

ASSESSMENT REPORT TITLE PAGE AND SUMMARY

TITLE OF REPORT:2012 GEOLOGIC AND GEOCHEMICAL ASSESSMENT REPORT ON THE
GNOME PROPERTYTOTAL COST:\$109,165.50

AUTHOR(S): SIGNATURE(S):

Jeremy A. Harwood, John F. Childs

 NOTICE OF WORK PERMIT NUMBER(S)/DATE(S):
 n/a

 STATEMENT OF WORK EVENT NUMBER(S)/DATE(S):
 5416695 (15 November 2012)

 5419906, 5419909 (03 December 2012)

YEAR OF WORK: 2012 PROPERTY NAME: GNOME CLAIM NAME(S): GNOME, GNOME NW, ZORRO, ZOROO, GOT-IT! ZIT, MISTA GNOMER, BOCHA

COMMODITIES SOUGHT: Zn, Pb, Ag

MINERAL INVENTORY MINFILE NUMBERS: 094F016, 094F017, 094F027

 MINING DIVISION:
 Omineca

 NTS / BCGS:
 094F/2E, 7E

 LATITUDE:
 57° 14'

 LONGITUDE:
 124° 33'

 UTM Zone:
 10N

 EASTING:
 40600

 NORTHING:
 634600

OWNER(S): AsiaBaseMetals, Inc.

MAILING ADDRESS: 2560-200 Granville Street, PO Box 36, Vancouver, BC, Canada V6C 1S4

OPERATOR: AsiaBaseMetals, Inc.

MAILING ADDRESS: 2560-200 Granville Street, PO Box 36, Vancouver, BC, Canada V6C 1S4

REPORT KEYWORDS: Devonian, Earn, Gunsteel, Kechika, SEDEX, Akie, Cirque, Barite, Pyrite, Galena, Sphalerite, Gossan, Ferricrete, Omineca

REFERENCES TO PREVIOUS ASSESSMENT WORK AND ASSESSMENT REPORT NUMBERS: ARIS AR# 08334- Gnome, Cominco 1980; 09722-Gnome, Cominco 1981; 14610-Gnome, Cominco 1986; 2745762-Muskwa, Inmet 1996; 29831-Gnome, Mantle 2007; 30485 – Gnome, Mantra 2008; 31871-Gnome, Asia Base Metals 2010

TYPE OF WORK IN THIS REPORT	EXTENT OF WORK (in metric units)	ON WHICH CLAIMS	PROJECT COSTS APPORTIONED (incl. support)
GEOLOGICAL (scale, area)	569525, 569529, 593379, 593384, 594982, 594986, 594989, 596382	47,794.30	
Photo interpretation			
GEOPHYSICAL (line-kilometres)			
Ground			
Magnetic			
Electromagnetic			
Induced Polarization			
Radiometric			
Seismic			
Other			
Airborne			
GEOCHEMICAL			61,371.20
Soil 135 Sample	es analyzed for 48 element suite	569525, 593384, 594989, 594982, 593379, 596382	
Silt			
Rock 29 Sample	s analyzed for 48 element suite	593379, 593384, 594982, 594986, 596382	
Other 24 reference	ore analyzed for 48 element suite		
DRILLING (total metres, number of hol	les, size, storage location)		
Core			
Non-core			
RELATED TECHNICAL			
Sampling / Assaying			
Petrographic			
Mineralographic			
Metallurgic			
PROSPECTING (scale/area)			
PREPATORY / PHYSICAL			
Line/grid (km)			
Topo/Photogrammetric (scal			
Legal Surveys (scale, area)			
Road, local access (km)/tra			
Trench (number/metres)			
Underground development			
Other			
		TOTAL COST	109,165.50

BC Geological Survey Assessment Report 33505

2012 GEOLOGIC AND GEOCHEMICAL ASSESSMENT REPORT ON THE GNOME PROPERTY

Located in the Omineca Mining Division NTS 94F/2E, 7E Latitude 57°14' N Longitude 124°33' W

AsiaBaseMetals, Inc. 2560-200 Granville Street PO Box 36 Vancouver, BC V6C 1S4

By:

Jeremy Harwood B.Sc John F. Childs Ph.D Childs Geoscience, Inc. 1700 W. Koch Street, Unit 6 Bozeman, MT, USA 59715

> December 4, 2012 Amended July 10, 2013

SUMMARY

The Gnome Property is located in northeastern British Columbia, approximately 230 kilometers (km) north-northwest of Mackenzie. The Property is situated northeast of Williston Lake, south of the Akie River and approximately 35 km southeast from the Cirque deposit and 15 km southeast of the Akie (Cardiac Creek) deposit. The Gnome Property, 100% owned by AsiaBaseMetals, comprises 12 mineral tenures, encompassing 5429 hectares, and is in mountainous terrain ranging from 1,000 to 2,200 meters in elevation. Access to the Property is currently restricted to helicopter transportation.

The Gnome Property is underlain by a northwest trending belt of Paleozoic sedimentary rocks of the Kechika Trough, the southern extent of the Selwyn Basin. These Paleozoic strata, specifically the Devonian Gunsteel Formation, are known to host significant sedimentary exhalative-type (SEDEX) Zn-Pb-Ag deposits including the Cirque, Cardiac Creek and Driftpile Creek deposits. The Cirque and Akie deposits both have drill-indicated mineral resources. Also included in this belt of Paleozoic rocks are the similar, but less extensively-explored Gnome, GIN, Family, Fluke, CT and Elf mineral occurrences.

The Gnome Property was intermittently explored between 1979 and 2010. Mineral claims on the Property were originally staked by Cominco, Ltd. in 1979. Cominco conducted geologic mapping and soil, silt and rock geochemical sampling programs. These programs commenced in 1980 with follow-up sampling and mapping in 1981 and 1985. This work identified associated Pb-Zn mineralization but the relatively low grades and depressed metals prices at the time led Cominco to allow the Gnome claims to expire. In 1995, Inmet Mining Corporation re-staked the Property (renaming it the Muskwa Property) and conducted a grid-based infill soil sampling program, which defined two extensive multi-element soil geochemical anomalies. Inmet Mining did not follow up with recommended work and allowed the claims to expire. In 2006, C.J. Greig and Associates staked the GNOME and GNOME NW claims, which they optioned to Mantra Mining, Inc. (now AsiaBaseMetals, Inc.). The remaining claims that comprise the Gnome Property were staked by C.J. Greig and associates in 2008 and subsequently transferred to TintinaGold Resources, Inc. and then to AsiaBaseMetals, Inc. in 2009. In 2010, AsiaBaseMetals, Inc. conducted a Fugro airborne DIGHEM geophysical survey over the entire Property to better define the extent of mineralization. Follow-up soil geochemical sampling and geologic mapping completed in 2012, by Childs Geoscience, Inc. on behalf of AsiaBaseMetals, Inc., have supplemented previous soil sampling results and aided in selecting exploration drilling targets.

TABLE OF CONTENTS

SUMMARY	II
TABLE OF FIGURES	IV
LIST OF TABLES	V
1.0 INTRODUCTION	1
1.1 Contribution, Reliance on Other Experts	1
1.2 Property Location and Description	1
1.3 Accessibility, Infrastructure, Climate and Physiography	4
1.3.1 Access	4
1.3.2 Infrastructure	5
1.3.3 Climate	5
1.3.4 Physiography	6
1.4 History	8
1.4.1 Regional	8
1.4.2 Property	9
2.0 GEOLOGICAL SETTING	
2.1 Regional Geology	17
2.1.1 Regional Structure	
2.2 Property Geology	21
2.2.1 Property Structure	24
2.3 Mineralization	25
3.0 EXPLORATION PROGRAM-2012	
3.1 New Work	
3.1.1 Samples	
3.2 Analytical Procedure	
3.3 Results	
3.3.1 Sampling	
3.3.2 Gossans	
4.0 DRILLING	
5.0 CONCLUSIONS	40
6.0 RECOMMENDATIONS	41
APPENDICES	

TABLE OF FIGURES

Figure 1. Gnome Claim Group, mineral occurrences and regional geology after MacIntyre, 199	983
Figure 2. Location of the Gnome Property, north-central British Columbia	7
Figure 3. Deposits within the Selwyn Basin and Kechika Trough, adapted from Sim, 2012	8
Figure 4. GIN Claims with Gnome Property Boundary, after Roberts 1980.	12
Figure 5. Soil sample locations, 1980-2008 programs	13
Figure 6. Gnome Property tenures and geology after Kuran 1981	14
Figure 7. 2010 Fugro DIGHEM geophysical results, after Close, 2010	15
Figure 8. Cross Section E-F (Area C) view looking northwest, after Kuran 1981	16
Figure 9. Generalized stratigraphic section, after MacIntyre 1998	20
Figure 10. Sample of Dba3, cross-section view	27
Figure 11. Field work locations and areas of interest	29
Figure 12. Soil and rock sample locations	30
Figure 13. Gnome Property Gossan Locations, Regional geology after MacIntyre 1998	37
Figure 14. Southern area, 2012 geologic mapping and Cominco geologic map	

LIST OF TABLES

Table 1 Gnome Property Mineral Tenures	4
Table 2. Minfile occurrences (BC Ministry of Energy and Mines)	
Table 3. Threshold values for geochemical anomalies	
Table 4. Rock Chip Sample Locations and Description	

1.0 INTRODUCTION

This report was prepared at the request of Mr. Raj Chowdhry, president of AsiaBaseMetals, Inc. (AsiaBaseMetals), a publicly-traded company listed on the TSX Venture Exchange as ABZ. Field work conducted during the 2012 field season was designed to follow up on prior recommendations, conduct infill soil sampling of select areas of interest, cross-reference field relationships with the airborne geophysical survey, and further examine the areas of interest in order better evaluate drilling targets.

In July 2012, the authors visited the Gnome Property and conducted preliminary geologic mapping, prospecting and soil and rock sampling. The data collected from this field work are presented in metric units. Maps and other spatial information are displayed in the Universal Transverse Mercator (UTM) Zone 10N projection, based on the North American Datum of 1983 (NAD83). Monetary values are expressed in Canadian currency.

1.1 CONTRIBUTION, RELIANCE ON OTHER EXPERTS

Information and data used for this report, excluding the 2012 field work, were provided by Ethos Geological, who had acted as geological consultants for AsiaBaseMetals. Scott Close, owner and employee of Ethos Geological, provided most of the digital data from their 2010 assessment of the Property. Close also provided an earlier data set which he obtained from Jeffrey Rowe of C.J. Greig and Associates, Ltd. Additional data were obtained from field work and from the British Columbia Ministry of Energy, Mines and Petroleum Resources. Historical data, interpretation and analysis were adapted from previous assessment reports by Cominco, Inmet Mining, Mantle Resources, Mantra Mining, AsiaBaseMetals and from an independent NI 43-101 technical report on the Gnome Property that was prepared in 2008 by Darwin Green. Citations for the data sources are represented in the References section of this report.

1.2 PROPERTY LOCATION AND DESCRIPTION

The Gnome Property is located in the Muskwa Ranges of the Northern Rocky Mountains in northeastern British Columbia. It lies approximately 230 kilometers north-northwest of Mackenzie and 40 km east-northeast of Tsay Keh. The Property is situated northeast of Williston Lake, south of the Akie River, north of the Pesika River and approximately 35 km southeast from the Cirque and 15 km southeast of the Akie (Cardiac Creek) deposits. The Property is situated approximately 400 km north of Prince George. The Property lies within the Fort Ware/ National Topographic System (NTS) sheets 094F/2E and 7E and within Terrain Resource Information Management (TRIM) map sheets 094F018, 094F027 and 094F028. The Gnome Property comprises 12 mineral tenures, encompassing 5,429 hectares centered on NAD 83 UTM Zone 10N coordinates 406000E 634500N (Figure 6, Table 1). The Gnome Property contains the GNOME, GIN and AKI mineral occurrences (Figure 1). The base-metal and related mineral occurrences in the areas proximal to the Property are displayed in Table 2. The Property is currently owned 100% by AsiaBaseMetals. The 2012 assessment work, completed on behalf of AsiaBaseMetals, has been filed with the B.C. Ministry of Energy, Mines and Petroleum Resources for assessment credit under confirmed event number 5416695 and 5419906 for the amount of \$109,165.50. Portable assessment credits of \$2,523.85 in the account of AsiaBaseMetals were used to move the expiry date of mineral tenure 594982 one year forward to December 31, 2016. This was completed on December 3, 2012 under confirmed event number 5419909.

Figure 1. Gnome Claim Group, mineral occurrences and regional geology after MacIntyre, 1998.

Tenure No.	Name	Owner	Tenure Type	Issue Date	Good To Date	Status	Area (ha)
569525	GNOME*	225041 (100%)	Mineral	2007/nov/06	2016/dec/31	GOOD	1750.4188
569529	GNOME NW*	225041 (100%)	Mineral	2007/nov/06	2016/dec/31	GOOD	1434.5904
593379	ZORRO	225041 (100%)	Mineral	2008/oct/25	2016/dec/31	GOOD	350.6045
593384	ZOROO	225041 (100%)	Mineral	2008/oct/25	2016/dec/31	GOOD	280.6199
593391	6IOU	225041 (100%)	Mineral	2008/oct/25	2016/dec/31	GOOD	35.0514
593394	BORIS	225041 (100%)	Mineral	2008/oct/25	2016/dec/31	GOOD	315.7157
593430	ZERO	225041 (100%)	Mineral	2008/oct/26	2016/dec/31	GOOD	420.5292
594982	GOT-IT!*	225041 (100%)	Mineral	2008/nov/27	2016/dec/31	GOOD	157.7408
594986	ZIT	225041 (100%)	Mineral	2008/nov/27	2016/dec/31	GOOD	140.2926
594987	MONDO	225041 (100%)	Mineral	2008/nov/27	2016/dec/31	GOOD	70.1309
594989	MISTA GNOMER	225041 (100%)	Mineral	2008/nov/27	2016/dec/31	GOOD	105.1338
596382	восна	225041 (100%)	Mineral	2008/dec/20	2016/dec/31	GOOD	368.1559

Table 1 Gnome Property Mineral Tenures

Pending acceptance of government assessment report

 Table 2. Minfile occurrences (BC Ministry of Energy and Mines)

IDENT	MINFILE #	Y_PROJ	X_PROJ	Lithology
АКІ	094F027	6340424	409652	Py, Limonite, Gunsteel
AKIE	094F031	6360874	388246	Py, Sph, Ga in Gunsteel
CIRQUE	094F008	6376168	370597	Py, Sph, Ba, Ga in Gunsteel
СТ	094F010	6329480	421449	Road River Group
DEL	094F018	6356656	378811	Ba in Gunsteel Form
DEL EAST	094F026	6357274	379900	Ba, Ga in Road River
DRIFTPILE CREEK	094K066	6439801	328360	Sph, Ga, Ba in Gunsteel
ELF	094F011	6352569	397027	Ga, Sph, Ba, Py in Gunsteel Form
FLUKE	094F009	6364184	384896	Py, Ga, Sph, Ba in Gunsteel Form
FAMILY	094F030	6334629	415998	Chalcocite, Sph, Py in Road River Group
GIN	094F017	6340378	408929	Ba in Gunsteel
GNOME	094F016	6345238	406001	Ba, Py mineralization hosted in Gunsteel
PESIKA	094F025	6229841	412310	Ba in Road River
PIE	094F023	6369159	381884	Ba, Ga, Sph, Chalcocite, Py in Gunsteel
SIKA	094F022	6368578	398881	Ba, Py in Road River Group

1.3 ACCESSIBILITY, INFRASTRUCTURE, CLIMATE AND PHYSIOGRAPHY

1.3.1 ACCESS

Transportation to the Property is currently restricted to helicopter travel. Several gravel airstrips are located along the Finlay River basin and the shores of Williston Lake for fixed-wing transportation. For the 2012 field work documented in this report, the Property was accessed from the Finlay River Outfitters' Fort Graham Lodge using a Bell 206 L3 JetRanger, which was chartered through Yellowhead Helicopters, Ltd. Historically, exploration programs have accessed the Property from the Finbow logging camp and Tsay Keh, a local First Nations community. More recently, in 2007, the Gnome Property was

accessed via Mantle Resources' field camp (now Canada Zinc Metals Corp. Akie camp) in the Akie River valley. The upgraded road to the nearby Akie Property, which was extended in 2008, lies within 15km of the Gnome Property.

1.3.2 INFRASTRUCTURE

ROADS

The region proximal to Williston Lake is moderately well-connected by a network of forestry service roads (FSR) originating from the town of Mackenzie. The Akie Mainline FSR has recently been extended to the 41.5 km mark in the vicinity of the Cardiac Creek deposit on the Akie Property. The provincial paved highway system can be accessed from the town of Mackenzie.

AIRCRAFT

Gravel airstrips along the shores of Williston Lake and the Finlay River basin are located at the Tsay Kehand Ingenika communities and the Ospika and Fort Graham camps. These airstrips are located 45, 55, 115 and 80 kilometers from the Gnome Property respectively. Northern Thunderbird Air service provides regularly scheduled flights to these communities and will, upon request, provide service to Finlay River Outfitters' Ospika and Fort Graham camps (Figure 2).

ELECTRICITY

The hydroelectric W.A.C Bennett Dam located on the Peace Reach of the Williston Lake reservoir provides power to the nearby Kemess copper-gold mine via the Kennedy substation located near Mackenzie. Currently, the Akie, Ospika and Fort Graham camps as well as the local communities produce electricity using on-site, diesel-fueled generators.

WATER

Williston Lake reservoir hosts barge services that operate out of Mackenzie providing service to local communities, camps, and the forestry industry. These barge services can be used for many purposes including transportation of supplies and fuel for both helicopters and fixed-wing aircraft.

RAIL

The closest railway is located in Mackenzie, BC.

1.3.3 CLIMATE

The region has a variable climate with temperatures ranging from 5°C to 30°C in the summer months and -10°C to -30°C with extremes to -45°C in the winter. Precipitation is variable with moderate amounts of rainfall and temporary high-elevation snowfall in the summer and moderate accumulations of snow in the winter. Snow begins to accumulate in late September and continues falling through the middle of June.

1.3.4 Physiography

The Akie River area is mountainous, with a series of northwest-southeast trending ridges, transected by steep northeast trending drainage corridors. Topography of the Gnome Property is moderate to steep, with elevations ranging from 1,000 meters to 2,200 meters above sea level. Bedrock is generally well exposed above tree line, at approximately 1,700 meters. Slopes above tree line are sparsely covered by talus, moss and alpine grasses and flowers, whereas slopes below tree line are heavily timbered with spruce, pine and balsam. Animal species may include grizzly bear, black bear, caribou, mountain goat, porcupine, wolf and marmot.

Figure 2. Location of the Gnome Property, north-central British Columbia

1.4 HISTORY

1.4.1 REGIONAL

The Selwyn Basin has seen extensive exploration and production of base and precious metals and is host to the Howard's Pass and Jason deposits. In the mid to late 1970's, exploration for clastic-hosted, stratiform sulfide and barite deposits shifted southward into the Kechika Trough. Geophoto Consultants were the first to explore the northern portion of the Kechika trough in 1970.

Figure 3. Deposits within the Selwyn Basin and Kechika Trough, adapted from Sim, 2012

In 1972, Canex Exploration (Placer Development Ltd.) discovered bedded barite-sulfide occurrences in Devonian black clastic rocks near Driftpile Creek. The most significant discovery was made in 1977 when a joint venture between Cyprus Anvil Mining Corp. and Hudson's Bay Oil and Gas Company Ltd. discovered the Cirque deposit (Figure 3). In 1978, RioCanex staked what is now the central portion of the Akie Property. The Cirque and Akie (Cardiac Creek) deposits both have drill-indicated mineral resources. The Cirque deposit contains a mineral resource estimate of 32.2 Mt at 7.9% Zn, 2.1% Pb and 48 g/t Ag (MacIntyre, 1991). The Cardiac Creek deposit has a recently-updated indicated resource of 12.7 Mt at 8.38% Zn, 1.68% Pb and 13.7 g/t Ag and an inferred resource of 16.3 Mt at 7.38% Zn, 1.34% Pb and 11.6 g/t Ag (Sim 2012). Extensive drilling at the Cirque and South Cirque deposits provides valuable information on the stratigraphic and structural settings of the stratiform barite-sulfide deposits in the region. The Akie Property has experienced two periods of extensive drilling. Between 1994 and 1996, Inmet Mining completed 29 drill holes and between 2005 and 2011, Canada Zinc Metals Corporation completed an additional 79 drill holes.

A comprehensive database of mineral occurrences (MINFILE) has been developed for the Kechika Trough as a result of the extensive exploration in this area. The MINFILE database covers the Kechika Trough and the entire province of British Columbia. The mineral occurrences proximal to the Gnome Property are shown in Figure 1 and Table 2.

1.4.2 PROPERTY

COMINCO PROGRAMS

Cominco Ltd. originally staked the Gnome 1-12 claims in 1979 and conducted exploration activities between 1980 and 1985. Exploration efforts consisted of preliminary geologic mapping and collection of 30 stream sediment, 2,900 soil and 28 whole-rock litho-geochemical samples. Soil samples were collected using a grid-based sampling method at 25 to 50-meter intervals along lines spaced 400 meters (1980) and 100 meters (1981) apart and oriented perpendicular to strike (Figure 5). The samples were analyzed for Pb, Zn and Ba. Three anomalous areas (Areas 1, 2 and 3) were outlined on the Gnome Property as a result of Cominco's soil programs and correspond to Area A, B and C, respectively (Figure 13). Cominco also conducted minimal prospecting and trenching to expose barite horizons on the Property. In Area C, two trenches were excavated to expose a 2-9 meter section of blebby to laminated barite and minor pyrite. This barite horizon (Dba3) constitutes the Gnome mineral occurrence. The trenches at Area C were mapped and sampled by Cominco, however sample results were not reported. Additionally, Cominco mapped the Property at 1:5,000 scale and prepared cross-sections for Area A (G-H), Area B (C-D) and Area C (A-B & E-F). The geologic maps and cross-sections were appended to the Cominco report (ARIS 09722B) along with trenching maps, and a measured section. Cross section E-F is included as Figure 8 in the present report.

In Area A, there are four extensive trenches that were excavated perpendicular to the structural grain of thinly-bedded siliceous black shale. These trenches test the extent of a thin barite horizon (Dba1)

within siliceous shale and siltstone of the lower Earn Group. It is unknown which program and operator excavated these trenches.

CYPRUS ANVIL PROGRAMS

In 1980, Cyprus Anvil Corp. staked the GIN 1-5 claims south of Cominco's Gnome Property. These claims were located in the southern portion of the present-day Gnome Property and were tested with a grid-based soil geochemical sampling program (Figure 4). At total of 2,850 samples were collected at 50 meters intervals on grid lines spaced 100 meters apart (Figure 5). Cyprus Anvil evaluated the economic potential of the land covered by the GIN claims and outlined one primary area of interest. A northwest trending barite horizon and associated sulfide mineralization southeast along strike were identified in the northern portion of the GIN Property.

AQUITAINE COMPANY OF CANADA

The AKI mineral occurrence lies near the GIN occurrence and within the historic Aki Group claims in the southern end of the present Gnome Property. Aquitaine Company of Canada (ACC) staked the Aki and Guy claims and conducted exploration activities in 1980 and 1981. Several limonite gossans are associated with Gunsteel formation shale and the shale locally contains bands of disseminated and nodular pyrite. The largest exposed gossan is 300 metres long and 50 metres wide, although its thickness is unknown. A composite of 13 samples of limonite from the gossans assayed 0.98% Zn and 2.08g/t Ag but contain negligible lead (Green, 2008). Rare traces of barite were present in gossanous material, although a barite horizon was not located. Grid soil sampling on the Aki Property returned anomalous values in zinc (from 1,000 ppm to 2%) mainly in association with the gossan zones. Maps for the Aki Property are appended to the 1980 assessment report entitled, *Geological and Geochemical Report on the Aki Claim Group, Akie River Area, Omineca Mining Division* by G.R. Coutellier.

INMET MINING PROGRAMS

Inmet Mining Corporation re-staked the Gnome Property in 1995 as the Muskwa Property, comprising Muskwa Groups 1 & 2 (Kapusta, 1996). Inmet conducted soil geochemical sampling programs intended to verify the soil geochemical anomalies previously identified by Cominco. A 7.20 km baseline was established with approximately the same location and orientation as the Cominco baseline. Grid lines were cut on 200 meter spacing at approximately the same orientation as the original Cominco soil lines. Sample collection was focused at Areas A, B and C (defined by Cominco). A total of 816 samples were collected at 25 meter intervals and analyzed for Pb, Zn, Ag, Ba, Cd, Mn, As and Fe (Figure 5).

MANTRA MINING PROGRAMS

In 2006, C.J. Grieg and Associates staked the current Gnome Property including the land previously covered by the GIN 1-5 claims (Figure 6). C.J. Grieg and Associates entered into a joint venture with Mantra Mining Inc. in 2008 to conduct exploration that was designed to lead to an earn-in by or sale of the Property to Mantra. The Mantra exploration program consisted of infill soil geochemical sampling to verify location, existence and accuracy of the previous Cominco and Inmet programs. Additionally, Mantra Mining evaluated the extent of favorable stratigraphy within the Property in order to assess the potential for an economic base metal deposit. The 2008 sampling program was concentrated on the GNOME (569525) and GNOME NW (569529) tenures. A total of 1,194 samples were collected on 25 meter sample intervals from 14 lines spaced 200 to 400 meters apart. In addition to grid-sampling, the 2008 field crew completed reconnaissance sampling along a 9 km long line along the northernmost ridgeline within and proximal to the GNOME NW tenure. Additionally, property-scale geological maps were compiled from Cominco programs, digitized and included in the 2008 Technical report by Darwin Green. This geologic compilation map, located in Figure 6, is currently the most comprehensive property-scale geologic map for the Property.

ASIABASEMETALS PROGRAMS

In 2010, AsiaBaseMetals conducted a Fugro DIGHEM airborne geophysical survey over the Gnome Property consisting of 233.8 line-kilometers. The flight traverses were flown across apparent stratigraphy along azimuths 045° and 225° with 300 meter line spacing and the tie line being flown at azimuth 135°/315°. The geophysical survey provided detailed characteristics of the magnetic and conductive properties of the various lithologic units present on the Gnome Property. Results of the geophysical survey are included in the 2010 Assessment Report (Close, 2010) and the 7200 Mhz resistivity is shown in Figure 7 of the present report.

Figure 4. GIN Claims with Gnome Property Boundary, after Roberts 1980.

Figure 5. Soil sample locations, 1980-2008 programs

Figure 6. Gnome Property tenures and geology after Kuran 1981

Figure 7. 2010 Fugro DIGHEM geophysical results, after Close, 2010

Figure 8. Cross Section E-F (Area C) view looking northwest, after Kuran 1981

2.0 GEOLOGICAL SETTING

The Kechika trough, located in northeastern British Columbia, is the southernmost extent of the Selwyn Basin and hosts a similar stratigraphic sequence to that of the Selwyn Basin (Figure 3). The Selwyn basin, located in the Yukon Territory of Canada, is a late Precambrian to Devonian sedimentary basin characterized by deep water shales and platform carbonates. Exploration programs for base-metals in the Selwyn Basin and Kechika Trough have targeted SEDEX and Mississippi Valley Type (MVT) deposits. SEDEX deposits are interpreted to have been formed from metal-rich hydrothermal fluids being released by sub-seafloor vent complexes into a reducing environment, which allows the precipitation of mounded, tabular or sheet-like bodies and lenses of stratiform sulfide minerals (Goodfellow and Lydon, 2007). MVT deposits are carbonate-hosted, epigenetic and stratabound ore deposits composed of lead, Zinc and iron sulfides (Paradis, 2007). The Kechika Trough is situated along a rifted continental margin of ancestral North America and hosted third-order starved basins during the Late Devonian and Mississippian (MacIntyre, 1998). The sedimentary environment and tectonic regime of the Kechika Trough allow for a depositional setting that fits the genetic model of sedimentary exhalative-type (SEDEX) Zn-Pb-Ag deposits.

The regional geology in the vicinity of the Gnome Property has been described in detail by Don MacIntyre (1998) in a work titled *Geology, Geochemistry and Mineral Deposits of the Akie River Area, Northeast British Columbia.* Additional regional and Property-scale geology, structure and mineralization were described by Darwin Green in the 2008 NI 43-101 technical report, *Geology and Geochemistry, Gnome Zine-Lead-Silver Property, Northeast British Columbia, Canada,* prepared for Mantra Mining. The geological summary presented herein is adapted from both the MacIntyre (1998) and Green (2008) reports. The regional geologic map, published by MacIntyre (1998), is presented in Figure 1 and Figure 13.

2.1 REGIONAL GEOLOGY

The Gnome Property is situated within the southern portion of the Kechika Trough, the southern extension of the Selwyn Basin, located in the Rocky Mountain fold-and-thrust belt of northeastern British Columbia. The Kechika trough is comprised of a thick succession of fine-grained clastic and lesser carbonate sedimentary rocks of Late Cambrian to Late Triassic age. The Kechika Trough is bounded by sedimentary rocks of the Cassiar and MacDonald Platforms (MacIntyre, 1998). The northwest trending transcurrent Tintina Fault truncates the Kechika trough and is coincident with the extensive Rocky Mountain trench (Gabrielse, 1984, MacIntyre, 1998, Figure 3). Northeast-directed tectonic compression during Mesozoic time detached Paleozoic and older strata from the cratonic

basement rocks creating a series of southwest-dipping imbricate thrust sheets. These large thrust sheets contain internally-deformed tight, asymmetric, upright and overturned folds (Price, 1986; McClay et al., 1989; MacIntyre, 1998). A generalized stratigraphic column by MacIntyre (1998) is included in Figure 9.

The Late Cambrian to Early Mississippian rocks in this region represent multiple marine transgressive cycles with associated clastic sedimentation and intermittent carbonate buildup. The Late Cambrian to Early Ordovician, Mid to Late Ordovician, Early Silurian, and Early Devonian to Early Mississippian transgressive cycles are represented by the Kechika Group, Skoki Limestone, Road River Group and the Earn Group respectively (MacIntyre, 1998). The Earn group is subdivided into the Akie, Gunsteel, and Warneford Formations. The following description of regional geology and structure is adapted from the 2012 Canada Zinc Metals Corporation NI 43-101 Technical Report, prepared by Robert C. Sim.

KECHIKA GROUP

The Kechika Group strata are comprised of a thick, approximately 1,500 meter succession of cream colored to light-grey, weathered, talcose, phyllitic mudstones and wavy, banded, nodular (boudinaged) limestones (MacIntyre, 2005; Demerse and Hopkins, 2008). The Kechika Group rocks are prominent in the southern Kechika Trough and thin to the north. Thin beds of green weathered tuffs and thin felsic dykes have been noted within the Kechika Group rocks, which are indicative of volcanic activity during the time of deposition (MacIntyre, 2005).

SKOKI LIMESTONE

The Skoki limestone is an approximately 500 meter-thick, thinly-bedded Ordovician limestone that overlies the Kechika Group. The limestone is present in the Pesika Creek and Kwadacha River areas and is absent in the Northern Kechika Trough (MacIntyre, 2005).

ROAD RIVER

The Road River Group is thought to represent the transition between platform and basin rocks (MacIntyre, 2008) which unconformably overlie the Kechika Group and represent a collection of finegrained sedimentary rocks, carbonates and volcanic rocks (MacIntyre, 1998). The Road River Group is common throughout the Kechika Trough and can be subdivided into the Lower Road River Group, Ospika Volcanics and the Paul River Formation (MacIntyre, 2008).

The Middle to Late Ordovician Lower Road River Group is comprised of beige to reddish-brownweathering, thinly-bedded calcareous siltstone and shale, with minor limestone turbidites and debris flows. The siltstone grades up section into a distinct black graptolitic shale (MacIntyre, 1998). The graptolite fossil assemblage provides a useful tool to differentiate from the lithologically identical Devonian strata (MacIntyre, 2008). Locally, the shale is interbedded with black chert, quartz wackes, arenites and pebble conglomerates.

The Ospika Volcanics are present throughout the central Kechika Trough area (Akie River, Paul River and Ospika River) and are represented by a series of discontinuous lenses and beds of green mafic flows, microdioritic sills and orange weathered ankeritic crystal and lapilli tuffs.

The last unit of the Road River Group is informally recognized as the Paul River Formation (Pigage, 1986) and consists of deep water marine turbidites comprised of black chert, interbedded black shale with limestone debris flows, dark-grey to brown, rusty-weathering silty shale and siltstone (MacIntyre, 2008). In the Akie River area, the rusty-weathering silty shale partially onlaps the Early to Middle Devonian Akie and Kwadacha Reefs. The Akie and Kwadacha reefs are up to 200 meters in thickness and are composed of medium to thick-bedded micritic and bioclastic limestones with minor shale interbeds.

The Upper Road River Group is an Early to Middle Silurian siltstone that unconformably overlies the Ordovician graptolitic black shale (MacIntyre, 2008). The basal unit of the Upper Road River Group is commonly referred to as the Silurian limestone which is comprised of a 0 to 20 meter-thick unit consisting of thinly-bedded, cross-laminated limestone and dolostone beds with interbedded grey calcarenites, dark-grey dolomitic shales and minor debris flows. The Silurian Limestone is overlain by a 100 to 500 meter-thick, tan to orange-brown, dolomitic, thinly-bedded siltstone with minor orange weathering limestone and dolostone interbeds. The dolomitic siltstone is commonly bioturbated and minor graptolites and sponge impressions are locally present (MacIntyre, 2008).

EARN GROUP

Rocks of the Earn group conformably overlie the Road River Group and are characterized by carbonaceous, siliceous shales, cherty argillites, phyllitic shales and coarse quartzose turbidites of Middle Devonian to Mississippian age (MacIntyre, 1998). The Earn Group has been subdivided into the Warneford, the Akie and the Gunsteel Formations (Pigage, 1986; MacIntyre, 1998). These rocks are representative of a major marine transgression that resulted in the termination of reef growth, and deposition of fine clastic sediment (MacIntyre, 1998). Strata of the Gunsteel Formation were deposited during Middle to Late Devonian. The formation weathers to a distinctive "gunsteel" blue and comprises a collection of carbonaceous and siliceous shales, argillites and cherty argillites (MacIntyre, 1998). Strata of the Gunsteel Formation are the primary prospective rocks for SEDEX-type mineralization within the Kechika Trough. The Gunsteel Formation is host to the Cirque, Cardiac Creek and Driftpile Creek deposits as well as the Gnome, Fluke, Elf, Pie and Mount Alcock prospects. Occurrences of laminar pyrite and nodular barite are common in the Gunsteel Formation. The Gunsteel Formation is overlain by the Akie Formation, which is comprised of soft, medium to dark grey, phyllitic shale to silty

shale and siltstone which typically weather to a rusty brown, tan or silvery color (MacIntyre, 1998). The Warneford Formation overlies the Akie formation and is interpreted to be proximal to medial turbidite deposits (MacIntyre, 1998).

Figure 9. Generalized stratigraphic section, after MacIntyre 1998

2.1.1 REGIONAL STRUCTURE

The linear alignment of faults and parallel exposure of lithologies in the Akie River area reflects the thin-skinned tectonic style of the Rocky Mountain Fold-and-Thrust Belt. Northeast-directed compression resulted in detachment of the Paleozoic strata from a rigid crystalline basement and partial stacking of the detached plates along a series of imbricate thrust faults (MacIntyre, 1998). The thrust plates are composed of thick stacks of Paleozoic strata. Incompetent strata within thrust plates have been internally folded and deformed. Incompetent strata that lie below overriding thrust plates have tight to isoclinal folds with southwest-dipping axial planes, whereas rocks in the overriding plate are asymmetrically folded and often have northeast-dipping axial planes. The structural style changes from

west to east across the map area. In the west, imbricate, southwest-dipping reverse faults bound asymmetric overturned folds with southwest-dipping to vertical axial planes. MacIntyre indicates that in the eastern part of the Akie River area, large-scale upright folds occur within major synclinoriums that are bounded by outward-dipping reverse faults. Devonian strata are preserved within the synclinoriums. MacIntyre suggests that the high-angle growth faults bounding depositional troughs in Devono-Mississippian time were reactivated during Tertiary compression and became the locus of major thrust faults in the district. The close spatial association of Paleozoic mineralization, reef building, coarse clastic fans and volcanism along faults provide support for the hypothesis that that major high-angle thrust faults reactivate much older crustal breaks.

Pigage (1986) conducted detailed studies of the structure of the Cirque deposit. This work led to the recognition of two phases of coaxial deformation. The earliest deformation stage, which is recognizable throughout the Akie River area, resulted in the development of northwest-trending, tight asymmetric folds that verge northeast with gently-dipping southwest limbs and steep to overturned northeast limbs. The steep limbs are often offset by high angle reverse faults, resulting in the juxtaposition of Ordovician and Silurian strata against shales of the Devonian Gunsteel Formation. The high-angle reverse faults may coalesce at depth into a major detachment surface possibly rooted in the highly attenuated Kechika formation. Shale typically has a pervasive slaty cleavage that parallels the axial planar surfaces of macroscopic folds. Closely-spaced fracture cleavage is found within the more competent strata.

