

Ministry of Energy and Mines BC Geological Survey

ASSESSMENT REPORT TITLE PAGE AND SUMMARY

TITLE OF REPORT [type of survey(s)]	IR. M.C. Pm	OTAL COST
	SIGNATURE(S)	151,726,31
NOTICE OF WORK PERMIT NUMBER(S)/DATE(S) $\mathcal{M}\chi - 1$ STATEMENT OF WORK - CASH PAYMENT EVENT NUMBER(S)/DATE(S).		DF WORK 2012 5,2013
PROPERTY NAME DEER HORN CLAIM NAME(S) (on which work was done) 520025 , 5. 545110, 545112	29886-887,5299.	47,545/08,
COMMODITIES SOUGHT <u>AU</u> , <u>AG</u> , <u>TE</u> , <u>W</u> MINERAL INVENTORY MINFILE NUMBER(S), IF KNOWN <u>093E</u> MINING DIVISION <u>OMINECA</u> LATITUDE <u>53</u> ° <u>22</u> ' <u>26</u> " LONGITUDE OWNER(S) 1) <u>GUADOSMON</u> <u>RECOVACES</u> <u>INC</u>	019,020,021,045 NTS <u>93E/06E</u> 1270_17.16_"(a	
MAILING ADDRESS <u>307-1497</u> <u>MALINE DILINE</u> <u>WEST VANCINICAL, BC V7T IBR</u> OPERATOR(S) [who paid for the work] 1) <u>DEEL HARN METALS INC</u> <u>202-4840 DECTA ST, DECTA</u> MAILING ADDRESS <u>V4K2R</u>	2)	

PROPERTY GEOLOGY KEYWORDS (lithology, age, stratigraphy, structure, alteration, mineralization, size and attitude):
PLE- JERASSIC GAMSBY GAON ANDESIRE, FOLIADED OTZ DIOLITE,
EDCENE GRADODIORIDE, QUARTZ-SERICIDE-PURIDE ACTERATION
BURKETZ VEINS, STOCKWORK ZONES, GOLD, SILVER, TELLUKIUM
TUNGSTEN, CAPPER, TEER IBEN MINE, HARRISON SCHEEL ME
REFERENCES TO PREVIOUS ASSESSMENT WORK AND ASSESSMENT REPORT NUMBERS 33172, 31511
79577 78898 76419 71559 70135 1991/ 10050

TYPE OF WORK IN THIS REPORT	EXTENT OF WORK (IN METRIC UNITS)	ON WHICH CLAIMS	PROJECT COSTS APPORTIONED (incl. support)
GEOLOGICAL (scale, area)			
Ground, mapping			
Photo interpretation			
GEOPHYSICAL (line-kilometres)			
Ground			
Magnetic			
Electromagnetic			
Induced Polarization			
Radiometric			
Seismic			
Other			
Airborne			
GEOCHEMICAL			
(number of samples analysed for)			
Soil		C2222 - C2222 - 2)
Silt 6 - Au \$ 11		520025, 529886-887,	1+->
Rock _ 33 - Aut 1	uti-element	529947, 545108, 545110, 345112 "	\$30,000
Other 8 Standards	17	545/10, 545/12	2
DRILLING			
(total metres; number of holes, size) Core			
Non-core			
	7 (as above)	520025 529886-887	\$20,000 -
Petrographic		529947.545/08	
Mineralographic		545110, 545112.	
Metallurgic			-
PROSPECTING (scale, area) /: 10,0		AS ABOVE	\$85,726.31
PREPARATORY/PHYSICAL			
Line/grid (kilometres)			
Topographic/Photogrammetric (scale, area)			
Legal surveys (scale, area)			
Road, local access (kilometres)/trail			
Trench (metres)			
Underground dev. (metres)			
Other			
		TOTAL COST	\$135,726.3

2012 ASSESSMENT REPORT

ON THE

DEER HORN PROPERTY

BC Geological Survey Assessment Report 33948

Omineca Mining Division British Columbia NTS Map 093E/06W Latitude 53°22'26"N and Longitude 127°17'16"W

> Prepared for: Deer Horn Metals Inc 202 – 4840 Delta Street Delta, BC Canada V4K 2T6

Prepared by: Bob Lane, PGeo Plateau Minerals Corp

May 15, 2013

TABLE OF CONTENTS

1	FRONTISPIECE	1
2	SUMMARY	2
3	INTRODUCTION	4
4	PROPERTY DESCRIPTION AND LOCATION	4
4.1		4
4.2	Mineral Dispositions	4
4.3	Ownership	4
5	Access, Local Resources, Climate and Physiography, Infrastructure	7
5.1	Access	7
5.2	Local Resources	8
5.2	.2.1 Wildlife & Fisheries	
5.3	Climate and Physiography	8
5.4	INFRASTRUCTURE	9
6	HISTORY	9
6.1	PIONEER GOLD MINES OF B.C. LIMITED	11
6.2	Deer Horn Mines Limited	11
6.3	The Granby Mining Company Limited	12
6.4	Golden Knight Resources Inc	12
6.5	Amber Minerals Ltd	13
6.6	Guardsmen Resources Inc	13
6.7	Christopher James Gold Corp	13
6.8	GOLDEN ODYSSEY MINING INC	13
6.9	Deer Horn Metals Inc	14
7	GEOLOGICAL SETTING AND MINERALIZATION	14
7.1	Regional Geology	14
7.2	LOCAL GEOLOGY	15
7.3	Structure	20
7.4	MINERALIZATION	20
7.4	4.1 Gold-Silver-Tellurium Vein Mineralization	21
7.4	.4.2 Tungsten Mineralization	23

7.4.3	3 Molybdenum Mineralization	23
8	2012 EXPLORATION PROGRAM	23
9	RESULTS	24
9.1	Rock Geochemical Sampling	24
9.1.3	1 Silt Sample Results	
10	SAMPLING METHOD AND APPROACH	
10.1	Channel, Chip and Grab Sample Collection	
11	SAMPLE PREPARATION, ANALYSIS AND SECURITY	
11.1	SAMPLE PREPARATION, GEOCHEMICAL ANALYSIS AND ASSAYING	
11.2	Security	
11.3	2012 QA/QC	
11.3	3.1 Geochemical Standards, Blanks and Duplicate Samples	
12	DISCUSSION AND CONCLUSION	
13	RECOMMENDATIONS	33
14	ITEMIZED COST STATEMENT	34
15	References	
16	STATEMENT OF QUALIFICATIONS	

LIST OF TABLES

Table 1: Deer Horn Property - Mineral Tenure	7
Table 2: Summary of Diamond Drilling, Deer Horn Property	10
Table 3: 2012 Rock Sample Results	26
Table 4: 2012 Silt Sample Results	

LIST OF FIGURES

Figure 1: Deer Horn Property - Location	5
Figure 2: Deer Horn Property – Mineral Tenure	6
Figure 3: Regional Geology of the Lindquist Lake Area (source Digital Geology Map of British Columbia)	18
Figure 4: Geology of the Deer Horn Adit Area (modified after Folk (1990a) and Childe and Kaip (2000)	19

APPENDICES

APPENDIX A - LABORATORY CERTIFICATES

1 FRONTISPIECE

Frontispiece: View looking east towards Lindquist Peak (left) with the western extension of the Deer Horn Au-Ag-Te vein system marked by iron-stained, rocky slopes (mid).

2 SUMMARY

The Deer Horn property is located in the Omineca Mining Division, approximately one hour by air south of the town of Smithers, British Columbia. It is situated immediately north of Lindquist Lake, about 135 km southwest of the community of Burns Lake and 36 km south of the Huckleberry mine, in west-central British Columbia. The property is centered at Latitude 53°22'26" W and Longitude 127°17'16" N and consists of 18 MTO cell claims covering 6596.88 hectares. Access to the site is via helicopter, float plane or barge. An overgrown 7.8 km trail extends from a barge landing on Whitesail Lake, past Kenney Lake and Lindquist Lake to the main area of interest in the alpine on the south facing flank of Lindquist Peak.

The Deer Horn property is located in the Intermontane tectonic belt of the Canadian Cordillera, adjacent to the eastern margin of the Coast tectonic belt. The oldest rocks exposed in the area consist of mafic volcanic strata of the pre-Jurassic Gamsby Group and a quartz diorite stock of pre-Jurassic age. The quartz diorite and mafic volcanics are thrust over sedimentary and volcanic strata of the Lower Cretaceous Skeena Group and over maroon volcanic strata of the Lower to Middle Jurassic Telkwa Formation (Hazelton Group). The thrust is west-trending, and west of the Deer Horn adit, is offset by a later northeast trending fault. Development of the thrust fault postdates deposition of the Lower Cretaceous Skeena Group and predates an Eocene granodiorite intrusion which invades the structure east of the Deer Horn adit and underlies much of the area around Lindquist Lake. The granodiorite is in intrusive contact with the foliated quartz diorite and with strata of the Gamsby and Skeena groups. Northwest of the Deer Horn adit, Lower Cretaceous and older strata are intruded by Late Cretaceous to Eocene granodiorite and quartz diorite of the Coast tectonic belt.

The Deer Horn property hosts a gold-silver-tellurium vein system that developed within and in the immediate hangingwall of a local thrust fault. The vein system is comprised of two principal mineralized structures, the Main vein and the nearby Contact zone, that are thought to coalesce with depth, and a series of associated narrow veins and stringers. The veins occur mainly in foliated quartz diorite up to 250 m south of the thrust fault, and at its contact with the underlying clastic sedimentary rocks. The Main vein occurs 100 m to 250 m south of the thrust fault, generally strikes west and, where exposed at surface, dips from 20° – 45° to the north. However, underground mapping indicated that the dip of the Main vein reverses to a shallow southerly dip as it encroaches on the Contact zone, perhaps as a result of drag folding that occurred in response to normal movement along the reactivated thrust fault. The Contact zone occupies an area immediately above and sub-parallel to the thrust fault, striking to the west and dipping 55° - 60° to the south. The veins have an apparent genetic and spatial association with an Eocene granodiorite stock. The vein system is offset by a number of northwest and northeast-trending post-mineral faults that create a number of individual vein segments. Gold-silver grades are erratic in both the Main vein and Contact zone. The highest grades of gold-silver vein mineralization are associated with consistently elevated levels of tellurium and commonly elevated levels of copper, zinc and lead.

The property has been the subject of several phases of historic exploration - in the mid-1940s, the early to mid-1950s, and 1989-1990. This work included surface diamond drilling and underground exploration that defined the veins over a strike length of approximately 700 m, but traced the vein system over a total strike length of approximately 1.5 km. In 2009, a confirmatory exploration drilling program was completed by Golden Odyssey Mining Inc. (which later changed its name to Deer Horn Metals Inc.) and the first NI 43-101 compliant resource for the property was calculated. In 2011, a total of 55 NQ2

diameter diamond drillholes, with an aggregate length of 3772.5 m, were completed on the Deer Horn property. An updated resource estimate was calculated in early 2012. It includes mineralized zones at a 1 g/t Au cut-off of 414,000 tonnes grading 5.12 g/t Au, 157.5 g/t Ag and 160 ppm Te classed as indicated and an additional 197,000 tonnes grading 5.04 g/t Au, 146.5 g/t Ag and 137 ppm Te classed as inferred.

In 2012, a ten-day prospecting program was conducted on the Deer Horn property. It successfully accomplished its main goals and discovered several significant mineral showings. The western extension of the Deer Horn gold-silver-tellurium vein system is expressed by the Saddle, New Vein, Pry Bar and New West zones which extend the overall strike length of the Deer Horn gold-silver-tellurium vein system to more than 2,400 m; and it remains open to the west.

The H-Spot and Pond zones are exciting new discoveries of bulk tonnage, porphyry-style copper+/-silver mineralization and associated alteration. They are located at the head of the valley north of the Deer Horn adit and 2.3 km west of Lindquist Peak in an area with no known exploration history. A second area of anomalous porphyry-related copper-gold mineralization occurs on a ridge crest 1.8 km northwest of Kenney Lake. Both areas require systematic mapping and sampling prior to contemplation of any mechanized work.

The historic Harrison Scheelite mineral occurrence was located in steep, blocky terrain late in the prospecting program. Chip and grab sampling of calc-silicate altered tuffaceous, limy siltstone produced encouraging results, but the area requires detailed mapping and systematic sampling to provide vectors for further exploration of the tungsten target.

The Deer Horn gold-silver-tellurium vein system remains the principal exploration and development target on the property. Shallow diamond drilling has evaluated just the eastern third of the system's 2.4 km strike length.

Detailed surface mapping and systematic sampling is required to advance the new discoveries. Diamond drilling of the Deer Horn gold-silver-tellurium vein system is required to fill in several gaps in the resource, to expand the resource westward on close-spaced step-outs, and to test the system at greater depths. The overall estimated cost for the proposed program is \$2.25 million.

3 INTRODUCTION

This assessment report was prepared for Deer Horn Metals Inc, a public company actively trading on the TSX Venture Exchange, to document results from a prospecting program conducted on the Deer Horn property.

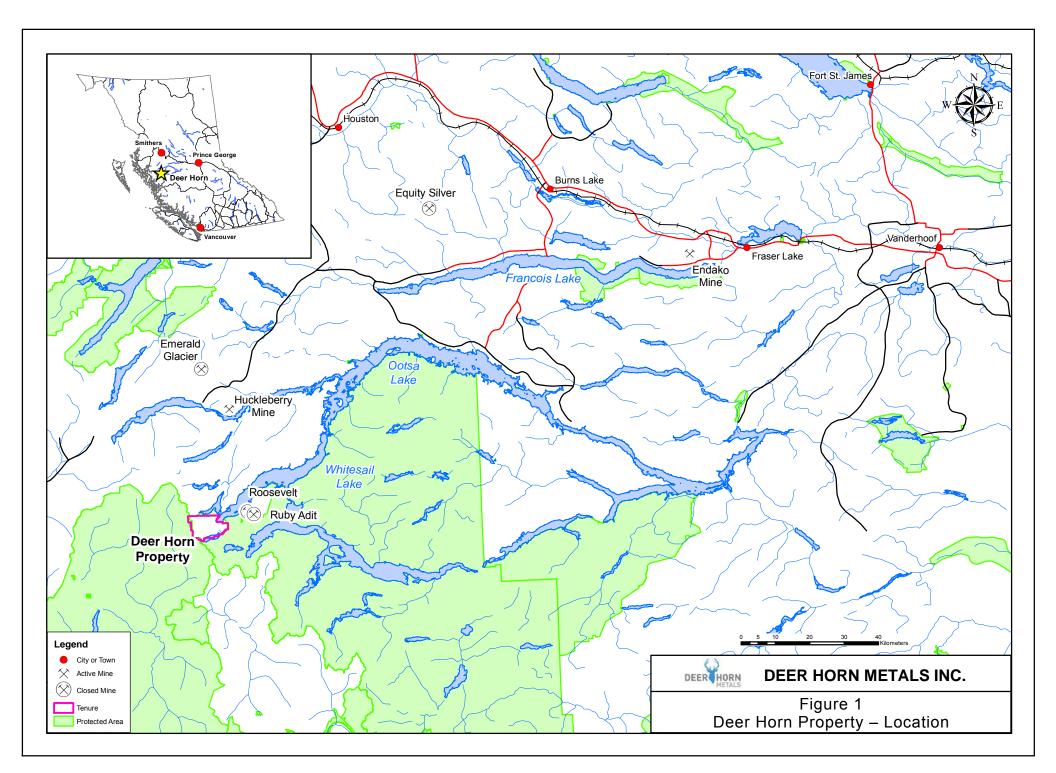
Deer Horn Metals Inc (or "DHM") entered into a mineral property option agreement dated August 13, 2009 with Guardsmen Resources Inc (or "Guardsmen"). Under the terms of the agreement, DHM can acquire up to a 75% interest in and to certain mineral claims known as the Deer Horn property, located in the Omineca Mining Division, British Columbia. The terms of the agreement stipulate that a 50% interest in the Deer Horn property will be acquired upon DHM having spent \$5,000,000 in work expenditures on the property within 4 years. On May 3, 2013, DHM announced that it had earned its 50% stake in the property. DHM may acquire an additional 25% interest in the property by paying the costs required to bring the property to commercial production.

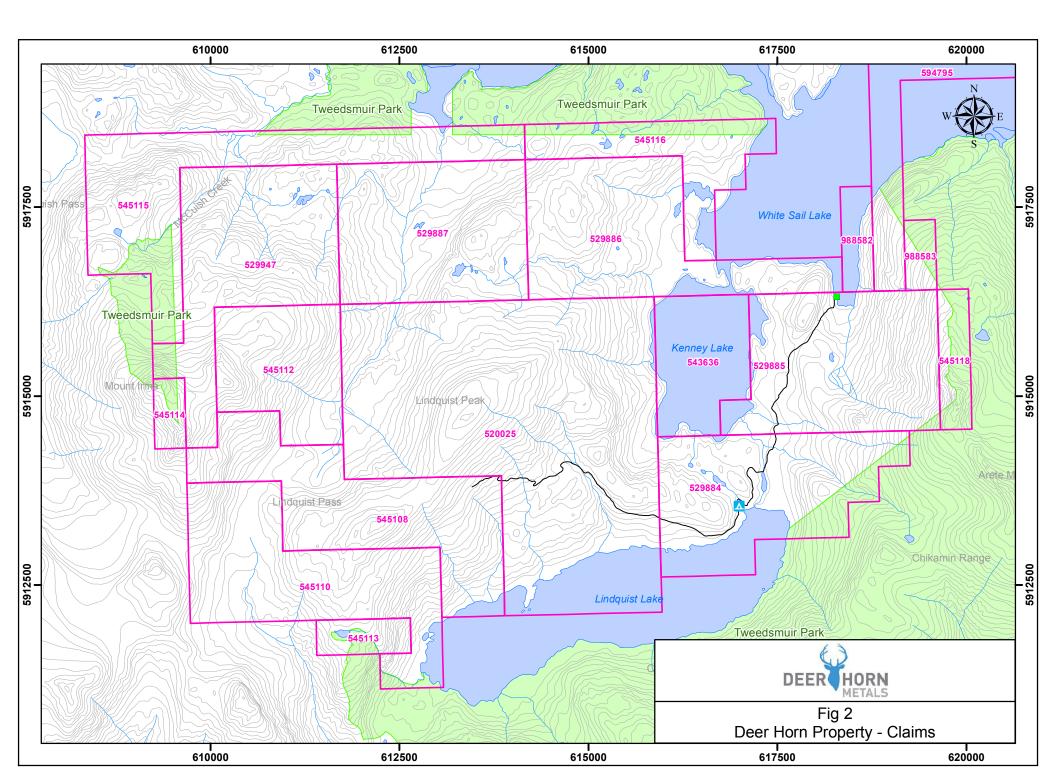
This report presents and summarizes the data acquired during the 2012 field season and makes recommendations for additional field work. It was written at the request of DHM by Bob Lane, PGeo, who took part in the 2012 exploration program during the period September 8-20, 2012.

4 **PROPERTY DESCRIPTION AND LOCATION**

4.1 LOCATION

The Deer Horn property is situated immediately north of Lindquist Lake, about 135 km southwest of the community of Burns Lake and 36 km south of the Huckleberry mine, in west-central British Columbia (Figure 1). The property is located on BCGS map 093E.034 and centered at approximately 614000E, 5914000N (Zone 9, NAD 83) or on NTS Map 93E/6W and centered at Latitude 53°21'43" N and Longitude 127°17'19" W.


4.2 MINERAL DISPOSITIONS


The present claim configuration of the property consists of 18 MTO cell mineral claims. The 18 claims are contiguous and cover approximately 6596.88 hectares in the Omineca Mining Division of British Columbia. The mineral claims that comprise the Deer Horn property are listed in Table 1 and shown in Figure 2.

4.3 OWNERSHIP

The 18 MTO cell mineral claims that comprise the Deer Horn property are owned 100% by Guardsmen Resources Inc. There are no underlying royalties or encumbrances associated with the claims.

The present mineral tenure rights are 100%-owned by Guardsmen Resources Inc. There are no other agreements, liens, judgments, debentures, royalties, or back-in rights known to the author. The claims abut Tweedsmuir Provincial Park and the Kitlope Heritage Conservancy. There are no surface tenure rights over the mineral dispositions known to the author.

Tenure Number	Claim Name	Owner ¹	Tenure Type	Issue Date	Good To Date	Area (ha)
520025		131812 (100%)	Mineral	2005/sep/15	2019/dec/15	1350.55
529884	DEERHORN 1	131812 (100%)	Mineral	2006/mar/10	2019/dec/15	463.13
529885	DEERHORN 2	131812 (100%)	Mineral	2006/mar/10	2019/dec/15	482.26
529886	DEERHORN 3	131812 (100%)	Mineral	2006/mar/10	2019/dec/15	482.08
529887	DEERHORN 4	131812 (100%)	Mineral	2006/mar/10	2019/dec/15	462.78
529947	DEERHORN 5	131812 (100%)	Mineral	2006/mar/12	2019/dec/15	482.10
543636	DEER HORN 2006	131812 (100%)	Mineral	2006/oct/19	2019/dec/15	212.19
545108	DEER HORN WEST	131812 (100%)	Mineral	2006/nov/10	2019/dec/15	482.43
545110	DEER HORN SOUTHWEST	131812 (100%)	Mineral	2006/nov/10	2018/dec/15	482.52
545112	DEER HORN NORTHWEST	131812 (100%)	Mineral	2006/nov/10	2018/dec/15	270.06
545113	DEER HORN SOUTH FRACTION	131812 (100%)	Mineral	2006/nov/10	2018/dec/15	57.91
545114	DEER HORN GLACIER FRACTIO	131812 (100%)	Mineral	2006/nov/10	2018/dec/15	38.58
545115	DEER HORN NORTH	131812 (100%)	Mineral	2006/nov/10	2018/dec/15	482.00
545116	DEER HORN NORTHEAST	131812 (100%)	Mineral	2006/nov/10	2018/dec/15	231.35
545118	DEER HORN MOLY	131812 (100%)	Mineral	2006/nov/10	2018/dec/15	77.16
594795	DH CONNECTOR	131812 (100%)	Mineral	2008/nov/24	2018/dec/15	443.35
988582	DH B1	131812 (100%)	Mineral	2012/may/21	2018/dec/15	57.85
988583	DH B2	131812 (100%)	Mineral	2012/may/21	2018/dec/15	38.57

Table 1: Deer Horn Property - Mineral Tenure

¹ The 100% owner-of-record of all of the Deer Horn mineral tenure is Guardsmen Resources Inc. (Client ID: 131812)

6,596.88

5 ACCESS, LOCAL RESOURCES, CLIMATE AND PHYSIOGRAPHY, INFRASTRUCTURE

5.1 ACCESS

Access to the property is via helicopter, float plane or barge. Helicopter and float plane bases are located in numerous nearby communities that lie to the north, such as Houston, Burns Lake and Smithers; and flight times to the property are typically one hour or less. The communities of Bella Coola and Kitimat, which lie to the west, are also about a one hour flight from the property.

Barging is the most cost-effective means of delivering heavy equipment to the property. The barge can depart from Andrews Bay or from the East Ootsa logging camp on Ootsa Lake, and the property's barge landing is located at the south end of Whitesail Lake. An overgrown 7.8 km dozer trail extends from the barge landing to the area of interest in the alpine. The principal showings of interest, including the Deer Horn adit, are at an elevation of about 1290 m.

5.2 LOCAL RESOURCES

The Deer Horn property falls within the administrative boundary of the Nadina Forest District of the Northern Interior Forest Region. The project also falls within the administrative boundary of the Lakes Land and Resource Plan Area (Lakes LRMP) for which a provincial government approved land use plan was adopted in January, 2000. The Lakes LRMP is a consensus built land use plan that directs the management of resources by land managers, resource proponents and resource agency staff. All land use and resource management within the Lakes LRMP are subject to existing legislature, policies and regulations for Crown land and resource management.

During development of the Lakes LRMP, all recognized resource values were evaluated with a view to integrating resource development with recognized conservation values and the biodiversity of the land base. Other significant resources were evaluated during the formation of the plan including timber, fisheries, water quality, wildlife, agriculture, range, outdoor recreation and tourism, along with subsurface resources (mining and exploration). Tweedsmuir North Provincial Park and Tweedsmuir South Provincial Park form one of British Columbia's largest parks and was created in 1938. Land use within park boundaries is regulated by the Tweedsmuir Master Plan, which was released to the public in 1988. The park is roughly triangular in shape and protects a number of ecosystems. Backcountry hiking, fishing and camping opportunities exist for visitors to the park.

5.2.1 WILDLIFE & FISHERIES

The Deer Horn project falls within the Lakes North Sustainable Resource Management Plan (Lakes North SRMP) area of the Nadina Forest District. The plan is consistent with, and builds upon the provisions of the Lakes LRMP. The plan includes seven landscape units encompassing 451,105 ha of which 404,556 ha is Crown forest land.

The Lakes North SRMP area has a diversity of fish populations inhabiting the rivers and lakes. Several fish species require specific management objectives, with other species being managed indirectly. Although riparian and biodiversity retention provide habitat for a large number of species, wildlife management for individual species is also necessary. This represents a fine filter component of the provincial approach to biodiversity. Selected species are also of particular importance to First Nations, guide-outfitters, trappers, hunters and non-consumptive wildlife users. A number of legislated Wildlife Habitat Areas (WHAs) exist in the Lakes North SRMP area. These areas contain various species including mule deer, mountain caribou, mountain goat, moose, grizzly bear, and fur bearers.

