Event Number: 5437965

BC Geological Survey Assessment Report 34053

ASSESSMENT REPORT - COPPER BELLE PROPERTY

NICOLA MINING DISTRICT, BRITISH COLUMBIA, CANADA CLAIMS 734722, 852610, 966289, 975702 and 975704

N.T.S. 921/02

50° 05'30" to 50°07'30" North 120° 49' 00" to 120° 52' 00" West

MAY 15, 2013

prepared for: DOT Resources Ltd.

prepared by:

ASSESSMENT REPORT

NICOLA MINING DISTRICT, BRITISH COLUMBIA, CANADA

CLAIMS 734722, 852610, 966289, 975702 AND 975704

Effective date: May 15, 2013

Prepared for: DOT Resources Ltd. Suite 3, 4015 – 1st Street SE Calgary, AB, T2G 4X7 Tel: 403.264.2647 Fax: 403.228.2865 www.dotresourcesltd.com

AURORA GEOSCIENCES LTD. Main Office: 3506 McDonald Drive, Yellowknife, NT, X1A 2H1 Tel: 867.920.2729 Fax: 867.920.2739 www. aurorageosciences.com

> Author Robin Wyllie, B.Sc.(Hon.), P.Geol.

Table of Contents

1	E)	XECUTIVE SUMMARY1
2	IN	ITRODUCTION1
3	PI	ROPERTY DESCRIPTION AND LOCATION2
	3.1	LOCATION2
	3.2	CLAIM STATUS
4	A	CCESSIBILITY, CLIMATE, LOCAL RESOURCES, INFRASTRUCTURE AND TOPOGRAPHY5
	4.1	ACCESS, INFRASTRUCTURE AND LOCAL RESOURCES
	4.2	PHYSIOGRAPHY AND CLIMATE5
	4.3	TOPOGRAPHY5
5	E)	XPLORATION HISTORY
6	G	EOLOGICAL SETTING AND MINERALISATION7
	6.1	REGIONAL GEOLOGY7
	6.2	PROPERTY GEOLOGY8
	6.3	ALTERATION AND MINERALISATION11
7	D	EPOSIT TYPES
	7.1	COPPER SKARN DEPOSIT GENETIC MODEL12
	7.2	CRAIGMONT MINE
8	20	013 EXPLORATION PROGRAM13
	8.1	INTRODUCTION
	8.2	ELF SURVEY EQUIPMENT
	8.3	SURVEY SPECIFICATONS
	8.4	DATA PROCESSING
	8.5	DISCUSSION OF RESULTS
9	C	ONCLUSIONS
1(D RI	ECOMMENDATIONS
1:	1 RI	EFERENCES

List of Figures

FIGURE 3-1. COPPER BELLE PROJECT LOCATION MAP	3
FIGURE 3-2. CLAIMS OF THE COPPER BELLE PROPERTY	4

List of Tables

No table of figures entries found. List of Appendices

Appendix I	STATEMENT OF QUALIFICATIONS
APPENDIX II	Statement of Expenditures
Appendix III	

1 EXECUTIVE SUMMARY

The Nicola Group, adjacent to the Late Triassic Guichon Creek Batholith, has been explored for gold and copper deposits for over 90 years. The belt is composed of Triassic volcanic rocks of the Nicola Group, consisting of predominantly andesites with lesser amounts of basalt, agglomerate, breccias and tuffs. Andesites tend to contain phenocrysts of plagioclase and are locally amygdaloidal. The Nicola Group has been metamorphosed to greenschist facies.

Production work was performed on the Copper Belle showing in 1908 by Robert Wiltshire, who shipped high-grade copper ore to the smelter in Trail, BC. Under the new ownership of Robert Henderson and Partners in 1913, 47 tonnes of ore grading 7.5% copper were extracted from the property. At the same time the partnership conducted work on the Anaconda showing. A shallow shaft was sunk with two adits. Only micaceous iron mineralisation was discovered as a result of this work.

Exploration since has typically consisted of Induced Polarization (IP) and Total Field Magnetic (TFM) geophysical surveys, geochemical rock & soil surveys, prospecting and geological investigation. Exploration has typically targeted gold and copper skarn deposits. The discovery of the Highland Valley Porphyry District in the 1950's, in the centre of the Guichon Creek Batholith, stimulated exploration throughout the entire region using the new model of low-grade, high tonnage copper porphyry deposits.

Exploration in 1998 and 1999 by Conlon Copper Corp. identified gold in soil anomalies which appear to be associated with easterly trending quartz-carbonate veins.

In order to advance the exploration of the Copper Belle property, geological mapping, prospecting and geochemical sampling are recommended. These surveys would be used to confirm existing showings and discover new ones. It is critical to obtain more extensive soil sampling data to confirm how extensive these showings are. An exploration program budget of \$65,000 has been proposed for late summer or fall of 2013.

Providing some continuity to mineralization on the Copper Belle will be critical in moving this property forward.

2 INTRODUCTION

This assessment report is prepared for DOT Resources Ltd. ("DOT"). The preparation of this report is in due diligence for the filing of assessment work on the claims in the company's Copper Belle Property ("the Property"). This report documents the most recent work program completed during late February and early March, 2013. The Copper Belle Property is centred about 2 km west of Merritt, BC. The Property lies within the Nicola Mining Division of British Columbia and comprises 5 contiguous mineral claims covering 1,098.3 ha. The Property is considered an exploration project without mineral reserves.

DOT Resources initiated work in the Merritt, BC area following up on exploration results from Lawrence Mining Corp., Zappa Resources Ltd. and Alhambra Resources Ltd. Alhambra Resources Ltd. created DOT as a spinoff in order to conduct exploration for porphyry copper deposits in the Merritt area. Recognizing the potential for copper mineralisation in the district, DOT acquired four other claim blocks

in the region in November, 2012 of which Copper Belle is one. The Nicola Mining District is host to the Highland Valley copper porphyry deposits, which are located 24 km to the north of the Copper Belle claim group.

Information gathered for this report was obtained from public data (Government of British Columbia, Minfile reports), refereed scientific journals, symposia field trips, in-house reports filed with DOT, and various assessment reports to cover geophysical surveys and diamond drilling programs.

3 PROPERTY DESCRIPTION AND LOCATION

3.1 LOCATION

The Property is located in south-central British Columbia on NTS map sheet 092I/02 (Figure 3-1). The Property is geographically centred at approximately 50°07′05″N, 120°49′57″W. Using UTM coordinates, Zone 10N and a datum of NAD83, this position can be expressed as 654951E, 5554006N. The claim group lies within the Nicola Mining Division and encompasses two former producers. These are the Copper Belle and Anaconda showings.

3.2 CLAIM STATUS

The Property consists of 5 contiguous mineral claims with a combined area of 1,098.3 ha (Figure 3-2). These claims have been staked and registered to the standards set forth in British Columbia by the Gold Commissioner's Office and remain in good standing as of this writing. The status and details of these claims are presented in Table 3.1. DOT currently holds a 100% beneficial interest in the property through an option agreement for shares, cash and NSR with tenure holder Chris Delorme.

Permits required from the British Columbia Ministry of Energy, Mines and Petroleum Resources in order to initiate any next stages of exploration include (i) Notice of Work Mineral and Coal Application, and (ii) Application for a Licence to Cut Timber.

Tenure	Tenure	Claim	Owner	Мар	Good To	Status	Area
Number	Туре	Name	Chris Delorme	Number	Date		(ha)
			141575				
734722	Mineral	COPPER BELLE	(100%)	0921	01-08-15	GOOD	20.72
			141575				
852610	Mineral	ANACONDA	(100%)	0921	01-08-15	GOOD	82.88
			141575				
966289	Mineral	ANACONDA 2	(100%)	0921	19-03-14		248.66
		COPPER BELLE	141575				
975702	Mineral	SOUTH	(100%)	0921	31-03-14	GOOD	497.35
		COPPER BELLE	141575				
975704	Mineral	WEST	(100%)	0921	31-03-14	GOOD	248.73
TOTAL							1,098.34

Figure 3-1. Copper Belle Project Location Map

DOT Resources Copper Belle Property - Mineral Tenure

Figure 3-2. Claims of the Copper Belle Property.

4 ACCESSIBILITY, CLIMATE, LOCAL RESOURCES, INFRASTRUCTURE and TOPOGRAPHY

4.1 ACCESS, INFRASTRUCTURE and LOCAL RESOURCES

The Property is located 80 km south-southwest of Kamloops, BC and 2.7 km west of Merritt, BC. The cities act as supply centres for goods and services and provide many modern amenities. Major airline services are available through the Kamloops airport. There is all-weather road access from Merritt via Lindley Creek Road.

