

ASSESSMENT REPORT TITLE PAGE AND SUMMARY

TITLE OF REPORT: 2011 DIAMOND DRILL REPORT on the FIREWEED PROPERTY

TOTAL COST: \$286, 879.50

AUTHOR(S): W.A. Howell, P.Geo.

NOTICE OF WORK PERMIT NUMBER(S)/DATE(S): MX2-200

STATEMENT OF WORK EVENT NUMBER(S)/DATE(S): 5417764, Nov. 18, 2012

YEAR OF WORK: 2011

PROPERTY NAME: Fireweed

CLAIM NAME(S) (on which work was done): Tenure 512005

COMMODITIES SOUGHT: Pb, Zn, Ag, Cu, Au

MINERAL INVENTORY MINFILE NUMBER(S), IF KNOWN: 093M 151

MINING DIVISION: OMINECA

NTS / BCGS: NTS:093M 01W BCGS: 093M-008;-009;& 093L-09;,-099

LATITUDE: _ ____55°_00' 33 "

LONGITUDE: _____126° 26' 12" (at centre of work)

UTM Zone: 9U EASTING: 663974 NORTHING: 6098876

OWNER(S): PACHEMAMA Resources

MAILING ADDRESS: Suite 922, 510W. Hastings St.

Vancouver BC V6B 1L8

OPERATOR(S) [who paid for the work]: SHAMROCK ENTERPRISES LTD

MAILING ADDRESS: 484 Beachview Drive

North Vancouver BC, V7G 1P7

REPORT KEYWORDS (lithology, age, stratigraphy, structure, alteration, mineralization, size and attitude. **Do not use abbreviations or codes**) lower Cretaceous Skeena Group, Rocky Ridge Formation, intrusive rhyolite, vent, convoluted sediments, Massive Sulphides, bedded sulphides, sphalerite, galena, chalcopyrite, pyrite, pyrrhotite,

REFERENCES TO PREVIOUS ASSESSMENT WORK AND ASSESSMENT REPORT NUMBERS: AR Nos. 17774, 18501, 21353, 21879, 26298, 28161, 29052

TYPE OF WORK IN THIS REPORT	EXTENT OF WORK (in metric units)	ON WHICH CLAIMS	PROJECT COSTS APPORTIONED (incl. support)
GEOLOGICAL (scale, area)			
Ground, mapping			
Photo interpretation			
GEOPHYSICAL (line-kilometres)			
Ground			
Magnetic			
Electromagnetic			
Induced Polarization			
Radiometric			
Seismic			
Other			
Airborne			
GEOCHEMICAL (number of sample	les analysed for)		
Soil			
Silt			
Rock			
Other			
DRILLING (1561.6m NQ total met 9U:665074 m E;6097883 m N	res,11 holes; core loc'n:UTM		
Core	1363 .6 m	512005	\$286,679.50
Non-core	198 m		
RELATED TECHNICAL			
Sampling / Assaying 142	Geoch/ass ay		incl
Petrographic			
Mineralographic			
Metallurgic			
PROSPECTING (scale/area)			
PREPATORY / PHYSICAL			
Line/grid (km)			
Topo/Photogrammetric (sca	ale, area)		
Legal Surveys (scale, area)			
Road, local access (km)/tra		320 m	
Trench (number/metres)			
Underground development	(metres)		
Other		8 drill sites	
		TOTAL	\$286,679.50

2011 DIAMOND DRILLING REPORT

On the

BC Geological Survey Assessment Report 33518

FIREWEED PROPERTY

Babine Lake Area, Omineca Mining Division, BC NTS map 093M-01W BCGS maps 093M - 008,009 & 093L - 098,099 Lat. 55°00'43" Lon.126°25'56"

For:

SHAMROCK ENTERPRISES LTD.

484 Beachview Drive North Vancouver BC, V7G- 1P7 <u>Tel: 778-340-1934</u> 604-722-1877

BY:

W.A. Howell, P.Geo.

P.O. Box 1849, Princeton BC, Canada VOX 1W0 Tel: 250 295 1385 Email: wahowell pgeo@live.ca

November 18, 2012

E-Mail: wahowell_pgeo@live.ca

TEL: 250-295-1385

SUMMARY

The Fireweed claim group is located on the southwest side of Babine Lake, in north central British Columbia, near the summer resort of Smithers Landing, 70 kilometres northeast of the town of Smithers.

The centre of the claims is at 55°01' North latitude and 126°25' W. Longitude. Elevations on the property range from 710 meters (2,335 feet) at the level of Babine Lake up to 1,160 meters (3,800 feet) along the south edge of the claims.

The claim group comprises 8 contiguous claims of approximately 2411.29 hectares in area. The claims are owned outright by Pachemama Resources Ltd.,

Under an agreement with Pachemama, Shamrock can earn 50% working interest in the Fireweed property by completing a series of cash payments, share allocations and work commitments over 4 years totalling: \$650,000 cash, 1,000,000 shares and \$2.55 million in exploration expenditures. The above terms are covered by a formal Letter of understanding between the parties.

The Fireweed deposit is a polymetallic deposit of massive sulphide, sulphide breccia and disseminated sulphide replacement type mineralization in Upper Cretaceous Skeena Group sedimentary rocks on the southern margin of the Bowser Basin. The main mineralized trend, identified at the "West Zone" area, may consist of a number of faulted mineralized zones, covers more than 3 kilometres of strike length, 50-100 meters of stratigraphy and 175-200+ meters of dip extent.

Mineralization is present in several areas on the property known as the Jan, Mn, Zinc, West, Far West, East, Far East, 1600, 3200, and South zones. Of these, the West Zone and 1600 zone are best known through drill programs conducted by others. The Feeder zone or Vent zone, is a subsidiary part of the West zone.

A total of about 67,000 feet of drilling has been completed on the Fireweed Property to date

In 2005, a 3-D induced polarization survey was completed by SJ Geophysics. The survey revealed a series of chargeability centers beginning with the "Feeder" zone portion of the West Zone of mineralization and extending linearly ENE .

A drill program in 2010 was designed to test mineralization and extend exploration using a 2 part program. Part one looked at the "Feeder" zone, below and above the region explored in 2006. Part 2 explored several zones of the 2005 IP chargeability extending ENE from the Feeder zone.

The first part of the drill program was very successful in showing the massive sulphide horizons to persist below the previous supposed limits to mineralization, the drilling has shown the mineralization to be very complex structurally, with correlations between drill holes inconsistent along the sections drilled. (sections oriented NW-SE may be more appropriate)

The second Part of the drill program, tested additional IP chargeability zones with at least 1 hole on each of four additional chargeability zones. The drilling delineated several intersections with multi element, highly elevated values which may represent proximal portions of beds with additional metal values. These intersections are considered highly relevant and additional testing is warranted.

The 2010 drill program by Shamrock Resources demonstrated the persistence of the Fireweed mineralization and demonstrated additional zones requiring future exploration and drilling.

The 2011 drill program, consisting of approximately 1500 meters of drilling, was conducted on the West zone adjacent to the west side of the vent area drilled during the 2010 program.

Several of the vintage drill holes (1988-1989) can be located accurately. Several more holes can be closely approximated. But not accurately located. Several others can only be approximated for location. The core for these holes has been kept under private secure storage but has suffered the ravages of time and oxidation. The assay procedures while state of the art for the time, are out dated and the rigorous checks and standards of post NI 43-101 period, were either not adhered to at the time, or cannot be attested to today.

The Fireweed property contains multiple mineral zones. It has an established resource, (historical, **not** NI 43-101 compliant), which may be significantly increased by locating additional reserves attached to any or several of the multiple known zones of mineralization. In 1989 the resource estimate (Not NI 43-101 compliant) was calculated to be 640,000 tons grading 9.97 oz per ton Ag, 2.22% Zn, and 1.34% Pb. In Metric units this would be 580,544 tonnes grading 342 grams per tonne Ag, 2.22% Zn, 1.34% Pb.

In the author's opinion, it is necessary to drill the previously indicated mineralized zone using modern equipment and adhering to the modern requirements of NI 43-101 in order to allay any potential disputes and regulatory questions in this regard.

As a result of the above decision, two sections were drilled 50 meters apart and approximately 50 to 100 meters west of the 2010 program, essentially continuing the data westwards, exploring along the extent of the west zone mineralization. The 2011 drilling will allow the commencement of a modern resource calculation independent of the earlier drilling.

While additional drill targets can be established in the areas of recent drilling, a comprehensive review of all previous drilling is highly recommended prior to establishing and drilling new targets on several of the other known zones of mineralization on the property. Of particular interest are the East Zone, South Zone and Mn zones. The first two of which, like the Feeder Zone, have a well developed magnetic signature, and have had relatively little drilling. The latter Mn zone may be a faulted extension of the west zone mineralization, if so, the implications for continued westward extent of the mineral horizon are very significant.

Results from the 2011 drill program depict a major silver-lead-zinc zone of mineralization believed to be approximately 8 to 12meters in true thickness (average of 10 m , exhibiting grades of silver from 100 to 450g/t, and 3% to 5% combined lead and zinc.) steeply dipping to the north or north-west. Smaller less well mineralized zone(s) appear to exist parallel to the major zone and located northwards or northwestward of the major zone.

The major zone is missing or was not located on Section 1 (holes 8,9,10) it may be that all 3 holes penetrated bedrock north of the mineralization, It is possible that the mineralization has been displaced structurally, or it is simply not there. Section 5, Hole 11,(fig 10) penetrated 32 meters of mineralization close to bedrock surface. This would strongly suggest that holes 8,9 and 10 drilled "over" the mineralization or that the zone might have been displaced. Additional drilling collared to the south and south-east in this area will help clarify questions and demonstrate continuity of the zone to depth.

Several major intersections returned consistent low gold values of about 0.2g/t, It is speculated that this may arise from multiple mineralizing events.

Continued exploration of the West Zone westwards on sections parallel to those in the 2011 program is recommended. Two programs of 1500 meters each are recommended as well as an accurate survey of all identifiable drill holes from all previous and current programs. (recommended in previous programs) the two drill programs could be staged "back to back" with cost saving results if financing permits. The estimated cost for each 1500 meter program is (CDN) \$300,000.00

3

TEL: 250-295-1385

TABLE OF CONTENTS

Summary	2
Table of Contents	4
List of Figures, Tables and Appendices	5
Introduction	6
Location and Access	7
General Setting	7
Mineral Claims	11
History and Previous Work	12
Regional Geology	13
Fireweed Geological Setting	18
Mineralization	18
2011 Drill Program	20
Drill Sections	23
Observations and Descriptions of the Diamond Drilling Results	29
Conclusions	33
Recommendations	33
Estimated Costs for Recommended Program	34
References	35
Software used	36
Statement of Qualifications	37
Signature Page	38

List of Figures & Tables

Property Lo	ocation Map	Fig.1a	8	
Project deta	ail location & property access plan	Fig 1b	9	
Claim Map		Fig. 2	10	
Regional G	eology & mineral deposits of the Skeena Group	Fig. 3 a	14	
Generalize	d Stratigraphy of the Skeena Group	Fig 3 b	15	
Regional G	eology of the Babine Lake Area	Fig. 4a	16	
Stratigraph	y of the Babine Lake area	Fig. 4b	17	
Drill Hole L	ocation Plan	Fig. 5	21	
Fireweed 2	011 Diamond Drill Program Work Area	Fig 5b	22	
Lithology Ir	ndex 2011 Drilling	Fig 5c	23	
Cross Section 1: A A' DDH 8,9,10 Fig 6				
Cross Sect	ion 2: B B' DDH 1.2.3.5.6	Fig 7	25	
Cross Sect	ion 3: C C' DDH 4	Fig 8	26	
Cross Sect	ion 4: D D' DDH 7	Fig 9	27	
Cross Sect	ion 5: E E' DDH 11	Fig 10	28	
Table 1	List of Claims		11	
Table 2	Drill Collar Data		31	
Table 3	Summry Table of Major Mineralized Intersection	s	32	

Appendices

APPENDIX I	Statement of Costs	39
APPENDIX II	Drill Logs	following 40
APPENDIX III	Assay Certificates and Results	following 41

INTRODUCTION

This Report has been commissioned by Shamrock Enterprises Inc. as part of the 2011 diamond drill program on the Fireweed Property. It is prepared for the purpose of filing for assessment credit on the Fireweed property and to record the work and results of the drill program.

The program took place between October 28, 2011 and Dec. 02, 2011.. with drilling commencing on Nov.14, 2011.

A total of 1561.7m of NQ drilling was completed in 11 holes, resulting in 142 assay/geochemical analyses. Twenty-five elements including copper, lead and zinc were determined by geochemical ICP-ES (Induction coupled Plasma- Emission spectrometry). Gold and silver were determined by fire assay techniques. All determinations were made by Acme Analytical labs in Vancouver BC with sample preparation by Acme's preparation facility in Smithers BC.

Previous grids and drill holes were Identifiable in the field and permitted accurate location of drill holes relative to the previous work. A site visit in August of 2011 determined that many of the old drill collar marks are deteriorating and it would be advantageous to relocate and remark as many old features as possible using differential GPS survey techniques and permanent tags.

The writer has relied heavily on the revised NI 43-101 report prepared by B.J.Price, P.Geo. (2010) for Shamrock Enterprises Inc. and his own previous experience drilling on the property in 2006 and 2010.

The 2005 Paper by D.G. MacIntyre, R.H. McMillan and M.E. Villeneuve, "The Mid-Cretaceous Rocky Ridge Formation- Important Host Rocks for VMS and Related Deposits in Central British Columbia " provides the regional setting for the Fireweed stratigraphy and makes a compelling case for a new look at the area and the exciting potential for finding more VMS deposits in the marine sedimentary/volcanic packages of the mid Cretaceous Skeena Group.

The author has benefitted greatly from conversations and various discussions with Mr. B.J. Price, P.Geo. and Mr. Anthony L'Orsa P.Geo., both of whom have a history of previous technical work on the property. Mr. L'Orsa is familiar with the prospect from a long association as a consultant to Mansfield Minerals Inc., previous owner of the property, and has explored a large number of properties in the same geological terrain.

Mr. Price has worked previously on the property and conducted exploration during the 2000 field season. He is also the author of a 2005 technical report and 2010 NI 43-101 technical report for Shamrock Enterprises Inc. in connection with it's listing as a Public Company. The contributions by these two gentlemen is hereby acknowledged. Any errors or omissions in this report are the responsibility of the author.

The author would like to acknowledge the assistance, good work and professionalism shown by Blackhawk Drilling Ltd, Smithers, BC and the assistance provided by CJL Enterprises Ltd., also of Smithers BC. The author has also benefitted from the professional services, discussions and advice from various members of the Ministry of Energy Mines and Petroleum Resources based in Smithers.

6

LOCATION AND ACCESS

The Fireweed claim group is situated in the Omineca Mining District and is located on the southwest side of Babine Lake, in north central British Columbia, near the summer resort of Smithers Landing, 70 kilometers northeast of the town of Smithers.

The centre of the Fireweed claims is at 55°01' North latitude and 126°25' W. Longitude, or conversely, UTM zone 9U; 664550E, 6098364N. Elevations on the property range from 710 meters (2,335 feet) at the level of Babine Lake up to 1,160 meters (3,800 feet) along the south edge of the claims. The claims are located on the junction of 4 NTS map sheets: 093-M/1, 093-M/2, 093-L/15, 093-L/16

Access to the property from Smithers is excellent. The access road between Smithers and Babine Lake, passes to the west of the claims. This road is gravel but in good repair, and is used by logging companies and the general public.

From kilometre 50 on this road, a network of rough, but seviceable, logging roads lead into and across the property, giving access to practically all areas. The logging roads also connect to the town of Granisle, some 28 km SE of the property.

GENERAL SETTING

The property lies within the physiographic Intermontane belt of Central British Columbia, approx. 70 km NF of the town of Smithers BC.

Climate is typical of north-central British Columbia with occasional long cold winters and summers which may be hot. The property could be explored year 'round.

Topography is gently sloping to flat. Large areas of the claims have been logged and replanted over a period of several decades. Logging is active in the area with additional logging scheduled in the areas immediately adjacent to the current drilling. The remaining area is generally well timbered with balsam fir and lesser spruce and pine. Alder, willows and devil's club, commonly occur in wetter areas and along creeks and periodic waterways.

Elevations on the property range from 710 meters (2,335 feet) at the level of Babine Lake up to 1,160 meters (3,800 feet) along the south edge of the claims

Smithers is an important supply and service centre, supporting an area population of about 25,000. Major Industries in the area are logging, mining, ranching and farming. Tourism and regional government are also important local industries. Smithers is situated on a major highway (Yellowhead Highway 16) and rail line (CNR northern mainline) and is served by a good airport, with twice daily flights to and from Vancouver. As proposed major development of the Port of Prince Rupert and the Port of Kitimat continues, Smithers and the Bulkley Valley will also experience growth and development.

BC is presently undergoing negotiations with First Nations Groups regarding Land claims. Negotiations are at various stages across the province. There are a number of Indian Reservations clustered along Babine Lake. One such reserve is within 1000 meters of the east boundary of the claims. Shamrock and its contractors must conduct exploration within the larger framework of the land claim issue.

7

PROPERTY LOCATION MAP

FIG. 1a

FIG 1b

V0X 1W0. Canada, Princeton BC E-Mail: P.O. Box 1849, WA HOWELL P.Geo. TEL:

wahowell_pgeo@live.ca

250-295-1385

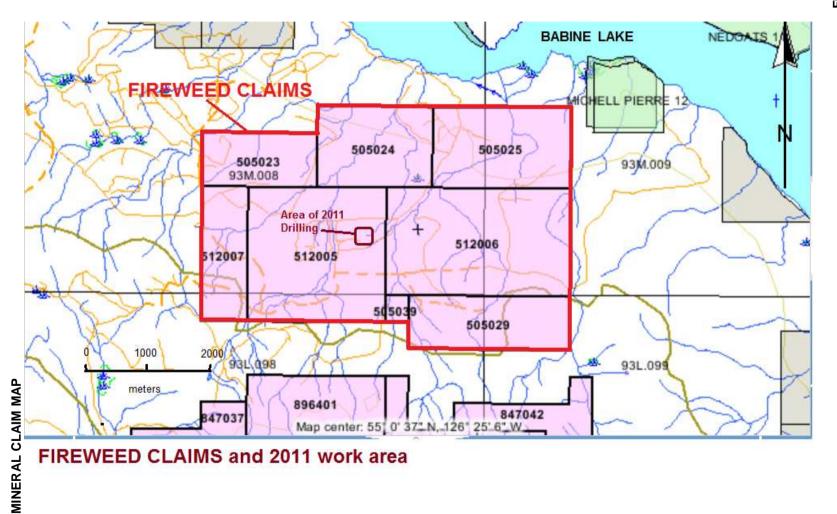


FIG. 2

10

V0X 1W0.

WA HOWELL P.Geo.

250-295-1385

TEL:

MINERAL CLAIMS - Table 1

The claim group comprises 8 contiguous claims, approximately 2411 hectares in total area.

Table 1 Claims in the Fireweed Property

Tenure Number	Tenure Type	Claim Name	Owner	Map Number	Good To Date	Status	Area
505023	Mineral	Bajo 2	234723 (100%)	093M	2022/jan/27	GOOD	185.45
505024	Mineral	Вајо 3	234723 (100%)	093M	2022/jan/27	GOOD	278.15
505025	Mineral	Bajo 4	234723 (100%)	093M	2022/jan/27	GOOD	333.76
505029	Mineral	Bajo 6	234723 (100%)	093L	2022/jan/27	GOOD	259.76
505039	Mineral	Вајо 9	234723 (100%)	093L	2022/jan/27	GOOD	18.55
512005	Mineral		234723 (100%)	093L	2022/aug/10	GOOD	556.54
512006	Mineral		234723 (100%)	093M	2022/aug/31	GOOD	593.57
512007	Mineral		234723 (100%)	093L	2022/sep/01	GOOD	185.51

[&]quot;Good to Dates" above are subject to work applied by this report.

HISTORY AND PREVIOUS WORK

There is no evidence of early historical exploration work on the Fireweed claims (prior to 1987), although coal had been reported from the area.

Mineralized float was found in the area in 1987 by prospecting geologists John and Gordon Leask, who staked the original claims in July 1987.

In August 1987, an option agreement was reached between the owners and Canadian-United Minerals. Inc. whereby Canadian - United could earn 100% interest in the claims. In September 1987, the company commenced work programs that included geological mapping and evaluation, soil geochemistry, magnetometer, very low frequency electromagnetic (VLF-EM), and Induced Polarization (IP) surveys, back hoe trenching and drilling.

In 1988 and '89 under a joint venture agreement with Canadian United Minerals, Gunnar Gold Inc. funded considerable work, including drilling.

Up to 1990, Canadian United Minerals Inc., (now Mansfield Minerals Inc.) and their JV partners expended in excess of \$1,700,000.00 on the property, mainly in grid preparation, geophysics, geochemistry and drilling.

In 1991, Minnova Inc, (now Inmet Mining Ltd.), optioned the property and spent \$250,000 on additional drilling, conducted substantially outside of the known deposits, before returning the property to the vendors.

In 2004, Argentor Resources concluded an agreement with Mansfield Resources. In July and August 2005, Argentor staked additional claims to protect the original claims held by Mansfield. They then completed approximately 25 kilometers of grid, followed by a geophysical program by SJ Geophysics Ltd. (under the supervision of Syd Visser. P.Geo) A 3-D Induced Polarization survey was completed across part of the property. The survey concentrated on the area between the east and west zones. The IP survey assisted in the spotting of new drill holes planned by Argentor for the 2006 drill program.

In 2006, at the suggestion of the TSX, Argentor underwent a name change to Jantar Resources Ltd.

In 2006, Jantar completed just under 1000m of NQ drilling in 5 holes

In 2010, Gordon Osinchuk and his new company, Shamrock Enterprises Inc., concluded an exploration agreement with Pachemama Resources, the successor owner of record to Mansfield minerals. Shamrock's initial drill program on the Fireweed property was conducted in 2010 and consisted of just over 1560m of NQ drilling.

Shamrock concluded a second drill program in late 2011, when approximately 1525m drilling of NQ drilling was concluded in the West zone of the property

The total expenditure since discovery has been approximately \$2.8 million.

12

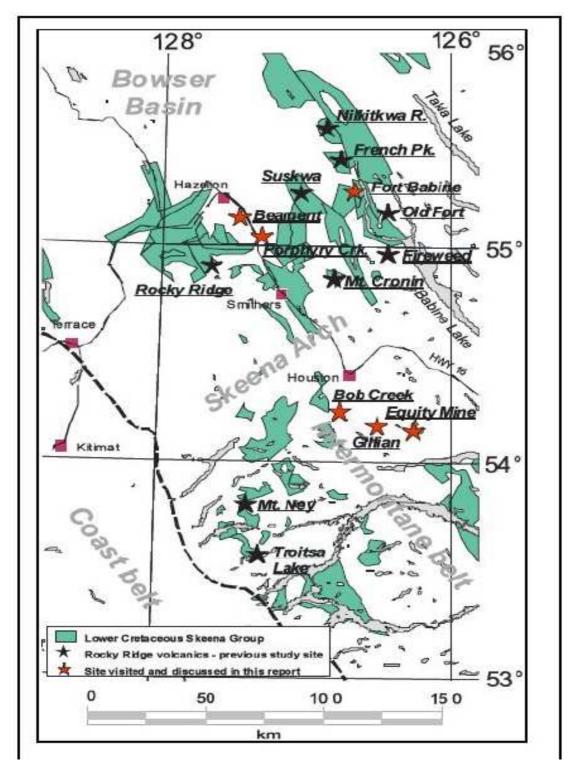
E-Mail: wahowell_pgeo@live.ca

TEL: 250-295-1385

REGIONAL GEOLOGY

The Fireweed property lies within a structurally complex area at the south margin of the Skeena sedimentary basin in an area known as the Skeena Arch, characterized by a number of porphyritic igneous intrusions cutting rocks as old as Triassic. The Babine Lake porphyry copper belt is host to a number of large porphyry copper deposits, two of which have been productive and have large tonnages of low grade copper mineralization remaining, The Bell Copper deposit is currently being re-explored by X-Strata Canada..

Considerable geological work has been done in the Babine Lake - Fulton Lake area by the British Columbia Geological Survey Branch in the past 10 to 15 years.

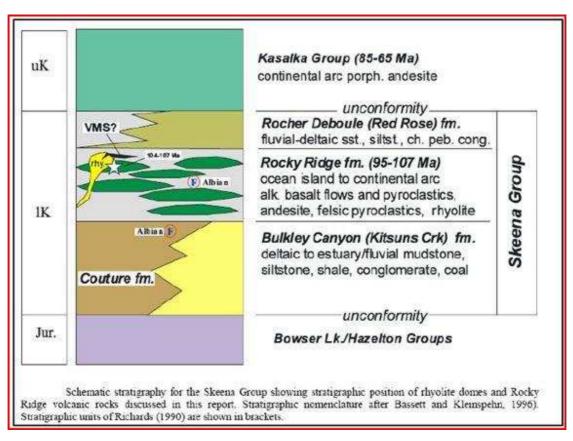

Overall, the regional depositional environment for the Skeena Group is a continental margin setting along western North America. Skeena Group volcanics, (the Rocky Ridge Formation) occur in isolated geographic areas within otherwise continuous clastic sediments of the Skeena Group. They are a bimodal group of volcanic rocks and related sediments separated by hundreds of meters of clastic sedimentary rocks . (summarized from DJ Alldrick et al, BCGS, Geological Fiedwork 2006, Paper 2007-1) Intrusive 'rhyolite" plugs are widespread throughout Skeena Group rocks and were originally mapped as Eocene stocks. Close to the Bell Mine and Granisle mine, the "plugs" have been shown to be Cretaceous aged extrusive rhyolite domes or cryptodomes by D.J. McIntyre of the BCGS. By inference, several similar features may turn out to have similar origins and age. A large dome of Rocky Ridge rhyolite underlies the eastern half of McKendrick Island, 3 km north of The Fireweed deposit. D.J. McIntyre and M.E. Villeneuve (BCEMPR Geofile 2007-4) have determined the age of a rhyolite ("Latite") dike in drill core at Fireweed to be 103±0.4 my.

13

E-Mail: wahowell_pgeo@live.ca

TEL: 250-295-1385

REGIONAL GEOLOGY AND MINERAL DEPOSITS IN THE SKEENA GROUP SEDIMENTS From MacIntyre et al (2005)



Stars on this map refer to work reported in MacIntyre et al, 2005

Fig 3a

GENERALIZED STRATIGRAPHY OF THE SKEENA GROUP

(MacIntyre et al 2005)

Schematic Stratigraphy for the Skeena Group showing stratigraphic position of rhyolite domes and Rocky Ridge volcanic rocks discussed in McIntyre et al, 2005.

