## Technical Report on Diamond Drilling at the Dease River Crossing Claim

Statement of Work Event Number: 5438033 (Drilling) Claim number 986012

> Mines Act Permit Mx-1-869

Location: Sphinx Creek/ Joe Irwin Lake Cry Lake Map Sheet, Liard Mining Division

NTS 104 I/13 ; BC TRIM 104I.091 Latitude: 58.941982° N, Longitude: 129.863225° W UTM Zone 9, 450326 E, 6533894 N NAD 83

> Project Period: May 1 to October 1, 2012

Owner and Operator: Canada Rockies International Investments Group Ltd. 7575 Carnarvon Street, Vancouver, BC, V6N 1K6

> Author: Hardolph Wasteneys, Ph.D. P.Geo. Campbell River, BC

> > Submitted: April 30, 2013

## **Table of Contents**

| Introduction                                       | 1  |
|----------------------------------------------------|----|
| Property Description and Location                  | 1  |
| Access, Climate, Local Resources, and Physiography | 1  |
| Property History                                   | 1  |
| 2012 Work Program                                  | 1  |
| Regional Geology                                   | 2  |
| Economic Geology                                   | 2  |
| Geology of the Drill Hole.                         | 2  |
| Geochemistry                                       | 2  |
| Conclusions and Recommendations:                   | 3  |
| References                                         | 4  |
| Appendix 1: Cost Statement and SOW                 | 5  |
| Appendix 2: Maps                                   | 8  |
| Appendix 3: Diamond Drill Data                     | 14 |
| Appendix 4: Statement of Qualifications            | 19 |
| ••                                                 |    |

# Introduction PROPERTY DESCRIPTION AND LOCATION

The Dease Lake Crossing claim #986012 lies on the east shore of the Dease River between Anvil and Joe Irwin Lake and midway between Cassiar and Dease Lake on Highway 37. The claim is adjacent to and partly overlaps deeded property DL6692 (Figure 1 in Appendix 2), site of the Dease Crossing RV Park on the south shore of Joe Irwin Lake east of the Dease Crossing Bridge and owned by Yong Chang Chen (Figure 2). The mineral tenure lies in NTS 104P/13 or BC TRIM 104I.091 at NAD 83 Latitude 58.941982° N, Longitude: 129.863225° W and UTM coordinates in Zone 9, 450326 E, 6533894 N. The claim area is 337 hectares and expires on October 15, 2014. A separate block of claims owned by Canada Rockies lies to the southeast in the vicinity of Pyramid Mountain.

#### ACCESS, CLIMATE, LOCAL RESOURCES, AND PHYSIOGRAPHY

The claim is in the Skree Range of the Cassiar Mountains physiographic regions and lies north of Chicken's Neck and Pyramid Mountains along Sphinx Creek. Access to the claim is immediately from high way 37 which traverses the NE corner of the claim. Within the claim a trail runs south along Sphinx Creek.

The region is characterized by rugged mountain and high plateaux separated by broad valleys (Figure3). Up to 50% of the area is above treeline which is generally at an elevation of 1300 meters. Lodgepole pine, white and black spruce, western hemlock and subalpine fir are the dominant tree species. Common broadleaf deciduous species include paper birch, balsam poplar and trembling aspen. Wildlife is prolific and the region is famous for big game hunting. Most are found in lower elevation valleys and include moose, caribou, grizzly and black bear, wolverine, lynx and wolf abound with mountain goat and Dall and Stone sheep ranging to higher elevations during spring lambing and kidding and summer grazing. Small mammals include collared pika, Arctic ground squirrel, tundra vole and the brown lemming. Bird species unique to the area include Pacific loon, gyrfalcon, lesser golden-plover, wandering tattler, Hudsonian godwit, red-necked phalarope, Arctic tern, northern shrike, Smith's longspur, snow bunting, and common redpoll. Freshwater fish include rainbow trout, Arctic grayling, Dolly Varden, lake trout and Whitefish and northern pike.

#### **PROPERTY HISTORY**

The current mineral claim was staked for Canada Rockies International on May 12, 2012 replacing earlier claims staked in 2011 and is currently good to October 15, 2014 subject to work credit submitted herein. The claim is 334.07 hectares in area and is non-contiguous with any other claims.

#### 2012 WORK PROGRAM

The only exploration by Canada Rockies on the Dease River Crossing claim property consisted of a single drill hole completed to a depth of 504 m at NAD 83 UTM coordinates 450326 E, 6533894 N.

The drilling was completed between May 16 and June 24, 2012 and logged by geologist Benjamin Hou in September, 2012. A track-mounted diamond drill (Hydrolic HD) was used for the job which took 39 days to complete. Total costs for the job including wages for 2 shifts of drillers each

1

with 2 helpers and logistics support of \$83,114.35 and fuel and maintenance of \$57,694.86 amounted to \$156,609.04 when reporting cost were added to the SOW Total Value of Work of \$155,009.04. Most of this amount (\$152,624.78) has been deposited to the Canada Rockies PAC. Cost details and a copy of the SOW comprise Appendix 1. The remainder (\$2384.26) was applied to the claim to advance the Good To Date to October 15, 2014,

## **Regional Geology**

The claim lies in the NW corner of the Cry Lake map sheet NTS 104 I mapped by Gabrielse (1978). The region is characterized by several narrow fault bounded terrane slices including the Yukon Tanana or Slide Mountain Terrane, the Quesnel Terrane and the Cache Creek Terrane (Figure 4). The post accretionary locally sheared pluonic suites of the Cassiar Batholith intrudes the Slide Mountain and Quesnel Terrane

The prominent NW trending transcurrrent Kutcho Fault separates Cretaceous intrusive rocks of the Cassiar Batholith (Ekc) from thrust fault imbricated Paleozoic passive continental margin marine sedimentary strata of the Earn Group and Lower Dorsey complex that are thrust on the Klingkit fault over Upper Triassic Shonektaw Formation arc related volcanics lieing to the south in the Quesnel Terrane (Figure 5). The Paleozoic strata were formerly assigned to the Atan Group Boya Formation by Gabrielse (1994) which consists of pyritic hornfelsic slate, argilllite, siltstone, quartzite, micaceous , quartzite, schist and limestone. The Shonektaw Fm is intruded by Lower Triassic granodiorites. The claim straddles the terrane bounding Kutcho Fault the trace of which lies in Sphinx Creek.