4.2 PHYSIOGRAPHY and CLIMATE

The Property is located east of the Cascade Mountains and south of the Highland Valley in the Thompson Plateau physiographic region of British Columbia (Mathews, 1986). Vegetation tends to concentrate along drainages and is predominantly coniferous Lodgepole pine. Areas bound by all-weather roads and the river are used as grazing land for cattle.

The Property is traversed by the Nicola River at its northeast corner, where the river course passes in a southeasterly direction. A number of smaller creeks, both seasonal and perennial, also traverse the Property. Much of the area is covered by glacial drift. The southern portion of the Property lies on steep terrain with meadows scattered throughout the natural vegetation and occasional clear cuts.

The climate is semi-arid, which is typical of the southern interior of BC. Average annual precipitation is 320 mm, consisting of rain and snow. Summer temperatures average 30°C, with winter temperatures on average about -40°C. Extremes of temperatures are possible, with highs approaching +41°C in summer months and -42°C during the winter. The Property is snow covered from November to May.

4.3 TOPOGRAPHY

The Property is situated on the slopes of Mount McInnes which has a peak elevation of 1,160 metres. The Property extends to the Nicola River at an elevation of 550 metres near its northeastern limit. Relief in the area is moderate.

5 EXPLORATION HISTORY

The area has been the focus of metallic mineral exploration since the early 1900's. Activity was concentrated on two mineral occurrences, the Copper Belle workings, a small-scale past producer from the turn of the 20th century, and the Anaconda showing. Ore extracted from Copper Belle by Robert Wiltshire was shipped to the Trail, BC smelter in 1908. New owner Robert Henderson and Partners shipped 47 tonnes of ore grading 7.5% copper in 1913 (Anon., 1915).

At the same time they were extracting ore form Copper Belle, work was undertaken on the Anaconda showing with a shallow shaft and two adits, the longest of which was 200 ft. (61 m). Work was abandoned after finding only micaceous iron mineralisation.

A geophysical survey was conducted in 1961 with a magnetometer. Two anomalous areas were indicated from the original report, located at the property's northern and southern boundaries, respectively. The northern anomaly appears to coincide with the old Copper Belle workings (Lorimer, 1961).

In 1962 Canford Explorations Ltd. undertook geophysical and geochemical surveying in the area. The geophysical technique used was spontaneous polarisation but results were indeterminate. The soil geochemical survey used the rubeanic acid method (chelation) to detect copper, but only identified a weak, easterly trend in intensity (Sirola, 1962).

Merritt Copper Syndicate conducted a geophysical survey in the area in 1965. Although the report indicates there were four anomalies discovered, it has proven difficult to determine the locations of the anomalies or the actual bounds of the project area (Hings, 1965).

Hambro Resources Ltd. conducted geochemical sampling and geological mapping southeast of the Property in 1980. The program collected 148 samples, mostly soils. Copper enrichment was noted from the soil assays with one sample measuring 60 ppm, although 80% of the samples fell in the 10 to 29 ppm copper range (Plicka, 1980).

Conlon Copper Corporation conducted geochemical sampling and prospecting on a grid that overlaps the present Property in 1998. The exploration target was gold for which 301 soil samples were collected. Small gold anomalies were noted in soils from the Anaconda workings with the highest assay being 15 ppb. Most of the samples returned assays of under 5 ppb. By contrast, copper anomalies in soils returned anomalous values of up to 353 ppm, with a selection of others over 100 ppm. These samples outlined an east-southeast trending anomaly (Wells, 1998).

The Conlon program was also able to correlate two soil copper anomalies with known bedrock occurrences, indicating that there may be more undiscovered potential on the property. Grab samples from mineralised bedrock returned anomalous gold assays of up to 1 g/tonne, differing significantly from the soil assay data. This lead to the conclusion that a combination of poor soil development and the technique of sampling the soil C horizon were the cause of these samples not being representative of mineralisation in the area.

Conlon returned to the Copper Belle area in 1999 with geological mapping at 1:1500 scale along with significant bedrock sampling and a minor soil sampling component. The work was conducted just to the south of the current Property. It was established that mineralisation was related to easterly-trending quartz-carbonate veins (Wells, 1999).

More recently the current holder of mineral title for the Property conducted reconnaissance prospecting in order to locate the old Copper Belle and Anaconda workings, then gather samples from them and the

surrounding areas to test for copper mineralisation. The goal was to reproduce results from previous work programs in order to verify the presence of copper mineralisation on the Property (Delorme, *pers. com.*, 2013).

6 GEOLOGICAL SETTING and MINERALISATION

The Property is located in the Intermontane Belt of the Cordillera that extends from Washington state, through British Columbia and into the Yukon Territory and Alaska. The Intermontane Belt is an allochthonous geological belt composed of volcanic, sedimentary and granitic terranes. The Intermontane Belt is flanked to the east by the Omineca Belt, and to the west by the Crystalline Belt.

The terranes of the Intermontane Belt include:

1. Devonian to Early Jurassic sedimentary and volcanic rocks formed in island arcs and chert-rich accretionary complexes.

2. Middle Jurassic to Early Cenozoic volcanic rocks formed in predominantly continental arcs.

3. Marine and non-marine clastic sediments eroded from the uplift of the Omineca Belt.

4. Devonian to Cenozoic granitoids deformed by subduction to the west in the Mesozoic and extensiontranstension in the Early Cenozoic (Monger and Price, 2002). The geological terranes of the Intermontane Belt are generally metamorphosed to sub-greenschist facies.

6.1 **REGIONAL GEOLOGY**

The Quesnel Terrane is a volcanic island arc that is found along most of the length of the Canadian Cordillera. It lies in the western extents of three terranes that exhibit distinct facies and lithological assemblages. The terrane is dominated by Middle and Upper Triassic volcanic and sedimentary rocks of the Takla Group, in northern and central BC, and the Cache Creek and Nicola groups to the south.

Locally, the Quesnel Terrane is overlain by Early Jurassic to Middle Tertiary volcanic and sedimentary rocks intruded by several phases of Late Triassic through Early Jurassic granitoids such as the Guichon Creek Batholith (Schiarizza, 2003). These Late Triassic – Early Jurassic plutonic rocks are an important economic component of the Quesnel Terrane. These include calc-alkaline and alkaline intrusive suites, along with Alaskan-type ultramafic-mafic complexes.

Nicola Group rocks are described as an east-facing succession of calc-alkaline volcanics interbedded with limestone and volcaniclastic sediments. The volcanics are predominantly plagioclase-phyric andesite flows and breccias, with lenticular interbeds of limestone and volcaniclastic rocks. Locally, dacite and rhyolite flows, welded tuffs and breccias and intercalated intermediate to felsic heterolithic volcaniclastic rocks are interpreted as representative of centres of felsic volcanism (Moore & Pettipas, 1990).

The Nicola Group occupies the length of the Intermontane Belt and extends into the Yukon and Alaska where its stratigraphic equivalents are known as the Takla and Stuhini volcanic assemblages (Preto and Northcote, 1991). The central portion in the Merritt area extends from the US border to Kamloops Lake with approximate dimensions of 180 km x 40 km. To the north the belt is unconformably overlain by Tertiary volcanic rocks, and the eastern portions of the belt are intruded by various phases of granitoids associated with the Okanagan Batholith (Preto and Northcote, 1991).

Between Merritt and Princeton, the Nicola Group is divided in the three sub-parallel belts known as the Eastern (uTrNE), Central (uTrNC) and Western (uTrNW) belts. Lithology codes are from the geological compilation by Massey *et al.*, 2005. These subdivisions are separated by major faults and exhibit dissimilar lithological assemblages (Figure 6-1).

The Eastern Belt lies north of Missezula Lake and contains few intrusive rocks. The local section is predominantly volcaniclastic rocks ranging in composition from siltstone, to sandstone and agglomerate/breccia. This assemblage exhibits a general westerly dip. Sedimentary lithologies grade southward into crystal & lapilli tuffs, lahar deposits and clasts of syenite and monzonite. There are local analcite-bearing trachybasalt and trachyandesite flows.

The Central Belt rocks are alkaline to calc-alkaline in composition and consist of plagioclase-phyric andesite and basalt flows with abundant massive pyroxene. There are also deposits of volcanic breccia, agglomerate and lahars. There are ash-flow tuff (ignimbrite) deposits and sedimentary units, although they are not widespread. This subdivision of the belt is intruded by gabbro, diorite, syenite and monzonite plutonic rocks.

The Western Belt rocks dip to the east and are predominantly calc-alkaline dacites and rhyolites with minor basalt. The lower section of the succession contains flows and pyroclastic units of plagioclase-phyric andesite and dacite that are grey-green and grey in colour. The volcanic breccia and lapilli tuff units are red. The upper portions of the sequence consists of fine-grained flows, calcareous volcaniclastic rocks and local fossiliferous limestone.