The second phase of deformation resulted in folding of the early-formed slaty cleavage and development of a penetrative crenulation cleavage. This crenulation cleavage has axial surfaces that are parallel to axial planar surfaces of the late folds, which may have amplitudes of up to 30 meters (Pigage, 1986). The folds are open to upright, trend northwest and have northeast vergence. High-angle listric, normal and reverse faults are also common in the Akie River area and generally trend parallel or at slight angles to the major high-angle thrust faults. These subsidiary faults are probably related to brittle failure of thrust plates during detachment and thrusting. Displacements of up to several hundred meters have been documented at the Cirque deposit (Pigage, 1986).

According to MacIntyre (1998), north to northeast-trending, high-angle faults offset earlier thrust and listric normal faults. Some of these faults have a strike-slip movement and may be synthetic shears related to a Tertiary oblique compressional stress regime.

2.2 PROPERTY GEOLOGY

The geology of the Gnome Property presented in this report is largely interpreted from previous geological mapping, both on the Property itself (Figure 6, Kuran, 1981) and from regional mapping by

the B.C. Ministry of Energy and Mines and Petroleum Resources in 1979, 1980 and 1981 (Figure 13, MacIntyre 1998). Detailed geological mapping and measurement of stratigraphic sections were undertaken by Cominco in 1981. The most comprehensive study of the structural geology of the Gnome Property was reported by Kuran (1981) and is included in the Property structure section of this report. Previous mapping programs have outlined a series of northwest-trending antiforms and synforms containing belts of Devonian Earn Group rocks. Detailed mapping identified six lithologic units within the Earn Group, and three barite-rich horizons. The barite horizons are the primary tools for vectoring toward economic Pb, Zn, Ag mineralization. Older Paleozoic strata recognized on the claim group are identified as the Kechika and Road River Groups. The dolomitic siltstone exposed on the Property is thought to have been deposited during the Silurian transgression. Descriptions of the geologic units are given below as summarized from Kuran (1981).

KECHICKA GROUP (COK)

The Kechika Group, of Upper Cambrian to Lower Ordovician age, outcrops along the western boundary of the Gnome claims. These strata were translated over Middle to Upper Ordovician, Silurian, and Devonian rocks in the hanging wall of a west-dipping thrust sheet. The Kechika Group consists of resistant, grey-brown weathering, thin- to medium-bedded, grey, calcareous nodular shale.

ROAD RIVER GROUP

The Road River Group is comprised of four stratigraphic units (Ov, Osh, UOsh, Sls) that are found in and around the Gnome Property. The eastern margin of the Gnome claim group is discontinuously bordered by an Ordovician volcanic tuff (Ov). The tuff is described to be orange- to pale greenweathering, grey to pale green and variably calcareous. It is suggested that these tuffaceous rocks have been thrust westward over younger strata of the UOsh unit. This unit is a moderately resistant, bluegrey, platy weathering, thinly-bedded, Upper Ordovician black shale containing graptolites (Dicranograptus and Orthograptus). Unit UOsh is overlain by the Sls unit, a moderately resistant, greyto tan-weathering, medium- to massively-bedded, fine-grained Silurian black limestone. The Ov and UOsh units are not present in the western margin of the claim group. At the western margin, the Osh unit which is a recessive, thin-bedded, rusty weathering, graphitic black shale, is unconformably overlain by the Sls unit.

SILURIAN SILTSTONE (SSL)

Outcrops of the resistant, cliff-forming Silurian siltstone (Ssl) are found throughout the claim group. The siltsone is unconformable with the underlying black limestone unit (Sls). The siltstone is a distinctive, buff brown- to-tan weathering, grey dolomitic siltstone. It is medium to thick-bedded, bioturbated and locally contains pyrite nodules up to two centimeters in diameter.

DEVONIAN LIMESTONE (DLS)

The Devonian Limestone is comprised of moderately resistant, blocky-weathering, medium-bedded, grey to-black limestone which contains crinoid-rich debris flows. Unit Dls is unconformable with the underlying Ssl unit. Unit Dls is informally referred to as the Dunedin Formation and is thought to be coeval with the Akie Formation shale. Unit Dls is one to two meters thick on the Gnome Property. However, elsewhere in the region it is commonly thicker and noted to be a resistant, cliff-forming unit.

EARN GROUP

The six, previously discussed units of the Earn Group are all found on the Gnome Property. Three of these units contain barite-bearing horizons.

Unit Dsa

Undivided rocks of the Earn Group, unit Dsa, are characterized by resistant blue-grey to pale green, blocky-weathering, thin to medium-bedded and thinly-laminated, ammonite-bearing, siliceous black mudstone. The mudstone is interbedded with thin, siliceous black shale beds and locally contains the Dba3 horizon at Area C. Rocks of unit Dsa unconformably overlie rocks of unit Dls.

Unit Dss

Unit Dss is present toward the base of the Earn Group as a 30-meter thick, brown- to orangeweathering, thin- to medium-bedded, siliceous black shale. This unit is locally talcose and contains distinctive grey to buff-brown, wispy siltstone laminations, as well as minor orange-weathering siltstone beds that are one meter thick.

Unit Dch

Unit Dch directly overlies unit Dss and is present as a 20-meter thick section of resistant, blue-greyto pale green-weathering, thin to medium-bedded, cherty black mudstone. Locally, unit Dch contains a 2 to 10 cm thick blebby barite horizon (Dba1). This unit may represent a part of the Gunsteel Formation, which would suggest that unit Dch is correlative with unit Dno (described below). Green (2008) suggests that if units Dch and Dno are equivalent, then unit Dno has been repeated by faulting or folding.

Unit Dsh

Unit Dsh overlies unit Dch, and is present as a 35-meter thick recessive, rusty brown to blue- black, platy-weathering, siliceous black shale.

Unit Dgt

Unit Dgt is exposed in the north-central part of the Gnome Property as a 100-meter thick section of grey-weathering, thin- to medium-bedded siltstone that is interbedded with a grey to orange-weathering, medium-bedded grit. Unit Dgt is not laterally continuous in the southern part of the Property and is

noted to have a larger relative grain size. Kuran (1981) suggests that the sediment for unit Dgt may have been sourced from a relatively shallow water environment. According to Green (2008), regional geological maps have assigned these rocks to the younger Akie Formation.

Unit Dno

Green (2008) suggests that unit Dno strongly correlates to the Gunsteel Formation, which hosts most of the known mineral deposits in the area. Unit Dno is present through the length of the Gnome Property and consists of a 50-meter thickness of blue-grey to buff-brown-weathering, thin to mediumbedded, coarsely-laminated, siliceous black mudstones and shales. Unit Dno is previously noted to be cliff-forming, however exposures of Dno and/or Gunsteel Formation shale are dominantly located in valley bottoms. In the central portion of the Property, unit Dno contains a 3.5 meter-thick barite horizon (Dba2) and a 10 meter-thick pyritic horizon (Dpy). Horizon Dpy consists of a grey to rusty-brown weathering, medium to thick-bedded, siliceous black mudstone containing disseminated to blebby pyrite and minor blebby barite.

Barite Horizons (Dba1, 2, 3)

Barite occurs in three discontinuous horizons on the Gnome Property, the most prominent of which occurs near the middle of the Property at the Gnome mineral occurrence. Two trenches were excavated in this prominent barite horizon exposing a 2 to 9 meter-thick section of unit Dba3. The Dba3 horizon has been described by Kuran as blebby to laminated barite with minor pyrite. Kuran (1981) suggests that the Dba3 horizon occurs stratigraphically above unit Dno. Horizon Dba2 is previously characterized as a resistant, grey-weathering, medium to thick-bedded, cherty black mudstone containing laminated to blebby barite and minor disseminated pyrite. Disseminated pyrite horizons are commonly spatially associated with the barite horizons.

2.2.1 PROPERTY STRUCTURE

The Gnome Claim Group and surrounding area have been extensively folded, faulted and deformed as a result of northeast-southwest-directed compressional tectonic forces. Major synclinal and anticlinal folds in this area are separated by west-dipping thrust faults and normal faults. Generally, the style of folding is isoclinal with fold axes plunging gently to the northwest and axial planes striking to the northwest. Folds along the northeast margin of the Gnome Claim Group are overturned with axial planes dipping to the southwest, while folds along the southwest margin of the Property are overturned with axial plains dipping to the northeast (Kuran, 1981).

Cominco mapped part of the Gnome Property (Kuran 1981) and identified a dominant sequence of black clastic units of the Devonian Earn Group. Earn Group strata have been tectonically thickened by a series of faults and folds. On the eastern side of the Property, the sequence of Earn Group rocks has

been folded into a large synform that trends northwesterly and is overturned to the northeast. A series of inferred faults separate this structure from an adjacent antiform to the southwest. The antiform is interpreted to be an upright fold (Figure 8), and it is paralleled by a synform to the southwest. The limbs of these folds display smaller amplitude, tight folds. The stack of Devonian stratigraphy within the Gnome Property lies adjacent to Ordovician siltstones, shales and limestones of the Road River Group.

Along the western edge of the Property, northeast verging thrust faults have juxtaposed the Ssl unit over unit Dsa and unit COk over UOsh. Toward the southern end of the Property, a sequence of Silurian calcareous siltstones and Devonian shales occupy the core of a westward-dipping overturned syncline that has been thrust over the Earn Group strata. Further north along the west side of the Property, a sequence of Cambrian to Devonian strata has been thrust over the Devonian Earn Group rocks, forming a large, west-dipping thrust sheet.

2.3 MINERALIZATION

Mineralization types identified on the Gnome Property include laminated pyrite, bedded and nodular barite, and iron-rich gossan with elevated zinc values. All these styles of mineralization occur within siliceous mudstones and shales that are correlative with the Middle to Upper Devonian Gunsteel formation. During the 1981 field season, Cominco geologists recognized multiple occurrences of three horizons of nodular or bedded barite on the Property (Figure 6). The following descriptions of the barite horizons are adapted from Close (2010) after Green (2008).

Dba 1

The upper barite horizon (Dba1) is exposed on a ridge top at the northern portion of the Property near Area A. This barite horizon is a 2-10 centimeter thick blebby unit that lies within Unit Dsa. A second barite horizon lies immediately beneath unit Dgt. This second barite horizon is interpreted to be a repeated showing of Dba1, possibly as a result of small-scale folding or intra-formational faulting. Pride (1980) reported a sampling program consisting of widely-spaced soil sampling in the vicinity of the northern Dba1 horizon. The geochemical results returned weak and isolated anomalies of Pb, Ba and Zn. Approximately 500 meters to the southeast, an extensive, but relatively weak zinc anomaly extends into the valley bottom between Areas A and B. The weak anomaly trends northwest-southeast and continues toward Area B.

Dba 2

Near the southern part of the Property, a 3.5 meter-thick, laminated to blebby barite horizon occurs with associated disseminated pyrite (Dba2). The horizon is found within a 10 to 15 meter thick section of pyrite-rich mudstone containing minor blebby barite (Dpy). These mineralized strata (Dba2 and Dpy)

are together hosted by a resistant siliceous mudstone of unit Dno. In the vicinity of this barite showing, soil samples have highly-anomalous Zn and Ba values extending 1000 meters to the southeast. Other surface expressions of Dba2 are located in the northern part of the Property at approximately 1700 meters elevation. There is little soil geochemical coverage around the northern occurrence of Dba2. Both the northern and north-central Dba2 occurrences have limited outcrop exposure. The lack of recorded rock sampling and the limited geochemical data for the north and north-central Dba2 occurrences suggest that future exploration will be necessary to further understand the geometry and extent of Dba2 mineralization.

Dba 3

The Gnome Minfile occurrence is located at the third barite horizon (Dba3), which is stratigraphically between the two previously discussed horizons. The Gnome occurrence is located in the center of the Gnome Property. This mineralized zone consists of blebby to laminated barite and minor pyrite that lies within a 2 to 9 meter thick section of thinly-bedded siliceous black mudstone overlying unit Dno. Two trenches that were excavated in 1981 expose this barite horizon. Maps of the trenches are appended to the Cominco assessment report (ARIS 09722B).

According to Green (2008), results from soil sampling in the vicinity of Dba3 have outlined a coincident zinc-barium anomaly that is over 600 meters in length and encompasses the barite showing as well as an adjacent ferruginous gossan. Zinc values are highly anomalous near the gossan, with seven samples greater than 10,000 ppm Zinc. Lead values are weak, reaching only 38 ppm. Barium values define a larger anomaly that spans a distance greater than 1700 meters, and has not been adequately tested to the northwest and southeast.

A hand sample from a trench was collected as part of the 2012 program; upon further microscopic investigation of the mineralization and texture, it is concluded that barite laminations are hosted by a very finely laminated, siliceous black slate. The "blebby" nature of barite is likely a result of tectonic compression resulting in a spaced cleavage that has disrupted the barite laminations and is probably cogenetic with asymmetric folds as shown in Figure 10. This cleavage is oriented at approximately 30° to bedding and is coincident with limbs of the micro-folds and sigmoidal barite "blebs". The barite laminations are crenulated and have commonly been dismembered and rotated, resulting in sigmoidal pods when viewed parallel to the axes of the microfolds. The barite pods form rods in the third dimension, and are interpreted to be a result of boudinage. The mineral assemblage includes very fine grained barite, euhedral pyrite and quartz. Cominco programs did not recognize associated Zn mineralization with this barite-pyrite horizon, however there are no sample results that support their conclusion.

Figure 10. Sample of Dba3, cross-section view

3.0 EXPLORATION PROGRAM-2012

3.1 NEW WORK

Mr. Jeremy Harwood, the Project Geologist, and Mr. Brian Kuhn, a junior geologist conducted field work during the period of July 13th – 23rd. The field personnel were accompanied in the field by Dr. John F. Childs, the Senior Geologist and Qualified Person, from July 20-23rd. The objective of this exploration program was to assess the economic potential of the Gunsteel Formation shales within the Property, and evaluate structural relationships and mineralization in order to define targets for exploration drilling. The strategy for this project involved visiting each area of interest (AOI) and conducting infill sampling, mapping and minimal prospecting. Additionally, the mapped gossans were visited in order to characterize their source, type, mineralogy and geochemistry. The targeted areas of interest were previously defined by the historical work on the Property as Areas A, B and C (Figure 11). Within these areas, soil sampling, rock sampling and geologic mapping were conducted, and structural settings were identified.

Cleavage-bedding relationships are identifiable locally. This relationship may have been historically underutilized. During the 2012 field work, the author found that the cleavage-bedding relationships are commonly obscure and the two S-surfaces typically intersect at low angles. The historical data suggest that the cleavage is parallel or sub-parallel to bedding throughout most of the mineralized areas. Cleavage-bedding relationships should be recorded as a tool for determining the structural setting for exploration drilling targets in future work.

Figure 11. Field work locations and areas of interest

Figure 12. Soil and rock sample locations

30

3.1.1 SAMPLES

Soil samples were collected from the B soil horizon and where that horizon was poorly developed, samples were collected from the C horizon. Soil samples were typically collected from an average depth of 15-30 centimeters using a geo-pick to dig each hole and place the soil in a sample bag. Rock chip samples were collected from the tops of ridges and areas where soils were not developed; The samples were collected on 3 meter intervals across stratigraphy with sample breaks at lithologic contacts, changes in weathering color and texture. Rock chip sample descriptions and locations are outlined in Table 4. All samples were placed in labeled Hubco cloth sample bags along with the respective sample ID tag. A hand-held Garmin GPS unit was used to record sample locations in UTM coordinates (accurate to +/- 5 to 10 meters). Samples were transported to Mackenzie with the field personnel, secured with zip ties, packaged in sealed boxes along with sample submittal sheets and analytical instructions and shipped via greyhound to the ALS Laboratory in Vancouver.

Locations for samples were chosen based upon the need for infill sampling and verification of historical assay values. The areas visited were assigned priority based upon historical assessment reports, mapped soil geochemical anomalies and exposures of favorable stratigraphy. Anomalous value ranges for Pb, Zn and Ba are adapted from the 2008 NI 43-101 report by Darwin Green (2008) and are included in Table 3 below.

Table 3. Threshold values for geochemical anomalies

Pb- (Cominco and Mantra)	Anomalous > 30 ppm	Highly Anomalous > 60 ppm
Pb- (Inmet)	Anomalous > 45 ppm	Highly Anomalous > 80 ppm
Zn- (All data sets)	Anomalous > 400 ppm	Highly Anomalous > 1000 ppm
Ba- (All data sets)	Anomalous > 3000 ppm	Highly Anomalous > 5000 ppm

3.2 ANALYTICAL PROCEDURE

Samples were shipped to ALS laboratory in Vancouver, BC and prepared using their Prep 31 and Prep 41 packages. All samples were accounted for and logged into their ALS laboratory tracking system, weighed and dried. Rock samples were crushed and 250 grams were split and pulverized to 85% of the material passing through a 75 micron sieve. Soil samples were processed through a 180 micron sieve. Both soil and rock samples were analyzed for 48 elements by four-acid digestion using ICP-AES procedure ME-MS 61. Overlimit analysis was completed for samples with lead and zinc contents greater than the upper analytical threshold in the first analysis. Ore grade analysis was applied to the overlimit

samples using four-acid digestion and ICP-AES procedure Zn/Pb-OG 62. X-Ray Fluorescence (XRF) analysis was applied to samples returning greater than 10,000 ppm Barium, using Lithium Borate Fusion and XRF procedure Ba XRF 10.

In total, 136 soil samples and 33 rock samples were collected and 10 standards, 9 blanks and 8 duplicates were periodically inserted for quality assurance and quality control (QA/QC). Reference ore standard Pb 129 was prepared by WCM minerals, Burnaby, B.C., Canada. Blanks were collected, using the same material, from a single soil pit near the Mackenzie airport and distributed to the respective sample bags. Duplicate samples were collected in the field from the same material in the same soil pit where the primary samples were collected. Analytical results for the QA/QC samples are presented in Appendix 5. The inserted blanks, standards and duplicates yield consistent analytical results, suggesting that the data from ALS has a high quality of reproducibility.

3.3 RESULTS

The 2012 program satisfied its objectives. Soil sampling verified geochemical anomalies and provided confidence in the spatial location, extent and value of anomalous Pb, Zn, and Ag as defined by earlier sampling programs. The structural setting at the Gnome Property consists dominantly of a complex series of antiforms and synforms with isoclinal to open folds and thrust and normal faults. Field observations of structural and stratigraphic relationships confirm the presence of overturned folds, and steep normal faults identified in previous programs.

3.3.1 SAMPLING

AREA B

Soil samples in Area B tested a linear, northwest-trending Pb and Zn soil geochemical anomaly that extends approximately 1200 meters along the strike of bedding and is located near the inferred base of unit Dno (Gunsteel Formation). Additionally, this anomaly follows a linear topographic feature approximately 2000 meters in length that is likely a product of differential erosion. These geochemical, topographic and geologic relationships support a genetic relationship between host-rock mineralization, rock type, and soil geochemistry that define a drill target. Two grids, Area B-south and Area B-north, were designed to achieve the goals for infill sampling and verification of historic geochemical values (Appendix 4, Plates 4-6 and 16).

Area B-south, shown in Figure 11, is characterized by highly-anomalous Pb values associated with moderate Zn values. The 2012 soil grid in Area B-south consisted of three 100-meter sample lines with 80-meter separation and samples collected every 25 meters. Sixteen soil analyses returned values ranging from 82 to 126 ppm Pb and 117 to 298 ppm Zn. These geochemical data follow the spatial trends of the

preexisting datasets and have values for Pb and Zn similar to those found in earlier soil sampling programs. The results from this study confirm the reproducibility of soil results from multiple previous sampling programs.

Area B-north, shown in Figure 11, is characterized by coincident Pb and Zn mineralization (Green, 2008). The 2012 soil grid for Area B-north consists of two grid lines spaced 200 meters apart with a total of 18 samples collected on 50 meter intervals. Lead values for this area are moderately to highly anomalous ranging from 44.5 to 251 ppm. These values fit well with the historical soil geochemical data, demonstrate the presence of anomalous base-metal mineralization, and indicate a proximal source. The geochemical results from this study and the results from previous studies together provide a robust dataset that outlines a relatively thin, elongate soil geochemical anomaly.

AREA C

Based on previous exploration programs, Kapusta (1996) identified Area C as the highest priority location for follow-up sampling, mapping and prospecting. Area C is located proximal to the GNOME minfile occurrence (Appendix 4; Plates 7-9, Figure 1). Soil samples in 2012 were collected at 25 meter intervals along three lines spaced 80 meters apart. The sampling lines were oriented orthogonal to structural grain of the proximal barite-bearing (+/- Pyrite) black shale. The results of this soil sampling confirm previous field observations and anomalous geochemical signatures. There are spatial relationships between anomalous geochemical values and distinct lithologic units. The gossan located in Area C returned two highly-anomalous values of Zn (up to 4.69% Zn in sample #93871). This soil grid indicated anomalous values of Zn within and proximal to the gossan exposure (east slope) and elevated to anomalous values of Zn on the west slope. The anomalous Pb values are located proximal to and along strike of Dba3. Pb and Zn are weakly coincident. Where Zn is very highly anomalous it is due to the presence of zinc-rich gossans.

SOUTHERN AREA

The southern area was targeted in order to understand the structural setting and stratigraphy of this area, and to infer the geologic setting and characteristics of the forested areas that have minimal exposure. Rock chip samples were collected on 3 meter intervals across stratigraphy along the southern ridge. This sampling was designed to test the metal content of the stratigraphic units where they are well exposed. This can then be used as a guide in evaluating the potential of the same units where they project into the heavily forested areas in the central part of the claim block. The rock chip samples returned weak to moderate and locally anomalous values for Pb, Zn and Ba. The blue-grey weathering fissile slate unit (Appendix 4, Plate 10-15) returned moderate to highly anomalous values for Ba and one coincident Pb and Ba anomaly (sample 93650). These results confirm the presence of Ba identified in hand sample and suggests that barite mineralization is cogenetic with the blue-grey weathering fissile slate and is

correlative to unit Dno. Results of geologic mapping from the 2012 program project the Paleozoic section to the southwest and allow for correlation between lithologic units previously mapped by Cominco. Devonian Earn Group strata are bound by orange-weathering dolomitic siltstone to the east and west (Figure 14). This siltstone probably correlates to the Silurian siltstone previously described above. The continuity between the lithologic units of the southern area of the Gnome Property and the area previously mapped by Cominco, suggests that the package of Earn Group rocks, specifically unit Dno, occurs in a similar structural arrangement and confirms that the Gnome Property is largely underlain by favorable stratigraphy.

3.3.2 Gossans

Characteristic samples of mineralization within iron seeps were collected from five of the eight large gossans on the Property (Figure 13). Samples were collected both from the surface crust and at depths of 10-15 cm. The samples of larger clasts were treated as rock samples, whereas the samples of dominantly silt and granules were treated as soil samples. The gossans have a distinct linear arrangement and occur proximal to iron-rich shales of the unit Dno. As described above for Area C they coincide with strongly anomalous zinc values. These three characteristics suggest that the gossans are a critically important feature associated with mineralization on the Gnome Property. The five gossans that were visited in 2012 are described below.

AREA A

In the northern part of the Property, between area A and area B, the author visited a large, dome-like, iron-rich travertine occurrence. The travertine is located along a northeast-trending stream that drains the Property. The source of this travertine is apparently exhausted as it is currently being eroded, and it is moderately-highly weathered in outcrop, containing weakly-developed red to orange soils. Talus near the travertine is comprised of largely iron-rich, variably-reactive carbonate boulders and clasts. Along the eastern margin of the travertine, a 0.2m wide stream drains a twelve square meter pool located on a topographic bench approximately 30 meters uphill from the travertine deposit. The substrate of the stream is comprised of dark-red stained soils and organic matter. It is common for branches, twigs and trunks of trees to be stained orange-red, showing high-water marks from periods of increased runoff. Samples 93801-93806 were collected from the travertine, talus, stream substrate and from the adjacent pool. These samples returned highly-anomalous levels of Zn (4400-11850ppm), although they are not anomalous in Pb, Ag and Ba. A second smaller gossan located at 403470E 6349515N (near the boundary between tenure 569529 and 569525) was also sampled. This gossan is characterized by medium-dark orange soils with abundant orange-stained, grey to black slate talus. Samples 93808-93810 from this gossan returned highly anomalous values of Zn (1150-2870ppm).

AREA B

In the north-central portion of tenure 569525, proximal to Area B, the author visited a gossan that is exposed on a barren, northwest-facing talus slope. The gossan contains iron-stained heterolithic shale clasts. The talus appears to have been stained in situ by iron-rich fluids. An active spring is located at the base of the barren talus slope. This spring is precipitating a white-yellow and light-orange crust with morphology similar to that of a terraced travertine. Samples 93820 and 93822 were collected from the talus slope and spring deposit respectively. Both samples returned highly anomalous values of Zn (10700 and 18200 ppm respectively), but neither of these samples was anomalous in other base metals.

AREA C

Within area C, the author visited an extensive gossanous iron seep located in a steep drainage on a south-facing slope. The iron seep occurs in the southern portion of tenure 569525 near the GNOME minfile occurrence (Figure 13). This seep is zoned, with mineralization proximal to a spring that is actively incising and eroding hematite. The hematite is dark red to deep purple and has a scaly, weathered exposure. Downslope of the hematite, shale talus is composed of moderately to strongly ironstained clasts of unit Dsa (dark grey to black siliceous shale). Characteristic samples of this iron seep (gossan) were collected in addition to infill samples collected along three lines that were perpendicular to the structural fabric in this area (Appendix 4, Plates 7-9). Soil samples 93871-93873 and 93876-93877 all returned very highly anomalous values of Zn (2130 - 46900 ppm) but were not anomalous with other base metals. Sample 93871 returned the highest value of Zn (4.69%). The sample consists of brown to orange soil with abundant grey-weathering black shale and significant iron oxide staining. Rock chips 93861 and 93862 collected from this gossanous iron seep are representative samples of the talus. Sample 93861 is a rock chip sample collected from the iron-stained talus slope. This sample contains light to medium grey shale fragments with occasional green oxidized surfaces. Numerous ferricrete clasts were present on the talus slope. Sample 93861 returned a moderately high anomalous value of 1890ppm Zn. Sample 93862 is a pitted clast of dark-grey to red-orange ferruginous talus with a medium to dark grey metallic luster and abundant iron oxide staining. This sample returned a highly anomalous value of 1.47% Zn. Neither sample contained anomalous values for other base metals.

SOUTHERN AREA

In the southern portion of the Gnome Property (tenure 593379), an extensive gossan is located in the valley bottom (Figure 14). The gossan is almost completely lacking in vegetation, unlike the surrounding heavily forested slopes. This gossan displays remarkable exposure of variable mineralization and texture. Numerous springs draining the hillslope flow across the gossan and precipitate white to yellow crusts. This gossan is marked by dark-red to purple and commonly buff-orange hematite and other iron oxides. Eight rock chips were collected from select locations within this gossan to capture geochemical signatures of the assorted textures and various mineralization products. Samples 93648, 93672-93675 and 93698-93700 returned an array of moderate to highly anomalous Zn values ranging from 607 to 8650 ppm.

Table 4. Rock Chip Sample Locations and Description

C	Data	NL COLLARS	F		T	NATION OF THE STREET		Description.
Sample No.	Date	Northing	Easting	Collected by	Туре	wineralization	коск Туре	Description
02640 07/21	07/21/12	6240500	400120	IFC	Dock Chin	Limonito	Charty Clata	Med to drk gry and blk slate w/ chert nodules.
95049	07/21/12	0340396	409129	JFC	KUCK CHIP	Linonite	Cherty State	Slaty cleavage. Common qtz vein material
02650 07/21/12	C2 405 05	400050		De els Chise	1 ········	Charts Clata	Med to drk gry and blk slate w/ chert nodules.	
93050	07/21/12	0340585	409055	п	коск спір	Linonite/gerusite	Cherty State	Slaty cleavage
93651	07/21/12	6340515	409223	JFC	Rock Chip		Graphitic Slate	Blue-gry graphitic slate. L-tectonite
000500 07/0	07/21/12	C240470	400200	JFC	Rock Chip	qtz, barite	Vein Material	Drk gry-blk breccia vein material w/ Qtz and
93652	0//21/12	6340470	409266					barite
93654	07/21/12	6340309	409337	JFC	Rock Chip	silica	Graphitic Slate	Blue-gry graphitic slate, mod silicified, fissile
93655	07/21/12	6340158	409411	JFC	Rock Chip	silica	Graphitic Slate	Blue-gry graphitic slate, mod silicified, fissile
93656	07/21/12	6340159	409410	JH	Rock Chip	barite	Black Slate	Black Slate, dense w/ barite
93657	07/21/12	6340106	409411	JFC	Rock Chip		Graphitic Slate	Blue-gry graphitic slate, mod silicified, fissile
93658	07/21/12	6339893	409285	ВК	Rock Chip	limonite	Silicious Blk Slate	lt-med gry silicious black slate. Slaty cleavage
93660	07/21/12	6339895	409286	JFC	Rock Chip		Vein Material	Qtz vein material
93661	07/21/12	6339892	409285	JFC	Rock Chip	limonite	Black Slate	lt-med gry silicious black slate. L-tectonite
93662	07/21/12	6339718	409207	JFC	Rock Chip		Vein Material	Qtz vein material
02664 07/24/42	07/21/12	2 6339719	409207	ВК	Rock Chip	limonite	Rusty Brown Slate	Rusty Brown weathered black slate float, w/
93004	07/21/12							compositional layering
93665	07/21/12	6339746	409171	JFC	Rock Chip		Dolomitic Siltstone	Orange-brown dolomitic siltstone
93666	07/21/12	6339550	408357	BK	Rock Chip		Graphitic Slate	Blue-gry weathering graphitic slate
93667	07/21/12	6339553	408323	JFC	Rock Chip		Graphitic Slate	Blue-gry weathering graphitic slate
93668	07/21/12	6339550	408287	JFC	Rock Chip		Graphitic Slate	Blue-gry weathering graphitic slate
93669	07/21/12	6339505	408226	JH	Rock Chip		Graphitic Slate	Blue-gry weathering graphitic slate float
93670	07/21/12	6339501	408225	JH	Rock Chip		Dolomitic Siltstone	Orange-brown dolomitic siltstone float
93671	07/21/12	6339463	408176	JFC	Rock Chip	barite	Black Slate	Black Slate, dense w/ barite

Figure 13. Gnome Property Gossan Locations, Regional geology after MacIntyre 1998.

Figure 14. Southern area, 2012 geologic mapping and Cominco geologic map

4.0 DRILLING

There has been no drilling on the Gnome Property to date.

5.0 CONCLUSIONS

The Gnome Property exhibits potential for economic base-metal mineralization. The Property contains favorable stratigraphic units with bedded barite and pyrite horizons, and it displays significant soil geochemical anomalies. The results of sampling from both the 2012 and previous exploration programs indicate that barite mineralization is stratigraphically-controlled, following individual horizons within well recognized stratigraphic and lithologic units. The barite horizons exposed at the surface of the Gnome Property likely extend down-dip, and along strike based upon comparisons with similar occurrences in the region and on the continuity of soil anomalies over hundreds of meters.

The Gnome Property displays stratigraphic, structural, and geochemical characteristics that are similar to the characteristics of the neighboring Akie Property. The Akie Property contains a 40 cm-thick exposure of sulfide mineralization and bedded barite named the Cardiac Creek deposit. This mineralization was discovered in a creek bed in 1994 and subsequently underwent exploratory drilling. Prior to the discovery of the Cardiac Creek deposit and subsequent exploration drilling, the exploration status of the Gnome Property was very similar to that of the neighboring Akie Property. Both the Akie and Gnome properties contain stratiform barite-sulfide mineralization hosted by the Gunsteel Formation, and both share similarities in soil geochemistry and base-metal signatures. A stratigraphic section for the Akie Property suggests that the bedded barite and massive sulfide deposit of the Cardiac Creek zone lies stratigraphically below three distinct beds of laminated pyrite and nodular barite with interbedded shale (Johnson, 2008). The characteristics of the barite horizons on the Gnome Property suggest that they are probably correlative with the barite horizons on the Akie Property, indicating that there is potential for discovery of Cardiac Creek-style mineralization beneath the Dba2 barite horizon on the Gnome Property.

Past exploration programs on the Property have delineated three areas of anomalous soil geochemical values, but have failed to discover significant bedrock mineralization. The extent of base metal mineralization and barite-pyrite horizons, and significance of soil geochemical anomalies are not well understood. The limited exposure of stratigraphic units below tree line and absence of exploration drilling inhibit the ability to interpret the source of geochemical anomalies. Two well-defined soil geochemical anomalies associated with favorable stratigraphy and barite-pyrite mineralization in outcrop constitute the primary areas of interest for future exploration programs.

6.0 RECOMMENDATIONS

A phased program consisting of drill-testing soil geochemical anomalies at Area B-north, Area Bsouth and Area C is recommended. Additional infill soil sampling and prospecting should be undertaken south of Area C where soil anomalies identified by Cominco, Inmet and Mantra are proximal to Dba2. Ongoing structural and stratigraphic analysis of the antiform-synform relationship at area C is also recommended; further understanding of the stratigraphy with respect to the barite horizons and their structural setting will provide valuable information on potential for SEDEX-type mineralization at depth.

Additionally, it is recommended that the results from the Cyprus Anvil and Aquitaine Company of Canada programs, covering the GIN, Aki and Guy claims, be digitized. The southern area of the property has the best stratigraphic exposure. It is hoped that a comparison of the GIN soil geochemistry to the existing Gnome dataset will allow correlation of the Gnome and GIN anomalies with source stratigraphy. This will aid in projecting mineralized horizons to other parts of the Gnome Property and possibly to areas outside the present claim block.

APPENDICES

APPENDIX 1. REFERENCES

- Close, S., (2010): 2010 Geophysical Assessment Report on the Gnome Zn-Pb-Ag Property, Omineca Mining Division; Northeastern British Columbia; Report for AsiaBaseMetals, Incorporated; B.C. Ministry of Energy Mines and Petroleum Resources, Assessment Report 31871, 166 pages.
- Demerse, D., Hopkins, J. (2008): Lithology and Structural Geology of the Akie Property, Kechika Trough, Northeastern British Columbia; Mantles Resources Inc., internal company report, 248 pages.
- Gabrielse, H., (1984): Major dextral transcurrent displacements along the northern Rocky Mountain trench and related lineaments in north-central British Columbia; Geological Society of America Bulletin, volume 96, pages 1-24.
- Green, D., (2008): NI 43-101 Technical Report, Geology and Geochemistry, Gnome Zinc-Lead-Silver Property, Northeast British Columbia, Canada; Report for Mantra Mining, Incorporated; B.C. Ministry of Energy, Mines and Petroleum Resources, Assessment Report 30485, 166 pages.
- Goodfellow, W.D., and Lydon, J.W., (2007): Sedimentary Exhalative (SEDEX) Deposits; Mineral Deposits of Canada: A Synthesis of Major Deposit Types, Districts Metallogeny, the Evolution of Geological Provinces, and Exploration Methods: Geological Association of Canada, Mineral Deposits Division, Special Publication Number 5.
- Johnson, N., (2008): Summary Report on the 2008 Diamond Drilling Program, Akie Project, Omineca Mining Division, Northeastern British Columbia; Report for Ecstall Mining Corporation; B.C. Ministry of Energy, Mines and Petroleum Resources, Assessment Report 31103, 672 pages.
- Kapusta, J. D. and Baxter, P., (1996): Soil geochemical assessment report, Muskwa Property; unpublished report for Inmet Mining Corporation; B.C. Ministry of Energy, Mines and Petroleum Resources, Assessment Report 24461, 16 pages plus figures.
- Kuran, V.M., (1981): Geological and geochemical report on the Gnome Group; Omineca Mining Division; Northeastern British Columbia; report for Cominco Ltd.; B.C. Ministry of Energy, Mines and Petroleum Resources, Assessment Report 9722, 7 pages plus figures.
- MacIntyre, D.G., (1991): Sedex Sedimentary-exhalative Deposits, in Ore Deposits, Tectonics and Metallogeny in the Canadian Cordillera, McMillan, W.J., Coordinator, B. C. Ministry of Energy, Mines and Petroleum Resources, Paper 1991-4, pages 25- 69.
- MacIntyre, D.G., (1998): Geology, Geochemistry and Mineral Deposits of the Akie River Area, Northeast British Columbia; B.C. Ministry of Energy, Mines and Petroleum Resources, Bulletin 103, 99 pages, 1 map.
- MacIntyre, D.G. (2005): Geological report on the Akie Property, Mantle Resources Inc. Inc., internal company report, 54p.
- MacIntyre, D. G., and Sim, R.C. (2008): Technical Report: Geology, Diamond Drilling and Preliminary Resource Estimation, Akie Zinc-Lead-Silver Property, Northeast British Columbia, Canada. Internal Report, Mantle Resources Inc., 96p.
- McClay, K.R., Insley, M.W. and Anderton, R., (1989): Inversion of the Kechika Trough, northeastern British Columbia, Canada; Inversion Tectonics, Cooper, M.A. and Williams, .D. (editors), Geological Society Special Publications No. 44, pages 235-257.
- Paradis, S., Hannigan, P., and Dewing, K., (2007): Mississippi Valley-Type Lead-Zince Deposits; Mineral Deposits of Canada: A Synthesis of Major Deposit Types, Districts Metallogeny, the Evolution of Geological Provinces, and Exploration Methods: Geological Association of Canada, Mineral Deposits Division, Special Publication, Number 5.

