BRITISH COLUMBIA The Best Place on Earth	(T T T T T T T T T T T T T T T T T T T
Ministry of Energy, Mines & Petroleum Resources Mining & Minerals Division	Assessment Report
BC Geological Survey	Title Page and Summary
TYPE OF REPORT [type of survey(s)]: Geochemical	TOTAL COST: \$19,663.45
AUTHOR(S): David Yeager, P.Geo.	SIGNATURE(S): DAM
NOTICE OF WORK PERMIT NUMBER(S)/DATE(S):	YEAR OF WORK: 2012
STATEMENT OF WORK - CASH PAYMENTS EVENT NUMBER(S)/DATE(S):	5423427 December 26, 2012
PROPERTY NAME: Banbury Property	
CLAIM NAME(S) (on which the work was done): 573380 BANBURY PI	ROJECT
MINERAL INVENTORY MINFILE NUMBER(S), IF KNOWN: 092HSE064, (092HSE177
MINING DIVISION: Similkameen and Osoyoos	NTS/BCGS: NTS 092H/08 TRIM 092H.040
LATITUDE: 49 ° 21 '22 " LONGITUDE: 120	07 '35 (at centre of work)
OWNER(S):	
1) David B. Jensen FMC 147089	2)
MAILING ADDRESS:	
OPERATOR(S) [who paid for the work]:	
1) <u>0838331 BC Ltd.</u>	_ 2)
MAILING ADDRESS: c/o Stephen McKoen, Blake Cassels and Graydon	
P.O. Box 49314, 595 Burrard Street, Vancouver, B.C.	
PROPERTY GEOLOGY KEYWORDS (lithology, age, stratigraphy, structure	
Nicola Group, Stemwinder Formation, Hedley Intrusions, Banbu	ary Stock, narrow auriferous veins

REFERENCES TO PREVIOUS ASSESSMENT WORK AND ASSESSMENT REPORT NUMBERS: 15601, 16746, 17631, 25518, 32213, 33455

TYPE OF WORK IN THIS REPORT	EXTENT OF WORK (IN METRIC UNITS)	ON WHICH CLAIMS	PROJECT COSTS APPORTIONED (incl. support)
GEOLOGICAL (scale, area)			
Ground, mapping			
Photo Interpretation			
GEOPHYSICAL (line-kilometres)			
Ground			
Magnetic			
Electromagnetic			
Seismic			
Other			
Alrborne			
GEOCHEMICAL (number of samples analysed for)			
Soil <u>11</u>		573380	
Rock 9			\$19,663.45
Other			total
DRILLING (total metres; number of holes, size)			
Core			
Non-core			
RELATED TECHNICAL			
Sampling/assaying 9		573380	
Petrographic			
Mineralographic			
Metallurgic			
PROSPECTING (scale, area)			
PREPARATORY / PHYSICAL			
Line/grid (kilometres)			
Topographic/Photogrammetric (scale, area)			
Legal surveys (scale, area)			
Road, local access (kilometres)/	trail		
Trench (metres)			
Underground dev. (metres)			
Other			· · · · · · · · · · · · · · · · · · ·
		TOTAL COST:	\$19,663.45

ASSESSMENT REPORT

BC Geological Survey Assessment Report 33823

On the

BANBURY PROPERTY Tenure Nos. 573380, 601252, 601458, 601459, 601481, 705031, 705032, 705033, 705034, 732282, 871829, 871830, 871849, 871869

For

Owner: D. B. Jensen (FMC 147089)

Operator: **0838331 B.C. LTD.** P.O. Box 49314 595 Burrard Street Vancouver, B.C. V7X 1L3

SIMILKAMEEN AND OSOYOOS MINING DIVISIONS SOUTH CENTRAL BRITISH COLUMBIA

NTS Map Sheet: 092H/08 49° 21' 22" North Latitude 120° 07' 35" West Longitude

BC TRIM Sheets: 092H.040 UTM: 5,470,600m N, 708,300m E ZONE 10, NAD83

> By: David A. Yeager, P.Geo.

> > March 5, 2013

BC EMPR FORMS

- ASSESSMENT REPORT TITLE PAGE AND SUMMARY
- MINERAL CLAIM EXPLORATION and DEVELOPMENT WORK/EXPIRY DATE CHANGE CONFIRMATION – EVENT NUMBER 5423427

1.0 SUMMARY 1
2.0 INTRODUCTION
3.0 PROPERTY DESCRIPTION AND LOCATION
3.1 Banbury Property Mineral Tenures
3.2 Permitting
4.0 ACCESSIBILITY, CLIMATE, LOCAL RESOURCES, INFRASTRUCTURE AND
PHYSIOGRAPHY
4.1 Topography, Elevations and Vegetation
4.2 Access and Accommodation
4.3 Climate
4.4 Mining Suitability
5.0 HISTORY
6.0 GEOLOGY (AFTER BURGERT 2012) 5
7.0 EXPLORATION
7.1 Summary of Exploration Work Performed By or On Behalf of the Issuer
7.2 Exploration Area 2012-A: Grid Location 5,470,600N, 708,300E
7.3 Exploration Area 2012-B: Grid Location 5,470,400N, 708,400E7
7.4 Exploration Area 2012-C: Grid Location 5,471,300N, 708,100E
7.5 Exploration Area 2012-D: Grid Location 5,471,400N, 708,100E
7.6 Exploration Area 2012-E: Grid Location 5,471,055N, 708,361E 8
8.0 SAMPLING METHOD AND APPROACH
8.1 Soil Samples
8.2 Rock Samples
9.0 SAMPLE PREPARATION, ANALYSIS AND SECURITY 10
9.1 Field Procedures10
9.2 Lab Procedures
9.3 Author's Opinion 10
10.0 INTERPRETATION AND CONCLUSIONS 11
11.0 RECOMMENDATIONS 12
12.0 REFERENCES
13.0 STATEMENT OF COSTS
14.0 DATE AND SIGNATURE PAGE
15.0 ILLUSTRATIONS
16.0 DESCRIPTION OF LABORATORY TECHNIQUES
17.0 CERTIFICATES OF ANALYSIS
10.0 HISTORICAL SUMMART DRILL LUGS

TABLE OF CONTENTS

LIST OF TABLES

		Page
Table 3.1-1	Mineral Tenure Table	3
Table 5.0-1	History of Work Performed on the Property	4
Table 10.0-1	Recommended Budget	11

LIST OF ILLUSTRATIONS

- Figure 1: Banbury Location Map
- Figure 2: Regional Geology Map
- Figure 3: 2012 Exploration Areas
- Figure 4: 2012 Exploration Target A Rock and Soil Results (Gold Values)
- Figure 5: Target 2012-A Trench TR2012-1 Geology
- Figure 6: 2012 Exploration Target B: Au ppb Values
- Figure 7: 2012 Exploration Areas C, D, E

1.0 SUMMARY

0838311 B.C. Ltd. (hereinafter "the Company", or "0838") is the operator of a gold exploration property located in the Similkameen and Osoyoos Mining Divisions in south central British Columbia approximately 4 kilometres west of Hedley, B.C., and approximately 30 kilometres east-southeast of Princeton, B.C. The property consists of 14 mineral tenures nominally comprising approximately 3516.8 hectares. Mineral title records list the owner of the property as David Bjarne Jensen (FMC Number 147089) who holds the property tenures on behalf of the Company. Access to the property is by 4-wheel drive truck from Highway 3, B.C.

Mineralization on the Banbury property includes hydrothermal, epigenetic, skarn-associated quartz, arsenopyrite, pyrite, sphalerite, chalcopyrite and galena veins containing variable to high grade gold. In addition, large hydrothermal, epigenetic, skarn-associated, quartz, carbonate stockwork zones contain arsenopyrite, pyrite, pyrrhotite, chalcopyrite and low grade gold.

Exploration since 2010 by 0838311 B.C. Ltd. comprises grid-based geochemical soil sampling, geochemical follow-up work, geologic examination of anomalous areas, shallow overburden removal and assay sampling. Historical work on the property comprises trenching, mapping and diamond drilling.

The property is underlain by north striking, steeply dipping, sedimentary and volcanic rocks of the Upper Triassic Nicola Group Stemwinder Mountain and Whistle Creek formations intruded by leucocratic quartz diorite and gabbro/diorite sills, dykes and stocks of the Early Jurassic Hedley Intrusions.

The Banbury property lies 4km to the west of the formerly producing Nickel Plate Gold Mine. The Hedley Camp is the fourth largest gold producer in the province, having produced 76,735, 496 grams of gold or 2,467,379 Troy ounces (*BCMEM Information Circular 2010-5*).

It is the author's conclusion that grid-based soil geochemical sampling is an effective technique for indicating sources of bedrock gold on the property. Further stripping, trenching, statistically rigorous channel sampling (i.e., at measured intervals), geologic mapping and close spaced characterization drilling of prospects found should be performed.

It is the author's recommendation that the geologic character and tenor of the newly discovered prospect at exploration area 2012-A, when considered in terms of currently high gold prices, is of sufficient merit to warrant a stripping, trenching, channel sampling, geologic mapping, and drilling program costing approximately \$50,000.

2.0 INTRODUCTION

David Yeager, P.Geo. was commissioned by 0838331 B.C. Ltd. of P.O. Box 49314, 595 Burrard Street, Vancouver, B.C. V7X 1L3, to perform follow-up work on the Banbury gold property over previously performed grid-based soil geochemical sampling and to complete this assessment report on the work performed. The property is located in the Similkameen and Osoyoos Mining Divisions in south central British Columbia approximately 4 kilometres west of Hedley, B.C., and approximately 30 kilometres east-southeast of Princeton, B.C.

To accomplish this assignment, the author of this report held discussions with Mr. David Jensen, P.Eng., President of 0838331 B.C. Ltd.. A review was performed on that portion of the technical

data in the possession of the Company that pertained to the grid-based soil geochemical survey. These sources are given in **Item 12.0 REFERENCES** of this report. The more important technical sources are Burgert (2012) and Burgert and Dandy (2011).

A property tenure review was performed using the Mineral Titles Branch of the B.C. Ministry of Energy, Mines and Petroleum Resources' online mineral tenure database ("MT.Online").

The work reported herein was performed by the author of this report during the period October 15, 2012 to December 8, 2012. The author was accompanied in part by Mr. David Jensen, P.Eng.

This assessment report will be used by 0838331 B.C. Ltd. to satisfy assessment reporting requirements for the Titles Branch of the B.C. Ministry of Mines and Petroleum Resources.

All currency values are expressed in Canadian dollars unless otherwise indicated.

3.0 PROPERTY DESCRIPTION AND LOCATION

3.1 Banbury Property Mineral Tenures

The property comprises 3516.8 hectares in 14 mineral claims.

The property is located in the Similkameen and Osoyoos Mining Divisions in south central British Columbia approximately 4 kilometres west of Hedley, B.C., and approximately 30 kilometres east-southeast of Princeton, B.C. (**Figure 1**). It is centred at approximately 49° 21' 22" North Latitude and 120° 07' 35" West Longitude on National Topographic Series Map Sheet 092H/08E. Using the Universal Transverse Mercator (UTM) system, the property is centred at 5,470,600m N, 708,300m E in ZONE 10, North American Datum (NAD) 83 on BC Terrain Resource Information Management (TRIM) Sheet 092H.040 (**Figure 1**).

An amendment to the Mines Act Regulation was enacted on July 1, 2012. Assessment work requirements are currently \$5.00 per hectare per year due on or before the first and second anniversary dates of acquisition, \$10.00 per hectare per year due on or before the third and fourth anniversary dates of acquisition, \$15.00 per hectare per year due on or before the fifth and sixth anniversary dates of acquisition, and \$20.00 per hectare per year due on or before the seventh anniversary date and succeeding anniversary dates. Cash in lieu of assessment work is double the foregoing amounts. The information shown in the following table was obtained directly from the Mineral Titles Branch, Ministry of Energy, Mines and Petroleum Resources MT.Online mineral tenure records.

	Table 3.1-1 Mineral Tenure Table					
Tenure	Tenure Name ** Issue Date Expiry			Area		
Number*		(yyyy-mmm-dd)	(yyyy-mmm-dd)	(ha)		
573380	BANBURY PROJECT	2008/jan/09	2023/jan/01	315.68		
601252	HEDLEY HIGH GRADE NO 3	2009/mar/17	2015/jan/01	42.12		
601485	HEDLEY #6	2009/mar/22	2015/jan/01	126.37		
601459	HEDLEY #7	2009/mar/22	2014/jan/01	147.48		
601481	HEDLEY #8	2009/mar/23	2015/jan/01	126.36		
705031	HEDLEY CONECTOR	2010/jan/30	2016/jan/01	252.68		
705032	HEDLY 2	2010/jan/30	2017/jan/01	378.97		
705033	HEDLEY 3	2010/jan/30	2016/jan/01	210.52		
705034	HEDLEY 4	2010/jan/30	2016/jan/01	63.16		
732282	HEDLEY GOLD	2010/mar/21	2016/jan/01	168.45		

	Table 3.1-1 Mineral Tenure Table (cont'd)						
Tenure	Tenure Tenure Name ** Issue Date Expiry Date Area						
Number*		(yyyy-mmm-dd)	(yyyy-mmm-dd)	(ha)			
871829	GOLD FINGER NORTH	2011/jul/28	2016/jan/01	526.28			
871830	GOLD FINGER CENTRAL	2011/jul/28	2014/jan/01	526.57			
871849	GOLD FINGER SOUTH	2011/jul/28	2014/jan/01	484.66			
871869	GOLD FINGER CALLUS	2011/jul/28	2014/jan/01	147.50			

* All tenures are shown to be owned 100% by Free Miner Certificate Number 147089, David Bjarne Jensen.

** Tenure Names are not unique and may be assigned by the owner at the time of acquisition for the owner's convenience only.

The tenures are claims and convey the right to perform exploration work. The owner may apply at any time to convert the claims to leases, and after meeting certain criteria defined by the Environmental Assessment Act and the Ministry of Energy, Mines and Petroleum Resources' licensing requirements, may mine minerals from the leases.

3.2 Permitting

Permitting for mineral exploration companies in British Columbia is administered by the Mines Inspection Branch of the Ministry of Energy, Mines and Petroleum Resources. An operator must file notice of its work programs with the Ministry, and a bond is determined that will set aside sufficient cash to reclaim the exploration sites to their pre-exploration land use. Typically, no bond is required for exploration activities such as geological, geochemical and geophysical surveys. A bond is required for camp construction, tree removal in excess of 50 cubic metres per year, blast trenching, machine work and drilling. The required level of reclamation usually involves leaving the work sites in a geotechnically stable condition, and grooming the sites to prevent forest fires and to ensure that natural regeneration of indigenous species can progress over a reasonable period of time. After receipt of the bond, the Mines Inspection Branch routinely issues a work permit.

4.0 ACCESSIBILITY, CLIMATE, LOCAL RESOURCES, INFRASTRUCTURE AND PHYSIOGRAPHY

4.1 Topography, Elevations and Vegetation

Topography on the property is steep, with elevations ranging from 530 metres on the Similkameen River to approximately 1,400 metres at the southern edge of the property. Henri Creek forms a steep-sided valley draining northeasterly into the Similkameen River approximately three kilometres west of Hedley (**Figure 1**).

Vegetation consists predominantly of mature Douglas Fir up to 50 centimetres in diameter at the base with scattered pine and spruce with red cedar near the drainages. Underbrush is generally sparse but can be thick along drainages.

4.2 Access and Accommodation

The property is accessible via the gravel Gold Mountain Road, which follows the deactivated Kettle Valley railroad grade for three kilometres along the south side of the Similkameen River from the paved Highway 3 at a point 150m west of the Similkameen River bridge. A network of gravel roads and trails extends uphill from the old railroad grade, providing access to the property.

Suitable motel accommodation and meals can be obtained in Princeton, B.C.

4.3 Climate

The area is in the Montane Cordillera ecozone, with hot summers (mean range of 10 to 26°C in July) and cold winters (mean range of -11 to -2°C in January) and approximately 22 centimetres of annual precipitation. The property can be worked year-round; however, a light accumulation of snow should be expected in the winter.

4.4 Mining Suitability

Labour, contractors and supplies are readily available in Princeton, located 30 kilometres to the west, which has a long mining history, or in Keremeos, located 30 kilometres to the southeast. A three-phase power line runs along the south side of the Similkameen River, to within a few hundred metres of the property.

5.0 HISTORY

The Similkameen River has been known as a source of placer gold since the mid-nineteenth century, with significant production before 1890. Lode gold occurrences have been widely explored throughout the Hedley area. The Nickel Plate gold mine, the fourth largest gold producer in the province, located approximately 7km east of the Banbury property, produced 76,735, 496 grams of gold or 2,467,379 Troy ounces (*BCMEM Information Circular 2010-5*) between 1904 and 1996.

On ground now covered by the Banbury Property, two historical mineralized zones and five other areas of interest are known. The following table summarizes the historical work.

Name of	Years of	Work performed	Minerals Found
Occurrence	Work	-	
Maple Leaf	1900 – 1930's	Underground development, bulk sampling.	Narrow,
	1987	Trenching.	auriferous quartz
	1997	Core Drilling.	veins.
Pine Knot	1900's – 1937	Underground development, bulk sampling.	Narrow,
	1979 – 1984	Underground dev. bulk sampling, core drilling.	auriferous quartz
	1986 - 1987	Core drilling, trenching, soil sampling.	veins.
Mission/Flint	1936	Prospecting, sampling.	Shear zones
	1968	Trenching.	hosting gold,
	1972	Soil sampling, EM.	silver, zinc and
	1981	IP, core drilling.	copper.
	1986 - 1987	VLF-EM, soil sampling, geologic mapping, core	
		drilling.	
Windy II	1983 - 1985	VLF-EM, soil sampling, geologic mapping.	Sulphides in
			sedimentary
			rocks.
Henri Creek	1985	Soil, silt, rock sampling, ground magnetic survey.	None.
Louise/Brown	1983	Airborne magnetics, VLF-EM.	Gold in silts.
	1986 - 1987	VLF-EM, ground-borne magnetics, silt sampling.	
East Pettigrew	1980	Core drilling.	Anomalous gold,
	1987 - 2002	Soil, silt, rock sampling, geologic mapping, VLF-	silver and copper
		EM, ground magnetics, IP, trenching, core	concentrations.
		drilling.	

 Table 5.0-1: History of Work Performed on the Property

6.0 GEOLOGY (AFTER BURGERT 2012)

The Banbury property lies on the contact between the Stemwinder Mountain and Whistle Formations of the Late Triassic to Early Jurassic Nicola Group of the Quesnel Terrane. These steeply-dipping, north-striking units have been intruded by a dioritic Hedley intrusion known as the Banbury Stock (**Figure 2**).

The Stemwinder Mountain Formation underlies the western portion of the property, consisting of thin-bedded, generally calcareous argillite, siltstones and impure limestone interbedded with variably pyritic, black organic argillite. Stratigraphically overlying this to the west is the Copperfield breccia at the base of the Whistle Creek Formation, with a width of 350 metres. Clasts are variable, dominantly fossiliferous limestone, argillite and chert, ranging from pebbles to boulders in size. Particularly near its basal contact, it contains 10-50 metre blocks of argillite and limestone. The matrix is black to buff, and limy to non-calcareous. The upper contact of the Copperfield breccia is generally marked by layer(s) of chert pebble conglomerate. The remainder of the Whistle Creek Formation consists of fine to medium grained andesitic and rhyolitic tuffs, with a minor non-calcareous clastic fraction and several thin limestone lenses (Sanford, 1988b).

