GEOPHYSICAL ASSESSMENT REPORT

on the

BONAPARTE SOUTH PROPERTY

(Events 5409321 & 5416362)

BCGS Map Sheet 092P.008/.009, 092I.098/.099/.089 Kamloops Mining Division BC Geological Survey Assessment Report 33569

Work Done on Tenures

907369,907429, 907449, 907469

(From September 22, 2012 to October 31, 2012

Centre of Work

NAD 83: 686,100E 5,651,800N

for

BCT Mining Corporation

and

Goldbridge Holdings Ltd.

Author

Laurence Sookochoff PEng. Sookochoff Consultants Inc.

August 1, 2013

Sookochoff Consultants Inc.

Page 1 of 57

TABLE of CONTENTS

	Page
SUMMARY	4.
INTRODUCTION	5.
BONAPARTE CLAIM GROUP	5.
Table 1 TENURES OF BONAPART CLAIM GROUP	5.
LOCATION and ACCESS	7.
HISTORY: PROPERTY & AREA	9.
GEOLOGY: PROPERTY & AREA	11.
MINERALIZATION: PROPERTY & AREA	14.
2012 GEOPHYSICAL SURVEYS	17.
CONCLUSIONS	22.
RECOMMENDATIONS	23.
REFERENCES	24.
CERTIFICATE	25.
APPENDICES	
APPENDIX I Statement of Costs	26.
APPENDIX II Confirmation Pages: Events 5409321 & 5416362	28.
APPENDIX III Geophysical Data	33.
APPENDIX IV Geophysical Maps	53.
Figure 8 VLF-EM Fraser Filtered Data Contoured & Coloured	
Figure 9. Magnetometer Data Coloured & Contoured	
Figure 10. Magnetometer Data Coloured	
APPENDIX V Statement of Qualifications	57.

TABLE of CONTENTS (cont'd)

ILLUSTRATIONS

Figure 1. Location Map	4.
Figure 2. Claim Location Map	8.
Figure 3. Claim & Index Map	8.
Figure 4. Geology, Claim, & Minfile	11.
Figure 5. Indicated Structures on Contoured Fraser Filtered VLF-EM Data	19.
Figure 6. Contoured VLF-EM Data Fraser Filtered on Google	19.
Figure 7. Contoured Magnetometer Field Data	21.

SUMMARY

The Bonaparte Claim Group is comprised of 37 claims covering an area of 10,650 hectares 273 kilometres northwest of Vancouver and 33 kilometres north of Kamloops in the southern interior of British Columbia. Kamloops has been the hub of mining and mineral exploration activity dating back to the late 1800's. Mineral exploration results have been rewarding in the region in that by continuous and persistent exploration, by ever advancing exploration techniques, by an economic bases for production, some of the historical mineral occurrences have been re-explored and developed into productive operations.

Examples are the historical mineral occurrences and the present productive mines in the Highland Valley 60 kilometres southwest of Kamloops, and the numerous historical mineral occurrences, and two past producers within 15 kilometres west and south of Kamloops where economic resources were developed on past producer sites, and are reportedly scheduled for bulk production in 2013.

Much of the historical production was minor and limited to mineralized quartz veins which, more often than not, stemmed from nearby intrusive activity. More recent and current production on a much larger scale is, and will be, from minerals hosted by an intrusive or a porphyry mineral deposit.

The geology of the Bonaparte Claim Group is predominantly a cover of Paleozoic to Mesozoic Harper Ranch sedimentary rocks and/or Nicola Group volcanic with sedimentary rocks which are intruded by small granodioritic stocks; possibly satellitic from the Thuya Batholith to the north. Historical exploration on the ground covered by the property and immediate area resulted in the discovery of mineralized often gold-bearing quartz veins mainly hosted by intrusive stocks. The Homestake polymetallic vein prospect (Minfile 092INE082) on the Bonaparte Clam Group is one of the oldest known gold-quartz properties in the province, having been reported upon by G.M. Dawson in 1888.

The Bonaparte developed prospect, three kilometres to the west of the Property, hosts gold bearing quartz veins with up to 50.39 grams per tonne in a quartz diorite intrusion.

The VLF-EM and Magnetometer results indicated a covered intrusive in the southwest sector of the survey area. An indicated west-northwesterly arcuate indicated structure correlating with a water course is indicated as a fault contact with the sediments. The fault and the northerly and the northwesterly fault intersections, designated A to D on Figure 5 would be the prime localized areas to explore for alteration patterns to a potential economic mineral resource as a porphyry mineral deposit in the intrusive or indications of the porphyry as mineralized quartz veins within the indicated structures. These indications would be most obvious in the fault contact and/or in the fault intersection areas.

An exploration program comprised of prospecting, geological mapping and sampling is recommended over the four designated areas and along the indicated intrusive/sediment contact. Geological mapping should be focussed on locating mineral indicators and alteration patterns at these localities.

INTRODUCTION

This report documents the Sept/October, 2012 field data results of a 22 line-kilometer, ground magnetometer VLF-EM work program, employing a 5-man field crew. Much of the geological environment is taken from BC ARIS Assessment Reports, Minfiles and reports by professional geologists involved in the companies' local projects (eg Bonaparte Gold Mine and Bonaparte South Exploration Projects). The presence of obvious geological structures and lineaments, contained in and upon the large granitic body known as the Thuya Batholith, offers strong exploration potential and possible duplication of the type of high-grade (3.0 opt Au) mineral deposits already being mined at the Bonaparte Gold Mine, three kilometres west of the northwestern corner of the Bonaparte Claim Group.

This program, completed in 2012, using VLF-EM ground magnetometers was designed by BCT Mining Corporation and Goldbridge Holdings Ltd. personnel, targeting potential buried bedrock faults, fissures, shears, and intrusives that may host potentially economic mineral resources.

BONAPARTE CLAIM GROUP

The Bonaparte Claim Group is comprised of 37 contiguous mineral claims totalling 10,650 hectares. Particulars are reported on in Table I following:

<u>Tenure</u> <u>Number</u>	<u>Claim Name</u>	<u>Owner</u>	<u>Issue Date</u>	<u>Good To</u> <u>Date*</u>	<u>Status</u>	<u>Area</u> (ha)
<u>663765</u>	HSCG	<u>222941</u> 100%	2009/nov/02	2013/jul/01	GOOD	20.38
<u>756722</u>	POLE STAR	<u>222941_</u> 100%	2010/apr/25	2013/jul/01	GOOD	122.35
<u>820282</u>	AL 98	<u>222941</u> 100%	2010/jul/17	2013/jul/01	GOOD	40.76
<u>820302</u>	AL 99	<u>222941_</u> 100%	2010/jul/17	2013/jul/01	GOOD	40.76
<u>820322</u>		<u>222941_</u> 100%	2010/jul/17	2013/jul/01	GOOD	468.93
<u>820323</u>	AL 3	<u>222941_</u> 100%	2010/jul/17	2013/jul/01	GOOD	508.90
<u>820325</u>		<u>222941_</u> 100%	2010/jul/17	2013/jul/01	GOOD	509.35
<u>820326</u>		<u>222941_</u> 100%	2010/jul/17	2013/jul/01	GOOD	203.75
<u>820342</u>		<u>222941_</u> 100%	2010/jul/17	2013/jul/01	GOOD	428.17
820343		<u>222941_</u> 100%	2010/jul/17	2013/jul/01	GOOD	428.03
820362		<u>222941_</u> 100%	2010/jul/17	2013/jul/01	GOOD	509.13
820382	AL 6	<u>222941</u> 100%	2010/jul/17	2013/jul/01	GOOD	509.10
820384		<u>222941</u> 100%	2010/jul/17	2013/jul/01	GOOD	509.14
820402		<u>222941</u> 100%	2010/jul/17	2013/jul/01	GOOD	447.74

Table I. Tenures of the Bonaparte Claim Group

820422		<u>222941</u> 100%	2010/jul/17	2013/jul/01	GOOD	509.40
820443		<u>222941_</u> 100%	2010/jul/17	2013/jul/01	GOOD	20.37
820446		<u>222941_</u> 100%	2010/jul/17	2013/jul/01	GOOD	509.15
820482		<u>222941_</u> 100%	2010/jul/17	2013/jul/01	GOOD	183.37
820504		<u>222941_</u> 100%	2010/jul/17	2013/jul/01	GOOD	264.97
<u>837117</u>	HOMESTAKE GIBSON	<u>222941_</u> 100%	2010/nov/01	2013/jul/01	GOOD	81.53
<u>854534</u>	HOMESTAKE GIBSON N	<u>222941_</u> 100%	2011/may/14	2013/jul/01	GOOD	81.50
866491	BONAPARTE	<u>222941_</u> 100%	2011/jul/18	2013/jul/01	GOOD	122.28
877269		<u>222941_</u> 100%	2011/aug/01	2013/jul/01	GOOD	407.12
<u>877469</u>	BONAPARTE 4	<u>222941_</u> 100%	2011/aug/01	2013/jul/01	GOOD	81.39
<u>877569</u>		<u>222941_</u> 100%	2011/aug/01	2013/jul/01	GOOD	61.06
<u>877589</u>	BONAPARTE S20	<u>222941_</u> 100%	2011/aug/01	2013/jul/01	GOOD	407.13
877649	BONAPARTE S25	<u>222941_</u> 100%	2011/aug/01	2013/jul/01	GOOD	508.92
907369	BONGOLD 1	<u>222941_</u> 100%	2011/oct/07	2013/jul/01	GOOD	508.63
<u>907429</u>	BONGOLD 3	<u>222941_</u> 100%	2011/oct/07	2013/jul/01	GOOD	508.34
<u>907449</u>	BONGOLD 4	<u>222941_</u> 100%	2011/oct/07	2013/jul/01	GOOD	325.44
<u>907469</u>	BONGOLD 5	<u>222941_</u> 100%	2011/oct/07	2013/jul/01	GOOD	345.70
<u>924709</u>	GOLD BUG EAST	<u>222941_</u> 100%	2011/oct/27	2013/jul/01	GOOD	40.76
<u>933289</u>	HOMESTAKE WEST	<u>222941_</u> 100%	2011/nov/26	2013/jul/01	GOOD	163.04
1011753	GOLD BUG	<u>222941_</u> 100%	2012/aug/03	2014/feb/22	GOOD	142.65
1012131	AL 1a	<u>222941_</u> 100%	2010/jul/17	2013/jul/01	GOOD	325.91
1012132	AL 1b	<u>222941_</u> 100%	2010/jul/17	2013/jul/01	GOOD	183.17
<u>1013113</u>	BON 6	<u>222941_</u> 100%	2012/sep/22	2014/feb/22	GOOD	122.10

Table I. Tenures of the Bonaparte Claim Group (cont'd)

*Contingent on the acceptance of Event No.'s 5409391 and 5416362

LOCATION and ACCESS

The centre of the Bonaparte Claim Group is at UTM (NAD 83) 686,100E 5,651,800N and is located 273 kilometres northeast of Vancouver and 33 kilometres north of Kamloops within BCGS 092P.008/.009, 092I.098/.099/.089 of the Kamloops Mining Division.

