COPPER TREE PROJECT BURNS LAKE, BRITISH COLUMBIA UTM ZONE 10 - 339163 - 6012099

BC Geological Survey Assessment Report 34639

COPPER TREE PROJECT TABLE OF CONTENTS

PAGE 1-2 Assesment Report Form PAGE 3 Statement of expenses History, Location and access PAGE 4 **PAGE 5-6** Target, Geology and work done Bark Data Log PAGE 7 PAGE 8 **Tenure Report** PAGE 9 Location Map PAGE 10 Claim Map PAGE 11 Rock Sample Location Map **Bark Sample Location Map** PAGE 12 PAGE 14-17 Photo Section PAGE 18-21 Bark Sample Results PAGE 22-25 Rock Sample Results

Ministry of Energy, Mines & Petroleum Resources Mining & Minerals Division BC Geological Survey

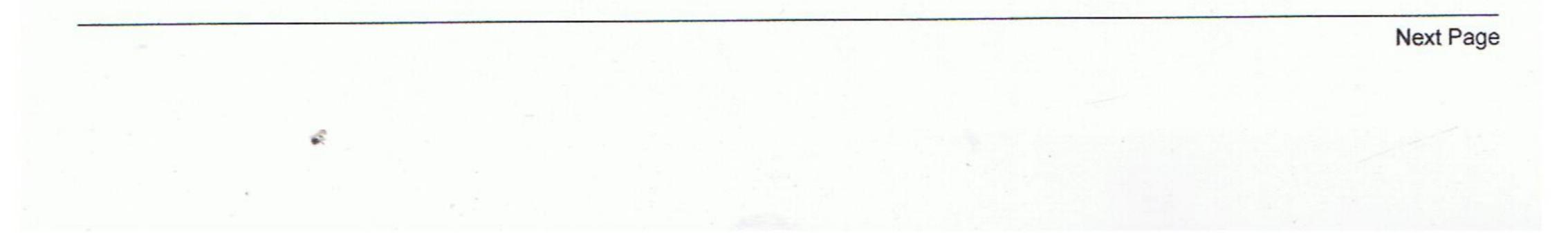
TYPE OF REPORT [type of survey(s)]: Prospecting, rock and bark sampling.

Assessment Report Title Page and Summary

TOTAL COST: 2490.00

AUTHOR(\$): Jonathan Rempel	SIGNATURE(\$):	
NOTICE OF WORK PERMIT NUMBER(S)/DATE(S):		YEAR OF WORK: 2013
STATEMENT OF WORK - CASH PAYMENTS EVENT NUMBER(S)/DATE(S):		
PROPERTY NAME: COPPER TREE PROPERTY	1	

CLAIM NAME(S) (on which the work was done): Copper tree property- 1020156, and Voortrekker property- 1020279



COMMODITIES SOUGHT: Copper, Molybdenum, Silver, Zinc and Gold

MINERAL INVENTORY MINFILE NUMBER(S), IF KNOWN:

AINING DIVISION: Omineca	NTS/BCGS:
ATITUDE: 54 ° 14 '1 LONGITUDE: 125	^o 28 <u>'0</u> " (at centre of work)
WNER(S):	
) Jonathan Rempel	2)
AILING ADDRESS:	
Po Box 111 Fort Fraser BC V0J 1N0	
OPERATOR(S) [who paid for the work]:	
I) Jonathan Rempel	2)
AILING ADDRESS:	

REFERENCES TO PREVIOUS ASSESSMENT WORK AND ASSESSMENT REPORT NUMBERS:

Ground, mapping		
Photo interpretation 4 hours	1020156, 1020279	120.00
GEOPHYSICAL (line-kilometres)		
Ground		
Magnetic		
Electromagnetic		
Induced Polarization		
Radiometric		
Seismic		
Other		
Airborne		
GEOCHEMICAL (number of samples analysed for)		
Soil		
Silt		
Rock 5 samples	1020156, 1020279	
Other 14 Lodgepole pine bark samples	1020256, 1020279	
DRILLING (total metres; number of holes, size)		
Core		
Non-core		
RELATED TECHNICAL		
Sampling/assaying 2 rock, 14 bark samples	1020156, 1020279	810.00
Petrographic	· · ·	
Mineralographic 3 rock samples	1020156, 1020279	45.00
Metallurgic		
PROSPECTING (scale, area) 43 man hours 350 Ha,	1020256, 1020279	1515.00
PREPARATORY / PHYSICAL		
Line/grid (kilometres)		
Topographic/Photogrammetric (scale, area)		
Legal surveys (scale, area)		
Road, local access (kilometres)/trail		
Trench (metres)		
Underground dev. (metres)		
Other		s.
	TOTAL COST:	2490.00

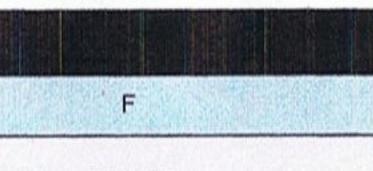
12. COST STATEME	NT (See Info	rmation B	Update N	o. 8 at www.1	MineralT C
WORK ACTIVITY	* TRAVEL / T	equipment		cost per p	ABOUR erson (supe urers, etc)
	Туре	vorksite) km	Rate /km	Туре	Hours
Prospecting, sampling	4x4 pickup	100	\$0.75	Prospector	10
Prospecting, sampling	4x4 pickup	100	\$0.75	Prospector	11
Lodgepole pine bark sampling	4x4 pickup	100	\$0.75	Bark sampler	11
				Bark sampling assistant	11
TOTALS			\$225.00		\$

* Travel / Transportation (cont'd)


Was a helicopter required to access the property? O YES .

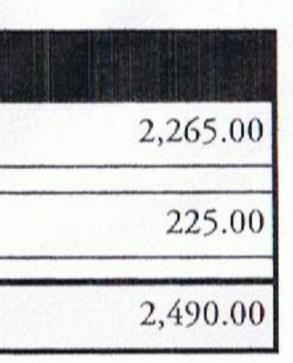
If your travel/transportation total was <u>standard (ground)</u> access, the allowable limit is capped at **20% of columns B,C,D,F** \$453.00

If your travel/transportation total required <u>helicopter</u> access, the allowable limit is capped at 5**0% of columns B,C,D,F** \$1,132.50


		D			E		THE P
	EXPLORA	TION EQU		FOO	D/ LODG	ING	
ervisor	(all found ra	te including	operator)	(only include	costs while claim)	working on	(m
Rate /hr	Equipment	Hours	Rate /hr	Person	# Days	Rate /day	Descrip
\$30.00							Assay for VT-2
\$30.00		,					Shipping Vancouv
\$30.00							Assay for
\$30.00							Shipping Vancouv
							Mineralo
							Mapping interpret
51,290.00		Al and a second second					

• NO

TOTAL VALUE	CLAIMED
-------------	---------


otal costs from columns C, D, E, F:	\$
otal allowable transportation costs:	\$
otal value claimed as assessment:	\$

OTHER

must be an applicable cost)

otion (include Rates)	Cost
samples VT-1 and	\$80.00
; samples to er	\$50.00
Bark samples	\$630.00
, bark samples to er	\$50.00
ographic studies	\$45.00
g and photo ation	\$120.00
	\$975.00

Page 3 of 5

24

HISTORY

The Copper Tree Property was staked on June 08 2014 after reviewing data on lodgepole pine bark sampling done in in Central British Columbia by Colin Dunn from 2001 to 2009.

