2012 TECHNICAL ASSESSMENT REPORT ON THE SAMPLING AND HISTORICAL DRILLCORE RE-ASSAY

Skeena Mining Division, British Columbia

NTS 103H/14 53 46' 00" N/129 29' 0" W

Event #:

Tenure #'s:

 $614704, 614706, 614707, 614711, 614712, 614713, 614723, 614725, 614726, \\614743, 614744, 614763, 614783, 614785, 831072, 833758, 835213, 835215, \\835216, 835217, 835225, 939586, 939587, 1013539 \& 1013774$

Prepared for:

Winrock Resources Ltd Vancouver, BC

Prepared by:

Richard Beck, VP Exploration and Development

&

Anastasia Ledwon, B.Sc., P.Geo UTM Exploration Services Ltd. Smithers, BC

January 2013

BC Geological Survey Assessment Report 34128

TABLE OF CONTENTS

1.Summary	4
2. Introduction and Terms of Reference	4
3. Property Description and Location	5
3.1 Accessibility and Infrastructure	5
3.2 Mineral Tenure Information	7
3.3 Physiography and Climate	10
4. History	10
5. Geological Setting	11
5.1 Regional Geology	11
5.2 Local Geology	12
6. Exploration	14
6.2 Historical Core Sampling	17
6.2 Rock Sampling	18
6.3 Rock Geochemistry	18
7. Sampling	18
7.1 Sampling Method and Approach	18
7.2 Sample Preparation, Analyses, and Security	19
7.3 Data Verification	19
7.4 Results	19
8. Interpretation and Conclusions	19
8.1 Packsack Rock Samples	19
8.2 Horsefly showing – drill core re-assay	21
9. Recommendations	35
10. Statement of Costs	37
11 References	39

12. Statement of Qualifications	40
Appendix I: Assay Certificates	42
Appendix II: Lab Methodologies	59
Appendix III: Core Photos	64
Appendix IV: Rock Sample Photos	101
Appendix V: Miscellaneous Field Photos	113
Appendix VI: Field Notes	123
TABLE OF FIGURES	
Figure 1. Property Location Map	
Figure 2. Mineral Tenure Map (50k).	
Figur e 3. Min eral Tenure Map (20k).	
Figure 4. Regional Geology Map	
Figure 5. Locations of Interest.	
Figure 6. Historic Horsefly DDH Locations.	
Figure 7. Assay Comparisons of Copper % for DDH 95HF-4: 1995 vs 2012	
Figure 8. Assay Comparisons of Copper % for DDH 95HF-5: 1995 vs 2012	
Figure 9. Assay Comparisons of Copper % for DDH 95HF-6: 1995 vs 2012	
Figure 10. Assay Comparisons of Copper % for DDH 95HF-7: 1995 vs 2012 Figure 11. Assay Comparisons of Copper % for DDH 95HF-8: 1995 vs 2012	
Figure 12. Corridors of Mineralization Within DDH 95HF-4.	
Figure 13. Corridors of Mineralization Within DDH 95HF-5	
Figure 14. Corridors of Mineralization Within DDH 95HF-6	
Figure 15. Corridors of Mineralization Within DDH 95HF-8.	
Figure 16. Packsack Property Shear Locations Map.	
TABLE OF TABLES	
Table 1. Mineral Tenure Information.	
Table 2. Points of Interest	
Table 3. Significant Rock Assay Results from Packsack	
Table 4. DDH Location and Survey Data	
Table 5. Significant Assay Data.	22

1.SUMMARY

In October of 2012, Winrock Resources Ltd of Vancouver, BC contracted UTM Exploration Services Ltd of Smithers, BC to conduct a rock sampling program and reconnaissance sampling program on the Packsack property, southwest of Kitimat, BC. The program targeted two main areas within the claim boundaries. As well, UTM Exploration Services personnel utilized the supplied helicopter to make several reconnaissance field stops on the property to note favourable outcroppings, alteration extension, future access points, and any historical findings.

Areas of historical interest and historical assay success were targeted in the hopes of finding future zones of interest; the rock sampling work targeted the Packsack MINfile corridor on the west of the property claims while the re-assay of historical drillcore targeted the Horsefly MINfile corridor on the east of the property claims. Reconnaissance work covered the entire property in efforts of locating areas of continued interest.

The property is located approximately 60km southwest of Kitimat, BC and consists of 25 mineral claims. Exploration included rock sampling and drill core re-assaying as well as minor reconnaissance field work.

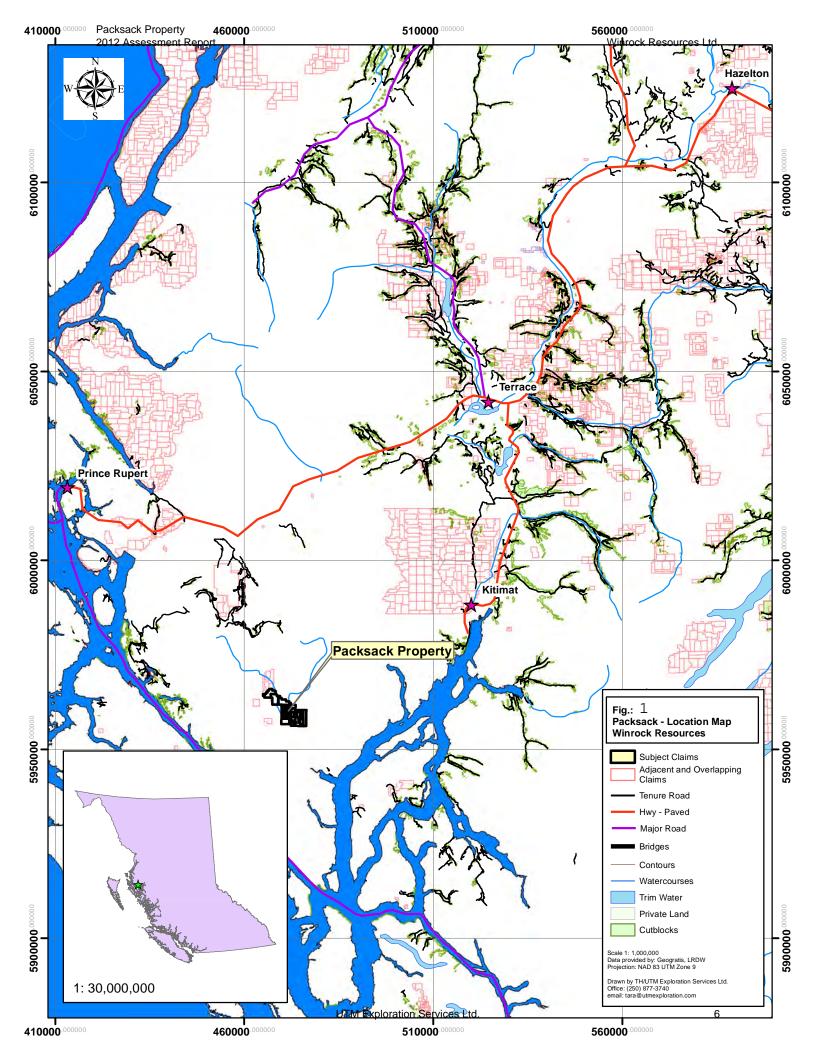
The property is underlain my Middle Devonian metavolcanic rocks comprising a complex interbedded sequence of calcareous, intermediate to felsic volcaniclastic, sedimentary and minor volcanic rocks. Foliations strike in a northerly direction with an average of 170° and a steep westerly dip ranging from 60° to 85° .

The Packsack Property remains true to the above geological description and structural measurements. Noted within these metamorphic, chlorite-altered, moderately to strongly mineralized rocks were a number of boudined massive white quartz veins.

The Horsefly property also remains true to the geological description; however, it is this area of the property that exhibits a 20-30m wide zone of sericite-quartz-chlorite-pyrite alteration. It was the 1995 drilling that better outlined this zone in the subsurface. It was noted in 1995 that zone had a strike length of 90 meters and is open along strike and down dip. Re-analysis of the data, visual inspection of the property and re-assaying of the core illustrates that this is true and probably to a greater extent than intimated in the historical work.

2. Introduction and Terms of Reference

This report borrows/quotes from historical assessment reports of the area as noted in the References section.

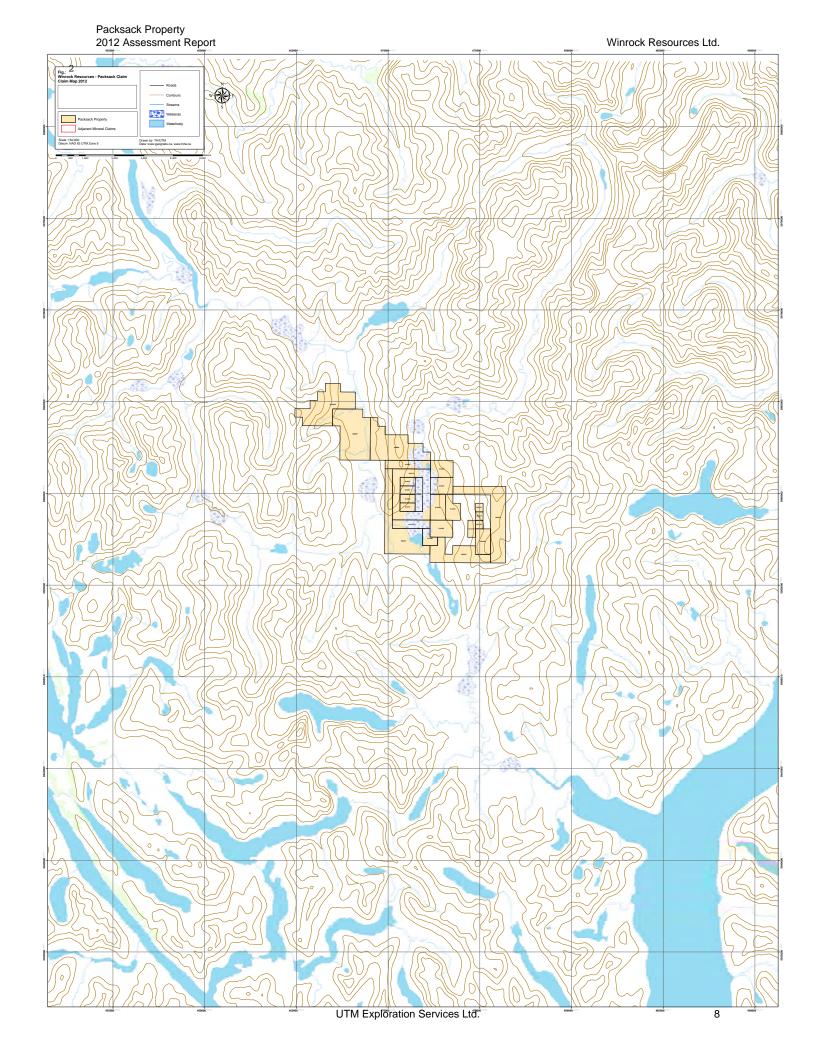

It is understood that this report may be required for material disclosure. The author (Mr. Beck) visited the property several times in October of 2012.

3. Property Description and Location

3.1 Accessibility and Infrastructure

The property is accessed from the city of Terrace, B.C. where the local helicopter hangars are located (Figure 1). From Terrace you fly southwest approximately 90km to the centre of the property claims. Access while on the property is by foot or by helicopter to reach the higher elevations.

Helicopter access is available via numerous charter companies based in Terrace or Smithers. Most services and supplies are available in these resource-based communities.


3.2 MINERAL TENURE INFORMATION

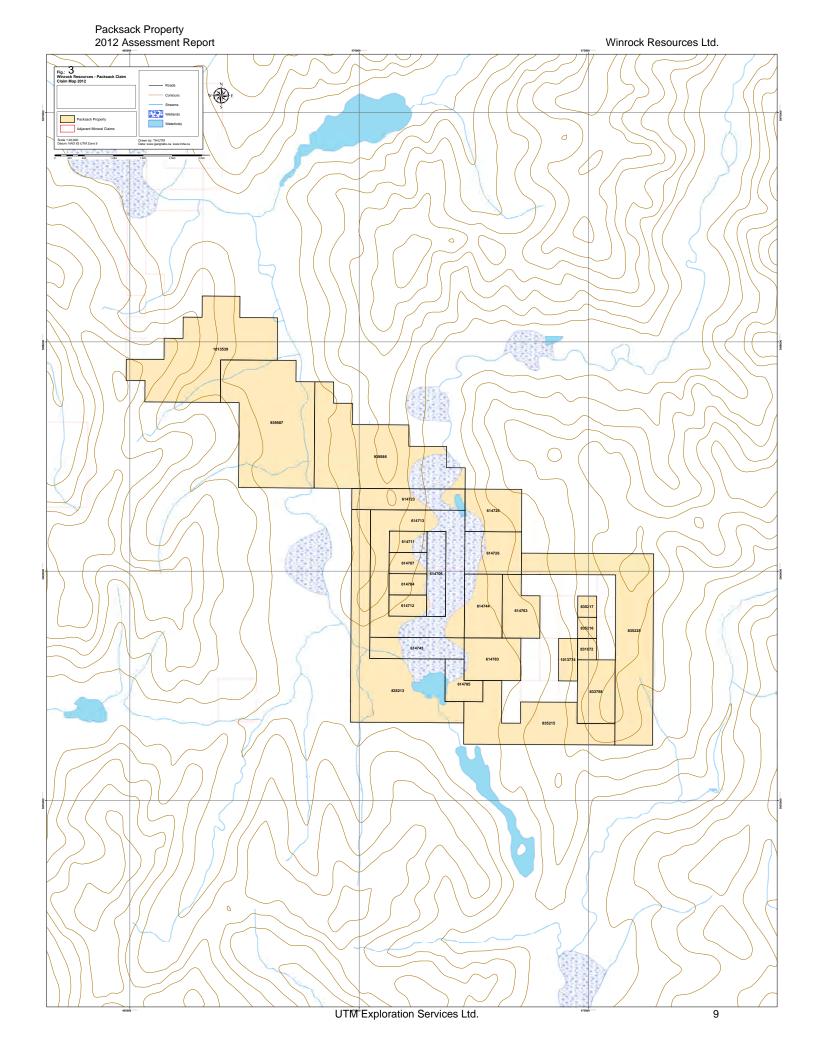

The Packsack property consists of 25 mineral claims, totaling 4087.85 ha (Figure 2). The property is located on NTS map sheet 103H/14 in the Skeena Mining Division and approximately 60km southwest of the village of Kitimat, BC. The geographic coordinates of the approximate centre of the property are 53°46′N Latitude and 129°23′W Longitude (Table 1).

Table 1. Mineral Tenure Information.

Tenure Number	<u>Type</u>	Claim Name	Good Until	Area (ha)
<u>614704</u>	Mineral	PACK SACK 1	20140701	38.2096
<u>614706</u>	Mineral		20140701	76.4154
<u>614707</u>	Mineral	PACKSACK 2	20140701	38.2058
<u>614711</u>	Mineral		20140701	38.2021
614712	Mineral	PACKSACK 3	20140701	38.2133
614713	Mineral	PACKSACK 4	20140701	343.8699
<u>614723</u>	Mineral		20140701	114.584
<u>614725</u>	Mineral		20140701	114.5904
614726	Mineral		20140701	114.6128
614743	Mineral		20140701	95.552
614/44	Mineral		20140701	114.6408
<u>614763</u>	Mineral		20140701	95.5361
614783	Mineral		20140701	114.6689
<u>614785</u>	Mineral	RAINBOW GRID	20140701	57.3407
831072	Mineral		20140701	19.1106
<u>833758</u>	Mineral	STEELHEAD	20140701	114.6859
<u>835213</u>	Mineral	PACKSACK A	20140701	439.5619
<u>835215</u>	Mineral	PACKSACK B	20140701	267.6396
<u>835216</u>	Mineral	PACKSACK C	20140701	19.1087
<u>835217</u>	Mineral	PACKSACK D	20140701	19.1068
<u>835225</u>	Mineral	PACKSACK E	20140701	439.5058
939586	Mineral	WINROCK NORTHWEST	20140701	439.1443
<u>939587</u>	Mineral	WINROCK NORTHWEST 2	20140701	477.2658
1013539	Mineral	ECSTALL	20140701	419.8512
1013774	Mineral	HORSEFLY	20131015	38.223

Total Area: 4087.8454 ha

3.3 Physiography and Climate

The property sits in a low lying valley along the Ecstall River. The property covers an area of rugged terrain typical of the Coastal Range mountains of British Columbia. Elevation ranges from 200 to approximately 1200 meters with vegetation varying from over-mature coniferous rainforest to moss and grass covered alpine meadows.

Deep snow accumulations are typical for this area. This limits the exploration season from luly to late October.

4. HISTORY

The region has been explored since the late 1800's. A brief historical overview is shown below:

- 1890's the Ecstall deposit was discovered
- 1900-1952 the Ecstall deposit was developed intermittently
- 1958-1960 Texas Gulf discovered, mapped and drilled the Packsack deposit. In 1960
 Texas Gulf explored the Horsefly deposit by geological mapping, prospecting and a
 ground EM survey
- 1973 the Packsack deposit was mapped geologically and soil sampled; 119 grid samples were analyzed for copper (Cu), lead (Pb) and zinc (Zn).
- 1981 the Ecstall joint venture examined the region for volcanogenic massive sulphide deposits using airborne EM, regional silt geochemistry and prospecting.
- 1986 several showings were examined by Noranda using airborne EM and magnetometer surveys, followed by ground HLEM and magnetometer surveys, linecutting and detailed geological mapping.
- 1989 Cominco Ltd optioned the claims, including the Packsack and Horsefly properties from the owner, Ecstall Mining Corp.
- 1994 Atna Resources examined the Horsefly and Steelhead areas and following this entered into an option agreement with the Ecstall Mining Corp
- 1995 Atna Resources commenced exploration with a program of line-cutting, Max-Min EM survey, mapping and drilling. One thousand and seventy-six (1076) meters over eight (8) holes were drilled in Sept-Oct 1995.
- Winrock Resources acquired the property in 2012.

5. Geological Setting

5.1 Regional Geology

The Ecstall-Quall Rivers area is underlain by complexly deformed metamorphic rocks of the Alexander Terrain of mid-Paleozoic or older age (Graf, 1981). The rocks form the core of a large geosynclinals (?) trough known as the central Gneiss Complex (Hutchison, 1970, 1982). Outcropping in a band up to 120 km long and 15 km wide, this belt is dominated by a series of steeply dipping, north-trending schists and gneisses of volcanic and sedimentary origin, which were metamorphosed regionally in the middle greenschist to middle amphibolite facies.

The outer parts of the central Gneiss complex were metamorphosed regionally in the almandine amphibolite facies. These rocks represent an original deep marine environment dominated by turbidites, basic volcanic rocks and mafic to ultramafic intrusions. Hutchison interpreted them to be older than the more weakly metamorphosed rocks in the core of the belt. Turbidites were metamorphosed to quartz-feldspar-biotite garnet gneiss, quartz-staurolite-sericite-pyrite schist and quartz-sericite-biotite-pyrite schist. Basic volcanic rocks were metamorphosed to hornblende-biotite-quartz gneiss and hornblende-biotite-garnet gneiss; they are cut by coeval gabbro and ultramafic bodies.

In the core complex, the rocks were metamorphosed regionally in the greenschist to lower amphibolite facies. Adjacent to the surrounding higher grade gneiss is the most abundant unit in the core, a meta-sedimentary sequence which may represent a submarine fan and turbidite environment. It consists of massive to thickly bedded greywacke and quartzite with interlayers of finely laminated siliceous siltstone and dark grey to black argillite. A few thin layers are of quartz-pyrite exhalite and a few others are rich in magnetite.

In the center of the belt is a pile of mafic to felsic meta-volcanic rocks containing minor to locally abundant tuffaceous sedimentary rocks and argillite. They are regionally metamorphosed in the greenschist facies, and like other rocks in the belt, are deformed very strongly; nevertheless, relic fragmental textures are preserved locally, especially in fold noses. Felsite (rhyolite to rhyodacite) tuffs, flows, and subvolcanic intrusions are metamorphosed to quartz-sericite (chlorite) schist and quartz-sericite-pyrite schist. A few subvolcanic intrusions contain minor to abundant phenocrysts of quartz and plagioclase. Intermediate (dacite to andesite) tuffs and flows were metamorphosed to quartz-sericite-chlorite schist and quartz-chlorite-sericite schist. A few contain abundant plagioclase phenocrysts. Mafic (andesite to basalt) tuffs and associated diorite/gabbro sills were metamorphosed to chlorite-quartz-calcite schist and chlorite-quartz-(biotite-calcite) schist. A few mafic tuffs contain lapilli of more felsic units.

Volcanogenic massive and semi-massive sulphide deposits dominated by pyrite with generally much less sphalerite and chalcopyrite, minor galena and very little precious metals, occur in two main stratabound zones in the belt. In a western, linear zone are the Ecstall Mine and Marmot, Pond and Strike showings. No data is available regarding the top

of the section in this zone. In an eastern, folded zone are the Packsack and Horsefly showings. The stratigraphic and structural relationship between these two zones is unknown.

The rocks in the belt were subjected to intense shear deformation prior to intrusion of the surrounding plutons. A large, moderately north plunging antiform east of the Packsack showing may equate the stratigraphy at the Packsack and Horsefly showings (Graf, 1981). This interpretation of structure would be at odds with the geosynclines proposed by Hutchison (1978, 1982).

The belt is bounded by diorite to granodiorite plutons of the Coast Range Intrusive Complex. To the west is the Ecstall Pluton and to the east is a series of small plutons containing scattered patches of gneiss. Plugs of diorite intrude the core of the belt; one such plug is just west of Packsack Lake. All rocks are cut by Tertiary lamprophyre and hornblende porphyry dikes.

Tertiary strike-slip faults have been interpreted to exist along a set of linear depressions trending 150-165°. No evidence for late shearing along or displacement across these depressions was found.

5.2 Local Geology

The Packsack-Horsefly region is underlain by an isoclinally folded sequence dominated by metmorphosed mafic to felsic volcanic rocks, now represented by a variety of schists dominated by quartz, chlorite and sericite/muscovite. A major north plunging anticline is interpreted grossly from discontinuous, distinctive 'marker" interval containing abundant felsic volcanic rocks, now represented by quartz-sericite-pyrite schist (Figure 3). Near the top of this interval are stratabound lenses of pyrite rich schist and exhalite dominated by sulphides and quartz. Sulphides are dominated by pyrite with local concentrations of sphalerite and lesser chalcopyrite. A few diorite/gabbro sills intrude the section; one prominent sill is stratigraphically just above the Packsack massive sulphide horizon. On the west limb of the fold a zone of meta-sedimentary rocks is dominated by quartzite and argillaceous quartzite with less abundant siltstone and locally abundant magnetite rich layers. Contorted quartz veins are common in the metamorphic rocks and these quartz veins are observed to pinch and swell in the north-south foliation attitude as well as down dip on the eastern limb of the schist packages. The quartz veins observed are as large as 3 m in width.

A few plugs of massive to slightly foliated Cretaceous diorite/gabbro cut the metasedimentary rocks. A few Tertiary dikes are of lamprophyre, hornblende porphyry and andesite.

6. EXPLORATION

6.1 Methodology and Procedure

Between October 17 and October 21, 2012, Richard Beck and Richard Alexander of UTM Exploration Services Ltd. conducted a focused exploration program that included rock sampling on the Packsack Minfile claims area along the western side of the claim group, and geotechnical data collection and re-assaying of the Atna Resources 1995 Horsefly drilling along the eastern side of the claim group.

On October 13, Richard Beck and Brayden Veilleux visited the property for a one-day reconnaisaince field exploration. Various information from different historical assessment reports showed the areas covered during previous exploration campaigns. This information was used and maps were produced such that we were able to locate some of the documented points. During the October 13 visit they were able to successfully locate the original Packsack 1990 drill collars, the Packsack core storage location, the 1960's original camp location, three (3) of the 1960's drill collar locations (approximately), and the massive sulphide outcroppings depicted in the historical work. All of the above mentioned points of interest were recorded and marked using a Garmin handheld GPS unit (refer to Table 2 and Figure 4). Upon departing from the field via helicopter, they observed the core storage location of the 1995 Horsefly drilling campaign. They landed and assessed the condition of the core. The core was in very good condition considering the length of time it has remained in the field. The core location was marked and recorded using a handheld Garmin GPS unit.

Between the time of their initial field visit and October 17, UTM personnel compiled a geological approach to best accommodate the the recent findings, the historical data and the moving forward of the property itself. It was decided that due diligence re-assaying of the 1995 core be undertaken as well as rock sampling of the Packsack massive sulphide deposit MINfile location.

Table 2. Points of Interest.

