The Best Place on Earth		Ry Sec
Ministry of Energy, Mines & Petroleum Resources		OGICAL 9
Mining & Minerals Division BC Geological Survey		Assessment Report Title Page and Summary
TYPE OF REPORT Iture of autrov(a) Geological Geochemical an	d Geophysical	TOTAL COST: 65,024.00
TYPE OF REPORT [type of survey(s)]: Geological, Geochemical and	u Geophysicai	TOTAL COST: 03,024.00
AUTHOR(S): Grant F. Crooker	SIGNATURE(s): Grant Crooker bit:
NOTICE OF WORK PERMIT NUMBER(S)/DATE(S):		YEAR OF WORK: 2012
STATEMENT OF WORK - CASH PAYMENTS EVENT NUMBER(S)/DATE(S	6): <u>5384734, June 30, 2</u>	012
PROPERTY NAME: Goldrop		
CLAIM NAME(S) (on which the work was done): 576841 , 576842 , 64	9883, 936940, 937098	
соммодитиеs sought: copper, gold, silver, zinc		
MINERAL INVENTORY MINFILE NUMBER(S). IF KNOWN: 092HSF124		
		1007
MINING DIVISION: Similakmeen	NTS/BCGS: 092H	1037
MINING DIVISION: Similakmeen		I037 " (at centre of work)
MINING DIVISION: <u>Similakmeen</u> LATITUDE: <u>49</u> ^o <u>20</u> <u>'00</u> "LONGITUDE: <u>120</u> DWNER(S):	NTS/BCGS: <u>092</u> Н ° <u>37</u> ' <u>30</u>	"
MINING DIVISION: <u>Similakmeen</u> LATITUDE: <u>49</u> ^o <u>20</u> <u>'00</u> "LONGITUDE: <u>120</u> DWNER(S):	NTS/BCGS: 092H	"
MINING DIVISION: <u>Similakmeen</u> LATITUDE: <u>49</u> ° <u>20</u> ' <u>00</u> "LONGITUDE: <u>120</u> DWNER(S): 1) L.W. Saleken	NTS/BCGS: <u>092</u> Н ° <u>37</u> ' <u>30</u>	"
MINING DIVISION: <u>Similakmeen</u> LATITUDE: <u>49</u> ° <u>20</u> ' <u>00</u> "LONGITUDE: <u>120</u> DWNER(S): 1) L.W. Saleken	NTS/BCGS: <u>092</u> Н ° <u>37</u> ' <u>30</u>	п
MINING DIVISION: Similakmeen LATITUDE: 49 ° 20 '00 " LONGITUDE: 120 DWNER(S): 1) L.W. Saleken MAILING ADDRESS:	NTS/BCGS: <u>092</u> Н ° <u>37</u> ' <u>30</u>	"
MINING DIVISION: Similakmeen LATITUDE: 49 ° 20 '00 " LONGITUDE: 120 DWNER(S): 1) L.W. Saleken MAILING ADDRESS: 6976 Laburnum Street Vancouver, BC, V6P 5M9	NTS/BCGS: <u>092</u> Н ° <u>37</u> ' <u>30</u>	"
OWNER(S): 1) L.W. Saleken MAILING ADDRESS: 6976 Laburnum Street	NTS/BCGS: <u>092</u> Н ° <u>37</u> ' <u>30</u>	"
MINING DIVISION: Similakmeen LATITUDE: 49 ° 20 '00 " LONGITUDE: 120 DWNER(S): 1) L.W. Saleken MAILING ADDRESS: 6976 Laburnum Street Vancouver, BC, V6P 5M9 DPERATOR(S) [who paid for the work]: 1) Goldcliff Resource Corporation MAILING ADDRESS:	NTS/BCGS: <u>092</u> H ° <u>37</u> ' <u>30</u> 2)	"
MINING DIVISION: Similakmeen LATITUDE: 49 ° 20 '00 " LONGITUDE: 120 DWNER(S): 1) L.W. Saleken MAILING ADDRESS: 6976 Laburnum Street Vancouver, BC, V6P 5M9 DPERATOR(S) [who paid for the work]: 1) Goldcliff Resource Corporation MAILING ADDRESS: 6976 Laburnum Street	NTS/BCGS: <u>092</u> H ° <u>37</u> ' <u>30</u> 2)	"
MINING DIVISION: Similakmeen LATITUDE: 49 ° 20 '00 " LONGITUDE: 120 DWNER(S): 1) L.W. Saleken MAILING ADDRESS: 6976 Laburnum Street Vancouver, BC, V6P 5M9 DPERATOR(S) [who paid for the work]: 1) Goldcliff Resource Corporation MAILING ADDRESS:	NTS/BCGS: <u>092</u> H ° <u>37</u> ' <u>30</u> 2)	п
MINING DIVISION: Similakmeen LATITUDE: 49 0 20 '00 " LONGITUDE: 120 DWNER(S): 1) L.W. Saleken	NTS/BCGS: 092H ° 37 '30 2)	" (at centre of work)
MINING DIVISION: Similakmeen LATITUDE: 49 • 20 '00 " LONGITUDE: 120 DWNER(S):	NTS/BCGS: 092H ° 37 '30 2)	" (at centre of work)
MINING DIVISION: Similakmeen LATITUDE: 49 ° 20 '00 " LONGITUDE: 120 DWNER(S): 1) L.W. Saleken MAILING ADDRESS: 6976 Laburnum Street Vancouver, BC, V6P 5M9 DPERATOR(S) [who paid for the work]: 1) Goldcliff Resource Corporation MAILING ADDRESS: 6976 Laburnum Street	NTS/BCGS: 092H ° 37 '30 2)	" (at centre of work) n, size and attitude): sts of 3 to 6 zones of calcite veining, d chalcopyrite occurring over widths of 5.79

REFERENCES TO PREVIOUS ASSESSMENT WORK AND ASSESSMENT REPORT NUMBERS: 17619, 20313, 21507, 22,680, 32268

BRITISH

TYPE OF WORK IN THIS REPORT	EXTENT OF WORK (IN METRIC UNITS)	ON WHICH CLAIMS	PROJECT COSTS APPORTIONED (incl. support)
GEOLOGICAL (scale, area)			
Ground, mapping 1:5,000, 48	0 hectares	576841, 649883, 936940, 937098	7,518.60
Photo interpretation			
GEOPHYSICAL (line-kilometres)			
Ground			
Induced Polarization			
Radiometric			
Seismic			
Other Radiolithic, 8.9 lin	e kms 57684	576842, 649883, 936940, 937098	6,666.25
Airborne			
GEOCHEMICAL (number of samples analysed for)			
Soil 180, gold 25 gram, aqu	a regia, 51 element ICPMS	576842, 649883, 936940, 937098	12,111.25
silt 43, gold 25 gram, aqua	regia, 51 element ICPMS	576842, 649883, 936940, 937098	14,853.75
Rock 54, gold 25 gram, aqua	a regia, 51 element ICPMS	576842, 649883, 936940, 937098	10,964.97
Other		576841	
Non-core			
Petrographic		-	
Mineralographic			
Metallurgic		576841	
PROSPECTING (scale, area) 1:5,000), 480 hectares	576842, 649883, 936940, 937098	8,608.35
PREPARATORY / PHYSICAL			
Line/grid (kilometres)			
Topographic/Photogrammetric (scale, area)			
Legal surveys (scale, area)			
Road, local access (kilometres)/t	rail		
Trench (metres)			
Underground dev. (metres)		576841	
Other Reconnaissance, 500	hectares	576842, 649883, 936940, 937098	4,300.83
		TOTAL COST:	65,024.00

VOLUME I (SOW 5384734)

GEOLOGICAL, GEOCHEMICAL AND GEOPHYSICAL REPORT

on the

GOLDROP PROPERTY TULAMEEN PROJECT

Similkameen Mining Division Princeton Mining District British Columbia 92H037 (49° 20' North Latitude, 120° 37' West Longitude)

for

GOLDCLIFF RESOURCE CORPORATION

6976 Laburnum Street Vancouver, BC V6P 5M9 (Owner and Operator)

BC Geological Survey Assessment Report 33514a

By

GRANT F. CROOKER, PGEO GFC CONSULTANTS INC. Box 404, 2522 Upper Bench Road Keremeos, BC V0X 1N0

DECEMBER 2012

TABLE OF CONTENTS

1.0	SUMN	IARY AND RECOMMENDATIONS	PAGE 1
2.0	2.1 2.2 2.3	DDUCTION INTRODUCTION LOCATION AND ACCESS PHYSIOGRAPHY	5 5 5 5 5 6
	2.4 2.5 2.6	PROPERTY AND CLAIM STATUS PERMITTING AND FIRST NATIONS AREA AND PROPERTY HISTORY 2.6.1 AREA HISTORY 2.6.2 TULAMEEN PROJECT HISTORY 2.6.3 GOLDROP SHOWING HISTORY	5 6 7 7 8 10
3.0	FXPI	ORATION PROCEDURE	13
3.0	3.1	GEOCHEMICAL SURVEY PARAMATERS 3.1.1 ROCK SAMPLING 3.1.2 STREAM SEDIMENT SAMPLING 3.1.3 SOIL SAMPLING	13 13 13 13
	3.2		13
	3.3 3.4	SAMPLE ANALYSIS GEOLOGICAL SURVEY	13 14
	5.4	3.4.1 GEOLOGICAL MAPPING	14
	3.5	GEOPHYSICAL SURVEY 3.5.1 RADIOLOITHIC SURVEY	14 14
4.0	GEOL	OGY AND MINERALIZATION	15
	4.1	REGIONAL GEOLOGY	15
			15
		4.1.2 TERTIARY PRINCETON GROUP 4.1.3 UPPER TRIASSIC NICOLA GROUP	15 16
		4.1.4 PERMIAN-TRIASSIC EASTGATE-WHIPSAW METAMORPHIC BELT	16
		4.1.5 INTRUSIVE ROCKS	16
		4.1.6 STRUCTURE	18
	4.0	4.1.7 MINERALIZATION	19
	4.2	GOLDROP PROPERTY GEOLOGY 4.2.1 ROCK TYPES	18 20
		4.2.2 UPPER TRIASSIC NICOLA GROUP	20
		4.2.3 LATE TRIASSIC MAFIC DIORITE	21
		4.2.4 EOCENE PRINCETON GROUP	21
	4.3	GOLDROP PROPERTY MINERALIZATION	21
		4.3.1 GOLDROP SHOWING 4.3.2 RAMSES SHOWING	21 22
		4.3.3 MURPH SHOWING	22
		4.3.4 PROSPECTING	22
5.0		CHEMISTRY	23
	5.1		23
	5.2	ANOMALOUS ELEMENT CORRELATIONS 5.2.1 ROCK SAMPLE ELEMENT CORRELATION	23 23
		5.2.2 SEDIMENT SAMPLE ELEMENT CORRELATION	23 24
		5.2.3 SOIL SAMPLE ELEMENT CORRELATION	24
	5.3	ANOMALOUS PRECIOUS AND BASE METAL GEOCHEMISTRY	24
		5.3.1 NORTHEAST WHIPSAW AREA	24
		5.3.2 NORTHWEST WHIPSAW AREA	25

6.0	GEOPHYSICS	26
	6.1 INTRODUCTION	26
	6.2 THEORY	26
	6.3 INTERPRETATION	26
	6.4 RADIOLITHIC SURVEY	27
7.0	CONCLUSIONS	28
8.0	RECOMMENDATIONS	29
9.0	REFERENCES	30
10.0	CERTIFICATE OF QUALIFICATIONS	38

LIST OF TABLES

Table 1.0	GOLDROP PROPERTY CLAIM DATA	6
Table 2.0	GOLDROP 1971 TO 1975 DRILL HOLE DATA	10
Table 3.0	GOLDROP 1988 TO 1992 DRILL HOLE DATA	10
Table 4.0	GOLDROP 1988 TO 1992 MINERALIZED DRILL INTERSECTIONS	11

LIST OF FIGURES

FIGUR	E	FOLLOWS
1.0	LOCATION MAP	5
2.0	CLAIM MAP	POCKET
3.0	REGIONAL GEOLOGY	POCKET
4.0	GEOLOGY, ROCK, SOIL AND SILT SAMPLE LOCATIONS	POCKET
4.1	ROCK SAMPLE LOCATIONS	POCKET
5.0	COMPILATION MAP	POCKET

APPENDICIES

APPENDIX I	CERTIFICATES OF ANALYSIS
APPENDIX II	ROCK SAMPLE DESCRIPTIONS
APPENDIX III	OUTCROP LOCATIONS
APPENDIX IV	STATEMENT OF WORK
APPENDIX V	COST STATEMENT

1.0 SUMMARY AND RECOMMENDATIONS

The Goldrop property is owned and operated by Goldcliff Resource Corporation and is located 200 kilometres east of Vancouver and 16 kilometres south-west of the town of Princeton, in the Princeton mining district, Similkameen Mining Division, British Columbia, Canada. The Goldrop property is part of the much larger Tulameen Project of Goldcliff Resource Corporation and is situated seven kilometres west of the Copper Mountain camp that has produced significant amounts of copper, gold and silver from alkalic porphyry ore deposits.

The Goldrop claims are beneficially 100-per cent owned by Goldcliff Resource Corporation and are operated by Goldcliff Resource Corporation. The Goldrop property consists of 5 contiguous mineral claims covering 1,284 hectares and straddles Whipsaw Creek on NTS map sheet 092H037.

Extensive mineral exploration for gold, silver, copper, platinum and coal has been carried out in the Princeton and Tulameen areas (Princeton mining district) for well over 100 years. The earliest production of gold and platinum was from the placer mines along the Tulameen and Similkameen rivers and their tributaries Granite and Whipsaw creeks.

The most significant mining property in the Princeton area is the Copper Mountain mine located approximately 15 kilometres south of Princeton and a few kilometres east of Goldcliff's Tulameen Project. Copper was first discovered at Copper Mountain in 1884 by a trapper named Jameson. However production did not begin until 1926 when the Granby Consolidated Mining, Smelting and Power Company Limited acquired the property. The Copper Mountain mine was in production from 1926 to 1996, with several periods of shutdown due to low copper prices or lack of mineable reserves. The historical production from the mine was 1.7 billion pounds of copper, 8.4 million ounces of silver and 0.62 million ounces of gold.

Copper Mountain Mining Corporation renewed exploration at the Copper Mountain mine in 2007. Core drilling commenced in January of 2007 and continued through November of 2008. In April of 2009, a NI 43-101 (Giroux Consultants Ltd) compliant resource report was issued by Copper Mountain Mining Corporation. The measured and indicated resources, based on a 0.15% copper cut-off grade, are 518.6 million tons grading 0.31% copper and containing 3.2 billion pounds of copper. Inferred resources at 0.15% copper cut-off grade are 390.7 million tons grading 0.23% copper and containing 1.8 billion pounds of copper. The Copper Mountain mine (75% Copper Mountain Mining Corporation and 25% Mitsubishi Materials Corp) mine resumed production in September of 2011 by conventional open pit mining methods with a 35,000 tonnes per day mill.

The alkalic copper-gold-silver porphyry deposits at the Copper Mountain mine are spatially and genetically associated with multiple phases of the Copper Mountain intrusions and associated structures. The ore deposits, whether in Nicola Group volcanic rocks or intrusive rocks are associated with zones of extensive and locally intense wall rock hydrothermal alteration, principally of potassic origin. The copper and silver mineralization is associated with fractures, sulphide veins and vein stock works, while the gold mineralization is associated with magnetite vein systems. The regional and local structures are the important overall mineralizing controls, the most important being the north-west (Main fault), north-east (Mine breaks) and east-west (Gully fault) structures. The majority of the ore deposits and prospects occur along, or at intersections to these structures.

The Goldrop property and larger Tulameen Project is located within the southern portion of the Intermontane Tectonic Belt of British Columbia that is Quesnel Terrane (Quesnellia). Quesnellia is a northwesterly trending belt of Upper Triassic to Lower Jurassic submarine and subaerial alkali and calc-alkali volcanic rocks, related sedimentary rocks and comagmatic intrusive rocks.

In the southern part of British Columbia, this assemblage of volcanoplutonic arc rocks is known as the Nicola Group. Throughout the Intermontane Tectonic Belt these rocks are noted for their mineral deposits, principally alkalic copper-gold-silver porphyry deposits, and copper and gold skarns. The central part of the Nicola Group between Merritt and Princeton has been subdivided into three subparallel structural belts, referred to as the Western, Central and Eastern Belts, on the basis of physical and chemical differences of the rock assemblages.

The three belts are separated by northerly trending high-angle fault systems (Preto, 1979). The Princeton area hosts the Eastern and Western belt Nicola rocks that are separated by the northerly trending high-angle Boundary fault (BF).

The Eastern Belt Nicola rocks occur east of the Boundary fault and are comprised of a lower sequence of argillite and limestone sedimentary rocks that are intercalated with volcanic rocks of the Wolfe Creek Formation. The Eastern belt Nicola Group rocks host the copper-gold alkalic porphyry deposits at Copper Mountain.

The Western belt Nicola rocks occur west of the Boundary fault and underlie the Tulameen Project area. They are the oldest rocks exposed in the Tulameen Project area and are lithologically similar to those in the Eastern Belt Nicola Group rocks. The sedimentary sequence is dominated by interbedded black argillite, grey siltstone, limestone and sandstone. The rocks show pervasive chlorite alteration, veinlets and patches of epidote, and minor amounts of disseminated pyrite and chalcopyrite. The volcanic sequence is dominated by fragmental volcanic beds of interbedded pyroxene-feldspar tuff, lapilli tuff, breccia and agglomerate. Epidote, chlorite and calcite occur as alteration minerals in clasts and matrix, and also in veins. Quartz veins are also common.

Within the south-western portion of the Tulameen Project, five stocks of mafic diorite, gabbro and pyroxenite intrude Nicola Group rocks along Whipsaw Creek. The five separate bodies are mapped along a southwest-northeast 050° trend, occur over a 10 kilometre strike length and are associated with the Whipsaw Creek fault. The stocks are Late Triassic in age and Massey's description of the Whipsaw stocks indicates that the stocks are differentiated intrusions similar to the Copper Mountain stock. The two most northerly stocks are peripheral to the Goldrop property.

The large northerly trending fault systems such as the Allison, Summers Creek, Whipsaw and Boundary, are believed to represent deep-seated crustal features which dominated the geology of the region in the Late Triassic time and caused volcanic centres to be aligned in a northerly direction, thus producing a central zone of dominantly volcanic and intrusive rocks, the Central Belt and part of the Eastern Belt, flanked to the west and east by sedimentary basins. Some of these eruptive centres can be identified with stocks or clusters of stocks of micromonzonite or microdiorite which may have associated copper-gold mineralization such as at Copper Mountain.

Goldcliff has conducted a number of exploration programs on the Tulameen Project since acquiring the claims by staking in 2008. In 2008, Goldcliff conducted a multi-sensor Resolve airborne geophysical survey (1,533 line kilometres), prospecting, and reconnaissance geochemical stream sediment (184 samples) and rock (91 samples) sampling.

In 2009, Goldcliff interpreted the airborne geophysical survey data, analyzed and interpreted the stream sediment and rock sample data, and consolidated the ARIS and Minfile data on the Tulameen Project claim area. The geological, geophysical and geochemical date compilation identified the Whipsaw, Lamont and Fifteen Mile targets as high priority for follow-up ground exploration.

The 2010 exploration program focussed on the Whipsaw, Lamont and Fifteen Mile targets and consisted of a ground radiolithic survey (163 line kilometres), geological mapping, prospecting, and reconnaissance geochemical stream sediment (114 samples) and rock sampling (147 samples).

The 2011 exploration program focussed on the Whipsaw target and consisted of line cutting (95 line kilometres), geophysical 3D induced polarization (95 line kilometres), magnetic (77 line kilometres) and ground radiolithic (134 line kilometres) surveys, geological mapping, prospecting, and reconnaissance geochemical stream sediment (152 samples), soil (189 samples) and rock (419 samples) sampling.

The 3D induced polarization survey located twelve, deeply rooted chargeability anomalies that are interpreted to be disseminated sulphide mineralization and extend from surface to depths of 500 metres. The Whipsaw target chargeability anomalies occur in Upper Triassic Nicola Group rocks that host the alkalic porphyry copper-gold orebodies in the district. The Eagle, Trojan, Nev and Raven showings occur within the Bolas chargeability anomaly.

The Goldrop portion of the Tulameen property was acquired by staking in December of 2011 by Goldcliff Resource Corporation. The Goldrop showing has not been located on surface, however, the mineralization was intersected in three drill holes that tested the showing in 1988, 1989 and 1990. The mineralization consists of three to six zones of calcite veining, pervasive carbonate alteration and weak silicification containing pyrite, sphalerite and chalcopyrite occurring over widths of 5.79 to 10.42 metres. From 20 to 70% of the intervals are mineralized, with the remaining sections barren andesite. The intersection in drill hole 88-2 from 126.48-126.98 metres (0.50 metres) gave the highest gold value of 5590 ppb, with 7.64% zinc and 0.40% copper.

The 2012 work program on the Goldrop property consisted of general reconnaissance (500 hectares), prospecting (480 hectares), geological mapping (480 hectares), rock (54 samples), stream sediment (43 samples) and soil (180 samples) geochemical sampling and ground radiolithic geophysical surveying (8.9 line kilometres).

The following conclusions can be drawn from the 2012 work program:

1.1) Prospecting resulted in the discovery of the Ramses showing where cherty tuff has been silicified and cut by grey calcite-quartz veinlets containing <1% pyrite and traces of chalcopyrite. The calcite-quartz veinlets make up about 25% of the volume of the rock and appear to strike 071° and dip 72° south. A large boulder contained the strongest silicification and calcite-quartz veining seen at the showing, and a rock sample gave a weakly anomalous silver value of 3.55 grams/tonne and a moderately anomalous copper value of 1835 ppm.

1.2) Two rock samples of diorite with silicified zones, 2 to 5% pyrite and traces of chalcopyrite were taken from the Murph showing. The samples gave weakly anomalous copper values of 431 and 560 ppm respectively.

1.3) The Goldrop showing was not located on surface during the present work program. However, previous drilling on the Goldrop showing gave gold values of up to 5.59 grams/tonne gold across 0.50 metre.

1.4) The 2012 geochemical survey consisted of high quality field-sieved roadside fluvial sediment sampling and soil sampling conducted by S. Zastavnikovich and rock sampling conducted by geologist G. Crooker and geophysicist E. Rockel. This survey produced several moderate to strong precious and base metal geochemical anomalies in the areas of the Murph and Ramses showings south of Whipsaw Creek, and the Goldrop showing North of Whipsaw Creek, all located within Nicola volcanic rocks. An extensive open-ended multi-element soil geochemical anomaly was also outlined in the Nicola sedimentary rocks north of Whipsaw Creek.

1.5) Coincidental, strong gold geochemical anomalies for outcrop samples (1201220025 and 1201270022) with up to 0.018 ppm gold and the enveloping sediment samples (1201242001, 1201242015 and 1201242017) with up to 0.012 ppm gold occur 250 to 350 metres east to south-east of the Goldrop copperzinc showing. The anomalous gold and supporting silver and base metal values in rocks and overlapping sediment samples indicate the presence of oxidizing base metal sulphides and the associated pyrite envelope at depth in the area between Trenches 1 and 2, and the Whipsaw road.

1.6) The spatial correlation between the outcrop and overlapping sediment samples east of the Goldrop showing demonstrates the capacity of the high-quality field-sieved fluvial roadside sediment sampling method to penetrate through glacial drift and reflect not only outcrop, but anomalous subcrop as well.

1.7) At the Murph and Ramses copper showings and their vicinity, anomalous gold and base metal values correlate strongly with major elements calcium and magnesium rather than as usual with iron. The indicates that the original gold-copper anomalous secondary iron oxides derived from oxidizing pyrite and base metal mineralization at depth, have been swept to surface along brecciated zones within a carbonate-Mn matrix preserved by silicification. Gold and base metal soil anomalies proximal to both the Murph and Ramses showings require investigation.

1.8) Anomalous alkali elements K, Rb, Cs plus TI, present in rock, soil and/or sediment samples variously support the radiolithic anomalies "B", "C" and "D", and indicate the presence of potassic alteration in soil

samples collected proximal to the Nicola volcanic/sedimentary contact.

1.9) Four areas with anomalous thorium/potassium ratios (labelled "A" through "D") were outlined by the radiolithic survey and are interpreted to contain potassium alteration related to mineralization. Anomaly "B" encompasses the area of the Goldrop showing, anomaly "C" encompasses the area of the Ramses showing and anomaly "D" encompasses the area of the Murph showing.

Recommendations area as follows:

-Additional geological, geochemical and geophysical surveys should be conducted over the Goldrop, Murph and Ramses showings, as well as the geochemical and geophysical anomalies outlined by this survey to define target areas for follow-up trenching and/or drilling.

Respectfully submitted,

Grant F. Crooker, PGeo Consulting Geologist December 2, 2012

2.0 INTRODUCTION

2.1 INTRODUCTION

Field work was carried out on the Goldrop property in June of 2012 by Grant F. Crooker, PGeo, geologist, Sam Zastavnikovich, PGeo, geochemist and Edwin R. Rockel, PGeo, geophysicist. The work was conducted under the direction of Leonard W. Saleken, PGeo.

The Volume I report entitled "Geological, Geochemical and Geophysical Report (SOW 5384734) on the Goldrop Property, Tulameen Project, Similkameen Mining Division, Princeton Mining District, British Columbia (92H037" dated November 2012 was prepared for Goldcliff Resource Corporation by Grant F. Crooker, PGeo. The report documents the results of the geological, geochemical and geophysical surveys on the Goldrop property.

The Volume II report entitled, "Volume II (SOW 5384734), Report on Geochemical Rock, Sediment and Soil Sampling Report Goldrop Mineral Property, Similkameen Mining Division, Tulameen-Princeton District, 92H7, November 22, 2012 for Goldcliff Resource Corporation" was prepared by S. Zastavnikovich, PGeo to document in detail the 2012 geochemical results for the Goldrop property.

The Volume III report entitled, "Volume III (SOW 5384734), Report on Ground Radiolithic Survey, Goldrop Area, Tulameen Project, NTS: 92H037, by Interpretex Resources Ltd., September 12, 2012 for Goldcliff Resource Corporation" was prepared by Edwin R, Rockel, PGeo to document in detail the 2012 ground radiolithic geophysical results for the Goldrop property.

2.2 LOCATION AND ACCESS

The Goldrop property (Figure 1.0) is located 200 kilometres east of Vancouver near Princeton, in southern British Columbia, Canada and is accessed from Princeton or Hope along Highway 3, the Crowsnest Highway. The Whipsaw Creek logging road provides the access to the property, turning west off of Highway 3 eleven kilometres south of Princeton. The Whipsaw Creek road is a good all-weather gravel road and a major access for logging in the area. A network of old and current logging roads provide access to all areas of the property.

The claims are situated in the Copper Mountain mining camp, Princeton mining district, Similkameen Mining Division (NTS 092H037) British Columbia. The geographic center of the Goldrop property is approximately 49° 20' north latitude and 120° 37' 30" west longitude.

2.3 PHYSIOGRAPHY

The Goldrop property ranges in elevation from 1,000 to 1,300 metres above sea level and consists of gentle to steep slopes. Lodgepole pine is the dominant tree species, with hybrid spruce and Douglas fir being secondary species. The area has seen two generations of logging; the first in the 1950's and 1960's consisting of selective logging of Douglas fir, yellow pine and spruce, followed by clear cutting of Lodge pole pine. Much of the area has been clear cut.

The area is at the southern boundary of the Interior Plateau and borders the Cascade Mountains to the south and west. The climate is continental to semi-arid and moderate. Winters are cold, although not extreme, with snowfalls common and heavy at times, while summers are warm and dry.

2.4 PROPERTY AND CLAIM STATUS

The Goldrop property (Figure 2.0) is located within the Similkameen Mining Division and encompasses five mineral claims (Table 1.0) covering 1,284.102 hectares within the much larger Tulameen Project claim block.

Leonard W. Saleken, Chairman, CEO and Director of Goldcliff Resource Corporation is the registered title holder of the Goldrop project mineral claims as documented on Table 1.0 and holds the claims in trust for Goldcliff Resource Corporation.

Beneficial Owner – Mineral Titles Ownership – Mineral Titles in Trust to – 100% Goldcliff Resource Corporation 100% Leonard W. Saleken (FMC#123586) 100% Goldcliff Resource Corporation

TABLE 1.0 - GOLDROP PROPERTY CLAIM DATA					
Tenure Number Owner Issue Date Good To Date Mining Division He					
576841	123586 (100%)	2008/feb/22	2015/mar/01	Similkameen	526.137
576842	123586 (100%)	2008/feb/22	2015/mar/01	Similkameen	378.985
649883	123586 (100%)	2009/oct/09	2015/mar/01	Similkameen	294.78
936940	123586 (100%)	2011/dec/09	2022/mar/01*	Similkameen	42.10
937098	123586 (100%)	2011/dec/11	2022/mar/01*	Similkameen	42.10
TOTAL 5					1,284.102

* Upon acceptance of this report

2.5 PERMITTING AND FIRST NATIONS

The Tulameen project received a Mines Act Permit (MX-4-592) and 2011 Work Approval Number (11-1620978-0720) on July 20, 2011. The permit is in effect for three years and allows for construction and modification of exploration access, mechanical trenching/test pits and surface drilling/settling ponds and sumps.

The Goldrop property falls within traditional territory used by the Upper Similkameen Indian Band and other First Nations. The Upper Similkameen Band Indian Band and Goldcliff Resource Corporation have a Memorandum of Understanding Agreement in place as of November 24, 2006 which covers all the areas currently tenured to Goldcliff in the Panorama Property near Hedley. The agreement provides for other properties acquired by Goldcliff within the traditional territory used by the Upper Similkameen Indian Band.

In summary, the Memorandum of Understanding Agreement states:

"The Upper Similkameen Indian Band ("USIB") and Goldcliff Resource Corporation ("GCN") have signed a Memorandum of Understanding Agreement ("MOU");

Covering activity within the Upper Similkameen Indian Band's traditional territory ("the Territory"), the MOU is an agreement of co-operation between the Upper Similkameen Indian Band and Goldcliff Resource Corporation;

Goldcliff Resource Corporation's Panorama Ridge Gold Project, Hedley, British Columbia ("the Project") is located within the Upper Similkameen Indian Band's Territory and Goldcliff Resource Corporation recognises the obligation to consult with the USIB on aboriginal interests in regard to the Project;

The MOU agreement provides that the Upper Similkameen Indian Band and Goldcliff Resource Corporation ("the Parties") have committed to meaningful consultation and the exchange of information in the Territory;

The Parties share a desire to develop and maintain a working relationship based on mutual respect and understanding. The Parties are committed to meaningful consultation and the exchange of information."

2.6 AREA AND PROPERTY HISTORY

2.6.1 AREA HISTORY

The area of the Similkameen and Tulameen rivers has a long history of mining, beginning with the mining of ochre at Vermillion Bluffs in prehistoric times by the Similkameen First Nations. The highly prized red ochre was traded to many other First Nations for face painting. The red ochre at Vermillion Bluffs also gave rise to the original name of Princeton, Vermillion Forks.

The first documented mining in historic times was from placer deposits along the Similkameen and Tulameen rivers and their tributary creeks in the early 1860s. Most of the early placer mining was on the Similkameen River with mixed results. It was not until 1885, that the rich placer deposits on Granite Creek were discovered by John Chance and the Tulameen area came into prominence. From 1885 to 1943, reported gold production was 41,000 ounces and platinum 11,000 ounces. By 1891, the district was recognized to be the most important producer of platinum in North America. The majority of the gold and platinum production was from 1885 through 1897.

Coal has also played a prominent roll in the history of the Princeton area, with the first coal occurrences known before the 1860s and the first reported production in 1900. The coalfields are comprised of two separate Tertiary basins referred to as Tulameen and Princeton coal basins. About 4 million tonnes of high-volatile coal were produced prior to 1961, with the production split evenly between the two basins. Rank of the coal varies from lignite to sub-bituminous.

The most recent exploration in the area was initiated by Compliance Coal Limited in the Tulameen basin in 1998. In 1999, Compliance Coal Limited tested and washed a bulk sample with favourable results. In 2002, Compliance Energy Corporation completed a feasibility study on the Basin Coal Project in the Tulameen coal basin and announced a production decision. The feasibility report classify the resource as containing 20 million tonnes measured, 60 million tonnes indicated and 160 million tonnes inferred. Coal from the deposit is classed as a high volatile thermal coal with low sulphur content. The mine operated though 2004 and is currently under care and maintenance. In 2008, Compliance Energy Corporation optioned the Basin Coal Project to Jameson Resources Limited.

The most significant mining property in the Princeton area is the Copper Mountain mine located approximately 15 kilometres south of Princeton and a few kilometres east of Goldcliff's Tulameen Project. Copper was first discovered at Copper Mountain in 1884 by a trapper named Jameson. However little work was carried out in the area until Volcanic Brown located the Sunset claim in 1892. From 1892 until 1923 exploration was carried out in many areas of the camp. During the latter stages of World War I a concentrator was built at Allenby and a rail line was built from Princeton to Allenby and thence to Copper Mountain. However, no copper was produced during this time.

In 1923 The Granby Consolidated Mining, Smelting and Power Company Limited acquired the property and reorganized the concentrator and mine plants. Production did not begin until early in 1926 and continued until 1930. The mine was shut down until 1937 when production resumed and continued until 1957 when the mine was again closed. To the end of 1957 the concentrator treated 31,547,476 tonnes of ore producing 278,116 tonnes of copper, 5,825 kilograms gold and 152,525 kilograms of silver. Most of this production was from underground operations.

Little work was carried out in the area from 1957 to 1965. However in 1966, extensive trenching and drilling was carried out by The Granby Mining Company Limited at Copper Mountain, Newmont Mining Corporation of Canada Limited on the Ingerbelle property west of the Similkameen River, and Cumont Mines Limited on its holdings near Copper Mountain. In December 1967, Newmont purchased all of the Granby holdings in the Copper Mountain area and carried out large scale exploration on both properties. By the end of 1969, one large scale zone of low grade copper mineralization was outlined at the Ingerbelle property and two zones at Copper Mountain. In June 1970 Newmont gave official notice of its intention to put the properties into production.

The property entered production by open pit methods in 1972 and was in almost continuous production until 1996. Cassiar Mining Corporation (Princeton Mining Corporation) purchased the Copper Mountain property from Newmont in June of 1988. The production rate was approximately 20,000 tonnes of ore per day with a mill head grade of 0.44% copper and recoverable gold and silver values. The Copper Mountain mine closed in November of 1996 due to low copper prices and an exhaustion of low stripping ratio ore reserves.

The Copper Mountain Mining Corporation renewed exploration at the Copper Mountain mine in 2007. Core drilling commenced in January of 2007 and continued through November of 2008. In April of 2009, a NI 43-101 (Giroux Consultants Ltd) compliant resource report was issued by Copper Mountain Mining Corporation.

The measured and indicated resources, based on a 0.15% copper cut-off grade, are 518.6 million tons grading 0.31% copper and containing 3.2 billion pounds of copper. Inferred resources at 0.15% copper cut-off grade are 390.7 million tons grading 0.23% copper and containing 1.8 billion pounds of copper. The Copper Mountain mine (75% Copper Mountain Mining Corporation and 25% Mitsubishi Materials Corp) mine resumed production in September of 2011 by conventional open pit mining methods with a 35,000 tonnes per day mill. Copper Mountain Mining Corporation recently (January 2012) gave guidance for 2012 and forecast production of 85 to 90 million pounds of copper, 25,000 to 30,000 ounces of gold, and 580,000 to 600,000 ounces of silver at a total cash cost between \$ 1.77-\$ 1.82 per pound of copper net of precious metal credits. The average ore grade for 2012 is anticipated to be 0.35% copper.

2.6.2 TULAMEEN PROJECT HISTORY

The Goldrop property is part of the much larger Tulameen Project that Goldcliff Resource Corporation acquired by staking in the Princeton area during 2008. Goldcliff is targeting alkalic copper-gold porphyry systems similar to the Copper Mountain mine. A large number of showings and prospects occur within the Tulameen Project (Figure 3.0) area including the Lamont (Nine-mile) Creek placer (Minfile 092HSE231) and Whipsaw Creek placer (Minfile 092HSE236).

The Lamont (Nine-mile) Creek placer occupies a fairly broad and open valley extending south-east from a divide separating it from Granite Creek to the west. Placer deposits were mined in this valley in the early 1900's, and are now reported to be largely exhausted (Geological Survey of Canada Summary Report 1922, page 118A).

The Whipsaw Creek placer is located on Whipsaw Creek that flows northeast for 24 kilometres into the Similkameen River, south-west of Princeton. The lower 2 kilometres of the creek cuts through a narrow steep-sided valley while the remainder flows over a broader, more open valley floor. The gravels from this creek yielded "fine scales" of gold and platinum (Geological Survey of Canada Annual Report 1887-1888, page 62A). The gravels were worked intermittently between 1887 and 1935 with total gold production estimated at 3,460 grams.

A number of copper showings are documented on the Tulameen Project, the most significant of which are the Lam (092HSE135), Wilmac (092HSE042 and the Nev (092HSE112. For a complete description of these showings please refer to the January 31, 2011 report entitled "Volume I, (SOW 4799455), Compilation Exploration Report on the Tulameen Project Property, Princeton Mining District, Similkameen Mining Division, 92HSE for Goldcliff Resource Corporation" by Mr. Leonard W. Saleken, P.Geo (assessment report 32,268).

Goldcliff has conducted a number of exploration programs on the Tulameen Project since acquiring the claims by staking in 2008. In 2008, Goldcliff conducted a multi-sensor Resolve airborne geophysical survey (1,533 line kilometres), prospecting, and reconnaissance geochemical stream sediment (184 samples) and rock (91 samples) sampling.

In 2009, Goldcliff interpreted the airborne geophysical survey data, analyzed and interpreted the stream sediment and rock samples, and consolidated the ARIS and MinFile data on the Tulameen Project claim area. The geological, geophysical and geochemical date compilation identified the Whipsaw, Lamont and Fifteen Mile targets as high priority for follow-up ground exploration.

The 2010 exploration program focussed on the Whipsaw, Lamont and Fifteen Mile targets and consisted of a ground radiolithic survey (163 line kilometres), geological mapping, prospecting, and reconnaissance geochemical stream sediment (114 samples) and rock sampling (147 samples).

The 2011 exploration program focussed on the Whipsaw target and consisted of line cutting (95 line kilometres), geophysical 3D induced polarization (95 line kilometres), magnetic (77 line kilometres) and ground radiolithic (134 line kilometres) surveys, geological mapping, prospecting, and reconnaissance geochemical stream sediment (152 samples), soil (189 samples) and rock (419 samples) sampling.

The 3D induced polarization survey located twelve, deeply rooted chargeability anomalies that are interpreted to be disseminated sulphide mineralization and extend from surface to depths of 500 metres. The Whipsaw

target chargeability anomalies occur in Upper Triassic Nicola Group rocks that host the alkalic porphyry copper-gold orebodies in the district. The Eagle, Trojan, Nev and Raven showings occur within the Bolas chargeability anomaly.

The Eagle showing is located on a prominent knoll at the end of an old mining road. Two bulldozer trenches approximately 75 metres long criss-cross the knoll, and a coarse grained, green gabbro is intermittently exposed in the trenches. Weak fractures within the gabbro contain limonite and 1 to 3% pyrite, along with rare 1 centimetre quartz-carbonate and epidote veinlets with pyrite. Disseminated pyrite was noted adjacent to some fractures. Malachite and chalcopyrite were rare, with one sample (1201120040) of gabbro float with limonite, malachite and chalcopyrite occurring along fractures giving an anomalous copper value of 1753 ppm.

The Trojan showing is located 350 metres west of the Eagle showing along a reclaimed logging road. Coarse grained, green gabbro float was found over a strike length of 110 metres along the road, with variable quartz-carbonate veining, epidote and fracturing. Malachite and chalcopyrite were found within the gabbro at a number of locations along the road, occurring within quartz veinlets, along fractures, and more rarely as disseminations. Pyrite was relatively rare, generally occurring in concentrations of < 1%.

Rock samples of float collected along the road gave anomalous copper values ranging from 192 to 6549 ppm. The highest copper value of 6549 ppm (1201120033) was of gabbro with limonite, malachite and chalcopyrite occurring along fractures, along with pin pricks of disseminated chalcopyrite and malachite. This sample was also strongly magnetic, with magnetite occurring as fine grained disseminations and blebs. A second sample (1201120034) of gabbro with malachite occurring along fractures gave a copper value of 4727 ppm, while a sample (1201120029) of a 6 centimetre wide quartz vein with malachite and chalcopyrite gave a copper value of 3970 ppm.

A float sample (1201120041) of a light grey-green dyke located midway between the Eagle and Trojan showings gave an anomalous copper value of 527 ppm. The dyke contains 5% fine grained disseminated pyrite along with rusty fractures.

The Nev showing is located above an old mining road in green, foliated chloritic schist of the Nicola Group. Weak rusty fractures and quartz-carbonate veinlets with traces of chalcopyrite and malachite cut the schist. Traces of fine grained chalcopyrite also occur sporadically within the schist, and pyrite is rare. Rock samples collected from the showing gave weakly anomalous copper values ranging up to 173 ppm.

A second showing is located approximately 80 metres north-west of the Nev showing along a new logging road. Narrow quartz veinlets with traces of chalcopyrite occur within green, foliated chloritic schist. One to two millimetre wide pyrite cubes occur within the quartz veinlets and adjacent schist, generally in concentrations of < %. Rock samples collected from the showing gave weakly anomalous copper values ranging up to 231 ppm.

The Raven showing is located along an old mining road and associated trench. Outcrop is poorly exposed, with light to dark grey dykes intruding black argillite and limestone of the Nicola Group. Fe-carbonate-silica alteration is extensive and consists of an orange, strongly oxidized rind on the weathered surfaces, with a fresh, unaltered core. A weak stockwork of quartz-carbonate veinlets with traces of pyrite cut the rocks. Disseminated pyrite occurs in concentrations of 1 to 2%, mainly as 1 to 3 mm cubes. Rock samples collected from the showing gave weakly anomalous copper values ranging up to 132 ppm. Arsenic values were elevated, in the 25 ppm range, with one sample (1201120045) giving a weakly anomalous gold value of 165 ppb.

A second area of strong Fe-carbonate-silica alteration occurs as float 130 metres south-east of the Raven showing along a skid trail. The Fe-carbonate-silica alteration again consists of an orange, strongly oxidized rind on the weathered surfaces, with a fresh, unaltered core. A weak stockwork of quartz-carbonate veinlets with traces of pyrite cut the rocks. The rock is variably silicified, with green fuchsite and 2 to 4% disseminated pyrite, mainly as 1 to 3 mm cubes. Rock samples of the float gave weakly anomalous copper values ranging up to 131 ppm. Arsenic values were elevated, ranging from 51 to 65 ppm.

2.6.3 GOLDROP SHOWING (092HSE124) HISTORY

Little is known of the early history of the Goldrop property, although a caved adit and a number of old hand trenches are reported to date to the early 1900's. The first recorded work in the area was by the Huff brothers of Princeton in the 1970's. The British Columbia Department of Mines and Petroleum Resources Geology, Exploration and Mining in British Columbia for the years 1971 through 1975 describe trenching and drilling on the Goldrop property. Twelve drill holes (AQ) totalling 664.26 metres tested the Goldrop property (Table 2.0). Little is known of this work, but anomalous gold, copper and zinc values were reported from the drilling (M. Shewchuck, personal communication 1988). There is evidence of drilling (water line and drill cuttings) at Trenches 1 and 3 (Figure 4.0), and most of the drilling is believed to have been carried out at Trench 1 (M. Shewchuk, personal communication 1988), the presumed location of the Goldrop showing. The 2012 work program was unable to locate the Goldrop showing on surface.

TABLE 2.0 – GOLDROP 1971 TO 1975 DRILL HOLE DATA					
Location Year Number Of Drill Holes Metres Drilled					
GOLDROP SHOWING 1971 2		11.58			
GOLDROP SHOWING 1974		6	487.68		
GOLDROP SHOWING 1975 4		165.00			
Total 664.26					

Geology, Exploration and Mining in British Columbia for 1973 and 1974 also list the Goldrop property as having produced 345 tonnes of ore yielding 44,881 grams (1,443 ounces) of silver, 4,448 grams (143 ounces) of gold, 937 kilograms (2,066 pounds) of lead, 345 kilograms (761 pounds) of zinc and 24 kilograms (52 pounds) of copper. The writer has found no evidence of this ore being produced from the area of the Goldrop showing, and believes the ore probably was produced from the Silvertip property further west up Whipsaw Creek and also controlled by the Huff brothers.

The next documented exploration on the Goldrop property was by R. Huff of Princeton and M. Shewchuk of Keremeos from 1988 through 1992. The work mainly consisted of diamond drilling, with a limited amount of soil geochemical sampling and VLF electromagnetic surveying. The approximate drill hole locations are illustrated on Figure 4.0 and the drill hole data is summarized in Table 3.0.

	TABLE 3.0 – GOLDROP 1988 TO 1992 DRILL HOLE DATA					
Drill Hole	UTM East	UTM North	Azimuth °	Inclination °	Elevation m asl	Depth m
88-1	672185	5467036	000	-70	1049	115.24
88-2	672262	5467205	005	-59	1123	157.01
89-1	672280	5467209	019	-51	1124	148.17
90-1	672247	5467199	000	-70	1123	160.67
92-1	671599	5466050	083	-65	1108	82.31
92-2	671602	5466047	090	-51	1108	57.92
92-3	671622	5466065	180	-52	1106	36.89
	Total					

Seven drill holes (BQ) totalling 785.21 metres tested various areas of the Goldrop property. The significant drill intersections are summarized in Table 4.0.

TABLE 4.0 – GOLDROP 1988 TO 1992 MINERALIZED DRILL INTERSECTIONS					
Drill Hole	Intersection From – To m	Width m	Gold ppb	Zinc %	Copper %
88-1	74.85-75.46	0.61	1225	1.37	0.09
88-2	121.62-122.12	0.50	365	9.12	0.25
88-2	122.83-123.43	0.60	445	8.51	0.25
88-2	126.48-126.98	0.50	5590	7.64	0.40
89-1	104.27-105.18	0.91	40	0.06	0.02
89-1	105.18-105.79	0.61	45	0.62	0.04
89-1	107.62-108.23	0.61	150	8.85	0.40
89-1	108.23-110.06	1.83	145	8.00	0.77
90-1	93.60-94.21	0.61	65	0.82	0.51
90-1	130.23-130.83	0.60	30	0.01	0.01
90-1	131.80-132.30	0.50	50	0.03	0.01
90-1	133.03-134.76	1.73	75	0.36	0.02
90-1	137.80-138.60	0.80	20	3.19	0.13
90-1	138.92-140.65	1.73	40	0.27	0.03
92-1	19.24-20.93	1.69	< 30	-	0.18
92-1	21.32-21.84	0.52	< 30	-	0.20
92-1	31.20-31.46	0.26	< 30	-	0.06
92-1	6.70-7.80	1.10	< 30	-	0.25
92-1	18.59-19.52	0.93	< 30	-	0.05
92-2	19.79-20.35	0.56	< 30	-	0.11
92-2	28.30-29.18	0.88	< 30	-	0.06
92-2	29.18-30.18	1.00	< 30	-	0.05
92-3	15.85-17.07	1.22	< 30	-	0.22
92-3	31.09-32.08	0.99	< 30	-	0.04

Drill hole 88-1 was drilled for assessment purposes during the winter and due to heavy snowfall was collared near the Whipsaw road rather than at the Goldrop showing. It did however intersect one zone of calcite veining and carbonate alteration that gave 1255 ppb gold and 1.37% zinc across 0.61 metres.

Drill hole 88-2 was collared at the Goldrop showing and intersected three zones of calcite veining, pervasive carbonate alteration and weak silicification between 121.62 and 126.98 metres. The mineralized zones vary from 0.50 to 0.60 metres in width, and pyrite, sphalerite and minor chalcopyrite occur within them. Generally barren andesite occurs between the three mineralized zones. Zinc values ranged from 7.64 to 9.12%, copper from 0.25 to 0.40% and the interval from 126.48 to 126.98 gave a strongly anomalous gold value of 5.59 grams per tonne.

Drill hole 89-1 was also collared at the Goldrop showing and intersected the carbonate altered zone found in drill hole 88-1 between 104.27 and 110.06 metres. The mineralization in 89-1 consists of two zones 1.52 and 2.44 metres wide with barren andesite between them. The mineralized zones contain pyrite, sphalerite, minor chalcopyrite and traces of mariposite. Zinc values ranged from 0.06% to 8.85%, copper from 0.02 to 0.77% and gold from 40 to 145 ppb.

