Teihsum

Ministry of Energy & Mines Energy & Minerals Division Geological Survey Branch

ASSESSMENT REPORT TITLE PAGE AND SUMMARY

TITLE OF REPORT [type of survey(s)] GEOCHEM (CAL	TOTAL COST
AUTHOR(S) J. T. SHEARER, M.Sc, P.Geo	SIGNATURE(S)
NOTICE OF WORK PERMIT NUMBER(S)/DATE(S)	YEAR OF WORK ZOIZ
STATEMENT OF WORK - CASH PAYMENT EVENT NUMBER(S)/DATE	EVENT # 5410785
PROPERTY NAMETeihsum River	
CLAIM NAME(S) (on which work was done) VIC	west + VIC 3
	836128
	928433
COMMODITIES SOUGHT AU/Hg	
MINERAL INVENTORY MINFILE NUMBER(S), IF KNOWN	
MINING DIVISION NANIAMO	NTS 921/6W (926.034)
LATITUDE 50 0 19 30 " LONGITUDE	
OWNER(S)	
1) J. T. SHEARER	2)
MAILING ADDRESS 	2.7.1
OPERATOR(S) [who paid for the work]	
A1 10	2)
MAILING ADDRESS	
PROPERTY GEOLOGY KEYWORDS (lithology, age, stratigraphy, structu The area is underlain by Parson's Bay Formation lime	
High Au and As were noted in soil samples along the	
	Access D.t. 17 41 A
REFERENCES TO PREVIOUS ASSESSMENT WORK AND ASSESSME 23,645 and 14,086	INT REPORT NUMBERS ASSESS Rptg 12,404
	(OVER)

TYPE OF WORK IN THIS REPORT	EXTENT OF WORK (IN METRIC UNITS)	ON WHICH CLAIMS	PROJECT COSTS APPORTIONED
			(incl. support)
GEOLOGICAL (scale, area)			
Ground, mapping			
Photo interpretation			
GEOPHYSICAL (line-kilometres)			
Ground			
Magnetic			
Electromagnetic			
Induced Polarization			
Radiometric			
Seismic			
Other			
Airborne			
GEOCHEMICAL			
(number of samples analysed for)			
Soil		836128 928433	\$4,000
Silt			
Rock	· · · · · · · · · · · · · · · · · · ·	836128 928433	\$7,500
Other			
DRILLING			
(total metres; number of holes, size)			
Core			
Non-core	·····		
RELATED TECHNICAL			
Sampling/assaying	- <u></u>		
Petrographic			
Mineralographic			140 Barton Carlos Carlo
Metallurgic			
PROSPECTING (scale, area)			
PREPARATORY/PHYSICAL			
Line/grid (kilometres)			
Topographic/Photogrammetric (scale, area)			
Legal surveys (scale, area)			
Road, local access (kilometres)/trail		836128	\$6,000
Trench (metres)	·····		
Underground dev. (metres)			
Other			
		TOTAL COS	T 17,500

GEOCHEMICAL REPORT on the TEIHSUM RIVER PROJECT

in the

TEIHSUM RIVER – MERRY WIDOW MOUNTAIN AREA NORTHERN VANCOUVER ISLAND, BC NANAIMO and ALBERNI MINING DIVISION NTS 92L/6 WEST (92L.034) Latitude 50°19'30"; Longitude 127°18' EVENT # 5410785

for

BC Geological Survey Assessment Report

33925

Homegold Resources Ltd. Unit 5 – 2330 Tyner Street Port Coquitlam, BC V3C 2Z1

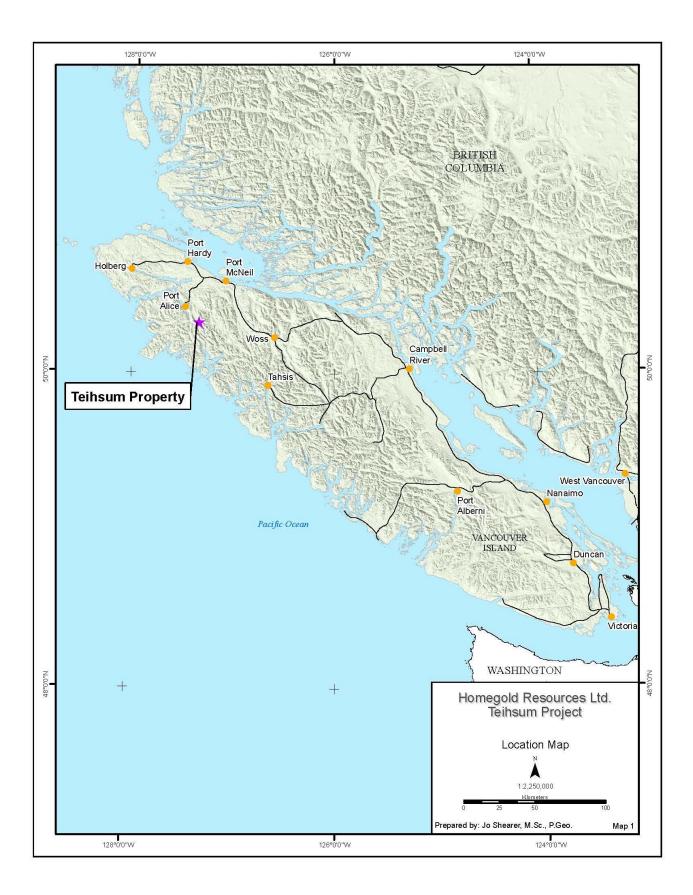
by

J. T. Shearer, M.Sc., P.Geo. (BC & Ontario) Unit 5 – 2330 Tyner Street Port Coquitlam, BC V3C 2Z1

October 14, 2012

Fieldwork completed between June 1, 2012 and October 14, 2012

TABLE of CONTENTS


LIST of ILLUSTRATIONS

Page

FIGURE 1	Location Map	iii
FIGURE 2	Access Map	. v
FIGURE 3	Claim Map	. 3
FIGURE 4	Regional Geology	. 6
FIGURE 5	Local Geology	. 9
FIGURE 6	Drill Hole Location Map (Topography)	14
FIGURE 7	Garmin on Google Key Map for Figures 8, 9a and 9b	16
FIGURE 8	Geochemical Results, North Area	17
FIGURE 9a	Garmin Key, South Area	18
FIGURE 9b	Gold-In-Soil, South Area	19
FIGURE 10	Drill Hole Location Map (Google)	20

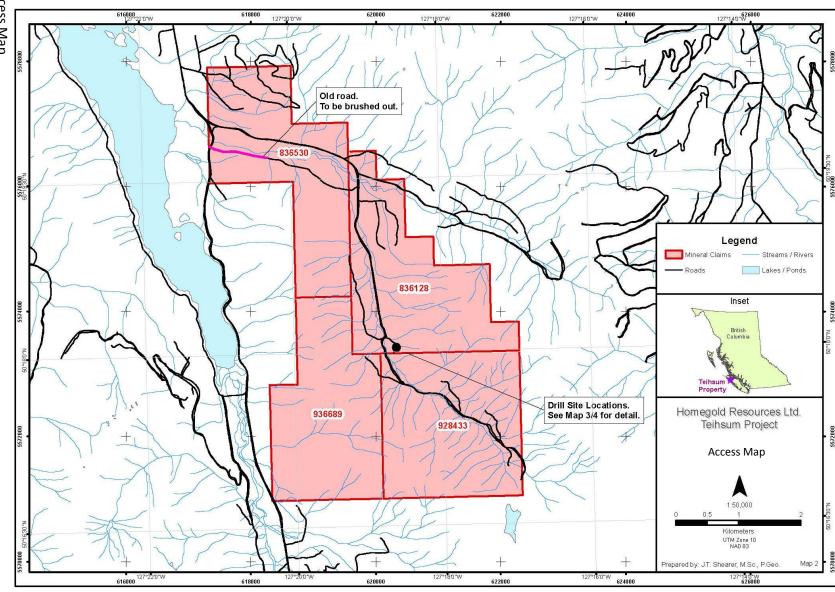
TABLES

Page

SUMMARY

The current work program began July 2012 and continued in September 2012. Limited prospecting and soil sampling of the northwest part of the claims in 2911 uncovered several gold-in-soil anomalies. The current program consisted of limited prospecting and 16 geochemical soil samples in the south central part of the claim block.

Previous work in 1991 by Granges Inc. identified two 200m wide gold in soil anomalies along the South Branch of Teihsum River between 2,000m and 3,000 metres south of the junction of the East branch and the South branch. The South Branch has also returned highly anomalous gold-in-stream sediment results by past government surveys.


The epithermal arsenic minerals realgar and orpiment are widespread on the northern part of the claims, suggesting an outward metal zoning (Cu, Pb, Zn, Ag, Fe, As and Au) from the Benson Stock.

Results from the 2012 soil sampling returned highly anomalous gold results up to 1.29 g/tonne in the central east part of the south creek. Follow-up soil/rock geochemistry and trenching/diamond drilling is recommended

Respectfully submitted

J. T. Shearer, M.Sc., P.Geo. (BC & Ontario) October 14, 2012

Access Map

INTRODUCTION

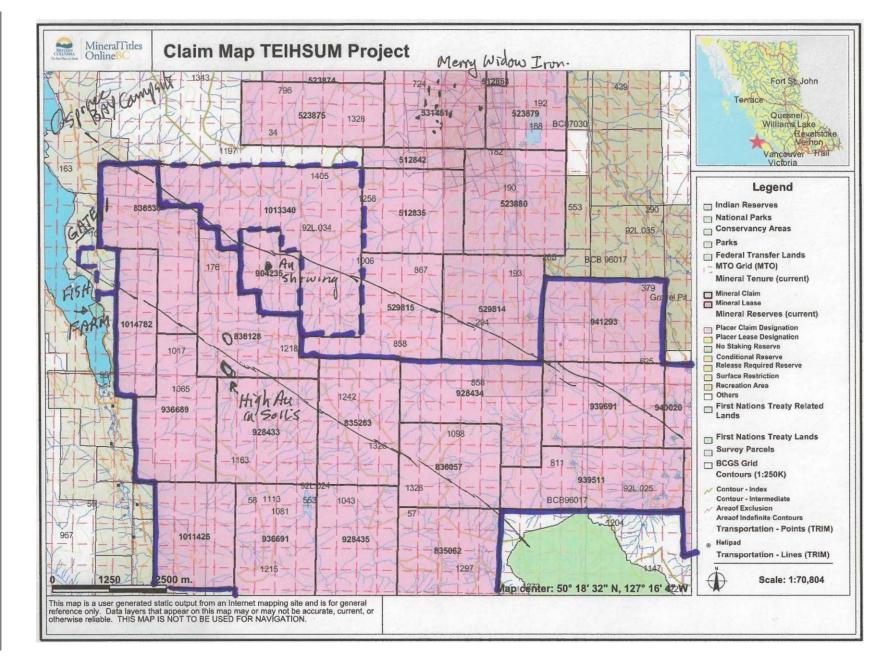
This report details the results of a preliminary program of prospecting and a geochemical soil survey on the Teihsum Project, located south of Merry Widow Mountain and southeast of Victoria Lake, Northern Vancouver Island.

Previous work in 1991 by Granges Inc. identified two 200m wide gold in soil anomalies along the South Branch of Teihsum River between 2,000m and 3,000 metres south of the junction of the East branch and the South branch. The South Branch has also returned highly anomalous gold-in-stream sediment results.

The epithermal arsenic minerals realgar and orpiment are widespread on the northern part of the claims, suggesting an outward metal zoning (Cu, Pb, Zn, Ag, Fe, As and Au) from the Benson Stock.

The 2012 program consisted of 23 soil samples in the south central portion of tenure #836128 and 928433 in conjunction with prospecting and assaying 36 rock sample. Soil samples assayed up to 1.29 g/tonne gold along a branch road of the south logging road. Rock samples returned values up to 0.084 g/tonne gold. TM-3 assayed 2.3 g/tonne Ag and 502 ppm Cu.

LOCATION and ACCESS


The Raging River Property is located approximately 25 Km southeast of the town of Port Alice on northcentral Vancouver Island. The claims lie within the Raging River and Teihsum River drainage area on the south slope of Merry Widow mountain, between 200 and 500 metres elevation, overlooking Spruce Bay Campsite on Victoria Lake.

Access to the claims is via the Victoria Lake Main logging road southeast from Port Alice, or west from Port McNeill on the Benson and Alice Lake Mains to V.L. Main. The Teihsum River drainage is accessed by gated logging road controlled by Western Forest Products (temporarily, in 2011, by a Grande Portage Lock). The road system in the Teihsum River valley is currently in poor repair, with several major bridge and road washouts from severe rainstorms during the 1990's and 2010.

The climate of Northern Vancouver Island is mostly mild and wet, with about 400 cm. of precipitation annually. Heavy snowfall covers the higher elevations from November to April, but seldom persists at lower elevations for more than a few weeks in January and February.

The claim area has been partially logged in the last 20 years, and a dense new forest covers the lower elevations. The upper reaches of the valley are covered by first-growth forest with fir, hemlock, red cedar, spruce and cypress being harvested.

A few days were spent cutting small, close spaced, alder trees from the access road to facilitate the geochemistry and prospecting.

ω

MINERAL TENURE (List of Claims)

The Teihsum River Property consists of 21 MTO Cell claims recorded in the Nanaimo Mining Division as:

List of Claims					
Tenure #	Name	Area (Ha)	Issue Date	Good To Date	Owner
835263	T100	495.45	October 6, 2010	May 23, 2013	J. T. Shearer
835062	Raging 3	516.35	October 4, 2010	May 23, 2013	J. T. Shearer
835063	Raging 4	516.63	October 4, 2010	May 23, 2013	J. T. Shearer
835082	Kashutl 1	516.78	October 5, 2010	May 23, 2013	J. T. Shearer
836128	Vic West	495.25	October 17, 2010	May 23, 2013	J. T. Shearer
836057	Victoria 1	412.92	October 16, 2010	May 23, 2013	J. T. Shearer
836530	Vic 2	495.10	October 23, 2010	May 23, 2013	J. T. Shearer
928433	Vic 3	516.12	November 7, 2011	May 23, 2013	J. T. Shearer
928434	Vic 4	516.02	November 7, 2011	May 23, 2013	J. T. Shearer
928435	Vic 5	495.71	November 7, 2011	May 23, 2013	J. T. Shearer
936689	T 1	474.81	December 8, 2011	May 23, 2013	J. T. Shearer
936690	T-2	495.91	December 8, 2011	May 23, 2013	J. T. Shearer
936691	T-3	495.71	December 8, 2011	May 23, 2013	J. T. Shearer
939511	Rage 1	516.20	January 1, 2012	May 23, 2013	J. T. Shearer
939691	Raging 7	495.40	January 3, 2012	May 23, 2013	J. T. Shearer
940020	Phil 1	516.13	January 5, 2012	May 23, 2013	J. T. Shearer
940070	Raging 11	495.63	January 6, 2012	May 23, 2013	J. T. Shearer
940769	Pellie 1	496.28	January 11, 2012	May 23, 2013	J. T. Shearer
940770	Pellie 2	496.30	January 11, 2012	May 23, 2013	J. T. Shearer
941293	Raging T	495.24	January 18, 2012	May 23, 2013	J. T. Shearer
941857	Scrut 1	495.71	January 22, 2012	May 23, 2013	J. T. Shearer

Table 1

Total ha: 10,449.65

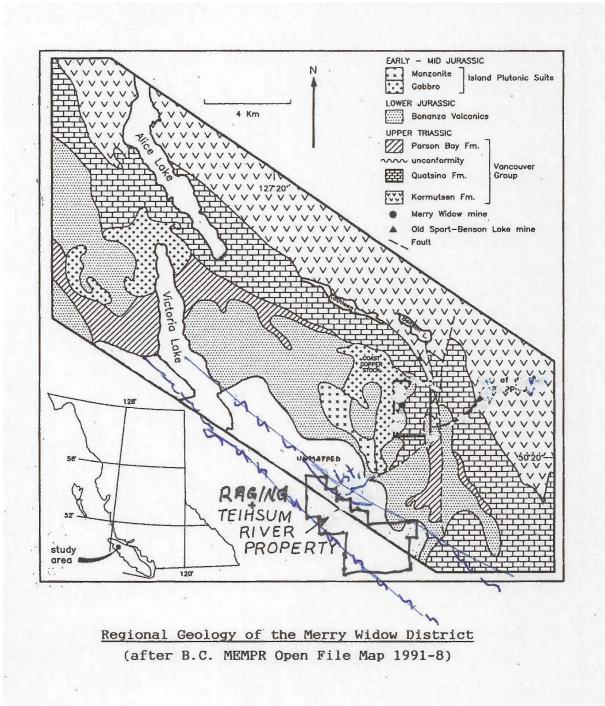
Following revisions to the Mineral Tenures Act on July 1, 2012, claims bear the burden of \$5 per hectare for the initial two years, \$10 per hectare for year three and four, \$15 per hectare for year five and six and \$20 per hectare each year thereafter.

PROPERTY HISTORY

Vancouver Island has been explored for gold, coal, and base metals since the late 1700's, the following review is modified from Laird. The Merry Widow Mountain copper-iron-gold deposits were discovered in the late 1800's, but lack of road access slowed development until the 1950's, when Empire Development Ltd. and Coast Copper Co. Ltd. began production. Coast Copper Co. Ltd. produced more than 2 million tonnes of copper-gold-iron ore from the stratiform skarn replacement "Old Sport Horizon" at the base of the Quatsino Limestone. Mining ceased in 1972 due to mining out the developed ore bodies, but deep drill intersections indicate that other potential ore bodies exist south of the mine workings.

The Merry Widow and Kingfisher mines produced more than 3.7 million tonnes of iron ore from several massive magnetite deposits in limestone and sub-volcanic greenstone breccias near the contact of the gabbro stock. Gold, copper, and cobalt bearing sulphides were considered a serious impurity in the iron ore. In the late 1980's Taywin Resources Ltd. acquired a major land position in the camp, including the Merry Widow and Kingfisher mines. Significant drill intersections of gold-copper-cobalt mineralization indicate a potential ore zone in the former Merry Widow mine.

