GEOPHYSICAL SURVEY ON THE RITA PROJECT

SIMILKAMEEN MINING DIVISION BRITISH COLUMBIA

NTS 092H 10
UTM Zone 10, NAD 83 $681,850 \mathrm{mE} / 5,500,900 \mathrm{mN}$

Prepared for:

DGW Consultants

\#1108-1111 Alberni Street, Vancouver, British Columbia, V6E 4V2

BY
James Thom, M.Sc.

April 10, 2013

Contents

1.0 SUMMARY 4
2.0 INTRODUCTION 6
2.1 Property Description and Location 6
2.2 Access, Climate, Local Resources and Physiography 6
3.0 HISTORY 8
3.1 Exploration History 8
3.1.1 Exploration carried out by Canadian Nickel Company (ARIS: 10503 \& 10703) 8
3.1.2 Exploration carried out by Fairfield Minerals (ARIS: 19468 \& 20816) 9
3.3 Minfile Showings Covered by the Property 9
4.0 GEOLOGY 11
4.1 Regional Geology 11
5.02012 EXPLORATION PROGRAM 13
5.1 Mag Geophysical Survey 13
6.0 CONCLUSIONS 15
7.0 REFERENCES 16
8.0 Statement of Qualifications 17
9.0 STATEMENT OF COSTS 18

LIST OF FIGURES

FIGURE 1: Regional Location Map A1
FIGURE 2: Regional Geology Map A1
FIGURE 3: Mineral Tenure Map A1
FIGURE 4: 3D Satellite Image A1
FIGURE 5: Historic Claim Boundaries A1
FIGURE 6: Compilation Map (Canadian Nickel Company) A1
FIGURE 7: Compilation Map (Fairfield Minerals) A1
FIGURE 8: Total Field Magnetics A1

APPENDIX 1. Figures
APPENDIX 2. Mag Geophysical Results

1.0 SUMMARY

This report describes a program of exploration undertaken during January $25^{\text {th }}$ and $26^{\text {th }} 2013$ on the Rita Property, 100% owned by DGW Consultants and operated by DGW Consultants. The property is currently being held in-trust by Dorian Leslie.

The Rita property is located in the Thompson Plateau of southwestern British Columbia approximately 20 km north-northeast of the town Princeton. This section of the Thompson Plateau is underlain mainly by the Nicola Group, the Osprey Lake Batholith and the Allison Lake Batholith. The area covered by the Rita property is underlain by the Upper Triassic Nicola Group.

The Princeton area has undergone extensive porphyry copper exploration as a result of the success of the Copper Mountain Mine south of Princeton. Exploration for porphyry copper deposits in the Princeton area reached a peak in the late 1960's and early 1970's. The efforts of this exploration period resulted in a number of advanced and developed prospects including: AXE (SOUTH ZONE, ADIT ZONE, WEST ZONE) (Minfile No. 092HNE040, 092HNE143, 092HNE142); MINER MOUNTAIN (Minfile No. 092HSE203); PRIMER (Minfile No. 092HNE056); RATS (Minfile No. 092HNE176), PINE (092HNE003); RITA (Minfile No. 092HNE235); MISS (Minfile No. 092HNE157); HIT (Minfile No. 092HNE053).

A number of these historic copper porphyry mineral occurrences have been receiving recent exploration. Of note is the AXE property -Weststar Resources, Miner Mountain Property - Sego Resources, Castle Copper Project - Blue River Resources, Hit Property - Colorado Resources, Man-Prime Property - Sunrise Resources. The Rita property is located adjacent to the Axe property placing it in an ideal location to define an economical copper porphyry deposit.

The Princeton porphyry copper deposits are part of a northerly trending Mesozoic tectonostratigraphic Quesnellia terrane which is composed of a volcanic arc with overlying sedimentary sequences, all of which were built on top of a deformed, oceanic sedimentaryvolcanic complex (Harper Ranch and Okanogan sub-terranes). The Quesnellia terrane is traceable from the $49_{\text {th }}$ parallel along the full length of the Intermontane Belt into northern British Columbia and Yukon.

In the southern part of the Province this assemblage of volcano-plutonic arc rocks is known as the Nicola Group. The central part of the Nicola Group between Merritt and Princeton has been subdivided into three subparallel structural belts, referred to as the Western, Central, and Eastern Belt, on the basis of physical and chemical differences of the rock assemblages. The three belts are separated by two northerly trending high-angle fault systems (Preto, 1979). North of the Property, the Summers Creek Fault separates rocks of the Central Belt from those of the Eastern Belt which underlie the Property. Farther north and west, the Allison Fault system separates Central Belt from Western Belt rocks (Preto, 1979).

The large northerly trending fault systems such as Allison and Summers Creek, are believed
(Preto, 1979) to represent deep-seated crustal fractures which dominated the geology of the region in Late Triassic time and caused volcanic centres to be aligned in a northerly direction, thus producing a central zone of dominantly volcanic and intrusive rocks, the Central Belt and part of the Eastern Belt, flanked to the west and east by sedimentary basins. Some of these eruptive centres can be identified with stocks or clusters of stocks of micromonzonite or microdiorite which may have associated copper-gold mineralization such as at the Miner Mountain and Axe Properties and at Copper Mountain 15 kilometres south of Princeton.

