BRITISH COLUMBIA The Best Place on Earth		T REACTION COLORED
Ministry of Energy and Mines BC Geological Survey		Assessment Report Title Page and Summary
TYPE OF REPORT [type of survey(s)]: AIRBORNE GEOPHYSIC	CAL SURVEY REPORT	TOTAL COST: \$243,606.80
AUTHOR(S): ELMER B. STEWART	SIGNATURE(S):	le B Stewst
NOTICE OF WORK PERMIT NUMBER(S)/DATE(S): MX-1-647/MAF	RCH 31, 2011	YEAR OF WORK: 2012
STATEMENT OF WORK - CASH PAYMENTS EVENT NUMBER(S)/DAT	те(s): <u>5433593/2013/FEB/22</u>	
PROPERTY NAME: SCHAFT CREEK PROPERTY		
CLAIM NAME(S) (on which the work was done): SC SOUTH 1 TO BONANZA 1, EAGLE 800 TO 814, EAGLE 817 TO 818, S		LK 166 TO 167, ELK152, BONANZA,
COMMODITIES SOUGHT: <u>COPPER</u> , GOLD, SILVER, MOLYB MINERAL INVENTORY MINFILE NUMBER(S), IF KNOWN: <u>104G</u> MINING DIVISION: <u>LIARD MINING DIVISION</u> LATITUDE: <u>57</u> <u>° 24</u> <u>13N</u> LONGITUDE: <u>1</u>	NTS/BCGS: WGS8	4, ZONE 9N (at centre of work)
OWNER(S): 1) COPPER FOX METALS INC.	2)	
MAILING ADDRESS: SUITE 650, 340 - 12 AVENUE SW		
CALGARY, AB T2R 1L5		
OPERATOR(S) [who paid for the work]: 1) COPPER FOX METALS INC.	2)	
MAILING ADDRESS:		
PROPERTY GEOLOGY KEYWORDS (lithology, age, stratigraphy, stru HICKMAN BATHOLITH, MIDDLE TO LAKE TRIASSIC-AG		
VOLCANIC ROCKS		
REFERENCES TO PREVIOUS ASSESSMENT WORK AND ASSESSME	ENT REPORT NUMBERS: <u>33</u> 242	2
		Next Page

TYPE OF WORK IN THIS REPORT	EXTENT OF WORK (IN METRIC UNITS)	ON WHICH CLAIMS	PROJECT COSTS APPORTIONED (incl. support)
GEOLOGICAL (scale, area)			
Ground, mapping			
Photo interpretation			
GEOPHYSICAL (line-kilometres)			
Ground			
	<u> </u>		
Radiometric			
Seismic			
Airborne 2,874 LINE KM		LISTED ON PAGE 1	243,616.80
GEOCHEMICAL (number of samples analysed for)			
Soil			
Silt			
Rock			
Other			
DRILLING (total metres; number of holes, size)			
Core			
Non-core			
RELATED TECHNICAL			
Sampling/assaying			
Petrographic			
Mineralographic			
Metallurgic			
PROSPECTING (scale, area)			
PREPARATORY / PHYSICAL			
Line/grid (kllometres)			
Topographic/Photogrammetric (scale, area)			
Legal surveys (scale, area)			
Road, local access (kilometres)/	trail		
Trench (metres)			
Underground dev. (metres)			
Other			
		TOTAL COST:	243,616.80

AIRBORNE MAGNETIC SURVEY REPORT ON SCHAFT CREEK CLAIMS

Schaft Creek Property

Telegraph Creek Map Area (NTS 104G.016, .017, .025 & .026) Liard Mining Division, Northwestern British Columbia, Latitude 57°24'13"N, Longitude 131°1'59"W

For

By Elmer B. Stewart, P.Geol., MSc. February 22, 2013

> BC Geological Survey Assessment Report 33937

TABLE OF CONTENTS

1.0	INTRODUCTION & SUMMARY	
2.0	PROPERTY GEOGRAPHY/PHYSIOGRAPHIC LOCATION	
3.0	CLAIMS	
4.0	LOCATION, ACCESS & GEOGRAPHY	
5.0	EXPLORATION HISTORY	
5.1	1 2012 EXPLORATION PROGRAM	
6.0	REGIONAL GEOLOGY	
6.1	1 PROPERTY GEOLOGY	
I	Upper Triassic Stuhini Group	
]	Late Triassic Intrusions	
1	Alteration	
6.2	2 STRUCTURE	
6.3	3 MINERALIZATION	20
7.0	AIRBORNE MAGNETIC SURVEY PHASE II, 2012	
]	INTRODUCTION	22
9	SURVEY SPECIFICATIONS	24
(GEOPHYSICAL DATA	24
5	SURVEY OPERATIONS	25
]	EQUIPMENT	
]	DATA PROCESSING	
]	MAGNETIC PROCESSING	
]	DATA FORMAT	27

LIST OF TABLES

TABLE 1: Mineral Claims within the Schaft Creek Project (Feb. 22/13)	7
TABLE 2: Schaft Creek Survey Acquisition Specifications	1

TABLE 3:	Block A Survey Polygon Coordinates using WGS 84 in Zone 9N2	:4
TABLE 4:	Block B Survey Polygon Coordinates using WGS 84 in Zone 9N2	24

LIST OF FIGURES

Figure 1: Schaft Creek General Property Location Map	6
Figure 1A: Schaft Creek Survey Areas Block A & Block B	.11
Figure 2: Location Map of the Schaft Creek Property	.13
Figure 3: Schaft Creek Property Claim Map	.14
Figure 4: Regional Geology Map of the Schaft Creek Property	.17
Figure 4a: Legend for Regional Geology Map of the Schaft Creek Property	.18
Figure 5: Geology Of Schaft Creek Deposit	.21
Figure 6: 2012 Airborne Survey Phase II Show Block A & Block B Relative to Phase I on Google Earth	.22
Figure 7: Terrain view – Schaft Creek Block A with Survey and Tie Lines Shown in Yellow and the Boundary in Red	
Figure 8: Terrain view – Schaft Creek Block B with Survey and Tie Lines Shown in Yellow and the Boundary in Red	
Figure 9: Bell 206 Jet Ranger Equipped in Stinger Configuration for Magnetic Data Acquisition	.25

APPENDICIES

APPENDIX 1 - SURVEY EQUIPMENT AND SPECIFICATION	
APPENDIX 2 – SURVEY MAPS	35
APPENDIX 3 - PERSONNEL	
APPENDIX 4 – COST STATEMENT	39
APPENDIX 5 – STATEMENT OF QUALIFICATIONS	40
APPENDIX 6 - REFERENCES	41

1.0 INTRODUCTION & SUMMARY

This report is prepared by Elmer B. Stewart, P. Geol., and describes the airborne geophysical (total field magnetic) survey completed by Precision GeoSurveys Inc. for Copper Fox Metals Inc. ("Copper Fox"). This survey served as an extension of geophysical data acquired in 2011 by Precision GeoSurveys Inc. for Copper Fox. The details of the airborne report are included in a report entitled "Airborne Geophysical Survey Report, Schaft Creek Property 2012" dated June 2012 authored by Shawn Walker, M.Sc., GIT. Copper Fox is the owner and operator of the Schaft Creek project which hosts the undeveloped Schaft Creek copper-gold-molybdenum-silver porphyry deposit and several other large zones of copper-gold-molybdenum-silver porphyry deposit was discovered in the late 1950s. As of the date of this report, the Schaft Creek project covers the mineral tenures set out in Table 1 below.

This airborne magnetic survey covers a significant portion of the Schaft Creek project (Figure 1A). Based on the data generated by the 2010 exploration program on the Paramount zone of the Schaft Creek deposit and the information obtained by the purchase of two groups of mineral tenures in March 2011, Copper Fox was of the opinion that the Schaft Creek project had potential to host additional zones of copper-goldmolybdenum-silver mineralization along strike to both the north and south of the Schaft Creek deposit. To assess the potential of the project and to obtain a magnetic signature of the setting for the Schaft Creek deposit, the airborne survey was completed. The total field magnetic and calculate vertical gradient maps generated from the total field magnetic data has identified a strong positive magnetic lineament that has been traced for a distance of approximately 15 kilometres. This positive magnetic lineament show a strong association with the Schaft Creek deposit and two other zones where previous sampling has indentified significant copper-gold-molybdenum-silver mineralization on surface.

2.0 PROPERTY GEOGRAPHY/PHYSIOGRAPHIC LOCATION

The Schaft Creek Project is located approximately 130 km southwest of Dease Lake within the Liard Mining Division and the Cassiar Iskut Stikine Land and Resource Management Plan. The Schaft Creek Project is located approximately 1,050 km northwest of Vancouver, British Columbia. The Schaft Creek Project is also located approximately 60 km south of the village of Telegraph Creek, 130 km southwest of Dease Lake and 80 km southwest of the village of Iskut and approximately 375 km northwest of the town of Smithers, BC. The center of the Schaft Creek Project is located at approximately 57° 24' 13" N latitude and 131° 1′ 59″ W longitude, or approximate UTM coordinates of 3780000 E and 6368000 N (NAD83, Zone 9). The map reference sheet is Energy Mines and Resources Canada topographic sheet 104G, Telegraph Creek.

3.0 CLAIMS

Copper Fox, as of February 22, 2013, holds 100% ownership of the mineral tenures set out in Table 1 that make up the Schaft Creek project. Tenure data for each of the claims included in the Schaft Creek project is listed in Table 1.

The Schaft Creek deposit consists of the Paramount and Liard zones and is located in the southern part of tenure number 514603 and the northern part of tenure number 514637. This area was the main area of focus for the 2010-2011 mineral exploration programs completed by Copper Fox. The new expiry dates and total area of the mineral tenures are listed in Table 1. Teck Resources Limited ("Teck") has an underlying ("earn-back" option) interest in the Schaft Creek project. Liard Copper Mines Limited holds a 30% Net Proceeds Interest and Royal Gold Inc. holds a 3.5% Net Profits Interest in the Schaft Creek deposit.

FIGURE 1: SCHAFT CREEK GENERAL PROPERTY LOCATION MAP

Tenure #	Claim Name	Owner	Issue Date	Good To Date	Status	Area (ha)
514595		207046 (100%)	2005/jun/16	2018/oct/30	GOOD	1653.042
514596		207046 (100%)	2005/jun/16	2018/oct/30	GOOD	1550.962
514598		207046 (100%)	2005/jun/16	2018/oct/30	GOOD	1412.623
514603		207046 (100%)	2005/jun/16	2018/oct/30	GOOD	1291.057
514637		207046 (100%)	2005/jun/17	2018/oct/30	GOOD	1256.712
514721		207046 (100%)	2005/jun/17	2018/oct/30	GOOD	1169.948
514723		207046 (100%)	2005/jun/17	2018/oct/30	GOOD	139.745
514724		207046 (100%)	2005/jun/17	2018/oct/30	GOOD	471.387
514725		207046 (100%)	2005/jun/17	2018/oct/30	GOOD	313.607
514728		207046 (100%)	2005/jun/17	2018/oct/30	GOOD	435.569
515035		207046 (100%)	2005/jun/22	2018/oct/30	GOOD	383.005
515036		207046 (100%)	2005/jun/22	2018/oct/30	GOOD	191.645
517462		207046 (100%)	2005/jul/12	2018/dec/15	GOOD	17.436
521312	SCHAFT 1	207046 (100%)	2005/oct/18	2018/dec/15	GOOD	191.784
547789		207046 (100%)	2006/dec/21	2018/dec/21	GOOD	418.6954
547798		207046 (100%)	2006/dec/21	2018/dec/21	GOOD	226.9987
548487	BLOCK B1	207046 (100%)	2007/jan/02	2018/jan/15	GOOD	434.7819
548488	BLOCK B2	207046 (100%)	2007/jan/02	2018/jan/15	GOOD	434.989
548489	BLOCK B3	207046 (100%)	2007/jan/02	2018/jan/15	GOOD	365.5676
548490	BLOCK B4	207046 (100%)	2007/jan/02	2018/jan/15	GOOD	121.9042
548492	BLOCK C1	207046 (100%)	2007/jan/02	2018/jan/15	GOOD	435.603
548493	BLOCK C2	207046 (100%)	2007/jan/02	2018/jan/15	GOOD	435.8293
548494	BLOCK C3	207046 (100%)	2007/jan/02	2018/jan/15	GOOD	436.0643
548495	BLOCK C4	207046 (100%)	2007/jan/02	2018/jan/15	GOOD	436.3091
548496	BLOCK C5	207046 (100%)	2007/jan/02	2018/jan/15	GOOD	436.6951
548498	BLOCK C6	207046 (100%)	2007/jan/02	2018/jan/15	GOOD	227.243
548759	AREA A	207046 (100%)	2007/jan/05	2018/jan/15	GOOD	365.0646
548760	AREA C1	207046 (100%)	2007/jan/05	2018/jan/05	GOOD	436.9025
548761	AREA C2	207046 (100%)	2007/jan/05	2018/jan/05	GOOD	437.1152
548762	AREA C3	207046 (100%)	2007/jan/05	2018/jan/05	GOOD	367.4112
548763	AREA C4	207046 (100%)	2007/jan/05	2018/jan/05	GOOD	122.5423
548764	AREA B1	207046 (100%)	2007/jan/05	2018/jan/15	GOOD	366.0431
548766	AREA B2	207046 (100%)	2007/jan/05	2018/jan/15	GOOD	418.111
548767	AREA B3	207046 (100%)	2007/jan/05	2018/jan/15	GOOD	435.382
548768	AREA B4	207046 (100%)	2007/jan/05	2018/jan/15	GOOD	435.6001
548769	AREA B5	207046 (100%)	2007/jan/05	2018/jan/15	GOOD	418.185
548770	AREA B6	207046 (100%)	2007/jan/05	2018/jan/15	GOOD	418.1864
548771	AREA B7	207046 (100%)	2007/jan/05	2018/jan/15	GOOD	418.189
548772	AREA B8	207046 (100%)	2007/jan/05	2018/jan/15	GOOD	418.1894
551325	AREA D1	207046 (100%)	2007/feb/06	2018/feb/06	GOOD	435.1767
551326	AREA D2	207046 (100%)	2007/feb/06	2018/feb/06	GOOD	435.1697
551328	AREA D3	207046 (100%)	2007/feb/06	2018/feb/06	GOOD	417.7083
569460	GREATER KOPPER	207046 (100%)	2007/nov/05	2018/dec/15	GOOD	2769.098
577025	SC SOUTH 1	207046 (100%)	2008/feb/23	2015/jun/05	GOOD	437.8319
577026	SC SOUTH 2	207046 (100%)	2008/feb/23	2015/jun/05	GOOD	438.0366
577028	SC SOUTH 3	207046 (100%)	2008/feb/23	2015/jun/05	GOOD	438.2416