5.3 CLIMATE AND PHYSIOGRAPHY

The climate of the Deer Horn property is typical of north-central of British Columbia. Summer temperatures average daytime highs in the 20°C range with occasional temperatures reaching the low 30°C range. October through April see average subzero temperatures with extreme lows reaching -30°C from November through March.

The Deer Horn property is located on the edge of the Coast Range and topography is fair to relatively rugged. Elevation on the property ranges from approximately 865 meters at Kenney Lake to 1788 meters on Lindquist Peak. The Deer Horn workings are primarily located above treeline on the southeastern slope of Lindquist Peak, north of Lindquist Lake.

The predominant soil development is humo-ferric podzols. The bioclimatic zone varies from Spruce-Subalpine Fir with leading growth of pine, popular and spruce; this gives way to Alpine Tundra marked by stunted juniper, sedges and grasses at higher elevations. Seepages are widespread, notable by thick peat accumulations and an undergrowth of mountain alder.

There is an ample water supply for all exploration and camp requirements. Numerous drainages are fed by a snow pack that remains at higher elevations year-round, particularly on the north facing slopes. Snow begins to accumulate by late-September and the lakes are frozen throughout the winter months. The summer months are highly influenced by coastal weather. The most dependable weather forecasts for the property are those issued for the town of Kitimat.

5.4 INFRASTRUCTURE

The small towns of Smithers, Burns Lake and Houston located north of the Deer Horn property, are population centres that offer services, supplies and sources for skilled labour. Field operations area generally conducted with crews located in a camp setting on the Deer Horn property. Seasonal access to the property from the barge landing on the south shore of Whitesail Lake was developed in the 1950s. I was rehabilitated in 1989 and again in 2009. There is no nearby electrical power grid. Year round working conditions are hampered by extended periods of cold weather, snow accumulation and local avalanche conditions, and access roads requiring snow clearing.

6 **HISTORY**

The Deer Horn property, or Harrison property as it was originally known, was first staked in 1943 by the Harrison brothers following their discovery of scheelite in talus about one km southwest of Lindquist Peak. Discovery of nearby gold and silver bearing veins was made in 1944 by Franc Joubin (Joubin, 1950). Four phases of mechanical exploration have taken place on the Deer Horn property since it was first staked. Pioneer Gold Mines of BC Limited (Pioneer) optioned the property in 1944 and completed extensive trenching and diamond drilling until allowing its option to lapse in 1946. The property was inactive from 1947 until 1951 when newly formed Deer Horn Mines Limited purchased the Harrison property outright. It explored the property from 1951 to 1955. During that period the company constructed a road from the shores of Whitesail Lake to the property and developed an exploration adit and conducted underground and surface diamond drilling. Field work in support of a Masters Thesis on the geology of the deposit was also completed during this time (Papezik, 1957). In 1967, Granby Consolidated Mining, Smelting and Power optioned the property and completed further road work and extensive machine trenching. The property reverted to the Crown in 1975 and was the subject of possible addition to Tweedsmuir Provincial Park. A temporary 'No Staking Reserve' covered the area. The 'No Staking Reserve' was lifted in 1989 and the creation of specific enclaves in the north Tweedsmuir Provincial Park area were created to allow claim

staking and exploration to recommence in areas regarded to be highly prospective. In 1989, the British Columbia Government put part of the area, which covered what was then 'parceled' claims XK1214, XK1414 and XK1412, as well as an additional three claims located immediately to the west, up for bid. The six claims covered a total of 24 square km including the prospective Deer Horn vein system and were awarded to Golden Knight Resources Inc (Golden Knight). The surrounding ground was made available for one-post staking and twelve claims were acquired by Michael Renning and Scott Gifford, the principals of Guardsmen Resources Inc (Guardsmen). Ownership of the twelve claims was later transferred to Guardsmen. Modest geophysical and geochemical programs were conducted on some of these peripheral claims in 1990 by Amber Minerals Ltd on behalf of Guardsmen.

Through 1989 and 1990 Golden Knight carried out extensive exploration programs that included: prospecting; geological mapping and sampling; grid-based soil geochemical sampling; VLF and magnetometer surveying; rehabilitation, mapping and chip sampling of the underground workings; 4511 m of surface diamond drilling; environmental water sampling and preliminary metallurgical testing. The Golden Knight work was the last mechanical exploration to occur on the property. A summary of the diamond drilling programs is presented in Table 2.

Repadre Capital acquired the assets of Golden Knight in 1990, but sold the claims to Guardsmen in 2000. In that year, Guardsmen completed a modest field review of the property, and in 2005 converted all of its legacy claims to modern MTO cell mineral claims. Christopher James Gold Corp (Christopher James) optioned the property from Guardsmen in 2006 and in 2006-2007 conducted a reconnaissance geochemical sampling program over several areas of the property. Christopher James later dropped its option and the property reverted back to Guardsmen. In 2009, Guardsmen optioned the property to Golden Odyssey Mining Inc (who later changed its name to Deer Horn Metals Inc). In the fall of 2009 it drilled a total of 35 NQ and HQ diameter bore holes, with an aggregate length of 1706 m. All available surface and drilling data was used to support the calculation of a NI43-101 compliant resource for the property in 2010. In 2011, Deer Horn Metals Inc drilled a total of 55 NQ2 diameter bore holes with an aggregate length of 3772.5 m. Early in 2012 a revised resource estimate was produced for the property.

Company	Hole Designation	Year	# of Holes	Metres Drilled
Pioneer Gold Mines of BC Limited	XR- (data for 14 holes is missing)	1944-1946	30	3,822
Deer Horn Mines Limited	DDH- (data for holes 8, 11, 12, 22, 24, 26 and 28 is missing)	1951-1955	37	2,497.2
Golden Knight Resources Inc	89- 90-	1989 1990	31 29	2,253.4 2,256.2
Golden Odyssey Mining Inc	DH09-	2009	35	1,706
Deer Horn Metals Inc	DH11-	2011	55	3,772.5
Total			217	16,307

Table 2: Summary of Diamond Drilling, Deer Horn Property

6.1 PIONEER GOLD MINES OF B.C. LIMITED

In 1944 Pioneer Gold Mines of B.C. Limited (Pioneer) optioned the Deer Horn property and built a pack trail from the south shore of Whitesail Lake to the property (Holland, 1945). From 1944 to 1946 Pioneer completed limited surface sampling and a total of 3822 m of surface diamond drilling on the Main vein. This work determined that the vein was faulted into a series of disjointed vein segments that dip gently to the north. The Main vein was traced down-dip for approximately 45 m where it met the Contact zone or vein, a series of narrow stringers and quartz veins up to 1.2 m across that dip 55° to the south (Duffell, 1959).

Pioneer outlined eight segments or panels of the Main vein that ranged in dimension from 7.6 m long by 1.3 m wide with an estimated average grade of 7.44 g/t Au and 54.9 g/t Ag to 82 m long by 3.3 m wide with an estimated average grade of 10.08 g/t Au and 281.1 g/t Ag (Holland, 1946; Duffell, 1959). Despite promising results, Pioneer Gold Mines was unable to meet the financial obligations of its option and, following the 1946 field season its option on the property was allowed to lapse (Joubin, 1950).

Little exploration took place between 1947 and 1950, but the central part of the property was geologically mapped in 1950 by Joubin (1950).

6.2 DEER HORN MINES LIMITED

The Deer Horn property was purchased by Deer Horn Mines Limited (Deer Horn Mines) in 1951. In 1952 the company embarked on a program of trench rehabilitation, re-examining drill core and other surface works. During the period 1953 to 1955 the company constructed a road from the shores of Whitesail Lake to the property and completed 913.5 m of surface diamond drilling (Bacon, 1956). Drill results from a segment of the Main vein (location unknown) measuring 180 m long, averaging 3.4 m wide and traced for 60 m down dip averaged 9.70 g/t Au and 284.6 g/t Ag (results reported in the August 1953 edition of the *Western Miner*). Assay results for individual drill holes were compiled by Golden Knight, but the exact location of the drill collars could only be estimated (Folk, 1990a).

Underground development took place in 1954 and 1955 consisting of 589.8 m of drifting and raising, and 1129 m of underground diamond drilling (Duffell, 1959). Results and plans from this early work are missing (although later assessment of the underground workings by Golden Knight provides the most current information). The first 120 m of the horizontal adit was developed along an azimuth of approximately 308° and intersected a segment of the Main vein twice, a shallow north dipping vein at the portal and a shallow south dipping vein. The adit intersected the Contact zone at a distance of 102 m from the portal and was extended a further 18 m into the footwall sedimentary rocks. At the 102 m mark, drifting followed the trend of the Contact zone along an azimuth of approximately 270°. Results of underground sampling are discussed below.

In 1952, Deer Horn Mines investigated the area of scheelite mineralization first discovered by the Harrison brothers in 1943. The tungsten showing consists of anomalous talus and bedrock near the contact between stratified rocks of the Hazelton Group and the Coast intrusions (Diakow and Koyanagi, 1987b). Deer Horn Mines identified an area measuring 485 m by 50 m wide that averaged 0.34% WO₃ (Duffell,

1959) through systematic sampling of the talus. A single trench excavated through the talus did encounter scheelite mineralization in bedrock. No further work was conducted on the occurrence.

6.3 THE GRANBY MINING COMPANY LIMITED

In 1967 The Granby Mining Company Limited (Granby) optioned the Deer Horn property from Deer Horn Mines Limited and built 2.4 km of access road, completed 15 dozer trenches totaling 1.5 km, and conducted limited geological mapping (MEMPR AR, 1967). The company completed no further work and the property reverted to the province in 1975. The results of Granby's work was not located by the author, therefore the company's work has not contributed to the understanding of the geology or mineralization of the property.

6.4 GOLDEN KNIGHT RESOURCES INC

Golden Knight Resources Inc (Golden Knight) embarked on an extensive exploration program following acquisition of the property on July 10, 1989, that included: establishment of a 3 km by 1 km grid over the principal area of interest; collection of 2090 soil geochemical samples; a VLF and magnetometer survey over half of the grid area; prospecting, bedrock mapping and sampling; rehabilitation, surveying, mapping and chip sampling of underground workings; and completion of 31 surface diamond drill holes totaling 2253.4 m (Folk, 1990a). Golden Knight's work focused entirely on the Contact zone and Main vein.

The 1989 drilling intersected a number of narrow, high-grade veins (i.e. 93.5 g/t Au and 1480 g/t Ag over 0.3 m in hole 89-07), generally regarded to be stringer zones in the hangingwall of the Contact zone (Folk, 1990a). However, and perhaps more importantly, the 1989 drilling also identified the previously unrecognized potential for bulk tonnage gold mineralization of the Contact zone as evidenced by a 42.53m intersection averaging 2.88 g/t Au and 84.68 g/t Ag in hole 89-02 collared near the Deer Horn adit (Folk, 1990a).

Chip sampling of Main vein mineralization, exposed in two areas in the first 70 m of the adit, returned erratic, but potentially economic results, ranging from 0.006 oz/t Au and 0.35 oz/t Ag over 1.2 m to 1.037 oz/t Au and 22.75 oz/t Ag over 1.1 m (Folk, 1990a). Sampling of the vein material in the remainder of the underground workings, mainly developed along and/or parallel to the Contact zone, returned poor results. One exception was a 2.55 m wide chip sample of Contact zone vein mineralization collected from a raise 210 m from the portal (Folk, 1990b). Golden Knight concluded that at the time of underground development the geometry of the Contact zone was not well understood and, as a consequence, most of the Deer Horn adit was driven along veins essentially barren of gold-silver values.

In 1990, Golden Knight continued with its surface diamond drilling program completing 29 more holes for an aggregate length of 2256.2 m. One of the last 1990 holes, collared approximately 210 m west of the portal, encountered significant grades of gold and silver with elevated base metal values. The 11.2 m intersection averaged 14.36 g/t Au, 781.5 g/t Ag, 0.40% Cu, 0.24% Pb and 1.02% Zn, including a 3.0 m interval that graded 37.73 g/t Au and 2065 g/t Ag.

Over the two years Golden Knight drilled 60 holes totaling 4510.6 m. This work, together with drilling data from the earlier programs, outlined a 400 m long south-dipping and shallow eastward plunging component of the Contact zone that is open to the east and to the west as well as down-plunge (Folk, 1990b).

Golden Knight also completed a preliminary acid rock generation study of material from the underground workings, an environmental water sampling program and preliminary metallurgical testing.

6.5 AMBER MINERALS LTD

In 1990, a limited VLF-EM, magnetometer and reconnaissance biogeochemical sampling program and a later follow-up prospecting program, was conducted on ground adjoining and immediately east of the Deer Horn property. The work was completed by Amber Minerals Ltd (Coffin and Renning, 1990; Renning, 1990) on behalf of Guardsmen. The program outlined weak northeast trending linear features and anomalous levels of molybdenum and zinc in a 20 sample biogeochemical survey.

6.6 **GUARDSMEN RESOURCES INC**

In the year 2000, IMAP Interactive Mapping Solutions conducted a brief field program on behalf of Guardsmen. The primary focus of this work was to examine gold- and silver-bearing quartz-sulphide veins near the Deer Horn adit and in the Lindquist Peak area. Work conducted included geological mapping and sampling. A total of 24 rock samples were collected for geochemical analysis (Kaip and Childe, 2000). This work confirmed the results of earlier surface sampling.

6.7 CHRISTOPHER JAMES GOLD CORP

In 2006, Guardsmen optioned the Deer Horn property to Christopher James Gold Corp. Modest prospecting and geochemical exploration programs were conducted by Guardsmen on behalf of Christopher James in 2006 and 2007. The programs included clearing of a section of the access road from a temporary camp at Lindquist Lake, reconnaissance soil, silt and rock sampling in four areas, and an attempt to relocate core from the 1989 and 1990 drilling campaigns (Renning et al., 2007; Renning, 2008). The geochemical sampling program targeted areas west, northwest and south of the Deer Horn adit, and east, west and southwest of Kenney Lake. Results included a strong gold, silver, arsenic, lead, cesium coincident soil geochemical anomaly west of the adit; impressive molybdenum silt anomalies (148 ppm Mo and 60.7 ppm Mo) west of Kenney Lake where several creeks drain gossanous, sedimentary rock bluffs east of Lindquist Peak, and; a number of rock and silt samples anomalous in molybdenum collected southwest of Kenney Lake, where fine-grained molybdenum occurs in quartz veinlets, along fractures, and as disseminations in andesite grading up to 1350 ppm Mo (Renning, 2008).

6.8 GOLDEN ODYSSEY MINING INC

In October and early November, 2009, Golden Odyssey drilled a total of 35 HQ and NQ diameter bore holes, with an aggregate length of 1706 m, on the Deer Horn property. Drilling targeted the two known west-trending mineralized structures, the Main Vein and Contact Zone, over a strike length of 320 m in

the vicinity of the Deer Horn adit. Most of the bore holes were drilled on an azimuth of either 000 or 180 degrees, and were shallow, with lengths ranging from 23.77 m to 79.20 m. Surface channel sampling was also carried out primarily on exposures of the Main Vein. In addition, a 15 line-kilometre grid was established over the central part of the Deer Horn property and ground magnetic, 3D-IP and Maxmin surveys were conducted over all or part the grid. An airborne LiDAR (Light Detection and Ranging) survey was completed over the property to provide detailed digital topographic information.

Early in 2010, an initial NI43-101 compliant resource estimate was reported for the Deer horn property (Lane and Giroux, 2010).

6.9 DEER HORN METALS INC

In July, August and September, 2011, Deer Horn Metals Inc completed a total of 55 NQ2 diameter bore holes on the Deer Horn property with an aggregate length of 3772.5 m. A total of 49 holes targeted the two known west-trending mineralized structures, the Main Vein and Contact Zone, over a strike length of 875 m in the vicinity of the Deer Horn adit. Most of the bore holes were drilled on an azimuth of either 000 or 180 degrees, and were shallow, with lengths ranging from 26.5 m to 150.6 m. Limited surface channel sampling was also carried out primarily on exposures of the Main Vein. The other 6 holes targeted the historic 'Harrison Scheelite' tungsten occurrence following a limited prospecting and excavator trenching program.

An updated resource estimate was calculated in early 2012 from a data base consisting of 196 diamond drill holes completed from 1944 to 2011 and 42 surface samples. Estimated blocks were classified as Indicated or Inferred based on grade continuity. The results within the mineralized zones at a 1 g/t Au cut-off show 414,000 tonnes at an average grade of 5.12 g/t Au and 157.5 g/t Ag and 160 ppm Te classed as indicated and an additional 197,000 tonnes averaging 5.04 g/t Au, 146.5 g/t Ag and 137 ppm Te classed as inferred (Lane and Giroux, 2012).

7 GEOLOGICAL SETTING AND MINERALIZATION

7.1 **REGIONAL GEOLOGY**

Regional mapping of the Whitesail Lake region was conducted by the Geological Survey of Canada (GSC) between 1947 and 1952 (Duffell, 1959) and later by G. Woodsworth (1979, 1980). The most recent regional mapping on and around the Deer Horn property was conducted as part of the Canada/British Columbia Mineral Development Agreement by Diakow and Koyanagi (1988a and 1988b) of the British Columbia Geological Survey Branch. This work was later compiled with previous regional bedrock mapping data to form a digital geology map for the province. The latter forms the base for the regional geology of the Deer Horn area presented in Figure 3. The following description of the regional geology of the area is based on these works.

The Deer Horn property is located in the Intermontane tectonic belt of the Canadian Cordillera, adjacent to the eastern margin of the Coast tectonic belt. The oldest rocks exposed in the area consist of mafic volcanic and volcaniclastic strata of the Pre-Jurassic Gamsby Group, exposed on the west end of Lindquist Lake, and a quartz diorite of Pre-Jurassic age exposed on the southwest flank of Lindquist Peak, from the Deer Horn adit in the north, to the shores of Lindquist Lake in the south. Both units are regionally metamorphosed to greenschist facies and exhibit a strong penetrative foliation.

The Pre-Jurassic quartz diorite and mafic volcanics of the Gamsby Group are thrust over sedimentary and volcanic strata of the Lower Cretaceous Skeena Group and over maroon volcanic strata of the Lower to Middle Jurassic Telkwa Formation (Hazelton Group). The thrust is west-trending, and west of the Deer Horn adit, is offset by a later northeast trending fault. Development of the thrust fault postdates deposition of the Lower Cretaceous Skeena Group and predates an Eocene granodiorite intrusion which invades the structure east of the Deer Horn adit and underlies much of the area around Lindquist Lake. The granodiorite is in intrusive contact with the foliated quartz diorite and with strata of the Gamsby and Skeena groups. Northwest of the Deer Horn adit, Lower Cretaceous and older strata are intruded by Late Cretaceous to Eocene granodiorite and quartz diorite of the Coast tectonic belt. The foliated quartz diorite, Gamsby Group and Skeena Group strata are also cut by felsic dykes related to the main granodiorite body.

7.2 LOCAL GEOLOGY

The Deer Horn property was first geologically mapped by Franc Joubin on behalf of Deer Horn Mines (Joubin, 1950); this information was provided to S. Duffell of the Geological Survey of Canada (GSC) who included a version of the map in GSC Memoir 299 (Duffell, 1959). The central part of the property was mapped in detail by Golden Knight in 1989. Results of this work are available in Folk (1990a) and the central part is presented in Figure 4 with modifications after Childe and Kaip (2000).

The property is underlain predominantly by foliated quartz diorite and meta-volcanic rocks of the pre-Jurassic Gamsby Group, that have been thrust over a package of sedimentary rocks of the Late Cretaceous Skeena Group (Duffell, 1959). Eocene granodiorite and related dykes intrude the older rocks (Diakow and Koyanagi, 1988a). The northern and central portion of the property are composed of lower Jurassic Telkwa Formation (Hazelton Group) intermediate volcanic flows and lithic tuffs, which are overlain by lower Cretaceous intermediate to felsic lapilli tuff and by lower Cretaceous Skeena Group grey-black sedimentary units grading from argillite through silts and sandstone.

METAMORPHIC ROCKS

PRE-JURASSIC GAMSBY GROUP

Metavolcanic Rocks

Medium greenish-grey intermediate to mafic tuffs, flows and schists associated with a dioritic intrusion comprise the Gamsby Group (Woodsworth, 1978) and cover a limited area of the property west and south of Lindquist Lake. The rocks have been regionally metamorphosed to greenschist facies and commonly contain ubiquitous albite, epidote and chlorite (Diakow and Koyanagi, 1988a). Deformation of the strata is defined by a pronounced foliation and local shearing. The diorite, whose contact with the metavolcanic rocks may be a fault occurs in the lower levels of the succession (Diakow and Koyanagi, 1988a).

LOWER JURASSIC TELKWA FORMATION (HAZELTON GROUP)

Maroon Volcanics

Well-layered maroon pyroclastic rocks (primarily crystal-lapilli tuff and ash tuff) and lava flows of the Telkwa Formation occupy a large area of the Deer Horn property north and northwest of Lindquist Peak. The unit is characterized by its maroon to red and locally green colour and its distinctly bedded nature (Diakow and Koyanagi, 1988a). Rocks of the Telkwa Formation are primarily in fault contact with younger rocks of the Skeena Formation and, in the northwest part of the property, are cut by granodiorite.

SEDIMENTARY ROCKS

CRETACEOUS SKEENA GROUP

Sedimentary strata of the Skeena Group were divided into four main units by Folk (1990a). Each unit is based on its predominant lithology, but the units appear to grade into one another. Tops were not determined and therefore the units are listed in structural sequence from highest to lowest.

Quartzite

Quartzite was observed in outcrop, in drill core and in the underground workings (Folk, 1990a). It is finegrained, pale grey to pale yellow-grey and very siliceous. Outcrops are blocky in appearance and the rock weathers to a light, off-white color with rusty tones. Very fine-grained pyrite occurs as disseminations and in fractures. This unit was mapped by Papezik as aplite and feldspathic quartzite (Papezik, 1957).

Green-Brown Greywacke

'Greywacke' includes several lithologies that lie between the quartzite and underlying argillite. The dominant lithology is a medium greenish grey to greyish brown, slightly schistose wacke, which weathers to a light greenish brown color. Minor amounts of mudstone and very fine grained arkose are included in this unit. In drill core it is fine grained, medium grey to brownish grey and locally has a light green tone Folk, 1990a).

Generally it contains small, white, anhedral quartz specks, which are less than 5mm in diameter. The rock is weakly to strongly silicified and the abundance of quartz specks tends to increase with silicification. It is often weakly foliated and locally contains small (<5mm diameter), dark, well-rounded clasts. Where silicification is intense, the greywacke and quartzite are indistinguishable (Folk, 1990a).

Argillite

Argillite is black, thinly laminated and displays a phyllitic sheen. It weathers a dark rusty brown. The unit is locally metamorphosed to andalusite schist. The schist contains approximately 10% randomly orientated metacrysts of andalusite, less than 3mm in length and largely altered to translucent white sericite. In drill core it is well-indurated, black to dark brown with local beige and green laminae (Folk, 1990a).

Feldspathic Greywacke

Feldspathic greywacke is a fine-grained, medium to dark grey rock with a very dense appearance. Fine translucent white feldspar grains are visible with a hand lens. Outcrops weather to a grainy, often pitted buff colored surface. The rock breaks with a fairly sharp and slightly concoidal fracture. Feldspathic

greywacke outcrops on Lindquist Peak, but was not encountered in drillholes or underground in the adit (Folk, 1990a).