Fig. 3b

E-Mail: wahowell_pgeo@live.ca

TEL: 250-295-1385

REGIONAL GEOLOGY OF BABINE LAKE AREA

MacIntyre et al 1997 (Paper 1997-1) See Next Page for Legend

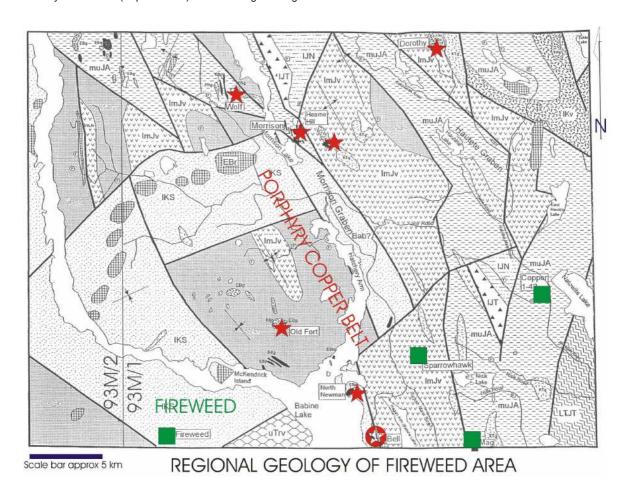


Fig. 4a

Red stars are Porphyry Copper prospects Green squares are volcanic Skeena Group hosted prospects. Circled star is the Bell Copper Mine, no longer in production.

STRATIGRAPHY of THE BABINE LAKE AREA

MacIntyre et al 1997 (Paper 1997-1)

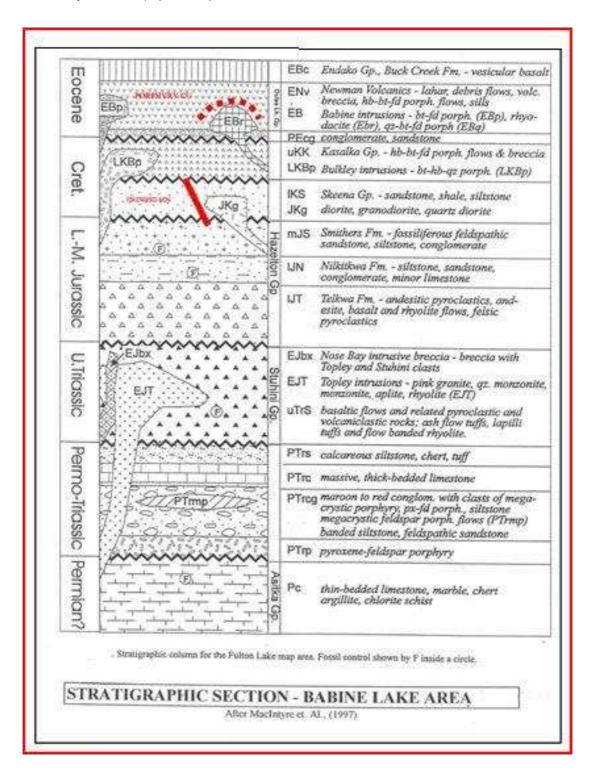


Fig. 4b

FIRE WEED GEOLOGICAL SETTING

The model for the Fireweed and related deposits has been advanced by D.G. MacIntyre, R.H. McMillan and M.E. Villeneuve (2005) as summarized below:

"It seems likely that both the mid-Cretaceous Pb-Zn-Ag mineralization at the Knoll, Cronin and Fireweed prospects and possible younger Late Cretaceous or Early Tertiary mineralization at Equity, Beamont and Bob Creek are related to the evolution of major volcanic centers that were periodically active from the mid-Cretaceous to Eocene time. Earliest stages of volcanism, as represented by the Rocky Ridge formation, involved cauldron subsidence in a nascent island arc setting with attendant Pb-Zn-Ag VMS and related epithermal mineralization associated with shallow, submarine eruption of rhyolite flow domes. Younger, Late Cretaceous or Early Tertiary magmatic events resulted in building of stratovolcanoes in an Andean continental arc setting with attendant sub-volcanic Cu-Au-Ag and porphyry Cu-Mo type mineralization. A genetic model depicting these evolutionary stages is presented" (in D.G. MacIntyre et al (2005)).

- Precious metal rich, massive sulphide occurrences at the Fireweed, Knoll and Cronin properties appear to be related to submarine rhyolite flow domes that were emplaced along rifts that formed during mid-Cretaceous cauldron subsidence.
- This was followed by eruption of thick piles of alkali basalt. The inferred geologic setting (nascent arc, bimodal, submarine, rift related) is similar to that proposed for classical Kuroko and Eskay Creektype VMS deposits and therefore, areas of Rocky Ridge volcanics in central British Columbia are interpreted to be highly prospective for these types of deposits."

MINERALIZATION

Mineralization at Fireweed is present in several zones which are known as the Jan, Mn, Zinc, West, Far West, East, Far East, 1600, 3200, and South Zones. Of these the West Zone and 1600 zone are best known through the earlier drill programs conducted by others. The Feeder Zone is a subsidiary zone of the West Zone. The 2010 drill program indicated the possibility of new mineralization in several IP chargeability "zones" extending to the ENE from the mineralization demonstrated at the Feeder Zone. The 2011 drill program explored the west zone immediately west of the "feeder" zone.

The West Zone is defined by an east trending horseshoe-shaped induced polarization conductor. The original outcrop discoveries, the Mn and the Sphalerite showings, lie at the westerly end of each of the prongs of the horseshoe.

The extension of the mineralized zone west of the vent area for about 300 m has been indicated by drilling concluded during 1988 and 1989 and is considered open along strike and to depth.

Shamrock's 2011 drill program has explored a portion of the west zone immediately west of the "Feeder" zone. This area has been previously drilled and mineralization indicated. Many of the old drill collars and the conditions and controls over the old drilling cannot be accurately determined. The quality of much of the old core, while still in existence, has deteriorated considerably since 1988 and 89. Since that time, both the level of regional geological knowledge and the mineral setting on the Fireweed property has increased and improved immensely. It was decided to re-drill the area so as to bring the mineral database into compliance with the current modern regulatory regime, and to explore for additional mineralization as indicated by the drilling. None of the older holes have been "redrilled" All of the 2011 holes are new holes into previously undrilled portions of the indicated mineralized zone. The 2011 drill program is the initial step in the compilation of a modern compliant database.

18

Many of the old holes were drilled in a south to north direction, as the mineralization swings around to the west, old holes followed it with some SE to NW directed holes and further west, the holes were commonly directed westwards. It was decided to direct the 2011 holes to the NW along two sections spaced 50m apart, commencing drilling about 60m west of holes FW 10-1 and FW 10-2. (See 2011 drill plan, fig 5)

The exceptions to this plan were drill holes FW11-4, FW11-7 and FW 11-11. They were drilled in a more northerly direction so as to increase the structural knowledge of the deposit and potentially allow "3-point solutions" for common structural components.

Mineralization has been found in Skeena Group sediments to 200 metres depth. There isn't any reason to preclude the possibility of repeated or multiple mineralizing events relatively widely separated in time and depth. There has not been any drill test to depths much beyond 250m. The author believes that the depth potential of the Fireweed property should be drill tested at a future date.

The bulk of the known mineralization is hosted by a medium to coarse sandstone, in two parallel south to southwest plunging shoots, there has been much disruption of the bedding along many planes of dislocation where numerous "slices" have dislocated relatively slowly leaving a highly disrupted dislocation zone between relatively undisturbed to gently deformed bedding. The dislocation has in many places proceeded slowly enough that tensional fractures developed within the slowly dislocating zones and filled with quartz and/or carbonate minerals. The tension fractures and subsequent qtz/carbonate mineralization have commonly been highly disrupted with the rest of the dislocation zone when the failure ultimately occurred. While fine grained graded bedding is common in the sediments it is felt to be an original sedimentary event. Typical flysch type tubidite bedding is rare or has not been observed. The graded beds are believed to be more related to original volcanic/sedimentary processes than to any later rapid tubidite type sedimentation.

(The following has been extracted from the 2010 program report by W.A. Howell)

The Feeder or Vent zone, has been described as a flat-lying, funnel-shaped zone, near the eastern limits of the West zone, It covers an area 90 by 90 metres and now extends to a depth of at least 120 m, (holes FW 10-1 and 2) but does not outcrop. Sandstone and carbonaceous mudstone interfinger throughout this area. Pyrrhotite, pyrite, and sphalerite occur as massive sulphide mineralization associated with breccia and veins which cement mudstone and sandstone fragments that are millimetres to several metres in size. These "Breccia" zones of mineralization are believed to be "dislocation" zones. Movement has occurred along bedding planes primarily but not exclusively in black shale (argillite) beds or their contacts with sandy or silty sediments. The presence of small veins (2-10 mm wide) and their fragmented eqivalents within the dislocated and often Chaotically layered beds, seems to suggest that movement occurred slowly with the development of quartz and quartz/carbonate tension veins. The dislocation zones grade rapidly into unbrecciated or weakly veined areas. The sulphide content is variable and there are two distinct generations of sulphide veining.

1. One contains massive sphalerite, with low gold values

TEL: 250-295-1385

2. The other contains massive pyrite and pyrrhotite with silver and base metal values.

The breccia veins cut sericitized latite dikes (not observed in the 2011 drilling) which are thought to be related to the mineralization event. The feeder zone also contains minor gold and copper values. The main mineralized zone is a sheet-like body dipping moderately to steeply southerly, with post-mineral faulting, and intrusion by quartz-latite dykes. (These dykes have been described as rhyolitic)

2011 DRILL PROGRAM

The 2011 drill program was instituted to begin the modern compliant exploration of the grade and extent of the West Zone westwards from the "Vent" or "Feeder" zone area indicated by the 2010 and earlier drilling programs. An area, including about 100 m of the indicated 300 m, west of the Feeder zone, was explored utilizing eight holes on two NW-SE sections and three northerly directed holes to give potential 3 point solutions on any structures encountered during the drilling.

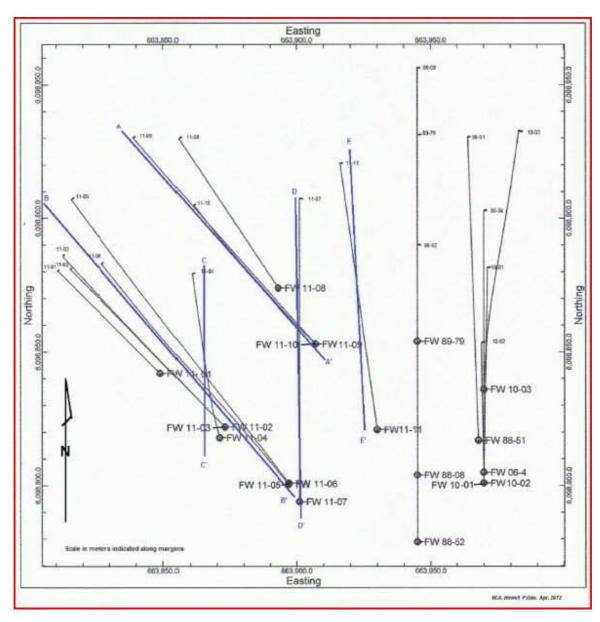
The writer has summarized the drilling on the two NW-SE sections, and the three northerly trending holes (2011 drill program). The reader is referred to the Technical Report, (B.J. Price, 2010) for a complete description of mineralization elsewhere on the property.

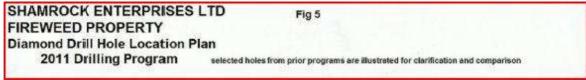
The 2011 program of diamond drilling was designed to expand and fill in information provided by early (1988 & '89) drilling on the West Zone. It has been noted that the bulk of the established West zone mineralized area, lies outside the 2005 IP chargeability definition.

Drilling was performed by Blackhawk Diamond Drilling Ltd. from Smithers BC., using a JT 2000 hydraulic drill mounted on skids. The drill, with a skid mounted rod sloop, was hauled to the property using normal highway tractor and low-bed equipment. A D-6 "Cat" was supplied by Blackhawk and used to haul the drill rig and rod sloop on the property. It was also used to clear and build drill sites.

The 2011 program was conducted in the late fall of 2011, between Oct.30 and Dec. 02, 2011, under winter conditions. Local water supplies proved adequate for the duration of the program, Drill crews stayed at Tuuki Lodge at Smithers Landing, Shamrock personnel stayed in Smithers at a local hotel and commuted daily. The project was managed and supervised by W.A. Howell P.Geo., the author of this report.

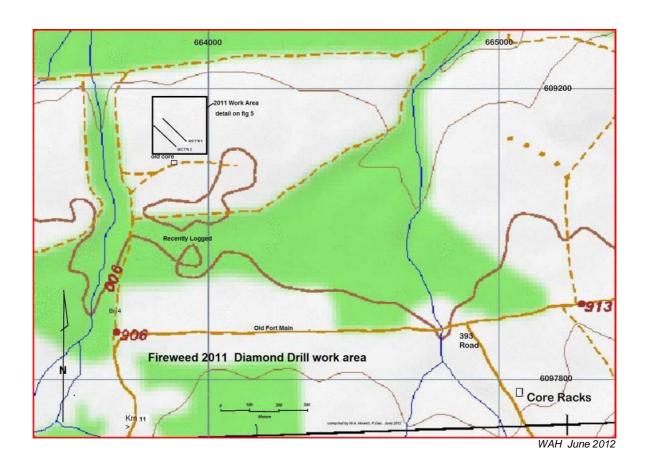
Logging roads in the Fireweed area connect to the community of Granisle, about 28km distant, whereas Smithers is about 70 or 80 km from the drill site. On a short project the added distance is not too onerous but significant savings in time and efficiency might be realized by housing a larger crew or staying for a longer period of time in Granisle, where currently, there are many empty houses.


Samples consisted of mechanically split core over nominally 2 meter intervals. Sections of core were designated for splitting based on the presence of visual mineralization. Additional samples were taken beyond visual mineralization to try and ensure that the mineralized section was adequately and completely sampled. Samples were submitted to ACME ANALYTICAL LABORATORY in Vancouver and subjected to ACME Group 7TD analysis, where the split core is crushed and split to 150 mesh, a 1.000 gram sample is then subjected to a hot 4 acid digestion and analysed by ICP - ES. Au and Ag are determined by group 603 fire assay from a 1 assay-tonne sample.

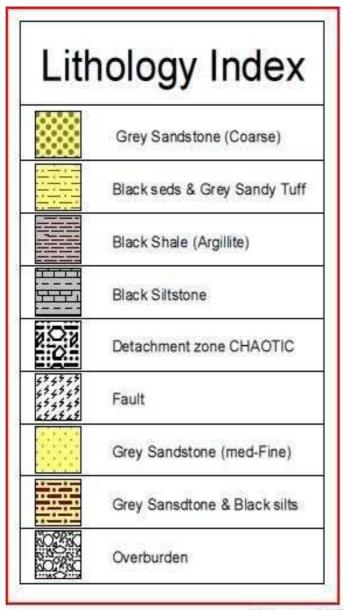

Core was collected and stored in a covered trailer or the core shack, and transported directly by shamrock personnel to the Acme Labs sample preparation facility in Smithers, from where, Acme ships prepared samples to their Vancouver labs for analysis. Acme performs a rigorous analytical check routine on all samples submitted to them . At the level of exploration currently underway at Fireweed, this is considered adequate. Results of the Acme checks are presented with the assay certificates in the appendix to this report.

Drill hole locations were established by chain and compass methods from old collars and Identified grid points on the ground. Locations were further identified using hand held, non corrected, GPS readings. Collar locations are depicted on Fig 5 All locations are subject to a detailed location survey to be completed at a future date.

20

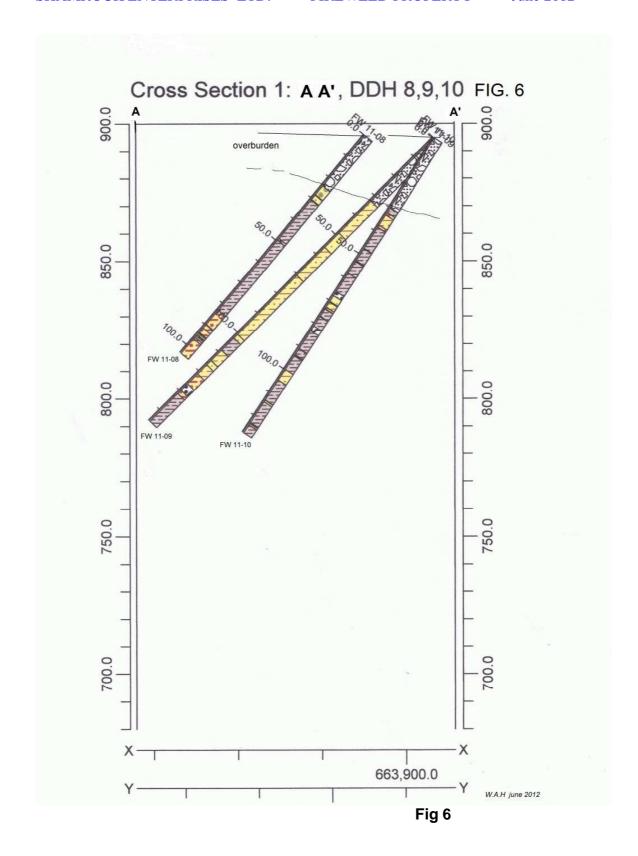

Fireweed 2011 Drill Hole Location Plan

Fireweed 2011 Diamond Drill Program Work Area


FIG. 5b

Detail location of 2011 drill sites within the work area is found on Fig 5

DRILL SECTIONS


The following index of lithologies encountered during the 2011 Fireweed drill program applies to all the drill section figures.

WAH June 2012

Fig 5c

TEL: 250-295-1385 E-Mail: wahowell_pgeo@live.ca

WA HOWELL P.Geo.

TEL: 250-295-1385

P.O. Box 1849,

Princeton BC Canada,

E-Mail: wahowell_pgeo@live.ca

V0X 1W0.

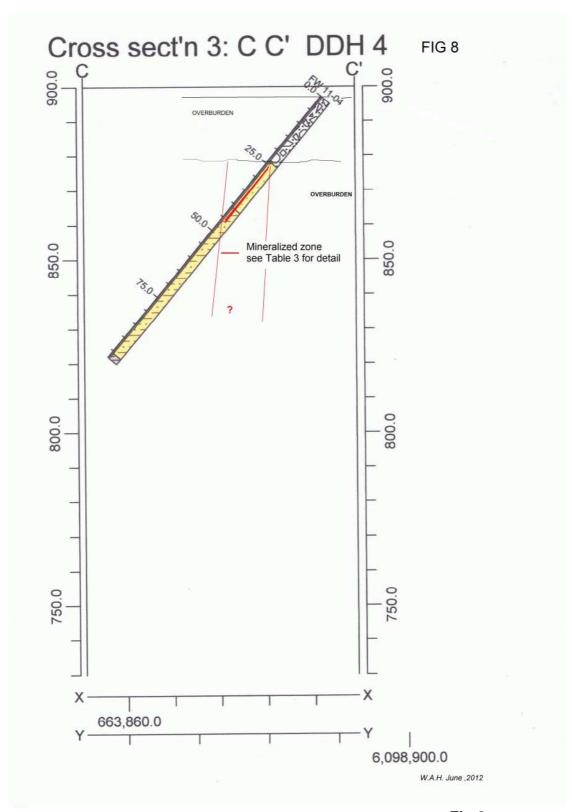


Fig 8

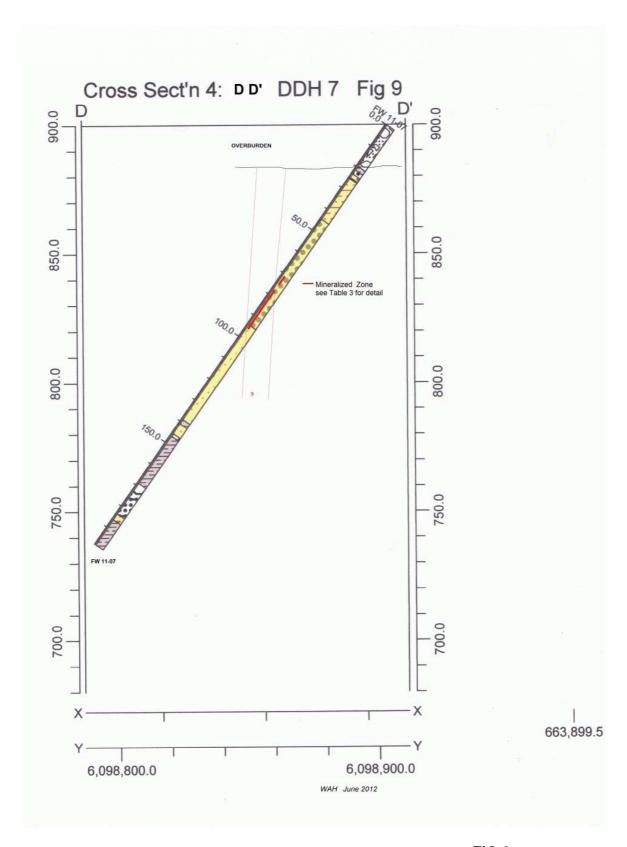


FIG 9

V0X 1W0.

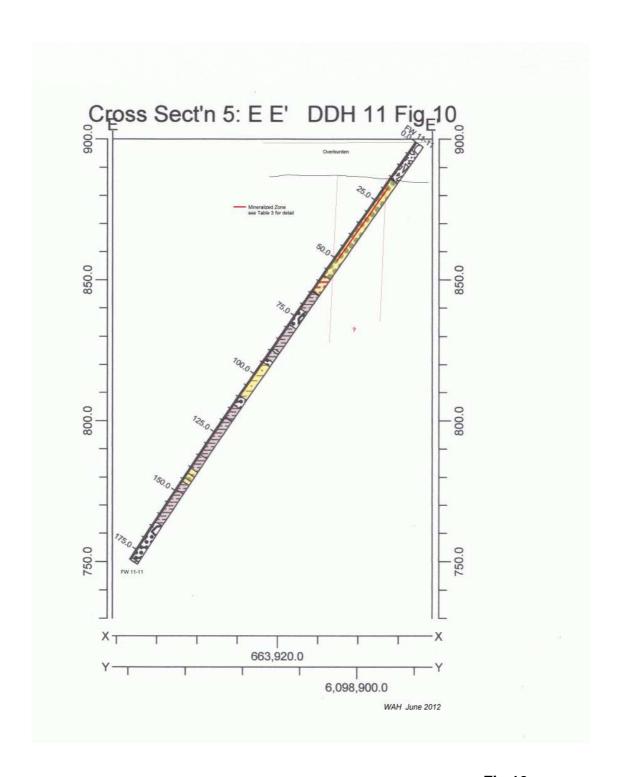


Fig 10

OBSERVATIONS & DESCRIPTIONS of the 2011 DIAMOND DRILL RESULTS

All holes are located on FIG 5

Hole FW 11-1 (fig 5 & Fig 6) was collared on section 1 and drilled az 315 /-45 to 76.2m.

The results of the 1988 and 89 drilling indicate a main mineral zone and a smaller parallel zone to the north, hole 11-1 attempted to acquire information on the northerly zone, at shallow depths.

Bedrock was encountered at 26.4 m. (18.7m vertical depth) No visible mineralization was encountered and it was presumed that the drill went over the mineral zone, before hitting bedrock.

Hole FW 11-2 (fig 5, &Table3, p24) was collared on section 2 thirty meters SE of hole1 and drilled az 315 /-45, parallel and beneath hole1. (It tested about 21m deeper on the section). The hole intersected 8 m of mineralization between 27 and 35 meters drill depth, beginning at start of bedrock.,. The intersection averaged **449 g/t Ag; 1.6% Pb; 2.2% Zn.**

Hole FW 11-3 (fig 5), (Table 3, p 24; Fig 7) was collared on the same section with FW 11-1 and FW11-2. It was collared from the same location as hole FW11-2. It was drilled at az 315 / -55 to drill on section below holes 1 and 2.. hole FW11-3 encountered **3m** of mineralization between 20.4 and 23.4 meters drill depth. The intersection averaged **0.242g/t Au; 81 g/t Ag; 1.49% Pb; 3.4% Zn.** Hole FW 11-3 also encountered **15.6m** of mineralization between 30 and 45.6 m . the intersection averaged **328.4 g/t Ag; 0.89% Pb; 1.9% Zn.** The presence of gold in the former intersection may distinguish that mineralization as a different event than the mineralization in the latter intersection.

Hole FW 11-4 (fig 5) (Table 3 p24, Fig 8) was collared adjacent ,to south southwest of the collar of hole 2 and 3. and was drilled at az 345 / -50 to depth of 97.51m. Hole FW 11-4 encountered **15.1 meters** of mineralization between 26.1m and 41.2 m . The intersection averaged **444.4 g/t Ag; 1.3% Pb; 2.5% Zn.** This intersection is consistent with an expected true width of about 10 m on a steeply north to north-westerly dipping mineralized zone.

Hole 4 encountered a significant mineral intercept commencing just below the bedrock contact with overburden. Its location fits well with the mineralization on section 2.

Hole FW11-5 (fig 5) (Table 3, p24) was collared on section,30 m to the southeast of hole FW 11-3 on az 320/-45. The hole intersected **15.3 m** of mineralization between 75.3 to 90.6 metres drilled depth. The intersection averaged **374.1 g/t Ag; 1.1% Pb; and 1.9% Zn**.

FW 11-6 (fig 5) (Table 3, p24) was collared from the same location as FW 11-5. Hole 6 was drilled on az 322 / -50. to depth of 210.31 m hole FW 11-6 encountered **20.3 m** of mineralization between 87 and 107.3 m drilled depth. The intersection averaged **0.2 g/t Au**; **202.8 g/t Ag**; **1.7% Pb**; **and 3.6%Zn**;

Holes 1,2,3,5 and 6 are depicted on Section 1. Significant mineralization was encountered on holes 2,3,5,and 6. Plotted on the section, they show a steeply north to north-west dipping zone possibly widening with depth and open to depth.

FW 11-7 (figs5&9), (Table 3, p24) was collared SSW of, and adjacent to, holes FW 5 and 6. FW 11-7 was drilled on az 360/-55 to a depth of 198.17 m . Hole 7 encountered a **2 m** intersection of mineralization between 78 and 74 m . The intersection averaged **17 g/t Ag**; **1.69% Pb**. A second mineralized intersection over **17.2m** between 78 and 95.2 m was encountered in hole FW11-7. The intersection averaged **0.2 g/t Au**; **142.3 g/t Ag**; **1% Pb 1.7% Zn**.

Hole 7 encountered significant mineralization but at a depth deeper than expected. The presence of Gold with the mineralization may indicate that it is associated with a different phase or episode of mineralization than that displayed on section 2..

29

FW 11-8 (figs 5&6,) was collared on section 1 located parallel to section 2 ,50 meters to the NE . it encountered **2m** of mineralization between 91.44 and 93.44m which averaged **20** g/t Ag; **0.43%Pb**; and **0.63% Zn**.

.FW 11-9 (fig 5&6) was collared on the same section as FW11-8. Hole 9 was drilled on az 319 / -45 to a depth of 145.39m. The hole encountered two narrow intersections of mineralization, the first is 2.25 m between 114.2m and 116.45m averaging 29 g/t Ag; 0.57% Pb and 1.01% Zn. The second was 1.6m between 124.7m- 126.3 m which averaged 16 g/t Ag; 0.23% Pb; 0.43% Zn.

FW 11-10 (fig 5) ,was collared from the same location as hole FW 11-9. The hole was drilled on az 315 /-58 To a depth of 127.41m. Hole 10 encountered **1.6m** of mineralization between 111m and 112.6 m which ran **17 g/t Ag**; **0.58% Pb**; **1.38%** Zn.

