

ASSESSMENT REPORT TITLE PAGE AND SUMMARY

TITLE OF REPORT:

TOTAL COST:

AUTHOR(S): R. I. Thompson SIGNATURE(S):

NOTICE OF WORK PERMIT NUMBER(S)/DATE(S): STATEMENT OF WORK EVENT NUMBER(S)/DATE(S): 5458410

YEAR OF WORK: 2013 PROPERTY NAME: Kamloops CLAIM NAME(S) (on which work was done): Forgot, Bar East, Bar Slim, Yes Yes, Gold 777, Chu Chua 777, KCGL1

COMMODITIES SOUGHT: Au, Cu

MINERAL INVENTORY MINFILE NUMBER(S), IF KNOWN:

MINING DIVISION: Kamloops NTS / BCGS: 92P/8 and 82M/5 LATITUDE: _51° 19' 25" LONGITUDE: _-120° 01' 44" (at centre of work) UTM Zone: 10 EASTING: 707000;NORTHING:569000

OWNER(S): Gerald Locke, Kenneth Ellerbeck

MAILING ADDRESS: 255 Battle St W., Kamloops, BC, V2C 1G8

OPERATOR(S): First Americas Gold Corp.

MAILING ADDRESS: 2300-1066 Hastings St; Vancouver, BC, V6E 3X2

REPORT KEYWORDS: massive sulfide, gold, copper, Chu Chua deposit, rhyolite porphyry, alteration, silicification, silica flooding, felsic dome, Fennell Formation, Devonian, Permian, Barrière, Kamloops

REFERENCES TO PREVIOUS ASSESSMENT WORK AND ASSESSMENT REPORT NUMBERS:

- Belik, G.S. (1995). Geological and Geochemical Report on the KB property, Kamloops Mining Division, 82M/5W and 92P/8E for Eighty-Eight Resources, British Columbia Ministry of Energy and Mines, Assessment Report no. 23816.
- Blackadar, D.W. (1989a). Drilling Report on the CC 1, CC 2 and CC 3 Claims, Kamloops Mining Division, 92P/8E, Lat. 51o22' N, Long. 120 o04' W, British Columbia Ministry of Energy and Mines, Assessment Report no. 18818.
- Blackadar, D.W. (1989b). Drilling Report on the FY Group (FY 1, 2, 3, Dixie 1, 44, 45 Fr, 46 Fr), Kamloops Mining Division, NTS 82M/5W, Lat 51°15' N, Long 119°57' W, British Columbia Ministry of Energy and Mines, Assessment Report no.18489.
- Candy, C., and White, G.E. (1984). Vestor Explorations Ltd. Geophysical Report on a Vector Pulse Electromagnetometer Survey on the CC 5, 6, 7 claims, Kamloops Mining Division, B.C. Lat 51°23' N, Long 120°03' W, N.T.S. 92P/8, British Columbia Ministry of Energy and Mines, Assessment Report no. 12884.
- Cardinal, D.G. (1984). A Diamond Drill Assessment Report, Energite Claims Group, Kamloops Mining Division, , NTS 82M/5W, Lat. 51°21' N, Long. 119°50' W. British Columbia Ministry of Energy and Mines, Assessment Report no. 13766.
- Casselman, S. and Cameron, B. (1994). 1994 Geological, Geophysical and Lithogeochemical Report on the CM Property, Kamloops Mining Division, B.C., 92P/8E, 51°18'N, 120°07'W, British Columbia Ministry of Energy and Mines, Assessment Report no. 23653.
- Casselman, S. (1995). 1995 Diamond Drilling Report on the CM Property, CM1 to 7 Claims, Kamloops Mining Division, NTS 92P/83 51°18'N, 120°07'W, British Columbia Ministry of Energy and Mines, Assessment Report no. 24180.
- CIM (Canadian Institute of Mining and Metallurgy) (2010). CIM Definition Standards -For Mineral Resources and Mineral Reserves, Prepared by the CIM Standing Committee on Reserve Definitions Dated November 27, 2010 and Adopted by CIM Council, November, 27 2012 10 pages.
- Dufresne, M., Raffle, K., and Nicholls, S. (2012). Technical Report on the Chu Chua Property, British Columbia. Newport Exploration Ltd.
- Evans, G.W. (1987). Diamond Drill Hole Report, Holes BAR 1-4, Bar Property (SC Group), Kamloops Mining Division, NTS 82M/5W, 92P/8E, 51°17.7'N, 120°00'W, B.C. British Columbia Ministry of Energy and Mines, Assessment Report no..
- Franklin, J.M. (1993). Volcanic-associated massive sulphide deposits. In Kirkham, R.V., Sinclair, W.D., Thorpe, R.I., Duke, J.M. (eds.) Mineral deposit modeling. Geological Survey of Canada – Special Paper, v.40, p. 315-334
- Fraser, D.C. and Dvorak, Z. (1979). DIGHEM II Survey of North Thompson River, British Columbia for Craigmont Mines Limited by DIGHHEM Limited, Kamloops Mining Division, B.C. British Columbia Ministry of Energy and Mines, Assessment Report no. 7659.
- Gale, D. F. (2007). 2006 Report on the Exploration Activities, Chu Chua Property, Kamloops Mining Division, 92p, 92P/8E, Lat 51'22" Long 120'04 'W, UTM Zone 10: 704480E and 5696320N (NAD 83). British Columbia Ministry of Energy and Mines, Assessment Report no. 28895.
- Galley, A.G., Koski, R.A. (1999). Setting and characteristics of ophiolite-hosted volcanogenic massive sulfide deposits. In Barrie C.T., Hannington, D. (eds.) Volcanic-associated

massive sulfide deposits; processes and examples in modern and ancient settings., Society of Economic Geologists, Socorro, NM, United States, v. 8, p. 221-246

- Gray, M.J. (1987). Minnova Inc. Diamond Drill Report, Chu Chua Option, Barriere Area, Kamloops Mining Division, B.C. 92P/8E, Lat. 51o21', Long. 120 o03', British Columbia Ministry of Energy and Mines, Assessment Report no. 16812.
- Gray, M.J. and Pirie, I.D. (1988). Minnova Inc. Diamond Drill and Geophysical Assessment Report on the Bar Property, Barriere Area, Kamloops Mining Division, NTS 82M/5W 92P/8E, 51°16'N, 120°00'W, B.C. British Columbia Ministry of Energy and Mines, Assessment Report no. 16996.
- Hallof, P.G., Cartwright P.A., and Adomaitus, P.G. (1980). Report on the Horizontal Loop Electro-Magnetic Survey on the 92P/8 CC Group Mining Division, B.C. for Craigmont Mines Limited, British Columbia Ministry of Energy and Mines, Assessment Report no. 8496.
- Heberlein, D. (1990a). Assessment Report on the 1989 Soil Geochemical Survey and Diamond Drill Program, FY and FY-Anna Groups, Kamloops Mining Division, NTS 82M/5W, 51°15'N, 119°59'W, B.C. British Columbia Ministry of Energy and Mines, Assessment Report no. 19846.
- Heberlein, D. (1990b). Assessment Report on the 1990 Diamond Drilling Program, Chu 1-3 (9019, 9110, 9112), CC 1-3, CC 10-11 (1154, 1373, 1374, 1459, 1460), Ch-1 (1461), Kamloops Mining Division, NTS 92P/8E, Lat. 51o22' N, Long. 120 o04' W, British Columbia Ministry of Energy and Mines, Assessment Report no. 20670.
- Hoy, T. (1995). Noranda/Kuroko Massive Sulphide Cu-Pb-Zn, in Selected British Columbia Mineral Deposit Profiles, Volume 1 - Metallics and Coal, Lefebure, D.V. and Hőy, T., Editors, British Columbia Ministry of Energy of Employment and Investment, Open File 1995-20, pages 53-54.
- Kermeen, J.S. (1985). Assessment Report on the Chip-Dixie and Isomag Groups of Mineral Claims, Kamloops Mining Division, NTS 82M4, 92P1, British Columbia Ministry of Energy and Mines, Assessment Report no. 14600.
- Kikauka, A. (2004). Geological, Geochemical and Geophysical Report on the Windpass Mining Leases & Baldy 1 Claim. British Columbia Ministry of Energy and Mines, Assessment Report no. 27373.
- Kikauka, A. (2005). Geological, Geochemical and Geophysical Report on the Windpass Mining Leases & Baldy 1 Claim. British Columbia Ministry of Energy and Mines, Assessment Report no. 27615.
- Lear, S. (1989). Geophysical Report, Chu Chua Project, Green Mountain Group, Kamloops Mining Division, NTS 92P/8E, 82M/5W, Lat. 51o24' N, Long. 120 o00' W, British Columbia Ministry of Energy and Mines, Assessment Report no. 18275.
- Lefebure, D.V. and Church, B. N. (1996). Polymetallic Veins Ag-Pb-Zn+/-Au, in Selected British Columbia Mineral Deposit Profiles, Volume 2 - Metallic Deposits, Lefebure, D.V. and Hőy, T., Editors, British Columbia Ministry of Energy of Employment and Investment, Open File 1996-13, pages 67-70.
- Moraal, D. (1986). Prospectors Report, Joe Mineral Claim, Kamloops Mining Division, NTS 82M/5W, 51°19'N, 119°58.8'W, B.C. British Columbia Ministry of Energy and Mines, Assessment Report no. 15123.
- Morganti, J.M. (1983). Summary on the Chu Chua (CC) Deposit, Craigmont Mines Limited., Nov. 29, 1983.

- Ovington, L. (1989). Geochemical Report, Joe Mineral Claim, Kamloops Mining Division, NTS 82M/5W, 51°19.5'N, 119°58.5'W, B.C. British Columbia Ministry of Energy and Mines, Assessment Report no. 19546.
- Ovington, L. and Elliott, B. (1987). Geochemical Report, Joe Mineral Claim, Kamloops Mining Division, NTS 82M/5W, 51°19.5'N, 119°58.5'W, B.C. British Columbia Ministry of Energy and Mines, Assessment Report no. 16884.
- Panteleyev, A. (1996). Epithermal Au-Ag-Cu: High Sulphidation, in Selected British Columbia Mineral Deposit Profiles, Volume 2 - Metallic Deposits, Lefebure, D.V. and Hőy, T, Editors, British Columbia Ministry of Employment and Investment, Open File 1996-13, pages 37-39.
- Pasieka, C.T. (1981). Report on the Electromagnetic and Geochemical Surveys on the Energite Claims, North Barriere Lake Area, Kamloops Mining Division, NTS 82M/5W, 51°21'N, 119°50'W, B.C. British Columbia Ministry of Energy and Mines, Assessment Report no. 9963.
- Pasieka, C.T. (1984). Report on the Diamond Drilling Programme on the Energite Claims, Energite Claims Group, Kamloops Mining Division, NTS 82M/5W, Lat. 51° 21' N, Long. 119° 50' W. British Columbia Ministry of Energy and Mines, Assessment Report no. 12774.
- Pirie, I.D. (1985a). Geology and Geochemistry of the Anna and SC Claim Groups, Bar Project, NTS 82M/5W, 92P/8E, 51°20', 120°00', B.C. British Columbia Ministry of Energy and Mines, Assessment Report no. 14243.
- Pirie, I.D. (1985b). Report on Linecutting and HLEM Survey, Bar and Chua Properties, SC and CH Claims, Kamloops Mining Division, NTS 92P/8E, 51°15', 120°00', B.C. British Columbia Ministry of Energy and Mines, Assessment Report no. 14187.
- Pirie, I.D. (1985c). Diamond Drill Report, CCF 1, 2, and 3, Chu Chua Option, Kamloops Mining Division, NTS 82M/5W, 92P/8E, 51°15', 120°00', B.C. British Columbia Ministry of Energy and Mines, Assessment Report no. 14186.
- Pirie, I.D. (1986). Chu Chua Option, Report on the 1986 Work Progress, Kamloops Mining Division, NTS 82M/5W, 92P/8E, B.C. British Columbia Ministry of Energy and Mines, Assessment Report no. 15385.
- Pirie, I.D. (1988). Geology, Geochemistry, and Geophysics of the SC1 Claim, Bar Project, NTS 82M/5W, 92P/8E, British Columbia Ministry of Energy and Mines, Assessment Report no. 17475.
- Raffle, K. (2008). 2008 Report on the Exploration Activities Chu Chua Property, Kamloops Mining Division, NTS 92P/8E, British Columbia Ministry of Energy and Mines, Assessment Report no. 30421.
- Raffle, K. and Dufresne, M. (2010). Technical Report on the Base and Precious Metal Potential of the Chu Chua Property, British Columbia. Completed for Shenul Capital Inc.
- Schiarizza, P., Preto, V.A., (1987). Geology of the Adams plateau Clearwater- Vavenby Area, B.C. Ministry of Energy, Mines and petroleum Resources Paper 1987-2
- Vollo, N.B. (1979a). Diamond Drilling Report on CC 1 11 Claims, Kamloops Mining Division, B.C. British Columbia Ministry of Energy and Mines, Assessment Report no. 7110.
- Vollo, N.B. (1979b). Diamond Drilling Report CC Group, Kamloops Mining Division, B.C. British Columbia Ministry of Energy and Mines, Assessment Report no. 7443.
- Vollo, N.B. (1979c). Diamond Drilling Report on the 92P/8 CC Groups of Craigmont Mined Limited, On Chu Chua Mountain, Kamloops Mining Division, B.C. British Columbia Ministry of Energy and Mines, Assessment Report no. 7499.

TYPE OF WORK IN THIS REPORT	EXTENT OF WORK (in metric units)	ON WHICH CLAIMS	PROJECT COSTS APPORTIONED (incl. support)
GEOLOGICAL (scale, area)			
Reconnaissance		523835 523837 553915 608589 604247 825122 867634 867633 867635	\$7,200
Photo interpretation			
GEOPHYSICAL (line-kilometres)			
Ground			
Magnetic			
Electromagnetic			
Induced Polarization			
Radiometric			
Seismic			
Other			
Airborne			
GEOCHEMICAL (number of samples	s analysed for)		¢2.049
Soil Ah		552015	\$3,040
Silt		553915	\$10,000
Rock		553915, 608589, 604247, 825122 867634 867633 867633	\$10,200
Other			
DRILLING (total metres, number of h	noles, size, storage location)		
Core			
Non-core			
RELATED TECHNICAL			
Sampling / Assaying			
Petrographic			
Mineralographic			
Metallurgic			
PROSPECTING (scale/area)			
PREPATORY / PHYSICAL			
Line/grid (km)			
Topo/Photogrammetric (scale	e, area)		

Legal Surveys (scale, area)		
Road, local access (km)/trail		
Trench (number/metres)		
Underground development (metres)		
Other		
	TOTAL COST	\$20,448

Technical Report

2013 Phase 1 Rock Geochemistry Report, Kamloops Property, South-Central British Columbia

Kamloops Mining Division, British Columbia

NTS 092P/8 and 82M/5 Centered at: UTM Zone 10, 707000E, 5690000N

For

First Americas Gold Corp. 2300 - 1066 W. Hastings Street Vancouver, B.C. V6E 3X2 BC Geological Survey Assessment Report 34307

By

R.I. Thompson, PhD, P.Eng RIT Minerals Corp. 10915 Deep Cove Rd. North Saanich, B.C. V8L 5P9

November 12, 2013

Table of Contents:

1.0 Summary	4
2.0 Introduction and Terms of Reference	6
3.0 Claim Status, Property Description and Location	7
4.0 Accessibility, Climate and Physiography	10
5.0 Exploration History	11
6.0 Geological Setting	12
7.0 Mineralization and Potential Deposit Types	15
8.0 Exploration	16
9.0 Method and Approach	39
10.0 Sample Preparation	39
11.0 Data Verification	39
12.0 Summary	40
13.0 Statement of Expenditures	41
14.0 References	42
15.0 Statement of Qualifications	43

Figures:

5
8
13
16
22
30
33
33
34
34
35
35

8.10 Textures in SC Zone rhyolite porphyry	36
8.11 Textures in SC Zone rhyolite porphyry	36
8.12 Textures in SC Zone rhyolite porphyry	37
8.13 Textures in SC Zone rhyolite porphyry	37
8.14 Textures in SC Zone rhyolite porphyry	38
8.15 Textures in SC Zone rhyolite porphyry	38
Table 1.1: Metal concentrations	4
Table 3.1: Description of Kamloops Property mineral titles	9
Table 8.1: Metal concentrations	16
Table 8.2: Sample coordinates and field descriptions	18
Table 8.3: Summary analytical results for gold in rock samples	20
Table 8.4: Percentiles of metals in Ah soil samples expressed	
as ranges between percentile values	28
Table 8.5: Ah sample descriptions	28
Table 8.6: Summary analytical results for gold in Ah soil samples	29

Appendix I: Certificate of Analyses from
ACME Labs Ltd. for Rock and Ah Soil Analyses44

1.0 Summary

The Kamloops Property (the Property) surrounds the Chu Chua massive sulfide deposit (SEDAR, Reva Resources Ltd., 43-101 inferred resource of 2.5 MMt at 2% copper, 9.4 g/t Ag and 0.48 g/t Au) hosted by Permian age mafic volcanic rocks belonging to the upper structural division of the Fennell Formation (Schiarizza and Preto, 1987), and is intruded by mid Devonian age gold-bearing rhyolite porphyry. Hence, the property has the potential to host both Cyprus-type massive sulfide deposit(s) and gold deposits. The Property is owned by Gerald Locke and Kenneth Ellerbeck. First Americas Gold Corp. (FAC) has an option to acquire 100 percent ownership of the Property.

A reconnaissance rock geochemistry sampling program was initiated on June 27th and completed June 30th, 2013. A geological examination of the gold-bearing host rocks was also completed and is described herein.

Ninety-six samples were collected and analyzed by ACME Labs Ltd. of Vancouver, BC. Gold values are summarized as percentiles in Table 1.1.

Table 1.1: Metal concentrations expressed as intervals between percentiles (example: 95%-100% represents the interval between the 95th and 100th percentiles, which is the concentration of metal in the uppermost 5% of samples, whereas 0%-25% represents the metal concentration interval within the lowest 25% of samples).

Metal-contentration plotting Intervals						
intervals						
between	Au ppb	Cu ppm	Zn ppm	Ag ppm	Pb ppm	
percentiles						
0%-25%	0-9.25	0-4.3	0-10	0-0.1	0-12.4	
25%-50%	9.26-41	4.4-7.9	10.1-19.1	0.11-0.2	12.5-23.7	
50%-75%	41-145	8-24.6	19.1-44.0	0.21-0.5	23.7-52.4	
75%-90%	146-395	24.7-87	44.1-76.0	0.51-3.4	52.5-231.3	
90%-95%	397-1007	87.1-289.6	76.1-213.3	3.5-6.1	231.4-1077.8	
95%-100%	1008-1221	289.7-2821.1	213.4-917.0	6.2-100	1077.9-10000	

The rhyolite porphyry succession (qfp) is anomalous with respect to gold over a significant area and the potential for multi-gram (per tonne) concentrations exists. Widespread and intense alteration of the qfp suggests a period of late- or post-emplacement fracturing accompanied by fluid flow and silica-flooding. Resorption of host lithologies, deposition of secondary sericite, quartz, pyrite, epidote and chlorite, and veins and stockworks filled by quartz, are characteristic of the succession and bode well for additional exploration initiatives.

The Property is located 60 km north of Kamloops, immediately northeast of the town of Barrière, in map areas NTS 092P/8 and 83M/5. The Property consists of 62 claims

comprising 11,996 hectares centered at: UTM zone 10, 707000E, 5690000N. Topography is moderate to steep and extends into the subalpine.

Figure 1.1: Location of First Americas Gold's Kamloops Property.

The Property is in an area of past producing mines including Samatosum and Homestake; the area also contains deposits with 43-101 compliant resource estimates having production potential: Chu Chua, Rea and Harper Creek. The region is underlain by the metal-rich Eagle Bay Group of rocks.

2.0 Introduction and Terms of Reference

A reconnaissance rock geochemical and Ah sampling programs together with a geological evaluation was initiated by First Americas Gold Ltd. on June 27th, 2013 and completed on June 30th. The program was designed to evaluate the gold-potential of altered rhyolite porphyry units that form high-level intrusions into the mafic volcanic host called the Fennell Formation. In addition, an examination of the Chu Chua massive sulfide copper-silver deposit was undertaken to evaluate the potential for extension of one or more sulfide pods along strike and onto FAC tenures.

This report presents: 1) a description of the general geological setting of the Property; 2) a description of the sampled gold-bearing rhyolite porphyry succession; 3) a description of the Ah soil sample technique used; and 4) discussion and summary of results.

The author is familiar with the Property having spent 4 days during the period June 27th to June 30th, 2013, observing rock types, textures, and structural settings. All measurement units used in this report are metric. The coordinate system in use on the Property and on all maps is UTM Zone 10, NAD 83.

