BC Geological Survey Assessment Report 33497

ASSESSMENT REPORT

GEOLOGICAL SURVEY

On The

ZAMOLXIS MINERAL PROPERTY

Slocan Mining Division

Latitude 49° 37' 44''N; Longitude 117° 20' 13'' W

NTS 082F/11

BCGS 082F 064

Owner: Dan V. Oancea

Operator: Dan V. Oancea

By

Dan V. Oancea PGeo

November 26, 2012

2012 Zamolxis Assessment Report

TABLE OF CONTENTS

1.	Summary	4
2.	Conclusions	5
3.	Recommendations	5
4.	Introduction	.6
	4.1 Location, Access and Physiography	6
	4.2 Claims	6
	4.3 Climate, Local Resources	8
	4.4 History and Development	9
5.	Geology and Mineralization	.10
	5.1 Regional Setting	10
	5.2 Mineralization and Deposits	10
	5.3 Property Geology and Mineralization	.11
6.	Rock Sampling Survey	.14
	6.1 Introduction	14
	6.2 Results	.14
7.	Discussion and Conclusions	.20
8.	Recommended Work	.22
9.	Cost Statement	.23
10.	References	.24
11.	Statement of Qualifications	.25

LIST OF FIGURES

Figure 1 – Zamolxis Index Map	After page 5
Figure 2 – Topography and Access Roads	After page 6
Figure 3 – Geology Map	After page 7
Figure 4 – Claims Map	After page 10
Figure 5 – 4 th South Fork Sampling Map Sampling	After page 11
Figure 6 – Monument No.3 E Sampling	After page 12

Figure 7 – Monument No.3 W Sampling	After page 13
Figure 8 – Monument No.2 Sampling	After page 14

LIST OF TABLES

Table 1 – Mineral Titles at the Zamolxis Property	7
Table 2 – Zamolxis Important Locations and Samples	26

DIGITAL PICTURES

Plate 1: Monument Vein outcrop	15
Plate 2: Vein Breccia	17
Plate 3: Monument Vein in Underground	19

APPENDICES

- Figure 10 Mt. Kubin North Lithology
- Appendix 1 Mackenzie Tungsten Prospect, O.E. Bradley 1967

Appendix 2 - ALS Chemex Analytical Certificates and Chemical Procedures

1. Summary

Zamolxis mineral property is located approximately 12 km north of the City of Nelson in the Slocan Mining Division of south-eastern British Columbia, Canada.

Access is from Highway No. 6 some 11 km east on the Lemon Creek forestry road then another 8 km south on the Monument Creek forestry road down to the Monument prospect.

The property covers 2,239.04 ha and consists of 24 mineral tenements 100% owned by Dan V. Oancea the author of the present report.

Rocks underlying the property are represented by different phases of the granitic Upper Jurassic Nelson Batholith and metasedimentary and metavolcanic rocks of the Lower Jurassic Rossland Group that form a roof pendant enclosed by the Nelson intrusive.

The Zamolxis mineral property encompasses the Monument prospect which is a silver base metals, tungsten, molybdenum and gold vein system located at the contact between Nelson granites and the Rossland Group rocks. Based on data from older assessment reports the vein system is considered to be having a strike length of about 2.5 km from eastern Mt. Grohman to northern Mt. Kubin.

Other swarms of silver-polymetallic-gold veins are known to exist on the property; that includes those located on the 4th South Fork Creek and the ones located on the southern part of the property. Mineralized skarn and gold anomalous zones also occur on the property.

The property was studied over a 7 days field campaign during the month of August 2012. The scope of work was a geological assessment of the property. A mapping, prospecting and an exploratory rock sampling survey were carried out on some of the most prospective parts of the mineral property.

The most notable achievements of the 2012 survey consist in the identification of new ore grade mineralized zones belonging to the Monument Vein, and in connecting the dots along the strike of the vein through the identification of new vein outcrops and of old underground mining works. Assay results include a chip sample of 420 g/t (13.5 oz/t) silver over 115 cm; and, 507 g/t (16.3 oz/t) and 418 g/t (13.44 oz/t) silver in grab samples from the newly discovered Monument Vein outcrops.

To be also mentioned that anomalous to ore grades concentrations of tungsten and molybdenum have been identified in granites which opens the case for mineralized bulk targets in disseminated and/or stockwork zones located in the apical parts of the batholith.

2. Conclusions

Rock sampling of the Monument Vein returned important silver and base metals grades that are in line with assays from older assessment reports.

The Monument prospect represents a strong vein system -i.e. 1.2 m to 2.4 m thickness over a documented 1,350 m strike length. That feature and the type of deposit represented by the vein make possible that it would also display good down-dip continuity.

Previous assessment reports presented ore grade silver assays from expired Crown grants that cover a mineralized vein system which is on strike with the Mt. Grohman's Monument Vein and is located on the north side of Mt. Kubin; that vein extension included would bring the total strike length of the Monument Vein system to 2.5 km.

The Monument Vein and associated rocks are considered to have the potential to host important quantities of silver, base metals, tungsten and gold.

At this moment the Monument Vein system is considered to be the main target. It is a drill ready target. Because the vein is affected by a nugget effect it is likely that drilling could be used to establish down dip continuity and thickness but not the real grade. Reliable grades and mineral resources could be established by drifting and collecting an underground bulk sample.

Other important targets that are known to occur on the property and need to be further assessed are a hydrothermal breccia system; precious metals mineralized vein swarm, and a geochemically anomalous zone - all located on the eastern side of the 4th South Fork Creek.

Other mineralized veins, skarn/shear and gold anomalous zones are known to occur in Rossland Group rocks east south-east and south of Mt. Grohman and they also need to be further researched.

3. Recommendations

Further exploration work is warranted on the Zamolxis mineral property.

Recommended works on the property include:

- Prospecting, geological mapping and sampling of the Monument Vein (on the eastern and western sides of Mt. Grohman) and of its northwest extension (north of Mt. Kubin); scope being to prove the existence of a 2.5 km strike length of the vein system;
- Mapping and sampling of the host rocks for possible associated mineralized bulk targets;

- Detailed geological mapping and sampling of the property as there are many other known occurrences of mineralized veins, skarns and anomalous zones that are hosted by the roof pendant rocks;
- Testing the down dip extension of the Monument Vein from 4-5 locations by drilling a fan of two holes from each location;
- Upon successful completion of the previous work the next step would include drifting and underground bulk sampling of the Monument Vein;

4. Introduction

4.1 Location, Access and Physiography

The Zamolxis property is located approximately 12 km north of the City of Nelson in the Slocan Mining Division of south-eastern British Columbia, Canada.

The Monument prospect lies at 49° 37' 44''N latitude and 117° 20' 13'' W longitude and is plotted on the BCGS 082F 064 map.

Access is from Highway No.6 by following the Lemon Creek forestry road for 11 km and then by taking a south branch i.e. the deactivated Monument Creek forestry road for another 8 km. The Trail smelter is located at a distance of 110 km by road from the property.

The Zamolxis mineral property is part of the Selkirk Mountains. The property is located north and south of Mt Grohman (2,299 m) and Mt. Kubin (2,244 m). Topography is moderate to very steep with part of the property above the tree line.

The Zamolxis property is drained by Monument Creek and 4th Fork South Creek which are north flowing tributaries of Lemon Creek.

Vegetation is represented by conifers that in places display thick undergrowth that makes for difficult traverses and less outcrop. Slide alders type vegetation occupies an important part of the property especially the part that was logged many years ago; it is also present on overgrown forestry roads that used to be readily accessible some 20 years ago. This vegetation type is impenetrable in many parts of the property and needs to be chain sawed in order to gain access to numerous outcrops that are mentioned in literature.

4.2 Claims

The Zamolxis group of mineral properties consists of 24 tenures for a total of 2,239.04 ha that are mostly located in the Slocan Mining division. The southern part

of the property straddles the border between the Slocan and the Nelson Mining Divisions.

Title to the claims is held by Dan V. Oancea the writer of the present report.

TABLE 1: MINERAL TITLES AT THE ZAMOLXIS MINERAL PROPERTY

Tenure	Claim Name	Owner	BCGS	Good to	Status	Area (ha)
Number			Map Number	Date*		
823923	ZAMOLXIS	206326	82F064	February	GOOD	502.20
		(100%)		20, 2014		
826242	KOSON	206326	82F064	February	GOOD	41.84
		(100%)		20, 2014		
834053	BUREBISTA	206326	82F064	February	GOOD	146.42
		(100%)		20, 2014		
842008	DIURPANEUS	206326	82F064	February	GOOD	83.68
		(100%)		20, 2014		
842009	DURAS	206326	82F064	February	GOOD	83.67
		(100%)		20, 2014		
842022	DURAS 2	206326	82F064	February	GOOD	20.92
		(100%)		20, 2014		
842982	CST	206326	82F064	February	GOOD	20.92
		(100%)		20, 2014		
848363	DRAGON	206326	82F064	February	GOOD	62.75
		(100%)		20, 2014		
848364	DACIAN GOLD	206326	82F064	February	GOOD	41.84
		(100%)		20, 2014		
852724	FALX	206326	82F064	February	GOOD	20.92
		(100%)		20, 2014		
854641	DAOS	206326	82F064	February	GOOD	41.85
		(100%)		20, 2014		
854642	DAOS 2	206326	82F064	February	GOOD	62.78
		(100%)		20, 2014		
854667	DAOS 3	206326	82F064	February	GOOD	83.66
		(100%)		20, 2014		
854727	DAOS 4	206326	82F064	February	GOOD	62.79
		(100%)		20, 2014		
854787	DAOS 5	206326	82F064	February	GOOD	20.93
		(100%)		20, 2014		
854947	VLAH	206326	82F064	February	GOOD	20.93
		(100%)		20, 2014		
896595	GOD'S TABLE	206326	82F064	February	GOOD	293.04
		(100%)		20, 2014		

2012 Zamolxis Assessment Report

LEGEND

Upper Jurassic Nelson Granodiorite

Lower Jurassic Rossland Group

Scale 1:37,300

UTM 11 NAD 83

920609	ODIN	206326	82F064	February	GOOD	83.74
		(100%)		20, 2014		
920629	TRANSYLVANIA	206326	82F064	February	GOOD	62.79
		(100%)		20, 2014		
920669	JERUSALEM	206326	82F064	February	GOOD	20.93
		(100%)		20, 2014		
937389	VALHALLA	206326	82F064	February	GOOD	230.26
		(100%)		20, 2014		
937409	WULFILA	206326	82F064	February	GOOD	62.80
		(100%)		20, 2014		
955233	AEDIFICIUM	206326	82F064	February	GOOD	104.60
		(100%)		20, 2014		
978627	PLATO	206326	82F064	February	GOOD	62.78
		(100%)		20, 2014		
TOTAL						2,239.04

• Subject to acceptance of the present Assessment Report

The Zamolxis property covers nine cancelled Crown granted claims that were part of a group staked at the end of the 19th century. They were located on the northern side of Mt. Grohman (L5011 – Monument No.3; L5012 – Monument; L5013 – Monument No.2; L5014 – Monument No.2 Fraction; L5507 – Great Western) and Mt. Kubin (L5509 – Great Northern; L5510 – Grand Trunk; L5511 – Northern Pacific). Another Crown granted claim (L5511 – Ontario) was staked on the eastern side of the 4th Fork South Creek.

4.3 Climate, Local Resources

Climate is typical of B.C. interior mountainous areas: moderate with warm summers, cold winters and moderate precipitation.

Snow covers higher elevations starting with October.

Logging, service industry and tourism are mainstays of the local economy. There is no operating mine in the nearby area. Tourism plays an important role in the West Kootenay region.

The region's most important settlement is the City of Nelson which was incorporated in 1897. Nowadays it has a population of less than 10,000 people. The City is an administrative center for the Kootenays.

Infrastructure is good with the region crossed by two important provincial highways: No. and No. 3.

Accommodation, food and gas could be sourced from Nelson and many other little communities located west and east of the project area. Charter helicopters are also available in Nelson.

In conclusion the City of Nelson could be an appropriate base for any further exploration programs.

4.4 History and Development

The City of Nelson was incorporated in late 1800s at a time when silver rush engulfed the region and hundreds of mines were producing important quantities of precious and base metals.