All three holes, 11-8,9&10, appear to have missed the major zone of mineralization.based on the mineralization found in Hole 11, (following) the three holes appear to have drilled above and ahead of the major zone. Future drillng programs should consider additional holes on section to the southeast, to test the zone and its extension to depth.

FW 11-11 (fig 5) (Table 3, p 24) was collared 40 m, on section, to the SE. It was drilled on az. 352/55 to a depth of 179.22m. Hole 11 encountered **32 m** of mineralization between 19 and 51m, which averaged **0.2 g/t Au; 119.1 g/t Ag; 1.3% Pb, and 2.2% Zn.**

It is noted that some intersections have a consistent gold component of approx. 0.2 g/t, while gold is conspicuously absent in other zones. It may be that there are two episodes of mineralization demarcated by the presence or absence of gold.

Several intervals of mineralization show narrow widths of <1 to 2 meters, and typically 15-30 g/t Silver with +/- 1% combined lead and zinc. These intersections may be distal representations of larger bodies of mineralization and are worthy of systematic followup.

A summary of the 2011 drill hole locations and collar data follows.

30

WA HOWELL P.Geo. P.O. Box 1849, Princeton BC Canada, VOX 1W0.

E-Mail: wahowell_pgeo@live.ca

TEL: 250-295-1385

DRILL COLLAR DATA

TABLE 2

DDH	Zone 10 U Easting	(NAD 83) Northing	Az.	Dip	Elev.	Len m	gth ft
FW 11-1	663849	6098842	315°	-45°	897m	76.2	249.9
FW 11-2	663873	6098822	315°	-45°	899	115.5	378.8
FW 11-3	663873	6098822	315°	-55°	899	154.5	506.8
FW 11-4	663871	6098818	345°	-50°	897	97.5	94.2
FW 11-5	663897	6098800	320°	-45°	897	153.9	504.8
FW 11-6	663897	6098801	322°	-50°	897	210.3	689.8
FW 11-7	663901	6098794	360°	-55°	900	198.2	650.1
FW 11-8	663893	6098874	326°	-50°	896	103.6	339.8
FW 11-9	663907	6098853	318°	-45°	895	145.4	476.9
FW 11-10	663907	6098853	315°	-58°	895	127.4	417.9
FW 11-11	663930	6098821	352	-55°	899	<u>179.2</u> 1561.7	587.8 4896.8

A summary of mineralized intersections and the weighted average grade for gold, silver, copper, lead and zinc follows

Table 3 Summary table of major mineralized intersections

Drill Hole	comment	De	pth (m)	Interval wt. avg. grade
FW 11-2	mineralized zone	27-35	8 m	avg 449 g/t Ag
				avg 1.6% Pb
				avg 2.2% Zn
FW 11-3	mineralized zone	20.4-23.4	3.0 m	avg .242 g/t Au
				avg 81 g/t Ag ,
				avg 1.49% Pb
				avg 3.4 % Zn
	mineralized zone	30-45.6	15.6 m	avg 328.4 g/t Ag
				avg 0.89% Pb
				avg 1.9% Zn
FW 11-4	mineralized zone	26.1 - 41.2	15.1 m	avg 444.4 g/t Ag
				avg 1.3 % Pb
				avg2.5 % Zn
FW 11-5	mineralized zone	75.3 - 90.6	15.3 m	avg 374.1 g/t Ag
				avg 1.1% Pb
				avg 1.9% Zn
FW 11-6	mineralized zone	87 - 107.3	20.3 m	avg 0.2 g/t Au
				avg 202.8 g/t Ag
				avg 1.7% Pb
				avg 3.6% Zn
FW 11-7	mineralized zone	72 - 74 m	2 m	17 g/t Ag,
				1.69% Pb,
FW 11-7	mineralized zone	78 - 95.2	17.2 m	avg 0.2 g/t Au
				avg 142.3 g/t Ag
				avg 1 % Pb
				avg 1.7 % Zn
FW 11-11	mineralized zone	19- 51	32 m	avg 0.2 g/t Au
				avg 119.1g/t Ag
				avg 1.3 % Pb
				avg 2.2 % Zn

32

E-Mail: wahowell_pgeo@live.ca

TEL: 250-295-1385

CONCLUSIONS

- 1) A massive sulphide environment of deposition exists at Fireweed. (from 2010 drilling)
- 2) Significant mineralization occurs outside of the massive sulphide zone(s), the best known of which is illustrated by current data in the WEST ZONE.
- 3) Drilling to date has not yet defined the extent of mineralization on the west zone or the Feeder Zone. The West Zone is considered open to depth and laterally to the west.
- 4) The 2011 drilling program has demonstrated and reaffirmed the mineralized West Zone potential west of the "Vent Zone". The potential is best illustrated on section 2, Fig 7. Where mineralization representing a true width of approx 9 -10 meters at the bedrock interface with overburden at about 20 m vertical depth from surface, extends to greater than 85m vertical depth. Additional drilling will be needed to demonstrate the continuance and tenor of mineralization to depth.
- 5) Additional Drilling on the West Zone is warranted. Additional sections should be drilled west of the two sections established in the 2011 drill program. Intermediate sections can be drilled where additional detail is required.
- Additional exploration within other historical zones indicated on the fireweed property is warranted. Of these, the Mn zone potential as an extension of the west zone requires investigation by future exploration efforts.
- 7) several relatively narrow and typically lower grade zones than the major zone of mineralization may represent 'tails' or extensions of distally mineralized bodies. They are worthy of systematic follow-up.

RECCOMMENDATIONS

- As exploration of the West Zone continues, the recommendation of previous programs becomes paramount. It would be very advantageous to complete a compilation and accurate location of existing features such as grids and old drill collars. These features were well marked in the field at the time of execution and although they are often difficult to see on the ground today, the identification is often still discernable but is rapidly deteriorating. There is a relatively short window of opportunity (just a few years) where they may be accurately located and correlated, thereby allowing a positional 3-D digital database and allowing confident planning for future exploration and development.
- The next two phases of exploration on the Fireweed property should be 3000 m of NQ diamond drilling on the West Zone. Additional drilling will extend the mineral database and allow a comprehensive and compliant recalculation of a new mineral resource on the Fireweed Property The 3000 meters of recommended drilling has been broken into two programs to help facilitate project financing, the programs may be run "back to back " if financing permits, allowing some overall savings of costs. Each 1500 meter program is estimated to cost \$300,000.00 based on the 2010 and 2011 program costs. Detailed estimates are provided on the following page.

33

- 3) Additional drilling on the Mn, East and South Zones and the Feeder Zone is recommended for future phases of exploration.
- 4) All drilling should be conducted using detailed down hole surveys to help explore and evaluate potential to depth and help to accurately define the shape and structure of the mineralization. Care should be taken to ensure the instrument is sufficiently removed from the drill string at time of survey to avoid magnetic influence from the drill string.

Such a program should be completed in conjunction with the relocations and compilations recommended in (1)

ESTIMATED COSTS for RECOMMENDED PROGRAM (2011 Canadian Dollars)

Diamond drill project: (Estimated cost is for Each of Phase 1 & Phase 2)

,	202,500
Room and Board: (Geo crew) 3 men 30 days , 100/	9,000
Site prep and road maintenance	2,500
1 Geologist, 2 technicians (est 120 man days) (1+2) x 30	30,000
Assays- 450 x 40	18,000
Core racks, field supplies, etc.	3,000
Transportation, vehicle rentals, fuel, freight	6,000
Communications rentals, core splitters, equipment rentals	750
Environmental rehab	2,500
Report and documentation	8,000
Contingency 6%	17,750

Phase one Total estimated cost \$300,000.00 Phase two Total estimated cost \$300,000.00

\$600,000.00 **TOTAL PHASE 1 and PHASE 2**

Compilation project: (Est. 21 days)

location surveys (2 men)	7000
Room and Board	1100
Transportation, vehicle, rentals,	2500
Report and Documentation	6000

E-Mail: wahowell_pgeo@live.ca

Total estimated cost \$ 16600.00

REFERENCES .

Alldrick, D.J., (2005); Eskay Rift Project, (NTS 1030, P, 104A, B, G, H) Northwestern British Columbia. in Geological Fieldwork 2005, British Columbia Geological Survey Paper 2006-1.

Howell, W.A., (2006); Assessment report Diamond Drilling Report on the Fireweed Property, Omineca Mining District, BC. For Jantar Resources Ltd. Dated April 24, 2007.

Howell, W.A., (2011); Assessment Report, 2010 Diamond Drilling Report on The Fireweed Property, Omineca Mining District, BC for Shamrock Enterprises Ltd. Dated April 04,2011

L'Orsa, Anthony, (1987); Geological Report. Fireweed Property. Private Report for Canadian United Minerals Inc. dated 15 October 1987.

L'Orsa, Anthony, (2000); Summary Report. Fireweed Drilling Project Notes for Cedar Capital Corp. including drill logs, comments and Assays. dated 2000.

Malott, M.L., (1989); Fireweed, (093M151) (Brief report on Fireweed property). BCMEMPR Exploration 1988 Part B, pp. 127-131

McIntyre, D.G., et al. (1996); Babine Porphyry Belt Project: Bedrock Geology of the Fulton Lake Map-Area. (93L-16) British Columbia. Ministry of Employment. Geological Fieldwork 1995, Paper 1996-1. pp. 11-35.

McIntyre, D.G.,et al. (1997); Babine Porphyry belt Project: Bedrock Geology of the Old Fort Mountain area, (93M/1) British Columbia. Ministry of Employmentpp. Geological Fieldwork 1996, Paper 1997-1. pp. 47-67.

MacIntyre, D.G., R.H. McMillan, and M.E. Villeneuve, (2003); The Mid-cretaceous Rocky Ridge Formation –Important Host Rocks for Vms and Related Deposits In Central British Columbia. Excerpt from Report of Activities 2003.

Price, B.J., (1997); Valuation of Fireweed property, Smithers, B.C. Private Report for Cedar Capital Corp., Dated March, 1997.

Price, B.J., (1999); Geological Report - Fireweed property, Smithers, B.C. Private Report for Cedar Capital Corp., Dated March 1, 1999.

Price, B.J., (2005); Technical Report, Fireweed Silver-Lead Zinc Deposit Technical Report for Argentor Resources Ltd., Dated December 19, 2005.

Price, B.J., (2010); Technical Report, Fireweed Silver-Lead Zinc Deposit Technical Report for Shamrock Enterprises Ltd., Dated July 28, 2010.

Fireweed Minfile 093M 151 Bibliography:

EMPR OF 2001-03
EMPR ASS RPT *17774, 18501, 21353, 21879, 26298, 28161, 29052
EMPR BULL 110
EMPR EXPL *1988-A34,B127-B131,C175;; 1999-1-11
EMPR FIELDWORK 2000, pp. 253-268
EMPR MAP 1; 65, 1989
EMPR OF 1992-1; 1992-3; 1997-10; 1998-10

35

EMR MIN BULL MR 223 B.C. 240
GSC MAP 971A
GSC OF 720; 351; 215; *2322 (#230)
GCNL #37,#153,#155,#163,#167,#222,#243, 1988; #4,#9,#19,#26,#56, *#66,#75,#85, 1989; #32, #181, 1991
N MINER Aug. 22, 1988; Feb. 6, Mar. 6, 27, 1989; Oct. 21, 1991
NW PROSP Jan/Feb, 1989; May/June, 1989
PR REL Canadian United Minerals, Jan. 19, 1988
V STOCKWATCH Jan. 19, 1988; April 19, 1989
WWW http://www.infomine.com/Placer Dome File

SOFTWARE USED IN PREPARATION OF THIS REPORT

Micosoft Windows 7
Microsoft Office Suite 2003
Adobe Acrobat Pro v.8
Snagit v8
Corel graphics suite X3
Garmin Trip and waypoint manager
British Columbia TRIM II data
Rockworks 14
Google Earth plus

TEL: 250-295-1385

copyright Microsoft corp.
copyright Microsoft corp.
copyright Adobe Systems Incorporated.
copyright Techsmith software corp.
copyright Corel Corporation
copyright Garmin Ltd.
copyright Province of BC
copyright Rockware corp
Google Corporation

36

STATEMENT OF QUALIFICATIONS

- 1. I, William Alfred Howell, P.Geo. do certify that:
- 2. I graduated from the University of British Columbia in 1971 with a Bachelor of Science Degree.
- 3. I am a registered and practicing member of the Association of Professional Engineers and Geoscientists of British Columbia. Licence # 20440.
- 4. I have practised my profession as a geologist since 1971. I have conducted and managed exploration programs in British Columbia, Alberta, Yukon and Northwest Territories, Western and Southwestern, USA, Central and Northern Mexico, The Republic of Panama and the Republic of South Korea.
- 5. I have gained geological experience working with several major and several junior companies on a wide variety of commodity and deposit types, including Volcanogenic Massive Sulphide Deposits, skarns, bulk tonnage gold and vein gold deposits, (both from surface and underground), Porphyry Copper and Porphyry Molybdenum deposits.
- I have read the definition of "qualified person" set out in National instrument 43-101(NI 43-101) and certify that by reason of my education and work experience, and my affiliation with a professional association (as defined in NI 43-101), I meet the requirements to be a "qualified person" for the purposes of NI43-101.
- 7. I have visited the property on several occasions and have planned and conducted exploration programmes on the Fireweed Property for Jantar Resources Ltd (Diamond drilling in 2006) and Shamrock Enterprises Ltd. (Diamond drilling in 2010)
- 8. I am independent of the potential vendor and issuer, applying all of the tests in section 1.5 of NI 43-101.
- 9. I reside and conduct my business at 822 Belfort Road, Box 1849, Princeton, British Columbia VOX 1W0. Tel: 250 295 1385, e mail: wahowell_pgeo@live.ca
- 10. I do not beneficially own stock or other securities derived from Shamrock Enterprises Ltd. or any related company.

TEL: 250-295-1385

Signed at Princeton BC, June 25, 2012

SIGNATURE PAGE

This report, "Diamond Drilling Assessment Report on the Fireweed project, Omineca Mining District, Babine Lake area, BC" was prepared for: Shamrock Enterprises Inc. 484 Beachview Drive, North Vancouver BC, V7G 1P7, Tel: 778 340 1934

The field project was managed, technically directed and the report written by W.A. Howell, P.Geo.

Respectfully submitted this 18th day of november, 2012,

W.A. Howell, P.Geo.

TEL: 250-295-1385

APPENDIX I

STATEMENT OF COSTS

Shamrock Enterprises Ltd. Fireweed Project. Omineca Mining District, Babine Lake Area BC

Labour	Shamrock personnel
--------	--------------------

W.A. Howell, P.Geo. Oct30, 2011 to Dec. 02,, 2011	34 man days @ 650/	22,100.00
Grant Atkins, Technician, Oct 30 to Dec.02, 2011	34 man days @ 225/	7650.00
Zack Osinchuk Technician, Nov.14 to Nov 30, 2011	16 man days @ 200/	3200.00

Contract Personnel- wages included in contract price.

2 drillers and 2 helpers included in contract price, incl. drilling labour, drillers R&B, transportation, Fuel, water and all direct drilling related costs. Except snow removal and down hole lost equipment.

Drill contract,: Blackhawk Diamond Drilling Ltd.: 1561.7m @ 135./ 210,829.50

Field expenses: company R&B, Truck rental, Fuel, core rack & core shack materials, communications, Consumable field supplies (tarps, sample bags, sacks, saws, ribbon), etc.

28,400

Assays (ACME LABS) 142 samples (see appendix III) 6500

Report and maps 8000

TOTAL PROJECT COST (Can. \$) \$ 286,679.50

39

E-Mail: wahowell_pgeo@live.ca

TEL: 250-295-1385

APPENDIX II

DRILL LOGS

From	To	Lithology	Geological Description
0	26.4	OVB	Overburden, sands and sandy gravels, Tills
26.4	27.9	BSst	BlackSandy Tuff, very broken and blocky, graphitic fracture faces, no vis mineralization.
27.9	36.5	BS	Black Shale (Argillite). 30.2, shear 45/CA, Lost core, 30.2-30.5, 33.1-33.6 Shear, 33.6, 45/CA graphitic mud. No vis mineralization.
36.5	37.5	BS/Sst	Banded black shale with sillstone tuff. Lower contact is faulted 45/CA- black gouge. No visible Mineralization.
37.5	45.9	BS	Black Shale (Argillite).
45.9	49	SS	Grey Sandstone, rubble @ 48.4-48.6
49	76.2	BS	Black Shale (Argllite), Competent, occasional sandy tuff mixed bedding is well developed 60°/CA between 68 and 73

EOH 76.2

WAH speculation: I Think that The Higher angle shear/faults, (usually about 45-60/CA)may reflect a regional trend more apparent on the north side of Babine Lake, where N to NNE trending faults are possibly upthrown or display northwards movement, on the eastern side. (also depicted on Fig 4, "Regional Geology of Babine Lake Area") I think the pattern persists on the south side of the lake also and is reflected in the drainage patterns. This has important structural implications for mineralization in the Fireweed West Zone and particularly at the Mn zone which may be a continuation of the West Zone accross the N-S trending, fault controlled creek.

From To interval sample #

Mineral Description

g/t g/t % % %

Au Ag Cu Pb Zn

								g/t	g/t	%	%	%
From	To	Lithology	Geological Description	From	To	interval	sample # Mineral Description	Au	Ag	Cu	Pb	Zn
0	26.9	OVB	Overburden Sand and sandy gravels.	26.9	29	2.1	11501 27-37.5 SS has 5-8% Pyrite with vfg galena & interstitial sph. Py grains are up to 5mm. Square outlines are common. Py fragments are also common (detrital), occasional Cpy is also present.	0.041	313	0.007	1.08	2
26.9	37.5	SS -cg	Grey Sandstone, Quartz grains with common, occasional small black lithic fragments. Indistinct to poorly bedded, 40°-45°/CA. 3.13, locally broken core. Unit is mineralized from top to 37.5, thin qtz stringers 60°/CA and across bedding are common.	29	31	2	11502	0.132	876	0.007	2.96	3.82
37.5	43.8	SS-f&mg	Grey Sandstone, fine to medium grained, occasionally interbedded with Black silly sediments. The unit is texturally different from above and has lost mineralization. Lithic clasts are more common in the bedding. Bedding is 45°/CA. Local qtz stockwork developed at 40m.	31	33	2	11503	0.093	427	0.005	1.49	1.95
43.8	79.35	BSst	Black Sandy Tuff Interbedded with thin grey, fine ss. Bedding varies from 45°-65° /CA & occasionally is chaotic. These are likely Tubidite or 'Flysch' sequences. Some of the small narrow grey interbeds have a sharp upper contact with overlying black, fg seds, then varies quickly downwards into another fg black silty bed. *** This is opposite to Normal expectations and likely indicates overturned beds. ***	33	35	2	11504	0.024	181	0.005	0.88	1.31
			Grey chaotic beds, 47.5-48.8 .Lower contact 79-79.35 is chaotic with qtz venlets cut off and irregular bedding.	35	37	2	11505	0.016	76	0.007	0.63	2.02
79.35	82.2	SS	$\label{eq:GreySandstone} Grey Sandstone poorly bedded 45/CA. Upper contact is is mineralized for 1-2 cm only. Lower contact is convoluted and chaotic over 0.3 to 0.4 m. Chaotic quartz stringers and interbeds of black shale.$	37	37.5	0.5	11506	0.007	46	0.003	0.65	1.19
82.2	95.8	BS	Black Shale (Argillite) vf grained, occasional 3-4 cm zone of convoluted white silicate with sharp lower contact. (a slump sole?)	37.5	40	2.5	11507 37.5-43.8 Trace Pyrile	<0.005	4	0.002	0.03	0.03
95.8	115.52	SS & BSst	Grey Sandstone and Black siltstone, Interbedded, Beds 60/CA black beds gradually predominate to end, Short section of Grey SS 109.5-110.8, No Vis Mineralization. *** If overturning occurs, this sequence may be proceeding to a repeat of the mineralized SS located higher in this hole. ***	40	42	2	11508 79.35 upper contact of Grey Ssis mineralized for 1-2 cm. No other mineralization Obseved.	<0.005	<2	0.004	<0.02	0.02
				42	43.8	1.8	11509 83 Solitary fracture in BS, 20°/CA has common Py, no other local py is observed.	<0.005	<2	0.006	<0.02	0.02

EOH 115.52 m

									g/t	g/t	%	%	%
From	To	Lithology	Geological Description	From	To	interval	Sample #	·	Au	Ag	Cu	Pb	Zn
0	20.3	OVB	Overburden, sand and gravelly sands	20.4	22.4	2	11510	Fine dissemminated py and tr. Galena interstitial to ss grains. TS<1%	0.239	83	0.016	1.42	3
20.3	23.3	SS	Grey Sandstone, med.siliceous grains with dark lithic fragments.(greywacke) 1% diss Py.	22.4	23.4	1	11511	(same)	0.248	77	0.018	1.62	4.33
23.3	27.8	BS	Black shale (Argillite) with local sandy interbeds and irregular 'clasts' (rip up fragments)	23.4	25.8	2.4	11512	vfg sulphides (py) interstially in fine to med grained SS	0.017	6	0.002	0.08	0.14
27.8	45.6	SS	Grey Sandstone, as above, coarse py occasionally lacks fragmental & appears to be bedding controlled, beds 50/CA	25.8	27.8	2	11513		< 0.005	8	0.005	0.07	0.14
			36-36.5 fine brown interstitial mineral may be Sphalerite. Occasional to common black lithic clasts become more common to end of section.	27.8	30	2.2	11514	Grey SS, med grained, diss Py 1-2%	<0.005	101	0.004	0.38	0.59
			$43-45.6 \; SS \; becomes \; locally \; very \; coarse \; grained \; Greywacke. \; Bedding \; is \; 60/CA \; with \; local \; well \; developed \; interstitial \; galena. \;$	30	32	2	11515		0.035	348	0.007	1.08	2.21
45.6	50	SS/BS	Grey SS with black Shale (Argillite) interbeds 60/CA. The SS is fine to med grained core. Occasional fractures occur. Bedding is qtz filled	32	34	2	11516		0.091	534	0.006	0.8	1.91
50	54.8	BS	Black shale (Argillite) with few fine grained greyss interbeds. Occasional shear planes & small faults, 60/CA, parallel bedding.	34	36	2	11517		0.063	420	0.004	0.87	1.52
54.8	56.2	DZ	Detachment zone, Chaotic bedding, and fragmental disrupted quartz stringers. ***This sequence is believed to be the sole of a Decollement or slip location. *** occasional SS might be a large clast.	36	38	2	11518		0.065	394	0.004	0.68	3
56.2	85.4	BS (arg)	Black Shale, Quartz and siderite (?) veinlets are common to about 59m. Occasional grey SS bed 60 /CA up to 0.3m thick.	38	40	2	11519		0.061	426	0.003	1.03	1.31
			60.5 small shear 2cm wide is 60 /CA	40	42	2	11520		0.043	307	0.005	0.92	2.96
			79 -80 sandy interbeds are present.	42	44	2	11521		0.024	264	0.005	1.19	1.32
85.4	99.3	SS	Grey SS med grained competent core. Pyrite is present as granular disseminations and occasional clots to 2 cm.	44	45.6	1.6	11522		0.038	287	0.006	1.63	2.83
99.3	115.3	BS (arg)	Black Shale (argillite) Tensional cracks filled with silica are 60°/CA and 30°/CA. Bedding is 45-50/CA Fault at 115-115.3 is 20/CA with grey,med gr. Gouge	85.4	87.4	2	11523	85.4-91.4 Grey SS, diss py granules, occasional clot to 2cm	<0.005	25	0.003	0.04	0.11
115.3	117.2	BSst	Black silty sandy tuff, weakly chaotic, with fg py in sandy lenses. Upper contact and lower contact are faulted, uct at 20/CA, and lct at 45/CA.	87.4	89.4	2	11524		0.019	69	0.003	0.12	0.29
117.2	145.4	BS/SS	Black Shale interbedded with Grey Sandstone. Sandy interbeds range from 1 or 2 cm to 1 or 2 meters. Argillite interbeds are similar. Only trace py observed.	89.4	91.4	2	11525		0.009	41	0.005	0.2	0.39
				115.3	117.3	2	11530	115.3- 117.3 Sandy Black shale (argillite) with fg py in sandy lenses.	0.011	<2	0.004	< 0.02	0.02
145.4	148.9	DZ	Detachment zone, Chaotic mixture of black argillite and grey Sandstone, all with broken and cut off quartz veins and stringers. All chaotically arranged.	143.26	145.4	2.14	11531	143.3-145.4 occasional py clot	0.006	28	0.007	0.26	0.49
148.9	155.45	SS	Grey Sandstone, med grained. Weak pyrite occasionally present.	145.4	147.4	2	11538		< 0.005	7	0.006	< 0.02	0.04
155.5	161.54	BS (arg)	Black Shale (Argillite) with very occasional fine grained py & trace Galena.	147.4	148.9.	1.5	11539		< 0.005	3	0.005	< 0.02	0.04
				148.9.	151	1.1	11532	148.9-155.5 Sandy section, weak py	0.026	10	0.003	0.04	0.07
				151	153	2	11533		0.021	19	0.005	0.07	0.18
			EOH 161.54	153	155.45	2.45	11534		0.043	38	0.005	0.1	0.28
				155.45	157.5	2.05	11535	155.5-161.5 Black shale and silty interbeds, occ small pyrite bed, & trace galena.	< 0.005	2	0.006	< 0.02	0.04
			This hole was drilled to it's intended depth. It could have gone a bit further in case the trace sulphide and ocasional sandy bed is a trend towards more mineralization. Future holes in this area might test this hypothesis.	157.5	159.6	2.1	11536		<0.005	<2	0.007	<0.02	0.02
				159.6	161.54	1.94	11537		< 0.005	<2	0.007	< 0.02	0.01
				91.4	93.4	2	11526		0.008	131	0.006	0.28	0.51
				93.4	95.4	2	11527		<0.005	20	0.003	0.1	0.21
				95.4	97.4	2	11528		< 0.005	7	0.001	0.04	0.08
				97.4	99.3	1.9	11529		<0.005	<2	0.003	0.03	0.07

EOH 161.54

									g/t	g/t	%	%	%
From	To	Lithology	Geological Description	From	To	interval	sample #	mineralized description	Au	Ag	Cu	Pb	Zn
0	24.1	OVB	Sand and sandy gravels	24.1	26.1	2	11540	24.1- 41.2 Grey Sandstone, with disseminated pyrite.	< 0.005	27	0.004	0.11	0.31
24.1	41.2	SS	Grey Sandstone, med grained, Fractured and broken 28.9-30.8, Fractures commonly 25°/CA and 45°/CA Bedding is 30/CA. More black lithic clasts approaching 38m, Medium brown mineral becomes ubiquitious about 38m along with larger SS grain size. Locallygrain sizeincreases to 41.2 m depth with a size to 5 mm by end of section.	26.1	28.1	2	11541		0.031	322	0.013	1.26	2.51
41.1	95.6	BS / SS	Interbedded Black Shale(Argillite) and fine to med.grained grey sandy layers. Towards bottom of section, at about 89.6, layers become thicker, but not coarser. The lower SS comonly has argillic *rip up* clasts of shale. Occasional py clot at 80.6 and 81.2 (could these clots have a clastic origin?)	28.1	30.1	2	11542		0.101	575	0.008	1.78	3.57
95.6	97.5	BS	Black Shale (Argillite) very fine grained, competent,	30.1	32.1	2	11543	brown mineral at 31.7 is sphalerite (?)	0.075	422	0.005	1.07	2.58
				32.1	34.1	2	11544		0.119	752	0.008	1.79	3.08
				34.1	36.1	2	11545		0.061	320	0.003	0.92	0.95
			EOH 97.5	36.1	38.1	2	11546		0.115	608	0.003	1.15	1.44
				38.1	40.1	2	11547		0.053	285	0.005	1.35	3.42
				40.1	41.2	1.1	11548		0.016	130	0.004	0.57	1.75
				79.9	82	2.1	11549	pyrite clots in silty black shales at 80.6 and 81.2	0.007	<2	0.011	<0.02	0.06
				82	83.2	1.2	11550		< 0.005	<2	0.005	< 0.02	0.03