TABLE 1: MINERAL CLAIMS WITHIN THE SCHAFT CREEK PROJECT (FEB. 22/13)

577004		207040 (4000()	0000/fab/00	2015/100	0000	400,4000
577031	SC SOUTH 4	207046 (100%)	2008/feb/23	2015/jun/05	GOOD	438.4862
577033	SC SOUTH 5	207046 (100%)	2008/feb/23	2015/jun/05	GOOD	438.7322
577034	SC SOUTH 6	207046 (100%)	2008/feb/23	2015/jun/05	GOOD	438.9363
577037	SC SOUTH 7	207046 (100%)	2008/feb/23	2015/jun/05	GOOD	439.0198
577039	SC SOUTH 8	207046 (100%)	2008/feb/23	2015/jun/05	GOOD	438.876
577042	SC SOUTH 9	207046 (100%)	2008/feb/23	2015/jun/05	GOOD	438.8966
854488	SILVER FOX 86	207046 (100%)	2011/may/13	2018/dec/15	GOOD	366.5575
854495	SILVER FOX 87	207046 (100%)	2011/may/13	2018/dec/15	GOOD	366.2694
854513	SILVER FOX 89	207046 (100%)	2011/may/14	2018/dec/15	GOOD	157.1843
854523	WHITE RABBIT 90	207046 (100%)	2011/may/14	2018/dec/15	GOOD	208.9252
854536	SILVER FOX 91	207046 (100%)	2011/may/14	2018/dec/15	GOOD	156.9374
855206	PTARMIGAN 93	207046 (100%)	2011/may/18	2018/dec/15	GOOD	208.7684
855207	PTARMIGAN 95	207046 (100%)	2011/may/18	2018/dec/15	GOOD	278.339
855348	WHITE RABBIT 92	207046 (100%)	2011/may/21	2018/dec/15	GOOD	104.4313
855461	PTARMIGAN 97	207046 (100%)	2011/may/24	2018/dec/15	GOOD	104.3678
855735	WHITE RABBIT 101	207046 (100%)	2011/may/26	2018/dec/15	GOOD	191.496
855736	WHITE RABBIT 102	207046 (100%)	2011/may/26	2018/dec/15	GOOD	139.3092
855840	CARIBOU 110	207046 (100%)	2011/may/27	2013/apr/09	GOOD	69.7928
855842	PTARMIGAN 103	207046 (100%)	2011/may/27	2018/dec/15	GOOD	104.3915
855868	TERN 120	207046 (100%)	2011/may/30	2018/dec/15	GOOD	295.4047
855869	TERN 121	207046 (100%)	2011/may/30	2018/dec/15	GOOD	34.7542
855872	TERN 103	207046 (100%)	2011/may/30	2018/dec/15	GOOD	138.7507
856232	SILVER FOX 118	207046 (100%)	2011/jun/03	2018/dec/15	GOOD	139.7259
856238	SILVER FOX 119	207046 (100%)	2011/jun/03	2018/dec/15	GOOD	157.23
856450	ELK 151	207046 (100%)	2011/jun/08	2015/jun/05	GOOD	105.0158
856464	ELK 152	207046 (100%)	2011/jun/08	2015/jun/05	GOOD	69.983
856487	ELK152	207046 (100%)	2011/jun/09	2015/jun/05	GOOD	157.52
856673	ELK 153	207046 (100%)	2011/jun/10	2015/jun/05	GOOD	174.9874
857427	ELK 154	207046 (100%)	2011/jun/21	2015/jun/05	GOOD	279.9349
857428	ELK 155	207046 (100%)	2011/jun/21	2015/jun/05	GOOD	69.9989
857528	ELK 156	207046 (100%)	2011/jun/22	2015/jun/05	GOOD	122.4914
862647	ELK 158	207046 (100%)	2011/jul/04	2015/jun/05	GOOD	140.0061
865007	TERN 125	207046 (100%)	2011/jul/07	2018/dec/15	GOOD	243.131
865167	TERN 127	207046 (100%)	2011/jul/08	2018/dec/15	GOOD	242.9604
865328	ELK 166	207046 (100%)	2011/jul/09	2015/jun/05	GOOD	175.0273
865619	ELK 167	207046 (100%)	2011/jul/11	2015/jun/05	GOOD	140.0507
866050	TERN 128	207046 (100%)	2011/jul/13	2018/dec/15	GOOD	104.2511
866517	TERN 130	207046 (100%)	2011/jul/18	2018/dec/15	GOOD	138.7842
866518	TERN 131	207046 (100%)	2011/jul/18	2018/dec/15	GOOD	208.137
866536	TERN 132	207046 (100%)	2011/jul/18	2018/dec/15	GOOD	208.0058
866630	TERN 131	207046 (100%)	2011/jul/19	2018/dec/15	GOOD	51.9883
866669	TERN 133	207046 (100%)	2011/jul/20	2018/dec/15	GOOD	69.3512
866670	TERN 134	207046 (100%)	2011/jul/20	2018/dec/15	GOOD	34.715
866671	TERN 135	207046 (100%)	2011/jul/20	2018/dec/15	GOOD	17.3328
866677	TERN 135	207046 (100%)	2011/jul/20	2018/dec/15	GOOD	17.3287
866678	TERN 136	207046 (100%)	2011/jul/20	2018/dec/15	GOOD	86.822
866889	TERN 137	207046 (100%)	2011/jul/20	2018/dec/15	GOOD	17.3428
866909	JUSKATLA RESOURCES 2	207046 (100%)	2011/jul/20	2018/dec/15	GOOD	104.2799

000440	DONIANZA	207040 (4000()	0044/2002/02	2045/005	0000	250 2000
880149	BONANZA	207046 (100%)	2011/aug/03	2015/jun/05	GOOD	350.2622
880189	BONANZA1	207046 (100%)	2011/aug/03	2015/jun/05	GOOD	350.4197
884429	GOLD BEAR	207046 (100%)	2011/aug/07	2018/dec/15	GOOD	87.0967
895838	EAGLE 800	207046 (100%)	2011/sep/01	2015/jun/05	GOOD	245.1966
895839	EAGLE 801	207046 (100%)	2011/sep/01	2015/jun/05	GOOD	332.7258
895840	EAGLE 802	207046 (100%)	2011/sep/01	2015/jun/05	GOOD	157.5583
895841	EAGLE 803	207046 (100%)	2011/sep/01	2015/jun/05	GOOD	315.2703
895842	EAGLE 804	207046 (100%)	2011/sep/01	2015/jun/05	GOOD	175.0619
896151	EAGLE 805	207046 (100%)	2011/sep/06	2015/jun/05	GOOD	52.5198
896152	EAGLE 806	207046 (100%)	2011/sep/06	2015/jun/05	GOOD	35.0163
896353	EAGLE 807	207046 (100%)	2011/sep/09	2015/jun/05	GOOD	140.0808
896516	EAGLE 808	207046 (100%)	2011/sep/11	2015/jun/05	GOOD	140.0725
896517	EAGLE 809	207046 (100%)	2011/sep/11	2015/jun/05	GOOD	105.0451
900609	JUSKATLA RESOURCES 3	207046 (100%)	2011/sep/25	2018/dec/15	GOOD	17.3566
900629	JUSKATLA RESOURCE 4	207046 (100%)	2011/sep/25	2018/dec/15	GOOD	34.6717
900649	EAGLE 810	207046 (100%)	2011/sep/25	2015/jun/05	GOOD	210.1447
903029	JUSKATLA RESOURCES 5	207046 (100%)	2011/sep/28	2018/dec/15	GOOD	17.3584
903049	JUSKATL RESOIURCES 6	207046 (100%)	2011/sep/28	2018/dec/15	GOOD	17.3308
903069	JUSKATLA RESOURCES 7	207046 (100%)	2011/sep/28	2018/dec/15	GOOD	34.6917
903089	JUSKATLA RESOURCES 8	207046 (100%)	2011/sep/28	2018/dec/15	GOOD	17.3742
908069	TERN AROUND	207046 (100%)	2011/oct/08	2018/dec/15	GOOD	69.5009
910209	TERN AROUND	207046 (100%)	2011/oct/12	2018/dec/15	GOOD	121.455
910229	TERN AROUND	207046 (100%)	2011/oct/12	2018/dec/15	GOOD	121.5508
927669	TERN LEFT	207046 (100%)	2011/nov/01	2018/dec/15	GOOD	69.5086
928489	TERN WEST	207046 (100%)	2011/nov/08	2018/dec/15	GOOD	69.493
936631	EAGLE 815	207046 (100%)	2011/dec/07	2018/dec/15	GOOD	262.1002
946510	EAGLE 816	207046 (100%)	2012/feb/06	2018/dec/15	GOOD	384.3474
949269	EAGLE 812	207046 (100%)	2012/feb/14	2015/jun/05	GOOD	262.8877
949270	EAGLE 811	207046 (100%)	2012/feb/14	2015/jun/05	GOOD	315.4651
950890	EAGLE 814	207046 (100%)	2012/feb/20	2015/jun/05	GOOD	105.0552
952292	EAGLE 813	207046 (100%)	2012/feb/23	2015/jun/05	GOOD	438.1459
952293	EAGLE 817	207046 (100%)	2012/feb/23	2015/jun/05	GOOD	350.3396
952412	RETERN100	207046 (100%)	2012/feb/24	2018/dec/15	GOOD	104.304
952423	RETERN101	207046 (100%)	2012/feb/24	2018/dec/15	GOOD	52.1522
952427	RETERN 102	207046 (100%)	2012/feb/24	2018/dec/15	GOOD	52.0814
952428	RETERN 103	207046 (100%)	2012/feb/24	2018/dec/15	GOOD	34.7346
953131	EAGLE 818	207046 (100%)	2012/feb/27	2015/jun/05	GOOD	263.0055
955309	TERN NORTH	207046 (100%)	2012/mar/04	2018/dec/15	GOOD	225.3319
961029	NORTH TERN 2	207046 (100%)	2012/mar/13	2018/dec/15	GOOD	416.2977
961049	NORT TERN 3	207046 (100%)	2012/mar/13	2018/dec/15	GOOD	381.9542
961110	SILVER EAGLE 900	207046 (100%)	2012/mar/13	2015/jun/05	GOOD	280.4076
964509	SILVER EAGLE 902	207046 (100%)	2012/mar/16	2015/jun/05	GOOD	140.1358
964529	SILVER EAGLE 903	207046 (100%)	2012/mar/16	2015/jun/05	GOOD	332.823
965029	SILVER EAGLE 901	207046 (100%)	2012/mar/17	2015/jun/05	GOOD	105.2024
968529	SILVER EAGLE 904	207046 (100%)	2012/mar/21	2015/jun/05	GOOD	367.9731
969349	SILVER EAGLE 905	207046 (100%)	2012/mar/21	2015/jun/05	GOOD	385.2511
969369	SILVER EAGLE 906	207046 (100%)	2012/mar/21	2015/jun/05	GOOD	140.183
970769	SILVER RABBIT	207046 (100%)	2012/mar/24	2018/dec/15	GOOD	435.0489

