

Ministry of Energy & Mines	CONCAL BY
Energy & Minerals Division	ASSESSMENT REPORT
Geological Survey Branch	TITLE PAGE AND SUMMARY
	1 1
Geochemical and Geophysical	TOTAL COST 22,000
AUTHOR(S) J.T. Shearer, Misc, P. Gez SIGN	IATURE(S) Sheares
NOTICE OF WORK PERMIT NUMBER(S)/DATE(S)	YEAR OF WORK
STATEMENT OF WORK - CASH PAYMENT EVENT NUMBER(S)/DATE(S)	VENT # 5393404
PROPERTY NAME Copper Queen South	
CLAIM NAME(S) (on which work was done) Lapper Queen	One, Copper Queen Two
Copper Queen Three, Copper Quee Copper Queen Eight, NEW Mas	n rour, Copper Queen File Seven tadon, One 642743
COMMODITIES SOUGHT Au/Ag/lb/Cu/Zh	
MINERAL INVENTORY MINFILE NUMBER(S), IF KNOWN	
MINING DIVISION REVELSTOKE M. D. NTS	82M/1
LATITUDE 51 ° 14 " LONGITUDE 11	8 o 12 (at centre of work)
OWNER(S)	
1) J. T. Shearer 2)	
- Signature Resources	
MAILING ADDRESS	
Unit 5-2330 TYNER ST	
Pt Copuitian BC V3C 2Z1	
OPERATOR(S) [who paid for the work]	
1) Same as Apone 2)	
MAILING ADDRESS	
-sameas Above	
PROPERTY GEOLOGY KEYWORDS (lithology, age, stratigraphy, structure, alter The Claims are inderlain by Late Profer OZI and meto volcaniz vocks, Miduralization consists Sphalin (in calareous quartz-birtile 5 chist,	ation, mineralization, size and attitude): 2. To Early Pales zoic. meta sedimentary 1. strata Bound Ringer of chalespyrite + guantz-hornblendes chish + chlority
SCLIST, REFERENCES TO PREVIOUS ASSESSMENT WORK AND ASSESSMENT REP	ORT NUMBERS ASSELS Rept 6235

TYPE OF WORK IN THIS REPORT	EXTENT OF WORK (IN METRIC UNITS)	ON WHICH CLAIMS	PROJECT COSTS APPORTIONED (incl. support)
GEOLOGICAL (scale, area)			
Ground, mapping			
Photo interpretation		· · · · · · · · · · · · · · · · · · ·	
GEOPHYSICAL (line-kilometres)			
Ground		110 010	
Magnetic		642745	6000
Electromagnetic			
Induced Polarization			
Radiometric	· · · · · · · · · · · · · · · · · · ·		
Seismic			
Other			
Airborne			
GEOCHEMICAL (number of samples analysed for)			
Soil		642743	16000
Silt		-	
 Rock			
Other			
DRILLING			
(total metres; number of holes, size)			
Core			
Non-core	· · · · · · · · · · · · · · · · · · ·		
RELATED TECHNICAL			
Sampling/assaying			
Petrographic			
Mineralographic			
Metallurgic	and the second		
PROSPECTING (scale, area)			
PREPARATORY/PHYSICAL			
Line/grid (kilometres)	· · · · · · · · · · · · · · · · · · ·		
Topographic/Photogrammetric (scale, area)			
Legal surveys (scale, area)			
Road, local access (kilometres)/trail			
Trench (metres)			
Underground dev. (metres)			/1
Other			#
		TOTAL COS	122,000

SUMMARY REPORT on the COPPER QUEEN SOUTH PROPERTY SOUTHEAST BRITISH COLUMBIA

CANADA

BC Geological Survey Assessment Report 33792

NTS 82M/1 33 51°14'N Latitude, 118°12'W Longitude EVENT # 5393404

for

SIGNAURE RESOURCES LTD. Suite 602 - 595 Howe Street, Vancouver, British Columbia V6C 2T5 Phone: 604-629-7083

by

J. T. Shearer, M.Sc., P.Geo. (BC & Ontario) Unit 5 – 2330 Tyner Street, Port Coquitlam, BC V3C 2Z1 Phone: 604-970-6402 E-mail: jo@HomegoldResourcesLtd.com

July 12, 2012

Work completed between January 10 and July 12, 2012

TABLE of CONTENTS

		Page
LIST of TABLES		ii
LIST of FIGURES		ii
SUMMARY		iii
INTRODUCTION		1
PROPERTY DESCRIP	PTION and LOCATION	2
MINERAL TENURES	5	3
ACCESSIBILITY, CLII	MATE, LOCAL RESOURCES, INFRASTRUCTURE and PHYSIOGRAPHY	6
HISTORY		7
REGIONAL GEOLOG	GY	8
PROPERTY GEOLOG	GY	15
MINERALIZATION .		16
EXPLORATION 201	2	18
CONCLUSIONS and	RECOMMENDATIONS	31
REFERENCES		34
APPENDICES		
Appendix I	Statement of Qualificatons	37
Appendix II	Statement of Costs	38
Appendix III	Analytical Results	39
Appendix IV	Magnetometer Results	40
Appendix V	Rock and Soil Descriptions	41

LIST of FIGURES

	Page
Figure 1. General location map, Columbia Queen Property, southern British Columbia	3
Figure 2. Mineral tenure map, Columbia Queen Property, B.C	5
Figure 3. Regional geology, Columbia Queen (Copper Queen) Property	9
Figure 4. Stratigraphic column for the Big Bend area	10
Figure 5. Geology of the Columbia Queen property	12
Figure 8. VTEM dB/dt X component calculated time constant (Tau) anomaly map	21
Figure 9. Calculated vertical magnetic gradient (CVG) map, Columbia Queen property	22
Figure 13. Previous Soil sample sites showing values for Cu, Zn and Pb,	
central VTEM anomaly area	23
Figure 14. Previous Location of soil and silt samples, southeast VTEM anomaly area	24
Figure 15. Logging Roads Showing Sites	25
Figure 16. 2012 Magnetometer Results	27
Figure 16a. 2012 Magnetometer Results, Detail	28
Figure 17. 2012 Soil Locations and Values	29

LIST of TABLES

	Page
Table 1. List of Mineral Tenures, Columbia Queen Property	4
Table 2. Rock Geochemical Results, 1999 Sampling Program	16

LIST of PHOTOS

	Page
Photo 1. Copper Queen Soil Profile	30

SUMMARY

The Columbia Queen Property is located in the Big Bend area of the northern Selkirk Mountains of southeastern British Columbia, approximately 30 kilometres north of the town of Revelstoke. The property is centered at 51°14'N latitude and 118°12'W longitude on NTS map sheet 82M/1 in the Revelstoke Mining Division. The northern part of the property is accessible via logging roads that connect to the Carnes Creek forest service road. The rest of the property is best accessed with a helicopter. This includes the Copper Queen showings which are located on a steep west facing slope east of Revelstoke Lake.

The main mineral occurrence on the Columbia Queen property is the old Copper Queen showing that was probably found by prospectors in the early 1900's. This showing is hosted by Late Proterozoic or Early Paleozoic metasedimentary and metavolcanic rocks. The Copper Queen mineralization consists of stratabound disseminations and lenses of chalcopyrite, sphalerite, pyrite, malachite and azurite in weakly to moderately calcareous, quartz-biotite +/-muscovite schist, quartz hornblende-biotite schist and minor chlorite schist.

In August 2010, Signature Resources contracted Geotech Inc. to fly a helicopter-borne Versatile Time Domain Electromagnetic (VTEM) and aeromagnetic geophysical survey over the property. This work defined 3 areas of anomalous conductivity referred to in this report as the northeast, central and southeast anomalies. In early September the author and a two-person geochemical sampling crew under the direction of Craig Lynes of Rich River Exploration spent 6 days prospecting and soil, silt and rock geochemical sampling in the area covered by these anomalies. Although this work failed to locate any new showings or produce any significant soil anomalies that correspond with the area of elevated conductivity as defined by the VTEM survey, there is extensive cover in the area of the central and southeast anomalies and the possibility of a hidden or "blind" deposit that does not come to surface cannot be ruled out. The northeast anomaly appears to be due to the presence of Index Formation graphitic schists. The central and southeast anomalies are not as easily explained. No conductive rocks were noted on surface and the cause of the elevated conductivity remains unknown. More work is required to fully evaluate these areas.

The program in early 2012 showed a featureless ground magnetic response in the north of the property. The 2012 soil values ranged from 0.8ppm Ag to 0.1ppm Ag and 0.208ppm Au to <0.002ppm Au.

Respectfully submitted

J. T. Shearer, M.Sc., P.Geo. (BC & Ontario) July 10, 2012

INTRODUCTION

This assessment report has been prepared at the request of Signature Resources Ltd. ("Signature" or the "Company"). The author has been asked to review all data pertaining to the property and to prepare a technical report that describes historical work completed on the property, reviews the results of recent airborne geophysical and geochemical surveys and makes recommendations for further work.

PROPERTY DESCRIPTION and LOCATION

The Columbia Queen Property is located in the Big Bend area of the northern Selkirk Mountains of southeastern British Columbia, approximately 30 kilometres north of the town of Revelstoke. The property is centered at 51°14'N latitude and 118°12'W longitude on NTS map sheet 82M/1 in the Revelstoke Mining Division.

MINERAL TENURES

The mineral tenures comprising the Columbia Queen property are shown in Figure 2 and listed in Table 1. The claim map shown in Figure 2 was generated from GIS spatial data downloaded from the Government of BC, Integrated Land Management Branch (ILMB), Land and Resource Data Warehouse (LRDW) data discovery and retrieval system (<u>http://archive.ilmb.gov.bc.ca/lrdw/</u>). These spatial layers are generated by the Mineral-Titles-Online (MTO) electronic staking system that is used to locate and record mineral tenures in British Columbia.

Figure 1. General location map, Columbia Queen Property, southern British Columbia.

Claim details given in Table 1 were obtained using an online mineral tenure search engine available on the Province of BC Mineral Tenures Online web site. All claims listed in the table are in the Revelstoke Mining Division within NTS map sheet 82M/01E and BC Map Sheets 82M029, 82M030 and 82M040.

Claim Name	Tenure Number	Area (ha)	Date Located	Current Anniversary Date	Owner			
	507526	991.45	February 19, 2005	July 31, 2018	J. T. Shearer			
Copper Queen One	642743	465.37	September 28, 2009	July 31, 2018	J. T. Shearer			
Copper Queen Two	642763	505.90	September 28, 2009	July 31, 2018	J. T. Shearer			
Copper Queen Three	642783	505.67	September 28, 2009	July 31, 2018	J. T. Shearer			
Copper Queen Four	678843	505.50	December 3, 2009	July 31, 2018	J. T. Shearer			
Copper Queen Seven	832169	505.60	August 26, 2010	July 31, 2016	J. T. Shearer			
Copper Queen Eight	832356	505.43	August 28, 2010	July 31, 2016	J. T. Shearer			
New Mastadon One	840470	20.23	December 9, 2010	July 31, 2016	J. T. Shearer			

TABLE 1 List of Claims

Total 4,005.15 ha

Under the present status of mineral claims in British Columbia, the consideration of industrial minerals requires careful designation of the product end use. An industrial mineral is a rock or naturally occurring substance that can be mined and processed for its unique qualities and used for industrial purposes (as defined in the *Mineral Tenure Act*). It does not include "Quarry Resources". Quarry Resources includes earth, soil, marl, peat, sand and gravel, and rock, rip-rap and stone products that are used for construction purposes (as defined in the *Land Act*). Construction means the use of rock or other natural substances for roads, buildings, berms, breakwaters, runways, rip-rap and fills and includes crushed rock. Dimension stone means any rock or stone product that is cut or split on two or more sides, but does not include crushed rock.

Claims require \$4 of assessment work per ha (or cash-in-lieu) each of the first three years and \$8 per ha each year after.

Environmental Liabilities

There has not been any mining or other exploration related physical disturbances, such as trenching or road building, done on the Columbia Queen property to date. Any previous clearings for drill sites have long since grown over. All of the roads on the property have been built to support logging activities and are not the responsibility of the tenure holders. The author is not aware of any environmental issues or liabilities related to historical exploration activities that would have an impact on future exploration of the property.

ACCESSIBILITY, CLIMATE, LOCAL RESOURCES, INFRASTRUCTURE AND PHYSIOGRAPHY

The Copper Queen Property is located in the Big Bend area of the northern Selkirk Mountains of southeastern British Columbia, approximately 30 kilometres north of the town of Revelstoke. Revelstoke is on the Transcanada Highway about 6 hours driving time from Vancouver, British Columbia. Access from Revelstoke is via the Big Bend Highway (Highway 23) past La Forme Creek where logging roads provide access to the southwestern part of the property and northward to the next major drainage of Carne Creek where a network of logging roads provides access to the northernmost claims.

To date, the only significant mineral occurrence discovered on the Columbia Queen property is the old Copper Queen showing. This showing is located on a steep and rugged, tree covered slope which rises from 800 metres on the east side of Revelstoke Lake to 1860 metres on a ridge in the northern part of the property. The property is cut by a number of northeasterly trending steep sided gullies, and locally extensive slide areas.

The Copper Queen showings are most easily accessed using a helicopter. Unfortunately the only landing site, which is located up slope from the showings, has become overgrown with short bushes and tall grass. This makes landing a helicopter at this site more challenging. The landing site will need to be de-brushed if any additional work is done on the showings.

The property is situated in the interior rain belt which supports dense stands of cedar, hemlock, balsam and spruce with local areas of dense slide alder and devils club.

Temperatures range from -15°C in the winter to +30°C in the summer. Thick accumulations of snow occur from November to May.

HISTORY

The following description of the history of the Columbia Queen (Copper Queen) property is modified from an earlier technical report by Dr. Peter Christopher (Christopher, 1999).

The Mastodon zinc-lead-silver deposits, about 4 km east of the Copper Queen prospect, were discovered in 1898, and prospectors of the time probably knew of the malachite stained cliff at the Copper Queen. The first work on the Copper Queen was reported in the early 1900's, and sometime before 1965 three drill holes tested the showings, but no records of the results of this work were recorded.

In 1966, the S Group, consisting of 60 two-post claims, was staked for Clearwater Mines Ltd. of Bathurst, N.B. Clearwater used five diamond drill holes, totalling 434.34 metres (1,425 feet), to test the occurrence. Holes CQ-1 and CQ-2 were collared on a bench approximately 300m to the east of the showings, but apparently failed to reach bedrock. Holes CQ-3, CQ-4, and CQ-5 were collared at an old drill site just above the main showings and fan drilled on a N20°W section line from a single setup. All three holes had intersections of copper and zinc mineralization over significant core lengths. Hole CQ-3 (a vertical hole) was reported to be well mineralized from 34.14m (112ft) to about 62.8m (206ft), but only visual estimates of grade were reported (George Cross Newsletter No. 114, June 14, 1966; Certificate of Work filed Feb. 7, 1967). Hole CQ-4 contained intersections from 51.8m to 62.5m (170ft to 205ft) and 68.6m to 82.3m (225ft to 270ft) averaging 0.6% Cu and 0.47% Cu, respectively (George Cross Newsletter No. 131, July 8, 1966). Hole CQ-5 was reported to contain a 29.9m (98ft) section between 57.0m to 86.9m (187ft to 285ft) with grades running between 0.45% Cu and 1.14% Cu (George Cross Newsletter No. 137, July 18, 1966). This intersection was reported to have a true width of 18.3m (60ft). Grid drilling, reported to be planned by Clearwater, was never undertaken.

In 1976 Kerr Addison Mines Ltd. held the property and conducted a program of soil and silt sampling and geological mapping which defined a northwest-southeast trending coincident copper, zinc and lead soil anomaly with a 600 metre length on the CC9 claim. The anomalous trend was open to the southeast. The Copper Queen showing was mapped as a 6 metre thick layer of calcareous metavolcanic rocks with malachite, sphalerite, chalcopyrite, and pyrite mineralization (Lund and Hajek, 1976). Kerr Addison drilled four BQ holes totalling 775.3 metres on units 13 and 14 of the CC9 claim, but specific locations and results were not reported (Exploration in B.C. 1977, pp. E66-E67).

In 1999, the management of Orphan Boy Resources Inc. recognized that the Copper Queen prospect was unstaked. The CQ 1 and CQ 2 claims were staked in July for Orphan Boy and Crest Geological Consultants retained to conduct an exploration program. During the period July to October 1999, an exploration program, consisting of 8.5 km of flagged grid lines with 25m stations on lines spaced at 50m to 150m, collection and analyzing of 312 soil samples and 16 rock samples, limited geological mapping and prospecting, was conducted at a cost of \$32,500 (Payne, 1999). Geochemical samples were analyzed for 36 elements by ICP and mass spectrometry techniques at Acme Analytical Laboratories Ltd. This sampling resulted in the delineation of strong Cu and Zn soil anomalies down slope from the Copper Queen showings.

REGIONAL GEOLOGY

The following description of the regional geology is extracted from an earlier qualifying report by Dr. P.A. Christopher (1999).

The Big Bend area of the Northern Selkirk Mountains, part of the eastern marginal area of the Omineca Tectonic Belt, is situated between the fold and thrust-fault belt of the southern Canadian Rockies on the East, and the Shuswap Metamorphic Complex in the west (Figure 3). The Big Bend area is underlain by strongly deformed Neoproterozoic to Late Paleozoic metasedimentary and metavolcanic rocks of the Kootenay Terrane which have been intruded by a number of granitic plutons. The Shuswap Complex is separated from the rocks of the Big Bend area by the east-dipping normal Columbia River fault zone, a major extensional fault of Eocene age.

The northern Selkirk Mountains form part of a large, tectonically transported block (allocthon) that was displaced eastward along the Monashee decollement (shallow slide or fault zone) for 200 to 300 kilometres (Brown et al., 1986). The sliding resulted in a complex pattern of folding and faulting that is dominated to the east of the Downie Creek and Standfast Creek faults by the northwest trending Selkirk fan structure. The Selkirk fan is terminated in the Rocky Mountain fold and thrust belt by the northeast-verging Purcell thrust.

The majority of the known mineral occurrences in the Big Bend area are situated west of the Selkirk Fan structure axis and to the west of the Downie Creek and Standfast fault systems. Recent government mapping studies (Logan and Drobe, 1994; Logan et al., 1995, 1996) and university thesis projects (Lane, 1977 and 1984; McKinlay, 1987) have provided definition to the areas stratigraphy as outlined by earlier workers (Gunning, 1929; Wheeler, 1965; and Höy, 1979). The stratigraphy of the zone has been summarized by Logan and Colpron (1995) as shown in Figure 4. Proterozoic rocks are represented by metasedimentary rocks of the Horsethief Creek Group, and Lower Paleozoic rocks are represented by metasedimentary and metavolcanic rocks of the Hamill Group overlain by Badshot Formation and in turn by metasedimentary and metavolcanic rocks of the Lardeau Group. The lithologic similarities between the Horsethief Creek, Hamill and Lardeau groups, and intense deformation and metamorphism have complicated both local and regional correlation.

The Horsethief Creek Group in the northern Selkirk Mountains has been subdivided into three members by Brown et al. (1977, 1978): the lower pelitic, middle marble, and upper pelitic members with further subdivision of the upper pelitic member into three assemblages.

Figure 3. Regional geology, Columbia Queen (Copper Queen) Property. Geology after Gibson and Höy, 1985. Cartography by Crest Geological Consultants Ltd. for Orphan Boy Resources Inc.

Figure 4. Stratigraphic column for the Big Bend area showing possible stratigraphic position of major mineral occurrences.

The early Cambrian or Eocambrian Hamill Group in the northern Selkirk Mountains has been separated by Devlin (1989) into three stratigraphic divisions - a lower sandstone unit; a greenstone and graded sandstone unit; and an upper sandstone unit. The lower two divisions were mapped by Logan and Calpron (1995) in the core of four southwest-verging synclines in the eastern half of the Goldstream River map area.

The late Lower Cambrian Badshot Formation consists of massive white and grey marble, and buff dolostone. The massive carbonate exposed in the core of the Goldstream anticline, west of the Goldstream mine, is considered by Logan and Calpron (1995) to be similar to and possibly correlative with Archaeocyathid-bearing Badshot Formation which has been mapped in the Lardeau area to the south (Wheeler, 1963; Read and Brown, 1979). The massive carbonate forming Downie Peak was mapped by Wheeler (1965) as Badshot Formation, but stratigraphy and facing directions lead Logan and Drobe (1994) to map this carbonate as part of the younger Index Formation.

The Lardeau Group conformably overlies the Badshot Formation and is unconformably overlain by the Milford Group (Read and Wheeler, 1976). In the Ferguson-Trout Lake Area, Fyles and Eastwood (1962) have recognized six formations within the Lardeau Group and in ascending stratigraphic order these are: dark grey and green phyllite of the Index Formation; black siliceous argillite of the Triune Formation; grey quartzite of the Ajax Formation; grey siliceous argillite of the Sharon Creek Formation; volcanic rocks of the Jowett Formation; and grey and green quartz-feldspar grit and phyllite of the Broadview Formation. In the Big Bend Area, Logan et al., (1995, 1996) and Logan and Rees (1997) have mapped stratigraphy which

correlates with the Index Formation, Jowett Formation, and possibly Broadview Formation. Black phyllite and quartzite overlain by micaceous quartzite, quartzite and grit occupy the stratigraphic interval between the Index Formation and Jowett Formation in the Downie Creek Area, but are not lithological equivalent to the Triune, Ajax or Sharon Creek formations which occupy this stratigraphic interval in Kootenay terrane to the south (Logan et al., 1996).

Paleozoic intrusive rocks include the Downie Creek Gneiss and the Clachnacudainn Gneiss. The gneissic intrusive rocks have been subjected to all three phases of deformation and were dated by U-Pb in zircon at about 360 Ma.

A number of Mesozoic plutons have been intruded in to the Big Bend Area, and include the Battle Range batholith, Albert stock, Fang stock, Plass Creek pluton, Goldstream pluton, and Adamant pluton. The Mesozoic plutons are compositionally similar and coeval with the Bayonne Plutonic Suite of southeastern British Columbia (Logan and Rees, 1997).

Three phases of folding and numerous major fault structures have affected the Big Bend area. The structure of the Goldstream area is dominated by tight isoclinal north-trending Phase 2 folds (Höy, 1979). The Phase 2 folds may have developed in an inverted panel of rocks which may be the underlimb of an earlier Phase 1 nappe (faulted overturned fold). Phase 3 fold structures generally consist of minor small-scale chevron and kink folds with the exception of the Goldstream Mine area where a large scale Phase 3 fold forms a Z shaped map pattern (Gibson, 1999).

The existence of Phase 1 fold structures is based on a number of top determinations in grits (Lane, 1977) which indicate an inverted stratigraphic panel. A number of features within the Goldstream deposit on the north limb of the Phase 2 Downie antiform suggested to Höy (1979) that the deposit is inverted, and part of the underlimb of an early (Phase 1) nappe.

Mineral Deposits of the Big Bend Area

Placer gold deposits in the Big Bend area have been worked along the Columbia River near the junction of the Goldstream River (B.C. MI 82M-92; 97), along the Goldstream River and its southwest flowing tributaries including Graham (B.C. MI 82M-79), McCulloch (B.C. MI 82M-81), and French (B.C. MI 82M-103) creeks. Placer gold was also discovered in Carnes Creek which drains the area of the precious metal enhanced J & L (B.C. MI-82M-3) massive sulphide deposit and Roseberry gold prospect (B.C. MI-82M-91).

Figure 5. Geology of the Columbia Queen property. Geology after Logan et al., 1996a. Signature Resources mineral tenures are outlined in dark blue. For unit descriptions see geological legend on the following page.

INTRUS	SIVE ROCKS
LATE CRETACEO	DUS (7)
LKis	Museovie biotite isucconante, localy stimet biaring
EARLY CRETACE	CUS
LONG CR	Hornolande bette auartz monzodiente, biolite oranita, ocaliv
ER mg	potassium feldspar megacrystic, gravite
K d) Bictitle bornhillende danite
MIDDLE JURASS	ac
PASS CRE	EK PLUTON
MJ an	Potassium holdstar megacrystic, hemblende brebte quarte monzonite
EARLY MISSISSI	IPPIAN CREEK GNEISS, CLACHNACUDAINN GNEISS
EM gn	Foliated bolite granite, quartil moneonite and granodionite gross
AGE UNCERTAIN	4
100	Ultramafic intrusions, telc schist, serpentinite
14	Metadionite, metageboro
LAYERE	DROCKS
CAMBRIAN (?) T	O DEVONIAN (?) GROUP
PL	Undivided graphitic phylike, micaceous quartzite, marble and
JOWETT	ORMATION
P in	Dark green actinoite schiet, green phylite, includes while and over determitic methic (IP) and
AKOLKOL	EX FORMATION
IP Agr	Interbedded gnt and dark grey phylite, minor dark grey marble.
The second	Meacieve quartete and interpedded rusty westhering phyllite.
· mid	guartz-feldsper grit, muscoviti-guartz (biotxettigeneet) schiet.
INDEX FO	RMATION
	Light green phytike, quartz ent, minor prytitic carbonate
₽ fv	Gener, mafic metavoltanic flows; includes messue and phoned breccia flows, diorite silb and minor green phylice.
Pa	Light grey merble, buff-weathering doismitic marble and phylitic Carbonate.
F the	Graphic phylite, dark gray to black calcaneous phylite, minor dark gray innestone
IP Dox	White orthoguartatic process
LOWER CAMERI	AN
BAUSHUT	Eight grey and white dolomitic margine; includes dolostoke brecca
NJ Cm	unt (IC Red)
MOHICAN	FORMATION
IC Mnd	craits due appoint outline werpoint drautate and calcalism
IC MD	Light green silicous phylite intercalcted with prenge-weathering detectorie, minor micateous quartate; moudes light grey marble
	ands (IC Mcd, and light green volcaniclestic rocks (IC Wv)
HAMILL G	DIC TO LOWER CAMBRIAN
PC ap	Massive and amygooloidsi matic metavolcaric flow and
	Manhan and emandated while a solution but the second state
PC Hz	measure and characterized while quantifier gray gray to up green micacious quantzite, medium to course gray and guartz gril, intercalated with gray and green phylibs
PC Hing	Light grey and brown, finely languages measure quartote interlayered with goost and dark grey phyllise, minu-
NEOPROTEROZ	Diewi watereng careo wa
HORSETH	IEF CREEK GROUP
PHC	Bult-weathening phylific dolesions, interfayered with tan-weathening phylific and ininer pink quartitie
P HCgp	Medican co dank green phylitis, /ocally interchediaed with shin; brown delestone
Рнср	Brown-weathering, grey and green phylite interlayered with pink and green micaceous quartiste and brown siliceous doisstone
UNDEVICE	ED METASEDIMENTS
PAns	Silimanita, kyanita and amphibalite-bearing quartaite, emphiliolite and calcareous schiat
PROTEROZOIC (7) - PALEOZOIC (?)
HUNDASHI	Anonicolite-bearing pognatitic onexis and micaceous schist
Pran	minor calculate

Paleozoic rocks, host to most of the numerous volcanogenic massive sulphide (VMS) and replacement zinclead deposits in the Big Bend area, occur in a NNW trending zone situated between the Columbia River fault and the Downie Creek-Standfast Creek fault system. Major mineral deposits of the area are stratabound, and similar to the Besshi deposits of Japan and the Kieslager or bedded cupriferous iron sulphide class (Höy et al., 1984). Others such as the Rift and J&L have similarities to the sedimentary exhalative (SEDEX) class of deposits, particular those of the Irish subclass. The Mastodon carbonate replacement deposits have similarities to the Mississippi Valley type Pb-Zn deposits.