EOH 97.5

7 AR 7TD

									g/t	g/t	%	%	%
From	To	Lithology	Geological Description	From	To	interval		Mineral Description	Au	Ag	Cu	Pb	Zn
0	22.6	OVB	Overburden, sands and sandy gravels	64	66	2	11551		< 0.005	<2	< 0.001	0.05	0.11
22.6	28.3	BS	Black Shale (Argillite) Soft, fractured and broken 50-70/CA, several gouge seams; 24.5, 24.8, 25.4-25.5, with 4 cm of chaotic qtz veining. 27.2-28.3, with chaotic qtz vein rubble.	66	68	2	11552		<0.005	3	3 <0.001	0.15	0.31
28.3	33.53	GSst	Grey siltstone/ argillite(shale), well broken. Fracts are 45-90 /CA. Rock is <u>soft</u> . local gouge over 4 cm at 29.5.The grey argillite is very soft, appears unaltered.	68	70	2	11553		0.006	<2	<0.001	0.07	0.18
35.53	52.75	BSst/BS	Black Shale and siltstone, thinly interbedded, Soft, Broken and faulted.	70	72	2	11554	Mineral zone starts at 70m with low silver values until 75.3n	0.013	12	0.002	0.36	0.56
			faults & shears: 38.3, 45/CA; 37.9, 45/CA; 41.4, 60/CA; 41.7, 45/CA; 46.8-47.0, Rubble, 48.2-48.45, Rubble. Open space crystals at 47.8 are calcite, several calcite filled tension gashes 30/CA are present, Fault gouge 48.7-48.77, 45/CA (?) some core grinding has ocurred.	72	73.7	1.7	11555		0.02	14	0.007	0.34	0.67
52.75	90.6	SS	Grey Sandstone, <u>HARD</u> (Siliceous) good bedding, 30/CA some grinding about 65m, some grinding about 65m. Some brown sphaleritleis apparent, mineral content is present to 90 6m with coarser granular lithic SS between 73.7m and about 83m. Silica filled tension fracts 90,45 30 /CA	73.7	75.3	1.6	11556	Grey sandstone- weak diss py and occ sph bandwithbrown sph occasional 'tight' fracturehas abundant galena (-30/CA)	0.036	24	0.005	0.6	1.27
90.6	93.14	SS/BSst	GreySandstone and Black shale, Interbedded, thinly laminated, med-fine grey SS and fine black silty beds. Sharp upper contact against Coarser SS, 45/CA, Sharp lower contact 45/CA. Local siliceous veinlets 90/CA	75.3	77.3	2	11557	75.3-77.3 coarse lithic grey Sandstone. Otz grains with black lithic fragments. 2-3% py, 1% galena, plus f.g. brownand black sphalerite. Below the coarse SS finer SS +/- thin argillite interbeds.	0.04	273	0.013	1.12	3.04
93.14	95.4	BS	Black Shale, moderately chaotic, with common white tension fractures, occasional 0.5cm veinlet with ~20% pyrite in silica.	77.3	79.3	2	11558		0.049	273	0.006	0.87	1.2
95.4	96.8	BS	Black Shale, moderately to strongly chaotic.	79.3	81.3	2	11559		0.051	539	0.01	1.34	3.77
96.8	100.15	BS/SS	Black Shale(Argillite) interbedded with fine grey SS. Argillite is soft, cuts andscratches easily, local tension fracts are silica filled, 45/CA.	81.3	83.3	2	11560		0.028	274	0.007	0.33	1.41
100.15	120.2	BS	Black Shale with many fewer SS interbeds. Weakly chaotic for short intervals at 106.2-106.3. and 100.58 - 100.62	83.3	85.3	2	11561		0.105	583	0.007	1.4	1.46
120.2	121.8	DZ	Detachment zone, Chaotic zone, (fault) With interbedded SS and BS 120.4-120.5, white ,creamy mineral, possibly vfg feldspar (?) h=6, poor cleavage, also seen as local vein and stringer filling	85.3	87.3	2	11562		0.049	288	0.005	0.64	0.68
121.8	128.02	BSst	Black Siltstone, 121.8, short (5cm) chaotic fault zone,60/CA marks the top of black BSst. 126.5-126.6, Chaotic assembly of qtz and black shale, with minor clots/fragmented beds of py. In the HW shales for about 0.1m	87.3	89.3	2	11563		0.085	298	0.005	1.15	1.12
128.02	129.8	BSst/SS	Black siltstone, and grey SS interbedded. Locally common py along bedding planes.	89.3	90.6	1.3	11564	minweral zone ends against a fault $$ (detachment zone). Total mineral intersection of 20.6m $$	0.16	607	0.005	1.94	2.73
129.8	130	DZ	Detachment zone, Chaotic zone, Black shaley seds with fragmented qtz and siliceous material.(this is a detachment										

EOH 154.0 m

138

154

130 138 or De'collement plane.)

section from 129.8 is consistently ~60/CA

BS Black shale (Argillite) becoming BSst as it it becomes more silty with depth.

The hole was lost at 154m with severe caving and squeezing. Re-drilling and reaming caused loss of the core barrel. The hole was stopped before its targeted depth of about 185m ---WAH

BSst/SS Black shaley siltstone interbedded with fine grey SS. Becoming more sandy with depth. Bedding throughout the

WAH comment-considering the mineral intercept and the grades, particularly at the faulted off mineral section, a pair of holes stepped back from hole 5 and 6 collar and drilled on section below 11-5 and 11-6 would seem a prudent action.

PROGRAM DDH FW 11-6

_	_		0.4.4.10	_	-				g/t	g/t	%	%	%
From 0	To 19.4	Lithology OVB	Geological Description	From	To	interval	sample #	Mineral Description	Au	Ag	Cu	Pb	Zn
19.4	23.54	GSst/Arq	Overburden, sands and gravels Grey siltstone (Arqillite(shale) with thin black sed interbeds. Changes to grey Siltstone with Interbedded black seds.										
		Ü	Small fault at 21.85,50/CA. And at 22.85, 60/CA										
23.54	24	Fault	Fault gouge in Black Shale, (Argillite)- chaotic,minor qtz/ silicates @ 23.54-23.64										
24	27.43	BS	Black Shale (Argillite). Small Faults: 24.6-26.8, someshiny graphitic sli planes, 45/CA Argillite is somewhat hardened and is occasionally cut by narrow (<3cm) chaotic silica & scapolite(??).										
27.43	29.3	DZ	Detachment zone, Chaotic seds. Convoluted beds, Highly disrupted feldspar and quartz stringers.										
29.3	35.2	BS	Black silty shales, bedding is 45/CA										
35.2	51	BSst	Black silty shales with grey fine siltstone sandy interbeds.										
51	51.9	DZ	Detachment zone, Chaotic Black Shale with Grey SS and fragmental silicate veins.										
51.9	108.8	SS	Grey SS fine to medium grained, with occasional Black Shale (Argillite) interbeds. 57-57.4 Sheared and broken. Between 50 and 60m bedding changes to 20/CA and continues thru 70m. The SS core is very competent. 80.2-80.3 - Chaolic "creep" zone. The chaolic zones represent planes of detachment or De'collement. movement is believed to have occurred slowly allowing tensional cracks to form and become disrupted. Some beds moved more han others. detachment planes generally are at the base of a sandy sequence. 89.7-91.8, med coarse SS. occ black lithic fragments.	85.34	87	1.66	11566		<0.005	12	0.005	0.45	0.74
108.8	110.4	BS	Black Shale (Argillite) with interbedded fine grained Grey SS . Faulted Lower contact at 110.4 is 45/CA along bedding.	87	89	2	11567		0.239	119	0.008	3.87	2.42
110.4	123.65	BS	Black Shale (Argillite). Upper contact is fault at 110.4 - 111.2(detachment zone.) weak silty /sand laminations towards bottom of section.	89	91	2	11568		0.232	97	0.014	1.67	6.98
123.65	136.8	BS	Black Shale and black siltstone. Intertaminated with fine sand-silt beds of SS maybe <1mm, to >50mm . Occasionally well graded upward from sandy to Black Argillite. With sharp lower contact. Bedding is 50/CA No Visible Sulphides. 5cm gouge at 133.4m. 25 cm sheared 131.5 - 131.75	91	93	2	11569		0.312	104	0.008	1.91	6.12
136.8	138.9	DZ	Detachment zone, chaolic detachment zone, Probably several episodes of movement and detachment-many small gouge planes ~45/CA with small "knockers" of deformed material (mostly SS)	93	95	2	11570 ו	no vis sulphides in hole 6 to 70.20m (box 12)	0.22	87	0.008	1.73	5.83
138.9	139.2	SS	Grey SS, with some some Convoluted /Chaotic silica veins.	95	97	2		Mineral zone 85.34-100.8, 5-10% disseminated granular pyrite. Also py along bedding and as clasts. +/- fg galena.	0.115	223	0.012	2.15	5.01
139.2	143.36	BS	Black Shale (Argillite) with interlaminated SS 142.8-143.36, Chaotic, detachment fault	97	99	2		Black Sphalerite is is apparent with the pyrite. Very fine grained galena tends to be intra granular in the SS and on "tight" fractures.	0.123	458	0.008	1.77	3.14
143.36	144.8	SS/BSst	Grey SS and interlaminated Black silty seds.	99	101	2		Around sample 11572, (87m) core had multiple tight fractures filled with galena and sphalerite.	0.023	755	0.007	1.59	2.39
144.8	150.3	SS	Grey SS, bedding 45/CA	101	103	2	11574		0.07	189	0.004	0.5	1.01
150.3	151	BS/SS	Black shale with laminated Grey SS, contains fg py	103	105	2	11575		0.059	10	0.002	0.27	0.25
151	152	DZ	Detachment zone, Chaotic Grey SS and Black Shale.	105	107.3	2.3	11576		0.536	44	0.006	1.5	2.56
152	189.2	BS	Black Shale (argillite) with occasional silty sandy interbeds. 160.5-161, minor shearing, 10 and 90/CA, locally blocky core. 162.3, small fault 60/CA 182.3-182.5, Black mud gouge, fault. 183.0-183.2, Black Mud Gouge, fault 30/CA. 183.2-184, Chaotic.	107.3	109	1.7	11577		0.006	3	0.003	0.04	0.03
189.2	210.31	DZ	Detachment zone, Chaotic Black Argillite, with local, less chaotic, section. The section has occasional greySS with lithic black argillite clasts to 4 cm long	143.36	144.8	1.44	11578		<0.005	16	0.007	<0.02	0.04
				144.8	147	2.2	11579		0.015	48	0.003	0.07	0.2
				147	149	2	11580		0.007	55	0.007	0.21	0.51
				149	151	2	11581		< 0.005	48	0.011	0.3	0.59
			EOH 210.31	169.8	170.69	0.89	11598		0.013	<2	0.005	< 0.02	0.01
				180	180.75	0.75	11599		< 0.005	3	0.005	< 0.02	0.05
				186	187.6	1.6	11600		< 0.005	<2	0.006	< 0.02	0.02
				188.13	188.98	0.85	11601		0.008	<2	0.005	< 0.02	<0.01
				188.98	190	1.02	11602		< 0.005	<2	0.004	< 0.02	0.02

PROGRAM DDH FW 11-7

									g/t	g/t	%	%	%
From	To	Lithology	Geological Description	From	To	interva	I sample #	Mineral Description	Au	Ag	Cu	Pb	Zn
0	19.7	OVB	Overburden, sandy gravels										
19.7	21.34	BS	Black shale (Argillite)	70.1	72	1.9		MINERAL ZONE 70.1 to 95.2, Grey Sandstone, mineralization is mostly py with ν fg honey coloured sph & black sph.	0.03	10	0.004	0.65	0.79
21.34	23.2	DZ	Detachment Zone, Chaotic, .	72	74	2	11583	Galena is more sporadic and is vfg, intra-granular and with py in large clots.	0.042	17	0.006	1.69	1.69
23.2	24.8	Grey Sst,BS	Grey Siltstone and Black shale	74	76	2	11584	TS is 2%-10%, possible cpy present.	0.042	10	0.003	0.62	0.63
24.8	25.3	DZ	Detachment zone , Chaotic BS mixed with Grey SS.	76	78	2	11585		0.043	11	0.003	0.37	0.08
25.3	44.45	BSst	Black siltstone with interbedded grey sandstone. 29.62 - 29.67, short chaotic zone; 34.4 - 34.55, Black mud gouge, fault 45/CA, on bedding: 34.55 - 36.85, broken/ Rubble. 44.2 - 44.45, lower contact is chaotic.	78	80	2	11586		0.3	56	0.005	0.59	1.45
44.45	94.2	SS	Grey Sandstone. Upper contact at 44.45 is chaotic, 44.45 - 45 is quatrz veined & chaotic. 74 - 75, coarse SS; 75-76.2 Silty Ss; 76.2 - 81.7 Coarse to med grained SS; 81.7 - 89, Medium grained SS.	80	82	2	11587		0.527	107	0.007	1.35	2.81
94.2	139	SS	Grey Sandstone, fine to medium grained, interbedded with black silty seds BSst, these are larger beds within the sequence, Both black Shale & Grey SS, several detachment zones are also present. 103.7-106.3, Grey SS; 106.3-109.7, Black Shales with SS Interbeds. 109.7-111.2, Chaotic Black Seds. 111.2-113.6 Grey SS,& trace pyrite. 113.6-115.0, Chaotic black seds.	82	84	2	11588		0.185	117	0.008	0.94	1.7
139	141	BSst		84	86	2	11589		0.183	553	0.007	1.97	2.47
141	145.6	SS	Grey Sandstone	86	88	2	11590		0.09	255	0.005	0.91	1.32
145.6	146.75	DZ	Detachment Zone, Chaotic, soft Gouge, elsewhere DZ is soft to hard competent.	88	90	2	11591		0.097	103	0.005	1.1	1.8
146.75	170.2	BS	Black Shale	90	92	2	11592		0.038	9	0.002	0.32	0.28
170.2	177.6	DZ	Detachment zone, Chaotic disordered SS and black shale, multiple small chaotic detachment zones, (3-5cm) between SS and BS members.	92	94	2	11593		0.286	13	0.005	0.59	1.15
177.6	183.5	DZ	Detachment zone ,Chaolic, highly disrupted, mashed up black seds and SS. Dislocation planes are ~ 45 / CA, but locally may be sub-parallel to CA (<u>This zone may be the one where core barrel was lost in hole DDH 11-5</u> . DDH 11-8, with deep OVB, may be collared in this unit also. This unit may also correlate with deep OVB at top of hole 06-5)	94	95.2	1.2	11594		0.044	18	0.011	1.14	2.77
183.5	186.2	SS	Grey SS	139	141	2		MINERAL ZONE 70.1 to 95.2, Grey Sandstone, mineralization is mostly py with vfg honey coloured sph & black sph. Galena interstitial to SS. TS-!%	<0.005	3	0.006	<0.02	0.03
186.2	198.17	BS	Black shale (Argillite)	141	143	2	11596		0.056	24	0.012	0.21	0.88
				143	145.6	2.6	11597		0.018	<2	0.005	< 0.02	0.01
			EOH 198.17										

no mineralization is observed in the bottom of this hole

									g/t	g/t	%	%	%
From	To	Lithology	Geological Description	From	To	interval	sample #	Mineral Description	Au	Ag	Cu	Pb	Zn
0	23.95	OVB	Overburden,										
23.95	28.1	Grey SS	Grey Sandstone, bedding 30 /CA										
28.1	28.3	DZ	Detachment zone, Chaotic, Dislocation plane.										
28.3	30.3	BSst/ GSS	Black Sst with grey SS interbeds.										
30.3	30.6	DZ	Detachment zone, Chaotic , dislocation seds.										
30.6	48.77	BS	Black Shale, (argillite) with black silty seds in lower portions										
48.77	49.6	DZ	Detachment Zone , Chaolic , dislocation plane, weakly dislocation bedding 45 /CA. dislocation planes at 49.2 and 49.5										
49.6	83	BS	Black Shale (argillite), grades into interbedded argillite and SS by 54.77 and continues. 71.4, a single small pyrite nodule, no other sulphides. 72.85, ground core (BSst). 86.4 small silocation bed. ~83.00, core is locally dominantly SS, with BS interbeds. ~88.0 returns to BS dominant.										
83	89.7	Grey SS	Grey Sandstone, dominant with Black siltstone (BSst) interbeds.										
89.7	89.85	DZ	Detachment zone, Chaotic, Dislocation plane. Weak dislocation at 88.3										
89.85	91.44	G SS/BSst	Grey Sandstone interbedded with Black Sst.										
91.44	93.5	Grey SS	Grey Sandstone predominates, with ~ 25% Black Sst.	91.44	93.44	2	11603 Miner	ral section 91.44 to 92.6. occ bedded py. TS<1.0%	0.03	20	0.01	0.43	0.63
93.5	94	DZ	Detachment zone, Chaotic , Dislocation Zone.	93.44	94.98	1.54	11604		<0.005	5	0.01	0.03	0.05
94	94.7	BSst/ GSS	Black Siltstone, with interbedded grey Sandstone.	94.98	96.7	1.72	11605		0.02	<2	0.01	<0.02	0.03
94.7	95.3	DZ	Detachment zone, Chaotic dislocation zone										
95.3	95.9	G SS	Grey Sandstone,										
95.9	96.7	BS	Black Shale, (argillite)										
96.7	103.63	G SS	$\textbf{Grey Siltstone}, \text{ with occasional BS rip up clasts to 4 cm long.} \textbf{Bedding} \sim 30 \text{/CA}. \ \ \textbf{Occ thin black lamination}.$										

EOH @ 103.63

From	To Lithology	Geological Description	From	To	interval	sample #	Mineral Description	Au	Aq	Cu	Pb	Zn
0	32.3 OVB	Coological Document			or var	oumpio »	·····	710	9	ou.		2
32.3	48.7 BS	Black Shale (argillite) with Interbeded and laminar Sandstone, Bedding is 30 /CA. 41.1 -41.3 Black Fault Gouge: 47.00 - 47.50 Rubble, core has become more silt/sand with depth.;										
48.7	56 Grey SS	Grey Sandstone, 52.2-52.4, Fault, black gouge.	48.7	50	1.3	11606	pyritic mineral zone to 56	0.005	<2	0.004	< 0.02	< 0.01
56	56.2 Fault	Black gouge,fault. 30 /CA,;	50	52.2	2.2	11607		< 0.005	<2	0.004	< 0.02	0.01
56.2	63.3 BS	Black Shale (Argillite) becomes more silty and sandy with depth;	52.2	54	1.8	11608		0.009	<2	0.005	< 0.02	0.01
63.3	63.4 DZ	Dislocation zone, chaotic bedding,	54	56	2	11609	ends at fault zone at 56	< 0.005	<2	0.005	< 0.02	0.02
63.4	69.2 BS	Black shale,(argillite)	65.45	68	2.55	11610	63.4 to 66.45, Laminated Sst and BS, between dislocations start and end	< 0.005	<2	0.005	< 0.02	0.02
69.2	69.3 DZ	Detachment Zone, detachment is incipient, bedding is 60-70 /CA.	68	70.3	2.3	11611		< 0.005	4	0.005	< 0.02	0.02
69.3	70.1 BS	Black Shale (Argillite)	63.4	65.45	2.05	11612		< 0.005	<2	0.006	< 0.02	0.02
70.1	70.3 DZ	Detachment Zone, chaotic fragmentation, detachment planes are 60-70 /CA	65.45	66.45	1	11613		< 0.005	<2	0.006	< 0.02	0.02
70.3	100.55 BS/ Sst	Black Shales, (argillite) interbedded with silts & fine SS., minor local py 99.0-100.6	99	100	1	11614	occasional py blebs, small py beds and fracture diss py.	< 0.005	2	0.006	< 0.02	0.01
100.55	102.5 G SS	Grey Sandstone. 101.3-101.4, dislocation.; 102.3-102.32, dislocation.	114.2	116.45	2.25	11615		0.021	29	0.008	0.53	1.01
102.5	108.8 BS	Black Shale, (argillite)	124.7	126.3	1.6	11616		<0.005	16	0.005	0.23	0.42
108.8	114.1 BS/ Sst	Black Shale, (argillite) with interbedded siltstone	117.46	119.46	2	11617		< 0.005	<2	0.007	0.02	0.02
114.1	116.35 G SS	Grey Sandstone with occasional Black shaley lamination or bed. 114.1-114.2, dislocation.;										
116.35	121.01 BS/ Sst	Black Shale, (argillite) interbedded with grey/black Sst.; 116.35- 116.45; dislocation, becoming more sandy with depth.										
121.01	126.2 G SS	Grey Sandstone with interbedded Black Shale (argillite), bedding is20 - 45 /CA										
126.2	129.5 DZ	Dislocation zone. Chaotic black & sandy grey seds with contorted and dismembered veinlets.										
129.5	131.2 G SS/BS	Grey Sandstone with Black Shale interbeds.										
131.2	145.39 BS	Black Shale (Argillite) with occasional Grey SS interbedsand laminations. Bedding is 30 /CA										

EOH 145.39

From	To	Lithology	Geological Description	From	To	interval san	nple #	Mineral Description	Au	Ag	Cu	Pb	Zn
0	30	OVB	overburden, sandy gravels and tills										
30	30.2	Fault	Black fault gouge, 30 /CA										
30.2	32.15	BS	Back Shale, (Argillite) minor dislication along 60 /CA, @32.15										
32.15	33.12	G SS/BS	Grey Sandstone with Argillite interbeds.										
33.12	37.51	BSst/ GSS	Black Siltstone with Grey Siltstone interbeds Grades DOWN into BS, 1cm dilocation bed @ 37.50 -37.51										
37.51	38.4	G SS	Grey Sandstone with thin black laminar beds 25 /CA										
38.4	38.45	DZ	Chaotic dislocation bed.										
38.45	47.5	BS	Black Shale(argillite) grading to dark grey by 42m. @ 43.3, 2cm fault, grey gouge, local beds have become bedded silts by 45.5m, bedding 25-30 /CA, minor dislocations at 46.9m										
47.5	47.6	DZ	Chaotic dislocation bed.										
47.6	52.8	BS	Black Shale,(Argillite), with minor occasional fine sandy bed 30 /CA										
52.8	53.2	DZ	Chaotic dislocation zone, 30 /CA										
53.2	58.1	BS	Black Shale (argillite) gradesdown into black and grey Siltstone, then grey and blackSst. Bedding Is 30 /CA										
58.1	66.05	BS	Black Shale grades down thru BSst and grey Sst to grey SS with BSst interbeds at 66.05 (The graded bedding obseved here suggests the beds may have been overturned)										
66.05	67.8	DZ	Chaotic Dislocation Zone, Mildly chaotic, discrete SS clasts in Black Shale and fragmented silicate veinlets within the SS clasts										
67.8	70.3	G SS	Grey Sandstone, lower contact is faulted at 50 /CA, local wavey laminar BS beds share the fault										
70.3	70.6	DZ	Chaotic dislocationn zone., Black Shale supports SS clasts.										
70.6	72.75	BSst	Black Siltstone with fine Grey Siltstone interbeds										
72.75	72.8	DZ	chaotic dislocation zone. Chaotic SS and BS between 2 shear planes 40 /CA										
72.8	73.45	BSst	Black Siltstone with grey Ssiltstone laminations 40 /CA										
73.45	73.55	DZ	Dislocation Zone, weakly disjointed, bounded by planes 70 /CA										
73.55	76.7	BS	Black Shale, bedded 45 /CA										
76.7	76.9	DZ	chaotic , dislocation zone, Fault,45 /CA with underlying black seds.										
76.9	81	BS	Black Shale (Argillite)										
81	83	DZ	Dislocation Zone, with crumbled1 cm qtz vein frags at 81.2 in Sandstone. Lower contact is 20 /CA , sheared between SS and BS. BS is also sheared 60 /CA										
83	90.8	BS	Black Shale with weak dislocation at 85.7-85.8										
90.8	90.9	DZ	Dislocation zone.										
90.9	104.5	BSst	Black siltstone with Black shale and occasional grey Sst. 102.06-102.2, fault 60 /CA, with black gouge. 103.1, small fault 60 /CA. Tensoin fractures are common.										
104.5	113.25	BS/BSst	Black shale (argillite) has sandy interbeds near bottom, with black shale rip up clasts up to 2 cm long.	111	112.	2.6 1.6	11618 Weak py in BSst, also minor	r very fine grained galena.	0.085	17	0.011	0.58	1.38
113.25	113.3	DZ	small dislocation fault 55 /CA										
113.3	114	G SS	Grey sandstone with chaotic and dislocated tensional qtz veinlets										
114	123	BS/BSst	Black Shale (argillite), interbedded with Black siltstone., Bedding is 40 /CA										
123	123.4	DZ	Dislocation Zone and faulting, Grey SS, Black shale, Black gouge, faults at 45/CA										
123.4	124	G SS/BSst	Grey sandstone and Black siltstone interbeds, 124.0, 2 cm fault 70 /CA										
124.02	127.41	BS	Black Shale wit minor Sandstone.										