970789	SILVER RABBIT 2	207046 (100%)	2012/mar/24	2018/dec/15	GOOD	347.9524
971953	TERN SOUTH	207046 (100%)	2012/mar/26	2018/dec/15	GOOD	208.6899
971956	TERN SOUTH 2	207046 (100%)	2012/mar/26	2018/dec/15	GOOD	382.3436
971957	TERN SOUTH 3	207046 (100%)	2012/mar/26	2018/dec/15	GOOD	104.355
978394	SOUTH TERN 4	207046 (100%)	2012/apr/06	2018/dec/15	GOOD	260.8388
978694	CROWN 500	207046 (100%)	2012/apr/09	2018/dec/15	GOOD	400.1872
978695	CROWN 501	207046 (100%)	2012/apr/09	2018/dec/15	GOOD	417.5738
978696	CROWN 502	207046 (100%)	2012/apr/09	2018/dec/15	GOOD	417.5846
978697	CROWN 503	207046 (100%)	2012/apr/09	2018/dec/15	GOOD	139.2108
978732	CROWN 504	207046 (100%)	2012/apr/10	2018/dec/15	GOOD	434.8568
978733	CROWN 505	207046 (100%)	2012/apr/10	2018/dec/15	GOOD	208.7595
978734	CROWN 506	207046 (100%)	2012/apr/10	2018/dec/15	GOOD	434.779
978739	CROWN 507	207046 (100%)	2012/apr/10	2018/dec/15	GOOD	243.6704
978892	CROWN 507	207046 (100%)	2012/apr/10	2018/dec/15	GOOD	295.9702
978912	CROWN 508	207046 (100%)	2012/apr/10	2018/dec/15	GOOD	191.5177
978913	CROWN 509	207046 (100%)	2012/apr/10	2018/dec/15	GOOD	278.5544
979914	CROWN 510	207046 (100%)	2012/apr/12	2018/dec/15	GOOD	191.3341
979915	CROWN 511	207046 (100%)	2012/apr/12	2018/dec/15	GOOD	435.1219
979916	CROWN 512	207046 (100%)	2012/apr/12	2018/dec/15	GOOD	69.6198
979917	CROWN 513	207046 (100%)	2012/apr/12	2018/dec/15	GOOD	417.8764
979918	CROWN 514	207046 (100%)	2012/apr/12	2018/dec/15	GOOD	347.8393
984402	CROWN 515	207046 (100%)	2012/may/08	2018/dec/15	GOOD	417.7842
984422	CROWN 516	207046 (100%)	2012/may/08	2018/dec/15	GOOD	435.2212
984442	CROWN 517	207046 (100%)	2012/may/08	2018/dec/15	GOOD	383.0989
985522	CROWN 518	207046 (100%)	2012/may/10	2013/may/10	GOOD	435.5269
985562	CROWN 519	207046 (100%)	2012/may/10	2018/dec/15	GOOD	434.6695
985563	CROWN 520	207046 (100%)	2012/may/10	2018/dec/15	GOOD	434.4922
986762	RETERN 105	207046 (100%)	2012/may/16	2018/dec/15	GOOD	17.3408
986782	CROWN 521	207046 (100%)	2012/may/16	2018/dec/15	GOOD	434.6827
986802	CROWN 522	207046 (100%)	2012/may/16	2018/dec/15	GOOD	417.2993
992022	PANDA 1	207046 (100%)	2012/may/31	2018/dec/15	GOOD	434.2899
992023	PANDA 2	207046 (100%)	2012/may/31	2018/dec/15	GOOD	417.1348
992042	PANDA 3	207046 (100%)	2012/may/31	2018/dec/15	GOOD	434.6455
992062	PANDA 4	207046 (100%)	2012/may/31	2018/dec/15	GOOD	347.2546
996622	PANDA 5	207046 (100%)	2012/jun/12	2013/jun/12	GOOD	260.3358
996642	PANDA 6	207046 (100%)	2012/jun/12	2013/jun/12	GOOD	243.0354
1007842	PANDA 7	207046 (100%)	2012/jun/30	2013/jun/30	GOOD	312.9962
1008683	PANDA 8	207046 (100%)	2012/jun/30	2013/jun/30	GOOD	416.6976
1015257		207046 (100%)	2012/dec/12	2013/dec/12	GOOD	278.8546
1015342		207046 (100%)	2012/dec/17	2013/dec/17	GOOD	104.5769
1015350		207046 (100%)	2012/dec/17	2013/dec/17	GOOD	52.2821
1015359		207046 (100%)	2012/dec/17	2013/dec/17	GOOD	52.2821
						56267.542

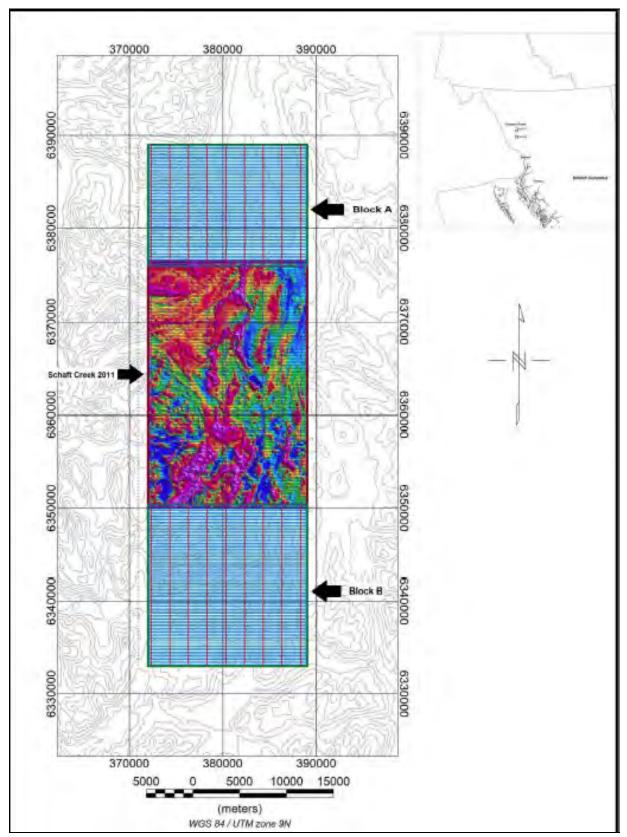


FIGURE 1A: SCHAFT CREEK SURVEY AREAS BLOCK A & BLOCK B

4.0 LOCATION, ACCESS & GEOGRAPHY

The Schaft Creek property, located on the eastern edge of the Coast Mountain Range in northwestern British Columbia, is approximately 45 km due west of Highway 37 and 375 km northwest of Smithers, B.C., the main supply point for the project (Figure-1). The property lies approximately 1,050 km northwest of Vancouver, B.C. The map reference sheet is Energy Mines and Resources Canada topographic sheet 104G, Telegraph Creek and is covered by 1:50,000 scale topographic sheets 104G/6 and 104G/7.

The Schaft Creek deposit, within the traditional territory of the Tahltan Nation, is about 60 km south of the village of Telegraph Creek, 130 km south west of Dease Lake and 80 km southwest of the village of Iskut (Figure-2). These communities have provided a number of First Nations labourers and machine operators, diamond drillers and camp management services. Dease Lake is a local supply point for basic goods and medical facilities. Dease Lake is serviced by daily flights from Smithers on Northern Thunderbird Air from about mid-spring to mid-fall.

The Schaft Creek project is located within the Liard Mining Division and the Cassiar Iskut-Stikine Land and Resource Management Plan (LRMP) area, approximately 9 km from the southwest edge of Mt Edziza Provincial Park (Figure 3). Topography varies from high plateau between Mess Creek and upper More Creek (Arctic Lake Plateau) to steep serrated ridges in the Hankin Peak – Mathew Glacier area. Elevations range from 800 metres above sea level ("masl") to 2,000 masl in the southern parts of the property.

Vegetation comprises of areas of boreal spruce-pine-fir forest at lower elevations, with poplar, willow and alder found near streams and bogs. Timberline is about 1,400 masl with subalpine fir and meadow areas above. Summer and winter temperatures are moderate, the temperatures range from 30°C to -30°C, averaging about 0°C. Mean monthly temperatures typically remain above freezing from April to October and drop below freezing from November through March. Annual precipitation averages about 50 cm, with monthly snow accumulations exceeding 40 cm in January. Field work in the property is possible from the middle of June until the middle of October.

The Schaft Creek deposit is situated in mountainous terrain near the junction of Hickman Creek and Schaft Creek. The tops of surrounding mountains typically have year-round snowfields and small, retreating hanging valley ice fields. Schaft Creek flows northerly into Mess Creek which then flows northward to the Stikine River. Elevations in the area range from around 900 masl in the bottom of the Schaft Creek valley to over 1990 masl on Mount LaCasse.

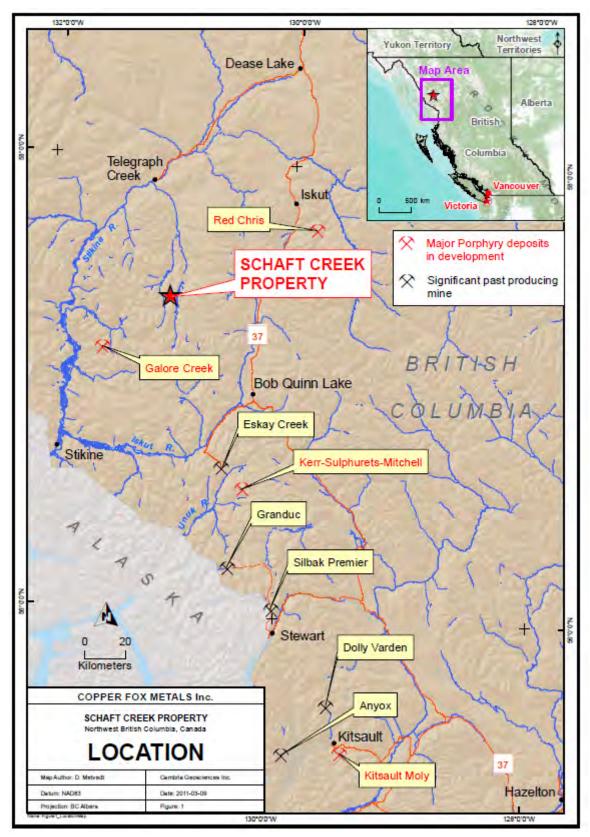


FIGURE 2: LOCATION MAP OF THE SCHAFT CREEK PROPERTY

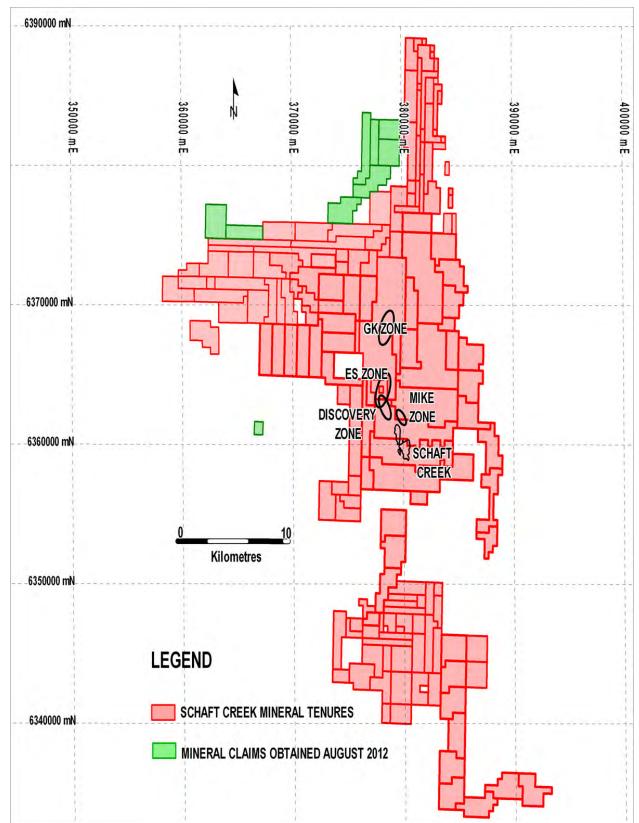


FIGURE 3: SCHAFT CREEK PROPERTY CLAIM MAP

5.0 EXPLORATION HISTORY

Mineral claims were first staked in the Schaft Creek deposit area in 1957 by prospector Nick Bird for the BIK Syndicate. Three diamond drill holes totalling 629 m were drilled in 1965 by Silver Standard Mines Ltd. In 1966, Liard Copper Mines Ltd. consolidated the mineral tenures in the area and optioned the ground to Asarco who constructed an airstrip and drilled 24 diamond drill holes totalling 3,334 m. The option was subsequently acquired by Hecla Mining Company in 1968 who explored the deposit area extensively until 1977. Over that period Hecla completed 30,891 m of diamond drilling, as well as percussion drilling, induced polarization and resistivity surveys, geological mapping, air photography, and engineering studies.

Hecla sold its interest to Teck Corporation (now Teck Resources Limited ("Teck")) in 1978, which in 1980 embarked on an aggressive exploration and drilling program to confirm and expand Hecla's work. Teck completed a total of 24,600 m of diamond drilling in 145 holes by 1981. A resource estimate prepared by Teck at that time reported the Schaft Creek deposit to contain 1 billion tonnes grading 0.30% copper and 0.034% MoS₂ (Bender and McCandlish, 2010). In 2002, Copper Fox Metals optioned the Schaft Creek property from Teck and completed the exploration and geotechnical work necessary to complete a feasibility study on the Schaft Creek project.

5.1 2012 EXPLORATION PROGRAM

During the 2012 program, 5 diamond drillholes, amounting to 2,266.18m were completed. Four holes targeted the Discovery Zone, and two holes targeted the Mike Zone. The program was supervised and executed by Cambria Geosciences Inc., with primary guidance regarding approval of drillhole locations and orientations provided by Copper Fox. Drilling activities occurred between June and August and were conducted by two diamond drilling contractors:

Tahltan Drilling Services Corporation (TDSC) formed a joint venture with Black Hawk Diamond Drilling Ltd. of Smithers, BC to aid in the drilling supply chain and to provide additional technical expertise. TDSC provided one helicopter-portable, skid mounted Zinex A5 drill rig and one modified A5 hybrid drill, in addition to all drilling equipment, consumables, supplies, and operators.

Core was generally HQ in diameter and reduced to NQ and BQ, when necessary. When oriented core was required, HQ3 diameter core was utilized. The main objectives of the 2012 drill program were test geophysical anomalies to the north of the known deposit area such as Discovery Zone and Mike Zone.

6.0 REGIONAL GEOLOGY

The Schaft Creek deposit is classified as a calc-alkaline porphyry Cu-Mo-(Au) deposit formed in a volcanic arc setting, likely on a back-arc rifted continental fragment. The deposit is hosted by Upper Triassic basaltic to andesitic volcanic rocks of the Mess Lake Facies of the Stuhini Group (Stikine Terrane) associated with porphyritic granodiorite dikes emanating from the nearby Hickman batholith (Scott, et al.,

2009). A map of the regional geology is shown in Figure 4, with the geological legend for the map in Figure 4a.

The volcanic rocks consist of a northerly-striking, steeply east-dipping, layered sequence of massive porphyritic, brecciated, tuffaceous volcaniclastic and epiclastic units. The volcanic rocks and the mineralization are bounded in the west by the Hickman batholith, part of the Middle to Late Triassic-age Stikine plutonic suite. The Hickman batholith is a complexly-zoned felsic to intermediate intrusive body and is the likely source of the hydrothermal fluids that formed the mineralization at Schaft Creek. Readers wishing more comprehensive overviews of the regional and property geology are referred to the works of Scott (2008), Scott, et al., (2009) and Logan et al. (2000).