Access is northerly from North Kamloops via the paved Westsyde Road to the Inskip secondary road which junctions to the west. At four kilometres along the Inskip road, is the eastern boundary of Tenure 820342 in the southeastern portion of the Bonaparte Claim Group. This road affords access to a network of roads providing access to most southern areas of the Property.

Access to the northern portion of the Property is via the Jamieson Creek Forestry Service road which junctions with the Westsyde road five kilometres north of the Inskip road junction. At 1.5 kilometres west, the road crosses the eastern boundary of Tenure 820342, passes through the eastern portion of the Property for eight kilometres, and five kilometres further, junctions with a secondary road to the west which crosses into the northeastern portion of the Property at Tenure 907449. This road affords access to a network of roads providing access to most northern and central portions of the Property.

Figure 1: Location Map

Figure 2: CLAIM LOCATION MAP

Figure 3: CLAIM & INDEX MAP

Bonaparte

HISTORY: PROPERTY & AREA

The geology on some of the more significant mineral *MINFILE* reported occurrences, prospects, and past producers on the Property and peripheral to the Property (Figure 3) are reported as follows:

BONAPARTE developed prospect (Au quartz veins) MINFILE 092P050 Three kilometres west

Between 1969 and 1979 (Assessment Reports 4665 and 8500), the area of the property was prospected for molybdenum. In 1973, Amoco Canada Petroleum Ltd. carried out geological mapping, soil sampling, induced polarization/magnetic surveys and drilled two core holes totalling 299 metres (reported in Assessment Report 23722). In 1984, following regional heavy mineral silt surveys, MineQuest Exploration Associates Ltd., on behalf of the GoldQuest I Limited Partnership, discovered high grade gold-quartz float in four areas on the property. Following the discovery of the gold-quartz float, and financed by option agreements with Inter-Pacific Resources and the Hughes-Lang Group, MineQuest conducted detailed geological mapping, extensive soil sampling and both ground and airborne magnetic/VLF-EM surveys, as well as diamond drilling and trenching in 1985 and 1986 on the property. Inter-Pacific Resources acquired the property in 1985 and completed 7.1 kilometres of magnetic surveying, soil geochemistry (257 samples), lithogeochemistry (88 samples), trenching and 1129.9 metres of diamond drilling. Hole #6 intersected 0.92 metre grading 35.7 grams per tonne gold. The Hughes-Lang Group optioned a 50 per cent interest in the property in 1986 and completed 22 diamond-drill holes and 27 trenches on the property on 5 veins. Drilling and trenching has identified six closely spaced, narrow, en echelon auriferous quartz veins trending north to northeast. During June to September, 1994, Cleveland Capital Corporation carried out a pilot plant mining program in the Discovery area and removed approximately 9000 tonnes (10,000 tons) of bulk sample material for processing at the Trail smelter.

In 1998, 1,103 metres of drilling was carried by Orko Gold Corp. in 21 holes Twenty-one (21) holes were drilled ranging in length from 15.2 to 97.5 metres.

The ground was restaked and sold to Uganda Gold Mining Ltd. and optioned to Clan Resources Ltd. which in turn optioned the ground to North American Gem Inc. in 2003 who then staked additional claims. A trenching and diamond drilling program was carried out in 2003 by North American consisting of 652 metres in 15 drill holes along with trenching and stripping. North American followed up in 2004 by collecting 59 stream silt samples in and around the property.

North American reports that the Crow vein system has now been trenched for over 90 metres in a southerly extension of the existing mining pit. The vein continues to be open to the south. Widths encountered average 0.83 metre near the existing pit and widen to average over 1.7 metres in width over the southern 26 metres of the exposed vein system. The newly discovered Eagle vein system has now been trenched for over 100 metres, with over 75 metres averaging 1.42 metres in width having been exposed. The Flicker vein system has now been exposed over an additional 30 metres. The Raven vein system has been trenched for over 65 metres, which, with old workings, now exposes the vein for approximately 100 metres, and is open to the north and south.

History: Property & Area (cont'd) HOMESTAKE prospect (polymetallic veins Ag-Pb-Zn+/-Au) MINFILE 092INE082 On Property (Tenure 663765)

The Homestake is one of the oldest known gold-quartz properties in the province, having been reported upon by G.M. Dawson in 1888.

BEAR CAT prospect (polymetallic veins Ag-Pb-Zn+/-Au) MINFILE 092INE088 On Property (Tenure 1011753)

The Bear Cat claims were staked in 1934 and owned by G.P. Miles and associates of Kamloops and Vancouver. An adit is driven southeasterly for 24 metres following a quartz vein. A winze, 12 metres from the portal, is sunk to 4.8 metres. The Royal Star group of claims were located along the east bank of Jamieson Creek and owned by M. Salk and associates of Kamloops. A short incline and opencut explored quartz stringers. In 1980, the Gold Rush claims were staked over the Bear Cat and Royal Star showings and in 1982, work consisted of trenching and one drillhole (no data available). The Moen claims were staked in 1989 to cover the showings and in 1990, prospecting, mapping and rock sampling was performed by P. Watt.

POLE STAR showing (polymetallic veins Ag-Pb-Zn+/-Au) MINFILE 092INE091 On Property (Tenure 756722)

Earliest work reported on the Pole Star claim was in 1899 when an incline shaft was sunk to 7.9 metres. The Pole Star claim was Crown granted in 1902 but has since Reverted. An airborne magnetic and VLF-EM survey was flown in 1972 on behalf of Alberta Copper and Resources Ltd. on claims which covered the Pole Star showing. The WK claim was staked over the showing in 1983 and in 1984 a preliminary soil survey was carried out on behalf of Callex Mineral Exploration Ltd. In 1987, Callex Mineral Exploration Ltd. conducted a VLF EM-16 survey.

JAMIESON CREEK showing (surficial placers) MINFILE 092INE091 Two kilometres east

Jamieson Creek is reported to have been worked for placer gold in the 1860s and to have yielded good returns, but attempts to reach bedrock in the valley bottom failed because of the flow of water encountered. About 1900, a dredge was installed on a property that included the lower part of Jamieson Creek and about 2.4 kilometres of the North Thompson River upstream from Jamieson Creek. The dredge worked for two months in 1901 with unsatisfactory results. It is reported that the gold occurred in the form of bar deposits, which are unsuitable for dredging (Geological Survey of Canada Memoir 249).

JS MOLYBDENITE showing (porphyry Mo-Climax type) MINFILE 092INE178 Four kilometres west

The prospect was staked as the Rave group in 1972 by Amoco Canada Petroleum Limited to cover a stream sediment molybdenum anomaly. Amoco completed a soil sampling program and geological mapping and related molybdenum soil anomalies to molybdenite mineralization in bedrock (Assessment Report 4665). The prospect was subsequently staked by Joe Schmising as the JS claim and a program of geological mapping and prospecting undertaken in 1980 (Assessment Report 8500).

GEOLOGY: PROPERTY & AREA

The BC government supported MapPlace geological map indicates that the Bonaparte Claim Group predominantly covers late Paleozoic sedimentary rocks which are intruded by small granodioritic stocks; possibly satellitic to the Thuya Batholith to the north.

The Property is proximally west of a regional northerly trending structure coincident with the North Thompson River. The fault is in part a fault contact between slices of Upper Triassic Nicola Group Eastern Volcanic Facies (uTrNE) and to a Late Triassic to Early Jurassic syenitic to monzonitic intrusive (LTrJsy) to the east and predominantly Devonian to Triassic Harper Ranch (DTrHsf) and Nicola Groups (uTrNsf) comprised of mudstone, siltstone, shale, fine clastic sedimentary rocks to the west. Miocene to Pleistocene Chilcotin Group basaltic volcanic rocks (MiPlCvb) further west overlies the Harper Ranch and the Nicola group in a conformable contact.

Figure 4: GEOLOGY, CLAIM, & MINFILE

Goldbridge Holdings Ltd./BCT Mining Corporation

Events 5409321 & 5416362

GEOLOGY MAP LEGEND

Miocene to Pleistocene

MiPlCvb

basaltic volcanic rocks

Devonian to Triassic

DTrHsf

mudstone, siltstone, shale, fine clastic sedimentary rocks

DTrHvb

basaltic volcanic rocks

Upper Triassic: Nicola Group

Eastern Volcanic Facies

uTrNE

basaltic volcanic rocks

uTtrNsf

mudstone, siltstone, shale, fine clastic sedimentary rocks

andesitic volcanic rocks

Late Triassic to Early Jurassic

LTrJgd

unnamed granodiorite intrusive rocks

LTrJgb

dioritic to gabbroic intrusive rocks

LTrJsy

syenitic to monzonitic intrusive rocks

There are not any MapPlace indicated structures on the Property, however, a regional northerly structure is indicated within 500 metre east of the southeastern portion and within six kilometres east of the northeastern portion. A splay north-northwesterly trending fault from the regional fault in the south together with the regional fault, are fault contacts to a pie slice exposure of the Eastern volcanic Facies of the Upper Triassic Nicola Group which is intruded by a small stock of granodiorite.

These two dominant fault trends, coupled with northwesterly, westerly, and north-easterly fault trends, common in the region, influenced the drainage pattern on the Property. The stream confluences would be indicative of structural intersections which could be a favourable avenue for the transfer of subsurface sourced minerals or hydrothermal mineral indicators to the surface.

The geology on some of the more significant mineral *MINFILE* reported occurrences, prospects, and past producers on the Property and peripheral to the Property (Figure 3) are reported as follows:

Geology: Property & Area (cont'd)

BONAPARTE developed prospect (Au quartz veins) MINFILE 092P050 Three kilometres west

Mapping (Geological Survey of Canada Map 42-1989 and Fieldwork 2000), north and south of the Bonaparte property indicates the area to be underlain by units of the late Paleozoic Harper Ranch Group comprised of argillite, phyllite, volcanic sandstone, chert pebble conglomerate and local carbonate. The strata are intruded by Triassic and/or Jurassic granodiorite, quartz monzonite and diorite which are believed to form part of the Thuya batholith. Miocene to Pliocene plateau basalts are extensive and consist of predominantly olivine basalt and andesite with minor ash and breccia.

The Bonaparte property covers an erosional window through Miocene plateau basalts in which older bedrock consisting of Triassic metasediments are intruded by Triassic and/or Jurassic quartz diorite. The plateau basalts occupy the higher ground and form prominent cliffs bounding the exposures of older rocks. Argillites are the oldest rocks exposed. They are commonly pyritic and vary in composition from phyllitic shale to argillaceous siltstone. The phyllite unit hosts unmineralized (rare pyrite) quartz veins that generally do not exceed 20 centimetres in width. Hornfelsed argillaceous sedimentary rocks are found in contact with and adjacent to quartz diorite. Xenoliths of hornfels are also found within the quartz diorite body.