The Rita property has a history of exploration going back to 1981. From 1981 to 1982, Canadian Nickel Company was the owner and operator of the area now covered by the Rita property and carried out a soil geochemical survey, general prospecting, and Mag and VLF-EM geophysical survey. From 1989 to 1990, Fairfield Minerals carried of a soil geochemical survey that resulted in a number of Au anomalies. No further work was carried out on the ground now covered by the Rita property until the property was acquired by DGW Consultants.

On January $25^{\text {th }}$ and $26^{\text {th }}, 2013$ DGW Consultants completed a detailed geophysical survey program on the Badger property. The mandate of the program was to carry out a total magnetic field survey over the property to aid in the geological interpretation of this area.

The geophysical survey was successful in collecting 4.324 line km 's covering an area of $\sim 0.3 \mathrm{~km}^{2}$ on the Rita property.

2.0 INTRODUCTION

This report has been written in order to satisfy assessment requirements for SOW: 5428821. This report describes the geology, a brief work history and the geophysical survey carried out during January $25^{\text {th }}$ and $26^{\text {th }}$, 2013 on the Rita claim group, 100% owned and operated by DGW Consultants. The Rita claim group is currently being held in trust by Dorian Leslie.

The 2013 geophysical survey was carried out by the author and an assistant. All UTM locations given are from the NAD83 ZONE10 projection.

2.1 Property Description and Location

The Rita Property is located in the Similkameen Mining Division, in the Yale-Lilooet Electoral District, of south-central British Columbia, Canada. The Rita property is located in the Thompson Plateau of southwestern British Columbia approximately 20km north-northeast of the town Princeton.

The area where work took place is centered roughly at $681,850 \mathrm{mE} / 5,500,900 \mathrm{mN}$. The Rita property is situated on N.T.S. map sheet $092 \mathrm{H}(1: 250,000), 092 \mathrm{H} / 09(1: 50,000)$ and $092 \mathrm{H} / 068$ (1:20,000).

The Rita property consists of one claim group. The claim group consists of three (3) contiguous claims covering approximately 146.47 hectares. The Rita Property is 100% owned by DGW Consultants and is currently being held in-trust by Dorian Leslie. Figures 1, 3, and 4 illustrate the project location and infrastructure.

2.2 Access, Climate, Local Resources and Physiography

Access to the central portion of Rita group of claims is available from the south beginning in the town of Princeton, heading north along the Princeton-Summerland Road for 9.6 km make a left onto the Hembrie Mountain Road. After 10km on the Hembrie Mountain road the Rita claim group will be reached.

Vegetation is typical interior light forest cover of fir, hemlock, balasam and pine. Active and old logging blocks are clearly visible. The climate is moderate to arid in the summer months; the usual hot, dry climate typical of the region is mitigated somewhat by the elevation. The majority of the precipitation in the area falls as snow in the winter months, especially at the higher elevations. The snow-free season is generally from May to October, but can be shortened considerably at the upper elevations in some years. Swanson Creek transects the property from the northeast to the southwest. The claims are situated between 1100 m and 1300 m elevation.

Within the claim area the soil is generally poorly developed and largely composed of glacial till, except where steep slopes have allowed erosion to remove the overburden. The higher elevation areas have a thin veneer of mixed locally derived weathered rock fragments and glacial till. The till increases rapidly in thickness down slope, except in the immediate vicinity of steep-walled, bedrock-cutting, year-round active drainages. Talus slopes are locally developed near exposed outcrops, and road cuts have removed the overburden in many places, exposing the local bedrock.

Table 1. Rita Claim Group

OWNER	CLAIM NAME	TENURE \#	Good to date	SIZE (Ha)
Dorian Leslie		943773	$2018 / \mathrm{jan} / 5^{*}$	41.85
Dorian Leslie		1016302	$2018 / \mathrm{jan} / 15^{*}$	62.77
Dorian Leslie		1016303	$2018 / \mathrm{jan} / 15^{*}$	41.85

*Good to date is based on the acceptance of this report associated with SOW: 5428821

3.0 HISTORY

Where no specific reference is listed, information has been taken from the British Columbia Minister of Mines Annual reports, from the BC Geological Survey Branch Mineral Inventory File (MINFILE) and Ministry of Mines.

3.1 Exploration History

The Rita property has a history of exploration going back to 1981. Both Canadian Nickel Company and Fairfield Minerals had mineral claims that covered ground now covered by the Rita Property (Figure 5). From 1981 to 1982, Canadian Nickel Company was the owner and operator of the area now covered by the Rita property and carried out a soil geochemical survey, general prospecting, and Mag and VLF-EM geophysical survey. From 1989 to 1990, Fairfield Minerals carried of a soil geochemical survey that resulted in a number of Au anomalies. No further work was carried out on the ground now covered by the Rita property until the property was acquired by DGW Consultants. A detailed description of the work carried out by the Canadian Nickel Company and Fairfield Minerals is given below.

3.1.1 Exploration carried out by Canadian Nickel Company (ARIS: 10503 \& 10703)

From 1980 through to 1982, the Canadian Nickel Company conducted prospecting, soil geochemical surveys, and two geophysical surveys (Mag and VLF-EM). During June $10^{\text {th }}$ to June $24^{\text {th }}$ 1981, three-hundred-thirty-one (331) reconnaissance soil samples were collected every 100 m along east-west lines spaced 600 m apart. Twenty (20) rock samples were collected along road cuts where mineralized bedrock was exposed. Soil samples were analyzed for Cu and Mo and rock samples were analyzed for $\mathrm{Cu}, \mathrm{Mo}, \mathrm{Au}$ and Ag. Scattered, small low level Cu -in-soil anomalies were observed. A number of rock samples located at the boundary between Rita 3 and Rita 4 claims were anomalous in Cu, Mo and Ag . It was recommended that a detailed soil geochemical survey be carried out over the area where the anomalous rock samples were located.