The Copper Tree mineral claim was staked to cover 2 sites he had sampled that are anomalous for copper and silver. The ashed samples assayed, (Sample 2458, 381ppm Cu and 3.2 ppm Ag, Sample 2463, 351 ppm Cu and 1.7 ppm Ag), are considered highly anomalous when compared to the same sampling methods and medium as done over known orebodies such as Mt Milligan.

More claims were added to the group as surface prospecting and lodgepole pine bark sampling was done and results received showing all bark samples being anomalous for Cu, Mo and Zn and most anomalous for Ag and Au.

The ajoining Boer Project to the west has had bark sampling and surface prospecting recently by its owners and the results have been very good.

LOCATION

The Copper Tree Project is located in the Omineca Mining District 17 kilometers due east of the resource town of Burns Lake in Central British Columbia and 30 kilometres northwest of the large Endako molybdenum mine.

ACCESS

Access to the property is by by well maintained logging roads.

Turn north off the Yellowhead Highway 16, 22 kilometres east of Burns Lake onto the Augier Forest Service Road, turn left at 6.5 kilometer onto the Co-op FSR that goes across the southwest of the property beginning at approximatly 4 kilometre. The Co-op FSR is paralleled by a natual gas pipeline to the north that provides good 4x4 access.

The northeast portion of the claims can be accessed by following the Augier to 12 kilometre and turning left onto the Pit road.

TARGET

The target of exploration on this property is for Copper, Molybdenum,Silver, Gold and Zinc porphyry type deposits and associated mineralization of economic value.

GEOLOGY

The area is underlain with Middle Jurassic age Quartz Diorite of the Endako Batholith and thinly covered with glacial till.

The diorite is exposed in some ridge areas on northern portions of the property and in gullies in the eastern corner.

Several small < 3 metre Andesite dikes have been noted perhaps of the Late Cretaceous Kasalka Group that is mapped to the south of the property.

WORK DONE

Visited the Copper Tree Claim on 2013-06-16, spent 10 hours prospecting and evaluating access. Two samples were taken, Sample VT-1 from a 3 metre wide Andesite dike that contained approximately 2% Pyrite and large <4mm Sandine crystals. (UTM 0339947-6012430)

A second sample VT-2 was taken from a Diorite outcrop with small oxidized zenoliths of Andesite containing > 2% Pyrites. (UTM 340543-6012587)

Assay results from VT-1 show elevated levels of Copper at 60 ppm. The property was visited again on 2013-08-13, 11 hours were spent traversing for and prospecting outcrops, 3 samples were taken from outcrops, all contained abundant Pyrites.

(VT-3, 339741-6012657 / VT-4, 339502-6012558 / VT-5, 340636-6012422.)

These 3 samples were analyized with a DinoLite microscope and although indications are that Vt-3 and VT-4 may be anomalous for Cu they have not been sent for assay at this point.

Due to lack of outcropping and poorly developed soil horizons it was decided that the best prospecting tool would be Lodgepole Pine bark

sampling done and assayed in the same manner as done by Colin Dunn 2001-2009 and the owners of the ajoining Boer Property.

On 2013-10-26 the author and an assistant spent 11 hours taking 14 Lodgpole Pine bark samples, 7 along the Co-op FSR and 7 along the natural gas pipeline that parallels the Co-op approximatly 500 metres to the northeast.

These samples were taken by scraping the outer bark off lodgepole pine trees with a Geotool mattock into a modified dustpan, these samples were weighed onsite to ensure a minimum 80 gram sample weight and bagged into Hubco cloth sample bags and shipped to Acme Anylitical Laboratories in Vancouver BC for ashing and Ultratrace ICP-MS 36 element assay.

Great care was taken to ensure a high level of quality control, no jewelrey was worn, the mattock and dustpan were cleaned in between samples. Samples were taken on 250 metre intervals, trees were selected by going to the preselected sample site and selecting a tree within a 25 metre radius with a focus on selecting a trees of similiar size and age.

Samples taken along the Co-op road were taken a minimum 30 metres from road to avoid contamination by road dust.

The lab was personally contacted to ensure the 14 samples taken would be subject to the same ashing and assay procedures as the Colin Dunn 2001-2009 sampling and the ajoining Boer project.

Results are very encouraging, with all 14 bark samples returning values over 202 ppm Cu with 4 over 300 ppm Cu and CT-9 at 363.93 ppm Cu. 12 samples returning Mo over 100 ppm, 12 samples returning Ag over 1 ppm with 4 ranging from 3.2 to 4.3 ppm Ag. The 14 samples returned Au values from 6.4 to 26.5 ppb Au. Zn is also strong with samples ranging from 1266 to 2511 ppm Zn.

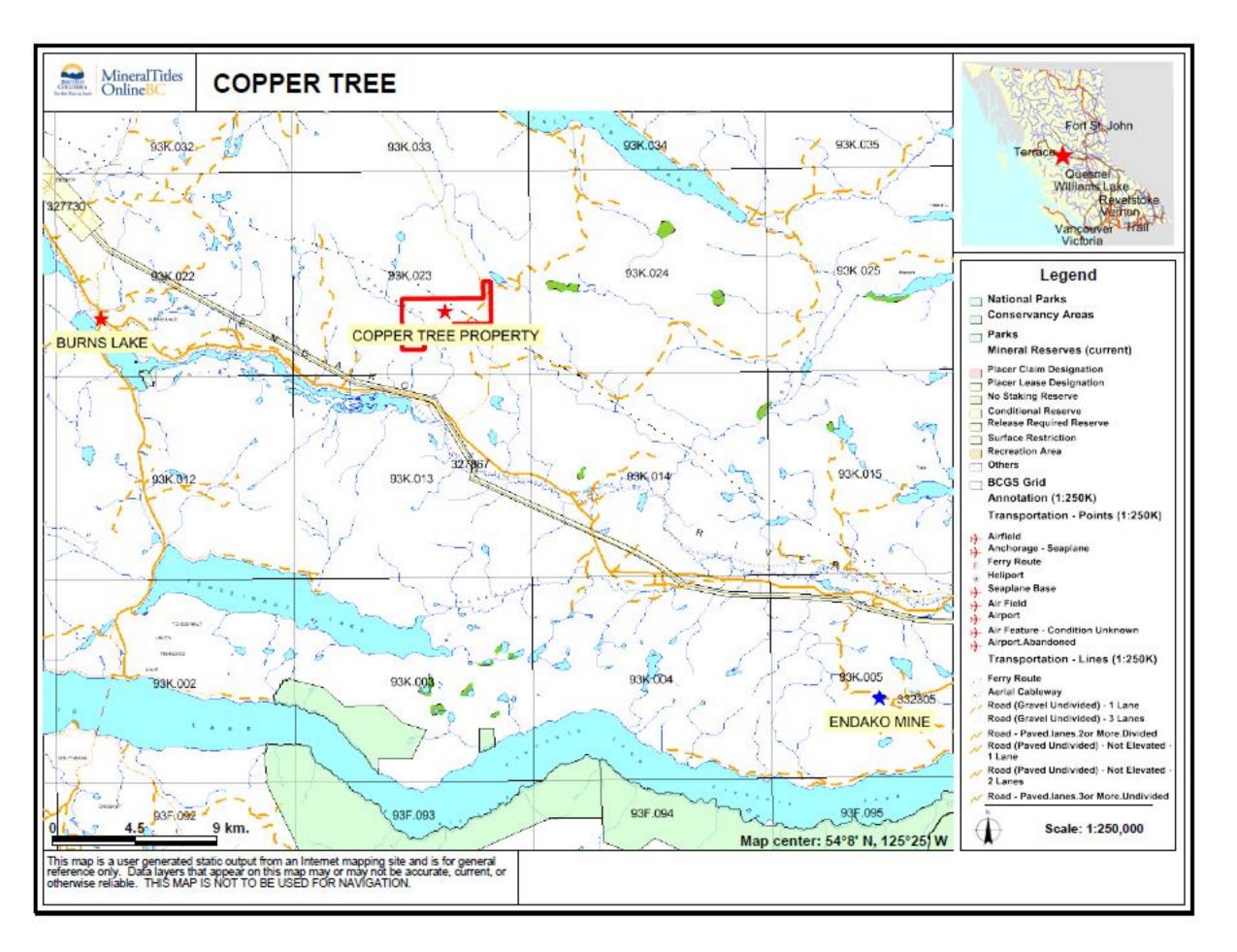
Jon Rempel Prospector Fort Fraser British Columbia Po Box 111 V0J 1N0 250-690-7239