Point of interest	Easting (NAD83)	Northing (NAD83)
1960 DDH-C	471162	5959884
90-1 true	471213	5959802
90-2 true	471254	5959943
90-3 true	471220	5959593
Horsefly Core Location	474943	5957945
95HF-4	474945	5957931
95HF-5	474937	5958023
Altered Boulder	474932	5957763
Packsack core location	471105	5959862
1960 DDH-A	471098	5959647
1960 DDH-B	471121	5959471
95HF-4	474945	5957931
95HF-5	474937	5958023
95HF-6	474944	5957870
95HF-7	474870	5957930
95HF-8	474950	5957782

6.2 HISTORICAL CORE SAMPLING

A total of 72 core samples were taken from the 1995 Horsefly drill core. The core was located and observed to be in excellent condition. The core location was documented using a Garmin GPS, and five of the eight drill holes were removed from the existing piles and resampled. In the process of collecting the samples the following procedures were followed:

- Each drill hole was identified from the core tags at the ends of each box.
- The core from each drill hole was laid out and all detritus was removed from the surface of the core.
- The core boxes were identified to be the true boxes and their "from" and "to" footage markers were confirmed.
- The core boxes were cleaned using a wood scraper and the drill hole identifiers (Hole ID and meterage) were then marked onto the boxes in the top left and top right of each box using a black felt marker. Previous to the marking of the boxes the core was re-measured to confirm the matching footage presented on the core tags. Footage was then converted to meters (division of total feet by 3.281) to bring the historical core into todays protocols and measurements.
- The areas that were marked for re-sampling were measured and the appropriate sample tags were placed at the ends of each sample.
- Four core boxes at a time, where possible, were then photographed to capture all of the geotechnical data recorded on each box so to provide a digital record of the historical core.

The samples taken from the drill holes were core samples that were previously sampled in 1995. The half core that remained in the boxes was checked against the original assessment report sample intervals and the samples taken in October of 2012 were the exact (or as close to as possible with the footage converted to meterage and measured off of the original core block markers) samples taken in 1995. No core was left in the box where the samples were removed to re-assay; however, the 2012 sample tags were stapled onto the wooden core boxes at the end of each sample interval.

After the core was photographed the samples were selected and placed into a 12x20 6mm poly ore bag with a sample tag. The sample bag was sealed using a tie strap and the sample number was written on the outside of each sample bag to correspond with the sample tag inside the bag and the sample tag attached to the core box.

Refer to Appendix III for a complete photo library of the drill core that was geotech'd and re-assayed.

6.2 Rock Sampling

Eleven rock samples in total were taken over the Packsack massive sulphide. The area was first walked across during the one day reconnassaince visit to the area. UTM personnel visually assessed the outcrop north to south and across its width prior to initiating any sampling. This approach was used to get a better understanding of the size and frequency of the mineralized lenses prior to committing to a sampled area. Each sample taken was to best represent a unique lens and/or another mineralized corridor.

The outcrop exposure was moderately extensive and from the southern end where topography dips steeply to the valley below, northwest to the first stream/waterfall before the topography rises again in elevation is approximately 500 meters in length. Within this package of mostly schist to quartzite to quartz veins to gabbroic dikes is where the numerous lenses of massive, pyrite-rich, sulphide are exposed. These lenses appear to pinch and swell along strike and from a quick visual interpretation they appear to be lenses that are both structurally controlled and related to the subparallel quartz veining.

Before each sample was bagged, the rock sample itself was photographed but in some instances the outcrop from which the sample was taken was photographed in lieu of the actual piece sampled. Samples were placed into a 12x20 6mm poly ore bag with a sample tag. The sample bag was sealed using a tie strap and the sample number was then written on the outside of each sample bag to correspond with the sample tag inside the bag and the sample tag attached to the core box.

The amount of deformation and shearing and schistosity present within the rocks of the Packsack MilNfile area are also observed within the package of rocks of the Horsefly MINfile area. The Horsefly area, however, exhibits altered packages of sheared rock that are much more altered and continuous than the Packsack and this is due to the Packsack deposit area being a collection of smaller (not insignificant) lenses across a 30 m width within a 500 m strike length, whereas the Horsefly is a 20 m wide shear zone with open ended strike length due to exposure. See photo gallery in Appendix IV.

6.3 Rock Geochemistry

See Section 8 for maps and highlights, as well as locations. As only eleven rock samples were taken, there is very little to deduce from the sampling at this time.

7. Sampling

7.1 Sampling Method and Approach

See Sections 6.1 and 6.2 for details of on-site sampling method. After sample collection, sample bags were stored by UTM personnel until they were delivered to the ACME Prep Lab in Smithers, BC. Richard Beck saw the samples at ACME and filled out all the appropriate paperwork.

7.2 Sample Preparation, Analyses, and Security

ACME dried all of the samples at 60C and then dry seived 100g of each sample to -80 mesh. Aqua Regia digestion and ICP-MS analysis was requested, along with appropriate tests for overlimits.

Lab methodology is described in Appendix II.

7.3 DATA VERIFICATION

No standards or blanks were submitted although the labs run their own tests regularly.

7.4 RESULTS

All assay results may be found in Appendix I.

8. Interpretation and Conclusions

8.1 Packsack Rock Samples

Historically the Packsack showing was drilled in the 1960s and again in the 1990s. The 1960s drill campaign involved 881 meters of BQ-size diamond drilling in 11 holes, encountering massive sulphide mineralization in all drill holes. All drill holes were shallow and targeted the massive sulphide lenses observed on surface. Three decades later, in 1990, three targets were drilled, totaling 934 meters. The 1990 drill holes targeted the same mineralized lenses of the 1960; however, down dip and much greater length: 1990-1 and 1990-2 successfully encountered the continuation of the near surface mineralization encountered in the 1960s.

During the October 2012 field visit to the Packsack area, many historical points were located and documented. Some of these historical findings included three drill collar location of the 1960s drilling campaign, all three 1990 drill collar locations, the Packsack core storage lay down area of the 1990 core (see Table 2 previously) and of course the whale-back shaped massive sulphide outcroppings that were drilled during these exploration years.

Though the original drill logs of the 1960's do not appear to exist within publicly available files, these drill holes have been referenced numerous times in past assessment reports; all drill holes have been referenced to contain significant pyrite, minor sphalerite and chalcopyrite mineralization with mineralization averaged as 3.8 m wide and extending in strike length as much as 600 meters. Northern and southern intercepts of the massive sulphide vary in their descriptive recorded widths from 0.8 m to 6 meters.

The outcrop in question was observed in October of 2012 to be greater than 350 meters only; however, drilling intersections and geophysical reports are likely the reason for the documented 600 m strike length. During UTM's visit to the property, finding the old drill collars and following the mineralization as far as was able (until limited by topography and deep gully creeks) it was observed that the mineralized lenses of the Packsack area extend at least 800 m in strike length and vary in their widths as the entire package of schistose rocks is a collection of strongly deformed chlorite-sericite schist lenses of dominantly pyritic mineralization. These lenses "pinch and swell" in the northwest-southeast preferred direction and contain within numerous parallel white quartz veins from centimeter to meter scale. After observing the down dip face of one of the larger quartz veins it was noted that the quartz veins not only exhibited a "pinch and swell" component along strike, but they pinched and swelled in the 3rd dimension as well; this observation may lend to the explanation why it is certain drill holes were successful in encountering mineralization at depth in some drill holes but not in others.

The rock samples taken in 2012 were taken along strike of the outcropping massive sulphide lenses and they were selected in what appeared to be different lenses within the same span of width. Though the assay results do not depict significant results (see Table 3 below) it is believed that these results are a function of sample medium chosen and location of sample: i.e. rock samples #202 and #209 were both taken in the forefront of the located 1960s drill holes and it is both of these rock samples that exhibited the greater elevated assay results.

In conclusion, the lenses are certainly present, they have an extended strike length greater than historically reported, they have been drilled and (assumingly – no drill logs to validate) intersected moderate interval lengths of massive sulphides, and historical geophysical IP surveys have intimated that the zones are greater in zone as well as coincident to the existing mineralization encountered to date.

Further work is warranted in the area, in particular, mapping, ground magnetometer survey and geochemical soil grid.

Sample	Sample	Easting	Northing	Property	Zone	Elevation (m)	Cu	Pb	Zn	Au
#	Type	(NAD83)	(NAD83)				ppm	ppm	ppm	ppb
201	rock	471057	5959771	Packsack	9	261	12.79	4.52	16.6	1.5
202	rock	471084	5959648	Packsack	9	252	1501.4	3.42	45.3	34.1
203	rock	471150	5959428	Packsack	9	247	96.85	11.69	103.1	21.8
204	rock	471150	5959428	Packsack	9	247	4.99	0.4	1.1	<0.2
205	rock	471123	5959404	Packsack	9	256	9.1	2.04	24.7	3.9
206	rock	471131	5959422	Packsack	9	263	38.2	4.93	73.5	1.4
207	rock	471112	5959466	Packsack	9	268	2.75	1.15	29.5	1.1
208	rock	471127	5959511	Packsack	9	259	57.15	1.98	43.6	3.1
209	rock	471106	5959533	Packsack	9	255	608.6	2.73	43.7	11.6
210	rock	471105	5959566	Packsack	9	255	366.15	2.36	65.2	20.9
211	rock	471087	5959629	Packsack	9	250	119.37	3.82	40.3	17.6

Table 3. Significant Rock Assay Results from Packsack.

8.2 Horsefly showing – drill core re-assay

The core was located on the western slope of the eastern most claims of the Packsack group of claims. The core was neatly stacked in two piles and all of the 1995 drill core was accounted for except for two boxes in drillhole 95HF-8. The focus of the re-assay was on five of eight drilled holes of the 1995 campaign: drillholes 95HF-4 to 95HF-8. Drillholes 95HF-1 to 95HF-3 were omitted because of their target location and because of the lack of copper mineralization encountered down-hole. The target for the 1995 drilling was a shear zone that sits just east (~50m) of all of the drill collars (see photo library in Appendix III). All drillholes were separated by only 100 m (maximum) and all were drilled east-northeast at 80 degrees with -45 inclinations (see Table 4 below). All drillholes encountered moderate to occasionally significant mineralization at relatively shallow depths (see Table 5 below); mineralization that once modeled, exhibits a northwesterly strike with a southwesterly steep dip – in other words, exactly what you see on surface when observing the strongly altered and mineralized shear zone.

Drill holes 95HF-4, 95HF-5, 95HF-6 and 95HF-8 are all along strike with each other while 95HF-7 was drilled down slope underneath and behind drillhole 95HF-4. Drillhole 95HF-7 is noted as the only hole in the five holes analyzed to contain no significant assay results. This is not due to location; this is due to not drilling far enough from the collar location. Had the drillhole continued for another approximate 100 m it would likely have intersected the same mineralized corridors encountered in all of the other drillholes.

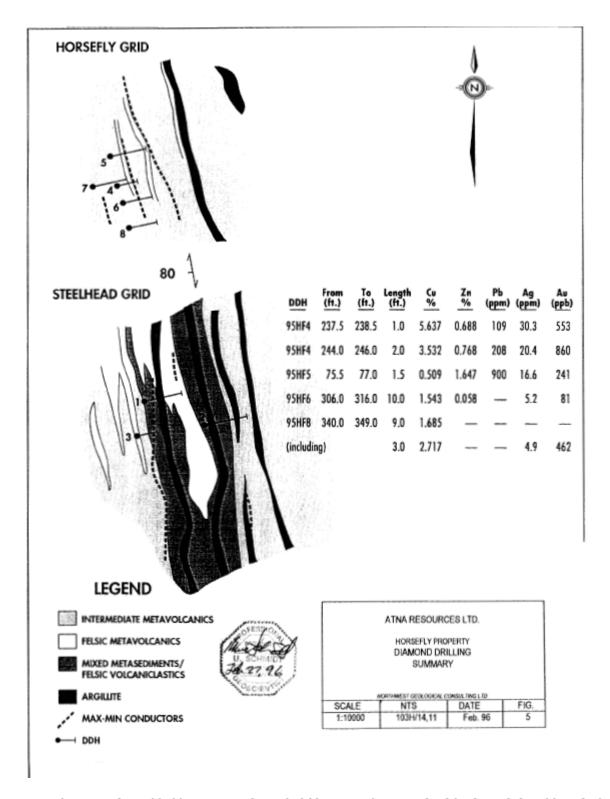
Refer to Figure 6 to observe the plan view positioning of the drill holes as well as the reported significant assay results from 1995. Also refer to the selection of Figures depicting the 1995 drill holes in cross section (Figures 7 to 11 show the assay comparison of Cu% between 1995 and 2012) while Figures 12 to 15 show the corridors of mineralization within the drill holes (DH 95HF-7 was excluded due to lack of mineralization).

Table 4. DDH Location and Survey Data.

DDH	Easting (NAD83)	Northing (NAD83)	Dip	EOH (M)	Elevation (m)	Azimuth
95HF-4	474945	5957931	-45	94.5	679	80
95HF-5	474937	5958023	-45	152.4	675	80
95HF-6	474944	5957870	-45	128	670	80
95HF-7	474870	5957930	-45	152.4	645	80
95HF-8	474950	5957782	-45	125	675	80

Table 5. Significant Assay Data.

DDH I.D.	From (m)	To (m)	Interval length (m)	Cu%		
95HF-4	56.72	61.51	4.79	0.15		
and	72.45	74.94	2.49	0.55		
95HF-5	23.12	26.69	3.57	0.11		
and	29.14	32.14	3	0.13		
95HF-6	48.63	50.59	1.96	0.62		
and	54.86	56.39	1.53	0.38		
and	87.45	116.18	28.73	0.39		
95HF-7	No significant assay results					
95HF-8	79.35	94.15	14.8	0.32		
and	113.68	118.87	5.19	0.22		


During the extraction of the remaining halved core from the 1995 drill core boxes, it was noted that many other areas of the core "could have or should have" been sampled; however, due to unknown circumstances surrounding the reasoning of the selected core interval lengths UTM is examining what has been sampled. The core was strongly mineralized, strongly altered and, in numerous instances, inundated with abundant quartz veining (see photo library of core boxes).

In conclusion, the 1995 drilling barely tapped into the underlying potential of the Horsefly shear zone. The shear observed on surface, striking northwest by southeast, strongly altered and inundated with stockwork veining, was encountered subsurface in two separate strongly copper-rich zones. The zones of copper mineralization are described as two zones simply because the entire sequence of rock between the two zones was not sampled in 1995. Smaller zones exist within the intersected core lengths closer to surface.

The Horsefly zone is moderately rich to locally strongly rich in copper mineralization, but only five drill holes, separated by 100 meters each, intersected the shear. In some instances

the drill hole did not advance deep enough to properly continue through the entire altered sequence of sheared rock.

The Horsefly zone shows great potential for excellent copper mineralization. Once the reassay portion of the field work was completed UTM utilized the helicopter to explore the strike length of the known shear zone. The hillsides were heavily covered in trees and marshy material; however, where larger streams cross cut the strike, the same heavily altered, strongly deformed shear zone was encountered on four occasions, thus extending the possible strike length to 7.7 km (see Figure 16).

EXCERPT FROM ASSESSMENT REPORT #24368A – ILLUSTRATING POSTIONING OF 1995 HORSEFLY DRILLHOLES AND 1995 SIGNIFICANT ASSAY RESULTS

Figure 6.

Figure 7.

Figure 8.

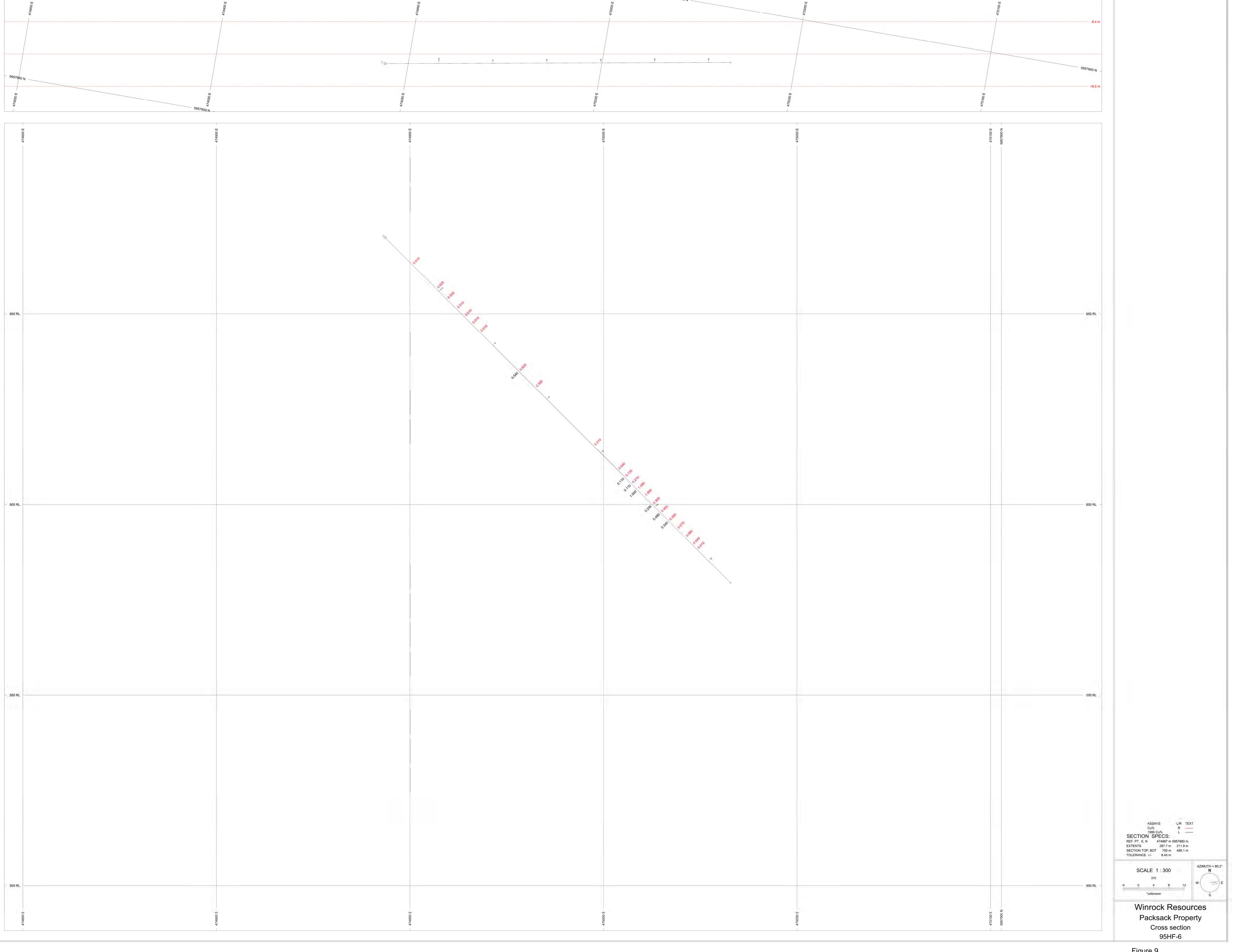
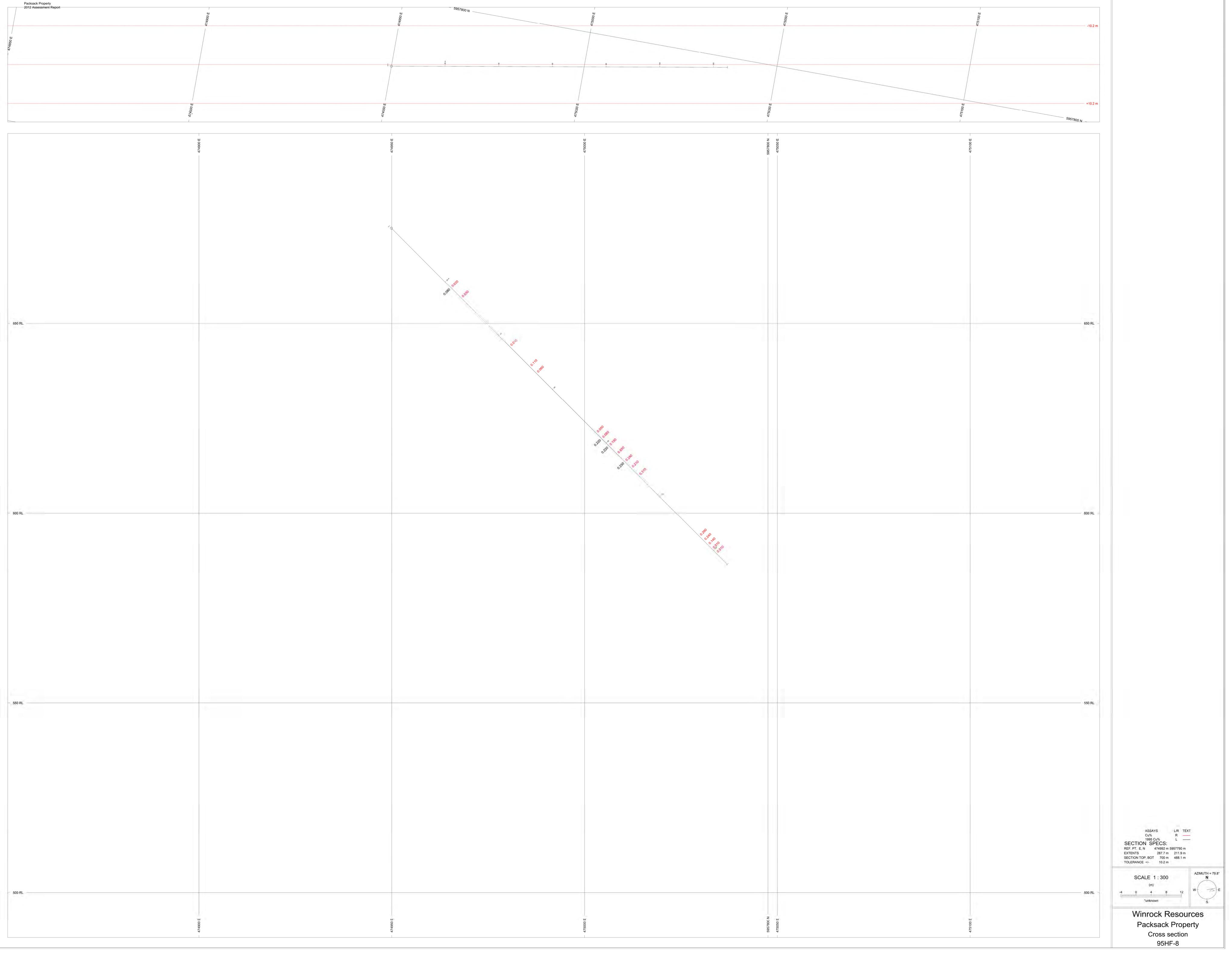
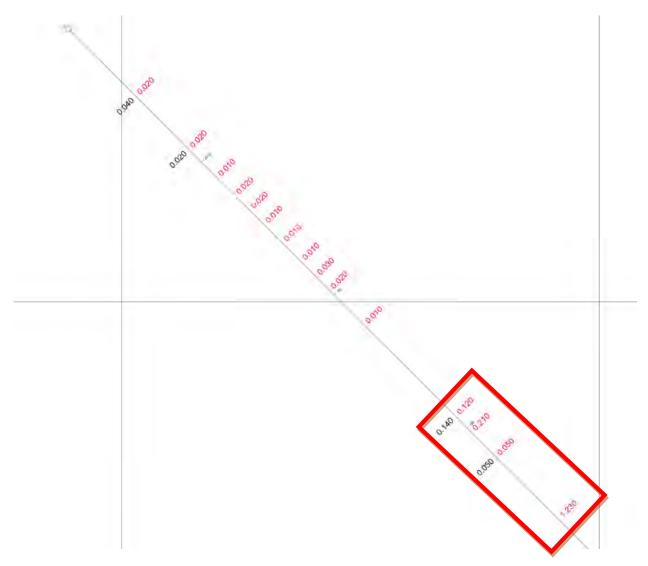
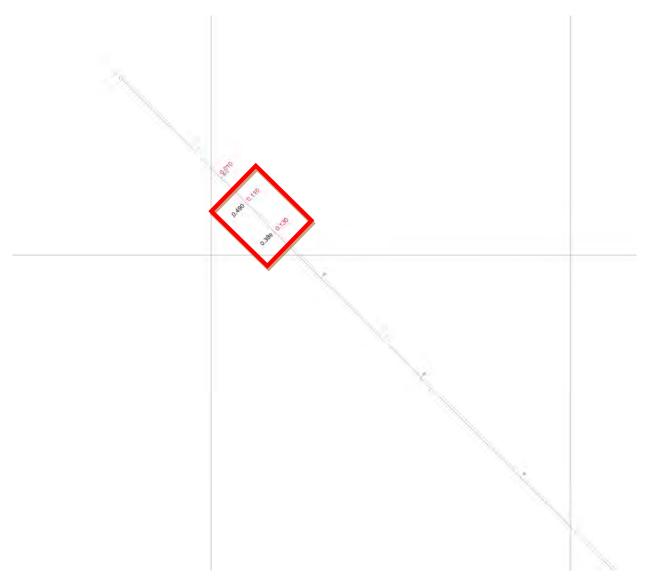


Figure 9.