During May $25^{\text {th }}$ to June $11^{\text {th }} 1982$, Canadian Nickel Company carried out a detailed soil geochemical survey and two geophysical surveys (Mag and VLF-EM) over the area recommended by the previous exploration season. Four-hundred-ninety-three (493) detail soil samples were collected every 25 m along east-west lines spaced 100m apart. Soil samples were analyzed for $\mathrm{Cu}, \mathrm{Mo}, \mathrm{Au}$ and Ag . Select samples were also analyzed for Pb, As, and Zn . Fifteen (15) rock samples were collected. Rock samples were analyzed for $\mathrm{Cu}, \mathrm{Mo}, \mathrm{Au}$ and Ag. Sample RX42194 returned values of $2092 \mathrm{ppm} \mathrm{Cu}, 2 \mathrm{ppm} \mathrm{Mo}, 4.7 \mathrm{ppm} \mathrm{Ag}$, and 50 ppb Au. Soil samples did not produce any significant Cu and Mo anomalies indicative of a possible $\mathrm{Cu}-\mathrm{Mo}$ environment associated with the hornfelsed contact aureole of the Nicola Group volcanics. Several anomalous isolated Au values range from 50 to 410 ppb versus a background of 5 ppb . All these anomalous values occur within the intrusive phases of the Pennask Batholith.

The total field magnetic data was able to identify strong magnetic differences between the Penask batholith and the Nicola Group volcanics. The VLF-EM survey identified a number of weak conductors that are not considered to be caused by sulphides.

Figure 6 shows location of both soil sample and geophysical stations that were georeferenced from ARIS: $10503 \& 10703$.

3.1.2 Exploration carried out by Fairfield Minerals (ARIS: 19468 \& 20816)

From 1989 to 1990 Fairfield Minerals conducted a large detailed soil geochemical survey. During October $17^{\text {th }}$ to October $23^{\text {rd }}$, 1989, one-thousand-thirty (1030) soils samples were collected. Soil samples were analyzed for $\mathrm{Au}, \mathrm{Ag}, \mathrm{Cu}$ and Zn . Contouring of gold values showed several small scattered anomalies which, as a whole, outlined a number of possible east to northeast gold trends crossing the grid. The numerous gold geochemical anomalies, with values up to 360 ppb , indicated to Fairfield Minerals good potential for the discovery of significant vein deposits of economic tenor. It was recommended that detail grids be extended and fill-in sampling around anomalous gold values be carried out to better define anomalous trends.

During May $15^{\text {th }}$ to May $25^{\text {th }}$ and October $26^{\text {th }}$ to October $30^{\text {th }}, 1990$, one-thousand-five-hundredseventy (1570) soil samples were collected on grids extending the 1989 grid and nine-hundred-forty-two (942) were collected from fill-in sampling around anomalous gold values. The extension grids outlined a sporadic distribution of geochemical anomalies with values up to 170 ppb gold. Follow-up sampling around anomalous sample sites confirmed and extended several anomalous areas, with values up to 410 ppb Au . These zones collectively form an overall northnorthwest trend which transects the west central area of the property and is thought to be coincident with the contact between an Upper Jurassic granite batholith to the east and Upper Triassic Nicola group volcanics to the west.

Figure 7 shows location of both soil sample stations that were georeferenced from ARIS: 19468 \& 20816.

3.3 Minfile Showings Covered by the Property

There is one MINFILE report describing one showing on the Rita Property. The Minfile name for this historic working is; RITA. A description of this working is listed in Table 2 and described below.

Table 2. Property Minfile Details

MINFILE Name(s)	MINFILE Number	Status	Commodities	Most Recent Sampling Highlights
RITA	092 HNE 235	Showing	$\mathrm{Cu}, \mathrm{Ag}, \mathrm{Zn}$	$2092 \mathrm{ppm} \mathrm{Cu}, 2 \mathrm{ppm} \mathrm{Mo}$, 4.7 ppm Ag, and 50 ppb Au -in-rock (ARIS: 10703)

RITA

The Rita prospect outcrops 800 to 1800 metres east of the confluence of Swanson and Rampart creeks, 19.5 to 20 kilometres north-northeast of Princeton.

Scattered exposures of copper mineralization occur in an area roughly 1000 metres long and 700 metres wide, in massive basaltic to andesitic flows and augite plagioclase porphyritic flows of the Upper Triassic Nicola Group (Eastern belt, Bulletin 69), along the western margin of the middle to Late Cretaceous Summers Creek pluton. The volcanics are mildly hornfelsed and propylitic altered in the vicinity of the quartz diorite intrusion.