Abbreviations and Acronyms

A list of frequently used acronyms and abbreviations follow: AAS: atomic absorption spectroscopy (laboratory analytical procedure) Ag: silver As: arsenic Au: gold Bi: bismuth *cm*: 6illimeter Cu: copper g/t, gpt: grams per tonne *Ha*: hectare *Hg*: mercury *ICP*: Inductively Coupled Plasma (laboratory analytical procedure) *kg*: kilogram *km*: 6illimete *m*: metre *masl*: metres above sea level mm: 6illimeter *ppb*: parts per billion *ppm*: parts per million (34.286 ppm equals one troy ounce per short ton) Pb: lead *tonne* : metric ton (1000 kg) Zn : zinc

3.0 Claim Status, Property Description and Location

The Property (Fig. 3.1) is roughly centered at: UTM Zone 10, 707000E, 5690000N where it spans the boundary common to NTS 092P/8 and 82M/5. The area is part of the Shuswap Highlands, a region of rolling, wooded mountains cut by deep valleys that give way westward, across the North Thompson River Valley, to the more subdued Thompson Plateau physiographic region. The Property is located immediately northeast of the town of Barriere; the largest logistics centre is the City of Kamloops located a further 66 km to the south on Highway 5.

The Property consists of 62 claims comprising 11,996 hectares (Fig. 3.1; Table 3-1). The mineral cell titles were acquired online and as such there are no posts or lines marking the location of the Property on the ground.

The author has checked the status of recorded ownership and expiry dates of the cell claims as listed in the Ministry of Energy, Mines and Petroleum Resources, Mineral Titles Division website. All claims are in good standing until the expiry dates listed in Table 3.1. In order to keep the mineral cell titles in good standing beyond the listed expiry dates, assessment work will have to be filed with the BC Mineral Titles Division before the anniversary date of each title (and/or group).

Environmental Permits

The author is not aware of any environmental issues specific to the Property.

Figure 3.1: Location map of FAC's Kamloops Property claims.

Summary o	fthe	work	value:
-----------	------	------	--------

Tenure Number	Claim Name/Property	Issue Date	Good To Date	New Good To Date	# of Days For- ward	Area in Ha	Applied Work Value	Sub- mission Fee
940811	GOLD7	2012/jan/12	2013/jul/12	2014/SEP/25	440	161.26	\$ 971.97	\$ 0.00
1012387	ENERGITE NORTH	2012/aug/30	2013/aug/30	2014/SEP/25	391	141.31	\$ 756.87	\$ 0.00
508583	South1	2005/mar/10	2013/sep/30	2014/SEP/25	360	504.78	\$ 2489.34	\$ 0.00
508584	North1	2005/mar/10	2013/sep/30	2014/SEP/25	360	322.62	\$ 1591.02	\$ 0.00
508586		2005/mar/10	2013/sep/30	2014/SEP/25	360	484.71	\$ 2390.37	\$ 0.00
530072	CARPEDIEM	2006/mar/15	2013/sep/30	2014/SEP/25	360	20.18	\$ 99.50	\$ 0.00
530073	YES	2006/mar/15	2013/sep/30	2014/SEP/25	360	20.19	\$ 99.56	\$ 0.00
857335	GER 1	2011/jun/20	2013/sep/30	2014/SEP/25	360	465.31	\$ 2294.67	\$ 0.00
857336	FY EAST	2011/jun/20	2013/sep/30	2014/SEP/24	359	263.00	\$ 1293.40	\$ 0.00
867630	BAR EAST	2011/jul/24	2013/sep/30	2014/SEP/24	359	505.49	\$ 2485.92	\$ 0.00
974889	SWEET HOME	2011/jul/24 2012/mar/30	2013/sep/30 2013/oct/01	2014/SEP/24 2014/SEP/24	359	443.48	\$ 1/90.19 \$ 2174.87	\$ 0.00
1014042		2012/1-11/20	2012/201/20	2014/050/24	221	20.15	+ 01 27	+ 0.00
1014042	SWEETY1	2012/0Ct/28	2013/0Ct/28	2014/SEP/24	331	20.15	\$ 91.3/	\$ 0.00
993542	ANNA DOMES	2012/00/28	2013/dec/03	2014/SEP/24	295	20.15	\$ 91.34	\$ 0.00
1017882	SWEET	2012/jun/05	2013/dcc/03	2014/SEP/24	190	40.31	\$ 104.90	\$ 0.00
1017889	GOT ONE	2013/mar/18	2014/mar/18	2014/SEP/24	190	20.15	\$ 52 45	\$ 0.00
1017891	SWEET WEST	2013/mar/18	2014/mar/18	2014/SEP/24	190	20.15	\$ 52.44	\$ 0.00
1017892	SWEETSW	2013/mar/18	2014/mar/18	2014/SEP/24	190	20.15	\$ 52.45	\$ 0.00
1017903	SWEET POTATO	2013/mar/18	2014/mar/18	2014/SEP/24	190	20.15	\$ 52.45	\$ 0.00
1020073	1	2013/jun/04	2014/jun/04	2014/SEP/24	112	485.49	\$ 744.87	\$ 0.00
867634	BAR SLIM	2011/jul/24	2014/jul/24	2014/SEP/24	62	181.92	\$ 154.50	\$ 0.00
887669	CHOOEY1	2011/aug/10	2014/aug/10	2014/SEP/24	45	20.18	\$ 147.22	\$ 0.00
889827	BAREESTA	2011/aug/17	2014/aug/17	2014/SEP/24	38	282.83	\$ 147.23	\$ 0.00
889835	BAREESTER	2011/aug/1/	2014/aug/17	2014/SEP/24	38	40.40	\$ 21.03	\$ 0.00
889839	BAREESTER2	2011/aug/17	2014/aug/17	2014/SEP/24	38	242.24	\$ 31.55	\$ 0.00
890259	ENERGEE	2011/aug/19	2014/aug/19	2014/SEP/24	30	100.07	\$ 119.49	\$ 0.00
690260	ENERGEEAST	2011/aug/19	2014/aug/19	2014/SEP/24	26	202.60	\$ 49.00	\$ 0.00
890370	ENERGEEEASI	2011/aug/19	2014/aug/19	2014/SEP/24	20	202.00	\$ 139.40	\$ 0.00
E00E00	I OKTOWATE ONE	2011/aug/2/	2014/cop/20	2014/sop/20	20	101 17	¢ 0.00	¢ 0.00
508500	Ante	2005/mar/10	2014/sep/30	2014/sep/30	0	484 65	\$ 0.00	\$ 0.00
517072	INMETEAST	2005/iul/12	2014/sep/30	2014/sep/30	0	80 71	\$ 0.00	\$ 0.00
523836	KCGL2	2005/dec/13	2014/sep/30	2014/sep/30	0	342.87	\$ 0.00	\$ 0.00
523843	KCGK7	2005/dec/13	2014/sep/30	2014/sep/30	0	60 52	\$ 0.00	\$ 0.00
528569	GERRY AND GERRY	2006/feb/20	2014/sep/30	2014/sep/30	0	60.53	\$ 0.00	\$ 0.00
528570	ROCKNORTH	2006/feb/20	2014/sep/30	2014/sep/30	0	100.86	\$ 0.00	\$ 0.00
528700	CC FRACTION	2006/feb/21	2014/sep/30	2014/sep/30	0	20.17	\$ 0.00	\$ 0.00
529890	CAVEATEMPTOR	2006/mar/11	2014/sep/30	2014/sep/30	0	20.19	\$ 0.00	\$ 0.00
530077	AND MORE	2006/mar/15	2014/dec/30	2014/dec/30	0	121.15	\$ 0.00	\$ 0.00
824362	BAR WEST	2010/jul/22	2015/jul/22	2015/jul/22	0	485.10	\$ 0.00	\$ 0.00
867635	GOLD777	2011/jul/24	2015/jul/24	2015/jul/24	0	40.45	\$ 0.00	\$ 0.00
887709	CHOOEY2	2011/aug/10	2015/aug/10	2015/aug/10	0	20.17	\$ 0.00	\$ 0.00
508587	Southpark	2005/mar/10	2015/sep/30	2015/sep/30	0	505.05	\$ 0.00	\$ 0.00
508589	Insure	2005/mar/10	2015/sep/30	2015/sep/30	0	464.74	\$ 0.00	\$ 0.00
523838	CHU CHUA 7777	2005/dec/13	2015/sep/30	2015/sep/30	0	40.35	\$ 0.00	\$ 0.00
526296	DEPOSIT	2006/jan/26	2015/sep/30	2015/sep/30	0	423.91	\$ 0.00	\$ 0.00
1012270	DEPOSIT WEST	2005/mar/10	2015/sep/30	2015/sep/30	0	80.72	\$ 0.00	\$ 0.00
553915	KCCL1	2007/mar/08	2015/dec/15	2015/dec/15	0	303.05	\$ 0.00	\$ 0.00
523037	INCOLI	2005/dec/13	2015/dec/30	2015/dec/30	0	10 40	\$ 0.00	\$ 0.00
825122	BAD FACT	2009/11dy/10	2016/dec/15	2016/dec/15	0	40.42	\$ 0.00	\$ 0.00
523825	CHU CHUA 777	2010/ ul/23	2010/dec/23	2010/dec/23	0	444./0	\$ 0.00	\$ 0.00
523839	KEGI 4	2005/dec/13	2017/sen/30	2017/con/30	0	60 52	\$ 0.00	\$ 0.00
604243	SC	2009/may/10	2017/dec/15	2017/dec/15	0	40 42	\$ 0.00	\$ 0.00
604247	1	2009/may/10	2017/dec/15	2017/dec/15	0	60 64	\$ 0.00	\$ 0.00
604248		2009/may/10	2017/dec/15	2017/dec/15	0	40.43	\$ 0.00	\$ 0.00
517010	INMETINFILL	2005/jul/12	2017/dec/30	2017/dec/30	0	141 27	\$ 0.00	\$ 0.00
523844	CHU CHUA 888	2005/dec/13	2017/dec/30	2017/dec/30	0	40.35	\$ 0.00	\$ 0.00
529302	G & G	2006/mar/03	2018/dec/30	2018/dec/30	0	40.35	\$ 0.00	\$ 0.00
523841	KCGL5	2005/dec/13	2019/dec/30	2019/dec/30	0	20.17	\$ 0.00	\$ 0.00

4.0 Accessibility, Climate, and Physiography

The Property is accessible using two primary logging road systems, both accessible from the paved Barrier Lake Road which leads east from the town of Barrière located 66 km north of Kamloops on highway 5.

The Chu Chua deposit, and surrounding area, is accessible from Birk Creek logging road. To access it, proceed 17 km from Barrière east to North Lake Road and follow it an additional 8 km to a left turn onto Birk Creek Road. Proceed 20.7 km and take a left turn onto F1 Road; continue another 2.9 km and veer right onto a single track, brushy, drill road. This road accesses the Chu Chua drill core (left turn at 2.3 km) or continues northeast and east into sub alpine terrain affording an excellent view of the Baldy Batholith.

The gold-bearing prospect (known locally as the Bar prospect) is much closer and more easily accessed. Proceed 5 km along North Barrier Road to a junction, turn left and then right, after 500 m, onto Leonie Creek logging. This road provides access a large portion of the southern and central Kamloops property.

Barriere is the nearest supply centre; however, Kamloops is the nearest major supply centre where material and services adequate to explore the property can be found. Infrastructure resources are excellent and readily available. The Property is proximal to major transmission lines in the North Thompson River valley and the region has a long history of mining and logging. Hence personnel with heavy equipment-, exploration-, and mining-experience are readily available. The climate is benign, with agreeable Spring-Summer-Fall seasons and a winter season that sees limited snow accumulations.

The Property is underlain by rolling forested mountains of the Shuswap Highlands physiographic region. Elevations range from 700 to 2000 metres. Tree species include Lodgepole Pine (*Pinus contorta* var. *latifolia*), Trembling Aspen (*Populus tremuloides*), Interior Douglas Fir (*Pseudotsuga Menziesii var. glauca*), Engelmann Spruce (*Picea Engelmannii*), and at higher elevations, Subalpine Fir (*Abies Iasiocarpa*).

Extensive logging provides ready access to all areas of the property; as well the area has supported a robust logging-based economy which is now threatened by the recent infestation of pine beetle; consequently, mineral exploration and mining are viewed as potential economic life-savers.

5.0 Exploration History

The area is host to a large number and wide variety of mineral deposits; chief among them are volcanogenic massive sulfides, stratabound massive to semi-massive sulfides in sedimentary rocks, pyrite-fluorite replacements, disseminated sulfides in (Devonian) intrusive rocks, and disseminated copper-gold in the Cretaceous Baldy Batholith. The Kamloops Property surrounds the Chu Chua massive sulfide deposit; hence, the potential for additional pods of Chu Chua-like mineralization on the Property is significant. As well, gold in high-level, quartz-feldspar porphyry intrusions was explored in the 1980's and '90's and represents a 2nd class of deposit of particular interest to FAC.

The exploration history of the Kamloops Property including the Chu Chua deposit located on claims belonging to Newport Exploration (ref. Fig. 3.1) is summarized from Raffle, 2013 and the reader is referred to that 43-101 report (prepared for Strachan Resources Ltd.) for additional details.

The catalyst for exploration on Kamloops Property was discovery, by Vestor Explorations Ltd. in 1977, of a limonite gossan on the south slope of Chu Chua Mountain proximal to a massive magnetite body. Craigmont optioned the property in 1978 and drilled 23 holes totaling 2843 m. This drilling outlined the extent of the Chu Chua massive sulfide deposit: up to 15 m in width, 300 m in length and 200 m vertical depth. Airborne geophysics was flown in 1979 and accompanied by an additional 21 holes totaling 3,330 m. Two sulfide lenses were defined. In 1981, an additional 3 holes were drilled after extensive soil geochemistry and ground-based geophysics had been completed. Craigmont completed a final 8 holes before ceasing exploration in 1983.

Meanwhile, exploration by several companies east of the Chu Chua deposit on Birk Creek and on southern portions of the Property turned up interesting geophysical and soil geochemistry anomalies, some of which were drilled but without significant success. Iron sulfides and graphite accounted for most anomalies.

Falconbridge explored the Property in 1984 and acquired the Chu Chua deposit in 1985. Drilling followed ground geophysical surveys with 3 holes drilled east of Chu Chua but to no effect. Falconbridge then extended their efforts south, along strike of Chu Chua and identified both conductors and soil anomalies; however, drill results were disappointing. Meanwhile, farther south, at the head of Sprague Creek, they explored a gold-bearing rhyolite porphyry and drilled 4 holes, one of which, Bar 3, intersected significant gold in a 59 m interval which returned assays of 4.45 g/t Au over 2.52 m, including 30 cm of massive pyrite assaying 17.6 g/t gold (Evans, 1987).

In 1987 Falconbridge changed its name to Minnova and completed 6 holes totaling 852 m which tested the SC "rhyolite dome" structure. Some 1+ g/t intersections over 1 to 2 m were encountered; however, in general results were equivocal – for that era. In 1988 Minnova turned its focus to Chu Chua with 13 holes totaling 1,152 m and added substantial tonnage and grade to the deposit. In 1989, 21 additional holes were drilled and this effort continued into 1991 as Minnova demonstrated the deposit extends to at least 550 m vertical depth. Minnova's involvement in the area ended in 1991.

Other exploration companies have been more-or-less active from 1991 until present, most of their work consisting of geochemical and geophysical surveys and limited drilling. Anomalies abound but a significant intersection of precious- and (or) base-metals has yet to be made.

In 2008, an AeroTEM III electromagnetic and magnetic survey was completed over Chu Chua and a large portion of the Kamloops Property by Longview Capital Partners. This information is in the possession of FAC and will be the target of additional investigation in the near future.

6.0 Geological Setting

The Kamloops Property is underlain by mafic volcanic rocks belonging to the Permian Fennell Formation; carbonaceous argillite and siltstone along with rhyolite porphyry that are part of the mid-Paleozoic Eagle Bay assemblage (Schiarizza and Preto, 1987; Thompson et. al. 2006); and Cretaceous granodiorite and quartz-monzonite of the Raft and Baldy batholiths which intrude the whole.

Property Geology

The property was not mapped geologically during the current work; however, good descriptions occur in Schiarizza and Preto 1987, Heberlein, 1990, and Wild, 1989.

According to previous authors, the Kamloops Property is underlain by the upper and lower divisions of the Fennell Formation. The upper division is dominated by mafic pillowed basalt and greenstone with mafic sills some argillite and rare chert; the lower division by carbonaceous greywacke and argillite, ribbon chert, intraformational conglomerate, and rhyolite porphyry. Intrusion by the Cretaceous Baldy Batholith quartzmonzonite completes the general picture. The cherts are fossiliferous and from them a pattern of internal thrust imbrications is derived (Schiarizza and Preto, 1987).

Dips are generally steep and to the west – but not always. Mesoscopic structural fabrics are not well developed; however, mesoscopic to cliff-scale chevron folds consistent with a folded multi-layer of metasedimentary rocks were observed. Generally cleavage is not well developed. This west-facing homoclinal succession is interpreted to be the western limb of a regional fold, dismembered by thrust faults. More work is required. For example, Devonian-age rhyolite porphyry was observed intruding presumed Permian

gabbro belonging to the upper Fennell division; either the age of the rhyolite is incorrectly assumed, or there are geological relationships yet to be discovered.

Gold Potential of Devonian Quartz-Feldspar Porphyry

The focus of this report is a succession of quartz-feldspar porphyry derived from rhyolitic extrusion or hypabyssal intrusions that are concordant within argillite and siltstone of the lower division of the Fennell Formation. According the Schiarizza and Preto (1987), the intrusion sampled for gold content and reported on herein, is approximately 800 m thick and is located in and around the headwaters of Sprague Creek (Fig. 6.1). For the purposes of this report it will be termed the *SC Zone*.

Figure 6.1: Regional geology map of Kamloops Property showing location of gold-bearing rhyolite porphyry reported-on herein (see unit IFq labeled SC within yellow ellipse). Map is taken from Schiarizza and Preto (1987).

The porphyry has a siliceous aphanitic matrix that varies from light grey to green to dark maroon which weathers to a chalky light-grey, white or pale green. Pheocrysts of feldspar and quartz are ubiquitous and may form up to 30% of the rock. The quartz is clear and round(ish) whereas the feldspar is white and anhedral to euhedral. The rhyolite outcrops as rounded, dense, hard masses that are very hard to break. Occasionally flow-like textures are observed. According to Schiarizza and Preto (1987, p. 40): "The phenocryst assemblage comprises either quartz-plagioclase or quartz-sanidine-plagioclase. The quartz and sanidine crystals are generally fresh and unaltered...

[whereas] the plagioclase phenocrysts are commonly altered to a fine-grained assemblage of sericite, chlorite, calcite and quartz."

The SC Zone (Fig. 6.1) is interpreted by Schiarizza and Preto (ibid) as a rhyolite dome or highlevel intrusion. This author favors the latter interpretation.

Alteration

The rhyolite porphyry is strongly altered by secondary silica as 1) replacements wholesale flooding, 2) apparent albitization distinguished by a chalky-white weathering rind, and 3) disseminated, secondary sericite (chlorite)-pyrite-epidote mineral growth. Veins and stockworks filled with white, grey and translucent quartz with or without pyrite, cut the silicified host rocks and their antecedents. It is the opinion of this author that secondary silicification, accompanied by brecciation, veining, stockworks and the introduction of disseminated to massive pyrite, played an important role in gold emplacement.

Silicification

Silicification refers to zones in which country rock has been partially or entirely replaced by hydrothermal silica. Preservation of primary texture is inversely proportional to the intensity of silicification. Silica in the form of white or colourless quartz and smoky/grey quartz occurs in veins and stockworks in silicified zones.

Silica-matrix hydrothermal breccias, often dark grey to black due to the admixture of iron oxide occurs within zones of intense silicification. Angular fragments are typically strongly silicified country rock – in most cases altered rhyolite porphyry but occasionally argillite when close to the porphyry-argillite boundary.

7.0 Mineralization and Potential Deposit Types

No visible gold was encountered. It appears, based on the gold values returned from altered porphyry cuts by numerous late quartz veins and stockworks (Table 7.1), that gold deposition was a late-stage process associated with fracturing and brecciation.

Interpretation of the *SC Zone* as a felsic volcanic dome suggests a comparison with Noranda-type massive sulfide deposits (e.g. Franklin, 1993). Presence of high gold grades in association with massive pyrite (Bar-3 drill hole, ref. above) lends credence to the comparison; however, additional work is required before model associations are indicated.

8.0 Exploration

Three approaches were pursued: 1) systematic sampling of outcrops for rock geochemical purposes; 2) Ah (topmost organic layer) soil sampling; and 3) inspection of selected outcrops for geological interpretation purposes.

Rock Geochemistry:

Ninety-six samples representative of the quartz-feldspar porphyry in the SC Zone were collected (Table 8.1). Care was taken to ensure a variety of textures, alteration states, vein types, and breccias were selected. Three zones were identified in the field and later verified geochemically as having the correct "look and feel" to host gold (Figs. 8.1, 8.2a-82.f)

Table 8.1: Metal concentrations expressed as intervals between percentiles (example: 95%-100% represents the interval between the 95th and 100th percentiles, which is the concentration of metal in the uppermost 5% of samples, whereas 0%-25% represents the metal concentration interval within the lowest 25% of samples).

