The Best Place on Earth	Boost and
Ministry of Energy and Mines BC Geological Survey	Assessment Report Title Page and Summa
TYPE OF REPORT [type of survey(s)]: Geophysical Report of	on the Wingdam Mineral Tenure TOTAL COST : 23654.28
AUTHOR(S): Chad Cote	SIGNATURE(S): "Signed and Sealed"
GroundTruth Exploration Inc.	
NOTICE OF WORK PERMIT NUMBER(S)/DATE(S):	YEAR OF WORK: 2013
STATEMENT OF WORK - CASH PAYMENTS EVENT NUMBER(S)	s)/DATE(S): 5439926/march 10-15, 2013
PROPERTY NAME: Wingdam	
CLAIM NAME(S) (on which the work was done): . WD 3, Tenu	ure # 552451
COMMODITIES SOUGHT: Gold (Au)	
MINERAL INVENTORY MINFILE NUMBER(S), IF KNOWN: 093G	G 022; 093G 025
MINING DIVISION: Cariboo	NTS/BCGS : 093H/04W
LATITUDE: 53 ° 2 '30 " LONGITUDI	
1) CVG Mining Limited	2) Omineca Mining and Metals Inc.
MAILING ADDRESS: 384 Winder St, Quesnel, BC, V2J 1C6	Suite 200, 44 – 12th Ave. S. Cranbrook, BC V1C 2R7
OPERATOR(S) [who paid for the work]: 1) CVG Mining Limited	2) Omineca Mining and Metals Inc.
MAILING ADDRESS: 384 Winder St, Quesnel, BC, V2J 1C6	Suite 200, 44 – 12th Ave. S. Cranbrook, BC V1C 2R7
PROPERTY GEOLOGY KEYWORDS (lithology, age, stratigraphy Resistivity, Induced Polarization, Gold, Alluvial, Phyllite	y, structure, alteration, mineralization, size and attitude): es, Quartzites, Barkerville Terrane, Quesnel Terrane, Eureka Thrust

BRITISH

Sattish COLUMP

S PROJECT COSTS APPORTIONED (incl. support)
(included in IP costs)
\$23654.28
TOTAL COST: \$23654.28

2013 Geophysical Report

On The

Wingdam Property: Mineral Tenure

Lightning Creek Area Cariboo Mining District, Central British Columbia, Canada NTS Mapsheet 093 G/01

> Center of Work UTM NAD (83) Zone (10) 5877334N, 568979E

Worked Done On: March 10-15

On Mineral Tenures: 552424, 552450, **552451**, 552453, 675223, 675243, 675244, 675246, 675264, 675303, 675446, 683807, 684765, 837909

Methods: 2D Resistivity, IP, Magnetics

Prepared for: Omineca Mining and Metals Inc. Suite 200, 44 – 12th Ave. S. Cranbrook, BC V1C 2R7

&

CVG MINING Ltd.

384 Winder Street, Quesnel, B.C., V2J 1C6

By Chad Cote, B.Sc. GroundTruth Exploration Inc. Lot 1121 Raspberry Lane Dawson City, Y.T. Y0B 1G0

April 10, 2013

BC Geological Survey Assessment Report 34116

1.0 Summary

The Wingdam Property (the Property) is made up of 2,702 hectares of mineral title. Wingdam is located 36 linear kilometers east from the city of Quesnel in central British Columbia, Canada. The Property is directly accessible by driving 45 km or 35 minutes along Hwy 26 from Hwy 97 in North Quesnel.

CVG Mining Ltd. (CVG) has actively explored the auriferous Deep Lead Channel gravels at Wingdam since 2009. Omineca has signed a letter of intent with CVG Mining Ltd., a private British Columbia corporation, granting it the exclusive right to acquire all issued and outstanding shares of CVG.

The Deep Lead Channel gravels are part of a reworked or modified fluvial paleochannel basement that pre-dates the last Pacific Cordillera glacial period called the Fraser Period (95,000 to 10,000 ybp). The channel occupies the deepest portion of the bedrock floor along the Lightning Creek valley that is buried from top to bottom by a sequence of postglacial alluvium, glacial till, and interglacial lacustrine sediments totalling 48.8 m thick.

Gold concentrations along the Deep Lead Channel basement are made up of native placer particles averaging 90.9% pure (909 fineness) and are efficiently recoverable by gravity separation methods that require no crushing, milling or leaching. The gold particles were liberated from lode sources at unknown bedrock locations surrounding the Wingdam area by a long period of deep Tertiary weathering. The liberated gold was transported and concentrated along the bedrock floor beneath the present location of the Lightning Creek during the Pleistocene by a complex history of periodic interglacial streams. Stratigraphic evidence indicates that the auriferous gravel layer along the channel floor is a Sangamon (132,500-95,000 ybp) interglacial paleochannel remnant.

The Deep Lead Channel contains some of the highest placer gold concentrations historically reported in all of the Cariboo Mining District and perhaps throughout British Columbia that remains unmined. Parts of the channel were previously explored by drift methods and sampled along drilled fence lines during the 1910's, 30's and 60's. Compilation of the historic drill results indicates that various areas along the channel contain a gold-enriched zone with grades averaging 33.65 g/m³ across a horizon that varies from 1.8 to 2.1 meters thick. This grade is equivalent to 13.74 g/tonne or 0.401 oz/ton. Historic and recent results from drilling and seismic surveying show that the channel floor width varies from 6 to 39 m wide and extends 2,430 m along the length of the Wingdam Property.

These rich gravels indicate a potential "mother lode" in the surrounding bedrock, providing the gold has not been all weathered into the creeks.

The geophysical survey, which is the subject of this report, was carried out on March 10-15, 2013, on mineral tenure 552451. A total of 1,650 line-meters was produced for each geophysical method employed in the survey. The measuring depth of the 2D resistivity/IP survey is approximately 80m. The pole-dipole/inverse schlumberger resistivity/IP survey was completed

over six lines at optimal offset of 100m with 5 meter electrode spacing. Total field magnetometer readings were taken along the same traverses in walk mode with 1s reading time.

The 2013 Resistivity/IP plus corroborating magnetic geophysical survey completed at the Wingdam property focussed on measuring and identifying the following subsurface characteristics:

- Structurally controlled geological features such as **faults and contacts**
- Geochemical features such as hydrothermal alteration
- Depth/profile of bedrock-overburden contact
- Sedimentary and lithological stratification
- Water table
- Prior cultural disturbances

The resistivity/IP survey was very noisy in the valley, probably due to the high clay content of the valley sediments and the disturbed nature of the ground indicating past working and probable inclusion of metallic objects in old tailing piles. The noisy characteristic of the ground made IP readings unreliable, as it was hard to differentiate between noise and actual features. Despite the high noise levels, repeatable and statistically robust resistivity data was able to be collected. The magnetic data verifies certain resistivity highs and lows seen in the resistivity inversions, and corroborates sub-vertical boundaries features indicative of contact faces.

Ground-truthing along the traverse lines in the form of drilling or excavating would provide invaluable evidence to support the results of the inversion and aid in broader scale interpolation of features between traverse lines.

Table of Contents

1.0 Summary	i
2.0 Introduction	1
3.0 Property Description and Location	1
4.0 Accessibility, Climate, Local Resources, Infrastructure and Physiography	4
4.1 Accessibility	4
4.2 Physiography	4
4.3 Climate	5
4.4 Local Resources and Infrastructure	6
5.0 History	7
5.1 Historic Gold Production	11
6.0 Geological Setting and Mineralization	12
6.1 Regional Bedrock Geology	12
6.2 Local Bedrock Geology	15
6.3 Surficial Geology	18
7.0 Deposit Types	22
8.0 Exploration	27
9.0 2013 Geophysical Surveys	27
9.0.1 Logistics and Personnel	27
9.1 Resistivity/Induced Polarization Survey	
9.1.1 Equipment	28
9.1.2 Objective	29
9.1.3 Data Acquisition	29
9.1.4 Data Processing	30
9.2 Ground Based Magnetic Survey	31
9.2.1 Equipment	31
9.2.2 Objective	31
9.2.3 Data Acquisition	31
9.2.4 Data Processing	32
10.0 Results	32
11.0 Recommendations	35
12.0 References	35
13.0 Report Author Certificate of Qualifications	37

List of Tables

Table 1: Mineral Tenure List	2
Table 2: Quesnel Climate Statistics	
Table 3: Wingdam Mining History	7
Table 4: Sanderson Mine Gold Production and Grades	
Table 5: Melvin Mine Gold Production and Grades	12
Table 6. Barkerville Terrane Bedrock Successions	18
Table 7. List of Sedimentological Units	19
Table 8: CVG-10-10 Surficial Geology Type Section	21

List of Figures

Figure 1. Property Location Map	2
Figure 2: Mineral Tenure Map	3
Figure 3: Property Aerial Image	3
Figure 4: Quesnel Highland Location	
Figure 5: Quesnel Census Agglomerate Location	6
Figure 6: Regional Bedrock Geology	13
Figure 7: Regional Composite Bedrock Terranes	
Figure 8: Terrane Structural Relationship	
Figure 9: Local Bedrock Geology	16
Figure 10. Local Bedrock Geology Legend	
Figure 11. Glacial and Interglacial Cycles	
Figure 12. Historical Section 'A' Looking Upstream (NE)	
Figure 13: Pole-Dipole Electrode Array Configuration	
Figure 14: Map of Traverse Lines and Meterage	

List of Plates

Plate 1. Deep Lead Channel Auriferous Gravel Layer	23
Plate 2. Overlying Fine-Grained Sediment Layers	24
Plate 3. Bedrock Foliation and Paleoflow Direction	
Plate 4. Clay-Filled Bedrock Gouge (15 cm wide)	26
Plate 5. Gold-Enriched Bedrock Gouge	
e e	

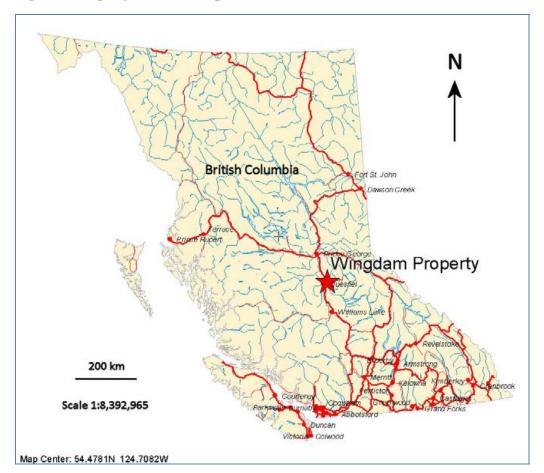
Appendices

- Appendix B: Tenure Summary
- Appendix C: Geophysical Inversions and Magnetic Data

2.0 Introduction

This report was prepared for Omineca Mining and Metals Ltd. (OMM:TSX-V), and CVG Mining Ltd. (CVG) who maintains a regional field office at the Wingdam Property mine site and a mailing address at 384 Winder Road, Quesnel, BC V6C 1E1. Omineca Mining and Metals Ltd. (OMM:TSX-V) has signed a letter of intent with CVG Mining Ltd., a private British Columbia corporation, granting it the exclusive right to acquire all issued and outstanding shares of CVG. OMM operates from a central office located at Suite 200, 44-12th Avenue South, Cranbrook, BC, Canada, V1C 2R7.

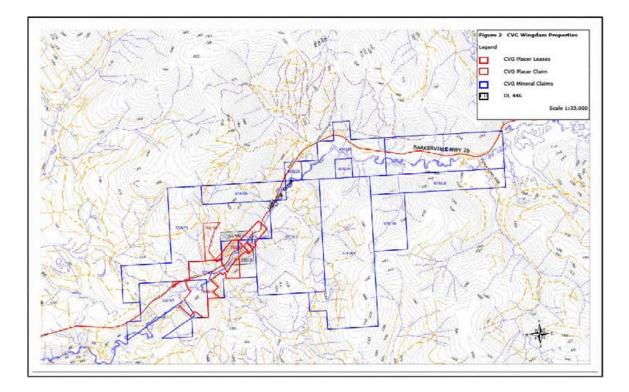
All of the mineral titles that make up the Wingdam Property are currently registered in CVG's company name. Newsk Emerging Resources Ltd. is a participating company that earned 34.43% interest in the Wingdam Project and a 9.14% NSR. Three other companies have an option to earn up to 38% interest; 101197159 Saskatchewan Ltd. (13%), 101197165 Saskatchewan Ltd. (13%), and 101197166 Saskatchewan Ltd. (12%).

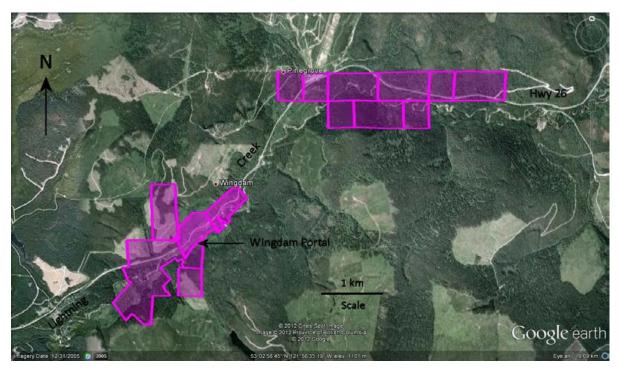

This report outlines the properties geographic location, physiographic location, access, history, economic assessment, general assessment, and details of the work performed on March 10 to 15, 2013, on mineral tenure 552451.

3.0 Property Description and Location

The Wingdam Property (the Property) is located 35.7 km east from the city of Quesnel and is situated in the Cariboo Mining District, British Columbia, Canada (Figure 1). The Property is made up of one mineral tenure block (Figure 2). All tenures are centrally located along Lightning Creek. The central part of the Wingdam tenure group is at UTM NAD (83) Zone (10) coordinates 5877334N and 568979E.

The Property is made up of 14 mineral claims (Table 1). The mineral claims occupy 2701.76 hectares (Figure 3). All of the exploration work described in this report took place on Mineral Tenure 552451, which is part of the Wingdam Tenure Group. The area covered by the Property can be viewed on NTS map sheet number 093H4W or Trim base map number 093H001.


Figure 1. Property Location Map


Table 1: Mineral Tenure List						
Tenure Number	Claim Name	Tenure Subtype	Map Number			

Tenure	Claim Name	Tenure	Мар	Issue Date	Good to Date	Area
Number		Subtype	Number			(hectares)
552424	WINGDAM	Claim	093H	2007/feb/20	2013/mar/13	38.88
	MINE					
552450	WD 2	Claim	093H	2007/feb/21	2013/mar/31	97.20
552451	WD 3	Claim	093H	2007/feb/21	2013/mar/31	233.33
552453	WD 4	Claim	093H	2007/feb/21	2013/mar/31	427.61
675223	Trailer Camp	Claim	093H	2009/nov/27	2013/mar/31	19.43
675243	WD-M	Claim	093H	2009/nov/27	2013/mar/31	388.76
675244	WD - M	Claim	093H	2009/nov/27	2013/mar/31	19.43
675246	LIGHTS ON	Claim	093H	2009/nov/27	2013/mar/31	272.02
675264	WD - M	Claim	093H	2009/nov/27	2013/mar/31	485.99
675303	WD –M	Claim	093H	2009/nov/27	2013/mar/31	155.46
675446	ULC	Claim	093H	2009/nov/27	2013/mar/31	116.62
683807	WD-M 5	Claim	093H	2009/dec/11	2013/mar/31	174.87
684765	WD-M 5	Claim	093H	2009/dec/14	2013/mar/31	97.16
837909	WD-M SE	Claim	093H	2009/nov/27	2013/mar/31	175.00
Total Area	1					2701.76

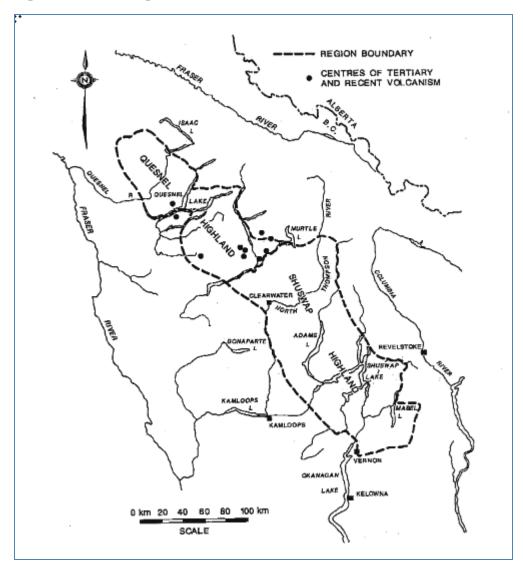
Figure 2: Mineral Tenure Map

Figure 3: Property Aerial Image

4.0 Accessibility, Climate, Local Resources, Infrastructure and Physiography

4.1 Accessibility

The Wingdam Property (the Property) is located 34 km east from the city of Quesnel. Quesnel is situated 420 km north-northeast of Vancouver. The total driving distance between Vancouver and Quesnel amounts to 665 km along the TransCanada Highway 1E and Hwy 97N. The Property is accessible from Quesnel by driving 45 km along Highway 26 from Highway 97N. Highway 26 is a two-lane paved road that is open year-round and plowed regularly during the winter season.


The city of Quesnel can also be reached by a Dornier 328-100 twin engine turbo-prop airliner owned by Central Mountain Air. The Quesnel Airport paved airstrip measures 1600 meters long. Jet airline services from Edmonton, Calgary and Vancouver are available in the city of Prince George. Prince George is located 118 km north along Hwy 97 from Quesnel.

4.2 Physiography

The Wingdam Property (the Property) lies within the Quesnel Highland (Figure 4). The Quesnel Highland is bordered to the west by the Cariboo Mountains and extends south from Bowron Lake to Mahood Lake. The highland extends northwest along a 160 km distance and is 48 km wide. Two isolated remnants of the highland are located in the vicinity of Narrow Lake north of Two Sisters Mountain. Parts of the upland area are remnants of highly dissection plateau region exhibiting moderate relief. The ground elevation gradually rises in an easterly direction across the width of the highland area from 1,500 m to over 2,000 m amsl. Valley dissection becomes more prominent in the same direction. Mount Watt (2,520 m) and Mount Perseus (2,548 m) are two of the highest points.

Lightning Creek locally follows a southwesterly wandering pattern through a moderately narrow valley across the Property with hillside peaks reaching 1,572 m to the north and 1,332 m to the south. The creek elevation varies from 945 m to 907 m amsl along a 232-degree downstream heading and falls 38 m across the total length (2,900 m) of the Wingdam Placer Tenure Block. The tenure block covers 100% of the Lightning Creek valley bottom across a 2,160-meter distance.

Figure 4: Quesnel Highland Location

4.3 Climate

The climate in the Central Interior Ecoprovince and more specifically in the Cariboo Plateau Ecosection uplands is described by the Koppen system as Cfb with moderate temperatures and increased rainfall. The climate locally is dependent on altitude and varies from humid temperate to sub-alpine (Hodder and Leroux, 2010). Statistics for the climate in the city of Quesnel are given in Table 3 (Environment Canada Statistics, 2011). The Wingdam Property (945 m amsl) is located 34 km east of Quesnel (545 m amsl). The 400-meter rise in elevation between Quesnel and Wingdam creates lower temperatures and higher precipitation in the region of the Property.

Table 2: Quesnel Climate Statistics

Average Winter Temperature	-9.1°C
Average Summer Temperature	16.6°C
Average Annual Temperature	4.9°C
Record Low Temperature (1950)	-46.7°C
Record High Temperature (1961)	36.7°C
Average Annual Snowfall	189cm
Average Annual Rainfall	377mm
Average Annual Precipitation	538mm
Average Hours of Sunshine Per Year	2000+

4.4 Local Resources and Infrastructure

The population of the Quesnel rural census agglomeration (Figure 5) for 2011 was 22,096 (Statistics Canada, 2012). The urban population within the city limits is about 10,000 residents. The city is a well-established industrial community that provides essential supplies and services for the mining, forestry and agriculture sectors. The main industry over the past 50 years was and remains the forestry sector. The city hosts five lumber mills, two pulp mills, one veneer plywood plant, panel board plant, log home manufacturer, and a pellet mill. The rural areas consist of agricultural communities that include cattle and horse ranches. Quesnel and the surrounding remote areas are supported by the tourism industry that revolves around historic mine sites, hiking trails, snowmobiling, camping, hunting, fishing and boating/canoeing.

