2013 Assessment Report for

Prospecting and Geochemistry

September 2013

BC Geological Survey Assessment Report 34249

On the

Zeballos Property

Alberni Mining Division

BCGS 092E096,-097, E92L006, -007 NTS 092E15W, 092L02W

UTM Zone 09N 5541500N 655000E

For North Bay Resources Inc.

Report written by Jacques Houle, P.Eng.

October 22, 2013

Contents

Introduction	Page
Introduction Property location, access and physiography	3
Property definition, owner, operator, geology and history	3
List of claims and work completed	8
Technical data, interpretation, conclusions and recommendation	ns 9
Author's Qualifications	11
References	11
Tables:	
Table 1 – Cell Mineral Claims & Status as of September 30, 2013	3 3
Table 2 – Historic Mineral Production from Zeballos Gold Distri	
Table 3 – MINFILE occurrences on or near the Zeballos Propert	
Table 4 – ARIS Reports for work filed on the area of the Propert	•
Table 5 – Proposed Work Program for the Zeballos Property	10
Figures:	
Mineral Tenures (MTO) – 1:20,000 scale	Figure 1
Infrastructure (MapPlace) - 1:20,000 scale	Figure 2
Geology (MapPlace BCGS 2005) – 1:20,000 scale	Figure 3
First Derivative Aeromagnetics (MapPlace) – 1:20,000 scale	Figure 4
2013 Stream Moss Mat Sampling – 1:10,000 scale	Figure 5
Zeballos Property Gold in Moss Mats – 1:10,000 scale	Figure 6
Zeballos Property Silver in Moss Mats – 1:10,000 scale	Figure 7
Zeballos Property Zinc in Moss Mats – 1:10,000 scale	Figure 8
Appendices:	
	Appendix 1
• • •	Appendix 2
	Appendix 3
	Appendix 4
	Attached

Introduction

Property location, access and physiography

The Zeballos Property is located in the Alberni Mining Division, immediately northeast of the Village of Zeballos, on the west coast of Vancouver Island, BC, Canada. The property is centred at UTM Zone 09N, 5541000N 656500E straddling BCGS map sheets 092E096,-097, E92L-006 and -007, and NTS map sheets 092E02W and E92L15W. The Zeballos Property is held by North Bay Resources Inc. (FMC 204090), and consists of 5 contiguous cell mineral claims covering approximately 1,018 hectares. Portions of the cell claims are underlain by pre-existing crown granted mineral claims held by others.

The all-weather Zeballos Road provides access year round to Zeballos and the west side of the property, and overgrown mining roads and steep creeks lead east to the centre of the property. Zeballos has basic services, and is a 2.5 hour drive from Campbell River, B.C. a full service community. To access the east side of the Property, a short water taxi ride is required from Zeballos, to the mouth of the Little Zeballos River, and overgrown logging roads and steep creeks lead north to the centre of the property.

The topography of the Zeballos Property is highly variable, from the flat Zeballos River valley at 50 metre elevation to rugged mountains up to 1200 metres in elevation, incised by steep creeks, locally with steep cliffs and waterfalls. The property is covered by first or second growth forest of several ages of regeneration, and logging roads at different stages of degeneration. The area of the claims is dense west coast rainforest, with heavy rain and snow in the fall to spring period, and warm dry summers.

Property definition, owner, operator, geology and history

The property owner and operator is North Bay Resources Inc., a public U.S. corporation, who began acquiring cell mineral claims in BC in 2005, and in the Zeballos area in 2009. The cell mineral claims of the Zeballos Property were selected to cover the locations and favourable geology surrounding or within 500 metres of 15 BC MINFILE occurrences. See Figure 1 for the mineral tenure map of property at 1:20,000 scale, and Figure 2 for the infrastructure map of the property at 1:20,000 scale, including locations of BC MINFILE occurrences, ARIS reports, and RGS sites with gold values in ppb, taken from BC MapPlace. The claims cover approximately 1,018 hectares and consist of 5 cell mineral claims, with details and status listed in Table 1:

Tenure Number	Claim Name	Owner	Tenure Type	Map Number	Issue Date	Good To Date	Status	Area (ha)
689765	GOLDEN GATE	204090 (100%)	Mineral	092E	2009/dec/26	2014/oct/06	GOOD	519.2106
704809	GOLDEN GATE 4	204090 (100%)	Mineral	092E	2010/jan/26	2014/oct/05	GOOD	103.8488
706564	GOLDEN GATE 5	204090 (100%)	Mineral	092E	2010/feb/19	2014/oct/05	GOOD	41.5393
819042	GOLDEN GATE 6	204090 (100%)	Mineral	092E	2010/jul/15	2014/oct/05	GOOD	290.7497
1015530	GOLDEN GATE 2	204090 (100%)	Mineral	092L	2012/dec/28	2013/dec/28	GOOD	62.2966
Totals	5	Tenures						1017.645

Table 1 – Cell Mineral Claims and Status as of October 22, 2013:

The Geology and Mineral Deposits of the Zeballos Mining Camp (BCDM Bulletin 27) and its accompanying Figure 2 (Zeballos Mining Camp Areal Geology at 1"=2,000' scale) completed by J.S. Stevensen, 1947 describes the detailed geological setting of the Zeballos Property using descriptive rock types as observed and mapped in both surface and underground exposures at the time that most of the historic exploration work and mineral production took place. The regional surface geology was subsequently remapped and recompiled but in much less detail, but using modern lithological unit terminology and with better constraints on ages of the intrusive bodies.

To summarize, the Zeballos Property is mainly underlain by calc-alkaline intermediate Lemare Lake Formation volcanics, volcaniclastics and breccias of the Lower Jurassic Bonanza Group, folded along a gently NW-plunging synformal structure. Locally, erosional windows of older limestones and argillites of the Upper Triassic Parson Bay Formation of the Bonanza Group define the synclinal structure, and occur in the NE and SE portions of the property, occasionally along axial planar faults. It may be inferred that older Quatsino Formation limestone and possibly Karmutsen Formation volcanics of the Triassic Vancouver Group underlie these younger layered units at depth. The SW portion of the property is intruded by a mafic intrusive stock of the Jurassic Island Plutonic Suite, and the NW portion of the property is intruded by a felsic intrusive stock of the Eocene Mt. Washington Plutonic Suite. It may also be inferred that emplacement of these two intrusive bodies sequentially compressed and folded the layered units.

See Figure 3 for the geological map of the Zeballos Property at 1:20,000 scale, taken from the BCGS 2005 Geology layer in BC MapPlace, which differs considerably and is much more generalized than the mapping documented in BCDM Bulletin 27 (Stevenson, J.S., 1947). The following geology legend lists rocks underlying the Zeballos Property, taken from the BCGS 2005 Geology layer in BC MapPlace, which applies to Figure 3:

EOCENE

Mt. Washington Plutonic Suite

Eqd quartz dioritic intrusive rocks

EARLY TO MIDDLE JURASSIC

Island Plutonic Suite

EMJlgb gabbroic intrusive rocks

UPPER TRIASSIC TO MIDDLE JURASSIC Bonanza Group Lemare Lake Formation

IJL volcanics, volcaniclastics, breccias

Parson Bay Formation

UTrP limestone, argillite

Figure 4 shows contoured first derivative aeromagnetic data for the Zeballos Property at 1:20,000 scale, taken from BC MapPlace.

The Zeballos Property covers the southern portion of the Zeballos Mining Camp including the Zeballos Gold District, Vancouver Island's most prolific gold producing district, which has produced 9,154 kg. of gold plus byproduct silver, copper, lead and zinc from 0.627 million tonnes of ore mined from 17 past-producing mines between 1929 and 1975 (BC MINFILE), as follows:

Name	MINFILE #	From – To	Mined t	Gold g	Silver g	Cu kg	Pb kg	Zn kg
Beano	092E002	1948 – 1949	21	3297	1400	33	0	0
Golden Gate	092L005	1940 – 1940	22	373	156	44	39	0
Tagore	092L006	1929 – 1939	16	2022	2616	23	20	0
Privateer	092L008	1934 – 1975	282,328	5,301,289	2,160,196	4,063	10,093	0
Prident	092L009	1939 – 1939	43	5,536	2,395	30	306	0
White Star	092L010	1935 – 1957	1,293	220,987	92,531	1,563	17,144	30
Golden Peak	092L011	1934 – 1934	3	93	746	0	0	0
Mt. Zeballos	092L012	1939 – 1944	74,268	946,589	444,399	2,408	12,726	0
Lone Star	092L015	1938 – 1941	5,645	143,074	44,322	470	2,982	0
Rimy 1-8	092L016	1938 – 1938	17	1.369	1,586	0	0	0
North Star	092L017	1942 – 1942	13,600	125,913	0	0	0	0
Golden Horn	092L019	1941 – 1942	3,249	46,374	108,705	318	347	0
King Midas #1	092L020	1940 – 1940	1	156	31	10	0	0
Cordova #1	092L027	1939 – 1939	1	156	31	4	0	0
Van Isle	092L038	1936 – 1940	2,814	36,702	16,858	0	0	0
Major	092L149	1939 – 1939	1	93	0	2	0	0
Gold Field	092L211	1936 – 1951	190,754	1,682,859	575,219	9,195	8,093	0
Cent. Zeballos	092L212	1938 – 1947	52,596	636,773	432,238	7,370	71,140	0
Totals	17	1929 – 1975	626,672	9,153,655	3,883,429	25,533	122,890	30

Table 2 – Historic Production from Zeballos Gold District (BC MINFILE):

The Zeballos Mining Camp shows geological, mineralization style, and formational age similarities to two other significant mineral districts on Vancouver Island: Mount Washington near Courtenay, and Catface near Tofino. All three districts host Eocene age intrusives and related polymetallic mineralization. The Zeballos district also hosts Jurassic age intrusives and related magnetite skarn mineralization.

The best descriptive documentation of the geology and mineral deposits of the Zeballos Mining Camp is in BCDM Bulletin 27 (Stevensen, J.S., 1950). The latest study of the gold mineralization and geology of the Zeballos area is in BC Geological Fieldwork 2004 Paper 2005-1 (Marshall, D., et.al, 2004).