Numerous silver-polymetallic +/-gold producers are located in the area. The closest past silver and gold producing mines and/or prospects are located at 5.5 km to 10.5 km from the Zamolxis project.

Zamolxis mineral property covers a group of nine Crown-granted claims that were staked in late 1800s. Eight of these former claims covered the Monument Vein located on the northern side of Mt. Grohman and its extension which is located north of Mt. Kubin.

No production was recorded on the claims but exploration work is documented as early as 1898 when Hall Mines Ltd explored the Monument Vein. Crown-granted claims were registered in the early part of the 20th century on the same Monument Vein. A crosscut gallery and a shaft were dug in the same period on the eastern side of the Grohman Mountain.

Depressed metal prices, the presence of other more attractive local mines that yielded higher grades (hundreds of ounces of silver and up to a few ounces of gold per tonne), wars and many other factors contributed to the fact that even though it was recognized as being mineralized the Monument Vein system was left unmined.

In 1964 tungsten mineralization was discovered on the Monument claims by prospector Robert Mackenzie who made a few cuts for sampling purposes. Canadian Exploration Ltd (Placer Ltd) evaluated the property for tungsten in 1967. Mackenzie continued to held title to the property in subsequent years and assessment reports were filed by himself in 1991 (AR 20950) or by geologists on his behalf in 1989 (AR18934).

In 1990, 394225 Alberta Ltd mapped and sampled (stream sediment and rock geochemistry) the area south of Mt Grohman (AR20190).

To be noted that neither modern type surveys (geochemical soil sampling, geophysical) nor has drilling ever been undertaken on the Zamolxis mineral property.

5. Geology and Mineralization

5.1 Regional Setting

The Slocan mining camp is part of the Kootenay Arc which is a 400 km long belt of early Paleozoic to Mesozoic sedimentary, volcanic and metamorphic rocks stretching from the Washington State into south-eastern British Columbia along Kootenay Lake and northwest to the Revelstoke area.

In the Kootenay Lake area Paleozoic formations of the namesake terrane range from pericratonic - the Hamill and Lardeau groups - to accreted and oceanic assemblages - the Milford and Kaslo groups of the Slide Mountain terrane.

Mesozoic formations - the early Jurassic Rossland volcanics and the late Triassic back-arc Slocan sediments: argillite, slate and limestone - lie on the curvature of the western side of the Kootenay Arc and are part of the Quesnellia terrane. The tectonic boundary between the dominant volcanic assemblages of Quesnellia and the Kootenay terrane is marked by rocks of the late Paleozoic Slide Mountain terrane.

Granitic plutons intrude older rocks of the Kootenay Arc. The most important is the Nelson batholith an I-type suite of granitic rocks having a predominantly granodioritic composition. It underlies much of the western Kootenay district. The granitic porphyry type is predominant and characterized by megacrysts of K-feldspar and hosts most of the mineralization. The batholith is considered to be an Upper Jurassic syn to post kinematic intrusion related to the eastward subduction of the oceanic Cache Creek terrane beneath Quesnellia.

5.2 Mineralization and Deposits

Historic silver production from western Kootenay was from three camps (Ainsworth, Slocan–Sandon and Slocan City) - it totalled 92.5 million ounces.

North of Lemon Creek numerous silver-polymetallic +/- gold mines and occurrences constitute the Slocan City camp. To the east lies the Ainsworth Camp, and to the south the numerous precious metals mines of the Nelson-Rossland Camp.

The epithermal, mezothermal, replacement and skarn precious metals-base metals mineralization is connected to the emplacement of the Nelson batholith and to subsequent tectonic movements along the Slocan Lake Fault. The mineral deposits are hosted by the Nelson granodiorites or by metavolcanic and metasedimentary Triassic (Slocan Group) and Jurrasic (Rossland Group) rocks.

Some of the past producing mines and/or mineral projects that are close to the Zamolxis property are listed below:

- The Mt. Nelson porphyry molybdenum project (AR28562) located 6 km south hosted by Nelson batholith granodiorites;
- Eagle Plains Resources' Kokanee Creek silver-gold-polymetallic project (AR25105) located 10.5 km east hosted by Slocan Group or Ymir metasedimentary rocks;
- The Alpine gold mine (082FNW127) located 5.5 km-6 km north-east veins hosted by granodiorites of the Nelson batholith;
- The copper-silver-gold skarns of Queen Victoria mine (082FSW082) located 15 km south-west developed at the contact between Nelson granodiorites and Lower Jurassic Ymir Group and metadiorites and pyroxenites of unknown affinity;
- Dozens of silver-polymetallic mines are located immediately south of Nelson, which is 10.5 km south of Zamolxis' southern border.
- The Hope lead-zinc-gold past producing mine (082FNW129) is located 8 km northwest of the Zamolxis claims hosted in a skarn setting.

5.3 Property Geology and Mineralization

Zamolxis mineral property is underlain by granites/granodiorites of the Middle to Upper Jurassic Nelson batholith and roof pendants made of metasedimentary and metavolcanic rocks belonging to either Triassic Slocan Group or Lower Jurassic Rossland Group.

Nelson batholith granites/granodiorites exhibit different phases from coarse grained porphyry to medium grained and dioritic. It is reported that granites become foliated in the proximity of Rossland rocks adopting a gneissic texture parallel to the banding of the metavolcanic rocks.

P.J. Santos (AR18934) described the **Rossland Group** rocks on the north side of Mt. Grohman as being a group of banded greenstones (altered andesites) and black fissile argillites (metasediments) that strike azimuth 140° and dip 30° SW. The argillites are mineralized with disseminated pyrite and the banded greenstones are epidotized.

The Scott & Evans assessment report (AR20190) noted on the south side of the Grohman Mountain a roof pendant made of Rossland metavolcanics (black amphibole gneiss and dark green amphibolites) that display a gneissic texture – it strikes 162° and dips west at 45°. Numerous post-metamorphic Coryell sills and dykes intrude all rock types.

Zamolxis property's most important mineralized target is represented by the **Monument Vein** (082FNW264). The quartz vein is 1.22 m to 2.44 m thick and is located at the contact between granite and metasedimentary / metavolcanic rocks. It strikes 123° to 140° and dips 30° to 40° southwest. The vein presents disseminations and streaks of pyrrhotite, pyrite, sphalerite and galena. It also contains scheelite, molybdenite and silver minerals.

A 15 m adit with a shaft at the end was constructed on the east side of the Mt. Grohman at 2,054 m altitude on the Monument Crown-granted claim (L5012) to intercept the vein.

In the adit the quartz vein is 2.44 m thick and strikes azimuth 130° and dips 30° southwest. A 0.76 m sample collected from the hangingwall assayed 7.15 oz silver per ton, 0.38% lead, 0.99% zinc, 0.09% bismuth and 0.002 oz gold per ton (AR18934). A bulldozer road on the northern side of Mt. Grohman provides access to a few cuts and a small adit where the Monument Vein is being exposed and has a width of 1.22 m.

P.J. Santos sampled the Monument Vein over a strike length of 305 m - many of these cuts are located upslope of the aforementioned road. His samples returned "L.001 to .004 oz per ton Au, 5.60 to 20.9 oz per ton Ag, .23 to .97% Pb, .01 to .22% Zn, 1.5 to 4.53% Fe, .08 to .36% Bi, and .01 to .78% W". The vein's attitude, width and mineralogical characteristics are similar to the ones exhibited by the vein on the L 5012 claim east of Mt. Grohman.

P.J. Santos' map indicate that in between the end of the bulldozer road and the adit located on the eastern side of Mt. Grohman – a distance of about 900 m – a few more old cuts exist and the vein is mineralized – assays indicate similar silver values (16 oz/t) and also important concentrations of molybdenite (0.41%) and tungsten (0.15%).

In conclusion P.J. Santos sampled the vein in outcrops, adits and cuts over a 1,205 m strike length. Santos mentioned that mineralized roof pendants also carry some tungsten and copper values.

Important **tungsten assay** results have been returned from sampling of the quartz vein (up to 6.12% WO3) and of the granite footwall rock (up to 2% over 5 ft) as reported by O.E.Bradley PEng of Canadian Exploration Ltd in 1967. The same Property File document (see attachment) mentions that the 'best scheelite is in the area of the old adit' (i.e. the 2,056 masl Discovery Adit located east of Mt.Grohman). Large rosettes of **molybdenum** in quartz veins also occur in the same area.

AR 20190 mentions a few other mineralized targets hosted by the Rossland Group rocks in a location southeast of the Mt. Grohman peak – e.g. the Kristina and the Katrina Veins.

Kristina Vein (145° strike and dips 35° SW) is hosted by dark-green amphibolitesbearing gneiss and was prospected by trenches and an old adit. The quartz vein is concordant is 1-3 m in thickness and carries sphalerite, trace pyrite, galena and assayed as high as 470 g/t silver and 206 ppb gold.

The **Katrina Vein** (56°-70° strike and 10°-50° NW dip) is hosted in a shear zone and assayed as high as 1.96 g/t gold and 290 g/t silver.

Some 1.5 km south of Mt. Grohman lie the **Glenna Adits** (two timbered adits) that follow an irregular 1.0-1.5 m shear quartz veining (140° strike and dipping at 40°-47° NE) with disseminated pyrite. Assays results were up to 75 g/t silver.

Another interesting exploration target is represented by the **Snow Flake Trench** which is a skarn and shear zone located some 1.7 km southeast of the peak of Mt. Grohman at the contact between granite and Rossland metavolcanics. Mineralization is represented by < 20% coarse disseminated pyrite within the shear and host. One grab sample assayed 250 g/t silver and 42 ppb gold.

Stream sediment sampling (also in AR20190) south of Mt. Grohman delineated a **gold anomalous zone** at the head waters of the Grohman Creek.

At the end of the 19th century old timers staked another **four Crown granted claims** (Great Western, Great Northern, Grand Trunk, and Northern Pacific) over the strike of an **extension of the Monument Vein** that is located **north of Mt. Kubin**. P.J. Santos mentioned that this extension is similar with the Mt. Grohman's Monument Vein; and he saw rusty and mineralized quartz vein samples collected by Mackenzie from these veins but he didn't assay them. A.R. Mackenzie nevertheless sampled that vein system extension and a quartz vein outcrop located on the Grand Trunk or Northern Pacific former Crown granted claims returned 111 g/t silver.

These expired Crown grant claims are not plotted on the MTO map but they show up on A.R. Mackenzie's map in AR 20950, and are also mentioned in the 1902 Annual Report of the British Columbia Ministry of Mines. As recorded on the Mackenzie map and also on recent geological maps the vein is preserved in a roof pendant that comprises the same metasedimentary and metavolcanic rocks. To be noted that an impure limestone layer is mentioned as occurring in the metasedimentary package on this part of the property.

Another first is the mentioning of a **granitic quartz breccia body** that starts from the floor of the 4th Fork South valley and goes up to the top of the mountains on the east side of the aforementioned creek. The breccia is located north of the roof pendant and is described as being "enclosed in highly altered granitic rocks which is expressed in potassic, sericitic and argillic zones of fairly narrow width". The breccia is presented as being at times vuggy and sometimes having a chalcedonic character. Prospector's Mackenzie's large (10 ft to 10 m) breccia chip and channel samples returned low silver and gold values (AR20950).

Mackenzie's moss sampling of some of the freshets located north of the breccia body returned **anomalous values** of lead (up to 483 ppm) and zinc (up to 259 ppm).

The old Ontario Crown granted claim was staked over a large quartz vein also located on the eastern side of the **4th Fork South Creek**. The vein is part of a **swarm of mineralized quartz veins** trending north-south and located immediately south of the

breccia body. The veins are reported as the **CST** Minfile mineral occurrence (082FNW265) and in the summary it is mentioned that "A sample taken in 1984 of a vein assayed 2,325 grams per tonne silver, 8.1 grams per tonne gold and 1.7 per cent lead" (AR 12907).

Five parallel mineralized veins were described in the aforementioned assessment report. They have widths of up to 4-5 m and have a strike length (measured in outcrops) of up to 500 m. All these veins are located on the Zamolxis mineral property.

6. Geological Survey

6.1 Introduction

The 2012 survey was designed as an exploratory geochemical assessment of the Monument Vein and of the host rocks in the hope that it would result in a better understanding of the genesis of the deposit and of the distribution of mineralization and its controls.