The first recorded explorations in the Teihsum River Valley area were in 1984 when the Vancouver Island Syndicate completed a geochemical and geological survey over an area several km. west of the claims. Several stream geochemical samples showed high values in gold, zinc, copper and arsenic. No bedrock sources were identified. (MEMPR AR# 12404)


In 1985, Westmin Resources Ltd. completed a program of geochemical stream and soil sampling over the area now covered by the claims. Several strong anomalies were found, with gold values up to 4650 ppb and anomalous copper, zinc, arsenic, antimony, and mercury. No geology is given in the report (MEMPR AR# 14086) and bedrock sources were not identified.

The 1988 geochemical stream survey showed highly anomalous gold-arsenic values in the Teihsum River.

In July of 1990, prospecting by James Laird located several realgar-rich vein systems in the valley but initial sampling results did not contain significant gold.

In the early 1990's, Granges Ltd. has claimed a substantial land position in the valley and has conducted stream and soil geochemistry, mapping and rock sampling.

More recently, Grande Portage has conducted a large exploration program on the adjacent Merry Widow Property and continues to have a presence in the area.

REGIONAL GEOLOGY

The Merry Widow Mining Camp is underlain by a conformable sequence of volcanics and sediments of Upper Triassic to Late Jurassic age collectively known as the Vancouver Group. These rocks were deposited in a dominantly marine environment and have been cut by several generations of structures and basic to felsic intrusives accompanied by distinctive mineral deposits. The bedded rocks have been regionally block-tilted and strike northwest with moderate southwest dips.

The Vancouver Group is comprised of, in ascending order, Karmutsen Formation volcanics, Quatsino Formation limestone, Parson's Bay Formation limestone and sediments, and finally the Bonanza Volcanics.

The Upper Triassic Karmutsen Formation is estimated to be between 2 and 5 km thick in this area with the exposed base resting conformably on the older Sicker Group rocks about 75 km east in the Schoen Lake area. Karmutsen rocks include amygdaloidal basalt flows, pillow lavas and breccias, aquagene tuffs and thin limestone layers near the top of the sequence. The upper flows and sediments are host to sub-economic concentrations of disseminated chalcopyrite and bornite with minor native copper and vanadium minerals. Gold values are often related to propylitic alteration zones. Massive magnetite skarn zones are sometimes present in the upper units regionally.

The Quatsino Formation is estimated to be 1 km thick in the map area, and is composed of thick-bedded to massive grey to white limestone. The limestone has been bleached and re-crystallized within the thermal halo related to the Coast Copper Stock and is currently being mined for industrial purposes by IMASCO Ltd., on the north slope of Merry Widow Mountain.

The Parson's Bay Formation is a complex limestone and sediment package with rapid vertical and lateral changes in facies. Rock types include black limestone, thin-bedded tuffaceous limestone, agglomeratic limestone, grey coralline limestone reefs, thin-bedded calcareous argillite, and other waterlain chemical and clastic sediments. The formation varies from less than 10 metres southeast of Benson River to more than 300 metres in thickness near Victoria Lake.

The depositional environment is interpreted to represent a shallowing basin or shelf with a regressing shoreline. Fine clastic sediments were eroded from the uplifted Karmutsen Range to the east and transported westward into the basin, intermixing with ongoing chemical carbonate deposition. Marine fossils are common in some units and are usually well preserved. Syngenetic mineralization includes geochemical enrichments of Zn, Pb, Cu, Ag, Cd, Ga, and Ge in certain carbonaceous sediments.

At the close of the Triassic period, explosive andesitic volcanics of the Bonanza Volcanics began to fill the basin with heterolithic fragmental breccias, tuffs and flows. The volcanics and lesser interbedded limestone and sediments are up to 3 km. in thickness on parts of Vancouver Island. Near the base, the flows are green to maroon in colour and are commonly feldspar porphyritic, sometime with hexagonal jointing or rarely pillows. Towards the top felsic volcanics become more common, and the final phases of volcanism are locally sub-aerial. The breccias and tuffs often contain disseminations of hematite, pyrite, pyrrhotite, magnetite, jasper and chalcopyrite, and host the nearby Island Copper Mine porphyry copper-gold deposit.

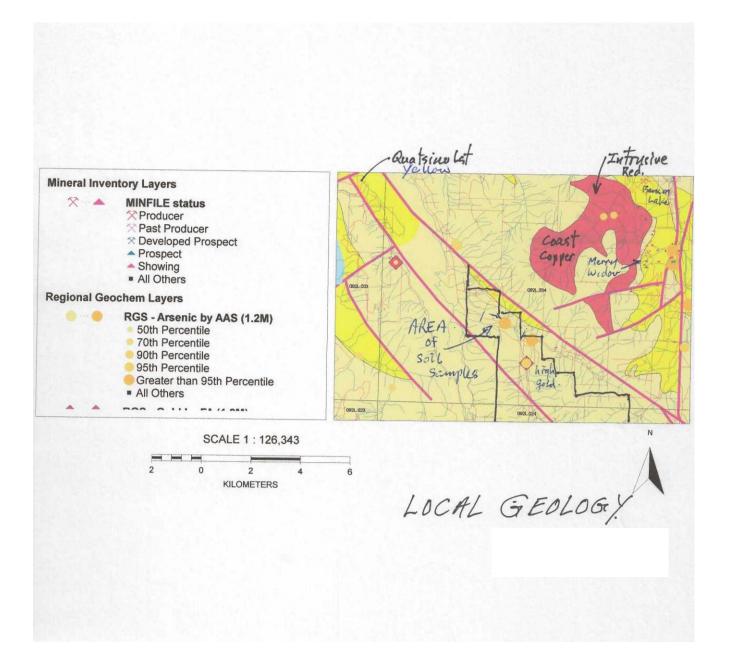
The Keystone Intrusions are a system of greenstone dikes, sills and sub-volcanic heterolithic breccia pipes which formed feeders to the overlying Bonanza Volcanics. The intrusives are intimately associated

with prograde magnetite skarns within the thermal halo of the Coast Copper Stock and are often altered to endoskarn.

The Coast Copper Stock is a gabbroic intrusive complex co-magmatic with Keystone/Bonanza rocks and is the probable original source of magnetite in the skarns. The Quatsino limestone has been bleached and re-crystallized for more than 1 km outwards from the stock contact and all known ore bodies have been found within this halo. The stock varies from a coarse gabbro-diorite with a high magnetite content to anorthosite and pegmatite.

A somewhat younger phase of the stock forms a large central intrusion of potassium feldspar-rich Quartz Monzonite. Regionally, Jurassic potassic granitic rocks known as the Island Intrusions have been linked to felsic volcanism in the upper Bonanza Volcanics and to major economic mineral deposits. The granitic rocks and related felsic porphyries are intimately associated with copper-gold-molybdenum ore at the nearby Island Copper Mine, and to copper-gold-zinc skarns, mantos, and replacements at the Yreka Mine near Port Alice, the Alice Lake mineral belt, the Nimpkish area deposits and many others. On Merry Widow Mountain, the early Keystone Intrusions and iron skarns have been intruded by a younger greenstone suite associated with sulphide deposition and retrograde skarn alteration.

The final phase of intrusive diking observed is probably of Tertiary age and consists of north striking steeply dipping narrow greenstone dikes cutting the sulphide zones and as N-S diorite dikes in the Parson's Bay Formation and Coast Copper Stock.


The structure of Northern Vancouver Island is dominated by major northwest trending high angle faults which have allowed block-tilting of the Vancouver Group. The bedded rocks in the Merry Widow area strike northwest and dip from 20° to 50° to the southwest. North striking faults with steep easterly dips have repeated the stratigraphy east of the Coast Copper Stock with a total cumulative movement of more than 1 km and have a footwall-up relative movement. These faults are sub-parallel to the stock contact, and are very important controls in ore formation.

Northeast striking faults and fracture zones show little displacement as a rule but were also important ore controls. An exception to this is the northeast striking Rainier Creek fault with a footwall-up relative movement of possibly 1 km, indicating it is probably part of a ring-fracture system surrounding the Coast Copper Stock. The local fault-block movements could then be explained as being displaced upward to allow emplacement of the stock in late Jurassic time, possibly during intrusion of the quartz monzonite phase.

Multiple episodes of movement and mineralization of the fault systems is likely, and the youngest event near the Merry Widow Mine is narrow E-W trending structures with coarse crystalline carbonate and ankerite.

Another important depositional control is formational contacts such as the Karmutsen/Quatsino "Old Sport Horizon" and the reducing environment found at the Quatsino/Parson's Bay contact. Detachment-style faulting may have played a part in ground preparation prior to mineralization of the "Old Sport Horizon".

At the Merry Widow Mine, skarn-hosted massive magnetite ore bodies form large lenses parallel to the contact of the Coast Copper Stock, hosted in greenstone and limestone. The adjoining Kingfisher Mine hosts massive, clean magnetite in two converging pipe-like ore bodies in Quatsino limestone. At the

Coast Copper Mine, at least five separate magnetite-chalcopyrite ore bodies have been mined along the Karmutsen-Quatsino contact, hosted in a broad skarn zone updip from the contact with the gabbro stock.

Magnetite zones north of the Merry Widow Mine occur at the contact of intrusive greenstone breccia pipes and limestone, proximal to the stock contact. Chalcopyrite found within the magnetite zones is often poor in gold content. Coarse microcline feldspar is commonly found in the magnetite.

A younger mineralizing event, possibly related to quartz monzonite emplacement, is rich in gold, copper, cobalt and arsenical sulphides associated with mineralized greenstone dikes at the Merry Widow Mine and felsite sills at the Coast Copper Mine. The sulphides are structurally controlled and where magnetite skarns have been intersected a retrograde skarn assemblage is found consisting of actinolite, garnet, quartz, calcite, epidote, chlorite, amphibole, and coarse re-crystallized magnetite, often with a colloform texture. Distal from the magnetite zones, massive sulphides with little or no skarn alteration form mantos and replacements adjacent to fault zones and in solution cavities in limestone.

Observed mineralogy includes; chalcopyrite, pyrrhotite, pyrite, arsenopyrite, bornite, marcasite, cobaltite, bismuth, tellurides, native gold and a little sphalerite, with thin surface alterations of limonite, malachite, azurite, erythrite, nickel bloom, scorodite, covellite, realgar and native copper.

LOCAL GEOLOGY

The Teihsum River area is underlain by Parson's Bay Formation limestone and Bonanza Volcanics intruded by various ages of basic to felsic dikes and sills, and the Coast Copper Stock. The bedded rocks strike northwest at about 330° and dip southwest at 20° to 50°. Gold and sulphide mineralization is associated with intrusive contacts and north to northeast trending faults and shear zones. The following outline of the local geology is modified from Laird (1984) and Geiger (2004).

The Parson's Bay Formation is exposed as a belt at least 500 m wide extending from near the eastern property boundary along the lower slopes of Merry Widow Mountain to Victoria Lake. Topography in this area closely parallels the dip of the beds. Lithologies include grey to black thin-bedded tuffaceous limestone, agglomeratic limestone and grey limestone reefs with well-preserved fossil corals. Shell fossils are also occasionally found. Near the Coast Copper Stock, the limestone is contorted, bleached, and recrystallized to a skarny jasperoid.

The Bonanza Volcanics overlie the sediments to the north and south, indicating that it is a probable fault block. On the south side of the valley, the volcanics are green and maroon basic flows with thin limestone interbeds. To the north basic volcanics occur on the upper slopes of Merry Widow Mountain, but were not examined in outcrop.

Heterolithic breccias are found as large boulders in the creeks but have not been seen in outcrop. The breccias occasionally have gabbroic or syenitic fragments in a volcaniclastic matrix. Near Victoria Lake, the lower volcanic flows are feldspar porphyritic with areas of chalcedonic amygdule fillings, quartz veins, hematite, pyrite and jasper.

Intrusives noted on the property are Keystone suite "greenstones", Coast Copper Stock gabbro-diorite, mineralized felsite dikes, and Tertiary diorite dikes. To the east of the property large slide blocks of greenstone/quartz monzonite breccia were observed.

The Keystone suite greenstones are seen as series of dikes and sills in the Road Zone, and outcrops along the road at the northern claim boundary show a small endoskarned stock with disseminated sulphides.

The Coast Copper Stock gabbro-diorite outcrops at the Bridge Zone along the Teihsum River and in road ballast pits in the northeast corner of the claims. At the Bridge Zone the gabbro is rather fine-grained and is altered by ankerite, hematite and silicification. The adjoining reef limestone is bleached white and mineralized for over 100 metres from the contact. The road ballast pits show brecciated gabbro with rotated fragments in a matrix of fine-grained diorite. The gabbro-diorite breccia has been cut by greenstone dikes and N-S striking Tertiary diorite dikes. Silicification, chloritization, and realgar veining along the edge of the diorite dikes was noted in one pit, and small fault-bound blocks of sediments in another. Outcrops along the road at the north claim line show gabbro with coarse magnetite crystals contacting skarned tuffaceous limestone with pyrite, hematite, chalcopyrite and minor sphalerite. Areas of gabbro pegmatite and anorthosite were also observed.

Light green to yellow felsite dikes and sills intrude the Road Zone and are mineralized with disseminated pyrite, hematite, pyrrhotite, chalcopyrite and sphalerite.

Late diorite dikes are thought to be Tertiary in age because of the observed geological relationships, visual similarity to the Zeballos and Mt. Washington intrusions of known Tertiary (Miocene) age, and the close association with realgar and polymetallic gold-quartz veins of probable Tertiary age.

To the west of the Raging River Property a gold showing referred to as the Road Zone is well exposed in numerous recent road washouts and along the steep canyon of the Teihsum River near the western claim boundary. The host rock is a dark tuffaceous and agglomeratic limestone striking 320° with a 50° southwest dip. The beds are cut by three generations of intrusives; Keystone dikes and sills of green andesite, mineralized felsite dikes intruding the greenstone dikes, and Tertiary diorite dikes striking N-S with a steep east dip dissecting the existing rocks. Tectonic brecciation and silicification of the limestone has resulted in numerous mineralized fault lenses in an area over 100 metres wide and more than 200m long, open in both strike directions.

The main structures are north striking shear zones with a steep east dip and a conjugate set of shears trending 040° NE and steeply dipping. Quartz-carbonate breccia veins, arsenopyrite, pyrite, sphalerite, chalcopyrite, galena and sometimes realgar are hosted in the north shears, altered limestones and at the edge of diorite dikes in NE trending tensional vein zones. The sheared rock has been silicified and carbonated with ankerite and calcite, kaolinized, and sometimes hosts green mariposite mica. Near the eastern edge of the zone, shearing is accompanied by much chlorite alteration with quartz-pyrite veins and some clear gypsum crystals in quartz vugs.

In the central Road Zone, a 1 metre wide shear zone known as the Red Devil Shear, hosts gold-bearing sulphides and abundant realgar, often forming in drusy vugs filled with small ruby-red realgar crystals and clear quartz crystals. Gold values were 0.607 oz./t (20.8 g/t) in a 40cm chip sample. Realgar is widespread along the edges of the diorite dikes and in joints, and forms the matrix of limestone breccias along detached bedding planes. Realgar veins without other sulphides do not contain gold. Pyrite, sphalerite, and some galena are also found in disseminations.

The Spruce Creek Vein is a NE trending 20 cm. wide shear vein with quartz, carbonate and massive realgar. The vein is hosted in tuffaceous limestone with dikes in the bottom of a small creek. A coarse crystalline black carbonate mineral forms in the wallrock.

The Gold Creek Zone is mineralized for at least 100m above the road in shear zones and in replacements. A 50cm wide shear zone strikes NNE and dips steeply, paralleling the creek. Malachite, chalcopyrite, pyrite, and minor realgar occur in the shear (AR-1, 2). A NS striking diorite dike cuts tuffaceous limestone in the vicinity of the shear and shows replacements of malachite, chalcopyrite and pyrite for about 5 metres in width along the dike edge. A well mineralized area gave assays of 0.276 oz./t Au and 2% Cu in a 1x2 m chip sample.

The Teaser Vein was the original mineral discovery on the claims, and is located in one of the road ballast pits. The vein is 30 cm. of quartz, carbonate, realgar and graphite in a shear zone along a diorite dike cutting gabbro-diorite breccia. Realgar is found in other small shears over a width of 40 metres. Small vuggy quartz-limonite veins occur also.

The realgar veins strike north with the diorite dikes and are exposed for 30 metres in length. Hematite and ankerite alteration is very strong around the shear zones. Strong chloritization and silicification was seen along some shears.

The Bridge Zone is exposed for about 100m along the Teihsum River, near a washed-out bridge. The host rocks are limestone intruded by the Coast Copper Stock and diorite dikes. The limestone is contorted, bleached, silicified and skarny for about 100m from the contact. At the contact, strong shearing occurs in a zone about 10m wide striking 065°. The shear zone hosts quartz-carbonate veins with pyrite, sphalerite and realgar giving assays of 0.116 oz./t Au and 3% Zn across 30 cm.