The quartz diorite intrusion is medium grained and weakly altered, with minor saussuritization of feldspars and chloritization of mafic minerals. Locally, up to 3 per cent disseminated pyrite and pyrrhotite is evident. Narrow quartz veins and stockwork sections, generally barren of sulphides and gold, are common in the intrusive rocks. Wider (up to 3 metres) north trending quartz veins are also hosted by the quartz diorite. Locally these veins are auriferous and may contain up to several per cent sulphides.

HOMESTAKE prospect (polymetallic veins Ag-Pb-Zn+/-Au) MINFILE 092INE082 On Property (Tenure 663765)

Brownish weathering, highly fractured porphyritic quartz monzonite intrudes biotite and sericite schist and argillite of the Paleozoic to Mesozoic Harper Ranch and/or Nicola groups. In some areas the metasediments have been sheared and dragfolded. A northwest striking zone of shearing about 9 to 15 metres wide is well defined in the quartz monzonite intrusion where several near-parallel quartz veins and branching stringers occur along joint planes and prominent fractures. The veins traverse both the intrusive rock and metasediments. The veins are mineralized with scattered grains of pyrite, galena, arsenopyrite and sphalerite. The veins strike 330 to 345 degrees and dip from 90 to 60 degrees west and vary in thickness from 0.15 to 5.4 metres. Most of the veins (at least five) occur on the Homestake claim and continue to the south through a portion of the Molly Gibson claim

BEAR CAT prospect (polymetallic veins Ag-Pb-Zn+/-Au) MINFILE 092INE088 On Property (Tenure 1011753)

The Bear Cat claims were staked in 1934 and owned by G.P. Miles and associates of Kamloops and Vancouver. An adit is driven southeasterly for 24 metres following a quartz vein. A winze, 12 metres from the portal, is sunk to 4.8 metres. The Royal Star group of claims were located along the east bank of Jamieson Creek and owned by M. Salk and associates of Kamloops. A short incline and opencut explored quartz stringers. In 1980, the Gold Rush claims were staked over the Bear Cat and Royal Star showings and in 1982, work consisted of trenching and one drillhole (no data available).

Geology: Property & Area (cont'd)

BEAR CAT prospect (cont'd)

The Moen claims were staked in 1989 to cover the showings and in 1990, prospecting, mapping and rock sampling was performed by P. Watt. At the Bear Cat showing, an adit is located on the south side of a small tributary to Jamieson Creek. It has been driven southeasterly for about 24 metres and follows a lenticular quartz vein for 21 metres at which point the vein narrows to a knife edge and then disappears as a joint in wallrock. The vein dips steeply eastward and ranges in width from 0.3 to 1.8 metres. Mineralization consists of sparse pyrite, chalcopyrite, sphalerite and galena. Wallrock comprises highly contorted limy phyllites, and graphitic and sericitic schists of the Carboniferous to Triassic Nicola and/or Harper Ranch groups. The metasediments strike 025 degrees and dip steeply east. Numerous drag folds disrupt the stratigraphy and cross joints are filled with quartz-calcite stringers. Multiple porphyry dikes and sills intrude the stratigraphy and vary from diorite to feldspar porphyry to a more felsic composition.

POLE STAR showing (polymetallic veins Ag-Pb-Zn+/-Au) MINFILE 092INE091 On Property (Tenure 756722)

An incline reported to be 15 metres deep is partly caved about 6 metres below the collar (ca. 1940s). The incline follows a quartz vein about 2.4 metres wide near the contact of a small body of granite with a sequence of argillite and schist. The quartz in the dump is sparsely mineralized with pyrite, galena and sphalerite but high assays in gold and silver are reported. Two trenches expose quartz vein material about 30 metres north of the incline.

Hostrocks are believed to be metasediments of the Upper Triassic Nicola Group and/or Devonian to Permian Harper Ranch Group intruded by Triassic to Jurassic granitic bodies.

JS MOLYBDENITE showing (porphyry Mo-Climax type) MINFILE 092INE178 Four kilometres west

The JS Molybdenite showing is located 24 kilometres north of Kamloops and is accessible via the Jamieson Creek logging roads. Molybdenite mineralization is developed within metasedimentary rocks (argillites, quartzites and quartz muscovite schists) of the late Paleozoic Harper Ranch Group. The metasedimentary rocks are intruded by dioritic rocks (diorite and quartz diorite) which are possibly part of the Late Triassic to Early Jurassic Thuya batholith. The molybdenum mineralization is best exposed in a 20 by 20 metre area that has been tested by pitting.

MINERALIZATION: PROPERTY & AREA

The mineralization on some of the more significant mineral *MINFILE* reported occurrences, prospects, and past producers on the Property and peripheral to the Property (Figure 3) are reported as follows:

BONAPARTE developed prospect (Au quartz veins) MINFILE 092P050 Three kilometres west

Mineralization primarily occurs in a series of north trending quartz veins hosted mainly by the quartz diorite intrusion. At least eight gold-bearing quartz veins are recognized from trenching and drilling and occur within an area 823 by 548 metres. From west to east these are the Grey Jay, Owl, Crow, Nutcracker, Raven, Chickadee, Flicker and Woodpecker veins. A number of drill intersections which may represent additional veins also occur. The veins generally dip moderately to steeply east and locally range up to 3 metres in width. Pinching and swelling is common along the length of the veins.

Mineralization: Property & Area (cont'd)

BONAPARTE developed prospect (cont'd)

Locally, the massive white quartz veins contain up to several per cent sulphides consisting of pyrite with lesser chalcopyrite, pyrrhotite and molybdenite. Native gold is also evident but generally is associated with silver-grey tellurides. Only very locally, anomalous gold values occur in shear zones or in the intrusive rock close to, but sometimes spatially unrelated to auriferous quartz veining.

The Grey Jay vein is, where exposed at surface, the westernmost member of the Crow vein system. The vein is a discrete vein, but appears to merge with the Crow vein at depth. It also intersects the Owl vein. The Grey Jay vein strikes 023 degrees and dips 45 degrees east. Drilling indicates a strike length of 130 metres with an average true width of 0.95 metre. Average gold grade is 29.13 grams per tonne (Assessment Report 18682).

The Crow vein system consists of three discrete segments termed the North, Central and South. The South segment strikes 027 degrees and dips 55 degrees east and is separated from the Central segment by a major fault. This fault displaces the South segment about 10 metres into the footwall relative to the Central segment. The Central segment strikes 012 degrees and dips 55 degrees east. A portion of this section of vein represents the region where the Nutcracker and Crow veins have merged along strike. The North segment of the Crow vein strikes 034 degrees and dips 55 degrees east. The Grey Jay and Owl veins intersect this segment. An average true width of the Crow vein system is 1.15 metres with a drill indicated strike length of 220 metres. Average gold grade is 14.39 grams per tonne (Assessment Report 18682). Measured geological (proven) reserves for the Crow vein are 5200 tonnes grading 21.08 grams per tonne gold. Indicated (probable) reserves are 5000 tonnes grading 20.56 grams per tonne gold (Property File - News Release, Inter-Pacific Resource Corp., January 14, 1987).

The Owl vein is part of the Crow vein system and strikes 032 degrees with 50 degree east dips. The Owl vein intersects the Crow and Grey Jay veins and drill data suggests that the Owl vein continues both along strike and downdip beyond these intersections. The width of the Owl vein appears to increase with depth to a maximum of 2.3 metres. Drilling has indicated a strike length of 100 metres. A drill intersection across 2.3 metres assayed 14.05 grams per tonne gold (Assessment Report 18682).

The Nutcracker vein is also part of the Crow vein system. It strikes 027 degrees and dips 48 degrees east with an average true width of 0.35 metre. Drill data suggests the Nutcracker vein continues south along strike beyond its point of merging with the Crow vein. Drilling has indicated a strike length of 110 metres. Average gold grade is 50.39 grams per tonne (Assessment Report 18682).

The Raven vein strikes 020 degrees and dips 48 degrees east with an average true width of 0.69 metre. Structure is complex with three faults truncating and displacing the vein. Drill data indicates a strike length of 35 metre. Average gold grade is 6.99 grams per tonne (Assessment Report 18682).

The Chickadee vein strikes 360 degrees and dips 50 degrees east with an average true width of 0.3 metres. Trenching has indicated a strike length of 20 metres. Gold grades up to 13.84 grams per tonne have been obtained from channel samples (Assessment Report 18682). The Flicker vein strikes 015 degrees and dips 72 degrees east with an average true width of 0.95 metre. Two low angle faults offset the vein. Drill data indicates a 115 metre strike length. Average gold grade is 6.06 grams per tonne gold (Assessment Report 18682).

The presence of the two low angle faults suggests that the Woodpecker vein occurs in the hangingwall of the Flicker vein. Drill data indicates a strike length of 45 metres. A drill intersection across 1.67(?) metres assayed 9.25 grams per tonne gold (Assessment Report 18682).

Mineralization: Property & Area (cont'd)

HOMESTAKE prospect (polymetallic veins Ag-Pb-Zn+/-Au) MINFILE 092INE082 On Property (Tenure 663765)

Several shafts (2.4 to 23 metres deep), an adit 45 metres long, numerous cuts, trenches and pits explore several quartz veins on both claims with most of the work conducted on the northerly Homestake claim.

A sample from the dump of an opencut on a vein analysed 13.7 grams per tonne gold and 308.5 grams per tonne silver (Minister of Mines Annual Report 1930).

The Homestake is one of the oldest known gold-quartz properties in the province, having been reported upon by G.M. Dawson in 1888.

BEAR CAT prospect (polymetallic veins Ag-Pb-Zn+/-Au) MINFILE 092INE088 On Property (Tenure 1011753)

The Royal Star showing is located about 350 metres east of the Bear Cat and is situated along the east bank of Jamieson Creek near creek level. Hostrocks are contorted argillite, and graphitic and sericitic schists. A short incline was put down on quartz stringers striking 015 degrees and sparsely mineralized with pyrite and pyrrhotite. A grab sample of mineralized quartz vein material from a point 150 metres south of the incline and along a small creek analysed 1.7 grams per tonne gold, 94.5 grams per tonne silver, 1.08 per cent lead and 1.11 per cent zinc (Assessment Report 21040).

POLE STAR showing (polymetallic veins Ag-Pb-Zn+/-Au) MINFILE 092INE091 On Property (Tenure 756722)

The quartz in the dump is sparsely mineralized with pyrite, galena and sphalerite but high assays in gold and silver are reported.

JAMIESON CREEK showing (surficial placers) MINFILE 092INE091 Two kilometres east

It is reported that the gold occurred in the form of bar deposits, which are unsuitable for dredging (Geological Survey of Canada Memoir 249).

JS MOLYBDENITE showing (porphyry Mo-Climax type) MINFILE 092INE178 Four kilometres west

Molybdenite occurs as smears, on dry fractures, in quartz veins and as finely disseminated grains (Assessment Report 8500). Disseminated pyrite is associated with the molybdenum mineralization within the hornfelsed metasedimentary hostrocks. A representative grab sample is reported to have yielded an assay of 0.098 per cent molybdenum. Isolated occurrences of chalcopyrite and molybdenite were noted within quartz veins within the intrusive unit (Assessment Report 8500). The mineralization is exposed in a creek valley in a window within flat lying plateau basalts of Miocene age which cover most of the area.