Metal-contentration plotting Intervals						
intervals						
between	Au ppb	Cu ppm	Zn ppm	Ag ppm	Pb ppm	
percentiles						
0%-25%	0-9.25	0-4.3	0-10	0-0.1	0-12.4	
25%-50%	9.26-41	4.4-7.9	10.1-19.1	0.11-0.2	12.5-23.7	
50%-75%	41-145	8-24.6	19.1-44.0	0.21-0.5	23.7-52.4	
75%-90%	146-395	24.7-87	44.1-76.0	0.51-3.4	52.5-231.3	
90%-95%	397-1007	87.1-289.6	76.1-213.3	3.5-6.1	231.4-1077.8	
95%-100%	1008-1221	289.7-2821.1	213.4-917.0	6.2-100	1077.9-10000	

The two most obvious anomalous zones, seen as multiple overlapping values colored red, orange, yellow and green, occur within the main rhyolite zone illustrated in figure 6.1; the surprise is the southward extension of gold-bearing samples beyond the limits mapped (Figs. 8.1, 8.2e and 82.f). This suggests the prospective gold-bearing zone is considerably longer by several km than previously surmised. Table 8.2 presents sample coordinates together with field descriptions and table 8.3 presents summary analytical results for gold. Figures 82a - 8.2f provide map plots of sample locations, lab numbers and gold values for each. Analytical results are presented in Appendix I.

Figure 8.1: Distribution of gold in rocks of the *SC Zone* obtained from Phase 1 geochemical sampling. See figures 8.2a - 8.2f for detailed map coordinates and gold values for individual sample sites in inset maps 1-3 above.

Table 8.2: Sample coordinates and field descriptions.

Sample No	Zone	UTM E	UTM N	Description
13CCTK-001	10	708633	5684542	Narrow quartz carbonate veinlet with rare limonite and pyrite hosted in ryholite unit(quartz eyes) weak carbonate
13CCTK-002	10	708640	5684581	Block of silicified pyrite flooded ryholite with some fresh pyrite and rare chalcopyrite in wispy clots
13CCTK-003	10	708577	5684585	A one foot wide zone of pyrite flooding and sericite alteration with thin veinlets in ryholite with pyrite and limonite
				in veinlets -rare galena -flat laying zone? With veinlets emanating outwards at 170 degrees dipping 50 degrees
13CCTK-004	10	708578	5684630	Silicified ryholite with pyrite flooding and sericite alteration with thin quartz veinlets and brecciation with rare galena, chalcopyrite, sphalerite with massive pyrite blebs
13CCTK-005	10	708629	5685047	Pod of sericite altered pyrite flooding into ryholite unit with limonite boxworks and thin quartz veinlets -alteration
13CCTK-006	10	708662	5685100	Pod of quartz veinlets with sericite alteration and pyrite flooding in quartz eye ryholite unit
13CCTK-007	10	708687	5685118	Pod of pyrite flooded sericitic altered(creamy green) ryholite with milky crystalline quartz veinlets with some
13CCTK-008	10	708711	5685162	Narrow quartz veinlet stockwork zone with weak pyrite flooding/sericite alteration of host ryholite -rare sphalerite
13CCTK-009	10	708517	5684451	Poddy zone of quartz veinlets with more pyrite with greenish sericite alteration of hosted ryholite -rare pyrite,
13CCTK-010	10	708367	5684240	chalcopyrite in veining with chlorite Finely disseminated pyrite in tybolite with some pyrite and chalcopyrite along fractures -subcrop
13CCTK-011	10	708385	5683830	Pyrite and limonite boxwork in quartz veinlets with pyrite and argillic alteration in ryholite host
13CCTK-012	10	708375	5683451	Basehall size niece of massive pyrite float in roadbed
13CCTK-013	10	708405	5683209	Narrow veinlets within silicified siliceous ryholite with some pyrite and limonite boxworking
13CCTK-014	10	708901	5688206	Zone of pyrite flooding with larger limonite masses along milky quartz veining cutting darker feldspar pombyry
1300111014	10	100001	5000200	unit within area of hyaloclastic brecciation -Strike of vein 30 degrees dip 70 degrees
13CCTK-015	10	708924	5688224	Four inch wide quartz vein cutting ryholite with larger multifaceted pyrite and limonites in and along veining -60 degrees strike dip 80 degrees
13CCTK-016	10	708924	5688224	Large pyrite crystals infilling along hyaloclastic brecciation in ryholite unit -albitic alteration feldspar porphyry
13CCTK-017	10	708950	5688277	Stockwork guartz veinlets with large pyrite and limonite in and along veining within feldspar porphyry
13CCTK-018	10	708979	5688483	Schistose sericitic crenulated material with fresh pyrite rare narrow quartz veinlets -composite of unit
13CCTK-019	10	708875	5688095	Black silicified feldspar porphyry unit with albitized clasts(hyaloclastite brecciation) with pyrite in disseminations
13CCTK-020	10	708878	5688092	and narrow veining striking 20 degrees dipping 80 degrees Narrow veinlets of quartz with pyrite masses in black creamy altered hyaloclastite brecciated ryholite(feldspar
12CCTK 021	10	700042	5699077	porphyry)
13CCTK-021	10	700943	5000077	Composite of sinchied pyrite hooded yellow weathening tyrionic with thin quality verifiets carrying pyrite
13CCTK-022	11	290912	5007551	Brecciated sinched zone of prinkish tynonice unit with some pynte in fractures and harrow quartz verifiets
130011-023		291006	2000920	vellow weathering greenish altered ryholite -veinlet trends 240 degrees dip 60 degrees
13CCTK-024	11	291007	5686927	Same zone as above footwall veinlets of similar material -rare galena some limonite and pyrite
13CCTK-025	11	291016	5686897	Grab sample in drill area of pyrite flooded albitic altered ryholite with narrow quartz veinlets with boxworks
4000714 000		004047	5000000	sericite and limonite
13CCTK-026	11	291017	5686888	Same as above with more intense silicification of nost rynolite with limonite and pyrite in quartz veinlets of various orientations
13CCTK-027	11	291063	5686851	More sugary granular ryholite cut by quartz stockwork with albitic pyrite flooding of host and within veins -340 degree strike vertical dip
13CCTK-028	11	291081	5686808	Albitic ryholite unit with pyrite and limonite with narrow veinlets of quartz with alteration haloes and reddish staining
13CCTK-029	11	291080	5686807	Same area as above -stockwork material with pyrite and limonite boxworks in quartz veining -silicification of ryholite
13CCTK-030	11	291072	5686818	More pyritic limonite boxwork zone within quartz stockwork cutting ryholite unit
13CCTK-031	11	291075	5686802	Quartz veinlet stockwork with more intense silicification of host ryholite- limonite boxworks and fresh pyrite
13CCTK-032	11	291065	5686793	Quartz stock work zone in ryholite with pyrite and limonite boxworks with variable alteration of host(albite and silicification) -composite of outcrop
13CCTK-033	10	708403	5683362	Quartz stockwork float cutting ryholite with more siliceous appearance with some thin quartz veinlets with pyrite and limonite
13CCTK-034	10	708434	5683283	Stockwork material in altered ryholite within quartz eye ryholite unit with thin veinlets containing pyrite and
13CCTK-035	10	708433	5683284	Stockwork material in buff carbonate altered ryholite with rare chalcopyrite with chlorite in quartz veinlets and
13CCTK-036	10	708435	5683283	Same area as above with sericite and pyrite alteration of volcanic (ryholite) host with some chalcopyrite in narrow
13CCTK-037	10	70842	5683060	quartz stockworks Stockwork zone in ryholite with iron staining both yellow and reddish colour with some fresh pyrite and rare
13CCTK-038	10	708425	5683061	arsenopyrite Same area as above more intensely silicified host ryholite with quartz veinlets containing limonite boxworks and
13CCTK-039	10	708422	5683040	pyrite Aphanitic silicified ryholite cut by narrow quartz veinlet stockwork with some pyrite and limonite along with rare
13CCTK-040	10	708421	5683041	galena Same as above with more intense silicification of host ryholite with limonite and pyrite in quartz veinlets of
			2000041	various orientations

Table 8.2 cont'd

13CCMK-1	10	708599	5684453	1 metre of solicified grey rvolite no ny cuny weak fracts and dis
13CCMK-2	10	708589	5684480	320 degree gtz breccia zone with 320/48 degree trends also with lim in 1 foot zone.
13CCMK-3	10	708593	5684486	30/60 1 inch gtz vein with lim hem stained boxworks.
13CCMK-4	10	708569	5684579	2 metre zone of solicified ryolite with some py.
13CCMK-5	10	708583	5684969	Py stringers in black ss float.
13CCMK-6	10	708656	5685098	Py rich weak stockwork qtz zone 2 feet zone within 25 metre zone, in ryolite.
13CCMK-7	10	708652	5685129	Py rich weak stockwork qtz zone 2 feet zone within 25 metre zone, in ryolite.
13CCMK-8	10	708660	5685133	Py rich weak stockwork qtz zone 2 feet zone within 25 metre zone, in ryolite.
13CCMK-9	10	708475	5684456	1 inch qtz vein in ryolite 20/70 degree trend.
13CCMK-10	10	708442	5684368	Small qtz vein in ryolite with rare galena steep 20 degree trend.
13CCMK-11	10	708255	5684120	Sc of ryolitesolicified qtz and py,2 feet peice.
13CCMK-12	10	708426	5683804	Ryolite breccia solicified and with py.
13CCMK-13	10	708908	5688211	70/60 4 inch vein with poddy py,lim.
13CCMK-14	10	708909	5688212	3 inch qtz vein poddy galena and py 40/58.
13CCMK-15	10	708932	5688236	Haloanaclastic breccia with with better py 5 metre zone.
13CCMK-16	10	708933	5688242	Haloanaclastic breccia with with better py.
13CCMK-17	10	709005	5688362	5 metre Oc of py rich black ss.
13CCMK-18	10	708865	5688087	Sc of haloanaclastic with better py and small qtz veins.
13CCMK-19	10	708930	5688080	Green yellow stain on small solicified fracts in haolaniclastic breccia Sc 1 metre peice.
13CCMK-20	10	708929	5688079	Py rich solicified fracts in haolaniclastic breccia Sc 1 metre peice, same peice as sample 19.
13CCMK-21	10	708930	5688085	Sc 1 feet peice of haolanaclastic breccia with yellow green stain and elongated metalic crystals Aspy?
13CCMK-22	10	708931	5688086	3 feet Oc of py rich haolaniclastic breccia also solicified.
13CCMK-23	11	290987	5687842	small carb,qtz vein in haolaniclastic breccia,Sc.
13CCMK-24	11	291006	5686926	Stockwork qtz zone of solicified breccia, carb, hem, lim, boxworks.
13CCMK-25	11	291029	5686919	Bleached haloaniclastic breccia with micro qtz veinning and py cubes,1 feet peices.
13CCMK-26	11	291028	5686922	Bleached haloaniclastic breccia with micro qtz veinning and py cubes,1 feet peices.
13CCMK-27	11	291034	5686850	Old drill area stockwork zone 1 metre sc zone with rare galena and py and boxworks.
13CCMK-28	11	291045	5686840	Old drill area stockwork zone 1 metre sc zone with rare galena and py and boxworks.
13CCMK-29	11	291030	5686826	Old drill area solicified ryolite stockwork with py.
13CCMK-30	11	291028	5686824	Old drill area solicified ryolite stockwork with py.
13CCMK-31	11	291026	5686822	Old drill area solicified ryolite stockwork with py.
13CCMK-32	11	291026	5686814	Old drill area solicified ryolite stockwork with py.
13CCMK-33	11	291028	5686810	2 inch qtz vein with py trending e/w.
13CCMK-34	11	292175	5686772	2 feet qtz carb zone with lim.
13CCMK-35	11	292616	5687011	4 feet zone of qtz rubble in ditch with galena and py.
13CCMK-36	11	292617	5687014	4feet zone of qtz rubble in ditch with galena and py.
13CCMK-37	10	708419	5683358	5 metre Oc stockwork zone with pyin ryolite.
13CCMK-38	10	708431	5683352	1 feet zone Oc stockwork zone with pyin ryolite.
13CCMK-39	10	708400	5683241	Some qtz in ryolite hem stain and solicified.
13CCMK-40	10	708422	5683215	Some qtz in ryolite hem stain and solicified, stock work zone.
13CCMK-41	10	708400	5683161	Sc weak stockwork in ryolite.

Field No	Lab No	Date	UTM Z	Northing	Easting	Analyte	Wgt	Au (ppb)
13CCTK-001	2102066	6/28/2013	10	708633	5684542	Rock	0.91	3
13CCTK-002	2102067	6/28/2013	10	708640	5684581	Rock	0.73	3
13CCTK-003	2102068	6/28/2013	10	708577	5684585	Rock	0.64	4
13CCTK-004	2102069	6/28/2013	10	708578	5684630	Rock	1.66	2
13CCTK-005	2102070	6/28/2013	10	708629	5685047	Rock	0.7	11
13CCTK-006	2102071	6/28/2013	10	708662	5685100	Rock	0.82	40
13CCTK-007	2102072	6/28/2013	10	708687	5685118	Rock	1.66	80
13CCTK-008	2102073	6/28/2013	10	708711	5685162	Rock	1.09	7
13CCTK-009	2102074	6/28/2013	10	708517	5684451	Rock	0.85	3
13CCTK-010	2102075	6/28/2013	10	708367	5684240	Rock	0.9	8
13CCTK-011	2102076	6/28/2013	10	708385	5683830	Rock	0.5	58
13CCTK-012	2102077	6/28/2013	10	708375	5683451	Rock	0.65	4
13CCTK-013	2102078	6/29/2013	10	708405	5683209	Rock	0.79	10
13CCTK-014	2102079	6/29/2013	10	708901	5688206	Rock	0.85	86
13CCTK-015	2102080	6/29/2013	10	708924	5688224	Rock	0.7	68
13CCTK-016	2102081	6/29/2013	10	708924	5688224	Rock	1.23	1221
13CCTK-017	2102082	6/29/2013	10	708950	5688277	Rock	0.52	1195
13CCTK-018	2102083	6/29/2013	10	708979	5688483	Rock	1.11	35
13CCTK-019	2102084	6/29/2013	10	708875	5688095	Rock	1.02	206
13CCTK-020	2102085	6/29/2013	10	708878	5688092	Rock	0.64	222
13CCTK-021	2102086	6/29/2013	10	708943	5688077	Rock	0.95	27
13CCTK-022	2102087	6/29/2013	11	290912	5687551	Rock	1.02	2
13CCTK-023	2102088	6/29/2013	11	291006	5686926	Rock	0.57	330
13CCTK-024	2102089	6/29/2013	11	291007	5686927	Rock	0.63	383
13CCTK-025	2102090	6/29/2013	11	291016	5686897	Rock	0.52	17
13CCTK-026	2102091	6/29/2013	11	291017	5686888	Rock	0.72	34
13CCTK-027	2102092	6/29/2013	11	291063	5686851	Rock	0.74	163
13CCTK-028	2102093	6/29/2013	11	291081	5686808	Rock	0.37	8
13CCTK-029	2102094	6/29/2013	11	291080	5686807	Rock	1.09	409
13CCTK-030	2102095	6/29/2013	11	291072	5686818	Rock	0.8	1007
13CCTK-031	2102096	6/29/2013	11	291075	5686802	Rock	0.55	182
13CCTK-032	2102097	6/29/2013	11	291065	5686793	Rock	0.56	569
13CCTK-033	2102098	6/29/2013	10	708403	5683362	Rock	0.64	36
13CCTK-034	2102099	6/29/2013	10	708434	5683283	Rock	0.97	3
13CCTK-035	2102100	6/29/2013	10	708433	5683284	Rock	0.92	6
13CCTK-036	2102101	6/29/2013	10	708435	5683283	Rock	1.42	12
13CCTK-037	2102102	6/29/2013	10	70842	5683060	Rock	0.62	7
13CCTK-038	2102103	6/29/2013	10	708425	5683061	Rock	1.16	12
13CCTK-039	2102104	6/29/2013	10	708422	5683040	Rock	0.97	14
13CCTK-040	2102105	6/29/2013	10	708421	5683041	Rock	0.81	30

Table 8.3: S	Summary analytica	l results for gold i	in rock samples.
---------------------	-------------------	----------------------	------------------

Table 8.3 cont'd

Field No	Lab No	Date	UTM Z	Northing	Easting	Analyte	Wgt	Au (ppb)
13CCMK-1	2102106	28-Jun-13	10	708599	5684453	Rock	0.48	2
13CCMK-2	2102107	28-Jun-13	10	708589	5684480	Rock	0.48	2
13CCMK-3	2102108	28-Jun-13	10	708593	5684486	Rock	0.49	134
13CCMK-4	2102109	28-Jun-13	10	708569	5684579	Rock	0.85	12
13CCMK-5	2102110	28-Jun-13	10	708583	5684969	Rock	0.33	2
13CCMK-6	2102111	28-Jun-13	10	708656	5685098	Rock	0.74	60
13CCMK-7	2102112	28-Jun-13	10	708652	5685129	Rock	0.89	42
13CCMK-8	2102113	28-Jun-13	10	708660	5685133	Rock	0.6	9
13CCMK-9	2102114	28-Jun-13	10	708475	5684456	Rock	0.6	2
13CCMK-10	2102115	28-Jun-13	10	708442	5684368	Rock	0.61	6
13CCMK-11	2102116	28-Jun-13	10	708255	5684120	Rock	0.64	2
13CCMK-12	2102117	28-Jun-13	10	708426	5683804	Rock	0.35	2
13CCMK-13	2102118	29-Jun-13	10	708908	5688211	Rock	0.21	145
13CCMK-14	2102119	29-Jun-13	10	708909	5688212	Rock	0.34	1100
13CCMK-15	2102120	29-Jun-13	10	708932	5688236	Rock	0.31	96
13CCMK-16	2102121	29-Jun-13	10	708933	5688242	Rock	0.33	395
13CCMK-17	2102122	29-Jun-13	10	709005	5688362	Rock	0.57	14
13CCMK-18	2102123	29-Jun-13	10	708865	5688087	Rock	0.5	255
13CCMK-19	2102124	29-Jun-13	10	708930	5688080	Rock	0.26	276
13CCMK-20	2102125	29-Jun-13	10	708929	5688079	Rock	0.61	239
13CCMK-21	2102126	29-Jun-13	10	708930	5688085	Rock	0.97	88
13CCMK-22	2102127	29-Jun-13	10	708931	5688086	Rock	0.39	17
13CCMK-23	2102128	29-Jun-13	11	290987	5687842	Rock	0.47	2
13CCMK-24	2102129	29-Jun-13	11	291006	5686926	Rock	0.46	25
13CCMK-25	2102130	29-Jun-13	11	291029	5686919	Rock	0.33	2
13CCMK-26	2102131	29-Jun-13	11	291028	5686922	Rock	0.89	2
13CCMK-27	2102132	29-Jun-13	11	291034	5686850	Rock	0.7	114
13CCMK-28	2102133	29-Jun-13	11	291045	5686840	Rock	1.09	93
13CCMK-29	2102134	29-Jun-13	11	291030	5686826	Rock	0.39	410
13CCMK-30	2102135	29-Jun-13	11	291028	5686824	Rock	0.6	374
13CCMK-31	2102136	29-Jun-13	11	291026	5686822	Rock	0.51	34
13CCMK-32	2102137	29-Jun-13	11	291026	5686814	Rock	0.31	365
13CCMK-33	2102138	29-Jun-13	11	291028	5686810	Rock	0.65	1119
13CCMK-34	2102139	29-Jun-13	11	292175	5686772	Rock	0.42	72
13CCMK-35	2102140	29-Jun-13	11	292616	5687011	Rock	0.64	125
13CCMK-36	2102141	29-Jun-13	11	292617	5687014	Rock	0.39	143
13CCMK-37	2102142	29-Jun-13	10	708419	5683358	Rock	0.9	6
13CCMK-38	2102143	29-Jun-13	10	708431	5683352	Rock	0.31	6
13CCMK-39	2102144	29-Jun-13	10	708400	5683241	Rock	0.83	2
13CCMK-40	2102145	29-Jun-13	10	708422	5683215	Rock	0.76	4
13CCMK-41	2102146	29-Jun-13	10	708400	5683161	Rock	0.99	0

Figure 8.2a: Inset map 1 (Fig. 8.1) showing sample locations together with "Lab No" labels (table 8.3).

Figure 8.2b: Inset map 1 (Fig. 8.1) showing gold values for each sample site (table 8.3).

Figure 8.2c: Inset map 2 (Fig. 8.1) showing sample locations together with "Lab No" labels (table 8.3).

Figure 8.2d: Inset map 2 (Fig. 8.1) showing gold values for each sample site (table 8.3).

Figure 8.2e: Inset map 3 (Fig. 8.1) showing sample locations together with "Lab No" labels (table 8.3).

Figure 8.2f: Inset map 3 (Fig. 8.1) showing gold values for each sample site (table 8.3).