Secondary minerals include epidote, hornblende, actinolite, chlorite, albite, biotite and carbonate. Mineralization consists of abundant disseminated and fracture controlled pyrite and minor fracture-controlled chalcopyrite. Malachite and azurite commonly accompany this mineralization. A sample of a malachite-azurite stained fracture zone, with traces of chalcopyrite, analysed 0.209 per cent copper, 0.05 gram per tonne gold and 4.7 grams per tonne silver (Assessment Report 10703, page 5, sample RX 42194). A sample from a quartz vein assayed 0.008 gram per tonne gold, 5.0 grams per tonne silver, 0.048 per cent copper and 0.441 per cent zinc (Assessment Report 19468, page 11, sample H4-R3).

This prospect was initially explored by Canadian Nickel Company Ltd. in 1982, while searching for porphyry copper deposits. The company completed geological, geophysical and geochemical surveys. Fairfield Minerals Ltd. restaked the showing in 1987 after finding anomalous gold in stream silts at the mouth of Swanson Creek. The company prospected and soil sampled the showing in 1989 and 1990 for vein-hosted gold deposits.

4.0 GEOLOGY

4.1 Regional Geology

The Princeton porphyry copper deposits are part of a northerly trending Mesozoic tectonostratigraphic Quesnellia terrane which is composed of a volcanic arc with overlying sedimentary sequences, all of which were built on top of a deformed, oceanic sedimentaryvolcanic complex (Harper Ranch and Okanogan sub-terranes). The Quesnellia terrane is traceable from the 49 th parallel along the full length of the Intermontane Belt into northern British Columbia and Yukon.

In the southern part of the Province this assemblage of volcano-plutonic arc rocks is known as the Nicola Group, a name derived from Nicola Lake near Merritt and coined by G.M. Dawson who in 1877 did the earliest geological work on these rocks (Dawson, 1879). In northern British Columbia and Yukon these rocks are known as the Takla and Stuhini volcanoplutonic assemblages. Throughout the Intermontane Tectonic Belt these rocks are noted for their mineral deposits, principally copper-gold porphyry deposits, and copper and gold skarns (Figure 2).

The central part of the Nicola Group between Merritt and Princeton has been subdivided into three subparallel structural belts, referred to as the Western, Central, and Eastern Belt, on the basis of physical and chemical differences of the rock assemblages. The three belts are separated by two northerly trending high-angle fault systems (Preto, 1979). North of the Property, the Summers Creek Fault separates rocks of the Central Belt from those of the Eastern Belt which underlie the Property. Farther north and west, the Allison Fault system separates Central Belt from Western Belt rocks (Preto, 1979).

North of the Property, in the area between Missezeula Lake and Merritt, Eastern Belt rocks consist of an assemblage of westerly facing volcanic siltstone, sandstone and conglomerate, tuff, laharic deposits, and distinctly alkaline trachybasalt flows which occur near numerous stocks of micromonzonite porphyry which may have associated copper-gold porphyry style mineralization. On the Property itself, Nicola Group rocks are separated from much younger sedimentary rocks of the Eocene Princeton Group by the northerly trending Boundary Fault, a probable southern extension of the Summers Creek Fault.

Central Belt rocks are dominated by massive pyroxene and plagioclase-rich andesitic and basaltic flows of alkalic and calc-alkalic composition, breccia and lahar deposits, and subordinate amounts of conglomerate and finer grained pyroclastic and sedimentary rocks. Comagmatic intrusive rocks are mostly diorite with subordinate syenite, occur mostly along major faults in the eastern half of the Belt, and may contain copper-gold porphyry type deposit such as the Axe Deposit.

Western Belt rocks include andesite to rhyolite flows of distinctly calc-alkalic composition and tuff, which are interbedded with limestone of Lower to Middle Norian age, volcanic conglomerate, and sandstone (Preto, 1979).

The large northerly trending fault systems such as Allison and Summers Creek, are believed
(Preto, 1979) to represent deep-seated crustal fractures which dominated the geology of the region in Late Triassic time and caused volcanic centres to be aligned in a northerly direction, thus producing a central zone of dominantly volcanic and intrusive rocks, the Central Belt and part of the Eastern Belt, flanked to the west and east by sedimentary basins. Some of these eruptive centres can be identified with stocks or clusters of stocks of micromonzonite or microdiorite which may have associated copper-gold mineralization such as at the Miner Mountain and Axe Properties, and at Copper Mountain 15 kilometres south of Princeton.
Figure 4 shows the regional geology of the area.

5.0 2012 EXPLORATION PROGRAM

In January $25^{\text {th }}$ and $26^{\text {th }} 2013$ DGW Consultants completed a detailed geophysical survey program on the Rita property. The mandate of the program was to carry out a total magnetic field survey over the over the property to aid in the geological interpretation of this area.

5.1 Mag Geophysical Survey

Grid Information

The Rita geophysical survey consisted of one grid given the name "Rita". The Rita grid consisted of 3 north-south lines (Figure 8). Line and station labels for the grid were based on UTM positions of the stations. The lines were spaced at 50 m and were 1000 m long. Stations were spaced at 25 m and lines were tied together along roads.

Station location in the field was determined by going to a waypoint using a Garmin 62CSX GPS. Waypoints for each survey station were preloaded into the GPS and accuracy ranged from $+/-3$ to $+/-10 \mathrm{~m}$.

Survey Parameters and Instrumentation

The magnetic survey utilized a stationary base unit to record the magnetic field to allow for the removal of the diurnal variation in the measured data. The base station recorded data at 4 second intervals. The mobile units recorded the total magnetic field every 25 m along the grid line traverses. Calibration measurements were taken by the mobile units at the start and end of each day to account for level shifts between the different instruments and to get a sense of the error in the data. The physical location of the base station and the calibration stations for the Rita grid are $681632 \mathrm{E} / 5500305 \mathrm{~N}$ and $681647 \mathrm{E} / 5500312 \mathrm{~N}$, respectively.