2012 GEOPHYSICAL SURVEYS

Introduction

From September 22, 2012 to October 31, 2012 BCT Mining Corporation and Goldbridge Holdings Ltd. caused a completion of localized VLF-EM and Magnetometer Surveys on the Bonaparte Claim Group. The area selected for the survey was in the northeast portion of the Property for the exploration of potential mineral controlling structures that may host or provide geological mineral indicators to a potential mineral resource. The resource may be any one of the deposit types as reported on herein on the Minfile mineral showings, prospects, or developed prospects on the Property or in the Property area.

VLF-EM & Magnetometer Surveys

VLF-EM Survey

a) Instrumentation

The VLF EM unit was an EM16 (serial #54) using the Seattle (Washington) station.

b) Theory

In all electromagnetic prospecting, a transmitter induces an alternating magnetic field (called the primary field) by having a strong alternating current move through a coil of wire. This primary field travels through any medium and if a conductive mass such as a sulphide body is present, the primary field induces a secondary alternating current in the conductor, and this current in turn induces a secondary magnetic field. The receiver picks up the primary field and, if a conductor is present, the secondary field distorts the primary field. The fields are expressed as a vector, which has two components, the "in-phase" (or real) component and the "out-of-phase" (or quadrature) component.

For the VLF-EM receiver, the tilt angle in degrees of the distorted electromagnetic field with a conductor is measured from that which it would have been if the field was not distorted with a conductor. Since the fields lose strength proportionally with the distance they travel, a distant conductor has less of an effect than a close conductor. Also, the lower the frequency of the primary field, the further the field can travel and therefore the greater the depth penetration.

The VLF-EM uses a frequency range from 13 to 30 kHz, whereas most EM instruments use frequencies ranging from a few hundred to a few thousand Hz. Because of its relatively high frequency, the VLF-EM can pick up bodies of a much lower conductivity and therefore is more susceptible to clay beds, electrolyte-filled fault or shear zones and porous horizons, graphite, carbonaceous sediments, lithological contacts as well as sulphide bodies of too low a conductivity for other EM methods to pick up. Consequently, the VLF-EM has additional uses in mapping structure and in picking up sulphide bodies of low conductivity for conventional EM methods and too small for induced polarization. (In places it can be used instead of IP). However, its susceptibility to lower conductive bodies results in a number of anomalies, many of them difficult to explain and, thus, VLF-EM preferably should not be interpreted without a good geological knowledge of the property and/or other geophysical and geochemical surveys.

VLF-EM & Magnetometer Surveys (cont'd)

VLF-EM Survey (cont'd)

c) Survey Procedure

The VLF EM Grid was established from a baseline originating at UTM 5,650,400N, 667,000E northward for 1,100 metres to UTM 5,651,500N with 12 stations marked at 100 metre intervals for the proposed grid-lines. Each of the grid-lines was extended westerly for 2,000 metres to UTM 685,000E by hand-held compass for general direction. VLF-EM readings were taken at 25 metre intervals along the grid-lines with specific locations established by GPS readings. Each location was marked, with and the grid station and the reading at the station recorded in a field book. 22 line kilometres were completed. The field data is reported herein in Appendix III.

d) Compilation of Field Data

The field results were initially input to an Exel spreadsheet whereupon a MapInfo-Discover 211 program was utilized to create maps from the data results. The maps form part of the report as Figures 5 to 7 in the text and Figures 8 to 11 in Appendix IV.

e) Results

Four prime Fraser Filtered VLF-EM anomalies (A, B, C, & D on Figure 5.) that indicate structural intersections are indicated; all within the northeastern sector of the survey area. The southeastern sector is of an observed less than sub anomalous degree. The demarcation between the northeastern and the southwestern sectors appears to be the location of a west-northwesterly trending structural indicated water-coursed topographical depression as shown on Figure 4. This structure is not apparent but displayed only as localized anomalies as the east-west grid line orientation sub-parallels the indicated structure.

Figure 5. Indicated Structures on Contoured Fraser Filtered VLF-EM Data

VLF-EM & Magnetometer Surveys (cont'd)

Figure 6. Contoured VLF-EM Data Fraser Filtered on Google (Note the deeply incised river valley structure and the parallel

Magnetometer Survey

a) Instrumentation

The magnetometer used was a Geotronics Proton Magnetometer (model G-816/826 Serial #6341). Diurnal variation was corrected by using repeated readings at a base point throughout the day.

(b) Theory

Only two commonly occurring minerals are strongly magnetic, magnetite and pyrrhotite; magnetic surveys are therefore used to detect the presence of these minerals in varying concentrations. Magnetics is also useful is a reconnaissance tool for mapping geologic lithology and structure since different rock types have different background amounts of magnetite and/or pyrrhotite.

(c) Survey Procedure

The same grid stations as established in the VLF-EM Survey were used for the Magnetometer Survey. 22 line kilometres were completed. The field data is reported herein in Appendix III.

(d) Data Reduction

The field results were initially input to an Exel spreadsheet whereupon a MapInfo-Discover 211 program was utilized to create maps from the data results. The maps form part of the report as Figures 5 to 7 in the text and Figures 8 to 11 in Appendix IV.

e) Results

The results of the magnetometer survey as revealed by the accompanying contoured map indicates a similar pattern as the VLF-EM survey results. The results of the magnetometer survey reveal a distinct change from most of the northwest survey area of magnetometer highs to the smaller southwest sector of magnetometer lows. The abrupt change is, as in the VLF-EM survey, at the indicated west-northwesterly trending structural indicated water-coursed topographical depression as shown on Figure 4 and indicated on Figure

Figure 7. Contoured Magnetometer Field Data

CONCLUSIONS

The 2012 VLF-EM and Magnetometer surveys were completed over a succession of sedimentary rocks comprised of mudstone, siltstone, shale, and fine clastic sedimentary rocks of the Harper Ranch and Nicola Groups. A small granodioritic stock is located within two kilometers north of the survey area. A northerly regional fault six kilometres east of the survey area correlates with a significant topographical depression The drainage pattern of the Property area indicates a paralleling fault set two kilometres east of the survey area with branching north-northwesterly, northwesterly, and westerly trending conjugate fault sets. In the southwestern portion of the survey area an intersection between a northwesterly and a westerly fault is indicated.

Based on the above general information and the VLF-EM and magnetometer survey results the following is concluded:

- 1. The magnetometer survey results indicate a near surface granodioritic intrusive underlying the southwestern portion of the survey area as indicated by the magnetometer low. The west-northwest structure dividing the magnetometer low from the magnetometer high is a fault contact between the intrusive and the sedimentary rocks;
- 2. The VLF-EM survey results indicate northerly and northwesterly trending structures from the intrusive/sedimentary fault contact with some of the structures caused by the intruding granodiorite and others as paralleling structures to the regional fault to the east.
- 3. The northerly structures appear the more significant in hosting mineral laden quartz veins as at the Bonaparte (*Minfile 092P050*) where up to three metre quartz veins occur. The veins are mainly hosted by the intrusive or the metasediments as at the Homestake (*Minfile 092INE082*) where the mineralized quartz veins, up to 5.4 metres wide, strike northwest and traverse both the intrusive rock and metasediments.
- 4. The northerly and the northwesterly fault intersections, designated A to D on Figure 5. would be the prime localized areas to explore for a potential economic mineral resource or the indications thereof.
- 5. Location A would be the main area of interest as it is indicated at a fault intersection adjacent or proximal to the intrusive/sediment contact. If the intrusive were creating and spouting pressurized mineralizing fluids, this structural location would be the most accommodating avenue.

RECOMMENDATIONS

An exploration program comprised of prospecting, geological mapping and sampling is recommended over the four designated areas and along the indicated intrusive/sediment contact. Geological mapping should be focussed on locating mineral indicators and alteration patterns at these localities.

Respectfully submitted,

Sookochoff Consultants Inc.

Laurence Sookochoff, PEng.

SELECTED REFERENCES

Belik, G.D. - 2003 Geochemical and Geophysical Report on the Mill Property for Eighty-Eight Resources Limited. May 19, 1995. AR 23,913.

Osijuk, D.J. – Drilling Report, Assessment Work DA-II Claim/20 Units for Acacia Mineral Development Corporation Ltd. November 20, 1986. AR 15,784.

Phendler, R.W. – Geochemical Assessment Report on the Lisa 4 Claim for Cosmos Resources Inc. March. 1985. AR 14,292.

MapPlace – Map Data downloads

Marshak, S., Mitra, G. – Basic Methods of Structural Geology. pp 258-259, 264* .Prentice-Hall Inc. 1988

MtOnline - MINFILE downloads.

Roberts, A.F. – Report on Geochemical, Geophysical Surveys on the Mona 1, 2 Claims for Lionheart Resource Corporation. January 26, 1985. AR 14,566.

Sookochoff, L. -. Geological Assessment Report on a Structural Analysis on Tenures 704383 & 766882 of the Powder Claim Group for Ken Ellerbeck. February 16, 2011. AR 32,042.

CERTIFICATE

I, Laurence Sookochoff, of the City of Vancouver, in the Province of British Columbia, do hereby certify:

That I am a Consulting Geologist and principal of Sookochoff Consultants Inc. with an address at 120 125A-1030 Denman Street, Vancouver, BC V6G 2M6.

I, Laurence Sookochoff, further certify that:

1) I am a graduate of the University of British Columbia (1966) and hold a B.Sc. degree in Geology.

2) I have been practicing my profession for the past forty-six years.

3) I am registered and in good standing with the Association of Professional Engineers and Geoscientists of British Columbia.

4) The information for this report is based on information as itemized in the Selected Reference section of this report and from the results derived from a geophysical survey completed on the Bonaparte Claim Group by Emil Leimanis and his field crew from September 22, 2012 to October 31,2012 and from mineral exploration work completed in the general area.

5) I have no interest in the Property as described herein.

Laurence Sookochoff, P. Eng.