Figure 10.


Figure 11.

Winrock Resources Ltd.

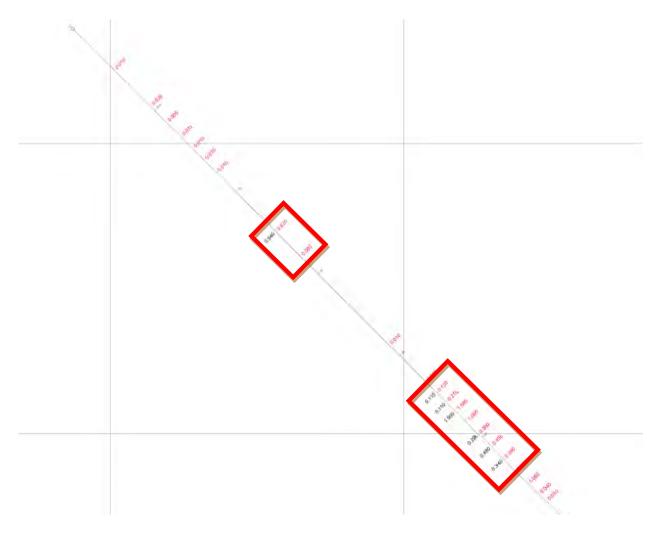

DRILLHOLE 95HF-4 CROSS SECTION SHOWING MINERALIZED CORRIDOR

Figure 12.

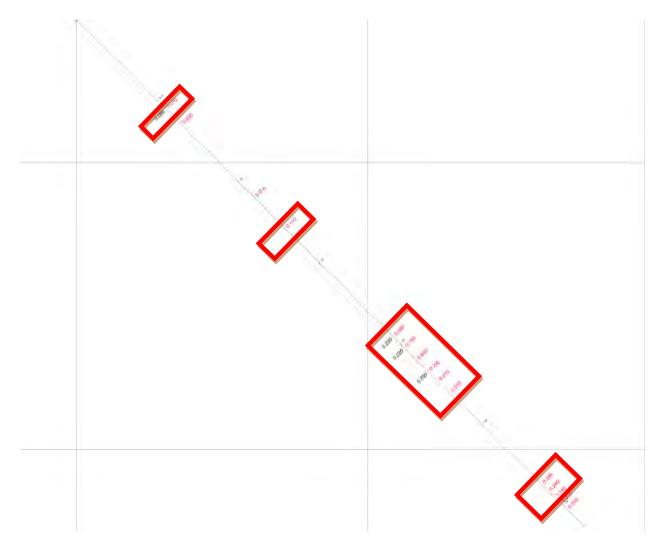

DRILLHOLE 95HF-5 CROSS SECTION SHOWING MINERALIZED CORRIDOR

Figure 13.

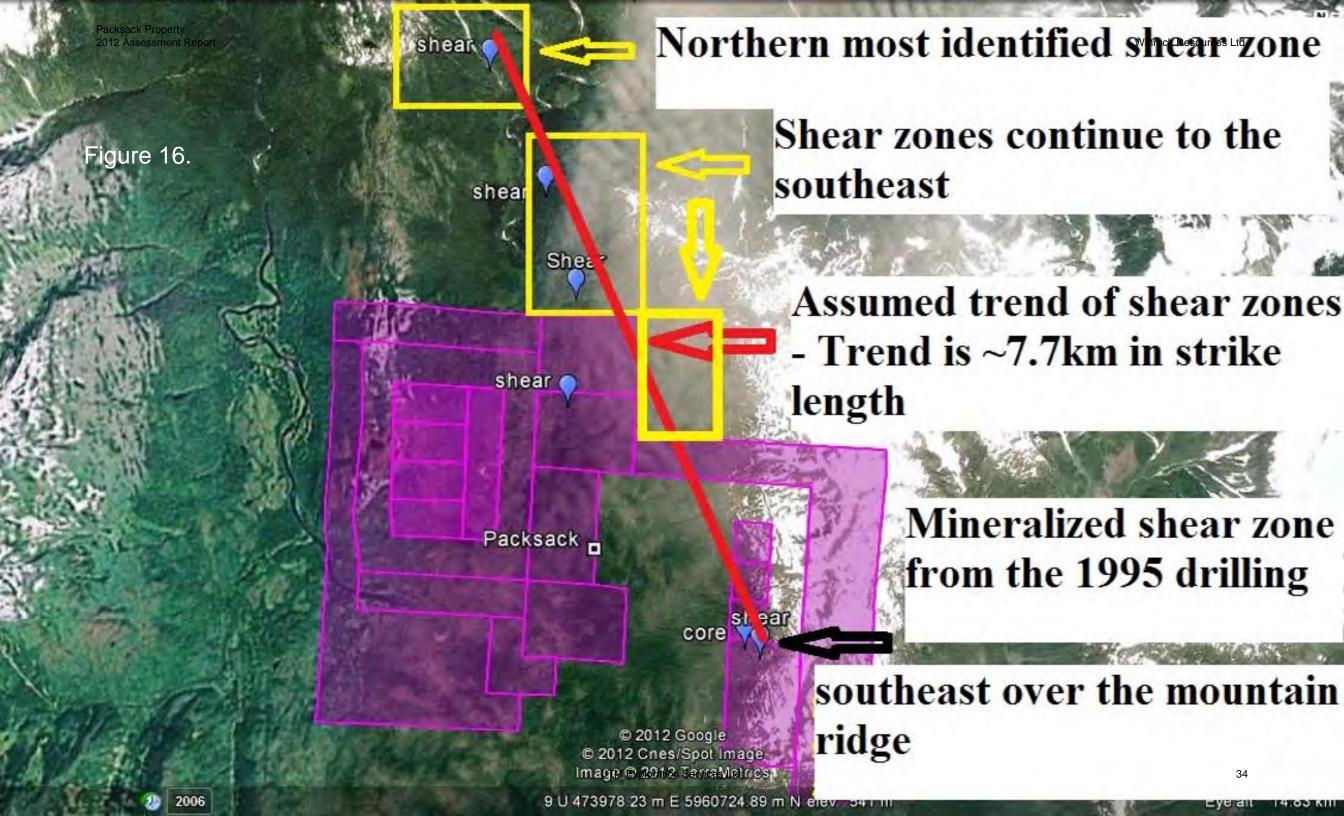

DRILLHOLE 95HF-6 CROSS SECTION SHOWING MINERALIZED CORRIDOR

Figure 14.

DRILLHOLE 95HF-8 CROSS SECTION SHOWING MINERALIZED CORRIDOR

Figure 15.

9. RECOMMENDATIONS

The results of the 2012 program warrant continued work on the property and the following work is suggested:

Packsack Showing Area

- Geochemical soil grid established over the Packsack area
- Complete detailed mapping program with focus on the individual lenses and the petrography
- Detailed prospecting of the Packsack area with samples taken for ICP-MS analysis as well as thin section
- Magnetometer survey of the gridded area
- Drill program if results of above program warrant further subsurface examination

An estimated \$200,000-\$250,000 exploration program is exploration for the Packsack showing area.

Horsefly Showing Area

- Detailed mapping program
- Trenching program along strike of known shear zone
- Prospecting and sampling
- Geochemical soil sampling program from known shear zone northwest to the first intersection of shear zone within the creek exposure
- IP survey over gridded area
- Drill program should surface results warrant continued subsurface examination

Other Target Areas

• In particular, the Steelhead showing area to the immediate southeast of the Horsefly warrants continued exploration in the capacity of mapping and prospecting in effort to tie the steelhead zone of mineralization to that of the Horsefly zone mineralization. It is assumed the two are continuous through exploration efforts performed in 1995 with Atna Resources; however, additional exploration is recommended beyond the 3 drillholes that were collared into the Steelhead zone in 1995. It is believed that these 3 drillholes missed the actual target to the southeast and on the ground mapping and prospecting following the Horsefly shear to the southeast will better delineate new targets.

An estimated \$300,000 - \$350,000 exploration program is recommended for the Horsefly Showing Area.

Exploration Work type	Comment	Days			Totals
		_		0.1.1.1.	
Personnel (Name)* / Position		Days		Subtotal*	
Richard Beck	Oct 17-21, Oct 13	6			
Richard Alexander	Oct 17-21	5			
Brayden Veilleux	13-Oct	1	\$400.00		
			\$450.00	_	
			,	\$6,300.00	\$6,300.00
Office Studies	List Personnel (note - Office on				
Pre field Prep		1.4	\$650.00	\$910.00	
GIS		4.5	\$60.00	\$270.00	
Expediting		0.0	\$550.00	\$0.00	
Logistics		0.0	\$550.00	\$0.00	
Report preparation		5.0	\$650.00	\$3,250.00	
Report preparation		0.0	\$550.00	\$0.00	
Other (specify)			,	, , , , ,	
- 1.1.1. (cp - 1.1.)				\$4,430.00	\$4,430.00
Airborne Exploration Surveys	Line Kilometres / Enter total invoiced	amount		Ψ1,100.00	Ψ1,100.00
Aeromagnetics	Line Knometres / Enter total invoiced	amount	\$0.00	\$0.00	
			-		
Radiometrics			\$0.00	\$0.00	
Electromagnetics			\$0.00	\$0.00	
Gravity			\$0.00	\$0.00	
Digital terrain modelling			\$0.00	\$0.00	
Other (specify)			\$0.00	\$0.00	
				\$0.00	\$0.00
Remote Sensing	Area in Hectares / Enter total invoiced	amount or list personnel			
Aerial photography			\$0.00	\$0.00	
LANDSAT			\$0.00	\$0.00	
Other (specify)			\$0.00	\$0.00	
Curer (specify)			ψ0.00	\$0.00	\$0.00
Ground Exploration Surveys	Area in Heatares /List Darsonnel			Ψ0.00	ψ0.00
	Area in Hectares/List Personnel				
Geological mapping					
Regional		note: expenditures here			
Reconnaissance		should be captured in Personnel			
Prospect		field expenditures above			
Underground	Define by length and width				
Trenches	Define by length and width			\$0.00	\$0.00
Ground geophysics	Line Kilometres / Enter total amount i	nvoiced list personnel			
Radiometrics					
Magnetics					
Gravity					
Digital terrain modelling					
Electromagnetics	note: expenditures for your crew in	the field			
SP/AP/EP	should be captured above in Person				
IP					
<u> </u>	field expenditures above				
AMT/CSAMT					
Resistivity					
Complex resistivity					
Seismic reflection					
Seismic refraction					
Well logging	Define by total length				
Geophysical interpretation					
Petrophysics					
Other (specify)					
				\$0.00	\$0.00
Geochemical Surveying	Number of Samples	No.	Rate	Subtotal	φ 0.00
ocociieniicai odi veying	Number of Samples	INO.	Nate	Subtotal	
Drill (outtings sors str.)			¢0.00	фО ОО	
Drill (cuttings, core, etc.)			\$0.00	\$0.00	
Stream sediment			\$0.00	\$0.00	
Soil	note: This is for assays or		\$0.00	\$0.00	
Rock	laboratory costs		\$0.00	\$0.00	
Water			\$0.00	\$0.00	
	1		40.00	\$0.00	
Biogeochemistry			\$0.00	\$0.00	
Biogeochemistry Whole rock			\$0.00	\$0.00	

Other (specify)			\$0.00	\$0.00	
с или (сросију			7	\$0.00	\$0.00
Drilling	No. of Holes, Size of Core and Metres	No.	Rate	Subtotal	, -
Diamond	·		\$0.00		
Reverse circulation (RC)			\$0.00		
Rotary air blast (RAB)			\$0.00		
Other (specify)			\$0.00		
Cirior (specify)			ψ0.00	\$0.00	\$0.00
Other Operations	Clarify	No.	Rate	Subtotal	ψ0.00
Trenching	olarity	140.	\$0.00		
Bulk sampling			\$0.00		
Underground development			\$0.00		
Other (specify)					
Other (specify)			\$0.00		40.00
	0	1	In .	\$0.00	\$0.00
Reclamation	Clarify	No.	Rate	Subtotal	
After drilling			\$0.00		
Monitoring			\$0.00		
Other (specify)			\$0.00	\$0.00	
			1		
Transportation		No.	Rate	Subtotal	
Airfare			\$0.00		
Taxi			\$0.00		
truck rental			\$100.00		
kilometers			\$0.75	\$0.00	
ATV			\$150.00	\$0.00	
fuel			\$0.00	\$0.00	
Helicopter (hours)			\$0.00	\$11,376.61	
Fuel (litres/hour)			\$0.00	\$0.00	
Other					
			1	\$11,376.61	\$11,376.61
Accommodation & Food	Rates per day			,	4 - 1/0 - 0 - 0
Hotel	Actual Cost			\$ 396.00	
Camp	Room and Board Day rate	6.00	\$65.00		
Camp Supplies	Room and Board Bay rate	0.00	ψου.σο	ψ070.00	
Samp Fuel	Propane				
Samp ruci	rropane			\$786.00	\$786.00
Miscellaneous				\$700.00	\$760.00
Standards				0	
			\$0.00		
Expenses Markup			\$0.00		¢2 0E4 04
Equipment Dentals				\$3,856.96	\$3,856.96
Equipment Rentals			¢2E 00	¢0.00	
Prospecting Kit			\$35.00		
Field Gear (Specify)			\$0.00	\$0.00	
Other (Specify)				40.00	**
Fusialist wools assessed				\$0.00	\$0.00
Freight, rock samples		CM1200510	40.00	#0 470 CC	
Assay		SMI1200518	\$0.00		
		SMI1200519	\$0.00		
			1	\$2,820.43	\$2,820.43
TOTAL Expenditu	res				\$29,570.00

11. REFERENCES

Gareau, S.A.(1990).Geology of the Scotia-Quaal metamorphic belt, Coast Plutonic Complex, British Columbia, G.S.C. Open File 2337.

Gareau, S.A. (1991): The Scotia-Quaal metamorphic belt: a district assemblage with preearly Late Cretaceous deformational and metamorphic history, Coast Plutonic Complex, British Columbia, Can Jour. Earth Sci. 28, 870-880 (1991).

Maxwell, G., Bradish, L. (1986): Geological, Geophysical and Geochemical report on the Horsefly Group, Assessment report #15306.

12. Statement of Qualifications

I, Anastasia Ledwon, of 4901 Slack Road, Smithers, BC V0J 2N2, do hereby state that:

- I graduated in 1997 from the University of Victoria, BC with a Bachelor of Science degree in Earth and Ocean Sciences, With Honours, With Distinction;
- I have been a member in good standing of the Association of Professional Engineers and Geoscientists of British Columbia since 2009, Licence # 33898;
- I am part-owner and P.Geo for UTM Exploration Services Ltd. of Smithers, BC;
- I did not visit this property but I do oversee all QA/QC protocols for UTM Exploration Services Ltd.;
- I am not affiliated with Winrock Resources Ltd.

Dated this day, the 31st of January, 2013, in Smithers, BC.

Anastasia Ledwon, B. Sc., P.Geo

Director, UTM Exploration Services Ltd.

I, Richard Beck, residing at 4901 Slack Road, Smithers, British Columbia, do hearby certify that:

- I am part owner of and currently employed as the Vice President of Exploration and Development by:
 - o UTM Exploration Services Ltd
 - o PO Box 5037
 - o Smithers, BC V0J 2N2
- I attended Dalhousie University from 1985 to 1989, speacializing in geology;
- Between 1987 and 1990, and 1996 to present I have been continuously employed as a junior geologist/project manager/senior exploration geologist in the mineral exploration sector;
- I did visit this property and supervised the data herein collected.

Dated at Smithers, British Columbia, this 31st day of January, 2013.

Richard Beck VP Exploration and Development UTM Exploration Services APPENDIX I: ASSAY CERTIFICATES

Winrock Resources Ltd. Client: **UTM Exploration Services Ltd.**

104-1165 Main Street

Box 5037

Smithers BC V0J 2N0 CANADA

Submitted By: Richard Beck Receiving Lab: Canada-Smithers Received: October 26, 2012 Report Date: November 22, 2012

Page: 1 of 4

SAMPLE PREPARATION AND ANALYTICAL PROCEDURES

AcmeLabs Acme Analytical Laboratories (Vancouver) Ltd. 1020 Cordova St. East Vancouver BC V6A 4A3 Canada

www.acmelab.com

CERTIFICATE OF ANALYSIS

Winrock

SMI12000518.1

CLIENT JOB INFORMATION

Shipment ID: P.O. Number 40

72 Number of Samples:

SAMPLE DISPOSAL

Project:

RTRN-PLP Return

DISP-RJT Dispose of Reject After 90 days

Acme does not accept responsibility for samples left at the laboratory after 90 days without prior written instructions for sample storage or return.

UTM Exploration Services Ltd. Invoice To:

104-1165 Main Street

Box 5037

Smithers BC V0J 2N0

CANADA

CC:

Method Code	Number of Samples	Code Description	Test Wgt (g)	Report Status	Lab
R200-250	72	Crush, split and pulverize 250 g rock to 200 mesh			SMI
1F02	72	1:1:1 Aqua Regia digestion Ultratrace ICP-MS analysis	15	Completed	VAN
7TD	3	4-acid Digestion ICP-ES Finish	0.5	Completed	VAN

ADDITIONAL COMMENTS

This report supersedes all previous preliminary and final reports with this file number dated prior to the date on this certificate. Signature indicates final approval; preliminary reports are unsigned and should be used for reference only. All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of analysis only. Results apply to samples as submitted. "*" asterisk indicates that an analytical result could not be provided due to unusually high levels of interference from other elements.

Phone (604) 253-3158 Fax (604) 253-1716

1020 Cordova St. East Vancouver BC V6A 4A3 Canada

Client:

Winrock Resources Ltd.

UTM Exploration Services Ltd.

104-1165 Main Street

Box 5037

Smithers BC V0J 2N0 CANADA

Project:

Winrock

Report Date:

November 22, 2012

www.acmelab.com

Acme Analytical Laboratories (Vancouver) Ltd.

Page:

2 of 4

Part:

1 of 1

CERTIFICATE	E OF AN	IALY	SIS													SN	/II12	000	518.	1	
	Method	WGHT	1F15	1F15	1F15	1F15	1F15	1F15	1F15	1F15	1F15	1F15	1F15	1F15	1F15	1F15	1F15	1F15	1F15	1F15	1F15
	Analyte	Wgt	Мо	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	U	Au	Th	Sr	Cd	Sb	Bi	V	Ca
	Unit	kg	ppm	ppm	ppm	ppm	ppb	ppm	ppm	ppm	%	ppm	ppm	ppb	ppm	ppm	ppm	ppm	ppm	ppm	%
	MDL	0.01	0.01	0.01	0.01	0.1	2	0.1	0.1	1	0.01	0.1	0.1	0.2	0.1	0.5	0.01	0.02	0.02	2	0.01
G1-SMI	Prep Blank	<0.01	0.09	2.54	2.85	48.9	7	3.7	4.6	644	2.01	0.2	1.4	<0.2	5.3	60.5	0.05	0.04	0.10	37	0.52
G1-SMI	Prep Blank	<0.01	0.07	2.81	2.90	51.6	13	3.5	4.2	623	2.02	0.3	1.4	<0.2	5.1	58.6	0.03	0.03	0.06	38	0.51
100	Drill Core	1.67	1.76	221.4	31.60	105.3	972	67.4	52.7	519	3.61	1.0	<0.1	16.0	<0.1	20.7	0.58	0.19	0.57	85	2.40
101	Drill Core	3.69	3.08	245.4	471.2	1684	2933	40.5	38.1	773	7.38	30.5	0.1	19.7	0.1	23.9	17.45	1.31	0.21	103	1.50
102	Drill Core	4.30	3.33	78.16	179.1	291.6	1180	35.4	32.0	802	4.37	41.6	0.5	12.5	0.2	38.3	1.13	0.84	0.05	69	2.30
103	Drill Core	2.79	2.16	177.0	123.6	920.6	2331	29.4	28.3	717	3.98	34.6	0.1	48.4	0.2	62.1	7.25	0.44	0.03	30	3.58
104	Drill Core	3.05	2.77	206.3	165.8	679.6	3449	27.3	31.8	785	3.92	45.5	0.2	55.7	0.2	75.2	5.27	0.65	0.04	50	3.55
105	Drill Core	4.37	5.04	69.96	26.15	75.4	1034	35.2	40.7	487	4.85	53.2	0.2	38.0	0.2	35.0	0.25	0.47	0.06	65	1.90
106	Drill Core	5.11	4.77	69.44	12.96	116.0	840	31.0	39.9	670	5.16	45.4	1.1	14.6	0.2	89.5	0.38	0.28	0.04	58	3.64
107	Drill Core	4.89	3.14	79.31	12.67	106.9	1452	31.2	41.8	437	5.75	59.3	0.4	33.0	0.1	58.8	0.25	0.26	0.02	43	2.65
108	Drill Core	2.98	5.84	271.6	1228	1242	11495	24.8	37.1	271	5.59	56.0	0.2	115.8	<0.1	47.6	7.56	4.67	0.12	16	2.19
109	Drill Core	5.07	2.91	160.1	241.3	533.6	2789	29.9	39.2	788	6.48	23.9	0.4	23.7	<0.1	91.4	3.49	0.72	0.14	80	4.39
110	Drill Core	5.28	4.60	140.8	87.92	110.4	1231	49.8	43.0	896	6.10	9.4	1.1	5.4	0.2	57.1	0.30	0.23	0.39	74	4.25
111	Drill Core	5.07	1.23	1210	76.02	2888	1791	20.5	52.5	485	12.15	42.5	0.1	10.9	0.2	4.5	9.30	0.33	5.27	55	0.63
112	Drill Core	3.83	1.85	2066	48.76	2216	2158	27.6	43.7	935	13.32	4.0	0.1	9.9	0.1	1.8	11.44	0.18	3.91	141	0.42
113	Drill Core	1.35	1.35	453.5	5.93	339.2	615	32.7	29.6	846	6.95	0.8	<0.1	1.5	<0.1	12.9	0.33	0.11	0.92	185	1.90
114	Drill Core	4.27	1.41	>10000	60.59	2103	8744	22.6	140.7	946	11.96	29.5	0.3	180.7	0.1	33.0	7.69	0.20	18.20	183	3.33
115	Drill Core	2.76	1.36	175.3	7.52	109.8	1224	83.2	28.5	914	7.77	5.6	0.9	13.2	0.4	68.0	3.99	0.11	0.20	162	6.59
116	Drill Core	1.23	2.80	313.9	5.66	66.9	1238	17.9	53.3	1012	6.87	3.4	0.6	12.4	0.1	68.4	0.52	0.17	0.43	108	7.06
117	Drill Core	2.72	4.26	113.6	18.40	66.9	562	37.8	34.3	1003	5.45	3.8	0.1	4.4	<0.1	46.0	0.49	0.13	0.10	100	5.26
118	Drill Core	3.67	0.82	1096	36.94	1110	2278	43.9	63.9	1059	5.44	4.0	0.3	45.8	0.1	51.4	14.70	0.13	3.64	113	4.62
119	Drill Core	5.47	1.42	583.6	55.55	710.0	1375	25.8	50.6	856	5.71	6.7	0.4	14.1	0.2	36.8	3.00	0.17	3.50	125	3.57
120	Drill Core	3.09	2.58	484.9	107.5	961.7	1564	43.5	42.4	1066	9.64	57.8	<0.1	14.5	0.2	26.7	3.50	0.30	2.94	64	1.47
121	Drill Core	4.24	2.40	763.9	20.19	2352	1339	23.5	28.9	1437	9.13	41.9	<0.1	21.3	0.3	9.2	8.68	0.15	2.12	71	0.48
122	Drill Core	6.29	4.99	1511	19.21	732.8	1860	25.2	32.1	1309	9.20	48.7	<0.1	56.1	1.1	4.2	2.18	0.18	3.56	50	0.29
123	Drill Core	4.20	4.87	6545	8.19	209.5	2632	31.4	78.7	1528	14.36	16.6	<0.1	24.1	0.2	7.0	0.45	0.07	4.13	167	0.45
124	Drill Core	5.86	3.68	2845	7.27	258.9	1131	20.9	32.7	1081	7.55	4.7	0.4	17.4	0.7	30.7	0.66	0.05	1.15	77	1.71
125	Drill Core	3.31	2.85	2137	4.40	278.4	739	37.3	43.7	1364	9.67	<0.1	<0.1	11.0	0.3	5.4	0.42	0.03	0.67	155	0.44
126	Drill Core	6.98	8.53	3081	3.35	433.3	1141	4.4	26.1	978	6.35	0.7	0.1	8.7	1.8	3.1	1.64	0.05	2.17	17	0.22
127	Drill Core	3.99	5.54	2850	2.45	206.0	1662	18.0	71.6	900	10.10	<0.1	<0.1	33.0	0.4	19.8	0.85	0.03	0.82	184	0.91

Client:

Winrock Resources Ltd.

lient: UTM Exploration Services Ltd.