The Banbury Stock is an east-west trending stock and associated dyke swarm, measuring 400 x 1500 metres, which intrudes rocks of the Stemwinder Mountain Formation, the Copperfield breccia and the Whistle Creek Formation. Two major intrusive phases, hornblende diorite and quartz diorite, have been differentiated along with aerially restricted porphyritic diorite dykes. The southern half of the stock is composed of dark green, medium to coarse-grained, equigranular, hornblende diorite with local finely disseminated pyrite, pyrrhotite and magnetite. The northern half of the stock consists of light grey, fine to medium-grained quartz diorite with sparse pyrite and pyrrhotite. Contacts between the phases and with the intruded rock are highly irregular. Porphyritic diorite forms dyke/sill swarms and discrete dykes up to 20 metres wide within 300 metres of the stock contacts. The dykes/sills are green to purple in colour and variably porphyritic, with euhedral hornblende and feldspar phenocrysts and 2-3% finely disseminated pyrrhotite.

Narrow dykes of three types, thought to be related to the younger Bromley Batholith/Cahill Creek Pluton, have been recognized on the Banbury property. Felsic dykes up to 10 metres wide are light grey and aphanitic, with up to 3% pyrrhotite. Feldspar porphyry dykes up to 3 metres wide are grey with 20% medium-grained feldspar phenocrysts. Green and spotted andesite dykes are up to 5 metres wide with extensive strike lengths (Sanford, 1988a).

The Nicola Group rocks are weakly to moderately hornfelsed regionally and local slaty cleavage is developed in the argillites. A weak contact metamorphic (hornfels) aureole has developed within 70 metres of the Banbury Stock, characterized by silicification or development of buff marble. Beds and pockets of garnet-pyroxene skarn have been identified locally within 15 metres of the contact (Sanford, 1988a).

7.0 EXPLORATION

7.1 Summary of Exploration Work Performed By or On Behalf of the Issuer

The following is a chronology of exploration work performed on the property by or on behalf of the issuer, 0838331 B.C. Ltd.

- 2010: 19 soil samples, 5 silt samples, 54 rock samples (AR32213 Burgert and Dandy).
- 2011: 579 soil samples, 23 rock samples (AR33455 Burgert).

2012: Exploration work performed by the author of this report comprising 11 soil samples; 9 rock samples; and excavation, mapping and sampling of 1 trench measuring 4.5m2 x 0.3m to 0.5m deep.

7.2 Exploration Area 2012-A: Grid Location 5,470,600N, 708,300E

Soil samples taken at this location during 2011 contained 1,568ppb gold and 1,008.4ppb gold, 8.8ppm antimony, 2.5ppm and 4.1ppm silver, 183.6ppm copper and 138.1ppm arsenic.

The site is located on a steep (\sim 45°), easterly facing, sparsely wooded slope with minor outcrop. Soil depths were approximately 0.3m to 0.5m and comprised talus fines mixed with angular, locally derived, pebble sized talus fragments.

Specimens from small outcrops and talus boulders indicated that the country rock was silicified calcareous argillite. A calcite vein had been brecciated into fragments up to 5cm in size and healed by a quartz stockwork of 1mm to 3mm veinlets comprising up to 10% of the rock.

Visible sulphides observed were trace amounts of pyrite and chalcopyrite in the quartz. In addition, rusty limonite coatings were evident on many of the rock fragments.

Select rock sample number 22702 of altered, limonitic intrusive rock, taken 12m to the southwest of the carbonate/quartz veining, contained 0.09g/t gold.

After receipt of initial assay results, a small, detailed soil sample grid was surveyed centred on the original gold anomalous 2011 soil sample site. The grid was surveyed using three contour lines spaced 10m apart using 10m sample spacing. A total of 8 soil samples were taken (see **Figure 4 inset**). Gold concentrations in seven of the 2012 soil samples ranged from 2ppb gold to 48ppb gold, with one anomalous sample containing 310ppb gold. This anomalous sample was taken from 10m directly downhill of the original 2011 gold anomalous soil sample, indicating two possibilities:

- that downslope migration of gold in soils from the original 2011 sample site had occurred, or
- that the strike of mineralization was at right angles to the contour lines.

An area measuring 4.5m2 was trenched, at the location of the quartz/carbonate veining. Overburden depths range from 0.3m to 0.5m (see **Figure 5**). The exposed bedrock comprises calcareous argillite country rock with beds 3cm to 30cm thick with a bedding attitude of 080/45°S. The argillite hosts a 0.3m to 0.5m thick calcite vein containing argillite clasts ranging from 1cm to 10cm in size comprising from 10% to 90% of the vein. The vein attitude is 068/85°S to 90° vertical. A network of quartz stringers ranging from 1mm to 20mm thick comprise approximately 10% to 60% of the calcite vein. Occasional clots of limonite suggest, based on colour of the limonite, the presence of pyrite and/or sphalerite.

The quartz stringers extend 0.65m northerly from the calcite vein into the argillite country rock. Here the stringers were generally only 1mm to 2mm thick and comprise less than 5% of the rock.

Sample number 22710, a select sample taken from the trench, contained 11.0g/t gold.

Sample number 22711, a select sample taken from a small outcropping 2.5m northeast of the trench, contained 2.44g/t gold.

The calcite vein with quartz stringers was recognized in the west wall of a road cut located approximately 26m to the northeast of the trench. Sample number 22712, a discontinuous chip sample of the calcite vein hosting the chalcedony stringers in the road cut, contained 0.10g/t gold. At this location trace amounts of chalcopyrite and pyrite were observed in the quartz.

Nearby historic diamond drill hole numbers DH-01, DH-38, DH-39, DH-46, DH-47 and DDH NB-85-01 are oriented in such a direction that the mineralized structure would not have been intersected in the holes (**Figure 4**).

DH-01 azimuth: 284.61° dip: -40° length: 18.29m capsule geology: argillite with sandy beds.
DH-38 azimuth : n/a dip: -90° length: 121.62m capsule geology: argillite and two narrow diorite/andesite dykes; local (sic) quartz and carbonate stringers.

• DH-39

azimuth: 268.61° dip: -45°

length: 117.96m

capsule geology: andesite and one diorite dyke containing minor sulphides.

• DH-46

azimuth: 278.61° dip: -45° length: 153.01m capsule geology: argillite and greywacke with one porphyritic andesite dyke.

• DH-47

azimuth: n/a dip: -90° length: 197.21m capsule geology: argillite and greywacke with two diorite dykes containing minor sulphides. **DDH NB-85-01**

DDH NB-85-01

 azimuth: 090°
 dip: -58°
 length: 426.70m
 capsule geology: calcareous sedimentary rocks with numerous diorite/andesite dykes.

7.3 Exploration Area 2012-B: Grid Location 5,470,400N, 708,400E

The soil sample taken at this location during 2011 contained 135ppb gold. The site is located on a moderate (~33°), westerly facing, heavily wooded, moss covered slope with sparse outcrop. The site is approximately 15m uphill from and to the east of northerly flowing Henri Creek. Soil depths are generally greater than 0.5m and comprise talus fines mixed with angular, locally derived, pebble to boulder sized talus fragments. Black argillite cobbles were found in the original soil sample hole.

A search for outcrop in the vicinity revealed a large outcrop of black, slightly limonitic argillite located 120m at 147° azimuth at approximately 50m in elevation higher than the original gold

anomalous soil sample. Rocks observed in mossy talus boulders on the slope below this outcrop comprise limonitic and non-limonitic argillite and lithic wacke. A specimen of limestone breccia/conglomerate was also found. No visible quartz veining was found on the slope.

Sample number 22703, a composite chip sample of lithic wacke boulders containing limonite clots after sulphides contained 0.03g/t gold. This sample was taken at a location 36m at 035° azimuth at approximately the same elevation as the original gold anomalous soil sample.

Subsequent searches for buried, mineralized talus boulders in the vicinity of the original gold anomalous soil sample site revealed a 0.6m boulder of limonitic siltstone located approximately 2.5m south of the site of the original soil sample. Composite chip sample number 22707 of this boulder contained 0.158g/t gold.

Three soil samples were taken from a contour line located 10m in elevation above the original soil sample site. The soil samples were taken 10m apart. All three 2012 soil samples from this site contained trace amounts of gold. In addition, an expanded search was performed for mineralized talus boulders, of which none were found.

7.4 Exploration Area 2012-C: Grid Location 5,471,300N, 708,100E

The soil sample taken at this location during 2011 contained 114ppb gold and 554ppm copper.

The original 2011 sample site is located on an arid northeast facing slope with no outcrop. Fragments of rock from the original 2011 soil sample hole comprise limonite stained granodiorite with less than 1% pyrite grains disseminated throughout the rock. Sample 22704 comprised chips from the soil sample hole plus chips from surrounding talus cobbles; and contained 0.03g/t gold.

7.5 Exploration Area 2012-D: Grid Location 5,471,400N, 708,100E

The soil sample taken at this location during 2011 contained 172ppb gold.

The original 2011 sample site is located on an arid northeast facing slope with abundant outcrop. Rocks in the area of the original 2011 soil sample site comprise diorite and hornfels. The hornfels is after argillite. Occasional zones of limonite staining were observed.

Sample number 22705 is a composite chip sample of limonitic talus boulders; and contained <0.01g/t gold.

7.6 Exploration Area 2012-E: Grid Location 5,471,055N, 708,361E

A large outcrop of diorite located on the north side of a steep ($\sim 45^{\circ}$) bulldozer trail contains abundant limonite coated fractures oriented at 035/90°. A single 1mm to 10mm thick quartz vein is oriented at 105/90°.

Sample number 22706 was a composite chip sample across 4m of the outcrop; and contained 0.02g/t gold.

8.0 SAMPLING METHOD AND APPROACH

8.1 Soil Samples

Soil samples were taken from predominantly talus fines soil with abundant included coarser rock fragments. An attempt was made to identify, on the basis of soil colour, any distinguishable soil horizon development. In the areas sampled during the 2012 program there is no appreciable development of soil horizons other than a thin layer of composted organic material lying on the upper surface of the soil.

Soil sample holes were excavated using a Geotul hammer/mattock to a depth at which the talus fines comprised the largest percentage of the soil. This generally occurred at 5cm to 15cm below the organic layer. Pebbles of rock were removed by hand and approximately one-half kilogram of soil was placed into numbered kraft soil sample bags.

Sample sites were marked using coloured, plastic surveyor's ribbon with the sample number placed on the ribbon using a permanent marker with black ink. The surveyor's ribbon was tied onto adjacent woody vegetation; or lacking woody vegetation onto large fragments of rock and placed adjacent to the sample hole.

The filled kraft sample bags were placed into a large poly rock sample bag to provide protection from spilling and abrasion in the packsack during the remainder of the traverse. At the end of the day, the soil sample bags were removed from the poly rock sample bag and air dried in the geologist's locked hotel room.

8.2 Rock Samples

Rock chip samples were taken using an Estwing rock hammer; or an Estwing rock hammer point as the chisel and a Geotul hammer/mattock to deliver the force. Samples were placed into 6mil poly sample bags along with a uniquely numbered tyvek tag from a 2-part tag booklet. The poly sample bags were numbered with an identical number as the tyvek tag using a permanent marker with black ink. The poly bags were closed using locking poly cable ties (zap straps). The filled rock sample bags were stored in the locked geologist's pickup truck or in the locked geologist's hotel room.

Rock sample sites were marked using coloured, plastic surveyor's ribbon with the sample number placed on the ribbon using a permanent marker with black ink. The surveyor's ribbon was tied onto adjacent woody vegetation; or lacking woody vegetation, onto large fragments of rock and placed adjacent to the sample location.

Rock samples were taken using a variety of techniques:

- select samples were taken of specific mineralized or altered boulders to characterize their metal content;
- composite chip samples were taken either along lines across an outcrop or from a number of angular boulders where the boulders appeared to be derived from a nearby bedrock source; and
- continuous chip samples were taken across mineralized structures to determine, in a semi-quantitative manner, the metal content of the structure.

Sample weights ranged from 0.25kg for individual select specimens, to 9kg for a deeply chiselled continuous chip sample.

9.0 SAMPLE PREPARATION, ANALYSIS AND SECURITY

9.1 Field Procedures

Samples remained in the possession of the author of this report until they were placed in woven poly sacks for shipping to AGAT Laboratories Ltd. sample preparation facility located at 120-6800 Glenlyon Parkway in Burnaby, B.C. Sample sacks were secured for shipping using locking poly cable ties (zap straps). Samples were delivered by the author of this report to Greyhound Express contractors located in either Hedley or Princeton; or on occasion directly to the AGAT sample preparation lab in Burnaby.

No sample splitting, sample reduction or sample preparation occurred prior to submittal of the samples to the lab. No aspect of the sample preparation was performed by an employee, officer, director or associate of 0838331 B.C. Ltd.

9.2 Lab Procedures

AGAT Laboratories Ltd. is accredited for specific tests as listed in the laboratory's current scope of accreditation by the following organizations:

- The Standards Council of Canada (SCC)
- The Canadian Association for Laboratory Accreditation (CALA)
- QMI-SAI Global

AGAT Laboratories Ltd. is accredited and certified to the International Organization for Standardization for the following standards:

- ISO 9001
- ISO/IEC 17025

Details of the sample preparation and sample analysis techniques are shown in **Section 16.0** of this report.

9.3 Author's Opinion

The author of this report is of the opinion that the security, sample preparation and analytical procedures used during the exploration programs and by AGAT Labs Ltd. were adequate to accurately determine the concentrations of elements in the samples taken.

Given the high concentrations of gold encountered during the rock sampling program to date, during future programs the following Quality Assurance/Quality Control procedures must be observed.

- Field samplers should ensure that an adequate number of field duplicate samples are taken during the exploration work. This will ensure that a sense of the variability of assay grades is obtained as well as the absolute assay grades themselves.
- Field samplers should leave certain regularly occurring numbers unused for sampling in the field.

Standardized samples and sample blanks should be alternately inserted at the unused sample numbers under controlled conditions in camp. The procedure of inserting the Standards and blanks commonly takes place while preparing the samples for shipment to the preparation lab. The Standards used should be standardized for moderate concentrations of gold and high concentrations of gold. Sample blanks should be selected for their similarity in hardness and grindability to the mineralized material on the property.

10.0 INTERPRETATION AND CONCLUSIONS

- 1. The standard -80 mesh soil sampling technique is well suited to discovering occurrences of gold mineralization on the property.
- 2. The correlation appears to be good between the occurrence of highly anomalous soil sample results and the occurrence of nearby high grade concentrations of gold in bedrock. At exploration area A; for example, the presence of an extremely anomalous soil sample result for gold (>1,000ppb Au) accurately predicted the presence of a high grade bedrock source of gold.

The presence of a nearby soil sample gold result at an order of magnitude lower concentration (310ppb Au) was still a good indicator of a high grade bedrock gold source nearby.

- 3. However, the correlation appears to be poor between moderately anomalous gold soil sample results and the occurrence of nearby concentrations of gold in bedrock. At exploration areas B to D; for example, gold soil sample results greater than 100 ppb (Area 2012-B: 135ppb Au; Area 2012-C: 114ppb Au; Area 2012-D: 172ppb Au) did not accurately predict the presence of either high grade concentrations of bedrock gold or low grade concentrations of bedrock gold.
- 4. The density of soil sampling required to accurately predict the presence of all sources of high grade gold would be problematic in terms of cost, as even 10m spacing of soil samples in the case of exploration area 2012-A, failed to indicate nearby bedrock gold where the samples were not taken directly over the geologic structure hosting the gold.
- 5. Despite the fact that the high gold grade rock samples did not appear to contain appreciable amounts of typical gold indicator metals, the fact remains that nearby soil samples that did not contain highly anomalous concentrations of gold, did indicate anomalous levels of antimony, silver, arsenic and to a lesser extent, copper. These typical gold indicator elements were likely contained in the alteration halo associated with the bedrock gold source and therefore remain a good exploration tool in the search for gold.
- 6. It is the opinion of the author that taking large samples is key to obtaining indicative gold assay results on the Banbury property.
- 7. In order to be able to quantify the degree of variability in the gold grades obtained, taking duplicate samples on a regular basis is required.

The use of standard samples and blank samples will provide a quantifiable measure of laboratory accuracy.

8. It is the author's conclusion that the geologic character and tenor of the newly discovered prospect at exploration area A, when considered in terms of currently high gold prices, is of sufficient merit to warrant a stripping, trenching, channel sampling, geologic mapping, and drilling program costing approximately \$50,000.

11.0 RECOMMENDATIONS

A program on the Banbury Gold of property reconnaissance drilling is hereby recommended, estimated to require the following approximate budget.

	Table 10.0-1 Recommended Budget		
Location: Exploration Area 2012-A	Gold Zone - Drilling Program		
Personnel		Cost (\$)	Total Costs (\$)
Geologist	5 days @ \$850/day	4,250	
Mine Manager	5 days @ \$850/day	4,250	
Sub-total		8,500	8,500
Sample Analysis			
Drill core – ICP multi-element	20 samples @ \$15.00/sample	300	
Drill core – Fire Assay Gold	44 samples @ \$20.00/sample	880	
Sub-total		1,180	1,180
Drilling			,
Prospecting drill	\$100/m x 200m	20,000	
Mobilization/demobilization		3,000	
Mud, expendables		500	
Labour charges	Water line, moving onto setups, etc.	5,000	
Sub-total		28,500	28,500
Reclamation			
After drilling	lot	1,000	
Sub-total		1.000	1.000
Transportation and Fuels			
Truck Rentals	50/day x 2 = 100/day x 5 days	500	
Fuel (drill)	\$300 total	300	
Fuel (trucks)	35/day x 2 = 70/day x 5 days	350	
Sub-total		1.150	1,150
Accommodation and Food		-,	-,
Hotel	\$100/person/day x 30 person days	3,000	
Meals	\$35/person/day x 30 person days	1,050	
Sub-total		4,050	4,050
Miscellaneous		1,020	1,000
Satellite phone		200	
Sub-total		200	200
Equipment Rental		200	200
Bulldozer for road/trail building		4,000	
Sub-total		4,000	4,000
Freight		7,000	т,000
Core samples	6 sacks x \$35/sack	210	
Sub-total	U SACKS A QJJ/SACK	210	210
Sub-total		210	210
TOTAL: DRI	LILING PROGRAM	Approx.	48,790
		Tippi OA:	10,770

12.0 REFERENCES

Burgert, A., Dandy, L., 2011, Assessment Report describing Reconnaissance Rock Sampling, Silt Sampling, Soil Sampling, and Orthophoto Mapping on the Banbury Property: BC Ministry of Mines Assessment Report #32213, March 15, 95p.

Burgert, A., 2012; Assessment Report describing Grid Soil Sampling and Rock Sampling on the Banbury Property: BC Ministry of Mines Assessment Report #33455,February 29, 113p.

Camsell, C., 1910; Geology and Ore Deposits of the Hedley Mining District: Geological Survey of Canada, Memoir 2.

Crooker, G.F., 2002; Geophysical Report on the WP, W, John, Van, Paul and GH Mineral Claims: BC Ministry of Mines Assessment Report #27080.