Mapping and prospecting was intended to prove the continuity of the Monument Vein and expand its strike length. The 4th South Fork Creek survey was designed to intercept some of the swarm veins mentioned at the CST location.

6.2 Results

The field survey was undertaken over seven days in the July 27 – August 3, 2012 period. The prospecting party consisted of the writer of the present report and a Field Assistant.

Grab, chip and float samples have been collected of which 49 samples had been assayed by ALS Chemex for precious, base metals, rare elements and tungsten. Occasionally, extremely hard rock (at times located on difficult to access/steep places) represented by unaltered/silicified granites and massive/not fissured quartz vein made the collection of a representative chip sample challenging – that fact resulted in the collection of a smaller amount of material than deemed necessary. In these few circumstances as there is a positive correlation between the weight/size of the sample and assay results the author considers those chip sample results as underestimating the real grade.

The Monument Vein was accessed by means of the deactivated Monument Creek forestry road. A 1960s overgrown CAT road leads to the main vein outcrops located on the northern face of the Mt. Grohman. Literature search revealed that many small cuts and trenches exist on this side of the mountain but it is likely that some of them have not been found as topography is steep, overgrown and many small rock slides have occurred during the last 45-50 years.

The Monument Vein displays good continuity and a constant attitude but it varies in thickness over short distances as a result of being hosted at an irregular contact between intrusive and the roof pendant rocks.

The top (1^{st}) cut occurs at the end of the CAT road at an altitude of 1,922 masl. At this location the Monument Vein splits in three approximately parallel veins each 40-50 cm in thickness for a total thickness of 1.4 m. Some of the interspersed waste rock (55 cm to 106 cm) and the hangingwall are represented by Rossland Group pendant rocks while the footwall is in massive granite.

Seemingly unmineralized quartz vein rock material was chip sampled and returned values up to 86.5 ppm silver, 462 ppm lead, 289 ppm zinc and 310 ppm tungsten. A 30 cm chip sample (Mo-13) of the granite footwall returned 600 ppm tungsten, while a grab sample (Mo-15) from the contact zone between the middle quartz vein and greenstone returned 4300 ppm tungsten.

Plate 1 - Monument Vein outcrop @ 420 g/t Ag over 1.15 m (Sample Mo-40)

Above the 1st cut the slope becomes steeper and scree material reveals a mixture of granite and layered/gneissic mafic metavolcanics. Some of the floats also reveal a

contact facies with granitic material interspersed with mafic amphibolic roof pendant rocks. Further east the base of the cliffs is made of granitic material. At this location above the cut a buff (albitization?) colored granitic boulder was noted to contain an over 2.5 cm bleb and rosettes of molybdenite - it was not assayed as it was preferred to be kept as a mineralized (display) rock sample.

The second cut is down slope of the first one (1,899 masl) and it displays the same geological setting but only one quartz vein that is 105 cm to over 120 cm in thickness outcrops. A 103 cm chip sample (Mo-22) of seemingly unmineralized quartz vein material returned 49.2 ppm silver. A grab sample (Mo-25) from the contact between granite and roof pendant rocks returned 144 ppm silver and 1185 ppm lead.

By following the strike of the Monument Vein down slope a few quartz vein subcrops were also noted. Some large granite floats display a pegmatitic and/or greisen facies characterized by masses of quartz and large crystals/flakes of mica.

Down slope at 1,885 masl the Monument Vein outcrops as a 150 cm massive quartz vein that has a somewhat brecciated texture caused by the presence of elongated angular fragments of roof pendant rocks encapsulated in the vein. Mineralization is represented by pyrite, pyrrhotite, galena and possible silver minerals (acanthite). A 150 cm vein chip sample (Mo-33) that also included wallrock fragments assayed 88.9 ppm silver, while a mineralized quartz vein grab sample assayed 300 ppm silver, 2370 ppm lead and 130 ppm tungsten. The vein is hosted by Rossland Group rocks and a 22 cm chip sample (Mo-35) collected from the greenstone footwall at the contact with the quartz vein assayed 50 ppm silver, 1020 lead, 330 ppm zinc and 110 ppm tungsten.

Down slope at 1,883 masl the vein was trenched but trenches are collapsed and overgrown. Waste rock material is well mineralized with sulphides and a brecciated quartz grab sample (Mo-38) from this location assayed 162 ppm silver.

Down road at 1,877 masl the quartz vein is hosted by granites (hangingwall is silicified). A chip sample (Mo-40) collected over its 150 cm thickness assayed 420 ppm silver and 3690 ppm lead. A grab sample (Mo-39) collected from the pyritized granite at the contact with the vuggy quartz vein assayed 33.9 ppm silver.

From that location downslope the vein is hosted by Rossland Group roof pendant rocks. It is a rusty (sparsely pyritized) grey to dark color amphibolite rocks displaying a gneissic texture. The rock has been forcefully injected with quartz so it displays concordant veinlets and/or veins up to 30 cm in thickness (Mo-48 returned 7.3 ppm silver). Some of the veinlets are discordant and have insinuated on fissures that are most likely coeval with the magma emplacement.

Plate 2 -Vein breccia (Mo-68&69) up to 418 g/t Ag, 0.1% Cu, 0.54% Pb, 0.14% Zn

At 1,811 masl another cut (the 3^{rd}) is to be found approximately 20 m above the CAT road at the contact between finer granite and the roof pendant rocks. The Monument Vein is 120 cm thick and displays a brecciated texture due to the inclusion of angular fragments of pendant rocks. The quartz vein is massive white to rusty and mineralized with sulphides (pyrite, pyrrhotite, and galena). The quartz vein is fissured due to the forceful intrusion of two Coryell dykes: a 12-15 cm thick dyke $75^{\circ}/290^{\circ}$ - dip and dip direction) was found to be cutting through the Monument quartz vein in the middle of the cut; and a larger mafic dyke that occurs in the western side of the cut ($80^{\circ}/270^{\circ}$). A 2011 rock sample collected directly from the quartz vein at this location assayed 554 g/t silver. A 2012 grab sample (Mo-54) assayed 53.2 ppm silver. A few other quartz and mica (at the contact with the walls) veins that are up to 20 cm thick appear in the footwall and they parallel the main Monument Vein.

From there on the western part of the CAT road (i.e. going down) cuts through rusty sparsely pyritized banded and layered amphibolites displaying a gneissic texture. The Monument Vein is most likely hosted by roof pendant rocks in this part of the

property (steep terrain prevents following the vein on strike most of the time). A sample of these amphibolites returned only slightly anomalous values.

A short road branches upslope and gets close to the contact between granites and the roof pendant rocks. It is at this location that two important floats of brecciated and heavily mineralized quartz vein material were found on the road below a hidden Monument Vein outcrop. The vein breccia is made of small (usually <1 cm) fragments of quartz cemented by massive and earthy masses of sulphides (pyrite, pyrrhotite, galena, chalcopyrite and possible silver sulphides). Assay results (Mo- 68 & 69) were up to 418 ppm silver, 952 ppm copper, 3830 ppm bismuth, 5380 ppm lead and 1435 ppm zinc.

A traverse was also effectuated in a location 500 m east of the end of the CAT road on a steep slope directly north of peak of the Mt. Grohman. Mineralized (pyrite, galena and possible acanthite) floats of vuggy quartz vein material assayed up to 507 ppm silver and 5010 ppm lead. Upslope at 2,036 masl a 9.5 m in length old adit was found to follow a 222° bearing and to intercept a 135 cm massive white but fissured and mineralized quartz vein i.e. the Monument Vein. Outside the gallery the vein is highly irregular as it bulges to over 2.4 m and then reduces its size because it follows the contact between the granite rock and the roof pendant rocks. At this location the vein was also found to encapsulate roof pendant rocks and to split in branches over short distances. A composite sample (Mo-74) collected from the entrance to the adit assayed 228 ppm silver and 2720 ppm lead.

A few of the Monument Vein samples that assayed high in bismuth were analyzed for gold (fire assay) as to find out if there is any correlation between these two metals. They assayed up to 0.21 ppm gold (Mo-69).

One day of the 2012 survey was spent on the northern slopes of an unnamed mountain that is located immediately north of Mt. Kubin. The Mackenzie described northwestern extension of the Monument Vein system was not found at that specific location – the traverse ended at 2,112 masl. Instead mapping of the roof pendant rocks and of the contact with granites was carried out.

The roof pendant rocks (greenstones) as well as the granites are cut by numerous quartz veins and veinlets that are seemingly unmineralized.

The 4th South Fork Creek zone was also prospected. Access to the creek's headwaters is hindered by a few snow avalanches events that cut large paths through the forest on the western side of the creek; as a result huge log jams were encountered on the creek and some of the logs were even forcefully pushed on the opposite side of the creek (i.e. on the road that has to be followed to get to the CST prospect). Other than that when the creek breached the dam the load of logs carried by the water cut into/eroded the eastern side of the mountain and of the forestry road. As a result the road is no longer accessible by mechanized means i.e. ATVs but can be most likely fixed.

Plate 3 - Mineralized Monument Vein in the underground (2,036 masl adit)

The traverse identified quartz and chalcedonic banded and vuggy quartz vein subcrops and floats. It is presumed to be the vein that was described as being located on the former Ontario Crown grant. Assay results from that specific location were not satisfactory.

7. Discussion and Conclusions

The 2012 survey on the Zamolxis property managed to prove that important silver base metals +/- tungsten, gold, molybdenum mineralization is associated with the Monument Vein. These finds are in line with those highlighted in previous assessment reports.

The Monument Vein presents a constant attitude, consistent thickness and ore grade silver values over important strike lengths. The distance between the original Monument claim located at 2,054 m on the east side of Grohman Mt. and the most north-western mineralized rock float - that was found by the writer of the present report - is of 1,350 m.

Taking into consideration the vein's north-western extension (covered by four old Crown grants located north of Mt. Kubin) the Monument Vein system's strike length reaches 2.5 km. Potential also exists to expand the known Monument Vein beyond its most eastern location (i.e. the Discovery Adit located on Mt.Grohman's eastern slope) as indicated by the Santos map.

The discovery of the 2,036 m in elevation old adit, which is located on the inferred strike of the Monument Vein further demonstrated that the vein intercepted by the Discovery Adit on the eastern side of the Mt. Grohman and the vein that was opened on the northern side of the aforementioned mountain are one and the same. This was also proposed by previous authors.

The 2012 discovery of brecciated and heavily mineralized quartz vein floats at the end of the eastern researched area of the Monument Vein and their associated ore grades are highly encouraging as the vein is expected to continue on that side of the property for at least a few more hundred meters. To be also noted an increase in the copper content of those samples.

To be noted that the Monument Vein displays a constant attitude and exhibits a great strike length but it is most of the times hosted at the contact between intrusive and roof pendant rocks and this makes its thickness irregular (1.2m-2.4m) over relatively short distances. At a larger scale the vein displays a constant strike (the location of the vein could be easily predicted) and that fact indicates the lack of (important) faults. On the other hand the vein seems to connect linear contact zones that are separated/interrupted by depressions/lower contact zones – in some cases the vein is choosing to go in a straight line through roof pendant rocks to connect those linear contact zones. This fact and the brecciated texture of the vein (which encapsulates angular and oriented fragments of hangingwall rocks) testify to the fact that this is a fault hosted vein.

In tungsten vein deposits the tungsten mineralization which is mostly represented by wolframite is usually formed at high temperatures; but it is also well known that scheelite like the one that occurs in the Monument Vein could be formed at lower

temperatures as well. The calcium for the scheelite mineral is most likely derived from the overlying mafic rocks (amphibolites of the Rossland Group) because of the interaction between the hot magmatic fluids and the pretty impervious cap rocks.

Vein type tungsten deposits have usually a multi-stage parageneses and the veins might present a spatial zonation of mineralization with tungsten formed within or closer to the intrusive and sulphides distal to the mineralized centre. The lower temperature scheelite bearing quartz veins usually carry gold and other sulphides.

Tungsten mineralization is hosted by both the quartz vein and the footwall rocks which are expected from this type of mineral deposit hosted in the apical part of granitic batholiths. Bradley's 1967 assessment and subsequent Property File papers indicated that possible economic tungsten mineralization exist on the property in connection with the Monument Vein. As the eastern side of Mt. Grohman represent an apical zone of the granite it is expected that higher tungsten mineralization would be found there, and this is exactly what Bradley says in his assessment of the property.