104-1165 Main Street

Box 5037

Smithers BC V0J 2N0 CANADA

Project:

:: Winrock

Report Date:

November 22, 2012

1020 Cordova St. East Vancouver BC V6A 4A3 Canada Phone (604) 253-3158 Fax (604) 253-1716

www.acmelab.com

Acme Analytical Laboratories (Vancouver) Ltd.

Page: 2 of 4

Part: 2 of 1

CERTIFICATE OF ANALYSIS

AcmeLabs

SMI12000518.1

	Method	1F15	1F15	1F15	1F15	1F15	1F15	1F15	1F15	1F15	1F15	1F15	1F15	1F15	1F15	1F15	1F15	1F15	1F15	7TD
	Analyte	Р	La	Cr	Mg	Ва	Ti	В	Al	Na	K	w	Sc	TI	s	Hg	Se	Te	Ga	Cu
	Unit	%	ppm	ppm	%	ppm	%	ppm	%	%	%	ppm	ppm	ppm	%	ppb	ppm	ppm	ppm	%
	MDL	0.001	0.5	0.5	0.01	0.5	0.001	1	0.01	0.001	0.01	0.1	0.1	0.02	0.02	5	0.1	0.02	0.1	0.001
G1-SMI	Prep Blank	0.076	11.3	10.0	0.60	234.5	0.119	<1	0.98	0.075	0.48	<0.1	2.7	0.31	<0.02	9	<0.1	0.04	5.8	
G1-SMI	Prep Blank	0.075	10.8	10.3	0.60	226.9	0.117	1	0.99	0.078	0.49	<0.1	2.8	0.32	<0.02	<5	<0.1	<0.02	5.7	
100	Drill Core	0.037	<0.5	68.7	1.84	90.3	0.194	<1	1.97	0.033	0.98	0.2	6.3	0.84	1.23	<5	1.5	0.09	4.6	
101	Drill Core	0.143	0.7	47.7	2.53	21.4	0.143	<1	2.31	0.012	0.80	0.1	7.3	1.83	4.40	47	2.9	0.28	5.8	
102	Drill Core	0.032	0.5	48.6	3.06	46.3	0.163	<1	2.78	0.011	1.15	<0.1	6.9	3.39	2.56	8	0.9	0.18	5.3	
103	Drill Core	0.030	0.6	13.9	0.78	27.1	0.120	<1	0.91	0.016	0.61	<0.1	3.1	1.65	3.98	29	1.7	0.06	1.8	
104	Drill Core	0.040	0.6	15.7	1.58	37.2	0.168	<1	1.57	0.010	0.97	<0.1	4.3	3.52	3.32	27	1.1	<0.02	3.4	
105	Drill Core	0.041	0.7	15.8	1.87	24.9	0.183	<1	1.79	0.017	0.90	<0.1	6.5	3.82	4.14	<5	0.9	0.06	4.1	
106	Drill Core	0.043	0.6	13.0	2.31	27.1	0.092	1	2.13	0.005	0.88	<0.1	5.7	3.71	4.16	<5	0.6	0.06	4.7	
107	Drill Core	0.045	0.5	9.6	2.26	21.6	0.055	<1	1.97	0.006	0.74	<0.1	4.2	3.16	5.14	6	1.0	0.08	4.0	
108	Drill Core	0.042	<0.5	3.5	0.46	15.1	0.016	<1	0.54	0.011	0.35	<0.1	1.8	1.41	6.19	36	2.7	0.05	1.3	
109	Drill Core	0.051	0.6	17.8	3.01	28.6	0.068	<1	2.72	0.015	0.68	<0.1	7.5	3.73	3.57	<5	1.0	0.03	6.7	
110	Drill Core	0.078	0.8	55.1	2.38	41.3	0.150	<1	2.35	0.016	0.36	<0.1	6.5	1.60	2.90	<5	2.0	<0.02	6.1	
111	Drill Core	0.087	0.6	9.4	1.40	14.8	0.198	<1	1.58	0.020	0.34	0.2	3.7	0.46	7.82	48	6.2	1.04	4.9	
112	Drill Core	0.062	<0.5	16.5	3.87	40.7	0.211	<1	3.95	0.011	0.42	0.1	10.0	0.64	4.54	41	8.0	2.47	9.9	
113	Drill Core	0.081	<0.5	61.4	2.98	73.5	0.182	<1	2.93	0.016	0.32	1.2	11.1	0.35	2.23	11	3.4	0.46	8.6	
114	Drill Core	0.078	<0.5	29.1	3.13	19.0	0.212	<1	3.06	0.022	0.54	0.1	14.8	0.58	5.37	133	37.5	1.60	12.9	1.228
115	Drill Core	0.318	2.3	97.4	1.98	30.2	0.133	<1	2.00	0.012	0.36	0.2	6.0	0.43	3.59	<5	7.7	0.07	5.4	
116	Drill Core	0.258	0.7	16.2	1.89	34.3	0.166	<1	2.09	0.014	0.43	0.2	4.5	0.50	2.50	<5	3.5	0.07	5.3	
117	Drill Core	0.084	0.5	38.7	2.13	31.8	0.199	<1	2.10	0.026	0.49	0.2	6.7	0.48	2.35	<5	1.7	0.02	6.1	
118	Drill Core	0.120	0.6	26.1	2.97	47.3	0.174	<1	3.04	0.018	0.64	<0.1	6.0	0.74	1.58	33	10.1	0.84	6.9	
119	Drill Core	0.234	1.1	11.6	2.23	33.4	0.225	<1	2.32	0.036	0.44	0.2	6.0	0.48	2.48	15	7.6	0.74	7.1	
120	Drill Core	0.040	0.9	49.5	2.49	15.1	0.052	<1	2.45	0.007	0.50	<0.1	7.7	1.24	6.75	26	5.5	0.92	5.9	
121	Drill Core	0.029	1.0	26.3	2.46	20.2	0.058	<1	2.46	0.006	0.44	<0.1	7.9	1.22	5.71	68	7.7	0.51	7.6	
122	Drill Core	0.023	3.6	25.9	2.83	40.5	0.022	<1	2.73	<0.001	0.21	<0.1	6.5	0.52	5.83	37	11.4	1.29	7.5	
123	Drill Core	0.029	<0.5	58.4	4.40	40.8	0.112	<1	4.86	0.001	0.68	<0.1	25.1	1.37	4.78	22	18.8	2.42	15.2	
124	Drill Core	0.022	1.7	33.2	3.39	47.0	0.044	<1	3.65	0.002	0.20	<0.1	11.6	0.31	1.98	25	6.9	0.69	10.3	
125	Drill Core	0.043	<0.5	67.0	4.79	65.8	0.058	<1	5.11	<0.001	0.37	<0.1	22.6	0.49	1.66	26	8.5	0.70	12.5	
126	Drill Core	0.007	3.5	5.3	3.04	53.2	0.024	<1	3.31	<0.001	0.17	<0.1	3.5	0.20	1.26	36	8.1	1.30	12.3	
127	Drill Core	0.030	0.8	19.8	4.60	31.8	0.055	<1	5.35	<0.001	0.28	<0.1	23.6	0.46	0.92	20	4.9	0.57	15.9	

Acme Analytical Laboratories (Vancouver) Ltd.

1020 Cordova St. East Vancouver BC V6A 4A3 Canada Phone (604) 253-3158 Fax (604) 253-1716

www.acmelab.com

Client:

Winrock Resources Ltd.

UTM Exploration Services Ltd.

104-1165 Main Street

Box 5037

Smithers BC V0J 2N0 CANADA

Project:

Winrock

Report Date:

November 22, 2012

Page: 3 of 4 Part: 1 of 1

CERTIF	ICATE OF AN	VALY	SIS													SN	/ 1112	000	518.	1	
	Method	WGHT	1F15	1F15	1F15	1F15	1F15	1F15	1F15	1F15	1F15	1F15	1F15	1F15	1F15	1F15	1F15	1F15	1F15	1F15	1F15
	Analyte	Wgt	Мо	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	U	Au	Th	Sr	Cd	Sb	Bi	V	Ca
	Unit	kg	ppm	ppm	ppm	ppm	ppb	ppm	ppm	ppm	%	ppm	ppm	ppb	ppm	ppm	ppm	ppm	ppm	ppm	%
	MDL	0.01	0.01	0.01	0.01	0.1	2	0.1	0.1	1	0.01	0.1	0.1	0.2	0.1	0.5	0.01	0.02	0.02	2	0.01
128	Drill Core	2.33	3.78	2379	4.40	200.3	2459	3.8	20.4	524	4.39	1.8	<0.1	39.6	1.2	17.2	0.84	0.04	1.01	11	0.66
129	Drill Core	3.35	1.88	1363	80.44	3195	2350	29.2	42.7	722	6.37	40.1	0.2	18.1	0.4	7.2	12.10	0.58	1.02	59	0.45
130	Drill Core	4.52	0.50	147.0	18.14	285.5	224	258.1	47.4	1515	5.37	8.7	<0.1	0.3	0.1	119.6	0.16	0.07	0.07	186	5.31
131	Drill Core	3.65	1.24	130.9	107.4	1164	627	27.2	39.5	535	5.96	43.6	<0.1	4.8	0.2	16.3	4.67	0.79	0.08	143	1.07
132	Drill Core	6.36	1.20	72.46	21.72	84.6	410	30.7	13.3	859	6.02	4.1	0.5	2.2	2.4	204.8	0.92	0.37	0.57	86	4.86
133	Drill Core	5.88	0.51	72.24	20.68	78.0	381	16.8	10.7	683	6.27	5.5	0.2	8.1	0.7	274.6	0.88	0.27	0.68	69	5.28
134	Drill Core	5.10	0.73	58.99	12.71	58.2	396	68.1	23.4	817	5.57	3.1	0.4	8.2	1.7	195.8	0.61	0.13	0.50	109	5.53
135	Drill Core	3.33	6.03	146.0	8.87	56.6	662	51.1	51.8	582	4.73	11.4	1.7	20.5	0.5	59.9	0.37	0.23	0.45	93	3.56
136	Drill Core	5.99	2.46	121.4	9.35	98.7	541	35.8	33.4	781	5.53	15.6	<0.1	16.2	0.3	111.8	1.26	0.22	0.10	20	5.34
137	Drill Core	4.75	2.40	46.58	39.28	64.3	482	43.4	32.2	461	4.21	19.3	0.9	8.1	0.4	33.4	0.19	0.31	0.17	69	1.57
138	Drill Core	5.21	4.05	81.99	114.0	92.4	1074	27.8	30.6	585	4.95	12.6	0.7	8.3	0.3	50.3	0.30	0.47	0.18	73	3.35
139	Drill Core	2.19	6.92	128.7	119.8	72.8	1661	31.7	33.3	609	5.99	1.7	0.6	20.5	0.3	57.3	0.37	0.28	0.37	76	3.45
140	Drill Core	3.20	1.57	63.09	5.04	26.4	464	141.2	34.5	1592	4.71	1.2	0.1	2.3	<0.1	91.4	0.14	0.09	0.04	74	10.95
141	Drill Core	3.17	0.84	116.9	266.5	465.7	1092	42.4	37.7	1112	5.93	9.5	0.2	13.1	0.1	84.9	2.28	0.42	0.23	90	7.18
142	Drill Core	5.17	0.82	88.88	287.3	2459	1382	34.9	38.3	3137	7.25	37.2	<0.1	16.1	0.2	46.3	5.45	0.53	0.36	104	3.19
143	Drill Core	6.53	1.46	893.7	354.1	3288	2865	42.3	29.8	1022	11.36	34.3	0.2	71.8	0.5	89.0	10.12	0.37	3.19	98	1.35
144	Drill Core	4.74	5.23	51.43	9.30	88.5	674	38.1	48.7	378	5.86	36.4	0.5	15.7	0.2	17.3	0.09	0.27	0.12	62	1.46
145	Drill Core	3.98	4.74	151.6	107.5	56.2	2020	32.9	36.7	260	5.08	21.8	0.6	16.7	0.2	16.0	0.28	0.58	0.38	37	1.15
146	Drill Core	6.02	4.68	45.91	51.82	16.4	1387	15.1	31.0	108	5.87	33.0	2.8	33.8	0.4	13.2	0.17	0.51	0.11	17	0.86
147	Drill Core	7.05	4.98	59.28	34.09	63.5	1427	52.7	36.6	336	5.45	36.7	8.0	22.9	0.3	46.7	0.33	0.36	0.48	28	2.56
148	Drill Core	3.00	6.05	84.45	18.99	93.7	1567	62.9	32.9	610	6.91	23.8	0.4	21.1	0.2	61.0	0.33	0.24	0.23	73	3.81
149	Drill Core	5.53	0.71	101.0	11.08	90.8	1037	73.1	32.7	824	5.75	3.0	0.4	5.0	0.3	87.5	0.39	0.18	0.04	95	5.71
150	Drill Core	2.86	1.00	98.16	18.77	70.3	512	89.0	28.9	1265	5.15	4.0	0.4	3.4	0.3	117.7	0.44	0.10	0.07	88	9.50
151	Drill Core	4.05	2.00	6156	96.61	2413	6186	49.1	136.8	649	14.71	50.9	<0.1	91.9	<0.1	7.3	7.89	0.31	24.32	115	1.04
152	Drill Core	3.59	2.21	3804	46.05	1966	2701	9.7	92.1	744	8.93	18.3	0.3	42.6	0.2	29.6	8.24	0.23	12.13	154	3.83
153	Drill Core	2.68	4.40	59.14	1.72	50.3	438	29.6	47.6	464	8.72	43.8	<0.1	20.6	<0.1	27.2	0.20	1.40	0.27	80	2.19
154	Drill Core	5.05	1.42	442.9	461.3	3492	2694	36.2	41.2	572	7.01	49.0	0.1	24.6	0.1	13.8	12.03	0.68	2.66	32	1.15
155	Drill Core	5.13	2.37	1340	21.02	380.2	1264	24.4	42.0	1061	9.65	0.5	<0.1	9.7	0.2	5.0	0.56	0.06	1.34	143	0.33
156	Drill Core	4.01	3.41	2113	4.53	268.6	1086	33.3	73.8	822	11.65	<0.1	0.1	7.3	0.1	3.6	0.50	0.03	0.77	131	0.22
157	Drill Core	4.47	3.27	>10000	2.88	479.9	6480	36.1	159.6	912	15.91	<0.1	0.2	81.3	0.3	8.1	4.33	0.02	0.98	192	0.43

Client:

Winrock Resources Ltd.

ient: UTM Exploration Services Ltd.

104-1165 Main Street

Box 5037

Smithers BC V0J 2N0 CANADA

Project:

Winrock

Report Date:

November 22, 2012

1020 Cordova St. East Vancouver BC V6A 4A3 Canada Phone (604) 253-3158 Fax (604) 253-1716

www.acmelab.com

Acme Analytical Laboratories (Vancouver) Ltd.

Page: 3 of 4

Part: 2 of 1

CERTIFICATE OF ANALYSIS

AcmeLabs

SMI12000518.1

Method	1F15	1F15	1F15	1F15	1F15	1F15	1F15	1F15	1F15	1F15	1F15	1F15	1F15	1F15	1F15	1F15	1F15	1F15	7TD
Analyte	Р	La	Cr	Mg	Ва	Ti	В	Al	Na	K	w	Sc	TI	S	Hg	Se	Te	Ga	Cu
Unit	%	ppm	ppm	%	ppm	%	ppm	%	%	%	ppm	ppm	ppm	%	ppb	ppm	ppm	ppm	%
MDL	0.001	0.5	0.5	0.01	0.5	0.001	1	0.01	0.001	0.01	0.1	0.1	0.02	0.02	5	0.1	0.02	0.1	0.001
128 Drill Core	0.004	3.7	3.0	1.85	100.5	0.096	<1	1.91	0.038	1.11	<0.1	2.7	2.28	1.33	5	5.2	0.68	10.4	
129 Drill Core	0.041	1.4	26.2	2.42	33.5	0.116	<1	2.22	0.010	0.39	0.2	5.6	0.67	4.46	142	5.4	0.43	6.2	
130 Drill Core	0.031	0.6	820.0	6.21	97.8	0.120	<1	5.08	<0.001	0.65	<0.1	32.9	1.04	1.00	<5	8.0	<0.02	10.3	
131 Drill Core	0.070	8.0	24.9	3.93	54.2	0.185	<1	3.49	0.012	0.50	0.1	12.8	1.04	3.00	26	1.3	0.15	9.2	
132 Drill Core	0.123	9.1	80.8	2.25	26.1	0.030	2	2.34	0.063	0.38	<0.1	16.5	0.27	3.26	17	0.6	0.06	8.9	
133 Drill Core	0.108	2.8	18.4	1.43	20.2	0.016	2	1.69	0.034	0.33	<0.1	17.6	0.25	3.59	30	0.5	0.03	5.5	
134 Drill Core	0.080	5.1	162.4	2.63	27.7	0.072	4	2.66	0.027	0.65	<0.1	16.1	0.64	2.32	9	0.1	<0.02	6.3	
135 Drill Core	0.052	1.7	54.5	2.26	27.5	0.130	2	2.16	0.033	0.43	<0.1	10.0	0.50	2.58	6	2.1	<0.02	5.6	
136 Drill Core	0.034	1.2	14.0	2.30	35.3	0.021	<1	1.08	0.008	0.37	<0.1	3.0	0.51	3.33	<5	1.1	<0.02	1.8	
137 Drill Core	0.025	1.1	85.2	2.55	26.6	0.079	<1	2.18	0.017	0.75	0.2	7.6	1.71	2.40	<5	0.6	<0.02	4.4	
138 Drill Core	0.041	0.6	13.4	2.41	28.8	0.149	1	2.21	0.010	0.63	<0.1	5.8	1.18	2.55	14	1.2	0.11	4.6	
139 Drill Core	0.051	0.7	9.4	1.74	27.2	0.167	<1	1.62	0.019	0.57	0.1	6.0	1.02	2.71	<5	3.1	<0.02	3.9	
140 Drill Core	0.047	<0.5	122.0	1.67	35.8	0.191	<1	1.59	0.025	0.73	0.1	5.9	0.47	2.03	8	1.1	0.03	3.7	
141 Drill Core	0.103	0.8	44.9	2.34	24.4	0.125	<1	2.33	0.014	0.45	0.1	6.6	0.44	2.65	19	1.6	0.47	4.9	
142 Drill Core	0.056	0.8	58.2	2.26	12.7	0.171	1	2.19	0.035	0.52	0.1	10.1	0.69	4.84	75	0.5	0.09	6.4	
143 Drill Core	0.083	2.8	61.4	2.43	9.1	0.118	<1	2.41	0.236	0.59	0.1	11.0	0.68	6.27	51	3.7	1.53	6.6	
144 Drill Core	0.061	0.5	32.4	2.30	15.4	0.176	<1	2.19	0.010	0.78	0.1	4.4	2.35	4.05	<5	1.2	0.04	4.6	
145 Drill Core	0.052	<0.5	11.5	1.51	17.2	0.109	<1	1.46	0.014	0.43	0.1	2.9	1.63	3.67	<5	1.4	0.06	2.8	
146 Drill Core	0.044	0.7	15.4	0.22	10.3	0.152	<1	0.43	0.016	0.25	0.1	1.6	0.82	5.98	<5	2.0	<0.02	1.0	
147 Drill Core	0.040	<0.5	63.8	1.08	14.9	0.098	<1	1.08	0.014	0.31	<0.1	2.9	1.29	4.76	<5	1.5	0.03	2.1	
148 Drill Core	0.076	0.6	131.6	2.29	19.9	0.110	<1	2.19	0.012	0.37	0.1	6.1	1.61	3.98	<5	1.3	<0.02	5.0	
149 Drill Core	0.099	0.9	66.6	2.21	56.7	0.180	<1	2.21	0.016	0.47	<0.1	5.9	1.48	2.27	<5	1.6	0.06	5.7	
150 Drill Core	0.222	0.7	133.8	2.48	55.5	0.055	<1	2.29	0.005	0.14	0.1	4.7	0.21	1.94	<5	3.2	0.05	4.6	
151 Drill Core	0.039	<0.5	111.6	2.91	7.8	0.186	<1	2.99	0.023	0.78	0.2	6.6	1.61	7.65	119	16.0	13.24	7.3	
152 Drill Core	0.259	1.0	7.5	1.64	11.2	0.212	<1	1.71	0.038	0.67	0.2	4.7	0.91	5.21	97	27.8	0.88	6.8	
153 Drill Core	0.044	<0.5	11.6	2.16	11.7	0.167	<1	2.26	0.026	0.28	0.1	3.5	0.86	5.53	19	0.7	0.10	6.0	
154 Drill Core	0.045	0.5	12.5	1.23	9.8	0.086	<1	1.35	0.010	0.29	0.1	2.9	0.51	5.66	102	3.1	0.59	2.8	
155 Drill Core	0.035	<0.5	27.5	3.85	81.7	0.074	<1	4.16	0.005	0.38	<0.1	13.4	0.61	1.95	11	4.7	0.89	9.4	\neg
156 Drill Core	0.021	<0.5	52.2	3.94	43.0	0.031	<1	4.56	0.003	0.12	<0.1	12.9	0.17	2.38	<5	6.7	0.67	10.3	
157 Drill Core	0.033	1.0	64.7	4.96	49.8	0.047	<1	5.98	0.002	0.22	0.9	21.0	0.30	2.91	63	14.0	0.71	16.2	1.575

Acme Analytical Laboratories (Vancouver) Ltd.

1020 Cordova St. East Vancouver BC V6A 4A3 Canada Phone (604) 253-3158 Fax (604) 253-1716

www.acmelab.com

Client:

Winrock Resources Ltd.

UTM Exploration Services Ltd.

104-1165 Main Street

Box 5037

Smithers BC V0J 2N0 CANADA

Project:

Winrock

Report Date:

November 22, 2012

Page: 4 of 4 Part: 1 of 1

CERTIFICA	ATE OF AN	IALY	SIS													SM	1112	000	518.	1	
	Method	WGHT	1F15	1F15	1F15	1F15	1F15	1F15	1F15	1F15	1F15	1F15	1F15	1F15	1F15	1F15	1F15	1F15	1F15	1F15	1F15
	Analyte	Wgt	Мо	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	U	Au	Th	Sr	Cd	Sb	Bi	V	Ca
	Unit	kg	ppm	ppm	ppm	ppm	ppb	ppm	ppm	ppm	%	ppm	ppm	ppb	ppm	ppm	ppm	ppm	ppm	ppm	%
	MDL	0.01	0.01	0.01	0.01	0.1	2	0.1	0.1	1	0.01	0.1	0.1	0.2	0.1	0.5	0.01	0.02	0.02	2	0.01
158	Drill Core	5.37	6.57	>10000	3.02	465.7	4170	33.8	130.4	1143	14.77	<0.1	<0.1	60.0	0.5	13.5	2.44	0.03	0.80	218	0.57
159	Drill Core	5.71	10.51	2958	2.03	118.4	1139	37.1	130.3	823	13.14	<0.1	<0.1	35.9	0.3	10.3	0.64	<0.02	0.35	187	0.44
160	Drill Core	6.16	10.37	4536	2.04	128.8	2390	21.9	80.7	784	12.25	<0.1	<0.1	94.9	0.5	17.7	0.86	0.02	0.35	200	0.80
161	Drill Core	5.69	12.38	2635	1.52	205.3	1800	26.4	64.1	920	12.13	<0.1	<0.1	51.3	0.4	10.9	1.15	<0.02	0.42	228	0.57
162	Drill Core	5.39	1.87	654.8	64.69	865.2	849	19.8	35.7	2185	8.02	0.4	<0.1	14.0	0.3	9.0	3.29	0.04	1.13	159	0.43
163	Drill Core	5.41	1.44	580.3	13.00	851.0	712	22.3	31.2	1134	5.35	0.7	<0.1	18.9	0.4	15.0	5.09	0.06	0.41	60	0.69
164	Drill Core	4.57	1.81	397.0	17.20	1209	607	26.0	38.7	1619	7.68	<0.1	0.2	4.4	0.7	40.2	4.09	0.05	0.67	90	1.90
165	Drill Core	3.58	6.31	134.8	4.24	86.5	307	10.0	23.9	568	3.70	<0.1	0.2	0.4	3.3	27.1	0.66	0.03	0.18	5	1.08
166	Drill Core	5.52	1.86	54.69	38.81	114.2	339	28.4	35.7	538	5.43	47.0	0.2	8.3	<0.1	23.2	0.12	0.52	0.19	65	2.51
167	Drill Core	6.86	1.21	1110	188.6	3694	2881	30.2	60.8	1543	8.53	33.5	<0.1	48.8	<0.1	9.4	10.66	0.31	6.29	72	1.37
168	Drill Core	6.86	1.14	1274	15.54	2127	1890	46.3	47.1	870	12.40	11.0	0.1	28.5	<0.1	6.6	6.97	0.17	4.13	193	1.00
169	Drill Core	7.05	1.24	116.0	29.89	99.4	615	36.6	47.7	1432	6.40	10.4	0.2	8.9	0.2	36.5	0.10	0.26	0.20	71	2.72
170	Drill Core	2.93	18.69	143.8	8.57	478.5	1126	132.6	9.8	644	8.84	<0.1	3.7	1.4	0.9	126.4	6.49	0.43	1.34	187	6.85
171	Drill Core	4.32	4.55	240.5	9.19	175.3	1976	136.9	12.7	1021	12.59	<0.1	3.9	<0.2	0.5	167.3	2.72	0.32	2.59	242	9.02

170

171

AcmeLabs

Drill Core

Drill Core

0.671

0.443

4.6

6.0

90.3

78.1

2.28

3.09

35.0

41.5

0.005

0.005

rt

Client: UTM Exploration Services Ltd.

