

**Ministry of Energy & Mines** Energy & Minerals Division Geological Survey Branch



#### ASSESSMENT REPORT TITLE PAGE AND SUMMARY

| TITLE OF REPORT [type of survey(s)]<br>Assessment Report on a rock sampling program, Mammoth | Property BC                                 | <b>TOTAL COST</b><br>32071.86 |
|----------------------------------------------------------------------------------------------|---------------------------------------------|-------------------------------|
|                                                                                              |                                             |                               |
| AUTHOR(S) Chris Solic                                                                        | _SIGNATURE(S)                               |                               |
| NOTICE OF WORK PERMIT NUMBER(S)/DATE(S) N/A                                                  |                                             | YEAR OF WORK 2012             |
| STATEMENT OF WORK - CASH PAYMENT EVENT NUMBER(S)/DATE(                                       | s <u>) 5425170 2013/Jan/07</u>              |                               |
| PROPERTY NAME Mammoth Property                                                               |                                             |                               |
| CLAIM NAME(S) (on which work was done) <u>Big Showing (390111), N</u>                        | lammoth (390112), Scout (4054               | 24), Ruby Silver (529121)     |
| COMMODITIES SOUGHT <u>Silver, Lead, Zinc</u>                                                 |                                             |                               |
| MINERAL INVENTORY MINFILE NUMBER(S), IF KNOWN <u>082KNW07</u>                                | 7, 082KNW078                                |                               |
| MINING DIVISION_Revelstoke                                                                   |                                             |                               |
| LATITUDE <u>50 ° 52 ' 14 </u> " LONGITUDE                                                    |                                             |                               |
| OWNER(S)                                                                                     |                                             |                               |
| 1) <u>Silver Phoenix Resources Inc.</u>                                                      | _ 2)                                        |                               |
| MAILING ADDRESS                                                                              |                                             |                               |
| Box 134                                                                                      |                                             |                               |
| Canoe, BC V0E 1K0                                                                            |                                             |                               |
| OPERATOR(S) [who paid for the work]                                                          |                                             |                               |
| 1) Silver Phoenix Resources Inc                                                              | _ 2)                                        |                               |
| MAILING ADDRESS                                                                              |                                             |                               |
| Box 134                                                                                      |                                             |                               |
| Canoe, BC V0E 1K0                                                                            |                                             |                               |
| PROPERTY GEOLOGY KEYWORDS (lithology, age, stratigraphy, structur                            | e, alteration, mineralization, size and att | itude):                       |
| Kootenay arc, early Paleozoic, Lardeau Group, Index Forma                                    | tion, Isoclinal folding, phyllite, sil      | iceous marble, galena,        |
| sphalerite, siderite                                                                         |                                             |                               |
|                                                                                              |                                             |                               |
|                                                                                              |                                             |                               |

REFERENCES TO PREVIOUS ASSESSMENT WORK AND ASSESSMENT REPORT NUMBERS 7996, 15372, 17978, 19288, 27941, 28871, 29602, 31315

| THIS REPORT                                                                                                                                                                                                                                                                                                                                                                                                                                             | EXTENT OF WORK<br>(IN METRIC UNITS) | ON WHICH CLAIMS             | PROJECT COSTS<br>APPORTIONED |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|-----------------------------|------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                     |                             | (incl. support)              |
| GEOLOGICAL (scale, area)                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |                             |                              |
| Ground, mapping                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                     |                             |                              |
| Photo interpretation                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                     |                             |                              |
| GEOPHYSICAL (line-kilometres)                                                                                                                                                                                                                                                                                                                                                                                                                           |                                     |                             |                              |
| Ground                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                     |                             |                              |
| Magnetic                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |                             |                              |
| Electromagnetic                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                     |                             |                              |
| Induced Polarization                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                     |                             |                              |
| Radiometric                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                     |                             |                              |
| Seismic                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                     |                             |                              |
| Other                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                     |                             |                              |
| Airborne                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |                             |                              |
| GEOCHEMICAL                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                     |                             |                              |
| (number of samples analysed for)                                                                                                                                                                                                                                                                                                                                                                                                                        |                                     |                             |                              |
| Soil                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                     |                             |                              |
| Silt                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                     |                             |                              |
| Rock                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 54 samples                          | 390111,390112,405424,529121 | \$32071.86                   |
| Other                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                     |                             |                              |
| DRILLING<br>(total metres; number of holes, size)                                                                                                                                                                                                                                                                                                                                                                                                       |                                     |                             |                              |
| Core                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                     |                             |                              |
| Non-core                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |                             |                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                     |                             |                              |
| RELATED TECHNICAL                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                     |                             |                              |
| RELATED TECHNICAL                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                     |                             |                              |
| RELATED TECHNICAL Sampling/assaying                                                                                                                                                                                                                                                                                                                                                                                                                     |                                     |                             |                              |
| RELATED TECHNICAL Sampling/assaying Petrographic                                                                                                                                                                                                                                                                                                                                                                                                        |                                     |                             |                              |
| RELATED TECHNICAL Sampling/assaying Petrographic Mineralographic                                                                                                                                                                                                                                                                                                                                                                                        |                                     |                             |                              |
| RELATED TECHNICAL Sampling/assaying Petrographic Mineralographic Metallurgic                                                                                                                                                                                                                                                                                                                                                                            |                                     |                             |                              |
| RELATED TECHNICAL Sampling/assaying Petrographic Mineralographic Metallurgic PROSPECTING (scale, area)                                                                                                                                                                                                                                                                                                                                                  |                                     |                             |                              |
| RELATED TECHNICAL Sampling/assaying Petrographic Mineralographic Metallurgic PROSPECTING (scale, area) PREPARATORY/PHYSICAL                                                                                                                                                                                                                                                                                                                             |                                     |                             |                              |
| RELATED TECHNICAL Sampling/assaying Petrographic Mineralographic Metallurgic PROSPECTING (scale, area) PREPARATORY/PHYSICAL Line/grid (kilometres) Topographic/Photogrammetric                                                                                                                                                                                                                                                                          |                                     |                             |                              |
| RELATED TECHNICAL Sampling/assaying Petrographic Mineralographic Metallurgic PROSPECTING (scale, area) PREPARATORY/PHYSICAL Line/grid (kilometres) Topographic/Photogrammetric (scale, area)                                                                                                                                                                                                                                                            |                                     |                             |                              |
| RELATED TECHNICAL         Sampling/assaying         Petrographic         Mineralographic         Metallurgic         PROSPECTING (scale, area)         PREPARATORY/PHYSICAL         Line/grid (kilometres)         Topographic/Photogrammetric         (scale, area)         Legal surveys (scale, area)                                                                                                                                                |                                     |                             |                              |
| RELATED TECHNICAL         Sampling/assaying         Petrographic         Mineralographic         Mineralographic         Metallurgic         PROSPECTING (scale, area)         PREPARATORY/PHYSICAL         Line/grid (kilometres)         Topographic/Photogrammetric         (scale, area)         Legal surveys (scale, area)         Road, local access (kilometres)/training                                                                       |                                     |                             |                              |
| RELATED TECHNICAL Sampling/assaying Petrographic Mineralographic Metallurgic PROSPECTING (scale, area) PREPARATORY/PHYSICAL Line/grid (kilometres) Topographic/Photogrammetric (scale, area) Legal surveys (scale, area) Road, local access (kilometres)/tra Trench (metres)                                                                                                                                                                            |                                     |                             |                              |
| RELATED TECHNICAL         Sampling/assaying         Petrographic         Petrographic         Mineralographic         Metallurgic         Metallurgic         PROSPECTING (scale, area)         PREPARATORY/PHYSICAL         Line/grid (kilometres)         Topographic/Photogrammetric         (scale, area)         Legal surveys (scale, area)         Road, local access (kilometres)/tra         Trench (metres)         Underground dev. (metres) |                                     |                             |                              |

### ASSESSMENT REPORT

on a

### ROCK SAMPLING PROGRAM

#### MAMMOTH PROPERTY

REVELSTOKE MINING DIVISION, BC BCGS 82K.082 & 083

**Exploration Work was done on MTO claims:** 390111, 390112

Assessment Work was filed on: 390111, 390112, 405424, 529121

BC Geological Survey Assessment Report 34013

NTS: 82K/13 LATITUDE: 50° 52' 14" N LONGITUDE: 117° 34' 27" W OWNER: Silver Phoenix Resources Inc OPERATOR: Silver Phoenix Resources Inc CONSULTANTS: X-Mark Minerals AUTHOR: Chris Solic DATE: January 6, 2013

# **Table of Contents**

| LIST OF FIGURES                                      | 1  |
|------------------------------------------------------|----|
| LIST OF TABLES                                       | 1  |
| 1.0 SUMMARY                                          | 3  |
| 2.0 INTRODUCTION                                     | 3  |
| 3.0 LOCATION AND ACCESS                              | 5  |
| 4.0 TOPOGRAPHY                                       |    |
| 5.0 PROPERTY DESCRIPTION                             |    |
| 6.0 EXPLORATION HISTORY                              | 6  |
| 7.0 GEOLOGY                                          | 8  |
| 7.1 Regional Geology                                 | 8  |
| 7.2 Property Geology                                 | 9  |
| 7.3 Structure                                        |    |
| 8.0 MINERALIZATION AND DEPOSIT TYPE                  | 12 |
| 9.0 WORK PROGRAM                                     | 12 |
| 9.1 Sample Methodology                               |    |
| 9.2 Sample Preparation, Analysis and Quality Control |    |
| 10.0 ROCK GRAB AND CHIP SAMPLING RESULTS             |    |
| 10.1 Big Showing                                     |    |
| 10.2 "Peak 2179                                      | 14 |
| 10.3 "Long                                           |    |
| 11.0 DISCUSSION                                      |    |
| 11.1 Big Showing                                     |    |
| 11.2 "Peak 2179                                      |    |
| 11.3 "Long                                           |    |
| 12.0 RECOMMENDATIONS                                 |    |
| 13.0 REFERENCES                                      |    |
| 14.0 STATEMENT OF COSTS                              |    |
| 15.0 STATEMENT OF QUALIFICATIONS                     | 25 |

## LIST OF FIGURES

| Figure 1: | Property Location Map                                                        | 4  |
|-----------|------------------------------------------------------------------------------|----|
|           | Claim Locations                                                              |    |
|           | Regional Geology                                                             |    |
|           | Property Geology and Showing Locations                                       |    |
| Figure 5: | "Peak 2179" and "Long" Showings Photo                                        | 13 |
| Figure 6: | Big Showing: Upper and Lower zone Sample ID, Location and Assay              | 16 |
| Figure 7: | Big Showing: Upper zone Setting and Geology                                  | 17 |
|           | "Peak 2179" and "Long" Showings: Sample ID, Location and Ag-Pb-Zn Assay      |    |
| Figure 9: | "Peak 2179" and "Long" Showings: Field Observed Sample Locations and Geology | 20 |

### LIST OF TABLES

| Table 1: | Tenure Des | scription | 6 |
|----------|------------|-----------|---|
|----------|------------|-----------|---|

# APPENDICES

Appendix I:Rock Sample Locations and DescriptionAppendix II:Rock Sample Assay Results

#### 1.0 SUMMARY

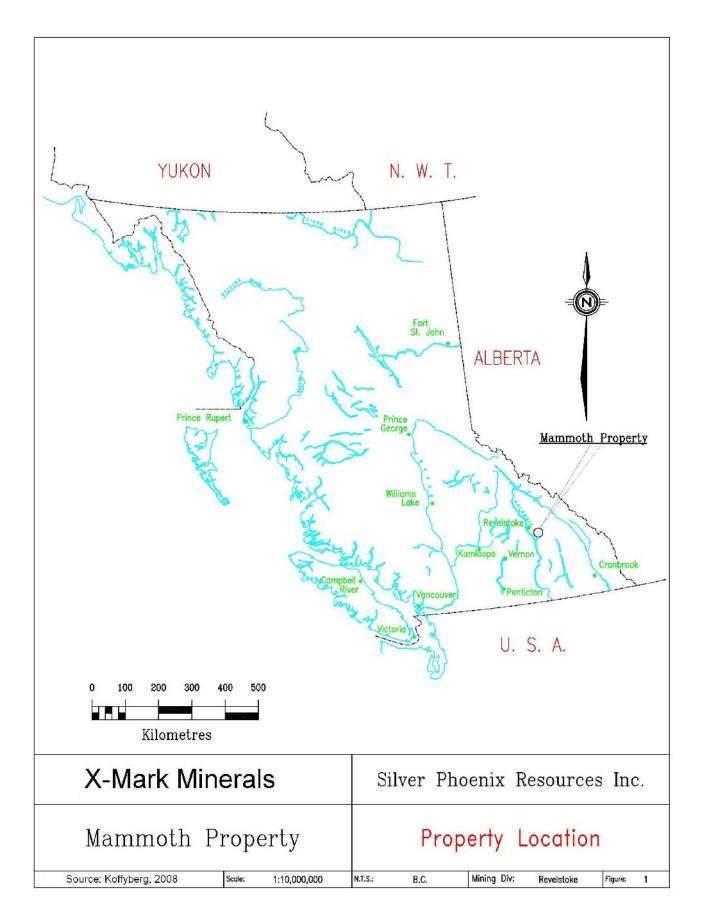
Note: Some sections of this report have been taken, with modification, from earlier Assessment Reports.

A rock and chip sampling program was performed in and around the Big Showing, one of three showings within the Mammoth Property ("Property") from August 17 to August 25, 2012, by X-Mark Minerals. The Property is owned by Silver Phoenix Resources Inc.("Silver Phoenix"), and consists of four MTO claims.

The Property is situated 20 km NE of Camborne and 70 km SE of Revelstoke, BC (NTS Map Sheet 93 K/13; 50°52' 30" N latitude, 117° 34' 10" W longitude; Figure1) and covers three separate sulphide showings named 1) Big Showing (formerly the Ruby Silver Showing); 2) Scout Showing; and 3) Mammoth Showing. Mineralization consists of disseminations, blebs and aggregates of Pb-Zn-Ag sulphides hosted by silicified, iron-rich carbonate rocks within carbonaceous pelite and meta-volcanicrocks belonging to the Lower Paleozoic Lardeau Group. The deposits are thought to be structurally modified, stratiform in character, and possibly SEDEX in origin.

The Property area consists of lower Paleozoic sedimentary and volcanic rocks belonging to the Lardeau Group. The group is underlain by the lower Cambrian Badshot and Mohican formations and Eocambrian Hamill Group.

Historical reserves quoted in MINFILE for the Big Showing are: 217,620 tonnes at probable 754 grams per tonne silver and possible 398,883 tonnes at 480 grams per tonne silver, both with associated values in gold, lead and zinc. These historical estimates predate NI 43-101 compliance and should not be relied upon.


Since its discovery in 1906, the Property has been subject to various work programs including prospecting, production via hand sorted "ore", mapping, soil and rock ampling, and airborne geophysics.

Exploration work carried out during 2012 by X-Mark Minerals consisted of the collection of 54 rock grab and chip samples over known and previously untested sulphide showings. Two zones of known sulphide exposure (the Lower and Upper zones) at the Big Showing were sampled to better assess grade, particularly at the Upper zone, where extremely difficult access had limited sampling in the past. Two other nearby, untested showings, the "Peak 2179" and newly named "Long" showing, were accessed and sampled using trained alpinists. Assay results from this program generally confirm the higher grade nature of the Upper and Lower zones of the Big Showing. The 'Peak 2179' and "Long" showings were found to be mostly typically barren of economic Pb-Zn-Ag mineralization, although rare samples with better grade indicate that these showings may have further potential.

### 2.0 INTRODUCTION

This assessment report has been prepared by X-Mark Minerals, at the request of Mr. William Murray of Silver Phoenix, the owner/operator of the Property.

X-Mark Minerals was retained by Silver Phoenix to:



- Conduct a rock sampling program over the Big Showing Property to test historic and newly identified Pb-Zn-Ag showings

- Report on results of sampling program for assessment purposes.

This report describes the 2012 rock/chip sampling program, sampling procedures, analytical results and conclusions.

#### 3.0 LOCATION AND ACCESS

The Property straddles the northern spur of Goldsmith Mountain, southeast of the confluence of Boyd Creek and the Incommapleux River. The lower portions of the property are covered with a dense forest of hemlock, spruce, cedar, pine, and alder. The underbrush is mostly willow, alder and devil's club. Thin overburden covers most of the region below tree line, and significant areas above tree line.

The Property is part of the northern Badshot Range of the Selkirk Mountains, 20 km northeast of Camborne and 70 km southeast of Revelstoke, British Columbia (NTS Map Sheet 93 K/13; 50°52' 30" N latitude, 117° 34' 10" W longitude).

The nearest towns that could provide logistical support are Nakusp, on the eastern shore of Upper Arrow Lake, and Revelstoke, located on the Trans Canada Highway in the Columbia River Valley. Access from Nakusp is via 50 km of gravel road north and east to the settlement of Camborne at the mouth of the Incommapleux River, and from there 20 km up river via logging roads to the base of the property. Logging roads in this area are commonly unusable due to seasonal flooding and/or landslides, as was the case during the 2012 field season. Helicopter from Nakusp or Revelstoke (approximately 30 minutes one way) is the most reliable and expedient mode of access. A steep trail (now overgrown) switchbacks from river level 1100 m up to a narrow ridge then drops 150 m to the main (Lower zone) Big Showing. There are no appropriate camp areas near the Big Showing. Helicopter access requires toe-in landing procedures.

#### 4.0 TOPOGRAPHY

The Property straddles the northern ridge of Goldsmith Mountain, which is southeast of the confluence of the Incommappleux River and Boyd Creek. Elevations within the Property range from 600 metres in the lower areas to 2,179 metres at the uppermost part of the ridge. Topography within the Property is steep to extremely rugged, consisting of mountain ridges, cirques and sheer rock walls. Drainage on the property is via numerous creeks including the Ruby Silver Creek and the Kid Creek. These creeks all eventually flow into the Incommappleux River, which drains southwest into Upper Arrow Lake. Lower parts of the Property are covered by a moderate to thick mantle of glacial till. Much of the evergreen forests in the lower areas have been clear cut and replanted. The higher elevations extend beyond the tree-line and consist of 100 m cliffs and ridges. Rock exposure is good; however, the rugged and steep terrain requires extreme caution and alpine mountain climbing experience.

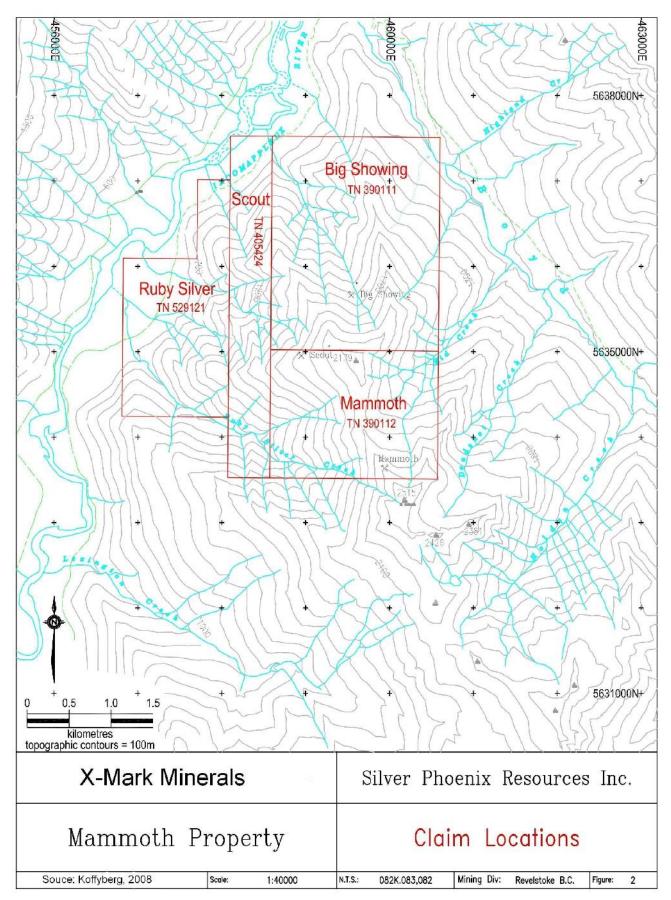
#### 5.0 PROPERTY DESCRIPTION

The Property consists of four Mineral Title Online claims recorded in the name of Silver Phoenix Resources. Figure 2 shows the location of the Property. Table 1 lists the details of the claim tenure.

|             | Table 1: Tenure Description |           |                               |              |  |  |  |  |  |  |  |  |  |  |
|-------------|-----------------------------|-----------|-------------------------------|--------------|--|--|--|--|--|--|--|--|--|--|
| Tenure Name | Tenure Number               | Area (ha) | Registered Owner              | Good to date |  |  |  |  |  |  |  |  |  |  |
| Big Showing | 390111                      | 500       | Silver Phoenix Resources Inc. | Mar 5, 2013  |  |  |  |  |  |  |  |  |  |  |
| Mammoth     | 390112                      | 300       | Silver Phoenix Resources Inc. | Mar 5, 2013  |  |  |  |  |  |  |  |  |  |  |
| Scout       | 405424                      | 200       | Silver Phoenix Resources Inc. | Mar 5, 2013  |  |  |  |  |  |  |  |  |  |  |
| Ruby Silver | 529121                      | 285.52    | Silver Phoenix Resources Inc. | Mar 5, 2013  |  |  |  |  |  |  |  |  |  |  |

#### 6.0 EXPLORATION HISTORY

Initial work in the area occurred with the discovery in 1903 of high grade silver-lead mineralization at the Mammoth Showing. From 1905 to 1907, it produced 765 tonnes of hand sorted ore that yielded 249 grams of gold, 484 kilograms of silver, 23 tonnes of lead and 1.95 tonnes of zinc (Minfile). The Consolidated Mining and Smelting Company optioned the property in1913. By the 1920s, an adit had been driven at the Mammoth at an elevation of 2,340 m. It was 180 m long towards the southeast with numerous crosscuts along the ridge.


Similarly, the Big Showing was discovered in 1906, and 64 m of adit and crosscuts were completed in 1914 over a strike length of 90 m. The following description is taken from the *Report of the Minister of Mines for 1919*:

"The vein outcrops on the west side of the creek and is somewhat similar in character to that of the Scout, except that the sulphides are exposed on the surface, due to the action of erosion at this point keeping pace with that of oxidation. It conforms to the stratification of the enclosing rocks and can be traced for many thousands of feet. The surface exposure at the outcrop is rightly called a "big showing," the width of the mineralized ledge being about 50 feet which a considerable quantity of galena occurs as patches and disseminations in a quartz gangue. The Intervening bands of barren material are stained in places with oxide of Iron. At this point the line of the surface cuts the vein at an angle which is not normal to the dip; hence the true width is not represented and is about 20 feet.

Ore can be traced for some distance up the hill until the vein becomes covered. It is reported that re has been found in a precipitous bluff near the summit. A sample of the galena from the surface ran: Gold, trace; silver 1.6 oz.; lead, 23.5 per cent.; zinc, 1.5 per cent. A sample of the iron-stained ledge-matter ran: Gold, trace; silver, trace; lead, nil; zinc, 4 per cent.

At an elevation of about 5,000 feet and at a vertical distance of 300 feet below the surface showing a tunnel has been driven for 171 feet. The first 66 feet of which follows a course of S 20° E., and the next 105 feet due south. In driving this tunnel they did not allow for the dip of the vein, and it is therefore in the foot-wall side. When this was recognized a crosscut was started at a point 126 feet from the portal and was driven in a direction of N 80° E. for 42 feet; it was abandoned within about 20 feet of the vein. For prospecting purposes this tunnel-site is well chosen, but for operating the property on a large scale a more favorable site might be obtainable at a lower altitude and in a more accessible place." Report MM 1919 page 142-143.

The Scout Showing was also discovered and worked on in the early 1900s. Work prior to 1941 consisted of an upper 56 m adit and a lower 2 to 3 m adit.



The three showings were consolidated into one property and staked in 1973 by the Leask Syndicate, and again in 1979. Exploration in 1979 consisted of detailed prospecting and mapping (at that time, the Big Showing was named the Ruby Silver Showing). Work done in the 1980s by various companies consisted of geochemical soil and rock sampling, and geological mapping. New Campbell Island Mines Limited optioned the Property from Summer 90 Resources Ltd in 1984, and from 1984-86 carried out geological mapping, geochemical surveys and property evaluations.

Estimates by H.A. Simmons (International Limited) and W.J. Olsson and Associates in 1986, presumably on the Big Showing, yielded "indicated reserves" estimated at 217,620 tonnes grading 754 g/t silver, and "inferred reserves" of 398,883 tonnes grading 480 g/t silver. These "reserves" are non NI 43-101 compliant and should not be relied upon.

W. Murray obtained the claims for Silver Phoenix Resources in 2002. Geological mapping and rock sampling was conducted on the Mammoth and the Scout Showing in 2005 (Turner, 2007; Assessment Report #28871). In 2007, a geological survey program was carried out on the Big Showing by R.I. Thompson, who prospected and collected rock samples in and around the Big Showing. A new showing, termed the Gossan Showing was discovered, with a grab sample returning 6.4 g/t silver and >1% lead (Thompson, 2008, Koffyberg, 2008; Assessment Report #29602). In 2009, a 348 line-km helicopter-borne magnetic survey was flown over the property by Precision Geophysics (Assessment Report #31315)

### 7.0 GEOLOGY

### 7.1 Regional Geology

The Property is located in the Kootenay Arc of the Omineca Belt, a concave arcuate, northsouthtrending fold belt of Paleozoic to Mesozoic sedimentary, volcanic and metamorphic rocks and traceable for about 400 km from Revelstoke, south along Kootenay Lake to Washington State. The Kootenay Arc is host to several past producing mines (Jersey, HB, ReevesMacDonald), and many base-metal and precious-metal occurrences. To the west of the Kootenay Arc are the Shuswap and Monashee metamorphic complexes. The Windermere-Purcell anticlinorium lies to the east.