Ettlinger, A. D., Meinert, L.D., Ray, G.E., 1992, Gold Skarn Mineralization and Fluid Evolution in the Nickel Plate Deposit, British Columbia: Economic Geology v. 87, p.1541-1565.

Kregosky, R., 1987; Drilling Report on the Mission Group: BC Ministry of Mines Assessment Report #16916.

Mark, D.G., 1983; Geophysical Report on Airborne Magnetics and VLF-EM Surveys over the Jan Claim Group and Louise Claim Group: BC Ministry of Mines Assessment Report #12020.

Mark, D.G., 1983; Geophysical Report on a VLF-EM Survey over the Skiddoo1 and Windy 2 Claims: BC Ministry of Mines Assessment Report #11855 and 11993.

McAllister, S.G. and McPherson, M.D., 1988; Geological, Geochemical, Trenching and Diamond Drilling Report on the Similkameen Property: BC Ministry of Mines Assessment Report #17012.

Ministry of Energy and Mines, Minister of Mines Annual Reports: 1900, 1901, 1904, 1906, 1908, 1927, 1932, 1933, 1934, 1935, 1936, 1937 and 1968.

Peto, P., 1986; Geological, Geophysical and Geochemical Assessment Report on the Mission Group: BC Ministry of Mines Assessment Report #15630.

Phendler, R.W., 1981; Diamond Drilling Report on the Mission Group: BC Ministry of Mines Assessment Report #09222A.

Ray, G. E., Dawson, G.L., 1988a, Geology and Mineral Occurrences in the Hedley Gold Camp (1:25,000 map), British Columbia Geological Survey Open File 1988-6.

Ray, G. E., Dawson, G.L., 1994, Geology and Mineral Deposits of the Hedley Gold Skarn District, Southern British Columbia, British Columbia Geological Survey Bulletin 87, 158p.

Ray, G. E., Dawson, G.L., Simpson, R., 1988b, Geology, Geochemistry and Metallogenic Zoning in the Hedley Gold-Skarn Camp, 1987 Geological Fieldwork, British Columbia Ministry of Energy, Mines and Petroleum Resources, p. 59-80.

Royer, G.A., 1985; Combined Geological Report on the Windy 2 Claim: BC Ministry of Mines Assessment Report #13310.

Sanford, M. R., 1986, Drilling on the Banbury Claim Group, British Columbia Ministry of Energy, Mines and Petroleum Resources Assessment Report #15,601, 24p.

Sanford, M. R., 1988a, Summary Report on 1987 Exploration on the Banbury-1 Group, British Columbia Ministry of Energy, Mines and Petroleum Resources Assessment Report #16746, 271p.

Sanford, M. R., 1988b, Summary Report on 1987 Exploration on the Banbury-1 Group, British Columbia Ministry of Energy, Mines and Petroleum Resources Assessment Report #17631, 330p.

Smith, S. W., 1998, Geochemistry & Diamond Drilling Report on the 1997 Program - Banbury Property, British Columbia Ministry of Energy, Mines and Petroleum Resources Assessment Report #25518, 91p.

Timmins, W.G., 1987; Assessment Report on the Camsell Group, Rice Group, Brown Group; Ministry of Mines Assessment Report #15978.

White, G.E., 1980; Geophysical Report on an Induced Polarization Survey: BC Ministry of Mines Assessment Report # 09222B.

White, G.E, 1972; Geochemical and Geophysical Report on the Flint Claim Group: BC Ministry of Mines Assessment Report #03994.

13.0 STATEMENT OF COSTS

Banbury Property - Hedley B.C. 2012 Exploration Program Statement of Costs

Exploration Work type	Comment	Days			Totals
Personnel (Name)* / Position	Field Dave (list actual dave)	Dave	Rate	Subtotal*	
David Yeager, P.Geo.	Field Days (list actual days) Oct 15-19, 25, 26, Nov 21-23, Dec 8	Days 10.5	\$850.00	\$8,925.00	
David Jensen, P.Eng.	Oct 15-17, 25, 26, Nov 21-23, Dec 8 Oct 15-17, Nov 23	4.0	\$850.00	\$3,400.00	
David Jensen, F.Eng.	000 15-17, 100 25	4.0	\$000.00	\$12,325.00	\$12,325.00
Office Studies	List Personnel (note - Office only, c	lo not inc	ludo fiold		\$12,325.00
Report preparation	David Yeager, Consultant		\$850.00	\$3,400.00	
Other (specify)	Smartmap Ltd., geologic compilation	4.0	ψ030.00	\$1,000.00	
Other (specify)	Smartmap Etd., geologic compliation			\$4,400.00	\$4,400.00
Assays		No.	Rate	Subtotal	Ψ+,+00.00
Soil		11	\$10.00	\$110.00	
Rock		9	\$60.00	\$540.00	
KOCK		,	\$00.00	\$650.00	\$650.00
Transportation		No.	Rate	Subtotal	+000.00
truck rental		10.5	\$50.00	\$525.00	
fuel	4 tanks	4	\$120.00	\$480.00	
				\$1,005.00	\$1,005.00
Accommodation & Food	Dates - see Personnel above	No.			. ,
Hotel	14.5 man days	14.5	\$44.50	\$645.25	
Meals	14.5 man days	14.5	\$35.00	\$507.50	
				\$1,152.75	\$1,152.75
Freight, rock samples					-
	three sacks total	lot		\$130.70	
				\$130.70	\$130.70

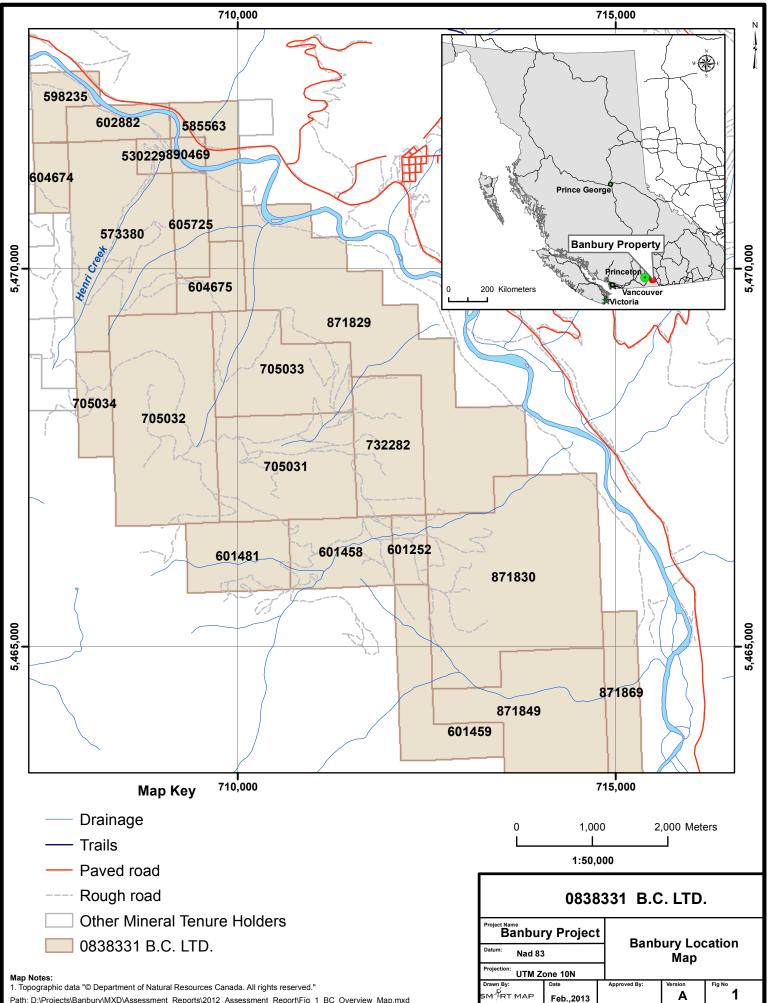
TOTAL Expenditures

\$19,663.45

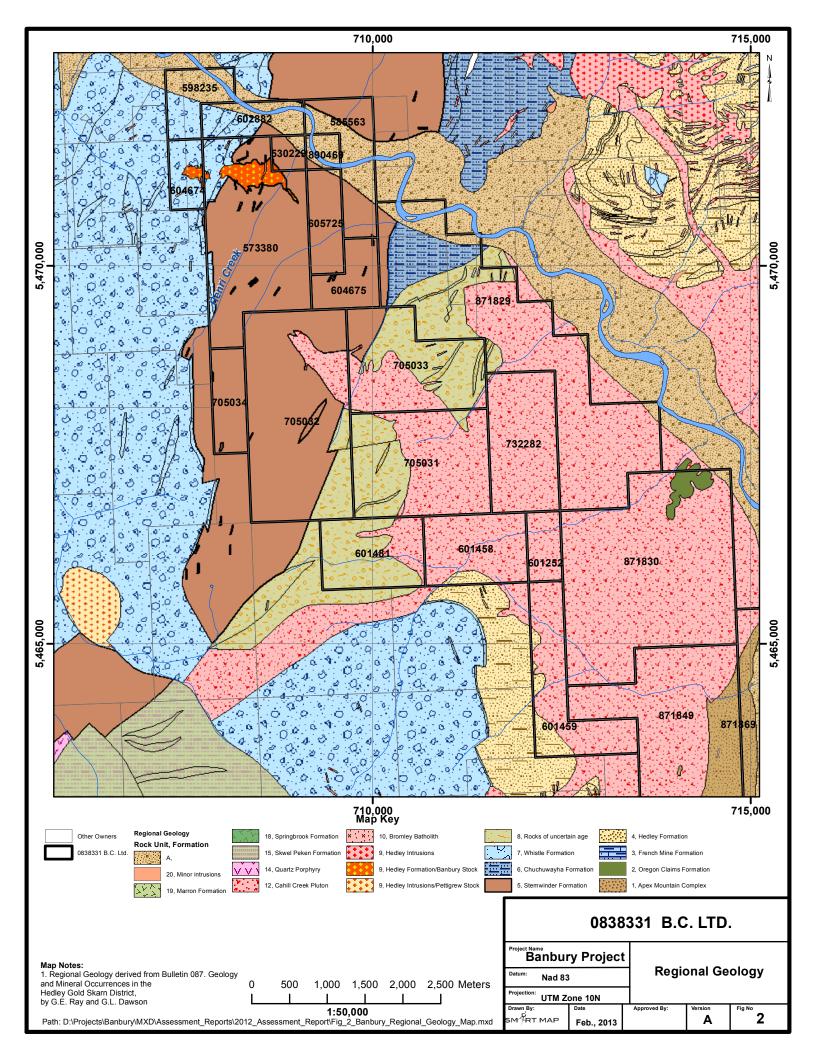
14.0 DATE AND SIGNATURE PAGE

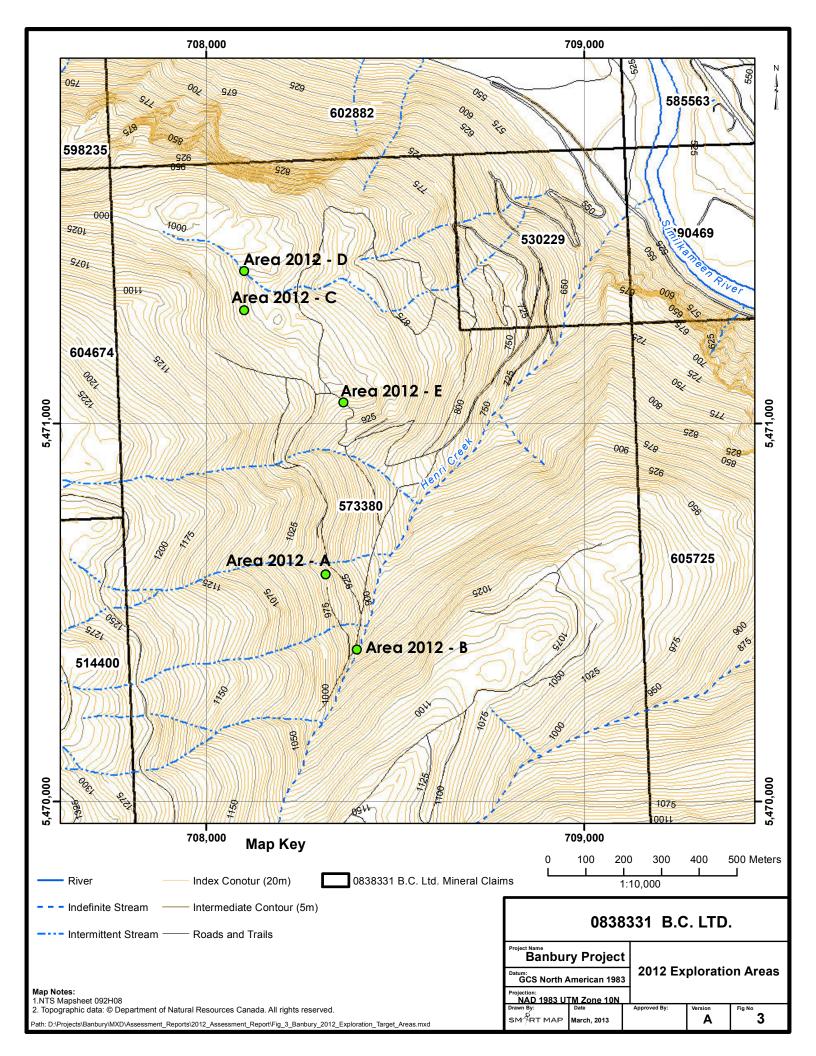
Certificate of Author, David A. Yeager

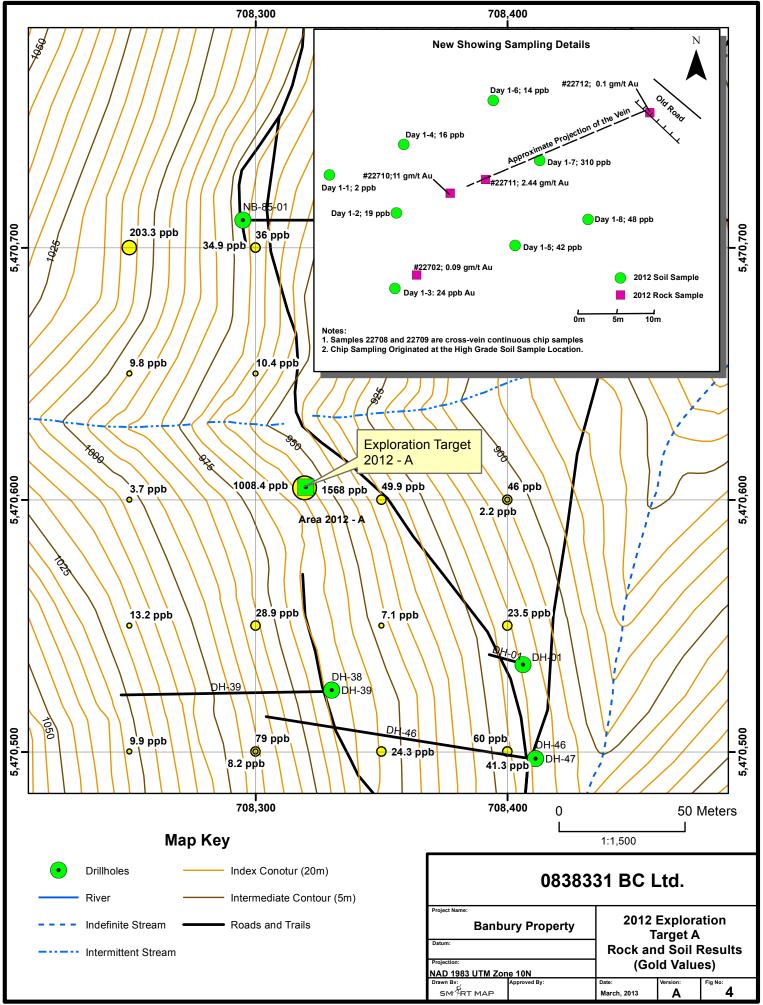
- I, David A. Yeager, do hereby certify that:
- 1. I am an independent consulting Geologist with residence and office located at 7575 Kilrea Crescent, Burnaby, British Columbia, Canada V5A 3N8.
- 2. This certificate applies to the report dated March 5, 2013 and titled "Assessment Report on the Banbury Property For 0838331 B.C. Ltd."
- 3. I graduated from the University of British Columbia in 1972 with a Bachelor of Science degree in Geology.
- 4. I have practiced my profession for 41 years since my graduation from university and have been involved in mineral exploration, development and mining in: Canada, United States of America, Mexico, Costa Rica, Colombia, Portugal, Ukraine, Indonesia and China.
- 5. My experience during my exploration and mining career has given me considerable knowledge in geological, geochemical and geophysical exploration techniques as well as in the planning, execution and evaluation of exploration drilling programs.
- 6. I am a practicing member in good standing of the Association of Professional Engineers and Geoscientists of British Columbia holding License Number 19855.
- 7. I was present at all times during the trenching, mapping and sampling program and performed the program reported on herein.
- 8. I hereby certify that to the best of my knowledge the Statement of Costs shown in Section 13.0 of this report is complete and correct.

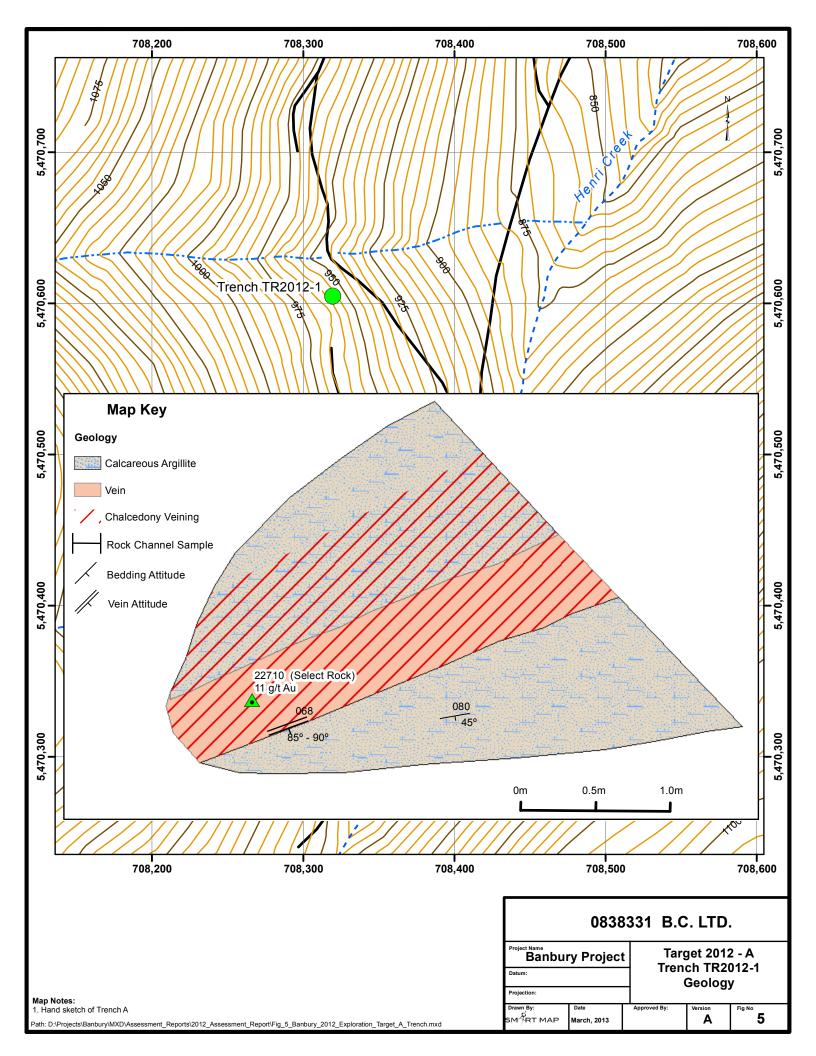

Dated this 5th Day of March, 2013.