104-1165 Main Street

Box 5037

Smithers BC V0J 2N0 CANADA

Project: Winrock

Report Date: November 22, 2012

1020 Cordova St. East Vancouver BC V6A 4A3 Canada Phone (604) 253-3158 Fax (604) 253-1716

www.acmelab.com

Acme Analytical Laboratories (Vancouver) Ltd.

Page: 4 of 4 Part: 2 of 1

Winrock Resources Ltd.

CERTIFICATE OF ANALYSIS SMI12000518.1 Method 1F15 1F15 1F15 7TD 1F15 Analyte Р Cr Ti В Na ΤI s Cu La Mg Ba ΑI Κ w Sc Hg Se Te Ga Unit % % % % % % ppm ppm ppm % ppm ppm ppm ppm ppb ppm ppm ppm MDL 0.001 0.5 0.5 0.01 0.5 0.001 1 0.01 0.001 0.01 0.1 0.1 0.02 0.02 5 0.1 0.02 0.1 0.001 1.087 158 Drill Core 0.033 2.1 54.4 6.07 47.2 0.061 <1 7.13 0.002 0.30 0.1 24.7 0.40 1.70 55 10.1 0.38 18.8 159 Drill Core 0.023 0.7 68.2 5.29 40.8 0.054 <1 6.13 0.002 0.29 < 0.1 22.1 0.34 1.48 24 6.4 0.24 17.2 160 Drill Core 0.059 1.5 22.5 5.08 13.8 0.030 <1 6.08 0.001 0.09 0.1 21.9 0.09 1.05 15 0.15 16.3 0.06 < 0.1 0.03 0.70 0.29 161 Drill Core 0.061 1.8 44.8 5.71 16.9 0.031 <1 6.68 0.002 24.8 <5 2.9 16.4 162 Drill Core 0.036 1.6 18.5 4.91 52.3 0.031 <1 4.82 0.006 0.23 < 0.1 16.2 0.14 1.21 <5 2.5 0.24 9.5 4.8 163 Drill Core 0.047 1.5 14.4 2.53 60.6 0.013 2.41 0.004 0.19 < 0.1 0.10 1.42 8 1.9 0.30 <1 5.1 164 Drill Core 0.054 3.1 19.7 3.11 56.8 0.029 <1 3.25 0.004 0.19 < 0.1 0.13 1.55 7 1.5 0.10 6.9 5.9 165 Drill Core 0.012 102.2 0.009 0.78 0.006 0.2 1.50 <5 1.2 0.08 2.3 15.0 5.0 0.68 <1 0.25 0.6 0.15 0.2 166 Drill Core 0.044 < 0.5 26.0 1.76 15.7 0.190 <1 1.81 0.019 1.18 4.5 1.96 4.27 <5 8.0 0.02 3.9 167 **Drill Core** 0.057 < 0.5 33.8 2.16 10.3 0.185 <1 2.16 0.017 0.74 < 0.1 3.3 1.16 5.99 127 14.8 0.62 4.7 168 Drill Core 0.070 < 0.5 74.0 3.62 18.4 0.204 1 3.68 0.024 1.09 0.1 14.2 1.49 4.89 42 5.4 1.99 9.4 169 Drill Core 0.056 0.8 9.4 1.59 62.8 0.201 <1 1.60 0.015 0.99 0.1 5.7 0.72 3.69 11 0.9 0.06 3.3

<1

<1

0.72

0.32

0.005

0.003

0.12

0.12

0.5

8.0

5.4

2.8

0.13

0.28

3.83

5.92

64

211

18.7

24.5

0.18

0.28

1.9

1.5

Phone (604) 253-3158 Fax (604) 253-1716

1020 Cordova St. East Vancouver BC V6A 4A3 Canada

Winrock Resources Ltd. Client: **UTM Exploration Services Ltd.**

104-1165 Main Street

Box 5037

Smithers BC V0J 2N0 CANADA

Project:

Winrock

Report Date:

November 22, 2012

www.acmelab.com

Acme Analytical Laboratories (Vancouver) Ltd.

Page:

1 of 2

Part: 1 of 1

QUALITY CO	NTROL	REP	OR ⁻	Τ												SM	1120	005	18.1		
	Method	WGHT	1F15	1F15	1F15	1F15	1F15	1F15	1F15	1F15	1F15	1F15	1F15	1F15	1F15	1F15	1F15	1F15	1F15	1F15	1F15
	Analyte	Wgt	Мо	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	U	Au	Th	Sr	Cd	Sb	Bi	V	Ca
	Unit	kg	ppm	ppm	ppm	ppm	ppb	ppm	ppm	ppm	%	ppm	ppm	ppb	ppm	ppm	ppm	ppm	ppm	ppm	%
	MDL	0.01	0.01	0.01	0.01	0.1	2	0.1	0.1	1	0.01	0.1	0.1	0.2	0.1	0.5	0.01	0.02	0.02	2	0.01
Pulp Duplicates																					
104	Drill Core	3.05	2.77	206.3	165.8	679.6	3449	27.3	31.8	785	3.92	45.5	0.2	55.7	0.2	75.2	5.27	0.65	0.04	50	3.55
REP 104	QC		2.66	205.1	162.0	669.3	3331	27.7	30.3	766	3.88	44.6	0.2	30.5	0.2	75.5	5.15	0.72	0.03	49	3.54
114	Drill Core	4.27	1.41	>10000	60.59	2103	8744	22.6	140.7	946	11.96	29.5	0.3	180.7	0.1	33.0	7.69	0.20	18.20	183	3.33
REP 114	QC																				
132	Drill Core	6.36	1.20	72.46	21.72	84.6	410	30.7	13.3	859	6.02	4.1	0.5	2.2	2.4	204.8	0.92	0.37	0.57	86	4.86
REP 132	QC		1.06	70.85	22.00	90.3	429	29.4	13.4	861	6.01	4.2	0.6	2.3	2.3	206.5	0.87	0.36	0.60	87	4.81
139	Drill Core	2.19	6.92	128.7	119.8	72.8	1661	31.7	33.3	609	5.99	1.7	0.6	20.5	0.3	57.3	0.37	0.28	0.37	76	3.45
REP 139	QC		6.96	123.9	112.6	71.2	1578	32.5	32.1	622	5.88	1.4	0.6	4.9	0.3	53.4	0.30	0.27	0.35	75	3.40
167	Drill Core	6.86	1.21	1110	188.6	3694	2881	30.2	60.8	1543	8.53	33.5	<0.1	48.8	<0.1	9.4	10.66	0.31	6.29	72	1.37
REP 167	QC		1.21	1100	181.8	3658	2759	29.5	59.8	1552	8.59	32.3	<0.1	34.6	<0.1	9.3	10.29	0.28	6.18	73	1.38
171	Drill Core	4.32	4.55	240.5	9.19	175.3	1976	136.9	12.7	1021	12.59	<0.1	3.9	<0.2	0.5	167.3	2.72	0.32	2.59	242	9.02
REP 171	QC		4.41	238.4	8.78	167.3	1884	134.7	11.4	984	12.26	<0.1	3.9	1.8	0.5	157.9	2.63	0.32	2.52	239	8.91
Core Reject Duplicates																					
110	Drill Core	5.28	4.60	140.8	87.92	110.4	1231	49.8	43.0	896	6.10	9.4	1.1	5.4	0.2	57.1	0.30	0.23	0.39	74	4.25
DUP 110	QC	N.A.	4.69	139.0	84.89	119.8	1201	48.9	41.7	903	6.04	9.2	1.1	5.6	0.2	56.9	0.34	0.29	0.40	75	4.26
144	Drill Core	4.74	5.23	51.43	9.30	88.5	674	38.1	48.7	378	5.86	36.4	0.5	15.7	0.2	17.3	0.09	0.27	0.12	62	1.46
DUP 144	QC	N.A.	5.01	47.58	7.67	87.9	638	38.9	47.0	360	5.76	37.2	0.5	12.0	0.1	17.7	0.10	0.30	0.07	59	1.43
Reference Materials																					
STD CDN-ME-14	Standard																				
STD CDN-ME-9	Standard																				
STD CDN-ME-14	Standard																				
STD CDN-ME-9	Standard																				
STD DS9	Standard		13.53	110.6	129.3	307.4	1875	40.8	8.1	627	2.38	26.3	2.8	137.1	7.0	75.4	2.40	5.08	7.06	42	0.76
STD DS9	Standard		13.29	109.0	118.0	307.5	1758	41.9	8.6	613	2.45	25.2	2.6	110.8	6.0	68.3	2.36	4.90	5.82	41	0.76
STD DS9	Standard		13.16	122.1	135.4	296.5	1902	38.5	8.1	560	2.40	24.8	2.9	132.4	6.8	74.2	2.22	5.84	7.19	40	0.73
STD DS9 Expected			12.84	108	126	317	1830	40.3	7.6	575	2.33	25.5	2.69	118	6.38	69.6	2.4	4.94	6.32	40	0.7201
STD CDN-ME-14 Expected																					
STD CDN-ME-9 Expected																					

AcmeLabs

Phone (604) 253-3158 Fax (604) 253-1716

1020 Cordova St. Fast. Vancouver BC V6A 4A3 Canada

Winrock Resources Ltd.

UTM Exploration Services Ltd. Client:

104-1165 Main Street

Box 5037

Smithers BC V0J 2N0 CANADA

Project: Winrock

November 22, 2012

Report Date:

www.acmelab.com

Acme Analytical Laboratories (Vancouver) Ltd.

1 of 2 Part: Page:

SMI12000518.1 QUALITY CONTROL REPORT Method 7TD 1F15 Analyte Р Ti В Na s Cu La Cr Mg Ba ΑI Κ w Sc ΤI Hg Se Te Ga Unit % % % % ppm ppm ppm % ppm ppm ppm ppm % ppb ppm ppm ppm MDL 0.001 0.5 0.5 0.01 0.5 0.001 1 0.01 0.001 0.01 0.1 0.1 0.02 0.02 5 0.1 0.02 0.1 0.001 **Pulp Duplicates** 104 Drill Core 0.040 0.6 15.7 1.58 37.2 0.168 1.57 0.010 0.97 < 0.1 4.3 3.52 3.32 27 1.1 < 0.02 3.4 <1 **REP 104** QC 0.043 0.6 15.2 1.58 0.165 1.57 0.009 0.96 < 0.1 4.2 3.47 3.27 10 1.3 0.10 3.2 31.9 <1 Drill Core 114 0.078 <0.5 29.1 3.13 19.0 0.212 <1 3.06 0.022 0.54 0.1 14.8 0.58 5.37 133 37.5 1.60 12.9 1.228 **REP 114** QC 1.246 2.34 132 Drill Core 0.123 9.1 80.8 2.25 26.1 0.030 2 0.063 0.38 < 0.1 16.5 0.27 3.26 17 0.6 0.06 8.9 OC RFP 132 0 121 9.0 78.8 2.25 31.0 0.030 <1 2.33 0.062 0.37 < 0.1 16.2 0.23 3.31 18 0.7 0.038.5 139 Drill Core 0.051 0.7 9.4 1.74 27.2 0.167 <1 1.62 0.019 0.57 0.1 6.0 1.02 2.71 <5 3.1 < 0.02 3.9 QC **REP 139** 0.049 0.7 8.7 1.72 25.2 0.166 <1 1.60 0.019 0.56 0.2 6.0 1.01 2.74 <5 2.7 0.09 3.7 167 Drill Core 0.057 <0.5 33.8 2.16 10.3 0.185 <1 2.16 0.017 0.74 <0.1 3.3 1.16 5.99 127 14.8 0.62 4.7 **REP 167** QC 0.055 <0.5 32.0 2.18 10.7 0.175 <1 2.18 0.017 0.75 0.1 3.1 1.09 5.97 114 13.9 0.53 4.7 Drill Core 0.443 6.0 78.1 3.09 41.5 0.005 <1 0.32 0.003 0.12 8.0 2.8 0.28 5.92 211 24.5 0.28 1.5 **REP 171** OC 0.426 5.3 75.6 3.01 37.3 0.005 <1 0.32 0.003 0.12 0.6 2.6 0.28 5.86 191 23.4 0.18 1.4 Core Reject Duplicates Drill Core 0.078 55.1 2.38 0.150 2.35 0.016 < 0.1 2.90 2.0 < 0.02 110 8.0 41.3 <1 0.36 6.5 1.60 <5 6.1 **DUP 110** OC 0.077 0.7 56.7 2.39 44.2 0.153 <1 2.34 0.016 0.36 < 0.1 6.8 1 52 2 92 <5 1.5 < 0.02 5.9 144 Drill Core 0.061 0.5 32.4 2.30 15.4 0.176 <1 2.19 0.010 0.78 0.1 4.4 2.35 4.05 <5 1.2 0.04 4.6 **DUP 144** QC 0.063 <0.5 30.6 2.20 15.0 0.160 <1 2.07 0.009 0.76 0.1 4.2 2.32 4.00 <5 0.7 0.03 4.6 Reference Materials STD CDN-ME-14 Standard 1.284 STD CDN-MF-9 0.676 Standard 1.302 STD CDN-ME-14 Standard STD CDN-ME-9 0.668 Standard STD DS9 Standard 0.081 15.7 119.1 0.64 311.5 0.123 2 1.00 0.089 0.40 3.2 2.8 5.50 0.17 202 5.2 5.00 5.4 STD DS9 Standard 0.081 12.6 118.6 0.64 277.9 0.120 3 1.00 0.089 0.41 2.7 2.4 4.99 0.17 167 5.3 4.72 4.3 STD DS9 Standard 0.081 14.0 107.3 0.63 297.3 0.112 0.97 0.086 0.41 2.9 2.5 5.30 0.17 204 5.6 5.63 4.5 STD DS9 Expected 0.0819 13.3 121 0.6165 295 0.1108 0.9577 0.0853 0.395 2.89 2.5 5.3 0.1615 200 5.2 5.02 4.59 STD CDN-ME-14 Expected 1.221 0.654 STD CDN-ME-9 Expected

2 of 1

Client: **UTM Exploration Services Ltd.**

104-1165 Main Street

Smithers BC V0J 2N0 CANADA

Box 5037

Project:

Winrock

Report Date:

November 22, 2012

1020 Cordova St. East Vancouver BC V6A 4A3 Canada Phone (604) 253-3158 Fax (604) 253-1716

AcmeLabs

www.acmelab.com

Acme Analytical Laboratories (Vancouver) Ltd.

Page:

2 of 2

Part: 1 of 1

Winrock Resources Ltd.

QUALITY	CONTROL	REP	ORT													SM	1120	0005	518.1		
		WGHT	1F15	1F15	1F15	1F15	1F15	1F15	1F15	1F15	1F15	1F15	1F15	1F15	1F15	1F15	1F15	1F15	1F15	1F15	1F15
		Wgt	Мо	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	U	Au	Th	Sr	Cd	Sb	Bi	V	Ca
		kg	ppm	ppm	ppm	ppm	ppb	ppm	ppm	ppm	%	ppm	ppm	ppb	ppm	ppm	ppm	ppm	ppm	ppm	%
		0.01	0.01	0.01	0.01	0.1	2	0.1	0.1	1	0.01	0.1	0.1	0.2	0.1	0.5	0.01	0.02	0.02	2	0.01
BLK	Blank		<0.01	0.06	0.04	1.6	18	<0.1	<0.1	3	<0.01	<0.1	<0.1	<0.2	<0.1	<0.5	0.02	<0.02	<0.02	<2	<0.01
BLK	Blank																				
BLK	Blank		<0.01	0.40	<0.01	<0.1	8	<0.1	<0.1	<1	<0.01	<0.1	<0.1	<0.2	<0.1	<0.5	<0.01	<0.02	0.04	<2	<0.01
BLK	Blank		<0.01	0.01	0.06	0.1	2	<0.1	0.1	2	<0.01	<0.1	<0.1	0.5	<0.1	<0.5	<0.01	<0.02	<0.02	<2	0.01
BLK	Blank																				
Prep Wash																					
G1-SMI	Prep Blank	<0.01	0.09	2.54	2.85	48.9	7	3.7	4.6	644	2.01	0.2	1.4	<0.2	5.3	60.5	0.05	0.04	0.10	37	0.52
G1-SMI	Prep Blank	<0.01	0.07	2.81	2.90	51.6	13	3.5	4.2	623	2.02	0.3	1.4	<0.2	5.1	58.6	0.03	0.03	0.06	38	0.51

Winrock Resources Ltd.

Client: UTM Exploration Services Ltd.

104-1165 Main Street

Box 5037

Smithers BC V0J 2N0 CANADA

Conside a

Project: Winrock

Report Date: November 22, 2012

Acme Analytical Laboratories (Vancouver) Ltd.

1020 Cordova St. East Vancouver BC V6A 4A3 Canada
Phone (604) 253-3158 Fax (604) 253-1716

www.acmelab.com

Page: 2 of 2 Part: 2 of 1

QUALITY	CONTROL	REP	ORT													SM	1120	005	18.	1
		1F15 P %	1F15 La	1F15 Cr	1F15 Mg %	1F15 Ba	1F15 Ti %	1F15 B	1F15 Al %	1F15 Na %	1F15 K %	1F15 W	1F15 Sc	1F15 TI	1F15 S %	1F15 Hg	1F15 Se	1F15 Te	1F15 Ga	7TD Cu %
		0.001	ppm 0.5	ppm 0.5	0.01	ppm 0.5	0.001	ppm 1	0.01	0.001	0.01	ppm 0.1	ppm 0.1	ppm 0.02	0.02	ppb 5	ppm 0.1	ppm 0.02	ppm 0.1	0.001
BLK	Blank	<0.001	<0.5	<0.5	<0.01	<0.5	<0.001	<1	<0.01	<0.001	<0.01	<0.1	0.1	0.03	<0.02	<5	<0.1	0.04	<0.1	
BLK	Blank																			0.001
BLK	Blank	<0.001	<0.5	<0.5	<0.01	<0.5	<0.001	<1	<0.01	<0.001	<0.01	<0.1	0.2	<0.02	<0.02	8	0.2	0.04	<0.1	
BLK	Blank	<0.001	<0.5	<0.5	<0.01	<0.5	<0.001	<1	<0.01	<0.001	<0.01	<0.1	<0.1	0.03	<0.02	<5	<0.1	<0.02	<0.1	
BLK	Blank																			<0.001
Prep Wash																				
G1-SMI	Prep Blank	0.076	11.3	10.0	0.60	234.5	0.119	<1	0.98	0.075	0.48	<0.1	2.7	0.31	<0.02	9	<0.1	0.04	5.8	
G1-SMI	Prep Blank	0.075	10.8	10.3	0.60	226.9	0.117	1	0.99	0.078	0.49	<0.1	2.8	0.32	<0.02	<5	<0.1	<0.02	5.7	

Winrock Resources Ltd.

SMI12000519.1

Client: UTM Exploration Services Ltd.

104-1165 Main Street

Box 5037

Richard Beck

Smithers BC V0J 2N0 CANADA

Smithe

Receiving Lab: Canada-Smithers

Received: October 26, 2012
Report Date: November 08, 2012

Page: 1 of 2

Submitted By:

AcmeLabs

1020 Cordova St. East Vancouver BC V6A 4A3 Canada

CERTIFICATE OF ANALYSIS

Winrock

40 11

SAMPLE PREPARATION AND ANALYTICAL PROCEDURES

Method Code	Number of Samples	Code Description	Test Wgt (g)	Report Status	Lab
R200-250	11	Crush, split and pulverize 250 g rock to 200 mesh			SMI
1F02	11	1:1:1 Aqua Regia digestion Ultratrace ICP-MS analysis	15	Completed	VAN

SAMPLE DISPOSAL

Project:

Shipment ID: P.O. Number

Number of Samples:

CLIENT JOB INFORMATION

RTRN-PLP Return

DISP-RJT Dispose of Reject After 90 days

Acme does not accept responsibility for samples left at the laboratory after 90 days without prior written instructions for sample storage or return.

Invoice To: UTM Exploration Services Ltd.

104-1165 Main Street

Box 5037

Smithers BC V0J 2N0

CANADA

CC:

This report supersedes all previous preliminary and final reports with this file number dated prior to the date on this certificate. Signature indicates final approval; preliminary reports are unsigned and should be used for reference only. All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of analysis only. Results apply to samples as submitted.

"*" asterisk indicates that an analytical result could not be provided due to unusually high levels of interference from other elements.

Acme Analytical Laboratories (Vancouver) Ltd.

www.acmelab.com

ADDITIONAL COMMENTS

211

Rock

1.84

0.38

119.4

3.82

40.3

184

Acme Analytical Laboratories (Vancouver) Ltd.

1020 Cordova St. East Vancouver BC V6A 4A3 Canada Phone (604) 253-3158 Fax (604) 253-1716

www.acmelab.com

Client:

Winrock Resources Ltd.

Part:

1 of 1

UTM Exploration Services Ltd.

104-1165 Main Street

Box 5037

Smithers BC V0J 2N0 CANADA

Project:

Page:

Winrock

2 of 2

Report Date:

November 08, 2012

CERTIFICATE OF ANALYSIS SMI12000519.1 Method **WGHT** 1F15 Pb Analyte Ni Co Mn Sr Cd ٧ Wgt Mo Cu Zn Ag Fe As U Au Th Sb Bi Ca Unit kg ppm ppm ppm ppm ppb ppm ppm ppm % ppm ppm ppb ppm ppm ppm ppm ppm ppm MDL 0.01 0.01 0.01 0.01 2 0.1 0.1 1 0.01 0.1 0.1 0.5 0.01 0.02 0.02 2 0.01 0.1 0.1 0.2 G1 0.07 Prep Blank < 0.01 0.09 1.71 3.05 46.1 31 4.3 4.2 567 1.86 0.3 1.4 1.2 5.0 51.6 0.01 0.04 33 0.44 G1 Prep Blank < 0.01 0.05 1.86 3.11 46.9 40 4.2 4.4 581 1.86 0.7 1.3 < 0.2 4.8 51.8 0.01 0.04 0.05 33 0.44 201 Rock 1.30 0.26 12.79 4.52 16.6 79 1.7 2.5 1.69 1.3 0.7 1.5 7.5 3.5 0.03 0.11 0.02 0.06 2.8 8.39 13.9 0.09 Rock 1.58 4.56 1501 3.42 45.3 409 17.0 521 < 0.1 34.1 0.7 0.6 0.13 88.00 82

0.03 202 203 Rock 1.30 1.38 96.85 11.69 103.1 334 16.5 17.2 631 6.60 10.6 0.1 21.8 1.3 3.0 0.10 0.09 0.84 59 0.26 204 <0.0 Rock 1.55 0.09 4.99 0.40 16 0.9 0.2 0.24 0.2 <0.1 < 0.2 < 0.1 <0.5 < 0.01 0.04 0.45 <2 1.1 28 205 Rock 1.85 3.98 9.10 2.04 24.7 1.6 233 2.67 0.9 < 0.1 0.5 1.3 0.01 0.07 0.49 26 0.04 29 2.7 3.9 206 Rock 1.79 38.20 73.5 43 2.2 1.6 443 1.5 2.0 < 0.01 0.20 35 0.05 0.41 4.93 3.66 0.1 1.4 3.4 0.05 29.5 3.2 < 0.01 207 Rock 1.97 0.56 2.75 1.15 9 4.6 8.8 684 5.08 < 0.1 1.1 0.2 3.3 0.03 0.08 96 0.16 208 Rock 2.26 1.73 57.15 1.98 43.6 74 5.7 6.4 534 3.80 3.7 0.1 3.1 2.3 2.1 0.02 0.07 0.24 31 0.13 209 Rock 2.02 0.65 608.6 2.73 43.7 132 3.0 1.2 609 9.37 13.3 < 0.1 11.6 0.6 2.8 < 0.01 0.05 0.65 131 0.01 210 Rock 2.30 0.03 366.2 2.36 65.2 204 3.4 7.8 613 10.44 11.8 < 0.1 20.9 1.2 2.5 0.01 0.08 0.56 119 0.01

1.4

460

8.04

7.7

< 0.1

17.6

0.8

1.4

< 0.01

0.03

0.63

162

<0.01

2.8

Winrock Resources Ltd. **UTM Exploration Services Ltd.**

Client:

104-1165 Main Street

Box 5037

Smithers BC V0J 2N0 CANADA

Project: Winrock

Report Date: November 08, 2012

1020 Cordova St. East Vancouver BC V6A 4A3 Canada

Phone (604) 253-3158 Fax (604) 253-1716

AcmeLabs

www.acmelab.com

Acme Analytical Laboratories (Vancouver) Ltd.