The Kootenay Arc succession in the region of the Property comprises three main terranes: the early Paleozoic pericratonic Kootenay terrane consisting of the Hamill and Lardeau Groups, and the Badshot Formation; the accreted late Paleozoic and early Mesozoic Slide Mountain terrane, comprising the Milford and Kaslo Groups; and the Mesozoic Quesnel terrane, comprising the Kaslo and Rossland volcanic rocks and the Slocan argillites.

The stratigraphic succession is cut by several batholiths and stocks of Jurassic, Cretaceous and Tertiary ages. The Kuskanax and Nelson batholiths are the largest intrusions and are predominately of granite and granodiorite composition. The Battle Range pluton of Cretaceous age is of local importance.

The Lardeau Group consists of six conformable units named the Index, Triune, Ajax, Sharon Creek, Jowett and Broadview Formations. The Index Formation is the lowest and most extensive unit in the Lardeau Group. It consists of a thick sequence of grey, green and black phyllite, limestone and thick calcareous phyllite, tuff, tuffaceous greywacke, pillow basalt and rare quartzite and gritty sandstone.

The Index Formation is overlain by the Triune, Ajax and Sharon Creek Formations, which comprise an assemblage of black siliceous argillite, grey quartzite and black siliceous argillite respectively. These rocks are overlain by volcanic breccias and pillow lavas of the Jowett Formation. The rocks are intercalated with the overlying greywackes, slates and phyllites of the Broadview Formation.

Figure 3 shows the regional geology of the Property.

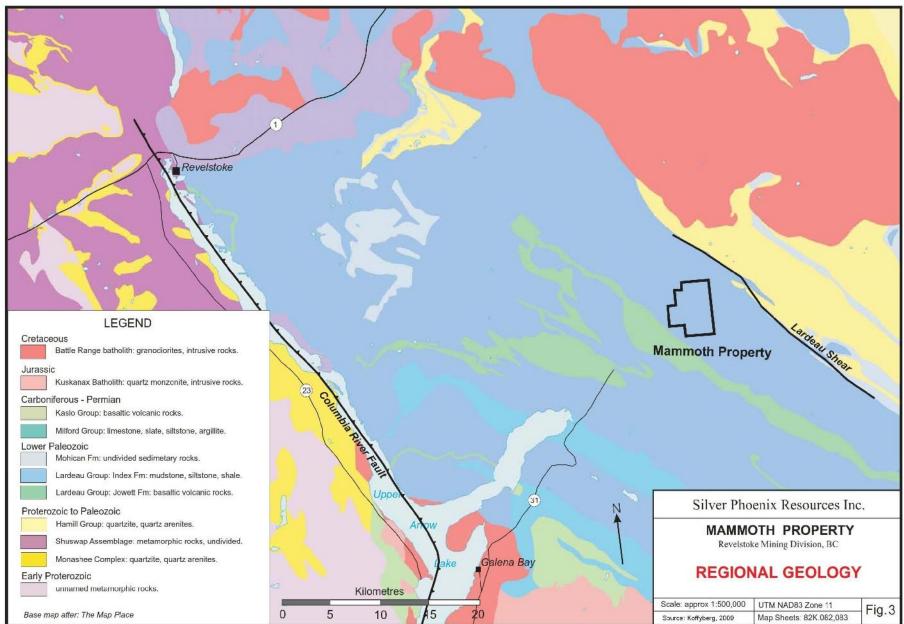
7.2 Property Geology

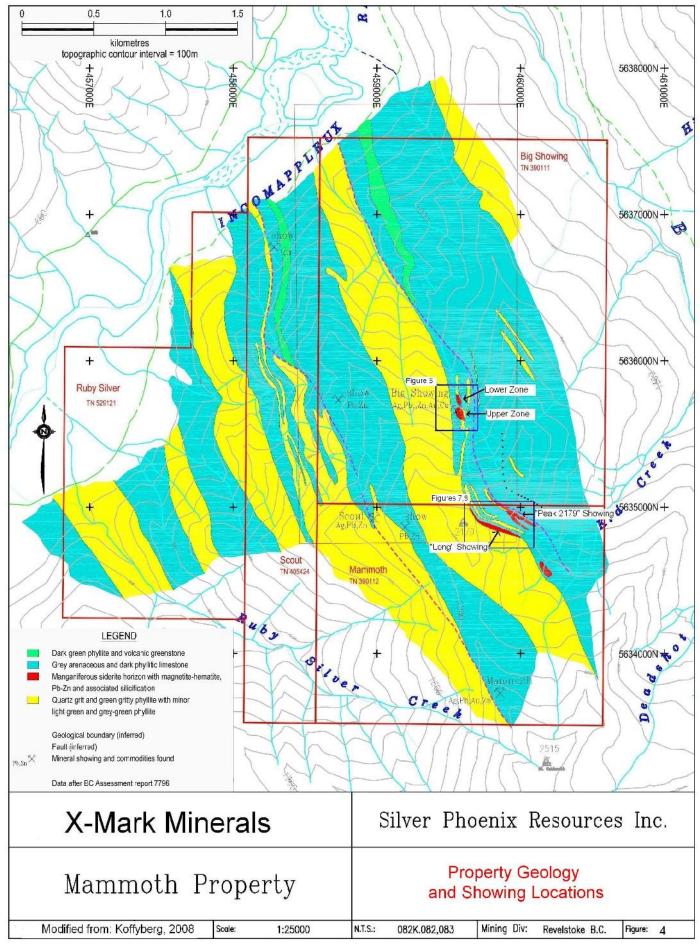
The Property is situated within the Index Formation of the Lower Paleozoic Lardeau Group. The rocks consist of green to tan, thinly layered phyllite with numerous quartz veins deformed within isoclinal folds. The phyllite is interbedded with calcite and siliceous marble units and phyllitic marble units. In addition to the phyllite are various units consisting of siliceous marble, marble and iron-rich marble. Within the Property are three main showings: The Big, Mammoth and Scout showings.

The Big Showing consists of two zones of galena, sphalerite and pyrrhotite mineralization, a lower 3 m wide zone (1,400 - 1,430 m elevation) and an upper 9 m zone (1,460 - 1,490 m elevation) which lies within the hinge zone of a parasitic anticlinal fold (Leask, 1980). The showing consists of veins, mineral aggregates and disseminations within a siliceous, iron-rich marble horizon (Thompson, 2007).

The Mammoth Showing lies 2.2 km south of the Big Showing at a higher elevation of 2,240 - 2,600 m. Several zones of galena, sphalerite, tetrahedrite and argentite occur within fractures of the carbonate unit within 33 m of the Scout fault.

The Scott Showing, at an elevation of approx 1,840 m and 1 km southwest from the Big Showing, consists of galena, sphalerite and pyrite within silicified carbonates. Structurally it occurs within a hinge zone of an isoclinal fold (Leask, 1980).


The geology of the property was mapped by J. Leask (1980) and is shown on Figure 4.


### 7.3 Structure

The Lardeau Group underwent folding and deformation in Devonian to Mid-Mississippian time.

Structurally, the Lardeau shear zone at Boyd Creek marks the boundary between the Lardeau Group and the older Badshot Formation and Hamill Group to the east. This likely coincides with the deformation of the Lardeau Group. Further deformation occurred through late Jurassic, producing large isoclinal folds within the rocks of the Index Formation.

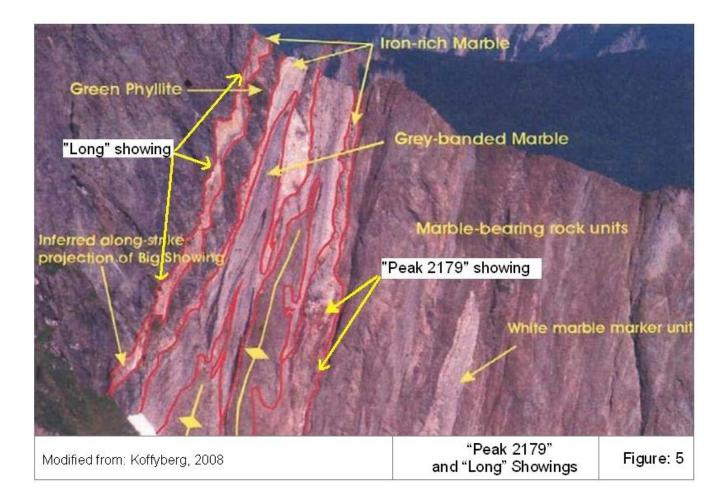
The second prominent structural feature is the Columbia River Fault zone to the west of the Property. It is a 250-km long linear detachment zone trending north-south along the Columbia River. It separates the ductilely-deformed gneisses of the Monashee-Shuswap complex to the west from the Lardeau, Milford and Hamill Groups and related intrusions on the east. The fault dips gently to the east and truncates the major folds and metamorphic zones that had developed in the mid-Jurassic.





#### 8.0 MINERALIZATION AND DEPOSIT TYPE

Lower Index formation clastics formed under conditions of high cratonic relief and were likely basinal slope deposits. The chlorite rich gray-green and light green phyllitic siltstone likely reflects a deeper basin environment. Overlapping lateral facies changes resulted from multiple transgressions and regressions, although structural complexity complicates this interpretation. Massive chlorite at the base of the silicified ore zone reflects hydrothermal activity in the basin. Lead-zinc mineralization associated with silicification is precipitated from metaliferous brines originating from fissures at some depth in the basin. The manganiferous siderite horizon is generally stratigraphically coincident with the lead- zinc mineralization but was precipitated more distally from the source of metalliferous brines. The deposits are thought to be structurally modified, stratiform in character, and possibly SEDEX in origin.


Speculatively, rates of influx of hydrothermal brines may have varied because of sea level changes and subsequent changes in hydrostatic head in the fissure system (Degens Ross, 1970). Mineralizing episodes appear to have been fairly closely followed by either uplift or regression of the sea. Gray micritic limestone was apparently deposited above the carbonate compensation depth, in an off-shelf environment, as pelagic ooze. Rusty lenticular lenses that contain up to two percent disseminated magnetite are present at several horizons within the gray limestone. These rusty horizons possibly represent several pauses in carbonate deposition with concomitant formation of insoluble residue by carbonate dissolution along these unconformities. Transgressions of the sea resulted in more stagnant, deeper water conditions and deposition of graphitic carbonate with thinly interbedded black graphitic phyllites. Sea level regression followed, and deposition of pelagic oozes became dominant again.

Volcanic greenstone and dark green phyllite formed in a submarine environment as flow rocks as evidenced by rare pillow structures.

#### 9.0 WORK PROGRAM

Between August 17 and August 25, 2012, a rock and chip sampling program was carried out on the Mammoth Property by personnel of X-Mark Minerals. The program consisted of the collection and assay of 54 rock and chip samples from known and untested Pb-Zn-Ag showings. The primary objectives of the program were to better understand Pb-Zn-Ag grades at the Big Showing, particularly at the Upper Zone (Figure 4) where prohibitive access has prevented recent sampling; and to conduct maiden sampling over the "Peak 2179" showing, an iron-stained exposure identified by Robert Thompson (Koffyberg, 2009) on a cliff-face due south of the Big Showing, and the "Long" showing, a second cliff-face showing parallel to "Peak 2179" identified by X-Mark Minerals (Figure 5). Both the "Peak 2179" and "Long" showings at the Big Showing, but have not previously been sampled due to their position on a near-vertical cliff-face accessible only by trained alpinists using ropes and secured climbing routes. Two alpinists were hired by X-Mark Minerals, and with their assistance all showings were accessed and sampled.

#### 9.1 Sample Methodology



Rock grab and chip samples were collected from outcrop with a geo-pick hammer. Sample material was placed in clear ore bags, tagged, and location and sample description recorded on paper and hand held GPS. Sample ID was written on flagging tape and secured to actual location site (not always possible on cliff-face locations). All samples for assay were placed in zap-strap sealed rice bags and shipped via courier to Actlabs in Kamloops, BC. Rock grab samples represent the best mineralized material present, whereas the chip samples are representative of average rock composition across the interval as a whole.

At the "Peak 2179" and "Long" showings, the author of this report did not accompany the alpinists onto the cliff-face for sampling, due to lack of proper mountaineering skills. Basic mineralization identification and sampling instruction was given by the author to the alpinists earlier in the program while sampling side by side at the Upper and Lower Zones of the Big Showing. With radio and visual communication between author and alpinists maintained at all times, the alpinists climbed or descended into high interest zones of the showings and collected rock grab samples (no chip samples) at approximate vertical intervals, targeting best mineralized material if possible. Rock sample coordinates and ID were recorded via GPS and radioed to the author. When the maximum number of samples for safe carrying was attained, the alpinists would return to base location, deposit samples with author for description.

9.2 Sample Preparation, Analysis and Quality Control

Rock sample preparation involved crushing the sample to 10 mesh, then pulverizing a 250 g split to -150 mesh (code RX1). A "near-total" agua regia digestion (code 8-4) was used before INAA+ICP/OES (code 1H) analysis for 50 elements. The analytical results of the rock samples are shown in Appendix II. Quality control samples from the lab are included with each batch. No problems with the quality control samples are evident.

#### 10.0 ROCK GRAB AND CHIP SAMPLING RESULTS

#### 10.1 Big Showing

A total of 11 grab and 10 chip samples were collected for assay from the Big Showing (sample numbers ranging from BS121702 to BS171201) on August 17th and 25th, 2012. On August 17th, the author and one alpinist were dropped via helicopter at a toe-in site near the Lower Zone with the intent of ascending the steep slope to the Upper Zone, since a safe toe-in landing site could not be found there. The Lower Zone was not accessed or sampled on this day. While climbing to the Upper Zone, grab samples were collected from a SE striking, rusty, iron-bearing siderite marble that pinches and swells and lies adjacent to a small creek (sample ID: BS121702 to BS121711, and BS171201). Visible mineralization in the siderite, when present, is typically in the form of fine-grained to massive pyrite, and assays returned only trace Pb-Zn-Ag levels from these samples. Because of difficult climbing conditions and extra time needed to locate a toe-in pick up site, the Upper Zone was not accessed.

On August 25th, X-Mark personnel returned to the Big Showing for a second attempt at the Upper Zone. A toe-in site near the Lower Zone was again used, and 3 chip samples and one grab sample (sample ID: BS122501 to BS122507) were collected from the Lower Zone showing in the vicinity of the old portal. All chip samples (at both Lower and Upper Zones) were collected over 2 m intervals and in W-E orientation. Mineralization at the Lower Zone is typified by stringers, disseminations and pods of fine-grained to massive galena, sphalerite and pyrite within a rusty weathering, siliceous marble. Best grade for the chip samples was <2% combined Pb-Zn, and 7 g/t Ag. The single grab sample, containing approximately 30% galena, assayed 25% Pb, 0.6% Zn, and 95.2 g/t Ag. Although time constraints prevented detailed mapping of the showing, earlier reports indicate widths ranging from 1 - 5 m and vertical length of up to 30 m, which appeared to be accurate. Sample locations (for both Upper and Lower zones) and assay results are shown in Figure 6.

The Upper Zone was this time successfully accessed, and 11 chip and grab samples were collected (7 chip samples, 4 grab samples). The Upper Zone was confirmed to vary from 2 - 9 m in width over a vertical length of approximately 30 m, and is constrained within the hinge zone of a parasitic anticlinal fold (Figure 7). Grades were higher than at the Lower Zone, with the best chip sample (BS122508) returning 21% Pb (trace Zn) and 61 g/t Ag. Average grade for the chip samples was approximately 6% Pb, <1% Zn, and 20 g/t Ag. Grab samples ranged from 2% to 38.6% combined Pb-Zn, and 3.6 g/t to 98 g/t Ag.

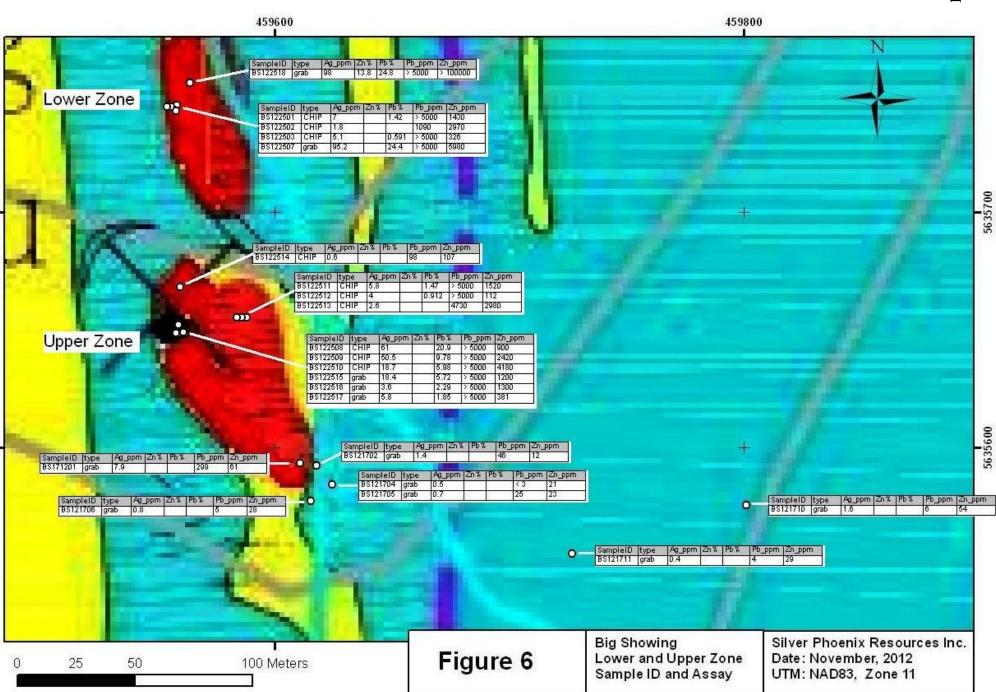
10.2 "Peak 2179" Showing

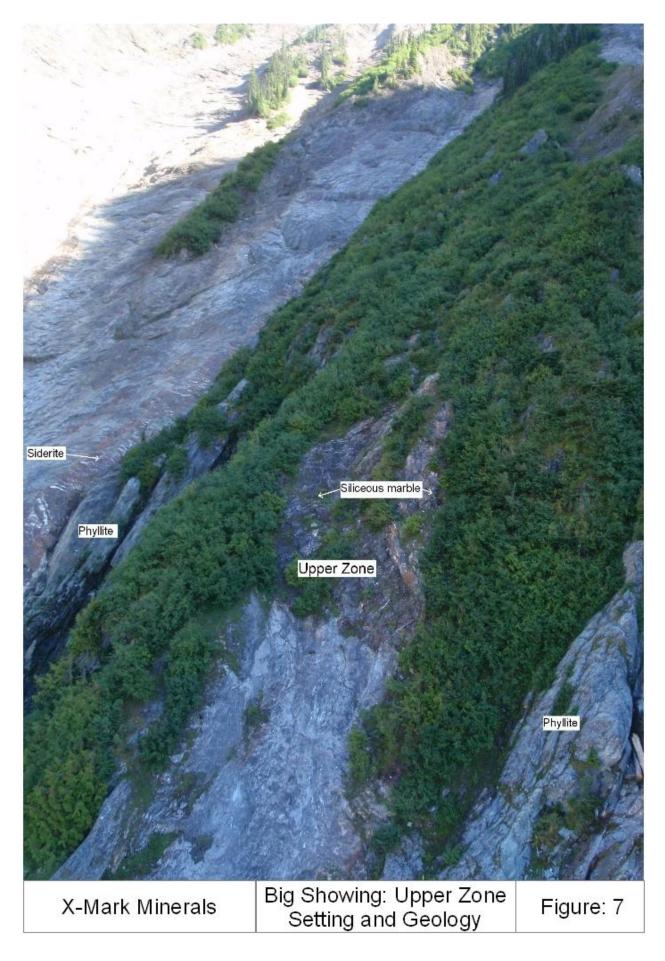
In Assessment Report #29602, the "Peak 2179" showing is described as follows:

"The inferred zone of interest is well displayed (as a) layer that can be traced from the ridge crest, down slope into a thickened "molar tooth" shaped zone interpreted as the hinge of a syncline. The dark

rusty weathering character of the zone is consistent with mineralized rocks observed elsewhere. If this interpretation is correct, then structural thickening will have increased the economic potential of this zone. Given the nature of exposure, proper sampling and assessment will require technical climbing ability and the support of an alpinist capable of providing safe belays."

On August 18, 2012, X-Mark personnel, which included the author and two alpinists, landed on the south side of the cliff that hosts the "Peak 2179" (and "Long") showing and hiked to the base where the showing is lost beneath a talus slope. From this location, the alpinists ascended the cliff face via secured climbing ropes to the "thickened molar tooth". The author was in visual and radio contact with the alpinists at all times, and guided their sampling of the "molar tooth", which is approximately half way up the cliff, down slope in approximate 10 m intervals, for a total vertical sampling distance of approximately 50 m. Because of its 'pinch and swell' character, thickness of the layer where sampled ranged from approximately 10 meters at the "molar tooth" to zero where the layer was pinched off. At the widest points of the layer, samples were collected at the center and near the east and west contacts; as the layer thinned down slope, samples were collected near the contacts or from the center. In total, 9 grab samples were collected and assayed (sample ID: PS121803 to PS121820). Sample locations and assay results are shown in Figure 8.


Complicating the sample point projection is the general inaccuracy of the elevation data recorded by the hand held GPS unit (Garmin GPSMap76) which would often indicate, for example, a gain of 10 m in elevation from the previous sample location when in fact there had been an approximate 10 m drop down slope. X/Y inaccuracy readings from the GPS unit varied from 4 - 15 m, but elevation readings seemed to be worse; for this reason, elevation records from the GPS should be regarded with caution. To compensate, actual distances between sample points were visually estimated while on the cliff-face and noted in the sampling notes, and sample locations were marked on a laminated photo carried by the alpinists as they were collected (Figure 9).


Visual observations, historic data and assay results from the Mammoth property reveal that higher grade Pb-Zn-Ag mineralization is typically hosted by rusty, siliceous marble rather than the more ubiquitous rusty, non-siliceous, iron-bearing marble, or siderite. Rock samples and direct observation at the base of the cliff where the "Peak 2179" showing is easily accessible indicate that the showing is predominantly hosted by siderite. Pyrite was commonly observed, sometimes as coarse-grained, euhedral pods, but galena, sphalerite and pyrrhotite were generally absent. Combined Pb-Zn grades for 7 of the 9 grab samples were <0.4%, with low corresponding silver values; the two other samples, PS121803 and PS121805, however, assayed 5.55% and 18.2% Pb, and 101 g/t and 127 g/t Ag (the two highest silver values from this program) respectively, and contained massive, euhedral pyrite and possible fine-grained galena.

#### 10.3 "Long" Showing

The author of this report observed an untested, rusty weathering layer herein termed the "Long" showing, parallel to the "Peak 2179" showing on the same south facing cliff and in the same stratigraphic layer identified in Assessment Report #29602 as being the 'inferred along-strike projection of the Big Showing'.

On August 19th and 24th, 2012, X-Mark Minerals personnel, which included two alpinists, landed near and then hiked to the 2179 m elevation peak from where the alpinists repelled into the "Long" showing.



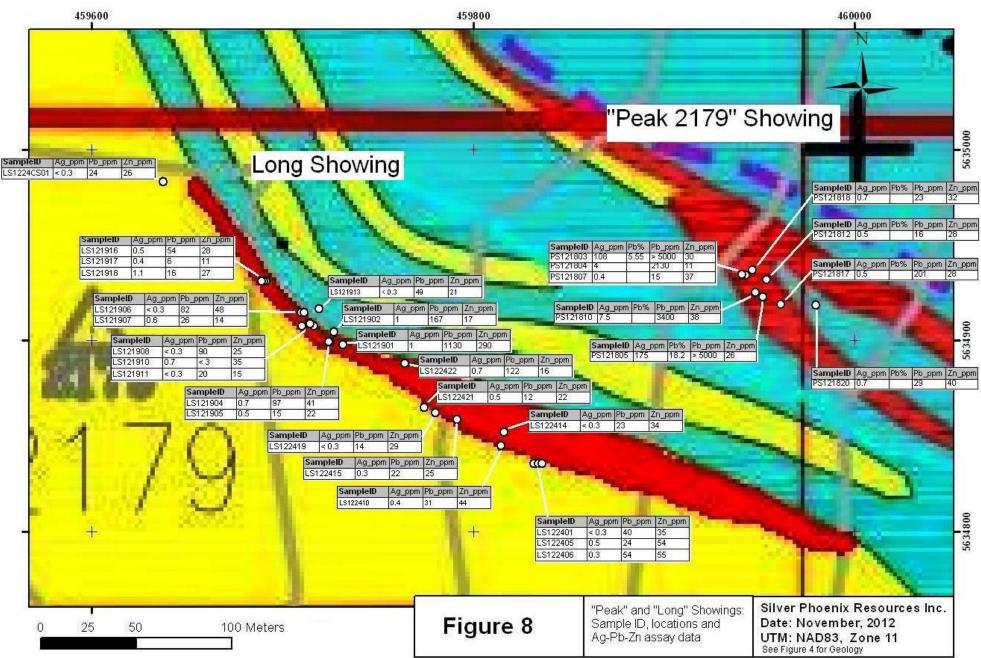


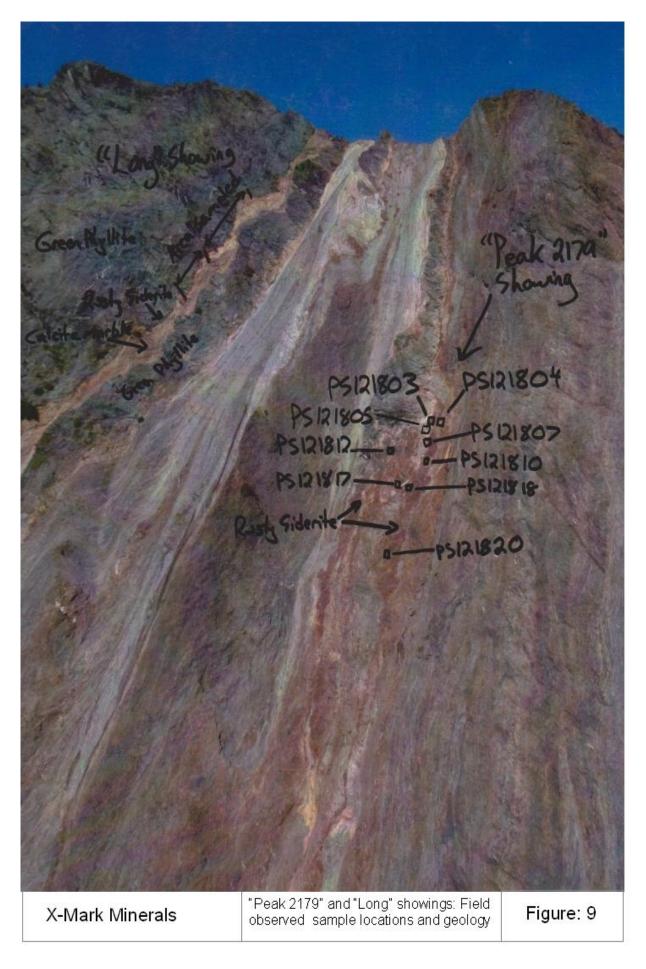
The showing is widest approximately 1/3rd of the distance down from the top of the ridge, and it was this area that was targeted for sampling. The author remained at the top of the ridge in visual and radio contact with the alpinists to assist in determining sample locations and record observations. At its widest point where sampled, the showing is approximately 8 m wide, and owing to its pinch and swell character, is sometimes pinched off completely. In total, 23 grab samples (sample ID: LS121901 to LS122422) were collected and sent for assay (Figure 8) from areas shown in Figure 9.