- Pigage, L.C., (1986): Geology of the Cirque barite-zinc-lead-silver deposits, Northeastern British Columbia; in Mineral Deposits of Northern Cordillera, J. Morin (editor), Canadian Institute of Mining and Metallurgy, Special Volume 37, pages 71-86.
- Price, R.A., (1986): The southeastern Canadian Cordillera: thrust faulting, tectonic wedging and delamination of the lithosphere; Journal of Structural Geology, volume 9, pages 239-254.
- Pride, K.R., (1980): Geological and geochemical report on the Gnome Group; unpublished report for Cominco Ltd.; B.C. Ministry of Energy, Mines and Petroleum Resources, Assessment Report 7270, 7 pages plus figures.
- Roberts, W.J., Simpson, J.G., (1980): Geochemical Soil Sampling on the GIN claims, Pesika Creek Area, Omineca Mining Division; report for Cyprus Anvil Mining Corp.; B.C. Ministry of Energy, Mines and Petroleum Resources, Assessment Report 08369, 15 pages.
- Sim, R.C., (2012): NI 43-101 Technical Report, Akie Zinc-Lead-Silver Project, British Columbia, Canada; Independent report for Canada Zinc Metals Corporation, 130 pages.
- Simpson, J.G., Roberts, W.J., (1980): Geochemical Soil Sampling on the GIN claims, Pesika Creek Area, Omineca Mining Division; unpublished report for Cyprus Anvil Mining Corporation; Ministry of Energy, Mines and Petroleum Resources, Assessment Report 8369, 15 pages.

APPENDIX 2. COST STATEMENT

Exploration Work type	Comment	Days		
Personnel (Name)* / Position	Field Days (list actual days)	Davs	Rate	Subtotal*
John Childs- Sen. Geologist	July 20- July 23	,-	\$844.72	\$3.378.88
Jeremy Harwood- Proj. Geologist	July 13- July 23	11	\$527.95	\$5,807.45
Brian Kuhn- Scientific Technician	July 13- July 23	11	\$475.16	\$5,226.71
Vicki Podgorenko- Expeditor	54.7 20 54.7 20		\$750.96	\$750.96
		27.0	<i>φ, σ</i> σισσ	\$15,163.99
Office Studies	List Personnel (note - Office onl	v)		<i>+_0/_00100</i>
Literature search	Jeremy Harwood, Brian Kuhn	3.0	\$398.33	\$1,195.00
Database compilation	Jeremy Harwood, Brian Kuhn	11.9	\$496.21	\$5,894.98
Computer modelling	Jeremy Harwood, Michael Jensen	9.5	\$423.81	\$4,005.00
Reprocessing of data			\$527.95	\$0.00
General research	Jeremy Harwood, Brian Kuhn	5.3	\$441.98	\$2.342.50
Report preparation	Jeremy Harwood, Helen I vnn, John	0.0	+	+=/0 -=-00
	Childs	23.6	\$494.06	\$11 637 66
Admin and Planning	Jeremy Harwood John Childs	11 1	\$526.53	\$5 857 69
	Screiny harwood, sonn ennas	64 3	φ320.33	\$30,932,83
Airborne Exploration Surveys	l ine Kilometres / Enter total invoice	d amount		450/552:05
Aeromagnetics		a amount	\$0,00	ቀበ በቃ
Radiometrics			\$0.00 \$0.00	¢0.00 ¢0.00
Flectromagnetics			\$0.00 \$0.00	ትር-00 ቁበ በበ
Gravity			\$0.00 \$0.00	\$0.00 \$0.00
Digital terrain modelling			\$0.00 \$0.00	\$0.00 \$0.00
Other (specify)			\$0.00 ¢0.00	\$0.00 ¢0.00
Other (specify)			φ0.00	ֆ0.00 ¢Ո ՈՈ
GIS/Remote Sensing	Area in Hectares / Enter total invoice	ad amount	or list persor	unel
Aerial photography	BCMP orthonhotographs	1 0	\$681.06	\$681.06
		1.0	001.00¢	00.100¢ 00.0¢
Software	Manifold Systems License	10	\$0.00 \$464.60	\$0.00 \$464.60
Soltware	Manifold Systems License	1.0	φ 101 .00	¢1 145 65
Ground Exploration Surveys	Area in Hectares /List Personnel			ψ1/1-15105
Geological mapping	Jeremy Harwood Brian Kuhn John (hilds		
Regional	Sereiny harvood, Bhan hann, Sonn y			
Reconnaissance				
Prospect				
Inderground	Define by length and width			
Trenches	Define by length and width			¢0.00
Tenenes	Define by length and width			φ 0. 00
Ground geophysics	Line Kilometres / Enter total amount	t invoiced l	ist nersonnel	
Radiometrics		linvoiceu i	ist personnel	
Magnetics				
Gravity				
Digital terrain modelling				
Electromagnetics	note: evpenditures for your crew in	the field		
	should be captured above in Person	nel		
IP	field expenditures above			
Resistivity				
Complex resistivity				
Saismic reflection				
Sciemic refraction				
	Define by total los ath			
	Denne by total length			
Peu ophysics Other (crossify)				
				¢0.00
				\$0.0U

Geochemical Surveying	Number of Samples	No.	Rate	Subtotal
Drill (cuttings, core, etc.)			\$0.00	\$0.00
Stream sediment			\$0.00	\$0.00
Soil	161 Soil samples	161.0	\$31.67	\$5,098.68
Rock	35 Rock samples	35.0	\$37.23	\$1,303.09
Water			\$0.00	\$0.00
Biogeocnemistry Whole reck			\$0.00 ¢0.00	\$0.00 ¢0.00
NUCLE FOCK			\$0.00 ¢0.00	\$0.00 ¢0.00
Other (Reference Ore-Standards)		1.0	\$0.00 ¢208 60	\$0.00 ¢208 60
Other (Sample bags)		1.0	\$200.09 \$178.00	\$200.09 ¢178.00
		1.0	φ170.00	\$6,788.45
Drilling	N/A	No.	Rate	Subtotal
Diamond			\$0.00	\$0.00
Reverse circulation (RC)			\$0.00	\$0.00
Rotary air blast (RAB)			\$0.00	\$0.00
Other (specify)			\$0.00	\$0.00
	N/ 4		. .	\$0.00
Other Operations	N/ A	NO.	Rate	
Rulk compling			\$0.00 ¢0.00	\$0.00 ¢0.00
Durk sampling			\$0.00 ¢0.00	\$0.00 ¢0.00
Other (specify)			\$0.00 ¢0.00	\$0.00 ¢0.00
ouler (speerly)			φ0.00	\$0.00
Reclamation	N/A	No.	Rate	Subtotal
After drilling			\$0.00	\$0.00
Monitoring			\$0.00	\$0.00
Other (specify)			\$0.00	\$0.00
				\$0.00
Transportation		No.	Rate	Subtotal
	Kuhn & Harwood to Prince George,		+4 007 07	
Airtare	Childs to Fort Granam	3.00	\$1,227.87	\$3,683.60
I axi		1.00	\$53.00	\$53.00 ¢1 227 20
kilomotors		1.00	\$1,227.30 ¢0.00	\$1,227.30 ¢0.00
ΔΤ			\$0.00 \$0.00	\$0.00
fuel			\$0.00	\$0.00 \$0.00
Helicopter (hours)	Yellowhead Helicopters, Ltd.	33	\$924.00	\$30,492.00
Fuel (litres/hour)	Yellowhead Helicopters, Ltd.	90.00	\$73.92	\$6,652.80
Flight crew	Yellowhead Helicopters, Ltd.	11.00	\$168.00	\$1,848.00
Field Crew	Childs Geoscience- Travel	2.00	\$1,636.65	\$3,273.29
				\$47,229.99
Accommodation & Food	Rates per day			
Hotel	Lodging in Prince George & Mackenzie	1.00	\$653.34	\$653.34
Camp	Fort Graham (man days)	33.50	\$168.00	\$5,628.00
Meals	Actual costs	1.00	\$288.58	\$288.58
Miscellaneous				\$0,509.92
Telephone	Satellite Phone	1 00	\$303.80	\$303.80
Other (Specify)	Mobile Phone	1.00	\$148.20	\$148.20
		1100	φ1 10120	\$452.00
Equipment	Showel Dick Dock Hammor Sample Tage			
Field Gear (Specify)	field books, zip ties, bateries, Insect	1.00	\$739.08	\$739.08
	Repellents, Bear Sprays, HCL			
				\$739.08
Freight, rock samples				
Greyhound	Mackenzie to ALS-Vancouver	1.0	\$143.60	\$143.60
			\$0.00	\$0.00
				\$143.60

APPENDIX 3. CERTIFICATES OF QUALIFICATION

- I, Jeremy A. Harwood, hereby certify that:
 - 1. I am a Geologist employed by Childs Geoscience, Inc. with a business address of 1700 W. Koch Street, Suite 6, Bozeman, MT, USA 59715.
 - 2. I am a graduate of Montana State University (2010) with a B.Sc. degree in Earth Sciences.
 - 3. I have been continuously employed in the geoscience industry since June, 2010 and have been working in exploration geology for base and precious metals and industrial minerals since November, 2010.
 - 4. I personally carried out or supervised the work described in this report and that I am one of the authors of this report entitled "2012 Geologic and Geochemical Assessment Report on the Gnome Property"
 - 5. This report is based on original interpretation, field studies and publicly-available reports, maps and commissioned NI 43-101 technical reports.

Dated in Bozeman, MT, USA this 4^{TH} day of December, 2012

Signature of Jeremy A. Harwood

Printed'name of Jeremy A. Harwood

- I, John F. Childs, do hereby certify that:
 - 1. I am the President of: Childs Geoscience, Inc. 1700 West Koch Street, Suite 6 Bozeman, Montana 59715
 - 2. I graduated with a PhD in Geology from the University of California, Santa Cruz (1982). I have a MSc from the University of British Columbia (1969) and a BSc from Syracuse University (1966).
 - 3. I am a member of the Geological Society of America, the Geological Association of Canada, the Society of Economic Geologists, and the Association of Applied Geochemists. I am a Registered Geologist in the State of Arizona, and I am a Founding Registered Member of the Society for Mining, Metallurgy and Exploration.
 - 4. I have practiced my profession as a geologist for 40 years since leaving university.
 - 5. My relevant experience for the purpose of this report is: work in the United States, Canada, Brazil, Mexico, Guyana, and other countries that included investigation of similar syngenetic SEDEX and shear zone hosted deposits.
 - 6. I am responsible for the preparation of this Assessment Report entitled "2012 Geologic and Geochemical Assessment Report on the Gnome Property". I visited the Property from July 20 to July 23, 2012 and during this visit I conducted soil and rock sampling, geologic mapping and project oversight.
 - 7. I have not had prior involvement with the properties that are the subject of this Assessment Report.
 - 8. As of the date of this certificate, to the best of my knowledge, information and belief, this Assessment Report contains all scientific and technical information that is required to be disclosed to make this Assessment Report not misleading.
 - 11.I consent to the filing of this Assessment Report with any regulatory authority and any publication by them for regulatory purposes, including electronic publication in the public company files on their websites accessible by the public.

Dated in Bozeman, MT USA this 4 day of December, 2012

Signature of John F. Childs

John F. Childs Printed name of John F. Childs

APPENDIX 4. 2012 RESULTS, PLATES 1-16

Plate 1. Area A, Barium Soil Geochemistry

Plate 2. Area A, Lead soil geochemistry

Plate 3. Area A, Zinc soil geochemistry

Plate 4. Area B, Barium soil geochemistry

Plate 5. Area B, Lead soil geochemistry

Plate 6. Area B, Zinc soil geochemistry

Plate 7. Area C, Barium soil geochemistry

Plate 8. Area C, Lead soil geochemistry

Plate 9. Area C, Zinc soil geochemistry

Plate 10. Southern Area, Barium soil and rock geochemistry

Plate 11. Southern Area, Lead soil and rock geochemistry

Plate 12. Southern Area, Zinc soil and rock geochemistry

Plate 13. Southern Area, Barium soil and rock geochemistry

Plate 14. Southern Area, Lead soil and rock geochemistry

Plate 15. Southern Area, Zinc soil and rock geochemistry

Plate 16. Area B inferred geology with sample locations and structural measurements

APPENDIX 5. GNOME 2012 SOIL QA/QC

IDENT	COMMENT	QA/QC	Ag_ppm	Ba_ppm	Cu_ppm	Pb %	Zn %
Reference Ore Pb 129			23		2800	1.24	2.00
93617	Soil	Standard	21.9	890	2890	1.245	2.04
93623	Soil	Standard	22.8	870	2850	1.25	2.06
93646	Soil	Standard	24.2	880	2900	1.185	1.98
93697	Soil	Standard	24.8	870	2790	1.23	2.06
93817	Soil	Standard	22.9	870	2910	1.235	1.99
93827	Soil	Standard	21.5	880	2810	1.235	2.01
93855	Soil	Standard	23	870	2820	1.21	1.995
93865	Soil	Standard	20.8	870	2840	1.21	2.01
93896	Soil	Standard	21.1	840	2710	1.22	2.05
93663	Rock	Standard	22.1	860	2740	1.385	2.26
		Standard deviation	1.29	13.33	66.53	0.05	0.08
		1					
IDENT			Ag_ppm	Ba_ppm	Cu_ppm	Pb_ppm	Zn_ppm
93609	Soil		0.14	1190	24.7	21.4	159
93610	Soil	Duplicate	0.13	1190	23.9	22.7	139
		Standard Deviation	0.01	0.00	0.57	0.92	14.14
93630	Soil		5.2	750	33.6	176.5	196
93631	Soil	Duplicate	4.52	1630	40.1	154.5	254
		Standard Deviation	0.48	622.25	4.60	15.56	41.01
93690	Soil		0.46	1860	30.8	23.2	868
93691	Soil	Duplicate	0.54	1940	34.9	25.5	1120
	a	Standard Deviation	0.06	56.57	2.90	1.63	178.19
93813	Soil		0.45	1700	23.5	19.9	94
93814	Soll	Duplicate	0.47	1/10	23.1	19.9	90
00000	6 H	Standard Deviation	0.01	7.07	0.28	0.00	2.83
93838	Soll		1.01	/30	12.3	18.7	35
93839	Soli	Duplicate	1.07	/50	12.7	18.7	3/
02040	Call	Standard Deviation	0.04	14.14	0.28	0.00	1.41
93849	Soll	Dunkanta	0.41	880	/.3	8.9	05
93850	5011	Duplicate	0.39	920	8	9.7	97 22 C2
02074	Cail	Standard Deviation	0.01	28.28	0.49	0.57	22.03
93874	Soil	Duplicato	0.92	3500	49.Z	18.3	702
95675	3011	Standard Doviation	0.90	5040	45.0	10.7	22 00
02007	Soil	Stanuaru Deviation	0.05	2240	2.55	0.20	20.99
02000	Soil	Duplicato	0.30	2240	4.5	0.9	160
55000	3011	Standard Deviation	0.47	2210	0.28	0.3	12 73
		Standard Bevlation	0.00	21.21	0.20	0.20	12.75
IDENT			Ag_ppm	Ba_ppm	Cu_ppm	Pb_ppm	Zn_ppm
93603	Soil	Blank	0.05	590	33.7	18.3	81
93677	Soil	Blank	0.09	560	37.5	21.1	86
93685	Soil	Blank	0.07	570	33.1	18.3	90
93807	Soil	Blank	0.12	540	29.7	18.7	93
93833	Soil	Blank	0.11	570	29	22.2	84
93845	Soil	Blank	0.06	530	34.3	20.4	78
93870	Soil	Blank	0.05	520	32	18	78
93884	Soil	Blank	0.16	510	24.8	16.2	77

Rock

93653

Blank

Standard Deviation

0.1

0.04

440

44.72

22

4.87

	7
2.48	5.85
14.1	78

APPENDIX 6. CERTIFICATE OF ANALYSIS-SOILS

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: ASIABASE METALS INC SUITE 1723,595 BURRARD STREET VANCOUVER BC V7X 1G4

Page: 1 Finalized Date: 19- AUG- 2012 This copy reported on 23- AUG- 2012 Account: ASBAS

CERTIFICATE VA12181672

Project: Gnome

P.O. No.:

This report is for 161 Soil samples submitted to our lab in Vancouver, BC, Canada on 7-AUG-2012.

The following have access to data associated with this certificate:

JOHN CHILDS WYLIE HUI JERRY ZEIG	JOHN CHILDS	WYLIE HUI	JERRY ZEIG
----------------------------------	-------------	-----------	------------

	SAMPLE PREPARATION	
ALS CODE	DESCRIPTION	
WEI- 21	Received Sample Weight	
LOG-22	Sample login - Rcd w/o BarCode	
LOG-24	Pulp Login - Rcd w/o Barcode	
SCR- 41	Screen to - 180um and save both	

ANALYTICAL PROCEDURES ALS CODE DESCRIPTION INSTRUMENT Pb- OG62 Ore Grade Pb - Four Acid VARIABLE Zn- OG62 Ore Grade Zn - Four Acid VARIABLE Ba-XRF10 Fusion XRF - Ba Ore Grade XRF ME-XRF10 Fusion XRF - Ore Grade XRF OA- GRA06 LOI for ME- XRF06 WST- SIM ME- OG62 Ore Grade Elements - Four Acid ICP- AES ME-MS61 48 element four acid ICP- MS

To: ASIABASE METALS INC ATTN: WYLIE HUI SUITE 1723,595 BURRARD STREET VANCOUVER BC V7X 1G4

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

Colin Ramshaw, Vancouver Laboratory Manager

***** See Appendix Page for comments regarding this certificate *****

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: ASIABASE METALS INC SUITE 1723,595 BURRARD STREET VANCOUVER BC V7X 1G4

Page: 2 - A Total # Pages: 6 (A - D) Plus Appendix Pages Finalized Date: 19- AUG- 2012 Account: ASBAS

Project: Gnome

Sample Description	Method	WEI- 21	ME- MS61	ME- MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME- MS61	ME- MS61	ME- MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME- MS61
	Analyte	Recvd Wt.	Ag	Al	As	Ba	Be	Bi	Ca	Cd	Ce	Co	Cr	Cs	Cu	Fe
	Units	kg	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	%
	LOR	0.02	0.01	0.01	0.2	10	0.05	0.01	0.01	0.02	0.01	0.1	1	0.05	0.2	0.01
93601		0.16	0.07	5.60	4.9	1050	1.61	0.12	0.29	1.03	75.0	6.3	63	5.53	15.2	1.69
93602		0.18	0.09	5.59	5.8	1130	1.64	0.15	0.34	1.97	70.4	6.4	65	4.53	17.2	1.98
93603		0.50	0.05	6.66	7.9	590	1.55	0.19	0.57	0.21	85.5	14.6	67	2.35	33.7	3.87
93605		0.20	0.34	4.96 5.86	2.5 7.2	1540	1.65	0.12	0.93	2.39	63.4 65.9	9.4 7.6	54 68	4.39 5.60	18.6	1.63 2.13
93606		0.18	0.17	5.54	4.5	1340	1.45	0.12	0.45	2.15	68.0	5.1	65	5.19	18.3	1.35
93607		0.16	0.16	6.29	10.4	1480	1.57	0.22	0.44	1.64	64.9	4.6	73	6.08	15.8	2.47
93608		0.18	0.62	6.23	12.6	2020	1.87	0.18	0.60	4.85	56.1	7.1	75	7.74	22.0	2.32
93609		0.16	0.14	6.12	9.5	1190	1.87	0.13	0.18	0.86	71.0	6.6	63	3.99	24.7	1.73
93610		0.12	0.13	6.04	9.5	1190	1.87	0.13	0.21	0.86	69.3	6.6	63	3.95	23.9	1.76
93611		0.10	0.63	4.25	9.8	890	1.38	0.11	2.03	3.25	50.6	6.8	56	3.66	21.4	1.68
93612		0.16	2.92	5.98	48.3	2010	1.70	0.31	0.06	0.78	61.4	2.2	74	10.20	32.4	2.49
93613		0.14	1.98	5.99	41.9	2360	1.67	0.25	0.06	0.50	61.7	2.5	76	9.59	31.8	3.08
93614		0.14	0.40	3.88	4.7	1080	1.18	0.16	0.03	0.10	43.1	0.8	50	6.51	8.4	0.81
93615		0.16	0.29	7.72	15.2	>10000	3.43	0.32	0.07	0.49	103.0	0.7	67	11.40	8.4	0.72
93616 93617 93618 93619 93619	<u></u>	0.12 0.02 0.16 0.14	1.15 21.9 0.83 0.87 1.22	7.85 7.77 6.30 6.69	23.0 12.2 27.8 10.6	4210 890 1850 1980	1.87 0.91 1.67 1.54	0.32 1.05 0.27 0.23	0.04 4.74 0.02 0.09	1.76 112.5 1.03 0.24	77.9 40.3 71.6 93.9 78.2	4.8 10.9 7.7 2.2	92 24 78 84	12.85 0.27 12.05 9.38	23.5 2890 69.3 17.5	4.61 4.93 6.63 2.10
93621 93622 93623 93623 93624 93625		0.12 0.12 0.18 0.02 0.16 0.20	0.83 2.25 22.8 1.27 0.78	4.25 5.08 7.77 5.89 4.57	15.4 27.4 12.4 14.4 8 1	910 1040 870 1310 850	1.66 1.57 0.93 1.65 1.10	0.12 0.20 1.07 0.22 0.13	0.02 0.06 4.68 0.06 0.05	0.38 0.73 111.5 0.42 0.23	73.5 92.4 43.1 72.1 71.1	1.4 5.2 10.4 1.9 2.3	49 68 24 72	7.29 7.57 0.27 9.22 5.44	14.7 32.6 2850 25.0	1.54 3.32 4.88 1.84
93626		0.20	1.14	5.67	25.0	1560	1.84	0.20	0.02	0.53	54.6	3.7	69	7.79	27.7	3.38
93627		0.24	1.65	5.85	22.1	1630	1.85	0.26	0.02	0.59	52.5	3.8	73	8.68	28.9	3.30
93628		0.20	0.49	4.82	10.3	880	1.41	0.20	0.07	0.46	58.2	3.1	61	6.15	19.0	1.68
93629		0.26	1.06	6.06	28.8	3850	1.80	0.19	0.01	0.43	77.3	1.2	81	9.49	40.2	2.41
93630		0.20	5.20	4.46	46.6	750	1.43	0.20	<0.01	0.88	50.6	2.0	78	10.45	33.6	3.46
93631 93632 93633 93633 93634 93635		0.18 0.18 0.24 0.22 0.14	4.52 2.43 1.35 1.36 5.93	4.99 5.55 5.97 6.90 3.47	45.4 84.2 34.6 66.4 32.9	1630 3970 3890 5440 1040	1.71 1.76 1.70 2.35 1.51	0.21 0.21 0.19 0.24 0.23	<0.01 <0.01 0.01 0.07 <0.01	1.01 0.45 0.30 1.15 0.13	58.3 63.6 69.2 71.8 76.0	2.6 2.5 1.8 2.4 0.4	86 90 85 131 70	11.55 12.30 11.45 12.45 5.46	40.1 44.3 36.0 106.0 12.3	3.40 3.37 2.76 4.97 3.38
93636		0.18	1.41	8.95	72.2	9100	3.20	0.33	0.01	0.29	132.5	2.7	141	15.90	14.7	2.83
93638		0.20	0.49	5.35	16.6	2200	1.40	0.17	0.05	0.17	121.0	1.3	82	7.95	16.1	1.62
93639		0.30	0.43	5.21	93.4	1430	1.72	0.22	0.05	0.43	67.9	2.2	69	9.00	34.5	4.01
93640		0.18	0.84	4.90	131.5	1180	1.52	0.21	0.04	0.39	46.6	1.7	78	10.55	61.7	5.81
93641		0.20	0.35	4.47	48.6	1370	1.38	0.25	0.03	0.27	96.7	1.6	56	7.81	31.7	2.32

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: ASIABASE METALS INC SUITE 1723,595 BURRARD STREET VANCOUVER BC V7X 1G4

Page: 2 - B Total # Pages: 6 (A - D) Plus Appendix Pages Finalized Date: 19- AUG- 2012 Account: ASBAS

Project: Gnome

Sample Description	Method	ME-MS61	ME-MS61	ME-MS61	ME- MS61	ME- MS61	ME-MS61	ME- MS61	ME- MS61	ME- MS61	ME- MS61	ME- MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61
	Analyte	Ga	Ge	Hf	In	K	La	Li	Mg	Mn	Mo	Na	Nb	Ni	P	Pb
	Units	ppm	ppm	ppm	ppm	%	ppm	ppm	%	ppm	ppm	%	ppm	ppm	ppm	ppm
	LOR	0.05	0.05	0.1	0.005	0.01	0.5	0.2	0.01	S	0.05	0.01	0.1	0.2	10	0.5
93601		14.75	0.14	2.2	0.033	3.38	39.8	21.8	0.61	248	6.19	0.58	9.0	27.6	1150	21.7
93602		15.85	0.15	2.3	0.036	3.19	38.0	19.8	0.57	402	6.54	0.48	11.2	27.7	1040	20.5
93603		17.60	0.17	1.3	0.045	1.69	43.6	37.1	0.75	749	1.07	0.96	10.9	39.3	880	18.3
93604		13.00	0.13	1.7	0.030	2.65	33.6	17.8	0.60	1100	3.50	0.41	8.2	23.7	1340	16.2
93605 93606 93607 93608		15.80 16.25 19.45 16.90	0.15	2.3 2.3 2.4 2.1	0.046	2.70 2.61 2.35 2.40	36.1 38.2 34.6 31.1	18.0 15.0 23.4 23.6	0.62	592 288 208 550	11.05 8.98 10.35 13.25	0.37 0.34 0.54 0.21	11.1 12.6 17.9	34.6 29.0 29.9	1900 950 730	19.3 15.3 22.7 21.8
93609 93610 93611		16.00 15.70 10.30	0.15 0.16 0.13	3.3 3.2 1.8	0.038 0.041 0.029	3.68 3.58 1.82	38.3 37.4 28.1	26.4 25.5 18.8	0.62 0.67 0.66	149 165 368	11.15 11.25 15.25	0.07 0.09 0.06	9.4 9.2 6.8	55.2 50.7 56.4	610 730 1170	21.3 21.4 22.7 18.8
93612		18.70	0.18	2.1	0.059	1.82	37.9	13.6	0.40	42	39.9	0.15	12.6	34.6	1730	43.7
93613		19.80	0.18	2.2	0.050	1.92	37.7	14.0	0.44	51	43.2	0.14	13.6	32.0	1380	61.8
93614		15.30	0.10	1.5	0.019	0.89	25.5	5.1	0.28	21	19.95	0.10	10.5	21.8	200	33.0
93615		23.6	0.17	2.3	0.081	2.53	59.4	25.7	0.69	21	41.5	0.16	14.7	24.6	660	887
93616		23.0	0.21	2.5	0.080	2.09	45.4	29.9	0.68	161	18.90	0.17	12.3	47.4	1190	62.8
93617		19.35	0.15	1.7	0.185	0.73	18.1	3.2	1.43	1280	4.94	1.82	14.3	11.0	880	>10000
93618		19.40	0.20	2.0	0.064	1.96	40.8	18.8	0.55	148	26.3	0.14	11.9	53.0	1840	47.5
93619		24.2	0.15	2.6	0.051	1.81	52.2	11.0	0.42	57	11.00	0.23	16.7	16.8	930	20.9
93620		20.8	0.20	2.2	0.069	2.02	46.2	28.3	0.56	79	44.8	0.16	20.8	44.3	1310	28.7
93621		13.45	0.14	1.5	0.028	1.36	47.4	9.8	0.32	17	25.7	0.05	22.6	22.6	610	10.9
93622		18.30	0.19	1.9	0.049	1.45	57.5	12.7	0.41	90	42.2	0.12	21.7	43.0	1440	19.3
93623		18.60	0.14	1.7	0.186	0.72	19.6	3.3	1.42	1260	4.93	1.80	13.5	10.6	870	>10000
93624		19.40	0.13	2.0	0.043	1.72	43.6	12.1	0.40	35	19.45	0.15	16.7	21.4	870	21.5
93625		19.65	0.11	2.2	0.030	1.20	41.8	9.4	0.31	36	15.40	0.18	24.0	19.1	380	9.9
93626		16.10	0.15	1.8	0.048	2.06	31.8	20.0	0.50	140	21.1	0.14	13.6	36.5	1140	16.0
93627		18.20	0.15	2.0	0.047	1.98	30.9	18.8	0.50	131	21.4	0.10	15.4	37.8	1210	16.9
93628		19.30	0.13	2.0	0.036	1.46	34.7	10.5	0.33	78	18.75	0.19	22.3	23.3	550	14.0
93629		15.95	0.19	2.2	0.054	2.24	44.0	13.8	0.49	51	23.8	0.07	10.0	22.6	780	36.8
93630		13.00	0.22	1.9	0.052	1.85	28.5	12.7	0.36	39	42.4	0.03	7.9	27.7	980	176.5
93631 93632 93633 93633 93634 93635		14.70 16.15 16.50 22.4 11.10	0.19 0.24 0.20 0.25 0.18	2.0 2.1 2.2 2.2 2.3	0.055 0.082 0.048 0.122 0.024	2.03 2.08 2.17 2.10 1.45	34.1 39.3 38.5 40.6 45.7	13.6 12.7 13.3 15.4 12.6	0.40 0.43 0.46 0.46 0.30	50 47 55 35 13	39.8 47.3 27.1 112.0 45.1	0.04 0.05 0.07 0.07 0.03	8.7 9.1 10.4 10.1 9.8	33.5 34.7 28.3 66.2 6.7	1040 1270 1010 2470 550	154.5 133.0 46.1 48.6 261
93636		26.9	0.31	3.4	0.093	3.61	75.1	22.9	0.82	32	61.6	0.12	19.9	60.8	990	53.4
93638		17.50	0.21	2.4	0.037	1.86	66.8	11.5	0.40	41	28.4	0.20	24.6	24.7	1220	18.6
93639		14.65	0.16	1.9	0.066	1.86	40.4	13.9	0.46	63	62.1	0.05	20.3	42.8	1400	30.1
93640		14.15	0.26	1.9	0.110	1.40	25.8	13.3	0.41	39	92.9	0.04	19.1	58.9	4110	25.6
93641		15.45	0.20	1.7	0.038	1.40	59.1	9.3	0.32	27	120.5	0.06	22.6	36.1	700	29.3

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: ASIABASE METALS INC SUITE 1723,595 BURRARD STREET VANCOUVER BC V7X 1G4

Page: 2 - C Total # Pages: 6 (A - D) Plus Appendix Pages Finalized Date: 19- AUG- 2012 Account: ASBAS

Project: Gnome

Sample Description	Method Analyte Units LOR	ME-MS61 Rb ppm 0.1	ME- MS61 Re ppm 0.002	ME- MS61 S % 0.01	ME-MS61 Sb ppm 0.05	ME-MS61 Sc ppm 0.1	ME- MS61 Se ppm 1	ME-MS61 Sn ppm 0.2	ME- MS61 Sr ppm 0.2	ME- MS61 Ta ppm 0.05	ME- MS61 Te ppm 0.05	ME-MS61 Th ppm 0.2	ME- MS61 Ti % 0.005	ME- MS61 Tl ppm 0.02	ME- MS61 U ppm 0.1	ME- MS61 V ppm 1
93601 93602 93603 93604		125.0 121.5 86.2 113.0	<0.002 <0.002 <0.002 <0.002	0.05 0.04 0.01 0.08	2.05 2.19 0.76 1.11	8.8 8.5 12.1 8.4	1 2 1 2	1.6 1.8 1.6 1.4	49.2 52.5 128.0 59.7	0.65 0.74 0.72 0.55	<0.05 <0.05 <0.05 <0.05	11.2 11.2 12.0 10.0	0.259 0.278 0.306 0.241	0.83 0.93 0.50 0.74	2.8 3.1 1.6 2.3	145 182 75 105
93605 93606 93607	<u></u>	118.0 116.5 114.0	<0.002 <0.002 <0.002	0.08	4.22 2.39 3.78	9.3 10.2	3 2 2	1.8 1.9 2.4	53.5 47.8 69.1	0.76	0.05 <0.05 0.06	11.2 10.0 9.6	0.285	1.41 1.22 1.54	3.7 3.4 4.0	289 273 352
93608 93609 93610		119.5 127.5 126.0	0.002 0.002 0.002	0.06 0.01 0.01	6.28 4.22 4.38	11.5 8.5 8.4 7.1	4 2 2	1.9 1.7 1.7 1.7	42.5 30.8 30.9	0.73 0.66 0.66	0.08 <0.05 <0.05	9.8 12.9 13.1 8.2	0.288 0.265 0.265	2.11 1.22 1.28	5.9 4.9 5.1	467 380 379 274
93611 93612 93613 93614 93615		123.5 131.0 63.4 157.5	0.002 0.003 0.002 <0.002 0.006	0.11 0.10 0.01 0.13	19.35 15.95 2.93 6.58	11.0 12.2 7.7 15.0	9 8 1 5	2.3 2.2 1.8 3.0	34.8 39.2 16.7 89.1	0.87 0.87 0.69 1.06	0.14 0.16 0.10 0.13	9.7 9.0 4.4 17.6	0.313 0.359 0.299 0.385	3.50 4.06 2.47 5.78	7.0 6.2 4.3 7.8	653 654 944 1040
93616 93617 93618 93618	<u></u>	145.0 11.4 149.5 119.0	0.003 <0.002 0.003 <0.002	0.14 1.98 0.08	8.08 36.0 8.90 3.79	16.6 12.3 12.3 14 5	5 2 6 3	2.5 4.3 2.0 2.8	42.5 554 25.5 34 1	0.80 1.32 0.71 1.12	0.13 0.66 0.12 0.10	11.2 2.5 9.9 10.8	0.406 0.262 0.307 0.449	2.85 0.12 2.89 2.12	4.4 0.8 3.9 4 1	413 115 334 397
93620 93621 93622		145.5 95.4 105.5	0.002	0.13	8.28 3.89 7.48	13.5 8.4 10.4	7 3 6	2.4 1.6 2.1	54.8 29.0 41.5	1.28 1.36 1.29	0.16 0.11 0.16	8.2 10.0	0.363	3.48 3.03 3.09	6.5 5.9 5.4	512 438 512
93623 93624 93625		12.8 123.5 72.2	<0.002 0.002 <0.002	1.94 0.05 0.02	35.5 4.65 3.35 6.91	12.1 12.6 9.2 10.4	2 4 2 5	2.8 2.2 2.3 1.7	546 33.4 32.0 27.3	1.21 1.04 1.44 0.82	0.80 0.10 0.11 0.12	2.6 9.5 9.0 9.1	0.270 0.353 0.383 0.268	0.12 2.70 1.63	0.8 4.5 4.4 5.1	113 426 389 514
93627 93628 93629 93630		136.5 83.7 140.5 128.0	0.004 0.003 0.008 0.046	0.07 0.04 0.15 0.71	6.24 3.61 14.05 29.3	11.3 9.6 11.1 9.8	5 3 8 21	1.9 2.3 1.8 1.7	26.9 36.1 46.0 88.8	0.90 1.37 0.74 0.53	0.12 0.12 0.09 0.12	9.4 8.8 9.4 9.2	0.303 0.338 0.319 0.245	2.34 1.85 3.76 6.71	5.5 4.3 8.1 5.4	566 443 763 520
93631 93632 93633 93634 93635		134.5 136.0 142.0 134.5 84.2	0.048 0.028 0.007 0.012 0.038	0.54 0.25 0.13 0.31 0.37	28.1 32.4 16.70 20.5 32.8	10.8 12.6 11.7 16.5 6.4	17 44 18 14 14	1.8 1.8 1.8 2.1 1.9	72.8 80.6 59.3 320 177.0	0.57 0.63 0.72 0.70 0.67	0.11 0.13 0.13 0.26 0.13	9.8 15.4 10.0 16.7 7.9	0.274 0.289 0.317 0.291 0.302	6.23 5.10 4.08 4.39 13.40	5.9 7.3 7.6 16.0 5.4	618 702 744 780 535
93636 93638 93639 93640 93641		212 113.5 115.0 105.0 86.1	<0.002 <0.002 0.004 0.015 0.008	0.22 0.04 0.09 0.12 0.06	21.7 5.21 16.35 19.25 14.35	17.2 9.6 9.2 9.9 8.3	36 6 13 43 15	2.9 2.3 1.7 1.5 1.9	71.7 38.0 37.4 207 26.6	1.29 1.55 1.29 1.29 1.53	0.21 0.10 0.24 0.25 0.23	15.4 11.1 13.4 15.5 9.2	0.532 0.406 0.273 0.240 0.294	7.17 3.05 3.91 3.68 3.29	8.8 6.5 9.2 12.6 6.5	1420 515 625 854 654

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: ASIABASE METALS INC SUITE 1723,595 BURRARD STREET VANCOUVER BC V7X 1G4

Page: 2 - D Total # Pages: 6 (A - D) Plus Appendix Pages Finalized Date: 19- AUG- 2012 Account: ASBAS