About 25 m. from the contact, a 1m wide replacement pod contains massive fine-grained sphalerite, chalcopyrite, pyrite and greenockite which gave assays of 0.203 oz./t Au (6.96 g/t) 2.63% Cu and 25.8% Zn across 1 metre. Diorite dikes are close by but apparently not related. (AR-7)

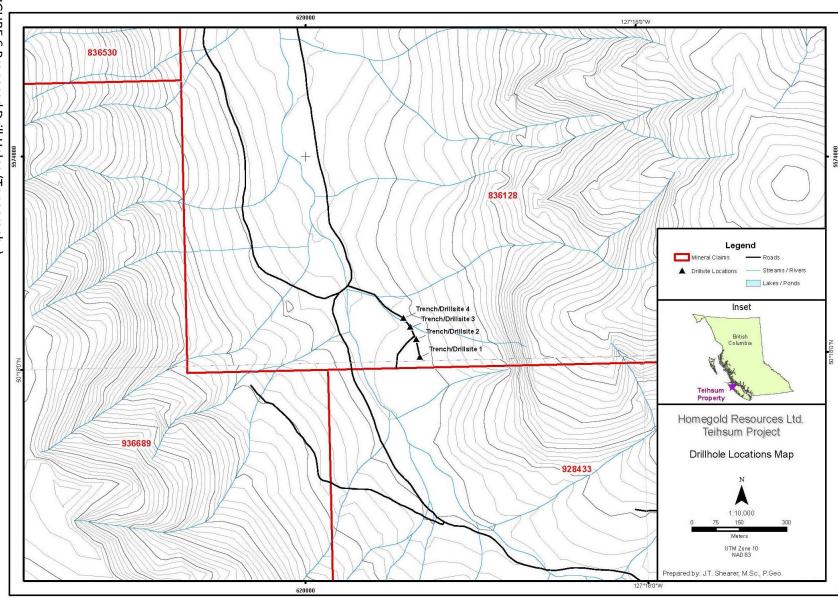


FIGURE 6 Proposed Drill Holes (Topography)

GEOCHEMISTRY 2012

The geochemical survey consisted of 16 "B" horizon soil samples collected at 25 metre intervals along the main road. Samples were taken with a shovel along the upper bank of the old road and bagged in standard kraft envelopes and any rock or plant fragments were removed. Stations were measured by hipchain and marked with flagging tape. The sample bags were dried and then shipped to Agat Labs Ltd. where they were analysed for gold, mercury and 30 element ICP. Procedures are described in detail on the assay sheets.

Anomalous results were returned, in 2011, up to 96ppb Au at 525m along the road from the gate. This sample was also highly anomalous in arsenic (3470 ppm As), lead and copper (186 ppm Cu). The last 4 samples, 1000m to 1600m, are anomalous in arsenic.

The 2012 program consisted of 23 soil samples in the south central portion of tenure #836128 and 928433 in conjunction with prospecting and assaying 36 rock sample. Soil samples assayed up to 1.29 g/tonne gold along a branch road of the south logging road. Rock samples returned values up to 0.084 g/tonne gold. TMS-1 assayed 2.9 g/tonne Au and 73 ppm Cu. Rock sample TM-2 assayed 2.3 g/tonne silver and 502 ppm copper. Rock sample TM20 assayed 3.2 ppm silver but only 2.7 ppm copper. Rock sample TMC5 assayed 0.06 ppm Au and TM1 assayed 0.084 ppm Au.

Follow-up rock sampling, trenching and diamond drilling are recommended along the branch road leading up to sample TMS-1. A bedrock source for the highly anomalous gold in soil sample TMS-1 is expected to be close to the end of the branch road and south.

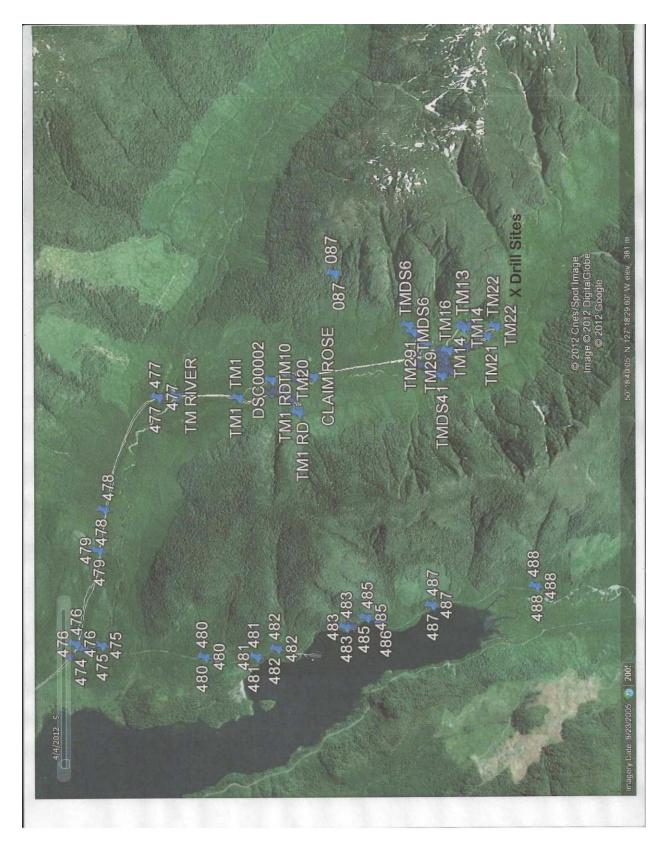
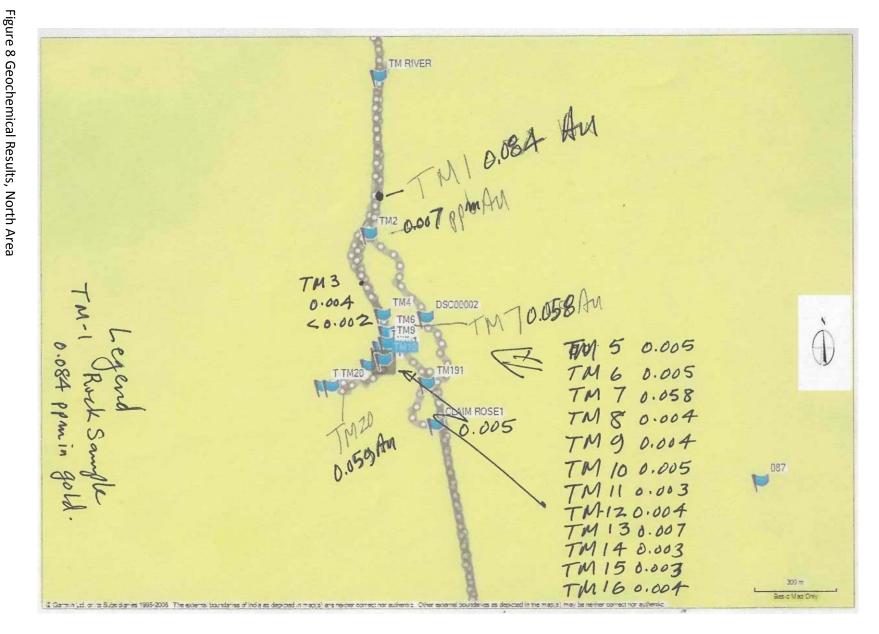



Figure 7 Garmin on Google Key Map for Figures 8, 9a and 9b

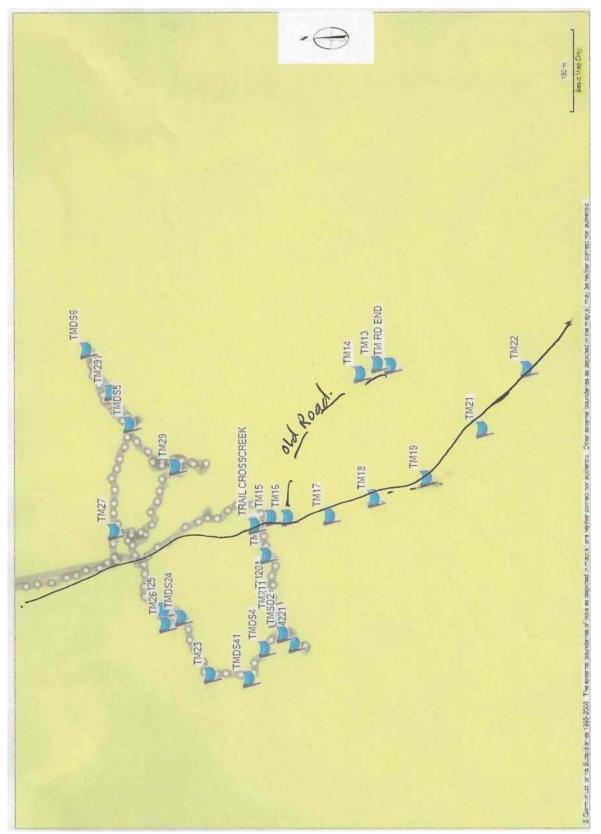
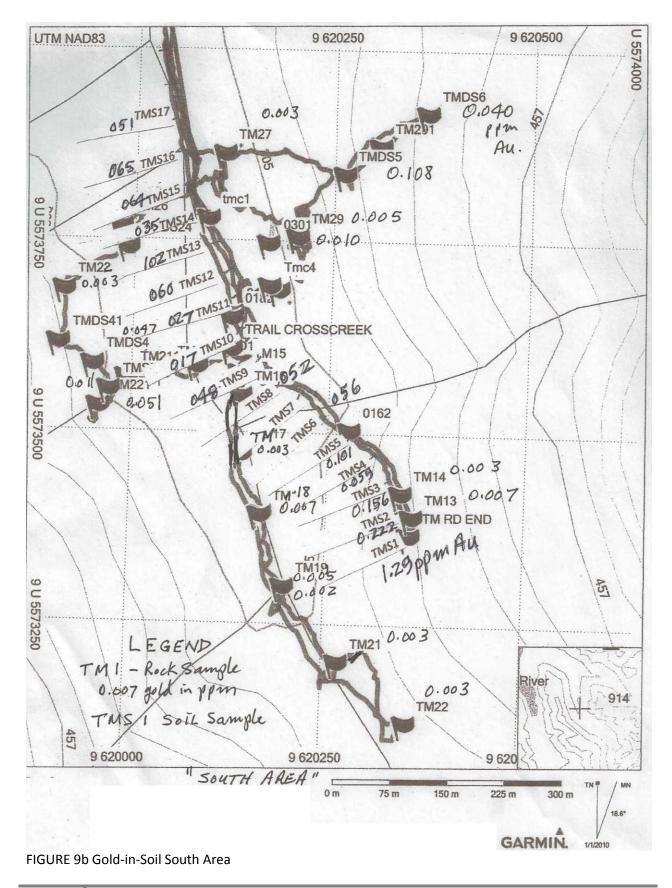



FIGURE 9a Google Key South Area; see assay results on Figure 9b

19 Geochemical Report on the Teihsum River Project October 14, 2012

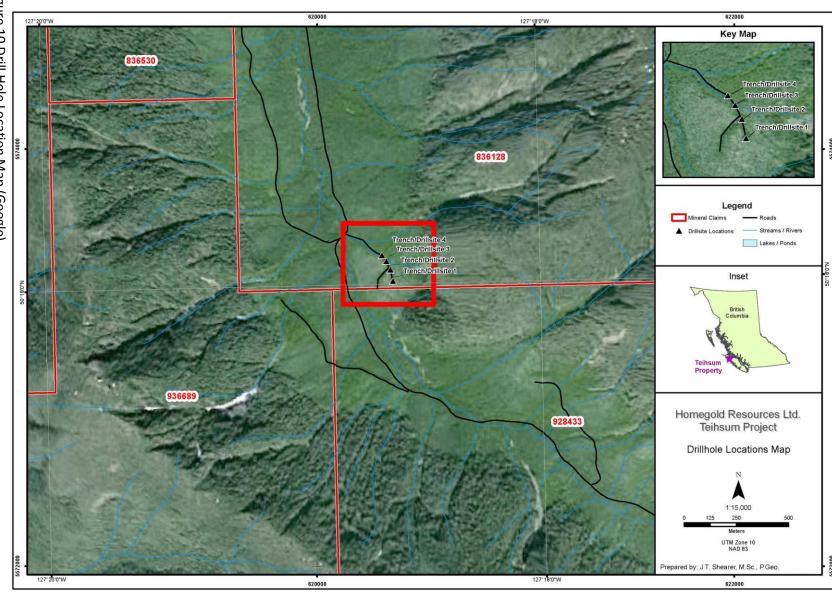


Figure 10 Drill Hole Location Map (Google)

CONCLUSIONS and RECOMMENDATIONS

The Raging River Property and surrounding area hosts a variety of gold and sulphide deposits including; epithermal veins, zinc and copper replacements, skarns, and magnetite zones.

Property mineralization occurs in higher stratigraphic units which have been eroded at the Merry Widow mine, and the Coast Copper "Old Sport Horizon" is at 1000m depth. A vertical zonation between Merry Widow-type massive sulphides and Teihsum River epithermal-style fault veins and replacements is implied by structure and mineralogy. The realgar zones may have been generated by the destruction of massive arsenical sulphides at depth and remobilized along Tertiary dikes. Drilling below the epithermal systems to the reducing horizon at the top of the Quatsino limestone may discover new Merry Widow-type gold-copper zones.

Gold-copper-zinc replacements are an intriguing target but need a detached structure or easily replaceable beds to accumulate a significant mineral deposit. The mineralized felsite dikes are possibly related to a porphyry-style system similar to the Island Copper Mine, and felsites are also found near bonanza-grade zones at the nearby Electrum and Hiller prospects. The Mt. Washington area is probably the most similar to the realgar-rich epithermal veins and breccias and could serve as an exploration model.

The Merry Widow Mountain and Teihsum River areas are within one of the largest and strongest magnetic anomalies on Vancouver Island and the probability of new mines being discovered here is excellent.

The current work program began October 2011 and continued in November 2011. Limited prospecting and soil sampling of the northwest part of the claims uncovered several gold-in-soil anomalies. The program consisted of limited prospecting and 16 geochemical soil samples.

Previous work in 1991 by Granges Inc. identified two 200m wide gold in soil anomalies along the South Branch of Teihsum River between 2,000m and 3,000 metres south of the junction of the East branch and the South branch. The South Branch has also returned highly anomalous gold-in-stream sediment results.

The epithermal arsenic minerals realgar and orpiment are widespread on the northern part of the claims, suggesting an outward metal zoning (Cu, Pb, Zn, Ag, Fe, As and Au) from the Benson Stock.

Anomalous results were returned, in 2011, up to 96ppb Au at 525m along the road from the gate. This sample was also highly anomalous in arsenic (3470 ppm As), lead and copper (186 ppm Cu). The last 4 samples, 1000m to 1600m, are anomalous in arsenic.

The 2012 program consisted of 23 soil samples in the south central portion of tenure #836128 and 928433 in conjunction with prospecting and assaying 36 rock sample. Soil samples assayed up to 1.29 g/tonne gold along a branch road of the south logging road. Rock samples returned values up to 0.084 g/tonne gold. TMS-1 assayed 2.9 g/tonne Au and 73 ppm Cu. Rock sample TM-2 assayed 2.3 g/tonne silver and 502 ppm copper. Rock sample TM20 assayed 3.2 ppm silver but only 2.7 ppm copper. Rock sample TMC5 assayed 0.06 ppm Au and TM1 assayed 0.084 ppm Au.

Follow-up rock sampling, trenching and diamond drilling are recommended along the branch road leading up to sample TMS-1. A bedrock source for the highly anomalous gold in soil sample TMS-1 is expected to be close to the end of the branch road and south.

Recommendations

- 1. Enlarge the claim block to cover additional ground.
- 2. Detailed 1:500 scale geological mapping and prospecting of the geochemical anomalies.
- 3. Geological grid mapping.
- 4. 10 km of magnetometer surveys.

Respectfully submitted

J. T. Shearer, M.Sc., P.Geo. (BC & Ontario)

Estimated Cost of Future Work

The following detailed exploration budget is for the continued exploration of the Teihsum-Raging River Property, as detailed in recommendations in this report:

Phase One		
Mobilization		\$ 11,000.00
Geophysical I.P. Surveying , 27.3 km @ \$2500/km		\$68,250.00
Geologist, 40 days @ \$700/day		\$28,000.00
Assistants, 2 x 40 days @ \$400/day		\$32,000.00
Accommodation, 6 x 40 days x \$100/day (includes 2 geoph/crew)		\$24,000.00
Vehicles – 4x4, 3 x 40 days x \$110/day		\$13,200.00
Supplies		\$5,000.00
Equipment Rental, pumps, field equipment, etc.		\$4,000.00
Assays, Rocks		\$10,000.00
Assays, Soils, 950 @ \$35/ea.		\$33,250.00
Assays,Silt , 60 @ \$35/each		\$2,100.00
Report, Word Processing and Reproduction		\$10,000.00
Office, Telephone		\$2,000.00
		\$242,800.00
	Contingency	\$7,200.00
	Subtotal	\$250,000.00
	HST	\$30,000.00
	TOTAL	\$280,000 .00

Contingent upon the success of the above noted first phase detailed exploration program to more precisely delineate mineralized zones and structures. Also, contingent on the successful identification of additional geochemical and geophysical anomalies as a result of the above noted first phase expanded surveys; it is recommended that detailed infill geochemical and geophysical surveys also be conducted during the second phase program to identify more precisely potential drill targets. If the anomalies generated during the first phase program have not been closed off, it is also recommended that grids be extended to allow further soil sampling and/or geophysical surveying.

REFERENCES

B.C. EMPR Open File Map 1991-8

Geology and Mineral Occurrences of the Merry Widow Skarn camp, Northern Vancouver Island by G.E. Ray and I.C.L. Webster

Bruland, Tor, 1983:

Assessment Report 11543

1984:

Report on Drilling – Nimpkish Group – Private Report for Falconbridge Mines Ltd.

Department of Energy Mines and Resources, Ottawa; 1981: Map 1552A Geology Alert Bay – Cape Scott

Dykes: Shaun M., 1985:

1985 Geochemical Survey Program Undertaken on the Teihsum Property Port Alice BC, Assessment Report #14086

Geiger, W. K., 2004:

Geology and Mineral Deposits, Teihsum River Property, Assessment Report 27332.

Laird, J. W. 1984:

Teihsum River Property, Assessment Report 23645, 25pp.

Nixon, G.T., Hammack, J.L., Hamilton, J.V., Jennings, H., Larocque, J.P., Friedman, R.M., Archibald, D.A., Orchard, M.J., Haggart, J.W., Tipper, H.W., Tozer, T., and Cordey, F. 2006

BC. Geological Survey, Geoscience Map 2006-4, Geology of the Mahatta Creek Area, Northern Vancouver Island, NTS 92L/5.