INTRUSIVE ROCKS

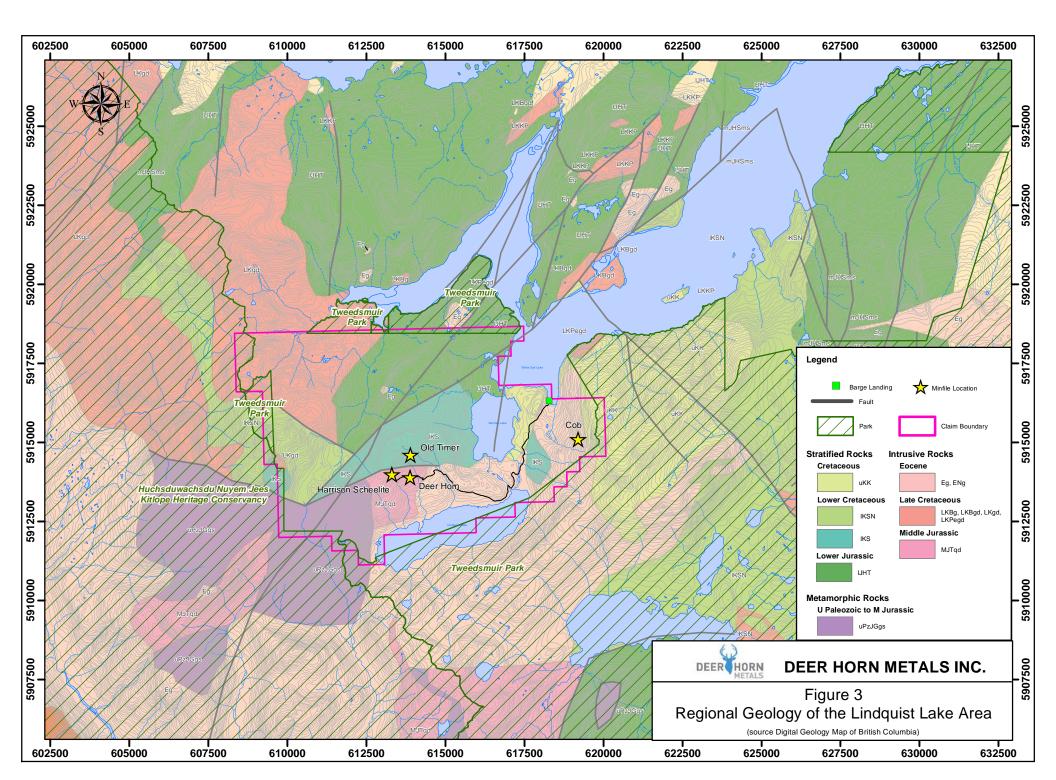
Pre-Jurassic Quartz Diorite

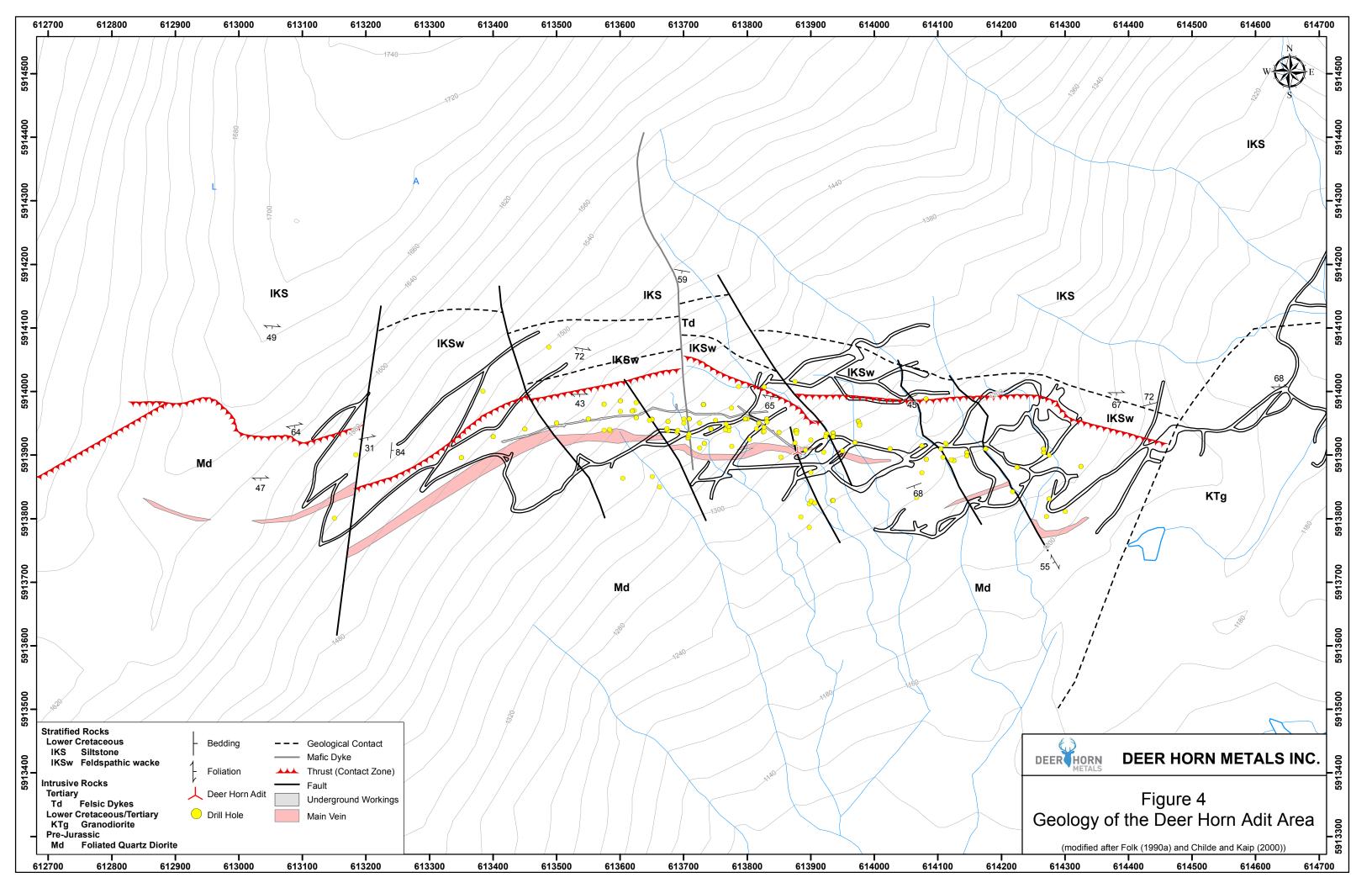
Quartz diorite, spatially associated with pre-Jurassic metavolcanic rocks, underlies much of the central area of interest and is seen in drill core, surface outcrops and underground workings where it has been highly altered. It occurs in outcrops that extend from the Deer Horn adit in the north to within 100 meters of the shore of Lindquist Lake in the south. It is dominantly pale to dark green, fine to medium grained and weakly to strongly foliated. It consists of plagioclase, quartz, and 10-35% hornblende that is altered almost completely to chlorite. The foliation is best developed proximal to the thrust that places quartz diorite over younger sedimentary and volcanic strata. Foliated quartz diorite is the principal host to the Deer Horn vein system.

Cretaceous and/or Tertiary Granodiorite

Granodiorite is buff-coloured, medium- to coarse-grained and equigranular to porphyritic. It forms large, pale grey outcrops which underlie the southeast corner of the property. It is composed of quartz, plagioclase, orthoclase and accessory biotite, which is altered in part to chlorite. The contact between granodiorite and quartz diorite was observed to be gradational over a distance of about 40 m (Folk, 1990a).

Dykes


Felsic dykes are light greenish grey, fine grained and moderately siliceous. They are composed of plagioclase with minor quartz and orthoclase (Papezik, 1957). Outcrops weather light beige to locally medium brown and are locally display small spots of iron oxide. The dykes are commonly amygdaloidal with calcite filling cavities (Folk, 1990a). The unit was also mapped as felsite and as albitite by previous workers.


Mafic dykes, typically less than 1 m in width, are dark greenish grey and contain very fine (<1 mm diameter) feldspar phenocrysts and finely disseminated magnetite. Mafic dykes were encountered both on surface and in drill core. The unit was also mapped as 'trap' and hornblende latite (Papezik, 1957).

CATACLASTIC ROCKS

Perthite-Quartz Cataclastite

This rock unit is adopted from the work of Papezik (1957). No surface outcrops were noted, but it was encountered locally in the underground workings and in some drillholes. It is described as spotty grey to greenish grey with rounded to subangular clasts of quartz and feldspar embedded in a matrix of sericite. A characteristic feature of the unit is the presence of rounded or rectangular orthoclase 'porphyroblasts' up to 1.8 cm in diameter that comprise 25–50% of the rock. In drill core it is described as silicified and biotite-altered fault breccia.

7.3 STRUCTURE

A pronounced penetrative foliation is present in the quartz diorite. In sedimentary strata, the black argillite exhibits a strong foliation while weaker foliation occurs in the green-brown greywacke. Both the penetrative foliation in the quartz diorite and the foliation of the underlying sedimentary strata exhibit an east-west trend and moderate dip to the south. In the adit a well-defined southwesterly plunging stretch lineation is evident within the foliation planes in the quartz diorite and the sediments (Folk, 1990a). Slickensides developed locally on the walls of veins in the Contact zone (Folk, 1990a).

The contact between the quartz diorite and underlying sedimentary strata is interpreted to be a major east-west trending thrust fault (Joubin, 1950; Duffell, 1959; Diakow and Koyanagi, 1989b). Evidence of the reverse motion is strongest west of the Deer Horn adit where strong crenulation cleavage, and minor folds and fault splays were noted (Folk, 1990a). A strong foliation in the quartz diorite, dipping south and sub-parallel to the sediment-quartz diorite contact was likely caused by thrust faulting. In the adit, the thrust fault has been rendered unrecognizable by subsequent alteration and mineralization (Folk, 1990a).

A northeast-trending regional lateral fault mapped by Diakow and Koyanagi (1989a) cuts the thrust west of Lindquist Peak and results in right lateral displacement of the thrust fault. The thrust fault is also cut by a series of minor northwest and northeast-trending normal faults that result in minor offsets of the thrust (Joubin, 1950; Folk, 1990a; Childe and Kaip, 2000). In outcrop the faults appear to be mylonitic shear zones containing small quartz veins and, locally, mineralization (Folk, 1990a; Childe and Kaip, 2000). Some of these faults correlate with linear magnetic lows.

Mafic dykes trend slightly north of east and dip moderately to steeply southward. They are less than one metre wide and cut the quartz diorite in several areas. Occasionally mafic dykes are seen in the argillite proximal to the quartz diorite-sedimentary rock contact.

Felsic dykes are larger than the mafic dykes and can be traced for up to 800 metres. They cut both the sedimentary rocks and the quartz diorite. Large outcrops of felsic dyke material occur in the northwest part of Golden Knight's 1989 grid. In this area the outcrops form an irregular shaped body that is amygdaloidal on one side. Minor folds, crenulation cleavage and minor fault offsets suggest that the thrust fault was reactivated sometime after emplacement of the dyke.

7.4 MINERALIZATION

There are four known Minfile occurrences on the Deer Horn property, each of which represents a different mineral deposit type. They are: a gold-silver-tellurium-base metal vein system (Deer Horn or Lindquist, Minfile 093E 019) that has received the vast majority of exploration activity to date and which is the primary subject of this report; a polymetallic vein occurrence (Old Timer, Minfile 093E 021) comprised of two narrow pyrite, galena, sphalerite and pyrrhotite that carry traces of gold and up to 44.6 g/t Ag; a tungsten occurrence consisting of narrow, scheelite-bearing quartz veins hosted in quartz diorite and thermally altered volcanic and sedimentary rocks (Harrison Scheelite, Minfile 093E 020); and an area of anomalous molybdenum comprised of molybdenite-bearing quartz veins cutting andesitic volcanic rocks near the margin of an Eocene granodiorite intrusion (Cob, Minfile 093E 045). The latter two occurrences

may be regarded as a Porphyry Tungsten system (Sinclair, 1995a) and a Porphyry Molybdenum (Low F-Type) system (Sinclair, 1995b), respectively.

The principal deposit type at the Deer Horn property is a gold-silver-tellurium-base metal vein system. It is comprised of two main mineralized structures, the Main vein and nearby Contact zone, and a series of associated narrow veins and stringer zones. Veins are hosted primarily in foliated quartz diorite of Pre-Jurassic age in the hangingwall of a thrust fault. The foliation exhibited by the quartz diorite is thought to have formed in response to movement along the fault. A 2-dimensional model that may apply to the Deer Horn vein system is presented in Figure 5. It illustrates the development of fault-filled veins (i.e. the Contact zone), accompanying quartz-sericite alteration, and associated extensional veins (i.e. the Main vein) in a shear zone setting (from Robert and Poulsen, 2001). The vein system's spatial, and apparent genetic association with a nearby granodiorite intrusion suggests that the age of the mineralization is Eocene.

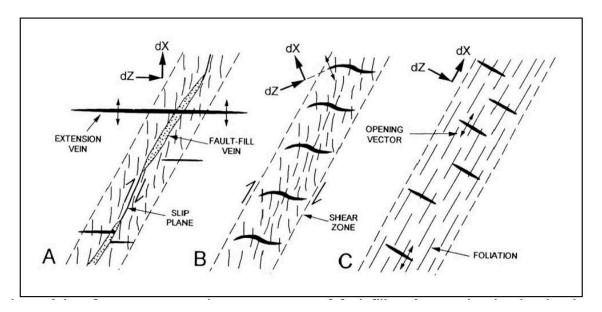


Figure 5: Common geometric arrangements of fault-filled and extensional veins in shear zones and their relationship to incremental axes of shortening (dZ) and elongation (dX). A) Faultfilled veins in the central part of a reverse shear zone showing conflicting crosscutting relationships with planar extensional veins extending outside the shear zone; B) Arrays of en echelon sigmoidal extensional veins within shear zones; C) Arrays of stacked planar extensional veins within shear zones (Robert and Poulsen, 2001).

7.4.1 GOLD-SILVER-TELLURIUM VEIN MINERALIZATION

Gold-silver-tellurium veins are spatially associated with a thrust fault that places quartz diorite and metavolcanics of Pre-Jurassic age above sandstone, siltstone and argillite of the Lower Cretaceous Skeena Group. The veins occur mainly in foliated quartz diorite up to 250 m south of the thrust fault, and at its contact with the underlying clastic sedimentary rocks. The veins carrying gold, silver, tellurium and base metals in a quartz gangue have two orientations. The Main vein occurs 100 m to 250 m south of the thrust fault, generally strikes west and, where exposed at surface, dips from 20° – 45° to the north. However, underground mapping indicated that the dip of the Main vein reverses to a shallow southerly dip as it encroaches on the Contact zone (Papezik, 1957) perhaps as a result of drag folding that occurred in response to normal movement along the reactivated thrust fault. The Contact zone occupies an area immediately above and sub-parallel to the thrust fault, striking to the west and dipping 55° - 60° to the south (Joubin, 1950).

The Main vein and subordinate hangingwall and/or footwall veins are hosted primarily by foliated quartz diorite, but also by granodiorite and to a lesser extent quartzite and greywacke. These 'Main-type' veins do not tend to penetrate very far into the sedimentary rocks in areas observed at surface (Folk, 1990a). The Main vein has been traced intermittently for over 1400 m along strike and is from < 1.0 to 4.5 m wide (Papezik, 1957). It is segmented by a series of brittle north to north-westerly trending faults that offset the vein up to 30 m (Joubin, 1950). Later workers suggest that the vein 'segments' are separate *en echelon* tensional vein structures (Folk, 1990b). Locally some of these vein 'segments' appear to have been rotated, such as at the Deer Horn portal where a thick vein strikes due north and dips moderately to the east. This particular vein contains appreciable amounts of magnetite, however, a feature that suggests that it may be not be part of the 'Main-type' vein system.

'Main-type' vein mineralization consists of pyrite, sphalerite, galena, scheelite, pyrrhotite, chalcopyrite, and the telluride minerals tetradymite, hessite, tellurobismuth and altaite that typically occur as small patches, blebs and disseminations in a gangue of white quartz (Folk, 1990b).

Vein quartz is typically white to translucent grey and commonly includes traces of chlorite and up to several percent magnetite. Drusy cavities lined with quartz and crustiform banding occur locally. At surface, veins containing at least trace amounts of sulphide minerals are typically Fe-oxide stained. Early trenching and shallow drilling indicated that large, flat Main vein material with good grades occurs at or near the surface (Folk, 1990a) and could be amenable to limited scale open pit development.

The Contact zone is comprised of individual quartz veins up to 1.8 m wide and bands of quartz stringers up to 4.6 m across within a band of quartz-sericite altered quartz diorite located just above the thrust fault. It has similar mineralogy to the Main vein and has been traced by surface work, including prospecting, trenching and diamond drilling for 1650 m and up to 150 down dip. Quartz-sericite alteration developed in the footwall of the thrust grades into zones of quartz-epidote that are locally well-developed particularly in sandstone where they form bands consisting of 10-50% epidote and fine-grained quartz cut by veinlets of quartz-carbonate-epidote that reach 2 m to 4 m in width (Childe and Kaip, 2000).

7.4.1.1 Age of Vein Mineralization

Diakow and Koyanagi (1988a) reported an age of 56+/-2 Ma for sericite collected from alteration that envelopes part of the Contact zone suggesting that the mineralization developed in the Eocene. Two age dates for biotite extracted from a nearby granodiorite body suggest that is has a similar age of formation and that emplacement of the granodiorite and the mineralizing event are genetically related. The thrust fault is cut by both the granodiorite and vein system and provided a structural focus for localizing

hydrothermal solutions that may have been associated with the emplacement of the granodiorite in the Early Eocene.

7.4.2 **TUNGSTEN MINERALIZATION**

A tungsten showing, later called Harrison Scheelite, was discovered in 1943 approximately 1 km southwest of Lindquist Peak. The showing consists of two aprons of scheelite-bearing talus near the contact between metamorphosed volcanic and sedimentary rocks of the Hazelton Group and granite, quartz diorite and diorite of the Coast intrusions (Diakow and Koyanagi, 1987b). The talus aprons are centered approximately 250 m to 300 m west of the western end of the Main vein. The scheelite occurs with quartz in narrow veins and stringers in diorite and the altered volcanic and sedimentary rocks. The main apron of anomalous talus has a sinuous northwest trend and covers an area measuring 485 m long by an average of 0.34% WO₃ (Duffell, 1959). A 40 m long trench was excavated through the talus to bedrock. Bedrock samples collected from the western part of the trench averaged 0.84% WO₃ over 18 m and bedrock samples collected from the eastern part of the trench averaged 1.55% WO₃ over 22 m (Duffell, 1959). Sampling of the second, smaller apron of talus produced modest results.

7.4.3 MOLYBDENUM MINERALIZATION

Occurrences of molybdenite are located in the eastern part of the property, immediately east of Kenney Lake, in the vicinity of the Cob Minfile showing. Molybdenite occurs in fractures and narrow quartz veins in andesitic volcanic rocks and related (?) sedimentary rocks of the Lower Cretaceous Skeena Group in proximity to an Eocene granodiorite stock (Renning, 1990). Little more than reconnaissance work, consisting primarily of prospecting and geochemical sampling, has been completed in the area. However, rock geochemical samples from the area have yielded results as high as 1350 ppm Mo (Renning, 2008). Also, stream sediment sampling conducted immediately west of Kenney Lake returned highly anomalous levels of molybdenum in two samples. Follow-up of the anomaly has not been conducted.

8 2012 EXPLORATION PROGRAM

Ten days of prospecting comprised the 2012 exploration program at Deer Horn. The crew arrived on site after flying to Lindquist Lake from Smithers the morning of September 9, 2012. Prospecting began the next morning and was initially focused on areas west of the 2011 "New Vein" area in an effort to identify the potential western extension of the Main Vein and Contact Zone gold-silver-tellurium vein system. Prospecting also evaluated areas in the vicinity of historic Harrison tungsten mineral occurrence. Helicopter-supported prospecting ground-truthed a number of geophysical anomalies that were identified during a detailed assessment of 2011 airborne magnetic and radiometric survey data, and also evaluated several gossanous areas on the property.

Bob Lane (PGeo), prospectors Bruce Johnson, Scott Gifford and Harry Huffels, and field technician Mike Dixon conducted the sampling program which took place over a ten-day period in mid-September. Some of the ground evaluated was steep and challenging to negotiate on foot. A helicopter was used to assist some of the prospecting efforts, particularly in areas distant from the centrally located camp. A total of 83 rock grab, chip and cut channel samples and 6 reconnaissance silt samples were collected from across the property. The locations of all rock and silt samples submitted for analysis are shown on Figure 6. Laboratory results for selected elements are listed in Tables 3 and 4, and complete laboratory certificates are provided in Appendix A. The results of the prospecting program are discussed below.

9 RESULTS

9.1 ROCK GEOCHEMICAL SAMPLING

The majority of the 2012 prospecting and sampling effort was focused on areas west of, and along trend from, the Deer Horn gold-silver-tellurium resource area (Resource Area). The 2012 work built on the success of limited prospecting conducted by Gifford in 2011 which identified the New Vein occurrence. It is centered more than 1100 m from the western edge of the Resource Area (and from drill hole DH11-140 which intersected 21.0 m averaging 1.57 g/t Au, 113 g/t Ag and 89 g/t Te).

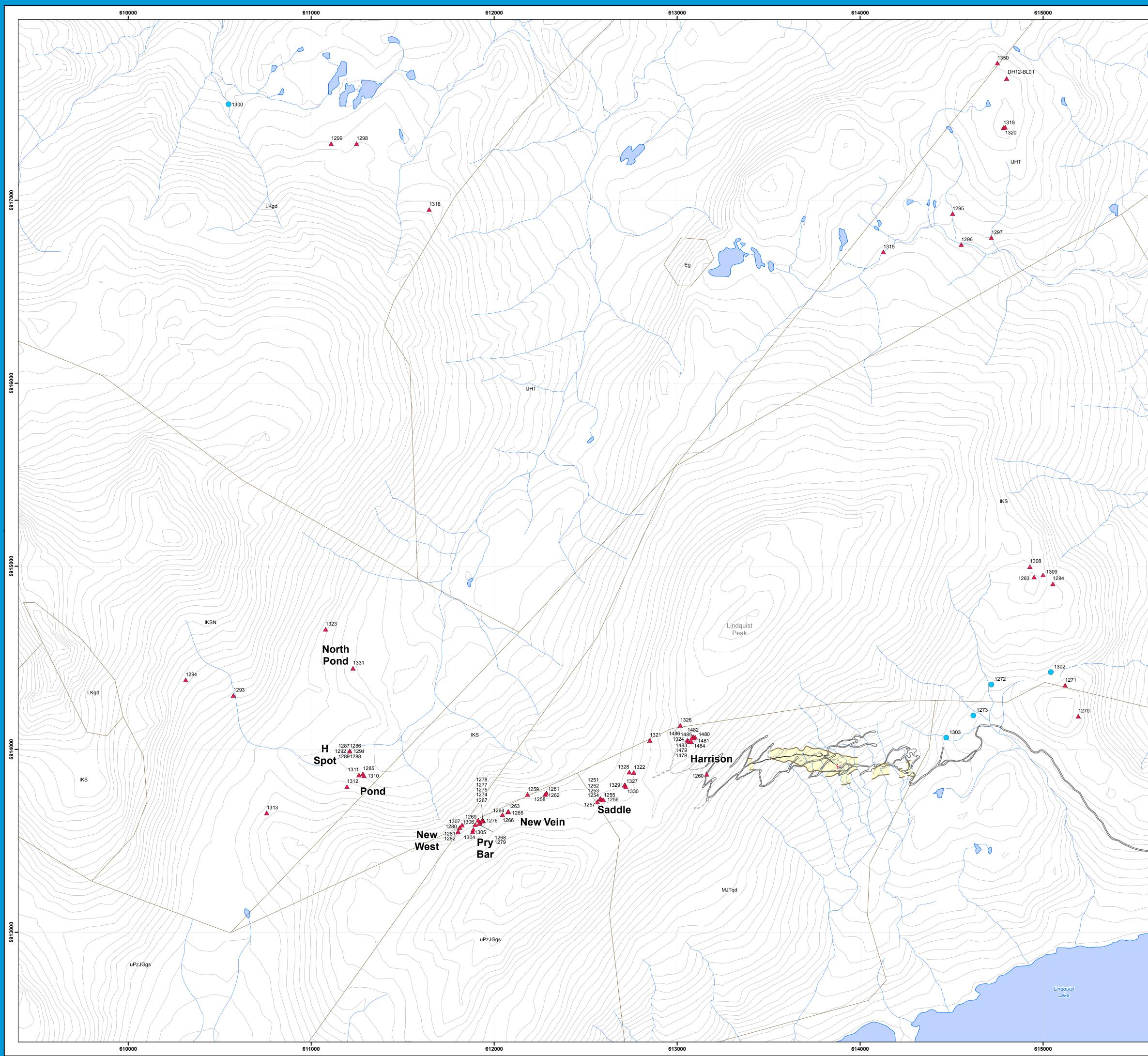
In 2012, the Pry Bar zone, an area of obvious historic sampling, and the New West zone were discovered. The zones are located west of the New Vein area and add an additional 360 m of strike length to the Deer Horn Au-Ag-Te system, bringing its overall strike length to more than 2,400 m. The Saddle area, located east of the New Vein area was also prospected and numerous well-mineralized veins were located and sampled. Additional sampling of veins in the New Vein area was also completed.

Individual quartz-polymetallic sulphide veins, some in excess of 1.4 m wide, occur within foliated diorite or within broad zones of quartz-sericite-pyrite alteration near the contact between the diorite and structurally underlying clastic sedimentary rocks. The westernmost veins crop out on steep north-facing slopes and continue west beneath large patches of snow pack. Overall, veins in these newly identified mineral occurrences carry anomalous to high-grade values of silver (up to 633 g/t Ag), gold (up to 1160 ppb Au), tellurium (up to 437 ppm Te), and bismuth (1240 ppm Bi) with elevated base metals.

Additional discoveries of significance include the Pond and H-Spot showings, which were located by tracing a train of rusty boulders that was observed from the ridge crest west of Lindquist Peak. The two closely-spaced showings are located near the head of the valley, just 1 km west-northwest and downslope of the New Vein area and 2.3 km west of Lindquist Peak. The Pond showing consists of coarse blebs and knots of pyrite, and traces of chalcopyrite and molybdenite in propylitic and potassic-altered diorite. The H-Spot showing, located 200 m north of Pond, consists of potassic-altered granodiorite containing coarse aggregates of pyrite and bands and coarse aggregates of intergrown magnetite-chalcopyrite. Grab and channel samples collected from the two showings graded up to 4240 ppm Cu and 6.6 ppm Ag. The full dimensions of the H-Spot showing are unknown because it is covered by snow pack and glacial debris. Several other small showings of chalcopyrite were located nearby and additional pyrite-altered tuffaceous volcanic rocks were identified 450 m to the north. These exciting new showings, and their broad distribution may be evidence of a largely hidden porphyry copper system.

Another new area of anomalous copper-gold mineralization was discovered along ridge crests northwest of Kenney Lake. This area is underlain by rocks mapped as part of the Telkwa Formation (Hazelton

Group). Chalcopyrite occurs in hairline fractures in propylitic to weakly potassic-altered andesitic flows. Select grab samples graded up to 4540 ppm Cu and 262 ppb Au.