EOH 127.41 meters.

									g/t	g/t	%	%	%
From	To	Lithology	Geological Description	From	To	interval	sample	e # Mineral Description	Au	Ag	Cu	Pb	Zn
0	15.85	OVB	overburden, sandy gravels and tills										
15.85	57.3	G SS	Grey Sandstone, Generally a medium grained lithic SS. Portions of the section are coarse SS with granular lithic fragments - 5mm & smaller, occasionally the SS becomes interbedded with thin black Sst or argillite. For the most part, SS is uniform grey or medium grained. Locally it becomes very hard (silicified) & the core will 'ring' when struck & a knife bladeslides over It. Below 55 m , tension cracks are apparent, filled with silica and a creamy coloured, sidertlic carbonate (7) 56.7-57.3, SS becomes very coarse with fig grey siltstoneclasts 1-2cm, a single clast was 2cmx 10 cm. bedding is 20-25° /CA	15.85	17	1.15	i 116	339 Mineral section from top of hole(15.85) to 57.30. Mineralization throughout is dominantly pyrilic, with some disseminated galena and sphalerite as inter granular material and also as mall grains along occasional fractures. (WAH speculation- The mineralization on fractures may represent a later episode of introduced mineralization and /or remobilization of pre-existing mineral)	<0.005	4	0.004	0.49	0.49
57.3	64	BS/G SS	Black Shale, with interbedded fg grey SS to Sst, common tension fracts. 60.35-64.0, continuous BS (argillite)	17	19	2	116	519	0.011	<2	0.005	< 0.02	0.02
64	64.2	DZ	Dislocation zone, chaotic bedding in sandy seds.	19	21	2	116	520	0.074	312	0.022	1.33	2.37
64.2	64.4	G SS	Grey Sandstone, fine grained.	21	23	2	116	521	0.295	901	0.035	2.95	4.54
64.4	71.8	BS	Black Shale (argillite) with some interbedded fine sanddtone, bedding 30° /CA, tension fracts are common.	23	25	2	116	522	0.008	17	0.009	0.67	0.56
71.8	78.5	DZ	Dislocation Zone, locally intense & chaotic dislocation with sandy & argillaceous seds juxtaposed. And variable amounts of fractured and broken tension veins.	25	27	2	! 116	23	0.006	23	0.018	0.69	2.23
78.5	88.7	BS	Black Shale (argillite)	27	29	2	116	524	0.481	21	0.009	0.7	1.58
88.7	89.6	DZ	Dislocation zone.	29	31	2	116	525	0.119	42	0.006	1.35	1.96
89.6	93	BS	Black Shale (Argillite) with minor interbedded Sst	31	33	2	116	526	0.118	47	0.006	1.66	2.73
93	94.9	DZ	Dislocation Zone,	33	35	2	116	27	0.164	33	0.007	1.45	2.54
94.9	109.32	BS	Black Shale (argillite) with interbedded sands and silts 101.3, small dislocation 30° /CA	35	37	2	116	528	0.195	29	0.006	1.02	1.81
109.32	113.2	DZ	Dislocation Zone, chaotitally mixed sandy and argillaceous sediments. Slip planes are commonly 20° /CA	37	39	2	116	529	0.439	48	0.007	1.29	2.28
113.2	118.3	BS	Black shale (argillite) lower portion of section becomes interbedded with grey sandstone.	39	41	2	116	30	0.64	72	0.011	1.77	3.25
118.3	118.5	DZ	Dislocation Zone	41	43	2	116	31	0.166	62	0.011	1.76	3.01
118.5	134.5	BS	Black Shale (argillite) becomes interbedded BSst and grey Sst towards bottom.	43	45	2	116	532	0.466	67	0.012	1.79	3.33
134.5	134.7	DZ	Dislocation Zone	45	47	2	116	33	0.161	72	0.008	0.93	1.83
134.7	135.2	G SS	Grey Sandstone	47	49	2	116	34	0.041	77	0.004	0.65	1.02
135.2	135.4	DZ	Black dislocation	49	51	2	116	35	0.064	82	0.002	0.79	0.72
135.4	140.25	BS	Black Shale,	51	53	2	116	36	0.03	7	0.003	0.51	0.73
140.25	142.25	BS/G SS	Black shale interbeddedwith Grey Sadstone and siltstone.	53	55	2	116	37	0.056	<2	0.006	0.06	0.56
142.25	144.25	G SS	Grey Sandstone	55	57.3	2.3	116	538	0.238	30	0.014	0.33	4.77
144.25	145.8	BS/G SS	Black shales and siltstones interbedded with fine grey siltstones, small beds of py	140.25	142.25	2	116	540	< 0.005	4	0.004	0.49	0.49
145.8	149.5	BS	Black shale (argillite) fractured and broken, some dislocation, Qtz/argillite Breccia evident at 145.8-145.9	142.25	144.25	2	116	541	<0.005	<2	0.006	< 0.02	0.03
149.5	163.1	BS	Black shale(argillite) with local Ss up to 0.4 m thick, lower portion of section is interbedded with shattered Grey SS	144.25	145.8	1.55	116	42	0.041	20	0.01	0.46	1.65
163.1	178.2	DZ	Dislocation Zone major chaotic juxtapositionof components & fragmented tension veinlets.						<0.005	3	0.007	0.03	0.03
178.2	179.22	BS	Black Shales (Argillite)										

EOH 179.22

APPENDIX III

ASSAY CETIFICATES & RESULTS

> Cert SMI 11000761 Cert SMI 11000785 Cert SMI 11000828

> > 41

1020 Cordova St. East Vancouver BC V6A 4A3 Canada

www.acmelab.com

Client: Shamrock Enterprises Inc.

Unit 19 - 650 Roche Pt. Drive

North Vancouver BC V7H 2Z5 Canada

Submitted By: Gordon Osinchuk Receiving Lab: Canada-Smithers Received: November 22, 2011

Report Date: March 19, 2012

Page: 1 of 3

CERTIFICATE OF ANALYSIS

SMI11000761.1

CLIENT JOB INFORMATION

Project: Fireweed Shipment ID:

P.O. Number

47 Number of Samples:

SAMPLE DISPOSAL

DISP-PLP Dispose of Pulp After 90 days **DISP-RJT** Dispose of Reject After 90 days

Acme does not accept responsibility for samples left at the laboratory after 90 days without prior written instructions for sample storage or return.

Shamrock Enterprises Inc. Invoice To:

> Unit 19 - 650 Roche Pt. Drive North Vancouver BC V7H 2Z5

Canada

CC: William A. Howell

SAMPLE PREPARATION AND ANALYTICAL PROCEDURES

Method Code	Number of Samples	Code Description	Test Wgt (g)	Report Status	Lab
R200-250	47	Crush, split and pulverize 250 g rock to 200 mesh			SMI
G603	47	Lead collection fire assay fusion - ICP-ES finish + 7AR Ag	30	Completed	VAN
7TD2	47	4 Acid digestion ICP-ES analysis.	0.5	Completed	VAN
G6Gr	15	Lead collection fire assay 30G fusion - Grav finish	30	Completed	VAN

ADDITIONAL COMMENTS

This report supersedes all previous preliminary and final reports with this file number dated prior to the date on this certificate. Signature indicates final approval; preliminary reports are unsigned and should be used for reference only. All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of analysis only. Results apply to samples as submitted. "*" asterisk indicates that an analytical result could not be provided due to unusually high levels of interference from other elements.

1020 Cordova St. East Vancouver BC V6A 4A3 Canada Phone (604) 253-3158 Fax (604) 253-1716

Client:

Shamrock Enterprises Inc.

Unit 19 - 650 Roche Pt. Drive North Vancouver BC V7H 2Z5 Canada

Project:

Fireweed

Report Date:

March 19, 2012

www.acmelab.com

Page:

2 of 3

CEDTIFICATE OF AL		<u>/CIC</u>													\sim 1	1144	000	704	4	
CERTIFICATE OF AN	IALY	1515													21/	/11111	000	/b1.		
Method	WGHT	G6	7AR	7TD	7TD	7TD	7TD	7TD	7TD	7TD	7TD	7TD	7TD	7TD	7TD	7TD	7TD	7TD	7TD	7TD
Analyte	Wgt	Au	Ag	Мо	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	Sr	Cd	Sb	Bi	Ca	Р	Cr
Unit	kg	gm/t	gm/t	%	%	%	%	gm/t	%	%	%	%	%	%	%	%	%	%	%	%
MDL	0.01	0.005	2	0.001	0.001	0.02	0.01	2	0.001	0.001	0.01	0.01	0.02	0.01	0.001	0.01	0.01	0.01	0.01	0.001
11501 Drill Core	3.88	0.041	>300	<0.001	0.007	1.08	2.00	>300	0.005	<0.001	0.53	11.16	0.05	<0.01	0.006	<0.01	<0.01	0.17	0.03	0.008
11502 Drill Core	3.51	0.132	>300	<0.001	0.007	2.96	3.82	>300	0.005	0.001	0.56	9.55	0.27	<0.01	0.012	0.01	<0.01	0.27	0.08	0.004
11503 Drill Core	2.29	0.093	>300	<0.001	0.005	1.49	1.95	>300	0.005	<0.001	0.75	9.49	0.22	<0.01	0.005	<0.01	<0.01	0.34	0.05	0.008
11504 Drill Core	4.00	0.024	181	<0.001	0.005	0.88	1.31	190	0.005	<0.001	0.95	10.09	<0.02	<0.01	0.004	<0.01	<0.01	0.38	0.07	0.012
11505 Drill Core	3.06	0.016	76	<0.001	0.007	0.63	2.02	77	0.006	<0.001	0.79	10.52	<0.02	<0.01	0.006	<0.01	<0.01	0.76	0.12	0.011
11506 Drill Core	0.80	0.007	46	<0.001	0.003	0.65	1.19	43	0.010	<0.001	1.20	10.32	<0.02	0.01	0.004	<0.01	<0.01	0.81	0.11	0.017
11507 Drill Core	3.94	<0.005	4	<0.001	0.002	0.03	0.03	4	0.016	0.003	0.69	5.47	<0.02	<0.01	<0.001	<0.01	<0.01	0.60	0.06	0.029
11508 Drill Core	3.58	<0.005	<2	<0.001	0.004	<0.02	0.02	<2	0.024	0.003	0.49	5.63	<0.02	<0.01	<0.001	<0.01	<0.01	0.43	0.06	0.036
11509 Drill Core	4.68	<0.005	<2	<0.001	0.006	<0.02	0.02	<2	0.013	0.002	0.27	4.74	<0.02	<0.01	<0.001	<0.01	<0.01	0.48	0.10	0.013
11510 Drill Core	3.15	0.239	83	<0.001	0.016	1.42	3.00	82	0.004	<0.001	0.60	7.41	<0.02	<0.01	0.012	<0.01	<0.01	1.04	0.06	0.005
11511 Drill Core	0.63	0.248	77	<0.001	0.018	1.62	4.33	75	0.005	0.001	0.53	8.83	<0.02	<0.01	0.016	<0.01	<0.01	0.27	0.02	0.005
11512 Drill Core	5.39	0.017	6	<0.001	0.002	0.08	0.14	6	0.010	0.002	0.64	8.22	<0.02	0.02	<0.001	<0.01	<0.01	0.25	0.05	0.034
11513 Drill Core	5.06	<0.005	8	<0.001	0.005	0.07	0.14	9	0.012	0.002	0.61	7.09	<0.02	0.01	<0.001	<0.01	<0.01	0.28	0.05	0.026
11514 Drill Core	5.16	<0.005	101	<0.001	0.004	0.38	0.59	104	0.007	0.001	0.41	4.91	<0.02	<0.01	0.002	<0.01	<0.01	0.16	0.03	0.024
11515 Drill Core	4.72	0.035	>300	<0.001	0.007	1.08	2.21	>300	0.004	<0.001	0.43	9.70	0.04	<0.01	0.006	<0.01	<0.01	0.09	0.02	0.011
11516 Drill Core	3.83	0.091	>300	<0.001	0.006	0.80	1.91	>300	0.004	<0.001	0.57	9.70	0.36	<0.01	0.007	<0.01	<0.01	0.11	0.02	0.007
11517 Drill Core	5.13	0.063	>300	<0.001	0.004	0.87	1.52	>300	0.005	<0.001	0.70	9.01	0.14	<0.01	0.005	<0.01	<0.01	0.25	0.02	0.011
11518 Drill Core	3.68	0.065	>300	<0.001	0.004	0.68	3.00	>300	0.006	0.001	0.78	9.44	0.05	<0.01	0.010	<0.01	<0.01	0.26	0.05	0.011
11519 Drill Core	5.81	0.061	>300	<0.001	0.003	1.03	1.31	>300	0.006	0.001	0.89	9.21	0.08	<0.01	0.005	<0.01	<0.01	0.27	0.04	0.012
11520 Drill Core	4.17	0.043	>300	<0.001	0.005	0.92	2.96	>300	0.006	<0.001	0.76	9.02	0.04	0.01	0.008	<0.01	<0.01	0.52	0.07	0.011
11521 Drill Core	4.55	0.024	264	<0.001	0.005	1.19	1.32	292	0.006	<0.001	0.74	9.90	<0.02	<0.01	0.003	<0.01	<0.01	0.37	0.09	0.014
11522 Drill Core	3.91	0.038	287	<0.001	0.006	1.63	2.83	288	0.006	<0.001	0.84	10.12	<0.02	<0.01	0.008	<0.01	<0.01	0.54	0.12	0.013
11523 Drill Core	3.29	<0.005	25	<0.001	0.003	0.04	0.11	27	0.012	0.002	0.50	2.71	<0.02	<0.01	<0.001	<0.01	<0.01	0.21	0.03	0.036
11524 Drill Core	6.35	0.019	69	<0.001	0.003	0.12	0.29	68	0.010	0.002	0.55	3.43	<0.02	<0.01	<0.001	<0.01	<0.01	0.15	0.02	0.022
11525 Drill Core	4.39	0.009	41	<0.001	0.005	0.20	0.39	44	0.009	0.001	0.69	3.88	<0.02	<0.01	<0.001	<0.01	<0.01	0.39	0.03	0.019
11526 Drill Core	4.36	0.008	131	<0.001	0.006	0.28	0.51	129	0.009	0.002	0.97	5.79	<0.02	<0.01	<0.001	<0.01	<0.01	0.25	0.06	0.014
11527 Drill Core	4.73	<0.005	20	<0.001	0.003	0.10	0.21	22	0.010	0.001	0.87	4.10	<0.02	<0.01	<0.001	<0.01	<0.01	0.21	0.05	0.014
11528 Drill Core	4.14	<0.005	7	<0.001	0.001	0.04	0.08	8	0.009	0.001	0.52	2.86	<0.02	<0.01	<0.001	<0.01	<0.01	0.27	0.02	0.017
11529 Drill Core	4.34	<0.005	<2	<0.001	0.003	0.03	0.07	<2	0.010	0.002	1.26	4.09	<0.02	<0.01	<0.001	<0.01	<0.01	0.89	0.06	0.019
11530 Drill Core	5.41	0.011	<2	<0.001	0.004	<0.02	0.02	<2	0.012	0.002	0.12	4.16	<0.02	<0.01	<0.001	<0.01	<0.01	0.60	0.06	0.021

1020 Cordova St. East Vancouver BC V6A 4A3 Canada Phone (604) 253-3158 Fax (604) 253-1716

www.acmelab.com

Client:

Shamrock Enterprises Inc.

Unit 19 - 650 Roche Pt. Drive

North Vancouver BC V7H 2Z5 Canada

Project:

Fireweed

Report Date:

March 19, 2012

Page:

2 of 3

Part 2

CERTIFICATE OF ANALYSIS

SMI11000761.1

	Method	7TD	7TD	7TD	7TD	7TD	7TD	G6Gr
	Analyte	Mg	Al	Na	K	w	s	Ag
	Unit	%	%	%	%	%	%	gm/t
	MDL	0.01	0.01	0.01	0.01	0.01	0.05	50
11501	Drill Core	0.44	2.76	<0.01	0.07	<0.01	5.90	313
11502	Drill Core	0.42	2.27	<0.01	0.03	<0.01	6.45	876
11503	Drill Core	0.63	3.03	0.01	0.02	<0.01	3.69	427
11504	Drill Core	1.32	3.11	<0.01	0.01	<0.01	3.32	
11505	Drill Core	1.20	2.87	0.01	<0.01	<0.01	4.92	
11506	Drill Core	1.46	5.81	0.02	0.04	<0.01	2.39	
11507	Drill Core	1.16	7.25	0.06	1.44	<0.01	0.08	
11508	Drill Core	1.31	8.50	0.04	1.85	<0.01	0.05	
11509	Drill Core	1.03	7.29	0.05	1.55	<0.01	0.20	
11510	Drill Core	0.60	2.52	0.17	0.06	<0.01	3.53	
11511	Drill Core	0.42	2.06	0.02	0.07	<0.01	6.95	
11512	Drill Core	0.83	7.18	0.04	1.52	<0.01	0.77	
11513	Drill Core	0.87	7.74	0.04	1.72	<0.01	0.27	
11514	Drill Core	0.33	3.43	0.02	1.00	<0.01	1.55	
11515	Drill Core	0.30	2.65	<0.01	0.26	<0.01	5.22	348
11516	Drill Core	0.42	2.42	<0.01	0.12	<0.01	4.72	534
11517	Drill Core	0.58	3.13	0.01	0.06	<0.01	2.57	420
11518	Drill Core	0.60	3.18	<0.01	0.06	<0.01	3.82	394
11519	Drill Core	0.72	3.31	0.01	0.02	<0.01	2.28	426
11520	Drill Core	0.71	3.06	0.02	0.02	<0.01	3.39	307
11521	Drill Core	0.81	2.75	<0.01	0.01	<0.01	3.58	
11522	Drill Core	1.11	2.92	<0.01	0.03	<0.01	3.92	
11523	Drill Core	0.54	4.92	0.06	1.47	<0.01	1.27	
11524	Drill Core	0.60	4.65	0.04	1.33	<0.01	1.33	
11525	Drill Core	0.90	4.52	0.03	1.27	<0.01	0.82	
11526	Drill Core	0.98	4.77	0.02	0.96	<0.01	2.26	
11527	Drill Core	0.94	4.44	0.03	1.07	<0.01	0.86	
11528	Drill Core	0.73	4.24	0.03	1.12	<0.01	0.66	
11529	Drill Core	2.01	6.63	0.03	1.19	<0.01	0.13	
11530	Drill Core	0.66	5.93	0.23	1.19	<0.01	0.87	

1020 Cordova St. East Vancouver BC V6A 4A3 Canada Phone (604) 253-3158 Fax (604) 253-1716

Client:

Unit 19 - 650 Roche Pt. Drive

North Vancouver BC V7H 2Z5 Canada

Shamrock Enterprises Inc.

Project:

Fireweed

Report Date:

March 19, 2012

www.acmelab.com

Page:

3 of 3

CERTIFICA	ATE OF AN	IALY	′SIS													SN	/II11	000	761.	1	
	Method Analyte	WGHT	G6	7AR	7TD	7TD	7TD	7TD	7TD	7TD	7TD	7TD	7TD	7TD	7TD	7TD	7TD	7TD	7TD	7TD	7TD
	Unit	Wgt kg	Au gm/t	Ag gm/t	Mo %	Cu %	Pb %	Zn %	Ag gm/t	Ni %	Co %	Mn %	Fe %	As %	Sr %	Cd %	Sb %	Bi %	Ca %	P %	Cr %
	MDL	0.01	0.005	2	0.001	0.001	0.02	0.01	2	0.001	0.001	0.01	0.01	0.02	0.01	0.001	0.01	0.01	0.01	0.01	0.001
11531	Drill Core	5.14	0.006	28	<0.001	0.007	0.26	0.49	29	0.011	0.002	0.46	5.79	<0.02	<0.01	0.001	<0.01	<0.01	0.23	0.07	0.016
11532	Drill Core	5.32	0.026	10	<0.001	0.003	0.04	0.07	69	0.010	0.002	3.97	3.46	<0.02	<0.01	0.002	<0.01	<0.01	0.73	0.04	0.015
11533	Drill Core	3.97	0.021	19	<0.001	0.005	0.07	0.18	21	0.010	0.001	2.92	3.41	<0.02	<0.01	<0.001	<0.01	<0.01	0.41	0.05	0.022
11534	Drill Core	6.47	0.043	38	<0.001	0.005	0.10	0.28	36	0.007	<0.001	4.07	3.24	<0.02	<0.01	<0.001	<0.01	<0.01	0.63	0.05	0.017
11535	Drill Core	6.56	<0.005	2	<0.001	0.006	<0.02	0.04	4	0.013	0.002	0.70	4.78	<0.02	<0.01	<0.001	<0.01	<0.01	0.25	0.08	0.017
11536	Drill Core	4.95	<0.005	<2	<0.001	0.007	<0.02	0.02	3	0.013	0.001	0.42	4.82	<0.02	<0.01	<0.001	<0.01	<0.01	0.44	0.15	0.017
11537	Drill Core	4.05	<0.005	<2	<0.001	0.007	<0.02	0.01	<2	0.016	0.002	0.29	5.03	<0.02	<0.01	<0.001	<0.01	<0.01	0.42	0.12	0.017
11538	Drill Core	4.67	<0.005	7	<0.001	0.006	<0.02	0.04	11	0.013	0.001	0.41	4.99	<0.02	<0.01	<0.001	<0.01	<0.01	0.85	0.07	0.017
11539	Drill Core	3.78	<0.005	3	<0.001	0.005	<0.02	0.04	4	0.012	0.001	0.57	4.71	<0.02	<0.01	<0.001	<0.01	<0.01	1.00	0.09	0.022
11540	Drill Core	3.76	<0.005	27	<0.001	0.004	0.11	0.31	29	0.011	0.001	0.51	5.42	<0.02	<0.01	<0.001	<0.01	<0.01	0.31	0.04	0.028
11541	Drill Core	4.72	0.031	>300	<0.001	0.013	1.26	2.51	>300	0.008	0.002	0.51	10.21	<0.02	0.01	0.008	<0.01	<0.01	0.27	0.02	0.011
11542	Drill Core	3.32	0.101	>300	<0.001	0.008	1.78	3.57	>300	0.005	0.001	0.51	9.05	0.24	<0.01	0.012	<0.01	<0.01	0.19	0.02	0.010
11543	Drill Core	3.39	0.075	>300	<0.001	0.005	1.07	2.58	>300	0.004	<0.001	0.58	8.76	0.11	<0.01	0.008	<0.01	<0.01	0.22	0.04	0.013
11544	Drill Core	4.43	0.119	>300	<0.001	0.008	1.79	3.08	>300	0.005	<0.001	0.67	8.57	0.08	<0.01	0.010	<0.01	<0.01	0.19	0.03	0.014
11545	Drill Core	4.93	0.061	>300	<0.001	0.003	0.92	0.95	>300	0.005	<0.001	0.77	8.53	0.10	<0.01	0.003	<0.01	<0.01	0.18	0.03	0.015
11546	Drill Core	5.25	0.115	>300	<0.001	0.003	1.15	1.44	>300	0.005	<0.001	0.78	7.74	0.10	<0.01	0.005	<0.01	<0.01	0.22	0.04	0.016
11547	Drill Core	4.70	0.053	285	<0.001	0.005	1.35	3.42	284	0.005	0.001	0.73	8.40	0.04	<0.01	0.012	<0.01	<0.01	0.45	0.05	0.013

1020 Cordova St. East Vancouver BC V6A 4A3 Canada Phone (604) 253-3158 Fax (604) 253-1716

www.acmelab.com

Client:

Shamrock Enterprises Inc.

Unit 19 - 650 Roche Pt. Drive

North Vancouver BC V7H 2Z5 Canada

Project: Fireweed

Report Date: March 19, 2012

Page: 3 of 3 Part 2

CERTIFICATE OF ANALYSIS

SMI11000761.1

	Method	7TD	7TD	7TD	7TD	7TD	7TD	G6Gr
	Analyte	Mg	Al	Na	K	w	s	Ag
	Unit	%	%	%	%	%	%	gm/t
	MDL	0.01	0.01	0.01	0.01	0.01	0.05	50
11531	Drill Core	0.94	5.24	0.06	1.75	<0.01	1.76	
11532	Drill Core	0.90	5.57	0.05	1.35	<0.01	0.33	
11533	Drill Core	0.77	5.38	0.04	1.48	<0.01	0.31	
11534	Drill Core	0.66	4.45	0.03	1.18	<0.01	0.53	
11535	Drill Core	1.03	8.48	0.08	2.30	<0.01	0.39	
11536	Drill Core	1.17	8.84	0.09	2.39	<0.01	0.12	
11537	Drill Core	1.19	8.24	0.10	2.36	<0.01	0.16	
11538	Drill Core	1.02	7.70	0.08	1.39	<0.01	0.19	
11539	Drill Core	1.11	7.09	0.07	1.27	<0.01	0.09	
11540	Drill Core	0.62	6.50	0.09	1.67	<0.01	0.67	
11541	Drill Core	0.52	3.08	0.02	0.47	<0.01	7.56	322
11542	Drill Core	0.38	2.49	0.01	0.15	<0.01	5.95	575
11543	Drill Core	0.50	2.75	0.01	0.09	<0.01	3.91	422
11544	Drill Core	0.52	2.59	<0.01	0.03	<0.01	4.29	752
11545	Drill Core	0.66	3.25	<0.01	0.03	<0.01	2.08	320
11546	Drill Core	0.66	3.12	<0.01	0.02	<0.01	2.17	608
11547	Drill Core	0.80	2.72	0.01	0.02	<0.01	3.32	

Phone (604) 253-3158 Fax (604) 253-1716

Shamrock Enterprises Inc.