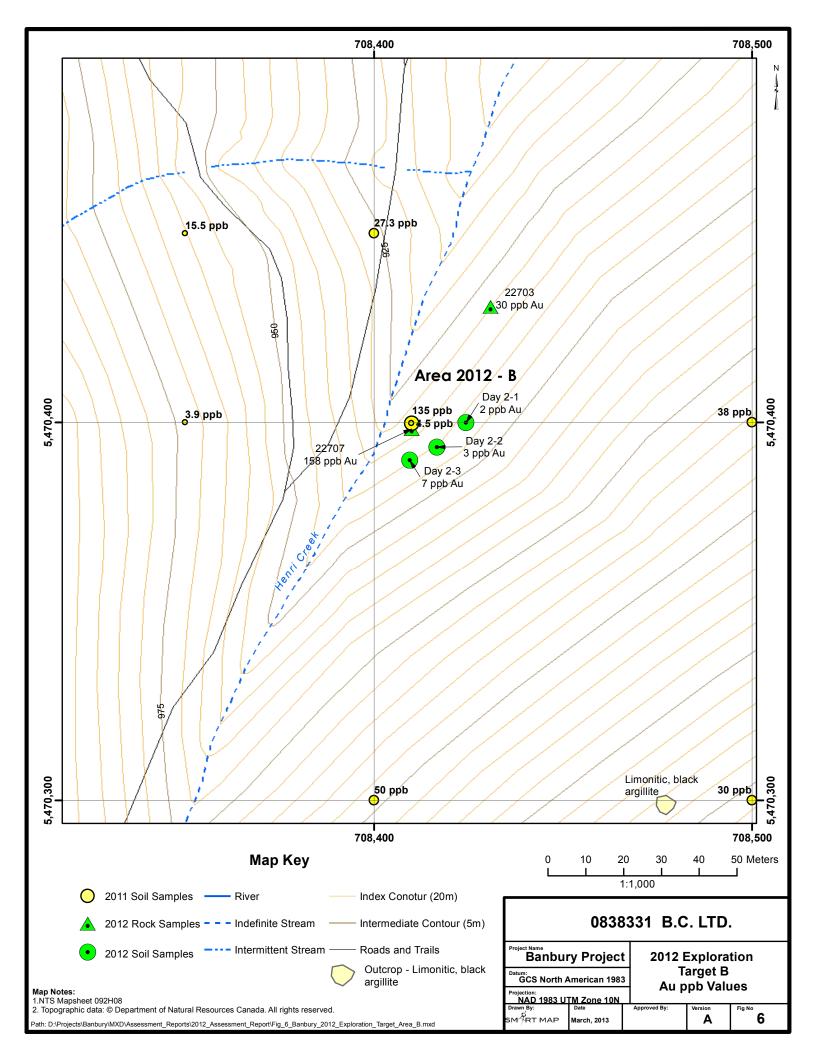
FSSIC BOVING A. YEAGER D.

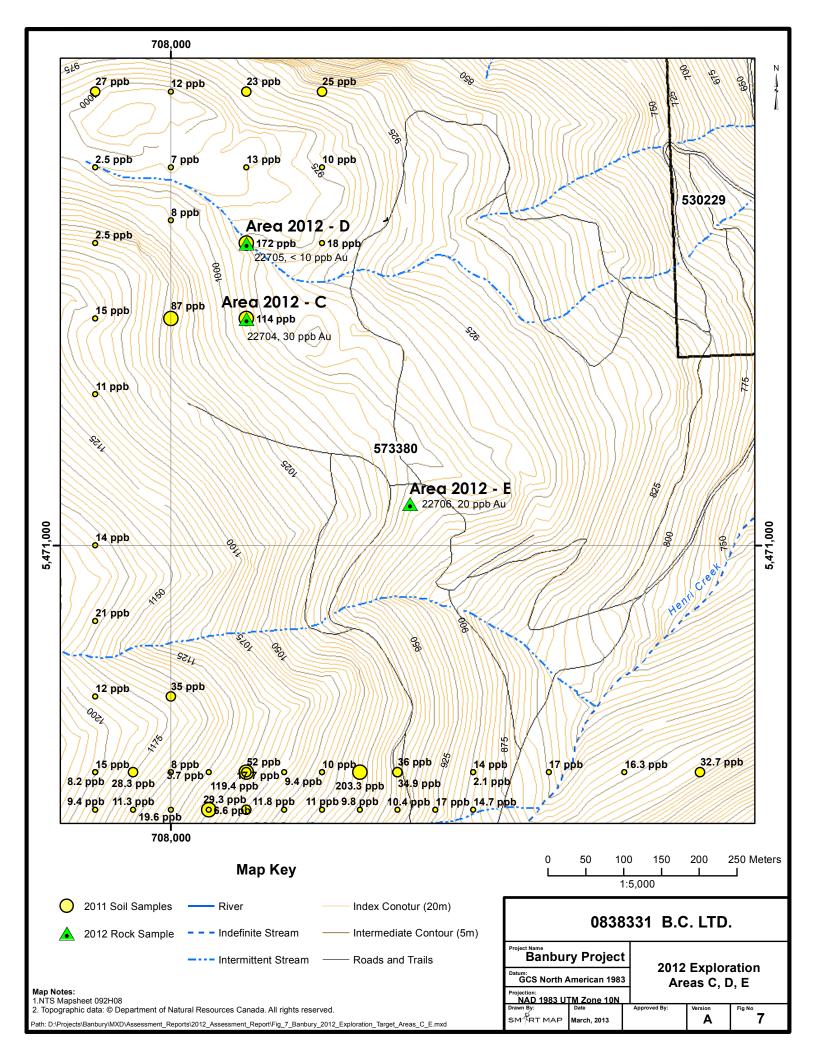

David A. Yeager, P.Geo. Independent Qualified Perso


BRITISH COLUMBIA SCIEN


15.0 ILLUSTRATIONS


Path: D:\Projects\Banbury\MXD\Assessment_Reports\2012_Assessment_Report\Fig_1_BC_Overview_Map.mxd





 $Document \ Path: D: \ Projects \ Banbury \ MXD \ Assessment \ Report \ 2012 \ Assessment \ Report \ Fig. \ 4 \ Banbury \ 2012 \ Exploration \ Target \ Area \ Are$

16.0 DESCRIPTION OF LABORATORY TECHNIQUES

Mining Division - Vancouver

AGAT Method Code: 211022, 211001, 211006 and 211012

AGAT SOP: MIN-12008, MIN-12009, MIN-12010, MIN-12011, MIN-200-12012, MIN-12013, MIN-200- 12013

Steps

- 1. Sample Reception Laboratory Information Management System (LIMS)
- 2. Mining, drying of geological samples
- 3. Mining branches, crushing mineralogical samples
- 4. Mining branches, sample size reduction of mineralogical samples
- 5. Mining branches, milling of minerological samples
- 6. Standard operating procedure for compressed air usage
- 7. Compressed air usage mining branches.

Sample Reception

- Samples will arrive via courier, client drop-off or picked up by AGAT Laboratories or an AGAT Representative.
- Samples are inspected and compared to the Chain of Custody (COC) and logged into the AGAT LIMS program.
- Deviations from the COC are noted in AGAT Laboratories' Sample Integrity Report (SIR) and sent immediately to the client via email and posted on the clients WebMINING account.

Drying: Specified samples are dried to 60°C.

Crushing and Splitting: Unless instructed by the client, specified samples are crushed to 75 per cent passing 10 mesh (2mm) and split to 250 g using a Jones riffler splitter or rotary split.

Pulverizing: Unless instructed by the client, specified samples are pulverized to 85 per cent passing 200 mesh (75µm).

Screening: After drying specific sample are shaken on an 80 mesh sieve with the plus fraction stored and the minus fraction sent to the laboratory for analysis.

All equipment are cleaned using quartz and air from a compressed air source. Blanks, sample replicates, duplicates, and internal reference materials (both aqueous and geochemical standards) are routinely used as part of AGAT Laboratories' quality assurance program.

Instrumentation Used

 Rocklabs Boyd Crusher with RSD Combo, TM Terminator Crushers, TM TM-2 Pulverizers are routinely used in sample preparation procedures.

Service Beyond Analysis

www.agatlabs.com

AGAT Method Code: 201 070

AGAT SOP: MIN-200-12034

Method Description: Determination of Metals in Geological Material using 4-Acid Digestion and an Inductively Coupled Plasma - Optical Emission Spectroscopy (ICP - OES) Finish

Prepared samples are digested with $HCIO_4$, HF and HNO_3 and taken to incipent dryness. It is then heated with HCl and diluted to 50mL with de-ionized water.

While very aggressive, the solubility of some elements can be dependent on the mineral species present and as such, data reported from the 4-Acid digestion should be considered as representing only the leachable portion of a particular analyte. Some elements show poor recovery due to volatilization (B, As, Hg).

Blanks, sample replicates, duplicates, and internal reference materials (both aqueous and geochemical standards) are routinely used as part of AGAT Laboratories quality assurance program.

PerkinElmer 7300DV and 8300DV ICP-OES instruments are used in the analysis. Inter-Element Correction (IEC) techniques are used to correct for any spectral interferences.

Analytical Range					
Analyte	(ppm)	Analyte	(ppm)	Analyte	(ppm)
Ag	0.5 - 100	K	0.01% - 10%	Sc	1 - 10,000
AI	0.01% - 50%	La	2 - 10,000	Se	10 - 10,000
As	1 - 10,000	Li	1 - 10,000	Sn	5 - 1,000
Ва	1 - 10,000	Mg	0.01% - 50%	Sr	1 - 10,000
Ве	0.5 - 1,000	Mn	1 - 100,000	Та	10 - 1,000
Bi	1 - 10,000	Мо	0.05 - 10,000	Те	10 - 1,000
Са	0.01% - 50%	Na	0.01% - 10%	Th	5 - 10,000
Cd	0.5 - 1,000	Ni	0.5 - 10,000	Ti	0.005% - 10%
Се	1 - 10,000	Р	10 - 10,000	TI	5 - 10,000
Со	0.5 - 10,000	Pb	1 - 10,000	U	5 - 10,000
Cr	0.5 - 10,000	Р	50 - 50,000	V	0.5 - 10,000
Cu	0.5 - 10,000	Pb	2 - 50,000	W	1 - 10,000
Fe	0.01% - 50%	Rb	10 - 10,000	Y	1 - 1,000
Ga	5 - 10,000	S	0.005% - 10%	Zn	0.5 - 10,000
In	1 - 1,000	Sb	1 - 10,000	Zr	5 - 1,000

AGAT Method Code: 202 051, 202 551, 202 061, 202 561

AGAT SOP: MIN-200-12019

Method Description: Determination of Gold in Geological Samples by Lead Fusion Fire Assay with Atomic Absorption Spectroscopy (AAS) Finish.

Prepared samples are fused using accepted fire assay techniques, cupelled and parted in nitric acid and hydrochloric acid. Sample splits of 30 g are routinely used though 50 g may also be used (AGAT Code 202551 and 202 561).

202 061 and 202 561 samples are considered ore grade and a separate stream of analysis (including parting) is taken to differentiate them from trace level samples.

Blanks, sample replicates, duplicates, and internal reference materials (both aqueous and geochemical standards) are routinely used as part of AGAT Laboratories' Quality Assurance Program.

PerkinElmer AAnalyst 400 AAS instruments are used in the analysis.

AGAT Laboratories is a highly specialized, Canadian-based company that provides analytical laboratory services worldwide. We offer services to the Environmental, Energy, Mining, Industrial, Transportation, Agri-Food and Life Science sectors. With world-class facilities and state-of-the-art instrumentation, our qualified personnel adhere to our mission statement, delivering "Service Beyond Analysis"

AGAT Method Code: 202 120 Method Description: Metallic Screen – Gold Analysis AGAT SOP: MIN-200-12040

500g of crushed material (75% passing 2 mm) is pulverized using a ring and puck to ensure approximately 80 - 90% passing 75 µm. The material on top of the screen is referred to as the "plus" (+) fraction with the material passing through the screen is referred to as the "minus" (-) fraction. Both the "plus" fraction and "minus" fraction weights are recorded.

The entire "plus" fraction is sent for fire assay determination while two (30g) replicates of the "minus" are taken for fire assay determination. Either gravimetric gold determination or an analytical finish of ICP-OES is used.

Gold assay results are reported for both "plus" and "minus" fractions, weights of both fractions, and the calculated "total gold" of the sample.

The calculation for "total gold" is as follows:

Total gold $(g/t) = \frac{(Au ("minus") g/t x Wt. "Minus" x 10-6 t/g) + (Au ("plus") g/t x Wt. "Plus" x 10-6t/g))}{(Wt. ("minus") + Wt. ("plus") x 10-6 t/g}$

Blanks, sample replicates, duplicates, and internal reference materials (both aqueous and geochemical standards) are routinely used as part of AGAT Laboratories quality assurance program.

Either Mettler-Toledo Microbalances or PerkinElmer 7300DV and 8300DV ICP-0ES instruments are used in the analysis

Service Beyond Analysis

www.agatlabs.com

17.0 CERTIFICATES OF ANALYSIS

agat Laboratories

5623 MCADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: 0838331 BC LTD.

ATTENTION TO: DAVID JENSEN PROJECT NO: AGAT WORK ORDER: 12V652792 SOLID ANALYSIS REVIEWED BY: Yufei Chen, Analyst DATE REPORTED: Oct 26, 2012 PAGES (INCLUDING COVER): 7

Should you require any information regarding this analysis please contact your client services representative at (905) 501-9998

*NOTES	

All samples are stored at no charge for 90 days. Please contact the lab if you require additional sample storage time.

AGAT WORK ORDER: 12V652792 PROJECT NO: 5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: 0838331 BC LTD.

ATTENTION TO: DAVID JENSEN

			4	Acid Dig	gest - Me	etals Pac	kage, IC	P-OES fi	nish (20	1070)					
DATE SAMPLED: O	ct 16, 2012			DATE REC	EIVED: Oct	16, 2012		DATE	REPORTED): Oct 26, 20)12	SAN		Rock	
	Analyte:	Ag	Al	As	Ba	Be	Bi	Са	Cd	Ce	Co	Cr	Cu	Fe	Ga
	Unit:	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	%	ppm
Sample Description	RDL:	0.5	0.01	1	1	0.5	1	0.01	0.5	1	0.5	0.5	0.5	0.01	
22702		2.9	3.75	11	1860	<0.5	<1	0.99	0.9	8	18.3	20.0	76.2	5.25	16
22703		<0.5	0.57	<1	442	<0.5	13	29.9	<0.5	<1	0.6	15.3	1.3	0.36	<5
22704		<0.5	1.35	13	293	<0.5	18	23.6	<0.5	13	2.1	28.6	10.8	1.42	<5
22705		0.9	6.29	13	935	<0.5	<1	4.28	1.0	12	13.3	29.8	42.2	4.49	16
22706		2.4	7.76	32	446	<0.5	<1	6.15	1.3	11	26.0	41.4	152	6.75	14
	Analyte:	In	к	La	Li	Mg	Mn	Мо	Na	Ni	Р	Pb	Rb	S	Sb
	Unit:	ppm	%	ppm	ppm	%	ppm	ppm	%	ppm	ppm	ppm	ppm	%	ppm
Sample Description	RDL:	1	0.01	2	1	0.01	1	0.5	0.01	0.5	10	1	10	0.005	1
22702		2	1.63	3	39	1.55	932	1.1	2.09	7.6	927	4	30	0.018	2
22703		<1	0.12	2	2	0.36	592	<0.5	0.24	3.6	519	<1	<10	0.010	<1
22704		2	0.30	9	16	1.02	2380	0.8	0.03	15.9	352	<1	19	0.176	2
22705		2	0.92	4	16	1.46	1160	0.7	2.43	5.1	734	<1	19	<0.005	3
22706		<1	0.42	3	12	2.58	1460	2.1	1.33	6.8	589	<1	11	0.150	<1
	Analyte:	Sc	Se	Sn	Sr	Та	Те	Th	Ti	ті	U	v	w	Y	Zn
	Unit:	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm
Sample Description	RDL:	1	10	5	1	10	10	5	0.01	5	5	0.5	1	1	0.5
22702		6	<10	<5	377	<10	<10	<5	0.35	<5	<5	264	2	5	81.0
22703		2	16	<5	1060	<10	<10	<5	0.02	<5	22	21.5	2	3	11.6
22704		3	22	<5	1230	<10	<10	<5	0.06	<5	12	38.2	3	15	30.8
22705		12	14	<5	490	<10	<10	<5	0.34	<5	<5	187	4	9	66.5
22706		22	14	<5	380	<10	<10	<5	0.49	<5	<5	314	5	11	53.9

Certified By:

M. che

	A	AT	Laboratories
--	---	----	--------------

AGAT WORK ORDER: 12V652792 PROJECT NO:

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: 0838331 BC LTD.

Г

ATTENTION TO: DAVID JENSEN

			4 Acid Digest - Metals Package	e, ICP-OES finish (201070)	
DATE SAMPLED: Oc	t 16, 2012	· · · · · · · · · · · · · · · · · · ·	DATE RECEIVED: Oct 16, 2012	DATE REPORTED: Oct 26, 2012	SAMPLE TYPE: Rock
	Analyte:	Zr			
	Unit:	ppm			
Sample Description	RDL:	5			
22702		24			
22703		<5			
22704		18			
22705		8			
22706		15			

RDL - Reported Detection Limit Comments:

3817669-3817674 As, Sb values may be low due to digestion losses.

Certified By:

M. che

	AC	d a t	Laboratories
--	----	--------------	--------------

AGAT WORK ORDER: 12V652792 PROJECT NO: 5623 MCADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: 0838331 BC LTD.

ATTENTION TO: DAVID JENSEN

DATE SAMPLED: Oc	t 16, 2012			DATE RECEIVED: Oct 16, 2012	DATE REPORTED: Oct 26, 2012	SAMPLE TYPE: Rock
	Analyte:	Sample Login Weight	Au			
	Unit:	kg	ppm			
Sample Description	RDL:	0.01	0.01			
22702		0.75	0.09			
22703		4.69	0.03			
22704		3.24	0.03			
22705		0.33	<0.01			
22706		0.69	0.02			

Comments: RDL - Reported Detection Limit

Certified By:

J. che

AGAT Laboratories

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

Quality Assurance

CLIENT NAME: 0838331 BC LTD.