Prospecting also evaluated areas in the vicinity of the historic Harrison Scheelite mineral occurrence. This work identified of a number of trough-like features that may be sloughed in pits and trenches, centered 680 m south-southwest of Lindquist Peak. One of these features may be the actual historic "Harrison" bedrock trench that averaged 1.22% WO3 over 39.6 m. A promising new bedrock showing, comprised of bands of disseminated scheelite crystals within calc-silicate altered tuffaceous, limy siltstone was discovered near these features on steep southeast facing slopes. The altered tuffaceous rocks strike westerly and dip moderately to the south. They occur upslope and at least 170 m northwest of the areas trenched in 2011 where sample results included 6 m averaging 1.08% WO3. The dimensions of the scheelite-bearing calc-silicate altered sedimentary rocks have not been determined. Select grab samples of the mineralization graded up to 4750 ppm W (or 0.599% WO3).

Sample ID	Туре	Location	UTM (NAD 87)	ELEMENT	Au (ppb)	Au (g/t)	Ag (ppm)	Ag (g/t)	Ag (g/t)	Te (ppm)	Bi (ppm)	Cu (ppm)	Mo (ppm)	Pb (ppm)	W (ppm)	Zn (ppm) Comments
ROCK SAMPLES			Easting	Northing	METHOD	FAA313	FAG303	ICM40B	AAS42E	FAG313	ICM40B	ICM40B	ICM40B	ICM40B	ICM40B	ICM40B	ICM40B
1249	standard	CDN-GS-22	-			>10000	23	3.51	N.A.	N.A.	2.79	0.53	62.5	2050	30.2	39.8	94
1250	standard	CDN-CGS-18	-	(=)		272	N.A.	2.98	N.A.	N.A.	0.29	0.81	2990	43.5	96.3	8.4	346
1251	grab	Saddle	612580	5913731		6	N.A.	0.14	N.A.	N.A.	0.12	0.05	10.6	3.08	87.8	0.9	433 epidote-altered metavolcanic FW to vein (sample 1252)
1252	grab	Saddle	612580	5913731		399	N.A.	>10	150	N.A.	36.6	1.69	1260	6.85	>10000	0.4	>10000 q2-py-gl vein 20-25 cm thick oriented 155/245; cutting strongly foliated diorite w pronounced epidote banding
1253	grab	Saddle	612580	5913731		14	N.A.	0.53	N.A.	N.A.	0.23	0.06	52.6	1.88	93.1	2.2	168 epidote-altered metavolcanic HW to vein (sample 1252)
1254	grab	Saddle	612580	5913731		<5	N.A.	0.66	N.A.	N.A.	0.41	0.04	7.3	2.43	316	0.6	125 epidote-altered metavolcanic HW to vein (sample 1252)
1255	chip	Saddle	612589	5913724		1060	N.A.	>10	57.6	N.A.	30.7	2.96	91.6	10.6	>10000	0.6	1030 q2-py-gl-cp vein; 38 cm thick where sampled; thickens to 70 cm; oriented 158/subvertical
1256	chip	Saddle	612598	5913723		1160	N.A.	>10	159	N.A.	57.6	2.19	896	7.93	>10000	1.2	9160 q2-py-gl vein; 18 cm where sampled, but thickens to 40 cm; oriented 058/385
1257	chip	Saddle	612564	5913714		885	N.A.	>10	161	N.A.	25.8	0.46	78.8	7.93	>10000	0.7	111 Q2 vein w tr py-gl+/-cp; 16 cm thick where sampled; oriented 028/265
1258	chip	New Vein	612279	5913753		30	N.A.	>10	19	N.A.	15.1	0.34	525	11.4	7170	0.6	4430 q2-py-gl vein oriented 044/365; 40 cm thick where sampled, but thickens to 100 cm immediately to east
1259	grab	New Vein	612183	5913753		103	N.A.	>10	53.2	N.A.	125	66.3	653	20.1	>10000	135	>10000 selected grab from HW part of 90 cm q2-py-gl vein oriented 034/425; near sample 1361385 (2011)
1260	grab	Trench 3	613162	5913863		1920	N.A.	>10	150	N.A.	136	4.51	57.7	12.7	>10000	2	38 92 vein w tr gl from westernmost trench channel sampled in 2011
1261	grab	New Vein	612286	5913761		58	N.A.	>10	12.3	N.A.	24.5	5.35	537	11.1	2900	6.1	2011 2070 85 to 100 cm wide gz vein w tr to 1 % diss py-gl
1262	grab	New Vein	612285	5913760		9	N.A.	0.81	N.A.	N.A.	0.99	0.26	71.4	3.76	128	3.3	216 diorite from HW of vein (sample 1261)
1263	chip	New Vein	612078	5913660		37	N.A.	>10	33.1	N.A.	58.9	5.96	574	11.3	>10000	3.5	3440 q2 vein w 6-8% diss gl-py-sp+/-cp; 25 cm chip from centre of vein; vein follows lith contact
1264	grab	New Vein	612076	5913659		756	N.A.	>10	197	N.A.	99.7	5.26	82.9	34	>10000	4.1	1190 60 cm q2 vein w 1-2% diss gl-py; oriented 038/22SE; 20 m east of Pry Bar Vein
1265	chip	New Vein	612078	5913660		<5	N.A.	1.75	N.A.	N.A.	0.96	0.2	140	6.66	556	6.8	279 footwall siliciclastics - composite chip across 3 m of PW
1266	grab	New Vein	612046	5913642		35	N.A.	6.38	N.A.	N.A.	1.75	0.3	132	8.96	478	8.4	167 $ \eta \! > \! p \gamma$ vein oriented 050/205; hosted by sheared diorite
1267	chip	Рту Ваг	611941	5913609		66	N.A.	>10	94.8	N.A.	0.49	1	1750	32.7	2050	9	973 composite chip of 'Contact Zone' style QSP alteration w polymetallic stringers
1268	grab	Pry Bar	611922	5913599		11	N.A.	7.27	N.A.	N.A.	3.53	2.09	126	12.8	1180	1.7	1320 40 cm q2 vein w tr py; oriented 066/405
1269	grab	Pry Bar	611913	5913613		23	N.A.	>10	12.2	N.A.	2.2	0.2	355	20.6	1170	20.5	505 composite grab of qz stringer mineralization w tr-0.5% py+/-gl
1270	grab	West of Kenney Lake	615192	5914181		<5	N.A.	0.14	N.A.	N.A.	0.07	0.12	13.3	1.68	32.5	0.8	91 mod magnetic, hornfelsed tuffacesous siltstone
1271	grab	West of Kenney Lake	615120	5914350		20	N.A.	0.19	N.A.	N.A.	0.81	2.6	<0.5	2.99	23.1	5.3	85 pyritic andesite w 6-8% diss py
1272H	standard	CDN-GS-22	×			>10000	24	3.16	N.A.	N.A.	2.83	0.51	63.6	1820	33	36	100
1272L	standard	CDN-CG5-18	2			295	N.A.	3.36	N.A.	N.A.	0.32	0.8	3070	42.4	92.7	8.5	344
1274	grab	West of Kenney Lake	611932	5913608		<5	N.A.	4.67	N.A.	N.A.	0.53	0.07	203	25.1	257	18.5	Pry Bar Vein and pit: q2-py vein up to 40 cm thick oriented 182 028/28N
1275	channel	Pry Bar	611937	5913610		27	N.A.	5.06	N.A.	N.A.	0.17	0.12	211	8.57	263	8.5	429 CSP 'Contact-Style' alteration enclosing Pry Bar Vein; 1.12 m cut channel sample
1276	channel	Pry Bar	611937	5913610		32	N.A.	>10	35.9	N.A.	0.7	0.5	2440	62.2	2100	14.8	1280 OSP 'Contact-Style' alteration enclosing Pry Bar Vein; 0.57 m cut channel sample
1277	channel	Pry Bar	611937	5913610		104	N.A.	>10	274	N.A.	0.16	0.61	5910	68.1	2340	8.3	1910 cut channel sample
1278	channel	Pry Bar	611932	5913608		19	N.A.	>10	143	N.A.	0.66	1.23	5350	107	1430	7.3	Pry Bar Vein Prospect Pit; q2-py vein up to 40 cm thick 854 oriente0 078/78N; sits within "Contact Zone" style alt'n & min'n w diss gl, sp, py in wallrock envelopes; 0.66 m cut channel sample
1279	channel	Pry Bar	611919	5913594		154	N.A.	>10	>300	354	1.14	0.83	6030	42.2	1350	9.6	Pry Bar Vein: q2-py vein up to 40 cm thick oriented 078/78N; 2040 0.86 m cut channel sample

Table 3: 2012 Rock Sample Results

Sample ID	Туре	Location	UTM (I	NAD 87)	ELEMENT	Au (ppb)	Au (g/t)	Ag (ppm)	Ag (g/t)	Ag (g/t)	Te (ppm)	Bi (ppm)	Cu (ppm)	Mo (ppm)	Pb (ppm)	W (ppm)	Zn (ppm) Comments
ROCK SAMPLES			Easting	Northing	METHOD	FAA313	FAG303	ICM40B	AAS42E	FAG313	ICM40B	ICM40B	ICM40B	ICM40B	ICM408	ICM40B	ICM40B
1280	chip	New West	611812	5913572		712	N.A.	>10	92.7	N.A.	149	61.7	203	15.6	6930	16.9	3670 0.95 m wide qz vein w 4-5% patchy-blebby py-gl-sp; vein oriented 044/195; sampled across bottom 0.7 m of vein
1281	grab	New West	611803	5913549		61	N.A.	>10	47.6	N.A.	37.1	7.65	161	25.6	>10000	4.8	4550 sub o/c of q2 vein w 2-3% c-gr diss py-gl-sp
1282	grab	New West	611803	5913549		138	N.A.	>10	40.7	N.A.	19.4	3.96	400	11.3	6190	4.6	2740 qz vein w 1-2% diss py-gl-sp; vein oriented 140/155E
1283	grab	West of Kenney Lake	614951	5914942		<5	N.A.	0.52	N.A.	N.A.	0.29	0.18	24.7	6.97	56.5	1.1	121 weakly magnetic, bedded tuffaceous siltstone w .5 - 1% diss py-po; bedding = 086/34N
1284	grab	West of Kenney Lake	615053	5914904		<5	N.A.	0.38	N.A.	N.A.	0.31	0.59	105	3.05	26.6	1.2	119 andesitic tuff w bands of epidote, clots of py & finely diss po
1285	grab	Pond	611283	5913866		<5	N.A.	0.13	N.A.	N.A.	0.06	0.06	20.1	9.88	12.2	4.5	7 oxidized and QSP-altered diorite to qz diorite w 6-8% of coarse aggregates & stringers of py
1286	channel	H-Spot	611211	5913990		<5	N.A.	0.07	N.A.	N.A.	0.09	0.07	52.5	32.B	7.5	2.6	19 intensely QSP altered diorite to qz diorite w up 8-10% py as coarse aggregates; 1.10 m cut channel sample
1287	channel	H-Spot	611211	5913990		11	N.A.	0.06	N.A.	N.A.	0.06	0.04	35.5	24.2	7.8	2.7	intensely QSP altered diorite to q2 diorite w up 8-10% py as coarse aggregates; 0.75 m cut channel sample
1288	channel	H-Spot	611211	5913990		<5	N.A.	0.07	N.A.	N.A.	<0.05	0.08	86.3	20.4	7.2	2.4	18 intensely QSP altered diorite to qz diorite w up 8-10% py as coarse aggregates; 0.78 m cut channel sample
1289	channel	H-Spot	611211	5913990		<5	N.A.	0.06	N.A.	N.A.	0.08	0.09	56.3	29.3	7.4	2.3	14 intensely QSP altered diorite to q2 diorite w up 8-10% py as coarse aggregates; 0.70 m cut channel sample
1290	channel	H-Spot	611211	5913990		<5	N.A.	0.07	N.A.	N.A.	0.14	0.09	115	145	6.3	2.5	16 intensely QSP altered diorite to q2 diorite w up 8-10% py as coarse aggregates; 0.84 m cut channel sample
1291	channel	H-Spot	611211	5913990		8	N.A.	0.07	N.A.	N.A.	0.26	0.12	121	244	9.8	2.8	intensely QSP altered diorite to q2 diorite w up 8-10% py as coarse aggregates; 0.88 m cut channel sample
1292	channel	H-Spot	611211	5913990		< 5	N.A.	6.57	N.A.	N.A.	0.14	0.18	4240	23.1	12.3	2.9	101 potassic alt'd diorite w 5% aggregates of intergrown mt-cp-py strong fabric 142/74 SW; 0.86 m cut channel sample
1292H	standard	CDN-GS-22	÷	100		>10000	22	3.34	N.A.	N.A.	3.22	0.55	64.9	1860	31.7	39.3	94
1292L	standard	CDN-CGS-18	-			289	N.A.	3.03	N.A.	N.A.	0.27	0.97	3090	43.4	96.3	8.9	355
1293	grab	NW of H-Spot	610575	5914295		<5	N.A.	0.13	N.A.	N.A.	0.06	<0.04	31.2	1.52	15.5	2.3	87 magnetic hornfelsed volcanic tuff/tuffaceous argillite
1294	grab	NW of H-Spot	610314	5914380		<5	N.A.	0.17	N.A.	N.A.	0.1	0.1	55.5	4.58	16	0.5	55 rusty weathering, black pyritic angilite
1295	grab	NW of Kenney Lake	614505	5916927		<5	N.A.	0.1	N.A.	N.A.	< 0.05	0.04	20.3	3.77	13	0.2	155 rusty weathering, black pyritic argillite
1296	fleat	NW of Kenney Lake	614553	5916758		51	N.A.	>10	15.7	N.A.	0.21	0.26	1460	4.45	365	0.1	8940 angular polymetallic vein float in creek
1297	grab	NW of Kenney Lake	614717	5916796		<5	N.A.	0.08	N.A.	N.A.	<0.05	0.04	24.7	4.79	12.8	0.4	71 pyritic volcanic conglomerate
1298	grab	NW area of property	611248	5917310		<5	N.A.	0.12	N.A.	N.A.	< 0.05	0.05	119	2.7	18	0.8	100 weak potassic alt'd c-gr granodiolte w cp-bearing kspar vnlts
1299	grab	NW area of property	611109	5917310		<5	N.A.	0.06	N.A.	N.A.	< 0.05	0.05	162	4.26	18.1	0.4	24 kspar-rich dyke cutting granodiorite w tr diss cp
1304	grab	Pry Bar	611882	5913548		<5	N.A.	0.78	N.A.	N.A.	0.23	0.66	14.5	9.76	14.7	2.9	14 gz vein w 1-2% diss py
1305	grab	Pry Bar	611887	5913562		24	N.A.	>10	12.6	N.A.	4.76	1.41	85.3	7.33	4430	1.1	2850 ladder qz veins w 1-2% diss py-gl-sp
1306	grab	Pry Bar	611896	5913588		8	N.A.	2.79	N.A.	N.A.	1.3	0.87	547	3.64	21.8	74	1180 diorite w qz stringers and tr diss f-gr Sx
1307	grab	New West	611825	5913586		15	N.A.	>10	12.7	N.A.	18.8	4.58	206	11.7	5190	6	2710 qz vein w 1-2% diss py-gl-sp
1308	grab	West of Kenney Lake	614928	5914998		в	N.A.	0.46	N.A.	N.A.	1.57	0.43	62.1	4.21	13.7	5	124 hornfelsed tuffaceous seds
1309	grab	West of Kenney Lake	615000	5914953		7	N.A.	1.27	N.A.	N.A.	3.5	1.61	67.3	9.84	17.4	50.8	120 hornfelsed tuffaceous seds
1310	grab	Pond Zone	611289	5913855		<5	N.A.	0.08	N.A.	N.A.	0.2	0.07	18.5	192	16.5	2.5	20 oxidized and QSP-altered diorite to q2 diorite w 6-8% of coarse aggregates & stringers of py
1311	grab	Pond Zone	611261	5913860		6	N.A.	1.2	N.A.	N.A.	1.28	0.58	73.8	2.88	82.8	3.7	90 oxidized and QSP-altered diorite to qz diorite w 6-8% of coarse aggregates & stringers of py
1312	grab	Pond Zone	611196	5913796		6	N.A.	2	N.A.	N.A.	0.23	1.19	181	4.31	35.7	6.9	64 oxidized and QSP-altered diorite to q2 diorite w 6-8% of coarse aggregates & stringers of py
1313	grab	West of Pond Zone	610757	5913652		24	N.A.	>10	19.1	N.A.	12.9	12.6	3030	4.42	20.8	0.5	77~ set of q2-chl-epi veins w mal & up to $0.5%$ diss cpy
1315	grab	NW of Kenney Lake	614127	5916718		<5	N.A.	0.76	N.A.	N.A.	0.06	0.11	40	11.7	32.7	0.6	103 diorite adjacent to volcanic dyke
1315H	standard	CDN-G5-22				>10000	23	3.18	N.A.	N.A.	3.07	0.54	60.1	1870	30.2	38.2	90

Sample ID	Туре	Location	UTM (I	NAD 87)	ELEMENT	Au (ppb)	Au (g/t)	Ag (ppm)	Ag (g/t)	Ag (g/t)	Te (ppm)	Bi (ppm)	Cu (ppm)	Mo (ppm)	Pb (ppm)	W (ppm)	Zn (ppm) Comments
ROCK SAMPLES			Easting	Northing	METHOD	FAA313	FAG303	ICM408	AAS42E	FAG313	ICM40B	ICM40B	ICM408	ICM40B	ICM408	ICM40B	ICM40B
1315L	standard	CDN-CGS-18	2	~		293	N.A.	2.95	N.A.	N.A.	0.33	0.78	3120	42.7	90.8	8.4	349
1316	grab	NW of Kenney Lake	615774	5916592		<5	N.A.	0.07	N.A.	N.A.	0.09	0.08	10	2.3	12.5	5.9	103 grey-green f-gr weakly magentic andesitic tuff w 1% diss py &
1318	grab	NW area of property	611645	5916950		12	N.A.	0.2	N.A.	N.A.	0.12	0.24	131	7.65	12.7	1.2	57 propylitic altd granodiorite w 2-3% py on fracs & tr diss py-cp
1319	grab	NW of Kenney Lake	614783	5917396		<5	N.A.	0.12	N.A.	N.A.	0.18	0.23	32.4	2.68	9.5	0.4	30 pale green, weakly magnetic lapilli tuff
1320	grab	NW of Kenney Lake	614792	5917400		21	N.A.	0.2	N.A.	N.A.	0.41	0.29	13	1.3	12.1	1.2	138 pale grey-green tuff with diss py-po
1321	grab	Harrison-Lindquist Ridge	612851	5914049		6	N.A.	2.64	N.A.	N.A.	35.5	7.65	80.8	9.35	61.8	1.9	15 fe-oxide stained q2 vein w minor epi & py
1322	grab	Saddle	612763	5913873		295	N.A.	>10	27.3	N.A.	17.3	7.1	104	8.44	1120	37.9	403. HW qz vein w tr diss py
1323	grab	North Pond	611079	5914656		<5	N.A.	0.28	N.A.	N.A.	0.11	0.3	39.9	4.21	9.6	3	51 pale-med green lapilli tuffs, lithic-rich flows
1324	grab	Harrison Scheelite	613056	5914050		5	N.A.	0.16	N.A.	N.A.	2.06	3.02	7.2	1.72	22.4	2	21 pale grey to white silicified limestone
1326	grab	Harrison-Lindquist Ridge	613017	5914131		25	N.A.	4.12	N.A.	N.A.	2.87	0.4	245	4.51	3200	4.3	3140 select grab of q2 vein w 1-2% diss py-gl-sp
1327	grab	Saddle	612715	5913806		55	N.A.	>10	16.4	N.A.	437	507	169	18.4	135	2	47 select grab from 40 cm q2-py vein; oriented 166/26E
1328	grab	Saddle Area	612738	5913875		<5	N.A.	0.58	N.A.	N.A.	2.81	4.63	48.7	4.03	150	649	236 hornfels to skarn-alt'd tuffaceous seds
1329	grab	Saddle	612712	5913803		916	N.A.	>10	>300	633	357	1240	358	14.6	>10000	2.2	8230 select grab from 1.4 m qz-py-sp-gl-cp vein; oriented 160/40E
1330	grab	Saddle	612720	5913795		100	N.A.	>10	109	N.A.	124	249	637	24	3970	6.1	967 20 cm qz vein w diss 1-2% diss py-gl-cp; oriented 058/425
1331	grab	North Pond	611229	5914443		5	N.A.	2.6	N.A.	N.A.	2.54	5.62	21.5	5.26	124	3.5	115 pyritic intermediate tuff
1350	grab	NW of Kenney Lake	614750	5917750		<5	N.A.	1.06	N.A.	N.A.	0.88	1.92	266	9.81	30.2	1.2	20 20 cm qz vein w tr diss py, mal
DH12-BL01	grab	NW of Kenney Lake	614801	5917666		262	N.A.	7.72	N.A.	N.A.	2.01	2.68	4540	1.88	21.2	0.4	230 epi-chl-cc alt intermediate volc w diss cp-py
1478	grab	Harrison Scheelite	613061	5914043		<5	N.A.	0.1	N.A.	N.A.	0.12	0.26	25.9	1.63	15.1	0.6	25 white quartz veins cutting and esitc tuff
1479	chip	Harrison Scheelite	613061	5914043		<5	N.A.	0.68	N.A.	N.A.	0.19	0.32	37.2	24.9	47.6	4.2	31 0.5 m chip sample of gz vein material below Cam's Trench
1480	chip	Harrison Scheelite	613098	5914066		12	N.A.	7	N.A.	N.A.	21.4	12.6	78.3	19.1	428	2780	145 3 m x 5 m area chip/panel sample of disseminated scheelite
1481	chip	Harrison Scheelite	613090	5914061		6	N.A.	8.24	N.A.	N.A.	13.6	14.5	91.8	35.7	345	4750	mnzn 53 .5. m x 6 m area chip/panel sample of disseminated scheelite mnzn
1482	grab	Harrison Scheelite	613087	5914070		<5	N.A.	2.22	N.A.	N.A.	7.07	4.16	77	8.02	110	283	96 selcted grabs of same
1483	grab	Harrison Scheelite	613062	5914044		9	N.A.	>10	63.4	N.A.	68.9	164	99.7	7.1	2500	2810	21 selected grabs of same
1484	rock - grab	Harrison Scheelite	613077	5914043		<5	N.A.	3.72	N.A.	N.A.	8.93	5.64	40.5	6.58	99.3	3530	52 1 m x 2.5 m area chip/panel of c-gr diss scheelite in epidote- alt tuffaceous volc
1485	rock - grab	Harrison Scheelite	613080	5914061		15	N.A.	>10	29.9	N.A.	67	62.1	82.2	30.4	1460	28.3	79 white quartz vein w tr f-gr diss py-gl
1486	rock - grab	Harrison Scheelite	613080	5914061		<5	N.A.	9.22	N.A.	N.A.	14.3	19	32	22.6	433	21.9	100 barren-looking, white quartz vein

Path

616000		6	17000	E D
	W E	DEER HORN METALS		
			S	Deerhorn Project 2012 Sample Locations Figure 6
			Whitesail Lake (Nechako Reservoir)	Legend Rock Sample Silt Sample Deer Horn Adit Road 2011 Exploration
IJHT				Access Trail Access Trail Stream Contour 20m Lake Underground Workings
1316 1317				Outline of Gold-Silver Tellurium Resource Stratified Rocks Cretaceous UKK Kasalka Group
			uKK	
	Ke	enney Lake		Image: Telkwa Formation Metamorphic Rocks U Paleozoic to M Jurassic uPzJGgs Gamsby Complex Intrusive Rocks Eocene
				EgCoast Plutonic ComplexLate CretaceousLKgdUnnamedMiddle JurassicMJTqdTrapper Plutonic Suite
Sample ID ROCK SAMPLES 1251 1252 1253 1254 1255 1256 1256 1257	Easting Northing METHOD 612580 5913731 612580 5913731 612580 5913731 612580 5913731 612580 5913731 612580 5913731 612580 5913724 612598 5913723 612564 5913714	FAA313 FAG303 ICM40B AAS42E FAG313 ICM4 6 N.A 0.14 N.A N.A 0 399 N.A >10 150 N.A 3 14 N.A 0.53 N.A NA 0 <5	12 0.05 10.6 3.08 87.8 0.9 433 3.6 1.69 1260 6.85 >10000 0.4 >10000 23 0.06 52.6 1.88 93.1 2.2 168 41 0.04 7.3 2.43 316 0.6 125 0.7 2.96 91.6 10.6 >10000 0.6 1030 7.6 2.19 896 7.93 >10000 0.7 111	Date: 5/16/2013 Projection: NAD 1983 UTM Zone 9N Scale: 1:10,000 Author: tkwitkoski Last Modified By: tkwitkoski
1258 1259 1260 1261 1261 1262 1263 1264 1265 1266 1266 1267 1266 1267 1268 1269	612279 5913753 612183 5913753 613162 5913863 612286 5913761 612285 5913760 612076 5913660 612076 5913660 612078 5913660 612078 5913660 612078 5913660 612046 5913642 611941 5913609 611922 5913599 611913 5913613	103 NA >10 53.2 NA 11 1920 NA >10 150 NA 1 58 NA >10 150 NA 1 58 NA >10 12.3 NA 2 9 NA 0.81 NA NA 0 37 NA >10 33.1 NA 5 756 NA >10 197 NA 9 <5	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Checked By: BL Revision #: 0 50 100 200 300 400 500 Meters
1270 1271 1274 1275 1276 1276 1277 1278 1279 1280 1281 1281 1282 1283 1284	615192 5914181 615192 5914350 611932 5913608 611937 5913610 611937 5913610 611932 5913608 611932 5913608 611932 5913608 611932 5913608 611915 5913594 611803 5913594 611803 5913549 611803 5913549 614951 5914942 615053 5914904	20 NA 0.19 NA NA 0 <5	07 0.12 13.3 1.68 32.5 0.8 91 81 2.6 <0.5	Smithers Deer Horn Project
1285 1286 1286 1287 1288 1289 1290 1290 1291 1292 1293 1294 1295 1296	611283 5913866 611211 5913890 611211 5913990 611211 5913990 611211 5913990 611211 5913990 611211 5913990 611211 5913990 611211 5913990 611211 5913990 611211 5913990 6110575 5914295 610314 5914380 614505 5916927 614553 5916758	<5 NA 0.13 NA NA 0 <5	06 0.06 20.1 9.88 12.2 4.5 7	Allnorth
1297 1298 1299 1304 1305 1306 1306 1307 1308 1309 1310 1311 1311	614717 5916796 611248 5917310 611109 5917310 611882 5913548 611887 5913562 611895 5913588 611825 5913586 614928 5914958 615000 5914953 611289 5913855 611261 5913860 611261 5913796	<5 NA 0.08 NA NA <0 <5	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
1312 1313 1315 1316 1318 1319 1320 1321 1322 1323 1324 1326 1327	611730 5913852 610757 5913652 614127 5916718 615774 5916592 611645 5916950 614792 5917396 614792 5917396 614792 5917400 612851 5914049 612763 5913873 611079 5914656 613056 5914050 613017 5914131 612715 5913806	24 NA >10 19.1 NA 1 <5	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
1328 1329 1330 1331 1350 DH12-BL01 1478 1479 1480 1481 1482	612738 5913875 612712 5913803 612720 5913795 611229 5914443 614750 5917750 614801 5917666 613061 5914043 613063 5914043 613098 5914063 613090 5914061 613087 5914070	<5 NA 0.58 NA NA 2 916 NA >10 >300 633 3 100 NA >10 109 NA 1 5 NA 2.6 NA NA 2 <5	81 4.63 48.7 4.03 150 649 236 57 1240 358 14.6 >10000 2.2 8230 24 249 637 24 3970 6.1 967 54 5.62 21.5 5.26 124 3.5 115 88 1.92 266 9.81 30.2 1.2 20 01 2.68 4540 1.88 21.2 0.4 230 12 0.26 25.9 1.63 15.1 0.6 25 19 0.32 37.2 24.9 47.6 4.2 31 1.4 12.6 78.3 19.1 428 2780 145 36 14.5 91.8 35.7 345 4750 53 07 4.16 77 8.02 110 283 96	
1483 1484 1485 1486 SILT SAMPLES 1272 1273 1300	613062 5914044 613077 5914043 613080 5914061 613080 5914061 614717 5914354 614619 5914185 610549 59147525	<5 NA 3.72 NA NA 8 15 NA >10 29.9 NA <5	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
1300 1302 1303 1317 616000	610549 5917525 615042 5914422 614471 5914064 615774 5916592	9 NA 0.24 NA NA 0 27 NA 0.36 NA NA 0 7 NA 0.41 NA NA 0	33 0.47 57.9 5.95 66.3 3.3 201 26 0.45 50.4 3.72 36 2.2 141 31 0.49 69.6 4.95 34.2 3.2 283 24 0.35 37.9 2.06 59 4.2 123 I I I I I I	

9.1.1 SILT SAMPLE RESULTS

A total of six reconnaissance silt samples were collected from three areas of the property. One sample (#1300: 36 ppb Au) collected in the northwest part of the survey area and another sample (#1303: 27 ppb Au) collected west of Kenney Lake, are considered anomalous for gold. A more systematic approach to evaluating each area is required in order to interpret the significance of the anomalies.