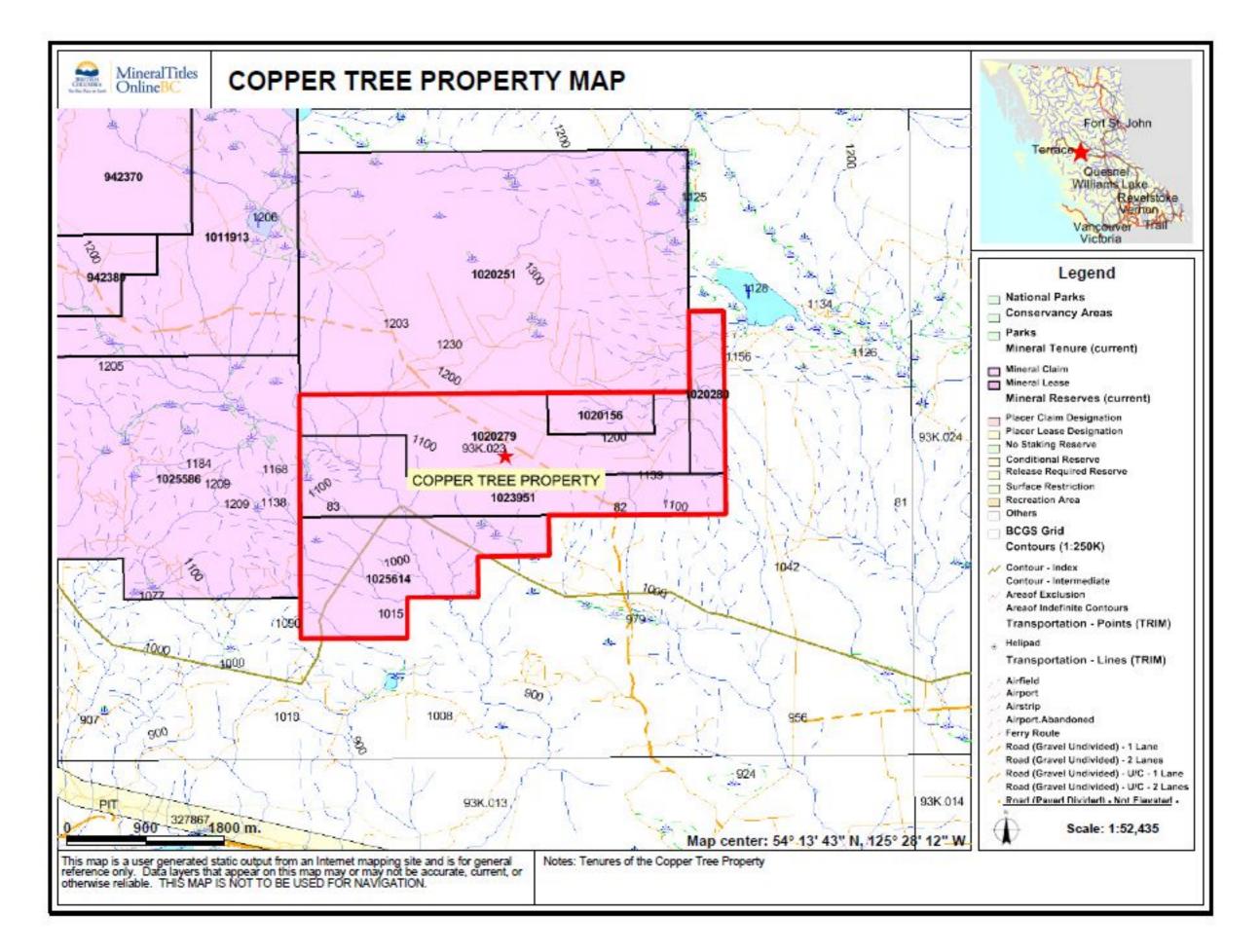
		DIALE		COPPER TREE PROJECT
SAMPLE	LOCATION	PINE	SAMPLE	DATE -> 2013-10-26
ID#	ZONE ID	SIZE	WEIGHT	SITE DESCRIPTION
CT-1	339573 6011807	44cm	812	PREDOMINATLY SPRUCE AREA THINSOIL - MIXED CLAY AND COARSE GRAVET
CT-2	339348	31 cm	84 3	SO/SO PINESPROLE FOREST THIN SOIL - CORRSE GRAVEL
CT-3	339163 6012.099	28cm	969	PREDOMINANTLY SPRUCE FOREST THIN SOIL - LARGE COARSE GRAVEL
CT-4	338959 6012237	37 cm	873	SO/SO PINE/SPRUCE POREST THIN SOIL OVER GRAVEL
CT-5	338743	29cm	873	SO/SO PINE/SPRUCE FOREST NO TOPSOIL - COARSE GRAVEL - LARGE STONE
CT-6	338546	31cm	939	40/60 PINE/SPRUCE FOREST NO TOPSOIL-VERY COARSE GRAVEL
CT-7	338325	32cm	80,	PREDOMINANTLY SPRUCE WITH LARDE ALDER-SOME PINE THICK TOPSOIL
CT-8	339040	33cm	913	PREDOMINANTLY PINE FOREST THIN SOIL OVER GRAVEL
CT-9	339265	35cm	85g	50/50 PINE/SPRUCE FOREST THIN SOEL - MIXED SAND+ CLAY
CT-10	339 461 601 2440	36cm	873	40/60 PINE & PRUCE FOREST THIN SOIL - MIXED GRAVEL+ CLAY
CT-11	339664	33cm	83,	ZS/75/ PANE/SPRUCE BEDROCK OUTCROP ION THINSOIL COARSE GRAVEL EAST (AND)
CT-IZ	「「「「「「「「「「「「「「「」」」」」」」「「「「」」」」」」	SCHOOLMARM FROM GROUND 2 25cm STEPS	819	PREDOMINANTLY SPRUCE THICK MOIST SOIL
CT-13	340098	26cm	82,	25/75 - PINE/SPRUCE MEDIUMSOIL OVER COARSE GRAVEL
CT-14	340297	32cm	87,	PREDONINANTLY SPRUCE FINE GRAINED COURTZDIORITE THIN SOIL - CLAY-GRAVEL OUT CROPS
	and a constraint of the second se	And a state of the second s		