Figure 5: Quesnel Census Agglomerate Location

5.0 History

The history of mining activities at the Wingdam Property is summarized in Table 3 for the time period extending from 1861 to present. The history was collected from information reported by Reid (2010). Important facts related to the CVG Drift Sampling Program (2012) include historic gold production records, the Deep Lead Channel NI 43-101 non-compliant historic gold resource estimation (Gilmore, 1986), and the Pipe Drive sampling records reported by Gold Ridge Resources Ltd. (Gunning, 1993). These facts are discussed in further detail through Sections 6.1 to 6.3.

Table 3: Wingdam Mining History

Time	Descriptions
Period	
1861	Ned Campbell discovered placer gold on Lightning Creek.
1878	Prospectors John Boyde and Angus McPhail discovered a northwest-striking quartz
	vein along Lightning Creek at a location 7 km upstream or east from Cold Spring
	House. The vein was named the Lightning Creek Ledge and later called the Free Lance
	Vein. The prospectors staked 1500 feet of ground under company name Cold Spring
	Company and staked an additional 1500 feet for John Fleming who owned the
	Cottonwood Company. The two companies amalgamated the ground and formed the
1050	Big Bonanza Company (BBC).
1879	BBC constructed a Wingdam across Lightning Creek and sunk a 24-meter deep shaft
	through the sediments along the valley floor. Unstable ground and high volumes of
	groundwater prevented the workings from reaching bedrock. The shaft operation was
1896	discontinued after Spring flooding washed away part of the Wingdam. Lightning Creek Gold Gravels and Drainage Company (LCGG) purchased the claims
1090	held by BBC. The purchasing company was a subsidiary of Great Cariboo Gold
	Company with a main office in New York.
1898	LCGG commenced to construct a proposed 2400-meter long drainage tunnel at
1070	Wingdam Hill for dewatering and exploration purposes.
1899	The LCGG drainage tunnel was abandoned after a 460-meters length was completed.
	John Fleming staked 64.7 hectares (160 acres) of ground on Wingdam Flat. The ground
	becomes Crown Grant Lot 446 in 1904.
1900-	LCGG sank the Jones Shaft through bedrock near the site of the present-day Melvin
1902	Shaft. Two horizontal drifts were driven from the shaft with attempts to break through
	and explore buried gravels at 30.5 and 42.7-meter depths. The shaft was flooded with
	water-saturated sediments immediately after breakthrough during each attempt.
1904-	New LCGG company management commenced Keystone drilling and identified
1905	significant gold grades along two buried gravel horizons now called the Deep Lead and
1005	Sanderson deposits; each situated 48.8 and 36.6 m respectively below Lightning Creek.
1906	LCGG sank the No. 1 shaft through 31.4 m of sediments and 28.0 m of underlying
	bedrock totalling 59.4 meters. A drift was driven horizontally through 33.2 m of
1007	bedrock from the 50.3-meter shaft level towards the Deep Lead Channel.
1907	LCGG continued development in the No. 1 shaft. A 30.5-meter long drive was
	extended through bedrock in a direction parallel to the Deep Lead Channel. The

	workings flooded during a hurselithrough attempt into the shownal
1000	workings flooded during a breakthrough attempt into the channel.
1908	LCGG sank the No. 2 shaft to explore the Sanderson deposit.
1909-	No records.
<u>1912</u>	LCCC commenced a second hadroak drive at a location 2 m lower in the No. 1 shoft to
1913	LCGG commenced a second bedrock drive at a location 3 m lower in the No. 1 shaft to access the Deep Lead Channel. There are no records of the results.
1914- 1916	Period of limited intermittent work and no underground development.
1917- 1919	A keystone drilling program was completed along fence lines now called Sections C, D, E, F (holes 1-8) and on Section BB (holes 9-15).
1920	The No. 3 shaft was constructed in gravels over keystone drill-hole location F-3. High volumes of water forced the workings to cease before the Deep Lead Channel was reached.
1921- 1928	No available work records.
1929	Lightning Creek Gold Mines Ltd. acquired the Wingdam Property.
1930-	Consolidated Gold Alluvials of BC Ltd. (CGA) takes control of the Wingdam Property
1932	and neighboring placer claims up and down Lightning Creek along a 42 km distance. The company refurbished the Wingdam mine camp and plant. The No. 2 shaft was reconditioned and preparations were made to mine the 36.6-meter deep Sanderson deposit.
1933	The Sanderson Mine becomes the largest operation in the Cariboo District with 100 laborers employed. About 1 km of drifting was completed along the Sanderson deposit. The main drive through the deposit was reported to be in economic ground that extended 152 m upstream or east from the access shaft. The surface waters were naturally sealed off from the workings by an overlying layer of impermeable boulder clay or glacial lodgement till. CGA cased a 0.66-meter diameter hole into bedrock at a location 43.3 m south of the No. 1 shaft during the Fall season for the purpose of dewatering the Deep Lead channel. The lower 15-meter section of casing was perforated where it penetrated bedrock (3 m) and overlying layers of gravel, sand and silt totalling 12 m thick. The large quantities of sand and silt carried by the pumped slurry created a cavity and the area surrounding the shaft collapsed.
1934- 1935	The Sanderson Mine continued to be a profitable operation. The workings measured over 300 m long in an upstream direction and 122 m wide. CGA management was replaced by British contactors who introduced the <i>Australian deep-lead mining method</i> . The Melvin Shaft was sunk through bedrock on the north side of Lightning Creek to 87 m to implement the mining method. From this point a bedrock drive was driven below and parallel to the Deep Lead Channel along a 460 m upstream and 460 m downstream direction.
1936	Operations continued at the Sanderson Mine and production for the year amounted to 36,528 m ³ . CGA commenced a dewatering program by drilling 10 cm diameter drainage holes up into the Deep Lead Channel from locations along the Melvin bedrock drive.
1937	A second entry point or raise to the surface at the Sanderson Mine was constructed to facilitate higher production rates. The raise connected to the Melvin Shaft where the ore
<u> </u>	number of production faces. The faise connected to the incivit shart where the ofe

1970	The historic buildings at Wingdam were removed and the Melvin shaft housing burnt down.
<u>1967</u> 1070	downstream placer titles from various claim owners.
1966-	Vigor Explorations optioned the Wingdam Property and other upstream and
	the Deep Lead Channel in September. This raise flooded and caved shortly after breakthrough into unstable ground and mining operations terminated.
	from the No.2 and 3 Downstream raises. The No. 4 Downstream Raise was driven into
1964	A total of 154 oz of gold was recovered from 320 m^3 of gravel and bedrock extracted
	put in place to seal off the No. 1 Downstream Raise. The No. 2 and 3 Downstream raises were cleaned out and prepared for re-entry.
1963	WLCMC cleaned out the Melvin up- and down-stream bedrock drives. A bulkhead was
	drill holes. The sand and silt accumulation in the Melvin shaft station and sump was removed and two 125 hp pumps were installed.
	grout plug was successfully injected into the raise from the surface through a line of 8
	workings through the 1939 No. 1 Downstream Raise. The flow was stopped after a
1961- 1962	WLCMC commenced to dewater, clean out, and reopen the Melvin Shaft workings. The company reported that water from Lightning Creek continued to flow into the
1961-	(WLCMC) acquired the property in 1961.
	Ltd. acquired new leases in 1946. Wingdam & Lightning Creek Mining Company
1940-	equipment was sold and the leases lapsed (1941-1944). Lightning Creek Gold Alluvials
1940-	from reaching the neighboring mine operation.There was no production at the Wingdam Property during this time period. The surface
	that connected the Melvin shaft with the Sanderson workings to prevent floodwaters from reaching the neighboring mine operation
	and rapidly flood the entire Melvin workings. A concrete plug was placed in the raise
	Melvin Shaft. The initial water flow caused the ground to break through to the creek
	the Melvin washplant found its way from surface to the raise and flooded the workings. The water entered the raise via a drainage hole that connected the rock heading and the
	successful manner without incident. However, large volumes of water discharged from
	Downstream Raise was driven 41 m through the overlying channel gravels in a
	discontinued at the Sanderson Mine on April 20, 1939. The up and downstream Deep Lead Channel drives were extended 68 m. The No. 1
1939	to 90 laborers. Production for the time period amounted to 40,089 m ³ . Operations
1938-	The Sanderson Mine remained in production during this time period and employed up
	limited the production to 555 m^3 .
	to 979 meter total length. Two additional raises were driven into the channel. The gravels were described to be very rich; however caving and flooding in unstable ground
	pressures subsided in February. The up and downstream bedrock drives were extended
	The first raise (No. 1 Upstream) was driven into the Deep Lead Channel after water
	This value is equivalent to 13,330 troy ounces by using the average gold price for the recorded time period (\$34.83/oz).

	involving ground-freeze methods across historic drill-section 'A' located near the No. 1 Shaft.
1975	Gold Channel Resources Ltd. optioned the Wingdam placer leases from ODL.
1976-	Bud Henning acquired the Wingdam placer leases and formed a company called
1980	Henning Mining and Milling Corporation (HMMC).
1981	Harvey Cohen Engineering Ltd. was contracted by HMMC to investigate the feasibility
	of dredging methods at Wingdam.
1986	Silver Ridge Resources (SRR) optioned the Wingdam leases (PL 747 and 743) from
	Bud Henning. Gold Ridge Resources Ltd. (GRR) optioned the Wingdam leases from
	SRR and took over as mine operator. Piteau Associates Engineering Ltd (PAEL) and
	Wright Engineering Ltd (WEL) conducted an exploration program involving four drill
	holes and the first phase of groundwater flow studies. WEL generated a mine feasibility
	report that included NI 43-101 non-compliant gold reserve estimates. PAEL completed
	the second phase of the hydrogeological study with the use of nine additional drill
	holes. Foundex Geophysics Inc. completed nine seismic refraction survey lines.
1987	PAEL performed a chloride-solution test to explore the possibilities of extracting placer
	gold concentrations along the Deep Lead Channel with in-situ leaching methods.
1989	GRR contracted Terry Garrow P.Eng to outline a drift program including methods for
	extracting samples from the Deep Lead Channel.
1990-	GRR contracted Tonto Mining Contractors (TMC) to pursue underground mine
1992	developments for the purpose of sampling the Deep Lead Channel. The development
	work included site preparation, settling pond excavations, dewatering, and underground
	access to the channel. The channel was dewatered by pumping from the Melvin Shaft
	and new vertical holes drilled from surface and lined with perforated casing. The
	channel breakthrough location was accessed by driving a 520-meter long 180-degree-
	spiral decline to a main sump area and a 53-meter long incline drive.
	Breakthrough Drive #1:
	5
	The incline and part of the decline flooded shortly after the channel was exposed by
	Breakthrough #1. GRR reported that the groundwater aquifer along the channel bedrock
	floor flowed into the breakthrough drive at the rate of 300 gpm. The water flow
	undercut the gravel, sand and silt layers and carried large volumes of sediments into the
	underground workings. The water-flow rate exceeded the capacity of the pumping
	station at the main sump. GRR discovered that the dewatering pumps were set too high.
	The dewatering process continued with success after the pumps were pulled, re-set and
	lowered to the proper subsurface elevation. The sediments were mucked throughout the
	entire workings and a new air fan with bagging was installed into an existing raise to
	improve ventilation. The initial breakthrough was sealed with Bulkhead #1.
	Breakthrough Drive #2:
	A second breakthrough into the channel was attempted at a location 14 m downstream
	or southwest from Drive #1. The drive broke through into a dry sand layer after

A second breakthrough into the channel was attempted at a location 14 m downstream or southwest from Drive #1. The drive broke through into a dry sand layer after advancing 3.7 m into bedrock. The sand layer and overlying sediments collapsed into the drive and all attempts to control the caving failed. The drive was sealed with

	Bulkhead #2.
1992	GRR Pipe Drive:
	GRR collared a 1.07-meter (42-inch) diameter horizontal pipe drive into the Deep Lead
	Channel at a location 14 m downstream from Drive #2. The pipe drive, totalling 19 m
	long, penetrated 7.2 meters of bedrock and 11.8 meters of alluvium across the channel.
	The drive was improperly collared at an elevation 0.46 meters above the channel
	bedrock floor where the majority of the gold was concentrated. The total amount of
	gold recovered from the drive was 13.9 grams. Most of this gold derived from a 2 m
	long section where the drive intersected rimrock along the channel. GRR accessed and
	sampled the bedrock floor by cutting through the pipe and recovered 54 grams of gold
	from a 0.60 m^2 area.
1993	GRR shut down operations at the Wingdam Property.
1998	The placer leases covering the Wingdam Property lapsed and the ground was staked by
	John Bot of Quesnel, BC.
2009-	CVG Mining Ltd. (CVG), formerly 1011136288 Saskatchewan Ltd., optioned and later
2012	purchased 100% of the Wingdam Property title from John Bot. The history of
	exploration work carried out on the Property by CVG is given in Section 9.

5.1 Historic Gold Production

The historic placer gold production reported to and recorded by the Cariboo District Gold Commissioner from areas along Lightning Creek at Wingdam amounts to 27,648 raw ounces (Holland, 1950). The results from nine historic fineness determinations indicate that the raw placer gold contains a fineness that ranges from 901 to 915 and averages 910.5. The gold was produced from two underground workings called the Sanderson and Melvin mines. The Sanderson Mine produced 25,474 ounces of gold from 136,753 loose cubic meters during a six year period extending from 1934 and 1939 (Table 4). Limited production at the Melvin Mine derived from six breakthrough attempts into the Deep Lead Channel during two time periods; 1937-38 and 1963-64 (Table 5). The total channel volume extracted from the breakthroughs amounted to 2,515.4 loose cubic meters and yielded 1,240 ounces of gold. The gold grades given in tables 4 and 5 represent loose volumes and refined-equivalent ounces.

Time Period	Loose Volume	Gold Recovered	Gold Grade	
	(\mathbf{m}^3)	(oz)	(oz/m^3)	(g/m^3)
1934	1,681.3	312	0.186	5.77
1935	12,087.6	2,498	0.207	6.43
1936	32,695.5	6,800	0.208	6.47
1937	39,872.3	7,306	0.183	5.70
1938	40,165.9	6,627	0.165	5.13
1939	10,250.4	1,931	0.188	5.86
Total/Average	136,753	25,474	0.186	5.79

Table 4: Sanderson Mine Gold Production and Grades

Time Period	Loose Volume	Gold Recovered	Gold Grad	le
	(\mathbf{m}^3)	(oz)	(oz/m^3)	(g/m^3)
1937	1,393.0	667	0.479	14.89
1938	802.8	419	0.522	16.23
1963-64	319.6	154	0.482	14.99
Total/Average	2,515.4	1,240	0.493	15.33

Table 5: Melvin Mine Gold Production and Grades

6.0 Geological Setting and Mineralization

6.1 Regional Bedrock Geology

The Wingdam Property (the Property) is located along the western edge of the Omineca Belt that makes up part of the Quesnel Highlands in central British Columbia. The Omineca is one of five Canadian Cordillera sub-parallel morphotectonic belts or allochthonous superterranes that accreted to the North American Craton as the result of Mesozoic and Cenozonic tectonic collisions. The belts from east to west are called the Foreland, Omineca, Intermontane, Coast and Insular Belts (Figure 6).

Figure 6: Regional Bedrock Geology

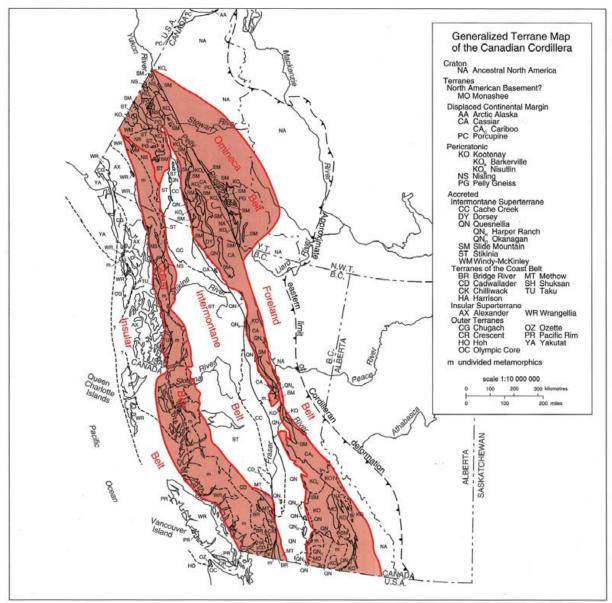
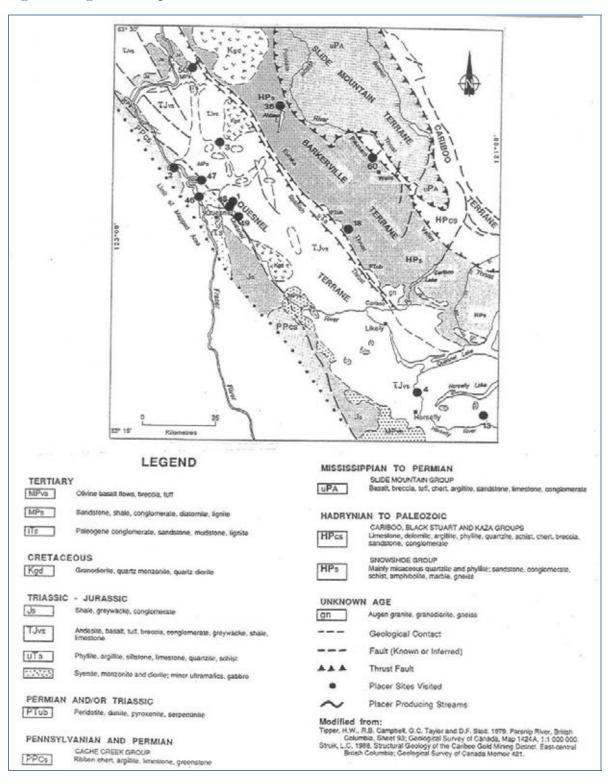
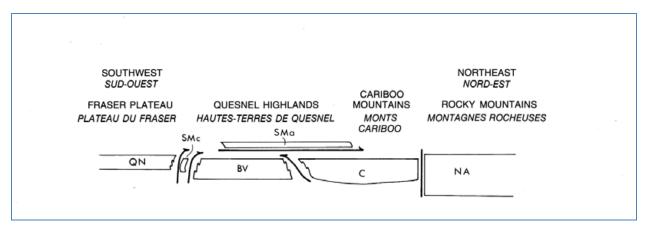
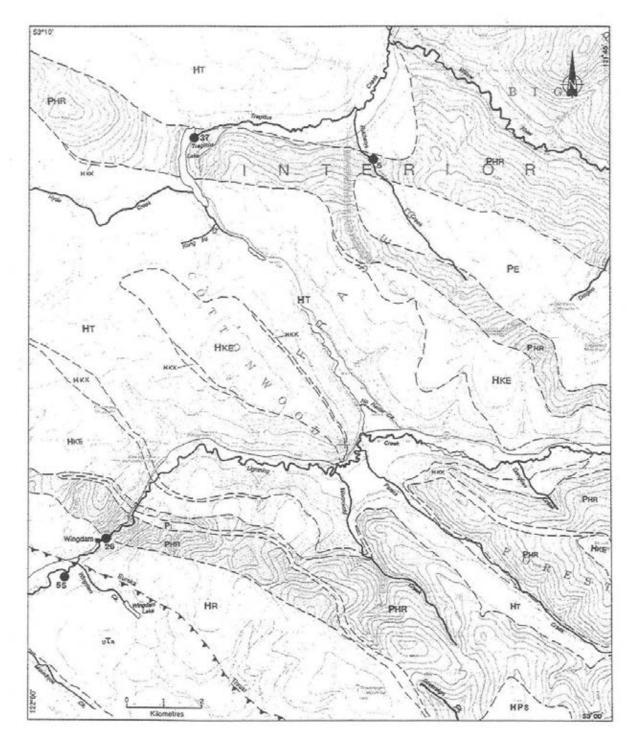



Figure 2.1 Simplified terrane map of the Canadian Cordillera (Gabrielse and Yorath, 1989; Wheeler et al., 1991).