PROJECT NO:

AGAT WORK ORDER: 12V652792 **ATTENTION TO: DAVID JENSEN**

			Solic	l Anal	ysis						
RPT Date: Oct 26, 2012			REPLIC	ATE				REFER	RENCE MATE	RIAL	
PARAMETER	Batch	Sample Id	Original	Rep #1	RPD	Method Blank	Result	Expect	Recovery	Accepta	ble Limits
							Value	Value		Lower	Upper
										۰.	
4 Acid Digest - Metals Package, ICF	P-OES finish (2	201070)									
Ag	1	3817669	9.2	8.6	6.7%	< 0.5	13.1	13.0	101%	80%	120%
AI	1	3817669	2.71	2.62	3.4%	< 0.01				80%	120%
As	1	3817669	12	13	8.0%	< 1				80%	120%
Ва	1	3817669	834	821	1.6%	< 1				80%	120%
Be	1	3817669	< 0.5	< 0.5	0.0%	< 0.5	0.4	0.4	107%	80%	120%
Bi	1	3817669	15	15	0.0%	< 1				80%	120%
Са	1	3817669	7.49	7.33	2.2%	< 0.01				80%	120%
Cd	1	3817669	0.6	0.6	0.0%	< 0.5				80%	120%
Ce	1	3817669	11	11	0.0%	< 1				80%	120%
Co	1	3817669	2.33	2.48	6.2%	< 0.5				80%	120%
Cr	1	3817669	95.8	104	8.2%	< 0.5				80%	120%
Cu	1	3817669	51.4	49.0	4.8%	< 0.5	6041	6000	100%	80%	120%
Fe	1	3817669	2.11	2.13	0.9%	< 0.01				80%	120%
Ga	1	3817669	5	5	0.0%	< 5				80%	120%
In	1	3817669	4	3	28.6%	< 1				80%	120%
к	1	3817669	0.643	0.634	1.4%	< 0.01				80%	120%
La	1	3817669	6	7	15.4%	< 2				80%	120%
Li	1	3817669	23	23	0.0%	< 1				80%	120%
Mg	1	3817669	0.68	0.68	0.0%	< 0.01				80%	120%
Mn	1	3817669	609	616	1.1%	< 1				80%	120%
Мо	1	3817669	2.95	2.71	8.5%	0.5				80%	120%
Na	1	3817669	0.580	0.561	3.3%	< 0.01				80%	120%
Ni	1	3817669	15.9	16.2	1.9%	< 0.5				80%	120%
P	1	3817669	658	675	2.6%	< 10	636	600	106%	80%	120%
Pb	1	3817669	< 1	< 1	0.0%	< 1				80%	120%
Rb	1	3817669	31	32	3.2%	< 10				80%	120%
S	1	3817669	0.077	0.093	18.8%	0.005				80%	120%
Sb	1	3817669	3	3	0.0%	< 1				80%	120%
Sc	1	3817669	8	8	0.0%	< 1				80%	120%
Se	1	3817669	17	14	19.4%	< 10				80%	120%
Sn	1	3817669	< 5	< 5	0.0%	< 5				80%	120%
Sr	1	3817669	522	523	0.2%	< 1	389	390	100%	80%	120%
Та	1	3817669	< 10	< 10	0.0%	< 10				80%	120%
Те	1	3817669	< 10	< 10	0.0%	< 10				80%	120%
Th	1	3817669	< 5	< 5	0.0%	< 5				80%	120%
Ті	1	3817669	0.082	0.085	3.6%	< 0.01				80%	120%
TI	1	3817669	< 5	< 5	0.0%	< 5				80%	120%
U	1	3817669	8	6	28.6%	< 5				80%	120%
V	1	3817669	63.3	63.0	0.5%	< 0.5				80%	120%
W	1	3817669	2	3		< 1				80%	120%
Y	1	3817669	12	13	8.0%	< 1				80%	120%
AGAT QUALITY ASSURANC											ge 5 of 7

Results relate only to the items tested and to all the items tested

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

Quality Assurance

CLIENT NAME: 0838331 BC LTD.

PROJECT NO:

AGAT WORK ORDER: 12V652792 ATTENTION TO: DAVID JENSEN

Solid Analysis (Continued)

RPT Date: Oct 26, 2012			REPLIC	CATE				REFER	RENCE MATE	RIAL	
PARAMETER	Batch	Sample Id	Original	Rep #1	RPD	Method Blank	Result	Expect	Recovery	Accepta	ble Limits
PARAMETER	Balch	Sample lu	Original	Rep #1	RPD		Value	Value	Recovery	Lower	Upper
Zn	1	3817669	66.7	67.0	0.4%	< 0.5				80%	120%
Zr	1	3817669	33	34	3.0%	< 5				80%	120%

Certified By:

y. che

5623 MCADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

Method Summary

CLIENT NAME: 0838331 BC LTD.

AGAT WORK ORDER: 12V652792 ATTENTION TO: DAVID JENSEN

PROJECT NO:			: DAVID JENSEN
PARAMETER			
	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Solid Analysis	MIN 200 12002/12020		
Ag Al	MIN-200-12002/12020		ICP/OES
As	MIN-200-12002/12020		
Ba	MIN-200-12002/12020		ICP/OES
Be	MIN-200-12002/12020		ICP/OES
	MIN-200-12002/12020		ICP/OES
Bi	MIN-200-12002/12020		ICP/OES
Ca	MIN-200-12002/12020		ICP/OES
Cd	MIN-200-12002/12020		ICP/OES
Ce	MIN-200-12002/12020		ICP/OES
Co	MIN-200-12002/12020		ICP/OES
Cr	MIN-200-12002/12020		ICP/OES
Cu	MIN-200-12002/12020		ICP/OES
Fe	MIN-200-12002/12020		ICP/OES
Ga	MIN-200-12002/12020		ICP/OES
In	MIN-200-12002/12020		ICP/OES
к	MIN-200-12002/12020		ICP/OES
La	MIN-200-12002/12020		ICP/OES
Li	MIN-200-12002/12020		ICP/OES
Mg	MIN-200-12002/12020		ICP/OES
Mn	MIN-200-12002/12020		ICP/OES
Мо	MIN-200-12002/12020		ICP/OES
Na	MIN-200-12002/12020		ICP/OES
Ni	MIN-200-12002/12020		ICP/OES
P	MIN-200-12002/12020		ICP/OES
Pb	MIN-200-12002/12020		ICP/OES
Rb	MIN-200-12002/12020		ICP/OES
S	MIN-200-12002/12020		ICP/OES
Sb	MIN-200-12002/12020		ICP/OES
Sc	MIN-200-12002/12020		ICP/OES
Se	MIN-200-12002/12020		ICP/OES
Sn	MIN-200-12002/12020		ICP/OES
Sr	MIN-200-12002/12020		ICP/OES
Та	MIN-200-12002/12020		ICP/OES
Те	MIN-200-12002/12020		ICP/OES
Th	MIN-200-12002/12020		ICP/OES
Ті	MIN-200-12002/12020		ICP/OES
ті	MIN-200-12002/12020		ICP/OES
υ	MIN-200-12002/12020		ICP/OES
V	MIN-200-12002/12020		ICP/OES
w	MIN-200-12002/12020		ICP/OES
Y	MIN-200-12002/12020		ICP/OES
Zn	MIN-200-12002/12020		ICP/OES
Zr	MIN-200-12002/12020		ICP/OES
Sample Login Weight	MIN-12009		BALANCE
		BUGBEE, E: A Textbook of Fire	
Au	MIN-200-12019	Assaying	AAS

5623 MCADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: 0838331 BC LTD.

ATTENTION TO: DAVID JENSEN PROJECT NO: AGAT WORK ORDER: 12V658780 SOLID ANALYSIS REVIEWED BY: Yufei Chen, Analyst DATE REPORTED: Nov 06, 2012 PAGES (INCLUDING COVER): 7

Should you require any information regarding this analysis please contact your client services representative at (905) 501-9998

*NOTES

All samples are stored at no charge for 90 days. Please contact the lab if you require additional sample storage time.

AGAT WORK ORDER: 12V658780 PROJECT NO: 5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z IN9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatabs.com

CLIENT NAME: 0838331 BC LTD.

ATTENTION TO: DAVID JENSEN

DATE SAMPLED: No	ov 01, 2012		l	DATE REC	EIVED: Oct	31, 2012		DATE	REPORTED	: Nov 06, 2	012	SAM	IPLE TYPE	: Soil	
	Analyte:	Ag	Al	As	Ba	Be	Bi	Са	Cd	Се	Co	Cr	Cu	Fe	G
	Unit:	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	%	ppr
Sample Description	RDL:	0.5	0.01	1	1	0.5	1	0.01	0.5	1	0.5	0.5	0.5	0.01	
DAY 1-1		1.1	1.31	43	637	0.6	<1	1.25	0.6	9	14.6	37.0	74.3	3.85	9
DAY 1-2		0.6	1.46	55	816	0.6	<1	1.57	1.1	14	15.5	44.0	93.4	4.37	ł
DAY 1-3		1.0	1.61	42	1010	0.7	<1	1.41	0.8	14	13.6	41.0	86.4	4.32	13
DAY 1-4		1.6	1.93	38	766	0.7	<1	1.41	1.2	13	18.9	41.1	99.7	4.76	ŗ
DAY 1-5		1.8	5.40	84	780	0.9	<1	1.19	3.3	56	53.0	57.0	274	7.15	5
DAY 1-6		0.9	1.80	33	885	0.8	<1	1.39	1.1	15	16.6	42.3	95.0	4.52	11
DAY 1-7		1.2	2.02	56	642	0.8	<1	1.30	1.2	12	23.7	33.9	103	4.66	8
DAY 1-8		1.5	1.81	69	630	0.7	<1	1.74	2.8	21	53.2	37.6	233	7.68	<{
	Analyte:	In	к	La	Li	Mg	Mn	Мо	Na	Ni	Р	РЬ	Rb	S	St
	Unit:	ppm	%	ppm	ppm	%	ppm	ppm	%	ppm	ppm	ppm	ppm	%	ppm
Sample Description	RDL:	1	0.01	2	1	0.01	1	0.5	0.01	0.5	10	1	10	0.005	
DAY 1-1		<1	0.54	3	22	0.35	741	2.4	1.43	48.8	363	5	<10	0.012	2
DAY 1-2		3	0.67	5	21	0.46	1250	3.0	1.27	48.7	748	7	<10	0.022	3
DAY 1-3		3	0.93	5	23	0.49	799	2.3	1.51	42.2	375	5	<10	0.008	1
DAY 1-4		2	0.69	5	29	0.41	997	3.0	1.44	71.6	835	18	<10	0.028	1
DAY 1-5		<1	0.77	27	40	0.60	1490	9.2	0.24	184	1510	22	41	0.084	ε
DAY 1-6		<1	0.83	5	33	0.52	982	3.1	1.35	66.2	576	10	<10	0.019	3
DAY 1-7		<1	0.69	5	29	0.49	1000	3.7	1.27	77.7	635	9	11	0.021	f
DAY 1-8		<1	0.51	8	31	0.49	1790	5.1	0.74	216	3610	13	<10	0.097	15
	Analyte:	Sc	Se	Sn	Sr	Та	Те	Th	Ti	TI	U	v	w	Y	Zr
	Unit:	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm
Sample Description	RDL:	1	10	5	1	10	10	5	0.01	5	5	0.5	1	1	0.5
DAY 1-1		2	<10	<5	211	<10	<10	<5	0.21	<5	<5	94.2	<1	3	129
DAY 1-2		2	<10	<5	250	<10	<10	<5	0.22	<5	<5	114	1	5	148
DAY 1-3		3	<10	<5	257	<10	<10	<5	0.27	<5	<5	122	2	6	141
DAY 1-4		2	<10	<5	250	<10	<10	<5	0.20	<5	<5	104	1	5	192
DAY 1-5		11	<10	<5	161	<10	<10	<5	0.06	<5	<5	99.7	2	44	388
DAY 1-6		3	<10	<5	251	<10	<10	<5	0.22	<5	<5	109	1	6	209
DAY 1-7		3	<10	<5	207	<10	<10	<5	0.22	<5	<5	96.9	2	6	198
DAY 1-8		2	<10	<5	323	<10	<10	<5	0.11	<5	<5	83.8	2	12	450

Certified By:

	A	G	A	T	Laboratories
--	---	---	---	---	--------------

AGAT WORK ORDER: 12V658780 PROJECT NO:

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: 0838331 BC LTD.

ATTENTION TO: DAVID JENSEN

			4 Acid Digest - Metals Package	e, ICP-OES finish (201070)	
DATE SAMPLED: No	v 01, 2012		DATE RECEIVED: Oct 31, 2012	DATE REPORTED: Nov 06, 2012	SAMPLE TYPE: Soil
	Analyte:	Zr			
	Unit:	ppm			
Sample Description	RDL:	5			
DAY 1-1		27			
DAY 1-2		26			
DAY 1-3		33			
DAY 1-4		37			
DAY 1-5		21			
DAY 1-6		38			
DAY 1-7		37			
DAY 1-8		28			

Comments: **RDL - Reported Detection Limit**

3879658-3879665 As, Sb values may be low due to digestion losses.

Certified By:

y. che

	A	G	A	Т	Laboratories
--	---	---	---	---	--------------

AGAT WORK ORDER: 12V658780 PROJECT NO:

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: 0838331 BC LTD. Г

ATTENTION TO: DAVID JENSEN

Fire Assay - Trace Au, AAS finish (202051)											
DATE SAMPLED: Nov 01, 2012 DATE RECEIVED: Oct 31, 2012 DATE REPORTED: Nov 06, 2012 SAMPLE TYPE: So											
	Analyte:	Sample Login Weight	Au								
	Unit:	kg	ppm								
Sample Description	RDL:	0.01	0.002								
DAY 1-1		0.40	0.017								
DAY 1-2		0.49	0.019								
DAY 1-3		0.56	0.024								
DAY 1-4		0.43	0.016								
DAY 1-5		0.39	0.042								
DAY 1-6		0.47	0.014								
DAY 1-7		0.51	0.310								
DAY 1-8		0.41	0.048								

Comments: RDL - Reported Detection Limit

Certified By:

y. che

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

Quality Assurance

CLIENT NAME: 0838331 BC LTD.

PROJECT NO:

AGAT WORK ORDER: 12V658780 ATTENTION TO: DAVID JENSEN

Solid Analysis

RPT Date: Nov 06, 2012		[REPLIC			[]	а <u>н</u> та жаз	REFE		RIAL	
					<u> </u>	Method Blank		<u> </u>			ble Limits
PARAMETER	Batch	Sample Id	Original	Rep #1	RPD	Method Dialik	Result Value	Expect Value	Recovery	Lower	Upper
4 Acid Digest - Metals Package, ICP-OE	S finish (2	201070)				<u> </u>					
Ag	1	3879658	1.1	0.9	20.0%	< 0.5	12.6	13.0	97%	80%	120%
Al	1	3879658	1.31	1.52	14.8%	< 0.01				80%	120%
As	1	3879658	43	42	2.4%	< 1				80%	120%
Ва	1	3879658	637	717	11.8%	< 1				80%	120%
Be	1	3879658	0.6	0.6	0.0%	< 0.5	0.4	0.4	90%	80%	120%
Bi	1	3879658	< 1	< 1	0.0%	< 1				80%	120%
Са	1	3879658	1.25	1.58	23.3%	< 0.01				80%	120%
Cd	1	3879658	0.6	0.6	0.0%	< 0.5				80%	120%
Ce	1	3879658	9	10	10.5%	< 1				80%	120%
Со	1	3879658	14.6	14.1	3.5%	< 0.5				80%	120%
Cr	1	3879658	37.0	35.8	3.3%	< 0.5				80%	120%
Cu	1	3879658	74.3	72.8	2.0%	0.5	5909	6000	98%	80%	120%
Fe	1	3879658	3.85	3.66	5.1%	< 0.01				80%	120%
Ga	1	3879658	9	10	10.5%	< 5				80%	120%
In	1	3879658	< 1	< 1	0.0%	< 1				80%	120%
к	1	3879658	0.542	0.680	22.6%	< 0.01				80%	120%
La	1	3879658	3	5		< 2				80%	120%
Li	1	3879658	22	23	4.4%	< 1				80%	120%
Mg	1	3879658	0.35	0.44	22.8%	< 0.01				80%	120%
Mn	1	3879658	741	756	2.0%	< 1				80%	120%
Мо	1	3879658	2.38	2.01	16.9%	< 0.5	345	360	95%	80%	120%
Na	1	3879658	1.43	1.52	6.1%	< 0.01				80%	120%
Ni	1	3879658	48.8	46.0	5.9%	< 0.5				80%	120%
Р	1	3879658	363	356	1.9%	< 10	614	600	102%	80%	120%
Pb	1	3879658	5	4	22.2%	< 1				80%	120%
Rb	1	3879658	< 10	< 10	0.0%	< 10	11	13	84%	80%	120%
S	1	3879658	0.012	0.008		< 0.005				80%	120%
Sb	1	3879658	2	3		< 1				80%	120%
Sc	1	3879658	2	3		< 1				80%	120%
Se	1	3879658	< 10	< 10	0.0%	< 10				80%	120%
Sn	1	3879658	< 5	< 5	0.0%	< 5				80%	120%
Sr	1	3879658	211	233	9.9%	< 1	312	390	80%	80%	120%
Та	1	3879658	< 10	< 10	0.0%	< 10				80%	120%
Те	1	3879658	< 10	< 10	0.0%	< 10				80%	120%
Th	1	3879658	< 5	< 5	0.0%	< 5				80%	120%
Ті	1	3879658	0.211	0.267	23.4%	< 0.01				80%	120%
ті	1	3879658	< 5	< 5	0.0%	< 5				80%	120%
U	1	3879658	< 5	< 5	0.0%	< 5				80%	120%
v	1	3879658	94.2	97.8	3.8%	< 0.5				80%	120%
W	1	3879658	< 1	1		< 1				80%	120%
Y	1	3879658	3	5		< 1				80%	120%
Zn	1	3879658	129	130	0.8%	< 0.5				80%	120%
Zr	1	3879658	27	32	16.9%	< 5				80%	120%
						÷				//	0/0

No. AGAT Laboratories

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

Quality Assurance

CLIENT NAME: 0838331 BC LTD.

PROJECT NO:

l

AGAT WORK ORDER: 12V658780

ATTENTION TO: DAVID JENSEN

		Solic	Anal	ysis (C	Conti	nued)					
RPT Date: Nov 06, 2012			REPLIC	CATE				REFER	RENCE MATE	RIAL	
PARAMETER	Batch	Sample Id	Original	Rep #1	RPD	Method Blank	Result	Expect	Recovery	Acceptable Limits	
		Gample Id	Original	Kep #1	RED		Value	Value	Recovery	Lower	Upper
Fire Assay - Trace Au, AAS finish (202051)											
Au	1	3879658	0.017	0.015	12.5%	< 0.002	1.55	1.52	102%	90%	110%

Certified By:

---- ,

J. che

Method Summary

CLIENT NAME: 0838331 BC LTD.