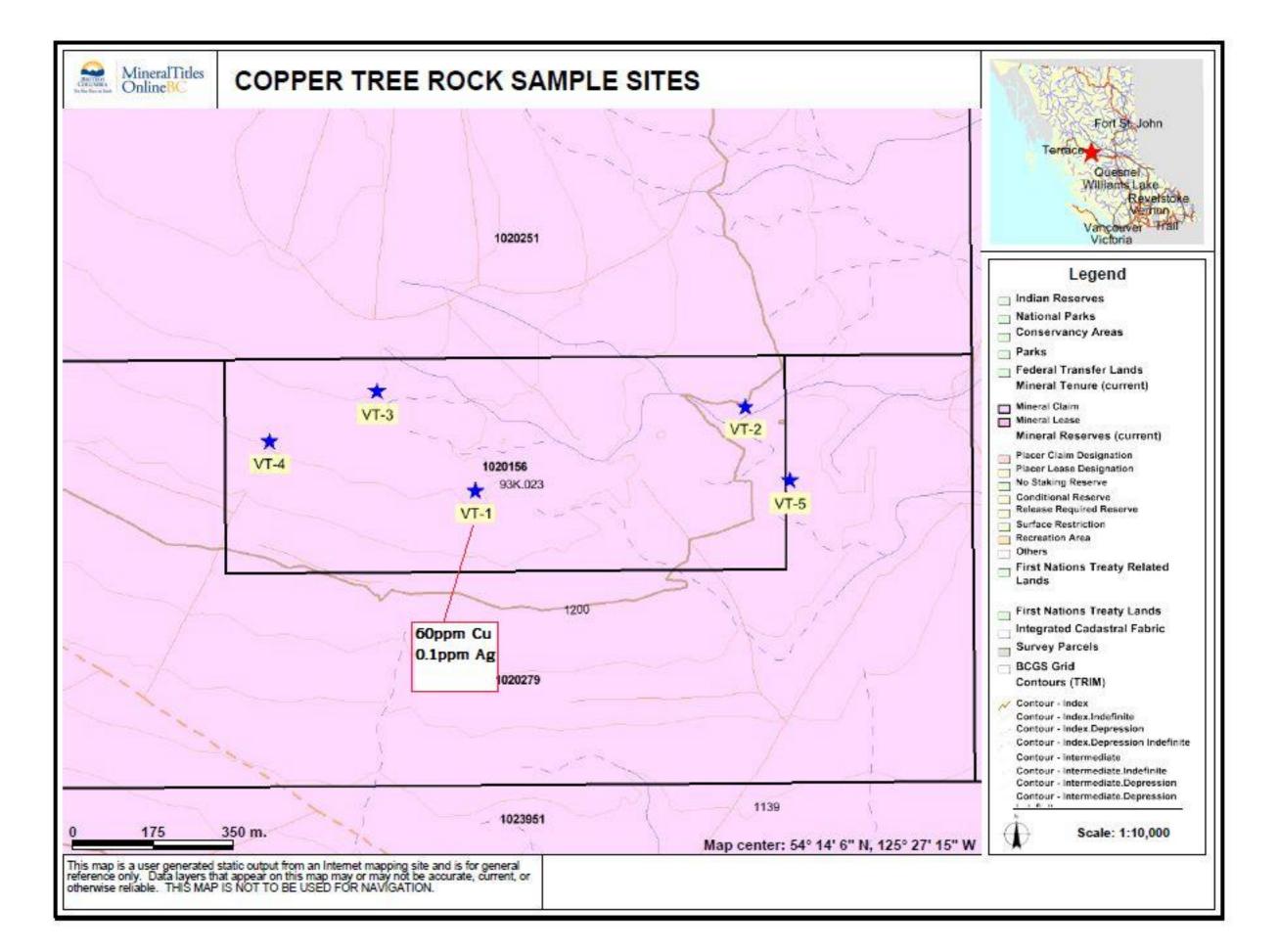
Mineral Titles Online Report

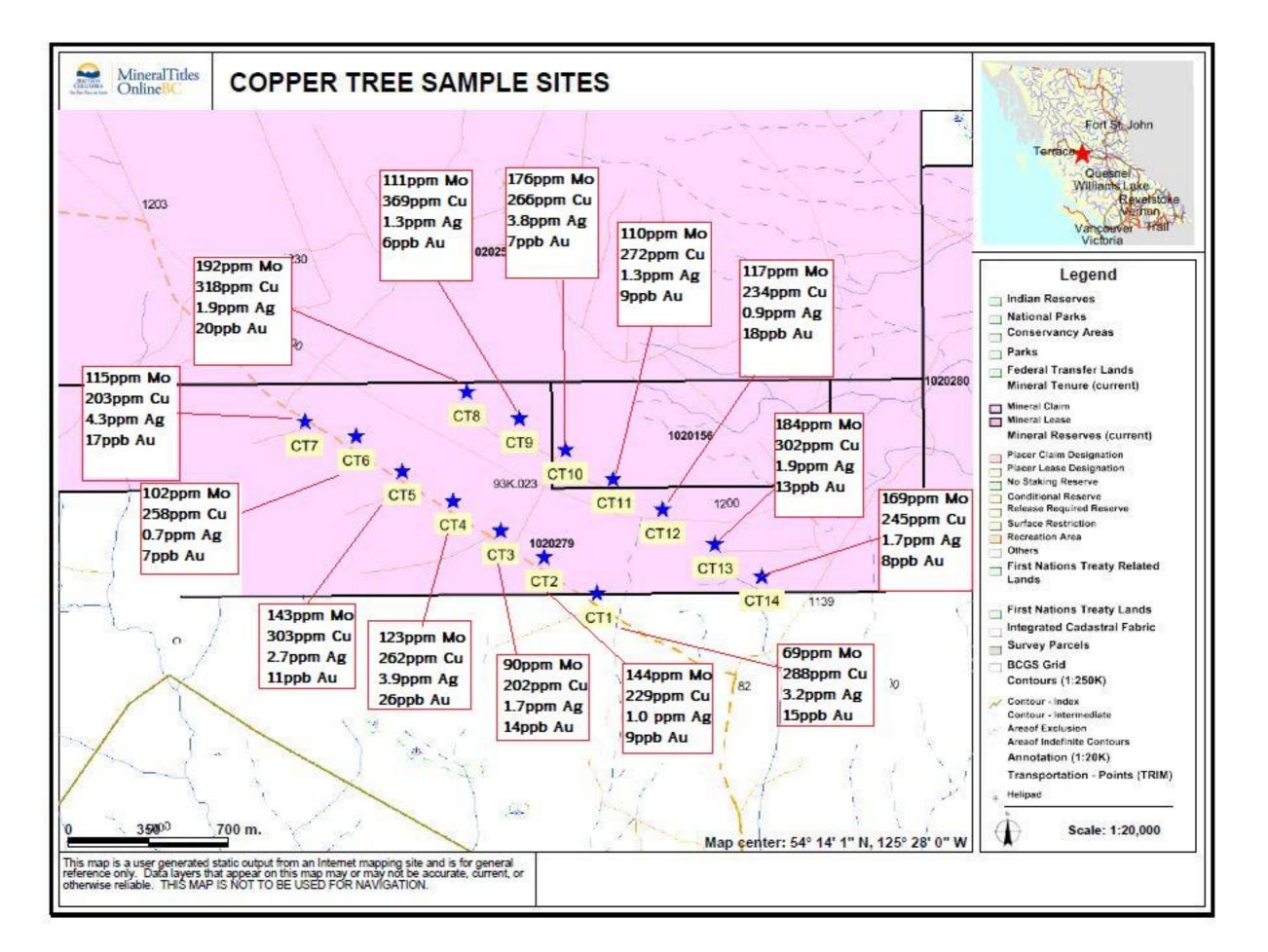
Click on Tenure Numbers for more information.