Like the "Peak 2179" showing, the "Long" showing is hosted by rusty weathering, iron-bearing siderite marble, rather than the more prospective siliceous marble found at the Big Showing. There are marked differences between the siderite marble at the "Long" showing and siderite marble found elsewhere on the property, however; mainly its colour, which is noticeably darker purple, and the predominance of magnetite, which can reach 50% of total rock composition and regularly has massive, euhedral form. Pyrite is rare; galena, sphalerite, pyrrhotite were not observed in any hand samples. Grades at the "Long" showing were the lowest in this program, with the best sample (LS121901) returning <0.13% combined Pb-Zn and only trace silver.

#### 11.0 DISCUSSION

#### 11.1 Big Showing


The Lower Zone of the Big Showing, located at the old portal entrance, is hosted by rusty weathering, siliceous marble. Best grades from this program were 25% combined Pb-Zn and 95.2 g/t silver from the single grab sample, and 1.5% combined Pb-Zn and 5.1 g/t silver from a 2 m chip sample.


The Upper Zone of the Big Showing is also hosted by rusty weathering, siliceous marble. Grades were higher than at the Lower Zone, with the best chip sample returning 21% Pb (trace Zn) and 61 g/t Ag. Average grade for the chip samples was approximately 6% Pb, <1% Zn, and 20 g/t Ag. Grab samples ranged from 2 - 38.6% combined Pb-Zn, and 3.6 - 98 g/t Ag. Non-siliceous, rusty, iron-bearing marble (siderite) associated with both Lower and Upper Zones of the Big Showing contains only trace mineralization.

Although some of the better grades from both zones can be considered economic, their relatively small size and the extreme ruggedness and difficulty of access of this area makes further development of the showings challenging. Structurally, the area is very complex, as it was thought that the two showings ("Peak 2179" and "Long") sampled on the cliff face due south (along strike) of the Big Showing, in similar stratigraphic positions and with the same general appearance, would represent along-strike projections of the mineralized, siliceous marble, and therefore significantly increase the size potential of the higher grade 'ore'. Observations and assay results suggest that the mineralized, siliceous marble does not, in fact, project through to the southern cliff face, further constraining possible extensions at depth. Two high grade samples from the "Peak 2179" showing, although not hosted by the more prospective silicious marble, indicate that there nevertheless may be mineralized continuity through to the Big Showing, and that siderite rocks on the property do have mineralized potential.

#### 11.2 "Peak 2179" Showing

The "Peak 2179" showing was sampled over a vertical distance of approximatley 50 m, including the thickened 'molar tooth' section which is interpreted as a possible fold hinge. Visual observation and





assay results indicate that areas of the showing that were sampled are hosted by siderite rather than the more prospective siliceous marble found at the Big Showing. Although assays results for most of the samples were at trace levels, two samples did return encouraging results, with 5.55% and 18.2% Pb, and 101 g/t and 127 g/t Ag (the two highest silver values from this program) respectively. Given the structural complexity of the property, and the association of siderite with the mineralized siliceous marble at the Big Showing, it's possible that certain sections of the "Peak 2179" showing will contain pods or intervals of high grade siderite and/or siliceous marble. If this is the case, it can be assumed that additional mineralization exists at depth and along-strike between the "Peak 2179" and Big Showings

### 11.3 "Long" Showing

Like the "Peak 2179" showing, the "Long" showing is hosted by rusty weathering siderite marble, rather than the more prospective siliceous marble found at the Big Showing. The "Long" showing is unique amongst the showings sampled in this report in that it has a dark purple colour and a very high magnetite content, often in massive, euhedral form. Grades at the "Long" showing were the lowest in this program, with the best sample returning <0.13% combined Pb-Zn and only trace silver. Although the exact location of the 'inferred along-strike projection of the Big Showing' indicated in Assessment Report #29602 was not sampled, close-up observation from the helicopter by the author did not reveal significant differences in appearance from sections of the showing that were sampled. If the "Long" showing does host economic mineralization, it is likely in discreet sections only, as seen at the "Peak 2179" showing.

#### 12.0 RECOMMENDATIONS

At the Big Showing, detailed mapping, structural analysis and additional chip sampling is required to better assess true size, grade, and down-dip and/or along-strike potential, particularly at the larger Upper Zone where grades are higher. Preexisting data should be synthesized and digitized. Assistance from a trained alpinist is recommended whenever attempting to access the Upper Zone. There are no suitable camping locations with access to the Upper Zone, and possibly the Lower Zone as well, leaving helicopter or a long hike along the now overgrown trail to valley bottom as the only access options.

If good potential for increased size at depth is recognized, the Upper and/or Lower Zone should be drill tested. Since extreme topographic conditions at both showings may be prohibitive for safe drill pad location, an experienced drill pad builder should visit the showings to assess drill pad viability as part of any future program.

The "Peak 2179" and "Long" showings are not recommended for follow-up work at this time. Despite their large size relative to the Upper and Lower zones at the Big Showing, rock type (non-siliceous, siderite marble) and mineralization are not favorable. The two high grade samples at the "Peak 2179" showing are encouraging and support the possibility of limited along-strike continuity of the Big Showing to the north.

The two other showings on this property, Mammoth and Scout, that weren't visited during this program should be assessed as part of any future program. Historical data indicates Pb-Zn-Ag values similar to the Big Showing. Difficult access and small size, the biggest limitations to developing the Big

Showing, may be less prohibitive at Mammoth and Scout, making them easier prospects to develop on their own or in conjunction with work at the Big Showing.

The presence of numerous, high grade showings, albeit relatively small in size and in challenging terrain, highlights the overall potential of the property.

Cost estimates for a follow-up work program include detailed mapping and additional chip sampling of the Upper and Lower zones of the Big Showing, as well as the Mammoth and Scout showings; structural analysis by a structural geologist; and drill pad feasibility. Details are provided below:

| Professional Services:                                                            |                 |
|-----------------------------------------------------------------------------------|-----------------|
| Project Geologist (Synthesize and digitize historical data;                       |                 |
| planning; mapping and sampling of Big Showing, Mammoth                            |                 |
| and Scout showings):                                                              | 0000            |
| 14 days @ \$700/day<br>Structural Caselogist (Structural analysis of showings and | \$9800          |
| Structural Geologist (Structural analysis of showings and property geology):      |                 |
| 6 days @ \$800/day                                                                | \$4800          |
| Structural Geologist report:                                                      | \$2000          |
| Assessment Report Writing and GIS:                                                | \$3500          |
| Field Personnel:                                                                  |                 |
| Alpinist:                                                                         |                 |
| 6 days @ \$600/day                                                                | \$3600          |
| Field assistant:                                                                  | ·               |
| 6 days @ \$400/day                                                                | \$2400          |
| Drill pad builder:                                                                |                 |
| 1 day @ \$500/day                                                                 | \$500           |
| Expenses:                                                                         |                 |
| Assays:                                                                           |                 |
| 60 samples @ \$50/sample                                                          | \$3000          |
| Helicopter:                                                                       | <b>** * * *</b> |
| 8 days @ \$3200/day                                                               | \$25600         |
| Food and Accommodation:                                                           | ¢2400           |
| 6 days @ \$400/day<br>Transportation                                              | \$2400          |
| Transportation<br>6 days @ \$150/day                                              | \$900           |
| Miscellaneous @ 10% of total costs                                                | \$900<br>\$5850 |
| Wiscentaneous @ 10% of total costs                                                | \$3830          |
| Total:                                                                            | \$64350         |
| Contingency @ 15%:                                                                | \$9650          |
| Final Total:                                                                      | \$74000         |

#### 13.0 REFERENCES

- British Columbia Ministry of Mines; Annual Reports: 1896-536; 1900-810; 1903-133; 1904G121; 1905-J156; 1906-H139, H249, H253; 1907-L214; 1914-K270; 1916-K523
- British Columbia Department of Energy, Mines and Petroleum Resources; Assessment Reports: #7996, #15372, #17978, #19288, #27941, #28871, #29602
- Church, B.N. and Jones L.D. (1999): Metallogeny of the Beaton-Camborne Mining Camp, Lardeau District, BC Geological Fieldwork 1998, Paper 1999-1, p 193-222
- Koffyberg, A. (2008): Assessment Report on the Geological Mapping and Rock Sampling Program, Mammoth Property, for Silver Phoenix Resources Ltd., Assessment Report 29602
- Koffyberg, A. (2009): Assessment Report on the Airborne Magnetic and Spectrometric Survery, Mammoth Property, for Silver Phoenix Resources Inc., Assessment Report 31315
- Leask, J.M. (1980): Geology of the Ruby Silver and Goldy Pb-Zn-Ag Properties, Lardeau District, Southeastern British Columbia, Assessment Report 7996
- McMillan, W.J. Hoy, T., MacIntyre, D.G., Nelson, J.L., Nixon, G.T., Hammack, J.L., Panteleyev, A., Ray, G.E. and Webster, I.C.L. (1991): Ore deposits, tectonics and metallogeny in the Canadian Cordillera, British Columbia, Ministry of Energy, Mines and Petroleum Resources Paper 1991-4
- Miles, W.F., Shives, R.B.K., Carson, J., Buckle, J., Dumont, R. and Coyle, M. (2007): Airborne Gamma-ray Spectrometric and Magnetic Surveys over the Bonaparte Lake Area (NTS 092P), South-Central British Columbia. BC Geological Fieldwork 2006, Paper 2007-1, p375-376
- Thompson, R.I. (2007): Geological Reconnaissance of the Big Showing Property, Incommappleux River Area, Southern British Columbia, internal report for Discovery Consultants; in Assessment Report 29602
- Turner, J. (2007): Technical Report on the Mammoth, Scout and Big Showing Property, Revelstoke Mining Division, for Silver Phoenix Resources Ltd, dated February 9, 2007

### 14.0 STATEMENT OF COSTS

| Professional Services:                            |            |
|---------------------------------------------------|------------|
| Chris Solic, Project Geologist                    |            |
| Program planning, preparation, fieldwork          |            |
| (August 17-25, 2012), data interpretation         |            |
| 7 days @ \$500/day                                | \$3500     |
| Assessment Report writing                         | \$1500     |
| Field Personnel:                                  |            |
| Nathan MacDonald, Certified Alpine Climbing Guide |            |
| Rock sampling support, August 17-25, 2012         |            |
| 5 days @ \$600/day                                | \$3000     |
|                                                   |            |
| Megan Smith, Alpinist                             |            |
| Rock sampling support, August 17-25, 2012         |            |
| 3 days @ \$550/day                                | \$1650     |
|                                                   |            |
| Expenses:                                         |            |
| Analytical: Actlabs (Kamloops, BC)                |            |
| Rock sample preparation and analysis              |            |
| 55 samples @ \$42.79                              | \$2353.45  |
| Courier of samples to Actlabs, Kamloops           | \$30       |
| Photo laminating                                  | \$48.33    |
| Satellite phone rental                            | \$96.75    |
| Sampling and field supplies                       | \$248.73   |
| Food                                              |            |
| 6 days @ \$50/day                                 | \$300      |
| Transportation:                                   |            |
| Vehicle rental                                    |            |
| 6 days @ \$75/day                                 | \$450      |
| Vehicle fuel                                      | <i></i>    |
| 6 days @ \$50/day                                 | \$350      |
| Helicopter                                        | \$11373.25 |
| noncoptor                                         | ¢110,0120  |
| Total:                                            | \$24900.51 |
| HST @ 12%:                                        | \$2988.06  |
| Contingency @ 15%:                                | \$4183.29  |
| Final Total:                                      | \$32071.86 |

#### 15.0 STATEMENT OF QUALIFICATIONS

I, Chris Solic, Geologist and owner of X-Mark Minerals, 207 Larsen Ave, Enderby, BC, V0E1V2

#### DO HEREBY CERTIFY that:

- 1. I am a geologist in mineral exploration.
- 2. I graduated with a B.Sc. degree in Geological Sciences from the University of Manitoba in 2006.
- 3. I have worked as a geologist for a total of 6 years since graduation from University.

4. This report is based upon knowledge of the Property gained from field experience at the Property and from a review of existing industry and government reports.

Dated this tenth day of December, 2012 in Enderby, BC

Signature of

h.