Project: Gnome

Sample Description	Method Analyte Units LOR	ME-MS61 W ppm 0.1	ME- MS61 Y ppm 0.1	ME-MS61 Zn ppm 2	ME-MS61 Zr ppm 0.5	Pb- OG62 Pb % 0.001	Zn- OG62 Zn % 0.001	Ba- XRF10 Ba % 0.01		 		
93601 93602 93603 93604 93605		0.9 0.9 1.0 0.7 1.4	10.3 11.8 14.4 10.6 13.7	171 161 81 155 162	76.8 84.3 48.1 64.0 84.1							
93606 93607 93608 93609 93610		1.1 1.2 1.1 0.9 0.9	10.2 11.8 16.0 21.8 21.3	130 206 321 159 139	87.2 93.1 79.1 125.0 118.0							
93611 93612 93613 93614 93615		0.7 1.5 1.5 1.7 2.3	19.9 13.4 13.5 8.4 13.6	248 146 118 57 54	69.9 79.4 87.6 59.2 78.1			1.43				
93616 93617 93618 93619 93620		1.4 0.9 1.1 1.5 1.4	12.2 17.4 11.4 11.6 13.4	215 >10000 288 77 162	94.2 66.8 79.2 100.5 91.1	1.245	2.04					
93621 93622 93623 93624 93625		1.0 1.3 0.8 1.3 1.4	9.9 12.8 17.6 10.4 11.3	45 173 >10000 80 78	62.5 81.2 69.6 78.5 92.1	1.250	2.06					
93626 93627 93628 93629 93630		1.0 1.2 1.3 1.5 1.2	10.0 11.0 10.8 14.4 10.3	119 116 88 125 196	71.6 77.9 82.6 76.0 70.3							
93631 93632 93633 93634 93635		1.2 1.4 1.4 1.4 1.4 1.6	12.2 14.8 12.8 18.3 7.2	254 259 188 343 50	72.8 76.4 73.6 82.0 79.8							
93636 93638 93639 93640 93641		2.8 1.6 5.4 2.5 1.5	14.1 10.9 11.8 12.6 11.9	437 92 124 167 192	119.5 90.0 73.9 73.6 70.2							

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: ASIABASE METALS INC SUITE 1723,595 BURRARD STREET VANCOUVER BC V7X 1G4

Page: 3 - A Total # Pages: 6 (A - D) Plus Appendix Pages Finalized Date: 19- AUG- 2012 Account: ASBAS

Project: Gnome

Sample Description	Method	WEI-21	ME-MS61	ME- MS61	ME-MS61	ME-MS61	ME- MS61	ME- MS61	ME- MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME- MS61	ME-MS61	ME- MS61
	Analyte	Recvd Wt.	Ag	Al	As	Ba	Be	Bi	Ca	Cd	Ce	Co	Cr	Cs	Cu	Fe
	Units	kg	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	%
	LOR	0.02	0.01	0.01	0.2	10	0.05	0.01	0.01	0.02	0.01	0.1	1	0.05	0.2	0.01
93642 93643 93644 93645 93645		0.20 0.20 0.18 0.24 0.02	0.33 0.22 0.92 0.16 24 2	6.74 6.03 6.58 5.55 7.58	32.5 24.2 22.2 10.0	1850 1300 1460 930 880	2.07 1.66 1.75 1.23 1.13	0.32 0.35 0.34 0.15 1.07	0.03 0.07 0.02 0.03 4 70	0.30 0.41 0.28 0.14 116 5	94.3 68.5 76.5 82.2 41.5	2.5 3.8 2.0 1.8	79 72 75 70 24	12.05 10.90 10.40 7.16 0.26	48.2 53.8 35.3 18.3 2900	2.86 4.41 3.06 1.56 4.93
93676		0.22	0.09	5.64	6.9	1190	1.29	0.17	0.17	1.17	87.8	2.4	62	5.88	7.5	1.00
93677		0.56	0.09	6.39	7.9	560	1.66	0.23	0.57	0.27	93.9	14.6	77	2.35	37.5	3.65
93678		0.30	0.87	5.66	28.2	6220	1.48	0.24	0.12	1.27	74.2	2.4	70	9.99	17.3	2.81
93679		0.26	1.21	5.75	19.4	3210	1.46	0.27	0.05	0.72	70.2	1.9	70	10.15	13.0	1.80
93680		0.28	0.66	5.50	10.5	1920	1.26	0.18	0.11	0.72	81.8	1.8	63	6.78	11.8	1.37
93681 93682 93683 93683 93684 93685		0.28 0.38 0.40 0.26 0.58	4.20 2.01 1.42 0.58 0.07	6.80 6.63 6.18 6.21 6.50	35.0 67.5 15.5 17.6 7.8	1730 3680 1460 1670 570	2.26 2.29 2.16 1.76 1.58	0.25 0.25 0.21 0.23 0.20	0.03 0.16 0.49 0.11 0.57	2.42 5.45 46.6 4.87 0.28	66.0 71.4 71.9 69.7 82.6	5.3 15.5 67.2 11.9 13.8	92 87 75 75 65	10.45 10.50 12.65 7.61 2.27	33.2 54.7 70.7 29.8 33.1	4.94 7.31 3.51 2.66 3.73
93686 93687 93688 93688 93689 93690		0.36 0.52 0.46 0.28 0.30	0.50 0.91 0.80 1.32 0.46	5.88 6.11 6.48 6.14 6.20	19.3 18.1 23.8 31.3 22.7	1580 2060 2510 2030 1860	2.02 1.86 2.23 1.77 1.84	0.20 0.19 0.24 0.22 0.22	0.17 4.01 0.80 0.05 0.09	1.65 5.34 6.17 2.24 2.99	58.5 82.5 69.8 68.2 62.9	10.6 10.3 21.2 5.5 7.6	73 65 78 77 75	6.38 5.78 8.14 8.21 8.03	31.5 42.3 54.2 35.7 30.8	3.01 2.82 2.99 4.45 4.24
93691		0.28	0.54	6.56	22.4	1940	2.21	0.23	0.09	3.98	63.9	9.8	78	8.50	34.9	4.75
93692		0.28	3.87	5.03	19.3	1460	1.88	0.17	0.84	58,6	66.2	99.1	60	6.25	39.2	3.94
93693		0.26	0.84	6.23	24.4	1670	1.80	0.24	0.05	4.22	63.6	36.8	71	8.83	33.8	3.59
93694		0.26	0.42	6.73	19.1	1570	1.56	0.26	0.31	3.51	74.8	7.8	78	7.38	22.9	3.74
93695		0.26	0.25	6.35	11.1	1270	1.51	0.14	0.24	0.55	79.2	3.4	65	6.28	12.5	1.69
93696		0.36	0.51	5.94	26.9	1240	1.30	0.23	0.03	1.01	74.9	6.1	74	7.32	21.7	3.97
93697		0.02	24.8	7.86	13.7	870	1.07	0.97	4.73	106.5	46.4	11.2	24	0.30	2790	4.93
93801		0.14	0.09	0.17	210	70	7.65	0.01	16.10	34.4	3.24	265	<1	0.53	3.6	24.8
93802		0.14	0.06	0.23	74	120	2.53	0.01	23.8	8.65	3.81	252	1	0.39	2.4	11.55
93803		0.12	0.07	0.40	100	190	3.05	0.02	23.3	9.81	5.33	267	2	0.42	3.7	14.05
93804		0.10	0.06	0.07	148	140	5.58	<0.01	18.30	19.40	2.00	245	<1	0.05	1.0	21.0
93805		0.06	0.10	0.06	198.0	190	6.28	<0.01	8.51	20.5	2.51	479	<1	0.06	1.4	32.5
93806		0.12	0.88	5.12	30.4	1250	2.61	0.12	0.47	34.1	66.9	135.5	59	6.14	139.0	9.27
93807		0.54	0.12	6.17	8.4	540	1.37	0.20	0.60	0.27	86.4	13.9	60	2.13	29.7	3.71
93808		0.08	1.04	6.36	22.0	1280	2.45	0.22	0.05	11.70	39.0	85.2	81	14.30	23.8	9.28
93809		0.12	1.02	5.91	25.4	1270	3.69	0.19	0.09	57.8	37.8	321	75	15.75	27.6	11.45
93810		0.12	1.77	5.21	33.2	1180	3.97	0.18	0.11	94.0	41.6	428	69	16.70	37.5	11.50
93811		0.12	0.39	5.87	11.5	1850	1.52	0.18	0.31	1.05	70.6	10.5	76	7.04	24.4	2.60
93812		0.14	1.04	5.82	17.6	1320	1.28	0.22	0.07	0.65	64.9	5.0	79	9.81	33.0	2.74
93813		0.18	0.45	8.61	17.1	1700	1.74	0.29	0.08	1.93	12.30	1.6	90	13.25	23.5	4.02

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: ASIABASE METALS INC SUITE 1723,595 BURRARD STREET VANCOUVER BC V7X 1G4

Page: 3 - B Total # Pages: 6 (A - D) Plus Appendix Pages Finalized Date: 19- AUG- 2012 Account: ASBAS

Project: Gnome

Sample Description	Method Analyte Units LOR	ME- MS61 Ga ppm 0.05	ME- MS61 Ge ppm 0.05	ME-MS61 Hf ppm 0.1	ME-MS61 In ppm 0.005	ME- MS61 K % 0.01	ME- MS61 La ppm 0.5	ME-MS61 Li ppm 0.2	ME- MS61 Mg % 0.01	ME- MS61 Mn ppm 5	ME-MS61 Mo ppm 0.05	ME- MS61 Na % 0.01	ME- MS61 Nb ppm 0.1	ME-MS61 Ni ppm 0.2	ME-MS61 P ppm 10	ME- MS61 Pb ppm 0.5
93642		22.4	0.23	2.2	0.049	2.19	54.9	13.5	0.45	34	45.9	0.12	23.7	41.5	760	33.7
93643		18.75	0.20	2.3	0.062	1.71	37.6	12.7	0.39	61	24.3	0.13	13.2	47.5	1290	24.1
93644		19.95	0.19	2.0	0.054	1.88	41.9	15.2	0.43	29	22.1	0.08	12.7	35,7	1010	21.0
93645		20.6	0.18	2.5	0.040	1.29	45.8	12.2	0.37	30	13,10	0,13	22.7	∠0.0 11 G	540	>10000
93646		17.55	0.13	1.8	0.199	0.73	16.7	3.9	1.43	1260	4.03	1.62	14.7	11.0	880	>10000
93676		18.35	0.20	2.3	0.036	1.88	47.0	15.6	0.43	66	7.18	0.30	15.6	19.2	390	13.0
93677		16,75	0.20	1.2	0.060	1.62	46.2	42.6	0.72	/34	0.80	0.94	10.7	39.0	850	21,1
93678		19.55	0.21	2.0	0.047	1.76	42.3	19.3	0.43	68	28.2	0.23	15.1	24.7	950	201
93679		19.55	0.21	2,1	0.038	1.80	39.6	10.0	0.37	57	0.48	0.10	14.2	19.7	380	54.4 25.1
93680		19.45	0.22	2,2	0.037	1.75	45.3	13.2	0.35	52	9.40	0.30	10.4	19.7		23.1
93681		19.25	0.19	2.5	0.078	2.17	35.3	55.9	0.52	51	19.05	0.11	14.5	68.8	1960	43.7
93682		18.00	0.21	2.4	0.073	2.30	39.0	30.9	0.62	143	57.3	0.11	11.9	144.5	2110	81.3
93683		15.80	0.20	2.6	0.060	1.85	40.6	41.4	0.65	3830	16.80	0.36	13.6	538	1710	16.7
93684		17.10	0.17	2.3	0.058	1.73	36.6	36.9	0.57	408	14.50	0.23	13.1	91.7	970	21.2
93685		15.60	0.19	1.3	0.049	1,65	40,4	40.0	0.75	743	0.64	0.95	10.5	30.0	670	10.3
93686		15.95	0.17	2.1	0.057	2.17	30.8	27.3	0.74	198	19.05	0.17	12.8	83.8	1320	12.9
93687		15.15	0.20	2.6	0.049	2.58	43.7	29.7	1.46	280	16.55	0.21	12.2	91.9	1260	18.6
93688		17.10	0.17	2.7	0.059	2.60	37.4	34.9	0.87	441	14.55	0.20	12.2	161.0	980	20.2
93689		19.15	0.18	2.7	0.061	1.99	36.7	19.5	0.47	127	21.9	0.19	13.8	43.8	2000	38.9
93690		16.75	0.18	2.9	0.073	1.67	34.7	47.1	0.58	138	17.05	0.20	14.2	81.4	780	23.2
93691		17.05	0,20	2.4	0.082	1.72	33,6	57.6	0.64	161	17.35	0.17	14.0	102.5	820	25.5
93692		12.50	0.20	1.9	0.064	1.17	34,9	51.4	0.46	4950	14.70	0.11	8.9	484	1650	29.7
93693		16.30	0,16	2.2	0.054	2.05	35.3	29.9	0.64	916	28.8	0.15	11.7	91.4	1070	19.5
93694		21.3	0.16	2.5	0.057	1.83	37.9	55.6	0.62	284	12.20	0.59	20.2	69.8	910	44.5
93695		20.4	0.11	2.4	0.039	2.42	42.3	23.9	0.65	80	11.30	0,33	17.0	25.1	470	14.4
93696		18.75	0.16	2.2	0.051	2.03	40.2	18.2	0.45	118	16.35	0.11	14.3	40.7	1290	15.7
93697		17.75	0.15	1.7	0.172	0.71	21.6	4.3	1.43	1210	4.71	1.78	1 4.1	10.6	860	>10000
93801		0.79	0.53	0.1	<0.005	0.05	1.7	2.0	0.13	2190	184.5	0.01	2.0	3660	480	11.1
93802		1.15	0.19	0.1	< 0.005	0.08	1.9	2.0	0.11	4670	12.60	0.02	1.1	1860	470	1.3
93803		1.55	0.28	0.2	<0.005	0.16	2.7	2.8	0.15	5290	15.10	0.03	1,6	2250	580	6.7
93804		0.85	0.40	0.1	<0.005	0.02	1.2	1.0	0.09	4880	13.65	0.01	1.3	1910	340	0.7
93805		1.50	0.63	0.1	<0.005	0.02	1.5	1.0	0.09	10400	74.8	0.01	1.7	2200	450	3.3
93806		12.65	0.25	2.1	0.051	2.06	34.0	30.9	0.80	3210	52,7	0.22	9,8	856	1160	16.0
93807		16.50	0.17	1.2	0.043	1.54	42.7	40.3	0.71	710	0.89	0.94	11.8	37.6	880	18.7
93808		17.40	0.16	2.1	0.054	2.06	21.4	22.9	0.38	1560	24.0	0.13	11.5	107.0	1130	25.8
93809		15.55	0.20	2.0	0.049	2,06	20.8	15.9	0.35	5810	27.8	0.11	9.3	334	1480	29.6
93810		14.35	0.22	1.8	0.058	1.80	22.2	20.6	0.36	9000	24.8	0.12	8.8	527	1780	28.5
93811		18.00	0.14	2.5	0.041	2.60	38.5	32.5	0.62	105	9.91	0.19	19.1	65.1	1340	20.6
93812		18.05	0.14	2.6	0.053	2.45	35.7	18.0	0.48	109	15.45	0.18	16.2	37.0	1210	18.4
93813		23.6	0.13	2.9	0.089	3.72	6.4	24.7	0.58	50	6.68	0.08	12.5	17.6	610	19.9

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: ASIABASE METALS INC SUITE 1723,595 BURRARD STREET VANCOUVER BC V7X 1G4

Page: 3 - C Total # Pages: 6 (A - D) Plus Appendix Pages Finalized Date: 19- AUG- 2012 Account: ASBAS

Project: Gnome

Sample Description	Method	ME-MS61	ME- MS61	ME- MS61	ME-MS61	ME-MS61	ME- MS61	ME-MS61	ME-MS61	ME- MS61	ME-MS61	ME-MS61	ME- MS61	ME-MS61	ME-MS61	ME-MS61
	Analyte	Rb	Re	S	Sb	Sc	Se	Sn	Sr	Ta	Te	Th	Ti	Tl	U	V
	Units	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm
	LOR	0.1	0.002	0.01	0.05	0.1	1	0.2	0.2	0.05	0.05	0.2	0.005	0.02	0.1	1
93642		133.5	0.003	0.06	8.20	13.9	6	2.5	45.1	1.49	0.17	10.7	0.404	3.06	6.4	594
93643		119.0	0.003	0.06	6.76	13.4	7	2.0	40.3	0.90	0.10	9.8	0.339	2.06	6.3	333
93644		130.0	0.003	0.11	4.68	14.7	5	2.0	35.2	0.82	0.11	9.7	0.345	2.36	5.3	366
93645		76.6	0.002	0.02	3.19	11.7	3	2.5	37.3	1.53	0.09	9.3	0.433	1.81	5.1	391
93646 93676 93677 93678 93679		10.3 112.0 91.9 117.5 135.5	<0.002 <0.002 <0.002 <0.002 <0.002	1.92 0.02 0.01 0.11 0.13	35.1 2.60 0.79 11.30 6.29	9.4 12.2 10.8 10.7	2 2 1 5 5	2.8 1.9 1.6 2.2 2.0	547 44.6 131.5 57.8 49.7	1.34 1.08 0.71 1.00 0.99	0.65 <0.05 0.10 0.10	2.5 9.2 11.4 9.1 8.8	0.273 0.357 0.310 0.352 0.363	0.15 1.71 0.48 10.90 3.38	0.9 4.5 1.6 4.5 5.2	115 360 73 459 526
93680 93681 93682 93683 93683 93684 93685		117.5 185.5 141.0 126.0 110.5 82.3	<0.002 0.004 0.002 <0.002 0.002 <0.002 <0.002	0.04 0.07 0.06 0.04 0.01	4.32 14.15 26.3 7.01 6.94 0.74	9.7 12.7 13.4 14.2 11.1 11.5	3 7 13 5 4 1	2.1 2.0 1.8 1.9 1.4	50.0 42.9 43.9 66.0 38.2 124.0	1.14 0.94 0.77 0.92 0.89 0.75	0.05 0.10 0.15 0.05 0.10 <0.05	9.1 10.2 12.8 11.3 10.1 11.6	0.387 0.362 0.318 0.305 0.327 0.322	2.22 3.19 4.35 4.77 3.41 0.50	3.9 5.1 8.4 13.1 6.8 1 7	402 558 517 373 431 76
93686		122.5	0.002	0.02	7.25	10.3	4	1.7	24.7	0.82	0.12	8.3	0.304	2.17	5.2	476
93687		115.5	0.003	0.03	7.79	10.9	7	1.7	105.0	0.79	0.09	11.7	0.302	1.99	5.2	396
93688		142.0	0.002	0.03	12.65	12.3	4	1.8	38.5	0.80	0.08	11.8	0.325	2.75	4.9	507
93689		158.5	0.002	0.06	7.71	10.6	4	2.0	40.7	0.90	0.10	10.3	0.333	3.37	6.0	364
93690		126.0	<0.002	0.03	8.76	11.2	3	1.9	27.0	0.92	0.07	9.7	0.320	2.76	6.2	429
93691		134.0	<0.002	0.03	9.41	11.6	4	1.9	26.7	0.95	0.08	10.3	0.326	2.89	6.9	445
93692		83.2	0.003	0.06	9.36	10.4	6	1.3	82.9	0.58	0.06	9.2	0.231	3.29	9.8	351
93693		137.0	<0.002	0.07	9.59	10.2	4	1.7	37.8	0.77	0.05	9.4	0.317	2.68	6.4	484
93694		135.5	<0.002	0.03	4.56	10.6	2	2.5	82.7	1.35	0.06	9.5	0.391	2.47	4.3	324
93695		140.5	<0.002	0.02	3.19	10.9	2	2.1	50.5	1.01	<0.05	9.2	0.353	1.59	3.9	331
93696		139.0	<0.002	0.05	6.00	11.0	3	1.9	30.4	0.86	0.08	8.5	0.322	1.75	4.0	407
93697		16.2	<0.002	1.87	35.0	14.0	4	2.7	519	1.18	0.51	2.6	0.255	0.12	1.0	108
93801		2.3	<0.002	0.10	13.75	1.9	3	<0.2	98.4	<0.05	<0.05	0.3	0.006	1.58	17.1	6
93802		3.9	<0.002	0.12	3.79	1.0	2	<0.2	139.5	<0.05	<0.05	0.4	0.010	1.29	18.5	7
93803		6.5	<0.002	0.11	5.28	1.3	2	0.2	122.5	0.05	<0.05	0.7	0.017	1.66	18.7	10
93804		0.7	<0.002	0.06	7.96	1.2	2	<0.2	254	<0.05	<0.05	<0.2	<0.005	0.87	35.7	4
93805		0.6	<0.002	0.11	14.30	1.5	2	<0.2	213	<0.05	<0.05	<0.2	<0.005	3.29	74.8	3
93806		85.8	0.003	0.04	8.78	11.5	5	1.2	46.8	0.59	<0.05	9.1	0.240	1.44	16.8	268
93807		81.5	<0.002	0.01	0.70	12.2	1	1.4	121.0	0.73	<0.05	11.4	0.324	0.43	1.5	69
93808		138.0	<0.002	0.02	8.63	12.4	4	1.9	27.7	0.70	0.08	8.5	0.313	2.63	6.3	564
93809		126.5	<0.002	0.03	9.83	11.5	5	1.7	31.5	0.58	0.07	8.0	0.281	3.03	7.6	470
93810		107.0	<0.002	0.04	12.20	10.5	7	1.5	35.4	0.52	0.07	7.8	0.246	3.26	5.8	421
93811		122.5	<0.002	0.07	3.18	10.3	6	2.0	55.8	1.16	0.06	10.4	0.372	1.32	4.0	278
93812		126.5	0.003	0.13	7.71	12.5	8	2.0	43.4	1.01	0.10	9.5	0.393	1.72	4.0	460
93813		191.5	0.003	0.60	7.41	20.3	7	2.6	40.5	0.77	0.06	9.5	0.457	2.00	3.8	435

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: ASIABASE METALS INC SUITE 1723,595 BURRARD STREET VANCOUVER BC V7X 1G4

Page: 3 - D Total # Pages: 6 (A - D) Plus Appendix Pages Finalized Date: 19- AUG- 2012 Account: ASBAS

Project: Gnome

Sample Description	Method Analyte Units LOR	ME-MS61 W ppm 0.1	ME- MS61 Y ppm 0.1	ME-MS61 Zn ppm 2	ME-MS61 Zr ppm 0.5	Pb- OG62 Pb % 0.001	Zn- OG62 Zn % 0.001	Ba- XRF10 Ba % 0.01				
93642 93643 93644 93645 93646		1.8 1.5 1.2 1.5 0.9	14.5 12.2 12.4 11.9 15.8	288 446 190 126 >10000	86.6 80.6 77.7 94.2 69.6	1.185	1.980					
93676 93677 93678 93679 93680		1.3 1.0 1.4 1.4 1.4	11.2 13.5 9.9 10.5 9.9	78 86 270 111 105	82.9 44.1 76.3 78.0 81.3							
93681 93682 93683 93684 93685		1.4 1.2 1.1 1.3 1.0	13.0 19.5 39.5 12.7 12.8	399 1180 3200 1110 90	91.3 88.5 90.4 79.2 43.4							
93686 93687 93688 93689 93689 93690		1.1 1.1 1.3 1.2 1.3	13.3 18.7 18.3 10.8 14.6	383 449 1070 437 868	74.6 92.9 95.0 89.8 86.3							
93691 93692 93693 93694 93695		1.3 0.9 1.2 1.3 1.2	16.7 29.5 12.5 12.0 10.9	1120 3390 494 1800 104	88.9 67.5 79.1 91.9 91.6							
93696 93697 93801 93802 93803		1.0 0.8 0.1 0.1 0.1	11.2 17.7 61.2 23.4 28.0	143 >10000 >10000 6730 7190	86.7 66.5 8.0 5.9 8.9	1.230	2.06 1.185					
93804 93805 93806 93807 93808		0.1 0.1 0.8 0.9 1.1	51.9 75.4 58.4 13.9 11.3	9870 8920 4400 93 1150	4.3 5.8 76.7 45.5 77.7							
93809 93810 93811 93812 93813		1.0 0.9 1.2 1.2 1.3	17.9 14.8 13.6 11.0 11.7	2390 2870 363 203 94	75.2 69.7 93.0 94.7 104.0							

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: ASIABASE METALS INC SUITE 1723,595 BURRARD STREET VANCOUVER BC V7X 1G4

Page: 4 - A Total # Pages: 6 (A - D) Plus Appendix Pages Finalized Date: 19- AUG- 2012 Account: ASBAS

Project: Gnome

Sample Description	Method	WEI-21	ME-MS61	ME- MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME- MS61	ME-MS61	ME- MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME- MS61
	Analyte	Recvd Wt.	Ag	Al	As	Ba	Be	Bi	Ca	Cd	Се	Co	Cr	Cs	Cu	Fe
	Units	kg	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ррт	ppm	ppm	ppm	ppm	%
	LOR	0.02	0.01	0.01	0.2	10	0.05	0.01	0.01	0.02	0.01	0.1	1	0.05	0.2	0.01
93814		0.12	0.47	8,39	15.7	1710	1.74	0.29	0.08	1.84	9.38	1.4	88	13.00	23.1	3.87
93815		0.14	0.78	5,05	24.7	5060	1.30	0.22	0.03	0.21	103.0	1.7	63	8.84	12.9	1.70
93816		0.12	2.43	5,33	12.4	1510	1.18	0.17	0.08	0.23	39.1	1.6	70	9.84	14.6	1.45
93817		0.02	22.9	7.80	13.4	870	1.06	1.02	4.77	108.5	46.8	11.3	24	0.31	2910	4.97
93818		0.14	1.39	6.06	34.8	1200	1.41	0.23	0.11	0.56	43.1	1.8	75	11.80	25.3	1.93
93819		0.12	1.08	6.05	21.1	1100	1.20	0.20	0.12	0.37	56.4	1.7	85	9.78	21.8	1.32
93820		0.14	1.94	2.85	81.0	830	7.24	0.12	0.14	74.7	97.7	195.0	43	16.85	80.3	33.5
93821		0.14	1.06	5.86	18.7	1360	1.10	0.18	0.07	0.62	77.6	3.7	73	7.71	18.7	2.21
93822 93823		0.16 0.10	0.13 0.58	0.08 5.61	46.4 15.1	20 1170	0.66 1.23	<0.01 0.18	0.13 0.05	72.7 0.50	11.25 57.7	63.7 1.6	<1 71	0.05	3.0 30.4	>50 1.82
93824		0.14	0.29	6.48	10.3	1180	1.08	0.18	0.05	0.18	63.7	1.1	78	9.88	15.4	1.19
93825		0.10	0.89	6.07	6.1	1440	1.10	0.15	0.06	0.17	51.7	1.1	74	9.44	10.3	0.94
93826		0.16	0.43	6.36	21.8	1670	1.23	0.21	0.04	0.22	47.7	1.7	78	12.40	19.0	1.52
93827		0.02	21.5	7.97	12.6	880	1.07	0.96	4.86	107.0	43.3	10.8	23	0.28	2810	5.06
93828		0.18	1.07	6.77	16.8	1790	1.30	0.26	0.06	0.29	51.2	1.3	84	9.77	18.1	1.34
93829 93830 93831 93832 93833	4. - 4 .	0.12 0.12 0.12 0.12 0.12 0.42	0.59 0.46 0.67 0.16 0.11	6.01 5.71 6.25 6.25 6.49	23.2 12.9 18.6 5.8 7.8	1620 1310 1580 1030 570	1.24 1.09 1.23 0.99 1.18	0.24 0.18 0.21 0.23 0.19	0.04 0.07 0.07 0.15 0.60	0.25 0.29 0.28 0.18 0.23	38.4 64.1 62.1 65.9 77.9	0.6 2.5 2.9 1.4 13.1	74 77 81 76 67	8.86 7.91 8.66 6.68 2.20	14.7 12.8 16.0 7.7 29.0	1.26 1.40 1.91 1.03 3.77
93834		0.16	1.58	5.18	60.8	1310	1.53	0.23	0.06	0.34	66.7	0.7	72	8.86	29.9	3.02
93835		0.16	1.58	5.27	33.7	1210	1.44	0.23	0.08	0.53	80.1	1.5	75	7.71	24.4	2.42
93836		0.12	1.30	5.28	28.0	1240	1.58	0.23	0.05	0.34	67.1	1.4	74	7.06	18.2	1.94
93837		0.16	0.54	5.83	8.0	1250	1.47	0.21	0.08	0.49	67.4	1.3	76	7.99	15.4	1.16
93838		0.14	1.01	4.52	12.4	730	1.21	0.20	0.03	0.22	80.7	1.2	62	6.10	12.3	1.06
93839 93840 93841 93842 93842 93843		0.12 0.16 0.14 0.16 0.14	1.07 0.12 0.10 0.80 0.77	4.60 3.84 5.18 5.64 3.82	12.3 3.2 3.5 12.7 19.0	750 530 930 3600 1010	1.26 0.99 1.35 1.47 0.92	0.20 0.09 0.08 0.15 0.18	0.03 0.06 0.09 0.08 0.06	0.27 0.29 0.48 0.23 0.60	82.2 67.2 80.2 77.9 70.1	1.3 1.3 1.6 2.0 2.8	65 55 64 69 52	6.19 3.62 5.29 7.39 3.81	12.7 6.4 5.3 10.3 21.2	1.07 0.69 0.75 1.47 1.80
93844		0.16	0.37	4.87	5.1	3180	1.26	0.10	0.07	0.11	78.6	1.2	59	5.44	5.8	0.71
93845		0.60	0.06	5.94	7.6	530	1.53	0.20	0.59	0.22	96.2	13.5	65	2.20	34.3	3.65
93846		0.12	0.34	5.48	19.6	4730	1.49	0.21	0.07	0.36	63.0	2.7	72	6.71	14.3	2.19
93847		0.16	0.09	5.12	5.3	1060	1.32	0.09	0.08	0.31	79.3	1.5	60	5.90	6.7	0.87
93848		0.16	0.23	6.32	11.9	1170	1.67	0.14	0.20	0.84	67.2	4.7	82	6.74	16.9	2.32
93849		0.12	0.41	5.51	4.8	880	1.46	0.11	0.07	0.32	74.0	1.4	66	7.53	7.3	0.84
93850		0.14	0.39	5.56	5.6	920	1.44	0.12	0.08	0.38	76.1	1.9	68	7.58	8.0	0.97
93851		0.16	0.32	4.15	15.9	5560	1.29	0.17	0.11	0.66	47.1	2.6	58	3.94	9.6	2.49
93852		0.14	0.76	4.70	22.1	6650	1.36	0.20	0.12	0.49	53.9	2.8	71	4.53	16.1	2.79
93853		0.12	2.03	5.93	7.3	3880	1.87	0.20	0.05	0.34	76.9	1.4	96	7.81	11.0	1.23

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: ASIABASE METALS INC SUITE 1723,595 BURRARD STREET VANCOUVER BC V7X 1G4

Page: 4 - B Total # Pages: 6 (A - D) Plus Appendix Pages Finalized Date: 19- AUG- 2012 Account: ASBAS

Project: Gnome

Sample Description	Method Analyte Units LOR	ME- MS61 Ga ppm 0.05	ME-MS61 Ge ppm 0.05	ME- MS61 Hf ppm 0.1	ME-MS61 In ppm 0.005	ME- MS61 K % 0.01	ME- MS61 La ppm 0.5	ME-MS61 Li ppm 0.2	ME- MS61 Mg % 0.01	ME-MS61 Mn ppm 5	ME- MS61 Mo ppm 0.05	ME- MS61 Na % 0.01	ME- MS61 Nb ppm 0.1	ME-MS61 Ni ppm 0.2	ME-MS61 P ppm 10	ME-MS61 Pb ppm 0.5
93814 93815 93816 93817		23.4 15.25 16.15 18.05	0.11 0.18 0.07 0.17	2.9 1.7 2.3 1.7	0.085 0.028 0.037 0.175	3.63 2.05 1.85 0.73	5.0 64.9 21.7 21.5	21.2 16.9 14.0 4.2	0.57 0.44 0.38 1.44	49 62 45 1220	6.27 38.6 17.40 4.75	0.08 0.09 0.17 1.82	12.6 11.9 12.1 15.0	16.8 25.5 18.4 10.3	580 830 2470 890	19.9 24.0 19.0 >10000
93818 93819 93820 93821 93822		17.60 20.2 7.25 19.05 0.54	0.12 0.07 0.83 0.13 0.86	2.4 2.7 1.1 2.9 0.1	0.049 0.042 0.092 0.038	2.11 1.83 0.66 1.86 0.01	22.8 33.0 41.4 42.7 7.1	17.8 12.6 13.3 17.2 0.7	0.42 0.31 0.15 0.52 0.01	74 47 1260 56 108	25.6 31.9 53.2 18.50 67.0	0.13 0.19 0.03 0.26	12.0 15.2 4.2 17.2 0.7	33.0 19.9 1180 27.6 858	1470 1470 1680 1040 120	25.7 15.9 17.9 15.6
93822 93823 93824 93825		16.55 21.2 19.05	0.07 0.06	2.3 2.6 2.4	0.035 0.037	1.93 1.80 1.90	32.0 35.1 28.5	18.6 10.9 9.3	0.37	26 25	26.6 9.64 7.81	0.15	11.4 14.5 13.3	23.3 19.5 16.0	1630 800 750	14.2 14.4 10.9
93826 93827 93828 93829		19.60 17.35 22.2	0.08 0.16 0.09	2.3 1.7 2.7	0.047 0.163 0.040	1.98 0.71 2.07	26.1 19.8 28.5	8.3 2.8 9.6 7.0	0.32 1.45 0.33	31 1240 49 14	28.9 4.44 20.8	0.14 1.84 0.19	12.4 15.2 17.7	22.3 10.2 15.9	860 890 730	15.1 >10000 32.6
93830 93831 93832 93833		19.05 18.45 22.8 15.50	0.08 0.10 0.09 0.17	2.5 2.2 2.9 1.1	0.036 0.040 0.032 0.040	1.86 2.08 1.77 1.56	35.5 34.6 35.6 38.3	8.5 10.7 9.3 27.0	0.40 0.44 0.35 0.73	39 53 61 743	15.15 20.1 10.05 0.83	0.21 0.20 0.38 0.98	17.5 14.8 22.8 9.8	21.3 24.5 12.1 36.2	1810 990 840 890	15.3 16.2 16.5 22.2
93834 93835 93836 93837		14.75 17.55 17.95 21.1	0.20 0.21 0.20 0.17	1.7 2.0 2.0 2.5	0.072 0.053 0.044 0.044	1.50 1.56 1.61 1.78	40.3 46.5 39.6 36.5	12.7 13.0 11.8 11.3	0.27 0.33 0.29 0.30	23 47 25 29	60.6 24.8 25.6 10.85	0.09 0.16 0.13 0.26	8.1 11.7 11.7 14.1	27.0 23.8 21.6 15.0	1720 1740 1320 1160	22.7 18.9 17.1 17.0
93838 93839 93840 93841 93842 93842		17.50 17.90 16.10 17.35 21.6	0.19 0.20 0.16 0.17 0.19	1.9 1.9 2.0 2.2 2.3	0.033 0.031 0.023 0.028 0.037	1.28 1.34 1.07 2.05 1.86	50.6 50.6 39.8 45.5 44.2	8.4 8.6 8.3 13.5 17.1	0.28 0.29 0.24 0.46 0.47	24 26 33 27 44	29.8 29.6 9.93 4.33 13.05	0.13 0.13 0.19 0.31 0.25	18.9 19.7 18.6 15.9 15.0	14.3 15.8 12.4 13.7 24.2	730 780 640 500 780	18.7 18.7 6.8 8.0 34.3
93843 93844 93845 93846 93847 93848		20.3 16.45 19.60 18.05 19.70	0.08 0.18 0.25 0.20 0.17 0.20	1.6 2.2 1.2 2.2 2.2 2.2 2.3	0.033 0.027 0.048 0.043 0.029 0.047	1.39 1.50 1.81 1.81 2.54	40.2 44.0 47.7 35.7 44.6 36.8	9.2 14.6 39.5 17.4 14.2 25.9	0.22 0.34 0.69 0.48 0.43 0.81	29 32 719 57 31 152	7.02 1.06 20.1 6.23 9.99	0.16 0.28 0.94 0.19 0.29 0.23	10.2 14.9 9.8 15.1 14.7 16.4	37.9 16.9 32.6 29.8 15.8 32.1	370 370 840 1190 500 960	20.9 18.5 20.4 61.4 10.8 13.1
93849 93850 93851 93852 93853		20.2 20.4 13.45 18.25 23.4	0.17 0.18 0.18 0.18 0.18 0.18	2.1 2.1 1.9 2.1 2.2	0.037 0.036 0.029 0.040 0.041	1.69 1.76 1.31 1.34 1.53	43.6 44.3 26.2 30.5 48.0	14.6 14.0 17.1 19.2 15.4	0.43 0.44 0.36 0.36 0.38	30 37 98 67 28	9.49 11.25 18.50 16.25 13.35	0.20 0.21 0.15 0.21 0.18	16.8 16.9 11.0 13.3 14.6	19.7 22.2 27.2 41.3 32.3	760 690 1880 1950 850	8.9 9.7 121.0 173.0 29.8