### ECONOMIC GEOLOGY

There are no recorded mineral showings in the BC Minfile system within the claim area nor in the immediate district. Previous work in the region has included geochemical sampling by the BC Regional Geochemical Survey and some company surveys, but no previous work has been recorded within 20 km of the site.

The Cassiar district is 40 km to the NW across the strike of the Cassiar Batholith is a wellmineralized area featuring many types of magmatic-hydrothermal mineral deposits including porphyry molybdenite, base metal skarns. The property lies about 100 km north of the Hotailuh Batholith currently of interest for porphyry mineralization at the NE extent of the Stikine Arch.

## Geology of the Drill Hole.

The drill hole (ZK1 in the logs) reached bedrock through 12 meters of granite boulder overburden representing constituents of the Cassiar batholith which lies to the north of the NW trending Kutcho Fault traced by Sphinx Creek. Thereafter coring continued on a vertical inclination to a depth of 503.16 meters entirely within probable Paleozoic Lower Dorsey Formation argillites and greywackes (Figure 6 in Appendix 3). The entire core length was observed to be commonly fractured and silicified and sporadically weakly mineralized with pyrite. The mapped proximity of the Kutcho Fault may account for some of the fracturing but core logging found no distinct fault zone tectonites nor any identifiable mineralization.

### Geochemistry

Several spot samples were collected as short intervals of drill core and of these 3 were analysed by ALS method ME ICP41 which involves an Aqua Regia digestion followed by ICP AES analysis on a spectrum of 35 elements, plus gold by Au-AA23; fire assay on a 30 gram sample with atomic

absorption analysis finish. One sample from 329 meters showed anomalous zinc concentration of 499 ppm and a correspondingly high 1.52% sulphur. No other anomalous results were obtained nor was any unusual mineralization observed by the logging geologist Benjamin Hou. The samples analysed included examples of more pyritic black siltstone or mudstone and revealed no anomalous element concentrations. Selected analytical results in ppm or percent (indicated) are tabulated below and certificates are produce in Appendix 3. Au and Ag were near or below detection limits.

| Sample   | Depth<br>(m) | As | Са   | Cu | Fe % | Mn  | S %  | Sr  | Zn  |
|----------|--------------|----|------|----|------|-----|------|-----|-----|
| ZK1 GP6  | 2.3          | <2 | 3055 | 31 | 3.83 | 493 | 1.1  | 164 | 72  |
| ZK1 GP9  | 329          | <2 | 1.92 | 71 | 2.17 | 116 | 1.52 | 95  | 499 |
| ZK1 GP15 | 176.5        | <2 | 5.69 | 16 | 2.64 | 377 | 0.93 | 272 | 46  |

#### **Conclusions and Recommendations:**

A single vertical drill hole on mineral claim 986012 penetrated 503.16 meters into Upper Paleozoic Lower Dorsey Complex argillites and siltstones on the south side of the Kutcho Fault near its intersection with the Dease River. However, no mineralization was observed and only minor anomalous geochemical results were found in a few samples from the core. Pervasive fracturing and silicification was attributed to the proximity of the Kutcho Fault, a major transcurrent NW trending structure that juxtaposes Cassiar Batholith intrusive complex rocks against Paleozoic basement rocks of Quesnel Terrane.

The claims are good to October 15, 2014, but the nature of the drilled rocks do not warrant any further expenditures for exploration work.

### References

**Gabrielse, H., 1978**: Geology of Cry Lake (104I) map areas, north central British Columbia; Geological Survey of Canada; Open File Map 610.

**Gabrielse, H. 1998**. Geology of the Cry Lake and Dease Lake map areas, north-central British Columbia. Geological Survey of Canada, Bulletin 504, 147 p.

**Gabrielse, H. and Harms, T.A., 1989**: Permian and Devonian plutonic rocks in the Sylvester Allochthon, Cry Lake and McDame map areas, Northern British Columbia; *in* Current Research, Part E. Geological Survey of Canada Paper 89-1E, pages 1-4.

**Gabrielse, H., 1994**: Geology of Cry Lake (104I) and Dease Lake (104J/E) map areas, north central British Columbia; Geological Survey of Canada; Open File Map 2779.

**Gabrielse, H. and Tipper, H.W. 1984.** Bedrock geology of Spatsizi map area (104H). Geological Survey of Canada, Open File 1005, scale 1:250 000.

**Jackaman, W., 2011a**: British Columbia Regional Geochemical Survey: new analytical data and sample archive upgrades; *in* Geoscience BC Summary of Activities 2010, Geoscience BC, Report 2011-1.

**Jackaman, W., 2011b**: Northern BC Sample Reanalysis Project; Geoscience BC, Report 2011-2, 11 p. Massey, N.W.D., MacIntyre, D.G., Desjardins, P.J. and Cooney, R.T., 2005: Digital geology map of British Columbia: whole province, B.C. Ministry of Energy and Mines, Geofile 2005-1.

**Nelson, J., 2000**: Ancient Pacific Margin Part VI; Still Heading South: Potential VMS Hosts in the Eastern Dorsey Terrane, Jennings River (104O/1; 7, 8, 9, 10); *in* Geological Fieldwork 1999, *B.C. Ministry of Energy and Mines*, Geological Survey Branch, Paper 2000-1, pages 106-126.

**Tipper, H.W. and Richards, T.A. (1976):** Jurassic stratigraphy and history of north-central British Columbia; Geological Survey of Canada, Bulletin 270, 73 pages.