The Omineca Belt accreted sometime during the middle Jurassic and locally comprises three distinct composite terranes. From east to west the composites consist of the Cariboo (C), Barkerville (BV) and Slide Mountain (SMa and SMc) terranes (Figure 9). The structural relationship between the terranes is illustrated in Figure 10. The Quesnel Terrane (QN) is part of the Intermontane Belt or Superterrane that accreted during the early Mesozoic (180 Ma) and forms a suture zone with the Omineca Belt. The suture is locally called the Eureka Thrust that strikes northwesterly across the southern portion of the Wingdam placer tenure block near the confluence of Wingdam and Lightning creeks. The suture is disrupted by slivers of thrusted rocks belonging to the Slide Mountain Terrane. The Side Mountain Terrane is dominated by deep-ocean-basin sedimentary rocks, basaltic volcanic rocks, and bodies of ultramafic rocks.

This disrupted terrane mainly represents oceanic accretionary prisms that mark the sites of former ocean basins, marginal seas, and/or back-arc basins (Monger and Price, 1979).


Figure 8: Terrane Structural Relationship

6.2 Local Bedrock Geology

The Wingdam Property (the Property) is mainly situated over bedrock belonging to the Barkerville Terrane and the southwestern-most part is located across the Quesnel Terrane (Figures 9 and 10). The two terranes are bounded by the Eureka Thrust Fault and possible slivers of deep-ocean-basin sedimentary rocks, basaltic volcanic rocks, and bodies of ultramafic rocks belonging to the Slide Mountain Terrane (Struik, 1988).

