TCHAIKAZAN RESOURCES INC.

Box 32, Tatla Lake, British Columbia, Canada VOL 1V0 Ph: 250 476 1218

BC Geological Survey Assessment Report 34389

BLUFF PROPERTY Bluff, Bluff11, Bluff112, Horne, Ext, Bornite, Butt1, Butt2 Cow1, Cow2, Butts2, Blake and South Butler Claims

> Clinton Mining Division BCGS 092 N 77

Lat 51° 45' 25" N Long 124° 41' 04" W

ASSESSMENT REPORT on the ROCK GEOCHEMISTRY PROGRAM

May 19 to August 15, 2013

By

Roger MacDonald, P.Geo. 8191 River Road Richmond, BC, Canada V6X 1CX8

November 18, 2013

Table of Contents

1.0 Summary
2.0 Location and Access
3.0 Claims
4.0 Physiography and Local Infrastructure
5.0 History and Previous Work10
6.0 Geology
6.1 Regional Setting12
6.2 Local Geology
7.0 Work Program
7.1 Access Trails15
7.2 Geochemistry
7.2.1 Soil Geochemistry15
7.2.2 Rock Geochemistry17
7.2.3 Drill Core Geochemistry25
8.0 Discussion and Interpretation
9.0 Statement of Costs
10.0 Statements of Qualifications
11.0 Bibliography29
Appendix I – Drill Log BL 07-08
Appendix 2 – Assay Certificates

List of Figures

Figure 1 - Location Map	7
Figure 2 - Claim Map	
Figure 3 – Rock, Soil and Core Geochem Sample Locations	14
Figure 4 – Soil Assay Results Au/Cu/Pb/Zn	16
Figure 5 - Rock Assay Results Au/Ag/Pb/Zn	19
Figure 6 - Rock Assay Results Au/Ag/Pb/Zn	20
Figure 7 - Rock Assay Results Au/Ag/Pb/Zn	21
Figure 8 - Rock Assay Results Au/Ag/Pb/Zn	23
Figure 9 - Rock Assay Results Au/Ag/Pb/Zn	24

List of Tables

Table 1 - Claim Status	6
Table 2 – Soil/Rock Descriptions	
Table 3 - C1 to C6 core Assays	
Table 4- Statement of Costs	

1.0 Summary

The Bluff Property of Tchikazan Resources Inc. is situated about 22 km south of the village of Tatla Lake BC which is on British Columbia Highway 20 about 240 km west of Williams Lake BC. The property is located on BCGS map 092N 077 and consists of Tenures 1012223, 1012228, 541943, 1013712, 547801, 1017460, 848082, 848734, 1019192, 984009, 983993, 1019282 and 1019280 owned 100% by Susan Elizabeth Rolston. The property is centered approximately on Latitude 51° 45' 25" N Longitude 124° 41' 04" W.

The Bluff claim block has an exploration history dating back to the 1940's when precious metal veins were discovered on Butler Mountain. The ground was worked for its copper/moly/gold potential by several operators from the 1960's through to the present.

The Bluff Property was staked as a result of prospecting activity by the local landowner during the course of an earlier exploration program by Newmac Resources Inc. on the adjacent property. Sue and Les Rolston own a small local ranch and have provided room, board and logistical assistance to Newmac Resources during the course of previous exploration programs. Mrs. Rolston developed a keen interest in prospecting and had located a single specimen exhibiting malachite and tourmaline mineralization. With encouragement from a Mincord Exploration Consultant she continued her exploration and delineated a broad tourmaline/chalcopyrite zone with occasional spectacular copper carbonate coated cliff faces. When the extent and limits of the mineralization became clearer, claims were staked and a property agreement was struck between Susan Rolston and Newmac.

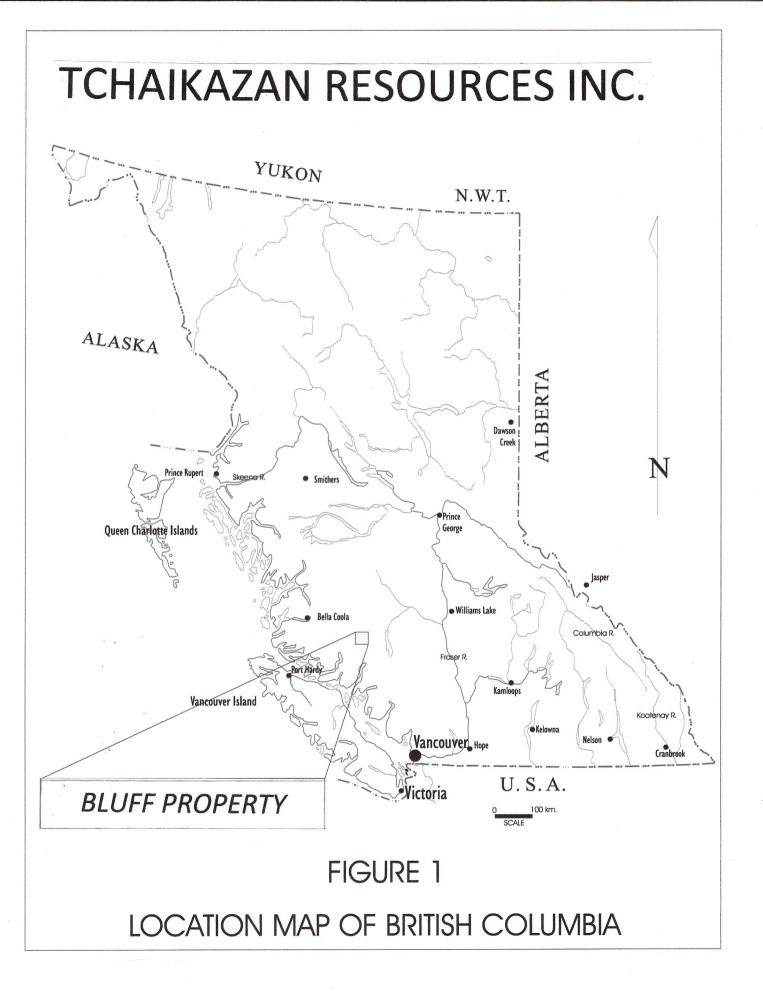
Late in 2006, a geophysical survey (mag. and IP), was completed by Alan Scott, geophysicists on the newly staked Bluff claims. Based on the results of this survey, a diamond drilling program was executed, in two parts, between February 14, 2007 and May 23, 2007. The results of that drilling program were inconclusive. However un-split core still racked on site displays varying degrees of copper mineralization.

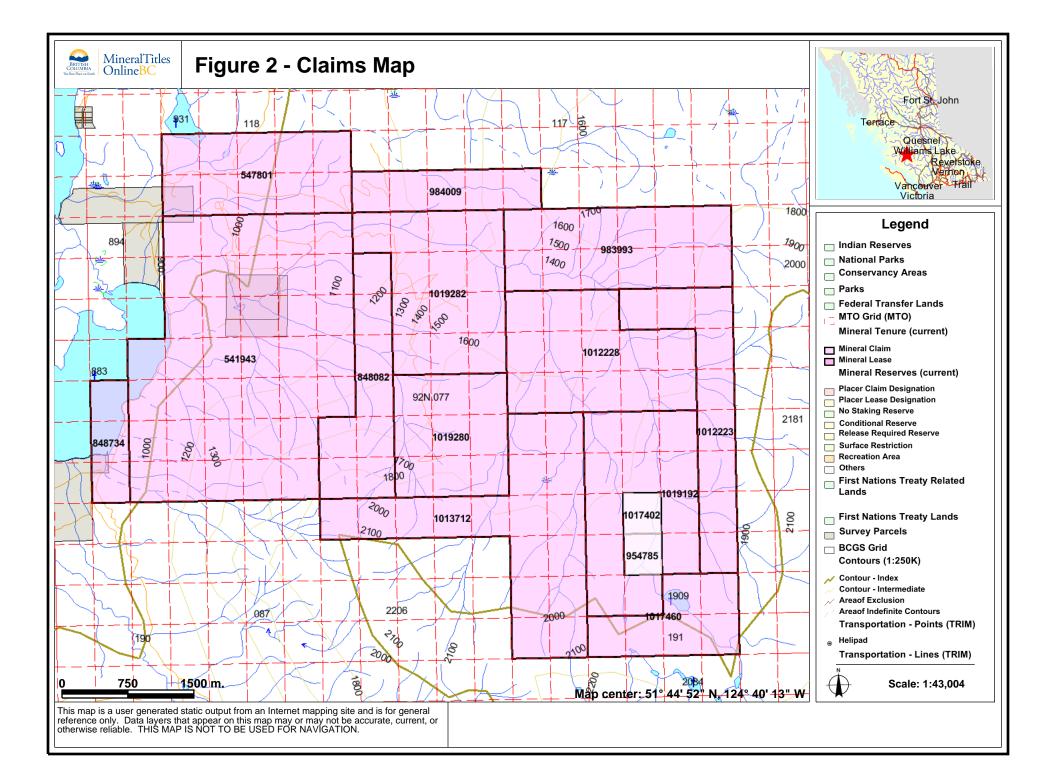
Subsequent to the 2007 drill program, surrounding Newmac claims were inadvertently allowed to lapse. As claims became available, Sue Rolston acquired them to reconstitute the land holdings package. Work comprised prospecting and geochemical rock sampling over the core Bluff claims and the newly acquired claims.

The 2012 geochemical program consisted of rock sampling on three areas of the Bluff claim block. Notable samples were taken below the Bluff Lake road in the area of Painted Bluff showing. Samples Blu1, Blu2 and Blu3 returned copper values of 3190ppm, 2330ppm and 6250ppm respectively. Sample Blu1 also ran 2.02g/t Au, 2260ppm As and 889ppm Zn. Eight of twelve samples located in the area of the Bornite showing were anomalous in copper. The 2013 work program comprised geochemical sampling of 22 rocks , 86 drill core intervals and six soils from various locations on the Bluff claims and the newly acquired land package. In addition, 7.0 kilometres of trail was GPS surveyed for the purpose of determining the condition of the trails and extent of access they would provide to the north and eastern claims. Assays returned from the Cow Vein area indicates consistent mineralization into the creek where it either is truncated by a shear/fault expressed by the creek or is covered by deep talus and overburden on the other side of the creek. Continued exploration is recommended in this area. Poor access and difficult terrain has hampered prospecting and sampling in the Bornite zone. No significant assays were returned from this area, though continued exploration is recommended.

The Bluff Property holds potential for mineralization similar to the Fish Lake (Prosperity) Cu/Au deposit located some 70km to the East; The Skinner Mountain lode Ag/Au veins, 18km east and the Blackhorn Mountain lode Au/Ag veins 20km to the south.

2.0 Location and Access


The property is located on BCGS mapsheet 092 N 077 and centered on Lat 51° 45' 25" N Long 124° 41' 04" W. The Bluff property is situated in the Clinton Mining Division approximately 250 km west of Williams Lake BC. There is good all weather paved road access from Williams Lake west on Highway 20 to Tatla Lake. About one kilometre before reaching the village of Tatla Lake, is the Bluff Lake turnoff. Travel south on good all weather gravel road about four kilometres to the Bluff Lake road (exit west) and follow for 19.6 km to the Rolston Ranch access road. Beyond the Ranch, access is difficult and gained only by ATV, foot or helicopter. Local helicopter service is provided by White Saddle Air Services at the south end of Bluff Lake.


3.0 Claims

The Bluff Property comprises thirteen claims totalling 141 units, covering 2,821.76 hectares. The claims are owned 100% by Susan Elizabeth Rolston.

Claim Name	Tenure Number	Units	Area/ha	Issue Date	Good to Date
Bluff	541943	37	740.39	2006/Sep/25	2012/0ct/05
Horne	547801	10	200.02	2006/Dec/21	2012/Dec/12
Bluff11	848082	8	160.10	2011/Mar/04	2013/Mar/04
Bluff112	848734	3	60.04	2011/Mar/12	2013/Mar/12
Bornite	983993	12	240.10	2012/May/05	2013/May/05
Ext	984009	5	100.02	2012/May/05	2013/May/05
Butt2	1012223	9	180.13	2012/Aug/24	2013/Aug/24
Butt1	1012228	13	260.16	2012/Aug/24	2013/Aug/24
South Butler	1013712	17	340.32	2012/0ct/13	2013/0ct/13
Blake	1017460	6	120.14	2013/Mar/03	2014/Mar/03
Butts2	1019192	12	240.21	2013/May/03	2014/May/03
Cow2	1019280	9	180.13	2013May/06	2014/May/06
Cow1	1019282	13	260.11	2013/May/06	2014/May/06

Table 1 - Claim Status

4.0 Physiography and Local Infrastructure

The area of sampling is located on and around the northeastern to southern marginal areas of the Rolston Ranch located approximately 1.5 km east of the north end of Bluff Lake, on part of a perched outwash fan from Butler Creek. The work area lies between 900 and 1750 m above sea level on generally northwesterly slope near the base of "Butler Mtn." Above 1000m elevation, the mountain slopes become steep and are locally precipitous.

In the vicinity of the property, approaching Bluff Lake, the mountains of the coast range rise dramatically from the generally rolling terrain of the western Chilcotin Plateau. The small relatively shallow ponds and lakes or long sinuous lakes occupying old river beds and valleys of the plateau give way to larger, deeper lakes within ice scoured valleys within a relatively short distance south, from Bluff Lake the highest peaks (in excess of 4000 m) in the coast range are found, with attendant ice fields, numerous valley Glaciers, and related terrain.

The property receives on average, less than one metre of snow annually and is generally snow free from mid-April to mid to late November. With exceptions of the more precipitous and extreme elevations, the property can be worked in all seasons.

The property is extensively covered with glacial overburden consisting of basal and ablation tills and glacio-fluvial deposits, except where slopes are steeper, this includes almost all of the more easily accessible portions of the property. The overburden varies in thickness and reaches more than 100m thick. Outcropping bedrock is nonexistent on the lower and gentler slopes.

Vegetation in the area consists of mainly coniferous forest with local patches of deciduous poplar or aspen. Locally, but not in the work area, there has been clear cut logging and corresponding new roads since the 1980's with earlier re-grown cut blocks evident. In recent decades there has been an endemic infestation of the mountain pine beetle that has affected a vast area of central BC including the Bluff Property.

The settlement of Tatla Lake is on highway 20 near the height of land between Tatla Lake of the Fraser-Chilcotin drainage basin and the coastal drainage of the Mosley Creek-Homathko River and Klinaklini River systems, which drains into Bute Inlet.

Tatla Lake offers basic services: fuel, lodging, meals, a general store and post office. There is also a local health nurse and first aid station. Most supplies must come from Williams Lake, about 220 Km to the east. Freight and transportation services along Highway 20 are very good with generally next day delivery of goods from Williams Lake possible.

5.0 History and Previous Work

Previous to the 1960's and possibly into the 1940's precious metal veins were discovered on "Butler Mountain". The knowledge that there was precious metal potential on Buffer Mountain is supported by the fact that the Butlers, owners of the cattle ranch on the lower reaches of Butler Creek, had panned small amounts of gold and recovered at least one "pea sized" nugget from Butter Creek. The Butlers seasonally grazed cattle in the alpine meadows and herded their cattle to higher open range on a cow and horse trail that crossed clay altered and gossanous exposures below the Macdonald (Cow trail) veins.

Sometime in the 1960's American Air Force personnel based at Puntzi Lake, became knowledgeable about the precious metal veins on the flank of Butler Mountain and placed claim posts following American federal staking laws. It is doubtful whether these claims were actually recorded in British Columbia.

In 1966, Puntzi Lake Resident, A. McDonald staked the St.Teresa Claims to cover the veins. Sometime after 1966 and for the better part of fifteen years, MacDonald laboured with a small bulldozer to build a pickup truck road to the veins. MacDonald reached the veins about 1982, and died shortly thereafter. The Title to the St.Teresa claim was transferred to his nephew Don Rose.

During the early 1970's, Noranda Exploration Company Limited staked claims in the Butler Lake area after regional sampling indicated anomalous values for copper, moly and gold. Noranda completed geological, geophysical (IP) and geochemical (soil) programs.

In 1983, JW Morton travelled up the MacDonald road and investigated a set of quartz veins exposed in three hand trenches. Imperial Metals subsequently optioned the claims from Don Rose and staked additional claims. Soil grid sampling and bulldozer trenching in 1984 yielded assays up to 2.6-oz/ton gold and 20.5 oz/ton silver from trench rubble. Imperial Metals drilled two holes from 1 set up on the vein structure before cold weather ended the program.

In 1984, Ryan Exploration, a subsidiary of US Borax located a significant metal anomaly on the main channel of Butler Creek and staked the area of Butler Lake and the early Noranda discoveries. The claims lapsed in 1987.

In 1987 Canavex Resources Limited purchased the St Teresa claim from Don Rose and staked the Newmac (an acronym for New MacDonald) claims around them. The property was optioned to Jaqueline Gold Corp. that same year. Subsequent work revealed porphyry style mineralization and alteration in Butler Creek bed.

In 1988 Jaqueline Gold expanded their grid and completed an IP survey preparatory to drilling two diamond drill holes later that year. The second drill hole intersected 157m grading 0.18% copper including 17m grading 0.13%Copper and 340 ppb gold. Jaqueline subsequently returned the property to Canavex.

In 1989, Canavex optioned the property to Noranda (their second involvement with the property). They competed 30km of IP survey, 37 km of ground Mag Survey, analysed 1203 soil samples, 158 rock samples, and completed 435 line miles of helicopter airborne geophysical survey. In 1991 Noranda completed 1939 m of diamond drilling in seven holes before returning the property.

In 1998, the Newmac Property was optioned to Ascot Resources Ltd. Ascot completed an additional 4 holes (875m.) The Ascot program while failing to identify economic mineralization, did establish that the porphyry system was potentially a very large deposit.

In 2004, Newrnac Resources Inc. acquired the claims from Canavex and conducted 17.8km of IP and mag surveys along the Macdonald road ("C" grid) where altered and Pyritic rocks had been noted. In 2006 Newmac completed a total of 6 widely spaced drill holes for a total of 1130.4 m. The widely spaced drilling failed to refine or direct the exploration beyond the knowledge base already at hand.

During 2004 to 2005, while Mincord Exploration Consultants crews were staying with the Rolstons, Mrs. Rolston had shown them rocks and samples she had collected from outcropping rock on and adjacent to their ranch. She was encouraged to do more prospecting and sampling, which eventually resulted in the staking of the Bluff claims. The Bluff Claims contained widespread tourmalinized, fractured and brecciated volcanic rocks with occasional chalky (intrusive?) clasts and common to locally abundant chalcopyrite, pyrite & bornite. The rocks were primarily located near the base of Butler Mtn. East of Bluff Lake. The obvious potential of the Bluff claims became increasingly apparent as Mrs. Rolston did more and more sampling.

An option agreement for the claims was concluded and late in 2006, geophysical surveys totalling 28.2 km of IP & mag were completed by Alan Scot, Geophysicist. The geophysical program delineated several targets to be followed up by diamond drilling. In early 2007, a diamond drilling program was initiated which completed 2389.4 m of NQ coring. Results of that program were inconclusive. Drill core was not systematically sampled and that core which was assayed did not return any significant results. However, un-split core stored on site at the Rolston Ranch shows varying degrees of copper mineralization.

Subsequent to the 2007 drill program, surrounding Newmac claims were inadvertently allowed to lapse. As claims became available, Sue Rolston acquired them to reconstitute the land holdings package. Work comprised prospecting and geochemical rock sampling over the core Bluff claims and the newly acquired claims.

The 2012 geochemical program consisted of rock sampling on three areas of the Bluff claim block. Notable samples were taken below the Bluff Lake road in the area of Painted Bluff showing. Samples Blu1, Blu2 and Blu3 returned copper values of 3190ppm, 2330ppm and 6250ppm respectively. Sample Blu1 also ran 2.02g/t Au, 2260ppm As and 889ppm Zn. Eight of twelve samples located in the area of the Bornite showing were anomalous in copper. The Bluff Property holds potential for mineralization similar to the Fish Lake (Prosperity) Cu/Au deposit located some 70km to the East; The Skinner Mountain lode Ag/Au veins, 18km east and the Blackhorn Mountain lode Au/Ag veins 20km to the south.

6.0 Geology

6.1 Regional Setting

The Bluff claims are located along the southwestern margin of the "Tyaughton Trough", a late Jurassic depositional basin that in this area is predominantly filled with Lower Cretaceous volcanic and sedimentary rocks. The Tyaughton Trough in the vicinity of the Bluff Claims is a structural block bounded by two significant breaks:

The Yalakom Fault is a right lateral transcurrent fault striking west northwest with 130 to 190 km of offset and forms the north bounding structure of the basin.