Appendix I

Statement of Costs

- Phase 1 \$4,629.69, 2012/sep/22 to 2012/oct/06. This work registered as SOW Event 5409321. Will be combined with Phase 2 in the report due 2013/jan/04.
- Phase 2 \$25,350.22, 2012/sep/22 to 2012/oct/31. SOW Event 5416362.
- \$7,605.22 PAC (using Goldbridge Holdings Ltd's PAC account) was added to Phase 2 giving Phase 2 total of \$ 32,955.22 and Grand Total of \$ 37,584.91

Phase 1 (SOW Event 5409321)

\$4,629.69, 2012/sep/22 to 2012/oct/06. = **4.0 line-kms** completed in 7 days

Wages

John Gauthier, Geophysics Technician 7 days @ \$300/day	\$ 2100.00
Expenses	
Transportation:	
Truck: 4x4, 55cents/km x 1000km, Work + Quesnel to Bonaparte and Return	\$ 550.00
Food and Lodging, 7 days @ \$100/day	\$ 700.00
Proportioned Costs of Phase 1 (in conjunction with Phase 2 costs) :	
Communication Infrastructure & Monthly Charges	\$ 80.00
Field Supplies, equipment and VLF Unit Rental	\$ 379.69
Computer Mapping/Technical Services	\$ 300.00
Word Processing	\$ 60.00
Professional Consultant/ Geophysical Report Writing	\$ 460.00
Phase 1 total (work registered SOW Event # 5409321, no PAC used)	\$ 4,629.69

Phase 2 (SOW 5416362)

\$23,900. 2012/sep/22 to 2012/oct/31 = **18 line-kms** completed in 12 days

Wages

Emil Leimanis, Geophysics Technician 12 days @ \$300/day Phil Mahar Assistant #1 to Emil Leimanis : 12 days @ \$200/day, Ira Leimanis Assistant #2 to Emil Leimanis : 12 days @ \$200/day, Luc Leimanis Assistant #3 to Emil Leimanis : 12 days @ \$200/day, John Gauthier Assistant #4 to Emil Leimanis : 12 days @ \$200/day,	\$ 3600.00 \$ 2400.00 \$ 2400.00 \$ 2400.00 \$ 2400.00
Expenses	
Transportation:	
Truck: 2 - 4x4's, 2 x 55cents/km x 1000km, Work + VCR to Bonaparte and Return	\$ 1100.00
Food and Lodging, 3 men – 12 days @ \$100/day/man x 4 men	\$ 4800.00
Proportioned Costs of Phase 1 (in conjunction with Phase 2 costs) :	
Communication Infrastructure & Monthly Charges	\$ 80.00
Field Supplies, equipment and VLF Unit Rentals (2 units)	\$ 1530.22
Computer Mapping/Technical Services	\$ 1600.00
Word Processing	\$ 140.00
Professional Consultant/ Geophysical Report Writing	\$ 2900.00
Phase 2 Total	\$ 25,350.22
Add 30% PAC allowance (\$ 25,350.00 x 30% =\$7605.00)	\$ <u>7,605.22</u>
Phase 2 value applied to claim maintenance	\$ 32,955.22
Grand Total Phase 1 and Phase 2 (including PAC)	\$ 37,584.91

22 line-kilometers total of VLF-EM completed Phase 1 and Phase 2

Appendix III

Geophysical Data

East	North	Mag	VLF	VLF FF	Quad
685000		55886	5	<u>v</u>	0
685025	5650400	558/5	8	25	Ŭ
685050	5650400	55908	10	-2	õ
685075	5650400	56181	12	30	õ
685100	5650400	55768	-8	9	0
685125	5650400	55742	0	-8	0
685150	5650400	55739	-5	-4	ŏ
685175	5650400	55818	5	-8	ŏ
685200	5650400	55958	-5	-17	0
685225	5650400	55845	14	4	0
685250	5650400	55845	2	16	Ů
685275	5650400	55792	2	-10	0
685300	5650400	55756	-2	-20	õ
685325	5650400	55772	16	-6	õ
685350	5650400	55790	10	16	ō
685375	565040C	55799	10	15	ō
685400	5650400	55812	0	9	ō
685425	5650400	55902	5	7	õ
685450	5650400	55920	-4	-6	ō
685475	565040C	55823	2	-7	ō
685500	5650400	56072	5	9	0
685525	5650400	55858	0	1:	0
685550	5650400	55337	-2	7	0
685575	565040C	55854	-4	1	o
685600	5650400	55797	-5	3	0
685625	5650400	55773	-2	0	0
685650	5650400	55815	-10	-15	0
685675	5650400	56066	3	12	0
685700	5650400	55773	0	6	0
685725	5650400	55780	5	7	0
685750	5650400	5589Z	-8	-4	0
685775	5650400	55877	5	5	U
685800	5650400	55894	-5	-11	0
685825	5650400	55934	-2	-29	O
685850	5650400	55804	14	-1	0
685875	5650400	55566	8	19	U
685900	5650400	55674	5	13	0
685925	565040C	55670	-2	0	0
685950		55793	2	5	0
685975		55681	1	3	0
686000		55751	-5	-16	0
686025		55653	5	-7	0
686050		55734	5	3	0
686075		55748	2	-7	0
686100		55743	6	-2	0
686 1 25		55681	8	14	0
686150		55795	2	12	0
686175		55665	-2	-5	0
686200		55587	0	11	0
686225		55746	5	6	0
686250		55785	4	19	0
686275	5650400	55838	-5	6	0

East	North	Mag	VLF	VLF FF	Quad
686300	5650400	55786	-5	-6	0
686325	5650400	55739	2	:	Ū
686350	5650400	55759	-2	5	ō
686375	5650400	55775	-4	-3	ō
686400	5650400	55785	-5	-8	0
686425	5650400	55790	2	ō	õ
686450	5650400	55740	-3	-5	ŏ
686475	5650400	55750	0	-3	ŏ
686500	5650400	55731	4	- 6	0
686525	5650400	55809	-4	3	0
686550	5650400	55733	2	-2	Ŭ
686575	5650400	55725	-5	-13	0
686600	5650400	55733	5	0	õ
686625	5650400	55880	5	10	ő
686650	5650400	55770	-5	0	ō
686675	5650400	55751	5	3	ō
686700	5650400	55755	-5	6	õ
686725	5650400	55668	2	õ	õ
686750	5650400	55749	-8	-6	0 0
686775	5650400	55710	5	-3	ů C
686800	5650400	55840	-5	õ	0
686825	5650400	55737	5		0 0
686850	5650400	55821	-5	-16	0
686875	565040C	55846	5	-17	ō
686900	5650400	55727	10	6	0
686925	5650400	55673	8	16	õ
686950	5650400	55819	2	14	Ö
686975	5650400	55881	0		0
687000	565040C	55993	-4		0
685000	5650500	55780	-2		0
685025	5650500	558 1 3	5	1:	0
685050	5650500	55969	-8	- "_	U
685075	5650500	55744	0	-4	0
685100	5650500	55799	-2	-5	O
685125	5650500	55815	-2	-5	0
685150	5650500	55783	5	2	υ
685175	5650500	55700	-4	-4	0
685200	5650500	55797	5	1	O
685225	5650500	55941	0	1	0
685250	5650500	55920	0	-9	0
685275	5650500	55627	4	-9	0
685300	5650500	557 1 0	5	6	o
685325	5650500	55781	8	18	Ō
685350	5650500	55846	-5	7	0
685375	5650500	55857	0	5	0
685400	5650500	55926	-4	4	O
685425	5650500	55923	-6	-8	0
685450	5650500	56068	-2	-14	0
685475	5650500	55797	0	10	0
685500	565050C	55891	5	4	0
685525	5650500	55993	2	12	0
685550	5650500	55909	0	6	0

East	North	Mag	VLF	VLF FF	Quad
685575	5650500	56011	-4	-9	0
685600	5650500	56038	, O	4	Ű
685625	5650500	55957	5	18	õ
685650	5650500	55915	-5	10	ō
685675	5650500	55830	-8	-7	0
685700	5650500	55860	-2	-6	0 0
685725	5650500	55896	-2	-16	ŏ
685750	565050C	55954	0	-18	ō
685775	5650500	55858	10	14	0
685800	5650500	55894	4	22	0
685825	5650500	55862	-8	22	υ
685850	5650500	56210	 0	-7	0
685875	5650500	55865	-5	-4	0
685900	5650500	55874	4	2	ŏ
685925	5650500	55911	-5	-11	ŏ
685950	565050C	55785	2	-16	ő
685975	5650500	55923	- 8	-10	ŏ
686000	5650500	55989	5	-5	0
686025	5650500	55673	8	-2	0
686050	565050C	55727	10	-2	o
686075	5650500	55922	5	- 5	0
686100	5650500	55825	12	17	0
686125	5650500	55951	-2	6	0
686150	565050C	55846	-2	-7	0
686175	5650500	55764	2	- /	0
686200	5650500	55804	5	4	0
686225	5650500	55821	-5	-11	0
686250	5650500	55735	-5	-11	0
686275	5650500	55692	5	6	0
686300	5650500	55737	5	9	0
686325	5650500	55656	0	-:	0
686350	5650500	55/36	2	-8	υ
686375	5650500	55812	4	-3	0
686400	5650500	558812	4 5	-2	0
686425	5650500	55840	2	- 0	0
686450	5650500	55719	5	4	υ
686475	5650500	55819	2	4	0
686500	565050C	55983	2	-5	0
686525	5650500	55832	4	-3	0
686550		55853	5	0	0
686575	5650500	55943	4	2	ő
686600		55983	5	7	ő
686625	5650500	55885	2	, 7	ő
686650		55765	Ó	4	ő
686675	5650500	55969	0	- 0	0 0
686700		55906	-2	-2	0
686725	5650500	55826	-2	-2	0
686750		55679	-2	10	0
686775	5650500	55830	-2	4	0
686800		55839	ے 8-	-15	0
686825	5650500	55867		-15 -18	0
686850		55851	5	-10	0
white 10		.1.10.11	.,		17

East	North	Mag	VLF	VLF FF	Quad
686875	5650500	55827	5	<u>vii ii</u> 8	0
686900	5650500	55844	2	:	Ŭ
686925	5650500	56071	4	-	ŏ
686950	5650500	55943	- 0	- 0	ő
686975	5650500	55879	-2		0
687000	5650500	55953	-2		0
685000	5650600	55905	5		ŏ
685025	5650600	55883	-4	2	0
685050	5650600	55781	-5	-21	0
685075	565060C	55825	-5	-17	0
685100	5650600	55790	5	-21	υ
685125	5650600	55811	10	-12	0
685150	5650600	55727	22	-12	0
685175	5650600	55776		15	ŏ
685200	5650600	55918	8	9	0 0
685225	5650600	55864	5	11	0
685250	5650600	55789	0	-2	0
685275	5650600	55782	2		0
685300	5650600	55849	5		0
685325	5650600	55883	0	-8	o o
685350	5650600	55816	5	-8	0
685375	5650600	55979	8	-0	0
685400	5650600	55883	5		0
685425	5650600	55790	5	0 8	0
685450	5650600	55787	3 0	5	0
685450	5650600	55634	2	4	0
685500	5650600	55567	-2	4	0
685525	5650600	55760	-2	4	0
685550	5650600	55827	-4	7	0
685575	5650600	55913	-4	-10	0
685600	5650600	55879	-5	-14	0
685625	5650600	55822	ر۔ ذ	-14	υ
685650	5650600	55811	-2	-3	0
685675	5650600	55795	-2	-3	0
685700	5650600	55857	-2	-20	0
685725	5650600	55783	8	22	υ
685750	5650600	55843	0	 18	0
685775	5650600	55877	-5	-5	0
685800		55918	-5	-20	0
685825	5650600	55887	5	-20	0
685850		55993	5	-13	ŏ
685875	5650600	55902	10	12	õ
685900		55834	-2	-5	ő
685925		55843	5	-9	ő
685950		55756	8	7	ő
685975	5650600	55763	4	, 15	0
686000		55760		11	0
686025	5650600	56029	-5	-1	0
686050		56712	0	0	0 0
686075	565060C	57171	-2	3	0
686100		57320	-3	2	0
686125	5650600	57406	-2	- 7	ő