Sample ID	Туре	Location	UTM (N	NAD 87)	ELEMENT	Au (ppb)	Ag (ppm)	Ag (g/t)	Ag (g/t)	Te (ppm)	Bi (ppm)	Cu (ppm)	Mo (ppm)	Pb (ppm)	W (ppm)	Zn (ppm)
SILT SAMPLES			Easting	Northing	METHOD	FAA313	ICM40B	AAS42E	FAG313	ICM40B	ICM40B	ICM40B	ICM40B	ICM40B	ICM40B	ICM40B
1272	silt	near old Joubin camp	614717	5914354		7	0.68	N.A.	N.A.	0.6	1.16	60.7	4.1	58.9	4.3	272
1273	silt	near old Joubin camp	614619	5914185		7	0.43	N.A.	N.A.	0.26	0.4	58.6	4.42	36.1	5	286
1300	silt	NW area of property	610549	5917525		36	0.45	N.A.	N.A.	0.33	0.47	57.9	5.95	66.3	3.3	201
1302	silt	near old Joubin camp	615042	5914422		9	0.24	N.A.	N.A.	0.26	0.45	50.4	3.72	36	2.2	141
1303	silt	near old Joubin camp	614471	5914064		27	0.36	N.A.	N.A.	0.31	0.49	69.6	4.95	34.2	3.2	283
1317	silt	NW of Kenney Lake	615774	5916592		7	0.41	N.A.	N.A.	0.24	0.35	37.9	2.06	59	4.2	123

Table 4: 2012 Silt Sample Results

10 SAMPLING METHOD AND APPROACH

10.1 CHANNEL, CHIP AND GRAB SAMPLE COLLECTION

In 2012, channel, chip and grab samples were collected by field staff working under the direction of the author or by the principal author himself.

Channel samples 5 cm wide were cut with a gas-powered circular diamond saw to a depth of 4-5 cm and sample material was removed with a chisel and crack hammer. Where possible the channels were cut perpendicular to the interpreted strike of the vein or zone, starting at the footwall and proceeding in a continuous manner across the vein or zone to its contact with the hangingwall or until limited by a lack of rock exposure.

Chip samples were collected across the trend of the vein or zone sampled. Selected grab samples were collected from mineralized outcrop, sub-outcrop or float.

Each sample collected for analysis was described and its location was recorded using hand-held GPS units with an accuracy of 3 m to 6 m. The sample was then placed in a polyethylene bag, given a unique sequential sample number and tag, and sealed with a zap strap. Photographs of each sample location site were also taken. Eight standards were inserted into the sample stream at regular intervals following a prescribed sequence. In addition, standard laboratory repeat analysis served to provide quality control. All of the samples were recorded on shipment forms as they were readied for shipment.

11 SAMPLE PREPARATION, ANALYSIS AND SECURITY

11.1 SAMPLE PREPARATION, GEOCHEMICAL ANALYSIS AND ASSAYING

Each rock sample was individually crushed and pulverized (following SGS's PRP89 sample preparation package), and the resulting sample pulp was analyzed. Samples were jaw crushed until 75% passed through a 2 mm mesh screen. From this material a 250 g riffle split sample was collected and then

pulverized in a mild-steel ring-and-puck mill until 85% passed through a 75 micron mesh screen. Each resulting sample was analyzed by one or more of the methods described below. The remaining coarse reject portion of each original sample was collected and remains in storage.

All samples were evaluated for gold using Fire Assay with AAS Finish (method FAA313) and for 49 elements by four acid digestion / ICP-MS analysis (method ICM40B). Samples returning more than 10,000 ppb Au were re-assayed using a 30 g sample with gravimetric finish (method FAG303). Samples returning more than 10 ppm Ag were re-analyzed using method AAS42E. One sample exceeding 300 ppm Ag was assayed using a 30 g sample with gravimetric finish (method FAG313).

11.2 SECURITY

All 2012 samples were packed into labeled, heavy woven nylon 'rice' bags and sealed with robust zap straps. The rice bags were then shipped in a single batch via commercial carrier to SGS Minerals Services in Vancouver, BC.

11.3 2012 QA/QC

Data from the 2012 surface sampling program consisted of results for 83 rock samples and 6 silt samples.

Control samples, consisting of two different 'reference' standards, were inserted into the sample stream at regular intervals following a prescribed sequence.

11.3.1 GEOCHEMICAL STANDARDS, BLANKS AND DUPLICATE SAMPLES

The geochemical standards and blanks used in the 2012 quality control program were supplied by CDN Resources Laboratories Ltd of Delta, BC. The accepted analytical values for the two standards used are listed below with a +/- error which is equal to two interlab standard deviations.

High-Grade Gold Standard (CDN-GS-22): 22.94 +/- 1.12 g/t Au

Bulk Tonnage Gold-Copper Standard (CDN-CGS-18): 0.297 +/- 0.040 g/t Au & 0.319 +/- 0.016 % Cu

The 4 assay results of the standard CDN-GS-22 fall within two interlab standard deviations of the recommended value. Three out of four analyses of the standard CDN-CGS-18 (for copper and gold) fall within two interlab standard deviations of the accepted values. Overall, the analytical data for the standards used indicate that the lab showed an acceptable analytical quality and absence of bias.

12 DISCUSSION AND CONCLUSION

A 10-day prospecting program on the Deer Horn property successfully accomplished its main goals and discovered several significant mineral showings.

The western extension of the Deer Horn gold-silver-tellurium vein system is expressed in several vein and related quartz-sericite-pyrite alteration zones that were discovered or expanded upon during the 2012

program. These zones, including Saddle, New Vein, Pry Bar and New West, occur in the same structural setting (i.e. immediate hangingwall of the reverse fault previously discussed) as the resource area. The discoveries extend the overall strike length of the gold-silver-tellurium vein system to more than 2,400 m; and it remains open to the west. Further detailed prospecting, mapping and sampling should be conducted in these areas in advance of drilling.

The H-Spot and Pond zones are exciting new discoveries of bulk tonnage, porphyry-style copper+/-silver mineralization and associated alteration. They are located at the head of the valley north of the Deer Horn adit and 2.3 km west of Lindquist Peak in an area with no known exploration history. A second area of anomalous porphyry-related copper-gold mineralization occurs on a ridge crest 1.8 km northwest of Kenney Lake. Both areas require a systematic mapping and sampling prior to contemplation of any mechanized work.

The historic Harrison Scheelite mineral occurrence was located in steep, blocky terrain late in the prospecting program. Chip and grab sampling of calc-silicate altered tuffaceous, limy siltstone produced encouraging results, but the area requires detailed mapping and systematic sampling to provide vectors for further exploration of the tungsten target.

The Deer Horn gold-silver-tellurium vein system remains the principal exploration and development target on the property. Shallow diamond drilling has evaluated just the eastern third of the system's 2.4 km strike length. Diamond drilling on close-spaced step-outs, to fill in several gaps in the resource, and to test the system at grater depths are required.

The Harrison Scheelite tungsten zone and newly discovered copper showings add to the allure of the property. These zones should be further explored, but are regarded to be secondary targets.

13 Recommendations

It is recommended that exploration of the Deer Horn property continue and consist of:

- Detailed mapping and sampling of surface showings and underground workings, and a review of the 2009 and 2011 drill core. The estimated cost for mapping and sampling program is approximately \$40,000.
- A systematic diamond drilling program (up to 4400 m of drilling from up to 34 drill sites) targeting the near surface, high-grade gold-silver-tellurium potential of the Main vein, the bulk tonnage gold-silver-tellurium potential offered by the Contact zone, and several new targets that lie well west of the current resource. The estimated cost for the drilling program is approximately \$2,000,000.
- An assessment of the significant tungsten and copper showings located west of the Deer Horn adit, with follow-up geophysical surveying (3D-IP), trenching and/or diamond drilling should results warrant. The estimated cost for the reconnaissance assessment of tungsten and molybdenum showings only is approximately \$110,000.
- Completion of an environmental baseline assessment of the property, and examination of the suitability of several areas proposed for construction of infrastructure that would be in support of the submitted bulk sample permit application. The estimated cost is approximately \$100,000.

It is recommended that DHM proceed with the program as early as possible in 2013 to allow for the 10-12 week program to be completed prior to the onset of winter conditions. Following completion of the fieldwork, all existing data should be compiled and a revision of the existing NI 43-101 compliant mineral resource estimate should be completed.

The overall estimated cost of the proposed program is \$2.25 million.

14 ITEMIZED COST STATEMENT

Deer Horn Project - 2012	COST STATEMENT DETAILS	Dates Worked	# Days	Rate/Day	Amount	TOTALS
Crew - Wages & Salaries: F	Preparation, Travel & Field Time					
Dixon, Michael	Level III FA, Field Technician	Sep 8-20/12	11.00	415.00	4,565.00	
Huffels, Harry	Logistics Manager, Prospector	Sep 5-20/12	14.00	600.00	8,400.00	
Gifford, Scott	Project Manager, Prospector	Sep 5-20/12	14.00	660.00	9,240.00	
Gifford, Jeffrey	General Labourer	Sep 4-26/12	4.00	520.00	2,080.00	
Johnson, Bruce	Prospector	Sep 8-19/12	11.00	475.00	5,225.00	
Szerensci, Peter	Camp Cook, Logistics Assistant	Sep 5-20/12	11.00	410.00	4,510.00	
Ehalt, Spencer	General Labourer	Sep 9 & 18/12	1.50	110.00	165.00	
Hansen, Kory	General Labourer	Sep 9/12	1.00	110.00	110.00	
Booth, Darryl	General Labourer	Sep 18/12	1.00	50.00	50.00	
			68.50		34,345.00	34,345.00
Camp Accommodations						
Mountainside Exploration Mgmt Inc.	Crew & Contractors (61 man/camp days @ \$180.00/day)	Sep 9-18/12	61.00	180.00	10,980.00	10,980.00
Transportation & Rentals						
Freight						
Plateau Minerals	Rock Samples - Shipping to lab	Sep 25/12	1.00	174.40	174.40	
Float Planes Lakes District Air Services Ltd.	Crew, Gear, Supplies to/from Site	Sep 9-18/12	4.00	2,082.00	6,940.00	
Alpine Lakes Air	(Mob & Demob) Crew, Gear, Supplies to/from Site (Mob & Demob)	Sep 9-18/12	3.00	5,280.00	13,200.00	
			7.00		20,140.00	
Helicopter Westland Helicopters Ltd.	Crew, Gear, Supplies to/from Site (Mob & Demob)	Sep 9-18/12	7.00	24,196.00	24,196.00	
Fuel Super Save Gas & Evergreen Ind. Supplies	Propane	Sep 5 & 7/12	2.00	1,286.43	2,572.86	
Rentals - Equipment Mountainside Exploration Mgmt Inc.	ATV's, Saws, Generators, Field Equipment etc.	Sep 1-30/12	30.00	79.17	2,375.00	
Rentals -Trucks/Vehicles						
Harbour Ideal Lease	5 Ton Truck	Sep 5-25/12	20.00	151.94	3,038.85	
_					5,413.85	52,497.11
Travel						
Travel - Airfare Westjet, Air Canada	Crew Transportation to/from Smithers & PG	Sep 8, 18 & 28/12	4.00	870.66	3,482.64	
Travel - Hotel & Accommodations Carmel Hotel, Holiday Inn, Sandman Inn,	Crew Accommodations Mob/Demob	Sep 7-19/12	4.00	183.05	732.18	
Travel -Meals & Entertainment Dairy Queen, Aspen River House, Carmel Rest	Crew Meals Mob/Demob, Travel Meals Meeting (FN Consult)	Sep 7-20 & 28/12	6.00	200.75	1,204.48	

Chevron, Petro Canada Plateau Minerals, Bruce Johnson	Truck Fuel (Mob & Demob) Total Truck kms driven	Sep 8-30/12 Sep 8-19/12	22.00 0.65	71.49 1,239.08	1,572.68 805.40	
					7,797.38	7,797.38
Surveys & Contracting						
Assays						
SGS Canada Inc.	Samples Lab Processing	Oct 15 - Dec 1/12	1.00	1,754.75	5,849.16	
Acme Analytical Laboratories (Vancouver) Ltd.	SG Determinations	1, 12	1.00	192.32	192.32	
Canadian Resources Labs	Geochemical Standards	Sep 24/12	1.00	871.00	871.00	
			3.00		6,912.48	
Contracting - Expediting						
Skeena Expediting	Expediting Services	Sep 7-28/12	15.00	67.67	1,015.00	
Consulting - Geologists						
Plateau Minerals Corp.	Bob Lane, PGeo Consulting Services	Sep 1 - 30/12	1.00	9,430.77	9,430.77	
Reports & Petrographics						
Allnorth Consultants Limited	ArcGIS Mapping Services - Project	Mar 16 - Apr	1.00	201.60	201.60	
Allnorth Consultants Limited	Preparation ArcGIS Mapping Services - Project Mapping	30/12 Sep 1-30/12	1.00	277.20	277.20	
					478.80	
Research & Development						
Vancouver Petrographics Ltd.	Rock Cutting & Polishing for Promotional Displays	Nov 1/12	1.00	1,462.00	1,462.00	19,299.05
Reasonable Costs						
Report Writing						
Plateau Minerals	Report Writing, PGEO		5.00	750.00	3,750.00	
Economou Bookkeeping Services	Cost Statement		2.00	650.00	1,300.00	
Scivices						
			7.00		5,050.00	5,050.00
Other Costs						
Camp Supplies	Staples, London Drugs, Future Shop,	Sep 2-8/12	1.00	547.29	547.29	
Communications - Satellite Phone	Canadian Tire Iridium Phone Usage	Sep 1-30/12	1.00	395.60	395.60	
Communications - Internet	Starlynx Communications Ltd. Cdn Tire, Home Depot, Evergreen Ind.	Sep 9-28/12	1.00	2,058.00	2,058.00	
Field Supplies	Supplies, IRL Supplies	Sep 1-18/12	1.00	2,733.89	2,733.89	
Postage & Courier	Greyhound Canada	Sep 21/12	1.00	22.99	22.99	
					5,757.77	5,757.77
Total Cost	Deer Horn Project - 2012					135,726.31

Travel - Fuel & Km Charges

15 REFERENCES

Baase, A. (1989): Lindquist Lake Potential – Revision 1; Private report prepared for Equity Silver Mines Ltd., 4 pages.

Bacon, W.R. (1956): Harrison Gold (Deer Horn Mines Ltd.), *Minister of Mines, B.C.*, Annual Report, 1955, p. 25-27.

Buckles, H.R. (1954): The Deer Horn Property, Western Miner and Oil Review, November 1954 pp. 82-85

Childe F. and Kaip, A. (2000): Assessment Report for Surface Work on the Deer Horn Mine Property; *BC Ministry of Energy, Mines and Petroleum Resources;* Prepared for Guardsmen Resources Inc, Assessment Report 26419.

Clarke, W.G. (1968): Harrison (The Granby Mining Company Limited); *Minister of Mines, B.C.*, Annual Report, 1967, p. 114.

Coffin, D. and Renning, M. (1990): Geophysical and Geochemical Assessment Report on the Red, Yellow and Guardsmen Groups of Mineral Claims, Prepared for Amber Minerals Ltd; *BC Ministry of Energy, Mines and Petroleum Resources;* Assessment Report 20135.

Cox, D.P. and W.C. Bagby (1986): Descriptive Model of Au-Ag-Te Veins; in Mineral Deposit Models, USGS Bulletin 1693, p. 124.

Diakow, L.J. and Koyanagi, V. (1988a): Stratigraphy and Mineral occurrences of Chikamin Mountain and Whitesail Reach Map Areas, *BC Ministry of Energy, Mines and Petroleum Resources,* Geological Fieldwork 1987, Paper 1988-1, pp. 155-168.

Diakow, L.J. and Koyanagi, V. (1988b): Geology of Chikamin Mountain Map Area, *BC Ministry of Energy, Mines and Petroleum Resources,* Open File 1988-2.

Duffell, S. (1959): Whitesail Map Area, British Columbia; Geological Survey of Canada, Memoir 299.

Folk, P.G. (1990a): Quarterly Progress Report and Assessment Report for Work Done in 1989 on the Deer Horn Mine Project, Lindquist Lake, Tweedsmuir Recreation Area (93E/6W), Omineca Mining Division, Prepared for Golden Knight Resources Inc; *BC Ministry of Energy, Mines and Petroleum Resources;* Assessment Report 19966.

Folk, P.G. (1990b): Final report of work done in 1989 and 1990 on the Deer Horn Mine Project, Lindquist Lake, Tweedsmuir Recreation Area, 93E/6W, Omineca Mining Division, Unpublished report prepared for Golden Knight Resources Inc., October 30, 1990.

Holland, S.S. (1945): Whitesail Lake, Gold, Harrison; Minister of Mines, B.C., Annual Report, 1944, p. 176.

Holland, S.S. (1946): Whitesail Lake, Gold, Harrison; *Minister of Mines, B.C.*, Annual Report, 1945, p. A71-A72.

Joubin. F. (1950): Geological Report on the Harrison Group; *BC Ministry of Energy, Mines and Petroleum Resources;* Assessment Report 00050.

Lane, B. (2009): Summary Report on the Deer Horn Gold-Silver Project; Private report prepared for Golden Odyssey Mining Inc., 49 pages.

Lane, B. (2010): 2009 Diamond Drilling Report on the Deer Horn Project; *BC Ministry of Energy and Mines;* Assessment Report 31511, 284 pages.

Lane, B. and Giroux, G. (2010): Technical Report on the Deer Horn Gold-Silver-Tellurium Project; prepared for Golden Odyssey Mining Inc., 191 pages.

Lane B. and Giroux, G. (2012): Updated Resource Estimate for the Deer Horn Gold-Silver-Tellurium Property; Private Report prepared for Deer Horn Metals Inc., 139 pages.

Lindner, J. and Jego, A. (2009): Magnetometer, 3DIP and Maxmin Electromagnetic Surveys on the Deer Horn Property; Logistical Report prepared for Golden Odyssey Mining Inc., 20 pages.

Papezik, V.S. (1957): Geology of the Deer Horn Prospect, Omineca Mining Division, British Columbia, Unpublished M.Sc. Thesis, *The University of British Columbia*, 85 pages.

Pezzot, E.T. (2010): Geophysical data review – Deer Horn Project; Private Memorandum prepared for Golden Odyssey Mining Inc., 8 pages.

Renning, M.D. (1990): Geochemical Survey and Prospecting Report on the Red, Yellow and Guardsmen Groups of Mineral Claims, Lindquist Lake Area, British Columbia; *BC Ministry of Energy, Mines and Petroleum Resources*; Assessment Report 21559.

Renning, M.D. (2008): 2007 Geochemical and Prospecting Report on the Deer Horn Property; Prepared for Christopher James Gold Corp., *BC Ministry of Energy, Mines and Petroleum Resources,* Assessment Report 29527.

Renning, M.D., Gifford, L. and Graham, L (2007): 2006 Geochemical and Prospecting Report on the Deer Horn Mine Property; Prepared for Christopher James Gold Corp., *BC Ministry of Energy, Mines and Petroleum Resources,* Assessment Report 28898.

Robert F. and Poulsen, H. (2001): Vein Formation and Deformation in Greenstone Gold Deposits; in Structural Control on Ore Genesis: Reviews in Economic Geology, Edited by Richards, J.P., Tosdal, R.M., Volume 14, pages 111-156.

Sinclair, W.D. (1995a): Porphyry W; *in* Selected British Columbia Mineral Deposit Profiles, Volume 1, Metallics and Coal, Lefebure, D.V. and Ray, G.E., Editors, *BC Ministry of Energy, Mines and Petroleum Resources, Open File* 1995-20, pages 99-102.

Sinclair, W.D. (1995b): Porphyry Mo (Low-F-Type); *in* Selected British Columbia Mineral Deposit Profiles, Volume 1, Metallics and Coal, Lefebure, D.V. and Ray, G.E., Editors, *BC Ministry of Energy, Mines and Petroleum Resources, Open File 1995-20*, pages 91-94.

Woodsworth, G.J. (1978): Eastern Margin of the Coast Plutonic Complex in Whitesail Map-area, British Columbia; *In* Current Research, Part A, *Geological Survey of Canada*, Paper 78-1A, pages 71-75.

Woodsworth, G.J. (1979): Age Determinations and Geological Studies, K-Ar Isotopic Ages, R.K. Wanless, R.D. Stevens, G.R. Lachance and R.N. Delabio, Editors, Report A, *Geological Survey of Canada*, Paper 79-2, pages 21-22.

Woodsworth, G.J. (1980): Geology of the Whitesail Lake (93E) Map-area, *Geological Survey of Canada*, Open File Map 708.

16 STATEMENT OF QUALIFICATIONS

I, Robert (Bob) A. Lane, residing in Prince George, British Columbia, do hereby certify that:

- 1) I am currently employed as a consulting geologist by Plateau Minerals Corp, located at #7 1750 Quinn Street S, Prince George, British Columbia, Canada, V2N 1X3.
- 2) I obtained a Master of Science degree in Geology in 1990 from the University of British Columbia.
- I am a Professional Geoscientist (PGeo) registered with the Association of Professional Engineers and Geoscientists of British Columbia, license #18993, and have been a member in good standing since 1992.
- 4) I have worked as a geologist for more than 22 years since my graduation from university.
- 5) I have read the definition of "Qualified Person" set out in National Instrument 43-101 ("NI 43-101") and certify that by reason of my education, affiliation with a professional organization (as defined in NI 43-101) and past relevant work experience, I fulfill the requirements to be a "qualified person" within the meaning of Regulation NI 43-101.
- 6) I am the author of this assessment report on the Deer Horn project entitled "2012 Assessment Report on the Deer Horn Property" dated May 15, 2013.
- 7) I visited the Deer Horn project from September 9-18, 2012.
- I am independent of the issuer applying all of the tests in Section 1.5 of National Instrument 43-101. I have no interest in the property nor do I expect to receive any interest.