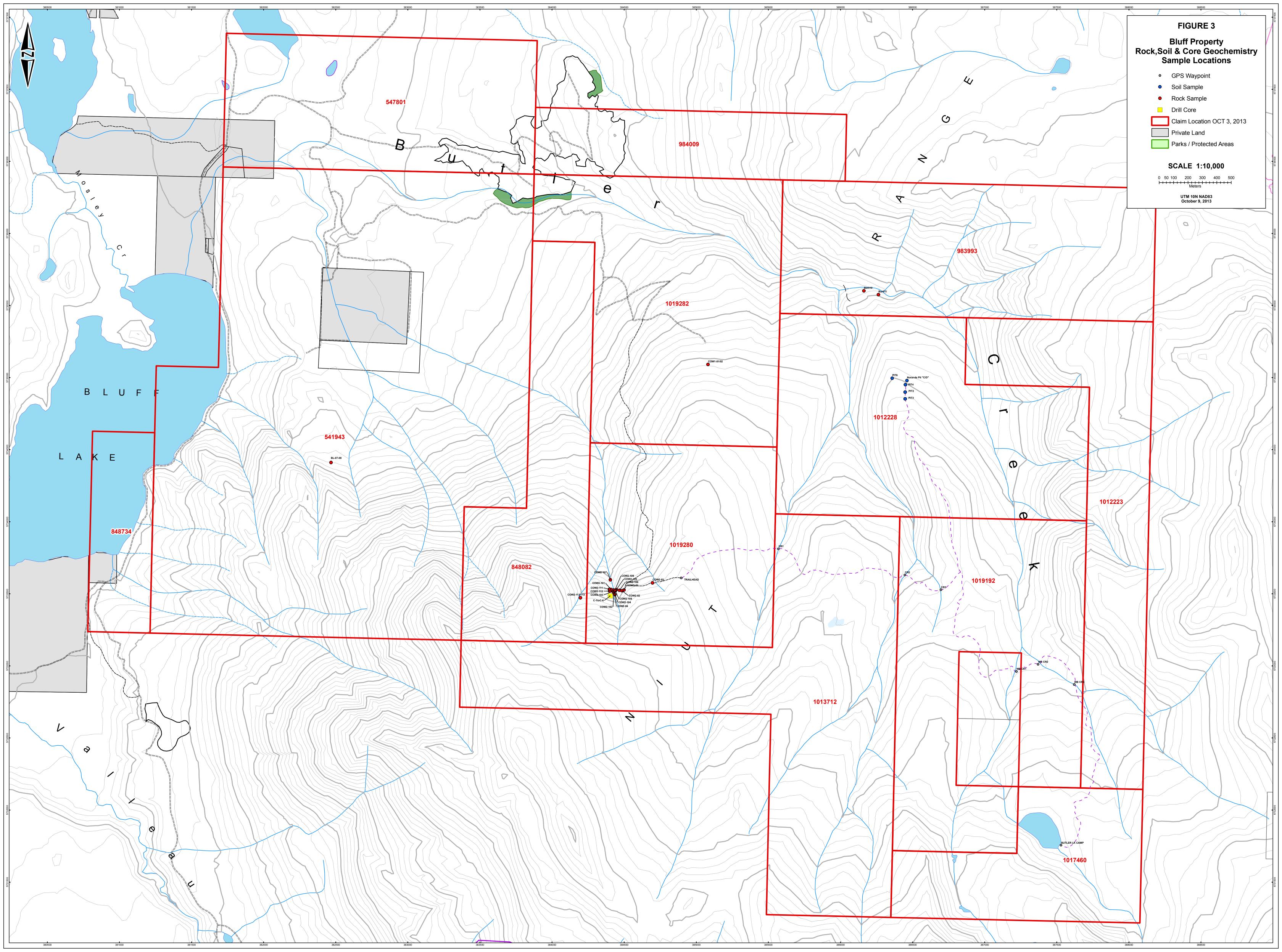
The Tchaikazan Fault is also a right lateral, west-northwest trending transcurrent fault, with an estimated offset of 32 km and forms the southern bounding structure.

A third and essentially parallel fault, The Niut Fault runs through Butler Mountain.

6.2 Local Geology

Rock outcropping around the Bluff Property is restricted to the bluffs overlooking Bluff Lake, the slopes of Butter Mountain and to the north, beyond Butler Creek, the upland sides of the valley. The ridge on the western side of the claims overlooking Bluff Lake and backing onto the Rolston Ranch is composed of medium to dark green chloritic andesite , moderately hard, with traces of pyrite, and minor epidote alteration.

As the ridge ascends towards Butler Mountain a hard, medium grey-green andsesite with pale, diffuse white feldspar phenocrysts becomes common. This rock has been described elsewhere as "Homfels". North of Butter Creek, on the valley flanks dark green chloritic andesite is common. It may have quartz and carbonate veining with minor epidote. Higher on the slopes north of Butler Creek and east of Horne Lake, outcropping of the Miocene Chilcotin Basalt is evident. The prominent hay meadow gently sloping from the ranch to the beaver ponds appears to be underlain by sequences of tills and gravels in excess of 100 m thick.


The section represented on the newly acquired claims that lie to the east and north of the Bluff claims includes siltstones, greywackes, conglomerates and volcanic breccias and tuffs. Within this area, Upper Cretaceous to Tertiary diorite, quartz diorite, monzonite and quartz feldspar porphyry stocks and dykes have intruded the volcanic and sedimentary package. A thin layer of vesicular basalt, possibly representative of the Miocene aged Chilcotin plateau basalt, outcrops on the cliff top above Butler Lake and is likely the youngest unit within the project area. In and around Butler Lake and the upper reaches of Butler Creek, the volcanic and sedimentary rocks have been extensively homfelsed.

The most common intrusive type in the Butler Lake area is quartz feldspar porphyry. Extensive sections of intrusive breccia (quartz-feldspar porphyry and diorite) have been intersected in drill holes on the east side of Butler Creek.

Pyrite, pyrrhotite, chalcopyrite, bornite and molybdenite (and occasionally arsenopyrite) have variably mineralized both the intrusive rocks and the homfelsed volcanics and sediments. In the Cow Trail Vein area, gold and silver bearing quartz veins and quartz-sulphide stockworks have developed, possibly as distal features to the porphyry mineralization.

7.0 Work Program

The 2013 work program comprised geochemical sampling of 22 rocks , 86 drill core intervals and six soils from various locations on the Bluff claims and the newly acquired land package. In addition, 7.0 kilometres of trail was GPS surveyed for the purpose of determining the condition of the trails and extent of access they would provide to the north and eastern claims.

7.1 Access Trails

Seven kilometres of trail was GPS surveyed for the purpose of determining the condition of the trails and extent of access they would provide to the north and eastern claims. An alternate access to the Noranda pits, located between the east and west forks of Butler Creek, was needed to circumvent the steep and difficult terrain associated with the deeply incised creeks. For the most part, the trails were in moderate to good condition, however remediation work is required to remove blow-down/dead-fall and to mitigate impact in wet areas.

7.2 Geochemistry

7.2.1 Soil Geochemistry

The "Noranda Pits" were located on the Butt1 claim in late May by Susan Rolston. Five "B" and one "C" horizon soil samples were taken from five pits by Susan Rolston and geologist Roger MacDonald on August 10, 2013. The purpose of the samples was to attempt to reproduce some of the strongly anomalous results returned by the original samples. See Figure 4.

The upslope walls of the pits were cleaned of debris and sloughed material then samples were taken with geo-tool and deposited into craft paper bag. Each bag was identified with a unique sample name and put into a plastic ore bag for transportation to the staging area at camp. Samples were dried, catalogued and transported by truck to ALS Laboratories in Kamloops by Susan Rolston. Analyses were performed for 35 elements using industry standard ICP- Spectroscopy techniques, plus fire assay with atomic absorption finish for gold. Analytical descriptions are attached in Appendix 2.

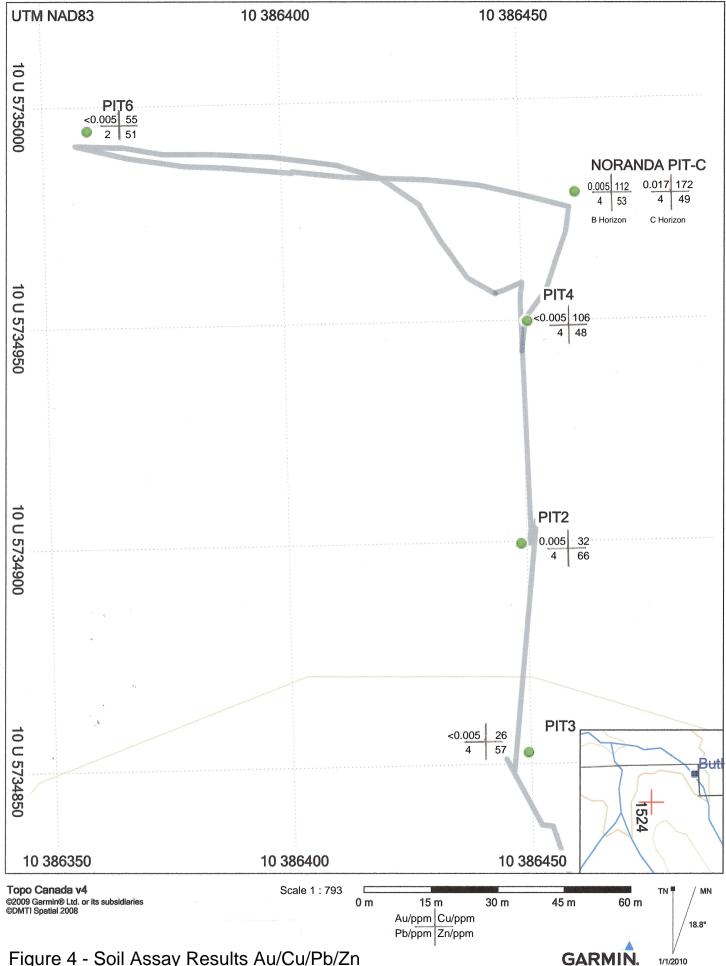


Figure 4 - Soil Assay Results Au/Cu/Pb/Zn

7.2.2 Rock Geochemistry

The 2013 rock geochemical program consisted of 22 rock samples taken by Susan Rolston and geologist Roger MAcDonald, on the Cow1, Cow2, Bluff11and Bornite claims during the period May 19 to August 15, 2013. Sampling took place primarily on the Cow2 claim along the Cow vein and the presumed extension to the west with 18 vein and host rock samples taken. Sampling was performed to test the continuity of mineralization in the Cow Vein and to determine its western extent. Two outcrops were sampled on the Cow1 claim on an exposed within an old burn and an addition two samples were taken in the area of the Bornite showing in an effort to locate the source of mineralized float found at a prospectors cabin located near the confluence of upper Butler creeks. Rock descriptions can be found in Table 2. See Figures 5 -9 for the assay results.

Samples consisted of approximately 1.2 to 2.0kg of rock taken from outcrop or float in areas of particular interest. Samples were then described, numbered and bagged into standard poly ore bags and transported to camp. Samples were batched then transported by truck to ALS Laboratories in Kamloops BC. Analyses were performed for 35 elements using industry standard ICP- Spectroscopy techniques, plus fire assay with atomic absorption finish for gold. Analytical descriptions are attached in Appendix 2.

Six samples of un-split core were taken from boxes stored at drill platform DDH 85-1/85-2 on the west side of the creek adjacent to the Cow vein. No depths or hole identification were visible on the boxes so the samples were taken for a qualitative analysis of weak to moderate mineralization that was visible in the core. See Table 3 for assay results.

Sample No.	UTM Zone	UTM E	UTM N	Description				
Noranda Pit C	10 U	386462	5734979	Soil, B-horizon, redish- brown, 15-40cm depth, mod slope, podzolic				
Noranda Pit C	10 U	386462	5734979	Soil, C-horizon, med brown, 40-80cm depth, note: ash tuff boulder w/ 3-4% fg py, +/- qz/cb str				
Pit 6	10 U	386359	5734995	Soil, B-horizon, redish- brown, 15-25cm depth, mod slope, podzolic, w/ qz diorite frags				
Pit 4	10 U	386451	5734950	Soil, B-horizon, redish-brown, 5-15cm depth, mod slope, podzolic				
Pit 2	10 U	386449	5734899	Soil, B-horizon, redish-brown, 5-12cm depth, mod slope, podzolic				
Pit 3	10 U	386449	5734852	Soil, B-horizon, redish-brown, 5-12cm depth, mod slope, podzolic				
Bor010	10 U	386163	5735601	O/C, fg and porph w/ 1-2% fg py, +/- fg py str				
Bor011	10 U	386264	5735575	O/C, fg and porph w/ 1-2% fg py (5-7% locally), +/- fg py str, in broad fracture zone 200/68W				
Cow2-01	10 U	384499	5733526	O/C, Cow Vein, west margin, qz/cb w/ 1-2% mg ga +/- cpy +/- py +/- sph				
Cow2-02	10 U	384486	5733521	O/C, Cow Vein, east margin, qz/cb w/ 2-3% mg dissem sph, ga, cpy +/- py				
Cow2-03	10 U 384697 5733576 O/c, Cow Vein, upper trench on switchback, granular, vuggy qz/cb w/ 2-3% mg-cg sph, ga, +/-cpy +/- py							
Cow2-04								
Cow2-101	10 U	384410	5733529	O/C, on east side of Mac's cr, st silic, altered fg and porph, 3-4% fg dissem py. Host rock adjacent to vn				
Cow2-102	10 U	384428	5733510	O/C, Cow Vein, east side of Mac's cr. vuggy qz/cb w/ dissem sph 5%, ga 3%, bo 1%, cpy 2%				
Cow2-103	10 U	384422	5733517	O/C, Cow Vein, in Mac's cr. Qz/cb w/ vuggy selvage. 1-2% sph, 1% ga, 1-2%cpy, 3-4% py				
Cow2-104	10 U	384428	5733526	O/C, east side of Mac's cr. and porph host w/ 4-5% fg dissem py				
Cow2-105	10 U	384446	5733528	O/C, east side of Mac's cr. Qz diorite host rock w/ 3% fg dissem py				
Cow2-106	10 U	384468	5733524	O/C, east side if Mac's cr. Calcite vn w/ 1-2% fg dissem py. Pink cast- rhodochrosite				
Cow2-107	10 U	384405	5733597	Float, below gossen, 30m down slope from Cow vn. Qz/cb vn w/ clots of sph to 10%, 3-4% ga, tr-1% bo				
Cow2-108	10 U	384439	5733520	O/C, Cow Vein. 30cm chip across anastamosing qz/cb vn w/ mg dissem cpy, py, ga +/- sph				
Cow2-109	10 U	384435	5733523	O/C, Cow Vein. East side of Mac's cr. 20cm chip across Cow vein and qz flooded wall rock w/ ga, cpy, py				
Cow2-110	10 U	384400	5733518	O/C, pritic host rock, mg compact diorite? w/ 2-3% fg py, tr cpy, tr ga. Mod silic / qz str to 2mm				
Cow2-111	10 U	384398	5733531	Float, qz vn w/ py, cpy, bo, ga				
Cow2-112	10 U	384197	5733472	O/C, Massive compact diorite w/2-3% fg py +/- cpy +/- az				
Cow2-113	10 U	384197	5733472	O/C, epidotized, pyritic massive compact diorite				
Cow1-01	10 U	385082	5735090	SO/C, top of burn. Mg feldspar porph, chloritic groundmass, 1-2% fg py				
Cow1-02	10 U	385082	5735090	SO/C, top of burn. Mg feldspar porph, chloritic groundmass, 1-2% fg py				
Abbreviations:	fg - fine gra	ined, mg -	medium gr	ained, cg - coarse grained, py - pyrite, cpy - chalcopyrite, hem - hematite, ep - epidote, ga - galena, bo - bornite				
	sph - sphalerite, chl - chlorite, mod - moderate, st - strong, qz - quartz, cb - carbonate, vnlt - veinlet, dissem - disseminated, sx - sulphides							
	az - azurite	, str - strin	gers, w/ - w	vith, and - andesite, porph - porphyry, silic - silicification, O/C - outcrop, SO/C - sub-outcrop				