Drill hole 90-1 was also collared at the Goldrop showing and intersected the carbonate altered zone found in drill holes 88-2 and 89-1 between 130.23 and 140.65 metres. The mineralization in 90-1 consists of five zones varying in width from 0.50 to 1.73 metres with barren andesite between them. The mineralized zones contain pyrite, sphalerite and minor chalcopyrite, although in lower concentrations than in the previous two drill holes. Zinc values ranged from 0.01 to 3.19%, copper from 0.01 to 0.03% and gold from 20 to 75 ppb.

Drill holes 92-1 to 92-3 were drilled south of Whipsaw Creek to test weakly fractured and silicified diorite of the Copper Mountain intrusions containing up to 25% pyrite and traces of chalcopyrite (Murph showing). A number of narrow zones (0.26-1.22 metres wide) of fracturing and weak silicification with pyrite and traces of chalcopyrite were intersected by the drilling. Copper values ranged from 0.04 to 0.25%, with gold less than 30 ppb.

3.0 EXPLORATION PROCEDURE

3.1 GEOCHEMICAL SURVEY PARAMATERS

- 3.1.1 Rock Sampling
 - -54 rock samples collected -54 rock samples sent for analysis -rock, chip and float samples taken -GPS coordinates taken for each sample -sample location marked with sample number on flagging
- 3.1.2 Stream Sediment Sampling
 -43 stream sediment samples collected
 -43 stream sediment samples sent for analysis
 -samples collected primarily from inactive drainages
 -samples field sieved
 -GPS coordinates taken for each sample
 -sample location marked with sample number on flagging
- 3.1.3 Soil Sampling
 - -180 soil samples collected
 - -180 soil samples sent for analysis
 - -survey sample spacing 25 and 50 metres
 - -soil sample depth 10 to 20 centimetres
 - -samples taken from brown B horizon
 - -GPS coordinates taken for each sample
 - -sample locations marked with sample number on flagging

The rock sample locations are illustrated on Figure 4.10, the Certificates of Analysis are listed in Appendix I and the rock sample descriptions listed in Appendix II. The Volume II report documents the geochemical analytical and interpretation of the results for the rock, stream sediment soil sampling.

3.2 ROCK SAMPLING METHODS

Float, select, grab and chip rock samples were collected from the Goldrop property during the course of the 2012 work program. Float samples are samples not taken from a specific outcrop and with an unknown source. Select samples consist of a sample of the most highly mineralized rock from a mineralized zone and are not representative of the mineralized zone as a whole. Grab samples consist of a sample of rock taken from a specific outcrop but not in a systematic manner. Chip samples consist of a series of rock chips taken across a predetermined width at uniformly distributed intervals, with the width of each sample determined by variations in geology, alteration and degree of mineralization.

3.3 SAMPLE ANALYSIS

The rock, stream sediment and soil samples were sent to ALS Minerals, 2953 Shuswap Road, Kamloops, BC, V2H 1S9 for sample preparation. The pulps were then sent to ALS Minerals, 2103 Dollarton Highway, North Vancouver, BC, V7H 0A7 for analysis. Laboratory technique for the rock samples consisted of fine crushing to 70% passing <2 mm, splitting off a 250 gram sample and pulverizing to better than 85% passing 75 microns. Laboratory technique for the stream sediment and soil samples consisted of sieving to -180 microns (80 mesh). All the samples were then analyzed for gold (25 gram sample, aqua regia digestion, ICP-MS finish, results in ppm) and 51 element ICP-MS (aqua regia digestion).

ALS Minerals is accredited to ISO/IEC 17025-2005 standards.

3.4 GEOLOGICAL SURVEY

3.4.1 Geological Mapping -480 hectares geological mapping -scale 1:5,000 -480 hectares prospecting

The outcrop locations are illustrated on Figure 4.0 and the locations listed in Appendix III.

3.5 GEOPHYSICAL SURVEY

3.5.1 Radiolithic Survey

 -8.9 line kilometres
 -conducted with ATV
 -detects potassium alteration by gamma ray spectroscopy

The Volume III report documents the ground gamma ray spectrometer survey in detail, while Figure 5.0 of this report illustrates the anomalous potassium/thorium ratios.

4.0 GEOLOGY AND MINERALIZATION

4.1 REGIONAL GEOLOGY

4.1.1 INTRODUCTION

The Princeton mining district is located within the southern portion of the Quesnel Terrane, or Quesnellia, of the Intermontane Tectonic Belt of British Columbia. Quesnellia is a northerly trending, Mesozoic tectonostratigraphic terrane, 40 to 50 kilometres wide and traceable from the 49th parallel along the full length of the Intermontane Belt into northern British Columbia and Yukon. Quesnellia consists of Upper Triassic to Lower Jurassic submarine and subaerial alkali and calc-alkali volcanic rocks (Figure 3.0) and related sedimentary rocks that have been intruded by comagmatic Triassic-Jurassic intrusive rocks ranging in composition from monzonite, syenite, diorite, tonalite, gabbro to dunite and pyroxenite. The older units are overlain by Tertiary sedimentary and volcanic units. Bedrock is poorly exposed in many places due to an extensive cover of Quaternary unconsolidated deposits.

The geology of the region has been reported by Camsell (1912), Downing (1915), Dolmage (1929), Rice (1947), Shaw (1952), Montgomery (1967), Preto (1972), Hills (1962), McMechan (1983), Monger (1989), Read (2000), Preto-Nixon (2004) and Massey et al (2008/2009).

The focus of exploration in the Princeton area at this time is alkalic copper-gold-silver porphyry deposits such as Copper Mountain Mining Corporation's Copper Mountain mine. There are however, numerous metallic mineral occurrences in the region containing copper, gold, silver, molybdenum, lead and zinc. Historically, the first economic mineral deposits were the gold-platinum placers mined in the late 1800s along the Tulameen River and Granite Creek. Coal was also an economically significant commodity, mainly from the 1920's through to the 1950's.

The Goldrop property is a small part of the larger Tulameen Project of Goldcliff Resource Corporation and the geology of the Goldrop property will be discussed as part of the Tulameen Project.

4.1.2 TERTIARY PRINCETON GROUP

Throughout Quesnellia, in the Interior Plateau region of southern British Columbia, there are numerous exposures of Tertiary rocks. They occur in isolated structural basins, fault troughs, and pre-existing topographic depressions overlying Quesnellia rocks. The bulk of these Tertiary rocks are volcanic in origin. Relatively thick sequences of coal-bearing sedimentary rocks, mainly of fluvial and lacustrine origin, are interbedded with these broadly lenticular flows and pyroclastic sheets in the basins.

The Tulameen Project area contains Early to Middle Eocene Princeton Group sedimentary and volcanic rocks that are localized in the Princeton basin. On the Tulameen project, the most southern portion of the overall Princeton Group is dissected by a northerly trending structure. To the west, the Princeton basin consists of the older Cedar Formation volcanic rocks and younger Allenby Formation sedimentary and volcanic rocks. To the southeast, the Princeton basin consists of the younger Allenby Formation sedimentary and volcanic rocks.

The geology of the Princeton Group related to the Tulameen Project claims is quoted from Peter B. Read "Geology and Industrial Minerals of the Tertiary Basins, South-Central British Columbia, GeoFile 2000-03". The Read geology map is page 1 and geological cross-sections are page 2 in Open File 1987-19. The Princeton Group on the Tulameen property claims is contained in the Princeton and Sunday basins. Read's description of the Tertiary Princeton Group is quoted as follows:

"The Princeton basin NTS 92H17 to 10) is a northerly trending trough filled with Eocene volcanic rocks of intermediate composition composing the Cedar Formation, and an overlying mid-Eocene sedimentary sequence comprising the Allenby Formation. Basaltic andesite flows clearly overlie the Allenby Formation only at the north end of the basin. The basin contains up to 1370 metres of volcanic rocks overlain by 1600 to 2100 metres of sandstone, tuffaceous sandstone, shale, waterlain rhyolite tephra and coal (McMechan, 1983). In contrast, to the south, Sunday contains at least 1500 metres of volcanic rocks overlain by 320 metres of volcanic conglomerate, sandstone and zeolitized rhyolite tephra of the Allenby Formation.

To the west of the Princeton basin lies the Tulameen basin. It contains 1300 metres of Eocene volcanic and sedimentary rocks that overlie the Upper Triassic Nicola Group and underlie two remnants of the Miocene Chilcotin Group (Church and Brasnet, 1983). Up to 500 metres of grey, sparsely porphyritic hornblende dacite flows, and locally rhyodacite to rhyolite flows and waterlain tuffs of the Cedar Formation underlie a 790-metre thickness of sedimentary rocks of the Allenby Formation.

Geological data from Shaw (1952a, 1952b), Preto (1972, 1979), McMechan (1983) and numerous coal assessment reports have been used extensively in the preparation of the geological map (OF 1987-19, Read).

4.1.3 UPPER TRIASSIC NICOLA GROUP

The Quesnellia assemblage, in the southern part of the Province, consists of volcanocplutonic arc rocks known as the Upper Triassic Nicola Group. In northern British Columbia and Yukon these rocks are known as the Takla and Stuhini volcanocplutonic assemblages. Throughout the Intermontane Tectonic Belt these rocks are noted for their mineral deposits, principally alkalic copper-gold porphyry deposits, and copper and gold skarns.

The Nicola Group between Merritt and Princeton has been subdivided into three subparallel structural belts, referred to as the Western, Central and Eastern belts. The three belts are separated by northerly trending high-angle fault systems (Preto, 1979). The Princeton area hosts the Eastern and Western belt Nicola rocks that are separated by the northerly trending high-angle Boundary fault (BF).

The Eastern Belt Nicola rocks occur east of the Boundary fault and are comprised of a lower sequence of argillite and limestone sedimentary rocks that are intercalated with volcanic rocks of the Wolfe Creek Formation. The Eastern Belt Nicola Group rocks host the copper-gold alkalic porphyry deposits at Copper Mountain.

The Western Belt Nicola rocks occur west of the Boundary fault and underlie the Tulameen Project area. They are the oldest rocks exposed in the Tulameen Project area and are lithologically similar to those in the Eastern Belt Nicola Group rocks. In the Tulameen Project claim area the sedimentary sequence is dominated by interbedded black argillite, grey siltstone, limestone and sandstone. The rocks show pervasive chlorite alteration, veinlets and patches of epidote, and minor amounts of disseminated pyrite and chalcopyrite. The volcanic sequence is dominated by fragmental volcanic beds of interbedded pyroxene-feldspar tuff, lapilli tuff, breccia and agglomerate. Epidote, chlorite and calcite occur as alteration minerals in clasts and matrix, and also in veins. Quartz veins are also common.

4.1.4 PERMIAN-TRIASSIC EASTGATE-WHIPSAW METAMORPHIC BELT

Rocks of the Eastgate-Whipsaw metamorphic belt occur west of the Tulameen Project and are quite distinct from those of the Nicola Group. The rocks are divided into three northwest-trending lithological assemblages that show increasing metamorphic grade from greenschist in the east to amphibolite in the west. Foliation and bedding dip to the west. Faulting is significant. The three lithological assemblages are the amphibolite western unit, the central quartzite-biotite-quartz schist unit and the mixed metavolcanic-metasedimentary schist units along the eastern margin of the metamorphic belt. The rocks host mineral occurrences of copper, gold, silver, molybdenum, lead and zinc that are associated with the Whipsaw porphyry camp.

4.1.5 INTRUSIVE ROCKS

Several intrusive complexes occur within and peripheral to the Tulameen Project claim area. These include the Late Triassic Tulameen ultramafic-mafic complex, Late Triassic-Early Jurassic Copper Mountain diorite stock, Triassic Whipsaw stocks, Triassic Rice stocks, Middle-Late Jurassic Eagle pluton and Tertiary Whipsaw porphyry.

COPPER MOUNTAIN STOCK

The Copper Mountain stock is proximal to the Tulameen Project and is spatially and genetically associated with the copper-gold ore deposits at Copper Mountain and Ingerbelle. The Copper Mountain stock is a concentrically zoned, differentiated intrusion that includes four main phases grading from an outer mafic diorite through monzonite into a syenite core. These bodies intrude and cause hornfels alteration of the Eastern Belt Nicola Group rocks. The Copper Mountain diorite has a high magnetic susceptibility and environment. Epidote and chlorite veinlets, some with potassic alteration halos, are pervasive throughout the diorite. Coarse biotite-olivine pyroxenite is associated with the diorite in the lower reaches of Friday Creek and biotite is associated with pink K-feldspar veins and alteration patches.

WHIPSAW STOCKS

Within the south-western portion of the Tulameen Project, five stocks of mafic diorite, gabbro and pyroxenite intrude Nicola Group rocks along Whipsaw Creek. The five separate bodies are mapped along a southwest-northeast 050° trend, occur over a 10 kilometre strike length and are associated with the Whipsaw Creek fault. The stocks are Late Triassic in age and Massey's description of the Whipsaw stocks indicates that the stocks are differentiated intrusions similar to the Copper Mountain stock. The mineral occurrences related to the stocks are Mazie (092HSE081 Pd, Zn), Nev (092HSE112 Cu) and Goldrop (092HSE0124 Cu, Pb, Au, Ag). The most northerly two of the stocks outcrop peripheral to the Goldrop property.

Massey et al (Geological Fieldwork 2008, Paper 2008-1) describe the Whipsaw Stocks as follows:

The diorite is fine to medium grained and has typical grey salt-and-pepper fresh surfaces with brown or brick red to grey weathered surfaces. It is composed primarily of white feldspar and greenish black hornblende. Minor minerals include rare euhedral biotite flakes, pyroxene or quartz. The pyroxenite is dark green to black on fresh surfaces and weathers dark grey. It is coarse grained with crystals ranging from 1 to 3 centimetres in diameter. Pyroxene constitutes 80 to 90% of the rock, the rest being chlorite, magnetite and minor feldspar. Epidote-chlorite veinlets are common; serpentinite and calcite alteration is rare. The pyroxenite outcrops separately from but close to the diorite. Contacts are rarely seen but suggest that the diorite is intrusive into the pyroxenite.

RICE STOCKS

In the north-western part The Tulameen Project, several smaller stocks of diorite-gabbro and pyroxenite have been identified. The stocks intrude Upper Triassic Nicola Group rocks and may be related to the Tulameen complex or to the Late Triassic Copper Mountain intrusions (Massey et al). The Lam (092HSE135-Cu), Wilmac (092HSE042-Cu), GD (092HSE134-Au, Cu, Ag) and Finlay (Au) showings are associated with the various stocks.

The Rice stock as originally described by Rice (Memoir 243) is located at the Findlay gold showing (671135E, 5479310N). The rock is medium grey to green, coarse grained and equigranular to slightly porphyritic gabbro or diorite. Feldspar laths are white to apple green; minor pink K-feldspar forms small interstitial crystals.

Another coarse-grained, layered pyroxenite-gabbro-diorite occurs in an isolated outcrop 2 km south of the main Rice stock near Bromley Creek. Pyroxenite is dark green to black on fresh surfaces, weathers dark grey and contains crystals of white feldspar and magnetite. About a kilometre west of this outcrop, a diorite stock has been identified. The GD showing (Au, Cu, and Ag) is about 5 km to the west of the Findlay gold occurrence. The rock is similarly coarse-grained diorite with white to pale green plagioclase feldspar and minor pink K-feldspar.

TULAMEEN ULTRAMAFIC-MAFIC COMPLEX

In north-west corner of the Tulameen Project, the Late Triassic Tulameen ultramafic-mafic Alaskan-type complex is situated. The complex is comprised of dunite, gabbro, diorite and monzonite rocks and is host to gold, platinum, palladium, iron and chrome mineralization.

EAGLE PLUTONIC COMPLEX

The Jurassic-Cretaceous Eagle Plutonic Complex lies mostly outside and along the western margin of the Tulameen Project. The biotite-granodiorite is a syntectonic intrusion with varying texture and fabrics. The Eagle Plutonic Complex has no economic significance to the Princeton mining district.

TERTIARY PORPHYRY STOCK

The Whipsaw porphyry stock is located in the Whipsaw camp, southwest of the Tulameen Project. It is considered an important mineralizing intrusion within the Princeton mining district, to the Copper Mountain camp and the related Copper Mountain copper mineral trend.

The Whipsaw camp is located at the southwest end of the Copper Mountain trend and the Copper Mountain orebodies are situated to the north-east. The Whipsaw target area containing the Nev-092HSE112 (Cu) showings is centred along the Copper Mountain trend. The Copper Mountain trend is interpreted to be 15 kilometres in length and 6 kilometres in width.

The Whipsaw porphyry forms a small stock and associated dikes in the Forty-five Mile Creek area, north of Whipsaw Creek. The stock is a grey to pink porphyry with abundant white to pink feldspar laths and rounded quartz crystals. Hornblende and biotite phenocrysts are tabular, greenish black and often altered to epidote. Disseminated sulphides and malachite are observed in some outcrops. The age of the Whipsaw porphyry is unknown. It intrudes the Eagle plutonic complex and may be correlated with porphyries of the Late Cretaceous Otter Lake suite. Alternatively, it may be comagmatic with the Princeton Group (Massey et al). If the Whipsaw porphyry stock is comagmatic with the Princeton Group, it can be correlated to the Tertiary Coryell intrusions located east of the Princeton mining district. The Tertiary Coryell intrusions are associated with gold deposits in the mining districts of the Okanagan (Church, 1973), Boundary (Massey, 2007) and Kootenay (Hoy, 2010)

The intrusive complexes that occur in the Princeton mining district are the Tulameen ultramafic-mafic complex and Late Triassic diorite intrusions related to Copper Mountain and Rice stocks. The Triassic Tulameen complex rocks are gabbro and dunite and host mineral occurrences of platinum, palladium, copper, chrome and iron. The Late Triassic diorite intrusions related to Copper Mountain and Rice stocks host alkalic porphyry deposits and mineral occurrences of copper, gold and silver.

In the Eastern Belt Nicola Group, the Late Triassic Copper Mountain stock of diorites and their equivalents are related to the copper-gold-silver orebodies and regional mineralization. In the Western Belt Nicola Group rocks, the Late Triassic diorite intrusions are related to copper-gold-silver showings. Several stocks of diorite and pyroxenite intruded Western Belt Nicola Group rocks on the Tulameen Property and are associated with copper and gold mineralization.

The Whipsaw and Rice stocks are diorite and pyroxenite intrusive rock associated with copper and gold mineralization. The Tertiary Whipsaw porphyry (Whipsaw camp) is associated with disseminated sulphides, malachite and molybdenum. The Jurassic-Cretaceous Eagle Plutonic Complex intrudes the Eastgate-Whipsaw metamorphic belt rocks and is not associated with economic mineralization.

4.1.6 STRUCTURE

The large northerly trending fault systems such as the Allison, Summers Creek and Boundary (BF), are deepseated crustal features which dominated the geology of the region in the Late Triassic time and caused volcanic centres to be aligned in a northerly direction. A central area of dominantly volcanic and intrusive rocks was established that flanked the Eastern and Western belts. These eruptive centres are geologically identified with stocks or clusters of stocks of gabbro, diorite and monzonite which are associated copper-gold mineralization such as at Copper Mountain.

The structural setting in the Princeton mining district is complex and poorly documented due to lack of outcrop. In the district, an anticlinorium fold (RA) occurs in the Western belt rocks from the Tulameen River to Whipsaw Creek and a synclinorium fold (RS) occurs in the Eastern Belt rocks from the confluence of the Tulameen and Similkameen Rivers to Copper Creek (Rice, 1947).

The Western and Eastern Belt Nicola Group rocks are offset by the north-south trending Boundary fault (BF), traceable for over 50 kilometres. The Whipsaw fault (WF) is traceable for over 50 kilometres and is a northeast-north trending fault that mirrors the Boundary fault.

4.1.7 MINERALIZATION

The economic deposits in the region are precious metal placer deposits, metallic lode deposits and nonmetallic deposits. The precious and metallic deposits are placer gold-platinum and lode copper-gold-silver. The non-metallic deposits are coal and industrial minerals.

The focus of exploration in the Princeton area at this time is alkalic copper-gold-silver porphyry deposits such as Copper Mountain Mining Corporation's Copper Mountain mine. There are however, numerous metallic mineral occurrences in the region containing copper, gold, silver, molybdenum, lead and zinc. Historically, the first economic mineral deposits were the gold-platinum placers mined in the late 1800s along the Tulameen River and Granite Creek. Coal was also an economically significant commodity, mainly from the 1920's through to the 1950's.

PRECIOUS METAL PLACER DEPOSITS

In the early 1860s, placer deposits were found along Tulameen and Similkameen rivers and their tributary creeks. In 1885, rich placer gold deposits were revealed along the Granite Creek and Tulameen River. By 1891, the district was recognized to be the most important producer of platinum in North America. From 1885 to 1943, reported gold and platinum recoveries were 41,000 ounces gold and 11,000 ounces platinum.

The gold occurs in rough, angular or slightly flattened, rarely well-flattened nuggets with white quartz. Platinum forms small rounded grains of uniform size, which are smaller than the gold nuggets and are commonly pitted. The gravel-black sands consist of magnetite and chromite. The origin of the gold and platinum in the placers is believed to be from gold veins of the Grasshopper Mountain area and the chromitite from the dunite of the Tulameen complex in the Olivine Mountain region.

METALLIC LODE DEPOSITS

The focus of exploration in the Princeton area at this time is alkalic copper-gold-silver porphyry deposits such as Copper Mountain Mining Corporation's Copper Mountain mine. The ore deposits at Ingerbelle and Copper Mountain are spatially and genetically associated with multiple phases of the Copper Mountain intrusions and associated structures. The ore deposits, whether in volcanic or intrusive rocks are associated with zones of extensive and locally intense wall rock hydrothermal alteration, principally of potassic origin. The copper and silver mineralization is associated with fractures, sulphide veins and vein stock works, while the gold mineralization is associated with magnetite vein systems. Primary mineralization is bornite ± chalcopyrite ±pyrite ± magnetite. The supergene alteration and mineralization are malachite, goethite, and hematite and minor amounts of native copper, chalcocite, covellite and digenite. The regional and local structures are the important overall mineralizing controls, the most important being the north-west (Main fault), north-east (Mine breaks) and east-west (Gully fault) structures. The majority of the ore deposits and prospects occur along, or at intersections to these structures.

From 1925 to 1957 Granby extracted 31,547,478 tonnes of ore containing 0.882% copper, 0.185 g/t gold and 4.322 g/t silver by underground mining methods. From 1972 to 1988, open-pit mining at the Ingerbelle and Copper Mountain mines extracted 257,091,744 tonnes of ore containing 0.357% copper, 0.141 g/t gold and 1.045 g/t silver. From 1989 to 1992, open-pit mining extracted 87,971,275 tonnes of ore containing 0.361% copper, 0.078 g/t gold and 1.772 g/t silver. The historical production from the area is 1.7 billion pounds of copper, 8.4 million ounces of silver and 0.62 million ounces of gold.

The Tulameen Complex is host to four main types of mineral deposits. Chromite occurs in the dunite core and chromite is rich in platinum group metals. Magnetite forms semi-massive to massive lenses or vein-like bodies in hornblende pyroxenite. Copper mineralization is associated with a variety of host rocks, commonly gabbro

to diorite or hornblende-rich pegmatite. Mineralization is primarily chalcopyrite, pyrite and bornite, but may include minor sphalerite and galena.

In the Whipsaw camp, porphyry copper-molybdenum mineralization is associated with the Whipsaw porphyry and its host rocks of the Eagle Plutonic Complex and the Eastgate-Whipsaw metamorphic belt. Sulphide mineralization is developed over a widespread area, as disseminations and fracture fillings, and in quartz and calcite veins. Pyrite is most abundant with trace amounts of chalcopyrite, molybdenite, bornite, chalcocite, covellite and magnetite.

The other occurrences of copper and gold mineralization similar to that observed in the Tulameen complex is found associated with the Rice stock at the GD (MINFILE 092HSE134), Lam (MINFILE 092HSE 135) and Wilmac (MINFILE 092SHE042) showing.

NON-METALLIC DEPOSITS

The exploration and production of coal in the Tulameen and Princeton Tertiary basins has proceeded sporadically since prior to 1900s. From 1919 to 1940, underground coal mines extracted about 2 million tonnes from the Tulameen basin, and in the 1950s, surface mining extracted about 0.15 million tonnes (Ryan, 2004). Compliance Coal Ltd continued exploration in the Tulameen basin until 2004. The coal deposits are hosted in the Allenby Formation of the Princeton coal basin. Several coal seams are found in a shale-rich member. The coal consists of up to 30 m of coal interbedded with mudstone, bentonite shale and sandstone. Coal rank is generally high-volatile C to B bituminous.

Zeolite and bentonite are also known from intermediate to felsic ash-rich sedimentary units in the Allenby Formation of the Tulameen and Princeton basins.

4.2 GOLDROP PROPERTY GEOLOGY

4.2.1 ROCK TYPES

The Goldrop property geology units (Figure 4.0) have been taken from Massey et al (2008/2009) to provide continuity of existing information. The more detailed geological mapping by Goldcliff personnel has changed the geological boundaries to a limited degree. The outcrop locations are illustrated on Figure 4.0.

The Goldrop property is mainly underlain by Upper Triassic sedimentary (uTNs) and volcanic rocks (uTNv) that have been intrude by two small stocks of diorite interpreted to be related to the Upper Triassic Copper Mountain intrusions (uTCd). Eocene rocks of the Princeton Group (EPv) overlie the older rocks.

4.2.2 UPPER TRIASSIC NICOLA GROUP

Nicola Group sedimentary and volcanic rocks underlie the Goldrop property. The volcanic rocks underlie the central portion of the Goldrop property and are commonly green to black, massive andesite. The andesite usually contains 1 to 5% disseminated pyrite and rusty fractures. In the area of the Goldrop showing and Trenches 2 and 3 the andesite is bleached, weakly clay altered and at times weakly silicified.

At the Ramses showing the host rock is a dark grey cherty tuff that is silicified and cut by numerous calcite veinlets. The calcite veinlets contain 1% pyrite and traces of chalcopyrite.

The sedimentary rocks outcrop along the Goldrop North and Goldrop North Spur 1 roads. The clastic sedimentary rocks consist of black argillite interbedded with grey siltstone and more rarely grey limestone. The sediments are weakly fractured and contain from 1 to 4% disseminated pyrite, occasionally as cubes up to 3 millimetres in diameter. Bedding orientations were observed at two outcrops, at rock sample 1201270019 bedding was 353° dip 57° west and at rock sample 1201270013 bedding was 171° dip 22° east.

At sample 1201270013, a green, chloritic, sericitic schist outcrops within the sediments. The schist has a weak foliation at 201° dip 36° west and shearing at 019° dip 81° west.

4.2.3 LATE TRIASSIC MAFIC DIORITE

Two small stocks of diorite intrude the Nicola Group rocks peripherally to the Goldrop showing. The diorite is grey-green in colour, fine grained and is composed primarily of white feldspar and greenish black hornblende. At the Murph showing, the diorite is silicified, and contains 2 to 5% pyrite and traces of chalcopyrite.

The smaller, most northerly stock is approximately 800 metres long by 200 metres wide and has been intruded in a north-south orientation. During the course of the work program the stock was not on the Goldrop property, but the acquisition of tenure 1013841 by Goldcliff has added the area to the company's holdings. The larger stock is approximately 1500 metres long by 1000 metres wide and outcrops on tenure 649883. This stock is host to the Murph showing.

4.2.4 EOCENE PRINCETON GROUP

The youngest rocks mapped on the Goldrop property are volcanic rocks of the Eocene Princeton Group that outcrop along the Goldrop Spur 1 road. The rocks are grey to mauve to more rarely green dacite tuff with 2 to 4 millimetres in diameter lapilli and porphyritic feldspar in a grey matrix. Rounded lapilli of mauve dacite up to one centimetre in diameter were noted at several outcrops. The Princeton Group volcanic rocks were observed to be in fault contact with the older Nicola Group sedimentary rocks along the logging road.

4.3 GOLDROP PROPERTY MINERAIZATION

Fifty-four rock samples were collected during the course of the work program and their locations illustrated on Figure 4.1 with the rock sample descriptions listed in Appendix II. Rock samples were collected from the Goldrop, Ramses and Murph showings as well as other locations on the Goldrop property.

4.3.1 GOLDROP SHOWING

The Goldrop showing has not been located on surface due to sloughing of Trench-1 that is believed to have initially exposed the mineralization. However, the mineralization has been intersected in three drill holes. The mineralization consists of three to six zones of calcite veining, pervasive carbonate alteration and weak silicification containing pyrite, sphalerite and chalcopyrite occurring over widths of 5.79 to 10.42 metres. From 20 to 70% of the intervals are mineralized, with the remaining sections barren andesite.

Five samples (1201220019-1201220021, 1201270004 and 1201270005) were taken from the immediate vicinity of the 1988 to 1990 drilling at the Goldrop showing. The samples are of grey to green andesite that is variably bleached, clay altered and silicified with 2 to 5% disseminated pyrite and strong rusty fracturing. Sample 1201270005 gave a weakly anomalous value of 192 ppm zinc.

Four samples (1201220022-120122025) were taken 200 to 400 metres east of the Goldrop showing on the Sunset Goldrop South Spur 1 road. The samples are of green andesite that is variably bleached and silicified with 2 to 5% disseminated pyrite and weak rusty fracturing. Sample 1201220025 gave a weakly anomalous zinc value of 274 ppm.

Two samples (1201220026 and 1201220027) were taken from Trench-2, an old cat trench 250 metres northeast of the Goldrop showing. Sample 1201220026 was a strongly clay altered andesite with 2 to 4% disseminated pyrite and moderate rusty fractures. Sample 1201220027 consisted of a grey carbonate matrix with breccia fragments of andesite and gave a weakly anomalous copper value of 198 ppm.

Three samples (1201220028-1201220030) were taken near Trench-3, an old cat trench 350 metres north-east of the Goldrop showing. The samples are of green andesite that is bleached and clay altered with weak rusty fractures. The samples were not anomalous for any elements.

Three samples (1201270001-1201270003) were taken 350 to 500 metres north-east of the Goldrop showing along the Sunset Goldrop South road. The samples are of green andesite with up to 4% disseminated pyrite. The samples were not anomalous for any elements.

Two samples (1201270014 and 1201270015) were taken 500 metres north-east of the Goldrop showing along the Goldrop North road. The samples are of green andesite and they were not anomalous for any elements.

4.3.2 RAMSES SHOWING

The Ramses showing was discovered by prospecting along the East Whipsaw road during the work program and occurs in volcanic rocks of the Nicola Group. The Ramses showing is exposed for 16 metres, with the first 4 metres a grey-black feldspar porphyry dyke with traces of pyrite and rusty fractures. The remaining 12 metres of the showing is chert or cherty tuff that has been silicified and cut by grey calcite-quartz veinlets containing <1% pyrite and traces of chalcopyrite. The calcite-quartz veinlets make up about 25% of the volume of the rock and appear to strike 071° and dip 72° south.

Eight samples (1201220006-1201220013) were taken from the Ramses showing. Sample 1201220006 was of the feldspar porphyry dyke and did not give any anomalous values. Samples 1201220007 to 1201220012 were taken at one metre intervals across the main area of calcite-quartz veining. Sample 1201220012 gave a weakly anomalous copper value of 167.5 ppm. Sample 1201220013 was a grab sample taken from a large boulder below the road and contained the strongest silicification and calcite-quartz veining seen at the showing. The sample gave a weakly anomalous silver value of 3.55 grams/tonne and a moderately anomalous copper value of 1835 ppm.

4.3.3 MURPH SHOWING

The Murph showing is located along the East Whipsaw road and was first discovered in 1992. A large outcrop (50 plus metres wide) of silicified diorite of the Copper Mountain intrusions containing up to 25% pyrite and traces of chalcopyrite was tested by three short drill holes in 1992. The drilling intersected a number of narrow zones (0.26-1.22 metres wide) of fracturing and weak silicification with pyrite and traces of chalcopyrite with copper values ranging from 0.04% to 0.25%.

Two samples (1201220015 and 1201220016) of diorite with silicified zones, 2 to 5% pyrite and traces of chalcopyrite were taken from the Murph showing. The samples gave weakly anomalous copper values of 431 and 560 ppm respectively.

4.3.4 PROSPECTING

Rock samples were taken from various other locations on the property in the course of prospecting. Three samples (1201270006-1201270008) were taken from mauve dacite of the Princeton volcanics along the Goldrop North Spur 1 road. These samples were not anomalous for any elements.

Nine samples (1201270009-1201270013 and 1201270016-1201270019) of Nicola sedimentary rocks were taken along the Goldrop North and Goldrop North Spur 1 roads. The samples are of argillite and siltstone that contain up to 4% disseminated pyrite, some as 3 millimetres in diameter cubes, and rare rusty fractures. Sample 1201270016 gave a weakly anomalous silver value of 1.27 grams/tonne and other of the samples show elevated values in silver (0.53-1.27 ppm) and arsenic (12.3-28.7 ppm).

Three samples (1201270020-1201270022) of andesite were taken along the Whipsaw road east of the Goldrop showing. The samples were not anomalous for any elements.

One sample (1201220002) of diorite with 1% disseminated pyrite and weak rusty fractures with pyrite and epidote was taken from the small stock east of the Goldrop showing along the East Whipsaw road. The sample gave a weakly anomalous copper value of 281 ppm.

A number of other samples were collected from various areas of the property but were not anomalous for any elements.

5.0 GEOCHEMISTRY

5.1 INTRODUCTION

The Volume II report entitled, "Volume II (SOW 5384734), Report on Geochemical Rock, Sediment and Soil Sampling Report Goldrop Mineral Property, Similkameen Mining Division, Tulameen-Princeton District, 92H7, November 22, 2012 for Goldcliff Resource Corporation" was prepared by S. Zastavnikovich, PGeo to document in detail the 2012 geochemical results for the Goldrop property. This section of the Volume I report summarizes and highlights the results from Volume II.

The Volume II report contains the illustrations outlining the rock sample locations (Figure 4.10) and gold, silver, arsenic copper and zinc anomalies (Figures 4.11 to 4.15), silt sample locations (Figure 4.20) and gold, silver, arsenic, copper and zinc anomalies and soil sample locations (Figure 4.30) and gold, silver, arsenic, copper and zinc anomalies.

5.2 ANOMALOUS ELEMENT CORRELATIONS

Zastavnikovich prepared correlation tables for rock, sediment and soil sampling comparing anomalous correlations among the ore elements gold, silver, copper, zinc and the associated major, minor and trace elements. The results have generally been divided into those samples collected north of Whipsaw Creek (North Goldrop claims) including the Goldrop zinc-copper showing and those samples collected south of Whipsaw Creek (South Goldrop claims) including the Murph and Ramses copper showings.

The samples collected north of Whipsaw Creek are predominately in Nicola volcanic and sedimentary terrain, while those collected south of Whipsaw Creek are predominately in intrusive terrain.

5.2.1 ROCK SAMPLE ELEMENT CORRELATION

In the rock samples collected south of Whipsaw Creek, gold, silver and copper values are very strongly mutually correlated at the r=0.9 level, with As at r=0.6 and the major elements Ca at r=0.7 and Mn at r=0.6. This indicates carbonate minerals occurring within silicified structures and breccias related to the diorite intrusion.

Conversely, zinc and pathfinders Se, Li, Cr, Co, Ni, V, Ti, Ga and Ge correlate with the other major elements Al, Fe and Mg, indicative of clay-altered dykes. Other pathfinder elements Te, Bi, Mo, Re and Hg are strictly associated with anomalously high S and Fe values, indicative of pyritic envelopes.

In the rock samples collected north of Whipsaw Creek, gold values present in rock samples located east and south of the Goldrop showing strongly correlate with lead at r=0.7 and tellurium at r=0.6, and less strongly with zinc at r=0.3, but none of the major elements. This indicates an association with galena and possibly sphalerite and gold bearing pyrite in silicified Nicola andesites.

Lead correlates weakly with the pathfinder elements As and Cd at r=0.3, and zinc correlates strongly with major elements AI, Mg and Mn at r=0.5 to r=0.6, likely due to an association with mafic dykes.

Anomalous silver values are strongly accumulated in the Nicola sedimentary units, along with pathfinder elements As, Sb, Se and Hg. However, the sediments are almost devoid of detectable gold values.

Anomalous copper values correlate with the major elements P at r=0.4 and Fe at r=0.3, and associated trace elements Co, V Ti, Nb and U. Together they indicate its anomalous presence in secondary Fe-oxides along rusty fractures, and possible pegmatitic association along strong vertical structures. Zinc correlates with lead at r=0.7 and major elements Mn, Al, Mg and P at r=0.6 to 0.3, indicating as in the south, association with clay altered dykes and breccias.

5.2.2 SEDIMENT SAMPLE ELEMENT CORRELATION

Forty-three high-quality field sieved stream and roadside fluvial samples were collected on a reconnaissance scale basis during the course of the survey, most north of Whipsaw Creek. The Goldrop, Murph and Ramses showings were not directly sampled. Anomalous gold values correlate most strongly with Te at r=0.7 and sulfur at r=0.5, but also secondly with P at r=0.6 based on their coincident highest values in sample 1201242001.

The sediment sampling indicated silver, copper, lead and zinc are very strongly mutually correlated at the r=0.9 to r=0.7 level, and strongly correlated with major elements Fe, Al and Mg, and to a lesser extent Ca and P. Similar correlations exist for the numerous pathfinder elements As, Mo, Sb, Cd, Ba, Li, Ni, Ge, La and Y.

The very strong correlation of the precious, base and pathfinder trace elements with the major elements points to their predominately hydromorphic accumulation along rusty fractures, particularly with the precipitated secondary Fe-oxide minerals originating from depth.

5.2.3 SOILSAMPLE ELEMENT CORRELATION

One hundred and eighty soil samples were collected along old logging roads both north and south of Whipsaw Creek during the course of the survey. The precious, base metal and pathfinder elements are strongly correlated to Fe at up to r=0.8 and Mn at up to r=0.7.

In the 68 soil samples collected south of Whipsaw Creek (Murph and Ramses copper showings), gold is most strongly correlated with As and Mo at r=0.9, then Bi and Co at r=0.6, Cu and Te at r=0.5, Pb and Zn at r=0.4 and pathfinder elements Sb, Se, W, Ni and V at r=0.3. Anomalous silver values are absent in the soil samples.

In the 112 soil samples collected north of Whipsaw Creek (Goldrop zinc-copper showing) gold is most strongly correlated with pathfinder trace elements As, Sb, Se and Hg at r=0.6, then Ag at r=0.5, base metals Cu, Pb, Zn and pathfinders W and Tl at r=0.4 and the remaining pathfinder elements Te, Mo, Bi, Cd, In, Ge and Cs at r=0.3. Silver strongly correlates with base metals Cu, Pb and Zn at up to r=0.7, as well as Fe at r=0.5. Copper and zinc and pathfinder elements Te and S, in addition to their strong correlation with Fe also correlate with the major elements Al, Mg and P at up to r=0.7, likely indicating base metal and pyrite envelope association with clay-altered mafic and pegmatite dykes.

5.3 ANOMALOUS PRECIOUS AND BASE METAL GEOCHEMISTRY

Based on the statistical analysis, anomalous rock, stream sediment, roadside fluvial silt and soil sample geochemistry is discussed for the Goldrop property under the two target areas with mineral showings. The Northeast Whipsaw area includes the Murph and Ramses copper showings and the Northwest Whipsaw area includes the Goldrop zinc-copper showing.

5.3.1 NORTHEAST WHIPSAW AREA

The strongest copper values in outcrop are from two samples (1201220015 and 1201220016) of gossanous diorite with pyrite and chalcopyrite from the Murph showing that ranged up to 560 ppm Cu. These rocks retain 2% Ca and are only anomalous in residual major elements Cr, Sr, P and Ti.

The highest gold (0.064 ppm), silver (3.55 ppm) and copper (1835 ppm) values were from a boulder of silicified tuff with calcite-quartz veining, pyrite and traces of chalcopyrite (1201220013) at the Ramses showing. Calcium (18%) and manganese (5070 ppm) were also high and the major elements AI, Mg, P and Fe depleted. This suggests a local silicified carbonate breccia as the source.

Soil samples collected over the Murph and Ramses showings were not anomalous in silver or arsenic. A fluvial roadside sediment sample (1201242037) collected immediately north-east of the Ramses showing was anomalous in Cu, Pb and Zn, and strongly anomalous in Al, V and the alkali elements Na, K, Rb and Cs, supporting radiolithic Anomaly C. This sediment sample is supported by soil samples (1201241102-1201241104) anomalous in gold (up to 0.110 ppm), copper (up to 293 ppm) and zinc (up to 248 ppm), and the

pathfinder elements As, Mo, Co, Fe and Mn. This suggests the presence of a clay altered, rust-filled breccia structure located 250 metres east of and related to the Ramses showing.

The strongest copper value of 546 ppm in soil samples is present at the Murph showing (1201241122), accompanied by an anomalous gold value (0.014 ppm). This suggests that the strongest mineralization under the overburden is just to the north, rather than the south at the Murph showing.

5.3.2 NORTHWEST WHIPSAW AREA

The two outcrop samples (1201220025 and 1201270022) with the highest gold values gave 0.018 and 0.0172 ppm gold respectively and occur coincidentally with three roadside fluvial sediment samples (201242001, 1201242015 and 1201242017) with anomalous gold values of 0.0115, 0.0111 and 0.0109 ppm respectively. This coincidental zone of anomalous outcrop and sediment samples is located 200 to 350 metres east to south-east of the Goldrop showing. One soil sample (1201241035) located in Trench 1 gave a moderately anomalous gold value of 0.012 ppm.

The two andesite outcrop samples are also strongly anomalous in lead (up to 144 ppm), zinc (up to 274 ppm) and tellurium (up to 2.1 ppm), while the three sediment samples are strongly anomalous in sulfur (up to 0.4%) and tellurium (up to 1.2 ppm), and anomalous in major elements AI, Fe, Mn, P and Sr. The soil sample is anomalous in copper (114 ppm) and strongly anomalous in zinc (314 ppm), supported by anomalous pathfinder elements Pb, Te, As, S, Mo, Bi, Cd and Co in a matrix of anomalous major elements Fe, Mn, Ca, P and Na. The anomalous gold and supporting base metal values in rocks and coincidental sediment samples indicate the presence of oxidizing base metal sulphides at depth in the area between Trenches 1 and 2 and the Whipsaw road.

Sparsely distributed sediment samples (1201242039-1201242042) and evenly distributed soil samples (1201241019-1201241025, 1201241034-1201241041 and 1201241151-1201241156) collected at 50 metre intervals along the old logging roads in the Northwest Whipsaw area show anomalous zinc values. They indicate that the area above Trenches 1 and 3, between the Goldrop South road and the Goldrop Connector road contains mafic dykes and possibly base metal mineralization at depth, as the mobile surface Zn-anomalous values reside mostly in secondary Fe-oxides precipitated in strongly fractured bedrock. The soil samples are also anomalous in alkali elements K, Rb and Cs which supports radiolithic Anomaly B.

Soil samples collected over the sedimentary Nicola rocks along the Goldrop North (1201241073-1201241082) and Goldrop North Spur 1 (1201241051-1201241059) roads contain strong precious, base metal and pathfinder element anomalies. The strongest multi-element soil anomalies are mostly concentrated along the south-western contact with the Nicola volcanic rocks and the northern contact with the Tertiary volcanic rocks.

The core of the extensive anomalous area lies along the east-west axis between the two samples (1201241057 and 1201241076) with the highest gold (up to 0.040 ppm) values, and strongly anomalous silver (up to 4.3 ppm), copper (up to 176 ppm), zinc (up to 278 ppm) and lead (up to 28 ppm) values. Other strongly anomalous elements include As, Mo, Sb, Se, Bi, Cd, W and Hg. The strongly anomalous multi-element geochemistry is related to anomalously high iron values of up to 6.9% Fe, indicating that the oxidizing base metal sulphide mineralization source of the anomalous hydromorphic secondary Fe-oxides resides at depth. Strongly anomalous Cs, TI and anomalous Rb in the upper soil samples indicate the presence of potassic alteration upslope.

Three sediment samples (1201242010-1201242012) were collected from a rock quarry along the Whipsaw road 350 metres below the soil anomaly in an area also underlain by the Nicola sedimentary rocks. These samples are also strongly anomalous in silver (up to 1.35 ppm), copper (up to 208 ppm), zinc (up to 243 ppm) and lead (up to 22 ppm), the major elements iron (up to 9.5%), aluminum (up to 3%), calcium (up to 3.2%), magnesium (up to 2.3%) and phosphorus (up to 1210 ppm), and pathfinder elements As, Mo, Re, Sb, Se, Bi, Cd and Hg.

Fill-in soil sampling along the slope contour both above and below the open-ended soil anomaly is required in order to determine its extent.

6.0 GEOPHYSICS

6.1 INTRODUCTION

The Volume III report entitled, "Volume III (SOW 5384734), Report on Ground Radiolithic Survey, Goldrop Area, Tulameen Project, NTS: 92H037, by Interpretex Resources Ltd., September 12, 2012 for Goldcliff Resource Corporation" was prepared by Edwin R, Rockel, PGeo to document in detail the 2012 ground radiolithic geophysical results for the Goldrop property. This section of the Volume I report summarizes and highlights the results from Volume III.

6.2 THEORY

Ground spectrometer data provides radioactive element ratios that relate to potassium alteration and potassium in rock lithology. The thorium-potassium ratios are important in highlighting regions that contain hydrothermal potassic alteration and potassium in rock lithology. The hydrothermal potassic alteration is commonly related to economic copper mineralization in porphyry deposits.

As indicated by Guilbert and Park (1986) "a porphyry copper deposit can be described as a large low- to medium-grade deposit, primarily of chalcopyrite and molybdenite, in which hypogene sulphide and silicate zoning spans potassic-propylitic alkali metasomatic and phyllic-argillic hydrolytic alteration and which is temporally and spatially related to an epizonal calc-alkaline porphyritic intrusion".

The gamma ray spectrometry provides radioactive element data ratios that distinguish metasomatic potassium from lithologic potassium in rock. The thorium-potassium ratio data from the ground survey is an important tool for defining prospective areas for potassic alteration that relate to porphyry copper deposits. A ground spectrometer survey more accurately defines alteration related to potassium alteration verses potassium related to rock types.

The exploration technology related to a radiolithic geophysical survey is described as follows:

"The detection of potassic alteration by gamma ray spectrometry - recognition of alteration related to mineralization" explains that during the process of potassium alteration thorium does not usually accompany potassium. The resulting low eTh/K ratio thus enables distinction of potassium anomalies that have exploration significance from those related solely to lithological variations (Natural Resources Canada article, ref #3)".

6.3 INTERPRETATION

The term "radiolithic" survey was used to differentiate the present radioelement ratio surveys, designed to detect rock alteration, from one that is designed to search for uranium.

The ratio of thorium over potassium was calculated within the ground radiolithic survey database before gridding and contouring. Although data-point density was irregular and sparse in some areas due to variable distances between the roads, the resulting ratio grid provided a useful display of elevated relative potassium in areas covered by the survey.

Figure 5.0 shows an image of the combined gridded thorium over potassium ratio data. The colour used for the thorium-potassium ratio display was designed to show anomalous thorium/potassium ratios and the transition from anomalous to normal ratios.

The ground thorium-potassium ratio gridding parameters were set to interpolate gaps between road data in order to suggest anomalous trends, thus the interpolated parts of the ratio image (between roads) are predicted values based on slopes calculated by the minimum curvature gridding program used here.

Although care must be used when interpreting data with irregular and at times sparse data points, enough coverage was obtained by the ground survey to define rough trends and regions of higher relative potassium content within the surveyed area.

6.4 RADIOLITHIC SURVEY

Four general areas within the Goldrop claim area (labelled "A" through "D") with anomalous thorium/potassium ratios are outlined on Figure 5.0, Compilation Map. These regions are interpreted to contain potassium alteration that may relate to mineralization.

Anomalous region "A" shows strong anomalous Th/K ratio values for about 450 metres long Sunset Road. Anomalous ratios seen to the south on Whipsaw 2 Spur Road affirm the size of the anomalous region to the south. The large size and intensity of the ratio anomaly suggests a broad zone of higher potassium content and possible alteration relating to mineralization. The anomalous region is located approximately 700 metres west of the Goldrop showing, and may be related to the mineralization at the Goldrop showing, or have a completely different cause.