The Zeballos Property covers, overlies crown granted mineral claims covering, or is immediately adjacent to (within 500 metres of) 14 BC MINFILE occurrences as follows:

Name	MINFILE #	Status	Deposit Type	Commodities	On Claims	Near Claims
Beano	092E002	Past Producer	Au,Cu Skarn	Au,Ag,Fe,Cu	689765	
Friend	092E003	Prospect	Cu-Ag Qtz Vns	Au,Ag		SE of 689765
Answer	092E023	Prospect	Cu-Ag Qtz Vns	Au,Ag	706564	
Golden Gate	092L005	Past Producer	Cu-Ag Qtz Vns	Au,Cu,Pb,Zn,Ag	689765	
Tagore	092L006	Past Producer	Cu-Ag Qtz Vns	Au,Ag,Cu,Zn,Pb	689765	
Prosperity	092L007	Showing	Cu Skarn	Cu	1015530	
Mt. Zeballos	092L012	Past Producer	Au, Cu-Ag QVs	Au,Ag,Cu,Pb,Zn	1015530	
Roper	092L013	Past Producer	Au, Cu-Ag QVs	Au,Ag,Cu,Pb,Zn		N of 819042
Britannia M	092L014	Prospect	Cu-Ag Qtz Vns	Au,Ag,As	819042	
North Star	092L017	Past Producer	Cu-Ag Qtz Vns	Au,Pb,Zn		NE of 819042
Gold Field	092L211	Past Producer	Au, Cu-Ag QVs	Au,Ag,Cu,Pb,Zn		NE of 819042
Silver Queen 2	092L294	Showing	Cu-Ag Qtz Vns	Cu,Au,Ag		E of 819042
Green Star	092L312	Showing	Cu Skarn	Cu		N of 689765
Brown Bomber	092L313	Showing	Cu-Ag Qtz Vns	Au,Zn		NE of 689765

Table 3 – BC MINFILE Occurrence on or adjacent to the Zeballos Property:

Historic exploration work on or immediately around the area of the Zeballos Property dates from 1912, and includes 12 assessment reports documenting work between 1973 and 2011, listed in Table 4 and summarized below:

Report#	Year	Author	Owner/Operator	Work Program / MINFILE #
4819	1973	Sharps, T.I.	Canadian Superior Expl. Ltd.	Geochemical / 092E002, 092L007
5079	1974	Price, B.J.	Canadian Superior Expl. Ltd.	Geological, Geochemical / 092E002, 092E003, 092L005, 092L007
9981	1982	Groves, W.D.	Billikin Energy & Res. Inc.	Metallurgical / 092E002
12077	1983	Fjetland, G.E.	Impact Resources Inc.	Geological, Geochemical / 092L014
12573	1984	Groves, W.D.	Billikin Energy & Res. Inc.	Diamond Drilling, Geochemical / 092E002, 092E003
12770	1984	Chamberlain, J.A.	Golden Quadrant Resources Ltd.	Geophysical / 092L294
12772	1984	Price, B.J.	Billikin Resources Inc.	Geophysical / 092E002, 092E003
12863	1983	Hainsworth, W.G.	Sibola Mines Ltd.	Diamond Drilling / 092E023, 092L005, 092L006
18577	1989	Freeze, J.C.	New Impact Resources Inc., Canalaska Resources Ltd.	Prospecting, Geochemical / 092HNW031
19677	1990	Caron, M.E., Hoffman, S.J.	Billikin Resources Inc. Battle Mountain (Canada) Inc.	Geochemical, Geological, Geophysical / 092E002, 092E003
27939	2005	Burton, A., Simmons, B.	Newmex Minerals Incorporated	Prospecting / 092L012
32298	2011	Simmons, B.	North Bay Resources Inc.	Prospecting, Geological / 092E002, 092E023, 092L005, 092L006, 092L007, 092L012, 092L014, 092L211

Table 4 – ARIS Reports for the Zeballos Property as of October 22, 2013:

The bibliographies for the 14 MINFILE occurrences listed in Table 3 contain references to many historic reports describing the early work in the area of the Zeballos Property.

In 1973, Canadian Superior Exploration Limited completed soil geochemistry along selected claim line boundaries on their Banko Project, located over the western part of the Zeballos Property. Values up to 600 ppb gold and 490 ppb mercury were obtained from soil samples near the headwaters of Golden Gate Creek., referred to as Area B.

In 1974, Canadian Superior completed geological mapping and rock geochemistry and additional soil geochemistry on their Banko Project. Detailed geological mapping was completed at Area B, at the Prosperity MINFILE 092L007 showing, at the Golden Gate MINFILE 092L005 past producer, and at the Friend MINFILE 092E003 prospect. Rock geochemistry values were generally low, with the highest values obtained at Area B from pyrrhotite-bearing float samples which yielded up to 1200 ppb gold and 1600 ppm copper. Soil geochemistry values up to 8400 ppb gold and 191 ppm copper were obtained near the Beano MINFILE 092E002 past producer (referred to as Area A); up to 1600 ppb gold and 600 ppb mercury at Area B; and up to 1250 ppb gold, 2000 ppb mercury and 250 ppm copper near the Friend MINFILE 092E003 prospect.

In 1982, Billikin Energy & Resources Inc. completed limited metallurgical work on their Beano Claim covering the Beano MINFILE 092E002 past producer.

In 1983, Impact Resources Inc. completed geological mapping and rock geochemistry on their Zeballos River area property, which included a small claim block covering the Britannia M MINFILE 092L014 prospect, straddling the northern boundary of the Zeballos Property. Values up to 47 ppm gold and 7921 ppm arsenic were obtained from quartz veins hosted in quartz diorite exposed in shallow adits, along with detailed geological mapping.

Also in 1983, Sibola Mines Ltd. completed diamond drilling in 4 holes totaling 335 metres and limited rock geochemistry at their Golden Star Claim covering the Golden Gate MINFILE 092L005 past producer. No significant drill intercepts were achieved, but a rock sample taken from Trench 2 above two of the drill holes yielded 56 ppm gold and 24 ppm silver.

In 1984, Billikin resumed work and completed diamond drilling on their Beano Claim, consisting of 6 close-spaced Winkie holes totaling less than 20 metres combined. All 6 holes intersected and recovered gold skarn mineralization, with the highest value obtained being 38.9 ppm gold over 0.5 metres at the top of hole DDH 6. Billikin also completed grid-arrayed ground-based geophysical VLF-EM at their Beano Claim, and established a northwest-trending conductor.

Also in 1984, Golden Quadrant Resources Ltd. completed a single zig-zag shaped line of ground-based geophysical magnetic and VLF-EM and took a single rock grab sample at their Silver Queen No. 2 claim covering the Silver Queen 2 MINFILE 092L294 showing located immediately east of the Zeballos Property. The rock sample yielded 58 ppm gold from a quartz vein hosted in quartz diorite.

In 1989, Canalaska Resources Ltd. completed limited geological mapping and rock geochemistry on Impact's Britannia M claim as part of a larger program, with no significant results obtained on the portion straddling the northern boundary of the Zeballos Property.

In 1990, Battle Mountain (Canada) Ltd. completed both detailed and property scale geological mapping, rock and soil geochemistry and ground magnetic geophysics on Billikin's Beano Claim, expanded to cover both the Bean MINFILE 092E002 past producer and the Friend MINFILE 092E003 prospect. Rock geochemistry yielded elevated values up to 207 ppm gold, 3.5 ppm silver, 571 ppm arsenic, 485 ppm bismuth, 527 ppm cobalt, 4160 ppm copper and 5100 ppm zinc from various samples. Soil geochemistry yielded elevated values up to 1218 ppb gold.

In 2005, Newmex Minerals Inc. completed prospecting work and geological mapping on their extensive Zeballos Project, with most of the work concentrated well north of the Zeballos Property.

In 2011, North Bay Resources Inc. completed limited prospecting work on their Zeballos Property, including an NI43-101 Technical Report.

List of claims and work completed

On September 6 2013, the author accompanied and assisted by A. Houle traveled from and back to Nanaimo, and visited the Zeballos Property for part of a single day. Prospecting and stream moss mat sampling were conducted from the Zeballos Road traversing east and upstream along Hidden Valley Creek, south to, and then west and downstream along Gold Gate Creek. Seven stream moss mat samples were taken in total, consisting of five from Hidden Valley Creek and its tributaries, and two from Golden Gate Creek, at elevations ranging from 80 to 200 metres above sea level. The lower sample sites were selected to avoid the fluvial influence of the Zeballos River, and the upper sample sites were selected to test above tributary forks in Hidden Creek. Considerable recent displacement of stream channels was observed locally in both Hidden Valley and Golden Gate Creeks, which may significantly differ in locations compared to topographic maps and digital topographic files used in the maps in this report. All the work was conducted on cell mineral claim 689765.

The author shipped from Nanaimo via Greyhound Bus Parcel Express the seven stream moss mat samples to AGAT's sample preparation laboratory facility in Burnaby, B.C. on September 7, 2013, and received geochemistry results from AGAT's analytical laboratory in Mississauga, Ont. on September 24, 2013 in Report 13V756165. Sample locations, descriptions, geochemistry results and highlights appear in Appendix 1. The geochemistry report (Appendix 2) was received and compiled, and the technical assessment report was written by the author. The mineral tenure assessment cost statement (Appendix 3), the MTO filing SOW 5460470 by P. Leopold of North Bay Resources Inc. (Appendix 4), and ARIS title page (Appendix 5) were also completed.

At each of the stream moss mat sample sites, sediment-laden moss was collected from the surfaces of boulders or outcrop within the stream bed between high and low water marks, and site characteristics including stream pH values were recorded on prepared forms. At one site, no moss was available so a stream sediment sample was taken instead. Bare hands were used to extract samples, each of which was placed in pairs of new cloth fibre bags, fastened with drawstrings and tied together as sample pairs, and 2 matching portions of pre-numbered 3-part sample tags were stapled to each pair.

At each sample site, site characteristics were recorded on a pre-printed, waterproof, loose-leaf sample record form in a field notebook, and the sample number was recorded in triplicate: on the form, on a metal tag tied near the sample site and marked with flagging tape, and as a waypoint number in a hand-held Garmin 60CSx GPS.

At their Burnaby facility AGAT prepared the stream moss mat samples using package 224012, and then transferred the pulps to their laboratory in Mississauga, Ont. where they utilized 4-acid digestion and multi-element metals package 201070, plus trace gold package 202052 for analysis of all the samples.