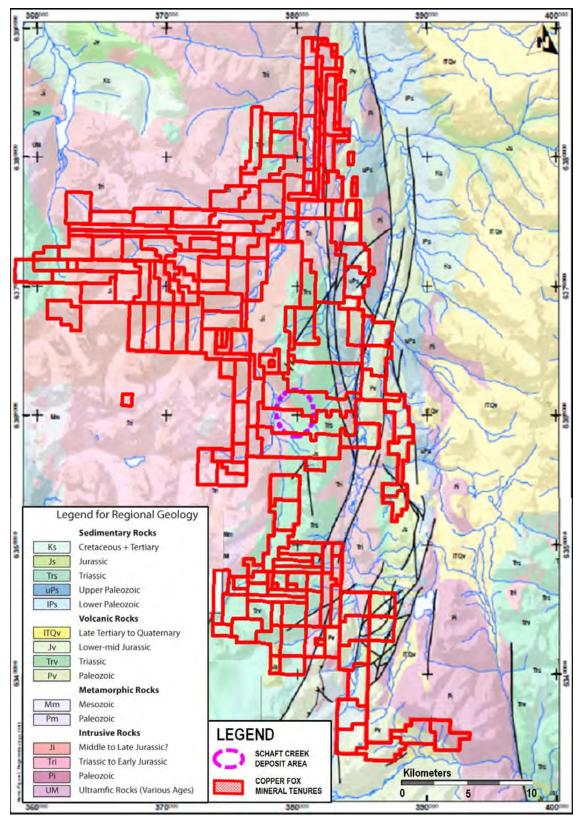


FIGURE 4: REGIONAL GEOLOGY MAP OF THE SCHAFT CREEK PROPERTY

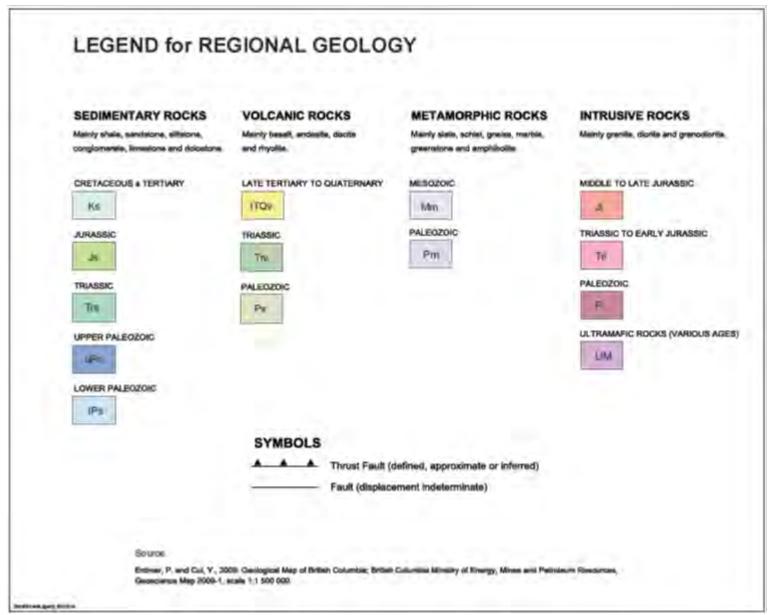


FIGURE 4A: LEGEND FOR REGIONAL GEOLOGY MAP OFTHE SCHAFT CREEK PROPERTY

6.1 PROPERTY GEOLOGY

UPPER TRIASSIC STUHINI GROUP

The Schaft Creek property deposit lies in a north–south oriented complex of intermediate to mafic volcanic rocks (Stuhini Group) dominated by basalts and andesites. The volcanic sequence, estimated to be upwards of 800 m thick by Logan, et al. (2000), lies on the eastern edge of the Hickman batholith. The volcanic rocks are andesitic to basaltic and consist of various massive flows and pyroclastic deposits that dip steeply towards the east or northeast. The flows are massive and range from aphanitic to locally strongly augite-plagioclase (+/- pyroxene) phyric, while the pyroclastics vary from ash-lapilli tuff to tuff breccia. A number of outcrops of aphanitic rhyolitic volcaniclastic rocks are reported (Scott, 2008) north of the deposit area and are likely analogous to the roughly 150 m thick succession of tuffaceous siltstone-sandstone and well bedded fine-grained tuffs that comprise the upper units of the Stuhini Group.

LATE TRIASSIC INTRUSIONS

The volcanic rocks are intruded and brecciated by narrow and locally discontinuous dykes and apophyses interpreted to be emanating from the Hickman batholith. These intrusive rocks have been emplaced along variably north to northwesterly oriented structural breaks and are predominantly feldspar porphyry and feldspar quartz porphyry granodiorite.

The intrusive rocks exercised significant control on distribution and type of mineralization and alteration. However, interpreting and correlating intrusive rocks on section using textural, alteration, or mineralization criteria is difficult.

ALTERATION

The phyllic alteration typically found in porphyry deposits consists of quartz-sericite-pyrite. Although this assemblage is observed locally at the Schaft Creek deposit, the equivalent assemblage that dominates at Schaft Creek is a chlorite-sericite assemblage. The alteration is typified by partial to complete alteration of mafic minerals to chlorite, plagioclase to sericite and/or illite, and magnetite to hematite.

The chlorite-sericite assemblage imparts a pale grey-green colour to the rocks and normally over-prints or partially destroys the earlier potassic assemblage. Prophylitic alteration occurs on the outer boundaries of the mineralization.

6.2 STRUCTURE

The Schaft Creek porphyry deposit displays locally intense structural deformation with zones of gouge and broken rock locally observed in core. The near-surface levels of the deposit area are locally broken and shattered (low RQD). The earlier faults are wholly or partially annealed with variable amounts of chlorite,

epidote, clay, and rock flour. In a number of instances, these larger fault zones can be traced from hole-tohole and section-to-section. Late high angle faults may have off-set parts of the mineralized zones up to tens of metres.

The deposit is cut by several north- and northwest-trending faults. One of these faults on the west side of the deposit is referred to as the Mylonite Fault. Two additional northwest-striking faults, located south of the Mylonite Fault are interpreted through existing drill holes and appear to cut the area of the West Breccia Zone, located in the southwestern portion of the deposit. This fault locally hosts rotated fragments and abundant annealed rock flour.

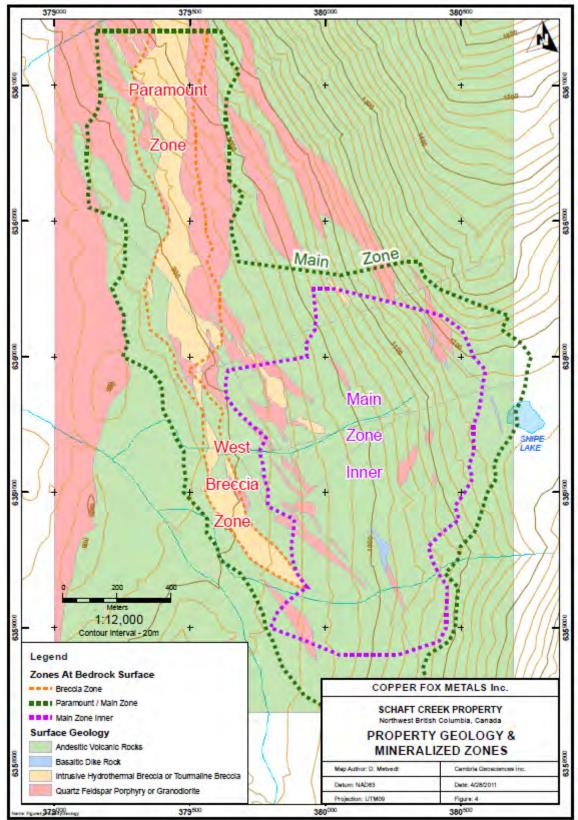
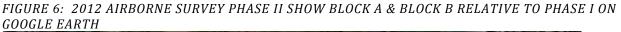
The amount of movement on the northwest-striking faults is uncertain. The north to northwest trending faulting is post ore, but these structures may have exploited weakness from an older structural corridor along the intrusive - volcanic contact.

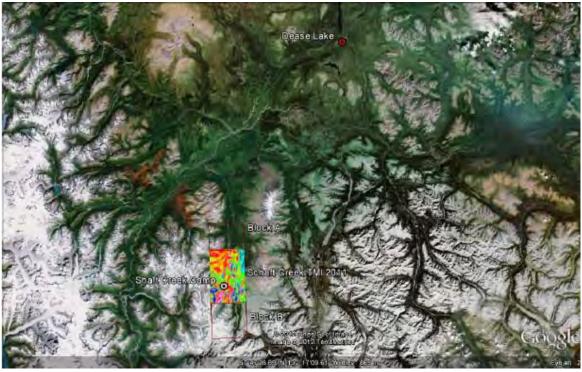
At the northeastern periphery of the Paramount Zone area, a deformation zone consists of various faults, shears, fractures and possible crush zones up to 200 m wide dipping 65° to 75° to the east. One of the fault structures may cut the north extension of the Breccia Zone in the Paramount Zone.

Only three northeast-trending cross faults are interpreted. The northeast-trending faults are interpreted as normal faults and could conceivably be related to later extensional tectonics.

6.3 MINERALIZATION

The Schaft Creek deposit consists of three sulphide-rich zones that exhibit common lithological, alteration, and mineralization features (Figure 5). Together, the Main Zone, Paramount Zone and West Breccia Zone form a deposit area roughly 2.6 km long and 1.6 km wide. The Main Zone (historically referred to as the Liard Zone) is the largest and most easterly of the three zones. The Main Zone is dominated by the presence of andesitic to basaltic volcanic rocks intruded by a series of narrow granodiorite dykes; however, it is the volcanic rocks which host the majority of mineralization.

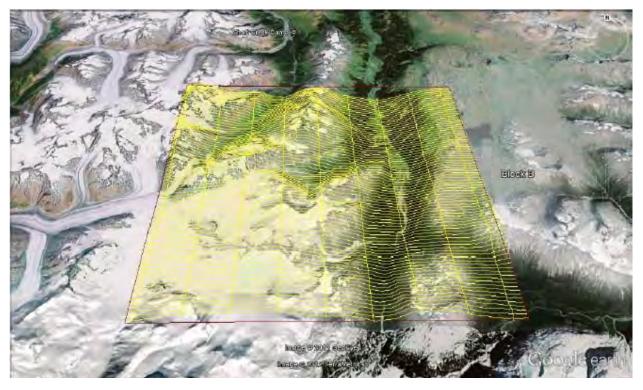




FIGURE 5: GEOLOGY OF SCHAFT CREEK DEPOSIT

7.0 AIRBORNE MAGNETIC SURVEY PHASE II, 2012

INTRODUCTION

A follow-up survey to the 2011 helicopter-borne magnetic field survey was completed by Precision GeoSurveys in May 29, 2012. The purpose of Phase II was to extend the limits to the north and south of the area covered in Phase I (Figure 6). Block A and B were extended to the north and south of the Phase I respectively. A total of 2,874 line kilometres were flown with 200 m line spicing at a 090%/270% heading and the tie lines were flown at 2000 meter spacing at a heading of 000%/180%.



Block A is located approximately 110 km south-west of Dease Lake. Block B is located approximately 145 km south-west of Dease Lake. The survey area of Block A is approximately 17 km by 13 km (Figure 7). A total of 1,228 line kilometers of magnetic data were flown for Block A; this total includes tie lines and survey lines. The survey area of Block B is approximately 17 km by 17.4 km (Figure 8). A total of 1,646 line kilometers of magnetic data were flown for Block B; this total includes tie lines and survey lines.

FIGURE 7: TERRAIN VIEW – SCHAFT CREEK BLOCK A WITH SURVEY AND TIE LINES SHOWN IN YELLOW AND THE BOUNDARY IN RED

FIGURE 8: TERRAIN VIEW – SCHAFT CREEK BLOCK B WITH SURVEY AND TIE LINES SHOWN IN YELLOW AND THE BOUNDARY IN RED

SURVEY SPECIFICATIONS

The geodetic system used for this survey is WGS 84 and the area is contained in Zone 9N (Figures 6 to 8). The survey data acquisition specifications and coordinates for Schaft Creek survey are specified as set out in (Table 2 to 4).

Survey Block	Line Spacing m	Planned Survey Line km	Planned Tie Line km	Total Planned Line km	Total Actual Flown km	Survey Line Orientation	Nominal Survey Height m
Block A	200	1,105	117	1,228	1,228	090%270%	50
Block B	200	1,479	156.6	1,635.60	1,646	090%270%	50
Total					2,874		

TABLE 2: SCHAFT CREEK SURVEY ACQUISITION SPECIFICATIONS

TABLE 3: BLOCK A SURVEY POLYGON COORDINATES USING WGS 84 IN ZONE 9N

Longitude	Latitude	Easting	Northing
131.14334642	57.62514495	372000	6389000
130.85886747	57.62964848	389000	6389000
130.85292634	57.51293511	389000	6376000
131.13649764	57.50845168	372000	6376000

TABLE 4: BLOCK B SURVEY POLYGON COORDINATES USING WGS 84 IN ZONE 9N

Longitude	Latitude	Easting	Northing
131.1433464	57.27864784	372000	6350400
130.8588675	57.28309204	389000	6350400
130.8529263	57.1268649	389000	6333000
131.1364976	57.12244709	372000	6333000

GEOPHYSICAL DATA

Geophysical data are collected in a variety of ways and is used to aid in the exploration and determination of geology, mineral deposits, oil and gas deposits, contaminated land sites and UXO detection. For the purposes of this survey, airborne magnetic data was collected to serve in the exploration of Schaft Creek property which contains rocks that are prospective for copper and gold mineralization.

Magnetic surveying is probably the most common airborne survey type to be conducted for both mineral and hydrocarbon exploration. The type of survey specifications, instrumentation, and interpretation procedures, depend on the objectives of the survey. Typically magnetic surveys are performed for:

- 1. Geological Mapping to aid in mapping lithology, structure and alteration in both hard rock environments and for mapping basement lithology, structure and alteration in sedimentary basins or for regional tectonic studies.
- 2. Depth to Basement mapping for exploration in sedimentary basins or mineralization associated with the basement surface.