East	North	Mag	VLF	VLF FF	Quad
686150	5650600	55712	-5	5	0
686175	5650600	55/64	1	3	Ű
686200	5650600	57483	-5	4	0
686225	565060C	57281	-10		Ö
686250	5650600	56942	-6	0	0
686275	5650600	57223	-8	2	õ
686300	5650600	56921	-8	-3	ŏ
686325	5650600	56991	-8	-3	ō
686350	5650600	55811	-5	- 7	0
686375	5650600	57257	-8	. 9	0
686400	5650600	56/71	-12	-10	ΰ
686425	5650600	57029	-10	-18	0
686450	5650600	57086	0	-6	0
686475	5650600	56442	-4	-4	0
686500	5650600	57154	0	-9	0
686525	5650600	57072	0		ō
686550	5650600	56879	5	15	0
686575	5650600	56957	-4	12	0
686600	5650600	57323	-6	0	Ō
686625	565060C	56955	-5	-6	0
686650	5650600	57254	-5	-8	0
686675	5650600	57223	0	- 7	0
686700	5650600	56656	-2	-	0
686725	5650600	56933	-5	-9	0
686750	5650600	56920	2	-8	0
686775	5650600	57320	0	-5	0
686800	5650600	57141	5	3	0
686825	5650600	57205	2	5	0
686850	5650600	57274	0	-5	0
686875	5650600	56840	2	-5	0
686900	5650600	56976	5	7	0
686925	5650600	57352	2	14	U
686950	5650600	56953	-2	5	0
686975	5650600	57380	-5		σ
687000	5650600	57151	0		0
685000	5650700	55653	-4		0
685025	5650700	55854	5	:	0
685050	565070C	56088	0	1	O
685075	5650700	56227	0	-9	0
685100	5650700	55880	4	-9	0
685125	5650700	55842	5	6	0
685150	5650700	55660	8	18	0
685175	5650700	55577	-5	7	0
685200	5650700	55924	Û	5	0
685225	5650700	55 9 66	-4	4	0
685250	5650700	55742	-5	-8	O
685275	5650700	555 1 0	-2	-14	0
685300	5650700	55832	0	-10	0
685325	5650700	558 7 9	6	4	0
685350	5650700	55816	2	12	O
685375	5650700	55838	0	6	0
685400	5650700	56077	-4	-9	0

East	North	Mag	VLF	VLF FF	Quad
685425	5650700	55810	o`	-19	0
685450	5650700	55842	5	11	Ū
685475	5650700	55720	10	4	0
685500	5650700	55840	5	11	O
685525	5650700	55782	5	11	0
685550	5650700	55940	0	3	0
685575	5650700	55799	0	-7	0
685600	565070C	55730	2	-5	0
685625	5650700	55690	5	1	0
685650	565070C	55785	2	-4	0
685675	5650700	55788	4	-6	υ
685700	5650700	55700	7	-4	0
685725	5650700	55726	5	-8	0
685750	5650700	55730	10	0	0
685775	5650700	55830	10	10	0
685800	5650700	55823	5	12	o
685825	5650700	56174	5	15	0
685850	5650700	55812	-2	16	0
685875	5650700	55846	-3	-3	0
685900	5650700	55781	-10	-19	O
685925	5650700	55841	8	4	0
685950	5650700	56079	-7	12	0
685975	5650700	55912	-4	-2	0
686000	565070C	55763	-2	-4	ο
686025	5650700	55915	-2	-44	0
686050	5650700	55969	0	-24	0
686075	5650700	56982	40	73	0
686100	5650700	56768	18	45	0
686125	5650700	57299	-15	-17	0
686150	5650700	56886	-8	-5	0
686175	5650700	57082	-8	0	0
686200	5650700	56808	-10	-4	U
686225	5650700	57141	-6	-6	0
686250	5650700	57277	-8	-2	O
686275	5650700	57392	-2	22	0
686300	5650700	56/36	-10	15	υ
686325	5650700	57321	-22	-31	0
686350	565070C	56927	-5	-35	O
686375	5650700	56322	4	-5	0
686400	5650700	57017	4	13	0
686425	5650700	56672	0	17	0
686450		56646	-5	15	0
686475	5650700	56556	-8	7	O
686500	5650700	55993	-12	-8	0
686525	5650700	55720	-8	-12	0
686550		55705	-4	-13	O
686575		55742	-4	-19	0
686600		55694	5	-10	0
686625	5650700	56703	6	9	0
686650		55655	5	24	O
686675		55674	-3	12	0
686700	5650700	55747	-10	-11	0

East	North	Mag	VLF	VLF FF	Quad
686725	5650700	55709	o	-8	0
686750	5650700	57285	-2	-2	0
686775	5650700	56789	0	-2	0
686800	5650700	56996	0	-2	0
686825	5650700	56956	0	-7	0
686850	5650700	56655	2	-5	0
686875	5650700	564 9 9	5	10	0
686900	5650700	57000	2	9	0
686925	5650700	573 2 4	-5	-1	0
686950	5650700	57195	3	1	0
686975	5650700	57172	-5		0
687000	5650700	56871	2		0
685000	5650800	57200	0		0
685025	5650800	57185	0	0	0
6 8 5050	5650800	57196	0	0	0
685075	5650800	57200	0	0	0
685100	5650800	56974	0	0	0
685125	5650800	57326	0	0	0
6 8 5 1 50	5650800	57489	0	0	0
685175	5650800	57206	0	5	0
685200	5650800	57322	0	20	0
685225	5650800	56847	-5	20	0
685250	5650800	5 759 2	-15	-10	0
685275	5650800	57762	-10	-25	0
685300	5650800	57333	0	-10	0
685325	5650800	57380	0	0	0
6 8 5350	5650800	575 2 1	0	10	0
685375	5650800	57399	0	15	0
685400	5650800	5 682 0	-10	-5	0
685425	5650800	56986	-5	-15	0
685450	5650800	57431	0	-5	0
685475	5650800	57490	0	0	0
6 8 5 5 00	5650800	57670	0	0	0
685525	5650800	57123	0	0	0
685550	5650800	57687	0	0	0
685575	5650800	5 719 2	0	0	0
685600		57256	0	10	0
685625		56899	0	10	0
6 8 5650		57111	-10	-10	0
685675		57213	0	-10	0
685700		57024	0	0	0
685725		57047	0	0	0
685750		57334	0	0	0
685775		57245	0	0	0
685800		57053	0	0	0
685825		57181	0	20	0
685850		57003	0	20	0
685875		57576		-20	0
685900 685005		57368		-20	0
685925 685950		56673 57013		0	0
685950		57013	0	0	0
216190	2020200	57102	0	0	0
East 686000	North 5650800	Mag	<u>VLF</u> 0	VLF FF	Quad
------------------------------------	--------------------	------------------------	-----------------	--------	--------
686025	5650800	57017	0	0 0	0 0
686050	5650800	57004 57250	0	0	0
686075	5650800	57431	0	0	0
686100	5650800	56847	0	0	0
		· ·	-	-	_
686125	5650800	56664	0 0	0	0
686 1 50 686 1 75	5650800 5650800	56966 5 7477	-	-	0
	5650800	- · · · ·	0	0	0
686200		57164	0	0	0
686225	5650800	57237	0	0	0
686250	5650800	57286	0	0	U
686275	5650800	57380	0	10	0
686300	5650800	57520	0	10	0
686325	5650800	57149	-10	0	0
686350	5650800	57159	0	5	0
686375	5650800	57434	-10	13	0
686400	5650800	57285	-5	5	0
686425	5650800	57237	-18	-9	0
686450	5650800	56620	-2	10	0
686475	5650800	56729	-12	16	O
686500	5650800	57100	-18	-18	0
686525	5650800	57236	-12	-70	0
686550	5650800	57213	Û	-2	0
686575	565080C	57034	-10	-2	0
686600	5650800	57109	0	0	0
686625	5650800	56917	-8	-2	0
686650	5650800	55740	-2	-20	0
686675	5650800	55724	4	20	0
686700	5650800	57529	14	25	0
686725	5650800	56631	0	39	0
686750	5650800	57161	-15	11	0
686775	5650800	56/93	-10	-1	U
686800	5650800	57017	-16	-3	0
686825	5650800	57017	-8	-4	D
686850	5650800	55820	-15	-13	0
686875	5650800	57282	-5	-15	U
686900	5650800	56678	-5	-5	0
686925		57259	0	8	0
686950		57176	-5	-1	0
686975		56964	-8		0
687000		56806	4		0
685000		56865	0	-	0
685025		56902	0	0	O O
685050		56980	0	0	0
685075	5650900	57092	0	0	0
685100		57465	0	0	O Q
685125	5650900	57391	0	0	0
685150		57183	0	0	0
685175		57111	0	25	0
685200		57130	0	85	O
685225		57126	-25	40	0
685250	5650900	57466	-40	-40	0

East	North	Mag	VLF	VLF FF	Quad
685275	5650900	57182	-25	-65	0
685300	5650900	57363	0	25	Ū
685325	5650900	57456	0	25	0
685350	5650900	56783	0	85	Ö
685375	5650900	5 69 50	-25	15	0
685400	5650900	56666	-40	-65	0
685425	5650900	56741	0	-40	0
685450	5650900	57302	0	0	0
685475	5650900	57537	0	0	0
685500	565090C	56934	o	5	0
685525	5650900	57654	O	5	υ
685550	5650900	57034	-5	-5	0
685575	5650900	57410	0	-10	0
685600	5650900	56968	0	15	0
685625	5650900	57129	5	25	0
685650	5650900	57481	-20	-15	0
685675	5650900	57248	0	-20	0
685700	5650900	57301	0	0	0
685725	5650900	57191	0	0	0
685 750	5650900	57691	0	0	0
685775	5650900	57631	0	0	0
685800	5650900	5 711 9	0	0	0
685825	5650900	57202	Û	10	0
685850	565090C	57103	0	40	0
685875	5650900	57504	-10	20	0
685900	5650900	57184	-30	-40	0
685925	5650900	57384	0	-30	0
685950	5650900	57421	0	25	0
685975	5650900	57020	0	25	0
686000	5650900	56863	-25	-10	0
686025	5650900	571 1 9	0	-10	0
686050	5650900	57210	-15	-15	U
686075	5650900	57042	0	-15	0
686100		57123	0	10	0
686125	5650900	57449	0	10	0
686150	5650900	57073	-10	-10	U
686175	5650900	57409	0	5	0
686200		57099	0	23	D
686225		56873	-15	-2	0
686250		55754	-8	-18	0
686275 686300		56426	-5	-15 -9	0
686325		55678 57021	0 2	-9	0 0
686350		55693	2		0
686375		55715	-2	- -9	
686400		55666	-2	-9	0 0
686425		557 1 9	4	30	0
686450		56900	-6	50 1 7	0
686475		55764	-5	12	0
686500		56918	-4	-19	0
686525		56995	-5	-16	0
686550		56457	5	-2	õ