The fact that anomalous to ore grades concentrations of tungsten and molybdenum have been identified in granites opens the case for mineralized bulk targets in disseminated and/or stockwork zones located in the apical parts of the batholith. To be noted that the Mt. Nelson porphyry molybdenum property is only a few kilometers south of the Zamolxis property and it is hosted by the same intrusive rocks. Tungsten mineralization had also been found at other local mines (which indicates the capacity of the intrusive to generate tungsten mineralization) e.g. at the Alpine Gold Mine (082FNW127) and at the Meteor Mine (082FNW137) as reported by John S. Stevenson in 1941. It appears that the Nelson granites are of the I-type i.e. prone to copper, gold accumulations (porphyries and associated mineral deposits) but through differentiation they were able to produce tungsten.

According to Sillitoe and other researchers metal zoning around the batholiths indicate that within the granite or near intrusion mineralization is represented by molybdenum, iron and gold (siderophiles), and tungsten, bismuth (lithophiles). The next zone would include zinc and lead (calcophiles), then distal silver and gold. The conclusion is that at the Monument Vein gold is not necessarily linked to bismuth but it might indicate a positive correlation with iron (pyrites) or with silver.

Fisision-track evidence indicates that the Valhalla complex was lifted for about 10 km during Eocene but the Nelson batholith experienced only a 3 +/- 1 km of uplift during this period of time. In the 59-45 Ma interval during the time that the Valkyr and Slocan Lake faults were active the Nelson batholith cooled by about 100° C from about 300° C to about 200° C which is a temperature interval characteristic for the deposition of hydrothermal mineralization. That opens the doors to the possibility that during Eocene the Nelson batholith started an uplift movement which resulted in the creation of a fault/open space at the contact between intrusive and the capping rocks, void that was immediately filled by a focused discharge of magmatic fluids through

the fault/brittle zone therefore creating the Monument Vein – the tungsten and molybdenum mineralization located within the granite was formed before that at higher temperatures and depths. If this explanation is valid then the Monument Vein would also display important down dip extensions therefore increasing the economic value of the mineral deposit.

Other parts of the Zamolxis property are prospective for other types of mineral deposits e.g. the limestone from the roof pendant package that hosts the north-western extension of the Monument Vein might also display a carbonate replacement deposit and/or skarn zones. At the same time the granitic breccias from the 4th South Fork Creek might represent the apical part of a buried copper/gold subvolcanic intrusion (as I-type magmas are prone to this type of mineralization) or could host structurally controlled gold deposits.

8. Recommended Work

Further exploration work is warranted on the Zamolxis property.

Recommended work on the property includes:

- Prospecting, mapping and sampling of the eastern and western sides of the Mt. Grohman to further delineate the main body of the Monument Vein;
- Prospecting, mapping and sampling north of Mt. Kubin to identify, characterize and delineate the northwestern extension of the Monument Vein system;
- Prospecting, mapping and sampling of the southern part of the property to identify, characterize and delineate the gold skarn zone and the gold anomalous zone located at the headwaters of the Grohman Creek;
- Prospecting, mapping and sampling of the precious metals vein swarm and of the breccia zone on the 4th South Fork Creek;
- Testing the down dip extension of the Monument Vein from 4-5 locations by drilling a fan of two holes from each location having the objective to intersect the Monument Vein at 75 m and 150 m down dip;
- Upon successful completion of the previous work the next step would include drifting and underground drilling and bulk sampling of the Monument Vein.

9. Cost Statement

Salaries

Dan Oancea PGeo:	
 7.0 Days Fieldwork @ \$500/day 2.0 Days Mob/Demob @ \$500/day 	\$3,500.0 \$1,000.0
Joseph Da Silva, Field Assistant:	
- 6.0 Days @ \$260/day	\$1,560.0
Truck:	
- 6.0 Days @ \$50/day	\$300.0
ATVs (2):	
- 6.0 Days @ \$50/day	\$300.0
Gas:	\$251.06
Accommodation:	
- 8.0 Days @ \$76.5/day	\$612.0
Food:	
- 15 Days (Geo 9 Days, Assistant 6 Days) @ \$50/day	\$750.0
Equipment:	\$194.0
Analytical (ALS Chemex):	
- 49 Rock Samples	\$1,554.94
Report Cost:	
Dan Oancea PGeo	
- 5.0 Days @ \$500/day	\$2,500.0
TOTAL	\$12,522

10. References

- 1. AR 12907, 18934, 20190, 20950, 28562, 32543;
- 2. Mackenzie Tungsten Prospect, O.E. Bradley, 1967;
- 3. Fission track evidence for Cenozoic uplift of the Nelson batholiths, Donald S. Sweetkind et al. 1988 (in AR20950);
- 4. Metallogeny of the Slocan City Mining Camp, B.N. Church;
- 5. Granites and Mineral Deposits, Richard Sillitoe;
- 6. Bulletin No. 10, British Columbia Department of Mines: Tungsten Deposits of British Columbia, John S. Stevenson 1941
- 7. Vein and Greisen Sn and W Deposits, James E. Elliott et al.
- 8. Tungsten, British Geological Survey, January 2011

11. Statement of Qualifications

I, Dan V. Oancea, of 12-330 Angela Drive, Port Moody, do hereby certify that:

- 1. I am a registered Professional Geoscientist in the Province of British Columbia, Canada and a Fellow of the Geological Association of Canada.
- 2. I have a B.Sc. degree in Geological Engineering and Geophysics from Babes-Bolyai University of Cluj-Napoca, Romania, which I graduated in 1987.
- 3. I have practiced my profession for 13 years.
- 4. As a result of my experience and qualification I am a Qualified Person as defined in National Instrument 43-101.
- 5. I have authored this report which is based upon review and compilation of data relating to Zamolxis mineral property and upon personal knowledge of the property gained from on-site survey work carried out in July-August 2012.
- 6. I own 100% interest in the Zamolxis mineral property.

Vancouver,

November 26, 2012

Respectfully submitted Dan V. Oancea PGeo

Station	Sample	Sample	UTM E	UTM N	Description
	No.	Туре			
35	Mo-3	Float	473602	5499035	Massive white Q vein float + py
39	Mo-4	Grab	473756	5499247	Vuggy to massive, banded, sometimes
					chalcedonic Q vein material
209	-	-	475436	5498135	Nelson granite outcrop
210	-	-	475315	5498245	Nelson granite outcrop
211	-	-	475257	5498202	Nelson granite outcrop
44	-	-	475266	5497699	Medium grained granodiorite outcrop
45	-	-	475174	5497801	Medium grained granodiorite outcrop
47	-	-	475086	5497973	Fine layered greenstone outcrop
48	-	-	475040	5498042	Fine layered greenstone outcrop
49	-	-	475068	5498132	Medium grained granodiorite outcrop
50	-	-	475056	5498165	Contact medium grained granite/
					greenstone outcrop
51	-	-	475050	5498223	Greenstone + Q veining outcrop
52	-	-	475049	5498268	Greenstone + Q veining outcrop
65	-	-	476190	5497311	Greenstone mica rich rocks outcrop;
					floats of medium grained granite + large
					blebs of molybdenite
66	Mo-11	Chip	476185	5497297	Top cut (1 st); 50 cm form middle Q vein
66	Mo-12	Chip	476185	5497297	15 cm greenstone from middle vein's
		_			hangingwall
66	Mo-13	Chip	476185	5497297	30 cm granite in footwall of middle vein
66	Mo-14	Chip	476185	5497297	42 cm from lower Q vein
66	Mo-15	Grab	476185	5497297	Middle Q vein/greenstone footwall
					contact
66	Mo-16	Chip	476185	5497297	106 cm greenstone in between lower &
		_			middle Q veins
66	Mo-18	Chip	476185	5497297	55 cm greenstone in between middle &
		_			upper vein
66	Mo-19	Chip	476185	5497297	45 cm upper Q vein
66	Mo-21	Float	476185	5497297	Contact Q vein / greenstone
67	Mo-22	Chip	476168	5497323	2 nd cut; 103 cm upper Q vein
67	Mo-23	Grab	476168	5497323	Lower Q vein
67	Mo-24	Chip	476168	5497323	100 cm silicified granite footwall
67	Mo-25	Grab	476168	5497323	Contact Q vein/footwall granite
67	Mo-26	Float	476168	5497323	Silicified footwall granite + disseminated
					py, pyrrh
68	Mo-27	Chip	476141	5497332	85 cm chip Q vein subcrop
68	Mo-29	Grab	476141	5497332	Trench rock dump: Contact Q vein /
					greenstone sericitized
68	Mo-30	Grab	476141	5497332	Trench rock dump: Contact Q vein /

 Table 2 – Zamolxis Important Locations and Samples

					greenstone sericitized + py dissem.		
69	Mo-32	Grab	476116	5497350	7350 Q vein py, gal, other sulphides		
69	Mo-33	Chip	476116	5497350	150 cm Q vein massive to vuggy +py		
69	Mo-34	Chip	476116	5497350	25 cm sericitized greenstone fragment		
		-			included in Q vein		
69	Mo-35	Chip	476116	5497350	22 cm greenstone footwall at contact with		
					Q vein		
69	Mo-36	Chip	476116	5497350	35 cm greenstone footwall below Mo-35		
70	Mo-38	Grab	476098	5497368	Trench rock dump: Q vein brecciated;		
					matrix py, sulphides		
71	Mo-39	Grab	476074	5497377	Contact granite +py/ Q vein vuggy +		
					sulphides		
71	Mo-40	Chip	476074	5497377	115 cm Q vein		
71	Mo-41	Float	476079	5497377	Contact Q vein/ greenstone sericitized		
72	-	-	476078	5497404	Medium grained granite outcrop + Q vein		
					floats		
73	-	-	476001	5497378	Dark layered greenstone; concordant Q		
					veinlets		
74	-	-	475978	5497409	Contact granite (+mica) footwall /		
			155005		greenstone hangingwall outcrop		
75	-	-	475927	5497421	Granite porphyry (+ mica, silicified,		
			17 (00)	5405202	propylitized) outcrop		
76	-	-	4/6006	5497382	Greenstone outcrop		
11	Mo-46	Grab	4/5996	5497399	Greenstone cut by Q veins		
//	Mo-4/	Grab	4/5996	5497399	Granite + mica, Q veinlets		
/8	M0-48	Grab	4/59/4	5497409	30 cm Q vein in shaly greenstone rocks		
70	Ma 40	Crah	475055	5407419	Outcrop		
19	M0-49	Grad	473933	5497418	so chi Q ven in shary greenstone rocks		
80			475005	5407425	Cronita mety figured weekly hended		
80	-	-	473903	5497425	texture propulitic with dark venoliths of		
					greenstone rock		
197		-	475894	5497409	3^{rd} cut: 120 cm thick O vein at contact		
177			+7507+	5477407	silicified granite / greenstone rocks		
197	Mo-50	Chip	475894	5497409	40 cm greenstone rock (+ mica_dissem		
177	110 00	Cimp	110051	0 197 109	py) enclosed in the O vein		
197	Mo-51	Chip	475894	5497409	20 cm contact: silicified greenstone		
		r			hangingwall / O vein		
197	Mo-52	Chip	475894	5497409	25 cm greenstone rock from hangingwall		
197	Mo-53	Grab	475894	5497409	Lower concordant smaller (20 cm thick)		
					Q vein		
197	Mo-54	Grab	475894	5497409	Main Q vein (+ sparse py)		
81	Mo-67	Grab	475846	5497433	Greenstone (rusty amphibolites) fissured		
					+ sparsely disseminated fine py		
83	-	-	475749	5497445	Greenstone rocks outcrop; granite		

					interspersed with greenstones on the scree
84	Mo-68	Float	475790	5497456	Brecciated Q vein material; matrix
					sulphides (py, gal, chal, pyrrh)
84	Mo-69	Float	475790	5497456	Brecciated Q vein material; matrix
					sulphides (py, gal, chal, pyrrh)
87	Mo-72	Float	476643	5497227	Vuggy Q vein floats (+ py, gal, silver
					sulphides?)
88	Mo-73	Grab	476646	5497195	Old adit (2,036 masl). Inside granite
					footwall sampled
88	Mo-74	Grab	476646	5497195	Waste rocks dump composite Q vein
					material (+ py, gal, Ag sulphides?)