Quaternary sediments are confined to the larger drainage valleys where they form thick deposits of stratified and non-stratified drift.

6.2 **PROPERTY GEOLOGY**

The Property lies within the Western Belt rocks of the Nicola Group. Locally there are 3 main units (Wells, 1999). Unit 1 consists of massive flows of basalt. Unit 2 is comprised of plagioclase-phyric flows with local lenses and interbeds of monolithic lapilli tuff. Unit 3 consists of assemblages of chlorite-epidote-magnetite which have been contact metamorphosed to hornfels (Figure 6-2).

Features in the tuff units indicate that Nicola Group rocks are striking north with intermediate to steep westerly dips (Wells, *ibid*.). The volcanic rocks are intruded by quartz diorite to monzonite stocks along with feldspar porphyritic dykes. Intrusive contacts typically display brecciated volcanics that exhibit strong magnetism and silicification with local veins and lenses containing potassium feldspar. Copper

Figure 6-1 – Regional geology of the DOT properties.

DOT Resources

Figure 6-2 – Copper Belle property geology.

mineralisation associated with these intrusive rocks is assumed to be fracture controlled and is associated with carbonate and specular hematite (Wells, *ibid*.).

6.3 ALTERATION and MINERALISATION

All pre-Tertiary extrusive rocks and sediments have undergone chloritic alteration. While the chloritic alteration is less evident in felsic intrusive rocks, likely due to their bulk composition, saussuritised plagioclase is common. This is attributed to regional greenschist facies metamorphism.

Two styles of alteration correlative with metal enrichment dominate the Property rocks. Felsic intrusives display proximal pyrite disseminations and fracture coatings. Outboard of this zone, pervasive bleaching and varying degrees of clay alteration accompany pyrite \pm weak copper, gold and silver mineralisation. Distal to the felsic intrusive alteration zones, structurally controlled quartz \pm carbonate zones occur, characterised by ankerite/calcite flooding and quartz-carbonate stockworks with disseminated pyrite and chalcopyrite. The veins are up to 50 cm wide and 5 m in length and lie within larger zones of ankeritic alteration.

With decreasing alteration intensity, vein quartz and pervasive silicification is replaced by structurally confined calcite and chalcopyrite with associated silver and sometimes gold mineralisation (Wells, 1999). Distal to the to the last two alteration zones are 'sweats' of structurally confined, and weaker, carbonate chalcopyrite-malachite mineralisation.

The second dominant alteration style occurs as late-stage, structurally controlled, specular hematite breccia, stockwork and fracture coatings that often accompanies but always overprints the quartz-carbonate-chalcopyrite mineralisation mentioned above. The dominant mineralised trends in the Property area are nearly flat veins. Hematite mineralisation is widespread and most common in mafic volcanic rocks. It occupies late planar fractures which crosscut earlier mineralised phases (Wells, 1999).

Extensive epidote stockwork veining of nearly every rock type represented on the Property does not appear to be related to economic mineralisation. These stockworks are attributed to either the waning phases of hydrothermal activity accompanying the intrusions, or to regional metamorphic events that post-date the intrusions (Wells, 1999).

The mineralisation at the Copper Belle showing is hosted in massive, porphyritic flows of andesite and basalt. Mineralisation consists of quartz and calcite with specular hematite, chalcopyrite and copper carbonates. The Copper Bell occurrence proper is a chalcopyrite-bearing hematite breccia vein in a shallowly west-dipping structure. Where the mineralisation is exposed in outcrop, the alteration zones are reported as discontinuous lenses ranging in length from 1 to 9 metres and widths of 7 to 60 cm (Wells, 1999).

The mineralisation at the Anaconda showing is hosted in a highly silicified and chloritized andesite, and manifests as quartz-calcite veins with minor chalcopyrite. The Nicola Group rocks in the showing area comprise andesitic, locally porphyritic flows with minor basaltic flows, volcaniclastics, sediment interbeds and granitoid intrusions. Specular hematite samples from the area assay up to over 1 g/t gold. The auriferous specular hematite veins typically host intensively bleached and hydro-brecciated host rock fragments containing disseminated pyrite, and often chalcopyrite, mineralisation.

7 DEPOSIT TYPES

Mineralisation hosted in the Copper Belle and Anaconda showings may be ascribed to a Copper Skarn genetic model. The hydrothermal fluids responsible for the mineral assemblages observed most likely originated from plutonic activity that was contemporaneous with the deposition of the Nicola Group.

7.1 COPPER SKARN DEPOSIT GENETIC MODEL

The area hosts small, often structurally controlled quartz-carbonate with chalcopyrite \pm gold \pm silver zones. They are often overprinted by later hematite breccia and stockwork veining. These are interpreted to occupy a roof pendant zone of bimodal mafic and felsic volcanics associated with early granodiorite intrusives (Wells, 1999).

These alteration zones are spatially correlative with felsic intrusives and are part of a base metal halo produced by intrusion-related hydrothermal activity and reaction with limestone host rocks. Late hematite mineralisation may be attributed to meteoric fluids circulating during the waning stages of hydrothermal activity, with possibly some later reactivation by regional metamorphism.

7.2 CRAIGMONT MINE

The Craigmont Mine is a former copper producer located approximately 5 km north of the Property and hosted in the Western Belt of the Nicola Group volcanics. The deposit was discovered by drilling a magnetic anomaly in 1957. Between 1962 and 1982, the mine produced 33,340,000 tonnes of ore with an average copper grade of 1.28%. Subsequent to the termination of copper production, the mine was a major source of magnetite for the metallurgical coal industry. When magnetite production from mining activity ceased, reprocessing of the tailings from the original mining operations was undertaken to recover magnetite.

The Craigmont Mine lies on the eastern margin of the Guichon Creek Batholith, which hosts the Highland Valley copper porphyry deposits. The deposit at Craigmont is hosted within the Nicola Group and follows a limey horizon that lies between greywackes to the north, and rhyolites to the south. Bedding dips steeply to the south and the mineralised horizon parallels the intrusive contact with the Guichon Creek Batholith. Chalcopyrite is the ubiquitous copper ore mineral present. The Craigmont deposit's origins are ascribed to a Copper Skarn model of ore paragenesis.

8 2013 EXPLORATION PROGRAM

8.1 INTRODUCTION

Between the dates of February 14th and March 7th of 2013, Aurora Geosciences Ltd. of Yellowknife was contracted to complete ELF surveying on the Property in order to file for assessment and maintain the existing mineral claims in good standing.

ELF or Extreme Low-Frequency is a new electromagnetic geophysical survey technique closely related to Geotech's airborne ZTEM system. The ELF unit itself is man-portable and does not require cut lines in order to conduct surveying. Daily production for the two-person crew is typically on the order of 2 to 4 line-km, depending upon terrain, station spacing and the local geomagnetic conditions. The ELF measures vertical and horizontal components of the natural, time-varying geomagnetic field originating primarily from global lightning activity.

The ELF system calculates the tilt angle or 'tipper' of the magnetic fields between frequencies of 11 Hz to 1440 Hz, which are sensitive to 2D and 3D conductivity contrasts. Both the attitude and the ellipticity of the local magnetic field are measured. The system is designed to image resistivity from depths between 2 km and 10 km, dependent upon the host conductivity structure, and offers a cost-effective alternative to other deep EM imaging techniques such as MT (Magneto-Tellurics), CSAMT (Controlled Source Audio Magneto-Tellurics) or large-loop TEM (Transient Electro-Magnetics).

The ELF system consists of sensors and a laptop PC processor connected by a 10 m cable (necessary to separate sensors from the survey computer in order to reduce its EM noise). The sensor block contains three orthogonal electromagnetic coils, preamplifiers, a digital compass and GPS antenna. The weight of the sensor unit is 11 kg. The processor contains a PC-104 computer running LINUX, a 24-bit ADC, the GPS receiver and other peripheral devices. The power source is an external 14V, rechargeable battery.

8.2 ELF SURVEY EQUIPMENT

ELF System:	1 – Sensor Unit
	1 – Computer
Data Processing:	1 – Laptop w/ Geosoft's Oasis Montaj software
Common Equipment:	1 – Field office equipment 1 - tool kit and repair box 1 - SAT phone and 2 - VHF radios, 1 – 4 man survival bag

8.3 SURVEY SPECIFICATONS

Grids:	Varied										
Line Spacing:	Varied										
tation Spacing: 100 m (some 50 m)											
Frequencies:	11, 22, 45, 90, 180, 360, 720 and 1440 Hz										
Registration:	Data were registered to WGS84 geodetic co-ordinates using and onboard GPS receiver.										