APPENDIX A – LABORATORY CERTIFICATES

Certificate of Analysis

Work Order: VC122738

To: Bob Lane

Date: Nov 07, 2012

MOUNTAINSIDE EXPLORATION MANAGEMENT INC 4302 DUNDAS STREET BURNABY BC V5C 1B3

P.O. No.	:	DEER HORN
Project No.	:	DEER HORN
No. Of Samples	:	6
Date Submitted	:	Oct 23, 2012
Report Comprises	:	Pages 1 to 7
		(Inclusive of Cover Sheet)

Distribution of unused material: Active files - upstairs:

Certified By Satpaul Gill QAQC Chemist

SGS Minerals Services Geochemistry Vancouver conforms to the requirements of ISO/IEC 17025 for specific tests as listed on their scope of accreditation which can be found at http://www.scc.ca/en/search/palcan/sgs

Report Footer:

L.N.R. = Listed not received = Not applicable n.a.

1.S. = Insufficient Sample = No result

*INF = Composition of this sample makes detection impossible by this method

M after a result denotes ppb to ppm conversion, % denotes ppm to % conversion

Methods marked with an asterisk (e.g. *NAA08V) were subcontracted

Methods marked with the @ symbol (e.g. @AAS21E) denote accredited tests

This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/terms_and_conditions.htm. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

WARNING: The sample(s) to which the findings recorded herein (the "Findings") relate was (were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of the goods and strictly relate to the sample(s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted. The findings report on the samples provided by the client and are not intended for commercial or contractual settlement purposes. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

·治療療 · · · · · · · · · · · · · · · · · ·									I A	ge z or i
Element	WtKg	Au	AI	Ва	Ca	Cr	Cu	Fe	ĸ	Li
Method	WGH79	FAA313	ICM40B							
Det.Lim.	0.001	5	0.01	1	0.01	1	0.5	0.01	0.01	1
Units	kg	ppb	%	ppm	%	ppm	ppm	%	%	ppm
1272	9.725	7	7.93	608	1.12	59	60.7	5.65	1.62	54
1273	7.895	7 i	6.61	665	0.96	118	58.6	4.75	1.67	54
1300	1.815	36	6.68	586	1.09	28	57.9	3.43	2.40	24
1302	4,155	9	6.79	391	1.67	41	50.4	4.56	1.22	21
1303	4.570	27	7.30	486	1.04	72	69.6	6.16	1.47	43
1317	6.415	7	6,93	546	1.69	55	37.9	5.36	1.65	29

This document is issued by the Company under its General Conditions of Service accessible at <u>http://www.sgs.com/terms_and_conditions.htm</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

WARNING: The sample(s) to which the findings recorded herein (the "Findings") relate was (were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of the goods and strictly relate to the sample(s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted. The findings report on the samples provided by the client and are not intended for commercial or contractual settlement purposes. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

SGS Canada Inc. Mineral Services 8282 Sherbrooke Street Vancouver BC t(604) 327-3436 f(604) 327-3423 www.ca.sgs.com

Page 2 of 7

階級語 したり 目的語名 しゅうしんしゃく かいてい 手切りあせい

Element Method Det.Lim. Units	Mg ICM40B 0.01 %	Mn ICM40B 2 ppm	Na ICM40B 0.01 %	Ni ICM40B 0.5 ppm	P ICM40B 50 ppm	S ICM40B 0.01 %	Sr ICM40B 0.5 ppm	Ti ICM40B 0.01 %	V ICM40B 2 ppm	Zn ICM40B 1 ppm
1272	1.28	1360	1.26	63.2	1000	0.11	247	0.39	139	272
1273	1.12	1070	1.08	105	800	0.06	264	0.36	125	286
1300	0.89	692	2.09	12.5	670	0.04	198	0.36	117	201
1302	1.24	1880	1.95	17.4	760	0.02	228	0.41	128	141
1303	0.90	1390	1.20	97.6	980	0.09	188	0.35	112	283
1317	1.02	931	1.68	28.5	690	0.21	243	0.39	159	123

This document is issued by the Company under its General Conditions of Service accessible at <u>http://www.sqs.com/terms_and_conditions.htm</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

WARNING: The sample(s) to which the findings recorded herein (the "Findings") relate was (were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of the goods and strictly relate to the sample(s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted. The findings report on the samples provided by the client and are not intended for commercial or contractual settlement purposes. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

SGS Canada Inc. Mineral Services 8282 Sherbrooke Street Vancouver BC t(604) 327-3436 f(604) 327-3423 www.ca.sgs.com

Page 3 of 7

경험을 내고 가지 않는 것이 나는 것이 나는 것을 가지 않는 것이다.

Element	Zr	Ag	As	Be	Bi	Cd	Ce	Co	Cs	Ga
Method	ICM40B									
Det.Lim.	0.5	0.02	1	0.1	0.04	0.02	0.05	0.1	5	0.1
Units	ppm									
1272	33.7	0.68	203	1.5	1.16	1.44	42.4	33.8	9	16.9
1273	31.8	0.43	104	1.6	0.40	0.52	50.9	31.9	7	16.6
1300	25.5	0.45	31	0.9	0.47	1.02	35.5	11.3	<5	14.8
1302	20.3	0.24	11	0.9	0.45	1.50	30.9	22.3	<5	15.0
1303	31.7	0.36	56	1.6	0.49	0.49	39.2	48.5	6	15.4
1317	25.7	0.41	54	1.0	0.35	0.64	37.5	16.5	<5	15.7

This document is issued by the Company under its General Conditions of Service accessible at <u>http://www.sgs.com/terms_and_conditions.htm</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

WARNING: The sample(s) to which the findings recorded herein (the "Findings") relate was (were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of the goods and strictly relate to the sample(s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted. The findings report on the samples provided by the client and are not intended for commercial or contractual settlement purposes. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

SGS Canada Inc. Mineral Services 8282 Sherbrooke Street Vancouver BC t(604) 327-3436 f(604) 327-3423 www.ca.sgs.com

Page 4 of 7

									r u	ye 0 017
Element	Hf	In	La	Lu	Мо	Nb	Pb	Rb	Sb	Sc
Method	ICM40B									
Det.Lim.	0.02	0.02	0.1	0.01	0.05	0.1	0.5	0.2	0.05	0.1
Units	ppm									
1272	0,99	0.07	19.2	0.25	4.10	6.3	58.9	61.6	2.19	15.3
1273	0.92	0.08	23.6	0.24	4.42	8.1	36.1	67.2	2.08	13.3
1300	1.05	0.05	16.4	0.25	5.95	4.0	66.3	68.7	2.66	11.1
1302	0.59	0.08	15.0	0.22	3.72	3.8	36.0	41.0	0.93	18.1
1303	0.93	0.07	17.8	0.22	4.95	6.2	34.2	53.7	1.90	12.6
1317	0.83	0.06	18.2	0.27	2.06	10.8	59.0	55.2	2.49	15.8

This document is issued by the Company under its General Conditions of Service accessible at <u>http://www.sqs.com/terms_and_conditions.htm</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

WARNING: The sample(s) to which the findings recorded herein (the "Findings") relate was (were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of the goods and strictly relate to the sample(s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted. The findings report on the samples provided by the client and are not intended for commercial or contractual settlement purposes. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

SGS Canada Inc. Mineral Services 8282 Sherbrooke Street Vancouver BC t(604) 327-3436 f(604) 327-3423 www.ca.sgs.com

Page 5 of 7

발표할 수 있는 것은 것 같은 것에서 가지 않는 것이 가격을 받으면 있다.

Element	Se ICM40B	Sn ICM40B	Ta ICM40B	Tb ICM40B	Te ICM40B	Th ICM40B	TI ICM40B	U ICM40B	W ICM40B	Y ICM40B
Method Dati Line	2	0.3	0.05	0.05	0.05	0.2	0.02	0.05	0.1	0.1
Det.Lim. Units	ppm	ppm	ppm	ppm						
1272	<2	1.7	0.48	0.68	0.60	4.7	0.49	1.90	4.3	16.5
1273	<2	2.0	0.60	0.71	0.26	5.8	0.49	2.43	5.0	16.5
1300	<2	1.5	0.31	0.59	0.33	6.1	0.55	3.91	3.3	15.2
1302	<2	1.0	0.28	0.62	0.26	2.6	0.33	0.79	2.2	15.8
1303	<2	1.8	0.44	0.62	0.31	4.2	0.42	1.51	3.2	14.3
1317	<2	1.3	1.00	0.67	0.24	4.5	0.44	7.84	4.2	17.2

This document is issued by the Company under its General Conditions of Service accessible at <u>http://www.sgs.com/terms and conditions.htm</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

WARNING: The sample(s) to which the findings recorded herein (the "Findings") relate was (were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of the goods and strictly relate to the sample(s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted. The findings report on the samples provided by the client and are not intended for commercial or contractual settlement purposes. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

SGS Canada Inc. Mineral Services 8282 Sherbrooke Street Vancouver BC t(604) 327-3436 f(604) 327-3423 www.ca.sgs.com

Page 6 of 7

Stored	10172738	· 동네 2018년 전 1919년
Element		Yb
Method		ICM40B
Det.Lim.		0.1
Units		ppm
1272		1.5
1273		1.5
1300		1.6
1302		1.5
1303		1.4
1317		1.7

Page 7 of 7

This document is issued by the Company under its General Conditions of Service accessible at <u>http://www.sgs.com/terms_and_conditions.htm</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

WARNING: The sample(s) to which the findings recorded herein (the "Findings") relate was (were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of the goods and strictly relate to the sample(s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted. The findings report on the samples provided by the client and are not intended for commercial or contractual settlement purposes. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

Certificate of Analysis

Work Order: VC122740

To: Bob Lane

Plateau Minerals Corp. #7-1750 S. Quinn street Prince George BC V2N 1X3

Date: Nov 10, 2012

P.O. No.	:	DEER HORN
Project No.	:	DEER HORN
No. Of Samples	:	74
Date Submitted	:	Oct 11, 2012
Report Comprises	:	Pages 1 to 13
		(Inclusive of Cover Sheet)

Distribution of unused material: Active files - upstairs:

Certified By

Cam Chiang Senior Chemist & Coordinator

SGS Minerals Services Geochemistry Vancouver conforms to the requirements of ISO/IEC 17025 for specific tests as listed on their scope of accreditation which can be found at http://www.scc.ca/en/search/palcan/sgs

Report Footer:

L.N.R. = Listed not received = Not applicable n.a.

LS. = Insufficient Sample = No result

*INF = Composition of this sample makes detection impossible by this method M after a result denotes ppb to ppm conversion, % denotes ppm to % conversion

Methods marked with an asterisk (e.g. *NAA08V) were subcontracted Methods marked with the @ symbol (e.g. @AAS21E) denote accredited tests

This document is issued by the Company under its General Conditions of Service accessible at http://www.sqs.com/terms_and_conditions.htm. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

WARNING: The sample(s) to which the findings recorded herein (the "Findings") relate was (were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of the goods and strictly relate to the sample(s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted. The findings report on the samples provided by the client and are not intended for commercial or contractual settlement purposes. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

[말날날] · - 김희금 ???? 뭐라는 바람에서 소란만만 '물건을 가라.

Element Method	WtKg WGH79	Au FAA313	AI ICM40B	Ba ICM40B	Ca ICM40B	Cr ICM40B	Cu ICM40B	Fe ICM40B	K ICM40B	Li ICM40B
Det.Lim.	0.001	5	0.01	1	0.01	1	0.5	0.01	0.01	1
Units	kg	ppb	%	ppm	%	ppm	ppm	%	%	ppm
249	0.160	>10000	5.74	109	1.01	28	62.5	4.71	3.30	72
250	0.175	272	6.98	632	1.59	88	2990	4.98	1.71	24
251	1.385	6	7.84	142	3.50	69	10.6	5.23	0.68	13
252	2.220	399	0.42	5	0.05	27	1260	>15.0	0.02	<1
253	2.165	14	6.20	446	2.12	14	52.6	3.66	1.67	3
254	1.950	<5	6.36	64	3.68	16	7.3	3.55	0.22	4
255	2.025	1060	0.18	9	0.01	33	91.6	2.98	0.06	<1
256	3.135	1160	0.61	23	0.04	32	896	5.47	0.17	<1
257	3.270	885	0.37	10	0.03	37	78.8	4.07	0.09	1
258	3.865	30	0.51	27	0.04	36	525	4.19	0.05	2
259	2.610	103	1.06	45	0.05	33	653	7.50	0.34	4
260	4.465	1920	0.38	19	<0.01	28	57.7	1.62	0.19	1
261	2.865	58	0.89	32	0.78	39	537	2.80	0.19	2
262	1.575	9	7.17	454	2.11	25	71.4	4.21	2.25	20
263	2.740	37	1.09	71	0.09	32	574	3.54	0.38	5
264	2.420	756	1.16	79	0.05	27	82.9	4.43	0.55	2
265	2.295	<5	8,14	472	1.41	40	140	5.10	4.06	- 15
266	2.920	35	1.86	141	0.02	33	132	2.51	1.22	2
267	3.225	66	4.32	354	0.35	35	1750	3.53	2.40	-
	2.905	11	9.32 0.74	43	0.07	28	126	4.32	0.31	4
268	1.685	23	er en en se vefe	43 297	0.18	38	355	3.71	2.27	، 6
269	0.830	23 <5	4.14 7.28	1090	1.97	38 12	13.3	5.91	3.62	0 14
270							e angele and see a state of the	11.2	· · · · · · · · · · · · · · · · · · ·	14
271	2.315	20	6.63	97	0.20	26	<0.5 63.6	4.60	5.85 3.25	69
272H	0.160	>10000	5.48	113	1.00	27	a and the second se	a a a sa mana sa manifikan		
272L	0.175	295	6.79	642	1.60	93	3070	5.02	1.72	24
274	2.680	<5	5.16	447	0.04	38	203	4.55	3.12	14
275	10.785	27	7.44	368	1.59	40	211	5.03	3.93	13
276	6.510	32	4.31	214	0.76	33	2440	5.64	2.26	8
277	8.875	104	4.13	311	0.96	28	5910	4.17	2.41	8
278	5.985	19	3.69	196	0.39	40	5350	5.81	1.49	11
279	10.295	154	4.05	565	0.48	38	6030	3.53	2.65	7
280	2.735	712	1.66	116	0.02	31	203	3.56	0.85	4
281	2.350	61	0.90	61	0.02	29	161	8.63	0.43	2
282	1.305	138	1.22	77	0.03	33	400	2.73	0.63	2
283	1.395	<5	7.38	250	4.47	40	24.7	5.74	1.06	18
284	1.675	<5	7.72	274	3.70	24	105	6.73	1.08	19
285	2.410	<5	3.94	329	0.10	23	20.1	4.92	2.75	28
286	13.740	<5	4.28	468	0.35	20	52.5	4.50	2.14	18
287	9.915	11	4.65	530	0.45	20	35.5	3.14	2.28	18
288	7.935	<5	4.83	496	0.62	26	86.3	3.76	2.14	19
289	8.320	<5	4.43	51	0.35	25	56.3	8.78	2.01	15
290	8.790	<5	4.47	73	0.33	30	115	8.69	2.06	19
291	11.780	8	5.04	41	0.66	21	121	11.0	2.08	12

This document is issued by the Company under its General Conditions of Service accessible at <u>http://www.sgs.com/terms_and_conditions.htm</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

WARNING: The sample(s) to which the findings recorded herein (the "Findings") relate was (were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of the goods and strictly relate to the sample(s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted. The findings report on the samples provided by the client and are not intended for commercial or contractual settlement purposes. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

SGS Canada Inc. Mineral Services 8282 Sherbrooke Street Vancouver BC t(604) 327-3436 f(604) 327-3423 www.ca.sgs.com

Page 2 of 13

Element	WiKg	Au	Al	Ba	Ca	Cr	Cu	Fe	к	Li
Method	WGH79	FAA313	ICM40B	ICM40B	ICM40B	ICM40B	ICM40B	ICM40B	ICM40B	ICM40B
Det.Lim.	0.001	5	0.01 %	1	0.01	1	0.5	0.01	0.01	1
Units	kg	ppb		ppm	%	ppm	ppm	%	%	ppm
1292	9.540	<5	5.39	345	0.96	21	4240	8.19	1.93	20
1292H	0.160	>10000	5.64	98	1.00	30	64.9	4.63	3.34	70
1292L	0.180	289	5.43	652	1.44	93	3090	4.95	1.66	25
1293	1.585	<5	9.32	784	0.13	31	31.2	7.28	2.72	20
1294	1.665	<5	5.74	446	0.79	71	55.5	3.12	2.27	36
1295	0.965	<5	7.30	359	0.15	124	20.3	7.01	1.26	79
1296	2.730	51	0.19	7	2.29	20	1460	14.3	0.01	15
1297	2.205	<5	5.81	375	7.06	13	24.7	6.07	1.46	29
1298	3.135	<5	5.89	593	1.47	21	119	4.17	2.31	27
1299	2.835	<5	4.12	282	0.25	13	162	0.96	3.66	4
1304	2.845	<5	4.25	231	0.04	20	14.5	5.81	2.09	8
1305	3.105	24	0.59	19	0.59	27	85.3	4.66	0.21	5
1306	2.630	8	6.04	700	0.29	29	547	6.17	3.51	23
1307	3.455	15	1.92	140	0.07	39	206	3.10	1.04	4
1308	2.650	8	6.33	235	2.47	89	62.1	5.60	0.31	23
1309	2.580	7	6.89	130	6.25	48	67.3	7.15	0.55	15
1310	3.295	<5	4.48	106	0.16	25	18.5	8.86	2.12	12
1311	4.130	6	4.26	196	0.48	13	73.8	3.20	1.64	18
1312	0.975	6	6.28	37	0.41	23	181	14.0	3.27	32
1313	6.995	24	2.21	13	2.60	25	3030	3.35	0.03	11
314	L.N.R.	L.N.R.	L.N.R.	L.N.R.	L.N.R.	L.N.R.	L.N.R.	L.N.R.	L.N.R.	L.N.R.
1315	5.590	<5	5.27	227	1.22	39	40.0	7.10	2.27	19
I315H	0.155	>10000	4.66	103	0.92	26	60.1	4.45	2.99	70
315L	0.175	293	5.26	600	1.40	87	3120	4.98	1.55	25
316	2.600	<5	4.21	367	0.64	14	10.0	3.28	1.33	16
1318	4.280	12	4.60	442	0.30	23	131	5.30	1.96	19
319	3.860	<5	3.29	233	0.43	8	32.4	0.92	1.75	6
320	1.730	21	6.70	504	2.31	20	13.0	6.52	2.57	33
321	2.460	6	0.87	31	0.06	33	80.8	2.41	0.13	4
322	4.620	295	0.86	77	0.07	37	104	2.08	0.72	4
323	2.440	<5	3.76	481	0.35	28	39,9	3.09	3.38	- 11

This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/terms_and_conditions.htm. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

WARNING: The sample(s) to which the findings recorded herein (the "Findings") relate was (were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of the goods and strictly relate to the sample(s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted. The findings report on the samples provided by the client and are not intended for commercial or contractual settlement purposes. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

SGS Canada Inc. Mineral Services 8282 Sherbrooke Street Vancouver BC t(604) 327-3436 f(604) 327-3423 www.ca.sgs.com

Page 3 of 13

"回路上,这是是想了这个问题的时候,我们就是我们

Page 4 of 13	Page 4	of	13
--------------	--------	----	----

Element Method	Mg ICM40B 0.01	Mn ICM40B 2	Na ICM40B 0.01	Ni ICM40B 0.5	P ICM40B 50	S ICM40B 0.01	Sr ICM40B 0,5	Ti ICM40B 0.01	V ICM40B 2	Zn ICM40B 1
Det.Lim. Units	%	ppm	%	ppm	ppm	%	ppm	%	ppm	ppm
249	0.63	351	0.66	19.2	250	3.52	251	0.16	552	94
250	1.12	860	2.12	137	570	0.88	289	0.31	113	346
251	1.75	2100	2.33	19.2	940	<0.01	453	0.40	118	433
252	0.03	144	0.02	<0.5	<50	>5.00	10.8	<0.01	<2	>10000
253	0.37	951	2.06	0.6	1020	0.04	262	0.40	74	168
254	0.41	1170	2.58	2.2	880	0.05	594	0.35	63	125
255	0.05	163	0.01	6.7	<50	1.77	3.3	<0.01	5	1030
256	0.04	185	0.02	5.6	<50	>5.00	12.0	0.01	5	9160
1257	0.02	150	<0.01	6.3	<50	3.25	7.9	<0.01	4	111
1258	0.04	197	0.02	6.7	<50	2.36	14.5	<0.01	3	4430
1259	0.16	184	0.13	8.7	90	>5.00	26.9	0.03	9	>10000
1260	0.02	161	<0.01	7.1	<50	0.10	3.3	0.01	8	38
1261	0.15	299	0.20	7.1	50	1.06	57.4	0.03	14	2070
1262	1.44	751	2.00	11.3	660	0.34	534	0.41	129	216
1263	0.15	334	0.03	7.2	70	1.90	13.3	0.03	14	3440
1264	0.14	184	0.06	5.4	80	2.97	16.8	0.05	23	1190
1265	 1.09	731	0.09	20.4	600	0.44	52.0	0.35	123	279
1266	0.10	161	0.04	6.3	70	0.95	12.8	0.06	35	167
1267	0.30	346	0.07	5.2	150	2.23	23.7	0.14	70	973
268	0.15	186	0.01	9.2	70	2.20	7.4	0.02	15	1320
269	0.39	291	0.06	6.8	70 170	1.46	23.9	0.31	101	505
1209	0.95	1260	2.66	<0.5	1610	<0.01	20.3	0.53	101	91
1270	0.95	1690	0.12	-0.5 5.6	630	>5.00	56,4	0.42	97	85
1271H	0.61	342	0.63	19.3	260	3.36	250	0.16	536	100
1272L	1.12	858	2.13	144	570	0.00	287	0.32	118	344
1272	0.60	297	0.09	14.6	190	2.40	21.2	0.26	120	182
1275	0.67	956	0.00	19.1	270	3.01	68.0	0.29	141	429
1275	0.38	571	0.12	8.0	80	4.40	35.0	0.23	83	1280
1276	0.59	753	0.07	10.7	100	2.33	42.4	0.19	88	1200
	0.39	763	0.06	8.9	80	3.22	42.4 29.7	0.10	63	854
1278	0.76	499	0.00	9.1	100	1.33	29.7 34.7	0.10	116	2040
1279	de la constra	499 213	0.07	3.1 8.1	60	2.09	5.1	0.27	22	2040 3670
1280 1281	0.11	143	0.02	10.1	<50	>5.00	· 6.0	0.03	12	4550
	And the second second	220	0.02	6.1	<50 <50	and the second second	8.3	0.03	17	4330 2740
1282	0.10	1860	0.60	22.3	<50 810	1.73 3.15	8.3 310	0.03	140	2740 121
1283	1.63			se see S	1040		310	0.50	214	121
1284	1.49	1580	2.31	5.6		0.20		an a suma maine dan seberah se		
1285	0.33	82	0.14	12.8	640 350	4.17	22.9	0.10	106	7
1286	0.79	270	0.83	9.9	350	3.53	64.8 60.5	0.12	64	19 16
1287	0.75	309	0.86	5.8	320	1.83	69.5	0.12	45	16
1288	0.87	367	1.04	9.0	420	2.31	92.1	0.13	60 50	18
1289	0.67	258	0.79	19.2	280	>5.00	63.3	0.09	56	14
1290	0.82	357	0.57	14.0	260	>5.00	57.0	0.09	54	16
291	0.51	326	0.95	21.5	180	>5.00	84.5	0.08	24	14

This document is issued by the Company under its General Conditions of Service accessible at <u>http://www.sgs.com/terms_and_conditions.htm</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

WARNING: The sample(s) to which the findings recorded herein (the "Findings") relate was (were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of the goods and strictly relate to the sample(s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted. The findings report on the samples provided by the client and are not intended for commercial or contractual settlement purposes. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

일습니는 그런데????같아 이 말습니는 아랫밤한 동안값[][]