Anomalous region "B" shows a large anomalous Th/K ratio region containing a strong core in the southern half of the region. This core encompasses the drilled Goldrop showing as well as mineralization encountered in drill hole 88-1 to the south near the Sunset Road. The strong core of the anomalous region appears to be related to the mineralization at the Goldrop showing,

A smaller anomalous region "C" encompasses the Ramses showing for approximately 300 metres along the east Whipsaw Road. Although the Ramses showing itself is not as anomalous as region "B", the anomalous ratios here are believed to reflect alteration associated with the Ramses showing.

The large discontinuous anomalous region "D" correlates with the pyrite, traces of chalcopyrite (up to 560 ppm copper) and silicification noted at the Murph showing. This indicates probable alteration associated with the mineralization and enhances the exploration of region "D".

7.0 CONCLUSIONS

The following conclusions can be drawn from the 2012 work program:

7.1) Prospecting resulted in the discovery of the Ramses showing where cherty tuff has been silicified and cut by grey calcite-quartz veinlets containing <1% pyrite and traces of chalcopyrite. The calcite-quartz veinlets make up about 25% of the volume of the rock and appear to strike 071° and dip 72° south. A large boulder contained the strongest silicification and calcite-quartz veining seen at the showing, and a rock sample gave a weakly anomalous silver value of 3.55 grams/tonne and a moderately anomalous copper value of 1835 ppm.

7.2) Two rock samples of diorite with silicified zones, 2 to 5% pyrite and traces of chalcopyrite were taken from the Murph showing. The samples gave weakly anomalous copper values of 431 and 560 ppm respectively.

7.3) The Goldrop showing was not located on surface during the present work program. However, previous drilling on the Goldrop showing gave gold values of up to 5.59 grams/tonne gold across 0.50 metre.

7.4) The 2012 geochemical survey consisted of high quality field-sieved roadside fluvial sediment sampling and soil sampling conducted by S. Zastavnikovich and rock sampling conducted by geologist G. Crooker and geophysicist E. Rockel. This survey produced several moderate to strong precious and base metal geochemical anomalies in the areas of the Murph and Ramses showings south of Whipsaw Creek, and the Goldrop showing North of Whipsaw Creek, all located within Nicola volcanic rocks. An extensive open-ended multi-element soil geochemical anomaly was also outlined in the Nicola sedimentary rocks north of Whipsaw Creek.

7.5) Coincidental, strong gold geochemical anomalies for outcrop samples (1201220025 and 1201270022) with up to 0.018 ppm gold and the enveloping sediment samples (1201242001, 1201242015 and 1201242017) with up to 0.012 ppm gold occur 250 to 350 metres east to south-east of the Goldrop copperzinc showing. The anomalous gold and supporting silver and base metal values in rocks and overlapping sediment samples indicate the presence of oxidizing base metal sulphides and the associated pyrite envelope at depth in the area between Trenches 1 and 2, and the Whipsaw road.

7.6) The spatial correlation between the outcrop and overlapping sediment samples east of the Goldrop showing demonstrates the capacity of the high-quality field-sieved fluvial roadside sediment sampling method to penetrate through glacial drift and reflect not only outcrop, but anomalous subcrop as well.

7.7) At the Murph and Ramses copper showings and their vicinity, anomalous gold and base metal values correlate strongly with major elements calcium and magnesium rather than as usual with iron. The indicates that the original gold-copper anomalous secondary iron oxides derived from oxidizing pyrite and base metal mineralization at depth, have been swept to surface along brecciated zones within a carbonate-Mn matrix preserved by silicification. Gold and base metal soil anomalies proximal to both the Murph and Ramses showings require investigation.

7.8) Anomalous alkali elements K, Rb, Cs plus TI, present in rock, soil and/or sediment samples variously support the radiolithic anomalies "B", "C" and "D", and indicate the presence of potassic alteration in soil samples collected proximal to the Nicola volcanic/sedimentary contact.

7.9) Four areas with anomalous thorium/potassium ratios (labelled "A" through "D") were outlined by the radiolithic survey and are interpreted to contain potassium alteration related to mineralization. Anomaly "B" encompasses the area of the Goldrop showing, anomaly "C" encompasses the area of the Ramses showing and anomaly "D" encompasses the area of the Murph showing.

8.0 **RECOMMENDATIONS**

Recommendations are as follows:

-Additional geological, geochemical and geophysical surveys should be conducted over the Goldrop, Murph and Ramses showings, as well as the geochemical and geophysical anomalies outlined by this survey to define target areas for follow-up trenching and/or drilling.

Respectfully submitted,

Grant F. Crooker, PGeo Consulting Geologist December 2, 2012

9.0 REFERENCES

Billingsley, P. and Hume, C.B. (1941): The Ore Deposits of Nickel Plate Mountain, Hedley, B.C., The Canadian Institute of Mining and Metallurgy, Transactions, Volume XLIV, 1941, pp.524-590.

Dawson, G.M. (1879): Preliminary Report on the Physical and Geological Features of the Southern Portion of the Interior of British Columbia, 1877, Geological Survey., Canada, Report of Progress, 1877-78.

Dolmage, V. and Brown, C.E. (1945): Contact Metamorphism at Nickel Plate Mountain, Hedley B.C., Canadian Institute of Mining and Metallurgy, Transactions, Volume XLVIII, 1945, pp 27-67.

Camsell, C. (1913): Geology and Mineral Deposits, Tulameen District, British Columbia; *Geological Survey of Canada,* Memoir 26, 188 pages.

Camsell, C. (1919): Platinum Investigations in British Columbia, Geological Survey of Canada, Summary Report 1918, pt. B.

Casselman, M.J., McMillan, W.J and Newman, K.M. (1995): Highland Valley porphyry copper deposits, near Kamloops, British Columbia: A review and update with emphasis on the Valley deposit; in Porphyry Deposits of the Northwestern Cordillera of North America, Schroeter, T.G., Editor, Canadian Institute of Mining, Metallurgy and Petroleum, Special Volume 46, page 161.

Church, B.N. (1973): Geology of the White Lake Basin, BC Ministry of Energy, Mines and Petroleum Resources, Bulletin 61.

Church, B.N. and Brasnett, D. (1983): Geology and gravity survey of the Tulameen coal basin (92H), in Geological Fieldwork 1982, BC Ministry of Energy, Mines and Petroleum Resources, Paper 1983-1, pp 47-54.

CIMM-Porphyry Deposits of the Canadian Cordillera, A Volume Dedicated to Charles S. Ney (1976): Highland Valley porphyry copper deposits, near Kamloops, British Columbia: Editor, A. Sutherland Brown, Canadian Institute of Mining and Metallurgy, Special Volume 15, pages 487.

Carr, J.M. and Read, A.J, (1976): Afton, A Supergene Copper Deposit: in CIMM-Porphyry Deposits of the Canadian Cordillera, A Volume Dedicated to Charles S. Ney: in Editor, A. Sutherland Brown, Canadian Institute of Mining and Metallurgy, Special Volume 15, page 376.

Copper Mountain Mining Corporation (2012) website at www.cumtn.com.

Creasey, S.C. (1966): Hydrothermal alteration, in Titley, S.R., and Hicks, C.L., eds., Geology of the porphyry copper deposits, southwestern North America: Tucson, The University of Arizona Press, pp 51-74.

Crooker, G.F. (1988): Diamond Drilling Report on the Murphy, Maggie, M 2, M 3, and Goldrop 1 to 4 Claims, Princeton Area, Similkameen Mining Division, for Murphy Shewchuk (Owner). AR 17,619.

Crooker, G.F. (1990): Diamond Drilling Report on the Murphy, Maggie, M 2, M 3, and Goldrop 1 to 4 Claims, Princeton Area, Similkameen Mining Division, for Murphy Shewchuk (Owner). AR 20,313.

Crooker, G.F. (1991): Geochemical, Geophysical and Diamond Drilling Report on the Murphy, Maggie, M 2, M 3, and Goldrop 1 to 4 Claims, Princeton Area, Similkameen Mining Division, for Murphy Shewchuk (Owner). AR 21,507.

Crooker, G.F. (1992): Trenching, Diamond Drilling and Geochemical Report on the Murphy, Maggie, LC One, M 2, M 3, and Goldrop 1 to 4 Claims, Princeton Area, Similkameen Mining Division, for Murphy Shewchuk (Owner). AR 22,680.

Crooker, G.F. (1992): Geological, Geochemical and Geophysical Report on the Tas 1 and 2 Claims, Copper Mountain Area, Similkameen Mining Division, for Grant Crooker. AR 22,427.

Crooker, G.F. (1994): Geological, Geochemical and Geophysical Report on the Tas 1 and 2 Claims, Copper Mountain Area, Similkameen Mining Division, for Grant Crooker. AR 23,649.

Crooker, G.F. (1997): Geological, Geochemical and Geophysical Report on the Tas 1-3 Mineral Claims, Copper Mountain Area, Similkameen Mining Division, for Grant F. Crooker (Owner) and Moreleigh Minerals Corporation (Operator). AR 25,102.

Crooker, G.F. (2010): Titan 24 Geophysical and Core Drilling Report on the TAS and TAS S1 to TAS S15 Mineral Claims, Copper Mountain Area, Similkameen Mining Division, for Supreme Resources Ltd (Owner and Operator) and Grant F. Crooker (Owner TAS Claim). AR 31,363.

Crooker, G.F. (2011): Geological, Geochemical, Trenching and Core Drilling Report on the TAS and TAS S1 to TAS S15 Mineral Claims, Copper Mountain Area, Similkameen Mining Division, for Supreme Resources Ltd (Owner and Operator) and Grant F. Crooker (Owner TAS Claim).

Crooker, G.F. (2012): Core Drilling Report on the TAS and TAS-S1 to TAS-S17 Mineral Claims (SOWS 5283893 and 5293188), Copper Mountain Area, Similkameen Mining Division, for Supreme Resources Ltd (Owner TAS-S1 to TAS-S17 Mineral Claims, Operator to July 31, 2011) and Grant F. Crooker (Owner TAS Mineral Claim and Operator).

Dolmage, V. (1934): Geology and Ore Deposits of Copper Mountain, British Columbia, Geological Survey of Canada, Memoir 171.

Dowling, D. B. (1915): Coal Fields of British Columbia, Geological Survey of Canada, Memoir 69.

Enns, G.G., Thompson, J.F.H., Stanley and Yarrow, E.W. (1995): The Galore Creek porphyry copper-gold deposits, northwestern British Columbia; in Porphyry Deposits of the Northwestern Cordillera of North America, Schroeter, T.G., Editor, Canadian Institute of Mining, Metallurgy and Petroleum, Special Volume 46, page 630.

Fahrni, K. C. (1951): Geology of Copper Mountain, C.I.M., Bull., Vol. 44, No. 469, PP. 317.324.

Fraser, T.M., Stanley, C.R., Nikic, Z.T., Pesalj, R., and Gorc, D. (1995): The Mount Polly alkalic porphyry copper-gold deposit, south-central British Columbia; in Porphyry Deposits of the Northwestern Cordillera of North America, Schroeter, T.G., Editor, Canadian Institute of Mining, Metallurgy and Petroleum, Special Volume 46, page 609.

Findlay, D.C. (1963): Petrology of the Tulameen ultramafic complex, Yale District, British Columbia; PhD thesis, Queens University, 415 pages.

Findlay, D.C. (1969): Origin of the Tulameen ultramafic-gabbro complex, southern British Columbia; *Canadian Journal of Earth Sciences*, Volume 6, pages 399-425.

Fugro Airborne Surveys Corp. (2008): Resolve Survey for Goldcliff Resource Tulameen Project, Princeton Area, British Columbia, Fugro Airborne Surveys, Report #08045-C.

Hills, L.Y. (1962): Glaciation, structures and micropalaeontology of the Princeton coalfield, British Columbia; MSc thesis, University of British Columbia, 141 pages.

Hoy, T. (2006): Geology and rock geochemistry, JJ property, southeastern B.C.; B.C. Ministry of Energy and Mines, Assessment report 28,301.

Hoy, T. (2008): Geology and mineralization, Deer Park property, southern B.C.; B.C. Ministry of Energy and Mines, Assessment report 29,356.

Höy, T. and Jackaman, W. (2010): Geology of the Deer Park Map Sheet (NTS 082E/08); Geoscience BC Map 2010-7-1; 1 sheet, scale 1:50 000.

Ickert, R.B., Thorkelson, D.J., Marshall, D.D. and Ullrich, T.D. (2007): Eocene adakitic volcanism in southern British Columbia: Remelting of arc basalt above a slab window, available online at <u>www.sciencedirect.com</u>, Tectonophysics 464 (2009), 164-185.

Lang, J.R., Stanley, C.R. and Thompson, J.F.H., 1994. Porphyry copper deposits related to alkalic igneous rocks in the Triassic-Jurassic arc terranes of British Columbia: Ariz. Geol. Soc., Digest 20.

Lang, J.R., Lueck, B., Mortensen, J.K., Russell, J.K., Stanley, C.R. and Thompson, J.F.H., 1995a, Triassic-Jurassic silica-undersaturated and silica-saturated alkalic intrusions in the Cordillera of British Columbia: Implications for arc magmatism: Geology, v. 23, 451-454.

Lang J. R., Stanley C. R., Thompson J. F. H. and Dunne K. P. E., 1995b, Na-K-Ca magmatic hydrothermal alteration in alkalic porphyry Cu-Au deposits, British Columbia: Min. Assoc. Can., Short Course 23, 339-336.

Lang, J.R., and Titley, S.R. (1998): Isotopic and geochemical characteristics of Laramide magmatic systems in Arizona and implications for the genesis of porphyry copper deposits: Economic Geology, v. 93, p. 138-170.

Little, H.W. (1961): Geology Kettle River (West Half), B.C., Geological Survey of Canada Map 15-1961.

Lowell, J. D. (1974): Regional characteristics of porphyry copper deposits of the Southwest, Economic Geology, 69:601-617.

Lowell, J. D. (1968): Geology of the Kalamazoo orebody, San Manuel district, Arizona, Economic Geology, 63:645-654.

Lowell, J. D. and J. M. Guilbert (1970): Lateral and vertical alteration-mineralization zoning in porphyry ore deposits, Economic Geology, 65:373-408.

Massey, N.W.D., Vineham, J.M.S. and Oliver, S.L. (2009): Southern Nicola Project: Whipsaw Creek-Eastgate-Wolfe Creek area, southern British Columbia (NTS 092H/0 1 W, 02E, 07E, 08W); in Geological Fieldwork 2008, BC Ministry of Energy, Mines and Petroleum Resources, Paper 2009-1, pages 189-204.

Massey, N.W.D., J.M.S. Vineham, and Oliver, S.L.: Geology and Mineral Deposits of the Whipsaw Creek-Eastgate-Wolfe Creek Area, British Columbia, (parts of NTS 092H/01W, 02E, 07E, 08W), 1:30 000 Scale, BCMEMPR Open File 2009-08.

Massey, N.W.D and Oliver, S.L. (2010): Geology and Mineral Deposits of the Granite Creek Area, British Columbia (92H/07, 92H/10S), *B.C. Ministry of Energy, Mines and Petroleum Resources*, Open File 2010-06, 1:30,000-scale.

Massey N.W.D. and Oliver, S.L. (2010): Southern Nicola Project: Granite Creek Area, southern British Columbia (parts of 92H/07, 10), in Geological Fieldwork 2009, *B.C. Ministry of Energy, Mines and Petroleum Resources*, Paper 2010-1, pages 113 -126.

McMechan, R.D. (1983): Geology of the Princeton Basin; *BC Ministry of Energy, Mines and Petroleum Resources,* Paper 1983-3, 52 pages.

McMillan, W.J. and Panteleyev, A. (1994): Porphyry Copper Deposits; in Ore Deposits Models, edited by R.J, Roberts and P.A. Sheahan, Geosience Canada, Reprint Series 3, page.

Meade, H.D. and Soreggaroli, A.E. (1995): Keystone porphyry molybdenum occurrence, south-central British Columbia; in Porphyry Deposits of the Northwestern Cordillera of North America, Schroeter, T.G., Editor, Canadian Institute of Mining, Metallurgy and Petroleum, Special Volume 46, page 781.

Monger, J.W.H. (1989): Geology, Hope, British Columbia; *Geological Survey of Canada,* Map 41-1989, scale 1:250000.

Montgomery, J. H. (1967): Petrology, Structure and Origin of the Copper Mountain Intrusions near Princeton,

British Columbia, U.B.C., Dept. of 'Geology, unpub. Ph.D. thesis.

Newell, J.M. and Peatfield, G.R. (1995): The Red-Chris porphyry copper-gold deposit, northwestern British Columbia; in Porphyry Deposits of the Northwestern Cordillera of North America, Schroeter, T.G., Editor, Canadian Institute of Mining, Metallurgy and Petroleum, Special Volume 46, page 674.

Nielsen, R.L. (1968): Hypogene texture and mineral zoning in a copper-bearing granodiorite stock, Santa Rita, New Mexico: Economic Geology, v. 63, p. 37-50.

Nixon, GT. (1988): Geology of the Tulameen ultramafic complex; BC Ministry of Energy, Mines and Petroleum Resources, Open File 1988-25, scale 1:25 000.

Nixon, G.T. (1997): Geology and Platinum-Group-Element Mineralization of Alaskan-Type Ultramafic-Mafic Complexes in British Columbia, Bulletin 93.

Ministry of Energy, Mines, and Petroleum Resources ARIS Reports 092HSE-Tulameen Property:

Tulamee	en Property-Histo	orical ARI	S Reports 092HSE	
ARIS #	Property	Year	Author	Work
948	JILL	1966	Jury, R.	Geochemical
1744	Don	1968	Clark, G.R.	Geophysical, Geochemical
1774	Т	1968	Baird, J.	Geophysical
1852	Wilmac	1969	Cochrane, D.	Geophysical
2197	Claire & Y	1969	Jury, R.	Geochemical
2243	Till	1969	Pendergast, J.	Geophysical
2599	Coral	1970	Stadnyk, M.	Geophysical
2802	MAE	1970	Leighton, Douglas	Geological, Geochemical
3037	CLAIRE, X	1971	Lloyd, John	Geophysical
3182	HOL	1971	Buttis, A.	Geochemical
3357	TULAMEEN	1971	Newell, J.	Geological, Geochemical
3557	Т	1972	Read, W.S.	Geophysical
3596	Don	1972	Wolfe, R.	Geophysical, Physical
3653	Copper	1971	Fominoff, P.	Geophysical, Geochemical
3655	Vulture	1971	Newell, J.	Geological, Geochemical
3905	Nighthawk	1972	Newell, J.	Geological, Geochemical
3939	NEV	1972	Taylor, David P.	Geological, Geochemical
4170	MAE	1973	Anderson, P.	Drilling, Geochemical, Geological
4171	Т	1972	Read, W.S.	Geochemical
4374	F.G.P.	1973	Poloni, John R.	Geochemical
5043	G.D.	1974	Doubt, T.	Prospecting
5339	LAM	1974	Schindler, John N.	Geological, Physical, Geophysical, Geochemical
5491	Mae	1974	Gambardella, A.	Geochemical
5564	WEL	1974	Murray, C.	Geological, Physical, Geophysical, Geochemical
5959	Golddrop	1975	Huff, H.P.	Drilling
5992	WEL	1976	MacDonald, C.	Geological, Geochemical
6503	SPUR	1977	Gidluck, Marcus J.	Drilling
7974	ASH	1979	Walcott, Peter E.	Geochemical, Geological, Geophysical, Physical
11579	VIOLET	1982	Cavey, George	Geochemical
12330	PL	1983	Ash, W.M.	Geological
12674	TP 6	1983	Gamble, Dave	Geophysical, Physical
14958	RIV 1-4	1986	O'Grady, Frank	Geophysical
15317	AVT	1986	Borovic, I.	Geochemical, Geological, Geophysical, Physical
17619	Goldrop	1988	Crooker, Grant F.	Drilling
17195	Stik (Bromley)	1988	Woods, D.V.	Geophysical
18543	Stik	1989	Sadlier-Brown, T.L.	Geochemical
22367	Stik	1992	Sadlier-Brown, T.L.	Geochemical
22534	Princeton West	1992	Wojdak, P.	Geochemical, Geological
24781	Betsy	1997	Scheske, Michael	Prospecting
25317	Goldrop	1988	Crooker, Grant F.	Drilling, Geochemical

Ministry of Energy, Mines, and Petroleum Resources Minfile Reports 092HSE-Tulameen Property:

Tulameen Property-Minfile Reports 092HSE

Minfile #	Minfile Name	MinFile Status	MinFile Deposit Type	Minfile Commodity
092HSE001	COPPER MOUNTAIN	Past Producer	Alkalic porphyry	Cu, Au, Ag
092HSE033	FRIDAY CREEK	Prospect	Porphyry	Au,Pt
092HSE034	LODESTONE MOUNTAIN	Developed	Alaskan	Fe
092HSE035	TANGLEWOOD HILL	Developed	Alaskan	Fe
092HSE039	HOP	Showing	Porphyry	Cu
092HSE042	WILMAC	Showing	Porphyry	Cu
092HSE067	REDSTAR	Past Producer	Kuroko	Zn,Cu
092HSE068	PASAYTEN	Prospect	Kuroko	Zn,Cu
092HSE069	KNOB HILL	Prospect	Kuroko	Zn,Cu
092HSE072	KNIGHT AND DAY	Prospect	Kuroko	Zn,Cu
092HSE073	S AND M	Past Producer	Vein	Zn,Cu
092HSE074	MARIAN	Prospect	Kuroko	Zn,Cu
092HSE076	NEWTON CREEK	Showing	Vein	Cu,Au
092HSE077	RIV	Showing	Vein	Au,Ag
092HSE080	Deep Gulch	Prospect	Alkalic porphyry	Cu, Au, Ag
092HSE081	MAZIE	Past Producer	Kuroko	Pb,Ag
092HSE093	PAW	Showing	Vein	Cu,Au
092HSE097	METESTOFFER	Prospect	Vein	Cu,Au
092HSE098	FIVE FISSURES	Prospect	Vein	Cu,Au Cu,Au
092HSE100	ASH 2	Prospect	Vein	Mo,Cu
092HSE100	GRANITE SCHEELITE	Developed	Vein	Cu,Au
092HSE103	Granite Creek Gypsum	Showing	VEIII	Gypsum
092HSE103		Showing	Vein	Cu
092HSE105	SKI	Showing	Vein	Cu
092HSE109		Showing	Alkalic	Cu
092HSE111	TULAMEEN	Showing	Vein	Cu
092HSE112	NEV	Showing	Stockwork	Cu
092HSE115	POLARIS	Showing	Shear	Cu
092HSE117	POLARIS 16	Showing	Alaskan	Cu
092HSE120	FRM 52 (Bright Star)	Showing	Alaskan	Cu, Pt
092HSE124	GOLDROP	Past Producer	Vein	Zn,Cu
092HSE126	NIGHTHAWK	Showing	Porphyry	Cu,Mo
092HSE128	FRM 73 (99)	Showing	Alaskan	Cu
092HSE129	FRM 92	Showing	Alaskan	Cu
092HSE134	GD	Prospect	Vein	Cu,Au
092HSE135	LAM	Showing	Porphyry	Cu
092HSE137	TULAMEEN GYPSUM	Showing		Gypsum
092HSE141	RC	Showing	Alaskan	Cu
092HSE142	LODE 1	Showing	Alaskan	Cu,Fe
092HSE157	BASIN COAL	Past Producer	Sedimentary	Coal
092HSE159	Newton Creek Platinum	Showing	Vein	Cu, Pt
092HSE166	ZEO	Developed	Sedimentary	Zeolite
092HSE168	SUNDAY CREEK	Prospect	Sedimentary	Zeolite
092HSE170	ROANY CREEK	Past Producer	Bog	Са
092HSE205	WHIP 1	Showing	Vein	Pb,Zn
092HSE206	T.G.S	Showing	Vein	Zn,Cu
092HSE207	BZ	Prospect	Stockwork	Zn,Cu
092HSE212	BLACK	Past Producer	Sedimentary	Coal
092HSE213	TAYLOR BURSON COAL	Past Producer	Sedimentary	Coal
092HSE214	JACKSON NO. 1	Past Producer	Sedimentary	Coal
092HSE215	BROMLEY VALE	Past Producer	Sedimentary	Coal
092HSE229	Champion Creek Placer	Showing	Placer	Au, Pt
092HSE230	GRANITE CREEK PLACER	Past Producer	Placer	Au, Pt
092HSE231	Lamont Creek Placer	Past Producer	Placer	Au
092HSE232	NEWTON CREEK PLACER	Past Producer	Placer	Au, Pt
092HSE233	Similkameen River Placer	Past Producer	Placer	Au, Pt
092HSE234	BROMLEY CREEK	Showing	Placer	Au, Pt
092HSE235	TULAMEEN RIVER	Past Producer	Placer	Au, Pt
092HSE236	Whipsaw Creek Placer	Past Producer	Placer	Au, Pt Au, Pt

Ministry of Energy, Mines, and Petroleum Resources Similkameen Coalfield Reports 092HSE-Tulameen Property:

Report #	NTS	Coalfield	Year	Owner	Work
181	092H01	GRANBY	1945	GRANBY CONSOLIDATED	DRILLING
183	092H01	GRANBY	1947	GRANBY CONSOLIDATED	MAPPING
184	092H01	GRANBY	1947	GRANBY CONSOLIDATED	DRILLING
185	092H08	KNOBHILL	1971	KNOB HILL EXPL.	MAPPING
790	092H08	PRINCETON	1900s	UNKNOWN	UNKNOWN
186	092H07	PRINCETON	1941	GRANBY COLLIERY	MAPPING
187	093O15	PRINCETON	1945	GRANBY COLLIERY	UNKNOWN
188	092H07	PRINCETON	1947	GRANBY COLLIERY	DRILLING
189	092H07	PRINCETON	1952	TAYLOR-BURSON COAL	MAPPING
190	092H07	PRINCETON	1952	TAYLOR-BURSON COAL	MAPPING
191	092H07	PRINCETON	1971	BETHLEHEM COPPER	DRILLING
192	092H07	PRINCETON	1974	BETHLEHEM COPPER	PERMITING
193	092H07	PRINCETON	1975	BETHLEHEM COPPER	GRAVITY, DRILLING
839	092H	PRINCETON	1975	UNKNOWN	GRAVITY
194	092H09	PRINCETON	1980	COMINCO LTD.	GRAVITY, DRILLING
195	092H07	PRINCETON	1981	COMINCO LTD.	UNKNOWN
0	092H07	TULAMEEN	1974	IMPERIAL MET/POWER	UNKNOWN
197	092H07	TULAMEEN	1944	IMPERIAL MET/POWER	MAPPING
198	092H07	TULAMEEN	1974	IMPERIAL MET/POWER	SAMPLING, COAL ANALYSIS
199	092H07	TULAMEEN	1975	IMPERIAL MET/POWER	COAL ANALYSIS
200	092H07	TULAMEEN	1977	IMPERIAL MET/POWER	DRILLING
832	092H07	TULAMEEN	1978	GSC	FEASABILITY
201	092H10	TULAMEEN	1981	TG STOUT	TRENCHING
768	092H07	TULAMEEN	1981	IMPERIAL METALS	UNKNOWN
202	092H10	TULAMEEN	1982	TG STOUT	TRENCHING
767	092H07	TULAMEEN	1983	IMPERIAL METALS CORP	COAL ANALYSIS

Padilla-Garza, R.A., Titley, S.R., and Eastoe, C.I. (2004): Hypogene evolution of the Escondida porphyry copper deposit, Chile, *in* Sillitoe, R.H., Perrell, L., and Vidal, C.E., eds., Andean metallogeny-New discoveries, concepts, and updates.

Panteleyev, Andre (1981): Berg porphyry copper-molybdenum deposit, geologic setting, mineralization, zoning, and pyrite geochemistry: Province of British Columbia, Ministry of Energy Miners and Petroleum Resources, Bulletin 66, 158 p.

Panteleyev, Andre (1995a): Porphyry Cu-Au-Alkalic, *in* Lefebure, D.V., and Ray, G.E., eds., Selected British Columbia mineral deposit profiles, volume 1, Metallics and Coal: British Columbia Ministry of Energy of Employment and Investment, Open File 1995-20, p. 83-86.

Panteleyev, Andre (1995b): Porphyry Cu±Mo±Au, *in* Lefebure, D.V., and Ray, G.E., eds., Selected British Columbia mineral deposit profiles, volume 1, Metallics and Coal: British Columbia Ministry of Energy of Employment and Investment, Open File 1995-20, p. 87-9I.

Porphyry Copper Deposits of the American Cordillera (1995), American Geological Society Digest 20, edited by Frances Wahl Pierce and John G. Bolm.

Porphyry Copper Deposits of the Canadian Cordillera, American Geological Society Digest 20 (1995), William J. McMillan and Andresjs Panteleyen, pages 203-218.

Porphyry Copper-Gold Deposits Related to Alkalic Igneous Rocks in the Triassic-Jurassic Arc Terranes of British Columbia, American Geological Society Digest 20(1995), James R. Lang, Clifford R. Stanley and John F.H. Thompson, pages 219-236.

Porphyry Deposits of the Northwestern Cordillera of North America (1995), Special Volume 46, Canadian Institute of Mining, Metallurgy and Petroleum, edited by T.G. Schroeter.

Preto, V.A. (1972): Geology of Copper Mountain, Ministry of Energy, Mines, and Petroleum

Resources Bulletin 59.

Preto, V.A. (1979): Geology of the Nicola Group between Merritt and Princeton, B.C. Ministry of Energy, Mines, and Petroleum Resources Bulletin 69.

Preto, V.A.G., White, W. H., and Harakal, J. E. (1971): Further Potassium-Argon Age Dating at Copper Mountain, B.C., C.I.M., Vol. 64, No. 708, pp. 58-61.

Ray, G.E. and Dawson, G.L. (1994): The Geology and Mineral Deposits of the Hedley Gold Skarn District, Southern British Columbia, B.C. Ministry of Energy Mines and Petroleum Resources, Bulletin 87

Read, P.B. (1987): Tertiary stratigraphy and industrial minerals, Princeton and Tulameen basins, British Columbia; BC Ministry of Energy, Mines and Petroleum Resources, Open File 1987-19, scale 1:25000.

Read, P.B. (2000): Geology and Industrial Minerals of the Tertiary Basins, South-Central British Columbia; BC Ministry of Energy, Mines and Petroleum Resources, GeoFile 2000-03, 110 pages.

Rice, H.M.A. (1947): Geology and Mineral Deposits of the Princeton Map-Area B.C., Geological Survey of Canada Memoir 243.

Richardson, P.W. (1995): The Whipsaw porphyry system, Similkameen District, British Columbia; in Porphyry Deposits of the Northwestern Cordillera of North America, Schroeter, T.G., Editor, Canadian Institute of Mining, Metallurgy and Petroleum, Special Volume 46, page 530.

Rockel, E.R. (2010-SOW 447692): Report on a Fugro Airborne Geophysical Survey, Tulameen Project, NTS: 92H/2-7, Interpretex Resources Ltd. (November 30, 2009).

Rockel, E.R. (2010-SOW 4799455): Report on Ground Radiolithic Survey, Tulameen Project, NTS: 92H/07, by Interpretex Resources Ltd. for Goldcliff Resource Corporation, January 31, 2011.

Ross, K.J., Godwin, C.I., Bond, L., and Dawson, K.M., (1995): Geology, alteration and mineralization of the Ajax East and Ajax West copper-gold alkalic porphyry deposits, southern Iron Mask batholith, Kamloops, British Columbia; in Porphyry Deposits of the Northwestern Cordillera of North America, Schroeter, T.G., Editor, Canadian Institute of Mining, Metallurgy and Petroleum, Special Volume 46, page 565.

Saleken, L.W. (2009-SOW 4264848): Exploration Report on the Tulameen Project Property, Similkameen Mining Division, Princeton Mining District, British Columbia (92HSE) for Goldcliff Resource Corporation, February 19, 2009.

Saleken, L.W. (2010-SOW 4476292): Compilation Exploration Report on the Tulameen Project Property, Similkameen Mining Division, Princeton Mining District, British Columbia (92HSE) for Goldcliff Resource Corporation, June 29, 2010.

Saleken, L.W. (2011 SOW 4799455): Compilation Exploration Report on the Tulameen Project Property, Princeton Mining District, British Columbia (92HSE) for Goldcliff Resource Corporation, January 31, 2011. AR 32,268.

Shaw, W.S. (1952a): The Princeton coalfield, British Columbia; *Geological Survey of Canada,* Paper 52-12-28 pages.

Shaw, W.S. (1952b): The Tulameen coalfield, British Columbia; *Geological Survey of Canada,* Paper 52-19, 13 pages.

Sinclair, A. J. and White; W. H. (1968): Age of Mineralization and Post-Ore Hydrothermal Alteration at Copper Mountain, B.C., C.I.M., sun., Vol. 61, No. 673, pp. 633-636.

Sinclair, W.D. (2007): Porphyry deposits, in Goodfellow, W.D., ed., Mineral Deposits of Canada: A Synthesis

of Major Deposit-Types, District Metallogeny, the Evolution of Geological Provinces, and Exploration Methods: Geological Association of Canada, Mineral Deposits Division, Special Publication No.5, p.223-243.

Sketchley, D.A., Rebagliati, C.M. and Delong, C. (1995): Geology, alteration and zoning patterns of Mt. Milligan copper-gold deposits; in Porphyry Deposits of the Northwestern Cordillera of North America, Schroeter, T.G., Editor, Canadian Institute of Mining, Metallurgy and Petroleum, Special Volume 46, page 650.

Stanley, C.R., Holbeck, P.M., Huyck, H.L.O., Lang, J.R., Preto, V.A.G., Blower, SJ. and Bottaro, IC. (1995): Geology of the Copper Mountain alkalic porphyry copper-gold deposits, Princeton, British Columbia; in Porphyry Deposits of the Northwestern Cordillera of North America, Schroeter, T.G., Editor, Canadian Institute of Mining, Metallurgy and Petroleum, Special Volume 46, page 537.

Sutherland Brown, A., Cathro, R. J., Panteleyev, A, and Ney, C. S. (1971): Metallogeny of the Canadian Cordillera, C.I.M., Trans., Vol. LXXIV, pp. 121-145.

Thompson, J.F.H. (1995): exploration and research related to porphyry deposits; in Porphyry Deposits of the Northwestern Cordillera of North America, Schroeter, T.G., Editor, Canadian Institute of Mining, Metallurgy and Petroleum, Special Volume 46, page 857.

USGS-Preliminary Model of Porphyry Copper Deposits (2008): Open-File Report 2008-1321, U.S. Department of the Interior, U.S. Geological Survey by Byron R. Berger, Robert A. Ayuso, Jeffrey C. Wynn, and Robert R. Seal, 55 pages.

USGS-Porphyry Copper Deposit Model (2010): Scientific Investigations Report 2010-5070-8, U.S. Department of the Interior, U.S. eological Survey by David A. John, editor, with contributions by Robert A. Ayuso, Mark D. Barton, Richard J. Blakely, Robert J. Bodnar, John H. Dilles, Floyd Gray, Fred T. Graybeal, John C. Mars, Darcy K. McPhee, Robert R. Seal, Ryan D. Taylor, and Peter G. Vikre, 169 pages.

Zastavnikovich, Sam (2010-SOW 447692): Geochemical Reconnaissance Drainage Sampling Report, Tulameen Project Mineral Property, Similkameen Mining Division, British Columbia, 92H/7, Goldcliff Resource Corporation, April 28, 2010.

Zastavnikovich, Sam (2010-SOW 4799455): Geochemical Rock and Sediment Sampling Report on the Tulameen Project Mineral Property, Similkameen Mining Division, Tulameen-Princeton District, British Columbia, January 31, 2011.

10.0 CERTIFICATE OF QUALIFICATIONS

I, Grant F. Crooker, of 2522 Upper Bench Road, PO Box 404, Keremeos, British Columbia, Canada, VOX INO do certify that:

I am a Consulting Geologist registered with the Association of Professional Engineers and Geoscientists of the Province of British Columbia (Registration No.18961);

I am a Member of the Canadian institute of Mining and Metallurgy and Petroleum;

I am a graduate (1972) of the University of British Columbia with a Bachelor of Science degree (B.Sc.) from the Faculty of Science having completed the Major program in Geology;

I have practiced my profession as a geologist for over 38 years, and since 1980, I have been practicing as a consulting geologist and, in this capacity, have examined and reported on numerous mineral properties in North and South America;

I have based this report on field examinations within the area of interest and on a review of the technical and geological data;

Respectfully submitted,

Grant F. Crooker, PGeo GFC Consultants Inc. December 2, 2012 **APPENDIX I**

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: GOLDCLIFF RESOURCE CORPORATION 6976 LABURNUM ST VANCOUVER BC V6P 5M9

Page: 1 Finalized Date: 18-AUG-2012 This copy reported on 29-OCT-2012 Account: GOLRESCO

CERTIFICATE KL12167837

Project:	
P.O. No.: 2012-TU-001	
This report is for 54 Rock s 25-JUL-2012.	amples submitted to our lab in Kamloops, BC, Canada on
The following have acces	ss to data associated with this certificate:
LEONARD SALEKEN	

	SAMPLE PREPARATION	<u> </u>
ALS CODE	DESCRIPTION	
WEI-21	Received Sample Weight	
LOG-22	Sample login - Rcd w/o BarCode	
CRU-QC	Crushing QC Test	
PUL-QC	Pulverizing QC Test	
CRU-31	Fine crushing – 70% <2mm	
SPL-21	Split sample - riffle splitter	
PUL-31	Pulverize split to 85% <75 um	

ANALYTICAL PROCEDURES

ALS CODE	DESCRIPTION	INSTRUMENT
Au-ST43	Super Trace Au - 25g AR	ICP-MS
ME-MS41	51 anal. aqua regia ICPMS	

To: GOLDCLIFF RESOURCE CORPORATION ATTN: LEONARD SALEKEN 6976 LABURNUM ST VANCOUVER BC V6P 5M9

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

Signature:

Colin Ramshaw, Vancouver Laboratory Manager

***** See Appendix Page for comments regarding this certificate *****

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: GOLDCLIFF RESOURCE CORPORATION 6976 LABURNUM ST VANCOUVER BC V6P 5M9

Page: 2 - A Total # Pages: 3 (A - D) Plus Appendix Pages Finalized Date: 18-AUG-2012 Account: GOLRESCO

								C	ERTIFIC	KL121	L12167837					
Sample Description	Method Anaiyte Units LOR	WEI-21 Recvd Wt. kg 0.02	Au-ST43 Au ppm 0.0001	ME-MS41 Ag ppm 0.01	ME-MS41 AI % 0.01	ME-MS41 As ppm 0.1	ME-MS41 Au 19541 0.2	ME-MS41 6 ppm 10	ME-MS41 Ba ppm 10	ME-MS4) Be ppm 0.05	ME-WS41 Bi ppm 0:03	ME-MS41 Ca % 0.01	ME-MS41 Cd port 0:02	ME-MS41 Ce ppm 0.02	МЕMS41 Со ррт 0.1	ME-MS41 Cr ppm 1
1201220001		1.52	0.0019	0.15	2.15	5.0	<0.2	<10	30	0.20	0.30	0.61	0.32	6.53	18.3	5
1201220002		1.70	0.0023	0.07	1.39	2.9	<0.2	<10	50	0.24	0.02	1.14	Q. D4	17,30	12.3	10
1201220003		1.53	0.0027	0.09	0.68	2.9	<0.2	<10	50	B0.0	0.17	0.76	0.02	4.76	36.6	8
1201220004		1.29	0.0046	0.25	2.14	1.8	<0.2	<10	70	0.08	0.08	0.27	0.02	3.08	26.7	47
1201225005		1.57	0.0030	0.17	3.04	0.9	<0.2	<10	40	0.14	0.07	0.94	0.69	2.65	42.6	126
1201220006		2.29	0.0056	0.37	3.29	3.5	<0.2	<10	50	0 23	0.02	2.12	0.25	5.60	24.4	12
1201220007		2.87	0.0152	0.29	0.92	<2	<0.2	<10	10	0 07	0.01	20.1	0.19	3.39	8.8	3
1201220008		2.11	0.0055	0.28	1.85	1.8	<0.2	<10	50	0.17	0.01	6.21	0.17	4.98	11.5	7
1201220009		2.45	0.0067	0.23	0.99	2.4	<0.2	<10	10	0.16	0.02	9.02	0.20	3.60	12.4	7
1201220010		1.75	0.0162	0.40	0.79	3	<0.2	<10	10	0.12	0.02	13.35	0,35	4.91	10.8	5
1201220011		2.38	0.0129	0.20	1.01	1.8	<0.2	<10	20	0.14	0.01	9.44	0.25	4.49	12.8	4
1201220012		1.68	0.0156	0.55	1.28	1.3	<0.2	<10	30	0.14	0.02	5.26	0.48	4.77	17.3	5
1201220013		2.51	0.0637	3.55	0.89	5	<0.2	<10	10	0.10	0.04	17.85	0.55	3.21	11.6	3
1201220014		1.93	0.0024	0.08	4.80	0.9	<0.2	<10	140	0.38	0.16	2.13	0.06	6.72	17.0	10
1201220015		2.27	0.0068	0.19	1.78	1.2	ଏ.2	<10	120	0.18	0.01	1.55	0.06	7.05	20.9	27
1201220016		1.86	0.0061	0.31	2.01	0.9	<0.2	<10	100	0.12	0.02	1.55	0.06	6,08	26.0	59
1201220017		1.75	0.0012	0.35	1.68	7.8	<0.2	<10	100	0.20	0.04	6.66	0.40	21.5	11.7	31
1201220018		1.32	0.0001	1.10	1.60	9.3	⊲0.2	<10	200	0.17	0.12	0.24	0.14	6.06	9.0	21
1201220019		2.25	0.0081	0.35	2.70	2.6	<0.2	<10	30	0.16	0.07	0.68	0.05	3.72	13.4	8
1201220020		1.81	0.0123	0.64	3.48	13.2	<0.2	<10	20	0.11	0.08	1.55	0.14	5.57	16.0	48
1201220021		2.09	0.0055	D. 17	1.48	4.5	<0.2	<10	30	0.07	0.40	0.23	0.02	5.16	14.4	8
1201220022		1.80	B000.0	0.07	3.61	3.1	<0.2	<10	30	0.14	0.10	0.51	0.03	3.65	10.7	14
1201220023	1	1.77	0.0055	0.25	0.64	14.9	<0.2	<10	50	0.09	0.32	0.08	0.01	13.65	1.4	2
1201220024	1	1.47	0.0007	D.08	2.90	2.1	<0.2	<10	30	0.08	0.01	0.51	0.02	5.17	11.2	2
1201220025		1.35	0.0160	D.49	2.52	11.5	<0.2	<10	70	0.14	Q.10	0.40	0.32	8.01	-8.B	8
1201220026	-	2.24	0.0014	0.05	1.93	2.0	<0.2	<10	40	0.07	0.16	0.16	0.02	1.10	2.3	6
1201220027		2.27	0.0017	0.07	1.51	24	<0.2	<10	140	0.10	0.02	3.95	0.07	4,19	6.7	26
1201220028	l l	2.03	0.0038	0.07	2.16	4.9	<0.2	<10	60	0.10	0.04	0.31	0.10	16.60	5.1	4
1201220029 1201220030		1.19 1.35	0.0030 0.0039	0.06 0.11	3.22 3.13	23 26	≪0.2 ≪0.2	<10 <10	60 70	0.11 0.10	0.41 0.43	0.41 0.39	0.10 0.06	7.48 6.23	8,3 7.1	9 12
									-							
1201270001		1.52	0.0008	0.05	2.30	15	<0.2	<10	40	0.18	0.01	1.00	0.01	5.63	18.3	24
1201270002		1.04	0.0018	0.08	2.68	17	<0.2	<10	50	0.10	0.12	1.29	0.07	13.35	33.3	12
1201270003		1.29 1.25	0.0044	0.09	2.66 2.76	2.5	<0.2	<10	50	0.08	0.02	1.05	0.09	5.37	16.6	7
1201270004 1201270005		0.87	0.0059 0.0048	0.23 0.14	2.76	4_2 11.0	<0.2 <0.2	<10 <10	50 20	0.12 0.11	0.06 0.32	0.54 0.47	0.05 0.02	6.42 8.29	22.5 12.7	9 346
- · · · ·					_							·				
1201270006		0.75	0.0004	0.03	1.18	0.9	<0.2	<10	50	0.13	0.02	0.60	6.04	20.1	10.3	17
1201270007		0.78	0.0004	0.04	1.38	1.7	<0.2	<10	70	0.21	0.16	0.69	0.05	16.00	11.7	19
1201270008		1.06	0.0004	0.02	1.02	0.7	<0.2	<10	80	0.11	D. 11	0.55	0.02	20.3	7.8	18
1201270009		1.00	0.0001 0.0001	0.59	2.04	5.7	<0.2	<10	240	0.23	0.13	0.38	0.17	11.85	8.6	23
1201270010		1.35	0.0001	0.61	2.04	5.4	<0.2	<10	240	0.24	0.12	0.38	0.16	11.70	6.6	22

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: GOLDCLIFF RESOURCE CORPORATION 6976 LABURNUM ST VANCOUVER BC V6P 5M9

Page: 2 - B Total # Pages: 3 (A - D) Plus Appendix Pages Finalized Date: 18-AUG-2012 Account: GOLRESCO