Figure 9: Local Bedrock Geology

Figure 10. Local Bedrock Geology Legend

CUESNEL TERRANE UPPER TRIASSIC UTa Phylika, aglilla, siltaton, lamestore, quartate, schist, greenstore, tull SLIDE MOUNTAIN TERRANE MISSISSIPPLAN TO PERMIAN SUBE MOUNTAIN GROUP UPA ANTLER FORMATION: plow basab, breeca, clorite, chert, greywacke, serpersinke BARKERVILLER TERRANE PALEOZOIC UPIM ISUAND MOUNTAIN AMPHIBCUTE: amphbolie, microsous quartate, linestone, micro metanation IVPIM Madacatable Mountain successon: saite and phylike, microsous quartate, linestone, micro metanation IVPIM Madacatable Mountain successon: saite and phylike, microsous quartate, linestone, micro metanation IVPIM Madacatable Mountain successon: saite and phylike, microsophymic granic ontogeness SNOWSHOE GROUP PALEOZOIC OUESNEL LAKE GNEISS: Potassium feldepar pophylic granic ontogeness SNOWSHOE GROUP PALEOZOIC Downay succession: microsous quartate and phylike and undefinemature tracks PA Apres succession: quartate, minor conglomerate PDF Coose Paak succession: microsous quartate, and phylike solut PARE Kee Khan matte: matte, colcareous subtrate, phylike and solut HADRYNIAN OR PALEOZOIC HT Trapayes Ridge succession: microsous quartate, phylike, solut and solut HADRYNIAN OR PALEOZOIC <t< th=""><th></th><th>LEGEND</th></t<>		LEGEND
Image: anglike, silisane, linescore, quartite, schitt, greinstone, luit SLIDE MOUNTAIN TERRANE MISSISIPPUN TO PERMIAN BARKERVILLE TERRANE PALEQZOIC SNOWSHOE GROUP UPIN SLODE MOUNTAIN AMHIBCUTE: simphobile, minor sliceous myone UPIN SLADD MOUNTAIN AMHIBCUTE: simphobile, minor sliceous quartite, linestone, minor mealauth Pale Succession: marble P Pale Succession: marble PD OUESNEL LAKE GAUESS: Poisasium feldipar pophyrite grankic onthognees SNOWSHOE GROUP Esplanet succession: microcous quartite and phylike PD Outesnet, LAKE GAUESS: Poisasium feldipar pophyrite grankic onthognees SNOWSHOE GROUP Esplanet succession: microcous quartite and phylike PD Downay succession: microcous quartite and phylike PD Downay succession: microcous quartite and phylike, minor slice, splat, philie, and more moritic linestone and undiferentiated rocis PAR Apres succession: microcous quartite, phylike and schitt HADRYNIAN OR PALEOZOIC HT HT Harveys Ridge succession: microcous quartite, phylike, schist, conformerate HKK Kee khan marbe: marble. calcureous substride, phyli		
MISSISSIPPIAN TO PERMIAN SLIDE MOUNTAIN GROUP UPA ANTLER FORMATION: place basil, breeda, divide, chert, greywacke, serpertinke BARKERVILLE TERRANE PALEOZOIC? SNOWSHOE: GROUP UPIM ISJAND MOUNTAIN AMPHICUTE: amphobile, minor sliceous mybrite UPIM Addicable Mountain succession: sitile and phylike, micaceous quantale, limestone, minor meanant? Pa Brake succession: markle PL Polated divite, augle porphry basell, gabbreic notes: undiferentiated diabase, divite PALEOZOIC PDI OUESNEL LAKE GNEISS: Polasiskim feldspar porphyritic granic ontrogrees SNOWSHOE GROUP Eaglement succession: micaceous quantale and phylike PD Downay succession: micaceous quantale and phylike PA Apres succession: quantale clast congrammate, quantale, minor timy conglomerate PaP Goese Pake succession: micaceous quantale and non-dodder phylike, schiet, eblike, end more more limeter more limeterined of diabase. HADRYNIAN OR PALEOZOIC HT HT Treglius succession: micaceous quantale and phylike, schiet, conglomerate HADRYNIAN OR PALEOZOIC HT HT Treglius succession: micaceous quantale and phylike, sanctarone and undifferentiated rodd. MIKE Kee Khan marbe: marble: calcareous sandstone, micaceous quantale nodd. MUSE		
SLIDE MOUNTAIN GROUP UPA ANTLER FORMATION: pilow basal, breccia, ciente, chert, greywacke, serpertlinke BARKERVILLE TERRANE PALEOZOIC? SNOWSHOE GROUP UPIM ISAND MOUNTAIN AMPHIBOLTE: amphbolie, minor siliceous mytonite UPIM ISAND MOUNTAIN AMPHIBOLTE: amphbolie, minor siliceous mytonite UPIM ISAND MOUNTAIN AMPHIBOLTE: amphbolie, minor siliceous mytonite PALEOZOIC POL OUESNELLANE GNEISS: Potassium feldspar pophyrkic granitic onthogneiss SNOWSHOE GROUP PE Eaglenest succession: micaceous quartite and phylite PALEOZOIC PDI OUESNELLANE GNEISS: Potassium feldspar pophyrkic granitic onthogneiss SNOWSHOE GROUP PE Eaglenest succession: quartite, minor conglomerate, quartite, minor immy conglomerate PDD Downey succession: micaceous quartite, phylite, and schist HARRYNIAN OR PALEOZOIC Harveys Ridge succession: micaceous quartite, phylite, minor mathe HRF Harveys Ridge succession: micaceous quartite, phylite, and schist HADRYNIAN OR PALEOZOIC HATT regilus succession: micaceous quartite, phylite, schist, conglomerate, fineglius succession: micaceous quartite, phylite, schist,		
BARKERVILLE TERRANE PALEOZOIC? SNOWSHOE SNOWSHOE UPIM ISLAND MOUNTAIN AMPHIBOLITE: amphbolie, minor siliceous myonke UPIM Instault? Pa Brakes auccession: matche P Felaaed dorite: augle porphyry basalt, gaborok rocks: undiferentiated diabase, dorite PALEOZOIC POL OUESNEL, LAKE GNEISS: Potassium feldspar porphyrite granite onthogneiss SNOWSHOE GROUP PE Eaglenet succession: micaceous quatzite and phylite PD Downeys succession: quatzite-lisit congiomerate, quatzite, minor conglomerate PA Agnes succession: micaceous quatzite and phylite, minor marke PHR Hanveys Ridge succession: micaceous quatzite, phylite, and schidt HADRYNIAN OR PALEOZOIC HPT HPT Hanveys Ridge succession: micaceous quatzite, phylite, schidt, phylite HKK Kee Khan marke: marke cakareous sundtrike, phylite, schidt, conglomerate HPT Treglitus succession: micaceous quatzite and phylite, schidt, conglomerate HRS Snowshoe Group undifferentiated rocks HADRYNIAN MUSSISSIPPIAN DIMG GUYET FORMATION: con	MISSISSIP	
PALEOZOIC? IPIM ISLAND MOUNTAIN AMPHIBCLITE: amphbolie, minor siliceous mytorike IPIM Island Mountain succession: skille and phylite, micaceous quartable, limestone, minor mission? PB Braice succession: matche PC OUESNEL LAKE GNEISS: Potassium feldspar porphyritic granitic onthognesis SHOWSHOE GROUP PE Egalement succession: micaceous quartable and phylite PD OUESNEL LAKE GNEISS: Potassium feldspar porphyritic granitic onthognesis SHOWSHOE GROUP PE Egalement succession: micaceous quartable and phylite PALEOZOIC Downsy succession: quartable and phylite PD Downsy succession: quartable and phylite PALEOZOIC Harveys Ridge succession: micaceous quartable and phylite PD Downsy succession: micaceous quartable and phylite PAR Agnes succession: micaceous quartable, phylite and schiet HADEYNIAN OR PALEOZOIC HADEYNIAN OR PALEOZOIC HT Treglius succession: micaceous quartable, phylite, schiet, shifte HADEYNIAN ? HEKE Ket Khan marble: marble, calcareous quartable, phylite, schiet, shifte HADEYNIAN ? Excession: micaceous quartable, phylite, schiet, canglite succession: micaceous quartable, phylite,	UPA	ANTLER FORMATION: pillow basalt, breccia, ciorite, chert, greywacke, serpertinite
SHOWSHOE GROUP UPIN ISLAND MOUNTAIN AMPHIBOLITE: amphbolke, minor siliceous mytonite UPHM Hardscrabble Mountain succession: sitile and phylile, micaceous quartable, limestone, mino missuit? Page Brateo succession: marble P Folated donke, augite porphyly basel, gaborok rocks; undifferentiated diabase, donke PALEOZOIC POL OUESNEL LAKE GNEISS: Potassium feldspar porphylitic granitic orthogneiss SNOWSHOE GROUP PE Eaglenet succession: micaceous quartable and phylile PD Downey succession: micaceous quartable, minor offerentiated fields PA Agnes succession: micaceous quartable, and retrobedded phylile, schist, skille, and micor microlic limetatore and undifferentiated fords HADRYNIAN OR PALEOZOIC HPT Harveys Ridge succession: micaceous quartable, phylile and schidl HADRYNIAN OR PALEOZOIC HEKK Kee Khan marble: marble, calcareous quartable, phylile, and schidl HADRYNIAN OR PALEOZOIC HPT Harveys Ridge succession: micaceous quartable, phylile, and schidl HADRYNIAN OR PALEOZOIC HPT Harveys Ridge succession: micaceous quartable, phylile and schidl HADRYNIAN OR PALEOZOIC HPT Harveys Ridge succession: micaceous quartable, phylile and schidl HADRYNIAN OR PALEOZOIC HPT Harveys Ridge succession: micaceous quartable, phylile and schidl HADRYNIAN OR PALEOZOIC HPT Treglus succession: micaceous quartable and phylile CARIBOO TERRANE DEVONIAN TO MISSISSIPPIAN DMG GUYET FORMATION: onglomerate, braccia, granule quartable and phylile CARIBOO TERRANE DEVONIAN TO MISSISSIPPIAN DMG GUYET FORMATION: gray limestone, minor shale and argilite HADRYNIAN HC CUNNINGAHAM FORMATION: gray limestone, minor shale and argilite HADRYNIAN HC CUNNINGAHAM FORMATION: gray limestone, minor shale and argilite HADRYNIAN HC CUNNINGAHAM FORMATION: instale and quartable, angilite and dolosone Geological Contact HADRYNIAN HC CUNNINGAHAM FORMATION: instalen, argilite, schiel, angilite, and colosone Geologic		
UPHM Hardscrabble Mountain succession: sittle and phylite, micaceous quartable, limestone, mino metaul/? PB Brace succession: marble PC Foliated dorite, augite porphyry basall, gabbroic rocks: undiferentiated diabase, dorite PALEOZOIC DUESNEL LAKE GAUEISS: Portassium fieldspar porphyrite granitic ontrogneiss SINOWSHOE GROUP Eaglenest succession: micaceous quartable and phylite PD Downey succession: micaceous quartable and phylite and undifferentiated rocks minor firm conglomerate PGP Goose Paak succession: micaceous quartable, minor timy conglomerate PGP Goose Paak succession: micaceous quartable and interoeddod phylite, schist, skille, and minor micrite limestone and undifferentiated rocks HADRYNIAN OR PALEOZOIC HPT HAR weys Ridge succession: micaceous quartable, phylite and schist HADRYNIAN OR PALEOZOIC HPT Harveys Ridge succession: micaceous quartable, phylite, schist, conglomerate Ramos succession: micaceous quartable, phylite, schist, conglomerate HRE Keithey succession: micaceous quartable, phylite, schist, conglomerate HR Ramos succession: micaceous quartable, phylite, schist, conglomerate HR Ramos succession: micaceous quartable, and undifferentiated	[
Pa Brate succession: markle PALEOZOIC POL OUESNEL LAKE GNEISS: Potassium feldspar porphyritic granikic ontrognesis SNOWSHOE GROUP PE Eaglenest succession: micaceous quantatile and phylike PD Owney succession: micaceous quantatile and phylike PD Owney succession: micaceous quantatile and phylike PD Owney succession: quantatile mission conglomerate, quantatile, minor limy conglomerate PGP Goose Peak succession: quantatile, minor conglomerate PGP Goose Peak succession: quantatile, minor conglomerate PGP Goose Peak succession: micaceous quantatile, minor marboded phylike, schist, skille, and minor microtic limestone and undifferentiated focks HADRYNIAN OR PALEOZOIC HT HFR Harveys Ridge succession: micaceous quantatile, phylike, schist, conglomerate HKK Kee Khan marble: matble. catcareous sandtone, micaceous quantatile, phylike HKK Kee Khan marble: matble. catcareous sandtone, micaceous quantatile, phylike HT Trengilus succession: micaceous quantatile and phylike, sandstone and undifferentiated nots. HT Trengilus succession: micaceous quantatile, phylike, sandstone and undifferentiated nots. MIKE Kee Khan marble: matble. catcareous sandtone, finaceous quantatile, phylike <td></td> <td>Hardscrabble Mountain succession: siltite and phyllite, micaceous quartzite, limestone, mino</td>		Hardscrabble Mountain succession: siltite and phyllite, micaceous quartzite, limestone, mino
PALEOZOIC POL OUESNEL LAKE GNEISS: Potassium feldspar porphyritic granitic orthognesis SNOWSHOE GROUP PE Eaglenetit succession: micaceous quartable and phylike PD Downey succession: micaceous quartable and phylike PALEOZOIC PD PD Downey succession: micaceous quartable and phylike PA Agnes succession: quartable individentiated rocks PAR Agnes succession: micaceous quartable and instructed phylike, schist, skile. and minor monitolimestate individentiated rocks HADRYNIAN OR PALEOZOIC MPT Harveys Ridge succession: micaceous quartable and phylike and schist HADRYNIAN OR PALEOZOIC MT MKK Kee Khan marble: matole, calcareous sandstone, micaceous quartable, phylike MKK Kee Khan marble: matole, calcareous sandstone, micaceous quartable, phylike MT Tregius succession: micaceous quartable and phylike, sandstone and undifferentiated rocks MT Tregius succession: micaceous quartable and phylike, sandstone and undifferentiated rocks MT Tregius succession: micaceous quartable and phylike, sandstone and undifferentiated rocks MT Tregius succession: micaceous quartable and phylike DAG GUYET FORMATION: congomerate, breccia, granule quartable and stat	PB	
POL OUESNEL LAKE GNEISS: Potassium feldspar porphytike granike orthogneiss SNOWSHOE GROUP PE Eaglenest succession: micaceous quatzite and phytike PD Downsy succession: micaceous quatzite and phytike PA Agnes succession: quatzite-clast conglomerate, quatzite, minor kiny conglomerate PGP Goose Paak succession: quatzite, minor conglomerate PGP Goose Paak succession: micaceous quatzite and intorbedded phytike, schist, skille, and minor micrike limetoine and undifferentiated rocks. HADRYNIAN OR PALEOZOIC Harveys Ridge succession: micaceous quatzite, phytike and schist HADRYNIAN OR PALEOZOIC Harveys Ridge succession: micaceous quatzite, phytike, schist, skille. HKK Keithky succession: micaceous quatzite and phytike, schist, skille. HADRYNIAN 7 HKKK KKK Kee Khan marble: matble, calcareous sundzite, phytike, schist, conglomerate HT Tregitus succession: micaceous quatzite and phytike, schist, conglomerate MR Rames succession: micaceous quatzite and phytike, schist, conglomerate Dir Guvert FORMATEON: Daw GUVET FORMATION: conglomerate, breecia, granule quatzite and state Dir MURAL FORMATION: statsite tuft, vokanidastics, pilow basati, satite OMBS Black pelite unit: state, ar	Pi	Foliated diorite, augite porphyry basall, gabbroic rocks; undifferentiated diabase, diorite
PE Eaglenest succession: micaseous quartzile and phylike and undifferentiated nocks PD Downey succession: quartzile, minor componerate PGP Goose Peak succession: quartzile, minor componerate PGP Goose Peak succession: quartzile, minor componerate Philes, schild, skille, and minor mortic limestone and undifferentiated nocks HADRYNIAN OR PALEOZOIC HPT Harveys Ridge succession: micaceous quartzile, phylike and schild HADRYNIAN R Iteratives Ridge succession: micaceous quartzile, phylike and schild HADRYNIAN ? Iteratives Keithley succession: micaceous quartzile and phylike, schild, conglomerate MKK Kee Khan marble: marble, calcareous quartzile, and phylike, schild, conglomerate MT Tregilius succession: micaceous quartzile and phylike, sandstone and undifferentiated modes MPS Snowshoe Group undifferentiated: mainly micaceous quartzile and phylike DEVONIAN TO MISSISSIPPIAN DMG DEVONIAN TO MISSISSIPPIAN DMG DMG GUYET FORMATION: bassitic tuff, volcanictassice, pilow bassit, silite immestone LOWER CAMBRIAN MURAL FORMATION: grey finestone, minor shale and argitite HADRYNIAN AND/OR CAMBRIAN MURAL FORMATION: silistone and quartzite, minor shale, and dolostone ICM MURAL FORMATION: silistone, argilite, shale, limestone, phylike, schist		
PD Downey succession: micaceous quartitie and phylite and undifferentiated rocks PA Agnes succession: quartitie-clast conglomerate, quartitie, minor limy conglomerate Par Agnes succession: quartitie, minor conglomerate PA Harveys Ridge succession: micaceous quartitie and interbedded phylite, schist, skille, and minor mick like micaceous quartitie, phylite and schist HADRYNIAN OR PALEOZOIC HT HARVEY Ridge succession: micaceous quartitie, phylite, minor marble HKE Keithley succession: micaceous quartite, phylite, minor marble HKE Keithley succession: micaceous quartite, phylite, schist, conglomerate HT Treepilus succession: micaceous quartite, phylite, schist, conglomerate HR Ramos succession: micaceous quartite, phylite, schist, conglomerate HR Ramos succession: micaceous quartite, phylite, schist, conglomerate HR Ramos succession: micaceous quartite, phylite, schist, conglomerate UNER Snowshoe Group undifferentiated: mainly micaceous quartite and state DW WAVERLY FORMATION: bassite tuff, vokanicastocs, pilow bassit, silite OMBS Black pelite unit: state, argilite and cherty argilite, limestone, dolostone and siliclied limestone DW WAVERLY FORMATION: prey limestone, minor shale and argilite HADRYNIAN MIDAS FORMATI		
and undifferentiated rocks PA Agnes succession: quartitle, minor conglomerate, quartitle, minor limy conglomerate PGP Goode Peak succession: quartitle, minor conglomerate PHR Harveys Ridge succession: micaceous quartitle and interbodded phylite, schist, skille, and micro mortik limestone and undifferentiated rocks HADRYNIAN OR PALEO2OIC HPT HAT Harveys Ridge succession: micaceous quartitle, minor marble HKE Keithley succession: micaceous quartitle, and phylite, minor marble HKE Keithley succession: micaceous quartitle, phylite, minor marble HKK Kee Khan marble: marble, calcareous sandstone, micaceous quartitle, phylite HT Tregilius succession: micaceous quartitle, phylite, schist, conglomerate HR Ramos succession: micaceous quartitle and phylite, schist, conglomerate DT Tregilius succession: micaceous quartitle, phylite, schist, conglomerate IMR Ramos succession: micaceous quartitle, phylite, schist, conglomerate DEVONIAN TO MISSISSIPPIAN Guyer FORMATION: conglomerate, broccia, granule quartitle and state DW WAVERLY FORMATION: baselic tuff, volcanidastics, pilow baseli, stifte OMBS Black polite unit: state, argilite and cherty argilite, limestone, diolostone and stifte LOWER CAMBRIAN ICM	PE	Eaglenest succession; micaceous quartzite and phylitie
PGP Goose Peak succession: quartzite, minor conglomerate PHR Harveys Ridge succession: micaceous quartzite and interbedded phylitie, schist, skilite, and minor micritic limestone and undifferentiated rocks. HADRYNIAN OR PALEOZOIC HPT Harveys Ridge succession: micaceous quartzite, phylitie and schist HADRYNIAN ? HKE Keithley succession: micaceous quartzite, phylitie, minor marble HKK Kee Khan marble: marble: calcareous sandstone, micaceous quartzite, phylitie HT Tregilius succession: micaceous quartzite and phylite, sandstone and undifferentiated rocks HPS Snowshoe Group undifferentiated: mainly micaceous quartzite and phylitie CARIBOO TERRANE DEVONIAN TO MISSISSIPPIAN DMG GUYET FORMATION: basalitic tuft, volcanicdastics, pilow basali, sittle OMBS Black pelitie unit: state, argilitie and cherty argilite, timestone, dolostone and siticitied limestone LOWER CAMBRIAN MURAL FORMATION: grey timestone, minor shale and argilite HADRYNIAN AND/OR CAMBRIAN MIC CUNNINGHAM FORMATION: sitistone and quartzite, minor shale and argilite HADRYNIAN CUNNINGHAM FORMATION: limestone, minor shale and argilite HADRYNIAN MIDAS FORMATION: sitistone and quartzite, minor shale and argilite HADRYNIAN Flacer Sites Visited<	PD	
PHR Harveys Ridge succession: micaceous quartzite and interbedded phylitie, schist, sikile, and minor monito limestone and undifferentiated rocks HADRYNIAN OR PALEOZOIC HPT Harveys Ridge succession: micaceous quartzite, phylitie and schist HADRYNIAN ? HKE Keithley succession: micaceous quartzite and phylite, minor marble HKK Kee Khan marble: marble, calcareous sandstone, micaceous quartzite, phylitie HT Tregilius succession: micaceous quartzite and phylite, schist, conglomerate HR Ramos succession: micaceous quartzite and phylite, schist, conglomerate HR Ramos succession: micaceous quartzite and phylite, sandstone and undifferentiated nocks HPS Snowshoe Group undifferentiated: mainly micaceous quartzite and phylite CARIBOO TERRANE DEVONIAN TO MISSISSIPPIAN DMG GUYET FORMATION: basatic tuff, vokcaniclastics, pillow basati, sitite OMBS Black pelite unit: state, argilite and cherry argilite, timestone, dolostone and sitiefied timestone LOWER CAMBRIAN MUDAS FORMATION: grey timestone, minor shale and argilite HADRYNIAN AND/OR CAMBRIAN MIDAS FORMATION: sitistone and quartzite, minor shale and argilite HADRYNIAN Euclide Quartzite, sitistone, argilite, shale, limestone, phylite, schist: HADRYNIAN Fault (Known or Inferred) <td>PA</td> <td>Agnes succession: quartzite-clast conglomerate, quartzite, minor limy conglomerate</td>	PA	Agnes succession: quartzite-clast conglomerate, quartzite, minor limy conglomerate
and minor micrite limestone and undifferentiated rocks HADRYNIAN OR PALEOZOIC HPT Harveys Ridge succession: micaceous quartzite, phylitie and schist HADRYNIAN ? HKE Keithley succession: micaceous quartzite and phylite, minor marble HKK Kee Khan marble: marble, calcareous sandstone, micaceous quartzite, phylite HT Tregillus succession: micaceous quartzite, phylite, schist, conglomerate HR Ramos succession: micaceous quartzite, and phylite, schist, conglomerate HR Ramos succession: micaceous quartzite, phylite, schist, conglomerate HR Ramos succession: micaceous quartzite, and phylite, schist, conglomerate MR Snowshoe Group undifferentisted: mainty micaceous quartzite and phylite CARIBOO TERRANE DEVONIAN TO MISSISSIPPIAN DMG GUYET FORMATION: basalite tuff, vickanidastics, pillow basalt, silitite OMBS Black pelite unft site, argilite and cherty argilite, limestone, dolostone and silicitied limestone ICM MURAL FORMATION: grey limestone, minor shale and argilite HADRYNIAN AND/OR CAMBRIAN MIDAS FORMATION: silistone and quartzite, minor shale and argilite HADRYNIAN MIDAS FORMATION: silistone, argilite, shale, limestone, phylitite, schist HADRYNIAN CulviNiNGHAM FORMATION: limestone, minor shale and ar	PGP	
HPT Harveys Ridge succession: micaceous quartzite, phylikie and schist HADRYNIAN ? HKE HKE Keithley succession: micaceous quartzite and phylike, minor marble HKK Kee Khan marble: marble, calcareous sandstone, micaceous quartzite, phylike HT Tregillus succession: micaceous quartzite, phylike, schist, conglomerate HT Tregillus succession: micaceous quartzite and phylike, sandstone and undifferentiated rocks HPS Snowshoe Group undifferentiated: mainly micaceous quartzite and phylike CARIBOO TERRANE DEVONIAN TO MISSISSIPPIAN DMG GUYET FORMATION: congiomerate, breccia, granule quartzite and state Dw WAVERLY FORMATION: basatic tuff, volcaniclastics, pillow basalt, sittle OMBS Black pellie unit: state, argilitie and cherty argilitie, timestone, dolostone and silicitied timestone LOWER CAMBRIAN MIDAS FORMATION: grey timestone, minor shale and argilite HADRYNIAN AND/OR CAMBRIAN MIDAS FORMATION: sitstone and quartzite, minor shale and argilite HCu undwided: quartzite, sitstone, argilite, shale, limestone, phylite, schist HADRYNIAN CUNNINGHAM FORMATION: imestone, minor shale and argilite and doloctone Geological Contact Fault (Known or Inferred) <td< td=""><td>PHR</td><td></td></td<>	PHR	
HKE Keithley succession: micaceous quartzite and phylite, minor marble HKK Kee Khan marble: marble, calcareous sandstone, micaceous quartzite, phylite HT Tregillus succession: micaceous quartzite, phylite, schist, conglomerate HR Ramos succession: micaceous quartzite and phylite, sandstone and undifferentiated rocks HPS Snowshoe Group undifferentiated: mainly micaceous quartzite and phylite CARIBOO TERRANE DEVONIAN TO MISSISSIPPIAN DMG GUYET FORMATION: conglomerate, breccia, granule quartzite and state DW WAVERLY FORMATION: basatic tuff, volcaniclastics, pillow basati, silitie OMBS Black pelite unti; state, argilite and cherty argilite, timestone, dolostone and silicified limestone LOWER CAMBRIAN MURAL FORMATION: grey timestone, minor shale and argilite HADRYNIAN AND/OR CAMBRIAN MIDAS FORMATION: silistone and quartzite, minor shale and argilite HADRYNIAN MUDAS FORMATION: limestone, minor shale, argilite, schist HADRYNIAN Guivided: quartzite, silistone, argilite, shale, limestone, phylite, schist HADRYNIAN Guivided: quartzite, silistone, argilite, shale, argilite and dolostone		
HKK Kee Khan marble: marble: calcareous sandstone, micaceous quartzile, phylite HT Tregilus succession: micaceous quartzile, phylite, schist, conglomerate HR Ramos succession: micaceous quartzile and phylite, sandstone and undifferentiated rocks HPS Snowshoe Group undifferentiated: mainly micaceous quartzile and phylite CARIBOO TERRANE DEVONIAN TO MISSISSIPPIAN DMG GUYET FORMATION: conglomerate, breccia, granule quartzile and state DW WAVERLY FORMATION: basatic tuff, volcanicitastics, pillow basati, silitile OMBS Black pelite unit: state, argilite and cherty argilite, timestone, dolostone and silicified timestone LOWER CAMBRIAN MURAL FORMATION: grey timestone, minor shale and argilite HADRYNIAN AND/OR CAMBRIAN MIDAS FORMATION: silistone and quartzite, minor shale and argilite HCu undivided: quartzite, silistone, argilite, shale, timestone, phylite, schist HADRYNIAN CUNNINGHAM FORMATION: limestone, minor shale, argilite and dolostone Geological Contact Fault (Known or Inferred) Placer Producing Streams Source: Struik, L.C. 1988. Geology of the Wells, Spectacle Lakes, Swift River and Cariboo Lake map areas, Cariboo Land District, British Columbis, Geological Survey of Carade, Maps 1635A, 1635A,		
HT Tregilus succession: micaceous quartzite, phylifie, schist, conglomerate HR Ramos succession: micaceous quartzite and phylifie, sandstone and undifferentiated rocks HPS Snowshoe Group undifferentiated: mainty micaceous quartzite and phylifie CARIBOO TERRANE DEVONIAN TO MISSISSIPPIAN DMG GUVET FORMATION: conglomerate, breccia, granule quartzite and state DW WAVERLY FORMATION: basatic tuff, vokcanidastics, pillow basalt, silitite OMES Black pelite unit: state, argilite and cherty argilite, limestone, dolostone and silicified limestone LOWER CAMBRIAN MURAL FORMATION: grey limestone, minor shale and argilite HADRYNIAN AND/OR CAMBRIAN MIDAS FORMATION: silistone and quartzite, minor shale and argilite HCu undivided: quartzite, silistone, argilite, shale, limestone, phylifite, schist HADRYNIAN CUNNINGHAM FORMATION: imestone, minor shale and argilite and dolostone Geological Contact Fault (Known or Inferred) Fault (Known or Inferred) Placer Producing Streams Source: Struik, L.C. 1988. Geology of the Wells, Spectacle Lakes, Swift River and Cariboo Lake map areas, Cariboo Land District, British Columbia; <i>Geological Survey of Carade, Maps</i> 1635A, 1635A,		
HR Ramos succession: micaceous quanzite and phyllite, sandstone and undilferentiated rocks HPS Snowshoe Group undifferentiated: mainly micaceous quanzite and phyllite CARIBOO TERRANE DEVONIAN TO MISSISSIPPIAN DMG GUYET FORMATION: congiomerate, braccia, granule quanzite and state DW WAVERLY FORMATION: basatic tuff, volcaniclastics, pillow basati, sittle OMBS Black pelite unit: state, argilite and cheny argilite, limestone, dolostone and silicitied limestone LOWER CAMBRIAN MURAL FORMATION: grey limestone, minor shale and argilite HADRYNIAN AND/OR CAMBRIAN MIDAS FORMATION: silistone and quanzite, minor shale and argilite HCu undivided: quanzite, silistone, argilite, shale, limestone, phyllite, schist HADRYNIAN CUNNINGHAM FORMATION: limestone, minor shale and argilite HCu undivided: quanzite, silistone, argilite, shale, limestone, phyllite, schist HADRYNIAN Geological Contact		
CARIBOO TERRANE DEVONIAN TO MISSISSIPPIAN DMG GUYET FORMATION: conglomerate, breccia, granule quanzite and state DW WAVERLY FORMATION: basatic tuff, volcanicitastics, pillow basalt, sittle OMES Black pelite unit: state, argilite and cherty argilite, limestone, dolostone and silicitied limestone LOWER CAMBRIAN ICM ICM MURAL FORMATION: grey limestone, minor shale and argilite HADRYNIAN AND/OR CAMBRIAN ICM HCU undwided: quanzite, sitistone and quanzite, minor shale and argilite HCU undwided: quanzite, sitistone, argilite, shale, limestone, phylite, schist HADRYNIAN ICC HCC CUNNINGHAM FORMATION: imestone, minor shale, argilite and dolostone Geological Contact		Ramos succession: micaceous quartzite and phyllite, sandstone and undifferentiated
DEVONIAN TO MISSISSIPPIAN DMG GUYET FORMATION: congiomerate, breccia, granule quantitie and state DW WAVERLY FORMATION: basattic tuff, volcanicitastics, pillow basalt, silitie DMBS Black pelite unit: state, argilitie and cherty argilitie, limestone, dolostone and silicitied limestone LOWER CAMBRIAN MURAL FORMATION: grey limestone, minor shale and argilitie HADRYNIAN AND/OR CAMBRIAN MIDAS FORMATION: silistone and quartitie, minor shale and argilitie HCM MIDAS FORMATION: silistone and quartitie, minor shale and argilitie HCU undivided: quartitie, silistone, argilitie, shale, limestone, phylitie, schist HADRYNIAN ECUNNINGHAM FORMATION: limestone, minor shale, argilite and dolostone HC CUNNINGHAM FORMATION: limestone, minor shale, argilite and dolostone Fault (Known or Inferred) Fault (Known or Inferred) Placer Producing Streams Placer Producing Streams Source: Struik, L.C. 1988, Geology of the Wells, Spectacle Lakes, Swift River and Cariboo Lake map areas, Cariboo Land District, British Columbic; Geological Survey of Caraade, Maps 1635A, 1635A,	HPS	
DMG GUYET FORMATION: conglomerate, breccia, granule quatzite and state DW WAVERLY FORMATION: basatic tuft, volcanidastics, pillow basalt, silitie DMB Black pelite unt: state, argitite and cherty argitite, limestone, dolostone and silicified limestone LOWER CAMBRIAN MURAL FORMATION: grey timestone, minor shale and argitite HADRYNIAN AND/OR CAMBRIAN MURAL FORMATION: sitistone and quartzite, minor shale and argitite HADRYNIAN AND/OR CAMBRIAN MIDAS FORMATION: sitistone and quartzite, minor shale and argitite HCu undivided: quartzite, sitistone, argitite, shale, limestone, phylitte, schist HADRYNIAN MIC CUNNINGHAM FORMATION: limestone, minor shale, argitite and dolostone Geological Contact Fault (Known or Inferred) Placer Sites Visited Placer Producing Streams Source: Struik, L.C. 1988, Geology of the Wells, Spectacle Lakes, Swift River and Cariboo Lake map areas, Cariboo Land District, British Columbic; Geological Survey of Caraada, Maps 1635A, 1635A,	CARIBOO	D TERRANE
WAVERLY FORMATION: basatic tuff, vokcanidastics, pillow basalt, silitie Dw WAVERLY FORMATION: basatic tuff, vokcanidastics, pillow basalt, silitie OMBS Black pelite unt: state, arglilite and cherty arglilite, limestone, dolostone and silicified limestone LOWER CAMBRIAN MURAL FORMATION: grey timestone, minor shale and arglilite HADRYNIAN AND/OR CAMBRIAN MIDAS FORMATION: silistone and quartzite, minor shale and arglilite HCu undivided: quartzite, silistone, arglilite, shale, limestone, phylitte, schist HADRYNIAN MIDAS FORMATION: silistone, arglilite, shale, limestone, phylitte, schist HADRYNIAN MIDAS FORMATION: silistone, arglilite, shale, limestone, arglilite and dolostone HADRYNIAN For Cunnning Hormatic HADRYNIAN Placer Cunnet HC Cunning Ham FORMATION: limestone, minor shale, arglilite and dolostone HADRYNIAN Fault (Known or Inferred) HAL Placer Sites Visited Placer Producing Streams Placer Producing Streams Source: Struik, LC. 1988, Geology of the Wells, Spectacle Lakes, Swift River and Cariboo Lake map areas, Cariboo Land District, British Columbia; <i>Geological Survey of Carada</i> , Maps 1635A, 1635A,		
OMBS Black pelite unit: state, argilitie and cherty argilitie, limestone, dolostone and silicified limestone LOWER CAMBRIAN MURAL FORMATION: grey limestone, minor shale and argilitie HADRYNIAN AND/OR CAMBRIAN MIDAS FORMATION: siltstone and quartitie, minor shale and argilitie HCM MIDAS FORMATION: siltstone, argilitie, shale, ilmestone, phylitie, schist HADRYNIAN MIDAS FORMATION: siltstone, argilite, shale, limestone, phylite, schist HADRYNIAN CUNNINGHAM FORMATION: limestone, minor shale, argilite and dolostone Geological Contact Fault (Known or Inferred) Fault Placer Sites Visited Placer Producing Streams Source: Struik, L.C. 1988. Geology of the Wells, Spectacle Lakes, Swift River and Cariboo Lake map areas, Cariboo Land District, British Columbia; Geological Survey of Caraade, Maps 1635A, 1635A,		
LOWER CAMBRIAN ICM MURAL FORMATION: grey timestone, minor shale and argittle HADRYNIAN AND/OR CAMBRIAN HCM MIDAS FORMATION: sitistone and quartitie, minor shale and argittle HCM MIDAS FORMATION: sitistone and quartitie, minor shale and argittle HCU undivided: quartitie, sitistone, argittle, shale, timestone, phylitte, schist HADRYNIAN CUNNINGHAM FORMATION: timestone, minor shale, argittle and dolostone Geological Contact Fault (Known or Inferred) Image: Start Fault Placer Sites Visited Placer Producing Streams Source: Struik, L.C. 1988. Geology of the Wells, Spectacle Lakes, Swift River and Cariboo Lake map areas, Cariboo Land District, British Columbia; Geological Survey of Carada, Maps 1635A, 1635A,		
ICM MURAL FORMATION: grey limestone, minor shale and argilite HADRYNIAN AND/OR CAMBRIAN MIDAS FORMATION: siltstone and quartzite, minor shale and argilite IHCM MIDAS FORMATION: siltstone, argilite, shale, limestone, phylite, schist HADRYNIAN Undivided: quartzite, siltstone, argilite, shale, limestone, phylite, schist HADRYNIAN E IHC CUNNINGHAM FORMATION: limestone, minor shale, argilite and dolostone Geological Contact Fault (Known or Inferred) Placer Sites Visited Placer Producing Streams Source: Struik, L.C. 1988, Geology of the Wells, Spectacle Lakes, Swift River and Carboo Lake map areas, Carboo Land District, British Columbia; <i>Geological Survey of Canada</i> , Maps 1635A, 1636A,		limestone
HCM MIDAS FORMATION: siltstone and quartzite, minor shale and argiilite HCu undivided: quartzite, siltstone, argiilite, shale, limestone, phyllite, schist HADRYNIAN CUNNINGHAM FORMATION: limestone, minor shale, argiilite and dolostone Geological Contact Fault (Known or Inferred) AAA Thrust Fault Placer Sites Visited Placer Producing Streams Source: Struik, L.C. 1988, Geology of the Wells, Spectacle Lakes, Swift River and Carboo Lake map areas, Carboo Lake, Jasya 1635A,		
HCu undivided: quartzite, siltstone, argillite, shale, limestone, phyllite, schist HADRYNIAN CUNNINGHAM FORMATION: limestone, minor shale, argillite and dolostone Geological Contact Fault (Known or Inferred) Flacer Sites Visited Placer Producing Streams Source: Struik, L.C. 1988, Geology of the Wells, Spectacle Lakes, Swift River and Cariboo Lake map areas, Cariboo Lakes, Maps 1635A, 1636A,		
HC CUNNINGHAM FORMATION: limestone, minor shale, argillite and dolostone Geological Contact Fault (Known or Inferred) Image: An and the state of		
 Fault (Known or Inferred) Thrust Fault Placer Sites Visited Placer Producing Streams Source: Struik, L.C. 1988. Geology of the Wells, Spectacle Lakes, Switt River and Cariboo Lake map areas, Cariboo Land District, British Columbia; <i>Geological Survey of Canada</i>, Maps 1635A, 1636A, 		
 Thrust Fault Placer Sites Visited Placer Producing Streams Source: Struik, L.C. 1988, Geology of the Wells, Spectacle Lakes, Switt River and Carboo Lake map areas, Cariboo Land District, British Columbia; <i>Geological Survey of Canada</i>, Maps 1635A, 1636A, 		Geological Contact
 Placer Sites Visited Placer Producing Streams Source: Struik, L.C. 1988. Geology of the Wells, Spectacle Lakes, Swift River and Cariboo Lake map areas, Cariboo Land District, British Columbia; Geological Survey of Canada, Maps 1635A, 1636A, 		Fault (Known or Inferred)
 Placer Producing Streams Source: Struik, L.C. 1988. Geology of the Wells, Spectacle Lakes, Switt River and Cariboo Lake map areas, Cariboo Land District, British Columbia; <i>Geological Survey of Canada</i>, Maps 1635A, 1636A, 		Thrust Fault
Source: Struik, L.C. 1988. Geology of the Wells, Spectacle Lakes, Switt River and Cariboo Lake map areas, Cariboo Land District, British Columbia; <i>Geological Survey of Canada</i> , Maps 1635A, 1636A,		Placer Sites Visited
River and Cariboo Lake map areas, Cariboo Land District, British Columbia; Geological Survey of Canada, Maps 1635A, 1636A,	\sim	Placer Producing Streams
	Source:	River and Cariboo Lake map areas, Cariboo Land District, British Columbia; Geological Survey of Canada, Maps 1635A, 1636A,