Technical Data, Interpretation and Conclusions

The stream moss mat sample locations from the Zeballos Property are shown in Figure 5 at 1:10,000 scale. The geochemistry highlights for stream moss mat samples are presented in Appendix 2. Selected geochemistry maps showing values in ppm and

proportional size bubble plots for gold, silver and zinc are shown in Figures 6, 7 and 8 respectively at 1:10,000 scale. The 2013 stream moss mat sampling results showed two highly elevated values of gold (1.31 ppm in E5123146, and 1.30 ppm in E5123150), and one slightly elevated value of gold (0.47 ppm in E5123151). One sample also showed slightly elevated values of silver (0.60 ppm in E5123150), and two samples showed slightly elevated values of zinc (213 ppm in E5123150 and 179 ppm in E5123151).

Sample E5123146 was taken from what appeared to be the main (north) tributary of Hidden Valley Creek, although it lacked water flow at the time of sampling. Possible historic mine or exploration artifacts including rusty air pipe segments were noted in the creek bed, and may originate from the Prosperity MINFILE 092L007 showing located upstream. The highly elevated value of 1.31 ppm gold in the sample combined with the low gold values obtained from all three tributaries upstream from the sample site suggest the presence of an undiscovered source of gold in the immediate area upstream from E5123146, but much lower than the Prosperity occurrence.

Sample E5123150 was a stream sediment sample taken from Golden Gate Creek, although it lacked water flow at the time of sampling. Possible historic mine or exploration artifacts including drill steel were noted in the creek bed, and may originate from the Golden Gate MINFILE 092L005 past producer located upstream. The highly elevated value of 1.30 ppm gold, plus slightly elevated values of 0.60 ppm silver and 213 ppm zinc confirm the presence of an upstream metallic source.

The amount of stream moss mat and sediment sampling undertaken in the field program was extremely limited by the time and budget allocated for the program. From the results of the limited work completed, follow-up prospecting is warranted upstream from and immediately surrounding both sample sites E5123146 and E5123150, plus additional stream moss mat or sediment sampling upstream along Golden Gate Creek. In addition, selective use of this technique can be applied to the rest of the Zeballos Property and the Zeballos Mining Camp to discover new sub-cropping metallic deposits.

Although narrow gold-bearing quartz veins related to the Eocene Zeballos Stock were the main exploration and mining target in the Zeballos Mining Camp, the presence of gold, copper and magnetite skarns associated with intrusions of at least two different ages (Jurassic and Eocene) also suggests the potential for porphyry coppermolybdenum deposits similar to that found at Catface near Tofino, and possibly also Island Copper. The potential for bulk mineable sheeted gold quartz veins within the Zeballos Stock should also be considered.

There are two main impediments to effective and systematic exploration on the northern portions of the Zeballos Property, and generally throughout the Zeballos Mining Camp:

- Fractionated ownership of cell mineral tenures combined with,
- Fractionated and uncertainty of ownership of underlying crown granted mineral claims

These tenure issues and uncertainties can be resolved with time and diligence that can have the added benefit of enhancing local interest and support.

Both office-based and field-based tenure acquisition, property scale and regional work programs are warranted to explore the Zeballos Property and Mining Camp, summarized in Table 5 below.

Table 5 – Proposed Acquisition and Work Program for the Zeballos Property:

Item	Units	Unit Cost	Pro	gram Cost
Compile crown grant data	100 days – 1 paralegal assistant	\$750 per day	\$	75,000
Acquire crown grants	25 crown granted mineral claims	estimate	\$	25,000
Remote Sensing	Zeballos Mining Camp	estimate	\$	40,000
Prospecting, Mapping	20 days - 1 prospector, 1 geol.	\$2,000 per day	\$	40,000
Geochemistry	500 moss, soil, rock samples	\$40 per sample	\$	20,000
Airborne Magnetics	Expand Geoscience BC data	estimate	\$	50,000
GIS Compilation	Zeballos Mining Camp	estimate	\$	10,000
Technical Reports	20 days - 1 geologist	\$750 per day	\$	15,000
Totals			\$	275,000

Additional work programs may be recommended conditional upon results.

Respectfully submitted by:

Jacques Houle, P.Eng.

October 22, 2013

Author's Qualifications

I, Jacques Houle, P.Eng. Do hereby certify that:

I am currently self-employed as a consulting geologist by: Jacques Houle, P.Eng. Mineral Exploration Consulting 6552 Peregrine Road, Nanaimo, British Columbia, Canada V9V 1P8

I graduated with a Bachelor's of Applied Science degree in Geological Engineering with specialization in Mineral Exploration from the University of Toronto in 1978.

I am a member in good standing with the Association of Professional Engineers and Geoscientists of British Columbia, the Society of Economic Geologists, the Association for Mineral Exploration British Columbia, and the Vancouver Island Exploration Group; I am also a member of the Technical Advisory Committee for Geoscience B.C., and of the advisory committee for the Earth Science Department of Vancouver Island University.

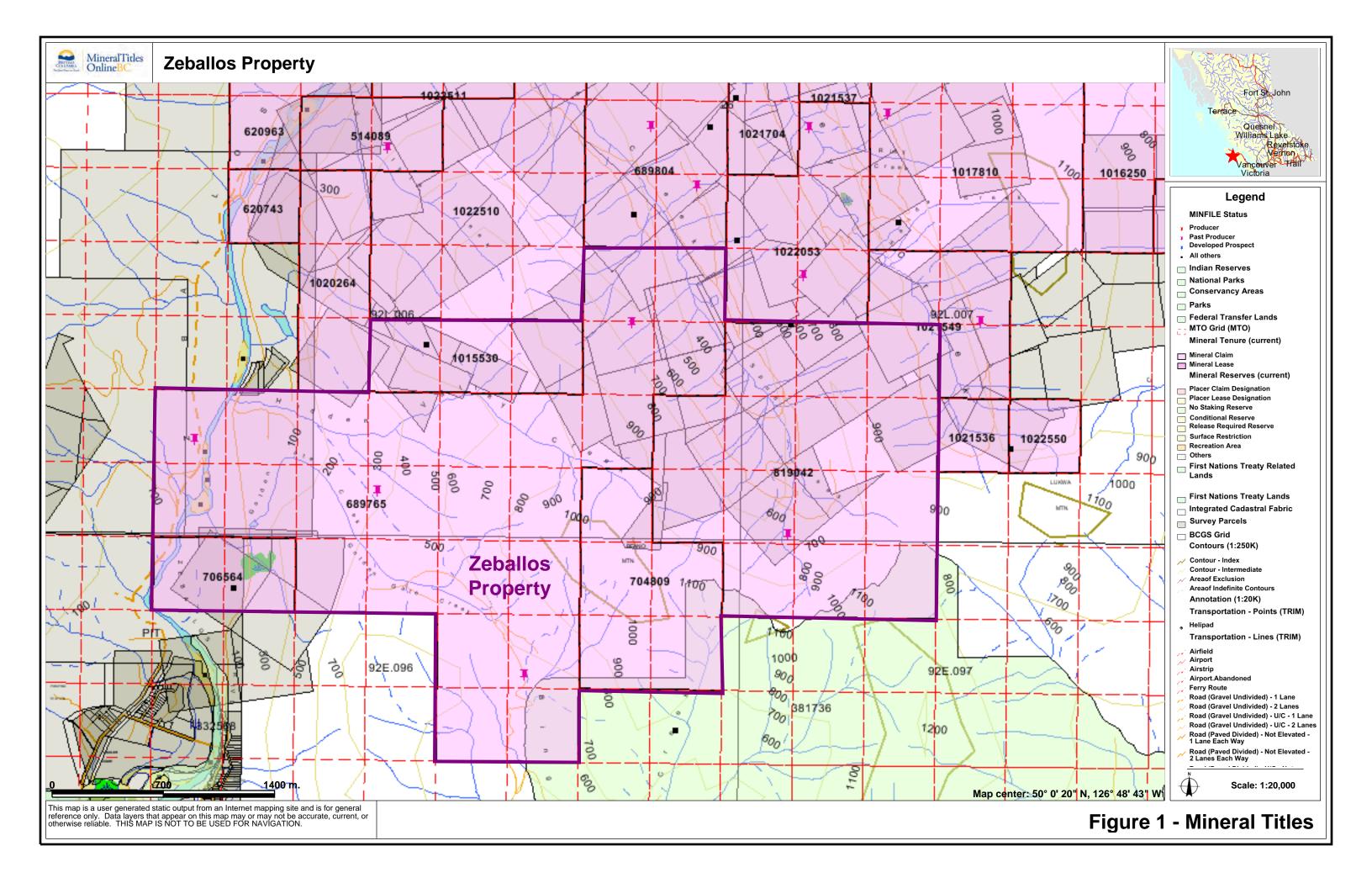
I have worked as a geologist for 35 years since graduating from university, including 5 years as a mine geologist in underground gold and silver mines, 15 years as an exploration manager, 3 years as a government geologist and 10 years as a mineral exploration consultant.

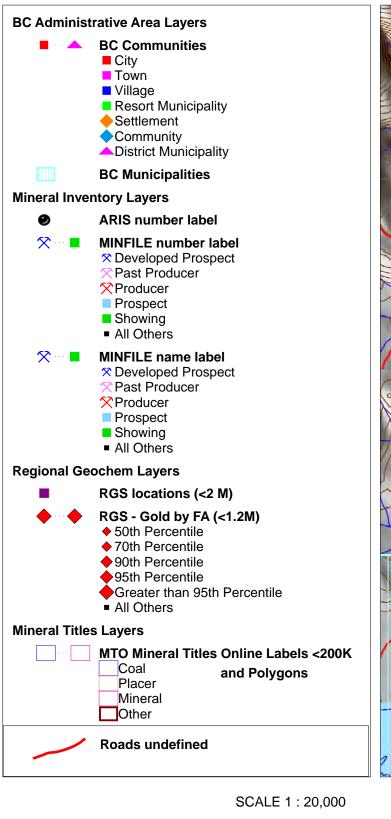
I am independent of North Bay Resources Inc., and hold no interest in the subject property of this report.