								L		CKUITI		F ANAL	-1212	KLIZI	0/05/	
Sample Description	Method Analyte Units LOR	ME~M\$41 Cs ppm 0.05	ME-MS41 Cu ppm 0.2	ME-MS41 Fe % 0.01	ME-MS41 Ga ppm 0.05	M&-M541 Ge ppm 0.05	ME-M541 Hi ppm 0.02	ME-MS4) Hg ppm 0.01	ME-WS41 In ppm 0.005	ME-MS41 K % 0.01	ME-MS41 La ppm 0.2	M£-M541 Li ppm 0.1	ME-M541 Mg % 0.01	ME-MS41 Mn pp=n S	ME-M541 Mo ppm 0.05	NE-M5+1 Na % 0:01
1201220001 1201220002 1201220003		0.19 0.13 0.09	65.4 281 35.4	4.76 3.24 4.68	4.93 4.22 1.70	0.05 0.10 0.09	0.03 0.20 0.08	0.01 0.01 0.01	0.008 0.013 <0.005	0.16 0.18 0.16	2.6 7.3 1.9	10.2 3.8 1.5	1.89 0.46 0.14	725 437 90	1.20 0.53 15.20	0.09 0.09 0.09
1201220004 1201225005		0.06 0.26	54.5 103.0	8.83 5.21	5.76 6.15	0.16 0.15	0.04	0.06 0.01	0.016	0.17 0.26	1.4	8.3 19.1	1.62 2.69	1220 1590	2.80	0.04
1201220006 1201220007 1201220008		0.29 0.15 0.26	78.9 82.0 64.8	4.45 1.72 2.22	5.71 2.03 2.93 1.97	0.11 0.05 0.05 0.05	0.05 0.03 0.06 0.06	0.01 0.01 0.01 0.01	0.007 0.009 0.008 0.007	0.24 0.11 0.34 0.08	2.5 1.5 2.0 1.5	12.0 2.5 5.3 1.3	1.61 0.33 0.57 0.16	1720 6710 2190 1840	0.91 6.43 1.67 0.81	0.14 0.04 0.07 0.03
1201220009 1201220010 1201220011		0.06 0.07 0.14	72.5 156.0 91.3	1.49 1.41 1.77	1.68	0.05	0.07	0.01	0.005	0.09	20 1.8	1.3	0.16	3290	0. 58 1.45	0.03 0.04
1201220012 1201220013 1201220014 1201220015		0.14 0.07 0.95 <0.05	167.5 1835 26.4 431	2.04 3.25 4.71 3.17	2 09 1.79 10.95 4.24	0.05 0.06 0.13 0.09	0.05 0.05 0. 06 0. 23	0.02 0.02 <0.01 0.01	0.008 0.013 0.010 0.017	0.25 0.07 0.87 0.15	1.7 1.4 2.9 3.2	3.1 1.3 9.6 4.9	0.33 0.21 1.13 1.05	1 54 0 5070 730 481	0.64 1.20 0.38 0.28	0,04 0.03 0.42 0.09
1201220015 1201220016 1201220017 1201220018		<0.05 0.19 0.12	560 72.6 61.9	3.98 3.33 5.18	4,73 6.22 6.69	0.09 0.09 0.14	0.19 0.09 0.26	0.01 0.03 0.09	0.015 0.030 0.047	0.11 0.21 0.15	2.8 11.5 2.8	5.9 13.5 20,1	1.10 1.22 1.19	647 828 421	0.28 1.60 1.88	0.06 0.05 0.04
1201220019 1201220020		0.37 0.23	28.5 79.3	5.94 5.54	6.3D 8.68	0.11 0.12	0.02 0.08	0.01 0.01	0.009 0.014	0.18 0.11	1.8 2.5	11.0 14.0	1.80 2.22	1880 1180	0.48 0.74	0.05 0.10
1201220021 1201220022 1201220023		0.23 0.17 0.35 0.24	63.9 41.6 45.0 47.4	4.75 6.13 3.94 5.14	4 15 10.70 2.73 7.26	0.10 0.13 0.10 0.10	0.09 0.05 0.02 0.03	0.01 0.01 0.05 0.01	0.008 0.020 0.010 0.017	0.18 0.13 0.18 0.14	2.3 1.7 7.3 2.1	5.9 14.8 1.8 7.1	1.25 2.94 0.06 1.51	269 1830 45 885	1.35 0.32 1.22 0.30	0.08 0.06 0.10 0.11
1201220024 1201220025 1201220026		0.18	43.9 34.9	4.17 4.15	5.18 5.44	0.10 0.08	0.14	0.03	0.016	0.19	3.4	9.5 7.0	1.62	930 530	0.69 0.50	0.04
1201220027 1201220028 1201220029 1201220030		0.24 0.14 0.20 0.20	198.0 36.7 49.7 43.3	8.68 4.04 5.36 5.27	7.87 8.16 7.42 7.72	0.16 0.11 0.12 0.12	0.15 0.16 0.05 0.05	0.01 0.02 0.02 0.02	0.032 0.037 0.035 0.041	0.27 0.10 0.07 0.07	1.9 7.3 3.2 2.8	5.1 5.6 8.1 8.1	0.76 1.30 2.25 2.36	776 751 1100 1140	0.60 2.72 1.74 2.38	0,04 0,07 0.09 0,09
1201270001 1201270002 1201270003		0.19 0.53 0.14	122.5 92.8 76.5	5.98 6.30 5.13	5.28 6.27 3.81	0.12 0.14 0.11	0.10 0.04 0.09	≪0.01 0.02 0.01	0.009 0.009 0.016	0.20 0.09 0.13	2.4 6.0 2.4	7.8 5.5 5.2	1.30 1.08 0.99	410 684 435	0.25 0.93 6.85	0.13 0.14 0.07
1201270004 1201270005 1201270005		0.18 0.22 0.08	41.9 74.1 17.8	5.68 4.60 2.68	7.51 7.97 4.46	0.05 0.06	0.13 0.11 0.42	0.01 0.02 0.02	0.014 0.016 0.029	0:17 0:10 0:10	2.6 3.3 6.8	11.9 12.7 0.9	2.84 3.02 0.76	1260 309 805	2.25 0.85 0.20	0.08 0.10 0.16
1201270007 1201270008 1201270009 1201270010		0.08 0.39 0.14 0.14	19.9 16.1 42.2 41.8	2.56 2.23 4.77 4.71	4.79 3.91 5.89 5.74	0.07 0.07 0.06 0.07	0.50 0.41 0.15 0.15	0.03 0.02 0.07 0.09	0.025 0.026 0.034 0.032	0.12 0.29 0.20 0.19	11.5 8.1 5.6 5.5	3.6 1.6 16.4 16.3	1.08 0.49 1.28 1.25	540 371 429 421	0.21 0.19 1.77 1.72	0.20 0.13 0.02 0.02

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: GOLDCLIFF RESOURCE CORPORATION 6976 LABURNUM ST VANCOUVER BC V6P 5M9

Page: 2 - C Total # Pages: 3 (A - D) Plus Appendix Pages Finalized Date: 18-AUG-2012 Account: GOLRESCO

minerals									CERTIFICATE OF ANALYSIS KL121678						67837	
	Method Analyte Units	ME-MS41 Nb ppm	ME-MS41 Ni ppm	ME~MS41 9 ppm	ME-M\$41 Pb ppm	₩E- M54 1 Rb ppm	ME~MS41 Re ppm	ME~MS41 S %	ME-MS41 Sb gpm	ME-KS41 Sc ppm	ME-MS41 Se ppm	ME-MS41 Sn ppm	ME-MS41 Sr pprn	Μξ-Μ541 Τά 900	ME-MS41 Te ppm	ME-MS41 Th ppm
Sample Description	LOR	D.05	0.2	10	0.2	0.1	0.001	0.01	0.05	0.1	0.2	0.2	0.2	0.01	0.01	0.2
1201220001		0.18	6.4	1150	5.6	5.6	0.002	3.67	0.14	2.9	4.7	0.3	29.2	<0.01	0.31	0.5
1201220002		0.60	5.3	1310	0.9	5.9	0.001	0.48	0.09	5.7	1.1	0.5	77.6	0.01	0.03	1.0
1201220003		0.45	19.3	820	1.4	3.3	0.034	4.16	0.16	2.9	4.4	<0.2	41.7	<0.01	0.21	0.5
1201220004		0.30	30.0	350	7.5	4.5	0.002	3.05	0.08	8.0	3.8	0.2	40.B	<0.01	0.57	0.5
1201225005		0.25	73.6	610	3.3	8.9	0.010	3.02	D. 10	B.4	12.8	0.3	31.B	<0.01	0.19	0.4
1201220006		0.26	15.9	1020	5.6	10.1	0.001	0.08	0.56	5.7	0.5	0.2	70.4	<0.01	0.04	0.6
1201220007		0.41	4.3	490	2.6	5.5	0.001	0.19	0.07	1.7	0.4	<0.2	79.6	<0.01	0.04	0.3
1201220008		0.28	8.1	1050	5.0	13.4	0.001	0.04	0.25	3. í	0.4	0.2	36.9	<0.01	0.03	0.5
1201220009		0.38	8.6	600	13,4	3.0	< 0.001	0.14	0.12	3.0	0.4	<0.2	38.9	<0.01	0.03	0.2
1201220010		0.44	5.7	840	5.8	3.8	<0.001	0.20	0.11	2.9	0.4	<0.2	37,3	<0.01	0.03	0.2
1201220011		0.32	7.0	690	9.8	8.1	0.001	0.27	0.09	2.7	04	<0.2	32.3	<0.01	0.03	0.3
1201220012		0.27	8.1	860	17.5	9.2	0.001	0.16	0.08	2.8	0.4	<0.2	23.8	<0.01	0.03	0.5
1201220013		0.41	6.3	370	5.3	3.1	0.001	1.66	0.30	2.6	0.6	<0.2	52.6	<0.01	0.08	<0.2
1201220014		0.28	14.4	1320	2.6	30.1	0.001	1.15	0.05	7.0	1.4	0.4	107.5	<0.01	0.08	0.8
1201220015		0.19	16.3	1990	D.9	2.4	0.001	0.48	0.37	8.8	2.8	0.3	111.0	<0.01	0.05	0.4
1201220016		0.26	29.3	1880	0.6	1.4	0.004	0.97	0.17	6.9	1.7	0.2	108.5	<0.01	0.08	0.3
1201220017		0.16	15.9	1160	6.9	5.0	0.001	0.05	0.19	5.8	1.4	0.2	175.5	0.01	0.04	0.8
1201220018		0.24	12.0	730	6.6	3.4	0.007	1.39	0.61	9.1	10.4	0.5	7.9	<0.01	0.06	0.7
1201220019		0.20	6.4	1170	5.8	5.8	0.001	2.27	0.09	3.6	2.5	<0.2	22.5	<0.01	1.15	0.5
1201220020		0.25	f4.2	970	34.2	2.0	0.002	0.69	0.23	4.5	1_3	0.2	71.0	<0.01	0.23	0.4
1201220021		0.33	6.1	1030	6.3	4.7	0.016	2.92	0.13	2.2	4.8	0.6	66.9	<0.01	0.53	0.8
1201220022		0.35	8.1	800	2.2	2.2	0.001	0.75	0.08	6.8	1.6	0.4	156.5	<0.01	0.36	0.6
1201220023		0.13	1.1	570	8.8	4.2	0.002	0.51	0.20	1.9	7.0	0.3	130.0	<0.01	1.16	Q.7
1201220024		0.26	4.9	950	1.0	2.8	<0.001	0.69	0.07	3.0	11	<0.2	98. 9	<0.01	0.39	0.3
1201220025		0.40	9.0	1300	144.0	4.4	0.002	0.10	0.22	3.5	3.7	0.4	49.7	0.01	0.25	D.5
1201220026		0.16	2.8	330	2.5	1.6	<0.001	0.74	0.07	3.7	32	0.2	22.0	<0.01	0.23	0.3
1201220027		0.49	9.7	2030	1.2	5.3	0.001	0.29	0.17	6.2	3.4	0.3	51.2	<0.01	0.12	1.0
1201220028		0.38	3.2	1120	3.9	1.9	0.009	0.10	0.10	3.7	0.9	0.4	53.8	<0.01	D.13	1.2
1201220029		0.46	7.3	990	2.8	1.7	0.004	0.17	0.12	5.4	3.8	0.7	35.9	0.01	0.55	0.6
1201220030		0.52	7.0	910	3.0	1.6	0.008	0.21	0.12	5.8	3.9	0.9	37.1	<0_01	0.58	0.6
1201270001		0.38	11. 9	970	0.7	3.3	<0.001	0.01	0.09	4.7	0.5	0.3	63.4	<0.01	0.02	0.3
1201270002		0.32	25.3	1260	2.2	1.4	0.026	2.90	0.10	4.3	2.2	<0.2	61.1	<0.01	0.25	0.5
1201270003		0.37	11.2	910	4.2	2.6	0.001	1.19	0.17	3.6	0,9	0.5	73.9	<0.01	0.21	0.3
1201270004		0.21	7.6	1080	7.1	4.3	0.026	2.99	0.16	5.3	28	1.0	36.0	<0.01	0.54	0.4
1201270005		Q.19	16.3	1020	4.3	2.5	0.002	2.27	0.16	7.6	1.9	0.5	52.2	<0.01	0.50	0.7
1201270006		0.13	9.7	800	2.0	1.8	<0.001	0.01	0.11	8.6	0.2	0.4	58.0	<0.01	0.02	1.7
1201270007		0.11	17.4	780	2.8	2.3	<0.001	<0.01	0.13	7.5	0.6	0.6	90.2	<0.01	0.01	1.7
1201270008		0.11	9.4	740	5.3	18.5	<0.001	<0.01	0.09	5.5	0.7	0.5	62.4	<0.01	0.01	2.5
1201270009		0.26	19.8	900	6.1	4.9	0 016	0.63	0.69	5.2	7.7	0.5	18.6	<0.01	0.11	1.2
1201270010		0.31	19.3	910	5.8	5.0	0.016	0.82	0.69	5.1	74	0.5	18.2	<0.01	0.11	1.2

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: GOLDCLIFF RESOURCE CORPORATION 6976 LABURNUM ST VANCOUVER BC V6P 5M9

Page: 2 - D Total # Pages: 3 (A - D) Plus Appendix Pages Finalized Date: 18-AUG-2012 Account: GOLRESCO

Sample Description	Method Analyte Units LOR	ME-MS41 Ti % 0.005	ME-M541 TF ppm 0.02	M-€-1M5411 U p+prrti 0-05	ME-MS41 V ppm 1	₩£-ж541 ₩ рая 0.05	ME-MS41 У ррм 0.05	ME- MS 41 Zn p pm 2	ME- MS4 1 Zr ppm 0.5	
1201220001		0.120	0.06	0.10	54	<0.05	6.02	61	2.0	
1201220002		0.227	0.05	0.26	81	0.10	12.25	54	5.5	
1201220003		0.135	0.04	0.08	47	0.16	4.77	8	1.7	
1201220004		0.163	0.09	0.18	126	<0.05	1.38	138	1.2	
1201225005		0.228	0.16	0.10	115	0.06	3.27	192	1.0	
1201220006		0.194	0.29	0.17	108	0.11	8.41	188	1.3	
1201220007		0.082	0,16	0.08	21	0.11	6.46	81	1.1	
1201220008		0.152	0.37	0.15	50	0.10	7.05	84	1.7	
1201220009		0.114	0.11	0.09	32	0.15	5.02	66	2.6	
1201220010		0.103	0.08	0.09	33	0.21	7.04	120	2.3	
1201220011		0.103	0.17	D.11	34	0.21	5.76	104	1.3	
1201220012		0.122	0.20	0.16	34	0.23	8.02	139	1.4	
1201220013		0.062	0.15	0.08	30	0.17	5.66	147	2.0	
1201220014		Q.169	0.37	0.18	97	0.11	5.20	78	2.5	
1201220015		0.176	<0.02	0.29	102	0.05	6.81	42	7.3	
1201220016		0.185	<0.02	0.17	108	<0.05	4.77	58	6.2	
1201220017		0.008	0.04	0.28	62	<0.05	15.65	95	3.1	
1201220018		0.184	0.03	0.48	63	0.07	9.85	60	8.2	
1201220019		0.033	0.08	0.07	78	<0.05	4.13	129	8.0	
1201220020		0.088	0.03	0.09	129	<0.05	4.68	73	2.5	
1201220021		0.110	0.06	0.22	34	<0.05	3.63	29	2.9	
1201220022		0.253	0.05	0.13	133	<0.05	2.63	114	1.0	
1201220023		<0.005	0.14	0.05	28	<0.05	0.83	5	1.3	
1201220024		0.093	0.04	0.06	48	<0.05	3.24	59	0.8	
1201220025		0.188	0.07	0.32	46	<0.05	7.19	274	3.4	
1201220026		<0.005	0.05	<0.05	69	<0.05	1.39	54	0.7	
1201220027		0.185	0.02	1.13	68	0.05	6.81	33	6.1	
1201220028		0.091	0.03	0.31	50	<0.05	6.01	123	6.3	
1201220029		0.148	0.00	0.19	95	<0.05	5.45	121	1.2	
1201220030		0.167	Q.06	Q. <u>2</u> 0	96	0.05	4.70	129	1.3	
1201270001		0.248	<0.02	0.39	132	<0.05	6.25	51	3.3	
1201270002		0.063	0.22	0.13	95	<0.05	8.30	62	1.2	
1201270003		0.151	0.04	0.15	43	0.09	3.71	73	3.5	
1201270004		0.174	0.06	0.15	98	0.05	4.87	128	3.4	
1201270005		0.175	0.03	0.22	134	<0.05	5.85	28	2.9	
1201270006		0.089	<0.02	0.38	47	0.10	7.32	51	10.3	
1201270007		0.101	<0.02	0.65	50	0.05	10.30	56	16.0	
1201270008		0.080	0.07	0.65	83	<0.05	6.25	38	12.4	
1201270009		D.144	0.06	0.36	40	0.11	12.35	98	4.5	
1201270010		D.143	0.05	0.35	40	0.11	12.20	96	4.4	

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: GOLDCLIFF RESOURCE CORPORATION 6976 LABURNUM ST VANCOUVER BC V6P 5M9

Page: 3 - A Total # Pages: 3 (A - D) Plus Appendix Pages Finalized Date: 18-AUG-2012 Account: GOLRESCO

(ALS) Minerais

Sample Description	Method Analyte Units LOR	WEI-21 Recvd W1. kg 0.02	Ац-ST43 Аџ ррт 0.0001	МЕ~М541 Ад ррм 0.01	ME-MS41 Al 9.01	ME-MS41 As ppm 0.1	ме-мS41 Ац рарт 0.2	ME-MS41 B ppm 10	МЕ-MS41 Ва ррп 10	ME-M541 Be ppm 0.05	М£-MS41 Ві 9.04⊓ 0.01	ME-MS41 Ca % 0.01	ME-MS41 Cd 9pm 0.01	ME-MS41 Ce ppm 0.02	ME- MS4 1 Ca ppm 0.1	ME-MS41 Cr ppm 1
1201270011 1201270012 1201270013 1201270014 1201270015		1.25 0.91 1.04 0.99 0.85	0.0012 0.0024 0.0002 0.0005 0.0070	0.06 0.05 0.53 0.07 0.04	0.23 3.71 2.03 2.94 2.53	7.1 0.7 28.7 0.7 0.4	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2	<10 <10 <10 <10 <10 <10	140 70 400 50 40	0.23 0.18 0.24 0.15 0.21	0.03 0.02 0.14 0.02 0.03	6.17 0.67 0.09 2.53 1.36	0.48 0.04 0.01 0.08 0.03	2.13 4.68 45.1 12.85 5.29	11.1 19.8 2.3 27.1 19.2	42 140 11 12 9
1201270016 1201270017 1201270018 1201270019 1201270020		1.11 0.97 1.23 0.87 1.35	0.0003 0.0006 0.0003 0.0008 0.0008	1.27 0.57 0.54 0.54 0.54	1.46 2.66 1.77 1.35 1.02	21.8 12.3 5.1 4 4.5	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2	<10 <10 <10 <10 <10 <10	60 1170 670 740 80	0.14 0.19 0.10 0.07 0.17	0.18 0.15 0.10 0.09 0.07	0.02 7.38 7.96 10.35 0.63	0.02 0.14 0.14 0.17 0.03	3.64 33.5 19.60 13.25 4.40	7.3 12.2 7.4 8.8 19.7	17 10 16 17 9
1201270021 1201270022 1201270023 1201270024		0.96 1.26 1.48 0.69	0.0018 0.0172 0.0040 0.0004	0.14 0.32 0.19 0.03	1.31 0.43 1.52 1.26	0.7 9.3 1.0 1.7	<0.2 <0.2 <0.2 <0.2 <0.2	<10 <10 <10 <10	100 40 30 360	0.15 0.12 0.08 0.48	0.02 0.33 0.06 0.13	0.62 0.09 1.11 0.73	0.14 0.05 0.16 0.06	2.82 2.80 3.12 15.65	33.6 2.5 31.3 10.9	12 3 31 53

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: GOLDCLIFF RESOURCE CORPORATION 6976 LABURNUM ST VANCOUVER BC V6P 5M9

Page: 3 - B Total # Pages: 3 (A - D) Plus Appendix Pages Finalized Date: 18-AUG-2012 Account: GOLRESCO

Minera	IS								Ċ	ERTIFIC	CATE O	FANA	YSIS	KL121	67837	
Sample Description	Method Analyte Units LOR	ME-MS 41 Cs ppm 0.05	ME-M541 Cu pp:// 0.2		ME- MS4 1 Ga ppm 0.05	ME-M541 Ge ppm 0.05	ME~MS41 Hf ppm 0.02	ME-MS41 Hg ppm 0.01	ME-MS41 In PPM 0.005	ME-MS41 K % 0.01	ME-MS41 La ρρκτ 0.2	ME-MS41 Li ppm 0.1	ME-MS41 Mg % 0.01	ME-MS41 Mri perm 5	ME-MS41 No ppm 0.05	ME-MS41 Ma % 0.01
1201270011 1201270012 1201270013 1201270014 1201270014 1201270015		2.07 0.13 0.16 0.21 0.18	4.2 32.0 19.9 76.1 22.6	10.15 6.48 4.61 4.92 4.24	0.91 7.54 6.85 7.01 4.65	0.71 0.06 0.10 0.06 <0.05	0.04 0.05 0.09 0.15 0.05	0.04 0.02 0.05 0.02 0.03	0.009 0.020 0.047 0.011 0.010	0.09 0.19 0.30 0.07 0.33	1.9 1.8 22.9 4.9 2.3	0.5 31.9 11.5 8.0 17.2	0.07 1.98 0.98 1.31 1.38	697 378 229 726 412	4.34 0.22 2.54 0.29 0.08	0.01 0.04 0.02 0.10 0.02
1201270016 1201270017 1201270018 1201270018 1201270019 1201270020		0.19 0.35 0.14 0.11 0.17	51.3 53.8 56.7 59.3 55.1	4.44 4.44 2.99 2.16 3.31	6.01 9.22 4.90 4.48 2.19	0.06 0.10 0.06 0.05 <0.05	0.09 0.13 0.08 0.05 0.05	0.08 0.01 0.07 0.03 0.03	0.034 0.047 0.031 0.028 0.011	0,18 0,17 0,12 0,07 0,18	1.6 18.3 14.0 9.9 1.7	9.0 15.4 14.7 9.5 3.2	0.96 1.34 0.89 0.81 0.25	167 985 584 819 335	1.86 0.82 0.35 0.18 0.69	0.04 0.04 0.02 0.03 0.08
1201270021 1201270022 1201270023 1201270024		0.18 0.15 <0.05 0.16	64.6 51.5 113.0 22.2	2.69 5.14 3.57 2.23	2.77 2.42 2.74 3.65	<0.05 <0.05 <0.05 0.06	0.04 0.05 0.12 0.50	0.02 0.05 0.02 0.01	0.008 0.013 0.008 0.025	0.30 0.19 0.08 0.22	1.1 1.3 1.2 8.3	2.4 0.3 3.7 2.4	0.55 0.03 0.94 0.67	519 163 872 283	2.13 0.68 0.33 0.09	0.05 0.01 0.04 0.13
:		- - - - -														

noraie

mir

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: GOLDCLIFF RESOURCE CORPORATION 6976 LABURNUM ST VANCOUVER BC V6P 5M9

Page: 3 - C Total # Pages: 3 (A - D) Plus Appendix Pages Finalized Date: 18-AUG-2012 Account: GOLRESCO

ilinera	12								C	ERTIFIC	CATE O	F ANAL	YSIS	KL121	67837	
Sample Description	Method Analyte Units LOR	ME-M541 Nb 90m 0:05	ME-M341 Ni ppm 0.2	ME-MS41 P 10	M&-M\$41 Pb ppm 0.2	ME-MS41 Rb ppm 0.1	₩£-M5+1 Re ррт 0.001	ME-M541 S % 0.01	мЕ-M\$41 5b ррт 0.05	M£-M541 5c pgm 0.1	ME-MS41 Se ppm- 0.2	МЕ- М 541 Sn рунт 0.2	ME-MS41 Sr ppm 0.2	ME-MS41 Ta ppm 0.01	ME-M541 Te ppm 0.01	ME-MS4) Th ppm 0.2
1201270011 1201270012 1201270013 1201270014 1201270015		0.13 0.10 0.12 0.33 0.12	13.8 17.0 7.1 11.7 12.8	590 40 1100 1100 900	0.6 0.4 13.2 0.5 0.4	3.5 3.5 5.4 1. 9 4.5	0 004 <0.001 0.016 0.001 0.001	0.07 <0.01 0.49 <0.01 <0.01	0.59 0.12 0.95 0.09 0.09	0.7 13.1 2.9 5.9 3.3	2.5 0.6 11.1 0.7 0.2	<0.2 0.2 0.3 0.4 0.2	84.0 9.3 14.6 68.5 36.2	<0.01 <0.01 <0.01 <0.01 <0.01 <0.01	0.04 0.01 0.15 0.01 0.25	<0.2 0.2 4.7 0.6 0.2
1201270016 1201270017 1201270018 1201270018 1201270019 1201270020		0.10 0.11 0.10 0.09 0.27	16.8 15.1 23.4 15.8 14.7	350 3020 640 580 810	10.8 8.6 5.6 5.8 4.4	4.6 3.7 3.3 2.0 4.2	0.034 0.001 0.002 0.003 0.010	2.08 0.01 0.01 0.03 2.55	1.02 0.35 0.26 0.17 0.12	3.4 8.3 4.0 4.2 1.8	12.0 5.8 1.8 0.6 1.2	0.3 0.3 0.2 <0.2 <0.2 0.2	6.1 207 212 373 29.0	<0.01 <0.01 <0.01 <0.01 <0.01	0.15 0.07 0.04 0.05 0.03	0.9 2.4 1.5 0.9 0.7
1201270021 1201270022 1201270023 1201270023		0.26 0.12 0.18 0.10	18.3 1.9 31.0 28.9	660 420 390 580	2.3 12.0 2.5 2.0	7.5 3.9 2.2 2.7	0.003 <0.001 0.001 <0.001	0.97 0.14 2.14 <0.01	0.09 0.19 0.10 0.09	3.1 1.0 6 .2 6_0	0.4 5.6 2.5 0.5	0.2 0.3 0.2 0.5	29:0 17:4 34:0 307	<0.01 <0.01 <0.01 <0.01	0.03 2.10 0.22 0.02	03 09 02 12

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: COLDCLIFF RESOURCE CORPORATION 6976 LABURNUM ST VANCOUVER BC V6P 5M9

Page: 3 - D Total # Pages: 3 (A - D) Plus Appendix Pages Finalized Date: 18-AUG-2012 Account: GOLRESCO

		ME-M541	ME-MS41	ME-MS41	ME+MS41	ME-M541	ME-MS41	ME-MS41	ME-MS41	
	Method	Ti	лац 201 - 11 Тр	-12 #2 14 U	V	W	Y	Zn	Zr	
	Analyte		ppm	porn.	ppm	pom	ppm	P pcn	ppm	
Sample Description	Units LOR	0.00\$	0.02	0.05	1	0.05	0.05	2	0.5	
	LOR	0.005	0.02	0.03	-	0.01	0.00	-		
1201270011		0.005	0.16	0.64	86	1.12	4.46	17	2.2	
1201270012		0.071	0.10	0.21	88	<0.05	4.34	76	1.8	
1201270013		0.006	0.04	0,38	23	<0.05	4.13	63	5.5	
1201270014		0.225	<0.02	0.19	119	<0.05	9.63	76	2.6	
1201270015		0.034	0.03	0.10	45	<0.05	4.65	70	1.1	
{						<0.05	7.13	64	3.2	
1201270016		0.007	0.04	D. 15	35					
1201270017		0.012	0.03	1.24	66	0.13	21.8	113	4.8	
1201270018		0.005	0.03	0.23	36	<0.05	17.85	108	2.9	
1201270019		<0.005	0.02	0.18	41	<0.05	7.31	78	1.0	
1201270020		0.051	0.05	0.08	24	0.06	4,60	23	1.7	· · · · · · · · · · · · · · · · · · ·
1201270021		0.168	0.17	0.07	49	<0.05	4,47	64	1.0	
1201270022		0.005	0.05	0.16	14	<0.05	0.97	9	2.7	•
1201270023		0.192	0.03	0.10	78	0.05	4,48	96	25	
1201270024		0.121	0.03	0.31	24	<0.05	5.94	52	14.1	
12012/0024		0.121	0.00	0.01		10.00	0.04			
		ł								
		[
		L								
		í								
		l								
		[
1										
1		1								· · · - · · · · · · · · · · · · · · · · · · ·
		L	-							

т

ALS Canede Ltd. 2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: GOLDCLIFF RESOURCE CORPORATION 6976 LABURNUM ST VANCOUVER BC V6P 5M9

Page: Appendix 1 Total # Appendix Pages: 1 Finalized Date: 18-AUG-2012 Account: GOLRESCO

Method	CERTIFICATE COMMENTS	
ME-MS41	Interference: Samples with Ca>10% on ICP-MS As. ICP-AES As results reported (2 ppm DE)	
ME-MS41	Gold determinations by this method are semi-quantitative due to the small sample weight used (0.5g).	

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: GOLDCLIFF RESOURCE CORPORATION 6976 LABURNUM ST VANCOUVER 8C V6P 5M9

CERTIFICATE KL12173141

Project:

P.O. No.: 2012-TU-001

This report is for 46 Soil samples submitted to our lab in Kamloops, BC, Canada on 25-JUL-2012.

The following have access to data associated with this certificate:

LEONARD SALEKEN	(2) LEONARD SALEKEN	LEONARD SALEKEN

	SAMPLE PREPARATION	l
ALS CODE	DESCRIPTION	
WEI-21	Received Sample Weight	
LOG~22	Sample login ~ Rcd w/o BarCode	
PUL-31	Pulverize split to 85% <75 um	
SCR-41	Screen to -180um and save both	
	ANALYTICAL PROCEDUR	ES
ALS CODE	DESCRIPTION	INSTRUMENT
Au-ST43	Super Trace Au - 25g AR	ICP-MS
ME- MS 41	51 anal. aqua regia ICPMS	

To: GOLDCLIFF RESOURCE CORPORATION ATTN: (2) LEONARD SALEKEN 6976 LABURNUM ST VANCOUVER BC V6P 5M9

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

Signature:

Colin Ramshaw, Vancouver Laboratory Manager

***** See Appendix Page for comments regarding this certificate *****

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: GOLDCLIFF RESOURCE CORPORATION 6976 LABURNUM ST VANCOUVER BC V6P 5M9

Page: 2 - A Totał # Pages: 3 (A - D) Plus Appendix Pages Finalized Date: 11-AUG-2012 Account: GOLRESCO

HRIETA								-	C	ERTIFIC	CATE O	F ANAL	YSIS	KL121	73141	
Sample Description	Method Analyte Units LOR	WEI-21 Recvd Wt. kg C.02	Au-ST43 Au ppm 0.0001	ME-MS41 Ад Фртт 0.01	NE-MS41 A1 % 0.01	ME-MS41 As ppm 0.1	ME-MS41 Au ppm 0.2	МЕ~M541 В арт 10	МЕ- М541 Ва ррт 10	ME-MS41 Be ppm Q.05	ME-M541 Bi ppm 0.01	ME-MS41 Ca % 0.01	ме-м541 Са рэт 0.01	ME-MS41 Ce ppm 0.02	ME-MS41 Co ppm 0.1	ME-MS41 Cr ppm 1
1201242001		0.26	0.0115	0.08	2.68	8.1	<0.2	<10	190	0.28	0.13	0.47	0.09	17.25	22.4	26
1201242002		0.15	0.0010	0.06	1.45	15.1	<0.2	<10	390	0.62	0.16	0.52	0.95	124.5	23.9	18
1201242003		0.30	0.0010	0.02	1.00	5.0	<0.2	<10	120	0.31	0.10	0.46	0.06	24.4	8.3	20
1201242004		0.27	0.0013	0.01	1.23	4.1	<0.2	<10	70	0.34	0.09	0.50	0.03	18.75	8,5	23
1201242005		0.31	0.0050	0.03	1.05	3.5	<0.2	<10	110	0.32	0.08	0.50	0.05	17.85	8.2	20
1201242006		0.34	0.0009	0.06	1.15	6.4	<0.2	<10	130	0.34	0.08	0.46	0.11	20.6	9.0	24
1201242007		0.66	0.0011	0.08	0.95	6.7	<0.2	<10	120	0.25	0.08	0.40	0.11	18.45	8.8	18
1201242008		0.29	0.0012	0.30	1.19	B.2	<0.2	<10	260	0.26	0.11	1.33	0.24	20.7	11.5	16
1201242009		0.41	0.0006	0.11	0.95	5.8	<0.2	<10	160	0.24	0.08	0.81	0.07	18,90	7.3	15
1201242010		0.32	0.0033	0.34	2.72	32,5	<0.2	<10	1080	0.72	0.06	3,20	0.25	20.3	36.6	54
1201242011		0.30	0.0025	1.35	3.02	60.6	<0.2	<10	400	0.42	0,19	1.89	0.93	32.3	30.7	20
1201242012		0.48	0.0010	0.23	1.22	B.7	<0.2	<10	140	0.21	0.05	1.62	0.15	18.35	12.D	28
1201242013		0.46	0.0011	0,19	1.48	8.6	<0.2	<10	130	0.27	0.07	0.54	0.17	16.70	16.2	36
1201242014		0.35	0.0016	0. 06	1.73	3.2	<0.2	<10	70	0.32	0.09	0.67	0.10	9.77	26.5	25
1201242015		0.38	0.0111	0.07	1.43	4.0	<0.2	<10	80	0.23	0.07	0.75	0.12	17.40	16.4	25
1201242016		0.24	0.0041	0.05	1.50	4.6	<0.2	<10	120	0.32	0.09	1.04	0.23	20.7	16.0	32
1201242017		0.37	0.0109	0.24	1.36	6.t	<0.2	<10	70	0.28	0.09	0.41	0.39	13,00	11.7	16
1201242018		0.41	0.0038	0.15	1.70	6.7	<0.2	<10	90	0.19	0.11	0.39	0.36	13.30	14.3	19
1201242019		0.31	0.0014	0.08	1.26	4.7	<0.2	<10	140	0.27	0.09	0.58	0.14	16.50	10.5	29
1201242020		0.36	0.0016	0.04	1.08	3.3	<0.2	<10	150	0.26	0.10	0.53	0.05	17.60	8.3	22
1201242021		0.30	0.0009	0.03	0.98	1.2	<0.2	<10	140	0.26	0.12	0.40	0.04	14.75	6.7	18
1201242022		0.29	0.0011	0.09	1.t7	5.4	<0.2	<10	130	0.22	0.08	0.85	0.11	13.90	9.1	18
1201242023		0.32	8000.0	0.02	0.99	2.0	<0.2	<10	170	0.21	0.10	0.47	0.05	15.10	7.7	20
1201242024		0.33	0.0009	0.02	1.17	2.7	<0.2	<10	130	0.27	0.08	0.51	0.05	20.1	8.4	24
1201242025		0.41	0.0008	0.02	1.01	1.7	<0.2	<10	110	0.20	0.08	0.44	0.04	19.15	7.5	28
1201242026		0.3D	0.0009	0.03	1.03	2.9	<0.2	<10	100	0.28	0.08	0.45	0.06	19.40	7.6	23
1201242027		0.48	0.0007	0.02	0.90	2.0	<0.2	<10	80	0.25	0.07	0.41	0.07	19.85	7.0	23
1201242028		0.21	0.0008	0.03	0.99	1.6	<0.2	<10	90	0.21	0.07	0.40	0.04	18.05	8.6	20
1201242029		0.38	0.0004	0.02	0.81	1.4	<0.2	<10	70	0.16	0.06	0.32	0.04	11-60	7.5	29
1201242030		0.34	0.0008	0.02	0.96	1.9	<0.2	<10	110	0 28	0.07	0.43	0.08	23.2	8.8	25
1201242031		0,33	0.0005	0.04	1.39	2.9	<0.2	<10	90	0.22	0.04	2.87	0.05	10.45	8.8	27
1201242032		0.32	0.0020	0.04	1.42	2.8	<0.2	<10	90	0.29	0.05	0.73	0.08	12.40	11.4	24
1201242033		0.32	0.0009	0.04	1.20	2.8	<0.2	<10	70	0.21	0.05	0.61	0.04	12.60	10.1	28
1201242034		0.25	0,0010	0.06	1.41	3.6	<0.2	<10	70	0.31	0,05	0.78	0.08	16.15	12.7	25
1201242035		0.35	0.0012	0.06	1.38	4.6	<0.2	<10	90	0.28	0.07	0.59	0.09	16.55	14.4	28
1201242036		0.35	0.0008	0.05	1.54	2.8	<0.2	<10	120	0.24	0.05	0.84	0,10	13.00	14.6	26
1201242037		0.30	0.0020	0.06	3.46	3.4	<0.2	<10	120	0.36	0.07	1.07	0.17	9.81	29.5	24
1201242038		0.45	0.0005	0.03	0.96	1.5	<0.2	<10	70	0.23	0.03	0.47	0.02	15.35	7.4	28
1201242039		0.32	0.0014	0.04	1.67	5.6	<0.2	<10	100	0.28	0.07	0.37	0.29	9.23	12.7	20
1201242040		0.31	0.0020	0.35	1.73	7.3	<0.2	<10	160	0.20	0.08	0.81	0.25	11.55	13.6	21
207667699V																

2103 Dollarton Hwy North Vancouver 8C V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: GOLDCLIFF RESOURCE CORPORATION 6976 LABURNUM ST VANCOUVER 8C V6P 5M9

Page: 2 - B Total # Pages: 3 (A - D) Plus Appendix Pages Finalized Date: 11-AUG-2012 Account: GOLRESCO

	Method	ME-MS41	ME-M541	ME- MS41	ME-MS41	ME-MS41	₩E-MS41	ME-MS41	ME-MS41	ME-MS41	ME-MS41	ME-MS41	ME-MS41	ME-MS41	ME-MS41	ME-MS41
	Analyte	Cs	Cu	Fe	Ga	Ge	HI	Hg	lя	X	La	Li	Mg	Man	Mo	Na
	Units	ррета	ppri	%	pp en	ppm	ppm	ppm	ppm	×	op m	ppm	%	ppm	ppm	*
Sample Description	LOR	0.05	Q.2	0.01	0.05	0.05	0.02	0.01	0.005	0.01	0.2	Q.1	0.01	5	0.05	0.01
1201242001		0.68	59.7	5.70	7.64	0.07	0.28	0.04	0.032	0.17	8.7	10.0	1.23	776	2.07	0.10
1201242002		2.57	17.4	2.40	5.59	0.08	0.40	0.03	0.024	0.13	15.7	9.0	0.37	8240	1.84	0.07
1201242003		0.76	16.3	2.18	4.15	0.05	0.41	0.03	0.021	0.12	9.9	4.2	0.44	64 6	0.79	0.08
1201242004		0.83	16.1	2.38	4.32	0.05	0.35	0.03	0.021	0.11	8.6	4.4	0.45	325	0.56	0.05
1201242005		0.75	16.7	2.48	4.23	0,05	0.37	0.02	0.020	0.11	8.5	4.1	0.43	349	0.54	0.07
1201242006		0.69	25.5	2.61	4.28	0.06	0.36	0.02	0.023	0.13	10.2	5.3 5.2	0.48 0.47	342 344	1.01 1.09	0.05
1201242007		0.53	31.0	2.48	3.60	0.06	0.26	0.02	0.020	0.12	9.3		0.56	480	1.60	0.04
1201242008		0.41	53.0	3.37	3.90	0.07	0.22	0.04	0.024	0.12	12.7	7.9 5.4	0.47	355	1.22	0.04
1201242009		0.56	25.6	2.27	3.39	0.05	0.28	0.02	0.021	0.12	9.4	5.4 15.2		1010	6.59	0.05
1201242010		0.40	208	8.70	7.52	0.11	0.15	0.09	0.038	0.06	10.2		2.20			
1201242011		0.31	204	9.46	8.23	0.16	0.15	0-09	0.053	0.10	20.9	32.5	2.32	840	14.70	0.03
1201242012		0.37	34.4	3.10	4.23	0.08	0.22	0.03	0.023	0.11	9.4	6.8	0.75	502	1.54	0.05
1201242013		0 35	50.6	3.83	4.69	0.07	0.18	0.02	0.020	0.13	7.9	9.2	0.91	462	1.63	0.04
1201242014		0.39	129.5	4.83	4.75	0.05	0.20	0.02	0.020	0.12	4.4	4.8	0.56	667	1.38	0.06
1201242015		0.44	41.1	3.21	4.19	0.05	0.22	0.02	0.018	0.15	7.3	6.1	0.72	804	0.77	0.08
1201242016		0.66	37.6	2.87	4.66	0.06	0.27	0.01	0.023	0.18	9.7	7.3	0.76	768	0.86	0.07
1201242017		0.74	62.7	5.49	4.30	0.65	0.14	0.05	0.019	0.17	4.9	4.6	0.54	775	1,17	0.03
1201242018		0.38	49.1	4.08	4.61	0.05	0.14	0.02	0.020	0 16	5.4	6.9	0.90	55 1	1.39	0.06
1201242019		0.50	26.0	3.15	4.20	0.05	0.35	0.01	0.018	0.15	\$.1	6.1 3.7	0.64	488 485	0.93 0.61	0.08 0.09
1201242020		0.51	15.6	2.63	4.00	0.06	0.47	0.01	0.017	0.14	8.3		0.40			
1201242021	-	0.49	11.9	2.30	3.73	<0.05	0.53	0.01	0.017	0.16	6.7	2.5	0.33	339	0.39	0.08
1201242022		0.57	29.6	2.70	3.93	<0.05	0.36	0.01	0.017	0.18	6.4	4.9	0.42	362	0.57	0.09
1201242023		0.51	14.8	2.68	4.04	0.65	0.41	0.04	0.020	0.15	7.3	3.1 3.5	0.37 0.42	404 413	0.41	0.05
1201242024		0.69	17 5	2.63	4.22	0.06	0.52	0.02	0.020	0.16 0.16	10.4 9.9	3.0 2.7	0.33	331	0.40	0.09
1201242025		0.61	13.6	2.67	4.09	0.05	0.49	<0.01	0.021		•••					
1201242026		0.60	16.4	2.28	3.79	0.05	0.41	0.02	0.019	0.14	9.7	4.0	0.41	360	0.48	0.09
1201242027		0.78	15.0	2.02	3.45	0.05	0.43	0.02	0.017	0.14	10.0	3.6	0.34	244	0.45	0.08 0.08
1201242028		0.61	14.4	2.17	4.14	0.06	0.35	0.01	0.020	0.13	7.0	4.5	0.34 0.23	372 276	0.45 0.45	0.08
1201242029		D.55	11.5	2.64	4.07	0.08	0.25	0.01	0.017	0.13	5.7	2.6		408	0.45	0.08
1201242030		0.67	13.9	2.37	3.84	0,06	0.44	0.02	0.018	0.15	9.5	3.2	0.32			+
1201242031		0.51	19.3	2.85	4.82	0.06	0.10	0.01	0.017	0.11	5.3 5.7	9.0	0.71	368 515	0.50 0.65	0.04
1201242032	1	0.45	38.9	3.18	4.32	0.05	0.18	0.01	0.016	0.13 0.13	5.7	5.3	0.61	338	0.65	0.05
1201242033		0.31	25.4	2.72	3.73	0.05	0.20	0.01	0.015		5.9 7.9	5.3 7.0	0.61	455	0.98	0.08
1201242034		0.42	34.0	3.15	4.53	0.05	0.23	0.02	0.018	0.14i 0.12	7.8	7.3	0.65	400 528	0.88	0.05
1201242035		0.44	32.0	3.47	4.69	0.08	0.20	0.02	D.017							
1201242036		0.44	37.6	3.96	4.57	0.06	0.11	0.02	0.018	0.14	6.0	8.2	0.80	602	0.64 1.09	Q.07 Q.14
1201242037		1.56	103.0	5.03	7.32	0.07	0.12	0.04	0.020	0.73	4.D	10.4	1.21	739		0.08
1201242038		0.37	12.6	2.39	3.54	0.05	0.30	0.03	0 018	0.09	7.2	4.4	0.42	313	0.38	
1201242039		0.51	25.4	3.97	4.30	0.05	0.15	0.04	0.016	0.1B	4.2	8.4	0.76	508 500	1.05	0.04
1201242040		0.37	52.2	4.08	4.65	<0.05	0,17	0.05	0.021	0.12	60	9.3	0.98	580	1.90	Q.05

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.aisglobai.com

To: GOLOCLIFF RESOURCE CORPORATION 6976 LABURNUM ST VANCOUVER BC V6P SM9

Page: 2 - C Total # Pages: 3 (A - D) Plus Appendix Pages Finalized Oate: 11-AUG-2012 Account: GOLRESCO

Sample Description	Method Analyte Units LOR	ME-MS41, NБ рртт 0.05	ME+MS41 Ni ppm 0.2	ME-MS41 P ppm 10	ME-MS41 РЬ ррмп 0.2	ме-м541 Ад ррт 0.1	ME-MS41 Re 0:001	ME-MS41 5 % 0.01	ME-MS41 Sb ppm 0.QS	ME-MS41 Sc ppm 0.1	ME-MS41 Se ppm 0.2	ME-MS41 Sn ppm 0.2	ME-MS41 Sr port 0.2	ME~M541 Ta ppm 0.01	МЕ-МS41 Те ралт∞ 0.01	ME-MS41 Th ppm 0.2
1201242001		0.18	17.4	1450	5.9	6.6	0.002	0.36	0.33	6.9	1.9	0.4	185.0	<0.01	0.63	2.0
1201242002		0.20	31.7	400	12.3	23.1	0.002	0.01	0.16	5.3	0.4	0.8	63.9	<0.01	0.06	2.7
1201242003		0.14	f0.7	450	5.1	8.3	0.002	<0.01	0.15	3.6	<0.2	0.6	79.0	<0.01	0.02	1.9
1201242004		0.15	10.8	430	4.6	6.0	0 001	<0.01	0.20	4.1	<0.2	0.5	48.1	<0.01	0.02	1.9
1201242005		0.14	9.8	440	4.5	7.0	0.002	<0.01	0.21	4.0	<0.2	0.4	65.7	<0.01	0.04	1.6
1201242006		0.14	14.9	430	53	8.7	0.001	0.01	0.33	4.0	0.5	0.4	38.5	<0.01	0.03	1.7
1201242007		0.15	16.0	450	5.8	6.6	0.002	0.01	0.39	3.5	1.1	0.3	33.6	<0.01	0.05	1.4
1201242008	1	0.11	30.3	700	8.3	5.4	0.002	0.03	0.78	3.5	1.5	6.3	54.7	<0.01	0.06	1.4
1201242009	1	0.14	15.2	420	4.9	8.3	0.002	<0.01	0.38	3.3	0.2	0.3	42.7	<0.01	0.03	1.5
1201242010		<0.05	38.9	1210	6.2	1.5	0.002	0.17	2.41	15.1	1.4	0.4	221	<0.01	0.05	0.8
1201242011		<0.05	40.0	840	22.2	2.1	0.009	0.30	2.05	10.3	5.2	0.2	60.1	<0.01	0.27	0.9
1201242012		0.10	20.0	760	3.9	4.0	0.002	0.01	0.43	4.7	0.4	0.3	70.0	<0.01	0.04	1.5
1201242013	1	0.11	23.2	760	4.5	4.5	0.003	0.01	0.47	4.9	0.8	0.3	46.9	<0.01	0.08	1.Z
1201242014		0.29	15.4	1070	3.6	4.8	0.001	0.03	0.17	3.9	0.6	0.4	56 .0	<0.01	0.18	1.0
1201242015		0.14	16.1	770	3.6	6.3	0.002	0.02	0.26	4.3	0.2	0.3	59.4	<0.01	0.07	1.2
1201242016		0.24	24.0	770	5.0	76	0.003	0.03	0.30	5.0	0.8	0.4	69.4	<0.01	0.06	1.8
1201242017		0.09	10.9	1040	6.5	5.4	0.003	0.04	0.23	3.5	1.7	0.3	41.7	<0.01	1.21	1.2
1201242018		0.17	12.6	950	12.9	5.6	0.002	0.10	0.26	4.1	0.7	0.3	63.3	<0.01	0.30	0.9
1201242019		0.10	19.5	590	4.8	7.2	0.002	0.02	0.25	4.3	0.2	0.4	52.1	<0.01	0.08	1.5
1201242020		0.08	11.6	460	4.3	6.6	0.001	<0.01	0.19	3.7	<0 2	0.4	79.0	<0.01	0.02	2.2
1201242021		0.07	8.5	340	4.1	7.4	0.001	<0.01	0.10	3.3	<0_2	0.3	64.9	<0.01	<0.01	1.7
1201242022		0.16	12.1	490	4.3	8.3	0.001	0.01	0.19	3.8	<0.2	0.4	80.3	<0.01	0.01	1.7
1201242023		0.11	9.7	470	3.8	6.9	0.001	<0.01	0.f5	3.9	<0.2	0.4	68.B	<0.01	0.01	1.5
1201242024		0.07	11.0	470	4.1	7.6	0.002	<0.01	0.13	4.5	0.2	0.5	69.7	<0.01	0.01	2.0
1201242025		0.07	10.0	360	3.9	10.4	0.001	<0.01	0.11	3.8	<0.2	0.5	73.8	<0.01	0.02	1.8
1201242026		0.10	11.8	400	3.7	7.6	0.001	<0.01	0.15	3.7	<0.2	0.5	65.4	<0.01	<0.01	1.8
1201242027		0.10	11.9	340	3.4	14.3	0.001	<0.01	0.15	3.5	<0.2	0.4	50.3	<0.01	0.01	1.8
1201242028		0.22	11.6	210	3.5	7.8	0.002	<0.01	0.11	3.6	<0.2	0.4	64.2	<0.01	<0.01	1.3
1201242029		0.17	9.9	200	3.2	7.8	0.001	<0.01	0.13	2.7	<0.2	0.4	42.2	<0.01	0.01	1.1
1201242030		0.13	13.4	270	4.0	11.5	0.001	<0.01	0.14	3,5	<0.2	0.4	59.0	<0 01	0.01	1.7
1201242031		0.41	13.6	500	3.2	6.7	0.003	0.04	0.27	4.1	0.2	0.3	73.7	<0.01	0.03	D.8
1201242032		0.28	14.1	540	3.4	7.2	0.001	0.02	0.23	4.3	<0.2	0.3	59.6	<0.01	0.03	1.2
1201242033		0.17	14.8	620	2.9	5.3	0 001	0.01	0.22	3.8	<0.2	0.3	50.5	<0.01	0.04	1.1
1201242034		0.14	16.5	760	3.3	5.2	0.002	0.03	0.26	4.8	<0.2	0.4	59.5	<0.01	0.06	1.2
1201242035		0.19	15.1	610	4.2	6.4	0.002	0.02	0.31	4.3	0.3	0.4	49.6	<0.01	0.08	1.3
1201242036		0.31	17.0	620	3.6	7.2	0 002	0.02	0.24	4.7	<0.2	0.3	72.2	<0.01	0.05	1.0
1201242037		0.13	21.2	910	8.5	29.7	<0.001	0.02	0.21	7.6	0.7	0.3	119.5	<0.01	D.13	0.8
1201242038		0.19	15.1	460	2.5	6.2	<0.001	0.02	0.12	3.5	<0.2	0.4	46.9	<0.01	0.03	1.2
1201242039		0.24	13.5	630	82	9.2	<0.001	0.04	0.27	3.6	0.7	0.3	29.1	<0.01	0.16	0.9
1201242040		0.10	18 0	930	6.6	3.9	0.001	0.04	0.39	4.7	1.3	0.3	38.4	<0.01	0.10	0.6

ALS Canada Ud.