Page 5 of 13

Element Method	Mg ICM40B	Mn ICM40B	Na ICM40B	Ni ICM40B	P ICM40B	S ICM40B	Sr ICM40B	Ti ICM40B	V ICM40B	Zn ICM40B
Det.Lim.	0.01 %	2 ppm	0.01 %	0.5 ppm	50 ppm	0.01 %	0.5 ppm	0.01 %	2	1
Units 1292	0.89	769	and a second	13.6	and the gen		19. a. 19. a. a. a. a. a.		ppm	ppm
			0.77		230	0.27	101	0.12	64	101
1292H	0.61	355	0.65	19.0	250	3.42	259	0.16	537	94
1292L	1.15	839	2.18	149	560	0.91	266	0.32	122	355
1293	0.12	99	1.67	21.3	270	0.34	360	0.60	218	87
1294	1.42	623	1.36	20.1	600	1.50	172	0.54	157	55
1295	1.41	211	0.51	23.5	570	0.50	161	0.21	137	155
1296	0.83	666	0.01	94.2	<50	>5.00	90.3	<0.01	<2	8940
1297	0.92	2110	1.71	10.1	670	3.22	175	0.29	95	71
1298	1.37	652	2.93	11.2	650	<0.01	300	0.41	135	100
1299	0.07	115	2.02	3.3	<50	0.02	69.8	0.05	8	24
1304	0.42	88	0.14	6.8	250	4.82	16.9	0.10	82	14
1305	0.10	350	0.01	5.8	<50	3.93	28.9	0.01	7	2850
1306	1.46	937	0.13	11.2	930	2.07	38.3	0.47	145	1180
1307	0.16	172	0.02	9.4	70	1.70	9.8	0.06	24	2710
1308	1.63	1250	0.76	99.9	570	1.17	206	0.40	138	124
1309	2.43	2960	0.37	31.8	570	3.54	237	0.30	131	120
1310	0.53	118	0.46	15.7	840	>5.00	42.3	0.09	102	20
1311	0.81	500	3.16	3.0	1200	0.03	70.0	0.24	106	90
1312	0.93	323	0.78	17.8	590	>5.00	125	0.30	138	64
1313	0.47	1530	0.02	3.8	160	0.11	156	0.04	17	77
1314	L.N.R.	L.N.R.	L.N.R.	L.N.R.	L.N.R.	L.N.R.	L.N.R.	L.N.R.	L.N.R.	L.N.R.
1315	0.59	627	0.45	29.3	610	>5.00	149	0.19	115	103
1315H	0.60	324	0.65	18.5	230	3.34	258	0.16	542	90
1315L	1.11	811	2.18	141	560	0.90	263	0.32	119	349
1316	0.51	689	4.04	0.7	780	0.01	95.2	0.36	35	103
1318	1.31	412	3.40	13.6	580	1.96	108	0.27	139	57
1319	0.15	327	2.77	1.9	140	<0.01	59.2	0.06	4	30
1320	1.64	1720	1.25	4.1	490	0.19	135	0.55	225	138
1321	0.14	129	0.52	19.1	120	0.41	28.0	0.00	12	15
1322	0.16	213	0.12	8.8	100	0.87	20.0	0.04	22	403
1323	0.10	306	0.12	11.5	410	0.70	32.1	0.05	103	403 51

This document is issued by the Company under its General Conditions of Service accessible at <u>http://www.sqs.com/terms_and_conditions.htm</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

WARNING: The sample(s) to which the findings recorded herein (the "Findings") relate was (were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of the goods and strictly relate to the sample(s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted. The findings report on the samples provided by the client and are not intended for commercial or contractual settlement purposes. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

\$\$\$\$1、\$C\$\$?\$\$\$ 人名布兰尔克托尔 中国教授

Page 6	ot	13
--------	----	----

Element Method Det.Lim.	Zr ICM40B 0.5	Ag ICM40B 0.02	As ICM40B 1	Be ICM40B 0.1	Bi ICM40B 0.04	Cd ICM40B 0.02	Ce ICM40B 0.05	Co ICM40B 0.1	Cs ICM40B 5	Ga ICM40B 0.1
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
1249	96.2	3.51	37	1.6	0.53	0.28	19.2	11.5	15	22.8
1250	59.7	2.98	65	1.1	0.81	1.72	31.0	16.9	<5	16.9
1251	25.5	0.14	5	0.8	0.05	5.83	23.8	19.4	<5	19.8
1252	3.8	>10.0	214	<0.1	1.69	978	1.27	9.0	<5	0.8
1253	9.0	0.53	2	0.8	0.06	2.74	22.5	7.0	<5	16.2
1254	26.7	0.66	5	0.6	0.04	5.16	22.3	7.9	<5	15.9
1255	2.3	>10.0	32	<0.1	2.96	66.0	0.19	3.0	<5	0.9
1256	2.8	>10.0	73	<0.1	2.19	472	1.66	4.4	<5	1.4
257	2.7	>10.0	49	<0.1	0.46	6.62	0.71	2.7	<5	0.9
1258	2.7	>10.0	5	<0.1	0.34	267	3.66	5.5	<5	1.1
1259	4.0	>10.0	15	0.3	66.3	1060	3.53	52.9	<5	1.9
1260	2.9	>10.0	39	<0.1	4.51	1.70	0.63	2.2	<5	1.5
261	2.7	>10.0	12	0.2	5.35	182	2.50	7.9	<5	2.4
1262	6.1	0.81	4	1.5	0.26	3.95	33.8	11.5	10	17.5
1263	4.4	>10.0	25	0.1	5.96	247	3.64	7.7	<5	2.6
264	6.4	>10.0	54	0.2	5.26	96.8	4.60	4.5	<5	3.0
265	31.3	1.75	4	1.3	0.20	11.4	28.8	13.4	<5	20.6
266	6.5	6.38	41	0.2	0.30	6.88	6.66	4.6	<5	4.3
267	19.0	>10.0	55	0.8	1.00	41.2	12.7	7.0	<5	10.1
268	3.8	7.27	39 	<0.1	2.09	78.1	2.86	9.9	<5	2.2
269	23.3	>10.0	27	0.8	0.20	19.7	17.3	8.7	<5	9.9
270	7.5	0.14	3	1.4	0.12	0.34	34.1	13.8	<5	15.1
271	29.7	0.19	24	0.5	2.60	0.10	9.65	43.0	<5	18.9
272H	92.1	3.16	38	1.6	0.51	0.95	. 18.4	10.4	14	21.6
272L	56.1	3.36	60	1.1	0.80	1.74	29.1	15.7	<5	16.5
274	26.1	4.67	54	0.9	0.07	8.38	15.3	14.3	<5	14.3
275	36.8	5.06	92 70	1.4	0.12	9.50	22.8	15.8	<5	19.5
276	20.9	>10.0	76	0.8	0.50	68.1	11.4	10.7	<5	10.3
277	27.5	>10.0	129	1.0	0.61	74.5	12.8	16.4	<5	11.5
278	19.5 27.6	>10.0 >10.0	81 113	0.7	1.23	30.9	9.80	19.4	<5	8.1
280	11.7	>10.0	43	1.0 0.3	0.83	108	. 15.4	13.6	<5	13.7
281	8.8	>10.0	43 261	0.3	61.7 7.65	388	5.25	6.1	<5	4.5
282	7.4	>10.0	80	0.2	3.96	384 173	5.00 3.32	16.4	<5	2.3
283	30.4	>10.0 0.52	50 52	0.2 1.3	0.18	1/3	3.32 29.8	5.0 15.2	<5	3.1 19.0
284	9.6	0.32	32	0.9	0.18	0.55	29.8 21.3	20.3	6 F	19.0
285	9.6 8.1	0.38	3 9	0.9 1.1	0.59	0.55	21.3 14.6	20.3 15.7	5 10	
286	5.8	0.13	9 1	1.1	0.08	0.08	14.0	33.9	10 <5	13.1 14.0
287	5.8	0.07	1 2	1.6	0.07	0.03	17.4	25.9	<5 <5	14.0
288	7.3	0.03	2	1.6	0.04	0.04	21.2	25.9 32.1	<5 <5	13.3
289	7.3 5.9	0.06	2 3	1.7	0.08	<0.03	21.2 17.4	32.1 88.3	<5 <5	13.3
290	6.2	0.00	3	2.6	0.09	0.02	17.4	85.0	~5 <5	13.1
291	5.6	0.07	4	2.0 3.1	0.09	0.04	20.7	237	<5 <5	13.1

This document is issued by the Company under its General Conditions of Service accessible at <u>http://www.sgs.com/terms_and_conditions.htm</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

WARNING: The sample(s) to which the findings recorded herein (the "Findings") relate was (were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of the goods and strictly relate to the sample(s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted. The findings report on the samples provided by the client and are not intended for commercial or contractual settlement purposes. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

Page 7 of 13

Element	Zr	Ag	As	Be	Bi	Cd	Се	Со	Cs	Ga
Method	ICM40B	ICM40B 0.02	ICM40B 1	ICM40B	ICM40B 0.04	ICM40B 0.02	ICM40B	ICM40B	ICM40B	ICM40B
Det.Lim.	0.5 ppm	ppm	ppm	0.1 ppm	0.04 ppm	ppm	0.05 ppm	0.1 ppm	5 ppm	0.1 ppm
Units 1292	5.9	6.57	2	2.8	0.18	0.81	22.1	106	ېمې 5>	14.4
		· · · · · · · · · · · · · · · · · · ·	35	2.8 1.9		0.81			~5 16	
1292H	92.0	3.34	55 65		0.55 0.97		21.3	11.6 17.6		24.7 17.9
1292L	56.2	3.03	and a second	1.3		1.74	27.6		<5	
1293	10.2	0.13	10	1.8	<0.04	0.05	23.6	18.2	8	36.9
1294	30.5	0.17	1	1.1	0.10	0.12	23.7	13.1	<5	22.4
1295	29.2	0.10	15	2.0	0.04	0.18	29.0	12.4	<5	22.9
1296	3.4	>10.0	2790	<0.1	0.26	28.4	18.1	65.1	<5	0.8
1297	37.2	0.08	173	1.0	0.04	0.90	19.1	17.4	<5	15.0
1298	11.2	0.12	13	1.3	0.05	0.17	33.2	15.7	<5	19.3
1299	57.8	0.06	3	2.3	0.05	0.07	46.6	2.4	<5	15.5
1304	11.3	0.78	5	0.8	0.66	0.05	19.8	18.7	<5	13.9
1305	3.2	>10.0	156	0.1	1.41	144	2.67	6.8	<5	1.6
1306	12.2	2.79	6	1.3	0.87	64.9	44.8	27.6	5	21.8
1307	18.0	>10.0	11	0.4	4.58	198	4.92	4.5	<5	6.0
1308	8.5	0.46	<1	1.0	0.43	0.24	28.7	32.7	<5	16.9
1309	28.8	1.27	2	1.1	1.61	0.40	27.2	16.3	<5	16.4
1310	10.2	0.08	7	1.5	0.07	0.08	41.2	33.8	10	17.2
1311	10.0	1.20	2	1.2	0.58	1.41	17.9	16.9	<5	16.5
1312	7.9	2.00	6	1.1	1.19	0,13	53.4	47.1	14	22.6
1313	7.8	>10.0	4	0.4	12.6	1.39	7.18	5.7	<5	6.9
1314	L.N.R.	L.N.R.	L.N.R.	L.N.R.	L.N.R.	L.N.R.	L.N.R.	L.N.R.	L.N.R.	L.N.R.
1315	47.1	0.76	82	1.7	0.11	0.59	21.8	14.7	6	18.5
1315H	91.3	3.18	35	2.0	0.54	0.82	19.4	10.9	14	22.9
1315L	54.2	2.95	60	1.4	0.78	1.85	24.4	16.3	<5	17.2
1316	34.1	0.07	3	1.5	0.08	0.08	8.68	4.8	<5	16.3
1318	9.7	0.20	6	1.1	0.24	0.07	7.36	21.5	<5	21.3
1319	31.4	0.12	<1	1.2	0.23	0.07	9.56	1.7	<5	14.8
1320	12.1	0.20	19	0.9	0.29	0.07	18.1	22.0	<5	27.6
1321	3.7	2.64	2	0.2	7.65	0.04	3.64	17.6	<5	2.4
1322	3.7	>10.0	15	0.2	7.10	30.3	3.85	5.4	<5	3.3
1323	25.4	0.28	26	1.8	0.30	0.16	22.0	11.1	9	23.4

This document is issued by the Company under its General Conditions of Service accessible at <u>http://www.sgs.com/terms_and_conditions.htm</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

WARNING: The sample(s) to which the findings recorded herein (the "Findings") relate was (were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of the goods and strictly relate to the sample(s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted. The findings report on the samples provided by the client and are not intended for commercial or contractual settlement purposes. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

1995년 - 승규(민양감숙의 사람들들은 유럽권한 감격(관람)

Page	0	- 4	40
Pane	~	OT.	1.5

Element	Hf		La	Lu	Mo	Nb	Pb	Rb ICM40B	Sb	Sc ICM40B
Method	ICM40B	ICM40B 0.02	ICM40B 0.1	ICM40B 0.01	ICM40B 0.05	ICM40B 0.1	ICM40B 0.5	IСM40В 0.2	ICM40B 0.05	ICIM40E 0.1
Det.Lim.	0.02 ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Units		0.03		0.08	2050	and the second	30.2	75.5	65.1	5.8
249	2.68		5.5			2.1	e esta en la compañía de la		1 + 1 = 1 = 1 + 1 + 1 + 1 + 1 + 1 + 1 +	
250	1.81	0.14	16.2	0.29	43.5	7.1	96.3	50.5	6.03	14.4
251	0.81	0.10	10.2	0.48	3.08	2,9	87.8	25.2	1.56	25.0
252	0.03	0.47	0.6	<0.01	6.85	0.7	>10000	2.8	35.6	0.3
253	0.36	0.06	9.4	0.41	1.88	3.1	93.1	54.1	1.53	17.7
254	1.00	0.05	9.4	0.54	2.43	3.0	316	8.3	2.72	17.6
255	0.04	0.06	0.1	<0.01	10.6	0.7	>10000	1.9	1.97	0.4
256	0.04	0.21	0.7	<0.01	7.93	0.9	>10000	6.0	7.70	0.9
257	0.04	0.06	0.3	<0.01	7.93	0.8	>10000	4.0	2.52	0.5
258	0.06	0.11	1.6	0.03	11.4	1.1	7170	3.5	6.55	0.4
259	0.07	1.23	1.6	0.02	20.1	1.0	>10000	12.2	3.49	1.2
260	0.07	0.03	0.3	<0.01	12.7	0.8	>10000	6.0	4.90	0.4
261	0.06	0.20	1.1	0.03	11.1	0.9	2900	8.6	2.83	1.0
262	0.32	0.03	14.9	0.26	3.76	3.9	128	107	1.24	15.4
263	0.10	0.27	1.6	0.02	11.3	0.9	>10000	12.8	6.65	1.2
264	0.14	0.17	2.1	0.02	34.0	0.9	>10000	13.6	24.8	2.0
265	0.99	0.06	13.6	0.21	6.66	3.4	556	121	2.18	16.2
266	0.21	0.03	3.0	0.02	8.96	1.1	478	31.6	5.12	3.5
267	0.62	0.05	6.4	0.07	32.7	1.5	2050	64.4	51.4	6.7
268	0.02	0.12	1.3	0.02	12.8	0.7	1180	8.8	4.62	1.3
269	0.86	0.04	8.0	0.02	20.6	3.1	1170	61.9	20.6	7.3
209	0.32	0.04	16.6	0.52	1.68	3.9	32.5	120	0.71	18.9
		0.07		0.32	2.99	3.9 2.5	23.1	120	1.76	30.1
271	0.82	eren er an er	3.3		and the second second second	the second second				
272H	2.61	0.03	5.4	0.08	1820	1.9	33.0	73.6	70.2	5.4
272L	1.75	0.13	15.0	0.28	42.4	6.7	92.7	48.6	6.09	13.7
274	0.85	0.02	7.2	0.09	25.1	2.3	257	86.7	3.97	8.4
275	1.25	0.05	11.2	0.16	8.57	2.6	263	119	7.70	13.0
276	0.68	0.06	5.8	0.08	62.2	1.8	2100	60.2	16.5	6.1
277	0.90	0.04	6.0	0.10	68.1	1.6	2340	64.8	181	7.6
278	0.64	0.06	4.9	0.09	107	1.3	1430	45.8	27.5	5.5
279	0.99	0.05	7.6	0.11	42.2	1.8	1350	73.1	313	7.6
280	0.35	0.55	2.5	0.04	15.6	1.1	6930	24.3	10.9	2.5
281	0.18	0.20	2.4	0.02	25.6	0.9	>10000	11.8	21.0	1.1
282	0.22	0.13	1.5	0.03	11.3	0.9	6190	20.9	9.24	1.6
283	0.92	0.08	14.5	0.36	6.97	2.9	56.5	51.1	1.53	22.2
284	0.33	0.08	8.9	0.30	3.05	2.7	26.6	40.7	0.75	29.8
285	0.31	<0.02	6.4	0.10	9.88	1.0	12.2	128	1.21	7.5
286	0.29	<0.02	8.0	0.11	32.8	1.3	7.5	104	0.52	6.9
287	0.31	<0.02	7.5	0.10	24.2	1.4	7.8	101	0.65	5.7
288	0.35	<0.02	9.4	0.12	20.4	1.4	7.2	92.1	0.75	7.1
289	0.25	<0.02	7.2	0.12	29.3	1.1	7.4	92.4	0.84	7.3
290	0.25	<0.02	8.2	0.10	145	1.2	6.3	99.0	0.63	4.8
									0.68	
291	0.21	<0.02	9.0	0.13	244	1.3	9.8	93.2	0.08	3.2

This document is issued by the Company under its General Conditions of Service accessible at <u>http://www.sgs.com/terms_and_conditions.htm</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

WARNING: The sample(s) to which the findings recorded herein (the "Findings") relate was (were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of the goods and strictly relate to the sample(s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted. The findings report on the samples provided by the client and are not intended for commercial or contractual settlement purposes. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

(Shall) - 744-22786 - 75-456 (28) 新聞 目的報酬

Page 9	of

13

Element	Hf	In	La	Lu	Мо	Nb	Pb	Rb	Sb	Sc
Method	ICM40B									
Det.Lim.	0.02	0.02	0.1	0.01	0.05	0.1	0.5	0.2	0.05	0.1
Units	ppm									
1292	0.26	<0.02	9.7	0.17	23.1	1.3	12.3	98.3	0.91	6.3
1292H	2.86	0.03	6.7	0.09	1860	2.1	31.7	80.7	75.8	6.2
1292L	1.90	0.14	14.2	0.28	43.4	7.2	96.3	50.3	6.69	14.0
1293	0.29	0.08	9.6	0.06	1.52	4.5	15.5	74.3	1.07	18.1
1294	1.07	0.07	11.8	0.16	4.58	5.1	16.0	68.5	0.39	17.0
1295	0.86	0.09	12.4	0.13	3.77	2.5	13.0	54.3	1.40	23.5
1296	0.04	1.82	7.5	0.08	4.45	0.5	365	0.9	196	2.5
1297	1.10	0.06	10.0	0.30	4.79	2.0	12.8	44.8	3.97	17.3
1298	0.67	0.07	14.2	0.29	2.70	4.1	18.0	77.8	1.72	14.7
1299	3.33	0.04	20.8	0.43	4.26	5.3	18.1	125	0.91	1.5
1304	0.55	0.08	9.1	0.11	9.76	1.3	. 14.7	68.7	1.37	6.1
1305	0.07	0.12	1.2	0.03	7.33	0.6	4430	7.6	4.86	0.7
1306	0.65	0.41	21.0	0.21	3.64	3.9	21.8	119	3.56	16.7
1307	0.54	0.19	2.6	0.06	11.7	1.5	5190	33.4	3.10	3.1
1308	0.17	0.06	13.5	0.14	4.21	5.0	13.7	11.0	0.18	18.6
1309	0.73	0.06	12.7	0.23	9.84	4.1	17.4	27.3	0.79	18.8
1310	0.34	<0.02	19.2	0.14	192	1.0	16.5	90.6	0.64	9.8
1311	0.33	<0.02	9.3	0.09	2.88	2.1	82.8	38.1	1.16	4.5
1312	0.32	0.07	26.4	0.21	4.31	2.4	35.7	148	2.96	11.3
1313	0.21	0.03	3.6	0.19	4.42	0.9	20.8	2.1	1.23	1.9
1314	L.N.R.									
1315	1.34	0.07	10.1	0.18	11.7	3.1	32.7	82.7	5.17	15.5
1315H	2.77	0.04	6.4	0.08	1870	2.0	30.2	74.0	77.4	5.1
1315L	1.85	0.14	12.6	0.27	42.7	6.8	90.8	45.4	6.64	13.2
1316	0.92	0.07	3.2	0.20	2.30	3.3	12.5	12.2	1.22	8.9
1318	0.43	0.02	3.7	0.07	7.65	2.5	12.7	42.9	0.91	13.7
1319	1.13	0.03	4.2	0.10	2.68	3.5	9.5	40.2	0.43	1.3
1320	0.40	0.13	7.7	0.33	1.30	3.3	12.1	67.3	4.01	33.0
1321	0.09	<0.02	1.7	0.02	9.35	1.0	61.8	5.1	0.62	1.3
1322	0.12	<0.02	1.7	0.03	8.44	0.9	1120	29.0	0.78	2.3
1323	0.93	0.06	12.6	0.20	4.21	3.6	9.6	138	1.15	8.6

This document is issued by the Company under its General Conditions of Service accessible at <u>http://www.sqs.com/terms_and_conditions.htm</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

WARNING: The sample(s) to which the findings recorded herein (the "Findings") relate was (were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of the goods and strictly relate to the sample(s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted. The findings report on the samples provided by the client and are not intended for commercial or contractual settlement purposes. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

Hough : 20172774호 - Suide : 2211년 일수: R. 법

Element Method	Se ICM40B	Sn ICM40B	Ta ICM40B	Tb ICM40B	Te ICM40B	Th ICM40B	TI ICM40B	U ICM40B	W ICM40B	Y ICM40B
Det.Lim.	2	0.3	0.05	0.05	0.05	0.2	0.02	0.05	0.1	0.1
Units	ppm	ppm	ppm	ppm						
249	4	4.3	0.14	0.23	2.79	1.2	17.2	0.67	39.8	4.6
250	4	3.6	0.55	0.56	0.29	3.5	0.62	1.46	8.4	17.8
251	<2	1.5	0.16	1.05	0.12	1.5	0.15	0.55	0.9	35.2
252	<2	0.3	<0.05	<0.05	36.6	0.3	0.03	0.06	0.4	0.4
253	<2	0.9	0.19	1.07	0.23	1.2	0.32	0.73	2.2	34.2
254	<2	1.4	0.16	1.02	0.41	1.7	0.05	0.77	0.6	36.9
255	<2	0.4	<0.05	<0.05	30.7	<0.2	<0.02	<0.05	0.6	0.2
256	<2	0.4	<0.05	<0.05	57.6	0.3	0.03	0.08	1.2	0.5
257	<2	0.4	<0.05	<0.05	25.8	<0.2	<0.02	0.08	0.7	0.2
258	<2	0.3	<0.05	<0.05	15.1	0.9	0.08	0.26	0.6	1.0
259	3	0.5	<0.05	0.05	125	0.7	0.19	0.66	135	1.5
260	<2	0.9	<0.05	<0.05	136	0.7	0.04	0.55	2.0	0.2
261	<2	0.4	<0.05	0.05	24.5	0.4	0.08	0.27	6.1	1.8
262	<2	1.0	0.23	0.62	0.99	6.3	0.76	2.48	3.3	17.7
263	3	0.5	<0.05	0.05	58.9	0.6	0.15	0.36	3.5	1.4
264	3	0.5	<0.05	0.06	99.7	0.5	0.17	0.25	4.1	1.5
265	<2	1.3	0.21	0.48	0.96	4.2	0.72	2.08	6.8	12.8
266	<2	0.5	<0.05	0.07	1.75	1.2	0.25	0.36	8.4	1.4
267	<2	0.8	0.07	0.16	0.49	1.9	0.43	1.36	9.0	3.9
268	<2	0.5	<0.05	<0.05	3.53	0.5	0.12	0.34	1.7	1.0
269	<2	1.1	0.18	0.21	2.20	2.6	0.49	4.28	20.5	5.0
270	<2	1.2	0.21	0.95	0.07	2.7	0.96	0.86	0.8	32.9
271	<2	1.4	0.12	0.40	0.81	1.5	0.99	0.96	5.3	13.3
272H	4	4.1	0.11	0.22	2.83	1.2	· 16.8	0.76	36.0	4.5
272L	3	3.6	0.53	0.54	0.32	3.3	0.61	1.41	8.5	16.8
274	<2	1.1	0.13	0.18	0.53	2.8	0.61	1.55	18.5	3.8
275	<2	9.4	0.14	0.34	0.17	4.0	0.79	2.51	8.5	8.6
276	<2	14.0	0.08	0.14	0.70	1.6	0.43	2.04	14.8	3.9
277	<2	6.3	0.07	0.20	0.16	2.4	0.56	2.63	8.3	5.2
278	<2	5.0	0.05	0.17	0.66	1.7	0.31	3.17	7.3	4.5
279	<2	3.7	0.08	0.21	1.14	2.6	0.54	2.47	9.6	5.2
280	5	0.5	<0.05	0.07	149	0.9	0.37	0.82	16.9	1.9
281	2	0.6	<0.05	0.06	37.1	0.5	0.11	0.49	4.8	1.4
282	2	0.5	<0.05	<0.05	19.4	0.7	0.12	0.55	4.6	1.3
283	<2	1.2	0.19	0.79	0.29	2.8	1.43	1.58	1.1	24.2
284	<2	1.0	0.15	0.84	0.31	1.5	0.43	0.35	1.2	28.4
285	4	5.4	0.05	0.26	0.06	5.1	0.89	1.04	4.5	6.5
286	2	9.7	0.06	0.26	0.09	4.1	0.76	1.69	2.6	6.5
287	<2	4.4	0.06	0.24	0.06	4.6	0.75	1.61	2.7	6.0
288	<2	14.4	0.08	0.29	<0.05	4.6	0.71	1.67	2.4	6.8
289	6	10.8	0.05	0.25	0.08	3.2	0.70	1.19	2.3	6.0
290	7	19.8	0.05	0.30	0.14	4.0	0.74	1.59	2.5	7.5
291	7	23.3	<0.05	0.30	0.26	4.9	0.70	1.76	2.8	8.4

This document is issued by the Company under its General Conditions of Service accessible at <u>http://www.sgs.com/terms_and_conditions.htm</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