Geophysical Techniques - Magnetic Survey Method

Magnetic intensity measurements are taken along survey traverses and are used to identify metallic mineralization related to magnetic material in the ground (e.g., magnetite and/or pyrrhotite). Magnetic data are also used as a mapping tool to distinguish rock types and to identify faults, bedding, structure and alteration zones. Line and station intervals are usually determined by the size and depth of the exploration targets.

The magnetic field has both amplitude and a direction. The most common technique used in mineral exploration is to measure just the amplitude component using an overhauser magnetometer. The instrument digitally records the survey line, station, total magnetic field and time of day at each station. After each day of surveying, data are downloaded to a computer for archiving and further processing.

The earth's magnetic field is continually changing (diurnal variations) so field measurements are calibrated to these variations. The most accurate technique is to establish a stationary base station magnetometer to continually monitor and record the magnetic field over the course of a day. The base station and field magnetometers are synchronized on the basis of time and computer software is used to correct the field data for the diurnal variations.

Data Processing - Acquisition and Quality Assurance Measures

On each day of surveying, geophysical and location information was dumped to external computers for archiving and data processing. Initial quality control of the data was completed by the survey crew at the camp and then sent to DGW Consultants Ltd. in Vancouver, BC, for final quality control, processing and mapping.

Location information measured in the field (ground distances, slopes, azimuths, and GPS control points) are imported into a database. Within the database, automatic calculations are performed to generate UTM coordinates for every survey station. A visual review can then be performed to verify the locational information.

The Magnetic data is corrected for diurnal variation using the following formula:

Datacor=Dataraw-Database+ Datum

where Datacor is the corrected data, Dataraw is the raw data from the mobile magnetometer, Database is the base station reading for the same time period, and Datum $=55000 \mathrm{nT}$. In the final spreadsheet, suspect or poor quality points are flagged and removed. Calibration readings are verified to ensure the morning and afternoon readings are within set tolerances to determine instrumentation repeatability and noise of operator. In addition, any static shifts (differences) between multiple the instruments or even between the different days can be corrected for.

Equipment - GSM-19 Overhauser combination Magnetometer

Resolution: $\quad 0.01 \mathrm{nT}$, magnetic field gradient
Accuracy: $\quad 0.2 \mathrm{nT}$ over operating range
Range: $\quad 20,000$ to $120,000 \mathrm{nT}$
Gradient Tolerance: Over 10,000 nT/meter
Reading: Initiated by keyboard depression, external trigger or carriage return via RS-232C
Input/Output: 6 Pin weatherproof connector, RS-232C, and optional analog output
Power Requirements: 12V 200 mA peak (during polarization)
30 mA standby
300 mA peak in gradiometer
Power Source: Internal 12V, 1,9 Ah sealed lead-acid battery standard, other optional
External 12V power source can be used
Battery Charger: Input: $110 / 220 \mathrm{~V}$ AC, $50 / 60 \mathrm{~Hz}$ and/or 12 V DC
Output: 12 V dual level charging
Oper. Temperature: -40 C to 60 C
Battery Voltage: 10 V min. to 15 V max.

6.0 CONCLUSIONS

On January $25^{\text {th }}$ and $26^{\text {th }}$, 2013 DGW Consultants completed a detailed geophysical survey program on the Badger property. The mandate of the program was to carry out a total magnetic field survey over the property to aid in the geological interpretation of this area.

The geophysical survey was successful in collecting 4.324 line km 's covering an area of $\sim 0.3 \mathrm{~km}^{2}$ on the Rita property.

The following recommendations are made for the Rita Property in order of priority:

1) Carry out a geophysical magnetic survey to cover the entire property
2) Carry out property wide prospecting and soil surveys to verify gold anomalies identified by Fairfield Minerals.

7.0 REFERENCES

Preto, V.A. 1979. Geology of the Nicola Group between Merritt and Princeton. British Columbia Ministry of Mines. Bulletin 69.

8.0 Statement of Qualifications

I James G.M. Thom certify that:

1. I am an independent consulting geologist residing at 118 B west $14^{\text {th }}$ ave, Vancouver BC, V5Y1W5 and can be contacted at thomjgm@gmail.com
2. I obtained a B.Sc. in Earth and Ocean Sciences at the University of Victoria [2002] and graduated with a M.Sc. in Geology from the University of Toronto [2003].
3. I have worked in the mineral exploration industry since 1997
4. I supervised the 2013 exploration program described in this report.
9.0 STATEMENT OF COSTS

Breakdown of Costs for 2013 Exploration work: SOW 5428821
Field Days: January 25 to January 26