## Appendix 1: Cost Statement and SOW

#### Appendix 1: Cost Statement; Dease Crossing 1

| Exploration Work type        | Comment                             | Da     | ys         |                  |                  | Totals      |
|------------------------------|-------------------------------------|--------|------------|------------------|------------------|-------------|
| Personnel (Name)* / Position | Field Days (list actual days)       | Da     | ve         | Rate             | Subtotal*        |             |
| Li Changije /driller         | May 16 to June 24                   | Du     | <b>7</b> 9 | Nate             | \$14 292 72      |             |
| Ou Yongxin /driller          |                                     |        | 20         |                  | ¢14 202 72       |             |
| Fu Haivu/ belper             |                                     |        | 20         |                  | 46 252 07        |             |
| Liu Chaodong / holnor        |                                     |        | 29         |                  | \$0,255.07       |             |
|                              |                                     |        | 39         |                  | \$6,253.07       |             |
| Cao Lingnian / neiper        |                                     |        | 39         |                  | \$6,253.07       |             |
| Wang Cheng /helper           |                                     |        | 39         |                  | \$6,253.07       |             |
| Guo Shaobo / support         |                                     |        | 39         |                  | \$10,719.54      |             |
| Li Junsong / support         |                                     |        | 39         |                  | \$10,719.54      |             |
| Min Hou / Geologist          | October                             |        | 15         |                  | \$8,077.55       |             |
|                              |                                     |        |            |                  | \$83,114.35      | \$83,114.35 |
| Office Studies               | List Personnel (note - Office       | e only | , do       | not inclu        | ude field days   |             |
| Literature search            |                                     |        |            | \$0.00           | \$0.00           |             |
| General research             |                                     |        |            | \$0.00           | \$0.00           |             |
| Report preparation           | Hardolph Wasteneys                  | 2      | 2.0        | \$800.00         | \$1,600.00       |             |
|                              |                                     |        | _          |                  | \$1,600.00       | \$1,600.00  |
| Geochemical Surveying        | Number of Samples                   | No.    | R          | late             | Subtotal         |             |
| Soil                         | note: This is for assays or         |        |            | \$0.00           | \$0.00           |             |
| Rock                         | laboratory costs                    | 3      | 3.0        | \$45.60          | \$136.79         |             |
| Water                        |                                     |        |            | \$0.00           | \$0.00           |             |
| Other (specify)              |                                     |        |            | \$0.00           | \$0.00           |             |
|                              |                                     |        |            | -                | \$136.79         | \$136.79    |
| Drilling                     | No. of Holes, Size of Core and Metr | No.    | R          | ate              | Subtotal         |             |
| Diamond (fuel only)          | 1 hole NQ, 394.5 meters             |        |            | \$0.00           | \$49,730.87      |             |
| Diamond (maintenance only)   | I hole NQ, 394.5 meters             |        |            | \$0.00           | 7,963.99         | ¢57 604 96  |
| Poclamation                  | Clarify                             | No     | D          | ato              | \$57,094.00      | \$57,094.00 |
| After drilling               | Clarify                             | NO.    | n          | 40 00            |                  |             |
| Monitoring                   |                                     |        |            | \$0.00<br>\$0.00 | \$0.00<br>\$0.00 |             |
| Other (specify)              |                                     |        |            | \$0.00           | \$0.00           |             |
|                              |                                     |        |            | 40100            | φοισσ            |             |
| Accommodation & Food         | Rates per day                       |        |            |                  |                  |             |
| Hotel                        |                                     |        |            | \$0.00           | \$0.00           |             |
| Camp                         |                                     |        |            | \$0.00           | \$2,840.00       |             |
| Meals                        | day rate or actual costs-specify    |        |            | \$0.00           | \$11,223.04      |             |
|                              |                                     |        |            |                  | \$14,063.04      | \$14,063.04 |
| Transportation               |                                     | No.    | R          | late             | Subtotal         |             |
| Airfare                      |                                     |        |            | \$0.00           | \$0.00           |             |
| Taxi                         |                                     |        |            | \$0.00           | \$0.00           |             |
| truck rental                 |                                     |        |            | \$0.00           | \$0.00           |             |
| kilometers                   |                                     |        |            | \$0.00           | \$0.00           |             |
| ATV                          |                                     |        |            | \$0.00           | \$0.00           |             |
| fuel                         |                                     |        |            | \$0.00           | \$0.00           |             |
|                              |                                     |        |            |                  | \$0.00           | \$0.00      |

TOTAL Expenditures

\$156,609.04

## Appendix 2: Maps

Figure 1. Claim location MTO Figure 2 Google image Figure 3. Physiography Figure 4 Terranes Figure 5 Regional Geology



