Click column headings to sort results.

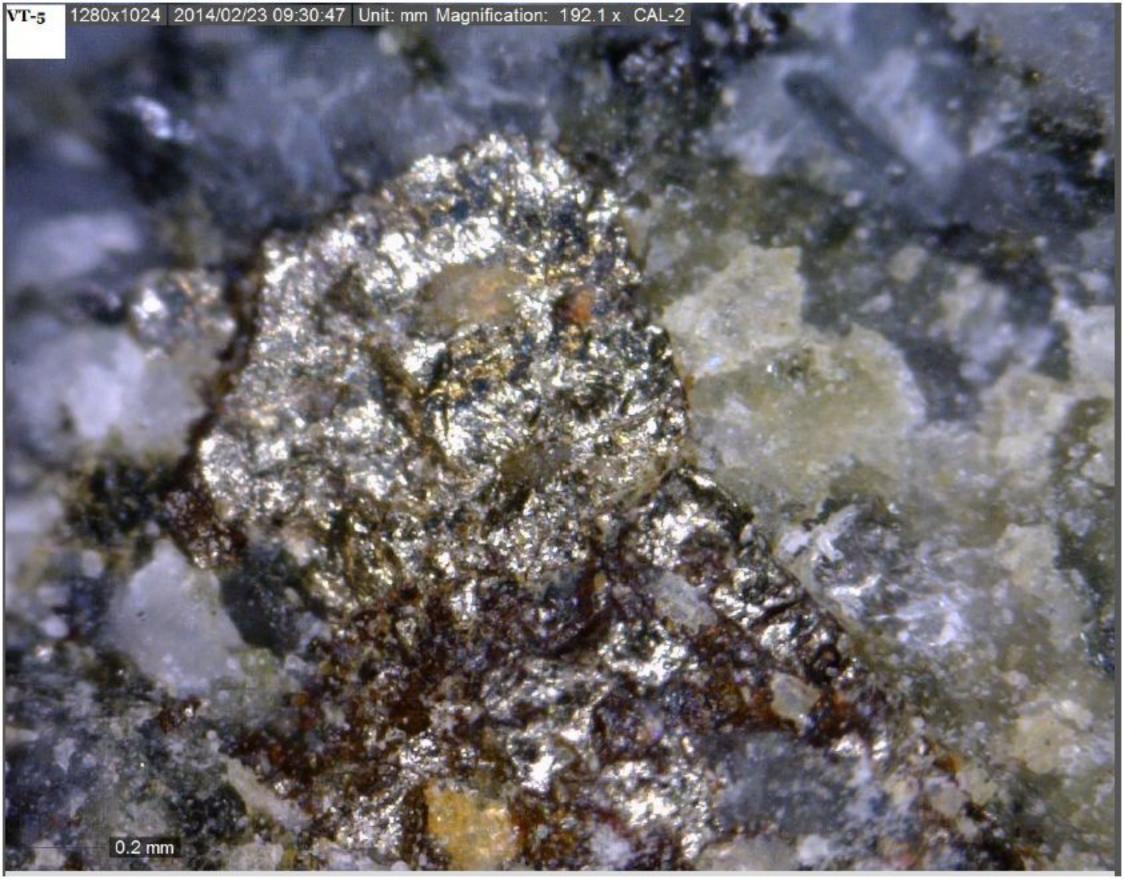

Download to Excel


Tenure Number	<u>Type</u>	Claim Name	Good Until	<u>Area</u> (ha)
1020156	Mineral	COPPER TREE PROPERTY	20140608	56.7076
1020279	Mineral	VOORTREKKER PROPERTY	20140612	302.4541
1020280	Mineral	VOORTREKKER 2	20140612	75.6064
1023951	Mineral	COPPER TREE 2	20141122	283.5867
1025614	Mineral	COPPER TREE DREAMS	20150131	283.6401


Total Area: 1001.9949 ha


LIBC Metadata

<u>Mineral Title Online</u> <u>BC Geological Survey</u> <u>British Columbia Ministry of Energy and Mines</u> Last updated in April 2007



Acı	ne Lab)Տ™										Clien	t	POB	skus I ox 111 Traser BC			1000000	y Ltd				
	itas Group Company			www	www.acmelab.com									Copper Tree									
												Report	Date:	Nove	mber 22,	2013							
	boratories (Vancouv											112111111			11.11.11.11.1								
	St Vancouver BC V	6P 6E5	CANA	DA																			
HONE (604) 253-	3158											Page:		2 of 2	12				Pa	rt 1	of 2		
CEDTIEIC		LALV		8												1/4	N144		1500	1			
CERTIFIC	ATE OF AN	VALI	212	2												VA	IN L	5004	1599	- 10			
	Method	VA475	VA475	VA475	1F	1F	1F.	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F	1		
	Analyte	Reo. Wie	Ach WL	shed Wt	Mo	Cu	Pb	Zn	Ag	NI	Co	Mn	Fe	As	0	Au	Th	Sr	Cd	SD	1		
	Unit	Q	a	a	ppm	ppm	ppm	ppm	ppb	ppm	ppm	ppm	96	ppm	ppm	ppb	ppm	ppm	ppm	ppm	pp		
	MDL	0.01	0.001	0.001	0.01	0.01	0.01	0.1	2	0.1	0.1	1	0.01	0.1	0.1	0.2	0.1	0.5	0.01	0.02	0.0		
CT-1	Vegetation		68.151	0.781	69.09	288.84	28.90	2302.9	3242	16.2	7.7	4613	0.63	1.7	0.2	15.8	0.4	961.8	11.59	1.53	0.1		
CT-2	Vegetation		68.291	0.856	144.60	229.42	45.33	1266.3	1033	23.2	14.2	4535	0.90	2.4	0.4	9.0	0.6	701.2	11.35	2.75	0.3		
CT-3	Vegetation		70.579	0.905	90.48	202.38	33.26	1516.0	1730	14.6	6.8	3559	0.75	1.6	0.3	14.0	0.4	1232.1	15.25	1.61	0.1		
CT-4	Vegetation		70.765	0.800	123.47	262.36	40.66	2511.4	3959	28.4	8.2	7236	1.01	2.1	0.3	26.5	0.6	989.3	13.11	2.28	0.3		
CT-5	Vegetation		70.948	0.893	143.82	303.87	32.02	1810.6	2741	30.4	6.0	5785	0.80	1.7	0.3	11.1	0.4	872.5	14.87	1.61	0.2		
CT-6	Vegetation		69.757	0.882	102.41	258.78	37.68	1801.1	725	19.9	5.9	4506	0.73	1.8	0.3	7.4	0.4	749.2	25.70	2.07	0.2		
CT-7	Vegetation		66.134	0.789	115.54	203.33	29.94	1889.3	4314	27.8	5.7	6223	0.63	1.5	0.2	17.9	0.4	980.5	12.36	1.30	0.1		
CT-8	Vegetation		70.786	0.717	192.43	318.32	54.65	1327.1	1929	17.8	6.7	4544	0.79	2.5	0.3	20.7	0.4	543.8	12.86	2.52	0.4		
CT-9	Vegetation		70.125	0.931	111.43	363.93	41.54	1881.4	1382	15.2	4.1	4285	0.63	1.3	0.2	6.4	0.3	889.0	23.79	2.12	0.2		
CT-10	Vegetation		70.214	0.866	176.60	266.99	65.23	1806.8	3841	33.2	5.0	4254	0.80	2.4	0.3	7.5	0.4	760.5	21.30	3.42	0.4		
CT-11	Vegetation		70.165	0.833	110.39	272.66	31.58	1695.6	1325	11.5	4.4	2869	0.67	1.6	0.2	9.0	0.3	626.1	18.03	1.95	0.2		
CT-12	Vegetation		68.028	0.912	117.80	234.83	37.36	1627.3	906	6.6	4.4	2538	0.55	1.9	0.2	18.8	0.3	402.1	9.36	2.15	0.2		
CT-13	Vegetation		70.165	0.723	184.79	302.36	71.88	2379.7	1907	17.1	6.3	4414	0.99	2.6	0.4	13.3	0.6	518.1	13.25	3.61	0.4		
CT-14	Vegetation		70.972	0.802	169.87	245.37	36.91	1927.5	1796	31.7	9.5	7661	0.73	1.8	0.3	8.9	0.4	476.2	10.60	2.52	0.3		
OVEN STD-1	Vegetation		18,790	0.537	0.18	39.10	7 40	1540.3	951	11.0		>10000	0.13	2.4	2.0	1.2	0.8	576.7	0.24	0.43	0.1		