APPENDIX 1

ALS CHEMEX ANALYTICAL CERTIFICATE & & CHEMICAL PROCEDURES

FIRE ASSAY PROCEDURE

Au-AA25 & Au-AA26

FIRE ASSAY FUSION, AAS FINISH

SAMPLE DECOMPOSITION

Fire Assay Fusion (FA-FUS03 & FA-FUS04)

ANALYTICAL METHOD

Atomic Absorption Spectroscopy (AAS)

A prepared sample is fused with a mixture of lead oxide, sodium carbonate, borax, silica and other reagents as required, inquarted with 6 mg of gold-free silver and then cupelled to yield a precious metal bead.

The bead is digested in 0.5 mL dilute nitric acid in the microwave oven. 0.5 mL concentrated hydrochloric acid is then added and the bead is further digested in the microwave at a lower power setting. The digested solution is cooled, diluted to a total volume of 10 mL with de-mineralized water, and analyzed by atomic absorption spectroscopy against matrix-matched standards.

METHOD CODE	ELEMENT	SYMBOL	UNITS	SAMPLE WEIGHT (G)	LOWER LIMIT	UPPER LIMIT	DEFAULT OVERLIMIT METHOD
Au-AA25	Gold	Au	ppm	30	0.01	100	Au-GRA21
Au-AA26	Gold	Au	ppm	50	0.01	100	Au-GRA21

GEOCHEMICAL PROCEDURE

ME- ICP61

TRACE LEVEL METHODS USING CONVENTIONAL ICP- AES ANALYSIS

SAMPLE DECOMPOSITION

HNO₃ -HClO₄ -HF-HCl digestion, HCl Leach (GEO-4ACID)

ANALYTICAL METHOD

Inductively Coupled Plasma - Atomic Emission Spectroscopy (ICP - AES)

A prepared sample (0.25 g) is digested with perchloric, nitric, hydrofluoric and hydrochloric acids. The residue is topped up with dilute hydrochloric acid and the resulting solution is analyzed by inductively coupled plasma-atomic emission spectrometry. Results are corrected for spectral interelement interferences.

NOTE: Four acid digestions are able to dissolve most minerals; however, although the term "*near- total*" is used, depending on the sample matrix, not all elements are quantitatively extracted.

ELEMENT	SYMBOL	UNITS	LOWER LIMIT	UPPER LIMIT	DEFAULT OVER- LIMIT METHOD
Silver	Ag	ppm	0.5	100	Ag-0G62
Aluminum	Al	%	0.01	50	
Arsenic	As	ppm	5	10,000	
Barium	Ва	ppm	10	10,000	
Beryllium	Ве	ppm	0.5	1,000	
Bismuth	Ві	ppm	2	10,000	
Calcium	Са	%	0.01	50	
Cadmium	Cd	ppm	0.5	500	
Cobalt	Со	ppm	1	10,000	Co-0G62
Chromium	Cr	ppm	1	10,000	
Copper	Cu	ppm	1	10,000	Cu-0G62
Iron	Fe	%	0.01	50	
Gallium	Ga	ppm	10	10,000	
Potassium	К	%	0.01	10	
Lanthanum	La	ppm	10	10,000	
Magnesium	Mg	%	0.01	50	
Manganese	Mn	ppm	5	10,0000	

REVISION 06.02 | APR 20, 2009

WWW.ALSGLOBAL.COM

ME-ICP41a

ELEMENT	SYMBOL	UNITS	LOWER LIMIT	UPPER LIMIT	DEFAULT OVER- LIMIT METHOD
Molybdenum	Мо	ppm	1	10,000	Mo-0G62
Sodium	Na	%	0.01	10	
Nickel	Ni	ppm	1	10,000	Ni-0G62
Phosphorus	Р	ppm	10	10,000	
Lead	Pb	ppm	2	10,000	Pb-OG62
Sulphur	S	%	0.01	10	
Antimony	Sb	ppm	5	10,000	
Scandium	Sc	ppm	1	10,000	
Strontium	Sr	ppm	1	10,000	
Thorium	Th	ppm	20	10,000	
Titanium	Ti	%	0.01	10	
Thallium	TI	ppm	10	10,000	
Uranium	U	ppm	10	10,000	
Vanadium	V	ppm	1	10,000	
Tungsten	W	ppm	10	10,000	
Zinc	Zn	ppm	2	10,000	Zn-0G62

ELEMENTS LISTED BELOW ARE AVAILABLE UPON REQUEST

ELEMENT	SYMBOL	UNITS	LOWER LIMIT	UPPER LIMIT	DEFAULT OVER- LIMIT METHOD
Lithium	Li	ppm	10	10,000	
Niobium	Nb	ppm	5	2,000	
Rubidium	Rb	ppm	10	10,000	
Selenium	Se	ppm	10	1,000	
Tin	Sn	ppm	10	10,000	
Tantalum	Та	ppm	10	10,000	
Tellurium	Те	ppm	10	10,000	
Yttrium	Υ	ppm	10	10,000	
Zirconium	Zr	ppm	5	500	

GEOCHEMICAL PROCEDURE

ME- MS81

ULTRA- TRACE LEVEL METHODS

SAMPLE DECOMPOSITION

Lithium Metaborate Fusion (FUS-LI01)

ANALYTICAL METHOD

Inductively Coupled Plasma - Mass Spectroscopy (ICP - MS)

A prepared sample (0.200 g) is added to lithium metaborate flux (0.90 g), mixed well and fused in a furnace at 1000°C. The resulting melt is then cooled and dissolved in 100 mL of 4% HNO3 / 2% HCl₃ solution. This solution is then analyzed by inductively coupled plasma - mass spectrometry.

SYMBOL LOWER LIMIT **UPPER LIMIT** ELEMENT UNITS Silver* 1000 1 Ag ppm Barium Ba 0.5 10000 ppm Cerium Се 0.5 10000 ppm Cobalt 0.5 Со 10000 ppm Chromium Сг ppm 10 10000 Cesium Cs 0.01 10000 ppm Copper* Си ppm 5 10000 Dysprosium Dy 0.05 1000 ppm Erbium Er 0.03 1000 ppm ppm Europium Eu 0.03 1000 Gallium Ga 0.1 1000 ppm Gadolinium Gd ppm 0.05 1000 Hf Hafnium ppm 0.2 10000 Holmium 1000 Но ppm 0.01 Lanthanum La 0.5 10000 ppm Lutetium 0.01 1000 Lu ppm 2 Molybdenum* Мо 10000 ppm

ME- MS81

ELEMENT	SYMBOL	UNITS	LOWER LIMIT	UPPER LIMIT
Niobium	Nb	ppm	0.2	10000
Neodymium	Nd	ppm	0.1	10000
Nickel [*]	Ni	ppm	5	10000
Lead [*]	Pb	ppm	5	10000
Praseodymium	Pr	ppm	0.03	1000
Rubidium	Rb	ppm	0.2	10000
Samarium	Sm	ppm	0.03	1000
Tin	Sn	ppm	1	10000
Strontium	Sr	ppm	0.1	10000
Tantalum	Та	ppm	0.1	10000
Terbium	Tb	ppm	0.01	1000
Thorium	Th	ppm	0.05	1000
Thallium	TI	ppm	0.5	1000
Thulium	Tm	ppm	0.01	1000
Uranium	U	ppm	0.05	1000
Vanadium	V	ppm	5	10000
Tungsten	W	ppm	1	10000
Yttrium	Y	ppm	0.5	10000
Ytterbium	Yb	ppm	0.03	1000
Zinc [*]	Zn	ppm	5	10000
Zirconium	Zr	ppm	2	10000

***NOTE:** Some base metal oxides and sulfides may not be completely decomposed by the lithium borate fusion. Results for Ag, Co, Cu, Mo, Ni, Pb, and Zn will not likely be quantitative by this method.

WWW.ALSGLOBAL.COM

ME- MS81

Adding Base Metals - ME- AQ81, ME- 4ACD81

SAMPLE DECOMPOSITION

Aqua Regia (GEO-AR01) or 4-acid (GEO-4ACID)

ANALYTICAL METHOD

Inductively Coupled Plasma - Atomic Emission spectroscopy (ICP - AES)

The lithium metaborate fusion is not the preferred method for the determination of base metals. Many sulfides and some metal oxides are only partially decomposed by the borate fusion and some elements such as cadmium and zinc can be volatilized.

Base metals can be reported with ME-MS81 for either an aqua regia digestion (ME- AQ81) or a four acid digestion (ME- 4ACD81). The four acid digestion is preferred when the targets include more resistive mineralization such as that associated with nickel and cobalt

ELEMENT	SYMBOL	UNITS	LOWER LIMIT	UPPER LIMIT
Silver	Ag	ppm	0.5	100
Arsenic	As	ppm	5	10000
Cadmium	Cd	ppm	0.5	10000
Cobalt	Со	ppm	1	10000
Copper	Си	ppm	1	10000
Mercury ^{**}	Нд	ppm	1	10000
Molybdenum	Мо	ppm	1	10000
Nickel	Ni	ppm	1	10000
Lead	Pb	ppm	1	10000
Zinc	Zn	ppm	2	10000

**Hg is only offered with the aqua regia digestion.

ASSAY PROCEDURE

ME- 0G62

ORE GRADE ELEMENTS BY FOUR ACID DIGESTION USING CONVENTIONAL ICP- AES ANALYSIS

SAMPLE DECOMPOSITION

HNO₃ -HClO₄ -HF-HCl Digestion (ASY-4A01)

ANALYTICAL METHOD

Inductively Coupled Plasma - Atomic Emission Spectroscopy (ICP - AES)*

Assays for the evaluation of ores and high-grade materials are optimized for accuracy and precision at high concentrations. Ultra high concentration samples (> 15 -20%) may require the use of methods such as titrimetric and gravimetric analysis, in order to achieve maximum accuracy.

A prepared sample is digested with nitric, perchloric, hydrofluoric, and hydrochloric acids, and then evaporated to incipient dryness. Hydrochloric acid and de-ionized water is added for further digestion, and the sample is heated for an additional allotted time. The sample is cooled to room temperature and transferred to a volumetric flask (100 mL). The resulting solution is diluted to volume with de-ionized water, homogenized and the solution is analyzed by inductively coupled plasma - atomic emission spectroscopy or by atomic absorption spectrometry.

***NOTE:** ICP-AES is the default finish technique for ME-OG62. However, under some conditions and at the discretion of the laboratory an AA finish may be substituted. The certificate will clearly reflect which instrument finish was used.

ELEMENT	SYMBOL	UNITS	LOWER LIMIT	UPPER LIMIT
Silver	Ag	ppm	1	1,500
Arsenic	As	%	0.01	30
Bismuth	Ві	%	0.01	30
Cadmium	Cd	%	0.0001	10
Cobalt	Со	%	0.001	20
Chromium	Сг	%	0.002	30
Copper	Cu	٥/٥	0.001	40
Iron	Fe	%	0.01	100
Manganese	Mn	٥/٥	0.01	50
Molybdenum	Мо	%	0.001	10
Nickel	Ni	٥/٥	0.001	30
Lead	Pb	٥/٥	0.001	20
Zinc	Zn	٥/٥	0.001	30

REVISION 03.04 JAN 22, 2009

ORE GRADE ANALYSIS BY XRF

ME- XRF10

SAMPLE DECOMPOSITION

50% - 50% Li₂ B₄ O₇ - LiBO₂ (WEI- GRA06)

ANALYTICAL METHOD

X-Ray Fluorescence Spectroscopy (XRF)

A calcined or ignited sample (0.9 g) is added to 9.0g of Lithium Borate Flux (50 % - 50 % $Li_2 B_4 O_7 - LiBO_2$), mixed well and fused in an auto fluxer between 1050 - 1100°C. A flat molten glass disc is prepared from the resulting melt. This disc is then analysed by X-ray fluorescence spectrometry.