Ah Soil Geochemistry

A short Ah soil line was undertaken as a proxy for background gold values in soils preparatory to a more intensive soil investigation (Figs. 8.3a and 8.3b). The gold-in-soil values were remarkably high with one value – 34 ppb – exceptional (Tables 8.4 and 8.6). Sample descriptions are presented in table 8.5. Analytical results are presented in Appendix I.

Table 8.4: Percentiles of metals in Ah soil samples expressed as ranges I	between
percentile values.	

Metal-contentration plotting Intervals									
intervals between percentiles	Au ppb	Cu ppm	Zn ppm	Ag ppb	Pb ppm	Fe %			
0%-25%	0-0.9	0-13.4	0-51.2	0-99.5	0-18.0	0-0.4			
25%-50%	0.9-2.1	13.4-15.8	51.2-71.3	99.5-156	18.0-25.0	0.4-0.6			
50%-75%	2.1-4.0	15.8-23.1	71.3-102.6	156-225.5	25.0-33.5	0.6-0.9			
75%-90%	4.0-8.3	23.1-30.1	102.6-124.5	225.5-292.6	33.5-40.5	0.9-1.5			
90%-95%	8.3-14.7	30.1-52.2	124.5-134.7	292.6-385.9	40.5-44.1	1.5-1.9			
95%-100%	14.7-34	52.2-999.5	134.7-181.2	385.9-1783	44.1-69.0	1.9-11.9			

Table 8.5: Ah sample descriptions.

Sample number	ACME sample #	Sample_medium	Comments
13CCA001	2102051	AH soil	steep; spruce, subalpine fir
13CCA002	2102052	AH soil	moderate slope; spruce, subalpine fir, rhodos
13CCA003	2102053	AH soil	moderate slope; spruce, subalpine fir, rhodos
13CCA004	2102054	AH soil	steep; spruce, subalpine fir, rhodos
13CCA005	2102055	AH soil	steep; spruce, subalpine fir, rhodos
			moderate slope; spruce, subalpine fir, rhodos; adj. to
13CCA006	2102056	AH soil	outcrop
13CCA007	2102057	AH soil	moderate slope; spruce, subalpine fir, rhodos
13CCA008	2102058	AH soil	steep; spruce, subalpine fir, rhodos
13CCA009	2102059	AH soil	steep; adj to outcrop; subalpine fir, rhodos, heather
13CCA010	2102060	AH soil	steep; subalpine fir, rhodos
			moderate slope; subalpine fir, subcrop & above
13CCA011	2102061	AH soil	outcrop, above creek
			moderate slope; spruce, subalpine fir; adjacent to
13CCA012	2102062	AH soil	confluence of 3 streams
13CCA013	2102063	AH soil	gentle slope; subalpine fir, spruce; just above creek
			gentle slope; subalpine fir, spruce; just above creek
13CCA014	2102064	AH soil	& adjacent to snow patch
13CCA015	2102065	AH soil	gentle slope; subalpine fir, spruce; near creek

Field No	Lab No	Z	East	North	Analyte	Au ppb
13CCA001	2102051	10	708924	5688340	Soil	4.10
13CCA002	2102052	10	708904	5688379	Soil	4.90
13CCA003	2102053	10	708868	5688405	Soil	3.10
13CCA004	2102054	10	708821	5688417	Soil	1.90
13CCA005	2102055	10	708767	5688418	Soil	2.40
13CCA006	2102056	10	708761	5688454	Soil	3.60
13CCA007	2102057	10	708721	5688490	Soil	2.10
13CCA008	2102058	10	708694	5688444	Soil	2.10
13CCA009	2102059	10	708650	5688440	Soil	3.00
13CCA010	2102060	10	708600	5688470	Soil	1.70
13CCA011	2102061	10	708568	5688438	Soil	2.20
13CCA012	2102062	10	708543	5688406	Soil	34.00
13CCA013	2102063	10	708538	5688357	Soil	1.90
13CCA014	2102064	10	708529	5688305	Soil	2.60
13CCA015	2102065	10	708529	5688305	Soil	2.20

 Table 8.6: Summary analytical results for gold in Ah soil samples.

Figure 8.3a: Distribution of Ah soil sample sites with "Lab_No" labels (ref. table 8.6). Refer to figure 8.1, inset map 1 for general location.

Figure 8.3b: Distribution of Ah soil sample sites with gold values (ref. table 8.6). Refer to figure 8.1, inset map 1 for general location.

Geological Observation of Rock Textures, Alteration and Fabrics

This information is described in section 6.0 and augmented here with a series of annotated images that illustrate the main features in the *SC Zone*.

The extent and severity of silicification of the rhyolite porphyry is remarkable and speaks to a very strong hydrothermal (fluid) event associated with the latter stages of emplacement. Disseminated pyrite is ubiquitous. Late-stage extension accompanied by development of extensive quartz-filled vein and stockwork structures is interpreted as the gold-emplacement event.

Figure 8.4: Typical view of roadside outcrop along recent logging road in *SC Zone*. Typically exposures are rounded, lack edges and are hard to sample. The region has been extensively logged.

Figure 8.5: Dark, rhyolite porphyry host showing resorption by later siliceous/albitic phase associated with wholesale alteration of the host.

Figure 8.6: Silica flooded host porphyry, creating a grey, siliceous, aphanitic replacement texture that replaces porphyritic texture of original host porphyry.

Figure 8.7: Grey, aphanitic, silica-flooded rhyolite (right) brecciated (left) by invasion of siliceous/albitic fluid phase.

Figure 8.8: Silicified rhyolite porphyry brecciated and infilled by dark grey iron-rich(?) siliceous matrix.

Figure 8.9: Silicified rhyolite porphyry brecciated and infilled by dark grey iron-rich(?) siliceous matrix.

Figure 8.10: Possible flow textures in rhyolite porphyry across foliated- nonfoliated contact.

Figure 8.11: Close-up of figure 8.8

Figure 8.12: Gabbro intrusion (lower half) altered to pyrite-rich felsic rock (upper right) having thick hematitic weathering rind. This alteration accompanied emplacement of the rhyolite porphyry and indicates gabbro emplacement preceded rhyolite intrusion. Late, open-space veins are filled by coarse-crystalline euhedral quartz.

Figure 8.13: Black, foliated argillite and siltstone host to the rhyolite porphyry.

Figure 8.14: Cm-scale, parallel, late quartz veins filled by translucent to pale grey quartz. These veins are thought to host gold.

Figure 8.15: Mm to cm scale quartz veins and accompanying fractures cutting silicified rhyolite porphyry.

9.0 Method and Approach

The following sample protocols were used:

- Samples were taken using an 8 lb sledge hammer;
- Sample locations were recorded using a hand-held GSP, and sample number, location and description were written in a field notebook;
- Flagging tape annotated with the appropriate sample number was used to identify field location;
- Samples were placed in polyurethane bags and sample numbers written both on the sample and on the bags;
- Samples were transported to ACME Labs in Vancouver, B.C. by personal vehicle;
- Each sample was assigned an ACME Lab number using duplicate tags: one accompanying the sample, the other remaining with FAC;

10.0 Sample Preparation, Analyses and Security

Rock samples were prepared at Acme Analytical Laboratories Ltd ("Acme") in Vancouver, B.C. Samples were crushed to 70% passing a 2mm screen, and a 250 g split from the crushed sample was then pulverized to 85% passing a 75 micron screen. The samples were then fire assayed for gold (Group 3B, 30-gram sample) and analyzed for 36 elements (procedure 1DX1) using ICP-ES after digestion in aqua regia.

11.0 Data Verification

Laboratory analytical certificates from Acme Labs (Appendix I) were vetted by the author for unreasonable values caused by typographical errors, mistaken units, or corrupted data entries. Results were also checked against internal ACME standards for both accuracy and precision.

12.0 Summary

In June, 2013, First Americas Gold Corp. undertook a rock and soil geochemical evaluation, and geological reconnaissance of gold-bearing rhyolite porphyry (*SC Zone*) on its Kamloops Property. Results were encouraging and included 1) multi-gram gold in rocks, 2) significant gold in Ah soils, and 3) a very strong alteration signature within the rhyolite porphyry succession. Dimensions of the succession are significant: up to 800 m wide and 5 km long.

These results portent additional work which should include but not be restricted to the following:

- 1) Additional rock geochemical surveys within the *SC Zone* designed to fill in gaps, get to all surface exposures, and better define the geometry and extent of targets identified in the current stu dy;
- 2) Detailed mapping of the SC Zone rhyolite porphyry;
- 3) Gridded Ah soil surveys to help identify gold anomalies beneath the extensive cover in the area;
- 4) Gridded VLF geophysical surveys in search of massive pyrite conductors which may have high-grade gold values associated with them.
- 5) A comprehensive soil and VLF evaluation of possible on-strike extensions, onto FAC tenures, of the Chu Chua massive sulfide deposit.

13.0 Statement of Expenditures

Prop	erty: Kamloops	Expense
Event #	5458410	
Start - End Date:	June 27 - 30, 2013	
Tenure(s) work done on:	508589, 523835, 604247,	
	604248, 604259, 824362, 825122	
Type of work done:	Geological & Geochemical	
Renee Heatherington:	Jun 27, 28, 29, 30,	
	4 Man days @ 700	\$ 2,800.00
	Soil data compilation	400.00
Tom Kennedy:	Jun 27, 28, 29, 30,	
	4 Man days @ 350	1,400.00
Mike Kennedy:	Jun 27, 28, 29, 30,	
	4 Man days @ 350	1,400.00
	4 Truck days @ 150	600.00
Bob Thompson:	Jun 27, 28, 29, 30,	
	4 Man days @ 700	2,800.00
	Report	2,400.00
	Drafting	500.00
Field costs:	Tavel & L/O	1,624.90
	Mileage: 1428 @ 1.25/km	1,785.00
	Acme Analysis, 96 samples	2,880.00
Office &	Admin Costs 10%	1,858.99
Total	Program Costs	\$ 20,448.89

14.0 References

Dufresne, M., Raffle, K., Nicholls, S., 2012, Technical Report on the Chu Chua Property, British Columbia, Canada: *by* APEX Geoscience Ltd. *for* Newport Exploration Ltd.

Franklin, J.M., 1993, Volcanic-associated massive sulphide deposits, *in* Kirkham, R.V., Sinclair, W.D., Thorpe, R.I. and Duke, J.M., *eds.*, Mineral Deposit Modeling: Geological Association of Canada, Special Paper 40, p. 315-334.

Heberlein, D., 1990, Assessment report on the 1990 diamond drilling program, Chu 1-3 (1019, 9110, 9112), CC 1-3, CC 10-11 (1154, 1373, 1374, 1459, 1460), Ch-1 (1461); Kamloops Mining division, NTS 92P/8E, Lat. 51°22' N, Long. 120°04' W, British Columbia Ministry of Energy and Mines, Assessment Report No. 20670.

Raffle, K. 2013, Technical Report on the Chu Chua Property, British Columbia, Canada: by APEX Geoscience Ltd. for Strachan Resources Ltd.

Schiarizza, P., Preto, V.A., 1987, Geology of the Adams Plateau – Clearwater – Vavenby Area: Province of British Columbia, Ministry of Energy, Mines and Petroleum Resources, Paper 1987-2, 88p.

Wild, C., 1989, Geological mapping, lithogeochemical sampling, transient electromagnetic, and diamond drilling report, Chu Chua Project, Chu Chua Group A, Chu Chua Group B, Chu Chua Group C, Chu Chua Group D; Kamloops Mining Division, 92P/8E, Lat. 51°22' N, Long. 120°04' W, British Columbia Ministry of Energy and Mines, Assessment Report No. 19540.

15.0 Statement of Qualifications

I, Robert I. Thompson, do hereby certify that:

- 1) I attained the degree of Doctor of Philosophy (PhD) in geology from Queens University, Kingston, Ontario in 1972.
- 2) I have a Hon. B.Sc. in geology from Queens University, Kingston, Ontario (1968).
- 3) I am a registered member of the Association of Professional Engineers and Geoscientists of British Columbia (P.Eng. 1972).
- 4) I am a Fellow of the Geological Association of Canada.
- 5) I have worked as a geologist for a total of 38 years since my graduation from university, all of it in the Canadian Cordillera.
- 6) I have worked for the BC Geological Survey (1972-74) and the Geological Survey of Canada (1974- 2008).
- 7) I acted as a consultant to the Petroleum Department of the Bolivian Government (1990) under the auspices of PCIAC (Petro Canada International Aid Corp).
- 8) I have a thorough knowledge of the geology of British Columbia based on extensive field mapping.
- 9) I have authored numerous scholarly publications in peer-reviewed journals, and have published or am preparing to publish 32, 1:50,000 scale geological maps of Lardeau (NTS 82K) and Vernon (NTS: 82L) areas.
- 10) I have acted as a consultant to the mineral exploration industry for 6 years and have written numerous technical reports.
- 11) I was retained by First Americas Gold Corp. to undertake a geological and geochemical reconnaissance of the Kamloops Property near Barrière, British Columbia.
- 12) I am the sole author of this report.
- 13) I am not aware of any material fact or material change with respect to the subject matter of this report, which is not reflected in this report.

"signed and sealed" at North Saanich, B.C.

Robert I. Thompson, PhD, P.Eng RIT Minerals Corp 10915 Deep Cove Rd., North Saanich, B.C.

Dated at North Saanich, B.C. this 12th day of November, 2013 Reg. No. 115741 <u>Association of Professional</u> <u>Engineers and Geoscientists of British Columbia</u> Appendix I: Certificate of Analyses from ACME Labs Ltd. for Rock and Ah Soil Analyses

www.acmelab.com

Acme Analytical Laboratories (Vancouver) Ltd. 9050 Shaughnessy St Vancouver BC V6P 6E5 CANADA PHONE (604) 253-3158

CERTIFICATE OF ANALYSIS

Client: First Americas Gold Corp. 233 - 106 West Hastings Street

2323 - 106 West Hastings Street Vancouver BC V6E 3X2 CANADA

Submitted By:	Robert Thompson
Receiving Lab:	Canada-Vancouver
Received:	July 08, 2013
Report Date:	July 19, 2013
Page:	1 of 4

SAMPLE PREPARATION AND ANALYTICAL PROCEDURES

VAN13002463.1

							1
Project:	None Given	Procedure	Number of	Code Description	Test	Report	Lab
Shipment ID:		Code	Samples		wgt (g)	Status	
P.O. Number		R200-250	81	Crush, split and pulverize 250 g rock to 200 mesh			VAN
Number of Samples:	81	3B	81	Fire assay fusion Au by ICP-ES	30	Completed	VAN
		1DX	81	1:1:1 Aqua Regia digestion ICP-MS analysis	0.5	Completed	VAN

ADDITIONAL COMMENTS

SAMPLE DISPOSAL

PICKUP-PLP	Client to Pickup Pulps
PICKUP-RJT	Client to Pickup Rejects

CLIENT JOB INFORMATION

Acme does not accept responsibility for samples left at the laboratory after 90 days without prior written instructions for sample storage or return.

Invoice To: First Americas Gold Corp. 2323 - 106 West Hastings Street Vancouver BC V6E 3X2 CANADA

CC: Dr

This report supersedes all previous preliminary and final reports with this file number dated prior to the date on this certificate. Signature indicates final approval; preliminary reports are unsigned and should be used for reference only. All results are considered the confidential property of the client. Acrine assumes the liabilities for actual cost of analysis only. Results apply to samples as submitted. *** asterisk indicates that an analytical result could not be provided due to unsually high levels of interference from other elements.

	mo l al	າເ™										Clier	nt:	Firs 2323 Vance	- 106 We ouver BC	st Hasting V6E 3X2	Gold gs Street 2 CANAD	Corp.			
A Bureau Ve	eritas Group Company	72		www	.acmel	ab.com						Projec	t	None	Given						
Acme Analytical L	aboratories (Vancou	ver) Ltd.										Repor	t Date:	July 1	9, 2013						
9050 Shaughness	sv St Vancouver BC	V6P 6E5	CANAE	A																	
PHONE (604) 253	3-3158											Page:		2 of 4					Pa	at: 1	of 1
CERTIFI	CATE OF A	NALY	′SIS													VA	N13	3002	463	.1	
	Metho	al wGHT	3B	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	10X	1DX	1DX	10X	1DX	1DX	1DX	1DX
	Analy	e Wat	Au	Mo	Cu	Pb	Zn	Aq	Ni	Co	Mn	Fe	As	Au	Th	Sr	Cd	Sb	Bi	V	Ca
	Un	it kg	ppb	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppb	ppm	ppm	ppm	ppm	ppm	ppm	%
	MD	L 0.01	2	0.1	0.1	0.1	1	0.1	0.1	0.1	1	0.01	0.5	0.5	0.1	1	0.1	0.1	0.1	2	0.01
2102066	Rock	0.91	3	<0.1	1.6	26.2	44	<0.1	1.0	1.4	513	1.30	1.9	2.0	19.3	12	<0.1	0.2	<0.1	<2	1.14
2102067	Rock	0.73	3	0.7	250.1	8.7	3	0.2	0.4	0.7	46	0.92	1.2	2.2	14.1	14	<0.1	0.3	<0.1	<2	0.41
2102068	Rock	0.64	4	3.9	13.1	378.3	3	3.4	0.6	0.4	31	1.55	22.2	2.5	8.0	5	<0.1	0.1	6.2	<2	< 0.01
2102069	Rock	1.66	<2	0.4	62.6	15.8	917	<0.1	0.8	0.8	58	0.69	<0.5	< 0.5	13.4	6	3.3	<0.1	0.5	<2	0.19
2102070	Rock	0.70	11	0.8	4.3	10.4	3	<0.1	0.7	0.4	28	0.76	10.4	8.6	7.6	3	<0.1	1.7	0.3	<2	0.02
2102071	Rock	0.82	40	2.9	5.0	27.1	14	0.1	1.0	0.6	21	0.95	96.0	38.2	9.8	5	<0.1	2.1	0.5	<2	<0.01
2102072	Rock	1.00	00	2.1	5.4	23.0	20	<0.1	1.0	1.0	07	0.04	100.0	6.9	10.4	21	<0.1	1.5	0.5	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0.01
2102073	Rock	0.85	3	0.9	286.2	24.1	4	<0.1	0.6	1.0	69	1.08	4.0	3.4	11.9	6	<0.1	0.5	<0.1	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0.41
2102075	Rock	0.00	8	20.3	2821	16.4	59	0.5	91.9	13.7	131	3.80	<0.5	6.5	16.0	23	0.4	0.3	0.5	36	0.40
2102076	Rock	0.50	58	2.7	31.6	7.0	13	0.5	0.5	0.5	52	1.23	35.4	51.8	7.7	3	<0.1	0.2	0.1	<2	<0.01
2102077	Rock	0.65	4	56.9	561.1	12.4	11	2.1	13.1	1.1	70	31.25	22.8	<0.5	7.3	2	<0.1	0.7	3.3	14	0.03
2102078	Rock	0.79	10	0.6	9.5	7.3	11	<0.1	0.9	0.3	35	0.59	10.8	3.8	10.1	4	<0.1	0.4	0.2	<2	0.01
2102079	Rock	0.85	86	0.2	3.0	52.4	30	0.4	0.9	0.3	69	0.76	51.6	120.0	15.7	3	<0.1	<0.1	0.6	<2	0.01
2102080	Rock	0.70	68	0.4	2.6	25.3	15	0.1	1.3	0.4	50	1.14	98.8	31.4	7.4	2	<0.1	0.1	0.1	<2	< 0.01
2102081	Rock	1.23	1221	0.4	52.1	18.6	74	0.8	8.3	1.3	132	6.31	513.9	1605	8.4	11	0.2	0.4	0.3	5	0.09
2102082	Rock	0.52	1195	0.2	2.1	54.7	4	0.3	1.1	0.3	30	1.17	143.0	534.4	9.1	5	<0.1	0.3	0.2	<2	< 0.01
2102083	Rock	1.11	35	8.1	4.7	30.1	23	0.2	0.9	1.0	80	3.18	187.4	28.5	11.5	3	<0.1	1.3	0.2	<2	< 0.01
2102084	Rock	1.02	206	0.4	5.8	13.3	15	0.2	1.6	0.6	67	1.70	93.8	198.9	11.6	11	<0.1	0.1	0.1	<2	0.02
2102085	Rock	0.64	222	0.1	6.1	26.7	1	0.5	2.2	0.8	85	2.02	195.8	84.1	13.6	4	<0.1	0.2	0.7	<2	0.02
2102086	Rock	0.95	21	0.9	12.0	12.3	22	<0.1	26.6	24.2	115	0.66	10.5	9.3	0.3	25	<0.1	1.0	0.1	<2	<0.01
2102007	Rock	0.57	330	0.0	5.2	19.5	14	0.1	20.0	24.5	115	1.00	14.5	65.3	18.3	55	<0.1	0.1	0.2	0	0.05
2102000	Rock	0.57	383	0.2	94	16.0	14	0.2	33	11	189	1.00	31.5	114.2	20.4	33	<0.1	0.1	0.3	<2	0.02
2102090	Rock	0.52	17	0.6	12.8	70.1	55	0.2	2.0	0.5	72	3.44	5.1	17.3	11.0	5	<0.1	0.7	0.3	<2	<0.01
2102091	Rock	0.72	34	0.8	2.1	17.9	10	0.1	0.9	0.2	31	0.73	5.5	54.7	13.8	19	<0.1	<0.1	0.1	<2	0.02
2102092	Rock	0.74	163	0.2	5.4	85.5	19	0.6	1.7	0.3	56	1.69	5.9	30.1	15.4	6	<0.1	0.1	0.9	<2	< 0.01
2102093	Rock	0.37	8	0.1	5.1	17.5	28	0.2	0.7	<0.1	46	1.19	0.6	14.4	13.2	6	<0.1	0.1	0.2	<2	<0.01
2102094	Rock	1.09	409	<0.1	2.0	8.8	18	0.1	0.8	0.3	75	1.98	8.3	208.2	15.0	5	<0.1	<0.1	0.1	<2	< 0.01
2102095	Rock	0.80	1007	< 0.1	9.9	16.4	14	0.5	0.5	0.2	37	3.62	32.8	1757	12.8	6	<0.1	0.3	0.4	4	< 0.01