	me Lab	S™		wow	acmela	b.com						Clien		PO Bo Fort F	x 111 raser BC		Contra CANAD		Ltd			
A Bureau ver	itas Group Company			www.acmelab.com									Date:	Copper Tree November 22, 2013								
Acme Analytical Laboratories (Vancouver) Ltd.												Report	Date.	Ivoven	nber 22, 2	2013						
050 Shaughnessy	y St Vancouver BC Ve	P 6E5	CANAD	A																		
HONE (604) 253-	-3158											Page:		2 of 2					Pa	art: 2	of 2	
		ALX		e.												1/4	NIAO	004				
CERTIFIC	CATE OF AN	ALY	SIS													VA	N13	004	599	.1		
	Method	1F	1F	1F	1F	1E	1E	1F	1F	1E	1F	1F	1E	1F	1F	1F	1F	1F	1F	1F	16	
	Analyte	V	Ca	P	La	Cr	Mg	Ba	Ti	В	AI	Na	K	W	Sc	TI	S	Hg	Se	Te	G	
	Unit	ppm	96	%	ppm	ppm	%	ppm	96	ppm	%	96	%	ppm	ppm	ppm	%	ppb	ppm	ppm	ppm	
	MDL	2	0.01	0.001	0.5	0.5	0.01	0.5	0.001	20	0.01	0.001	0.01	0.1	0.1	0.02	0.02	5	0.1	0.02	0.1	
CT-1	Vegetation	16	22.04	1.435	4.2	6.5	2.63	475.5	0.016	755	4.54	0.175	5.64	0.2	1.2	0.10	1.05	<5	0.5	<0.02	1.4	
CT-2	Vegetation	27	23.56	1.588	5.7	8.3	2.37	376.6	0.024	301	1.40	0.144	4.26	0.4	2.4	0.10	1.26	<5	1.0	<0.02	2.1	
CT-3	Vegetation	20	22.52	1.544	4.1	8.7	2.21	363.0	0.022	372	1.24	0.196	7.43	0.3	1.8	0.14	0.91	<5	0.4	<0.02	2.	
CT-4	Vegetation	28	19.75	1.679	5.9	10.4	2.74	423.9	0.026	418	3.17	0.170	4.81	0.3	2.3	0.16	1.06	<5	0.8	<0.02	2.4	
CT-5	Vegetation	20	23.35	2.142	4.4	7.6	1.65	411.3	0.022	478	3.09	0.109	3.92	0.2	1.9	0.16	1.06	<5	1.1	<0.02	1.7	
CT-6	Vegetation	20	24.26	1.530	4.8	7.9	1.63	323.3	0.020	224	3.37	0.126	3.92	0.3	1.8	0.11	0.99	<5	1.0	<0.02	1.8	
CT-7	Vegetation	16	21.79	4.062	3.9	6.4	2.75	689.4	0.020	560	3.20	0.116	7.95	0.4	1.4	0.14	1.20	<5	0.8	0.06	1.8	
									0.022	355	2.08	0.174	7.80	0.3	21	0.11	1.21	<5	1.1	<0.02	2.3	
CT-8	Vegetation	20	22.29	2.509	4.4	8.7	2.16	351.2	0.022	300	2.00											
CT-8 CT-9	Vegetation	20	22.29 26.28	2.509	2.9	8.7 6.5	2.16	351.2 384.5	0.022	325	1.76	0.102	3.18	0.2	1.7	0.13	0.90	<5	1.3	<0.02	1.3	
														0.2				ণ্ড গ	1.3	<0.02	1.3	
CT-9	Vegetation	15	26.28	1.367	2.9	6.5	1.46	384.5	0.017	325	1.76	0.102	3.18		1.7	0.13	0.90	-				
CT-9 CT-10	Vegetation Vegetation	15 22	26.28 22.04	1.367 1.685	2.9 4.5	6.5 10.1	1.46 2.15	384.5 358.4	0.017	325 269	1.76 3.54	0.102	3.18 3.77	0.4	1.7 2.3	0.13	0.90	<5	1.2	<0.02	2.4	
CT-9 CT-10 CT-11	Vegetation Vegetation Vegetation	15 22 16	26.28 22.04 23.92	1.367 1.685 1.626	2.9 4.5 2.8	6.5 10.1 8.4	1.46 2.15 2.22	384.5 358.4 323.7	0.017 0.024 0.020	325 269 277	1.76 3.54 0.71	0.102 0.103 0.153	3.18 3.77 4.50	0.4	1.7 2.3 1.7	0.13 0.16 0.08	0.90 1.00 0.99	5 5	1.2 0.9	<0.02 <0.02	2.4	
CT-9 CT-10 CT-11 CT-12	Vegetation Vegetation Vegetation Vegetation	15 22 16 14	26.28 22.04 23.92 26.27	1.367 1.685 1.626 1.549	2.9 4.5 2.8 2.9	6.5 10.1 8.4 6.3	1.46 2.15 2.22 1.57	384.5 358.4 323.7 343.0	0.017 0.024 0.020 0.018	325 269 277 377	1.76 3.54 0.71 0.49	0.102 0.103 0.153 0.175	3.18 3.77 4.50 4.80	0.4 0.3 0.4	1.7 2.3 1.7 1.5	0.13 0.16 0.08 0.10	0.90 1.00 0.99 0.95	<5 <5 5	1.2 0.9 0.7	<0.02 <0.02 0.02	2.4 1.7 1.5	