2 of 2 Part: 2 of 1 Page:

CERTIFICATE OF ANALYSIS

SMI12000519.1

	Method	1F15	1F15	1F15	1F15	1F15	1F15	1F15	1F15	1F15	1F15	1F15	1F15	1F15	1F15	1F15	1F15	1F15	1F15
	Analyte	Р	La	Cr	Mg	Ва	Ti	В	AI	Na	K	W	Sc	TI	S	Hg	Se	Te	Ga
	Unit	%	ppm	ppm	%	ppm	%	ppm	%	%	%	ppm	ppm	ppm	%	ppb	ppm	ppm	ppm
	MDL	0.001	0.5	0.5	0.01	0.5	0.001	1	0.01	0.001	0.01	0.1	0.1	0.02	0.02	5	0.1	0.02	0.1
G1	Prep Blank	0.079	9.5	11.1	0.57	222.1	0.110	<1	1.00	0.102	0.52	<0.1	2.4	0.30	<0.02	<5	<0.1	<0.02	4.9
G1	Prep Blank	0.075	9.5	11.4	0.57	213.3	0.109	<1	0.98	0.097	0.51	<0.1	2.2	0.31	<0.02	<5	<0.1	<0.02	4.7
201	Rock	0.014	7.8	3.5	0.34	9.5	0.031	<1	0.43	0.139	<0.01	<0.1	1.9	<0.02	<0.02	<5	<0.1	<0.02	2.5
202	Rock	0.026	<0.5	4.9	2.51	17.5	0.017	<1	3.22	0.033	0.05	<0.1	6.2	<0.02	1.59	13	8.1	56.50	7.9
203	Rock	0.024	1.1	29.9	1.95	21.5	0.005	<1	2.60	0.022	0.09	<0.1	5.1	<0.02	1.07	6	2.4	0.46	6.5
204	Rock	<0.001	<0.5	15.6	<0.01	7.1	<0.001	<1	0.03	0.002	0.02	<0.1	0.1	<0.02	<0.02	<5	<0.1	0.35	0.1
205	Rock	0.007	0.6	12.3	1.19	16.8	0.047	<1	1.35	0.020	0.05	<0.1	1.5	<0.02	0.03	<5	0.9	0.50	3.9
206	Rock	0.014	4.9	4.2	1.49	38.9	0.027	<1	2.07	0.027	0.14	<0.1	2.8	0.04	0.04	<5	0.9	0.12	7.2
207	Rock	0.039	<0.5	5.5	3.09	15.1	0.131	<1	3.61	0.026	0.07	<0.1	2.2	<0.02	0.03	<5	0.2	0.17	7.9
208	Rock	0.029	1.2	14.8	1.98	34.9	0.066	<1	2.17	0.033	0.11	<0.1	1.5	<0.02	0.32	6	0.9	0.49	4.3
209	Rock	0.025	<0.5	4.9	2.35	22.9	0.074	<1	3.51	0.041	0.06	<0.1	6.6	<0.02	0.21	5	2.4	0.64	9.5
210	Rock	0.051	2.8	3.2	2.26	27.3	0.007	<1	3.30	0.029	0.09	<0.1	9.1	<0.02	0.72	<5	2.9	0.60	9.5
211	Rock	0.030	0.7	5.2	2.43	17.5	0.060	<1	3.36	0.066	0.04	<0.1	11.7	<0.02	0.15	13	2.7	0.86	10.3

AcmeLabs

Winrock Resources Ltd.

Client: UTM Exploration Services Ltd.

104-1165 Main Street

Box 5037

Smithers BC V0J 2N0 CANADA

Project:

Winrock

Report Date:

November 08, 2012

1020 Cordova St. East Vancouver BC V6A 4A3 Canada Phone (604) 253-3158 Fax (604) 253-1716

www.acmelab.com

Acme Analytical Laboratories (Vancouver) Ltd.

Page:

1 of 1

Part: 1 of 1

QUALITY (CONTROL	REP	OR	Γ												SM	1120	0005	19.1		
	Method	WGHT	1F15	1F15	1F15	1F15	1F15	1F15	1F15	1F15	1F15	1F15	1F15	1F15	1F15	1F15	1F15	1F15	1F15	1F15	1F15
	Analyte	Wgt	Мо	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	U	Au	Th	Sr	Cd	Sb	Bi	V	Ca
	Unit	kg	ppm	ppm	ppm	ppm	ppb	ppm	ppm	ppm	%	ppm	ppm	ppb	ppm	ppm	ppm	ppm	ppm	ppm	%
	MDL	0.01	0.01	0.01	0.01	0.1	2	0.1	0.1	1	0.01	0.1	0.1	0.2	0.1	0.5	0.01	0.02	0.02	2	0.01
Pulp Duplicates																					
204	Rock	1.55	0.09	4.99	0.40	1.1	16	0.9	0.2	28	0.24	0.2	<0.1	<0.2	<0.1	<0.5	<0.01	0.04	0.45	<2	<0.01
REP 204	QC		0.10	4.69	0.36	1.1	15	8.0	0.2	26	0.25	0.4	<0.1	0.2	<0.1	<0.5	<0.01	0.02	0.35	<2	<0.01
208	Rock	2.26	1.73	57.15	1.98	43.6	74	5.7	6.4	534	3.80	3.7	0.1	3.1	2.3	2.1	0.02	0.07	0.24	31	0.13
REP 208	QC		1.69	58.65	2.05	47.3	81	5.2	6.8	550	3.81	3.4	0.1	4.7	2.3	2.0	0.02	0.07	0.24	30	0.13
Reference Materials																					
STD DS9	Standard		13.17	104.1	125.9	301.4	1730	37.6	7.5	593	2.34	24.1	2.7	113.7	6.4	68.6	2.13	4.57	5.72	38	0.72
STD DS9 Expected			12.84	108	126	317	1830	40.3	7.6	575	2.33	25.5	2.69	118	6.38	69.6	2.4	4.94	6.32	40	0.7201
BLK	Blank		<0.01	0.08	<0.01	<0.1	<2	<0.1	<0.1	<1	<0.01	<0.1	<0.1	<0.2	<0.1	<0.5	<0.01	<0.02	<0.02	<2	<0.01
Prep Wash																					
G1	Prep Blank	<0.01	0.09	1.71	3.05	46.1	31	4.3	4.2	567	1.86	0.3	1.4	1.2	5.0	51.6	0.01	0.04	0.07	33	0.44
G1	Prep Blank	<0.01	0.05	1.86	3.11	46.9	40	4.2	4.4	581	1.86	0.7	1.3	<0.2	4.8	51.8	0.01	0.04	0.05	33	0.44

Winrock Resources Ltd.

Client: UTM Exploration Services Ltd.

104-1165 Main Street

Box 5037

Smithers BC V0J 2N0 CANADA

BOX 503

Project: Winrock

Report Date: November 08, 2012

1020 Cordova St. East Vancouver BC V6A 4A3 Canada Phone (604) 253-3158 Fax (604) 253-1716

AcmeLabs

www.acmelab.com

Acme Analytical Laboratories (Vancouver) Ltd.

Page: 1 of 1 Part: 2 of 1

QUALITY C	ONTROL	REP	OR ⁻	Γ												SM	1120	005	19.
	Method	1F15	1F15	1F15	1F15	1F15	1F15	1F15	1F15	1F15	1F15	1F15	1F15	1F15	1F15	1F15	1F15	1F15	1F15
	Analyte	Р	La	Cr	Mg	Ва	Ti	В	Al	Na	K	w	Sc	TI	s	Hg	Se	Te	Ga
	Unit	%	ppm	ppm	%	ppm	%	ppm	%	%	%	ppm	ppm	ppm	%	ppb	ppm	ppm	ppm
	MDL	0.001	0.5	0.5	0.01	0.5	0.001	1	0.01	0.001	0.01	0.1	0.1	0.02	0.02	5	0.1	0.02	0.1
Pulp Duplicates																			
204	Rock	<0.001	<0.5	15.6	<0.01	7.1	<0.001	<1	0.03	0.002	0.02	<0.1	0.1	<0.02	<0.02	<5	<0.1	0.35	0.1
REP 204	QC	<0.001	<0.5	14.7	<0.01	6.4	<0.001	<1	0.03	0.002	0.02	<0.1	0.1	<0.02	<0.02	<5	<0.1	0.26	0.1
208	Rock	0.029	1.2	14.8	1.98	34.9	0.066	<1	2.17	0.033	0.11	<0.1	1.5	<0.02	0.32	6	0.9	0.49	4.3
REP 208	QC	0.029	1.2	15.1	1.98	34.4	0.068	<1	2.20	0.033	0.11	<0.1	1.4	<0.02	0.32	15	1.0	0.51	4.3
Reference Materials																			
STD DS9	Standard	0.081	13.4	110.0	0.63	277.8	0.111	2	0.96	0.090	0.42	2.7	2.8	5.31	0.16	219	5.4	5.03	4.4
STD DS9 Expected		0.0819	13.3	121	0.6165	295	0.1108		0.9577	0.0853	0.395	2.89	2.5	5.3	0.1615	200	5.2	5.02	4.59
BLK	Blank	<0.001	<0.5	<0.5	<0.01	<0.5	<0.001	<1	<0.01	<0.001	<0.01	<0.1	<0.1	<0.02	<0.02	<5	<0.1	<0.02	<0.1
Prep Wash																			
G1	Prep Blank	0.079	9.5	11.1	0.57	222.1	0.110	<1	1.00	0.102	0.52	<0.1	2.4	0.30	<0.02	<5	<0.1	<0.02	4.9
G1	Prep Blank	0.075	9.5	11.4	0.57	213.3	0.109	<1	0.98	0.097	0.51	<0.1	2.2	0.31	<0.02	<5	<0.1	<0.02	4.7

APPENDIX II: LAB METHODOLOGIES

METHOD SPECIFICATIONS GROUP 1D AND 1F – GEOCHEMICAL AQUA REGIA DIGESTION

Package Codes: 1D01 to 1D03, 1DX1 to 1DX3, 1F01 to 1F07

Sample Digestion: HNO3-HCI acid digestion Instrumentation Method: ICP-ES (1D), ICP-MS (1DX, 1F)

Applicability: Sediment, Soil, Non-mineralized Rock and Drill Core

Method Description:

Prepared sample is digested with a modified Aqua Regia solution of equal parts concentrated HCl, HNO3 and DI H2O for one hour in a heating block of hot water bath. Sample is made up to volume with dilute HCl. Sample splits of 0.5g, 15g or 30g can be analyzed.

Element	Group 1D Detection	Group 1DX Detection	Group 1F Detection	Upper Limit
Ag	0.3 ppm	0.1 ppm	2 ppb	100 ppm
Al*	0.01%	0.01%	0.01%	10%
As	2 ppm	0.5 ppm	0.1 ppm	10000 ppm
Au	2 ppm	0.5 ppb	0.2 ppb	100 ppm
B*^	20 ppm	20 ppm	20 ppm	2000 ppm
Ba*	1 ppm	1 ppm	0.5 ppm	10000 ppm
Bi	3 ppm	0.1 ppm	0.02 ppm	2000 ppm
Ca*	0.01%	0.01%	0.01%	40%
Cd	0.5 ppm	0.1 ppm	0.01 ppm	2000 ppm
Со	1 ppm	0.1 ppm	0.1 ppm	2000 ppm
Cr*	1 ppm	1 ppm	0.5 ppm	10000 ppm
Cu	1 ppm	0.1 ppm	0.01 ppm	10000 ppm
Fe*	0.01%	0.01%	0.01%	40%
Ga*	-	1 ppm	0.1 ppm	1000 ppm
Hg	1 ppm	0.01 ppm	5 ppb	50 ppm
K*	0.01%	0.01%	0.01%	10%
La*	1 ppm	1 ppm	0.5 ppm	10000 ppm
Mg*	0.01%	0.01%	0.01%	30%
Mn*	2 ppm	1 ppm	1 ppm	10000 ppm
Мо	1 ppm	0.1 ppm	0.01 ppm	2000 ppm
Na*	0.01%	0.001%	0.001%	5%
Ni	1 ppm	0.1 ppm	0.1 ppm	10000 ppm
P*	0.001%	0.001%	0.001%	5%
Pb	3 ppm	0.1 ppm	0.01 ppm	10000 ppm
S	0.05%	0.05%	0.02%	10%

Element	Group 1D	Group 1DX	Group 1F	Upper
	Detection	Detection	Detection	Limit
Sb	3 ppm	0.1 ppm	0.02 ppm	2000 ppm
Sc	-	0.1 ppm	0.1 ppm	100 ppm
Se	-	0.5 ppm	0.1 ppm	100 ppm
Sr*	1 ppm	1 ppm	0.5 ppm	10000 ppm
Te	-	0.2 ppm	0.02 ppm	1000 ppm
Th*	2 ppm	0.1 ppm	0.1 ppm	2000 ppm
Ti*	0.01%	0.001%	0.001%	5%
TI	5 ppm	0.1 ppm	0.02 ppm	1000 ppm
U*	8 ppm	0.1 ppm	0.05 ppm	2000 ppm
٧*	1 ppm	2 ppm	2 ppm	10000 ppm
W*	2 ppm	0.1 ppm	0.05 ppm	100 ppm
Zn	1 ppm	1 ppm	0.1 ppm	10000 ppm
Be*	-	-	0.1 ppm	1000 ppm
Ce*	-	-	0.1 ppm	2000 ppm
Cs*	-	-	0.02 ppm	2000 ppm
Ge*	-	-	0.1 ppm	100 ppm
Hf*	-	-	0.02 ppm	1000 ppm
In	-	-	0.02 ppm	1000 ppm
Li*	-	-	0.1 ppm	2000 ppm
Nb*	-	-	0.02 ppm	2000 ppm
Rb*	-	-	0.1 ppm	2000 ppm
Re	-	-	1 ppb	1000 ppb
Sn*	-	-	0.1 ppm	100 ppm
Ta*	-	-	0.05 ppm	2000 ppm
Υ*	-	-	0.01 ppm	2000 ppm
Zr*	-	-	0.1 ppm	2000 ppm
Pt*	-	-	2 ppb	100 ppm
Pd*	-	-	10 ppb	100 ppm
Pb ₂₀₄	-	-	0.01 ppm	10000 ppm
Pb ₂₀₆	-	-	0.01 ppm	10000 ppm
Pb ₂₀₇	-	-	0.01 ppm	10000 ppm
Pb ₂₀₈	-	-	0.01 ppm	10000 ppm

^{*} Solubility of some elements will be limited by mineral species present. ^Detection limit = 1 ppm for 15g / 30g analysis.

Limitations:

Au solubility can be limited by refractory and graphitic samples.

METHOD SPECIFICATIONS **GROUP 7TD AND 7TX – ASSAY FOUR-ACID DIGESTION**

Package Codes: 7TD1, 7TD2, 7TD3, 7TX1

Sample Digestion: HF-HNO₃-HCIO₄ acid digestion **Instrumentation Method:** ICP-ES (7TD, 7TX), ICP-MS (7TX)

Applicability: **Rock and Drill Core**

Method Description:

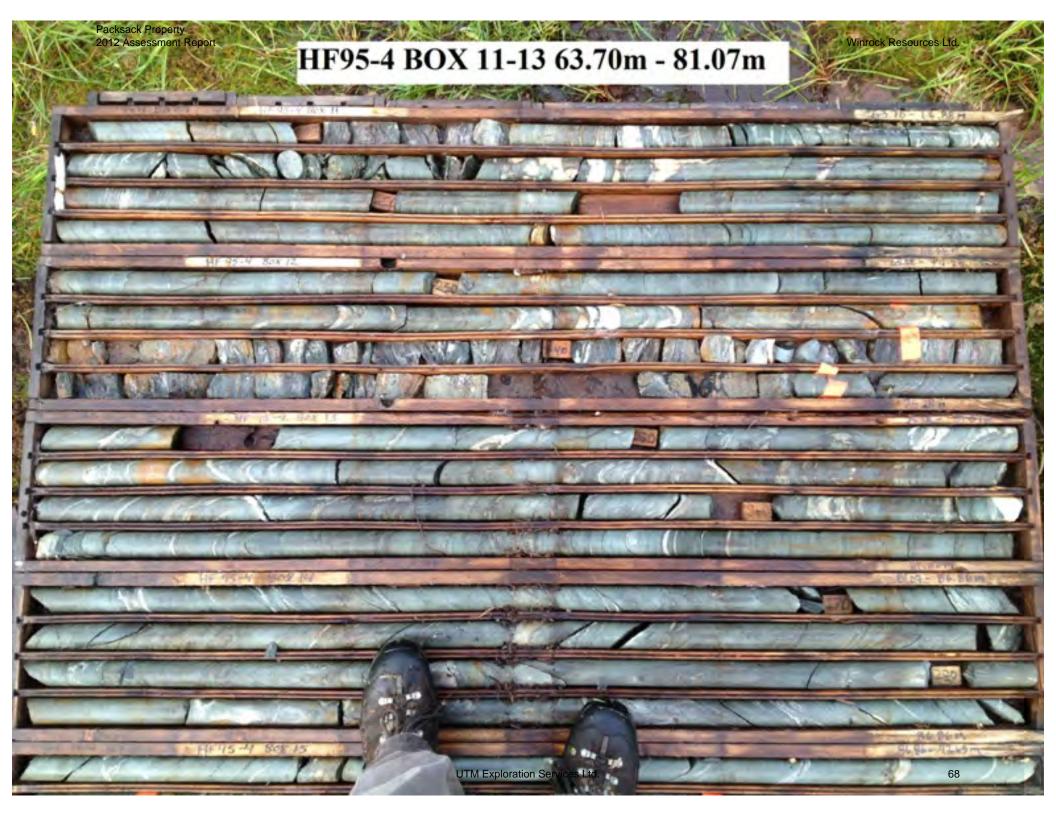
Prepared sample is digested to complete dryness with an acid solution of (2:2:1:1) H2O-HF-HClO4-HNO3. 50% HCl is added to the residue and heated using a mixing hot block. After cooling the solutions are made up to volume with dilute HCl in class A volumetric flasks. Sample splits of 0.5g or 0.1g can be analyzed. Very high-grade samples are reweighed at lower weight to accommodate analysis up to 100% upper limit.

Element	Group 7TD Detection	Group 7TX Detection
Ag	2 g/t	0.5 ppm
Al*	0.01%	0.01%
As	0.02%	5 ppm
Ba*	-	5 ppm
Be	-	5 ppm
Bi	0.01%	0.5 ppm
Ca*	0.01%	0.01%
Cd	0.001%	0.5 ppm
Ce	-	5 ppm
Со	0.001%	1 ppm
Cr*	0.001%	1 ppm
Cu	0.001%	0.5 ppm
Fe*	0.01%	0.01%
Hf*	-	0.5 ppm
K	0.01%	0.01%
La	-	0.5 ppm
Li	-	0.5 ppm
Mg	0.01%	0.01%
Mn*	0.01%	5 ppm
Мо	0.001%	0.5 ppm
Na	0.01%	0.01%
Nb*	-	0.5 ppm
Ni	0.001%	0.5 ppm
P	0.01%	0.01%
Pb	0.02%	0.5 ppm

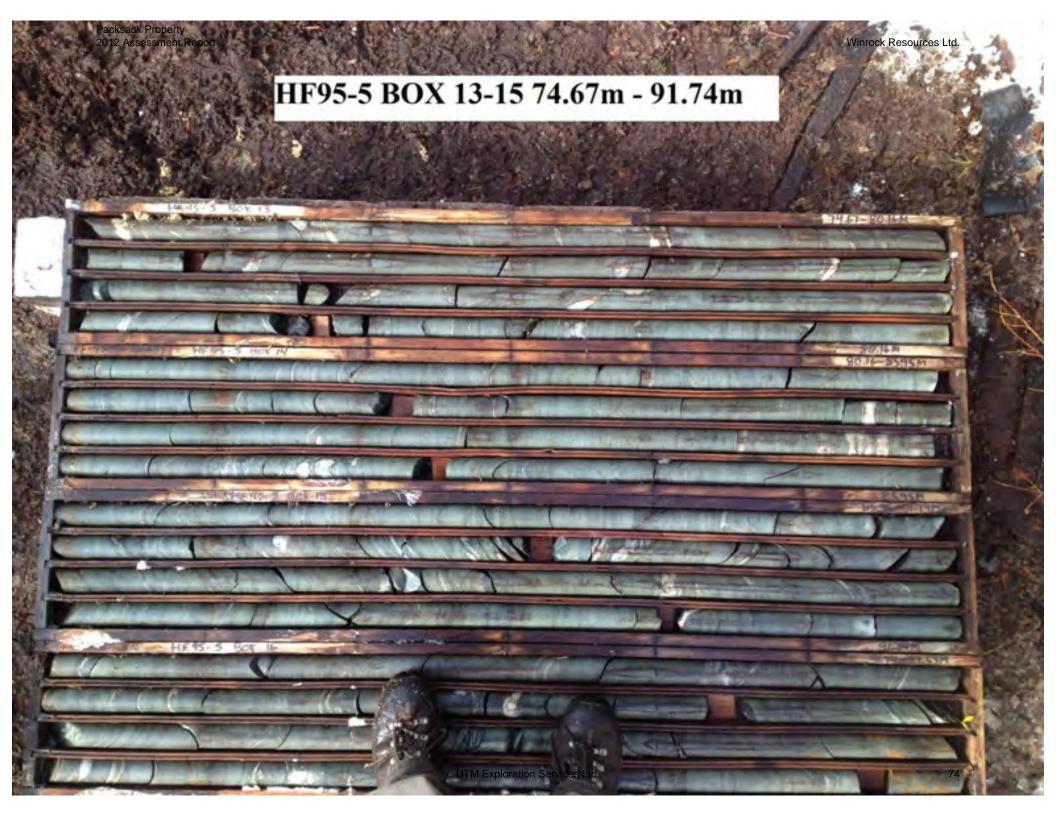
Element	Group 7TD	Group 7TX
	Detection	Detection
Rb	-	0.5 ppm
S*	0.05%	0.05%
Sb	0.01%	0.5 ppm
Sc	-	1 ppm
Sn*	-	0.5 ppm
Sr	0.01%	5 ppm
Ta*	-	0.5 ppm
Th	-	0.5 ppm
Ti*	-	0.001%
U	-	0.5 ppm
V	-	10 ppm
W*	0.01%	0.5 ppm
Υ	-	0.5 ppm
Zn	0.01%	5 ppm
Zr*	-	0.5 ppm

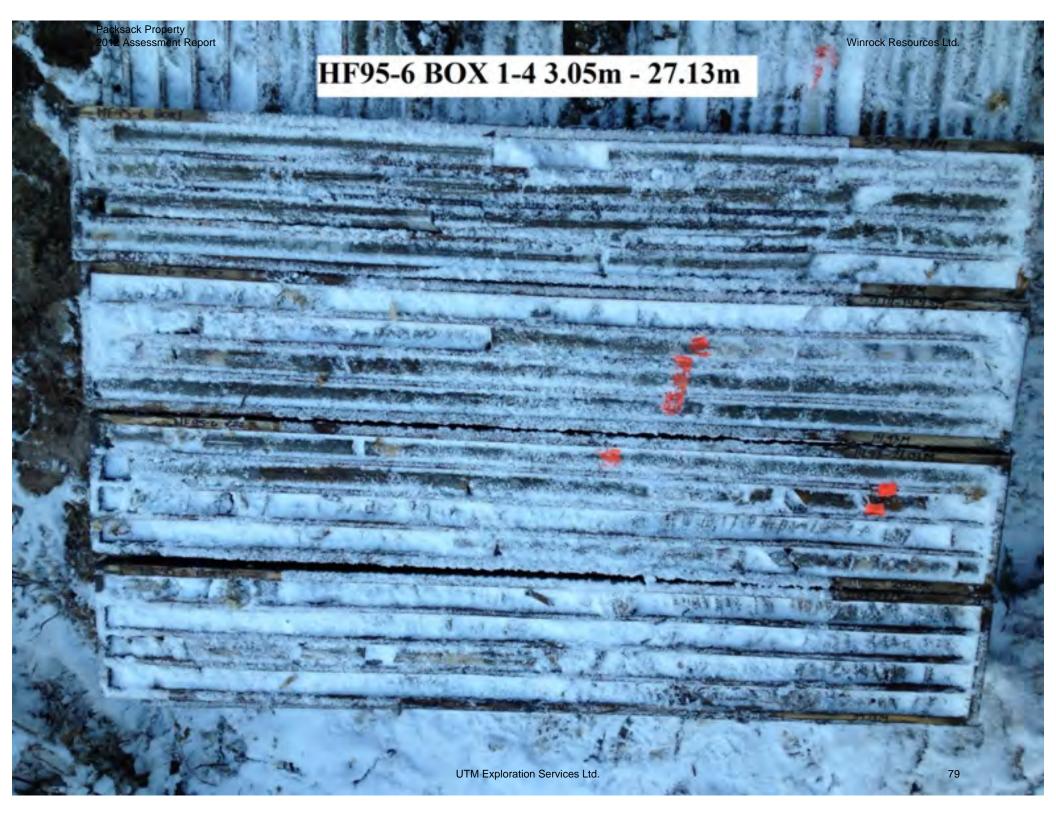

Limitations:

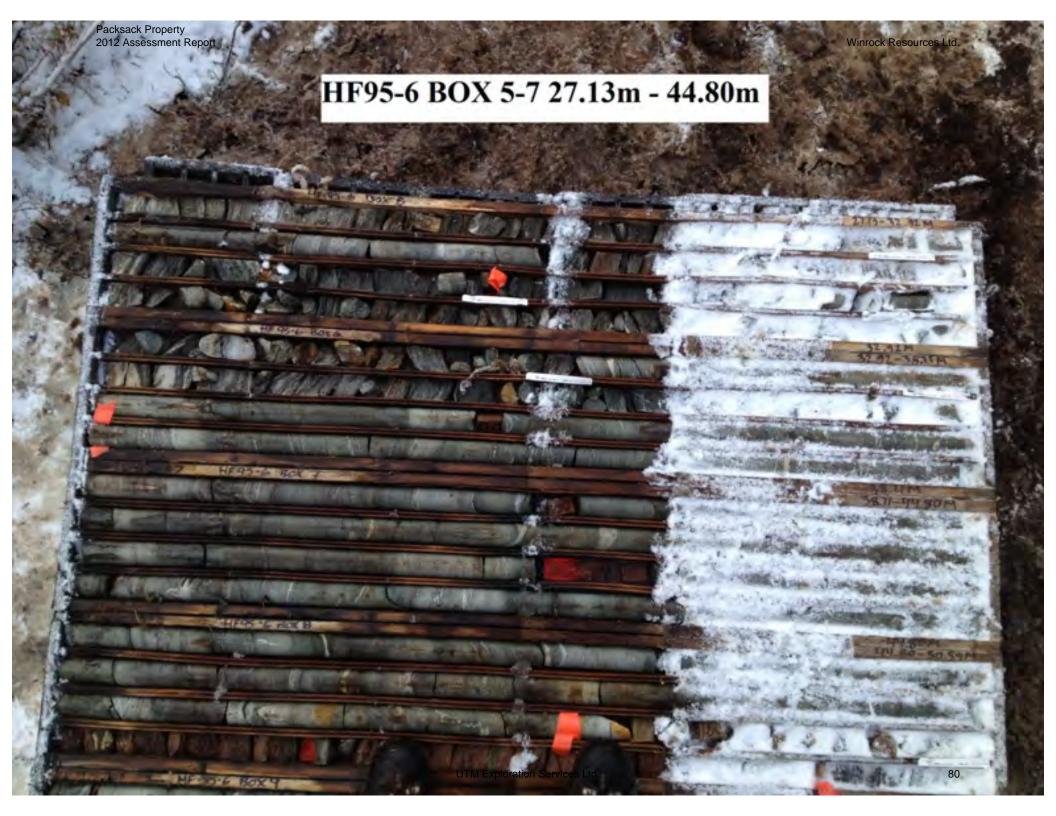
*This digestion is only partial for some Cr and Ba minerals and some oxides of Al, Fe, Hf, Mn, Nb, S, Sn, Ta, Ti, W and Zr if refractory minerals are present.