| Lege                               | end                                                             |  |  |  |  |  |  |
|------------------------------------|-----------------------------------------------------------------|--|--|--|--|--|--|
|                                    | Kar                                                             |  |  |  |  |  |  |
|                                    |                                                                 |  |  |  |  |  |  |
|                                    | Jga                                                             |  |  |  |  |  |  |
|                                    | Tgd                                                             |  |  |  |  |  |  |
|                                    | Atan Group - Boya Formation                                     |  |  |  |  |  |  |
|                                    | Atan Group - Rosella Formation                                  |  |  |  |  |  |  |
|                                    | Big Salmon Complex                                              |  |  |  |  |  |  |
|                                    | Ca che Creek Complex                                            |  |  |  |  |  |  |
|                                    | Cache Creek Complex - French Range Formation                    |  |  |  |  |  |  |
|                                    | Cache Creek Complex - Ked ahda Form ation                       |  |  |  |  |  |  |
|                                    | Cache Creek Complex - Teslin Formation                          |  |  |  |  |  |  |
|                                    | Cassiar Batholith                                               |  |  |  |  |  |  |
|                                    | Earn Group                                                      |  |  |  |  |  |  |
|                                    | Ing enika G roup                                                |  |  |  |  |  |  |
|                                    | Ingenika Group - Espee Formation                                |  |  |  |  |  |  |
|                                    | ng on ka Group - Espec Formation                                |  |  |  |  |  |  |
|                                    | ing enika Group - Steikuz Formatio n                            |  |  |  |  |  |  |
|                                    | Ke chika Group                                                  |  |  |  |  |  |  |
|                                    | Laberg e G roup - In klin F ormation                            |  |  |  |  |  |  |
|                                    | Lowe r Dor sey Complex                                          |  |  |  |  |  |  |
|                                    | McDame Group                                                    |  |  |  |  |  |  |
|                                    | Ramh orn Group                                                  |  |  |  |  |  |  |
|                                    | Rapid River Tec to nite                                         |  |  |  |  |  |  |
|                                    | Road River Group                                                |  |  |  |  |  |  |
|                                    | Slide Mountain Complex                                          |  |  |  |  |  |  |
|                                    | Slide Mountain Complex - Blue Dome Fault Zone                   |  |  |  |  |  |  |
|                                    | Slide Mountain Complex - Division li                            |  |  |  |  |  |  |
|                                    | Slide Mountain Complex - Ultra mafic and Gabbroic Thrust Sheets |  |  |  |  |  |  |
|                                    | Stubini Group - Sinus Formation                                 |  |  |  |  |  |  |
|                                    |                                                                 |  |  |  |  |  |  |
|                                    | SWITT RIVER G FOUD                                              |  |  |  |  |  |  |
|                                    | Takla Group - Nazcha Formation                                  |  |  |  |  |  |  |
|                                    | Tak la Group - Shonektaw Formation                              |  |  |  |  |  |  |
|                                    | Tu ya F ormation                                                |  |  |  |  |  |  |
|                                    | Un named                                                        |  |  |  |  |  |  |
|                                    | Fault                                                           |  |  |  |  |  |  |
|                                    | Normal Fault                                                    |  |  |  |  |  |  |
|                                    | Thrust                                                          |  |  |  |  |  |  |
|                                    | Minfile                                                         |  |  |  |  |  |  |
|                                    | ARIS                                                            |  |  |  |  |  |  |
|                                    | Mineral                                                         |  |  |  |  |  |  |
|                                    | Placer                                                          |  |  |  |  |  |  |
|                                    |                                                                 |  |  |  |  |  |  |
| Regional Geology<br>Dease Crossing |                                                                 |  |  |  |  |  |  |
|                                    | 1:250,000                                                       |  |  |  |  |  |  |

Figure 5

**Canada Rockies International** 

## Appendix 3: Diamond Drill Data

Figure 6. Drill Logs Figure 7 Drill Section Figure 8 Assays Figure 9 Sampling



#### **Canada Rockies**

Drill Log

| Hole No.: RD08-02 | Date Started: May 16, 2012                   |
|-------------------|----------------------------------------------|
| Azimuth:          | Date Finished: June 24, 2012                 |
| Dip: 90°          | Drilled by: Canada Rockies                   |
| Core Size:        | Logged by: Benjamin Hou                      |
|                   | Coordinates: UTM Zone 9, 450326 E, 6533894 N |

|         |      |        |           | Major Lithological Units         | Description                                                                                                                                                                                                                           |
|---------|------|--------|-----------|----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| HOLE ID | FROM | TO     | LITHOCODE |                                  |                                                                                                                                                                                                                                       |
| ZK1     | 0    | 12     | OVB       | monzonitic granite, Granodiorite | Granite in talus slope deposit                                                                                                                                                                                                        |