Acme Labs [™]		Client:	First Americas Gol 2323 - 106 West Hastings St Vancouver BC V6E 3X2 CAN	Id Corp. reet NADA	
A Bureau Veritas Group Company	www.acmelab.com	Project:	None Given		
Acme Analytical Laboratories (Vancouver) Ltd.		Report Date:	July 19, 2013		
9050 Shaughnessy St Vancouver BC V6P 6E	5 CANADA				
PHONE (604) 253-3158		Page:	2 of 4	Part:	2 of 1
CERTIFICATE OF ANAL	YSIS		VAN	13002463.1	

	Method	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1D.
	Analyte	P	La	Cr	Mg	Ba	Ti	В	AI	Na	ĸ	W	Hg	TI	S	Sc	Se	Ga	T
	Unit	%	ppm	ppm	%	ppm	%	ppm	%	%	%	ppm	ppm	ppm	%	ppm	ppm	ppm	ppn
	MDL	0.001	1	1	0.01	1	0.001	20	0.01	0.001	0.01	0.1	0.01	0.1	0.05	0.1	0.5	1	0.
2102066	Rock	0.028	49	1	0.12	115	0.001	<20	0.38	0.033	0.25	<0.1	< 0.01	<0.1	< 0.05	1.7	<0.5	1	<0.
2102067	Rock	0.025	30	2	0.01	33	0.018	<20	0.23	0.021	0.25	0.2	0.02	<0.1	0.56	0.7	0.7	<1	<0.
2102068	Rock	0.024	20	1	< 0.01	40	0.001	<20	0.19	0.037	0.21	0.2	0.02	0.1	0.24	0.6	1.0	<1	<0.
2102069	Rock	0.031	46	2	0.01	25	0.015	<20	0.23	0.027	0.21	0.1	0.12	<0.1	0.24	1.2	<0.5	1	<0.
2102070	Rock	0.024	29	1	< 0.01	52	< 0.001	<20	0.22	0.025	0.17	<0.1	0.02	<0.1	< 0.05	1.0	< 0.5	<1	<0.
2102071	Rock	0.018	36	1	< 0.01	84	< 0.001	<20	0.21	0.018	0.15	<0.1	0.04	0.2	0.43	1.2	< 0.5	<1	<0.
2102072	Rock	0.026	28	<1	< 0.01	73	< 0.001	<20	0.23	0.011	0.22	<0.1	0.04	<0.1	0.54	0.9	<0.5	<1	<0.
2102073	Rock	0.024	27	2	0.01	46	0.001	<20	0.21	0.031	0.18	<0.1	0.03	<0.1	0.41	1.1	<0.5	<1	<0.
2102074	Rock	0.020	37	2	0.04	63	0.001	<20	0.24	0.025	0.20	<0.1	< 0.01	<0.1	0.09	0.8	1.0	<1	<0.
2102075	Rock	0.034	29	10	0.67	297	0.037	<20	1.30	0.063	0.11	0.1	0.05	<0.1	0.37	3.7	28.3	6	0.
2102076	Rock	0.012	36	1	0.01	71	< 0.001	<20	0.23	0.008	0.20	<0.1	0.04	<0.1	< 0.05	0.5	4.3	<1	<0.
2102077	Rock	0.008	7	2	1.38	10	0.003	<20	2.18	0.004	< 0.01	0.9	< 0.01	<0.1	>10	2.3	38.0	6	0.
2102078	Rock	0.014	35	1	< 0.01	36	< 0.001	<20	0.14	0.056	0.07	<0.1	< 0.01	<0.1	< 0.05	1.8	<0.5	<1	<0.
2102079	Rock	0.011	39	1	0.01	55	< 0.001	<20	0.28	0.029	0.15	<0.1	0.02	<0.1	0.15	1.2	< 0.5	<1	<0.
2102080	Rock	0.007	19	2	0.01	51	0.001	<20	0.18	0.027	0.07	<0.1	< 0.01	<0.1	0.44	0.5	<0.5	<1	<0.
2102081	Rock	0.032	14	2	0.02	97	0.002	<20	0.23	0.033	0.24	0.8	0.02	<0.1	4.44	1.4	0.7	<1	<0.
2102082	Rock	0.009	25	2	0.02	57	0.002	<20	0.17	0.045	0.11	<0.1	< 0.01	<0.1	0.15	0.4	<0.5	<1	<0.
2102083	Rock	0.009	32	<1	0.02	81	< 0.001	<20	0.25	0.005	0.21	<0.1	0.18	3.3	1.84	1.0	<0.5	<1	<0.
2102084	Rock	0.013	28	2	0.02	84	< 0.001	<20	0.21	0.037	0.21	<0.1	< 0.01	0.1	0.62	1.2	<0.5	<1	<0.
2102085	Rock	0.013	23	1	0.01	64	< 0.001	<20	0.23	0.040	0.15	<0.1	< 0.01	<0.1	1.80	0.8	<0.5	<1	<0.
2102086	Rock	0.005	21	2	< 0.01	92	0.001	<20	0.19	0.056	0.13	<0.1	0.13	0.4	0.13	0.3	< 0.5	<1	<0.
2102087	Rock	0.053	7	6	0.21	134	0.001	<20	0.28	0.032	0.19	<0.1	0.03	0.3	1.25	2.2	<0.5	<1	<0.
2102088	Rock	0.018	42	1	0.01	121	< 0.001	<20	0.24	0.031	0.19	<0.1	< 0.01	<0.1	0.62	1.2	<0.5	<1	<0.
2102089	Rock	0.025	47	1	0.04	111	< 0.001	<20	0.19	0.058	0.11	<0.1	<0.01	<0.1	0.45	2.7	<0.5	<1	<0.
2102090	Rock	0.016	14	2	< 0.01	79	< 0.001	<20	0.16	0.068	0.08	<0.1	0.01	<0.1	1.06	5.5	<0.5	<1	<0.
2102091	Rock	0.017	27	<1	< 0.01	61	< 0.001	<20	0.12	0.074	0.06	<0.1	< 0.01	<0.1	0.18	1.3	<0.5	<1	<0.
2102092	Rock	0.016	33	2	< 0.01	77	< 0.001	<20	0.14	0.064	80.0	<0.1	< 0.01	<0.1	0.70	2.0	0.6	<1	<0.
2102093	Rock	0.016	34	2	< 0.01	11	< 0.001	<20	0.10	0.079	0.01	<0.1	0.02	<0.1	< 0.05	1.9	< 0.5	<1	<0.
2102094	Rock	0.013	30	1	< 0.01	14	< 0.001	<20	0.12	0.090	0.01	<0.1	< 0.01	<0.1	0.42	5.7	<0.5	<1	<0.
2102095	Rock	0.017	31	2	< 0.01	143	< 0.001	<20	0.18	0.049	0.18	<0.1	< 0.01	< 0.1	0.26	1.3	0.8	1	<0.

Ξ

This report supersedes all previous preliminary and final reports with this file number dated prior to the date on this certificate. Signature indicates final approval; preliminary reports are unsigned and should be used for reference only.

]

First Americas Gold Corp.

	mo l ah	C™										Clien	ıt:	Firs 2323 Vanc	- 106 We ouver BC	ericas st Hastin V6E 3X2	Gold gs Street CANAD	Corp. A		
A Bureau Ve Acme Analytical L	eritas Group Company Laboratories (Vancouve	er) Ltd.	CANAD	www	acmela	ıb.com						Projec Repor	t: t Date:	None July 1	Given 9, 2013					
PHONE (604) 25	3-3158	OP DES (CANAL	A								Page:		2 of 4	i.				Part:	2 of 1
CERTIFI	CATE OF AN	IALY	SIS									2				VA	N13	002	463.1	
	Method	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	
	Analyte	Р	La	Cr	Mg	Ba	Ti	в	AI	Na	к	w	Hg	TI	S	Sc	Se	Ga	Te	
	Unit	%	ppm	ppm	%	ppm	%	ppm	%	%	%	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	
	MDL	0.001	1	1	0.01	1	0.001	20	0.01	0.001	0.01	0.1	0.01	0.1	0.05	0.1	0.5	1	0.2	
2102066	Rock	0.028	49	1	0.12	115	0.001	<20	0.38	0.033	0.25	<0.1	< 0.01	<0.1	< 0.05	1.7	<0.5	1	<0.2	
2102067	Rock	0.025	30	2	0.01	33	0.018	<20	0.23	0.021	0.25	0.2	0.02	<0.1	0.56	0.7	0.7	<1	<0.2	
2102068	Rock	0.024	20	1	< 0.01	40	0.001	<20	0.19	0.037	0.21	0.2	0.02	0.1	0.24	0.6	1.0	<1	<0.2	
2102069	Rock	0.031	46	2	0.01	25	0.015	<20	0.23	0.027	0.21	0.1	0.12	<0.1	0.24	1.2	<0.5	1	<0.2	
2102070	Rock	0.024	29	1	< 0.01	52	< 0.001	<20	0.22	0.025	0.17	<0.1	0.02	<0.1	< 0.05	1.0	<0.5	<1	<0.2	
2102071	Rock	0.018	36	1	< 0.01	84	< 0.001	<20	0.21	0.018	0.15	<0.1	0.04	0.2	0.43	1.2	< 0.5	<1	<0.2	
2102072	Rock	0.026	28	<1	< 0.01	73	< 0.001	<20	0.23	0.011	0.22	< 0.1	0.04	<0.1	0.54	0.9	<0.5	<1	<0.2	
2102073	Rock	0.024	27	2	0.01	46	0.001	<20	0.21	0.031	0.18	<0.1	0.03	<0.1	0.41	1.1	<0.5	<1	<0.2	
2102074	Rock	0.020	37	2	0.04	63	0.001	<20	0.24	0.025	0.20	<0.1	< 0.01	<0.1	0.09	0.8	1.0	<1	<0.2	
2102075	Rock	0.034	29	10	0.67	297	0.037	<20	1.30	0.063	0.11	0.1	0.05	<0.1	0.37	3.7	28.3	6	0.6	
2102076	Rock	0.012	36	1	0.01	71	< <mark>0.001</mark>	<20	0.23	0.008	0.20	<0.1	0.04	<0.1	< 0.05	0.5	4.3	<1	<0.2	
2102077	Rock	0.008	7	2	1.38	10	0.003	<20	2.18	0.004	< 0.01	0.9	< 0.01	<0.1	>10	2.3	38.0	6	0.4	
2102078	Rock	0.014	35	1	< 0.01	36	< 0.001	<20	0.14	0.056	0.07	<0.1	< 0.01	<0.1	< 0.05	1.8	<0.5	<1	<0.2	
2102079	Rock	0.011	39	1	0.01	55	< 0.001	<20	0.28	0.029	0.15	<0.1	0.02	<0.1	0.15	1.2	<0.5	<1	<0.2	
2102080	Rock	0.007	19	2	0.01	51	0.001	<20	0.18	0.027	0.07	<0.1	< 0.01	<0.1	0.44	0.5	< 0.5	<1	<0.2	
2102081	Rock	0.032	14	2	0.02	97	0.002	<20	0.23	0.033	0.24	0.8	0.02	<0.1	4.44	1.4	0.7	<1	<0.2	
2102082	Rock	0.009	25	2	0.02	57	0.002	<20	0.17	0.045	0.11	<0.1	< 0.01	<0.1	0.15	0.4	<0.5	<1	<0.2	
2102083	Rock	0.009	32	<1	0.02	81	< <mark>0.001</mark>	<20	0.25	0.005	0.21	<0.1	0.18	3.3	1.84	1.0	<0.5	<1	<0.2	
2102084	Rock	0.013	28	2	0.02	84	< 0.001	<20	0.21	0.037	0.21	<0.1	< 0.01	0.1	0.62	1.2	< 0.5	<1	<0.2	
2102085	Rock	0.013	23	1	0.01	64	< 0.001	<20	0.23	0.040	0.15	<0.1	< 0.01	<0.1	1.80	0.8	<0.5	<1	<0.2	
2102086	Rock	0.005	21	2	< 0.01	92	0.001	<20	0.19	0.056	0.13	<0.1	0.13	0.4	0.13	0.3	<0.5	<1	<0.2	
2102087	Rock	0.053	7	6	0.21	134	0.001	<20	0.28	0.032	0.19	<0.1	0.03	0.3	1.25	2.2	<0.5	<1	<0.2	
2102088	Rock	0.018	42	1	0.01	121	< 0.001	<20	0.24	0.031	0.19	<0.1	< 0.01	<0.1	0.62	1.2	<0.5	<1	<0.2	
2102089	Rock	0.025	47	1	0.04	111	< 0.001	<20	0.19	0.058	0.11	<0.1	<0.01	<0.1	0.45	2.7	<0.5	<1	<0.2	
2102090	Rock	0.016	14	2	< 0.01	79	< 0.001	<20	0.16	0.068	0.08	<0.1	0.01	<0.1	1.06	5.5	<0.5	<1	<0.2	
2102091	Rock	0.017	27	<1	< 0.01	61	< 0.001	<20	0.12	0.074	0.06	<0.1	< 0.01	<0.1	0.18	1.3	<0.5	<1	<0.2	
2102092	Rock	0.016	33	2	< 0.01	77	< 0.001	<20	0.14	0.064	0.08	<0.1	< 0.01	<0.1	0.70	2.0	0.6	<1	<0.2	
2102093	Rock	0.016	34	2	< 0.01	11	< 0.001	<20	0.10	0.079	0.01	<0.1	0.02	<0.1	< 0.05	1.9	<0.5	<1	<0.2	
2102094	Rock	0.013	30	1	< 0.01	14	< 0.001	<20	0.12	0.090	0.01	<0.1	< 0.01	<0.1	0.42	5.7	<0.5	<1	<0.2	
2102095	Rock	0.017	31	2	< 0.01	143	< 0.001	<20	0.18	0.049	0.18	< 0.1	< 0.01	< 0.1	0.26	1.3	0.8	1	< 0.2	

This report supersedes all previous preliminary and final reports with this file number dated prior to the date on this certificate. Signature indicates final approval; preliminary reports are unsigned and should be used for reference only.

Acme Labs [™]		Client:	First Americas Gol 2323 - 106 West Hastings St Vancouver BC V6E 3X2 CAN	Id Corp. reet NADA	
A Bureau Veritas Group Company	www.acmelab.com	Project:	None Given		
Acme Analytical Laboratories (Vancouver) Ltd.		Report Date:	July 19, 2013		
9050 Shaughnessy St Vancouver BC V6P 6E	5 CANADA				
PHONE (604) 253-3158		Page:	2 of 4	Part:	2 of 1
CERTIFICATE OF ANAL	YSIS		VAN	13002463.1	

	Method	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1D.
	Analyte	P	La	Cr	Mg	Ba	Ti	В	AI	Na	ĸ	W	Hg	TI	S	Sc	Se	Ga	T
	Unit	%	ppm	ppm	%	ppm	%	ppm	%	%	%	ppm	ppm	ppm	%	ppm	ppm	ppm	ppn
	MDL	0.001	1	1	0.01	1	0.001	20	0.01	0.001	0.01	0.1	0.01	0.1	0.05	0.1	0.5	1	0.
2102066	Rock	0.028	49	1	0.12	115	0.001	<20	0.38	0.033	0.25	<0.1	< 0.01	<0.1	< 0.05	1.7	<0.5	1	<0.
2102067	Rock	0.025	30	2	0.01	33	0.018	<20	0.23	0.021	0.25	0.2	0.02	<0.1	0.56	0.7	0.7	<1	<0.
2102068	Rock	0.024	20	1	< 0.01	40	0.001	<20	0.19	0.037	0.21	0.2	0.02	0.1	0.24	0.6	1.0	<1	<0.
2102069	Rock	0.031	46	2	0.01	25	0.015	<20	0.23	0.027	0.21	0.1	0.12	<0.1	0.24	1.2	<0.5	1	<0.
2102070	Rock	0.024	29	1	< 0.01	52	< 0.001	<20	0.22	0.025	0.17	<0.1	0.02	<0.1	< 0.05	1.0	< 0.5	<1	<0.
2102071	Rock	0.018	36	1	< 0.01	84	< 0.001	<20	0.21	0.018	0.15	<0.1	0.04	0.2	0.43	1.2	<0.5	<1	<0.
2102072	Rock	0.026	28	<1	< 0.01	73	< 0.001	<20	0.23	0.011	0.22	<0.1	0.04	<0.1	0.54	0.9	<0.5	<1	<0.
2102073	Rock	0.024	27	2	0.01	46	0.001	<20	0.21	0.031	0.18	<0.1	0.03	<0.1	0.41	1.1	<0.5	<1	<0.
2102074	Rock	0.020	37	2	0.04	63	0.001	<20	0.24	0.025	0.20	<0.1	< 0.01	<0.1	0.09	0.8	1.0	<1	<0.
2102075	Rock	0.034	29	10	0.67	297	0.037	<20	1.30	0.063	0.11	0.1	0.05	<0.1	0.37	3.7	28.3	6	0.
2102076	Rock	0.012	36	1	0.01	71	< 0.001	<20	0.23	0.008	0.20	<0.1	0.04	<0.1	< 0.05	0.5	4.3	<1	<0.
2102077	Rock	0.008	7	2	1.38	10	0.003	<20	2.18	0.004	< 0.01	0.9	< 0.01	<0.1	>10	2.3	38.0	6	0.
2102078	Rock	0.014	35	1	< 0.01	36	< 0.001	<20	0.14	0.056	0.07	<0.1	< 0.01	<0.1	< 0.05	1.8	<0.5	<1	<0.
2102079	Rock	0.011	39	1	0.01	55	< 0.001	<20	0.28	0.029	0.15	<0.1	0.02	<0.1	0.15	1.2	< 0.5	<1	<0.
2102080	Rock	0.007	19	2	0.01	51	0.001	<20	0.18	0.027	0.07	<0.1	< 0.01	<0.1	0.44	0.5	<0.5	<1	<0.
2102081	Rock	0.032	14	2	0.02	97	0.002	<20	0.23	0.033	0.24	0.8	0.02	<0.1	4.44	1.4	0.7	<1	<0.
2102082	Rock	0.009	25	2	0.02	57	0.002	<20	0.17	0.045	0.11	<0.1	< 0.01	<0.1	0.15	0.4	<0.5	<1	<0.
2102083	Rock	0.009	32	<1	0.02	81	< 0.001	<20	0.25	0.005	0.21	<0.1	0.18	3.3	1.84	1.0	<0.5	<1	<0.
2102084	Rock	0.013	28	2	0.02	84	< 0.001	<20	0.21	0.037	0.21	<0.1	< 0.01	0.1	0.62	1.2	<0.5	<1	<0.
2102085	Rock	0.013	23	1	0.01	64	< 0.001	<20	0.23	0.040	0.15	<0.1	< 0.01	<0.1	1.80	0.8	<0.5	<1	<0.
2102086	Rock	0.005	21	2	< 0.01	92	0.001	<20	0.19	0.056	0.13	<0.1	0.13	0.4	0.13	0.3	< 0.5	<1	<0.
2102087	Rock	0.053	7	6	0.21	134	0.001	<20	0.28	0.032	0.19	<0.1	0.03	0.3	1.25	2.2	<0.5	<1	<0.
2102088	Rock	0.018	42	1	0.01	121	< 0.001	<20	0.24	0.031	0.19	<0.1	< 0.01	<0.1	0.62	1.2	<0.5	<1	<0.
2102089	Rock	0.025	47	1	0.04	111	< 0.001	<20	0.19	0.058	0.11	<0.1	<0.01	<0.1	0.45	2.7	<0.5	<1	<0.
2102090	Rock	0.016	14	2	< 0.01	79	< 0.001	<20	0.16	0.068	0.08	<0.1	0.01	<0.1	1.06	5.5	<0.5	<1	<0.
2102091	Rock	0.017	27	<1	< 0.01	61	< 0.001	<20	0.12	0.074	0.06	<0.1	< 0.01	<0.1	0.18	1.3	<0.5	<1	<0.
2102092	Rock	0.016	33	2	< 0.01	77	< 0.001	<20	0.14	0.064	80.0	<0.1	< 0.01	<0.1	0.70	2.0	0.6	<1	<0.
2102093	Rock	0.016	34	2	< 0.01	11	< 0.001	<20	0.10	0.079	0.01	<0.1	0.02	<0.1	< 0.05	1.9	<0.5	<1	<0.
2102094	Rock	0.013	30	1	< 0.01	14	< 0.001	<20	0.12	0.090	0.01	<0.1	< 0.01	<0.1	0.42	5.7	<0.5	<1	<0.
2102095	Rock	0.017	31	2	< 0.01	143	< 0.001	<20	0.18	0.049	0.18	<0.1	< 0.01	< 0.1	0.26	1.3	0.8	1	<0.