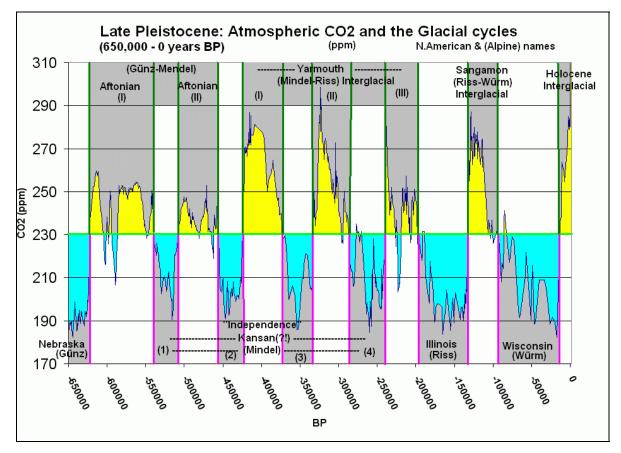
From west to east or younger to older the Barkerville Terrane across the Property consists of four distinct stratified metasedimentary rock successions (Hadrynian and Paleozoic) belonging to the Snowshoe Group. The regional description of the successions and intrusive rock occurrences are given in Table 12 (Struik, 1988). The Quesnel Terrane rocks located immediately west of the Eureka Fault are made up of Upper Triassic phyllite, argillite, siltstone, limestone, quartzite, greenstone and tuff.

Table 6. Barkerville Terrane Bedrock Successions

Succession	Description			
Ramos (HR)	Interbedded micaceous quartzite and phyllite with subordinate siltite, amphibolite,			
	marble and tuff. The succession is characterized by olive-colored coarse-grained			
	quartzite layers. The tuff and siltite layers appear high in the succession as opposed			
	to the lower-seated tuff and amphibolite occurrences.			
Harveys Ridge	Black and grey siltite, phyllite, fine-grained micaceous quartzite, limestone and			
(PHR)	minor dolostone. The limestone and dolostone is confined to the upper part of the			
	succession and has not been identified on the Property.			
Keithley (HKE)	Olive and olive-grey phyllite, fine-grained quartzite and orthoquartzite. The phyllite			
	and quartzite beds are commonly thinly layered and indistinct. The phyllite layers			
	easily weather to olive and light brown colors.			
Intrusive Rocks	Intrusive rocks in the Barkerville Terrane are mainly diorite, subordinate rhyolite,			
(P i)	and rhyodacite. The diorite forms sills 0.4 to 30 m thick and are most abundant			
	along the western margin of the Barkerville Terranes. The sills are isoclinally			
	folded and predate Jurassic tectonism. The rhyolite and dacite occur sporadically			
	throughout the terrane as 1 to 10 m thick sills and dykes. The sills and dykes			
	predate and postdate folding. Some are reported to be highly ankeritized and			
	susceptible to brown weathering.			

The rocks exposed along the Wingdam Mine portal and throughout the main decline consist of dark grey to black-colored siltite and phyllite belonging to the Harveys Ridge Succession. The section of bedrock exposed by the incline that extends to the Deep Lead Channel breakthrough point is made up of greyish tan-olive phyllite of the Ramos Succession. The bedrock across the channel floor changes back to dark grey siltite and phyllite layers of the Harveys Ridge Succession. The contact between the successions at this change is an unconformity controlled along a northeast-striking steeply-dipping fault that parallels the south channel rim. The fault forms a 3-meter wide vertical clay-filled gouge mainly composed of weathered felsic minerals and less quartz. The gouge was also drilled and identified by drill hole CVG-10-10 at a location about 50 m upstream or northeast from the channel breakthrough point. Similar clay-filled gouges up to 15 cm wide were identified in bedrock along Drift CC1. The narrow gouges crosscut bedrock foliation strike along shallow angles and parallel dip. Bedrock foliation exposed along the underground workings strike northwest (308-degrees) and dip moderately to steeply towards the west.

6.3 Surficial Geology


The Lightning Creek valley at Wingdam is filled from top to bottom by a sequence of recent, postglacial, glacial and interglacial sediments. The sediment types or units that comprise each

sequence are listed in Table 7. The chronological details for each unit are based on ice core CO_2 measurements and interpretive glacial cycle events shown in Figure 13 (Ruen, 2005). Sonic drillhole log CVG-10-10 (Table 8) was used as a type section for the depth interval and thickness of each sedimentological unit. The thickness of each unit significantly varies throughout the length of the valley. The drill-hole section is located about 80 m upstream or northeast from Drift CC1 and adjacent to the CGA historic Fence Line C (see Section 9.4, Figure 16).

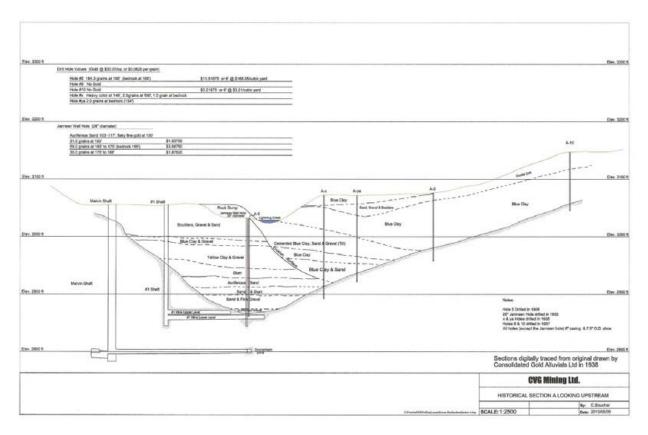
Unit	Sediment	Depth	Thickness	Sediment	Chronology
	Туре	Interval	(m)	Sequence	(ybp)
1	Fluvial	0-4.57	4.57	Recent	Holocene
	Gravel & Sand				(10,000-present)
2	Debris Flow	4.57-7.01	2.44	Postglacial	Late Fraser to early Holocene
					(12,500-10,000)
3a	Lodgement Till	7.01-11.89	4.88	Glacial	Fraser (Wisconsin)
3b	Glaciolacustrine	11.89-46.63	34.74		(95,000-12,500)
4a	Fluvial Sand	46.63-47.55	0.92	Interglacial	Sangamon
4b	Fluvial Gravel	47.55-49.07	1.52		(132,500-95,000)
Total	Thickness		49.07		

Table 7. List of Sedimentological Units

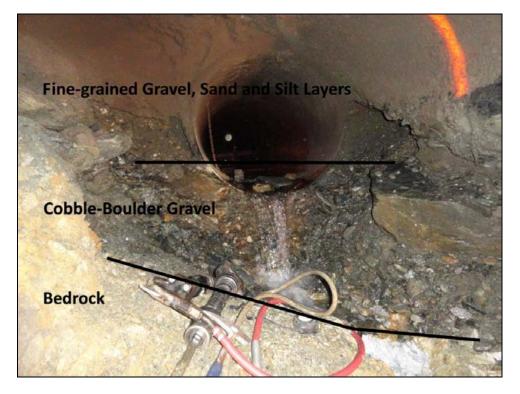
Figure 11. Glacial and Interglacial Cycles

Unit 4b is a Sangamon interglacial fluvial gravel layer that typically fines upwards. The base of the unit forms an auriferous cobble/boulder-rich lag deposit proximal to bedrock. Unit 4b is dominated by sand layers and commonly contain alternating layers or lenses of pebble gravel and silt. Some of the sand layers are pebble and cobble-rich. Unit 3b consists of water-saturated glaciolacustrine silt and mud layers that accumulated in an ice-dammed lake environment during the onset of the Fraser glaciation. The lower part of the unit is silt-rich and the upper part is clay-rich. The clay-rich layers are overlain by a glacial diamicton or lodgement till (Unit 3a) that was deposited beneath the Cordilleran ice sheet during the Fraser glacial period. The upper part of the lodgement till unit was eroded by large volumes of meltwaters during the early Holocene warming period and the ablation of the Cordilleran ice sheet. The clay-rich gravels or debris flow facies (Unit 2) accumulated during this warming period. The recent fluvial gravel and sand layers in Unit 1 are Holocene remnants of sediments transported and deposited along the length of the Lightning Creek valley floor by a wandering stream.

Table 8: CVG-10-10 Surficial Geology Type Section


Hole ID: CVG-10-10 Start Date: July-27-10 End Date: August-04-10			Collar Elev: 937 m	Location:		5877346.84			
			Total Hole Depth: 53.9 m UTM I Drill Type: Sonic Azimuth: N/A		UTM Nad 83	Zone 10			
					N/A				
	site from July			Core Diameter: 101.6mm	Dip:	90			
	D. Cedergren								
	: (m)	Length (m)	Rock Type	Core Description			Recovery		
From	То	,							
0.00	2.44	2.44	Sand	Brown f.g sand, contains significant roots and o	rown f.g sand, contains significant roots and other plant matter.				
2.44	4.57	2.13	Sand/Gravel	Brownish grey c.g sand and f-m.g gravels; Avg g pebbles and cobbles up to 8cm; coarsest at btm			100		
4.57	7.01	2.44	Gravel/Clay		Dk bluish grey gravel w/~50% clay; moderately hard; mostly v.c.g sand to fine gravel - rare pebbles over 3cm; moderately well consolidated. Gradational with underlying clay over ~.5m.				
7.01	11.89	4.88	Till	Med brownish grey till, ~80% clay with 20% sand up to 10cm; very poorly sorted with up to 50% / ~2cm; hard; Gradational lower contact (.5m).	-		100		
11.89	14.33	2.44	Clay	Brownish grey, homogenous clay; No sand or gr competent; Micaceous; Gradational over ~1m.	avels; Moderat	ely soft but	120		
14.33	22.56	8.23	Clay	Same clay as above with colour change to yellow	ame clay as above with colour change to yellowish brown.				
22.56	26.21	3.66	Clay		rownish grey, homogenous clay similar to above; Moderately hard and nore compact that above clays. Gradational over ~1m.				
26.21	28.04	1.83	Clay	Yellowish brown clay with common distorted b wide); moderately soft; Gradational over ~.5m.	100				
28.04	30.78	2.74	Clay	Dk grey clay as above; moderately soft; Homogenous; gradually becomes silty in lowermost portion. Gradational over ~1m					
30.78	32.92	2.13	Silt/Clay	Silty clay to uncosolidated silt, normally bedded; Top 40cm more cohesive due to clay content; "slum" material, very wet and very soft; lower contact gradational over ~10cm.					
32.92	38.40	5.49	Sand	Dk grey, m-v.f.g weakly consolidated sand; well sorted, fining upwards; moderatley well packed, soft, dry; Undefined lower contact - end of run, core loss?					
38.40	38.71	0.30	Gravel	Med grained wash gravels; 30% pebbles avg ~3cm; 70% granules and v.c.g sand avg 1-3mm; no cobbles, max pebble size 6cm; Typically well rounded; poorly sorted; sharp horiz lower contact.					
38.71	42.67	3.96	Sand	Brownish grey weakly consolidated sand; med t coarsens up hole; gradational lower contact ove		ned, overall	80		
42.67	44.50	1.83	Sand/Silt	Dk grey, soft weakly consolidated v.f.g sand to	silt.		90		
44.50	46.63	2.13	Silt	Continued fining downward to pure 'slum'; dk g very wet and very soft.	rey, unconsolio	dated silt;	90		
46.63	47.55	0.91	Sand	Med grey v.f.g sand; moderately soft, v weakly consolidated; Sharp horiz basal contact.					
47.55	49.07	1.52	Gravel	Dk brown coarse sandy gravel; up to 10% clay; Cobbles are ~10%, up to 10cm diameter.					
49.07	49.99	0.91	Schist	Weathered, clayey Schist; It bluish grey; some gravels incorporated into clay - from drilling process? Minor foliation on fragments.					
49.99	50.90	0.91	Gravel	Sloughed gravels from 156-161'?; Similar but with less silt and clay; typically flat ang pebbles, avg 2cm.					
50.90	53.95	3.05	Schist	Weathered, clay rich Schist; It bluish grey; sharp, 60 deg TCA basal contact.			100		
				<u>E.O.H</u>					

7.0 Deposit Types


CVG Mining Ltd. is currently exploring a placer gold deposit at the Wingdam Property (the Property). The deposit consists of a buried paleochannel called the Deep Lead Channel. Significant gold concentrations along the channel are mainly confined to the gravel-bedrock interface situated 51 m below the Lightning Creek valley floor. The gravel and other alluvium overlying the bedrock were deposited by an ancient fluvial stream that predates the Fraser glacial period or 110,000 ybp. The gold-enriched zone exposed along Drift CC1 reaches up to 1.20 m thick. The zone consists of a boulder/cobble-rich fluvial gravel layer up to 0.90 m thick and 0.30 m of underlying fractured bedrock. Historic drill logs show that significant gold concentrations are confined to a bedrock-proximal zone measuring 1.83 m thick. Results from past drill programs and seismic surveys indicates that the channel bedrock floor varies from 6 to 39 meters wide. The lateral extent of the channel parallels Lightning Creek along a southwest paleoflow direction and is fully covered by a 2,430-meter distance along the length of the Property.

A geological model for the buried Deep Lead Channel (Auriferous Gravel) and the sequence of overlying sediments is illustrated in Figure 14. The auriferous boulder/cobble-rich gravel layer that overlies the bedrock floor is shown on Plate 1. Some of the fine-grained sediments on the plate are obscured by shotcrete. Plate 2 illustrates the fine-grained sediment layers more clearly and shows an example of a discrete sample location (CC1-8) along the gold-enriched zone. The sand and silt layers are referred as *slum* when water-saturated. The silt layer and underlying sediments shown on Plate 2 are thawed and the overlying pebble/cobble-rich sand layers are frozen. All of the sediments overlying the coarse-grained gravel layer are barren or contain low gold concentrations (<1.0 g/m³) along longitudinal cobble clusters. Both Plates 1 and 2 are views looking northwest across the channel width.

Figure 12. Historical Section 'A' Looking Upstream (NE)

Plate 1. Deep Lead Channel Auriferous Gravel Layer

Plate 2. Overlying Fine-Grained Sediment Layers

The bedrock along the Deep Lead Channel is made up of black phyllite and siltstone layers belonging to the Harveys Ridge Succession and light grey to tan-colored phyllite of the Ramos Succession. The contact between the successions at this location is an unconformity and part of a 3 m wide fault gouge that parallels rimrock along the south side of the channel. The typical foliation pattern in bedrock underlying the auriferous gravel layer is shown on Plate 3 looking northwest across the width of the channel. The paleoflow direction of the overlying gravel layer trends southwest along the channel length. The gold concentrations identified along the channel bedrock floor are mainly confined to narrow clay-filled gouges and fractures that reach up to 15 cm wide (Plates 4 and 5). Plates 4 and 5 are views looking down on the bedrock floor showing a gouge example cross-cutting foliation along a shallow angle.

Plate 3. Bedrock Foliation and Paleoflow Direction

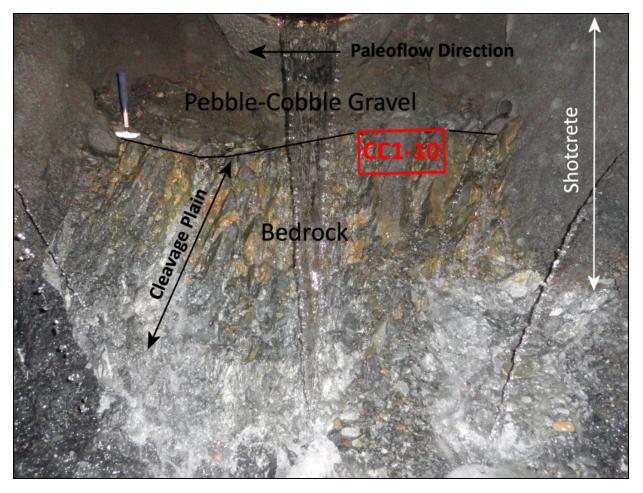


Plate 4. Clay-Filled Bedrock Gouge (15 cm wide)

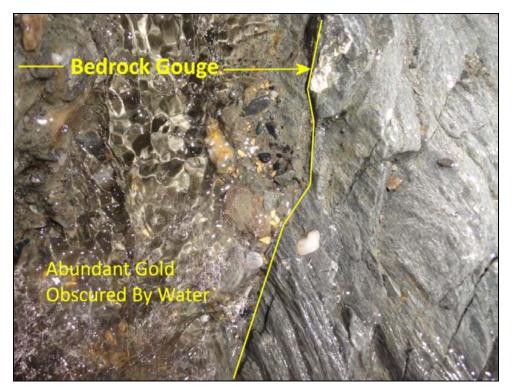
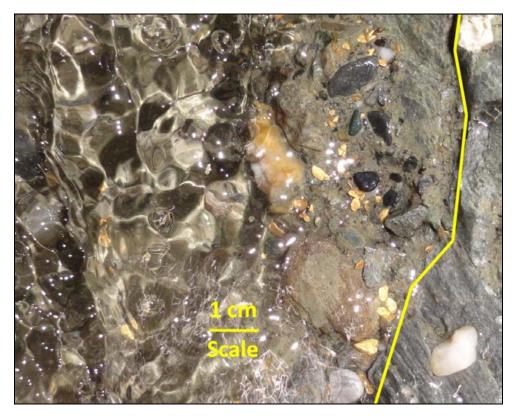



Plate 5. Gold-Enriched Bedrock Gouge

8.0 Exploration

CVG Mining Ltd. (CVG) carried out the following exploration programs since acquiring the Wingdam Property (the Property) in April 2009:

- 1. Underground de-watering and mine rehabilitation program (2009-2012).
- 2. Hydrological survey performed by Clifton Associates Ltd (2009).
- 3. Seismic refraction and reflection survey and ground geophysical surveys that included induced polarization and magnetometer measurements completed by Frontier Geosciences Ltd (2009).
- 4. Sonic core-recovery drill program (2010) involving 14 holes (see Section 10).
- 5. Drift sampling across the width of the Deep Lead Channel (2012).