Table 2 – Soil/Rock Descriptions

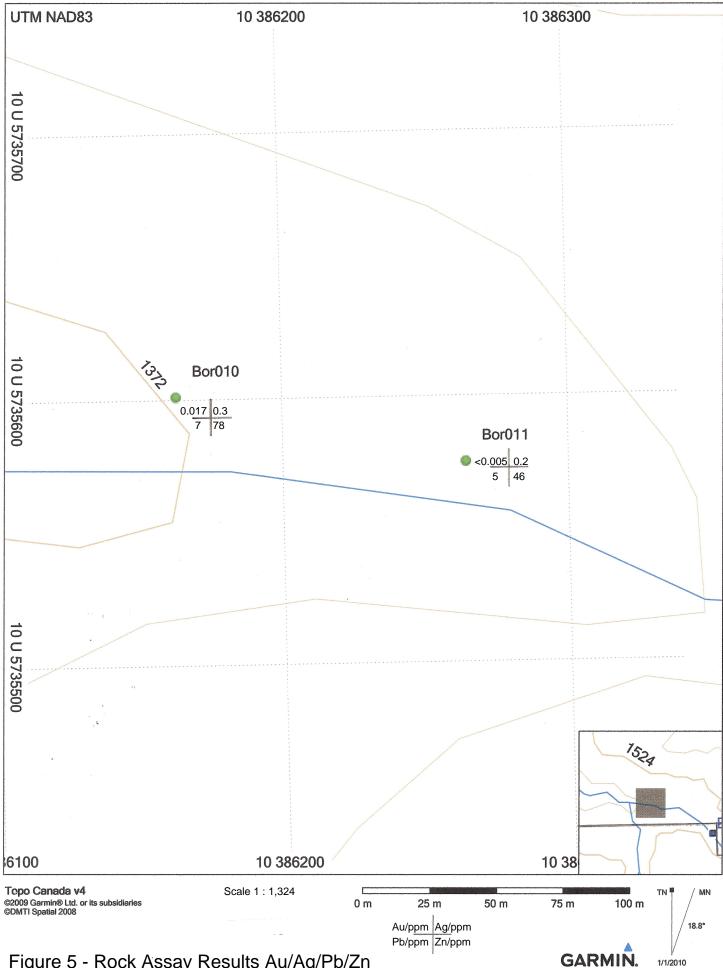
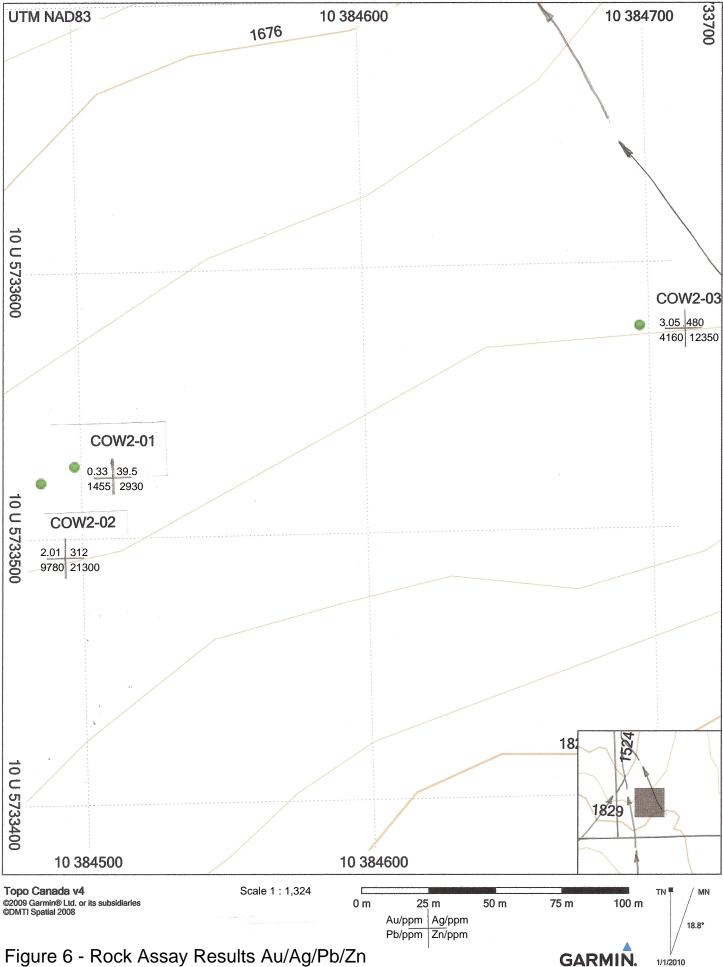
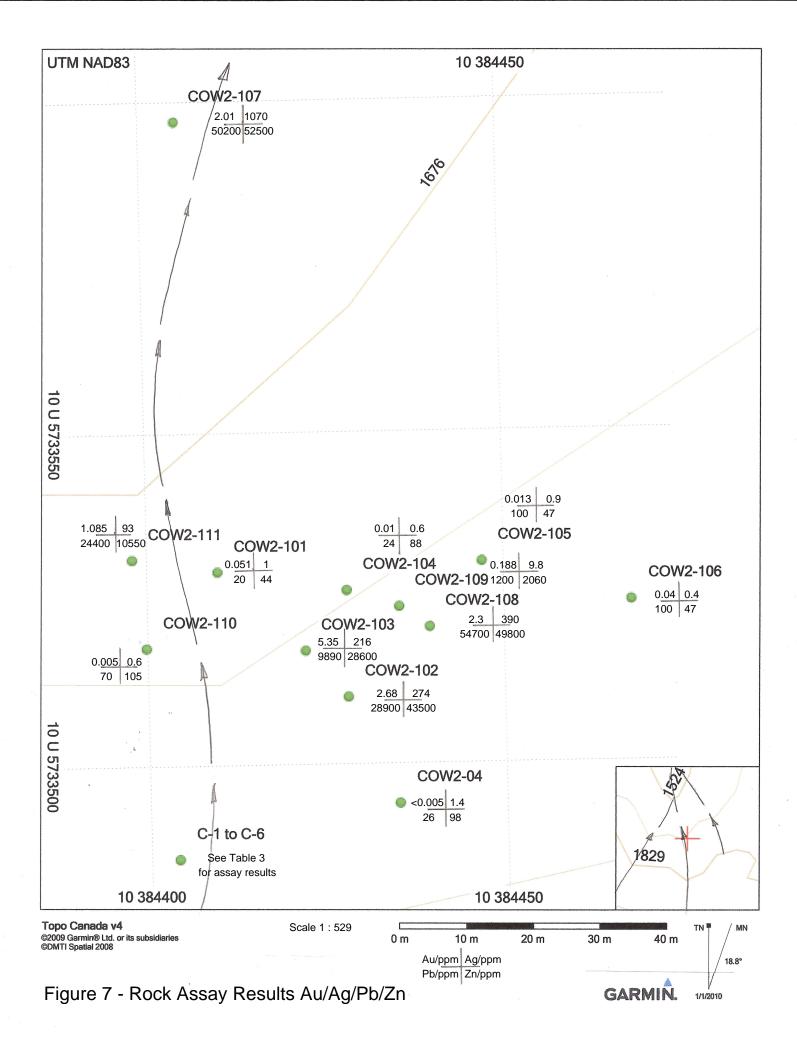
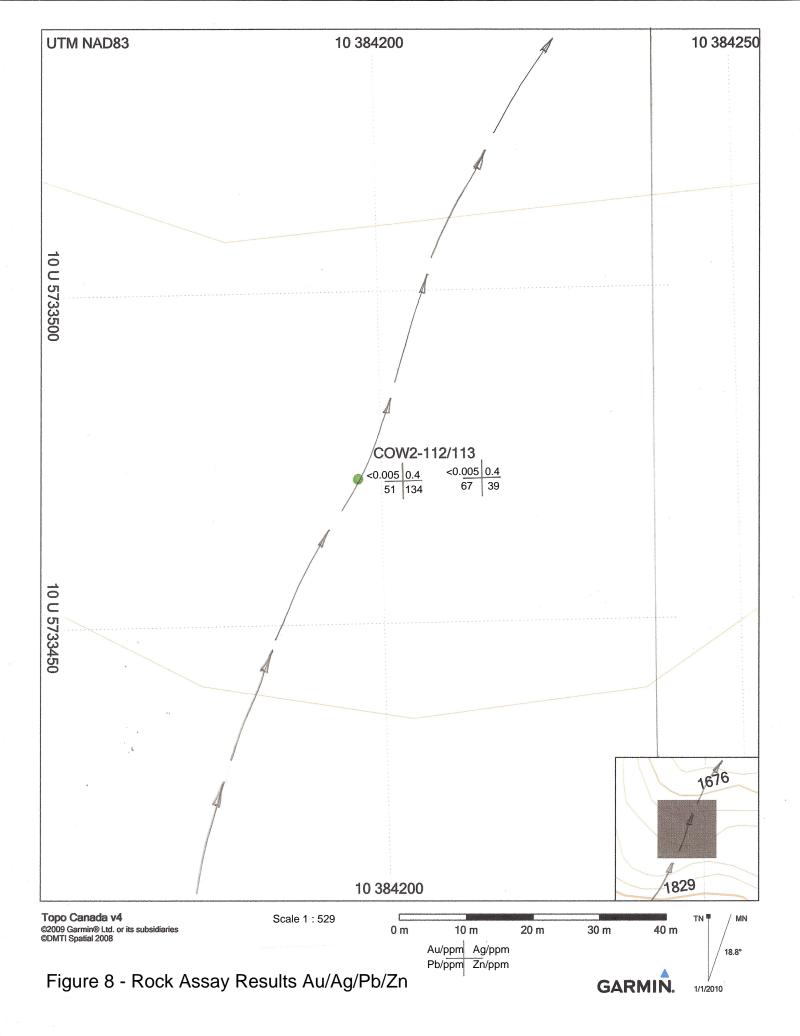
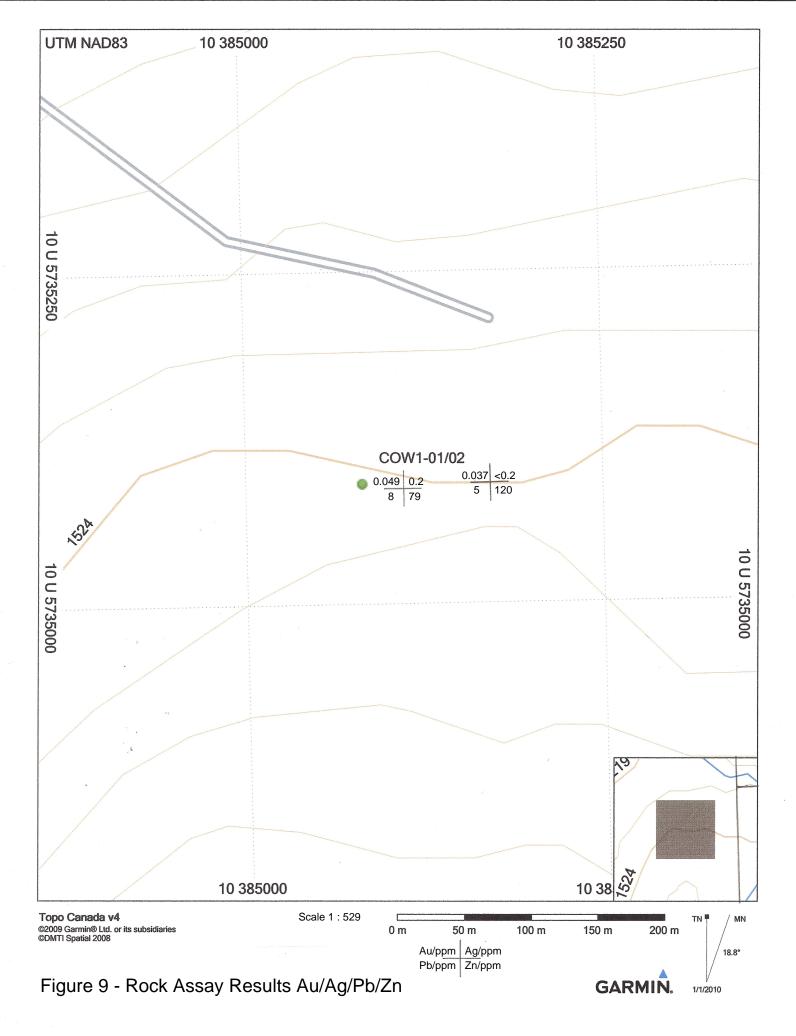


Figure 5 - Rock Assay Results Au/Ag/Pb/Zn


Figure 6 - Rock Assay Results Au/Ag/Pb/Zn

				Au	Ag	Cu	Mo	Pb	Zn
Sample No.	UTM Zone	UTM E	UTM N	ppm	ppm	ppm	ppm	ppm	ppm
C-1	10 U	384404	5733486	<0.005	0.6	8	1	5	55
C-2	10 U	384404	5733486	<0.005	0.2	46	1	5	69
C-3	10 U	384404	5733486	<0.005	<0.2	34	1	2	54
C-4	10 U	384404	5733486	0.095	6.1	97	9	302	390
C-5	10 U	384404	5733486	<0.005	1	24	<1	13	68
C-6	10 U	384404	5733486	<0.005	<0.2	37	1	3	23

Table 3 - C1 to C6 core Assays

7.2.3 Drill Core Geochemistry

After the completion of the 2007 drill program, due to weathering oxidation, it was noticed that un-split core from DDH BL 08-07 had a noticeable amount of bornite mineralization throughout the length of the hole. To determine the strength of the mineralization, it was decided to systematically sample the remaining core of BL 08-07. Samples intervals were laid out on roughly two metre intervals and cut along the core axis with a manual core splitter. One half of the sample was put into 12"x14" poly ore bags with a corresponding unique sample number tag and the remaining half of the core was returned to the core box with the sample interval marked and tag fastened to the box. Samples were batched then transported by truck to ALS Laboratories in Kamloops BC. Analyses were performed for 35 elements using industry standard ICP- Spectroscopy techniques, plus fire assay with atomic absorption finish for gold. Analytical descriptions are attached in Appendix 2. Drill Log BL 08-07 is attached in Appendix 1.

8.0 Discussion and Interpretation

Exploration and sampling was focused on three areas within the expanded Bluff property. Un-split core from BL 08-07 was split and sampled, the Cow Veins were sampled and the possible extension was prospected and sampling and prospecting continued in the Bornite Showing area. Seven kilometres of trail was GPS surveyed for the purpose of determining the condition of the trails and the extent of access they would provide to the north and eastern claims.

Assays returned from BL 08-07indicate two broad zones of anomalous copper values: 21.95m @ 221.0ppm Cu from 136.2m to 158.1m and 40.2m @ 146.5ppm Cu from 170.2m to 210.4m. The hole was collared in quartz diorite and terminated in this unit at 230.7 metres. Mineralization appears to be associated with chloritic fracture with fine tourmaline, bornite and chalcopyrite. It is recommended that the 2006 geophysical grid be extended as far as possible to the south-west to define possible drill targets with IP and mag surveys.

Sampling and prospecting at the Cow veins defined continuity of grade throughout the vein from switchback in the MacDonald road to the creek bed were it either terminates in a shear/fault expressed in the creek or continues but is covered by talus and overburden to the west of the creek. A possible continuation of the vein is represented in a gossanous outcrop located some 80m downslope and across the creek from the westernmost outcrop of the vein. Sample Cow2-107, float located directly beneath the gossanous outcrop, returned assays of 2.01gpt Au, 1070gpt Ag, 5.02% Pb and 5.25% Zn. Continued prospecting/sampling is recommended to determine the westward extent of the Cow veins.

Owing to difficult, steep terrain, only limited prospecting was performed in the Bornite Showing area. Two rock samples taken in fine grained, pyritic andesite porphyry did not return significant assays. Upon completion of the proposed trail upgrades, prospecting, sampling and mapping is recommended in this area and further along the east fork of upper Butler Creek.

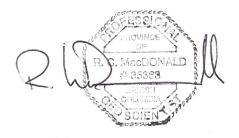
An alternate access to the Noranda pits, located between the east and west forks of upper Butler Creek, was needed to circumvent the steep and difficult terrain associated with the deeply incised creeks. For the most part, the trails were in moderate to good condition, however remediation work is required to remove blow-down/dead-fall and to mitigate impact in wet areas. It is recommended that the trail be cleared and upgraded for ATV access from the trailhead to the Noranda pits area and south-east to Butler Lake.

The Bluff Property holds potential for mineralization similar to the Fish Lake Cu/Au deposit located some 70km to the East; The Skinner Mountain lode Ag/Au veins, 18km east and the Blackhorn Mountain lode Au/Ag veins 20km to the south.

Wages						
Prospector/sampler	12.5	days	@	\$325.00	/day	\$4,062.50
Geologist	6	days	@	\$500.00	/day	\$3,000.00
Report writing	1.5	days	@	\$500.00	/day	\$750.00
Core splitter	5	days	@	\$200.00	/day	\$1,000.00
Rentals						
ATV	15	days	@	\$190.48	/day	\$2,857.20
Truck	1548	km	@	\$0.55	/km	\$851.40
Fuel	40	1	@	\$1.07	/l	\$42.80
Camp	17.5	mandays	@	\$60.00	/manday	\$1,050.00
Shipping						\$32.51
Assays						\$4,699.01
Air travel						\$420.44
Supplies						\$769.72
Drafting						\$171.25
					Total	\$19,706.83

9.0 Statement of Costs

Table 4- Statement of Costs


Note that \$1,703.22 is assigned to GPS surveying of the access trail, which is preparatory to future work. This amount is included in the total work expenditure of \$19,706.83.

10.0 Statements of Qualifications

I, Roger C. MacDonald P.Geo, do hereby certify that,

- 1.) I currently reside at 8191 River Road, Richmond, BC, Canada, V6X 1X8 and I am self employed as a consulting geologist.
- 2.) This certificate applies to the Assessment Report on the Bluff Property dated November 18, 2013.
- 3.) I graduated with a Bachelors Degree of Science (Department of Geology) from the University of British Columbia in 1988. I have worked twenty years as a geologist, throughout the BC/Yukon Cordillera, NWT/Nunavut, the Guiana Shield, SA and the Canadian Shield in Ontario since my graduation. I am a member in good standing with the Association of Professional Engineers and Geoscientists of BC and the Association of Professional Engineers and Geoscientists of BC and the Association of Professional Geoscientists of Ontario.
- 4.) I have been involved in various exploration programs on the Bluff Property from 2004 through 2013.

Sealed and Signed at Vancouver, British Columbia, on November 18, 2013

Roger C. MacDonald, P.Geo.

- I, Susan E Rolston, do hereby certify that
 - 1.) I currently reside at 6705 Bluff Lake Road, Tatla Lake, BC, V0L 1V0.
 - 2.) I have been working as a prospector and sampler for 7 years, primarily on my own mineral tenures.
 - 3.) I have worked for several companies in the mining and mineral exploration industry since 2005 as a prospector, sampler, core splitter, OHS Level 3 First Aid Attendant, cook and camp manager.
 - 4.) I completed the online "Mine 1003" course on Mining and Prospecting through the British Columbia Institute of Technology.
 - 5.) I am 100% Owner of Tchaikazan Resources Inc., a private exploration company.
 - 6.) I performed and supervised the work described in this report.

Signed at Tatla Lake, British Columbia, November $\frac{18}{2013}$.

Jersen E Latto

Susan E. Rolston

11.0 Bibliography

- Beane, R.E. & Titley, S.R. (1981) Porphyry Copper Deposits Part 11, Hydrothermal Alteration and Mineralization; In 75th Anniversary Volume, Economic Geology, pp 235-269.
- Cox, D.P. & Singer, D.A. (1988): Distribution In Porphyry Copper Deposits: U. S. Geological Survey, Open File Report 88-46, 23 pages.
- Fraser, John, (1972): Report on the Butler Creek Property, for Noranda Exploration Company Limited. 92N/10E.
- Gill,D.G. & Wong, T., (1991) Geological, Geophysical and Geochemical Report on the Newmac and Newmac east group claims, 92N/10 and /15E, January 1991.
- Heim, R.C., Fraser, J.R., Walker, J.T., & Knauer, J.D. (1972): Geological, Geophysical Geochemical Report on B.U. 1, 3-7, 1926, 74,76, & 78 Claims.
- Howell, W.A., (2006): Assessment Report No. 28547, 2005 Diamond Drilling Report on the Newmac Copper-Gold-Molybdenum Property, dated September 26, 2006.
- Howell, W.A., (2008): Assessment Report No. 29526, 2007 Diamond Drilling Report on the Bluff Property, dated January 14, 2008.
- Israel, S., Kennedy, L.A., (2000): Geology and Mineralization of the Tchaikazan River Area, South Western British Columbia (920/4). Geological Field Work 1999, Paper 2000-1, pp 157-172.
- Lowell, J.D., Guilbert, J.M.(1970): Lateral and Vertical Alteration/Mineralization Zoning In Porphyry Ore Deposits; Economic Geology, Vol.65, pp 373-408.
- MacDonald, R.C. (2013): Assessment Report for the Cheochemistry Program on the Bluff Property, dated January 23, 2013
- McLaren, G.P. (1986): Geological Fieldwork, 1985, Paper 1986-1, Geology and mineral Potential of the Chilko-Taseko Lakes area (92 0/45; 92 J/13;92 0/4).
- McLaren, G.P. (1987): Geological Fieldwork, 1986, Paper 1987-1, Geology and Mineral Potential of the Chilko-Taseko Lakes area (92 N/14); (92 0/4).
- Morton, J.W. (1984): Assessment Report No. 12422, Geochemical Report on the Mac Claim Group, July 12, 1984.

- Morton, J.W. (1985): Assessment Report No.13780, Geological and Geochemical Report On the Mac Claim Group, dated May, 1985.
- Morton, J.W. (2004): Assessment Report No. 27543 on the Newmac Mineral Claims, dated November 5th, 2004.
- Roddick, J.A. & Tipper, H.W. (1985): GSC Open File Map 1163, Geology Mt Waddington Map Area (92N).
- Schroeter, T.G. Editor (1995): Porphyry Copper Deposits of the Northwestern Cordillera Of North America; Canadian Institute of Mining and Metallurgy and Petroleum Special Volume 46, 888 pages.
- Sutherland, Brown, A., Editor (1976): Porophyry deposits of the Canadian Cordillera Canadian Institute of Mining and Metallurgy, Special Volume 15, 510 pages.
- Tipper, H.W. (1969): GSC Paper 68-33 and Map 5-1968, Mesozoic and Cenozoic Geology of the Northeast part of Mt. Waddington Map area, (92N) Coast District 1969.
- Tilley, S.R. & Beane, R.E. (1981): Porphyry Copper Deposits Part 1. Geologic Settings Petrology and Tectogenesis, In 75th Anniversary Volume, Economic Geology, Pp 214-234.
- Thompson, J.F.H., Editor: Magmas, Fluids, and Ore Deposits; MDRU Short Course Series, Volume 23, Mineralogical Assn. of Canada.

Appendix I – Drill Log BL 07-08

DDH BL 07-08

Project:	Bluff Lake	UTM Zone	10 U NAD 83
Location:	Tatla Lake, BC	Map Sheet:	092 N 076.
Logged by:	W.A.Howell	Easting:	382468
Drilled by:	D.J.Drilling	Northing:	5734410
Assayed by:	Acme Analytical Laboratories	Collar Elev:	1141 m
Core size:	NQ	Az:	160°
Started:	Mar 05, 2007	Dip:	-45
Finished:	Mar 09, 2007	Length:	230.73 m

ROJECT	: BLUFF			A	ssay Samp	oles	
rom	То	Rock Type and Description	From	То	Length	Samp No.	Cu/ppn
0.00		Casing. Overburden is a mixture of till and slabby talus	0.00	11.30	11.30	N/S	
1.30	230.70	QUARTZ DIORITE	11.30	13.30	2.00	13201	12.
		(QD) Massive uniform 'Salt and pepper's Qtz. Di. Mafics (Hb) have been	13.30	15.30	2.00	13202	12.
		chloritized, fractures are commonly epidotized. Rock is moderately to strongly	15.30	17.30	2.00	13203	19.
		magnetic. (Presumably Hb altered (chl) magn.) Hypidiomorphic granular	17.30	19.30	2.00	13204	41.
		texture. No visible sulphides initially. Qtz. filled fractures (1.5mm - 5mm)	19.30	21.20	1.90	13205	47.
		occur at 30° and 45° to CA. Small Qtz filled fractures are 10° to CA, 30° to	21.20	23.47	2.27	8137	18.
		CA and 45° to CA.	23.47	25.50	2.03	13206	9.
			25.50	29.50	4.00	13207	12.
			29.50	31.53	2.03	13208	11.
			31.53	33.51	1.98	10101	11.0
		34.20 - 2cm shear Qtz. filled, upper selvage strong chl. lower selvage as	33.51	35.66	2.15	10102	15.0
		clay, chl) Throughout folds. are pale / green colour look weakly Chl (?) (How	35.66	38.71	3.05	10103	6.0
		is this so?) Fractures 45° to CA commonly have white chalcedonic looking Qtz.	38.71	41.28	2.57	8138	18.4
		Chl healed fractures are common.	41.28	44.38	3.10	10104	17.0
			44.28	46.56	2.28	10105	16.0
			46.56	47.85	1.29	10106	8.0
			47.85	49.65	1.80	10107	11.0
			49.65	51.31	1.66	10108	13.0
			51.31	53.30	1.99	10109	7.0
			53.30	55.14	1.84	10110	11.0
			55.14	57.08	1.94	10110	9.0
			57.08	58.87	1.79	10111	14.0
			58.87	60.66	1.79	10112	14.0
			60.66	62.56	1.90	10113	12.0
				63.53			35.0
			62.56 63.53	65.53	0.97 2.00	10115 8139	25.4
			65.43	67.60	2.00	8139	67.6
			67.60	69.60	2.00	8141	173.2
			69.60	70.51	0.91	10115	35.0
			70.51	72.54	2.03	10116	33.0
		72.20 - 72.50 - Rubble. Caved	72.54	74.07	1.53	10117	33.0
			74.07	75.70	1.63	10118	43.0
		75.00 - First trace of selvage clay alteration.	75.70	77.54	1.84	10119	11.0
			77.54	79.40	1.86	10120	32.0
			79.40	81.60	2.20	10121	43.0
		81.60 to 81.85 25cm shear zone with tourmaline and cpy. limonite and	81.60	81.85	0.25	8146	>10000
		malachite. Occasional fractures 15° to CA has strong Ep. selvages with clay	81.85	83.75	1.90	10122	26.0
		altered felds. outside the Ep. (normally reversed.) From about 90M white clay	83.75	85.53	1.78	10123	43.0
		altered felds. have common minor alteration around fractures. Core remains	85.53	87.53	2.00	8142	41.0
		hard and competent.	87.53	89.53	2.00	8143	19.
			89.53	91.75	2.22	10124	18.
			91.75	93.74	1.99	10125	34.
			93.74	95.83	2.09	10126	57.0
			95.83	97.62	1.79	10127	44.
			97.62	99.48	1.86	10128	142.
			99.48	101.41	1.93	10129	93.
			101.41	103.24	1.83	10130	30.
			103.24	105.25	2.01	10131	15.
			105.25	107.28	2.03	10132	15.
			107.28	109.13	1.85	10133	18.
		From around 110 m core matrix loses its green coloured felds. and becomes white	109.13	111.09	1.96	10133	16.
		silicious, Ma fics are black / green with trace Cpy. Clay selvages are generally stronger.	111.09	113.00	1.91	10135	53.
		since as, the new ore block / green with trace opy, day scruges are generally stronger.	111.09	114.90	1.91	10135	38.
			113.00	114.90	0.63	10130	24.