8.4 DATA PROCESSING

Data for lines 300 and 500 on the northern portion of the Property over the historic Copper Belle mine shaft were not used due to cultural interference from a nearby pipeline and power transmission lines. Similarly, the Anaconda showing is also located in proximity to a road and power transmission lines.

Repeat readings were typically taken every 4 to 5 stations and after the irregular readings were eliminated, repeat readings were averaged and the range between minimum and maximum values at repeat stations were recorded in a separate database. The level of repeatability of the data points can be seen in the repeats database, where the range of values is shown for each repeated station.

The ELF data were gridded with 12.5 m cells, smoothed utilizing a 5x5 Gaussian filter and the divergence was calculated. In-phase divergence plots selected frequencies are displayed as a colour grid on a figure with the tipper vectors. The divergence in the real data is a reasonable preliminary proxy for conductivity.

The survey at Copper Belle experienced significant signal noise from cultural (man-made) features such as power lines.

8.5 DISCUSSION OF RESULTS

Lines 300 and 500 were surveyed on the northern portion of the Property in order to coincide with the location of the historic Copper Belle showing. However ELF data obtained were not useable due to the interference from a pipeline running along the western side of the Property, and power transmission lines running parallel to the road. Further attempts to survey the area of the Copper Belle shaft and Anaconda workings, or follow-up high-grade copper assays from 2012, were not undertaken due to the cultural noise and the access road being far too soft at this time of year.

Two lines, each 1.2 km in length, were surveyed over a previously identified magnetic anomaly (location approximate). No significant conductors were identified with the ELF instrumentation along these lines, although there is a high-frequency divergence of the tipper on the western end of the northern line, indicative of a shallow, weak conductor (Figure 8-1). In general there is a higher tipper magnitude on the eastern portion of the line which is coincident with the approximate position of the magnetic anomaly. This suggests the presence of a lithological boundary.

Figure 8-1 – 720 Hz Real Tipper and 90 Hz Tipper Magnitude.

Most of the ELF tipper vectors are oriented north-south, therefore 2D inversions of the data are not recommended for these lines. Further ELF reconnaissance surveying could be conducted in the southern portion of the Property, away from the interference of cultural features such as the pipeline and power transmission lines.

9 CONCLUSIONS

The historical results of geological, geochemical and geophysical investigations on the Copper Belle Property indicate areas of good copper mineralisation being present. This is in addition to the bulk sample retrieved from the Copper Belle showing.

The results from the latest work program were very limited and confined to areas that would allow for easy access via road. In this sense, the 2013 work program supports the following conclusions :

1. The Copper Belle Property is host to geochemical and geophysical anomalies potentially related o a large-scale copper mineralisation event that produced small local occurrences of Cu-Fe skarn mineralization in host Nicola Group volcanic rocks.

2. The coincidence of high tipper divergence and a magnetic anomaly on the Property suggests the presence of a major lithological boundary.

3. Further geophysical, geochemical and geological surveying is needed to identify the source of documented zones of mineralisation on the Property and advance them to the drill testing stage.

10 RECOMMENDATIONS

The following program and budget is recommended:

Phase 1

Geology and Geochemical Sampling Crew (6 man crew)

Geological Mapping and prospecting – 6 days @ \$1500/day (2 geos)	Ŷ	7,800.00
Soil sampling – 6 days for a 4 man crew @ \$1800/day	\$	10,800.00
Geochemical Analyses- \$35 per sample X 500 samples	\$	17,500.00
Crew mobe and demobe- 2 days	\$	4,000.00
Expediting 20 hrs @ \$80 per hour (including truck)	\$	1,600.00
Processing data – 5 days @ \$750 per day	\$	3,750.00
Room and Board – 7 days for 6 guys @ \$130 per man day	\$	5,460.00
Safety gear @ \$45 per day X 14 days	\$	630.00
Truck – 8 days X \$150 per day	\$	1,200.00
Assessment Report	\$	3,500.00
Sub-total Budget for Geology and Geochem Program	\$	56,240.00
Plus 5% GST	\$	2,812.00
Plus 10% Contingency	\$	5,624.00
Total Geological and Geochemical Program Budget	\$	64,676.00

A follow-up geophysical program comprising IP should be considered if positive results can be returned from this first phase program.

Respectfully submitted,

May 15, 2013

Robin Wyllie, B.Sc.(Hon.), P.Geol.

11 REFERENCES

Anonymous, 1915. B.C. Reports of the Minister of Mines for the years: 1915. 230 pp.

Hings, D.L., 1965. Geomag Geophysical Report No. 136 Bell, Bill and Keith Claims, for Merritt Copper Syndicate. Minfile 136, 9 pp.

Kelly, S.F., 1962. Report on Geophysical and Geochemical Surveys on the Mint Group of Claims. Canford Exploration Ltd., Minfile 402, 27 pp.

Le Bas, M.J. and Streckeisen, A.L., 1991. The IUGS Systematics of Igneous Rocks. Journal of the Geological Society of London, vol. 148, p. 825-833.

Lorimer, M.K., 1961. Report on a Magnetometer Survey of the Mint 1-6 Mineral Claims, Nicola Mining District. Minfile 357, 15 pp.

Mathews, W.H., 1986. Physiographic Map of the Canadian Cordillera. Geological Survey of Canada, Ottawa, ON. Map 1701A.

McMillan, W.J., Newman, K. and Tsang, L., 1985. Geology and Ore Deposits of the Highland Valley Camp. Geological Association of Canada, Mineral Deposits Division, Field Guide and Reference Manual Series, 121 pp.

Monger, J. and Price, R., 2002. The Canadian Cordillera: Geology and Tectonic Evolution. CSEG Recorder, p. 17-36.

Moore, J.M. and Pettipas, A.R., 1990. Nicola Lake Region Geology and Mineral Deposits. British Columbia Geological Survey Branch, Ministry of Energy, Mines & Petroleum Resources, Victoria, BC. Open File 1990-29, p. 3 – 11 and 1:100,000 scale map.

Northcote, K.E., 1969. Geology and Geochronology of the Guichon Creek Batholith, B.C. Dept. of Mines & Petroleum, Bulletin 56.

Plicka, P., 1980. Geological Report of the Jane Property. Hambro Resources Ltd. Minfile 9089, 16 pp.

Preto, V.A. and Northcote, K.E., 1991. Geology and regional setting of major mineral deposits in southern British Columbia (Field Trip 2). Geological Survey of Canada, Open File 2167, pp. 93-98.

Schiarizza, P., 2003. Geology and Mineral Occurrences of the Quesnel Terrane, Kliyul Creek to Johanson Lake (94D/8,9). In Geological Fieldwork 2003, BC Ministry of Energy and Mines, Paper 2004-1, p. 83-100.

Seedorff, E., Dilles, J.H., Proffett, J.M. Jr. and Einaudi, M.T., 2005. Porphyry Deposits: Characteristics and origin of hypogene features. Economic Geology, 100th Anniversary Volume, p. 251 - 298.

Sirola, W.M., 1962. Geophysical & Geochemical Investigation of 24 Claims of the Fault Group of Mineral Claims. Kerr-Addison Gold Mines Ltd. Minfile 415, 13 pp.

Wells, R.C., 1998. Geochemical Assessment Report for the Jesse Creek Property, Jean – Anaconda Grid. Conlon Copper Corporation. Minfile 25403, 51 pp.

Wells, R.C., 1999. Report on Geological Mapping Program for Jesse Creek Property, Jean – Anaconda Grid. Conlon Copper Corporation. Minfile 25880, 50 pp.

STATEMENT OF QUALIFICATIONS

I, Robin James Wyllie, B.Sc. (Hon.), P.Geol., with business and residence addresses in Yellowknife, in the Northwest Territories, Canada, HEREBY CERTIFY:

- 1. That my business address is 3506 McDonald Drive, Yellowknife, NT, X1A 2H1
- 2. This certificate applies to the report titled "Assessment Report Copper Belle Property" and dated May 15th, 2013.
- 3. That I am a graduate of the Centre of Geographic Sciences (formerly Nova Scotia Land Survey Institute) with a Diploma in Remote Sensing and Airphoto Interpretation obtained in 1983.
- 4. That I am a graduate of the University of Waterloo with an Honours B.Sc. in Co-op Applied Earth Sciences obtained in 1989.
- 5. At the time of writing this report I have 24 years of exploration experience in gold, diamond and base metals (geological mapping, geochemical sampling & interpretation, geomatics and report writing), 16 years as a professional.
- 6. That I supervised the preparation of all sections of this report.
- 7. That I am a registered Professional Geologist in the Northwest Territories & Nunavut (#1638) and Alberta (#60998) and employed by Aurora Geosciences Ltd. of Yellowknife.
- 8. That I am not aware of any material fact or material change with respect to technical aspects of the report which is not reflected in the report, and that all required scientific and technical information has been disclosed in order to make the report not misleading.