The seismic reflection data acquired by Frontier was medium to low quality due to vibrational interference during the time of data acquisition. Lines SL-1, 2, and 3 do not provide any information on reflectors or structures in the area and could not be reliably used in interpretation. Resistivity line RL-1 contained the most useful information showing three distinct geo-electric layers; 1) the shallow conductive layer at approximately 15-20 m was interpreted to be the boundary between the Fraser lodgement till unit and underlying lacustrine clay unit, 2) the highly resistive and chargeable body that extends to a depth of 50 m was interpreted to be clay and underlying Tertiary conglomerate, 3) the deepest layer is highly resistive with low chargeability and interpreted as Precambrian metasedimentary bedrock that surrounds the most recent sediments. There is also a zone between 180-220 m with low resistivity and variable chargeability that spans throughout the till, clay, gravel and bedrock. The zone was interpreted as a resistive layer of clay and conglomerate bounded by an upper conductive till layer and lower conductive bedrock exhibiting shearing and fracturing. The resistivity and IP sections for RL-2 and RL-3 are similar to RL-1 (Pare & Hillman, 2009). The ground resistivity profiles are provided in Appendix C.

9.0 2013 Geophysical Surveys

A Resistivity/IP survey and Ground Magnetic survey was carried out on mineral tenure 552451 on March 16-17. A total of 825 line-meters, equally distributed between three 275 meter lines, was produced for each geophysical method employed in the survey.

9.0.1 Logistics and Personnel

The survey was carried out by a six man crew. Five crewmembers, including the team foreman, were employed by GroundTruth Exploration Inc, based out of Dawson City, YT, Y0B 1G0. One crewmember was supplied by CVG as a general helper.

There was an average of five feet of snow on the ground during the time of the survey. Access to the survey area was obtained off of Highway 26 via snowmobile: One Ski-Doo Tundra II, two

Yamaha Bravo 250's and one Polaris Indy 340 snowmobile with attached skimmers. Access was obtained on a one kilometre trail combining an old cat trail and the frozen creek itself. The trail head is located on Highway 26, 750m downstream of the turnoff to the Wingdam Mine site.

9.1 Resistivity/Induced Polarization Survey

9.1.1 Equipment

The Resistivity/IP survey utilized a Super Sting R8, automatic Resistivity and Induced Polarization system from Advanced Geosciences Inc. of Austin, Texas. The system is configured with a passive cable containing 56 electrodes at 5 meter spacing, a central switching system, and the receiver.

The SuperSting receiver is an eight channel instrument, allowing measurements on up to eight electrodes to proceed simultaneously. This enables rapid data acquisition, allowing for high dense data and thus detailed resistivity and IP profiles.

The central switching system is used to address the array of electrodes. This switching is accomplished using a multiplexer that directs the signals from any of the field electrodes to the eight input channels of the receiver. A system of high voltage relays in the central switching system allows the transmitter to utilise any pair of electrodes for current injection. The switching system is controlled via a command file programmed ino the SuperSting receiver. This survey utilizes both Inverse Schlumberger and pole-dipole in order to maximize the signal to noise ratio and depth of the profile.

The objective of electrical surveying is to determine the subsurface resistivity distribution by making detailed measurements along survey lines laid out on the ground surface. From these measurements, the true resistivity of the subsurface can be estimated. Ground resistivity is a function of geological parameters such as sulphide, clay mineral, and fluid content, as well as the porosity, grain shape/size and saturation of material being measured.

In addition to resistivity measurements, Induced Polarization readings were collected simultaneously on lines WDL006-WDL008. These measurements were discontinued after these traverses due to excessive noise levels. This measurement records the degree to which the earth materials tend to retain an apparent voltage after removal of the transmitted voltage. The effect is termed Induced Polarization (IP) and has its origins in the electrolytic nature of groundwater and the conductive nature of certain minerals. The SuperSting R8 measures the IP effect in the time domain by determining the residual decay voltage after the current is switched off. The time domain unit of measurement of chargeability is milliseconds. The IP effect is caused by two different mechanisms; 'membrane' and the 'electrode' polarization effects. The membrane polarization effect is largely caused by conductive minerals such as sulphides in the rock and (usually) to a lesser extent by graphite. This effect is the basis for application of the IP method in surveys for the detection of metallic minerals, such as disseminated sulphides.

9.1.2 Objective

The 2013 Resistivity/IP survey completed at the Wingdam property focussed on measuring and identifying the following subsurface characteristics:

- Structurally controlled geological features such as **faults and contacts**
- Geochemical features such as hydrothermal alteration
- Depth/profile of bedrock-overburden contact
- Sedimentary stratification
- Water table
- Prior cultural disturbances

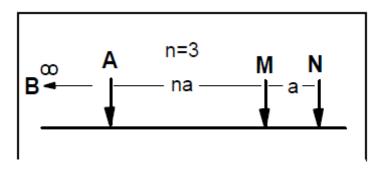
The objective of the survey is to identify potential structural sources of the lode gold deposit(s) responsible for the rich Lead Gold Channel located within Lightning Creek.

The geophysical survey, which is the subject of this report, was carried out on March 10-15, 2013, on mineral tenure 552451. A total of 1,650 line-meters was produced for each geophysical method employed in the survey. The measuring depth of the 2D resistivity/IP survey is approximately 80m. The pole-dipole/inverse schlumberger resistivity/IP survey was completed over six lines at optimal offset of 100m with 5 meter electrode spacing.

9.1.3 Data Acquisition

The field procedure consisted of driving 56 steel electrodes into the ground at 5 metre intervals along a traverse line. The six 275m traverse lines were parallel and spaced at 100m. The passive cable is connected to the electrodes via stainless steel electrode takeouts. The cable system consisted of four cables of 14 electrode take-outs each, connected to the switch box and controlled via the SuperSting command file. The switch box allows the electrodes to be in either standby, current or measuring potential modes. The SuperSting system is able to make simultaneous measurements on eight electrode pairs, as any given pair are designated as current electrodes.

For each survey line, the electrodes were sequenced to measure the pole-dipole and inverted Schlumberger arrays.


The pole-dipole configuration has good sensitivity to lateral variations in resistivity and chargeability, while maintaining a better signal to noise ratio than the dipole-dipole array and greater depth at 80m. It was measured with 5 meter electrode spacing, maximum AB/MN set to 11 and the expansion factor maxed out, also at 11 (figure 13). The pole-dipole array uses an "infinity electrode." This is the B electrode and is placed along length with and three times the total length of the traverse line. WDL005 – WDL010 all utilized a common infinity electrode placed 825m southeast of and in-line with traverse WDL007.

The inverted Schlumberger configuration provides very good signal to noise ratio with depth, and is ideal for vertical depth sounding and detecting horizontal features such as stratigraphy and

bedrock contact. It was measured with 5 meter electrode spacing, maximum separation set to 20 and the maximum dipole set to 3. This allowed for accurate reading down to a depth of 55 meters.

All traverses were surveyed for location and elevation with a horizontal accuracy equal to or better than 50cm and vertical accuracy equal to or better than 150cm. This data was gathered using an Ashtec PtoMark 100 GPS equipped with an external antenna reading GPS and GLONASS satellite constellations, fully independent L1 code and wavelength phase measurements, with WAAS/EGNOS/MSAS enabled.

Figure 13: Pole-Dipole Electrode Array Configuration

9.1.4 Data Processing

All data was processed using AGI's Earth Imager 2D software.

Resistivity surveys measure injected current (I) through transmitting electrodes and potential difference (voltage V) between two receiving electrodes. Measured current and voltage together with electrode geometry (K) may be converted into apparent resistivity (ρ a). Normalized voltage by current (V/I) and apparent resistivity ρ a are data in the inversion. V/I and ρ a data are equivalent quantities that can be transformed back and forth with the help of a geometric factor K.

The goal of resistivity survey is to image a subsurface resistivity distribution which is closely correlated with subsurface geology. The subsurface resistivity distribution (or its reciprocal electrical conductivity) is the model parameter in the inversion. The model is the partial differential equation that governs the relationship between data and model parameters.

Forward modeling is defined as the process of predicting the data on the basis of the known distribution of model parameter, electrode configuration and model. It is a mapping from the model space to the data space. Forward modeling creates synthetic data sets. Forward modeling is also known as forward simulation, forward problem, and forward solution.

Inversion is defined as the process of determining the estimates of the model parameter on the basis of the data and the model. Inversion is a mapping from data space to model space, and it

reconstructs the subsurface resistivity distribution from measured voltage and current data. Inversion is also known as inverse modeling, inverse simulation, and inverse problem.

The resistivity data inversion proceeds as follows.

1) A starting resistivity model is constructed based on either the average apparent resistivity, or apparent resistivity distribution, or user assumption, or a-priori knowledge of subsurface resistivity distribution.

2) A virtual survey (forward modeling) is carried out for a predicted data set over the starting model. The initial root mean squared (RMS) error at the zero-th iteration may be calculated at this step.

3) Solve a linearized inverse problem based on the current model and data misfit for a model update ($\Delta \mathbf{m}$).

4) Update the resistivity model using a formula like this: $\mathbf{m}i+1 = \mathbf{m}i + \Delta \mathbf{m}$. The model parameter **m** consists of electrical conductivity of all model blocks in the finite difference or finite element mesh. The symbol *i* is the iteration number.

5) Run a forward modeling (virtual survey) based on the updated model for an updated predicted data set.

6) Calculate a new RMS error between the predicted data and the measured data.

7) If any of inversion stop criteria is satisfied, stop the inversion. Otherwise, repeat steps 3-7.

(Advanced Geoscience Inc, 2008)

9.2 Ground Based Magnetic Survey

9.2.1 Equipment

The ground based magnetic survey was collected using a GEM Systems GSM-19T Proton Magnetometer as a roving unit, and a second GEM Systems GSM-19T Proton Magnetometer as a base station.

9.2.2 Objective

The magnetic survey was collected to use as supporting evidence in the interpretation of the resistivity and IP sections, and to help identify any buried cultural material that may affect the survey quality.

9.2.3 Data Acquisition

All traverse lines were surveyed with the magnetometer in "walk" mode collecting a reading every second.

The base station was established in an area of low magnetic variation, and took readings every 5 seconds.

The datum was set to 56500 nT

CVG Mining Ltd & Omineca Mining and Metals Ltd: Wingdam Property; 2013 Resistivity Ground Survey

Digital results of the magnetometer survey accompany this report in .csv format. All points are projected to NAD83, UTM Zone 10N

Field Definitions:	
Х -	UTM Easting
Y -	UTM Northing
Elevation -	Elevation
nT -	Uncorrected Field Unit Reading (Unit: Nano-Tesla)
sq -	Noise Reading
sat -	Number of Satellites Available to Magnetometer GPS
time -	Time of Magnetometer Reading
nT_cor -	Corrected Field Unit Reading (Unit: Nano-Tesla)
cor-meth -	Correction Method

9.2.4 Data Processing

All data was downloaded onto a computer in it's raw format using GEM Systems proprietary software: GemLink 5.2. The raw data was normalized to 56500 nT and a diurnal correction was performed using the base station. Profiles were created along each traverse.

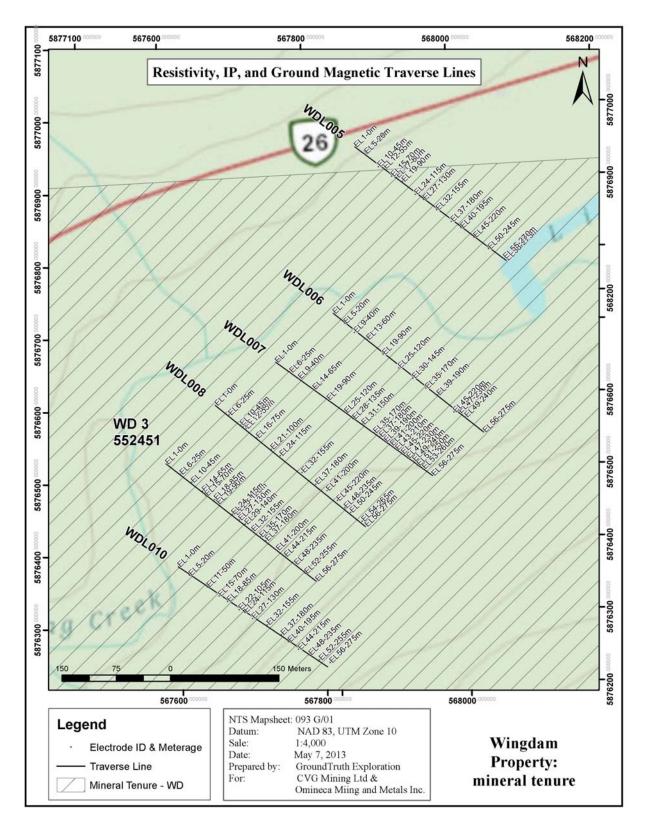
10.0 Results

Figure 14 shows the location of the traverse lines in relation to topography, cultural features, and the mineral tenure. Traverse line names are labelled, as are the electrode IDs and associated meterage along each traverse. All figures are referenced to the location map by traverse ID and electrode ID. All raw data is included with the hardcopy of the report in Ascii txt files on a DVD disc.

Appendix C contains inversions for all six traverses. There are two inversions per line: A resistivity inversion for the inverse schlumberger array, and one for the pole-dipole array with a line graph of the magnetic survey imposed above it for correlation.

Traverse WDL005 ran down from the highway to Lightning Creek on the north side of the creek, While WDL006 to WDL010 ran away from the creek on the south side of the creek.

WDL005 shows a low resistivity layer at surface with a high resistivity layer extending to depth and from electrodes 1 to 40. The low resistivity is associated with overburden, while the higher resistivity is associated with the bedrock, truncated at around electrode 40 as it dips into the deeper valley paleochannel system. There is a vertical feature at electrode 18 that is concurrent with a mag high spike. This may represent a fracture or zone of mineral enrichment.


WDL006 to 010 show good structural correlation with each other. Three main features are common and traceable between these 5 lines:

- 1. A dip in the bedrock/overburden contact, characterized by the contact between the resistivity low associated with bedrock (<30 Ohm-m) and the resistivity high associated with variable sedimentary layers. This may indicate the presence of a paleochannel.
- 2. A significant magnetic low is commonly associated with the northern rim of the supposed paleochannel.
- 3. A significant magnetic high is found within the supposed paleo-channel and may represent deposited "black sands."

Little structural information is obtained about the bedrock aside from the profile. This is due to the contact being at or near the depth limit of our survey,

Both the inverse schlumberger and pole-dipole arrays have good correlation with each other, indicating accurate data collection.

Figure 14: Map of Traverse Lines and Meterage

11.0 Recommendations

Ground-truthing along the traverse lines in the form of drilling or excavating would provide invaluable evidence to support the results of the inversion and aid in broader scale interpolation of features between traverse lines.

In addition, another resistivity/IP survey could be done, with longer lines traversing the entire valley as well as the valley sides, in order to read deeper and capture more of the bedrock properties and structure. This would aid in locating hard-rock targets.

12.0 References

Advanced Geosciences, Inc. (2008): Instruction Manual for EarthImager 2D, Version 2.3.0

Boucher, C. (2010): Historical Drill Fence Lines digitally traced from Consolidated Gold Alluvials Ltd. (CGA) original drawings (1938); Digital work completed for CVG Mining Ltd.

Cedergren, D. (2010): 2010 Sonic Drill Logs; Logs completed for CVG Mining Ltd.

Dykes, M.D. (2003): Status Report, Wingdam Placer Gold Mine, Cariboo Mining District; Report prepared for Cariboo Goldfields Inc. (formerly Gold Ridge Resources Ltd.), Lessee/Operator Rembrandt Gold Mines Ltd.

Garrow, T. (2010): Wingdam Gold Property NI 43-101 Technical Report Historic Review; Report prepared for CVG Mining Ltd.

Gilmore, W.F. (1986): Summary of Preliminary Engineering Report on the Wingdam Placer Property; Wright Engineering Limited, Project 1481-100; Report prepared for Gold Ridge Resources Ltd.

Gunning, D.R. (1993): Report on the Wingdam Project, Cariboo Mining District, British Columbia, Canada; Report prepared for Gold Ridge Resources Ltd.

Hodder, S. and Leroux, D.C. (2010): Report on the Wingdam Gold Property, Quesnel Area, British Columbia, Canada; A.C.A Howe International Limited; Report prepared for CVG Mining Ltd.

Holland, S.S. (1950): Placer Gold Production of British Columbia; British Columbia Ministry of Energy, Mines and Petroleum Resources; Bulletin No. 28.

Monger, J.W.H. and Price, R.A. (1979): Geodynamic evolution of the Canadian Cordilleraprogress and problems; Canadian Journal of Earth Sciences, v. 16, p. 770-791.

Pare, A. and Hillman, H. (2009): Report on Seismic Refraction and Reflection, Resistivity, Induced Polarization and Magnetometer Surveying, Wingdam and Fraser Canyon Projects, CVG Mining Ltd & Omineca Mining and Metals Ltd: Wingdam Property; 2013 Resistivity Ground Survey

Quesnel Area, BC; Frontier Geosciences Ltd., Project FGI-1107; Report prepared for CVG Mining Ltd.

Reid, R.E. (2010): Historic Review of the Wingdam Deep Channel Alluvial Gold Deposit; Report prepared for CVG Mining Ltd.

Ruen, T. (2005): Ice Core data for Atmospheric CO2 related to the glacial cycles, copied from <u>en:Image:Atmospheric_CO2_with_glaciers_cycles.gif</u>

Struik, L.C. (1988): Structural Geology of the Cariboo Gold Mining District; Geological Survey of Canada, Memoir 421.

13.0 Report Author Certificate of Qualifications

I, Chad Cote, currently residing at Lot 15 Homestead Subdivision, Dawson City, YT, do hereby certify that:

I studied Physical Geography and GIS at the University of Victoria and graduated with a B.Sc. degree in 2010.

I have been working as a mineral exploration field technician for GroundTruth Exploration since 2010.

My experience related to the content of the Technical Report includes:

- Continuous employment over the past 3 years involving Mineral Exploration throughout the Yukon Territory.
- Seasonal employment over the past 6 years involving Mineral Exploration throughout the Yukon Territory.
- Instrument specific training provided by Advanced Geoscience Inc.

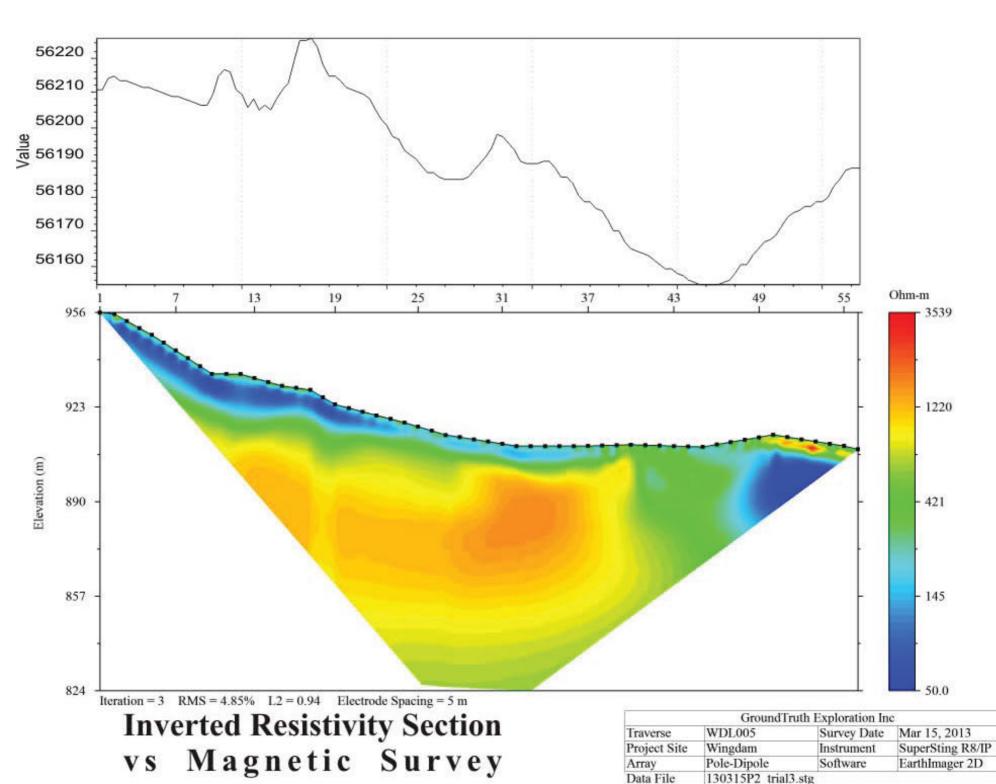
I prepared the Technical Report titled "2013 Geophysical Report on the Wingdam Property" and dated April 10, 2013. I supervised the entire 2013 Geophysical survey on behalf of CVG Mining Ltd. (CVG) and Omineca Mining and Metals Ltd. (OMM).