Personnel:		
James Thom	2 days @ \$550.00	$\$ 1,100.00$
Rhonda Viani	2 days @ \$275.00	
		$\$ 550.00$
Field Costs:	2 days @ \$100.00/man/day (including camp rental, GPS rental, prospecting and sampling equipment, first aid, generator, field computer, radios and chain saw)	
Field Camp and Supplies	$\$ 400.00$	
Field Communications	Long Distance charges	
Camp Consumables	Sat phone and costs 2 days @ \$20/day	$\$ 10.00$
	Food @ \$50/man/day	$\$ 40.00$
Survey Consumables	Sample bags, survey flagging, pickets etc.	$\$ 200.00$
Transportation:		$\$ 50.00$
$1 \times$ Truck Rental	2 days @ \$110.00/day	$\$ 220.00$
$1 \times$ Snowmobile Rental	2 days @ \$55.00/day	$\$ 110.00$
Geophysical Equipment:		$\$ 330.00$
$1 \times$ mobile units	2 days @ \$165.00/unit/day	$\$ 210.00$
$1 \times$ base station	2 days @ \$110.00/unit/day	
		$\$ 6,200.00$
Office \& Engineering:		based on results of Phase I exploration program Report Writing
GIS/Drafting/Cartography		$\$ 1,250.00$
Total Cost of the Phase I exploration program		

APPENDIX 1

-FIGURES-

APPENDIX 2

-RITA MAG SURVEY -

East_NAD83_Z10	North_NAD83_Z10	Mag_Raw_nT	Mag_Base_nT	Mag_Correc_nT
681800	5500400	54705.38	54967.58	54737.8
681800	5500400	54694.54	54967.54	54727
681800	5500400	54706.59	54967.54	54739.05
681800	5500400	54705.39	54967.54	54737.85
681800	5500400	54706.06	54967.51	54738.55
681800	5500400	54703.74	54967.5	54736.24
681800	5500400	54702.91	54967.5	54735.41
681800	5500400	54702.83	54967.51	54735.32
681800	5500400	54704.95	54967.5	54737.45
681800	5500400	54704.71	54967.48	54737.23
681800	5500425	54739.73	54967.45	54772.28
681800	5500450	54872.93	54967.48	54905.45
681800	5500475	54932.94	54967.46	54965.48
681800	5500500	54978.83	54967.48	55011.35
681800	5500525	55089.53	54967.45	55122.08
681800	5500550	54756.69	54967.46	54789.23
681800	5500575	54868.71	54967.45	54901.26
681800	5500600	54926.78	54967.48	54959.3
681800	5500625	54994.85	54967.51	55027.34
681800	5500650	55018.27	54967.5	55050.77
681800	5500675	54984.84	54967.51	55017.33
681800	5500700	54771.78	54967.51	54804.27
681800	5500725	54717.12	54967.52	54749.6
681800	5500750	54759.38	54967.54	54791.84
681800	5500775	54877.2	54967.53	54909.67
681800	5500800	54844.13	54967.55	54876.58
681800	5500825	54835.34	54967.57	54867.77
681800	5500850	54865.75	54967.59	54898.16
681800	5500875	54859.22	54967.59	54891.63
681800	5500900	54861.33	54967.6	54893.73
681800	5500925	55038.5	54967.55	55070.95
681800	5500950	55068.85	54967.57	55101.28
681800	5500975	55155.63	54967.58	55188.05
681800	5501000	55136.62	54967.61	55169.01
681800	5501025	55057.75	54967.58	55090.17
681800	5501050	55118.93	54967.57	55151.36
681800	5501075	55115.46	54967.55	55147.91
681800	5501100	55026.61	54967.55	55059.06
681800	5501125	55099.96	54967.56	55132.4
681800	5501150	55059.59	54967.55	55092.04
681800	5501175	54865.03	54967.55	54897.48
681800	5501200	54851.75	54967.56	54884.19
681800	5501225	54909.5	54967.52	54941.98
681800	5501250	54952.57	54967.56	54985.01
681800	5501275	54713.94	54967.54	54746.4
681800	5501300	54633.56	54967.54	54666.02

East_NAD83_Z10	North_NAD83_Z10	Mag_Raw_nT	Mag_Base_nT	Mag_Correc_nT
681800	5501325	54683.45	54967.57	54715.88
681800	5501350	54718.97	54967.58	54751.39
681800	5501375	54921.24	54967.6	54953.64
681800	5501400	54780.42	54967.61	54812.81
681800	5501400	54779.43	54967.62	54811.81
681800	5501400	54779.15	54967.65	54811.5
681800	5501400	54779.27	54967.67	54811.6
681850	5501400	54603.44	54967.66	54635.78
681850	5501400	54603.3	54967.67	54635.63
681850	5501400	54602.98	54967.68	54635.3
681850	5501400	54604.74	54967.67	54637.07
681850	5501375	54603.37	54967.69	54635.68
681850	5501350	54644.68	54967.66	54677.02
681850	5501325	54392.23	54967.68	54424.55
681850	5501300	54699.26	54967.64	54731.62
681850	5501275	54715.4	54967.67	54747.73
681850	5501250	54797.81	54967.64	54830.17
681850	5501225	54779.68	54967.66	54812.02
681850	5501200	54832.41	54967.62	54864.79
681850	5501175	54815.23	54967.65	54847.58
681850	5501150	54896.49	54967.62	54928.87
681850	5501125	55119.33	54967.59	55151.74
681850	5501100	55069.53	54967.6	55101.93
681850	5501075	55161.53	54967.62	55193.91
681850	5501050	55071.56	54967.62	55103.94
681850	5501025	55208.04	54967.67	55240.37
681850	5501000	55147.79	54967.68	55180.11
681850	5500975	55075.58	54967.66	55107.92
681850	5500950	55086.41	54967.68	55118.73
681850	5500925	55089.88	54967.67	55122.21
681850	5500900	55112.03	54967.7	55144.33
681850	5500875	55136.7	54967.72	55168.98
681850	5500850	55192.69	54967.71	55224.98
681850	5500825	55251.44	54967.71	55283.73
681850	5500800	55010.39	54967.69	55042.7
681850	5500775	55046.58	54967.66	55078.92
681850	5500750	54946.93	54967.66	54979.27
681850	5500725	54918.38	54967.66	54950.72
681850	5500700	54722.46	54967.63	54754.83
681850	5500675	54793.74	54967.63	54826.11
681850	5500650	55049.95	54967.61	55082.34
681850	5500625	54792.59	54967.62	54824.97
681850	5500625	54793.4	54967.63	54825.77
681850	5500600	54547.49	54967.62	54579.87
681850	5500575	54437.41	54967.64	54469.77
681850	5500550	54513.33	54967.63	54545.7

