Assessment Report

BC Geological Survey Assessment Report 34426

Rock Geochemistry and Geological Mapping on the Heath Property

Omineca Mining Division

93N06

UTM Zone 10 NAD83 362000E 6127600N

55² 20' North Latitude **125² 10** West Longitude

For

West Cirque Resources Ltd.

By

Tony Barresi John Bradford

October 21, 2013

Table of Contents

Nkuv'qh'Hki wtgu''

••

Hki wtg'3'"' Hki wtg'4'' Hki wtg'5'' Hki wtg'6''' Hki wtg'7'''' ''	Nqecvkqp'O cr " Encko 'O cr "*3 3 22.222+" Tgi kqpcn'I gqnqi {"*3 472.222+"
Nkuv'qh'Vcdngu' ''	"
Vcdrg'3'""' "	Ercko "Uccwu"

Rock Geochemistry and Geological Mapping on the Heath Property

Introduction

"

Vj g"J gcyj "Rtqr gtv{ "y cu"gzco kpgf "d{ "y g"cwj qtu"qxgt "y g"eqwtug"qh'ukz "f c{u"qp"Qevqdgt" 6."4234"cpf "Ugr vgo dgt"7/; ."42350"Vj g"r wtr qug"qh'y g"hkgrf "r tqi tco "y cu"vq"r tqur gev"cpf " gxcnwcvg" y g"uwthceg" gz vgpv"cpf "uv{ng"qh"o kpgtcnk cvkqp"cv" y g"J gcyj "eqr r gt/i qnf/ukrxgt/ o qn{df gpwo /r rcvkwpwo /r cmcf kwo "r tqur gev0Tgr tgugpvcvkxg"tqen"uco r ngu"y gtg"eqmgevgf " kp"o kpgtcnk gf "ctgcu"vq"f qewo gpv" y g"f kuvtkdwkqp"cpf "vgpqt"qh"o kpgtcnk cvkqp0'Cm'y qtm" kpenwf kpi "tgr qtv'y tkkpi "y cu"eqo r ngvgf "cv'c"equv"qh"&38.652"*Cr r gpf kz "D+0'

Location and Access

"

"

Vj g"J gcyj "Rtqr gtv{ "ku'mecvgf "32: "mkmo gvgtu"pqtvj y guv'qh'Hqtv'Uv0Lco gu'kp"egpvtcn'DŒO" *Hki wtg" 3+0' Vj g" r tqr gtv{ "ku'mecvgf "kp" P VU"; 5P 128." cv' rcvkwf g" 77Å42øP." mpi kwf g" 347Å32)Y 0Ceeguu'vq'vj g"ctgc"htqo "Hqtv'Uv0Lco gu'ku'xkc'vj g"Vcej kg"J ki j y c{'hqt"cdqwv'62" mkmo gvgtu'vq'vj g"Ngq"Etggm'HUT "wtpqhh "vj gp"xkc'vj g"Ngq"Etggm'vq'vj g"F tkhvy qqf "HUT "cv" mkmo gvgt "8: 0'Rcuv'Vej gpvm"Ncmg" vj g"F tkhvy qqf "HUT "eqppgevu" y kj "vj g"Vej gpvm"HUT" y j kej "vtcxgtugu'vj g"uqwj y guvgtp"r ctv'qh'vj g"r tqr gtv{0'Qnf "ecv'tqcf u'qp" vj g"r tqr gtv{ "y gtg" wugf "hqt" j kuvqtkecn'vtgpej kpi "cevkxkkgu0"

Physiography, Climate and Vegetation

Vj g'hqnqy kpi 'ku'o qf khkgf 'htqo ''Vqqj g{ ''gv'cn0''*3; ; 3+.''

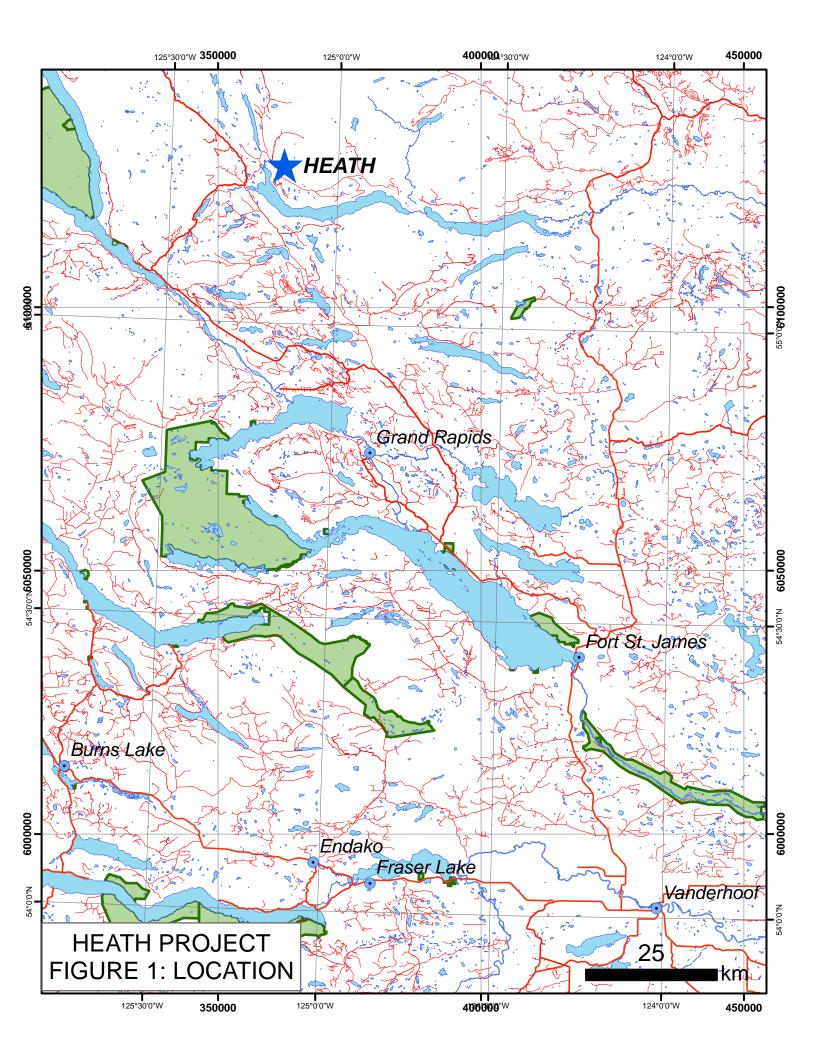
Vj g"J gcvj "r tqr gtv{ "ku" mecvgf "pgct" vj g" uqwij gtp" gpf "qh" vj g" Qo kpgec" O qwpvckpu0' Vj g" dqwpf ct {"dgwy ggp" vj g" Qo kpgec" O qwpvckpu" cpf "vj g" cf lcegpv' P gej cmq "Rrcvgcw' nkgu" lwuv' uqwij "qh" vj g" r tqr gtv{ "cmpi " vj g" pqt vj " uj qtg" qh" Vej gpvrq "rcmg0' C v' vj ku" r j {ukqi tcr j ke" dqwpf ct {."uqwi /uqwi gcuvy ctf "f ktgevgf "Rrgkuvqegpg"xcmg{"i rcekcvkqp."o qxkpi "r ctcmgn'vq" vj g"wr r gt" P cvkqp "T kxgt"xcmg{."eqpxgti gf "y kj "vj g"o ckp"dqf {"qh" vj g"gcuvy ctf "cf xcpekpi " Eqtf kmgtcp" keguj ggv'y j kej "eqxgtgf "cm'qh'vj g" P gej cmq "Rrcvgcw0'

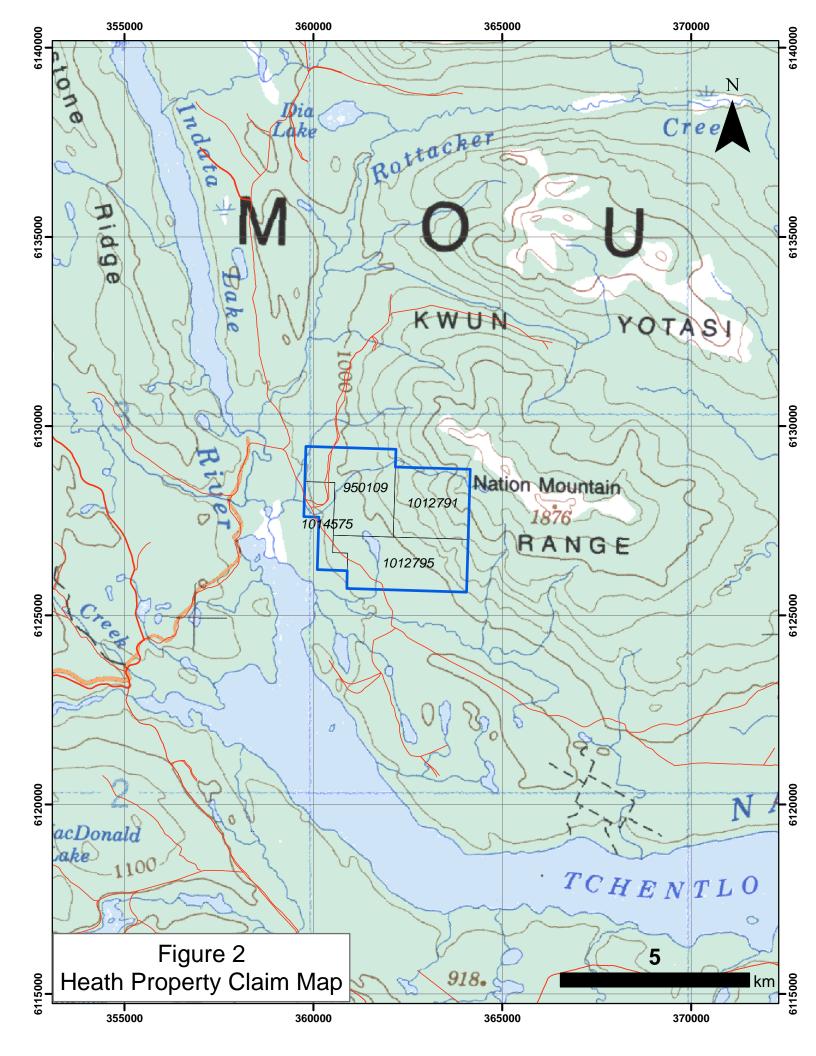
Qp"yjg"vkm'r ncpgu"vq"yjg"uqwyj"qh"yjg"r tqrgtv{."f twonkp/nkng"tkf i gu"cpf"r ctcmgn'i tqqxgu" kfgpvkhkgf "kp"ckt"r jqvqi tcr ju"kpf kecvg"c"i ncekcn'vtcpurqtv'f ktgevkqp"vq"yjg"GP G0Keg"eqxgtgf" cm"qh"yjg"r tqrgtv{"f wtkpi"yjg"Rngkuvqegpg"cpf"cf xcpegf"kp"f ktgevkqpu"yjkej"tqvcvg"htqo" UUG"cv'yjg"pqtyj"gpf"qh'yjg"enckou"vq"UG"cv'yjg"uqwyj"gpf0'

Grgxcvkqpu'tcpi g'htqo ": 92'o gvtgu'cv'Vej gpvq"Ncng'\q'3822'o gvtgu'kp''y g''pqtyj gcuv'eqtpgt" qh''y g''r tqr gtv{0'Vj g''nqy gt "xcng{"unqr gu''ctg''i gpvg"cpf "hqtguvgf "y ky "qr gp"lcem kpg"cpf " r qr rct0'T grkgh'ku''o qtg"twi i gf "cpf "unqr gu''eqpukf gtcdn{"uvggr gt "cv''kpvgto gf kcvg"grgxcvkqpu" *; 72''vq"3622''o gvtgu+0'Vj gug"ctgcu''ctg''hqtguvgf "y ky "f gpugt "uvcpf u''qh''ur tweg."dcnco "cpf " cnf gt0'Uqwj /hcekpi "unqr gu''pgct''y g''tkf i g"etguvu"ctg"tqwpf gf "cpf "o qtg"i gpvrg''y cp"unqr gu" cv''kpvgto gf kcvg"grgxcvkqpu"dwi''y g"pqtyj /hcekpi "tkf i g/etguv''unqr gu''ctg"uvggr "cpf "twi i gf 0' Cm kpg''i tcuugu''cpf "uwpvgf "uj twdu''xgi gvcyg''y g''j ki j gt"grgxcvkqpu0'

Claims and Ownership

"


"


Vj g"J gcvj "Rtqr gtv{"eqpukuvu"qh'hqwt"eqpvki vqvu"encko u"y j kej "vqvcn'363; "j gevctgu."cu" kpf kecvgf "kp"Vcdrg''3"cpf "Hki vtg''40'Vj g{"ctg"qy pgf ''322' d{ ''Y guv'Ekts vg'Tguqwtegu''Nvf 0' *DE''HO E ''pwo dgt''4738: 4+''qh'732/752''Dwttctf ''Uv0''Xcpeqvxgt.''DE0''''

Vcdrg'3<Ercko "Uccwu"

,	۱		

Tenure	Name	Tenures.Owner	Мар	GTD	Status	Area
950109	DEZI	251682 (100%)	093N	2015/dec/30	GOOD	442.1566
1012791	HOP MANNA	251682 (100%)	093N	2015/dec/30	GOOD	368.4899
1012795	DOGFISH	251682 (100%)	093N	2015/dec/30	GOOD	460.7795
1014575	HEATH 3	251682 (100%)	093N	2015/dec/30	GOOD	147.4184
"	-	· · · · ·				

Exploration History

"

"

"

Vj g"hqmqy kpi "uwo o ct{"qh" yj g"gzr nqtcvkqp" j kuvqt{"qh" yj g"J gcyj "r tqur gev" ku" htqo "yj g" O KP HKNG"uwo o ct{'*J gcyj '%.'O KP HKNG'2; 5P 294+<"

Eqnhp"Ecordgm'j grf"encko u'eqxgtkpi "vjg"eqtg"qh'vjg"J gcvj"rtqrgtv{"ukpeg"3;8: "vjgp"jg" fkueqxgtgf" eqrrgt" okpgtchk cvkqp" fwtkpi" uvgco" ugfkogpv" cpqocn{" hqmqy/wr0' Jg" gzecxcvgf" ugxgtcn'jcpf/vtgpejgu" gzrqukpi" ocipgvkg/ejcneqr{tkvg" hkuvvtg" xgkpu" ykj" kpvgpugn{/cnvgtgf" ycmtqem'| qpgu" vjcv" ygtg" cpqocmvu" kp" ngcf." | kpe." ukrxgt." iqnf" cpf" eqrrgt0'

Kp"yj g"ur tkpi "qh"3; 8; ."Co cz "Gzr mtcvkqp"eqpf wevgf "c"tgeqppckuucpeg"uqkt"i gqej go kech" uwtxg{"qxgt"cp"ctgc"pgct"yj g"egpvtg"qh"yj g"r tqr gtv{0'Vj g"r wr u"y gtg"cpcn{| gf "hqt"eqr r gt" cpf "o qn{df gpwo 0'Vj ku"uwtxg{"qwnkpgf "c"4.222"o gvgt"d{"4.622"o gvgt"| qpg"qh"cpqo cmwu" Ew'f ghkpgf "d{"cpcn{ugu"gzeggf kpi "422"r r o 0'

Kp"Qevqdgt"qh"3; 8; ."yj g"r tqr gtv{"y cu"qr vkqpgf "vq"Ugpcvg"O kpkpi "cpf "Gzr mtcvkqp"Nvf0' y j q"ecttkgf "qwl"i gqmi kecn'o crr kpi "cpf "c"i tqwpf "o ci pgvqo gvgt"uvxtxg{0'K6'y cu'tgwtpgf " vq'O t0'Eco r dgm'kp"3; 94"cpf "qr vkqpgf "yj cv'uco g"{gct "vq"P cvkqp"Ncmg'O kpgu"Nvf0' "