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: ASIABASE METALS INC SUITE 1723,595 BURRARD STREET VANCOUVER BC V7X 1G4

Page: 4 - C Total # Pages: 6 (A - D) Plus Appendix Pages Finalized Date: 19- AUG- 2012 Account: ASBAS

Project: Gnome

Sample Description	Method Analyte Units LOR	МЕ- MS61 Rb ppm 0.1	ME- MS61 Re ppm 0.002	ME- MS61 S % 0.01	ME- MS61 Sb ppm 0.05	ME-MS6} Sc ppm 0.1	ME- MS61 Se ppm 1	ME-MS61 Sn ppm 0.2	ME-MS61 Sr ppm 0.2	ME- MS61 Ta ppm 0.05	ME- MS61 Te ppm 0.05	ME-MS61 Th ppm 0.2	ME- MS61 Ti % 0.005	ME- MS61 Tl ppm 0.02	ME- MS61 U ppm 0.1	ME-MS61 V ppm 1
93814 93815 93816 93817 93818		189.0 112.0 117.5 14.2 142.5	0.003 <0.002 <0.002 <0.002 0.003	0.61 0.19 0.18 1.92 0.12	6.95 9.71 8.98 34.9 16.50	20.3 10.6 11.0 14.0 12.3	6 11 8 4 12	2.6 1.9 1.9 2.7 1.9	42.1 35.2 48.7 528 55.7	0.80 0.71 0.76 1.25 0.73	0.06 0.08 0.06 0.49 0.09	9.5 7.8 7.0 2.7 9.1	0.451 0.298 0.306 0.264 0.321	2.03 3.25 1.85 0.12 2.10	3.8 5.8 4.3 1.0 4.6	426 1400 413 114 619
93819 93820 93821 93822 93822 93823		119.5 45.6 106.5 0.5 121.0	<0.002 0.002 <0.002 <0.002 0.002	0.05 0.10 0.07 0.70 0.09	10.00 31.7 6.75 4.08 8.37	12.9 8.4 10.3 0.5 11.5	3 13 4 3 6	2.4 0.9 2.0 <0.2 1.9	48.7 19.3 38.1 8.9 51.6	0.96 0.27 1.07 <0.05 0.70	0.08 0.13 0.07 <0.05 0.05	8.6 8.7 9.7 <0.2 7.9	0.403 0.130 0.395 <0.005 0.309	2.72 1.29 2.18 0.03 1.93	6.0 27.7 4.3 221 5.9	625 440 404 2 563
93824 93825 93826 93827 93828		117.5 123.5 137.5 13.7 143.0	<0.002 <0.002 0.002 <0.002 <0.002 <0.002	0.04 0.05 0.08 1.95 0.06	5.31 3.80 15.70 33.0 8.29	12.7 11.8 12.5 13.4 13.6	3 2 6 4 5	2.4 2.1 2.1 3.1 2.6	61.1 44.1 44.0 537 50.4	0.92 0.83 0.77 1.26 1.12	<0.05 <0.05 0.09 0.46 0.08	6.8 7.2 8.0 2.6 8.1	0.393 0.355 0.349 0.256 0.435	2.26 2.11 2.76 0.11 2.69	5.2 4.8 5.7 0.9 5.2	768 653 769 109 804
93829 93830 93831 93832 93832 93833		131.0 118.5 132.5 95.0 77.7	0.003 <0.002 <0.002 <0.002 <0.002 <0.002	0.07 0.06 0.04 0.02 0.01	11.80 4.32 7.14 3.35 0.65	12.3 11.0 11.5 11.7 11.3	5 3 3 2 1	2.0 2.1 1.9 3.0 1.4	37.2 40.0 43.5 75.1 119.0	0.69 1.09 0.90 1.44 0.63	0.10 0.07 0.07 0.05 <0.05	8.1 8.4 7.5 7.7 10.2	0.318 0.379 0.360 0.449 0.299	2.61 2.17 2.27 1.70 0.41	5.7 4.3 5.2 3.9 1.3	560 492 676 525 70
93834 93835 93836 93837 93838	<u> </u>	113.0 114.0 115.5 115.5 81.2	0.005 0.002 <0.002 <0.002 <0.002 <0.002	0.13 0.10 0.09 0.05 0.03	41.1 16.20 15.00 4.71 4.92	10.3 10.6 11.2 13.6 9.6	15 9 9 4 4	1.8 2.1 2.0 2.6 2.1	64.8 65.8 56.4 56.0 32.4	0.56 0.77 0.78 1.01 1.33	0.17 0.12 0.12 0.08 0.16	10.1 10.1 9.3 10.1 10.0	0.281 0.344 0.334 0.433 0.362	2.55 2.37 2.25 1.98 2.63	8.0 7.1 6.8 5.1 6.2	777 629 691 450 401
93839 93840 93841 93842 93842 93843		87.6 58.3 108.5 126.5 49.9	<0.002 <0.002 <0.002 <0.002 <0.002 <0.002	0.03 0.01 0.01 0.07 0.07	4.61 2.18 1.45 4.73 7.59	10.3 8.5 9.4 10.6 6.8	4 2 2 3 4	2.1 2.1 1.7 2.3 1.6	33.2 31.8 38.7 69.4 46.1	1.36 1.29 1.10 0.99 0.72	0.16 0.09 <0.05 0.05 0.13	10.0 8.3 9.7 9.9 6.9	0.368 0.362 0.372 0.381 0.306	2.64 1.67 1.21 2.46 2.55	6.3 5.7 3.5 4.5 4.8	407 320 275 448 535
93844 93845 93846 93847 93848		86.5 81.5 126.0 110.5 132.5	<0.002 0.002 <0.002 <0.002 <0.002	0.05 0.01 0.12 0.02 0.02	2.36 0.77 7.60 2.48 4.66	9.8 11.7 10.3 9.6 11.0	2 1 5 2 3	2.2 1.5 2.1 1.8 1.9	56.9 125.0 74.1 44.3 42.5	1.03 0.71 0.99 1.02 1.12	<0.05 <0.05 0.08 <0.05 0.06	8.3 13.6 9.7 9.5 9.9	0.399 0.326 0.350 0.361 0.378	2.04 0.44 2.68 1.47 1.61	4.1 1.8 5.0 4.0 4.0	404 69 472 329 424
93849 93850 93851 93852 93853		113.0 114.5 82.0 85.6 98.2	<0.002 <0.002 <0.002 <0.002 <0.002 <0.002	0.02 0.02 0.12 0.15 0.06	2.09 2.47 6.00 7.99 5.18	11.8 11.3 6.8 8.8 13.4	2 2 4 4 4	2.1 2.3 1.4 1.9 2.6	39.0 40.6 263 314 66.4	1.11 1.11 0.75 0.88 0.96	0.06 0.06 0.06 0.08 0.11	8.6 8.6 7.3 8.2 9.3	0.366 0.376 0.258 0.331 0.430	2.19 2.30 2.76 3.62 2.82	4.9 4.8 5.2 5.0 5.6	405 435 387 436 640

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: ASIABASE METALS INC SUITE 1723,595 BURRARD STREET VANCOUVER BC V7X 1G4

Page: 4 - D Total # Pages: 6 (A - D) Plus Appendix Pages Finalized Date: 19- AUG- 2012 Account: ASBAS

Project: Gnome

Sample Description	Method Analyte Units LOR	ME-MS61 W ppm 0.1	ME- MS61 Y ppm 0.1	ME-MS61 Zn ppm 2	ME-MS61 Zr ppm 0.5	РЬ- ОG62 РЬ % 0.001	Zn- OG62 Zn % 0.001	Ba- XRF10 Ba % 0.01			
93814 93815 93816 93817 93818		1.4 1.3 1.2 0.9 1.2	11.9 10.8 9.1 17.8 10.1	90 41 46 >10000 71	103.5 67.4 83.2 68.8 88.8	1.235	1,990				
93819 93820 93821 93822 93822 93823		1.5 0.7 1.3 0.1 1.2	11.5 251 11.3 98.8 12.6	53 >10000 148 >10000 101	100.5 33.0 105.5 0.6 83.6		1.070 1.820				
93824 93825 93826 93827 93828	· · · · · · ·	1.6 1.4 1.5 0.8 1.7	11.6 11.1 10.7 17.4 12.1	45 36 87 >10000 57	92.5 87.7 83.9 70.8 98.0	1.235	2.01				
93829 93830 93831 93832 93833		1.4 1.3 1.3 1.7 0.9	10.1 10.2 9.8 12.0 12.8	24 41 47 35 84	78.9 92.9 84.7 112.0 40.8						
93834 93835 93836 93837 93838		1.2 1.2 1.3 1.6 1.5	11.6 12.2 10.9 10.8 11.6	24 51 55 53 35	67.5 81.1 81.1 97.6 79.2						
93839 93840 93841 93842 93843		1.3 1.4 1.1 1.4 1.2	12.4 11.2 9.4 10.4 9.1	37 32 30 99 208	84.0 82.8 89.4 93.4 51.4		<u>, , , , , , , , , , , , , , , , , , , </u>				
93844 93845 93846 93847 93848		1,8 1.3 1.3 1.1 1.1	9.2 14.3 11.2 10.2 11.6	51 78 147 51 89	85.1 44.2 90.4 88.1 91.2						
93849 93850 93851 93852 93853		1.4 1.2 0.9 1.2 1.7	11.0 11.3 9.1 10.6 10.0	65 97 253 298 81	83.1 83.0 72.8 81.9 94.0						

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: ASIABASE METALS INC SUITE 1723,595 BURRARD STREET VANCOUVER BC V7X 1G4

Page: 5 - A Total # Pages: 6 (A - D) Plus Appendix Pages Finalized Date: 19- AUG- 2012 Account: ASBAS

Project: Gnome

Sample Description	Method	WEI- 21	ME-MS61	ME- MS61	ME- MS61	ME-MS61	ME-MS61	ME- MS61	ME- MS61	ME-MS61	ME-MS61	ME-MS61	ME- MS61	ME-MS61	ME- MS61	ME- MS61
	Analyte	Recvd Wt.	Ag	Al	As	Ba	Be	Bi	Ca	Cd	Ce	Co	Cr	Cs	Cu	Fe
	Units	kg	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	%
	LOR	0.02	0.01	0.01	0.2	10	0.05	0.01	0.01	0.02	0.01	0.1	1	0.05	0.2	0.01
93854		0.12	2.75	6.02	6.4	2590	1.32	0.21	0.04	0.37	77.5	2.0	105	6.35	12.6	1.32
93855		0.04	23.0	7.58	11.6	870	1.09	0.97	4.68	109.0	49.4	10.2	24	0.28	2820	4.85
93856		0.14	0.70	5.91	29.0	9040	2.01	0.20	0.08	0.85	71.8	3.4	80	7.34	23.7	3.11
93857 93858		0.14 0.10	1.09 0.37	5.60 6.59	11.3 11.3	7220 1230	1.61 1.83	0.15 0.16	0.08	0.36 1.38	72.8 70.1	1.6 4.8	78 90	7.18 6.62	12.5 19.7	1.23 2.40
93859		0.10	0.13	5.94	7.9	1200	1.50	0.11	0.25	1.42	74.7	3.8	80	5.81	11.8	1.67
93860		0.14	0.04	5.83	12.0	1180	1 <i>.</i> 52	0.14	0.09	0.66	76.0	3.6	81	6.13	9.8	1.60
93863		0.12	0.51	5.20	18.7	3860	1.61	0.33	0.03	0.54	88.2	3.2	44	7.17	13.4	1.60
93864		0.16	1.20	4.38	22.9	3210	1.31	0.43	0.03	0.63	81.1	2.1	40	5.47	19.4	1.73
93865		0.02	20.8	7.53	11.4	870	1.04	0.99	4.67	110.0	47.8	10.4	24	0.27	2840	4.87
93866 93867 93868 93869 03870		0.20 0.14 0.24 0.10	0.72 0.57 0.51 6.47	5.31 5.62 5.61 4.39	16.9 24.4 17.6 17.7	2350 1670 2200 4370	1.61 1.82 1.53 1.47	0.30 0.64 0.42 0.14	0.03 0.02 0.05 0.04	0.47 0.61 1.62 1.05	89.5 79.5 59.5 90.5	3.3 3.2 5.4 2.7	49 30 48 58	7.84 7.50 7.00 4.49	14.6 11.0 9.8 12.0	1.61 2.94 2.30 1.43
93870 93871 93872 93872		0.54	0.80	0.91	24,8 18.3	1860 3240	2.67 2.48	0.03 0.27 0.17	0.84	0.23 840 76.4	90.1 10.50 60.3	13.5 1290 140.0	8 75	2.04 1.77 5.24	32.0 8.8 23.4	3.47 34.5 6.02
93874 93875		0.16 0.18	0.92	5.57 5.37	24.9 26.1	3560 3640	2.82 2.24 2.17	0.17 0.20 0.19	0.45 0.10 0.11	21.4 22.3	53.7 58.9	22.4 20.6	67 69 64	6.36 7.13 6.66	49.7 49.2 45.6	4.62 3.00 2.98
93876		0.14	1.33	2.51	8.6	990	9.17	0.03	0.14	693	10.65	1840	6	1.86	43.1	34.1
93877		0.12	5.39	4.96	25.3	9100	5.76	0.12	0.12	339	25.2	990	42	6.15	24.7	13.30
93878		0.16	1.31	4.14	43.6	4030	1.44	0.28	0.07	2.23	58.7	8.9	73	3.89	36.4	2.76
93879		0.14	1.80	4.83	12.7	4940	1.62	0.37	0.02	0.53	83.7	3.1	42	4.76	10.6	1.30
93880		0.18	1.05	5.04	11.9	2500	1.53	0.28	0.04	0.73	88.5	4.3	46	6.59	12.5	1.62
93881		0.20	1.17	6.40	14.4	2220	1.90	0.60	0.05	1.00	61.9	5.8	31	9.06	8.6	3.30
93882		0.22	1.48	5.90	62.3	2120	2.02	0.53	0.07	1.03	66.1	3.9	46	9.81	16.5	3.79
93883		0.22	2.53	6.12	45.5	2070	1.86	0.43	0.06	1.38	60.8	5.1	64	11.20	37.0	4.45
93884		0.54	0.16	5.68	6.9	510	1.40	0.17	0.66	0.25	86.6	12.2	58	2.11	24.8	3.34
93885		0.12	1.96	6.20	26.7	2750	2.08	0.30	0.06	1.15	71.6	5.3	68	8.54	21.1	3.39
93886 93887 93888 93888 93889 93890		0.16 0.18 0.16 0.16 0.16	1.62 0.38 0.47 1.46 2.50	6.48 5.16 4.90 5.62 5.94	47.3 8.4 6.9 27.7 22.5	2200 2240 2210 2780 2780	2.68 1.37 1.24 1.92 1.87	0.49 0.37 0.32 0.27 0.26	0.02 0.02 0.02 0.02 0.02 0.05	2.83 0.35 0.30 0.81 0.82	58.9 83.9 69.1 69.0 72.5	14.8 3.7 3.2 4.4 4.5	57 21 25 65 67	13.70 7.03 6.21 7.98 9.23	35.4 4.5 4.1 19.5 19.5	8.55 1.23 1.11 3.32 2.75
93891 93896 93897 93898 93898 93899		0.16 0.02 0.16 0.12 0.12	2.19 21.1 0.23 0.27 0.29	5.69 7.60 5.57 4.70 4.87	20.4 13.5 6.1 4.0 4.4	3020 840 1810 1490 1700	1.90 1.15 1.81 1.60 1.62	0.22 0.93 0.11 0.10 0.10	0.04 4.61 0.31 0.77 0.83	2.34 113.5 0.93 1.99 3.42	70.8 50.2 68.3 65.9 62.4	84.5 11.5 4.1 6.4 7.7	66 23 61 54 58	7.82 0.31 5.92 4.69 5.17	19.3 2710 11.8 12.9 17.7	4.54 4.79 1.70 1.74 1.76

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: ASIABASE METALS INC SUITE 1723,595 BURRARD STREET VANCOUVER BC V7X 1G4

Page: 5 - B Total # Pages: 6 (A - D) Plus Appendix Pages Finalized Date: 19- AUG- 2012 Account: ASBAS

Project: Gnome

Sample Description	Method	ME- MS61	ME-MS61	ME-MS61	ME-MS61	ME- MS61	ME- MS63	ME-MS61	ME- MS61	ME-MS61	ME- MS61	ME- MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61
	Analyte	Ga	Ge	Hf	In	K	La	Li	Mg	Mn	Mo	Na	Nb	Ni	P	Pb
	Units	ppm	ppm	ppm	ppm	%	ppm	ppm	%	ppm	ppm	%	ppm	ppm	ppm	ppm
	LOR	0.05	0.05	0.1	0.005	0.01	0.5	0.2	0.01	5	0.05	0.01	0.1	0.2	10	0.5
93854		25.4	0.18	2.4	0.040	1.31	47.1	11.3	0.37	33	12.85	0.21	17.2	32.8	500	24.8
93855		18.00	0.24	1.8	0.178	0.72	22.6	4.1	1.42	1240	4.60	1.79	14.3	9.6	850	>10000
93856		16.10	0.20	1.9	0.056	1.84	41.9	27.5	0.48	104	25.3	0.15	10.6	50.5	2290	94.5
93857		20.0	0.19	2.2	0.034	1.87	41.9	17.6	0.43	34	17.50	0.22	14.2	26.6	840	59.9
93858		19.20	0.20	2.3	0.052	2.48	38.5	22.5	0.81	90	11.15	0.25	14.7	33.0	1230	16.2
93859		18.25	0.19	2.3	0.039	2.37	42.1	18.3	0.68	88	10.05	0.32	16.6	29.0	690	12.5
93860		19.35	0.19	2.4	0.033	2.25	44.1	19.7	0.64	58	17.95	0.30	21.0	34.0	790	13.3
93863		19.10	0.22	2.3	0.053	1.60	48.6	15.0	0.39	29	18.40	0.11	12.9	31.1	650	26.0
93864		17.25	0.20	2.0	0.048	1.14	45.0	11.5	0.32	41	27.3	0.12	12.7	25.6	670	35.0
93865		18.25	0.24	1.7	0.181	0.72	21.6	4.0	1.42	1240	4.79	1.80	14.7	9.9	870	>10000
93866 93867 93868 93869 93869 93870		20.2 19.70 21.3 17.25 15.60	0.20 0.22 0.19 0.19 0.23	2.4 2.6 2.4 2.2 1.1	0.045 0.069 0.052 0.023 0.041	1.68 1.80 1.77 1.37 1.43	47.3 40.0 31.8 50.1 43.9	14.6 19.7 18.2 14.3 36.4	0.38 0.39 0.42 0.36 0.66	32 29 90 41 695	15.65 10.65 8.72 31.1 0.98	0.17 0.14 0.18 0.16 0.92	14.7 14.1 14.3 13.7 10.0	33.3 36.4 32.8 19.5 32.3	520 1180 1260 1100 790	21.6 27.4 21.5 8.4 18.0
93871		2.82	0.65	0.3	0.008	0.22	5.6	5.3	0.06	25600	26.3	0.04	1.6	2860	530	3.8
93872		22.1	0.21	4.0	0.066	2.00	32.1	25.5	0.63	3030	15.40	0.81	30.7	343	2040	20.6
93873		13.05	0.22	2.0	0.050	1.73	41.5	20.1	0.43	2920	36.5	0.10	10.5	451	1090	17.7
93874		15.75	0.17	2.4	0.059	2.27	28.4	25.9	0.52	247	21.8	0.12	11.5	108.5	1000	18.3
93875		15.05	0.18	2.3	0.056	2.17	31.4	26.4	0.54	220	20.0	0.15	10.8	101.5	1090	18.7
93876 93877 93878 93878 93879 93880		3.79 9.59 19.20 18.55 18.30	0.61 0.30 0.17 0.17 0.18	0.6 1.3 2.1 2.4 2.4	0.009 0.028 0.072 0.040 0.042	0.24 1.14 0.99 1.43 1.56	5.4 14.9 34.0 45.0 46.7	41.8 19.8 16.3 15.0 14.1	0.05 0.28 0.31 0.35 0.32	29300 21100 106 32 32	20.6 42.3 61.8 14.90 12.85	0.03 0.10 0.15 0.13 0.15	1.6 4.5 12.0 14.5 13.8	2620 1670 68.7 28.9 38.2	370 960 1580 570 600	3.4 20.8 26.4 31.3 16.0
93881		22.4	0.17	2.7	0.079	1.97	29.4	26.1	0.46	98	8.55	0.15	17.0	42.8	1310	19.4
93882		20.4	0.21	2.4	0.072	1.91	32.1	24.6	0.43	56	13.55	0.14	14.1	39.1	2100	28.4
93883		21.6	0.22	2.6	0.069	1.96	30.6	18.7	0.42	59	16.95	0.14	17.5	56.9	2290	30.1
93884		15.05	0.23	1.2	0.041	1.36	38.4	37.6	0.63	715	0.80	0.92	12.6	32.0	850	16.2
93885		21.1	0.21	2.4	0.058	2.14	37.0	22.7	0.44	64	15.60	0.16	17.2	54.2	1500	23.3
93886 93887 93888 93888 93889 93890		17.95 18.45 18.00 18.65 19.95	0.44 0.13 0.10 0.20 0.17	2.5 2.4 2.4 2.4 2.4 2.4	0.081 0.077 0.063 0.056 0.049	1.58 1.53 1.36 1.82 1.96	26.8 38.7 33.0 35.6 37.4	27.8 14.0 12.8 18.6 17.8	0.49 0.31 0.30 0.39 0.39	57 28 29 31 48	38.0 6.25 6.07 13.80 16.60	0.10 0.07 0.09 0.10 0.17	13.5 14.3 14.3 14.2 15.6	177.0 30.8 27.4 51.4 43.9	5490 440 500 2020 1020	33.1 8.9 8.5 18.9 22.5
93891 93896 93897 93898 93898 93899		18.10 20.3 16.85 12.55 12.85	0.26 0.25 0.12 0.14 0.12	2.2 1.7 2.1 1.9 1.9	0.047 0.190 0.036 0.033 0.031	1.84 0.69 2.86 2.83 2.88	36.0 20.9 35.3 33.2 31.1	18.9 4.4 27.9 23.3 25.2	0.40 1.38 0.61 0.62 0.68	1510 1200 171 324 883	16.05 4.56 6.82 4.56 4.62	0.14 1.73 0.38 0.29 0.33	13.7 16.0 11.8 8.2 8.3	76.2 12.0 27.4 28.2 31.1	1110 830 890 1520 1790	17.1 >10000 17.5 18.7 18.2

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: ASIABASE METALS INC SUITE 1723,595 BURRARD STREET VANCOUVER BC V7X 1G4

Page: 5 - C Total # Pages: 6 (A - D) Plus Appendix Pages Finalized Date: 19- AUG- 2012 Account: ASBAS

Project: Gnome

Sample Description	Method Analyte Units LOR	ME- MS61 Rb ppm 0.1	ME- MS61 Re ppm 0.002	ME- MS61 S % 0.01	ME-MS61 Sb ppm 0.05	ME-MS61 Sc ppm 0.1	ME- MS61 Se ppm 1	ME-MS61 Sn ppm 0.2	ME-MS61 Sr ppm 0.2	ME- MS61 Ta ppm 0.05	ME- MS61 Te ppm 0.05	ME-MS61 Th ppm 0.2	ME- MS61 Ti % 0.005	ME- MS61 Tl ppm 0.02	ME-MS61 U ppm 0.1	ME-MS61 V ppm 1
93854 93855 93856 93857 93858		87.6 16.9 123.0 122.0 128.0	<0.002 <0.002 0.002 <0.002 <0.002	0.03 1.95 0.23 0.15 0.04	4.33 36.3 9.58 5.05 4.79	12.8 13.0 10.9 11.0 12.7	3 3 6 4 5	2.8 3.7 1.7 2.1 1.9	50.4 550 179.0 87.1 46.5	1.20 1.38 0.71 0.95 0.99	0.13 0.76 0.10 0.08 0.06	8.9 3.1 9.3 9.5 11.4	0.500 0.271 0.309 0.397 0.373	2.97 0.11 3.13 3.11 1.59	5.2 1.1 6.9 5.7 4.5	597 110 595 562 409
93859 93860 93863 93864 93865		119.0 133.0 112.0 76.5 15.4	<0.002 <0.002 <0.002 <0.002 <0.002	0.03 0.03 0.04 0.03 1.96	3.15 4.63 7.77 9.52 34.6	10.2 10.3 8.0 5.9 12.8	3 4 4 3	1.8 1.9 3.6 3.5 3.6	43.5 44.1 26.0 26.4 552	1.08 1.37 1.02 1.01 1.37	0.05 0.07 0.07 0.11 0.54	10.3 9.6 12.3 10.5 3.0	0.384 0.409 0.266 0.258 0.271	1.46 2.01 2.22 2.19 0.11	4.2 4.8 5.5 5.5 1.0	375 570 423 469 111
93866 93867 93868 93869 93869 93870		115.5 142.0 136.5 86.6 79.0	<0.002 <0.002 <0.002 0.002 <0.002 <0.002	0.02 0.02 0.02 0.03 0.01	6.97 6.37 5.40 15.30 0.75	8.1 5.9 7.8 8.4 11.2	3 3 3 4 1	3.9 4.9 4.1 2.7 1.4	27.5 21.2 25.0 22.7 124.0	1.20 1.30 1.13 1.08 0.71	0.06 0.05 0.05 0.11 <0.05	11.9 15.3 11.2 9.0 12.7	0.316 0.193 0.285 0.360 0.308	1.82 1.74 1.82 2.34 0.40	5.4 6.1 5.5 5.1 1.6	395 271 368 748 66
93871 93872 93873 93874 93875		11.3 93.1 97.1 110.5 110.0	0.002 0.002 0.020 0.006 0.005	0.03 0.05 0.13 0.06 0.06	9.43 7.58 18.85 14.35 14.20	0.9 11.3 10.0 11.6 11.4	4 4 11 7 7	0.3 3.0 1.7 2.1 1.9	120.5 93.9 69.9 39.6 40.9	0.09 2.04 0.74 0.83 0.76	<0.05 0.08 0.11 0.11 0.09	1.4 10.2 10.5 9.0 9.5	0.029 0.333 0.221 0.267 0.248	3.41 1.56 3.01 2.25 2.05	23.4 6.7 13.8 7.9 7.9	72 306 658 522 484
93876 93877 93878 93878 93879 93880		13.6 66.3 61.8 86.4 97.3	0.003 0.003 <0.002 <0.002 <0.002 <0.002	0.09 0.14 0.08 0.07 0.02	11.90 33.2 33.5 8.31 6.83	1.4 6.6 10.3 7.7 8.3	8 8 10 5 3	0.3 0.9 2.5 3.6 3.4	27.1 62.4 294 47.2 31.7	0.18 0.34 0.88 1.20 1.15	0.08 0.13 0.17 0.07 0.06	1.3 4.5 8.7 12.0 11.9	0.027 0.129 0.295 0.267 0.262	5.34 6.72 3.20 2.24 1.77	20.3 8.9 6.8 5.6 4.9	63 689 808 467 372
93881 93882 93883 93884 93885		140.5 149.0 153.5 68.2 168.0	<0.002 <0.002 <0.002 <0.002 <0.002 <0.002	0.02 0.05 0.05 0.01 0.07	4.59 10.25 17.75 0.76 12.10	6.4 8.1 10.8 10.9 11.5	4 5 7 2 9	6.2 4.8 3.5 1.4 3.9	20.3 32.6 37.3 122.5 38.2	1.25 0.99 1.04 0.66 0.99	0.07 0.09 0.13 0.05 0.10	12.9 11.5 10.8 9.9 10.0	0.204 0.218 0.300 0.291 0.296	1.86 2.12 2.53 0.36 1.95	5.1 5.4 5.6 1.4 5.1	197 356 455 66 518
93886 93887 93888 93888 93889 93890		129.5 104.0 90.9 136.0 154.0	<0.002 <0.002 <0.002 <0.002 <0.002	0.15 0.01 0.02 0.06 0.05	36.4 3.48 3.21 10.80 12.20	10.5 4.4 4.7 10.2 11.2	17 3 3 8 8	3.0 5.6 5.1 2.8 2.9	37.1 10.9 12.6 31.8 48.8	0.84 1.16 1.12 0.87 0.94	0.15 0.05 0.05 0.10 0.11	12.4 13.6 10.9 9.9 9.8	0.218 0.164 0.182 0.282 0.317	2.25 1.53 1.41 1.93 2.01	9.7 4.7 4.6 5.2 4.9	455 171 194 483 486
93891 93896 93897 93898 93898 93899		134.5 16.4 126.5 100.0 106.0	<0.002 <0.002 <0.002 <0.002 <0.002 <0.002	0.04 1.85 0.03 0.09 0.09	11.65 36.0 3.16 2.02 2.14	10.1 14.5 8.5 9.4 9.6	7 8 3 3 3	2.7 3.0 1.9 1.4 1.5	35.3 545 46.4 49.7 49.5	0.81 1.18 0.69 0.49 0.50	0.09 0.50 0.06 <0.05 <0.05	9.2 2.5 8.3 8.8 8.6	0.270 0.240 0.258 0.209 0.210	2.10 0.10 1.08 0.64 0.66	5.1 0.9 3.1 2.5 2.7	466 111 273 133 145

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: ASIABASE METALS INC SUITE 1723,595 BURRARD STREET VANCOUVER BC V7X 1G4

Page: 5 - D Total # Pages: 6 (A - D) Plus Appendix Pages Finalized Date: 19- AUG- 2012 Account: ASBAS

Project: Gnome

Sample Description	Method Analyte Units LOR	ME-MS61 W ppm 0.1	ME-MS61 Y ppm 0.1	ME-MS61 Zn ppm 2	ME-MS61 Zr ppm 0.5	Pb- OG62 Pb % 0.001	Zn- OG62 Zn % 0.001	Ba- XRF10 Ba % 0.01			
93854 93855 93856 93857 93858		1.8 0.9 1.1 1.4 1.1	10.4 19.0 12.1 11.4 13.9	71 >10000 278 117 97	96.7 74.2 77.0 92.8 91.2	1.210	1.995				
93859 93860 93863 93864 93865		1.1 1.1 1.8 1.9 0.9	11.6 11.3 13.8 12.4 19.0	94 117 204 173 >10000	93.2 96.9 85.8 74.8 72.4	1.210	2.01				
93866 93867 93868 93868 93869 93870		2.2 2.1 1.8 1.7 1.0	12.6 15.6 13.5 10.7 13.2	198 235 214 159 78	91.0 93.1 91.8 83.0 41.8						
93871 93872 93873 93874 93875		0.2 1.5 1.2 1.3 1.2	42.1 19.3 34.1 18.2 19.9	>10000 2130 3060 762 721	8.4 149.5 71.0 82.8 81.0		4.69				
93876 93877 93878 93878 93879 93880		0.5 0.8 1.8 2.1 1.9	339 39.0 15.6 13.4 13.2	>10000 9310 407 176 229	10.1 44.9 72.9 80.7 80.1		1.975				
93881 93882 93883 93884 93884 93885		1.8 2.5 1.6 0.9 1.5	13.1 11.7 13.3 10.5 13.6	361 264 422 77 323	90.9 82.9 99.4 42.2 92.3						
93886 93887 93888 93888 93889 93890		1.3 1.8 1.9 1.5 1.6	19.0 13.3 11.6 12.3 12.7	1080 180 162 299 286	99.1 76.9 77.3 86.6 86.9						
93891 93896 93897 93898 93898 93899		1.4 0.8 1.0 0.8 0.7	12.4 16.6 9.3 17.1 15.8	530 >10000 163 224 252	82.9 68.3 76.7 66.4 66.7	1.220	2.05				

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: ASIABASE METALS INC SUITE 1723,595 BURRARD STREET VANCOUVER BC V7X 1G4

Page: 6 - A Total # Pages: 6 (A - D) Plus Appendix Pages Finalized Date: 19- AUG- 2012 Account: ASBAS

CERTIFICATE OF ANALYSIS VA12181672

Sample Description Method UOR WE-303 (0,0) ME-305(0) (0,0) ME-305(0) (0,0)																	
93900 0.12 0.23 4.77 3.7 1320 1.48 0.12 0.76 7.96 59.7 9.0 57 6.21 18.1 1.82	Sample Description	Method Analyte Units LOR	WEI- 21 Recvd Wt. kg 0.02	ME- MS61 Ag ppm 0.01	ME- MS61 Al % 0.01	ME-MS61 As ppm 0.2	ME-MS61 Ba ppm 10	ME- MS61 Be ppm 0.05	ME-MS61 Bi ppm 0.01	ME- MS61 Ca % 0.01	ME- MS61 Cd ppm 0.02	ME-MS61 Ce ppm 0.01	ME-MS61 Co ppm 0.1	ME-MS61 Cr ppm 1	ME-MS61 Cs ppm 0.05	ME-MS61 Cu ppm 0.2	ME- MS61 Fe % 0.01
	93900		0.12	0,23	4.77	3.7	1320	1.48	0.12	0.76	7.96	59.7	9.0	57	6.21	18.1	1.82

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: ASIABASE METALS INC SUITE 1723,595 BURRARD STREET VANCOUVER BC V7X 1G4

Page: 6 - B Total # Pages: 6 (A - D) Plus Appendix Pages Finalized Date: 19- AUG- 2012 Account: ASBAS

Project: Gnome

Sample Description	Method Analyte Units LOR	ME- MS61 Ga ppm 0.05	ME- MS61 Ge ppm 0.05	ME-MS61 Hf ppm 0.1	ME- MS61 In ppm 0.005	ME- MS61 K % 0.01	ME-MS61 La ppm 0.5	ME-MS61 Li ppm 0.2	ME- MS61 Mg % 0.01	ME-MS61 Mn ppm 5	ME-MS61 Mo ppm 0.05	ME- MS61 Na % 0.01	ME-MS61 Nb ppm 0.1	ME-MS61 Ni ppm 0.2	ME-MS61 Р ррт 10	ME-MS61 Pb ppm 0.5
93900		13.25	0.10	2.0	0.037	2.25	28.8	20.8	0.61	3160	6,96	0,36	10.1	22.8	2580	17.1

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: ASIABASE METALS INC SUITE 1723,595 BURRARD STREET VANCOUVER BC V7X 1G4

Page: 6 - C Total # Pages: 6 (A - D) Plus Appendix Pages Finalized Date: 19- AUG- 2012 Account: ASBAS

Project: Gnome

Sample Description	Method Analyte Units LOR	ME-MS61 Rb ppm 0.1	ME- MS61 Re ppm 0.002	ME- MS61 S % 0.01	ME-MS61 Sb ppm 0.05	ME-MS61 Sc ppm 0.1	ME-MS61 Se ppm 1	ME-MS61 Sn ppm 0.2	ME- MS61 Sr ppm 0.2	ME-MS61 Ta ppm 0.05	ME- MS61 Te ppm 0.05	ME-MS61 Th ppm 0.2	ME- MS61 Ti % 0.005	ME- MS61 Tl ppm 0.02	ME- MS61 U ppm 0.1	ME-MS61 V ppm 1
93900		108.5	<0.002	0.13	1.92	11.1	3	1.5	56.5	0.59	0.06	8.8	0.224	0.85	3.3	174

93900

ALS Canada Ltd.

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: ASIABASE METALS INC SUITE 1723,595 BURRARD STREET VANCOUVER BC V7X 1G4

Page: 6 - D Total # Pages: $\overline{6}$ (A - D) Plus Appendix Pages Finalized Date: 19- AUG- 2012 Account: ASBAS

CERTIFICATE OF ANALYSIS VA12181672

Project: Gnome

ME- MS61 ME- MS61 ME- MS61 Pb- OG62 Zn- OG62 Ba- XRF10 ME- MS61 Method W Y Zn Zr ΡЬ Zn Ba Analyte Units % % % ppm ppm ppm ppm Sample Description 0.01 LOR 0.1 0.1 2 0.5 0.001 0.001 0.8 12.4 254 71.4

ALS Canada Ltd. 2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: ASIABASE METALS INC SUITE 1723,595 BURRARD STREET VANCOUVER BC V7X 1G4

Page: Appendix 1 Total # Appendix Pages: 1 Finalized Date: 19- AUG- 2012 Account: ASBAS

CERTIFICATE OF ANALYSIS VA12181672

Project: Gnome

CERTIFICATE COMMENTS Method Interference: Ca> 10% on ICP- MS As, ICP- AES results shown. ME- MS61 REE's may not be totally soluble in this method. ME- MS61

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: ASIABASE METALS INC SUITE 1723,595 BURRARD STREET VANCOUVER BC V7X 1G4

1

<

Page: 1 Finalized Date: 19- AUG- 2012 This copy reported on 23- AUG- 2012 Account: ASBAS

QC CERTIFICATE VA12181672

WYLIE HUI

Project:	Gnome
P.O. No.	:

This report is for 161 Soil samples submitted to our lab in Vancouver, BC, Canada on 7- AUG- 2012.

