> | BC Geological Survey |
| :---: |
| Assessment Report |
| 34211 |

NTS $92 \mathrm{~K} / 1 \mathrm{E}, 92 \mathrm{~F} / 16 \mathrm{E}$ BCGS 092K.010, 092F. 100
LAT. $5001^{\prime} \mathrm{N}$
LONG. $12405^{\circ} \mathrm{W}$

GEOCHEMICAL REPORT on ROX 1 \& 20 (\& unnamed) MINERAL CLAIMS, MTO TENURES 567078, 1013277, \& 1019230 WORK DONE ON 567078, 1013277

JERVIS INLET, BC
VANCOUVER MINING DIVISION

For:
Fundamental Res Corp, 4-4522 Gordon Point Dr., Victoria, BC V8N 6L4

By:

ANDRIS KIKAUKA, P.Geo., 406-4901 EAST SOOKE ROAD, SOOKE, BC V9Z 1B6

GEOLOGICAL SURVEY BRANCH ASSESSMENT REPORT

October 3, 2013

Ministry of Energy and Mines BC Geological Survey

TYPE OF REPORT [type of survey(s)]:
Geological, geochemistry of rock samples AUTHORS): \qquad Andris Kikauka SIGNATURES): \qquad A. Kikanka total cost:
\qquad $6,585.52$
\qquad
NOTICE OF WORK PERMIT NUMBER(SYDATE(S): \qquad YEAR OF WORK: 2013 STATEMENT OF WORK - CASH PAYMENTS EVENT NUMBER(SHDATE(S): \qquad 5467293

PROPERTY NAME: \qquad Rex

CLAIM $\operatorname{NAME}(\mathrm{S})$ (on which the work was done): \qquad 567078,1013277
\qquad

COMMODITIES SOUGHT: Vancouver NTshicos: $092 \mathrm{~K} / \mathrm{LE} \quad 092 \mathrm{~K} .010$
MINING DIVSION: \qquad
\qquad
Latitude: $50^{\circ} 00$. $50^{\prime \prime}$ LONGITUDE: $124^{\circ} 05^{\prime \prime} 19^{\prime \prime}$ (at centre of work)
OWNERS):

1) WE Pfaffenberger \qquad 2) \qquad president Fundamental Res Corp \qquad
MAILING ADDRESS: 4-4522 Gordon Point Dr. \qquad Victoria BC V8N $6<4$ \qquad
OPERATOR(S) [who paid for the work]:
2) same 2) \qquad
\qquad
\qquad
MAILING ADDRESS:
\qquad
\qquad
\qquad
\qquad
PROPERTY GEOLOGY KEYWORDS (lithology, age, stratigraphy, structure, alteration, mineralization, size and attitude):
Lower Jurassic Bowen Island Gro volcanies-Sediments weakly metamorphosed by
Jurassic-Cretacieous ghz. diorite. A NE trending fault dips sub-vertically and contains multiple ot t_{2}-sulphide fracture $\neq i l l i n g$ with Au Ag bearing mineralization with pyrite, chalcopyrite and sphalerite at 1100 m elev (uppergtzun)
REFERENCES TO PREVOUS ASSESSMENT WORK AND ASSESSMENT REPORT NUMBERS:

$$
\begin{array}{llll}
11641 & 13814 & 18207
\end{array}
$$

$$
\begin{array}{lll}
21459 & 22397 & 23319
\end{array}
$$

Mineral Titles Online

Mineral Claim Exploration and Development Work/Expiry Date
Change

Recorder: PFAFFENBERGER, WILLIAM
ELMER (143363)
Recorded: 2013/SEP/13
D/E Date: 2013/SEP/13

Submitter: PFAFFENBERGER, WILLIAM
Submitter: ELMER (143363)
Effective: 2013/SEP/13

Confirmation

If you have not yet submitted your report for this work program, your technical work report is due in 90 days. The Exploration and Development Work/Expiry Date Change event number is required with your report submission. Please attach a copy of this confirmation page to your report. Contact Mineral Titles Branch for more information.
Event Number:
5467293
Work Type: Technical Work
Technical Items: Geochemical, Geological, PAC Withdrawal (up to 30\% of technical work performed)
Work Start Date: 2013/SEP/06
Work Stop Date: 2013/SEP/09
Total Válue of Work: $\$ 6585.52$
Mine Permit No:
Summary of the work value:

Tenure Number	Claim Name/Property	Issue Date	Good To Date	New Good To Date	\# of Days For- ward	Area in Ha	Applied Work Value	Sub- mission Fee
567078	R0X1	$2007 / \operatorname{sep} / 29$	$2013 / \operatorname{sep} / 27$	$2016 / \mathrm{jan} / 30$	855	311.46	$\$ 4178.29$	$\$ 0.00$
1013277		$2012 / \operatorname{sep} / 27$	$2013 /$ sep $/ 27$	$2016 / \mathrm{jan} / 30$	855	166.11	$\$ 3058.97$	$\$ 0.00$
1019230	ROX20	$2013 /$ may $/ 04$	$2014 /$ may $/ 04$	$2016 / \mathrm{jan} / 30$	636	249.19	$\$ 2168.52$	$\$ 0.00$

Financial Summary:

Total applied work value:\$ 9405.78

PAC name:	PFAFFENBERGER
Debited PAC amount:	$\$ 2820.26$
Credited PAC amount:	$\$ 0.0$
Total Submission Fees:	$\$ 0.0$
Total Paid:	$\$ 0.0$

Please print this page for your records.
The event was successfully saved.
Click here to return to the Main Menu.

TABLE OF CONTENTS

PAGE No.
SUMMARY 1
1.0 INTRODUCTION 3
2.0 LOCATION, ACCESS \& PHYSIOGRAPHY 3
3.0 PROPERTY STATUS 4
4.0 PROPERTY HISTORY 4
5.0 GENERAL GEOLOGY 10
6.0 PROPERTY GEOLOGY 11
$7.0 \quad 2013$ FIELDWORK 13
7.1 METHODS AND PROCEDURES 13
7.2 ROCK Au-Ag GEOCHEMISTRY 14
7.3 GEOLOGICAL MAPPING (UPPER QUARTZ VEIN) 15
8.0 DISCUSSION OF RESULTS 16
9.0 CONCLUSION 16
10.0 RECOMMENDATIONS 17
11.0 REFERENCES 18
STATEMENT OF QUALIFICATIONS
ITEMIZED COST STATEMENT

LIST OF FIGURES

FIG 1 REGIONAL LOCATION OF ROX MTO TENURES

FIG 2 GENERAL LOCATION OF ROX MTO TENURES

FIG 2B MTO MINERAL TENURE LOCATION

FIG 3 GENERAL GEOLOGY MAP OF ROX MTO TENURES

FIG 4 ROX NO MAN'S CK Au-Ag QTZ VEIN ROCK GEOCHEMISTRY (scale $1: 10,000$) FIG 4B ROX NO MAN'S CK Au-Ag QTZ VEIN ROCK GEOCHEMISTRY (scale 1:2,500)

FIG 5 ROX NO MAN'S CK Au-Ag QTZ VEIN GEOLOGY \&ROCK GEOCHEMISTRY (scale 1:500)

FIG 6 ROX NO MAN'S CK Au-Ag QTZ VEIN GEOLOGICAL CROSS SECTION (scale 1:500)

LIST OF APPENDICIES

APPENDIX A ALS MINERALS CERTIFICATE OF ANALYSIS
APPENDIX B ROCK CHIP SAMPLE DESCRIPTIONS
APPENDIX C PHOTOS

SUMMARY

The Rox Claim Group consists of 3 contiguous mineral tenures comprising 726.76 hectares ($1,795.86$ acres). The mineral tenures are located 38 kilometres northeast of Powell River, B.C. near the headwaters of Lois River and No Man's Creek. A logging road that branches off Third Lake Road fotlows Lois River and gives access to the south portion of the claims. The claims lie within the Vancouver Mining Divisinn. The mineral tenores are held by Fundamental Resources Corp. An agreement has been made between Manto Gold Corp and Fundamental Resources Corp. Manto Gold Corp has agreed to develop mineral resources in compliance with $B C$ Ministry of Mines regulations on the nineral tenures held by Fundamental Res for financial and technical obligations.

The Rox mineral tenures are underlain by mixed sedimentary, volcanic, and intrusive rocks of Lower Middle Jurassic Bowen Island Group. This group is age equivalent to the Bonanza Group of Vancouver Island and the Harrison Lake Group of the Central Coast Mountains. The Bowen Island Group forms an elongated 2×15 kilometre roof pendant within Cretaceous/Tertiary intrusive rocks of the Coast Range Plutonic Complex. Lithologies within the roof pendant consist of tuffaceous sandstone, argillaceous siltstone, andesite to basalt vesieular flows and diorite-andesite flows and/or sills, pillowed andesite flows, chloritic schist, carbonate, and chert. This sequence forms a roof pendant, representing a steeply dipping remnant of pre-Cretaceous strata deformed during emplacement of the Coast Range Plutornc Complex. Intense deformation has prochuced isoclinal folding with penetrative to fracture axial plane cleavage and greenschist grade metamorphism throughout the roof pendant. A portion of this roof pendant located near the headwaters of Lois River and No Man's Creek has been intermittently explored for base and precious metals for the past 65 years. As a result of work by 12 separate episodes of mineral exploration, numerous base and precious metal targets have been identified.