Chris Solic, Geologist X-Mark Minerals

## **APPENDIX I**

Rock Sample Locations and Descriptions

| Bis 12:07         Bis Nowing         Gain         Addition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | SampleID | Location    | Туре  | X      | Y       | Zone | Rock Type          | Interval | Mineralization    | Description                                                                                         |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-------------|-------|--------|---------|------|--------------------|----------|-------------------|-----------------------------------------------------------------------------------------------------|
| Sist 2110         Big Shrowing         Code         All Sole (Rest)         Sist 2110         Big Shrowing         Code (Section Code)         Sist 2110         Sist 2111         Sist 2111 <thsist 2111<="" th=""> <thsist 2111<="" th=""> <t< th=""><th>BS121702</th><th>Big Showing</th><th>Grab</th><th>459618</th><th>5635592</th><th>11</th><th>Siderite</th><th>none</th><th>10% Py</th><th></th></t<></thsist></thsist>                                                                                                                                                                                                                                                                                                                                                                                                             | BS121702 | Big Showing | Grab  | 459618 | 5635592 | 11   | Siderite           | none     | 10% Py            |                                                                                                     |
| Bit Strong         Inst. 48825         98325         11         Sterine         once         ~% Py         cylicited 30 on west of significance           Bit Strong         Big Strong         Ga Strong                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | BS121704 | Big Showing | Grab  | 459625 | 5635584 | 11   | Siderite           | none     | ~5% Py            |                                                                                                     |
| Bit Strong         Big Showing         Cale         Abset 7         11         Steller         none         none enter of 1 m oute sidente part           Bit Strong         Big Showing         Crea         Abset 7         Big Showing         Crea         Big Showing         Crea         Abset 7         Big Showing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | BS121705 | Big Showing | Grab  | 459625 | 5635584 | 11   | Siderite           | none     | ~5% Py            | collected 30 cm west of BS121704                                                                    |
| Bis Trivin         Bis Trivinu         Grain         Algebrain         Trivinu            18122211                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |             | Grab  | 459615 | 5635577 | 11   | Siderite           | none     | none              | from center of 1 m wide siderite laver                                                              |
| BH12201         LowerZone         Cirple         458525         (1)         Billocaum atthe<br>2 nm privy         (2)         minor Py, Gn         (2)         num or Py, Gn         (2)         num or Py, Gn         (2)         num or Py, Gn         (2)         (2)         (2)         (2)         (2)         (2)         (2)         (2)         (2)         (2)         (2)         (2)         (2)         (2)         (2)         (2)         (2)         (2)         (2)         (2)         (2)         (2)         (2)         (2)         (2)         (2)         (2)         (2)         (2)         (2)         (2)         (2)         (2)         (2)         (2)         (2)         (2)         (2)         (2)         (2)         (2)         (2)         (2)         (2)         (1)         (2)         (2)         (2)         (1)         (2)         (2)         (1)         (2)         (2)         (1)         (2)         (2)         (1)         (2)         (2)         (1)         (2)         (2)         (1)         (2)         (2)         (1)         (2)         (2)         (1)         (2)         (2)         (1)         (2)         (2)         (1)         (2)         (2)         (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | BS121710 | Big Showing | Grab  | 459801 | 5635575 | 11   | Siderite           | none     | minor Py          |                                                                                                     |
| Bit 2020         Low Zown         Ohip         449555         503744         11         Silcoux marble         20         m (n) to 97%         2.4 m (n) mostive contact           Bit 2020         Low Zown         Grad         449555         503744         11         Silcoux marble         non         30% Gn         masslee Gn public contact           Bit 2020         Low Zown         Chip         449555         503744         11         Silcoux marble         2.0 m         10.0 % (% h) %         4.6 m (non east phylic contact           Bit 20210         UpperZone         Chip         449565         503644         11         Silcoux marble         2.0 m         10.0 % (% h) %         2.4 m (non east phylic contact         10.0 % (h) %         11.0 % (h) %         10.0 % (h) %         11.0 % (h) %         10.0 % (h) %         11.0 % (h) %         11.0 % (h) %         11.0 % (h) %         10.0 % (h) %         10.0 % (h) %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | BS121711 | Big Showing | Grab  | 459727 | 5635555 | 11   | Siderite           | none     | minor Py, Gn      | siderite pod/stringer 30cm wide at pick up spot                                                     |
| Bit 2283         Low azona         Ohip         449554         503744         11         Silecous marble         20m         minor Py. Ch         i.e. for maiser Carpod           Bit 22807         CoverZone         Chip         49555         503744         11         Silecous marble         20m         Up to 50% Gn Pp         2.4 m from east phylite contact           Bit 22807         UpperZone         Chip         495555         503744         11         Silecous marble         2.0 m         10.20% Gn Sp         2.4 m from east phylite contact           Bit 22817         UpperZone         Chip         495855         Silecous marble         2.0 m         10.20% Gn Sp         2.4 m from east phylite contact         11.6 m from east phylite contact           Bit 22817         UpperZone         Chip         495855         11         Silecous marble         2.0 m         minor Gn         2.4 m from east phylite contact         11.6 m from east phylite contact           Bit 22817         UpperZone         Chip         495855         11         Silecous marble         2.0 m         minor Gn         2.4 m from east phylite contact         11.6 m from sole           Bit 22817         UpperZone         Chip         495855         11         Silecous marble         2.0 m from of Gn         1.6 m from sole                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | BS122501 | LowerZone   | Chip  | 459558 | 5635745 | 11   | Siliceous marble   | 2.0 m    | minor Py, Gn      | 0-2 m from east siderite contact                                                                    |
| IBS12250         LoweZone         Grad         458525         LoweZone         Grad         4585255         LoweZone         Chi         458555         Status         Zon         10.20% Gn. Sp.         2.4 m from east phylite contact.           85122551         UppezZane         Chi         465885         6583665         11         Status         2.0 m         10.20% Gn. Sp.         2.4 m from east phylite contact.         towe allow contact.         4.6 m from east phylite contact.         towe allow contact.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | BS122502 | LowerZone   | Chip  | 459556 | 5635745 | 11   | Siliceous marble   | 2.0 m    | up to 5% Py+Gn    | 2-4 m from sidertie contact                                                                         |
| Bit 2268         UpperZone         Chip         495802         Bit Rescue markie         2.0 m         Up to 69% ChrSp         2.2 th mom and phylite contact           Bit 22509         UpperZone         Chip         495802         Bit 22501         UpperZone         Chip         495882         11.3         Bit 22511         UpperZone         Chip         495882         11.3         Bit 22511         UpperZone         Chip         495882         11.3         Bit 22511         UpperZone         Chip         495858         11.3         Bit 22511         UpperZone         Chip         495858         11.3         Bit 22511         UpperZone         Chip         495858         11.3         Bit 22515         UpperZone         Chip         495858         11.3         Bit 22517         UpperZone         Chip         4958                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | BS122503 | LowerZone   | Chip  | 459554 | 5635745 | 11   | Siliceous marble   | 2.0 m    | minor Py, Gn      | 4-6 m from siderite contact                                                                         |
| BS12259         UppeZone         Chip         49858         6835461         11         Silecous marbie         2 0 m         10.29% (n. Sp         2 4 m from east phylite contact           BS122510         UppeZone         Chip         49858         6835565         11         Silecous marbie         2 0 m         5% (n. Sp         0 2 m from east phylite contact           BS122510         UppeZone         Chip         498586         6135555         11         Silecous marbie         2 0 m         minor Gn         2 4 m from east phylite contact           BS122511         UppeZone         Chip         498568         6135555         11         Silecous marbie         2 0 m         minor Gn         4 - 6 m from east phylite contact         6000 contact         6100 contact                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | BS122507 | LowerZone   | Grab  | 459558 | 5635743 | 11   | Siliceous marble   | none     | 30% Gn            | massive Gn pod                                                                                      |
| BS122510         UpperZone         Chip         469588         6635665         11         Silicoous marbie         2.0         10.229/6 on.5p         4-0         nom aud phylite contact           BS122511         UpperZone         Chip         469588         6635655         11         Silicoous marbie         2.0         minor Gr         2.4         nom aud phylite contact           BS122513         UpperZone         Chip         469585         6535565         11         Silicoous marbie         2.0         minor Gr         4.6         nom aud phylite contact           BS122515         UpperZone         Chip         469581         6335641         11         Silicoous marbie         0.0         minor Gr         4.6         nom contact         0.7         minor Gr         4.6         nom contact         9         minor Gr         4.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | BS122508 | UpperZone   | Chip  | 459562 | 5635649 | 11   | Siliceous marble   | 2.0 m    | Up to 50% Gn+Sp   | 0-2 m from east phyllite contact                                                                    |
| Isst2251         UpperZone         Chin         458686         653656         11         Silicous martie         2.0 m         minor Gn         4.4 m from east phylite contact           B8122512         UpperZone         Chip         458686         653665         11         Silicous martie         2.0 m         minor Gn         4.6 m from east phylite contact           B8122514         UpperZone         Chip         45866         653666         11         Silicous martie         3.0 m           B8122515         UpperZone         Grab         45856         653664         11         Silicous martie         nome         10% G (+Spr?)         grab from high-grade (Chi-Spr?) pod.           B8122517         UpperZone         Grab         45856         653662         11         Silicous martie         nome         10% G (+minor PL)         grab from high-grade (Chi-Spr?) pod.           B8122510         UppeZone         Grab         45856         15         Silicous martie         nome         10% G (+minor PL)         grab from high-grade (Chi-Spr?) pod.           B8172510         UpgShowing         Grab         45856         15         Silicous         nome         nome         nome         nome         nome         nome         nome         nome         nome                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | BS122509 | UpperZone   | Chip  | 459560 | 5635649 | 11   | Siliceous marble   | 2.0 m    | 10-20% Gn, Sp     | 2-4 m from east phyllite contact                                                                    |
| BS125212         UpperZone         Chip         45986         653565         11         Silicous marble         2.0 m         minor Gn         2.4 m tom east phylite contact           BS125213         UpperZone         Chip         459666         11         Silicous marble         2.0 m         minor Gn         0.4 m tom east phylite contact           BS12515         UpperZone         Grab         45966         11         Silicous marble         0.0 m         minor Gn         0.4 mone sat phylite contact           BS12515         UpperZone         Grab         45956         153562         11         Phylite marble         none         20% (P + minor G)         path malp-prace (Gn-Sp-PP) pot; same location as BS122515           BS12517         UpperZone         Grab         45956         11         Silicous marble         none         20% (P + minor G)         path malp-prace (Gn-Sp-PP) pot; same location as BS122515           BS12516         UpperZone         Grab         45957         15388         11         Silicous marble         none         20% (P + minor G)         path malp-prace (Gn-Sp-PP) pot; same location as BS122516           BS12516         UpperZone         Grab         45977         55388         11         Silicous         none         nom none         nom none         nom none <td>BS122510</td> <td>UpperZone</td> <td>Chip</td> <td>459558</td> <td>5635649</td> <td>11</td> <td>Siliceous marble</td> <td>2.0 m</td> <td>10-20% Gn, Sp</td> <td>4-6 m from east phylite contact</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                  | BS122510 | UpperZone   | Chip  | 459558 | 5635649 | 11   | Siliceous marble   | 2.0 m    | 10-20% Gn, Sp     | 4-6 m from east phylite contact                                                                     |
| Bit 22513         UpperZone         Chip         4588254         UpperZone         Chip         458856         11         Silocour martel         2.0 m         minor Gn         4.6 mm tom-gate phyllice contact           Bit 22514         UpperZone         Grad         458561         458564         11         Silocour martel         nom         10% GI (*SP7)         grad from high-gate (Gn <sp-phy) pod<="" td="">           Bit 22516         UpperZone         Grad         458561         4535563         11         Silocour martel         nom         10% GI (*SP7)         grad from high-gate (Gn<sp-phy) pod<="" td="">         same hard         11% GI (*SP7)         11% Gi (*SP7)</sp-phy)></sp-phy)>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          | UpperZone   | Chip  | 459588 | 5635655 | 11   | Siliceous marble   | 2.0 m    | 5% Gn, Sp         | 0-2 m from east phyllite contact; lower silica content in this area of the showing                  |
| Isst2214         UpperZone         Ohip         49660         653668         11         Silicoous martle<br>none         10% G1 (%2)         37 mm rome sate phylite contract (silicopus zone is 3 m wide here)           BS122516         UpperZone         Grab         496661         6536649         11         Silicoous martle<br>none         10% G1 (%2)         37 mm rome sate phylite contract (silicopus zone is 3 m wide here)           BS122517         UpperZone         Grab         496564         6537755         11         Silicoous martle<br>none         10% G1 (mm PP phylite martle<br>none         10% G1 (mm PP phylite martle<br>none         10% G1 (mm PP phylite nontract.           BS122517         UpgShowing         Grab         496951         11         Silicoous martle<br>none         0% PP minor SP<br>form siderite/phylite contract.           LS121001         LongShowing         Grab         496971         13 motific is attrapic target phylite contract.         15 m wide sizetta zone sample collected near westem phylite contract.           LS121004         LongShowing         Grab         496727         653490         11         Chointic is direit         none         more         zone for sample LS121013         zone is for mide is markle sizetta zone sample collected near westem phylite contract.           LS121096         LongShowing         Grab         499779         49887111         Chointis is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | BS122512 | UpperZone   | Chip  |        | 5635655 | 11   | Siliceous marble   | 2.0 m    | minor Gn          | 2-4 m from east phyllite contact                                                                    |
| BS122516         UpperZone         Grab         659647         BS128251         UpperZone         Grab         6595565         BS128516         UpperZone         Grab         6595567         BS128516         UpperZone         Grab         6595567         BS128516         UpperZone         Grab         6595567         BS128516         UpperZone         Grab         659557         III         Binde count and the probability of t                                                                                                                                                        | 1        | UpperZone   | Chip  | 459584 | 5635655 | 11   | Siliceous marble   | 2.0 m    | minor Gn          | 4-6 m from east phyllite contact                                                                    |
| IBS12251         UpperZone         Grab         459841         11         Silicous multiple none         20% Py + minor Gi         page from high-grade (Gr-Sp+Py) pod; same location as BS122515           BS122517         UpperZone         Grab         459855         558562         11         Silicous multiple none         10% Gi + minor Py phytile marble           BS122517         UpperZone         Grab         459817         5534880         11         Silicous multiple none         50% Py         from sidenteprylife contact           LS121501         LongShowing         Grab         459717         5544880         11         Silicous multiple         none         78 m oth of sample LS121001         30 m from westem phytile contact, massive magnetite           LS121601         LongShowing         Grab         459727         6544801         11         Silicinic identer         none         frace Py         3 n onth of sample LS121001         and the itace none         none         in outh of sample LS121001         in outh of sample LS121001         LongShowing         Grab         459717         5544901         11         Silicinia         none         none         zone is 1.5         mode is analytic S121001         LongShowing         Grab         459711         Silicinia         none         none         zone is 5.1         mode is anana                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1        | UpperZone   | Chip  |        | 5635668 | 11   | Siliceous marble   | 3.0 m    | minor Gn          | 0-3 m from east phyllite contact (siliceous zone is 3 m wide here)                                  |
| IBS122317         UpperZone         Crab         458559         113         Phythic mathe         none         10% G1 + minor Sp.           BS122316         Big Showing         Crab         458575         113         Siliceous mathie         none         9% Py         from sidertlep/hythile contact           BS172101         Big Showing         Crab         458715         113         Siliceous mathie         none         7% Py         from sidertlep/hythile contact           IS121001         LongShowing         Crab         458727         458488         11         Chortic siderite         none         7 an orbit of sample LS121901, 30 cm from western phylitle contact, massive magnetite           IS121005         LongShowing         Grab         458727         458400         11         Chortic siderite         none         1 n west         1 n we                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1        | UpperZone   | Grab  | 459561 |         |      | Siliceous marble   | none     | 10% GI (+Sp?)     | grab from high-grade (Gn+Sp+Py) pod                                                                 |
| IBS 12516         Big Showing         Float         458644         4585712         Billiceous marble         none         9% PV         float sample name portal           ISS 12001         LongShowing         Grab         4585731         653593         11         Sidenite         none         9% PV         from statisticity the contact           ISS 12001         LongShowing         Grab         459721         6534905         11         Sidenite         none         7a         not of sample LS 121901. 30 om from western phylite contact         massive magnetite           ISS 12062         LongShowing         Grab         459724         5634900         11         Chointici siderite         none         frace PY         6 m north of sample LS 121902         com s1 mode; trace mayerite           ISS 12062         LongShowing         Grab         459710         5634905         11         Siderite         none         none         zone is 5 m wide hreis gamelia 30 om from sest mayerite           ISS 12061         LongShowing         Grab         459710         6534905         11         Siderite         none         none         zone is 6 m wide trice; sample 30 om from sest mayerite         LS 121910         LongShowing         Grab         459710         6534905         11         Siderite         none                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1        | UpperZone   | Grab  | 459561 | 5635649 | 11   | Siliceous marble   | none     | 20% Py + minor GI | grab from high-grade (Gn+Sp+Py) pod; same location as BS122515                                      |
| IssTr201         Big Showing         Grab         488111         Siderite         none         5% Py         from siderite/hylife contact.           LS121001         LongShowing         Grab         489725         6834888         11         Siderite         none         1 none         1 none         1 none         2 m wide siderite zone: sample collected near western phylite contact.         massive magnetite           LS121002         LongShowing         Grab         489725         6634800         11         Siderite         none         1 m west of sample LS121901, 30 cm from western phylite contact.           LS121004         LongShowing         Grab         489725         6534900         11         Siderite         none         1 m west of sample LS121901, 30 cm from west phylite contact.           LS121004         LongShowing         Grab         489716         5634905         11         Siderite         none         none         zone is 2 m wide indic, includes numerous quartz vains, sample collected 30 cm from west phylite contact.           LS121091         LongShowing         Grab         489716         5634908         11         Siderite         none         none         zone si 2 m wide inclustance         sample collected 30 cm from west phylite contact.           LS121010         LongShowing         Grab         459714<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1        | UpperZone   |       |        | 5635652 | 11   | Phylittic marble   | none     | 10% GI + minor Py | phylittic marble                                                                                    |
| LS121001         LongShowing         Grab         499731         6934980         11         Chlorici siderite         none         none         none         tace Py         3 m onth of sample LS121901, 30 cm from wester mplytite contact; massive magnetite           LS121904         LongShowing         Grab         459725         6634900         11         Siderite         none         tace Py         6 m onth of sample LS121904, 30 cm from wester mplytite contact; massive magnetite           LS121905         LongShowing         Grab         459716         6534915         11         Siderite         none         none         tace Py         2 m east of LS121904         LS121910         L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |             | Float | 459564 | 5635755 | 11   | Siliceous marble   | none     | 30%Gn + minor Sp  | float sample near portal                                                                            |
| LS121902         LongShowing         Grab         489727         6034005         11         Noterie         Trace Py         3 m onth of sample LS121901, 30 cm from vesterm phylite contact: massive magnetite           LS121906         LongShowing         Grab         489724         6634001         11         Sileritie         none         none         nonth of sample LS121901; 20 cm from vesterm phylite contact           LS121907         LongShowing         Grab         489776         6634905         11         Sileritie         none         none         none         none         none         none         none         satisfies         none         nole         nole         nole         nole<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          |             | Grab  | 459611 | 5635593 | 11   | Siderite           | none     | 5% Py             | from siderite/phyllite contact                                                                      |
| LS121094         LongShowing         Grab         459725         6534900         11         Chloritic siderite         none         trace Py         6 m north of sample LS121004           LS121005         LongShowing         Grab         459705         5634915         11         Siderite         none         1m west of sample LS121004           LS121006         LongShowing         Grab         459703         5634915         11         Siderite         none         1m west of sample LS121004           LS121006         LongShowing         Grab         459710         5634906         11         Siderite         none         1m west of LS121003         Bong Month         Siderite         none         none         none         none         none         for Side Month         Siderite         none         none         none         none         none         none         for Side Month         Siderite         none         none         none         for Side Month         Siderite         none         none         for Mest of LS121012         nont of LS121012         nont of LS121012         none         for Mest of LS121012         for Mest                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | LS121901 | LongShowing | Grab  | 459731 |         |      | Chloritic siderite | none     | none              | 2 m wide siderite zone; sample collected near western phyllite contact; massive magnetite           |
| LS121905         LongShowing         Grab         459724         E634900         11         Siderite         none         none         zone statute           LS121906         LongShowing         Grab         459709         5634915         11         Choritic siderite         none         zone statute         zone statute         and statute         control         zone statute         z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | LS121902 | LongShowing | Grab  | 459727 | 5634905 | 11   | Siderite           | none     | trace Py          | 3 m north of sample LS121901, 30 cm from western phylitte contact; massive magnetite                |
| LS121906         LongShowing         Grab         459710         Endplice         Final Control State         Includes numerous quartz veins: sample collected 30 cm from west phyllite contact           LS121906         LongShowing         Grab         459711         6634916         11         Siderite         none         trace Py         2 m east of LS121906 along west matche contact           LS121910         LongShowing         Grab         459710         6534908         11         Siderite         none         none         cone is 6 m west of LS121908 al west phyllite contact           LS121911         LongShowing         Grab         459710         6534901         11         Chloritic siderite         none         none         zone is 6 m west of LS121908 al west phyllite contact           LS121913         LongShowing         Grab         459719         5634931         11         Chloritic siderite         none         zone is 6 m west of LS121912, from center of 1 m wide siderite zone; massive Py + magnetite           LS121916         LongShowing         Grab         456809         5634931         11         Chloritic siderite         none         collected 3 m west of LS121916         somatch         sample contact           LS121918         LongShowing         Grab         459838         11         Siderite         none                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | LS121904 | LongShowing | Grab  | 459725 | 5634900 | 11   | Chloritic siderite | none     | trace Py          | 6 m north of sample LS121902; zone is 1.5 m wide; trace magnetite                                   |
| LS121907         LongShowing         Grab         459711         6584916         11         Siderife         none         trace Py         2 m east of LS121906 along west marble contact; massive magnetite           LS121908         LongShowing         Grab         459710         5634906         11         Siderife         none         none         zone is 6 m wide here; sample 30 cm from east marble contact;           LS121911         LongShowing         Grab         459710         5634900         11         Siderife         none         none         zone is 4 m wide here; sample 30 cm from east marble contact;           LS121911         LongShowing         Grab         459710         5634901         11         Chionitic siderife         none         tone         tone         tone         zone is 4 m wide here; sample collect 5 m north of LS121913 along east marble contact;         zone; is 3 m wide           LS121916         LongShowing         Grab         456891         5634331         11         Chionitic siderife         none         collected 1.5 m west of LS121913 along east marble contact;         zone; is 3 m wide           LS121917         LongShowing         Grab         456845         11         Siderife         none         collected 1.5 m west of LS121916 at west phylite contact           LS122401         LongShowing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | LS121905 | LongShowing | Grab  | 459724 | 5634900 | 11   | Siderite           | none     | none              | 1 m west of sample LS121904                                                                         |
| LS122108LongShowing<br>GrabGrab459716663400811Sideritenonenonenonecone is 6 m wide here; sample 30 cm from east marble contactLS121910LongShowing<br>LGS121913Grab459710563490811Chloritic sideritenone6 m west of LS121908 at west of LS121903 at west of LS121910 along east marble contactLS121913LongShowing<br>GrabGrab459719563490611Chloritic sideritenone178LS121913LongShowing<br>GrabGrab459690563493111Chloritic sideritenonenonecollected 25 m orth of LS121913 along east marble contact; zone is 3 m wideLS121917LongShowing<br>GrabGrab459680563493111Sideritenonenonecollected 3 m west of LS121916 at west phylite contactLS121918LongShowing<br>GrabGrab459680563493111Sideritenonenonecollected 3 m west of LS121916 at west phylite contactLS122405LongShowing<br>GrabGrab459834563483611Sideritenonenonezone is 6 m wide itarce no.moneLS122405LongShowing<br>GrabGrab459834563483611Sideritenonenonezone is 2 m wide; sample form west phylite contactLS122406LongShowing<br>GrabGrab459834563485211Sideritenonetrace Pysiderite zone is 2 m wide; sample form west matche contact, massive magnetiteLS122414LongShowing<br>Grab4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1        | LongShowing | Grab  |        | 5634915 | 11   | Chloritic siderite | none     | none              | zone is 2 m wide, includes numerous quartz veins; sample collected 30 cm from west phyllite contact |
| LS121910LongShowingGrab459710563490811Chloritic sideritenonenone6 m west of LS121908 at west phyllite contactLS121911LongShowingGrab459714563490811Sideritenonenonezone is 4 m wide here; sample collect 5 m north of LS121910 along east marble contactLS121913LongShowingGrab459611653493111Chloritic sideritenone17% Py6 m nonefrom collected 25 m north of LS121917 from center of 1 m wide siderite zone; massive Py + magnetiteLS121913LongShowingGrab459691653493111Chloritic sideritenonenonecollected 25 m north of LS121916 at west phyllite contact; zone is 3 m wideLS121914LongShowingGrab459809653493111Sideritenonenonecollected 3 m west of LS121916 at west phyllite contactLS122401LongShowingGrab459814653486111Sideritenonenonezone is 6 m wide with numerous quartz bands; sample from west phyllite contactLS122405LongShowingGrab459814653486111Sideritenonetrace Py3.0 m east of LS122401 at east marble contact; massive magnetiteLS122414LongShowingGrab459780653486211Sideritenonetrace Pysiderite zone is 2 m wide; sample form east marble contactLS122414LongShowingGrab459780653486211Sideritenonetrace Pysiderite zoneLS122414Lon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | LS121907 | LongShowing | Grab  |        | 1       |      | Siderite           | none     | trace Py          | 2 m east of LS121906 along west marble contact; massive magnetite                                   |
| LS121911         LongShowing         Grab         459714         563490         11         Siderite         none         zone is 4 m wide here; sample collect 5 m north of LS121910 along east marble contact.           LS121913         LongShowing         Grab         459719         5634916         11         Chloritic siderite         none         15% PY         6 m north of LS121912; from center of 1 m wide siderite zone; massive Py + magnetite           LS121916         LongShowing         Grab         459690         5634931         11         Chloritic siderite         none         none         collected 2 m west of LS121916         anthe contact.         zone is 6 m wide with numerous quartz bands; sample from west phyllite contact           LS122401         LongShowing         Grab         459832         5634836         11         Siderite         none         none         zone is 6 m wide with numerous quartz bands; sample from west phyllite contact           LS122405         LongShowing         Grab         4598345         634836         11         Siderite         none         trace Py         6.0 m east of LS122401 at east marble contact           LS122404         LongShowing         Grab         459816         5634836         11         Siderite         none         trace Py         siderite zone         siderite zone         trace Py                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          | LongShowing |       |        | 5634908 | 11   | Siderite           | none     | none              | zone is 6 m wide here; sample 30 cm from east marble contact                                        |
| LS121913         LongShowing         Grab         459719         6634916         11         Chloritic siderite         none         15% Py         6 m north of sample LS121912; from center of 1 m wide siderite zone; massive Py + magnetite           LS121916         LongShowing         Grab         459690         6534931         11         Chloritic siderite         none         collected 15 m north of LS121913 along east marble contact; zone is 3 m wide           LS121917         LongShowing         Grab         459690         6534931         11         Siderite         none         none         collected 15 m west of LS121916         a west of LS1221916         a west of LS122010         a contact; zone is 2 m wide width numerous quartz bands; sample from west phylite contact           LS122406         LongShowing         Grab         459814         6534845         11         Siderite         none         trace Py         6.0 m east of LS122011 at east marble contact; massive magnetite           LS122410         LongShowing         Grab         459816         6534852         11         Siderite         none         none         zone is 2 m wide; sample from west phylite contact     <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1        | LongShowing | Grab  |        | 5634908 | 11   | Chloritic siderite | none     | none              | 6 m west of LS121908 at west phyllite contact                                                       |
| LS121916LongShowingGrab459691563493111Chloritic sideritenonetrace Pycollected 25 m north of LS121913 along east marble contact; zone is 3 m wideLS121917LongShowingGrab459689563493111Sideritenonenonecollected 1.5 m west of LS121916LS122401LongShowingGrab459683563483611Sideritenonenonecollected 1.5 m west of LS121916LS122405LongShowingGrab459832563483611Sideritenonenonezone is 6 m wide with numerous quartz bands; sample from west phyllite contactLS122406LongShowingGrab459845563483611Sideritenonetrace Py6.0 m east of LS122401 at center of siderite zone; massive magnetiteLS122414LongShowingGrab459814563486211Sideritenonetrace Pysiderite zone is 2 m wide; sample collected from east marble contactLS122414LongShowingGrab459716563485211Sideritenone10% PYzone is 2 m wide; sample from west phyllite contactLS122415LongShowingGrab459780563486211Sideritenonetrace Pysample from east marble contact; massive magnetiteLS122421LongShowingGrab459780563486511Sideritenonetrace Pyzone is 3 m wideLS122421LongShowingGrab459745563486511Sideritenonetrace Pyzone is 3 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1        | LongShowing |       |        | 5634909 | 11   | Siderite           | none     | none              | zone is 4 m wide here; sample collect 5 m north of LS121910 along east marble contact               |
| LS121917LongShowingGrab459690563493111Sideritenonenonenonecollected 1.5 m west of LS121916LS121918LongShowingGrab459828563493111Chioritic sideritenonenonenonecollected 3.m west of LS121916 at west phyllite contactLS122405LongShowingGrab459834563483611Sideritenonenonesone as of LS122401 at eventer of siderite zone; massive magnetiteLS122406LongShowingGrab459834563483611Sideritenonetrace Py6.0 m east of LS122401 at eventer of siderite zone; massive magnetiteLS122410LongShowingGrab459814563485611Sideritenonetrace Pysiderite zone is 2 m wide; sample contact; massive magnetiteLS122415LongShowingGrab459814563485211Sideritenonetrace Pyzone is 2 m wide; sample from evest phylite contactLS122415LongShowingGrab459770563485611Sideritenonenonetrace Pyzone is 2 m wide; sample from evest mable contact; massive magnetiteLS122421LongShowingGrab459774563485611Sideritenonetrace Pyzone is 3 m wide; sample from evest mable contact; massive magnetiteLS122422LongShowingGrab459774563485811Sideritenonetrace Pyzone is 3 m wide; sample from evest mable contact; massive masiveLS122422LongShowingGrab                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | LS121913 | LongShowing | Grab  |        | 5634916 | 11   | Chloritic siderite | none     | 15% Py            | 6 m north of sample LS121912; from center of 1 m wide siderite zone; massive Py + magnetite         |
| LS121918LongShowingGrab459689563493111Chloritic sideritenonenonecollected 3 m west of LS121916 at west phyllite contactLS122401LongShowingGrab459832563483611Sideritenonenonezone is 6 m wide with numerous quartz bands; sample from west phyllite contactLS122405LongShowingGrab459834563483611Sideritenone5% Py3.0 m east of LS122401 at center of siderite zone; massive magnetiteLS122406LongShowingGrab459814563484511Sideritenonetrace Py6.0 m east of LS122401 at center of siderite zone; massive magnetiteLS122414LongShowingGrab459816563485211Sideritenonetrace Pysiderite zone is 2 m wide; sample from west phyllite contactLS122414LongShowingGrab459780563485211Sideritenonenonezone is 2 m wide; sample from east marble contact; massive magnetiteLS122414LongShowingGrab459780563485211Sideritenonenonezone is 2 m wide; sample from east marble contactLS122412LongShowingGrab459780563485811Sideritenonetrace Pysample from center of 2 m wide siderite zoneLS122421LongShowingGrab459780563488811Sideritenonetrace Pyzone is 30 cm wide; inche zoneLS122421LongShowingGrab45974563488811Siderite <t< td=""><td>1</td><td>LongShowing</td><td></td><td></td><td></td><td></td><td>Chloritic siderite</td><td>none</td><td>trace Py</td><td>collected 25 m north of LS121913 along east marble contact; zone is 3 m wide</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1        | LongShowing |       |        |         |      | Chloritic siderite | none     | trace Py          | collected 25 m north of LS121913 along east marble contact; zone is 3 m wide                        |
| LS122401LongShowingGrab459832563483611Sideritenonenonezone is 6 m vide with numerous quartz bands; sample from west phylite contactLS122405LongShowingGrab459834663483611Sideritenone5% Py3.0 m east of LS122401 at center of siderite zone; massive magnetiteLS122406LongShowingGrab459836663483611Sideritenonetrace Py6.0 m east of LS122401 at center of siderite zone; massive magnetiteLS122410LongShowingGrab459816663485211Sideritenonetrace Pysiderite zone is 2 m vide; sample collected from east matble contactLS122415LongShowingGrab459782663485911Sideritenonenonezone is 2 m vide; sample from west phylite contactLS122419LongShowingGrab459780663486511Sideritenonenonezone is 2 m vide; sample from east matble contact framssive magnetiteLS122419LongShowingGrab459764663486811Sideritenonenonezone is 3 0 cm wide; pinches out above and belowLS122422LongShowingGrab459764663488311Sideritenonetrace Pyzone is 30 cm wide, pinches out above and belowLS12240501LongShowingGrab459873663489311Sideritenonetrace Pyzone is 30 cm wide, pinches out above and belowLS12242501LongShowingGrab459843663493411 <t< td=""><td>LS121917</td><td>LongShowing</td><td>Grab</td><td>459690</td><td>5634931</td><td>11</td><td>Siderite</td><td>none</td><td>none</td><td>collected 1.5 m west of LS121916</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | LS121917 | LongShowing | Grab  | 459690 | 5634931 | 11   | Siderite           | none     | none              | collected 1.5 m west of LS121916                                                                    |
| LS122405LongShowingGrab459834563483611Sideritenone5% Py3.0 m east of LS122401 at center of siderite zone; massive magnetiteLS122406LongShowingGrab459836563483611Sideritenonetrace Py6.0 m east of LS122401 at center of siderite zone; massive magnetiteLS122410LongShowingGrab459814563485511Sideritenonetrace Pysiderite zone is 2 m wide; sample contact; massive magnetiteLS122414LongShowingGrab459876563485211Sideritenone10% Pyzone is 2 m wide; sample from east marble contact;LS122419LongShowingGrab459770563486511Sideritenonenonerace Pysample from east marble contactLS122421LongShowingGrab459774563486511Sideritenonetrace Pysample from east marble contact of 2 m wide siderite zoneLS122422LongShowingGrab459774563486511Sideritenonetrace Pysample from east marble contact of 2 m wide siderite zoneLS1224CS01LongShowingGrab459774563486511Sideritenonetrace Pyzone is 3 m wide; sample from east marble contactLS122422LongShowingGrab459774563488511Sideritenonetrace Pyzone is 3 m wide; sample from east marble contactLS122423LongShowingGrab459745563488311Sideritenone<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1        | LongShowing | Grab  |        | 5634931 | 11   | Chloritic siderite | none     | none              | collected 3 m west of LS121916 at west phyllite contact                                             |
| LS122406LongShowingGrab459836563483611Sideritenonetrace Py6.0 m east of LS122401 at east marble contact; massive magnetiteLS122410LongShowingGrab459814563484511Sideritenonetrace Pysiderite zone is 2 m wide; sample collected from east marble contactLS122414LongShowingGrab459816563486211Sideritenone10% Pyzone is 2 m wide; sample from west phylite contactLS122415LongShowingGrab459780563486211Sideritenonenonezone is 2 m wide; sample from west phylite contactLS122412LongShowingGrab459780563486211Sideritenonenonezone is 2 m wide; sample from east marble contactLS122421LongShowingGrab459774563486511Sideritenonetrace Pysample from center of 2 m wide siderite zoneLS122422LongShowingGrab459764563488811Sideritenonetrace Pyzone is 30 cm wide, pinches out above and belowLS1224CS01LongShowingGrab459745563488811Sideritenonetrace Pyzone is 30 cm wide, pinches out above and belowLS1224CS01LongShowingGrab459745563488811Sideritenonetrace Pyzone is 30 cm wide, pinches out above and belowLS1224CS01LongShowingGrab45994356349311Sideritenonezone20% Py<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | LS122401 | LongShowing | Grab  |        |         |      | Siderite           | none     | none              | zone is 6 m wide with numerous quartz bands; sample from west phyllite contact                      |
| LS122410LongShowingGrab459814563484511Sideritenonetrace Pysiderite zone is 2 m wide; sample collected from east marble contactLS122414LongShowingGrab459816563485211Sideritenone10% Pyzone is 2 m wide; sample from west phylitte contactLS122415LongShowingGrab459792563485211Sideritenonenonezone is 2 m wide; sample from east marble contact; massive magnetiteLS122415LongShowingGrab459774563486511Sideritenonetrace Pysample from center of 2 m wide siderite zoneLS122422LongShowingGrab459764563486811Sideritenonetrace Pysample from center of 2 m wide siderite zoneLS122422LongShowingGrab459764563488811Sideritenonetrace Pyzone is 30 cm wide, pinches out above and belowLS12240501LongShowingGrab459941563493411Sideritenonetrace Pyzone is 4 m wide, sample contact form western siderite zone; contains quartz veinletsPS121803PeakShowingGrab459943563493411Sideritenone20% Pysiderite zone is 4 m wide, sample contact; zone is 4 m widePS121805PeakShowingGrab459943563493411Sideritenone20% Py, trace Gnfrom a 1 m siderite zone; contains quartz veinletsPS121807PeakShowingGrab459943563493511Siderit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1        | LongShowing |       |        |         |      | Siderite           | none     | 5% Py             | 3.0 m east of LS122401 at center of siderite zone; massive magnetite                                |
| LS122414LongShowingGrab459816563485211Sideritenone10% Pyzone is 2 m wide; sample from west phylitte contactLS122415LongShowingGrab459792563485911Sideritenonenonenonezone is 2 m wide; sample from east marble contact; massive magnetiteLS122419LongShowingGrab459780563486211Sideritenone15% Pysample from east marble contact of 2 m wide siderite zoneLS122421LongShowingGrab45974563486511Sideritenonetrace Pysample from center of 2 m wide siderite zoneLS122422LongShowingGrab45974563486811Sideritenonetrace Pyzone is 30 cm wide, pinches out above and belowLS122420LongShowingGrab459637563498311Sideritenonetrace Pyzone is 30 cm wide, pinches out above and belowLS12242501LongShowingGrab459914563498311Sideritenonetrace Pyzone is 4 m wide, sample collected from western siderite/marble contactPS121803PeakShowingGrab459943563493411SideritenonetracePy2.0 m east of PS121803 at center of siderite zone; contains quartz veinletsPS121805PeakShowingGrab459954563493511Sideritenonenonefrom east marble contact; zone is 4 m widePS121807PeakShowingGrab459941563493511Sideritenone </td <td></td> <td>LongShowing</td> <td>Grab</td> <td></td> <td></td> <td></td> <td>Siderite</td> <td>none</td> <td>trace Py</td> <td>6.0 m east of LS122401 at east marble contact; massive magnetite</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          | LongShowing | Grab  |        |         |      | Siderite           | none     | trace Py          | 6.0 m east of LS122401 at east marble contact; massive magnetite                                    |
| LS122415LongShowingGrab459792563485911Sideritenonenonenonerace Pysample from east marble contact; massive magnetiteLS122419LongShowingGrab459774563486211Sideritenone15% Pysample from east marble contact; massive magnetiteLS122421LongShowingGrab459774563486511Sideritenonetrace Pysample from center of 2 m wide siderite zoneLS122422LongShowingGrab459764563498811Sideritenonetrace Pyzone is 30 cm wide, pinches out above and belowLS1224CS01LongShowingGrab459941563493411Sideritenonetrace Pyzone is 4 m wide, sample from western siderite/marble contactPS121803PeakShowingGrab459943563493411Sideritenonetrace Py2.0 m east of PS121803 at center of siderite zone; contains quartz veinletsPS121804PeakShowingGrab459943563493311Sideritenone20% Py, trace Gnfrom a 1 m siderite swell that pinches above and below sample site; contains massive PyPS121807PeakShowingGrab459943563493511Sideritenonenonefrom center of 9 m wide isderite zone; contains massive PyPS121810PeakShowingGrab459943563492511Sideritenonetrace Pyfrom center of 9 m wide isderite zone; contains massive quartzPS121812PeakShowingGrab4599                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1        | LongShowing | Grab  | 459814 | 5634845 | 11   | Siderite           | none     | trace Py          | siderite zone is 2 m wide; sample collected from east marble contact                                |
| LS122419LongShowingGrab459780563486211Sideritenone15% Pysample from east marble contact of 2 m wide siderite zoneLS122421LongShowingGrab459774563486511Sideritenonetrace Pysample from center of 2 m wide siderite zoneLS122422LongShowingGrab459764563488811Sideritenonetrace Pyzone is 30 cm wide, pinches out above and belowLS1224CS01LongShowingGrab459974563498311Sideritenonetrace Py<10% massive magnetitie; north side of ridge peak; siderite zone is 3 m wide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1        |             |       |        |         |      |                    | none     | 10% Py            | zone is 2 m wide; sample from west phylitte contact                                                 |
| LS122421LongShowingGrab459774563486511Sideritenonetrace Pysample from center of 2 m wide siderite zoneLS122422LongShowingGrab459764563488811Sideritenonetrace Pyzone is 30 cm wide, pinches out above and belowLS1224CS01LongShowingChip459637563498311Siderite2.0 mtrace Py<10% massive magnetitie; north side of ridge peak; siderite zone is 3 m wide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |             |       |        |         |      |                    | none     |                   | zone is 2 m wide; sample from east marble contact; massive magnetite                                |
| LS122422LongShowingGrab459764563488811Sideritenonetrace Pyzone is 30 cm wide, pinches out above and belowLS1224CS01LongShowingChip459637563498311Siderite2.0 mtrace Py<10% massive magnetitie; north side of ridge peak; siderite zone is 3 m wide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          | • •         | Grab  |        |         |      | Siderite           | none     | 15% Py            | sample from east marble contact of 2 m wide siderite zone                                           |
| LS1224CS01LongShowingChip459637563498311Siderite2.0 mtrace Pyclow cost many partice cost and cost matching partice cost and cost and cost matching partice cost and c |          | ° °         |       |        |         |      |                    | none     |                   | sample from center of 2 m wide siderite zone                                                        |
| PS121803PeakShowingGrab459941563493411Sideritenone20% Pysiderite zone is 4 m wide, sample collected from western siderite/marble contactPS121804PeakShowingGrab459943563493411SideritenonetracePy2.0 m east of PS121803 at center of siderite zone; contains quartz veinletsPS121805PeakShowingGrab459952563492311Sideritenone20% Py, trace Gnfrom a 1 m siderite swell that pinches above and below sample site; contains massive PyPS121807PeakShowingGrab459941563493511Sideritenonenonefrom east marble contact; zone is 4 m widePS121810PeakShowingGrab459948563492511Sideritenonetrace Pyfrom center of 4 m wide siderite zonePS121812PeakShowingGrab459954563493211Sideritenonetrace Pyfrom center of 9 m wide 'molar tooth' siderite zone; contains massive quartzPS121817PeakShowingGrab459961563491911Sideritenonenonefrom upper contact of large quartz inclusion in 'molar tooth'PS121818PeakShowingGrab459946563493711Sideritenonetrace Pyfrom lower contact of large quartz inclusion in 'molar tooth'PS121818PeakShowingGrab459946563493711Sideritenonetrace Pyfrom lower contact of large quartz inclusion in 'molar tooth'PS121818PeakShowingGra                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1        |             |       |        |         |      |                    |          |                   |                                                                                                     |
| PS121804PeakShowingGrab459943563493411SideritenonetracePy2.0 m east of PS121803 at center of siderite zone; contains quartz veinletsPS121805PeakShowingGrab459952563492311Sideritenone20% Py, trace Gnfrom a 1 m siderite swell that pinches above and below sample site; contains massive PyPS121807PeakShowingGrab459941563493511Sideritenonenonefrom a 1 m siderite swell that pinches above and below sample site; contains massive PyPS121807PeakShowingGrab459948563492511Sideritenonenonefrom center of 4 m widePS121810PeakShowingGrab459948563492511Sideritenonetrace Pyfrom center of 9 m wide 'molar tooth' siderite zone; contains massive quartzPS121812PeakShowingGrab459954563493211Sideritenonetrace Pyfrom center of 9 m wide 'molar tooth' siderite zone; contains massive quartzPS121817PeakShowingGrab459946563493711Sideritenonenonefrom upper contact of large quartz inclusion in 'molar tooth'PS121818PeakShowingGrab459946563493711Sideritenonetrace Pyfrom lower contact of large quartz inclusion in 'molar tooth'PS121818PeakShowingGrab459946563493711Sideritenonetrace Pyfrom lower contact of large quartz inclusion in 'molar tooth'; contains quartz veinlets </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>Siderite</td> <td>2.0 m</td> <td></td> <td>&lt;10% massive magnetitie; north side of ridge peak; siderite zone is 3 m wide</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |             |       |        |         |      | Siderite           | 2.0 m    |                   | <10% massive magnetitie; north side of ridge peak; siderite zone is 3 m wide                        |
| PS121805PeakShowingGrab459952563492311Sideritenone20% Py, trace Gnfrom a 1 m siderite swell that pinches above and below sample site; contains massive PyPS121807PeakShowingGrab459941563493511Sideritenonenonefrom east marble contact; zone is 4 m widePS121810PeakShowingGrab459948563492511Sideritenonetrace Pyfrom center of 4 m wide siderite zonePS121812PeakShowingGrab459954563493211Sideritenonetrace Pyfrom center of 9 m wide 'molar tooth' siderite zone; contains massive quartzPS121817PeakShowingGrab459961563491911Sideritenonenonefrom upper contact of large quartz inclusion in 'molar tooth'PS121818PeakShowingGrab459946563493711Sideritenonetrace Pyfrom lower contact of large quartz inclusion in 'molar tooth'PS121818PeakShowingGrab459946563493711Sideritenonetrace Pyfrom lower contact of large quartz inclusion in 'molar tooth'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |             |       |        |         |      |                    | none     | 20%Py             | siderite zone is 4 m wide, sample collected from western siderite/marble contact                    |
| PS121807PeakShowingGrab459941563493511Sideritenonenonenonefrom east marble contact; zone is 4 m widePS121810PeakShowingGrab459948563492511Sideritenonetrace Pyfrom center of 4 m wide siderite zonePS121812PeakShowingGrab459954563493211Sideritenonetrace Pyfrom center of 9 m wide 'molar tooth' siderite zone; contains massive quartzPS121817PeakShowingGrab459961563491911Sideritenonenonefrom upper contact of large quartz inclusion in 'molar tooth'PS121818PeakShowingGrab459946563493711Sideritenonetrace Pyfrom lower contact of large quartz inclusion in 'molar tooth'PS121818PeakShowingGrab459946563493711Sideritenonetrace Pyfrom lower contact of large quartz inclusion in 'molar tooth'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |             |       |        |         |      |                    | none     |                   | 2.0 m east of PS121803 at center of siderite zone; contains quartz veinlets                         |
| PS121810PeakShowingGrab459948563492511Sideritenonetrace Pyfrom center of 4 m wide siderite zonePS121812PeakShowingGrab459954563493211Sideritenonetrace Pyfrom center of 9 m wide 'molar tooth' siderite zone; contains massive quartzPS121817PeakShowingGrab459961563491911Sideritenonenonefrom center of 9 m wide 'molar tooth' siderite zone; contains massive quartzPS121818PeakShowingGrab459946563493711Sideritenonenonefrom upper contact of large quartz inclusion in 'molar tooth'PS121818PeakShowingGrab459946563493711Sideritenonetrace Pyfrom lower contact of large quartz inclusion in 'molar tooth'; contains quartz veinlets                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1        | -           |       |        |         |      |                    | none     | 20% Py, trace Gn  | from a 1 m siderite swell that pinches above and below sample site; contains massive Py             |
| PS121812         PeakShowing         Grab         459954         5634932         11         Siderite         none         trace Py         from center of 9 m wide 'molar tooth' siderite zone; contains massive quartz           PS121817         PeakShowing         Grab         459961         5634919         11         Siderite         none         none         from upper contact of large quartz inclusion in 'molar tooth'           PS121818         PeakShowing         Grab         459964         5634937         11         Siderite         none         trace Py         from lower contact of large quartz inclusion in 'molar tooth'           PS121818         PeakShowing         Grab         459964         5634937         11         Siderite         none         trace Py         from lower contact of large quartz inclusion in 'molar tooth'; contains quartz veinlets                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |             |       |        |         |      |                    | none     |                   | from east marble contact; zone is 4 m wide                                                          |
| PS121817         PeakShowing         Grab         459961         5634919         11         Siderite         none         none         from upper contact of large quartz inclusion in 'molar tooth'           PS121818         PeakShowing         Grab         459964         5634937         11         Siderite         none         trace Py         from lower contact of large quartz inclusion in 'molar tooth'; contains quartz veinlets                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |             |       |        |         |      |                    | none     | -                 | from center of 4 m wide siderite zone                                                               |
| PS121818 PeakShowing Grab 459946 5634937 11 Siderite none trace Py from lower contact of large quartz inclusion in 'molar tooth'; contains quartz veinlets                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1        | PeakShowing | Grab  | 459954 | 5634932 | 11   | Siderite           | none     | trace Py          | from center of 9 m wide 'molar tooth' siderite zone; contains massive quartz                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1        | -           | Grab  |        |         |      |                    | none     | none              |                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1        | PeakShowing | Grab  | 459946 |         |      | Siderite           | none     | trace Py          | from lower contact of large quartz inclusion in 'molar tooth'; contains quartz veinlets             |
| PS121820 PeakShowing Grab 459980 5634919 11 Siderite none trace Py from western marble contact; zone is 6 m wide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | PS121820 | PeakShowing | Grab  | 459980 | 5634919 | 11   | Siderite           | none     | trace Py          |                                                                                                     |