ELEMENT	SYMBOL	UNITS	LOWER LIMIT	UPPER LIMIT
Barium	Ва	%	0.01	50
Niobium	Nb	%	0.01	10
Antimony	Sb	0/0	0.01	50
Tin	Sn	%	0.01	60
Tantalum	Та	0/0	0.01	50
Thorium	Th	%	0.01	15
Uranium	U	%	0.01	15
Tungsten	W	%	0.01	50
Zirconium	Zr	0/0	0.01	50

ELEMENTS LISTED BELOW ARE AVAILABLE UPON REQUEST

ELEMENT	SYMBOL	UNITS	LOWER LIMIT	UPPER LIMIT
Iron	Fe ₂ O ₂	%	0.01	100
Potassium	K ₂ 0	%	0.01	100
Magnesium	MgO	%	0.01	100
Sodium	Na ₂ 0	%	0.01	100

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 WWW.alsglobal.com

To: OANCEA, DAN V. 12 - 330 ANGELA DRIVE PORT MOODY BC V3H 1R8

INVOICE NUMBER 2707540

		ANALYSED FOR			UNIT		
	BILLING INFORMATION		QUANTITY	CODE -	DESCRIPTION	PRICE	TOTAL
Contificator			1	BAT- 01	Administration Fee	33.10	33.10
Certificate:	VA12197969		22	PREP-31	Crush, Split, Pulverize	7.45	163.90
Sample Type:	Rock		6.54	PREP-31	Weight Charge (kg) - Crush, Split, Pulverize	0.70	4.58
Account:	OANDAN		22	ME- ICP61	33 element four acid ICP- AES	14.90	327.80
Date:	9- SEP- 2012		8	Ag- OG62	Ore Grade Ag - Four Acid	2.45	19.60
Broject	Zamolyic		8	ME- OG62	Ore Grade Elements - Four Acid	11.15	89.20
Project.	Zamoixis						
P.O. No.:							
Quote:							
Terms:	Due on Receipt	C3					
Comments:							
					SUBTOTAL (CAD) \$	638.18
_					R100938885 HST BC	5	76.58
To:	OANCEA, DAN V.						
					TOTAL PAYABLE (CAD) \$	714.76
	PORT MOODY BC V3H 1R8						

Payment may be made by: Cheque or Bank Transfer

Beneficiary Name:ALS Canada Ltd.Bank:Royal Bank of CanadaSWIFT:ROYCCAT2Address:Vancouver, BC, CANAccount:003-00010-1001098Please send payment info to accounting.canusa@alsglobal.com

Please Remit Payments To : **ALS Canada Ltd.**

2103 Dollarton Hwy North Vancouver BC V7H 0A7

ALS Canada Ltd. 2103 Dollarton Hwy North Vancouver BC V7H 0A7

Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: OANCEA, DAN V. 12 - 330 ANGELA DRIVE PORT MOODY BC V3H 1R8

Page: 1 Finalized Date: 9- SEP- 2012 This copy reported on 10- SEP- 2012 Account: OANDAN

CERTIFICATE VA12197969

Project: Zamolxis

P.O. No.:

This report is for 22 Rock samples submitted to our lab in Vancouver, BC, Canada on 27- AUG- 2012.

The following have access to data associated with this certificate:

DAN OANCEA

SAMPLE PREPARATION					
ALS CODE	DESCRIPTION				
WEI- 21	Received Sample Weight				
LOG-22	Sample login - Rcd w/o BarCode				
CRU- 31	Fine crushing - 70% < 2mm				
SPL- 21	Split sample - riffle splitter				
PUL- 31	Pulverize split to 85% < 75 um				

	ANALYTICAL PROCEDURES	
ALS CODE	DESCRIPTION	INSTRUMENT
ME- ICP61	33 element four acid ICP- AES	ICP- AES
Ag- OG62	Ore Grade Ag - Four Acid	VARIABLE
ME- OG62	Ore Grade Elements - Four Acid	ICP- AES

To: OANCEA, DAN V. ATTN: DAN OANCEA 12 - 330 ANGELA DRIVE PORT MOODY BC V3H 1R8

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

Signature:

Colin Ramshaw, Vancouver Laboratory Manager

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: OANCEA, DAN V. 12 - 330 ANGELA DRIVE PORT MOODY BC V3H 1R8

Page: 2 - A Total # Pages: 2 (A - C) Finalized Date: 9- SEP- 2012 Account: OANDAN

Project: Zamolxis

Sample Description	Method	WEI- 21	ME- ICP61													
	Analyte	Recvd Wt.	Ag	Al	As	Ba	Be	Bi	Ca	Cd	Co	Cr	Cu	Fe	Ga	K
	Units	kg	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%	ppm	%
	LOR	0.02	0.5	0.01	5	10	0.5	2	0.01	0.5	1	1	1	0.01	10	0.01
Mo- 03		0.22	4.1	0.83	8	120	0.5	12	0.04	<0.5	19	12	14	3.66	<10	0.46
Mo- 04		0.36	<0.5	1.74	7	110	0.8	<2	0.08	<0.5	1	49	1	0.68	10	0.79
Mo- 11		0.28	15.5	0.16	<5	10	<0.5	43	0.15	9.7	7	10	40	1.92	<10	0.08
Mo- 14		0.68	27.5	0.26	8	20	<0.5	48	0.08	2.5	9	21	23	1.73	<10	0.15
Mo- 19		0.28	86.5	6.19	<5	420	2.8	1450	1.15	24.8	16	274	120	9.47	20	4.31
Mo- 22		0.34	49.2	1.85	12	180	0.8	577	0.05	1.3	2	66	77	5.03	10	0.98
Mo- 25		0.58	>100	6.91	<5	540	2.8	1540	12.60	24.7	4	13	66	4.29	30	3.85
Mo- 27		0.22	2.0	0.22	7	20	<0.5	22	0.21	<0.5	1	10	24	1.07	<10	0.13
Mo- 30		0.38	2.5	0.43	7	40	<0.5	10	0.02	1.0	4	19	12	1.40	<10	0.23
Mo- 32		0.36	>100	0.77	<5	80	<0.5	912	0.02	7.8	1	38	46	1.11	<10	0.41
Mo- 33		0.30	88.9	0.29	7	30	<0.5	285	0.07	38.0	14	18	257	3.58	<10	0.17
Mo- 38		0.46	>100	1.22	<5	90	0.5	367	0.03	0.5	<1	28	53	3.08	<10	0.54
Mo- 39		0.26	33.9	0.73	11	50	<0.5	82	0.01	1.0	179	12	134	3.79	<10	0.39
Mo- 40		0.10	>100	0.47	7	40	<0.5	1480	0.02	7.2	2	14	48	3.02	<10	0.20
Mo- 48		0.42	7.3	6.75	7	500	2.4	40	0.47	17.3	24	301	51	6.56	20	4.26
Mo- 53		0.08	2.3	3.67	6	350	1.6	4	1.58	2.4	2	8	17	1.49	10	2.00
Mo- 54		1.06	53.2	1.11	<5	90	0.5	380	0.36	11.6	4	16	43	2.12	<10	0.52
Mo- 67		0.38	0.9	7.41	9	680	5.7	5	5.05	<0.5	17	28	82	6.47	20	1.92
Mo- 68		0.68	>100	0.49	18	40	0.8	1820	0.04	19.1	44	9	343	8.16	<10	0.20
Mo- 69		0.14	>100	0.11	<5	10	<0.5	3830	0.01	29.7	74	9	952	15.80	<10	0.03
Mo- 72		0.34	>100	0.13	8	10	<0.5	1010	0.02	1.5	2	12	11	0.99	<10	0.06
Mo- 74		0.50	>100	1.52	9	120	0.8	385	1.39	0.9	13	35	35	2.98	<10	0.82

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: OANCEA, DAN V. 12 - 330 ANGELA DRIVE PORT MOODY BC V3H 1R8

Page: 2 - B Total # Pages: 2 (A - C) Finalized Date: 9- SEP- 2012 Account: OANDAN

Project: Zamolxis

Sample Description	Method	ME- ICP61	ME- ICP61	ME- ICP61	ME- ICP61	ME- ICP61	ME- ICP61	ME- ICP61	ME- ICP61	ME- ICP61	ME- ICP61	ME- ICP61	ME- ICP61	ME- ICP61	ME- ICP61	ME- ICP61
	Analyte	La	Mg	Mn	Mo	Na	Ni	P	Pb	S	Sb	Sc	Sr	Th	Ti	TI
	Units	ppm	%	ppm	ppm	%	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%	ppm
	LOR	10	0.01	5	1	0.01	1	10	2	0.01	5	1	1	20	0.01	10
Mo- 03		<10	0.05	73	8	0.03	9	80	19	2.94	<5	1	7	<20	0.01	<10
Mo- 04		<10	0.16	94	1	0.08	8	120	5	0.01	<5	1	52	<20	0.05	<10
Mo- 11		<10	0.05	110	2	0.01	15	10	232	0.89	<5	<1	5	<20	0.01	<10
Mo- 14		<10	0.11	180	1	0.01	2	30	251	0.27	<5	1	5	<20	0.01	<10
Mo- 19		<10	3.02	1610	4	0.04	53	690	462	1.66	<5	19	47	<20	0.31	<10
Mo- 22 Mo- 25 Mo- 27 Mo- 30 Mo- 32		<10 <10 <10 <10 <10 <10	0.36 1.32 0.03 0.08 0.06	351 6520 224 241 82	7 39 1 2 36	0.02 0.09 0.01 0.01 0.01	1 27 <1 4 <1	260 290 30 30 30	486 1185 33 25 2370	0.22 0.50 0.05 0.60 1.11	<5 6 <5 <5 <5	3 10 <1 1 1	7 444 8 2 3	<20 <20 <20 <20 <20	0.06 0.11 0.01 0.01 0.02	<10 <10 <10 <10 <10 <10
Mo- 33		<10	0.04	143	9	0.01	10	50	626	2.60	<5	1	2	<20	0.01	<10
Mo- 38		<10	0.07	172	5	0.03	<1	170	3120	0.37	<5	2	8	<20	0.03	<10
Mo- 39		<10	0.05	95	2	0.04	24	10	289	2.93	<5	<1	5	<20	0.01	<10
Mo- 40		<10	0.03	168	6	0.01	1	60	3690	0.58	<5	1	3	<20	0.01	<10
Mo- 48		20	3.71	2900	4	0.34	147	990	165	0.04	<5	22	58	<20	0.34	<10
Mo- 53		20	0.35	555	3	0.05	<1	280	39	0.27	<5	2	47	<20	0.11	<10
Mo- 54		<10	0.20	371	4	0.04	<1	140	629	0.73	<5	2	15	<20	0.04	<10
Mo- 67		10	1.04	1275	3	2.06	6	800	20	0.25	5	20	319	<20	0.56	<10
Mo- 68		<10	0.06	986	2	0.10	<1	10	5380	1.68	<5	<1	12	<20	0.01	<10
Mo- 69		<10	0.01	66	7	<0.01	3	<10	2190	>10.0	7	<1	1	<20	<0.01	<10
Mo- 72		<10	0.01	110	1	0.01	<1	10	5010	0.18	<5	<1	2	<20	0.01	<10
Mo- 74		<10	0.23	617	<1	0.02	22	50	2720	1.49	<5	2	41	<20	0.04	<10

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: OANCEA, DAN V. 12 - 330 ANGELA DRIVE PORT MOODY BC V3H 1R8

Page: 2 - C Total # Pages: 2 (A - C) Finalized Date: 9- SEP- 2012 Account: OANDAN

Project: Zamolxis

Sample Description	Method Analyte Units LOR	ME- ICP61 U ppm 10	ME- ICP61 V ppm 1	ME- ICP61 W ppm 10	ME- ICP61 Zn ppm 2	Ag- OG62 Ag ppm 1	
Mo- 03 Mo- 04 Mo- 11 Mo- 14 Mo- 19		<10 <10 <10 <10 <10	13 11 3 6 149	210 <10 250 280 310	7 18 55 41 289		
Mo- 22 Mo- 25 Mo- 27 Mo- 30 Mo- 32		<10 <10 <10 <10 <10 <10	35 81 4 7 14	1190 80 260 40 130	98 74 12 24 12	144 300	
Mo- 33 Mo- 38 Mo- 39 Mo- 40 Mo- 48		<10 <10 10 <10 <10	6 20 5 8 178	10 <10 10 10 30	411 62 6 54 490	162 420	
Mo- 53 Mo- 54 Mo- 67 Mo- 68 Mo- 69		<10 <10 <10 10 <10	30 24 268 4 1	300 10 <10 10 160	62 157 114 1435 14	392 418	
Mo- 72 Mo- 74		<10 <10	3 17	<10 10	5 30	507 228	

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: OANCEA, DAN V. 12 - 330 ANGELA DRIVE PORT MOODY BC V3H 1R8

INVOICE NUMBER 2707531

				ANALY	SED FOR		UNIT	
	BILLING INFORMATION		QUANTITY	CODE -	DESCRIPTION		PRICE	TOTAL
Certificate: Sample Type Account: Date: Proiect: P.O. No.: Quote: Terms: Comments:	VA12199031 Rock OANDAN 11- SEP- 2012 Zamolxis Due on Receipt	С3	4 1.60 4 4	PREP- 31 PREP- 31 ME- MS81 ME- 4ACD81	Crush, Split, Pulverize Weight Charge (kg) - Crush, Sp 38 element fusion ICP- MS Base Metals by 4- acid dig.	it, Pulverize	7.45 0.70 31.45 7.45	29.80 1.12 125.80 29.80
To:	OANCEA, DAN V. ATTN: DAN OANCEA 12 - 330 ANGELA DRIVE PORT MOODY BC V3H 1R8					SUBTOTAL (CAD) R100938885 HST BC TOTAL PAYABLE (CAD)	\$ \$	186.52 22.38 208.90
			P	Payment may be	made by: Cheque or Bank Transfe	r		
	Please Remit Payments To :		B S A	Beneficiary Name Bank: SWIFT: Address:	e: ALS Canada Ltd. Royal Bank of Canada ROYCCAT2 Vancouver, BC, CAN			

2103 Dollarton Hwy North Vancouver BC V7H 0A7

ALS Canada Ltd.