| ZK1     | 12   | 20     | MST       | Mudstone                         | silicification occuring as veins and in stockworks, mixed with layers of tuffaceous sandstone; fractures filled with pyrite and quartz in paragenesis                                                                                 |
| ZK1     | 20   | 27     | MST       | Mudstone                         | fractured zone, silicified, quartz development                                                                                                                                                                                        |
| ZK1     | 27   | 34     | MST       | Mudstone, some tuff breccia      | silicified, occuring in small veins margins an stockwork fractures. Fractured in phases: fractures filled by quartz vein refractured. Widely contain carbon, graphitic in fractures. A few assemblages of pyrite and quartz observed. |
| ZK1     | 34   | 41.00  | MST       | Mudstone, some tuff breccia      | Similar lithology to interval above 27 to 34; new depositional cycle                                                                                                                                                                  |
| ZK1     | 41   | 48.00  | MST       | Mudstone, some tuff breccia      | Similar lithology to interval above 27 to 34                                                                                                                                                                                          |
| ZK1     | 48   | 67.00  | MST       | Mudstone, some tuff breccia      | Similar lithology to interval above 27 to 34                                                                                                                                                                                          |
| ZK1     | 67   | 84.00  | MST       | Mudstone, some tuff breccia      | Similar lithology to interval above 27 to 34                                                                                                                                                                                          |
| ZK1     | 84   | 91.00  | MST       | Mudstone, some tuff breccia      | Similar lithology to interval above 27 to 34                                                                                                                                                                                          |
| ZK1     | 91   | 100.00 | MST       | Mudstone, some tuff breccia      | Similar lithology to interval above 27 to 34                                                                                                                                                                                          |
| ZK1     | 100  | 111.00 | MST       | Mudstone, some tuff breccia      | Similar lithology to interval above 27 to 34                                                                                                                                                                                          |
| ZK1     | 111  | 119.50 | MST       | Mudstone, some tuff breccia      | Similar lithology to interval above 27 to 34                                                                                                                                                                                          |
| ZK1     | 120  | 126.50 | MST       | Mudstone, some tuff breccia      | Similar lithology to interval above 27 to 34                                                                                                                                                                                          |
| ZK1     | 127  | 138.50 | MST       | Mudstone, some tuff breccia      | Similar lithology to interval above 27 to 34                                                                                                                                                                                          |
| ZK1     | 139  | 153.50 | MST       | Mudstone, some tuff breccia      | Similar lithology to interval above 27 to 34                                                                                                                                                                                          |
| ZK1     | 154  | 210.50 | MST       | Mudstone, some tuff breccia      | Similar lithology to interval above 27 to 34                                                                                                                                                                                          |
| ZK1     | 211  | 243.50 | MST       | Mudstone, some tuff breccia      | Similar lithology to interval above 27 to 34                                                                                                                                                                                          |
| ZK1     | 244  | 278.50 | MST       | Mudstone, some tuff breccia      | Similar lithology to interval above 27 to 34                                                                                                                                                                                          |
| ZK1     | 279  | 298.50 | MST       | Mudstone, some tuff breccia      | Similar lithology to interval above 27 to 34                                                                                                                                                                                          |
| ZK1     | 299  | 371.50 | MST       | Mudstone, some tuff breccia      | Similar lithology to interval above 27 to 34                                                                                                                                                                                          |
| ZK1     | 372  | 396.50 | MST       | Mudstone, some tuff breccia      | Similar lithology to interval above 27 to 34                                                                                                                                                                                          |
| ZK1     | 397  | 403.50 | MST       | Mudstone, some tuff breccia      | Similar lithology to interval above 27 to 34                                                                                                                                                                                          |
| ZK1     | 404  | 426.50 | MST       | Mudstone, some tuff breccia      | Similar lithology to interval above 27 to 34                                                                                                                                                                                          |
| ZK1     | 427  | 502.66 | MST       | Mudstone, some tuff breccia      | Similar lithology to interval above 27 to 34                                                                                                                                                                                          |
| ZK1     | 503  |        | MST       |                                  |                                                                                                                                                                                                                                       |