SURVEY OPERATIONS

Precision GeoSurveys flew the Schaft Creek property using a Bell 206 BIII Jet Ranger (Figure 9). The survey lines were flown at a nominal line spacing of two hundred (200) meters and the tie lines were flown at 2 km spacing for the magnetometer. The average survey elevation was 47.95 meters vertically above ground for Block A and 54.47 meters vertically above ground for Block B. The experience of the pilots helped to ensure that the data quality objectives were met and that the safety of the flight crew was never compromised given the potential risks involved in airborne surveying. The survey property had a few areas with extreme vertical cliffs and tall trees that exceeded 50 m in height. This caused the pilot to fly higher than normal.

FIGURE 9: BELL 206 JET RANGER EQUIPPED IN STINGER CONFIGURATION FOR MAGNETIC DATA ACQUISITION

The base of operations for this survey was in Schaft Creek, BC. The Precision crew consisted of a total of five members:

Harmen Keyser – Pilot Bruce Murray – Pilot Don Plattel – Pilot Christina Larocque – Operator Shawn Walker – On-site Geophysicist

The survey was started on April 28, 2012 and completed on May 29, 2011. The survey encountered a few delays due to poor weather conditions and magnetic storms.

EQUIPMENT

For this survey, a magnetometer, base station, laser altimeter, and a data acquisition system were used to carry out the survey and collect quality, high resolution magnetic data. The survey magnetometer is carried in an approved "stinger" configuration to enhance flight safety and improve data quality in this mountainous terrain. Detail description and specification are shown in Appendix 1.

DATA PROCESSING

After a survey flight all of the data is collected and several procedures are undertaken to ensure that the data meets a high standard of quality. All data was processed using PicoEnvirotec software and Geosoft Oasis Montaj geophysical processing software.

MAGNETIC PROCESSING

Before any processing and editing of the raw magnetic data, the data obtained from the compensation flight test must be applied to the raw magnetic data first. A computer program called PEIComp is used to create a model from the compensation flight test for each survey to remove the noise induced by aircraft movement; this model is applied to each survey flight so the data can be further processed.

Filtering is applied to the laser altimeter data to remove vegetation clutter and to show the actual ground clearance. To remove vegetation clutter a Rolling Statistic filter is applied to the laser altimeter data and a low pass filter is used to smooth out the laser altimeter profile to remove isolated noise. As a result, filtering the data will yield a more uniform surface in close conformance with the actual terrain.

The processing of the magnetic data involved the correction for diurnal variations. The base station data collected is edited, plotted and merged into a Geosoft (.gdb) database daily. The airborne magnetic data is corrected for diurnal variations by subtracting the observed magnetic base station deviations. Following the diurnal correction was a lag correction. A lag correction of 1.0 seconds was applied to the total magnetic field data to compensate for the lag in the recording system as the magnetometer sensor flies 5.70 m ahead of the GPS antenna.

Some filtering of the magnetic data is also required. A Non Linear filter was used for spike removal. The 1D Non-Linear Filter is ideal for removing very short wavelength, but high amplitude features from data. It is often thought of as a noise spike-rejection filter, but it can also be effective for removing short wavelength geological features, such as signals from surficial features. The 1D Non-Linear Filter is used to locate and remove data that is recognized as noise. The algorithm is 'non- linear' because it looks at each data point and decides if that datum is noise or a valid signal. If the point is noise, it is simply removed and replaced by an estimate based on surrounding data points. Parts of the data that are not considered noise are not modified. The combination of a Non-Linear filter for noise removal and a low pass trend enhancement filter resulted in level data as indicated in the results section of this report. The low pass filter smoothes out the magnetic profile to remove isolated noise.

The corrected magnetic data from the survey and tie lines was used to level the data all together. Two forms of levelling are applied to the corrected data: conventional leveling and micro-levelling. There are two components to conventional levelling; the first involves statistical levelling of magnetic data to correct miss ties (intersection errors) followed by specific patterns or trends. For the second component, tie lines

are brought to a common regional base value using the mean value of the cross-level error. To obtain the best possible levelled data, individual corrections are edited at selected intersections. Lastly, micro-levelling is applied to the corrected conventional levelled data. This will remove any residual line-direction-related noise, and any low amplitude component of flight line noise, that still remains in the data after tie line levelling.

The final step in processing was leveling of the survey data to the data collected the previous year. This was accomplished by gridding the final leveled data from 2011 and both blocks (Block A and Block B) from 2012. A grid math function was performed in Geosoft to plot out the differences between common areas between the 2011 and the 2012 datasets. The result was a grid of differences between two lines of common data points. This grid was then sampled to the 2012 data to chart exact differences at 2012 data and the 2011 data. Both Block A and Block B were leveled to the 2011 data independently of each other. Lastly, the final leveled 2012 data were merged together with 2011 data to produce a complete total magnetic intensity grid.

DATA FORMAT

The data file was provided in two (2) formats, the first will be a .GDB file for use in Geosoft Oasis Montaj, the second format will be a .XYZ file, this is text file. A complete file provided in each format will contain only magnetic data.

Abbreviations used in the GDB files are as follows:

X – Easting in WGS84, UTM zone 9N, Units m; Y – Northing in WGS84, UTM zone 9N, Units m; galt – GPS altimeter readings, Units m; lalt – laser altimeter readings, Units m; dtm – digital terrain model, Units m; GPStime – GPS time, Units hours:min:secs; basemag – diurnal data, Units nT; mag – total magnetic field, Units nT.

All survey maps were provided in a .pdf format for use in Adobe Reader (Appendix A).

APPENDIX 1 - SURVEY EQUIPMENT AND SPECIFICATION

AGIS:

The Airborne Geophysical Information System, AGIS, (Photo 1), is the main computer used in data recording, data synchronizing, displaying real-time QC data for the geophysical operator, and generation of navigation information for the pilot display system.

Photo 1: AGIS installed in the Bell 206

Pico Envirotec AGIS-L data recorder system (for Navigation, Gamma spectrometer, VLF-EM and Magnetometer Data Acquisition)

Functions	Airborne Geophysical Information System (AGIS) with integrated Global Positioning System Receiver (GPS) and all necessary navigation guidance software. Inputs for geophysical sensors - portable gamma ray spectrometer GRS-10, MMS4 Magnetometer, Totem 2A EM, A/D converter, temperature probe, humidity probe, barometric pressure probe, and laser altimeter. Output for the 2 line Pilot Indicator
Display	Touch screen with display of 800 x 600 pixels; customized keypad and operator keyboard. Multi- screen options for real-time viewing of all data inputs, fiducial points, flight line tracking, and GPS channels by operator.
GPS Navigation	Garmin 12-channel, WAAS-enabled
Data Sampling	Sensor dependent
Data Synchronization	Synchronized to GPS position
Data File	PEI Binary data format
Storage	80 GB
Supplied Software	PEIView: Allows fast data Quality Control (QC) Data Format: Geosoft GBN and ASCII output PEIConv: For survey preparation and survey plot after data acquisition
Software	Calibration: High voltage adjustment, linearity correction coefficients calculation, and communication test support Real Time Data Collection: Automatic Gain real time control on natural isotopes and PC based test and calibration software suite
Power Requirements	24 to 32 VDC
Temperature	Operating:-10 to +55 deg C; storage:-20 to +70 deg C

MAGNETOMETER:

The magnetometer used by Precision GeoSurveys is a Scintrex cesium vapor CS-3magnetometer. The system was housed in a front mounted "stinger" (Photo 2). The CS-3 is a high sensitivity/low noise magnetometer with automatic hemisphere switching and a wide voltage range, the static noise rating for the unit is +/- 0.01 nT. On the AGIS screen the operator can view the raw magnetic response, the magnetic fourth difference, aircraft position, and the survey altitude for immediate QC of the magnetic data. The magnetic data are recorded at 10 Hz. A magnetic compensator is also used to remove noise created by the movement of the helicopter as it pitches, rolls and yaws within the Earth's geomagnetic field.

Photo 2: View of the mag stinger

Scintrex CS-3 Survey Magnetometer

Operating Principal	Self-oscillation split-beam Cesium Vapor (non-radioactive Cs-133)	
Operating Rage	15,000 to 105,000 nT	
Gradient Tolerance	40,000 nT/metre	
Operating Zones	10° to 85° and 95° to 170°	
Hemisphere Switching	 a) Automatic b) Electronic control actuated by the control voltage levels (TTL/CMOS) c) Manual 	
Sensitivity	0.0006 nT \Hz rms.	
Noise Envelope	Typically 0.002 nT P-P, 0.1 to 1 Hz bandwidth	
Heading Error	+/- 0.25 nT (inside the optical axis to the field direction angle range 15° to 75° and 105° to 165°)	
Absolute Accuracy	<2.5 nT throughout range	
Output	a) continuous signal at the Larmor frequency which is proportional to the magnetic field (proportionality constant 3.49857 Hz/nT) sine wave signal amplitude modulated on the power supply voltage b) square wave signal at the I/O connector, TTL/CMOS compatible	
Information Bandwidth	Only limited by the magnetometer processor used	
Sensor Head	Diameter: 63 mm (2.5") Length: 160 mm (6.3") Weight: 1.15 kg (2.6 lb)	
Sensor Electronics	Diameter: 63 mm (2.5") Length: 350 mm (13.8") Weight: 1.5 kg (3.3 lb)	
Cable, Sensor to Sensor Electronics	3m (9' 8"), lengths up to 5m (16' 4") available	
Operating Temperature	-40°C to +50°C	
Humidity	Up to 100%, splash proof	
Supply Power	24 to 35 Volts DC	
Supply Current	Approx. 1.5A at start up, decreasing to 0.5A at 20°C	
Power Up Time	Less than 15 minutes at -30°C	

BASE STATION:

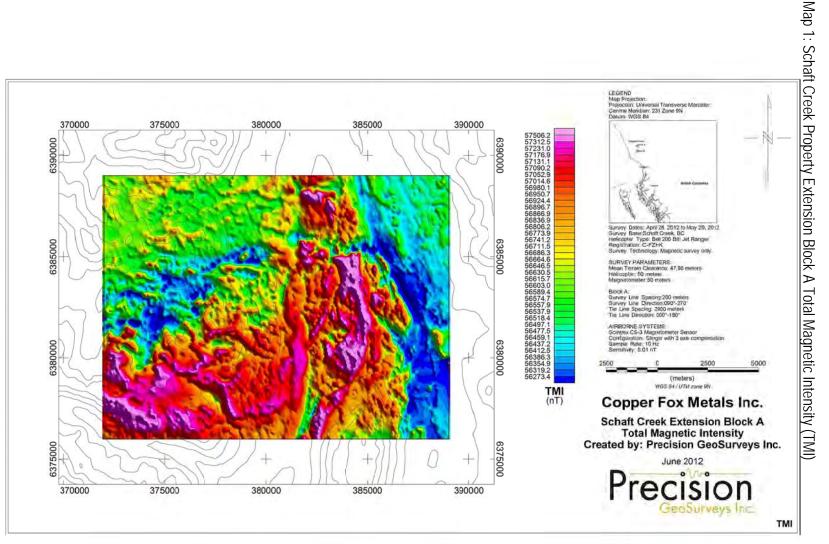
For monitoring and recording of the Earth's diurnal magnetic field variation, Precision GeoSurveys uses two base stations: Scintrex proton precession Envi Pro magnetometer and GEM GSM-19T magnetometer. Both base stations are mounted as close to the survey block as possible to give accurate magnetic field data. The Envi Pro base station (Photo 3) uses the well proven precession technology to sample at a rate of 0.5 Hz. A GPS is integrated with the system to record real GPS time that is used to correlate with the GPS time collected by the airborne CS-3 magnetometer.

Photo 3: Scintrex Envi Pro proton precession magnetometer

The GEM GSM-19T magnetometer (Photo 4) also uses the proton precession technology sampling at a rate of 0.5 Hz. The GSM-19T has an accuracy of +/- 0.2 nT at 1 Hz.

Photo 4: GEM GSM-19T proton precession magnetometer.

GEM (GSM-19T Pr	oton Prece	ession Mag	netometer	(Base St	ation)


Configuration Options	15
Cycle Time	999 to 0.5 sec
Environmental	-40 to 60 ° Celsius
Gradient Tolerance	7,000 nT/m
Magnetic Readings	299,593
Operating Range	10, 000 to 120,000 nT
Power	12 V @ 0.62 A
Sensitivity	0.1 nT @ 1 sec
Weight (Console/ Sensor)	3.2 Kg
Integrated GPS	Yes

LASER ALTIMETER:

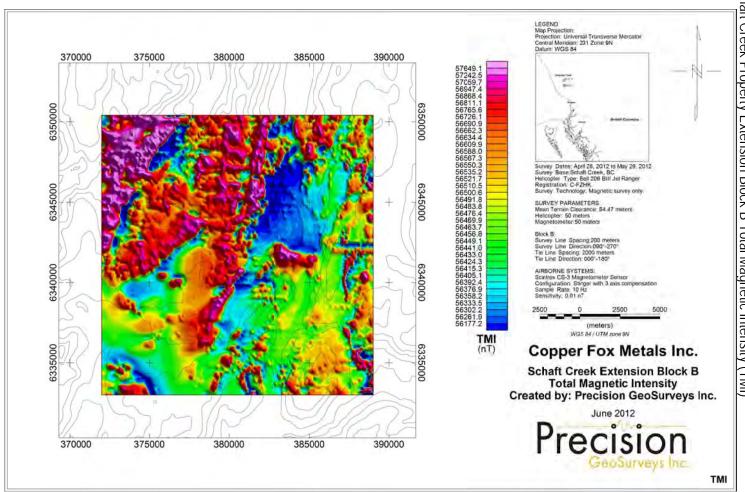
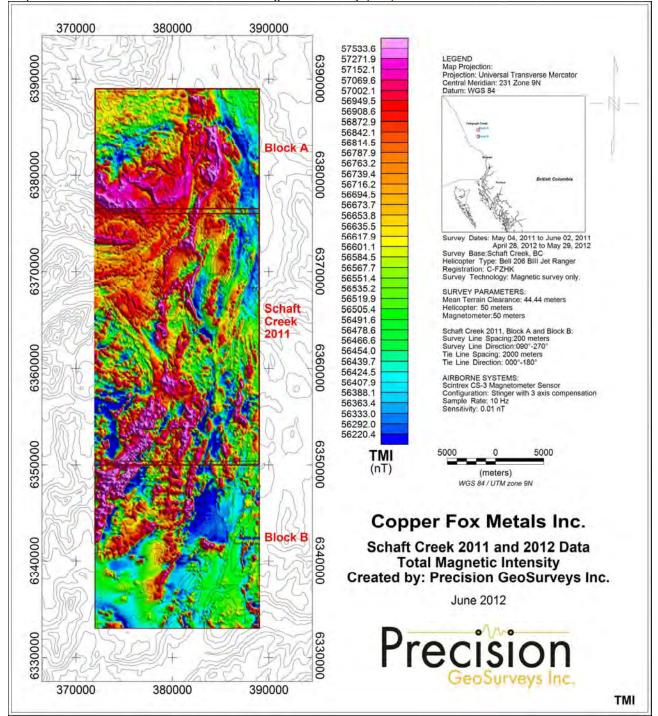

The pilot is provided with terrain guidance and clearance with an Acuity AccuRange AR3000 laser altimeter (Photo 5). This is attached at the aft end of the magnetometer boom. The AR3000 sensor is a time-of-flight sensor that measures distance by a rapidly modulated and collimated laser beam that creates a dot on the target surface. The maximum range of the laser altimeter is 300 m off of natural surfaces with 90% reflectance and 3 km off special reflectors. Within the sensor unit, reflected signal light is collected by the lens and focused onto a photodiode. Through serial communications and analog outputs, the distance data are transmitted and collected by the AGIS at 10 Hz.