2103 Dollarton Hwy North Vancouver BC V7H DA7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: GOLDCLIFF RESOURCE CORPORATION 6976 LABURNUM ST VANCOUVER BC V6P 5M9

Page: 2 - D Total # Pages: 3 (A - D) Plus Appendix Pages Finalized Date: 11-AUG-2012 Account: GOLRESCO

Minera	15								CERTIFICATE OF ANALYSIS KL12173141
Sample Description	Method	ME-M541	ME-MS41	ME-MS41	₩€- M \$4L	ME-MS41	ME-MS41	ME-MS41	ме-м\$41
	Analyte	Ti	Tř	U	¥	W	Y	Zn	Zr
	Units	%	ppm	pom	ppm	ppm	ppm	ppm	ррп
	LOR	0.005	Q.02	0.05	1	0.05	0.05	2	0,5
1201242001		0.070	0.08	0.64	84	0.06	6.09	82	10.5
1201242002		0.079	1.37	1.94	67	0.10	11.40	62	16.7
1201242003		0.093	0.11	0.67	55	0.06	5.27	33	12.0
1201242004		0.100	0.07	0.63	69	0.06	5.60	30	10.8
1201242005		0.110	0.05	0.53	75	0.08	6. 29	38	11.4
1201242006		0.093	0.08	0.59	68	0.06	6.65	50	13.1
1201242007		0.071	0.06	0.45	52	0.08	6.31	54	9.5
1201242008		0.045	0.05	0.44	46	0.07	9.53	111	8.6
1201242009		0.059	0.06	0.44	42	0.06	6.83	55	9.3
1201242010		0.071	0.05	0.56	135	0.06	24.5	122	5.2
1201242011 1201242012		0.009 0.080	0.06 0.04	0.49 0.52	77 70	0.06 0.14	42 5 9.20	243 64	5.0 7.3
1201242013		0.088	0.06	0.47	60	0.08	9.88	72	6.4
1201242014		0.133	0.05	0.42	90	0.16	4.93	63	7.9
1201242015		0.100	0.06	0.37	81	0.07	7.28	49	6.6
1201242016		0.098	0.08	0.47	70	0.08	8.76	54	10.0
1201242017		0.039	0.07	0.32	62	<0.05	4.32	77	4.1
1201242018		0.072	0.06	0.37	75	<0.05	5.39	103	6.5
1201242019		0.101	0.07	0.57	B1	0.07	6.72	62	11.5
1201242020		0.107	0.06	0.63	75	0.08	6.49	40	14.8
1201242021		0.106	0.04	0.63	71	0.05	4,13	44	17.0
1201242022		0.110	0.05	0.58	61	0.07	5.07	48	11.4
1201242023		0.117	0.06	0.58	81	0.07	5.09	48	i3.1
1201242024		0.107	0.06	0.72	75	0.07	6.94	38	17.5
1201242025		0.125	0.06	0.72	88	<0.05	5.21	40	16.7
1201242026 1201242027		0.104	0.07	0.57 0.61	64 57	0.06	6.47 7.85	36 30	14.0 14.3
1201242028		0.116	0.05	0.52	61	0.08	4,51	37	14.5
1201242029		0.141	0.04	0.41	91	0.05	3,59	40	8.9
1201242030		0.120	0.08	0.60	69	0.05	6,47	37	14.6
1201242031 1201242032		0.103 0.108	0.04	0.31 0.33	72 81	0.08	5.30 5.58	49 53	3.7 5.7
1201242033		0.106	0.03	0.35	74	0.07	4.90	37	6.4
1201242034		0.118	0.05	0. 38	88	0.08	7.73	47	7.5
1201242035		0.114	0.05	0.45	92	0.07	6.59	52	7.6
1201242036 1201242037 1201242038		0 122 0 180 0 124	0.05	0.33	123 141 71	0.08 0.08 0.05	5.59 5.74	49 98	4.2 5.0
1201242038		0.124	0.05	0. 38	71	0.05	5.67	41	10.3
1201242039		0.086	0.07	0.33	79	<0.05	3.60	133	7.2
1201242040		0.085	0. 04	0.59	88	0.06	9.67	92	4.9

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: GOLDCLIFF RESOURCE CORPORATION 6976 LABURNUM ST VANCOUVER BC V6P 5M9

Page: 3 - A Total # Pages: 3 (A - D) Plus Appendix Pages Finalized Date: 11-AUG-2012 Account: GOLRESCO

Minera	15								C	ERTIFIC	ATE O	F ANAL	YSIS	KL121	73141	
Sample Description	Method Analyte Units LOR	WEI-21 Recvd Wt. kg 0:02	Au-ST43 Au ppm 0.0001	ME-MS41 Ag opm 0.01	ME-MS41 Aj X 0.01	ME-MS41 As ppm: 0.1	МЕ-MS4 1 Ац ррт 0.2	ME-MS41 8 ppm 10	ME-MS41 Ba ppm 10	ME-MS41 Be ppm 0.05	ME-MS41 Bi ppm 0.01	ME-MS41 Ca % 0.01	ME-M541 Cd ppm 0.01	ME~M\$41 Ce ppm 0.02	ME-MS41 Co ppm 0.1	ME-MS41 Cr POTT 1
1201242041 1201242042 1201242043 1201242043 1201242044 1201242044		0.18 0.33 0.43 0.19 0.32	0.0009 0.0017 0.0008 0.0023 0.0010	0.24 0.14 0.03 0.09 0.03	1.28 1.84 0.38 2.50 1.02	1.9 8.6 1.2 7.4 2.9	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2	<10 <10 <10 <10 <10	170 90 40 180 110	0.21 0.27 0.13 0.27 0.27	0.06 0.09 0.04 0.11 0.06	0.39 0.32 0.21 0.43 0.50	0.29 0.42 0.02 0.10 0.04	10.80 10.55 24.7 14.10 15.25	9.3 15.0 4.5 16.2 7.3	20 23 20 20 19
1201242046		0.35	0.0011	0.03	1.04	1.8	<0.2	<10	80	0.24	0.03	0.50	0.04	18.05	7.5	27

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: GOLDCLIFF RESOURCE CORPORATION 6976 LABURNUM ST VANCOUVER BC V6P 5M9

Page: 3 - B Total # Pages: 3 (A - D) Plus Appendix Pages Finalized Date: 11-AUG-2012 Account: GOLRESCO

Minera	IS								С	ERTIFIC	CATE O	F ANAL	YSIS	KL121	73141	· ··· -
Sample Description	Method Analyte Units LOR	ME-MS41 Cs ppm 0.05	ME-M541 Cu ppen. 0.2	ME-MS41 Fe % 0.01	ME-MS41 Ga ppm Q.05	ME-MS41 Ge ppm 0.05	ME-MS41 HF ppm 0.02	HC-MS4) Hg ppm 0.61	MC-MS41 In crpm 0.005	ME-MS41 K % 0.01	ME~MS41 La ppm 0.2	ME-MS41 Li ppm 0.1	ME-MS41 Mg % 0.01	ME-MS41 Mn ppm 5	₩Е-₩541 Мо ррп 0.05	ME-M541 Na % 0.01
1201242041 1201242042 1201242043 1201242043 1201242044 1201242044		0.75 0.55 0.32 0.56 0.69	13.2 54.4 5.6 49.4 14.9	3.67 4.68 1.99 5.48 2.44	5.51 5.24 2.09 6.78 3.92	<0.05 <0.05 <0.05 0.05 0.05	0.23 0.23 0.18 0.25 0.41	0.02 0.02 0.03 0.05 0.04	0.017 0.026 0.009 0.032 0.020	0.15 0.15 0.06 0.15 0.08	3.2 5.5 12.6 7.0 7.2	3.8 9.3 1.9 8.5 3.9	0.38 0.90 0.15 1.22 0.43	1530 741 237 776 339	0.78 1.47 0.44 1.57 0.43	0.07 0.04 0.03 0.10 0.05
1201242046		0.39	13.7	2.38	3.85	0.06	0.31	0.02	0.018	0.10	7.4	4.6	0.45	336	0.38	0.09

(ALS)

ALS Canada Ltd.

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: GOLDCLIFF RESOURCE CORPORATION 6976 LABURNUM ST VANCOUVER BC V6P 5M9

Page: 3 - C Total # Pages: 3 (A - D) Plus Appendix Pages Finalized Oate: 11-AUG-2012 Account: GOLRESCO

Ninera	12								C	ERTIFIC	CATE O	F ANAL	YSIS	KL121	73141	
Sample Description	Method Analyte Units LOR	ME-M541 N3 Dpm 0.05	ME+MS41 Ni ppm 0.2	ME+MS41 P ppm 10	ME-MS41 Pb ppm 0.2	МЕ~MS41 Rb ррлъ 0.1	ME-MS41 Re ppm 0.001	ME-MS41 S % 0.01	ME-MS41 Sb ppm 0.05	ME-MS41 Sc ppm 0.1	ME-MS41 Se ppm 0.2	ME~MS41 Sn ppm 0.2	M£- N541 5r ppm 0.2	ME-MS41 Ta ppm 0.01	ME-MS41 Те рат- 0.01	ME-MS41 Тh ppm 0.2
1201242041 1201242042 1201242043 1201242044 1201242044 1201242045		0.39 0.23 0.96 0.18 0.19	f0.1 17.9 7.4 12.4 9.0	340 820 200 1380 439	5.2 7.8 2.3 5.3 4.4	9.8 8.1 3.1 5.5 6.2	0.001 0.001 <0.001 <0.001 <0.001	0.02 0.07 0.01 0.39 0.01	0.14 0.38 0.13 0.32 0.21	2.5 4.4 1.3 5.8 3.7	<0.2 1.1 <0.2 2.5 <0.2	0.4 0.3 0.4 0.3 0.5	31.0 34.5 20.2 183.0 60.8	<0.01 <0.01 <0.01 <0.01 <0.01 <0.01	<0.01 0.25 <0.01 0.52 0.03	1.1 1.1 3.3 1.7 1.6
201242045		0.20	15.5	490	2.7	6.6	<0,001	0.02	0.13	3.7	<0.2	0.4	52.2	<0.¢1	0.02	1.3

2103 Dollarton Hwy North Vancouver 8C V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.aisglobal.com

To: GOLDCLIFF RESOURCE CORPORATION 6976 LABURNUM ST VANCOUVER BC V6P SM9

Page: 3 - D Total # Pages: 3 (A - D) Plus Appendix Pages Finalized Date: 11-AUG-2012 Account: GOLRESCO

Sample Description	Method Analyte Units LOR	ME-MS41 Ti % 0.005	ME-MS41 T1 ppm 0.02	ME-MS41 U ppm 0.05	ME-MS41 V spm 1	ME-MS41 W ppm 0.05	ME-MS41 Y pp://	ME-MS41 Zn pprn 2	ME-MS41. Zr ppm 0.5	
1201242041 1201242042 1201242043		0.180 0.074 0.082	0.06 0.08 0.02	0.20 0.42 0.64	97 73 57	0.07 0.06 0.06	2.21 5.60 4.62	117 135 16	7.6 9.5 4.9	
1201242044 1201242045		0.057	0.07 0.05	0.57 0.47	64 72	0.06 0.07	5.47 6.14	77 38	9.7 11.8	
1201242046		0.120	0.04	0.39	89	0.05	6.28	40	11.0	

Т

ALS Canada Lid. 2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: GOLDCLIFF RESOURCE CORPORATION 6976 LABURNUM ST VANCOUVER BC V6P 5M9

Page: Appendix 1 Total # Appendix Pages: 1 Finalized Date: 11-AUG-2012 Account: GOLRESCO

Method	CERTIFICATE COMMENTS	
ME-MS41	Cold determinations by this method are semi-quantitative due to the small sample weight used (0.5g).	

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: GOLDCLIFF RESOURCE CORPORATION 6976 LABURNUM ST VANCOUVER 8C V6P 5M9

CERTIFICATE KL12173140

Project:

P.O. No.: 2012-TU-001

This report is for 180 Soil samples submitted to our lab in Kamloops, BC, Canada on 25-JUL-2012.

The following have access to data associated with this certificate:

LEONARD SALEKEN

ALS CODE	DESCRIPTION	<u> </u>
WEI-21	Received Sample Weight	
LOG-22	Sample login - Rcd w/o BarCode	
SCR-41	Screen to -180um and save both	

ANALT FICAL PROCEDU	IKES
DESCRIPTION	INSTRUMENT
Ore Grade Au - 25g AR	ICP-MS
Super Trace Au – 25g AR	ICP-MS
51 anal. aqua regia ICPMS	
	DESCRIPTION Ore Grade Au - 25g AR Super Trace Au - 25g AR

To: GOLDCLIFF RESOURCE CORPORATION ATTN: LEONARD SALEKEN 6976 LABURNUM ST VANCOUVER BC V6P 5M9

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

Signature:

Colin Ramshaw, Vancouver Laboratory Manager

***** See Appendix Page for comments regarding this certificate *****

2103 Dollarton Hwy North Vancouver &C V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: GOLDCLIFF RESOURCE CORPORATION 6976 LABURNUM ST VANCOUVER BC V6P 5M9

Page: 2 - A Total # Pages: 6 (A - D) Pius Appendix Pages Finalized Date: 13-AUG-2012 Account: GOLRESCO

Sample Description	Method Analyte Units LOR	WEI-21 Recvd Wt. kg 0.02	Au-ST43 Au ppm 0.0001	ME-MS41 Ag ppm 0.01	NHE-MS41 Al % 0.01	МЕ-М541 As ppm 0.1	ME-MS41 Au ppm 0.2	ME-MS41 B ppm 10	ME-MS41 Ba ppm 10	ME-MS41 Be ppm 0.05	ME-MS41 Bi ppm 0.01	ME-MS41 Ca % 0.01	MS-MS41 Cd ogm 0.01	ME-M541 Ce ppm 0.02	ME-MS41 Ca porn 0.1	ME-MS41 Cr ppm 1
1201241001	_	0.25	0.0009	0.08	1.57	2.2	<0.2	<10	120	0.38	0.13	0.47	0.20	18.80	13.1	25
1201241002		0.28	0.0014	0.27	2.56	7.9	<0.2	<10	160	0.33	0.29	0.38	0.11	16.35	8.0	23
1201241003		0.25	0.0011	0.12	2.41	4.9	<0.2	<10	120	0.38	0.17	0.48	0.13	18.05	15.2	27
1201241004		0.40	0.0024	0.22	2.95	7.0	<0.2	<10	220	0.41	0.16	0.55	0.16	21.2	19.0	33
1201241005		0.26	0.0027	0.18	2.00	4.6	<0.2	<10	140	0.40	0.12	0.59	Q.87	21.5	18.3	25
1201241006		0.35	0.0023	0.26	2.44	6.7	<0.2	<10	100	0.48	0.16	0.55	0.24	24.8	17.6	38
1201241007		0.25	0.0001	0.09	1.65	1.7	<0.2	<10	150	0.35	0.11	0.20	0,19	12.30	4.6	Ð
1201241008		0.24	0.0007	0.16	1.56	2.3	<0.2	<10	120	0.32	0.11	0.49	D. 18	13.05	6.0	17
1201241009		0.32	0.0007	0.20	2.34	3.0	<0.2	<10	140	0.67	0.13	0.69	0.0B	38.5	12.7	31
1201241010		0.27	<0.0001	0.10	2.28	2.8	<0.2	<10	270	0.51	0.12	0.39	0.21	16.15	11.5	25
1201241011		0.31	0.0007	0.15	2.14	4,9	<0.2	<10	110	0.43	0.13	0.48	0.26	23.3	14.4	24
1201241012		0.27	0.0016	0.20	2.43	6.1	<0.2	<10	120	0.49	0.18	0.45	0.47	26.0	21.1	28
1201241013		0.26	<0.0001	0.06	0.94	2.1	<0.2	<10	140	0.27	0.09	0.37	80,0	13,00	5.3	14
1201241014		0.27	0.0003	0.09	0.89	1.8	<0.2	<10	170	0.25	0.09	0.42	0.08	11,95	4.3	11
1201241015		0.32	<0.0001	0.09	1.00	2.0	<0.2	<10	150	0.28	0.09	0.27	0.05	12.60	3.8	10
1201241016		0.28	<0.0001	0.06	1.05	2.t	<0.2	<10	140	0.24	0.09	0.39	0.11	13.30	5.5	14
1201241017		0.38	0.0003	0.13	1.36	3.5	<02	<10	190	0.32	0.10	0.66	0.29	18.45	9.4	23
1201241018		0.34	0.0022	0.05	4.29	1.6	<0.2	<10	160	0.52	0.03	3,64	0 20	6.81	21.0	4 14
1201241019		0.27	0.0006	0.14	1.31	2.9	<0.2	<10	100	0.24	0.09	0.32 0.47	1.16 0.54	9.53 17.20	10.3 20.1	14 20
1201241020		0.41	0.0030	0.23	2.33	9.0	<0.2	<10	80	0.39	0.13					
1201241021		0.34	0.0053	0.68	0.91	6.9	<0.2	<10	110	0.14	0.16	0.26	0.27	10.35	B.1	9
1201241022		0.36	0.0018	0.35	2.53	11.4	<0 2	<10	140	0.42	0.14	0.49	0.31	27,1	19.4	33
1201241023		0.35	0.0039	0.17	2.31	8.5	<0.2	<10	120	0.32	0.24	0.43	0.25	20,1	15.4	27 26
1201241024		0.30	0.0044	0.56	2.41	12.2	<0.2	<10	310	0.16	0.56	0.32	0.30	26.4	19.4 8.6	20
1201241025		040	0.0042	0.22	2.05	6.6	<0.2	<10	80	0.21	0.62	0.27	0.19	15.60		
1201241026		0.39	0.0004	0.11	2.23	5.8	<0.2	<10	220	0.50	0.14	0.53	0.35	21.5	22.7	27
1201241027		0.27	0.0005	0.17	1.82	5.0	<0.2	<10	140	0.45	0.10	0.48	0.22	24.9	15.1	38 17
1201241028		0.30	0.0037	0.17	2.82	7.6	<0.2	<10	90	0.30	0.08	0.82	0.23	14.90	22.5 6.9	17
1201241029		0.22	0.0010	0.13	1.40	4.4	<0.2	<10	110	0.31 0.30	0.08 0.17	0.40 0.52	0.18 0.24	14,30 16,30	0.9 9.4	28
1201241030		0.41	0.0016	0.31	2.13	10.0	<0.2	<10	210					-		
1201241031		0.31	0.0015	0.20	1.88	7.8	<0.2	<10	240	0.30	0.14	0.41	0.13	13.10	7.8	31
1201241032		0.33	0.0007	0.14	1.68	6.9	⊲0.2	<10	210	0.26	0.13	0.49	0.26	14.25 22.2	9.7 16.2	25 33
1201241033		0.28	0.0036	0.21	2.25	7.6	<0.2	<10	90 00	0.4t	0.13	0.52	0.22		16.2	24
1201241034		0.32	0.0021	0.15	1.63	6.8 0.5	⊲0.2	<10	90 60	0.32 0.33	0.16 0.10	0.43 1.09	1.26 1.13	18.40 12.15	16.5 29.7	24 15
1201241035		0.25	0.0135	0.30	3.49	9.5	<0.2	<10								
1201241036		0.40	0.0058	0.27	t.68	11.1	<0.2	<10	90	0.25	0.28	0.43	0.44	13.55	15.6	21
1201241037		0.33	0.0055	0.45	1.98	8.6	<0.2	<10	110	0.27	0.20	0.42	0.41	11.20	11.0	19
1201241038		0.34	0.0021	0.32	2.02	74	<0.2	<10	150	0.30	0.15	0.55	0.66	16.55	14.4	19
1201241039		0.31	0.0014	0.12	1.60	4.3	⊲0.2	<10	150	0.34	0.11	0.45	0.40	19,10	12.0	20
1201241040		0.34	0.0044	0.20	2.44	8.4	⊲0.2	<10	130	0.53	0.13	0.54	0.40	24.9	18.2	31

2103 Dollarton Hwy North Vancouver 8C V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

.

To: GOLDCLIFF RESOURCE CORPORATION 6976 LABURNUM ST VANCOUVER BC V6P 5M9

Page: 2 - B Total # Pages: 6 (A - D) Plus Appendix Pages Finalized Date: 13-AUG-2012 Account: GOLRESCO

	_ Method	ME-MS41	ME-NS41	ME- M541	ME-MS41	ME-MS41	ME-MS41	ME-M541	ME-MS4L	ME-MS41	ME-MS41	ME-MS41	ME-MS41	ME-M541	ME-MS41	ME- MS41
	Analyte	Cs	Cu	Fe	Ga	Ge	Нf	Hg	ĒN	к	La.	Ŀi	Mg	Mit	Мо	Na
Sample Description	Units	ppm	ppm	%	ppm	ppm	gpm	pam	ppm	ж	ppm	ያውጥ	5	ppm	ppm	*
sample Description	LOR	0.05	0.2	0.01	0.05	0.05	0.02	0.01	0.005	0.01	0.2	0.1	0.01	5	0.05	0.01
1201241001		0.75	36.3	2.61	4,76	0.06	Q. 18	<0.01	0.019	0.16	9.7	5.5	0.44	821	0.86	0.02
1201241002		0.94	58.8	5.77	7.38	0.08	0.24	<0.01	0.034	0.13	8.3	8.8	1.17	676	0.99	0.04
1201241003		1.20	84.0	4.00	5.71	0.09	0.22	<0.01	0.026	0.16	9.2	7.6	Q.92	611	0.76	0.03
1201241004		1.14	76.8	6.26	7.79	0.12	0.21	0.01	0.035	0.27	11.5	9.2	0.82	576	0.89	0.07
1201241005		0.78	67.1	294	4.78	0.10	0.11	0.02	0.021	0 16	9.9	7.1	0.55	1310	0.58	0.02
1201241006		0.82	79.6	3.82	5.95	0.13	D.23	0.01	0.032	D. 17	t4.2	10.5	0.87	632	0.88 0.49	0.02
1201241007		0.84	14,7	1.53	4.96	0.06	0.12	<0.01	0.015	0.05	4.4	8.9	0.14	957		
1201241008		D. 6 9	14.9	1.98	4.65	0.06	0.12	<0.01	0.016	0.12	5.1	6.7	0.28	620	0.48	0.02
1201241009		0.93	33.4	2.91	6.70	0.08	0.43	0.01	0.031	0.09	16.3	9.1	0.48	297	0.65	0.02
1201241010	_	1.01	18.6	2.58	6,54	0.05	0.07	Q.01	0.023	0.11	6.8	9.5	0.40	1480	0.58	0.02
1201241011		1.67	49.5	3.59	5.93	Ú.09	0.29	0.01	0.025	0.14	11.4	8.0	0.50	338	0,77	0.02
1201241012		0.87	70.6	3.95	6.28	0.09	0.21	0.01	0.037	0.11	13.1	9.7	0.65	913	1.28	0.02
1201241013		0.61	11.2	1.48	3.26	0.06	0.11	<0.01	0.019	0.12	4.8	4.2	0.20	560	1.65	0.02
1201241014		0.54	9.4	t.34	3.12	0.05	0.10	0.01	0.014	0.16	4.7	4.0	0.18	525	0.73	0.02
1201241015		0.68	9.3	1.40	3.21	0.05	0.06	<0.01	0.015	0.12	4.6	5.0	0.17	268	0.32	0.03
201241016		0.55	12.7	1.42	3.53	0.07	0.12	<0.01	0.013	0 14	45	6.1	0.23	624	2.59	0.02
1201241017		0.60	26.0	2.15	4.06	0.11	0.09	001	0.020	0 20	8.3	6.3	0.50	871	4,94	0.02
1201241018		0.44	87.4	3.49	8,71	0.05	0.05	<0.01	0.015	0.15	3.8	29.2	2.21	1620	0.53	0.03
1201241019		0.58	19.3	2.60	4,26	0.07	0.08	<0.01	0.015	0.14	3.6	5.2	0.42	699	1.06	0.02
1201241020	_	0.78	54.2	4.42	5.87	0.09	Q. D 4	<0.01	0.029	0.24	7.2	9.0	0.92	727	1.14	0.02
1201241021		0.49	38.2	2.36	2.50	0.06	0.03	0.01	0.018	0.12	4.9	3.9	0.27	360	1.40	0.02
1201241022		1.27	73.4	4.05	6.76	0.13	0.27	0.02	0.033	0 23	14.8	t0.3	0.85	654	1.22	0.02
1201241023		0.66	81.9	4.95	6.25	0.12	0.11	<0.01	0.044	0.15	11.1	8.6	1.06	752	2.46	0.02
1201241024		1.03	118.0	10.80	9 13	0.13	0.10	0.08	0 115	0.23	15.1	8.7	0.68	591	4,53	0.06
1201241025		0.67	54.4	4.90	5.11	0.13	0.12	0.02	0.048	0.11	9.6	7.1	1.24	506	2.61	0.03
1201241026		1.29	43.0	3.39	6.34	0.06	0,13	<0.01	0.025	0.17	8.8	8.1	0.49	1700	0.64	0.02
1201241027		0.94	40.8	2.96	5.37	0.05	0.28	0.05	0.025	0.16	10.8	7.3	0.71	414	0.66	0.02
1201241028		0.67	77.5	4.33	5.15	<0.05	0.16	0.06	0.019	0.16	6.9	7.9	0.85	730	1.30	0.03
1201241029		0.62	17.7	2.08	4.38	<0.05	0.14	0.05	0.017	0.12	5.9	5.3	0.31	742	071	0.02
1201241030		0.71	68.0	7.12	6 51	0.08	0.20	0.05	0.043	0.20	8.3	7.6	0.64	690	1.82	0.03
1201241031		0.87	64.9	7.00	7.25	0.07	0.38	0.06	0.036	0.23	7.2	6.8	0.57	295	1.44	0.04
1201241032		0.60	57.0	5.34	5.58	0.07	0.19	0.05	0.031	0.22	6.9	6.2	0.51	779	1.27	0.03
1201241033		0.72	79.6	3.80	5.32	0.08	0.26	0.05	0.025	0.14	15.0	9.4	0.76	457	0.97	0.02
1201241034		0.55	69.8	3.87	4.58	0.08	0.26	0.04	0.025	0.14	9.4	7.5	0.74	660	1.12	0.62
1201241035		0.62	113.5	6.17	5.70	0.05	0.17	0.05	0.027	0.15	5.9	8.4	1_10	957	5.77	0.06
201241036		0.49	68.0	5.25	4.49	0.05	0.13	0.05	0.021	0.13	6.9	7.0	0.74	668	3.55	0.04
1201241037		0.75	63.4	5.54	5.05	0.05	0.22	0.05	0.025	0.15	6.5	8.0	0.62	766	1.79	0.03
1201241038		0.50	62.3	4.06	517	0.05	0.12	0.05	0.025	0.21	6.3	8.9	0.68	927	1.10	0.02
1201241039		0.56	31.3	3.10	4,56	0.05	0.28	0.03	0.020	0.17	8.2	7.1	0.55	844	1.20	0.02
1201241040		0.94	62.2	4.01	6.25	0.05	0.39	0.05	0.030	0.24	12.6	10.4	0.79	740	1.14	0.01

ALS Canada Ud.

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: GOLDCLIFF RESOURCE CORPORATION 6976 LABURNUM ST VANCOUVER BC V6P 5M9

Page: 2 - C Total # Pages: 6 (A - D) Plus Appendix Pages Finalized Date: 13-AUG-2012 Account: GOLRESCO

A formula Decembration	Method Unalyte Units LOR	ME-MS4 L Nb ppm 0.05 0.63	ME-MS41 Ni ppm 0.2	M£-MS41 P 92pm	ME-MS4) Pb	ME-MS41 Rd	ME-NS41	ME-MS41	ME-MS41	MC-M541	ME-MS41	ME-M541	ME-MS41	ME-MS41	ME-MS41	ME-MS41
1201241002		0.63		10	0.2	0.1	Re ppm G.001	S % 0.01	56 ppm 0.05	5c ppm 0.1	Se ppm 0.2	Sn pom 0.2	5r ppm 0.2	Ta ppm 0.01	Te ppm 0.01	Th թթո 0.2
			18.0	350	7.3	10.3	0.001	<0.01	0.15	4.3	0.4	0.5	53.6	<0.01	0.06	1.6 1.7
1001041000		0.40	12.2	1570	8.5	8.6	Q.001	0.16	0.20	5.2	2.2	0.5	151.5	<0.01	0.57	
1201241005		0.37	17.1	760	5.9	12.3	0.001	0.08	0.21	5.1	0.8	0.6	119.5	<0.01	0.27 0.36	2.1 2.5
1201241004		0.41	21.9	1660	8.7	12.4	0.001	0.44	0.28	7.3	2.1	0.6	217 57.4	<0.01 <0.01	0.11	2.5
1201241005		0.60	19.9	810	32.9	10.7	0.001	0.02	0.19	4.1	1.1	0.5				
1201241006		0.29	31.7	660	7.0	8.7	0.001	<0.01	0.33	7.0	1.5	0.6	45.1	<0.01	0.10	2.6
1201241007		0.79	8.B	890	4.4	5.8	<0.001	<0.01	<0.05	1.7	0.3	0.5	18.0	<0.01	<0.01	1.0
1201241008		0.70	10.3	360	5.1	11.6	<0.001	<0.01	<0.05	2.3	02	0.5	26.0	<0.01	0.01	1,1
1201241009		0.71	f9.1	210	7.2	11.5	<0.001	<0.01	0.12	6.4	0.7	0.8	46.4	<0.01	0.02	2.7
1201241010		0.83	17.3	770	6.6	10.8	0.00t	<0.01	0.09	3.2	0.3	0.7	40.5	<0.01	0.02	1.4
1201241011		0.67	18.2	740	6.6	13.5	0.001	0.02	D. 16	4.9	0.8	0.6	44.2	<0.01	B0.0	2.2
1201241012		0.56	23.9	790	7.5	8.0	0.002	0.02	0.23	6.0	1.4	0.7	41.5	<0.01	0.16	2.0
1201241013		0.55	9.4	300	5.9	13.1	0.001	<0.01	<0.05	2.3	0.5	0.5	34.7	<0.01	<0.01	1.1
1201241014		0.43	6.9	430	5.3	12.0	<0.001	<0.01	<0.05	2.1	0.2	0.4	48.7	<0.01	<0.01	1.1
1201241015		0.45	5.7	250	4.3	12.6	0.001	<0.01	<0.05	1.9	<0.2	0.4	47.6	<0.01	0.01	1.2
1201241016		0.52	11.5	290	4.6	11.4	0.001	<0.01	<0.05	2.1	0.2	0.4	45.4	<0.01	<0.01	1.0
1201241017	1	0.55	19. B	430	8.4	14.0	<0.001	0.01	0.16	3.5	8.0	0.4	66.3	<0.01	0.04	1.3
1201241018	[<0.05	5.9	800	2.3	6.3	<0.001	<0.01	<0.05	67	0.5	0.4	132.0	<0.01	<0.01	0.5
1201241019	ļ	0.50	11.B	400	6.6	11.1	<0.001	<0.01	0.08	24	0.5	0.4	30.3	<0.01	0.08	0.8
1201241020		0.38	18.4	620	13.1	16.0	<0,001	0.03	0.23	5.0	2.2	0.4	33.7	<0.01	0.28	i .1
1201241021		0.20	8.9	850	53.9	5.2	0.001	0.13	0.29	2.7	1.0	0.8	44.7	<0.01	0.41	0.6
1201241022		0.24	27.9	960	8.8	13.2	0.001	<0.01	0.43	7.3	1.8	0.6	41.7	<0.01	D. 14	2.5
1201241023		0.49	19.5	1200	7.7	8.3	0.001	0.04	0.31	7.1	4.1	0.8	56.2	<0.01	0.43	1.5
1201241024		0.32	25.0	3290	9 .3	5.6	0.005	0.45	0.45	10.2	68	0.8	P9.4	<0.01	0.66	1.7
1201241025		0.44	13.1	1000	9,3	4.1	0.005	0.12	0.22	6.7	4.9	1.4	52.2	<0.01	0.65	1.3
1201241026		0.89	22.5	1230	7.1	13.0	0.001	0.02	0.12	4.4	05	0.6	75.1	<0.01	0.D8	1.7
1201241027		0.80	22.9	420	6.4	13.3	<0.001	0.01	0.25	5.6	0.4	0.4	50.5	<0.01	0.06	1.9
1201241028		0.54	13.3	1120	7.6	7.2	<0.001	0.08	0.19	3.5	0.4	0.4	63.3	<0.01	0.12	1.2
1201241029		076	11.5	230	4.5	11.6	<0.001	0.01	0.13	2.9	<0.2	0.3	33.6	<0.01	0.03	1.0
1201241030		0.84	15.0	1780	9.7	10.9	0.004	0.12	0.36	6.8	1.7	0.5	77.0	<0.01	0.25	1.6
1201241031		0.65	14.9	1320	7.6	13.3	0.001	0.19	0.37	6.0	1.2	0.6	82.4	<0.01	0.16	1.7
1201241032		0.81	14.3	1170	7.3	9.B	0.001	0.11	0.28	5.1	0.8	0.4	65.9	<0.01	0.16	1.4
1201241033		0.42	29.3	860	5.9	9.Z	0.001	0.02	0.35	6.3	0.9	0.4	42.5	<0.01	0.0a	20
1201241034		0.35	22.7	660	6.3	6.8	<0.001	0.02	0.32	4.B	0.6	0.4	35.7	<0.01	0.19	1.4
1201241035		0.34	14.7	1180	t6.2	4.8	0.001	0.05	0.30	4.5	2.5	0.5	63.8	<0.01	0.45	0.9
1201241036		0.54	14.5	1230	22.6	5.6	0.001	0.16	0.41	3.8	2.5	0.4	83.4	<0.01	0.61	1.0
1201241037	ļ	0.45	14.4	1030	17.8	8.2	0.001	0.08	0.42	42	2.2	0.4	62.0	<0.01	0.48	i .1
1201241038	ļ	0.73	17.0	960	11.8	9.5	<0.001	0.05	0.29	4.0	0.8	0.3	57.0	<0.01	0.20	1.0
1201241039		0.63	14.9	320	8.4	10.5	<0.001	0.02	0.23	3.8	0.5	0.3	38.0	<0.01	0.07	1.4
1201241040	1	0.34	25.7	790	8.2	14.6	0.001	0.01	0.34	6.6	1.5	0.5	47.3	<0.01	0.13	2.4

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: GOLDCLIFF RESOURCE CORPORATION 6976 LABURNUM ST VANCOUVER BC V6P 5M9

Page: 2 - D Total # Pages: 6 (A - D) Plus Appendix Pages Finalized Date: 13-AUG-2012 Account: GOLRESCO

minera	15								C	ERTIFICA	TE OF ANALYSIS	KL12173140
Sample Description	Method Analyte Units LOR	ME-4541 Ti % 0.005	ME-MS41 TI ppm 0.02	ME-MS41 11 ppm 0.05	МЕ-MS41 V рата 1	ME-MS41 W ppm 0.05	ME-M541 Y gorn 0.05	ME-MS41 Zn ppm 2	ME-MS41 Zr ppm 0.5	Au-DC43 Au 29m 0.01		
1201241001 1201241002 1201241003 1201241003		0.100 0.110 0.094 0.085	0.09 0.10 0.10 0.13	0.49 0.48 0.61 0.72	60 88 71 69	0.07 0.07 0.07 0.10	8.34 5.60 9.39 9.76	70 79 64 70	6.5 12.0 10.0 8.7			
1201241005 1201241005 1201241005 1201241007		0.078	0.10 0.10 0.08	0.55 1.17 0.30	51 64 33	0.07	10.65 15.10 2.60	191 52 76	4.5 9.6 5.9			
1201241008 1201241009 1201241010		0.088 0.101 0.098	0.08 0.10 0.10	0.27 0.72 0.37	42 61 50	0.05 0.11 0.09	2.73 9.58 3.22	87 65 134	3.9 17.4 3.1			
1201241011 1201241012 1201241013 1201241013		0.101 0.090 0.074 0.064	0.11 0.11 0.05 0.04	0.69 0.89 0.40 0.69	63 83 34 33	0.09 0.10 0.08 0.05	8.28 12.70 2.39 2.65	80 112 53 53	13.2 9.4 4.2 3.9			
1201241015 1201241016 1201241017 1201241018		0.072 0.063 0.062 0.012	0.05 0.06 0.09 0.04	1.01 0.56 0.77 0.23	35 31 45 89	0.06 0.08 0.07 <0.05	2.25 2.80 8.10 7.76	43 71 98 61	2.9 4.4 3.7 1.5			
1201241019 1201241020 1201241021 1201241022		0.077 0.057 0.018 0.055	0.07 0.12 0.14 0.13	0.30 0.40 0.42 0.86	55 77 27 67	0.05 0.06 0.11 0.07	2.11 4.61 5.14 14.65	178 226 52	2.6 1.8 1.2			
1201241022 1201241023 1201241024 1201241025		0.030 0.090 0.087 0.117	0.13 0.08 0.11 0.06	0.53 0.53 0.53	68 74	0.08 0.10 0.05	14.05 10.60 15.20 8.11	f02 96 93 109	12.7 5.6 4.5 6.0			
1201241026 1201241027 1201241028 1201241028 1201241029 1201241030		0.091 0.117 0.060 0.082 0.109	0.13 0.12 0.05 0.07 0.11	0.47 0.66 0.48 0.30 0.66	60 67 60 42 69	0.07 0.08 <0.05 0.05 0.07	5.60 7.11 6.45 3.68 6.69	108 75 78 55 85	5.2 10.1 5.8 4.3 6.0			
1201241031 1201241032 1201241033 1201241033 1201241034 1201241035		0.125 0.090 0.078 0.062 0.036	0.12 0.09 0.11 0.08 0.08	0.54 0.50 0.77 0.51 0.39	75 62 62 55 60	0.07 0.06 0.05 <0.05 <0.05	5.17 5.62 18.35 10.05 8.37	57 73 81 295 314	15.8 6.4 8.9 8.3 5.3			
1201241036 1201241037 1201241038 1201241038 1201241039		0.058 0.065 0.064 0.074	0.07 0.07 0.09 0.09	0.41 0.42 0.58 0.48	54 60 58 56	<0.05 <0.05 0.06 0.05	6.46 7.09 8.15 6.05	118 117 148 112	3.9 7.5 4.4 8.8			<u> </u>
1201241039		0.007	0.16	0.46	58	0.05	11.90	114	6.0 12.7			

2103 Dollarton Hwy North Vancouver BC V7H 0A7

To: GOLDCLIFF RESOURCE CORPORATION 6976 LABURNUM ST VANCOUVER BC V6P SM9

Page: 3 - A Total # Pages: 6 (A - D) Plus Appendix Pages Finalized Date: 13-AUG-2012 Account: GOLRESCO

North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

(ALS) Minerals

ilinera									C	ERTIFIC	CATE O	YSIS	KL12173140			
Sample Description	Method Analyte Units LOR	WEI-21 Recvd Wt. kg 0.02	Au-5T43 Au ppm 0.0001	ME-M541 Ag ppm 0.01	ME-M54) Al % 0.01	ME-MS41 As ppm 0.1	ME-MS41 Au ppm 0.2	ME-MS41 8 ppm 10	ME-MS41 Ba ppm. 10	ME-MS41 Be ppm 0.05	ME-MS41 Bi ppm 0.01	ME-M541 Ca % 0.01	ME-MS41 Cd ppm 0.01	ME-MS41 Ce ppm 0:02	ME-MS41 Co ppm 0.1	ME-MS41 Cr ppm 1
1201241041		0.27	0.0033	0.18	2.28	7.5	≪0.2	<10	110	0.43	0.12	0.54	0.67	22.2	17.9	20
1201241042		0.30	0.0018	0.09	1.68	3.2	<0.2	<10	140	0.30	0.09	0.37	0.23	15.00	11.2	22
1201241043	i	0.28	0.0006	0.07	1.13	22	<0.2	<10	130	0.30	0.09	0.30	0.10	19.05	6.4	22
1201241044		0.33	0.0035	0,07	0.91	2.0	<0.2	<10	150	0.24	0.08	0.26	0.09	10.85	4.7	15
1201241045		0.28	0.0005	0.06	0.82	0.7	<0.2	<10	230	0.27	0.11	9.24	0.05	7.16	3.4	10
1201241046		0.28	0.0002	0.06	0.65	0.7	<0.2	<10	200	0.23	0.10	0.23	0.06	9.08	4.2	11
1201241047		0.33	0.0002	0,10	0.97	1.0	<0.2	<10	190	0.20	0.12	0.29	0.09	9.20	4.1	10
1201241048		0 28	0.0004	0.09	1.61	0.8	<0.2	<10	210	0.28	0.17	0.32	0.14	10.15	4.4	13
1201241049		0.33	0.0012	0.04	1_20	0.3	<0.2	<10	110	0.14	0.08	0.37	0.05	9.59	5.2	11
1201241050		0.26	0.0013	0.21	1.79	5.0	<0 2	<10	110	0.50	D.13	0.61	0.08	22.2	10.2	15
1201241051		0.27	0.0039	0.49	1.83	20.4	<0.2	<10	160	0.40	0.22	0.30	0,11	38.6	11,9	18
1201241052		0.31	0.0081	1.42	1.80	24.3	<0.2	<10	120	0.43	0.17	0.52	0.61	55.6	20.0	13
1201241053		0.22	0.0032	2.07	2.93	30.9	<0.2	<10	110	0.50	0.21	0.44	0.37	44.5	15.8	28
1201241054		0.24	0.0025	0.99	1.51	9.6	<0.2	<10	140	0.31	0.15	0.28	0.45	19,60	8.6	18
1201241055		0.29	0.0025	0.83	1.57	12.3	<0.2	<10	190	0.29	0,19	0.25	0.32	21.9	7.2	15
1201241056		0.28	0.0029	0.46	1.86	20.6	<0.2	<10	100	0.38	0.18	0.33	0.27	26.0	11.9	23
1201241050		0.27	0.0404	0.25	1.64	25.8	0.3	<10	210	0.41	0.13	0.34	0.35	13.20	10.9	28
1201241058		0.28	0.0032	0.53	1.36	16.3	<0.2	<10	210 90	0.28	0.13	0.29	0.33	20.4	7.9	19
1201241058		0.20	0.0050	1.04	1.86	41.2	<0.2	<10	90	0.35	0.27	0.28	0.40	23.1	12.0	18
1201241055		0.32	0,0028	0.60	1,60	15.0	<0.2	<10	120	0.41	0.13	2.43	0.40	25.0	10.2	20
1201241061		0.27	0.0021	0.24	1.27	4.7	<0.2	<10	140	0.29	0.10	0.37	0.20	18,10	5.9	20
1201241062		0.21	0.0023	0.10	1.84	5.6	<0.2	<10	110	0.23	0.34	0.34	0.20	16,10	5.8 15.8	20
1201241063		0.27	0.0025	0.16	1.82	6,7	<0.2	<10	130	0.33	0.21	0.34	0.36	20.9	16.2	23
1201241064		0.29	0.0021	0.24	2.15	6.2	<0.2	<10	140	0.35	0.21	0.41	0.54	20.9	18.8	23
1201241065		0.35	0.0022	0.32	1.89	9.9	<0.2	<10	110	0.35	0.12	0.42	0.12	24.6	12.9	23 26
1201241066		0.31	0.0011	0.18	1.89	6,0	<0.2	<10	120	0.41	0.12	0,43	D.14	24.2	13.2	29
1201241067		0.36	0.0037	0.91	2.07	14.5	<0.2	<10	130	0.47	0.12	0.54	0.14 D.13	28.9	14.3	35
1201241068		0.38	0.0021	0.60	2.16	B.8	<0.2	<10	150	0.39	0.15	0.48	0,17	26.3	11.4	26
1201241069		0.26	0.0051	0.62	2.13	13.0	<0.2	<10	130	0.38	0.15	0.50	0.19	22.9	11.2	29
1201241070		0.29	0.0040	0.71	1.95	12.5	<0.2	<10	130	0.38	0.14	0.44	0.17	25.8	11.7	25
1201241071		0.27	0.0030	0.62	1.64	9.2	<0.2	<10	130	0.32	0.12	0.47	0.11	18,95	8.5	25
1201241072		0.31	0.0022	0.38	1.61	6.2	<0.2	<10	150	0.32	0.12	0.50	0.05	25.2	8.9	23
1201241073		0.26	0.0038	0.53	1,77	13.8	<0.2	<10	150	0.40	0.14	0.50	0.17	27.1	13.9	30
1201241074		0.28	0.0039	0.95	1.89	13.6	<0.2	<10	130	0.34	0.22	0.38	0.28	35.0	13.9	22
1201241075		0.43	0.0031	0.39	2.47	4.5	<0.2	<10	260	0.46	0.13	0.41	0.10	27.5	9.6	22
1201241076		0.30	0.0370	4.30	1.88	28.6	<0.2	<10	150	0.28	0.40	0.66	0.60	25.8	16.4	16
1201241076		0.30	0.0051	2,43	1.66	20.0	<0.2	<10	240	0.20	0.40	1.05	0.60	23.0 24.0	10.4	22
1201241077		0.41	0.0015	2.43 0.84	1.76	9.7 4.2	~0.2	<10	240 160	0.31	0.14	0.28	0.14	24.0 15.60	6.0	15
1201241078		0.34	0.0015	2.84	1.40	4.2 15.5	<0.2	<10	120	0,23		0.⊉0 3.06	0.14			17
1201241079		0.30	0.0115	2.59	1.40	27.2	<0.2	<10	350	0.19	0.31 0.26	3.06 1.45	0.47	15.95	15.1 15.4	12
1201241000		0.40	0.0113	2.00	1.30	61.2	∼u. ∠	< IQ	330	u_24	v.20	1.40	V.40	23.5	13.4	12

ALS)

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: GOLOCLIFF RESOURCE CORPORATION 6976 LABURNUM ST VANCOUVER BC V6P 5M9

Page: 3 - B Total # Pages: 6 (A - D) Plus Appendix Pages Finalized Oate: 13-AUG-2012 Account: GOLRESCO

Minera	15								C	ERTIFIC	CATE O	F ANAL	YSIS	KL121	73140	·
Sample Description	Method Analyte Units LOR	ME-MS41 Cs psim 0.05	ME-MS41 Cu ppm 0.2	ME-MS41 Fe % 0.01	NEE-MS41 Ga porrr 0:05	ME-MS41 Ge ppm 0.05	ме-мсн1 н/ рртр 0.02	ME-MS41 Hg parn 0:01	ME-MS41 In ppm 0.005	ME-MS41 K X 0.01	ME-MS41 La ppro Q.2	ME-MS41 Li ppm 0.1	ME-M541 Mg X 0.01	ME+MS41 Ma ppm 5	ME-MS41 Mo ppm> 0.05	ME+M541 Na % D.OL
1201241041		0.67	53.9	3.97	5.54	0.08	0.35	0.04	0.025	0.25	10.6	9.5	0.73	613	1.00	0.02
1201241042		0.61	33.4	3.00	4.76	0.05	0.26	0.03	0.021	0.14	6.6	7.5	0.56	667	0.76	0.02
1201241043		0.48	16.5	1,90	3.47	0.05	0.38	0.03	0.017	0.13	7,8	5.0	0.29	476	0.80	0.02
1201241044		0.44	12.0	1.58	3.04	<0.05	0.08	0.03	0.014	0.13	5.3	3.4	0.23	480	0.53	0.02
1201241045		0.46	9.4	1.41	2.70	<0.05	0.49	0.02	0.013	0.17	3.2	2.3	0.16	236	0.32	0.02
1201241046		0.46	10.8	1.51	2.98	<0.05	0.32	0.02	0.012	0.13	3.9	2.6	0.18	347	0.40	0.03
1201241047		0.39	10.8	1.41	3.29	<0.05	0.30	0.03	0.014	0.15	3.8	2.9	0.19	465	0.48	0.02
1201241048		0.62	11.1	1.90	4.97	<0.05	0.25	9.63	0.022	0.13	5.0	3.4	0.24	227	0.20	0.03
1201241049		0.33	8.4	1.78	4.05	<0.05	0.20	0.03	0.015	0.09	4.5	2.6	0.41	317	0.13	0.02
1201241050		0.43	34.3	2.64	5.07	0.05	0.70	0.04	0.030	0.06	11.7	6.0	0.83	376	1.62	0.02
1201241051		0.40	134.5	5.33	4.63	0.09	0.20	0.09	0.049	0.08	23.5	11.1	0.64	344	11.45	0.01
1201241052		0.29	153.0	7.44	5.03	0.15	0.17	0.20	0.045	0.08	37.3	14.8	0.72	732	18.35	0.01
1201241053		0.25	234	8.05	7.40	0.16	0.26	0.30	0.061	0.08	36.3	27.9	1.44	864	13,90	0.01
1201241055	1	0.43	42.1	3,15	4.61	<0.05	0.26	0.03	0.030	0.08	9,3	10.6	0.46	474	2.24	0.01
1201241054		0.35	₩2.1 39.0	3.15	4.07	0.05	0.24	0.04	0.025	0.06	9.5 11.9	11.5	0.55	4/4 514	3.34	0.01
1201241056		0.52	77.8	4.21	4.66	0.06	0.15	0.05	0.040	0.11	13.1	11.6	0.70	397	5.32	0.01
1201241056		3.08	25.4	5.76	4,96	0.05	0.15	0.05	0.021	0.14	7.0	6.9	0.35	39/ 405	5.32 8.03	0.01
1201241057		0.49	44.5	3.38	4.07	0.05	0.25	0.02	0.030	0.14	11.9	0.5 7.5	0.55	298	2.91	0.02
		0.49	146.0	6.53		0.05	0.20		0.046	0.08	17.6	7.5 10.8	0.74	290 670	27.2	
1201241059 1201241060		0.35	51.2	6.53 3.48	5.11 4.41	0.06	0.22	0.12 0.05	0.046	0.08	14.1	8.3	0.74	412	2.28	0.01 0.02
1201241061		0.58	22.8	2.29	3.85	<0.05										
							G.22	0.01	0.023	0.09	8.8	5.2	0.37	257	0.71	0.02
1201241062		0.62	58.6	4.75	4.98	0.07	0.14	0.03	0.029	0.13	7.5	7.0	0.82	947	1.68	0.02
1201241063		1.00	62.3	4,60	5.64	0.09	0.14	0.03	0.039	0.14	9.2	8.1	0.76	594	1.51	0.02
1201241064		1.08	103.0	5.23	6.27	0.08	0.34	0.04	0.050	0.17	10.5	90	072	598	1.98	0.02
1201241065		0.65	46.0	3.12	5.66	0.08	0.37	0.02	0.035	0.10	13.3	9.1	0.59	355	1.10	0.02
1201241066		0.99	33.3	2.79	5.45	0.06	0.13	0.03	0.032	0.12	11.0	9.D	0.63	532	0.72	0.02
1201241057		0.79	81.6	3.92	5.69	0.12	0.33	0.12	0.043	0.11	19.6	11.0	0.61	488	1.87	0.02
1201241068		0.58	59.0	3.54	5.96	0.11	0.49	0.05	0.035	0.14	1 5 .7	15.7	0.65	428	1.35	0.02
1201241069		0.64	65.6	3.72	6.01	0.10	0.42	0.08	0.043	0.12	14.5	10,7	0.65	452	2.02	0.02
1201241070		Q.66	67.0	3.62	5.63	0.12	0.32	0.05	0.039	0.15	16.0	9.5	0.64	397	1.62	0.02
1201241071	-	0.50	49.1	2.91	4.74	0.08	0.42	0.04	0.029	0.09	11.9	6.4	0.53	285	1.04	0.02
1201241072		0.85	38.2	2.51	5.00	0.09	0.45	0.02	0.029	0.13	13.9	5.9	0.45	238	0.68	0.02
1201241073		0.49	84.6	3.32	5.60	0.10	0.26	0.09	0.034	0.10	16.3	8.3	071	578	1.90	0.02
1201241074		0.64	77.6	3.81	5 21	0.11	0.31	0.07	0.038	0.13	21.2	8.8	0.53	571	3.56	0.02
1201241075		0.83	46.4	3.21	6.73	0.09	0.44	<0.01	0.036	0.16	16.9	8.0	Q.34	290	0.87	0.03
1201241076		0.45	175.5	6.85	4.90	0.12	0.20	0.28	0.045	6.08	20.3	11.1	0.60	450	5.33	0.01
1201241077		0.38	103.5	3.85	5.00	0.07	0.36	0.07	0.035	0.14	15.3	6.6	0.50	327	1.56	0.02
1201241078		0.38	33.9	2.67	4 01	0.06	0.06	<0.01	0.021	0.08	9.4	6.3	0.33	265	1.27	0.02
1201241079		0.28	151.0	5.35	3.60	0.08	0.16	0.20	0.039	0.06	13.6	8.7	0.63	412	2.85	0.02
1201241080		0.42	147.5	6.06	3.66	0.11	0.13	0.29	0.044	0.08	21 5	7.0	0.42	491	3.94	0.01

(ALS) Minerals ALS Canada Ltd.