 131.30 - 3 fractures 1 to 5 mm with good bornite 131.30 - 3 fractures 1 to 5 mm with good bornite 131.30 - 3 fractures 1 to 5 mm with good bornite 136.95 to 137.40 Swerel fractures with dark ChL, possible fine 136.95 to 137.40 Swerel fractures with dark ChL, possible fine 107.70 112.50 1							
131. do - 3 fractures 1 to 5 mm with good bornite 131. do - 3 fractures 1 to 5 mm with good bornite 133. do - 3 fractures 1 to 5 mm with good bornite <td< td=""><td></td><td></td><td>115.53</td><td>117.53</td><td>2.00</td><td>8144</td><td>37.2</td></td<>			115.53	117.53	2.00	8144	37.2
 120.59 122.50 123.48 198 131.30 - 3 fractures 1 to 5 mm with good bornite 131.30 - 3 fractures 1 to 5 mm with good bornite 131.30 - 3 fractures 1 to 5 mm with good bornite 131.30 - 3 fractures 1 to 5 mm with good bornite 131.30 - 3 fractures 1 to 5 mm with good bornite 132.35 134.27 135.13 128.48 1209 132.35 134.27 135.13 12.32 10143 132.35 134.27 135.13 12.31 123 132.35 134.27 135.13 12.31 123 132.35 134.20 12.30 132.35 14.51 123 132.35 134.20 12.30 1435 132.35 134.20 12.30 1435 132.35 134.20 12.30 1435 132.35 134.20 12.30 1435 132.35 134.20 12.31 135.31 142.21 10.145 132.35 134.20 12.30 1436 132.46 12.30 143.21 123 132.48 124.30 12.30 144.54 132.48 124.30 12.30 144.54 132.51 142.50 12.20 141.50 12.20 141.50 12.20 141.50 12.20 141.50 12.20 141.50 12.20 141.50 12.20 141.50 12.20 141.50 12.20 141.50 12.20 141.51 12.20 141.50 12.20			117.53	119.60	2.07	8145	30.8
 122.50 124.48 198 10139 122.50 124.48 198 10139 124.31 26.39 128.48 126.39 191 10140 126.35 128.48 126.39 128.48 126.39 191 10140 126.35 128.48 126.39 128.48 130.00 2.42 10144 126.35 10 137.40 Several fractures with dark ChL, possible fine 136.05 10 137.40 Several fractures with dark ChL, possible fine 136.05 10 137.40 Several fractures with dark ChL, possible fine 136.05 10 137.40 Several fractures with dark ChL, possible fine 136.05 10 137.40 Several fractures with dark ChL, possible fine 136.05 10 137.40 Several fractures with dark ChL, possible fine 136.05 113.427 192 10144 136.05 113.427 10146 136.05 114.207 110 1046 136.05 114.207 110 1046 146.52 148.30 113 146.52 148.30 113 145.50 113.50 113.10 1142 150.25 151.60 13.80 20.20 81849 150.25 151.60 13.80 20.20 81849 150.25 151.60 13.80 20.20 81810 151.50 153.80 20.20 81810 151.51 153.80 150.21 153.80 150.21 153.80 150.21 153.80 150.21 153.80 150.21 153.80 150.21 153.80 150.21 153.80 150.21 153.80 150.21 153.80 150.21 153.80 150.21 153.80 153.2 155.01 153.80 153.2 155.2 155.60 125.80 125.20 125.80 125.90 120.20 815.1 113.10 153.2 153.90 120 125.2 155.60 125.80 125.90 128.20 120.20 815.1 113.10 153.0 130.20 113.1 1153.0 113.2 113.1 1153.0 113.2 113.1 1153.0 113.2 113.1 1153.0 113.2 113.1 1153.0 113.2 113.1 1153.0 113.2 113.1 1153.0 113.2 113.1 1153.0 113.2 113.1 1153.0 113.2 113.1 1153.0 113.2 113.1 1153.0 113.2 113.1 1153.0 113.2 113.1 1153.0 113.2 113.1 1153.0 113.2 113.1 113.1 113.1 113.1 113.1 113.1 113.1 113.1 113.1 113.1 113.1			119.60	120.59	0.99	10137	24.0
124.48 126.39 128.48 120.9 104.01 123.03 3 factures 1 to 5 mm with good bornite 128.48 130.90 128.48 120.90 104.41 136.95 to 5 mm with good bornite 132.35 14.58 104.42 132.35 14.58 104.42 136.95 to arrow. flock masks are Hb + ch 136.95 137.40 128.28 128.18 104.57 136.19 129.10 141.50 120.90 123.25 141.50 120.90 123.25 141.50 120.91 124.46 147.91 120.91 124.46 147.91 120.47 123.92 124.50 123.92 124.50 123.92 124.50 120.81 124.57			120.59	122.50	1.91	10138	34.0
123.30 - 3 fractures 1 to 5 mm with good bornite 131.30 - 3 fractures 1 to 5 mm with good bornite 132.30 - 3 fractures 1 to 5 mm with good bornite 132.30 - 3 fractures 1 to 5 mm with good bornite 132.91 - 123.20 -							23.0
131.30 - 3 fractures 1 to 5 mm with good bornite 132.93 1.42 10142 1 132.30 - 3 fractures 1 to 5 mm with good bornite 132.93 1.42 10143 1 132.35 132.42 1.92 10143 1 132.93 1.92 10143 1 132.35 132.42 1.92 1.0145 1 1.32.93 1.32.13 1.92 10145 1 1.32.93 1.92 10145 1 1.32.93 1.92 10145 1 1.32.93 1.92 10145 1 1.32.93 1.92 10145 1 1.32.93 1.92 10145 1 1.32.93 1.92 10145 1 1.32.93 1.32 1.32.13 1.32.14 1.92 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>75.0</td>							75.0
13.30-3 13.30-3							91.0
mineralization and Ep, alteration between fractures. 132.35 134.27 136.93 10.14 136.95 10 137.40 36.95 10.14 136.95 10.14 136.95 10.14 136.95 10.14 136.95 10.14 136.95 10.14 136.95 10.14 136.95 10.14 136.95 10.14 136.95 10.14 136.95 10.14 136.95 10.14 136.95 10.14 136.95 10.14 136.95 10.14 136.95 10.14 136.95 10.14 11.14 10.14 11.14 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>184.0</td>							184.0
136.65 10137.03 222.00 10145 136.65 10146 136.65 10146 136.65 10146 136.65 10146 136.65 10146 136.65 10146 136.65 10146 136.65 10146 136.65 10147 1018 136.65 10147 1018 136.65 10147 10147 10147 10147 10147 10147 10147 10147 10147 10147 10147 10146 111 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>306.0</td></td<>							306.0
136.95 to 137.40 Several fractures with dark ChL, possible fine 136.95 to 137.40 Several fractures with dark ChL, possible fine 137.40 139.55 137.40 139.55 137.40 139.55 137.40 139.55 137.40 139.55 137.40 139.55 137.40 139.55 137.40 139.55 137.40 139.55 137.40 139.55 137.40 139.55 137.40 139.55 137.40 139.55 137.40 139.55 137.40 139.55 137.40 139.55 137.40 139.55 137.40 139.55 139.55 137.40 139.55 137.40 139.55 139.55 137.40 139.55 139.55 139.55 139.55 139.55 137.40 136.55 139.55 <td></td> <td>mineralization and Ep, alteration between fractures.</td> <td></td> <td></td> <td></td> <td></td> <td>77.0</td>		mineralization and Ep, alteration between fractures.					77.0
136.95 to 137.40 Several fractures with dark ChL, possible fine 136.95 to 137.40 0.435 81.41 9 1 1 1.0 0.10 0.148 0.10 0.148 0.10 0.148 0.10 0.148 0.10 0.148 0.10 0.148 0.10 0.148 0.10 0.148 0.10 0.148 0.10 0.146 0.11 0.116 0.11 0.116 0.11 0.116 0.11 0.116 0.11 0.116 0.11 0.116 0.11 0.116 0.11 0.116 0.11 0.116 0.11 0.116 0.11 0.116 0.11 0.116 0.116 0.115							89.0
10urmaline, have well developed (py, and Bn, little or no Ep. Fractures are 137.40 139.50 2.10 8148 3 11 11 12 14 14 14 14 14 14 14 14 14 14 14 17 10147 11 1		136.05 to 137.40 Several fractures with dark Chl nossible fine					140.0 993.8
 narrow. Rock maks are Hb + chl Gore remains little changed to EOH @ 230.7 except that : 11 £g/chl. diminished downhole and Increases towards the end and 12 Eg/chl. diminished downhole and Increases towards the end and 14 £62 1 144.64 1.97 10147 1 14 £62 1 148.8 10148 1 14 £62 1 148.8 10148 1 14 £62 1 148.8 10148 1 14 £62 1 148.9 2 1.88 10148 1 15 £67 114 502 1.86 2 28001 1 15 £67 115 25 1.86 2 28001 1 15 £67 115 25 1.86 2 28001 1 15 £67 115 27 188.1 1 15 £67 1180 2 2803 2 15 £7 115 £17 1 180 2 2803 2 15 £67 1180 2 2803 1 16 £59 1 5.30 1.30 8 152 1 16 £68 1 102 0 16 £68 1 102 0 16 £68 1 102 0 16 £7 1 248 1 17 22 £6 2.14 2 2907 1 17 24 £2.14 2809 1 18 24 £1.17 2801 24 1 18 24 £1.17 1							308.3
 Core remains little changed to EOH @ 230.7 except that : 1; Ep/chi. diminished some (app. 100m to 200m, fieldspars become less distinct and margins appear to merge of are lost. 2: Throughout the £p. diminished some (app. 100m to 200m, fieldspars become less distinct and margins appear to merge of are lost. 144.60 146.22 148.23 135.20 156.2 158.14 135.20 158.14 160.25 158.14 197.20 158.14 160.20 158.14 160.20 158.14 160.20 161.20 158.14 160.20 161.20 163.20 163.20 163.20 164.22 177.30 177 181.31 <l< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>199.0</td></l<>							199.0
Core remains little changed to EOH @ 23.0, 2 except that :: 12. Ep/chl. diminishes downhole and increases towards the end and 12. Throughout the Ep. diminished zone (app.100 nt to 200m.) feldspars become 146.42 146.52 1.88 10149 5 Less distinct and margins appear to merge of are lost. 146.52 148.39 1.87 10149 5 Less 151.05 153.80 2.2.0 815.0 138.0 2.802.0 1 Less 151.05 151.06 153.80 2.2.0 815.0 1 1 154.81 1.97 2.208.00 1 1 154.31 1.92 2.900.1 1 1.51.31 1.52.35 1.51.60 1.53.80 2.20 815.0 1 1 1.56.35 1.55.0 1.80 2.890.0 1 156.35 1.55.0 1.80 2.890.0 1 1.56.10 1.55.0 2.00 815.1 1 1 166.50 1.65.00 1.55.0 2.800.6 1 1.16.80 1.55 2.890.6 1 1.56.3 1.50.2 2.800.6 1 1.55.8 1.80 1.32.1 1 1.66.30 1.66.30 1.66.30 1.66			-				140.0
1: Egr/chl. diminishes downhole and increases towards the end and 144.64 146.52 18.8 10148 1 2: Throughout the Ep. diminished zone (app.100m to 200m.) feldspars become 148.39 150.25 1.86 28901 1 1 16.52 148.39 150.25 1.86 28901 1 1 151.60 153.80 2.20 8150 1 1 153.80 154.37 155.17 180 28902 1 1 153.80 154.37 155.17 180 28903 2 1 158.41 160.05 151.60 1.58 28906 1 1 158.16 1.58 28906 1 1 163.60 1.59 28906 1 1 166.36 166.36 0.46 28906 1 1 165.33 166.36 0.46 28906 1 1 165.83 186.3 1.92 24907 1 168.38 170.22 1.94 28912 1 1 1 1.80 1.81 1.80 1.81 1.80 1.81 1.8		Core remains little changed to EOH @ 230.7 except that :					153.0
2: Throughout the Ep. diminished zone (app. 100m to 200m.) feldspars become 146.52 148.39 18.7 101.49 5 1 1 1 150.25 150.25 18.6 28902 1 1 1 151.60 153.80 2.20 185.02 1 151.60 1.35 28902 1 1 1 151.60 153.80 154.37 157.17 18.00 180.25 151.60 1.35 28902 1 1 1 153.61 153.80 154.37 157.1 180.0 28903 12 156.16 153.80 154.37 157.1 180.0 150.20 151.61 155.0 165.30 166.30 166.30 160.0 150.00 10.00 157.0 120.00 151.0 155.0 150.0 151.0 150.0 150.0 151.0 150.0							129.0
150 25 151.60 135 28902 1 151 150 153.80 12.20 8150 1 153 80 154.37 0.57 28902 1 154.47 155.17 155.17 158.14 197 28904 1 155.17 155.17 155.17 155.17 155.17 155.17 155.17 155.17 155.17 157.17 158.14 197 28904 1 161.60 163.60 165.30 165.30 165.30 165.30 165.30 185.2 1 155.2 28905 1 155.2 28901 1 172.2 172.4 2.4907 1 156.30 166.30 168.28 197.2 2.4907 1 165.30 166.30 168.28 197.2 2.4907 1 172.36 1.44.3 2.07 28910 1 172.23 1.74.43 1.90 2.00 815.1 1 170.22 1.94 28908 1 172.24 1.94 28915 1 185.00 1.70 28914 1 185.00 1.80 2.00			146.52	148.39	1.87		549.0
115 160 153.80 2.20 8150 1 115 153.80 154.37 105.77 28902 1 1154.37 156.17 180.05 191 28903 1 1154.37 156.17 180.05 191 28904 1 1154.37 156.07 180.05 191 28905 1 1160.05 161.60 155.0 28006 1 166.30 165.90 2.30 8152 1 1163.60 165.90 2.30 8152 1 1 1 66.36 165.90 2.30 8152 1 1 1 66.36 165.90 2.30 8152 1							134.0
13.80 154.37 0.57 28902 1 15.17 15.17 18.14 1.97 28904 1 15.17 15.17 18.14 1.97 28904 1 16.16 15.617 15.81.4 1.97 28904 1 16.16 16.36 0.46 28905 1 16.00 15.5 28906 1 16.16 16.36 0.46 28907 1 16.36 16.36 0.46 28906 1 16.36 166.36 166.37 0.82.8 1.92 24907 1 16.36 16.32.0 1.92 24907 1 16.36.0 1.65.20 1.82.8 1.92 24907 1 1.82.8 1.92 24907 1 1.72.36 1.74.43 1.07 2.8916 1 1 1.76.00 1.57 2.8910 1 1 1.76.00 1.57 2.8911 1 1 16.36 1.82.8 1.99 2.8913 1 1 1.76.00 1.57 2.8911 1 1 1.60.0 1.80 1.99 2.			150.25				153.0
154.37 156.17 1.80 28903 2 155.17 156.17 156.17 158.1 1.97 28904 1 155.17 156.17 156.17 156.17 156.17 156.17 28904 1 161.00 165.00 165.00 155.00 815.2 1 1 166.36 0.46 28906 1 165.30 166.36 0.46 28906 1 1 166.36 0.46 28906 1 1 163.60 1.55 2.8906 1 1 1 1.66.36 0.46 28906 1 1 1.66.36 0.46 28906 1 1 1.76.00 1.57 2.8906 1 1 1.76.00 1.57 2.8910 1 1 1 1.76.00 1.57 2.8910 1 1 1.76.00 1.57 2.8911 1 1 1.80.00 1.91.00 2.00 815.5 1 1 18.03 1.91.00 2.00 815.5 1 1 18.00 1.91.00 2.00 815.5 1 1			151.60	153.80	2.20	8150	108.2
1 156.17 158.14 1.97 28904 1 1 158.14 160.0 1.91 28905 1 1 160.0 161.60 1.65.0 2.00 815.1 1 1 163.0 165.90 2.30 815.2 1 1 163.60 165.90 2.30 815.2 1 1 163.60 165.90 2.30 815.2 1 1 163.60 165.90 2.30 815.2 1 1 163.61 165.90 2.30 815.2 1 1 163.81 170.22 172.36 2.14 28909 1 1 174.31 176.00 178.00 179.94 189.18 1 1 176.30 179.94 189.18 1.99 2891.2 1 1 178.00 179.94 1.89 2.891.2 1 1 178.00 179.94 1.89 2.891.2 1 1 189.00 1.00 815.6 1 189.01 1.89.01 1.99.02 1.99.12 1.10 1.89.00 1.00 1.89.01 1.89.0			153.80	154.37	0.57	28902	153.0
158.14 160.05 1.91 28905 160.05 163.60 1.55 28906 161.60 163.60 1.65.7 28906 161.60 163.60 1.65.7 28906 165.90 1.63.60 1.65.7 28906 165.90 1.66.36 1.66.20 1.92 24907 166.30 166.32 1.92 24907 1.66.38 1.92 24907 167.90 176.02 1.72.36 1.74.43 2.07 28906 1.77.23 1.74.43 2.07 28910 1 172.36 174.43 2.07 28910 1 1.76.00 1.80.0 1.60 1.57 28911 1 174.00 178.00 179.94 1.94 28912 1 1.76.00 1.80.0 1.60 1.55 1.81 1.81 1.93 1.81.64 1.80.0 1.66 1.55 1.89 1.81 1.93 1.81.64 1.71 28914 1 1.85.0 1.81 1.93 1.81 1.91 1.81 1.91 1.81.5 1.81 1.91							289.0
1 160.05 161.60 1.55 28906 1 163.60 2.00 815.1 1 1 163.60 1.50 2.30 815.2 1 1 165.30 166.36 0.46 28906 1 1 166.36 168.28 1.92 24907 1 1 166.36 168.28 1.92 24907 1 1 172.35 174.43 2.07 28908 1 1 172.35 174.43 2.07 28910 1 1 172.35 174.43 2.07 28911 1 1 178.00 1.07 2.00 815.3 1 1 178.00 1.90 2.00 815.3 1 1 178.00 1.99 2.00 815.3 1 1 178.00 1.90 2.00 815.4 1 1 19.30 1.90 2.00 815.5 1 1 18.00 1.91.0 2.00 815.5 1 <t< td=""><td></td><td></td><td>156.17</td><td>158.14</td><td>1.97</td><td>28904</td><td>110.0</td></t<>			156.17	158.14	1.97	28904	110.0
1 161.60 163.60 2.00 8151 1 163.60 165.90 2.30 8152 1 165.90 1.30 0.46 28906 1 165.90 1.68.28 1.92 24907 1							63.0
1 163.60 165.90 2.30 8152 1 165.90 165.36 0.46 28906 1 166.36 168.28 170.22 1.94 28908 1 172.36 174.43 2.07 28910 1 1 177.36 174.43 2.07 28910 1 1 174.43 176.00 1.57 28911 1 1 176.00 178.00 2.00 8153 1 1 178.00 179.94 181.93 1.99 28913 1 1 178.00 179.94 184.06 1.71 28914 1 1 189.00 191.00 2.00 8154 1 1 189.01 191.00 2.00 8155 1 1 193.00 183.64 1.71 28915 1 1 193.00 180.00 1.60 2.00 8154 1 1 191.00 2.00 8157 3 1 193.10 2.00 8157 3							57.0
1 165.90 166.36 0.46 28906 166.36 168.28 1.92 24907 166.36 168.28 1.92 24908 172.36 2.14 28909 1 172.36 174.43 2700 157 28911 1 174.43 176.00 177.32 139.4 28911 1 176.00 179.94 181.93 1.99 28913 1 176.00 179.94 181.93 1.99 28913 1 181.93 183.64 1.71 28914 1 181.93 183.64 1.80 18.70 2.00 8155 1 181.93 193.10 2.00 8155 1 1 18.90 191.10 2.10 8156 1 193.01 193.03 193.63 195.57 1.94 28916 1 1 193.63 195.57 1.94 28916 1 1 193.63 195.57 1.94 28917 2 2 205.25 206.35 1.10 28922 2							189.7
166.36 168.28 1.92 24907 168.28 170.22 1.34 28908 170.23 1.21.4 28908 170.22 1.21.4 28908 170.23 1.21.4 28908 1 172.36 2.14.4 28909 1 170.23 1.72.36 2.14.2 28908 1 172.36 2.14.2 28908 1 170.23 1.72.36 2.14.2 28901 1 176.00 1.75 28911 1 176.00 1.78.00 2.00 8153 1 178.00 1.71 28912 1 181.93 1.83.64 1.71 28913 1 183.64 1.71 28914 1 181.93 1.83.64 1.72 28913 1 1 187.00 1.80 2.00 8154 1 181.93 1.93.00 2.00 8155 1 1 193.00 1.00 2.10 8156 1 193.10 193.63 0.53 28917 2 1 195.57 1.94 28917 2 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>90.1</td>							90.1
1 168.28 170.22 1.94 28908 100.22 172.36 2.14 28909 1 112.36 174.43 2.07 28910 1 1172.36 174.43 2.00 8153 1 1174.43 176.00 1.57 28911 1 1178.00 179.94 1.94 28912 1 1178.00 179.94 1.94 28912 1 1179.94 1.99 28913 1 1 1181.93 1.83.93 1.83.04 1.71 28914 1 1181.00 1.80.00 181.93 1.36 28915 1 1181.01 1.30 1.36 28915 1 1181.01 1.31.0 2.00 8155 1 1181.01 193.10 2.00 8157 3 1191.01 193.10 2.00 8157 1 1193.63 195.57 197.42 1.88 28916 1 1193.63 105.57 1.94 28917 2 1 1							57.0
10 170.22 172.36 2.14 28909 1 11 172.36 174.43 2.07 28910 1 11 174.43 176.00 1.57 28911 1 11 176.00 178.00 2.00 8153 1 11 176.00 178.00 2.00 8153 1 11 178.00 1.99 28913 1 1 178.00 1.99 28913 1 11 178.00 1.99 28913 1 1 181.93 1.36 28914 1 11 181.00 1.86 1.87.00 2.00 8154 1 1 185.00 1.36 28915 1 11 185.00 189.00 1.00 0.08 8157 1 1 189.00 191.10 2.10 8156 1 11 193.01 2.00 8157 1.94 28916 1 1 193.63 195.57 1.94 28915 1 11 193.03 201.27 1.97 2891							44.0 56.0
172.36 174.43 2.07 28910 1 174.43 176.00 1.57 28911 1 175.00 178.00 1.57 28912 1 175.00 179.94 1.94 28912 1 175.00 179.94 1.94 28912 1 175.00 178.00 1.72 28911 1 175.00 178.00 1.71 28912 1 177.94 18.364 1.71 28912 1 183.64 1.85.00 187.00 2.00 8154 1 185.00 187.00 2.00 8155 1 199.00 191.10 2.10 8156 1 199.10 193.63 0.53 28915 1 199.30 193.63 0.53 28915 1 199.30 193.63 0.53 28917 2 197.42 199.30 1.88 28918 1 199.30 201.27 1.97 28920 1 201.27 203.17 1.90							132.0
174.43 176.00 1.57 28911 1 176.00 178.00 2.00 8153 1 178.00 179.94 1.94 28912 1 179.94 1.94 28913 1 1 179.94 18.93 1.99 28913 1 181.93 183.64 1.71 28914 1 181.93 183.64 1.71 28914 1 181.93 183.64 1.71 28914 1 181.93 183.64 1.71 28914 1 181.93 183.64 1.71 28914 1 181.93 183.64 1.85.00 1.36 28915 1 181.90 191.10 2.00 8155 1 1 191.10 193.03 0.53 28917 2 191.10 193.03 1.82 28917 2 192.363 195.57 1.94 28910 1 193.03 201.27 1.97 28919 1 201.27 23.17 1.9							108.0
176.00 178.00 2.00 8153 1 178.00 179.94 1.94 28912 1 179.94 181.93 1.99 28913 1 181.93 183.64 1.71 28914 1 181.93 183.64 1.71 28914 1 181.93 183.64 1.71 28914 1 181.90 180.00 187.00 2.00 8155 1 181.90 191.10 2.10 8155 1 189.00 191.10 2.00 8157 3 193.10 193.63 0.53 28915 1 193.63 195.57 19.42 1.85 28916 1 193.63 195.57 19.42 1.85 28917 2 197.42 199.30 1.88 28918 1 193.63 195.57 19.742 1.85 28917 2 201.27 1.97 28919 1 20.127 1.97 28919 1 201.27 1.97 28919 <							108.0
1 178.00 179.94 1.94 28912 1 1 179.94 181.93 1.99 28913 1 181.93 183.64 1.71 28914 1 181.93 183.64 187.00 2.00 8154 1 181.93 183.64 187.00 2.00 8155 1 185.00 187.00 2.00 8155 1 189.00 191.10 2.10 8156 1 191.10 193.10 2.00 8155 1 193.01 193.63 0.53 28915 1 193.03 195.57 1.94 28916 1 193.03 193.63 0.53 28917 2 193.03 101.27 1.97 28919 1 193.03 201.27 1.97 28916 1 199.30 201.27 1.97 28917 2 199.30 201.27 1.97 28918 1 201.27 203.17 1.90 28920 1 201.27							168.9
179.94 181.93 1.99 28913 181.93 183.64 1.71 28914 181.93 183.64 1.71 28915 1 181.93 183.04 1.71 28915 1 181.93 187.00 2.00 8155 1 185.00 197.00 2.00 8155 1 185.00 193.00 2.00 8157 1 191.10 193.10 2.00 8157 1 193.10 193.63 195.57 1.94 28915 1 193.10 193.63 195.57 1.94 28916 1 193.10 193.63 105.57 1.94 28916 1 193.10 201.27 1.97 28919 1 193.10 201.27 1.97 28919 1 201.27 1.97 28919 1 201.27 203.17 1.90 2892 1 201.27 203.17 1.90 2892 1 201.27 20.37 1.90 2892							102.0
Image: Control of the control of th							66.0
Image: Second			181.93	183.64	1.71	28914	68.0
Image: Second state of the second s			183.64	185.00	1.36	28915	155.0
Image:			185.00	187.00	2.00	8154	116.4
Image: Section of the section of th			187.00	189.00	2.00	8155	124.7
Image: Second state of the second s			189.00	191.10	2.10	8156	142.9
Image: Second state of the second s			191.10	193.10	2.00	8157	364.4
Image: Section of the section of th			-				155.0
Image: Second state of the second s							58.0
Image: Second state of the second s				-			266.0
201.27 203.17 1.90 28920 1 203.17 205.25 2.08 28921 2 205.25 206.35 1.10 28922 2 206.35 208.40 2.05 8158 2 208.40 210.40 2.00 8159 1 201.27 211.30 0.90 28922 2 208.40 210.40 2.00 8159 1 201.40 211.30 0.90 28923 2 211.30 213.28 1.98 28923 2 211.30 213.28 1.98 28924 2 213.28 215.17 1.89 28924 2 215.17 217.07 1.90 28925 2 215.17 217.07 1.90 28925 2 217.07 219.04 1.97 28926 1 219.04 220.99 1.95 28927 2 219.04 220.99 1.95 28928 2 226.80 to 226.90 - Ep. rich fg dike? 40° to CA, Feldspars adjacent to dike							150.0
Image: Control of the control of th							111.0
Image: Constant of the second seco							196.0
Image: Constant of the second seco	├ ── ├ ──						74.0
208.40 210.40 2.00 8159 1 208.40 210.40 2.00 8159 1 208.40 210.40 210.40 28922 2 211.30 213.28 1.98 28923 2 213.28 215.17 1.89 28924 2 215.17 217.07 1.90 28925 2 215.17 217.07 1.90 28926 1 215.17 219.04 1.97 28926 1 215.17 219.04 1.97 28926 1 215.17 219.04 1.97 28926 1 210.40 220.99 1.95 28927 1 210.40 226.80 to 226.90 - Ep. rich fg dike? 40° to CA, Feldspars adjacent to dike 220.99 1.95 28928							95.0 249.7
Image: Constraint of the second se			-				184.6
Image: Control of the control of th							95.0
Image: Constant of the second seco							60.0
Image: Contract 30° to 224.20 - Fine grained diorite dike upper contact 80° to CA. Lower 215.17 217.07 1.90 28925 Image: Contact 30° to CA. Very black and white, salt and pepper coloured minor Fe. Ox 219.04 1.97 28926 1 Image: Contact 30° to CA. Very black and white, salt and pepper coloured minor Fe. Ox 219.04 220.99 1.95 28927 Image: Contact 30° to 226.90 - Ep. rich fg dike? 40° to CA, Feldspars adjacent to dike 222.94 224.70 1.76 28929							73.0
224.00 to 224.20 - Fine grained diorite dike upper contact 80° to CA. Lower 217.07 219.04 1.97 28926 1 contact 30° to CA. Very black and white, salt and pepper coloured minor Fe. Ox 219.04 220.99 1.95 28927 1 along shear contact. 226.80 to 226.90 - Ep. rich fg dike? 40° to CA, Feldspars adjacent to dike 222.94 224.70 1.76 28929							81.0
contact 30° to CA. Very black and white, salt and pepper coloured minor Fe. Ox 219.04 220.99 1.95 28927 along shear contact. 220.99 222.94 1.95 28928 226.80 to 226.90 - Ep. rich fg dike? 40° to CA, Feldspars adjacent to dike 222.94 224.70 1.76 28929		224.00 to 224.20 - Fine grained diorite dike upper contact 80° to CA. Lower					172.0
along shear contact. 220.99 222.94 1.95 28928 226.80 to 226.90 - Ep. rich fg dike? 40° to CA, Feldspars adjacent to dike 222.94 224.70 1.76 28929							67.0
							81.0
for .2m. selvages are distinctive green colour as if permeated by fg chlorite. 224.70 226.70 2.00 8160			-				65.0
		for .2m. selvages are distinctive green colour as if permeated by fg chlorite.	224.70	226.70	2.00	8160	70.2
							109.4
230.73 EOH 228.70 230.70 2.00 8162 1		230.73 EOH	228.70	230.70	2.00	8162	134.1