## **APPENDIX II**

Rock Sample Assay Results

Quality Analysis ...



Innovative Technologies

Date Submitted:31-Aug-12Invoice No.:A12-09493Invoice Date:26-Sep-12Your Reference:Goat

X-Mark Minerals 207 Larsen Ave Enderby BC Canada

ATTN: Chris Solic

# **CERTIFICATE OF ANALYSIS**

55 Rock samples were submitted for analysis.

The following analytical packages were requested:

REPORT A12-09493

Code 1H INAA(INAAGEO)/Total Digestion ICP(TOTAL) Code 8-4 Acid Total Digestion Code 8-4 Acid Total Digestion Assays

This report may be reproduced without our consent. If only selected portions of the report are reproduced, permission must be obtained. If no instructions were given at time of sample submittal regarding excess material, it will be discarded within 90 days of this report. Our liability is limited solely to the analytical cost of these analyses. Test results are representative only of material submitted for analysis.

Notes:

Elements which exceed the upper limits should be analyzed by assay techniques. Some elements are reported by multiple techniques. These are indicated by MULT.

CERTIFIED BY :

Emmanuel Eseme , Ph.D. Quality Control



ACTIVATION LABORATORIES LTD.

1336 Sandhill Drive, Ancaster, Ontario Canada L9G 4V5 TELEPHONE +1.905.648.9611 or +1.888.228.5227 FAX +1.905.648.9613 E-MAIL Ancaster@actlabs.com ACTLABS GROUP WEBSITE www.actlabs.com

|                      |            |                          |                  |                   |                   |                      | A                           | Suvati                   |                      | Jorator              |                   | ••                   | wehr              |                   | ~12-03                  | -133                 |               |                   |                   |                       |                      |                   |                 |                   |
|----------------------|------------|--------------------------|------------------|-------------------|-------------------|----------------------|-----------------------------|--------------------------|----------------------|----------------------|-------------------|----------------------|-------------------|-------------------|-------------------------|----------------------|---------------|-------------------|-------------------|-----------------------|----------------------|-------------------|-----------------|-------------------|
| Analyte Symbol       | Au         | Ag                       | Cu               | Cd                | Мо                | Pb                   | Ni                          | Zn                       | S                    | AI                   | As                | Ba                   | Be                | Bi                | Br                      | Ca                   | Co            | Cr                | Cs                | Eu                    | Fe                   | Hf                | Hg              | lr                |
| Unit Symbol          | ppb        | ppm                      | ppm              | ppm               | ppm               | ppm                  | ppm                         | ppm                      | %                    | %                    | ppm               | ppm                  | ppm               | ppm               | ppm                     | %                    | ppm           | ppm               | ppm               | ppm                   | %                    | ppm               | ppm             | ppb               |
| Detection Limit      | 2          | 0.3                      | 1                | 0.3               | 1                 | 3                    | 1                           | 1                        | 0.01                 | 0.01                 | 0.5               | 50                   | 1                 | 2                 | 0.5                     | 0.01                 | 1             | 2                 | 1                 | 0.2                   | 0.01                 | 1                 | 1               | 5                 |
| Analysis Method      | INAA<br>IM | MULT<br>NAA / TD-<br>ICP | TD-ICP           | TD-ICP            | TD-ICP            | TD-ICP               | MULT<br>NAA / TD- II<br>ICP | MULT<br>NAA / TD-<br>ICP | TD-ICP               | TD-ICP               | INAA              | INAA                 | TD-ICP            | TD-ICP            | INAA                    | TD-ICP               | INAA          | INAA              | INAA              | INAA                  | INAA                 | INAA              | INAA            | INAA              |
| BS121702             | 218        | 1.4                      | 71               | 4.1               | < 1               | 46                   | 85                          | 12                       | > 20.0               | 0.09                 | 2490              | < 50                 | < 1               | < 2               | < 0.5                   | 1.00                 | 96            | < 2               | < 1               | < 0.2                 | 40.3                 | 2                 | < 1             | < 5               |
| BS121704             | < 2        | 0.5                      | 33               | 1.5               | < 1               | < 3                  | 32                          | 21                       | 0.23                 | 0.40                 | 12.9              | < 50                 | < 1               | < 2               | < 0.5                   | 5.66                 | 17            | 24                | < 1               | 0.6                   | 30.1                 | < 1               | < 1             | < 5               |
| BS121705             | < 2        | 0.7                      | 51               | 1.8               | < 1               | 25                   | 28                          | 23                       | 1.56                 | 0.58                 | 75.4              | < 50                 | < 1               | < 2               | < 0.5                   | 2.09                 | 16            | 18                | < 1               | < 0.2                 | 34.1                 | < 1               | < 1             | < 5               |
| BS121706             | 31         | 0.8                      | 90               | 1.4               | < 1               | 5                    | 46                          | 28                       | 0.34                 | 0.36                 | 66.2              | < 50                 | < 1               | 3                 | < 0.5                   | 8.70                 | 13            | 17                | < 1               | 0.5                   | 29.4                 | < 1               | < 1             | < 5               |
| BS121710             | < 2        | 1.6                      | 44               | 1.4               | < 1               | 6                    | 21                          | 54                       | 9.38                 | 2.10                 | 7.5               | < 50                 | < 1               | < 2               | < 0.5                   | 7.50                 | 18            | < 2               | < 1               | < 0.2                 | 27.5                 | < 1               | < 1             | < 5               |
| BS121711             | < 2        | 0.4                      | 6                | 1.4               | < 1               | 4                    | 11                          | 29                       | 0.33                 | 0.48                 | 7.5               | 330                  | < 1               | 2                 | < 0.5                   | 5.52                 | 8             | 17                | < 1               | 0.3                   | 35.2                 | < 1               | < 1             | < 5               |
| BS122501             | 17         | 7.0                      | 584              | 4.0               | 3                 | > 5000               | 14                          | 1430                     | 0.38                 | 0.11                 | 22.1              | < 50                 | < 1               | < 2               | < 0.5                   | 4.33                 | 10            | 23                | < 1               | < 0.2                 | 20.6                 | < 1               | < 1             | < 5               |
| BS122502             | 42         | 1.8                      | 50               | 7.6               | < 1               | 1090                 | 32                          | 2970                     | 1.85                 | 0.19                 | 110               | < 50                 | < 1               | < 2               | < 0.5                   | 6.16                 | 12            | 23                | < 1               | < 0.2                 | 29.4                 | < 1               | < 1             | < 5               |
| BS122503             | < 2        | 5.1                      | 130              | 1.3               | 1                 | > 5000               | 18                          | 326                      | 0.17                 | 0.55                 | 42.3              | < 50                 | < 1               | 5                 | 2.0                     | 7.51                 | 17            | 30                | < 1               | 0.6                   | 18.6                 | < 1               | < 1             | < 5               |
| BS122507CS           | 2000       | 251                      | 160              | 8.6               | < 1               | > 5000               | 9                           | 1950                     | 12.1                 | 0.51                 | 102               | < 50                 | < 1               | < 2               | < 0.5                   | 0.09                 | 56            | < 2               | < 1               | < 0.2                 | 9.24                 | < 1               | < 1             | < 5               |
| BS122507             | 48         | 95.2                     | 124              | 20.5              | < 1               | > 5000               | 61                          | 5980                     | 4.13                 | 0.21                 | 32.7              | < 50                 | < 1               | < 2               | < 0.5                   | 0.34                 | 21            | 6                 | < 1               | < 0.2                 | 8.52                 | < 1               | 3               | < 5               |
| BS122508             | 132        | 61.0                     | 835              | 3.1               | 2                 | > 5000               | 47                          | 900                      | 7.62                 | 0.25                 | 589               | 310                  | < 1               | < 2               | < 0.5                   | 0.04                 | 239           | 21                | < 1               | < 0.2                 | 10.9                 | < 1               | < 1             | < 5               |
| BS122509             | 63         | 50.5                     | 140              | 4.2               | < 1               | > 5000               | 6                           | 2420                     | 4.31                 | 0.28                 | 78.2              | < 50                 | < 1               | < 2               | < 0.5                   | 0.02                 | 9             | 27                | < 1               | < 0.2                 | 4.49                 | < 1               | 6               | < 5               |
| BS122510             | 41         | 18.7                     | 106              | 6.9               | < 1               | > 5000               | 11                          | 4180                     | 2.00                 | 0.27                 | 52.4              | < 50                 | < 1               | < 2               | < 0.5                   | 0.05                 | 15            | 20                | < 1               | < 0.2                 | 7.15                 | < 1               | < 1             | < 5               |
| BS122511             | 37         | 5.8                      | 820              | 3.8               | 3                 | > 5000               | 71                          | 1520                     | 1.37                 | 0.21                 | 359               | < 50                 | < 1               | < 2               | < 0.5                   | 0.51                 | 77            | < 2               | < 1               | < 0.2                 | 25.6                 | < 1               | < 1             | < 5               |
| BS122512             | 14         | 4.0                      | 23               | 2.0               | < 1               | > 5000               | 24                          | 112                      | 0.18                 | 0.23                 | 12.9              | < 50                 | < 1               | < 2               | < 0.5                   | 1.07                 | 8             | 15                | < 1               | 0.7                   | 33.1                 | < 1               | < 1             | < 5               |
| BS122513<br>BS122514 | 15         | 2.6                      | 237<br>131       | 10.5              | < 1               | 4730<br>98           | 27                          | 2980<br>107              | 0.23<br>0.08         | 0.70<br>0.27         | 20.2              | < 50                 | < 1               | 3                 | < 0.5                   | 5.04                 | 16<br>17      | 16                | < 1               | 0.6                   | 27.3<br>32.2         | 2                 | < 1             | < 5               |
| BS122514<br>BS122515 | < 2        | 0.6                      |                  | 1.4               | < 1               |                      | 26                          |                          |                      |                      | 15.6              | < 50                 | < 1               | < 2               | < 0.5                   | 5.93                 |               | 13                | < 1               | 0.7                   |                      | < 1<br>3          | < 1             | < 5               |
| BS122515<br>BS122516 | 84<br>12   | 18.4<br>3.6              | 1230<br>138      | 4.6<br>2.7        | 8<br>1            | > 5000<br>> 5000     | 206<br>9                    | 1200<br>1300             | 9.54<br>0.41         | 1.49<br>0.18         | 285<br>12.0       | < 50<br>< 50         | < 1<br>< 1        | 12<br>< 2         | < 0.5<br>< 0.5          | 8.51<br>0.08         | 156<br>10     | 63<br>15          | < 1               | 0.6<br>< 0.2          | 13.6<br>10.1         | -                 | < 1<br>< 1      | < 5<br>< 5        |
| BS122517             | < 2        | 5.8                      | 138              | 1.6               | < 1               | > 5000               | 9<br>16                     | 381                      | 0.41                 | 0.18                 | 12.0              | < 50                 | < 1               | < 2               | < 0.5                   | 0.08                 | 6             | 9                 | < 1<br>< 1        | < 0.2                 | 3.32                 | < 1<br>< 1        | < 1             | < 5               |
| BS122518             | 106        | 98.0                     | 848              | 309               | < 1               | > 5000               | 60                          | > 100000                 | 10.5                 | 0.41                 | 39.1              | < 50                 | < 1               | < 2               | < 0.5                   | 0.13                 | 85            | < 2               | < 1               | < 0.2                 | 7.58                 | < 1               | 76              | < 5               |
| BS171201             | 401        | 7.9                      | 2990             | 1.0               | 1                 | 299                  | 66                          | 61                       | 11.2                 | 3.00                 | 285               | < 50                 | < 1               | < 2               | < 0.5                   | 3.90                 | 29            | 47                | < 1               | < 0.2                 | 26.8                 | 2                 | < 1             | < 5               |
| LS121901             | < 2        | 1.0                      | 56               | 1.9               | < 1               | 1130                 | 31                          | 290                      | 0.19                 | 0.76                 | 12.0              | < 50                 | < 1               | < 2               | < 0.5                   | 6.17                 | 6             | < 2               | < 1               | 0.5                   | 43.7                 | < 1               | < 1             | < 5               |
| LS121902             | < 2        | 1.0                      | 59               | 1.4               | < 1               | 167                  | 15                          | 17                       | 0.68                 | 0.58                 | 5.0               | < 50                 | < 1               | < 2               | < 0.5                   | 7.78                 | 4             | < 2               | < 1               | 1.2                   | 35.6                 | < 1               | < 1             | < 5               |
| LS121904             | < 2        | 0.7                      | 5                | 1.2               | < 1               | 97                   | 25                          | 41                       | 0.84                 | 2.50                 | 12.9              | < 50                 | < 1               | < 2               | < 0.5                   | 6.61                 | 17            | 63                | < 1               | 0.8                   | 27.8                 | 4                 | < 1             | < 5               |
| LS121905             | < 2        | 0.5                      | 340              | 1.7               | < 1               | 15                   | 16                          | 22                       | 0.11                 | 2.18                 | 4.9               | 70                   | < 1               | < 2               | < 0.5                   | 5.70                 | 6             | < 2               | < 1               | 0.6                   | 38.4                 | < 1               | < 1             | < 5               |
| LS121906             | < 2        | < 0.3                    | 25               | 0.9               | 2                 | 82                   | 10                          | 48                       | 0.22                 | 2.83                 | 2.6               | < 50                 | < 1               | 2                 | < 0.5                   | 6.52                 | 8             | < 2               | < 1               | 0.3                   | 20.5                 | < 1               | < 1             | < 5               |
| LS121907             | 8          | 0.6                      | 16               | 1.0               | 4                 | 26                   | 17                          | 14                       | 0.31                 | 0.70                 | < 0.5             | 220                  | < 1               | 3                 | < 0.5                   | 8.01                 | 7             | 12                | < 1               | 0.8                   | 30.8                 | < 1               | < 1             | < 5               |
| LS121908             | < 2        | < 0.3                    | 20               | 0.7               | 3                 | 90                   | 14                          | 25                       | 0.99                 | 0.42                 | 5.8               | < 50                 | < 1               | < 2               | < 0.5                   | 8.96                 | 11            | < 2               | < 1               | 1.0                   | 23.1                 | < 1               | < 1             | < 5               |
| LS121910             | < 2        | 0.7                      | 1800             | 1.4               | < 1               | < 3                  | 61                          | 35                       | 0.35                 | 5.98                 | 11.7              | < 50                 | < 1               | < 2               | < 0.5                   | 3.38                 | 46            | 31                | < 1               | < 0.2                 | 31.5                 | < 1               | < 1             | < 5               |
| LS121911             | < 2        | < 0.3                    | 31               | 2.0               | < 1               | 20                   | 32                          | 15                       | 0.03                 | 0.08                 | 3.7               | < 50                 | < 1               | < 2               | < 0.5                   | 1.98                 | 9             | 16                | < 1               | 0.3                   | 39.7                 | < 1               | < 1             | < 5               |
| LS121913             | < 2        | < 0.3                    | 33               | 0.4               | 2                 | 49                   | 10                          | 21                       | 0.48                 | 1.17                 | 5.6               | < 50                 | < 1               | < 2               | < 0.5                   | 19.2                 | 6             | 12                | < 1               | 0.6                   | 6.61                 | < 1               | < 1             | < 5               |
| LS121916             | 11         | 0.5                      | 49               | 1.0               | < 1               | 54                   | 26                          | 28                       | 7.67                 | 2.95                 | 20.2              | < 50                 | < 1               | < 2               | < 0.5                   | 8.26                 | 27            | 29                | < 1               | 1.0                   | 25.6                 | < 1               | < 1             | < 5               |
| LS121917             | < 2        | 0.4                      | 7                | 1.9               | < 1               | 6                    | 14                          | 11                       | 0.03                 | 0.05                 | < 0.5             | < 50                 | < 1               | < 2               | < 0.5                   | 3.18                 | 6             | 10                | < 1               | 0.4                   | 37.2                 | < 1               | < 1             | < 5               |
| LS121918             | < 2        | 1.1                      | 1970             | 2.8               | 2                 | 16                   | 96                          | 27                       | 0.09                 | 2.28                 | 9.2               | < 50                 | < 1               | < 2               | < 0.5                   | 0.20                 | 60            | 30                | < 1               | < 0.2                 | 47.1                 | < 1               | < 1             | < 5               |
| LS122401             | 12         | < 0.3                    | 74               | 0.9               | < 1               | 40                   | 25                          | 35                       | 4.08                 | 2.88                 | 14.7              | < 50                 | < 1               | < 2               | < 0.5                   | 8.91                 | 23            | 17                | 3                 | 1.2                   | 23.9                 | < 1               | < 1             | < 5               |
| LS122405             | < 2        | 0.5                      | 180              | 1.4               | < 1               | 24                   | 22                          | 54                       | 2.83                 | 4.80                 | 9.8               | < 50                 | < 1               | 4                 | < 0.5                   | 6.14                 | 27            | 14                | < 1               | 0.6                   | 30.4                 | < 1               | < 1             | < 5               |
| LS122406             | < 2        | 0.3                      | 42               | 1.4               | < 1               | 54                   | 39                          | 55                       | 3.06                 | 5.01                 | 8.1               | < 50                 | < 1               | < 2               | < 0.5                   | 1.87                 | 30            | 16                | < 1               | < 0.2                 | 32.7                 | < 1               | < 1             | < 5               |
| LS122410             | < 2        | 0.4                      | 162              | 1.6               | < 1               | 31                   | 22                          | 44                       | 5.39                 | 3.59                 | 11.7              | < 50                 | < 1               | 3                 | < 0.5                   | 4.49                 | 17            | 11                | < 1               | < 0.2                 | 32.0                 | < 1               | < 1             | < 5               |
| LS122414             | 14         | < 0.3                    | 20               | 0.9               | 2                 | 23                   | 23                          | 34                       | 2.61                 | 2.76                 | 6.1               | < 50                 | < 1               | < 2               | < 0.5                   | 10.6                 | 22            | 8                 | < 1               | 0.4                   | 25.4                 | < 1               | < 1             | < 5               |
| LS122415             | 9          | 0.3                      | 94               | 1.3               | 5                 | 22                   | 18                          | 25                       | 0.69                 | 2.07                 | 10.8              | < 50                 | < 1               | < 2               | < 0.5                   | 5.11                 | 12            | 12                | < 1               | 0.4                   | 25.8                 | < 1               | < 1             | < 5               |
| LS122419             | 18         | < 0.3                    | 34               | 0.7               | < 1               | 14                   | 56                          | 29                       | 5.59                 | 2.57                 | 10.8              | < 50                 | < 1               | < 2               | < 0.5                   | 7.81                 | 57            | 38                | < 1               | 0.5                   | 24.7                 | 2                 | < 1             | < 5               |
| LS122421             | < 2        | 0.5                      | 7                | 0.7               | < 1               | 12                   | 15                          | 22                       | 1.82                 | 1.60                 | 6.4               | < 50                 | < 1               | 4                 | < 0.5                   | 7.20                 | 8             | 9                 | < 1               | 0.5                   | 30.9                 | < 1               | < 1             | < 5               |
| LS122422             | < 2        | 0.7                      | 127              | 1.1               | 2                 | 122                  | 19                          | 16                       | 0.92                 | 1.58                 | 2.4               | < 50                 | < 1               | < 2               | < 0.5                   | 13.3                 | 13            | 10                | < 1               | 0.6                   | 21.6                 | < 1               | < 1             | < 5               |
| LS1224CS01           | < 2        | < 0.3                    | 815              | 1.4               | < 1               | 24                   | 23                          | 26                       | 0.22                 | 2.25                 | 1.7               | < 50                 | < 1               | < 2               | < 0.5                   | 3.02                 | 15            | 11                | < 1               | 0.8                   | 29.9                 | < 1               | < 1             | < 5               |
| PS121803             | 189        | 108                      | 308              | 3.3               | 1                 | > 5000               | 31                          | 30                       | 5.17                 | 0.23                 | 166               | 250                  | < 1               | < 2               | < 0.5                   | 2.81                 | 43            | < 2               | < 1               | 0.3                   | 28.5                 | < 1               | < 1             | < 5               |
| PS121804             | < 2        | 4.0                      | 10               | 0.4               | < 1               | 2130                 | 15                          | 11                       | 0.14                 | 0.06                 | 8.2               | < 50                 | < 1               | < 2               | < 0.5                   | 15.8                 | 5             | < 2               | < 1               | 0.8                   | 11.5                 | < 1               | < 1             | < 5               |
| PS121805             |            |                          |                  | -                 |                   |                      |                             |                          |                      |                      |                   |                      |                   |                   |                         |                      |               |                   |                   |                       |                      |                   |                 |                   |
|                      | 47         | 175                      | 458              | 5.7               | < 1               | > 5000               | 33                          | 26                       | 8.71                 | 0.11                 | 229               | < 50                 | < 1               | < 2               | < 0.5                   | 1.12                 | 15            | < 2               | < 1               | < 0.2                 | 34.3                 | < 1               | 6               | < 5               |
| PS121807<br>PS121810 |            | 175<br>0.4<br>7.5        | 458<br>4<br>1010 | 5.7<br>0.7<br>1.7 | < 1<br>< 1<br>< 1 | > 5000<br>15<br>3400 | 33<br>12<br>113             | 26<br>37<br>38           | 8.71<br>0.78<br>10.1 | 0.11<br>0.08<br>0.27 | 229<br>117<br>330 | < 50<br>< 50<br>< 50 | < 1<br>< 1<br>< 1 | < 2<br>< 2<br>< 2 | < 0.5<br>< 0.5<br>< 0.5 | 1.12<br>11.2<br>0.66 | 15<br>7<br>24 | < 2<br>< 2<br>< 2 | < 1<br>< 1<br>< 1 | < 0.2<br>0.8<br>< 0.2 | 34.3<br>22.7<br>39.8 | < 1<br>< 1<br>< 1 | 6<br>< 1<br>< 1 | < 5<br>< 5<br>< 5 |