The Index Formation has been recognized as the host formation for the Goldstream Mine, and Montgomery, Brew, Rain and Standard VMS prospects. The J & L deposit has been mapped at the contact of Hamill Group and Mohican Formation rocks with replacement zinc-lead deposits like Mastodon occurring in the Badshot Formation. Stratigraphic locations of mineral deposits of the Big Bend area are summarized on Figure 4.

In the Goldstream area, a spessartine garnet-bearing, pyrrhotite-rich, thinly laminated graphitic unit, called the "garnet-zone", occurs in the structural hanging wall of the massive sulphide layer. It is interpreted by Höy et al. (1984) to be a metamorphosed exhalite manganese-iron-rich seafloor hydrothermal precipitate. Iron-manganesesilica-rich horizons and the metamorphic equivalents are important exploration guides in the Big Bend area which adds manganese to base and precious metals as pathfinders for VMS deposits of the Big Bend area.

PROPERTY GEOLOGY

The geology of the Columbia Queen property has been mapped by Lund and Hajek (1976); Logan et al. (1996); Logan and Rees (1997); and Payne (1999). Much of this was incorporated into a compilation map by Logan et al. (1996a). This map is shown in Figure 5.

According to mapping by Payne (1999), the Copper Queen showing area of the Columbia Queen property is underlain by a north to northwest striking, shallow to moderately east to northeast dipping sequence consisting of 6 metamorphic units which have been intruded by a small granitic plug (Figure 6). The metamorphic rocks consist of quartz-feldspar grit/schist (Unit 1) which is overlain by a thick sequence consisting of quartz amphibole schist (Unit 3), quartz chlorite schist (Unit 4), and quartz biotite schist (Unit 5) schist with interbeds and lenses of marble (Unit 2). The above sequence is overlain by and intercalated with quartz rich sericite-muscovite +/-chlorite schist (Unit 6). A small plug of porphyritic biotite hornblende quartz monzonite (Unit 9) has been mapped between grid lines 101 and 102N (Payne, 1999).

The stratigraphic position of the Copper Queen occurrence has been placed by Logan et al. (1996a) in the Cambrian to Devonian, Upper Lardeau Group at or near the base of the Jowett Formation (Figure 4).

The sequence of rocks is offset by east-northeast oriented fault structures, and in the northeast corner of the grid, structural readings indicate a synform with an axis plunging to the northeast (Payne, 1999).

MINERALIZATION

As mentioned above, the Copper Queen occurrence consists of disseminations and lenses of chalcopyrite, sphalerite, pyrite, malachite and azurite in weakly to moderately calcareous, quartz-biotite +/-muscovite schist, quartz hornblende-biotite schist and minor chlorite schist.

At L95N, 98+15E, Payne (1999) mapped a 50cm thick marble horizon between an overlying >3 metre chloritic and calcareous quartz-biotite schist (Unit 5) and underlain by >2.5 metres of calcareous chlorite schist (Unit 4). These units contained lenses of chalcopyrite, sphalerite and pyrite to 5% and locally >8% (Payne, 1999).

Eleven of the sixteen rock grab samples reported by Payne (1999) were from the Copper Queen grid, and five rock samples were collected along new logging roads to the southeast. The 1999 rock samples confirm reported anomalous copper, zinc and silver values from 1966 and 1976 sampling programs. Copper and zinc values in rock samples from the grid area range from 1259.52 ppm to the upper detection limit of 99999 ppm (10% Cu), and 107.8 ppm to 73428.0 ppm (7.3%) Zn, respectively. Silver values in rock samples from the grid area range from 1259.52 ppm to the upper detection limit of 99999 ppm (10% Cu), and 107.8 ppm to 73428.0 ppm (7.3%) Zn, respectively. Silver values in rock samples from the grid area range from 334 ppb to the upper detection limit of 99999 ppb with the samples with the three strongest copper responses also containing greater than 99999 ppb silver. The three samples with the strongest copper and silver values also contained anomalous gold contents between 262.0 ppb and 645.8 ppb. A list of the 1999 rock geochemical results for selected elements is presented in Table 2. Sample locations are shown on Figure 6.

							1			1	
Sample	UTM E	UTM N	Cu ppm	Pb ppm	Zn ppm	Cd ppm	Ag ppb	Au ppb	Hg ppb	Fe%	S%
#											
10740	415934	5677328	7353.74	9.55	601.2	3.88	1164	2.7	5	3.42	0.64
10782	416134	6576978	>99999	52.68	5337.4	30.31	>999999	645.8	59	17.84	2.99
10783	415851	5676195	364.36	15.59	117.8	0.24	686	14	5	6.77	0.94
10784	416011	5676107	117.61	14.29	41.9	0.12	161	0.2	5	5.1	2.59
10785	415626	5676077	108.84	11.89	40.7	0.04	165	9	5	7.45	1.45
14806	415787	5677594	1259.52	4.62	107.8	0.18	374	4.9	5	4.99	0.1
14807	415917	5677341	3201.52	15.95	857.3	2.37	611	0.7	9	3.61	0.21
14808	415985	5677237	2852.42	4.555	813	1.8	334	1.1	15	5.85	0.23
14809	416019	5677171	2022.62	3.59	242.2	0.49	2439	41.2	45	4.54	0.69
14810	416108	5676990	82575.81	16.83	3813.3	29.57	>999999	432.6	274	24.13	3.96
14811	416120	5676985	64097.35	2175.81	73428	348.71	39642	227.6	455	12.3	1.99
14812	415840	5676233	759.32	18.25	552.8	2.56	873	1.6	5	9.05	5.58
14813	416046	5676080	140.95	11.17	77.5	0.29	330	0.2	6	5.74	0.32
14863	416130	5677006	>99999	12.32	5925.3	34.17	>999999	362	162	17.9	4.07
14864	415968	5677215	4286.86	12.31	387.9	0.58	1941	9.4	81	8.02	2.71
14865	415907	5677287	23875.81	4.1	51459.4	308.12	3618	32.2	2630	7.7	4.37

Table 2. Rock geochemical results - 1999 sampling program (Payne, 1999).

Rock sample 14806, a grab sample of mineralized quartz hornblende-biotite schist containing malachite, chalcopyrite, and pyrite from the most northwesterly grid line, contained 1259.52 ppm Cu, and suggests that the mineralized horizons continue beyond the grid to the northwest.

As part of the 1999 work program, Crest Geological Consultants did soil sampling in the area of the Copper Queen showings. This work involved the collection of 314 soil samples from the B soil horizon at 25m intervals along lines spaced from 50m to 150m apart (Figure 6). Zinc values in soils range from 24.2 ppm to

4137.5 ppm and copper values range from 5.74 ppm to 1223.74. Anomalous values over 400 ppm are coincident with the anomalous copper zone. Elevated zinc values extend to the northwest end of the grid. Anomalous values, over 120 ppm copper, occur in a northwest-southeast oriented anomaly which is over 400 metres long and up to 100 metres wide.

EXPLORATION 2012

Majority of the reconnaissance mapping and sampling surveys were conducted in the area of the massive sulphide float discovered in 2010. Other then along higher elevations, the property has very limited rock exposure and much of the area is heavily forested with steep slopes. Fortunately, a logging road where the sulphide float was found affords a good section of exposed bedrock and lends itself to limited mapping and sampling.

The significant sulphide, gold-bearing float sample discovered in 2010, and tagged with number 'CQCR06', (Figure 2) contained 6.17 gm/t Au associated with massive arsenopyrite (>1% As). The float sample was located during the reconnaissance surveys and is fairly well rounded, and suggests to have been carried for some distance probably as result of glaciation. It may have also transported down slope for some distance after glacial deposition. The float was obviously dug up heavy equipment and exposed during the construction of the logging road. Another massive sulphide float discovered during this time with tag number 'CQCR07' (Photo 2) contained lower Au values (77.1 ppb) but anomalous in Cu 1,150 ppm and Pb 1,183.6 ppm. This sample appears to have travelled for some distance as well however, its sulphide assemblage is strikingly different then sample 06, comprised mainly of massive pyrrhotite and minor pyrite, vectoring to perhaps a different source of undiscovered mineralization. Float sample numbered 'CQCR08' taken from exactly the same site as 07 in 2010, could not be located by the author. Both tag number and any evidence the float sample were not observed at this site. The sample is described as float "marble with dissem. gal., sph." carrying >1% Pb and >10% Zn.

Limited mapping and rock chip sampling were conducted by author along the logging road where exposed bedrock was observed.

Majority of the reconnaissance mapping and sampling surveys were conducted in the area of the massive sulphide float discovered in 2010. Other then along higher elevations, the property has very limited rock exposure and much of the area is heavily forested with steep slopes. Fortunately, a logging road where the sulphide float was found affords a good section of exposed bedrock and lends itself to limited mapping and sampling.

The significant sulphide, gold-bearing float sample discovered in 2010, and tagged with number 'CQCR06', (Figure 2) contained 6.17 gm/t Au associated with massive arsenopyrite (>1% As). The float sample was located during the reconnaissance surveys and is fairly well rounded, and suggests to have been carried for some distance probably as result of glaciation. It may have also transported down slope for some distance after glacial deposition. The float was obviously dug up heavy equipment and exposed during the construction of the logging road. Another massive sulphide float discovered during this time with tag number 'CQCR07' (Photo 2) contained lower Au values (77.1 ppb) but anomalous in Cu 1,150 ppm and Pb 1,183.6 ppm. This sample appears to have travelled for some distance as well however, its sulphide assemblage is strikingly different then sample 06, comprised mainly of massive pyrrhotite and minor pyrite, vectoring to perhaps a different source of undiscovered mineralization. Float sample numbered 'CQCR08' taken from exactly the same site as 07 in 2010, could not be located by the author. Both tag number and any evidence the float sample were not observed at this site. The sample is described as float "marble with dissem. gal., sph." carrying >1% Pb and >10% Zn.

A series of soil sample profiles were conducted along the logging roads by an experienced samplerprospector, proximal to the sulphide float samples combined with mapping and chip samples of exposed bedrock briefly discussed below. Soils were collected from mostly undisturbed overburden above the crest of the road cuts. Some areas display fairly well developed soil profile with other areas containing more colluvial type material.

Limited mapping and rock chip sampling were conducted by author along the logging road where exposed bedrock was observed (see Figure 2 for mapped and sample sections). Described below in more detail are the mapped and sampled sections with accompanying photos and schematic cross-section.

SITE 1:

Two rock samples were collected from the lower logging road cut (Figure 2) from sample Site 1. Here, there is sub-outcropping of steeply dipping, band of orange, oxidized marble striking 330°. A chip sample (Number: CQ-DC01R) was obtained across 45 cm of the marble carrying minor stringers and disseminations of pyrrhotite and lesser galena and sphalerite. Adjacent to the band of marble is oxidized quartz vein which appears to be along the hanging wall of the marble. A grab sample (Number: CQ-DC02R) was taken of the vein. The sub-out crop is about 50m wide dominated by a light greenish, quartz-muscovite schist, schistosity striking 330° dipping 63° east.

SITE 2:

The initial mapped section of the logging road cuts across an area with no exposed bedrock however, there are numerous pieces of angular, oxidized, iron-rich black graphitic schist, suggesting a proximal source, which the author believes to be part of the Index Formation (Photo 5). It is likely that unexposed underlying bedrock is composed of the same rock type.

Some 50-75 metres west of the above photo, the logging road cuts across a well exposed section of bedrock comprised predominately of a prominent out-copping of light greenish-grey, fine grain, pelite-grit unit with phyllitic partings (Photo 6). Sections of this unit also host sub-rounded to stretched, pebble-like white quartzite boudins (Photo 7). Structurally, the average dip of the foliated beds is 60° to the northeast trending northwest with a dominate strike of 340° . This attitude conforms to the regional structural fabric with recumbent, isoclinal, southwest vergent fold limbs and dips to the northeast. The road section is a structural view, a glimpse into the accretionary tectonic events, that would have taking place during the middle Jurassic to early Cretaceous, which would have included initial up-right deformation folds (D₁) and subsequent synmetamorphic, recumbent and isoclinal folds (F₁ and F₂). These latter structural events and associated greenschist facies metamorphism are now what is displayed along the road cut. Subsequent tight crenulation structures can be observed along phyllitic partings, superimposed over F₂ folds.

Three oxidized, semi-stratabound, weakly mineralized zones where observed hosted within the grit unit. These zones were chipped sampled and numbered: CQ-DC04R, CQ-DC05R, and CQ-DC06R. The schematic cross-section below and photos show the sample locations and widths.

The Columbia Queen property is underlain by a structural belt of west verging recumbent to isoclinal folds associated with Neoprotozoic to Lower Proterozoic age, greenschist facies grade metamorphic rocks, which are assigned to the Hamell and Ladeau groups respectively.

These rocks are regionally endowed with numerous massive sulphide and carbonate replacement deposits and occurrences. Including the former producing Goldstream mine and currently explored J&L gold deposit. The Columbia Queen covers the historical Copper Queen workings that has experience sporadic exploration in past years.

In 2010, prospecting on the along logging roads on the property discovered a massive sulphide gold-bearing float. Surveys briefly documented in this summary report focused on the potential source of the sulphide float.

Based on the surveys and detail examination of the mineralized float, the author believes it to be glacial transported and not proximal to a local source. However, the property is located immediately adjacent to the J&L arsenical-rich gold deposit, the sulphide float could have originated from this deposit or, similar type of mineralization may occur on the Columbia Queen. Geochemical soil profiles conducted in the area of the sulphide float should help to vector to such potential source. As well, on-going log harvesting will further open ground in this area to future prospecting.

Historical exploration on the Columbia Queen property has focused mainly on the Copper Queen showings. The 2010 exploration program was designed to test other parts of the property for new exploration targets. This exploration involved helicopter borne Versatile Time Domain Electromagnetic (VTEM) and aeromagnetics geophysical surveys by Geotech Inc. over the entire property in August 2010. Results of this survey were the focus of a ground survey targeting areas of elevated conductivity. Three discreet targets were identified in the northwest, central and southeast parts of the property.

Airborne VTEM and Magnetics Survey

Signature Resources Ltd. entered into a contract with Geotech Ltd. to conduct a helicopter-borne geophysical survey over the Columbia Queen property. This work was done in the time period August 15th to 19th, 2010. Principal geophysical sensors included a versatile time domain electromagnetic (VTEM) system, and a caesium magnetometer. Ancillary equipment included a GPS navigation system and a radar altimeter. A total of 318.1 line kilometres covering an area of 56.87 square kilometres was flown at a before HST cost of \$67,994.44.

The survey operations were based out of the town of Revelstoke, British Columbia. In-field data quality assurance and preliminary processing were carried out on a daily basis during the acquisition phase. Preliminary and final data processing, including generation of final digital data and map products were undertaken from the office of Geotech Ltd. in Aurora, Ontario.

The processed survey results are presented as electromagnetic stacked profiles of the B-field Z Component and dB/dt Z and X Components, and as colour grids of a B-Field Z Component Channel, and Total Magnetic Intensity (TMI). In addition, EM anomaly picking, Time Constant (Tau), calculated vertical magnetic derivative, Resistivity Depth Sections and Maxwell plate modelling was performed. Digital data includes all electromagnetic and magnetic products, plus ancillary data including the waveform.

The survey report describes the procedures for data acquisition, processing, final image presentation and the specifications for the digital data set. A summary of survey results is included in the report.

Figure 8. VTEM dB/dt X component calculated time constant (Tau) anomaly map, Columbia Queen Property. This figure is extracted from a Geotech Inc. report prepared by Venter and Prikhodko (2010).

A summary interpretation, in support of the EM anomaly picking, Time Constant (Tau), calculated vertical magnetic derivative, Resistivity Depth Sections and Maxwell plate modelling that were preformed is included in the report.

Geotech concludes that "The survey was successful in delineating EM anomaly sources which correspond to flat-lying horizons with low conductivity in the central part of the area and dipping targets on the N-E corner of the area. The anomalous area is recommended for drill testing on the basis of RDI section and Maxwell modelling as it may represent most likely mineralized zone with disseminated sulphides" (Venter and Prikhodko, 2010).

The high magnetic response in the southwest corner of the survey grid (Figure 9) may be due to an intrusive body at depth. Small outcrops of porphyritic biotite quartz monzonite have been mapped by Payne (1999) in this area (Figure 6) and could be offshoots of a larger body at depth. There are also metavolcanic rocks underlying this area which could be contributing to the higher magnetic response.

Figure 9. Calculated vertical magnetic gradient (CVG) map, Columbia Queen property. This figure is extracted from a Geotech Inc. report prepared by Venter and Prikhodko (2010).

There is a strong magnetic high associated with the VTEM anomaly in the northeast corner of the survey grid. The elevated magnetic response may be due to disseminated pyrrhotite in rusty weathering quartzites and black graphitic phyllites that underlie this area. Alternatively there may be an intrusive body at depth that is contributing to the elevated magnetic response. The adjoining magnetic low corresponds to the Badshot limestone.

The sources of other magnetic highs on the property are not known at this time.

Central VTEM Anomaly

A relatively large area of elevated conductivity occurs in the central part of the Columbia Queen claims (Figure 10). A grid comprised of 4 north-south soil sample lines, 100 metres apart and sampled at 50 metre intervals was established to cover part of the anomaly (Figure 13). Sampling was done by Rich River Exploration with assistance from the author. A total of 2.7 kilometres of flagged line and 58 soil sample sites were established using a GPS. Samples were mostly collected from well developed B horizon soils on a moderate, well drained, south facing slope. Only one sample was statistically anomalous in Pb. All other samples contained background level base and precious metal concentrations.

Figure 13. Soil sample sites showing values for Cu, Zn and Pb, central VTEM anomaly area.

Southeast Target

There is a strong, well defined, VTEM anomaly in the southeast corner of the survey grid. This anomaly is of particular interest because it is only a few kilometres northwest of the Mastodon mine. In order to evaluate this anomaly a soil sampling grid comprised of five flagged, northwest trending lines, each 500 metres long and spaced 100 metres apart was done across the main axis of the anomaly as defined by the

dB/dt VTEM profiles (Figure 14). Lines were established using a hip chain, compass and GPS. The grid area is on a southeast facing slope that is heavily timbered. A recent wind storm has resulted in extensive blow down of large trees making traversing difficult (Plate 1). There is no outcrop in the area of the grid although unmineralized outcrops of quartzite and phyllite do occur along the top edge of the grid where the terrain flattens out.

Most of the soil samples were collected from well developed B horizon material. In areas there appears to be a clay rich glacial till cover that might be reducing the effectiveness of soil sampling as a tool for detecting subsurface mineralization. Although there was a fair amount of angular float in the grid area, especially under recently overturned tree roots, none of this material was observed to be mineralized.

Figure 14. Location of soil and silt samples, southeast VTEM anomaly area.

Analytical results for Cu, Zn and Pb are plotted next to the sample location in Figure 14 and results for Cu, Pb, Zn, Ag, Au and As are presented in Table 7. Samples with values greater than the 95th percentile, as determined for soil samples collected in 2010 from the Columbia Queen property, are highlighted in bold in the table. Note that there are a few isolated samples that are statistically anomalous based on these criteria but there are no strong multi- element anomalies. The highest Pb value was 152.8 ppm (sample

900E 1250N) and the highest Zn value was 158 ppm (sample 1000E, 1050N). Copper values are uniformly low and none of the samples exceed the 95th percentile threshold of 84.5 ppm. The highest Cu value was 68.5 ppm in sample 1200N 1150E. This sample also contained anomalous Zn at 143 ppm.

Carnes Creek Road

As part of the 2010 property evaluation program it was decided to do some geochemical sampling in the northern part of the Columbia Queen property. This area is accessible via the Carnes Creek forest service road. Soil samples were collected along this road as shown in Figure 17. A number of creeks were also sampled where they cross the road. This sampling was accompanied by prospecting by Mr. Lynes. No significant soil anomalies were located. The most anomalous sample was 278 2327 which contained 70.4 ppm Cu. Since this area is covered with thick glacial till deposits, soil sampling may not be an effective tool in detecting hidden mineral deposits in this part of the property.

The J&L property, which is road accessible via the Carnes Creek forest service road, has two known and significant polymetallic mineral deposits. The Main Zone is a stratiform structurally controlled polymetallic base and precious metal (Zn-Pb-Ag-Au-As) massive sulphide deposit which has been known since 1912. The Yellowjacket Zone discovered in 1991 is a very siliceous Zn-Pb-Ag stratabound deposit that sub parallels and is in the immediate hangingwall of the Main Zone (Makepeace, 2007).

The Main Zone has an historic resource estimate, which was prepared by Equinox Resources Ltd. in 1991, of 1.7 million tonnes grading 7.38 g/t gold, 75.9 g/t silver, 2.64 % lead and 4.43 %. The Yellowjacket has an historic resource estimate also completed by Equinox of 693,000 tonnes grading 52.3 g/t silver, 2.45 % lead and 7.06 % zinc. These resource estimates predate National Instrument 43-101 and do not comply with current NI 43-101 requirements for mineral resource estimation (Makepeace, 2007). Consequently these resource estimates cannot be relied upon.

The Mastodon Mine is 5 kilometers to the south of the J & L deposit. It is a group of deposits and showings which include the Mastodon (082M 005), Mastodon North (082M195), Lead King (082M 094), Little Slide (082M 006) and Little Slide No. 3 (082M 196). The area is a series of polymetallic (Zn, Pb, Cd, Ag, Au, Cu) breccia, replacement type bodies that are tabular (Mastodon - 90 x 60 x 3 meters) in Badshot Limestone which may be structurally controlled. Teck-Cominco had the property up until 1992.

The Mastodon massive sulphide bodies lie on the west side of a lenticular mass of Lower Cambrian limestone and dolomite of the Badshot Formation in contact, both east and west, with dark-grey and green phyllites of the Lower Cambrian and younger Lardeau Group. The rocks are isoclinally folded and strongly sheared. Several northwest trending faults cut across the stratigraphy and dip at moderate angles to the northeast parallel to foliation. These faults appear to be the primary control for zinc mineralization. The mineralized zones are replacements of limestone, dolomite and phyllite mainly by sphalerite and occasionally galena and tetrahedrite. The sphalerite, ranging in colour from light yellowish-brown to dark brown, is disseminated and massive within the limestone and occurs as the matrix of breccia associated with the faults. Some mineralized zones are in folds or in banding related to cleavage, both of which are cut by the faults. The massive sulphide bodies dip to the northeast and rake to the north. They are tabular or lenticular and commonly split or branch. This orientation of the Mastodon deposits is important because the southeast VTEM anomaly on the Columbia Queen property appears to be on strike with this trend.

The Mastodon Mine has recorded production for the years 1926, 1952 and 1960 (MINFILE database). Total ore mined was 28,975 tonnes yielding 190,133 gms. Ag, 249 gms. Au, 2,681,451 kg. Zn, 81,798 kg. Pb and 11,654 kg. Cd.

The Columbia Queen Project is north of Revelstoke 37 km to the Carnes Creek Forestry Road, for another 8km and turning southeast for 4km to a road washout. The area is very steep with thick growth in areas and large virgin Cedar, Hemlock and fir trees. Prospecting and sampling on the Columbia Queen Project did not bring any obvious new showings (visibly) and the magnetometer results show very few if any potential anomalies.. There were some interesting pieces of float that may kick some results that could point to further investigation. Prospecting the area including sampling of rock, soil and samples, stream sediment samples and a magnetometer survey. It is an interesting area and it is near a mine site with in view of the property, all points toward a possibility of more mineralization in the is possible.

28 Summary Report on the Copper Queen South July 12, 2012

CONCLUSIONS and RECOMMENDATIONS

VTEM Survey Results

Geotech concludes that the helicopter-borne VTEM survey "was successful in delineating EM anomaly sources which correspond to flat-lying horizons with low conductivity in the central part of the area and dipping targets on the N-E corner of the area. The anomalous area is recommended for drill testing on the basis of RDI section and Maxwell modelling as it may represent most likely mineralized zone with disseminated sulphides" (Venter et al, 2010).