Photo 5: Acuity AccuRange AR3000 laser altimeter.



Map 3: Schaft Creek 2011 and 2012 Total Magnetic Intensity (TMI)

APPENDIX 3 - PERSONNEL

PERSONNEL

Bruce Murray, Don Plattel, and Harmen Keyser – Pilots Christina Larocque - Operator Shawn Walker – On-site Geophysicist

SUPPORT & ADMINISTRATION

Elmer Stewart Janna Tanski Lynn Ball

APPENDIX 4 – COST STATEMENT

Exploration Work type	Comment	Days			Totals
Personnel (Name) * / Position	Field Days (list actual days)	Days	Rate	Subtotal*	
			\$0.00	\$0.00	
			\$0.00	\$0.00	
			\$0.00	\$0.00	
			\$0.00	\$0.00	
			\$0.00	\$0.00	
			\$0.00	\$0.00	
				\$0.00	\$0.00
Office Studies	List Personnel (note - Office on	ly, do no	t include fie	ld days	
Literature search			\$0.00	\$0.00	
Database compilation			\$0.00	\$0.00	
Computer modelling			\$0.00	\$0.00	
Reprocessing of data			\$0.00	\$0.00	
General research			\$0.00	\$0.00	
Report preparation			\$0.00	\$0.00	
Other (specify)				\$0.00	
				\$0.00	\$0.00
Airborne Exploration Surveys	Line Kilometres / Enter total invoice	d amoun	t		
Aeromagnetics	2874		\$243,616.80	\$243,616.80	
Radiometrics			\$0.00	\$0.00	
Electromagnetics			\$0.00	\$0.00	
Gravity			\$0.00	\$0.00	
Digital terrain modelling			\$0.00	\$0.00	
Other (specify)			\$0.00	\$0.00	
				\$243,616.80	\$243,616.80
TOTAL Expenditures	<u> </u>				\$243,616.80

APPENDIX 5 – STATEMENT OF QUALIFICATIONS

STATEMENT OF QUALIFICATION

I, ELMER B STEWART, MSc., P. Geol, certify that:

- 1. I am President and CEO for Copper Fox Metals Inc. with a business address located at: 650, 340 12 Avenue SW, Calgary, AB T2R 1L5
- 2. I am a member in good standing of the Association of Professional Engineers and Geoscientists of Alberta (Member Number 34563).
- 3. I graduated from Acadia University in Wolfville, Nova Scotia in 1974 and from Acadia University with a Master of Science degree in 1977.
- 4. Since 1977 I have been continuously employed in exploration for base and precious metals in North America, Central America, South America, Africa, Central Europe and Central Asia.
- 5. I supervised the 2011 exploration program at the SCHAFT CREEK property and am therefore familiar with the geology of the SCHAFT CREEK property and the work conducted in 2011. I have prepared all sections of this report.

Dated this 22nd day of February 2013

Steer Signature

Elmer B Stewart, MSc., P. Geol

APPENDIX 6 - REFERENCES

REFERENCES

Bender, M. and McCandlish K., 2010: Amended Technical Report: Preliminary Feasibility Study on the Development of the Schaft Creek Project Located in Northwest British Columbia, Canada – Effective Date: September 15, 2008; as posted on http://www.copperfoxmetals.com/s/SchaftCreek.asp?ReportID=209032.

Erdmer, P. and Cui, Y., 2009: Geological Map of British Columbia; BC Ministry of Energy, Mines and Petroleum Resources, Geoscience Map 2009-1, scale 1:1,500,000.

Logan, J.M., Drobe, J.R., and McClelland, W.C., 2000: Geology of the Forrest Kerr – Mess Creek Area, Northwestern British Columbia (104B/10, 15, & 104G/2 &7W), Bulletin 104, Geological Survey Branch, Energy and Minerals Division, BC Ministry of Energy and Mines.

Scott, J.E., 2008, The Schaft Creek Porphyry Cu-Au-Mo-Ag Deposit, Northwestern British Columbia, M.Sc. Thesis, Dept. of Earth and Atmospheric Science, University of Alberta.

Airborne Geophysical Survey Report

Precision GeoSurveys Inc

Schaft Creek Property 2012

Prepared for: Copper Fox Metals Inc.

> June 2012 Shawn Walker, M.Sc., GIT

Table of Contents

1.0	Introdu	iction	1
	1.1	Survey Area	1
	1.2	Survey Specifications	5
2.0	Geophy	ysical Data	
	2.1	Magnetic Data	
3.0	Survey	Operations	
	3.1	Base Station Details	9
4.0	Equipn	nent	9
	4.1	AGIS	
	4.2	Magnetometer	
	4.3	Base Station	
	4.4	Laser Altimeter	
5.0	Data A	cquisition Magnetometer Checks	12
	5.1	Compensation Flight Test	
	5.2	Lag Test	
6.0	Data Pi	rocessing	13
	6.1	Magnetic Processing	13
	6.2	Final Data Format	
Appe	endix A: E	Equipment Specifications	
Appe	endix B: E	Block A Maps	
Appe	endix C: E	Block B Maps	23
Appe	endix D: S	Schaft Creek 2011 and 2012 Maps	

1.0 Introduction:

This report outlines the survey operations and data processing actions taken during the airborne geophysical survey flown at Schaft Creek (Figure 1). The airborne geophysical survey was flown by Precision GeoSurveys Inc. for Copper Fox Metals Inc. The geophysical survey, carried out between April 28, 2012 and May 29, 2012, saw the acquisition of high resolution magnetic data. This survey served as an extension of geophysical data acquired in 2011 by Precision GeoSurveys Inc. for Copper Fox Metals Inc.

Figure 1: Schaft Creek Property location on Google Earth.

1.1 Survey Area

The Schaft Creek property is located south-west of Dease Lake, British Columbia, Canada. Block A is located approximately 110km south-west of Dease Lake. Block B is located approximately 145km south-west of Dease Lake.

The survey area of Block A is approximately 17 km by 13 km (Figure 2). A total of 1228 line kilometers of magnetic data were flown for Block A; this total includes tie lines and survey lines.

Figure 2: Schaft Creek Block A survey boundary in red.

The survey lines were flown at 200 meter spacing at a $090^{\circ}/270^{\circ}$ heading; the tie lines were flown at 2000 meter spacing at a heading of $000^{\circ}/180^{\circ}$ (Figures 3 and 4).

Figure 3: Plan View – Schaft Creek Block A with survey and tie lines shown in yellow and the boundary in red.

Figure 4: Terrain View – Schaft Creek Block A with survey and tie lines shown in yellow and the boundary in red.

The survey area of Block B is approximately 17 km by 17.4 km (Figure 5). A total of 1646 line kilometers of magnetic data were flown for Block B; this total includes tie lines and survey lines.

Figure 5: Schaft Creek Block B survey boundary in red.

The survey lines were flown at 200 meter spacing at a $090^{\circ}/270^{\circ}$ heading; the tie lines were flown at 2000 meter spacing at a heading of $000^{\circ}/180^{\circ}$ (Figures 6 and 7).

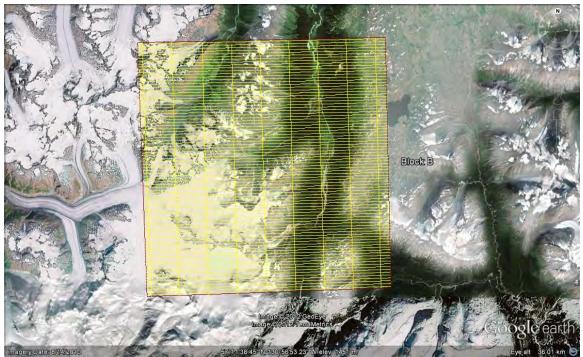
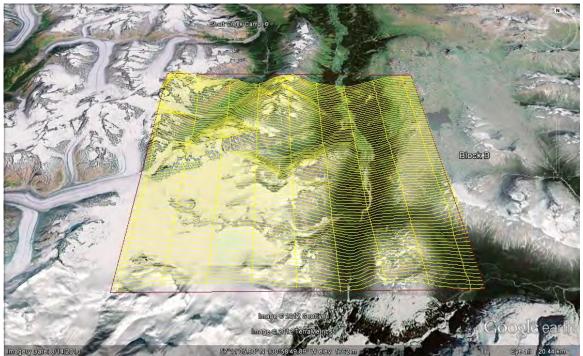
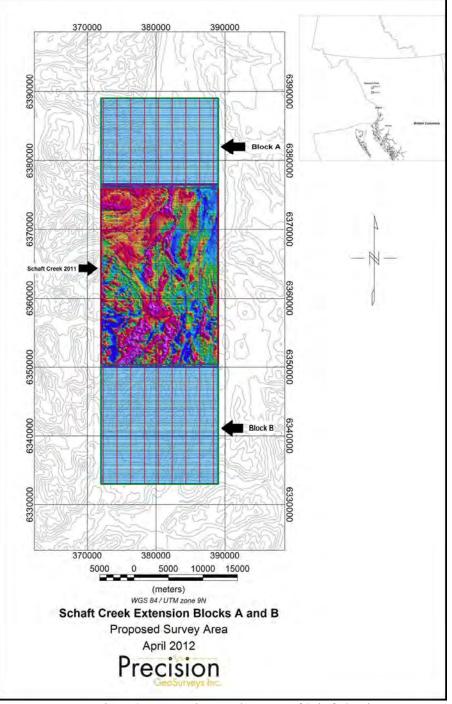
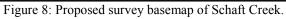


Figure 6: Plan View – Schaft Creek Block B with survey and tie lines shown in yellow and the boundary in red.


Figure 7: Terrain View – Schaft Creek Block B with survey and tie lines shown in yellow and the boundary in red.

1.2 Survey Specifications:

The geodetic system used for this survey is WGS 84 and the area is contained in zone 9N (Figures 8 to 10). The survey data acquisition specifications and coordinates for the Schaft Creek blocks are specified as follows (Tables 1 to 3).

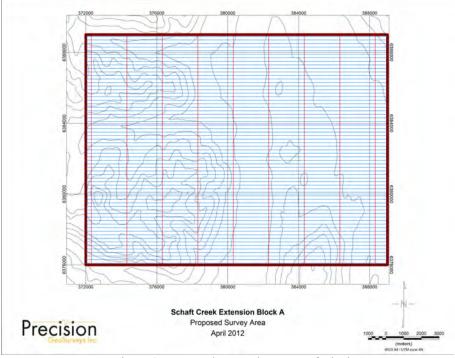


Figure 9: Proposed survey basemap of Block A.

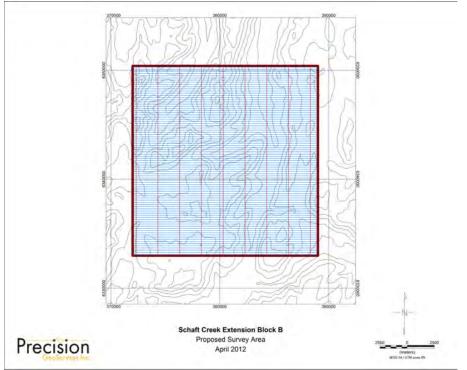


Figure 10: Proposed survey basemap of Block B.

Survey block	Line Spacing m	Planned Survey Line km	Planned Tie Line km	Total Planned Line km	Total Actual Flown km	Survey Line Orientation	Nominal Survey Height m
Block A	200	1105	117	1222	1228	090°/270°	50
Block B	200	1479	156.6	1635.6	1646	090°/270°	50
Total					2874		

Table 1: Schaft Creek survey acquisition specifications.

Longitude	Latitude	Easting	Northing
131.14334642	57.62514495	372000	6389000
130.85886747	57.62964848	389000	6389000
130.85292634	57.51293511	389000	6376000
131.13649764	57.50845168	372000	6376000

Table 2: Block A survey polygon coordinates using WGS 84 in zone 9N.

Longitude	Latitude	Easting	Northing
131.12316349	57.27864784	372000	6350400
130.84135937	57.28309204	389000	6350400
130.83359623	57.1268649	389000	6333000
131.11421429	57.12244709	372000	6333000

Table 3: Block B survey polygon coordinates using WGS 84 in zone 9N.