Kp"3; 95." O eRj ct"I gqr j {ukeu" y cu" eqpvtcevgf "d{"P cvkqp" Ncmg" O kpgu" vq" ectt {"qw" c" htgs wgpe {"f qo ckp" kpf wegf "r qnctk cvkqp" uwtxg {"qxgt" yj g"Co cz" uqkd'i tkf 0' Ugxgp" nkpgct" cpqo cnkgu" y gtg" kf gpvkhkgf "cpf "c" dtqcf "cpqo cnqwu" | qpg" o gcuwtkpi "522" o gvgtu" d {"822" o gvgtu" y cu"qwnkpgf 0'

D{" 3; 95." gzr quwtgu" qh" y kf gur tgcf " ej cæqr {tkg" o kpgtcnk cvkqp" cpf " qh" o kpgtcnk gf " ej nqtkke"uj gct" qpgu"gz vgpf kpi "wr "vq"607 "o gvtgu'y kf g"j cf "dggp"kf gpvkhkgf "qp"yj g"r tqr gtv{0' C"uco r ng"cetquu"408"o gvtgu"cuuc {gf "302"i tco u"r gt"vqppg"i qnf ."6608"i tco u"r gt"vqppg"ukrkgt" cpf " 5047" r gt " egpv" eqr r gt " *Rtqr gtv{" Hkrg" E {r twu" Cpxkrl TO 0' Ugtcr j ko ." 3; 95+0' O kpqt" i crgpc"cpf "ur j crgtkg"y gtg"hqwpf "y kj "ej cæqr {tkg"kp"cpqyj gt"j cpf "vtgpej "cpf "cuuc {gf " 209"i tco u"r gt"vqppg"ukrkgt." 209"i tco u"r gt"vqppg"i qnf ."33808"i tco u"r gt "vqppg"ukrkgt." 2087"r gt "egpv" eqr r gt " frwu" Cpxkrl TO 0' Ugtcr j ko ." 3; 95+0' C kpqt" i crgpc"cpf "ur j crgtkg" y gtg"hqwpf "y kj "ej cæqr {tkg"kp"cpqyj gt"j cpf "vtgpej "cpf "205"r gt" egpv" ng f " *Rtqr gtv{" Hkrg" E {r twu" Cpxkrl TO 0' Ugtcr j ko ." 3; 95+0' C "y tgg/j qng"f tkn"r tqi tco " y cu'tgeqo o gpf gf ." dwy'y g"qr vkqp" y cu'ftqr r gf 0"

P q"gzr mtcvkqp"y cu'f qpg"dgw ggp"3; 95"cpf "Cwi wuv"qh"3; :: "cv'y j kej "vko g"O t0'Eco r dgml" vguvgf "vj g"i qnf "i gqej go kecn'tgur qpug"qp"w q"uo cm'f gvckngf "uqkn'i tkf u"kp"ctgcu"qh'mpqy p" o kpgtcnkt cvkqp0'Vj g"uqkn'uco r ngu"tgwtpgf "cpcn{ugu"tcpi kpi "wr "vq"3257"r ctwi'r gt "dkmkqp" i qnf ."322"r ctwi'r gt "o kmkqp"ukmxgt "cpf "54.222"r ctwi'r gt "o kmkqp"eqr r gt "*Cuuguuo gpv'T gr qt v" 39; :: +0'

Kp"3;:;."Vgeni'eqo r ngvgf ": 8"nkpg"nkmo gvgtu"qh''i tqwpf "o ci pgvkeu"cpf "XNH/GO "qp"c"; " us wctg"nkmo gvgt "i tkf "kp" yj g" egpvtg" qh''yj g" r tqr gtv{"cpf "eqngevgf "6.374" uqkn' uco r ngu" *Cuuguuo gpv'Tgr qtv'42774+0'Vgen)u"3;; 2"r tqi tco "eqpukuvgf "qh''308"nkpgct"nkmo gvgtu"qh'' gzecxcvqt "vtgpej kpi."; 04"nkpg"nkmo gvgtu"qh''KR''uvxtxg{u."3430,4"o gvgtu''qh'f kco qpf "f tkmkpi " cpf "eqngevkqp"qh'449; "uqkn'uco r gu0'Kp''3; ; 3."c"uwo o ct { "hkgrf "tgr qtv'f gvckrgf "vj g"tguwnu" qh" cp" KR" uwtxg{" y j kej " kf gpvkhkgf " ugxgtcn' dtqcf " j ki j " ej cti gcdkrkv{" cpqo cnkgu0' C" uwdugs wgpv'; 8; "o gvtg."32"j qrg"f tkmkpi "r tqi tco "hckrgf "vq"kpvgtugev'geqpqo kecm{ 'ko r qtvcpv'' i tcf gu"cpf "vj kenpguu"qh"r qtr j {t{"eqr r gt"i qrf "o kpgtcnk cvkqp"*Cuuguuo gpv'Tgr qtv'43; 6: +0' KV" eqpenvf gf " vj cv" vj g" f tkmkpi "j cf " pqv" gpeqwpvgtgf " o cvgtkcnu" qh" geqpqo ke" xcnvg" cpf " uwi i guvgf "c"hwtyj gt"r tqi tco 0'

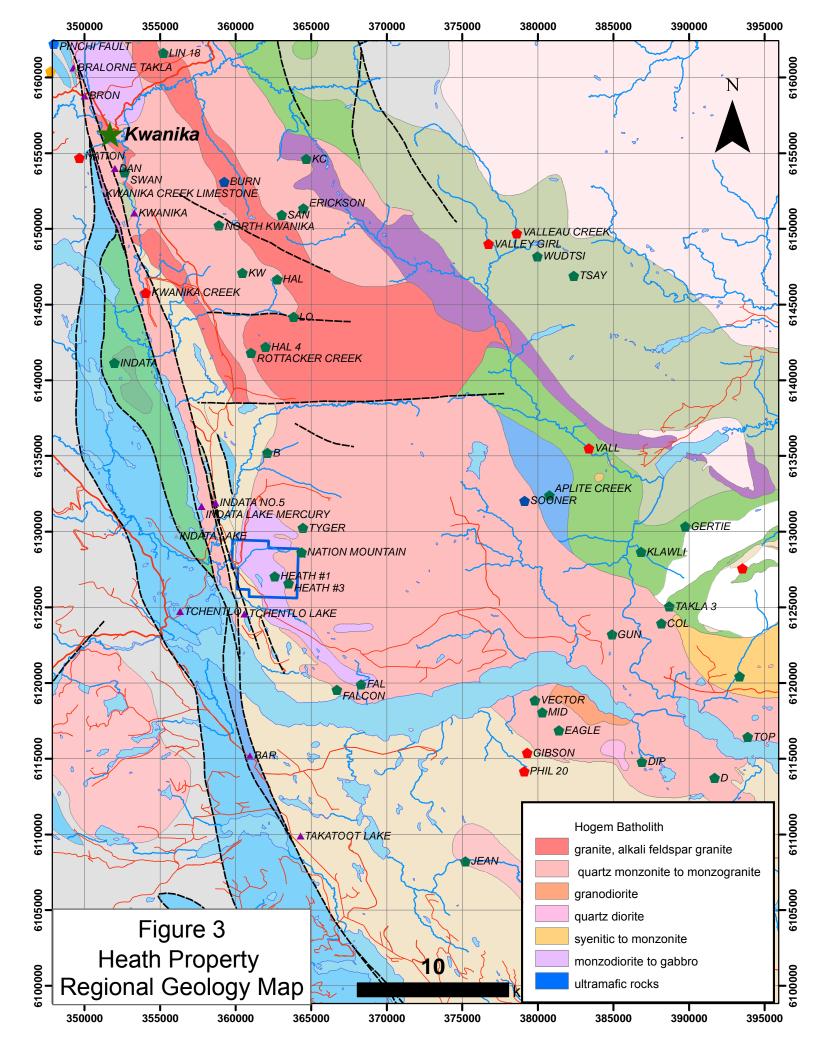
Kp"4223."wukpi "c"i qxgtpo gpv"r tqur gevqt"i tcpv."O t0'Eco r dgm'tgxkuksgf "vj g"r tqr gtv{"cpf" uco r ngf "vj g"eqctug"i tckpgf "i cddtqke"cpf "r {tqzgpg"o cvgtkcni"*Rtqur gevqtu"Tgr qtv'4223/ 66+0'Ugxgtcn'uco r ngu"y gtg"cpqo cmwu"kp"r ncvkpwo "i tqwr "gngo gpvu0'Vj tgg"Z/tc{"j qngu" y gtg"f tkngf 'vguvkpi "ctgcu'pgct'vj g'r tgxkqwun{"vtgpej gf "ctgc0'

Kp"4229."nppi/vko g"qy pgt"Eqnkp"Ecordgmleqpf wevgf "c"62"ucorng"uqkn"uwtxg{"cpf"c"20" nkmqo gvgt"i tqwpf "ocipgvke"uwtxg{"*Cuuguuo gpv'Tgrqtv'4;658+0"'

Regional Geological Setting

"

Vj g" r tqr gtv{ " ku" mecvgf " kp" y g" r tqrktke" S wgupgn' Vtqwi j ." 52" nkmo gvgtu" uqwj " qh" y g" My cpkmc''f gr qukv'*364''o kmkqp''qppgu''qh'2053' "Ew'cpf ''204; 'i tco u'r gt ''qppg''Cw'kpf kecvgf " tguqwteg="Hki wtg"5+"cpf ''96"nkmo gvgtu''pqty y guv''qh''y g"O vO'O kmki cp"r tqlgev'*6: 4"o kmkqp" vqppgu''qh'2042' "Ew'cpf ''205; 'i tco u'r gt ''qppg''Cw'r tqxgp"cpf ''r tqdcdmg''tgugtxg+."r tgugpvn{" wpf gt 'f gxgmr o gpv''d{"Vj qo r uqp'EtggmO gvcni'O'


Vj g"ctgc"ku"wpf gtrckp"d { "r nwqpke"tqemu"cuuki pgf "vq"vj g"Ncvg"Vtkcuuke"vq"Gctn{ "Etgvcegqwu" J qi go "Dcvj qrkjj "y j kej "j cxg"dggp"go r rægf "kpvq"xqræcpke"tqemu"qh"vj g"O kf f rg"Vtkcuuke"vq" Nqy gt"Lwtcuuke"Vcmrc"I tqwr ."gcuv"qh"vj g"Rkpej k"ncwn"| qpg0"Vj g"J qi go "dcvj qrkjj "ku"c"ræti g" eqo r quksg"dqf { "qh"cmærkpg"cpf "ecre/cmærkpg"r nwqpu0"KV"ku"gmpi cvg"kp"uj cr g."gz vgpf kpi " hqt"c"rgpi vj "qh"372"nkmo gvtgu"kp"vj g"P Y /UG"f ktgevkqp"dgw ggp"vj g"P cvkqp"Ncngu"cpf "vj g" O gukdpme" Tkxgt0' KV xctkgu" kp" y kf vj " wr " vq" 47" mkmo gvtgu" cpf " eqxgtu" cp" ctgc" qh" cr r tqz ko cvgn{ "5.222"us wctg"mkmo gvtgu0'Vj g"dcvj qrksj "ku"kp"kpvtwukxg"eqpvcev"y ksj "Vcmrc" I tqwr "xqræcpkeu"cmpi "cm"qh"ku"gcuvgtp."uqwj gtp"cpf "pqtvj gtp"o cti kpu0'

Vq''y g'y guv.'kv'ku'\twpecvgf''d{''y g'Rkpej k'hcwnv'cpf''kv'ku'kp'hcwnvgf "eqpvcev'y ky 'tqemu'qh'y g'' Ecej g''Etggm'Vgttcpg''cmpi ''ku''gpvktg''y guvgtp''o cti kp.''gzegr v'y j gtg''pcttqy ''y gf i gu''qh'' Vcmc''I tqwr ''tqemu''ctg''r tgugtxgf ''y j kej ''ugr ctcvg''kv'htqo ''y g'hcwnv0' ''

Vj g"J qi go "dcy qrkj "j cu"c"eqo r ngz "kpvt wukzg"j knqt {"ur cppkpi "y g"vko g"kpvgt xcrl'htqo " o kf/Vtkcuuke" vq" o kf/Et gvcegqwu0'I ctpgw"*3; 9: +"f khgt gpvkcvgf " y g" dcy qrky " kpvq" hqvt" eqo r qukkqpcm{"f kn/kpev"r nwqpke" uvkgu" cpf "f kxkf gf " k/" i gqej tqpqmi kecm{"kpvq" y tgg" f kn/kpev" r j cugu" qh" go r ncego gpv0' Ej go kecn' ch/kpkkgu" uwi i guv' xqnecpke lr nwqpke" gs wkxcngpeg" dgw ggp" Vcmc" I tqwr " xqnecpkeu" cf lcegpv' vq" y g" J qi go " dcy qrky " cpf " kpvt wukzg"xctkgvkgu"qh"Rj cug" KK' y g"qrf guv'cpf "o quv'f qo kpcpv'r j cug"*I ctpgw:"3; 9: +0'Vj g" go r ncego gpv'qh"Rj cugu" KK'cpf "KK'qh" y g"J qi go "dcy qrky "r quv'f cvgu" ceetgvkqp"qh' y g" Kpvgto qpvcpg"Uwr gtvgttcpg"cpf "y gug"r j cugu"ctg"pqv'eqo ci o cvke"y kj "y g"Vcmc"I tqwr " xqnecpkeu0'

"

Qh''y g''y tgg''r j cugu''eqo r tkukpi "y g''J qi go "Kpvtwukxg''Eqo r ngz."qpn{"tqenu''qh''y g''Ncvg'' Vtkcuuke''vq''Nqy gt''Lxtcuuke''J qi go "i tcpqf kqtkg''cpf ''J qi go "dcuke''uvksg''wpf gtng''y g''ctgc0' F kqtkg'' ku'' y g'' o quv' cdwpf cpv' tqeni' v{r g." j quvkpi "ktgi wrct'' dqf kgu''qh'' eqctug/i tckpgf " enkpqr {tqzgpg''i cddtq.''r {tqzgpkg''cpf ''j qtpdngpf kg''cpf ''necn'hgrf ur ct''r qtr j {t {.''f kcdcug.'' i tcpqf kqtkg''cpf ''cpf guksg''r qtr j {t {''f kngu0I tcpqf kqtkg''j cu''cnq''dggp''o cr r gf ''q''y g''gcu0' Vj gug''tqemi''ctg''f kutwr vgf ''cmpi ''ugxgtcn''uvdqtf kpcvg''hcwnu''r ctcmgnkpi ''y g''Rkpej k''hcwny'' | qpg'' vq'' y g'' gcuv''cpf ''j cxg'' wpf gti qpg'' y kf gur tgcf ''r tqr {nkke'' cpf '' r qvcuuke'' cpf '' necn'' ectdqpcvg''cngtcvkqp0''

Work Completed

Vj g"J gcvj "Rtqr gtv{"y cu"gzco kpgf "d{"Vqp{"Dcttguk"P ki gn'Nveno cp."Iqj p"Dtcf hqtf "cpf" Iqj p"Higkuj o cp"kp"Qevqdgt"6."4234"cpf "Ugr vgo dgt"7/; ."42350'Vj g"r tko ct{"hqevu"qh"vj g" y qtm'r tqi tco "y cu"vq"tg/gzco kpg"cpf "tg/uco r ng"vj g"cnvgtgf "cpf "o kpgtcnk gf "eqtg"qh"vj g" J gcvj "cmcnke"r qtr j {t{"u{uvgo "y j kej "y cu"pqv'vguvgf "d{"vj g"3; ; 3"Vgenif tkm'r tqi tco 0'