East_NAD83_Z10	North_NAD83_Z10	Mag_Raw_nT	Mag_Base_nT	Mag_Correc_nT
681850	5500525	54669.73	54967.63	54702.1
681850	5500500	54913.85	54967.66	54946.19
681850	5500475	54731.14	54967.67	54763.47
681850	5500475	54730.43	54967.69	54762.74
681850	5500475	54732.19	54967.68	54764.51
681850	5500475	54731.93	54967.71	54764.22
681850	5500475	54738.48	54967.69	54770.79
681850	5500475	54731.16	54967.74	54763.42
681850	5500450	54600.19	54967.74	54632.45
681850	5500425	54843.91	54967.72	54876.19
681850	5500400	54602.38	54967.75	54634.63
681850	5500400	54603.12	54967.73	54635.39
681850	5500400	54602.76	54967.73	54635.03
681850	5500400	54599.82	54967.74	54632.08
681850	5500400	54600.02	54967.69	54632.33
681850	5500400	54600.41	54967.71	54632.7
681900	5500400	54604.49	54967.73	54636.76
681900	5500400	54604.23	54967.7	54636.53
681900	5500400	54604.42	54967.72	54636.7
681900	5500400	54605.34	54967.7	54637.64
681900	5500400	54604.1	54967.72	54636.38
681900	5500400	54604.69	54967.7	54636.99
681900	5500425	54975.13	54967.68	55007.45
681900	5500425	54975.95	54967.67	55008.28
681900	5500450	55042.71	54967.67	55075.04
681900	5500475	55076.45	54967.68	55108.77
681900	5500500	54945.03	54967.67	54977.36
681900	5500525	54929.96	54967.67	54962.29
681900	5500550	54909.88	54967.7	54942.18
681900	5500575	54966.31	54967.69	54998.62
681900	5500600	54870.46	54967.7	54902.76
681900	5500625	54975.46	54967.68	55007.78
681900	5500650	55009.52	54967.72	55041.8
681900	5500675	55641.13	54967.72	55673.41
681900	5500675	55647.73	54967.69	55680.04
681900	5500675	55648.02	54967.72	55680.3
681900	5500675	55648.55	54967.69	55680.86
682200	5501400	54995.62	54967.8	55027.82
682200	5501400	54995.6	54967.82	55027.78
682200	5501400	54994.85	54967.8	55027.05
682200	5501400	54990.7	54967.8	55022.9
682150	5501400	54856.24	54967.8	54888.44
682100	5501400	54859.84	54967.81	54892.03
682050	5501400	54727.91	54967.79	54760.12
682000	5501400	54805.48	54967.79	54837.69
681950	5501400	54885.66	54967.8	54917.86

East_NAD83_Z10	North_NAD83_Z10	Mag_Raw_nT	Mag_Base_nT	Mag_Correc_nT
681900	5501400	54754.51	54967.81	54786.7
681900	5501400	54754.68	54967.82	54786.86
681900	5501400	54755.05	54967.8	54787.25
681900	5501400	54753.33	54967.82	54785.51
681900	5501375	54770.66	54967.82	54802.84
681900	5501350	54795.23	54967.84	54827.39
681900	5501325	54801.06	54967.83	54833.23
681900	5501325	54787.48	54967.85	54819.63
681900	5501325	54788.27	54967.85	54820.42
681900	5501300	54818.58	54967.85	54850.73
681900	5501275	54863.56	54967.85	54895.71
681900	5501250	54852.15	54967.83	54884.32
681900	5501225	54902.16	54967.83	54934.33
681900	5501200	54950.9	54967.83	54983.07
681900	5501175	55004.56	54967.81	55036.75
681900	5501150	55026.05	54967.83	55058.22
681900	5501125	55120.1	54967.82	55152.28
681900	5501100	55137.77	54967.84	55169.93
681900	5501075	55124.24	54967.84	55156.4
681900	5501050	55139.13	54967.82	55171.31
681900	5501025	55140.77	54967.81	55172.96
681900	5501000	54972.87	54967.8	55005.07
681900	5501000	54973.98	54967.82	55006.16
681902	5500678	55644.25	54967.69	55676.56
681902	5500678	55646.99	54967.68	55679.31
681902	5500678	55646.82	54967.71	55679.11
681902	5500678	55645.06	54967.68	55677.38
681900	5500685	56027.83	54967.7	56060.13
681900	5500685	56029.75	54967.7	56062.05
681904	5500688	55928.07	54967.7	55960.37
681907	5500695	55573.61	54967.74	55605.87
681912	5500708	55380.24	54967.7	55412.54
681915	5500717	55406.02	54967.71	55438.31
681922	5500728	55469.53	54967.72	55501.81
681925	5500737	55319.13	54967.71	55351.42
681931	5500747	55231.01	54967.72	55263.29
681935	5500758	55173.18	54967.73	55205.45
681942	5500769	55383.34	54967.73	55415.61
681950	5500781	55357.73	54967.74	55389.99
681957	5500789	55406.58	54967.76	55438.82
681962	5500801	55283.03	54967.75	55315.28
681966	5500807	55171.83	54967.73	55204.1
681971	5500814	55258.73	54967.78	55290.95
681975	5500824	55247.23	54967.76	55279.47
681984	5500833	55042.82	54967.79	55075.03
681991	5500845	55238.94	54967.78	55271.16