Dated, May 15, 2013 at Yellowknife, NT.

Robin J. Wyllie, P.Geol.

APPENDIX I

STATEMENT OF EXPENDITURES

Total Exploration Expenditures	\$	5,218.70
Additional comm. & transportation - \$100/day	<u>\$</u>	200.00
Field Report	\$	158.70
Vehicle Rental & Gas - \$150/day x 2 days	\$	300.00
Misc. Field Gear Rental – \$150/day X 2 days	\$	300.00
Room and Board - \$140/man day X 2 men X 2 days	\$	560.00
ELF Rental - \$750/day X 2 days	\$	1,500.00
1 Labourer - \$400 per day X 2 days	\$	800.00
Crew Chief (P.Geoph.) – \$700/day X 2 days	\$	1,400.00

APPENDIX II

PERSONNEL ON PROPERTY

Gabe Fortin	34A Laberge Road, Whitehorse, YT	Feb 14-Mar 7	2 days
Bill Switzer	34A Laberge Road, Whitehorse, YT	Feb 14-Mar 7	<u>2 days</u>

Total Man Days

4 days

APPENDIX III

2013 GEOPHYSICAL SURVEY GRIDS

Line	Point	LAT	LON	Alt	Х	Y	GPSt	Pt	RI	Az	Dur	IndNs	rE_0011	rN_0011	iE_0011	iN_0011	SNI_0011	rE_0022	rN_0022	iE_0022
500	200	50.12247	-120.862	689.9	652855.4	5554437	181504	-4.3	1.1	170.1	102	40.4	0.299	-0.953	-0.024	0.022	677	0.28	-0.957	-0.008
500	200	50.12242	-120.862	677.5	652854.7	5554431	181835	-2.5	1.6	161.7	56	34.7	-0.581	0.801	0.016	-0.015	85.6	-0.548	0.829	0.043
500	100	50.12305	-120.862	687.8	652802.8	5554500	182827	-0.4	-6.1	132.6	109	12.3	-0.903	0.325	0.374	0.077	9.9	-0.808	0.577	0.156
500	200	50.12298	-120.861	678.3	652899	5554495	183323	-1.2	-7.5	167	49	185.9	0.309	0.951	-0.032	-0.095	502.1	0.318	0.946	-0.034
500	300	50.12292	-120.86	694.1	652986.9	5554491	184227	13.9	-14.7	0.9	124	11.3	0.932	0.024	-0.132	-0.046	31.6	0.935	0.011	-0.128
500	400	50.12291	-120.858	718.5	653097	5554493	184854	16.1	-3.6	342.2	121	9.9	0.901	-0.014	-0.192	-0.094	26.2	0.935	0.001	-0.192
500	400	50.12295	-120.858	720.4	653097	5554497	185130	-4.5	21	226.1	120	10.1	0.938	0.026	-0.16	-0.119	21	0.942	-0.046	-0.176
500	500	50.12289	-120.857	731.9	653196.5	5554493	190026	4.8	-5.8	353.2	121	15.6	0.901	0.193	0.099	0.184	134.8	0.933	0.049	-0.205
500	600	50.12298	-120.855	740.8	653297.1	5554507	190615	-11	-3.6	16.3	128	18.7	0.842	0.154	-0.274	-0.161	24.4	0.821	0.257	-0.294
500	700	50.12289	-120.854	790.3	653399.2	5554499	191956	5.6	16.9	246.4	168	11.6	0.937	-0.161	-0.206	-0.205	13.5	0.942	-0.134	-0.217
500	800	50.12284	-120.853	810.7	653499.9	5554497	193011	24.6	-13.2	340.8	119	14.8	0.699	-0.038	-0.279	-0.153	30.3	0.862	0.088	-0.279
500	800	50.12284	-120.853	810.1	653500.3	5554497	193339	-11.9	12.5	209.4	141	11.8	0.81	-0.25	-0.283	-0.084	25.5	0.9	-0.034	-0.299
300	900	50.12111	-120.851	855.5	653595.5	5554307	195542	-6.2	-18.8	156.9	131	10	0.895	-0.091	-0.265	-0.221	16.6	0.938	-0.16	-0.306
300	900	50.12113	-120.851	850	653595.8	5554309	195849	-14	-5	221.7	121	8.2	0.892	-0.013	-0.344	-0.218	13.6	0.93	-0.034	-0.338
300	1000	50.12101	-120.85	826	653696.9	5554299	201149	0.2	-21	79.4	117	11.6	0.54	-0.703	0.061	-0.035	109.6	-0.921	0.373	-0.217
300	1100	50.12107	-120.849	817.2	653792.2	5554308	202220	9.2	17	287.4	178	11.6	0.017	-0.368	-0.095	0.093	168.5	0.785	-0.15	-0.484
300	1200	50.12089	-120.847	815.2	653895.7	5554292	203846	17.7	-25.2	65.1	120	18.1	0.45	-0.19	-0.11	-0.138	22.7	0.907	-0.033	-0.401
300	1300	50.12086	-120.846	793.3	654001	5554291	204857	30.7	7.4	20.8	132	18.2	0.006	-0.318	-0.015	0.006	471.8	0.354	0.702	-0.597
300	1300	50.12084	-120.846	791.8	654000.3	5554288	205152	-28.6	14.8	244.4	120	16.8	0.893	-0.157	-0.324	-0.06	15.5	0.943	-0.107	-0.349
300	1400	50.12084	-120.844	802.8	654099.4	5554292	210014	24.6	-28.1	66.3	131	18.1	0.976	-0.067	-0.226	-0.173	25	0.976	-0.051	-0.269
300	1500	50.12089	-120.843	755.2	654205.2	5554300	211410	18	-1.1	43.3	186	17	0.203	-0.479	-0.226	-0.071	15.4	0.887	0.184	-0.403
500	1400	50.12266	-120.844	633.7	654101.2	5554494	220211	22	-20.5	55.7	121	17.1	0.951	-0.233	-0.182	-0.109	21.8	0.978	-0.142	-0.252
500	1400	50.12268	-120.844	635.8	654102	5554496	220440	-16.4	-12.3	151.1	119	16.5	0.939	-0.243	-0.185	-0.174	18.8	0.97	-0.14	-0.318
500	1300	50.12272	-120.846	644.7	654001.1	5554498	224343	-12.6	-21.8	68.3	115	12.4	-0.952	0.242	-0.294	-0.064	18.6	0.986	-0.002	-0.333
500	1200	50.12292	-120.847	645.7	653899.4	5554517	225830	6.1	-50.4	79.3	124	19.9	0.93	-0.336	-0.169	-0.051	21.4	0.973	-0.111	-0.294
500	1100	50.12303	-120.848	657.1	653826.1	5554528	230855	25.6	38.9	299.2	121	22.6	0.215	-0.391	-0.552	-0.139	10.6	0.884	0.045	-0.433