Appendix 2 – Assay Certificates

ASSAY PROCEDURE

ME- 0G46

ORE GRADE ELEMENTS BY AQUA REGIA DIGESTION USING CONVENTIONAL ICP- AES ANALYSIS

SAMPLE DECOMPOSITION

HNO₃ -HCl Digestion (ASY-4R01)

ANALYTICAL METHOD

Inductively Coupled Plasma - Atomic Emission Spectroscopy (ICP - AES)*

Assays for the evaluation of ores and high-grade materials are optimized for accuracy and precision at high concentrations. Ultra high concentration samples (> 15 -20%) may require the use of methods such as titrimetric and gravimetric analysis, in order to achieve maximum accuracy.

A prepared sample is digested in 75% aqua regia for 120 minutes. After cooling, the resulting solution is diluted to volume (100 mL) with de-ionized water, mixed and then analyzed by inductively coupled plasma - atomic emission spectrometry or by atomic absorption spectrometry.

*NOTE: ICP-AES is the default finish technique for ME-OG46. However, under some conditions and at the discretion of the laboratory an AA finish may be substituted. The certificate will clearly reflect which instrument finish was used.

ELEMENT	SYMBOL	UNITS	LOWER LIMIT	UPPER LIMIT
Silver	Ag	ppm	1	1,500
Arsenic	As	%	0.01	30
Cadmium	Cd	%	0.001	10
Cobalt	Со	%	0.001	20
Соррег	Cu	%	0.001	40
Iron	Fe	%	0.01	100
Manganese	Mn	%	0.01	50
Molybdenum	Мо	%	0.001	10
Nickel	Ni	%	0.001	10
Lead	Pb	%	0.001	20
Zinc	Zn	%	0.001	60

GEOCHEMICAL PROCEDURE

ME-ICP41

TRACE LEVEL METHODS USING CONVENTIONAL ICP-AES ANALYSIS

SAMPLE DECOMPOSITION

Nitric Aqua Regia Digestion (GEO-AR01)

ANALYTICAL METHOD

Inductively Coupled Plasma - Atomic Emission Spectroscopy (ICP - AES)

A prepared sample is digested with aqua regia in a graphite heating block. After cooling, the resulting solution is diluted to 12.5 mL with deionized water, mixed and analyzed by inductively coupled plasma-atomic emission spectrometry. The analytical results are corrected for inter-element spectral interferences.

NOTE: In the majority of geological matrices, data reported from an aqua regia leach should be considered as representing only the leachable portion of the particular analyte.

ELEMENT	SYMBOL	UNITS	LOWER LIMIT	UPPER LIMIT	DEFAULT OVER- LIMIT METHOD
Silver	Ag	ppm	0.2	100	Ag-OG46
Alumininm	Al	0/0	0.01	25	
Arsenic	As	ppm	2	10,000	
Boron	В	ppm	10	10,000	
Barium	Ва	ppm	10	10,000	
Beryllium	Be	ppm	0.5	1,000	
Bismuth	Bi	ppm	2	10,000	
Calcium	Са	%	0.01	25	
Cadmium	Cd	ppm	0.5	1,000	
Cobalt	Со	ppm	1	10,000	
Chromium	Cr	ppm	1	10,000	
Соррег	Cu	ppm	1	10,000	Cu-0G46
Iron	Fe	%	0.01	50	
Gallium	Ga	ppm	10	10,000	
Mercurgy	Hg	ppm	1	10,000	
Potassium	К	%	0.01	10	
Lanthanum	La	ppm	10	10,000	

ME-ICP41

ELEMENT	SYMBOL	UNITS	LOWER LIMIT	UPPER LIMIT	DEFAULT OVER- LIMIT METHOD
Magnesium	Mg	%	0.01	25	
Manganese	Mn	ppm	5	50,000	
Molybdenum	Мо	ppm	1	10,000	
Sodium	Na	%	0.01	10	
Nickel	Ni	ppm	1	1,000	
Phosphorus	Р	ppm	10	1,000	
Lead	Pb	ppm	2	1,000	Pb-0G46
Sulfur	S	%	0.01	10	
Antimony	Sb	ppm	2	1,000	
Scandium	Sc	ppm	1	1,000	
Strontium	Sr	ppm	1	1,000	
Thorium	Th	ppm	20	1,000	
Titanium	Ti	%	0.01	10	
Thallium	TI	ppm	10	1,000	
Uranium	U	ppm	10	1,000	
Vanadium	V	ppm	1	1,000	
Tungsten	W	ppm	10	1,000	
Zinc	Zn	ppm	2	2 1,000 Z	

ELEMENTS LISTED BELOW ARE AVAILABLE UPON REQUEST

ELEMENT	SYMBOL	UNITS	LOWER LIMIT	UPPER LIMIT	DEFAULT OVER- LIMIT METHOD
Cerium	Ce	ppm	10	10,000	
Hafnium	Hf	ppm	10	10,000	
Indium	In	ppm	10	10,000	
Lithium	Li	ppm	10	10,000	
Niobium	Nb	ppm	10	10,000	
Rubidium	Rb	ppm	10	10,000	
Selenium	Se	ppm	10	10,000	
Silicon	Si	ppm	10	10,000	
Tin	Sn	ppm	10	10,000	
Tantalum	Та	ppm	10	10,000	
Tellurium	Те	ppm	10	10,000	
Yttrium	Υ	ppm	10	10,000	
Zirconium	Zr	ppm	5	10,000	

FIRE ASSAY PROCEDURE

Au-AA23 & Au-AA24

FIRE ASSAY FUSION, AAS FINISH

SAMPLE DECOMPOSITION

Fire Assay Fusion (FA-FUS01 & FA-FUS02)

ANALYTICAL METHOD

Atomic Absorption Spectroscopy (AAS)

A prepared sample is fused with a mixture of lead oxide, sodium carbonate, borax, silica and other reagents as required, inquarted with 6 mg of gold-free silver and then cupelled to yield a precious metal bead.

The bead is digested in 0.5 mL dilute nitric acid in the microwave oven, 0.5 mL concentrated hydrochloric acid is then added and the bead is further digested in the microwave at a lower power setting. The digested solution is cooled, diluted to a total volume of 4 mL with de-mineralized water, and analyzed by atomic absorption spectroscopy against matrix-matched standards.

METHOD CODE	ELEMENT	SYMBOL	UNITS	SAMPLE WEIGHT (G)			DEFAULT OVERLIMIT METHOD
Au-AA23	Gold	Au	ppm	30	0.005	10.0	Au-GRA21
Au-AA24	Gold	Au	ppm	50	0.005	10.0	Au-GRA21

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 i i ax: 604 984 0218 www.alsglobal.com

To: TCHAIKAZAN RESOURCES INC. BOX 32 TATLA LAKE BC VOL 1V0

Page: 1 Finalized Date: 31- AUG- 2013 This copy reported on 15- NOV- 2013 Account: TCHRES

CERTIFICATE KL13150851

Project: Bluff

P.O. No.:

This report is for 8 Rock samples submitted to our lab in Kamloops, BC, Canada on 22- AUG- 2013.

The following have access to data associated with this certificate:

The reneway series of the		
TCHAIKAZAN RESOURCES INC	ROGER MACDONALD	SUSAN ROLSION

	SAMPLE PREPARATION	
ALS CODE	DESCRIPTION	
WEI- 21	Received Sample Weight	
LOG 22	Sample login - Rcd w/o BarCode	
CRU QC	Crushing QC Test	
PUL- QC	Pulverizing QC Test	
CRU- 31	Fine crushing - 70% <2mm	
SPL- 21	Split sample - riffle splitter	
PUL-31	Pulverize split to 85% <75 um	

ANALYTICAL PROCEDURES					
ALS CODE	DESCRIPTION	INSTRUMEN			
Pb- OG46	Ore Grade Pb - Aqua Regia	VARIABLE			
Zn- OG46	Ore Grade Zn - Aqua Regia	VARIABLE			
Au-AA23	Au 30g FA- AA finish	AAS			
ME- 1CP4 1	35 Element Aqua Regia ICP- AES	ICP- AES			
Ag- OG46	Ore Grade Ag - Aqua Regia	VARIABLE			
ME OG46	Ore Grade Elements - AquaRegia	ICP- AES			

TO: TCHAIKAZAN RESOURCES INC. ATTN: ALS MINERALS

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

Signature: Colin Ramshaw, Vancouver Laboratory Manager

***** See Appendix Page for comments regarding this certificate *****

ALS Canada Hid

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 — Fax: 604 984 0218 — www.alsglobal.com

To: TCHAIKAZAN RESOURCES INC. BOX 32 TATLA LAKE BC VOL 1V0

Page: 2 - A Total # Pages: 2 (A - C) Plus Appendix Pages Finalized Date: 31- AUG- 2013 Account: TCHRES

Project: Bluff

CERTIFICATE OF ANALYSIS KL13150851

Sample Description	Method Analyte Units LOR	WEL 21 Recvd Wt kg 0.02	ME ICP41 Ag pptii 0.2	ME ICP41 Al % 0.01	ME ICP41 As ppm 2	MF-ICP41 B ppm 10	ME ICP41 Ba ppm T0	ME-ICP41 Be ppm 0-5	ME-ICP41 8i ppm 2	MF ICP41 Ca % 0.01	Mf ICP41 Cd ppm 0.5	ME-ICP41 Co ppm 1	ME- ICP41 Ci ppm L	MI ^C ICP41 Cu ppm L	ML_ICP41 Fe % 0.01	ME-ICP41 Ga ppm 10
Cow 2- 108 Cow 2- 109 Cow 2- 110 Cow 2- 111		2.09 1.80 2.03 1.44	>100 98 06 >100	0 62 0 40 2 26 0 27 3 35	48 26 45 29 46	<10 <10 <10 <10 <10 <10	10 10 30 <10 20	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5	<2 <2 <2 <2 <2 2	5 87 18 9 3.20 10 6 2.01	635 24.9 0 5 138 5 <0 5	1 <1 17 <1 60	11 4 19 7 104	562 82 33 1690 271	2.70 1 50 4 15 2 36 6 46	<10 <10 10 <10 10
Cow 2-112 Cow 2-113 BOR 010 BOR 011		1 19 1 69 1 08 1 21	0 4 0 4 0 3 0 2	1 86 4 54 2 87	55 8 18	10 10 10	<10 20 <10	<0.5 <0.5 <0.5	<2 <2 <2	1.95 2.87 4 15	<05 <05 <05	33 42 34	28 262 90	200 438 171	4 20 6 67 5 20	<10 10 10

.