2.0 Geophysical Data:

Geophysical data are collected in a variety of ways and is used to aid in the exploration and determination of geology, mineral deposits, oil and gas deposits, contaminated land sites and UXO detection.

For the purposes of this survey, airborne magnetic data was collected to serve in the exploration of Schaft Creek property which contains rocks that are prospective for copper and gold mineralization.

2.1 <u>Magnetic Data:</u>

Magnetic surveying is probably the most common airborne survey type to be conducted for both mineral and hydrocarbon exploration. The type of survey specifications, instrumentation, and interpretation procedures, depend on the objectives of the survey. Typically magnetic surveys are performed for:

- 1. Geological Mapping to aid in mapping lithology, structure and alteration in both hard rock environments and for mapping basement lithology, structure and alteration in sedimentary basins or for regional tectonic studies.
- 2. Depth to Basement mapping for exploration in sedimentary basins or mineralization associated with the basement surface.

3.0 Survey Operations:

Precision GeoSurveys flew the Schaft Creek property using a Bell 206 BIII Jet Ranger (Figure 11). The survey lines were flown at a nominal line spacing of two hundred (200) meters and the tie lines were flown at 2 km spacing for the magnetometer. The average survey elevation was 47.95 meters vertically above ground for Block A and 54.47 meters vertically above ground for Block B. The experience of the pilots helped to ensure that the data quality objectives were met and that the safety of the flight crew was never compromised given the potential risks involved in airborne surveying. The survey property had a few areas with extreme vertical cliffs and tall trees that exceeded 50 m in height. This caused the pilot to fly higher than normal.

Figure 11: Bell 206 Jet Ranger equipped with mag stinger for magnetic data acquisition.

The base of operations for this survey was in Schaft Creek, BC. The Precision crew consisted of a total of five members:

Harmen Keyser – Pilot Bruce Murray – Pilot Don Plattel – Pilot Christina Larocque – Operator Shawn Walker – On-site Geophysicist

The survey was started on April 28, 2012 and completed on May 29, 2011. The survey encountered a few delays due to poor weather conditions and magnetic storms.

3.1 <u>Base Station Details:</u>

Two magnetic base stations were set up before every flight to ensure that diurnal activity was recorded during the survey flights. In this case, both base stations were located in the bushes close to the Schaft Creek airstrip (Table 4).

Station name	Easting/ Northing	Longitude/ Latitude	Datum/ Projection
GEM 3	378647E	-131°01'00.8"E	WGS84, Zone 9N
	6358343N	57°21'06.4''N	
GEM 5	378647E	-131°01'00.8"E	WGS84, Zone 9N
	6358343N	57°21'06.4"N	

Table 4: Base station details.

Base station readings were reviewed at regular intervals to ensure that no data were collected during periods with high diurnal activity (greater than 5 nT per minute). The base stations were installed at a magnetically noise-free area, away from metallic items such as steel objects, vehicles, or power lines. The magnetic variations recorded from the stationary base station are removed from the magnetic data recorded in flight to ensure that the anomalies seen are real and not due to solar activity.

4.0 Equipment:

For this survey, a magnetometer, base station, laser altimeter, and a data acquisition system were required to carry out the survey and collect quality, high resolution data. The survey magnetometer is carried in an approved "stinger" configuration to enhance flight safety and improve data quality in this mountainous terrain.

4.1 <u>AGIS:</u>

The Airborne Geophysical Information System, AGIS, (Figure 12), is the main computer used in data recording, data synchronizing, displaying real-time QC data for the geophysical operator, and generation of navigation information for the pilot display system.

Figure 12: AGIS installed in the Bell 206.

The AGIS was manufactured by Pico Envirotec; therefore the system uses standardized Pico software and external sensors are connected to the system via RS-232 serial communication cables. The AGIS data format is easily converted into Geosoft or ASCII file formats by a supplied conversion program called PEIView. Additional Pico software allows for post real time magnetic compensation and survey quality control procedures.

4.2 Magnetometer:

The magnetometer used by Precision GeoSurveys is a Scintrex cesium vapor CS-3 magnetometer. The system was housed in a front mounted "stinger" (Figure 13). The CS-3 is a high sensitivity/low noise magnetometer with automatic hemisphere switching and a wide voltage range, the static noise rating for the unit is +/- 0.01 nT. On the AGIS screen the operator can view the raw magnetic response, the magnetic fourth difference and the survey altitude for immediate QC of the magnetic data. The magnetic data is recorded at 10 Hz. A magnetic compensator is also used to remove noise created by the movement of the helicopter as it pitches, rolls and yaws within the Earth's geomagnetic field.

Figure 13: View of the mag stinger.

4.3 Base Station:

For monitoring and recording of the Earth's diurnal magnetic field variation, Precision GeoSurveys operates two GEM GSM-19T magnetometer base stations continuously throughout the airborne data acquisition survey. Both base stations are mounted as close to the survey blocks as possible. To accurately measure the diurnal component of the magnetic field, the base station is set up in an area with a low magnetic field gradient. It is also mounted in an area away from electric transmission power lines and moving ferrous objects, such as aircrafts and motor vehicles.

The GEM GSM-19T magnetometer with GPS (Figure 14) uses proton precession technology sampling at a rate of 0.5 Hz. The GSM-19T has an accuracy of ± -0.2 nT at 1 Hz. Base station data recorded in the solid-state memory of the base station, are downloaded onto a field laptop using GEMLink 5.0 software. Profile plots of the base station readings are generated and updated at the end of each survey day.

Figure 14: GEM GSM-19T proton precession magnetometer.

4.4 Laser Altimeter:

The pilot is provided with terrain guidance and clearance with an Acuity AccuRange AR3000 laser altimeter (Figure 15). This is attached at the aft end of the magnetometer boom. The AR3000 sensor is a time-of-flight sensor that measures distance by a rapidly-modulated and collimated laser beam that creates a dot on the target surface. The maximum range of the laser altimeter is 300 m off of natural surfaces with 90% reflectance and 3 km off special reflectors. Within the sensor unit, reflected signal light is collected by the lens and focused onto a photodiode. Through serial communications and analog outputs, the distance data are transmitted and collected by the AGIS at 10 Hz.

Figure 15: Acuity AccuRange AR3000 laser altimeter.

5.0 Data Acquisition Magnetometer Checks:

At the start of the survey, airborne magnetometer system tests were conducted. The three tests conducted were the compensation flight, lag test, and the heading error test.

5.1 Compensation Flight Test:

During aeromagnetic surveying noise is introduced to the magnetic data by the aircraft itself. Movement in the aircraft (roll, pitch and yaw) and the permanent magnetization of the aircraft parts (engine and other ferric objects) are large contributing factors to this noise. To remove this noise a process called magnetic compensation is implemented. The magnetic compensation process starts with a test flight at the beginning of the survey where the aircraft flies in the four orthogonal headings required for the survey ($090^{\circ}/270^{\circ}$ and $000^{\circ}/180^{\circ}$ in the case of this survey) at an altitude where there is no ground effect in the magnetic data. In each of the orthogonal headings, three specified roll, pitch, and yaw maneuvers are performed by the pilot; these maneuvers provide the data that are required to calculate the necessary parameters for compensating the magnetic data.

5.2 Lag Test:

Followed by the compensation flight, a lag test is conducted. This is performed to determine the relationship between the time the digital reading was recorded by the instrument and the time for the position fix for fiducial of the reading was obtained by the GPS system.

The test was flown in the four orthogonal headings over an identifiable magnetic anomaly (ie.Truck, Trailer, etc.) at survey speed and height. A lag of 10 fiducials (1.0 seconds) was determined from the lag test.

6.0 Data Processing:

After a survey flight all of the data is collected and several procedures are undertaken to ensure that the data meets a high standard of quality. All data was processed using Pico Envirotec software and Geosoft Oasis Montaj geophysical processing software.

6.1 Magnetic Processing:

Before any processing and editing of the raw magnetic data, the data obtained from the compensation flight test must be applied to the raw magnetic data first. A computer program called PEIComp is used to create a model from the compensation flight test for each survey to remove the noise induced by aircraft movement; this model is applied to each survey flight so the data can be further processed.

Filtering is applied to the laser altimeter data to remove vegetation clutter and to show the actual ground clearance. To remove vegetation clutter a Rolling Statistic filter is applied to the laser altimeter data and a low pass filter is used to smooth out the laser altimeter profile to remove isolated noise. As a result, filtering the data will yield a more uniform surface in close conformance with the actual terrain.

The processing of the magnetic data involved the correction for diurnal variations. The base station data collected is edited, plotted and merged into a Geosoft (.gdb) database daily. The airborne magnetic data is corrected for diurnal variations by subtracting the observed magnetic base station deviations. Following the diurnal correction was a lag correction. A lag correction of 1.0 seconds was applied to the total magnetic field data to compensate for the lag in the recording system as the magnetometer sensor flies 5.70 m ahead of the GPS antenna.

Some filtering of the magnetic data is also required. A Non Linear filter was used for spike removal. The 1D Non-Linear Filter is ideal for removing very short wavelength, but high amplitude features from data. It is often thought of as a noise spike-rejection filter, but it can also be effective for removing short wavelength geological features, such as signals from surficial features. The 1D Non-Linear Filter is used to locate and remove data that is recognized as noise. The algorithm is 'non- linear' because it looks at each data point and decides if that datum is noise or a valid signal. If the point is noise, it is

simply removed and replaced by an estimate based on surrounding data points. Parts of the data that are not considered noise are not modified. The combination of a Non-Linear filter for noise removal and a low pass trend enhancement filter resulted in level data as indicated in the results section of this report. The low pass filter smoothes out the magnetic profile to remove isolated noise.

The corrected magnetic data from the survey and tie lines was used to level the data all together. Two forms of levelling are applied to the corrected data: conventional levelling and micro-levelling. There are two components to conventional levelling; the first involves statistical levelling of magnetic data to correct miss ties (intersection errors) followed by specific patterns or trends. For the second component, tie lines are brought to a common regional base value using the mean value of the cross-level error. To obtain the best possible levelled data, individual corrections are edited at selected intersections. Lastly, micro-levelling is applied to the corrected conventional levelled data. This will remove any residual line-direction-related noise, and any low amplitude component of flight line noise, that still remains in the data after tie line levelling.

The final step in processing was leveling of the survey data to the data collected the previous year. This was accomplished by gridding the final leveled data from 2011 and both blocks (Block A and Block B) from 2012. A grid math function was performed in Geosoft to plot out the differences between common areas between the 2011 and the 2012 datasets. The result was a grid of differences between two lines of common data points. This grid was then sampled to the 2012 data to chart exact differences at 2012 data points. These differences were then averaged to determine a leveling constant between the 2012 data and the 2011 data. Both Block A and Block B were leveled to the 2011 data independently of each other. Lastly, the final leveled 2012 data were merged together with 2011 data to produce a complete total magnetic intensity grid.

6.2 Final Data Format

Channel	Units	Description
X	m	UTM Easting - WGS84 Zone 9 North
Y	m	UTM Northing - WGS84 Zone 9 North
Galt	m	GPS height - WGS84 Zone 9 North
Lalt	m	Laser Altimeter readings
DTM	m	Digital Terrain Model
GPStime	Hours:min:secs	GPStime
basemag	nT	Base station diurnal data
mag	nT	Total Magnetic Intensity

Abbreviations used in the GDB files are listed in the following table:

Table 4: Schaft Creek survey channel abbreviations.

The file format will be provided in two (2) formats, the first will be a .GDB file for use in Geosoft Oasis Montaj, the second text format will be a .XYZ file. A complete file, provided in each format will contain only magnetic data.

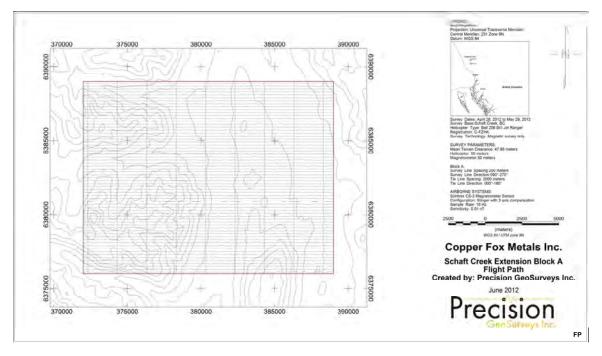
Appendix A Equipment Specifications

Configuration Options	15
Cycle Time	999 to 0.5 sec
Environmental	-40 to +60 ° Celsius
Gradient Tolerance	7,000 nT/m
Gradient Tolerance	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Magnetic Readings	299,593
Operating Range	10, 000 to 120,000 nT
Power	12 V @ 0.62 A
Sensitivity	0.1 nT @ 1 sec
Sensitivity	0.1 11 (0) 1 500
Weight (Console/ Sensor)	3.2 Kg
Integrated GPS	Yes

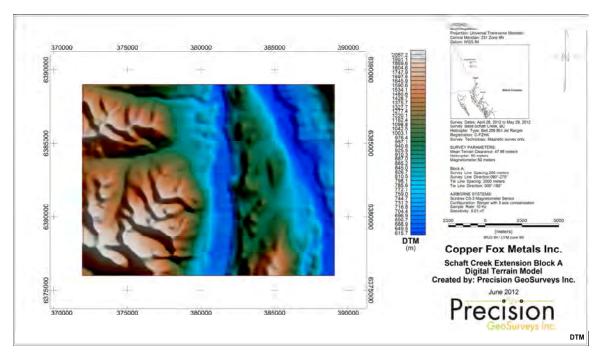
GEM GSM-19T Proton Precession Magnetometer (Base Station)