| Analyte Symbol  | Au         | Ag                       | Cu     | Cd     | Mo     | Pb     | Ni                          | Zn                       | S      | AI     | As   | Ba   | Be     | Bi     | Br    | Ca     | Co   | Cr   | Cs   | Eu    | Fe   | Hf   | Hg   | Ir   |
|-----------------|------------|--------------------------|--------|--------|--------|--------|-----------------------------|--------------------------|--------|--------|------|------|--------|--------|-------|--------|------|------|------|-------|------|------|------|------|
| Unit Symbol     | ppb        | ppm                      | ppm    | ppm    | ppm    | ppm    | ppm                         | ppm                      | %      | %      | ppm  | ppm  | ppm    | ppm    | ppm   | %      | ppm  | ppm  | ppm  | ppm   | %    | ppm  | ppm  | ppb  |
| Detection Limit | 2          | 0.3                      | 1      | 0.3    | 1      | 3      | 1                           | 1                        | 0.01   | 0.01   | 0.5  | 50   | 1      | 2      | 0.5   | 0.01   | 1    | 2    | 1    | 0.2   | 0.01 | 1    | 1    | 5    |
| Analysis Method | INAA<br>IN | MULT<br>IAA / TD-<br>ICP | TD-ICP | TD-ICP | TD-ICP | TD-ICP | MULT<br>NAA / TD- IN<br>ICP | MULT<br>IAA / TD-<br>ICP | TD-ICP | TD-ICP | INAA | INAA | TD-ICP | TD-ICP | INAA  | TD-ICP | INAA | INAA | INAA | INAA  | INAA | INAA | INAA | INAA |
| PS121812        | < 2        | 0.5                      | 58     | 0.8    | < 1    | 16     | 15                          | 28                       | 0.11   | 0.19   | 20.9 | < 50 | < 1    | < 2    | < 0.5 | 6.05   | 9    | 9    | < 1  | 0.5   | 29.8 | < 1  | < 1  | < 5  |
| PS121817        | < 2        | 0.5                      | 6      | 1.4    | < 1    | 201    | 19                          | 28                       | 0.06   | 0.14   | 38.0 | < 50 | < 1    | < 2    | < 0.5 | 1.31   | 16   | < 2  | < 1  | 0.5   | 39.1 | < 1  | < 1  | < 5  |
| PS121818        | < 2        | 0.7                      | 40     | 1.6    | < 1    | 23     | 27                          | 32                       | 0.97   | 0.18   | 40.0 | < 50 | < 1    | < 2    | < 0.5 | 1.83   | 32   | 17   | < 1  | < 0.2 | 33.9 | < 1  | < 1  | < 5  |
| PS121820        | 105        | 0.7                      | 103    | 1.4    | < 1    | 29     | 24                          | 40                       | 2.12   | 0.99   | 118  | < 50 | < 1    | 3      | < 0.5 | 5.25   | 29   | 14   | < 1  | < 0.2 | 37.8 | < 1  | < 1  | < 5  |

|                      |              |          |                |                |              |                |              |            |            |            |           |                | керс             |                |                |          |            |            |             |            |            |              |                  |                |
|----------------------|--------------|----------|----------------|----------------|--------------|----------------|--------------|------------|------------|------------|-----------|----------------|------------------|----------------|----------------|----------|------------|------------|-------------|------------|------------|--------------|------------------|----------------|
| Analyte Symbol       | к            | Li       | Mg             | Mn             | Na           | Р              | Rb           | Sb         | Sc         | Se         | Sr        | Та             | Ti               | Th             | U              | V        | W          | Y          | La          | Ce         | Nd         | Sm           | Sn               | Tb             |
| Unit Symbol          | %            | ppm      | %              | ppm            | %            | %              | ppm          | ppm        | ppm        | ppm        | ppm       | ppm            | %                | ppm            | ppm            | ppm      | ppm        | ppm        | ppm         | ppm        | ppm        | ppm          | %                | ppm            |
| Detection Limit      | 0.01         | 1        | 0.01           | 1              | 0.01         | 0.001          | 15           | 0.1        | 0.1        | 3          | 1         | 0.5            | 0.01             | 0.2            | 0.5            | 2        | 1          | 1          | 0.5         | 3          | 5          | 0.1          | 0.01             | 0.5            |
| Analysis Method      | TD-ICP       | TD-ICP   | TD-ICP         | TD-ICP         | INAA         | TD-ICP         | INAA         | INAA       | INAA       | INAA       | TD-ICP    | INAA           | TD-ICP           | INAA           | INAA           | TD-ICP   | INAA       | TD-ICP     | INAA        | INAA       | INAA       | INAA         | INAA             | INAA           |
| BS121702             | 0.02         | < 1      | 0.07           | 948            | 0.03         | 0.003          | < 15         | < 0.1      | 0.3        | < 3        | 33        | < 0.5          | < 0.01           | < 0.2          | < 0.5          | 11       | < 1        | 1          | 2.4         | < 3        | < 5        | 0.4          | < 0.01           | < 0.5          |
| BS121704             | 0.04         | 16       | 1.67           | 14900          | 0.10         | 0.016          | < 15         | 8.6        | 2.5        | < 3        | 178       | 4.5            | 0.03             | 1.4            | < 0.5          | 8        | < 1        | 5          | 5.9         | 14         | < 5        | 1.3          | < 0.01           | < 0.5          |
| BS121705             | 0.06         | 64       | 1.64           | 15500          | 0.10         | 0.006          | < 15         | 7.9        | 1.7        | < 3        | 74        | 5.1            | < 0.01           | < 0.2          | < 0.5          | 12       | < 1        | 2          | 1.7         | < 3        | 10         | 0.5          | < 0.01           | < 0.5          |
| BS121706             | 0.07         | 3        | 1.00           | 14700          | 0.08         | 0.004          | < 15         | 7.1        | 1.7        | < 3        | 238       | 4.6            | < 0.01           | < 0.2          | 2.1            | 9        | < 1        | 4          | 2.3         | < 3        | < 5        | 0.9          | < 0.01           | < 0.5          |
| BS121710             | < 0.01       | 19       | 1.31           | 11100          | 0.02         | 0.002          | < 15         | 11.0       | 1.2        | < 3        | 468       | 1.7            | < 0.01           | < 0.2          | < 0.5          | 14       | < 1        | 1          | 1.4         | < 3        | < 5        | 0.4          | < 0.01           | < 0.5          |
| BS121711             | 0.04         | 5        | 1.25           | 17100          | 0.03         | 0.013          | 75           | 12.9       | 1.6        | < 3        | 363       | 4.0            | 0.01             | < 0.2          | < 0.5          | 9        | < 1        | 2          | 3.1         | 9          | < 5        | 0.6          | < 0.01           | < 0.5          |
| BS122501             | 0.02         | 2        | 0.25           | 10100          | 0.04         | 0.013          | < 15         | 16.6       | 0.6        | < 3        | 126       | 2.5            | < 0.01           | < 0.2          | < 0.5          | 4        | < 1        | 2          | 2.1         | 9          | < 5        | 0.6          | 0.07             | < 0.5          |
| BS122502             | 0.02         | 4        | 0.63           | 15000          | 0.04         | 0.021          | < 15         | 10.1       | 0.8        | < 3        | 172       | 1.9            | < 0.01           | < 0.2          | < 0.5          | 9        | < 1        | 3          | 1.9         | 8          | < 5        | 0.7          | < 0.01           | < 0.5          |
| BS122503             | 0.17         | 3        | 0.76           | 10600          | 0.06         | 0.042          | < 15         | 16.6       | 1.9        | < 3        | 360       | 3.5            | 0.02             | 1.6            | 2.7            | 9        | < 1        | 5          | 5.9         | 16         | < 5        | 1.2          | < 0.01           | < 0.5          |
| BS122507CS           | 0.11         | 1        | 0.02           | 227            | 0.07         | 0.049          | < 15         | 277        | 0.3        | < 3        | 24<br>14  | < 0.5          | 0.02             | < 0.2          | < 0.5          | 8<br>3   | < 1        | < 1        | 2.6         | < 3        | < 5        | 0.2          | < 0.01           | < 0.5          |
| BS122507<br>BS122508 | 0.01<br>0.03 | 2        | 0.36<br>0.06   | 5550<br>1180   | 0.04<br>0.06 | 0.017<br>0.020 | < 15<br>< 15 | 103<br>101 | 0.6<br>0.7 | < 3<br>< 3 | 14        | < 0.5<br>3.2   | < 0.01<br>< 0.01 | < 0.2<br>< 0.2 | < 0.5<br>3.0   | 3<br>6   | < 1<br>< 1 | < 1<br>< 1 | 0.7<br>1.8  | < 3<br>< 3 | < 5<br>< 5 | 0.1<br>< 0.1 | < 0.01<br>< 0.01 | < 0.5<br>< 0.5 |
| BS122509             | 0.03         | 2        | < 0.00         | 210            | 0.08         | 0.020          | < 15         | 81.0       | 0.6        | < 3        | 17        | 3.2<br>4.1     | 0.01             | < 0.2<br>0.8   | < 0.5          | 6        | < 1        | < 1        | 2.1         | < 3        | < 5        | 0.1          | < 0.01           | < 0.5          |
| BS122509<br>BS122510 | 0.03         | 2        | < 0.01<br>0.03 | 2680           | 0.08         | 0.022          | < 15         | 46.9       | 1.4        | < 3<br>< 3 | 15        | 4.1<br>5.2     | < 0.01           | < 0.2          | < 0.5<br>< 0.5 | 4        | < 1        | < 1        | 1.2         | < 3<br>< 3 | < 5<br>< 5 | 0.1          | < 0.01           | < 0.5          |
| BS122510<br>BS122511 | 0.02         | - 1      | 0.36           | 11800          | 0.06         | 0.035          | < 15         | 26.7       | 0.7        | < 3        | 22        | 3.1            | < 0.01           | < 0.2          | < 0.5          | -        | < 1        | 2          | 2.0         | < 3        | < 5        | 0.9          | < 0.01           | < 0.5          |
| BS122512             | 0.02         | 2        | 0.90           | 18200          | 0.06         | 0.013          | < 15         | 14.7       | 1.1        | < 3        | 33        | 3.6            | < 0.01           | 1.4            | < 0.5          | 13       | < 1        | 3          | 10.1        | 21         | 14         | 2.3          | < 0.01           | 0.9            |
| BS122513             | 0.05         | 7        | 1.36           | 14300          | 0.10         | 0.023          | < 15         | 13.8       | 2.3        | < 3        | 97        | 3.7            | 0.01             | 1.3            | 1.8            | 13       | < 1        | 3          | 7.6         | 18         | < 5        | 1.1          | < 0.01           | < 0.5          |
| BS122514             | 0.02         | 9        | 1.51           | 16300          | 0.05         | 0.023          | < 15         | 10.1       | 1.3        | < 3        | 122       | 2.6            | < 0.01           | 0.7            | < 0.5          | 11       | < 1        | 4          | 4.1         | 13         | < 5        | 1.4          | < 0.01           | < 0.5          |
| BS122515             | 0.24         | 7        | 0.10           | 2400           | 0.20         | 0.055          | < 15         | 23.0       | 2.3        | < 3        | 263       | 4.2            | 0.19             | 7.7            | 2.6            | 15       | < 1        | 9          | 21.2        | 33         | < 5        | 1.8          | < 0.01           | < 0.5          |
| BS122516             | 0.01         | 1        | 0.07           | 2900           | 0.05         | 0.014          | < 15         | 18.4       | 1.1        | < 3        | 7         | 4.0            | < 0.01           | < 0.2          | 1.9            | 4        | < 1        | < 1        | 0.7         | < 3        | < 5        | 0.1          | < 0.01           | < 0.5          |
| BS122517             | < 0.01       | 4        | 0.10           | 3530           | 0.03         | 0.033          | < 15         | 17.5       | 1.4        | < 3        | 13        | 4.8            | 0.02             | 1.1            | < 0.5          | 4        | < 1        | 1          | 4.3         | < 3        | < 5        | 0.3          | < 0.01           | < 0.5          |
| BS122518             | < 0.01       | < 1      | 0.08           | 1560           | 0.01         | 0.019          | < 15         | 104        | 0.5        | < 3        | 6         | < 0.5          | < 0.01           | < 0.2          | < 0.5          | 3        | < 1        | < 1        | < 0.5       | < 3        | < 5        | 0.1          | < 0.01           | < 0.5          |
| BS171201             | 0.29         | 84       | 0.90           | 7500           | 0.26         | 0.015          | < 15         | 13.8       | 4.7        | < 3        | 181       | 4.1            | 0.11             | 4.0            | < 0.5          | 28       | < 1        | 4          | 18.4        | 34         | 14         | 1.9          | < 0.01           | < 0.5          |
| LS121901             | < 0.01       | 13       | 1.02           | 14800          | 0.03         | 0.002          | < 15         | 12.0       | 2.2        | < 3        | 180       | 3.0            | < 0.01           | < 0.2          | < 0.5          | 24       | < 1        | 3          | 2.9         | < 3        | < 5        | 0.8          | < 0.01           | < 0.5          |
| LS121902             | 0.01         | 11       | 1.03           | 15600          | 0.02         | 0.003          | < 15         | 14.5       | 1.9        | < 3        | 216       | < 0.5          | < 0.01           | < 0.2          | < 0.5          | 22       | < 1        | 7          | 4.9         | 18         | 12         | 1.8          | < 0.01           | < 0.5          |
| LS121904             | < 0.01       | 56       | 1.23           | 13200          | 0.03         | 0.027          | < 15         | 11.0       | 6.2        | < 3        | 166       | 4.2            | 0.11             | 10.1           | 2.3            | 29       | < 1        | 6          | 27.6        | 63         | 14         | 4.1          | < 0.01           | < 0.5          |
| LS121905             | < 0.01       | 36       | 1.19           | 15300          | 0.02         | 0.002          | < 15         | 11.7       | 1.7        | < 3        | 159       | < 0.5          | < 0.01           | < 0.2          | < 0.5          | 26       | < 1        | 5          | 0.7         | < 3        | < 5        | 0.6          | < 0.01           | < 0.5          |
| LS121906             | < 0.01       | 59       | 0.99           | 10700          | 0.02         | 0.003          | < 15         | 0.8        | 3.7        | < 3        | 160       | < 0.5          | < 0.01           | < 0.2          | < 0.5          | 27       | < 1        | 5          | 1.8         | < 3        | < 5        | 0.6          | < 0.01           | 0.8            |
| LS121907             | < 0.01       | 13       | 1.40           | 15300          | 0.02         | 0.008          | < 15         | 7.4        | 3.2        | < 3        | 240       | < 0.5          | 0.02             | 1.3            | < 0.5          | 24       | < 1        | 4          | 6.7         | 15         | 7          | 1.6          | < 0.01           | < 0.5          |
| LS121908             | < 0.01       | 7        | 1.59           | 16800          | 0.01         | 0.010          | < 15         | 5.2        | 1.7        | < 3        | 246       | < 0.5          | < 0.01           | < 0.2          | < 0.5          | 10       | < 1        | 5          | 2.7         | 7          | < 5        | 0.8          | < 0.01           | < 0.5          |
| LS121910             | < 0.01       | 96       | 1.89           | 8840           | 0.02         | 0.002          | < 15         | 7.5        | 4.7        | < 3        | 83        | < 0.5          | 0.04             | 2.1            | < 0.5          | 39       | < 1        | 4          | 5.9         | 12         | < 5        | 1.2          | < 0.01           | < 0.5          |
| LS121911             | < 0.01       | 2        | 1.16           | 13000          | 0.02         | 0.002          | < 15         | 6.4        | 0.6        | < 3        | 54        | < 0.5          | < 0.01           | < 0.2          | < 0.5          | 17       | < 1        | 3          | 3.3         | 10         | < 5        | 1.0          | < 0.01           | < 0.5          |
| LS121913             | < 0.01       | 30       | 0.85           | 3880           | 0.02         | 0.012          | < 15         | 8.0        | 2.2        | < 3        | 866       | 0.7            | 0.04             | 2.2            | < 0.5          | 5        | 2          | 9          | 7.5         | 12         | < 5        | 1.4          | < 0.01           | < 0.5          |
| LS121916             | < 0.01       | 43       | 1.70           | 11200          | 0.07         | 0.032          | < 15         | 1.9        | 5.7        | < 3        | 204       | < 0.5          | 0.04             | 2.3            | < 0.5          | 19       | < 1        | 5          | 6.6         | 15         | < 5        | 1.4          | < 0.01           | < 0.5          |
| LS121917             | < 0.01       | 1        | 1.12           | 18200          | 0.02         | 0.001          | < 15         | 7.4        | 1.6        | < 3        | 83        | < 0.5          | < 0.01           | < 0.2          | < 0.5          | 11       | < 1        | 3<br>2     | 1.7         | < 3<br>6   | < 5        | 0.6          | < 0.01           | < 0.5          |
| LS121918<br>LS122401 | 0.01<br>0.22 | 32<br>51 | 0.54<br>1.25   | 17600<br>12000 | 0.02<br>0.04 | 0.006<br>0.014 | 60<br>< 15   | 7.7<br>7.9 | 2.2<br>8.2 | < 3<br>< 3 | 95<br>315 | < 0.5<br>< 0.5 | 0.03<br>0.01     | 2.8<br>2.1     | < 0.5<br>< 0.5 | 35<br>33 | < 1        | 2          | 3.1<br>15.6 | 38         | < 5<br>12  | 0.8<br>3.3   | < 0.01<br>< 0.01 | < 0.5<br>< 0.5 |
| LS122401             | < 0.01       | 111      | 1.25           | 12000          | 0.04         | 0.003          | 36           | 6.7        | 6.6        | < 3        | 171       | < 0.5          | 0.01             | < 0.2          | < 0.5          | 33<br>41 | < 1        | 5          | 1.1         | < 3        | < 5        | 0.6          | < 0.01           | < 0.5          |
| LS122405             | < 0.01       | 103      | 1.30           | 5420           | 0.02         | 0.005          | < 15         | 6.4        | 3.8        | < 3        | 73        | < 0.5          | 0.01             | 0.6            | < 0.5          | 48       | < 1        | 1          | 1.4         | < 3        | < 5        | 0.3          | < 0.01           | < 0.5          |
| LS122400             | < 0.01       | 73       | 1.20           | 11300          | 0.02         | 0.000          | < 15         | 6.5        | 2.6        | < 3        | 200       | < 0.5          | < 0.01           | < 0.2          | 1.8            | 40       | < 1        | 3          | < 0.5       | < 3        | < 5        | 0.3          | < 0.01           | < 0.5          |
| LS122414             | < 0.01       | 65       | 1.78           | 13800          | 0.02         | 0.005          | < 15         | 7.8        | 3.8        | < 3        | 449       | < 0.5          | 0.01             | 0.8            | < 0.5          | 35       | < 1        | 3          | 6.9         | 16         | < 5        | 1.0          | < 0.01           | < 0.5          |
| LS122415             | < 0.01       | 42       | 0.75           | 13400          | 0.02         | 0.012          | < 15         | 6.7        | 4.2        | < 3        | 112       | < 0.5          | < 0.01           | 1.0            | < 0.5          | 30       | < 1        | 3          | 4.0         | 9          | < 5        | 1.0          | < 0.01           | < 0.5          |
| LS122419             | < 0.01       | 63       | 1.52           | 11900          | 0.02         | 0.014          | < 15         | 6.3        | 4.2        | < 3        | 277       | < 0.5          | 0.09             | 4.3            | 1.8            | 27       | < 1        | 5          | 13.7        | 27         | < 5        | 1.4          | < 0.01           | < 0.5          |
| LS122421             | < 0.01       | 30       | 1.39           | 15000          | 0.02         | 0.003          | < 15         | 3.7        | 2.6        | < 3        | 276       | < 0.5          | < 0.01           | < 0.2          | < 0.5          | 20       | < 1        | 5          | 2.4         | < 3        | < 5        | 0.8          | < 0.01           | < 0.5          |
| LS122422             | < 0.01       | 37       | 0.86           | 9300           | 0.02         | 0.012          | < 15         | 1.3        | 3.0        | < 3        | 609       | < 0.5          | 0.01             | < 0.2          | < 0.5          | 25       | < 1        | 7          | 6.7         | 13         | < 5        | 1.9          | < 0.01           | < 0.5          |
| LS1224CS01           | 0.01         | 42       | 0.83           | 19400          | 0.02         | 0.007          | < 15         | 2.8        | 5.1        | < 3        | 97        | < 0.5          | < 0.01           | < 0.2          | < 0.5          | 38       | 7          | 4          | 8.0         | 21         | 9          | 2.2          | < 0.01           | < 0.5          |
| PS121803             | 0.07         | 1        | 0.95           | 14700          | 0.04         | 0.027          | < 15         | 96.8       | 1.0        | < 3        | 101       | < 0.5          | < 0.01           | < 0.2          | 1.9            | 8        | < 1        | 2          | 2.6         | 10         | < 5        | 0.4          | < 0.01           | < 0.5          |
| PS121804             | < 0.01       | < 1      | 0.43           | 8750           | 0.01         | 0.011          | < 15         | 5.1        | 2.6        | < 3        | 1010      | 3.3            | < 0.01           | < 0.2          | < 0.5          | < 2      | < 1        | 7          | 7.1         | 17         | < 5        | 3.0          | < 0.01           | < 0.5          |
| PS121805             | 0.02         | 1        | 0.67           | 15300          | 0.02         | 0.029          | < 15         | 166        | 0.6        | 21         | 52        | 2.8            | < 0.01           | < 0.2          | < 0.5          | 7        | < 1        | 1          | 2.0         | < 3        | < 5        | 0.2          | < 0.01           | < 0.5          |
| PS121807             | 0.01         | 1        | 1.76           | 12900          | 0.02         | 0.021          | < 15         | 3.1        | 0.7        | < 3        | 288       | 2.6            | < 0.01           | < 0.2          | < 0.5          | 2        | < 1        | 4          | 1.8         | < 3        | < 5        | 2.1          | < 0.01           | < 0.5          |
| PS121810             | 0.03         | 3        | 0.71           | 13700          | 0.06         | 0.029          | < 15         | 8.9        | 0.8        | < 3        | 56        | < 0.5          | 0.02             | < 0.2          | 3.1            | 9        | < 1        | 2          | 4.5         | < 3        | < 5        | 0.8          | < 0.01           | < 0.5          |
| PS121812             | 0.04         | 2        | 0.94           | 15000          | 0.03         | 0.010          | < 15         | 1.8        | 1.3        | < 3        | 186       | 3.3            | < 0.01           | < 0.2          | < 0.5          | 6        | < 1        | 2          | 1.0         | < 3        | < 5        | 1.0          | < 0.01           | < 0.5          |
|                      |              |          |                |                |              |                |              |            |            |            |           |                |                  |                |                |          |            |            |             |            |            |              |                  |                |