| C       | ERTIFICATE COMM           | ENTS : ""      |                    |                             |                     |            |           |            |            |              |            |             |             |          |           |          |              |            |            |              |           |              |              |           |           |           |            |           |              |           |            |             |            |                |            |            |          |            |           |
|---------|---------------------------|----------------|--------------------|-----------------------------|---------------------|------------|-----------|------------|------------|--------------|------------|-------------|-------------|----------|-----------|----------|--------------|------------|------------|--------------|-----------|--------------|--------------|-----------|-----------|-----------|------------|-----------|--------------|-----------|------------|-------------|------------|----------------|------------|------------|----------|------------|-----------|
|         |                           | From           | То                 | Hole Au-                    | AA23 ME-ICP4        | 41 ME-ICP4 | ME-ICP4   | ME-ICP41   | ME-ICP41   | ME-ICP4      | 1 ME-ICP41 | ME-ICP41    | ME-ICP41    | ME-ICP41 | ME-ICP41  | ME-ICP41 | 1 ME-ICP4    | 1 ME-ICP4  | 1 ME-ICP41 | 1 ME-ICP41   | ME-ICP4   | 1 ME-ICP41   | 1 ME-ICP4    | 1 ME-ICP4 | 1 ME-ICP4 | 1 ME-ICP4 | 1 ME-ICP4  | ME-ICP41  | ME-ICP41     | 1 ME-ICP4 | 41 ME-ICP4 | 1 ME-ICP41  | ME-ICP41   | ME-ICP41       | ME-ICP41   | 1 ME-ICP4  | ME-ICP41 | ME-ICP41   | ME-ICP41  |
| S.<br>D | SCRIPTION                 |                |                    | ppn                         | Ag<br>n ppm         | AI<br>%    | AS<br>ppm | ррт        | ва<br>ppm  | ве<br>ppm    | ы<br>ppm   | %           | ppm         | ppm      | Cr<br>ppm | ppm      | ⊢e<br>%      | Ga<br>ppm  | Hg<br>ppm  | к<br>%       | La<br>ppm | Mg<br>%      | Mn<br>ppm    | Mo<br>ppm | Na<br>%   | ppm       | ppm        | Рb<br>ppm | s<br>%       | SD<br>ppm | Sc<br>ppm  | Sr<br>ppm   | i n<br>ppm | %              | ppm        | ppm        | v<br>ppm | vv<br>ppm  | Zn<br>ppm |
| ZI      | (1 GP6 DX<br>(1 GP9 DX    | 2              | 27.0               | ZK1GP6 <0.0                 | 005 0.3             | 0.57       | <2        | <10        | 190<br>130 | 1.0          | <2         | 3.55        | <0.5        | 13<br>9  | 7         | 31<br>71 | 3.83         | <10        | <1         | 0.31         | 20        | 1.33         | 493<br>116   | <1<br>18  | 0.08      | 29        | 390<br>610 | 21        | 1.10         | <2        | 5          | 164<br>95   | <20        | <0.01          | <10        | <10<br>10  | 8        | <10        | 72<br>499 |
| Z       | (1 GP15 DX                | 1              | 76.5               | ZK1GP15 <0.0                | 005 <0.2            | 0.44       | <2        | <10        | 200        | 0.6          | <2         | 5.69        | <0.5        | 11       | 7         | 16       | 2.64         | <10        | <1         | 0.25         | 10        | 1.32         | 377          | <1        | 0.05      | 25        | 420        | 8         | 0.93         | <2        | 4          | 272         | <20        | <0.01          | <10        | <10        | 12       | <10        | 46        |
| ZI      | (2 GP2 Mz1<br>(2 GP15 Mz1 | 2              | 05.5<br>98.8       | ZK2GP2 <0.0<br>ZK2GP15 <0.0 | 005 0.2<br>005 0.2  | 1.02 0.93  | 5<br>35   | <10<br><10 | 70<br>80   | <0.5<br><0.5 | <2<br><2   | 16.7<br>7.7 | <0.5<br>0.7 | 11<br>6  | 19<br>13  | 22<br>8  | 2.89<br>2.76 | <10<br><10 | <1<br><1   | 0.13<br>0.15 | 10<br><10 | 0.55<br>0.62 | 3320<br>2790 | 1<br><1   | 0.02      | 45<br>37  | 280<br>900 | 13<br>4   | 1.56<br>1.10 | 2         | 3<br>4     | 2580<br>738 | <20<br><20 | <0.01<br><0.01 | <10<br><10 | <10<br><10 | 17<br>15 | <10<br><10 | 68<br>98  |
| Z       | (2 GP19 Mz1               | 3              | 89.2               | ZK2GP19 <0.0                | 005 <0.2            | 1.53       | 12        | <10        | 140        | 0.5          | <2         | 3.41        | <0.5        | 6        | 19        | 9        | 2.67         | <10        | <1         | 0.09         | <10       | 0.94         | 972          | <1        | 0.03      | 18        | 620        | <2        | 0.17         | <2        | 5          | 202         | <20        | < 0.01         | <10        | <10        | 24       | <10        | 31        |
| ZI      | (3 B2 MZ                  |                | 5.4                | ZK3B1 <0.0                  | 005 0.3<br>005 <0.2 | 2.66       | 4         | <10        | 140        | 0.7          | <2         | 3.09        | <0.5        | 32<br>11 | 154       | 33       | 3.78         | 10         | <1         | 0.18         | <10       | 2.50         | 2130         | <1        | 0.02      | 201       | 630        | 5         | 0.05         | <2<br><2  | 9<br>7     | 44<br>281   | <20<br><20 | <0.01          | <10        | <10        | 92<br>40 | <10        | 87        |
| Zi      | (3 B3 MZ                  | 2              | 5.5                | ZK3B3 0.0                   | 08 0.2              | 2.84       | 8         | <10        | 140        | 0.5          | <2         | 1.94        | <0.5        | 18       | 25        | 48       | 4.19         | 10         | <1         | 0.16         | <10       | 1.67         | 1500         | 1         | 0.03      | 38        | 870        | 6         | 0.04         | <2        | 7          | 127         | <20        | <0.01          | <10        | <10        | 53       | <10        | 105       |
| Fi      | om<br>148.3               | ALS T<br>ZK1G  | ag Assayed         |                             |                     |            |           |            |            |              |            |             |             |          |           |          |              |            |            |              |           |              |              |           |           |           |            |           |              |           |            |             |            |                |            |            |          |            |           |
| Þ       | 168                       | ZK1G           | P3                 |                             |                     |            |           |            |            |              |            |             |             |          |           |          |              |            |            |              |           |              |              |           |           |           |            |           |              |           |            |             |            |                |            |            |          |            |           |
| F       | 188.0<br>213.0            | ZK1GI<br>ZK1GI | P4<br>P5           |                             |                     |            |           |            |            |              |            |             |             |          |           |          |              |            |            |              |           |              |              |           |           |           |            |           |              |           |            |             |            |                |            |            |          |            |           |
| F       | 227.0                     | ZK1G           | P6 ZK1GP6          |                             |                     |            |           |            |            |              |            |             |             |          |           |          |              |            |            |              |           |              |              |           |           |           |            |           |              |           |            |             |            |                |            |            |          |            |           |
| E       | 306.0                     | ZK1G           | P8                 |                             |                     |            |           |            |            |              |            |             |             |          |           |          |              |            |            |              |           |              |              |           |           |           |            |           |              |           |            |             |            |                |            |            |          |            |           |
| F       | 329.0<br>354.5            | ZK1GI<br>ZK1GI | P9 ZK1GP9<br>P10   |                             |                     |            |           |            |            |              |            |             |             |          |           |          |              |            |            |              |           |              |              |           |           |           |            |           |              |           |            |             |            |                |            |            |          |            |           |
| F       | 368.0                     | ZK1G           | P11                |                             |                     |            |           |            |            |              |            |             |             |          |           |          |              |            |            |              |           |              |              |           |           |           |            |           |              |           |            |             |            |                |            |            |          |            |           |
| E       | 396.0                     | ZK1G           | P13                |                             |                     |            |           |            |            |              |            |             |             |          |           |          |              |            |            |              |           |              |              |           |           |           |            |           |              |           |            |             |            |                |            |            |          |            |           |
| -       | 426.0                     | ZK1GI<br>ZK1GI | P14<br>P15 ZK1GP15 |                             |                     |            |           |            |            |              |            |             |             |          |           |          |              |            |            |              |           |              |              |           |           |           |            |           |              |           |            |             |            |                |            |            |          |            |           |