ALS Canada Fid

2103 Dollarton Hwy North Vancouver BC V/110A7 Phone: 604 984 0221 — Lax: 604 984 0218 — www.alsglobal.com

To: TCHAIKAZAN RESOURCES INC. BOX 32 TATLA LAKE BC VOL 1V0

Page: 2 - B Total # Pages: 2 (A - C) Plus Appendix Pages Finalized Date: 31- AUG- 2013 Account: TCHRES

Project: Bluff

Sample Description	Method	ME ICP41	MF (CP41	ME ICP41	ME ICP41	ME ICP41	ME (CP11	ML ICP41	ME-ICP41	ME ICP41	MF_ICP41	ME- ICP4 1	ME ICP41	ME ICP41	ME ICP41	ME ICP41
	Analyte	Fig	K	Ea	Mg	Mn	Μο	Na	Ni	P	Pb	S	Sb	Sc	Si	Fh
	Units	ppm	%	ppin	%	ppni	φρπι	%	ppm	ppni	ppm	%	ppm	ppm	ppm	pprii
	LOR	1	0.01	10	0.01	S	1	0.01	1	10	2	0.01	2	I	1	20
Cow 2- 108 Cow 2- 109 Cow 2- 110 Cow 2- 111 Cow 2- 112		25 2 1 5 1	0 06 0.02 0.19 <0 01 0.03	<10 <10 <10 <10 <10 <10	0 77 0 30 1.72 0.43 1 43	2380 4100 1520 3980 1285	31 25 <1 3 1	0 01 0 01 0 06 0 01 0 09	4 2 10 2 82	100 70 570 20 520	>10000 1220 70 >10000 51	4.96 0.83 1.31 2.04 1.65	41 <2 <2 10 <2	1 1 7 <1 6	23 143 21 52 42	<20 <20 <20 <20 <20
Cow 2-112		1	<0.01	<10	0.38	350	7	0 01	20	380	67	1.61	<2	4	147	<20
BOR 010		<1	0.05	<10	2.96	668	<1	0.47	89	390	7	0.81	<2	24	77	<20
BOR 011		<1	0.02	<10	1.64	773	<1	0 06	68	1120	5	1 27	<2	11	69	<20

2103 Dollarton Hwy North Vancouver BC V/110A7 Phone: 604 984 0221 — Fax: 604 984 0218 — www.alsglobal.com

To: TCHAIKAZAN RESOURCES INC. BOX 32 TATLA LAKE BC VOL 1V0

Page: 2 - C Total # Pages: 2 (A - C) Plus Appendix Pages Finalized Date: 31-AUG-2013 Account: TCHRES

Project: Bluff

								·				 	 	
Sample Description	Method Analyte Units LOR	ME ICP41 1i 40 0-01	Mt ICP41 11 ppm 10	ME ICP41 U ppm 10	ME ICP41 V ppm 1	ME ICP31 W ppm 10	ME ICP41 Zn ppm Z	Ag OC46 Ag ppm L	Pb OG46 Pb % 0.001	Zn OC46 Zn % 0.001	Au AA?3 Au ppm 0.005	 	 	
Cow 2-108 Cow 2-109 Cow 2-110 Cow 2-111 Cow 2-111 Cow 2-112		<0 01 <0 01 <0 01 <0 01 <0 01 0 14	<10 <10 <10 <10 <10 <10	<10 <10 <10 <10 <10	11 5 85 8 84	20 <10 <10 <10 <10	>10000 2060 105 >10000 134	390 93	5 47 2 44	4 98 1 055	2.30 0.188 0.005 1.085 <0.005	 	 	• <u>—</u>
Cow 2-112 Cow 2-113 BOR 010 BOR 011		0 23 0 38 0 46	<10 <10 <10	<10 <10 <10	48 210 145	<10 <10 <10	39 78 46				<0.005 0.017 <0.005			

ATS Canada Ed 2103 Dollarton Hwy North Vancouver BC V/110A7 Phone 604 984 0221 — Lax 604 984 0218 — www.alsglobal.com Page: Appendix 1 Total # Appendix Pages: 1 Finalized Date: 31- AUG- 2013 Account: TCHRES

Project: Bluff

		CERTIFICATE COMMENT	S	
Applies to Method.	Processed at ALS Kamloops located a CRU- 31 PUL- QC	LABORATORY 2 at 2953 Shuswap Drive, Kamloops, E CRU- QC SPL- 21		PUL 31
Applies to Method:	Processed at ALS Vancouver located Ag OG46 Pb- OG46	at 2103 Dollarton Hwy, North Vanco Au- AA23 Zn- OG46	ouver, BC, Canada. ME-ICP41	ME-OG46

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 — Eax: 604 984 0218 — www.alsglobal.com

To: TCHAIKAZAN RESOURCES INC. BOX 32 TATLA LAKE BC VOL 1V0

Page: 1 Finalized Date: 14- JUN- 2013 This copy reported on 15- NOV- 2013 Account: TCHRES

CERTIFICATE KL13076712

Project: Cow 1 & 2

P.O. No.:

This report is for 13 Rock samples submitted to our lab in Kamloops, BC, Canada on 7- JUN- 2013.

The following have access to data associated with this certificate:

I CHAIKAZAN RESOURCES INC ROGER MACDONALD SUSAN ROLSTON

	SAMPLE PREPARATION	
ALS CODE	DESCRIPTION	
WEI-21	Received Sample Weight	
LOG- 22	Sample login - Rcd w/o BarCode	
CRU- QC	Crushing QC Test	
PUL QC	Pulverizing QC Test	
CRU-31	Fine crushing - 70% < 2mm	
SPL 21	Split sample - riffle splitter	
PUL 31	Pulverize split to 85% <75 um	

ANALYTICAL PROCEDURES						
DESCRIPTION	INSTRUMENT					
Ore Grade Zn - Aqua Regia	VARIABLE					
	AAS					
	ICP- AFS					
	VARIABLE					
Ore Grade Elements AquaRegia	ICP AES					
	DESCRIPTION Ore Grade Zn - Aqua Regia Au 30g FA- AA finish 35 Element Aqua Regia ICP- AES Ore Grade Ag - Aqua Regia					

To: TCHAIKAZAN RESOURCES INC. ATTN: ALS MINERALS

This is the final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

Signature: Colin Ramshaw, Vancouver Laboratory Manager

***** See Appendix Page for comments regarding this certificate *****

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 — Fax: 604 984 0218 — www.alsglobal.com

Fo: TCHAIKAZAN RESOURCES INC. BOX 32 TATLA LAKE BC VOL 1V0

Page: 2 - A Total # Pages: 2 (A - C) Plus Appendix Pages Finalized Date: 14- JUN- 2013 Account: TCHRES

Project: Cow 1 & 2

Sample Description	Method Analyte Units LOR	WELZT Recvil Wi kg 0.02	ME ICP41 Ag ppm 0.2	ME ICP41 Al % 0.03	ME ICP41 As ppm 2	М⊢ (СР41 	Mi ACP41 Ba ppm 10	ME ICP41 Be ppm 0.5	ME-ICP41 Βι ppni 2	ME TCP41 Ca % 0.01	ME ICP41 Cd ppm 0 S	MF- ICP4 1 Co ppm 1	ME-TCP41 Ci ppm L	MÉ KCP41 Cu ppm 1	ME ICP41 Le % 0.01	ME ICP41 Ga ppm 10
			0.2	1 98	10	<10	50	<0.5	<2	0 43	<0.5	13	25	68	4 24	10
COW 1-01		1.41		2 93	8	<10	40	<0.5	<2	0.72	06	19	41	52	4.96	10
COW 1-02		1 76	<0 2		88	<10	10	<0.5	<2	11 4	34.3	4	5	263	1 53	<10
COW 2-01	1	1 72	39 5	0 26	63	<10	<10	<0.5	<2	4 47	240	<1	6	876	1.02	<10
COW 2-02		2 12	>100	0 15		<10	<10	<0.5	<2	2.29	126 5	2	9	746	1 79	<10
COW 2-03		087	>100	019	171	<10	<10					4.0	37	56	4.19	10
COW 2-04		1 33	14	2 38	13	<10	30	<0.5	3	1.73	05	18	37 82	8	3 59	10
		0.88	06	20/	23	20	10	<05	2	3.25	<0.5	19		46	4 28	10
		1 12	0.2	2 33	29	<10	90	<0.5	<2	2 53	<0.5	17	22		4.60	10
C 2		0.68	<0.2	2 62	16	<10	20	<0 5	<2	2 99	<0.5	21	25	34		<10
C 3		1.15	61	0 40	53	<10	10	<0.5	2	15 2	51	6	3	97	1 75	<10
C 4		1,15						< 0.5	<2	4.38	<0.5	12	14	24	3 37	<10
C S		1 19	10	1 38	27	<10	20		2	3.94	<0.5	11	14	37	3 00	<10
C- 6		1 32	<0 2	1 17	28	<10	30	<05	-	0.75	<0.5	10	38	24	2.88	<10
CHEZ 1		0.88	<0.2	0.79	<2	<10	110	<0.5	<2	0.75	~0.0	10	50			

ALS Canada Etd.

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 - Fax: 604 984 0218 - www.alsglobal.com

To: TCHAIKAZAN RESOURCES INC. BOX 32 TATLA LAKE BC VOL 1V0

Page: 2 - B Total # Pages: 2 (A - C) Plus Appendix Pages Finalized Date: 14-JUN- 2013 Account: TCHRES

Project: Cow 1 & 2

Sample Description	Method Analyte Units LOR	MEKP4T Bg gpm T	ME ICP41 K % 001	ME KP41 La ppin 10	Mi (CP41 Mo % 0.01	ML ICP41 Mn ppni S	Mi ICP41 Mo ppm T	ME ICP41 Na % 0.01	MF- ICP4 I Ni ppm 1	МЕ ICP41 Р ррля 10	ME ICP41 Pb ppm 2	ME- ICP4 I S % 0 0 I	ME ICP41 Sb ppm 2	ME ICP41 Sc ppm 1	MF_ICP41 Sr ppm I	ME-ICP41 1h 20
CON1 0		<1	0.14	<10	1 28	847	440	0.04	12	460	8	0.64	<2	7	5	<20
COW 1-01		1	0.08	10	2 25	1260	3	0.05	19	470	5	0.91	<2	11	9	<20
COW 1-02			0.09	<10	0.10	2160	17	0.01	3	190	1455	1,30	12	1	65	<20
COW 2-01		10	0.02	<10	0.08	1335	з	0.01	1	20	9780	1.77	216	<1	22	<20
COW 2-02 COW 2-03			0.05	<10	0 07	1375	З	0 01	2	30	4160	2 03	90	1	18	<20
		<1	0.04	<10	1 98	886	<1	0.07	17	550	26	0 55	<2	6	22	<20
COW 2-04			0.04	<10	196	749	1	0.04	31	530	5	0 81	<2	5	26	<20
C I		<1		<10	1 58	913	1	0.08	11	570	5	1 20	<2	10	27	<20
C 2		<1	0 08	<10	1 99	1030	1	0.08	12	490	2	0.62	<2	12	31	<20
C- 3		<1	0 06 0 12	<10	0.21	3630	9	0.01	5	230	302	1.50	<2	2	92	<20
C 4				1 12		756	~1	0.02	9	570	13	2.35	<2	5	28	<20
C 5		1	0 13	10	1 17	393	1	0.04	8	540	3	2.29	<2	4	31	<20
C 6 CHEZ 1		<1 <1	0 13 0 29	10 30	1 01 0 66	393 370	1	0.04	22	1750	4	<0.01	<2	8	106	<20

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 — Fax: 604 984 0218 — www.alsglobal.com

To: TCHAIKAZAN RESOURCES INC. BOX 32 TATLA LAKE BC VOL 1V0

CERTIFICATE OF ANALYSIS

Page: 2 - C Total # Pages: 2 (A - C) Plus Appendix Pages Finalized Date: 14-JUN- 2013 Account: TCHRES

KL13076712

Project: Cow 1 & 2

Ag OG46 Zn OG46 Au AA23 ME ICP41 ME ICP41 MELICPAT ME ICP41 ME 1CP4 1 MERCP41 Method Au Zn Aq Zn w U V 11 L. Analyte ppm ppm % ppm ppm ppm Units 24 ррпт pphi 0.005 0.001 Sample Description 10 2 1 LOR 0.01 10 10 1 0 049 <10 79 66 <10 <10 COW E-01 0 09 0.037 120 112 <10 0.03 <10 <10 COW 1-02 0 330 2930 <10 <10 <10 5 <0.01 COW 2+01 2.01 2.13 >10000 312 2 10 <10 <10 <0.01 COW 2-02 3 05 1.235 >10000 480 3 20 <10 <10 <0.01 COW 2-03 <0.005 98 94 <10 0.14 <10 <10 COW 2-04 <0 005 55 62 <10 0 13 <10 <10 C 1 < 0.005 69 95 <10 <10 0 13 <10 C 2 < 0.005 <10 54 <10 <10 116 0.11 C- 3 0.095 390 <10 <10 7 <0.01 <10 C 4 <0.005 <10 68 39 <10 <0.01 <10 C-S <0.005 <10 23 <10 <10 33 <0.01 C-6 <0.005 65 91 <10 <10 0.18 <10 CHEZ L

ALS Curada Eul

2103 Dollarton Hwy North Vancouver BC V7110A7 Phone: 604 984 0221 — Lax: 604 984 0218 — www.alsglobal.com

To: TCHAIKAZAN RESOURCES INC. BOX 32 TATLA LAKE BC VOL 1V0

Page: Appendix 1 Total # Appendix Pages: 1 Finalized Date: 14- JUN- 2013 Account: TCHRES

Project: Cow 1 & 2

		CERTIFICATE COMMENTS		
Applies to Method	Processed at ALS Kamloops located at CRU- 31 PUL- QC	LABORATORY AD t 2953 Shuswap Drive, Kamloops, BC, t CRU- QC SPL- 21	DRESSES Canada. LOG- 22 WEI- 21	PUL 31
Applies to Method.		it 2103 Dollarton Hwy, North Vancouve Au- AA23	er, BC, Canada. ME·ICP41	ME- OG46

2103 Dollartori Elwy North Vancouver BC V7H 0A7 Phone 604 984 0221 Lax 604 984 0218 www.alsglobal.com

To: TCHAIKAZAN RESOURCES INC. BOX 32 TATLA LAKE BC VOL 1V0

Page: 1 Finalized Date: 13- AUG- 2013 This copy reported on 15- NOV- 2013 Account: TCHRES

CERTIFICATE KL13137286

Project: BL

P.O. No.:

This report is for 93 Drill Core samples submitted to our lab in Kamloops, BC, Canada on 30-JUL-2013

The following have access to data associated with this certificate: SUSAN ROLSTON

TCHAIKAZAN RESOURCES INC

ROGER MACDONALD

	SAMPLE PREPARATION	
ALS CODE	DESCRIPTION	<u></u>
WEI- 21	Received Sample Weight	
LOG-22	Sample login Rcd w/o BarCode	
CRU- QC	Crushing QC Test	
PUL QC	Pulverizing QC Test	
CRU 31	Fine crushing > 70% < 2mm	
SPL-21	Split sample – riffle splitter	
PUL- 31	Pulverize split to 85% <75 um	

	ANALYTICAL PROCEDURE	S
ALS CODE	DESCRIPTION	INST RUMEN
ME ICP41	35 Element Aqua Regia ICP- ALS	ICP- AES
Ag- OG46	Ore Grade Ag - Aqua Regia	VARIABLE
ME OG46	Ore Grade Elements - AquaRegia	ICP AES
Pb- 0G46	Ore Grade Pb Aqua Regia	VARIABLE
Zn OG46	Ore Grade Zn - Aqua Regia	VARIABLE
Au- AA23	Au 30g FA- AA finish	AAS

To. TCHAIKAZAN RESOURCES INC. ATTN: ALS MINERALS

this is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release

***** See Appendix Page for comments regarding this certificate *****

ALS Canada i G

2103 Dollarton Hwy North Vancouver BC V/110A7 Phone: 604 984 0221 — Fax: 604 984 0218 — www.alsglobal.com

To: TCHAIKAZAN RESOURCES INC. BOX 32 TATLA LAKE BC VOL 1V0

Page: 2 - A Total # Pages: 4 (A - C) Plus Appendix Pages Finalized Date: 13- AUG- 2013 Account: TCHRES

Project: BL

	Method	WEL21 Recyd Wt	Au AA23 Au	ML ICP41 Ag	ML ICP41 Al	ME ICP41 As	ME ICP-11 B	ML ICP41 Ba	ME ICP41 Be	ME- ICP4 I Bi	ME ICP41 Ca	ME ICP41 Cit	ME- ICP4 1 Cu	MÉ ICP41 Ci	ME ICP41 Cu	Mt+ICP41 Fe %
ample Description	Analyte Units LOR	kg U U2	ppoi 0.005	μριτ 0.2	% U Ü İ	ppm 2	ррпі 10	ppm 10	ррт 0 5	ppm 2	001	05 05	ррні 1	ppm L	ppm 1	0.01
		3 50	<0.005	<0.2	1 77	4	<10	50	<0.5	<2	14/	<0 5	8	28	12	2 40 2 05
3201	I	5 36	<0.005	<0.2	1 54	3	<10	30	<0 5	<2	1 23	<05	5	29	12	
3202		434	<0 005	<0.2	2 10	10	<10	20	<0.5	<2	184	<0 5	/	25	19	2 24 2 16
3203		4 94	<0 005	<0.2	1 21	3	<10	50	<05	<2	0.97	<0 5	4	24	41	2 52
3204		4 30	<0.005	<0.2	1 68	5	<10	30	<0.5	<2	1 1 1	<05	1	26	47	
3205						5	<10	60	<0.5	<2	1 65	<0 5	1	25	9	2 36
3206		535	<0 005	<0.2	1 84	5 3	<10	40	<0.5	<2	1 56	<0.5	5	24	12	184
3207		9 11	<0 005	<0.2	1 64	3	<10	20	<0.5	<2	1 62	<05	6	23	11	186
3208		4 6 9	<0.005	<0/2	1 70		<10	40	<0.5	<2	1 82	<0 5	5	24	11	1 /4
0101		4 93	<0 005	<02	1 80	5	<10	20	<0.5	<2	2.54	<0 5	6	22	15	1 92
0102		5 4 1	<0.005	<0.2	1.87		<u>.</u>				1 57	<0.5		25	6	1.79
0103		8.06	<0 005	<0.2	1 74	5	<10	30	<0.5	<2		<0.5	9	24	17	2 70
10103		6 76	<0 005	<0.2	2 05	5	10	20	<05	<2	1 65 1 65	<05 <05	9	23	16	2 65
0105		4 29	<0 005	<0.5	2 03	3	<10	20	<0.5	<2		<0.5	5	18	8	16/
10106		4 24	<0.005	<0.2	1.48	5	<10	10	<0 5	</td <td>1 66</td> <td><0.5</td> <td>5</td> <td>20</td> <td>11</td> <td>1 63</td>	1 66	<0.5	5	20	11	1 63
10107		4 35	<0 005	<02	1 17	3	<10	30	<0.5	<2	2.15					
	_	4 33	<0 005	<0.2	1 15	3	<10	20	<0.5	<2	1 90	<0 5	5	18	13	1.70
0108		4 3 3	<0.005	<0.2	1 25	4	<10	30	<0 5	<2	1 54	<0.5	4	18	1	167
10109		4 50	<0.005	<0.2	1 18	3	<10	30	<0.5	<2	1.62	<0 5	6	19	11	181
10110		4 36	<0.005	<0.2	1 20	2	<10	20	<0.5	<2	171	<0.5	6	16	9	1 66
10111		4 36	<0.005	<0.2	1.34	3	<10	20	<0.5	<2	1.30	<0 5	7	18	14	1 98
10112							<10	40	<0.5	<2	1.35	<0.5	4	18	12	1 45
10113		4 89	<0 005	<0.2	1 08	3	<10	40	<0.5	<2	1 04	<0.5	5	20	17	1.72
10114		512	<0 005	<0.2	1 19	2 3	<10	50	<0.5	<2	1 4 8	<05	8	23	35	2.37
10115		4 85	<0.005	<0.2	1.54	3	<10	40	<0.5	<2	1 95	<0.5	11	22	33	2.55
10116		5 22	<0 005	<0.2	181 150	ы З	<10	40	<0.5	<2	1 65	<0.5	7	21	33	2.19
10117		4.56	<0 005	<0.2	1 50						2.08	<0.5		22	43	2 44
10118		4 7 7	<0.005	<0.2	1 49	3	<10	40	<0.5	<2	2.06 1.84	<0.5	8	21	11	2.34
10119		4 80	<0.005	<0 2	1 46	<2	<10	50	<0.5	<2 <2	2 82	06	8	20	32	2 30
10120		4 84	<0 005	<0 2	1 27	<2	<10	40	<05	<2	1.68	05	8	23	43	2 37
10121		5 51	<0 005	<0.2	1.57	3	< 10	30	<0.5 <0.5	<2	1 43	<0.5	7	23	26	2 24
10122		4 /6	<0 005	<0.2	1 69	4	<10	30	<0.5							2.69
10123		4 60	~0 005	<0.2	1 78	5	<10	30	<0.5	<2	1.32	<0.5	10	25	43	2.69
10123		4 /3	<0.005	<0.2	1 53	<2	<10	30	<0.5	<2	1.12	<0.5	9	29	18 34	2 0 3 2 7 5
10124		4 98	<0 005	<0.2	1 61	<2	<10	30	<0.5	<2	1 33	<0.5	9	30	34 57	2 4 3
10125		5 13	<0 005	<0.2	1 50	2	s10	30	<0.5	<2	1 16	<0.5	8	29 33	44	3 09
10128		4 58	<0.005	<0.2	2 00	<2	<10	30	<0 5	<2	1 58	<0.5	11			
			< 0.005	<0.2	1.95	<2	<10	40	<0.5	<2	1 55	<0 5	11	29	142	2 87
10128		4 22	<0.005	<0.2	1.95	<2	<10	30	<0.5	<2	1 14	<0.5	12	35	93	3.01
10129		5 26	<0.005	<0.2	1 80	2	<10	30	<0.5	<2	1 42	<0 5	11	30	30	2 83
10130		5-01	<0.005	<0.2	1 78	2	<10	30	<0.5	<2	1 39	<0.5	10	29	15	2 68
10131		5 08	<0.005	<0 2	178	2	<10	40	<0.5	<2	1 50	<0 5	10	30	15	2 82
10132		5 15	<0.005	~U Z	1 / 0	<u>د</u>										

ALS Canada Hid

2103 Dotlarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 — Lax: 604 984 0218 — www.alsglobal.com

Fo: TCHAIKAZAN RESOURCES INC. BOX 32 TATLA LAKE BC VOL 1V0

Page: 2 - B Total # Pages: 4 (A - C) Plus Appendix Pages Finalized Date: 13- AUG- 2013 Account: TCHRES

Project: Bl.