PROJECT NO:

AGAT WORK ORDER: 12V658780 ATTENTION TO: DAVID JENSEN

r	······	ATTENTION TO:	
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Solid Analysis		······································	
Ag	MIN-200-12002/12020		ICP/OES
Al	MIN-200-12002/12020		ICP/OES
As	MIN-200-12002/12020		ICP/OES
Ва	MIN-200-12002/12020		ICP/OES
Ве	MIN-200-12002/12020		ICP/OES
Bi	MIN-200-12002/12020		ICP/OES
Са	MIN-200-12002/12020		ICP/OES
Cd	MIN-200-12002/12020		ICP/OES
Се	MIN-200-12002/12020		ICP/OES
Со	MIN-200-12002/12020		ICP/OES
Cr	MIN-200-12002/12020		ICP/OES
Cu	MIN-200-12002/12020		ICP/OES
Fe	MIN-200-12002/12020		ICP/OES
Ga	MIN-200-12002/12020		ICP/OES
In	MIN-200-12002/12020		ICP/OES
к	MIN-200-12002/12020		ICP/OES
La	MIN-200-12002/12020		ICP/OES
Li	MIN-200-12002/12020		ICP/OES
Mg	MIN-200-12002/12020		ICP/OES
Mn	MIN-200-12002/12020		ICP/OES
Мо	MIN-200-12002/12020		ICP/OES
Na	MIN-200-12002/12020		ICP/OES
Ni	MIN-200-12002/12020		ICP/OES
P	MIN-200-12002/12020		ICP/OES
Pb	MIN-200-12002/12020		ICP/OES
Rb	MIN-200-12002/12020		ICP/OES
s	MIN-200-12002/12020		ICP/OES
Sb	MIN-200-12002/12020		ICP/OES
Sc	MIN-200-12002/12020		ICP/OES
Se	MIN-200-12002/12020		ICP/OES
Sn	MIN-200-12002/12020		ICP/OES
Sr	MIN-200-12002/12020		ICP/OES
Та	MIN-200-12002/12020		ICP/OES
Те	MIN-200-12002/12020		ICP/OES
Th	MIN-200-12002/12020		ICP/OES
ті	MIN-200-12002/12020		ICP/OES
ті	MIN-200-12002/12020		ICP/OES
U	MIN-200-12002/12020		ICP/OES
v	MIN-200-12002/12020		ICP/OES
w	MIN-200-12002/12020		ICP/OES
Y	MIN-200-12002/12020		ICP/OES
Zn	MIN-200-12002/12020		ICP/OES
Zr	MIN-200-12002/12020		ICP/OES
Sample Login Weight	MIN-12009		BALANCE
Au	MIN-200-12019	BUGBEE, E: A Textbook of Fire Assaying	AAS

5623 MCADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: 0838331 BC LTD.

ATTENTION TO: DAVID JENSEN PROJECT NO: AGAT WORK ORDER: 12V658789 SOLID ANALYSIS REVIEWED BY: Yufei Chen, Analyst DATE REPORTED: Nov 05, 2012 PAGES (INCLUDING COVER): 6

Should you require any information regarding this analysis please contact your client services representative at (905) 501-9998

*NOTES

All samples are stored at no charge for 90 days. Please contact the lab if you require additional sample storage time.

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatiabs.com

AGAT WORK ORDER: 12V658789 PROJECT NO:

CLIENT NAME: 0838331 BC LTD.

ATTENTION TO: DAVID JENSEN

			4	Acid Dig	gest - Me	etals Pac	kage, IC	P-OES fi	inish (20	1070)					
DATE SAMPLED: No	v 01, 2012			DATE REC	EIVED: Oct	31, 2012		DATE	REPORTED): Nov 05, 2	012	SAN	IPLE TYPE	Rock	
	Analyte:	Ag	Al	As	Ba	Be	Bi	Ca	Cd	Ce	Со	Cr	Cu	Fe	Ga
	Unit:	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	%	ppm
Sample Description	RDL:	0.5	0.01	1	1	0.5	1	0.01	0.5	1	0.5	0.5	0.5	0.01	5
22707		1.8	3.71	59	1150	0.5	<1	3.19	1.0	8	10.7	27.0	57.4	4.04	16
	Analyte:	In	к	La	Li	Mg	Mn	Мо	Na	Ni	Р	РЬ	Rb	S	Sb
	Unit:	ppm	%	ppm	ppm	%	ppm	ppm	%	ppm	ppm	ppm	ppm	%	ppm
Sample Description	RDL:	1	0.01	2	1	0.01	1	0.5	0.01	0.5	10	1	10	0.005	1
22707		<1	1.71	2	41	1.27	647	0.6	1.43	9.8	1230	<1	70	1.11	2
	Analyte:	Sc	Se	Sn	Sr	Та	Те	Th	Ti	ті	υ	v	w	Y	Zn
	Unit:	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm
Sample Description	RDL:	1	10	5	1	10	10	5	0.01	5	5	0.5	1	1	0.5
22707		8	<10	<5	374	<10	<10	<5	0.26	<5	<5	172	4	6	98.9
	Analyte:	Zr													
	Unit:	ppm													
Sample Description	RDL:	5													
22707		15													

Comments: RDL - Reported Detection Limit

3879678 As, Sb values may be low due to digestion losses.

Certified By:

J. ch

agat :	Laboratories
--------	--------------

AGAT WORK ORDER: 12V658789 PROJECT NO: 5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agattabs.com

CLIENT NAME: 0838331 BC LTD.

ATTENTION TO: DAVID JENSEN

DATE SAMPLED: No	ov 01, 2012		0	DATE RECEIVED: Oct 31, 2012	DATE REPORTED: Nov 05, 2012	SAMPLE TYPE: Rock
	Analyte:	Sample Login Weight	Au			
	Unit:	kg	ppm			
Sample Description	RDL:	0.01	0.002			
22707		1.81	0.158			

Comments: RDL - Reported Detection Limit

Certified By:

y. che

AGGT Laboratories

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

Quality Assurance

Solid Apolycie

CLIENT NAME: 0838331 BC LTD.

PROJECT NO:

AGAT WORK ORDER: 12V658789 ATTENTION TO: DAVID JENSEN

			Solic	d Anal	ysis						
RPT Date: Nov 05, 2012			REPLIC	CATE				REFER	RENCE MATE	RIAL	
PARAMETER	Batch	Sample Id	Original	Rep #1	RPD	Method Blank	Result Value	Expect Value	Recovery	·	ble Limits
							Value	Value		Lower	Upper
4 Acid Digest - Metals Package, ICI	•		4.0	4.9	0.0%	< 0 F	11.6	13.0	89%	80%	120%
Ag Al	1	3879678	1.8	1.8	0.0%	< 0.5	11.0	13.0	09%	80%	120%
As	1 1	3879678 3879678	3.71 59	3.35 63	10.2% 6.6%	< 0.01 < 1				80%	120%
Ba	1	3879678	1150	1110	0.0 <i>%</i> 3.5%	<1				80%	120%
Be	1	3879678	0.55	0.58	5.3%	< 0.5	0.4	0.4	111%	80%	120%
Bi		2870679			0.0%					80%	1200/
Са	1 1	3879678 3879678	< 1 3.19	< 1 3.02	0.0% 5.5%	< 1 < 0.01				80% 80%	120% 120%
Cd	1	3879678	1.0	1.1	9.5%	< 0.5				80%	120%
Ce	1	3879678	8	9	11.8%	< 1				80%	120%
Co	1	3879678	10.7	11.0	2.8%	< 0.5				80%	120%
Cr	1	3879678	27.0	27.0	0.0%	< 0.5				80%	120%
Cu	1	3879678	57.4	62.2	8.0%	< 0.5	5636	6000	93%	80%	120%
Fe	1	3879678	4.04	3.77	6.9%	< 0.01	5000	0000	5070	80%	120%
Ga	1	3879678	16	17	6.1%	< 5				80%	120%
In	1	3879678	< 1	2	0.170	< 1				80%	120%
ĸ		0070070	4 74	4.64	4.00/	< 0.01				800/	100%
La	1 1	3879678 3879678	1.71 2	1.64 2	4.2% 0.0%	< 0.01 < 2				80% 80%	120% 120%
Li	1	3879678	2 41	2 39	0.0% 5.0%	< 1				80%	120%
Mg	1	3879678	1.27	.19 1.19	5.0% 6.5%	< 0.01				80%	120%
Mn	1	3879678	647	648	0.2%	< 1				80%	120%
Мо	1	3879678	0.56	0.51	9.3%	< 0.5	319	360	88%	80%	120%
Na	1	3879678	1.43	1.38	3.6%	< 0.01	515	300	00 /8	80%	120%
Ni	1	3879678	9.82	9.42	4.2%	< 0.5				80%	120%
P	1	3879678	1230	1260	2.4%	< 10	566	600	94%	80%	120%
Pb	1	3879678	< 1	< 1	0.0%	< 1				80%	120%
Rb	1	3879678	70	76	8.2%	< 10				80%	120%
S	1	3879678	1.11	1.05	5.6%	< 0.005	0.96	0.80	120%	80%	120%
Sb	1	3879678	2	2	0.0%	< 1				80%	120%
Sc	1	3879678	8	8	0.0%	< 1				80%	120%
Se	1	3879678	9	11	20.0%	< 10				80%	120%
Sn	1	3879678	< 5	< 5	0.0%	< 5				80%	120%
Sr	1	3879678	374	342	8.9%	< 1	319	390	82%	80%	120%
Та	1	3879678	< 10	< 10	0.0%	< 10				80%	120%
Те	1	3879678	< 10	< 10	0.0%	< 10				80%	120%
Th	1	3879678	< 5	7		< 5				80%	120%
Ti	1	3879678	0.26	0.25	3.9%	< 0.01				80%	120%
ті	1	3879678	< 5	< 5	0.0%	< 5				80%	120%
U	1	3879678	< 5	< 5	0.0%	< 5				80%	120%
v	1	3879678	172	171	0.6%	< 0.5				80%	120%
W	1	3879678	4	3	28.6%	< 1				80%	120%
Y	1	3879678	6	6	0.0%	< 1	7	7	96%	80%	120%
Zn	1	3879678	98.9	103	4.1%	< 0.5				80%	120%
Zr	1	3879678	15	14	6.9%	< 5				80%	120%

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

Quality Assurance

CLIENT NAME: 0838331 BC LTD.

PROJECT NO:

AGAT WORK ORDER: 12V658789 ATTENTION TO: DAVID JENSEN

Solid Analysis (Continued) REPLICATE RPT Date: Nov 05, 2012 REFERENCE MATERIAL Method Blank Acceptable Limits Result Expect PARAMETER Rep #1 Batch Sample Id Original RPD Recovery Value Value Upper Lower Fire Assay - Trace Au, AAS finish (202051) Au 1 3879678 0.083 0.158 < 0.002 1.5 1.52 99% 90% 110%

Certified By:

J. chan.

5623 MCADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

Method Summary

CLIENT NAME: 0838331 BC LTD.

PROJECT NO:

AGAT WORK ORDER: 12V658789 ATTENTION TO: DAVID JENSEN

PROJECT NO:			: DAVID JENSEN
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Solid Analysis		······································	
Ag	MIN-200-12002/12020		ICP/OES
AI	MIN-200-12002/12020		ICP/OES
As	MIN-200-12002/12020		ICP/OES
Ва	MIN-200-12002/12020		ICP/OES
Ве	MIN-200-12002/12020		ICP/OES
Bi	MIN-200-12002/12020		ICP/OES
Са	MIN-200-12002/12020		ICP/OES
Cd	MIN-200-12002/12020		ICP/OES
Се	MIN-200-12002/12020		ICP/OES
Co	MIN-200-12002/12020		ICP/OES
Cr	MIN-200-12002/12020		ICP/OES
Cu	MIN-200-12002/12020		ICP/OES
Fe	MIN-200-12002/12020		ICP/OES
Ga	MIN-200-12002/12020		ICP/OES
In	MIN-200-12002/12020		ICP/OES
к	MIN-200-12002/12020		ICP/OES
La	MIN-200-12002/12020		ICP/OES
Li	MIN-200-12002/12020		ICP/OES
Mg	MIN-200-12002/12020		ICP/OES
Mn	MIN-200-12002/12020		ICP/OES
Мо	MIN-200-12002/12020		ICP/OES
Na	MIN-200-12002/12020		ICP/OES
Ni	MIN-200-12002/12020		ICP/OES
P	MIN-200-12002/12020		ICP/OES
Pb	MIN-200-12002/12020		ICP/OES
Rb	MIN-200-12002/12020		ICP/OES
S	MIN-200-12002/12020 MIN-200-12002/12020		ICP/OES
Sb	MIN-200-12002/12020 MIN-200-12002/12020		ICP/OES
Sc	MIN-200-12002/12020		ICP/OES
Se	MIN-200-12002/12020		ICP/OES
Sn	MIN-200-12002/12020		ICP/OES
Sr	MIN-200-12002/12020		ICP/OES
Ta	MIN-200-12002/12020 MIN-200-12002/12020		ICP/OES
Te	MIN-200-12002/12020 MIN-200-12002/12020		ICP/OES
Th	MIN-200-12002/12020 MIN-200-12002/12020		ICP/OES
Ti	MIN-200-12002/12020 MIN-200-12002/12020		
ті	MIN-200-12002/12020 MIN-200-12002/12020		ICP/OES
U	MIN-200-12002/12020 MIN-200-12002/12020		ICP/OES
	MIN-200-12002/12020 MIN-200-12002/12020		ICP/OES
Ŵ	MIN-200-12002/12020 MIN-200-12002/12020		
Y			
Zn	MIN-200-12002/12020 MIN-200_12002/12020		
Zr	MIN-200-12002/12020		
Sample Login Weight	MIN-200-12002/12020 MIN-12009		
		PLICEEE E. A Tauthank of Fire	BALANCE
Au	MIN-200-12019	BUGBEE, E: A Textbook of Fire Assaying	AAS
		/ loodying	

5623 MCADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: 0838331 BC LTD.

ATTENTION TO: DAVID JENSEN PROJECT NO: AGAT WORK ORDER: 12V669206 SOLID ANALYSIS REVIEWED BY: Kevin Motomura, ICP Supervisor DATE REPORTED: Jan 03, 2013 PAGES (INCLUDING COVER): 9

Should you require any information regarding this analysis please contact your client services representative at (905) 501-9998

*NOTES VERSION 1:Updated Version Reported on Jan 03, 2013

All samples are stored at no charge for 90 days. Please contact the lab if you require additional sample storage time.

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

AGAT WORK ORDER: 12V669206 **PROJECT NO:**

CLIENT NAME: 0838331 BC LTD.

ATTENTION TO: DAVID JENSEN

			4	Acid Di	gest - Me	etals Pac	kage, IC	P-OES f	inish (20	1070)					
DATE SAMPLED: No	ov 30, 2012			DATE REC	EIVED: Nov	30, 2012		DATE	REPORTED): Jan 03, 2	D13	SAM	IPLE TYPE	: Rock	
	Analyte:	Ag	Al	As	Ba	Be	Bi	Са	Cd	Се	Со	Cr	Cu	Fe	G
	Unit:	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	%	ppn
Sample Description	RDL:	0.5	0.01	1	1	0.5	1	0.01	0.5	1	0.5	0.5	0.5	0.01	
22710		3.3	2.37	15	728	<0.5	<1	2.13	<0.5	5	3.0	87.2	33.1	1.40	:
22711		2.1	0.72	19	854	<0.5	16	16.6	<0.5	9	1.9	37.4	32.5	1.13	<
22712		<0.5	1.77	10	767	<0.5	5	15.1	<0.5	7	1.8	43.6	18.6	1.25	<
	Analyte:	In	к	La	Li	Mg	Mn	Мо	Na	Ni	Р	Pb	Rb	S	SI
	Unit:	ppm	%	ppm	ppm	%	ppm	ppm	%	ppm	ppm	ppm	ppm	%	ppn
Sample Description	RDL:	1	0.01	2	1	0.01	<u> </u>	0.5	0.01	0.5	10	1	10	0.005	
22710		<1	0.51	4	23	0.52	263	3.4	0.45	13.1	404	<1	28	0.053	:
22711		<1	0.30	6	9	0.33	1280	1.3	0.05	8.2	273	<1	<10	0.088	:
22712		2	0.51	5	11	0.31	967	1.7	0.35	9.8	307	<1	27	0.013	4
	Analyte:	Sc	Se	Sn	Sr	Та	Te	Th	Ti	ті	U	v	w	Y	Zı
	Unit:	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppn
Sample Description	RDL:	1	10	5	1	10	10	5	0.01	5	5	0.5	1	1	0.5
: 22710		5	<10	<5	200	<10	<10	<5	0.06	<5	<5	53.3	<1	5	49.9
22711		4	<10	<5	1490	<10	<10	<5	0.02	<5	<5	27.5	<1	18	50.4
22712		5	<10	<5	1270	<10	<10	<5	0.05	<5	<5	42.1	<1	14	32.3
	Analyte:	Zr													
	Unit:	ppm													
Sample Description	RDL:	5	·····							······································					
22710		26													
22711		10													
22712		23													

Certified By:

omune

agat Labo	oratories	Certificate AGAT WORK ORD PROJECT NO:	of Analysis ER: 12V669206	5623 MCADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com
CLIENT NAME: 0838331 BC LTD.			ENSEN	
	4 Acid Digest - N	/letals Package, IC	P-OES finish (201070)	
DATE SAMPLED: Nov 30, 2012	DATE RECEIVED: No	ov 30, 2012	DATE REPORTED: Jan 03, 2013	SAMPLE TYPE: Rock
Comments: RDL - Reported Detection Limit				

3984835-3984839 As, Sb values may be low due to digestion losses.

M al stommer Certified By:

AGAT WORK ORDER: 12V669206 PROJECT NO: 5623 MCADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: 0838331 BC LTD.

ATTENTION TO: DAVID JENSEN

DATE SAMPLED: No	V 20 2012			DATE RECEIVED: Nov 30, 2012	DATE REPORTED: Jan 03, 2013	SAMPLE TYPE: Rock
DATE SAMIFLED. NO	V JU, ZUTZ			DATE RECEIVED. NOV 30, 2012	DATE REFORTED: Jair 03, 2013	CANILE ITTE. NOCK
	Analyte:	Sample Login Weight	Au			
	Unit:	kg	ppm			
Sample Description	RDL:	0.01	0.01			
22710		0.53	11.0			
22711		0.23	2.44			
22712		9.09	0.10			

Comments: RDL - Reported Detection Limit

6 min **Certified By:**

AGAT WORK ORDER: 12V669206 PROJECT NO: 5623 MCADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: 0838331 BC LTD.

ATTENTION TO: DAVID JENSEN

Fire Assay - Metallic Gold - ICP Finish (202120)									
ED: Nov 30, 2012			DATE RE	CEIVED: N	lov 30, 2012		DATE REPORTED: Jan 03, 2013	SAMPLE TYPE: Rock	
Analyte:	Sample Login Weight	Metallic Gold	Plus (+) Fraction Weight	Minus (-) Fraction Weight	Au Assay A (+) Fraction	u Assay (-) Fraction			
Unit:	kg	g/t	g	g	g/t	g/t			
RDL:	0.01	0.01	0.01	0.01	0.01	0.01			
					•				
	0.50	0.08	25.8	480	0.02	0.08			
	Analyte: Unit:	Sample Analyte: Login Weight Unit: kg RDL: 0.01	Sample Metallic Login Gold Weight Gold Unit: kg g/t RDL: 0.01 0.01	v 30, 2012 DATE REC Analyte: Sample Login Weight Gold Plus (+) Fraction Weight Unit: kg g/t g RDL: 0.01 0.01 0.01	Sample Metallic Plus (+) Minus (-) Analyte: Login Metallic Gold Plus (+) Minus (-) Unit: kg g/t g g RDL: 0.01 0.01 0.01 0.01	Sample Metallic Plus (+) Minus (-) Au Assay A Analyte: Login Metallic Fraction Fraction Fraction Unit: kg g/t g g g/t RDL: 0.01 0.01 0.01 0.01 0.01	Sample Metallic Plus (+) Minus (-) Au Assay Au Assay (-) Analyte: Sample Metallic Plus (+) Minus (-) Au Assay Au Assay (-) Unit: kg g/t g g g g/t RDL: 0.01 0.01 0.01 0.01 0.01 0.01	Av 30, 2012 DATE RECEIVED: Nov 30, 2012 DATE REPORTED: Jan 03, 2013 Analyte: Sample Login Weight Metallic Gold Plus (+) Fraction Weight Minus (-) Fraction Weight Au Assay Au Assay (-) (+) Fraction Weight Au Assay Au Assay (-) (+) Fraction (+) Fraction Unit: kg g/t g g g/t RDL: 0.01 0.01 0.01 0.01 0.01	

Comments: RDL - Reported Detection Limit

Certified By:

mura

AGAT Laboratories

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

Quality Assurance

CLIENT NAME: 0838331 BC LTD.