The following have access to data associated with this certificate:

JERRY ZEIG

_

	ANALYTICAL PROCEDUR	ES
ALS CODE	DESCRIPTION	INSTRUMENT
Pb- OG62	Ore Grade Pb - Four Acid	VARIABLE
Zn- OG62	Ore Grade Zn - Four Acid	VARIABLE
Ba- XRF10	Fusion XRF - Ba Ore Grade	XRF
ME-XRF10	Fusion XRF - Ore Grade	XRF
OA- GRA06	LOI for ME- XRF06	WST- SIM
ME- OG 62	Ore Grade Elements - Four Acid	ICP- AES
ME- MS61	48 element four acid ICP- MS	

To: ASIABASE METALS INC ATTN: WYLIE HUI SUITE 1723,595 BURRARD STREET VANCOUVER BC V7X 1G4

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

Colin Ramshaw, Vancouver Laboratory Manager

***** See Appendix Page for comments regarding this certificate *****

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: ASIABASE METALS INC SUITE 1723,595 BURRARD STREET VANCOUVER BC V7X 1G4

Page: 2 - A Total # Pages: 5 (A - D) Plus Appendix Pages Finalized Date: 19- AUG- 2012 Account: ASBAS

QC CERTIFICATE OF ANALYSIS VA12181672

Sample Description	Method Analyte Units LOR	ME-MS61 Ag ppm 0.01	ME- MS61 Al % 0.01	ME- MS61 As ppm 0.2	ME- MS61 Ba ppm 10	ME-MS61 Be ppm 0.05	ME- MS61 Bi ppm 0.01	ME- MS61 Ca % 0.01	ME- MS61 Cd ppm 0.02	ME- MS61 Ce ppm 0.01	ME-MS61 Co ppm 0.1	ME-MS61 Cr ppm 1	ME-MS61 Cs ppm 0.05	ME-MS61 Cu ppm 0.2	ME- MS61 Fe % 0.01	ME- MS61 Ga ppm 0.05
							STAN	IDARDS								
Ba- 101 Target Range - Lower Upper	Bound Bound															
GBM908-10		3.02	7.61	57.0	1110	1.50	1.28	4.03	1.87	115.0	25.8	144	4.04	3730	5.88	21.8
GBM908-10		3.23	7.22	58.4	1040	1.41	1.31	3.72	1.83	116.5	24.9	134	3.90	3520	5.44	21.3
GBM908-10		2.92	7.53	58.9	1080	1.44	1.08	3.82	1.79	113.5	25.7	139	3.98	3650	5.58	22.4
GBM908-10	Compression and an of a more	2.81	7.58	56.0	1110	1.25	1.15	3,88	1.70	118.5	26.3	143	3.95	3740	5.65	21.1
Target Range - Lower	Bound	2,69	6.40	49,3	930	1.19	1,09	3,33	1.52	99,0	21,5	118	3.37	3270	5,21	18.65
Upper	Bound	3.31	7.84	80,7	1280	1.57	1,35	4.10	1.90	121.0	26.5	146	4.23	3990	6,39	22,9
GBM908-5		57.2	7.61	6.6	2360	2.46	0.90	1.92	0.20	201	10.9	27	1.58	487	3.40	24.5
GBM908-5		59.8	7.65	6.3	2430	2.74	0.83	1.99	0.19	208	11.2	28	1.63	513	3.47	25.6
GBM908- 5		56.5	7.66	6.9	2340	2.88	0.99	1.95	0.16	238	10.5	26	1.76	479	3.34	26.0
GBM908-5	to the set sum to the days	60.4	7.43	6.2	2320	2.80	0.96	1.88	0.15	203	10.4	28	1.57	483	3.28	22.5
Target Range + Lower	Bound	52.0	6.79	5.7	1950	2.27	0.81	1,70	0.11	198.0	8.8	23	1,48	448	3.14	21.8
Upper	Bound	63.6	8.32	7.5	2670	2.89	1.01	2,10	0.20	242	12.2	30	1.92	548	3.86	26.7
GEOMS- 03		0.70	5.30	654	2570	1.67	0.37	0.41	0.34	53.1	11.5	125	10.05	127.5	4.40	13.55
GEOMS- 03		0.70	4.96	615	2430	1.33	0.36	0.40	0.33	49.7	12.0	116	10.00	127.0	4.19	13,95
GEOMS- 03		0.69	4.97	604	2400	1.49	0.36	0.39	0.33	48.2	12.2	113	10.05	129.0	4.10	13.30
Target Range - Lower	Bôund	0.67	4,61	570	2060	1,34	0.31	0.33	0,30	47.0	10.7	105	9.04	120.5	3.64	12.00
Upper	Bound	0.85	5,65	697	2810	1.74	0.41	0.43	0.42	57.4	13.3	131	11.15	147.5	4.48	14.75
MP-1b																
MP-1b																
MP-1b																
MP-1b																
Target Range - Lower Upper	Bound															
MRGeo08		4.18	7.57	33.8	1080	3.21	0.66	2.75	2.32	68.3	18.8	94	12.00	641	4.12	20.6
MRGeo08		4.64	7.95	34.3	1060	3.09	0.69	2.66	2.26	84.4	18.8	84	12.60	631	3.97	19.70
MRGeo08		4.19	7.96	33.1	1060	3.47	0.75	2,64	2.30	78.2	19,5	94	12.30	622	4.02	20.1
MRGeo08		4.31	7.35	35.0	1080	2.93	0.69	2.73	2.28	66.4	20.7	95	12.25	639	4.04	20.2
Tardet Range - Lower	Bound	4.16	7.00	29.7	920	2.80	0.63	2.35	2.01	72.9	18.4	82	11,00	568	3.61	17.50
Upper OGGeo08	Bound	5.10	8.57	36.7	1270	3,54	0.79	2.90	2.50	89.1	22.8	102	13,60	694	4.43	21,5
OGGeo08																
OGGeo08																
OGGeo08																
OGGeo08																

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: ASIABASE METALS INC SUITE 1723,595 BURRARD STREET VANCOUVER BC V7X 1G4

Page: 2 - B Total # Pages: 5 (A - D) Plus Appendix Pages Finalized Date: 19- AUG- 2012 Account: ASBAS

QC CERTIFICATE OF ANALYSIS VA12181672

Sample Description	Method Analyte Units LOR	ME- MS61 Ge ppm 0.05	ME-MS61 Hf ppm 0.1	ME-MS61 In ppm 0.005	ME- MS61 K % 0.01	ME- MS61 La ppm 0.5	ME- MS61 Li ppm 0.2	ME- MS61 Mg % 0.01	ME-MS61 Mn ppm 5	ME- MS61 Мо ррт 0.05	ME- MS61 Na % 0.01	ME-MS61 Nb ppm 0.1	ME- MS61 Ni ppm 0.2	ME-MS61 P ppm 10	ME- MS61 Pb ppm 0.5	ME-MS61 Rb ppm 0.1
							STAN	IDARDS								
Ba- 101 Target Range - Lower Upper	Bound c Bound															
GBM908-10		0.35	4.0	0.081	2.22	59.8	12.5	1.91	841	62.4	2.30	10.9	2200	1070	2050	178.5
GBM908-10		0.22	3.9	0.073	2.00	55.3	10.4	1.74	778	64.2	2.12	10.1	2020	1010	1880	159.0
GBM908-10		0,28	3.8	0.079	2.12	56.8	10.6	1.83	816	65.0	2.17	11.5	2290	1020	2020	173.5
GBM908-10	- Lawrence and the second	0.23	3.8	0.079	2.15	60.7	11.7	1.87	839	68.1	2.25	11.1	2330	1060	2100	184.0
Target Range - Lower	Bound	0,18	3.2	0.064	1,86	49.0	5,5	1,59	704	57.9	2.02	9.3	2030	870	1860	153.0
Upper	Bound	0,40	4.1	0.092	2.29	61.0	1.2	1,97	8/1	70.9	2.50	11.5	2480	1090	2270	187.0
GBM908-5		0.24	4.9	0.064	3.53	104.5	12.5	0.85	486	57.0	2.59	18.1	389	1290	384	115.5
GBM908-5		0.33	5.1	0.057	3.64	107.0	16.0	0.89	490	58.6	2.70	20.0	447	1330	396	126.0
GBM908-5		0.49	4.7	0.059	3.50	119.0	16.2	0.85	469	57.5	2.52	19.9	446	1290	385	125.0
GBM908-5	Las marker distance	0.27	4.7	0.063	3.49	109.5	14.1	0.85	479	52.8	2.51	17.5	407	1290	376	117.0
Target Range Lower	Bound	0,18	4.3	0.052	3,15	100.5	13.5	0.76	430	49.5	2.27	16,8	376	1160	340	111.0
Upper	Bound	0.41	5.5	0.078	3.67	124.0	10.9	0.95	531	60.6	2.80	20.8	460	1450	416	135.5
GEOMS- 03		0.13	1.6	0.052	1.16	29.8	46.0	0.52	555	3.65	0.10	15.4	52.2	1140	6.2	63.5
GEOMS-03		0.12	1.5	0.046	1.11	27.9	41.6	0.50	521	3.69	0.10	16.1	53.9	1090	5.6	62.4
GEOMS-03	Rear Street Contract	0.16	1.3	0.047	1.09	27.3	40.9	0.49	492	3.37	0.10	15.6	53.6	1090	6.1	58.6
Target Range - Lower	Bound	0.06	1.1	0.032	1.03	20.0	37.0	0.46	403	3.05	0.00	10.1	48.1	9/0	5.5	55.7
upper.	Bound	0.20	1.5	0.050	1,29	32,4	40.4	0.00	out	0.00	0.11	10.0	59.5	1210	0.2	65.3
MP-1b MP-1b MP-1b Target Range - Lower Upper	Bound Bound															
MRGeo08		0.29	3.2	0.179	3.19	32.4	33.4	1.35	575	16.40	2.07	20.8	702	1080	1070	192.0
MRGeo08		0.26	3.2	0.169	3.06	39.6	30.8	1.34	555	15.05	1.96	20.8	674	1070	1015	208
MRGeo08		0.27	3.2	0.177	3.08	37.9	35.5	1.33	564	15.25	1.96	21.2	721	1060	1065	200
MRGeo08		0.19	3.3	0.180	3.09	31.6	31.3	1.34	589	16.65	2.00	22.1	728	1100	1090	191.0
Target Range - Lower	Bound	< 0.05	2.8	0.161	2.79	36.3	30.4	1.24	506	13.65	1.76	19.3	617	910	965	187.0
Upper	Bound	0.27	3.6	0.207	3.43	45.5	37,6	1.54	630	16.75	2.18	23.8	755	1140	1180	229
OGGeo08																
OGGeo08 OGGeo08 OGGeo08 OGGeo08																

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: ASIABASE METALS INC SUITE 1723,595 BURRARD STREET VANCOUVER BC V7X 1G4

Page: 2 - C Total # Pages: 5 (A - D) Plus Appendix Pages Finalized Date: 19- AUG- 2012 Account: ASBAS

QC CERTIFICATE OF ANALYSIS VA12181672

Sample Description	Method Analyte Units LOR	ME- MS61 Re ppm 0.002	ME- MS61 S % 0.01	ME-MS61 Sb ppm 0.05	ME-MS61 Sc ppm 0.1	ME-MS61 Se ppm 1	ME-MS61 Sn ppm 0.2	ME-MS61 Sr ppm 0.2	ME- MS61 Ta ppm 0.05	ME- MS61 Te ppm 0.05	ME-MS61 Th ppm 0.2	ME- MS61 Ti % 0.005	ME- MS61 Tl ppm 0.02	ME- MS61 U ppm 0.1	ME- MS61 V ppm 1	ME-MS61 W ppm 0.1	
							STAN	DARDS									
Ba- 101 Target Range Lower Upper	Bound Bound				10.0												
GBM908-10		<0.002	0.42	1.78	18.2	2	3.5	311	0.81	0.06	19.1	0.703	1.26	2.4	145	3.8	
GBM908-10		<0.002	0.37	1.76	17.6	2	3.0	295	0.75	0.05	17.2	0.648	1.40	2.3	135	3.6	
GBM908-10		0.002	0.39	1.73	20.1	2	3.4	301	0.84	0.06	18.3	0.667	1.25	2.4	143	3.2	
GBM908-10	100 100 100 100 100 100 100 100 100 100	<0.002	0.41	1.65	17.8	2	3.2	307	0.79	0.06	19.8	0.684	1.27	2.5	143	3.3	2
Target Range - Lower	Bound	<0.002+	0,33	1,30	17.0	<1	2.5	258	0.68	<0.05	16.9	0,591	1.00	2.0	123	2.7	
upper	Bound	0.006	0,43	1.88	21.0	4	3.0	316	0.97	0.16	21.1	0.733	1.40	2.6	153	3,9	
GBM908-5		<0.002	0.17	0.28	7.4	1	4.0	423	1.29	0.06	37.2	0.363	0.75	4.2	60	5.0	
GBM908- 5		<0.002	0.17	0.27	8.7	2	4.0	405	1.27	<0.05	37.4	0.374	0.70	4.5	61	4.8	
GBM908-5		<0.002	0.17	0.28	8.9	4	4.3	425	1.18	0.09	41.5	0.339	0.65	4.7	60	4.0	
GRWADS-2		0.002	0.16	0.28	7.4	3	3,9	409	1.27	<0.05	40.3	0.355	0.76	4.6	61	4.5	2
Target Kange - Lower	Bound	~0.002	0.14	0.10	1.2		3.0	301	1.19	~0,05	00.8	0,313	0,59	4.1	52	3,0	
Crows of	Ronug	-0.002	0.19	10.00	12.4	- 4	4.0	400	1.01	0.10	44.4	0.393	1.32	2.0	110	0.4	2
GEOMS-03		0.002	0.04	17.70	14.2	3	2.0	165.0	0.05	0.14	6.9	0.460	1.33	3.0	110	23.4	
GEOMS-03		0.002	0.03	19.35	14.5	3	2.5	174.0	1.08	0.13	6.6	0.402	1.27	3.4	110	22.0	
GEOMS- 03	Davied	<0.002	0.03	16.95	19.4	21	2.5	157.5	0.90	<0.05	6.0	0.420	1.20	3.1	100	10.3	i.
Targer Karige - Lower	Bound.	0.002	0.02	21.5	15.4		3.0	102.5	1.10	0.24	80	0.511	1 30	4.0	130	76.4	Ľ
MD 16	DOUNG		0.00	21.0	10.4		0.0	102.0	1,10	Tare	0.0		1.00	400	150	20,4	
MP-1b																	
MP-1b																	
MP-1b Target Range - Lower Upper	Bound Bound																
MRGeo08		0.008	0.33	4.71	11.9	3	4.2	322	1.58	<0.05	18.8	0.520	1.07	5.4	113	4.7	
MRGeo08		0.008	0.32	4.66	12.1	2	4.4	318	1.57	<0.05	20.9	0.504	1.19	5.7	109	5.1	
MRGeo08		0.010	0.32	4.47	13.4	3	3.9	309	1.66	0.05	20.9	0.497	1.09	5.6	110	4.9	
MRGeo08		0.008	0.33	4.55	11.6	2	4.1	309	1.58	<0.05	17.4	0.505	1.09	5.0	112	4.9	2
Target Range - Lower	Bound	0.006	0.27	4,08	11.0	<1	3.5	2/2	1.48	<0.05	19.2	0,454	0.87	5.6	99	4.3	
Upper	Bound	0.016	0.35	5.64	13,6	4	4./	332	1,92	0.15	23.9	a. 0.566	1.23	7.0	123	6.1	
OGGeo08																	
OGGeo08																	
OGGeo08																	
OCGeo08																	
OGGeo08																	

2103 Dollarton Hwy North Vancouver BC V7H 0A7

Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: ASIABASE METALS INC SUITE 1723,595 BURRARD STREET VANCOUVER BC V7X 1G4

Page: 2 - D Total # Pages: 5 (A - D) Plus Appendix Pages Finalized Date: 19- AUG- 2012 Account: ASBAS

									QC CERTIFICATE OF ANALYSIS VA12181672
Sample Description	Method Analyte Units LOR	ME- MS61 Y ppm 0.1	ME-MS61 Zn ppm 2	ME- MS61 Zr ppm 0.5	Ag-OG62 Ag ppm 1	Pb- OG62 Pb % 0.001	Zn- OG62 Zn % 0.001	Ba- XRF10 Ba % 0.01	
							STAN	DARDS	
Ba- 101								11.65	
Target Range – Lower Upper	Bound Bound								
GBM908-10	and a constraint second	39.9	1120	152.0					
GBM908-10		37.9	1040	140.0					
GBM908-10		39.4	1120	143.0					
GBM908-10		39.2	1110	134.5					
Target Range - Lower	Bound	36.2	939	109.0					
Upper	Bound	44.5	1155	148.5					
GBM908- 5	ALL THE CALCUMENTS OF TAXA	47.3	250	178.5					
GBM908- 5		52.5	253	188.5					
GBM908- 5		50.2	234	178.5					
GBM908- 5		47.7	239	167.5					
Farget Range - Lower	Bound	45.2	207	148.0					
Upper	Bound	55.5	257	201					
GEOMS- 03		24.4	46	56.0					
GEOMS- 03		22.4	46	54.7					
GEOMS- 03		23.4	44	44.0					
Target Range - Lower	Bound	19.8	40	44.0					
Upper	Bound -	24.4	54	60.8					
MP-1b						2.09	16.45		
MP-1b					50	2.13	17.65		
MP-1b						2.16	17.20		
MP-1b						2.17	17.00		
Target Range - Lower	Bound					2.02	16.10		
Upper	Bound					2.17	17.25		
MRGeo08		26.5	826	113.5					
MRGeo08		27.4	812	103.0					
MRGeo08		26.6	830	104.5					
MRGeo08		24.3	818	104.5					
Target Range Lower	Bound	24.3	712	92.2					
Upper	Bound	29,9	874	126.0					
OGGeo08						0.693	0.711		
OGGeo08					19	0.732	0.732		
OGGeo08						0.732	0.736		
OGGeo08						0.739	0.735		
OGGeo08						0.710	0.727		

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: ASIABASE METALS INC SUITE 1723,595 BURRARD STREET VANCOUVER BC V7X 1G4

Page: 3 - A Total # Pages: 5 (A - D) Plus Appendix Pages Finalized Date: 19- AUG- 2012 Account: ASBAS

OC CERTIFICATE OF ANALYSIS VA12191672

									QC CERTIFICATE OF ANALISI			AL1313	15 VA12101072			
Sample Description	Method Analyte Units LOR	ME-MS61 Ag ppm 0.01	ME- MS61 Al % 0.01	ME- MS61 As ppm 0.2	ME- MS61 Ba ppm 10	ME- MS61 Be ppm 0.05	ME- MS61 Bi ppm 0.01	ME- MS61 Ca % 0.01	ME-MS61 Cd ppm 0.02	ME-MS61 Ce ppm 0.01	ME-MS61 Co ppm 0.1	ME-MS61 Cr ppm 1	ME- MS61 Cs ppm 0.05	ME- MS61 Cu ppm 0.2	ME- MS61 Fe % 0.01	ME- MS61 Ga ppm 0.05
Target Range - Lower Upper STSD- 4 Target Range - Lower	Bound Baund Bound						STAN	IDARDS								
Upper	Bound						BL	ANKS								
Target Range - Lower Upper BLANK	Bound and Bound Bound Bound Bound	<0.01 <0.01 <0.01 <0.01 0.02 <0.01 <0.01 0.02	<0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 0.02	<0.2 <0.2 <0.2 0.3 0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.4	<10 <10 <10 <10 <10 <10 <10 <10 <10 20	<0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 0.10	<0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.02	<0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 0.02	<0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 0.04	0.01 0.01 0.01 0.01 <0.01 0.01 <0.01 0.02	<pre><0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1</pre>	1 1 1 1 1 1 1 1 1 2	<0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 0.10	<0.2 <0.2 <0.2 <0.2 1.2 <0.2 0.2 <0.2 <0.2 0.4	<0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 0.02	<0.05 0.08 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 0.10

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: ASIABASE METALS INC SUITE 1723,595 BURRARD STREET VANCOUVER BC V7X 1G4

Page: 3 - B Total # Pages: 5 (A - D) Plus Appendix Pages Finalized Date: 19- AUG- 2012 Account: ASBAS

Project: Gnome

initierais									QC	CERTIF	ICATE	OF AN	ALYSIS	VA12	218167	72
Sample Description	Method Analyte Units LOR	ME-MS61 Ge ppm 0.05	ME-MS61 Hf ppm 0.1	ME- MS61 In ppm 0.005	ME- MS61 K % 0.01	ME- MS61 La ppm 0.5	ME- MS61 Li ppm 0.2	ME- MS61 Mg % 0.01	ME-MS61 Mn ppm 5	ME- MS61 Мо ррт 0.05	ME- MS61 Na % 0.01	ME-MS61 Nb ppm 0.1	ME- MS61 Ni ppm 0.2	ME- MS61 P ppm 10	ME- MS61 Pb ppm 0.5	ME- MS61 Rb ppm 0.1
Target Range - Lower Upper STSD- 4 Target Range 2 Lower Upper	Bound Bound Bound Bound						STAN	IDARDS								
							BL	ANKS								
BLANK Target Range - Lower Upper BLANK	Bound *	<0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 0.10	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	<0.005 <0.005 <0.005 0.006 0.005 <0.005 <0.005 <0.005 0.010	<0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 0.02	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2	<0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 0.02	<5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <	0.10 0.05 <0.05 0.05 <0.05 0.09 0.06 <0.05 0.10	<0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 0.02	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 0.4 0.3 <0.2 0.4	<10 10 <10 <10 <10 <10 <10 20	<0.5 <0.5 <0.5 <0.5 <0.5 1.5 <0.5 <0.5 <0.5 1.0	<0.1 <0.1 <0.1 0.1 0.1 <0.1 <0.1 <0.1 <0

***** See Appendix Page for comments regarding this certificate *****

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: ASIABASE METALS INC SUITE 1723,595 BURRARD STREET VANCOUVER BC V7X 1G4

Page: 3 - C Total # Pages: 5 (A - D) Plus Appendix Pages Finalized Date: 19- AUG- 2012 Account: ASBAS

IIIIIEIa	15								QC	CERTIF	ICATE	OF AN/	ALYSIS	VAI	218167	2
Sample Description	Method Analyte Units LOR	ME- MS61 Re ppm 0.002	ME- MS61 S % 0.01	ME- MS61 Sb ppm 0.05	ME-MS61 Sc ppm 0.1	ME- MS61 Se ppm 1	ME-MS61 Sri ppm 0.2	ME- MS61 Sr ppm 0.2	ME- MS61 Ta ppm 0.05	ME- MS61 Te ppm 0.05	ME-MS61 Th ppm 0.2	ME- MS61 Ti % 0.005	ME- MS61 Tl ppm 0.02	ME- MS61 U ppm 0.1	ME- MS61 V ppm T	ME-MS61 W ppm 0.1
Target Range - Lower Doper STSD- 4 Target Range - Lower	Bound Bound Bound						STAN	IDARDS								
Upper BLANK	Bound						BL	ANKS								
Target Range - Lower BLANK	Bound Bound Bound Bound Bound	<0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 0.004	<0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 0.02	<0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.10	0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <	<1 <1 1 1 1 1 1 5	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2	<0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 0.10	<0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 0.10	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2	<0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 0.010	<0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	\[\frac{1}{2} \] \[\frac{1}{2} \] \[\frac{1}{2} \] \[\frac{1}{2} \]	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: ASIABASE METALS INC SUITE 1723,595 BURRARD STREET VANCOUVER BC V7X 1G4

Page: 3 - D Total # Pages: 5 (A - D) Plus Appendix Pages Finalized Date: 19- AUG- 2012 Account: ASBAS

Project: Gnome

Sample Description	Method Analyte Units LOR	ME- MS61 Y ppm 0.1	ME- MS61 Zn ppm 2	ME- MS61 Zr ppm 0.5	Ag- OG62 Ag ppm 1	Pb- OG62 Pb % 0.001	Zn- OG62 Zn % 0.001	Ba- XRF10 Ba % 0.01		
	Comments with the set						STAN	IDARDS		
Target Range - Lower STSD- 4 Target Range - Lower Upper	r Bound r Bound r Bound r Bound					0.750 [°]	0.586	0.19		
							BL	ANKS		
BLANK								0.01		
Target Range - Lower	r Bound									
BLANK		<0.1	<2	< 0.5						
BLANK		<0.1	<2	<0.5						
BLANK		<0.1	<2	<0.5						
BLANK		< 0.1	<2	<0.5						
BLANK		<0.1	4	<0.5						
BLANK		<0.1	<2	<0.5						
Target Range - Lower	r Bound	<0.1	<2	<0.5						
Upper	r Bound	0.2	4	1.0		<0.001	-0.001			
BLANK					<1	<0.001	< 0.001			
BLANK						<0.001	0.001			
BLANK						< 0.001	< 0.001			
BLANK	Pound?					<0.001	<0.001	1		
Upper	r Bound					0.002	0.002			
Callebra "To synamic there are " A Links Roter".	an ann an tha Martine an Ann a' f					Design and service of the service of	たわれていたい。開始したた			

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: ASIABASE METALS INC SUITE 1723,595 BURRARD STREET VANCOUVER BC V7X 1G4

Page: 4 - A Total # Pages: 5 (A - D) Plus Appendix Pages Finalized Date: 19- AUG- 2012 Account: ASBAS

QC CERTIFICATE OF ANALYSIS VA12181672

Sample Description	Method Analyte Units LOR	ME- MS61 Ag ppm 0.01	ME- MS61 Al % 0.01	ME-MS61 As ppm 0.2	ME-MS61 Ba ppm 10	ME- MS61 Be ppm 0.05	ME- MS61 Bi ppm 0.01	ME- MS61 Ca % 0.01	ME-MS61 Cd ppm 0.02	ME-MS61 Ce ppm 0.01	ME- MS61 Co ppm 0.1	ME- MS61 Cr ppm 1	ME-MS61 Cs ppm 0.05	ME- MS61 Си ррт 0.2	ME- MS61 Fe % 0.01	ME- MS61 Ga ppm 0.05
							DUPL	CATES								
ORIGINAL DUP Target Range - Lower Upper	Bound Bound	7.51 7.69 7.21 7.99	0.04 0.04 0.03 0.05	196.0 184.0 180.5 199.5	6130 6850 5990 6990	<0.05 <0.05 <0.05 0.10	11.75 11.30 10.95 12.10	<0.01 <0.01 <0.01 0.02	<0.02 <0.02 <0.02 0.04	0.22 0.25 0.21 0.26	0.2 0.2 <0.1 0.3	53 48 47 54	0.28 0.30 0.23 0.35	4.8 3.8 3.9 4.7	5.61 5.91 5.46 6.06	1.02 1.11 0.96 1.17
ORIGINAL DUP Target Range - Lower Upper	Bound															
ORIGINAL DUP Target Range - Lower Upper	Bound Bound															
ORIGINAL DUP Target Rånge - Lower Upper	Bound Bound	0.03 0.02 <0.01 0.04	7.43 7.66 7.16 7.93	<0.2 <0.2 <0.2 0.4	520 540 480 580	1.25 1.29 1.16 1.38	0.12 0.12 0.10 0.14	3.06 3.15 2.94 3.27	0.03 0.04 <0.02 0.04	34.6 38.9 34.9 38.6	10.0 9.7 9.3 10.4	21 20 18 23	1.01 1.10 0,95 1.16	10.3 9.0 9.0 10.3	2.28 2.34 2.18 2.44	23.3 22.6 21.8 24.1
93602 DUP Target Range - Lower Upper	Bound Bound	0.09 0.11 0.09 0.12	5.59 5.78 5.39 5.98	5.8 6.3 5.5 6.6	1130 1170 1050 1250	1.64 1.71 1.54 1.81	0.15 0.16 0.14 0.17	0.34 0.35 0.32 0.37	1.97 2.06 1.89 2.14	70.4 71.1 67.2 74.3	6.4 6.8 6.2 7.0	65 65 61 69	4.53 4.78 4.37 4.94	17.2 18.1 16.6 18.7	1.98 2.04 1.90 2.12	15.85 16.00 15.10 16.75
93642 DUP Target Range – Lower Upper	Bound Bound	0.33 0.41 0.34 0.40	6.74 6.76 6.40 7.10	32.5 34.5 31.6 35.4	1850 1860 1710 2000	2.07 2.37 2.06 2.38	0.32 0.33 0.30 0.35	0.03 0.03 0.02 0.04	0.30 0.33 0.28 0.35	94.3 88.1 86.6 95.8	2.5 2.5 2.3 2.7	79 78 74 83	12.05 12.35 11.55 12.85	48.2 50.0 46.4 51,8	2.86 2.91 2.73 3.04	22.4 23.4 21.7 24.1
93677 DUP Target Range - Lower Upper	Bound Bound	0.09 0.08 0.07 0.10	6.39 6.47 6.10 6.75	7.9 7.9 7.3 8.5	560 570 510 620	1.66 1.66 1.53 1.79	0.23 0.20 0.19 0.24	0.57 0.58 0.54 0.61	0.27 0.22 0.21 0.28	93.9 86.6 85.7 94.8	14.6 14.3 13.6 15.3	77 70 69 78	2.35 2.27 2.14 2.48	37.5 34.2 33.9 37.8	3.65 3.73 3.50 3.88	16.75 16.20 15.60 17.35
93697 DUP Target Range - Lower Upper	Bound Bound		6													

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: ASIABASE METALS INC SUITE 1723,595 BURRARD STREET VANCOUVER BC V7X 1G4

Page: 4 - B Total # Pages: 5 (A - D) Plus Appendix Pages Finalized Date: 19- AUG- 2012 Account: ASBAS

	13								QC	CERTIF	ICATE	OF AN	ALYSIS	VA12	218167	2
Sample Description	Method Analyte Units LOR	ME-MS61 Ge ppm 0.05	ME-MS61 Hf ppm 0.1	ME- MS61 In ppm 0.005	ME- MS61 K % 0.01	ME- MS61 La ppm 0.5	ME-MS61 Li ppm 0.2	ME- MS61 Mg % 0.01	ME-MS61 Mn ppm 5	ME- MS61 Mo ppm 0.05	ME- MS61 Na % 0.01	ME-MS61 Nb ppm 0.1	ME-MS61 Ni ppm 0.2	ME-MS61 P ppm 10	ME-MS61 Pb ppm 0.5	ME-MS61 Rb ppm 0.1
							DUPL	ICATES								
ORIGINAL DUP Target Range - Lower Upper	Bound Bound	0.08 0.08 <0.05 0.10	0.6 0.6 0.5 0.7	<0.005 <0.005 <0.005 0.010	<0.01 <0.01 <0.01 0.02	<0.5 <0.5 <0.5 1.0	3.7 3.7 3.3 4.1	<0.01 <0.01 <0.01 0:02	51 52 44 59	3.82 3.83 3.58 4.07	0.08 0.09 0.07 0.10	0.8 0.9 0.7 1.0	2.4 1.9 1.8 2,5	40 40 30 50	78.9 75.9 73.0 81.6	0.3 0.4 0.2 0.5
ORIGINAL DUP Target Range - Lower Upper	Bound * Bound															
ORIGINAL DUP Target Range - Lower Upper	Bound Bound															
ORIGINAL		0.09	2.6	0.025	1.69	15.2	25.7	0.73	374	0.90	2.93	5.3	18.0	550	5.3	41.6
	TERRORING TO A STORE	0.10	2.9	0.027	1.74	17.4	24.3	0.76	385	0.80	3.00	5.6	17.4	560	5.1	45.9
Target Range Lower Upper	Bound	<0.05	2.5 3.0	0.020	1,62	15.0 17.6	23.6	0,79	403	0,94	3.12	5,8	18.8	520 590	4.4 6.0	41.5
93602		0.15	2.3	0.036	3.19	38.0	19.8	0.57	402	6.54	0.48	11.2	27.7	1040	20.5	121.5
DUP		0.15	2.4	0.038	3.27	37.8	20.7	0.58	407	6.74	0.49	11.7	28.7	1070	22.0	127.5
Target Range - Lower Upper	Bound Bound	0.09	2.1	0.030	3.06	35.5 40.3	21.5	0,54	430	7.02	0.45	10.8	26.6	1120	22.8	131.0
93642		0.23	2.2	0.049	2.19	54.9	13.5	0.45	34	45.9	0.12	23.7	41.5	760	33.7	133.5
	1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	0.28	2.2	0.048	2.19	52.5	15.1	0.46	33	46.9	0.12	23.8	43.0	750	35.3	137.0
Target Range≯ Lower Upper	Bound Bound	0.19	2.0 2.4	0.041 0.056	2,07	50.5 56,9	13.4 15.2	0.42 0.49	27 40	44.0	0.10	22.5 25.0	39.9 44.6	710 800	32.3 36.7	128,5 142,0
93677		0.20	1.2	0.060	1.62	46.2	42.6	0.72	734	0.80	0.94	10.7	39.0	850	21.1	91.9
DUP	and Yourd Made "A PP 11-15 on And	0.20	1.2	0.049	1.63	41.3	41.6	0.74	738	0.72	0.97	10.4	38.1	850	17.3	85.4
Target Range - Lower Upper	Bound. Bound	0.14 0.26	1.0	0.047	1.53	41.1 46,4	39.8 44.4	0.68	694 778	0.67	0.90	9,9 11.2	36.4 40,7	800 900	20.7	84 1 93,2
93697 DUP Target Range - Lower Upper	Bound Bound															

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: ASIABASE METALS INC SUITE 1723,595 BURRARD STREET VANCOUVER BC V7X 1G4

Page: 4 - C Total # Pages: 5 (A - D) Plus Appendix Pages Finalized Date: 19- AUG- 2012 Account: ASBAS

QC CERTIFICATE OF ANALYSIS VA12181672

Sample Description	Method Analyte Units LOR	ME- MS61 Re ppm 0.002	ME- MS61 S % 0.01	ME- MS61 Sb ppm 0.05	ME-MS61 Sc ppm 0.1	ME- MS61 Se ppm 1	ME- MS61 Sn ppm 0.2	ME-MS61 Sr ppm 0.2	ME- MS61 Ta ppm 0.05	ME-MS61 Te ppm 0.05	ME-MS61 Th ppm 0.2	ME- MS61 Ti % 0.005	ME-MS61 Tl ppm 0.02	ME-MS61 U ppm 0.1	ME- MS61 V ppm 1	ME- MS61 W ppm 0.1
							DUPL	ICATES								
ORIGINAL DUP Target Range - Lower Upper	Bound Bound	<0.002 <0.002 <0.002 0.004	0.18 0.20 0.17 0.21	82.1 97.4 83.0 96.5	0.4 0.4 0.3 0.5	1 1 <1 2	0.9 1.0 0,7 1.2	86.4 87.3 82.3 91.4	0.06 0.06 <0.05 0.10	0.46 0.52 0.42 0.56	0.3 0.3 <0.2 0.4	0.055 0.056 0.048 0.063	0.06 0.07 0.04 0.09	0.2 0.2 <0,1 0,3	2 3 <1 4	1.9 1.9 1.7 2.1
ORIGINAL DUP Target Range - Lower Upper	Bound Bound															
ORIGINAL DUP Target Range Lower Upper	Bound Bound															
ORIGINAL DUP Target Range = Lower Upper	Bound 5.	<0.002 <0.002 <0.002 -0.004	0.19 0.20 0.18 0.21	0.15 0.13 0.08 0.20	5.3 5.2 4.9 5.6	1 1 <1 2	0.9 0.9 0.7 1,1	646 661 621 686	0.39 0.41 0.33 0.47	<0.05 <0.05 <0.05 0.10	4.1 4.1 3.7 4.5	0.208 0.212 0.195 0.226	0.17 0.17 0.14 0.20	1.2 1.2 1.0 1.4	38 39 36 41	1.1 0.8 0.8 1.1
93602 DUP Target Range - Lower Upper	Bound Bound	<0.002 <0.002 <0.002 0.004	0.04 0.04 0.03 0.05	2.19 2.30 2.03 2.46	8.5 9.0 8.2 9.3	2 2 <1 3	1.8 1.8 1.5 2.1	52.5 54.7 50.7 56.5	0.74 0.77 0.67 0.84	<0.05 0.05 <0.05 0.10	11.2 11.6 10.5 12.2	0.278 0.285 0.262 0:301	0.93 0.99 0.87 1.05	3.1 3.3 2.9 3.5	182 189 175 196	0.9 0.9 0.7 1.1
93642 DUP Target Rånge - "Eower Upper	Bound Bound	0.003 0.002 <0.002 0.004/	0.06 0.06 0.05 0.07	8.20 8.44 7.65 8.99	13.9 13.8 13.1 14,6	6 6 5 7	2.5 2.6 2.2 2.9	45.1 46.4 43.3 48.2	1.49 1.49 1.37 1.61	0.17 0.19 0.12 0.24	10.7 11.3 10.3 11.8	0.404 0.415 0.384 0.435	3.06 3.18 2.87 3.37	6.4 6.7 6.1 7.0	594 623 577 640	1.8 1.6 1.5 1.9
93677 DUP Target Range – Lower Upper	Bound Bound	<0.002 <0.002 <0.002 0.004	0.01 0.01 <0.01 0.02	0.79 0.70 0.64 0.85	12.2 11.9 11.3 12.8	1 1 <1 2	1.6 1.6 1.3 1.9	131.5 129.0 123.5 137.0	0.71 0.75 0.64 0.82	0.05 0.05 <0.05 0.10	11.4 11.7 10.8 12.3	0.310 0.329 0.299 0.340	0.48 0.53 0.45 0.56	1.6 1.6 1.4 1.8	73 74 69 78	1.0 1.0 0.8 1.2
93697 DUP Target Range – Lower Upper	Bound Bound															