	Method Analyte Units	ME ICP41 Ca ppm	ML ICP41 Hy pho	METCP4T K Yu	MI ICP41 La пцд 10	MELICP41 Mg % 0:01	Mi TCP41 Mn ppm S	ME ICP41 Mo ppm	ME-ICP41 Na % 0.01	ME ICP41 Ni pprii 1	ME ICP41 P ppm 10	ME-TCP41 Pb pptii 2	MF ICP41 S % U 01	ME-TCP41 Sb ppm 2	ME_ICP41 Sc ppm 1	ME-TCP41 Si ppm 1
Sample Description	LOR	10	۱ 	0.01			261	1	0 08	7	400	2	0.01	<2	5	24
13201	!	10	<1	0.05	<10	1 05 0 75	283	1	0 09	6	390	2	0.01	<2	3	25
13202		<10	<1	0.03	<10		352	1	0 05	10	370	2	0.04	<2	4	30
3203		10	1	0 04	<10	1 09	185	2	0 08	6	380	<2	0.02	<2	3	22
3204		<10	<1	0 04	<10	0 59	307	<1	0.06	10	400	<2	0.01	<2	5	22
3205		10	<1	0 04	<10	1 16						<2	0.01	<2	5	31
3206		10	<1	0.04	<10	1 17	345	<1	0 08	9	440		0 01	<2	5	25
3207		10	< 1	0.04	<10	1 02	258	<1	0 07	9	380	<2	001	<2	4	28
3208		10	<1	0.02	<10	1 09	226	<1	0 06	8	380	<2	0.01	<2	4	27
0101		10	< 1	0.02	<10	0 95	212	<1	0.07	8	440	<2	<0.01	<2	5	33
0102		10	<1	0.03	<10	1 18	2/3	5	0 05	10	440	<2	<0.01			
				0.02	<10	0.91	254	<1	0 08	1	480	<2	0 01	<2	4	23
0103		10	<1	0 03 0 07	<10	1 15	350	3	0.06	8	380	<2	0 0 1	<2	5	28
0104		10	1	0.06	<10	1 17	315	<1	0.05	9	390	<2	0.01	<2	4	28
0105		10	<1		<10	0.82	203	<1	0.06	1	300	<2	0.02	<2	3	28
10106		10	< 1	0.05	<10	0.76	240	1	0.05	10	310	5	<0.01	<2	3	25
0107		<10	<1	0.08	< 10						320	2	<0.01	<2	3	31
0108		<10	< 1	0.07	<10	0 88	238	1	0.05	9	320	<2	<0.01	</td <td>2</td> <td>30</td>	2	30
0109		<10	< 1	0.04	< 10	0 74	190	<1	0 06	7	320 310	<2	<0.01	<2	3	30
0110		<10	<1	0 00	<10	082	259	<1	0.06	5		2	<0.01	<2	3	35
10111		<10	<1	0.07	<10	0 81	254	<1	0.05	-	320	2	<0.01	<2	3	30
10112		<10	<1	0.06	<10	084	281	<1	0.06	7	290					
			<1	0.05	<10	0 59	221	1	0.06	5	340	2	<0 01	<2	3	22
10113		<10 <10	<1	0.06	<10	0 60	243	<1	0 07	4	360	2	<0 01	<2	2	19
10114		<10	<1	0 08	<10	0 84	376	~1	0 06	6	390	2	0.01	<2	4	21
10115		10	1	0 11	<10	1 02	497	1	0.05	6	370	<2	<0 01	<2	4	26
10116		<10	<1	0.09	<10	0.81	320	1	0 07	8	340	<2	0.01	<2	3	26
10117							401	1	0.05	7	360	<2	0.01	<2	4	29
10118		<10	<1	0.11	<10	0 99	401		0.05	6	330	<2	<0.01	<2	4	29
10119		<10	< 1	0.09	<10	091	306	2 1	0 03	7	310	7	<0.01	<2	4	24
10120		<10	<1	0.14	<10	0 84	423	<1	0 05	7	360	3	<0.01	<2	4	20
10121		<10	< 1	0.09	<10	1 00	467 288	1	0.05	6	400	<2	<0.01	<2	3	27
10122		10	< 1	0.06	<10	0 79							-0.01	<2	3	21
10123		10	< 1	80.0	<10	0 96	485	<1	0 05	6	420	2	<0.01 <0.01	<2	3	21
10123		<10	1	0.08	<10	0 76	333	1	0 07	6	470	<2		<2	2	24
10125		10	<1	0.10	<10	0 68	297	<1	80 0	6	470	<2	<0.01	<2	2	20
10123		<10	< 1	0 07	<10	0 65	335	1	0 09	6	450	<2	0.01	<z <2</z 	2	23
10127		10	1	0.09	<10	1 10	455	<1	0 06	8	490	<2	<0.01		_	
	··	10	<1	0.09	<10	0.98	402	<1	0.07	7	480	<2	<0 01	<2	4	31
10128		10	1	0.09	<10	1 07	440	2	0 07	9	470	<2	0.02	<2	3	23
10129		4	1	0.05	<10	0 87	416	1	0 07	8	460	<2	0.01	<2	3	20
10130		10	<1	010	<10	0.84	332	<1	0.07	7	470	<2	<0 01	~2	3	22
10131		10	<1	0.08	<10	0 84	322	1	0 07	8	650	<2	<0.01	<2	3	22
10132		10	< i	0.10	~10	004										

ALS Canada Fid

2103 Dollarton Hwy North Vancouver BC V7110A7 Phone: 604 984 0221 — Fax: 604 984 0218 — www.alsglobal.com

TO: TCHAIKAZAN RESOURCES INC. BOX 32 TATLA LAKE BC VOL 1V0

Page: 2 - C Total # Pages: 4 (A - C) Plus Appendix Pages Finalized Date: 13- AUG- 2013 Account: TCHRES

Project: BL

				<u> </u>										
		ME ICP41	M1 ((P4)	ME ICP41	ME ICP4 L	MU ICP41	ME ICP41	ME-ICP41	Ag OG46	Pb OG46	Zn OG46			
	Method	- Ib	li li	H	υ	V	W	Zn	Ag	Pb	Zn			
	Analyte		с. С	ppm	ppm	ppm	ppm	ppm	ppm	%	%			
ample Description	Units LOR	ppm 20	0.01	10	10	1	10	2	1	0.001	0.001		 	
		, · · -						20						
3201		<20	0.14	<10	<10	66	<10 <10	18						
3202		<20	0.11	<10	<10	58		33						
3203		<20	0.11	<10	<10	48	<10	15						
3204		<20	011	<10	<10	57	<10	22						
3205		<20	010	<10	<10	55	<10					 	 	
3206		<20	0.11	<10	<10	61	<10	21						
13207		<20	0.10	<10	<10	50	<10	20						
13208		<20	0.10	<10	<10	46	<10	17						
10101		<20	0.10	<10	<10	50	<10	15						
10102		<20	0.07	<10	<10	48	<10	17			<u> </u>	 	 	
	<u>_</u>	<20	0.10	<10	<10	52	<10	17						
10103		<20	0 11	<10	<10	53	<10	26						
10104		<20	0 10	<10	<10	49	<10	25						
10105		<20	0.08	<10	<10	32	<10	16						
10106		<20	0.05	<10	<10	25	<10	25						
10107				·	<10	25	<10	22				 		
10108		<20	0 05	<10	<10	39	< 10 < 10	17						
10109		<20	0.08	<10		26	<10	24						
10110		<20	007	<10	~10	24	<10	24						
10111		<20	0.06	<10	<10	32	<10	25						
10112		<20	0.08	<10	<10							 		
10113		<20	0.08	<10	<10	38	<10	23						
10114		<20	0 09	<10	<10	43	<10	26						
10115		<20	0.09	<10	~10	54	<10 -10	44 45						
10116		<20	011	<10	<10	44	<10 <10	45						
10117		<20	0.10	<10	<10	45			<u> </u>			 	 · · · · · · · · · · · · · · · · · · ·	
10118	• · · · · ·	<20	0.09	<10	<10	41	<10	31						
10119		<20	0.11	<10	<10	41	<10	22						
10120		<20	0 07	<10	<10	33	<10	62						
10121		<20	0.09	< 10	<10	48	<10	64						
10122		<20	0 11	<10	<10	61	<10	24				 	 	
10123		<20	0.12	<10	<10	61	<10	42						
10123		<20	0 13	<10	<10	/4	<10	24						
10124		<20	0 15	<10	<10	80	<10	20						
10126		<20	0 12	<10	< 10	/1	<10	26						
10126		<20	0 14	<10	<10	76	<10	35				 	 	
		<20	0 14	<10	<10	72	<10	31						
10128		<20	014	<10	<10	/3	<10	35						
10129		<20	0 14	<10	<10	/1	<10	30						
10130			0.14	<10	<10	69	<10	23						
10131		<20	0.14	<10	<10	17	<10	22						
10132		<20	014	~10	- 10							 	 	

ALS Conada Lul

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone 604 984 0221 — Fax: 604 984 0218 — www.alsglobal.com

i o: TCHAIKAZAN RESOURCES INC. BOX 32 TATLA LAKE BC VOL 1V0

Page: 3 - A Total # Pages: 4 (A - C) Plus Appendix Pages Finalized Date: 13- AUG- 2013 Account: TCHRES

Project: BL

			<u>.</u>						ML ICP41	ME ICP41	ME ICP41	ME-ICP41	ME ICP41	ME ICP41	ME-TCP41	ME ICP41
	Method	WEI 21	Au AA23	ME ICP41	ME ICP41	ME ICP/D	ML ICPAT	ME ICP41	міс іс.ечт Ве	Bi	Ca	Cd	Co	G	Cu	le
	Analyte	Record Wt	Au	Λg	Al	Λs	в	Ba		ppm	%	ppni	ppm	ppin	ppm	%0
	Units	kų	ppm	\$1544s	70	ppm	ppm	ppm T0	ppm 0 S	2,5	0.01	0.5	I.	1	1	0.01
ample Description	LOR	0.02	0.005	0.2	0.01	2	10					<0.5	8	29	18	2 4 9
0133		4 74	<0 005	<0 2	1.99	2	<10	50	<0.5	<2	1 78 1 20	<0 5 <0 5	8	29	16	2.57
0134		5 0 1	<0.005	<0.2	1 54	2	<10	30	<0.5	<2 <2	140	<0.5	ĩ	28	53	2 38
0135		4 99	<0.005	<0.2	1 55	3	<10	40	<0.5		1.85	<0.5	10	31	38	2.90
0136		5 4 2	<0 005	<0.2	2 00	4	<10	40	<05	<2	1.85	<05	6	29	24	2 4 1
0137		508	<0 005	<0.2	1 51	<2	<10	30	<0.5	<2					34	2.98
		5 32	<0 005	<0.2	2.21	<2	<10	30	<0 5	<2	1 78	<0.5	11 7	33 29	23	2.50
0138		4 94	<0 005	<0.2	189	2	<10	40	<0.5	<2	1 46	<0 5		28	75	2 33
.0139		5 08	<0.005	<0.2	1.51	2	<10	40	<0 5	<2	1 33	<05	6	20 29	91	2 68
0140		5 58	<0 005	<0.2	1 58	3	<10	30	<05	<2	1 21	<0.5	9	29	184	2 63
10141		5 22	0.030	<0.2	1 54	3	<10	40	<0.5	<2	1.34	<0.5	8			
0142				<0.2	1 23	<2	<10	20	<0 5	<2	0 98	<0 5	8	29	306	2.42
10143		5 39	0 008	<0 2	1 4 3	<2	<10	20	<05	<2	1.11	<0.5	9	27	77	2 43
10144		5 38	0 0 1 0	<02	1 18	<2	<10	20	<0.5	<2	0 91	<0.5	/	31	89	2.41
10145		5 27	0.013	<02	1 30	<2	<10	20	<0.5	<2	1 04	<0.5	8	28	140	2.47
10146		5 22	<0 005	<0 2	1 22	<2	<10	20	<05	<2	0.89	<0 5	8	30	153	2 56
10147		5 18	<0.005					20	<0.5	<2	1 05	<0.5	9	30	129	2.62
0148		4 84	<0.005	<0 2	1 39	<2	<10		<0.5	<2	1 08	<0.5	9	28	549	2.51
10149		5 2 5	0 009	<0.2	1 50	<2	<10	20	<0.5	<2	1 15	<0.5	10	30	134	2 71
28901		5 33	0.014	<0.2	166	<2	<10	20	<0.5	<2	1.06	<0.5	9	27	153	2 55
28902		5 5 1	<0.005	<0.2	1 47	<2	<10	20	<05	<2	0.91	<05	9	31	289	2 67
28903		471	<0.005	02	141	<2	<10	20		·			10	31	110	3 07
28904		5 4 9	<0 005	<0.2	1 84	<2	<10	40	<0.5	<2	1.31 1.00	1.0 <0.5	9	29	63	2 80
28905		5.25	<0 005	<02	1 51	<2	<10	40	<0.5	<2	0.94	<0 5	8	30	57	2 60
28906		5 60	<0.005	<0.2	1 33	<2	~10	20	<0.5	<2 <2	1 42	<05	11	30	44	2.79
28907		4 91	<0 005	<02	1 90	<2	<10	20	<05	<2	0 93	<0.5	8	30	56	2.53
28908		5 0 5	<0 005	<0.2	1 33	<2	<10	20	<0.5				7	31	132	2 22
28909		5 82	< 0.005	<0.2	1 25	<2	<10	20	<0.5	<2	0.96	<0.5 <0.5	9	31	108	2.63
28910		5 18	<0 005	<0.2	1 68	<2	<10	20	<0.5	<2	1 30	<0.5	9	31	111	2.56
28911		5 11	0 006	<0.2	1 33	<2	<10	20	<0.5	<2	0 99 1.02	<0.5	9	31	102	2.66
28912		5 34	<0.005	<0.2	141	<2	<10	20	<05	<2	1.02	<0.5	10	30	66	2.61
28913		5 33	<0.005	<0.2	1.57	<2	<10	20	<0.5	<2						2.63
28914		4 65	<0 005	<0.2	1 67	<2	<10	20	<0.5	<2	1.31	<0.5	9	30 30	68 155	2.63
28914		5.31	<0 005	<0.2	1 57	<2	<10	20	<0 5	<2	1.23	<05	9	30 32	58	2.66
28916		5 43	<0 005	<0.2	1 39	<2	<10	20	<0 5	<2	1 06	< 0.5	9	32	266	2.00
28916		5 24	<0 005	0.2	148	<2	<10	20	<0 5	<2	1 12	<0.5	9	33	200 150	2.70
28918		5 47	<0.005	<0.2	1 44	<2	<10	20	<0.5	<2	1.09	<0.5				
		5.74	<0 005	<0.2	1 51	<2	<10	20	<0.5	<2	1 14	<0.5	9	33	111	2 72
28919		4 90	<0 005	<02	1 4 4	<2	<10	20	<0.5	<2	1 09	<0.5	9	31	196	2.56
28920		5 40	<0 005	<0.2	1 45	<2	<10	30	<0.5	<2	1 08	<0.5	9	32	74	263
28921		5 /2	<0.005	<0.2	1 83		<10	20	<0.5	<2	1 28	<0.5	12	31	95	2 87
28922		500	<0.005	~0.2	1 82	2	<10	20	<0.5	<2	1 45	<0.5	10	31	60	2.79
28923		500	~0 000									<u>.</u>		······		

AFS Canada Hd

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 — Fax: 604 984 0218 — www.alsglobal.com

10: TCHAIKAZAN RESOURCES INC. BOX 32 TATLA LAKE BC VOL 1V0

Page: 3 - B Total # Pages: 4 (A - C) Plus Appendix Pages Finalized Date: 13- AUG- 2013 Account: TCHRES