Located on the west edge of mineral tenure 1013277 and east edge of Rox 1, mineral tenure 567078, at an elevation of 1,100 metres ($3,608 \mathrm{ft}$), and located near UTM grid 422,000 E, 5540750 N (NAD 83), a gold bearing quartz vein (No Man's Creek Au) occurs in a shear zone that is exposed for a strike length of 500 metres. The No Man's Creek gold-bearing quartz vein is exposed in five creek gullies. The vein/shear trends northeast and dips steeply northwest or northeast (near-vertical dị). Mineralization consists of pyrite, pyrrhotite, chalcopyrite, sphalerite, (trace arsenopyrite, and native gold) in a gangue of quartz and fault gouge clay. Width of mineralized quartz veins varies from 0.1-0.35 metres. Wall rock zones of gouge clay, silicification, and fracture filling sulphide mineralization ranging from 0.5-2.0 metres in width adjacent to the quartz vein. Assay values of $2.772 \mathrm{oz} / \mathrm{t} \mathrm{Au}$ across 2.18 metres were obtained from trenched rock chip samples (sample \# $9,54,55,1991$). Stream sediment samples from creeks that cut this zone returned geochemical values up to 133.0 ppm Au (Leriche, 1991).

Geochemical analysis (Me-Gra21 Au Ag 30 gram Fire Assay-GRAV finish of rock samples, Certificate VA13163406, 2013, Appendix A) is listed below:

Sample ID	Vein Strike	Vein Dip	Width (cm)	Au g / t	$\begin{aligned} & \mathrm{Ag} \\ & \mathrm{~g} / \mathrm{t} \end{aligned}$	Au opt	Ag opt
23241	45	84 NW	22	<0.05	5	<0.0015	0.0015
23242	45	88 SE	20	<0.05	<5	<0.0015	<0.0015
23243	45	88 SE	25	2.39	<5	0.07	<0.0015
23244	45	88 SE	30	86.7	56	2.53	1.63
23245	45	90	26	33.5	21	0.977	0.61
23246	45	82 SE	55	89.9	33	2.622	0.96
23247	45	78 SE	35	33.4	52	0.974	1.52
23248	45	78 SE	30	121.5	85	3.54	2.48
23249	45	90	42	2.78	<5	0.081	<0.0015
23250	45	90	20	0.42	<5	0.012	<0.0015

Rock chip sampling done in September, 2013 identified a potential zone of Au bearing quartz-sulphide veining (sample 23249) located 50-110 meters southwest of the known Au bearing zones (samples 23243-23248 along 65 meter strike length, true width $20-55 \mathrm{~cm}$).

Zones of massive sphalerite, galena, chalcopyrite, pyrrhotite, and/or arsenopyrite occur within the south-central portion Rox 1 mineral tenure (number 567078). Several adits and trenches trace shear and stratigraphic controlled pods and lenses of significant $\mathrm{Cu}-\mathrm{Pb}-\mathrm{Zn}$ -Ag-Au bearing sulphide mineralization. The Mt. Diadem Adit, the upper and lower adits, and trenches of the Lois River contain significant $\mathrm{Cu}-\mathrm{Pb}-\mathrm{Zn}-\mathrm{Ag}-\mathrm{Au}$ values. Several zones of massive magnetite-pyrrhotite-chalcopyrite also occur on the south portion of the claims.

The upper and lower adit showings consists of massive and semi-massive $\mathrm{Cu}-\mathrm{Pb}-\mathrm{Zn}-\mathrm{Ag}$ Au bearing sulphides associated with a linear and penetrative shear zone and a volcanic/sedimentary geological contact. However, due the presence of gold, the main focus of interest is the No Man's Creek gold-silver bearing quartz-sulphide Upper vein at 1,100 meter elevation (Minfile name Rox) and Lower veins at an elevation of 840 meters. A two phase program, including surface trenching, 80 meter length underground exploration adit leading to bulk sampling, and follow-up underground development work is warranted to determine the economic potential of precious/base metal bearing mineralization on the Rox mineral tenures.

A proposed budget of $\$ 600,000$ is recommended to complete phase 1 , including preliminary trenching, 80 meter length exploration adit, leading to bulk sampling of No Man's Creek Upper gold-bearing quattz-sulphide fissure vein. Contingent on results of phase 1 , a second phase of underground exploration is recommended. The proposed adit is
intended to cross-cut, drift and stope on the quartz vein where it was intersected by drill hole RX 96-2 (0.531 opt Au across 1.01 meters at a depth of 88.69-89.70 meters). DDH $96-2$ is located at UTM grid co-ordinates $5540738 \mathrm{~N}, 421958 \mathrm{E}$, elev 1114. The cost for the proposed second phase of underground exploration is estimated at $\$ 1,500,000$.

1.0 INTRODUCTION

This report was prepared at the request of Fundamental Res Corp to describe and evaluate the results of geochemical analysis of rock chip sampling and geological mapping carried out on the No Man's Creek gold-bearing quartz vein located on the subject property. The purpose of this technical report is to summarize geological and geochemical aspects of economic mineralization, in order to establish recommendations for future work leading to a positive feasibility study.

The author has bcen on the property. This report is based on published and unpublished information, maps, reports, and field notes.

2.0 LOCATKON, ACCESS, AND PHYSIOGRAPHY

The Rox mineral tenures are situated in the Vancouver Mining Division covering Mt. Diadem, which is located about 4 km west of Jervis Inlet near Brittain River. The Rox mineral tenures are situated approximately 38 kilometres northeast of Powell River, B.C. (Figures 1 and 2).

The claims are located on map sheet NTS $92 \mathrm{~F} / 16 \mathrm{E}$ and $92 \mathrm{~K} / 1 \mathrm{E}$ (BCGS 092K. 010 and 092F.100) at latitude $5001^{\prime} \mathrm{N}$, longitude $12401^{\prime} \mathrm{W}$, and UTM $5,540,400$ metres N , 423,000 metres E.

Road access is via the Lois Lake logging road, Lang Bay. Road access is restricted during weekdays when active log hauling trucks use this road. Alternate access is via helicopter from Powell River Airport (Oceanview Helicopters).

The property is on mountainous terrain with moderate to steep slopes rising from 700 metres (2,310 feet) to 1,675 metres (5,610 feet) above sea level. Mature fir, hemlock, spruce, and cedar (red and yellow) are found below 1,100 metres (3,600 feet) elevation. Moss, lichen, and shrubs of the alpine tundra occur above this elevation.

The area is affected by a maritime coastal climate with abundant precipitation in the autumn and winter with moderate temperatures.

Recommended work season is April-November. Work can be extended into winter months at lower elevations below $1,100 \mathrm{~m}$.

3.0 PROPERTY STATUS

The property consists of 3 contiguous mineral tenures in the Vancouver Mining Division (Fig $2 \& 3$). Details of the tenures are as follows:

Claim Name	Tenure Number	Owner	Area (Hectares)	Expiry Date
Rox 1	567078	143363	311.46	$2016 / \mathrm{JAN} / 30$
	1013277	143363	166.11	2016/JAN/30
Rox 20	1019230	143363	249.19	$2016 / \mathrm{JAN} / 30$
		Total area $=$	726.76	

The writer is not aware of any particular environmental, political, or regulatory problems that would adversely affect mineral exploration and development on the Rox 1 , unnamed \& Rox 20 mineral tenures.

The mineral tenures fall under the jurisdiction of Shishalh (Sechelt) First Nations, a part of the Coast Salish who inhabited the area about before the European's arrived 500 years ago. Permits, approvals, or decisions related to exploration and development work on mineral tenures will require the Province of British Columbia to meet applicable legal obligations to consult with and, if appropriate, accommodate affected First Nations source- MTO website, https://www.mtonline.gov.bc.ca/

4.0 PROPERTY HISTORY

The Mt.Diadem area of Jervis Inlet has received intermittent mineral exploration work since the 1920's. Brittain River Mining Co. excavated three short adits in 1927. These adits contain massive $\mathrm{Pb}-\mathrm{Zn}-\mathrm{Cu}-\mathrm{Ag}-\mathrm{Au}$ bearing sulphide mineralization and are located 1-2 kilometres northwest of Mt.Diadem. In 1947-50, Inco Canada Ltd. and Bralorne Mines Ltd. excavated mineralized bedrock in the headwaters of No Man's Creek, performed some sluicing, cut trails, and fabricated a cabin. A gold bearing quartz vein was traced along strike for 800 feet and returned assay values up to $5.77 \mathrm{oz} / \mathrm{t} \mathrm{Au}$. The vein occurs in a narrow shear striking northeast, dips near vertical. Mineralization is 1$3 \%$ pyrite, sparse chalcopyrite, sphalerite, arsenopyrite, \& native gold hosted by quartz, fractured wall rock, clay-rich fault gouge (Minister of Mines Annual Report, 1950).

1954: Copper Ridge Silver Zinc Mines performed geological mapping and prospecting on 19 claims located in the Mt.Diadem area.

1957: W.R.Bacon of the B.C.Dept. of Mines performed seven months of geological fieldwork in the area. This work is summarized in B.C.D.M. Bulletin No.39,"Geology of Lower Jervis Inlet".

1965: Vanco Explorations Ltd. held 17 claims northwest of Mt.Diadem called the Linda

Group. In 1967 Citation Explorations Ltd. held 73 claims and optioned the Linda Group. In 1970 Tiger Silver Mines optioned the Linda Group and carried out geochemical and geophysical surveys.

1978: The claims were acquired by Fury Explorations Ltd. (Diadem claim) and Reto Schmidt (Fox claim).