Property Geology

Lithology

"

"

"

Vj g"J gcvj "r tqr gtv{ "ku"r tko ctkn{ "wpf gtnckp"d{ "j qtpdngpf g"f kqtksg"qh"vj g"J qi go "dcvj qnkyj " *Hki wtgu" 5." 6+0' Vj g" f kqtkg" ku" eqo r tkugf " qh" r mi kqemug" - " j qtpdngpf g" - " o ci pgvkg" Ö' enkpqr {tqzgpg"Ö's wcty| "Ö'dkqvkg0""Vj gtg"ku"pq"v{r kecn'vgz wtg"cu"yj g"tqem'xctkgu."qhygp"qp" cp"qwetqr "uecng."htqo "hkpg"i tckpgf "vq"r gi o cvkske."cpf "htqo "o gncpqetcvke"vq"ngweqetcvke0" J qtpdrgpf g"ku"yj g"o ckp"o chke"r j cug"kp"yj g"f kqtkg. "kv"v{r kecm{ "qeewr kgu"dgw ggp"37"cpf " 82' "xqnxo g"qh"y g"tqem0" Kp"uqo g"nqecxkqpu"y gtg"ctg"kuqncvgf "gpencxgu"qt"uqo gvko gu" õrc {gtuö"qh"j qtpdrgpf kg"eqo r tkugf "cro quv"gp ktgn{ "qh"j qtpdrgpf g="eqpxgtugn{ ."gz vtgo gn{ " ngweqetcvke"tqemly ky "qpn{"7' "qt"nguu"j qtpdngpf g"ku"cnuq"r tgugpv0""Vgz wtcm{."j qtpdngpf g" tcpi gu"htqo "ncti g"r tkuo cvke"et {uvcnu"vq"eqo r ngvgn{"cpj gf tcn"et {uvcnu"kpvgtnqenkpi "y kyj " r nci kqencug0'" Kp" uqo g" nqecvkqpu" cpi wnct" kpvgtnqenkpi "jqtpdngpfg" cpf" r nci kqencug" ctg" tgo kpkuegpv''qh''c''i tcrj ke''vgz wtg0'''O ci pgvkg''ku''cp''ko r qtvcpv''r j cug''v{r kecm{ "qeewr {kpi " 7' "xqnxo g" dw" wr " vq" 32' 0' " K" qeewtu" cu" 3/50 o " f kco gygt" uwdj gf tcn' vq" gwj gf tcn' f kuugo kpcvgf "et {uvcnu."cpf "cnuq"cu"vkp{"kpenwukqpu"y ky kp"j qtpdngpf g"tkej "f qo ckpu"y j kej " ctg" j ki j n{"o ci pgvke0'" kp" uqo g" mecvkqpu" yj g" tqem' ku" uq" o ci pgvke" yj cv" eqo r cuugu" ctg" tgpf gtgf " wugnguu0' " Tctgn{" y g" tqeni' kpenxf gu" wr " vq" 7' " 3/60 o " s wctyt" et {uvcnu0" Erkpqr {tqzgpg"j cu"dggp"f guetkdgf "cu"c"o clqt"eqpukkwgpv"qh"y g"tqem'kp"r tgxkqwu"y qtm' *Vqqjg{"cpf "F qpngturqqv."3;;2+"j qy gxgt "kv'y cu"pqv'f ghkpkkxgn{"kf gpvkhkgf "d{"vj ku"cwj qt0" Dkqvkvg''ku''c''eqo o qp''eqpuvkvvgpv'qh''y g''tqem#kv'ku''vpengct''kh''cp{"qh''y g''dkqvkvg''ku''qh''r tko ct{" ki pgqwu"qtki kp."j qy gxgt."kv"ku"engct"vj cv"o quv"qh"kv"ku"vj g"tguwnv"qh"r qvcuuke"cnvgtcvkqp."cpf" y km/dg/f kuewuugf 'hwt y gt 'kp 'y g'cnygt cykqp 'ugevkqp0'

Vj g"o quv'uvtknkpi "vgz wtch'hgcwtg"qh'vj g"f kqtkg"qp"vj g"J gcvj "Rtqr gtv{ "ku"vj g"j ki j "f gi tgg" qh"xctkcdktkv{0" Vj g"f kqtkg" j cu"tcr kf "xctkcvkqp" kp" i tckp" uk g." i tckp" uj cr g." cpf "qxgtcm" eqo r qukkqp0" Vj g"dqwpf ctkgu"dgw ggp"vgz wtcm{ "cpf "eqo r qukkqpcm{ "xctkcdng"r j cugu"qh" vj g"f kqtkg"tcpi g"htqo "i tcf cvkqpcn" vq" uj ctr ." cpf "vj g"i gqo gvt { "qh" vj g" xctkcvkqp" tcpi gu" htqo " r ctcngn' nc {gtkpi kdcpf kpi ." vq" uj ctr " eqpvcevu" y kj " o wnkr ng" v{r gu" qh" gpenxgu" *r tqdcdn{ "cwqrksj u+."vq"eqo r ngvgn{ "tcpf qo "cpf "kttgi wrct"qtkgpvgf "i tcf cvkqpcn'ej cpi gu0""

Vqi gyj gt" y gug" tqemu" ctg" dguv' ej ctcevgt k gf "cu" cr r kpkgu." c" uvkkg" qh" tqemu" f ghkpgf "d {" O wtr j {"*4235+"cu"õr nwqpke"cpf lqt"j {r cd {uucn'tqemu."tcpi kpi "htqo "wntco chke"vq" hgnke"kp" eqo r qukkqp" kp" y j kej "j qtpdngpf g" ku" y g" f qo kpcpv" o chke" o kpgtcn" cpf "v{r kecm{"qeewtu" dqy "cu" ncti g" r tkuo cvke" r j gpqet {uvu" cpf "kp" y g" hkpgt" i tckpgf "o cvt kz0' V j g" uvkkg" ku" cnq" ej ctcevgtk gf "d{"cdwpf cpv'gxkf gpeg"hqt"o kzkpi "cpf "o kpi nkpi "dgw ggp"f kxgtug"o ci o c" v{r gu"cpf "xctkcdng"f gi tggu"qh"eqpvco kpcvkqp"d{"j quv"tqento"""Uko krct" vq" y g"f kqtkgu" wpf gtn{kpi "yj g"J gcyj "r tqr gtv{."cr r kpkgu"j cxg"j ki j n{"xctkcdng"vgz wtgu"cpf "eqo r qukkqp0" Uqo g"qh"yj g"vgz wtcn'xctkcdkrkv{ "ku"cwtkdwgf "vq"tcr kf "et {uvcn'i tqy yj "tguwnkpi "htqo "j ki j " J 4Q"eqpvgpwu'y j kej "ngcf u'vq"tgf wegf "o gnv'xkuequkv{ "cpf "ghhkekgpv'o ki tcvkqp"qh'kqpu0"

Structure

C"ewtuqt {"uwtxg{"qh"uvtwewtcn"qtkgpvcvkqpu"vj tqwi j "vj g"r tqr gtv{"kpf kecvgu"c"uvtqpi "P Y " uvtknhpi "cpf" o qf gtcvgn{"f kr r kpi "hcdtke0" "C" tcpi g" qh" qtkgpvcvkqpu" y j kej "ctg" o quvn{" dtcengvgf "dgvy ggp"527"cpf "547"*y kj "c"hgy "qwvkgtu+"y gtg"o gcuvtgf "htqo "cndkg."dkqvkg." cpf" o ci pgvkg" xgkpu." urkengpukf gu." lqkpv/ugvu." uj gct/| qpgu." cpf" o kpgtcrkl gf" cnvgtcvkqp lki pgqvu"õrc {gtkpi ö0" Vj ku" qtkgpvcvkqp" ku" tqwi j n{"r ctcngn" vq" vj g" Rkpej k"hcwn" y j kej "htgu" lww" vq" vj g" y guv" qh" vj g"r tqr gtv{"cpf" lwz vcr qugu" vj g" J qi go "dcvj qrkj" cpf" qegcpke"tqemu"qh"vj g"Ecej g"Etggm"Vgttcpg0"Uki pkhecpv'r tqr gtv{ "uecrg"hcwnu" vj j kej "o c { "kp" r ctv'dg"eqpvtqmkpi "vj g" o cti kpu"qh"vj g" egpvtcn"o kpgtcrkl gf "| qpg"cv'J gcvj "ctg"uj qy p"qp" Hki vtg"60'

Alteration

"

Vj tgg"v{r gu"qh"cngtcvkqp"y gtg"qdugtxgf "qp"y g"J gcvj "r tqr gtv{<"3+"r tqr {nkxle."y j lej "ku" tgr tgugpvgf "cu"ej mtkg" cpf "gr kf qvg" xgkpkpi "cpf "o kpgtcn" tgr ncego gpv"ó" y ku"cngtcvkqp" uqo gvko gu" qeewtu" cu" c" tgvtqi tcf g" qxgtr tkpv" qp" r qvcuuke" cngtgf " tqem=" *4+" r qvcuuke" cngtcvkqp"y j lej "j cu"y q"hcelgu<"k+"dkqvkg"f qo kpcpv."cpf "kk+"M/hgnf ur ct"f qo kpcpv="cpf "*5+" ktqp/ectdqpcvg."y j lej "ku"eqo r tkugf "qh"ecnekvg"cpf "cpngtkvg"kp"uvtqpi n{"uj gctgf "tqemu"cpf " qhvgp"qxgtr tkpv"r qvcuuke" cngtcvkqp"

Propylitic

"

Rtqr {nkke"cngtcvkqp"ku"tgeqi pk gf "qp"vj g"J gcvj "r tqr gtv{"cu"gr kf qvg"cpf "ej mtkvg"xgkpkpi ." tcpf qo " cpf " kttgi wnct" uj cr gf " emwu" qh" r ctvkcn" vq" eqo r myg" gr kf qvg" tgr mego gpv." cpf " ej mtkvg" tgr mego gpv" qh" j qtpdngpf g" cpf " dkqvkvg" et {uvcnt0' " Vj g" kpvgpukv{" qh" r tqr {nkvke" cngtcvkqp"ku"pqto cm{ "xgt {"o qf guv'y kj "tctg"gr kf qvg"xgkpkpi "cpf "o kpqt"tko o kpi "qh"j dn'qt" dkqvkvg"et {uvcnt"y kj "ej mtkvg0" Kp"c"hgy "mecvkqpu" i gr kpvgpukv{ "ku"o qf gtcvg"vq"uvtqpi <"kp" i gug" mecvkqpu" ej mtkvg" eqo r mvgn{" tgr megu" j qtpdngpf g" cpf lqt" dkqvkvg0' " Kpetgcugf " r tqr {nkvke"cngtcvkqp"ku"eqo o qpn{"c"tgvtqi tcf g"cngtcvkqp"hcekgu"kp"tqemu"y j kej "j cxg"cmq" uvvhgtgf "r qvcuuke"cngtcvkqp0""

Potassic

"

"

Vjgtg" ctg" wq" v{rgu" qh" rqvcuuke" cnvgtcvkqp" qdugtxgf" qp" yjg" Jgcyj" rtqrgtv{<"k+" dkqvkvg" fqokpcpv" cnvgtcvkqp." cpf" kk+"M/hgnfurct" fqokpcpv" cnvgtcvkqp0' "

Biotite dominant alteration qeewtu'kp''w q'f kukpi wkuj cdrg''hcelgu0'Vj g''hktuv'hcelgu''ku''qpn{" cuuqekcwgf "y ky "ny "i tcf g''E w''o kpgtcrkł cwqp0"'K/'j cu''ej ctcewgtkuke"eqctug''i tckpgf "dkqvksg" y j kej "hqto u''r qtr j {tqdrcuvu''y cv'ctg''f kuugo kpcwgf "kp''y g''f kqtkg."r ctwf "vq''eqo r rgwgn{" tgr meg"j dn''et {uvcnu."cpf "hqto "eqctug."wr "vq''4"eo "y kem "ktrgi wrct"uj cr gf "dkqvksg" xgkpu0" Vj ku''hcelgu''j cu''pq"cuuqekcwgf "M'hgrf ur ct''dw''f qgu''j cxg"uqo g"cuuqekcvkqp"y ky "pcttqy " cmlkg''xgkpu0'

J ki j " i tcf g" Ew" | qpgu" ctg" cuuqekcvgf " y kj " m { gtulīgpugu" qh" pgctn{ " r vtg" hkpg/i tckpgf " dkqvksgÕo ci pgvksg0"Vj g"dkqvkg"ngpugu"tcpi g"htqo "pcttqy ">3eo "y kur u"kp"õm { gtgf ö"f kqtkg." vq"42"eo "y keniuqo gvko gu"f kueqpvkpvqvu"m { gtu"kp"dcpf gf "o kpgtcnk gf " | qpgu0"Qhvgp"yj gug" pgctn{ "r vtg" hkpg" i tckpgf " dkqvkg" f qo ckpu" eqpvckp" j ki j "r tqr qtvkqpu" qh"f kuugo kpcvgf " cpf " emv{ "ej cmqr { tksg0""

Gpencxgu"qh'r wtg"eqctug"dkqvkg- o cipgvkg"ctg"uqogvkogu"rtgugpv"kp"qyjgtykug"wpcnvgtgf" jqtpdngpfg"fkqtkxg0'

K-feldspar alteration" ku" tgrtgugpygf" qp" yj g" J gcyj " rtqrgtv{" cu" dcpfgf " M/ hgnfur ctÕgrkfqygÕs wctyl ÕecnekgÕdkqykg"xgkpu"cpf "cu"rctykcn"vq"eqorngyg"tgrmego gpv"qh" rnci kqencugÕj qtpdngpfg" kp" yj g" ugnxci gu" qh" M/hgnfur ct." s wctyl " qt" o ci pgykg" xgkpu." qt" htcewstguO' " "O quv' v{r kecm{ "M/hgnfur ct" ku" uggp"rctyn{" tgrmeekpi "rnci kqencug" et {uvcm" kp" pcttqy "ugnxci gu"uwttqwpf kpi "htcewstgu"qt" vkp{" o ci pgykg" xgkpu0" Y j gtg"cngtcykqp"ku" o quv' kpygpug" ugnxci gu" ctg" eqort kugf " qh" eqctug" o cuukxg" M/hgnfur ct" y kj " vkp{" f kuugo kpcygf " dkqykg"cpf "ej cneqr{tkg"et{uvcn0'

V{rg"K'dkqvksg"cnvgtcvkqp"ku"oquv"eqooqp"cv"nqy"gngxcvkqp"cpf"vq"yjg"UY."yjkng"M/ hgnfurct"cnvgtcvkqp"ku"oquv"eqooqp"cv"jkij"gngxcvkqp"cpf"vq"yjg"PG0""V{rg"KK'dkqvksg" cnvgtcvkqp"ku"eqphkpgf"vq"uvtvewvtcn"|qpgu"yjkej"qeewt"kp"dqyj"ctgcu0' "

Iron-Carbonate

$$\label{eq:constraint} \begin{split} Ecnekg"cpf"cpngtkg"ctg"cdwpfcpv"cngtcvkqp"o~kpgtcni"kp"uqo~g"uvtwewtcn"|~qpgu0"Vj~g{"} etquu/ewl"~yj~g"fkqtkg"cpf"hqto~"c"o~cvtkz"vq"hcwn/"dtgeekcu0"Tqemi"chgevgf"d{"Hg/Ec"~cngtcvkqp"j~cxg"c"fknvkpev"qtcpi~kij~"eqnqwt0""Rqvcuuke"cngtgf"tqemi"ctg"uqo~gvko~gu"etquu/ewl"~cpf"r~ctvn{"qxgtr~tkpvgf"d{"Hg/Ec"~cngtcvkqp0'$$