Nixon, G.T. and A.J. Orr, 2007.

Recent Revisions to the Early Mesozoic Stratigraphy of Northern Vancouver Island (NTS 102I, 092L) and Metallogenic Implications, British Columbia, Geological Fieldwork 2006, Paper 2007-1, p.163-177.

Ray, G. E. and Webster, I. C. L., 1991: Aeromagnetic Map 1737G Alice Lake

Smitheringale, W. G., P.Eng., 1984:

Report on Stream Sediment Geochemical and Geological Surveys on the VIC Claim near Port Alice, Vancouver Island, BC, Assessment Report 12404

Walton, G., May 1983: Assessment Report 11292

APPENDIX I

STATEMENT of QUALIFICATIONS

October 14, 2012

STATEMENT of QUALIFICATIONS

I, Johan T. Shearer of Unit 5 – 2330 Tyner Street, in the City of Port Coquitlam, in the Province of British Columbia, do hereby certify:

- 1. I graduated in Honours Geology (B.Sc., 1973) from the University of British Columbia and the University of London, Imperial College, (M.Sc. 1977).
- 2. I have practiced my profession as an Exploration Geologist continuously since graduation and have been employed by such mining companies as McIntyre Mines Ltd., J.C. Stephen Explorations Ltd., Carolin Mines Ltd. and TRM Engineering Ltd. I am presently employed by Homegold Resources Ltd.
- 3. I am a fellow of the Geological Association of Canada (Fellow No. F439). I am also a member of the Canadian Institute of Mining and Metallurgy, the Geological Society of London and the Mineralogical Association of Canada. I am a member in good standing of the Association of Professional Engineers and Geoscientists of British Columbia (P.Geo., Member Number 19,279).
- 4. I am an independent consulting geologist employed since December 1986 by Homegold Resources Ltd. At Unit #5 2330 Tyner Street, Port Coquitlam, British Columbia.
- 5. I am the author of the report entitled "Geochemical Assessment Report on the Teihsum River Property" dated October 14, 2012.
- 6. I have visited the property and supervised the crew between July 19 and 24, 2012. I have carried out mapping and sample collection and am familiar with the regional geology and geology of nearby properties. I have become familiar with the previous work conducted on the Raging River Project by examining in detail the available reports and maps and have discussed previous work with persons knowledgeable of the area.

Dated at Port Coquitlam, British Columbia, this 14th day of October, 2012.

.T. Shearer, M.Sc., P. Geo.

APPENDIX II

STATEMENT of COSTS

Oct0ber 14, 2012

APPENDIX II STATEMENT of COSTS

Wages		Without HST
J. T. Shearer, M.Sc., P.Geo., Geologist		ć 4 200 00
6 days @ \$700/day, July 19-24, 2012		\$4,200.00
	Wages Sub-total	\$ 4,200.00
Expenses		
Truck 1, Rental, fully equipped 4x4, 7 days @ \$120/day		840.00
Truck 2, Rental, fully equipped 4x4, 6 days @ \$120/day		720.00
Fuel, 3,200km		1,296.00
Brian Howich – Road Repairs		450.00
Field Supplies		250.00
Hotel, 4 days for 3 men		680.00
Camp, 3 days for 3 men, \$50/man/day		450.00
Denis Delisle, 7 days @ \$350/day, July 21-26, 2012		2,450.00
Chuck Marlow, 6 days @ \$350/day, July 21-25, 2012		2,100.00
Analytical		2)200.00
38 rock samples @ \$28.50 ea. 12V628658		967.10
22 soil samples @ \$20.13 ea. 12V628656		442.81
•		385.00
ATV Rental, 7 days @ \$55/day		
Radios + GPS Rentals		400.00
Computer Mapping and Data Interpretation		600.00
Report Preparation		1,400.00
Word Processing and Reproduction		350.00
	Expenses Sub-total	\$ 13,780.91
	Grand Total	\$ 17,980.91

 Filed:
 October 15, 2012

 Event # 5410785

 Work:
 \$17,500.00

 PAC:
 \$7,297.05

 Total:
 \$24,797.05

APPENDIX III

ANALYTICAL RESULTS

October 14, 2012

CLIENT NAME: HOMEGOLD RESOURCES LTD. UNIT# 5-2330 TYNER STREET PORT COQUITLAM, BC V3C2Z1 (604) 696-1022

ATTENTION TO: JO SHEARER

PROJECT NO: THIESON

AGAT WORK ORDER: 12V628656

SOLID ANALYSIS REVIEWED BY: Yufei Chen, Analyst

DATE REPORTED: Sep 14, 2012

PAGES (INCLUDING COVER): 10

Should you require any information regarding this analysis please contact your client services representative at (905) 501-9998

*NOTES

All samples are stored at no charge for 90 days. Please contact the lab if you require additional sample storage time.

AGAT WORK ORDER: 12V628656 PROJECT NO: THIESON 5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.aqatlabs.com

CLIENT NAME: HOMEGOLD RESOURCES LTD.

			Aqu	a Regia	Digest -	Metals F	ackage,	ICP-OE	S finish	(201073)					
DATE SAMPLED: Au	g 08, 2012		[DATE RECE	EIVED: Jul (30, 2012		DATE I	REPORTED): Sep 14, 20	012	SAM	PLE TYPE:	Soil	
	Analyte:	Ag	AI	As	В	Ва	Be	Bi	Са	Cd	Ce	Со	Cr	Cu	Fe
	Unit:	ppm	%	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	%
Sample Description	RDL:	0.2	0.01	1	5	1	0.5	1	0.01	0.5	1	0.5	0.5	0.5	0.01
TMS 1		0.6	1.72	23	18	70	0.8	<1	1.24	0.5	20	16.2	130	73.0	4.67
TMS 2		<0.2	1.99	28	11	54	0.9	3	1.03	0.8	10	19.3	37.0	47.2	5.34
TMS 3		<0.2	2.79	32	19	54	0.7	3	0.64	<0.5	7	16.3	63.0	45.9	4.57
TMS 4		<0.2	2.03	29	8	47	0.7	<1	1.02	0.7	10	19.0	29.3	40.8	5.40
TMS 5		<0.2	3.13	61	14	59	0.9	1	0.88	0.9	11	29.5	52.7	93.8	5.93
TMS 6		<0.2	2.43	37	28	46	0.7	<1	0.61	<0.5	5	20.8	73.8	62.1	4.23
TMS 8		<0.2	3.47	34	14	54	0.6	1	0.61	0.6	6	12.5	79.5	48.7	5.80
TMS 9		<0.2	3.40	24	14	75	0.9	4	0.70	0.9	2	18.6	38.1	108	6.04
TMS 10		<0.2	3.17	29	6	53	0.6	5	0.61	0.6	5	25.7	23.2	105	5.65
TMS 11		<0.2	1.82	22	12	52	0.8	1	1.10	0.7	9	15.8	29.9	38.5	4.84
TMS 12		<0.2	3.03	43	22	57	0.7	3	0.78	0.6	6	29.2	78.0	116	5.37
TMS 13		<0.2	2.04	43	21	42	0.7	<1	0.91	0.6	11	16.5	54.9	48.6	4.90
TMS 14		<0.2	2.58	28	13	35	0.7	4	0.37	0.7	10	22.3	33.2	56.4	5.62
TMS 15		<0.2	2.57	30	14	38	0.7	2	0.39	0.8	7	20.6	31.2	46.6	6.06
TMS 16		<0.2	3.36	36	17	43	0.8	4	0.68	0.8	10	32.2	82.7	81.4	6.63
TMS 17		<0.2	2.99	27	22	41	1.0	5	0.62	0.9	10	27.6	63.9	73.7	5.66
TMSD 1		<0.2	2.60	29	28	25	1.1	<1	0.80	1.0	14	25.6	95.7	70.5	6.88
TMSD 2		<0.2	4.52	24	19	29	2.2	6	0.75	1.7	36	33.9	25.9	114	9.66
TMSD 3		<0.2	2.79	22	27	26	1.3	<1	0.93	1.0	21	23.3	120	74.7	7.78
TMSD 4		<0.2	3.86	11	18	12	1.3	<1	0.16	1.3	6	15.4	24.2	36.3	11.2
TMSD 5		<0.2	4.16	29	18	56	0.7	7	0.48	0.8	6	26.6	39.8	69.4	5.18
TMSD 6		<0.2	2.85	38	15	34	0.7	4	0.43	0.8	5	18.2	31.2	59.0	5.56

Certified By:

y. che

AGAT WORK ORDER: 12V628656 PROJECT NO: THIESON 5623 MCADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: HOMEGOLD RESOURCES LTD.

			Aqu	a Regia	Digest -	Metals F	ackage,	ICP-OE	S finish (201073)					
DATE SAMPLED: Au	g 08, 2012		[DATE RECE	EIVED: Jul 3	30, 2012		DATE	REPORTED	: Sep 14, 20	012	SAM	PLE TYPE:	Soil	
	Analyte:	Ga	Hg	In	K	La	Li	Mg	Mn	Мо	Na	Ni	Р	Pb	Rb
	Unit:	ppm	ppm	ppm	%	ppm	ppm	%	ppm	ppm	%	ppm	ppm	ppm	ppm
Sample Description	RDL:	5	1	1	0.01	1	1	0.01	1	0.5	0.01	0.5	10	0.5	10
TMS 1		9	<1	<1	0.18	8	10	1.12	1230	12.8	0.13	9.1	1050	15.4	23
TMS 2		11	<1	<1	0.16	3	12	1.29	1350	2.5	0.12	4.5	1270	12.5	19
TMS 3		9	<1	1	0.14	2	10	0.97	974	2.7	0.11	8.8	919	10.4	19
TMS 4		11	<1	<1	0.16	3	11	1.27	1230	8.5	0.12	4.5	1290	13.4	20
TMS 5		12	<1	<1	0.24	4	12	1.55	1220	1.9	0.13	12.6	1040	6.9	34
TMS 6		8	<1	<1	0.11	2	8	1.02	845	2.3	0.10	10.1	746	8.9	16
TMS 8		13	<1	<1	0.11	2	8	1.15	512	1.8	0.13	9.4	816	11.9	16
TMS 9		13	<1	<1	0.18	1	11	1.70	539	2.0	0.12	9.1	530	8.9	32
TMS 10		11	<1	<1	0.09	2	9	1.28	958	1.4	0.10	8.8	882	9.2	15
TMS 11		10	<1	<1	0.15	3	10	1.12	972	1.4	0.14	3.6	1300	11.2	20
TMS 12		10	<1	<1	0.14	2	10	1.31	1230	1.9	0.12	12.5	912	14.6	21
TMS 13		9	<1	<1	0.12	3	11	1.26	1320	1.6	0.10	8.4	1140	22.5	15
TMS 14		10	<1	<1	0.08	3	10	1.18	1250	1.2	0.05	8.5	946	15.0	11
TMS 15		11	<1	<1	0.07	2	10	1.41	1010	1.5	0.05	9.3	579	11.0	11
TMS 16		13	<1	<1	0.11	2	15	1.80	1960	1.7	0.08	12.4	1170	15.0	18
TMS 17		13	<1	<1	0.11	3	11	1.52	2350	2.0	0.08	11.2	1190	12.7	18
TMSD 1		16	<1	<1	0.08	4	11	1.50	2870	1.8	0.07	6.9	1170	16.0	17
TMSD 2		20	<1	<1	0.04	5	12	1.18	4100	2.1	0.03	3.4	1710	14.2	14
TMSD 3		16	<1	<1	0.06	6	12	1.51	2890	2.6	0.07	5.7	1190	16.6	15
TMSD 4		20	<1	<1	0.03	2	6	0.53	2280	1.1	0.02	<0.5	1560	16.0	<10
TMSD 5		11	<1	<1	0.10	2	9	1.14	1050	1.5	0.08	12.1	1120	11.4	16
TMSD 6		10	<1	<1	0.08	2	8	0.95	1080	1.0	0.06	7.8	1390	11.2	13

Certified By:

y. che

AGAT WORK ORDER: 12V628656 PROJECT NO: THIESON 5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: HOMEGOLD RESOURCES LTD.

			Aqu	a Regia	Digest -	Metals F	Package,	ICP-OES	S finish ((201073)					
DATE SAMPLED: Au	ıg 08, 2012		[DATE RECE	EIVED: Jul (30, 2012		DATE F	REPORTED	: Sep 14, 20)12	SAM	PLE TYPE:	Soil	
	Analyte:	S	Sb	Sc	Se	Sn	Sr	Та	Te	Th	Ti	TI	U	V	W
	Unit:	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm
Sample Description	RDL:	0.005	1	0.5	10	5	0.5	10	10	5	0.01	5	5	0.5	1
TMS 1		0.185	7	7.0	<10	<5	59.5	<10	<10	<5	0.33	13	<5	104	<1
TMS 2		0.047	7	8.2	<10	<5	27.2	<10	<10	<5	0.37	13	<5	123	<1
TMS 3		0.064	6	3.7	<10	<5	50.7	<10	<10	<5	0.29	16	<5	98.9	<1
TMS 4		0.045	7	8.0	<10	<5	25.4	<10	<10	<5	0.39	12	<5	125	<1
TMS 5		0.035	10	8.3	<10	<5	55.1	<10	<10	<5	0.32	14	<5	142	<1
TMS 6		0.064	7	3.5	<10	<5	48.4	<10	<10	<5	0.24	13	<5	109	<1
TMS 8		0.076	8	4.0	<10	<5	48.5	<10	<10	<5	0.31	12	<5	140	<1
TMS 9		0.058	10	7.4	<10	<5	74.2	<10	<10	<5	0.38	12	<5	158	<1
TMS 10		0.064	9	5.3	<10	<5	42.8	<10	<10	<5	0.28	7	<5	139	<1
TMS 11		0.030	8	8.6	<10	<5	26.4	<10	<10	<5	0.41	8	<5	127	<1
TMS 12		0.064	7	5.8	<10	<5	85.9	<10	<10	<5	0.27	11	<5	133	<1
TMS 13		0.036	8	7.2	<10	<5	29.9	<10	<10	<5	0.30	12	<5	115	<1
TMS 14		0.072	7	4.1	<10	<5	24.1	<10	<10	<5	0.26	9	<5	140	<1
TMS 15		0.040	8	5.5	<10	<5	28.0	<10	<10	<5	0.31	12	<5	162	<1
TMS 16		0.044	8	7.0	<10	<5	37.8	<10	<10	<5	0.32	12	<5	159	<1
TMS 17		0.070	9	5.8	<10	<5	35.7	<10	<10	<5	0.28	11	<5	153	<1
TMSD 1		0.058	7	10.2	<10	<5	22.7	<10	<10	<5	0.45	18	<5	146	<1
TMSD 2		0.049	9	17.7	<10	<5	16.0	<10	<10	<5	0.46	24	7	174	<1
TMSD 3		0.058	5	12.5	<10	<5	21.6	<10	<10	<5	0.49	19	<5	143	<1
TMSD 4		0.075	6	6.8	<10	<5	3.5	<10	<10	<5	0.60	12	<5	191	<1
TMSD 5		0.075	11	3.7	<10	<5	50.1	<10	<10	<5	0.22	11	<5	113	<1
TMSD 6		0.083	9	3.0	<10	<5	25.2	<10	<10	<5	0.28	11	<5	134	<1

Certified By:

y. che

Certificate of Analysis

AGAT WORK ORDER: 12V628656 **PROJECT NO: THIESON**

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: HOMEGOLD RESOURCES LTD.

ATTENTION TO: JO SHEARER

			Aqu	a Regia Digest - Metals Pack	age, ICP-OES finish (201073)	
DATE SAMPLED: Au	g 08, 2012		[DATE RECEIVED: Jul 30, 2012	DATE REPORTED: Sep 14, 2012	SAMPLE TYPE: Soil
	Analyte:	Y	Zn	Zr		
	Unit:	ppm	ppm	ppm		
Sample Description	RDL:	1	0.5	5		
TMS 1		17	72.4	<5		
TMS 2		19	90.5	<5		
TMS 3		10	48.0	<5		
TMS 4		19	80.7	<5		
TMS 5		16	56.2	<5		
TMS 6		8	42.9	<5		
TMS 8		8	37.0	<5		
TMS 9		9	40.2	<5		
TMS 10		10	37.6	<5		
TMS 11		21	74.2	<5		
TMS 12		11	54.0	<5		
TMS 13		16	88.3	<5		
TMS 14		11	63.6	<5		
TMS 15		9	69.5	<5		
TMS 16		13	87.4	<5		
TMS 17		14	78.8	<5		
TMSD 1		20	118	<5		
TMSD 2		37	136	<5		
TMSD 3		29	122	<5		
TMSD 4		14	57.8	<5		
TMSD 5		8	37.2	<5		
TMSD 6		9	45.7	<5		

Comments: **RDL** - Reported Detection Limit

Certified By:

J. che

AGAT WORK ORDER: 12V628656 PROJECT NO: THIESON 5623 MCADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: HOMEGOLD RESOURCES LTD.

ATTENTION TO: JO SHEARER

Fire Assay - Trace Au, AAS finish (202051)													
DATE SAMPLED: Au	ig 08, 2012			DATE RECEIVED: Jul 30, 2012	DATE REPORTED: Sep 14, 2012	SAMPLE TYPE: Soil							
	Analyte:	Sample Login Weight	Au										
	Unit:	kg	ppm										
Sample Description	RDL:	0.01	0.002										
TMS 1		0.34	1.29										
TMS 2		0.39	0.222										
TMS 3		0.21	0.156										
TMS 4		0.43	0.059										
TMS 5		0.38	0.101										
TMS 6		0.27	0.086										
TMS 8		0.18	0.052										
TMS 9		0.24	0.048										
TMS 10		0.26	0.017										
TMS 11		0.53	0.027										
TMS 12		0.24	0.060										
TMS 13		0.39	0.102										
TMS 14		0.22	0.035										
TMS 15		0.21	0.064										
TMS 16		0.26	0.065										
TMS 17		0.37	0.051										
TMSD 1		0.22	0.052										
TMSD 2		0.30	0.024										
TMSD 3		0.27	0.051										
TMSD 4		0.18	0.047										
TMSD 5		0.24	0.108										
TMSD 6		0.15	0.040										

Comments: RDL - Reported Detection Limit

Certified By:

y. chan.