Acme A Bureau Veritas Grou)S [™]		www.	acmela	ab.com						Client		PO Box	aser BC V				Ltd		
Acme Analytical Laborator		er) I td										Report	Date:		ber 22, 20	013					
0050 Shaughnessy St Va PHONE (604) 253-3158			CANAE	A								Page:		1 of 1					Part	1 01	2
QUALITY CO	NTROL	REP	OR	Т												VA	N13	004	599.	1	
	Method	VA475	VA475	VA475	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F	16
	Analyte	Rec. Wte			Mo	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	U	Au	Th	Sr	Cd	Sb	в
	Unit	g	g	g	ppm	ppm	ppm	ppm	ppb	ppm	ppm	ppm	%	ppm	ppm	ppb	ppm	ppm	ppm	ppm	ppm
	MDL	0.01	0.001	0.001	0.01	0.01	0.01	0.1	2	0.1	0.1	1	0.01	0.1	0.1	0.2	0.1	0.5	0.01	0.02	0.02
Pulp Duplicates																					
OVEN STD-1	Vegetation Pu	1	18.790	0.537	0.18	39.10	7.48	1540.3	951	11.0	0.9 >	10000	0.13	2.4	2.0	1.2	0.8	576.7	0.24	0.43	0.11
REP OVEN STD-1	QC				0.19	40.47	7.45	1545.5	1000	12.5	1.1 >	10000	0.14	2.5	2.0	0.8	0.8	596.6	0.19	0.37	0.09
D. C. State Market State				,																	
Reference Materials											11212		0.00		0.0	05.0					
STD DS10	Standard				15.17	161.79	155.34	392.3	2119	81.4	14.0	921	2.83	46.8	2.9	65.9	7.8	70.4	2.78	7.20	10.41
	Standard Standard				15.17	161.79 683.77	155.34 12.84	392.3 25.7	2119 238	81.4 392.7	14.0 46.1	921 411	2.83	46.8 8.2	1.5	46.2	7.8	70.4 3.3	<0.01	7.20	10.41
STD DS10					112000	10.20.20.20						1000		1000	100 million (100 million)		-	100 100 K	0.00		
STD DS10 STD OREAS45EA					1.17	683.77	12.84	25.7	236	392.7	46.1	411	21.61	8.2	1.5	46.2	8.9	3.3	<0.01	0.12	0.28

Acm	e Lab	S™										Clien	:	PO Box	111		Contra		Ltd		
A Bureau Veritas G	roup Company	-		www.a	acmela	b.com						Project		Copper	Tree						
												Report	Date:	100 C	ber 22, 2	013					
Acme Analytical Laborat		1																			
050 Shaughnessy St \ HONE (604) 253-3158		P 6E5 (CANAE	A								Page:		1 of 1					Part	2 of	2
QUALITY CO	NTROL	REP	OR	Г												VA	N13(0045	599.	1	
	Method	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F
	1000 (ASS 100 (STATE)																				10
	Analyte	V	Ca	P	La	Cr	Mg	Ba	Ti	в	AI	Na	к	w	Sc	TI	s	Hg	Se	Te	Ga
	Analyte Unit	V	Ca %	P %	La ppm	Cr ppm	Mg %	Ba ppm	Ti %	B ppm	Al %	Na %	К %	W ppm	Sc ppm	TI ppm				Te ppm	
20		-					-										S	Hg	Se		Ga
Pulp Duplicates	Unit	ppm	%	%	ppm	ppm	%	ppm	96	ppm	96	%	%	ppm	ppm	ppm	s %	Hg ppb	Se ppm	ppm	Ga ppm
Pulp Duplicates OVEN STD-1	Unit	ppm	%	%	ppm	ppm	%	ppm	96	ppm	96	%	%	ppm	ppm	ppm	s %	Hg ppb	Se ppm	ppm	Ga ppm
	Unit MDL	ppm 2	% 0.01	% 0.001	ppm 0.5	ppm 0.5	% 0.01	ppm 0.5	% 0.001	ppm 20	% 0.01	% 0.001	% 0.01	ppm 0.1	ppm 0.1	ppm 0.02	S % 0.02	Hg ppb 5	Se ppm 0.1	ppm 0.02	Ga ppm 0.1
OVEN STD-1	Unit MDL Vegetation Pu	ppm 2 <2	% 0.01 21.36	% 0.001 2.948	ppm 0.5 1.4	ppm 0.5 4.5	% 0.01 2.38	ppm 0.5 1142.5	% 0.001 0.010	ppm 20 405	% 0.01 0.12	% 0.001 0.213	% 0.01 >10	ppm 0.1 0.4	ppm 0.1 1.7	0.02	\$ % 0.02	Hg ppb 5 <5	Se ppm 0.1	ppm 0.02 <0.02	Ga ppm 0.1 2.6
OVEN STD-1 REP OVEN STD-1	Unit MDL Vegetation Pu	ppm 2 <2	% 0.01 21.36	% 0.001 2.948	ppm 0.5 1.4	ppm 0.5 4.5	% 0.01 2.38	ppm 0.5 1142.5	% 0.001 0.010	ppm 20 405	% 0.01 0.12	% 0.001 0.213	% 0.01 >10	ppm 0.1 0.4	ppm 0.1 1.7	0.02	\$ % 0.02	Hg ppb 5 <5	Se ppm 0.1	ppm 0.02 <0.02	Ga ppm 0.1 2.6
OVEN STD-1 REP OVEN STD-1 Reference Materials	Unit MDL Vegetation Pu QC	2 2 2 2	% 0.01 21.36 21.19	% 0.001 2.948 3.167	ppm 0.5 1.4 1.6	ppm 0.5 4.5 5.4	% 0.01 2.38 2.36	ppm 0.5 1142.5 1143.3	% 0.001 0.010 0.010	ppm 20 405 426	% 0.01 0.12 0.13	% 0.001 0.213 0.214	% 0.01 >10 >10	0.1 0.4 0.5	ppm 0.1 1.7 2.0	0.02 0.09 0.07	\$ % 0.02 1.32 1.33	Hg ppb 5 <5 <5	Se ppm 0.1 0.3 0.5	ppm 0.02 <0.02 <0.02	Ga ppm 0.1 2.6 3.1
OVEN STD-1 REP OVEN STD-1 Reference Materials STD DS10	Unit MDL Vegetation Pu QC Standard	ppm 2 <2 <2 45	% 0.01 21.38 21.19 1.11	% 0.001 2.948 3.167 0.080	ppm 0.5 1.4 1.6 17.5	ppm 0.5 4.5 5.4 57.2	% 0.01 2.38 2.36 0.82 0.08	ppm 0.5 1142.5 1143.3 432.9 126.2	% 0.001 0.010 0.010 0.072	ppm 20 405 426 21	% 0.01 0.12 0.13 1.07	% 0.001 0.213 0.214 0.070	% 0.01 >10 >10 0.35	ppm 0.1 0.4 0.5 2.3	ppm 0.1 1.7 2.0 3.1	0.02 0.09 0.07 5.39	\$ % 0.02 1.32 1.33 0.29	Hg ppb 5 <5 <5	Se ppm 0.1 0.3 0.5 2.3	ppm 0.02 <0.02 <0.02 5.36	Ga ppm 0.1 2.6 3.1 4.7
OVEN STD-1 REP OVEN STD-1 Reference Materials STD DS10 STD OREAS45EA	Unit MDL Vegetation Pu QC Standard Standard	2 2 2 2 2 45 305	% 0.01 21.36 21.19 1.11 0.03	% 0.001 2.948 3.167 0.080 0.025	ppm 0.5 1.4 1.6 17.5 5.7	ppm 0.5 4.5 5.4 57.2 756.3	% 0.01 2.38 2.36 0.82 0.08	ppm 0.5 1142.5 1143.3 432.9 126.2 349	% 0.001 0.010 0.010 0.072 0.073	ppm 20 405 426 21	% 0.01 0.12 0.13 1.07 3.16	% 0.001 0.213 0.214 0.070 0.023	% 0.01 >10 >10 0.35 0.05	ppm 0.1 0.4 0.5 2.3 <0.1	ppm 0.1 1.7 2.0 3.1 66.2	0.02 0.09 0.07 5.39 0.05	\$ % 0.02 1.32 1.33 0.29 0.04	Hg ppb 5 <5 <5 281 5	Se ppm 0.1 0.3 0.5 2.3 0.4	ppm 0.02 <0.02 <0.02 5.36 0.05	Ga ppm 0.1 2.6 3.1 4.7 10.4