1982: Anaconda Canada Explorations Ltd. sampled stream sediments in the Rox claims area revealing a multi-element $\mathrm{Cu}-\mathrm{Pb}-\mathrm{Zn}-\mathrm{Ag}-\mathrm{Au}$ geochemical high. Related pathfinder elements such as As-Sb-Bi-Mo also showed elevated geochemical values. In 1983-84 Anaconda performed 10 kilometres of GENIE-EM, geological mapping, geochemical surveys, trenching, and diamond drilling which concentrated on the base metal showings of the upper and lower adits and performed a regional stream sediment and prospecting survey which included the Mount Diadem area (A.R. \# 11,641).

In 1983 Anaconda optioned the Fox and Diadem claims as well as acquiring additional claims to the north. A seven man crew worked for five months performing geological mapping, trentehing, geophysical and geochemical surveys, line cutting, and diamand drilling. The focus of this program was the base metal showings near the adits. These showings consist of pods and lenses of massive sphalerite, chalcopyrite, pyrrhotite, and minor galena, arsenopyrite developed within steeply dipping shears which trend 330 to 005 degrees. Massive, shear controlled mineralized pods are localized along a sediment(siliceous black argillite)-volcanic (green chloritic andesite flow) contact. These showings consist of pods and lenses of massive sphalerite, chalcopyrite, pyrrhotite, and minor galena, arsenopyrite developed within steeply dipping shears which trend 330 to 005 degrees. Massive, sliear controlled mineralized pods appear to be spatially related to a sediment-volcanic contact. The geophysical mag and EM survey focused on the Upper Trench, Upper Adit, and Lower Adit polymetallic mineralization (i.e. $\mathrm{Ag}-\mathrm{Au}-\mathrm{Cu}-\mathrm{Pb}-\mathrm{Zn}$) Data results indicates there are numerous weak to moderate strength conductor axes that correlate well wilh the near vertically dipping pyrrhotite-rich polymetallic mineral zones and parallel sulphide zones adjacent to the showings (Appendix C-2 Claim Geophysics, A.R. $11,641,1983$). The nature and extent of parallel sulphide zones are poorly documented, but numerous conductive zones located north, south and northwest of the Upper Adit should be trenehed and core drilled to test for the presence of massive/semimassive sulphide mineral zones. The weak to moderate strength (200-500 nT) positive magnetometer anomalies, located mainly in the southeast portion of the surveyed grid, correlate with a magnetite/pyrrhotite bearing hornfels diorite/basalt contact zone that has zones of $\mathrm{Cu}-\mathrm{Zn}-\mathrm{Ag}$ bearing sulphide mineralization.

Rock chip samples taken by Anaconda personnel (1983) from several different exposures of the No Man's Creek gold-quartz vein returned the following valtres:

Location	Assay	Width
No Man's Ck.(el.1,100 m.)	$24.3 \mathrm{~g} / \mathrm{t} \mathrm{Au}$	16 cm
	$27.0 \mathrm{~g} / \mathrm{t} \mathrm{Au}$	8 cm .
"	$30.4 \mathrm{~g} / \mathrm{t} \mathrm{Au}$	7 cm .
"	$9.4 \mathrm{~g} / \mathrm{t} \mathrm{Au}$	30

Several occurrences of gold bearing pyrrhotite and arsenopyrite with assay values up to $5.5 \mathrm{~g} / \mathrm{t} \mathrm{Au}$ were located 200-500 metres northwest of No Man's Creek vein. The 1984 Anaconda report recommended follow up drilling in the area of the upper and lower adit. 1984: Anaconda drilled 9 holes through the upper adit zone (select intersects as follows):

HOLE	FROM	TO(m	WIDTH	\% Cu	\% Pb	\% Zn	$\mathrm{g} / \mathrm{t} \mathrm{Ag}$	$\mathrm{g} / \mathrm{t} \mathrm{Au}$
\#1	93	94.	1.0 m	2.02	0.01	0.06	47.1	0.07
\#1	96.5	98	1.5 m	0.27	1.5	1.22	44.1	0.07
\#1	99.9	100.4	0.5 m	2.32	0.02	0.16	46.6	0.01
\#1	102.9	103.9	1.0 m	0.06	1.19	3.76	17.8	0.12
\#1	93	103.9	10.9m	0.33	0.4	0.53	14.2	0.03
\#3	20.2	20.7	0.5 m	0.05	0.04	6	24	0.01
\#3	22.2	23.7	1.5 m	0.34	0.51	2.1	76.1	0.11
\#3	27.2	31.2	4.0 m	2.14	7.92	2.45	359.4	0.05
\#4	23.7	24.7	1.0 m	0.05	0.03	7.47	13	0.01
\#4	28.7	30.2	1.5 m	0.05	0.84	3.72	41.7	0.07
\#4	32.6	33.6	1.0 m	0.19	0.04	0.39	33.6	0.05
\#4	44.8	47.3	2.5 m	0.34	0.48	1.48	49.3	0.07
\#6	14.6	15.6	1.0 m	7.15	0.01	0.49	319.2	0.8
\#6	62.4	65.4	3.0 m	1.2	0.31	0.41	123.9	0.01
\#6	86.4	86.9	0.5m	0.06	1.24	8.4	93.9	0.12
\#6	103.4	107.9	4.0 m	0.57	0.04	0.63	51.9	0.03
\#8	2.5	3.7	1.2 m	3.25	0.01	0.18	86.7	0.02
\#8	98.9	99.9	1.0 m	1.62	0.28	1.2	175.2	0.04
\#9	72.7	74.7	2.0m	0.04	1.08	2.78	19.1	0.02

GENIE-EM geophysics over the upper adit and upper trench zones outlined several weak and moderate conductors over the upper trench zone and immediately north of the upper adit and lower adit which have not been drill tested (Scott,83). Drill indicated continuity of polymetallic mineralization along a sheared volcanic-sediment contact combined with several well defined weak and moderate strength EM responses suggest the upper trench and upper/lower adit zones may host zones of massive sulphide to depth.
Isotope dating (Pb 207/U 235 ratios) combined with fossil correlations performed by the G.S.C. in 1989 has given the Mt. Diadem roof pendant a Lower to Middle Jurassic age date which is equivalent to the Bonanza Group on Vancouver Island and the Harrison Lake Group on the Central Coast Mountains. (Freidman, 1990)

1991: White Channel Resources Inc. performed hand trenching along the No Man's Creek quartz vein. The Au assay values obtained from trench sampling are compiled as weighted averages from vein and wallrock sampling listed as follows;

Sample No.	Location	Au assay	Width
Trench 1 $" ~$	$0+38 \mathrm{~N}$	$0.344 \mathrm{oz} / \mathrm{t}$	0.95 m.
Trench 5	$0+60 \mathrm{~N}$	$0.526 \mathrm{oz} / \mathrm{t}$	0.35 m.
Trench 6 $" ~$	$1+10 \mathrm{~N}$	$1.013 \mathrm{oz} / \mathrm{t}$	0.97 m.
Trench 8 $" 54$ $" 55$	$1+57 \mathrm{~N}$	$2.770 \mathrm{oz} / \mathrm{t}$	2.18 m.
Trench 10	$4+75 \mathrm{~N}$	$0.280 \mathrm{oz} / \mathrm{t}$	0.3 m.
Trench 57	$2+50 \mathrm{~N}$ $2+25 \mathrm{~W}$	$0.277 \mathrm{oz} / \mathrm{t}$	0.4 m.

Values of 0.9-133.0 ppm Au and relatively high $\mathrm{Cu}-\mathrm{Zn}-\mathrm{Ag}-\mathrm{As}$ were obtained from stream sediment samples of drainages which cut trenches that contain significant Au values. The high values obtained by sample ST- $51.01 \% \mathrm{Cu}, 1.49 \% \mathrm{Zn}, 185.8 \mathrm{ppm} \mathrm{Ag}$, $133.0 \mathrm{ppm} \mathrm{Au}, 6968 \mathrm{ppm}$ As confirms the presence of high grade mineralization encountered in trench 8 (which averaged $2.770 \mathrm{oz} / \mathrm{t}$ Au across 2.18 metres).

In 1993, Noranda Exploration Co. Ltd. optioned the Rox 1-5 property and performed rock sampling and geological mapping. The following results were obtained from the upper trenches and upper adit:

SAMPLE \# WIDTH (m.) \% Cu \% Pb \% Zn g/t Ag g/t Au

427-P	1.0	0.02	0.82	1.34	23.2	0.31
427-Q	1.0	0.02	0.28	0.14	11.2	0.04
427-R	4.0	0.11	1.70	3.10	64.0	0.44
428-G	1.5	0.09	0.03	0.80	10.0	0.01
428-H	0.4	1.62	11.20	30.50	496.0	0.31
428-I	1.3	2.15	1.38	4.05	256.0	0.83
428-J	1.0	0.46	0.08	15.20	140.0	1.40

1996: Navarre Resource Corp drilled 8 holes totalling $1,200 \mathrm{ft}$ of BQ core on the No Man's Creek gold bearing quartz vein.