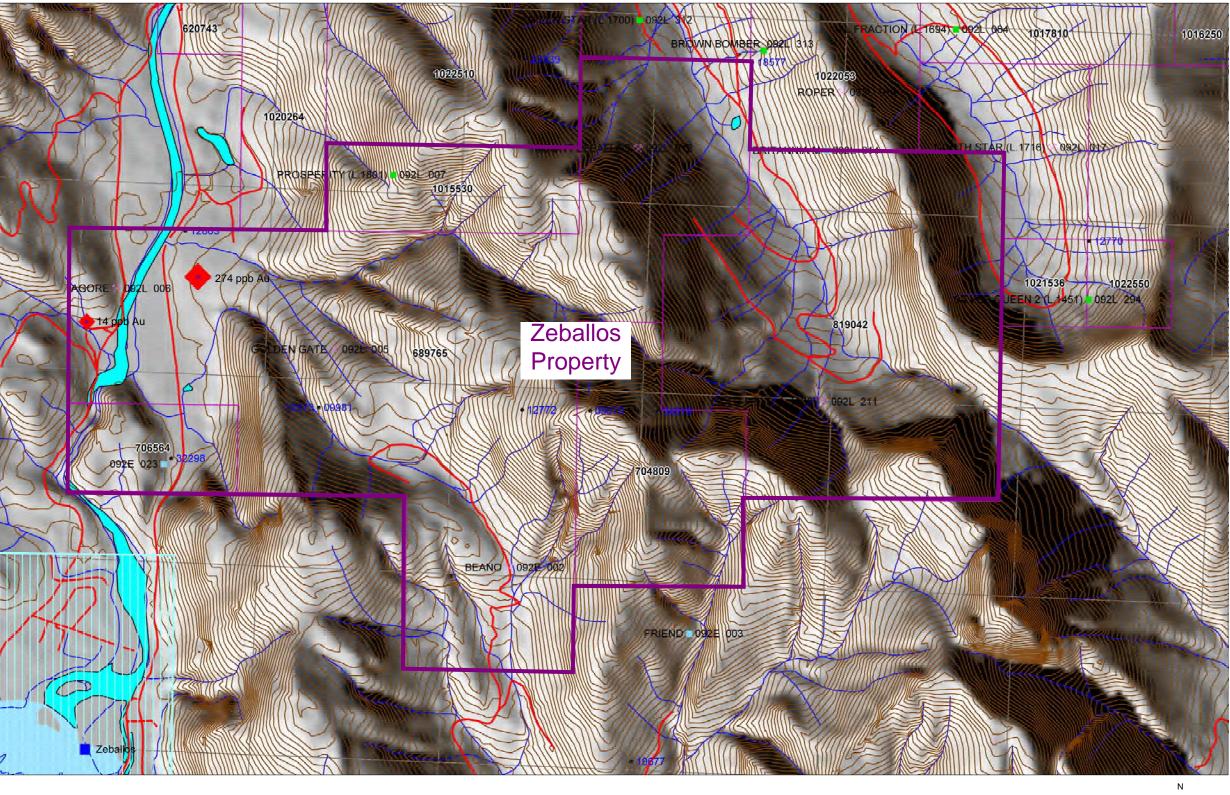
References

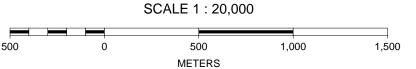
B. C. Ministry of Energy, Mines and Petroleum Resources websites:

Assessment Reports http://www.empr.gov.bc.ca/Mining/Geoscience/ARIS/Pages/default.aspx

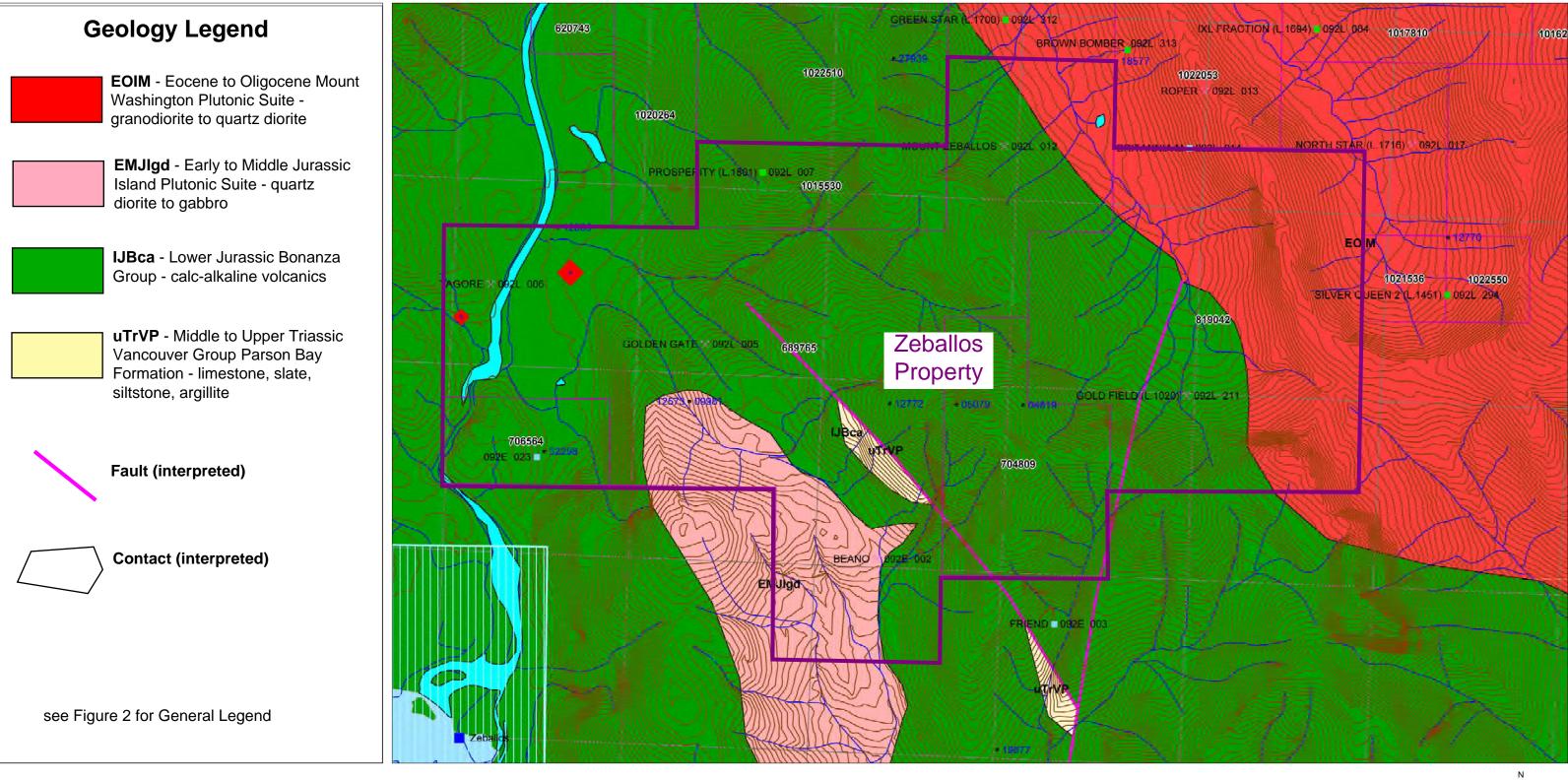

MapPlace http://www.empr.gov.bc.ca/Mining/Geoscience/MapPlace/Pages/default.aspx


Mineral Deposit Profiles http://www.empr.gov.bc.ca/Mining/Geoscience/MineralDepositProfiles/Pages/default.aspx


MINFILE http://www.em.gov.bc.ca/Mining/Geolsurv/Minfile/


Ministry Publications http://www.empr.gov.bc.ca/Mining/Geoscience/PublicationsCatalogue/Pages/default.aspx