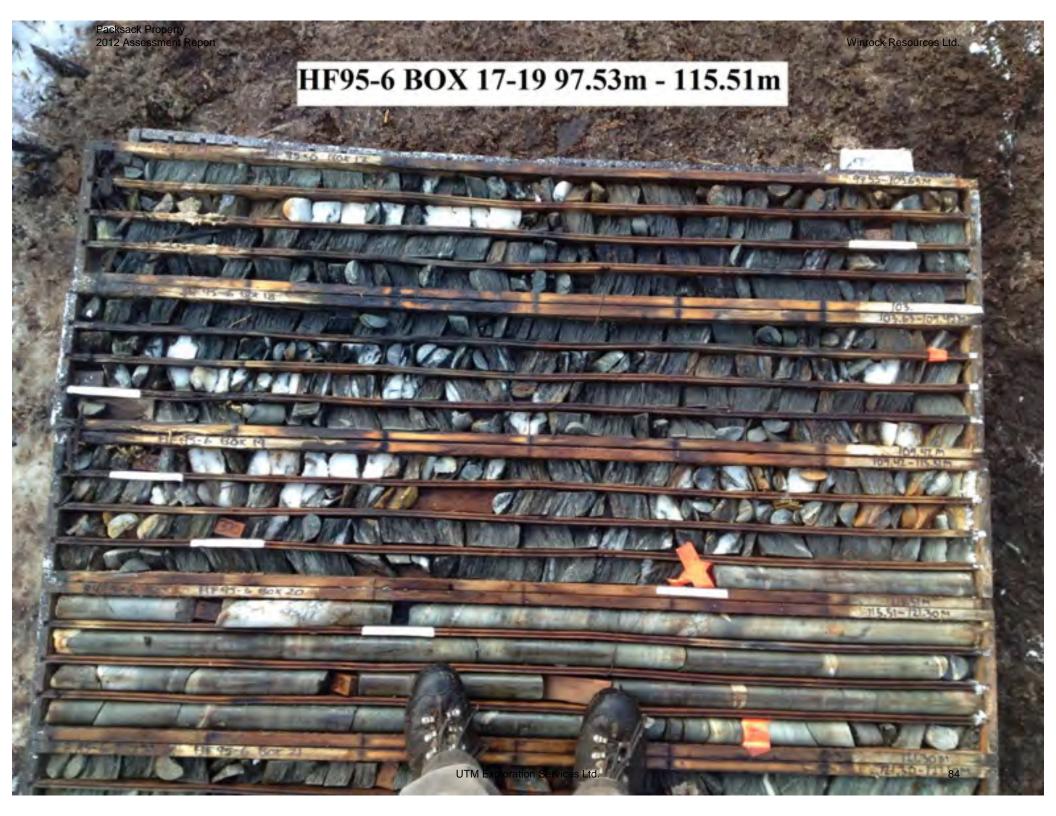

†Volatilization may occur during fuming resulting in some loss of As and Sb.