iN_0022	SNI_0022	rE_0045	rN_0045	iE_0045	iN_0045	SNI_0045	rE_0090	rN_0090	iE_0090	iN_0090	SNI_0090	rE_0180	rN_0180	iE_0180	iN_0180	SNI_0180	rE_0360	rN_0360	iE_0360	iN_0360
0.011	820.3	0.316	-0.947	-0.027	0.051	1119	0.232	-0.966	-0.099	0.113	950.8	0.119	-0.98	-0.159	0.154	685.6	0.034	-0.973	-0.169	0.14
-0.109	309	-0.477	0.877	-0.02	0.047	449.3	-0.491	0.866	-0.032	0.053	306.1	-0.462	0.877	-0.043	0.121	173.4	-0.469	0.876	-0.016	0.173
-0.042	55.2	-0.685	0.691	0.241	-0.149	90.2	-0.753	0.628	0.173	-0.133	141.6	-0.764	0.552	0.193	-0.167	119.5	-0.752	0.583	0.223	-0.161
-0.109	646.9	0.324	0.94	-0.042	-0.163	490.8	0.321	0.941	-0.058	-0.208	616.8	0.306	0.95	-0.077	-0.25	1191.6	0.352	0.781	-0.108	-0.371
0.017	49.3	0.926	0.109	-0.178	-0.056	83.3	0.889	0.008	-0.217	-0.018	166.2	0.817	-0.036	-0.184	-0.02	302.7	0.86	-0.058	-0.137	-0.028
-0.007	42.6	0.917	0.109	-0.235	-0.088	91.1	0.892	-0.03	-0.286	-0.011	187.9	0.812	-0.092	-0.263	-0.008	212.5	0.773	-0.041	-0.216	-0.022
-0.01	43.2	0.919	0.099	-0.25	-0.089	79.6	0.883	-0.019	-0.31	-0.02	161.4	0.779	-0.101	-0.177	-0.066	180.6	0.748	-0.076	-0.23	-0.034
-0.082	45.2	0.922	0.126	-0.264	-0.075	99.6	0.904	-0.068	-0.31	-0.014	165.5	0.826	-0.242	-0.079	-0.102	192.4	0.173	0.396	-0.43	0.027
-0.064	28.1	0.762	0.402	-0.261	-0.207	80.5	0.718	0.212	-0.35	-0.118	128.9	0.689	0.007	-0.293	-0.07	164.3	0.189	0.354	-0.29	-0.044
-0.044	44.8	0.921	0.074	-0.299	-0.064	112	0.846	0.018	-0.366	-0.047	165.8	0.731	-0.058	-0.403	0.019	193.8	0.152	0.378	-0.268	-0.038
-0.187	24.8	0.674	0.494	-0.308	-0.211	65.1	0.574	0.368	-0.302	-0.234	93.4	0.317	0.365	-0.222	-0.235	107.4	-0.174	0.553	-0.178	-0.083
-0.1	23.6	0.854	0.229	-0.362	-0.108	68.5	0.658	0.227	-0.391	-0.125	98.8	0.449	0.257	-0.339	-0.116	155.1	0.056	0.455	-0.182	-0.085
-0.054	35.5	0.821	0.194	-0.467	-0.019	52.9	0.673	0.183	-0.453	-0.037	77.8	0.465	0.218	-0.214	-0.177	208.2	0.264	0.315	-0.327	0.038
-0.035	37.8	0.886	0.18	-0.41/	-0.033	81./	0.///	0.099	-0.464	0.007	90.2	0.733	-0.005	-0.426	0.062	169.7	0.568	0.053	-0.369	0.107
0.1	58.7	0.966	-0.252	-0.281	0.092	62.4	0.948	-0.218	-0.287	0.102	130.7	0.734	0.025	-0.381	0.019	1/2.1	0.393	0.248	-0.285	0.024
0.047	22.8	0.766	0.211	-0.481	-0.056	44.8	0.679	0.163	-0.458	-0.038	/9	0.644	0.109	-0.413	0.01	212	0.299	0.268	-0.31	0.047
-0.042	28	0.906	0.114	-0.399	-0.04	67.2	0.587	0.378	-0.448	-0.089	62.9	0.282	0.451	-0.233	-0.194	152.8	0.151	0.418	-0.074	-0.108
-0.05	9.3	0.939	0.104	-0.379	-0.059	89.3 69.6	0.813	0.147		-0.055	89.4	0.583	0.24	-0.381	-0.063	158.4	0.212	0.372	-0.1/1	-0.069
-0.033	54.8 E0.9	0.909	0.12	-0.412	-0.049	0.00	0.743	0.173	-0.452	-0.032	83.4 94.0	0.000	0.100	-0.399	0.001	180.7	0.401	0.205	-0.234	
-0.058	20.8 26 E	0.909	-0.025	-0.347	-0.032	83.8 40.4	0.827	0.15		-0.03	69 A	0.708	0.137	-0.395	-0.03	175	0.195	0.308	-0.20	-0.038
-0.131	20.3 E0.2	0.043	0.497	-0.374	-0.210	40.4	0.440	0.494	-0.515	-0.242	00.4 107 7	0.501	0.367	-0.245	-0.22	125.4	0.55	0.20	-0.317	-0.034
-0.073	50.5	0.938	-0.089	-0.303	-0.034	100.2	0.808	-0.031	-0.401	-0.034	107.7	0.009	0.021	-0.444	-0.078	100 6	0.100	0.092	-0.321	-0.002
-0.023	57.9	0.945	-0.121	-0.375	-0.03	100.2	0.041	-0.088 0.09/	-0.445	-0.045	72.1	0.240	0.200	-0.333	-0.107	105.0 99.2	-0 115	0.154	-0.231	-0.115
-0.038	52.7	0.945	-0.084	-0 384	-0.054	88.7	0.775	0.054	-0 496	-0.059	79.6	0.110	0.126	-0 364	-0 153	139	-0 188	0.200	-0 133	-0 157
-0.114	21 5	0.878	0.162	-0.489	-0.079	44	0.61	0.159	-0.472	-0.121	66	0.392	0.120	-0.423	-0.101	128 7	-0.494	0.51	-0.195	-0.045
0.11	21.5	0.070	0.102	0.105	0.075	••	0.01	0.100	0.172	0.121	00	0.002	0.12 /	0.125	0.101	120.7	0.15 1	0.51	0.100	0.0 75

SNI_0360	rE_0720	rN_0720	iE_0720	iN_0720	SNI_0720	rE_1440	rN_1440	iE_1440	iN_1440	SNI_1440
577.8	-0.065	-0.968	-0.147	0.104	3035.2	-0.051	-0.97	-0.021	-0.042	8492.7
191.5	-0.572	0.798	0.023	-0.073	569.8	-0.337	0.942	0.14	-0.386	3144.9
107.5	-0.555	0.734	0.233	-0.28	99.9	0.487	0.852	-0.178	-0.189	2249.7
1907.5	-0.298	-0.954	-0.028	-0.102	1580.2	-0.279	-0.958	-0.024	-0.07	14556
234	0.835	-0.266	0.047	-0.131	170.5	0.635	-0.708	0.141	-0.292	2038.1
118.7	0.904	-0.303	0.265	-0.107	246.1	0.88	-0.429	0.335	-0.182	3446.2
132.5	0.898	-0.319	0.24	-0.096	234.8	0.88	-0.418	0.329	-0.222	4026.3
104.1	-0.708	0.654	0.094	-0.241	69.9	-0.74	0.596	0.133	-0.245	0
143.7	-0.676	0.644	0.178	-0.214	103.2	-0.731	0.514	0.262	-0.177	307.7
188.1	-0.664	0.672	0.177	-0.203	93	-0.696	0.581	0.254	-0.14	798.6
186.4	-0.607	0.697	0.123	-0.151	121.4	-0.681	0.616	0.272	-0.059	363.1
228.8	-0.543	0.712	0.121	-0.164	130.6	-0.636	0.644	0.282	-0.063	507.3
210.9	-0.579	0.663	0.126	-0.187	117.5	-0.593	0.516	0.233	-0.094	671
211.3	-0.571	0.642	0.102	-0.153	104.5	-0.567	0.547	0.215	-0.113	635.8
224.3	-0.214	0.611	0.128	-0.156	100.7	-0.345	0.665	0.276	-0.067	302
304.7	-0.555	0.64	0.095	-0.109	153.6	-0.434	0.573	0.263	-0.038	283.3
407.5	0.148	0.449	0.023	-0.049	237.5	-0.258	0.692	0.261	0.021	191.6
351.4	0.501	0.147	0.032	-0.058	221.1	-0.331	0.585	0.279	0.058	149.7
390.3	0.413	0.187	0.116	-0.124	175.9	-0.289	0.586	0.287	0.029	162.8
293.6	-0.362	0.593	-0.056	-0.017	168.4	-0.286	0.563	0.254	0.055	180.6
358	0.74	-0.14	-0.449	0.226	168.4	-0.247	0.498	0.27	0.053	235.8
319.1	-0.043	0.153	0.02	-0.109	248.9	-0.237	0.335	0.299	0.046	189.9
367.8	-0.018	0.138	0.03	-0.127	301.6	-0.189	0.287	0.306	0.03	155.4
376.5	-0.15	0.261	-0.026	-0.028	264.4	-0.334	0.251	0.262	0.098	277.8
412.2	-0.309	0.418	0.265	-0.266	197.7	-0.419	0.623	0.249	-0.014	93.4
447.9	-0.515	0.516	0.158	-0.15	225.8	-0.5	0.574	0.249	-0.012	8.6