ROX CLAIMS- NO MAN'S CK Au CORE DRILLING SIGNIFICANT INTERCEPTS

 Core logging and drill core sampling for Navarre Resources Corp., July, 1996| Drill Hole
 Number | From (m) | To (m) | Width (m) | Au ppb | Au opt |
| :--- | :--- | :--- | :--- | :--- | :--- |
| RX 96-2 | 70.41 | 70.87 | 0.46 | 420 | 0.012 |
| RX 96-2 | 71.93 | 73.61 | 1.68 | 449 | 0.013 |
| RX 96-2 | $\mathbf{8 8 . 6 9}$ | $\mathbf{8 9 . 7 0}$ | $\mathbf{1 . 0 1}$ | $\mathbf{1 8 , 2 0 0}$ | $\mathbf{0 . 5 3 1}$ |
| RX 96-3 | 25.51 | 27.97 | 0.46 | 1,850 | 0.054 |
| RX 96-4 | 30.93 | 31.24 | 0.31 | 1,980 | 0.058 |
| RX 96-4 | 78.39 | 78.85 | 0.46 | 705 | 0.021 |
| RX 96-5 | 64.31 | 64.92 | 0.61 | 910 | 0.027 |
| RX 96-8 | $\mathbf{2 8 . 1 6}$ | $\mathbf{2 8 . 3 2}$ | $\mathbf{0 . 1 6}$ | $\mathbf{2 5 , 3 0 0}$ | $\mathbf{0 . 7 3 9}$ |
| RX 96-8 | 37.18 | 37.49 | 0.31 | 330 | 0.010 |

Reference- Pioneer Labs Report No. 9681687, 9681671
1998: Stirrup Creek Gold Inc optioned the property from Navarre Res Corp. and carried out VLF-EM and magnetometer surveys. Results from the geophysical program on the upper and lower adit zones are summarized as follows: VLF-EM results show good continuity of a weak conductive zone located immediately west of north trending fault zone in the upper adit grid ($\mathrm{L} 7+00 \mathrm{~N}$ to $\mathrm{L} 10+00 \mathrm{~N}$). This weak VLF-EM response does not exhibit an associated magnetic anomaly which suggests that the pyrrhotite associated with the upper adit and trench showings is not massive. The upper adit conductive zone coincides with the trench trend of sulphide mineralization and previous GENIE-EM conductors identified by Anaconda's 1984 survey (Scott, 84). The lower adit grid (L $0+00 \mathrm{~N}$ to $\mathrm{L} 4+00 \mathrm{~N}$) demonstrates moderate strength conductive zones at the lower adit and 100 metres NNW of the lower adit. This zone in the vicinity of the lower adit has
never been drilled and is considered a high priority target based on the combination of VLF-EM in phase and quadrature response. Surface trenches and adits in this area coincide with EM conductor axes and total field mag highs at the lower adit.

A compilation of the present data combined with previous EM data generated by Anaconda in 1984 suggests that a program of core drilling focus on extending the upper adit zone to a depth of 150 metres, intersect the lower adit zone at depths ranging from 50-150 metres, and drill several holes in the intervening ground to establish continuity.

2001- Fundamental Resources Corp carries out VLF-EM and magnetometer surveys on the Upper and Lower Adit zones and takes 6 rock chip samples which are submitted to Acme Labs for assays and geochemical analysis (Appendix I-2, I-3, Upper and Lower Adit Rock Samples, A.R. 26,631). Also, 5 rock samples are submitted to Vancouver Petrographics for descriptions (Appendix I-4, Upper and Lower Adit Petrographic Descriptions, A.R. 26,631). The presence of garnet, tremolite and diopside suggests there are skarn mineral assemblages present in the Upper and Lower Adit mineral zones.

2002- Fundamental Resources Corp obtains petrographic descriptions of drill core from Anaconda's 1984 drill core that was stored on site (Appendix J-1, J-2, Upper and Lower Adit Petrographic Descriptions, A.R. 27,274).

2009- In 2009, rock chip sampling of No Man's Creek gold-bearing quartz vein was carried out by Sunshine Global Mining Ltd, in order to evaluate the samples for geochemistry, petrology and gold recovery tests. A summary of results are listed in the following tables:
(Note: rock chip sample true widths range from $0.25-0.35 \mathrm{~m}$, average width of 0.31 m)
ALS Chemex certificate VA09111065 (ME-ICP 61, 30 element ICP)

SAMPLE NO	Ag		As ppm	Bi	Cd ppm	Cu ppm	Pb ppm	Zn
1+00N AR-1		82.6	826	248	733	7700	111	3.57
$1+00 \mathrm{~N}$ AR-2		29.5	199	80	265	2370	35	1.375
1+00N AR-3		14.9	4610	70	50.3	814	44	0.23
1+50N-AR-1		80.6	7710	483	865	5470	99	4.41
1+50N-AR-2		142	2360	545	818	7170	102	5.19
1+50N-AR-3		67.7	2190	198	353	2840	106	1.745
1+50N-AR-4		34.3	1115	126	370	1970	81	1.86
1+50N-AR-5		38.1	1520	153	261	2080	116	1.305
1+50N-AR-6		122	266	257	363	1170	123	1.895
1+50N-AR-7		80	1555	370	533	3910	145	2.81

ALS Chemex certificate VA09114599 (Au screen assay, Au-SCR24, 50 gm nominal sample, see Appendix A, E)									
	Au-SCR24	Au-SCR24	$\mathrm{Au}-$ SCR24	Au-SCR24	Au-SCR24	$\mathrm{Au}-$ SCR24	Au-AA26	$\mathrm{Au}-$ AA26D	Au-GRA22
SAMPLE	Au Total (+)(-)	$\mathrm{Au}(+)$	Au (-)	$\mathrm{Au}(+) \mathrm{mg}$	WT. + Frac	WT. - Frac	Au	Au	Au
NO.	ppm	ppm	ppm	mg	g	g	ppm	ppm	ppm
1+00N AR-1	124.5	243	96.5	15.078	61.95	259.8	99.1	93.8	
$1+00 \mathrm{NAR}-2$	50.7	120.5	39.2	5.264	43.67	262.9	40.4	37.9	
$1+00 \mathrm{~N} \mathrm{AR}-3$	40.5	66.3	36.4	3.918	59.11	371.6	- 36.7	36	
1+50N-AR-1	63	41.3	65.8	2.446	59.27	460.7	64.7	66.9	
1+50N-AR-2	92.9	178.5	83	8.886	49.77	429.7	82.9	83	
$1+50 \mathrm{~N}-\mathrm{AR}-3$	48.1	78.7	42.9	2.519	32.01	186.3	43.1	42.7	
$1+50 \mathrm{~N}-\mathrm{AR}-4$	17.8	19.65	17.5	0.693	35.23	219	17.25	17.7	
$1+50 \mathrm{~N}-\mathrm{AR}-5$	25	79.2	20.6	2.005	25.31	315.3	20.4	20.8	
1+50N-AR-6	615	7070	307	105.42	14.91	312.1	>100	>100	307
1+50N-AR-7	87.3	674	67.1	3.712	5.51	159.7	-64.6	69.5	

In addition to 33 element ICP and Au screen fire assay, a 35.2 kilogram composite sample combining $1+50 \mathrm{~N}$ AR-1 to 7 and a 5.6 kilogram composite sample combining $1+00$ N AR- 1 to 3 was sent to TN Gold Inc for a gold recovery test. The two samples were ground to 20 mesh minus, wet gravity concentrated, subjected to many chemical scrubs and magnetic separation, and mercury amalgamation with nitric acid reduction, dried fluxed and fired finish. The results of the test are summarized as follows:

Sample No	Sample weight	Gold recovered	Ratio of gold recovered per metric tonne	Extrapolated value
$1+50 \mathrm{~N} \mathrm{AR}-1$ to 7	35.2 kilograms	1.9 grams	54 grams $/$ 1000 kilograms	1.73 opt Au
$1+00 \mathrm{~N}$ AR-1 to 3	5.6 kilograms	0.5 grams	89 grams $/$ 1000 kilograms	2.85 opt Au

5.0 GENERAL GEOLOGY

Mixed volcanic, sedimentary, and intrusive rocks of Lower and Middle Jurassic Bowen Island Group form a series of 2-15 kilometre long, elongated northwest trending roof pendants within the Cretaceous Coast Range Plutonic Complex. These pendants occur in the south end of Howe Sound and Jervis Inlet. The Bowen Island Group is coeval in part with the rocks of the Bonanza Formation on Vancouver Island to the west and the Harrison Lake Formation within the central Coast Mountains 75 kilometres to the east.

Roof pendants occur throughout the Cordillera and have been referred to "inclusions", "screens", "septa", "great xenoliths", and "leaves between batholith walls". The Bowen Island Group probably covered a larger area prior to deformation that occurred during Cretaceous emplacement of the Coast Range Plutonic Complex. This deformation resulted in aligning the pre-Cretaceous strata into vertically oriented roof pendants.

The Bowen Island Group is volcanic rich in southwestern exposures and principally sedimentary to the northwest. This southeast to northwest change probably reflects age as well as facies variation. On Bowen Island, dark green, fine grained andesite is locally interbedded with thinly laminated to massive fine grained siliceous tuff, and minor laminated chert and argillite. In part this lamination is bedding, but elsewhere it is a tectonic fabric. On Mount Elphinstone, strongly foliated amplibolites are interlayered with green chloritic schist and felsic metavolcanics. On the summit ridges of the Sechelt Peninsula, massive andesite is interlayered with cherty tuff and foliated rusty pyritic argillites and minor carbonate. Near Foley Head, on the west side of Jervis Inlet, pillow basalt is separated by a breccia zone from a rusty weathering argillite with minor carbonate. Upwards in the seetion is a thin conglomerate horizon, with feldspar porphyry, diorite, quartz diorite, and limestone cobbles. In the area of the Rox 1-5 claims, near the northwest limit of the Bowen Island Group, the Lithologies consist of argillaceous siltstone (well banded), tafaceous sandstone (chlorite rich), andesitic-basalt vesicular flows and diorite-andesite flows and/or sills, chloritic schist, pillowed andesitic flows, lapilli tuff, chert, and carbonate.