| Analyte Symbol  | К      | Li     | Mg     | Mn     | Na   | Р      | Rb   | Sb   | Sc   | Se   | Sr     | Та   | Ti     | Th    | U     | V      | W    | Y      | La   | Ce   | Nd   | Sm   | Sn     | Tb    |
|-----------------|--------|--------|--------|--------|------|--------|------|------|------|------|--------|------|--------|-------|-------|--------|------|--------|------|------|------|------|--------|-------|
| Unit Symbol     | %      | ppm    | %      | ppm    | %    | %      | ppm  | ppm  | ppm  | ppm  | ppm    | ppm  | %      | ppm   | ppm   | ppm    | ppm  | ppm    | ppm  | ppm  | ppm  | ppm  | %      | ppm   |
| Detection Limit | 0.01   | 1      | 0.01   | 1      | 0.01 | 0.001  | 15   | 0.1  | 0.1  | 3    | 1      | 0.5  | 0.01   | 0.2   | 0.5   | 2      | 1    | 1      | 0.5  | 3    | 5    | 0.1  | 0.01   | 0.5   |
| Analysis Method | TD-ICP | TD-ICP | TD-ICP | TD-ICP | INAA | TD-ICP | INAA | INAA | INAA | INAA | TD-ICP | INAA | TD-ICP | INAA  | INAA  | TD-ICP | INAA | TD-ICP | INAA | INAA | INAA | INAA | INAA   | INAA  |
| PS121817        | 0.01   | 5      | 1.65   | 20500  | 0.03 | 0.016  | < 15 | 0.9  | 0.5  | < 3  | 33     | 3.0  | < 0.01 | < 0.2 | 2.9   | 8      | < 1  | 2      | 2.1  | 8    | < 5  | 1.0  | < 0.01 | < 0.5 |
| PS121818        | 0.02   | 2      | 1.34   | 16800  | 0.03 | 0.018  | < 15 | 0.6  | 0.6  | < 3  | 70     | 3.5  | < 0.01 | < 0.2 | < 0.5 | 9      | < 1  | 2      | 1.6  | < 3  | < 5  | 0.8  | < 0.01 | < 0.5 |
| PS121820        | 0.11   | 10     | 1.06   | 16600  | 0.21 | 0.010  | < 15 | 0.9  | 0.9  | < 3  | 310    | 2.3  | < 0.01 | < 0.2 | < 0.5 | 13     | < 1  | 3      | 1.6  | < 3  | < 5  | 0.9  | < 0.01 | < 0.5 |

|                       |              |                |      |         |         |         | Activation Laboratories Ltu. | кероп. | A12-09495 |
|-----------------------|--------------|----------------|------|---------|---------|---------|------------------------------|--------|-----------|
| Analyte Symbol        | Yb           | Lu             | Mass | Ag      | Zn      |         |                              |        |           |
| Unit Symbol           | ppm          | ppm            | g    | ppm     | %       | %       |                              |        |           |
| Detection Limit       | 0.2          | 0.05           |      | 3       | 0.001   | 0.003   |                              |        |           |
| Analysis Method       | INAA         | INAA           | INAA | ICP-OES | ICP-OES | ICP-OES |                              |        |           |
| 3S121702              | < 0.2        | < 0.05         | 1.04 |         |         |         |                              |        |           |
| 3S121704              | 0.8          | 0.08           | 31.7 |         |         |         |                              |        |           |
| S121705               | 0.6          | < 0.05         | 36.3 |         |         |         |                              |        |           |
| S121706               | 0.6          | 0.11           | 31.3 |         |         |         |                              |        |           |
| S121710               | < 0.2        | 0.17           | 31.4 |         |         |         |                              |        |           |
| 3S121711              | < 0.2        | 0.13           | 25.5 |         |         |         |                              |        |           |
| 3S122501              | < 0.2        | < 0.05         | 25.0 |         |         | 1.42    |                              |        |           |
| BS122502              | < 0.2        | < 0.05         | 25.7 |         |         |         |                              |        |           |
| BS122503              | 0.6          | < 0.05         | 23.7 |         |         | 0.591   |                              |        |           |
| BS122507CS            | < 0.2        | < 0.05         | 1.05 | 273     |         | 30.9    |                              |        |           |
| BS122507              | < 0.2        | < 0.05         | 1.08 | 87      |         | 24.4    |                              |        |           |
| BS122508              | < 0.2        | 0.13           | 31.7 |         |         | 20.9    |                              |        |           |
| BS122509              | < 0.2        | < 0.05         | 29.0 |         |         | 9.78    |                              |        |           |
| BS122510              | < 0.2        | < 0.05         | 23.9 |         |         | 5.98    |                              |        |           |
| BS122510<br>BS122511  | < 0.2        | < 0.05         | 23.5 |         |         | 1.47    |                              |        |           |
| BS122512              | < 0.2        | < 0.05         | 25.8 |         |         | 0.912   |                              |        |           |
| BS122513              | < 0.2        | < 0.05         | 24.2 |         |         | 0.512   |                              |        |           |
| BS122514              | 0.4          | < 0.05         | 26.8 |         |         |         |                              |        |           |
| BS122515              | 1.3          | 0.20           | 25.9 |         |         | 5.72    |                              |        |           |
| BS122516              | < 0.2        | < 0.05         | 21.0 |         |         | 2.29    |                              |        |           |
| BS122517              | < 0.2        | < 0.05         | 21.0 |         |         | 1.85    |                              |        |           |
| BS122517<br>BS122518  | < 0.2        | < 0.05         | 1.09 | 91      | 13.8    | 24.8    |                              |        |           |
| BS1722518<br>BS171201 | < 0.2<br>1.3 | < 0.05<br>0.17 | 25.1 | 91      | 13.0    | 24.0    |                              |        |           |
| LS121901              | 0.8          | < 0.05         | 23.1 |         |         |         |                              |        |           |
|                       |              |                |      |         |         |         |                              |        |           |
| LS121902<br>LS121904  | 0.6          | 0.09           | 1.06 |         |         |         |                              |        |           |
|                       | 1.6          | 0.27           | 25.5 |         |         |         |                              |        |           |
| LS121905              | 0.7          | 0.15           | 29.6 |         |         |         |                              |        |           |
| LS121906              | 0.9          | 0.17           | 28.6 |         |         |         |                              |        |           |
| LS121907              | 0.9          | 0.18           | 26.8 |         |         |         |                              |        |           |
| LS121908              | 0.6          | < 0.05         | 1.01 |         |         |         |                              |        |           |
| LS121910              | 0.8          | < 0.05         | 31.2 |         |         |         |                              |        |           |
| LS121911              | < 0.2        | < 0.05         | 35.8 |         |         |         |                              |        |           |
| LS121913              | 0.7          | 0.11           | 25.6 |         |         |         |                              |        |           |
| LS121916              | 0.6          | < 0.05         | 1.01 |         |         |         |                              |        |           |
| LS121917              | < 0.2        | 0.09           | 28.9 |         |         |         |                              |        |           |
| LS121918              | 0.7          | < 0.05         | 29.5 |         |         |         |                              |        |           |
| LS122401              | 1.5          | 0.29           | 28.5 |         |         |         |                              |        |           |
| LS122405              | 0.6          | 0.14           | 28.0 |         |         |         |                              |        |           |
| LS122406              | 0.3          | 0.06           | 33.3 |         |         |         |                              |        |           |
| LS122410              | 0.6          | < 0.05         | 34.1 |         |         |         |                              |        |           |
| LS122414              | < 0.2        | < 0.05         | 29.9 |         |         |         |                              |        |           |
| LS122415              | 0.8          | 0.19           | 33.2 |         |         |         |                              |        |           |
| LS122419              | 1.2          | 0.22           | 33.8 |         |         |         |                              |        |           |
| LS122421              | 0.9          | 0.15           | 31.0 |         |         |         |                              |        |           |
| LS122422              | 1.2          | 0.22           | 29.0 |         |         |         |                              |        |           |
| LS1224CS01            | 0.8          | 0.19           | 30.9 |         |         |         |                              |        |           |
| PS121803              | < 0.2        | < 0.05         | 24.9 | 101     |         | 5.55    |                              |        |           |
| PS121804              | 0.6          | < 0.05         | 28.3 |         |         |         |                              |        |           |
| PS121805              | < 0.2        | < 0.05         | 36.0 | 127     |         | 18.2    |                              |        |           |
| PS121807              | < 0.2        | < 0.05         | 30.8 |         |         |         |                              |        |           |
| PS121810              | 0.4          | < 0.05         | 1.05 |         |         |         |                              |        |           |
| PS121812              | < 0.2        | < 0.05         | 26.9 |         |         |         |                              |        |           |

Activation Laboratories Ltd. Report: A12-09493

| Analyte Symbol  | Yb    | Lu     | Mass | Ag      | Zn      | Pb      |
|-----------------|-------|--------|------|---------|---------|---------|
| Unit Symbol     | ppm   | ppm    | g    | ppm     | %       | %       |
| Detection Limit | 0.2   | 0.05   |      | 3       | 0.001   | 0.003   |
| Analysis Method | INAA  | INAA   | INAA | ICP-OES | ICP-OES | ICP-OES |
| PS121817        | < 0.2 | < 0.05 | 25.8 |         |         |         |
| PS121818        | 0.3   | < 0.05 | 30.7 |         |         |         |
| PS121820        | < 0.2 | < 0.05 | 29.5 |         |         |         |

| Quality Control                    |              |                |            |              |                |            |            |            |            |                  |                  |            |              |                  |          |                  |            |                  |              |                    |            |                  |            |            |
|------------------------------------|--------------|----------------|------------|--------------|----------------|------------|------------|------------|------------|------------------|------------------|------------|--------------|------------------|----------|------------------|------------|------------------|--------------|--------------------|------------|------------------|------------|------------|
| Analyte Symbol                     | Au           | Ag             | Ag         | Cu           | Cd             | Мо         | Pb         | Ni         | Zn         | S                | AI               | Be         | Bi           | Ca               | Ir       | к                | Li         | Mg               | Mn           | Р                  | Sr         | Ti               | v          | v          |
|                                    |              | ry<br>ppm      |            |              |                |            |            |            |            | %                | %                |            |              | %                |          | %                |            | wig<br>%         |              | %                  |            | %                |            |            |
| Unit Symbol                        | ppb<br>2     | 0.3            | ppm<br>5   | ppm<br>1     | ppm<br>0.3     | ppm<br>1   | ppm<br>3   | ppm<br>1   | ppm<br>1   | 0.01             | 0.01             | ppm<br>1   | ppm<br>2     | 0.01             | ppb<br>5 | 0.01             | ppm<br>1   | 0.01             | ppm<br>1     | 0.001              | ppm<br>1   | 0.01             | ppm<br>2   | ppm<br>1   |
| Detection Limit<br>Analysis Method | INAA         | TD-ICP         | INAA       | TD-ICP       | TD-ICP         | TD-ICP     | TD-ICP     | TD-ICP     | TD-ICP     | TD-ICP           | TD-ICP           | TD-ICP     | TD-ICP       | TD-ICP           | INAA     | TD-ICP           | TD-ICP     | TD-ICP           | TD-ICP       | TD-ICP             | TD-ICP     | TD-ICP           | TD-ICP     | TD-ICP     |
|                                    |              |                |            |              |                |            |            |            |            |                  |                  |            |              |                  | 10.00    |                  |            |                  |              |                    |            | 10 101           |            |            |
| GXR-1 Meas<br>GXR-1 Cert           | 3270<br>3300 | 31.0<br>31.0   | 32<br>31.0 | 1090<br>1110 | 3.3<br>3.30    | 17<br>18.0 | 711<br>730 | 44<br>41.0 | 750<br>760 | 0.23<br>0.257    | 3.91<br>3.52     | 1<br>1.22  | 1400<br>1380 | 0.87<br>0.960    |          | 0.05<br>0.050    | 10<br>8.20 | 0.28<br>0.217    | 912<br>852   | 0.055<br>0.0650    | 282<br>275 |                  | 83<br>80.0 | 25<br>32.0 |
| GXR-1 Cent<br>GXR-1 Meas           | 3300         | 31.0           | 31.0       | 1130         | 3.30           | 18.0       | 730        | 41.0       | 760        | 0.237            | 4.59             | 1.22       | 1380         | 0.960            |          | 0.050            | 8.20<br>10 | 0.217            | 946          | 0.0550             | 275        |                  | 80.0       | 26         |
| GXR-1 Cert                         |              | 31.0           |            | 1110         | 3.30           | 18.0       | 730        | 41.0       | 760        | 0.257            | 3.52             | 1.22       | 1380         | 0.960            |          | 0.050            | 8.20       | 0.217            | 852          | 0.0650             | 275        |                  | 80.0       | 32.0       |
| GXR-4 Meas                         |              | 3.6            |            | 6540         | 0.5            | 311        | 48         | 56         | 96         | 1.78             | 6.47             | 2          | < 2          | 1.02             |          | 3.40             | 10         | 1.69             | 154          | 0.132              | 211        |                  | 90         | 13         |
| GXR-4 Cert                         |              | 4.00           |            | 6520         | 0.860          | 310        | 52.0       | 42.0       | 73.0       | 1.77             | 7.20             | 1.90       | 19.0         | 1.01             |          | 4.01             | 11.1       | 1.66             | 155          | 0.120              | 221        |                  | 87.0       | 14.0       |
| GXR-4 Meas                         |              | 3.7            |            | 6680         | 0.4            | 315        | 49         | 57         | 82         | 1.77             | 6.57             | 2          | 3            | 1.03             |          | 3.57             | 11         | 1.72             | 159          | 0.131              | 211        |                  | 91         | 13         |
| GXR-4 Cert                         |              | 4.00           |            | 6520         | 0.860          | 310        | 52.0       | 42.0       | 73.0       | 1.77             | 7.20             | 1.90       | 19.0         | 1.01             |          | 4.01             | 11.1       | 1.66             | 155          | 0.120              | 221        |                  | 87.0       | 14.0       |
| CZN-3 Meas                         |              |                |            |              |                |            |            |            |            |                  |                  |            |              |                  |          |                  |            |                  |              |                    |            |                  |            |            |
| CZN-3 Cert<br>SDC-1 Meas           |              | < 0.3          |            | 29           | < 0.3          | 4          | 23         | 42         | 108        | 0.07             | 8.40             | 3          | < 2          | 1.07             |          | 2.90             | 36         | 1.04             | 933          | 0.057              | 181        | 0.27             | 56         | 32         |
| SDC-1 Cert                         |              | 0.0410         |            | 30.00        | 0.0800         | 0.250      | 25.00      | 38.0       | 103.00     | 0.0650           | 8.34             | 3.00       | 2.60         | 1.07             |          | 2.30             | 34.00      | 1.04             | 880.00       | 0.0690             | 180.00     | 0.606            | 102.00     | 40.0       |
| SDC-1 Meas                         |              | < 0.3          |            | 31           | < 0.3          | 3          | 23.00      | 40         | 105.00     | 0.000            | 7.98             | 3          | < 2          | 1.00             |          | 2.26             | 34         | 0.99             | 912          | 0.056              | 171        | 0.35             | 68         | 31         |
| SDC-1 Cert                         |              | 0.0410         |            | 30.00        | 0.0800         | 0.250      | 25.00      | 38.0       | 103.00     | 0.0650           | 8.34             | 3.00       | 2.60         | 1.04             |          | 2.72             | 34.00      | 1.02             | 880.00       | 0.0690             | 180.00     | 0.606            | 102.00     | 40.0       |
| SCO-1 Meas                         |              | < 0.3          |            | 28           | 0.4            | 1          | 29         | 33         | 107        | 0.08             | 7.22             | 2          | < 2          | 1.91             |          | 3.01             | 43         | 1.61             | 420          | 0.085              | 164        | 0.36             | 135        | 19         |
| SCO-1 Cert                         |              | 0.134          |            | 29           | 0.140          | 1.4        | 31.0       | 27         | 100        | 0.0630           | 7.24             | 1.80       | 0.37         | 1.87             |          | 2.30             | 45         | 1.64             | 410          | 0.0900             | 170        | 0.380            | 130        | 26         |
| SCO-1 Meas                         |              | < 0.3          |            | 37           | < 0.3          | 1          | 30         | 33         | 105        | 0.08             | 7.12             | 2          | < 2          | 1.90             |          | 2.22             | 43         | 1.60             | 414          | 0.083              | 159        | 0.36             | 134        | 19         |
| SCO-1 Cert                         |              | 0.134          |            | 29           | 0.140          | 1.4        | 31.0       | 27         | 100        | 0.0630           | 7.24             | 1.80       | 0.37         | 1.87             |          | 2.30             | 45         | 1.64             | 410          | 0.0900             | 170        | 0.380            | 130        | 26         |
| GXR-6 Meas                         |              | 0.5            |            | 73           | < 0.3          | 4          | 99         | 28         | 137        | 0.02             | 13.4             | 1          | < 2          | 0.19             |          | 2.09             | 35         | 0.62             | 1150         | 0.038              | 43         |                  | 196        | 13         |
| GXR-6 Cert                         |              | 1.30           |            | 66.0         | 1.00           | 2.40       | 101        | 27.0       | 118        | 0.0160           | 17.7             | 1.40       | 0.290        | 0.180            |          | 1.87             | 32.0       | 0.609            | 1010         | 0.0350             | 35.0       |                  | 186        | 14.0       |
| GXR-6 Meas<br>GXR-6 Cert           |              | 0.5<br>1.30    |            | 85<br>66.0   | 0.3<br>1.00    | 3<br>2.40  | 101<br>101 | 30<br>27.0 | 135<br>118 | 0.02<br>0.0160   | 13.7<br>17.7     | 1<br>1.40  | < 2<br>0.290 | 0.19<br>0.180    |          | 2.17<br>1.87     | 35<br>32.0 | 0.62<br>0.609    | 1120<br>1010 | 0.036<br>0.0350    | 41<br>35.0 |                  | 134<br>186 | 14<br>14.0 |
| PTC-1a Meas                        |              | 1.50           |            | 00.0         | 1.00           | 2.40       | 101        | 27.0       | 110        | 0.0100           | 17.7             | 1.40       | 0.230        | 0.100            |          | 1.07             | 52.0       | 0.003            | 1010         | 0.0330             | 55.0       |                  | 100        | 14.0       |
| PTC-1a Cert                        |              |                |            |              |                |            |            |            |            |                  |                  |            |              |                  |          |                  |            |                  |              |                    |            |                  |            |            |
| MP-1b Meas                         |              |                |            |              |                |            |            |            |            |                  |                  |            |              |                  |          |                  |            |                  |              |                    |            |                  |            |            |
| MP-1b Cert                         |              |                |            |              |                |            |            |            |            |                  |                  |            |              |                  |          |                  |            |                  |              |                    |            |                  |            |            |
| DNC-1a Meas                        |              |                |            | 98           |                |            |            | 265        | 60         |                  |                  |            |              |                  |          |                  | 5          |                  |              |                    | 133        |                  | 141        | 15         |
| DNC-1a Cert                        |              |                |            | 100.0        |                |            |            | 247        | 70.0       |                  |                  |            |              |                  |          |                  | 5.20       |                  |              |                    | 144.0      |                  | 148.0      | 18.0       |
| DNC-1a Meas                        |              |                |            | 96           |                |            |            | 260        | 59         |                  |                  |            |              |                  |          |                  | 5          |                  |              |                    | 129        |                  | 138        | 14         |
| DNC-1a Cert                        |              |                |            | 100.0        |                |            |            | 247        | 70.0       |                  |                  |            |              |                  |          |                  | 5.20       |                  |              |                    | 144.0      |                  | 148.0      | 18.0       |
| OREAS 13b (4-Acid)<br>Meas         |              |                |            |              |                |            |            |            |            |                  |                  |            |              |                  |          |                  |            |                  |              |                    |            |                  |            |            |
| OREAS 13b (4-Acid)                 |              |                |            |              |                |            |            |            |            |                  |                  |            |              |                  |          |                  |            |                  |              |                    |            |                  |            |            |
| Cert                               |              |                |            |              |                |            |            |            |            |                  |                  |            |              |                  |          |                  |            |                  |              |                    |            |                  |            |            |
| CCu-1d Meas<br>CCu-1d Cert         |              |                |            |              |                |            |            |            |            |                  |                  |            |              |                  |          |                  |            |                  |              |                    |            |                  |            |            |
| CZN-4 Meas                         |              |                |            |              |                |            |            |            |            |                  |                  |            |              |                  |          |                  |            |                  |              |                    |            |                  |            |            |
| CZN-4 Cert                         |              |                |            |              |                |            |            |            |            |                  |                  |            |              |                  |          |                  |            |                  |              |                    |            |                  |            |            |
| DMMAS 113 Meas                     | 1770         |                |            |              |                |            |            |            |            |                  |                  |            |              |                  |          |                  |            |                  |              |                    |            |                  |            |            |
| DMMAS 113 Cert                     | 1665         |                |            |              |                |            |            |            |            |                  |                  |            |              |                  |          |                  |            |                  |              |                    |            |                  |            |            |
| DMMAS 113 Meas                     | 1730         |                |            |              |                |            |            |            |            |                  |                  |            |              |                  |          |                  |            |                  |              |                    |            |                  |            |            |
| DMMAS 113 Cert                     | 1665         |                |            |              |                |            |            |            |            |                  |                  |            |              |                  |          |                  |            |                  |              |                    |            |                  |            |            |
| BS122509 Orig                      |              | 51.0           |            | 139          | 4.2            | < 1        | > 5000     | 5          | 2430       | 4.34             | 0.29             | < 1        | < 2          | 0.02             |          | 0.03             | 2          | < 0.01           | 214          | 0.021              | 15         | 0.01             | 6          | < 1        |
| BS122509 Dup                       |              | 50.0           |            | 141          | 4.1            | < 1        | > 5000     | 6          | 2400       | 4.28             | 0.28             | < 1        | < 2          | 0.02             |          | 0.03             | 2          | < 0.01           | 207          | 0.022              | 15         | 0.01             | 5          | < 1        |
| BS122518 Orig<br>BS122518 Dup      |              |                |            |              |                |            |            |            |            |                  |                  |            |              |                  |          |                  |            |                  |              |                    |            |                  |            |            |
| LS121905 Orig                      |              | 0.6            |            | 352          | 1.6            | < 1        | 18         | 16         | 23         | 0.12             | 2.04             | < 1        | < 2          | 5.74             |          | < 0.01           | 36         | 1.19             | 15700        | 0.002              | 161        | < 0.01           | 27         | 5          |
| LS121905 Dup                       |              | 0.5            |            | 328          | 1.8            | < 1        | 13         | 16         | 21         | 0.11             | 2.31             | < 1        | < 2          | 5.66             |          | < 0.01           | 37         | 1.19             | 15000        | 0.002              | 156        | < 0.01           | 25         | 5          |
| PS121803 Orig                      |              | > 100          |            | 308          | 3.1            | 1          | > 5000     | 31         | 27         | 5.16             | 0.23             | < 1        | < 2          | 2.81             |          | 0.07             | 1          | 0.95             | 14700        | 0.027              | 100        | < 0.01           | 7          | 2          |
| PS121803 Dup                       |              | > 100          |            | 308          | 3.4            | 2          | > 5000     | 32         | 33         | 5.19             | 0.23             | < 1        | < 2          | 2.81             |          | 0.07             | 1          | 0.95             | 14700        | 0.028              | 101        | < 0.01           | 8          | 2          |
| PS121807 Orig                      | 121          | 0.4            | < 5        | 4            | 0.7            | < 1        | 15         | 12         | 37         | 0.78             | 0.08             | < 1        | < 2          | 11.2             | < 5      | 0.01             | 1          | 1.76             | 12900        | 0.021              | 288        | < 0.01           | 2          | 4          |
| PS121807 Split                     | 132          | 0.4            | < 5        | 3            | 0.8            | < 1        | 18         | 14         | 41         | 0.79             | 0.08             | < 1        | < 2          | 11.4             | < 5      | 0.01             | 1          | 1.78             | 13100        | 0.022              | 291        | < 0.01           | 6          | 4          |
| PS121820 Orig                      | 105          | 0.7            | < 5        | 103          | 1.4            | < 1        | 29         | 24         | 40         | 2.12             | 0.99             | < 1        | 3            | 5.25             | < 5      | 0.11             | 10         | 1.06             | 16600        | 0.010              | 310        | < 0.01           | 13         | 3          |
| PS121820 Split<br>Method Blank     | 113          | 0.7<br>< 0.3   | < 5        | 102<br>< 1   | 1.0<br>< 0.3   | < 1<br>< 1 | 26<br>< 3  | 25<br>< 1  | 39<br>< 1  | 2.16<br>< 0.01   | 1.00<br>< 0.01   | < 1<br>< 1 | 5<br>< 2     | 5.28<br>< 0.01   | < 5      | 0.11<br>< 0.01   | 10<br>< 1  | 1.06<br>< 0.01   | 16600        | 0.010<br>< 0.001   | 305<br>< 1 | < 0.01<br>< 0.01 | 11<br>< 2  | 3<br>< 1   |
| Method Blank                       |              | < 0.3<br>< 0.3 |            | < 1          | < 0.3<br>< 0.3 | < 1        | < 3<br>< 3 | < 1<br>< 1 | < 1<br>< 1 | < 0.01<br>< 0.01 | < 0.01<br>< 0.01 | < 1<br>< 1 | < 2<br>< 2   | < 0.01<br>< 0.01 |          | < 0.01<br>< 0.01 | < 1<br>< 1 | < 0.01<br>< 0.01 |              | < 0.001<br>< 0.001 | < 1<br>< 1 | < 0.01<br>< 0.01 | < 2<br>< 2 | < 1<br>< 1 |
| Method Blank                       |              | < 0.3          |            | < 1          | < 0.3          | < 1        | < 3        | < 1        | < 1        | < 0.01           | < 0.01           | < 1        | < 2          | < 0.01           |          | < 0.01           | < 1        | < 0.01           |              | < 0.001            | < 1        | < 0.01           | < 2        | < 1        |
| Method Blank                       |              | < 0.3          |            | < 1          | < 0.3          | < 1        | < 3        | < 1        | < 1        | < 0.01           | < 0.01           | < 1        | < 2          | < 0.01           |          | < 0.01           | < 1        | < 0.01           |              | < 0.001            | < 1        | < 0.01           | < 2        | < 1        |
|                                    |              |                |            |              |                |            |            |            |            | _                |                  |            |              |                  |          |                  |            |                  |              |                    |            |                  |            |            |