PROJECT NO:

AGAT WORK ORDER: 12V669206

ATTENTION TO: DAVID JENSEN

RPT Date: Jan 03, 2013		REPLICATE					REFERENCE MATERIAL				
PARAMETER Batch		Sample Id	Original	Rep #1	RPD	Method Blank	Result	Expect	Beering	Acceptable Limits	
PARAMETER	Batch	Sample iu	Original	Keb #1	RPD		Value	Value	Recovery	Lower	Upper

4 Acid Digest - Metals Package, ICP-OES finish (201070)

AI	1	3984835	2.32	2.43	4.6%	< 0.01				80%	120%
As	1	3984835	17	2.40 11	4.070	< 1				80%	120%
Ba	1	3984835	841	815	3.1%	< 1				80%	120%
Be	1	3984835	< 0.5	< 0.5	0.0%	< 0.5	0.3	0.4	87%	80%	120%
8											
Bi	1	3984835	< 1	< 1	0.0%	< 1				80%	120%
Ca	1	3984835	10.6	11.1	4.6%	0.01				80%	120%
Cd	1	3984835	< 0.5	< 0.5	0.0%	< 0.5				80%	120%
Ce	1	3984835	12	13	8.0%	< 1				80%	120%
Co	1	3984835	2.5	2.4	4.1%	< 0.5				80%	120%
Cr	1	3984835	58.3	57.9	0.7%	< 0.5				80%	120%
Cu	1	3984835	57.2	60.2	5.1%	< 0.5	5972	6000	99%	80%	120%
Fe	1	3984835	1.79	1.76	1.7%	< 0.01				80%	120%
Ga	1	3984835	5	5	0.0%	< 5	10	10	97%	80%	120%
In	1	3984835	< 1	2		< 1				80%	120%
к	1	3984835	0.663	0.685	3.3%	< 0.01				80%	120%
La	1	3984835	7	8	13.3%	< 2				80%	120%
Li	1	3984835	21	21	0.0%	< 1				80%	120%
Mg	1	3984835	0.65	0.64	1.6%	< 0.01				80%	120%
Mn	1	3984835	768	794	3.3%	< 1				80%	120%
Мо	1	3984835	2.0	2.0	0.0%	< 0.5	300	360	83%	80%	120%
Na	1	3984835	0.32	0.33	3.1%	< 0.01				80%	120%
Ni	1	3984835	13.0	13.4	3.0%	0.5				80%	120%
Р	1	3984835	492	509	3.4%	< 10	586	600	98%	80%	120%
РЪ	1	3984835	< 1	< 1	0.0%	< 1				80%	120%
Rb	1	3984835	42	41	2.4%	< 10				80%	120%
S	1	3984835	0.0398	0.0390	2.0%	< 0.005				80%	120%
Sb	1	3984835	3	2		< 1				80%	120%
Sc	1	3984835	6	6	0.0%	< 1				80%	120%
Se	1	3984835	< 10	< 10	0.0%	< 10				80%	120%
Sn	1	3984835	< 5	< 5	0.0%	< 5				80%	120%
Sr	1	3984835	1030	1070	3.8%	< 1	410	390	105%	80%	120%
Та	1	3984835	< 10	< 10	0.0%	< 10	1	0.9	106%	80%	120%
Те	1	3984835	< 10	< 10	0.0%	< 10				80%	120%
Th	1	3984835	< 5	< 5	0.0%	< 5				80%	120%
Ti	1	3984835	0.06	0.06	0.0%	< 0.01				80%	120%
TI	1	3984835	< 5	< 5	0.0%	< 5				80%	120%
U	1	3984835	< 5	< 5	0.0%	< 5				80%	120%
v	1	3984835	49.0	51.6	5.2%	< 0.5				80%	120%
W	1	3984835	< 1	< 1	0.0%	< 1				80%	120%
							_	_			
	1	3984835	13	14	7.4%	< 1	7	7	105%	80%	120%

AGAT QUALITY ASSURANCE REPORT (V1)

5623 MCADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

Quality Assurance

CLIENT NAME: 0838331 BC LTD.

PROJECT NO:

AGAT WORK ORDER: 12V669206 ATTENTION TO: DAVID JENSEN

Solid Analysis (Continued)

RPT Date: Jan 03, 2013	REPLICATE					REFERENCE MATERIAL					
DADAMETER	Datab	Completed	Original	Den #1	000	Method Blank	Result Value	Expect	Recovery	Accepta	ble Limits
PARAMETER	Batch	Sample Id	Original	Rep #1	RPD			Value	Recovery	Lower	Upper
Zn	1	3984835	60.2	62.4	3.6%	< 0.5				80%	120%
Zr	1	3984835	30	32	6.5%	< 5				80%	120%
Fire Assay - Metallic Gold - ICP Fi	nish (202120)										
Metallic Gold	1311 (202120)					< 0.01	1 53	1 52	100%	90%	110%

Certified By:

y af stommer

Method Summary

CLIENT NAME: 0838331 BC LTD.

PROJECT NO:

AGAT WORK ORDER: 12V669206 ATTENTION TO: DAVID JENSEN

PROJECT NO:		ATTENTION TO:				
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE			
Solid Analysis		······································				
Ag	MIN-200-12002/12020		ICP/OES			
Al	MIN-200-12002/12020		ICP/OES			
As	MIN-200-12002/12020		ICP/OES			
Ва	MIN-200-12002/12020		ICP/OES			
Be	MIN-200-12002/12020		ICP/OES			
Bi	MIN-200-12002/12020		ICP/OES			
Са	MIN-200-12002/12020		ICP/OES			
Cd	MIN-200-12002/12020		ICP/OES			
Се	MIN-200-12002/12020		ICP/OES			
Co	MIN-200-12002/12020		ICP/OES			
Cr	MIN-200-12002/12020		ICP/OES			
Cu	MIN-200-12002/12020		ICP/OES			
Fe	MIN-200-12002/12020		ICP/OES			
Ga	MIN-200-12002/12020		ICP/OES			
In	MIN-200-12002/12020		ICP/OES			
ĸ	MIN-200-12002/12020		ICP/OES			
La	MIN-200-12002/12020		ICP/OES			
Li	MIN-200-12002/12020		ICP/OES			
 Mg	MIN-200-12002/12020		ICP/OES			
Mn	MIN-200-12002/12020 MIN-200-12002/12020		ICP/OES			
Мо	MIN-200-12002/12020 MIN-200-12002/12020		ICP/OES			
Na	MIN-200-12002/12020 MIN-200-12002/12020		ICP/OES			
Ni	MIN-200-12002/12020 MIN-200-12002/12020					
P			ICP/OES			
Pb	MIN-200-12002/12020					
	MIN-200-12002/12020					
Rb S	MIN-200-12002/12020		ICP/OES			
	MIN-200-12002/12020		ICP/OES			
Sb Sc	MIN-200-12002/12020		ICP/OES			
	MIN-200-12002/12020		ICP/OES			
Se	MIN-200-12002/12020		ICP/OES			
Sn C-	MIN-200-12002/12020		ICP/OES			
Sr T	MIN-200-12002/12020		ICP/OES			
Ta -	MIN-200-12002/12020		ICP/OES			
Te	MIN-200-12002/12020		ICP/OES			
Th	MIN-200-12002/12020		ICP/OES			
Ti	MIN-200-12002/12020		ICP/OES			
TI	MIN-200-12002/12020		ICP/OES			
U	MIN-200-12002/12020		ICP/OES			
V	MIN-200-12002/12020		ICP/OES			
w	MIN-200-12002/12020		ICP/OES			
Y	MIN-200-12002/12020		ICP/OES			
Zn	MIN-200-12002/12020		ICP/OES			
Zr	MIN-200-12002/12020		ICP/OES			
Sample Login Weight	MIN-12009		BALANCE			
Au	MIN-200-12019	BUGBEE, E: A Textbook of Fire Assaying	AAS			
Sample Login Weight	MIN-12009	, <u>-</u>	BALANCE			
Metallic Gold	MIN-200-12004		ICP/OES			
Plus (+) Fraction Weight	MIN-200-12004		ICP/OES			

Method Summary

CLIENT NAME: 0838331 BC LTD.		AGAT WORK ORDER: 12V669206				
PROJECT NO:	ATTENTION TO: DAVID JENSEN					
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE			
Minus (-) Fraction Weight	MIN-200-12004	ICP/OES				
Au Assay (+) Fraction	MIN-200-12004	ICP/OES				
Au Assay (-) Fraction	MIN-200-12004	ICP/OES				

5623 MCADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: 0838331 BC LTD.

ATTENTION TO: DAVID JENSEN PROJECT NO: AGAT WORK ORDER: 12V669219 SOLID ANALYSIS REVIEWED BY: Kevin Motomura, ICP Supervisor DATE REPORTED: Dec 06, 2012 PAGES (INCLUDING COVER): 6

Should you require any information regarding this analysis please contact your client services representative at (905) 501-9998

*NOTES

All samples are stored at no charge for 90 days. Please contact the lab if you require additional sample storage time.

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

AGAT WORK ORDER: 12V669219 PROJECT NO:

CLIENT NAME: 0838331 BC LTD.

ATTENTION TO: DAVID JENSEN

			4	Acid Dig	gest - Me	etals Pac	kage, IC	P-OES fi	inish (20	1070)					
DATE SAMPLED: No	ov 30, 2012		I	DATE REC	EIVED: Nov	30, 2012		DATE REPORTED: Dec 06, 2012				SAMPLE TYPE: Soil			
	Analyte:	Ag	AI	As	Ba	Be	Bi	Са	Cd	Се	Со	Cr	Cu	Fe	Ga
	Unit:	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	%	ppm
Sample Description	RDL:	0.5	0.01	1	1	0.5	1	0.01	0.5	1	0.5	0.5	0.5	0.01	5
DAY 2-1		0.7	6.42	16	1030	0.5	<1	3.55	1.1	26	9.6	66.4	57.8	3.68	13
DAY 2-2		0.7	4.50	30	777	0.6	<1	4.29	1.5	21	12.1	35.6	73.4	3.61	11
DAY 2-3		1.1	5.73	62	696	0.6	<1	5.11	1.3	24	14.9	34.6	92.3	3.82	12
	Analyte:	In	к	La	Li	Mg	Mn	Мо	Na	Ni	Р	Pb	Rb	S	Sb
	Unit:	ppm	%	ppm	ppm	%	ppm	ppm	%	ppm	ppm	ppm	ppm	%	ppm
Sample Description	RDL:	1	0.01	2	1	0.01	1	0.5	0.01	0.5	10	1	10	0.005	1
DAY 2-1		<1	0.99	13	32	1.90	1250	1.4	1.81	43.3	1400	7	73	0.025	<1
DAY 2-2		<1	0.92	9	24	0.81	1590	1.3	1.70	60.5	1410	5	26	0.028	2
DAY 2-3		2	0.68	11	36	1.56	1690	1.3	1.46	79.2	1020	4	75	0.030	3
	Analyte:	Sc	Se	Sn	Sr	Та	Те	Th	Ti	ті	υ	v	w	Y	Zn
	Unit:	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm
Sample Description	RDL:	1	10	5	1	10	10	5	0.01	5	5	0.5	1	11	0.5
DAY 2-1		8	<10	<5	536	<10	<10	<5	0.29	<5	<5	78.4	<1	17	209
DAY 2-2		6	<10	<5	573	<10	<10	<5	0.24	<5	<5	72.3	4	13	257
DAY 2-3		9	<10	<5	610	<10	<10	<5	0.25	<5	<5	90.3	1	19	177
	Analyte:	Zr													
	Unit:	ppm													
Sample Description	RDL:	5													
DAY 2-1		59													
DAY 2-2		48													
DAY 2-3		49													

Comments: RDL - Reported Detection Limit

3984886-3984888 As, Sb values may be low due to digestion losses.

o mara Certified By:

	AGAT	Laboratories
--	------	--------------

AGAT WORK ORDER: 12V669219 PROJECT NO: 5623 MCADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agattabs.com

CLIENT NAME: 0838331 BC LTD.

ATTENTION TO: DAVID JENSEN

Fire Assay - Trace Au, AAS finish (202051)								
DATE SAMPLED: No	v 30, 2012		SAMPLE TYPE: Soil					
	Analyte:	Sample Login Weight	Au					
	Unit:	kg	ppm					
Sample Description	RDL:	0.01	0.002					
DAY 2-1		0.46	0.007					
DAY 2-2		0.35	0.003					
DAY 2-3		0.43	0.007					

Comments: RDL - Reported Detection Limit

Certified By:	
---------------	--

omine

CAGAT Laboratories

5623 MCADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

Quality Assurance

CLIENT NAME: 0838331 BC LTD.

PROJECT NO:

AGAT WORK ORDER: 12V669219 ATTENTION TO: DAVID JENSEN

			Solic	Anal	ysis						
RPT Date: Dec 06, 2012			REPLIC	CATE				REFER	RENCE MATE	RIAL	
PARAMETER	Batch	Sample Id	Original	Rep #1	RPD	Method Blank	Result Value	Expect Value	Recovery	-	ble Limits
	L							Value		Lower	Upper
Fire Assay - Trace Au, AAS finish (2020 Au	051) 1	3984886	0.007	0.005		< 0.002	1.52	1.52	100%	90%	110%
	•	0004000	0.007	0.000		< 0.002	1.52	1.52	10078	3070	11078
4 Acid Digest - Metals Package, ICP-O	ES finish (2	201070)									
Ag	1	3984886	0.66	0.62	6.3%	< 0.5	14.1	13.0	109%	80%	120%
Al	1	3984886	6.42	5.51	15.3%	< 0.01				80%	120%
As Ba	1	3984886	16	15	6.5%	< 1				80%	120%
Be	1 1	3984886 3984886	1030 0.5	954 0.6	7.7%	< 1	0.2	0.4	970/	80% 80%	120%
		3904000	0.5	0.0	18.2%	< 0.5	0.3	0.4	87%	80%	120%
Bi	1	3984886	< 1	< 1	0.0%	< 1				80%	120%
Са	1	3984886	3.55	3.17	11.3%	0.01				80%	120%
Cd	1	3984886	1.1	1.1	0.0%	< 0.5				80%	120%
Ce	1	3984886	26	24	8.0%	< 1				80%	120%
Co	1	3984886	9.6	9.7	1.0%	< 0.5				80%	120%
Cr	1	3984886	66.4	64.9	2.3%	< 0.5				80%	120%
Cu	1	3984886	57.8	54.7	5.5%	< 0.5	5972	6000	99%	80%	120%
Fe	1	3984886	3.68	3.44	6.7%	< 0.01				80%	120%
Ga	1	3984886	13	12	8.0%	< 5	10	10	97%	80%	120%
In	1	3984886	< 1	< 1	0.0%	< 1				80%	120%
к	4	2004000	0.096	0.005	40.0%	10.04				0.004	4000/
La	1 1	3984886 3984886	0.986 13	0.885	10.8%	< 0.01				80%	120%
Li	1	3984886 3984886	32	11 28	16.7% 13.3%	< 2 < 1				80% 80%	120%
 Mg	1	3984886	1.90	1.63	15.3%	< 0.01				80% 80%	120% 120%
Mn	1	3984886	1250	1140	9.2%	< 1				80%	120%
Mo	1	3984886	1.4	1.3	7.4%	< 0.5	300	360	83%	80%	120%
Na	1	3984886	1.81	1.63	10.5%	< 0.01				80%	120%
Ni P	1	3984886	43.3	42.5	1.9%	0.5				80%	120%
Pb	1 1	3984886	1400	1350	3.6%	< 10	586	600	98%	80%	120%
	I	3984886	7	6	15.4%	< 1				80%	120%
Rb	1	3984886	73	62	16.3%	< 10				80%	120%
S	1	3984886	0.025	0.024	4.1%	< 0.005				80%	120%
Sb	1	3984886	< 1	1		< 1				80%	120%
Sc	1	3984886	8	7	13.3%	< 1				80%	120%
Se	1	3984886	< 10	< 10	0.0%	< 10				80%	120%
Sn	1	3984886	< 5	< 5	0.0%	< 5				80%	120%
Sr	1	3984886	536	478	11.4%	< 1	410	390	105%	80%	120%
Та	1	3984886	< 10	< 10	0.0%	< 10	1	0.9	106%	80%	120%
Те	1	3984886	< 10	< 10	0.0%	< 10				80%	120%
Th	1	3984886	< 5	< 5	0.0%	< 5				80%	120%
Ті	1	3984886	0.20	0.27	7 10/	< 0.04				900/	100%
TI	1	3984886 3984886	0.29 < 5	0.27 < 5	7.1% 0.0%	< 0.01 < 5				80% 80%	120% 120%
U	1	3984886 3984886	< 5 < 5	< 5 < 5	0.0%	< 5				80% 80%	120% 120%
v	1	3984886	78.4	< 5 74.6	0.0% 5.0%	< 0.5				80% 80%	120%
Ŵ	1	3984886	< 1	< 1	0.0%	< 1				80%	120%
N.											
Y	1	3984886	17	16	6.1%	< 1	7	7	105%	80%	120%

5623 MCADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

Quality Assurance

CLIENT NAME: 0838331 BC LTD.

PROJECT NO:

AGAT WORK ORDER: 12V669219

ATTENTION TO: DAVID JENSEN

			Solid	I Analy	ysis (C	Conti	nued)					
RPT Date: Dec 06, 2012 REPLICATE							REFER	RENCE MAT	ERIAL			
PARAMETER	Batch	Sample Id	Original	Rep #1	RPD	Method Blank	Result Value	Expect Value	Recovery	Acceptable Limits		
		Gumple la								Lower	Upper	
Zn		1	3984886	209	205	1.9%	< 0.5				80%	120%
Zr		1	3984886	59	54	8.8%	< 5				80%	120%

Certified By:

Method Summary

CLIENT NAME: 0838331 BC LTD.