"

Mineralization

"

"

C 'y kf g'xctkgv{ "qh'o kpgtcrk{ cvkqp'ku'r tgugpv'qp''y g'J gcyj 'r tqr gtv{0"Vj g'4235'xkuk/hqewugf " qp''eqr r gt''o kpgtcrk{ cvkqp''cpf ''ctgcu''y kj 'j ki j 'i tcf g'ukrxgt/ngcf/| kpe''*g0 0 E co r dgm''3; : : +" y gtg" pqv' xkukgf 0' "Eqr r gt''o kpgtcrk{ cvkqp''y cu''hqwpf "o ckpn{" kp" ctgcu'' y j kej "gzj kdkgf " r qvcuuke" cnxgtcvkqp0"''O kpgtcrk{ cvkqp "ku''qhxgp "eqpegpvtcvgf "ku''uvtwewvtgu''y j kej "ctg" qtkgpvgf "

kp"yjg"i gpgtcn'PY "hcdtke"yjkej "ku"wdks wkwqwu"vq"yjg"rtqrgtv{0"""Vjg"hqmqykpi "v{rgu"qh" o kpgtcnkjcvkqp"ctg"qh'pqvg<"

- Nqy " i tcf g" E w' o kpgtcrk cvkqp" qeewtu" kp" cuuqekcvkqp" y kj " kpvgpug" M/hgrf ur ct" cngtcvkqp."y j gtg"ej creqr { tkg"ku'f kuugo kpcvgf "kp"M/hgrf ur ct'xgkp''ugrxci gu0'
- Eqctug" dkqvksg" cnvgtcvkqp" ku" uqo gvko gu" cuuqekcvgf " y kj " xkukdng" f kuugo kpcvgf " ej cneqr {tkvg="y j gp"pq"ej cneqr {tkvg"ku"xkukdng"yj g"tqem"qhvgp"eqpvckpu"2025/2027' " Evv0""
- Uj ggvgf "o ci pgvkg"xgkpu."qhygp"ur cegf "cu"enqugn{"cu"32"eo "cr ctv."ctg"eqo o qpn{" o crcej kg"uvckpgf "cpf "eqpvckp"c'vtceg"qh"ej creqr {tkg0'

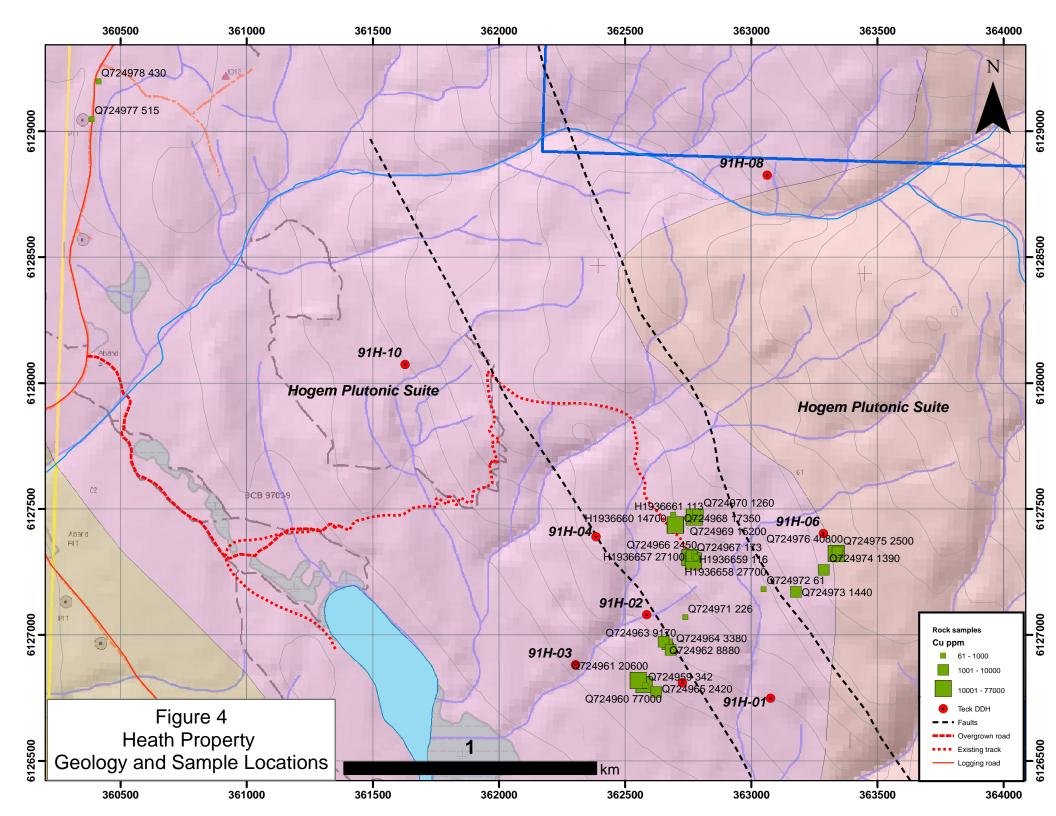
J ki j /i tcf g"eqr r gt"o kpgtchk cvkqp"qeewtu"kp"cuuqekcvkqp"y kj "hkpg/i tckpgf "dkqvkg"cpf lqt" o ci pgvkg"tkej "f qo ckpu"kp"j qtpdngpf g"f kqtkg"qt"õnc {gtgf ö"o kpgtchk gf" | qpgu0" Vj gug" nc {gtu" | qpgu"eqpukuv"qh"3"eo "vq"52"eo "vj ken"nc {gtu"qh"xctkcdng"tqem/v{r gu0" Vj g"nc {gtu" kpenvf g"xctkcdng"eqo r qukskqpu"cpf "vgz wtgu"qh"j qtpdngpf g"f kqtkg"cu"y gm"cu"nc {gtu"y kj " xctkcdng" eqpegpvtcvkqpu" qh" hkpg" i tckpgf " dkqvkg/o ci pgvkg/ej cneqr {tksg/r {tksg/dqtpkg/ gr kf qvg0"Vj g"o quv'uvtqpi n{"o kpgtchk gf "nc {gtu"ctg"eqpegpvtcvgf "vqy ctf u"y g"egpvgt"qh"y g" nc {gtgf "| qpgu"cpf "ecp"eqpukuv"gpvktgn{"qh"dkqvkg"qt"o ci pgvkg"y kj "f kuugo kpcvgf "cpf "dk " enqvu" qh" er {." qt" yj g{" ecp" dg" o kzgf " dkqvkg" cpf " o ci pgvkg" y kj " xctkcdng" co qwpvu" qh" ej cneqr {tksg"qt"r {tksg0"Vj g"nc {gtu"ctg"uqo gvko gu"f kueqpvkpvqwu"cpf "i gpgtcm{"y g" qpgu" j cxg"uggp"uqo g"f gi tgg"qh"hcwnkpi ."uqo gvko gu"etgcvkpi "f kuetgvg" | qpgu"qh"hcwnv"dtgeekc" y j kj "kpenvf g"htci o gpw"qh"hvtqpi n{"o kpgtcrk gf "tqenf0"

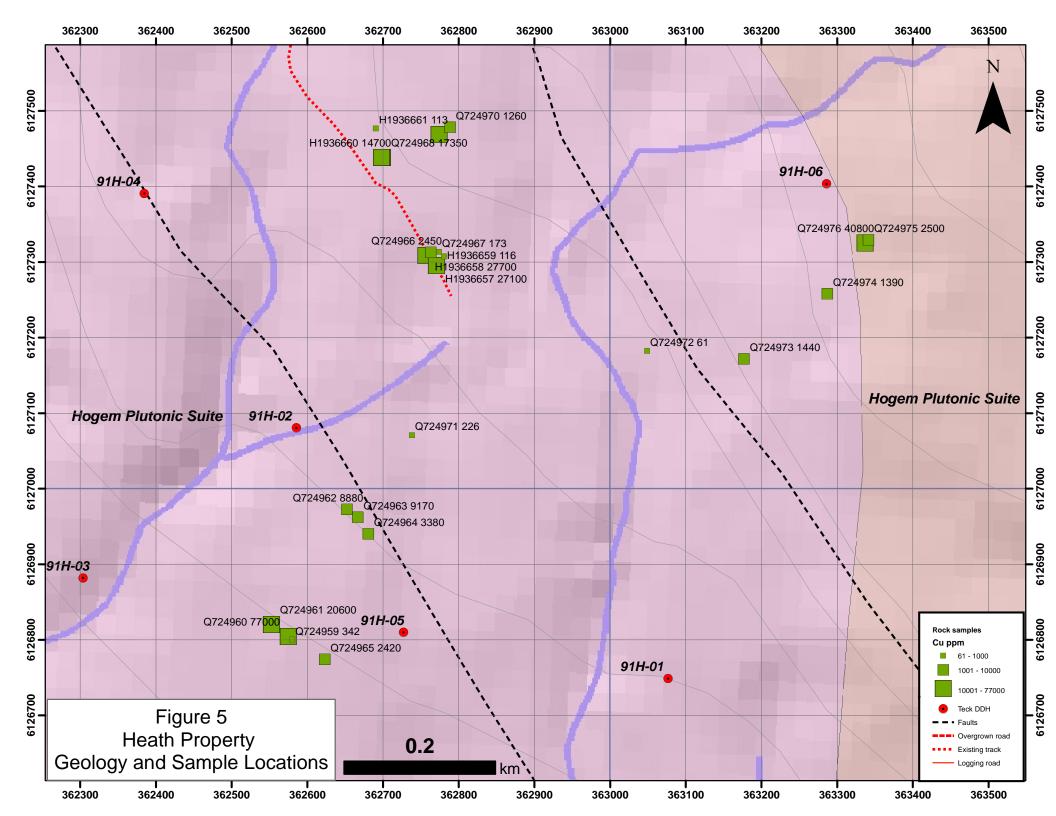
Rock Geochemistry

Procedure

"

Tqem'uco r ngu'y gtg"eqngevgf "htqo "c"xctlgv{ "qh"cngtgf "cpf "xctlcdn{ "o kpgtcnk gf "| qpgu'kp" qtf gt" vq" ej ctcevgtk g" y g" vgpqt" cpf " r qvgpvlcn' qh" y gug" | qpguO' Vj g" uco r ngu" eqo r tkug" tgr tgugpvcvkxg"i tcdu"cpf "ej kr "uco r ngu"htqo "dqvj "qwetqr u"cpf "dqwnf gtu"gzecxcvgf "htqo " vtgpej guO'Uco r ngu"y gtg"eqngevgf "kp"r ncuvke"uco r ng"dci u"cpf "ugcngf "y kyj "r ncuvke"| kr "vkguO' Uco r ng"nqecvkqpu'y gtg"tgeqtf gf "d{ "I RUO'Uco r ng"nqecvkqpu"ctg"o ctngf "y kyj "hnci i kpi "vcr g" cpf "go dquugf "cnvo kpvo " vci uO'Uco r ngu"y gtg"dwpf ngf "kp"ugewtkv{ "ugcngf "tkeg"dci u"cpf " vtwengf " vq" Kpur gevqtcvg" Gzr nqtcvkqp" cpf " O kploi " Ugtxkegu" ncdqtcvqt { " kp" Tkej o qpf " *uco r ngu"3; 58879"vq"883+"cpf "CNU"O kpgtcnu"ncdqtcvqt { "kp"P qtyj "Xcpeqwxgt"*uco r ngu" S 946; 7; "vq"; 9: +0'


Cv''y g''ncdqtcvqt{."y g''uco r ngu"y gtg"f tkgf."etwuj gf "cpf "r wrxgtk gf "wukpi "ucpf ctf "tqen" r tgr ctcvkqp"r tqegf wtgu0'Vj g''r wrr u''y gtg"y gp"cpcn{| gf "hqt"Cw."Rv'cpf "Rf "wukpi "c'52"i tco " httg"cuuc{"y ky "KER/CGU"hkpkuj "cpf "hqt"57"gngo gpwu"d{"KER/CGU"*CNU+"qt"72"gngo gpwu" d{"KERO U"*Kpur gevqtcvg+0"'Vj g"Kpur gevqtcvg"uco r ngu"wpf gty gpv'6/cekf "f ki guvkqp."y j kng" cs wc"tgi kc"f ki guvkqp"y cu'wkhk gf "hqt"y g"CNU"uco r ngu0'Qtg"i tcf g"*@' +"eqr r gt"y gtg"tg/ cpcn{| gf "d{"KER/CGU"*CNU+"qt"d{"cvqo ke"cduqtr vkqp"*Kpur gevqtcvg+0'S wchv{"eqpvtqn"cv" dqy "rcdqtcvqtkgu"ku'o ckpvckpgf "d{"uvdo kvkpi "dncpmu."uvcpf ctf u"cpf "tg/cuuc{kpi "f wr nkecvg" uco r ngu'htqo "gcej "cpcn{vkecn'dcvej 0"" "


Tqeni'uco r ng'f guetkr vkqpu''cpf ''cpcn{ vkecn't guwnu''ctg''kp''Cr r gpf kz ''E0'''Uco r ng''nqecvkqpu''ctg'' r nqwgf ''qp''Hki wtgu''6''cpf ''70'' ''

" "

"

37

"

Results

"

I gqej go kecn't guwuwu 'hqt" eqrrgt "ctg" rnqwgf "kp" rctw" rgt "o kmkqp" pgzv' vq" vjg" uco rng" pwo dgtu'qp "Hki wtgu'6'cpf '70'

A Zone

"

Vj g"j krvqtke"C"\ qpg"vtgpej "*g0 0'Vqqj g{"cpf "F qpngturqqv."3; ; 2+"ku"c"pqty y guv"vtgpf kpi " o kpgtcrk gf " uvtwewstg" eqpvckpkpi " mecm{" dtgeekcvgf " m{gtu" qh" o ci pgvkg/ej creqr {tkg." dkqvkg/o ci pgvkg/"ej creqr {tkg."ugo k/o cuukxg"ej creqr {tkg/s vcty ."ej mtkgdkqvkg"cngtgf " f kqtkg"cpf "dkqvkg"cngtgf "f kqtkg"y ky "vr "vq"37' "f kuugo kpcvgf "r {tkg0'Vj tgg"tqeniuco r ngu" htqo "vj g"| qpg"cxgtci gf "2093' "Ew."205: "i h'Cw"cpf "3; "i h'Ci "*Cw"cuuc {u"kp"vj g"vcdng"ctg" kp"r r d"qt"r ctvu"r gt"dknkqp+<"

Sample		Au ppb	Ag g/t	Cu %
Q724962	chip 1m	892	43.5	0.888
Q724963	chip 1.25m	203	10.3	0.917
Q724964	grab	40	3.6	0.338

"

"

Kp"4223"yi tgg"uj cmqy "*35."42"cpf "46"o gvgt+"r cemuceni'f tkni'j qngu'y gtg"eqnctgf "dgukf g"yi g" C"\ qpg"vtgpej gu"cpf "kpvgtugevgf "o wnkr ng"kpvgtxcni"qh"o kpgtcnk cvkqp."kpenvf kpi "kpvgtxcni" pqv"gzr qugf "kp"yi g"vtgpej gu"*Eco r dgm "4223+0'Uco r ngf "kpvgtxcni"kpenvf gf ""5087' "Ew." 2058"i k'Cw'cpf "4408"i k'Ci "qxgt"3074"o gvgtu"*J GZ 23/23."3902; /3: 07; +"3024' "Ew."206; " i k'Cw'cpf "; 08"i k'Ci "qxgt"5027"o gvgtu"*J GZ 23/24."4066/706; +"cpf "3074' "Ew."2054"i k' Cw'cpf "360 "i k'Ci "qxgt"3074"o gvgtu"*J GZ 23/25."50 8/706; +0'