East	North	Mag	VLF	VLF FF	Quad
686575	5650900	55680	2	5	0
686600	5650900	55701	0	0	o
686625	5650900	57130	2	2	0
686650	5650900	57116	0	-3	0
686675	5650900	56967	0	-10	0
686700	5650900	57271	5	-10	0
686725	5650900	55732	5	21	0
686750	5650900	55730	-5	14	0
686775	5650900	55753	-6	-5	0
686800	5650900	56950	-0 -8	-5	0
686825	5650900	57053	-0	-15	0
686850	5650900	56896	-3	, 14	0
686875	5650900	55712	-5 -10	-10	0
686900	5650900	57351	-10	-10 -21	0
			-3		
686925	5650900	56900		-9	0
686950	5650900	57134	4	4	0
686975	5650900	57033	2		0
687000	5650900	56914	0		0
685000	5651000	57222	0	-	0
685025	5651000	57165	0	0	0
685050	5651000	56721	0	0	0
685075	5651000	57196	0	0	0
685100	5651000	57026	0	0	0
685125	5651000	57170	0	0	0
685150	5651000	57170	0	10	0
685175	5651000	57226	0	35	0
685200	5651000	57583	-10	15	0
685225	5651000	56867	-25	-35	0
685250	5651000	57200	0	-25	0
685275	5651000	57016	0	0	0
685300	5651000	57188	0	0	0
685325	5651000	57383	0	0	0
6 8 5350	5651000	5 712 3	0	0	0
685375	5651000	57109	0	0	0
685400	5651000	57009	0	0	0
6 8 5 4 25	5651000	57153	0	0	0
685450	5651000	57186	0	0	0
685475	5651000	57300	0	0	0
6 8 5 5 00	5651000	57368	0	10	0
685525	5651000	57303		10	0
685550		57235	-10	-10	0
685575	5651000	570 9 3		-10	0
685600		56916		-5	0
685625		57053		-15	0
6 8 5650		572 2 6		25	0
685675		57049	10	45	0
685700		57488		-20	0
685725	5651000	57017	0	-30	0
685750		56738		0	0
685775	5651000	57282		0	0
685800		57165	0	0	0
685825	5651000	56938	0	0	0

East	North	Mag	VLF	VLF FF	Quad
685850	5651000	57256	0	0	0
685875	5651000	5/188	Ū	Ŭ	Ű
685900	5651000	57283	0	0	0
685925	565100C	57333	Ő	15	ō
685950	5651000	56939	0	7	0
685975	5651000	57400	-15	-28	õ
686000	5651000	56724	8	-12	ŏ
686025	565100C	56984	5	18	ŏ
686050	5651000	57246	0	2	0
686075	5651000	57802	-5	-13	0
686100	5651000	57090	8	-2	Ŭ
686125	5651000	56850	0	-2	0
686150	5651000	56960	5	-8	õ
686175	5651000	57207	5	7	ō
686200	5651000	56822	8	23	ŏ
686225	5651000	57245	-5	-2	ō
686250	5651000	56725	-5	-32	ŏ
686275	5651000	57251	10	-7	õ
686300	5651000	56768	12	7	ō
686325	565100C	57182	0	-15	0
686350	5651000	57009	15		0
686375	5651000	57275	12	19	0
686400	5651000	57018	0	-6	0
686425	565100C	57250	8	-2	o
686450	5651000	56997	10	13	0
686475	5651000	57496	0	.5	0
686500	5651000	57668	5	10	O
686525	5651000	57202	0	10	0
686550	5651000	57843	-5	-5	0
686575	5651000	57726	0	3	0
686600	5651000	57397	0	13	0
686625	5651000	57343	-8	-3	U
686650	5651000	571 1 5	-5	-1	0
686675	5651000	57656	0	2	O
686700	5651000	57078	-12	-17	0
686725	5651000	57380	5	5	U
686750	5651000	57151	0	22	0
686775	565100C	57008	-12	-17	0
686800	5651000	57112	-5	-19	0
686825	5651000	57583	10	5	0
686850	5651000	57341	-8	-11	0
686875	5651000	5 7 329	8	-13	0
686900		56980	5	.5	0
686 9 25	5651000	57454	8	8	0
686950	5651000	57364	0	- 2	0
686975	5651000	57724	5		O
687000	5651000	56882	5		0
685000		57245	0		0
685025	5651100	56 97 6	0	0	0
685050		57089	0	0	0
685075	5651100	57393	0	0	0
685100	5651100	57355	0	0	0

East	North	Mag	VLF	VLF FF	Quad
685125		57215	0	0	0
685150		57056	ō	Ū	Ű
685175		56993	Ő	Ō	õ
685200		57154	ō	Ő	ō
685225		56941	0	0	0
685250		56576	ō	õ	õ
685275		57476	õ	Ő	ŏ
685300		57117	ŏ	Ő	ŏ
685325		57014	0	0 0	0
685350		57210	ō	ō	0
685375		56850	ő	15	Ů
685400		57517	0 0	5	0
685425		57655	-15	-15	õ
685450		57085	10	5	õ
685475		56900	-10	õ	ō
685500		57200	0	-10	ō
685525		56975	Ő	0	õ
685550		57313	ŏ	Ő	õ
685575		57155	0	ō	õ
685600		56814	ő	ő	ő
685625		56684	0	0	0
685650		57022	ő	ő	õ
685675		56999	Ű	10	0
685700		57174	0	10	o
685725		57123	-10	-10	0
685750		57280	0	-10	0
685775		57510	0	0	ō
685800	565110C	57724	0	0	0
685825	5651100	56996	0	0	0
685850	5651100	57202	0	0	0
685875	565110C	57764	0	0	0
685900	565110C	57156	0	U	O
685925	5651100	56928	0	0	0
685950	565110C	57186	0	-5	O
685975	5651100	57243	0	-20	0
686000	5651100	57527	5	-10	υ
686025	5651100	57186	15	25	0
686050	5651100	57159	0	12	o
686075	5651100	57327	-5	-18	0
686100	5651100	57379	8	-7	0
686125	5651100	56083	5	-2	0
686150	5651100	56976	5	5	0
686175	5651100	57221	10	20	o
686200	5651100	57356	-5	0	0
686225	5651100	57485	0	-15	0
686250	565110C	56988	5	-8	O
686275	5651100	57286	5	-6	0
686300	5651100	57193	8	5	0
686325	5651100	56629	8	21	0
686350	565110C	56980	0	8	O
686375	5651100	56989	-5	-15	0
686400	5651100	56711	5	-10	0

East	North	Mag	VLE	VLF FF	Quad
686425	5651100	57225	5	-7	0
686450		5651/	5	1	Ű
686475	5651100	57128	12	12	õ
686500	565110C	56942	5	22	õ
686525	5651100	57281	0	15	0
686550	5651100	57568	-5	-5	õ
686575	5651100	56952	-5	-10	ŏ
686600	565110C	56907	5		ō
686625	5651100	57669	-5	-13	0
686650	5651100	57156	5	-3	0
686675	5651100	5/456	8	18	ΰ
686700	5651100	57124	-5	-2	0
686725	5651100	57321	, o	-10	õ
686750	5651100	57820	5	0	ő
686775	5651100	57121	Ő	ō	ō
686800	5651100	56961	5	-3	ō
686825	5651100	57246	0	-8	õ
686850	5651100	56907	8	-9	õ
686875	5651100	57394	5	-11	õ
686900	565110C	57107	12	5	0 0
686925	5651100	57642	12	14	0
686950	5651100	56932	0	-3	° 0
686975	5651100	57170	10		0
687000	565110C	57100	5		0
685000	5651200	57108	0		0
685025	5651200	57211	0	-15	0
685050	5651200	56948	0	-15	0
685075	5651200	57209	15	5	Ū.
685100	5651200	57009	0	5	0
685125	5651200	57399	10	10	0
685150	565120 0	56774	0	10	0
685175	5651200	57277	0	0	υ
685200	5651200	57169	0	-10	0
685225	565120C	57150	0	-35	O
685250	5651200	57343	10	-15	0
685275	5651200	57426	25	35	Ο
685300	5651200	57493	0	25	0
685325	565120C	57186	0	0	O
685350	5651200	56825	0	0	0
685375	5651200	57195	0	0	0
685400	5651200	57458	0	0	0
685425	5651200	57082	0	0	0
685450	5651200	57533	0	0	o
685475	5651200	57503	0	0	0
685500	5651200	57236	0	0	0
685525	5651200	57428	0	o	σ
685550	5651200	5 751 6	0	0	0
685575	5651200	57253	0	0	0
685600	5651200	57539	0	0	0
685625	5651200	5 70 90	0	0	O
685650	5651200	57355	0	0	0
685675	5651200	56879	0	0	0

<u>East</u>	North	Mag	VLF	VLF FF	Quad
685700	5651200	57201	0	0	0
685725	5651200	57078	ō	Ő	0 0
685750	5651200	57375	0	10	0
685775	5651200	57552	0	20	0
685800	5651200	57191	-10	0	0
685825	5651200	56992	-10	-20	0
685850	5651200	57458	-10	-20	0
685875	5651200	57018	0	-10	0
685900	5651200	57131	ŏ	ŏ	0
685925	5651200	57229	0 0	ů O	0
685950	5651200	56973	Ő	Ő	0
685975	5651200	57101	ō	ō	0
686000	5651200	57189	0 0	Ő	0
686025	5651200	57620	0 0	0 0	ů O
686050	5651200	56895	ŏ	ŏ	0
68607.5	5651200	56994	Ő	Ő	0
686100	5651200	57057	0	ŏ	0
686125	5651200	56849	0	0	0
686150	5651200	56860	ŏ	ŏ	0
686175	5651200	57099	0	ů O	0
686200	5651200	57433	ŏ	-20	0
686225	5651200	56917	ŏ	-20	0
686250	5651200	57005	20	20	0 0
686275	5651200	57147	20	20	0
686300	5651200	56970	ō	0	0
686325	5651200	57111	ő	ő	0
686350	5651200	57230	0	0	0
686375	5651200	56913	0	0	0
686400	5651200	57196	0	0	0
686425	5651200	56803	0	0	0
686450	5651200	57074	0	-10	0
686475	5651200	56715	0	-10	0
686500	5651200	56876	10	10	0
686525	5651200	57267	0	10	0
686550	5651200	5 659 6	0	0	0
686575	5651200	56841	0	0	0
686600	5651200	56350	0	0	0
686625	5651200	56903	0	0	0
6 8 6650	5651200	57102	0	0	0
686675	5651200	57360	0	0	0
686700	5651200	57334	0	0	0
686725	5651200	56903	0	0	0
6 867 50	5651200	56870	0	0	0
686775	5651200	57333	0	0	0
686800	5651200	56978	0	-10	0
686825	5651200	57383	0	-30	0
6 868 50	5651200	57157	10	-25	0
686875	5651200	57769	20	15	0
686900	5651200	56729	15	35	0
686925	5651200	570 9 9	0	30	0
6 869 50	5651200	57011	0	25	0
686975	5651200	57299	-15		0