| F       |                           |                |                    |                             |                     |            |           |            |            |              |            |             |             |          |           |          |              |            |            |              |           |              |              |           |           |           |            |           |              |           |            |             |            |                |            |            |          |            |           |
| Þ       | 17.0                      | ZK2B1          |                    |                             |                     |            |           |            |            |              |            |             |             |          |           |          |              |            |            |              |           |              |              |           |           |           |            |           |              |           |            |             |            |                |            |            |          |            |           |
|         | 33.7<br>56.2              | ZK2B2<br>ZK2B3 | 3                  |                             |                     |            |           |            |            |              |            |             |             |          |           |          |              |            |            |              |           |              |              |           |           |           |            |           |              |           |            |             |            |                |            |            |          |            |           |
| F       | 105.5                     | ZK2B4<br>ZK2B4 |                    |                             |                     |            |           |            |            |              |            |             |             |          |           |          |              |            |            |              |           |              |              |           |           |           |            |           |              |           |            |             |            |                |            |            |          |            |           |
|         | 44.5                      | ZK2G           | P1                 |                             |                     |            |           |            |            |              |            |             |             |          |           |          |              |            |            |              |           |              |              |           |           |           |            |           |              |           |            |             |            |                |            |            |          |            |           |
| E       | 105.5                     | ZK2GI<br>ZK2GI | P2 ZK2GP2<br>P3    |                             |                     |            |           |            |            |              |            |             |             |          |           |          |              |            |            |              |           |              |              |           |           |           |            |           |              |           |            |             |            |                |            |            |          |            |           |
| F       | 134.0<br>164.5            | ZK2GI<br>ZK2GI | P4                 |                             |                     |            |           |            |            |              |            |             |             |          |           |          |              |            |            |              |           |              |              |           |           |           |            |           |              |           |            |             |            |                |            |            |          |            |           |
| F       | 170.5                     | ZK2GI          | P6                 |                             |                     |            |           |            |            |              |            |             |             |          |           |          |              |            |            |              |           |              |              |           |           |           |            |           |              |           |            |             |            |                |            |            |          |            |           |
| E       | 185.0                     | ZK2GI<br>ZK2GI | P8                 |                             |                     |            |           |            |            |              |            |             |             |          |           |          |              |            |            |              |           |              |              |           |           |           |            |           |              |           |            |             |            |                |            |            |          |            |           |
| F       | 215.5                     | ZK2GI<br>ZK2GI | P9<br>P10          |                             |                     |            |           |            |            |              |            |             |             |          |           |          |              |            |            |              |           |              |              |           |           |           |            |           |              |           |            |             |            |                |            |            |          |            |           |
| F       | 254.4                     | ZK2G           | P11                |                             |                     |            |           |            |            |              |            |             |             |          |           |          |              |            |            |              |           |              |              |           |           |           |            |           |              |           |            |             |            |                |            |            |          |            |           |
| F       | 283.5                     | ZK2GI<br>ZK2GI | P12                |                             |                     |            |           |            |            |              |            |             |             |          |           |          |              |            |            |              |           |              |              |           |           |           |            |           |              |           |            |             |            |                |            |            |          |            |           |
| F       | 294.0                     | ZK2GI<br>ZK2GI | P14<br>P15 ZK2GP15 |                             |                     |            |           |            |            |              |            |             |             |          |           |          |              |            |            |              |           |              |              |           |           |           |            |           |              |           |            |             |            |                |            |            |          |            |           |
| E       | 322.5                     | ZK2G           | P16                |                             |                     |            |           |            |            |              |            |             |             |          |           |          |              |            |            |              |           |              |              |           |           |           |            |           |              |           |            |             |            |                |            |            |          |            |           |
| F       | 334.0<br>363.0            | ZK2GI<br>ZK2GI | P17<br>P18         | +                           |                     |            |           |            |            |              |            |             |             |          |           |          |              |            |            |              |           |              |              |           |           |           |            |           |              |           |            |             |            |                |            |            |          |            |           |
|         | 389.2                     | ZK2GI          | P19 ZK2GP19        |                             |                     |            |           |            |            |              |            |             |             |          |           |          |              |            |            |              |           |              |              |           |           |           |            |           |              |           |            |             |            |                |            |            |          |            |           |
| F       | 2.3                       | ZK3B1          | ZK3B1              |                             |                     |            |           |            |            |              |            |             |             |          |           |          |              |            |            |              |           |              |              |           |           |           |            |           |              |           |            |             |            |                |            |            |          |            |           |
| F       | 5.4<br>5.5                | ZK3B2<br>ZK3B3 | ZK3B2<br>ZK3B3     | + - 1                       |                     |            |           |            |            |              |            |             |             |          |           |          |              |            |            |              |           |              |              |           |           |           |            |           |              |           |            |             |            |                |            |            |          |            |           |
| E       | 310.0                     | ZK3B4          | Ļ                  |                             |                     |            |           |            |            |              |            |             |             |          |           |          |              |            |            |              |           |              |              |           |           |           |            |           |              |           |            |             |            |                |            |            |          |            |           |