C"pgy n{"f qewo gpvgf "o kpgtchk gf "| qpg"cdqw'3: 2"o gvgtu"uqwj y guv"qh" y g"j knqtke"C" \ qpg"vtgpej gu"y cu"uco r ngf "qxgt"c"uvtkng"ngpi y "qh": 2"o gvgtu0""Eqctug"i tckpgf."nqecm{" r gi o cvkke"dkqvksg/o ci pgvksg"cnvgtgf "f kqtkg"ku"ew'd{"dkqvksg/ej cneqr {tksg."s vctv}/gr kf qvg" cpf "cnlksg"xgkpu0'Dqyj "f kuugo kpcvgf "cpf "r qf f {"xgkp"cpf "uj gct/j quvgf "ej cneqr {tksg"ctg" r tgugpv."cpf "y g"y cntqeni'eqpvckpu"wr "vq"32' "f kuugo kpcvgf "r {tksg0'Hqwt "tqeni'uco r ngu" htqo 'y g'| qpg"cxgtci gf '4073' "Ew.'209; 'i h/Cw"cpf '56'i h/Ci <"

Sample	Туре	Au ppb	Ag g/t	Cu %
Q724959	grab	8	<0.2	0.034
Q724960	chip 1m	763	69.4	7.700
Q724961	grab	2330	66.4	2.060
Q724965	grab	52	0.9	0.242

Central Zone

"

Vj g"Egpvtcn"\ qpg"ku"cp"ctgc"qh"nko kgf "qwetqr "cpf "tgrcvkxgn{"hrcv'vqr qi tcr j {"gzvgpf kpi " qxgt"c"uvtkng"ngpi yj "qh"cv"ngcuv'307"nknqo gvgtu"cpf "c"y kf yj "qh"207"nknqo gvgtu0Kv"ku"pgct"yj g" egpvgt"qh"c"ncti g"*406"d{"402"nknqo gvgt+"eqr r gt"kp"uqkti"cpqo cn{"qwrkpgf "d{"Vgemikp"3; ; 2" *Vqqj g{" cpf "F qpngtunqv."3; ; 2+0' Vj g"Egpvtcn'\ qpg" j cu" pqv" dggp" vguvgf "d{" f tknkpi 0' F kqtksg"pgct"yj g"j kuvqtke "Vtgpej "E 'uj qy kpi "pgct" yj g"eqtg"qh'yj g"| qpg"ku"uvtqpi n{"ectdqpcvg" cnvgtgf " cpf " ewu" d{" s wctvj " cpf " ecreksg" xgkpu" y kj " ej cneqr { tksg" *S 946; 8: ." J 3; 58882+0' Cdqwv": 2"o gvgtu"vq"yj g"gcuv."cp"qnf "ecv'vtceni'gzr qugu'uvdetqr r kpi "dqwrf gtu"qh"o ci pgvkg." ej cneqr { tksg" cpf " tceg" dqtpkg" *S 946; 8; +" cpf " M/hgnf ur ct" xgkpgf " f kqtksg" y kj " f kuugo kpcvgf "ej cneqr { tksg"cpf "o kpqt"dkqvksg" *S 946; 92+0'Vgp" tqeni'uco r ngu"htqo "yj ku"| qpg" cxgtci g"3028' "Ew"2028; "i h'Cw'cpf '806'i h'Ci <"

Sample	Туре	Au ppb	Ag g/t	Cu %
H1936657	grab	165	21.0	2.710
H1936658	grab	173	22.3	2.770
H1936659	grab	94	1.0	0.012
H1936660	grab	10	6.9	1.470
H1936661	grab	7	0.1	0.011
Q724966	chip 1m	24	2.4	0.245
Q724967	grab	8	0.4	0.017
Q724968	grab	12	7.1	1.735
Q724969	grab	22	2.1	1.520
Q724970	grab	179	0.5	0.126

"

Vj g" j ki j guv" r nevkpwo " *Rv+" cpf " r cmcf kwo " *Rf +" xcnwgu" y gtg" qdvckpgf " htqo " uco r ng" J 3; 58882."c"uco r ng"qh"r gtxcukxgn{"ectdqpcvg"cngtgf "f kqtkg"ewi'd{"ej cneqr {tkg/dgctkpi " s wctv| "cpf "ecneksg"xgkpu"*5: 6"r r d"Rf "cpf "5: 6"r r d"Rv+0"Vj g"dguv'o qn{ df gpwo "xcnwg"*52807" r r o "O q+"y cu"qdvckpgf "htqo "eqctug"i tckpgf "o gncpqf kqtkg"ewi'd{"o ci pgvkg/ej cneqr {tkg" xgkpu="pq"xkukdng"o qn{ df gpkg'y cu'uggp"kp'vj ku'qwetqr "*uco r ng"J 3; 58879+0'

East Zone

"

"

Vj g"Gcuv"\ qpg"ku"c"pgy n{"f grkpgcvgf "| qpg"qh"o kpgtcrk{ cvkqp"egpvgtgf "cdqwv'822"o gvgtu" uqwj gcuv'qh"Vtgpej "E0'O kpgtcrk{ cvkqp"qwetqr u'ur qtcf kecm{ "cetquu"c"y kf y "qh"cv"rgcuv'447" o gvgtu" y kj kp"c"522"d{"622"o gvgt"r ctv"qh" y g"uqkr"cpqo cn{"y j kej "eqpvckpu"pwo gtqwu" xcrwgu" qxgt" 3222" r r o " Ew' *wr " vq" 5893" r r o +0' O kpgtcrk{ cvkqp" eqpukuvu" qh" uj ggvgf " o ci pgvkg/s wctv| /ej creqr {tkg." dkqvkg/M/hgrf ur ct/o ci pgvkg/ej creqr {tkg" cpf " s wctv| / gr kf qvg/ej creqr {tkg"xgkpu0'Hqwt"tqern'uco r rgu"htqo "vj g"| qpg"cxgtci gf "3067' "Ew."208; "i h" Cw'cpf "490 'i h/Ci <"

Sample		Au ppb	Ag g/t	Cu %
Q724973	grab	12	1.6	0.144
Q724974	grab	46	1.4	0.139
Q724975	grab	198	29.8	0.250
Q724976	grab	482	78.5	4.080

West Road

"

Gzr quwtgu"cmpi "y g"ugeqpf ct { "mi i kpi "tqcf "pgct"y g"pqty y guvgtp"eqtpgt"qh'y g"r tqr gtv{ " eqpukuv"o ckpn{ "qh" vgz wtcm{ "xctkcdm" j qtpdmpf g"f kqtkg"ewv"d { "ugxgtcm'r kpm'o qp| qpkg" f { mguO'Y gcm'eqr r gt"o kpgtcmk cvkqp"ku"cuuqekcvgf "y ky "htcewstg"| qpgu"y ky "s wctv| "xgkpu." cmlkg/o ci pgvkg"cpf "o ci pgvkg"xgkpu."cpf "dkqvkg"uvqemy qtmx"

Sample		Au ppb	Ag g/t	Cu ppm
Q724977	grab	16	0.5	515
Q724978	grab	14	0.4	430

Conclusions and Recommendations

"

"

"

Vj g"J gcyj "r tqr gtv{ "ku"wpf gtrckp"d { "c"uwkg"qh"cr r kpkgu"eqo r tkugf "o ckpn{ "qh"j qtpdngpf g" f kqtkg0""Vj g"f kqtkg"j cu'uwhbgtgf "xctkcdrg"f gi tggu"qh"r qvcuuke "cnvgtcvkqp"qxgt"cp"ctgc"qh"cv" ngcuv": 22"d { "922"o gvgtu"gzr qugf "qxgt"422"o gvgtu"qh"gngxcvkqp0"""J ki j "i tcf g"o kpgtcnk gf " | qpgu"ctg"r tgugpv"yi tqwi j qwu"yi g"r tqr gtv{ "cpf "ugr ctcvgf "d { "tqeni'y kyj "my "i tcf g"eqr r gt " o kpgtcnk cvkqp0""Vj g"j ki j /i tcf g"| qpgu"ctg"uvtwewtcm{ "eqpvtqmgf "õr { gtuö" j cxg" o czko wo / 547" y kyj " o qf gtcvg" vq" uvggr "P G" qtkgpvgf "f kr u0' "Y j gtg" y g" õrc { gtuö" j cxg" o czko wo / y kempguu" cpf " eqpegpvtcvkqp" y g { " tgr tgugpv" c" uki pkhkecpv" vcti gv" hqt" cp" geqpqo ke" uvtwewtcm{/eqpvtqngf "r qtr j { t { "uv{ ng"f gr quk0""

Vj g" Egpvtcn' \ qpg" tgr tgugpw" vj g" dguv" ftkm' vcti gv' f ghpgcvgf " vq" f cvg." y kj " uvtqpi " o kpgtcnk cvkqp"cpf "cnvgtcvkqp"etqr r kpi "qwv'ur qtcf kecm{ "qxgt"c"ncti g"vpvguvgf "ctgc"*cdqw" 207"d{ "307"nkmo gvgtu+0'Uvtqpi "r qvcuuke"cnvgtcvkqp"cpf "uj ggvgf "o ci pgvkvg"xgkpu"kp" yj g"Gcuv" \ qpg" o c{" r tgugpv" c" uki pkhkecpv" vcti gv' cu" y gm=" hvt yj gt" o cr r kpi " cpf " uco r nkpi " ku" tgeqo o gpf gf "vq" f gnkpgcvg"ku" gz vgpv0'Cf f kkqpcn'o kpgtcnk gf "| qpgu" o c{" dg" r tgugpv" kp" ctgcu"qh"r qqt "qvvetqr 0'C"r tqi tco "qh"f kco qpf "f tkmkpi "ku"tgeqo o gpf gf "vq" vguv"ctgcu"qh" mpqy p'o kpgtcnk cvkqp"y j kej "j cxg"pqv'dggp"vguvgf "vq" f cvg"*g0 0'Egpvtcn'cpf 'Gcuv\ qpgu+0"

References

Cmcp." L(H)="F wo o gw." J 0'*3; 8; +<'I gqmi lecn' cpf "I gqej go lecn' Tgr qtv' q" y g" J gcy "Eqr r gt" Rtqur gev.'Vej gpvtq'Ncmg"I'Gpf cmq'Ctgc. 'DE0'DE'Cuuguuo gpv'Tgr qtv'3; 870'

Ecor dgm "Eqnkp"L0'*3; : : +<'I gqej go kecn"Tgr qtv'qp" y g"J gcy "O kpgtcn'Encko 0'DE "Cuuguuo gpv" Tgr qtv'39; : : 0'

Ecor dgm"Eqnlp"I0'*4223+"Tgr qtv"qp" y g"J gcy "O lpgtcn'Enclo 0'DE"Rtqur gevqtøu"Cuuluvcpeg" Rtqi tco "Rcr "4223/660'

Ecordgm 'Eqnlp'I.0*4229+Cullen'Ucornlpi.'Nkpg'Ewwlpi "cpf'I tqwpf'O cipgvle'Qtkgpvcvkqp''Uvtxg{" qh'yjg'I gcyj 'Rtqrgtv{0DE'Cuuguuo gpv'Tgrqtv'4; 6580'

I ctpgw:"LCO*3; 9: +<"I gqnqi {"cpf "o kpgtcn'qeewttgpegu'qh'yj g'uqwyj gtp"J qi go "dcyj qnkyj 0'Dtkkuj " Eqnxo dkc0'O kpkut { ''qh'O kpgu''cpf ''Rgvtqngwo ''Tguqwtegu''Dwngvkp'920'

J cmph "R1 0="O wmcp."C0'*3; 95+<"I gqrj {ukecn'("Nkpg"Ewwkpi "Tgrqtv'/"J gcvj "("Ecv'Encko u." Vej gpvnq "Ncng'Ctgc0DE'Cuuguuo gpv'Tgrqtv'68940'

Kpi nku."Y 0*3; 92+<I gqej go kecn'Uwtxg{"qp"yj g"J gcyj 'Eqrrgt'P U'Encko u0'DE'Cuuguuo gpv'Tgrqtv' 49; ; 0'

Nkxi ctf. 'Gi kı'*3; 93c+<'I gqnqi ke'tgr qtv'qp''J gcyj "eqr r gt 'Rtqr gtv{0DE 'Cuuguuo gpv'Tgr qtv'54220' "

Nkxi ctf."Gi kn'*3; 93d+<'Tgr qtv'qp"c"O ci pgvke"Uvtxg{"qh'J gcyj "eqr r gt "Rtqr gtv{0'DE "Cuuguuo gpv" Tgr qtv'54230'

O wtrj {." L0' Dtgpf cp" *4235+<" Crr kpkg" uwkgu<" C" tgeqtf " qh" yj g" tqng" qh' y cvgt" kp" yj g" i gpguku." vtcpur qtv."go r ncego gpv'cpf "et {uvcml vkqp"qh'o ci o c0'Gct yj /Uelgpeg"Tgxlgy u. "Xqnwo g"33; ."Cr tkn" 4235. "Rci gu"5767; 0'

Vqqjg{."L0T0#Fqpmgturqqv."R0'*3;;2+*I gqmi kecn"I gqrj {ukecn"cpf "I gqej go kecn"Tgrqtv"qp"vjg" J gcvj 'Encko u0DE 'Cuuguuo gpv'Tgrqtv'427740"

Vqqjg{."LOTO="Fqpngtunqqv." RO="Ectw tkijv." Rcwn" CO="Eqto kgt." O OO="*3;;3+<"I gqrj {ukecn" cpf "Fkco qpf 'FtkmTgrqtv'qp''y g'J gcy 'Encko uODE'Cuuguuo gpv'Tgrqtv'43;6:0'

..

Appendix A Statement of Qualifications

"

"

K'Iqj p'Dtcf hqtf.'R0 gq0"egtvkh{''y cv."

- 30' Kco 'r tgugpvn{ 'Xkeg'Rtgukf gpv/Gzr mtcvkqp'hqt''Y guv/Ekts wg'Tguqwtegu'Nvf 0'y ky ''c'' dwukpguu'cf f tguu'mecvgf ''cv<''
 752/732'Dwttctf ''Uv0'
 Xcpeqwxgt.''DE.'Ecpcf c''
 X8E''5C: ''
- 40 Kco "c"o go dgt kp"i qqf "uvcpf kpi "qh"yi g'Cuuqekcvkqp"qh"Rtqhguukqpcn'Gpi kpggtu"cpf " I gquekgpvkuvu"qh"DE0'
- 50 Ki tcf wcvgf 'htqo 'vj g'Wpkxgtukv{ 'qh'Dtkkuj 'Eqnvo dkc'kp'3; : 7'y kj 'c'Dcej grqt'qh'' Uekgpeg'kp'I gqrqi { 'cpf 'htqo 'vj g'Wpkxgtukv{ 'qh'Dtkkuj 'Eqnvo dkc'kp'3; : : 'y kj 'c'' O cuvgt 'qh'Uekgpeg'kp'I gqrqi {0'
- 60 Ukpeg''3; :: ''Kj cxg''dggp''eqpvkpwqwun{ ''go r m{gf ''kp''gzr mtcvkqp''hqt''dcug''cpf '' r tgekqwu''o gvcmi'kp''P qtyj 'Co gtkec.''Uqwj 'Co gtkec''cpf ''Ej kpc0''
- 70 Kuwr gtxkugf "cpf "r ctvkekr cvgf "kp" 'y g'4234"gzr mtcvkqp"r tqi tco "cv'J gcyj "cpf "co " y gtghqtg"r gtuqpcm{ "hco krkct" y kj "y g'i gqmi { "qh'y g"J gcyj "Rtqr gtv{ "cpf "y g"y qtm" eqpf wevgf "kp"42340"Kj cxg"eq/r tgr ctgf "cm'ugevkqpu"qh'y ku'tgr qtv0""
- 80
- '' '"'

F cvgf ''y ku''43uv'F c { ''qh''Qevqdgt.''4235''

Burghel

Uki pcwtg'"

"

Lqj p'Dtcf hqtf.'O (Ue.'R(I gq0' " K'Vqp{'Dcttguk'DUe0'egtvkh{''y cv."