003-00010-1001098 Account:

Please send payment info to accounting.canusa@alsglobal.com

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: OANCEA, DAN V. 12 - 330 ANGELA DRIVE PORT MOODY BC V3H 1R8

CERTIFICATE VA12199031

Project: Zamolxis

P.O. No.:

This report is for 4 Rock samples submitted to our lab in Vancouver, BC, Canada on 27- AUG- 2012.

The following have access to data associated with this certificate:

ALS Canada Ltd.

DAN OANCEA

	SAMPLE PREPARATION							
ALS CODE	DESCRIPTION							
WEI- 21	Received Sample Weight							
LOG- 22	Sample login - Rcd w/o BarCode							
CRU- 31	Fine crushing - 70% < 2mm							
SPL- 21	Split sample - riffle splitter							
PUL- 31	Pulverize split to 85% < 75 um							

	ANALYTICAL PROCEDUR	RES
ALS CODE	DESCRIPTION	INSTRUMENT
ME- MS81	38 element fusion ICP- MS	ICP- MS
ME- 4ACD81	Base Metals by 4- acid dig.	ICP- AES

To: OANCEA, DAN V. ATTN: DAN OANCEA 12 - 330 ANGELA DRIVE PORT MOODY BC V3H 1R8

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

Signature:

Colin Ramshaw, Vancouver Laboratory Manager

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: OANCEA, DAN V. 12 - 330 ANGELA DRIVE PORT MOODY BC V3H 1R8

Page: 2 - A Total # Pages: 2 (A - C) Finalized Date: 11- SEP- 2012 Account: OANDAN

Project: Zamolxis

Sample Description	Method Analyte Units LOR	WEI- 21 Recvd Wt. kg 0.02	ME- MS81 Ba ppm 0.5	ME- MS81 Ce ppm 0.5	ME- MS81 Cr ppm 10	ME- MS81 Cs ppm 0.01	ME- MS81 Dy ppm 0.05	ME- MS81 Er ppm 0.03	ME- MS81 Eu ppm 0.03	ME- MS81 Ga ppm 0.1	ME- MS81 Gd ppm 0.05	ME- MS81 Hf ppm 0.2	ME- MS81 Ho ppm 0.01	ME- MS81 La ppm 0.5	ME- MS81 Lu ppm 0.01	ME- MS81 Nb ppm 0.2
Mo- 26 Mo- 29 Mo- 35 Mo- 52		0.34 0.56 0.30 0.40	1200 83.8 669 837	72.8 6.7 22.7 33.0	50 80 310 80	12.25 23.6 21.1 5.65	2.30 0.89 1.50 2.91	1.07 0.50 0.79 1.64	1.27 0.32 0.56 1.12	20.1 4.7 22.4 18.5	3.61 0.96 1.82 3.29	3.9 0.2 2.7 2.8	0.43 0.19 0.30 0.61	40.0 3.2 12.6 17.4	0.16 0.08 0.12 0.24	14.0 2.5 9.7 5.6

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: OANCEA, DAN V. 12 - 330 ANGELA DRIVE PORT MOODY BC V3H 1R8

Page: 2 - B Total # Pages: 2 (A - C) Finalized Date: 11- SEP- 2012 Account: OANDAN

Project: Zamolxis

Sample Description	Method Analyte Units LOR	ME- MS81 Nd ppm 0.1	ME- MS81 Pr ppm 0.03	ME- MS81 Rb ppm 0.2	ME- MS81 Sm ppm 0.03	ME- MS81 Sn ppm 1	ME- MS81 Sr ppm 0.1	ME- MS81 Ta ppm 0.1	ME- MS81 Tb ppm 0.01	ME- MS81 Th ppm 0.05	ME- MS81 Tl ppm 0.5	ME- MS81 Tm ppm 0.01	ME- MS81 U ppm 0.05	ME- MS81 V ppm 5	ME- MS81 W ppm 1	ME- MS81 Y ppm 0.5
Mo- 26 Mo- 29 Mo- 35 Mo- 52		28.2 3.6 10.4 15.8	8.01 0.82 2.70 4.01	234 145.0 377 96.4	4.92 0.90 2.17 3.51	5 1 6 2	396 59.0 62.6 665	1.4 0.2 0.8 0.5	0.46 0.14 0.26 0.48	15.85 0.91 5.12 7.32	1.2 1.4 2.5 0.6	0.17 0.09 0.14 0.25	5.37 0.40 3.13 2.95	68 30 187 193	20 3 110 1	11.8 5.2 8.3 16.3

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: OANCEA, DAN V. 12 - 330 ANGELA DRIVE PORT MOODY BC V3H 1R8

Page: 2 - C Total # Pages: 2 (A - C) Finalized Date: 11- SEP- 2012 Account: OANDAN

Project: Zamolxis

Sample Description	Method Analyte Units LOR	ME- MS81 Yb ppm 0.03	ME- MS81 Zr ppm 20	ME- 4ACD81 Ag ppm 0.5	ME- 4ACD81 As ppm 5	ME- 4ACD81 Cd ppm 0.5	ME- 4ACD81 Co ppm 1	ME- 4ACD81 Cu ppm 1	ME- 4ACD81 Mo ppm 1	ME- 4ACD81 Ni ppm 1	ME- 4ACD81 Pb ppm 2	ME- 4ACD81 Sc ppm 1	ME- 4ACD81 Zn ppm 2		
Mo- 26 Mo- 29 Mo- 35 Mo- 52		1.00 0.49 0.82 1.53	140 <20 90 90	<0.5 19.0 50.0 <0.5	<5 <5 <5 <5	0.6 21.5 13.2 <0.5	4 3 7 14	5 9 139 83	<1 <1 22 1	10 14 2 12	9 236 1020 14	5 3 16 14	63 111 330 71	 	

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: OANCEA, DAN V. 12 - 330 ANGELA DRIVE PORT MOODY BC V3H 1R8

INVOICE NUMBER 2707549

				ANALY	YSED FOR		UNIT	
	BILLING INFORMATION		QUANTITY	CODE -	DESCRIPTION		PRICE	TOTAL
Certificate: Sample Type: Account: Date: Proiect: P.O. No.: Quote: Terms: Comments:	VA12199030 Rock OANDAN 10- SEP- 2012 Zamolxis Due on Receipt	C3	17 3.66 17 17	PREP- 31 PREP- 31 W- XRF10 ME- XRF10	Crush, Split, Pulverize Weight Charge (kg) - Crush, Spli Fusion XRF - W Ore Grade Fusion XRF - Ore Grade	t, Pulverize	7.45 0.70 3.70 14.90	126.65 2.56 62.90 253.30
To:	OANCEA, DAN V. ATTN: DAN OANCEA 12 - 330 ANGELA DRIVE PORT MOODY BC V3H 1R8		P	'ayment may be	made by: Cheque or Bank Transfer	SUBTOTAL (CAD) R100938885 HST BC TOTAL PAYABLE (CAD)	\$ \$	445.41 53.45 498.86
			B	eneficiary Name ank:	e: ALS Canada Ltd. Royal Bank of Canada			

Please Remit Payments To : ALS Canada Ltd.

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Beneficiary Name:ALS Canada Ltd.Bank:Royal Bank of CanadaSWIFT:ROYCCAT2Address:Vancouver, BC, CANAccount:003-00010-1001098Please send payment info to accounting.canusa@alsglobal.com

ALS Canada Ltd. 2103 Dollarton Hwy North Vancouver BC V7H 0A7

Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: OANCEA, DAN V. 12 - 330 ANGELA DRIVE PORT MOODY BC V3H 1R8

Page: 1 Finalized Date: 10- SEP- 2012 This copy reported on 11- SEP- 2012 Account: OANDAN

CERTIFICATE VA12199030

Project: Zamolxis

P.O. No.:

This report is for 17 Rock samples submitted to our lab in Vancouver, BC, Canada on 27- AUG- 2012.

The following have access to data associated with this certificate:

DAN OANCEA

	SAMPLE PREPARATION
ALS CODE	DESCRIPTION
WEI- 21	Received Sample Weight
LOG-22	Sample login - Rcd w/o BarCode
CRU- 31	Fine crushing - 70% < 2mm
SPL- 21	Split sample - riffle splitter
PUL- 31	Pulverize split to 85% < 75 um

	ANALYTICAL PROCEDURE	S
ALS CODE	DESCRIPTION	INSTRUMENT
W-XRF10	Fusion XRF - W Ore Grade	XRF
ME- XRF10	Fusion XRF - Ore Grade	XRF
OA- GRA06	LOI for ME- XRF06	WST- SIM

To: OANCEA, DAN V. ATTN: DAN OANCEA 12 - 330 ANGELA DRIVE PORT MOODY BC V3H 1R8

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

Signature:

Colin Ramshaw, Vancouver Laboratory Manager

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: OANCEA, DAN V. 12 - 330 ANGELA DRIVE PORT MOODY BC V3H 1R8 Page: 2 - A Total # Pages: 2 (A) Finalized Date: 10- SEP- 2012 Account: OANDAN

Project: Zamolxis

Sample Description	Method Analyte Units LOR	WEI- 21 Recvd Wt. kg 0.02	W- XRF10 W % 0.01			
Mo- 12 Mo- 13 Mo- 15 Mo- 16 Mo- 18		0.14 0.22 0.36 0.08 0.04	0.01 0.06 0.43 0.01 0.01			
Mo- 21 Mo- 23 Mo- 24 Mo- 34 Mo- 36		0.44 0.34 0.06 0.08 0.10	0.01 0.01 0.01 0.12 0.01			
Mo- 41 Mo- 46 Mo- 47 Mo- 49 Mo- 50		0.38 0.18 0.34 0.46 0.32	0.01 0.01 0.01 0.01 0.01			
Mo- 51 Mo- 73		1.02 0.26	0.01			

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: OANCEA, DAN V. 12 - 330 ANGELA DRIVE PORT MOODY BC V3H 1R8

INVOICE NUMBER 2723491

BILLING INFORMATION			ANALYSED FOR QUANTITY CODE - DESCRIPTION				UNIT PRICE TOTAL		
Certificate: Sample Type: Account: Date: Proiect: P.O. No.: Quote:	VA12217801 Rock OANDAN 21- SEP- 2012 Zamolxis		6	Au- AA26	Ore Grade Au 50g FA AA finish		19.75	118.50	
Terms: Comments:	Due on Receipt	C3							
						SUBTOTAL (CAD)	\$	118.50	
To: O	ANCEA. DAN V.					R100938885 HST BC	\$	14.22	

TOTAL PAYABLE (CAD) \$ 132.72

ATTN: DAN OANCEA 12 - 330 ANGELA DRIVE PORT MOODY BC V3H 1R8

Payment may be made by: Cheque or Bank Transfer

Beneficiary Name:ALS Canada Ltd.Bank:Royal Bank of CanadaSWIFT:ROYCCAT2Address:Vancouver, BC, CANAccount:003-00010-1001098Please send payment info to accounting.canusa@alsglobal.com

Please Remit Payments To : ALS Canada Ltd. 2103 Dollarton Hwy

North Vancouver BC V7H 0A7

ALS Canada Ltd. 2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com To: OANCEA, DAN V. 12 - 330 ANGELA DRIVE PORT MOODY BC V3H 1R8

CERTIFICATE VA12217801

Project: Zamolxis

P.O. No.:

This report is for 6 Rock samples submitted to our lab in Vancouver, BC, Canada on 13- SEP- 2012.