The interpretation that the elevated conductivity is due to a flat-lying body, at least in the central part of the claims, is interesting. Bedding attitudes observed in this area suggest the strata are striking northwest and dipping moderately to the northeast. They are definitely not flat lying. Therefore, if the Geotech interpretation is correct, it suggests the elevated conductivity is not bedding related and is due to some other, more flat-lying source. It is not possible to say with any degree of certainty what this source might be since there is very little surface and subsurface information available for this part of the claims. Although Geotech recommends a drilling program to test the VTEM anomalies, the author feels this would be very premature and does not concur with this recommendation.

Four survey lines cross the area of the Copper Queen showings – lines 1090:6, 1100:6, 1110:6 and 1120:6 (Figure 10). Examining maps produced by Geotech suggests there was no discernable EM response from these showings. This lack of response is disconcerting given the relatively high grade stratabound nature of these showings. One would expect that the phyllitic host rocks which are quite well mineralized with disseminated and massive sulphides would produce some kind of conductor. This lack of a response may be due to the disseminated nature of the sulphides or to the fact that the mineralized zone dips into a steep hillside and is rapidly covered by a thick succession of non-conductive rocks. Clearly, the VTEM data by itself cannot be used to determine if mineralization exists or not given the fact that it does not always detect known mineralization.

Central VTEM Anomaly

Soil sampling across the central VTEM anomaly failed to return any anomalous concentrations of metals in soils in the area tested. However, the soil sampling grid only covered an area 700m X 400m, a very small part of the area of anomalous conductivity. Outcrops within the area of the anomaly were barren micaceous quartzites. There was no indication of alteration or mineralization observed in these rocks. Overall this area seems to have a low probability of finding a new target. However, the area covered by the 2010 grid is too small to have fully evaluated the central VTEM anomaly. Therefore, it is recommended that the 2010 soil sampling and prospecting grid be extended to the southeast and northeast to cover a greater part of the anomaly. This sampling can be done on lines spaced 200m apart with sampling every 50m.

Southeast VTEM Anomaly

The southeast VTEM anomaly remains the most interesting because of it's proximity to the nearby Mastodon mine. A number of soil samples collected from a small 500m X 500m grid did contain statistically anomalous concentrations of Pb, Zn and As. No mineralized float was noted in the grid area which for the most part appears to be covered with fairly thick till deposits. Outcrops of quartzite and phyllite just north of the grid were not altered or mineralized. However, only a small part of the area covered by the VTEM

anomaly was covered by the soil grid. It is the author's opinion that more work needs to be done in this area. The soil sampling grid should be extended to the northeast to see if anomalies detected on Line 1200E are part of a larger area of anomalous soils. Some till sampling in this area might also be beneficial. A combined Induced Polarization (IP) and Magnetometer ground geophysical survey should also be done in this area to test for hidden targets. Because of extensive blow down on the heavily timbered, southeast facing slope it will be necessary to establish a cut grid over the VTEM anomaly area with a minimum of 6 lines, each 200 metres apart and at least one kilometre long (6 kilometres of line). All of this work will need to be supported by helicopter.

Massive Sulphide Float Area

The discovery of massive sulphide float and mineralization in-situ in an area near the eastern limit of the Columbia Queen property is encouraging. This area is approximately half way between the Mastodon Mine to the southwest and the J&L mine to the northeast. Two pieces of float, one a marble containing >10% Zn and >10%Pb and the other massive sulphide with significant Au and As values were located in this area. Although the source of the mineralized float is not known at this time, the fact that a band of oxidized massive sulphide carrying elevated Cu and Pb values was located in outcrop is very encouraging. This area should be covered by a detailed soil sampling grid with lines 50m apart and samples collected every 25m. Till samples should also be collected in this area particularly from road cuts. A surficial geologist should be contracted to provide information on ice flow directions and to help direct the till sampling program. Ground geophysics in the form of an IP or EM survey should also be done along the soil sampling lines. These lines will need to be cut to facilitate the sampling and geophysical surveys as the area is heavily forested and difficult to traverse otherwise.

The Copper Queen showings, which have returned impressive Cu, Zn and Ag assays (see Table 2), still represent the best known exploration target on the property. Rock grab samples collected by Payne (1999) have yielded three samples with over 8% copper and over 100 ppm silver (>3 ounces of silver).

Majority of the reconnaissance mapping and sampling surveys were conducted in the area of the massive sulphide float discovered in 2010. Other then along higher elevations, the property has very limited rock exposure and much of the area is heavily forested with steep slopes. Fortunately, a logging road where the sulphide float was found affords a good section of exposed bedrock and lends itself to limited mapping and sampling.

The significant sulphide, gold-bearing float sample discovered in 2010, and tagged with number 'CQCR06', (Figure 2) contained 6.17 gm/t Au associated with massive arsenopyrite (>1% As). The float sample was located during the reconnaissance surveys and is fairly well rounded, and suggests to have been carried for some distance probably as result of glaciation. It may have also transported down slope for some distance after glacial deposition. The float was obviously dug up heavy equipment and exposed during the construction of the logging road. Another massive sulphide float discovered during this time with tag number 'CQCR07' (Photo 2) contained lower Au values (77.1 ppb) but anomalous in Cu 1,150 ppm and Pb 1,183.6 ppm. This sample appears to have travelled for some distance as well however, its sulphide assemblage is strikingly different then sample 06, comprised mainly of massive pyrrhotite and minor pyrite, vectoring to perhaps a different source of undiscovered mineralization. Float sample numbered 'CQCR08' taken from exactly the same site as 07 in 2010, could not be located by the author. Both tag number and any evidence the float sample were not observed at this site. The sample is described as float "marble with dissem. gal., sph." carrying >1% Pb and >10% Zn.

RECOMMENDATIONS

Stage 1

The Columbia Queen property is of sufficient merit to warrant additional exploration expenditures. A success contingent staged exploration program is recommended. Projected expenditures for this program are given in Table 11. The Stage 1 program would involve grid soil sampling, ground geophysics, geological mapping and prospecting of the southeast VTEM anomaly and the area of massive sulphide float located in 2010. A surficial geologist would be contract to assist in evaluation of the latter. Of secondary importance would be the expansion of soil sampling grids across the central VTEM anomaly and the area of gossanous soils located along Highway 23. More work should also be done on the main Copper Queen showings, specifically expansion of the soil sampling grid done in 1999 further to the northwest. Work on the southeast and central VTEM anomalies and extension of the soil sampling grid northwest of the Copper Queen showings would be helicopter supported. Projected cost for the Stage 1 program is \$220,000.

Contingent on the success of the Stage 1 program, a Stage 2 program would drill test any new targets defined by the Stage 1 work. Projected costs for 2,000 metres of drilling would be \$480,000.

Projected costs for proposed exploration program, Columbia Queen property

Item	Cost
Linecutting contract	\$40,000.00
Soil sampling/prospecting contract	\$70,000.00
IP/mag contract	\$60,000.00
Helicopter	\$20,000.00
Analytical	\$5,000.00
Surficial Geology contract	\$10,000.00
Supervising Geologist/report writing	\$10,000.00
Miscellaneous	\$5,000.00
	\$220,000.00
Stage 2	
Item	Cost
Diamond drilling contract (2,000m)	\$400,000.00
Helicopter	\$50,000.00
Analytical	\$15,000.00
Supervising Geologist/report writing	\$10,000.00
Miscellaneous	\$5,000.00
	\$480,000.00

REFERENCES

Brown, R.L., Journeay, M.J., Lane, L.S., Murphy, D.C., and Rees, C.J., 1986. Obudction, Backfolding and Piggyback Thrusting in the Metamorphic Hinterland of the Southern Canadian Cordillera; Journal of Structural Geology, V. 8, pp. 255-268.

Brown, R.L., Perkins, M.J. and Tippett, C.R., 1977.

Structure and Stratigraphy of the Big Bend Area, British Columbia; in Report of Activities, Part A, Geological Survey of Canada, Paper 77-1A, pp. 273-275.

Brown, R.L., Tippett, C.R. and Lane, L.S., 1978.

Stratigraphy, Facies Change, and Correlations in the Northern Selkirk Mountains, Southern Canadian Cordillera; Canadian Journal of Earth Sciences, V. 15, pp. 1129-1140.

Brown, R.L., 1991.

Geological Map and Cross Section, Downie Creek Map Area (82M/8) British Columbia. Geological Survey of Canada, Open File 2414, 1:50,000 map.

Christopher, P.A. (1999):

Report on the Big Bend Metals Project: Goldstream, Rift and Copper Queen Properties, Big Bend Area, Revelstoke Mining Division, Southeastern British Columbia; IPO Qualifying Report for Orphan Boy Resources Inc.

Devlin, W.J., 1989.

Stratigraphy and Sedimentology of the Hamill Group in the northern Selkirk Mountains, British Columbia: Evidence for Latest Proterozoic-Early Cambrian Extensional Tectonism; Canadian Journal of Earth Sciences, Vol. 26, pp. 515-533.

Fyles, J.T. and Eastwood, G.E.P., 1962.

Geology of the Ferguson Area, Lardeau District, British Columbia; B.C. Ministry of Energy, Mines and Petroleum Resources, Bulletin 45.

Gibson, G., 1999.

Geological Compilation of the Goldstream River-Dowmie Creek Area with Recommended Exploration; for Orphan Boy Resources Inc., dated December 1999.

Gibson, G., and Hoy, T., 1985.

Rift, a Zinc-Lead Massive Sulphide Deposit in Southeastern British Columbia (82M/15); in Geological Fieldwork 1984, B.C. Ministry of Energy, Mines and Petroleum Resources, Paper 1985-1, pp. 105-119.

Gunning, H.C., 1929.

Mineral Deposits, Lardeau Map-area, British Columbia; Geological Survey of Canada, Memoir 161, pp. 17-142.

Höy, T., 1979.

Geology of the Goldstream Area; B.C. Ministry of Energy, Mines and Petroleum Resources, Bulletin 71, 49p.

Hoy, T., Gibson, G., and Berg, N.W., 1984.

Copper-Zinc Deposits Associated with Basic Volcanism, Goldstream Area, Southeastern British Columbia. Economic Geology, V. 79, pp. 789-814.

Jackaman, W. and Reichheld, S.A. (2010):

QUEST South Geochemical Database Upgrades – New Survey and Sample Reanalysis Data (NTS 082E, L, M and 092H, I, J, O, P), Southern British Columbia; in Geoscience BC Summary of Activities 2009, Geoscience BC, Report 2010-1.

Lane, L.S., 1977.

Structure and Stratigraphy, Goldstream River-Downie Creek Area, Selkirk Mountains, British Columbia; unpublished M.Sc. thesis, Carelton University, Ottawa, 140p. 1984.

Deformation History of the Monashee ecollement and Columbia River Fault Zone, British Columbia; unpublished PhD. thesis, Carelton University, Ottawa.

Logan, J.M. and Rees, C., 1997.

Northern Selkirk Project, Geology of the LaForme Creek Area (NTS 82M/01); in Geological Fieldwork 1996, B.C. Ministry of Energy, Mines and Petroleum Resources, Paper 1997-1, pp. 25-37.

Logan, J.M., and Colpron, M., 1995.

North Selkirk Project- Geology of the Goldstream River Map Area (82M/9 and Parts of 82M/10); in Geological Fieldwork 1994, B.C. Ministry of Energy, Mines and Petroleum Resources, Paper 1995-1, pp. 215-241.

Logan, J.M., and Drobe, J.R., 1994.

Summary of Activities, North Selkirk Project, Goldstream River and Downie Creek Map Areas (82M/8, 9 and Parts of 10); in Geological Fieldwork 1993, B.C. Ministry of Energy, Mines and Petroleum Resources, Paper 1994-1, pp. 153-169.

Logan, J.M., Colpron, M., and Johnson, B.J., 1996a.

Geology and Mineral Occurrences of the Downie Creek Area, Northern Selkirk Mountains, (82M/8 and part of 1); B.C. Ministry of Energy, Mines and Petroleum Resources, Open File 1996-2, 1:50,000 map.

1996b.

Northern Selkirk Project, Geology of the Downie Creek Map Area (82M/8); in Geological Fieldwork 1995, B.C. Ministry of Energy, Mines and Petroleum Resources, Paper 1996-1, pp. 107-125.

Logan, J.M., Gibson, G. and Colpron, M., 1995.

Geology of the Goldstream Mine Area, Northern Selkirk Mountains (82M/9); B.C. Ministry of Energy, Mines and Petroleum Resources, Open File 1995-3, 1:10,000 map.

Lund, J. and Hajek, J.H., 1977.

Report on Big Bend Project Geological and Geochemical Survey: CC Nos.. 1-9; Jack and Jill Mineral Claim, and S Nos. 1-4 Mineral Claim, Revelstoke Mining Division; for Kerr Addison Mines Ltd., B.C. Ministry of Energy, Mines and Petroleum Resources, Assessment Rept. 6235.

MacIntyre, Don, 2010:

Technical Report on the Columbia Queen Property, Southeast British Columbia, for Signature Resources Ltd., November 13, 2010

Makepeace, D.K., 2007.

J & L Property Technical Report for Merit Mining Corporation, May 4, 2007, SEDAR website.

Payne, C.W., 1999.

1999 Summary Report on the Copper Queen Property; for Orphan Boy Resources Inc., dated November 10, 1999.

Read, P.B. and Brown, R.L., 1979.

Inverted Stratigraphy and Structures, Downie Creek, Southern British Columbia; in Current Research, Part A, Geological Survey of Canada Paper 79-1A, pp. 33-34.

Read, P.B. and Wheeler, J.O., 1977.

Geology Lardeau West-half Map Area and Marginal Notes, Revised Edition; Geological Survey of Canada, Open File 432, 1:125,000 map.

Venter, N. and Prikhodko, A., 2010.

Report on a Helicopter-borne Versatile Time Domain Electromagnetic (VTEM) and Aeromagnetic Geophysical Survey, Columbia Queen Property, Geotech Inc., internal company report for Signature Resources Ltd.

Wheeler, J.O., 1963.

Rogers Pass Map-area, British Columbia and Alberta (82N West Half); Geological Survey of Canada, Paper 62-32.

1965.

Big Bend Map-Area, British Columbia (82M East Half); Geological Survey of Canada, Paper 64-32, 37p.

Appendix I

Statement of Qualifications

July 12, 2012

STATEMENT of QUALIFICATIONS

I, Johan T. Shearer of Unit 5 – 2330 Tyner Street, in the City of Port Coquitlam, in the Province of British Columbia, do hereby certify:

- 1. I graduated in Honours Geology (B.Sc., 1973) from the University of British Columbia and the University of London, Imperial College, (M.Sc. 1977).
- 2. I have practiced my profession as an Exploration Geologist continuously since graduation and have been employed by such mining companies as McIntyre Mines Ltd., J.C. Stephen Explorations Ltd., Carolin Mines Ltd. and TRM Engineering Ltd. I am presently employed by Homegold Resources Ltd.
- 3. I am a fellow of the Geological Association of Canada (Fellow No. F439). I am also a member of the Canadian Institute of Mining and Metallurgy, the Geological Society of London and the Mineralogical Association of Canada. I am a member in good standing of the Association of Professional Engineers and Geoscientists of British Columbia (P.Geo., Member Number 19,279).
- 4. I am an independent consulting geologist employed since December 1986 by Homegold Resources Ltd. At Unit #5 2330 Tyner Street, Port Coquitlam, British Columbia.
- 5. I am the author of the report entitled "Summary Report on the Copper Queen South Property" dated July 12, 2012.
- 6. I have visited the property June 15-18 and July 9-12, 2012 and supervised the crew in 2012. I have carried out mapping and sample collection and am familiar with the regional geology and geology of nearby properties. I have become familiar with the previous work conducted on the Columbia Queen Project by examining in detail the available reports and maps and have discussed previous work with persons knowledgeable of the area.

Dated at Port Coquitlam, British Columbia, this 12th day of July, 2012.

J.T. Shearer, M.Sc., P. Geo. (BC & Ontario)

Statement of Costs

July 12, 2012

Copper Queen South Statement of Costs

Wages			Total not incl. HST
J. T. S	Shearer, M.Sc., P.Geo (BC & Ont.), Geologist		
	7.5 days @ \$700/day, June 15-18+July 9-12, 2012		\$ 5,250.00
D. G.	Cardinal, P.Geo.		
	7.5 days @ \$650/day, June 15-18+July 9-12, 2012		4,875.00
		Subtotal	\$ 10,125.00
Expenses			
Transportati	on:		
Truc	k #1, Fully equipped 4x4, 8.5 days @ \$120/day		1,020.00
Truc	k #2, Fully equipped 4x4, 7.5 days @ \$120/day		900.00
Gas	for Truck		675.00
Hote	el, 23 man days @ \$94/day		2,162.00
Mea	ıls & Food, 23 man days @ \$55/day		1,265.00
Supp	plies (GPS mapping, digital files, etc.)		375.00
D. D	elisle, 8.5 days @ \$350/day, June 14-18+July 9-12, 2012		2,975.00
Anal	lytical, 40 soils @ \$28 ea.		1,120.00
Mag	netometer Rental, 8.5 days @ \$50/day		425.00
ATV	Rental, 8.5 days @ \$55/day		467.50
Repo	ort Preparation		1,400.00
Wor	d Processing	_	450.00
		Subtotal	\$13,359.50
		Total	\$ 23,359.50
Event #	5393404		
	¢22,000,00		

Event #	5393404
Work Filed	\$22,000.00
PAC Filed	\$8 <i>,</i> 937.84
Recorded	July 12, 2012

Appendix III

Analytical Results

July 12, 2012

5623 MCADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: HOMEGOLD RESOURCES LTD. UNIT# 5-2330 TYNER STREET PORT COQUITLAM, BC V3C2Z1 (604) 696-1022

ATTENTION TO: JO SHEARER

PROJECT NO: COLUMBIA QUEEN

AGAT WORK ORDER: 12V620102

SOLID ANALYSIS REVIEWED BY: Kevin Motomura, ICP Supervisor

DATE REPORTED: Aug 09, 2012

PAGES (INCLUDING COVER): 26

Should you require any information regarding this analysis please contact your client services representative at (905) 501-9998

*NOTES

All samples are stored at no charge for 90 days. Please contact the lab if you require additional sample storage time.

AGAT WORK ORDER: 12V620102 PROJECT NO: COLUMBIA QUEEN 5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: HOMEGOLD RESOURCES LTD.

			Aqu	a Regia	Digest -	Metals F	Package,	ICP-OE	S finish	(201073)					
DATE SAMPLED: Ju	l 13, 2012		I	DATE RECI	EIVED: Jul	12, 2012		DATE	REPORTED): Aug 09, 2	012	SAM	IPLE TYPE:	Soil	
	Analyte:	Ag	AI	As	В	Ва	Be	Bi	Ca	Cd	Ce	Со	Cr	Cu	Fe
	Unit:	ppm	%	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	%
Sample Description	RDL:	0.2	0.01	1	5	1	0.5	1	0.01	0.5	1	0.5	0.5	0.5	0.01
QUDS 1		0.3	1.22	66	<5	143	0.6	<1	0.41	0.6	57	19.6	16.0	39.0	3.55
QUDS 2		<0.2	1.11	58	<5	123	<0.5	<1	0.55	<0.5	53	18.1	14.4	35.3	4.11
QUDS 3		0.3	1.75	58	<5	89	0.6	<1	0.22	<0.5	61	21.0	16.3	30.5	4.31
QUDS 4		<0.2	2.95	40	<5	120	0.9	<1	0.14	<0.5	63	20.6	27.0	61.5	4.89
QUDS 5		0.6	1.70	64	<5	138	0.5	<1	0.11	<0.5	46	15.1	22.0	40.1	3.76
QUDS 6		0.6	3.89	39	<5	220	0.9	<1	1.10	<0.5	29	15.6	16.9	28.6	3.98
QUDS 7		<0.2	1.80	59	<5	140	0.6	<1	0.13	<0.5	36	15.7	17.8	24.5	4.30
QUDS 8		0.5	2.27	48	<5	112	0.7	<1	0.31	<0.5	27	9.1	9.8	27.3	2.73
QUDS 9		0.3	4.31	41	<5	129	1.1	<1	0.11	0.9	32	9.9	9.2	22.2	2.62
QUDS 10		<0.2	1.85	190	<5	91	0.7	<1	0.11	<0.5	83	20.1	17.5	25.6	4.72
QUDS 11		<0.2	2.60	46	<5	85	0.8	<1	0.25	<0.5	49	11.6	10.5	15.2	3.46
QUDS 12		0.3	0.67	56	<5	59	<0.5	<1	0.60	<0.5	47	17.0	8.1	26.8	2.89
QUDS 13		0.5	1.21	140	<5	88	<0.5	<1	0.58	<0.5	50	22.7	13.0	41.4	3.98
QUDS 14		<0.2	1.43	2	<5	25	<0.5	2	0.01	<0.5	83	16.2	22.8	40.2	3.45
QUDS 15		0.2	1.45	3	<5	37	<0.5	<1	0.08	<0.5	77	18.2	22.6	40.7	3.07
QUDS 16		<0.2	0.97	3	<5	28	<0.5	<1	0.11	<0.5	47	15.1	17.0	32.2	2.41
QUDS 17		<0.2	1.16	2	<5	26	<0.5	<1	0.09	<0.5	59	13.3	18.1	29.2	2.62
QUDS 18		<0.2	1.20	5	<5	39	<0.5	<1	0.10	<0.5	74	15.4	22.0	35.0	2.57
QUDS 19		<0.2	1.22	2	<5	31	<0.5	<1	0.13	<0.5	60	14.0	19.1	33.8	2.88
QUDS 20		<0.2	1.00	4	<5	38	<0.5	<1	0.12	<0.5	57	15.5	19.2	36.0	2.61
QUDS 21		<0.2	1.06	4	<5	46	<0.5	<1	0.15	<0.5	56	16.9	20.5	37.1	2.80
QUDS 22		0.2	1.04	3	<5	29	<0.5	<1	0.08	<0.5	46	13.3	18.3	27.5	2.50
QUDS 23		<0.2	1.29	3	<5	36	<0.5	<1	0.15	<0.5	48	13.5	17.8	31.4	3.17
QUDS 24		<0.2	1.78	6	<5	48	<0.5	<1	0.10	<0.5	88	17.3	37.7	38.0	4.77
QUDS 25		<0.2	1.87	4	<5	38	<0.5	<1	0.10	<0.5	38	10.2	37.5	21.6	6.53
QUDS 26		<0.2	1.29	3	<5	40	<0.5	<1	0.07	<0.5	44	7.2	23.9	27.4	3.57
QUDS 27		<0.2	2.76	3	<5	43	0.7	<1	0.07	<0.5	54	9.1	18.6	29.8	4.07
QUDS 28		0.3	2.12	<1	<5	19	<0.5	<1	0.02	<0.5	20	3.2	9.7	11.7	1.57
QUDS 29		<0.2	2.21	3	<5	40	0.5	<1	0.05	<0.5	65	8.9	30.1	22.0	5.23
QUDS 30		<0.2	1.51	2	<5	27	0.5	<1	0.03	<0.5	22	3.5	9.1	17.8	4.43
QUDS 31		<0.2	1.50	10	<5	60	0.6	<1	0.14	<0.5	96	15.9	17.0	31.5	6.08
QUDS 32		<0.2	1.88	1	<5	41	0.5	<1	0.04	<0.5	24	3.5	18.4	12.1	4.32

Certified By:

AGAT WORK ORDER: 12V620102 PROJECT NO: COLUMBIA QUEEN 5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: HOMEGOLD RESOURCES LTD.