Scintrex CS-3 Survey Magnetometer

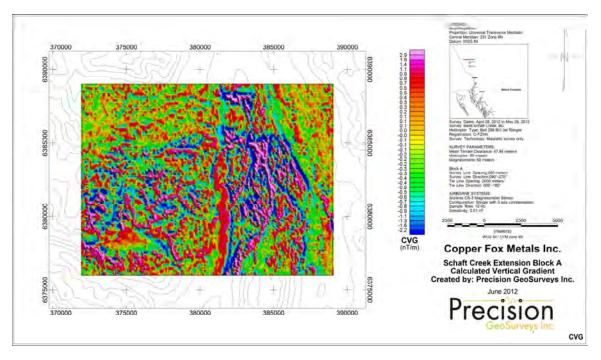
Operating Principal	Self-oscillation split-beam Cesium Vapor (non-radioactive Cs-133)	
Operating Rage	15,000 to 105,000 nT	
Gradient Tolerance	40,000 nT/metre	
Operating Zones	10° to 85° and 95° to 170°	
Hemisphere Switching	a) Automaticb) Electronic control actuated by the control voltage levels (TTL/CMOS)c) Manual	
Sensitivity	0.0006 nT $\sqrt{\text{Hz}}$ rms.	
Noise Envelope	Typically 0.002 nT P-P, 0.1 to 1 Hz bandwidth	
Heading Error	+/- 0.25 nT (inside the optical axis to the field direction angle range 15° to 75° and 105° to 165°)	
Absolute Accuracy	<2.5 nT throughout range	
Output	 a) continuous signal at the Larmor frequency which is proportional to the magnetic field (proportionality constant 3.49857 Hz/nT) sine wave signal amplitude modulated on the power supply voltage b) square wave signal at the I/O connector, TTL/CMOS compatible 	
Information Bandwidth	Only limited by the magnetometer processor used	
Sensor Head	Diameter: 63 mm (2.5") Length: 160 mm (6.3") Weight: 1.15 kg (2.6 lb)	
Sensor Electronics	Diameter: 63 mm (2.5") Length: 350 mm (13.8") Weight: 1.5 kg (3.3 lb)	
Cable, Sensor to Sensor Electronics	3m (9' 8''), lengths up to 5m (16' 4'') available	
Operating Temperature	-40°C to +50°C	
Humidity	Up to 100%, splash proof	
Supply Power	24 to 35 Volts DC	
Supply Current	Approx. 1.5A at start up, decreasing to 0.5A at 20°C	
Power Up Time	Less than 15 minutes at -30°C	


Pico Envirotec AGIS data recorder system (for Navigation, Gamma spectrometer, VLF-EM and Magnetometer Data Acquisition)

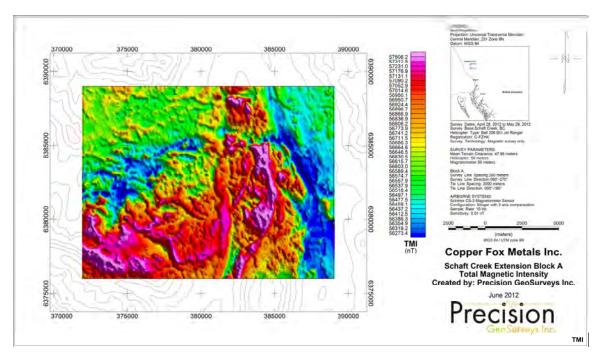
	Airborne Geophysical Information System (AGIS)
	with integrated Global Positioning System Receiver (GPS) and all necessary navigation guidance software.
Functions	Inputs for geophysical sensors - portable gamma ray spectrometer GRS-10, MMS4 Magnetometer, Totem
	2A EM, A/D converter, temperature probe, humidity
	probe, barometric pressure probe, and laser altimeter. Output for the 2 line Pilot Indicator
	Touch screen with display of 800 x 600 pixels; customized keypad and operator keyboard. Multi-
Display	screen options for real-time viewing of all data inputs, fiducial points, flight line tracking, and GPS channels
	by operator.
GPS Navigation	Garmin 12-channel, WAAS-enabled
Data Sampling	Sensor dependent
Data Synchronization	Synchronized to GPS position
Data File	PEI Binary data format
Stowago	80 GB
Storage	80 GB
	PEIView: Allows fast data Quality Control (QC) Data Format: Geosoft GBN and ASCII output
Supplied Software	PEIConv : For survey preparation and survey plot after data acquisition
	Calibration: High voltage adjustment, linearity
Soft	correction coefficients calculation, and communication test support
Software	Real Time Data Collection: Automatic Gain real time control on natural isotopes and PC based test and
	calibration software suite
Power Requirements	24 to 32 VDC
Temperature	Operating:-10 to +55 deg C; storage:-20 to +70 deg C



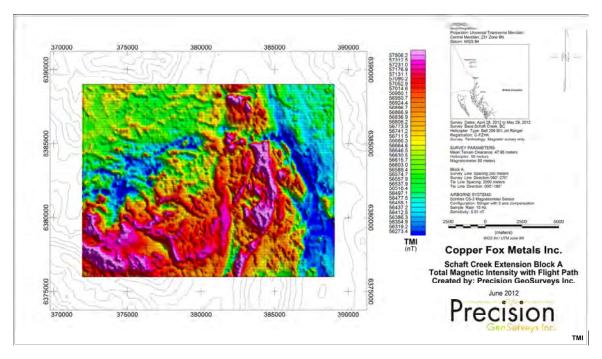
Appendix B Block A Maps



Map 1: Schaft Creek Extension Block A flight path.

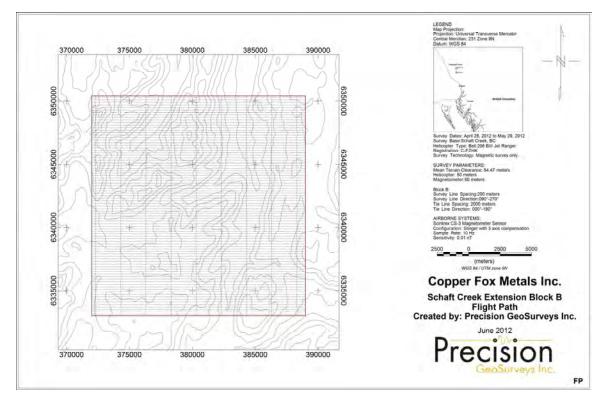


Map 2: Schaft Creek Extension Block A digital terrain model.

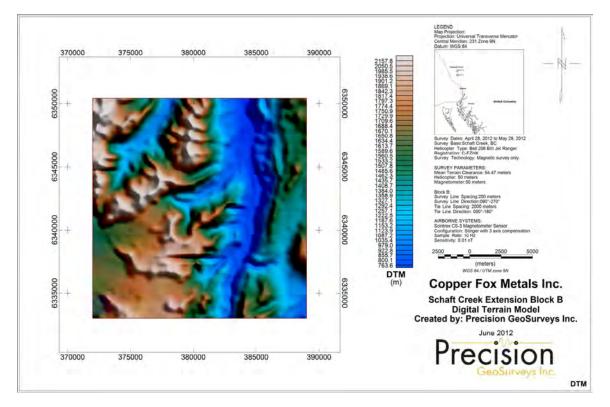


Map 3: Schaft Creek Extension Block A calculated vertical gradient.

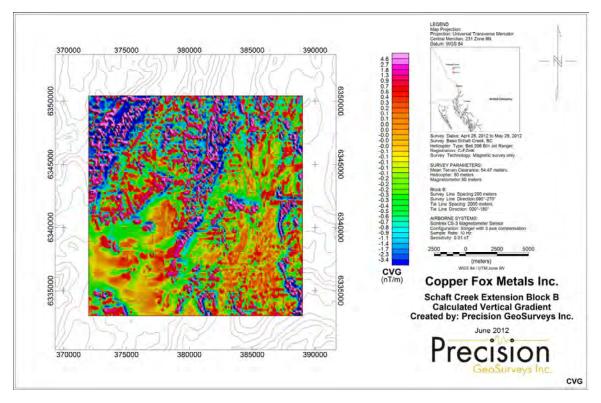
Map 4: Schaft Creek Extension Block A total magnetic intensity.



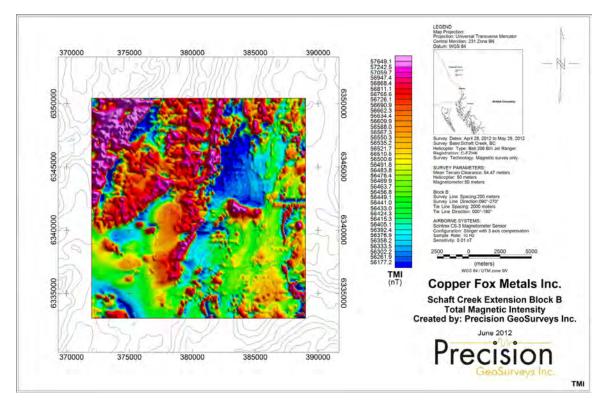
Map 5: Schaft Creek Extension Block A total magnetic intensity with plotted flight lines.



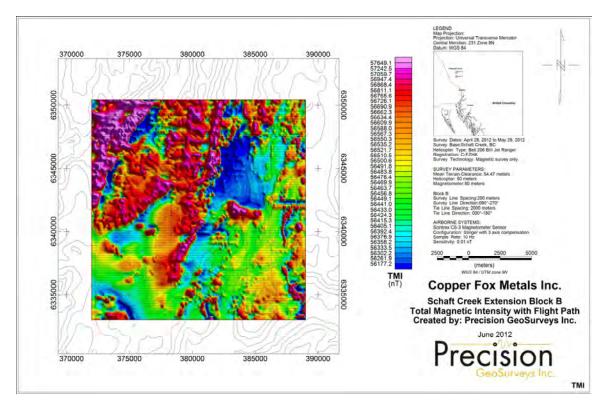
Appendix C Block B Maps



Map 6: Schaft Creek Extension Block B flight path.

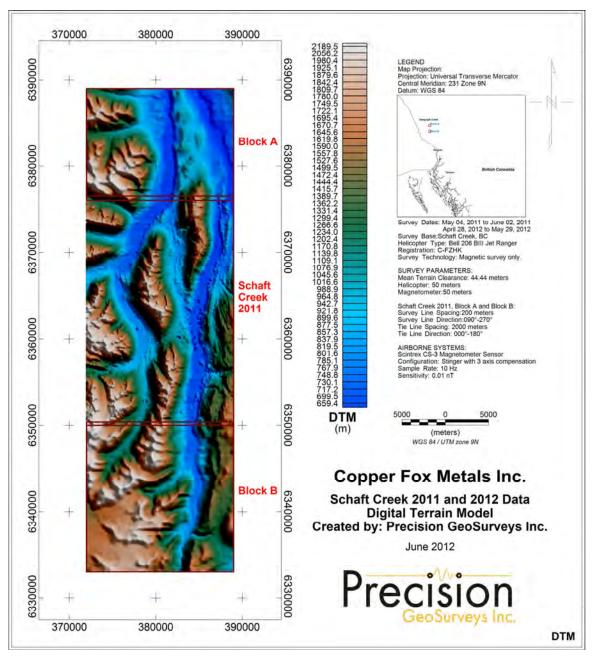


Map 7: Schaft Creek Extension Block B digital terrain model.

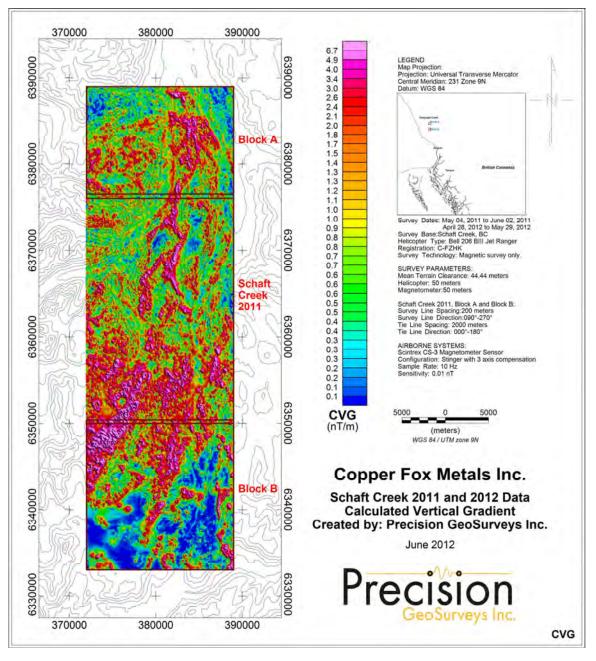


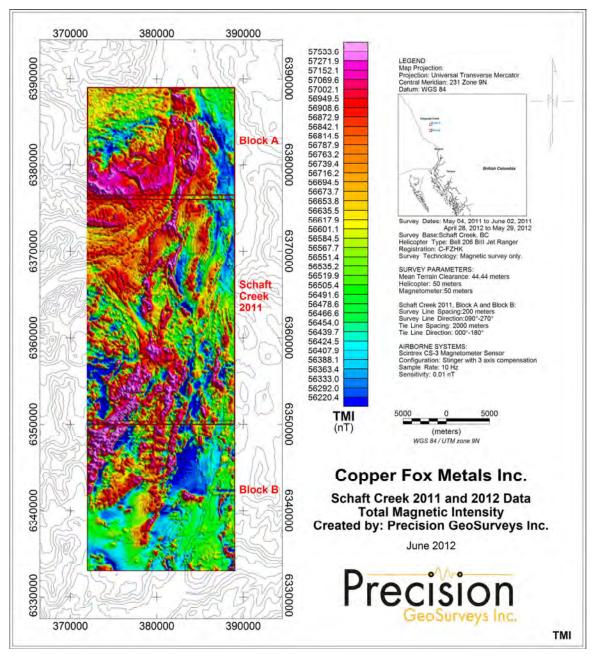
Map 8: Schaft Creek Extension Block B calculated vertical gradient.

Map 9: Schaft Creek Extension Block B total magnetic intensity.


Map 10: Schaft Creek Extension Block B total magnetic intensity with plotted flight lines.

Appendix D


Schaft Creek 2011 and 2012 Maps


Map 11: Schaft Creek merged 2011 and 2012 data digital terrain model.

Map 12: Schaft Creek merged 2011 and 2012 data calculated vertical gradient.

Map 13: Schaft Creek merged 2011 and 2012 data total magnetic intensity.