Line	Point	LAT	LON	Alt	Х	Y	GPSt	Pt	RI	Az	Dur	IndNs	rE_0011	rN_0011	iE_0011	iN_0011	SNI_0011	rE_0022	rN_0022	iE_0022
600	1200	50.10534	-120.827	739.6	655401.1	5552604	174906	-5	1.5	102	233	15.3	0.012	0.33	-0.243	-0.176	5.2	0.09	0.524	-0.284
600	1200	50.10532	-120.827	740.4	655400.9	5552603	175224	7.8	6.6	284	167	13.8	0.466	0.196	-0.272	-0.159	2.7	0.11	0.342	-0.428
600	1100	50.10538	-120.828	775.3	655298.9	5552607	180503	-7.1	-13	184.2	150	18.2	0.425	0.251	0.045	-0.096	16.4	0.086	0.475	-0.188
600	1000	50.10533	-120.83	808.1	655199.9	5552598	181341	-10.4	3.3	186	183	14.1	0.513	0.119	-0.439	-0.157	0.1	0.19	0.496	-0.368
600	900	50.10536	-120.831	810.5	655100	5552598	183326	-8	19.7	261	250	14.8	-0.988	0.128	-0.118	0.125	9.7	0.057	0.402	-0.342
600	800	50.10541	-120.833	829.4	654987.8	5552601	185019	1.5	-5.9	104.4	177	12.8	0.393	0.257	-0.335	-0.146	4.2	0.312	0.361	-0.212
600	800	50.10541	-120.833	829.1	654987.2	5552600	185340	4.4	5.7	25.9	160	14.5	-0.737	0.195	-0.447	0.098	2.1	0.083	0.303	-0.256
600	700	50.10551	-120.834	853	654908.5	5552609	190402	-0.6	-2.2	300.4	150	15.8	0.955	-0.162	0.132	-0.193	4.2	-0.065	0.412	-0.068
600	600	50.10547	-120.835	907.4	654806.6	5552602	192739	8.1	-18.3	71.5	189	14.5	0.216	0.153	-0.342	-0.029	7.4	0.126	0.3	-0.262
600	500	50.10547	-120.837	922.6	654695.2	5552598	195222	-5.8	8.5	210.2	151	12.8	-0.039	0.094	-0.252	0.023	10	0.146	0.219	-0.239
600	400	50.10548	-120.838	941.3	654598.8	5552597	195859	-6.3	-0.5	219.6	136	7.2	0.207	0.056	-0.241	-0.013	12.6	0.174	0.173	-0.204
600	400	50.10548	-120.838	941.4	654598.5	5552597	200236	2.8	-10.2	141.8	138	9	0.07	0.113	-0.18	0.01	11.9	0.242	0.21	-0.287
600	300	50.10554	-120.839	945.2	654504.9	5552601	201308	-5.5	-3	242.3	135	10.4	0.306	-0.009	-0.185	-0.042	11.1	0.194	0.161	-0.304
600	200	50.10563	-120.841	968.2	654397.8	5552608	202206	-6.1	-11.7	203.7	125	11.9	0.19	-0.042	-0.372	0.177	21.5	0.077	0.108	-0.118
600	100	50.10551	-120.842	976.2	654298	5552591	203815	-1.6	4.3	270.8	150	12.2	0.321	0.034	-0.2	-0.051	13.3	0.219	0.131	-0.224
600	0	50.10569	-120.844	1007.4	654198.2	5552608	205433	-13.9	-7.1	247.5	191	14.1	0.264	0.044	-0.295	-0.015	14	0.266	0.112	-0.211
600	0	50.10568	-120.844	1007.4	654198.7	5552607	205744	5.4	10.5	43	117	11.8	0.537	0.117	-0.203	-0.134	9.3	0.244	0.199	-0.225
800	0	50.10739	-120.844	1004	654197.1	5552798	211644	20.5	15.3	319.9	163	9.9	0.225	0.049	-0.205	-0.02	17.7	0.157	0.173	-0.207
800	100	50.10742	-120.842	988.2	654296	5552804	212601	-1.4	4.5	68.7	122	6.3	0.233	0.085	-0.239	-0.031	11.2	0.173	0.172	-0.151
800	200	50.10737	-120.841	981.3	654397	5552802	213449	-0.3	15.6	301.9	138	10.7	0.291	0	-0.277	-0.009	11.3	0.113	0.185	-0.211
800	300	50.10735	-120.839	955.4	654497.5	5552802	214654	13.5	21.2	28.8	180	12.9	0.417	0.081	-0.195	-0.126	7.8	0.206	0.225	-0.274
800	300	50.10736	-120.839	956.7	654498.2	5552803	214928	-6.9	-23.8	204.2	121	11.6	0.329	-0.062	-0.262	-0.051	13.2	0.164	0.196	-0.162
800	400	50.10732	-120.838	926.1	654599.2	5552802	215536	11.7	3.1	28.5	117	12.3	0.085	0.095	-0.286	0.002	9.6	0.163	0.198	-0.218
800	500	50.10726	-120.837	901.1	654697.7	5552798	220253	11.9	5.6	41.9	122	12.8	0.059	0.159	-0.305	-0.002	4.3	0.16	0.189	-0.263
800	600	50.10726	-120.835	859.4	654805.3	5552801	221514	-16.2	26.8	322	187	17.1	0.869	0.076	-0.26	-0.162	2.3	0.285	0.333	-0.423
800	700	50.10724	-120.834	791.1	654894.7	5552801	222926	1.3	15.6	279.2	147	20.9	-0.989	0.133	-0.139	0.209	4.5	0.324	0.358	-0.442
800	800	50.1072	-120.832	773.9	654991.3	5552800	223646	8.9	4.4	15.4	120	21.2	-0.961	0.231	0.008	0.06	8.6	0.341	0.453	-0.391
800	800	50.10717	-120.832	776.4	654993.9	5552796	223912	-5.5	0.2	240.1	120	20.5	-0.889	0.288	-0.218	0.095	6.5	0.494	0.398	-0.476
800	900	50.10718	-120.831	766.8	655094.4	5552801	224425	6.2	1.3	17.7	178	18.3	0.066	0.325	-0.297	-0.291	1.5	0.068	0.522	-0.228
800	1000	50.10715	-120.83	760.8	655198.9	5552800	225233	-6	21.2	270.9	173	13.1	-0.743	0.263	-0.259	-0.013	4.2	0.222	0.401	-0.335
800	1100	50.10711	-120.828	740.8	655297.1	5552799	225846	5.6	16.1	316	147	14.9	-0.365	0.35	-0.117	-0.069	4	0.261	0.53	-0.293
800	1200	50.10688	-120.827	705.7	655355.9	5552774	230907	-12.2	-2.7	140.5	119	17.2	-0.934	0.215	0.03	0.069	8.6	0.256	0.464	-0.406