Quality Assurance

CLIENT NAME: HOMEGOLD RESOURCES LTD.

PROJECT NO: THIESON

ſ

AGAT WORK ORDER: 12V628656

			Solic	d Anal	ysis						
RPT Date: Sep 14, 2012	1		REPLIC	ATE				REFER	RENCE MATE	RIAL	
PARAMETER	Batch	Sample Id	Original	Rep #1	RPD	Method Blank	Result Value	Expect Value	Recovery	Accepta Lower	ble Limits Upper
Fire Assay - Trace Au, AAS finish (2020	051)										
Au	1	3593434	0.026	0.012		< 0.002	0.26	0.263	99%	90%	110%
Aqua Regia Digest - Metals Package, IC	PLOES fin	ich (201073)									
	1	3593434	0.6	0.7	15.4%	< 0.2	13.6	14.0	97%	80%	120%
Ag Al	1	3593434	1.72	1.69	1.8%	< 0.2	13.0	14.0	9176	80%	120%
As	1	3593434 3593434	23	20	14.0%	< 1				80%	120%
B	1	3593434	18	20 19	5.4%	< 5				80%	120%
Ba	1	3593434	70	70	0.0%	< 1				80%	120%
Da	I	3393434	70	70	0.0%	< 1				00%	120%
Be	1	3593434	0.8	0.8	0.0%	< 0.5				80%	120%
Bi	1	3593434	< 1	< 1	0.0%	< 1				80%	120%
Са	1	3593434	1.24	1.23	0.8%	< 0.01				80%	120%
Cd	1	3593434	0.5	0.7		< 0.5				80%	120%
Ce	1	3593434	20	20	0.0%	< 1				80%	120%
Со	1	3593434	16.2	17.0	4.8%	< 0.5				80%	120%
Cr	1	3593434	130	133	2.3%	< 0.5				80%	120%
Cu	1	3593434 3593434	73.0	69.6	2.3% 4.8%	< 0.5 < 0.5	5895	6000	98%	80%	120%
Fe	1	3593434	4.67	4.62	4.0 <i>%</i> 1.1%	< 0.01	0090	0000	9070	80%	120%
Ga	1	3593434	9	8	11.8%	< 5				80%	120%
Hg	1	3593434	< 1	< 1	0.0%	< 1				80%	120%
In	1	3593434	< 1	2		< 1				80%	120%
к	1	3593434	0.18	0.18	0.0%	< 0.01				80%	120%
La	1	3593434	8	8	0.0%	< 1				80%	120%
Li	1	3593434	10	10	0.0%	< 1				80%	120%
Ma	4	2502424	4.40	4.40	4.00/	0.04				000/	4000/
Mg	1	3593434	1.12	1.10	1.8%	< 0.01				80%	120%
Mn	1	3593434	1230	1270	3.2%	< 1	251	260	070/	80%	120%
Mo	1	3593434	12.8	12.7	0.8%	< 0.5	351	360	97%	80%	120%
Na	1	3593434	0.13	0.13	0.0%	< 0.01				80%	120%
Ni	1	3593434	9.1	9.3	2.2%	< 0.5				80%	120%
Р	1	3593434	1050	1050	0.0%	< 10				80%	120%
Pb	1	3593434	15.4	17.1	10.5%	< 0.5				80%	120%
Rb	1	3593434	23	24	4.3%	< 10	13	13	100%	80%	120%
S	1	3593434	0.185	0.181	2.2%	< 0.005				80%	120%
Sb	1	3593434	7	11		< 1				80%	120%
5-	4	2502424	0.00	7 4 7	0.70/	.0.5				0.00/	4000/
Sc	1	3593434	6.98	7.17	2.7%	< 0.5				80%	120%
Se	1	3593434	< 10	< 10	0.0%	< 10				80%	120%
Sn	1	3593434	< 5	< 5	0.0%	< 5				80%	120%
Sr T	1	3593434	59.5	56.4	5.3%	< 0.5				80%	120%
Та	1	3593434	< 10	< 10	0.0%	< 10				80%	120%
Те	1	3593434	< 10	< 10	0.0%	< 10				80%	120%
Th	1	3593434	< 5	< 5	0.0%	< 5				80%	120%
Ті	1	3593434	0.33	0.33	0.0%	< 0.01				80%	120%
ті	1	3593434	13	12	8.0%	< 5				80%	120%
U	1	3593434	< 5	< 5	0.0%	< 5				80%	120%
N/		0500 10 1	46.4	407	0.001	<u> </u>				0000	1000
V	1	3593434	104	107	2.8%	< 0.5				80%	120%

Quality Assurance

CLIENT NAME: HOMEGOLD RESOURCES LTD.

PROJECT NO: THIESON

AGAT WORK ORDER: 12V628656

		50110	Anar	ysis (C	Jonti	nued)					
RPT Date: Sep 14, 2012			REPLIC	CATE				REFE	RENCE MATE	RIAL	
PARAMETER	Batch	Sample Id	Original	Rep #1	RPD	Method Blank	Result Value	Expect Value	Recovery	Accepta	ble Limit
							value	value		Lower	Upper
V	1	3593434	< 1	< 1	0.0%	< 1				80%	120%
/	1	3593434	17	18	5.7%	< 1				80%	120%
In	1	3593434	72.4	73.8	1.9%	< 0.5				80%	120%
ſr	1	3593434	< 5	< 5	0.0%	< 5				80%	120%
ïre Assay - Trace Au, AAS finish (20	02051)										
NU	1	3593445	0.102	0.130	24.1%	< 0.002				90%	110%
qua Regia Digest - Metals Package	, ICP-OES fin	ish (201073)									
Ng	1	3593454	< 0.2	< 0.2	0.0%	< 0.2	13.1	14.0	93%	80%	120%
J	1	3593454	4.16	4.31	3.5%	< 0.01				80%	120%
 NS	1	3593454	29	28	3.5%	< 1				80%	120%
	1	3593454	18	20	10.5%	< 5				80%	120%
a	1	3593454	56	57	1.8%	< 1				80%	120%
e	1	3593454	0.72	0.62	14.9%	< 0.5				80%	120%
i	1	3593454	7	2		< 1				80%	120%
Ca	1	3593454	0.480	0.488	1.7%	< 0.01				80%	120%
d	1	3593454	0.77	0.73	5.3%	< 0.5				80%	120%
Če –	1	3593454	6	6	0.0%	< 1				80%	120%
Co	1	3593454	26.6	26.7	0.4%	< 0.5				80%	120%
Cr	1	3593454	39.8	41.2	3.5%	< 0.5				80%	120%
Su Su	1	3593454	69.4	70.4	1.4%	< 0.5	5780	6000	96%	80%	120%
							5760	0000	90%		
Fe	1	3593454	5.18	5.21	0.6%	< 0.01				80%	120%
a	1	3593454	11	12	8.7%	< 5				80%	120%
lg	1	3593454	< 1	< 1	0.0%	< 1				80%	120%
n	1	3593454	< 1	< 1	0.0%	< 1				80%	120%
	1	3593454	0.10	0.10	0.0%	< 0.01				80%	120%
a	1	3593454	2	2	0.0%	< 1				80%	120%
i	1	3593454	9	9	0.0%	< 1				80%	120%
ſg	1	3593454	1.14	1.15	0.9%	< 0.01				80%	120%
In	1	3593454	1050	1050	0.0%	< 1				80%	120%
Ло	1	3593454	1.5	1.3	14.3%	< 0.5	349	360	96%	80%	120%
la	1	3593454	0.08	0.08	0.0%	< 0.01	0.0		0070	80%	120%
li	1	3593454	12.1	12.4	2.4%	< 0.5				80%	120%
)	1	3593454	1120	1120	0.0%	< 10	689	600	115%	80%	120%
Pb	1	3593454	11.4	13.0	13.1%	< 0.5	003	000	11070	80%	120%
							40	40	1000/		
Rb	1	3593454	16	17	6.1%	< 10	13	13	100%	80%	120%
5 5b	1 1	3593454 3593454	0.075 11	0.076 9	1.3% 20.0%	< 0.005 < 1				80% 80%	120% 120%
	1	3593454	3.71	4.10	10.0%	< 0.5				80%	120%
Se	1	3593454	< 10	< 10	0.0%	< 10				80%	120%
Sn	1	3593454	< 5	< 5	0.0%	< 5				80%	120%
Gr	1	3593454	50.1	51.4	2.6%	< 0.5				80%	120%
а	1	3593454	< 10	< 10	0.0%	< 10				80%	120%
-	1	3593454	< 10	< 10	0.0%	< 10				80%	120%
Γh	1	3593454	< 5	< 5	0.0%	< 5				80%	120%

Quality Assurance

Solid Analysis (Continued)

CLIENT NAME: HOMEGOLD RESOURCES LTD.

PROJECT NO: THIESON

AGAT WORK ORDER: 12V628656

ATTENTION TO: JO SHEARER

		30110	Anar	ysis (C	Jonu	nueu)					
RPT Date: Sep 14, 2012			REPLIC	CATE				REFE	RENCE MATE	RIAL	
PARAMETER	Batch	Sample Id	Original	Rep #1	RPD	Method Blank	Result	Expect	Recovery	Accepta	able Limits
FARAMETER	Balch	Sample lu	Original	Rep #1	RFD		Value	Value	Recovery	Lower	Upper
Ti	1	3593454	0.22	0.23	4.4%	< 0.01				80%	120%
ТІ	1	3593454	11	12	8.7%	< 5				80%	120%
U	1	3593454	< 5	< 5	0.0%	< 5				80%	120%
V	1	3593454	113	115	1.8%	< 0.5				80%	120%
W	1	3593454	< 1	< 1	0.0%	< 1				80%	120%
Y	1	3593454	8	8	0.0%	< 1	6	7	80%	80%	120%
Zn	1	3593454	37.2	37.4	0.5%	< 0.5				80%	120%
Zr	1	3593454	< 5	< 5	0.0%	< 5				80%	120%
Aqua Regia Digest - Metals Package, I	CP-OES fin	ish (201073)									
Ag	1					< 0.2	13.1	14.0	93%	80%	120%
Cu	1					< 0.5	5912	6000	98%	80%	120%
Мо	1					< 0.5	343	360	95%	80%	120%
P	1					< 10	699	600	116%	80%	120%
Rb	1					< 10	13	13	102%	80%	120%
Υ	1					< 1	6	7	80%	80%	120%

Certified By:

Page 9 of 10

J. chen.

Method Summary

CLIENT NAME: HOMEGOLD RESOURCES LTD.

PROJECT NO: THIESON

AGAT WORK ORDER: 12V628656 ATTENTION TO: JO SHEARER

TROJECT NO. THESON		ATTENTION TO:	
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Solid Analysis			
Ag	MIN-200-12020		ICP/OES
AI	MIN-200-12020		ICP/OES
As	MIN-200-12020		ICP/OES
3	MIN-200-12020		ICP/OES
За	MIN-200-12020		ICP/OES
Зе	MIN-200-12020		ICP/OES
Зі	MIN-200-12020		ICP/OES
Ca	MIN-200-12020		ICP/OES
Cd	MIN-200-12020		ICP/OES
Ce	MIN-200-12020		ICP/OES
Co	MIN-200-12020		ICP/OES
Cr	MIN-200-12020		ICP/OES
Cu	MIN-200-12020		ICP/OES
Fe	MIN-200-12020		ICP/OES
Ga	MIN-200-12020		ICP/OES
	MIN-200-12020 MIN-200-12020		ICP/OES
Hg	MIN-200-12020 MIN-200-12020		ICP/OES
n K	MIN-200-12020 MIN-200-12020		ICP/OES
<			
_a	MIN-200-12020		ICP/OES
.i	MIN-200-12020		ICP/OES
Иg	MIN-200-12020		ICP/OES
Иn	MIN-200-12020		ICP/OES
Мо	MIN-200-12020		ICP/OES
Na	MIN-200-12020		ICP/OES
Ni	MIN-200-12020		ICP/OES
2	MIN-200-12020		ICP/OES
Pb	MIN-200-12020		ICP/OES
Rb	MIN-200-12020		ICP/OES
6	MIN-200-12020		ICP/OES
Sb	MIN-200-12020		ICP/OES
Sc	MIN-200-12020		ICP/OES
Se	MIN-200-12020		ICP/OES
Sn	MIN-200-12020		ICP/OES
Sr	MIN-200-12020		ICP/OES
Га	MIN-200-12020		ICP/OES
Ге	MIN-200-12020		ICP/OES
	MIN-200-12020		ICP/OES
Гh Гi	MIN-200-12020 MIN-200-12020		ICP/OES
ГI ,	MIN-200-12020		ICP/OES
J	MIN-200-12020		ICP/OES
/	MIN-200-12020		ICP/OES
N	MIN-200-12020		ICP/OES
-	MIN-200-12020		ICP/OES
Zn	MIN-200-12020		ICP/OES
Źr	MIN-200-12020		ICP/OES
Sample Login Weight	MIN-12009		BALANCE
Au	MIN-200-12019	BUGBEE, E: A Textbook of Fire Assaying	AAS

CLIENT NAME: HOMEGOLD RESOURCES LTD. UNIT# 5-2330 TYNER STREET PORT COQUITLAM, BC V3C2Z1 (604) 696-1022

ATTENTION TO: JO SHEARER

PROJECT NO: THIESON

AGAT WORK ORDER: 12V628658

SOLID ANALYSIS REVIEWED BY: Kevin Motomura, ICP Supervisor

DATE REPORTED: Sep 14, 2012

PAGES (INCLUDING COVER): 15

Should you require any information regarding this analysis please contact your client services representative at (905) 501-9998

*NOTES

All samples are stored at no charge for 90 days. Please contact the lab if you require additional sample storage time.

AGAT WORK ORDER: 12V628658 PROJECT NO: THIESON 5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: HOMEGOLD RESOURCES LTD.

ATTENTION TO: JO SHEARER

			Aqu	a Regia	Digest -	Metals F	Package,	ICP-OE	S finish ((201073)					
DATE SAMPLED: Au	g 08, 2012		Γ	DATE RECE	EIVED: Jul (30, 2012		DATE I	REPORTED): Sep 14, 20	012	SAM	IPLE TYPE:	Rock	
	Analyte:	Ag	AI	As	В	Ва	Be	Bi	Са	Cd	Ce	Со	Cr	Cu	Fe
	Unit:	ppm	%	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	%
Sample Description	RDL:	0.2	0.01	1	5	1	0.5	1	0.01	0.5	1	0.5	0.5	0.5	0.01
TM 1		<0.2	1.84	7	<5	31	0.7	<1	0.58	0.8	20	13.5	27.6	190	5.19
TM 2		<0.2	2.08	<1	<5	98	1.8	<1	1.53	0.9	13	12.5	28.6	21.5	5.57
TM 3		2.3	3.76	<1	8	14	1.2	<1	8.94	0.9	1	18.9	21.9	502	3.96
TM 4		<0.2	1.55	<1	<5	23	2.5	<1	2.51	1.1	15	18.5	3.3	<0.5	8.79
TM 5		<0.2	3.58	<1	<5	30	1.7	<1	1.21	1.1	11	24.7	22.7	44.6	7.28
TM 6		0.8	2.90	6	8	17	<0.5	<1	6.25	1.5	8	24.1	23.6	167	7.29
TM 7		<0.2	3.48	<1	<5	36	1.7	<1	1.31	1.1	10	23.8	21.3	37.9	7.10
TM 8		0.9	4.73	<1	10	4	2.1	<1	5.52	1.0	4	18.1	44.9	229	4.66
TM 9		5.3	0.64	3	11	43	0.6	<1	23.7	<0.5	6	10.6	3.1	25.3	4.51
TM 10		<0.2	3.37	<1	<5	28	1.7	<1	1.28	1.1	12	23.4	23.7	42.9	6.99
TM 11		<0.2	2.35	<1	<5	14	0.6	<1	2.89	1.3	24	31.8	0.7	177	9.11
TM 12		<0.2	3.59	<1	6	30	1.7	<1	1.26	1.2	10	24.5	21.6	41.5	6.91
TM 13		<0.2	1.73	<1	<5	7	1.4	<1	3.07	0.7	<1	25.3	43.0	239	5.38
TM 14		0.3	4.86	<1	<5	16	1.8	<1	2.76	1.1	1	13.9	33.2	50.5	4.61
TM 15		<0.2	1.98	<1	<5	89	1.7	<1	1.62	0.7	13	11.1	13.4	16.5	5.54
TM 16		<0.2	0.93	<1	<5	38	1.4	<1	1.21	<0.5	11	9.9	5.9	147	3.13
TM 17		<0.2	2.06	<1	<5	112	1.8	<1	1.72	0.8	12	10.6	7.5	16.5	5.32
TM 18		<0.2	2.03	<1	<5	105	1.8	<1	1.65	0.7	13	10.4	15.3	23.5	5.23
TM 19		<0.2	1.98	<1	<5	112	1.6	<1	1.56	0.7	12	11.9	6.4	22.5	5.19
TM 20		3.2	0.73	<1	15	42	<0.5	<1	13.8	0.9	8	18.0	2.9	2.7	6.02
TM 20S		<0.2	2.07	<1	<5	18	2.6	<1	1.50	1.1	17	13.9	13.3	22.7	6.89
TM 21		<0.2	2.14	<1	6	12	2.4	<1	1.76	1.0	8	27.4	11.1	174	7.33
TM 21S		<0.2	2.25	<1	<5	112	1.7	<1	1.74	0.7	13	11.8	7.0	23.6	5.63
TM 22		<0.2	2.03	<1	<5	18	2.5	<1	1.32	0.9	17	13.3	6.4	22.6	6.76
TM 22S		<0.2	1.82	<1	<5	102	1.5	<1	1.43	0.6	12	9.7	18.5	14.3	4.77
TM 23		<0.2	2.19	<1	<5	22	2.2	<1	0.98	0.8	21	11.8	9.7	23.8	6.41
TM 25		<0.2	1.78	<1	<5	18	1.8	<1	0.85	0.7	21	8.9	21.2	15.0	5.79
TM 26		<0.2	2.17	<1	<5	104	1.9	<1	1.77	0.9	13	12.0	9.3	17.0	5.71
TM 27		<0.2	1.23	<1	<5	8	<0.5	<1	0.74	<0.5	7	8.0	32.6	98.9	2.32
TM 28		<0.2	2.47	<1	<5	4	1.7	<1	3.29	1.2	<1	58.6	6.6	527	8.46
TM 29		0.2	4.44	<1	<5	59	1.4	<1	2.22	1.2	2	22.4	65.7	105	5.28
TM 30		<0.2	2.12	5	<5	28	1.3	<1	0.45	0.8	7	13.1	11.8	21.2	6.41

Certified By:

mur

Certificate of Analysis

AGAT WORK ORDER: 12V628658 **PROJECT NO: THIESON**

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: HOMEGOLD RESOURCES LTD.