			Aqu	a Regia	Digest -	Metals F	Package,	ICP-OE	S finish	(201073)					
DATE SAMPLED: Ju	l 13, 2012		I	DATE RECE	EIVED: Jul	12, 2012		DATE	REPORTED	D: Aug 09, 2	012	SAM	IPLE TYPE:	Soil	
	Analyte:	Ag	Al	As	В	Ва	Be	Bi	Ca	Cd	Ce	Со	Cr	Cu	Fe
	Unit:	ppm	%	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	%
Sample Description	RDL:	0.2	0.01	1	5	1	0.5	1	0.01	0.5	1	0.5	0.5	0.5	0.01
QUDS 33		<0.2	3.51	<1	<5	34	0.8	<1	0.05	<0.5	36	5.8	27.6	27.1	4.72
QUDS 34		<0.2	1.23	7	<5	27	<0.5	<1	0.07	<0.5	35	6.8	24.6	21.6	5.27
QUDS 35		<0.2	2.17	5	<5	53	0.6	<1	0.03	<0.5	47	8.3	24.1	22.4	4.40
QUDS 36		0.3	1.80	6	<5	34	<0.5	<1	0.04	<0.5	37	8.9	27.7	21.7	5.47
QUDS 37		<0.2	2.51	3	<5	35	0.7	<1	0.04	<0.5	42	17.7	25.4	31.9	5.97
QUDS 38		<0.2	1.60	<1	<5	29	<0.5	<1	0.02	<0.5	30	4.0	10.5	20.4	2.97
QUDS 39		<0.2	2.40	6	<5	30	0.6	<1	0.04	<0.5	56	12.4	26.0	31.2	5.70
QUDS 40		<0.2	1.89	2	<5	48	0.5	<1	0.03	<0.5	40	7.7	18.3	24.2	5.08
QUDS 41		<0.2	2.12	2	<5	31	<0.5	<1	0.04	<0.5	52	10.8	19.5	34.7	4.87
QUDS 42		<0.2	1.86	4	<5	33	<0.5	<1	0.03	<0.5	63	17.8	25.8	38.9	5.74
QUDS 43		0.5	0.82	<1	<5	21	<0.5	<1	<0.01	<0.5	28	6.5	7.3	16.3	2.41
QUDS 44		<0.2	1.71	3	<5	53	<0.5	<1	0.18	<0.5	49	11.7	29.1	22.7	6.14
QUDS 45		<0.2	1.51	3	<5	36	<0.5	<1	0.02	<0.5	57	11.5	20.9	31.7	5.77
QUDS 46		<0.2	1.98	5	<5	73	<0.5	<1	0.07	<0.5	58	16.1	23.0	30.8	5.42
QUDS 47		<0.2	2.13	2	<5	46	0.5	<1	0.07	<0.5	63	14.2	23.3	33.2	4.56
QUDS 48		0.5	1.09	2	<5	28	<0.5	<1	0.06	<0.5	36	7.3	20.6	19.4	3.12
QUDS 49		<0.2	1.50	5	<5	42	<0.5	<1	0.06	<0.5	58	11.1	36.8	35.5	5.98
QUDS 50		<0.2	1.20	5	<5	34	<0.5	<1	0.02	<0.5	38	6.0	19.1	18.2	5.14
QUDS 51		0.3	0.95	3	<5	32	<0.5	<1	<0.01	<0.5	37	5.7	11.0	20.8	3.37
QUDS 52		<0.2	1.30	4	<5	50	<0.5	<1	0.07	<0.5	43	10.3	24.4	21.9	5.26
QUDS 53		0.3	1.87	3	<5	31	<0.5	<1	0.04	<0.5	55	12.7	29.0	33.3	4.67
QUDS 54		<0.2	1.91	3	<5	49	<0.5	<1	0.07	<0.5	38	11.1	22.6	26.6	5.50
QUDS 55		0.3	1.90	1	<5	27	<0.5	<1	0.05	<0.5	42	12.4	26.6	24.9	4.30
QUDS 56		<0.2	2.47	8	<5	38	0.5	<1	0.06	<0.5	83	17.4	45.1	47.1	7.28
QUDS 57		<0.2	3.21	8	<5	40	0.5	<1	0.12	<0.5	68	9.1	30.6	31.9	5.66
QUDS 58		<0.2	2.34	5	<5	36	<0.5	<1	0.04	<0.5	58	12.3	36.2	30.2	5.70
QUDS 59		<0.2	1.97	1	<5	48	0.6	<1	0.12	<0.5	61	14.3	14.1	23.0	3.76
QUDS 60		<0.2	0.78	3	<5	33	<0.5	<1	0.03	<0.5	33	5.7	12.6	16.8	3.65
QUDS 61		<0.2	2.85	<1	<5	42	0.6	<1	0.02	<0.5	61	18.1	21.0	28.7	5.05
QUDS 62		<0.2	1.86	<1	<5	30	<0.5	<1	0.05	<0.5	37	9.7	25.7	25.2	6.69
QUDS 63		0.4	0.71	<1	<5	20	<0.5	<1	<0.01	<0.5	19	2.9	3.8	9.8	1.29
QUDS 64		<0.2	1.91	3	<5	24	<0.5	2	0.04	<0.5	42	10.2	22.7	30.8	4.62

Certified By:

AGAT WORK ORDER: 12V620102 PROJECT NO: COLUMBIA QUEEN 5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: HOMEGOLD RESOURCES LTD.

			Aqu	a Regia	Digest -	Metals F	Package,	ICP-OE	S finish	(201073)					
DATE SAMPLED: Ju	ıl 13, 2012		I	DATE RECI	EIVED: Jul	12, 2012		DATE	REPORTED): Aug 09, 2	012	SAM		Soil	
	Analyte:	Ag	AI	As	В	Ва	Be	Bi	Са	Cd	Ce	Со	Cr	Cu	Fe
	Unit:	ppm	%	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	%
Sample Description	RDL:	0.2	0.01	1	5	1	0.5	1	0.01	0.5	1	0.5	0.5	0.5	0.01
QUDS 65		0.3	2.78	3	<5	33	0.6	2	0.02	<0.5	85	25.2	17.3	37.6	3.99
QUDS 66		<0.2	2.70	<1	<5	32	0.7	<1	0.04	<0.5	45	11.1	18.4	29.3	4.20
QUDS 67		<0.2	2.05	<1	<5	37	0.5	<1	0.01	<0.5	46	9.0	17.3	26.0	4.58
QUDS 68		0.7	1.88	<1	<5	35	<0.5	2	0.01	<0.5	34	4.6	15.7	22.7	3.14
QUDS 69		0.5	2.28	3	<5	45	<0.5	<1	0.03	<0.5	45	26.4	25.1	33.2	3.97
QUDS 70		<0.2	1.57	<1	<5	30	<0.5	<1	0.01	<0.5	18	0.9	7.9	7.0	2.14
QUDS 71		0.3	1.74	2	<5	35	<0.5	<1	0.01	<0.5	33	7.2	18.6	24.8	3.13
QUDS 72		<0.2	1.59	5	<5	21	0.5	<1	0.03	<0.5	48	11.4	22.0	25.2	3.72
QUDS 73		0.3	1.62	2	<5	24	<0.5	<1	0.03	<0.5	30	4.4	11.7	20.6	2.13
QUDS 74		0.5	1.79	5	<5	26	0.5	<1	0.02	<0.5	56	12.0	26.1	34.5	4.03
QUDS 75		<0.2	2.45	15	<5	28	<0.5	<1	0.09	<0.5	71	12.1	33.9	31.8	5.31
QUDS 76		0.4	3.23	3	<5	51	0.6	<1	0.17	<0.5	68	24.2	29.2	74.8	6.17
QUDS 77		<0.2	2.37	7	<5	35	<0.5	<1	0.16	<0.5	73	10.8	28.0	34.5	4.49
QUDS 78		<0.2	2.34	6	<5	45	0.6	<1	0.04	<0.5	36	5.9	29.0	21.0	5.69
QUDS 79		<0.2	2.11	5	<5	32	<0.5	<1	0.07	<0.5	52	9.9	27.0	33.8	4.53
QUDS 80		0.5	3.49	6	<5	73	1.2	5	0.04	0.7	58	17.6	42.9	61.9	5.43
QUDS 81		<0.2	1.71	4	<5	22	<0.5	<1	0.03	<0.5	64	10.5	31.0	26.0	3.91
QUDS 82		0.8	1.73	4	<5	25	<0.5	<1	0.12	<0.5	59	12.2	25.3	33.9	3.48
QUDS 83		0.5	2.15	7	<5	23	<0.5	<1	0.07	<0.5	51	12.7	28.7	27.2	3.38
QUDS 84		<0.2	2.62	3	<5	34	0.8	<1	0.02	<0.5	29	6.0	19.4	27.7	3.59
QUDS 85		<0.2	1.59	5	<5	19	<0.5	2	0.03	<0.5	62	12.1	30.8	29.7	3.95
QUDS 86		<0.2	1.66	4	<5	30	<0.5	<1	0.03	<0.5	82	12.9	28.7	37.7	4.07
QUDS 87		<0.2	1.94	9	<5	36	<0.5	<1	0.06	<0.5	72	16.6	34.4	46.0	4.08
QUDS 88		<0.2	1.34	11	<5	30	<0.5	<1	0.06	<0.5	47	7.6	24.2	29.0	4.25
QUDS 89		0.4	1.87	8	<5	42	<0.5	<1	0.07	<0.5	81	18.6	33.9	50.0	4.08
QUDS 90		<0.2	2.29	6	<5	35	<0.5	<1	0.03	<0.5	56	8.9	34.7	31.8	5.54
QUDS 91		<0.2	2.66	4	<5	35	<0.5	<1	0.03	<0.5	43	7.2	28.3	25.5	5.70
QUDS 92		<0.2	2.76	3	<5	46	0.8	<1	0.09	<0.5	27	6.5	20.8	19.7	6.44
QUDS 93		0.4	1.35	4	<5	31	<0.5	<1	0.03	<0.5	39	8.0	19.4	18.5	3.62
QUDS 94		<0.2	1.94	1	<5	50	<0.5	<1	0.03	<0.5	39	5.8	23.5	16.9	5.73
QUDS 95		<0.2	1.58	4	<5	25	<0.5	<1	0.01	<0.5	35	8.2	26.7	20.3	5.81
QUDS 96		0.4	1.47	4	<5	42	<0.5	<1	0.03	<0.5	51	6.2	23.7	25.0	5.07

Certified By:

AGAT WORK ORDER: 12V620102 PROJECT NO: COLUMBIA QUEEN 5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.aqatlabs.com

CLIENT NAME: HOMEGOLD RESOURCES LTD.

			Aqu	a Regia	Digest -	Metals F	Package,	ICP-OE	S finish	(201073)					
DATE SAMPLED: Ju	l 13, 2012		I	DATE REC	EIVED: Jul	12, 2012		DATE	REPORTED	D: Aug 09, 2	012	SAM	IPLE TYPE:	Soil	
	Analyte:	Ag	AI	As	В	Ва	Be	Bi	Са	Cd	Ce	Со	Cr	Cu	Fe
	Unit:	ppm	%	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	%
Sample Description	RDL:	0.2	0.01	1	5	1	0.5	1	0.01	0.5	1	0.5	0.5	0.5	0.01
QUDS 97		0.8	0.46	<1	<5	14	<0.5	<1	0.02	<0.5	33	2.6	6.2	5.7	1.16
QUDS 98		<0.2	1.28	2	<5	23	<0.5	<1	0.01	<0.5	53	8.0	23.0	25.7	5.07
QUDS 99		<0.2	1.70	5	<5	39	0.6	<1	<0.01	<0.5	31	8.5	24.9	21.2	5.75
QUDS 100		0.5	1.16	2	<5	25	<0.5	<1	<0.01	<0.5	27	4.5	18.5	10.5	2.77
QUDS 101		<0.2	1.60	2	<5	25	<0.5	<1	<0.01	<0.5	35	9.3	25.2	21.7	6.09
QUDS 102		<0.2	2.09	<1	<5	24	<0.5	<1	0.02	<0.5	49	8.4	23.0	31.5	4.74
QUDS 103		<0.2	2.86	<1	<5	33	0.8	<1	<0.01	<0.5	36	6.5	20.7	24.8	4.47
QUDS 104		NRC	NRC	NRC	NRC	NRC	NRC	NRC	NRC	NRC	NRC	NRC	NRC	NRC	NRC
QUDS 105		0.2	1.88	9	<5	26	<0.5	4	0.05	0.7	28	11.5	32.6	27.9	5.42

mure Certified By:

AGAT WORK ORDER: 12V620102 PROJECT NO: COLUMBIA QUEEN 5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: HOMEGOLD RESOURCES LTD.

ATTENTION TO: JO SHEARER

			Aqu	a Regia	Digest -	Metals F	Package,	ICP-OE	S finish	(201073)					
DATE SAMPLED: Ju	l 13, 2012		[DATE RECI	EIVED: Jul	12, 2012		DATE	REPORTED	D: Aug 09, 2	2012	SAM	IPLE TYPE:	Soil	
	Analyte:	Ga	Hg	In	К	La	Li	Mg	Mn	Мо	Na	Ni	Р	Pb	Rb
	Unit:	ppm	ppm	ppm	%	ppm	ppm	%	ppm	ppm	%	ppm	ppm	ppm	ppm
Sample Description	RDL:	5	1	1	0.01	1	1	0.01	1	0.5	0.01	0.5	10	0.5	10
QUDS 1		8	<1	<1	0.09	24	12	0.29	2390	1.4	<0.01	33.0	1210	55.3	37
QUDS 2		6	<1	<1	0.13	22	11	0.32	1720	2.2	<0.01	26.6	1170	43.4	39
QUDS 3		9	2	<1	0.08	24	17	0.36	2240	1.6	<0.01	29.2	1360	50.3	30
QUDS 4		12	1	<1	0.07	25	20	0.48	1330	1.5	<0.01	44.7	1050	33.2	32
QUDS 5		8	<1	<1	0.08	20	13	0.42	2310	1.7	<0.01	26.4	839	29.2	30
QUDS 6		12	<1	<1	0.06	11	15	0.34	1190	1.6	0.01	25.3	6180	25.9	20
QUDS 7		10	<1	<1	0.07	14	16	0.37	2460	1.3	<0.01	19.4	1090	30.4	28
QUDS 8		10	<1	<1	0.05	12	11	0.19	752	2.0	0.01	15.6	1760	16.5	21
QUDS 9		12	<1	<1	0.05	12	10	0.17	929	1.3	0.01	12.4	3220	16.3	16
QUDS 10		7	<1	<1	0.13	31	16	0.51	912	1.0	<0.01	29.8	988	41.9	40
QUDS 11		9	<1	<1	0.07	17	15	0.29	795	1.0	<0.01	16.7	1690	27.9	22
QUDS 12		6	<1	<1	0.10	20	7	0.28	1080	0.6	<0.01	29.4	1030	43.0	22
QUDS 13		8	<1	<1	0.13	21	13	0.39	2030	1.6	<0.01	34.9	1500	62.9	32
QUDS 14		8	<1	<1	0.03	27	11	0.47	809	0.7	<0.01	29.2	695	23.7	13
QUDS 15		7	<1	<1	0.03	25	11	0.52	867	0.9	<0.01	37.3	650	24.8	<10
QUDS 16		6	<1	<1	0.02	18	9	0.48	623	<0.5	<0.01	32.5	647	18.7	<10
QUDS 17		6	<1	<1	0.03	20	10	0.51	681	0.7	<0.01	31.8	748	16.8	<10
QUDS 18		7	<1	<1	0.04	25	10	0.56	757	0.7	<0.01	38.2	785	18.2	<10
QUDS 19		5	<1	<1	0.03	21	11	0.59	740	0.8	<0.01	34.0	830	16.0	<10
QUDS 20		5	<1	<1	0.04	27	11	0.61	825	0.6	<0.01	39.7	695	18.3	<10
QUDS 21		5	<1	<1	0.04	28	11	0.67	883	<0.5	<0.01	40.7	707	16.5	<10
QUDS 22		7	<1	<1	0.03	16	9	0.45	789	0.6	<0.01	29.2	804	19.6	<10
QUDS 23		6	<1	<1	0.04	19	11	0.60	743	0.7	<0.01	30.9	766	17.4	<10
QUDS 24		8	<1	<1	0.05	25	16	0.73	1180	1.4	<0.01	39.8	1320	29.3	16
QUDS 25		12	<1	<1	0.06	15	11	0.48	780	2.9	<0.01	19.7	4170	35.4	16
QUDS 26		10	<1	<1	0.04	15	7	0.27	383	1.1	0.01	22.1	1060	18.8	14
QUDS 27		16	<1	<1	0.05	17	11	0.34	1010	1.8	<0.01	21.9	1260	26.7	13
QUDS 28		5	1	<1	0.02	8	4	0.04	134	0.9	<0.01	6.4	557	9.0	<10
QUDS 29		12	<1	<1	0.03	19	14	0.51	477	<0.5	<0.01	23.5	1320	17.4	16
QUDS 30		11	<1	<1	0.02	10	5	0.04	310	1.8	0.01	10.1	1230	13.3	10
QUDS 31		9	<1	<1	0.04	42	8	0.24	1950	1.5	<0.01	32.7	987	37.1	19
QUDS 32		12	<1	<1	0.03	10	6	0.13	245	1.3	<0.01	9.0	4440	19.6	12

AGAT WORK ORDER: 12V620102 PROJECT NO: COLUMBIA QUEEN 5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: HOMEGOLD RESOURCES LTD.

ATTENTION TO: JO SHEARER

			Aqu	a Regia	Digest -	Metals F	Package,	ICP-OE	S finish	(201073)					
DATE SAMPLED: Ju	l 13, 2012		[DATE RECI	EIVED: Jul	12, 2012		DATE	REPORTED	D: Aug 09, 2	2012	SAM	IPLE TYPE:	Soil	
	Analyte:	Ga	Hg	In	К	La	Li	Mg	Mn	Мо	Na	Ni	Р	Pb	Rb
	Unit:	ppm	ppm	ppm	%	ppm	ppm	%	ppm	ppm	%	ppm	ppm	ppm	ppm
Sample Description	RDL:	5	1	1	0.01	1	1	0.01	1	0.5	0.01	0.5	10	0.5	10
QUDS 33		17	<1	<1	0.03	17	7	0.19	821	1.7	0.01	11.9	3070	23.2	14
QUDS 34		13	<1	<1	0.03	14	7	0.25	409	<0.5	<0.01	19.4	1180	30.3	11
QUDS 35		14	<1	<1	0.03	16	10	0.40	568	1.2	<0.01	22.6	4040	20.0	14
QUDS 36		16	<1	<1	0.03	13	12	0.45	478	1.1	<0.01	25.2	1290	17.8	15
QUDS 37		15	<1	<1	0.03	15	10	0.35	1050	4.5	<0.01	29.3	2110	28.4	14
QUDS 38		8	1	<1	0.03	13	4	0.05	209	1.4	0.01	11.9	1550	13.8	12
QUDS 39		12	<1	<1	0.04	17	13	0.52	585	2.1	<0.01	27.0	2040	24.4	18
QUDS 40		12	<1	<1	0.03	17	10	0.31	360	2.0	<0.01	22.5	852	20.0	11
QUDS 41		9	<1	<1	0.03	19	11	0.38	678	1.2	<0.01	24.7	919	26.4	10
QUDS 42		7	<1	<1	0.03	18	14	0.60	977	0.6	<0.01	35.2	871	30.4	13
QUDS 43		5	<1	<1	0.02	11	4	0.03	242	0.8	<0.01	11.5	361	11.5	<10
QUDS 44		11	<1	<1	0.05	16	12	0.52	850	1.3	<0.01	27.3	2020	32.2	20
QUDS 45		14	<1	<1	0.04	20	10	0.52	558	<0.5	<0.01	29.9	976	22.1	16
QUDS 46		10	<1	<1	0.03	18	11	0.47	737	0.9	<0.01	26.6	3250	179	12
QUDS 47		6	<1	<1	0.04	22	14	0.55	514	0.7	<0.01	36.4	934	22.8	12
QUDS 48		7	<1	<1	0.03	14	10	0.34	260	0.9	<0.01	22.7	454	14.0	13
QUDS 49		12	<1	<1	0.04	18	11	0.62	521	<0.5	<0.01	38.0	2570	41.1	12
QUDS 50		10	<1	<1	0.03	16	7	0.31	291	1.5	<0.01	16.6	445	21.0	<10
QUDS 51		7	<1	<1	0.02	16	6	0.22	218	0.8	<0.01	14.8	425	12.5	<10
QUDS 52		8	<1	<1	0.03	15	10	0.50	451	0.6	<0.01	24.8	1220	23.5	10
QUDS 53		7	<1	<1	0.04	18	16	0.70	549	0.6	<0.01	30.9	924	21.5	14
QUDS 54		6	<1	<1	0.04	15	19	0.71	477	<0.5	<0.01	28.7	1010	12.9	17
QUDS 55		6	<1	<1	0.04	18	16	0.62	568	0.6	<0.01	24.4	886	15.1	16
QUDS 56		13	<1	<1	0.04	26	15	0.61	1170	1.0	<0.01	28.7	4160	33.1	19
QUDS 57		13	<1	<1	0.03	16	12	0.47	930	<0.5	<0.01	21.8	3570	36.2	10
QUDS 58		8	<1	<1	0.04	17	18	0.76	467	3.7	<0.01	30.0	1940	26.4	14
QUDS 59		9	<1	<1	0.03	18	14	0.50	915	1.2	<0.01	23.2	837	17.4	10
QUDS 60		8	<1	<1	0.03	13	5	0.26	439	1.2	<0.01	14.0	1750	19.0	11
QUDS 61		11	<1	<1	0.03	18	13	0.38	1190	1.3	<0.01	20.1	1530	31.3	<10
QUDS 62		13	<1	<1	0.03	14	9	0.48	815	5.1	<0.01	17.9	4810	27.5	10
QUDS 63		<5	<1	<1	0.02	8	3	0.02	94	<0.5	0.01	6.2	219	3.4	<10
QUDS 64		16	<1	<1	0.03	15	9	0.42	709	0.7	<0.01	19.2	2910	27.1	13

AGAT WORK ORDER: 12V620102 PROJECT NO: COLUMBIA QUEEN 5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: HOMEGOLD RESOURCES LTD.

ATTENTION TO: JO SHEARER

			Aqu	a Regia	Digest -	Metals F	Package,	ICP-OE	S finish	(201073)					
DATE SAMPLED: Ju	l 13, 2012		[DATE RECI	EIVED: Jul	12, 2012		DATE	REPORTED	D: Aug 09, 2	2012	SAM	IPLE TYPE:	Soil	
	Analyte:	Ga	Hg	In	К	La	Li	Mg	Mn	Мо	Na	Ni	Р	Pb	Rb
	Unit:	ppm	ppm	ppm	%	ppm	ppm	%	ppm	ppm	%	ppm	ppm	ppm	ppm
Sample Description	RDL:	5	1	1	0.01	1	1	0.01	1	0.5	0.01	0.5	10	0.5	10
QUDS 65		10	<1	<1	0.02	22	7	0.19	3030	1.5	<0.01	24.9	2290	81.0	14
QUDS 66		15	<1	<1	0.03	18	8	0.28	590	1.3	<0.01	17.4	1520	21.3	19
QUDS 67		16	<1	<1	0.03	21	10	0.39	817	1.6	<0.01	19.3	674	17.6	24
QUDS 68		14	<1	<1	0.04	16	7	0.14	635	1.3	<0.01	9.6	3200	31.4	25
QUDS 69		10	<1	<1	0.05	18	15	0.44	1600	2.5	<0.01	24.4	1130	51.2	27
QUDS 70		11	<1	<1	0.01	9	10	0.06	113	0.6	<0.01	3.0	262	17.6	<10
QUDS 71		8	<1	<1	0.02	12	10	0.32	345	1.0	<0.01	18.5	480	21.7	14
QUDS 72		12	<1	<1	0.03	17	11	0.41	838	0.6	<0.01	24.3	1240	18.5	22
QUDS 73		9	<1	<1	0.02	13	7	0.12	245	0.8	<0.01	10.1	405	11.9	<10
QUDS 74		16	<1	<1	0.03	21	12	0.53	509	<0.5	<0.01	29.5	611	35.5	13
QUDS 75		8	<1	<1	0.05	20	18	0.81	453	<0.5	<0.01	33.3	980	27.1	14
QUDS 76		8	<1	<1	0.04	24	14	0.51	3430	2.1	<0.01	56.5	1600	162	12
QUDS 77		9	<1	<1	0.03	19	14	0.60	585	1.2	<0.01	29.2	3020	28.7	14
QUDS 78		18	<1	<1	0.03	14	10	0.38	483	<0.5	<0.01	16.9	4880	41.0	14
QUDS 79		9	<1	<1	0.03	17	12	0.48	613	0.8	<0.01	23.2	3040	22.4	12
QUDS 80		23	<1	<1	0.07	22	15	0.42	2870	3.7	<0.01	45.4	1650	71.3	28
QUDS 81		11	<1	<1	0.03	22	13	0.60	619	<0.5	<0.01	28.2	1200	23.6	18
QUDS 82		9	<1	<1	0.02	20	9	0.41	1010	0.8	<0.01	26.8	2440	35.1	<10
QUDS 83		10	<1	<1	0.02	18	10	0.41	869	0.6	<0.01	26.9	2100	19.1	10
QUDS 84		15	<1	<1	0.02	15	5	0.16	487	1.2	<0.01	12.7	2220	28.7	13
QUDS 85		11	<1	<1	0.03	20	14	0.62	553	0.9	<0.01	29.5	2020	22.8	20
QUDS 86		12	<1	<1	0.03	20	18	0.71	583	0.5	<0.01	38.3	1030	24.6	15
QUDS 87		9	<1	<1	0.06	24	22	0.95	646	0.6	<0.01	42.3	1430	30.5	18
QUDS 88		12	<1	<1	0.04	16	8	0.32	784	0.5	<0.01	20.5	1740	24.2	19
QUDS 89		12	<1	<1	0.06	21	20	0.74	1110	1.0	<0.01	41.5	1480	30.5	21
QUDS 90		13	<1	<1	0.04	21	14	0.57	472	3.7	<0.01	28.6	1180	28.1	17
QUDS 91		12	<1	<1	0.03	17	13	0.45	404	<0.5	<0.01	20.7	814	26.9	14
QUDS 92		18	<1	<1	0.03	12	12	0.30	783	4.2	<0.01	15.7	738	26.7	17
QUDS 93		10	<1	<1	0.04	17	9	0.42	1030	0.9	<0.01	19.2	844	19.1	13
QUDS 94		14	<1	<1	0.04	18	11	0.38	496	<0.5	<0.01	17.1	914	23.8	17
QUDS 95		12	<1	<1	0.04	16	12	0.55	532	3.5	<0.01	21.8	1260	19.0	18
QUDS 96		12	<1	<1	0.03	18	8	0.44	239	1.0	<0.01	22.3	1360	18.0	<10

mun

Certificate of Analysis

AGAT WORK ORDER: 12V620102 PROJECT NO: COLUMBIA QUEEN

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: HOMEGOLD RESOURCES LTD.

			Aqu	a Regia	Digest -	Metals F	Package,	ICP-OE	S finish	(201073)					
DATE SAMPLED: Ju	l 13, 2012		I	DATE RECI	EIVED: Jul	12, 2012		DATE	REPORTED): Aug 09, 2	2012	SAM	IPLE TYPE:	Soil	
	Analyte:	Ga	Hg	In	К	La	Li	Mg	Mn	Мо	Na	Ni	Р	Pb	Rb
	Unit:	ppm	ppm	ppm	%	ppm	ppm	%	ppm	ppm	%	ppm	ppm	ppm	ppm
Sample Description	RDL:	5	1	1	0.01	1	1	0.01	1	0.5	0.01	0.5	10	0.5	10
QUDS 97		6	<1	<1	0.03	15	3	0.11	217	0.8	0.01	6.6	278	9.7	<10
QUDS 98		15	<1	<1	0.04	24	7	0.40	759	4.3	<0.01	19.6	1930	18.9	17
QUDS 99		19	<1	<1	0.02	13	8	0.34	478	<0.5	<0.01	21.1	654	22.2	10
QUDS 100		11	<1	<1	0.03	12	8	0.28	172	<0.5	<0.01	12.5	333	11.3	11
QUDS 101		14	<1	<1	0.02	15	9	0.36	378	<0.5	<0.01	21.7	812	29.5	12
QUDS 102		7	<1	<1	0.04	21	16	0.64	292	<0.5	<0.01	24.3	620	25.1	19
QUDS 103		13	<1	<1	0.02	15	11	0.27	362	1.0	<0.01	16.3	607	27.3	17
QUDS 104		NRC	NRC	NRC	NRC	NRC	NRC	NRC	NRC	NRC	NRC	NRC	NRC	NRC	NRC
QUDS 105		9	<1	<1	0.03	18	16	0.60	690	1.2	<0.01	24.4	1400	32.8	13

9 mm Certified By:

AGAT WORK ORDER: 12V620102 PROJECT NO: COLUMBIA QUEEN 5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: HOMEGOLD RESOURCES LTD.