Unit 19 - 650 Roche Pt. Drive

North Vancouver BC V7H 2Z5 Canada

Project:

Client:

Fireweed

Report Date:

March 19, 2012

www.acmelab.com

Page:

1 of 3

												i age.		1 01 0	'	uit ·					
QUALITY CO	ONTROL	REP	OR	Γ												SM	110	0007	61.1		
	Method	WGHT	G6	7AR	7TD	7TD	7TD	7TD	7TD	7TD	7TD	7TD	7TD	7TD	7TD	7TD	7TD	7TD	7TD	7TD	7TD
	Analyte	Wgt	Au	Ag	Мо	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	Sr	Cd	Sb	Bi	Ca	Р	Cr
	Unit	kg	gm/t	gm/t	%	%	%	%	gm/t	%	%	%	%	%	%	%	%	%	%	%	%
	MDL	0.01	0.005	2	0.001	0.001	0.02	0.01	2	0.001	0.001	0.01	0.01	0.02	0.01	0.001	0.01	0.01	0.01	0.01	0.001
Pulp Duplicates																					
11502	Drill Core	3.51	0.132	>300	<0.001	0.007	2.96	3.82	>300	0.005	0.001	0.56	9.55	0.27	<0.01	0.012	0.01	<0.01	0.27	0.08	0.004
REP 11502	QC		0.132																		
REP 11526	QC		0.016		<0.001	0.006	0.28	0.52	134	0.010	0.002	0.98	5.83	<0.02	<0.01	0.001	<0.01	<0.01	0.26	0.06	0.013
11530	Drill Core	5.41	0.011	<2	<0.001	0.004	<0.02	0.02	<2	0.012	0.002	0.12	4.16	<0.02	<0.01	<0.001	<0.01	<0.01	0.60	0.06	0.021
REP 11530	QC			<2																	
11536	Drill Core	4.95	<0.005	<2	<0.001	0.007	<0.02	0.02	3	0.013	0.001	0.42	4.82	<0.02	<0.01	<0.001	<0.01	<0.01	0.44	0.15	0.017
REP 11536	QC			<2																	
Core Reject Duplicates																					
11526	Drill Core	4.36	0.008	131	<0.001	0.006	0.28	0.51	129	0.009	0.002	0.97	5.79	<0.02	<0.01	<0.001	<0.01	<0.01	0.25	0.06	0.014
DUP 11526	QC		0.008	134	<0.001	0.006	0.29	0.53	130	0.010	0.002	0.98	5.84	<0.02	<0.01	<0.001	<0.01	<0.01	0.26	0.06	0.012
Reference Materials																					
STD AGPROOF	Standard																				
STD AGPROOF	Standard																				
STD AGPROOF	Standard																				
STD OREAS153A	Standard				0.018	0.692	<0.02	<0.01	<2	<0.001	<0.001	0.03	3.36	<0.02	<0.01	<0.001	<0.01	<0.01	1.18	0.04	0.002
STD OREAS131B	Standard				<0.001	0.022	1.87	3.19	35	0.003	0.002	0.18	5.74	<0.02	<0.01	0.009	<0.01	<0.01	5.55	0.05	0.004
STD OREAS131B	Standard				<0.001	0.021	1.83	3.13	34	0.003	0.002	0.18	5.46	<0.02	<0.01	0.008	<0.01	<0.01	5.23	0.05	0.002
STD OREAS153A	Standard				0.018	0.711	<0.02	<0.01	<2	0.001	<0.001	0.02	3.23	<0.02	<0.01	0.001	<0.01	<0.01	1.10	0.06	0.001
STD OREAS153AR	Standard			<2																	
STD OREAS131B-A	Standard			35																	
STD OREAS153AR	Standard			<2																	
STD OREAS131B-A	Standard			36																	
STD OREAS131B	Standard				<0.001	0.022	1.81	3.14	34	0.003	0.001	0.18	5.50	<0.02	<0.01	0.009	<0.01	<0.01	5.37	0.05	0.003
STD OREAS153A	Standard				0.018	0.720	<0.02	<0.01	4	<0.001	<0.001	0.03	3.38	<0.02	<0.01	<0.001	<0.01	<0.01	1.21	0.06	0.002
STD OXH82	Standard		1.305																		
STD OXH82	Standard		1.344																		
STD OXH82	Standard		1.272																		
STD OXH82	Standard		1.366																		

1020 Cordova St. East Vancouver BC V6A 4A3 Canada Phone (604) 253-3158 Fax (604) 253-1716

www.acmelab.com

Client: **Shamrock Enterprises Inc.**

Unit 19 - 650 Roche Pt. Drive

North Vancouver BC V7H 2Z5 Canada

Project:

Fireweed

Report Date:

March 19, 2012

1 of 3 Part 2 Page:

QUALITY CONTROL REPORT

SMI11000761.1

	Method	7TD	7TD	7TD	7TD	7TD	7TD	G6Gr
	Analyte	Mg	AI	Na	K	w	s	Ag
	Unit	%	%	%	%	%	%	gm/t
	MDL	0.01	0.01	0.01	0.01	0.01	0.05	50
Pulp Duplicates								
11502	Drill Core	0.42	2.27	<0.01	0.03	<0.01	6.45	876
REP 11502	QC							
REP 11526	QC	1.00	5.09	0.02	0.98	<0.01	2.32	
11530	Drill Core	0.66	5.93	0.23	1.19	<0.01	0.87	
REP 11530	QC							
11536	Drill Core	1.17	8.84	0.09	2.39	<0.01	0.12	
REP 11536	QC							
Core Reject Duplicates								
11526	Drill Core	0.98	4.77	0.02	0.96	<0.01	2.26	
DUP 11526	QC	1.01	5.10	0.02	0.98	<0.01	2.39	
Reference Materials								
STD AGPROOF	Standard							88
STD AGPROOF	Standard							92
STD AGPROOF	Standard							96
STD OREAS153A	Standard	1.83	7.70	2.35	1.45	<0.01	1.24	
STD OREAS131B	Standard	3.27	4.69	0.14	3.30	<0.01	5.00	
STD OREAS131B	Standard	3.15	4.67	0.14	3.18	<0.01	5.01	
STD OREAS153A	Standard	1.84	7.47	2.42	1.16	<0.01	1.22	
STD OREAS153AR	Standard							
STD OREAS131B-A	Standard							
STD OREAS153AR	Standard							
STD OREAS131B-A	Standard							
STD OREAS131B	Standard	3.06	4.60	0.13	3.41	<0.01	4.96	
STD OREAS153A	Standard	1.80	7.69	2.40	1.48	<0.01	1.28	
STD OXH82	Standard							
STD OXH82	Standard							
STD OXH82	Standard							
STD OXH82	Standard							

Phone (604) 253-3158 Fax (604) 253-1716

Client:

Shamrock Enterprises Inc. Unit 19 - 650 Roche Pt. Drive

North Vancouver BC V7H 2Z5 Canada

Project:

Fireweed

Report Date:

March 19, 2012

www.acmelab.com

Page:

2 of 3

May													i age.		2 01 3		art .					
May	QUALITY CON	TROL	REP	ORT													SM	1111	0007	'61. <i>'</i>	1	
Wg		Γ	WGHT	G6	7AR	7TD	7TD	7TD	7TD	7TD	7TD	7TD	7TD	7TD	7TD	7TD	7TD	7TD	7TD	7TD	7TD	7TD
STD CXK79 Standard								Pb	Zn	Aq			Mn	Fe	As	Sr	Cd					Cr
STD OXK79 Standard 3.695			_	gm/t	-	%	%	%	%	_	%	%	%	%	%	%	%	%	%	%	%	%
STD OXK79 Standard 3.427			_	0.005	2	0.001	0.001	0.02	0.01	2	0.001	0.001	0.01	0.01	0.02	0.01	0.001	0.01	0.01	0.01	0.01	0.001
STD OXK79 Standard S.588 STD OXK79 Standard S.585 STD OXK79 Standard S.5949 Standard S.505 S.5	STD OXK79 S	Standard		3.695																		
STD OXK79 Standard Story	STD OXK79 S	Standard		3.427																		
STD SP49 Standard STD SU-1B STD SU-1B Standard STD SU-1B STD SU	STD OXK79 S	Standard		3.538																		
STD SP49 Standard Standard STD SP49 Standard Standard STD SP49 Standard	STD OXK79 S	Standard		3.585																		
STD SP49 Standard Standard STD SU-IB Standard Standard STD SU-IB Standard Standard STD SU-IB Standard Standa	STD SP49 S	Standard																				
STD SU-1B Standard	STD SP49 S	Standard																				
STD SU-1B Standard	STD SP49 S	Standard																				-
STD SU-1B	STD SU-1B S	Standard				<0.001	1.186	<0.02	0.03	7	1.949	0.066	0.07	25.83	<0.02	0.03	<0.001	<0.01	<0.01	2.25	0.06	0.033
STD OREAS131B-A 33.3	STD SU-1B S	Standard				<0.001	1.208	<0.02	0.03	6	1.999	0.065	0.07	25.48	<0.02	0.03	<0.001	<0.01	<0.01	2.23	0.06	0.028
STD OXH82 Expected 1.278 STD OXK79 Expected 3.532 STD OREAS1318 Expected 0.0003 0.0216 1.86 3.14 33.3 0.0025 0.00181 0.1771 5.705 0.0072 0.0026 0.0089 0.005 5.37 0.0536 0.006 0.0089 0.005 5.37 0.0536 0.006 0.0089 0.005 5.37 0.0536 0.006 0.0089 0.005 0.0089 0.0089 0.005 0.0089 0.0089 0.005 0.0089	STD SU-1B S	Standard				<0.001	1.150	<0.02	0.03	5	1.960	0.068	0.08	25.24	<0.02	0.03	<0.001	<0.01	<0.01	2.19	0.06	0.035
STD OXK79 Expected 3.532 STD OXK79 Expected 0.0003 0.0216 1.86 3.14 33.3 0.0025 0.00181 0.1771 5.705 0.0072 0.0026 0.0089 0.005 5.37 0.0536 0.005 STD	STD OREAS131B-A				33.3																	-
STD OREAS131B Expected 0.0003 0.0216 1.86 3.14 33.3 0.0025 0.0018 0.0072 0.0072 0.0026 0.0089 0.005 5.37 0.0536 0.006 STD SU-1B Expected 0.0004 1.185 0.0058 0.0235 6.4 1.97 0.0672 0.0703 25.54 0.0003 2E-05 0.0003 2.21 0.06 0.00 STD OREAS153A Expected 0.0177 0.712 0.0053 0.001 0.026 3.422 1.2 0.055 0.00 STD SP49 Expected STD AGPROOF Expected 8 0.001 0.001 0.002 3.422 0.001 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001	STD OXH82 Expected			1.278																		
STD SU-1B Expected 0.0004 1.185 0.0058 0.0235 6.4 1.97 0.0672 0.0703 25.54 0.00025 0.03 0.0003 2.21 0.06 0.06 STD OREAS153A Expected 0.0177 0.712 0.0053 0.001 0.026 3.422 1.2 0.055 0.00 STD SP49 Expected BLK Blank <0.005	STD OXK79 Expected			3.532																		
STD OREAS153A Expected 0.0177 0.712 0.0053 0.001 0.026 3.422 1.2 0.055 0.00 STD SP49 Expected STD AGPROOF Expected BLK Blank <0.005	STD OREAS131B Expected					0.0003	0.0216	1.86	3.14	33.3	0.0025	0.00181	0.1771	5.705	0.0072	0.0026	0.0089	0.005		5.37	0.0536	0.0027
STD SP49 Expected STD AGPROOF Expected BLK Blank <0.005 BLK Blank <0.001 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0	STD SU-1B Expected					0.0004	1.185	0.0058	0.0235	6.4	1.97	0.0672	0.0703	25.54	0.00025	0.03	0.0003	2E-05	0.0003	2.21	0.06	0.032
STD AGPROOF Expected BLK Blank <0.005	STD OREAS153A Expected					0.0177	0.712		0.0053		0.001		0.026	3.422						1.2	0.055	0.0016
STD AGPROOF Expected BLK Blank <0.005	STD SP49 Expected																					
BLK Blank <0.005 BLK Blank <0.001 <0.001 <0.02 <0.01 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.0	· · · · · · · · · · · · · · · · · · ·																					
BLK Blank <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.00	BLK B	Blank		<0.005																		
BLK Blank <0.005 BLK Blank <0.005	BLK B	Blank		<0.005																		
BLK Blank <0.005 BLK Blank <0.001 <0.001 <0.02 <0.01 <2 <0.001 <0.001 <0.001 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01	BLK B	Blank				<0.001	<0.001	<0.02	<0.01	<2	<0.001	<0.001	<0.01	<0.01	<0.02	<0.01	<0.001	<0.01	<0.01	<0.01	<0.01	<0.001
BLK Blank <0.001 <0.001 <0.02 <0.01 <2 <0.001 <0.001 <0.001 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.	BLK B	Blank		<0.005																		-
BLK Blank <2 BLK Blank <2	BLK B	Blank		<0.005																		
BLK Blank <2	BLK B	Blank				<0.001	<0.001	<0.02	<0.01	<2	<0.001	<0.001	<0.01	<0.01	<0.02	<0.01	<0.001	<0.01	<0.01	<0.01	<0.01	<0.001
· · · · · · · · · · · · · · · · · · ·	BLK B	Blank			<2																	
RIK Rlank <0.005	BLK B	Blank			<2																	
per parity 50.000	BLK B	Blank		<0.005																		
BLK Blank <0.005	BLK	Blank		<0.005																		
DLV Dlank 40.00F	BLK B	Blank		<0.005																		

1020 Cordova St. East Vancouver BC V6A 4A3 Canada Phone (604) 253-3158 Fax (604) 253-1716

www.acmelab.com

Client: **Shamrock Enterprises Inc.**

Unit 19 - 650 Roche Pt. Drive

North Vancouver BC V7H 2Z5 Canada

Project:

Fireweed

Report Date:

March 19, 2012

2 of 3 Part 2 Page:

QUALITY CONTROL REPORT

SMI11000761.1

		7TD	7TD	7TD	7TD	7TD	7TD	G6Gr
		Mg	Al	Na	K	w	S	Ag
		%	%	%	%	%	%	gm/t
		0.01	0.01	0.01	0.01	0.01	0.05	50
STD OXK79	Standard							
STD OXK79	Standard							
STD OXK79	Standard							
STD OXK79	Standard							
STD SP49	Standard							63
STD SP49	Standard							56
STD SP49	Standard							58
STD SU-1B	Standard	1.84	4.50	1.75	0.63	<0.01	8.71	
STD SU-1B	Standard	1.81	4.57	1.76	0.62	<0.01	8.98	
STD SU-1B	Standard	1.74	4.29	1.59	0.63	<0.01	8.46	
STD OREAS131B-A								
STD OXH82 Expected								
STD OXK79 Expected								
STD OREAS131B Expected		3.128	4.57	0.139	3.34		5.01	
STD SU-1B Expected		1.79	4.39	1.662	0.6	0.0007	9	
STD OREAS153A Expected		1.83	7.6845	2.3215	1.43		1.26	
STD SP49 Expected								60.2
STD AGPROOF Expected								94
BLK	Blank							
BLK	Blank							
BLK	Blank	<0.01	<0.01	<0.01	<0.01	<0.01	<0.05	
BLK	Blank							
BLK	Blank							
BLK	Blank	<0.01	<0.01	<0.01	<0.01	<0.01	<0.05	
BLK	Blank							
BLK	Blank							
BLK	Blank							
BLK	Blank							
BLK	Blank							

Phone (604) 253-3158 Fax (604) 253-1716

Client:

Unit 19 - 650 Roche Pt. Drive North Vancouver BC V7H 2Z5 Canada

Shamrock Enterprises Inc.

Project:

Fireweed

Report Date:

March 19, 2012

www.acmelab.com

Page:

3 of 3

															-						
QUALIT	Y CONTROL	REP	OR1													SM	110	0007	'61.	1	
		WGHT	G6	7AR	7TD	7TD	7TD	7TD	7TD	7TD	7TD	7TD	7TD	7TD	7TD	7TD	7TD	7TD	7TD	7TD	7TD
		Wgt	Au	Ag	Мо	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	Sr	Cd	Sb	Bi	Ca	Р	Cr
		kg	gm/t	gm/t	%	%	%	%	gm/t	%	%	%	%	%	%	%	%	%	%	%	%
		0.01	0.005	2	0.001	0.001	0.02	0.01	2	0.001	0.001	0.01	0.01	0.02	0.01	0.001	0.01	0.01	0.01	0.01	0.001
BLK	Blank		<0.005																		
BLK	Blank				<0.001	<0.001	<0.02	<0.01	<2	<0.001	<0.001	<0.01	<0.01	<0.02	<0.01	<0.001	<0.01	<0.01	<0.01	<0.01	<0.001
BLK	Blank																				
BLK	Blank																				
BLK	Blank																				
BLK	Blank																				
BLK	Blank																				
BLK	Blank																				
Prep Wash																					
G1	Prep Blank		<0.005	<2	<0.001	0.001	<0.02	<0.01	<2	<0.001	<0.001	0.08	2.59	<0.02	0.07	<0.001	<0.01	<0.01	2.12	0.08	0.001
G1	Prep Blank		<0.005	<2	<0.001	0.001	<0.02	<0.01	<2	<0.001	<0.001	0.07	2.29	<0.02	0.07	<0.001	<0.01	<0.01	2.31	0.08	<0.001

1020 Cordova St. East Vancouver BC V6A 4A3 Canada Phone (604) 253-3158 Fax (604) 253-1716

www.acmelab.com

Client: **Shamrock Enterprises Inc.**

Unit 19 - 650 Roche Pt. Drive

North Vancouver BC V7H 2Z5 Canada

Project:

Fireweed

3 of 3

Report Date:

March 19, 2012

Page:

Part 2

SMI11000761.1

		7TD	7TD	7TD	7TD	7TD	7TD	G6Gr
		Mg	Al	Na	K	w	s	Ag
		%	%	%	%	%	%	gm/t
		0.01	0.01	0.01	0.01	0.01	0.05	50
BLK	Blank							
BLK	Blank	<0.01	<0.01	<0.01	<0.01	<0.01	<0.05	
BLK	Blank							<50
BLK	Blank							<50
BLK	Blank							<50
BLK	Blank							<50
BLK	Blank							<50
BLK	Blank							<50
Prep Wash								
G1	Prep Blank	0.64	6.35	2.62	1.58	<0.01	<0.05	
G1	Prep Blank	0.60	7.07	2.82	2.18	<0.01	<0.05	

1020 Cordova St. East Vancouver BC V6A 4A3 Canada

www.acmelab.com

Client: Shamrock Enterprises Inc.

Unit 19 - 650 Roche Pt. Drive

North Vancouver BC V7H 2Z5 Canada

Submitted By: Gordon Osinchuk Receiving Lab: Canada-Smithers Received: November 25, 2011

Report Date: February 29, 2012

Page: 1 of 3

CERTIFICATE OF ANALYSIS

SMI11000785.1

CLIENT JOB INFORMATION

Project: Fireweed Shipment ID:

P.O. Number

34 Number of Samples:

SAMPLE DISPOSAL

DISP-PLP Dispose of Pulp After 90 days **DISP-RJT** Dispose of Reject After 90 days

Acme does not accept responsibility for samples left at the laboratory after 90 days without prior written instructions for sample storage or return.

Shamrock Enterprises Inc. Invoice To:

> Unit 19 - 650 Roche Pt. Drive North Vancouver BC V7H 2Z5

Canada

CC: William A. Howell

SAMPLE PREPARATION AND ANALYTICAL PROCEDURES

Method Code	Number of Samples	Code Description	Test Wgt (g)	Report Status	Lab
R200-250	34	Crush, split and pulverize 250 g rock to 200 mesh			SMI
G603	34	Lead collection fire assay fusion - ICP-ES finish + 7AR Ag	30	Completed	VAN
7TD2	34	4 Acid digestion ICP-ES analysis.	0.5	Completed	VAN
G6Gr	6	Lead collection fire assay 30G fusion - Grav finish	30	Completed	VAN

ADDITIONAL COMMENTS

This report supersedes all previous preliminary and final reports with this file number dated prior to the date on this certificate. Signature indicates final approval; preliminary reports are unsigned and should be used for reference only. All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of analysis only. Results apply to samples as submitted. "*" asterisk indicates that an analytical result could not be provided due to unusually high levels of interference from other elements.

1020 Cordova St. East Vancouver BC V6A 4A3 Canada Phone (604) 253-3158 Fax (604) 253-1716

Client:

Shamrock Enterprises Inc.

Unit 19 - 650 Roche Pt. Drive North Vancouver BC V7H 2Z5 Canada

Project:

Fireweed

Report Date:

February 29, 2012

www.acmelab.com

Page:

2 of 3

CERTIFICATE OF ANALYSIS SMI11000785.1															1					
Method	WGHT	G6	7AR	7TD	7TD	7TD	7TD	7TD	7TD	7TD	7TD	7TD	7TD	7TD	7TD	7TD	7TD	7TD	7TD	7TD
Analyte	Wgt	Au	Ag	Мо	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	Sr	Cd	Sb	Bi	Ca	Р	Cr
Unit	kg	gm/t	gm/t	%	%	%	%	gm/t	%	%	%	%	%	%	%	%	%	%	%	%
MDL	0.01	0.005	2	0.001	0.001	0.02	0.01	2	0.001	0.001	0.01	0.01	0.02	0.01	0.001	0.01	0.01	0.01	0.01	0.001
11548 Drill Core	2.34	0.016	130	<0.001	0.004	0.57	1.75	147	0.007	<0.001	0.97	8.79	<0.02	0.01	0.006	<0.01	<0.01	0.56	0.12	0.014
11549 Drill Core	4.43	0.007	<2	<0.001	0.011	<0.02	0.06	<2	0.014	0.002	0.21	5.78	<0.02	<0.01	<0.001	<0.01	<0.01	0.62	0.11	0.019
11550 Drill Core	3.13	<0.005	<2	<0.001	0.005	<0.02	0.03	<2	0.012	0.002	0.39	5.27	<0.02	<0.01	<0.001	<0.01	<0.01	1.59	0.07	0.026
11551 Drill Core	4.42	<0.005	<2	<0.001	<0.001	0.05	0.11	<2	0.012	0.002	0.61	5.19	<0.02	<0.01	<0.001	<0.01	<0.01	0.23	0.05	0.030
11552 Drill Core	5.09	<0.005	2	<0.001	<0.001	0.15	0.31	3	0.012	0.001	0.69	6.22	<0.02	<0.01	<0.001	<0.01	<0.01	0.35	0.05	0.029
11553 Drill Core	3.59	0.006	<2	<0.001	<0.001	0.07	0.18	<2	0.010	0.001	0.50	4.98	<0.02	<0.01	<0.001	<0.01	<0.01	0.22	0.03	0.032
11554 Drill Core	4.46	0.013	9	<0.001	0.002	0.36	0.56	12	0.009	0.001	0.75	9.20	<0.02	<0.01	0.002	<0.01	<0.01	0.36	0.05	0.020
11555 Drill Core	2.89	0.020	13	<0.001	0.007	0.34	0.67	14	0.007	0.001	0.38	9.27	0.06	<0.01	0.003	<0.01	<0.01	0.10	0.02	0.016
11556 Drill Core	4.12	0.036	21	<0.001	0.005	0.60	1.27	24	0.010	0.002	0.36	7.90	0.07	<0.01	0.005	<0.01	<0.01	0.13	0.03	0.039
11557 Drill Core	4.75	0.040	273	<0.001	0.013	1.12	3.04	>300	0.006	0.001	0.34	9.36	0.25	<0.01	0.009	<0.01	<0.01	0.28	0.10	0.015
11558 Drill Core	5.05	0.049	273	<0.001	0.006	0.87	1.20	>300	0.004	<0.001	0.55	9.09	0.24	<0.01	0.004	<0.01	<0.01	0.09	0.01	0.019
11559 Drill Core	4.32	0.051	>300	<0.001	0.010	1.34	3.77	>300	0.005	<0.001	0.55	8.01	0.10	<0.01	0.011	<0.01	<0.01	0.13	0.03	0.007
11560 Drill Core	4.51	0.028	242	<0.001	0.007	0.33	1.41	274	0.005	<0.001	0.58	7.85	0.05	<0.01	0.004	<0.01	<0.01	0.11	0.02	0.013
11561 Drill Core	5.18	0.105	>300	<0.001	0.007	1.40	1.46	>300	0.006	<0.001	0.72	8.41	0.18	<0.01	0.004	<0.01	<0.01	0.16	0.03	0.013
11562 Drill Core	4.13	0.049	288	<0.001	0.005	0.64	0.68	>300	0.006	<0.001	0.67	7.24	0.02	<0.01	0.002	<0.01	<0.01	0.22	0.03	0.014
11563 Drill Core	4.79	0.085	>300	<0.001	0.005	1.15	1.12	>300	0.006	<0.001	0.84	8.28	0.06	<0.01	0.004	<0.01	<0.01	0.33	0.04	0.015
11564 Drill Core	2.58	0.160	>300	<0.001	0.005	1.94	2.73	>300	0.005	0.001	0.73	6.73	0.12	<0.01	0.009	<0.01	<0.01	0.45	0.03	0.008
11565 Drill Core	4.30	<0.005	7	<0.001	0.005	0.03	0.07	8	0.012	0.002	0.69	4.70	<0.02	<0.01	<0.001	<0.01	<0.01	0.43	0.05	0.037
11566 Drill Core	3.92	<0.005	12	<0.001	0.005	0.45	0.74	12	0.007	<0.001	0.83	11.33	<0.02	<0.01	0.003	<0.01	<0.01	0.19	0.03	0.018
11567 Drill Core	4.75	0.239	112	<0.001	0.008	3.87	2.42	119	0.005	0.001	0.49	8.71	0.13	<0.01	0.009	0.01	<0.01	0.18	0.02	0.007
11568 Drill Core	4.89	0.232	93	<0.001	0.014	1.67	6.98	97	0.005	0.002	0.27	6.26	0.27	<0.01	0.026	<0.01	<0.01	0.13	0.03	0.006
11569 Drill Core	4.31	0.312	105	<0.001	0.008	1.91	6.12	104	0.005	0.002	0.27	5.15	0.24	0.01	0.022	<0.01	<0.01	0.18	0.03	0.006
11570 Drill Core	4.96	0.220	86	<0.001	0.008	1.73	5.83	87	0.004	0.001	0.32	6.38	0.18	<0.01	0.022	<0.01	<0.01	0.11	0.02	0.007
11571 Drill Core	4.15	0.115	206	<0.001	0.012	2.15	5.01	223	0.005	0.001	0.37	6.84	0.13	<0.01	0.018	<0.01	<0.01	0.14	0.02	0.010
11572 Drill Core	4.74	0.123	>300	<0.001	0.008	1.77	3.14	>300	0.005	0.001	0.39	6.97	0.17	<0.01	0.010	<0.01	<0.01	0.14	0.03	0.010
11573 Drill Core	4.90	0.023	>300	<0.001	0.007	1.59	2.39	>300	0.006	0.001	0.47	7.71	0.18	<0.01	0.008	<0.01	<0.01	0.17	0.04	0.013
11574 Drill Core	4.93	0.070	185	<0.001	0.004	0.50	1.01	189	0.007	0.001	0.71	7.71	<0.02	<0.01	0.003	<0.01	<0.01	0.20	0.03	0.021
11575 Drill Core	4.68	0.059	9	<0.001	0.002	0.27	0.25	10	0.008	0.001	0.95	10.97	0.04	<0.01	<0.001	<0.01	<0.01	0.25	0.06	0.022
11576 Drill Core	5.87	0.536	43	<0.001	0.006	1.50	2.56	44	0.007	0.001	0.87	10.10	0.09	<0.01	0.008	<0.01	<0.01	0.29	0.08	0.016
11577 Drill Core	3.12	0.006	3	<0.001	0.003	0.04	0.03	3	0.025	0.003	0.67	7.98	<0.02	<0.01	<0.001	<0.01	<0.01	0.31	0.06	0.033

1020 Cordova St. East Vancouver BC V6A 4A3 Canada Phone (604) 253-3158 Fax (604) 253-1716

www.acmelab.com

Client:

Shamrock Enterprises Inc.

Unit 19 - 650 Roche Pt. Drive

North Vancouver BC V7H 2Z5 Canada

Project: Fireweed

Report Date: February 29, 2012

Page: 2 of 3 Part 2

CERTIFICATE OF ANALYSIS

SMI11000785.1

	Method	7TD	7TD	7TD	7TD	7TD	7TD	G6Gr
	Analyte	Mg	Al	Na	K	w	s	Ag
	Unit	%	%	%	%	%	%	gm/t
	MDL	0.01	0.01	0.01	0.01	0.01	0.05	50
11548	Drill Core	0.89	3.02	0.02	0.02	<0.01	2.45	
11549	Drill Core	1.41	8.52	0.34	1.97	<0.01	0.15	
11550	Drill Core	1.52	8.04	0.23	1.54	<0.01	0.12	
11551	Drill Core	0.97	5.89	0.03	1.41	<0.01	0.10	
11552	Drill Core	1.00	5.90	0.02	1.39	<0.01	0.25	
11553	Drill Core	0.66	4.64	0.02	1.17	<0.01	0.28	
11554	Drill Core	0.75	5.01	0.02	0.53	<0.01	1.91	
11555	Drill Core	0.29	3.15	<0.01	0.51	<0.01	4.22	
11556	Drill Core	0.34	4.46	0.02	1.14	<0.01	4.08	
11557	Drill Core	0.27	3.37	0.02	0.94	<0.01	7.19	
11558	Drill Core	0.30	2.91	0.01	0.49	<0.01	3.88	
11559	Drill Core	0.30	2.32	0.01	0.05	<0.01	4.39	539
11560	Drill Core	0.47	3.01	0.01	0.42	<0.01	2.52	
11561	Drill Core	0.58	3.04	<0.01	0.09	<0.01	2.64	583
11562	Drill Core	0.54	3.30	0.02	0.25	<0.01	1.83	
11563	Drill Core	0.72	2.84	0.02	0.07	<0.01	2.69	298
11564	Drill Core	0.63	2.06	0.02	0.13	<0.01	3.03	607
11565	Drill Core	1.04	5.60	0.06	1.88	<0.01	1.39	
11566	Drill Core	0.75	3.89	0.01	0.19	<0.01	3.64	
11567	Drill Core	0.36	2.15	0.02	0.16	<0.01	5.51	
11568	Drill Core	0.22	2.13	0.02	0.41	<0.01	5.83	
11569	Drill Core	0.23	2.16	0.02	0.52	<0.01	5.16	
11570	Drill Core	0.22	2.34	0.01	0.36	<0.01	5.45	
11571	Drill Core	0.26	2.70	0.01	0.44	<0.01	5.59	
11572	Drill Core	0.32	3.04	0.01	0.51	<0.01	4.26	458
11573	Drill Core	0.39	3.22	0.02	0.64	<0.01	4.60	755
11574	Drill Core	0.62	4.07	0.02	0.61	<0.01	2.07	
11575	Drill Core	0.85	4.05	<0.01	0.18	<0.01	2.84	
11576	Drill Core	0.67	2.89	<0.01	0.05	<0.01	5.16	
11577	Drill Core	1.24	8.09	0.04	1.72	<0.01	0.23	

1020 Cordova St. East Vancouver BC V6A 4A3 Canada Phone (604) 253-3158 Fax (604) 253-1716

Client:

Shamrock Enterprises Inc.