ATTENTION TO: JO SHEARER

			Aqu	a Regia	Digest -	Metals F	ackage,	ICP-OE	S finish ((201073)					
DATE SAMPLED: Au	ig 08, 2012		[DATE RECE	EIVED: Jul (30, 2012		DATE F	REPORTED	: Sep 14, 2	012	SAM	PLE TYPE:	Rock	
	Analyte:	Ag	Al	As	В	Ва	Be	Bi	Са	Cd	Ce	Со	Cr	Cu	Fe
	Unit:	ppm	%	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	%
Sample Description	RDL:	0.2	0.01	1	5	1	0.5	1	0.01	0.5	1	0.5	0.5	0.5	0.01
TMC 1		<0.2	1.91	<1	<5	29	0.7	<1	0.92	<0.5	6	9.3	35.3	70.0	2.94
TMC 2		<0.2	1.55	<1	<5	11	0.5	<1	0.75	<0.5	8	8.6	30.0	101	2.46
TMC 3		<0.2	1.96	<1	<5	55	2.0	<1	1.36	0.7	7	11.0	24.3	83.2	4.52
TMC 4		<0.2	2.97	5	11	6	1.1	<1	3.50	1.1	<1	113	25.8	276	6.92
TMC 5		<0.2	3.69	<1	<5	52	1.9	<1	1.98	0.9	4	28.8	26.1	224	5.07
TMC 6		<0.2	2.53	<1	<5	41	<0.5	<1	1.05	0.6	7	8.1	32.2	8.9	3.03

0 million Certified By:

AGAT WORK ORDER: 12V628658 PROJECT NO: THIESON 5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: HOMEGOLD RESOURCES LTD.

			Aqu	a Regia	Digest -	Metals F	ackage,	ICP-OE	S finish (201073)					
DATE SAMPLED: Au	g 08, 2012		Γ	DATE REC	EIVED: Jul 3	30, 2012		DATE	REPORTED	: Sep 14, 2	012	SAM	IPLE TYPE:	Rock	
	Analyte:	Ga	Hg	In	К	La	Li	Mg	Mn	Мо	Na	Ni	Р	Pb	Rb
	Unit:	ppm	ppm	ppm	%	ppm	ppm	%	ppm	ppm	%	ppm	ppm	ppm	ppm
Sample Description	RDL:	5	1	1	0.01	1	1	0.01	1	0.5	0.01	0.5	10	0.5	10
TM 1		13	<1	<1	0.08	9	14	1.62	233	<0.5	0.05	13.7	1680	<0.5	12
TM 2		16	<1	1	0.40	5	10	1.37	855	<0.5	0.19	3.2	1710	<0.5	29
TM 3		13	<1	<1	0.06	1	12	2.72	936	<0.5	0.03	23.1	345	<0.5	10
TM 4		15	<1	2	<0.01	6	5	1.41	1500	<0.5	0.07	<0.5	1240	<0.5	<10
TM 5		18	<1	2	0.08	4	14	2.56	1400	<0.5	0.05	15.9	901	<0.5	12
TM 6		15	<1	2	0.02	2	18	1.70	1660	<0.5	0.01	6.9	905	<0.5	<10
TM 7		17	<1	3	0.07	4	13	2.53	1300	<0.5	0.06	15.2	959	<0.5	12
TM 8		19	<1	<1	<0.01	2	6	1.63	793	<0.5	0.02	17.1	757	<0.5	<10
TM 9		6	<1	<1	0.07	3	2	0.43	2120	<0.5	<0.01	5.6	317	<0.5	13
TM 10		16	<1	2	0.07	5	13	2.41	1320	<0.5	0.05	14.4	980	<0.5	12
TM 11		18	<1	4	0.07	8	13	1.51	1530	<0.5	0.04	<0.5	1390	<0.5	10
TM 12		18	<1	<1	0.08	4	14	2.53	1360	<0.5	0.06	16.3	888	<0.5	12
TM 13		10	<1	<1	0.08	1	7	0.92	704	1.7	0.06	12.2	532	<0.5	13
TM 14		16	<1	<1	0.06	1	11	2.35	863	<0.5	0.63	24.5	620	<0.5	<10
TM 15		14	<1	1	0.38	5	10	1.36	850	<0.5	0.19	1.8	1640	<0.5	27
TM 16		9	<1	<1	0.12	4	6	0.53	315	3.7	0.16	<0.5	1570	<0.5	11
TM 17		14	<1	<1	0.46	5	11	1.36	789	<0.5	0.24	2.4	1680	<0.5	31
TM 18		14	<1	1	0.45	5	11	1.35	769	<0.5	0.21	2.3	1670	<0.5	30
TM 19		13	<1	2	0.47	4	11	1.29	805	<0.5	0.20	1.6	1490	<0.5	34
TM 20		10	<1	<1	0.02	3	5	2.67	2370	<0.5	<0.01	2.1	732	<0.5	<10
TM 20S		17	<1	2	0.07	7	8	1.59	1310	<0.5	0.08	2.0	1430	<0.5	15
TM 21		16	<1	2	0.06	4	8	1.73	1080	<0.5	0.09	10.6	970	<0.5	17
TM 21S		15	<1	<1	0.44	5	13	1.48	833	<0.5	0.23	2.0	1680	<0.5	30
TM 22		15	<1	1	0.06	7	8	1.55	1300	<0.5	0.06	1.6	1390	<0.5	16
TM 22S		12	<1	<1	0.43	5	11	1.21	663	<0.5	0.18	2.2	1660	<0.5	28
TM 23		15	<1	1	0.06	8	9	1.47	1470	<0.5	0.06	3.3	1120	<0.5	13
TM 25		16	<1	3	0.06	8	7	1.28	1280	<0.5	0.05	2.3	1090	<0.5	10
TM 26		14	<1	2	0.44	5	11	1.43	873	<0.5	0.23	2.9	1680	<0.5	31
TM 27		9	<1	<1	0.04	4	8	0.78	161	<0.5	0.09	4.9	479	<0.5	<10
TM 28		14	<1	1	0.06	1	6	0.69	425	<0.5	0.03	5.7	533	<0.5	12
TM 29		17	<1	1	1.11	1	5	2.22	336	<0.5	0.48	36.7	572	<0.5	139
TM 30		17	<1	1	0.09	3	6	1.20	1080	<0.5	0.05	7.3	924	<0.5	13

Certified By:

Certificate of Analysis

AGAT WORK ORDER: 12V628658 **PROJECT NO: THIESON**

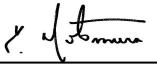
5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: HOMEGOLD RESOURCES LTD.

ATTENTION TO: JO SHEARER

			Aqu	a Regia	Digest -	Metals F	ackage,	ICP-OE	S finish ((201073)					
DATE SAMPLED: Aug 08, 2012 DATE RECEIVED: Jul 30, 2012 DATE REPORTED: Sep 14, 2012 SAMPLE TYPE: Rock															
	Analyte:	Ga	Hg	In	К	La	Li	Mg	Mn	Мо	Na	Ni	Р	Pb	Rb
	Unit:	ppm	ppm	ppm	%	ppm	ppm	%	ppm	ppm	%	ppm	ppm	ppm	ppm
Sample Description	RDL:	5	1	1	0.01	1	1	0.01	1	0.5	0.01	0.5	10	0.5	10
TMC 1		11	<1	1	0.26	3	7	1.06	204	<0.5	0.19	6.5	600	<0.5	27
TMC 2		9	<1	<1	0.03	4	7	0.81	164	0.8	0.18	4.5	475	<0.5	<10
TMC 3		13	<1	<1	0.53	3	8	1.27	362	<0.5	0.17	5.4	986	<0.5	51
TMC 4		10	<1	3	0.17	<1	5	0.50	255	<0.5	0.08	15.3	522	<0.5	24
TMC 5		17	<1	<1	0.75	2	10	1.69	332	<0.5	0.43	7.6	833	<0.5	93
TMC 6		13	<1	<1	0.05	4	15	1.56	536	<0.5	0.13	15.3	517	<0.5	11

0 million Certified By:



AGAT WORK ORDER: 12V628658 PROJECT NO: THIESON 5623 MCADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: HOMEGOLD RESOURCES LTD.

			Aqu	a Regia	Digest -	Metals F	ackage,	ICP-OE	S finish ((201073)					
DATE SAMPLED: AU	ıg 08, 2012		[DATE RECE	EIVED: Jul 3	30, 2012		DATE F	REPORTED	: Sep 14, 2	012	SAM	PLE TYPE:	Rock	
	Analyte:	S	Sb	Sc	Se	Sn	Sr	Та	Те	Th	Ti	TI	U	V	W
	Unit:	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm
Sample Description	RDL:	0.005	1	0.5	10	5	0.5	10	10	5	0.01	5	5	0.5	1
TM 1		1.38	<1	6.7	<10	<5	48.6	<10	<10	<5	0.17	<5	<5	87.9	<1
TM 2		0.020	1	9.6	<10	<5	28.7	<10	<10	<5	0.43	<5	<5	131	<1
TM 3		0.046	<1	13.3	<10	<5	46.6	<10	<10	<5	0.32	<5	7	113	<1
TM 4		<0.005	<1	22.1	<10	<5	26.8	<10	<10	<5	0.51	6	7	184	<1
TM 5		0.015	<1	14.6	<10	<5	32.0	<10	<10	<5	0.38	6	6	169	<1
TM 6		0.058	<1	19.0	<10	<5	292	11	<10	<5	0.01	<5	9	161	<1
TM 7		0.007	<1	14.4	<10	<5	33.8	<10	<10	<5	0.40	6	<5	166	<1
TM 8		<0.005	<1	16.3	<10	<5	13.3	<10	<10	<5	0.51	<5	5	171	<1
TM 9		<0.005	<1	3.8	<10	<5	87.4	<10	<10	<5	<0.01	<5	13	49.2	<1
TM 10		0.007	<1	14.9	<10	<5	27.7	12	<10	<5	0.36	<5	<5	168	<1
TM 11		0.013	<1	23.6	<10	<5	49.2	11	<10	<5	0.03	6	5	172	<1
TM 12		0.006	<1	14.7	<10	<5	30.1	10	<10	<5	0.36	6	5	168	<1
TM 13		1.65	<1	9.5	<10	<5	27.9	<10	<10	<5	0.41	<5	7	137	<1
TM 14		0.005	<1	8.0	<10	<5	116	<10	<10	<5	0.43	<5	5	116	<1
TM 15		0.008	<1	10.7	<10	<5	29.8	<10	<10	<5	0.45	<5	<5	128	<1
TM 16		0.640	<1	9.3	<10	<5	14.0	<10	13	<5	0.42	<5	<5	48.7	<1
TM 17		0.013	1	10.8	<10	<5	30.7	<10	<10	<5	0.44	<5	<5	131	<1
TM 18		0.013	<1	10.6	<10	<5	29.9	<10	<10	<5	0.43	<5	<5	124	<1
TM 19		0.021	<1	9.6	<10	<5	33.6	<10	<10	<5	0.40	<5	<5	120	<1
TM 20		0.046	<1	11.1	<10	<5	1320	<10	<10	<5	0.01	<5	8	122	<1
TM 20S		0.018	<1	12.2	<10	<5	30.4	<10	10	<5	0.68	<5	<5	142	<1
TM 21		0.126	<1	8.9	<10	<5	26.6	<10	<10	<5	0.70	7	8	278	<1
TM 21S		0.011	<1	11.8	<10	<5	34.5	<10	<10	<5	0.44	<5	<5	129	<1
TM 22		0.016	<1	11.3	<10	<5	17.8	<10	<10	<5	0.62	<5	<5	128	<1
TM 22S		0.017	<1	9.1	<10	<5	28.5	<10	<10	<5	0.36	<5	<5	109	<1
TM 23		0.007	<1	10.7	<10	<5	16.2	<10	<10	<5	0.49	5	<5	95.7	<1
TM 25		0.009	<1	8.5	<10	<5	19.6	<10	<10	<5	0.37	<5	<5	68.2	<1
TM 26		0.014	<1	11.3	<10	<5	33.0	<10	<10	<5	0.46	<5	<5	140	<1
TM 27		0.535	<1	2.8	<10	<5	18.9	<10	<10	<5	0.10	<5	<5	28.1	<1
TM 28		3.78	<1	7.3	<10	<5	56.4	11	<10	<5	0.44	7	10	131	1
TM 29		2.18	<1	5.8	<10	<5	63.9	<10	<10	<5	0.32	<5	<5	103	1
TM 30		0.068	<1	5.6	<10	<5	43.3	<10	<10	<5	0.38	<5	<5	145	<1

Certified By:

Certificate of Analysis

AGAT WORK ORDER: 12V628658 **PROJECT NO: THIESON**

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: HOMEGOLD RESOURCES LTD.

ATTENTION TO: JO SHEARER

		Aqu	a Regia	Digest -	Metals F	ackage,	ICP-OES	S finish (201073)					
g 08, 2012		۵	DATE RECE	EIVED: Jul (30, 2012		DATE F	REPORTED	: Sep 14, 20)12	SAM	PLE TYPE:	Rock	
Analyte:	S	Sb	Sc	Se	Sn	Sr	Та	Te	Th	Ti	TI	U	V	W
Unit:	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm
RDL:	0.005	1	0.5	10	5	0.5	10	10	5	0.01	5	5	0.5	1
	0.731	<1	3.7	<10	<5	48.2	<10	<10	<5	0.19	<5	<5	55.9	<1
	0.551	<1	3.3	<10	<5	47.2	<10	<10	<5	0.13	<5	<5	34.6	<1
	0.940	<1	7.5	<10	<5	34.1	<10	13	<5	0.59	<5	<5	150	<1
	5.04	1	5.9	<10	<5	41.8	<10	<10	<5	0.29	5	8	117	<1
	2.71	<1	8.4	<10	<5	92.8	<10	<10	<5	0.46	<5	5	153	<1
	0.015	<1	7.3	<10	<5	59.1	<10	<10	<5	0.09	<5	<5	72.6	<1
	Analyte: Unit:	Analyte: S Unit: % RDL: 0.005 0.731 0.551 0.940 5.04 2.71 2.71	g 08, 2012 E Analyte: S Sb Unit: % ppm RDL: 0.005 1 0.731 <1 0.551 <1 0.940 <1 5.04 1 2.71 <1	g 08, 2012 DATE RECE Analyte: S Sb Sc Unit: % ppm ppm RDL: 0.005 1 0.5 0.731 <1	g 08, 2012 DATE RECEIVED: Jul 3 Analyte: S Sb Sc Se Unit: % ppm ppm ppm RDL: 0.005 1 0.5 10 0.731 <1	g 08, 2012 DATE RECEIVED: Jul 30, 2012 Analyte: S Sb Sc Se Sn Unit: % ppm ppm ppm ppm ppm ppm ppm ppm ppm statistical statis statis statistical statistical statis statistical statistical	g 08, 2012 DATE RECEIVED: Jul 30, 2012 Analyte: S Sb Sc Se Sn Sr Unit: % ppm pfm pfm pfm pfm	g 08, 2012 DATE RECEIVED: Jul 30, 2012 DATE R Analyte: S Sb Sc Se Sn Sr Ta Unit: % ppm status <10	g 08, 2012 DATE RECEIVED: Jul 30, 2012 DATE REPORTED Analyte: S Sb Sc Se Sn Sr Ta Te Unit: % ppm quadratic training tra	Analyte: S Sb Sc Se Sn Sr Ta Te Th Unit: % ppm stationary station stationary station	g 08, 2012 DATE RECEIVED: Jul 30, 2012 DATE REPORTED: Sep 14, 2012 Analyte: S Sb Sc Se Sn Sr Ta Te Th Ti Unit: % ppm % Sb 0.01 5 0.01 0.01 5 0.01 0.01 5 0.01 0.01 5 0.01 0.01 5 0.01 0.01 5 0.01 0.01 5 0.01 0.01 5 0.01 0.01 5 0.01 0.01 5 0.01 <	g 08, 2012 DATE RECEIVED: Jul 30, 2012 DATE REPORTED: Sep 14, 2012 SAM Analyte: S Sb Sc Se Sn Sr Ta Te Th Ti TI Unit: % ppm statistical st	g 08, 2012 DATE RECEIVED: Jul 30, 2012 DATE REPORTED: Sep 14, 2012 SAMPLE TYPE: Analyte: S Sb Sc Se Sn Sr Ta Te Th Ti U Unit: % ppm status status	g 08, 2012 DATE RECEIVED: Jul 30, 2012 DATE REPORTED: Sep 14, 2012 SAMPLE TYPE: Rock Analyte: S Sb Sc Se Sn Sr Ta Te Th Ti U V Unit: % ppm pdm pim

0 million Certified By:

Certificate of Analysis

AGAT WORK ORDER: 12V628658 **PROJECT NO: THIESON**

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: HOMEGOLD RESOURCES LTD.