			Aqu	a Regia	Digest -	Metals F	Package,	ICP-OE	S finish	(201073)					
DATE SAMPLED: Ju	I 13, 2012		I	DATE RECI	EIVED: Jul	12, 2012		DATE	REPORTED): Aug 09, 2	012	SAM	PLE TYPE:	Soil	
	Analyte:	S	Sb	Sc	Se	Sn	Sr	Та	Te	Th	Ti	TI	U	V	W
	Unit:	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm
Sample Description	RDL:	0.005	1	0.5	10	5	0.5	10	10	5	0.01	5	5	0.5	1
QUDS 1		0.043	<1	1.0	<10	<5	25.8	<10	<10	<5	0.02	<5	<5	24.9	2
QUDS 2		0.033	3	<0.5	<10	<5	26.3	<10	<10	<5	0.03	<5	<5	26.7	2
QUDS 3		0.032	3	0.7	<10	<5	13.0	<10	<10	<5	0.02	<5	<5	29.4	2
QUDS 4		0.019	2	2.1	<10	<5	11.0	<10	<10	<5	0.07	<5	<5	25.0	<1
QUDS 5		0.024	3	0.9	<10	<5	10.6	<10	<10	<5	0.04	<5	<5	37.9	3
QUDS 6		0.034	1	1.1	<10	<5	55.1	<10	<10	<5	0.09	<5	<5	25.5	1
QUDS 7		0.028	2	1.0	<10	<5	9.2	<10	<10	<5	0.06	<5	<5	35.0	1
QUDS 8		0.026	4	1.3	<10	<5	14.7	<10	<10	<5	0.07	<5	<5	33.7	2
QUDS 9		0.034	3	1.4	<10	<5	11.6	<10	<10	<5	0.10	<5	<5	22.0	1
QUDS 10		0.009	3	2.0	<10	<5	12.6	<10	<10	6	0.04	<5	<5	29.1	1
QUDS 11		0.029	3	0.9	<10	<5	14.8	<10	<10	<5	0.05	<5	<5	21.4	2
QUDS 12		0.053	1	1.6	<10	<5	26.0	<10	<10	<5	0.02	<5	<5	16.4	6
QUDS 13		0.050	3	1.9	<10	<5	31.1	<10	<10	<5	0.02	<5	<5	25.9	3
QUDS 14		0.011	2	1.2	<10	<5	2.7	<10	<10	10	0.02	<5	<5	16.3	2
QUDS 15		0.010	<1	1.3	<10	<5	4.4	<10	<10	12	0.01	<5	<5	12.5	<1
QUDS 16		0.007	<1	0.8	<10	<5	6.0	<10	<10	9	0.01	<5	<5	10.4	<1
QUDS 17		<0.005	<1	1.0	<10	<5	5.8	<10	<10	6	0.02	<5	<5	12.4	1
QUDS 18		<0.005	1	1.1	<10	<5	12.2	<10	<10	9	0.02	<5	<5	12.5	<1
QUDS 19		0.005	<1	0.9	<10	<5	15.9	<10	<10	6	0.02	<5	<5	11.0	1
QUDS 20		<0.005	<1	1.1	<10	<5	10.3	<10	<10	7	0.01	<5	<5	11.0	1
QUDS 21		<0.005	<1	1.1	<10	<5	12.8	<10	<10	9	0.01	<5	<5	11.5	<1
QUDS 22		0.008	2	0.7	<10	<5	6.1	<10	<10	6	0.02	<5	<5	13.4	<1
QUDS 23		0.008	2	0.8	<10	<5	8.3	<10	<10	<5	0.02	<5	<5	12.2	1
QUDS 24		0.013	<1	0.9	<10	<5	9.0	<10	<10	5	0.03	<5	<5	18.8	2
QUDS 25		0.027	3	<0.5	12	<5	7.0	<10	<10	<5	0.04	<5	<5	30.1	3
QUDS 26		0.021	3	<0.5	<10	<5	5.7	<10	<10	<5	0.06	<5	<5	29.3	2
QUDS 27		0.023	4	1.1	<10	<5	4.7	<10	<10	<5	0.12	<5	<5	32.2	2
QUDS 28		0.019	1	0.6	<10	<5	1.8	<10	<10	<5	0.06	<5	<5	18.2	1
QUDS 29		0.017	<1	0.6	10	<5	5.8	<10	<10	<5	0.05	<5	<5	30.9	2
QUDS 30		0.017	2	<0.5	11	<5	5.5	<10	<10	<5	0.10	<5	<5	37.2	3
QUDS 31		0.017	2	2.2	<10	<5	13.9	<10	<10	<5	0.05	<5	<5	27.7	3
QUDS 32		0.024	2	<0.5	<10	<5	5.0	<10	<10	<5	0.07	<5	<5	26.8	2

Certified By:

AGAT WORK ORDER: 12V620102 PROJECT NO: COLUMBIA QUEEN 5623 MCADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: HOMEGOLD RESOURCES LTD.

			Aqu	a Regia	Digest -	Metals F	Package,	ICP-OE	S finish	(201073)					
DATE SAMPLED: Ju	ıl 13, 2012		I	DATE RECI	EIVED: Jul	12, 2012		DATE I	REPORTED): Aug 09, 2	012	SAM	IPLE TYPE:	Soil	
	Analyte:	S	Sb	Sc	Se	Sn	Sr	Та	Te	Th	Ti	TI	U	V	W
	Unit:	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm
Sample Description	RDL:	0.005	1	0.5	10	5	0.5	10	10	5	0.01	5	5	0.5	1
QUDS 33		0.028	3	1.4	<10	<5	5.9	13	<10	<5	0.14	<5	<5	31.5	2
QUDS 34		0.025	3	<0.5	<10	<5	6.2	<10	<10	<5	0.07	<5	<5	29.3	2
QUDS 35		0.021	<1	0.6	<10	<5	5.1	<10	<10	<5	0.10	<5	<5	28.9	2
QUDS 36		0.019	1	<0.5	<10	<5	5.4	<10	<10	<5	0.06	<5	<5	31.2	3
QUDS 37		0.024	<1	0.9	<10	<5	5.3	<10	<10	<5	0.09	<5	<5	30.2	3
QUDS 38		0.018	<1	<0.5	<10	<5	2.9	<10	<10	<5	0.07	<5	<5	23.2	2
QUDS 39		0.017	1	0.6	11	<5	6.5	<10	<10	<5	0.04	<5	<5	23.8	1
QUDS 40		0.027	<1	<0.5	<10	<5	6.2	<10	<10	<5	0.05	<5	<5	22.6	2
QUDS 41		0.021	3	0.7	11	<5	5.1	<10	<10	<5	0.04	<5	<5	15.4	2
QUDS 42		0.016	1	0.5	12	<5	4.7	<10	<10	<5	0.01	<5	<5	11.4	2
QUDS 43		0.013	<1	<0.5	<10	<5	2.4	<10	<10	<5	0.04	<5	<5	21.2	1
QUDS 44		0.019	2	<0.5	10	<5	13.6	<10	<10	<5	0.03	<5	<5	21.4	2
QUDS 45		0.016	2	<0.5	<10	<5	5.5	<10	<10	<5	0.06	<5	<5	28.1	2
QUDS 46		0.022	5	<0.5	14	<5	6.8	<10	<10	<5	0.03	<5	<5	15.6	2
QUDS 47		0.013	1	0.9	<10	<5	6.3	<10	<10	<5	0.03	<5	<5	11.9	1
QUDS 48		0.015	1	<0.5	<10	<5	5.3	<10	<10	<5	0.04	<5	<5	26.7	2
QUDS 49		0.021	1	<0.5	<10	<5	7.9	<10	<10	<5	0.04	<5	<5	27.9	2
QUDS 50		0.018	2	<0.5	<10	<5	4.8	<10	<10	<5	0.04	<5	<5	21.7	2
QUDS 51		0.008	2	<0.5	<10	<5	4.2	<10	<10	<5	0.03	<5	<5	19.5	2
QUDS 52		0.013	3	<0.5	<10	<5	7.6	<10	<10	<5	0.04	<5	<5	25.6	1
QUDS 53		0.013	<1	0.8	<10	<5	5.3	<10	<10	7	0.02	<5	<5	14.9	2
QUDS 54		0.015	2	<0.5	<10	<5	9.6	<10	<10	<5	0.02	<5	<5	13.7	1
QUDS 55		0.013	3	0.9	<10	<5	5.3	<10	<10	<5	0.03	<5	<5	16.0	1
QUDS 56		0.014	1	1.9	11	<5	7.9	<10	<10	<5	0.05	7	<5	36.2	3
QUDS 57		0.028	1	1.2	<10	<5	8.2	<10	<10	<5	0.05	<5	<5	26.3	1
QUDS 58		0.013	<1	1.1	14	<5	6.1	<10	<10	<5	0.03	<5	<5	22.0	2
QUDS 59		0.027	1	0.6	<10	<5	10.6	<10	<10	<5	0.03	<5	<5	15.5	1
QUDS 60		0.012	2	<0.5	<10	<5	3.7	<10	<10	<5	0.05	<5	<5	23.9	1
QUDS 61		0.031	2	0.6	<10	<5	6.9	10	<10	<5	0.04	<5	<5	15.6	2
QUDS 62		0.025	4	<0.5	<10	<5	6.2	<10	<10	<5	0.05	5	<5	20.5	3
QUDS 63		0.007	<1	<0.5	<10	<5	0.8	<10	<10	<5	0.05	<5	<5	21.1	1
QUDS 64		0.021	2	<0.5	<10	<5	2.7	<10	<10	<5	0.04	<5	6	22.0	2

Certified By:

AGAT WORK ORDER: 12V620102 PROJECT NO: COLUMBIA QUEEN 5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: HOMEGOLD RESOURCES LTD.

			Aqu	a Regia	Digest -	Metals F	Package,	ICP-OE	S finish	(201073)					
DATE SAMPLED: Ju	ıl 13, 2012		I	DATE RECI	EIVED: Jul	12, 2012		DATE	REPORTED	D: Aug 09, 2	2012	SAM	IPLE TYPE:	Soil	
	Analyte:	S	Sb	Sc	Se	Sn	Sr	Та	Te	Th	Ti	TI	U	V	W
	Unit:	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm
Sample Description	RDL:	0.005	1	0.5	10	5	0.5	10	10	5	0.01	5	5	0.5	1
QUDS 65		0.041	<1	0.8	11	<5	4.2	<10	<10	8	0.03	<5	<5	15.7	3
QUDS 66		0.023	3	0.6	<10	<5	4.0	<10	<10	6	0.05	<5	<5	23.2	2
QUDS 67		0.015	<1	<0.5	<10	<5	3.9	<10	<10	5	0.07	<5	<5	29.1	2
QUDS 68		0.031	2	<0.5	<10	<5	3.1	<10	<10	<5	0.06	<5	<5	28.4	2
QUDS 69		0.030	1	<0.5	10	<5	6.0	<10	<10	<5	0.03	<5	<5	21.3	2
QUDS 70		0.019	2	<0.5	<10	<5	2.4	<10	<10	<5	0.09	<5	<5	28.6	2
QUDS 71		0.024	2	<0.5	<10	<5	3.2	<10	<10	<5	0.02	<5	<5	15.6	1
QUDS 72		0.017	1	<0.5	<10	<5	4.3	<10	<10	<5	0.04	<5	<5	29.3	2
QUDS 73		0.020	1	<0.5	<10	<5	3.4	<10	<10	<5	0.05	<5	<5	23.4	1
QUDS 74		0.019	2	0.6	<10	<5	2.8	<10	<10	5	0.06	<5	<5	27.4	2
QUDS 75		0.017	3	0.9	<10	<5	6.8	<10	<10	<5	0.04	<5	<5	17.7	1
QUDS 76		0.026	1	1.4	<10	<5	10.6	<10	<10	9	0.02	<5	<5	12.0	3
QUDS 77		0.019	<1	0.6	<10	<5	8.5	<10	<10	<5	0.04	<5	<5	20.3	3
QUDS 78		0.022	2	<0.5	<10	<5	4.7	<10	<10	<5	0.09	<5	<5	35.0	3
QUDS 79		0.016	<1	0.6	<10	<5	5.5	<10	<10	<5	0.03	<5	<5	20.1	2
QUDS 80		0.032	2	2.6	<10	<5	5.5	<10	<10	7	0.14	<5	6	65.2	1
QUDS 81		0.009	2	0.7	<10	<5	4.5	<10	<10	6	0.02	<5	<5	21.7	2
QUDS 82		0.015	<1	0.7	<10	<5	10.0	<10	<10	5	0.04	<5	<5	18.6	2
QUDS 83		0.018	2	0.8	<10	<5	4.9	<10	<10	6	0.03	<5	<5	21.3	3
QUDS 84		0.034	<1	0.9	<10	<5	3.7	<10	<10	<5	0.11	<5	<5	28.8	3
QUDS 85		0.009	4	0.6	<10	<5	3.1	<10	<10	<5	0.03	<5	<5	24.1	2
QUDS 86		0.011	2	0.7	<10	<5	3.3	<10	<10	<5	0.04	<5	<5	24.0	2
QUDS 87		0.008	3	1.0	11	<5	5.8	<10	<10	<5	0.03	<5	<5	20.9	1
QUDS 88		0.018	3	<0.5	<10	<5	4.7	<10	<10	<5	0.09	<5	<5	39.1	2
QUDS 89		0.020	<1	0.6	<10	<5	6.4	<10	<10	<5	0.03	<5	<5	24.2	1
QUDS 90		0.019	<1	0.8	<10	<5	6.3	<10	<10	8	0.03	<5	<5	29.7	3
QUDS 91		0.026	2	0.6	11	<5	4.7	<10	<10	<5	0.06	<5	<5	28.9	3
QUDS 92		0.023	<1	<0.5	<10	<5	9.1	<10	<10	5	0.12	<5	5	40.8	4
QUDS 93		0.021	<1	<0.5	<10	<5	4.7	10	<10	<5	0.03	<5	<5	23.9	2
QUDS 94		0.020	3	0.5	<10	<5	6.1	<10	<10	<5	0.06	<5	<5	42.2	3
QUDS 95		0.017	<1	<0.5	<10	<5	4.5	<10	<10	<5	0.03	<5	<5	27.6	3
QUDS 96		0.026	2	<0.5	<10	<5	6.2	<10	<10	<5	0.07	<5	<5	30.3	3

Certified By:

AGAT WORK ORDER: 12V620102 PROJECT NO: COLUMBIA QUEEN 5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: HOMEGOLD RESOURCES LTD.

			Aqu	a Regia	Digest -	Metals F	Package,	ICP-OE	S finish	(201073)					
DATE SAMPLED: Ju	l 13, 2012		I	DATE RECI	EIVED: Jul	12, 2012		DATE REPORTED: Aug 09, 2012				SAMPLE TYPE: Soil			
	Analyte:	S	Sb	Sc	Se	Sn	Sr	Та	Te	Th	Ti	TI	U	V	W
	Unit:	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm
Sample Description	RDL:	0.005	1	0.5	10	5	0.5	10	10	5	0.01	5	5	0.5	1
QUDS 97		0.014	<1	<0.5	<10	<5	3.1	<10	<10	<5	0.05	<5	<5	23.6	1
QUDS 98		0.017	<1	<0.5	<10	<5	4.4	<10	<10	<5	0.03	<5	<5	25.8	2
QUDS 99		0.027	1	<0.5	18	<5	4.7	<10	<10	9	0.07	<5	5	35.2	4
QUDS 100		0.017	4	1.0	<10	<5	3.2	<10	<10	<5	0.04	<5	<5	35.8	2
QUDS 101		0.026	3	<0.5	14	<5	4.9	<10	<10	8	0.03	<5	<5	29.9	4
QUDS 102		0.019	<1	0.7	10	<5	4.6	<10	<10	9	0.02	<5	<5	15.4	2
QUDS 103		0.032	<1	1.0	<10	<5	3.8	<10	<10	10	0.06	<5	<5	27.1	3
QUDS 104		NRC	NRC	NRC	NRC	NRC	NRC	NRC	NRC	NRC	NRC	NRC	NRC	NRC	NRC
QUDS 105		0.020	<1	1.8	<10	<5	<0.5	<10	<10	7	0.04	<5	<5	29.4	<1

Samura Certified By:

AGAT WORK ORDER: 12V620102 PROJECT NO: COLUMBIA QUEEN 5623 MCADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: HOMEGOLD RESOURCES LTD.

	Aqua Regia Digest - Metals Package, ICP-OES finish (201073)											
DATE SAMPLED: Jul '	13, 2012		C	ATE RECEIVE	D: Jul 12, 2012	DATE REPORTED: Aug 09, 2012	SAMPLE TYPE: Soil					
	Analyte:	Y	Zn	Zr								
	Unit:	ppm	ppm	ppm								
Sample Description	RDL:	1	0.5	5								
QUDS 1		9	113	<5								
QUDS 2		4	119	<5								
QUDS 3		8	150	<5								
QUDS 4		6	195	<5								
QUDS 5		4	107	<5								
QUDS 6		5	130	8								
QUDS 7		3	136	<5								
QUDS 8		5	108	<5								
QUDS 9		7	103	6								
QUDS 10		8	198	<5								
QUDS 11		6	134	<5								
QUDS 12		11	123	<5								
QUDS 13		14	210	<5								
QUDS 14		11	60.2	6								
QUDS 15		11	70.0	<5								
QUDS 16		7	58.5	<5								
QUDS 17		8	57.3	<5								
QUDS 18		9	67.5	<5								
QUDS 19		8	61.2	<5								
QUDS 20		12	69.4	<5								
QUDS 21		11	74.7	<5								
QUDS 22		6	56.2	<5								
QUDS 23		8	60.3	<5								
QUDS 24		7	82.9	6								
QUDS 25		3	69.6	<5								
QUDS 26		4	43.1	<5								
QUDS 27		5	48.6	6								
QUDS 28		3	18.5	<5								
QUDS 29		4	56.6	5								
QUDS 30		2	20.2	6								
QUDS 31		25	60.6	<5								
QUDS 32		2	26.4	<5								

Certified By:

Samura

AGAT WORK ORDER: 12V620102 PROJECT NO: COLUMBIA QUEEN 5623 MCADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: HOMEGOLD RESOURCES LTD.

	Aqua Regia Digest - Metals Package, ICP-OES finish (201073)											
DATE SAMPLED: Jul '	13, 2012		C	DATE RECEIVED): Jul 12, 2012	DATE REPORTED: Aug 09, 2012	SAMPLE TYPE: Soil					
	Analyte:	Y	Zn	Zr								
	Unit:	ppm	ppm	ppm								
Sample Description	RDL:	1	0.5	5								
QUDS 33		6	32.3	10								
QUDS 34		3	48.2	<5								
QUDS 35		4	53.4	<5								
QUDS 36		4	73.8	<5								
QUDS 37		5	79.6	9								
QUDS 38		3	26.8	<5								
QUDS 39		5	75.0	6								
QUDS 40		4	58.1	<5								
QUDS 41		5	65.0	<5								
QUDS 42		6	88.6	7								
QUDS 43		2	21.5	<5								
QUDS 44		3	102	<5								
QUDS 45		5	68.9	<5								
QUDS 46		6	63.9	<5								
QUDS 47		6	75.3	9								
QUDS 48		3	44.6	<5								
QUDS 49		5	67.3	<5								
QUDS 50		5	42.5	<5								
QUDS 51		4	35.0	<5								
QUDS 52		4	56.1	<5								
QUDS 53		4	72.8	<5								
QUDS 54		4	86.8	<5								
QUDS 55		4	80.3	6								
QUDS 56		8	67.2	8								
QUDS 57		6	77.9	13								
QUDS 58		5	71.6	6								
QUDS 59		8	77.6	6								
QUDS 60		3	31.1	<5								
QUDS 61		6	54.6	6								
QUDS 62		4	51.7	<5								
QUDS 63		2	14.4	<5								
QUDS 64		4	52.8	<5								

Certified By:

Samura

Certificate of Analysis

AGAT WORK ORDER: 12V620102 PROJECT NO: COLUMBIA QUEEN

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: HOMEGOLD RESOURCES LTD.

	Aqua Regia Digest - Metals Package, ICP-OES finish (201073)											
DATE SAMPLED: Jul	13, 2012		C	DATE RECEIVED): Jul 12, 2012	DATE REPORTED: Aug 09, 2012	SAMPLE TYPE: Soil					
	Analyte:	Y	Zn	Zr								
	Unit:	ppm	ppm	ppm								
Sample Description	RDL:	1	0.5	5								
QUDS 65		10	57.3	9								
QUDS 66		5	43.2	5								
QUDS 67		5	52.8	<5								
QUDS 68		3	28.9	<5								
QUDS 69		4	99.4	<5								
QUDS 70		2	13.4	8								
QUDS 71		3	44.0	<5								
QUDS 72		4	59.4	<5								
QUDS 73		3	27.3	<5								
QUDS 74		5	72.1	<5								
QUDS 75		6	72.6	<5								
QUDS 76		16	96.6	11								
QUDS 77		6	63.9	5								
QUDS 78		3	54.2	5								
QUDS 79		5	50.0	<5								
QUDS 80		9	84.8	10								
QUDS 81		5	69.5	<5								
QUDS 82		6	52.8	5								
QUDS 83		6	54.3	9								
QUDS 84		5	31.4	10								
QUDS 85		5	70.8	<5								
QUDS 86		7	82.1	<5								
QUDS 87		7	91.2	<5								
QUDS 88		3	53.0	<5								
QUDS 89		6	124	<5								
QUDS 90		5	63.6	<5								
QUDS 91		4	62.7	6								
QUDS 92		4	60.5	18								
QUDS 93		3	47.7	<5								
QUDS 94		3	60.4	<5								
QUDS 95		3	75.7	<5								
QUDS 96		4	44.3	<5								

Certified By:

Samura

Certificate of Analysis

AGAT WORK ORDER: 12V620102 PROJECT NO: COLUMBIA QUEEN

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: HOMEGOLD RESOURCES LTD.

ATTENTION TO: JO SHEARER

	Aqua Regia Digest - Metals Package, ICP-OES finish (201073)												
DATE SAMPLED: Ju	l 13, 2012		I	DATE RECE	IVED: Jul 12, 2012	DATE REPORTED: Aug 09, 2012	SAMPLE TYPE: Soil						
	Analyte:	Y	Zn	Zr									
	Unit:	ppm	ppm	ppm									
Sample Description	RDL:	1	0.5	5									
QUDS 97		2	21.0	<5									
QUDS 98		3	52.8	<5									
QUDS 99		3	52.8	5									
QUDS 100		2	37.0	<5									
QUDS 101		3	62.6	<5									
QUDS 102		4	69.9	<5									
QUDS 103		4	50.6	25									
QUDS 104		NRC	NRC	NRC									
QUDS 105		4	61.5	<5									

Comments: **RDL** - Reported Detection Limit Sample NRC: Not Received

Samura Certified By:

AGAT WORK ORDER: 12V620102 PROJECT NO: COLUMBIA QUEEN 5623 MCADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: HOMEGOLD RESOURCES LTD.

				Fire Assay - Trace Au,	AAS finish (202051)	
DATE SAMPLED: Ju	l 13, 2012			DATE RECEIVED: Jul 12, 2012	DATE REPORTED: Aug 09, 2012	SAMPLE TYPE: Soil
	Analyte:	Sample Login Weight	Au			
	Unit:	kg	ppm			
Sample Description	RDL:	0.01	0.002			
QUDS 1		0.29	<0.002			
QUDS 2		0.23	0.003			
QUDS 3		0.29	0.002			
QUDS 4		0.45	0.003			
QUDS 5		0.34	0.007			
QUDS 6		0.31	0.006			
QUDS 7		0.33	0.017			
QUDS 8		0.23	0.006			
QUDS 9		0.21	0.012			
QUDS 10		0.48	0.011			
QUDS 11		0.30	<0.002			
QUDS 12		0.32	0.007			
QUDS 13		0.32	0.007			
QUDS 14		0.48	<0.002			
QUDS 15		0.48	<0.002			
QUDS 16		0.64	0.011			
QUDS 17		0.58	0.002			
QUDS 18		0.48	<0.002			
QUDS 19		0.49	0.002			
QUDS 20		0.52	0.003			
QUDS 21		0.49	<0.002			
QUDS 22		0.44	0.009			
QUDS 23		0.39	<0.002			
QUDS 24		0.38	0.004			
QUDS 25		0.41	0.002			
QUDS 26		0.32	<0.002			
QUDS 27		0.31	<0.002			
QUDS 28		0.33	0.002			
QUDS 29		0.33	< 0.002			
QUDS 30		0.31	< 0.002			
QUDS 31		0.38	0.002			
						1 1

Certified By:

AGAT WORK ORDER: 12V620102 PROJECT NO: COLUMBIA QUEEN 5623 MCADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: HOMEGOLD RESOURCES LTD.