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: ASIABASE METALS INC SUITE 1723,595 BURRARD STREET VANCOUVER BC V7X 1G4

Page: 4 - D Total # Pages: 5 (A - D) Plus Appendix Pages Finalized Date: 19- AUG- 2012 Account: ASBAS

imnera	15								QC CERTIFICATE OF ANALYSIS	VA12181672
Sample Description	Method Analyte Units LOR	ME- MS61 Y ppm 0.1	ME- MS61 Zn ppm 2	ME-MS61 Zr ppm 0.5	Ag-OG62 Ag ppm 1	Pb- OG62 Pb % 0.001	Zn- OG62 Zn % 0.001	Ba- XRF10 Ba % 0.01		
							DUPL	ICATES		
ORIGINAL DUP Target Range - Lower Upper	Bound Bound	0.5 0.5 0.4 0.6	<2 <2 <2 4	14.9 15.8 14.1 16.6						
ORIGINAL DUP Target Range - Lower Upper	Bound Bound					0.025 0.023 0.027	1.290 1.325 1.275 1.340			
ORIGINAL DUP Target Rangels Lower Upper	Bound Bound					0.032 0.030 0.034	3.32 3.92 3.53 3.71			
ORIGINAL DUP Target Range - Lower Upper	Bound Bound	7.0 7.7 6.9 7,8	45 46 41 50	88.1 95.6 86.8 96,9						
93602 DUP Target Range - Lower Upper	Bound Bound	11.8 12.4 11.4 12.8	161 164 152 173	84.3 88.6 81.6 91,3						
93642 DUP Target Range - Lower Upper	Bound Bound	14.5 14.1 13.5 15.1	288 294 274 308	86.6 88.5 82.7 92.4						
93677 DUP Target Range - Lower *Upper	Bound Bound	13.5 12.9 12.4 14.0	86 81 77 90	44.1 41.3 40.1 45.3						
93697 DUP Target Range - Lower Upper	Bound Bound				21 19 23	1.230 1.215 1.190 1.255	2.06 2.04 2.000 2.10			

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: ASIABASE METALS INC SUITE 1723,595 BURRARD STREET VANCOUVER BC V7X 1G4

Page: 5 - A Total # Pages: 5 (A - D) Plus Appendix Pages Finalized Date: 19- AUG- 2012 Account: ASBAS

QC CERTIFICATE OF ANALYSIS VA12181672

Project: Gnome

Sample Description	Method Analyte Units LOR	ME- MS61 Ag ppm 0.01	ME- MS61 Al % 0.01	ME- MS61 As ppm 0.2	ME- MS61 Ba ppm 10	ME- MS61 Be ppm 0.05	ME- MS61 Bi ppm 0.01	ME- MS61 Ca % 0.01	ME- MS61 Cd ppm 0.02	ME- MS61 Ce ppm 0.01	ME-MS61 Co ppm 0.1	ME- MS61 Cr ppm 1	ME- MS61 Cs ppm 0.05	ME- MS61 Cu ppm 0.2	ME- MS61 Fe % 0.01	ME- MS61 Ga ppm 0.05
							DUPL	ICATES								
93807 DUP Target Range - Lower - Upper	Bound Bound	0.12 0.09 0.09 0.12	6.17 6.71 6.11 6.77	8.4 8.6 7.9 9.1	540 580 510 610	1.37 1.25 1.19 1.43	0.20 0.19 0.18 0.21	0.60 0.64 0.58 0.66	0.27 0.22 0.21 0.28	86.4 92.4 84.9 93.9	13.9 13.8 13.1 14.6	60 71 61 70	2.13 2.23 2.02 2.34	29.7 29.7 28.0 31.4	3.71 3.94 3.62 4.03	16.50 16.45 15.60 17.35
93843 DUP Target Range - Lower Upper	Bound Bound	0.77 0.74 0.71 0.80	3.82 3.77 3.60 3.99	19.0 20.5 18.6 20.9	1010 1000 920 1090	0.92 0.90 0.81 1.01	0.18 0.18 0.16 0.20	0.06 0.06 0.05 0.07	0.60 1.43 0.94 1.09	70.1 67.9 65.5 72.5	2.8 3.9 3.1 3.6	52 54 49 57	3.81 3.67 3.50 3.98	21.2 23.1 20.8 23.5	1.80 1.88 1.74 1,94	13.00 14.50 13.00 14.50
93881 DUP Target Range - Lower Upper	Bound Bound	1.17 1.00 1.02 1.15	6.40 6.20 5.98 6.63	14.4 14.0 13.3 15.1	2220 2160 2020 2360	1.90 1.97 1.79 2.08	0.60 0.59 0.56 0.63	0.05 0.05 0.04 0.06	1.00 0.98 0.92 1.06	61.9 74.3 64.7 71.5	5.8 5.3 5.2 5.9	31 30 28 33	9.06 8.89 8.48 9.47	8.6 7.6 7.5 8.7	3.30 3.20 3.08 3.42	22.4 21.5 20.8 23.1
93655 DUP Target Range – Lowen Upper	Bound Bound															
ORIGINAL DUP Target Range - Lower Upper	Bound Bound															

***** See Appendix Page for comments regarding this certificate *****

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: ASIABASE METALS INC SUITE 1723,595 BURRARD STREET VANCOUVER BC V7X 1G4

Page: 5 - B Total # Pages: 5 (A - D) Plus Appendix Pages Finalized Date: 19- AUG- 2012 Account: ASBAS

Project: Gnome

Sample Description	Method Analyte Units LOR	ME-MS61 Ge ppm 0.05	ME- MS61 Hf ppm 0.1	ME- MS61 In ppm 0.005	ME- MS61 K % 0.01	ME- MS61 La ppm 0.5	ME- MS61 Li ppm 0.2	ME- MS61 Mg % 0.01	ME-MS61 Mn ppm 5	ME- MS61 Mo ppm 0.05	ME- MS61 Na % 0.01	ME-MS61 Nb ppm 0.1	ME- MS61 Ni ppm 0.2	ME-MS61 P ppm 10	ME- MS61 Pb ppm 0.5	ME- MS61 Rb ppm 0.1
							DUPL	ICATES								
93807 DUP Target Range – Lower Upper	Bound Bound	0.17 0.20 0.13 0.24	1.2 1.3 1.1 1.4	0.043 0.043 0.036 0.050	1.54 1.64 1.50 1.68	42.7 46.6 41.9 47.4	40.3 29.8 33.1 37.0	0.71 0.77 0.69 0.79	710 755 691 774	0.89 0.84 0.77 0.96	0.94 1.01 0.92 1.03	11.8 10.3 10.4 11.7	37.6 37.4 35.4 39.6	880 910 840 950	18.7 18.4 17.1 20.0	81.5 80.8 77.0 85.3
93843 DUP Target Range - Lower Upper	Bound Bound	0.08 0.15 0.06 0.17	1.6 1.5 1.4 1.7	0.033 0.032 0.026 0.039	0.76 0.78 0.72 0.82	40.2 39.5 37.4 42.3	9.2 7.3 7.6 8.9	0.22 0.21 0.19 0.24	29 43 29 43	37.1 37.6 35.4 39.3	0.16 0.17 0.15 0.18	10.2 10.3 9.6 10.9	37.9 42.8 38.1 42.5	570 560 530 600	20.9 20.8 19.3 22.4	49.9 48.5 46.6 51,8
93881 DUP Target Range, - Lower Upper	Bound Bound	0.17 0.17 0.11 0.23	2.7 2.8 2,5 3,0	0.079 0.076 0.069 0.086	1.97 1.93 1.84 2.06	29.4 34.8 30.0 34.2	26.1 26.8 24.9 28.0	0.46 0.44 0.42 0.48	98 94 86 106	8.55 8.41 8.01 8.95	0.15 0.14 0.13 0.16	17.0 17.0 16,1 18,0	42.8 39.1 38.7 43.2	1310 1290 1230 1380	19.4 19.6 18,0 21,0	140.5 139.5 133.0 147.0
93655 DUP Target Range - Lower Upper	Bound - Bound -															
ORICINAL DUP Target Range - Lower Upper	Войлd Bound															

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: ASIABASE METALS INC SUITE 1723,595 BURRARD STREET VANCOUVER BC V7X 1G4

Page: 5 - C Total # Pages: 5 (A - D) Plus Appendix Pages Finalized Date: 19- AUG- 2012 Account: ASBAS

QC CERTIFICATE OF ANALYSIS VA12181672

Sample Description	Method Analyte Units LOR	ME- MS61 Re ppm 0.002	ME- MS61 S % 0.01	ME- MS61 Sb ppm 0.05	ME- MS61 Sc ppm 0.1	ME- MS61 Se ppm 1	ME- MS61 Sn ppm 0.2	ME- MS61 Sr ppm 0.2	ME- MS61 Ta ppm 0.05	ME- MS61 Te ppm 0.05	ME- MS61 Th ppm 0.2	ME- MS61 Ti % 0.005	ME- MS61 Tl ppm 0.02	ME- MS61 U ppm 0.1	ME- MS61 V ppm 1	ME- MS61 W ppm 0.1
							DUPL	ICATES								
93807 DUP Target Range Lower Upper	Bound Bound =	<0.002 <0.002 <0.002 0.004	0.01 0.01 <0.01 0.02	0.70 0.67 0.58 0.79	12.2 12.0 11.4 12.8	1 1 <1 2	1.4 1.4 1.1 1.7	121.0 124.0 116.0 129.0	0.73 0.66 0.61 0.78	<0.05 <0.05 <0.05 0.10	11.4 11.5 10.7 12.2	0.324 0.322 0.302 0.344	0.43 0.44 0.38 0.49	1.5 1.6 1.4 1.7	69 73 66 76	0.9 0.9 0.7 1.1
93843 DUP Target Rånge – Tower Upper	Bound Bound	<0.002 <0.002 <0.002 0.004	0.07 0.07 0.06 0.08	7.59 7.70 7.02 8,27	6.8 8.0 6.9 7.9	4 4 3 5	1.6 1.7 1,4 1,9	46.1 48.8 44.9 50.0	0.72 0.72 0.63 0.81	0.13 0.13 0.07 0.19	6.9 6.8 6.3 7.4	0.306 0.309 0.287 0.328	2.55 2.57 2.35 2.77	4.8 4.7 4.4 5.1	535 549 514 570	1.2 1.2 1.0 1.4
93881 DUP Target Range - Lower Upper	Bound Sa Bound	<0.002 <0.002 <0.002 0.004	0.02 0.02 <0.01 0.03	4.59 4.55 4.18 4.96	6.4 5.9 5.7 6.6	4 4 3 5	6.2 6.1 5.6 6.7	20.3 21.1 19.5 21.9	1.25 1.30 1.16 1.39	0.07 0.07 <0.05 0.10	12.9 14.4 12.8 14.5	0.204 0.199 0.186., 0.217	1.86 1.85 1.70 2.01	5.1 5.4 4.9 5.6	197 194 185 206	1.8 1.8 1.6 2.0
93655 DUP Target Range -/ Lower	Bound Bound															
ORIGINAL DUP Target Range - Lower Upper	Bound Bound															

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: ASIABASE METALS INC SUITE 1723,595 BURRARD STREET VANCOUVER BC V7X 1G4

Page: 5 - D Total # Pages: 5 (A - D) Plus Appendix Pages Finalized Date: 19- AUG- 2012 Account: ASBAS

mileia	13								QC CERTIFICATE OF	ANALYSIS	VA12181672
Sample Description	Method Analyte Units LOR	ME- MS61 Y ppm 0.1	ME- MS61 Zn ppm 2	ME- MS61 Zr ppm 0.5	Ag-OG62 Ag ppm 1	Pb- OG62 Pb % 0.001	Zn- OG62 Zn % 0.001	Ba- XRF10 Ba % 0.01			
							DUPL	ICATES			
93807 DUP Target Range c_Lower Upper	Bound Bound	13.9 13.9 13.1 14.7	93 87 84 97	45.5 46.0 43.0 48.5							
93843 DUP Target-Range - Lower Upper	Bound	9.1 10.0 9.0 10,1	208 252 217 244	51.4 59.8 52.3 58.9							
93881 DUP Target Range - Lower - Upper	Bound : Bound	13.1 13.9 12.7 14.3	361 357 339 379	90.9 92.1 86.4 96.6							
93655 DUP Target Range - Lower Upper	Bound Bound							26.9 27.0 26.3 27.6			
ORIGINAL DUP Target Range - Lower Upper	Bound Bound					0.909 0.885 0.933	2.50 2.37 2.37 2.50				

ALS Canada Ltd. 2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.aisglobal.com

To: ASIABASE METALS INC SUITE 1723,595 BURRARD STREET VANCOUVER BC V7X 1G4

Page: Appendix 1 Total # Appendix Pages: 1 Finalized Date: 19- AUG- 2012 Account: ASBAS

Project: Gnome

Method	CERTIFICATE COMMENTS
ME- MS61	Interference: Ca> 10% on ICP- MS As,ICP- AES results shown.
ME- MS61	REE's may not be totally soluble in this method.

APPENDIX 7. CERTIFICATE OF ANALYSIS- ROCK

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: ASIABASE METALS INC SUITE 1723,595 BURRARD STREET VANCOUVER BC V7X 1G4

Page: 1 Finalized Date: 19- AUG- 2012 This copy reported on 23- AUG- 2012 Account: ASBAS

CERTIFICATE VA12181673

Project: Gnome P.O. No.:

This report is for 35 Rock samples submitted to our lab in Vancouver, BC, Canada on 7-AUG-2012.

The following have access to data associated with this certificate:

IOHN CHILDS	WYLIE HUI	IERRY ZEIG
JOHN CHIEDS	WILLING	JERRY EEG

	SAMPLE PREPARATION								
ALS CODE	DESCRIPTION								
WEI- 21	Received Sample Weight								
LOG-22	Sample login - Rcd w/o BarCode								
CRU- 31	Fine crushing - 70% < 2mm								
SPL- 21	Split sample - riffle splitter								
PUL-31	Pulverize s pl it to 85% < 75 um								

ANALYTICAL PROCEDURES

ALS CODE	DESCRIPTION	INSTRUMENT
ME- OG62	Ore Grade Elements - Four Acid	ICP- AES
Pb- OG62	Ore Grade Pb - Four Acid	VARIABLE
Zn- OG62	Ore Grade Zn - Four Acid	VARIABLE
Ba-XRF10	Fusion XRF - Ba Ore Grade	XRF
ME-XRF10	Fusion XRF - Ore Grade	XRF
OA- GRA06	LOI for ME-XRF06	WST- SIM
ME- MS61	48 element four acid ICP- MS	

To: ASIABASE METALS INC ATTN: WYLIE HUI SUITE 1723,595 BURRARD STREET VANCOUVER BC V7X 1G4

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

***** See Appendix Page for comments regarding this certificate *****

Colin Ramshaw, Vancouver Laboratory Manager

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: ASIABASE METALS INC SUITE 1723,595 BURRARD STREET VANCOUVER BC V7X 1G4

Page: 2 - A Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 19- AUG- 2012 Account: ASBAS

Project: Gnome

Sample Description	Method	WEI-21	ME- MS61	ME- MS61	ME- MS61	ME-MS61	ME-MS61	ME- MS61	ME- MS61	ME-MS61	ME-MS61	ME- MS61	ME-MS61	ME- MS61	ME-MS61	ME- MS61
	Analyte	Recvd Wt.	Ag	Al	As	Ba	Be	Bi	Ca	Cd	Ce	Co	Cr	Cs	Cu	Fe
	Units	kg	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	%
	LOR	0.02	0.01	0.01	0.2	10	0.05	0.01	0.01	0.02	0.01	0.1	1	0.05	0.2	0.01
93637		0.58	1.11	2.87	22.4	3380	0.92	0.11	0.03	2.18	30.0	4.0	51	3.72	23.5	5.81
93647		0.18	0.60	3.15	7.4	1360	0.51	0.08	0.03	0.82	28.8	4.5	27	4.24	65.2	29.5
93648		0.18	0.17	0.79	6.4	350	6.36	0.01	0.08	128.5	77.2	620	<1	0.41	2.9	46.4
93649		0.86	0.25	2.31	10.1	4050	1.23	0.07	0.02	0.21	17.95	0.7	42	2.98	11.1	0.82
93650		0.72	2.35	5.06	50.4	7960	2.11	0.22	0.01	0.17	57.5	0.5	70	8.58	21.2	1.77
93651		0.98	0.19	2.74	15.9	2430	1.84	0.08	0.01	0.15	22.7	0.3	38	3.69	12.0	0.91
93652		0.42	0.20	1.70	4.1	1250	1.15	0.06	0.01	0.11	15.00	0.2	28	2.77	7.1	0.40
93653		0.52	0.10	4.31	4.9	440	1.13	0.10	1.18	0.50	49.5	9.7	52	1.24	22.0	3.02
93654		0.70	0.22	2.39	7.6	3300	1.74	0.08	0.01	0.55	20.6	0.2	33	3.21	20.3	0.49
93655		1.30	0.24	2.42	10.5	>10000	0.50	0.07	1.79	6.37	14.20	1.7	24	0.16	6.3	1.51
93656	2455°	0.76	1.50	4.30	57.7	5180	1.88	0.14	0.05	0.96	36.2	1.0	74	2.11	54.4	1.90
93657		0.98	0.88	5.36	46.2	8230	2.29	0.19	0.03	1.12	50.6	1.9	75	8.79	34.8	2.79
93658		0.48	0.74	3.94	19.7	6530	1.90	0.15	0.01	0.29	28.4	0.7	53	5.51	21.8	1.41
93660		0.66	0.14	1.35	35.0	500	0.36	0.04	0.01	0.11	19.15	0.9	34	0.85	14.2	1.38
93661		0.76	0.17	2.59	10.0	1280	1.28	0.09	0.02	0.06	10.40	0.2	36	3.80	8.8	0.57
93662 93663 93664 93665 93665 93666		0.66 0.02 0.68 1.06 1.02	0.02 22.1 0.33 0.07 0.06	0.28 7.74 6.05 2.31 4.14	0.4 10.9 9.1 1.2 5.5	130 860 2000 1060 1200	0.09 0.71 1.63 0.34 1.19	0.01 0.89 0.16 0.04 0.09	3.36 4.69 0.47 8.83 0.04	0.75 109.0 0.88 0.80 0.28	2.99 45.4 47.8 28.1 26.8	1.1 9.9 3.7 3.0 3.7	25 23 63 39 54	0.30 0.27 6.74 2.01 3.48	1.9 2740 24.6 11.9 19.1	0.55 4.86 2.97 3.11 1.85
93667		0.86	0.22	2.53	10.6	1030	1.10	0.09	0.05	1.38	10.65	1.5	37	2.80	15.9	0.71
93668		0.74	0.23	3.18	11.7	1280	1.33	0.08	0.08	3.38	11.55	1.0	44	3.34	10.5	0.65
93669		0.60	0.18	2.67	12.3	1010	1.39	0.10	0.19	3.16	14.15	1.3	49	2.94	17.0	0.68
93670		0.42	0.16	3.27	11.6	1230	1.66	0.09	0.54	2.94	25.1	1.9	49	2.95	20.4	0.86
93671		0.60	0.11	4.13	6.6	960	1.27	0.08	6.89	0.82	56.1	4.9	34	2.02	14.0	1.30
93672		0.30	0.53	0,37	1.3	50	0.15	0.02	0.02	0.05	3.86	2.5	2	0.32	88.6	49.4
93673		0.40	0.07	1.29	1.9	50	1.63	0.02	0.02	1.98	14.20	123.5	3	0.34	48.2	45.3
93674		0.30	0.04	0,82	1.5	50	0.85	0.02	0.01	7.64	5.41	106.0	5	0.23	40.3	>50
93675		0.34	0.03	0.91	2.3	90	1.45	0.01	0.01	7.72	11.15	362	<1	0.36	17.1	46.5
93698		0.78	0.07	1,58	2.7	310	1.63	0.04	0.01	3.87	11.45	14.8	9	1.14	36.1	42.3
93699		0.68	0.14	1.90	2.2	80	3.33	0.02	<0.01	7.22	10.90	295	4	0.13	69.2	40.1
93700		0.88	0.07	1.27	4.4	60	1.25	0.04	0.01	0.66	4.13	8.5	9	0.15	124.5	45.9
93861		0.14	0.72	5.79	15.6	3150	2.21	0.20	0.04	50.2	55.0	28.7	74	7.22	34.0	7.78
93862		0.14	0.72	1.49	6.5	910	8.61	0.05	0.17	396	7.32	871	4	0.97	26.0	40.9
0720-19		0.64	0.25	3.88	21.6	2740	1.59	0.15	0.01	0.81	43.5	3.1	54	6.16	76.1	12.85

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: ASIABASE METALS INC SUITE 1723,595 BURRARD STREET VANCOUVER BC V7X 1G4

Page: 2 - B Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 19- AUG- 2012 Account: ASBAS

Project: Gnome

Sample Description	Method	ME- MS61	ME-MS61	ME- MS61	ME- MS61	ME- MS61	ME- MS61	ME-MS61	ME-MS61	ME-MS61	ME- MS61	ME- MS61	ME-MS61	ME-MS61	ME-MS61	ME- MS61
	Analyte	Ga	Ge	Hf	In	K	La	Li	Mg	Mn	Mo	Na	Nb	Ni	P	Pb
	Units	ppm	ppm	ppm	ppm	%	ppm	ppm	%	ppm	ppm	%	ppm	ppm	ppm	ppm
	LOR	0.05	0.05	0.1	0.005	0.01	0.5	0.2	0.01	5	0.05	0.01	0.1	0.2	10	0.5
93637		7.16	0.17	1.1	0.030	0.77	16.2	8.1	0.28	289	18.50	0.09	7.4	50.4	490	42.8
93647		6.30	0.80	0.8	0.024	0.89	15.4	4.5	0.20	89	10.35	0.05	3.9	14.9	260	7.8
93648		1.82	1.32	0.7	<0.005	0.04	41.7	0.7	0.02	11650	27.7	0.01	1.5	960	110	1.2
93649		6.30	0.08	0.7	0.014	0.94	11.4	10.7	0.21	49	17.50	0.03	3.0	18.7	130	9.1
93650		15.30	0.21	2.0	0.044	1.95	33.6	21.4	0.42	22	49.7	0.05	9.1	14.6	440	91.8
93651		7.56	0.09	0.8	0.023	1.08	13.9	11.8	0.25	18	30.7	0.02	3.8	23.2	250	6.7
93652		4.73	0.06	0.5	0.012	0.68	9.2	22.6	0.15	20	16.10	0.01	2.2	16.7	60	7.5
93653		10.50	0.16	1.0	0.033	1.04	23.7	29.1	0.63	698	1.18	0.88	5.4	26.5	620	14.1
93654		6.98	0.08	0.7	0.016	0.97	12.8	10.1	0.22	17	17.35	0.02	3.3	21.6	130	6.6
93655		2.69	0.07	0.6	0.014	0.05	9.4	0.8	0.02	81	16.65	0.43	2.7	23.3	420	35.6
93656		10.80	0.23	1.5	0.056	0.67	21.0	12.3	0.15	13	23.2	0.02	6.5	36.3	1590	19.6
93657		15.50	0.18	2.0	0.051	1.85	29.8	22.5	0.47	39	27.0	0.05	9.8	46.0	1030	25.3
93658		10.90	0.12	1.4	0.022	1.26	17.0	18.8	0.42	26	27.2	0.04	6.0	24.5	320	13.4
93660		2.36	<0.05	0.3	0.023	0.14	11.3	10.7	0.05	34	18.40	<0.01	1.3	14.7	520	1.8
93661		7.30	<0.05	0.9	0.017	0.82	6.5	9.2	0.23	29	21.6	<0.01	3.8	22.5	170	5.2
93662 93663 93664 93665 93665 93666		0.78 18.15 16.55 5.74 11.65	<0.05 0.16 0.08 0.06 <0.05	0.1 1.7 1.8 0.7 1.1	0.005 0.193 0.056 0.033 0.033	0.08 0.69 1.99 0.65 1.23	1.5 21.2 27.8 15.6 15.9	2.0 2.5 21.3 14.9 27.5	0.05 1.39 0.61 1.97 0.51	267 1230 241 895 64	3.34 4.33 12.80 2.45 11.00	0.01 1.76 0.05 0.02 0.03	0.6 14.4 14.0 3.0 5.7	6.5 9.1 41.0 21.4 36.2	80 850 590 360 170	<0.5 >10000 14.3 1.3 5.1
93667		7.52	<0.05	0.7	0.017	0.80	7.8	8.1	0.26	32	30.1	0.01	4.2	35.4	120	3.7
93668		9.28	<0.05	0.9	0.021	0.98	9.1	9.9	0.33	35	39.9	<0.01	6.0	36.7	150	4.7
93669		8.10	0.06	0.9	0.015	0.90	11.1	9.0	0.31	34	36.3	0.02	5.2	40.2	210	7.0
93670		9.23	0.12	1.2	0.024	1.28	18.0	10.3	0.59	47	48.2	0.03	7.2	50.5	180	17.5
93671		10.40	0.18	1.9	0.023	2.33	31.2	15.2	3.98	280	13.90	0.07	6.7	39.9	540	19.7
93672		0.95	1.52	0.1	<0.005	0.06	2.1	1.0	0.02	<5	2.62	0.01	2.2	2.2	240	1.6
93673		0.44	0.25	0.2	0.012	0.05	3.9	1.1	0.02	2310	3.29	0.01	0.2	31.8	140	2.2
93674		0.30	0.20	0.1	0.008	0.04	2.9	0.7	0.01	1390	1.11	0.01	0.1	96.5	130	1.4
93675		0.50	0.21	0.1	0.010	0.04	4.0	1.5	0.01	4350	5.68	0.01	0.2	186.5	140	1.8
93698		2.27	0.28	0.4	0.014	0.33	5.9	2.3	0.06	152	3.03	0.01	1.5	61.4	200	2.6
93699		0.40	0.23	0.2	0.009	0.02	3.1	1.5	0.01	4370	5.34	0.01	0.2	48.4	150	2.9
93700		0.33	0.19	0.1	0.006	0.03	1.5	0.5	0.02	145	13.50	0.01	0.2	9.8	210	5.7
93861		15.30	0.16	2.3	0.041	2.08	30.0	20.0	0.42	223	25.9	0.06	9.4	169.5	520	15.7
93862		1.24	0.24	0.2	<0.005	0.11	3.2	9.2	0.03	11450	18.55	0.01	0.6	1160	150	1.9
0720-19		10.55	0.17	1.3	0.032	1.41	27.1	14.6	0.28	45	29.9	0.03	10.6	29.6	620	11.3

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: ASIABASE METALS INC SUITE 1723,595 BURRARD STREET VANCOUVER BC V7X 1G4

Page: 2 - C Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 19- AUG- 2012 Account: ASBAS

Project: Gnome

Sample Description	Method	ME-MS61	ME- MS61	ME- MS61	ME- MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME- MS61	ME-MS61	ME-MS61	ME- MS61	ME-MS61	ME-MS61	ME-MS61
	Analyte	Rb	Re	S	Sb	Sc	Se	Sn	Sr	Ta	Te	Th	Ti	⊤1	U	V
	Units	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm
	LOR	0.1	0.002	0.01	0.05	0.1	1	0.2	0.2	0.05	0.05	0.2	0.005	0.02	0.1	1
93637		46.4	<0.002	0.05	9.70	4.9	6	0.9	32.2	0.45	0.07	4.0	0.139	3.34	2.8	280
93647		52.7	0.004	1.56	2.81	3.2	4	0.8	17.0	0.23	0.05	3.6	0.120	1.11	3.3	193
93648		2.1	0.006	0.21	0.23	0.6	11	<0.2	14.5	0.15	<0.05	0.4	0.005	4.52	69.8	4
93649		60.1	0.018	0.07	3.88	4.5	4	0.8	16.6	0.19	0.05	2.5	0.096	1.08	6.0	676
93650		120.5	0.019	0.26	44.1	9.8	34	1.8	41.4	0.61	0.15	9.6	0.271	4.24	6.2	778
93651		73.0	0.024	0.08	5.19	5.5	4	0.9	14.9	0.25	0.09	3.0	0.124	1.59	9.5	936
93652		46.1	0.022	0.05	2.47	3.3	2	0.6	9.7	0.15	0.06	1.9	0.071	1.08	5.9	639
93653		47.2	0.002	<0.01	0.55	7.7	1	0.9	110.5	0.39	<0.05	7.1	0.216	0.27	1.3	60
93654		64.4	0.032	0.09	3.29	5.0	3	0.8	30.8	0.22	0.07	2.8	0.104	1.26	9.6	850
93655		2.4	0.032	0.01	4.30	2.1	4	0.4	1955	0.18	0.06	2.2	0.092	0.59	5.0	198
93656		40.9	0.017	0.10	12.90	8.9	44	0.9	161.0	0.45	0.09	5.9	0.211	1.79	7.3	535
93657		116.5	0.014	0.09	25.1	10.2	13	1.8	64.5	0.67	0.10	8.9	0.279	2.65	8.7	788
93658		80.9	0.034	0.09	14.00	7.4	8	1.3	28.3	0.41	0.11	4.8	0.190	1.96	8.5	760
93660		9.6	0.014	0.05	4.93	1.9	5	0.2	19.9	0.06	<0.05	2.6	0.031	0.39	5.5	197
93661		48.8	0.026	0.07	3.88	5.0	2	0.8	12.6	0.25	0.07	2.4	0.117	1.13	8.8	823
93662 93663 93664 93665 93665 93666		5.2 12.9 114.5 33.2 73.0	<0.002 <0.002 0.017 <0.002 0.008	0.01 1.91 0.05 0.02 0.02	0.27 34.8 3.19 0.53 1.75	0.4 11.1 11.9 3.8 8.5	1 4 5 1 2	<0.2 3.9 1.9 0.7 1.3	178.5 538 24.7 410 13.6	<0.05 1.29 0.79 0.18 0.35	<0.05 0.61 0.08 <0.05 0.06	0.4 2.5 7.5 2.4 4.6	0.012 0.256 0.283 0.094 0.173	0.08 0.12 1.56 0.39 0.86	0.3 0.9 4.8 0.9 2.5	19 107 415 51 194
93667 93668 93669 93670 93671		46.6 59.4 52.4 64.5 77.6	0.022 0.025 0.029 0.067 0.008	0.02 0.02 0.02 0.02 0.02 0.12	10.40 12.60 10.30 6.65 3.21	4.9 6.2 6.0 7.5 6.4	4 4 4 6 2	0.8 1.0 0.9 1.1 1.2	8.2 6.8 7.4 10.6 75.1	0.25 0.36 0.37 0.45 0.47	0.09 0.09 0.12 0.22 <0.05	2.9 3.8 4.4 4.2 8.5	0.108 0.142 0.135 0.168 0.182	1.33 1.77 1.98 1.96 0.95	3.6 3.7 4.9 5.9 4.4	770 835 846 501 141
93672 93673 93674 93675 93698		3.4 2.1 1.7 2.2 15.9	<0.002 <0.002 <0.002 <0.002 <0.002 <0.002	0.58 0.88 0.69 1.40 0.43	0.29 0.51 0.28 0.35 0.87	0.9 1.0 0.4 0.4 1.5	1 3 1 2 2	<0.2 <0.2 <0.2 <0.2 <0.2 0.3	2.8 2.1 1.3 2.8 3.6	<0.05 <0.05 <0.05 <0.05 0.11	<0.05 <0.05 <0.05 <0.05 <0.05	0.7 0.9 0.4 0.3 1.6	0.011 0.006 <0.005 0.006 0.038	0.09 0.52 0.72 3.85 0.37	2.9 13.5 3.8 6.7 11.7	12 9 10 7 49
93699		1.2	<0.002	0.79	0.81	0.8	3	<0.2	1.0	<0.05	<0.05	1.0	<0.005	2.08	37.6	18
93700		1.4	<0.002	1.16	1.32	0.6	2	<0.2	1.8	<0.05	<0.05	0.7	0.005	0.12	21.2	36
93861		122.5	<0.002	0.02	10.20	11.1	5	1.9	23.8	0.61	0.09	8.7	0.272	2.17	7.5	514
93862		6.7	<0.002	0.14	13.80	0.7	7	0.3	28.9	0.06	<0.05	0.6	0.014	2.94	21.9	36
0720-19		77.5	0.036	0.23	7.04	7.9	11	1.3	28.8	0.64	0.09	8.1	0.178	1.44	14.9	345

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: ASIABASE METALS INC SUITE 1723,595 BURRARD STREET VANCOUVER BC V7X 1G4

Page: 2 - D Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 19- AUG- 2012 Account: ASBAS

Project: Gnome

Sample Description	Method Analyte Units LOR	ME-MS61 W ppm 0.1	ME- MS61 Y ppm 0.1	ME- MS61 Zn ppm 2	ME-MS61 Zr ppm 0.5	Pb- OG62 Pb % 0.001	Zn- OG62 Zn % 0.001	Ba- XRF10 Ba % 0.01				
93637 93647 93648 93649 93650		0.9 0.4 0.6 0.7 1.4	15.9 10.0 412 5.7 8.6	697 751 8650 41 62	38.0 26.0 2.4 23.2 70.4							
93651 93652 93653 93654 93655		0.9 0.6 0.8 0.5	5.1 2.9 12.3 5.1 8.8	30 10 78 19 463	29.5 16.5 34.6 26.3 17.3			26.9		- 16 16 78 PB	+ A / A / + +	
93656 93657 93658 93660 93661		1.3 1.3 1.2 0.3 0.9	12.9 14.7 13.9 6.1 5.6	110 291 113 113 113	51.0 71.3 48.6 10.6 30.9							
93662 93663 93664 93665 93665		0.2 0.8 1.0 0.5 0.7	3.5 17.3 12.1 9.5 6.6	35 >10000 160 78 83	3.3 67.7 69.9 22.0 39.3	1.385	2.26					
93667 93668 93669 93670 93671		0.6 0.8 0.8 0.8 0.5	7.6 9.4 12.4 16.3 17.5	106 160 142 160 85	25.5 33.9 31.7 50.6 62.6				 			
93672 93673 93674 93675 93698		0.1 <0.1 <0.1 <0.1 0.1	1.2 29.3 23.8 27.5 10.8	607 1280 2240 2750 1480	3.9 6.2 2.9 2.4 12.5				 			
93699 93700 93861 93862 0720-19		<0.1 0.1 1.0 0.1 0.6	34.6 10.3 20.1 320 13.7	992 844 1890 >10000 673	5.7 4.4 73.3 5.3 49.6		1.470					

ALS Canada Ltd. 2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: ASIABASE METALS INC SUITE 1723,595 BURRARD STREET VANCOUVER BC V7X 1G4

Page: Appendix 1 Total # Appendix Pages: 1 Finalized Date: 19- AUG- 2012 Account: ASBAS

Project: Gnome

Method	CERTIFICATE COMMENTS
ME- MS61	REE's may not be totally soluble in this method.

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: ASIABASE METALS INC SUITE 1723,595 BURRARD STREET VANCOUVER BC V7X 1G4

Page: 1 Finalized Date: 19- AUG- 2012 This copy reported on 23- AUG- 2012 Account: ASBAS

QC CERTIFICATE VA12181673

Project: Gnome P.O. No.:

This report is for 35 Rock samples submitted to our lab in Vancouver, BC, Canada on 7-AUG-2012.