Mineral Titles Online https://www.mtonline.gov.bc.ca/mtov/home.do



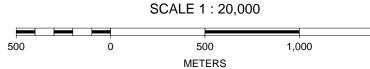
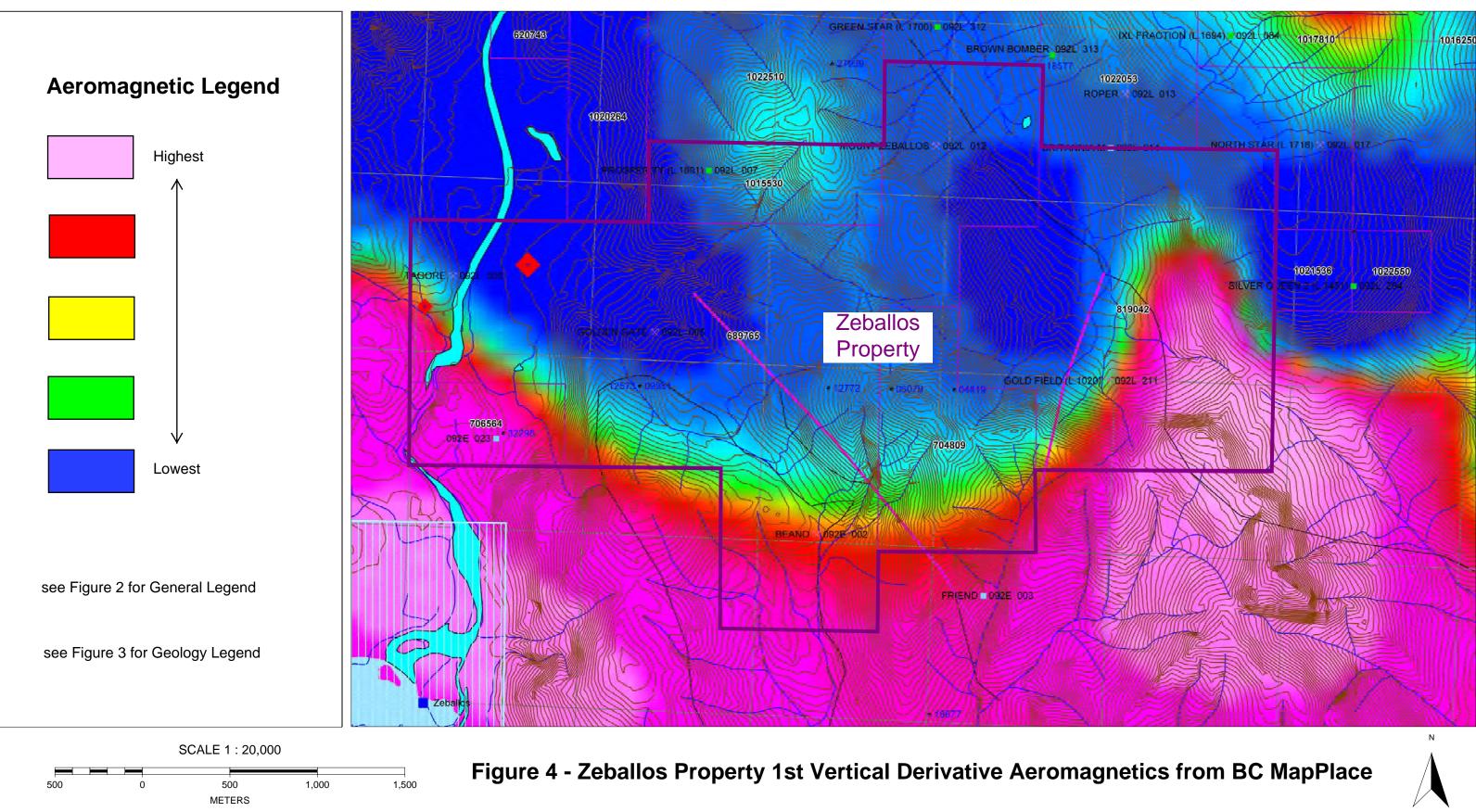
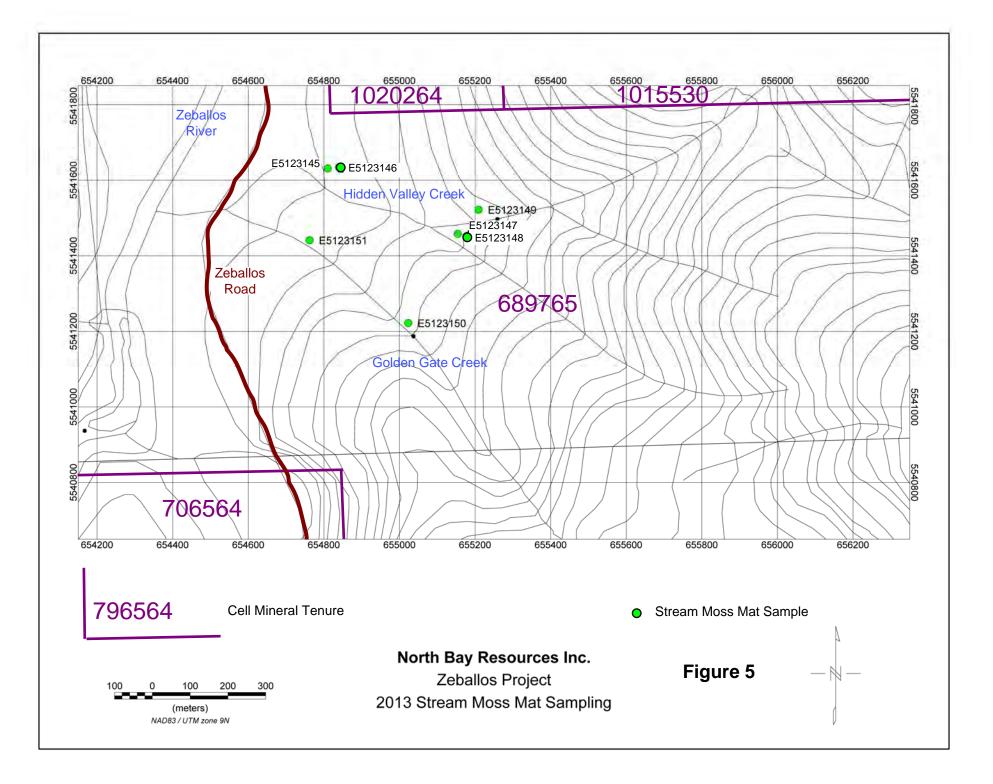
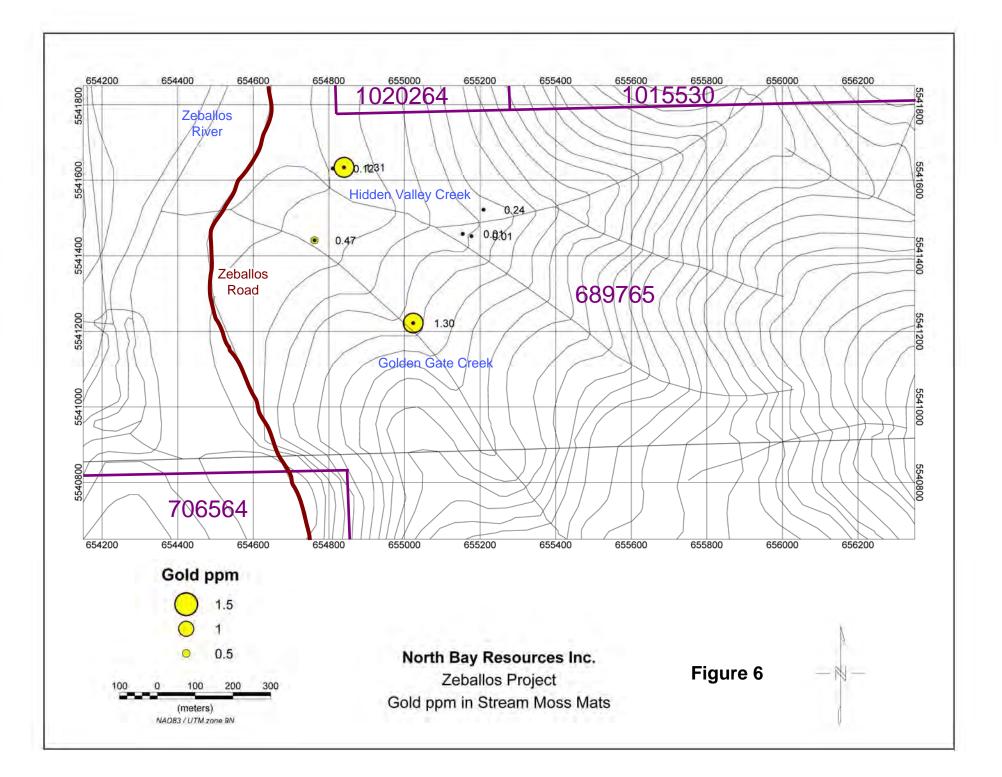
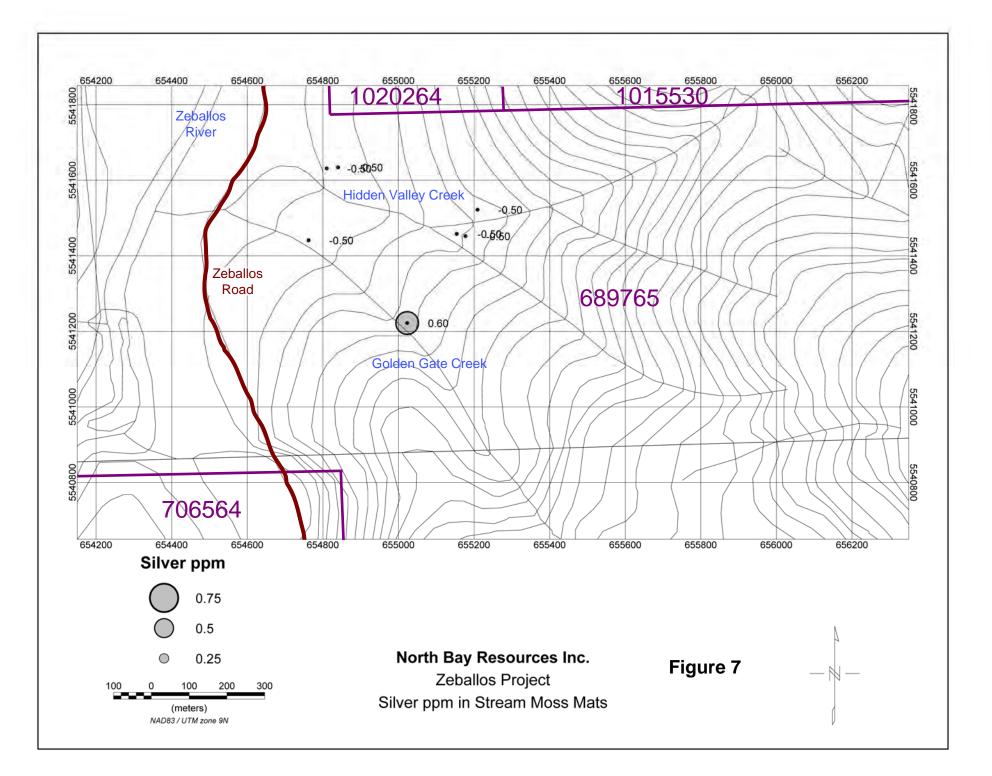