	Fire Assay - Trace Au, AAS finish (202051)											
DATE SAMPLED: Ju	I 13, 2012			DATE RECEIVED: Jul 12, 2012	DATE REPORTED: Aug 09, 2012	SAMPLE TYPE: Soil						
	Analyte:	Sample Login Weight	Au									
	Unit:	kg	ppm									
Sample Description	RDL:	0.01	0.002									
QUDS 32		0.32	0.010									
QUDS 33		0.44	<0.002									
QUDS 34		0.38	<0.002									
QUDS 35		0.42	< 0.002									
QUDS 36		0.37	<0.002									
QUDS 37		0.44	0.011									
QUDS 38		0.39	0.002									
QUDS 39		0.44	< 0.002									
QUDS 40		0.34	< 0.002									
QUDS 41		0.38	<0.002									
QUDS 42		0.46	0.009									
QUDS 43		0.38	< 0.002									
QUDS 44		0.42	< 0.002									
QUDS 45		0.50	<0.002									
QUDS 46		0.34	< 0.002									
QUDS 47		0.42	0.011									
QUDS 48		0.35	0.004									
QUDS 49		0.30	<0.002									
QUDS 50		0.28	< 0.002									
QUDS 51		0.29	< 0.002									
QUDS 52		0.36	< 0.002									
QUDS 53		0.41	< 0.002									
QUDS 54		0.51	<0.002									
QUDS 55		0.34	< 0.002									
QUDS 56		0.36	<0.002									
QUDS 57		0.27	0.002									
QUDS 58		0.34	0.009									
QUDS 59		0.57	<0.002									
QUDS 60		0.33	< 0.002									
QUDS 61		0.36	<0.002									
QUDS 62		0.29	<0.002									
						1 1						

/ M Jomura

AGAT WORK ORDER: 12V620102 PROJECT NO: COLUMBIA QUEEN 5623 MCADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: HOMEGOLD RESOURCES LTD.

				Fire Assay - Trace Au,	AAS finish (202051)	
DATE SAMPLED: Ju	l 13, 2012			DATE RECEIVED: Jul 12, 2012	DATE REPORTED: Aug 09, 2012	SAMPLE TYPE: Soil
	Analyte:	Sample Login Weight	Au			
	Unit:	kg	ppm			
Sample Description	RDL:	0.01	0.002			
QUDS 63		0.27	<0.002			
QUDS 64		0.47	<0.002			
QUDS 65		0.31	0.020			
QUDS 66		0.40	<0.002			
QUDS 67		0.42	<0.002			
QUDS 68		0.29	0.004			
QUDS 69		0.35	< 0.002			
QUDS 70		0.25	<0.002			
QUDS 71		0.28	0.002			
QUDS 72		0.51	0.008			
QUDS 73		0.28	<0.002			
QUDS 74		0.40	<0.002			
QUDS 75		0.47	0.208			
QUDS 76		0.47	0.003			
QUDS 77		0.33	< 0.002			
QUDS 78		0.30	0.008			
QUDS 79		0.33	<0.002			
QUDS 80		0.33	<0.002			
QUDS 81		0.43	<0.002			
QUDS 82		0.28	<0.002			
QUDS 83		0.36	<0.002			
QUDS 84		0.35	0.004			
QUDS 85		0.26	< 0.002			
QUDS 86		0.32	0.008			
QUDS 87		0.35	< 0.002			
QUDS 88		0.30	0.005			
QUDS 89		0.33	0.002			
QUDS 90		0.42	0.004			
QUDS 91		0.33	0.002			
QUDS 92		0.30	0.002			
QUDS 93		0.27	0.003			
						1 /

Certified By:

bonur

AGAT WORK ORDER: 12V620102 PROJECT NO: COLUMBIA QUEEN 5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: HOMEGOLD RESOURCES LTD.

ATTENTION TO: JO SHEARER

	Fire Assay - Trace Au, AAS finish (202051)											
DATE SAMPLED: Ju	ul 13, 2012			DATE RECEIVED: Jul 12, 2012	DATE REPORTED: Aug 09, 2012	SAMPLE TYPE: Soil						
	Analyte:	Sample Login Weight	Au									
	Unit:	kg	ppm									
Sample Description	RDL:	0.01	0.002									
QUDS 94		0.33	<0.002									
QUDS 95		0.30	0.014									
QUDS 96		0.35	<0.002									
QUDS 97		0.27	<0.002									
QUDS 98		0.36	0.002									
QUDS 99		0.30	<0.002									
QUDS 100		0.24	<0.002									
QUDS 101		0.28	0.012									
QUDS 102		0.30	<0.002									
QUDS 103		0.33	<0.002									
QUDS 104		NRC	NRC									
QUDS 105		0.34	0.011									
Comments: RDL ·	Reported Detect	tion Limit										

Sample NRC: Not Received

mun Certified By:

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

٦

Quality Assurance

CLIENT NAME: HOMEGOLD RESOURCES LTD.

PROJECT NO: COLUMBIA QUEEN

ſ

AGAT WORK ORDER: 12V620102

			Solic	d Anal	ysis						
RPT Date: Aug 09, 2012			REPLIC	CATE	1			REFER	RENCE MATE	RIAL	
PARAMETER	Batch	Sample Id	Original	Rep #1	RPD	Method Blank	Result Value	Expect Value	Recovery	Acceptal Lower	ble Limits Upper
Aqua Regia Digest - Metals Package, IC	CP-OES fin	ish (201073)		1						······································	
Ag	1	3513549	0.4	0.8		< 0.2				80%	120%
AI	1	3513474	1.22	1.13	7.7%	< 0.01				80%	120%
As	1	3513474	66	64	3.1%	< 1				80%	120%
В	1	3513474	< 5	< 5	0.0%	< 5				80%	120%
Ва	1	3513474	143	140	2.1%	< 1				80%	120%
Ве	1	3513474	0.6	0.6	0.0%	< 0.5				80%	120%
Bi	1	3513474	< 1	< 1	0.0%	< 1				80%	120%
Са	1	3513474	0.413	0.418	1.2%	< 0.01				80%	120%
Cd	1	3513474	0.6	0.5	18.2%	< 0.5				80%	120%
Ce	1	3513474	57	50	13.1%	< 1				80%	120%
Со	1	3513474	19.6	19.7	0.5%	< 0.5				80%	120%
Cr	1	3513474	16.0	14.4	10.5%	< 0.5				80%	120%
Cu	1	3513474	39.0	39.1	0.3%	< 0.5	3724	3800	98%	80%	120%
Fe	1	3513474	3.55	3.54	0.3%	< 0.01				80%	120%
Ga	1	3513474	8	8	0.0%	< 5				80%	120%
На	1	3513474	< 1	< 1	0.0%	< 1				80%	120%
In	1	3513474	< 1	< 1	0.0%	< 1				80%	120%
К	1	3513474	0.088	0.069	24.2%	< 0.01				80%	120%
La	1	3513549	24	22	8.7%	< 1				80%	120%
Li	1	3513474	12	10	18.2%	< 1				80%	120%
Mg	1	3513474	0.294	0.274	7.0%	< 0.01				80%	120%
Mn	1	3513474	2390	2360	1.3%	< 1				80%	120%
Мо	1	3513549	2.1	2.0	4.9%	< 0.5	340	380	89%	80%	120%
Na	1	3513474	< 0.01	< 0.01	0.0%	< 0.01				80%	120%
Ni	1	3513474	33.0	32.0	3.1%	< 0.5				80%	120%
Р	1	3513474	1210	1160	4.2%	< 10	535	600	89%	80%	120%
Pb	1	3513474	55.3	54.6	1.3%	< 0.5				80%	120%
Rb	1	3513474	37	32	14.5%	< 10	14	13	104%	80%	120%
S	1	3513474	0.0427	0.0403	5.8%	< 0.005				80%	120%
Sb	1	3513549	1	3		< 1				80%	120%
Sc	1	3513474	1.00	0.82	19.8%	< 0.5				80%	120%
Se	1	3513474	< 10	< 10	0.0%	< 10				80%	120%
Sn	1	3513474	< 5	< 5	0.0%	< 5				80%	120%
Sr	1	3513474	25.8	25.4	1.6%	< 0.5				80%	120%
Та	1	3513474	< 10	< 10	0.0%	< 10				80%	120%
Те	1	3513474	< 10	< 10	0.0%	< 10				80%	120%
Th	1	3513474	< 5	< 5	0.0%	< 5				80%	120%
Ті	1	3513474	0.017	0.013	26.7%	< 0.01				80%	120%
ТІ	1	3513474	< 5	< 5	0.0%	< 5				80%	120%
U	1	3513474	< 5	< 5	0.0%	< 5				80%	120%
V	1	3513474	24.9	22.8	8.8%	< 0.5				80%	120%
W	1	3513474	2	2	0.0%	< 1				80%	120%
Y	1	3513474	9	9	0.0%	< 1				80%	120%
Zn	1	3513474	113	108	4.5%	< 0.5				80%	120%
AGAT QUALITY ASSURANCE R	EPORT (V1)								Page	22 of 26

5623 MCADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

Quality Assurance

CLIENT NAME: HOMEGOLD RESOURCES LTD.

PROJECT NO: COLUMBIA QUEEN

ſ

AGAT WORK ORDER: 12V620102

Solid Analysis (Continued)											
RPT Date: Aug 09, 2012 REPLICATE							REFERENCE MATERIAL				
PARAMETER	Batch	Sample Id	Original	Rep #1		Method Blank	Result Value	Expect Value		Acceptable Limits	
					RPD				Recovery	Lower	Upper
Zr	1	3513474	< 5	< 5	0.0%	< 5				80%	120%
Fire Assay - Trace Au, AAS finish (202	051)										
Au	1	3513474	< 0.002	0.004		< 0.002	1.57	1.52	104%	90%	110%
Aqua Regia Digest - Metals Package, I	CP-OES fin	ish (201073)									
Ag	1	3513499	< 0.2	< 0.2	0.0%	< 0.2				80%	120%
AI	1	3513499	1.29	1.36	5.3%	< 0.01				80%	120%
As	1	3513574	2	< 1		< 1				80%	120%
В	1	3513499	< 5	< 5	0.0%	< 5				80%	120%
Ва	1	3513499	40	40	0.0%	< 1				80%	120%
Ве	1	3513499	< 0.5	< 0.5	0.0%	< 0.5				80%	120%
Bi	1	3513499	< 1	< 1	0.0%	< 1				80%	120%
Са	1	3513499	0.07	0.07	0.0%	< 0.01				80%	120%
Cd	1	3513499	< 0.5	< 0.5	0.0%	< 0.5				80%	120%
Ce	1	3513499	44	43	2.3%	< 1				80%	120%
Co	1	3513499	7.20	7.57	5.0%	< 0.5				80%	120%
Cr	1	3513499	23.9	25.1	4.9%	< 0.5				80%	120%
Cu	1	3513499	27.4	28.5	3.9%	< 0.5	4085	3800	107%	80%	120%
Fe	1	3513499	3.57	3.85	7.5%	< 0.01				80%	120%
Ga	1	3513499	10	10	0.0%	< 5				80%	120%
Hg	1	3513499	< 1	< 1	0.0%	< 1				80%	120%
In	1	3513499	< 1	< 1	0.0%	< 1				80%	120%
К	1	3513499	0.04	0.04	0.0%	< 0.01				80%	120%
La	1	3513499	15	15	0.0%	< 1				80%	120%
Li	1	3513499	7	7	0.0%	< 1				80%	120%
Mg	1	3513499	0.27	0.27	0.0%	< 0.01				80%	120%
Mn	1	3513499	383	408	6.3%	< 1				80%	120%
Мо	1	3513574	< 0.5	< 0.5	0.0%	< 0.5				80%	120%
Na	1	3513499	0.01	0.01	0.0%	< 0.01				80%	120%
Ni	1	3513499	22.1	23.8	7.4%	< 0.5				80%	120%
Р	1	3513499	1060	1100	3.7%	< 10	515	600	86%	80%	120%
Pb	1	3513499	18.8	20.3	7.7%	< 0.5				80%	120%
Rb	1	3513499	14	13	7.4%	< 10	12	13	90%	80%	120%
S	1	3513499	0.0215	0.0219	1.8%	< 0.005				80%	120%
Sb	1	3513574	3	3	0.0%	< 1				80%	120%
Sc	1	3513499	< 0.5	< 0.5	0.0%	< 0.5				80%	120%
Se	1	3513499	< 10	< 10	0.0%	< 10				80%	120%
Sn	1	3513499	< 5	< 5	0.0%	< 5				80%	120%
Sr	1	3513499	5.7	5.5	3.6%	< 0.5	327	390	84%	80%	120%
Та	1	3513499	< 10	< 10	0.0%	< 10	1	0.9	107%	80%	120%
Те	1	3513499	< 10	< 10	0.0%	< 10				80%	120%
Th	1	3513499	< 5	< 5	0.0%	< 5				80%	120%
Ті	1	3513499	0.06	0.06	0.0%	< 0.01				80%	120%
TI	1	3513499	< 5	< 5	0.0%	< 5				80%	120%

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

Quality Assurance

CLIENT NAME: HOMEGOLD RESOURCES LTD.

PROJECT NO: COLUMBIA QUEEN

ſ

AGAT WORK ORDER: 12V620102

Solid Analysis (Continued)											
RPT Date: Aug 09, 2012	REPLICATE				REFERENCE MATERIAL						
PARAMETER	Batch	Sample Id	Original	Rep #1	RPD	Method Blank	Result Value	Expect Value	Recovery	Acceptat Lower	ole Limits Upper
U	1	3513499	< 5	< 5	0.0%	< 5		1	1	80%	120%
V	1	3513499	29.3	29.6	1.0%	< 0.5				80%	120%
W	1	3513499	2	2	0.0%	< 1				80%	120%
Y	1	3513499	4	3	28.6%	< 1				80%	120%
Zn	1	3513499	43.1	44.9	4.1%	< 0.5				80%	120%
Zr	1	3513499	< 5	< 5	0.0%	< 5				80%	120%
Aqua Regia Digest - Metals Package, IG	CP-OES fin	ish (201073)									
Ag	1	3513524	0.3	< 0.2		< 0.2				80%	120%
AI	1	3513524	0.95	0.99	4.1%	< 0.01				80%	120%
As	1	3513524	3	3	0.0%	< 1				80%	120%
В	1	3513524	< 5	< 5	0.0%	< 5				80%	120%
Ва	1	3513524	32	33	3.1%	< 1				80%	120%
Ве	1	3513524	< 0.5	< 0.5	0.0%	< 0.5				80%	120%
Ві	1	3513524	< 1	< 1	0.0%	< 1				80%	120%
Са	1	3513524	< 0.01	< 0.01	0.0%	< 0.01				80%	120%
Cd	1	3513524	< 0.5	< 0.5	0.0%	< 0.5				80%	120%
Ce	1	3513524	37	40	7.8%	< 1				80%	120%
Со	1	3513524	5.74	5.84	1.7%	< 0.5				80%	120%
Cr	1	3513524	11.0	11.8	7.0%	< 0.5				80%	120%
Cu	1	3513524	20.8	22.1	6.1%	< 0.5	4049	3800	106%	80%	120%
Fe	1	3513524	3.37	3.48	3.2%	< 0.01				80%	120%
Ga	1	3513524	7	8	13.3%	< 5				80%	120%
На	1	3513524	< 1	< 1	0.0%	< 1				80%	120%
In	1	3513524	< 1	< 1	0.0%	< 1				80%	120%
к	1	3513524	0.025	0.028	11.3%	< 0.01				80%	120%
La	1	3513524	16	18	11.8%	< 1				80%	120%
Li	1	3513524	6	6	0.0%	< 1				80%	120%
Ма	1	3513524	0.22	0.23	4.4%	< 0.01				80%	120%
Mn	1	3513524	218	226	3.6%	< 1				80%	120%
Мо	1	3513524	0.7	< 0.5		< 0.5				80%	120%
Na	1	3513524	< 0.01	< 0.01	0.0%	< 0.01				80%	120%
Ni	1	3513524	14.8	15.2	2.7%	< 0.5				80%	120%
Ρ	1	3513524	425	450	5.7%	< 10	499	600	83%	80%	120%
Ph	1	3513524	12.5	13.6	8.4%	< 0.5	100	000	0070	80%	120%
Rb	1	3513524	< 10	< 10	0.0%	< 10	11	13	85%	80%	120%
S	1	3513524	0.008	0.008	0.0%	< 0.005	••		0070	80%	120%
Sb	1	3513524	2	< 1	0.070	< 1				80%	120%
Sc	1	3513524	< 0.5	< 0.5	በ በ%	< 0.5				80%	120%
Se	1	3513524	< 10	< 0.5 < 10	0.0%	< 10				80%	120%
Sn	1	3513524	< 10	< 5	0.0%	< 5				80%	120%
Sr	1	3513524	42	57	0.070	< 0.5	314	390	80%	80%	120%
Та	1	3513524	 < 10	< 10	0.0%	< 10	514	330	0070	80%	120%
-											
le Th	1	3513524	< 10	< 10	0.0%	< 10				80%	120%
111	1	3513524	< 5	< 5	0.0%	< 5				80%	120%

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

Quality Assurance

CLIENT NAME: HOMEGOLD RESOURCES LTD.

PROJECT NO: COLUMBIA QUEEN

AGAT WORK ORDER: 12V620102

ATTENTION TO: JO SHEARER

		Solic	l Anal	ysis (C	Conti	nued)					
RPT Date: Aug 09, 2012		REPLICATE					REFERENCE MATERIAL				
PARAMETER		Sample Id	Original	Rep #1	RPD	Method Blank	Result Value	Expect Value	Recovery	Acceptable Limits	
	Batch									Lower	Upper
Ti	1	3513524	0.03	0.03	0.0%	< 0.01		r.		80%	120%
ТІ	1	3513524	< 5	< 5	0.0%	< 5				80%	120%
U	1	3513524	< 5	< 5	0.0%	< 5				80%	120%
V	1	3513524	19.5	20.1	3.0%	< 0.5				80%	120%
W	1	3513524	2	2	0.0%	< 1				80%	120%
Y	1	3513524	4	4	0.0%	< 1				80%	120%
Zn	1	3513524	35.0	36.9	5.3%	< 0.5				80%	120%
Zr	1	3513524	< 5	< 5	0.0%	< 5				80%	120%
Aqua Regia Digest - Metals Package, IG	CP-OES fin	ish (201073)									
Cu	1					< 0.5	3888	3800	102%	80%	120%
Ρ	1					< 10	481	600	80%	80%	120%
Та	1					< 10	1	0.9	116%	80%	120%
Th	1					< 5	1.5	1.4	110%	80%	120%
Fire Assay - Trace Au, AAS finish (202	051)										
Au	1	3513487	< 0.002	< 0.002	0.0%	< 0.002	0.286	0.263	109%	90%	110%
Fire Assay - Trace Au, AAS finish (202	051)										
Au	´1	3513499	< 0.002	0.003		< 0.002	1.47	1.52	97%	90%	110%
Fire Assay - Trace Au, AAS finish (202	051)										
Au	1	3513512	< 0.002	< 0.002	0.0%	< 0.002	0.247	0 263	94%	90%	110%
		0010012		10.002	0.070	101002	0.2.11	0.200	0.70	0070	
Fire Assay - Trace Au, AAS finish (2020	051)										
Au	1	3513524	< 0.002	0.002		< 0.002				90%	110%
Fire Assay - Trace Au, AAS finish (202	051)										
Au	1	3513537	< 0.002	< 0.002	0.0%	< 0.002				90%	110%
Fire Assay - Trace Au, AAS finish (202	051)										
Au	1	3513549	0.003	0.003	0.0%	< 0.002				90%	110%
	0.54)										
Fire Assay - Trace Au, AAS finish (2020 Au	U51) 1	3513562	0.002	0.013		< 0 002				90%	110%
		0010002	0.002	0.010		S 0.002				0070	11070
Fire Assay - Trace Au, AAS finish (202	051)										
Au	1	3513574	0.012	0.003		< 0.002				90%	110%

Page 25 of 26

Method Summary

CLIENT NAME: HOMEGOLD RESOURCES LTD.

PROJECT NO: COLUMBIA QUEEN

AGAT WORK ORDER: 12V620102 ATTENTION TO: JO SHEARER

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Solid Analysis			
Ag	MIN-200-12020		ICP/OES
AI	MIN-200-12020		ICP/OES
As	MIN-200-12020		ICP/OES
В	MIN-200-12020		ICP/OES
Ва	MIN-200-12020		ICP/OES
Be	MIN-200-12020		ICP/OES
Bi	MIN-200-12020		ICP/OES
Са	MIN-200-12020		ICP/OES
Cd	MIN-200-12020		ICP/OES
Ce	MIN-200-12020		ICP/OES
Со	MIN-200-12020		ICP/OES
Cr	MIN-200-12020		ICP/OES
Cu	MIN-200-12020		ICP/OES
Fe	MIN-200-12020		ICP/OES
Ga	MIN-200-12020		ICP/OES
На	MIN-200-12020		ICP/OES
In	MIN-200-12020		ICP/OES
к	MIN-200-12020		ICP/OES
La	MIN-200-12020		ICP/OES
Li	MIN-200-12020		ICP/OES
Ма	MIN-200-12020		ICP/OES
Mn	MIN-200-12020		ICP/OES
Мо	MIN-200-12020		ICP/OES
Na	MIN-200-12020		ICP/OES
Ni	MIN-200-12020		ICP/OES
P	MIN-200-12020		ICP/OES
Pb	MIN-200-12020		ICP/OES
Rb	MIN-200-12020		ICP/OES
S	MIN-200-12020		ICP/OES
Sb	MIN-200-12020		ICP/OES
Sc	MIN-200-12020		ICP/OES
Se	MIN-200-12020		ICP/OES
Sn	MIN-200-12020		ICP/OES
Sr	MIN-200-12020		ICP/OES
Та	MIN-200-12020		ICP/OES
Te	MIN-200-12020		ICP/OES
Th	MIN-200-12020		ICP/OES
Ti	MIN-200-12020		ICP/OES
TI	MIN-200-12020		ICP/OES
U	MIN-200-12020		ICP/OES
V	MIN-200-12020		ICP/OES
Ŵ	MIN-200-12020		ICP/OES
Y	MIN-200-12020		ICP/OES
Zn	MIN-200-12020		ICP/OES
 7r	MIN-200-12020		ICP/OES
 Sample Login Weight	MIN-12009		BALANCE
		BUGBEE, E: A Textbook of Fire	
Au	MIN-200-12019	Assaying	AAS

Appendix IV

Magnetometer Results

July 12, 2012

APPENDIX IV Magnetometer Survey Revelstoke COLUMBIA QUEEN PROJECT

with: Sharpe F1 Setting: 30X July 2012

Stations		Comments		
QUDS1	2400			
QUDS2	2400			
QUDS3	2250	before small culvert, 5 meters		
				Other test was around truck: 1150=front, right =1100, left =1000 & rear =2350. Five
QUDS4	2700	on culvert		meters
QUDS5	2250	Past Culvert 5 meters		away was 2350 and 10 meters was 2400.
QUDS6	2400			
QUDS7	2400	4 m over large culvert		
QUDS8	2400			
QUDS9	2400			
QUDS10	2400			
QUDS11	2400			
QUDS12	2400			
QUDS13	2400			
QUDS14	2400	10 m pass culvert	15 meter measured	
QUDS15	2400		stations	
QUDS16	2400			
QUDS17	2400			
QUDS18	2400	Base Station	11 U 420240 5679783	
QUDS19	2400			
QUDS20	2400			
QUDS21	2400			
QUDS22	2400			
QUDS23	2400			
QUDS24	2400			
QUDS25	2400			
QUDS26	2400			
QUDS27	2400			
QUDS28	2400			
QUDS29	2400		11 U 420401 5679701	
QUDS30	2400			
QUDS30.5	2400	Limestone with rusty bedding		
QUDS31	2400			
QUDS31.5	2400	Quartz vein with Mineralization		
QUDS32	2400			
QUDS33	2400			
QUDS34	2450			
QUDS35	2400			

QUDS36	2400			
QUDS37	2400			
QUDS38	2400		11 U 420497 5679641	
QUDS39	2400			
QUDS40	2400			
QUDS41	2400			
QUDS42	2500			
QUDS43	2400			
QUDS44	2400			
QUDS45	2400			
QUDS46	2400			
QUDS47	2400		11 U 420582 5679535	
Starting at Ba	se Stati	on QUDS18		
				so 0.5 is mid station(11.5 m)- whole
25				number is 25 meter from other whole
25 meter Star		the 0.5 Stations paced out		number 2550. seture and line or Deve Station
	2550			2550 = return reading on Base Station.
QUD318.5	2400			Starting up deactivated road from
QU1	2400			QUDS18.5
QU1.5	2400			
QU2	2400			
QU2.5	2400			
QU3	2400			
QU3.5	2400			
				Curve in deactivated road going west-
QU4	2400		11 U 420303 5679709	1147 m
QU4.5	2400	DIRECTLY on graphitic rusty bould	der	
QU5	2400			
QU5.5	2400			
QU6	2400			
QU6.5	2400			Curve in road going East.
QU7	2400		11 U 420203 5679727	1161 m
QU7.5	2400			
QU8	2400			
QU8.8	2400			
QU9	2400		11 U 420190 5679708	1174m
QU9.5	2400			
Standing ove	r CQCRC	6 sample= 2400 Magnetometer	set on float = 2250	
QU10	2400			
QU10.5	2400			
QU11	2400			
QU11.5	2400			
QU12	2400			
QU12.5	2400			