The most prominent feature of the Bowen Island Group roof pendant in the area of the Rox 1-2 claims is the near vertical attitude or bedding and cleavage. W.R.Bacon (1957) suggests that the term pendant is misleading. He states that "these belts are not wedge shaped, but are more likely to be steeply-dipping leaves between batholith walls". This suggests a deep down dip vertieal extension of strata in the Mt.Diatem area in condast to smaller, patchy remnants of strata in the Sechelt Peninsula. Another feature is the thickening of mafic flows, pillow lavas and tuffs in a $3 \times 2 \mathrm{~km}$ area elongated northwest of Mt. Diadem. The thickening of the mafic volcanics also coincides with most of the base metal showings.

6.0 PROPERTY GEOLOGY

The Rox claims are undorlain by Lower/Middle Bowen:Island Group. The Lithologies consist of argillaceous siltstone (well banded), tufaceous sandstone (chlorite rieh), andesitic-basalt vesicular flows and diorite-andesite flows and/or sills, chloritic schist, pillowed andesitic flows, lapilli tuff, chert, and carbonate. The east portion of the claims are intruded by Cretaceous Coast Range Complex diorite, quartz diurite, granodiorite, and granite. The detailed description of the Lithologies are summarized as follows:

CRETACEOUS
5 Coast Range Plutonic Complex- quartz diorite, diorite, granodiorite, granite.
LOWER AND MIDDLE JURASSIC
Argillaceous siltstone (banded), sandstone, \& laminated chert, minor lapilli tuff and carbonate interbeds.
4a Andesitic-basaltic vesicular flows and diorite-andesite flows and/or sills.
3 Argillaceous siltstone- the bedded to finely laminated and locally graphitic, minor carbonate and lapilli tuff interbeds.
3a) Andesitic-babaltic vesicular flows and diorite-andesite flows and intrusive.

2 Tuffaceous sandstone, siltstone (chlorite rich), interbedded coarse lapilli tuff.
2a) Felsic lapilli tuff, vesicular flows, and tufaceous sandstone and siltstone.
2b) Massive diorite-andesite flows and intrusive.
2c) Pillowed andesitic flows.
1 Tuffaceous sandstone, siltstone, minor argillite and chloritic sehist.
1a) Andesitic flows, lapilli tuff and chloritic schist.
1b) Massive diorite-andesite flows and/or intrusive.
Rusty weathering argillaceous siltstone of unit 3 is characterized by a thin bedded and laminated appearance with minor graphite coated slickensides. Unit 4 is a well banded siltstone, sandstone, chert, tuff, and carbonate sequence.

Unit 5 Coast Range Plutonic Complex exhibits a fine grained to porphyritic texture near the contact with the pendant to a medium-coarse grain massive texture away from the contact.

Alteration occurs near mineralized shear zones and consists of silicification, and clay minerals developed in shear zones. Widespread epidote and pyrite or pyrrhotite fracture filling occurs throughout felsic rocks within the roof pendant. Zones up to 20 metres in width contain 10-15\% magnetite-pyrrhotite with 0.1-0.3\% Chalcopyrite occur immediately west of Mt. Diadem in a 210 degree azimuth creek bed.

Shear zones in the area of the upper and lower adit and No Man's Creek vein are believed to be continuous for a vertical and horizontal extent of several hundred metres. The strike length of the upper adit and lower adit combined form a 1.0 kilometre long zone. Shearing generally trends 340-350 degrees (with a steep east dip) in the upper and lower adit zones, and 100 degrees (with a steep north dip) in the Mt.Diadem adit zone.

The area of the upper and lower adits contain base metal mineralization with minor amounts of precious metals. These showings consist of massive sphalerite, chalcopyrite, pyrrhotite, and minor galena, arsenopyrite developed within steeply dipping shears which trend 330 to 005 degrees. Massive, shear and stratigraphically controlled nuineralized lenses appear to be spatiarly rełated to a sediment-volcanic contact.

There is a correlation between increased sulphide mineralization and thickening of unit 2 (chloritic tuff-flow, \& diorite) within the central part of the Upper Adit Zone. Minor fold axes in meta-sediments near and adjacent to the contact with unit 2 plunge and converge north at moderate to low angles, suggesting that the thickening of the sulphide zone may follow a thickening of unit 2 in a north direction. To date, there has not been any drilling north of the Upper Adit Zone sulphide mimeralization. The paasitic fold axes (found on the fold-limbs, and around the hinge-zone of major fold) which occur in the meta-sediments suggests some drilling 200-1,000 meters north of the Upper Adit Zone is warranted.

The Upper Adit Zone also contains numerous EM conductive zones in the area between 1,200-1,300 meters elevation which were outlined in work done by Anaconda Canada Exploration Ltd. These EM conductive zones are located approximately 200-1,000 meters north-northwest of the Upper Adit (roughly following a 340 degree trend) and are shown and discussed in assessment report 11,641 (Riccio, et.al., 1983).

There is also a possible south extension of the Upper Adit sulphide zone based on the identification of magnetite bearing diorite intrusive at the base of the cliff 100 meters south of DDH 84-2 (in the southeast portion of the Upper Adit Zone. Another total field magnetometer positive anomaly occurs approximately $250-450 \mathrm{~m}$ southeast of the Lower Adit, and this zone is known to have massive pyrrhotite and minor chalcopyrite mineralization occurring as fracture fillings and late-stage cross-cutting veins and veinlets, associated with epidote-chlorite-iron-carbonate-silica alteration. In May, 2005, Fundamental Resources personnel established a 250 X 250 m area of detailed mapping, soil sampling and magnetometer geophysics on the "Southeast Zone". The objective of this fieldwork was to identify and describe potential for southeast extension of mineralization from the "Lower Adit Zone" (located 250-450 meters northwest of the "Southeast Zone") . A rock chip sample (05-ROX-1) taken across a width of 0.3 meters from an outcrop located 95 meters southeast of the Lower Adit was geochemically analysed and returned values of $1.24 \% \mathrm{~Pb}, 28.1 \% \mathrm{Zn}, 47.9 \mathrm{ppm} \mathrm{Ag}$. No rock chip samples were taken in the area of the "Southeast Zone" due to cliff access problems and poor bedrock exposure.

7.0 2013 FIELDWORK

7.1 METHODS AND PROCEDURES

No Man's Creek upper gold-bearing quartz vein system is well exposed in 5 creek gullies at 1,100 meters elevation. Bedrock surface exposure of the upper quartz vein is located adjacent to gully $1+00 \mathrm{~N}$ and $1+50 \mathrm{~N}$ which are located 100 and 150 meters northeast of the main creek gully (Fig. 4, 4B, \& 5). A sledge hammer and chisel were used to channel sample across 0.2 to 0.55 meters true width of the quartz vein along the surface trace of the exposed quartz-sulphide vein shear zone structure.

Rock samples, ranging from 0.62-2.26 kilograms in weight, of acorn sized rock chips were placed in marked poly bags and shipped to ALS Chemex Labs Ltd, North Vancouver, BC for ME-GRA21 Au \& Ag analysis by 30 gram fire assay, gravity finish (Appendix A).

Geological mapping was carried out at 1:500 scale and covered an area of 10 hectares between $900-1100 \mathrm{~m}$ elevation in No Man's Ck drainage (Fig 5).

7.2 ROCK Au-Ag GEOCHEMISTRY

The following table lists significant results from ALS Chemex Labs Ltd (see Appendix B):

Sample ID	Tenure No	Easting NAD 83	Northing NAD 83	$\begin{aligned} & \text { Elev } \\ & \text { (m) } \end{aligned}$	Sample Type
					Rock chip
23241	567078	421917	5540653	1108	channel
					Rock chip
23242	567078	421928	5540666	1097	channel
					Rock chip
23243	567078	421932	5540673	1095	channel
					Rock chip
23244	567078	421937	5540677	1091	channel
					Rock chip
23245	567078	421944	5540681	1088	channel
					Rock chip
23246	567078	421979	5540721	1105	channel
					Rock chip
23247	567078	421975	5540718	1101	channel
					Rock chip
23248	567078	421973	5540716	1102	channel
					Rock chip
23249	567078	421902	5540635	1097	channel
					Rock chip
23250	567078	421887	5540608	1096	channel

10 rock chip channel samples listed were taken along a strike length of 160 meters from the upper quartz vein (Fig $4 \& 4 B$). The width of quartz vein sampled was 0.2-0.55 meters, however the vein system varies in width from 0.2 to 2.0 meters, with 20-40\% quartz as banded and massive, glassy and granular textures, with variable clay alteration (increased kaolinite-montmorillinite). The upper quartz vein occurs along a NE trending, steeply dipping linear fault approximately 500 meters in strike length.

Sample

ID
23241
23242
23243
23244
23245
23246
23247
23248
23249
23250

Lith Alteration
12\% qtz, 0.1% calcite, 0.1% chl, 0.4% kaolinite 20% qtz, 0.1% calcite, 0.3% chl, 0.9% kaolinite 20\% qtz, 0.1% calcite, 0.3% chl, 0.9% kaolinite 40\% qtz, 0.1% calcite, 0.5% chl, 0.2% kaolinite 40\% qtz, 0.1% calcite, 0.5% chl, 0.2% kaolinite 40\% qtz, 0.1% calcite, 0.5% chl, 0.2% kaolinite 40\% qtz, 0.1% calcite, 0.5% chl, 0.2% kaolinite 40\% qtz, 0.1% calcite, 0.5% chl, 0.2% kaolinite 40% qtz, 0.1% calcite, 0.5% chl, 0.2% kaolinite 40\% qtz, 0.1% calcite, 0.5% chl, 0.2% kaolinite

Sulphides
trace cpy, 0.3\% py, 0.2\% sphal
0.3% cpy, 3% py, 0.2% sphal, trace arspy
0.3\% cpy, 2\% py, 0.3\% sphal, trace arspy
0.3% cpy, 1% py, 0.5% sphal, trace arspy
0.3% cpy, 3% py, 1\% sphal, trace arspy 0.3\% cpy, 3\% py, 1\% sphal, trace arspy 0.9% cpy, 7\% py, 3\% sphal, trace arspy 0.8% opy, 10% py, 3% sphal, trace arspy tr cpy, 2\% py, 0.1\% sphal, trace arspy 1\% py, tr sphal

Gangue mineralogy of the upper quartz-sulphide vein system consists of quartz, chlorite, clay and calcite. Mineralization of this vein consists of pyrite, chalcopyrite, sphalerite, minor arsenopyrite and rare native gold.