30' Kco "c"ugnh"go r m {gf "eqpuwnkpi "i gqmi kuv'y kj "c"dwukpguu"cf f tguu"mecvgf " cv<'84"Gcuv'Ukf g"F t0"Mgvej "J ctdqwt."P qxc"Ueqvkc."D5X"3M7"

..

"

- 40 Ki tcf wcvgf 'htqo 'Uv0O ct {øu'Wpkxgtukv{ 'kp'3; : 7'y kj 'c'Dcej grqt'qh'Uekgpeg'kp'' I gqrqi { "cpf "co "ewttgpvn{ "c'Rj F "ecpf kf cvg"cv'F cnj qwukg''Wpkxgtukv{ 0'
- 50 Ukpeg''4226''Kj cxg''dggp''eqpvkpwqwun{"go r m{gf 'kp"gzr mtcvkqp''hqt''dcug''cpf " r tgekqwu''o gvcnu''kp''P qtyj 'Co gtkec0''
- 60 Kuwr gtxkugf "cpf 'r ctvkekr cvgf "kp''y g''4235"gzr mtcvkqp"r tqi tco "cv'J gcy "cpf "co " y gtghqtg'r gtuqpcm{ 'hco krkct''y kj ''y g''i gqmi { "qh''y g''J gcy ''Rtqr gtv{ "cpf ''y g''y qtm'' eqpf wevgf ''kp''42350'Kj cxg"eq/r tgr ctgf "cm''ugevkqpu''qh''y ku'tgr qtv0""
- '' '"'

"

 $F cvgf ''y ku''43uv'''F c { ''qh''Qevqdgt.''4235''}$

Banner

Uki pcwtg'"

Vqp{"Dcttguk"D0Le0"

Appendix B Statement of Costs

"

Item	Name	#	Cost	Item sub-total	Sub-totals
Coolesiant entries			de ile.		
Geological - salaries		man-	daily		
and wages	John Duodfoud	days	rate	600.00	
	John Bradford	1	600	600.00	
	John Fleishman	1	500	500.00	
	Tony Barresi	5	600	3000.00	
	Nigel Luckman	5	550	2750.00	
Food & Accommodation:					
on-site					6850.00
	Food and Lodging,	12	125	1500.00	
	Tchentlo Lodge	12	125	1500.00	1 500 00
Devent					1500.00
Report	D	-	600	1000.00	
	Preparation	2	600	1200.00	
	Materials, maps,		100	100.00	
	binding, copying	1	100	100.00	
					1300.00
Geochemical					
	Rock sample assays	24	35	840.00	
					840.00
Vehicle	Truck rental	8	90	720.00	
	Mileage	400	0.25	100.00	
					820.00
MOB/DEMOB		days	rate		
Food &					
MOB/DEMOB	Hotel	2	250	500.00	
	Food	3	100	300.00	
					800.00
		days	rate		000100
Wages: travel		uuys	Tutte		
to/from site	Tony Barresi	3	600	1800.00	
to/nom site	Nigel Luckman	3	550	1650.00	
		J	330	1030.00	2450.00
					3450.00
Vahiala	Truck rept-1	2	00	270.00	
Vehicle	Truck rental	3	90	270.00	
	Mileage	2400	0.25	600.00	
					870.00
				Total	16430.00
,					

Appendix C Rock Samples

Sample	Project	Area	Geol	Stn	Lat	Long	y_proj	x_proj	Elev	Date	Туре	Lab
							NAD 83 Zn 10	NAD 83 Zn 10				
H1936657	Heath	Central Zone	JB	HE2012JB86	55.27	-125.16	6127295.78	362770.70	1190	04-OCT-12 11:55:29AM	grab	Inspectorate
H1936658	Heath	Central Zone	JB	HE2012JB87	55.27	-125.16	6127308.89	362756.83	1192	04-OCT-12 12:00:27PM	grab	Inspectorate
H1936659	Heath	Central Zone	JB	HE2012JB88	55.27	-125.16	6127307.33	362780.74	1196	04-OCT-12 12:28:25PM	grab	Inspectorate
H1936660	Heath	Central Zone	JB	HE2012JB91	55.27	-125.16	6127438.73	362698.36	1203	04-OCT-12 12:44:54PM	grab	Inspectorate
H1936661	Heath	Central Zone	JB	HE2012JB92	55.27	-125.16	6127477.00	362690.65	1208	04-OCT-12 12:59:24PM	grab	Inspectorate
Q724959	Heath	A Zone - SW	ТВ	HE2013TB-362	55.27	-125.16	6126799.92	362580.27	1061	2013/09/05 16:55:51+00	grab	ALS
	Heath	A Zone - SW	ТВ	HE2013TB-363						2013/09/05 17:35:40+00	chip 1m	ALS
Q724961	Heath	A Zone - SW	ΤВ	HE2013TB-364	55.27	-125.16	6126820.71	362552.62	1060	2013/09/05 18:12:01+00	grab	ALS
Q724962	Heath	A Zone	ТВ	HE2013TB-370	55.27	-125.16	6126972.74	362652.46	1108	2013/09/05 20:30:17+00	chip 1m	ALS
Q724963	Heath	A Zone	тв	HE2013TB-371	55.27	-125.16	6126962.39	362666.70	1108	2013/09/05 21:08:58+00	chip 1.25m	ALS
Q724964	Heath	A Zone	ТВ	HE2013TB-376						2013/09/05 21:59:05+00	grab	ALS
Q12+30+	riedui			112201010-070	55.27	-120.10	0120340.13	302000.31	1105	2010/03/03 21:33:03+00	grab	
Q724965	Heath	A Zone - SW	тв	HE2013TB-377	55.27	-125.16	6126774.20	362622.97	1056	2013/09/06 17:05:20+00	grab	ALS
Q724966	Heath	Central Zone	ТВ	HE2013TB-381	55.27	-125.16	6127312.98	362763.09	1192	2013/09/06 18:43:15+00	chip 1m	ALS
Q724967	Heath	Central Zone	тв	HE2013TB-382	55.27	-125.16	6127313.30	362774.10	1195	2013/09/06 19:04:29+00	grab	ALS

Sample	Project	Area	Geol	Stn	Lat	Long	y_proj	x_proj Elev Date		Date	Туре	Lab
							NAD 83 Zn 10	NAD 83 Zn 10				
Q724968	Heath	Central Zone	тв	HE2013TB-383	55.27	-125.16	6127438.79	362699.35	1200	2013/09/06 20:09:54+00	grab	ALS
Q724969	Heath	Central Zone	тв	HE2013NL-204			6127469.00	362774.00	1225		grab	ALS
Q724970	Heath	Central Zone	тв	HE2013TB-386	55.27	-125.16	6127478.56	362788.70	1220	2013/09/06 21:17:09+00	grab	ALS
Q724971	Heath	-	тв	HE2013TB-388	55.27	-125.16	6127070.75	362738.35	1141	2013/09/07 17:08:03+00	grab	ALS
Q724972	Heath	-	тв	HE2013TB-390	55.27	-125.16	6127182.40	363049.09	1220	2013/09/07 18:22:03+00	grab	ALS
Q724973	Heath	East Zone	тв	HE2013TB-394	55.27	-125.15	6127171.65	363176.88	1269	2013/09/07 20:00:25+00	grab	ALS
Q724974	Heath	East Zone	тв	HE2013TB-396	55.27	-125.15	6127258.12	363287.00	1310	2013/09/07 21:03:26+00	grab	ALS
Q724975	Heath	East Zone	тв	HE2013TB-397	55.27	-125.15	6127329.39	363341.27	1325	2013/09/07 21:25:51+00	grab	ALS
Q724976	Heath	East Zone	тв	HE2013TB-398	55.27	-125.15	6127325.18	363337.01	1328	2013/09/07 21:59:49+00	grab	ALS
Q724977	Heath	West Rd	ТВ	HE2013TB-406	55.29	-125.20	6129047.88	360386.29	969	2013/09/09 16:38:20+00	grab	ALS
2724978	Heath	West Rd	тв	HE2013TB-407	55.29	-125.20	6129198.16	360413.21	970	2013/09/09 17:04:54+00	grab	ALS

Rock Samples 2012-2013

Sample	Description	Au	Ag	Cu	Pt	Pd	AI	As	в	Ва	Ве	Bi	Ca	Cd
		ppb	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	%	ppm
H1936657	rusty c.g. melanodior, mt+cp-mt veins	165	5 21.0	27100	-5		3.98			54	0.26	1.31	1.22	3.86
H1936658	rusty c.g. melanodior, mt+cp-mt veins	173	3 22.3	27700			3.37			46	0.25	1.89	1.25	2.85
H1936659		94					6.63			395	0.64			
H1936660	perv cb altd dior, qtz-cb-cp vns	10		14700			3.68			88	0.39	0.58	7.49	0.98
H1936661	broad area old trenches exposing strongly cb altd dior, cb/qtz-cb vns, variable mt/ht	7	0.1	113	12	72	2.98	5.3		60	0.48	0.06	10.00	0.74
	Bold OC of biotite-leuco-diorite. Strange medium to coarse grained diorite with anhedral interlocking domains of 50% white feldspar (weakly altered i.e. easily scratched) and biotite. The crystals are mainly anhedral although there are some biotite with hexagonal habit within irregular biotite domains. About 5% 1mm magnetite crystals are dis through both domains. Several vein types are present but rare: 1) narrow													
	1mm quartz + epidote stringers + trace py; 2) 1 cm thick biotite veins, and 3) 1-3mm albite veins. The rock is strongly magnetic, and non reactive to HCI. The main question here is: is the biotite primary or secondary - is it replacing original hbl? Some biotite +/-magnetite is altered to red hematite. The sample													
Q724959	is a composite including all three vein types. Possible tr cpy on the quartz vein.	8	-0.2	342	-5	3	6.51	2.0	-10.0	320	-0.50	-2.00	4.32	-0.50
	1 meter + section of buried sheared diorite comprised of 20 cm+ pods of 65% cpy + red rusty quartz+limonite boxwork and malachite. Wallrock is bt rich with 80% mafic domains (partly altered to chlorite). Generally the diorite here is coarse grained with up to 10% dis pyrite in the wall rock. The mineralized structure is crossed by a fault (045/60) which sampled the sheared mineralized zone and includes 30% clasts of 50:50 py:cpy within a black chloritic fault breccia. This sample is a 1 m chip													
Q724960	perpendicular to the sheared mineralized zone.		69.4					535.0				-2.00		1.10
Q724961	Same as previous sample but a grab of the cpy rich domain.	2330	66.4	20600	-5	47	2.97	1400.0	-10.0	40	-0.50	20.00	0.59	0.90
	1 meter chip sample taken perpendicular to the strike of the mineralized structure (which is 325/51) exposed in trench. Trench A exposes a structural zone with good planar layering (although some layers are discontinuous). The thickness of the structural and mineralized zone is approximately 1 m. It is comprised of independent "layers" of pure f.g. magnetite+cpy, f.g. bt+mt+cpy, blowouts of semi-massive cpy+quartz, chlorite/biotite altered diorite and a few lenses/layers on the margin of the zone of bt altered diorite with up to 15% dis py. Cpy occurs through the zone disseminated and as small irregular veins. Cpy blowouts tend to be in or near the center of the zone. The rock is really broken and includes breccia fragments in places. Within some alteration zones there are layer parallel veins i.e. cpy vein in the center													
Q724962	of a pure magnetite layer.	892	2 43.5	8880	-5	23	1.69	27.0	10.0	40	-0.50	-2.00	1.32	-0.50
Q724963	315/45 is the orientation of southern extension of Trench A. Still mineralized as per station 370. 1.25m chip on vertical surface perpendicular to the structure. This rock looks more weathered than the previous. Lots of malachite and azurite. Trench under fallen tree with dark green grungy rock with 5% dis cpy, calcite clots, chlorite alteration and	203	8 10.3	9170	-5	15	1.75	49.0	10.0	180	-0.50	6.00	1.99	-0.50
0704004	rare 1-2mm straight quartz veins. Orientation of the veins and mineralized structure are not known due to the fallen tree over the trench and ingrown sides. Presumably it crosses the trench, which is oriented 245, because there is mineralized rock on both sides. In a few places there are dense quartz veins making an			0000	_	10	4.00		40.0	40	0.50	0.00	0.00	0.50
Q724964	irregular wormy stockwork with abundant cpy.	40	3.6	3380	-5	10	4.92	20.0	-10.0	40	-0.50	-2.00	3.36	-0.50
Q724965	Subcrop of bt diorite with biotite veins up to 2 cm thick that include dis cpy. Also linear zones where fld is altered to a pinkish clay + Fe oxide with abundant cpy - probably along fractures. Center of biotite veins are sometimes narrow albite? stringers. Also, this rock has a low density of <2mm Qz stockwork.	52	2 0.9	2420	-5	25	4.04	10.0	-10.0	130	-0.50	-2.00	3.03	-0.50
070/000	1m chip sample taken down a vertical trench face perpendicular to the structure exposed. The face exposes a variety of completely mixed up rock, from pegmatitic hbl diorite to a fine grained green rick with dis. Py + cpy + bt porphyroblasts. Some lenses are of mainly biotite with abundant irregular globs and net-								40-5		0.5-	0.05		0.50
Q724966	texture py+cpy. Some bt zones are cut by, or include, epidote + Py+cpy vein. The rock here is banded with biotite and sulfide rich layers 305/41. This location is Trench B - There are biotite rich layers that have dis cpy, and there are up to 8 cm thick, but discontinuous, layers of semi-	24					2.31		-10.0			-2.00		
Q724967	massive pyrite. Sample is a grab of bt+dis cpy zones.	8	0.4	173	-5	16	2.42	6.0	-10.0	40	-0.50	-2.00	1.18	-0.50