Met-Solve Analytical Services Unit 1, 20120 102nd Avenue Langley, BC V1M 4B4 Phone: +1-604-888-0875

CERTIFICATE OF ANALYSIS: MA0050-JUL13

Project Name:OrbitJob Received Date:24-Jul-2013Job Finalized Date:16-Aug-2013

To: Kluskus North Contracting Ltd. PO Box 111 Fort Fraser, BC V0J 1N0

	SAMPLE PREPARATION
METHOD CODE	DESCRIPTION
PWE-100	Sample received weight
PLG-100	Log raw samples
PRP-910	Crush & Pulverize to 85% passing 75micron

	ANALYTICAL ANALYSES										
METHOD CODE	DESCRIPTION										
FAS-112	Fire Assay Au + Ag (Trace Level)										
ICP-130	Multi-Element ICP-OES (Aqua Regia)										

To: Kluskus North Contracting Ltd. PO Box 111 Fort Fraser, BC VOJ 1N0

Signature:

Mike Phillips, President, Met-Solve Analytical Services

Met-Solve Analytical Services Unit 1, 20120 102nd Avenue Langley, BC V1M 4B4 Phone: +1-604-888-0875 To: Kluskus North Contracting Ltd. PO Box 111 Fort Fraser, BC VOJ 1N0

	Method	PWE-100	FAS-112	FAS-112	ICP-130									
	Analyte	Rec. Wt.	Au	Ag	Ag	Al	As	В	Ba	Be	Bi	Ca	Cd	Co
	Units	Kg	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm
Sample ID	LOR	0.02	0.005	0.1	0.1	0.01	5	20	5	0.5	5	0.01	1	1
Orbit QF1		0.35	0.399	0.9	0.8	1.37	<5	<20	134	<0.5	<5	0.91	<1	12
Orbit QF2		0.37	0.045	0.5	0.6	1.68	<5	<20	84	<0.5	<5	0.86	<1	22
Pluto-002		0.32	0.068	0.6	0.6	2.07	<5	<20	120	<0.5	<5	0.84	<1	13
Voortrekker VT1		0.28	0.005	<0.1	0.1	5.68	<5	<20	278	<0.5	<5	3.42	<1	28
Voortrekker VT2		0.27	<0.005	<0.1	<0.1	2.34	<5	<20	153	<0.5	<5	1.56	<1	45
DUP Voortrekker V	T1		<0.005											
DUP Orbit QF 1				0.8	0.8	1.34	<5	<20	148	<0.5	<5	1.07	<1	12
STD BLANK			< 0.005											
STD BLANK				<0.1	<0.1	< 0.01	<5	<20	<5	<0.5	<5	< 0.01	<1	<1
STD CDN-ME-1206			2.498											
STD OREAS 24b					<0.1	3.09	7	<20	148	1	<5	0.44	<1	15

CERTIFICATE OF ANALYSIS:MA0050-JUL13Project Name:Orbit

Job Received Date:24-Jul-2013Job Finalized Date:16-Aug-2013

Project Name: Job Received Date:

Job Finalized Date:

CERTIFICATE OF ANALYSIS:

Orbit

24-Jul-2013

16-Aug-2013

Met-Solve Analytical Services Unit 1, 20120 102nd Avenue Langley, BC V1M 4B4 Phone: +1-604-888-0875

MA0050-JUL13

To:

Kluskus North Contracting Ltd. PO Box 111 Fort Fraser, BC VOJ 1N0

	Method	ICP-130										
	Analyte	Cr	Cu	Fe	Ga	Hg	к	La	Mg	Mn	Мо	Na
	Units	ppm	ppm	%	ppm	ppm	%	ppm	%	ppm	ppm	%
Sample ID	LOR	1	1	0.01	5	5	0.01	10	0.01	5	1	0.01
Orbit QF1		59	675	3.82	6	<5	0.39	<10	0.90	361	<1	0.16
Orbit QF2		57	922	3.36	6	<5	0.22	<10	1.02	427	<1	0.14
Pluto-002		116	381	1.77	<5	<5	0.44	<10	0.58	267	<1	0.25
Voortrekker VT1		78	60	6.23	13	<5	0.90	<10	2.38	824	<1	0.58
Voortrekker VT2		19	9	7.00	11	<5	0.31	<10	1.52	835	<1	0.21
DUP Voortrekker V	/T1											
DUP Orbit QF 1		62	617	3.65	6	<5	0.36	<10	0.94	386	<1	0.15
STD BLANK												
STD BLANK		<1	<1	< 0.01	<5	<5	< 0.01	<10	< 0.01	<5	<1	< 0.01
STD CDN-ME-1206												
STD OREAS 24b		108	34	3.91	9	<5	1.08	21	1.29	319	3	0.09

Met-Solve Analytical Services Unit 1, 20120 102nd Avenue Langley, BC V1M 4B4 Phone: +1-604-888-0875

MA0050-JUL13

To: Kluskus North Contracting Ltd. PO Box 111

Fort Fraser, BC V0J 1N0

CERTIFICATE OF	ANALYSIS:	
Project Name:	Orbit	
Job Received Date:	24-Jul-2013	
Job Finalized Date:	16-Aug-2013	

	Method	ICP-130											
	Analyte	Ni	Р	Pb	S	Sb	Sr	Ti	TI	V	w	Zn	Zr
	Units	ppm	%	ppm	%	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm
Sample ID	LOR	1	0.01	2	0.01	5	1	0.01	5	1	10	2	5
Orbit QF1		8	0.17	19	1.46	<5	39	0.24	<5	87	<10	51	<5
Orbit QF2		6	0.11	17	1.35	<5	41	0.16	<5	77	<10	49	<5
Pluto-002		13	0.08	21	0.19	<5	111	0.09	<5	47	<10	43	<5
Voortrekker VT1		41	0.17	17	0.11	<5	223	0.32	<5	151	<10	78	9
Voortrekker VT2		<1	0.24	19	0.38	<5	78	0.28	<5	159	<10	65	<5
DUP Voortrekker VT	1												
DUP Orbit QF 1		8	0.16	20	1.42	<5	37	0.27	<5	92	<10	45	<5
STD BLANK													
STD BLANK		<1	<0.01	<2	< 0.01	<5	<1	< 0.01	<5	<1	<10	<2	<5
STD CDN-ME-1206													
STD OREAS 24b		50	0.06	10	0.20	<5	24	0.18	<5	72	<10	95	22