Sample ID	Vein Strike	Vein Dip	Width (cm)	Au g/t	$\begin{aligned} & \mathrm{Ag} \\ & \mathrm{~g} / \mathrm{t} \end{aligned}$	Au opt	Ag opt
23241	45	84 NW	22	<0.05	5	<0.0015	0.0015
23242	45	88 SE	20	<0.05	<5	<0.0015	<0.0015
23243	45	88 SE	25	2.39	<5	0.07	<0.0015
23244	45	88 SE	30	86.7	56	2.53	1.63
23245	45	90	26	33.5	21	0.977	0.61
23246	45	82 SE	55	89.9	33	2.622	0.96
23247	45	78 SE	35	33.4	52	0.974	1.52
23248	45	78 SE	30	121.5	85	3.54	2.48
23249	45	90	42	2.78	<5	0.081	<0.0015
23250	45	90	20	0.42	<5	0.012	<0.0015

Rock chip sampling identified a potential zone of Au bearing quartz-sulphide veining (sample 23249) located 50-110 meters southwest of the known Au bearing zones (samples 23243-23248 along 60 meter strike length, true width 20-55 cm).

7.3 GEOLOGICAL MAPPING (UPPER QUARTZ VEIN)

The Upper Quartz Vein trends northeast and roughly traces the 1,100 meter elevation contour which also trends northeast (locally). The upper gold-bearing quartz fissure vein dips steeply ($70-90$ degrees) to the SE in the area of samples 23246,23247 , \& 23248, and dips steeply (70-90 degrees) to the NW south of this area (Fig 5). The Upper Quartz Vein with variable clay alteration (increased kaolinite-montmorillimite) along a northeast trending, steeply dipping linear fault about 500 meters in strike length. The southern portion of the Upper Quartz Vein is hosted in andesite-diorite flows, pillows pillows and/or intrusives, felsic lapilli tuff, chloritic schist, \& tuffaceous sandstone. The northernmost portion of the upper quartz fissure vein is hosted in the quartz diorite, intrusive batholith.

The Lower Quartz Vein is parallel to the Upper Quartz Vein. The Lower Quartz Vein is located at approximately 840 meters elevation, and is about 400 meters horizontal distance SE of the Upper Quartz Vein (Fig 4). This vein was investigated in 1990's and returned a geochemical analysis result of 0.018 opt $\mathrm{Au}(0.62 \mathrm{~g} / \mathrm{t} \mathrm{Au})$, across 0.2 m .

8.0 DISCUSSION OF RESULTS

The Rox Claim Group has numerous significant polymetallic prospects and an area of gold bearing quartz veins that warrant detailed exploration. Located in the northeast portion of the Rox Claim, at an elevation of 1,100 metres, a gold bearing quartz vein occurs in a shear zone that is exposed in five creek beds at the headwaters of No Man's Creek. The vein/shear trends northeast and dips steeply northwest. The zone can be traced for a strike length of 475 metres. Width of mineralized quartz veins varies from $0.1-0.5$ metres. Wall rock zones of gouge clay, silicification, and fracture filling sulphide mineralization ranging from $0.5-2.0$ metres in width adjacent to the quartz vein. Assay values of $7.268 \mathrm{oz} / \mathrm{t}$ Au across 0.2 metres were obtained from trenched rock chip samples of the No Man's Creek quartz-gold vein.

Geochemical and geological data gathered from the No Man's Creek upper gold bearing quartz vein (persistent structure over 500 meters strike length and presence of parallel structure (lower quartz vein) suggests potential for a significant gold resource. Bulk sample testing of surface exposures of the vein system to a depth of 2 meters as well as an 80 meter length expleration adit is recommended.

Base metals and silver-gold showings (upper \& lower adits, and upper trenches) are considered to be the primary exploration targets because of tonnage potential. Previous drilling by Anaconda in 1984 suggest that this target contains econamically signifieant grade ($>.3 \mathrm{opt}$ Au equivalent) and width (2-5 metres) to a depth of over 50 metres, strike length of over 100 metres, and is worthy of a systematic program of core drilling. Mineralization consists of massive and semi-massive sphalerite, chalcopyrite, pyrrhotite, and minor galena, arsenopyrite developed within steeply dipping shears which trend 330 to 005 degrees. Massive, shear and stratigraphic controlled mineralized lenses are spatially related to a sediment-volcanic contact.

9.0 CONCLUSION

The Rox claim group has potential to host an economic mineral deposit of gold, silver, copper, lead, and zinc based on the following facts:

1) No Marr's Creek gold-bearing quartz vein system was drilled in 1996 and DDH RX 96-2 intersected 0.531 opt Au across 1.01 m , and DDH RX 96-8 intersected 0.739 opt Au across 0.16 m . Surface sampling of the quartz vein returned assay values up to 33.50 opt Au across 0.18 m
2) Drill hole 84-3 (Anaconda Can Expl Ltd, 1984) inrercepted $2.14 \% \mathrm{Cu}, 2.45 \% \mathrm{~Pb}$, $7.92 \% \mathrm{Zn}, 359.4 \mathrm{~g} / \mathrm{t} \mathrm{Ag}, 0.05 \mathrm{~g} / \mathrm{t} \mathrm{Au}$ across 4 meters on the Upper Adit polymetallic mineral zone.
3) Well defined volcanic-sediment contact zone mineralization is traceable for 1,600 metres (from lower and upper adit to upper trench). Deposit type is listed as polymetallic veins and Kuroko/Noranda type massive sulphide. Geological mapping indicates tabular and stratiform morphology and nature of precious and base metal bearing sulphides with extensive down dip extension of the mineralized zones.
4) Mineral zones are oriented vertically which is well suited to shrinkage stope mining methods.
5) Access to the property has been enhanced by logging roads up the Lois and Brittain River which approach the base of Mt. Diadem.

10.0 RECOMMENDATIONS

Trenching of approximately 65 meters of strike length along the Upper Quartz Vein to a depth of 2 meters in the area of samples 23244-23248 rock chip channel sample width range $0.3-0.5 \mathrm{~m}$, average of 5 samples $=73 \mathrm{~g} / \mathrm{t} \mathrm{Au}(2.129 \mathrm{opt} \mathrm{Au}), 49.4 \mathrm{~g} / \mathrm{t} \mathrm{Ag}(1.44 \mathrm{opt}$ Ag), is recommended in order to obtain approximately 50 cubic meters of quartzsulphide vein material for metallurgical \& testing purposes. It is also recommended to collar an 80 meter long exploration adit targeting the diamond drill hole 96-2 intercept of 1.01 m intercept width at $18.2 \mathrm{~g} / \mathrm{t} \mathrm{Au}(0.531 \mathrm{opt} \mathrm{Au})$ at $88.69-89.7 \mathrm{~m}$ depth (Fig 4, 4B, 5 \& 6).

Proposed fieldwork includes:

1) geological mapping to assist drilling.
2) drilling with portable gas powered pluggers to a depth of 6.6 feet.
3) blasting with forcite, beehine and safety fuse or bonlder blaster with blasting mats.
4) hand mucking/sorting broken material and packing for heli-lift shipment
5) ship broken ore to facility, crush and use centrifugal concentrator
6) collar adit at 1025 m elevation and complete 80 m long, $2 \times 2.5 \mathrm{~m}$ crosscut targeting gold bearing quartz vein intercepted in diamond drill hole 96-2 at 88.69-89.7 m.
The completion of this proposal to extract and ship off site for processing with centrifugal concentrator used to recover gold (e.g. Nelson, Falcon), would require an approximate budget of $\$ 600,000$. This includes mob, assays, food, accommodation, helicopter charters, explosives, ore processing and concentration, technical reports, and bond.

Contingent on the results of trenching, exploration adit \& bulk sampling, a program of underground development is recommended. The underground developrnent work would explore the area between the adit level (1025 m elev) and surface trace of upper gold-bearing quartz fissure vein ($1,100 \mathrm{~m}$ elev).. In order to complete several hundred feet of underground cross-cut, drifting, stoping and bulk sampling for processing, an approximate budget of $\$ 1,500,000$ is required.

The writer perceives that this proposed program of exploration and development work would lead to a decision of whether or not commercial production of gold-bearing mineralization on the No Mm's Creek occurrence is cconomically feasible.

11.0 REFERENCES

Bacon, W.R., 1950, Geology and Mineral Deposits of Lower Jervis Inlet, B.C. Dept of Mines Bulletin.

Bidwell, G., et.al., 1994, Geological and Geochemical Report on the Rox 1-5 Claim Group, for Noranda Exploration Co. Ltd., B.C. Min. E.M. \& P.Res. Assessment Report 23,319

Fairbairn, Douglas, 1990, Cutting the Nugget Effect: Sacred Cows are Led to Slaughter, Viewpoint article published in Cdn. Mining Journal.

Friedman, R.M., 1990, Age of the Bowen Island Group, SW Coast Mountains, B.C., Can.J.Earth Sciences, Vol.27, page 1456-61.