East_NAD83_Z10	North_NAD83_Z10	Mag_Raw_nT	Mag_Base_nT	Mag_Correc_nT
681996	5500850	55191.97	54967.8	55224.17
682000	5500858	55098	54967.8	55130.2
682006	5500866	54984.56	54967.81	55016.75
682011	5500873	54946.26	54967.79	54978.47
682017	5500884	54916.72	54967.81	54948.91
682020	5500886	54890.78	54967.83	54922.95
682025	5500896	54895.67	54967.82	54927.85
682027	5500902	54894.97	54967.85	54927.12
682033	5500913	54869.24	54967.83	54901.41
682038	5500920	54871.62	54967.84	54903.78
682041	5500929	54833.55	54967.8	54865.75
682044	5500934	54805.71	54967.83	54837.88
682053	5500944	54776.47	54967.82	54808.65
682057	5500947	54713.85	54967.81	54746.04
682062	5500957	54737.41	54967.82	54769.59
682073	5500972	54655.59	54967.82	54687.77
682083	5500985	54802.61	54967.81	54834.8
682093	5500999	54776.21	54967.78	54808.43
682102	5501016	54757.48	54967.8	54789.68
682111	5501031	54690.46	54967.82	54722.64
682120	5501046	54714.79	54967.8	54746.99
682130	5501063	54649.18	54967.82	54681.36
682139	5501077	54587.05	54967.8	54619.25
682146	5501088	54615.15	54967.8	54647.35
682155	5501111	54719.73	54967.8	54751.93
682161	5501125	54634.93	54967.81	54667.12
682169	5501143	54553.06	54967.79	54585.27
682175	5501161	54362.71	54967.79	54394.92
682185	5501179	54382.29	54967.8	54414.49
682188	5501198	54186.42	54967.81	54218.61
682183	5501228	54447.17	54967.82	54479.35
682177	5501246	54612.38	54967.8	54644.58
682171	5501262	54707.4	54967.82	54739.58
682169	5501287	54813.57	54967.82	54845.75
682169	5501306	54880.22	54967.84	54912.38
682168	5501321	54882.4	54967.83	54914.57
682171	5501341	54878.17	54967.85	54910.32
682172	5501359	54919.72	54967.85	54951.87
682174	5501370	54942.93	54967.85	54975.08
682179	5501394	54977.45	54967.85	55009.6
682188	5501405	54989.02	54967.83	55021.19
682202	5501405	54992.98	54967.83	55025.15
682211	5501388	55020.64	54967.83	55052.81
681900	5500998	54974.3	54967.81	55006.49
681900	5500998	54974.8	54967.83	55006.97
681900	5500998	54977.6	54967.82	55009.78

East_NAD83_Z10	North_NAD83_Z10	Mag_Raw_nT	Mag_Base_nT	Mag_Correc_nT
681907	5500974	55127.84	54967.84	55160
681922	5500956	55189.04	54967.84	55221.2
681936	5500936	55332.72	54967.82	55364.9
681952	5500929	55250.07	54967.81	55282.26
681967	5500906	55131.11	54967.8	55163.31
681982	5500890	55028.89	54967.82	55061.07
681988	5500875	55163.23	54967.83	55195.4
681985	5500860	55203.72	54967.83	55235.89
681886	5500664	55022.19	54967.83	55054.36
681870	5500643	54923.18	54967.84	54955.34
681853	5500628	54787.94	54967.82	54820.12
681833	5500612	54765.1	54967.8	54797.3
681814	5500593	54748.19	54967.84	54780.35
681799	5500572	54818.63	54967.84	54850.79
681789	5500547	54781.08	54967.83	54813.25
681781	5500527	54778.27	54967.86	54810.41
681777	5500507	54842.42	54967.83	54874.59
681775	5500486	55373.42	54967.86	55405.56
681774	5500463	54889.6	54967.83	54921.77
681772	5500440	54864.07	54967.83	54896.24
681765	5500421	54797.53	54967.84	54829.69
681749	5500402	55055.59	54967.85	55087.74
681733	5500384	55089.56	54967.84	55121.72
681716	5500366	55195.43	54967.83	55227.6
681704	5500352	55131.38	54967.83	55163.55
681686	5500337	55119.63	54967.86	55151.77
681663	5500316	54988.33	54967.83	55020.5
681663	5500316	55001.25	54967.85	55033.4
681663	5500316	55001.47	54967.85	55033.62
681663	5500316	55001.33	54967.81	55033.52