WARNING: The sample(s) to which the findings recorded herein (the "Findings") relate was (were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of the goods and strictly relate to the sample(s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted. The findings report on the samples provided by the client and are not intended for commercial or contractual settlement purposes. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

SGS Canada Inc. Mineral Services 8282 Sherbrooke Street Vancouver BC t(604) 327-3436 f(604) 327-3423 www.ca.sgs.com

Page 10 of 13

SGS

동네는 사회, 492% 4월 - 1846년 128일은 남태물감한

Page 11 of 13

Element	Se	Sn	Та	Tb	Те	Th	TI	U	W	Y
Method	ICM40B	ICM40B	ICM40B	ICM40B	ICM40B	ICM40B	ICM40B	ICM40B	ICM40B	ICM40B
Det.Lim.	2	0.3	0.05	0.05	0.05	0.2	0.02	0.05	0.1	0.1
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
1292	<2	2.4	0.06	0.36	0.14	4.8	0.76	2.01	2.9	10.4
1292H	4	4.6	0.12	0.24	3.22	1.5	17.7	0.72	39.3	4.8
1292L	4	5.0	0.58	0.53	0.27	3.3	0.67	1.48	8.9	16.8
1293	<2	1.1	0.26	0.34	0.06	1.6	0.68	0.57	2.3	5.7
1294	<2	1.2	0.31	0.51	0.10	2.1	0.52	1.27	0.5	15.1
1295	<2	0.8	0.18	0.40	<0.05	2.3	0.38	1.10	0.2	7.0
1296	12	0.3	<0.05	0.30	0.21	<0.2	0.06	<0.05	0.1	6.4
1297	<2	0.8	0.12	0.59	<0.05	1.8	1.98	1.78	0.4	17.7
1298	<2	1.8	0.27	0.66	<0.05	7.5	0.58	3.28	0.8	19.1
1299	<2	1.2	0.70	0.65	<0.05	29.4	0.90	9.97	0.4	21.8
1304	2	1.7	0.07	0.29	0.23	3.0	0.54	1.00	2.9	7.4
1305	<2	0.5	<0.05	0.06	4.76	0.6	0.06	0.26	1.1	1.8
1306	<2	1.8	0.24	0.56	1.30	6.3	0.95	3.64	74.0	12.5
1307	<2	0.7	0.08	0.08	18.8	1.2	0.19	0.88	6.0	2.8
1308	<2	0.6	0.33	0.55	1.57	2.5	0.08	0.42	5.0	13.7
1309	<2	1.1	0.27	0.62	3.50	3.5	0.80	0.93	50.8	18.8
1310	6	2.1	0.05	0.48	0.20	13.1	0.93	1.79	2.5	11.2
1311	<2	1.6	0.12	0.28	1.28	1.2	0.61	0.43	3.7	6.8
1312	12	5.1	0.15	0.71	0.23	1.7	1.23	1.78	6.9	17.1
1313	<2	0.4	< 0.05	0.31	12.9	1.2	<0.02	0.40	0.5	10.7
1314	L.N.R.	L.N.R.	L.N.R.	L.N.R.	L.N.R.	L.N.R.	L.N.R.	L.N.R.	L.N.R.	L.N.R.
1315	<2	1.1	0.21	0.37	0.06	3.7	0.93	1.73	0.6	9.7
1315H	4	4.6	0.12	0.22	3.07	1.4	17.8	0.68	38.2	4.3
1315L	3	4.0	0.55	0.49	0.33	3.0	0.62	1.38	8.4	15.6
1316	<2	1.1	0.18	0.35	0.09	0.8	0.23	0.32	5.9	9.9
1318	3	1.1	0.14	0.15	0.12	2.6	0.46	0.69	1.2	3.9
1319	<2	0.7	0.21	0.13	0.18	1.0	0.43	0.65	0.4	4.0
1320	<2	1.6	0.21	0.69	0.41	1.9	0.52	0.42	1.2	23.6
1321	~2 <2	0.4	< 0.05	0.06	35.5	0.3	0.02	0.10	1.9	1.7
	<2	0.4	<0.05	0.00	17.3	0.8	0.00	0.35	37.9	1.7
1322	<2	0.5 1.8	<0.05 0.29	0.07	0.11	6.1	1.07	2.17	3.0	11.4

This document is issued by the Company under its General Conditions of Service accessible at <u>http://www.sqs.com/terms_and_conditions.htm</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

WARNING: The sample(s) to which the findings recorded herein (the "Findings") relate was (were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of the goods and strictly relate to the sample(s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted. The findings report on the samples provided by the client and are not intended for commercial or contractual settlement purposes. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

Element	Yb ICM40B	Au FAG303	Ag AAS42E	Ag FAG313
Method Det.Lim.	0.1	FAG303	0.3	FAG515
Units	ppm	g/t	g/t	g/t
1249	0.5	23	N.A.	N.A.
1250	1.7	N.A.	N.A.	N.A.
1251	3.3	N.A.	N.A.	N.A.
1252	<0.1	N.A.	150	N.A.
1253	3.0	N.A.	N.A.	N.A.
1254	3.6	N.A.	N.A.	N.A.
1255	<0.1	N.A.	57.6	N.A.
1256	<0.1	N.A.	159	N.A.
1257	<0.1	N.A.	161	N.A.
1258	0.1	N.A.	19.0	N.A.
1259	0.1	N.A.	53.2	N.A.
1260	<0.1	N.A.	150	N.A.
1261	0.2	N.A.	12.3	N.A.
1262	1.7	N.A.	N.A.	N.A.
1263	0.1	N.A.	33.1	N.A.
1264	0.2	N.A.	197	N.A.
1265	1.3	N.A.	N.A.	N.A.
1266	0.2	N.A.	N.A.	N.A.
1267	0.4	N.A.	94.8	N.A.
1268	<0.1	N.A.	N.A.	N.A.
1269	0.5	N.A.	12.2	N.A.
1270	3.2	N.A.	N.A.	N.A.
1271	1.4	N.A.	N.A.	N.A.
1272H	0.5	24	N.A.	N.A.
1272L	1.7	N.A.	N.A.	N.A.
274	0.5	N.A.	N.A. N.A.	N.A. N.A.
1275	0.9 0.5	N.A. N.A.	N.A. 35.9	N.A. N.A.
276	0.5	N.A. N.A.	35.9 274	N.A. N.A.
1278	0.5	N.A.	143	N.A.
1279	0.6	N.A.	>300	354
1280	0.0	N.A.	92.7	N.A.
1281	0.1	N.A.	47.6	N.A.
282	0.1	N.A.	40.7	N.A.
283	2.3	N.A.	N.A.	N.A.
284	2.0	N.A.	N.A.	N.A.
285	0.6	N.A.	N.A.	N.A.
286	0.6	N.A.	N.A.	N.A.
287	0.6	N.A.	N.A.	N.A.
288	0.7	N.A.	N.A.	N.A.
289	0.6	N.A.	N.A.	N.A.
290	0.7	N.A.	N.A.	N.A.
1291	0.8	N.A.	N.A.	N.A.

This document is issued by the Company under its General Conditions of Service accessible at <u>http://www.sqs.com/terms_and_conditions.htm</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

WARNING: The sample(s) to which the findings recorded herein (the "Findings") relate was (were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of the goods and strictly relate to the sample(s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted. The findings report on the samples provided by the client and are not intended for commercial or contractual settlement purposes. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

SGS Canada Inc. Mineral Services 8282 Sherbrooke Street Vancouver BC t(604) 327-3436 f(604) 327-3423 www.ca.sgs.com

Page 12 of 13

역동, 글 - 국민 172748 - 아님파님 아이님만 불어갈했

Element Method	Yb ICM40B	Au FAG303	Ag AAS42E	Ag FAG313
Det.Lim.	0.1	1	0.3	5
Units	ppm	g/t	g/t	g/t
1292	1.0	N.A.	N.A.	N.A.
1292H	0.5	22	N.A.	N.A.
1292L	1.7	N.A.	N.A.	N.A.
1293	0.4	N.A.	N.A.	N.A.
1294	1.2	N.A.	N.A.	N.A.
1295	0.7	N.A.	N.A.	N.A.
1296	0.5	N.A.	15.7	N.A.
1297	1.8	N.A.	N.A.	N.A.
1298	1.9	N.A.	N.A.	N.A.
1299	2.6	N.A.	N.A.	N.A.
1304	0.7	N.A.	N.A.	N.A.
1305	 0.2	N.A.	12.6	N.A.
1306	 1.3	N.A.	N.A.	N.A.
1307	0.3	N.A.	12.7	N.A.
1308	 1.0	N.A.	N.A.	N.A.
1309	 1.5	N.A.	N.A.	N.A.
1310	1.0	N.A.	N.A.	N.A.
1311	0.6	N.A.	N.A.	N.A.
1312	1.4	N.A.	N.A.	N.A.
1313	1.1	N.A.	19.1	N.A.
1314	L.N.R.	L.N.R.	L.N.R.	L.N.R.
1315	 1.0	N.A.	N.A.	N.A.
1315H	0.5	23	N.A.	N.A.
1315L	1.6	N.A.	N.A.	N.A.
1316	1.2	N.A.	N.A.	N.A.
1318	0.4	N.A.	N.A.	N.A.
1319	0.6	N.A.	N.A.	N.A.
1320	2.1	N.A.	N.A.	N.A.
1321	 0.1	N.A.	N.A.	N.A.
1322	 0.2	N.A.	27.3	N.A.
1323	1.2	N.A.	N.A.	N.A.

This document is issued by the Company under its General Conditions of Service accessible at <u>http://www.sqs.com/terms_and_conditions.htm</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

WARNING: The sample(s) to which the findings recorded herein (the "Findings") relate was (were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of the goods and strictly relate to the sample(s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted. The findings report on the samples provided by the client and are not intended for commercial or contractual settlement purposes. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

SGS Canada Inc. Mineral Services 8282 Sherbrooke Street Vancouver BC t(604) 327-3436 f(604) 327-3423 www.ca.sgs.com

Page 13 of 13

Certificate of Analysis

Work Order: VC122741

To: Bob Lane

Plateau Minerals Corp. #7-1750 S. Quinn street Prince George BC V2N 1X3

P.O. No. : DEER HORN Project No. DEER HORN : No. Of Samples : 18 Date Submitted : Oct 11, 2012 Report Comprises : Pages 1 to 7 (Inclusive of Cover Sheet)

Distribution of unused material: Active files - upstairs:

Certified By Satpaul Gill QAQC Chemist

= Insufficient Sample

= No result

Nov 09, 2012

Date:

SGS Minerals Services Geochemistry Vancouver conforms to the requirements of ISO/IEC 17025 for specific tests as listed on their scope of accreditation which can be found at http://www.scc.ca/en/search/palcan/sgs

I.S.

Report Footer:

L.N.R. = Listed not received n.a.

= Not applicable

= Composition of this sample makes detection impossible by this method

M after a result denotes ppb to ppm conversion, % denotes ppm to % conversion

Methods marked with an asterisk (e.g. *NAA08V) were subcontracted

Methods marked with the @ symbol (e.g. @AAS21E) denote accredited tests

This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/terms_and_conditions.htm. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

WARNING: The sample(s) to which the findings recorded herein (the "Findings") relate was (were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of the goods and strictly relate to the sample(s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted. The findings report on the samples provided by the client and are not intended for commercial or contractual settlement purposes. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

SGS Canada Inc. Mineral Services 8282 Sherbrooke Street Vancouver BC t(604) 327-3436 f(604) 327-3423 www.ca.sgs.com

*INF

(前本書 V/パク27また 12(for))別時间目(回報 Page 2)										ge 2 of 7
Element Method Det.Lim. Units	WiKg WGH79 0.001 kg	Au FAA313 5 ppb	AI ICM40B 0.01 %	Ba ICM40B 1 ppm	Ca ICM40B 0.01 %	Cr ICM40B 1 ppm	Cu ICM40B 0.5 ppm	Fe ICM40B 0.01 %	K ICM40B 0.01 %	Li ICM40B 1 ppm
1324	3.800	5	1.52	181	>15.0	17	7.2	0.44	0.37	<1
1326	3.160	25	0.89	44	14.7	17	245	2.58	0.22	4
1327	2.280	55	1.13	40	2.68	48	169	2.94	0.10	9
1328	2.330	<5	8.36	326	5.87	29	48.7	4.89	3.52	24
1329	3.380	916	0.24	8	0.84	31	358	5.49	0.05	7
1330	2.115	100	0.79	141	0.36	32	637	7.81	0.10	9
1331	2.745	5	6.68	314	1.88	64	. 21.5	6.95	1.97	20
1350	2.880	<5	2.09	554	0.07	23	266	1.57	1.38	28
DH12-BL01	2.195	262	6.91	109	7.90	20	4540	7.73	0.43	27
1478	3.295	<5	5.98	1040	1.07	8	25.9	1.14	2.65	10
1479	1.845	<5	3.01	218	0.37	31	37.2	4.53	1.25	3
1480	2.450	12	7.51	131	6.57	76	78.3	4.17	0.59	7
1481	2.710	6	7.34	321	3.26	87	91.8	3.93	1.44	4
1482	0.680	<5	4.22	237	1.94	68	77.0	6.23	0.69	17
1483	0.200	9	4.90	183	0.98	63	99.7	6.68	2.41	34
1484	5.000	<5	6.97	160	5.71	72	40.5	4.46	0.75	13
1485	3.825	15	5.93	351	3.99	72	82.2	5.87	2.16	21
1486	3.240	<5	6.95	610	4.16	82	32.0	4.36	1.72	27

This document is issued by the Company under its General Conditions of Service accessible at <u>http://www.sqs.com/terms_and_conditions.htm</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

WARNING: The sample(s) to which the findings recorded herein (the "Findings") relate was (were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of the goods and strictly relate to the sample(s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted. The findings report on the samples provided by the client and are not intended for commercial or contractual settlement purposes. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

·普爾爾斯·卡爾布爾克德爾斯·普爾爾爾斯·特爾德爾特

Element Method	Mg ICM40B	Mn ICM40B 2	Na ICM40B 0.01	Ni ICM40B 0.5	P ICM40B 50	S ICM40B 0.01	Sr ICM40B 0.5	Ti ICM40B 0.01	V ICM40B	Zn ICM40B
Det.Lim. Units	0.01 %	∠ ppm	%	ppm	ppm	%	. ppm	0.01	ppm	ppm
1324	0.13	3030	0.53	4.3	130	0.07	257	0.03	8	21
1326	0.37	5750	0.11	10.5	130	0.90	429	0.03	12	3140
1327	0.15	638	0.07	6.7	60	0.55	48.1	0.01	8	47
1328	1.86	2120	0.41	9.8	770	0.37	296	0.38	168	236
1329	0.06	496	0.02	7.4	<50	>5.00	36.8	<0.01	3	8230
1330	0.31	622	0.05	9.2	50	4.82	14.6	0.03	21	967
1331	1.33	645	1.46	20.9	560	2.04	219	0.78	286	115
1350	0.10	219	0.10	5.7	50	0.04	29.4	0.03	17	20
DH12-BL01	2.81	3360	0.38	1.6	1300	0.14	469	0.41	164	230
1478	0.33	469	0.88	1.1	230	<0.01	139	0.08	4	25
1479	0.07	345	0.94	7.1	<50	2.12	216	0.06	14	31
1480	0.98	1060	1.49	30.5	950	0.73	542	0.38	155	145
1481	0.97	670	3.10	17.8	1150	0.67	597	0.51	130	53
1482	0.99	740	0.89	21.3	690	0.59	230	0.23	99	96
1483	1.08	340	0.47	31.7	830	4.31	193	0.22	96	21
1484	1.09	848	1.41	33.6	850	0.69	516	0.35	161	52
1485	1.49	1130	1.44	44.9	770	3.63	335	0.35	115	79
1486	1.96	1180	1.85	41.1	1380	1.89	432	0.46	163	100

This document is issued by the Company under its General Conditions of Service accessible at <u>http://www.sgs.com/terms_and_conditions.htm</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

WARNING: The sample(s) to which the findings recorded herein (the "Findings") relate was (were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of the goods and strictly relate to the sample(s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted. The findings report on the samples provided by the client and are not intended for commercial or contractual settlement purposes. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

SGS Canada Inc. Mineral Services 8282 Sherbrooke Street Vancouver BC t(604) 327-3436 f(604) 327-3423 www.ca.sgs.com

Page 3 of 7

SGS

Element Method	Zr ICM40B	Ag ICM40B	As ICM40B	Be ICM40B	Bi ICM40B	Cd ICM40B	Ce ICM40B	Co ICM40B	Cs ICM40B	Ga ICM40B
Det.Lim.	0.5	0.02	1	0.1	0.04	0.02	0.05	0.1	5	0.1
Units	ppm									
1324	7.1	0.16	8	0.2	3.02	0.31	7.50	2.2	<5	2.1
1326	4.5	4.12	4	0.1	0.40	201	12.6	4.8	<5	2.3
1327	3.2	>10.0	46	0.2	507	1.84	5.28	12.7	<5	2.5
1328	21.1	0.58	25	1.0	4.63	8.22	33.4	18.2	15	21.0
1329	3.0	>10.0	128	<0.1	1240	911	1.57	36.4	<5	1.0
1330	4.1	>10.0	101	<0.1	249	108	2.64	46.1	<5	3.6
1331	40.3	2.60	22	0.6	5.62	3.40	35.5	24.0	<5	17.8
1350	6.8	1.06	53	0.5	1.92	0.74	12.2	3.6	<5	5.3
DH12-BL01	42.1	7.72	11	0.3	2.68	2.00	25.6	24.4	<5	19.4
1478	21.6	0.10	5	0.9	0.26	0.14	23.7	1.6	<5	14.0
1479	11.5	0.68	18	0.2	0.32	1.17	7.44	5.1	<5	5.7
1480	53.5	7.00	4	1.1	12.6	7.86	26.6	8.8	<5	25.1
1481	19.8	8.24	2	1.3	14.5	2.54	32.7	8.4	<5	16.8
1482	23.1	2.22	5	0.7	4.16	1.35	15.1	9.1	<5	10.0
1483	23.8	>10.0	15	1.1	164	1.15	21.6	30.1	7	14.9
1484	40.4	3.72	4	0.7	5.64	1.33	25.8	14.7	<5	26.6
1485	69.3	>10.0	11	2.2	62.1	2.41	24.0	22.9	<5	13.0
1486	50.3	9.22	6	2.9	19.0	2.31	33.7	16.4	<5	16.7

This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/terms_and_conditions.htm. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

WARNING: The sample(s) to which the findings recorded herein (the "Findings") relate was (were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of the goods and strictly relate to the sample(s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted. The findings report on the samples provided by the client and are not intended for commercial or contractual settlement purposes. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

SGS Canada Inc. Mineral Services 8282 Sherbrooke Street Vancouver BC t(604) 327-3436 f(604) 327-3423 www.ca.sgs.com

Page 4 of 7

SGS

강요즘는 날아 관기까지 그 아랍니는 일이었던 방송옷입니

Element Method	Hf ICM40B	In ICM40B	La ICM40B	Lu ICM40B	Mo ICM40B	Nb ICM40B	Pb ICM40B	Rb ICM40B	Sb ICM40B	Sc ICM40B
Det.Lim.	0.02	0.02	0.1	0.01	0.05	0.1	0.5	0.2	0.05	0.1
Units	ppm									
1324	0.11	<0.02	4.4	0.04	1.72	0.4	22.4	15.4	0.21	2.3
1326	0.13	0.18	6.3	0.08	4.51	0.9	3200	7.5	2.22	1.7
1327	0.06	<0.02	2.3	0.02	18.4	0.9	135	7.2	0.70	1.1
1328	0.79	0.08	15.8	0.26	4.03	2.7	150	171	2.66	16.4
1329	0.03	1.09	0.8	0.01	14.6	0.7	>10000	2.4	0.53	0.1
1330	0.07	0.16	1.2	0.02	24.0	1.5	3970	5.0	0.85	1.0
1331	1.30	0.08	19.0	0.21	5.26	6.0	124	64.8	1.70	18.8
1350	0.27	0.04	7.0	0.13	9.81	1.4	30.2	47.9	7.93	1.5
DH12-BL01	1.45	1.95	11.1	0.59	1.88	2.4	21.2	9.4	3.88	21.5
1478	0.68	0.03	12.6	0.09	1.63	3.1	15.1	56.6	2.61	1.4
1479	0.46	<0.02	4.2	0.05	24.9	2.1	47.6	32.0	0.58	1.5
1480	0.92	0.14	13.0	0.21	19.1	5.4	428	29.7	3.33	13.7
1481	0.69	0.05	16.6	0.23	35.7	6.3	345	77.6	1.43	15.2
1482	0.40	0.03	7.3	0.09	8.02	3.2	110	35.5	1.77	8.0
1483	0.53	0.06	11.5	0.10	7.10	3.0	2500	96.3	1.37	7.7
1484	1.02	0.08	12.6	0.20	6.58	4.7	99.3	33.5	1.51	13.2
1485	1.28	0.03	11.5	0.20	30.4	4.7	1460	85.0	1.18	10.2
1486	0.66	0.05	16.6	0.22	22.6	5.6	433	76.9	0.64	17.4

This document is issued by the Company under its General Conditions of Service accessible at <u>http://www.sqs.com/terms_and_conditions.htm</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

WARNING: The sample(s) to which the findings recorded herein (the "Findings") relate was (were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of the goods and strictly relate to the sample(s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted. The findings report on the samples provided by the client and are not intended for commercial or contractual settlement purposes. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

SGS Canada Inc. Mineral Services 8282 Sherbrooke Street Vancouver BC t(604) 327-3436 f(604) 327-3423 www.ca.sgs.com

Page 5 of 7

自己的 网络国家家家庭 生物液体的 电磁磁管 植物胶囊

Page 6 of 7

Element	Se	Sn	Та	Tb	Те	Th	TI	U	W	Y
Method	ICM40B									
Det.Lim.	2	0.3	0.05	0.05	0.05	0.2	0.02	0.05	0.1	0.1
Units	ppm									
1324	<2	0.3	<0.05	0.11	2.06	1.8	0.12	0.51	2.0	3.1
1326	3	<0.3	<0.05	0.33	2.87	0.4	0.06	0.22	4.3	10.1
1327	<2	<0.3	<0.05	<0.05	437	0.7	0.03	1.67	2.0	1.4
1328	<2	1.5	0.22	0.68	2.81	5.6	1.17	2.82	649	18.2
1329	10	0.4	<0.05	<0.05	357	<0.2	0.24	1.72	2.2	1.4
1330	3	0.4	<0.05	<0.05	124	0.5	0.05	0.59	6.1	1.4
1331	<2	1.5	0.38	0.52	2.54	10.7	0.59	4.93	3.5	13.9
1350	<2	0.7	0.06	0.25	0.88	3.1	0.31	1.91	1.2	9,9
DH12-BL01	6	1.4	0.16	1.15	2.01	1.5	0.07	1.23	0.4	40.2
1478	<2	0.4	0.20	0.26	0.12	1.9	0.32	0.73	0.6	7.0
1479	<2	0.5	0.12	0.11	0.19	1.8	0.20	1.47	4.2	3.3
1480	<2	1.9	0,33	0.58	21.4	2.2	0.24	0.84	2780	17.1
1481	. <2	1.4	0.20	0.70	13.6	2.3	0.79	0.53	4750	19.9
1482	<2	0.8	0.18	0.31	7.07	1.2	0.32	0.35	283	8.5
1483	3	0.9	0.12	0.35	68.9	1.4	1.06	0.64	2810	9.2
1484	<2	1.1	0.28	0.54	8.93	2.1	0.28	0.81	3530	16.1
1485	<2	1.0	0.30	0.50	67.0	2.4	0.79	0.86	28.3	14.6
1486	<2	1.3	0.36	0.75	14.3	2.4	0.60	0.74	21.9	20.1

This document is issued by the Company under its General Conditions of Service accessible at <u>http://www.sgs.com/terms_and_conditions.htm</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

WARNING: The sample(s) to which the findings recorded herein (the "Findings") relate was (were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of the goods and strictly relate to the sample(s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted. The findings report on the samples provided by the client and are not intended for commercial or contractual settlement purposes. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

Eng - VC122741 Order DECE HORM

Element	Yb	Ag	Ag
Method	ICM40B	AAS42E	FAG313
Det.Lim.	0.1	0.3	5
Units	ppm	g/t	g/t
1324	0.3	N.A.	N.A.
1326	0.6	N.A.	N.A.
1327	0.1	16.4	N.A.
1328	1.7	N.A.	N.A.
1329	0.1	>300	633
1330	0.1	109	N.A.
1331	1.4	N.A.	N.A.
1350	0.8	N.A.	N.A.
DH12-BL01	3.7	N.A.	N.A.
1478	0.6	N.A.	N.A.
1479	0.3	N.A.	N.A.
1480	1.5	N.A.	N.A.
1481	1.7	N.A.	N.A.
1482	0.7	N.A.	N.A.
1483	0.7	63.4	N.A.
1484	1.4	N.A.	N.A.
1485	1.4	29.9	N.A.
1486	1.6	N.A.	N.A.

This document is issued by the Company under its General Conditions of Service accessible at <u>http://www.sgs.com/lerms_and_conditions.htm</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

WARNING: The sample(s) to which the findings recorded herein (the "Findings") relate was (were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of the goods and strictly relate to the sample(s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted. The findings report on the samples provided by the client and are not intended for commercial or contractual settlement purposes. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

SGS Canada Inc. Mineral Services 8282 Sherbrooke Street Vancouver BC t(604) 327-3436 f(604) 327-3423 www.ca.sgs.com

Page 7 of 7