Unit 19 - 650 Roche Pt. Drive

North Vancouver BC V7H 2Z5 Canada

Project:

Fireweed

Report Date:

February 29, 2012

www.acmelab.com

Page:

3 of 3

														0 0. 0		ui t					
CERTIFICATE OF ANALYSIS SMI11000785.1																					
	Method	WGHT	G6	7AR	7TD	7TD	7TD	7TD	7TD	7TD	7TD	7TD	7TD	7TD	7TD	7TD	7TD	7TD	7TD	7TD	7TD
	Analyte	Wgt	Au	Ag	Мо	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	Sr	Cd	Sb	Bi	Ca	Р	Cr
	Unit	kg	gm/t	gm/t	%	%	%	%	gm/t	%	%	%	%	%	%	%	%	%	%	%	%
	MDL	0.01	0.005	2	0.001	0.001	0.02	0.01	2	0.001	0.001	0.01	0.01	0.02	0.01	0.001	0.01	0.01	0.01	0.01	0.001
11578	Drill Core	3.48	<0.005	4	<0.001	0.007	<0.02	0.04	16	0.013	0.002	0.59	4.81	<0.02	<0.01	<0.001	<0.01	<0.01	0.30	0.06	0.022
11579	Drill Core	4.82	0.015	43	<0.001	0.003	0.07	0.20	48	0.011	0.001	0.51	3.28	<0.02	<0.01	<0.001	<0.01	<0.01	0.23	0.02	0.023
11580	Drill Core	5.58	0.007	53	<0.001	0.007	0.21	0.51	55	0.009	0.001	0.67	4.87	<0.02	<0.01	0.001	<0.01	<0.01	0.19	0.04	0.015
11581	Drill Core	2.29	<0.005	44	<0.001	0.011	0.30	0.59	48	0.009	0.002	1.23	6.33	<0.02	<0.01	0.002	<0.01	<0.01	0.20	0.05	0.017

1020 Cordova St. East Vancouver BC V6A 4A3 Canada Phone (604) 253-3158 Fax (604) 253-1716

www.acmelab.com

Client:

Shamrock Enterprises Inc.

Unit 19 - 650 Roche Pt. Drive

North Vancouver BC V7H 2Z5 Canada

Project:

Fireweed

Report Date:

February 29, 2012

rebluary 29, 2012

Page:

3 of 3

Part 2

CERTIFICATE OF ANALYSIS

SMI11000785.1

	Method	7TD	7TD	7TD	7TD	7TD	7TD	G6G
	Analyte	Mg	Al	Na	K	w	s	Αg
	Unit	%	%	%	%	%	%	gm/
_	MDL	0.01	0.01	0.01	0.01	0.01	0.05	50
11578	Drill Core	1.00	7.50	0.08	2.10	<0.01	0.75	
11579	Drill Core	0.72	4.48	0.04	1.56	<0.01	0.91	
11580	Drill Core	0.86	4.21	0.03	1.14	<0.01	2.04	
11581	Drill Core	1.17	4.87	0.01	0.97	<0.01	2.08	

Phone (604) 253-3158 Fax (604) 253-1716

Shamrock Enterprises Inc. Unit 19 - 650 Roche Pt. Drive

North Vancouver BC V7H 2Z5 Canada

Project:

Client:

Fireweed

Report Date:

February 29, 2012

www.acmelab.com

Page:

1 of 2

												i age.		1 01 2	•	uit ·					
QUALITY CONTROL REPORT SMI11000785.1																					
	Method	WGHT	G6	7AR	7TD	7TD	7TD	7TD	7TD	7TD	7TD	7TD	7TD	7TD	7TD	7TD	7TD	7TD	7TD	7TD	7TD
	Analyte	Wgt	Au	Ag	Мо	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	Sr	Cd	Sb	Bi	Ca	Р	Cr
	Uni	kg kg	gm/t	gm/t	%	%	%	%	gm/t	%	%	%	%	%	%	%	%	%	%	%	%
	MDL	0.01	0.005	2	0.001	0.001	0.02	0.01	2	0.001	0.001	0.01	0.01	0.02	0.01	0.001	0.01	0.01	0.01	0.01	0.001
Pulp Duplicates																					
11554	Drill Core	4.46	0.013	9	<0.001	0.002	0.36	0.56	12	0.009	0.001	0.75	9.20	<0.02	<0.01	0.002	<0.01	<0.01	0.36	0.05	0.020
REP 11554	QC			9																	
11566	Drill Core	3.92	<0.005	12	<0.001	0.005	0.45	0.74	12	0.007	<0.001	0.83	11.33	<0.02	<0.01	0.003	<0.01	<0.01	0.19	0.03	0.018
REP 11566	QC		<0.005																	-	-
Reference Materials																					
STD AGPROOF	Standard																				
STD OREAS131B	Standard				<0.001	0.023	1.90	3.30	35	0.003	0.002	0.18	5.91	<0.02	<0.01	0.009	<0.01	<0.01	5.52	0.05	0.003
STD OREAS153A	Standard				0.018	0.708	<0.02	<0.01	<2	0.001	<0.001	0.03	3.50	<0.02	<0.01	<0.001	<0.01	<0.01	1.20	0.05	0.002
STD OREAS153AR	Standard			<2																	
STD OREAS131B-A	Standard			34																	-
STD OREAS131B	Standard				<0.001	0.022	1.90	3.25	37	0.003	0.002	0.18	5.74	<0.02	<0.01	0.010	<0.01	<0.01	5.59	0.06	0.002
STD OREAS153A	Standard				0.018	0.710	<0.02	<0.01	<2	0.001	<0.001	0.03	3.46	<0.02	<0.01	<0.001	<0.01	<0.01	1.19	0.06	0.002
STD OREAS131B	Standard				<0.001	0.022	1.89	3.23	34	0.003	0.002	0.18	5.74	<0.02	<0.01	0.009	<0.01	<0.01	5.46	0.06	0.002
STD OXH82	Standard		1.375																		-
STD OXH82	Standard		1.272																	-	
STD OXH82	Standard		1.366																		
STD OXK79	Standard		3.668																		
STD OXK79	Standard		3.538																		
STD OXK79	Standard		3.585																		
STD SP49	Standard																				
STD SU-1B	Standard				<0.001	1.207	<0.02	0.03	7	1.986	0.070	0.07	26.12	<0.02	0.03	0.001	<0.01	<0.01	2.28	0.06	0.033
STD SU-1B	Standard				<0.001	1.167	<0.02	0.03	6	1.934	0.068	0.07	25.16	<0.02	0.03	<0.001	<0.01	<0.01	2.21	0.08	0.033
STD OREAS131B-A				33.3																	
STD OXH82 Expected			1.278																		
STD OXK79 Expected			3.532																		
STD OREAS153A Expected					0.0177	0.712		0.0053		0.001		0.026	3.422						1.2	0.055	0.0016
STD OREAS131B Expected					0.0003	0.0216	1.86	3.14	33.3	0.0025	0.00181	0.1771	5.705	0.0072	0.0026	0.0089	0.005		5.37	0.0536	0.0027
STD SU-1B Expected					0.0004	1.185	0.0058	0.0235	6.4	1.97	0.0672	0.0703	25.54	0.00025	0.03	0.0003	2E-05	0.0003	2.21	0.06	0.032

1020 Cordova St. East Vancouver BC V6A 4A3 Canada Phone (604) 253-3158 Fax (604) 253-1716

www.acmelab.com

Client: **Shamrock Enterprises Inc.**

Unit 19 - 650 Roche Pt. Drive

North Vancouver BC V7H 2Z5 Canada

Project:

Fireweed

Report Date:

February 29, 2012

1 of 2 Part 2 Page:

QUALITY CONTROL REPORT

SMI11000785.1

	Method	7TD	7TD	7TD	7TD	7TD	7TD	G6Gr
	Analyte	Mg	Al	Na	K	w	s	Ag
	Unit	%	%	%	%	%	%	gm/t
	MDL	0.01	0.01	0.01	0.01	0.01	0.05	50
Pulp Duplicates								
11554	Drill Core	0.75	5.01	0.02	0.53	<0.01	1.91	
REP 11554	QC							
11566	Drill Core	0.75	3.89	0.01	0.19	<0.01	3.64	
REP 11566	QC							
Reference Materials								
STD AGPROOF	Standard							88
STD OREAS131B	Standard	3.13	4.52	0.14	3.50	<0.01	5.31	
STD OREAS153A	Standard	1.80	7.37	2.25	1.53	<0.01	1.35	
STD OREAS153AR	Standard							
STD OREAS131B-A	Standard							
STD OREAS131B	Standard	3.22	4.65	0.11	3.27	<0.01	5.13	
STD OREAS153A	Standard	1.84	7.63	2.39	1.52	<0.01	1.27	
STD OREAS131B	Standard	3.13	4.58	0.14	3.52	<0.01	4.98	
STD OXH82	Standard							
STD OXH82	Standard							
STD OXH82	Standard							
STD OXK79	Standard							
STD OXK79	Standard							
STD OXK79	Standard							
STD SP49	Standard							63
STD SU-1B	Standard	1.81	4.50	1.74	0.65	<0.01	8.54	
STD SU-1B	Standard	1.82	4.34	1.70	0.72	<0.01	7.74	
STD OREAS131B-A								
STD OXH82 Expected								
STD OXK79 Expected								
STD OREAS153A Expected		1.83	7.6845	2.3215	1.43		1.26	
STD OREAS131B Expected		3.128	4.57	0.139	3.34		5.01	
STD SU-1B Expected		1.79	4.39	1.662	0.6	0.0007	9	

Project:

Client:

Fireweed

Report Date:

February 29, 2012

www.acmelab.com

Page:

2 of 2

Part 1

Shamrock Enterprises Inc.

Unit 19 - 650 Roche Pt. Drive North Vancouver BC V7H 2Z5 Canada

QUALITY (CONTROL	REP	ORT													SM	1110	0007	'85.′		
		WGHT	G6	7AR	7TD	7TD	7TD	7TD	7TD	7TD	7TD	7TD	7TD	7TD	7TD	7TD	7TD	7TD	7TD	7TD	7TD
		Wgt	Au	Ag	Мо	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	Sr	Cd	Sb	Bi	Ca	Р	Cr
		kg	gm/t	gm/t	%	%	%	%	gm/t	%	%	%	%	%	%	%	%	%	%	%	%
		0.01	0.005	2	0.001	0.001	0.02	0.01	2	0.001	0.001	0.01	0.01	0.02	0.01	0.001	0.01	0.01	0.01	0.01	0.001
STD SP49 Expected																					
STD AGPROOF Exped	eted																				
BLK	Blank		<0.005																		
BLK	Blank		<0.005																		
BLK	Blank				<0.001	<0.001	<0.02	<0.01	<2	<0.001	<0.001	<0.01	<0.01	<0.02	<0.01	<0.001	<0.01	<0.01	<0.01	<0.01	<0.001
BLK	Blank			<2																	
BLK	Blank		<0.005																		
BLK	Blank		<0.005																		
BLK	Blank		<0.005																		
BLK	Blank		<0.005																		
BLK	Blank				<0.001	<0.001	<0.02	<0.01	<2	<0.001	<0.001	<0.01	<0.01	<0.02	<0.01	<0.001	<0.01	<0.01	<0.01	<0.01	<0.001
BLK	Blank				<0.001	<0.001	<0.02	<0.01	<2	<0.001	<0.001	<0.01	<0.01	<0.02	<0.01	<0.001	<0.01	<0.01	<0.01	<0.01	<0.001
BLK	Blank																				
BLK	Blank																				
Prep Wash																					
G1	Prep Blank		<0.005	<2	<0.001	<0.001	<0.02	<0.01	<2	<0.001	<0.001	0.08	2.62	<0.02	0.08	<0.001	<0.01	<0.01	2.55	0.08	<0.001
G1	Prep Blank		<0.005	<2	<0.001	<0.001	<0.02	<0.01	<2	<0.001	<0.001	0.08	2.48	<0.02	0.08	<0.001	<0.01	<0.01	2.39	0.08	0.001

www.acmelab.com

Client: **Shamrock Enterprises Inc.**

Unit 19 - 650 Roche Pt. Drive

North Vancouver BC V7H 2Z5 Canada

Project:

Fireweed

Report Date:

February 29, 2012

2 of 2 Part 2 Page:

QUALITY CONTROL REPORT

SMI11000785.1

		7TD	7TD	7TD	7TD	7TD	7TD	G6Gr
		Mg	Al	Na	K	w	s	Ag
		%	%	%	%	%	%	gm/t
		0.01	0.01	0.01	0.01	0.01	0.05	50
STD SP49 Expected								60.2
STD AGPROOF Expected								94
BLK	Blank							
BLK	Blank							
BLK	Blank	<0.01	<0.01	<0.01	<0.01	<0.01	<0.05	
BLK	Blank							
BLK	Blank							
BLK	Blank							
BLK	Blank							
BLK	Blank							
BLK	Blank	<0.01	<0.01	<0.01	<0.01	<0.01	<0.05	
BLK	Blank	<0.01	<0.01	<0.01	0.07	<0.01	<0.05	
BLK	Blank							<50
BLK	Blank							<50
Prep Wash								
G1	Prep Blank	0.65	8.27	2.73	3.26	<0.01	<0.05	
G1	Prep Blank	0.64	7.67	2.74	3.37	<0.01	<0.05	

1020 Cordova St. East Vancouver BC V6A 4A3 Canada

www.acmelab.com

Client: Shamrock Enterprises Inc.

Unit 19 - 650 Roche Pt. Drive

North Vancouver BC V7H 2Z5 Canada

Submitted By: Gordon Osinchuk Receiving Lab: Canada-Smithers

Received: November 30, 2011 Report Date:

March 19, 2012

Page: 1 of 4

CERTIFICATE OF ANALYSIS

SMI11000828.1

CLIENT JOB INFORMATION

Project: Fireweed Shipment ID:

P.O. Number

61 Number of Samples:

SAMPLE DISPOSAL

DISP-PLP Dispose of Pulp After 90 days **DISP-RJT** Dispose of Reject After 90 days

Acme does not accept responsibility for samples left at the laboratory after 90 days without prior written instructions for sample storage or return.

Shamrock Enterprises Inc. Invoice To:

> Unit 19 - 650 Roche Pt. Drive North Vancouver BC V7H 2Z5

Canada

CC: William A. Howell

SAMPLE PREPARATION AND ANALYTICAL PROCEDURES

Method Code	Number of Samples	Code Description	Test Wgt (g)	Report Status	Lab
R200-250	61	Crush, split and pulverize 250 g rock to 200 mesh			SMI
G603	61	Lead collection fire assay fusion - ICP-ES finish + 7AR Ag	30	Completed	VAN
7TD2	61	4 Acid digestion ICP-ES analysis.	0.5	Completed	VAN
G6Gr	3	Lead collection fire assay 30G fusion - Grav finish	30	Completed	VAN

ADDITIONAL COMMENTS

This report supersedes all previous preliminary and final reports with this file number dated prior to the date on this certificate. Signature indicates final approval; preliminary reports are unsigned and should be used for reference only. All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of analysis only. Results apply to samples as submitted. "*" asterisk indicates that an analytical result could not be provided due to unusually high levels of interference from other elements.

1020 Cordova St. East Vancouver BC V6A 4A3 Canada Phone (604) 253-3158 Fax (604) 253-1716

Client:

Shamrock Enterprises Inc.

Unit 19 - 650 Roche Pt. Drive North Vancouver BC V7H 2Z5 Canada

Project:

Fireweed

Report Date:

March 19, 2012

www.acmelab.com

Page:

2 of 4

CERTIFICATE OF AN	IALY	′SIS													SN	/II11	3000	328.	1	
Method	WGHT	G6	7AR	7TD	7TD	7TD	7TD	7TD	7TD	7TD	7TD	7TD	7TD	7TD	7TD	7TD	7TD	7TD	7TD	7TD
Analyte	Wgt	Au	Ag	Мо	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	Sr	Cd	Sb	Bi	Ca	Р	Cr
Unit	kg	gm/t	gm/t	%	%	%	%	gm/t	%	%	%	%	%	%	%	%	%	%	%	%
MDL	0.01	0.005	2	0.001	0.001	0.02	0.01	2	0.001	0.001	0.01	0.01	0.02	0.01	0.001	0.01	0.01	0.01	0.01	0.001
11582 Drill Core	3.97	0.030	10	<0.001	0.004	0.65	0.79	12	0.008	0.001	0.73	11.93	<0.02	<0.01	0.003	<0.01	<0.01	0.22	0.05	0.016
11583 Drill Core	3.99	0.042	17	<0.001	0.006	1.69	1.69	23	0.006	<0.001	0.84	10.27	<0.02	<0.01	0.007	<0.01	<0.01	0.24	0.03	0.008
11584 Drill Core	3.84	0.042	10	<0.001	0.003	0.62	0.63	12	0.011	0.001	0.58	11.57	<0.02	<0.01	0.003	<0.01	<0.01	0.24	0.03	0.015
11585 Drill Core	4.16	0.043	11	<0.001	0.003	0.37	0.08	12	0.006	0.001	0.45	8.22	<0.02	<0.01	<0.001	<0.01	<0.01	0.25	0.02	0.015
11586 Drill Core	4.17	0.300	56	<0.001	0.005	0.59	1.45	59	0.006	0.001	0.51	9.34	0.29	0.02	0.003	<0.01	<0.01	0.30	0.02	0.008
11587 Drill Core	2.97	0.527	107	<0.001	0.007	1.35	2.81	112	0.005	0.001	0.40	7.89	0.35	<0.01	0.008	0.01	<0.01	0.16	0.03	0.007
11588 Drill Core	4.50	0.185	117	<0.001	0.008	0.94	1.70	123	0.005	0.001	0.42	8.14	0.22	<0.01	0.004	<0.01	<0.01	0.14	0.03	0.008
11589 Drill Core	4.21	0.183	>300	<0.001	0.007	1.97	2.47	>300	0.005	0.001	0.35	6.04	0.20	<0.01	0.007	<0.01	<0.01	0.14	0.02	0.010
11590 Drill Core	4.71	0.090	255	<0.001	0.005	0.91	1.32	267	0.008	0.002	0.40	6.49	0.07	<0.01	0.003	<0.01	<0.01	0.23	0.04	0.019
11591 Drill Core	5.08	0.097	103	<0.001	0.005	1.10	1.80	112	0.007	0.001	0.44	6.03	0.03	<0.01	0.004	<0.01	<0.01	0.20	0.04	0.028
11592 Drill Core	5.01	0.038	9	<0.001	0.002	0.32	0.28	9	0.009	0.002	0.57	7.42	<0.02	<0.01	<0.001	<0.01	<0.01	0.19	0.06	0.024
11593 Drill Core	5.34	0.286	13	<0.001	0.005	0.59	1.15	14	0.007	0.001	0.67	9.89	<0.02	<0.01	0.004	<0.01	<0.01	0.15	0.04	0.022
11594 Drill Core	2.55	0.044	18	<0.001	0.011	1.14	2.77	18	0.008	0.002	0.69	11.55	<0.02	<0.01	0.010	<0.01	<0.01	0.42	0.09	0.009
11595 Drill Core	4.62	<0.005	3	<0.001	0.006	<0.02	0.03	2	0.011	0.002	0.50	5.18	<0.02	<0.01	<0.001	<0.01	<0.01	0.34	0.07	0.021
11596 Drill Core	4.65	0.056	24	<0.001	0.012	0.21	0.88	28	0.011	0.002	0.49	5.25	<0.02	<0.01	0.001	<0.01	<0.01	0.22	0.03	0.025
11597 Drill Core	6.85	0.018	<2	<0.001	0.005	<0.02	0.01	<2	0.013	0.002	0.12	4.72	<0.02	<0.01	<0.001	<0.01	<0.01	0.34	0.09	0.018
11598 Drill Core	2.01	0.013	<2	<0.001	0.005	<0.02	0.01	<2	0.013	0.002	0.12	4.75	<0.02	<0.01	<0.001	<0.01	<0.01	0.37	0.10	0.018
11599 Drill Core	2.15	<0.005	3	<0.001	0.005	<0.02	0.05	6	0.012	0.002	0.43	4.85	<0.02	<0.01	<0.001	<0.01	<0.01	0.46	0.07	0.017
11600 Drill Core	3.63	<0.005	<2	<0.001	0.006	<0.02	0.02	<2	0.012	0.002	0.22	5.02	<0.02	<0.01	<0.001	<0.01	<0.01	0.55	0.12	0.017
11601 Drill Core	3.49	0.008	<2	<0.001	0.005	<0.02	<0.01	<2	0.013	0.002	0.21	4.85	<0.02	<0.01	<0.001	<0.01	<0.01	0.89	0.10	0.014
11602 Drill Core	2.96	<0.005	<2	<0.001	0.004	<0.02	0.02	<2	0.010	0.002	0.25	4.41	<0.02	<0.01	<0.001	<0.01	<0.01	1.19	0.10	0.011
11603 Drill Core	4.83	0.032	20	<0.001	0.005	0.43	0.63	24	0.012	0.002	0.46	7.08	<0.02	<0.01	<0.001	<0.01	<0.01	0.48	0.06	0.020
11604 Drill Core	3.59	<0.005	5	<0.001	0.006	0.03	0.05	7	0.013	0.003	0.38	6.07	<0.02	<0.01	<0.001	<0.01	<0.01	0.32	0.07	0.019
11605 Drill Core	5.28	0.016	<2	<0.001	0.005	<0.02	0.03	<2	0.012	0.002	0.65	5.00	<0.02	<0.01	<0.001	<0.01	<0.01	1.12	0.06	0.015
11606 Drill Core	3.00	0.005	<2	<0.001	0.004	<0.02	<0.01	<2	0.012	0.002	0.31	4.09	<0.02	<0.01	<0.001	<0.01	<0.01	0.24	0.06	0.021
11607 Drill Core	4.45	<0.005	<2	<0.001	0.004	<0.02	0.01	<2	0.012	0.002	0.38	4.49	<0.02	<0.01	<0.001	<0.01	<0.01	0.56	0.05	0.021
11608 Drill Core	1.31	0.009	<2	<0.001	0.005	<0.02	0.01	<2	0.013	0.002	0.31	5.16	<0.02	<0.01	<0.001	<0.01	<0.01	0.71	0.08	0.021
11609 Drill Core	2.78	<0.005	<2	<0.001	0.005	<0.02	0.02	<2	0.012	0.002	0.28	5.03	<0.02	<0.01	<0.001	<0.01	<0.01	0.66	0.09	0.023
11610 Drill Core	3.48	<0.005	<2	<0.001	0.005	<0.02	0.02	<2	0.013	0.002	0.50	4.37	<0.02	<0.01	<0.001	<0.01	<0.01	0.38	0.12	0.020
11611 Drill Core	5.79	<0.005	4	<0.001	0.005	<0.02	0.02	5	0.015	0.003	0.46	4.77	<0.02	<0.01	<0.001	<0.01	<0.01	1.03	0.06	0.022

1020 Cordova St. East Vancouver BC V6A 4A3 Canada Phone (604) 253-3158 Fax (604) 253-1716

www.acmelab.com

Client:

Shamrock Enterprises Inc.

Unit 19 - 650 Roche Pt. Drive

North Vancouver BC V7H 2Z5 Canada

Project:

Fireweed

Report Date:

March 19, 2012

Page:

2 of 4

Part 2

CERTIFICATE OF ANALYSIS

	Method	7TD	7TD	7TD	7TD	7TD	7TD	G6Gr
	Analyte	Mg	Al	Na	K	w	s	Ag
	Unit	%	%	%	%	%	%	gm/t
	MDL	0.01	0.01	0.01	0.01	0.01	0.05	50
11582	Drill Core	0.79	4.49	<0.01	0.08	<0.01	2.89	
11583	Drill Core	0.59	2.97	0.01	0.05	<0.01	4.12	
11584	Drill Core	0.64	6.61	0.02	1.27	<0.01	5.60	
11585	Drill Core	0.47	3.57	0.02	0.56	<0.01	2.46	
11586	Drill Core	0.53	2.73	0.03	0.25	<0.01	3.00	
11587	Drill Core	0.29	2.65	0.02	0.24	<0.01	3.84	
11588	Drill Core	0.28	2.95	0.01	0.33	<0.01	3.62	
11589	Drill Core	0.25	2.47	0.02	0.52	<0.01	3.38	553
11590	Drill Core	0.43	3.78	0.02	0.84	<0.01	2.27	
11591	Drill Core	0.42	3.73	0.02	0.81	<0.01	2.21	
11592	Drill Core	0.71	4.95	<0.01	0.83	<0.01	0.90	
11593	Drill Core	0.80	3.95	<0.01	0.17	<0.01	2.41	
11594	Drill Core	0.91	2.82	0.01	0.02	<0.01	5.76	
11595	Drill Core	1.35	6.69	0.06	1.86	<0.01	0.13	
11596	Drill Core	0.94	5.23	0.03	1.28	<0.01	0.90	
11597	Drill Core	0.98	7.48	0.31	1.70	<0.01	0.18	
11598	Drill Core	0.99	7.41	0.30	1.70	<0.01	0.15	
11599	Drill Core	1.04	6.93	0.06	1.96	<0.01	0.50	
11600	Drill Core	1.22	7.84	0.11	2.08	<0.01	0.12	
11601	Drill Core	1.17	8.19	0.12	2.29	<0.01	0.75	
11602	Drill Core	1.27	6.90	0.12	1.65	<0.01	0.07	
11603	Drill Core	0.89	5.55	0.03	1.51	<0.01	2.51	
11604	Drill Core	1.07	8.20	0.05	2.39	<0.01	1.11	
11605	Drill Core	1.14	7.72	0.06	1.74	<0.01	0.11	
11606	Drill Core	1.09	5.77	0.16	1.59	<0.01	0.12	
11607	Drill Core	1.32	5.72	0.23	1.33	<0.01	0.18	
11608	Drill Core	1.39	7.39	0.16	1.66	<0.01	0.34	
11609	Drill Core	1.40	6.96	0.19	1.46	<0.01	0.08	
11610	Drill Core	1.15	6.79	0.05	2.03	<0.01	0.12	
11611	Drill Core	1.02	7.37	0.05	1.96	<0.01	1.00	

1020 Cordova St. East Vancouver BC V6A 4A3 Canada Phone (604) 253-3158 Fax (604) 253-1716

Shamrock Enterprises Inc.