2103 Dollarton Hwy North Vancouver 8C V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: GOLDCLIFF RESOURCE CORPORATION 6976 LABURNUM ST VANCOUVER BC V6P 5M9

Page: 3 - C Total # Pages: 6 (A - D) Plus Appendix Pages Finalized Date: 13-AUG-2012 Account: GOLRESCO

minera									C	ERTIFIC	CATE O	F ANAI	YSIS	KL121	73140	
Sample Description	Method Analyte Units LOR	Mž-M541 Nb ppm 0.05	ME-MS41 Ni pom 0.2	мЕ- МS 41 Р рртп 10	ME-MS41 Po ppm 0.2	ME-MS41 Rb Spm 0.1	ME~M541 Re ppm 0.001	ME-MB41 S % 0.01	ME~MS41 Sb ppm 0.05	ME-MS41 Sc part 0.1	ME~M541 Se ppm 0.2	ME-MS41 Sn 0,2m 0,2	ME-MS41 Sr ppm 0.2	ME-MS41 Та рют 0.01	ME-MS4E Te ppm 0.01	ME-MS41 Th ชุยาก 0.2
1201241041		0.46	22.5	660	9,9	16.1	<0.001	0.02	0.27	5.3	0.8	0.4	44.1	<0.01	0.20	1.8
1201241041		0.40	16.9	290	6.7	11.6	<0.001	0.02	0.20	4.1	0.6	0.3	38.7	<0.01	0.98	1.3
1201241043		0.43	14.9	200	4.9	10.0	0.001	0.01	0.13	3.2	<0.2	0.3	39.3	<0.01	0.02	1.6
1201241044		0.51	8.7	310	4.7	9.3	<0.001	0.01	0,10	2.2	<0.2	0.3	42.7	<0.01	0.02	0.9
1201241045		0.45	4.9	250	3.9	8.6	0.001	<0.01	0.08	2.1	<0.2	0.3	58,7	<0.01	<0.01	1.2
1201241046	-	0.42	5.7	250	4.4	9.0	<0.001	0.01	0.09	2.2	<0.2	0.3	50.8	<0.01	0.01	1.2
1201241047		0.50	5.9	400	4.4	8.0	0.001	0.01	0.08 0.09	2.2 2.8	0.3 ⊲0.2	03 0.5	49.5 73.0	<0.01 <0.01	0.01 0.02	1.0
1201241048		0.54	8.4	350	5.0	10.1	<0.001	0.01		-	-					1.1
1201241049		0.29	5.6	410 560	4.1	67	<0.001	0.01	<0.05	3.0 7.4	0.2 0.3	0.3 0.5	76.1 59.4	<0.01	0.01 0.02	1.0
1201241050		0.19	16_0	360	7.5	4.1	<0.001	0.02	0.35			0.5		<0.01	0.02	1.9
1201241051	-	0.17	45.0	660	11.5	7.9	0.002	0.01	1.62	7.0	3.3	0.3	22.6	<0.01	0.16	1.9
1201241052		0.32	58.0	690	14.4	4.0	0.002	0.04	2.64	6.5	4.4	0.3	35.2	<0.01	0.12	1.3
1201241053		0.20	90.3	790	10.3	4.6	0.002	0.02	1.82	9,5	7.1	04	28.4	<0.01	0.11	2.4
1201241054		0.76	34.8	620	6.3	7.3	<0.001	0.01	0.62	3,0	2.0	0.4	23.7	<0.01	0.08	1.4
1201241055		0.58	33.4	800	8.1	6.5	<0.001	0.01	0.68	2.3	1.5	0.3	23.8	<0.01	0.08	1.2
1201241056		0.32	38.3	1050	9.5	7.6	0.001	0.02	0.96	5.5	1.8	0.4	30.8	<0.01	0.11	1.8
1201241057		0.75	21.5	750	8.4	14.2	0.001	0.01	1.40	3.6	3.0	0.4	25.0	<0.01	0.08	1.3
1201241058		0.31	22.6	650	6.B	9.8	0.001	0.01	0.73	4,8	1.7	0.3	25.2	<0.01	0.07	1.5
1201241059		0.20	51.5	840	16.5	3.9	<0.001	0.05	1.61	5,4	5.6	0.3	32.7	<0.01	0.26	1.5
1201241060		0.31	23.1	750	7.7	6.3	0.001	0.03	D.61	4.7	1,7	03	52.1	<0.01	0.07	1.7
1201241061		0.51	13.0	420	4.9	9.8	<0.001	0.01	0.24	3.5	0.7	0.4	34.5	<0.01	0.02	1.4
1201241062		0.60	16.B	840	8.2	7.5	0.002	0.05	0.27	5.4	4.8	0.7	35.4	<0.01	0.21	1.2
1201241063	i	0.71	20.3	1130	8.9	13.6	0.002	0.04	0.24	5.3	2.1	0.7	37.1	<0.01	0.29	1.6
1201241064		0.72	24.5	1260	8.3	13.2	0.001	0.04	0.28	6.8	2.6	0.8	35.7	<0.01	0.29	2.1
1201241065		0.44	23.1	430	6.7	11.0	<0.001	<0.01	0.29	8.0	1.6	0.5	27.8	<0.0t	0.04	1.9
			20.2	650	6.4	44.7	<0.001	<0 D1	0.21	4.6	1.1	0.5	29.4	<0.01	0.02	1.7
1201241065		0.58 0.26	20.2 38.4	730	0.4 7.6	14.7 7.6	0.001	<0.01 <0.01	0.21	¶.o 8.0	3.1	0.5	28,9 52,9	<0.01	0.02	2.4
1201241067 1201241068		0.33	27.7	420	7.4	10.5	<0.001	0.01	0.38	6.9	2.0	0.6	49.3	<0.01	0.06	2.2
1201241069		0.22	30.4	560	7.7	8,1	0.001	0.01	0.60	7.5	2.4	0.6	38.8	<0.01	0.05	2.3
1201241069		0.38	29.4	560	F.J 8.0	8.0	<0.001	<0.01	0.55	6.5	2.4	0.5	31.3	<0.01	0.05	2.0
-																
1201241071		0.19	20.6	350	6.0	4.8	0.001	<0.01	0.38	5.9	1.3	0.5	35.5	<0.01	0.04	2.0
1201241072		0.28	18.0	430	5.9	9.7	<0.001	<0.01	0.20	5.8	1.0	0.7	57.3	<0.01	0.02	2.4
1201241073	1	0.24	30.1	760	7.3	5.2	<0.001	< 0.01	065	6.8	2.5	0.5	51.1	< 0.01	0.05	2.2
1201241074		0.33	42.2	770	9.4	9.5	0.001	0.02	0.79	5.9	4.5	0.6	40.2	<0.01	0.08	2.2
1201241075		0.45	25.2	360	6.5	9.2	<0.001	<0.01	0.38	8.2	1.5	0.8	36.1	<0.01	0.04	2.2
1201241076		0.27	65.9	1150	28.2	4.5	0.001	0.02	2.08	7.1	9.8	0.4	47.1	<0.01	0.15	1,9
1201241077		0.52	41.3	450	13.4	5.5	<0.001	0.01	0.78	5.9	2.5	0.5	54.2	<0.01	0.07	2.1
1201241078		0.48	21.2	340	7.5	5.9	<0.001	0.01	0.45	2.6	1.6	0.5	27.4	<0.01	0.04	1.1
1201241079		0.28	58.6	680	16.5	3.3	0.001	0.07	1.52	5.4	3.8	0.4	67.7	<0.01	Ð.14	1.5
1201241080		0.30	66.1	840	19.4	4.1	0.001	0.03	1,58	5.6	4.6	0.3	47.2	<0.01	0.09	1.9

2103 Dollarton Hwy North Vancouver BC V7H DA? Phone: 604 984 0221 Fax: 604 984 0218 www.alsgiobal.com

To: GOLDCLIFF RESOURCE CORPORATION 6976 LABURNUM ST VANCOUVER BC V6P 5M9

Page: 3 - D Total # Pages: 6 (A - D) Plus Appendix Pages Finalized Date: 13-AUG-2012 Account: GOLRESCO

	Method	ME-MS41	ME-MS41	ME- MS 41	ME-MS41	ME-MS41	ME-M541	ME-MS41	ME-MS41	Au-OC43	
	Analyte	Ti	ΤI	U	v	w	Ŷ	Zn	Z-	Au	
	Units	*	ppm	abu	ррп	ppm	ppm	opm.	ppm	ppm	
Sample Description	LOR	0.005	0.02	0.05	1	0.05	0.05	2	0.5	0.01	
1201241041		0.069	0.19	0.85	69	0.05	9. 5 4	209	13.3		
1201241042		0.079	0.11	0.38	60	<0.05	5.08	100	6.6		
1201241043		0.071	0.08	0.94	42	<0.05	4.64	63	11.4		
1201241044		0.074	0.06	0.39	40	<0.05	2.66	55	2.7		
1201241045		0.080	0.04	0.34	39	<0.05	1.47	46	15.6		
1201241046		0.082	0.04	0.36	42	<0.05	2.07	49	10.6		
1201241047		0.075	0.05	0.32	37	<0.05	1.91	59	9.9		
1201241048		0.078	0.05	0.61	51	<0.05	2.92	53	8.2		
1201241049		0.052	0.03	0.51	48	<0.05	2.44	49	4.9		
1201241050		0.057	0.05	1.03	38	<0.05	10.85	68	21.1		
1201241051		0.011	0.07	0.96	35	0.08	16.55	187	7.3		
1201241052		G.018	0.04	0.72	38	0.12	35.6	339	5.0		
1201241053		0.016	0.04	1.48	43	0.18	54.4	287	10.8		
1201241054		0.063	0.04	0.51	39	0.08	6.46	194	8.1		
1201241055		0.049	0.03	0.50	36	0.08	6.13	†95	3.7		
1201241056		0.034	0.07	0.86	43	0.08	10.60	162	5.8		
1201241057		0.078	0.35	0.82	67	0.16	4.97	91	7.4		
1201241058		0.052	0.09	0.71	48	0.08	9. 9 4	90	9.7		
1201241059		0.027	0.05	0.71	37	0.07	26.5	260	7.8		
1201241060		0.043	0.08	Q. 56	48	0.05	11.75	95	9.4		
1201241061		0.075	0.07	0,55	48	<0.05	4.90	65	7.0		
1201241062		0.087	0.07	0.50	60	0.06	6.01	88	5.0		
1201241063		0.078	0.11	0.77	61	0.09	7.12	98	7.1		
1201241064		0.065	0.13	0.78	58	0.08	9.72	107	16.8		
1201241065		0.057	0.07	0.71	55	0.06	9.33	93	13.1		
1201241066		0.073	0.09	0.86	55	0.07	6.94	87	5.6		
1201241067		0.044	0.11	1.10	59	0.07	23.8	93	12.8		
1201241068		0.059	0.09	0.53	48	0.07	13.65	118	18.1		
1201241069		0.051	0.07	0.63	55	0.07	15.95	116	15.2		
1201241070		0.051	80,0	0.62	53	0.07	17.45	97	12.8		
1201241071		0.051	0.07	0.64	53	0.05	11.45	68	12.1		
1201241072		0.048	0.14	0.66	50	0.06	11.55	56	12.7		
1201241073		0.055	0.07	0.59	56	0.06	13.85	95	9.8		
1201241074		0.049	0.10	0.90	47	0.07	17.80	145	11.9		
1201241075		D. 05 6	0.11	0.56	53	0.08	17.55	67	17.0		
1201241076		0.023	0.06	0.69	38	0.09	28.8	278	8.5		
1201241077		0.062	0.04	0.32	46	0.07	14.20	168	13.6		
1201241078		0.052	0.04	0.23	37	0.05	5.09	116	2.3		
1201241079		0.028	0.04	0.37	31	0.08	19.25	223	6.9		
1201241080		0.022	0.05	0.47	27	0.11	21.6	298	5.8		

2103 Dollarton Hwy North Vancouver 8C V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: GOLDCLIFF RESOURCE CORPORATION 6976 LABURNUM ST VANCOUVER BC V6P SM9

Page: 4 - A Total # Pages: 6 (A - D) Plus Appendix Pages Finalized Date: 13-AUG-2012 Account: GOLRESCO

mnera									C	ERTIFIC	CATE O	F ANAL	YSIS	KL121	73140	
Sample Description	Method Analyte Units LOR	WEI-21 Recvd WI. kg 0.02	Au-ST43 Au ppm 0.0001	ME-M541 Ag ppm 0.01	ME-MS41 Al % 0.03	ME-MS41 As ppm 0.1	МЕ~MS41 Ас ррнп 0.2	ME-MS41 B ppm 10	ME-MS41 Ва ррт 10	ME-MS41 Be ppm 0.05	МЁ-MS41 Ві р⊋тт 0.01	ME-MS41 Ca % 0.01	ME-MS41 Cd ppm 0.01	ME-M541 Ce ppm 0.02	ME-MS41 Co ppm 0.1	ME-MS41 Cr ppm L
1201241081		0,41	0.0018	0.21	1.23	6.8	<0.2	<10	110	0.39	0.12	0.60	0.05	25.3	8.6	18
1201241082		0.39	0.0034	0.44	2.13	9.8	<0.2	<10	110	0.53	0.12	0.65	0.09	29.2	14.3	38
1201241083		0.35	0.0023	0.07	1.28	5.7	<0.2	<10	60	0.31	0,08	0.43	0.06	18,95	10.9	26
1201241084		0.37	0.0027	0.12	1.43	6.1	<0.2	<10	90	0.33	0.09	0,60	0.09	21.0	11.3	39
1201241085		0.32	0.0067	0.09	1.43	4.2	<0.2	<10	70	0.38	0.09	0.71	0.05	22.2	12.1	38
1201241086		0.43	0.0011	0.08	1.13	4.8	<0.2	<10	70	0.31	Q.08	0.55	0.06	21.7	10.2	27
1201241087		0.35	0.0024	0.12	1.61	4.8	<0.2	<10	ĐO	0.39	0.11	9.57	Q.07	23.1	12.3	27
1201241088		0.33	0.0010	0.19	2.38	2.6	<0.2	<10	150	0.37	0.10	0.62	0.67	16.20	18.0	23
1201241089		0.32	0.0101	0.15	t.95	2.9	~0.2	<10	50	0.35	0.10	0.52	0.14	17.35	53,9	33
1201241090		0.31	0.0014	0.07	1.65	3.1	<0.2	<10	90	0.29	0.07	0.60	0.08	16.05	17.8	30
1201241091		0.27	0.0028	0.08	1.70	5.1	<0.2	<10	100	0.46	0.11	0.55	Q.07	24.0	13.0	33
1201241092		0.29	0.0034	0.13	1.51	4.8	<0.2	<10	60	0.33	0.12	0.40	0.10	15.60	10.6	32
1201241093		0.36	0.0027	0.22	2.24	8.2	<0.2	<10	100	0.47	0.09	0.52	0.15	24.7	17.3	30
1201241094		0.38	0.0032	0.12	1.71	8.3	<0.2	<10	90	0.45	0.11	0.57	0.08	27.5	12.3	31
1201241095		0.41	0.0035	0.23	1.60	7.9	⊲0.2	<10	90	0.35	0.08	0,62	0.12	21.3	12.2	30
1201241096		0.33	0.0024	0.13	1,39	5.9	<0.2	<10	90	0.33	0.10	0.57	0.09	18.15	10.5	28
1201241097		0.30	0.0012	D. 19	1.00	5.3	<0.2	<10	110	0.38	0.09	7.54	0.16	24.0	9.6	21
1201241098		0.32	0.0016	D. 19	1.44	6.9	<0.2	<10	100	0.35	0.09	2.12	0.24	22.4	17.1	26
1201241099		0.33	0.0019	0.15	1.76	6.0	<0.2	<10	80	0.58	0.11	0.66	0.05	23.2	13.8	37
1201241100		0.31	0.0026	0.22	2.20	5.5	<0.2	<10	100	0.54	0.13	0.64	0.04	28.1	15.6	48
1201241101		0.31	0.0030	0,11	1.62	6.1	<0.2	<10	90	0.35	0.12	0.63	0.08	20.7	15.7	28
1201241102		0.31	0.0034	0.12	1.55	4.5	<0.2	<10	60	0.43	0.13	0.65	0.13	19,00	39.6	20
1201241103		0.34	0.0032	0.06	2.05	5.3	<0.2	<10	70	0.41	0.10	0.60	0.14	19.20	14.8	31
1201241104		0.32	>0.1000	0.18	1.84	29.7	<0.2	<10	40	0.45	0.25	0.52	0.18	10.20	56.8	12
1201241105		0. 26	0.0042	0.07	2.86	4.8	<0.2	<10	<u> 60</u>	0.58	0.09	0.70	0.10	14.20	21.9	27
1201241106		0.28	0.0014	0.11	1.32	1.2	<0.2	<10	140	0.20	0.08	0.22	0.10	7.62	5.6	19
1201241107		0.39	0.0025	0.08	1.93	5.2	<0.2	<10	90	0 39	0.10	0.67	0.08	18.65	14.3	34
1201241108		0.35	0.0018	Q.11	1,70	3.5	<0.2	<10	60	0 31	0.09	0.40	0.07	11.40	10.9	31
1201241109		0.32	0.0028	0.08	1.72	3.7	<0.2	<10	90	0.33	0.10	0.40	0.07	11.70	11.1	32
1201241110		0,38	0.0040	0.09	2.00	5.0	<0.2	<10	70	0.38	0.11	0.51	0.04	17.00	11.8	31
1201241111		0.30	0.0043	80.0	1 95	4.6	<0.2	<10	70	0.32	D. D9	0.59	0.06	19.00	13.6	32
1201241112		0 39	0.0085	0.25	1.97	4.9	<0.2	<10	80	0.41	0.09	0.52	Q. 19	18.30	16.1	30
1201241113		0.25	0.0042	0.12	1.00	4.8	<0.2	<10	70	0.36	0.08	0.51	0.07	17.85	12.8	31
1201241114		0.30	0.0038	0.07	1_80	5.2	<0.2	<10	80	0.41	0.10	0.57	0.07	24.1 17.60	12.4 17.1	39 30
1201241115		0.31	0.0052	0.16	2.50	5.5	<0.2	<10	100	0.45	0.12	0.79	0.13			
1201241116		0.36	0.0016	0.21	1.57	2.8	<0.2	<10	100	0.30	0.10	0.33	0.17	12.30	10.0	27
1201241117		0.44	0.0055	0.23	2.07	6.0	<0.2	<10	90	0.28	0.11	0.33	0.29	12.45	14.0	41
1201241118		0.34	8000.0	0.13	1.66	1.4	<0.2	<10	160	0.28	0.09	0.24	0.98	9.17	11.5	15
1201241119		0.42	0.0007	0.18	1.70	1.5	<0.2	<10	160	0.30	0.09	0.28	0.11	11.35	6.6	21
1201241120		0.49	0.0015	0.07	1.39	5.0	<0.2	<10	70	0.35	0.08	0.42	0.07	19.85	12.6	25

ALS) Minerals

ALS Canada Ltd.

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: GOLDCLIFF RESOURCE CORPORATION 6976 LABURNUM ST VANCOUVER BC V6P 5M9

Page: 4 - B Total # Pages: 6 (A - D) Plus Appendix Pages Finalized Date: 13-AUG-2012 Account: GOLRESCO

minera	13								C	ERTIFIC	CATE O	F ANAI	YSIS	KL121	73140	
Sample Description	Method Analyte Units	ME-MS41 Cs ppm	ME-MS41 Cu ភាគា	ME-M541 Fe %	ME-MS41 Ga ppm	NPC-M541 Ce ppm	ME-MS41 Hf ppm	ME-MS41 Hg ppm	ME-MS41 In ppm	ME-M541 K %	ME-MS41 La ppm	ME-MS41 Li ppm	ME-MS41 Ng 36	ME-MS41 Mn apm	ME-MIS41 Mo	ME-MS41 Na %
pendate exactification	LOR	0.05	0.2	0.01	0.05	0.05	0.02	0.01	0.005	0.01	0.2	9.1	D.01	5	0.05	0.01
1201241081		0.57	32.6	2.45	4.14	0.08	0.27	0.03	0.026 0.035	0.00	13.4	6.4 12.0	0.46	355 525	0.69 1.04	0.02
1201241082		0.70	47.9	3.49	6.34	0.09	0.38	0.04 <0.01	0.020	0.13 0.09	14.4 10.6	6.3	0.81 0.61	427	0.76	0.02
1201241083		0.62	46.4	3.09	4.14	0.09	0.19				10.0	6.7	0.01	566	0.82	0.02
1201241084		0.66	47.1	2.83	4.01	0.10	0.19	0.02	0.020 0.022	0.09 0.09	11.6	6.1	0.66	398	0.62	0.02
1201241085		0.67	47.A	2.68	4.28	0.09	0.24	0.02								
1201241086		0.69	37.6	2.62	3.81	0,10	0.19	0.01	0.021	0.07	11.0	5.8	0.58	446	0.74	0.03
1201241087		0.91	45.2	2.98	4.66	0.08	0.15	0.02	0.024	0.11	f1.8	7.1	0.59	562	0.78	0.02
1201241088	:	0.60	63.1	2.67	6.03	0.05	0.07	<0.01	0.017	0.15	8.2	8.5	0.55	670	0.62	0.04
1201241089		0.26	172.5	6.92	3.78	0.08	0.06	0.08	0.018	0.08	7.5	5.2	0.58	2030	4.78	0.02
1201241090		0.50	45.7	2.53	4.06	0.07	0.07	<0.01	0.015	0.10	7.7	6.1	0.62	509	0.68	0.03
1201241091		0.68	54.7	3.06	5.09	0.10	0.34	0.01	0.025	0.09	t3.2	6.9	0.65	482	0.96	0.02
1201241092		0.52	50.8	3,40	4.65	0.07	0.25	<0.01	0.020	0.09	8.7	6.6	0.58	327	1,18	0.03
1201241093		0.60	61.4	3.95	5.03	0.11	0.24	0.05	0.028	0.11	16.3	12.8	0.61	479	1.45	0.03
1201241094		0.75	61.6	3.24	5.07	0.09	0.26	0.03	0.027	0.09	14.2	8.0	0.71	543	1.08	0.02
1201241095		0.43	64 .1	3.15	4.48	0.09	0.23	0.65	0.025	0,06	12.5	8.4	0.69	527	0.95	0.03
1201241096		Q.57	58.0	3.00	3.98	0.09	0.22	0.03	0.019	0.07	10.1	6.7	0.63	567	1.08	0.03
1201241097		0.57	43.2	2.09	3.15	0.08	0.14	0.04	0.018	0.04	11.4	5.2	0.49	525	0.79	0.04
1201241098		0.84	68.7	3.45	4.60	0.09	0.26	0.01	0.028	0.09	10.8	8.4	0.77	793	1.32	0.03
1201241099		0.90	82.6	3.49	5.27	0.10	0.22	0.05	0.028	0.09	14.4	8.3	0.83	601	0.64	0.03
1201241100		1.15	57.0	3.52	6.25	0.09	0.32	0.03	0.027	D.13	12.8	9.2	1.01	504	0.73	0.03
1201241101		0.82	70.5	3.32	4.60	0.12	0.20	0.05	0.022	D. 10	12.9	6.9	0.69	678	1.03	0.03
1201241102		0.60	147.0	3,50	3.95	0.08	0.12	0.65	0.020	0.10	10.2	5.7	0.58	1100	1.35	0.02
1201241103		0.75	81.3	3.49	5.25	0.09	0.13	0.62	0.022	0,11	10.5	7.0	0.77	478	1.41	0.02
1201241104		0.45	293	7.12	3.90	<0.05	0.05	0.04	0.022	0.08	4.8	4.2	0.43	1580	10.45	0.01
1201241105		0.79	63 .8	4.53	6.83	0.08	0.07	0.02	0.022	0.15	7.6	8.1	0.90	821	0.89	0.02
1201241106		0.58	11.4	1.63	4,10	<0.05	0.02	0.01	0.014	0.08	3.2	6.3	0.34	713	0.36	0.02
1201241107		0.85	e2.7	3.20	5.17	0.10	0.22	0.03	0.021	0.13	9.4	8.0	0.87	530	0.80	0.05
1201241108		0.83	37.6	2.68	4.65	0.06	0.10	0.02	0.013	0.17	5.2	6.6	0.72	307	0,67	0.02
1201241109		0.79	35.1	2.87	4.82	0.06	0.10	0.02	0.018	0.15	5 B	6.7	0.75	338	0.68	0.02
1201241110		0.81	64.8	3.35	5.22	0.08	0.20	0.01	0.020	0.15	9.4	6.8	0.79	353	0.95	0.02
1201241111		0.77	67.8	3.28	4.88	0.08	0.19	0.03	0.021	0.17	9.8	6.9	0.81	497	0.82	0.03
1201241112		0.84	100 5	3.38	5.19	0.07	0.14	0.02	0.017	0 16	9.6	7.1	0.80	767	0.95	0 02
1201241113		0.72	58.9	3.25	4.63	0.07	0.17	0.02	0.016	0.17	9.9	6.6	0.81	401	0.69	0.03
1201241114		0.68	60.2	3.23	5.27	0.09	0.27	0.04	0.024	0.13	13.7	7.1	0.80	429	0.74	0.03
1201241115		1.10	82.6	3.68	6 26	0.10	0.22	0.06	0.022	0.28	10.2	9.0	0.92	700	0.92	0.06
1201241116		0.82	29.5	2.41	4.36	0.06	0.14	0.02	0.015	0.17	5.9	6.5	0.58	372	0.46	0.02
1201241117		0.76	105.5	5.75	5 63	0.09	0.16	0.03	0.028	0.14	6.2	7.2	0.77	355	1.31	0.02
1201241118		0.73	23.9	2.15	5.60	<0.05	0.13	0 02	0.013	0.09	3.5	8.5	0.27	667	0.28	0.03
1201241119		0.73	20.0	1.68	4.90	<0.05	0.19	0.01	0.014	0.12	5.5	6.6	0.38	452	0.28	0.02
1201241120		0.57	45.5	3.43	4.01	0.06	0.18	0.01	0.016	0.09	8.5	6.1	0.64	504	0.72	0.02
						<u></u>										

ALS)

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 504 984 0221 Fax: 504 984 0218 www.alsglobal.com

To: GOLDCLIFF RESOURCE CORPORATION 6976 LABURNUM ST VANCOUVER BC V6P 5M9

Page: 4 - C Total # Pages: 6 (A - D) Plus Appendix Pages Finalized Date: 13-AUG-2012 Account: GOLRESCO

Minera	15								C	ERTIFIC	ATE O	F ANAL	YSIS	KL121	73140	
	Method	ME-MS41	ME-MS41	ME-MS41	ME-MS41	ME-MS41	ME-MS41	ME-MS4]	ME-M541	ME-M541	ME-MIS41	ME-MS41	ME-MS41	ME-MS41	ME-MS41	NE-MS41
	Analyte	Nb	Ni	P	Po	Rb	Re	s	Sb	Sc	54	54	Sr	Ta	Te	Th
Sample Description	Units LOR	0.05	յերտո 0.2	9рт 10	0.2	9,90m 0.1	ррм 0.001	% 0.01	ррт 0.05	D.1	0_2	opm 0.2	ppm 0_2	ррнт 0.01	ppm 0.01	ронт 0.2
1201241081		0.27	18.1	410	6.0	8.1	0.001	<0.01	0.28	4.9	1.4	Q.B	84.5	<0.01	0.03	1.9
1201241082		0.26	28.2	390	6.4	12.4	0,002	0.0f	0.39	8,4	1.7	Q.6	50.8	<0.01	0.03	2.4
1201241083		0.27	16.9	720	3.7	5.8	<0.001	<0.01	0.27	5.3	0.9	Q.4	36.9	<0.01	0.04	1.6
1201241084 1201241085		0.32 0.30	22.2 21.9	840 870	5.0 5.4	6.8 6.8	<0.001 <0.001	<0.01 0.01	0.34 0.24	5.4 5.9	1.0 0.7	0.5 0.4	43.4 47.2	<0.01	0.03	2.0
		0.35	17.9											<0.01	0.03	2.0
1201241086 1201241087		0.20	17.9	710 630	4.3 5.2	5.4 10.3	0.001 <0.001	<0.01 0.01	0.28	4.8	0.9 0.7	0.5	44.2	< 0.01	0.04	2.2
1201241087 1201241088		0.80	20.0	1310	5.∠ 4.1	10.3	<0.001 0.001	0.01	0.22 0.05	6.1 4.2	0.7	0.5 0.5	44.3 108.5	<0.01 <0.01	0.04 0.04	1₋8 1.D
1201241089		0.80	26.9	1430	6.5	2.5	0.001	0.09	0.05	4.4 12.3	2.5	0.5	80.5	<0.01	0.49	1.U 0,9
1201241090		0.47	22.2	550	3.8	5.5	0.001	<0.03	0.15	4.5	1.1	0.4	101.5	<0.01	0.05	0.9 1.1
1201241091		0.30	20.9	660	5.5	5.6	<0.001	<0.01	0.27	6.9	1.1	0.5	65.8	<0.01	0.04	2.8
1201241092		0.38	19.8	650	4.9	6.5	0.001	0.05	0.22	5.5	1.2	0.5	57.3	<0.01	0.14	1.7
1201241093		0.35	28.0	800	4.4	5.7	0.001	0.02	0.39	9.2	2.4	0.5	54.6	<0.01	0.03	2.4
1201241094		0.32	21.1	850	5.4	6.4	<0.001	0.01	0.39	6.8	2.1	0.5	57.2	<0.01	0.03	2.7
1201241095		0.29	21.7	860	4.7	3.8	0.001	0.01	0.38	6.4	1.4	0.4	56.9	<0.01	0.04	1.9
1201241096		0.27	20.7	770	4.5	5.3	<0.001	0.01	0.27	5.5	1.0	0.4	45.2	<0.01	0.04	2.0
1201241097		0.65	18.2	850	4.7	2.7	<0.001	0.05	0.33	4.4	0.9	0.4	154.0	<0.01	0.01	2.1
1201241098		0.16	27.1	980	5.3	6.1	<0.D01	0.02	0.37	6.3	1.0	0.4	89.8	<0.01	0.07	2.0
1201241099		0.31	28.9	740	5.7	8.6	0.001	<0.01	0.34	6.7	1.1	0.5	48.6	<0.01	0.04	2.5
1201241100		0.32	30.7	650	6.7	12.2	0.001	<0.01	0.28	7.9	0.6	0.5	54.6	<0.01	0.07	2.8
1201241101		0.24	19.5	960	5.4	7.3	0.002	<0.01	0.35	5.8	0.7	0.4	59.7	<0.01	D.09	2.2
1201241102		0,30	19.3	760	6.4	5.8	0.001	<0.01	0.34	5.0	0.7	0.4	38.6	<0.01	0.08	1.9
1201241103		0.28	19.5	620	5.5	6.7	<0.001	<0.01	0.31	5.9	0.5	0.5	79.4	<0.01	0.10	1.8
1201241104 1201241105		0.29 0.27	32.6 20.6	620 750	7.4 4.6	4.7 9.9	0.001 0.001	0.01 ⊲0.01	0.41 0.23	4.9 9.0	1.1 0.7	0.3 0.4	43.7 66.7	<0.01 <0.01	0.31	1,1
															D.05	1.4
1201241106 1201241107		0.48 0.20	11.8 22.4	490 840	3.8 5.0	7.2 9.2	<0.001 0.001	<0.01 <0.01	0.07 0.31	1.9 5.9	<0.2 0.6	0.4 0.4	23.4 81.6	<0.01 <0.01	0.01 0.06	0.6 1.9
1201241108		0.38	18,1	500	4.2	9.2 12.8	0.001	< 0.01	0.19	5. 5 4.4	0.5	0.4	48.9	<0.01	0.05	1.9
1201241109		0.41	18.9	530	4.9	14.9	0.001	<0.01	0.15	4.2	0.3	0.4	45.3	<0.01	0.03	1.5
1201241110		0.19	19.9	720	4.8	10.2	0.001	<0.01	0.29	5.8	0.9	0.4	63.9	<0.01	0.09	1.8
1201241111		0.20	19.8	640	5.2	9.5	<0.001	<0.01	0.28	5.7	0.7	0.4	65,1	<0.01	0.04	1.9
1201241112		0.19	20.5	600	7.6	11.1	<0.001	<0.01	0.25	5.9	0.6	0.4	54.2	<0.01	0.07	1.7
1201241113		0.15	19.6	680	4.8	10.0	<0.001	<0.01	0.22	5.4	0.9	0.3	63.3	<0.01	0.08	1.8
1201241114		0.18	23.9	790	5.3	8.7	<0.001	<0.01	0.31	7.0	0.9	0.5	46.6	<0.01	0.05	2.3
1201241115		0.21	21.9	930	8.2	15.6	0.001	<0.01	0.29	6.8	0.9	0.5	65.9	<0.01	0.11	2.2
1201241116		0,48	16.0	540	5.8	14.5	0.001	<0.01	0.17	3.7	0.4	0.4	34.4	<0.01	0.05	1.3
1201241117	Ì	0.32	22.1	204 0	8.5	14.0	0.001	0.03	0,35	10.5	0.9	0.4	61.8	<0.01	0.10	2.0
1201241118		0.64	28.0	1130	6.4	6.6	0.001	<0.01	0.06	2.2	0.3	0.5	30.2	<0.01	0.05	0.8
1201241119		0.43	15.2	460	4.2	11.0	0.001	<0.01	0.08	3.1	0.2	0.5	25.0	<0.01	0.01	1.2
1201241120		0.19	16.3	720	4.1	76	<0.001	<0.01	0.23	5.2	0.7	0.3	38.0	<0.01	0.06	2.4

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: GOLDCLIFF RESOURCE CORPORATION 6976 LABURNUM ST VANCOUVER BC V6P 5M9

Page: 4 - D Total # Pages: 6 (A - D) Plus Appendix Pages Finalized Date: 13-AUG-2012 Account: GOLRESCO

	Method	ME- M541 Ti	ME-MS41 Ti	ME-MS41 U	ME-NS43 V	ME-M541 W	ME-M541 Y	ME- M54 1 Zn	ME-MS41 Zr	Au-QC43 Au	
	Analyte								ppm	ppm	
Sample Description	Units	*	ррт	epm	ppm	ppm.	ррт 0.65	ррт 2	0.5	0.01	
	LOR	0.00\$	0.02	0.05	1	0.05	0.05		0.5	0.01	
1201241081		0.048	0.07	0.45	49	0.07	12.30	54	8.9		
1201241082		0.050	0.11	0.49	68	0.06	14.50	81	13.1		
1201241083		0.066	0.06	0.47	77	0.07	9.00	48	7.3		
1201241084		0.063	0.09	0.51	65	0.07	10.90	57	7.1		
1201241085		0.068	0.07	0.47	70	0.07	12.00	41	9.0		
1201241086		0.076	0.07	0.42	60	0.07	11.15	42	7.3		
1201241087		0.090	0.08	0.50	70	0.08	10.30	52	5.9		
1201241086		0.094	0.10	0.62	59	0.08	7.08	289	3.0		
1201241089		0.161	0.05	0.64	130	<0.05	10.70	119	2.7		
1201241090		0.060	0.05	0.43	63	0.06	6.25	47	2.4		
						-					
1201241091		0.100	0.08	0.64	72	0.05	13.25	52	12.1		
1201241092		0.098	0.07	0.47	69	0.DB	7.85	54	8.8		
1201241093		0.072	0.10	1.85	60	0.06	20.7	69	9.0		
1201241094		0.060	0.11	0.76	69	0.06	14.35	58	9.1		
1201241095		0.077	0.08	0.60	64	0.07	16.20	55	8.2		
1201241096		0.079	0.09	0.63	66	0.08	12.15	51	7.2	-	
1201241097		0.072	0.11	0.62	49	0_06	11.70	41	5.2		
1201241098		0.077	0.10	0.51	75	0.06	11.10	71	6.8		
1201241099		0.069	0.11	0.81	81	0.09	14.45	63	9.1		
1201241100		0.104	0.12	0.77	77	0.09	9.45	57	12.4		
1201241101		0.084	0.11	0.79	71	0.07	15.20	58	7.5		
1201241102		0.068	0.10	0.63	67	0.09	12.05	105	4.9		
1201241103		0.095	0.10	0.59	76	0.07	9.44	71	4.9		
1201241104		0.092	0.12	0.41	87	0.09	6.14	248	34	0.11	
1201241105		0.059	D.17	0.44	99	0.05	6 65	73	3.8		
1201241105		0.078	0.06	0.22	39	<0 05	1.69	87	0.8		
1201241107		0.089	0.12	0.47	75	0.06	10.85	62	8.6		
1201241108		0.094	0.00	0.38	73	0.05	3.56	55	4.2		
1201241109		0.105	D.11	0.42	70	0.05	3.69	57	3.8		
1201241110		0.093	0.12	0.51	75	0.08	8.01	57	8.3		
1201241111		0.094	0.15	0.51	74	0.08	11.05	61	7.4		
1201241112		0.092	D.19	0.50	78	0.08	8.64	83	6.3		
1201241113	1	0.069	0.16	0.53	75	0.06	9.22	62	7.0		
1201241114		0.096	0,11	0.64	74	0.07	12.55	58	11.3		
1201241115		0.087	0.32	0.56	83	0.06	13.00	99	8.4		
1201241116		0.095	0.12	0.39	56	0.05	3.77	98	5.8		
1201241117		0.035	0.12	0.72	81	0.10	5.99	79	7.7		
1201241117		0.088	0.05	0.22	42	0.05	1.78	368	5.6		
1201241118	-	0.090	0.05	0.33	+∠ 43	0.05	3.14	87	7.4		
		0.068	0.07	0.53	43 87	0.03	6.34	42	7,9		
1201241120		0.000	0.01	0.00		0.01			1.4		
					<u> </u>	· · ·					

ALS)

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: GOLDCLIFF RESOURCE CORPORATION 6976 LABURNUM ST VANCOUVER BC V6P 5M9

Page: 5 - A Total # Pages: 6 (A - D) Plus Appendix Pages Finalized Oate: 13-AUG-2012 Account: GOLRESCO

Minera	15								C	ERTIFIC	CATE O	F ANAL	YSIS	KL121	73140	·
Sample Description	Method Analyte Units LOR	WD-21 Recvd WL kg D.02	Au-ST43 Au ppm Q.0001	ME-MS41 Ag ppm 0.01	ME-M541 A % 0.01	ME-MS41 Aa ppm Q.1	МЕ- NS41 Ац рэнт 0.2	ME-MS41 B ppm 10	ME-MS41 Ba 30m 30	ME-MS41 Be ppm 0.05	ME-MS41 Bi gpm 0:01	ME-MS41 Ca % 0.01	ME-MS41 Cd ppm 0.01	ME-M541 Ce ppm 0.02	ME-MS41 Co ppm 0.1	МЕ- М5 41 Сr ppm 1
1201241121		0.29	0.0014	0,10	t.59	3.1	<0.2	<10	BÛ	0.32	0.08	0.46	0.07	15.55	11.1	25
1201241122		0.54	0.0141	0.19	t.77	4.1	<0.2	<10	60	0.36	0.10	0.50	0.14	16.50	16.2	32
1201241123		0.35	0.0009	0.18	1.72	1.8	<0.2	<10	170	0.33	0.10	0.30	0,10	11.85	8.5	19
1201241124		0.28	0.0019	0.07	2.02	5.3	<0.2	<10	140	0.59	0.15	3.17	0 09	30.4	16.0	47
1201241125		0.26	0.0028	0.12	1.45	6.5	<0.2	<10	90	0.38	0.12	0.42	0.08	21.0	10.9	33
201241126		0.17	0.0016	0.19	1.97	3.1	<0.2	<10	120	0.45	0.11	0.48	0.07	18,75	11.7	47
201241127		0.27	0.0019	0.14	1.48	2.5	<0.2	<10	110	0.29	0.09	0.45	0.12	15.20	11.2	32
201241128		0.27	0.0016	0.07	1.79	4.9	<0.2	<10	100	0.48	0.11	0.52	0.04	23.8	12.1	45
201241128		0.21	0.0025	0.07	2 05	4.¢ 5,2	<0.2	<10	140	0.53	0.13	3.11	0.15	25.0	16.9	49
L201241129 L201241130		0.22	0.0025	0.24	205	5.2 4.9	<0.2	<10 <10	140 80	0.53	0.09	0.55	U.15 0.07	27.7 18.10	16.9	49 27
1201241131		0.24	0.0025	0.06	1.82	5.4	<0.2	<10	90	0.39	0.08	0.68	0.07	19.10	14.6	29
1201241132		0.26	0.0054	0.07	2 06	4.8	<0.2	<10	120	0.50	0.11	0.68	Q. 10	20.3	15.4	34
201241133		Q. 30	0.0011	0.15	1.57	2.5	<0.2	<10	110	0 31	0.09	0.47	0.07	14.65	9.5	27
201241134		0.24	0.0030	0.20	1.84	3.8	<0.2	<10	100	0.43	0.10	0.52	0.06	25.6	12.2	32
201241135		0.27	0.0005	0.16	1.41	2.4	<0.2	<10	140	0.28	0.05	0.43	0.05	13.25	7.9	23
201241136		0.26	0.0023	0.08	1.81	4.6	<0.2	<10	90	0.36	0.04	0.67	0.04	19.85	11.B	31
201241137		0.26	0.0013	0.10	1.70	3.8	<0.2	<10	100	0.38	0.05	0.57	0.04	21.0	11.3	32
201241138		D.26	0.0017	0,09	1.99	3.8	<0.2	<10	120	0.45	0.05	0.63	0.05	20.3	10.9	31
1201241139		0.29	0.0254	0.14	2.17	4.7	<0.2	<10	90	0.47	0.05	0.70	0.04	19.65	12.2	30
201241140		0.30	0.0028	0.14	2.63	6.7	<0.2	<10	130	0.66	0.10	0.70	0.04	31.5	18.7	47
201241141		0.32	0.0045	0.18	1.90	5.1	<0.2	<10	80	0.41	0.05	0.72	0.06	24.8	14.4	28
1201241142		0.29	0.0017	0.14	1.38	2.6	<0.2	<10	60	0.29	0.03	0.48	0.03	13.55	8.6	21
201241143		0.31	0.0020	0.12	2.07	5.3	<0.2	<10	100	0.44	0.05	0.68	0.05	23.5	13.0	32
201241144	-	0.27	0.0023	0.15	2.04	4.2	<0.2	<10	110	0.53	0.05	0.67	0.04	25.8	13.1	38
201241145		0.28	0.0012	0.11	1.41	2.4	<0.2	<10	90	0.30	0.04	0.48	0.01	14.60	9.2	28
201241146		0.31	0.0021	0.09	2.07	5.2	<0.2	<10	110	0.50	0.06	0.71	0.03	23.6	12.3	36
201241147		0.346	0.0006	0.08	1.57	1.8	<0.2	<10	180	0.36	0.06	0.39	0.05	19.30	8.3	38
201241148		0.27	0.0010	0,12	1.47	1.8	<0.2	<10	100	0.37	0.05	0,50	0.03	22.9	10.3	48
201241149		0.33	0.0015	0.06	2.17	3.4	<0.2	<10	60	0.38	0.05	0.52	<0.01	26.5	11.8	60
201241150		0.27	0.0021	D. 12	1.54	2.3	<0.2	<10	130	0.32	0.05	0.41	0.07	17.25	7.7	27
201241151		0.30	0.0026	0.21	2.45	8.0	<0.2	<10	110	0.46	0.09	0.43	0.93	20.9	20.9	22
201241152		0.25	0.0014	0.17	1.98	3.4	<0.2	<10	150	0.47	0.07	0.40	0.19	22.5	10.3	25
201241153		0.28	0.0021	0,17	1.93	7.5	<0.2	<10	110	0.34	0.06	0.40	0.19	19.90	21.4	23
201241154		0.26	0.0041	0.24	2.22	9.0	<0.2	<10	90	0.47	0.08	0.59	0.40	22.7	20.7	28
1201241154		0.26	0.0034	0.24	2.50	9.0 6.6	<0.2	<10	90 100	0.47	0.08	0.58	0.12	22.5	15.0	20-
201241156		0.28	0.0049	0.17	2.60	7.7	<0.2	<10	130	0.48	0.07		0.14	21.9	17.2	29
201241156		0.28	0.0049	0.17	2.50	4.6	<⊍.∡ <0.2	<10 <10	130 t50	0.60	0.07	0.62 0.57	0.14	21.9 29.4	17.2	29 50
	1															
1201241158	1	0.30	0.0007	D.11	1.48	2.7	<0.2	<10	120	0.45	0.08	0.48	0.04	24.1	8.2	42
1201241159	1	0.35	0.0007	0.05	1.31	2.2	<0.2	<10	150	0.36	0.07	0.40	0.02	19.90	5.3	18
201241160	1	0.31	0.0009	0.10	1.54	2.6	<0.2	<10	170	0.40	0.08	0.49	0.06	20.9	6.7	23