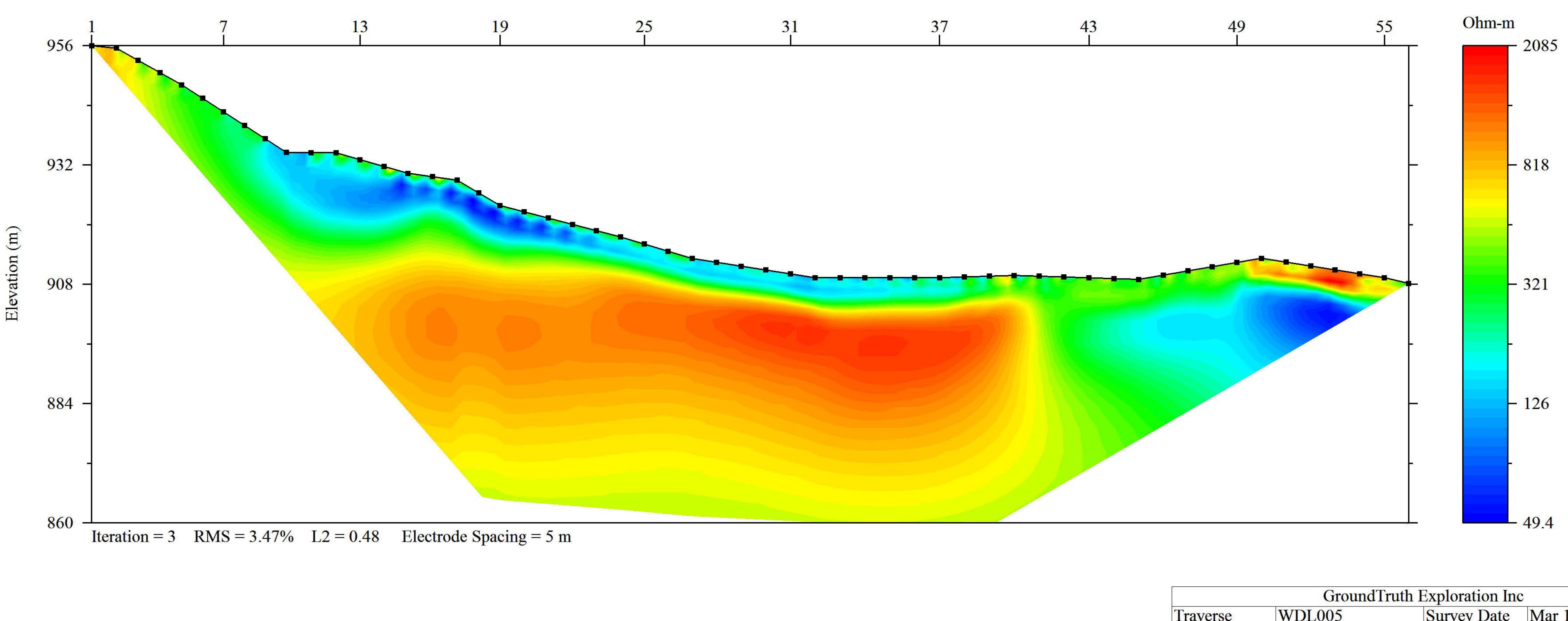
I have no controlling or monetary interests involving CVG or OMM (the Company Issuers), or the Wingdam Property (the Property). In my opinion of all relevant facts, there are no circumstances that could have interfered with my judgment regarding the content of the Technical Report.

Dated this10th day of April, 2013 in Dawson City, Y.T.

Chad Cote, B.Sc.

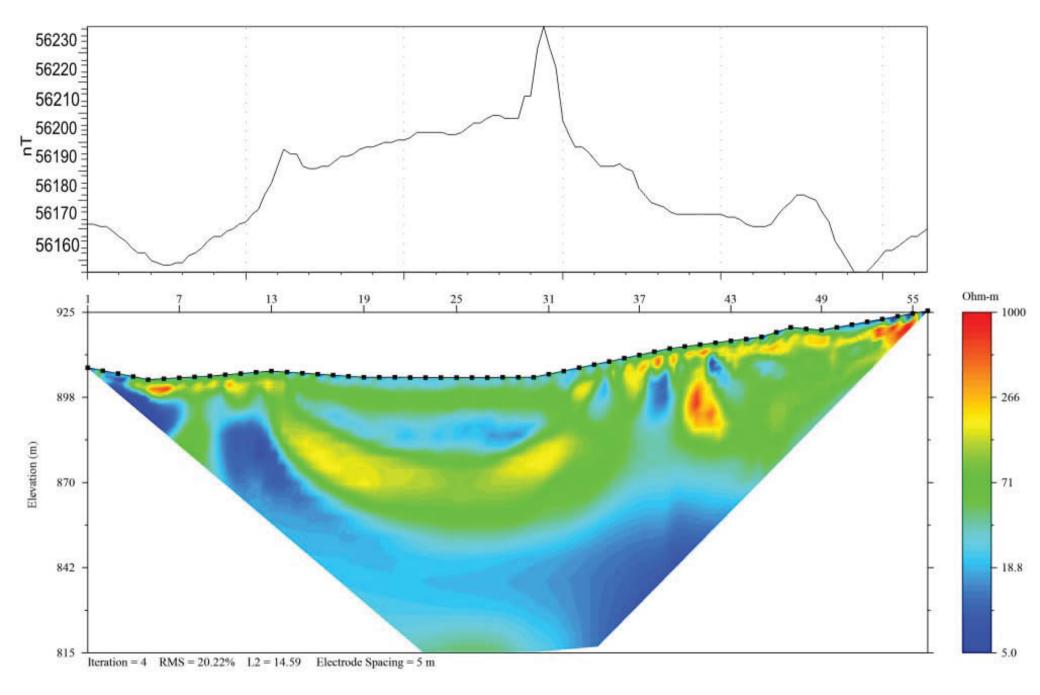
The following work was carried out on the Wingdam Project for the purpose of Mineral Exploration b	etwe	en Februar	y 25 and			Co	ost Pro Rat	ed for	Cos	t Pro Rated for
April 10 2013 for the purpose of placer exploration							Placer Cla	ims	Μ	lineral Claims
GroundTruth Exploration Inc.			I. Fage - April	10,	2013	E	vent # 543	9927	Eve	nt # 54439926
Wingdam Placer Project: Resistivity/IP/Magnetic Survey										
Cost Breakdown:										
Prep/Mobilization/Demobilization Expenses Incurred:										
Summary: Mobe-Crew of 4 mobilized from Dawson, YI on Feb 25 with GMC 3500 and arrived in Quespel, BC on evening of Feb 27. One GroundTruth employee mobilized from Vancouver, BC and										
Program layout and Logistics 8h * \$75/hour			\$ 600.00							
4 man days prep * \$350			\$ 1,400.00			1				
Mobe/Demobe wages for Crew of 5: 28 man days * \$350/day wages + \$50/ day food			\$ 11,200.00							
Travel Accom Mobe/Demobe: Hotel 4 nights * 2 rooms @\$150/night			\$ 1,200.00							
Truck mileage: 4800 km return * \$0.40			\$ 1,920.00							
Truck Rental: 3 days each way * \$150			\$ 900.00							
			Ş 500.00	\$	5,740.00	ć		l,100.00	ć	1,640.00
Total Prep/Mobilization Cost: \$17,220 Split 2/3 FC, 1/3 WD				Ş	5,740.00	Ş	4	,100.00	Ş	1,640.00
Survey Expense Feb 28 - March 10/13:										
Summary: A total of 9 IP/Resistivity profiles + coincident ground mag was collected on the Wingdam Property										
A GroundTruth crew of 2 prepped lines on south Wingdam grid on March 10th. A GT crew of 5 ran survey daily from March 11th - 17th/13. 2 meals/day + Accomodations were covered by client.										
6 profiles were surveyed on South Wingdam (Mar 10-15/13), 3 profiles surveyed on North Wingdam (Mar 16 - 17/13).										
Quoted Daily Charge Rates:										
Wages:										
2 Geophysical Operators (IP/Mag/GPS) * \$450/day	\$	900.00								
3 Field Assistants * \$350/day	\$	1,050.00								
Food/Hotel/Transport:										
Food: Crew of 5 * \$10/day (GT brought lunches only)	\$ \$	50.00								
Accommodations (for GT Crew of 5): Covered by Client	\$ \$	-								
Truck: \$150/day + mileage	Ş	175.00								
Survey Equipment:										
IP/Resistivity Meter : Supersting 8 Channel meter w/cables, electrodes	\$	500.00								
Magnetometer: GSM 19T Proton Magnetometer walk and base mag (reduced rate, not used all days: \$150/day)	\$	150.00								
Precision GPS : Ashtech Promark 100 differential GPS	\$ \$	75.00 50.00		-						
Laptop w/Inversion and Mag processing software for nightly download and review Iridium Sat Phone	\$ \$	35.00								
Chainsaw	\$	50.00								
Radios \$5/day * 5	\$	25.00								
Total daily cost to operate survey:	\$	3,060.00								
March 11th to 17th (7 full survey days)			\$ 21,420.00							
March 10, Crew of 2 line prep: Wages (\$700), Food (\$100), Truck (\$175) Total Wingdam Survey Cost: March 10 -17, 2013			\$ 975.00	\$	22,395.00	\$	15	,996.43	\$	6,398.57
Post Survey Data processing/Interpretation/Report:										
Data processing: 16h * \$75/hr	<u> </u>		\$ 1,200.00	_		ł				
Report Preparation10h * \$75/H			\$ 750.00			l				
Printing, USB copy, Postage of Report			\$ 75.00							
Total data processing/interpretation and report preparation Cost Estimate:				\$	2,025.00	\$	1	,446.43	\$	578.57
Total Invoice for Wingdam Survey:				\$	30,160.00	l				
John Bot : logistics, snowmobile rental, equipment rental, road clearing, labour				\$	2,955.99	\$	2	2,111.42	\$	844.57
			TOTAL:			\$	23	,654.28	\$	9,461.71


Appendix B: Tenure Summary


WINGDAM MINERAL CLAIMS (14 TOTAL)

Tenure Number	Claim Name	Owner	Tenure Type	Tenure Sub Type	Good To Date	Status	Area (ha)
675246	LIGHTS ON	233461 (100%)	Mineral	Claim	2015/jun/30	GOOD	272.0211
675223	TRAILER CAMP	233461 (100%)	Mineral	Claim	2015/jun/30	GOOD	19.4309
675446	ULC	233461 (100%)	Mineral	Claim	2015/jun/30	GOOD	116.6194
675244	WD - M	233461 (100%)	Mineral	Claim	2015/jun/30	GOOD	19.4309
675264	WD - M	233461 (100%)	Mineral	Claim	2015/jun/30	GOOD	485.988
552450	WD 2	233461 (100%)	Mineral	Claim	2015/jun/30	GOOD	97.201
552451	WD 3	233461 (100%)	Mineral	Claim	2015/jun/30	GOOD	233.327
552453	WD 4	233461 (100%)	Mineral	Claim	2015/jun/30	GOOD	427.61
675303	WD -M	233461 (100%)	Mineral	Claim	2015/jun/30	GOOD	155.4629
675243	WD-M	233461 (100%)	Mineral	Claim	2015/jun/30	GOOD	388.7622
683807	WD-M 5	233461 (100%)	Mineral	Claim	2015/jun/30	GOOD	174.8672
684765	WD-M 5	233461 (100%)	Mineral	Claim	2015/jun/30	GOOD	97.1638
837909	WD-M SE	233461 (100%)	Mineral	Claim	2015/jun/30	GOOD	174.9993
552424	WINGDAM MINE	233461 (100%)	Mineral	Claim	2015/jun/30	GOOD	38.878
			ΤΟΤΑ	L ha WING	DAM MINERAL	CLAIMS	2702

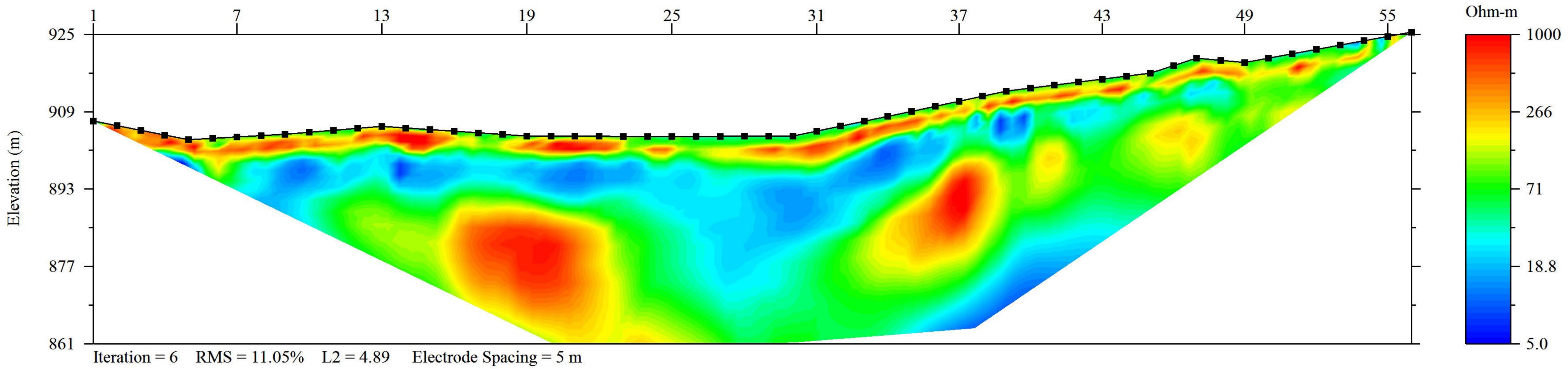
CVG Mining Ltd & Omineca Mining and Metals Ltd: Wingdam Property; 2013 Resistivity Ground Survey


Appendix C: Geophysical Inversions and Magnetic Data

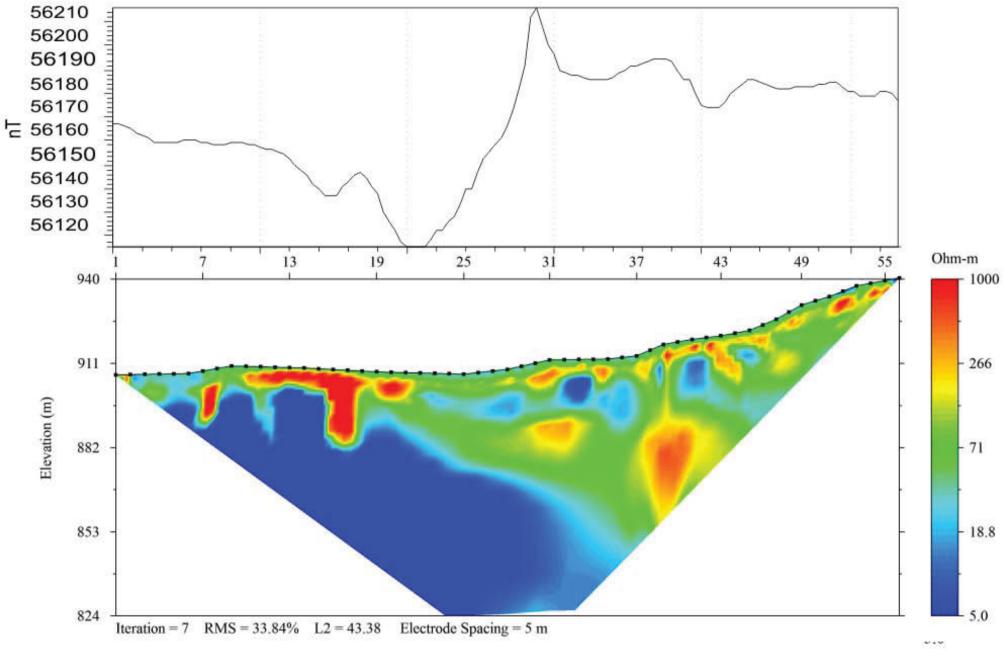

Traverse
Project S
Array
Data Fil

GroundTruth Exploration Inc			
e	WDL005	Survey Date	Mar 15, 2013
Site	Wingdam	Instrument	SuperSting R8/IP
	Inv. Schlumberger	Software	EarthImager 2D
le	130315S1_trial1.stg	5	

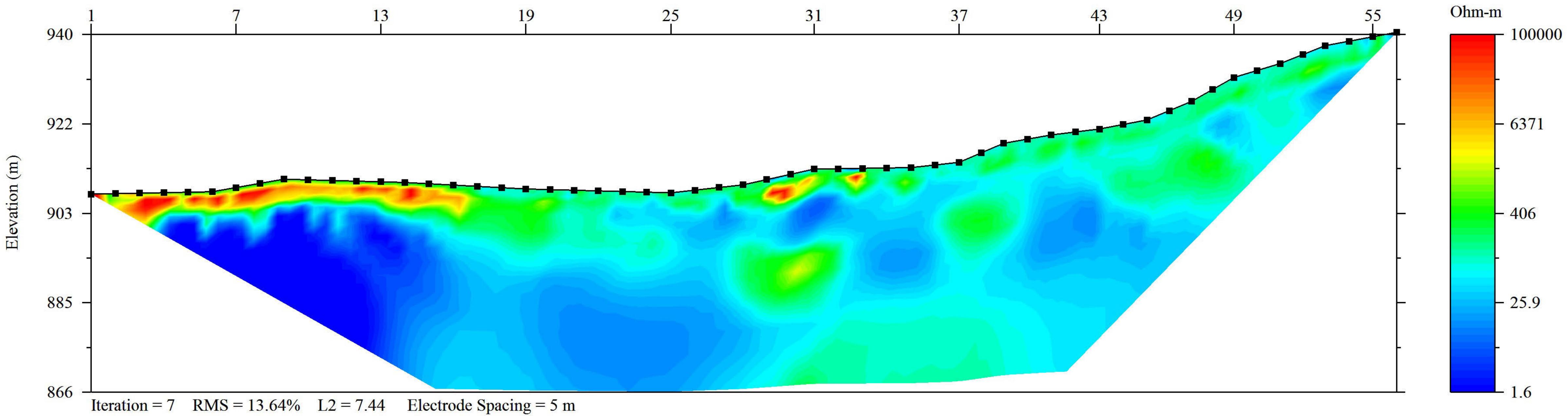
Inverted Resistivity Section vs Magnetic Survey


	GroundTr	uth Exploration In-	c
Traverse	WDL006	Survey Date	Mar 11, 2013
Project Site	Wingdam	Instrument	SuperSting R8/IP
Array	Pole-Dipole	Software	EarthImager 2D
Data File	130311P5 trial7	stg	