QU13	2400		
QU13.5	2400		
QU14	2400	11 U 420352 5679653	1189m
QU14.5	2400		
QU15	2400		
QU15.5	2400		
QU16	2400		
QU16.5	2400		
QU17	2400		
QU17.5	2400		
QU18	2400		
QU18.5	2400		
QU19	2400		
QU19.5	2400		
QU20	2400	11 U 420437 5679540	1205 m
QU20.5	2400		
QU21	2400		
QU21.5	2400		
QU22	2400		
QU22.5	2400		
QU23	2400		
QU23.5	2400		
QU24	2400		
QU24 QU24.5	2400 2400		
QU24 QU24.5 Curve turning	2400 2400 westerly on deactivated road		Using soil sampling stations starting at QUDS53 going SW
QU24 QU24.5 Curve turning QUDS53	2400 2400 g westerly on deactivated road 2400		Using soil sampling stations starting at QUDS53 going SW
QU24 QU24.5 Curve turning QUDS53 QUDS53.5	2400 2400 g westerly on deactivated road 2400 2400		Using soil sampling stations starting at QUDS53 going SW
QU24 QU24.5 Curve turning QUDS53 QUDS53.5 QUDS54	2400 2400 westerly on deactivated road 2400 2400 2400		Using soil sampling stations starting at QUDS53 going SW
QU24 QU24.5 Curve turning QUDS53 QUDS53.5 QUDS54 QUDS54.5	2400 2400 2400 2400 2400 2400 2400 2400		Using soil sampling stations starting at QUDS53 going SW
QU24 QU24.5 Curve turning QUDS53 QUDS53.5 QUDS54 QUDS54.5 QUDS55	2400 2400 2400 2400 2400 2400 2400 2400		Using soil sampling stations starting at QUDS53 going SW
QU24 QU24.5 Curve turning QUDS53 QUDS53.5 QUDS54 QUDS55 QUDS55 QUDS55.5	2400 2400 2400 2400 2400 2400 2400 2400		Using soil sampling stations starting at QUDS53 going SW
QU24 QU24.5 Curve turning QUDS53 QUDS53.5 QUDS54 QUDS54 QUDS55 QUDS55 QUDS55.5 QUDS56	2400 2400 3 westerly on deactivated road 2400 2400 2400 2400 2400 2400 2400 240		Using soil sampling stations starting at QUDS53 going SW
QU24 QU24.5 Curve turning QUDS53 QUDS53.5 QUDS54 QUDS55 QUDS55 QUDS55 QUDS56 QUDS56.5	2400 2400 2400 2400 2400 2400 2400 2400		Using soil sampling stations starting at QUDS53 going SW
QU24 QU24.5 Curve turning QUDS53 QUDS53.5 QUDS54 QUDS54 QUDS55.5 QUDS55 QUDS56 QUDS56 QUDS57	2400 2400 2400 2400 2400 2400 2400 2400		Using soil sampling stations starting at QUDS53 going SW
QU24 QU24.5 Curve turning QUDS53 QUDS53.5 QUDS54 QUDS55.5 QUDS55.5 QUDS55.5 QUDS56 QUDS56.5 QUDS57 QUDS57.5	2400 2400 3 westerly on deactivated road 2400 2400 2400 2400 2400 2400 2400 240		Using soil sampling stations starting at QUDS53 going SW
QU24 QU24.5 Curve turning QUDS53.5 QUDS54.5 QUDS55.5 QUDS55.5 QUDS56 QUDS56.5 QUDS57 QUDS57.5 QUDS57.5 QUDS57.5	2400 2400 3 westerly on deactivated road 2400 2400 2400 2400 2400 2400 2400 240		Using soil sampling stations starting at QUDS53 going SW
QU24 QU24.5 Curve turning QUDS53.5 QUDS53.5 QUDS54 QUDS55.5 QUDS55.5 QUDS55.5 QUDS56 QUDS56.5 QUDS57.5 QUDS57.5 QUDS57.5 QUDS58 QUDS105	2400 2400 2400 2400 2400 2400 2400 2400		Using soil sampling stations starting at QUDS53 going SW
QU24 QU24.5 Curve turning QUDS53.5 QUDS54.5 QUDS55.5 QUDS55.5 QUDS56.5 QUDS56.5 QUDS57 QUDS57.5 QUDS57.5 QUDS57.5 QUDS58 QUDS105.5	2400 2400 3 westerly on deactivated road 2400 2400 2400 2400 2400 2400 2400 240		Using soil sampling stations starting at QUDS53 going SW
QU24 QU24.5 Curve turning QUDS53.5 QUDS53.5 QUDS54 QUDS55.5 QUDS55.5 QUDS56 QUDS56.5 QUDS57.5 QUDS57.5 QUDS57.5 QUDS57.5 QUDS58 QUDS105 QUDS105.5	2400 2400 3 westerly on deactivated road 2400 2400 2400 2400 2400 2400 2400 240		Using soil sampling stations starting at QUDS53 going SW
QU24 QU24.5 Curve turning QUDS53.5 QUDS54.5 QUDS54.5 QUDS55.5 QUDS55.5 QUDS56 QUDS56.5 QUDS57 QUDS57.5 QUDS57.5 QUDS57.5 QUDS58 QUDS105 QUDS105.5 QUDS105.5 QUDS83.5	2400 2400 3 westerly on deactivated road 2400 2400 2400 2400 2400 2400 2400 240		Using soil sampling stations starting at QUDS53 going SW
QU24 QU24.5 Curve turning QUDS53.5 QUDS53.5 QUDS54.5 QUDS55.5 QUDS55.5 QUDS56 QUDS56.5 QUDS57 QUDS57.5 QUDS57.5 QUDS57.5 QUDS57.5 QUDS58 QUDS105 QUDS105.5 QUDS83.5 QUDS83.5	2400 2400 3 westerly on deactivated road 2400 2400 2400 2400 2400 2400 2400 240		Using soil sampling stations starting at QUDS53 going SW
QU24 QU24.5 Curve turning QUDS53.5 QUDS53.5 QUDS54 QUDS55.5 QUDS55.5 QUDS56 QUDS56.5 QUDS57.5 QUDS57.5 QUDS57.5 QUDS57.5 QUDS58 QUDS105.5 QUDS105.5 QUDS83.5 QUDS83.5 QUDS82.5 QUDS82.5	2400 2400 3 westerly on deactivated road 2400 2400 2400 2400 2400 2400 2400 240		Using soil sampling stations starting at QUDS53 going SW
QU24 QU24.5 Curve turning QUDS53.5 QUDS53.5 QUDS54.5 QUDS55.5 QUDS55.5 QUDS56.5 QUDS57.5 QUDS57.5 QUDS57.5 QUDS57.5 QUDS57.5 QUDS57.5 QUDS58 QUDS58.5 QUDS83.5 QUDS83.5 QUDS82.5 QUDS81.5	2400 2400 3 westerly on deactivated road 2400 2400 2400 2400 2400 2400 2400 240		Using soil sampling stations starting at QUDS53 going SW

42 Summary Report on the Copper Queen South July 12, 2012

Test on float CQCRO7= 2400 No reaction
to magnetometer-

QUDS81.	2400	above & right on sample
QUDS80	2400	
QUDS79	2400	
QUDS78	2400	QUDS58 meets QUDS78
QUDS77	2400	
QUDS76	2400	

Appendix V

Rock and Soil Descriptions

July 12, 2012

APPENDIX V Rock and Soil Samples

	Sample						GPS location	
Date	Code					Comments	NAD 83	
July 7 2012	Sample							
	011005	<i>a</i> .				black,oxidiced,limonite, quartz vein.	11 U 420247	
	QUDD5	float				Blowdown exposes rock.	5679295	
						crossing the quartz, a bedded rusty		
July 7 2012	QUDD1	Rock/float				phyllite		
						crystal.		
	QUDD2	Rock/float				SAMPLE FROM CRUSHER J&L		
	Creek							
	Sediment	sample				float in creek rusty guartz and		
July 7 2012	QUSS01	Sediment				Limestone. Stream is 340 degree Azimuth		
July 7 2012	QUSS02	Sediment					419876E 5682283N	
· ·	Soil Sample	Type "B"	Depth	color	Texture	Comments		
July 7 2012	QUDS1	Soil	25 cm	brown	clay/sand	in cedar trees of 30' diameter		
July 7 2012	QUDS2	Soil	25	brown	clay/sand	cedar trees		
July 7 2012	QUDS3	Soil	25 cm	brown	clay/sand	cedar trees		
July 7 2012	QUDS4	Soil	25 cm	brown	clay/sand	float		
July 7 2012	QUDS5	Soil	25 cm	brown	clay/sand	shists		
July 7 2012	QUDS6	Soil	25 cm	brown	clay/sand	micacous shist		
July 7 2012	QUDS7	Soil	25 cm	brown	clay/sand	micacous shist- greenstone shist		
July 7 2012	QUDS8	Soil	25 cm	brown	clay/sand	micacous shist		
July 7 2012	QUDS9	Soil	25 cm	brown	clay/ sand	micacous shist		
July 7 2012	QUDS10	Soil	25 cm	brown	clay/sand			
July 7 2012	QUDS11	Soil	25 cm	brown	clay / gravel			
July 7 2012	QUDS12	Soil	25 cm	brown	sandy gravel			
July 7 2012	QUDS13	Soil	25 cm	brown	sandy gravel			
hilli 0 2012	0110614	Call	F and	na d /b naa	alaw (an ad		11 U 420179	1126
July 8 2012	QUDS14	Soli	5 cm	red/brown	clay/sand	Float = phyllitic shist, poor B horizon	5679785	1126 m
July 8 2012	QUDS15	Soil	5 cm	brown	clay/sand	Float =phyllitic shist, poor B horizon		
July 8 2012	QUDS16	Soil	5 cm	brown	clay/sand	Float =phyllitic shist, poor B horizon		
July 8 2012	QUDS17	Soil	5 cm	brown	clay/sand	Float =phyllitic shist, poor B horizon	11 11 420240	
July 8 2012	QUDS18	Soil	5 cm	brown	clay/sand	Float =phyllitic shist, poor B horizon	5679783	1135 m
July 8 2012	QUDS19	Soil	5 cm	brown	clay/sand	Float =phyllitic shist, poor B horizon		
July 8 2012	QUDS20	Soil	5 cm	brown	clay/sand	Float =phyllitic shist, poor B horizon		
July 8 2012	QUDS21	Soil	5 cm	brown	clay/sand	Float =phyllitic shist, poor B horizon		

July 2012 QUIS22 Soil Joor Torvam Clay Janob Float -phylinic shat, goor B horizon Sh979-3 July 2012 QUIS24 Soil Joor brown clay/sand Float -phylinic shat, goor B horizon Image and the state of the state								11 U 420293	
july 2012 QU0523 Soil Joer Provis Provis </td <td>July 8 2012</td> <td>QUDS22</td> <td>Soil</td> <td>10cm</td> <td>brown</td> <td>clay/sand</td> <td>Float =phyllitic shist, poor B horizon</td> <td>5679753</td> <td></td>	July 8 2012	QUDS22	Soil	10cm	brown	clay/sand	Float =phyllitic shist, poor B horizon	5679753	
july 2012 QU524 Soil Soil Texas projection of the set of the se	July 8 2012	QUDS23	Soil	10cm	brown	clay/sand	float, poor B horizon		
july 8 2012 QUDS25 Solit 15cm red/trawn claytand Float-grey micacous shits, good "1" 10.420352 july 8 2012 QUDS24 Solit 35cm red/trawn claytand Float-grey micacous shits, good "1" 11.420352 11.14 am july 8 2012 QUDS24 Solit 35cm red/trawn claytand Float-grey micacous shit, good "10" 11.420352 july 8 2012 QUDS24 Solit 25cm red/brown claytand Float-grey micacous shit, good "10" 11.1420413 july 8 2012 QUDS30 Solit 15cm red/brown claytand float-grey micacous shit, good "10" 11.1420413 july 8 2012 QUDS31 Solit 15cm red/brown claytand float-grey micacous shit, good "10" 11.1420413 july 8 2012 QUDS33 Solit 15cm red/brown claytand float-grey micacous shit, good "10" 11.1420413 july 8 2012 QUDS33 Solit 15cm red/brown claytand float-grey micacous shit, good "10" 11.1420413	July 8 2012	QUDS24	Soil	20cm	brown	clay/sand	Float =phyllitic shist, poor B horizon		
July 2 2012 OLUDS2 Soft Soft red/frow clay/same Floats grey micaccos shit, good "P 11 U 420322 1134 m July 2 2012 OLUDS2 Soft Soft red/frow clay/same Floats grey micaccos shit, good "P Increases Floats grey micaccos shit, good P Floats grey micaccos shit, good P	July 8 2012	QUDS25	Soil	15cm	red/brown	clay/sand	Float= grey micacous shist, good "B" horizon		
July 2 2012 Cloub 22 Soil Technomic Carly and Press Cloud 2000 Cloud 2000 <thclou 2000<="" th=""> <thcl< td=""><td>luly 8 2012</td><td>0110526</td><td>Soil</td><td>35cm</td><td>red/brown</td><td>clay/sand</td><td>Float= grey micacous shist, good "B"</td><td>11 U 420352 5679724</td><td>1134 m</td></thcl<></thclou>	luly 8 2012	0110526	Soil	35cm	red/brown	clay/sand	Float= grey micacous shist, good "B"	11 U 420352 5679724	1134 m
July 2012 QU0527 Soil More red/frow Clay/sand Indraon Image of the set of	July 0 2012	000320	5011	55611	TCG/ DTOWIT	cidy/sund	Float= grey micacous shist, good "B"	5075724	1154111
July 8 2012 QUDS28 Soil Zerm brown clay/sand Protection	July 8 2012	QUDS27	Soil	30cm	red/brown	clay/sand	horizon		
July 8 2012 QUDS29 Soil Zscm red/brown clay/sand Floats grey micacous shist, good "B" 11 U 420401 July 8 2012 QUDS30 Soil 15 cm red/brown clay/sand outcrop rusty limestone, rusty quartz July 8 2012 QUDS31 Soil 15 cm red/brown clay/sand outcrop grey micacous shist, good 11 U 420433 July 8 2012 QUDS33 Soil 25 cm red/brown clay/sand out crop grey micacous shist, good 11 U 420433 July 8 2012 QUDS34 Soil 45 cm red/brown clay/sand "B" horizon 5579642 July 8 2012 QUDS35 Soil 45 cm red/brown clay/sand "B" horizon 5579642 July 8 2012 QUDS38 Soil 25 cm red/brown clay/sand "B" horizon 5579662 July 8 2012 QUDS38 Soil 25 cm red/brown clay/sand "B" horizon 5579661 July 8 2012 QUDS40 Soil	July 8 2012	QUDS28	Soil	25cm	brown	clay/sand	horizon		
july 8 2012 QUDS30 Soil 15cm red/brown clay/sand vein float-grey micacous shist, good 11 U 42013 july 8 2012 QUDS31 Soil 15cm red/brown clay/sand out crop grey micacous shist, good 11 U 42013 july 8 2012 QUDS32 Soil 20cm red/brown clay/sand out crop grey micacous shist, good 11 U 42013 july 8 2012 QUDS34 Soil 35cm red/brown clay/sand 78' horizon 579682 july 8 2012 QUDS35 Soil 5cm brown clay/sand 78' horizon 5579682 july 8 2012 QUDS35 Soil 3cm brown clay/sand 78' horizon 5579612 july 8 2012 QUDS38 Soil 2cm red/brown clay/sand 78' horizon 5579612 july 8 2012 QUDS38 Soil 2cm red/brown clay/sand 78' horizon 5579613 july 8 2012 QUDS40 Soil 3cm brown clay/sand 7	July 8 2012	QUDS29	Soil	25cm	red/brown	clay/sand	Float= grey micacous shist, good "B" horizon	11 U 420401 5679701	1132 m
Ling Souze Count Losin Losin Count of the server micacous shist, good "B" 11 U 420413 Finatz grey micacous shist, good July 8 2012 QUDS31 Soil 15 cm red/brown clay/sand horizon July 8 2012 QUDS32 Soil 20 cm red/brown clay/sand "B" horizon July 8 2012 QUDS33 Soil 35 cm orange red clay/sand "B" horizon July 8 2012 QUDS34 Soil 45 cm red/brown clay/sand "B" horizon July 8 2012 QUDS35 Soil 45 cm red/brown clay/sand "B" horizon 5679682 July 8 2012 QUDS36 Soil 30 cm prown clay/sand "B" horizon 5679662 July 8 2012 QUDS38 Soil 25 cm red/brown clay/sand "B" horizon 5679661 July 8 2012 QUDS38 Soil 25 cm red/brown clay/sand "B" horizon 11 U 420497 July 8 2012 QUDS43 Soil 30 cm	luly 8 2012	000530	Soil	15cm	red/brown	clay/sand	outcrop rusty limestone, rusty quartz		
July 2012 QUDS31 Soil 15cm red/brown clay/sand horizon S579694 July 2012 QUDS32 Soil 20cm red/brown clay/sand "B" horizon 11 U 420433 July 8 2012 QUDS33 Soil 35cm orange red clay/sand "B" horizon 5679694 July 8 2012 QUDS34 Soil 45cm red/brown clay/sand "B" horizon 5679692 July 8 2012 QUDS35 Soil 50cm brown clay/sand "B" horizon 11 U 420475 July 8 2012 QUDS35 Soil 50cm brown clay/sand "B" horizon 11 U 420475 July 8 2012 QUDS38 Soil 25cm red/brown clay/sand "B" horizon 5679661 July 8 2012 QUDS38 Soil 25cm red/brown clay/sand "B" horizon 5679614 July 8 2012 QUDS49 Soil 25cm brown clay/sand "B" horizon 5679618 July 8 2012 <td>July 0 2012</td> <td>400000</td> <td>5011</td> <td>15611</td> <td></td> <td>ciayysana</td> <td>Float= grey micacous shist, good "B"</td> <td>11 U 420413</td> <td></td>	July 0 2012	400000	5011	15611		ciayysana	Float= grey micacous shist, good "B"	11 U 420413	
July 8 2012 QUDS32 Soil 20cm red/brown clay/sand Unit of pre/micacous shit, good 11 U 420433 July 8 2012 QUDS33 Soil 35cm orange red clay/sand "8" horizon 567962 July 8 2012 QUDS34 Soil 50cm red/brown clay/sand "8" horizon 567962 July 8 2012 QUDS35 Soil 30cm red/brown clay/sand "8" horizon 5679661 July 8 2012 QUDS37 Soil 30cm brown clay/sand "8" horizon 5679661 July 8 2012 QUDS38 Soil 25cm red/brown clay/sand "8" horizon 567961 July 8 2012 QUDS38 Soil 25cm red/brown clay/sand "8" horizon 567961 567961 July 8 2012 QUDS38 Soil 25cm red/brown clay/sand "8" horizon 11 U 42047 567961 July 8 2012 QUDS40 Soil 30cm red/brown clay/sand "8" horizon<	July 8 2012	QUDS31	Soil	15cm	red/brown	clay/sand	horizon	5679694	
July 8 2012 QUDS33 Soil Jack Soil Asson Soil	July 8 2012	QUDS32	Soil	20cm	red/brown	clay/sand	"B" horizon		
July 2012 Guossistic product July 20	101/ 9 2012	0110533	Soil	2Ecm	orango rod	day/sand	out crop grey micacous shist, good	11 U 420433	
July 8 2012 QUDS34 Soil 45cm red/brown clay/sand "%" horizon clay July 8 2012 QUDS35 Soil 50cm brown clay/sand "%" horizon 5679662 5679662 July 8 2012 QUDS35 Soil 30cm brown clay/sand "%" horizon 5679662 5679662 July 8 2012 QUDS35 Soil 45cm red/brown clay/sand "%" horizon 5679661 5679661 July 8 2012 QUDS35 Soil 45cm red/brown clay/sand "%" horizon 511 U 420497 July 8 2012 QUDS43 Soil 25cm brown clay/sand "%" horizon 5579618 5579618 July 8 2012 QUDS40 Soil 30cm brown clay/sand "%" horizon 5579618 5579618 July 8 2012 QUDS41 Soil 35cm brown clay/sand "%" horizon 5679673 113 U 420511 July 8 2012 QUDS44 Soil 35cm <	July 8 2012	QUD333	2011	35011	orange red	Cldy/SdTU	out crop grey micacous shist, good	5079082	
July 8 2012 QUDS35 Soil Socm brown clay/sand "B" horizon 11 U 420475 July 8 2012 QUDS36 Soil 30cm brown clay/sand "B" horizon 11 U 420475 July 8 2012 QUDS36 Soil 45cm red/brown clay/sand "B" horizon 11 U 420475 July 8 2012 QUDS38 Soil 45cm red/brown clay/sand "B" horizon 5679662 11 U 420497 July 8 2012 QUDS38 Soil 25cm red/brown clay/sand "B" horizon 5679641 11 U 420497 July 8 2012 QUDS43 Soil 30cm brown clay/sand "B" horizon 5679618 11 U 420521 July 8 2012 QUDS41 Soil 30cm brown clay/sand "B" horizon 11 U 420511 5679618 11 U 420521 July 8 2012 QUDS41 Soil 35cm brown clay/sand "B" horizon 11 U 420541 567957 113 T m July 8 2012 QUDS44	July 8 2012	QUDS34	Soil	45cm	red/brown	clay/sand	"B" horizon		
July 8 2012 QUDS36 Soil 30cm brown clay/sand out cropt=grey micacous shist, good 11 U 420475 July 8 2012 QUDS37 Soil 45cm red/brown clay/sand "B" horizon 567962 July 8 2012 QUDS38 Soil 25cm red/brown clay/sand "B" horizon 5679641 July 8 2012 QUDS38 Soil 25cm brown clay/sand "B" horizon 5679641 July 8 2012 QUDS49 Soil 30cm brown clay/sand "B" horizon 11 U 420497 July 8 2012 QUDS40 Soil 30cm brown clay/sand "B" horizon 11 U 420521 July 8 2012 QUDS41 Soil 35cm brown clay/sand "B" horizon 11 U 420541 July 8 2012 QUDS42 Soil 40cm red/brown clay/sand "B" horizon 5679597 1137 m July 8 2012 QUDS44 Soil 25cm brown clay/sand "B" horizon 5679597	July 8 2012	QUDS35	Soil	50cm	brown	clay/sand	out crop= grey micacous shist, good "B" horizon		
July 8 2012 QUDS36 Soil 30cm brown Clay/sand "B" horizon 5679662 July 8 2012 QUDS37 Soil 45cm red/brown clay/sand "B" horizon							out cropt= grey micacous shist, good	11 U 420475	
July 8 2012QUDS37Soil45cmred/brownclay/sand"e" horizon"e" horizonJuly 8 2012QUDS38Soil25cmred/brownclay/sand"B" horizon5679641July 8 2012QUDS39Soil25cmred/brownclay/sand"B" horizon5679641July 8 2012QUDS40Soil30cmbrownclay/sand"B" horizon11 U 420521July 8 2012QUDS40Soil30cmbrownclay/sand"B" horizon5679648July 8 2012QUDS41Soil35cmbrownclay/sand"B" horizon5679618July 8 2012QUDS41Soil35cmbrownclay/sand"B" horizon5679618July 8 2012QUDS41Soil25cmbrownclay/sand"B" horizon5679618July 8 2012QUDS41Soil25cmbrownclay/sand"B" horizon5679618July 8 2012QUDS44Soil20cmbrown/orangeclay/sand"B" horizon5679597July 8 2012QUDS45Soil35cmbrownclay/sand"B" horizon56795957July 8 2012QUDS45Soil35cmbrownclay/sand"B" horizon11 U 420582July 8 2012QUDS45Soil35cmbrown/yellowclay/sand"B" horizon11 U 420582July 8 2012QUDS45Soil15cmred/brownclay/sand"B" horizon5679535July 8 2012QUDS48Soil15c	July 8 2012	QUDS36	Soil	30cm	brown	clay/sand	"B" horizon	5679662	
July 8 2012 QUDS38 Soil 25cm red/brown clay/sand "B" horizon 10 420497 5679641 July 8 2012 QUDS39 Soil 25cm brown clay/sand "B" horizon 10 420521 July 8 2012 QUDS40 Soil 30cm brown clay/sand "B" horizon 11 U 420521 July 8 2012 QUDS40 Soil 30cm brown clay/sand "B" horizon 5679618 July 8 2012 QUDS41 Soil 35cm brown clay/sand "B" horizon 11 U 420521 July 8 2012 QUDS42 Soil 40cm red/brown clay/sand "B" horizon 11 U 420541 July 8 2012 QUDS43 Soil 25cm brown clay/sand "B" horizon 11 U 420541 July 8 2012 QUDS43 Soil 25cm brown/orange clay/sand "B" horizon 11 U 420541 July 8 2012 QUDS45 Soil 35cm brown/orange clay/sand "B" horizon 11 U 420582 <t< td=""><td>July 8 2012</td><td>QUDS37</td><td>Soil</td><td>45cm</td><td>red/brown</td><td>clay/sand</td><td>"B" horizon</td><td></td><td></td></t<>	July 8 2012	QUDS37	Soil	45cm	red/brown	clay/sand	"B" horizon		
July 8 2012QUDS39SoilZscm brownbrown clay/sandDut crop grey micacous shist, good "B" horizon11 U 420521 S679618July 8 2012QUDS40Soil30cm soilbrown clay/sandclay/sand"B" horizon11 U 420521 S679618July 8 2012QUDS41Soil35cm brownbrown clay/sandout crop- grey micacous shist, good "B" horizon11 U 420541 S679597July 8 2012QUDS42Soil40cm red/brownclay/sand"B" horizon11 U 420541 S679597July 8 2012QUDS43Soil25cm brownbrown clay/sand"B" horizon11 U 420541 S679597July 8 2012QUDS43Soil20cm brown/orangebrown/orange clay/sandout crop- grey micacous shist, good "B" horizon11 U 420541 S679597July 8 2012QUDS45Soil35cm brownbrown/orange clay/sandout crop- grey micacous shist, good "B" horizon11 U 420582July 8 2012QUDS45Soil35cm brown/yellow clay/sand"B" horizon11 U 420582July 8 2012QUDS45Soil15cm red/brownclay/sand"B" horizon11 U 420582July 8 2012QUDS48Soil15cm red/brownclay/sand"B" horizon11 U 420582July 8 2012QUDS48Soil15cm red/brownclay/sandlarge cedar trees good "B" horizon11 U 420587 S679533July 8 2012QUDS48Soil15cm red/brownclay/sandlarge cedar trees 30 in diameter- go	July 8 2012	OUDS38	Soil	25cm	red/brown	clay/sand	out crop= grey micacous shist, good "B" horizon	11 U 420497 5679641	
July 8 2012 QUDS39 Soil 25cm brown clay/sand "B" horizon - - - July 8 2012 QUDS40 Soil 30cm brown clay/sand "B" horizon 5679618 - July 8 2012 QUDS41 Soil 35cm brown clay/sand "B" horizon 5679618 - July 8 2012 QUDS42 Soil 40cm red/brown clay/sand "B" horizon 11 U 42051 - July 8 2012 QUDS43 Soil 25cm brown clay/sand "B" horizon 11 U 420541 -		402000		200111	100,010111	oldy, ourid	out crop grey micacous shist, good	0070011	
July 8 2012 QUDS40 Soil 30cm brown clay/sand "8" horizon Soft Crop= grey micacous shist, good 110 420541 July 8 2012 QUDS41 Soil 35cm brown clay/sand "8" horizon 5679618 July 8 2012 QUDS42 Soil 40cm red/brown clay/sand "8" horizon 5679597 1137 m July 8 2012 QUDS43 Soil 25cm brown clay/sand "8" horizon 5679597 1137 m July 8 2012 QUDS43 Soil 25cm brown clay/sand "8" horizon 5679597 1137 m July 8 2012 QUDS44 Soil 20cm brown/orange clay/sand "8" horizon 5679597 1137 m July 8 2012 QUDS44 Soil 20cm brown/orange clay/sand "8" horizon 5679597 1137 m July 8 2012 QUDS46 Soil 45cm brown/yellow clay/sand "8" horizon 5679535 11 U 420582 5679535 11 U 420582 <	July 8 2012	QUDS39	Soil	25cm	brown	clay/sand	"B" horizon	11 11 / 20521	
July 8 2012QUDS41Soil3cmbrownclay/sandout crop= grey micacous shist, good "B" horizon11 U 420541 56795971137 mJuly 8 2012QUDS42Soil40cmred/brownclay/sand"B" horizon56795971137 mJuly 8 2012QUDS43Soil25cmbrownclay/sand"B" horizon56795971137 mJuly 8 2012QUDS44Soil25cmbrownclay/sand"B" horizon60t crop= grey micacous shist, good60t crop= grey micacous shist, good	July 8 2012	QUDS40	Soil	30cm	brown	clay/sand	"B" horizon	5679618	
July 8 2012QUDS42SoilJohnClay/sandBIncludingIncludingJuly 8 2012QUDS42Soil40cmred/brownclay/sand"B" horizon56795971137 mJuly 8 2012QUDS43Soil25cmbrownclay/sand"B" horizon0ut crop- grey micacous shist, good11420541July 8 2012QUDS44Soil20cmbrown/orangeclay/sand"B" horizon0ut crop- grey micacous shist, good1140cmJuly 8 2012QUDS45Soil35cmbrown/orangeclay/sand"B" horizon0ut crop- grey micacous shist, good1140cmJuly 8 2012QUDS46soil45cmbrown/yellowclay/sand"B" horizon11420582July 8 2012QUDS47Soil55cmbrown/yellowclay/sand"B" horizon11420582July 8 2012QUDS48Soil15cmred/brownclay/sand"B" horizon11420582July 8 2012QUDS48Soil15cmred/brownclay/sandlarge cedar trees good "B" horizon11420587July 8 2012QUDS48Soil15cmred/brownclay/sandhorizon56795351225July 8 2012QUDS48Soil15cmred/brownclay/sandhorizon56795231147 mJuly 8 2012QUDS49Soil15cmred/brownclay/sandhorizon56795351225July 8 2012QUDS49Soil35Re	July 9 2012		Soil	25cm	brown	clay/sand	out crop= grey micacous shist, good		
July 8 2012QUDS42Soil40cmred/brownclay/sand"B" horizon56795971137 mJuly 8 2012QUDS43Soil25cmbrownclay/sand"B" horizonout crop= grey micacous shist, goodImage: Clay sand"B" horizonImage: Clay sand"B" horizonImage: Clay sandImage: Clay sandI	July 8 2012	Q0D341	3011	35011	brown	ciay/saliu	out crop= grey micacous shist, good	11 U 420541	
July 8 2012QUDS43SoilZ5cmbrownclay/sand"B" horizonout crop= grey micacous shist, good "B" horizon	July 8 2012	QUDS42	Soil	40cm	red/brown	clay/sand	"B" horizon	5679597	1137 m
July 8 2012QUDS44Soil20cmbrown/orangeclay/sandout crop= grey micacous shist, good "B" horizonInternational stressJuly 8 2012QUDS45Soil35cmbrownclay/sand"B" horizonInternational stressJuly 8 2012QUDS46Soil45cmbrown/yellowclay/sand"B" horizonInternational stressJuly 8 2012QUDS46soil45cmbrown/yellowclay/sandout crop= grey micacous shist, good "B" horizonInt U 420582 5679535July 8 2012QUDS47Soil55cmbrown/yellowclay/sand"B" horizonInt U 420582 5679535July 8 2012QUDS48Soil15cmred/brownclay/sandlarge cedar trees good "B" horizonInt U 420587 5679523July 8 2012QUDS49Soil15cmred/brownclay/sandlarge cedar trees 30 in diameter- good "B" horizon11 U 420587 56795231147 mJuly 8 2012QUDS49Soil15cmred/brownclay/sandhorizon56795231147 mJuly 9 thIIIIInternational stresshorizon5679531225July 9 thSoil35Red/Brownclay/sandhorizon11 U 420466 horizon56793231225QUDS50Soil30Red/Brownclay/sandhorizon567930"1227QUDS52Soil25Red/Brownclay/sandhorizonfedar trees 30 in diameter- good "B" horizon11 U 420464 5679323 <td>July 8 2012</td> <td>QUDS43</td> <td>Soil</td> <td>25cm</td> <td>brown</td> <td>clay/sand</td> <td>"B" horizon</td> <td></td> <td></td>	July 8 2012	QUDS43	Soil	25cm	brown	clay/sand	"B" horizon		
July 8 2012QUDS44SoilZouringDrown/yorangeClay/sand	July 9 2012		Soil	20cm	brown/orango	day/sand	out crop= grey micacous shist, good		
July 8 2012QUDS45Soil35cmbrownclay/sand"B" horizonImage: Clay sand"B" horizonJuly 8 2012QUDS46soil45cmbrown/yellowclay/sand"B" horizon11 U 420582July 8 2012QUDS47Soil55cmbrown/yellowclay/sand"B" horizon11 U 420582July 8 2012QUDS48Soil15cmred/brownclay/sandlarge cedar trees good "B" horizon11 U 420587July 8 2012QUDS49Soil15cmred/brownclay/sandlarge cedar trees 30 in diameter- good "B"11 U 420587July 8 2012QUDS49Soil15cmred/brownclay/sandhorizon56795331147 mJuly 9 2012QUDS50Soil15cmred/brownclay/sandhorizon56795331147 mJuly 9 2012QUDS50Soil35Red/Brownclay/sandhorizon11 U 42046656793531225QUDS51Soil30Red/Brownclay/sandhorizon567938212271227QUDS52Soil25Red/Brownclay/sandhorizon56794021226QUDS53Soil20Red/Brownclay/sandhorizonfill U 42046656794021226QUDS53Soil20Red/Brownclay/sandhorizonfill U 42046456794021226QUDS53Soil20Red/Brownclay/sandhorizonfill U 4204521227QUDS53Soil20<	July 8 2012	Q0D344	3011	20011	brownyorange	ciay/saliu	out crop= grey micacous shist, good		
July 8 2012QUDS46soil45cmbrown/yellowclay/sand"B" horizon11 U 420582July 8 2012QUDS47Soil55cmbrown/yellowclay/sand"B" horizon5679535July 8 2012QUDS48Soil15cmred/brownclay/sand"B" horizon5679535July 8 2012QUDS49Soil15cmred/brownclay/sandlarge cedar trees good "B" horizon11 U 420587July 8 2012QUDS49Soil15cmred/brownclay/sandhorizon56795231147 mJuly 9 thIIIIIIIIIIQUDS50Soil35Red/Brownclay/sandhorizon56795351225QUDS51Soil30Red/Brownclay/sandhorizon56793821227QUDS52Soil25Red/Brownclay/sandhorizon567930111 U 420464QUDS53Soil20Red/Brownclay/sandhorizon5679321225QUDS53Soil20Red/Brownclay/sandhorizon5679321227QUDS53Soil20Red/Brownclay/sandhorizon56794021226QUDS53Soil20Red/Brownclay/sandabove road curve and cut11 U 4204521227	July 8 2012	QUDS45	Soil	35cm	brown	clay/sand	"B" horizon		
July 8 2012QUDS47SoilS5cmbrown/yellowclay/sandout crop= grey micacous shist, good11 U 420582 5679535July 8 2012QUDS48Soil15cmred/brownclay/sandlarge cedar trees good "B" horizon11 U 420587 5679523July 8 2012QUDS49Soil15cmred/brownclay/sandlarge cedar trees 30 in diameter- good "B"11 U 420587 5679523July 8 2012QUDS49Soil15cmred/brownclay/sandcedar trees 30 in diameter- good "B"11 U 420587 5679523July 9thIIIIIIIIIII U 420587 56795231147 mQUDS50Soil35Red/Brownclay/sandcedar trees 30 in diameter- good "B"11 U 420466 56793531225QUDS51Soil30Red/Brownclay/sandhorizon56793821227QUDS52Soil25Red/Brownclay/sandhorizon56794021226QUDS53Soil20Red/Brownclay/sandabove road curve and cut11 U 4204521227	July 8 2012	QUDS46	soil	45cm	brown/yellow	clay/sand	"B" horizon		
July 8 2012QUDS47SoilSoilSoilBrown/yellowClay/sand"B" norizonS679535July 8 2012QUDS48Soil15cmred/brownclay/sandlarge cedar trees good "B" horizon11 U 420587July 8 2012QUDS49Soil15cmred/brownclay/sandhorizon56795231147 mJuly 9thImage: Cedar trees 30 in diameter- good "B"11 U 42058756795231147 mQUDS50Soil35Red/Brownclay/sandhorizon56793531225QUDS51Soil30Red/Brownclay/sandhorizon5679322110 420466QUDS52Soil25Red/Brownclay/sandhorizon56793231225QUDS52Soil25Red/Brownclay/sandhorizon56793221227QUDS53Soil20Red/Brownclay/sandhorizon56794021226QUDS53Soil20Red/Brownclay/sandabove road curve and cut11 U 4204521227		0110647	6 - 11		h	ala da a al	out crop= grey micacous shist, good	11 U 420582	
July 8 2012QUDS48Soil15cmred/brownclay/sandlarge cedar trees good "B" horizon11 U 420587July 8 2012QUDS49Soil15cmred/brownclay/sandhorizon56795231147 mJuly 9thJuly 9thImage: cedar trees 30 in diameter- good "B"11 U 420466cedar trees 30 in diameter- good "B"11 U 420466QUDS50Soil35Red/Brownclay/sandhorizon56793531225QUDS51Soil30Red/Brownclay/sandhorizon56793821227QUDS52Soil25Red/Brownclay/sandhorizon567930821227QUDS52Soil25Red/Brownclay/sandhorizon56794021226QUDS53Soil20Red/Brownclay/sandhorizon11 U 42046411 U 420464QUDS53Soil20Red/Brownclay/sandhorizon11 U 4204521227QUDS53Soil20Red/Brownclay/sandhorizon11 U 4204541226	July 8 2012	QUDS47	SOIL	55cm	brown/yellow	clay/sand	"B" norizon	5679535	
July 8 2012QUDS49Soil15cmred/brownclay/sandhorizon56795231147 mJuly 9thImage: SoilImage: Soil	July 8 2012	QUDS48	Soll	15cm	red/brown	clay/sand	large cedar trees good "B" horizon cedar trees 30 in diameter- good "B"	11 U 420587	
July 9thImage: second seco	July 8 2012	QUDS49	Soil	15cm	red/brown	clay/sand	horizon	5679523	1147 m
QUDS50 Soil 35 Red/Brown clay/sand horizon 11 U 420466 5679353 1225 QUDS51 Soil 30 Red/Brown clay/sand horizon 5679353 1225 QUDS51 Soil 30 Red/Brown clay/sand horizon 5679382 1227 QUDS52 Soil 25 Red/Brown clay/sand horizon 5679382 1227 QUDS52 Soil 25 Red/Brown clay/sand horizon 5679402 1226 QUDS53 Soil 25 Red/Brown clay/sand horizon 5679402 1226 QUDS53 Soil 20 Red/Brown clay/sand above road curve and cut 11 U 420452 1227		July 9th							
QUDS51 Soil 30 Red/Brown clay/sand incident Soil 11 U 420460 QUDS52 Soil 25 Red/Brown clay/sand horizon 5679382 1227 QUDS52 Soil 25 Red/Brown clay/sand horizon 5679402 1226 QUDS53 Soil 20 Red/Brown clay/sand above road curve and cut 11 U 420452 1227		OUDS50	Soil	35	Red/Brown	clay/sand	cedar trees 30 in diameter- good "B" horizon	11 U 420466 5679353	1225
QUDS51 Soil 30 Red/Brown clay/sand horizon 5679382 1227 QUDS52 Soil 25 Red/Brown clay/sand horizon 11 U 420464 11 U 420464 1226 QUDS52 Soil 25 Red/Brown clay/sand horizon 5679402 1226 QUDS53 Soil 20 Red/Brown clay/sand above road curve and cut 11 U 420452 1227		202000				Jayround	cedar trees 30 in diameter- good "B"	11 U 420460	
QUDS52 Soil 25 Red/Brown clay/sand horizon 110420404 QUDS53 Soil 20 Red/Brown clay/sand above road curve and cut 110420404		QUDS51	Soil	30	Red/Brown	clay/sand	horizon	5679382	1227
QUDS53 Soil 20 Red/Brown clay/sand above road curve and cut 11 U 420452 1227		QUDS52	Soil	25	Red/Brown	clay/sand	horizon	5679402	1226
		QUDS53	Soil	20	Red/Brown	clay/sand	above road curve and cut	11 U 420452	1227