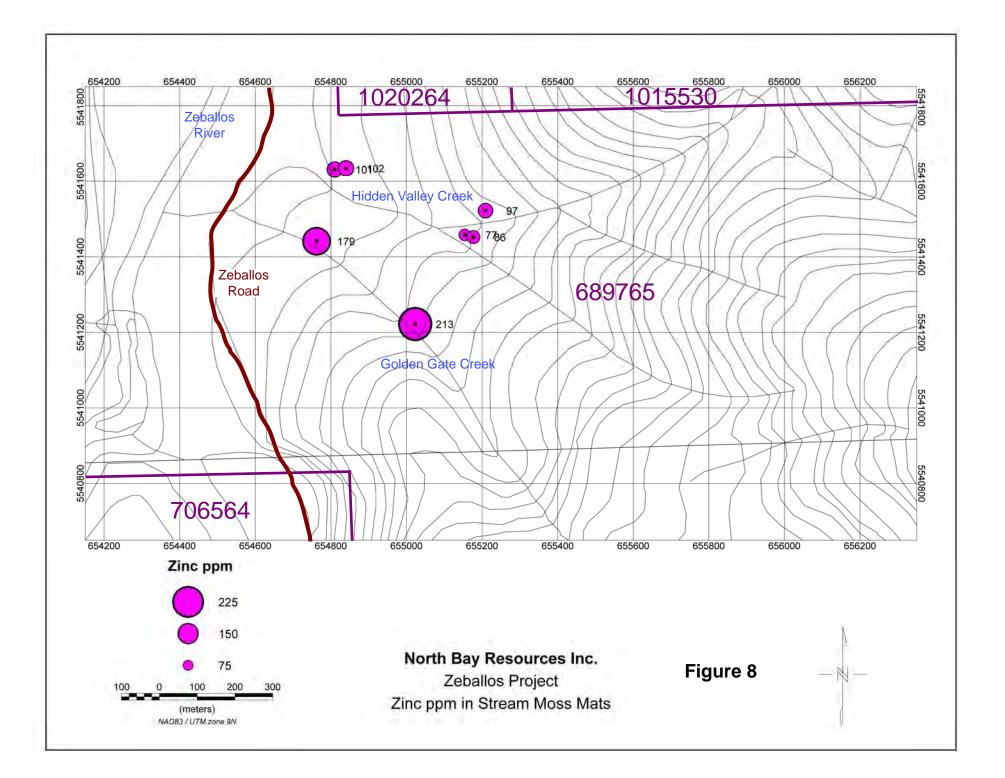
Figure 2 - Zeballos Property Infrastructure - from BC MapPlace






1,500


Figure 3 - Zeballos Property Geology from BC MapPlace 2005 Geology Layer



Appendix 1

2013 Sample Data Sheets

2013 Stre	am Moss N	lat and Silt S	ample Locatio	ons for Zeballos Pr	roject														
Sample #	Date	Sampler	Property	Location	Width(m)	Depth(m)	Inclination (Degrees)	Flow Rate	pH of water	Sediment Colour	Sediment Texture	Organics %	Bedrock	Float	UTM Zone	Easting	Northing	Elevation	Details/Observations/Remarks
E5123145	6-Sep-13	A. Houle	Zeballos	Hidden Valley Creek South Tributary	2	0.5	i t	5 0.'	5.8	grey	sand	90	none	volcanics, limestone, intrusive	09N	654810	5541631	80	very brushy creek possibly part of main creek or unmapped or new tributary; old air pipe in creek
E5123146	6-Sep-13	A. Houle	Zeballos	Hidden Valley Creek North (Main) Tributary	5	0.05	5 10	0.05	5 6.4	grey	silt-sand	50	none	volcanics, limestone, intrusive	09N	654840	5541634	. 86	almost dry creek bed
E5123147	6-Sep-13	A. Houle	Zeballos	Hidden Valley Creek South Tributary	5	0.01	20	0.5	5 6.5	brown-grey	silt-sand	70	intermediate volcanics	intermediate volcanics	09N	655154	5541458	192	above cliff and and waterfalls on 3 creek tributaries
E5123148	6-Sep-13	A. Houle	Zeballos	Hidden Valley Creek Middle Tributary	3	0.1	15	5 0.25	i 6.2	grey	sand	95	volcanics	volcanics	09N	655177	5541452	198	above cliff and and waterfalls on 3 creek tributaries
E5123149	6-Sep-13	A. Houle		Hidden Valley Creek North (Main) Tributary	10	0.1	15	5	7.1	grey	sand	70	felsic volcanics	felsic volcanics	09N	655209	5541522	189	above cliff and and waterfalls on 3 creek tributaries
E5123150	6-Sep-13	A. Houle	Zeballos	Golden Gate Creek	7	0.05	5 10	0.6	5 6.9	grey	sand-gravel	0	intermediate volcanics	intermediate volcanics	09N	655023	5541222	173	dry creek downstream; no moss available - stream sediment sample; old drill steel in creek
E5123151	6-Sep-13	A. Houle	Zeballos	Golden Gate Creek	10	0	15	5 N/A	N/A	grey	sand	0	none	volcanics, intrusive	09N	654762	5541441	84	dry creek; creek braids and rock avalanche downstream

4 Acid Digest -	Metals Package, ICP-OES finish	(201070)																						
		Analyte:	Ag	AI	As	Ва	Be	Bi	Ca	Cd	Ce	Co	Cr	Cu	Fe	Ga	In	к	La	Li	Mg	Mn	Мо	Na
		Unit:	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	%	ppm	ppm	%	ppm	ppm	%
Sample Id	Sample Description	RDL:	0.5	0.01	1	1	0.5	1	0.01	0.5	1	0.5	0.5	0.5	0.01	5	1	0.01	2	1	0.01	1	0.5	0.01
4721113	E5123145		<0.5	7.11	36.00	261	1.20	3.00	4.00	<0.5	26.00	16.90	58.60	32.00	5.01	15.00	<1	0.53	10.00	15.00	1.73	1,410	1.20	2.30
4721114	E5123146		<0.5	7.75	37.00	267	1.30	<1	4.26	<0.5	25.00	19.70	61.20	41.40	6.01	16.00	<1	0.55	10.00	18.00	2.02	1,380	1.10	2.35
4721115	E5123147		<0.5	5.85	11.00	324	1.10	<1	2.27	<0.5	27.00	15.50	31.40	25.20	3.37	11.00	<1	0.65	11.00	12.00	1.18	1,370	0.80	2.16
4721116	E5123148		<0.5	6.46	12.00	370	1.30	3.00	2.36	<0.5	28.00	15.90	38.10	23.90	4.12	13.00	<1	0.73	11.00	13.00	1.35	1,310	1.00	2.54
4721117	E5123149		<0.5	7.40	29.00	227	1.30	4.00	4.26	<0.5	26.00	19.50	59.00	44.90	5.91	16.00	2.00	0.49	10.00	16.00	1.90	1,410	1.00	2.11
4721118	E5123150		0.60	7.16	20.00	199	1.40	8.00	6.00	<0.5	26.00	33.40	61.20	80.90	7.16	18.00	<1	0.43	8.00	11.00	1.97	2,360	2.50	1.78
4721119	E5123151		<0.5	7.00	20.00	231	1.70	<1	4.99	<0.5	27.00	33.20	64.70	89.10	6.65	17.00	<1	0.50	9.00	12.00	1.95	2,230	2.00	1.89
		Analyte:	Ni	Р	Pb	Rb	S	Sb	Sc	Se	Sn	Sr	Та	Те	Th	Ti	ті	U	v	w	Y	Zn	Zr	
		Unit:	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Sample Id	Sample Description	RDL:	0.5	10	1	10	0.005	1	1	10	5	1	10	10	5	0.01	5	5	0.5	1	1	0.5	5	
4721113	E5123145		18.40	868	18.00	30.00	0.06	<1	20.00	24.00	<5	328	11.00	<10	10.00	0.49	7.00	<5	145	1.00	22.00	101.00	60.00	
4721114	E5123146		18.60	772	20.00	32.00	0.11	<1	22.00	23.00	<5	379	11.00	<10	11.00	0.56	8.00	<5	174	<1	22.00	102.00	90.00	
4721115	E5123147		14.00	822	14.00	27.00	0.09	<1	13.00	13.00	<5	173	<10	<10	7.00	0.31	<5	<5	91	<1	16.00	76.90	49.00	
4721116	E5123148		16.40	561	15.00	31.00	0.05	<1	16.00	24.00	<5	184	<10	<10	9.00	0.38	<5	<5	114	<1	17.00	85.80	43.00	
4721117	E5123149		17.50	844	17.00	28.00	0.10	<1	21.00	19.00	<5	370	<10	<10	12.00	0.55	<5	<5	172	<1	22.00	96.60	60.00	
4721118	E5123150		23.50	868	25.00	25.00	0.09	<1	24.00	17.00	<5	307	13.00	<10	12.00	0.75	11.00	<5	218	<1	24.00	213.00	48.00	
4721119	E5123151		25.20	948	21.00	28.00	0.08	<1	23.00	23.00	<5	280	13.00	<10	12.00	0.72	<5	<5	208	<1	24.00	179.00	46.00	
Comments:	RDL - Reported Detection Limit																							

Fire Assay - T	race Au, ICP-OES finish (202052)	Analyte:	Sample Login Weight	Au
		Unit:	kg	ppm
Sample Id	Sample Description	RDL:	0.01	0.001
4721113	E5123145		0.86	0.12
4721114	E5123146		1.63	1.31
4721115	E5123147		1.19	0.01
4721116	E5123148		1.40	0.01
4721117	E5123149		1.68	0.24
4721118	E5123150		2.53	1.30
4721119	E5123151		1.67	0.47
Comments:	RDL - Reported Detection Limit			

2013 Stream Moss Mat Geochemistry Highlights for Zeballos Project												
Sample #	Easting	Northing	Elevation	Au (ppm)	Ag (ppm)	Zn (ppm)						
E5123145	654810	5541631	80	0.12	<0.5	101.00						
E5123146	654840	5541634	86	1.31	<0.5	102.00						
E5123147	655154	5541458	192	0.01	<0.5	76.90						
E5123148	655177	5541452	198	0.01	<0.5	85.80						
E5123149	655209	5541522	189	0.24	<0.5	96.60						
E5123150	655023	5541222	173	1.30	0.60	213.00						
E5123151	654762	5541441	84	0.47	<0.5	179.00						

Appendix 2

2013 Analytical Report

5623 MCADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: JACQUES HOULE MINERAL EXPLORATION 6552 PEREGRINE ROAD NANAIMO, BC V9V1P8 (250) 390-3930

ATTENTION TO: JACQUES HOULE

PROJECT NO:

AGAT WORK ORDER: 13V756165

SOLID ANALYSIS REVIEWED BY: Yufei Chen, Analyst

DATE REPORTED: Sep 24, 2013

PAGES (INCLUDING COVER): 8

Should you require any information regarding this analysis please contact your client services representative at (905) 501-9998

*NOTES

All samples are stored at no charge for 90 days. Please contact the lab if you require additional sample storage time.