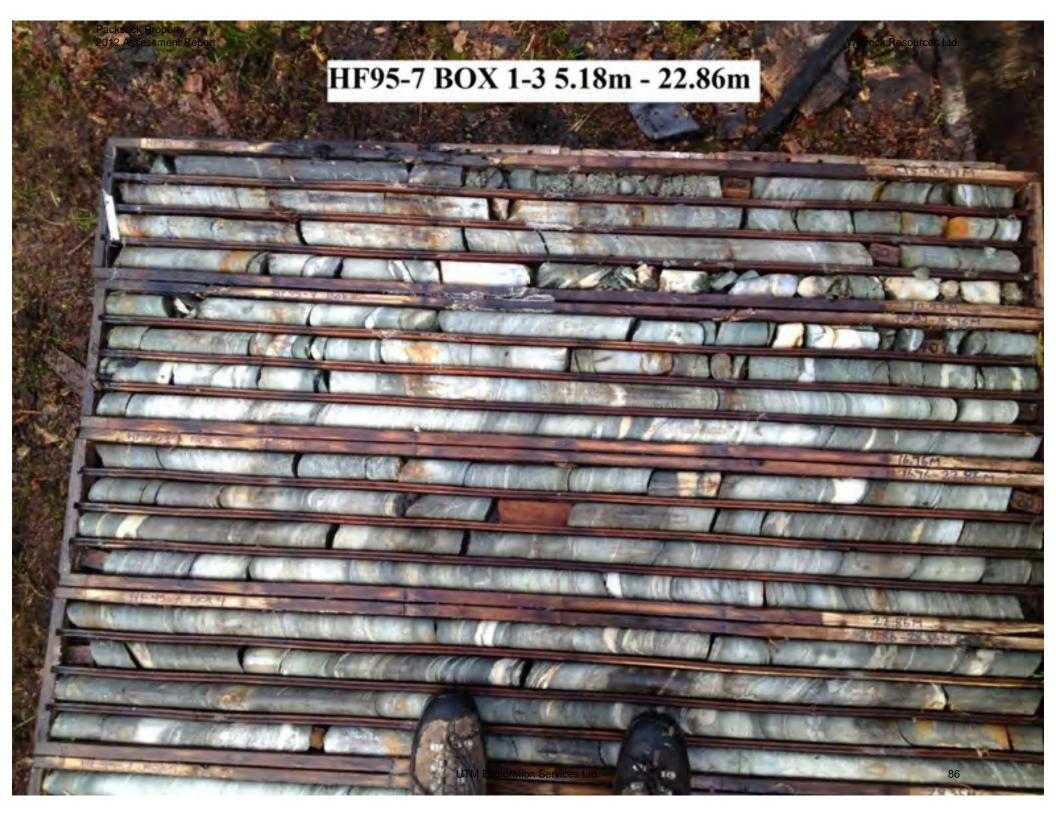
APPENDIX III: CORE PHOTOS



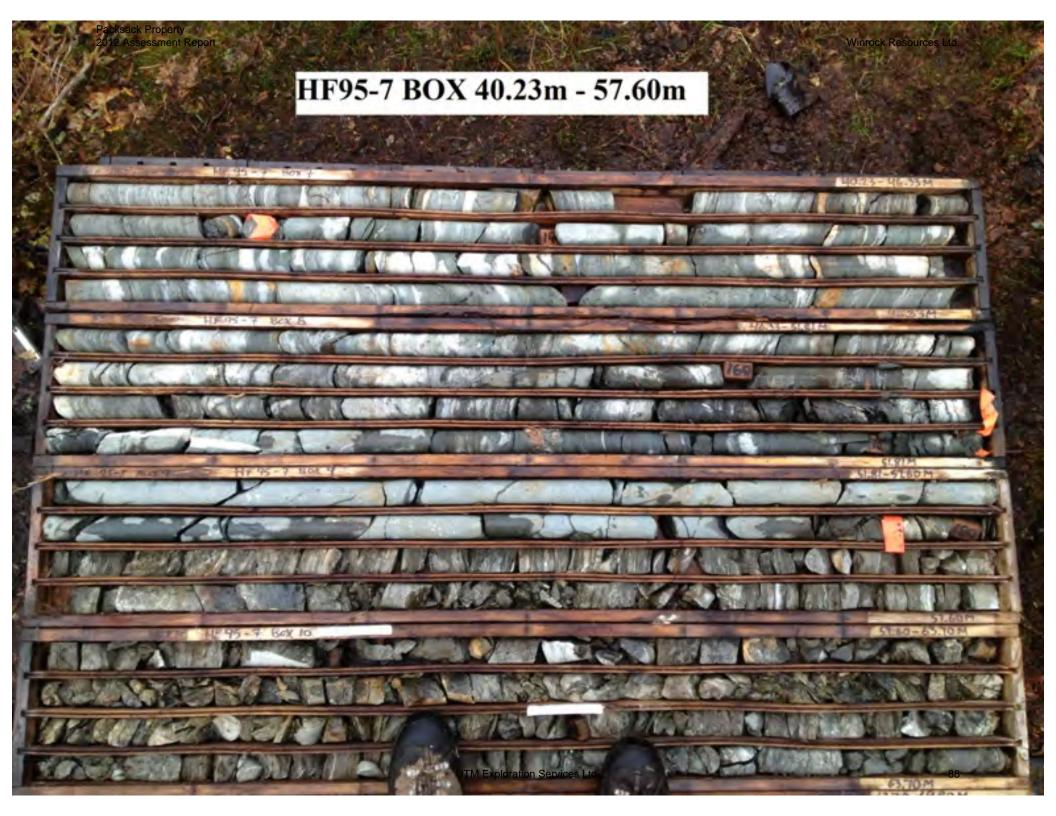


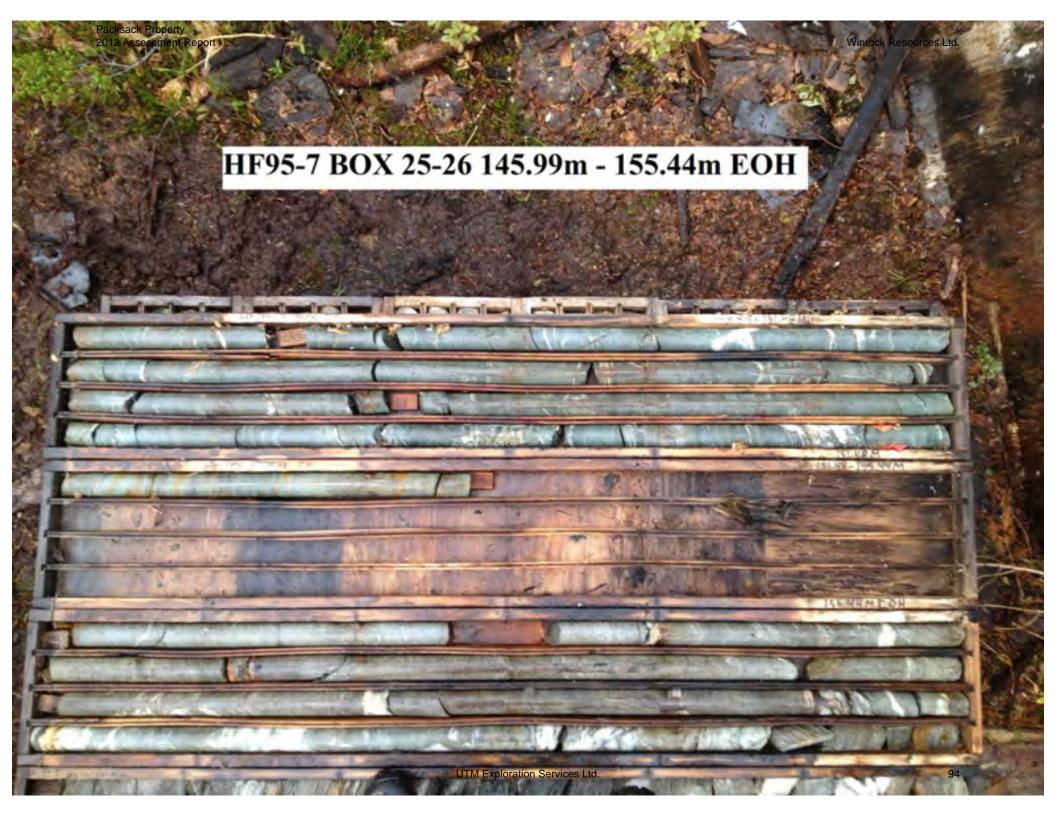


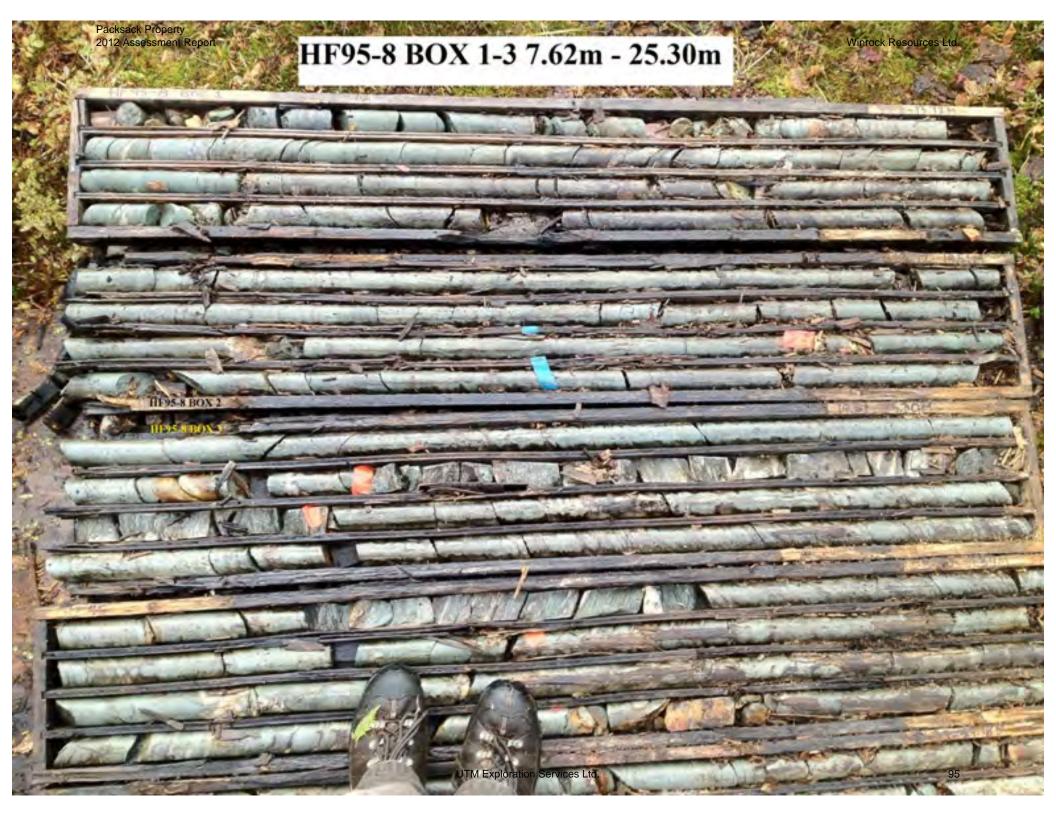


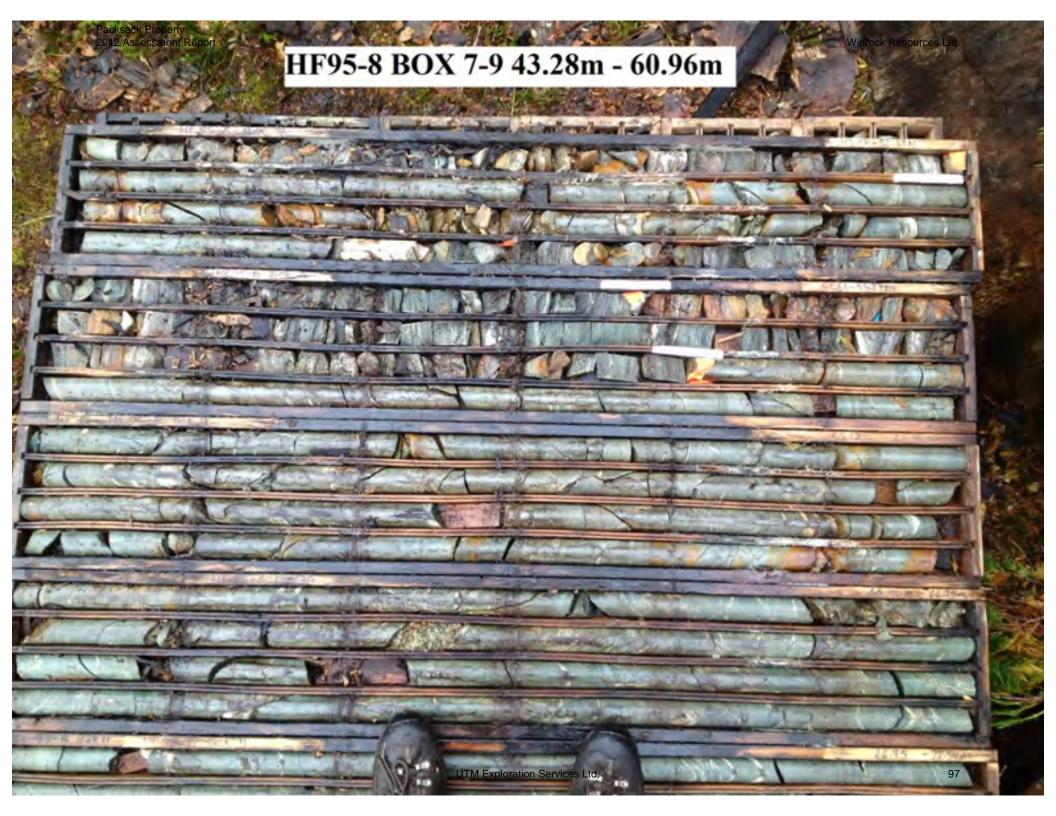




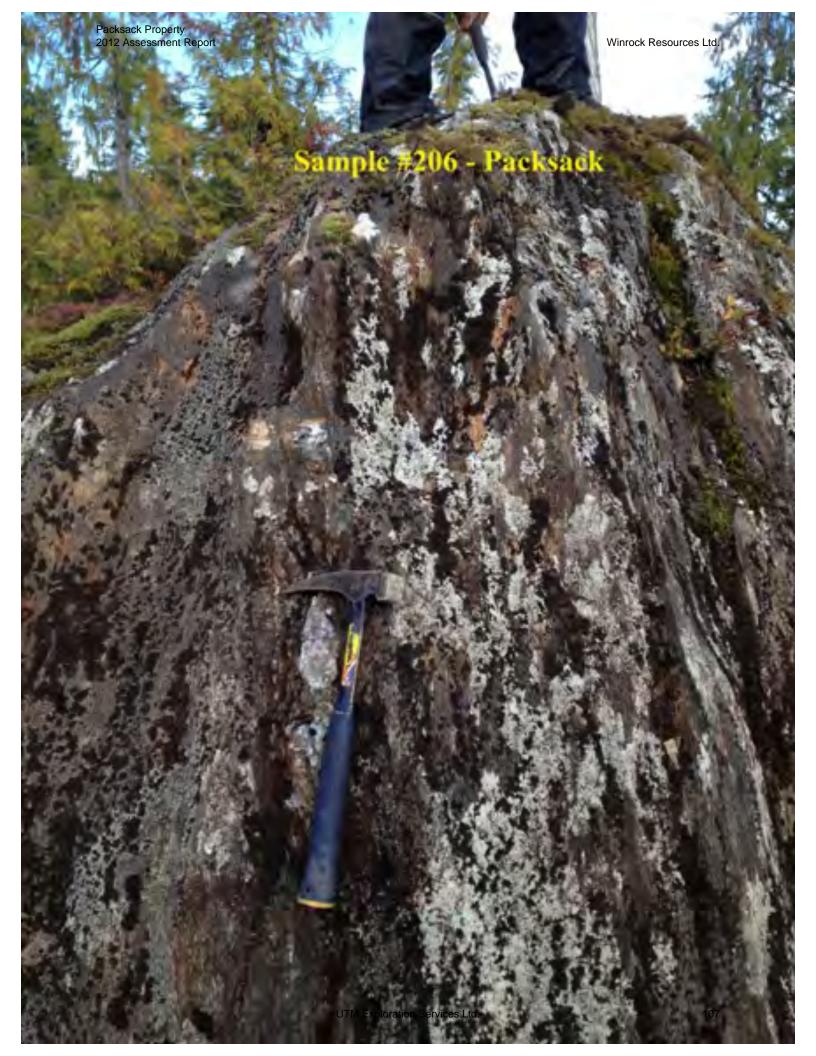




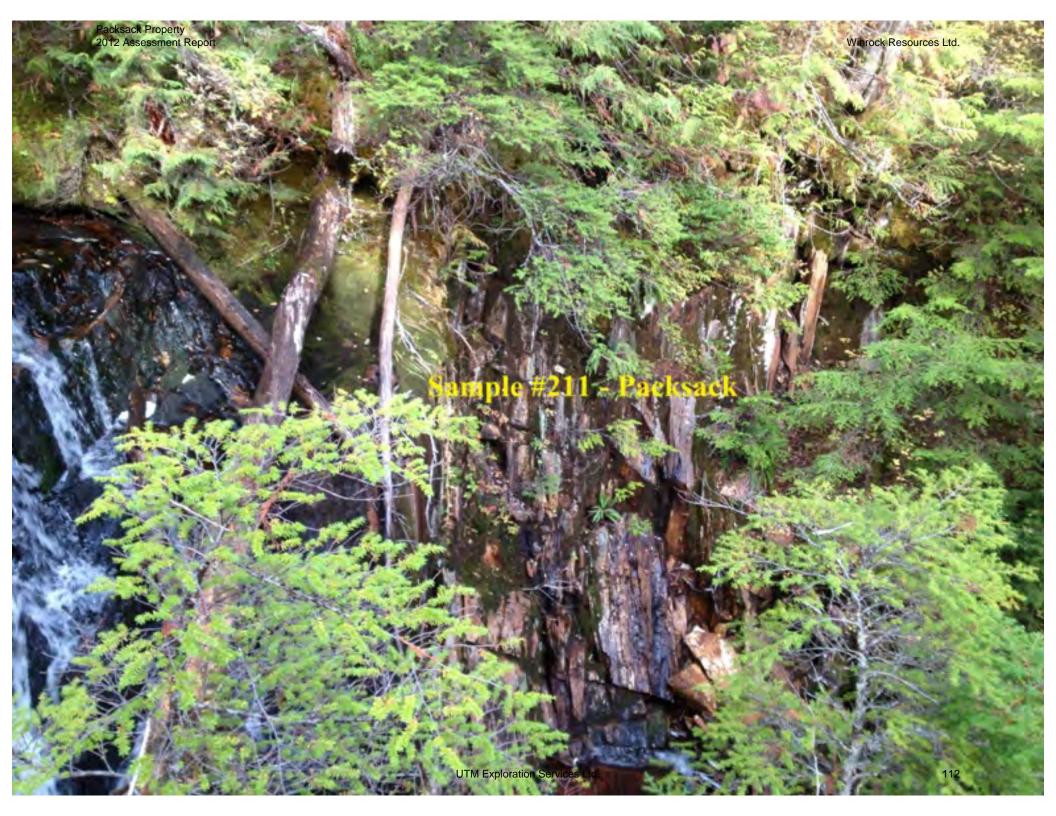


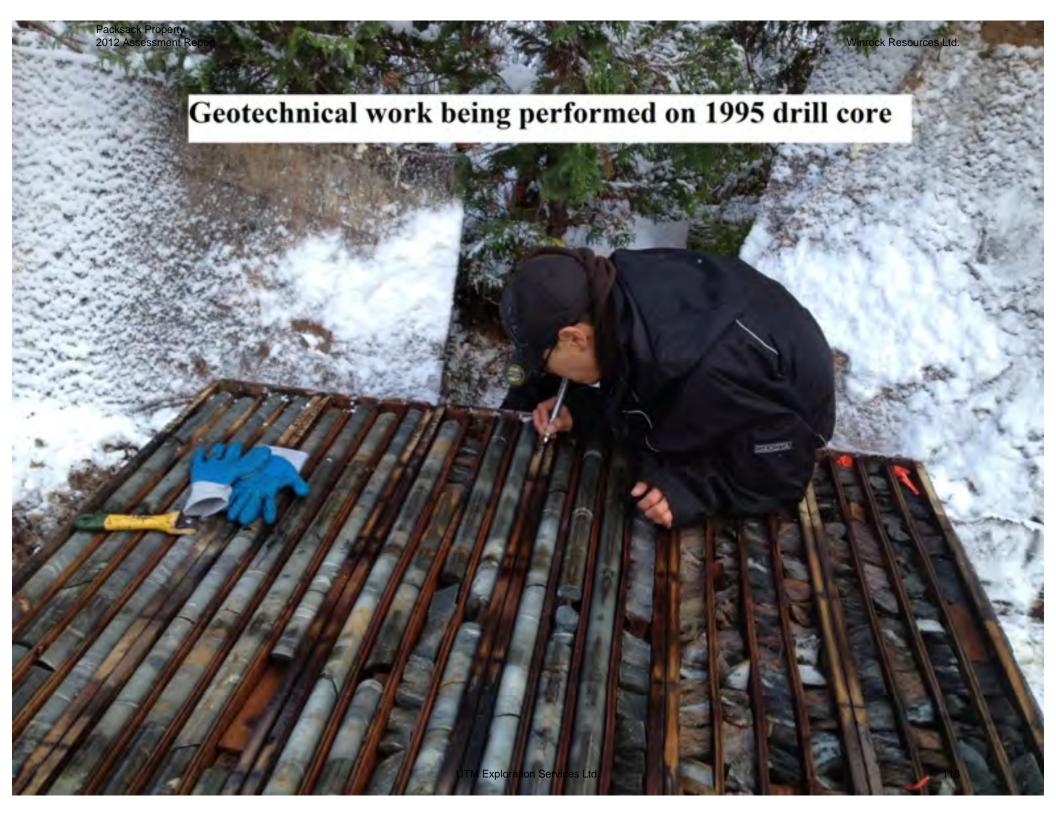


APPENDIX IV: ROCK SAMPLE PHOTOS

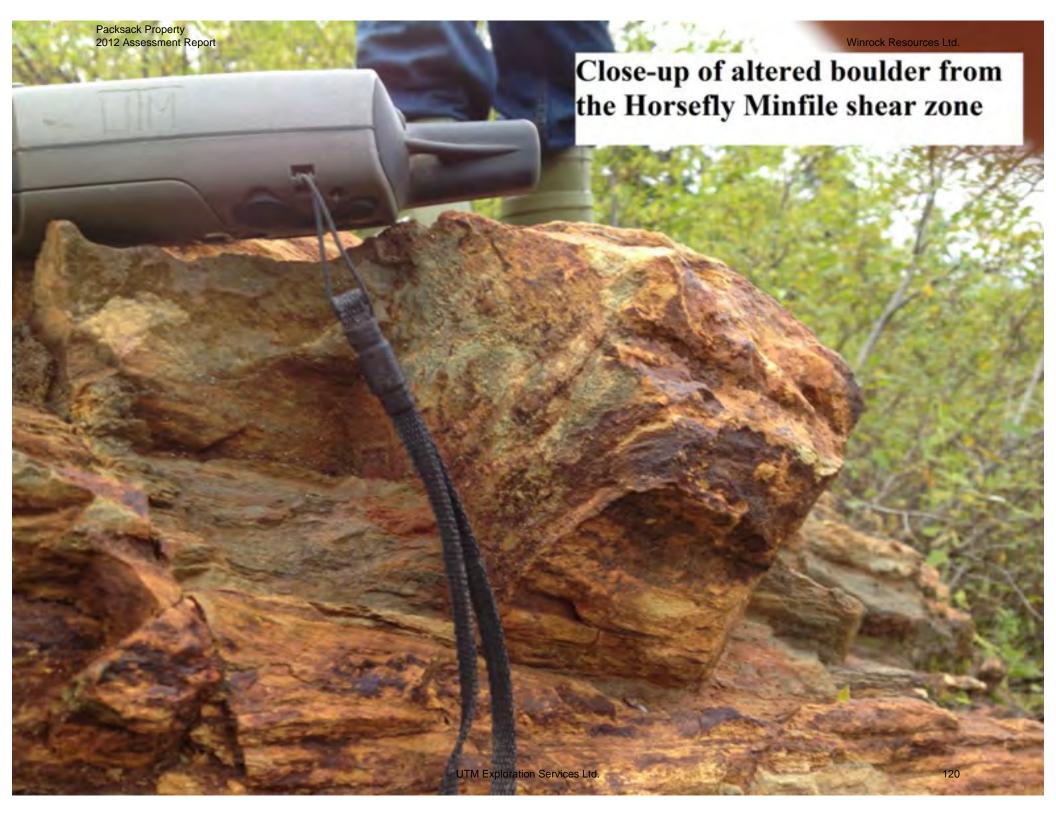


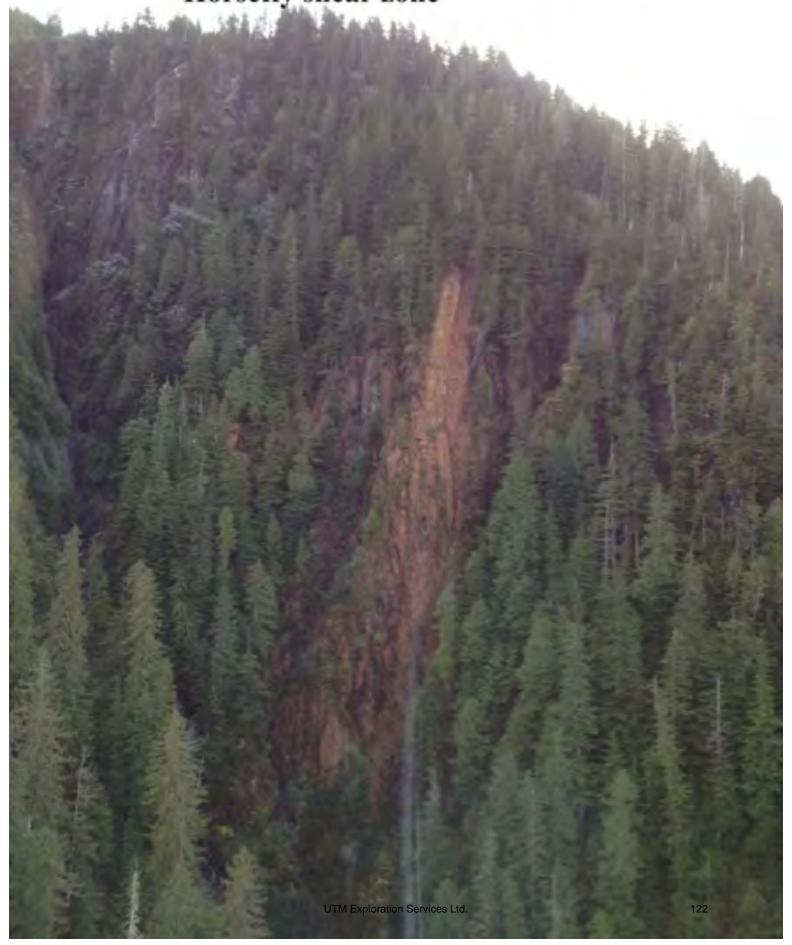


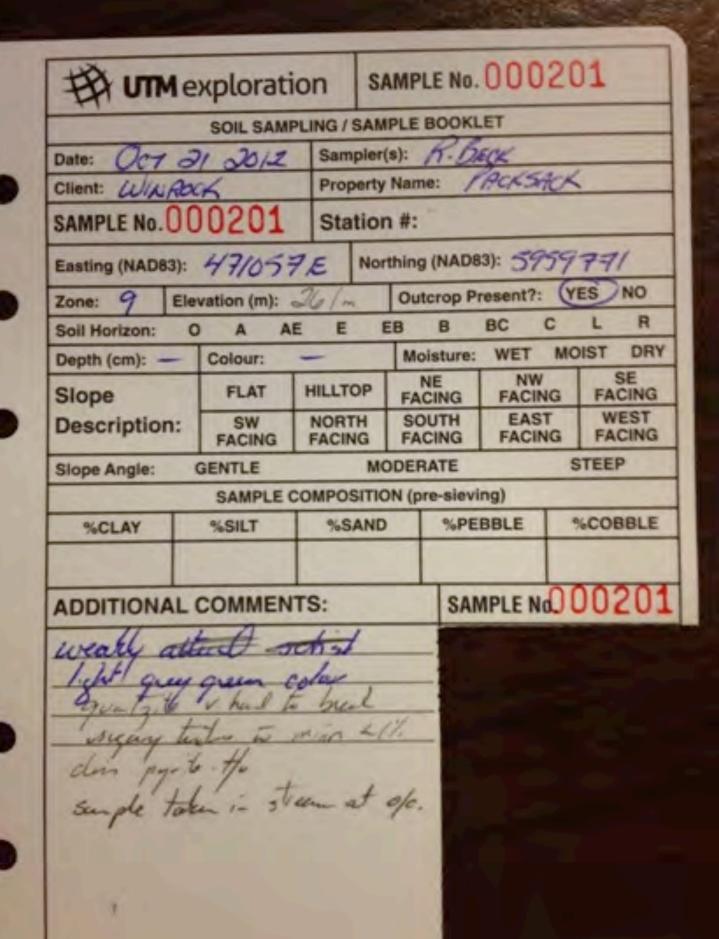




APPENDIX V: MISCELLANEOUS FIELD PHOTOS

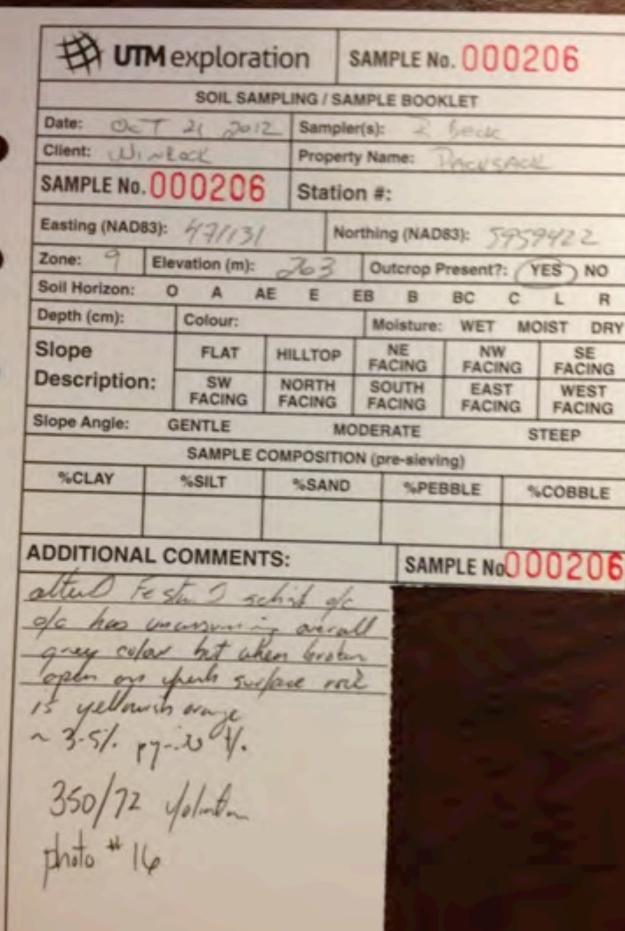






New shear zone discovered northwest of the Horsefly shear zone

APPENDIX VI: FIELD NOTES



# UTM	explorat	tion	SAM	AMPLE No. 000202				
	SOIL SAM	IPLING / S	AMPL	E BOOK	LET			
Date: Oct	de 2017	Samp	olien(s):	F	BECK	E		
Client: Cullad	Client: WINKOCK Property Name: PACKSACK							
SAMPLE No.	SAMPLE No. 000202 Station #:							
Easting (NAD83): 47/084 Northing (NAD83): 5959648								
	Elevation (m):	252	0	utcrop P	resent?	: (Y	ES NO	
Soil Horizon:	0 A A	E E	EB	В	BC	C	L R	
Depth (cm):	Colour:		N	loisture:	WET	MO	DIST DRY	
Slope	FLAT	HILLTON	F	NE ACING	FACI		SE FACING	
Description:	FACING	and the state of			EAS FACIN	_	WEST FACING	
Slope Angle:	GENTLE		MODE	RATE	ATE STEEP			
	SAMPLE C	COMPOSIT	TION (pre-sievi	ng)			
%CLAY	%SILT	%SAN	ND	%PE	%PEBBLE %COBBLE			
ADDITIONAL	COMMEN	TS:		SAN	IPLE No	00	0202	
alter 3	hist							
- altered	portions	ne ha	ant.					
Fe stain	2 5 3.5%	1 paris	· 1/4	4				
		1						
-unalter p	nhis are	gellow	cools	4				
to NASO W	scaro, py	1.6,0	Wa-b					
1/0 -1-	3/. pyrte							
- 1960's DEH! 9. p.s pt taken ;								
	t of sup	le site						
- photo #/	N							
Poor	,							

# UTM	explorati	ion	SAN	IPLE	No.	000	121	03
	SOIL SAMI	PLING /	SAMPL	E BO	OKL	ET.		
Date: Oct 21 2012 Sampler(s): R. Back								
Client: WINI	rock	Prop	erty N	ame:	1	49CKSI	80X	
SAMPLE No. 0	00203	Sta	tion #	ŧ:				
Easting (NAD83): 47/150 Northing (NAD83): 5959428								
Zone: 7 El	evation (m):	247	0	utcro	p Pr	resent?:	(Y	ES NO
Soil Horizon:	0 A A	E E	EB				С	L R
Depth (cm):	Colour:		_ !	Moistu	re:			IST DRY
Slope	FLAT	HILLTO	OP F	NE FACING	G	FACIN		SE FACING
Description: SW NORTH SOUTH EAST WEST FACING FACING FACING								
Slope Angle:	GENTLE		MOD	ERATE			S	TEEP
	SAMPLE	COMPOS	SITION	(pre-si	ievi	ng)		
%CLAY	%SILT	%8/	AND	%PEBBLE %COBBLI				
ADDITIONAL	COMMEN	TS:		S	SAN	IPLE No	00	00203
-chlorito 50	chist -	nen	igh		E		Ŧ	
white	/							
		,						
marriage gts 7 10m 344/78	is well							
7/0m	wide							
244/2	/							
21/10	9							

		_		_		-6.50			
# UTM	explorat	tion	S	AMP	LE N	0.00	102	204	
	SOIL SAN	IPLING	/ SAM	IPLE	BOO	KLET			
Date: Od 31 2012 Sampler(s): Rhack									
Client: Was Rock Property Name: PAOKSACK									
SAMPLE No.	SAMPLE No. 000204 Station #:								
	Easting (NAD83): 47/150 Northing (NAD83): 5859428								
	levation (m):	247		_		resent		ES NO	
Soil Horizon:	0 A A	E E	E		В	BC	C	L R	
Depth (cm):	Colour:			Moi	sture:	WET	MC	DIST DRY	
Slope	FLAT	HILLTO	OP	FAC	E ING	NW		SE	
Description:	SW FACING	NORT			UTH EAST			FACING WEST FACING	
Slope Angle:	GENTLE		MOE	ERA	111000000				
	SAMPLE C	OMPOS				na)		TEEF	
%CLAY	%SILT	%SA		T	%PEBBLE %COBBLE				
								TOUR	
ADDITIONAL	COMMENT	S:		1	SAM	PLE No	00	0204	
gte sur	16						-	0204	
1 3/0	Im ven								
1+ +									
photo *	14								
302/3/									
123/1									
123									
				ı					

# UTM	TM exploration SAMPLE No. 000205									
	S	OIL SAME	PLING / S	SAMPL	E BO	OKL	ET			
Date: at	21	2012	Samp	pler(s):	-/	8.5	ace			
Client: WINKOCK Property Name: PACKSACE										
SAMPLE No. 000205 Station #:										
Easting (NAD83	Easting (NAD83): 47/123 E Northing (NAD83): 5959404									
Zone: 9	Zone: 9 Elevation (m): 25,6 Outcrop Present?: YES NO									
Soil Horizon:	0	A AI	E	EB	В		3C	C	L	R
Depth (cm):	Co	olour:		A	foistu	ire:	WET	MO	IST	DRY
Slope		FLAT	PF	NE FACING		NW FACING			SECING	
Description	: F	SW ACING	NORTH		SOUTH EAS FACING FACIN			The state of the s		
Slope Angle:	GEN	ITLE		MODE	RATE			8	TEEF	
	S	AMPLE C	OMPOSI	TION (pre-si	ieving)			
%CLAY	%5	SILT	%SA	ND	D %PEBBLE 9				COB	BLE
ADDITIONAL	L CO	MMENT	S:		S	AMP	LE No	00	02	205
photo #15										
1 heavily	Theavily Fe staid gtz ven									
+ Fe sta	+ Fe stail dulviti schirt									
wallow										

								-,	
SOIL SAMPLE BOOKLET									
0	SOIL SAM	PLING /	SAMPL					4	
Date: Oct .	The state of the s								
Client: WINDOW Property Name: PACK SACK									
SAMPLE No. 000207 Station #:									
Easting (NAD83): 47/1/2 Northing (NAD83): 5959466									
Zone: 9 Ele	vation (m):	268	0	utcrop P	resent?	(YI	ES NO	_	
Sail Hartzan: 0	AA	E E	EB	В	BC	C	L A		
Depth (cm):	Colour:		N	loisture:	WET	MO		YY	
Slope	FLAT	HILLTO	OP F	NE ACING	FACI		SE FACING		
Description:	SW FACING	NORT		OUTH	The second second				
Slope Angle:	GENTLE		MODE	RATE		S	TEEP		
	SAMPLE C	COMPOS	SITION (pre-slevi	ing)				
"ICLAY	%SILT	%S	AND	ND %PEBBLE			%COBBLE		
		20		1		00	0000	-	
ADDITIONAL (COMMEN	15:		SAN	APLE N	OUL	0020	1	
- light green	- Jallan	- 01/h	ch. to						
schist -	alter	- //							
- small to	der mi	- Di	luly						
ust of	1800 1 D	DH .	Lin						
ruscalton.									
- July									

				-		6.3	The state of the s		
# UTM	explora	tion	SA	MPLE No	. 000	02	08		
	SOIL SAI	MPLING /	SAMP	LE BOOK	CLET				
Date: OCT	21 2017	Sem	pieris	£ 0.	Secr				
Client: U) SCOCIL Property Name: 1825 SCOC									
SAMPLE No.	00208	Sta	tion						
Easting (NAD83): 47/127E Northing (NAD83): 595954/ A									
	levation (m):	299	- 0	Outlang P	resent?:	(fr	ES NO		
Soil Horizon:	0 A A	E E	EB	8	BC (5	L R		
Depth (cm):	Colour:		1	Moisture:	WET	MIC	IST DRY		
Slope	FLAT	HILLTO	10	ME	NOW		SE		
Description:	SW	NORTH	8 8	HTUOS	FACIN	_	FACING		
Slope Angle:	FACING	FACING		ACING	FACINI	G	FACING		
		OMBOD		RATE		5	TEEP		
%CLAY	%SILT	%SA			ne-sleving)				
		7000	-	SAPE	%PEBBLE %COBBLE				
ADDITIONAL	COMMENT	TS:		SAM	PLE No.	00	0208		
= yellow col	lara al	till so	his				0200		
- / propleto s	to 2 per	6 0	lin						
-1 t/3 n)	1-2-1.11								
	915		1						

-									
THE UTM exploration SAMPLE No. 000209									
	SOIL SAM	PLING / SAN	APLE B	оокы	ET				
Date: Oct	Date: Oct 21 2012 Sampler(a): 1 back								
Client: Chartock Property Hame: POCKEACK									
SAMPLE No. 000209 Station #:									
Easting (NAD83): 47/106 Horthing (NAD83): 5959533									
	Elevation (m):	255	Oute	rop Pr	esent?:	(YE	S) NO		
Soil Horizon:	0 A A	E E	EB	B	86 (5	L A		
Depth (cm):	Colour		and the latest l	iture:	WET	MOIS			
Slope	ope FLAT			NG	FACING		SE FACING		
Description:	SW FACING	NORTH FACING	DESCRIPT DESCRIPTION			EAST WES			
Slope Angle:	GENTLE	M	ODERA	TE.		ST	EEP		
	SAMPLE (COMPOSITIO	ON (pre	slevi	ng)				
%CLAY	%SILT	%SAND)	%PER	BBLE	%	COBBLE		
ADDITIONAL	COMMEN	TS:		SAM	IPLE No	00	0209		
phot 19	120	a reld	160						
ofe lun.	ofe les - entire volge								
> Allow w. 6 is involute									
with sullis 0.3 m to lan									
leures.									
- 15.20% P	y 6								
				2					

# UTM	explorati	on	SAMPLE No. 000210						
	SOIL SAME	PLING /	SAME	PLE	BOOKL	ET.			
Date: 067	21 2012	Sam	pler(s	s):	R. 5	PCK			
Client: Will ock Property Nam					e: /	ACK SA	car		
SAMPLE No. 000210 Station									
Easting (NAD83	1: 471105	E	Nort	hing	(NAD8	3): 55	259	566	
Zone: 9 Elevation (m): 255				Out	crop P	resent?:	YE	s) NO	
Soil Horizon:	O A A	EE	E	8	В	BC	С	L R	
Depth (cm):	Colour:			Mo	isture:		MOI		
Slope	Slope FLAT F					NE NW FACING		FACING	
Description	SW FACING	NORT				FACING		WEST FACING	
Slope Angle:	GENTLE		MODERATE STEEP						
	SAMPLE C	OMPOS	SITIO	N (pr	e-sievi	ng)			
%CLAY	%SILT	%S	AND	ND %PEBBLE			%	COBBLE	
ADDITIONAL	L COMMEN	TS:			SAN	APLE N	00	0210	
Jene as somple \$ 20 > 15% pyrite 1/2 photo 1 + 21									
prov									

			_						
# UTM	TM exploration SAMPLE No. 000211								
	SOIL SAM	PLING /	SAMP	LEBO	оок	ET			
Date: OCT 21 2012 Sampler(s): R Beck									
Client: WIA	Client: WINEOCK Property Name: PROLESPOOK								
SAMPLE No.	SAMPLE No. 000211 Station #:								
Easting (NAD83): 47/087 Northing (NAD83): 5959629									
Zone: 9	Zone: 9 Elevation (m): 250 Outcrop Present?: (YES) NO								
Soil Horizon:	0 A A	E E	E	9 1	В	BC	С	LR	
Depth (cm):	Colour:			Mois	_	WET	_	-	
Slope	FLAT	HILLTO	OP	FACIN			G FACING		
Description	SW FACING		NORTH SOUTH EAST WEST FACING FACING						
Slope Angle:	GENTLE		MO	DERAT	TE		Š	TEEP	
	SAMPLE	COMPOS	SITION	(pre-	slevi	ng)			
%CLAY	%SILT	%S	AND		%PE	BBLE	3	COBBLE	
ADDITIONA	L COMMEN	TS:			SAN	APLE N	00	00211	
Jarge - Juliphile Juliant	1	3/ 00	max 5ch	J	SA S				