Rock Samples 2012-2013

Sample	Description	Au	Ag	Cu	Pt		AI	As	В	Ва	Ве		Ca	Cd
		ppb	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	%	ppm
	Strong Fe-Ca alteration of rd cut OC. Still m.g. hbl diorite but strong Ca + FeCa overprint. some domains													
	of Bt+Qz+coarse cpy are present but disrupted by faulting and fracturing (therefore faulting is late). Quartz													
	veins up to 1.5cm are also present with tr cpy. Some cpy is remobilized into calcite veins. In places fault													
Q724968	breccia is apparent.	12	7.1	17350	-5	3	3.22	20.0	-10.0	190	-0.50	-2.00	3.81	0.50
	This station corresponds to Nigel's station 204. It is a sample from one of many subcroping boulders of													
	massive magnetite + 30% dis and vein cpy + tr bornite. These boulders occur over a 10 m stretch of cat-													
Q724969	track. They also include Bt+cpy zones (not included in sample)	22	2.1	15200	-5	104	2.16	112.0	-10.0	30	2.30	2.00	0.26	-0.50
	Boulders on cat-track with 2-3cm thick vein-like domains that have K-feldspar replacement of plag + minor													
	flooding and minor associated epidote. In places the K-fld includes dis biotite and cpy. The wall rock is													
Q724970	medium to coarse grained hbl diorite with minor bt al.	179	0.5	1260	22	90	2.89	6.0	-10.0	160	0.60	-2.00	2.27	-0.50
	Monzonite dike? With 10% anhedral hbl+40% euhedral columnar plag in a phaneritic K-													
	fld+magnetite+plag groundmass. Tr dis py, Tr dis. Cpy. Cpy is mainly at weakly altered mafic sites.													
Q724971	Slickenside surface 270/60 with 270/30 slickenlines	6	0.3	226	5 -5	3	1.61	4.0	-10.0	130	0.50	-2.00	0.81	-0.50
	Regolith under moss of medium grained hbl diorite cut by abundant vein-like zones of K-fld alteration and													
	a few thick, up to 8 cm (possibly blowouts) zones of quartz+K-fld+bt+epidote veins. No visible sulfides.													
Q724972	Selvages to veins are partly chlorite altered biotite.	3	0.2	61	17	136	1.91	2.0	-10.0	90	-0.50	-2.00	2.12	-0.50
	10 cm thick qz+epidote vein in big partly displaced chunk of rotated OC. Contains 1-2% dis cpy, tr Mal +													
	Az. Approximately 5-8 cm away from the main vein there are narrow bands of Az in associated with													
	magnetite grains in the diorite. This is a big OC of mainly medium grained hbl diorite with minor K-fld													
	selvages to fractures. However there is interesting float of mt breccia with quartz clasts and also													
Q724973	Qz+Mt+Ep veins with cpy similar to the sample but with magnetite.	12	1.6	1440	-5	5	2.11	6.0	-10.0	50	-0.50	-2.00	2.07	-0.50
	Good OC of medium grained leucocratic hbl diorite with 15 cm spaced dense magnetite+/-quartz +/-cpy													
Q724974	veins with K-fld alt of plag in selvages. Most of the veins are roughly 310/45, but some are random	46	1.4	1390	-5	1	1.30	4.0	-10.0	400	0.60	-2.00	0 80	-0.50
Q124314	330/55 joint set + bt veins + magnetite veins. Bt veins have thick rusty rotten selvages with abundant	40	1.4	1590	· - J	4	1.50	4.0	-10.0	400	0.00	-2.00	0.03	-0.50
	pyrite. Away from rusty zones the OC has K-spar alteration of fld near fractures and is mostly comprised													
Q724975	of hbl diorite. The sample is of a Bt+Kfld vein with py in its rusty selvage.	108	29.8	2500	-5	7	2.07	86.0	-10.0	120	-0.50	2.00	0.71	-0.50
Q124313	Same OC as previous samples. Here a parallel layered bt and py + cpy vein has narrow bands of	130	23.0	2300	· -3	1	2.07	00.0	-10.0	120	-0.00	2.00	0.71	-0.50
Q724976	magnetite. Some with 4 cm diameter cpy blowouts. The wallrock is m.g. Hbl diorite.	482	78 5	40800	-5	40	2.34	136.0	-10.0	50	-0 50	-2.00	0.66	1.90
GI ZIOTO		402	10.0	40000		40	2.04	100.0	10.0	00	0.00	2.00	0.00	1.50
	Long roadside OC of very phasey hbl diorite/apanite. Ranges from 70% plag 25% hbl 5% magnetite to													
	domains of 100% hbl+mt+/-bt. Some autolith? enclaves of pure bt+mt and pure hbl+mt are present. In													
	other places there is gradation between leuco and melanocratic diorite. Not all variation is due to													
	enclaves, in some places there are parallel bands of variable composition of rock sometimes with													
	gradational, other times sharp contacts. Rock is x-cut by white fld + mt veins, biotite stockwork, rare													
	narrow magnetite veins, epidote veins sometimes with biotite selvages, and rare quartz veins with traces													
Q724977	of pyrite. The sample is a random grab of rock across the OC to check for overall Cu content.	16	0.5	515	5 5	36	2.78	6.0	-10.0	260	-0.50	-2.00	2.72	-0.50
	Another long rd cut OC of the same type of rock described in previous station (406). Here there are		0.0	010		50		0.0			0.00			0.00
	several x-cutting pink monzonite dikes. The sample is taken from a 5 m wide zone of intense fracturing				1									
	with abundant 1mm to 2 cm wide white to gray sometimes vuggy quartz veins with trace py. The veins				1									
	and fractures are typically 325/80 with a dense set of 290/90 fractures near the middle of the zone. Some				1									
Q724978	gz veins x-cut the fabric.	14	0.4	430	-5	16	3.86	10.0	-10.0	110	-0.50	3.00	3.47	-0.50

Sample	Co	Cr	Fe	Ga	Hg	κ	La	Mg	Mn	Мо	Na	Ni l	Р	Pb	S	Sb	Sc	Sr	Th	Ti	TI	U	V	w	Zn	Zr	Ce	Cs	Ge
	ppm	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	%	ppm j	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
H1936657	68.0	52	25.00	16.82		0.08	1.3	1.99	633	306.5	0.70	27.9	360	16.0	4.38	3.33	6.1	322.0	1.7	0.18	0.02	0.6	368	0.4	196	9.5	3.35	0.50	1.13
H1936658	95.8	55	25.00	17.48		0.01	1.6	1.47	512	187.4	0.25	37.1	782	14.4	5.83	4.81	6.5	307.8	0.8	0.15	0.04	0.4	488	0.5	135	11.6	4.53	0.51	1.46
H1936659	46.0	52	11.76	17.73		2.45	5.5	2.22	2180	1.9	0.10	28.5	246	30.9	1.44	60.85	42.6	171.6	1.0	0.56	1.12	0.8	668	1.7	144	21.5	14.09	11.22	1.67
H1936660	50.6	89	10.64	14.38		0.24	10.1	1.95	1771	39.4	0.03	14.7	755	75.9	1.35	8.69	12.0	124.7	1.1	0.18	0.12	1.2	184	3.0	182	16.6	21.14	1.92	1.19
H1936661	45.9	59	11.46	13.11		0.14	3.7	3.28	1949	0.7	0.01	34.7	254	19.9	-0.01	4.57	46.8	181.0	0.7	0.55	0.02	0.5	617	1.7	193	21.1	9.94	1.17	1.18
Q724959	30.0	1	8.37	10.00	1.0	0.33	-10.0	1.57	384	-1.0	0.38	15.0	820	-2.0	0.01	-2.00	8.0	710.0	-20.0	0.23	-10.00	-10.0	455	-10.0	21				
Q724960 Q724961	<u>185.0</u> 122.0	1	18.50	<u>10.00</u> 10.00	2.0	0.05	-10.0	1.77	1010	81.0	0.04		220		2.86	24.00	14.0	114.0	-20.0	0.12	-10.00 -10.00	-10.0	250	-10.0	192				
Q724962	22.0	3	20.30	10.00	-1.0	0.06	10.0	0.71	216	31.0	0.05	7.0	2950	6.0	1.31	-2.00	4.0	116.0	-20.0	0.08	-10.00	-10.0	243	-10.0	48				
Q724963	42.0	5	17.70	10.00	1.0	0.13	10.0	1.32	598	8.0	0.03	15.0	5240	10.0	0.44	2.00	7.0	66.0	-20.0	0.19	-10.00	-10.0	382	-10.0	125				
Q724964	39.0	4	15.80	20.00	1.0	0.02	10.0	3.81	2110	8.0	0.01	16.0	3320	4.0	0.44	-2.00	18.0	87.0	-20.0	0.04	-10.00	-10.0	340	-10.0	190				
Q724965	23.0	4	9.70	10.00	1.0	0.17	-10.0	1.65	412	1.0	0.14	14.0	300	-2.0	0.20	-2.00	8.0	269.0	-20.0	0.16	-10.00	-10.0	401	-10.0	26				
Q724966	30.0						-10.0						360					103.0						-10.0					
Q724967	111.0	2	<u>12</u> .35	10.00	-1.0	0.07	-10.0	1.68	737	-1.0	0.09	30.0	150	31.0	3.73	-2.00	10.0	132.0	-20.0	0.26	-10.00	-10.0	342	-10.0	80				

Sample	Со	Cr	Fe	Ga	Hg	K	La	Mg	Mn	Мо	Na	Ni	Р	Pb	S	Sb	Sc	Sr	Th	Ti TI	U V	W		Zn Zr	Ce	Cs	Ge
	ppm	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	%	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm ppm	ppm ppm	ppr	n	ppm ppm	ppm	ppm	ppm
Q724968	47.0	6	11 00	10.00	1.0	0.01	-10.0	2 45	1960	10.0	0.01	12.0	980	37.0	1 40	2.00	9.0	94.0	-20.0	0.01 -10.00	-10.0 12	12 -1	0.0	207			
Q724969	251.0			10.00								1090.0				-2.00				0.02 -10.00				200			
Q724970	24.0			10.00							0.19							162.0		0.18 -10.00			0.0				
Q724971	11.0			10.00							0.13					-2.00				0.15 -10.00			0.0				
Q724971	13.0			10.00							0.07				0.03			377.0		0.17 -10.00		_	0.0				
Q124912	13.0	3	2.02	10.00	-1.0	0.10	-10.0	0.01	000	2.0	0.02	25.0	000	4.0	0.01	3.00	3.0	377.0	-20.0	0.17 -10.00	-10.0	-1	0.0	49			
Q724973	22.0	4	3.48	10.00	-1.0	0.04	10.0	1.20	569	2.0	0.03	5.0	2620	5.0	0.04	3.00	3.0	331.0	-20.0	0.15 -10.00	-10.0 6	3 -1	0.0	58			
Q724974	32.0	2	9.58	10.00	-1.0	0.23	-10.0	0.76	447	6.0	0.06	5.0	2420	6.0	0.08	3.00	3.0	80.0	-20.0	0.05 -10.00	-10.0 16	64 -1	0.0	42			-
Q724975	14.0			10.00				1.24			0.04	1.0	2900		0.21		5.0	53.0		0.14 -10.00				156			
Q724976	38.0			10.00							0.01	5.0			3.73		4.0			0.12 -10.00							
Q724977 Q724978	33.0	-		10.00					647 899		0.17					3.00				0.24 -10.00		28 -1	0.0				

Sample	Hf	In	Li	Nb	Rb	Re	Se	Sn	Та	Те	Y
			ppm							ppm	
H1936657				0.6			8.5			0.30	
H1936658		1.04	4.1		0.4		13.4		0.07		3.4
H1936659	1.00	0.08	16.5	1.2	68.2	0.004	1.4	1	0.09	0.11	11.1
H1936660	0.60	0.44	37.4	1.1	7.5	0.006	6.1	2	0.08	0.33	10.2
H1936661	0.90	0.06	22.2	0.9	4.6	-0.002	2.0	1	0.07	0.15	10.6
Q724959											
Q724960											
Q724961											
Q724962											
Q724963											
Q724964											
Q724965											
Q724966											
Q724967											

Sample			Li	Nb		Re	Se	Sn		Те	Y
	ppm	ppm	ppm	ppn	ppm	ppm	ppm	ppn	ppm	ppm	ppm
Q724968											
Q724969											
Q724970											
0704074											
Q724971											
Q724972											
Q724973											
Q724974											
Q124514											
Q724975											
Q724976											
Q124910											
Q724977											
Q724978											

Appendix D Analytical Certificates

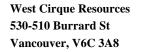
Certificate of Analysis

12-360-07645-01

Inspectorate Exploration & Mining Services Ltd. #200 - 11620 Horseshoe Way Richmond, BC V7A 4V5 Canada Phone: 604-272-7818

Distribution List Attention: John Bradford 530-510 Burrard St Vancouver, V6C 3A8 Phone: 604-558-4604 EMail: jbradford@westcirqueresources.com	Attentio	By: West Cirque 530-510 Bur Vancouver, on: John Bradfo ect: Health on:	rard St V6C 3A8	Date Received: 10/11/2012 Date Completed: 10/22/2012 Invoice:
	Location	Samples	Туре	Preparation Description
	Vancouver, BC	5	Rock	SP-RX-2K/Rock/Chips/Drill Core/Cuttings <2Kg
	Location	Quantity	Method	Description
	Vancouver, BC	5	Au-1AT-AA	Au, 1AT Fire Assay, AAS
	Vancouver, BC	5	Pd-1AT-ICP	Pd, 1AT, ICP
	Vancouver, BC	5	Pt-1AT-ICP	Pt, 1AT, ICP
	Vancouver, BC	5	Ag-AR-TR	Ag, Aqua Regia, AA, Trace Levels
	Vancouver, BC	3	Cu-4A-OR-AA	Cu, Ore Grade, 4 Acid, AA
	Vancouver, BC	5	50-4A-UT	50 Element, 4 Acid, ICPMS, Ultra Trace Level

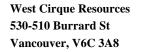
The results of this assay were based solely upon the content of the sample submitted. Any decision to invest should be made only after the potential investment value of the claim or deposit has been determined based on the results of assays of multiple samples of geologic materials collected by the prospective investor or by a qualified person selected by him and based on an evaluation of all engineering data which is available concerning any proposed project. For our complete terms and conditions please see our website at www.inspectorate.com.


For and on behalf of Inspectorate Exploration and Mining Services Ltd

By

Spfia Devota -- Operations Manager

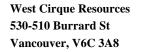
Certificate of Analysis 12-360-07645-01



A Bureau Veritas Group Company

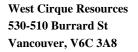
#200 - 11620 Horseshoe Way Richmond, BC V7A 4V5 Canada

			Au	Pd	Pt	Ag	Cu	Ag	Ce	Hf	La	Al	As	Ba	Be	Bi
			Au-1AT-AA	Pd-1AT-ICP	Pt-1AT-ICP	Ag-AR-TR	Cu-4A-OR-AA	50-4A-UT								
	Sample	Sample	ppb	ppb	ppb	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm
Des	scription	Туре	5	5	5	0.1	0.01	0.01	0.01	0.1	0.5	0.01	0.2	5	0.05	0.01
	1936657	Rock	165	12	<5	21.4	2.71	21.00	3.35	0.4	1.3	3.98	134.4	54	0.26	1.31
	1936658	Rock	173	36	12	21.6	2.77	22.30	4.53	0.4	1.6	3.37	91.9	46	0.25	1.89
	1936659	Rock	94	24	<5	1.1		1.01	14.09	1.0	5.5	6.63	484.4	395	0.64	0.16
	1936660	Rock	7	72	12	0.1		0.08	9.94	0.9	3.7	2.98	5.3	60	0.48	0.06
	1936661	Rock	10	384	384	7.1	1.47	6.87	21.14	0.6	10.1	3.68	31.0	88	0.39	0.58



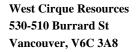
A Bureau Veritas Group Company

		Ca	Cd	Co	Cr	Cs	Cu	Fe	Ga	Ge	In	K	Li	Mg	Mn
		50-4A-UT													
Sample	Sample	%	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	%	ppm	%	ppm
Description	Туре	0.01	0.02	0.1	1	0.05	0.2	0.01	0.05	0.05	0.01	0.01	0.2	0.01	5
1936657	Rock	1.22	3.86	68.0	52	0.50	>10000	>25	16.82	1.13	0.79	0.08	7.1	1.99	633
1936658	Rock	1.25	2.85	95.8	55	0.51	>10000	>25	17.48	1.46	1.04	0.01	4.1	1.47	512
1936659	Rock	6.85	0.66	46.0	52	11.22	115.6	11.76	17.73	1.67	0.08	2.45	16.5	2.22	2180
1936660	Rock	>10	0.74	45.9	59	1.17	112.9	11.46	13.11	1.18	0.06	0.14	22.2	3.28	1949
1936661	Rock	7.49	0.98	50.6	89	1.92	>10000	10.64	14.38	1.19	0.44	0.24	37.4	1.95	1771