PROJECT NO:

AGAT WORK ORDER: 12V669219 ATTENTION TO: DAVID JENSEN

		ATTENTION TO	
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Solid Analysis			b
Ag	MIN-200-12002/12020		ICP/OES
AI	MIN-200-12002/12020		ICP/OES
As	MIN-200-12002/12020		ICP/OES
Ва	MIN-200-12002/12020		ICP/OES
Ве	MIN-200-12002/12020		ICP/OES
Bi	MIN-200-12002/12020		ICP/OES
Са	MIN-200-12002/12020		ICP/OES
Cd	MIN-200-12002/12020		ICP/OES
Се	MIN-200-12002/12020		ICP/OES
Со	MIN-200-12002/12020		ICP/OES
Сг	MIN-200-12002/12020		ICP/OES
Cu	MIN-200-12002/12020		ICP/OES
Fe	MIN-200-12002/12020		ICP/OES
Ga	MIN-200-12002/12020		ICP/OES
In	MIN-200-12002/12020		ICP/OES
к	MIN-200-12002/12020		ICP/OES
La	MIN-200-12002/12020		ICP/OES
Li	MIN-200-12002/12020		ICP/OES
Mg	MIN-200-12002/12020		ICP/OES
Mn	MIN-200-12002/12020		ICP/OES
Мо	MIN-200-12002/12020		ICP/OES
Na	MIN-200-12002/12020		ICP/OES
Ni	MIN-200-12002/12020		ICP/OES
P	MIN-200-12002/12020 MIN-200-12002/12020		ICP/OES
Pb	MIN-200-12002/12020 MIN-200-12002/12020		ICP/OES
Rb	MIN-200-12002/12020 MIN-200-12002/12020		ICP/OES
S	MIN-200-12002/12020 MIN-200-12002/12020		
Sb	MIN-200-12002/12020 MIN-200-12002/12020		
Sc	MIN-200-12002/12020 MIN-200-12002/12020		ICP/OES ICP/OES
Se	MIN-200-12002/12020 MIN-200-12002/12020		
Sn	MIN-200-12002/12020 MIN-200-12002/12020		
Sr	MIN-200-12002/12020 MIN-200-12002/12020		
Та			ICP/OES
Те	MIN-200-12002/12020		ICP/OES
Th	MIN-200-12002/12020		ICP/OES
Ti	MIN-200-12002/12020		ICP/OES
	MIN-200-12002/12020		ICP/OES
TI LI	MIN-200-12002/12020		ICP/OES
U	MIN-200-12002/12020		ICP/OES
V	MIN-200-12002/12020		ICP/OES
W	MIN-200-12002/12020		ICP/OES
Y	MIN-200-12002/12020		ICP/OES
Zn	MIN-200-12002/12020		ICP/OES
Zr Semala Lagia Maiaht	MIN-200-12002/12020		ICP/OES
Sample Login Weight	MIN-12009		BALANCE
Au	MIN-200-12019	BUGBEE, E: A Textbook of Fire Assaying	AAS

18.0 HISTORICAL SUMMARY DRILL LOGS

NORANDA EXPLORATION Co. Ltd.

BANBURY PROJECT 1987 DRILL HOLE DATA FILE LIST -- Surface & Underground Holes thru to 1985

.ASY ==> assay file; Au,Ag [gram/tonne] .A87 ==> includes 1987 resampling .GLG ==> geology file; abridged from drill log .SVY ==> survey file; collar & down-hole surveys

FILE:	==>DH-38 .GLG	
FROM	TO GEOLOGY	DESCRIPTION
Ø.ØØ	7.32 overburden	talus
7.32	73.76 ARGILLITE	m sst & bx, bedig 30-65/ca, loc OC strgr
73.76	74.37 ALTERED DIORITE	lit grn-buff, mg
74.37	102.41 ARGILLITE	bedding <45/ca
102.41	103.63 ANDESITE DIKE	porphyritic, litgrn, contacts 55,40/ca
103.63	121.62 ARGILLITE	bedding 10-40/ca
FILE:	==>DH−38 .SVY	

DEPTH	AZIMUTH	DIP	NORTHING	EASTING	ELEVATION	NORTHSEC	EASTSEC
.00	"ØØ	-9Ø.ØØ	9489.3420	10026.2420	966 . 862Ø	96Ø2.947 <u>8</u>	9677.8048
121.62	.00	-90.00	9489.3420	10026.2420	845.2420	9602.9478	9677.8048

BANBURY PROJECT 1987 DRILL HOLE DATA FILE LIST -- Surface & Underground Holes thru to 1985 .ASY ==> assay file; Au,Ag [gram/tonne]

.A87 ==> includes 1987 resampling .GLG ==> geology file; abridged from drill log .SVY ==> survey file; collar & down-hole surveys

FILE:	==>D⊦	I-39	۰A	SY			
FROM	тв	Au	¥	Ag	*\I	n'val	REMARKS
72.24	73.76	Ø.Ø7		Ø.7	١	1.52	
73.76	75.29	Ø Ø7		Ø.7	-\	1.52	
75.29	76.81	Ø.1Ø		Ø.7	-\	1.52	
76,81	78.33	$\emptyset.10$		Ø.7	~\	1.52	
78.33	79.86	Ø.1Ø		Ø.7	\	1.52	
79.86	81.38	Ø.41		1.0	١.	1.52	
81.38	82.91	Ø.62		Ø.7	-\	1.52	
82.91	84.87	$\emptyset.1\emptyset$		Ø.7	-\	1.98	
84.89	86.26	Ø.14		Ø.7	١	1.37	

FILE:	==>DH-39 .GLG	
FROM	TO GEOLOGY	DESCRIPTION
Ø.ØØ	6.71 overburden	gravel 🌡 talus
6.71	70.71 ARGILLITE	calc arg, sst, well-bedded 15-60/ca
7Ø.71	86.56 DIORITE	f-mg, 3-5% apy,py, altd & sıl
86.56	117.96 ARGILLITE	m sst. m mx. bedding 30-45/ca

FILE:	==>DH-	-39 .SVY	,				
DEPTH	AZIMUTH	DIF	NORTHING	EASTING	ELEVATION	NORTHSEC	EASTSEC
.ØØ	268.61	-45.00	9489.3420	10026.2420	966.8620	9602.9478	9677.8048
117,96	268.61	-45.00	9487.3187	9942.8562	883.4517	9657.24Ø1	9614.4832

BANBURY PROJECT 1987 DRILL HOLE DATA FILE LIST --- Surface & Underground Holes thru to 1985

.ASY ==> assay file; Au,Ag [gram/tonne] .A87 ==> includes 1987 resampling .GLG ==> geology file; abridged from drill log .SVY ==> survey file; collar & down-hole surveys -----

FILE:	==>DH-	46 .GLG	l .				
FROM	то	GEOLO	GY		DESCRIPTION		
<u>ø</u> ,øø	9.45 ov	erburden	t	talus & pebble	gravel		
9.45	125.88 AR	GILLITE	n	n gwke, beddin	g 20-90/ca		
125.88	127.56 AN	DESITE DI	KE p	porphyritic, l	ower contact	25/ca	
127.56	153.Ø1 AR	GILLITE 🌡	GWKE b	edding 45-70/	ca		
FILE:	≈=>DH	46 .SVY					
DEPTH	AZIMUTH	DIP	NORTHING	EASTING	ELEVATION	NORTHSEC	EASTSEC
.ØØ	278.61	-45.00	9489.2680	ð 1Ø111.782Ø	918.4730	9545.6554	9741.3239
153.Ø1	278.61	-45.00	9505.4656	5 10004.8069	810.2786	9629.2728	9672.6642

BANBURY PROJECT 1987 DRILL HOLE DATA FILE LIST -- Surface & Underground Holes thru to 1985 .ASY ==> assay file; Au,Ag [gram/tonne] .A87 ==> includes 1987 resampling

.GLG ==> geology file; abridged from drill log .SVY ==> survey file; collar & down-hole surveys

FILE:	==>DH-	47 .GLG					
FROM	тΰ	GEOLO	GY		DESCRIPTION		
Ø.ØØ	15.54 ov	erburden	ar	gillite talu	15		
15.54	39.Ø1 AR	GILLITE	be	dding 15-30/	ca, m ØC		
37.Ø1	4Ø.23 DI	ORITE	fç	, 4% po,py			
4Ø.23	87.17 AR	GILLITE	۵. ش	gwke, beddin	ig 1 <i>0−80/c</i> a		
87.17	93.88 DI	ORITE	f-	mg, sl altn,	Q w/ 3% py,	oo 25/ca	
93.88	197.21 AR	GILLITE	m	gwke, 2-3% p	y, bedding 30	0-65/ca	
FILE:	==>DH-	47 .5VY					
DEPTH	AZIMUTH	DIP	NORTHING	EASTING	ELEVATION	NORTHSEC	EASTSEC
. 0101	. <u>6</u> 101	-90.00	9489.268Ø	10111.7820	918.473Ø	9545.6554	9741.3239
197.21	.øø	-90.00	9489.268Ø	10111.7820	721.2630	9545.6554	9741 3239

NORANDA EXPLORATION Co. Ltd.

BANBURY PROJECT 1987 DRILL HOLE DATA FILE LIST -- NB-8×-yy Drill Holes .AAU ==> assay file; those ≥ 0.10 gram/tonne .GLG ==> geology file; abridged from drill log .SVY ==> survey file; collar & down-hole surveys

NB-85-01

FILE:

.....

dr-nb\NB-85-01.ASY

FILE:	ar-no	/W8-80-01					
			*(ppb]**				
Sample	FROM	TO	Au *	Âg		*/In²∨al	REMARKS
96576	13.60	13.90		Ø.2		/ Ø.30	
96577	45.30	45.9Ø		Ø.3	6		
96578	142.50	143.30		Ø.5		/ Ø.80	
96579	152.8Ø	153.20	5.00 -	Ø.4	35	/ Ø.4Ø	
9658Ø	158.00	158.80	25.00	Ø.9	43	/ Ø.8Ø	
96581	158.8Ø	159.90	60 . ØØ	0.5	14Ø		e N
96282	159.90	160.90	20.00	Ø.5	28	/ 1.00	
96583	160.90	161.50	4Ø.ØØ	Ø.8	$1@\emptyset$		
96584	165.40	165.80	5.00 -		$1\emptyset$		
96585		167.00		Ø.9	5Ø	/ 1.20	
96586	167.00	168.00	25.00	0.3	42	/ 1.00	
96587	168.00	168.60	5.ØØ -	Ø.4	4	/ Ø.60	
96588	168.60	169.60	30.00	1.1	20	/ 1.00	
94589	169.6Ø	170.30	5Ø.ØØ	1.8	4Ø	/ Ø.7Ø	
96590	170.30	171.80	40.00	0.6	37	/ 1.50	
96591	171.80	173.20	25.00	. Ø.7	4Ø	/ 1.40	
96592	173.20	173.80	5.00 -	Ø.2	 4	/ Ø.6Ø	
96593	173.80	175.2Ø	5.00 -	Ø.2	 6	/ 1.40	
96594	175.2Ø	175.80	20.00	0.8	ΞØ	/ Ø.6Ø	
96595	175.8Ø	176.90	5.ØØ -	ø.2	5	/ 1.10	
96596	176.90	178,30	30.00	0.5	33	/ 1.40	
96597	18Ø.6Ø	181.60	25.ØØ	Ø.9	53	/ 1.00	
96598	181.60	183.10	15.ØØ	0.6	37	/ 1.50	
96599	183.1Ø	18 3. 7Ø	2Ø.ØØ	Ø.5	58	·/ Ø.60	
96600	183.70	184.10	25.00	0.6	19	1 Ø.40	
966Ø1	216.1Ø	217.50	10.00	Ø.2	5		
96602	217.50	218.30	5.00 -	Ø.2	 5	/ Ø.8Ø	
96603	218.30	219.50	5.00 -	Ø.4	11	/ 1.20	
76604	224.30	225.70	5.00	Ø.2	4		
96605	226.40	227.00	5.00 -	Ø.2	4		
99606	235.7Ø	236.80	10.Ø0	Ø.6	19	/ 1.10	•
996 <i>0</i> 7	234.80	238,30	20.ØØ	Ø.6	20	/ 1.50	
996Ø8	238.3Ø	238.50	5.00	Ø.4	5	/ Ø.20	
996Ø9	238.50	239.00	5.00 -	Ø.2	17	/ Ø.50	
9961Ø	244.1Ø	245.50	10.00	Ø.6	5		
99611	245.50	246.50	15.ØØ	Ø.7	34		
99612	264.20	264.40	5.00	0.8	5		
96613	333.50	334.50	5.00 -	Ø.2	4	/ 1.00	
96614	338.70	337.40	5.00 -	Ø.7	6		
96615	379.40	379.80	5.00	Ø.6	12	/ Ø.4Ø	

NORANDA EXPLORATION Co. Ltd.

BANBURY PROJECT 1987
DRILL HOLE DATA FILE LIST -- NB-8x-yy Drill Holes
 .AAU ==> assay file; those 2 0.10 gram/tonne
 .GLG ==> geology file; abridged from drill log
 .SVY ==> survey file; collar & down-hole surveys

FILE:	dr-nb\NB-85-01.GLG	
FROM	TO GEOLOGY	DESCRIPTION
Ø.,ØØ	9.1Ø OVERBURDEN	
9.1Ø	13.60 ARGILLITE, LIMYWACK	
13.60	13.90 QUARTZ CARBONATE	breccia, 1% py
13.90	29.40 ARGILLITE, CALCSEDS	
29.40	34.00 ARGILLITE, limy, slts	
34.00	45.30 LIMY ARGILLITE, slt	
45,30	45.90 QUARTZ-CARBONATE	bx & strgrs, 50% argillite, 2% py
45.9Ø	46.30 ARGILLITE, calcslts	
46,30	50.10 ARGILLITE graphitic	
50.10	62.90 ARGILLITE & limy	interbedded limy arg, sltst & wacke
62 . 9Ø	69.50 ARGILLITE (limy)	interbedded w/ arg & sltst, 1%QC
69 . 5Ø	69.90 LIMESTONE WACKE	mg, tr py Ə nose of fold
69.9Ø	152,80 ARILLITE (limy)	interbedded w/ limy sltst 0.5-1% py
152.80	153.20 DIORITE PORPY DIKE	fg, litgry-pnk, top 70/ca
153.20	158.00 ARGILLITE (limy)	interbedded w/ limy sltst & m. arg.
158.00	160.90 DIORITE DIKE	f-mg, 3-4%QC, contacts 40-45/ca
160.90	165.40 ARGILLITE	INTENSELY SHEARED, 160.9-162.6m., 40/ca
165.40	165.80 FELSITE DIKE	palgrngry, vfg, 1%py, 40/ca, altered
165.80	167.00 ARGILLITE	10-15/ca, 1%py
167.00	168.00 ARGILLITE BRECCIA	f-cg, frags of arg & siliceous mat'l
168.00	168.60 QUARTZ-CARBONATE	no 5x, 20-40/ca
168.60	170.30 ARGILLITE (limy)	also limy sltst, m. arg., irreg struct'r
170.30	173.20 Q-Carb & ARG Bx	shearing 5-20/ca
173.20	176.90 FELSITE DIKE	vfg, 2-3% phenos, mQC & b×
176.90	178.30 ARGILLITE	sheared & brecciated 0-10/ca
178.30	180.60 FELSITE DIKE	1%py, brecciated contacts
180.60	183.30 ARGILLITE	carbonaceous, sheared & bx'd, 10-15/ca
183.10	183.70 Q-Carb & ARG Bx	tr py, 50-80% QC, irreg contacts 10/ca
183,70	184.1Ø AGILLITE	w/ felsite dike
184.10	186.80 FELSITE DIKE	fractured, silicified & bx'd in places
186.80	188.40 ARGILLITE	sheared, carbonaceous, bx'd, 1% py
188.40	192.70 FELSITE DIKE	bx'd, 1% QC, bottom contact 5/ca
192,70	193.50 ARGILLITE	hard, blck, vfq, py on fractures
173.50	215.70 FELSITE DIKE	m QC, blocky w/ bx'd sections
215.70	216.10 ARGILLITE	blk, bx'd, contacts 10-15/ca
216.10	218.30 FELSITE DIKE	f-mg, altered, 1% py
218.30	219.50 FELSIC DIKE	litgry, f-mg, altd, 2% py
219.50	220.60 ARGILLITE	bedding 10-35/ca
220.60	225.70 FELSITE DIKE	fractured contacts 45 & 10 deg/ca
225.70	226.40 ARG & LIMY SLTST	2% QC strqrs
226,40	227.00 FELSITE DIKE	rubbly core
227.00	238.50 LIMY SEDIMENTS	limy sltst, limy arg & arg, 1% py
238.50	245.50 DIORITE	2% QC, biotite altn, 1% py
	252.10 ARGILLITE & limysed	
252.10	274.80 ARGILLITE (FAULT)	1% py, sheared & bx'd core
274.80	277.10 LIMESTONE WACKE	f-mg., banding 5/ca, fractured

NORANDA	EXPLORATI	ION Co.	Ltd.
---------	-----------	---------	------

(

	.AAU .GLG =	E DATA F: ==> assay ==> geolo	987 ILE LIST NB-8x-yy D y file; those ≥ 0.10 g ogy file; abridged from ey file; collar & down	ram/tonne m drill log	
•					
	277.10	278.00	ARGILLITE	fractured; py on planes, 2% QC	
	278 . ØØ	279.8Ø	LIMESTONE WACKE	bedding 5-10/ca	
	279.80	280.10	ARGILLITE	2% QC	
	28Ø.1Ø	28Ø.5Ø	LIMESTONE WACKE	5% QC, contacts 40/ca	
	280.50	295.30	ARGILLITE	minor siltst, v.m. limy sltst, 5-50/ca	
	295.30	296.40	LIMY WACKE	0-30/ca, poorly sorted	
	296.40	309.00	ARGILLITE	minor sltst, 1% py	
	309.00	331.10	LIMY ARG & SLTST	w/ arg & m. limy wacke, 15-30/ca	
	331.10	334.50	SPOTTED ANDESITE	0.5% vfg py, contacts 15/ca, 90/beddin	ġ
	334.50	336.4Ø	LIMY WACKE	1-2% py, 20/ca	
	336.40	337.30	LIMY WACKE/BRECCIA	15-20% clasts	
	337.3Ø	337.80	LIMY WACKE		
	337.80	339.4Ø	LIMY CONGLOMERATE	coarser grained with depth	
	339.40	353.40	ARGILLITE (limy)	w/ limy sltst & arg, 20-40/ca	
	353.40	359.00	SPOTTED ANDESITE	5% diss'd py	
	359.00	363.30	ARGILLITE	w/ limy argillite,upto 2% py, 15-30/ca	
	363.30		SILTSTONE (limy)	2% QC strgrs, bedding 25-35/ca	
	366.00	366.20	LIMY WACKE / BRECCIA	50% clastic fraction	
	366.2Ø	38Ø.8Ø	ARGILLITE (limy)	arg & limy sltst, 5% QC, bed 10-45/ca	
	380.80	420.30	ARGILLITE	m.sltst, rare limy sltst, pyritiferous	÷
	420.30	-422.30	LIMESTONE WACKE	m-fg., 5/ca	
	422.30		ARGILLITE		
	425.7Ø	426.70	LIMESTONE WACKE	3/ca	

FILE:	dr-nb\NB-85-01.SVY							
DEPTH	AZIMUTH	DIF	NORTHING	EASTING	ELEVATION	NORTHSEC	EASTSEC	
. ØØ	90.00	-58.00	9655.9102	9931,2118	973.9486	9790.3197	9718.6394	
426.70	90.00	-58,00	9655.9102	10157.3283	612.0865	9639.0182	9886.6 768	