 <> RGNB12-S038 1.94 10 1 0.04 <10			2.32	10	<1	0.04	10	0.38									3
RGNB12-S038 1 94 10 1 0.04 <10 0 24 100 1 0.04 <10 0 24 100 1 0.04 <10 0 24 100 1 0.04 <10 0 24 100 1 0.04 <10 0 24 100 1 0.04 <10 0 24 100 1 0.04 <10 0.24 100 1 0.03 <2 RGNB12-S040 1.99 10 1 0.04 <10			1.91	10	<1	0.04	10	C.29	289	3	0.02	5	470	5	0.03		1
Construction 2 61 10 1 0.06 <10 0.36 297 2 0.02 / 630 8 0.05 <22 RGNB12-S039 1.99 10 1 0.04 10 0.27 230 4 0.02 / 470 7 0.04 <22 RGNB12-S040 1.99 10 1 0.04 10 0.27 230 4 0.02 / 470 7 0.04 <22 RGNB12-S040 1.73 10 <1 0.03 <10 0.24 97 1 0.01 5 450 6 0.03 <22 RGNB12-S041 1.73 10 <1 0.03 10 0.32 319 2 0.02 7 430 5 0.03 <22 RGNB12-S042 2.08 10 <1 0.03 10 0.32 319 2 0.02 7 430 5 0.03 <22	CNR12-5038		1.94	10	1	0.04	<10	0.24	136	2	0.02	1					1
RGNB12-S040 1.99 10 1 0.04 10 0.27 230 4 0.02 7 470 7 0.04 <22 RGNB12-S041 1.73 10 <1			1	10	1	0.06	<10	0.38	297	2		1					3
RGN812-S041 1 73 10 <1 0.03 <10 0.24 97 1 0.01 5 450 6 0.03 <2 RGN812-S041 2.58 10 <1			1.99	10	1	0.04	10	0.27	230								2
RGNB12 S042 2.08 10 <1 0.03 10 0.32 319 2 0.02 7 430 5 0.03 <2			1 73	10	<1	0.03	<10										1
RGNB12-S043 2.07 10 <1 0.04 <10 0.21 88 2 0.01 6 480 10 0.02 <2			2.08	10	<1	0.03	10	0 32	319	2	0.02	T	430				2
	RGNB12-S043		2.07	10	<1	0.04	<10	0.21	88	2	0.01	6	480	10	à 02	<2	2