- .	N .1					~ I
East 687000	North 5651200	Mag 56960	<u>VLF</u>	-10	<u>VLF FF</u>	Quad 0
685000		5/311		0		0 0
685025		57245		0	0	0
685050		57099		a	0	0
685075	5651300	57194		0	0	0
				0	0	-
685100		57172 57489		0	-	0
685125				-	-10	0
685150		57227		10	-10	0
685175	5651300	57502		10	10	0
685200		57394		0	10	0
685225	5651300	57363		0	0	U
685250		57282		0	0	0
685275	5651300	57553		0	0	0
685300		57261		0	0	0
685325	5651300	56987		0	0	0
685350		572 1 4		0	20	0
685375	5651300	57425		0	20	0
685400		56582		-20	-20	0
685425	5651300	56987		0	-20	0
685 450	5651 30 C	57428		0	20	0
685475	5651300	57078		0	20	0
685500	5651300	57252		-20	-70	0
685525	5651300	57161		Û	-20	0
685550	565130C	57224		0	0	0
685575	5651300	57049		0	0	0
685600	5651300	57070		0	0	0
685625	5651300	57069		0	0	0
685650	5651300	57172		0	5	0
685675	5651300	57172		0	-15	0
685700	5651300	56898		-5	-5	0
685725	5651300	57389		10	15	0
685750	5651300	56844		0	10	U
685775	5651300	57186		0	0	0
685800	5651300	57070		0	0	O
685825	5651300	56726		0	0	0
685850	5651300	56971		0	-10	υ
685875	5651300	57226		0	-10	0
685900	5651300	57315		10	10	0
685925	5651300	57126		0	10	0
685950	5651300	57491		0	0	0
685975	5651300	57262		0	0	0
686000		57328		0	0	0
686025		57068		0	0	0
686050		57255		0	0	0
686075		57420		ō	ō	0 0
686100		57323		ō	-25	0
686125		56398		ō	-25	0
686150		57146		25	-25	0
686175		57003		0	0	0
686200		57006		0	-55	0
686225		57170		25	-40	0
686250		56705		25 30	-40	0
060230	2021200	C. 101.		.50	20	0

East	North	Mag	VLF	VLF FF	Quad
686275	5651300	56670	35	<u>65</u>	<u></u>
686300	5651300	565/1	0	35	Ŭ
686325	5651300	57272	ŏ	0	ŏ
686350	5651300	56513	0	15	ō
686375	5651300	56870	0	40	0
686400	5651300	56817	-15	40 10	0
686425	5651300	56947	-15	-40	0
686450	565130C	57073	-25	-40	0
686475	5651300	57328	0	-25	0
686500	5651300	56493	0	0	0
686525	5651300	56838	0	0	υ
686550	5651300	56804	0	0	0
686575	5651300	56950	0	0	0
686600	5651300	56846	ŏ	ŏ	ŏ
686625	5651300	57400	ő	ŏ	0 0
686650	565130C	57156	0	0	0
686675	5651300	56850	0	-10	0
686700	5651300	56292	0	-10 -10	0
686725	5651300	57374	10	-10	0
686750	565130C	57246	10	10	o
686775	5651300	57122	0	0	0
686800	5651300	56907	0	15	0
686825	5651300	56973	0	5	0
686850	565130C	57119	-15	-25	0
686875	5651300	56979	10	-25	õ
686900	5651300	56413	10	10	ő
686925	5651300	56864	ő	0	ő
686950	5651300	56992	õ	ő	ő
686975	5651300	57231	0	•	0
687000	5651300	57182	õ		õ
685000	5651400	57129	0		0
685025	5651400	57303	0	o	Ŭ
685050	5651400	57222	0	0	0
685075	565140C	57018	ů O	ő	0 0
685100	5651400	56730	0	25	0
685125	5651400	5/114	0	25	Ű
685150	5651400	56960	-25	-25	0
685175		570 1 1	0	-25	0
685200		57025	0	0	0
685225		57111	0	ō	0
685250		56891	Ő	30	ō
685275		56878	ō	30	0
685300		57300	-30	-30	0
685325		57161	0	-30	0
685350		57323	ō	0	ō
685375		56789	0	0	C C
685400		56756	0	0	0
685425		57154	0	0	0
685450		56844	0	0	0
685475		57149	0	20	0
685500		56943	0	20	0
685525	5651400	57032	-20	-20	0

East	North	Mag	<u>VLF</u>	VLF FF	Quad
685550	5651400	56490	0	-20	o
685575	5651400	57283	0	Ű	o
685600	5651400	57055	0	0	0
685625	565140C	57087	0	0	o
685650	5651400	5 69 08	0	0	0
685675	565140C	56926	0	30	0
685700	5651400	57291	0	30	0
685725	565140C	57246	-30	0	o
685750	5651400	56970	0	0	0
685775	565140C	56831	-30	-30	0
685800	5651400	56947	0	-30	υ
685825	5651400	56770	0	0	0
685850	5651400	57024	0	0	0
685875	5651400	57083	0	0	0
685900	5651400	57297	0	0	0
685925	5651400	57090	0	10	o
685950	5651400	56778	0	10	0
685975	5651400	56989	-10	-10	0
686000	5651400	56832	0	-10	0
686025	5651400	56772	0	0	O
686050	5651400	57299	0	0	0
686075	5651400	57430	0	0	0
686100	5651400	57292	Û	0	0
686125	565140C	57000	0	0	0
686150	5651400	57378	0	0	0
686175	5651400	57194	0	0	0
686200	5651400	57397	0	0	0
686225	5651400	57008	0	0	0
686250	5651400	56671	0	-30	0
686275	5651400	57071	0	-50	0
686300	5651400	57272	30	10	0
686325	5651400	56921	20	55	U
686350	5651400	57283	0	60	0
686375	565140C	57196	-15	25	O
686400		56508	-25	0	0
686425	5651400	56864	-15	5	υ
686450		57131	-25	5	0
686475		57208	-20	15	0
686500		57303	-25	-10	0
686525		57423	-35	-60	0
686550		56750	0	-35	0
686575		56858	0	0	0
686600		57108	0	0	0
686625		57635	Û	0	0
686650		56877	0	0	0
686675		56826	0	0	D Q
686700		56860	0	0	0
686725		56870	0	0	0
686750		57050	0	0	0
686775		57060	0	0	0
686800		56831	0	0	0
686825	505 (40G	57280	0	0	0

East	North	Mag	VLF	VLF FF	Quad
686850	5651400	57024	0	0	0
686875	5651400	57198	0 0	0	0
686900	5651400	57374	ŏ	-10	0
686925	5651400	56820	0 0	-10	0
686950	5651400	56999	10	-10	0
686975	5651400	57184	0	10	0
687000	5651400	57211	0		0
685000	5651500	57336	0		0
685025	5651500	57074	0	0	0
685050	5651500	57347	0	0	0
685075	5651500	57380	0	0	0
685100	5651500	57120	0	0	0
685125	5651500	57429	0	0	0
685150	5651500	57115	o o	15	0
685175	5651500	57292	0	15	0
685200	5651500	56933	-15	-15	0
685225	5651500	57059	-13	-15	0
685250	5651500	57247	0	0	0
685275	5651500	57439	0	0	0
685300	5651500	56909	o o	0	0
685325	5651500	57225	0	0	0
685350	5651500	57156	0	0	0
685375	5651500	57408	ŏ	ŏ	0
685400	5651500	57409	0	0	0
685425	5651500	57290	0	0	0
685450	5651500	57142	0	0	0
685475	5651500	57354	0	0	0
685500	5651500	57464	ŏ	ŏ	0
685525	5651500	57416	o o	25	0
685550	5651500	57390	0	50	0
685575	5651500	57331	-25	0	0
685600	5651500	57403	-25	-50	0
685625	5651500	57476	0	-25	0
685650	5651500	57092	0 0	-25	0
685675	5651500	57365	õ	õ	0
685700	5651500	57268	õ	Ő	0
685725	5651500	57602	ō	0	0
685750	5651500	57274	Ő	Ő	0
685775	5651500	56939	0	0	0
685800		57107	Ő	Ő	0
685825	5651500	57159	0	0	0
685850		57329	0	0	0
685875	5651500	56854	0	0	0
685900		57052	0	0	0
685925	5651500	57456	0	0	0
685950		57112	Ő	Ő	ů O
685975	5651500	56924	0	0	0
686000		57554	Ő	Ő	0
686025	5651500	56862	0	0	0
686050		56742	Ő	Ő	0
686075	5651500	57261	0	0	0
686100	5651500	57290	0	0	0

<u>East</u>	<u>North</u>	Mag	VLF	VLF FF	Quad
686125	5651500	574 4 4	0	0	0
686150	5651500	57225	0	-10	0
686175	5651500	57077	0	-10	0
686200	5651500	57194	10	10	0
686225	5651500	57 397	0	10	0
6 862 50	5651500	57212	0	0	0
686275	5651500	56671	0	0	0
686300	5651500	57071	0	30	0
6 8 6325	5651500	56938	0	30	0
686350	5651500	56921	-30	-30	0
686375	5651500	57283	0	-70	0
686400	5651500	57 19 6	0	-40	0
686425	5651500	56508	40	40	0
686450	5651500	56894	0	40	0
686475	5651500	56907	0	0	0
686500	5651500	56973	0	0	0
686525	5651500	5 714 1	0	0	0
686550	5651500	56979	0	0	0
686575	5651500	56413	0	10	0
686600	5651500	57009	0	20	0
686625	5651500	569 9 2	-10	0	0
686650	5651500	57150	-10	-20	0
686675	5651500	57343	0	-10	0
686700	5651500	57426	0	0	0
686725	5651500	5 749 3	0	0	0
686750	5651500	57186	0	0	0
686775	5651500	569 9 1	0	0	0
686800	5651500	57195	0	10	0
686825		57458	0	10	0
686850		57347	-10	-10	0
686875	5651500	56856	0	-10	0
686900		572 3 2	0	0	0
686925		57465	0	0	0
686950		57374	0	0	0
686975		57361	0		0
687000	5651500	57108	0		0

Appendix IV

Geophysical Maps

Figure 8. VLF-EM Fraser Filtered Data Contoured & Coloured

Sookochoff Consultants Inc.

Figure 9. Magnetometer Data Contoured & Coloured

Figure 10. Magnetometer Data Contoured

Appendix V Statement of Qualifications

Emil Leimanis : Geophysics Technician with 35 years of British Columbia mineral exploration experience.