Ξ

This report supersedes all previous preliminary and final reports with this file number dated prior to the date on this certificate. Signature indicates final approval; preliminary reports are unsigned and should be used for reference only.

]

Δ	mo l at	۱۲™										Clien	ıt:	Firs 2323 Vance	- 106 We ouver BC	ericas est Hasting V6E 3X2	Gold gs Street CANAD	Corp. A			
A Bureau V	reritas Group Company	13		www	.acmela	ab.com						Projec Repor	:t: t Date:	None	Given						
Acme Analytical I	Laboratories (Vancouve	er) Ltd.										p	Date.	July	3, 2015						
050 Shaughnes	sy St Vancouver BC V	6P 6E5 (CANAL	A																	
HONE (604) 25	3-3158											Page:		3 of 4					Pa	at 1	of 1
AFRICI																	1140		100		
CERTIFI	CATE OF AN	IALY	SIS													VA	N13	002	463	.1	
	Method	WGHT	3B	1DX	10X	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	100
	Analyte	Wat	Au	Mo	Cu	Pb	Zn	Aq	Ni	Co	Mn	Fe	As	Au	Th	Sr	Cd	Sb	Bi	V	Ca
	Unit	ka	daa	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	daa	ppm	ppm	ppm	ppm	ppm	ppm	%
	MDL	0.01	2	0.1	0.1	0.1	1	0.1	0.1	0.1	1	0.01	0.5	0.5	0.1	1	0.1	0.1	0.1	2	0.01
2102096	Rock	0.55	182	<0.1	5.0	10.9	32	0.2	0.8	0.3	133	2.78	10.5	405.5	15.4	6	<0.1	0.2	0.1	<2	< 0.01
2102097	Rock	0.56	569	<0.1	6.3	23.9	21	0.3	0.8	0.1	38	2.02	10.0	384.4	19.9	4	<0.1	0.3	0.5	<2	< 0.01
2102098	Rock	0.64	36	0.6	6.3	27.1	7	0.1	0.4	0.6	40	0.69	2.2	30.1	11.3	6	<0.1	<0.1	<0.1	<2	< 0.01
2102099	Rock	0.97	3	0.8	289.6	11.8	14	<0.1	1.0	0.9	56	0.55	<0.5	1.1	11.8	4	<0.1	<0.1	0.1	<2	0.03
2102100	Rock	0.92	6	0.5	323.0	9.1	64	<0.1	1.6	0.8	168	1.89	1.8	2.7	17.9	9	0.2	0.3	<0.1	2	0.12
2102101	Rock	1.42	12	16.4	294.9	57.7	12	0.7	1.6	6.9	16	1.57	14.6	15.2	13.1	7	<0.1	0.2	0.2	<2	< 0.01
2102102	Rock	0.62	7	1.1	80.2	42.5	16	0.2	0.9	1.4	31	1.60	3711	5.6	14.2	2	0.1	6.4	0.3	<2	0.02
2102103	Rock	1.16	12	1.2	29.6	14.5	10	<0.1	0.9	0.3	28	0.95	13.5	11.4	8.8	4	<0.1	0.3	0.5	<2	< 0.01
2102104	Rock	0.97	14	1.9	21.0	7.3	1	0.2	1.3	0.9	20	0.64	9.3	8.8	12.6	4	<0.1	0.3	<0.1	<2	< 0.01
2102105	Rock	0.81	30	2.0	52.2	8.1	46	3.6	1.4	0.9	25	0.85	18.0	11.4	10.9	4	0.1	10.3	0.1	<2	< 0.01
2102106	Rock	0.48	<2	6.7	62.4	3.4	9	<0.1	38.3	8.3	97	2.76	12.6	<0.5	9.4	21	<0.1	0.2	<0.1	23	0.33
2102107	Rock	0.48	<2	1.3	4.2	5.1	8	<0.1	1.2	0.6	88	0.76	3.5	<0.5	9.2	10	<0.1	0.2	<0.1	3	1.27
2102108	Rock	0.49	134	1.8	8.2	78.5	19	0.3	2.2	0.5	59	1.18	8.8	8.7	12.1	4	<0.1	0.1	0.2	<2	0.04
2102109	Rock	0.85	12	0.8	9.0	15.3	29	<0.1	0.9	0.8	81	0.48	1.1	<0.5	11.8	7	<0.1	<0.1	<0.1	<2	0.18
2102110	Rock	0.33	<2	5.6	13.8	10.8	61	0.2	42.6	10.1	78	2.37	13.3	<0.5	7.2	10	<0.1	1.0	0.3	20	0.02
2102111	Rock	0.74	60	1.8	6.0	26.4	15	<0.1	1.8	1.2	67	1.22	72.6	31.8	7.4	19	<0.1	0.8	0.3	<2	0.20
2102112	Rock	0.89	42	1.6	14.2	6.8	9	<0.1	1.2	0.6	22	0.51	70.7	38.0	9.4	7	<0.1	0.8	0.1	<2	0.03
2102113	Rock	0.60	9	2.5	6.6	18.4	44	<0.1	1.2	0.3	31	0.67	5.4	8.1	11.4	4	0.3	0.4	0.1	<2	0.01
2102114	Rock	0.60	2	3.4	2.0	54.3	4	<0.1	1.0	0.9	90	0.42	1.9	<0.5	16.1	5	<0.1	0.2	<0.1	<2	0.04
2102115	Rock	0.61	6	0.2	0.9	10/8	14	4.4	0.9	0.2	22	0.28	1.8	1.8	12.2	5	<0.1	1./	1.3	<2	0.05
2102116	Rock	0.64	<2	0.3	3.9	28.7	31	<0.1	1.1	0.3	69	0.65	3.4	<0.5	11.0	6	0.1	<0.1	0.2	<2	0.04
2102117	Rock	0.35	<2	0.4	24.6	12.4	<1	<0.1	0.7	0.1	21	0.48	<0.5	0.5	8.4	3	<0.1	<0.1	<0.1	<2	<0.01
2102118	Rock	0.21	145	0.5	1.1	154.4	4/	0.9	2.0	0.6	76	1.25	159.6	106.6	0.5	<1	<0.1	1.9	2.0	2	<0.01
2102119	ROCK	0.34	1100	0.5	15.1	>10000	131	>100	1.4	0.3	25	0.67	50.4	102.7	2.1		0.7	19.2	113.7	~2	<0.01
2102120	ROCK	0.31	305	0.4	0.0	31.4	59	0.2	4.0	1.2	75	2.58	4/5.6	103.7	14.5	27	0.2	0.5	0.2	- 2	0.04
2102121	Rock	0.33	395	0.4	20.0	25.1	94	0.4	4.5	1.0	211	3.59	270.0	621.7	12.2	21	0.1	0.6	0.5	<2	0.24
2102122	Rock	0.57	255	1.2	21.9	265.1	252	2.4	30.0	4.5	41	2.30	102.7	27.0	1.3	2	<0.1	2.9	0.5	20	0.04
2102123	Rock	0.50	200	0.3	J.4	505.1	203	0.2	1.4	0.0	40	1.10	102.7	215.0	12.4	12	<0.1	2.4	4.2	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0.01
2102124	ROCK	0.20	210	0.5	15.9	0.0	11	0.3	1.2	0.5	01	1.50	2302	315.9	10.0	15	<0.1	2.0	0.2	~2	0.01

19

1.0

3.9 1.7 77 3.82

1008 235.4

15.9

13 <0.1

3.1 0.6

<2 0.01

Rock

2102125

0.61

239

0.8

Δ	me l ah	ا۲										Clien	ıt:	Firs 2323 Vance	- 106 We ouver BC	st Hastin V6E 3X2	Gold gs Street CANAD	Corp. A		
A Bureau Ve	eritas Group Company	5		www	acmela	b.com						Projec	t	None	Given					
Acmo Analytical I	aboratories (Vancouve	r) I to										Report	t Date:	July 1	9, 2013					
0050 Shaughnoss	sv St. Vancouver BC. V	ED EES																		
PHONE (604) 253	3-3158	OF OED (JANAD	A										0.64						2 4 4
												Page:		3 OT 4					Part:	2 01 1
CERTIFIC	CATE OF AN	IALY	SIS													VA	N13	002	463.1	
	Method	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	
	Analyte	Р	La	Cr	Mg	Ba	Ti	В	AI	Na	к	W	Hg	TI	S	Sc	Se	Ga	Те	
	Unit	%	ppm	ppm	%	ppm	%	ppm	%	%	%	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	
	MDL	0.001	1	1	0.01	1	0.001	20	0.01	0.001	0.01	0.1	0.01	0.1	0.05	0.1	0.5	1	0.2	
2102096	Rock	0.016	30	2	< 0.01	43	< 0.001	<20	0.14	0.078	0.04	<0.1	0.01	<0.1	0.21	3.7	<0.5	<1	<0.2	
2102097	Rock	0.013	44	2	< 0.01	18	< 0.001	<20	0.17	0.086	0.02	<0.1	0.02	<0.1	0.07	3.0	< 0.5	<1	< 0.2	
2102098	Rock	0.014	38	2	< 0.01	80	< 0.001	<20	0.20	0.039	0.18	<0.1	0.02	<0.1	< 0.05	0.5	<0.5	<1	<0.2	
2102099	Rock	0.011	33	8	0.01	81	0.001	<20	0.25	0.016	0.27	<0.1	<0.01	<0.1	< 0.05	0.6	< 0.5	<1	<0.2	
2102100	Rock	0.017	34	4	0.11	128	0.001	<20	0.44	0.003	0.38	<0.1	0.01	<0.1	0.14	1.4	1.0	1	<0.2	
2102101	Rock	0.019	20	3	0.01	104	<0.001	<20	0.26	800.0	0.26	<0.1	0.02	<0.1	1.05	0.8	3.3	<1	<0.2	
2102102	Rock	0.017	25	0	0.01	74	<0.001	<20	0.27	0.028	0.15	<0.1	<0.01	<0.1	0.07	1.0	1.3	<1	<0.2	
2102103	Rock	0.011	25	7	<0.01	65	<0.001	<20	0.22	0.020	0.17	<0.1	<0.01	<0.1	0.05	0.0	0.5	<1	<0.2	
2102105	Rock	0.010	24	10	<0.01	79	<0.001	<20	0.19	0.037	0.14	<0.1	0.05	<0.1	0.48	0.7	<0.5	<1	<0.2	
2102106	Rock	0.038	18	14	0.88	60	0.004	<20	1.23	0.005	0.25	<0.1	< 0.01	<0.1	0.22	1.5	1.7	3	<0.2	
2102107	Rock	0.022	17	10	0.12	18	0.040	<20	1.11	0.073	0.03	<0.1	< 0.01	<0.1	< 0.05	2.9	< 0.5	4	<0.2	
2102108	Rock	0.026	39	7	0.02	39	0.002	<20	0.24	0.036	0.12	<0.1	< 0.01	<0.1	< 0.05	1.4	<0.5	<1	<0.2	
2102109	Rock	0.028	51	13	0.02	25	0.018	<20	0.23	0.028	0.19	0.2	<0.01	<0.1	0.06	1.7	<0.5	1	<0.2	
2102110	Rock	0.041	16	23	0.76	69	0.005	<20	1.07	0.008	0.15	<0.1	0.03	<0.1	1.11	2.4	1.5	3	<0.2	
2102111	Rock	0.021	20	6	0.03	109	< 0.001	<20	0.22	0.011	0.18	<0.1	0.02	<0.1	0.85	1.8	< 0.5	<1	< 0.2	
2102112	Rock	0.027	33	15	< 0.01	98	< 0.001	<20	0.25	0.020	0.18	<0.1	0.02	<0.1	0.10	0.9	<0.5	<1	<0.2	
2102113	Rock	0.018	28	12	<0.01	51	0.004	<20	0.17	0.026	0.18	<0.1	0.10	<0.1	0.13	1.0	<0.5	<1	< 0.2	
2102114	Rock	0.021	62	8	<0.01	55	<0.001	<20	0.22	0.048	0.15	<0.1	<0.01	<0.1	<0.05	1.1	<0.5	<1	<0.2	
2102115	ROCK	0.020	43	1	<0.01	150	<0.001	<20	0.20	0.036	0.13	0.1	<0.02	<0.1	0.05	1.0	1.1	<1	<0.2	
2102110	Rock	0.015	20	11	<0.01	45	<0.001	<20	0.21	0.049	0.03	<0.1	<0.01	<0.1	0.05	0.5	13	<1	<0.2	
2102118	Rock	0,002	<1	11	0.01	7	0.003	<20	0.08	0.003	0.01	<0.1	0.09	<0.1	0.13	0.4	<0.5	<1	0.3	
2102119	Rock	0.003	7	7	0.01	12	0.002	<20	0.16	0.013	0.04	<0.1	0.97	<0.1	0.46	0.4	17.9	<1	8.4	
2102120	Rock	0.018	29	6	0.02	112	0.001	<20	0.26	0.032	0.22	0.2	< 0.01	<0.1	1.28	1.7	<0.5	<1	<0.2	
2102121	Rock	0.019	26	8	0.04	58	0.001	<20	0.19	0.028	0.19	0.5	0.01	<0.1	1.42	1.8	0.8	<1	<0.2	
2102122	Rock	0.076	21	26	0.69	121	0.002	<20	1.32	0.003	0.17	<0.1	0.04	0.1	0.76	1.5	1.2	5	<0.2	
2102123	Rock	0.008	19	7	< 0.01	106	< 0.001	<20	0.20	0.031	0.13	<0.1	0.06	<0.1	0.86	0.6	0.7	<1	<0.2	
2102124	Rock	0.013	44	8	< 0.01	83	< 0.001	<20	0.19	0.032	0.18	<0.1	< 0.01	<0.1	0.15	1.4	<0.5	<1	<0.2	
2102125	Rock	0.028	33	9	0.01	83	<0.001	<20	0.22	0.032	0.15	<0.1	< 0.01	<0.1	1.66	2.8	<0.5	<1	<0.2	

Acme Analytical I 9050 Shaughnes PHONE (604) 25	eritas Group Company Laboratories (Vancouver sy St Vancouver BC V 3-3158)S ™ er) Ltd. 6P 6E5 (CANAD	www. A	acmela	ıb.com						Clien Projec Repor Page:	t: t Date:	Firs 2323 Vanco None July 1 4 of 4	t Ame - 106 We Duver BC Given 9, 2013	st Hastin V6E 3X2	Gold gs Street CANAD	Corp.	Pa	rt 1	of 1
CERTIE	CATE OF AN		SIS													\/A	N13	002	463	1	
																v / \		002	100	283 .	
	Method	WGHT	3B	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX
	Analyte	Wgt	Au	Mo	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	Au	Ih	Sr	Cd	Sb	Bi	V	Ca
	MDL	0.01	ppp 2	ppm 0.1	0 1	0 1	ppm 1	0 1	0 1	0 1	ppm 1	0.01	0.5	0.5	0 1	ppm 1	0 1	0 1	0 1	ppm 2	0.01
2102126	Rock	0.97	88	0.4	13.3	9.4	8	0.3	1.3	0.3	40	1.26	967.6	96.1	18.9	13	<0.1	2.5	<0.1	<2	0.01
2102127	Rock	0.39	17	0.6	7.9	23.7	26	0.1	3.2	2.0	66	1.78	93.6	22.5	15.0	6	0.1	0.6	0.1	<2	0.02
2102128	Rock	0.47	<2	1.1	2.9	14.4	44	<0.1	2.6	0.7	94	1.00	9.1	1.6	13.2	13	<0.1	<0.1	0.2	<2	0.17
2102129	Rock	0.46	25	0.2	1.9	37.3	11	0.1	1.7	0.3	93	0.79	5.8	3.4	17.8	11	<0.1	<0.1	0.2	<2	0.03
2102130	Rock	0.33	<2	0.2	5.2	29.1	8	<0.1	1.5	0.8	44	0.62	2.2	1.0	18.6	4	<0.1	0.3	0.2	<2	< 0.01
2102131	Rock	0.89	<2	0.2	6.6	17.8	20	<0.1	3.2	0.7	50	0.67	3.3	<0.5	19.8	6	<0.1	0.2	0.2	<2	0.01
2102132	Rock	0.70	114	0.3	1.7	37.7	8	<0.1	0.7	0.1	17	0.79	15.7	132.0	17.2	4	<0.1	<0.1	0.1	<2	< 0.01
2102133	Rock	1.09	93	0.1	83.6	187.8	632	0.5	1.5	0.4	257	2.07	2.3	70.0	10.5	3	3.0	0.3	0.1	<2	0.02
2102134	Rock	0.39	410	0.1	2.1	12.4	9	0.1	0.8	0.2	28	0.92	15.6	173.8	15.1	5	<0.1	0.1	0.3	<2	< 0.01
2102135	Rock	0.60	374	<0.1	3.7	5.9	36	<0.1	2.0	0.5	419	2.88	6.2	128.6	20.4	5	<0.1	0.2	0.1	<2	0.01
2102136	Rock	0.51	34	<0.1	43.9	2170	8	15.6	0.8	0.2	48	0.70	3.7	21.5	5.5	3	<0.1	1.4	27.8	<2	< 0.01
2102137	Rock	0.31	365	<0.1	3.3	12.3	15	0.1	1.1	0.5	150	1.68	3.5	21.1	15.6	9	<0.1	0.2	0.1	<2	0.05
2102138	Rock	0.65	1119	0.2	6.8	244.3	213	6.1	0.7	0.3	66	1.76	10.3	435.5	9.8	2	0.7	0.6	11.2	<2	< 0.01
2102139	Rock	0.42	72	2.0	117.7	37.1	48	1.1	48.3	18.4	183	6.38	211.2	63.4	1.6	21	0.1	1.5	0.4	8	0.11
2102140	Rock	0.64	125	5.1	87.0	>10000	211	60.9	8.5	0.4	33	3.06	16.6	97.1	1.0	18	0.3	33.1	36.0	3	0.02
2102141	Rock	0.39	143	3.0	79.0	>10000	219	>100	4.8	0.3	29	2.16	41.8	120.0	0.2	17	1.2	29.9	83.7	4	0.01
2102142	Rock	0.90	6	0.9	55.6	99.6	19	0.5	1.7	0.5	186	1.19	8.5	5.1	14.9	30	<0.1	0.1	0.9	<2	0.48
2102143	Rock	0.31	6	6.1	16.7	76.7	7	0.3	0.3	<0.1	26	0.66	2.7	3.7	12.0	3	<0.1	0.2	0.2	<2	< 0.01
2102144	Rock	0.83	2	1.0	1.3	231.3	45	0.6	1.7	0.7	139	0.55	14.2	1.5	15.9	6	<0.1	0.2	0.9	<2	0.12
2102145	Rock	0.76	4	0.8	5.2	12.5	15	<0.1	0.5	0.2	24	0.53	3.1	2.6	11.6	3	<0.1	0.1	0.1	<2	< 0.01
2102146	Rock	0.99	<2	0.5	2.5	25.2	42	0.1	0.6	0.4	31	0.46	6.9	1.7	11.4	4	<0.1	0.1	0.2	<2	0.02

Acme Labs [™]		Client:	First Americas Go 2323 - 106 West Hastings S Vancouver BC V6E 3X2 CA	itreet NADA	
A Bureau Veritas Group Company	www.acmelab.com	Project:	None Given		
Acme Analytical Laboratories (Vancouver) Ltd.		Report Date:	July 19, 2013		
9050 Shaughnessy St Vancouver BC V6P 6E5 CA	ANADA				
PHONE (604) 253-3158		Page:	4 of 4	Part:	2 of 1
CERTIFICATE OF ANALYS	SIS		VAN	13002463.1	