Certificate of Analysis

AGAT WORK ORDER: 13V756165

PROJECT NO:

5623 MCADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: JACQUES HOULE MINERAL EXPLORATION

			4	Acid Dig	gest - Me	tals Pac	kage, IC	P-OES fi	nish (20	1070)					
DATE SAMPLED: Se	p 09, 2013		[DATE RECE	EIVED: Sep	09, 2013		DATE I	REPORTED	: Sep 24, 20	013	SAM	PLE TYPE	: Other	
	Analyte:	Ag	AI	As	Ва	Be	Bi	Са	Cd	Ce	Со	Cr	Cu	Fe	Ga
	Unit:	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	%	ppm
Sample ID (AGAT ID)	RDL:	0.5	0.01	1	1	0.5	1	0.01	0.5	1	0.5	0.5	0.5	0.01	5
E5123145 (4721113)		<0.5	7.11	36	261	1.2	3	4.00	<0.5	26	16.9	58.6	32.0	5.01	15
E5123146 (4721114)		<0.5	7.75	37	267	1.3	<1	4.26	<0.5	25	19.7	61.2	41.4	6.01	16
E5123147 (4721115)		<0.5	5.85	11	324	1.1	<1	2.27	<0.5	27	15.5	31.4	25.2	3.37	11
E5123148 (4721116)		<0.5	6.46	12	370	1.3	3	2.36	<0.5	28	15.9	38.1	23.9	4.12	13
E5123149 (4721117)		<0.5	7.40	29	227	1.3	4	4.26	<0.5	26	19.5	59.0	44.9	5.91	16
E5123150 (4721118)		0.6	7.16	20	199	1.4	8	6.00	<0.5	26	33.4	61.2	80.9	7.16	18
E5123151 (4721119)		<0.5	7.00	20	231	1.7	<1	4.99	<0.5	27	33.2	64.7	89.1	6.65	17
	Analyte:	In	к	La	Li	Mg	Mn	Мо	Na	Ni	Р	Pb	Rb	S	Sb
	Unit:	ppm	%	ppm	ppm	%	ppm	ppm	%	ppm	ppm	ppm	ppm	%	ppm
Sample ID (AGAT ID)	RDL:	1	0.01	2	1	0.01	1	0.5	0.01	0.5	10	1	10	0.005	
E5123145 (4721113)		<1	0.53	10	15	1.73	1410	1.2	2.30	18.4	868	18	30	0.062	<1
E5123146 (4721114)		<1	0.55	10	18	2.02	1380	1.1	2.35	18.6	772	20	32	0.106	<1
E5123147 (4721115)		<1	0.65	11	12	1.18	1370	0.8	2.16	14.0	822	14	27	0.090	<1
E5123148 (4721116)		<1	0.73	11	13	1.35	1310	1.0	2.54	16.4	561	15	31	0.054	<1
E5123149 (4721117)		2	0.49	10	16	1.90	1410	1.0	2.11	17.5	844	17	28	0.103	<1
E5123150 (4721118)		<1	0.43	8	11	1.97	2360	2.5	1.78	23.5	868	25	25	0.086	<1
E5123151 (4721119)		<1	0.50	9	12	1.95	2230	2.0	1.89	25.2	948	21	28	0.082	<1
	Analyte:	Sc	Se	Sn	Sr	Та	Те	Th	Ti	ті	U	V	W	Y	Zn
	Unit:	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm
Sample ID (AGAT ID)	RDL:	1	10	5	1	10	10	5	0.01	5	5	0.5	1	1	0.5
E5123145 (4721113)		20	24	<5	328	11	<10	10	0.49	7	<5	145	1	22	101
E5123146 (4721114)		22	23	<5	379	11	<10	11	0.56	8	<5	174	<1	22	102
E5123147 (4721115)		13	13	<5	173	<10	<10	7	0.31	<5	<5	90.8	<1	16	76.9
E5123148 (4721116)		16	24	<5	184	<10	<10	9	0.38	<5	<5	114	<1	17	85.8
E5123149 (4721117)		21	19	<5	370	<10	<10	12	0.55	<5	<5	172	<1	22	96.6
E5123150 (4721118)		24	17	<5	307	13	<10	12	0.75	11	<5	218	<1	24	213
E5123151 (4721119)		23	23	<5	280	13	<10	12	0.72	<5	<5	208	<1	24	179

Certified By:

y. che

Certificate of Analysis

AGAT WORK ORDER: 13V756165 PROJECT NO: 5623 MCADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: JACQUES HOULE MINERAL EXPLORATION

ATTENTION TO: JACQUES HOULE

	4 Acid Digest - Metals Package, ICP-OES finish (201070)											
DATE SAMPLED: Se	p 09, 2013		DATE RECEIVED: Sep 09, 2013	DATE REPORTED: Sep 24, 2013	SAMPLE TYPE: Other							
	Analyte:	Zr										
	Unit:	ppm										
Sample ID (AGAT ID)	RDL:	5										
E5123145 (4721113)		60										
E5123146 (4721114)		90										
E5123147 (4721115)		49										
E5123148 (4721116)		43										
E5123149 (4721117)		60										
E5123150 (4721118)		48										
E5123151 (4721119)		46										

Comments: RDL - Reported Detection Limit

4721113-4721119 As, Sb values may be low due to digestion losses.

Certified By:

y. chen.

Certificate of Analysis

AGAT WORK ORDER: 13V756165 PROJECT NO: 5623 MCADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: JACQUES HOULE MINERAL EXPLORATION

ATTENTION TO: JACQUES HOULE

Fire Assay - Trace Au, ICP-OES finish (202052)
--

DATE SAMPLED: Sep	o 09, 2013			DATE RECEIVED: Sep 09, 2013	DATE REPORTED: Sep 24, 2013	SAMPLE TYPE: Other
	Analyte:	Sample Login Weight	Au			
	Unit:	kg	ppm			
Sample ID (AGAT ID)	RDL:	0.01	0.001			
E5123145 (4721113)		0.86	0.121			
E5123146 (4721114)		1.63	1.31			
E5123147 (4721115)		1.19	0.006			
E5123148 (4721116)		1.40	0.005			
E5123149 (4721117)		1.68	0.237			
E5123150 (4721118)		2.53	1.30			
E5123151 (4721119)		1.67	0.466			

Comments: RDL - Reported Detection Limit

Certified By:

J. chan.

Quality Assurance - Replicate AGAT WORK ORDER: 13V756165 PROJECT NO: 5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: JACQUES HOULE MINERAL EXPLORATION

				4 A	cid Dige	st - Me	etals Pa	ckage, l	CP-OES	S finish	(201070))		
		REPLIC	ATE #1											
Parameter	Sample ID	Original	Replicate	RPD										
Ag	4721113	< 0.5	< 0.5	0.0%										
Al	4721113	7.11	7.10	0.1%										
As	4721113	36	35	2.8%										
Ва	4721113	261	243	7.1%										
Be	4721113	1.2	1.1	8.7%										
Bi	4721113	3	< 1											
Са	4721113	4.00	3.99	0.3%										
Cd	4721113	< 0.5	< 0.5	0.0%										
Ce	4721113	26	27	3.8%										
Со	4721113	16.9	16.4	3.0%										
Cr	4721113	58.6	48.5	18.9%										
Cu	4721113	32.0	31.2	2.5%										
Fe	4721113	5.01	5.02	0.2%										
Ga	4721113	15	15	0.0%										
In	4721113	< 1	< 1	0.0%										
К	4721113	0.53	0.53	0.0%										
La	4721113	10	10	0.0%										
Li	4721113	15	15	0.0%										
Mg	4721113	1.73	1.74	0.6%										
Mn	4721113	1410	1400	0.7%										
Мо	4721113	1.2	1.0	18.2%										
Na	4721113	2.30	2.29	0.4%										
Ni	4721113	18.4	14.6	23.0%										
Р	4721113	868	845	2.7%										
Pb	4721113	18	20	10.5%										
Rb	4721113	30	29	3.4%										
S	4721113	0.062	0.066	6.3%										
Sb	4721113	< 1	< 1	0.0%										
Sc	4721113	20	20	0.0%										
Se	4721113	24	25	4.1%										
Sn	4721113	< 5	< 5	0.0%										

Quality Assurance - Replicate AGAT WORK ORDER: 13V756165 PROJECT NO:

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: JACQUES HOULE MINERAL EXPLORATION

Ta 472 Te 472	721113 721113 721113	328 11 < 10	331 10	0.9% 9.5%									
Te 472	721113		-	9.5%									
		< 10											
			< 10	0.0%									
Th 472	721113	10	10	0.0%									
Ti 472	721113	0.487	0.469	3.8%									
TI 472	721113	7	< 5										
U 472	721113	< 5	< 5	0.0%									
V 472	721113	145	144	0.7%									
W 472	721113	1	< 1										
Y 472	721113	22	21	4.7%									
Zn 472	721113	101	95.9	5.2%									
Zr 472	721113	60	54	10.5%									
	Fire Assay - Trace Au, ICP-OES finish (202052)												
		REPLICA	ATE #1										
Parameter Sam	mple ID	Original	Replicate	RPD									
Au 472	721113	0.121	0.482										

Quality Assurance - Certified Reference materials AGAT WORK ORDER: 13V756165 PROJECT NO: 5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: JACQUES HOULE MINERAL EXPLORATION

				4 A	cid Dig	gest - N	letals F	Package,	ICP-OE	S finish	า (2010	70)		
		CRM #	1 (GTS-2a)											
Parameter	Expect	Actual	Recovery	Limits										
AI	6.96	6.49	93%	90% - 110%										
As	124	106	86%	90% - 110%										
Ва	186	181	97%	90% - 110%										
Са	4.01	3.78	94%	90% - 110%										
Со	22.1	21	95%	90% - 110%										
Cu	88.6	85.5	97%	90% - 110%										
Fe	7.56	7.11	94%	90% - 110%										
К	2.021	1.937	96%	90% - 110%										
Mg	2.412	2.3	95%	90% - 110%										
Mn	1510	1586	105%	90% - 110%										
Na	0.617	0.605	98%	90% - 110%										
Ni	77.1	71	92%	90% - 110%										
Р	892	859	96%	90% - 110%										
S	0.348	0.339	98%	90% - 110%										
Sr	92.8	89.8	97%	90% - 110%										
Zn	208	208	100%	90% - 110%										
					Fire /	Assay -	Trace	Au, ICP-	OES fin	ish (202	2052)			
		CRM #	#1 (GS7E)											
Parameter	Expect	Actual	Recovery	Limits										
Au	7.4	6.8	91%	90% - 110%										