Leriche, P., Kikauka, A.A., 1991, Geological, Geochemical Report on the Rox 1-5 Claim Group, Mt. Diadem. for White Channel Res. Inc., B.C. Min.E.M.\&P.Res. Assessment Report 22,397

Kikauka, A.A., 1996, Diamond Drilling Report on the Rox 1-5 claims, No Man's Creek, Navarre Res Corp.,

Kikauka, A.A., 1998, VLF-EM, Beep-Mat, and Magnetometer Report on the Rox 1-12 claims, Stirrup Creek Gold Ltd., Assessment Report, Min of Energy and Mines, B.C. govt file.

McMillan, et.al., 1991, Ore Deposits, Tectonics, and Metallogeny in the Canadian Cordillera, B.C. Min.E.M.\&P.Res. Paper 1991-4.

Riccio, Luca, Scott, Al, et.al.,1983, Geological, Geochemical, and Geophysical Report on the Diadem, Fox and Lois Claims, for Anaconda Canada Explorations Ltd., B.C. Min.E.M.\& P.Res Assessment Report \# 11,641.

Riccio, Luca, Scott, Al, et.al.,1985, Diamond Drilling Report on the Diadem, Fox and Lois Claims, for Anaconda Canada Explorations Ltd., B.C. Min.E.M.\& P.Res Assessment Report \# 13,814

CERTIFICATE AND DATE

I, Andris Kikauka, of 4901 East Sooke Rd., Sooke B.C. V9Z 1B6 am a self employed professional geoscientist. I hereby certify that:

1. I am a graduate of Brock University, St. Catharines, Ont., with an Honours Bachelor of Science Degree in Geological Sciences, 1980.
2. I am a Fellow in good standing with the Geological Association of Canada.
3. I am registered in the Province of British Columbia as a Professional Geoscientist.
4. I have practiced my profession for twenty years in precious and base metal exploration in the Cordillera of Western Canada, U.S.A., Mexico, Central America, and South America, as well as for three years in uranium exploration in the Canadian Shield.. I am responsible for preparing the technical report on Rox Mineral Claims, MTO Tenures 567078, 1013277, \& 1019230, Jervis Inlet, BC..
5. The information, opinions, and recommendations in the Technical Report are based on fieldwork carried out in my presence on the subject properties in 1982, 1983, 1984, $1995,1996,1998,2001,2002,2005, \& 2009$ during which time a technical evaluation consisting of systematic geological mapping, geochemical rock chip and soil sampling and diamond drilling were carried out by the writer as well as reports on mineralization.
6. I am presently employed as a geological consultant.
7. I consent to the use of this report for electronic publication in the public company files on their websites accessible by the public of the Technical Report.
8. As at the date hereof, to the best of my knowledge, information and belief, the Technical Report contains all scientific and technical information that is required to be disclosed to make the Technical Report not misleading.
9. I own 7.6% of the outstanding shares of Fundamental Resources Corp and I am not independent of the issuer.
10. The Technical Report is a summary of work history on the Rox mineral claims and recommendations and proposed budgets within this report are not intended for the purposes of public financing.

Andris Kikauka, P. Geo.,

Oct 3, 2013

ITEMIZED COST STATEMENT-

ROX PROJECT-
GEOLOGICAL AND GEOCHEMICAL FIELDWORK
Dates worked: Sept 6-9, 2013
BCGS 092K.010, NTS $092 \mathrm{~K} / 1 \mathrm{E}$, VANCOUVER MINING DIVISION
Work carried out on MTO tenure number: 567078, 1013277
FIELD CREW:
A. Kikauka (Geologist) 4 days \$ 1,470.00
J. Lazerson (Geotechnician) 4 days 1,050.00
FIELD COST:
Mob and Demob \$ 189.97
Equipment and Supplies 93.00
Geochemical analysis 10 rock chip samples (ALS Chemex Laboratories)
ME-GRA21 Au \& Ag 30 gram FA-GRAV finish 440.97
Helicopter charter Oceanview Helicopters (1.5 hours total) 2,200.58
Food 229.00
Fuel 150.00
Communication 12.00
Report 750.00
Total amount= \$6,585.52

Figure 1 Regional Location of Rox MTO Tenures

Figure 2 General Location of Rox MTO Tenures
 Vancouver Mining Division Showing Location (MINFILE)

MTO tenures 567078, 1013277, 1019230 outlined

Figure 3 General Geology Map of Rox MTO Tenures
 Vancouver Mining Division Showing Location (MINFILE)

UKqd Early-Late Jurassic quartz diorite intrusive
ImJBst Lower Jurassic Group volcanic \& sedimentary rocks, andesite-diorite flows, pillows and/or intrusives, felsic lapilli tuff, chloritic schist, tuffaceous sandstone, siltstone, minor argillite, greenschist metamorphism, 250-450 degrees $C, 1.5-4.5$ kbars P

UTM grid (NAD 83) ~nfault MTO tenures 567078, 1013277, 1019230 outlined
SCALE 1 : 20,000

Rox No Man's Ck

Rox No Man's Ck

Lithology Legend
FIG 4B Rox No Man's Ck Au-Ag Qtz Vein Rock Geochemistry (\& Proposed Adit)
LKqd Early-Late Jurassic quartz diorite intrusive
ImJBst Lower Jurassic Group volcanic \& sedimentary rocks,
andesite-diorite flows, pillows and/or intrusives, felsic lapilli tuff, chloritic schist, tuffaceous sandstone, siltstone, minor argillite, greenschist metamorphism, 250-450 degrees $C, 1.5-4.5$ kbars P

1996 core drilling, DDH 96-2, -60 dip, azimuth 135 degrees, Elev 1,115 m (88.69-89.7 m, 1.01 m @ 18.2 grams/tonne Au)

	ImJBst	2324 \pm 232	56707 49 250		3245 y
Sample ID	Width (cm)	Aug/t	Ag /t	Au opt	Ag opt
23241	22	< <0.05		k0.0015	0.0015
23242	20	<0.05	<5	0.0015	<0.0015
23243	25	2.39	< 5	0.07	<0.0015
23244	30	86.7	56	2.53	1.63
23245	26	33.5	2.1	0.977	0.61
23246	55	89.9	33	2.622	0.96
23247	35	33.4	52	0.974	1.52
23248	30	121.5	85	3.54	2.48
23249	42	2.78	<5	0.081	K0.0015
23250	20	0.42	<5	0.012	<0.0015

ImJBst

Finalized Date: 15-SEP-2013

Appendix A Rock chip sample assays for Au-Au

CERTIFICATE VA13163406

Project: ROX

P.O. No.:

This report is for 10 Rock samples submitted to our lab in Vancouver, BC, Canada on 9-SEP-2013.
The following have access to data associated with this certificate: ANDRIS KIKAUKA

	SAMPLE PREPARATION
ALS CODE	DESCRIPTION
WEI-21	Received Sample Weight
PUL-QC	Pulverizing QC Test
LOG-22	Sample login - Rcd w/o BarCode
CRU-32	Fine Crushing $90 \%<2 \mathrm{~mm}$
SPL-21	Split sample - riffle splitter
PUL-35a	Pulv 1 kg split to $95 \%<106$ um
BAG-01	Bulk Master for Storage
CRU-QC	Crushing QC Test

ANALYTICAL PROCEDURES		
ALS CODE	DESCRIPTION	INSTRUMENT
ME-GRA21	Au Ag 309 FA-GRAV finish	WST-SIM

To: KIKAUKA, ANDRIS
406-4901 E. SOOKE RD. SOOKE BC V9Z 1 B6

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.
***** See Appendix Page for comments regarding this certificate ****

Signature:
Colin Ramshaw, Vancouver Laboratory Manager

***** See Appendix Page for comments regarding this certificate *****

ALS Canada Ltd.
2103 Dollarton Hwy
North Vancouver BC V7H OA7
Phone: 6049840221 Fax: 6049840218

To: KIKAUKA, ANDRIS

	CERTIFICATE COMMENTS
Applies to Method:	LABORATORY ADDRESSES

| Sample ID | Tenure No | Easting NAD 83 | Northing NAD 83 | Elev (m) Sample Type | Lithology |
| :---: | :---: | :---: | :---: | :---: | :--- | :--- |
| 23241 | 567078 | 421917 | 5540653 | 1108 Rock chip channel | tuffaceous sst, \& andesite |
| 23242 | 567078 | 421928 | 5540666 | 1097 Rock chip channel | tuffaceous sst, \& andesite |
| 23243 | 567078 | 421932 | 550673 | 1095 Rock chip channel | tuffaceous sst, \& andesite |
| 23244 | 567078 | 421937 | 5540677 | 1091 Rock chip channel | tuffaceous sst, \& andesite |
| 23245 | 567078 | 421944 | 5540681 | 1088 Rock chip channel | tuffaceous sst, \& andesite |
| 23246 | 567078 | 421979 | 5540721 | 1105 Rock chip channel | tuffaceous $5 s t, \&$ andesite |
| 23247 | 567078 | 421975 | 5540718 | 1101 Rock chip channel | tuffaceous sst, \& andesite |
| 23248 | 567078 | 421973 | 5540716 | 1102 Rock chip channel | tuffaceous sst, \& andesite |
| 23249 | 567078 | 421902 | 5540635 | 1097 Rock chip channel | tuffaceous sst, \& andesite |
| 23250 | 567078 | 421887 | 5540608 | 1096 Rock chip channel | tuffaceous sst, \& andesite |