Inverted IP Section

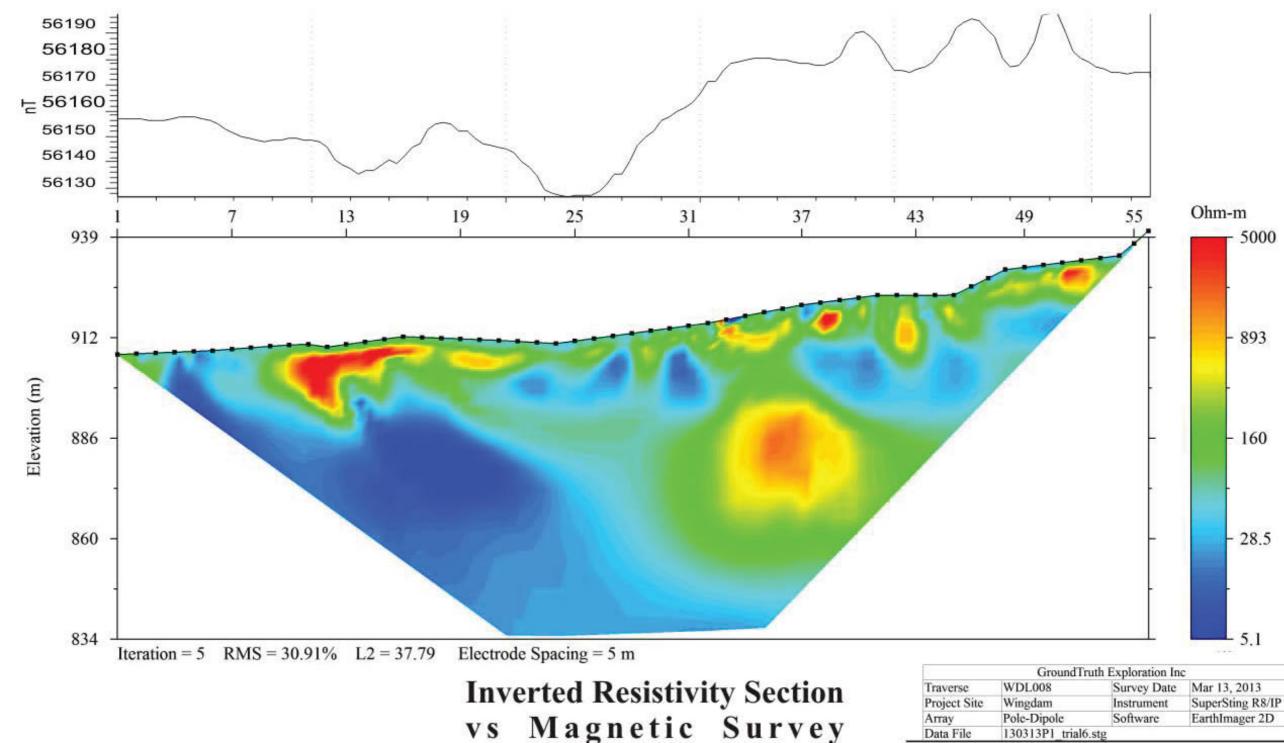

Traverse
Project 8
Array
Data Fil

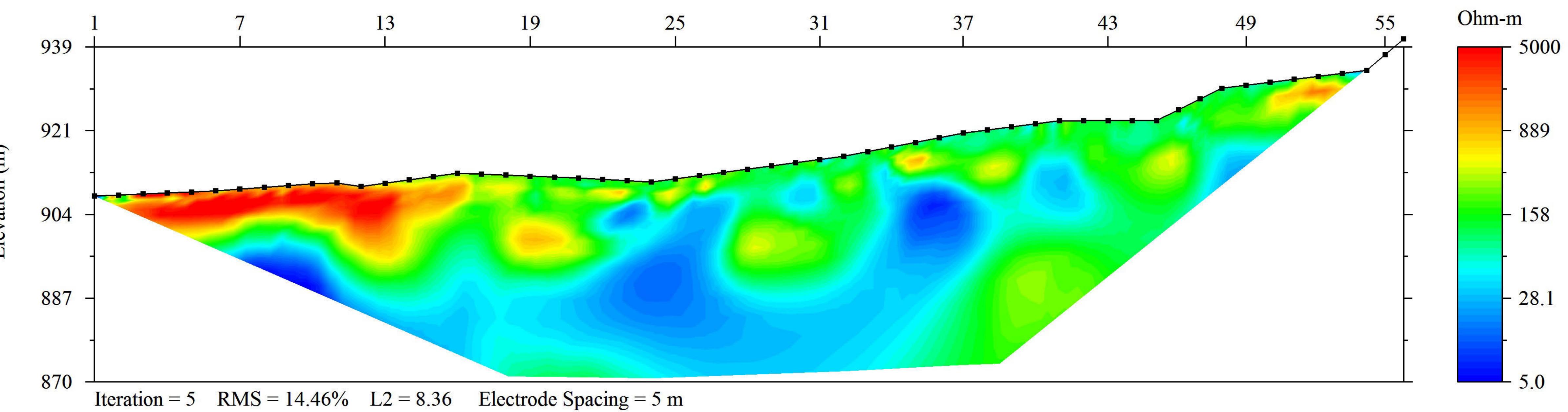
	GroundTruth Exploration Inc			
Traverse	WDL006	Survey Date	Mar 11, 2013	
Project Site	Wingdam	Instrument	SuperSting R8/IP	
Array	Inv. Schlumberger	Software	EarthImager 2D	
Data File	130311S1_trial5.stg	5		


Traverse
Project
Array
Data Fil

	GroundTruth Exploration Inc			
e	WDL006	Survey Date	Mar 11, 2013	
Site	Wingdam	Instrument	SuperSting R8/IP	
	Inv. Schlumberger	Software	EarthImager 2D	
le	130311S1_trial3.stg			

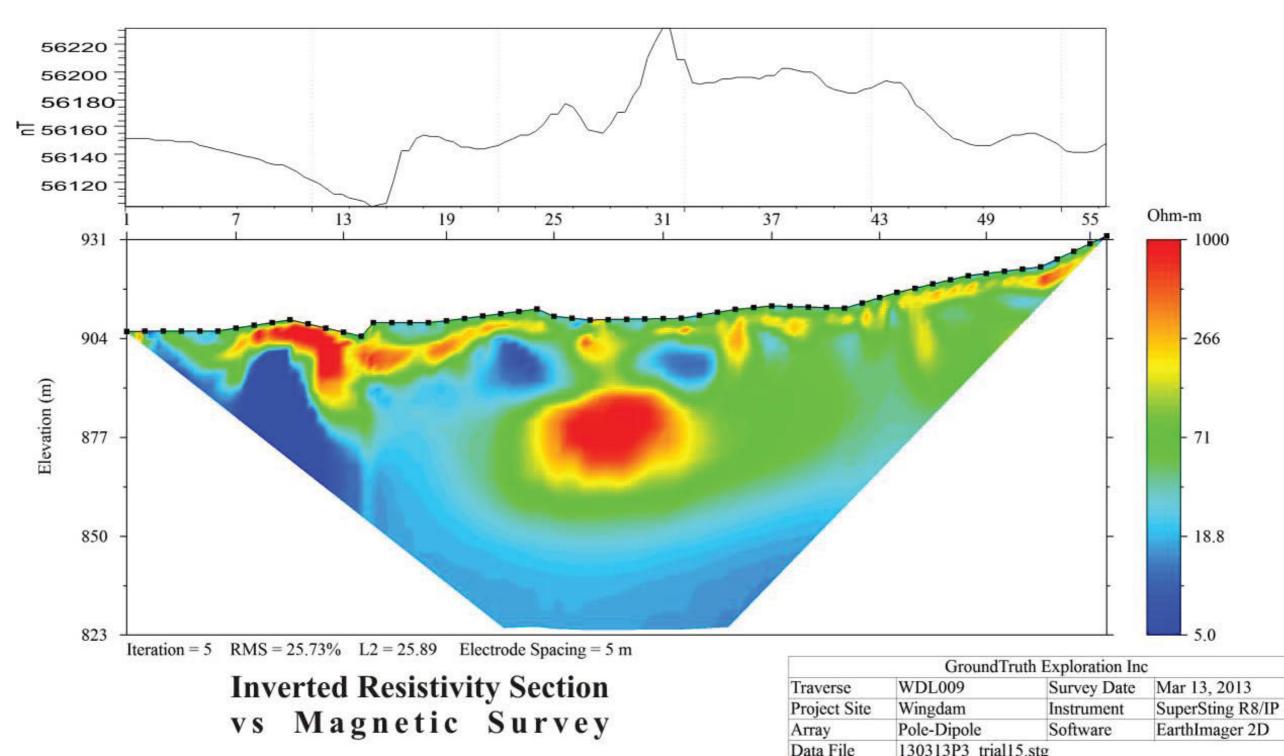
Inverted Resistivity Section vs Magnetic Survey

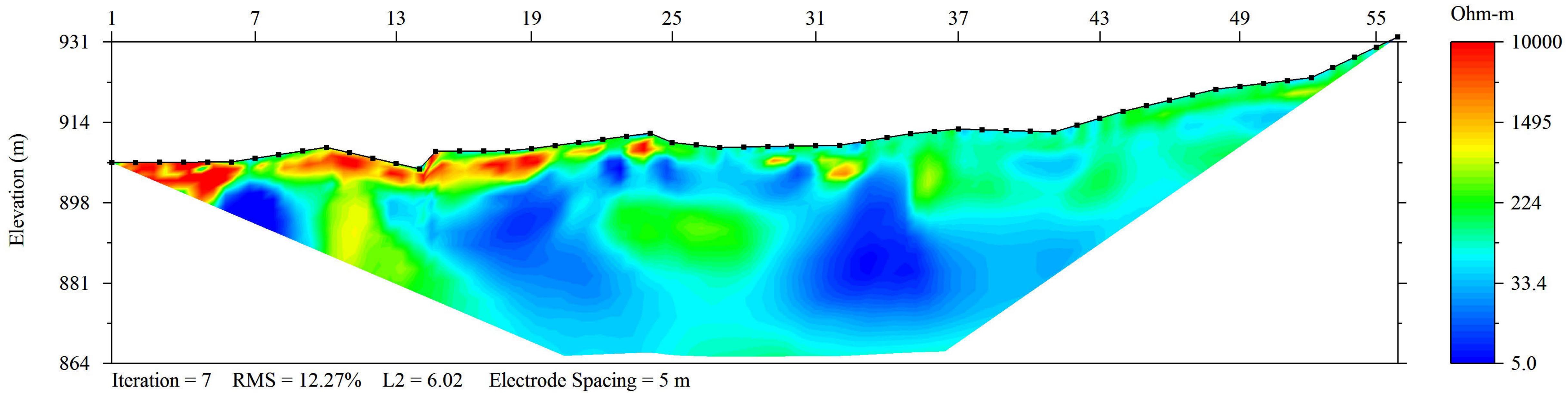

	GroundTr	uth Exploration Inc	3
Traverse	WDL007	Survey Date	Mar 12, 2013
Project Site	Wingdam	Instrument	SuperSting R8/IP
Array	Pole-Dipole	Software	EarthImager 2D
Data File	130312P1 trial8	stg	

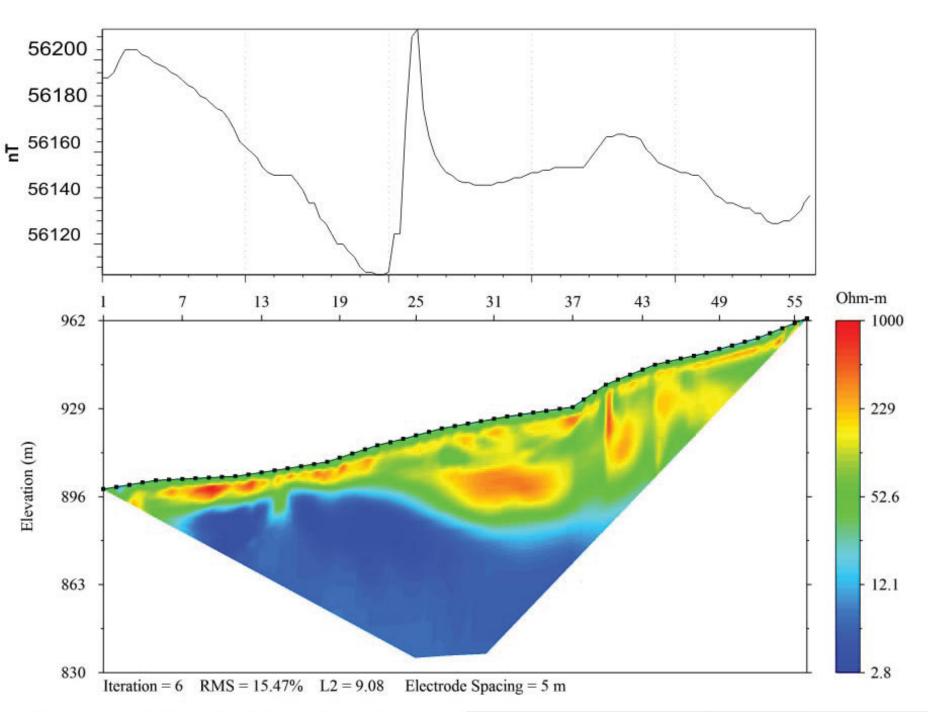


Traverse
Project
Array
Data Fil

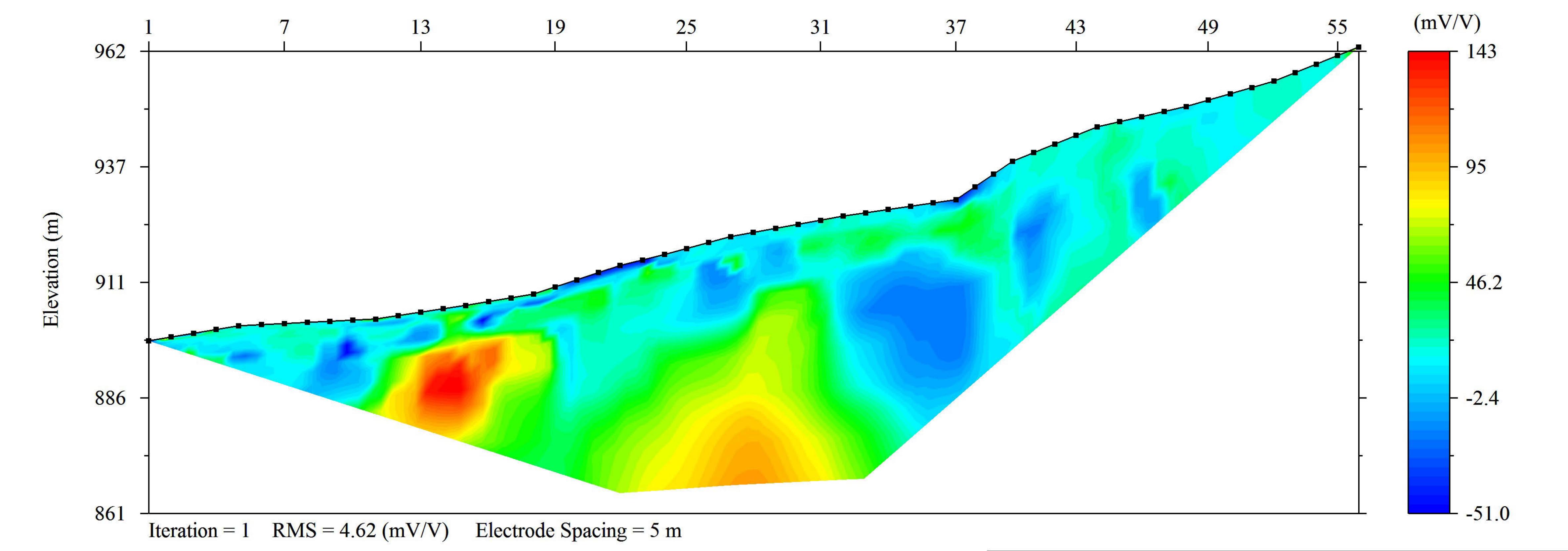
Č.....


GroundTruth Exploration Inc					
e WDL007 Survey Date			Mar 12, 2013		
Site	Wingdam	Instrument	SuperSting R8/IP		
	Inv. Schlumberger	Software	EarthImager 2D		
le	130312S1_trial3.stg				

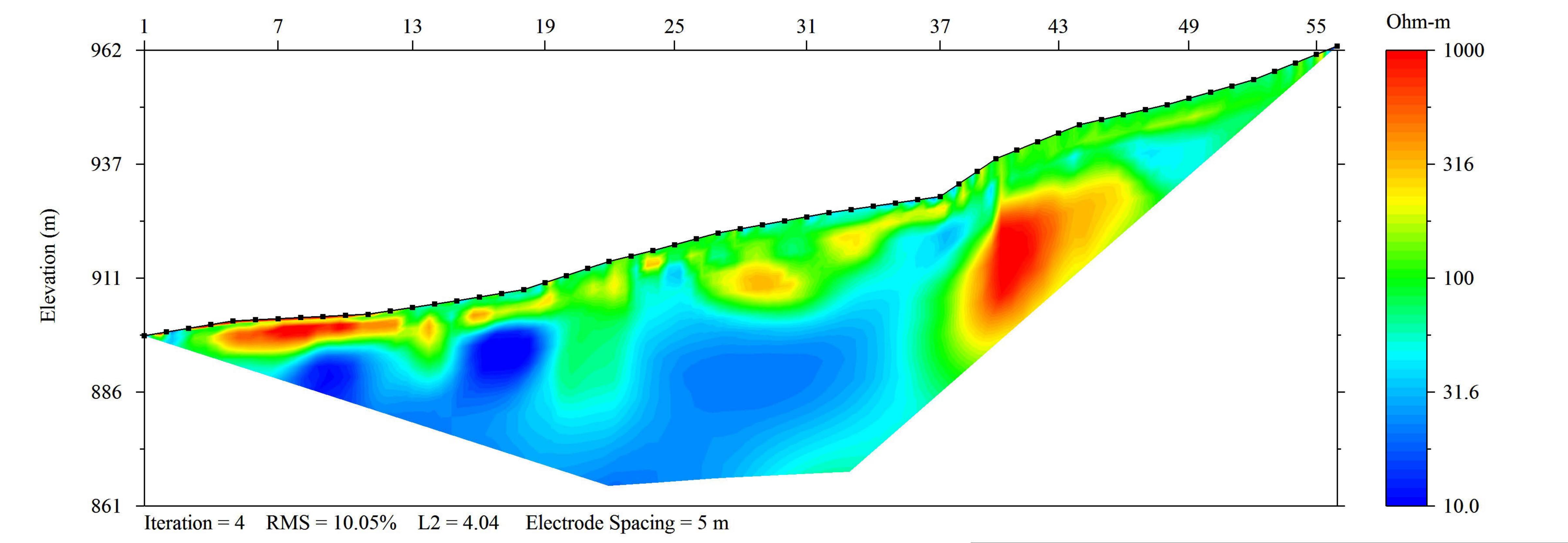



Elevation (m)

GroundTruth Exploration Inc					
Traverse	WDL008	Survey Date	Mar 13, 2013		
Project Site	Wingdam	Instrument	SuperSting R8/IP		
Array	Inv. Schlumberger	Software	EarthImager 2D		
Data File	130313S1_trial4.stg				



GroundTruth Exploration Inc				
Traverse	WDL009	Survey Date	Mar 13, 2013	
Project Site	Wingdam	Instrument	SuperSting R8/IP	
Array	Inv. Schlumberger	Software	EarthImager 2D	
Data File	130313S2_trial3.stg			


Inverted Resistivity Section vs Magnetic Survey

GroundTruth Exploration Inc				
Traverse	WDL010	Survey Date	Mar 14, 2013	
Project Site	Wingdam	Instrument	SuperSting R8/IP	
Array	Pole-Dipole	Software	EarthImager 2D	
Data File	130314P1 trial3	stg		

Inverted IP Section

GroundTruth Exploration Inc					
Traverse	WDL010	Survey Date	Mar 14, 2013		
Project Site	Wingdam	Instrument	SuperSting R8/IP		
Array	Inv. Schlumberger	Software	EarthImager 2D		
Data File	130314S3_trial7.stg	÷ 1			

GroundTruth Exploration Inc					
Traverse	WDL010	Survey Date	Mar 14, 2013		
Project Site	Wingdam	Instrument	SuperSting R8/IP		
Array	Inv. Schlumberger	Software	EarthImager 2D		
Data File	130314S3_trial5.stg				