2103 Dollarton Hwy North Vancouver BC V7H DA7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: GOLDCLIFF RESOURCE CORPORATION 6976 LABURNUM ST VANCOUVER BC V6P 5M9

Page: 5 - 8 Total # Pages: 6 (A - D) Plus Appendix Pages Finalized Date: 13-AUG-2012 Account: GOLRESCO

		ME-MS41	ME-MS41	ME-MS41	ME- M541	ME- MS41	ME-M541	ME-M541	ME-MG41	ME-NS41	ME-MS41	ME-MS41	ME-MS+1	ME-MS41	₩E-M541	ME-MS41
	Method Analyte	Cs	Cu	Fe	Ga	Ge	н	Hg	In	ĸ	La	Li	Mg	₩ta	Мо	Na
	Units	ppm	ppm	%	opm	ppm	port-	ppm	ppm	ж	ppm	ppm	5	ррм	220	X
Sample Description	LOR	0.05	0.2	0.01	0.05	0.05	0.02	0.01	0.005	0.01	0.2	0.1	0.01	5	0.05	0.01
1201241121		0.58	45.3	291	4.54	0.06	0.18	0.02	0.017	0.09	7.4	7.2	0.67	347	0.59	0.02
1201241122		0.44	548	5,85	4.89	0.07	0,06	0.03	0.019	0.05	8.8	6.4	0.75	303	1.01	0.02
1201241123		0.71	27.8	2.10	5.03	<0.05	0.13	0.01	0.017	Q.Q7	4.9	7.9	0.41	333	0.44	0.02
1201241124		0.76	57.2	3.03	5.97	0.11	0.22	0.03	0.027	0.13	15.7	9.6	1.04	642	0.85	0.04
1201241125		0.68	46.t	2.63	4.52	0.06	0.24	0.02	0.020	0.14	10.9	6.5	0.65	407	1.30	0.02
1201241126		0.80	43.9	2.98	5.37	0.08	0.31	0.01	0.020	0.17	11.6	6.8	0.84 0.61	332 472	0.68 0.59	0.02 0.02
1201241127		0.71	26.3	2.42	4.61	0.07	0.15	0.01	0.017	0.18	6.4	5.9 6.7	0.84	472	0.30	0.02
1201241128		0.79	48.1	2 92	5.20	0.09	0.34	0.02	0.020	0.08	12.8			423 880	0.73	0.02
1201241129		1.08	62.6	3.19	5.92	0.10	0.36	0.04	0.027	0.09	14.2	10.1	1.18	318	0.52	0.04
1201241130		0.71	61.3	3.55	5.13	0.07	0.23	0.02	0 021	0.13	10.9	8.0	0.70			
1201241131		0.62	70.1	3.47	5.09	0.08	0.23	0.02	0.019	0.10	10.4	7.0	0.77	555	0.76	0.02
1201241132		0.74	67.0	3.51	6.15	0.07	0.25	0.02	0 025	0.15	11.7	8.3	0.84	598	0.63	0.02
1201241133		0.58	30.8	2.62	4.70	0.05	0.24	0.03	0.017	0.08	6.6	11.0	0.52	322	0.40	0.03
1201241134		0.65	46.0	3.11	5.22	0.08	0.29	0.02	0.023	0.12	12.2	7.0	0.61	242	0.61	0.02
1201241135		0.63	24.1	2.37	4.49	<0.05	0.09	0.13	0.017	0.12	6.3	6.2	0.49	558	0.59	0.02
1201241136		0.70	51.0	3.34	5.10	0.06	0.24	0.14	0.026	0.13	10.4	7.5	0.76	443	0.56	0.03
1201241137	1	0.60	40.4	3.22	4.84	0.05	0.18	0.04	0.021	0.14	9.0	6.5	0.76	331	0.60	0.02
1201241138		0.72	46.0	3.34	5.38	<0.05	0.21	0.04	0.022	0.14	10.2	7.5	0.78	452	0.50 0.55	0.02
1201241139		0.62	67.8	3,70	5.71	0.07	0.29	0.05	0.024	0.14	12.3	9.4	0.80 1.08	385 688	0.55	0.02
1201241140		1.29	76.0	4.04	7.32	0.07	0.34	0.08	0.035	0.20	15.1	10.4				
1201241141		0.66	85.1	3.65	5.04	0.07	0.21	0.07	0.024	0.12	11.7	87	0.76	495	0.65	0.02
1201241142		0.51	32.5	2.65	4.07	<0.05	80.0	0.05	0.014	0.13	5.8	6.9	0.53	315	0.49 0.66	0.02
1201241143	ļ	0.75	65.3	3.79	5.34	0.06	0.23	0.05	0.022	0.14	11.8	9.0	0.84	442	0.56	0.02
1201241144	1	0.74	52.7	3.40	5.58	0.08	0.24	0.04	0.028	0.10	12,4	9.0	0.67 0.58	464	0.44	0.03
1201241145		0.53	29.6	2.64	4 20	<0.05	0.23	0.02	0.016	0.10	6.1	6.6		225		
1201241146	1	0.63	61.2	3.58	5.88	0.07	0.23	0.05	0.022	0.12	14.3	8.5	0.61	416	0.56	0.03
1201241147	1	0.76	27.0	2.16	5.00	<0.05	0.13	0.04	0.015	0.11	7.9	8.2	0.59	285	0.35	0.03
1201241148	1	0.72	38.2	2.55	4.71	0.05	0.15	0.04	0.017	0.11	9.7	7.6	0.60	349	0.38	0.03
1201241149	1	0.57	50.6	3.22	5.36	0.06	0.16	0.05	0.020	0.09	12.1	7.9	1.08	283	0.47 0.48	0.02 0.03
1201241150		0.61	27.6	2.42	4.35	<0.05	0.15	0.03	0.018	0.10	7.0	6.7	0.47	544		
1201241151		0.59	61.8	4.54	6.03	0.05	0.19	0.03	0.018	0.24	9.4	10.0	0.81 0.59	698 503	1.30	0.02 0.03
1201241152		0.77	3410	2.98	5.45	0.05	0.35	0.04	0.019	0.29	10.2	8.9 8.3	0.69	492	1,21	0.03
1201241153	1	0.58	49.2	4.08	5.00	<0.05 0.05	0.19	0.98	0.020 0.025	0.21 0.14	8.1 11,3	6.J 9.1	0.69	492 753	1.35	0.02
1201241154	-	0.63	85.6	4.32	5.39	0.05	0.23	0.10 0.05	0.025	0.14	12.5	9.1	0.95	442	1.35	0.02
1201241155		0.93	73.2	4.11	6.08	0.06	0.41				_					
1201241156		0.61	79.6	4.27	6.22	0.05	0.18	0.04	0.028	0.19	10.5	- 10.6	0.88	491	0.96 0.62	0.02 0.03
1201241157		0.83	42.4	3.29	5.89	0.06	0.61	0.03	0.029	0.25	13.5	7.8	0.76	452		
1201241158		0.61	29.5	2.56	4.70	0.08	0.53	0.04	0.023	0.19	11.9	5.3	0.49	382	0.48	0.02
1201241159		0.60	15.4	2.10	4.17	<0.05	0.56	0.02	0.017	0.22	9.4	4.1	0.31	360	0.35	0.02
1201241160		0.71	22.0	2.33	4.53	<0.05	0.44	0.03	0.021	0.20	10.7	5.2	0.41	477	0.57	0.02

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.aisglobal.com

To: GOLOCLIFF RESOURCE CORPORATION 6976 LABURNUM ST VANCOUVER BC V6P 5M9

Page: 5 - C Total # Pages: 6 (A - D) Plus Appendix Pages Finalized Date: 13-AUG-2012 Account: GOLRESCO

									L C	EKTIFIL	LAIEU	F ANAL	1212	KLIZI	/3140	
Sample Description	Method Analyte Units LOR	ME-MS41 Nb ppm 0.05	ME-MS41 Ni ppm: 0.2	ME-MS41 P ppm 1D	МЕ-MS41 Рь ррт 0.2	ME-M541 Rb ppm 0.1	ME-MS41 Re ppm 0.001	ME-M541 S % 0.01	₩E-M541 Sb g⊉m 0:05	ME-MS41 Sc ppm 0.1	ME-MS41 Se ppm 0.2	ME-MS41 Sn ppm 0.2	ME-M541 Sr ppm 0.2	ME-M541 Ta ppm 0.01	MEMS41 Te ppm 0.01	ME-MS41 Th ppm 0.2
1201241121		0.38	16.1	870	3.9	8.B	0.001	<0.01	0.20	4.7	0.3	0.4	38.9	<0.01	0.05	1.4
1201241122		0.34	20.2	040	4.6	3.9	0,601	0.01	0.31	5.3	1.3	0.4	57.7	< 0.01	0.14	1.4
1201241123		0.57	18.4	850	4.6	9.5	<0.001	<0.01	0.11	2.9	0.2	0.5	31.7	<0.01	0.02	1.1
1201241124		0.55	31.5	730	7.6	7.2	<0.00f	0.02	0.34	6.8	1.0	0.6	109.5	<0.01	0.04	3.0
1201241125		0.35	21.5	700	6.4	11.1	D.001	<0.01	0.38	5.0	1.0	0.4	42.2	<0.01	0.06	2.2
1201241126		0.20	26.2	890	5.8	13.7	0.001	<0.01	0.20	6.D	0.6	0.5	50.3	<0.01	0.03	2.4
1201241127		0.63	19.3	880	5.8	12.5	0.001	<0.01	0.15	3.7	<0.2	0.4	42.9	<0.01	0.03	1.5
1201241128		0.20	25.9	870	5.9	70	0.001	<0.01	0.26	6.2	0.6	0.5	66.4	<0.01	0.03	2.5
1201241129		0.38	33.2	830	6.9	7.1	0.001	0.01	0.34	7.1	0.6	0.6	121.0	<0.01	0.05	2.9
1201241130		0.23	17.7	1000	4.0	9.7	<0.001	<0.01	0.23	6.2	1.0	0.4	54.2	<0.01	0.05	1.8
1201241131		0.20	18.2	1260	4.5	5.8	0.001	<0.01	0.2B	6.7	1.0	0.4	59.6	<0.01	0.06	1.9
1201241132		0.36	23.2	1120	5.5	6.0	<0.001	<0.01	0.28	7.4	0.6	0.5	61.6	<0.01	0.04	2.2
1201241133		0.42	16.9	600	4.1	11.1	<0.001	<0.01	0.13	4.2	0.4	0.6	42.7	<0.01	0.03	1.4
1201241134		0.35	19,7	780	4.7	9.0	<0.001	<0.01	0.17	6.2	0.6	0.5	46 .6	<0.01	0.03	2.2
1201241135		0.72	14.6	740	5.3	8.2	<0.001	0.01	0,17	3.6	0.3	0.4	40.0	<0.01	0.01	1.1
1201241136		0.30	21.2	1000	4.5	8.8	<0.001	0.01	0.22	6.5	0.4	0.4	56.7	<0.01	0.04	1.0
1201241137		0.32	19.1	800	5.0	11.1	<0.001	0.01	0.20	5.7	0.5	0.4	50.3	<0.01	0.03	1.7
1201241138		0.30	19.7	1040	5.3	6.1	<0.001	0.01	0.18	£.5	0.2	0.4	53.3	<0.01	0.07	1.8
1201241139		0.22	21.0	1100	4.2	6.3	<0.001	0.01	0.22	7.8	0.7	0.4	60.5	<0.01	0.08	2.0
1201241140		0.32	31.7	990	8.0	13.0	<0.001	0.01	0.28	8.3	0.8	0.5	64.1	<0.01	0.04	3.0
1201241141		0.35	19.3	1090	4.6	6.1	<0.001	0.02	0.22	7.4	0.7	0.4	57.3	<0.01	0.05	1.B
1201241142		0.52	15.4	910	3.6	6.2	<0.001	0.01	0.15	3.5	0.3	0.3	39.4	<0.01	0.01	1.0
1201241143		0.27	23.0	1230	4.6	7.3	<0.001	0.01	0.21	7.4	0.6	0.3	60.1	<0.01	0.05	2.0
1201241144		0.43	24.4	890	5.4	8.3	<0.001	0.01	0.25	6.9	0.4	0.4	79.6	<0.01	0.04	2.1
1201241145		0.49	15.5	500	4.4	11,1	<0.001	0.01	0.15	4.4	0.2	0.4	51.4	<0.01	0.02	1.4
1201241146		0.26	23.9	1170	4.9	7.3	<0.001	0.01	0.23	7.6	0.4	0.4	66.5	<0.01	0.06	2.0
1201241147		0.66	31.1	1710	5.2	13.1	<0.001	0.01	0.12	3.8	0.2	0.4	61.0	<0.01	0.02	1.2
1201241148		0,48	36.3	B10	5.D	12.4	<0.001	0.01	0.14	4.7	0.2	0.4	58.4	<0.01	0.03	1.4
1201241149		0.35	36.3	870	4.4	6.3	<0.001	0.01	0.16	6.1	0.2	0.3	71.7	<0.01	0.02	1.7
1201241150		0.47	20.3	890	4.4	8.1	<0.001	0.01	0.15	3.B	<0.2	0.4	39.2	<0.01	0.01	1.2
1201241151		0.36	21.3	700	14.6	17.0	<0.001	0.03	0.24	5.6	1.8	0.4	40.0	<0.01	0.15	1.3
1201241152		0.72	20.4	440	8.2	28.2	<0.001	0.01	0,16	5.0	0.9	0.4	42.3	<0.01	0.04	1.6
1201241153		0.44	18.8	790	10.5	12.2	<0.001	0.05	0.21	4.6	1.3	0.3	50.7	<0.01	0.13	1.3
1201241154		0.19	27.1	680	10.7	7.9	<0.001	0.02	0.31	6.0	1.5	0.4	48.5	<0.01	0.16	1.8
1201241155		0.24	29.6	460	8.3	15.0	<0.001	0.02	0_29	7.2	1.5	0.5	54.8	<0.01	0.10	2.3
1201241156		Q.17	26.7	800	7.9	9.1	<0.001	0.01	0.26	6.1	0.8	0.4	53.1	<0.01	0.11	1.7
1201241157		0.20	42.6	740	7.6	16.1	<0.001	0.01	0.14	7.5	0.7	0.4	61.0	<0.0†	0.03	2.5
1201241158		0.28	31.2	410	5.9	10.1	<0.001	0.01	0.10	6.1	0.3	0.4	59.2	<0.01	0.02	2.2
1201241159		0.27	10.6	340	4.6	13.2	<0.001	<0.01	0.08	41	<0.2	0.4	63.6	<0.01	<0.01	2.2
1201241160		0.42	14.1	430	5.4	15.5	<0.001	0.01	0.13	4.8	0.5	0.4	66.9	<0.01	0.01	2.1

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: GOLDCLIFF RESOURCE CORPORATION 6976 LABURNUM ST VANCOUVER BC V6P 5M9

Page: 5 - D Total # Pages: 6 (A - D) Plus Appendix Pages Finalized Date: 13-AUG-2012 Account: GOLRESCO

											E OI ANALI JIJ	KL121/J140
Sample Description	Method Analyte Units LOR	ME-MS41 T. X 0.005	ME-MS41 Ti ppm 0.02	ME- MS41 U ppm 0.05	ME-MS41 V рртп 1	ME-MS41 W ррнп 0.05	ME- MS4 1 Y gpm 0.05	ме- MS4 1 Zn рртк 2	ME-MS41 2/ ppm 0.5	Au-OG43 Au pom 9.01		
1201241121		0.087	0.07	0.45	74	0.05	5.37	54	7.4			
1201241122		0.128	0.05	0.68	101	0.06	6.82	60	2.7			
1201241123		0.090	0.06	0.35	48	0.05	2.79	89	5.1			
1201241124		0.094	0.11	0.70	69	0.06	13.05	57	8.2			
1201241125		0.084	0.12	0.71	63	0.06	7.48	62	9.B			
1201241126		0.093	0.09	0.61	68	0.07	9.02	68	13.4	· ·		
1201241120		0.094	0.08	0.45	56	0.05	3.81	87	6.1			
1201241128		0.087	0.09	0.84	70	0.08	10.50	48	12.4			
1201241128		0.092	0.15	0.75	73	0.06	14.05	-61	12.7			
1201241129		0.077	0.09	0.57	95	0.06	10.95	54	11.6			
								54	8.6			
1201241131		0.087 0.094	0.07 0.09	0.60 0.58	68 66	0.07 0.06	9.48 11.60	54 64	10.0			
1201241132		0.094	0.08	0.56	66	0.05	5,88	- 63	8.9			
1201241133 1201241134		0.087	0.08	0,40	76	0.06	10.05	51	11.3			
1201241134		0.007	0.06	0.38	59	<0.05	3.92	68	3.5			
1201241136		0.096	0.07	0.56	83	0.05	9.99	56	9.1			
1201241137		0.111	0.08	0.64	83	0.05	5.76	57	7.B			
1201241138		0.103	0.08	0.57	84	0.08	7.61	63	8.6			
1203241139		0.095	0.07	0.63	91	0.05	16.00	58	10.9			
1201241140		0.101	0.13	0.83	83	0.08	12.55	74	13.2	. .		
1201241141		0.096	0.10	0.75	91	0.06	10.80	53	B. B			
1201241142		0.080	0.04	0.83	66	0.05	4.36	50	3.4			
1201241143		0.090	0.10	0.67	66	0.05	10.85	57	10.6			
1201241144		0.103	0.07	0.72	83	0.07	11.50	55	10.5			
1201241145		0.113	0.05	0.41	71	0.05	4.58	41	8.7			
1201241146		0.104	0.06	0.66	85	0.07	13.00	54	9.2			
1201241147		0.094	0.07	0.40	49	0.05	4.32	63	5.7			
1201241148		0.112	80.0	0.42	64	0.05	5.48	53	5.9			
1201241149		0.107	0.08	0.74	B1	0.05	6.20	51	6.5			
1201241150		0.089	0.05	0.44	61	0.09	5.08	68	5.6			
1201241151		0.073	0.15	0.78	76	<0 05	8.48	319	8.3		•	
1201241152		0.088	0.14	0.52	60	0.05	8.90	108	14.0			
1201241153		0.059	0.13	0.79	64	<0.05	5.64	173	9.0			
1201241154		0.048	0.13	0.59	70	<0.05	11.90	159	7.9			
1201241155		0.072	0.13	0.79	71	<0.05	12.95	114	14.2			
1201241156		0.031	0.09	0.60	73	<0.05	10.70	98	6.5		· · ·	
1201241157		0.063	0.17	0.78	72	<0.05	10.10	71	22.8			
1201241158		0.080	0.09	0.69	59	<0.05	9.42	51	19.0			
1201241159		0.072	0.09	0.67	50	<0.05	5.34	50	18.8			
1201241160		0.087	0.09	0.66	56	<0.05	8,09	64	14.5			

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: GOLDCLIFF RESOURCE CORPORATION 6976 LABURNUM ST VANCOUVER BC V6P 5M9

Page: 6 - A Total # Pages: 6 (A - D) Plus Appendix Pages Finalized Date: 13-AUG-2012 Account: GOLRESCO

minera	12								C	ERTIFIC	ATE O	F ANAI	YSIS	KL121	73140	
Sample Description	Method Analyte Units LOR	WEI-21 Recvd Wt. kg 0.02	Au - ST43 Au ppm 0.0001	ME-M541 Ag ppm 0.01	ME-MS41 Al % 0.01	ME-M541 As ppm 0.1	ME-MS41 منا ppm 0.2	ME-M541 B ppm 10	ME-MS41 Ba ppar: 10	ME-M541 Be ppm 0.05	ME~MS41 B₂ ppm 0.01	ME-M541 Ce % 0.01	ME-MS43 Cd ppm 0.01	ME-MS41 Ce ppm 0.02	ME-MS41 Co ppm 0.1	ME-MS41 Cr ppm 1
1201243161 1201241162 1201241163 1201241163 1201241164 1201241165		0.27 0.34 0.28 0.31 0.30	0.0011 0.0005 0.0003 0.0005 0.0005	0.09 0.05 0.08 0.05 0.05	1.65 1.59 1.28 1.06 0.82	4.7 1.6 1.6 1.4 1.0	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2	<10 <10 <10 <10 <10	†20 220 150 159 140	0.51 0.42 0.32 0.29 0.21	0,09 0.07 0.06 0.06 0.05	0.57 0.45 0.38 0.39 0.22	0.03 0.03 0.01 0.01 <0.01	28.6 19.59 19.00 15.50 9.23	7.4 6.2 5.6 4.1 3.2	26 19 20 16 10
1201241166 1201241167 1201241168 1201241168 1201241169 1201241170		0.35 0.22 0.23 0.28 0.31	0.0001 0.0010 0.0004 0.0007 0.0018	0.04 0.05 0.05 0.07 0.07	0.87 1.38 1.04 1.54 1.18	1.0 2.2 2.1 3.1 4.4	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2	<10 <10 <10 <10 <10 <10	130 149 140 130 100	0.24 0.37 0.30 0.23 0.25	0,06 0.06 0.05 0.06 0.06	0.30 0.47 0.25 0.34 0.55	0.01 <0.01 <0.01 0.02 0.02	16.35 21.6 14.75 12.10 17.35	4.0 7.4 4.6 7.7 10.1	12 28 16 31 43
1201241171 1201241172 1201241173 1201241173 1201241174 1201241175		0.23 0.29 0.28 0.27 0.23	0.0045 0.0012 0.0025 0.0017 0.0031	0.17 0.08 0.17 0.20 0.04	1.98 1.08 2.34 1.94 1.60	8.0 2.3 4.2 7.3 5.2	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2	<10 <10 <10 <10 <10	186 180 140 100 130	0.53 0.28 0.65 0.57 0.46	0.14 0.07 0.14 0.10 0.10	0.68 0.31 0.53 0.54 0.80	0.14 0.03 0.10 0.06 0.06	32.2 14.70 35.0 32.5 28.8	18.0 6.1 12.3 12.2 15.0	36 20 54 53 50
1201241176 1201241177 1201241178 1201241178 1201241179 1201241180		0.28 0.28 0.32 0.29 0.29	0.0024 0.0010 0.0019 0.0005 0.0023	0.10 0.05 0.12 0.09 0.10	2.05 1.72 1.40 1.54 1.56	5.3 ⊲0.1 4.6 1.2 4.6	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2	<10 <10 <10 <10 <10 <10	170 560 110 80 100	0.57 0.20 0.40 0.42 0.42	0.11 0.06 0.09 0.05 0.11	0.71 4.32 0.61 0.44 0.53	0.08 0.08 0.06 0.04 0.06	32.7 56.6 24.7 16.05 25.6	14.5 19.4 10.1 6.3 12.5	43 116 38 15 39

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: GOLDCLIFF RESOURCE CORPORATION 6976 LABURNUM ST VANCOUVER BC V6P 5M9

Page: 6 - B Total # Pages: 6 (A - D) Plus Appendix Pages Finalized Date: 13-AUG-2012 Account: GOLRESCO

Method Analyte Units LOR	ME-MS41 Cs ppm 0.05	M{-MS41 Cu ppm 0.2	ME-MS41 ∓e % 0.01	ME-MS41 Ga ppm 0.03	ME-MS41 Ge ppm 0.05	ME-MS41 Hf 0.02	ME-MS41 Hg ppm 0.01	MC-MS41 In дет 0.005	ME-MS41 K % 0.01	ME-MS41 La ppm 0.2	ME-MS41 Li ppm Q.1	ME-MS41 Mg % ().01	ME-M541 Mn \$pm 5	ME-MS41 Mo ppm 0.05	ME-M54 Na % 0.01
	0.92 0.83 0.90 0.63 0.56	26.3 17.5 15.3 11.2 7.9	2.42 2.35 2.12 1.81 1.48	4.99 4.57 3.96 3.33 2.88	0.05 <0.05 <0.05 <0.05 <0.05	0.52 0.56 0.51 0.39 0.25	0.02 0.02 0.02 0.01 0.01	0.021 0.022 0.018 0.016 0.012	0.16 0.19 0.15 0.15 0.13	15.4 10.0 8.3 7.0 3.8	4.9 3.9 4.0 2.8 3.0	0.50 0.41 0.39 0.28 0.16	335 361 255 245 245	0.65 0.26 0.29 0.29 0.29	0.02 0.02 0.03 0.03 0.03
	0.57 0.64 0.63 0.76 0.59	9.4 22.0 12.4 18.8 37.9	1.82 2.37 1.81 2.32 2.45	3 D6 4.15 3.44 4.63 3 28	<0.05 0.05 <0.05 <0.05 <0.05 0.05	0.33 0.41 0.21 0.07 0.10	0.02 <0.01 <0.01 <0.01 <0.01 0.02	0.013 0.018 0.015 0.021 0.017	0.15 0.12 0.09 0.09 0.10	6.4 10.1 6.9 5.6 7.8	2.3 4.5 4.6 8.1 5.4	0.24 0.60 0.26 0.49 0.78	234 279 271 393 294	0.21 0.35 0.48 0.41 0.38	0.03 0.03 0.03 0.02 0.02
	1.17 0.71 1.29 0.93 1.23	64.0 19.7 38.4 42.6 56.6	3.47 1.92 3.22 3.07 3.27	5.86 3.38 6.88 5.60 5.07	0.10 0.05 0.11 0.11 0.12	0.34 0.22 0.46 0.44 0.27	0.05 0.02 0.03 0.03 0.03	0.033 0.018 0.031 0.028 0.027	0.11 0.13 0.20 0.13 0.14	16.8 7.3 20.8 16.6 14.2	9.2 3.D 10.9 11.2 8.4	0.91 0.38 0.60 0.88 1.11	882 220 534 375 656	1.29 0.52 0.60 0.49 0.78	0.03 0.02 0.02 0.03 0.04
	1.20 0.47 0.91 0.62 1.00	45.1 50.0 37.3 18.5 48.4	3.25 1.82 2.78 2.13 2.83	6.03 4.25 4.24 5.35 4.96	0.13 0.08 0.10 0.07 0.08	0.42 0.28 0.37 0.29 0.33	0.05 0.01 0.05 0.02 0.02	0.033 0.023 0.024 0.022 0.027	0.19 0.26 0.11 0.07 0.11	17 5 26.2 13.2 7.2 13.0	10.3 6.3 6.0 4.6 7.7	0.90 0.94 0.66 0.30 0.81	636 622 359 392 512	0.76 0.18 0.61 0.29 0.53	0.03 0.03 0.03 0.03 0.03
												_			
	Analyte Units	Analyte Cs Analyte Cs Units ppm LOR 0.05 0.92 0.83 0.90 0.63 0.56 0.57 0.84 0.63 0.76 0.59 1.17 0.71 1.29 0.93 1.23 1.20 0.47 0.91 0.62 0.62	Method Analyte Cs Cu Uaits ppm ppm LOR 0.05 0.2 0.92 26.3 0.83 0.83 17.5 0.90 0.63 11.2 0.56 0.63 11.2 0.56 0.63 12.4 0.63 0.63 12.4 0.76 0.59 37.9 1.17 1.17 64.0 0.71 0.71 19.7 1.29 1.23 56.6 1.23 1.20 45.1 0.47 0.91 37.3 0.62	Method Analyte Uaits LOR Cs Cu Fe Uaits LOR ppm ppm ppm % 0.92 26.3 2.42 0.83 17.5 2.35 0.90 15.3 2.12 0.63 11.2 1.81 0.56 7.9 1.48 1.62 0.63 12.4 1.81 0.56 7.9 1.48 2.37 0.63 12.4 1.81 0.57 9.4 1.62 0.84 22.0 2.37 0.63 12.4 1.81 0.76 18.8 2.32 0.59 37.9 2.45 1.17 64.0 3.47 0.71 19.7 1.92 1.29 38.4 3.22 0.93 42.6 3.07 1.23 56.6 3.27 1.20 45.1 3.25 0.47 50.0 1.62 0.91 37.3 2.76 0.62 18.5 2.13	Metrical Analyte Uaits LOR Cs Cu Fe Ga Uaits LOR ppm ppm ppm % ppm Uaits LOR 0.05 0.2 0.01 0.05 0.92 26.3 2.42 4.99 0.83 17.5 2.35 4.57 0.90 15.3 2.12 3.06 0.63 11.2 1.81 3.03 0.56 7.9 1.48 2.89 0.57 9.4 1.82 3.06 0.83 12.4 1.81 3.44 0.76 18.8 2.32 4.63 0.59 37.9 2.45 3.28 1.17 64.0 3.47 5.86 0.71 19.7 1.92 3.38 1.29 38.4 3.22 8.86 0.93 42.6 3.07 5.60 1.23 56.6 3.27 5.07 1.20 45.1 3.25 6.03	Metrical Analyte Uaits LOR Cs Cu Fe Ga Ge Uaits LOR ppm ppm ppm % ppm ppm Uaits LOR 0.05 0.2 0.01 0.05 0.05 0.92 26.3 2.42 4.99 0.05 0.83 17.5 2.35 4.57 <0.05	Analyte Lor Cs Cu Fe Ga Ge Hf Units ppm ppm ppm % ppm ppm <td>Method Analyte Uatis Cs Cu Fe Ga Ge Hf Hg Uatis ppm ppm ppm % ppm <td< td=""><td>Method Analyte Units Cs Cu Fe Ga Ge Hf Hg In Units ppm qpm qqm qpm qqm <t< td=""><td>Method Analyte Cs Cu Fe Ga Ge Hf Hg In K Units ppm ppm s ppm s s 0.01 0.02 0.01 0.005 0.01 0.005 0.01 0.005 0.01 0.005 0.01 0.005 0.01 0.005 0.01 0.005 0.01 0.005 0.01 0.005 0.01 0.005 0.01 0.005 0.01 0.005 0.01 0.016 0.01 0.016 0.015 0.03 0.15 0.03 0.15 0.05 0.03 0.01 0.012 0.13 0.15 0.05 0.33 0.02 0.013 0.15 0.05 0.33 0.02 0.013 0.15 0.05 0.13 0.12 0.13 0.15 0.05 0.01 0.016 0.15 0.05 0.01</td><td>Method Analyte Cs Cu Fe Ga Ge Hf Hg In K La Units ppm ppm sppm ppm gpm % ppm LOR 0.03 0.2 0.01 0.03 0.05 0.02 0.01 0.005 0.01 0.22 0.92 26.3 2.42 4.99 0.05 0.56 0.02 0.02 0.01 0.16 15.4 0.83 17.5 2.35 4.57 <0.05</td> 0.56 0.02 0.02 0.19 10.0 0.63 11.2 1.81 3.33 <0.05</t<></td> 0.39 0.01 0.016 0.15 8.3 0.66 7.9 1.46 2.86 <0.05</td<></td> 0.33 0.02 0.013 0.15 6.4 0.84 22.0 2.37 4.15 0.05 0.21	Method Analyte Uatis Cs Cu Fe Ga Ge Hf Hg Uatis ppm ppm ppm % ppm ppm <td< td=""><td>Method Analyte Units Cs Cu Fe Ga Ge Hf Hg In Units ppm qpm qqm qpm qqm <t< td=""><td>Method Analyte Cs Cu Fe Ga Ge Hf Hg In K Units ppm ppm s ppm s s 0.01 0.02 0.01 0.005 0.01 0.005 0.01 0.005 0.01 0.005 0.01 0.005 0.01 0.005 0.01 0.005 0.01 0.005 0.01 0.005 0.01 0.005 0.01 0.005 0.01 0.005 0.01 0.016 0.01 0.016 0.015 0.03 0.15 0.03 0.15 0.05 0.03 0.01 0.012 0.13 0.15 0.05 0.33 0.02 0.013 0.15 0.05 0.33 0.02 0.013 0.15 0.05 0.13 0.12 0.13 0.15 0.05 0.01 0.016 0.15 0.05 0.01</td><td>Method Analyte Cs Cu Fe Ga Ge Hf Hg In K La Units ppm ppm sppm ppm gpm % ppm LOR 0.03 0.2 0.01 0.03 0.05 0.02 0.01 0.005 0.01 0.22 0.92 26.3 2.42 4.99 0.05 0.56 0.02 0.02 0.01 0.16 15.4 0.83 17.5 2.35 4.57 <0.05</td> 0.56 0.02 0.02 0.19 10.0 0.63 11.2 1.81 3.33 <0.05</t<></td> 0.39 0.01 0.016 0.15 8.3 0.66 7.9 1.46 2.86 <0.05</td<>	Method Analyte Units Cs Cu Fe Ga Ge Hf Hg In Units ppm qpm qqm qpm qqm <t< td=""><td>Method Analyte Cs Cu Fe Ga Ge Hf Hg In K Units ppm ppm s ppm s s 0.01 0.02 0.01 0.005 0.01 0.005 0.01 0.005 0.01 0.005 0.01 0.005 0.01 0.005 0.01 0.005 0.01 0.005 0.01 0.005 0.01 0.005 0.01 0.005 0.01 0.005 0.01 0.016 0.01 0.016 0.015 0.03 0.15 0.03 0.15 0.05 0.03 0.01 0.012 0.13 0.15 0.05 0.33 0.02 0.013 0.15 0.05 0.33 0.02 0.013 0.15 0.05 0.13 0.12 0.13 0.15 0.05 0.01 0.016 0.15 0.05 0.01</td><td>Method Analyte Cs Cu Fe Ga Ge Hf Hg In K La Units ppm ppm sppm ppm gpm % ppm LOR 0.03 0.2 0.01 0.03 0.05 0.02 0.01 0.005 0.01 0.22 0.92 26.3 2.42 4.99 0.05 0.56 0.02 0.02 0.01 0.16 15.4 0.83 17.5 2.35 4.57 <0.05</td> 0.56 0.02 0.02 0.19 10.0 0.63 11.2 1.81 3.33 <0.05</t<>	Method Analyte Cs Cu Fe Ga Ge Hf Hg In K Units ppm ppm s ppm s s 0.01 0.02 0.01 0.005 0.01 0.005 0.01 0.005 0.01 0.005 0.01 0.005 0.01 0.005 0.01 0.005 0.01 0.005 0.01 0.005 0.01 0.005 0.01 0.005 0.01 0.005 0.01 0.016 0.01 0.016 0.015 0.03 0.15 0.03 0.15 0.05 0.03 0.01 0.012 0.13 0.15 0.05 0.33 0.02 0.013 0.15 0.05 0.33 0.02 0.013 0.15 0.05 0.13 0.12 0.13 0.15 0.05 0.01 0.016 0.15 0.05 0.01	Method Analyte Cs Cu Fe Ga Ge Hf Hg In K La Units ppm ppm sppm ppm gpm % ppm LOR 0.03 0.2 0.01 0.03 0.05 0.02 0.01 0.005 0.01 0.22 0.92 26.3 2.42 4.99 0.05 0.56 0.02 0.02 0.01 0.16 15.4 0.83 17.5 2.35 4.57 <0.05	Method Analyte Cs Cu Fe Ga Ge Hf Hg In K La Li Units ppm ppm	Method Analyte Urits Cs Cu Fe Ga Ge Hf Hg In K La Li Mg Urits ppm ppm ppm s ppm ppm ppm s s ppm s s 0.01 0.05 0.01 0.05 0.01 0.05 0.01 0.018 0.15 8.3 4.0 0.39 0.01 0.016 0.15 7.0 2.8 0.28 0.28 0.01 0.016 0.15 6.4 2.3 0.24 0.26 0.63 12.4 1.81 3.44 <0.05	Matiyte Cs Cu Fe Ga Ge Hf Hg In K La Li Hg Mn Units ppm ppm	Mathud Analyte Cs Cu Fe Ga Ge Hf Hg In K La Li Mg Mn Mo Units ppm ppm ppm ppm ppm ppm ppm % ppm ppm ppm ppm % ppm ppm ppm ppm ppm ppm % ppm ppm ppm % ppm ppm <t< td=""></t<>

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: GOLDCLIFF RESOURCE CORPORATION 6976 LABURNUM ST VANCOUVER BC V6P 5M9

Page: 6 - C Total # Pages: 6 (A - D) Plus Appendix Pages Finalized Date: 13-AUG-2012 Account: GOLRESCO

Sample Description	Method Analyte Units LOR	ME-MS41 Nb 0.05	ME-M541 Ni ppm 0.2	ME-MS41 P PPm 10	Μξ- Μ54 1 Ρο ρφπ 0.2	ME-19541 Rb ppen 0.1	ME-MS41 Re ppm 0.001	ME-MS41 S % 0.01	ME-MS41 SD ppm 0.05	NJE-XIS41 Sc ppm 0.1	ME- M541 Se ppm 0.2	ME-MS41 Sn ppm 0.2	ME-MS41 Sr ppm D.2	ME+MS41 Ta ppm 0.01	ME-M541 Te ppm 0.01	ME-WS41 Th ppm 0.2
1201241161		0.22	21.2	700	6.1	11.7	<0.001	0.01	0.11	5.6	0.4	0.5	72.8	<0.01	40.01	3.6
1201241162		0.28	9.9	540	5.3	9.9	<0.001	0.01	0.07	4.7	0.3	0.4	83.1	<0.01	<0.01	2.0
1201241163		0.38	10.1	280	4,9	12,6	<0.001	<0.01	0.10	4.1	<0.2	0.4	67.5	<0.01	0.02	t.8
1201241164		0.34	7.9	360	4.8	8.2	<0.001	0.01	0.08	3.3	03	0.4	74.6	<0 01	<0.01	1.8
1201241165		0.41	5.1	250	4.1	7.7	<0.001	<0.01	0.07	1.9	<0_2	0.3	49.6	<0.01	Q.02	1_2
1201241166		0.27	6.5	310	3.9	8.8	<0.001	<0.01	0.07	2.8	<0.2	0.4	58.8	<0.01	0.01	1.7
1201241167		0.27	15.8	390	5.6	11.6	<0.001	0.01	0.13	4.9	<0.2	0.4	73.2	<0.01	0.02	2.2
1201241168		0.29	11.1	490	4.3	8.5	<0.001	<0.01	0.09	2.8	<0.2	0.4	53.5	<0.01	0.01	t.4
1201241169		0.41	16.7	970	4.5	7.2	<0.001	0.01	0.12	3.6	<0.2	0.4	59.4	<0.01	<0.01	1.0
1201241170		0.38	20.2	590	6.0	5.8	<0,001	0.01	0.52	4.8	0.4	0.2	43.6	<0.01	0.01	1.6
1201241171		0.22	29.7	810	8.5	7.0	<0.001	0.01	0.49	7.8	1.1	0.5	83.5	0.01	Q. 09	3.1
1201241172		0.24	10.5	370	4.1	9.1	<0.001	<0.01	0.12	3.8	0.2	0.3	58.3	<0.01	0.02	1.7
1201241173		0.30	33.1	710	7.2	27.0	<0.001	<0.01	0.21	7.6	0.4	0.6	76.2	0.01	0.04	3.7
1201241174		0.33	36.1	440	5.6	18.0	<0.001	<0.01	0.18	7.2	0.6	0.5	87.0	0.01	0.02	2.7
1201241175		0.21	31.0	1060	5.8	9.1	<0.001	<0.01	0.33	7.1	0.4	0.5	102.0	0.01	0.05	2.8
1201241176		0.41	33.1	770	6.6	13.5	<0.001	<0.01	0.26	7.9	0.7	0.5	107.0	0.01	0.05	2.9
1201241177		<0.05	77.2	1450	7.5	9.7	<0.001	<0.01	<0.05	7.9	0.3	0.2	382	<0.01	0.02	2.5
1201241178		0.28	24.2	530	4.9	10.3	<0.001	<0.01	0.22	6.0	0.5	0.4	57.1	<0.01	0.04	2.4
1201241179		0.34	\$.0	300	3.1	6.8	<0.001	<0.01	0.08	4.9	0.3	0.5	75.6	<0.01	0.01	1.8
1201241180		0.18	24.3	660	5.1	6.6	<0.001	<0.01	0.31	6.0	0.4	0.5	75.0	<0.01	0.04	2.6

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: GOLDCLIFF RESOURCE CORPORATION 6976 LABURNUM ST VANCOUVER BC V6P 5M9

Page: 6 - D Total # Pages: 6 (A - D) Plus Appendix Pages Finalized Date: 13-AUG-2012 Account: GOLRESCO

	Method	ME-MS41	ME-M541 Ti	ME-MS41 U	ME-MS41 V	ME-MS41 W	ME-WS41 Y	ME-MS41 Zn	ME-MS41 Zr	Au-QG43	 		
	Analyte	Ті Ж	ppm	U ppm	y yon	nv prpm	1 pptm	2ri ppm	ppm	ppra			
imple Description	Units LOR	0.005	0.02	0.05	1	0.05	0.05	2	0.5	0.01	 	 	
01241161		0.049	0.14	1.17	57	<0.05	10.95	50	16.1				
201241162		0.077	0.08	0.74	62	<0.05	7.53	51	18.9				
201241163		0.083	0.07	0.68	55	< 0.05	5.56	44	17.0				
201241164		0.068	0.09	D.59	48	<0.05	3.82	34	12.0				
201241165		0.076	0.03	0.85	37	<0.05	1.68	34	8.8				
201241166		0.063	0.04	0.59	40	<0.05	2 98	ઝ	13.6				
201241167		0.092	0.08	0.68	61	<0.05	8.34	40	15.0				
201241168		0,085	0.05	0.58	48	<0.05	4.48	36	7.3				
201241169		0.076	0.07	0.48	57	<0.05	3.30	71	2.6				
201241170		0.066	0.07	0.23	60	0.05	6.43	43	3.4		 	 <u></u>	
201241171		0.067	0.10	0.79	70	0.09	17.15	81	12.5				
201241172		0.074	0.05	0.51	49	<0.05	4 22	34	8.9				
201241173		0.111	0.12	1.37	74	0.08	13.95	77	20.0				
201241174		0.098	0.09	0.65	76	0.09	10. BO	66	17.5				
201241175		0.112	0.10	0.59	79	0.09	12.85	59	\$1.1		 	 	
201241176		0.110	0.11	0.90	76	0.09	17.00	61	17.1		 		
201241177		0.020	0.03	0.58	35	<0.05	10.75	44	15.2				
201241178		0.083	0.08	0.78	64	0.07	10.50	45	14.1				
201241179		0.070	0.05	2.20	46	0.08	13.00	50	11.5				
1201241180		0.084	0.09	0.86	70	0.08	13.30	52	12.9				
		-											
		<u> </u>							<u> </u>		 	 	

т

ALS Canada Ltd. 2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: GOLDCLIFF RESOURCE CORPORATION 6976 LABURNUM ST VANCOUVER BC V6P 5M9

Page: Appendix 1 Total # Appendix Pages: 1 Finalized Date: 13-AUG-2012 Account: GOLRESCO

Method	CERTIFICATE COMMENTS	
ME-MS41	Gold determinations by this method are semi-quantitative due to the small sample weight used (0.5g).	