	Method	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX
	Analyte	P	La	Cr	Mg	Ba	Ti	В	AI	Na	к	W	Hg	TI	S	Sc	Se	Ga	Te
	Unit	%	ppm	ppm	%	ppm	%	ppm	%	%	%	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm
	MDL	0.001	1	1	0.01	1	0.001	20	0.01	0.001	0.01	0.1	0.01	0.1	0.05	0.1	0.5	1	0.2
2102126	Rock	0.016	47	10	< 0.01	92	< <u>0.001</u>	<20	0.21	0.034	0.18	<0.1	< 0.01	<0.1	0.13	1.3	< 0.5	<1	<0.2
2102127	Rock	0.015	36	14	0.01	65	< 0.001	<20	0.18	0.042	0.11	<0.1	< 0.01	<0.1	0.77	1.4	<0.5	<1	<0.2
2102128	Rock	800.0	38	13	80.0	47	< 0.001	<20	0.18	0.046	0.06	0.1	< 0.01	<0.1	< 0.05	1.2	< 0.5	<1	<0.2
2102129	Rock	0.024	50	7	< 0.01	11	< 0.001	<20	0.10	0.074	< 0.01	<0.1	<0.01	<0.1	0.05	2.8	< <mark>0.5</mark>	<1	<0.2
2102130	Rock	0.015	51	4	0.01	248	< 0.001	<20	0.22	0.034	0.10	<0.1	<0.01	<0.1	< 0.05	1.8	< 0.5	<1	<0.2
2102131	Rock	0.012	54	10	< 0.01	458	< 0.001	<20	0.21	0.032	0.13	<0.1	<0.01	<0.1	0.12	1.5	< 0.5	<1	<0.2
2102132	Rock	0.012	45	5	< 0.01	123	0.001	<20	0.22	0.036	0.17	<0.1	< 0.01	<0.1	< 0.05	0.9	<0.5	<1	<0.2
2102133	Rock	0.005	18	14	0.02	47	<0.001	<20	0.12	0.038	0.09	<0.1	0.12	<0.1	0.27	1.8	< 0.5	<1	<0.2
2102134	Rock	0.006	34	11	< 0.01	16	< 0.001	<20	0.09	0.084	< 0.01	<0.1	<0.01	<0.1	0.18	0.3	< <mark>0.5</mark>	<1	<0.2
2102135	Rock	0.015	44	6	< 0.01	44	< 0.001	<20	0.14	0.076	0.04	<0.1	< 0.01	<0.1	0.28	3.3	< 0.5	<1	<0.2
2102136	Rock	0.006	14	15	< 0.01	4	< 0.001	<20	0.05	0.045	< 0.01	<0.1	< 0.01	<0.1	0.06	0.9	6.9	<1	<0.2
2102137	Rock	0.013	18	7	< 0.01	19	< 0.001	<20	0.10	0.067	< 0.01	<0.1	<0.01	<0.1	0.36	3.4	< 0.5	<1	<0.2
2102138	Rock	0.010	25	13	<0.01	6	< 0.001	<20	0.08	0.056	< <u>0.01</u>	<0.1	0.12	<0.1	0.13	2.4	1.6	<1	<0.2
2102139	Rock	0.108	3	11	< 0.01	72	0.001	<20	0.13	0.039	0.01	<0.1	0.03	<0.1	2.85	1.9	5.5	<1	<0.2
2102140	Rock	0.034	2	9	0.01	75	< 0.001	<20	0.12	0.037	0.01	<0.1	1.92	<0.1	0.37	0.6	>100	<1	2.8
2102141	Rock	0.021	<1	12	< 0.01	73	< 0.001	<20	0.08	0.011	< 0.01	<0.1	0.88	<0.1	0.72	0.6	>100	<1	9.7
2102142	Rock	0.014	22	5	0.09	86	< 0.001	<20	0.29	0.011	0.24	<0.1	< 0.01	<0.1	0.40	1.6	1.3	<1	<0.2
2102143	Rock	0.014	35	6	< <mark>0.01</mark>	35	< <u>0.001</u>	<20	0.12	0.048	0.05	<0.1	0.01	<0.1	< 0.05	1.3	0.5	<1	<0.2
2102144	Rock	0.014	37	4	0.03	98	< 0.001	<20	0.21	0.016	0.17	<0.1	0.01	<0.1	< 0.05	1.0	2.9	<1	<0.2
2102145	Rock	0.012	39	7	< 0.01	21	< 0.001	<20	0.16	0.050	0.06	<0.1	< 0.01	<0.1	< 0.05	1.3	<0.5	<1	<0.2
2102146	Rock	0.015	41	6	< 0.01	99	< 0.001	<20	0.21	0.035	0.12	<0.1	0.01	<0.1	< 0.05	0.8	<0.5	<1	<0.2

]

A Bureau Veritas G)S [™]		www.	acmela	b.com						Client	:	First 2323 - Vancou None (: Amei 106 Wes uver BC \ Given	r icas (t Hasting: /6E 3X2 (Sold C s Street CANADA	orp.			
Acmo Apolytical Labora	torios Mansouvo	vr) I tel										Report	Date:	July 19	, 2013						
Actile Analytical Labora	Names (Vancouve			•																	
9050 Shaughnessy St PHONE (604) 253-3158	Sancouver BC V	OP OED (JANAD	A								Page:		1 of 2					Part:	1 of	1
		REP	ORI													\/Δι	113	002	163	1	
QUALITI U	SNIKOL																N I U	002-	TUU.	1	
	Method	WGHT	3B	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX
	Analyte	Wgt	Au	Mo	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	Au	Th	Sr	Cd	Sb	Bi	V	Ca
	Unit	kg	ppb	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppb	ppm	ppm	ppm	ppm	ppm	ppm	%
	MDL	0.01	2	0.1	0.1	0.1	1	0.1	0.1	0.1	1	0.01	0.5	0.5	0.1	1	0.1	0.1	0.1	2	0.01
Pulp Duplicates																					
2102071	Rock	0.82	40	2.9	5.0	27.1	14	0.1	1.0	0.6	27	0.95	96.0	38.2	9.8	5	<0.1	2.1	0.5	<2	< 0.01
REP 2102071	QC	2		3.0	5.0	28.5	13	<0.1	1.0	0.5	29	0.96	95.6	42.1	9.8	5	<0.1	2.0	0.4	<2	<0.0
2102072	Rock	1.66	80	2.1	5.4	23.0	25	<0.1	1.0	0.8	24	0.84	153.5	80.9	10.4	3	<0.1	1.5	0.3	<2	0.0
REP 2102072	QC		81																		
2102106	Rock	0.48	<2	6.7	62.4	3.4	9	<0.1	38.3	8.3	97	2.76	12.6	<0.5	9.4	21	<0.1	0.2	<0.1	23	0.33
REP 2102106	QC		<2	6.1	59.9	3.5	9	<0.1	39.5	8.0	98	2.75	12.6	<0.5	9.4	22	< 0.1	0.2	<0.1	23	0.36
2102135	Rock	0.60	374	< 0.1	3.7	5.9	36	<0.1	2.0	0.5	419	2.88	6.2	128.6	20.4	5	< 0.1	0.2	0.1	<2	0.01
REP 2102135	QC			0.1	4.5	5.7	36	<0.1	2.5	0.7	417	2.87	6.7	49.0	19.0	5	<0.1	0.2	0.1	2	0.01
2102140	Rock	0.64	125	5.1	87.0	>10000	211	60.9	8.5	0.4	33	3.06	16.6	97.1	1.0	18	0.3	33.1	36.0	3	0.02
REP 2102140	QC		140																		
Core Reject Duplicates		*																			
2102085	Rock	0.64	222	0.1	6.1	26.7	7	0.5	2.2	0.8	85	2.02	195.8	84.1	13.6	4	<0.1	0.2	0.7	<2	0.02
DUP 2102085	QC		202	0.2	6.3	27.3	7	0.6	2.2	0.7	88	2.00	199.3	127.7	14.0	4	<0.1	0.2	0.8	<2	0.02
2102119	Rock	0.34	1100	0.5	15.1	>10000	131	>100	1.4	0.3	25	0.67	56.4	698.2	2.7	1	0.7	19.2	113.7	<2	< 0.0
DUP 2102119	QC		1053	0.5	14.2	>10000	125	>100	1.2	0.3	23	0.64	53.3	1578	2.6	1	0.7	18.8	107.9	<2	<0.01
Reference Materials		20 					0000013			1122440				a sector of	dest-re-	54 Y					
STD DS9	Standard			13.3	111.9	138.8	315	2.3	40.5	7.7	607	2.44	27.0	115.0	6.5	74	2.4	5.2	5.7	42	0.73
STD DS9	Standard	9 7.		13.5	119.2	130.7	331	1.9	44.5	8.6	605	2.41	25.2	151.3	6.5	77	2.4	5.5	6.1	42	0.73
STD DS9	Standard	8		13.0	116.2	139.2	337	1.9	41.2	7.8	596	2.51	29.3	105.1	7.1	75	24	5.1	6.9	41	0.74
STD OREAS45EA	Standard	<u>20</u>		1.4	684.3	14.7	31	0.3	382.8	50.1	394	23.97	10.2	80.0	11.1	4	< 0.1	0.2	0.2	304	0.04
STD OREAS45EA	Standard	8		1.7	676.9	15.0	28	0.3	377.8	54.2	391	22.77	9.5	60.4	10.9	4	<0.1	0.3	0.2	297	0.03
STD OREAS45EA	Standard	50. 		1.4	689.3	15.6	31	0.3	374.5	52.0	418	23.93	10.0	53.2	10.6	4	<0.1	0.3	0.3	313	0.03
STD OXK94	Standard	ð.	3521	000.50	0.000		(T.A.			0.000	12/2/10						00.000		17670		stant.c
STD OXK94	Standard		3788																		
STD OXK94	Standard	20 	3827																		
STD SH55	Standard		1408																		
STD SH55	Standard	10	1446																		
STD SH55	Standard		1384																		

1

Acm	e Lab	S™										Client	::	Firs 2323 - Vanco	t Amei 106 Wes ouver BC \	t Hasting /6E 3X2	Sold C s Street CANADA	orp.		
A Bureau Veritas G	roup Company	-		www.	acmela	b.com						Project		None	Given					
A A												Report	Date:	July 1	9, 2013					
Acme Analytical Labora	tories (vancouve	r) Lta.																		
9050 Shaughnessy St PHONE (604) 253-3158	Vancouver BC V6 3	6P 6E5 (CANAD.	A								Page:		1 of 2					Part	2 of 1
												Tage.		1012					1 arc	2011
QUALITY CO	DNTROL	REP	OR1													VA	N13	0024	163.1	
	Method	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	
	Analyte	P	La	Cr	Mg	Ba	Ti	В	AI	Na	K	w	Hg	п	S	Sc	Se	Ga	Te	
	Unit	%	ppm	ppm	%	ppm	%	ppm	%	%	%	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	
D.I. D. Frate	MUL	0.001		1	0.01	1	0.001	20	0.01	0.001	0.01	0.1	0.01	0.1	0.05	0.1	0.5	3	0.2	
Pulp Duplicates	D. I	0.040	20		.0.04	04	.0.004	-20	0.04	0.040	0.45	.0.4	0.04	0.0	0.42	12	-0.5		.0.0	
2102071	ROCK	0.010	30	1	<0.01	04	<0.001	<20	0.21	0.010	0.15	<0.1	0.04	0.2	0.43	1.2	<0.5	<1	<0.2	
REP 21020/1	QC	0.018	3/	- 1	<0.01	72	<0.001	<20	0.21	0.018	0.16	<0.1	0.04	<0.1	0.43	1.2	<0.5	<1	<0.2	
2102072 DED 2102072	RUCK	0.020	20	NI.	NU.U1	15	0.001	120	0.23	0.011	0.22	NU.1	0.04	×0.1	0.04	0.5	×0.5	~1	NU.2	
2102106	Pock	0.038	18	14	0.88	60	0.004	<20	1 23	0.005	0.25	<0.1	<0.01	<01	0.22	15	17	3	<0.2	
DED 2102106	OC	0.030	10	12	0.00	61	0.004	<20	1.25	0.005	0.25	<0.1	<0.01	<0.1	0.22	1.5	1.1	3	<0.2	
2102135	Bock	0.035	44	6	<0.00	44	<0.004	<20	0.14	0.005	0.20	<0.1	<0.01	<0.1	0.22	33	<0.5	<1	<0.2	
REP 2102135	OC	0.015	43	16	<0.01	42	<0.001	<20	0.13	0.076	0.04	<0.1	<0.01	<0.1	0.28	34	<0.5	<1	<0.2	
2102140	Rock	0.034	2	9	0.01	75	<0.001	<20	0.13	0.037	0.04	<0.1	1.92	<0.1	0.20	0.6	>100	<1	28	
REP 2102140	00	0.001	1000		0.01		.0.001	20	0.12	0.001	0.01	-0.1	1.02		0.01	0.0	100		2.0	
Core Reject Duplicates																				
2102085	Rock	0.013	23	1	0.01	64	< 0.001	<20	0.23	0.040	0.15	<0.1	< 0.01	<0.1	1.80	0.8	< 0.5	<1	<0.2	
DUP 2102085	QC	0.013	24	1	0.01	64	< 0.001	<20	0.23	0.039	0.15	<0.1	< 0.01	<0.1	1.76	0.8	0.5	<1	<0.2	
2102119	Rock	0.003	7	7	0.01	12	0.002	<20	0.16	0.013	0.04	<0.1	0.97	<0.1	0.46	0.4	17.9	<1	8.4	
DUP 2102119	QC	0.003	7	6	0.01	12	0.001	<20	0.15	0.012	0.04	<0.1	0.93	<0.1	0.44	0.3	18.1	<1	7.7	
Reference Materials																				
STD DS9	Standard	0.085	12	121	0.65	320	0.106	<20	0.99	0.090	0.43	2.7	0.20	5.5	0.17	2.2	5.3	5	5.6	
STD DS9	Standard	0.083	13	127	0.64	329	0.110	<20	0.97	0.084	0.42	2.6	0.20	5.4	0.18	2.2	5.3	4	5.2	
STD DS9	Standard	0.088	13	119	0.65	340	0.109	<20	0.98	0.087	0.41	2.9	0.21	5.4	0.17	2.3	6.1	5	5.0	
STD OREAS45EA	Standard	0.030	7	830	0.10	147	0.088	<20	3.10	0.018	0.05	<0.1	< 0.01	<0.1	< 0.05	84.9	< 0.5	12	<0.2	
STD OREAS45EA	Standard	0.025	7	800	0.10	154	0.092	<20	3.00	0.018	0.05	<0.1	0.01	<0.1	< 0.05	77.8	<0.5	12	<0.2	
STD OREAS45EA	Standard	0.031	7	857	0.10	150	0.093	<20	3.13	0.017	0.05	<0.1	0.01	<0.1	< 0.05	77.1	0.6	12	<0.2	
STD OXK94	Standard																		2	
STD OXK94	Standard																			
STD OXK94	Standard																			
STD SH55	Standard																			
STD SH55	Standard																			
STD SH55	Standard																			

This report supersedes all previous preliminary and final reports with this file number dated prior to the date on this certificate. Signature indicates final approval; preliminary reports are unsigned and should be used for reference only.

Acme Analytical La 9050 Shaughness	melab itas Group Company aboratories (Vancouv y St Vancouver BC V)S [™] er) Ltd. /6P 6E5 C	CANAD	www.a	acmela	b.com						Client Project: Report I	: Date:	First 2323 - Vancou None O July 19	in Amei 106 Wes uver BC \ Given 0, 2013	ricas (t Hasting /6E 3X2	Gold C s Street CANADA	Corp.			
PHONE (604) 253	-3158											Page:		2 of 2					Part	1 of	1
QUALITY	CONTROL	REP	OR													VA	N13	0024	463.	1	
		WGHT	3B	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX
		Wgt	Au	Mo	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	Au	Th	Sr	Cd	Sb	Bi	V	Ca
		kg	ppb	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppb	ppm	ppm	ppm	ppm	ppm	ppm	%
		0.01	2	0.1	0.1	0.1	1	0.1	0.1	0.1	1	0.01	0.5	0.5	0.1	1	0.1	0.1	0.1	2	0.01
STD SH55 Expected	1		1375																		
STD OXK94 Expecte	ed		3562																		
STD DS9 Expected				12.84	108	126	317	1.83	40.3	7.6	575	2.33	25.5	118	6.38	69.6	2.4	4.94	6.32	40	0.7201
STD OREAS45EA E	xpected			1.78	709	14.3	30.6	0.311	357	52	400	22.65	11.4	53	10.7	4.05	0.03	0.64	0.26	295	0.032
BLK	Blank		<2																		
BLK	Blank		<2																		
BLK	Blank		<2																		
BLK	Blank		<2																		
BLK	Blank		<2																		
BLK	Blank		4																		
BLK	Blank			< 0.1	<0.1	<0.1	<1	<0.1	<0.1	<0.1	<1	< 0.01	<0.5	<0.5	<0.1	<1	<0.1	<0.1	<0.1	<2	< 0.01
BLK	Blank			< 0.1	<0.1	<0.1	<1	<0.1	<0.1	<0.1	<1	< 0.01	<0.5	<0.5	<0.1	<1	<0.1	<0.1	<0.1	<2	< 0.01
BLK	Blank			<0.1	<0.1	<0.1	<1	<0.1	<0.1	<0.1	<1	< 0.01	<0.5	<0.5	<0.1	<1	<0.1	<0.1	<0.1	<2	< 0.01
Prep Wash				1.1		101		1.1						1.1				1			
G1	Prep Blank		3	<0.1	3.5	3.3	44	<0.1	2.7	3.8	564	1.90	0.6	2.7	6.0	50	<0.1	<0.1	0.1	36	0.41
G1	Prep Blank		<2	<0.1	4.6	3.3	47	<0.1	2.8	3.9	590	1.96	0.8	0.8	5.6	56	<0.1	<0.1	<0.1	37	0.46

	ne l ab)S [™]										Client	:	Firs 2323 - Vanco	t Amer 106 Wes ouver BC \	t Hasting: /6E 3X2 (Sold C s Street CANADA	orp.		
A Bureau Veri Acme Analytical La 9050 Shaughnessy	itas Group Company boratories (Vancouv v St Vancouver BC V	er) Ltd. /6P 6E5 0	CANAD	www	.acmela	b.com						Project: Report	Date:	None July 1	Given 9, 2013					
PHONE (604) 253-	3158											Page:		2 of 2					Part:	2 of 1
QUALITY	CONTROL	REP	ORT													VAI	N13	0024	163.1	
		1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	
		Р	La	Cr	Mg	Ba	Ti	В	AI	Na	к	W	Hg	TI	S	Sc	Se	Ga	Te	
		%	ppm 1	ppm 1	%	ppm 1	%	ppm 20	%	%	%	ppm	ppm	ppm	%	ppm 0.1	ppm	ppm 1	ppm 0.2	
STD SH55 Expected	l.	0.001	8.0		0.01		0.001	20	0.01	0.001	0.01	0.1	0.01	0.1	0.00	0.1	0.0		0.2	
STD OXK94 Expecte	ed																			
STD DS9 Expected		0.0819	13.3	121	0.6165	330	0.1108		0.9577	0.0853	0.395	2.89	0.2	5.3	0.1615	2.5	5.2	4.59	5.02	
STD OREAS45EA E	xpected	0.029	8.19	849	0.095	148	0.106		3.32	0.027	0.053	100000000	0.34	0.072	0.044	78	2.09	11.7	0.11	
BLK	Blank																			
BLK	Blank																			
BLK	Blank																			
BLK	Blank																			
BLK	Blank																			
BLK	Blank																			
BLK	Blank	< 0.001	<1	<1	< 0.01	<1	< 0.001	<20	< 0.01	< 0.001	< 0.01	<0.1	< 0.01	<0.1	< 0.05	<0.1	< 0.5	<1	< 0.2	
BLK	Blank	< 0.001	<1	<1	< 0.01	<1	< 0.001	<20	< 0.01	< 0.001	< 0.01	<0.1	< 0.01	<0.1	< 0.05	<0.1	< 0.5	<1	<0.2	
BLK	Blank	< 0.001	<1	<1	< 0.01	<1	< 0.001	<20	< 0.01	< 0.001	< 0.01	<0.1	< 0.01	<0.1	< 0.05	<0.1	<0.5	<1	<0.2	
Prep Wash																				
G1	Prep Blank	0.071	13	5	0.49	163	0.116	<20	0.91	0.089	0.51	0.4	0.01	0.3	< 0.05	2.3	< 0.5	5	<0.2	
G1	Prep Blank	0.074	12	5	0.50	173	0.121	<20	0.93	0.098	0.52	<0.1	0.02	0.3	< 0.05	2.4	<0.5	5	<0.2	

Acme Analytical Laboratories (Vancouver) Ltd. 9050 Shaughnessy St Vancouver BC V6P 6E5 CANADA PHONE (604) 253-3158

CERTIFICATE OF ANALYSIS

None Given

15

CLIENT JOB INFORMATION

Project:

Shipment ID: P.O. Number

PICKUP-PLP

DISP-RJT-SOIL

Number of Samples:

SAMPLE DISPOSAL

First Americas Gold Corp. 2323 - 106 West Hastings Street

Client:

Vancouver BC V6E 3X2 CANADA Submitted By: Robert Thompson

Receiving Lab:	Canada-Vancouver
Received:	July 08, 2013
Report Date:	July 19, 2013
Page:	1 of 2

VAN13002464.1

SAMPLE PREPARATION AND ANALYTICAL PROCEDURES

Procedure	Number of	Code Description	Test	Report	Lab
Code	Samples		Wgt (g)	Status	
Dry at 60C	15	Dry at 60C			VAN
SS80	15	Dry at 60C sieve 100g to -80 mesh			VAN
1F04	15	1:1:1 Aqua Regia digestion Ultratrace ICP-MS analysis	0.5	Completed	VAN
	Procedure Code Dry at 60C SS80 1F04	ProcedureNumber ofCodeSamplesDry at 60C15SS80151F0415	Procedure Number of Code Code Description Code Samples Dry at 60C Dry at 60C 15 Dry at 60C SS80 15 Dry at 60C sieve 100g to -80 mesh 1F04 15 11:11 Aqua Regia digestion Ultratrace ICP-MS analysis	Procedure CodeNumber of SamplesCode DescriptionTest Wgt (g)Dry at 60C15Dry at 60CSS8015Dry at 60C sieve 100g to -80 mesh1F04151:1:1 Aqua Regia digestion Ultratrace ICP-MS analysis0.5	Procedure CodeNumber of SamplesCode DescriptionTest Wgt (g)Report StatusDry at 60C15Dry at 60C5SS8015Dry at 60C sieve 100g to -80 mesh51F04151:1:1 Aqua Regia digestion Ultratrace ICP-MS analysis0.5Completed

ADDITIONAL COMMENTS

www.acmelab.com

Acme does not accept responsibility for samples left at the	laboratory a

Client to Pickup Pulps

after 90 days without prior written instructions for sample storage or return.