Unit 19 - 650 Roche Pt. Drive North Vancouver BC V7H 2Z5 Canada

Project:

Client:

Fireweed

Report Date:

March 19, 2012

www.acmelab.com

Page:

3 of 4

														0 01 -	<u> </u>	i uit					
CERTIFIC	CATE OF AN	IALY	'SIS													SN	/1111	0008	828.	1	
	Method	WGHT	G6	7AR	7TD	7TD	7TD	7TD	7TD	7TD	7TD	7TD	7TD	7TD	7TD	7TD	7TD	7TD	7TD	7TD	7TD
	Analyte	Wgt	Au	Ag	Мо	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	Sr	Cd	Sb	Bi	Ca	Р	Cr
	Unit	kg	gm/t	gm/t	%	%	%	%	gm/t	%	%	%	%	%	%	%	%	%	%	%	%
	MDL	0.01	0.005	2	0.001	0.001	0.02	0.01	2	0.001	0.001	0.01	0.01	0.02	0.01	0.001	0.01	0.01	0.01	0.01	0.001
11612	Drill Core	3.97	<0.005	<2	<0.001	0.006	<0.02	0.02	<2	0.014	0.002	0.33	4.98	<0.02	<0.01	<0.001	<0.01	<0.01	0.34	0.07	0.019
11613	Drill Core	3.55	<0.005	<2	<0.001	0.006	<0.02	0.02	<2	0.012	0.002	0.42	4.58	<0.02	<0.01	<0.001	<0.01	<0.01	0.25	0.06	0.018
11614	Drill Core	2.33	<0.005	2	<0.001	0.006	<0.02	0.01	<2	0.013	0.003	0.51	5.72	<0.02	<0.01	<0.001	<0.01	<0.01	0.29	0.07	0.017
11615	Drill Core	5.84	0.021	29	<0.001	0.008	0.53	1.01	21	0.011	0.002	0.45	6.67	<0.02	<0.01	0.003	<0.01	<0.01	0.20	0.06	0.020
11616	Drill Core	4.96	<0.005	16	<0.001	0.005	0.23	0.42	12	0.011	0.002	0.49	5.97	<0.02	<0.01	0.002	<0.01	<0.01	0.48	0.09	0.023
11617	Drill Core	4.85	<0.005	<2	<0.001	0.007	0.02	0.02	4	0.014	0.002	0.34	5.07	<0.02	<0.01	<0.001	<0.01	<0.01	0.17	0.07	0.015
11618	Drill Core	4.21	0.085	17	<0.001	0.011	0.58	1.38	20	0.006	0.001	0.46	8.54	<0.02	<0.01	0.006	<0.01	<0.01	0.34	0.04	0.012
11619	Drill Core	4.19	0.011	<2	<0.001	0.005	<0.02	0.02	<2	0.012	0.002	0.59	5.33	<0.02	<0.01	<0.001	<0.01	<0.01	0.87	0.06	0.018
11620	Drill Core	4.49	0.074	>300	<0.001	0.022	1.33	2.37	>300	0.008	0.002	0.33	6.77	<0.02	<0.01	0.009	<0.01	<0.01	0.41	0.05	0.013
11621	Drill Core	2.41	0.295	>300	<0.001	0.035	2.95	4.54	>300	0.007	0.002	0.35	7.21	<0.02	<0.01	0.017	<0.01	<0.01	0.22	0.02	0.007
11622	Drill Core	4.30	0.008	17	<0.001	0.009	0.67	0.56	22	0.005	<0.001	0.58	8.61	<0.02	<0.01	0.002	<0.01	<0.01	0.40	0.02	0.014
11623	Drill Core	4.07	0.006	23	<0.001	0.018	0.69	2.23	26	0.005	<0.001	0.34	6.87	<0.02	<0.01	0.009	<0.01	<0.01	0.20	0.02	0.006
11624	Drill Core	4.82	0.481	21	<0.001	0.009	0.70	1.58	24	0.007	0.002	0.31	5.70	<0.02	<0.01	0.006	<0.01	<0.01	0.19	0.02	0.032
11625	Drill Core	4.24	0.119	42	<0.001	0.006	1.35	1.96	46	0.004	<0.001	0.37	6.55	0.02	<0.01	0.007	<0.01	<0.01	0.16	0.01	0.011
11626	Drill Core	4.89	0.118	47	<0.001	0.006	1.66	2.73	52	0.004	<0.001	0.40	6.74	0.10	<0.01	0.010	<0.01	<0.01	0.15	0.01	0.013
11627	Drill Core	4.63	0.164	33	<0.001	0.007	1.45	2.54	37	0.004	<0.001	0.34	6.99	0.05	<0.01	0.009	<0.01	<0.01	0.19	0.02	0.006
11628	Drill Core	4.28	0.195	29	<0.001	0.006	1.02	1.81	37	0.004	<0.001	0.42	7.26	0.07	<0.01	0.007	<0.01	<0.01	0.21	0.02	0.008
11629	Drill Core	4.53	0.439	48	<0.001	0.007	1.29	2.28	52	0.004	<0.001	0.46	7.54	0.15	<0.01	0.009	<0.01	<0.01	0.20	0.02	0.008
11630	Drill Core	3.98	0.640	72	<0.001	0.011	1.77	3.25	79	0.004	<0.001	0.43	7.53	0.08	<0.01	0.012	<0.01	<0.01	0.15	0.03	0.007
11631	Drill Core	4.32	0.166	59	<0.001	0.011	1.76	3.01	64	0.005	<0.001	0.46	7.49	<0.02	<0.01	0.012	<0.01	<0.01	0.20	0.04	0.009
11632	Drill Core	4.45	0.466	50	<0.001	0.012	1.79	3.33	50	0.006	0.001	0.46	8.94	0.03	<0.01	0.013	<0.01	<0.01	0.26	0.04	0.011
11633	Drill Core	4.63	0.161	34	<0.001	0.008	0.93	1.83	37	0.006	0.001	0.46	8.14	0.03	<0.01	0.007	<0.01	<0.01	0.28	0.04	0.022
11634	Drill Core	4.84	0.041	18	<0.001	0.004	0.65	1.02	20	0.006	0.001	0.45	7.11	<0.02	<0.01	0.004	<0.01	<0.01	0.33	0.04	0.023
11635	Drill Core	4.85	0.064	14	<0.001	0.002	0.79	0.72	16	0.007	0.001	0.45	6.77	<0.02	<0.01	0.003	<0.01	<0.01	0.26	0.04	0.022
11636	Drill Core	4.12	0.030	7	<0.001	0.003	0.51	0.73	9	0.006	0.001	0.45	8.10	<0.02	<0.01	0.003	<0.01	<0.01	0.28	0.04	0.022
11637	Drill Core	4.71	0.056	<2	<0.001	0.006	0.06	0.56	<2	0.007	0.001	0.60	11.07	<0.02	<0.01	0.002	<0.01	<0.01	0.33	0.09	0.028
11638	Drill Core	5.88	0.238	30	<0.001	0.014	0.33	4.77	33	0.006	0.002	0.37	9.98	0.02	<0.01	0.021	<0.01	<0.01	0.78	0.10	0.013
11639	Drill Core	2.63	<0.005	4	<0.001	0.004	0.49	0.49	7	0.006	0.001	0.60	8.15	<0.02	<0.01	0.002	<0.01	<0.01	0.30	0.03	0.020
11640	Drill Core	5.30	<0.005	<2	<0.001	0.006	<0.02	0.03	<2	0.013	0.002	0.46	5.34	<0.02	<0.01	<0.001	<0.01	<0.01	0.33	0.08	0.018
11641	Drill Core	4.17	0.041	20	<0.001	0.010	0.46	1.65	23	0.010	0.002	0.53	7.58	<0.02	<0.01	0.006	<0.01	<0.01	0.48	0.04	0.015

1020 Cordova St. East Vancouver BC V6A 4A3 Canada Phone (604) 253-3158 Fax (604) 253-1716

www.acmelab.com

Client:

Shamrock Enterprises Inc.

Unit 19 - 650 Roche Pt. Drive

North Vancouver BC V7H 2Z5 Canada

Project:

Fireweed

Report Date:

March 19, 2012

Page:

3 of 4

Part 2

CERTIFICATE OF ANALYSIS

	Method	7TD	7TD	7TD	7TD	7TD	7TD	G6Gr
	Analyte	Mg	Al	Na	K	w	s	Ag
	Unit	%	%	%	%	%	%	gm/t
	MDL	0.01	0.01	0.01	0.01	0.01	0.05	50
11612	Drill Core	1.23	7.85	0.06	2.18	<0.01	0.33	
11613	Drill Core	1.23	7.07	0.06	2.01	<0.01	0.19	
11614	Drill Core	1.23	8.69	0.10	2.41	<0.01	0.13	
11615	Drill Core	0.93	6.16	0.04	1.44	<0.01	1.40	
11616	Drill Core	1.05	6.27	0.03	1.57	<0.01	0.93	
11617	Drill Core	1.09	8.78	0.07	2.68	<0.01	0.14	
11618	Drill Core	0.60	3.02	0.01	0.11	<0.01	3.30	
11619	Drill Core	1.32	8.41	0.09	2.16	<0.01	0.11	
11620	Drill Core	0.48	4.69	0.02	0.89	<0.01	3.01	312
11621	Drill Core	0.39	2.18	0.02	0.15	<0.01	5.81	901
11622	Drill Core	0.63	2.86	0.02	0.14	<0.01	2.49	
11623	Drill Core	0.41	2.09	0.01	0.06	<0.01	3.50	
11624	Drill Core	0.38	5.62	0.03	1.38	<0.01	1.94	
11625	Drill Core	0.38	2.31	0.01	0.06	<0.01	2.26	
11626	Drill Core	0.47	2.38	<0.01	0.05	<0.01	2.58	
11627	Drill Core	0.38	2.26	0.01	0.04	<0.01	2.66	
11628	Drill Core	0.43	2.37	0.02	0.03	<0.01	2.01	
11629	Drill Core	0.49	2.39	0.01	0.03	<0.01	2.35	
11630	Drill Core	0.48	2.49	<0.01	0.03	<0.01	3.06	
11631	Drill Core	0.44	2.54	<0.01	0.03	<0.01	3.16	
11632	Drill Core	0.56	2.71	<0.01	0.04	<0.01	3.48	
11633	Drill Core	0.61	3.82	0.01	0.33	<0.01	2.10	
11634	Drill Core	0.57	4.23	0.01	0.53	<0.01	1.38	
11635	Drill Core	0.60	4.21	0.01	0.56	<0.01	0.93	
11636	Drill Core	0.78	3.87	<0.01	0.27	<0.01	0.77	
11637	Drill Core	0.96	4.74	<0.01	0.16	<0.01	1.82	
11638	Drill Core	0.84	2.87	<0.01	0.07	<0.01	4.92	
11639	Drill Core	0.78	4.06	<0.01	0.25	<0.01	1.02	
11640	Drill Core	1.28	8.48	0.08	2.30	<0.01	<0.05	
11641	Drill Core	0.96	5.13	0.02	0.99	<0.01	2.89	

Project:

Client:

Fireweed

March 19, 2012

Report Date:

www.acmelab.com

Page:

4 of 4

Part 1

Shamrock Enterprises Inc.

Unit 19 - 650 Roche Pt. Drive North Vancouver BC V7H 2Z5 Canada

														7 01 7		i dit					
CERTIFICA	ATE OF AN	IALY	'SIS													SN	1111	0008	328.	1	
	Method	WGHT	G6	7AR	7TD	7TD	7TD	7TD	7TD	7TD	7TD	7TD	7TD	7TD	7TD	7TD	7TD	7TD	7TD	7TD	7TD
	Analyte	Wgt	Au	Ag	Мо	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	Sr	Cd	Sb	Bi	Ca	Р	Cr
	Unit	kg	gm/t	gm/t	%	%	%	%	gm/t	%	%	%	%	%	%	%	%	%	%	%	%
	MDL	0.01	0.005	2	0.001	0.001	0.02	0.01	2	0.001	0.001	0.01	0.01	0.02	0.01	0.001	0.01	0.01	0.01	0.01	0.001
11642	Drill Core	4.52	<0.005	3	<0.001	0.007	0.03	0.03	5	0.014	0.003	0.45	6.40	<0.02	<0.01	<0.001	<0.01	<0.01	0.40	0.10	0.017

www.acmelab.com

Client:

Shamrock Enterprises Inc.

Unit 19 - 650 Roche Pt. Drive

North Vancouver BC V7H 2Z5 Canada

Project:

Fireweed

Report Date:

March 19, 2012

Page:

4 of 4

Part 2

CERTIFICATE OF ANALYSIS

		Method	7TD	7TD	7TD	7TD	7TD	7TD	G6G
		Analyte	Mg	Al	Na	K	w	s	Αg
		Unit	%	%	%	%	%	%	gm/
		MDL	0.01	0.01	0.01	0.01	0.01	0.05	50
ſ	11642	Drill Core	1.26	9.11	0.06	2.31	<0.01	0.34	

Client:

Shamrock Enterprises Inc. Unit 19 - 650 Roche Pt. Drive

North Vancouver BC V7H 2Z5 Canada

Project:

Fireweed

Report Date:

March 19, 2012

www.acmelab.com

Page:

1 of 3

Method Analyte WGHT G6 7AR 7TD 7TD	7TD 7T P 0 % 0.01 0.00 0.07 <0.00 0.03 0.00 0.03 0.00 0.03 0.02 0.03 0.02
Pulp Duplicates Pull Core Pull Core	P % 0.01 0.00 0.00 0.03 0.00 0.03 0.00 0.03 0.00 0.
Analyte May	P % 0.01 0.00 0.00 0.03 0.00 0.03 0.00 0.03 0.00 0.
Mile	0.01 0.00 0.07 <0.00 0.03 0.00 0.02 0.00 0.03 0.02 0.03 0.02 0.04 0.00
MID 0.01 0.05 2 0.001 0.001 0.02 0.01 0.02 0.01 0.001 0.01	0.07 <0.00 0.03 0.00 0.02 0.00 0.03 0.02 0.03 0.02 0.04 0.00
REP G1 QC	0.03 0.00 0.02 0.00 0.03 0.02 0.03 0.02 0.04 0.00
11587 Drill Core 2.97 0.527 107 <0.001 0.007 1.35 2.81 112 0.005 0.001 0.40 7.89 0.35 <0.01 0.008 0.01 <0.01 0.16	0.03 0.00 0.02 0.00 0.03 0.02 0.03 0.02 0.04 0.00
REP 11587 QC 11629 Drill Core 4.53 0.439 48 <0.001 0.007 1.29 2.28 52 0.004 <0.001 0.46 7.54 0.15 <0.01 0.009 <0.01 <0.01 0.20 REP 11629 QC 47 Core Reject Duplicates 11596 Drill Core 4.65 0.056 24 <0.001 0.012 0.21 0.88 28 0.011 0.002 0.49 5.25 <0.02 <0.01 0.001 <0.01 <0.01 <0.01 0.22 DUP 11596 QC 0.038 26 <0.001 0.012 0.19 0.90 32 0.011 0.002 0.50 5.21 <0.02 <0.01 0.001 <0.01 <0.01 <0.01 0.22 11631 Drill Core 4.32 0.166 59 <0.001 0.011 1.76 3.01 64 0.005 <0.001 0.46 7.49 <0.02 <0.01 0.012 <0.01 <0.01 <0.01 <0.01 0.20 DUP 11631 QC 0.199 59 <0.001 0.011 1.78 3.10 64 0.005 <0.001 0.47 7.89 <0.02 <0.01 0.012 <0.01 <0.01 <0.01 0.21 Reference Materials STD AGPROOF Standard	0.02 0.00 0.03 0.02 0.03 0.02 0.04 0.00
Title Drill Core 4.53 0.439 48 <0.001 0.007 1.29 2.28 52 0.004 <0.001 0.46 7.54 0.15 <0.01 0.009 <0.01 <0.01 0.20	0.03 0.02 0.03 0.02 0.04 0.00
REP 11629 QC 47 Core Reject Duplicates 11596 Drill Core	0.03 0.02 0.03 0.02 0.04 0.00
Core Reject Duplicates 11596	0.03 0.02 0.04 0.00
11596 Drill Core 4.65 0.056 24 <0.001 0.012 0.21 0.88 28 0.011 0.002 0.49 5.25 <0.02 <0.01 0.001 <0.01 <0.01 0.22	0.03 0.02 0.04 0.00
DUP 11596 QC 0.038 26 < 0.001 0.012 0.19 0.90 32 0.011 0.002 0.50 5.21 < 0.02 < 0.01 0.001 < 0.01 < 0.01 0.01 0.22 11631 Drill Core 4.32 0.166 59 < 0.001	0.03 0.02 0.04 0.00
11631 Drill Core 4.32 0.166 59 <0.001 0.011 1.76 3.01 64 0.005 <0.001 0.46 7.49 <0.02 <0.01 0.01 <0.01 0.20 DUP 11631 QC 0.199 59 <0.001	0.04 0.00
DUP 11631 QC 0.199 59 < 0.001 0.011 1.78 3.10 64 0.005 < 0.001 0.47 7.89 < 0.02 < 0.01 0.012 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01	
Reference Materials STD AGPROOF Standard	
STD AGPROOF Standard	0.04 0.01
STD OREAS153AR Standard <2	
STD OREAS131B-A Standard 33	
STD OREAS153AR Standard <2	
STD OREAS131B-A Standard 30	
STD OREAS153AR Standard <2	
STD OREAS131B-A Standard 34	
STD OREAS131B Standard <0.001 0.021 1.88 3.16 33 0.002 0.002 0.18 5.67 <0.02 <0.01 0.009 <0.01 <0.01 5.40	0.06 0.00
STD OREAS153A Standard 0.018 0.711 <0.02 <0.01 <2 <0.001 <0.001 0.03 3.39 <0.02 <0.01 <0.001 <0.001 <0.01 1.17	0.06 0.00
STD OREAS131B Standard <0.001 0.021 1.93 3.20 36 0.003 0.002 0.18 5.65 <0.02 <0.01 0.009 <0.01 <0.01 5.18	0.05 0.00
STD OREAS153A Standard 0.018 0.727 <0.02 <0.01 <2 0.001 0.001 0.03 3.29 <0.02 <0.01 <0.001 <0.01 <0.01 1.12	0.05 0.00
STD OXH82 Standard 1.375	
STD OXH82 Standard 1.301	
STD OXH82 Standard 1.275	
STD OXH82 Standard 1.275	
STD OXK79 Standard 3.668	

www.acmelab.com

Client: **Shamrock Enterprises Inc.**

Unit 19 - 650 Roche Pt. Drive

North Vancouver BC V7H 2Z5 Canada

Project:

Fireweed

Report Date:

March 19, 2012

1 of 3 Part 2 Page:

QUALITY CONTROL REPORT

	Method	7TD	7TD	7TD	7TD	7TD	7TD	G6Gr
	Analyte	Mg	AI	Na	K	w	S	Ag
	Unit	%	%	%	%	%	%	gm/t
	MDL	0.01	0.01	0.01	0.01	0.01	0.05	50
Pulp Duplicates								
REP G1	QC	0.54	7.08	2.92	3.04	<0.01	<0.05	
11587	Drill Core	0.29	2.65	0.02	0.24	<0.01	3.84	
REP 11587	QC							
11629	Drill Core	0.49	2.39	0.01	0.03	<0.01	2.35	
REP 11629	QC							
Core Reject Duplicates								
11596	Drill Core	0.94	5.23	0.03	1.28	<0.01	0.90	
DUP 11596	QC	0.95	5.25	0.04	1.29	<0.01	0.91	
11631	Drill Core	0.44	2.54	<0.01	0.03	<0.01	3.16	
DUP 11631	QC	0.44	2.63	0.01	0.03	<0.01	3.24	
Reference Materials								
STD AGPROOF	Standard							88
STD OREAS153AR	Standard							
STD OREAS131B-A	Standard							
STD OREAS153AR	Standard							
STD OREAS131B-A	Standard							
STD OREAS153AR	Standard							
STD OREAS131B-A	Standard							
STD OREAS131B	Standard	3.09	4.53	0.14	3.12	<0.01	4.99	
STD OREAS153A	Standard	1.80	7.35	2.29	1.45	<0.01	1.23	
STD OREAS131B	Standard	3.22	4.75	0.15	3.46	<0.01	5.01	
STD OREAS153A	Standard	1.86	7.79	2.52	1.45	<0.01	1.22	
STD OXH82	Standard							
STD OXH82	Standard							
STD OXH82	Standard							
STD OXH82	Standard							
STD OXK79	Standard							
STD OXK79	Standard							

Project:

Shamrock Enterprises Inc. Unit 19 - 650 Roche Pt. Drive

North Vancouver BC V7H 2Z5 Canada

Client:

Fireweed

Report Date:

March 19, 2012

www.acmelab.com

Page:

2 of 3

												i age.		2 01 0	•	ait .					
QUALITY COI	NTROL	REP	ORT													SM	110	8000	28.1		
		WGHT	G6	7AR	7TD	7TD	7TD	7TD	7TD	7TD	7TD	7TD	7TD	7TD	7TD	7TD	7TD	7TD	7TD	7TD	7TD
		Wgt	Au	Ag	Мо	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	Sr	Cd	Sb	Bi	Ca	Р	Cr
		kg	gm/t	gm/t	%	%	%	%	gm/t	%	%	%	%	%	%	%	%	%	%	%	%
		0.01	0.005	2		0.001	0.02	0.01	2	0.001	0.001	0.01	0.01	0.02	0.01	0.001	0.01	0.01	0.01	0.01	0.001
STD OXK79	Standard		3.594																		
STD OXK79	Standard		3.428																		
STD SP49	Standard																				
STD SU-1B	Standard				<0.001	1.202	<0.02	0.02	6	1.974	0.068	0.07	25.77	<0.02	0.03	<0.001	<0.01	<0.01	2.29	0.08	0.031
STD SU-1B	Standard				0.003	1.165	<0.02	0.03	7	2.004	0.066	0.07	24.82	<0.02	0.03	<0.001	<0.01	<0.01	2.26	0.06	0.029
STD OREAS131B-A				33.3																	
STD OXH82 Expected			1.278																		
STD OXK79 Expected			3.532																		
STD SP49 Expected																					
STD AGPROOF Expected																					
STD OREAS131B Expected					0.0003	0.0216	1.86	3.14	33.3	0.0025	0.00181	0.1771	5.705	0.0072	0.0026	0.0089	0.005		5.37	0.0536	0.0027
STD SU-1B Expected					0.0004	1.185	0.0058	0.0235	6.4	1.97	0.0672	0.0703	25.54 (0.00025	0.03	0.0003	2E-05	0.0003	2.21	0.06	0.032
STD OREAS153A Expected					0.0177	0.712		0.0053		0.001		0.026	3.422						1.2	0.055	0.0016
BLK	Blank		<0.005																		
BLK	Blank		<0.005																		
BLK	Blank		<0.005																		
BLK	Blank		<0.005																		
BLK	Blank			<2																	
BLK	Blank			<2																	
BLK	Blank		<0.005																		
BLK	Blank		<0.005																		
BLK	Blank			<2																	
BLK	Blank		<0.005																		
BLK	Blank		<0.005																		
BLK	Blank																				
BLK	Blank																				
BLK	Blank				<0.001	<0.001	<0.02	<0.01	<2	<0.001	<0.001	<0.01	<0.01	<0.02	<0.01	<0.001	<0.01	<0.01	<0.01	<0.01	<0.001
BLK	Blank				<0.001	<0.001	<0.02	<0.01	<2	<0.001	<0.001	<0.01	<0.01	<0.02	<0.01	<0.001	<0.01	<0.01	<0.01	<0.01	<0.001
Prep Wash																					

www.acmelab.com

Client: **Shamrock Enterprises Inc.**

Unit 19 - 650 Roche Pt. Drive

North Vancouver BC V7H 2Z5 Canada

Project:

Fireweed

Report Date:

March 19, 2012

2 of 3 Part 2 Page:

QUALITY CONTROL REPORT

		7TD	7TD	7TD	7TD	7TD	7TD	G6Gr
		Mg	Al	Na	K	W	S	Ag
		%	%	%	%	%	%	gm/t
		0.01	0.01	0.01	0.01	0.01	0.05	50
STD OXK79	Standard							
STD OXK79	Standard							
STD SP49	Standard							63
STD SU-1B	Standard	1.81	4.49	1.73	0.64	<0.01	9.06	
STD SU-1B	Standard	1.83	4.56	1.80	0.61	<0.01	8.34	
STD OREAS131B-A								
STD OXH82 Expected								
STD OXK79 Expected								
STD SP49 Expected								60.2
STD AGPROOF Expected								94
STD OREAS131B Expected		3.128	4.57	0.139	3.34		5.01	
STD SU-1B Expected		1.79	4.39	1.662	0.6	0.0007	9	
STD OREAS153A Expected		1.83	7.6845	2.3215	1.43		1.26	
BLK	Blank							
BLK	Blank							
BLK	Blank							
BLK	Blank							
BLK	Blank							
BLK	Blank							
BLK	Blank							
BLK	Blank							
BLK	Blank							
BLK	Blank							
BLK	Blank							
BLK	Blank							<50
BLK	Blank							<50
BLK	Blank	<0.01	<0.01	<0.01	<0.01	<0.01	<0.05	
BLK	Blank	<0.01	<0.01	<0.01	<0.01	<0.01	<0.05	
Prep Wash								

Project:

Client:

Fireweed

Report Date:

March 19, 2012

www.acmelab.com

Page:

3 of 3

Part 1

Shamrock Enterprises Inc.

Unit 19 - 650 Roche Pt. Drive North Vancouver BC V7H 2Z5 Canada

												. ago.		0 0. 0							
QUALITY CONTROL REPORT SMI11000828.1																					
		WGHT	G6	7AR	7TD	7TD	7TD	7TD	7TD	7TD	7TD	7TD	7TD	7TD	7TD	7TD	7TD	7TD	7TD	7TD	7TD
		Wgt	Au	Ag	Мо	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	Sr	Cd	Sb	Bi	Ca	Р	Cr
		kg	gm/t	gm/t	%	%	%	%	gm/t	%	%	%	%	%	%	%	%	%	%	%	%
		0.01	0.005	2	0.001	0.001	0.02	0.01	2	0.001	0.001	0.01	0.01	0.02	0.01	0.001	0.01	0.01	0.01	0.01	0.001
G1	Prep Blank		<0.005	<2	<0.001	0.001	<0.02	<0.01	<2	<0.001	<0.001	0.08	2.47	<0.02	0.08	<0.001	<0.01	<0.01	2.35	0.07	<0.001
G1	Prep Blank		<0.005	<2																	
G1	Prep Blank				<0.001	<0.001	<0.02	<0.01	<2	<0.001	<0.001	0.08	2.31	<0.02	0.08	<0.001	<0.01	<0.01	2.29	0.07	<0.001

www.acmelab.com

Client: **Shamrock Enterprises Inc.**

Unit 19 - 650 Roche Pt. Drive

North Vancouver BC V7H 2Z5 Canada

Project:

Fireweed

Report Date:

March 19, 2012

3 of 3 Part 2 Page:

ALITY CONTROL REPORT

		7TD	7TD	7TD	7TD	7TD	7TD	G6Gr
		Mg	ΑI	Na	K	w	s	Ag
		%	%	%	%	%	%	gm/t
		0.01	0.01	0.01	0.01	0.01	0.05	50
G1	Prep Blank	0.57	7.53	2.88	3.11	<0.01	<0.05	
G1	Prep Blank							
G1	Prep Blank	0.54	6.96	2.90	3.08	<0.01	<0.05	