Method Summary

CLIENT NAME: JACQUES HOULE MINERAL EXPLORATION PROJECT NO:

AGAT WORK ORDER: 13V756165 ATTENTION TO: JACQUES HOULE

PROJECT NO:		ATTENTION TO	FO: JACQUES HOULE				
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE				
Solid Analysis			· · ·				
Ag	MIN-200-12002/12020		ICP/OES				
Al	MIN-200-12002/12020		ICP/OES				
As	MIN-200-12002/12020		ICP/OES				
Ва	MIN-200-12002/12020		ICP/OES				
Be	MIN-200-12002/12020		ICP/OES				
Bi	MIN-200-12002/12020		ICP/OES				
Са	MIN-200-12002/12020		ICP/OES				
Cd	MIN-200-12002/12020		ICP/OES				
Ce	MIN-200-12002/12020		ICP/OES				
Co	MIN-200-12002/12020		ICP/OES				
Cr	MIN-200-12002/12020		ICP/OES				
Cu	MIN-200-12002/12020		ICP/OES				
Fe	MIN-200-12002/12020		ICP/OES				
Ga	MIN-200-12002/12020		ICP/OES				
In	MIN-200-12002/12020		ICP/OES				
к	MIN-200-12002/12020		ICP/OES				
La	MIN-200-12002/12020		ICP/OES				
Li	MIN-200-12002/12020		ICP/OES				
Mg	MIN-200-12002/12020		ICP/OES				
Mn	MIN-200-12002/12020		ICP/OES				
Мо	MIN-200-12002/12020		ICP/OES				
Na	MIN-200-12002/12020		ICP/OES				
Ni	MIN-200-12002/12020		ICP/OES				
Р	MIN-200-12002/12020		ICP/OES				
Pb	MIN-200-12002/12020		ICP/OES				
Rb	MIN-200-12002/12020		ICP/OES				
S	MIN-200-12002/12020		ICP/OES				
Sb	MIN-200-12002/12020		ICP/OES				
Sc	MIN-200-12002/12020		ICP/OES				
Se	MIN-200-12002/12020		ICP/OES				
Sn	MIN-200-12002/12020		ICP/OES				
Sr	MIN-200-12002/12020		ICP/OES				
Та	MIN-200-12002/12020		ICP/OES				
Те	MIN-200-12002/12020		ICP/OES				
Th	MIN-200-12002/12020		ICP/OES				
Ti	MIN-200-12002/12020		ICP/OES				
TI	MIN-200-12002/12020		ICP/OES				
U	MIN-200-12002/12020		ICP/OES				
V	MIN-200-12002/12020		ICP/OES				
W	MIN-200-12002/12020		ICP/OES				
Y	MIN-200-12002/12020		ICP/OES				
Zn	MIN-200-12002/12020		ICP/OES				
Zr	MIN-200-12002/12020		ICP/OES				
Sample Login Weight	MIN-12009		BALANCE				
		BUGBEE, E: A Textbook of Fire					
Au	MIN-200-12006	Assaying	ICP-OES				

Appendix 3

2013 Cost Statement

	Zeballos Property 2013 Cost	State	nent		
Exploration Work type	Comment	Days			Totals
Personnel (Name)* / Position	Field Days (list actual days)	Days	Rate	Subtotal*	
Jacques Houle, P.Eng. / Geologist	September 6 2013	1.00	\$756.00	\$756.00	
Adrian Houle / Field Assistant	September 6 2013	1.00	\$254.73	\$254.73	
				\$1,010.73	\$1,010.73
Office Studies	List Personnel (note - Office only, de	o not in	clude field	l days	
Report preparation	Jacques Houle - Sept - Oct 2013	2.10	\$756.00	\$1,587.60	
				\$1,587.60	\$1,587.60
Geochemical Surveying	Number of Samples	No.	Rate	Subtotal	
Rock	7 samples - AGAT WO 13V756165	7.0	\$24.41	\$170.89	
				\$170.89	\$170.89
Transportation		No.	Rate	Subtotal	
truck rental	Houle 4x4 Pickup - September 6, 2013	0.80	\$378.00	\$302.40	
				\$302.40	\$302.40
Equipment Rentals					
Field Gear (Specify)	Houle Field Equip/Supplies - Sept 6,2013	0.60	\$151.20	\$90.72	
Other (Specify)	Houle Office Equip/Supplies - Sept/Oct	2.10	\$75.60	\$158.76	
				\$249.48	\$249.48
Freight, rock samples					
Rock samples to AGAT Burnaby	1 bag - Greyhound WB 51755726223			\$21.18	
				\$21.18	\$21.18
TOTAL Expenditures					\$3,342.28
· · · · · · · · · · · · · · · · · · ·					+ - 1
				· · · · ·	10-2551-5
					A POVINCE
				-	N
					25107
					Sept 29 2013
					S. ENCLOSE
					14 INU 11

Appendix 4

2013 Statement of Work

Cancel

Mineral Titles Online

Mineral Claim Exploration and Development Work/Expiry Date Change Confirmation

Recorder: NORTH BAY RESOURCES INC. (204090) Recorded: 2013/SEP/30 D/E Date: 2013/SEP/30 Submitter: NORTH BAY RESOURCES INC. (204090) Effective: 2013/SEP/30

Confirmation

If you have not yet submitted your report for this work program, your technical work report is due in 90 days. The Exploration and Development Work/Expiry Date Change event number is required with your report submission. **Please attach a copy of this confirmation page to your report.** Contact Mineral Titles Branch for more information.

Event Number: 5469714

Work Type:Technical WorkTechnical Items:Geochemical, PAC Withdrawal (up to 30% of technical work performed), Prospecting

Summary of the work value:

Tenure Number	Claim Name/Property	Issue Date	Good To Date	New Good To Date	# of Days For- ward	Area in Ha	Applied Work Value	Sub- mission Fee
689765	GOLDEN GATE	2009/dec/26	2013/oct/06	2014/oct/06	365	519.21	\$ 2596.05	\$ 0.00
704809	GOLDEN GATE 4	2010/jan/26	2013/oct/06	2014/oct/05	364	103.85	\$ 517.82	\$ 0.00
706564	GOLDEN GATE 5	2010/feb/19	2013/oct/06	2014/oct/05	364	41.54	\$ 207.13	\$ 0.00
819042	GOLDEN GATE 6	2010/jul/15	2013/oct/06	2014/oct/05	364	290.75	\$ 1449.77	\$ 0.00
1015530	GOLDEN GATE 2	2012/dec/28	2013/dec/28	2013/dec/28	0	62.30	\$ 0.00	\$ 0.00

Financial Summary:

Total applied work value:\$ 4770.77

Total Paid:	\$ 0.0
Total Submission Fees:	\$ 0.0
PAC name: Debited PAC amount: Credited PAC amount:	northbay \$ 1428.49 \$ 0.0

Please print this page for your records.

The event was successfully saved.

Click here to return to the Main Menu.

ASSESSMENT REPORT TITLE PAGE AND SUMMARY

TITLE OF REPORT: 2013 Assessment Report for Prospecting and Geochemistry on the Zeballos Property

TOTAL COST: \$3,342.28

AUTHOR(S): Jacques Houle, P.Eng. SIGNATURE(S):

NOTICE OF WORK PERMIT NUMBER(S)/DATE(S): none STATEMENT OF WORK EVENT NUMBER(S)/DATE(S): 5469714 / 2013/SEP/30

YEAR OF WORK: 2013 PROPERTY NAME: Zeballos CLAIM NAME(S) (on which work was done): 689765

COMMODITIES SOUGHT: Au, Ag, Cu, Zn

MINERAL INVENTORY MINFILE NUMBER(S), IF KNOWN: 092E002,092E023, 092L005, 092L006, 092L007, 092L012, 092L014, 092L211

 MINING DIVISION: Alberni

 NTS / BCGS: 092E15W, 092L02W

 LATITUDE: _____50° ____0' ____20"

 LONGITUDE: _____126° ____50' ____13" (at centre of work)

 UTM Zone: 09N
 EASTING: 655000

OWNER(S): North Bay Resources Inc.

MAILING ADDRESS: PO Box 162, Skippack, PA, USA 19474

OPERATOR(S) [who paid for the work]: North Bay Resources Inc.

MAILING ADDRESS: PO Box 162, Skippack, PA, USA 19474

REPORT KEYWORDS (lithology, age, stratigraphy, structure, alteration, mineralization, size and attitude. **Do not use abbreviations or codes**) volcanics, volcaniclastics, breccias, limestones, argillites, gabbro, quartz diorite, Triassic, Jurassic, Eocene, Bonanza, Parson Bay, Quatsino, Island Plutonic, Mt. Washington Plutonic, synform, Au-quartz vein, Cu-Ag Quartz Vein, Au Skarn, Cu Skarn, gold, silver, copper, lead, zinc, magnetite, narrow veins, small pods, steeply dipping

REFERENCES TO PREVIOUS ASSESSMENT WORK AND ASSESSMENT REPORT NUMBERS: 4819, 5079, 9981, 12077, 12573, 12770, 12772, 12863, 18577, 19677, 27939, 32298

TYPE OF WORK IN THIS REPORT	EXTENT OF WORK (in metric units)	ON WHICH CLAIMS	PROJECT COSTS APPORTIONED (incl. support)
GEOLOGICAL (scale, area)			
Ground, mapping			
Photo interpretation			
GEOPHYSICAL (line-kilometres)			
Ground			
Magnetic			
Electromagnetic			
Induced Polarization			
Radiometric			
Seismic			
Other			
Airborne			
GEOCHEMICAL (number of sample	s analysed for)		
Soil			
Silt / moss mat	7 for 48 el. ICP, Au	689765	\$1,754.68
Rock			
Other			
DRILLING (total metres, number of I	holes, size, storage location)		
Core			
Non-core			
RELATED TECHNICAL			
Sampling / Assaying			
Petrographic			
Mineralographic			
Metallurgic			
PROSPECTING (scale/area)			
- PREPATORY / PHYSICAL			
Line/grid (km)			
Topo/Photogrammetric (scal	e, area)		
Legal Surveys (scale, area)			
Road, local access (km)/trail			
Trench (number/metres)			
Underground development (metres)		
Other - Report			\$1,587.60
		TOTAL COST	\$3,342.28