Project: BL

										ML ICDAL	ME ICP41	ME- ICP4 I	ML ICP41	ME ICP41	ME ICP41	ME ICP41
	Method	ME K PAT	ME ICP41	ME ICPG L	M1_1CP4_F	ME ICP41	ME ICPA I	ME ICP41	ME_ICP41	ME- 1CP4 L Ni	1911 P	Pti	S	Sla	Sc	St
	Analyte	(Hsj.	К	ا دا	Mg	Mn	Mo	Na	ppm	, ppro	ppm	Ŷü	ppm	ppm	ppm
	Units	ppm	ppin	v.	ppm	%	ppm	ppm	% 0.01	ppin	10	2	0.01	2	1	1
Sample Description	LOR	10	I.	0.01	10	0.01	5	۱ 	001	·					3	47
0133		10	<1	0.07	<10	0 89	288	<1	0.05	7	480 460	<2 <2	<0 01 <0 01	<2 <2	2	24
0134		<10	1	0.08	<10	0 72	254	<1	0 08	-	460	<2	0 01	<2	2	31
10135		<10	1	0.06	<10	0.58	21/	<1	0 08	4	460	<2	0.01	<2	4	49
10136		10	< 1	0.07	×10	1 00	270	<1	0 06	8	460	<2	<0.01	2	3	27
10137		<10	<1	0 04	<10	0 65	272	<1	0.08	6						30
10138		10	1	0.05	<10	1 23	419	<1	0 06	8	460	<2	<0 01 <0 01	<2 <2	5 3	29
10139		10	<1	0.05	<10	0 94	359	<1	0 07	7	470	<2		<2	2	21
10139		< 10	<1	0.06	<10	0.61	293	1	0 08	6	490	2	<0.01 0.01	<2	2	39
10140		~10	<1	0.09	<10	0 69	271	1	0.09	6	460	<2		<2	2	32
10142		<10	< 1	0.08	<10	0.65	216	<1	Q 10	6	460	<2	0.01			
		<10	<1	0.08	<10	0.51	182	2	0.08	7	440	2	0.03	<2	1	19
0143		<10	<1	0.08	<10	0 62	192	<1	0 07	6	430	<2	0 01	<2	2	22
10144		<10	<1	0 07	<10	047	165	<1	0.09	5	450	<2	0 02	<2	1	18
10145		<10	*1	007	<10	0.55	234	4	0 09	5	430	<2	0 02	<2	2	18
10146		~10	< 1	0.07	<10	0.53	236	1	0.10	4	440	<2	0 02	<2	1	16
10147					<10	0 59	275	1	0 09	5	460	<2	0 02	<2	2	17
10148		<10	<1	0 08	<10	0 65	314	2	0 08	5	440	<2	0.06	<2	2	16
10149		<10	<1	0 08	<10	0 84	391	4	0 07	6	450	<2	0.02	<2	2	20
28901		10	1	0 07	<10	0.67	362	1	0.08	5	390	<2	0 03	<2	2	15
28902		10	1	0 07	<10	0.62	409	<1	0 11	6	460	<2	0.04	<2	2	21
28903		<10	<1	0 07					0.09	6	440	<2	0.03	<2	3	26
28904		10	<1	0.07	<10	0 85	/92	<1	0.09	5	440	<2	0.02	<2	2	27
28905		<10	<1	0 08	<10	070	582	<1 <1	0 12	5	460	<2	0 02	<2	2	24
28906		<10	1	007	-< 10	0.55	348 447	<1	0 07	6	440	<2	0.01	<2	3	26
28907		10	<1	0.08	<10	087	447 271	<1	0.10	5	460	<2	0.02	<2	1	22
28908		<10	<1	0.07	<10	0 57		<u> </u>		4	380	<2	0 02	<2	2	18
28909		<10	<1	0 07	<10	0 52	252	1	0 09	4 8	470	<2	0 02	<2	2	21
28910		10	1	0.09	<10	0 74	328	<1	0 08 0 11	5	470	<2	0.02	<2	1	18
28911		<10	<1	0.08	<10	0 55	269	1		5	470	<2	0.02	<2	2	18
28912		<10	< 1	0 08	<10	0 61	311	<1 <1	0 11 0 09	5	460	<2	0 02	<2	2	21
28913		<10	<1	0 08	<10	0 66	323						0.02	<2	2	
28914		10	<1	80 0	<10	0 71	340	<1	0 08	5	460 470	<2 <2	0.02	<2	2	18
28915		10	< 1	0.08	<10	0 62	288	<1	0 10	5 5	470 480	<2	0 02	<2	2	19
28916		<10	1	0 09	<10	0 54	236	<1	013	5	480	<2	0 02	<2	2	18
28917		<10	<1	0.09	<10	0.61	285	8	011	5	490 490	<2	0.02	<2	2	16
28918		<10	<1	0 08	<10	0.61	266	1	0 10					<2	2	16
28919		<10	<1	0.09	<10	0 62	289	1	0 11	4	480	<2	0 02 0 03	<2 <2	2	17
28920		<10	<1	0.08	<10	D 59	261	7	0 10	5	480	<2	0.02	<2	2	19
28921		<10	<1	0.10	<10	0 61	309	1	011	5	470	2	0.02	<2	2	19
28922		10	< 1	0.08	<10	0 92	431	1	0 08	6	470	<2	0.02	<2	2	18
28923		10	<1	0.09	<10	077	427	1	0 07	6	480	<2	U UZ	~2	2	10

ALS Canada Lu

2103 Dollarton Hwy North Vancouver BC V/IT0A7 Phone 604 984 0221 — Fax 604 984 0218 — www.alsglobal.com

To: TCHAIKAZAN RESOURCES INC. BOX 32 TATLA LAKE BC VOL 1V0

Page: 3 - C Total # Pages: 4 (A - C) Plus Appendix Pages Finalized Date: 13- AUG- 2013 Account: TCHRES

Project: BL

CERTIFICATE OF ANALYSIS KL13137286

Sample Description	Method Analyte Units LOR	ME ICP41 Th ppm 20	ML ICP41 14 % 0.01	ME ICP41 II ppni T0	ME ICP41 U ppm 10	ME ICP41 V ppm L	ME ICP41 ₩ ₽₽00 10	ME ICP41 Zn ppm 2	Ag- OG46 Ag المربر 1	Pb- OG46 Pt> % 0.001	Zn OG46 Zn % 0.001				 	
10133		<20	0.11	<10	<10	65	<10	20								
10134		<20	0.12	<10	<10	75	<10	19								
10135		<20	0.09	<10	<10	73	<10	17								
10136		<20	013	<10	<10	/2	<10	23 20								
10137		<20	Q 10	<10	<10	71	<10						·		 	
10138		<20	0 14	<10	<10	67	<10	32								
10139		<20	0 12	<10	<10	70	<10	25								
10140		<20	0 11	<10	<10	70	<10	25								
10141		<20	015	<10	<10	76	<10 <10	20 16								
10142		<20	013	<10	<10	/6									 	
10143		<20	0.12	<10	<10	77	<10	15								
10144		~20	011	<10	<10	68	<10	13								
10145		<20	010	<10	<10	/6	<10	12 20								
10146		<20	0 11	<10	<10	/3	<10 <10	20								
10147		<20	0 12	<10	<10	81					·	·		<u></u>		
10148		<20	0.12	<10	<10	/8	<10	22								
10149		<20	011	<10	<10	67	<10	27 34								
28901		<20	0.13	<10	<10	67	<10	34 28								
28902		<20	0 12	<10	<10	65	<10 <10	32								
28903		<20	0.12	<10	<10	80									 	
28904		<20	0 11	<10	<10	75	<10	123								
28905		<20	0 12	<10	<10	/9	<10 <10	65 27								
28906		<20	0.13	<10	<10	85 72	<10	32								
28907		<20	0 12	<10 <10	<10 <10	72	<10	22								
28908		<20	0.12												 	
28909		<20	0 11	<10	<10	68	<10	18 24								
28910		<20	0 13	<10	<10	77 86	<10 <10	24								
28911		<20	0.14	<10	<10 <10	86	<10	25								
28912		<20 <20	0 13 0.13	<10 <10	<10	83	<10	26								
28913							<10	29							 	
28914		<20	013	<10	<10 <10	79 83	<10	29								
28915		<20	014	<1U <10	<10	63 96	<10	24								
28916		<20 <20	0 14 0 14	<10	<10	92	<10	30								
28917 28918		<20	0.14	<10	<10	92	<10	26								
			0 14	<10	<10	91	<10	29								
28919		<20 <20	0.13	<10 <10	<10	86	<10	34								
28920		<20	0.13	<10	<10	88	<10	40								
28921		<20	014	<10	<10	/9	<10	47								
28922 28923		<20	0 14	<10	<10	82	<10	47								

***** See Appendix Page for comments regarding this certificate *****

2103 Dollarton Hwy North Vancouver BC V7110A7 Phone 604 984 0221 — Fax: 604 984 0218 — www.alsglobal.com

To: TCHAIKAZAN RESOURCES INC. BOX 32 TATLA LAKE BC VOL 1V0

Page: 4 - A Total # Pages: 4 (A - C) Plus Appendix Pages Finalized Date: 13- AUG- 2013 Account: TCHRES

Project: BL

Sample Description	Method	WELZI	Au- AA23	ME ICP41	ME ICP41	ME-ICP41	ME ICP41	ME ICP41	ML_ICP41	ME-ICP41	ML ICP41	ME-TCP41	ME- ICP4 I	ML_ICP41	ME ICP41	ME-ICP41
	Analyte	Recvd Wi	Au	Ag	AI	As	B	Ba	Be	Bi	Ca	Cd	Co	Cr	Cu	Fe
	Units	kg	ppio	ppm	%	ppin	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%-
	LOR	0:02	0.005	Q 2	U 01	2	10	LO	0.5	⊋	0.01	0.5	I	L	T	0.01
28924 28925 28926 28927 28026		5 71 5 22 5 32 5 34 5 22	<0.005 <0.005 <0.005 <0.005 <0.005	<0 2 <0 2 <0 2 <0 2 <0 2 <0 2	1.75 1 70 1.58 2 12 2 63	<2 <2 2 <2 4	<10 <10 <10 <10 <10 <10	30 30 30 20 20	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5	<2 <2 <2 <2 <2 <2 <2 <2	1 34 1 40 1.14 1.65 2.47	<0 5 <0.5 <0.5 <0 5 <0 5	10 10 10 12 13	30 31 31 33 30	73 81 172 67 81	2 84 2.88 2.80 3.03 3.00
28928 28929 Cow 2 101 Cow 2 102 Cow 2 103 Cow 2 104		5 51 1 45 2 85 1 67 1 82	0.011 0.051 2.68 5.35 0.010	<0.2 1 0 >100 >100 0 6	1 74 0 85 1 00 0 26 0 63	2 146 90 68 22	<10 <10 <10 <10 <10 10	30 20 <10 <10 10	<0 5 <0.5 <0.5 <0 5 <0 5	<2 <2 <2 <2 <2 <2 <2	1.70 3.74 5.22 3.70 3.38	<0.5 <0.5 488 351 0.9	11 25 5 4 10	30 5 5 6 10	65 22 3530 2300 47	3.01 4 70 3 73 3.09 2 29
Cow 2 105		1 57	0 013	0 9	0 79	35	<10	20	<0.5	<2	1 43	0 6	13	9	20	3.55
Cow 2 106		2 38	0.040	0 4	0.12	27	<10	<10	<0.5	<2	>25 0	<0 5	2	1	11	0.99
Cow 2 107		2 00	2 01	>100	0 1 1	94	<10	<10	<0.5	<2	8 0	601	<1	4	2240	1.09

ALS Canada Etd.

2103 Dollarton Hwy North Vancouver BC V/IT0A7 Phone: 604 984 0221 — Fax: 604 984 0218 — www.alsglobal.com

Fo: TCHAIKAZAN RESOURCES INC. BOX 32 TATLA LAKE BC VOL 1V0

Page: 4 - B Total # Pages: 4 (A - C) Plus Appendix Pages Finalized Date: 13- AUG- 2013 Account: TCHRES

Project: BL

ample Description	Method Analyte Units LOR	ME ICP41 Ga ppm 10	MERCP41 Hg ppni T	ME ICP41 K % 0.01	ME ICP41 La ppm 10	ME ICP41 Mg % ()01	ME_ICP41 Mn ppm 5	MF ICP41 Mo ppm 1	ML-ICP41 Na % 001	ME-ICP41 Ni ppni 1	ME ICP41 P ppm TO	ME- ICP41 Pb ppm 2	ME_ICP41 S % 0.01	ME-ICP41 Sb ppm 2	ML ICP41 Sc ppm I	ME-TCP41 Sr ppm T
		10	<1	0.09	<10	0 79	474	<1	0 08	6	460	<2	0 02	<2	2	19 17
8924		<10	<1	0 10	<10	0.82	515	1	0.08	5	470	<2	0 02	<2	3	
8925			<1	0 09	<10	0.80	424	<1	0.07	6	470	<2	0.03	<2	2	16
8926		<10	<1	0.00	<10	1 04	539	<1	0.06	8	460	<2	0 02	<2	4	20
28927		10	<1	0 07	<10	1 08	543	<1	0.05	8	460	<2	0.02	<2	5	26
28928		10	1	0.07					0.00	6	470	<2	0.02	<2	3	21
28929		10	1	0.10	<10	0 90	538	<1	80.0	-	450	20	4.43	<2	2	13
Tow 2 101		<10	1	0 15	<10	043	582	1	0 01	12			5 43	118	2	34
Cow 2 102		<10	42	0.03	<10	0 49	1725	4	0.01	5	120	>10000	-	18	1	13
		<10	16	0.07	<10	0 11	1070	7	0.01	2	120	9890	481		,	11
Cow 2 103		<10	1	0.12	<10	0 28	418	3	0 02	4	410	24	2 19	<2	-	
Cow 2 104						0.49	552	2	0.02	9	580	32	2.74	<2	1	7
Cow 2 105		<10	1	0 17	<10	048		6	0.02	<1	70	100	0.93	2	1	214
Cow 2 106		<10	1	0.08	<10	0.06	3910	÷		<1	50	>10000	4.38	1040	<1	44
Cow 2 107		<10	11	0 04	<10	0 05	1675	19	0.01		50	- 10000				

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 - Lax: 604 984 0218 - www.alsglobal.com

To: TCHAIKAZAN RESOURCES INC. BOX 32 TATLA LAKE BC VOL 1V0

Page: 4 - C Total # Pages: 4 (A - C) Plus Appendix Pages Finalized Date: 13- AUG- 2013 Account: TCHRES

Project: BL

ample Description	Method Analyte Units LOR	ML 1('P41 h ppni 20	ME ICP4 1 % 0.01	ME-TCP4 E TT ppm T 0	ML ICP41 U ppm 10	ME ICP41 V ppm	ML ICP41 W ppm 10	ME ICP41 Zn ppm 2	Ag- OG46 Ag ppm 1	РЬ- ОС46 Ръ % 0.001	Zii OG46 Zii % 0.001	
28924		<20	0.13	<10	<10	80	<10	51				
28925		<20	0.12	<10	<10	81	<10	51				
28926		<20	013	<10	<10	79	<10	44				
28927		<20	0.15	<10	<10	75	<10	52				
28928		<20	0 14	<10	<10	74	<10	52			· · · ·	
8929		<20	0.12	<10	<10	80	<10	55				
Cow 2 101		<20	<0.01	<10	<10	11	<10	44				
Low 2 102		<20	0 01	<10	<10	16	10	>10000	274	2.89	4 35	
Cow 2 102		<20	<0.01	<10	<10	4	10	>10000	216		2.86	
Cow 2 103		<20	0.01	<10	<10	10	<10	88				
Cow 2 105		<20	<0.01	<10	<10	14	<10	54				
Cow 2 105		<20	<0.01	<10	10	2	<10	47				
Cow 2 107		<20	<0 01	<10	<10	1	30	>10000	1070	5 02	5 25	

ALS Canada Etd 2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 — Eax: 604 984 0218 — www.alsglubal.com Page: Appendix 1 Total # Appendix Pages: 1 Finalized Date: 13- AUG- 2013 Account: TCHRES

Project: BL

		CERTIFICATE COMMENTS		
Applies to Method:	Processed at ALS Kamloops located a CRU- 31 PUL- QC	LABORATORY AD t 2953 Shuswap Drive, Kamloops, BC, CRU- QC SPL- 21		PUL- 31
Applies to Method.		at 2103 Dollarton Hwy, North Vancouv Au- AA23 Zn- OG46	er, BC, Canada. ME- ICP41	ME- OG46

2103 Dollarton Hwy North Vancouver BC V/H 0A7 Phone: 604 984 0221 - Fax: 604 984 0218 - www.alsglobał.com

To: TCHAIKAZAN RESOURCES INC. BOX 32 TATLA LAKE BC VOL 1V0

CERTIFICATE KL13150852

Project: Bluff

P.O. No.:

This report is for 6 Soil samples submitted to our lab in Kamloops, BC, Canada on 22-AUG-2013.

The following have access to data associated with this certificate:

TCHAIKAZAN RESOURCES INC ROGER MACDONALD SUSAN ROLSTON

	SAMPLE PREPARATION	
ALS CODE	DESCRIPTION	
WEL 21	Received Sample Weight	
LOG-22	Sample login - Rcd w/o BarCode	
SCR- 41	Screen to 180um and save both	
	ANALYTICAL PROCEDUR	ES
ALS CODE	DESCRIPTION	INSTRUMENT
Au- AA23	Au 30g FA, AA finish	AAS
ME- ICP41	35 Element Aqua Regia ICP- AES	ICP- AES

TO: TCHAIKAZAN RESOURCES INC. ATTN: ALS MINERALS

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

***** See Appendix Page for comments regarding this certificate *****

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone 604 984 0221 — Fax: 604 984 0218 — www.alsglobal.com

To: TCHAIKAZAN RESOURCES INC. BOX 32 TATLA LAKE BC VOL 1V0

Page: 2 - A Total # Pages: 2 (A - C) Plus Appendix Pages Finalized Date: 29- AUG- 2013 Account: TCHRES

Project: Bluff

CERTIFICATE OF ANALYSIS KL13150852

.

Sample Description	Method Analyte Units LOR	WEEZE Recvd Wi Rg 0.02	ME ICP41 Ag ppm 0.2	ME ICP41 Al % 0.01	ME ICP41 As ppm 2	ME-ICP41 B ppm E0	ME ICP41 Ba ppm T0	ME ICP41 Be ppm 0.5	ME ICP41 Bi ppm 2	ME: ICP41 Ca % 0.01	ME ICP41 Cd ppm 0.5	ME-ICP41 Co ppm 1	ME ICP41 Ci ppm L	ME/TCP41 Co ppm 1	ME ICP41 Le % 0.01	ME ICP41 Ga ppni 10
Noranda Pit B Noranda Pit C Pit 2 B Pit 3 B		0 52 0.55 0 43 0.52 0 57	0 2 0 2 <0 2 <0.2 <0.2 0 2	3 54 3.42 2 47 2 28 3 07	63 68 34 16 67	<10 <10 <10 <10 <10 <10	40 60 40 30 40	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5	<2 <2 <2 <2 <2 2	0.88 0.93 0.61 0.60 0.59	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5	33 30 21 19 27	237 214 140 138 161	112 172 32 26 106	5.34 5.05 3.59 3.17 4.68	10 10 10 10 10
Pit 6 B		0.53	<0 2	3 51	23	<10	40	<0 5	<2	1 09	<0 5	31	229	55	4 60	10

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone 604 984 0221 - Lax 604 984 0218 - www.alsglobal.com

To: TCHAIKAZAN RESOURCES INC. BOX 32 TATLA LAKE BC VOL 1V0

Page: 2 - B Total # Pages: 2 (A - C) Plus Appendix Pages Finalized Date: 29- AUG- 2013 Account: TCHRES

Project: Bluff

Sample Description	Method Analyte Units LOR	ME ICP41 Hg ppm T	M1 ICP41 K % 0.01	ME ICP41 Γα μμπι ΤΟ	ML ICP41 Mg % 0.01	ME ICP41 Mn ppm 5	ME ICP41 Mo ppm 1	ME ICP41 Na % 0.01	ME-ICP41 Ni ppm 1	ME ICP41 P ppni 10	ME ICP41 Pb ppm 2	ME ICP41 S % 0.01	ME ICP41 Sb ppm 2	ME ICP41 Sc ppm 1	ME_ICP41 Sr µpm 1	ME-TCP4T Th ppnt 20
Noranda Pit B Noranda Pit C Pit 2 B Pit 3 B Pit 4 B		8 <1 1 1 <1	0.02 0 02 0 03 0.03 0.03	<10 <10 <10 <10 <10	2 84 2 78 1 57 1.43 1 99	362 420 222 212 267	1 1 1 <1 <1	0.01 0.01 0.01 0.01 0.01 0.01	157 137 87 77 108	390 210 310 640 470	4 4 4 4 4	0 01 0 01 0 01 0 01 0 01	4 3 <2 <2 5	11 14 6 6 8	12 16 12 12 12 11	<20 <20 <20 <20 <20 <20
Pit 6 B		<1	0.02	<10	3.04	327	<1	0 01	150	210	2	0.01	<2	10	16	<20

ALS Canada Hd

2103 Dollarton Hwy North Vancouver BC V/H 0A7 Phone 604 984 0221 - 1 ax 604 984 0218 - www alsglobal.com

To: TCHAIKAZAN RESOURCES INC. BOX 32 TATLA LAKE BC VOL 1V0

Page: 2 - C Total # Pages: 2 (A - C) Plus Appendix Pages Finalized Date: 29- AUG- 2013 Account: TCHRES

CERTIFICATE OF ANALYSIS KL13150852

Project: Bluff

			<u>.</u>			_			 ·	 	
	Method	ML TCP41	ME ICP41	ME ICP41	MI ICP41	ME ICP41	ME ICP41	Au- AA23			
	Analyte Units	11	LI	U PDIII	V ppm	W ppm	Zn ppni	Au ppm			ļ
Sample Description	LOR	% 0.01	ppm T0	10	l I	10	2 2	0.005		 	
Noranda Pit B		0 11	<10	<10	150	<10	53	0.005	 		
Noranda Pit C		U 09	<10	<10	125	<10	49	0.017			
Pit 2 B		0 09	<10	<10	110	<10	66	0.005			
Pit 3 B		0.11	<10	<10	97	<10 <10	57 48	<0.005 <0.005			
Pit 4 8		0.08	<10	<10	120 149	<10	51	<0.005	 	 	
Pit 6 B		0.14	<10	<10	149		۱ ڊ.	-0.003			
		2									
		1									
L		<u> </u>					- *		 	 	

ATS Canada Ed 2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 — Fax: 604 984 0218 — www.alsglobal.com Page: Appendix 1 Total # Appendix Pages: 1 Finalized Date: 29- AUG- 2013 Account: TCHRES

Project: Bluff

	CERTIFICATE COMMENTS
	LABORATORY ADDRESSES Processed at ALS Kamloops located at 2953 Shuswap Drive, Kamloops, BC, Canada. LOG-22 SCR-41 WEI-21
Applies to Method:	Processed at ALS Vancouver located at 2103 Dollarton Hwy, North Vancouver, BC, Canada.
Applies to Method:	Au- AA23 ME- 1CP4 1