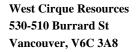
A Bureau Veritas Group Company

		Mo	Na	Nb	Ni	Р	Pb	Re	Sb	Sc	S	Se	Rb	Sn	Sr
		50-4A-UT													
Sample	Sample	ppm	%	ppm	%	ppm	ppm	ppm	ppm						
Description	Туре	0.05	0.01	0.1	0.2	10	0.5	0.002	0.05	0.1	0.01	1.0	0.1	0.2	0.2
1936657	Rock	306.48	0.70	0.6	27.9	360	16.0	0.130	3.33	6.1	4.377	8.5	3.0	2.0	322.0
1936658	Rock	187.35	0.25	0.9	37.1	782	14.4	0.046	4.81	6.5	5.829	13.4	0.4	1.6	307.8
1936659	Rock	1.85	0.10	1.2	28.5	246	30.9	0.004	60.85	42.6	1.436	1.4	68.2	1.2	171.6
1936660	Rock	0.71	0.01	0.9	34.7	254	19.9	< 0.002	4.57	46.8	< 0.01	2.0	4.6	1.1	181.0
1936661	Rock	39.42	0.03	1.1	14.7	755	75.9	0.006	8.69	12.0	1.346	6.1	7.5	1.5	124.7



A Bureau Veritas Group Company

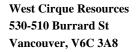
			Та	Те	Th	Ti	Tl	U	V	W	Y	Zn	Zr
			50-4A-UT										
	Sample	Sample	ppm	ppm	ppm	%	ppm						
Des	scription	Туре	0.05	0.05	0.2	0.005	0.02	0.1	1	0.1	0.1	2	0.5
	1936657	Rock	0.05	0.30	1.7	0.184	0.02	0.6	368	0.4	2.5	196	9.5
	1936658	Rock	0.07	0.69	0.8	0.154	0.04	0.4	488	0.5	3.4	135	11.6
	1936659	Rock	0.09	0.11	1.0	0.559	1.12	0.8	668	1.7	11.1	144	21.5
	1936660	Rock	0.07	0.15	0.7	0.549	0.02	0.5	617	1.7	10.6	193	21.1
	1936661	Rock	0.08	0.33	1.1	0.183	0.12	1.2	184	3.0	10.2	182	16.6


A Bureau Veritas Group Company

#200 - 11620 Horseshoe Way

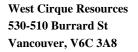
Richmond, BC V7A 4V5 Canada

		Au	Pd	Pt	Ag	Cu	Ag	Ce	Hf	La	Al	As	Ba	Be	Bi
			Pd-1AT-ICP	Pt-1AT-ICP	Ag-AR-TR	Cu-4A-OR-AA	50-4A-UT								
Sample	Sample	ppb	ppb	ppb	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm
Description	Туре	5	5	5	0.1	0.01	0.01	0.01	0.1	0.5	0.01	0.2	5	0.05	0.01
1936657	Rock						21.00	3.35	0.4	1.3	3.98	134.4	54	0.26	1.31
1936657 Dup							21.42	3.40	0.3	1.4	3.76	132.1	56	0.22	1.36
QCV1210-00921-0002-BLK							< 0.01	< 0.01	< 0.1	<0.5	< 0.01	< 0.2	<5	< 0.05	< 0.01
STD-DS-1 expected							0.47				4.48	6930.0	221		
STD-DS-1 result							0.47				4.52	6533.6	236		
1936657	Rock	165	12	<5											
1936657 Dup		165	12	<5											
QCV1210-00922-0002-BLK		<5	<5	<5											
STD-PD1 expected		542	563	456											
STD-PD1 result		498	516	456											
1936657	Rock				21.4										
1936657 Dup					21.2										
QCV1210-01177-0002-BLK					< 0.1										
\$TD-CDN-ME-16 expected					30.8										
STD-CDN-ME-16 result					29.9										
1936657	Rock					2.71									
1936657 Dup						2.75									
QCV1210-01538-0002-BLK						< 0.01									
STD-MP-1B expected						3.07									
STD-MP-1B result						3.12									



A Bureau Veritas Group Company

		Ca	Cd	Co	Cr	Cs	Cu	Fe	Ga	Ge	In	K	Li	Mg	Mn
		50-4A-UT													
Sample	Sample	%	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	%	ppm	%	ppm
Description	Туре	0.01	0.02	0.1	1	0.05	0.2	0.01	0.05	0.05	0.01	0.01	0.2	0.01	5
1936657	Rock	1.22	3.86	68.0	52	0.50	>10000	>25	16.82	1.13	0.79	0.08	7.1	1.99	633
1936657 Dup		1.18	3.92	68.3	52	0.51	>10000	>25	15.94	1.07	0.80	0.08	7.1	1.93	615
QCV1210-00921-0002-BLK		< 0.01	< 0.02	< 0.1	<1	< 0.05	< 0.2	< 0.01	< 0.05	< 0.05	< 0.01	< 0.01	< 0.2	< 0.01	<5
STD-DS-1 expected				9.5			27.1							2.76	437
STD-DS-1 result				10.3			27.1							2.96	450
STD-PD1 expected															
STD-PD1 result															
STD-CDN-ME-16 expected															
STD-CDN-ME-16 result															
STD-MP-1B expected															
STD-MP-1B result															



A Bureau Veritas Group Company

		Мо	Na	Nb	Ni	Р	Pb	Re	Sb	Sc	S	Se	Rb	Sn	Sr
		50-4A-UT													
Sample	Sample	ppm	%	ppm	%	ppm	ppm	ppm	ppm						
Description	Туре	0.05	0.01	0.1	0.2	10	0.5	0.002	0.05	0.1	0.01	1.0	0.1	0.2	0.2
1936657	Rock	306.48	0.70	0.6	27.9	360	16.0	0.130	3.33	6.1	4.377	8.5	3.0	2.0	322.0
1936657 Dup		299.58	0.67	0.6	28.2	432	16.4	0.126	3.47	5.5	4.475	8.0	2.9	1.7	287.7
QCV1210-00921-0002-BLK		< 0.05	< 0.01	< 0.1	< 0.2	<10	< 0.5	< 0.002	< 0.05	< 0.1	< 0.01	<1.0	< 0.1	< 0.2	< 0.2
STD-DS-1 expected					48.7	340	13.8								
STD-DS-1 result					46.4	358	14.2								
STD-PD1 expected															
STD-PD1 result															
STD-CDN-ME-16 expected															
STD-CDN-ME-16 result															
STD-MP-1B expected															
STD-MP-1B result															

A Bureau Veritas Group Company

		Та	Te	Th	Ti	T1	U	V	W	Y	Zn	Zr
		50-4A-UT										
Sample	Sample	ppm	ppm	ppm	%	ppm						
Description	Туре	0.05	0.05	0.2	0.005	0.02	0.1	1	0.1	0.1	2	0.5
1936657	Rock	0.05	0.30	1.7	0.184	0.02	0.6	368	0.4	2.5	196	9.5
1936657 Dup		0.06	0.37	1.8	0.173	0.02	0.7	363	0.4	2.6	198	8.4
QCV1210-00921-0002-BLK		< 0.05	< 0.05	< 0.2	< 0.005	< 0.02	< 0.1	<1	< 0.1	< 0.1	<2	< 0.5
STD-DS-1 expected						20.00					206	
STD-DS-1 result						19.27					200	
STD-PD1 expected												
STD-PD1 result												
TD-CDN-ME-16 expected												
STD-CDN-ME-16 result												
STD-MP-1B expected												
STD-MP-1B result												

ALS Canada Ltd. 2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: WEST CIRQUE RESOURCES LTD 530-510 BURRARD STREET VANCOUVER BC V6C 3A8

CERTIFICATE VA13165939

Project: H

P.O. No.:

This report is for 20 Rock samples submitted to our lab in Vancouver, BC, Canada on 12-SEP-2013.

The following have access to data associated with this certificate:

JOHN BRADFORD

NIGEL LUCKMAN

SAMPLE PREPARATION								
ALS CODE	DESCRIPTION							
WEI-21	Received Sample Weight							
LOG-21	Sample logging - ClientBarCode							
CRU-QC	Crushing QC Test							
PUL-QC	Pulverizing QC Test							
CRU-31	Fine crushing - 70% < 2mm							
SPL-21	Split sample - riffle splitter							
PUL-31	Pulverize split to 85% <75 um							

	ANALYTICAL PROCEDUR	ES
ALS CODE	DESCRIPTION	INSTRUMENT
ME-OG46	Ore Grade Elements - AquaRegia	ICP-AES
PGM-ICP23	Pt, Pd, Au 30g FA ICP	ICP-AES
ME-ICP41	35 Element Aqua Regia ICP-AES	ICP-AES
Cu-OG46	Ore Grade Cu - Aqua Regia	VARIABLE

To: WEST CIRQUE RESOURCES LTD ATTN: JOHN BRADFORD 11571 7TH AVE RICHMOND BC V7E 3B7

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

Signature:

Colin Ramshaw, Vancouver Laboratory Manager

***** See Appendix Page for comments regarding this certificate *****

ALS Canada Ltd.

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: WEST CIRQUE RESOURCES LTD 530-510 BURRARD STREET VANCOUVER BC V6C 3A8

Page: 2 - A Total # Pages: 2 (A - C) Plus Appendix Pages Finalized Date: 20-SEP-2013 Account: WESCIR

Project: H

Sample Description	Method Analyte Units LOR	WEJ-21 Recvd Wt. kg 0.02	ME-ICP41 Ag ppm 0.2	ME-ICP41 Al % 0.01	ME-ICP41 As ppm 2	ME-ICP41 B ppm 10	ME-ICP41 Ba ppm 10	ME-ICP41 Be ppm 0.5	ME-ICP41 BI ppm 2	ME-ICP41 Ca % 0.01	ME-ICP41 Cd ppm 0.5	ME-ICP41 Co ppm 1	ME-ICP41 Cr ppm 1	ME-ICP41 Cu ppm 1	ME-ICP41 Fe % 0.01	ME-ICP41 Ga ppm 10
Q724959 Q724960 Q724961 Q724962 Q724963		1.50 1.06 0.98 2.02 1.26	<0.2 69.4 66.4 43.5 10.3	6.51 2.40 2.97 1.69 1.75	2 535 1400 27 49	<10 <10 <10 10 10	320 20 40 40 180	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5	₹ ₹ ₹ ₹ ₹ ₹	4.32 0.18 0.59 1.32 1.99	<0.5 1.1 0.9 <0.5 <0.5	30 185 122 22 42	1 <1 3 5	342 >10000 >10000 8880 9170	8.37 25.1 18.5 20.3 17.7	10 10 10 10
Q724964 Q724965 Q724966 Q724967 Q724968		1.22 0.82 0.70 1.04 1.16	3.6 0.9 2.4 0.4 7.1	4.92 4.04 2.31 2.42 3.22	20 10 28 6 20	<10 <10 <10 <10 <10	40 130 50 40 190	≪0.5 ≪0.5 ≪0.5 ≪0.5 ≪0.5	8 8 8 8 B	3.36 3.03 1.48 1.18 3.81	≪0.5 ≪0.5 0.5 ≪0.5 0.5	39 23 30 111 47	4 4 5 2 6	3380 2420 2450 173 >10000	15.8 9.70 11.35 12.35 11.90	20 10 10 10
Q724969 Q724970 Q724971 Q724972 Q724972 Q724973		1.10 1.56 1.04 1.22 1.58	2.1 0.5 0.3 0.2 1.6	2.16 2.89 1.61 1.91 2.11	112 6 4 2 6	<10 <10 <10 <10 <10	30 160 130 90 50	2.3 0.6 0.5 <0.5 <0.5	2 4 4 4 4	0.26 2.27 0.81 2.12 2.07	<0.5 <0.5 <0.5 <0.5 <0.5	251 24 11 13 22	2 12 7 3 4	>10000 1260 226 61 1440	31.5 7.13 3.78 2.82 3.48	10 10 10 10 10
Q724977		1.78 1.46 1.26 2.44 1.48	1.4 29.8 78.5 0.5 0.4	1.30 2.07 2.34 2.78 3.86	4 86 136 6 10	<10 <10 <10 <10 <10	400 120 50 260 110	0.6 ≪0.5 ≪0.5 ≪0.5 ≪0.5	Q 2 Q Q 3	0.89 0.71 0.66 2.72 3.47	<0.5 <0.5 1.9 <0.5 <0.5	32 14 38 33 34	2 4 3 8 5	1390 2500 >10000 515 430	9.58 10.60 18.4 9.32 7.33	10 10 10 10
Q724976 Q724977 Q724978		2.44	0.5	2.78	136	<10	50 260	<0.5	22	2.72	<0.5	38 33	8	515	9.32	

ALS Canada Ltd.

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: WEST CIRQUE RESOURCES LTD 530-510 BURRARD STREET VANCOUVER BC V6C 3A8

Page: 2 - B Total # Pages: 2 (A - C) Plus Appendix Pages Finalized Date: 20-SEP-2013 Account: WESCIR

Project: H

ALS Canada Ltd. 2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: WEST CIRQUE RESOURCES LTD 530-510 BURRARD STREET VANCOUVER BC V6C 3A8

Page: 2 - C Total # Pages: 2 (A - C) Plus Appendix Pages Finalized Date: 20-SEP-2013 Account: WESCIR

Project: H

Sample Description	Method Analyte Units LOR	ME-ICP41 TI % 0.01	ME-ICP41 TI ppm 10	ME-ICP41 U ppm 10	ME-ICP41 V ppm 1	ME-ICP41 W ppm 10	ME-ICP41 Zn ppm 2	Cu-OG46 Cu % 0.001	PGM-ICP23 Au ppm 0.001	PGM-ICP23 Pt ppm 0.005	PGM-ICP23 Pd ppm 0.001	
Q724959 Q724960 Q724961 Q724962 Q724962 Q724963		0.23 0.06 0.12 0.08 0.19	<10 <10 <10 <10 <10	<10 <10 <10 <10 <10	455 195 250 243 382	<10 <10 <10 <10 <10	21 217 192 48 125	7.70 2.06	0.008 0.763 2.33 0.892 0.203	<0.005<0.005<0.005<0.005<0.005<0.005<0.005	0.003 0.014 0.047 0.023 0.015	
Q724964 Q724965 Q724966 Q724967 Q724968		0.04 0.16 0.17 0.26 0.01	<10 <10 <10 <10 <10 <10	<10 <10 <10 <10 <10 <10	340 401 453 342 122	<10 <10 <10 <10 <10 <10	190 26 87 80 207	1.735	0.040 0.052 0.024 0.008 0.012	<pre><0.005 <0.005 0.011 <0.005 <0.005 <0.005 <0.005</pre>	0.010 0.025 0.016 0.016 0.003	
Q724969 Q724970 Q724971 Q724972 Q724972 Q724973		0.02 0.18 0.15 0.17 0.15	<10 <10 <10 <10 <10	<10 <10 <10 <10 <10	233 352 95 47 63	50 <10 <10 <10 <10	200 45 46 49 58	1.520	0.022 0.179 0.006 0.003 0.012	<0.005 0.022 <0.005 0.017 <0.005	0.104 0.090 0.003 0.136 0.005	
Q724974 Q724975 Q724976 Q724976 Q724977 Q724978		0.05 0.14 0.12 0.24 0.13	<10 <10 <10 <10 <10	<10 <10 <10 <10 <10	164 190 227 437 328	<10 <10 <10 <10 <10	42 156 552 47 54	4.08	0.046 0.198 0.482 0.016 0.014	<0.005<0.005<0.005<0.0050.005<0.005<0.005	0.004 0.007 0.040 0.036 0.016	
Q724978		0.13	<10	<10	328	<10	54		0.014	<0.005	0.016	

ALS Canada Ltd. 2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: WEST CIRQUE RESOURCES LTD 530-510 BURRARD STREET VANCOUVER BC V6C 3A8

Page: Appendix 1 Total # Appendix Pages: 1 Finalized Date: 20-SEP-2013 Account: WESCIR

Project: H

	LABORATORY ADDRESSES			
Applies to Method:				
	Processed at ALS Vancouv CRU-31 ME-ICP41 PUL-QC	ver located at 2103 Dollarton Hwy, No CRU-QC ME-OG46 SPL-21	rth Vancouver, BC, Canada. Cu-OG46 PGM-ICP23 WEI-21	LOG-21 PUL-31