Assays

VA12275953 - Finalized CLIENT: "CARIIG - Canada Rockies International Investment Group" # of SAMPLES: 9 DATE RECEIVED: 2012-11-21 DATE FINALIZED : 2012-11-27 PROJECT: "\*

| Samples |
|---------|
|---------|

|             | <b>F</b> | то    |         |           |                   |                   | Dee No   | Shipment  |           | WD Trees | A   | 100 |
|-------------|----------|-------|---------|-----------|-------------------|-------------------|----------|-----------|-----------|----------|-----|-----|
| Hole ID     | From     | 10    | Скі тад |           |                   | rock sample       | Bag No.  | Date      | WH Majors | WH Irace | AU  | ICP |
|             | From     | то    |         | Assaulad  | aammanta          | Comple Type       | Shipment |           |           | A        |     |     |
|             | FIUIII   | 10    | ALS Tay | Assayeu   | comments          | Deference comple  | Dale     | Wh Majors | Wh Hace   | Au       | ICF |     |
|             | 140.3    |       |         | -         |                   | Reference sample  |          |           |           |          |     |     |
| ZK1         | 100      |       |         | -         |                   | Reference sample  |          |           |           |          |     |     |
| 71/1        | 212.0    |       |         | -         |                   | Reference sample  |          |           |           |          |     |     |
| ZK1<br>ZK1  | 213.0    |       | ZK1GP5  | ZK1GP6    |                   | Reference sample  |          |           |           |          | ×   | ×   |
| 7K1         | 267.0    |       | ZKIGP7  | ZITICITO  |                   | Reference sample  |          |           |           |          | ^   | ^   |
| 71/1        | 207.0    |       |         | -         |                   | Peference sample  | +        |           |           |          |     | ł   |
| 71/1        | 220.0    |       |         | ZK1CP0    |                   | Reference sample  |          |           |           |          | v   | ×   |
| 71/1        | 329.0    |       | ZKIGPJO | ZRIGF9    |                   | Reference sample  |          |           |           |          | ^   | ^   |
| 71/1        | 269.0    |       | ZKIGPIU |           |                   | Reference sample  |          |           |           |          |     | ł   |
| ZK1         | 276.0    |       | ZKIGF11 |           |                   | Reference sample  |          |           |           |          |     |     |
| 71/1        | 206.0    |       | ZKIGF12 | -         |                   | Reference sample  |          |           |           |          |     |     |
|             | 396.0    |       |         | _         |                   | Peterence sample  |          |           |           |          |     |     |
|             | 420.0    |       |         | 71/10.015 |                   | Reference sample  | -        |           |           |          |     |     |
| 21(1        | 176.5    |       | ZKIGPIS | ZKIGPIS   |                   | Reference sample  |          |           |           |          | x   | X   |
|             |          |       |         | _         |                   |                   |          |           |           |          |     |     |
| 71/0        | 17.0     |       |         |           |                   | Deferrere e emele |          |           |           |          |     |     |
| ZK2<br>ZK2  | 17.0     | 24.0  |         | _         |                   | Reference sample  |          |           |           |          |     |     |
| 21/2        | 33.7     | 34.2  |         | _         |                   | Reference sample  |          |           |           |          |     |     |
| ZK2         | 56.2     |       | ZK2B3   | _         |                   | Reference sample  |          |           |           |          |     |     |
| ZK2<br>71/0 | 105.5    | 100.0 | ZK2B4   |           |                   | Reference sample  | _        |           |           |          |     |     |
| ZK2<br>7K0  | 103.8    | 106.8 |         | _         | au anta unia Orma | Reference sample  | -        |           |           |          |     |     |
| ZK2         | 44.5     |       | ZK2GP1  | 71/00 00  | quartz vein 3cm   | Reference sample  | _        |           |           |          |     |     |
| ZK2<br>7K0  | 105.5    |       |         | ZKZGPZ    |                   | Reference sample  |          |           |           |          | X   | X   |
| ZK2<br>7K0  | 122.0    |       | ZKZGP3  | _         |                   | Reference sample  | -        |           |           |          |     |     |
| ZK2<br>7K0  | 134.0    |       |         | _         |                   | Reference sample  | _        |           |           |          |     |     |
| ZK2<br>7K0  | 164.5    |       | ZKZGP5  | _         |                   | Reference sample  |          |           |           |          |     |     |
| ZK2         | 170.5    |       | ZKZGP6  | _         |                   | Reference sample  |          |           |           |          |     |     |
| ZK2         | 1/9.1    |       | ZK2GP7  | _         |                   | Reference sample  |          |           |           |          |     |     |
| ZK2         | 185.0    |       | ZK2GP8  | -         |                   | Reference sample  | -        |           |           |          |     |     |
| ZK2         | 215.5    |       | ZK2GP9  | _         |                   | Reference sample  |          |           |           |          |     |     |
| ZK2         | 242.0    |       | ZK2GP10 | _         |                   | Reference sample  |          |           |           |          |     |     |
| ZK2         | 254.4    |       | ZK2GP11 | _         |                   | Reference sample  |          |           |           |          |     |     |
| ZK2         | 266.0    |       | ZK2GP12 | +         |                   | Reierence sample  | +        |           |           |          |     | l   |
| ZK2         | 283.5    |       | ZK2GP13 | +         |                   | Reierence sample  | +        |           |           |          |     | l   |
| ZK2         | 294.0    |       | ZK2GP14 | 71/00 015 |                   | Reierence sample  | +        |           |           |          |     |     |
| 21/2        | 298.8    |       | ZKZGP15 | ZK2GP15   |                   | Reference sample  |          |           |           |          | X   | x   |
| 21/2        | 322.5    |       | ZK2GP16 | +         |                   | Reierence sample  | +        |           |           |          |     | ł   |
| ZK2         | 334.0    |       | ZK2GP17 | +         | +                 | Reference sample  | +        |           |           |          |     | ł   |
| 21/2        | 363.0    |       | ZK2GP18 | 71/00 010 |                   | Reierence sample  | +        |           |           |          |     |     |
| ZK2         | 389.2    |       | ZK2GP19 | ZK2GP19   | 1                 | Reference sample  |          |           |           |          | Х   | Х   |
| ZK3         | 2.3      |       | ZK3B1   | ZK3B1     | 1                 | Reference sample  |          | 1         |           |          | х   | х   |
| ZK3         | 5.4      |       | ZK2B2   | ZK3B2     |                   | Reference sample  |          | 1         |           |          | х   | х   |
| ZK3         | 5.5      |       | ZK2B3   | ZK3B3     |                   | Reference sample  |          | 1         |           |          | х   | х   |
| ZK3         | 310.0    |       | ZK2B4   |           |                   | Reference sample  |          | 1         |           |          |     |     |

| Page    | 18 |
|---------|----|
| Page 11 |    |

## Appendix 4: Statement of Qualifications

#### Statement of qualifications, Hardolph Wasteneys Ph.D., P.Geo.

I, Hardolph Wasteneys, Ph.D, P.Geo. resident at Strathcona Park Lodge, Campbell River BC, do hereby certify that:

- I am a self employed Professional Geoscientist and have worked primarily in mineral exploration, mining, geological and U-Pb geochronological research, and geological education since 1978.
- I am a registered member of the Association of Professional Engineers and Geoscientists of British Columbia and of the Association of Professional Geoscientists of Ontario.
- I graduated with the degree of Bachelor of Science in Geological Engineering, Mineral Resources option from the Faculty of Applied Science, Queen's University, Kingston in 1979.
- I graduated with the degree of Doctor of Philosophy (Geological Sciences) from Queen's University, Kingston in 1990 in the field of economic geology with research specialized in the study of epithermal ore deposits of southern Peru under the supervision of Prof. Alan H. Clark.
- I conducted U-Pb geochronological research at the Jack Satterley Geochronology Laboratory in the Royal Ontario Museum directed by Dr. T. E. Krogh from 1990 to 1997 and completed numerous studies on the timing of ore deposition and regional metamorphism in collaboration with university and government survey geologists and resulting in several publications in peer reviewed international journals.
- I have read the definition of "Qualified Person" set out in National Instrument 43-101 ("NI 43-101") and certify that by reason of my education, affiliation with a professional association (as defined in NI 43-101) and past relevant work experience, I fulfil the requirements to be a "Qualified Person" for the purposes of NI 43-101.
- I have no beneficial interest in Canada Rockies International Investment Group Ltd. Nor in its mineral and placer tenures.

Dr. H. A. WASTENEYS #32102

> BRITISH COLUMBIA SCIEN

Signed at Strathcona Park Lodge, Campbell River BC, this 17th day of April, 2013.

Hardolph Wasteneys, PhD, PGeo.