The following have access to data associated with this certificate:

JOHN CHILDS	WYLIE HUI	JERRY ZEIG

	SAMPLE PREPARATION	
ALS CODE	DESCRIPTION	
WEI- 21	Received Sample Weight	
LOG-22	Sample login - Rcd w/o BarCode	
CRU- 31	Fine crushing - 70% < 2mm	
SPL- 21	Split sample - riffle splitter	
PUL- 31	Pulverize split to 85% < 75 um	

	ANALYTICAL PROCEDURI	ES
ALS CODE	DESCRIPTION	INSTRUMENT
ME- OG62	Ore Grade Elements - Four Acid	ICP- AES
Pb- OG62	Ore Grade Pb - Four Acid	VARIABLE
Zn- OG62	Ore Grade Zn - Four Acid	VARIABLE
Ba- XRF10	Fusion XRF - Ba Ore Grade	XRF
ME- XRF10	Fusion XRF - Ore Grade	XRF
OA- GRA06	LOI for ME- XRF06	WST- SIM
ME- MS61	48 element four acid ICP- MS	

To: ASIABASE METALS INC ATTN: WYLIE HUI SUITE 1723,595 BURRARD STREET VANCOUVER BC V7X 1G4

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

Signature:

Colin Ramshaw, Vancouver Laboratory Manager

***** See Appendix Page for comments regarding this certificate *****

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: ASIABASE METALS INC SUITE 1723,595 BURRARD STREET VANCOUVER BC V7X 1G4

Page: 2 - A Total # Pages: 4 (A - D) Plus Appendix Pages Finalized Date: 19- AUG- 2012 Account: ASBAS

QC CERTIFICATE OF ANALYSIS VA12181673

STANDARDS Ba-101 Target Range, Lover, Bound SCM908-10 GM908-10 GM908-10 GM908-10 GM908-10 GM908-10 GM908-10 GM908-10 GM908-10 GM908-10 GM908-10 SM90	Sample Description	Method Analyte Units LOR	ME- MS61 Ag ppm 0.01	ME- MS61 Al % 0.01	ME-MS61 As ppm 0.2	ME-MS61 Ba ppm 10	ME- MS61 Be ppm 0.05	ME- MS61 Bi ppm 0.01	ME- MS61 Ca % 0.01	ME- MS61 Cd ppm 0.02	ME- MS61 Ce ppm 0.01	ME-MS61 Co ppm 0.1	ME- MS61 Cr ppm 1	ME- MS61 Cs ppm 0.05	ME- MS61 Cu ppm 0.2	ME- MS61 Fe % 0.01	ME- MS61 Ga ppm 0.05
Ba-101 Target Range, Lower Bound (SM908-10 3.03 7.61 59.5 1110 1.36 1.19 3.97 1.86 115.0 24.1 145 4.16 3840 5.78 22.2 GM908-10 3.03 7.61 59.5 1110 1.36 1.19 3.97 1.86 115.0 24.1 145 4.16 3840 5.78 22.2 GM908-10 2.09 5.40 49.3 930 1.19 1.09 3.33 1.52 99.0 2.15 118 3.37 3.270 5.21 18.65 GM908-5 52 2.73 5.7 2260 2.54 0.62 1100 1.06 1210 265 146 4.23 3990 6.39 22.9 3.33 1.52 99.0 2.15 118 3.37 3.27 5.23 2.32 2.35 3.40 0.15 210 10.0 2.8 1.49 4.8 3.49 2.44 GM908-5 5.65 6.32 7.5								STAN	IDARDS								
STSD- 4 Target Ranget Lower Bound 22 Upper Bound	Ba- 101 Target Range - Lower, Upper, GBM908- 10 Target Range - Lower Upper, GBM908- 5 GBM908- 5 GBM908- 5 Target Range - Lower Upper, GEOMS- 03 GEOMS- 03 Target Range - Lower Upper, MP- 1b MP- 1b Target Range - Lower Upper, MRGe008 Target Range - Lower Upper, GCGeo08 Target Range - Lower Upper, STSD- 4 Target Range - Lower Upper,	Bound Bound Bound Bound Bound Bound Bound Bound Bound Bound Bound Bound Bound	3.03 3.00 2.69 3.31 58.2 61.4 52.0 63.6 0.70 0.77 0.85 4.36 4.36 4.16 5.10	7.61 7.25 6.40 7.84 7.13 8.10 6.79 8.32 5.19 5.23 4.61 5.65 7.03 7.00 8.57	59.5 59.8 49.3 60.7 6.7 6.6 5.7 7.5 627 633 570 697 35.2 29.7 36.7	1110 1040 930 1280 2420 1950 2670 2550 2060 2810 1040 920 1270	1.36 1.39 1.19 1.57 2.54 2.28 2.27 2.89 1.61 1.29 1.34 1.74 3.35 2.80 3.54	STAN 1.19 1.33 1.09 1.35 0.82 0.91 0.81 1.01 0.41 0.36 0.31 0.41 0.41 0.62 0.63 0.79	3.97 3.78 3.33 4.10 1.90 2.06 1.70 2.10 0.43 0.42 0.33 0.43 0.43 2.58 2.35 2.90	1.86 1.82 1.52 1.90 0.15 0.09 0.11 0.20 0.42 0.30 0.42 2.23 2.01 2.50	115.0 114.5 99.0 121.0 210 222 198.0 242 51.8 52.6 47.0 57.4 73.0 72.9 89.1	24.1 26.3 21.5 26.5 10.0 10.3 9.8 12.2 10.9 11.1 10.7 13.3 20.3 18.4 22.8	145 140 118 146 28 27 23 30 123 118 105 131 88 88 82 102	4.16 4.17 3.37 4.23 1.55 1.69 1.48 1.92 9.37 10.50 9.04 11.15 12.00 11.00 13.80	3840 3540 3270 3990 475 486 448 548 130.0 131.5 120.5 147.5 610 568 694	5.78 5.52 5.21 6.39 3.32 3.49 3.14 3.86 4.33 4.33 4.34 3.64 4.48 3.89 3.61 4.43	22.2 22.7 18.65 22.9 23.9 25.4 21.8 26.7 13.35 14.30 12.00 14.75 20.9 17.50 21.5

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: ASIABASE METALS INC SUITE 1723,595 BURRARD STREET VANCOUVER BC V7X 1G4

Page: 2 - B Total # Pages: 4 (A - D) Plus Appendix Pages Finalized Date: 19- AUG- 2012 Account: ASBAS

minera	12								QC	CERTIF	ICATE	OF ANA	ALYSIS	VA1	218167	73
Sample Description	Method Analyte Units LOR	ME- MS61 Ge ppm 0.05	ME- MS61 Hf ppm 0.1	ME- MS61 In ppm 0.005	ME- MS61 K % 0.01	ME- MS61 La ppm 0.5	ME-MS61 Li ppm 0.2	ME- MS61 Mg % 0.01	ME-MS61 Mn ppm 5	ME- MS61 Mo ppm 0.05	ME- MS61 Na % 0.01	ME-MS61 Nb ppm 0.1	ME- MS61 Ni ppm 0.2	ME-MS61 P ppm 10	ME- MS61 РЬ ррт 0.5	ME- MS61 Rb ppm 0.1
							STAN	IDARDS								
Ba- 101 Target Range - Lower Upper GBM908- 10	Bound Bound	0.38	4.0	0.081	2.21	60.2	10.3	1.88	848	68.1	2.27	10.6	2250	1030	2090	182.0
GBM908-10		0.31	3.7	0.083	2.06	60.4	9.7	1.79	780	69.6	2.17	11.5	2080	1000	1945	178.5
Target Range - Lower	Bound	0.18	3,2	0,064	1.86	49.0	5.5	1.59	704	57.9	2.02	9,3	2030	870	1860	153.0
upper Upper	Bound	0.40	4,1	0.092	2,29	61.0	7.2	1.97	871	70,9	2.50	11.6	2480	1090	2270	187.0
GBM908-5		0.26	5,3	0,059	3.42	105.0	12.9	0.84	469	54.4	2.52	18.1	396	1270	370	111.5
GBM908-5		0.30	5.1	0.065	3.53	118.0	13.8	0.90	502	56.0	2.64	18.8	432	1350	394	128.5
Target Range - Lower	Bound	0,18	4.3	0.052	3,15	100.5	13.5	0.76	430	49.5	2.27	16.8	376	1160	340	111.0
Upper	Bound	0.41	5.5	0.078	3,87	124,0	16.9	0.95	537	60.6	2.80	20.8	460	1450	416	135.5
GEOMS- 03		0.15	1.5	0.044	1.14	29.4	44.1	0.52	540	3.31	0.09	14.6	51.3	1120	6.4	60.2
GEOMS- 03	1975 1 1997 A	0.15	1.3	0.054	1.12	31.0	37.5	0.52	584	3.48	0.06	15.5	52.1	1140	6.4	59,1
Target Range - Lower	Bourid"	0.06	1.1	0.032	1,03	25,6	37.6	0,48	483	3.05	0.06		48.1	970	5,5	55.7
Upper	Bound	0.28	1,7	0.056	1.29	32.4	46.4	0.60	601	3.83	0.11	16.3	59.3	1210	8.2	68.3
MP-1b																
MP-1b Target Range - Lower - Upper	Bound -															
MRGeo08	Manager and the second s	0.25	3.4	0.185	3.04	35.3	30.9	1.34	551	14.95	2.00	21.0	675	1070	1030	197.0
Target Range - Lower	Bound	<0:05	2.8	0.161	2.79	36,3	30,4	1,24	506	13.65	1.76	19.3	617	910	965	187,0
Upper	Bound	0,27 ge	3.6	0.207	3.43	45,5	37,6	1.54	630	16.75	2.18	23.8	755	1140	1180	229
OGGeo08 Target Range - Lower STSD- 4 Target Range - Lower Upper	Bound Bound Bound Bound															

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: ASIABASE METALS INC SUITE 1723,595 BURRARD STREET VANCOUVER BC V7X 1G4

Page: 2 - C Total # Pages: 4 (A - D) Plus Appendix Pages Finalized Date: 19- AUG- 2012 Account: ASBAS

QC CERTIFICATE OF ANALYSIS VA12181673

Sample Description	Method Analyte Units LOR	ME- MS61 Re ppm 0.002	ME- MS61 S % 0.01	ME- MS61 Sb ppm 0.05	ME-MS61 Sc ppm 0.1	ME-MS61 Se ppm 1	ME-MS61 Sn ppm 0.2	ME- MS61 Sr ppm 0.2	ME- MS61 Ta ppm 0.05	ME- MS61 Te ppm 0.05	ME- MS61 Th ppm 0.2	ME- MS61 Ti % 0.005	ME- MS61 Tl ppm 0.02	ME-MS61 U ppm 0.1	ME- MS61 V ppm 1	ME- MS61 W ppm 0.1
							STA	NDARDS								
Ba- 101 Target Range - Lower Upper GBM908-10 Target Range - Lower Upper GBM908-5 GBM908-5 Target Range - Lower CEOMS-03 GEOMS-03 Target Range - Lower Upper MP- 1b Target Range - Lower Upper MRGe008 Target Range - Lower Upper OCGeo08 Target Range - Lower STSD- 4 Target Range - Lower Upper	Bound Bound Bound Bound Bound Bound Bound Bound Bound Bound Bound Bound Bound	<0.002 <0.002 0.006 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 0.006 0.006 0.006 0.016	0.37 0.38 0.33 0.43 0.16 0.17 0.14 0.04 0.04 0.04 0.02 0.06 0.32 0.27 0.35	1.82 1.84 1.30 1 88 0.31 0.26 0.18 0.44 18.45 20.0 15.85 21.5 4.48 4.08 5.64	16.1 19.8 17.0 21.0 7.6 8.1 7.2 9.0 13.1 12.5 12.4 15.4 13.4 11.0 13.6	3 2 4 3 4 3 4 5 2 4	3.5 3.6 2.5 3.6 4.1 4.2 3.5 4.8 2.5 2.7 2.0 3.0 4.4 3.5 4.7	NDARDS 313 295 258 316 404 435 381 466 178.0 175.0 157.5 192:5 302 272 332	0.78 0.79 0.68 0.97 1.18 1.27 1.14 1.51 1.03 0.97 0.80 1.10 1.48 1.92	0.06 0.05 0.16 0.05 0.07 <0.05 0.18 0.10 0.14 <0.05 0.24 <0.05 <0.05 0.15	18.6 18.3 16.9 21,1 39.1 36.2 35.9 14.4 6.9 6.5 6.2 8.0 18.4 19.2 23.9	0.682 0.650 0.591 0.733 0.355 0.359 0.313 0.393 0.468 0.464 0.409 0.511 0.491 0.491 0.454 0.566	1.21 1.27 1.00 1.40 0.66 0.65 0.59 0.85 1.39 1.34 0.99 1.39 1.39 1.39	2.3 2.5 2.0 2.6 4.5 4.4 4.1 5.3 3.7 3.6 3.1 4.0 5.2 5.6 7.0	147 139 123 153 58 59 52 66 113 114 104 130	3.7 3.4 2.7 3.9 4.1 4.6 3.8 5.4 20.9 21.9 19.3 26.4 5.1 4.3 6.1

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: ASIABASE METALS INC SUITE 1723,595 BURRARD STREET VANCOUVER BC V7X 1G4

Page: 2 - D Total # Pages: 4 (A - D) Plus Appendix Pages Finalized Date: 19- AUG- 2012 Account: ASBAS

Project: Gnome

Sample Description	Method Analyte Units LOR	ME- MS61 Y ppm 0.1	ME-MS61 Zn ppm 2	ME- MS61 Zr ppm 0.5	Pb- OG62 Pb % 0.001	Zn- OG62 Zn % 0.001	Ba- XRF10 Ba % 0.01				
							STANDAR	DS			
Ra- 101							11.65				
Target Range - Lower	Bound Bound										
GBM908-10		40.7	1140	143.5							
GBM908-10		41.1	1080	144.0							
Target Range - Lower	Bound	36.2	939	109.0							
Upper	Bound	44.5	1155	148,5							
GBM908-5		50.0	228	173.5							
GBM908-5	Round	45 2	207	148.0							
linner	Round	55.5	257	201							
GEOMS- 03	Bound	21.6	47	41.9							
GEOMS- 03		22.7	50	48.9							
Target Range Lower	Bound	19.8	40	44.0							
Upper	Bound	24.4	54	60.8							
MP-1b						17.45					
MP-1b					2.06	16.85					
Target Range - Lower Upper	Bound				2.02	17.25					
MRGeo08		25.5	800	112.5							
Target Range - Lower	Bound	24.3	712	92.2							
Upper	Bound	29.9	874	126.0		0.740					
OCGeo08	- 1988年1月1日日本					0.713					
Target Kange - Lower	Bound					0.000					
STSD- 4	bound					04.01	0.19				
Target Range - Lower	Bound										
Upper	Bound										
Frank Wills of Like the other Constitute as Feater	Contracts Contracts in Sec.					•					

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: ASIABASE METALS INC SUITE 1723,595 BURRARD STREET VANCOUVER BC V7X 1G4

Page: 3 - A Total # Pages: 4 (A - D) Plus Appendix Pages Finalized Date: 19- AUG- 2012 Account: ASBAS

QC CERTIFICATE OF ANALYSIS VA12181673

Sample Description	Method Analyte Units LOR	ME-MS61 Ag ppm 0.01	ME- MS61 Al % 0.01	ME- MS61 As ppm 0.2	ME- MS61 Ba ppm 10	ME-MS61 Be ppm 0.05	ME- MS61 Bi ppm 0.01	ME- MS61 Ca % 0.01	ME- MS61 Cd ppm 0.02	ME-MS61 Ce ppm 0.01	ME-MS61 Co ppm 0.1	ME-MS61 Cr ppm 1	ME-MS61 Cs ppm 0.05	ME-MS61 Cu ppm 0.2	ME- MS61 Fe % 0.01	ME- MS61 Ga ppm 0.05
							BLA	NKS								
BLANK Target Range – Lower Upper	Bound Bound															
BLANK BLANK		<0.01 <0.01	<0.01 <0.01	<0.2 <0.2	<10 <10	<0.05 <0.05	<0.01 <0.01	<0.01 <0.01	<0.02 <0.02	<0.01 0.01	<0.1 <0.1	<1 <1	<0.05 <0.05	<0.2 0.3	<0.01 <0.01	<0.05 0.06
BLANK BLANK Tardet Rande - Lower	Bound	0.01	<0.01 <0.01 <0.01	<0.2	<10 <10 <10	<0.05	<0.01 <0.01	<0.01 <0.01	0.02	0.01	<0.1	<1	<0.05	<0.2	<0.01 <0.01	<0.05 0.07 <0.05
Upper BLANK BLANK Target Range - Lower Upper	Bound Bound Bound	0,02	0.02	0.4	20	0.10	0.02	0,02	0.04	0.02	0.2	2	0,10	0.4	0.02	0.10
							DUPL	CATES								
ORIGINAL DUP Target Range - Lower Upper	Bound. Bound	2.22 2.24 2.11 2.35	10.50 9.95 9.70 10.75	276 268 268 286	1230 1180 1100 1310	0.09 0.09 <0.05 0.10	11.00 10.65 10.25 11.40	0.10 0.09 0.08 0.11	0.02 0.03 <0.02 0.04	34.9 34.8 33.1 36.6	2.3 2.4 2.1 2.6	94 89 86 97	0.54 0.52 0.45 0.61	35.4 37.6 34.5 38.5	2.85 2.73 2.64 2.94	213 218 205 226
ORIGINAL DUP Target Ränge - Lower Upper	Bound Bound	0.02 0.03 <0.01 0.04	4.38 4.13 4.03 4.48	5.4 6.3 5.4 6.3	160 160 140 180	8.25 8.15 7,74 8,66	0.05 0.05 0.04 0,06	9.47 9.34 8.92 9.89	0.02 0.03 <0.02 0.04	80.3 81.8 77.0 85.1	7.1 8.0 7.1 8.0	176 178 167 187	1.24 1.23 1.12 1.35	3.7 5.0 3.9 4.8	40.0 40.9 38.4 42.5	7.90 8.26 7.63 8.53
93655 DUP Target Range - Lower Upper	Bound Bound															
93663 DUP Target Range - Lower Upper	Bound .	22.1 21.4 20.7 22.8	7.74 7.84 7.39 8.19	10.9 11.7 10.5 12,1	860 860 790 930	0.71 0.97 0.75 0.93	0.89 0.95 0.86 0.98	4.69 4.72 4.46 4.95	109.0 108.0 103.0 114.0	45.4 41.4 41.2 45.6	9.9 10.2 9.4 10.7	23 23 21 25	0.27 0.26 0.20 0.33	2740 2880 2670 2950	4.86 4.89 4.62 5.13	18.15 18.50 17.35 19.30

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: ASIABASE METALS INC SUITE 1723,595 BURRARD STREET VANCOUVER BC V7X 1G4

Page: 3 - B Total # Pages: 4 (A - D) Plus Appendix Pages Finalized Date: 19- AUG- 2012 Account: ASBAS

QC CERTIFICATE OF ANALYSIS VA12181673

Sample Description	Method Analyte Units LOR	ME-MS61 Ge ppm 0.05	ME-MS61 Hf ppm 0.1	ME- MS61 In ppm 0.005	ME- MS61 K % 0.01	ME- MS61 La ppm 0.5	ME- MS61 Li ppm 0.2	ME- MS61 Mg % 0.01	ME- MS61 Mn ppm 5	ME- MS61 Mo ppm 0.05	ME- MS61 Na % 0.01	ME- MS61 Nb ppm 0.1	ME- MS61 Ni ppm 0.2	ME-MS61 P ppm 10	ME- MS61 Pb ppm 0.5	ME- MS61 Rb ppm 0.1
							BL	ANKS								
BLANK Target Range – Lower Upper BLANK BLANK BLANK Target Range – Lower BLANK BLANK Target Range – Lower Upper	Bound Bound Bound Bound Bound	<0.05 0.06 0.07 <0.05 <0.05 0.10	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 0.2	<0.005 <0.005 0.008 <0.005 <0.005 0.010	<0.01 <0.01 <0.01 <0.01 <0.01 0.02	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5 1,0	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 0.4	<0.01 <0.01 <0.01 <0.01 <0.01 0.02	<5 <5 <5 <5 <5 10	<0.05 <0.05 0.05 <0.05 <0.05 0.10	<0.01 <0.01 <0.01 <0.01 <0.01 0.02	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 0.2	<0.2 <0.2 0.2 0.2 <0.2 <0.2 0.4	<10 <10 <10 <10 <10 20	<0.5 <0.5 <0.5 0.9 <0.5 1.0	<0.1 <0.1 <0.1 <0.1 <0.1 0.2
A CONTRACTOR OF							DUPL	ICATES								
ORIGINAL DUP Target Range - Lower Upper	Bound Bound	0.10 0.10 <0.05 0.16	1.9 1.7 1.6 2.0	0.326 0.333 0.308 0.351	0.09 0.09 0.08 0.10	25.4 25.0 23.4 27.0	165.5 162.5 155.5 172.5	<0.01 <0.01 <0.01 0.02	7 7 <5 10	7.05 7.06 6.65 7.46	0.01 0.01 <0.01 0.02	8.6 8.6 8.1 9.1	1.0 1.0 0.8 1.3	2090 1990 1930 2150	859 819 797 881	1.1 1.1 0.9 1.3
ORIGINAL DUP Target Range - Lower Upper	Bound Bound	0.32 0.36 0.27 0.41	4.7 4.8 4.4 5.1	0.053 0.056 0.047 0.062	0.72 0.73 0.68 0.77	32.5 33.5 30.9 35.2	18.5 16.2 16.3 18.4	0.65 0.65 0.61 0.69	2910 2960 2780+ 3090	3.18 3.23 2.99 3.42	0.13 0.13 0.11 0.15	12.1 13.0 11.8 13.3	3.8 4.2 3.6 4.4	9060 9280 8700 9640	4.1 4.4 3.5 5.0	22.9 24.5 22.4 25.0
93655 DUP Target Range - Lower	Bound Bound															
93663 DUP Target Range -, Lower Upper	Bound (5) Bound (5)	0.16 0.16 0.10 0.22	1.7 1.9 1.6 2.0	0.193 0.188 0.176 0.205	0.69 0.73 0.66 0.76	21.2 19.2 18.7 21.7	2.5 3.7 2.7 3.5	1.39 1.41 1.32 1.48	1230 1240 1170 1300	4.33 4.44 4.12 4.65	1.76 1.77 1.67 1.86	14.4 15.2 14.0 15.6	9.1 8.9 8.4 9.7	850 870 810 910	>10000 >10000 9500 >10000	12.9 13.0 12.2 13.7

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: ASIABASE METALS INC SUITE 1723,595 BURRARD STREET VANCOUVER BC V7X 1G4

Page: 3 - C Total # Pages: 4 (A - D) Plus Appendix Pages Finalized Date: 19- AUG- 2012 Account: ASBAS

QC CERTIFICATE OF ANALYSIS VA12181673

Project: Gnome

Sample Description	Method Analyte Units LOR	ME- MS61 Re ppm 0.002	ME- MS61 S % 0.01	ME- MS61 Sb ppm 0.05	ME- MS61 Sc ppm 0.1	ME-MS61 Se ppm 1	ME-MS61 Sn ppm 0.2	ME- MS61 Sr ppm 0.2	ME- MS61 Ta ppm 0.05	ME- MS61 Te ppm 0.05	ME-MS61 Th ppm 0.2	ME- MS61 Ti % 0.005	ME- MS61 Tl ppm 0.02	ME-MS61 U ppm 0.1	ME- MS61 V ppm 1	ME- MS61 W ppm 0.1
							BL	ANKS								
BLANK Target Range - Lower Upper BLANK BLANK BLANK Target Range - Lower Upper BLANK BLANK Target Range - Lower	Bound - Bound - Bound - Bound -	<0.002 <0.002 <0.002 <0.002 <0.002 0.004	<0.01 <0.01 <0.01 <0.01 <0.01 0.02	<0.05 <0.05 0.08 <0.05 <0.05 0.10	<0.1 0.1 <0.1 <0.1 <0.1 0.2	<1 <1 <1 1 <1 5	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2 0.4	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2 0.4	<0.05 <0.05 <0.05 <0.05 <0.05 <0.05 0.10	<0.05 <0.05 <0.05 <0.05 <0.05 <10.05 0.10	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 0.4	<0.005 <0.005 <0.005 <0.005 <0.005 <0.005	<0.02 <0.02 <0.02 <0.02 <0.02 <0.02 0.04	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 0.2	<1 <1 <1 <1 <1 <1 2	<0.1 <0.1 <0.1 0.1 <0.1 0.2
Contraction of the second seco	bound						ופווס	ICATES								
							DUPL	ICATES								
ORIGINAL DUP Target Range - Lower Upper	Bound Bound	<0.002 <0.002 <0.002 0.004	0.80 0.77 0.74 0.83	154.5 150.5 141.0 164.0	7.4 7.6 7.0 8.0	7 6 5 8	2.5 2.5 2.2 2.8	2880 2730 2660,1 2950 1	0.84 0.81 0.73 0.92	1.79 1.84 1.67 1,96	19.1 18.6 17.7 20.0	0.444 0.419 0.405 0.458	0.27 0.29 0.24 0.32	2.2 2.2 2.0 2.4	196 191 183 204	5.4 5.0 4.7 5.7
ORIGINAL DUP Target Range - Lower Upper	Bound Bound	<0.002 <0.002 <0.002 0.004	0.03 0.04 0.02 0.05	0.14 0.17 0.09 0.22	36.3 34.7 33.6 37.4	3 4 2 5	1.2 1.2 0,9 1.5	132.0 139.5 129.04 142.5	0.57 0.58 0.50 0.65	<0.05 0.05 <0.05 0.10	36.0 32.9 32.5 36,4	0.230 0.235 0.216 0.249	0.03 0.03 <0.02 0.04	3.5 3.7 3.3 3.9	875 897 841 931	2.4 2.4 2.1 2.7
93655 DUP Target Range - Lower Upper	Bound Bound															
93663 DUP Target Range - Lower Upper	Bound Bound	<0.002 <0.002 <0.002 0.004	1.91 1.92 1.81 2.02	34.8 35.1 32.3 37.6	11.1 12.6 11.2 12.5	4 4 3 5	3.9 3.3 3.2 4.0	538 539 511 566	1.29 1.36 1.21 1.44	0.61 0.49 0.47 0.63	2.5 2.4 2.1 2.8	0.256 0.271 0.245 0.282 ²	0.12 0.11 0.09 0.14	0.9 0.8 0.7 1.0	107 114 104 117	0.8 0.8 0.6 1.0

***** See Appendix Page for comments regarding this certificate *****

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: ASIABASE METALS INC SUITE 1723,595 BURRARD STREET VANCOUVER BC V7X 1G4

Page: 3 - D Total # Pages: 4 (A - D) Plus Appendix Pages Finalized Date: 19- AUG- 2012 Account: ASBAS

Project: Gnome

Sample Description	Method Analyte Units LOR	ME-MS61 Y ppm 0.1	ME- MS61 Zn ppm 2	ME- MS61 Zr ppm 0.5	Pb- OG62 Pb % 0.001	Zn- OG62 Zn % 0.001	Ba- XRF10 Ba % 0.01	
							BLANKS	
BLANK							0.01	
Target Range - Lower	Bound Bound							
BLANK		<0.1	<2	<0.5				
BLANK		<0.1	<2	<0.5				
BLANK		<0.1	<2	<0.5				
BLANK	1200220100114120120100100104	<0.1	3	<0.5				
Target Range - Lower	Bound	<0.1	<2	<0.5	1			
BLANK	Bound	0.2	-	1.0		0.001		
BLANK					< 0.001	0.002		
Target Range - Lower	Bound				<0.001	<0.001		
Upper	Bound				0.002	0.002		
							DUPLICATES	
ORICINIAL		1.0	30	66.3				
DUP		1.0	30	62.2				
Target Range - Lower	Bound	0.9	27	60.5	£			
Upper	Bound	1.2	34	68.0	8			
ORICINAL		60.2	43	204				
DUP		60.7	44	206				
Target Range - Lower	Bound	57.3	39	194.5				
Upper	Bound	63.6	48	216				
93655							26.9	
DUP							27.0	
Target Range - Lower	Bound						26.3	
Upper	Bound 👘						27.6	
03663		17.3	>10000	67.7				
DUP		17.8	>10000	76.7				
Target Range Lower	Bound	16.6	9500	68.1	E			
Vpper	Bound	18.5	>10000	76.3				
	and a serve offering							
							and the second	

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: ASIABASE METALS INC SUITE 1723,595 BURRARD STREET VANCOUVER BC V7X 1G4

Page: 4 - A Total # Pages: 4 (A - D) Plus Appendix Pages Finalized Date: 19- AUG- 2012 Account: ASBAS

QC CERTIFICATE OF ANALYSIS VA12181673

Sample Description	Method Analyte Units LOR	ME- MS61 Ag ppm 0.01	ME- MS61 Al % 0.01	ME- MS61 As ppm 0.2	ME- MS61 Ba ppm 10	ME- MS61 Be ppm 0.05	ME- MS61 Bi ppm 0.01	ME- MS61 Ca % 0.01	ME-MS61 Cd ppm 0.02	ME- MS61 Ce ppm 0.01	ME- MS61 Co ppm 0.1	ME- MS61 Cr ppm 1	ME- MS61 Cs ppm 0.05	ME- MS61 Cu ppm 0.2	ME- MS61 Fe % 0.01	ME- MS61 Ga ppm 0.05
							DUPL	ICATES								
ORIGINAL DUP Tärget Range – Lower Upper,	Bound Bound	0.04 0.09 0.05 0.08	8.89 8.53 8.26 9.16	14.6 13.8 13.3 15.1	310 300 270 340	3.18 2.89 2.83 3.24	0.41 0.38 0.37 0.42	0.27 0.25 0.24 0.28	<0.02 <0.02 <0.02 0.04	51.7 57.8 52.0 57.5	19.0 18.0 17.5 19.5	73 69 66 76	28.7 27.8 26.8 29.7	40.5 40.3 38.2 42.6	4.70 4.49 4.36 4.83	25.4 24.6 23,7 26,3

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: ASIABASE METALS INC SUITE 1723,595 BURRARD STREET VANCOUVER BC V7X 1G4

Page: 4 - B Total # Pages: 4 (A - D) Plus Appendix Pages Finalized Date: 19- AUG- 2012 Account: ASBAS

QC CERTIFICATE OF ANALYSIS VA12181673

Sample Description	Method Analyte Units LOR	МЕ- MS61 Ge ppm 0.05	ME-MS61 Hf ppm 0.1	ME- MS61 In ppm 0.005	ME- MS61 K % 0.01	ME- MS61 La ppm 0.5	ME- MS61 Li ppm 0.2	ME- MS61 Mg % 0.01	ME-MS61 Mn ppm 5	ME- MS61 Mo ppm 0.05	ME- MS61 Na % 0.01	ME-MS61 Nb ppm 0.1	ME- MS61 Ni ppm 0.2	ME-MS61 P ppm 10	ME- MS61 Pb ppm 0.5	ME- MS61 Rb ppm 0.1
							DUPL	ICATES								
ORIGINAL DUP Target Range - Lower Upper	Bound Bound	0.25 0.15 0.14 0.26	3.3 3.0 2.9 3.4	0.074 0.074 0.065 0.083	3.07 2.88 2.82 3.13	23.7 27.0 23.6 27.1	109.0 106.5 102.0 113.5	0.68 0.65 0.62 0.71	773 730 709 794	0.28 0.27 0.21 0.34	0.22 0.21 0.19 0.24	12.7 12.1 11.7 13.1	39.9 37.7 36.7 40.9	570 550 520 600	26.0 24.0 23.3 26.8	123.5 123.5 117.0 130,0

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: ASIABASE METALS INC SUITE 1723,595 BURRARD STREET VANCOUVER BC V7X 1G4

Page: 4 - C Total # Pages: 4 (A - D) Plus Appendix Pages Finalized Date: 19- AUG- 2012 Account: ASBAS

QC CERTIFICATE OF ANALYSIS VA12181673

Method Analyte Units LOR	ME- MS61 Re ppm 0.002	ME- MS61 S % 0.01	ME-MS61 Sb ppm 0.05	ME- MS61 Sc ppm 0.1	ME- MS61 Se ppm 1	ME- MS61 Sn ppm 0.2	ME- MS61 Sr ppm 0.2	ME- MS61 Ta ppm 0.05	ME-MS61 Te ppm 0.05	ME- MS61 Th ppm 0.2	ME- MS61 Ti % 0.005	ME- MS61 Tl ppm 0.02	ME-MS61 U ppm 0.1	ME- MS61 V ppm 1	ME- MS61 W ppm 0.1
						DUPL	ICATES								
Bound Bound	<0.002 <0.002 <0.002 0.004	0.02 0.02 <0.01 0.03	0.46 0.45 0.37 0.54	18.5 17.4 17.0 18.9	1 1 <1 2	2.9 3.0 2.6 3.3	112.0 109.5 105.0 116:5	1.04 0.94 0.89 1.09	0.09 0.08 <0.05 0.10	11.0 11.2 10.3 11.9	0.410 0.387 0.374 0.423	0.87 0.80 0.75 0.92	3.8 3.5 3.4 3.9	97 92 89 100	1.9 1.8 1.6 2.1
			•												
	Method Analyte Units LOR Bound Bound	Method Analyte Units LOR -0.002 -0.002 Bound Bound - 0.002 -0.002 -0.004 -0.002 -0.004 -0.002 -0.004	Method Analyte Units LOR 8001nd Bound 2 8001nd Bound 2 8001nd 80010000000000000000000000000000000000	Method Analyte Units LOR ME- MS61 Re ME- MS61 S ME- MS61 Sb ppm 40.002 0.02 0.01 0.05 800nd Bound <0.002 0.02 0.46 <0.002 0.02 0.45 <0.002 0.02 0.45 Bound <0.002 0.03 0.54	Method Analyte Units LOR ME-MS61 Re ppm ME-MS61 S b % ME-MS61 ppm ME-MS61 Sc ppm 800001 0.002 0.02 0.46 18.5 -<0.002 0.02 0.45 17.4 -<0.002 0.02 0.45 17.4 -<0.002 -<0.01 0.37 17.0 -<0.004 0.03 0.54 18.9	Method Analyte Units LOR ME-MS61 Re ME-MS61 S ME-MS61 Sb ME-MS61 Sc ME-MS61 Se ME-MS61 Se Bound <0.002 0.01 0.05 0.1 1 Bound <0.002 0.02 0.46 18.5 1 Bound <0.002 0.02 0.46 18.5 1 Bound <0.002 0.02 0.46 18.5 1 Bound <0.002 0.02 0.45 17.4 1 Bound <0.004 0.03 0.54 18.9 2	Method Analyte Units ME-MS61 ME-MS61 ME-MS61 Se Se Se Sn ppm ppm ppm 0.2 LOR 0.002 0.01 0.05 0.1 1 0.2 Bound = -0.002 0.02 0.46 18.5 1 2.9 -0.002 0.02 0.46 18.5 1 2.9 3.0 Bound = -0.002 0.03 0.54 18.9 2 3.3	Method Analyte Units ME-MS61 Re 0.002 ME-MS61 So So 0.01 ME-MS61 So Sc So 0.01 ME-MS61 So Sc Sc So 0.01 ME-MS61 So So O.1 ME-MS61 So Sc Sc So O.1 ME-MS61 So Sc Sc Sc Sc Sc ME-MS61 Sc Sc Sc Sc ME-MS61 Sc Sc Sc Sc ME-MS61 Sc Sc Sc ME-MS61 Sc Sc <th< th=""><th>Method Analyte Units LOR ME-M361 Re 0.002 ME-M361 S S S S S S S S S S S S S S S S S S S</th><th>Method Analyte LOR ME-M361 Re 0.002 ME-M361 Sb ME-M361 Sc ME-M361 Se ME-M361 Sn ME-M361 Sr ME-M361 Ta ME-M361 Te ME-M361 Ta ME-M361 Te ME-M361 Ta ME-M361 Ta</th><th>Method Analyte Units LOR ME-M561 ME-M56</th><th>Method Analysis ME-MSG1 ME<msg1< th=""> ME ME ME ME ME ME</msg1<></msg1<></msg1<></msg1<></msg1<></msg1<></msg1<></msg1<></msg1<></msg1<></msg1<></msg1<></msg1<></msg1<></msg1<></msg1<></msg1<></msg1<></msg1<></msg1<></th><th>Method Analyse ppm Mc-MSG1 S Mc-MSG1 S</th><th>Method Analyte DOR Mc. MS61 Mc. MS61<th>Methods Analyse units units ME- MS51 s ME- MS1 s ME- MS1 s<!--</th--></th></th></th<>	Method Analyte Units LOR ME-M361 Re 0.002 ME-M361 S S S S S S S S S S S S S S S S S S S	Method Analyte LOR ME-M361 Re 0.002 ME-M361 Sb ME-M361 Sc ME-M361 Se ME-M361 Sn ME-M361 Sr ME-M361 Ta ME-M361 Te ME-M361 Ta ME-M361 Te ME-M361 Ta	Method Analyte Units LOR ME-M561 ME-M56	Method Analysis ME-MSG1 ME <msg1< th=""> ME<msg1< th=""> ME ME ME ME ME ME</msg1<></msg1<></msg1<></msg1<></msg1<></msg1<></msg1<></msg1<></msg1<></msg1<></msg1<></msg1<></msg1<></msg1<></msg1<></msg1<></msg1<></msg1<></msg1<></msg1<>	Method Analyse ppm Mc-MSG1 S	Method Analyte DOR Mc. MS61 <th>Methods Analyse units units ME- MS51 s ME- MS1 s ME- MS1 s<!--</th--></th>	Methods Analyse units units ME- MS51 s ME- MS1 s </th

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: ASIABASE METALS INC SUITE 1723,595 BURRARD STREET VANCOUVER BC V7X 1G4

Page: 4 - D Total # Pages: 4 (A - D) Plus Appendix Pages Finalized Date: 19- AUG- 2012 Account: ASBAS

Project: Gnome

Sample Description	Method Analyte Units LOR	ME- MS61 Y ppm 0.1	ME- MS61 Zn ppm 2	ME- MS61 Zr ppm 0.5	Pb- OG62 Pb % 0.001	Zn- OG62 Zn % 0.001	Ba- XRF10 Ba % 0.01				
ORIGINAL DUP Target Range - Lower Upper	Bound Bound	12.8 14.8 13.0 14.6	92 87 83 96	104.5 99.7 96.5 107.5			DUPLIC	ATES			

ALS Canada Ltd. 2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: ASIABASE METALS INC SUITE 1723,595 BURRARD STREET VANCOUVER BC V7X 1G4

Page: Appendix 1 Total # Appendix Pages: 1 Finalized Date: 19- AUG- 2012 Account: ASBAS

Project: Gnome

Method	CERTIFICATE COMMENTS
ME- MS61	REE's may not be totally soluble in this method.