Appendix B Rock chip sample

Sample ID Lith Alteration
23241 12\% qtz, trace calcite, $0.1 \% \mathrm{chl}, 0.4 \%$ kaol-mont 23242 20\% qtz, trace calcite, 0.3% chl, 0.9% kaol-mont 2324320% qtz, trace calcite, 0.3% chl, 0.9% kaol-mont 23244 40\% qtz, trace calcite, 0.5% chl, 0.2% kaol-mont 23245 40\% qtz, trace calcite, 0.5% chl, 0.2% kaol-mont 23246 40\% qtz, trace calcite, 0.5% chl, 0.2% kaol-mont 2324740% qtz, trace calcite, 0.5% chl, 0.2% kapl-mont 2324840% qtz, trace calcite, 0.5% chl, 0.2% kaol-mont 2324940% qtz, trace calcite, 0.5% chl, 0.2% kaol-mont 2325040% qtz, trace calcite, $0.5 \% \mathrm{chl}, 0.2 \%$ kaol-mont

Sulphides
trace cpy, 0.3\% py, 0.2\% sphal
$0.3 \% \mathrm{cpy}, 3 \% \mathrm{py}, 0.2 \%$ sphal, trace arsenopy 0.3% cpy, 2% py, 0.3% sphal, trace arsenapy $0.3 \% \mathrm{cpy}, 1 \%$ py, 0.5% sphal, trace arsenopy 0.3% cpy, 3% py, 1% sphal, trace arsenopy 0.3% cpy, 3% py, 1% sphal, trace arsenopy 0.9% cpy, 7% py, 3% sphal, trace arsenopy 0.8% cpy, 10% py, 3% sphal, trace arsenopy tr cpy, 2\% py, 0.1\% sphal, trace arsenopy $1 \% \mathrm{py}, \mathrm{tr}$ sphal, trace arsenopy

Vein Strike Vein Dip
4584 NW
4588 SE
4588 SE
4588 SE
45 90
4582 SE
4578 SE
4578 SE
4590
4590

Appendix C Photos

No Man's Creek Upper Quartz Vein (900-1,000 m elevation). Looking SW

No Man's Creek Upper Quartz Vein (900-1,000 m elevation). Looking WNW

McCall's Landing \& mouth of Brittain R Looking NW

Ministry of Energy

News | The Premier Online | Ministries \& Organizations | Job Opportunities | Main Index

MINFILE Home page ARIS Home page MINFILE Search page Property File Search

XML Extract/Inventory Report

\author{

Name	ROX, NO MAN'S CREEK, SKWIM LAKE, LINDA, DIADEM, FOX, MT. DIADEM
Status	Prospect
Latitude	$50^{\circ} 00^{\prime} 50^{\prime \prime} \mathrm{N}$
Longitude	$124^{\circ} 05^{\prime} 19^{\prime \prime} \mathrm{W}$
Commodities	Gold, Zinc, Copper, Silver, Cadmium, Lead

Tectonic Belt Coast Crystalline

NMI

Mining Division	Vancouver
BCGS Map	$092 \mathrm{K010}$
NTS Map	$092 \mathrm{K01E}$
UTM	10 (NAD 83)
Northing	5540743
Easting	422006
Deposit Types	I05: Polymetallic veins Ag-Pb-Zn+/-Au
	G06: Noranda/Kuroko massive sulphide $\mathrm{Cu}-\mathrm{Pb}-\mathrm{Zn}$
Terrane	Gambier

Capsule Geology

The Rox prospect is located at the headwaters of Lois River near Mount Diadem, 38 kilometres northeast of Powell River.
The Mount Diadem area has received intermittent exploration since the 1920s. In 1927, Brittan R. Mining Co. drove two small adits 1.5 kilometres northwest and 2.0 kilometres north-northwest of Mount Diadem, respectively. Between 1947 and 1950, Inco Canada Ltd. and Bralorne Mines excavated several opencuts and a short adit in the area of the headwaters of No Man's Creek. In 1954, Copper Ridge Silver Zinc Mines Ltd. held 19 claims in the area. In 1965, Vanco Explorations Ltd. held 17 claims northwest of Mount Diadem, called the Linda Group. Citation Explorations Ltd. held 73 claims and optioned the Linda Group in 1967. Tiger Silver Mines optioned the Linda Group in 1970, and carried out geochemical and geophysical surveys. In 1971, Brittan R. syndicate optioned the 23 claims and performed geophysical and geochemical surveys. The claims lapsed and were restaked by Fury Explorations Ltd. (Diadem claim) and R. Schmidt (Fox claim). In 1982, Anaconda Canada Explorations Ltd. performed a regional stream sediment survey in the Mount Diadem area. In the following year, an exploration program was carried out on the optioned Diadem and Fury, and other staked claims surrounding Mount Diadem. White Channel Resources Inc. staked the Rox 1 to 5 claims and conducted property exploration in 1991 and 1992 . In 1994, Noranda Exploration Company Limited optioned and explored the property for volcanogenic massive sulphide-type mineralization.

The prospect lies within the Juro-Cretaceous Coast Plutonic Complex near its western boundary with the Insular Belt. The complex consists of diorites and granodiorites enclosing a series of northwest trending pendants. In the Mount Diadem area, feldspar-rich diorite and quartz diorite dominate. These pendants, occurring along Howe Sound and Jervis Inlet, are interpreted to be part of the Lower to Middle Jurassic Bowen Island Group, coeval with volcanic rock of the Bonanza Group and the Harrison Lake Formation.

Mount Diadem forms part of a ridge consisting of Bowen Island Group sediments and volcanics that form a 15 kilometre long by 1 to 2 kilometre wide roof pendant. Lithologies along the eastern portion of the pendant consist of dark green, chlorite-rich, massive volcanic flows and tuffs intercalated with grey to black cherty tuff and foliated, pyritic argillaceous siltstone. The west portion of the pendant contains well bedded clastic sediments, minor carbonate with intercalations of intermediate to mafic tuffs, flows and sills. In all, six stratigraphic units have been defined and in ascending order are: 1) tuffaceous sandstone, minor argillite and lapilli tuff, 2) chlorite-rich tuff with interbedded tuffaceous sandstone, minor argillite, 3) thin-bedded argillite, minor carbonate and lapilli tuff interbeds, 4) banded argillite, sandstone, chert, minor lapilli tuff, 5) siliceous argillite, siltstone, tuff, chert and 6) andesitic breccia.

Volcanics and sediments have a near-vertical bedding and cleavage that form a series of tight upright folds that plunge moderately to the north.
Property exploration between 1947 and 1950 led to the discovery of a narrow shear containing a gold-bearing quartz vein. The shear hostrocks are silicified and argillic (clay) altered. The vein has a vertical dip and can be traced along a strike of 040 degrees for over 244 metres. For the greater part of this distance the vein traverses various members of the volcanic assemblage, but at its northeastern end it persists into the plutonic rocks for over 30 metres. Mineralization is sparse, consisting of pyrite, arsenopyrite, sphalerite, chalcopyrite, minor galena and a few rare specks of native gold. The vein averages 20 centimetres width but does not exceed 23 centimetres. Samples taken at that time are reported to have yielded up to 1141.47 grams per tonne gold (Assessment Report 21459).

In 1982, exploration by Anaconda Canada Explorations Ltd. led to the discovery of two 0.8 -metre wide quartz veins exposed in three separate creek gullies and separated by 2 metres of altered rock. Three chip samples yielded 24.3 grams per tonne over 16 centimetres, 30.4 grams per tonne gold over 7 centimetres and 27.0 grams per tonne gold over 30 centimetres width, respectively (Assessment Report 11641). Drilling in 1984 return on 12metre intersection of 0.79 per cent copper, 2.74 per cent lead, 1.61 per cent zinc, 135.0 grams per tonne silver and 3.94 grams per tonne gold (GCNL \#27 (February 9), 1998).

A 1983 chip sample across a width of 0.16 metre assayed 24.3 grams per tonne gold, 1.0 per cent zinc, 0.068 per cent copper and 23 grams per tonne silver (Assessment Report 11641). A sample in 1950, over a width of 2.54 centimetres, assayed as much as 179.79 grams per tonne gold (Minister of Mines Annual Report 1950, page 177). Twenty trenches were excavated in 1992. Ten of these trenches were excavated along the No Man's Creek quartz-sulphide vein. The best results from these trenches were from Sample 8, which yielded a weighted average of 94.97 grams per tonne gold over 2.18 metres (Assessment Report 22397). The sample also yielded 3.16 per cent zinc and 0.18 per cent copper over 18 centimetres. The lowest values, from Sample 1, yielded a weighted average of 11.79 grams per tonne gold over 0.95 metre (Assessment Report 22397).

The Rox claims also hosts vein/replacement mineralization consisting of pyrite, pyrrhotite, sphalerite, galena, chalcopyrite and greenockite in quartz veins and clay fault gouge, and traced along a shear contact between sediments and volcanics for 475 metres. The veins vary from 0.1 to 0.3 metre width. Silicified and clay gouge wallrocks with fracture-filled mineralization ranges from 0.5 to 2.0 metres width. For further information on this style of mineralization refer to the Mt. Diadem occurrence (092K 084).

Stirrup Creek Gold Ltd. optioned the property from Navarre Resources Corp. in 1998.
Bibliography EM EXPL 1996-F12-F13
EMPR AR *1950, pp. 172-177
EMPR ASS RPT *11641, 13814, 18207, *21459, 22397, *23319
EMPR BULL *39, pp. 38,39
EMPR PF (Stirrup Creek Gold Limited Website (Nov. 1999): Rox
Claims, 1 p.; Photos, 1996)
GSC MAP 1386A
GSC OF 480
GCNL \#27 (Feb.9), \#111(June 10), 1998
PR REL Stirrup Creek Gold Ltd., Feb.4, 1998
WWW http://www.infomine.com/index/properties/ROX CLAIMS.html