The following have access to data associated with this certificate:

DAN OANCEA

SAMPLE PREPARATION							
ALS CODE	DESCRIPTION						
FND- 02	Find Sample for Addn Analysis						
ANALYTICAL PROCEDURES							
ALS CODE	DESCRIPTION	INSTRUMENT					
Au- AA26	Ore Grade Au 50g FA AA finish	AAS					

To: OANCEA, DAN V. ATTN: DAN OANCEA 12 - 330 ANGELA DRIVE PORT MOODY BC V3H 1R8

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

Signature:

Colin Ramshaw, Vancouver Laboratory Manager

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: OANCEA, DAN V. 12 - 330 ANGELA DRIVE PORT MOODY BC V3H 1R8

Page: 2 - A Total # Pages: 2 (A) Finalized Date: 21- SEP- 2012 Account: OANDAN

Project: Zamolxis

Sample Description	Method Analyte Units LOR	Au- AA26 Au ppm 0.01
Mo- 19 Mo- 25 Mo- 40 Mo- 68 Mo- 69		0.04 0.03 0.11 0.11 0.21
Mo- 72		0.05

63

087FNW 264

CANADIAN EXPLORATION LIMITED

SALMO, B. C.

MacKenzie Tungsten Prospect

Monument Creek, Nelson, B. C.

Grid File 82F 11

O. E. Bradley Senior Geologist Jersey Mine,

Pur: 167

CANADIAN EXPLORATION LIMITED

SALMO, B. C.

TO: C. E. Brown FROM: O. E. Bradley SUBJECT: MacKenzie Tungsten Prospect, Monument Creek, Nelson, B. C. Grid File 82F 11.

RECOMMENDATIONS: That Canex Aerial Exploration maintain contact with Mr. R. M. MacKenzie and assess any new areas of tungsten mineralization located on his property.

EXAMINED: August 21, 1967 by O. E. Bradley (Geology) and J. D. Bishop. (Survey)

LOCATION: The property is located on the north flank of Grohman Mountain (Monument Peak) ten miles north of Nelson, B. C. at an elevation of approximately 6500 feet. Access is by way of a logging road up Lemon Creek (4 miles south of Slocan City).

OWNERSHIP: Several claims and three Crown Grants are currently held in good standing by R. M. MacKenzie of Nelson, B. C. Mr. MacKenzie may be contacted by mail at 1409 Front Street, Nelson, B. C. or by phone at 352 3219. Mr. MacKenzie believes that the claims held by Kabatoff, Winlaw, B. C. (refer to attached memo T. S. Smith, 19 Sept ember, 1966) which adjoin MacKenzie property, have lapsed.

HISTORY: Refer to Minister of Mines report 1901, p. 1109 Monument Group, Nelson, B. C.

A 10 foot prospect adit (station 10 on 50 scale plan) was driven into a quartz vein around 1900. This work was presumably done for gold and silver.

GENERAL GEOLOGY: Refer to G.S.C. Memoir 308 by H. W. Little, Nelson, West Half.

A remnant of the Rossland Formation (Lower Jurassic) lies within the Nelson Batholith (Lower Cretaceous) on the north side of Grohman Mountain. The Rossland volcanic rock has a strike of 133° and a dip of 50° to the southwest.

RECENT WORK: Approximately 360 feet of cat road has exposed the quartz vein in several places, northwest of the original adit. Mr. MacKenzie has purchased a Copco "Cobra" drill and has blasted small open cuts along the strike of the vein (refer to 50 scale plan). Approximately 1000 feet northwest of the adit a cut exposes what is presumed to be the same vein.

2

2)

DETAILED GEOLOGY: A quartz vein averaging 4 feet in thickness, striking 123 to 140 degrees and dipping 30 to 40 degrees southwest was traced for 1000 feet along the north slope of Grohman Mountain. In most of the exposures examined the vein is contained in a greenish volcanic rock with pro minent mafic minerals. This rock grades into what may be loosely described as a paragneiss (gneissic texture with stringers of granite looking material, parallel to the band ing in the volcanic). The volcanic is underlain and overlain in many places by a buff coloured granite. The volcanics may be a series of roof pendants in the granite. Banding (bedding?) in the volcanic has an attitude of SWOE/30S.W. Α small cross vein of quartz was located at station 9C having an attitude of SlOE/65W. At station 8A a bed of shaly gouge material overlay the quartz vein. Two narrow lamprophyre dykes were mapped. Both cut the regional structure and had a southerly strike.

A projection of the quartz vein south east from station 3C, based on Brunton measured strikes and dips and transit surveyed coordinates and elevations, ties in quite well with the downdip projection of the vein in the adit at station 10.

MINERALIZATION: The quartz vein contains scheelite as well as silvera and minor amounts of gold. The best scheelite is in the area of the old adit. An open cut approximately 400 feet east of the adit exposes what may be the same quartz vein mineralized with large rosettes of molybdenite. These patches of molybdenum are up to 1 inch in diameter, but are few and far between. Samples from this cut were lamped and did not show any fluorescence.

ASSAY RESULTS:

- 1. Adit originally sampled by T. S. Smith and C. E. Dunn results of Smith's work appended. Tungsten assays in this adit are believed to average 2% WO₃ over 5 feet.
- 2. Vein sampled by O. E. Bradley July 14, 1967 on prelimin ary examination of property refer to 100 scale plan, tape and compass survey. These samples averaged 0.04% WO₂ between stations 8 and 9.
- 3. Vein sampled by R. M. MacKenzie August 8, 1967 at stations 9E and 9B results appended average assay 0.13% WO₃. Composite for gold and silver assayed trace Au, 2.42 oz. Ag.
- 4. Vein sampled by O. E. Bradley August 21, 1967 results appended and marked on 50 scale plan.

3

3)

5. As can be seen by the erratic nature of the assays, this vein requires a more detailed sampling procedure.

CONCLUSIONS:

- 1. Scheelite mineralization occurs in or immediately adjacent to the quartz vein which traverses the property. The mineralized material adjacent to the vein is a darkish highly oxidized and very crumbly rock.
- 2. The quartz vein is continuous over 1000 feet at least.
- 3. Sampling to date is insufficient to establish a tungsten grade for the vein.
- 4. It appears that economic tungsten grade does not continue north westerly beyond station number 9 (at least on surface).
- 5. Silver values contained in the quartz up to 7 oz. per ton are reported by R. M. MacKenzie.
- 6. Assuming mineralization of ore grade exists from station 9E to the adit, plus an equal distance beyond (220 feet total) and projecting 150 feet downdip, a reserve of 150 x 220 x 8/ = 22,000 tons may exist. These measure ments are maximum at this time.
- 7. As only one day and one evening were spent on the property by the writer, it may be worthwhile to have a more thorough examination in the immediate area.
- 8. Stripping southeasterly along the vein by a Cat is probably the cheapest method of further assessment at this time.

Respectfully submitted,

O. E. Bradley /P. Eng. Senior Geologist.

OEB/jm

25 August, 1967.

1/ Als vein, well mineralized with Scheefice 4" Hick stk. 140°, dip 30 S.N. chip sample i across dip by mple, reported ip by R.M. Mackensi 0.09 WOz Chip sample reported across dip - by R.M. Mackensie 0.20 WO3 0.21 " PIT 3 Qta vein love Hickness . 4' CHIP SAMPLE - CANER AERIAL NO. 432 0.05% WO3 frue thickness = 4' vein 0.03% W03 CNIP SAMPLE - CANES ACRIAL NO. 431 CREEK MACKENZIE PROPEN MONUMENT CREEN 82F-11 greenish, bedded volconic rock. minor spects of scheelle in gle . (same seis , higher class) . Ħ PIT I strike 155°, dip 1 30° 7 - Q12 vin leve thickness . 4' Very minor specks of scheelite Chip sample - CANEX RERIAL NO. 430 N.D.

qtz ven 15333

face.

Sample Nbr. Description Results 15350 Chip across 25" of schist, 0.10 %. WO2 perpendicular to footwall of vein., 0.28 02. Ag. very minor scheelite, E 3.73 % WO3 シント chip across 8" of scheelite - Qtz 15251 stringers on footwall of vein. - highest grade scheeline observed. 0.15 1. WOz SUMPLE Chip across 22" of voin, very 15322 . minor scheelite observed. 6.12 %. WO3 chip across " of scheelite -15383 . ate stringers on footwell of vein, tree thickness of stringer zone estimated to be 1 Rundom thip across vein and. 15324 . 0.40°1. W03 NO both walls., very minor scheelite Doll " WOg , V (chip across 30", includes both . 15385 1 K@ wails of veiz, Arry EXPL. RES: 3 of VEIN S. PLING . 16 H.J.

- TO:					7				(600) 67041 04-50353 ADDRI 55; ELDRICO		
Amox Exploration Inc.	······································		Glass	tiliceto of	Deres 1	MAV 2 1	10:00		· · ·		
601 535 Thurlow Street.	• .	C.	9 67 A. 6 9 67 A. 6	51818638 448 12 10 10 10 10 10	202120031 20212035		1308	•. •			
	•		54422	SI KLN			i hand I	TILE NO. a.3-	4-4-68-3		
Vancouver,		WARN	OPESSI OCK HE	ONAL SERVI RSEY INTERN	ATIONAL LIM	WANCOUVER Ited	OFFICE	·.	•		
ATTENTICH: Mr. D. Silversides 125 EAST 4th AVE. VANCOUVER 10. B.C., CANADA November 20, 1											
······			· · ·			. 0	kanagan Koot	enay #341			
Ale Hereby Certify	hat the following	are the resu	its of assi	ays made by us	upon submitted	07.E		** ** ********	samples		
£	GOLD.	5	SILVER	Total	C	Tungaton					
MARKED	OUNCES PER TON P	VALUE Q	UNCES ER TON	CENT(NO)	Copper-(CU) PER CENT.	CENT(NO3)	PER CENT.	PER CENT.	PER CENT.		
ا ا ا ا ا ا ا ا ا ا ا ا ا ا ا ا ا ا ا	· · ·			, ,			· · · ·	•			
15380 -MacKenzie NO3, Nels 15381 - """" 15382 - """"	on - 25" - 8" - 22"	0	•28	62.50	Avg. 1.33 Acriss 55"	$\begin{cases} 0.10 \\ 3.73 \\ 0.15 \\ - \end{cases}$	f.w.p. vci High grade across vei	1 WO3 powder stringers	only		
15383 - " " " " 15384 - " " " 15385 - " " "	- 11" (7" - Randon -30" acro	true vidt chip acros ss vein	th) ss vein	·····	\$ 292.80	6.12 0.40 0.11 -	f.w. of ve No Ca WO ₃	n-high grad visible	e stringe		
· · · ·								•	i		
• • • • • •	.			· · ·					í,		
				•							
ter a set	· · · · · · · · · · · · · · · · · · ·		, , , , ,	· · · · · · · ·	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	and a second second		- Tandan ay art - Carl - C	** *******		
	•	<u> </u>]	يو منياه به بريد و به يه مياني باسم.				, Bhànna làs por tha shatan an an b			
Gold calculated at \$ per ounce											
Note. Rejects rotained one week. Pulps retained one month. Pulps and rejects may be st of one year by special erran	crod for a maximum genant.	n			1	Reyce	· · .		•		
 /JP Unloss it is spicifically sta and silver values reported or not Lean adjusted to company goins inhorent in the fire or 	tad othorwiso, gol i those sheets hav sate for losses an isoy process.	d di di		••••••••••••••••••••••••••••••••••••••			\	Prov.	leath Assaye		