iN_0022	SNI_0022	rE_0045	rN_0045	iE_0045	iN_0045	SNI_0045	rE_0090	rN_0090	iE_0090	iN_0090	SNI_0090	rE_0180	rN_0180	iE_0180	iN_0180	SNI_0180	rE_0360	rN_0360	iE_0360	iN_0360
-0.26	28.8	0.478	0.581	-0.22	-0.325	24.4	0.082	0.408	-0.034	-0.269	119.2	0.087	0.264	0.045	-0.149	226.4	0.253	0.246	0.087	-0.109
-0.211	11.8	0.688	0.453	-0.252	-0.248	28.7	0.135	0.325	-0.041	-0.216	58	0.11	0.233	0.069	-0.145	131.8	0.25	0.243	0.097	-0.109
-0.207	30.9	0.298	0.582	-0.177	-0.317	7.8	0.068	0.395	-0.059	-0.241	86.1	0.161	0.25	-0.016	-0.136	148.6	0.598	0.229	-0.115	-0.096
-0.225	14	0.334	0.605	-0.152	-0.314	6.4	0.159	0.496	-0.055	-0.308	45.1	0.133	0.33	0.027	-0.179	144.6	0.172	0.357	0.129	-0.175
-0.152	13.5	0.301	0.549	-0.184	-0.274	4	0.103	0.376	-0.017	-0.209	116.3	0.124	0.305	0.041	-0.153	198	0.302	0.309	0.058	-0.128
-0.171	34.7	0.234	0.493	-0.185	-0.264	31.2	0.105	0.322	0.026	-0.215	96.4	0.078	0.239	0.119	-0.159	229	0.084	0.288	0.199	-0.204
-0.187	20.5	0.173	0.505	-0.187	-0.269	21.1	0.011	0.324	0.073	-0.192	89.4	0.029	0.227	0.149	-0.142	287.1	-0.01	0.297	0.222	-0.19
-0.183	25.3	0.019	0.572	-0.181	-0.272	15.7	0.038	0.322	-0.034	-0.172	97.8	0.067	0.193	-0.006	-0.062	227.8	0.128	0.215	0.04	-0.075
-0.123	32.4	0.134	0.5	-0.197	-0.247	39	0.029	0.314	-0.012	-0.165	173.9	-0.027	0.267	0.099	-0.121	352.7	-0.118	0.361	0.181	-0.153
-0.082	24.7	0.117	0.455	-0.194	-0.222	31.2	0.067	0.258	0.001	-0.129	174.2	0.034	0.173	0.079	-0.045	370.6	-0.015	0.241	0.161	-0.088
-0.029	32.7	0.115	0.416	-0.184	-0.197	31.7	0.076	0.235	0.021	-0.142	140.3	0.04	0.173	0.094	-0.059	430.7	-0.005	0.239	0.167	-0.103
-0.035	22.2	0.186	0.385	-0.285	-0.153	25.8	0.107	0.234	0.002	-0.109	132.9	0.073	0.159	0.072	-0.034	395.6	0.036	0.232	0.157	-0.096
-0.037	21.9	0.16	0.43	-0.19	-0.219	29	0.075	0.28	-0.002	-0.174	150.3	0.05	0.213	0.113	-0.14	313.1	-0.042	0.292	0.194	-0.156
0.024	60.8	-0.133	0.36	0.082	-0.142	110.3	0.024	0.14	0.127	-0.059	641.9	0.043	0.158	0.159	-0.066	1600	0.13	0.122	0.355	-0.308
-0.073	31.8	0.147	0.459	-0.132	-0.263	41.3	0.071	0.227	-0.012	-0.165	208.4	0.033	0.155	0.083	-0.111	504.4	-0.016	0.182	0.166	-0.15
-0.064	44.4	0.226	0.359	-0.186	-0.209	57	0.124	0.196	-0.037	-0.134	270.9	0.121	0.191	0.016	-0.161	314.6	0.139	0.194	0.051	-0.149
-0.078	31.2	0.278	0.359	-0.234	-0.203	40.8	0.126	0.189	-0.059	-0.1	192.4	0.108	0.106	0.02	-0.035	434.7	0.108	0.099	0.087	-0.046
-0.052	45.3	0.097	0.374	-0.158	-0.189	52.6	0.036	0.201	-0.02	-0.079	255.3	0.004	0.133	0.055	-0.012	1080.2	-0.066	0.218	0.14	-0.081
-0.048	43.5	0.066	0.386	-0.032	-0.209	57.9	0.046	0.196	0.025	-0.069	262.4	0.037	0.148	0.098	-0.048	855	0.047	0.157	0.101	-0.036
-0.042	30.1	-0.138	0.412	0.02	-0.191	48.5	-0.034	0.167	0.129	-0.077	328.2	0.004	0.137	0.157	-0.046	1301.1	0.115	0.089	0.107	-0.009
-0.078	24	0.141	0.487	-0.086	-0.286	23.5	0.089	0.257	0.056	-0.154	151.3	0.082	0.217	0.144	-0.137	284.5	-0.034	0.276	0.263	-0.15
-0.074	30.5	0.16	0.443	-0.124	-0.233	38.3	0.074	0.191	0.066	-0.122	186.5	0.028	0.178	0.208	-0.14	557.5	0.01	0.221	0.263	-0.171
-0.092	21	0.24	0.45	-0.139	-0.252	13	0.075	0.254	0.021	-0.151	102.4	-0.016	0.229	0.188	-0.126	270.4	-0.125	0.298	0.276	-0.15
-0.098	12.4	-0.281	0.592	-0.072	-0.25	9.6	-0.134	0.343	0.137	-0.178	94.6	-0.126	0.266	0.262	-0.152	344.4	-0.178	0.312	0.283	-0.145
-0.15	7.3	0.099	0.607	-0.097	-0.317	0	-0.009	0.399	0.02	-0.241	83.3	-0.065	0.311	0.143	-0.179	203.5	-0.549	0.505	0.375	-0.229
-0.164	6.7	0.217	0.576	-0.219	-0.29	0	0.067	0.356	-0.018	-0.209	75.2	0.044	0.267	0.079	-0.151	139.8	-0.049	0.319	0.376	-0.235
-0.245	5	0.302	0.632	-0.125	-0.299	0	0.046	0.489	0.004	-0.265	34.6	0.046	0.392	0.1	-0.222	69.2	0.122	0.341	0.302	-0.173
-0.183	4.5	0.26	0.607	-0.034	-0.325	0	0.051	0.446	0.029	-0.257	55.2	0.077	0.344	0.088	-0.204	97.1	-0.021	0.337	0.33	-0.17
-0.289	17.1	0.016	0.693	0.06	-0.334	2.4	-0.126	0.466	0.141	-0.248	79.4	-0.09	0.369	0.189	-0.184	116.7	0.998	0.049	0.437	0.004
-0.254	13.8	0.201	0.569	-0.189	-0.318	3.5	0.051	0.348	-0.053	-0.251	96.2	0.053	0.279	0.022	-0.202	120.2	-0.091	0.284	0.316	-0.177
-0.339	14.2	0.119	0.589	-0.116	-0.339	22.6	-0.014	0.335	0.007	-0.235	134.3	-0.005	0.276	0.041	-0.186	159.8	0.141	0.218	0.343	-0.163
-0.316	8.3	0.236	0.606	-0.153	-0.353	0	-0.001	0.312	-0.029	-0.279	76.3	0.057	0.274	-0.024	-0.26	93.8	0.59	0.174	-0.188	-0.123

SNI_0360	rE_0720	rN_0720	iE_0720	iN_0720	SNI_0720	rE_1440	rN_1440	iE_1440	iN_1440	SNI_1440
179.6	0.542	0.185	-0.167	-0.01	149.2	0.61	-0.009	-0.278	-0.031	8.2
130.6	0.565	0.171	-0.192	-0.006	126.8	0.508	-0.314	-0.329	-0.392	10
72.5	0.545	0.25	-0.102	-0.142	50.3	0.528	0.067	-0.234	-0.05	10.6
108.7	0.389	0.353	-0.129	0.022	79.8	0.489	0.354	-0.233	0.106	30.2
102.5	0.336	0.314	-0.11	-0.036	74.6	0.361	0.375	-0.153	-0.158	17.3
208.6	0.257	0.2	0.103	-0.182	106	0.392	0.09	-0.104	0.039	24.2
456.4	0.095	0.26	0.114	-0.118	213.5	0.293	0.2	-0.108	0.05	28.3
175.1	0.308	0.122	-0.007	-0.078	87.8	0.282	-0.029	-0.088	-0.214	14.1
381.9	-0.043	0.376	0.107	-0.121	154.4	0.282	0.351	-0.028	0.039	25.2
564.4	0.114	0.15	0.093	-0.027	325.4	0.211	0.027	0.054	0.015	77.9
627	0.131	0.139	0.123	-0.069	323.8	0.248	0.002	0.033	-0.033	39.9
442.8	0.19	0.143	0.088	-0.055	178.8	0.438	-0.101	0.017	0.036	22
348	0.176	0.176	0.072	-0.095	118.5	0.213	0.016	-0.003	-0.021	14.4
2322.4	0.113	0.194	0.344	-0.316	3580.6	0.317	-0.005	0.073	0.014	2208.5
743.4	0.254	-0.096	0.098	-0.121	358.3	0.247	-0.172	0.062	-0.13	44.1
155.4	0.298	0.072	0.027	-0.121	92.7	0.256	0.055	0.031	-0.12	14.6
608.9	0.219	0.02	0.132	-0.101	495.7	0.282	-0.025	-0.001	0.034	191.7
2512.4	-0.08	0.255	0.121	-0.074	3784.1	-0.117	0.303	0.039	-0.007	2812.2
2075.4	0.086	0.147	0.029	0.018	2864.1	0.153	0.101	0	0.03	1763.8
2733	0.181	0.069	0.085	-0.005	4592.2	0.179	0.099	0.031	0.024	4385
589.9	0.201	0.131	0.105	-0.041	523.4	0.214	0.134	0.032	0.019	295.4
1177.2	0.323	-0.074	0.091	-0.012	1398.3	0.319	-0.022	0.009	0.071	1206.9
436.9	0.161	0.136	0.055	-0.005	341	0.095	0.2	-0.047	0.063	110.9
682	0.155	0.11	0.014	0.043	566.8	0.193	0.089	-0.004	0.064	277.9
355	-0.266	0.416	0.415	-0.31	315.4	0.068	0.177	-0.053	0.066	260.4
149.6	0.403	0.044	0.077	-0.096	166	0.205	0.18	-0.162	0.08	120.9
68.2	-0.02	0.402	-0.017	-0.004	81.9	0.185	0.301	-0.135	0.058	59.2
109.6	0.323	0.178	0.027	-0.037	66.2	0.34	0.126	-0.179	0.066	47.8
43.4	-0.607	0.433	0.172	-0.131	13.6	0.062	0.506	-0.183	-0.171	49
94.6	0.262	0.18	-0.083	0.001	65.4	0.353	0.195	-0.258	-0.028	45
50.6	0.487	0.003	-0.09	0.076	92.3	0.41	0.044	-0.255	0.188	108.7
25.8	0.493	0.226	-0.161	-0.093	69.1	0.613	0.607	-0.23	-0.186	64

INSTRUMENT : ORANGE GEOPHYSICS ELF-EM SYSTEM GRIDDING ALGORITHM : MINIMUM CURVATURE GRID CELL SIZE : 12.5 m TIPPER ARROW SCALE: 3 cm = 45 degrees