Activation Laboratories Ltd. Report: A12-09493

| Quality Control              |      |        |      |        |        |        |        |        |        |        |        |        |        |        |      |        |        |        |        |         |        |        |        |        |
|------------------------------|------|--------|------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|------|--------|--------|--------|--------|---------|--------|--------|--------|--------|
| Analyte Symbol               | Au   | Ag     | Ag   | Cu     | Cd     | Мо     | Pb     | Ni     | Zn     | S      | AI     | Be     | Bi     | Ca     | Ir   | к      | Li     | Mg     | Mn     | Р       | Sr     | Ti     | v      | Y      |
| Unit Symbol                  | ppb  | ppm    | ppm  | ppm    | ppm    | ppm    | ppm    | ppm    | ppm    | %      | %      | ppm    | ppm    | %      | ppb  | %      | ppm    | %      | ppm    | %       | ppm    | %      | ppm    | ppm    |
| Detection Limit              | 2    | 0.3    | 5    | 1      | 0.3    | 1      | 3      | 1      | 1      | 0.01   | 0.01   | 1      | 2      | 0.01   | 5    | 0.01   | 1      | 0.01   | 1      | 0.001   | 1      | 0.01   | 2      | 1      |
| Analysis Method              | INAA | TD-ICP | INAA | TD-ICP | INAA | TD-ICP | TD-ICP | TD-ICP | TD-ICP | TD-ICP  | TD-ICP | TD-ICP | TD-ICP | TD-ICP |
| Method Blank<br>Method Blank |      | < 0.3  |      | 3      | < 0.3  | < 1    | < 3    | 1      | < 1    | < 0.01 | < 0.01 | < 1    | < 2    | < 0.01 |      | < 0.01 | < 1    | < 0.01 |        | < 0.001 | < 1    | < 0.01 | < 2    | < 1    |

|                                 |              |              |            |            |              |                |          | , in the late |            | orator         | les Lto      |       | керо       |              | 412-09       |            |            |            |            |                |                |            |            |            |
|---------------------------------|--------------|--------------|------------|------------|--------------|----------------|----------|---------------|------------|----------------|--------------|-------|------------|--------------|--------------|------------|------------|------------|------------|----------------|----------------|------------|------------|------------|
| Quality Control                 |              |              |            |            |              |                |          |               |            |                |              |       |            |              |              |            |            |            |            |                |                |            |            |            |
| Analyte Symbol                  | Mass         | Ni           | Zn         | As         | Ba           | Br             | Co       | Cr            | Cs         | Eu             | Fe           | Hf    | Hg         | Na           | Rb           | Sb         | Sc         | Se         | Та         | Th             | U              | W          | La         | Ce         |
| Unit Symbol                     | g            | ppm          | ppm        | ppm        | ppm          | ppm            | ppm      | ppm           | ppm        | ppm            | %            | ppm   | ppm        | %            | ppm          | ppm        | ppm        | ppm        | ppm        | ppm            | ppm            | ppm        | ppm        | ppm        |
| Detection Limit                 |              | 20           | 50         | 0.5        | 50           | 0.5            | 1        | 2             | 1          | 0.2            | 0.01         | 1     | 1          | 0.01         | 15           | 0.1        | 0.1        | 3          | 0.5        | 0.2            | 0.5            | 1          | 0.5        | 3          |
| Analysis Method                 | INAA         | INAA         | INAA       | INAA       | INAA         | INAA           | INAA     | INAA          | INAA       | INAA           | INAA         | INAA  | INAA       | INAA         | INAA         | INAA       | INAA       | INAA       | INAA       | INAA           | INAA           | INAA       | INAA       | INAA       |
| GXR-1 Meas                      |              | < 20         | 760        | 423        | 720          | < 0.5          | 9        | 12            | 3          | 0.7            | 23.6         | < 1   | < 1        | 0.05         | < 15         | 121        | 1.6        | 18         | < 0.5      | 2.6            | 34.9           | 168        | 8.7        | 18         |
| GXR-1 Cert                      |              | 41.0         | 760        | 427        | 750          | 0.500          | 8.20     | 12.0          | 3.00       | 0.690          | 23.6         | 0.960 | 3.90       | 0.0520       | 14.0         | 121        | 1.58       | 16.6       | 0.175      | 2.44           | 34.9           | 164        | 7.50       | 17.0       |
| GXR-1 Meas                      |              |              |            |            |              |                |          |               |            |                |              |       |            |              |              |            |            |            |            |                |                |            |            |            |
| GXR-1 Cert                      |              |              |            |            |              |                |          |               |            |                |              |       |            |              |              |            |            |            |            |                |                |            |            |            |
| GXR-4 Meas                      |              |              |            |            |              |                |          |               |            |                |              |       |            |              |              |            |            |            |            |                |                |            |            |            |
| GXR-4 Cert                      |              |              |            |            |              |                |          |               |            |                |              |       |            |              |              |            |            |            |            |                |                |            |            |            |
| GXR-4 Meas                      |              |              |            |            |              |                |          |               |            |                |              |       |            |              |              |            |            |            |            |                |                |            |            |            |
| GXR-4 Cert                      |              |              |            |            |              |                |          |               |            |                |              |       |            |              |              |            |            |            |            |                |                |            |            |            |
| CZN-3 Meas                      |              |              | > 100000   |            |              |                |          |               |            |                |              |       |            |              |              |            |            |            |            |                |                |            |            |            |
| CZN-3 Cert                      |              |              | 509000     |            |              |                |          |               |            |                |              |       |            |              |              |            |            |            |            |                |                |            |            |            |
| SDC-1 Meas                      |              |              |            |            |              |                |          |               |            |                |              |       |            |              |              |            |            |            |            |                |                |            |            |            |
| SDC-1 Cert<br>SDC-1 Meas        |              |              |            |            |              |                |          |               |            |                |              |       |            |              |              |            |            |            |            |                |                |            |            |            |
| SDC-1 Cert                      |              |              |            |            |              |                |          |               |            |                |              |       |            |              |              |            |            |            |            |                |                |            |            |            |
| SCO-1 Meas                      |              |              |            |            |              |                |          |               |            |                |              |       |            |              |              |            |            |            |            |                |                |            |            |            |
| SCO-1 Cert                      |              |              |            |            |              |                |          |               |            |                |              |       |            |              |              |            |            |            |            |                |                |            |            |            |
| SCO-1 Meas                      |              |              |            |            |              |                |          |               |            |                |              |       |            |              |              |            |            |            |            |                |                |            |            |            |
| SCO-1 Cert                      |              |              |            |            |              |                |          |               |            |                |              |       |            |              |              |            |            |            |            |                |                |            |            |            |
| GXR-6 Meas                      |              |              |            |            |              |                |          |               |            |                |              |       |            |              |              |            |            |            |            |                |                |            |            |            |
| GXR-6 Cert                      |              |              |            |            |              |                |          |               |            |                |              |       |            |              |              |            |            |            |            |                |                |            |            |            |
| GXR-6 Meas                      |              |              |            |            |              |                |          |               |            |                |              |       |            |              |              |            |            |            |            |                |                |            |            |            |
| GXR-6 Cert                      |              |              |            |            |              |                |          |               |            |                |              |       |            |              |              |            |            |            |            |                |                |            |            |            |
| PTC-1a Meas                     |              |              |            |            |              |                |          |               |            |                |              |       |            |              |              |            |            |            |            |                |                |            |            |            |
| PTC-1a Cert                     |              |              |            |            |              |                |          |               |            |                |              |       |            |              |              |            |            |            |            |                |                |            |            |            |
| MP-1b Meas                      |              |              | > 100000   | 23000      |              |                |          |               |            |                | 8.04         |       |            |              |              | 54.9       |            |            |            |                |                | 1110       |            |            |
| MP-1b Cert                      |              | 1            | 66700.00   | 23000.00   |              |                |          |               |            |                | 8.19         |       |            |              |              | 54.0       |            |            |            |                | 1              | 1100.000   |            |            |
| DNC-1a Meas                     |              |              |            |            |              |                |          |               |            |                |              |       |            |              |              |            |            |            |            |                |                |            |            |            |
| DNC-1a Cert                     |              |              |            |            |              |                |          |               |            |                |              |       |            |              |              |            |            |            |            |                |                |            |            |            |
| DNC-1a Meas<br>DNC-1a Cert      |              |              |            |            |              |                |          |               |            |                |              |       |            |              |              |            |            |            |            |                |                |            |            |            |
| OREAS 13b (4-Acid)              |              |              |            |            |              |                |          |               |            |                |              |       |            |              |              |            |            |            |            |                |                |            |            |            |
| Meas                            |              |              |            |            |              |                |          |               |            |                |              |       |            |              |              |            |            |            |            |                |                |            |            |            |
| OREAS 13b (4-Acid)<br>Cert      |              |              |            |            |              |                |          |               |            |                |              |       |            |              |              |            |            |            |            |                |                |            |            |            |
| CCu-1d Meas                     |              |              |            |            |              |                |          |               |            |                |              |       |            |              |              |            |            |            |            |                |                |            |            |            |
| CCu-1d Cert                     |              |              |            |            |              |                |          |               |            |                |              |       |            |              |              |            |            |            |            |                |                |            |            |            |
| CZN-4 Meas                      |              |              |            |            |              |                |          |               |            |                |              |       |            |              |              |            |            |            |            |                |                |            |            |            |
| CZN-4 Cert<br>DMMAS 113 Meas    |              |              |            | 1500       | 1610         |                | 37       | 79            |            |                | 3.03         |       |            | 1.75         |              |            | 6.6        |            |            |                | 17.2           |            | 15.6       | 25         |
| DMMAS 113 Cert                  |              |              |            | 1468       | 1519         |                | 36       | 75            |            |                | 2.86         |       |            | 1.73         |              |            | 5.8        |            |            |                | 17.2           |            | 14.5       | 23         |
| DMMAS 113 Meas                  |              |              |            | 1400       | 1530         |                | 39       | 82            |            |                | 2.92         |       |            | 1.83         |              |            | 6.4        |            |            |                | 17.0           |            | 14.5       | 24         |
| DMMAS 113 Cert                  |              |              |            | 1468       | 1519         |                | 36       | 75            |            |                | 2.86         |       |            | 1.82         |              |            | 5.8        |            |            |                | 15.6           |            | 14.5       | 24         |
| BS122509 Orig                   |              |              |            |            |              |                |          |               |            |                |              |       |            |              |              |            |            |            |            |                |                |            |            |            |
| BS122509 Dup                    |              |              |            |            |              |                |          |               |            |                |              |       |            |              |              |            |            |            |            |                |                |            |            |            |
| BS122518 Orig                   |              |              |            |            |              |                |          |               |            |                |              |       |            |              |              |            |            |            |            |                |                |            |            |            |
| BS122518 Dup                    |              |              |            |            |              |                |          |               |            |                |              |       |            |              |              |            |            |            |            |                |                |            |            |            |
| LS121905 Orig                   |              |              |            |            |              |                |          |               |            |                |              |       |            |              |              |            |            |            |            |                |                |            |            |            |
| LS121905 Dup                    |              |              |            |            |              |                |          |               |            |                |              |       |            |              |              |            |            |            |            |                |                |            |            |            |
| PS121803 Orig                   |              |              |            |            |              |                |          |               |            |                |              |       |            |              |              |            |            |            |            |                |                |            |            |            |
| PS121803 Dup                    | 0            |              |            |            |              |                | _        | -             |            |                | oc -         |       |            |              |              | <i>c</i> · | - <b>-</b> | -          |            |                |                |            |            |            |
| PS121807 Orig                   | 30.8         | < 20         | 240        | 117        | < 50         | < 0.5          | 7        | < 2           | < 1        | 0.8            | 22.7         | < 1   | < 1        | 0.02         | < 15         | 3.1        | 0.7        | < 3        | 2.6        | < 0.2          | < 0.5          | < 1        | 1.8        | < 3        |
| PS121807 Split                  | 25.6         | < 20         | 190        | 117        | < 50         | < 0.5          | 6        | < 2           | < 1        | 0.8            | 22.0         | < 1   | < 1        | 0.02         | < 15         | 4.4        | 0.7        | < 3        | 2.8        | < 0.2          | < 0.5          | < 1        | 1.7        | 9          |
| PS121820 Orig<br>PS121820 Split | 29.5<br>29.1 | < 20<br>< 20 | 200<br>220 | 118<br>115 | < 50<br>< 50 | < 0.5<br>< 0.5 | 29<br>29 | 14<br>13      | < 1<br>< 1 | < 0.2<br>< 0.2 | 37.8<br>38.3 | < 1   | < 1<br>< 1 | 0.21<br>0.20 | < 15<br>< 15 | 0.9<br>1.0 | 0.9<br>1.0 | < 3<br>< 3 | 2.3<br>2.0 | < 0.2<br>< 0.2 | < 0.5<br>< 0.5 | < 1<br>< 1 | 1.6<br>1.5 | < 3<br>< 3 |
| Method Blank                    | 29.1         | < 20         | 220        | 115        | < 50         | < 0.5          | 29       | 13            | < 1        | < 0.2          | 30.3         | < 1   | < 1        | 0.20         | < 15         | 1.0        | 1.0        | < 3        | 2.0        | < 0.2          | < 0.5          | < 1        | 1.5        | < 3        |
| Method Blank                    |              |              |            |            |              |                |          |               |            |                |              |       |            |              |              |            |            |            |            |                |                |            |            |            |
| Method Blank                    |              |              |            |            |              |                |          |               |            |                |              |       |            |              |              |            |            |            |            |                |                |            |            |            |
| Method Blank                    |              |              |            |            |              |                |          |               |            |                |              |       |            |              |              |            |            |            |            |                |                |            |            |            |
|                                 |              |              |            |            |              |                |          |               |            |                |              |       |            |              |              |            |            |            |            |                |                |            |            |            |

Activation Laboratories Ltd. Report: A12-09493

| Quality Control |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |
|-----------------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|
| Analyte Symbol  | Mass | Ni   | Zn   | As   | Ba   | Br   | Co   | Cr   | Cs   | Eu   | Fe   | Hf   | Hg   | Na   | Rb   | Sb   | Sc   | Se   | Та   | Th   | U    | w    | La   | Ce   |
| Unit Symbol     | g    | ppm  | %    | ppm  | ppm  | %    | ppm  |
| Detection Limit |      | 20   | 50   | 0.5  | 50   | 0.5  | 1    | 2    | 1    | 0.2  | 0.01 | 1    | 1    | 0.01 | 15   | 0.1  | 0.1  | 3    | 0.5  | 0.2  | 0.5  | 1    | 0.5  | 3    |
| Analysis Method | INAA |

Method Blank

Method Blank

|                                  |            |            |                  |                |                |                  |            |               |               |               | oport. | ///2 00400 |
|----------------------------------|------------|------------|------------------|----------------|----------------|------------------|------------|---------------|---------------|---------------|--------|------------|
| Quality Control                  |            |            |                  |                |                |                  |            |               |               |               |        |            |
| Analyte Symbol                   | Nd         | Sm         | Sn               | Tb             | Yb             | Lu               | Ag         | Zn            | Pb            |               |        |            |
| Unit Symbol                      | ppm        | ppm        | %                | ppm            | ppm            | ppm              | ppm        | %             | %             |               |        |            |
| Detection Limit                  | 5          | 0.1        | 0.01             | 0.5            | 0.2            | 0.05             | 3          | 0.001         | 0.003         |               |        |            |
| Analysis Method                  | INAA       | INAA       | INAA             | INAA           | INAA           |                  | ICP-OES    |               |               |               |        |            |
|                                  |            |            |                  |                |                |                  |            |               |               |               |        |            |
| GXR-1 Meas                       | < 5        | 2.7        | < 0.01           | < 0.5          | 1.9            | 0.28             |            |               |               |               |        |            |
| GXR-1 Cert<br>GXR-1 Meas         | 18.0       | 2.70       | 0.00540          | 0.830          | 1.90           | 0.280            |            |               |               |               |        |            |
| GXR-1 Cert                       |            |            |                  |                |                |                  |            |               |               |               |        |            |
| GXR-4 Meas                       |            |            |                  |                |                |                  |            |               |               |               |        |            |
| GXR-4 Cert                       |            |            |                  |                |                |                  |            |               |               |               |        |            |
| GXR-4 Meas                       |            |            |                  |                |                |                  |            |               |               |               |        |            |
| GXR-4 Cert                       |            |            |                  |                |                |                  |            |               |               |               |        |            |
| CZN-3 Meas                       |            |            |                  |                |                |                  |            |               |               |               |        |            |
| CZN-3 Cert                       |            |            |                  |                |                |                  |            |               |               |               |        |            |
| SDC-1 Meas                       |            |            |                  |                |                |                  |            |               |               |               |        |            |
| SDC-1 Cert                       |            |            |                  |                |                |                  |            |               |               |               |        |            |
| SDC-1 Meas                       |            |            |                  |                |                |                  |            |               |               |               |        |            |
| SDC-1 Cert<br>SCO-1 Meas         |            |            |                  |                |                |                  |            |               |               |               |        |            |
| SCO-1 Cert                       |            |            |                  |                |                |                  |            |               |               |               |        |            |
| SCO-1 Meas                       |            |            |                  |                |                |                  |            |               |               |               |        |            |
| SCO-1 Cert                       |            |            |                  |                |                |                  |            |               |               |               |        |            |
| GXR-6 Meas                       |            |            |                  |                |                |                  |            |               |               |               |        |            |
| GXR-6 Cert                       |            |            |                  |                |                |                  |            |               |               |               |        |            |
| GXR-6 Meas                       |            |            |                  |                |                |                  |            |               |               |               |        |            |
| GXR-6 Cert                       |            |            |                  |                |                |                  |            |               |               |               |        |            |
| PTC-1a Meas                      |            |            |                  |                |                |                  | 54         |               | 0.050         |               |        |            |
| PTC-1a Cert                      |            |            | 1.61             |                |                |                  | 56.0<br>48 | 16.9          | 0.05          |               |        |            |
| MP-1b Meas<br>MP-1b Cert         |            |            | 1.61<br>1.610    |                |                |                  | 48<br>47.0 | 16.8<br>16.67 | 2.09<br>2.091 |               |        |            |
| DNC-1a Meas                      |            |            | 1.010            |                |                |                  | 47.0       | 10.07         | 2.031         |               |        |            |
| DNC-1a Cert                      |            |            |                  |                |                |                  |            |               |               |               |        |            |
| DNC-1a Meas                      |            |            |                  |                |                |                  |            |               |               |               |        |            |
| DNC-1a Cert                      |            |            |                  |                |                |                  |            |               |               |               |        |            |
| OREAS 13b (4-Acid)               |            |            |                  |                |                |                  | < 3        | 0.019         |               |               |        |            |
| Meas                             |            |            |                  |                |                |                  | 0.00       | 0             |               |               |        |            |
| OREAS 13b (4-Acid)<br>Cert       |            |            |                  |                |                |                  | 0.86       | 0             |               |               |        |            |
| CCu-1d Meas                      |            |            |                  |                |                |                  | 119        | 2.63          | 0.255         |               |        |            |
| CCu-1d Cert                      |            |            |                  |                |                |                  | 120.7      | 2.63          | 0.262         |               |        |            |
| CZN-4 Meas                       |            |            |                  |                |                |                  | 50         | 55.2          | 0.182         |               |        |            |
| CZN-4 Cert                       |            |            |                  |                |                |                  | 51.4       | 55.24         | 0.1861        |               |        |            |
| DMMAS 113 Meas                   |            | 2.1        |                  |                |                |                  |            |               |               |               |        |            |
| DMMAS 113 Cert                   |            | 2.2        |                  |                |                |                  |            |               |               |               |        |            |
| DMMAS 113 Meas<br>DMMAS 113 Cert |            | 2.1<br>2.2 |                  |                |                |                  |            |               |               |               |        |            |
| BS122509 Orig                    |            | 2.2        |                  |                |                |                  |            |               |               |               |        |            |
| BS122509 Dup                     |            |            |                  |                |                |                  |            |               |               |               |        |            |
| BS122518 Orig                    |            |            |                  |                |                |                  | 90         | 13.6          | 24.4          |               |        |            |
| BS122518 Dup                     |            |            |                  |                |                |                  | 92         | 14.0          | 25.1          |               |        |            |
| LS121905 Orig                    |            |            |                  |                |                |                  |            |               |               |               |        |            |
| LS121905 Dup                     |            |            |                  |                |                |                  |            |               |               |               |        |            |
| PS121803 Orig                    |            |            |                  |                |                |                  |            |               |               |               |        |            |
| PS121803 Dup                     | -          | <b>.</b> . |                  |                |                | <u> </u>         |            |               |               |               |        |            |
| PS121807 Orig                    | < 5        | 2.1        | < 0.01           | < 0.5          | < 0.2          | < 0.05           |            |               |               |               |        |            |
| PS121807 Split<br>PS121820 Orig  | < 5<br>< 5 | 2.3<br>0.9 | < 0.01<br>< 0.01 | < 0.5<br>< 0.5 | < 0.2<br>< 0.2 | < 0.05<br>< 0.05 |            |               |               |               |        |            |
| PS121820 Orig<br>PS121820 Split  | < 5<br>< 5 | 0.9        | < 0.01           | < 0.5<br>< 0.5 | < 0.2<br>< 0.2 | < 0.05           |            |               |               |               |        |            |
| Method Blank                     | < 0        | 0.9        | < 0.01           | < 0.5          | < 0.Z          | < 0.05           |            |               |               |               |        |            |
| Method Blank                     |            |            |                  |                |                |                  |            |               |               |               |        |            |
| Method Blank                     |            |            |                  |                |                |                  |            |               |               |               |        |            |
| Method Blank                     |            |            |                  |                |                |                  |            |               |               |               |        |            |
|                                  |            |            |                  |                |                |                  |            |               |               | Daga 10 of 12 |        |            |

Report: A12-09493

| Quality Control |      |      |      |      |      |      |         |         |         |
|-----------------|------|------|------|------|------|------|---------|---------|---------|
| Analyte Symbol  | Nd   | Sm   | Sn   | Tb   | Yb   | Lu   | Ag      | Zn      | Pb      |
| Unit Symbol     | ppm  | ppm  | %    | ppm  | ppm  | ppm  | ppm     | %       | %       |
| Detection Limit | 5    | 0.1  | 0.01 | 0.5  | 0.2  | 0.05 | 3       | 0.001   | 0.003   |
| Analysis Method | INAA | INAA | INAA | INAA | INAA | INAA | ICP-OES | ICP-OES | ICP-OES |
| Method Blank    |      |      |      |      |      |      |         |         |         |

Method Blank

< 3 < 0.001 < 0.003