DATE SAMPLED: Aug 08, 2012 DATE RECEIVED: Jul 30, 2012 DATE REPORTED: Sep 14, 2012 SAMPLE TYPE: Rock Sample Description PDI Ppm Ppm Sample Description RDL: 1 0.5 5 TM 4 267 7.5 20 5 TM 3 10 4.4 21 5 TM 4 32 179 34 5 TM 5 19 8.3 24 5 TM 5 19 8.3 24 5 TM 5 19 7.6 28 5 TM 6 17 5.0 4-5 5 TM 7 19 7.6 28 4-5 TM 10 20 7.2 24 5 TM 11 21 145 5 5 TM 12 18 82.4 16 5 TM 14 14 52 16 5 TM 12 28 75.4 17 TM 14				Aqu	a Regia Digest - Metals Pack	age, ICP-OES finish (201073)	
Unit: ppm ppm ppm Sample Description RDL: 1 0.5 5 TM 2.07 73.5 20 TM 2 2.7 73.5 20 TM 3 0.0 43.4 21 TM 4 3.2 17.9 3.4 TM 5 19 85.3 24 TM 6 17 50.3 4.5 TM 7 19 77.6 28 TM 1 2.0 72.2 24 TM 10 20 72.2 24 TM 11 2.1 14.5 5 TM 12 19 82.4 25 TM 13 9 21.8 12 TM 14 16.5 16 16 TM 15 2.8 75.4 17 TM 16 2.7 71.7 15 TM 20 71.7 95 37 TM 21 2.0 72.2 11 TM 22	DATE SAMPLED: Au	ıg 08, 2012		[DATE RECEIVED: Jul 30, 2012	DATE REPORTED: Sep 14, 2012	SAMPLE TYPE: Rock
Sample Description RDL: 1 0.5 IM 1 4 0.5 5 IM 2 27 7.5 0.0 TM 3 10 43.4 0.1 TM 4 3.2 179 3.4 TM 5 19 8.6.3 0.4 TM 6 17 8.0.3 -5 TM 7 19 7.7.6 2.8 TM 6 12 8.2.2 -5 TM 7 19 7.7.6 2.8 TM 9 7.7.6 2.8			Y	Zn	Zr		
TM1 4 287 5 TM2 27 78.5 20 TM3 0 43.4 21 TM4 32 179 34 TM5 19 85.3 24 TM6 17 50.3 <5			ppm		ppm		
TM2 27 73.5 20 TM3 10 43.4 21 TM4 32 79 34 TM5 19 85.3 24 TM6 17 50.3 -5 TM7 19 77.6 28 TM5 12 38.2 -5 TM6 20 79.2 24 TM10 20 79.2 24 TM12 19 82.4 23 TM13 9 21.8 12 TM14 46.2 16 TM15 28 75.4 TM16 24 26.2 TM17 27 73.4 16 TM18 27 71.4 16 TM19 25 74.8 10 TM20 17 99.6 -5 TM21 20 73.2 41 TM22 30 95.6 33 TM23 29 93.8 21 TM24 28 75.8 10 TM25 28 75.8 10 TM26 28 75.8 10 TM26 29 93.8 21 TM25		RDL:					
TM3 10 43.4 21 TM4 32 179 34 TM5 19 85.3 24 TM6 17 50.3 -5 TM7 19 77.6 28 TM8 15 45.0 42 TM9 12 38.2 -5 TM10 20 79.2 24 TM11 21 145 5 TM12 19 82.4 23 TM13 9 21.8 12 TM14 14 56.2 16 TM15 28 75.4 17 TM16 24 26.2 14 TM17 27 73.4 16 TM18 27 71.7 15 TM20 17 96 -5 TM21 20 73.2 41 TM22 30 95.6 33 TM23 29 83.2 21 TM24 28 78.2 18 TM25 28							
TM4 32 179 34 TM5 19 853 24 TM6 17 53 45 TM7 19 77.6 28 TM3 12 38.2 45 TM9 12 38.2 45 TM10 20 79.2 24 TM11 21 145 5 TM12 19 82.4 23 TM13 9 21.8 12 TM14 14 56.2 16 TM15 28 75.4 17 TM16 24 25.2 14 TM17 27 73.4 16 TM20 17 98.6 -5 TM20 17 98.6 -5 TM21 20 73.2 11 TM22 30 95.6 33 TM23 29 73.2 11 TM24 29 93.2 11 TM25 28 67.8 12 TM26 29 93.2 11 TM26 29 93.2 11 TM25 28 67.8 12 TM26 29 59.3 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
TM5 19 85.3 24 TM6 17 50.3 -5 TM7 19 77.6 28 TM8 15 45.0 42 TM9 12 38.2 -5 TM10 20 79.2 24 TM11 21 145 5 TM12 19 82.4 23 TM13 9 21.8 12 TM14 14 56.2 16 TM15 28 75.4 17 TM16 24 26.2 14 TM17 7 7.4 16 TM18 27 7.1.7 15 TM20 17 9.6 -5 TM205 31 9.7.5 37 TM21 20 7.3.2 4 TM22 30 95.6 33 TM22 30 95.6 33 TM23 29 98.3 21 TM26 28 7.5 18 TM26 28							
TM6 17 50.3 -5 TM7 19 77.6 28 TM8 15 45 42 TM9 12 38.2 -5 TM10 20 79.2 24 TM11 21 45 5 TM12 19 82.4 23 TM13 9 21.8 12 TM14 14 52 16 TM15 28 75.4 17 TM16 27 77.4 16 TM20 17 9.6 -5 TM20 17 9.6 -5 TM20 17 9.6 -5 TM20 17 9.6 -5 TM20 18 9.5 37 TM21 9.6 -5 -5 TM22 30 9.6 33 TM23 28 7.8 10 TM24 9.5 37 -5 TM25 28 7.5 12 TM25 28 7.5<							
TM7 19 77.6 28 TM8 15 45.0 42 TM9 12 32. 45 TM10 20 79.2 24 TM11 21 145 5 TM12 19 82.4 23 TM13 9 21.8 12 TM14 14 55.2 16 TM15 28 75.4 17 TM6 24 26.2 14 TM16 24 26.2 14 TM17 27 73.4 16 TM18 27 71.7 15 TM20 17 96 -5 TM20S 31 97.5 37 TM21 20 73.2 41 TM22 30 95.6 33 TM23 29 98.3 21 TM23 29 98.3 21 TM24 17.8 5 TM25 28 87.5 TM26 7 19 TM27 4 17.8 TM28 7 19.7			19				
TM8 15 45.0 42 TM9 12 38.2 -5 TM10 20 79.2 24 TM11 21 145 5 TM12 19 82.4 23 TM13 9 21.8 12 TM14 14 56.2 16 TM15 28 75.4 17 TM16 24 26.2 14 TM17 27 73.4 16 TM18 27 71.7 15 TM20 17 99.6 -5 TM21 20 97.3 37 TM22 30 95.6 33 TM225 25 67.8 12 TM23 29 98.3 21 TM25 28 87.5 18 TM26 7 <td>TM 6</td> <td></td> <td>17</td> <td>50.3</td> <td><5</td> <td></td> <td></td>	TM 6		17	50.3	<5		
TM 9 12 38.2 <5							
TM 10 20 79.2 24 TM 11 21 145 5 TM 12 19 82.4 23 TM 13 9 21.8 12 TM 14 14 56.2 16 TM 15 28 75.4 17 TM 16 24 26.2 14 TM 17 27 73.4 16 TM 18 27 71.7 15 TM 20 17 99.6 <5	TM 8		15	45.0	42		
TM 11 21 145 5 TM 12 19 82.4 23 TM 13 9 21.8 12 TM 14 14 56.2 16 TM 15 28 75.4 17 TM 16 24 26.2 14 TM 17 27 73.4 16 TM 18 27 71.7 15 TM 20 17 99.6 -55 TM 20S 31 97.5 37 TM 21 20 73.2 41 TM 22S 30 95.6 33 TM 23 29 98.3 21 TM 24 28 75.3 19 TM 25 28 87.5 18 TM 26 28 75.3 19 TM 27 4 17.8 5 TM 28 7 19 5 TM 28 7 18 5 TM 29 10 28.7 18	TM 9		12	38.2	<5		
TM 121982.423TM 13921.812TM 141456.216TM 152875.417TM 162426.214TM 172773.416TM 182771.715TM 201799.6<5	TM 10		20	79.2	24		
TM 13 9 21.8 12 TM 14 14 56.2 16 TM 15 28 75.4 17 TM 16 24 26.2 14 TM 17 27 73.4 16 TM 18 27 71.7 15 TM 20 17 99.6 <5	TM 11		21	145	5		
TM 14 14 56.2 16 TM 15 28 75.4 17 TM 16 24 26.2 14 TM 17 27 73.4 16 TM 18 27 71.7 15 TM 19 25 74.8 10 TM 20 17 99.6 <5	TM 12		19	82.4	23		
TM 15 28 75.4 17 TM 16 24 26.2 14 TM 17 27 73.4 16 TM 18 27 71.7 15 TM 19 25 74.8 10 TM 20 17 99.6 <5	TM 13		9	21.8	12		
TM 16 24 26.2 14 TM 17 27 73.4 16 TM 18 27 71.7 15 TM 19 25 74.8 10 TM 20 17 99.6 <5	TM 14		14	56.2	16		
TM 172773.416TM 182771.715TM 192574.810TM 201799.6<5	TM 15		28	75.4			
TM 18 27 71.7 15 TM 19 25 74.8 10 TM 20 17 99.6 ~5 TM 20S 31 97.5 37 TM 21 20 73.2 41 TM 22S 28 78.2 11 TM 22S 30 95.6 33 TM 22S 25 67.8 12 TM 23 29 98.3 21 TM 25 28 87.5 18 TM 26 28 75.3 19 TM 27 4 17.8 5 TM 28 7 19.7 18 TM 29 10 28.7 13	TM 16		24	26.2	14		
TM 18 27 71.7 15 TM 19 25 74.8 10 TM 20 17 99.6 ~5 TM 20S 31 97.5 37 TM 21 20 73.2 41 TM 22S 28 78.2 11 TM 22S 30 95.6 33 TM 22S 25 67.8 12 TM 23 29 98.3 21 TM 25 28 87.5 18 TM 26 28 75.3 19 TM 27 4 17.8 5 TM 28 7 19.7 18 TM 29 10 28.7 13	TM 17		27	73.4	16		
TM 20 17 99.6 <5	TM 18		27	71.7			
TM 20 17 99.6 <5	TM 19		25	74.8	10		
TM 20S 31 97.5 37 TM 21 20 73.2 41 TM 21S 28 78.2 11 TM 22 30 95.6 33 TM 22S 25 67.8 12 TM 23 29 98.3 21 TM 25 28 87.5 18 TM 26 28 75.3 19 TM 27 4 17.8 5 TM 28 7 19.7 18 TM 29 10 28.7 13			17	99.6			
TM 212073.241TM 21S2878.211TM 223095.633TM 22S2567.812TM 232998.321TM 252887.518TM 262875.319TM 27417.85TM 28719.7TM 291028.713	TM 20S		31	97.5			
TM 21S2878.211TM 223095.633TM 22S2567.812TM 232998.321TM 252887.518TM 262875.319TM 27417.85TM 28719.7TM 291028.7TM 291028.7							
TM 223095.633TM 22S2567.812TM 232998.321TM 252887.518TM 262875.319TM 27417.85TM 28719.7TM 291028.713							
TM 22S 25 67.8 12 TM 23 29 98.3 21 TM 25 28 87.5 18 TM 26 28 75.3 19 TM 27 4 17.8 5 TM 28 7 19.7 18 TM 29 10 28.7 13							
TM 23 29 98.3 21 TM 25 28 87.5 18 TM 26 28 75.3 19 TM 27 4 17.8 5 TM 28 7 19.7 18 TM 29 10 28.7 13							
TM 25 28 87.5 18 TM 26 28 75.3 19 TM 27 4 17.8 5 TM 28 7 19.7 18 TM 29 10 28.7 13							
TM 26 28 75.3 19 TM 27 4 17.8 5 TM 28 7 19.7 18 TM 29 10 28.7 13							
TM 27 4 17.8 5 TM 28 7 19.7 18 TM 29 10 28.7 13							
TM 28 7 19.7 18 TM 29 10 28.7 13							
TM 29 10 28.7 13							
	TM 30		6	52.5	<5		

Certified By:

0 million

AGAT WORK ORDER: 12V628658 PROJECT NO: THIESON 5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: HOMEGOLD RESOURCES LTD.

ATTENTION TO: JO SHEARER

Aqua Regia Digest - Metals Package, ICP-OES finish (201073)									
DATE SAMPLED: Aug 08, 2012 DATE RECEIVED: Jul 30, 2012 DATE REPORTED: Sep 14, 2012 SAMPLE TYPE: Rock									
	Analyte:	Y	Zn	Zr					
	Unit:	ppm	ppm	ppm					
Sample Description	RDL:	1	0.5	5					
TMC 1		6	17.0	5					
TMC 2		4	13.3	<5					
TMC 3		19	23.2	19					
TMC 4		5	10.0	15					
TMC 5		16	24.6	17					
TMC 6		4	42.9	<5					

Comments: RDL - Reported Detection Limit

6 min Certified By:

AGAT WORK ORDER: 12V628658 PROJECT NO: THIESON 5623 MCADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: HOMEGOLD RESOURCES LTD.

	Fire Assay - Trace Au, AAS finish (202051)								
DATE SAMPLED: Au	ug 08, 2012			DATE RECEIVED: Jul 30, 2012	DATE REPORTED: Sep 14, 2012	SAMPLE TYPE: Rock			
	Analyte:	Sample Login Weight	Au						
	Unit:	kg	ppm						
Sample Description	RDL:	0.01	0.002						
TM 1		1.09	0.084						
TM 2		2.49	0.007						
ГМ 3		0.87	0.004						
ΓM 4		1.10	<0.002						
TM 5		0.94	0.005						
TM 6		0.81	0.005						
ΓM 7		1.10	0.058						
TM 8		0.66	0.004						
TM 9		0.92	0.004						
TM 10		1.01	0.005						
FM 11		0.76	0.003						
FM 12		0.85	0.004						
FM 13		0.63	0.007						
ΓM 14		0.68	0.003						
TM 15		0.69	0.003						
TM 16		0.98	0.004						
TM 17		0.96	0.003						
TM 18		1.06	0.007						
TM 19		0.96	0.005						
TM 20		1.03	0.002						
TM 20S		0.65	0.059						
TM 21		0.77	0.003						
TM 21S		0.61	0.005						
TM 22		0.77	0.003						
TM 22S		0.76	0.011						
TM 23		0.66	0.003						
TM 25		0.87	<0.002						
TM 26		1.30	0.004						
ГМ 27		0.93	0.003						
ГМ 28		0.74	0.074						
TM 29		0.75	0.005						

Certified By:

AGAT WORK ORDER: 12V628658 PROJECT NO: THIESON 5623 MCADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: HOMEGOLD RESOURCES LTD.

ATTENTION TO: JO SHEARER

Fire Assay - Trace Au, AAS finish (202051)										
DATE SAMPLED: Au	DATE SAMPLED: Aug 08, 2012 DATE RECEIVED: Jul 30, 2012 DATE REPORTED: Sep 14, 2012 SAMPLE TYPE: Rock									
	Analyte:	Sample Login Weight	Au							
	Unit:	kg	ppm							
Sample Description	RDL:	0.01	0.002							
TM 30		0.51	0.011							
TMC 1		0.79	<0.002							
TMC 2		0.94	0.004							
TMC 3		1.30	0.004							
TMC 4		1.29	0.009							
TMC 5		0.88	0.061							
TMC 6		0.58	0.005							

Comments: RDL - Reported Detection Limit

6 min Certified By:

Quality Assurance

CLIENT NAME: HOMEGOLD RESOURCES LTD.