Immediate Disposal of Soil Reject

Invoice To: First Americas Gold Corp. 2323 - 106 West Hastings Street Vancouver BC V6E 3X2 CANADA

CC: Drew Bonnell Renee Hetheington

This report supersedes all previous preliminary and final reports with this file number dated prior to the date on this certificate. Signature indicates final approval; preliminary reports are unsigned and should be used for reference only. All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of analysis only. Results apply to samples as submitted. ** asterisk indicates that an analytical result could not be provided due to unusually high levels of interference from other elements.

	TM										Client		First 2323 - Vancor	106 Wes	ricas (st Hasting V6E 3X2	Gold C s Street CANADA	Corp.			
A Bureau Veritas Group Company)		www.a	acmela	b.com						Project		None (Given						
Acme Analytical Laboratories (Vancouver)	Ltd.										Report	Date:	July 19	, 2013						
9050 Shaughnessy St Vancouver BC V6P PHONE (604) 253-3158	9 6E5 C.	ANAD	4								Page:		2 of 2					Part	: 1o	f 1
CERTIFICATE OF ANA	۹LY	SIS													VA	N13	002	464.	1	
Method	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F	16
Analyte	Mo	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	U	Au	Th	Sr	Cd	Sb	Bi	V	Ca	F

	Analyte	Mo	Cu	Pb	Zn	Ag	NI	Co	Mn	Fe	As	U	Au	Ih	Sr	Cd	Sb	Bi	V	Ca	P
	Unit	ppm	ppm	ppm	ppm	ppb	ppm	ppm	ppm	%	ppm	ppm	ppb	ppm	ppm	ppm	ppm	ppm	ppm	%	%
	MDL	0.01	0.01	0.01	0.1	2	0.1	0.1	1	0.01	0.1	0.1	0.2	0.1	0.5	0.01	0.02	0.02	2	0.01	0.001
2102051 9	oil	0.79	19.54	36.21	98.6	95	7.4	3.3	2371	0.42	1.5	<0.1	4.1	<0.1	43.5	0.37	0.32	0.76	12	1.04	0.120
2102052 5	ioil	0.76	23.87	30.95	103.1	200	6.1	2.5	3953	0.20	0.9	<0.1	4.9	<0.1	37.8	0.28	0.44	0.28	4	1.08	0.117
2102053 5	oil	0.79	18.83	43.60	65.7	165	6.8	3.7	2338	0.39	1.4	<0.1	3.1	<0.1	33.7	0.30	0.46	0.30	11	0.77	0.119
2102054 5	loil	1.03	22.88	83.81	134.6	267	11.3	6.4	5855	0.77	3.0	0.1	1.9	<0.1	36.6	0.64	0.68	0.77	20	1.01	0.118
2102055 5	ioil	1.03	28.35	73.31	114.9	152	9.7	3.4	2331	0.39	1.7	<0.1	2.4	<0.1	39.4	0.86	0.82	0.49	9	0.93	0.121
2102056 5	oil	0.99	22.17	43.84	59.0	197	6.5	3.1	1220	0.42	2.9	0.1	3.6	<0.1	24.6	0.27	0.63	0.31	12	0.54	0.125
2102057 5	ioil	1.00	23.80	35.69	24.9	146	14.8	9.1	2329	0.64	1.5	0.2	2.1	<0.1	56.5	0.56	0.41	0.19	16	1.18	0.123
2102058 5	oil	0.94	28.63	69.04	50.4	124	18.2	9.5	2341	1.23	4.0	0.2	2.1	<0.1	30.7	0.51	0.61	0.33	34	0.85	0.123
2102059 5	ioil	0.75	26.65	43.33	42.1	46	11.9	5.1	958	0.58	2.2	0.1	3.0	<0.1	31.9	0.19	0.48	0.29	15	0.66	0.122
2102060 5	ioil	0.72	19.28	52.34	47.2	61	14.7	7.8	4539	0.99	3.6	0.2	1.7	<0.1	33.0	0.75	0.47	0.20	23	1.49	0.107
2102061 5	ioil	1.12	23.34	34.60	54.7	160	15.4	5.9	504	2.42	9.2	0.5	2.2	0.2	10.5	0.40	0.47	0.40	54	0.10	0.071
2102062 5	ioil	0.82	18.72	34.31	42.3	167	5.8	3.1	502	0.35	2.3	0.2	34.0	<0.1	26.7	0.34	0.49	0.22	9	1.21	0.126
2102063 5	oil	0.41	12.91	27.58	99.5	91	5.5	2.9	3656	0.16	0.8	<0.1	1.9	<0.1	42.5	0.52	0.26	0.10	3	2.01	0.138
2102064 5	ioil	1.31	27.86	44.05	37.6	122	9.6	5.1	1983	0.47	2.4	0.2	2.6	< 0.1	32.9	0.50	0.42	0.22	11	1.89	0.148
2102065 5	ioil	1.39	25.82	47.54	36.5	150	12.3	6.0	1487	0.80	3.9	0.3	2.2	<0.1	32.5	0.45	0.46	0.27	20	1.75	0.129

]

<0.1 <0.02

<0.1 <0.02

Ac	me Lab)S [™]										Clien	t:	Firs 2323 - Vanco	t Ame 106 We ouver BC	st Hastin V6E 3X2	Gold ngs Street 2 CANAD	Corp.			
A Bureau V	eritas Group Company			www.	.acmela	ab.com						Project	ta	None	Given						
Acme Analytical	Laboratories (Vancouve	r) Ltd.										Report	Report Date: July 19, 2013								
9050 Shaughnes	sy St Vancouver BC V	6P 6E5 (CANAD	A																	
PHONE (604) 25	3-3158											Page:		2 of 2					Par	t: 2	of 1
CERTIFI	CATE OF AN	IALY	SIS													VA	N13	3002	464	.1	
	Method	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F
	Analyte	La	Cr	Mg	Ba	Ti	В	AI	Na	к	W	Sc	TI	S	Hg	Se	Te	Ga	Cs	Ge	Hf
	Unit	ppm	ppm	%	ppm	%	ppm	%	%	%	ppm	ppm	ppm	%	ppb	ppm	ppm	ppm	ppm	ppm	ppm
	MDL	0.5	0.5	0.01	0.5	0.001	20	0.01	0.001	0.01	0.1	0.1	0.02	0.02	5	0.1	0.02	0.1	0.02	0.1	0.02
2102051	Soil	1.2	7.7	0.16	251.0	0.029	<20	0.21	0.018	0.09	<0.1	0.5	0.15	0.16	310	<0.1	<0.02	1.2	0.48	<0.1	< 0.02
2102052	Soil	1.1	3.3	0.11	155.0	0.011	<20	0.16	0.021	0.11	<0.1	0.5	0.31	0.16	558	<0.1	< 0.02	0.6	0.44	<0.1	< 0.02
2102053	Soil	1.4	6.5	0.16	199.7	0.027	<20	0.23	0.016	0.09	<0.1	0.5	0.32	0.18	351	<0.1	< 0.02	1.2	0.55	<0.1	< 0.02
2102054	Soil	2.3	10.9	0.19	341.3	0.047	<20	0.38	0.016	0.08	<0.1	0.8	0.50	0.16	583	<0.1	0.03	1.8	0.99	<0.1	< 0.02
2102055	Soil	1.6	6.1	0.13	208.1	0.021	<20	0.27	0.020	0.06	<0.1	0.7	0.29	0.18	593	0.2	<0.02	0.9	0.53	<0.1	< 0.02
2102056	Soil	1.6	6.4	0.13	149.5	0.027	<20	0.23	0.018	0.10	<0.1	0.5	0.13	0.17	335	0.1	< 0.02	1.1	0.52	<0.1	< 0.02
2102057	Soil	6.5	9.3	0.28	96.5	0.023	<20	0.74	0.017	0.08	<0.1	0.6	0.10	0.16	284	<0.1	< 0.02	1.8	0.69	<0.1	< 0.02
2102058	Soil	3.0	18.3	0.35	252.4	0.075	<20	0.60	0.018	0.08	0.1	1.0	0.19	0.16	296	0.1	< 0.02	3.1	1.09	<0.1	< 0.02
2102059	Soil	1.7	9.5	0.15	143.4	0.033	<20	0.39	0.017	0.06	< 0.1	0.5	0.12	0.17	327	0.3	< 0.02	1.3	0.51	<0.1	< 0.02
2102060	Soil	2.4	15.7	0.33	656.5	0.046	<20	0.60	0.017	0.06	<0.1	0.8	0.17	0.18	411	<0.1	0.08	2.1	0.94	<0.1	< 0.02
2102061	Soil	6.9	22.4	0.25	102.4	0.105	<20	1.01	0.009	0.05	0.1	1.1	0.06	0.07	84	0.3	0.06	7.7	1.17	<0.1	0.03
2102062	Soil	1.6	8.4	0.13	138.7	0.018	<20	0.29	0.015	0.08	<0.1	0.7	0.07	0.19	377	0.2	< 0.02	1.1	0.62	<0.1	< 0.02
2102063	Soil	0.7	3.4	0.12	494.0	0.008	<20	0.20	0.015	0.08	<0.1	0.4	0.33	0.22	722	<0.1	< 0.02	0.4	0.48	<0.1	< 0.02

0.37 0.022

0.59 0.025

0.09

0.09

<0.1

<0.1

0.5

0.7

0.12

0.10

0.20

0.18

353

316

0.3 <0.02

0.4 0.04

1.6 0.61

2.6 0.69

This report supersedes all previous preliminary and final reports with this file number dated prior to the date on this certificate. Signature indicates final approval; preliminary reports are unsigned and should be used for reference only.

14

2102064

2102065

Soil

Soil

2.5

3.0

9.5

16.7

0.17

105.5 0.017

0.24 100.5 0.029

<20

<20

Acme Labs [™]		Client:	First Americas Go 2323 - 106 West Hastings Vancouver BC V6E 3X2 CA	old Corp. ^{Street} aNADA	
A Bureau Veritas Group Company	www.acmelab.com	Project:	None Given		
Acme Analytical Laboratories (Vancouver) Ltd.		Report Date:	July 19, 2013		
9050 Shaughnessy St Vancouver BC V6P 6E5	CANADA				
PHONE (604) 253-3158		Page:	2 of 2	Part:	3 of 1
CERTIFICATE OF ANALY	SIS		VAN	13002464.1	

	Method	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F	11
	Analyte	Nb	Rb	Sn	Ta	Zr	Y	Ce	In	Re	Be	Li	Pd	P
	Unit	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppb	ppm	ppm	ppb	ppl
	MDL	0.02	0.1	0.1	0.05	0.1	0.01	0.1	0.02	1	0.1	0.1	10	1
2102051	Soil	0.27	4.8	0.5	< 0.05	0.3	0.52	2.3	0.02	1	<0.1	1.3	<10	V
2102052	Soil	0.10	5.2	0.4	< 0.05	0.1	0.57	2.2	< 0.02	<1	<0.1	0.6	<10	<
2102053	Soil	0.29	5.0	0.5	< 0.05	0.2	0.56	2.7	< 0.02	<1	0.1	1.1	<10	1
2102054	Soil	0.37	9.1	0.6	< 0.05	0.3	0.82	4.8	0.04	<1	<0.1	2.2	<10	V
2102055	Soil	0.21	3.8	0.6	< 0.05	0.2	0.69	3.0	0.03	<1	<0.1	1.1	<10	<
2102056	Soil	0.30	4.7	0.6	< 0.05	0.4	0.51	3.2	0.02	<1	<0.1	0.8	<10	<
2102057	Soil	0.39	5.3	0.5	< 0.05	0.3	7.40	13.4	0.02	1	0.4	2.9	<10	<
2102058	Soil	0.72	7.1	0.8	< 0.05	0.6	1.24	6.5	0.05	<1	0.2	4.1	<10	<
2102059	Soil	0.37	3.8	0.5	< 0.05	0.5	1.10	3.8	0.02	<1	0.2	1.3	<10	<
2102060	Soil	0.42	9.0	0.4	< 0.05	0.4	1.68	6.3	0.03	<1	0.2	3.6	<10	<
2102061	Soil	1.39	8.8	0.9	< 0.05	1.5	2.19	14.5	0.03	<1	0.1	5.3	<10	<
2102062	Soil	0.31	4.1	0.4	< 0.05	0.5	1.42	3.0	0.03	<1	<0.1	1.4	<10	<
2102063	Soil	0.09	3.7	0.2	< 0.05	0.4	0.56	1.7	0.02	<1	<0.1	0.4	<10	<
2102064	Soil	0.37	4.2	0.5	< 0.05	0.3	2.01	4.4	0.03	<1	<0.1	2.0	<10	<
2102065	Soil	0.64	4.2	0.7	< 0.05	0.6	2.26	6.0	< 0.02	<1	0.3	4.0	<10	<

Acmelabs A Bureau Veritas Group Company www.acmelab.com											Client Project:		First Americas Gold Corp. 2323 - 106 West Hastings Street Vancouver BC V6E 3X2 CANADA None Given								
cme Analytical Laboratories (Vancouver) Ltd. 050 Shaughnessy St. Vancouver BC V6P 6E5 CANADA HONE (604) 253-3158 Page: 1 of 1 Part												t 1 of	f 1								
QUALITY CO	ONTROL	REP	OR	Г												VA	N13	0024	1 64.	1	
	Method	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F
	Analyte	Mo	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	U	Au	Th	Sr	Cd	Sb	Bi	V	Ca	F
	Unit	ppm	ppm	ppm	ppm	ppb	ppm	ppm	ppm	%	ppm	ppm	ppb	ppm	ppm	ppm	ppm	ppm	ppm	%	%
	MDL	0.01	0.01	0.01	0.1	2	0.1	0.1	1	0.01	0.1	0.1	0.2	0.1	0.5	0.01	0.02	0.02	2	0.01	0.001
Pulp Duplicates									1995 - 1997 -												
2102055	Soil	1.03	28.35	73.31	114.9	152	9.7	3.4	2331	0.39	1.7	<0.1	2.4	<0.1	39.4	0.86	0.82	0.49	9	0.93	0.121
REP 2102055	QC	0.90	27.38	70.46	103.0	137	9.0	3.4	2317	0.39	1.8	<0.1	1.8	<0.1	37.8	0.82	0.75	0.32	9	0.92	0.122
Reference Materials																1.11]
STD DS9	Standard	13.46	114.2	140.8	325.4	1614	42.4	8.0	615	2.44	24.8	2.9	100.3	7.2	76.5	2.46	5.02	5.81	41	0.76	0.074
STD OREAS45EA	Standard	1.64	713.9	16.19	28.4	248	399.5	50.8	405	24.30	10.2	1.9	61.7	11.5	4.0	0.04	0.21	0.21	307	0.03	0.026
STD DS9 Expected		12.84	108	126	317	1830	40.3	7.6	575	2.33	25.5	2.69	118	6.38	69.6	2.4	4.94	6.32	40	0.7201	0.0819
STD OREAS45EA Expected	ed	1.78	709	14.3	30.6	311	357	52	400	22.65	11.4	1.73	53	10.7	4.05	0.03	0.64	0.26	295	0.032	0.029
BLK	Blank	< 0.01	0.20	0.04	<0.1	<2	< 0.1	<0.1	2	< 0.01	< 0.1	<0.1	< 0.2	< 0.1	<0.5	< 0.01	< 0.02	< 0.02	<2	< 0.01	< 0.001

]

A Bureau Veritas Group Company A Bureau Veritas Group Company											Client Project:	: Data:	First Americas Gold Corp. 2323 - 106 West Hastings Street Vancouver BC V6E 3X2 CANADA None Given								
Acme Analytical Laboratories (Vancouver) Ltd. 9050 Shaughnessy St. Vancouver BC V6P 6E5 CANADA PHONE (604) 253-3158 Page: 1 of 1 Part: VAN12002464.1													2 of	1							
QUALITY CO	NIROL	REP	OR													VA	IN 13	0024	404.	L.	
	Method	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F
	Analyte	La	Cr	Mg	Ba	Ti	В	AI	Na	ĸ	W	Sc	TI	S	Hg	Se	Te	Ga	Cs	Ge	H
	Unit	ppm 0.5	ppm 0.5	% 0.01	ppm 0.5	% 0.001	ppm 20	0.01	% 0.001	% 0.01	ppm 0.1	ppm 0.1	ppm 0.02	0.02	ppb 5	ppm 0.1	ppm 0.02	ppm 0.1	ppm 0.02	ppm 0.1	0.02
Pulp Duplicates																					
2102055	Soil	1.6	6.1	0.13	208.1	0.021	<20	0.27	0.020	0.06	<0.1	0.7	0.29	0.18	593	0.2	< 0.02	0.9	0.53	<0.1	<0.02
REP 2102055	QC	1.6	6.2	0.12	194.8	0.021	<20	0.27	0.019	0.06	<0.1	0.5	0.29	0.18	535	0.2	0.02	0.9	0.52	<0.1	<0.02
Reference Materials																					
STD DS9	Standard	14.5	119.4	0.65	271.1	0.127	<20	1.00	0.087	0.42	2.8	2.4	5.09	0.17	203	5.0	5.10	4.5	2.29	<0.1	0.04
STD OREAS45EA	Standard	7.7	797.3	0.10	140.4	0.096	<20	3.37	0.015	0.05	<0.1	78.1	< 0.02	0.04	11	1.0	0.10	12.3	0.66	0.3	0.44
STD DS9 Expected		13.3	121	0.6165	330	0.1108		0.9577	0.0853	0.395	2.89	2.5	5.3	0.1615	200	5.2	5.02	4.59	2.37	0.1	0.08
STD OREAS45EA Expected		8.19	849	0.095	148	0.106		3.32	0.027	0.053		78	0.072	0.044	340	2.09	0.11	11.7	0.77	0.26	0.82
BLK	Blank	<0.5	<0.5	<0.01	<0.5	< 0.001	<20	< 0.01	< 0.001	< 0.01	<0.1	<0.1	< 0.02	<0.02	<5	<0.1	< 0.02	<0.1	<0.02	<0.1	<0.02

]

Acme l ab	S™										Client:		First Ame 2323 - 106 We Vancouver BC	ricas Gold Corp. st Hastings Street V6E 3X2 CANADA		
A Bureau Veritas Group Company	0		www.a	acmela	b.com						Project:		None Given			
Acme Analytical Laboratories (Vancouver) Ltd. 9050 Shaughnessy St Vancouver BC V6P 6E5 CANADA											Report D)ate:	July 19, 2013			
PHONE (604) 253-3158											Page:		1 of 1		Part	3 of 1
QUALITY CONTROL	REP	ORT	Γ											VAN1300246	64.1	
Method	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F			
Analyte	Nb	Rb	Sn	Та	Zr	Y	Ce	In	Re	Be	Li	Pd	Pt			
Unit	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppb	ppm	ppm	ppb	ppb			
MDL	0.02	0.1	0.1	0.05	0.1	0.01	0.1	0.02	1	0.1	0.1	10	2			

3.0

2.9

26.2

19.6

25.4

17.7

0.2 < 0.02

0.03

0.04

2.36

0.09

2.2

0.1

0.69

0.65

5.80

5.00

5.97

5.74

0.02

0.2

0.2

1.6

15.2

26.6

<0.1

2

1.1

0.8

28.2

2.6

25.2

7.63

<0.1

<10

<10

102

90

120

66

<10

<2

<2

359

118

350

108

<2

<0.1

<0.1

4.9

0.5

5.4

0.47

<0.1

<1

<1

64

<1

61

<1

This report supersedes all previous prelimina	ary and final reports with this file number date	d prior to the date on this certificate. S	Signature indicates final approval; preliminar	reports are unsigned and should be used for reference only.
---	--	--	--	---

Soil

QC

Standard

Standard

Blank

Pulp Duplicates 2102055

REP 2102055

Reference Materials STD DS9

STD OREAS45EA

STD DS9 Expected

BLK

STD OREAS45EA Expected

0.21

0.23

0.98

0.06

0.96

0.43

<0.02

3.8

3.6

33.8

7.2

33.8

7.93

<0.1

0.6 <0.05

6.4 0.004

<0.05

< 0.05

<0.05

0.6

6.5 < 0.05

0.9

0.97

<0.1