APPENDIX II

ROCK SAMPLE DESCRIPTIONS

Sample No	Enad83z10n	Nnad83z10n	Elevation	Claim No	Showing Name	Location Ground	Formation
1201270001	672716	5467525	1164	936940	Goldrop	walked trail	uTNv
1201270002	672616	5467460	1169	936940	Goldrop	Sunset Goldrop South Road	uTNv
1201270003	672554	5467410	1161	936940	Goldrop	Sunset Goldrop South Road	uTNv
1201270004	672332	5467244	1118	936940	Goldrop	Sunset Goldrop South Road	uTNv
1201270005	672313	5467231	1117	936940	Goldrop	Sunset Goldrop South Road	uTNv
1201270006	672573	5468317	1200	546841		Goldrop North Spur 1	EPv
1201270007	672576	5468226	1199	546841		Goldrop North Spur 1	EPv
1201270008	672575	5468278	1200	546841		Goldrop North Spur 1	EPv
1201270009	672599	5468155	1213	546841		Goldrop North Spur 1	uTNs
1201270010	672621	5468025	1211	546841		Goldrop North Spur 1	uTNs
1201270011	672626	5467997	1206	546841		Goldrop North Spur 1	uTNs
1201270012	672628	5467996	1205	546841		Goldrop North Spur 1	uTNs
1201270013	672638	5467912	1193	546841		Goldrop North Spur 1	uTNs
1201270014	672538	5467561	1201	936940	Goldrop	Goldrop North Road	uTNv
1201270015	672569	5467649	1192	936940	Goldrop	Goldrop North Road	uTNv
1201270016	672700	5467927	1175	546841		Goldrop North Road	uTNs
1201270017	672740	5467992	1177	546841		Goldrop North Road	uTNs
1201270018	672794	5468090	1160	546841		Goldrop North Road	uTNs
1201270019	672802	5468168	1148	546841		Goldrop North Road	uTNs
1201270020	672917	5467358	1026	*		Whipsaw Road	uTNv
1201270021	672707	5467177	1018	937098	Goldrop	Whipsaw Road	uTNv
1201270022	672414	5467055	1024	937098	Goldrop	Whipsaw Road	uTNv
1201270023	671779	5466258	1100	649883	Murph	30m east of East Whipsaw Road	uTCd
1201270024	670998	5467682	1172	546841	Goldrop	Sunset Spur 2	EPv
						· · ·	
1201220001	672155	5467064	1049	937098		Sunset Road	uTNv
1201220002	673194	5467198	1056	*		East Whipsaw Road	uTCd
1201220003	672801	5466960	1065	937098		East Whipsaw Road	uTNv
1201220004	672691	5466888	1077	937098		East Whipsaw Road	uTNv
1201220005	672649	5466892	1078	937098	Ramses	East Whipsaw Road	uTNv
1201220006	671923	5466486	1094	649883	Ramses	East Whipsaw Road	uTC
1201220007	671921	5466486	1092	649883	Ramses	East Whipsaw Road	uTNv
1201220008	671920	5466485	1092	649883	Ramses	East Whipsaw Road	uTNv

1201220009	671919	5466485	1092	649883	Ramses	East Whipsaw Road	uTNv
1201220010	671918	5466484	1093	649883	Ramses	East Whipsaw Road	uTNv
1201220011	671917	5466484	1090	649883	Ramses	East Whipsaw Road	uTNv
1201220012	671915	5466483	1091	649883	Ramses	East Whipsaw Road	uTNv
1201220013	671903	5466485	1087	649883	Ramses	East Whipsaw Road	uTNv
1201220014	671771	5466361	1103	649883		East Whipsaw Road	uTNv
1201220015	671623	5466078	1102	649883	Murph	East Whipsaw Road	uTCd
1201220016	671629	5466085	1101	649883	Murph	East Whipsaw Road	uTCd
1201220017	674000	5468959	999	*	Ski	East Whipsaw Road	uTNs
1201220018	673875	5468266	1015	*	Ski	East Whipsaw Road	uTNs
1201220019	672246	5467211	1123	936940	Goldrop	Trench-1	uTNv
1201220020	672265	5467211	1120	936940	Goldrop	Trench-1	uTNv
1201220021	672319	5467235	1120	936940	Goldrop	Trench-1	uTNv
1201220022	672624	5467307	1112	936940	Goldrop	Sunset Goldrop South Spur 1	uTNv
1201220023	672612	5467299	1104	936940	Goldrop	Sunset Goldrop South Spur 1	uTNv
1201220024	672550	5467294	1109	936940	Goldrop	Sunset Goldrop South Spur 1	uTNv
1201220025	672449	5467279	1124	936940	Goldrop	Sunset Goldrop South Spur 1	uTNv
1201220026	672433	5467374	1171	936940	Goldrop	Trench-2	uTNv
1201220027	672445	5467363	1154	936940	Goldrop	Trench-2	uTNv
1201220028	672548	5467477	1180	936940	Goldrop	Sunset Goldrop South Road	uTNv
1201220029	672454	5467474	1197	936940	Goldrop	Trench-3	uTNv
1201220030	672475	5467482	1202	936940	Goldrop	Trench-3	uTNv
						LEGEND	
					uTNv	Upper Triassic Nicola Group volc	anics
					uTNv	Upper Triassic Nicola Group sedi	ments
					uTCd	Upper Triassic Copper Mountain	intrusions
					EPv	Eocene Princeton Volcanics	
					m	metres	
					cm	centimetres	
					mm	millimetres	
					fg	fine grained	
					mg	medium grained	
					cg	coarse grained	
					diss	disseminated	

Rock Type	Rock Mineralization	Rock Alteration	Rock Structure	Sample Type
andesite				o/c-chip
andesite	4% diss py, rusty F, py			o/c-chip
andesite	1% diss py, rusty F, py		ca on F	o/c-chip
andesite	4% diss py, rusty F, py	silicified		o/c-chip
andesite	5% diss py, rusty F	silicified		o/c-chip
dacite				o/c-chip
dacite				o/c-chip
agglomerate				o/c-chip
argillite	rusty F		ca F	o/c-chip
tuff argillite	1% diss py cubes to 3 mm, rusty F, py			o/c-chip
argillite to quartzite?	rusty F, py		1 cm white ca vlt	o/c-chip
schist	rare rusty F, py			o/c-chip
argillite/siltstone	3% diss py, cubes to 3 mm, rusty F, py			o/c-chip
andesite				o/c-chip
andesite				o/c-chip
argillite/siltstone	4% diss py, cubes to 3 mm, rusty F, py			o/c-chip
tuff siltstone	rare rusty F			o/c-chip
argillite	rare rusty F			o/c-chip
siltstone	rare rusty F			o/c-chip
andesite	5% diss py, rusty F			o/c-chip
andesite	5% diss py, rusty F			o/c-chip
andesite?	rusty	bleached, clay altered		o/c-chip
diorite?	2% diss py, rusty F			o/c-chip
dacite				o/c-chip
andesite?	5% diss py, rusty F	silicified		float
diorite	1% diss py, rusty F, 1% py	weak epidote		o/c grab
andesite?	5% diss py, rusty F, py	silicified		float
andesite	5% diss py, rusty F	bleached to silicified		o/c grab
andesite	1% diss py, rusty F, py			o/c grab
dyke	tr py		1-1 cm calcite vlt	o/c 4 m grab
cherty tuff?	<1/2% py, tr cpy, other sulphides?	silicified	25% ca±qtz vlts	o/c 1 m grab
cherty tuff?	<1/2% py, tr cpy, other sulphides?	silicified	25% ca±qtz vlts	o/c 2 m grab

cherty tuff?	<1/2% py, tr cpy, other sulphides?	silicified	25% ca±qtz vlts	o/c 3 m grab
cherty tuff?	<1/2% py, tr cpy, other sulphides?	silicified	25% ca±qtz vlts	o/c 4 m grab
cherty tuff?	<1/2% py, tr cpy, other sulphides?	silicified	25% ca±qtz vlts	o/c 1 m grab
cherty tuff?	<1/2% py, tr cpy	silicified	30 cm ca vlts	o/c grab
cherty tuff?	1% diss py in ca vlts, tr cpy, rusty F	silicified		float, select
andesite	2-5% diss py, rusty F, tr cpy?			float
diorite	1 m gossan, 5% py, rusty F, tr cpy	silicified		o/c 1 m grab
diorite	2 m gossan, 2-5% diss py	silicified		2 m grab
conglomerate	rusty F			o/c grab
argillite	4% diss py, rusty F, py			o/c grab
andesite	5% diss py, tr cpy? rusty F	bleached, W silicification		o/c 10 m grab
andesite	2% diss py, rusty F			o/c 10 m grab
andesite	2-10% diss py, strong F, lim, py	silicified		o/c grab
andesite	2% diss py, rusty F, lim	weakly bleached, silicified	1	o/c grab
andesite	4-5% diss py, rusty F, lim	oxidized rind, silicified cor	e	float
andesite	4% diss py, rusty F			2 m grab
andesite	<1% diss py, rusty F, lim	clay altered		o/c grab
andesite	2-4% fg diss py, rusty F, lim	clay altered		o/c grab
volcanic breccia		oxidized on surface	breccia texture?	o/c grab
andesite	rusty F			o/c grab
andesite	rusty F	bleached, clay altered		o/c grab
andesite	1% diss py, rusty F	bleached, clay altered		o/c grab
fg	fracture			
ру	pyrite			
сру	chalcopyrite			
са	calcite			
qtz	quartz			
lim	limonite			
o/c	outcrop			
tr	trace			
vlt	veinlet			

Rock Description	Sample No	Au ppm	Ag ppm	AI %	As ppm	Ba ppm
massive green andesite, strongly mag	1201270001	0.0008	0.05	2.30	1.5	40
soft, pale grey-green andesite	1201270002	0.0018	0.08	2.68	1.7	50
pale green andesite	1201270003	0.0044	0.09	2.66	2.5	50
grey andesite	1201270004	0.0059	0.23	2.76	4.2	50
grey-green andesite	1201270005	0.0046	0.14	2.76	11.0	20
mauve dacite, 3-4 mm frags	1201270006	0.0004	0.03	1.18	0.9	50
mauve dacite, some tuffaceous material	1201270007	0.0004	0.04	1.38	1.7	70
pale green agglomerate, fragments to 1.5 cm, rounded	1201270008	0.0004	0.02	1.02	0.7	80
black argillite	1201270009	0.0001	0.59	2.04	5.7	240
black tuffaceous argillite	1201270010	0.0001	0.61	2.04	5.4	240
black argillite, strongly mag, to hard, grey quartzite	1201270011	0.0012	0.06	0.23	7.1	140
green chloritic/sericitic schist, schist 201/36W, shearing 18/81S	1201270012	0.0024	0.05	3.71	0.7	70
light grey siltstone, bedding 171/22E	1201270013	0.0002	0.53	2.03	28.7	400
green andesite	1201270014	0.0005	0.07	2.94	0.7	50
green andesite	1201270015	0.0070	0.04	2.53	0.4	40
massive black argillite/siltstone	1201270016	0.0003	1.27	1.46	21.8	60
black to light grey tuffaceous siltstone/argillite	1201270017	0.0006	0.57	2.66	12.3	1170
black, calcareous argillite, minor grey limestone	1201270018	0.0003	0.54	1.77	5.1	670
calcareous, grey siltstone	1201270019	0.0006	0.54	1.35	4	740
green andesite, silicified?	1201270020	0.0014	0.13	1.02	4.5	80
green andesite, silicified?	1201270021	0.0018	0.14	1.31	0.7	100
andesite? bleached, quartz matrix preserved	1201270022	0.0172	0.32	0.43	9.3	40
fine grained black diorite	1201270023	0.0040	0.19	1.52	1.0	30
mauve dacite	1201270024	0.0004	0.03	1.26	1.7	360
light grey, aphanitic, no phenocrysts	1201220001	0.0019	0.15	2.15	5.0	30
grey-green diorite, crowded feldspar	1201220002	0.0023	0.07	1.39	2.9	50
light grey, silicified, no original texture	1201220003	0.0027	0.09	0.86	2.9	50
green, black andesite	1201220004	0.0046	0.25	2.14	1.8	70
pale green andesite	1201220005	0.0030	0.17	3.04	0.9	40
grey-black feldspar porphyry, weakly mag	1201220006	0.0056	0.37	3.29	3.5	50
grey, black cherty tuff	1201220007	0.0152	0.29	0.92	<2	10
grey, black cherty tuff	1201220008	0.0055	0.28	1.85	1.8	50

		1		1		
grey, black cherty tuff	1201220009	0.0067	0.23	0.99	2.4	10
grey, black cherty tuff	1201220010	0.0162	0.40	0.79	3.0	10
grey, black cherty tuff	1201220011	0.0129	0.29	1.01	1.8	20
grey-black quartzite, cherty tuff	1201220012	0.0158	0.55	1.28	1.3	30
grey-green cherty tuff	1201220013	0.0637	3.55	0.89	5.0	10
black andesite	1201220014	0.0024	0.08	4.80	0.9	140
fine grained black diorite	1201220015	0.0066	0.19	1.78	1.2	120
fine grained black diorite	1201220016	0.0061	0.31	2.01	0.9	100
grey matrix, rounded angular frags to 5 mm, weathered cavities	1201220017	0.0012	0.35	1.88	7.8	100
black argillite	1201220018	0.0001	1.10	1.80	9.3	200
light grey andesite, foliated	1201220019	0.0061	0.35	2.70	2.6	30
green andesite	1201220020	0.0123	0.64	3.46	13.2	20
green andesite	1201220021	0.0055	0.17	1.46	4.5	30
green andesite	1201220022	0.0008	0.07	3.81	3.1	30
green andesite	1201220023	0.0055	0.25	0.64	14.9	50
green andesite	1201220024	0.0007	0.08	2.90	2.1	30
green andesite	1201220025	0.0180	0.49	2.52	11.5	70
green andesite	1201220026	0.0014	0.05	1.93	2.0	40
volcanic fragments in a carbonate matrix	1201220027	0.0017	0.07	1.51	2.4	140
green andesite	1201220028	0.0036	0.07	2.16	4.9	60
andesite?	1201220029	0.0030	0.06	3.22	2.3	60
andesite?	1201220030	0.0039	0.11	3.13	2.6	70

Ca %	Co ppm	Cu ppm	Fe %	K %	Mg %	Mn ppm	Mo ppm	Pb ppm	S %	Sb ppm	Te ppm	W ppm	Zn ppm
1.00	18.3	122.5	5.98	0.2	1.30	410	0.25	0.7	0.01	0.09	0.02	<0.05	51
1.29	33.3	92.8	6.30	0.09	1.08	684	0.93	2.2	2.9	0.10	0.25	<0.05	62
1.05	16.6	76.5	5.13	0.13	0.99	435	6.85	4.2	1.19	0.17	0.21	0.09	73
0.54	22.5	41.9	5.68	0.17	2.84	1260	2.25	7.1	2.99	0.16	0.54	0.05	128
0.47	12.7	74.1	4.60	0.10	3.02	309	0.85	4.3	2.27	0.16	0.50	<0.05	28
0.60	10.3	17.8	2.66	0.10	0.76	805	0.20	2.0	0.01	0.11	0.02	0.10	51
0.69	11.7	19.9	2.56	0.12	1.06	540	0.21	2.8	<0.01	0.13	0.01	0.06	56
0.55	7.8	16.1	2.23	0.29	0.49	371	0.19	5.3	<0.01	0.09	0.01	<0.05	38
0.38	8.8	42.2	4.77	0.2	1.28	429	1.77	6.1	0.83	0.69	0.11	0.11	98
0.38	8.6	41.8	4.71	0.19	1.25	421	1.72	5.8	0.82	0.69	0.11	0.11	96
6.17	11.1	4.2	10.15	0.09	0.07	697	4.34	0.6	0.07	0.69	0.04	1.12	17
0.67	19.8	32.0	6.48	0.19	1.98	378	0.22	0.4	< 0.01	0.12	0.01	<0.05	76
0.09	2.3	19.9	4.61	0.3	0.96	229	2.54	13.2	0.49	0.95	0.15	<0.05	63
2.53	27.1	78.1	4.92	0.07	1.31	726	0.29	0.5	< 0.01	0.09	0.01	<0.05	76
1.36	19.2	22.6	4.24	0.33	1.38	412	0.08	0.4	< 0.01	0.08	0.25	<0.05	70
0.02	7.3	51.3	4.44	0.18	0.98	167	1.86	10.8	2.08	1.02	0.15	<0.05	64
7.38	12.2	53.8	4.44	0.17	1.34	985	0.82	8.8	0.01	0.35	0.07	0.13	113
7.96	7.4	56.7	2.99	0.12	0.99	684	0.36	5.6	0.01	0.26	0.04	<0.05	108
10.35	8.8	59.3	2.16	0.07	0.81	819	0.18	5.8	0.03	0.17	0.06	<0.05	78
0.63	19.7	55.1	3.31	0.18	0.25	335	0.69	4.4	2.55	0.12	0.03	0.06	23
0.62	33.6	64.6	2.69	0.3	0.55	519	2.13	2.3	0.97	0.09	0.03	<0.05	64
0.09	2.5	51.5	5.14	0.19	0.03	163	0.68	12	0.14	0.19	2.10	<0.05	9
1.11	31.3	113.0	3.57	0.08	0.94	872	0.33	2.5	2.14	0.10	0.22	0.05	96
0.73	10.9	22.2	2.23	0.22	0.67	283	0.09	2.0	< 0.01	0.09	0.02	<0.05	52
0.61	18.3	65.4	4.76	0.18	1.89	725	1.20	5.6	3.67	0.14	0.31	<0.05	61
1.14	12.3	281.0	3.24	0.18	0.46	437	0.53	0.9	0.46	0.09	0.03	0.10	54
0.76	36.6	36.4	4.68	0.16	0.14	90	15.2	1.4	4.16	0.16	0.21	0.16	8
0.27	26.7	54.5	8.83	0.17	1.62	1220	2.80	7.5	3.05	0.08	0.57	<0.05	136
0.94	42.6	103.0	5.21	0.26	2.69	1590	1.67	3.3	3.02	0.10	0.19	0.06	192
2.12	24.4	78.9	4.45	0.24	1.61	1720	0.91	5.6	0.08	0.56	0.04	0.11	188
20.10	8.8	82.0	1.72	0.11	0.33	6710	6.43	2.6	0.19	0.07	0.04	0.11	81
6.21	11.5	64.8	2.22	0.34	0.57	2190	1.67	5.0	0.04	0.25	0.03	0.10	84

9.02	12.4	72.5	1.49	0.08	0.16	1840	0.81	13.4	0.14	0.12	0.03	0.15	66
13.35	10.8	156.0	1.41	0.09	0.16	3290	0.58	5.8	0.20	0.11	0.03	0.21	120
9.44	12.8	91.3	1.77	0.2	0.21	2840	1.45	9.8	0.27	0.09	0.03	0.21	104
5.26	17.3	167.5	2.04	0.25	0.33	1540	0.64	17.5	0.16	0.08	0.03	0.23	139
17.85	11.6	1835.0	3.25	0.07	0.21	5070	1.20	5.3	1.66	0.30	0.06	0.17	147
2.13	17	26.4	4.71	0.87	1.13	730	0.36	2.6	1.15	0.06	0.08	0.11	78
1.55	20.9	431.0	3.17	0.15	1.05	481	0.26	0.9	0.48	0.37	0.05	0.05	42
1.55	26	560.0	3.98	0.11	1.10	647	0.26	0.6	0.97	0.17	0.08	<0.05	58
6.86	11.7	72.6	3.33	0.21	1.22	828	1.60	6.9	0.05	0.19	0.04	<0.05	95
0.24	9	61.9	5.18	0.15	1.19	421	1.88	6.6	1.39	0.61	0.06	0.07	80
0.68	13.4	28.5	5.94	0.18	1.80	1880	0.48	5.8	2.27	0.09	1.15	<0.05	129
1.55	16	79.3	5.54	0.11	2.22	1180	0.74	34.2	0.89	0.23	0.23	<0.05	73
0.23	14.4	63.9	4.75	0.18	1.25	269	1.35	6.3	2.92	0.13	0.53	<0.05	29
0.51	10.7	41.6	6.13	0.13	2.94	1830	0.32	2.2	0.75	0.08	0.36	<0.05	114
0.08	1.4	45.0	3.94	0.18	0.06	45	1.22	8.8	0.51	0.20	1.18	<0.05	5
0.51	11.2	47.4	5.14	0.14	1.51	885	0.30	1.0	0.69	0.07	0.39	<0.05	59
0.40	6.8	43.9	4.17	0.19	1.62	930	0.89	144.0	0.10	0.22	0.25	<0.05	274
0.16	2.3	34.9	4.15	0.07	1.65	530	0.50	2.5	0.74	0.07	0.23	<0.05	54
3.95	8.7	198.0	8.68	0.27	0.76	776	0.60	1.2	0.29	0.17	0.12	0.05	33
0.31	5.1	38.7	4.04	0.1	1.30	751	2.72	3.9	0.10	0.10	0.13	<0.05	123
0.41	8.3	49.7	5.36	0.07	2.25	1100	1.74	2.8	0.17	0.12	0.55	<0.05	121
0.39	7.1	43.3	5.27	0.07	2.36	1140	2.38	3.0	0.21	0.12	0.58	0.05	129

APPENDIX III

OUTCROP LOCATIONS

Outcrop	UTM E	UTM N	Zone	Rock Unit	Comment
•					
1	672716	5467525	10N	uTNv	1201270001
2	672616	5467460	10N	uTNv	1201270002
3	672554	5467410	10N	uTNv	1201270003
4	672332	5467244	10N	uTNv	1201270004
5	672313	5467231	10N	uTNv	1201270005
6	672573	5468317	10N	EPv	1201270006
7	672576	5468226	10N	EPv	1201270007
8	672575	5468278	10N	EPv	1201270008
9	672599	5468155	10N	uTNs	1201270009
10	672621	5468025	10N	uTNs	1201270010
11	672626	5467997	10N	uTNs	1201270011
12	672628	5467996	10N	uTNs	1201270012
13	672638	5467912	10N	uTNs	1201270013
14	672538	5467561	10N	uTNv	1201270014
15	672569	5467649	10N	uTNv	1201270015
16	672700	5467927	10N	uTNs	1201270016
17	672740	5467992	10N	uTNs	1201270017
18	672794	5468090	10N	uTNs	1201270018
19	672802	5468168	10N	uTNs	1201270019
20	672917	5467358	10N	uTNv	1201270020
21	672707	5467177	10N	uTNv	1201270021
22	672414	5467055	10N	uTNv	1201270022
23	671779	5466258	10N	uTCd	1201270023
24	670998	5467682	10N	EPv	1201270024
25	673194	5467198	10N	uTCd	1201220002
26	672691	5466888	10N	uTNv	1201220004
27	672649	5466892	10N	uTNv	1201220005
28	671923	5466486	10N	uTCd	1201220006
29	671921	5466486	10N		1201220007
30	671920	5466485	10N	uTNv	1201220008
31	671919	5466485	10N		1201220009
32	671918	5466484	10N	uTNv	1201220010
33	671917	5466484	10N	uTNv	1201220011
34	671915	5466483	10N	uTNv	1201220012
35	671623	5466078	10N	uTCd	1201220015
36	671629	5466085	10N	uTCd	1201220016
37	674000	5468959	10N	uTNs	1201220017
38	673875	5468266	10N		1201220018
39 40	672246	5467211	10N		1201220019
40 41	672265	5467211	10N 10N	uTNv uTNv	1201220020 1201220021
41 42	672319 672624	5467235 5467307	10N 10N	uTNv	1201220021
42 43	672524	5467307	10N 10N	uTNv	1201220022
44	672449	5467279	10N	uTNv	1201220025

45	672433	5467434	10N	uTNv	1201220026
46	672445	5467363	10N	uTNv	1201220027
47	672548	5467477	10N	uTNv	1201220028
48	672454	5467474	10N	uTNv	1201220029
49	672475	5467482	10N	uTNv	1201220030
50					
51	673198	5467205	10N	uTCd	oc-1
52	673176	5467136	10N	uTNv	oc-2
53	672612	5466872	10N	uTNv	oc-3
54	672181	5466612	10N	uTCd	oc-4
55	672072	5466592	10N	uTNv	oc-5
56	673312	5468563	10N	Epv	oc-6
57	671665	5466140	10N	uTCd	oc-7
58	671607	5466054	10N	uTCd	oc-8
59	672604	5468096	10N	uTNs	oc-9
60	672570	5468197	10N	uTNs	oc-10
61	672556	5467665	10N	uTNv	oc-11
62	672525	5467576	10N	uTNv	oc-12
63	672534	5467541	10N	uTNv	oc-13

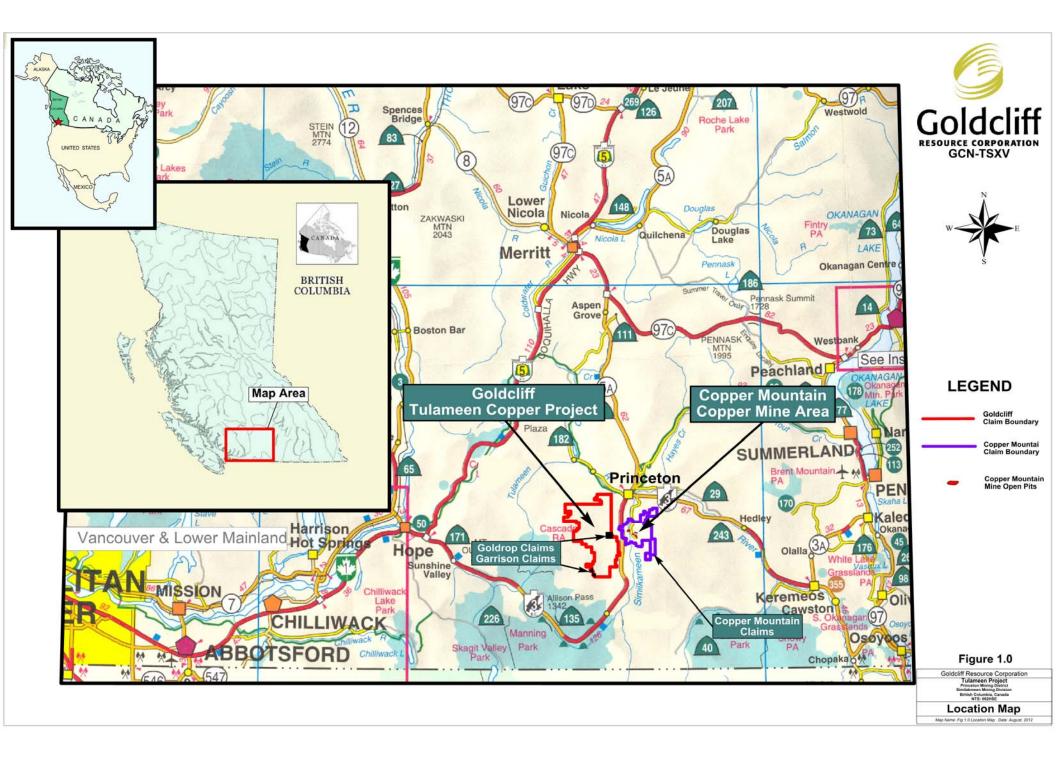
APPENDIX V

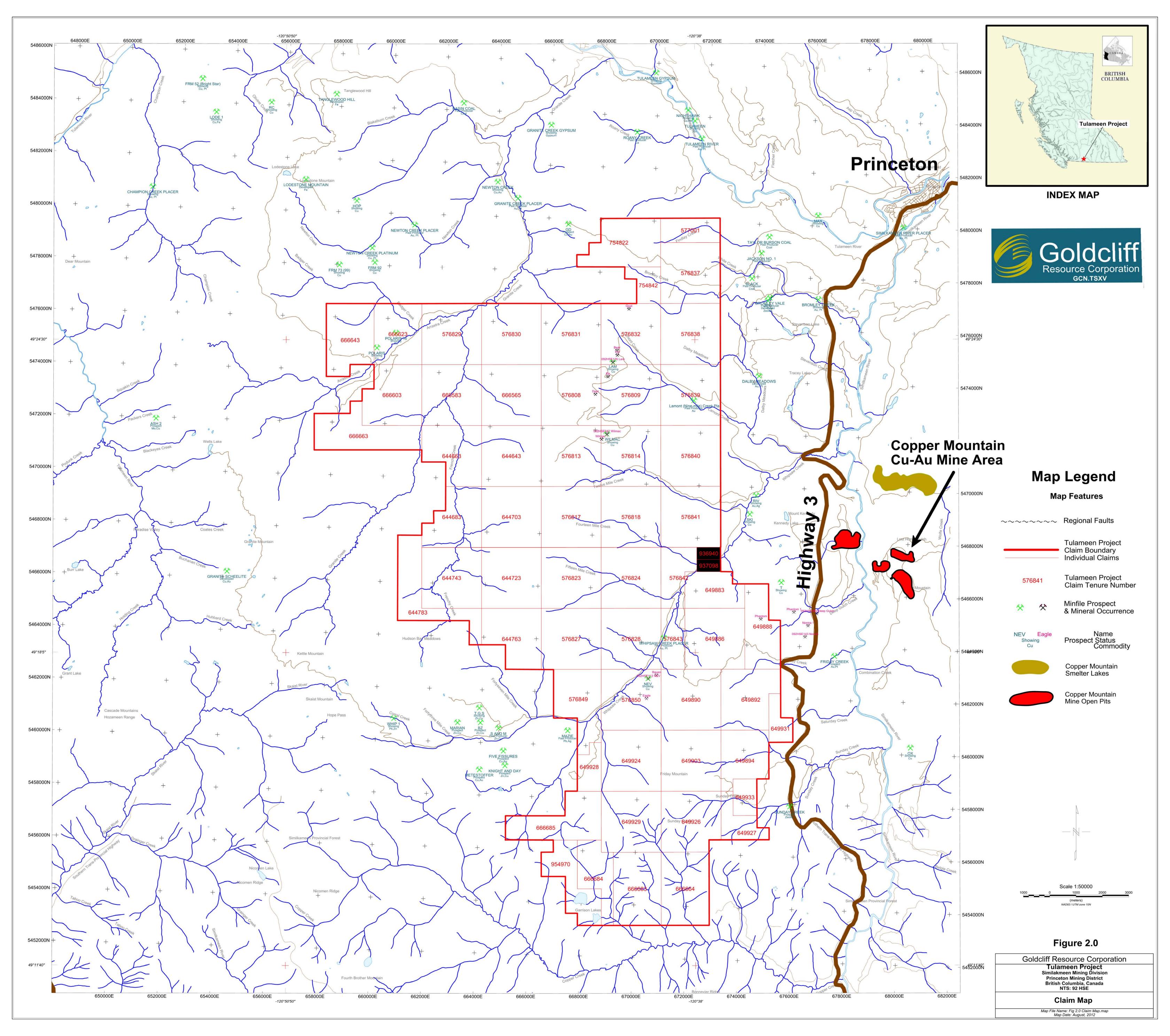
COST STATEMENT

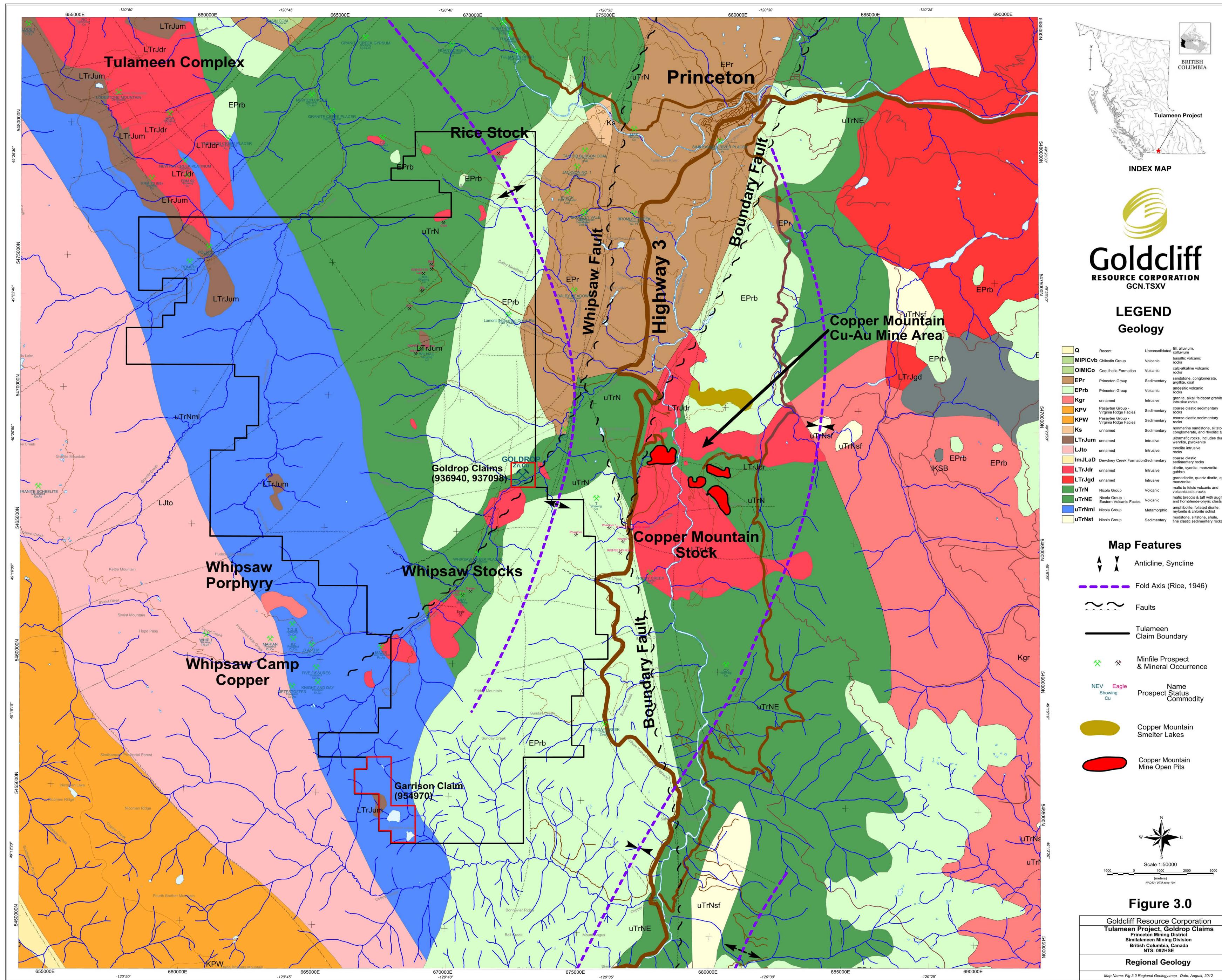
COST STATEMENT – June 30, 2012 SOW 5384734

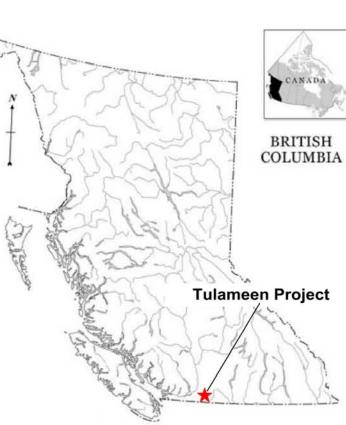
SALARIES

Grant Crooker, Geologist Field, June 13-24, 2012	
12 days @ \$ 700.00/day Reporting	\$ 8,400.00
5 days @ \$ 700.00/day	3,500.00
Sam Zastnikovich, Geochemist Field, June 13-24, 2012	
12 days @ \$ 700.00/day Reporting	8,400.00
5 days @ \$ 700.00/day	3,500.00
Leonard Saleken, Geologist Field, June 15-19, 2012	
5 days @ \$ 700.00/day Reporting, June 1-28, 2012	3,500.00
5 days @ \$ 700.00/day	3,500.00
Edwin Rockel, Geophysicist Field, June 13-24, 2012	
12 days @ \$ 700.00/day Reporting	8,400.00
8 days @ \$ 700.00/day	5,600.00
MEALS & ACCOMMODATION	
Grant Crooker - 12 days @ \$ 150.00/day	1,800.00
Sam Zastnikovich - 12 days @ \$ 150.00/day	1,800.00
Leonard Saleken – 5 days @ \$ 150.00/day	750.00
Edwin Rockel – 12 days @ \$ 150.00/day	1,800.00
TRANSPORTATION	
Vehicle Rental (2008 Chev 1/2 ton 4 x 4, Crooker) 2000 kms @ \$ 0.95.00/km	1,900.00
Vehicle Rental (2006 Blazer 4 x 4, Zastnikovich) 1500 kms @ \$ 0.95/km	1,425.00
Vehicle Rental (2008 Nissan 4 x 4, Saleken) 1000 kms @ \$ 0.95/km	950.00
Vehicle Rental (2000 Suburban, 4 x 4, Rockel) 1500 kms @ \$ 0.95/km	1,425.00
Rhino ATV, 12 days @ \$ 75.00/day	900.00

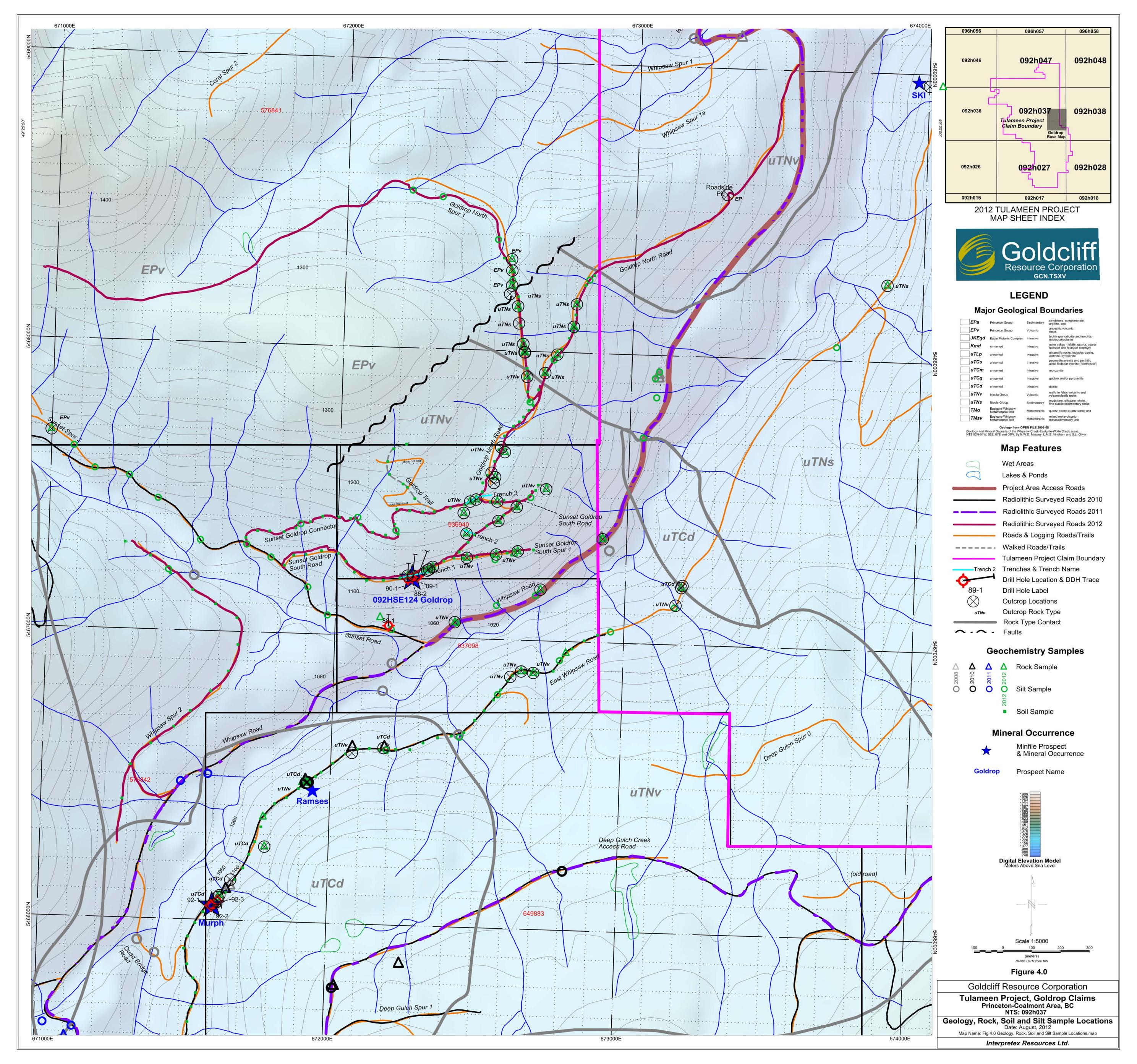

FIELD OFFICE COSTS

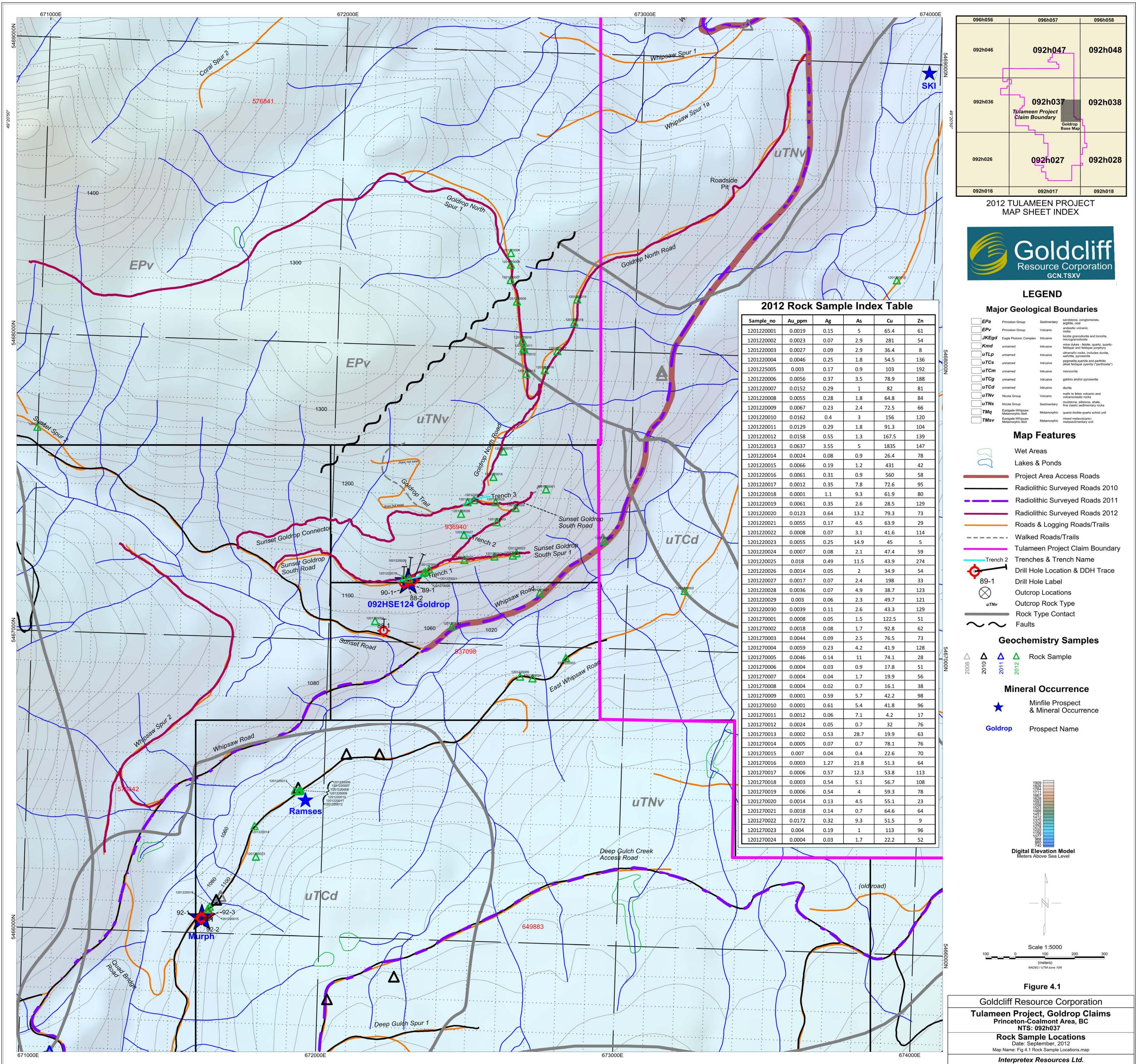

Office Space – 12 days @ \$ 150.00/day Office Services – 12 days @ \$ 10.00/day Office Supplies – 12 days @ \$ 5.00/day Office Personnel – 12 days @ \$ 125.00/day	1,800.00 120.00 60.00 1,500.00
RENTAL	
Communications (Cellular/Sat Phones) 41 days @ \$ 5.00/day	250.00
Radios (Logging Frequency), 41 days @ \$ 30.00/day	1,230.00
SUPPLIES	1,060.00
REPORT MAPS	<u>1,499.00</u> Total \$65,024.00


Exploration Work type	Comment	Days			Totals
Deveennel (Neme)* / Desition	Field Dave (list actual dave)	Davie	Data	Subtotal*	
Personnel (Name)* / Position Grant Crooker, Geologist, PGeo	Field Days (list actual days) June 13-24, 2012	Days	\$700.00	\$8,400.00	
S Zastnicovich, Geochemist, PGeo	June 13-24, 2012	12	\$700.00		
Leonard Saleken, Geologist, PGeo	June 15-19, 2012	5	\$700.00		
Edwin Rockel, Geophysicist, PGeo	June 13-24, 2012	12	\$700.00		
Edwin Rocker, Geophysicist, PGeo	June 13-24, 2012	12	\$700.00		
			\$0.00		¢20 700 00
Office Studies	List Personnel (note - Office of	only do not	include fi	\$28,700.00	\$28,700.00
Literature search		Jilly, do not	\$0.00	\$0.00	
Database compilation			\$0.00	\$0.00	
Computer modelling			\$0.00	\$0.00	
Reprocessing of data			\$0.00	\$0.00	
General research	Creat Creation	F 0	\$0.00	\$0.00	
Report preparation	Grant Crooker	5.0	\$700.00		
Report preparation	Sam Zastnicovich	5.0	\$700.00		
Report Preparation	Leonard Saleken	5.0	\$700.00		
Report preparation	Edwin Rockel	8.0	\$700.00		
Field Office Cost	Office Space	12.0	\$150.00		
Field Office Cost	Office Services	12.0	\$10.00		
Field Office Cost	Office Supplies	12.0	\$5.00		
Field Office Cost	Office Personnel	12.0	\$125.00	· · · · · · · · · · · · · · · · · · ·	
Ainhonno Frankanstion Cranson				\$19,580.00	\$19,580.00
Airborne Exploration Surveys Aeromagnetics	Line Kilometres / Enter total invoice	a amount	\$0.00	\$0.00	
Radiometrics			\$0.00	\$0.00	
Electromagnetics			\$0.00	\$0.00	
Gravity			\$0.00	\$0.00	
Digital terrain modelling			\$0.00	\$0.00	
Other (specify)			\$0.00	\$0.00 \$0.00	\$0.00
Remote Sensing	Area in Hectares / Enter total invoice	d amount or lie	ct norconnol		ş0.00
Aerial photography			\$0.00	\$0.00	
LANDSAT			\$0.00		
Other (specify)			\$0.00		
Other (specify)			\$0.00	\$0.00	\$0.00
Ground Exploration Surveys	Area in Hectares/List Personnel			φ 0.00	ş0.00
Geological mapping	480 Ha G Crooker				
Regional		note: expe	enditures h	ere	
Reconnaissance	800 Ha G Crooker, E Rockel			n Personnel	
Prospect	480 Ha G Crooker, E Rockel		nditures ab		
Underground	Define by length and width		nunui es ab	076	
Trenches				\$0.00	\$0.00
Trenches	Define by length and width			\$0.00	\$0.00
Ground geophysics	Line Kilometres / Enter total amoun	t invoiced list r	personnel		
Radiometrics	8.9 kms Edwin Rockel				
Magnetics					
Gravity					
Digital terrain modelling					
Electromagnetics	note: expenditures for your crow	in the field			
SP/AP/EP	note: expenditures for your crew				
IP	should be captured above in Pers				
IF	field expenditures above				


Camp			\$0.00	\$0.00	
Accommodation & Food Hotel	Rates per day		\$0.00	\$0.00	
Accommodation 9 Fact	Dates new days			\$6,600.00	\$6,600.00
Other					
Fuel (litres/hour)			\$0.00	\$0.00	
Helicopter (hours)			\$0.00		
fuel			\$0.00		
ATV	Rhino/Trailer	12.00			
kilometers	4 trucks	6000.00			
truck rental			\$0.00		
Taxi			\$0.00		
Airfare			\$0.00		
A !			*****	<u> </u>	
Transportation		No.	Rate	Subtotal	
Other (specify)			\$0.00	\$0.00	
Monitoring			\$0.00		
After drilling		_	\$0.00		
Reclamation	Clarify	No.	Rate	Subtotal	
		1		\$0.00	\$0.00
Other (specify)			\$0.00		
Underground development			\$0.00		
Bulk sampling			\$0.00		
Trenching			\$0.00	\$0.00	
Other Operations	Clarify	INU.			
Other Operations	Clarify	No.	Rate	Subtotal	φυ. υυ
		1	\$U.UU	\$0.00	\$0.00
Other (specify)		-	\$0.00		
Rotary air blast (RAB)			\$0.00		
Reverse circulation (RC)			\$0.00		
Diamond		110.	Kale	\$0.00	
Drilling	No. of Holes, Size of Core and Metres	No.	Rate	Subtotal	φ 0.00
		1		\$0.00	\$0.00
Other (specify)			\$0.00		
Petrology			\$0.00		
Whole rock		+	\$0.00		
Biogeochemistry			\$0.00	\$0.00	
Water		54.0	\$0.00	\$0.00	
Rock	laboratory costs	54.0			
Soil	note: This is for assays or	180.0			
Stream sediment		43.0	\$0.00	\$0.00	
Drill (cuttings, core, etc.)			\$0.00	\$0.00	
Geochemical Surveying	Number of Samples	No.	Rate	Subtotal	
		1		\$0.00	\$0.00
Other (specify)					
Petrophysics					
Geophysical interpretation					
Well logging	Define by total length				
Seismic refraction					
Seismic reflection					
Complex resistivity					
Resistivity					
AMT/CSAMT		1			

Meals and Accommodation	day rate or actual costs-specify	41.00	\$150.00	\$6,150.00	
				\$6,150.00	\$6,150.00
Miscellaneous					
Telephone	cellular/satellite	41.00	\$5.00	\$205.00	
Radios	logging frequencies/communication	41.00	\$30.00	\$1,230.00	
				\$1,435.00	\$1,435.00
Equipment Rentals					
Field Gear (Specify)			\$0.00	\$0.00	
Report Maps	Printing, discs, etc			\$1,499.00	
				\$1,499.00	\$1,499.00
Freight, rock samples					
Supplies			\$0.00	\$1,060.00	
				\$1,060.00	\$1,060.00
TOTAL Expenditur	es				\$65,024.00






Q	Recent	Unconsolidate
MiPiCvb	Chilcotin Group	Volcanic
OIMiCo	Coquihalla Formation	Volcanic
EPr	Princeton Group	Sedimentary
EPrb	Princeton Group	Volcanic
Kgr	unnamed	Intrusive
KPV	Pasayten Group - Virginia Ridge Facies	Sedimentary
KPW	Pasayten Group - Virginia Ridge Facies	Sedimentary
Ks	unnamed	Sedimentary
LTrJum	unnamed	Intrusive
LJto	unnamed	Intrusive
ImJLaD	Dewdney Creek Formation	nSedimentary
LTrJdr	unnamed	Intrusive
LTrJgd	unnamed	Intrusive
uTrN	Nicola Group	Volcanic
uTrNE	Nicola Group - Eastern Volcanic Facies	Volcanic
uTrNml	Nicola Group	Metamorphic
uTrNst	Nicola Group	Sedimentary

basaltic volcanic rocks
calc-alkaline volcanic rocks
sandstone, conglomerate, argillite, coal
andesitic volcanic rocks
granite, alkali feldspar granite intrusive rocks
coarse clastic sedimentary rocks
coarse clastic sedimentary rocks
nonmarine sandstone, siltstone conglomerate, and rhyolitic tuff
ultramafic rocks, includes dunite wehrlite, pyroxenite
tonolite intrusive rocks
coarse clastic sedimentary rocks
diorite, syenite, monzonite gabbro
granodiorite, quartz diorite, qua monzonite
mafic to felsic volcanic and volcaniclastic rocks
mafic breccis & tuff with augite and hornblende-phyric clasts

and hornblende-phyric clasts mudstone, siltstone, shale, fine clastic sedimentary rocks