							5679422	
							11 U 420436	
	QUDS54	Soil	15	Red/Brown	clay/sand		5679447	1229
	QUIDEEE	C .: 1	45	De d (Darana	- 1 <i>(</i> 1		11 U 420419	1224
	QUDS55	SOII	15	Red/Brown	clay/sand		5679464	1231
	OUD\$56	Soil	15	Red/Brown	clay/sand	above old sample COCB7	11 0 420294 5679518	1249
	402000		10		cia // sana		11 U 420284	
	QUDS57	Soil	45	Red/Brown	clay/sand	above old sample CQCR7,	5679529	1252
							11 U 420279	
	QUDS58	Soil	20	Red/Brown	clay/sand	west of CQCR7	5679542	1248
	OUDSED	Soil	40	Brown	cand (clay	30 meters east of western drainage	11 U 419858	1250
	000333	3011	40	BIOWIT	Salid / Clay	Start	3079302	1239
-	QUDS60	Soil	25	Red/Brown	clay/sand		11 11 410000	1260
		Soil	15	Dark Brown	clay/sand		11 U 419906 5679522	1260
	000501	501	15	Dark Brown	cidy/sund		11 U 419927	1200
	QUDS62	Soil	30	Brown	clay/sand		5679534	1247
-							11 U 419952	
	QUDS63	Soil	30	Light Brown	clay/sand		5679547	1244
							11 U 419976	
	QUDS64	Soil	15	Brown/Dark	clay/sand	RUSTY Graphitic shist	5679559	1243
		Soil	25	Drown	alay (cand	DUSTY Craphitic chiet	11 U 420004	1242
	QUDS65	5011	25	BIOWII	ciay/sanu		11 11 / 20023	1243
	OUDS66	Soil	20	Brown	sand /clav	gneiss out crop	5679586	1243
						Brent enterp	11 U 420055	
	QUDS67	Soil	20	Brown	clay/sand		5679593	1245
							11 U 420081	
	QUDS68	Soil	30	Red/Brown	clay/sand		5679591	1244
	OUDSCO	Call	15	Ded (Dressure	alay (as y d		11 U 420099	1240
	QUDS69	5011	15	Red/Brown	clay/sand		11 11 420120	1248
	OUDS70	Soil	15	Red/Brown	clav/sand	13 km painted on rock face	5679585	1253
							11 U 420145	
	QUDS71	Soil	30	Red/Brown	clay/sand		5679573	1255
	OUDS72	Soil	15	Red/Brown	clav/sand			
							11 U 420197	
	QUDS73	Soil	25	Red/Brown	clay/sand		5679570	1255
	OUDS74	Soil	25	Brown	clay/sand			1254
	402071		20	5.000	ela ji salia		11 U 420237	1101
	QUDS75	Soil	25	Brown	clay/sand		5679556	1254
							11 U 420257	
	QUDS76	Soil	25	Red/Brown	clay/sand		5679549	1255
	0110677	Call	25	Ded (Dressure	alay (as y d		11 U 420269	1250
	QUDS77	5011	25	Red/Brown	clay/sand		11 11 420277	1256
	OUDS78	Soil	20	Brown	clav/sand		5679536	1258
							11 U 420296	
	QUDS79	Soil	15	Brown	clay/sand	beside QUDS56	5679511	1279
							11 U 420307	
	QUDS80	Soil	10	Red/Brown	clay/sand		5679509	1259
		Coil	4 5	Tap Drown	alou /an al		11 U 420320	1200
	000381	5011	15		ciay/sanu		11 11 420250	1200
	QUDS82	Soil	15	Dark Brown	clay/sand	black/brown oxidized rusty rock	5679518	1254
	0110500		comula					
	200283	no	sample	<u> </u>				
	OUDS84	Soil	30	red/brown	clay/sand	sampled above COCR06	5679657	1177
	0110007	C.:!						//
	QUDS85	Soil	25	brown	clay/sand	sampled above CQCR06	I	

						11 U 420278	
 QUDS86	Soil	25	light brown	clay/sand	sampled above CQCR06	5679652	1189
	Soil	25	brown	clay/sand		11 U 420282 5679650	1190
 OUDS88	Soil	25	brown	clay/sand		3073030	1150
 400000				,		11 U 420286	
 QUDS89	Soil	20	brown	clay/sand		5679649	1190
	Soil	25	brown rust	clay/cand	BLOW/ DOW/N, comple peor root ball	11 U 420253	1227
 Q0D390	3011	25	brownrust	Clay/Sallu	BLOW DOWN, sample flear foot ball	1 U 420236	1527
QUDS91	Soil	25	brown rust	clay/sand	BLOW DOWN, sample near root ball	5679290	1333
						11 U 420243	
 QUDS92	Soil	25	brown rust	clay/sand	BLOW DOWN, sample near root ball	5679323	1332
QUDS93	Soil	20	brown	clay/sand	more	5679342	1329
						11 U 420232	
 QUDS94	Soil	20	brown	clay/sand		5679363	1331
	Soil	20	brown	clay/sand		11 U 420220 5679392	1331
 0110505	50ii	20	De de Deserve	clay/sand		5075552	1331
 QUDS96	5011	35	Dark Brown	clay/sand		11 11 420202	1325
QUDS97	Soil	10	brown	clay/sand		5679423	1320
						11 U 420147	
 QUDS98	Soil	25	Dark Brown	clay/sand		5679460	1350
OUDS99	Soil	30	red/brown	clay/sand		11 0 420116 5679451	1324
 				,		11 U 420083	
 QUDS100	Soil	45	Light Brown	clay/sand		5679449	1328
01105101	Soil	20	rod/brown	clay/sand		11 U 420039	1229
 Q0D3101	3011		Tedybrown	ciay/saliu		11 U 420007	1320
QUDS102	Soil	15	Light Brown	clay/sand		5679384	1350
01100100	C 11		rusty red			11 U 419980	1050
 QUDS103	Soil	20	brown	clay/sand		5679364 11 419993	1358
QUDS104	Soil	20	red/brown	clay/sand		5679456	1307
						11 U 420399	
 QUDS105	Soil	15	brown	clay/sand		5679495	
QUDS106	Soil	15		clav/sand	approximately SE	5682829	880
	Soil			clay/sand			
 0005107	50ii			cluy/sulla			
 QUDS108	2011			ciay/sana			
 QUDS109	Soil			clay/sand			
 QUDS110	Soil			clay/sand			
 QUSD111	Soil			clay/sand			
 QUDS112	Soil			clay/sand			
QUDS113	Soil			clay/sand			
OUDS114	Soil			clay/sand			
	Soil			clay/cand			
 0003115	3011						
 QUDS116	Soil			clay/sand			
 QUDS117	Soil			clay/sand			ļ
 QUDS118	Soil			clay/sand			
QUDS119	Soil			clay/sand			
 QUDS120	Soil			clay/sand			
	Soil			clay/sand			
2003121	501	I	I	ciuy/suitu	I	I I	I

01105133	Soil						
 QUDS122	5011	45	2 1/2				
 QUDS123	Soll	15	Red/Brown	clay/sand		11 417544	
QUDS124	Soil	15	Brown	clay/sand		5682252	1006
01106435	C - 1	45	December			11 U 417596	1000
 QUDS125	SOII	15	Brown	clay/sand		5682221 11 U 417596	1008
QUDS126	Soil	15	Red/Brown	clay/sand		5682221	1016
01106427	C - 1	45				11 U 417674	1001
QUDS127	2011	15	red	clay/sand		11 U 417716	1021
 QUDS128	Soil	15	Brown	clay/sand		5682129	1026
01106420	C - 1	45				11 U 417767	1000
 QUDS129	5011	15	Red/Brown	clay/sand		11 U 417800	1033
 QUDS130	Soil	15	light/brown	clay/sand		5682084	1035
01100424	C - 1	45	Parks (harrison			11 U 417845	1010
 QUDS131	Soil	15	light/brown	sand/clay	10 meters west of creek	5682060 11 U 417891	1040
QUDS132	Soil	25	Red/Brown	clay/sand	beside creek	5682063	1044
 						11 U 417940	
 QUDS133	Soil	25	Red/Brown	clay/sand	10 meters west of creek	5682038	1045
QUDS134	Soil	15	Brown	clay/sand		5682039	1049
 						11 U 418032	
 QUDS135	Soil	15	Brown	clay/sand	Rusty Graphitic shist outcrop	5682070	1055
QUDS136	Soil	15	Brown	clay/sand	224 degrees/ dipping 70 degrees SE	5682083	1057
						11 U 418175	
 QUDS137	Soil	20	Brown	clay/sand	end of logged area	5682062	1070
QUDS138	Soil	20	Brown	clay/sand		5682030	1074
						11 U 418259	
 QUDS139	Soil	20	Brown	clay/sand		5682005	1079
QUDS140	Soil	15	Brown	clay/sand	creek 5 meters west	5681984	1083
			-			11 U 418343	
 QUDS141	Soil	20	Brown	clay/sand		5681952	1087
QUDS142	Soil	15	Brown	clav/sand	log landing nearby	11 0 418394 5681947	1090
						11 U 418441	
QUDS143	Soil	20	Brown	clay/sand		5681945	1092
OUDS144	Soil	20	Brown	clay/sand		11 U 418486 5681915	1094
4000111	0011		2.01.1	cia // surra		11 U 418568	1001
 QUDS145	Soil	20	Brown	clay/sand	beginning of old logged off area	5681846	1099
OUDS146	Soil	20	Brown	clay/sand		11 U 418608 5681835	1105
 4000110			2.01.1	cia // surra		11 U 418660	1100
QUDS147	Soil	15	Brown	clay/sand	Rusty/Micacous/ shist Out crop	5681826	1109
0105148	Soil	15	Brown	clay/sand		11 U 418709 5681821	1114
0000110	3011	- 15	biowin			11 U 418752	
 QUDS149	Soil	15	Brown	clay/sand		5681805	1118
0105150	Soil	15	Brown	clay/sand	End of road	11 U 418769 5681804	1110
 2003130	501	1.5	Brown	siay/sana		5001004	1115
 				duff/leached		11 U 416965	<u> </u>
 QUDS107A	Soil	0-5	GREY	soil		5681708	1297
	Soil	5- 15 arr	rod/brewe	alou (as a d	alacts sub-rounded (
 QUDS10/B	5011	15cm	red/brown	ciay/sand	clasts sub rounded/ some angular		
QUDS107C	Soil	15-30	brown	clay/sand	clasts sub rounded	1	

	Soil	20.45	khaki grey	clay/sand			
 Q0D3107D	3011	30-43	brown	ciay/saliu			
 QUDS108A	Soil	0-5	GREY	duff/leached soil	some angular clasts	11 U 420212 5679884	1196
QUDS108B	Soil	5-15 cm	rusty brown	clay/sand			
QUDS108C	Soil	15- 30cm	brown	clay/sand			
 QUDS108D	Soil	30-45 cm	brown/grey	clay/sand	sub-angular clasts		
 QUDS109A	Soil	0-3 cm	grey	duff/leached soil		11 U 420190 5679708	1174
QUDS109B	Soil	3-15 cm	red/brown	clay/sand	sub angular clasts granuales		
 QUDS109C	Soil	15-30	brown	clay/sand			
 QUDS109D	Soil	30-45	brown	clay/sand	compact		
 QUDS109E	Soil	45-60	light brown	clay/sand	compact		
		0-5		duff/leached		11 U 416720	
 QUDS110A	Soil	CM 5-15	grey	soil		5682866	896 m
 QUDS110B	Soil	CM	red/brown	clay/sand	clasts sub rounded/ some angular		
 QUDS110C	Soil	15- 30cm	brown	clay/sand	clasts sub rounded/ some angular		
QUDS110D	Soil	30-45 cm	brown	clay/sand	clasts sub rounded/ some angular		
QUDS110E	Soil	45-60 cm	brown	clay/sand	clasts sub rounded/ some angular		