PROJECT NO: THIESON

AGAT WORK ORDER: 12V628658

			Solid	d Anal	ysis						
RPT Date: Sep 14, 2012			REPLIC	CATE				REFER	RENCE MATE	ERIAL	
PARAMETER	Batch	Sample Id	Original	Rep #1	RPD	Method Blank	Result	Expect	Recovery	Accepta	ble Limi
			g				Value	Value	,	Lower	Uppe
ïre Assay - Trace Au, AAS finish (202	051)										
NU	1		< 0.002	< 0.002	0.0%	< 0.002	1.39	1.52	91%	90%	110%
Aqua Regia Digest - Metals Package, I	CP-OES fin	ish (201073)									
Ng	1	3593482	< 0.2	< 0.2	0.0%	< 0.2	14.2	13.0	109%	80%	1209
d	1	3593482	1.84	1.85	0.5%	< 0.01				80%	120
s	1	3593482	7	5		< 1				80%	120
5	1	3593482	< 5	< 5	0.0%	< 5				80%	120
a	1	3593482	31	30	3.3%	< 1				80%	120
e	1	3593482	0.7	0.7	0.0%	< 0.5				80%	120
i	1	3593482	< 1	< 1	0.0%	< 1				80%	1209
Ča	1	3593482	0.58	0.58	0.0%	< 0.01				80%	120
Cd	1	3593482	0.76	0.72	5.4%	< 0.5				80%	120
Se	1	3593482	20	20	0.0%	< 1				80%	120
Co	1	3593482	13.5	13.5	0.0%	< 0.5				80%	120
Cr	1	3593482	27.6	27.4	0.7%	< 0.5				80%	120
u	1	3593482	190	187	1.6%	< 0.5	5734	6000	95%	80%	120
e	1	3593482	5.19	5.24	1.0%	< 0.01				80%	120
a	1	3593482	13	12	8.0%	< 5				80%	120
lg	1	3593482	< 1	< 1	0.0%	< 1				80%	120'
.ອ າ	1	3593482	< 1	< 1	0.0%	< 1				80%	120
	1	3593482	0.08	0.08	0.0%	< 0.01				80%	120
	1										
a i	1	3593482 3593482	9 14	9 14	0.0% 0.0%	< 1 < 1				80% 80%	120° 120°
1-		0500400	4.00	4.04		0.04				000/	4000
Лg	1	3593482	1.62	1.64	1.2%	< 0.01				80%	120
In	1	3593482	233	237	1.7%	< 1				80%	1209
Ло	1	3593482	< 0.5	< 0.5	0.0%	< 0.5	336	360	93%	80%	1209
la	1	3593482	0.05	0.05	0.0%	< 0.01				80%	1209
li	1	3593482	13.7	13.8	0.7%	< 0.5				80%	1209
•	1	3593482	1680	1730	2.9%	< 10	635	600	106%	80%	120
ď	1	3593482	< 0.5	< 0.5	0.0%	< 0.5				80%	120
lb	1	3593482	12	12	0.0%	< 10	10	13	80%	80%	120
5	1	3593482	1.38	1.38	0.0%	< 0.005				80%	120
Sb	1	3593482	< 1	< 1	0.0%	< 1				80%	1209
c	1	3593482	6.7	6.7	0.0%	< 0.5				80%	120'
Se .	1	3593482	< 10	< 10	0.0%	< 10				80%	120
ŝn	1	3593482	< 5	< 5	0.0%	< 5				80%	120
Sr To	1	3593482	48.6	45.7	6.2%	< 0.5				80%	1209
a	1	3593482	< 10	< 10	0.0%	< 10				80%	120
e	1	3593482	< 10	< 10	0.0%	< 10				80%	120
ĥ	1	3593482	< 5	< 5	0.0%	< 5				80%	1209
ï	1	3593482	0.17	0.17	0.0%	< 0.01				80%	120
1	1	3593482	< 5	< 5	0.0%	< 5				80%	120
J	1	3593482	< 5	< 5	0.0%	< 5				80%	120
/	1	3593482	87.9	87.7	0.2%	< 0.5				80%	120'
	EPORT (V1		51.5	51.1	3.270	- 0.0				Page	

Quality Assurance

CLIENT NAME: HOMEGOLD RESOURCES LTD.

PROJECT NO: THIESON

AGAT WORK ORDER: 12V628658

		Solic	I Analy	ysis (C	onti	nued)					
RPT Date: Sep 14, 2012			REPLIC	CATE				REFER	RENCE MATE	RIAL	
PARAMETER	Batch	Sample Id	Original	Rep #1	RPD	Method Blank	Result	Expect	Recovery	Accepta	ble Limit
							Value	Value		Lower	Upper
V	1	3593482	< 1	< 1	0.0%	< 1				80%	120%
,	1	3593482	4	4	0.0%	< 1				80%	120%
ľn	1	3593482	26.7	26.6	0.4%	< 0.5				80%	120%
Zr	1	3593482	5	5	0.0%	< 5				80%	120%
ïre Assay - Trace Au, AAS finish (202	2051)										
\u	1	3593495	0.003	0.061		< 0.002	0.236	0.263	90%	90%	110%
ire Assay - Trace Au, AAS finish (202	2051)										
u	1	3593507	0.003	0.003	0.0%	< 0.002				90%	110%
	2054)										
Fire Assay - Trace Au, AAS finish (202 Au	2051) 1	3593519	0.005	0.005	0.0%	< 0.002				90%	110%
-		2200010	0.000	0.000	5.070	- 0.00L				0070	
qua Regia Digest - Metals Package,			6.6		0.001		40.0	40.0	10001	0000	4000
g	1	3593507	< 0.2	< 0.2	0.0%	< 0.2	13.8	13.0	106%	80%	120%
d	1	3593507	2.19	2.26	3.1%	< 0.01				80%	120%
AS	1	3593507	< 1	< 1	0.0%	< 1				80%	120%
3	1	3593507	< 5	< 5	0.0%	< 5				80%	120%
la	1	3593507	22	23	4.4%	< 1				80%	120%
e	1	3593507	2.2	2.2	0.0%	< 0.5				80%	120%
li	1	3593507	< 1	< 1	0.0%	< 1				80%	120%
Ca	1	3593507	0.98	1.01	3.0%	< 0.01				80%	120%
2d	1	3593507	0.8	0.8	0.0%	< 0.5				80%	120%
Ce	1	3593507	21	22	4.7%	< 1				80%	120%
Co	1	3593507	11.8	12.6	6.6%	< 0.5				80%	120%
Cr	1	3593507	9.7	10.5	7.9%	< 0.5				80%	120%
Cu	1	3593507	23.8	25.2	5.7%	< 0.5	5731	6000	95%	80%	120%
e	1	3593507	6.41	6.61	3.1%	< 0.01				80%	120%
Ga	1	3593507	15	17	12.5%	< 5				80%	120%
łg	1	3593507	< 1	< 1	0.0%	< 1				80%	120%
-9 1	1	3593507	1	1	0.0%	< 1				80%	120%
ζ	1	3593507	0.06	0.06	0.0%	< 0.01				80%	120%
.a	1	3593507	8	8	0.0%	< 1				80%	120%
i	1	3593507	9	9	0.0%	< 1				80%	120%
10	1	2502507	1 47	1 50	2 20/	< 0.01				000/	1200/
Лg Лn	1	3593507 3593507	1.47 1470	1.52 1540	3.3%	< 0.01				80% 80%	120%
	1	3593507 3593507	1470	1540	4.7%	< 1	220	260	010/	80%	120%
Ao	1		< 0.5	< 0.5	0.0%	< 0.5	329	360	91%	80%	120%
la li	1 1	3593507 3593507	0.06 3.3	0.06 3.3	0.0% 0.0%	< 0.01 < 0.5				80% 80%	120% 120%
									40000		
	1	3593507	1120	1180	5.2%	< 10	620	600	103%	80%	120%
² b	1	3593507	< 0.5	< 0.5	0.0%	< 0.5				80%	120%
Rb	1	3593507	13	13	0.0%	< 10	12	13	91%	80%	120%
S	1	3593507	0.0072	0.0081	11.8%	< 0.005				80%	120%
Sb	1	3593507	< 1	< 1	0.0%	< 1				80%	120%
Sc	1	3593507	10.7	11.2	4.6%	< 0.5				80%	120%
Se	1	3593507	< 10	< 10	0.0%	< 10				80%	120%

Quality Assurance

CLIENT NAME: HOMEGOLD RESOURCES LTD.

PROJECT NO: THIESON

AGAT WORK ORDER: 12V628658

ATTENTION TO: JO SHEARER

		Solic	I Analy	ysis (C	Conti	nued)					
RPT Date: Sep 14, 2012			REPLIC	CATE				REFEF	RENCE MATE	RIAL	
	5.1		<u> </u>	D #4		Method Blank	Result	Expect		Accepta	ble Limits
PARAMETER	Batch	Sample Id	Original	Rep #1	RPD		Value	Value	Recovery	Lower	Upper
Sn	1	3593507	< 5	< 5	0.0%	< 5				80%	120%
Sr	1	3593507	16.2	19.8	20.0%	< 0.5				80%	120%
Та	1	3593507	< 10	< 10	0.0%	< 10				80%	120%
Те	1	3593507	< 10	< 10	0.0%	< 10				80%	120%
Th	1	3593507	< 5	< 5	0.0%	< 5				80%	120%
Ti	1	3593507	0.491	0.506	3.0%	< 0.01				80%	120%
ТІ	1	3593507	5	4	22.2%	< 5				80%	120%
U	1	3593507	< 5	< 5	0.0%	< 5				80%	120%
V	1	3593507	95.7	100	4.4%	< 0.5				80%	120%
W	1	3593507	< 1	< 1	0.0%	< 1				80%	120%
Y	1	3593507	29	30	3.4%	< 1	6	7	86%	80%	120%
Zn	1	3593507	98.3	101	2.7%	< 0.5				80%	120%
Zr	1	3593507	21	22	4.7%	< 5				80%	120%
Aqua Regia Digest - Metals Packag	e, ICP-OES fin	ish (201073)									
Ag	1					< 0.2	14.6	13.0	112%	80%	120%
Be	1					< 0.5	0.3	0.4	78%	80%	120%
Cu	1					< 0.5	5821	6000	97%	80%	120%
Мо	1					< 0.5	342	360	95%	80%	120%
Ρ	1					< 10	628	600	105%	80%	120%
Rb	1					< 10	12	13	93%	80%	120%
Υ	1					< 1	6	7	85%	80%	120%

Certified By:

Method Summary

CLIENT NAME: HOMEGOLD RESOURCES LTD.

PROJECT NO: THIESON

AGAT WORK ORDER: 12V628658 ATTENTION TO: JO SHEARER

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Solid Analysis			
Ag	MIN-200-12020		ICP/OES
Al	MIN-200-12020		ICP/OES
As	MIN-200-12020		ICP/OES
B	MIN-200-12020		ICP/OES
Ba	MIN-200-12020		ICP/OES
Be	MIN-200-12020		ICP/OES
Bi	MIN-200-12020		ICP/OES
Ca	MIN-200-12020		ICP/OES
Cd	MIN-200-12020		ICP/OES
Ce	MIN-200-12020		ICP/OES
Co	MIN-200-12020		ICP/OES
Cr	MIN-200-12020		ICP/OES
Cu	MIN-200-12020 MIN-200-12020		ICP/OES
Fe	MIN-200-12020		ICP/OES
Ga	MIN-200-12020 MIN-200-12020		ICP/OES
	MIN-200-12020 MIN-200-12020		ICP/OES
Hg	MIN-200-12020 MIN-200-12020		ICP/OES
In K	MIN-200-12020 MIN-200-12020		ICP/OES
	MIN-200-12020 MIN-200-12020		ICP/OES
La Li	MIN-200-12020		ICP/OES
	MIN-200-12020 MIN-200-12020		ICP/OES
Mg			ICP/OES
Mn Ma	MIN-200-12020		
Mo	MIN-200-12020		ICP/OES
Na	MIN-200-12020		ICP/OES
Ni P	MIN-200-12020		ICP/OES
Pb	MIN-200-12020		ICP/OES
	MIN-200-12020		ICP/OES
Rb	MIN-200-12020		ICP/OES
S	MIN-200-12020		ICP/OES
Sb	MIN-200-12020		ICP/OES
Sc	MIN-200-12020		ICP/OES
Se	MIN-200-12020		ICP/OES
Sn Sr	MIN-200-12020		ICP/OES
Sr To	MIN-200-12020		ICP/OES
Ta	MIN-200-12020		ICP/OES
Te	MIN-200-12020		ICP/OES
Th T:	MIN-200-12020		ICP/OES
Ti Ti	MIN-200-12020		ICP/OES
TI	MIN-200-12020		ICP/OES
U	MIN-200-12020		ICP/OES
V	MIN-200-12020		ICP/OES
W	MIN-200-12020		ICP/OES
Y -	MIN-200-12020		ICP/OES
Zn	MIN-200-12020		ICP/OES
Zr	MIN-200-12020		ICP/OES
Sample Login Weight	MIN-12009		BALANCE
Au	MIN-200-12019	BUGBEE, E: A Textbook of Fire Assaying	AAS

APPENDIX IV

SAMPLE LIST

October 14, 2012

T1	N50 18.703 W126 45.295	25/07/2012 11:01:59 PM
T10	N50 18.767 W126 45.233	08/08/2012 10:01:40 PM
T11	N50 18.777 W126 45.224	25/07/2012 11:03:51 PM
T2	N50 18.706 W126 45.287	08/08/2012 9:52:10 PM
T3	N50 18.713 W126 45.277	08/08/2012 9:53:45 PM
T4	N50 18.721 W126 45.269	08/08/2012 9:54:42 PM
T5	N50 18.728 W126 45.262	08/08/2012 9:56:07 PM
T6	N50 18.733 W126 45.259	08/08/2012 9:57:29 PM
T7	N50 18.741 W126 45.254	08/08/2012 9:59:44 PM
T8	N50 18.750 W126 45.248	08/08/2012 10:01:01 PM
T9	N50 18.761 W126 45.242	25/07/2012 11:05:44 PM
TEISUM JCT	N50 19.540 W127 19.106	23/07/2012 12:36:09 PM
TM RD END	N50 18.005 W127 18.602	24/07/2012 12:21:19 PM
TM RIVER	N50 19.454 W127 19.100	23/07/2012 12:53:41 PM
TM1	N50 19.146 W127 19.122	23/07/2012 1:16:23 PM
TM1 RD	N50 18.847 W127 19.235	23/07/2012 3:28:59 PM
TM10	N50 18.899 W127 19.090	23/07/2012 2:43:07 PM
TM101	N50 18.911 W127 19.099	23/07/2012 3:44:44 PM
TM101	N50 18.887 W127 19.126	23/07/2012 3:40:04 PM
TM11	N50 18.018 W127 18.120	24/07/2012 12:55:43 PM
TM15	N50 18.035 W127 18.612	24/07/2012 1:22:23 PM
TM15	N50 18.121 W127 18.783	24/07/2012 1:22:25 FW
TM15	N50 18.105 W127 18.785	24/07/2012 1:54:24 PM
TM10 TM17	N50 18.065 W127 18.782	24/07/2012 1:34:24 PM 24/07/2012 2:13:31 PM
TM17	N50 18.021 W127 18.761	24/07/2012 2:25:37 PM
TM18	N50 17.970 W127 18.736	24/07/2012 2:42:48 PM
TM19	N50 18.851 W127 18.987	25/07/2012 2:42:48 FW
TM151	N50 19.146 W127 19.122	23/07/2012 11:21:25 AW 23/07/2012 1:16:58 PM
TM20	N50 18.847 W127 19.215	23/07/2012 1:10:38 PM 23/07/2012 3:19:34 PM
TM201.	N50 18.122 W127 18.880	09/08/2012 9:01:39 PM
TM201.	N50 17.916 W127 18.678	24/07/2012 2:54:45 PM
TM21 TM211	N50 18.119 W127 18.903	25/07/2012 2:58:05 PM
TM211 TM22		24/07/2012 3:12:28 PM
	N50 17.872 W127 18.606	
TM221	N50 18.099 W127 18.934 N50 18.181 W127 18.970	25/07/2012 1:12:05 PM
TM23		25/07/2012 1:53:57 PM
TM24	N50 18.210 W127 18.902	25/07/2012 2:02:51 PM
TM25	N50 18.227 W127 18.893	03/08/2012 11:29:11 AM
TM26	N50 18.225 W127 18.909	25/07/2012 2:19:26 PM
TM27	N50 18.276 W127 18.800	25/07/2012 2:38:18 PM
TM29	N50 18.216 W127 18.723	25/07/2012 2:56:26 PM
TM291	N50 18.279 W127 18.633	25/07/2012 3:43:30 PM
TM3	N50 18.986 W127 19.091	23/07/2012 1:44:01 PM
TM4	N50 18.986 W127 19.090	23/07/2012 1:44:44 PM
TM5	N50 18.954 W127 19.083	23/07/2012 1:55:39 PM

N50 18.952 W127 19.080	23/07/2012 2:14:42 PM
N50 18.923 W127 19.095	23/07/2012 2:36:57 PM
N50 18.923 W127 19.095	23/07/2012 2:37:11 PM
N50 18.931 W127 19.081	23/07/2012 2:29:05 PM
N50 18.210 W127 18.902	25/07/2012 2:02:22 PM
N50 18.129 W127 18.940	25/07/2012 1:35:09 PM
N50 18.144 W127 18.975	25/07/2012 1:39:26 PM
N50 18.260 W127 18.672	25/07/2012 3:31:51 PM
N50 18.302 W127 18.583	25/07/2012 3:52:02 PM
N50 18.127 W127 18.828	25/07/2012 12:28:24 PM
N50 18.111 W127 18.921	25/07/2012 1:25:51 PM
N50 18.138 W127 18.792	25/07/2012 12:22:58 PM
	N50 18.923 W127 19.095N50 18.923 W127 19.095N50 18.931 W127 19.081N50 18.210 W127 18.902N50 18.129 W127 18.940N50 18.144 W127 18.975N50 18.260 W127 18.672N50 18.302 W127 18.583N50 18.127 W127 18.828N50 18.111 W127 18.921

Station	Horizon	Colour	Texture	Depth	Notes	GPS
				(cm)		
TMDS1	A/B	Brown	sand / silt	10	All taken near or on	9 U 620083 5573581
					upper road bank.	
TMDS2	В	Brown	sand / silt	40		9 U 619973 5573549
TMDS3	B/C	Brown	sand / silt	15		
TMDS4	В	Red/brown	sand / silt	25		9 U 619950 5573582
TMDS5	В	Brown	sand / silt	30		9 U 620262 5573832
TMDS6	В	Red/brown	sand / silt	25		9 U 620366 5573912
TMDS24						9 U 619991 5573734
TMS1	A/B	Brown	sand/silt	15		
TMS2	A/B	brown	sand/silt	15		
TMS3	A/B	brown	sand/silt	15		
TMS4	A/B	brown	sand/silt	35		
TMS5	A/B	brown	sand/silt	25		
TMS6	A/B	brown	sand/silt	25		
TMS7	NO sample					
TMS8	В	orange brown	sand/silt	15		
TMS9	В	yellow/brown	sand/silt	10		
TMS10	В	brown	sand/silt	10		
TMS11	С	grey brown	sand/silt	10		
TMS12	B/C	brown	sand/silt	10		
TMS13	A/B	brown	sand/silt	10		
TMS14	A/B	yellow brown	sand/silt	10		
TMS15	В	brown	sand/silt	15		
TMS16	В	yellow brown	sand/silt	20		
TMS17	В	brown	sand/silt	15		